

1 / 62

[MS-MQQP] — v20140124
 Message Queuing (MSMQ): Queue Manager to Queue Manager Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

[MS-MQQP]:
Message Queuing (MSMQ):
Queue Manager to Queue Manager Protocol

Intellectual Property Rights Notice for Open Specifications Documentation

 Technical Documentation. Microsoft publishes Open Specifications documentation for
protocols, file formats, languages, standards as well as overviews of the interaction among each
of these technologies.

 Copyrights. This documentation is covered by Microsoft copyrights. Regardless of any other
terms that are contained in the terms of use for the Microsoft website that hosts this
documentation, you may make copies of it in order to develop implementations of the
technologies described in the Open Specifications and may distribute portions of it in your
implementations using these technologies or your documentation as necessary to properly
document the implementation. You may also distribute in your implementation, with or without

modification, any schema, IDL’s, or code samples that are included in the documentation. This
permission also applies to any documents that are referenced in the Open Specifications.

 No Trade Secrets. Microsoft does not claim any trade secret rights in this documentation.

 Patents. Microsoft has patents that may cover your implementations of the technologies
described in the Open Specifications. Neither this notice nor Microsoft's delivery of the
documentation grants any licenses under those or any other Microsoft patents. However, a given
Open Specification may be covered by Microsoft Open Specification Promise or the Community

Promise. If you would prefer a written license, or if the technologies described in the Open

Specifications are not covered by the Open Specifications Promise or Community Promise, as
applicable, patent licenses are available by contacting iplg@microsoft.com.

 Trademarks. The names of companies and products contained in this documentation may be
covered by trademarks or similar intellectual property rights. This notice does not grant any
licenses under those rights. For a list of Microsoft trademarks, visit
www.microsoft.com/trademarks.

 Fictitious Names. The example companies, organizations, products, domain names, email
addresses, logos, people, places, and events depicted in this documentation are fictitious. No
association with any real company, organization, product, domain name, email address, logo,
person, place, or event is intended or should be inferred.

Reservation of Rights. All other rights are reserved, and this notice does not grant any rights
other than specifically described above, whether by implication, estoppel, or otherwise.

Tools. The Open Specifications do not require the use of Microsoft programming tools or
programming environments in order for you to develop an implementation. If you have access to
Microsoft programming tools and environments you are free to take advantage of them. Certain
Open Specifications are intended for use in conjunction with publicly available standard
specifications and network programming art, and assumes that the reader either is familiar with the
aforementioned material or has immediate access to it.

http://go.microsoft.com/fwlink/?LinkId=214445
http://go.microsoft.com/fwlink/?LinkId=214448
http://go.microsoft.com/fwlink/?LinkId=214448
mailto:iplg@microsoft.com
http://www.microsoft.com/trademarks

2 / 62

[MS-MQQP] — v20140124
 Message Queuing (MSMQ): Queue Manager to Queue Manager Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

Revision Summary

Date

Revision

History

Revision

Class Comments

05/11/2007 0.1 MCPP Milestone 4 Initial Availability

08/10/2007 1.0 Major Updated and revised the technical content.

09/28/2007 1.0.1 Editorial Revised and edited the technical content.

10/23/2007 1.0.2 Editorial Revised and edited the technical content.

11/30/2007 1.0.3 Editorial Revised and edited the technical content.

01/25/2008 1.0.4 Editorial Revised and edited the technical content.

03/14/2008 1.0.5 Editorial Revised and edited the technical content.

05/16/2008 1.0.6 Editorial Revised and edited the technical content.

06/20/2008 1.0.7 Editorial Revised and edited the technical content.

07/25/2008 1.0.8 Editorial Revised and edited the technical content.

08/29/2008 2.0 Major Updated and revised the technical content.

10/24/2008 3.0 Major Updated and revised the technical content.

12/05/2008 4.0 Major Updated and revised the technical content.

01/16/2009 4.1 Minor Updated the technical content.

02/27/2009 4.2 Minor Updated the technical content.

04/10/2009 4.2.1 Editorial Revised and edited the technical content.

05/22/2009 4.2.2 Editorial Revised and edited the technical content.

07/02/2009 5.0 Major Updated and revised the technical content.

08/14/2009 6.0 Major Updated and revised the technical content.

09/25/2009 7.0 Major Updated and revised the technical content.

11/06/2009 8.0 Major Updated and revised the technical content.

12/18/2009 9.0 Major Updated and revised the technical content.

01/29/2010 10.0 Major Updated and revised the technical content.

03/12/2010 10.0.1 Editorial Revised and edited the technical content.

04/23/2010 10.0.2 Editorial Revised and edited the technical content.

06/04/2010 11.0 Major Updated and revised the technical content.

3 / 62

[MS-MQQP] — v20140124
 Message Queuing (MSMQ): Queue Manager to Queue Manager Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

Date

Revision

History

Revision

Class Comments

07/16/2010 11.0 No change No changes to the meaning, language, or formatting of

the technical content.

08/27/2010 12.0 Major Significantly changed the technical content.

10/08/2010 13.0 Major Significantly changed the technical content.

11/19/2010 13.0 No change No changes to the meaning, language, or formatting of

the technical content.

01/07/2011 13.0 No change No changes to the meaning, language, or formatting of

the technical content.

02/11/2011 14.0 Major Significantly changed the technical content.

03/25/2011 15.0 Major Significantly changed the technical content.

05/06/2011 16.0 Major Significantly changed the technical content.

06/17/2011 16.1 Minor Clarified the meaning of the technical content.

09/23/2011 16.1 No change No changes to the meaning, language, or formatting of

the technical content.

12/16/2011 17.0 Major Significantly changed the technical content.

03/30/2012 17.0 No change No changes to the meaning, language, or formatting of

the technical content.

07/12/2012 17.1 Minor Clarified the meaning of the technical content.

10/25/2012 18.0 Major Significantly changed the technical content.

01/31/2013 18.0 No change No changes to the meaning, language, or formatting of

the technical content.

08/08/2013 19.0 Major Significantly changed the technical content.

11/14/2013 19.0 No change No changes to the meaning, language, or formatting of

the technical content.

02/13/2014 19.0 No change No changes to the meaning, language, or formatting of

the technical content.

4 / 62

[MS-MQQP] — v20140124
 Message Queuing (MSMQ): Queue Manager to Queue Manager Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

Contents

1 Introduction ... 6
1.1 Glossary ... 6
1.2 References .. 7

1.2.1 Normative References ... 7
1.2.2 Informative References ... 7

1.3 Overview .. 8
1.3.1 Messages .. 8
1.3.2 Queues ... 8
1.3.3 Queue Operations .. 9
1.3.4 Access Patterns .. 9

1.4 Relationship to Other Protocols .. 10
1.5 Prerequisites/Preconditions ... 10
1.6 Applicability Statement ... 10
1.7 Versioning and Capability Negotiation ... 10
1.8 Vendor-Extensible Fields ... 11
1.9 Standards Assignments .. 11

2 Messages.. 12
2.1 Transport .. 12
2.2 Common Data Types .. 12

2.2.1 Data Types .. 13
2.2.1.1 PCTX_RRSESSION_HANDLE_TYPE .. 13
2.2.1.2 PCTX_REMOTEREAD_HANDLE_TYPE .. 13
2.2.1.3 REMOTEREADACK ... 13

2.2.2 Structures ... 14
2.2.2.1 REMOTEREADDESC ... 14
2.2.2.2 REMOTEREADDESC2 ... 16

2.3 Directory Service Schema Elements ... 16

3 Protocol Details .. 17
3.1 qm2qm Server Details .. 17

3.1.1 Abstract Data Model ... 17
3.1.1.1 Shared Data Elements ... 17
3.1.1.2 RemoteReadEntry ... 17
3.1.1.3 RemoteReadEntryCollection ... 18
3.1.1.4 OpenQueueEntry .. 18
3.1.1.5 OpenQueueEntryCollection ... 18

3.1.2 Timers .. 18
3.1.3 Initialization .. 18
3.1.4 Message Processing Events and Sequencing Rules .. 18

3.1.4.1 RemoteQMStartReceive (Opnum 0) ... 19
3.1.4.2 RemoteQMEndReceive (Opnum 1) .. 23
3.1.4.3 RemoteQMOpenQueue (Opnum 2) .. 24
3.1.4.4 RemoteQMCloseQueue (Opnum 3) .. 26
3.1.4.5 RemoteQMCloseCursor (Opnum 4) .. 27
3.1.4.6 RemoteQMCancelReceive (Opnum 5) .. 28
3.1.4.7 RemoteQMPurgeQueue (Opnum 6) ... 29
3.1.4.8 RemoteQMGetQMQMServerPort (Opnum 7) ... 30
3.1.4.9 RemoteQmGetVersion (Opnum 8) ... 31
3.1.4.10 RemoteQMStartReceive2 (Opnum 9) ... 31

5 / 62

[MS-MQQP] — v20140124
 Message Queuing (MSMQ): Queue Manager to Queue Manager Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

3.1.4.11 RemoteQMStartReceiveByLookupId (Opnum 10) ... 34
3.1.5 Timer Events ... 38
3.1.6 Other Local Events ... 38

3.1.6.1 PCTX_RRSESSION_HANDLE_TYPE Rundown .. 38
3.1.6.2 PCTX_REMOTEREAD_HANDLE_TYPE Rundown .. 38

3.2 qm2qm Client Details ... 39
3.2.1 Abstract Data Model ... 39

3.2.1.1 PendingRemoteReadEntry .. 39
3.2.1.2 PendingRemoteReadEntryCollection .. 39
3.2.1.3 RemoteOpenQueueEntry ... 39
3.2.1.4 RemoteOpenQueueEntryCollection .. 39

3.2.2 Timers .. 39
3.2.3 Initialization .. 39
3.2.4 Message Processing Events and Sequencing Rules .. 40

3.2.4.1 Opening a Queue .. 40
3.2.4.2 Peeking a Message ... 41
3.2.4.3 Receiving a Message ... 43
3.2.4.4 Purging a Queue ... 44
3.2.4.5 Peeking a Message by Using a Cursor .. 44
3.2.4.6 Receiving a Message by Using a Cursor ... 46
3.2.4.7 Canceling a Pending Peek or Receive ... 48
3.2.4.8 Closing a Cursor ... 48
3.2.4.9 Closing a Queue ... 48

3.2.5 Timer Events ... 49
3.2.6 Other Local Events ... 49

4 Protocol Examples .. 50
4.1 Receive Example ... 50
4.2 Purge Example .. 51

5 Security .. 52
5.1 Security Considerations for Implementers ... 52
5.2 Index of Security Parameters .. 52

6 Appendix A: Full IDL ... 53

7 Appendix B: Product Behavior .. 56

8 Change Tracking... 60

9 Index ... 61

6 / 62

[MS-MQQP] — v20140124
 Message Queuing (MSMQ): Queue Manager to Queue Manager Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

1 Introduction

This document specifies the Message Queuing (MSMQ): Queue Manager to Queue Manager Protocol.
The Queue Manager to Queue Manager Protocol is an RPC-based protocol used by the queue
manager and runtime library to read and purge messages from a remote queue.

Sections 1.8, 2, and 3 of this specification are normative and can contain the terms MAY, SHOULD,
MUST, MUST NOT, and SHOULD NOT as defined in RFC 2119. Sections 1.5 and 1.9 are also
normative but cannot contain those terms. All other sections and examples in this specification are
informative.

1.1 Glossary

The following terms are defined in [MS-GLOS]:

authentication level
Authentication Service (AS)
client (1)

dynamic endpoint
endpoint
globally unique identifier (GUID)
Interface Definition Language (IDL)
Microsoft Interface Definition Language (MIDL)
Network Data Representation (NDR)

opnum
remote procedure call (RPC)
RPC protocol sequence
RPC transfer syntax
RPC transport
security provider
universally unique identifier (UUID)

well-known endpoint

The following terms are defined in [MS-MQMQ]:

cursor
message
message body
message header
message property

message queuing
message trailer
MSMQ
queue
queue manager
remote queue

remote read

The following terms are specific to this document:

MQMP application: An application that communicates with an MSMQ supporting server using
the [MS-MQMP] protocol.

purge: In the context of a queue, to delete all messages from the queue.

%5bMS-GLOS%5d.pdf
%5bMS-MQMQ%5d.pdf
%5bMS-MQMQ%5d.pdf
%5bMS-MQMQ%5d.pdf
%5bMS-MQMQ%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-MQMQ%5d.pdf
%5bMS-MQMQ%5d.pdf
%5bMS-MQMP%5d.pdf
%5bMS-MQMQ%5d.pdf
%5bMS-MQMQ%5d.pdf
%5bMS-MQMQ%5d.pdf

7 / 62

[MS-MQQP] — v20140124
 Message Queuing (MSMQ): Queue Manager to Queue Manager Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

MAY, SHOULD, MUST, SHOULD NOT, MUST NOT: These terms (in all caps) are used as
described in [RFC2119]. All statements of optional behavior use either MAY, SHOULD, or

SHOULD NOT.

1.2 References

References to Microsoft Open Specifications documentation do not include a publishing year because
links are to the latest version of the documents, which are updated frequently. References to other
documents include a publishing year when one is available.

A reference marked "(Archived)" means that the reference document was either retired and is no
longer being maintained or was replaced with a new document that provides current implementation
details. We archive our documents online [Windows Protocol].

1.2.1 Normative References

We conduct frequent surveys of the normative references to assure their continued availability. If

you have any issue with finding a normative reference, please contact dochelp@microsoft.com. We
will assist you in finding the relevant information.

[C706] The Open Group, "DCE 1.1: Remote Procedure Call", C706, August 1997,

https://www2.opengroup.org/ogsys/catalog/c706

[MC-MQAC] Microsoft Corporation, "Message Queuing (MSMQ): ActiveX Client Protocol".

[MS-ADTS] Microsoft Corporation, "Active Directory Technical Specification".

[MS-DTYP] Microsoft Corporation, "Windows Data Types".

[MS-ERREF] Microsoft Corporation, "Windows Error Codes".

[MS-MQDMPR] Microsoft Corporation, "Message Queuing (MSMQ): Common Data Model and
Processing Rules".

[MS-MQDS] Microsoft Corporation, "Message Queuing (MSMQ): Directory Service Protocol".

[MS-MQDSSM] Microsoft Corporation, "Message Queuing (MSMQ): Directory Service Schema
Mapping".

[MS-MQMQ] Microsoft Corporation, "Message Queuing (MSMQ): Data Structures".

[MS-MQMP] Microsoft Corporation, "Message Queuing (MSMQ): Queue Manager Client Protocol".

[MS-MQRR] Microsoft Corporation, "Message Queuing (MSMQ): Queue Manager Remote Read
Protocol".

[MS-RPCE] Microsoft Corporation, "Remote Procedure Call Protocol Extensions".

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC
2119, March 1997, http://www.rfc-editor.org/rfc/rfc2119.txt

1.2.2 Informative References

[MS-GLOS] Microsoft Corporation, "Windows Protocols Master Glossary".

[MS-MQOD] Microsoft Corporation, "Message Queuing Protocols Overview".

http://go.microsoft.com/fwlink/?LinkId=90317
http://msdn.microsoft.com/en-us/library/jj633107.aspx
mailto:dochelp@microsoft.com
http://go.microsoft.com/fwlink/?LinkId=89824
%5bMC-MQAC%5d.pdf
%5bMS-ADTS%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-ERREF%5d.pdf
%5bMS-MQDMPR%5d.pdf
%5bMS-MQDMPR%5d.pdf
%5bMS-MQDS%5d.pdf
%5bMS-MQDSSM%5d.pdf
%5bMS-MQDSSM%5d.pdf
%5bMS-MQMQ%5d.pdf
%5bMS-MQMP%5d.pdf
%5bMS-MQRR%5d.pdf
%5bMS-MQRR%5d.pdf
%5bMS-RPCE%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90317
%5bMS-GLOS%5d.pdf
%5bMS-MQOD%5d.pdf

8 / 62

[MS-MQQP] — v20140124
 Message Queuing (MSMQ): Queue Manager to Queue Manager Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

1.3 Overview

Message queuing is a communications service that provides asynchronous and reliable message
passing between client applications, including those client applications running on different hosts. In

message queuing, clients send messages to a queue and consume application messages from a
queue. The queue provides persistence of the messages, enabling them to survive across application
restarts, and allowing the sending and receiving client applications to operate asynchronously from
each other.

Queues are typically hosted by a communications service called a queue manager. By hosting the
queue manager in a separate service from the client applications, applications can communicate by
exchanging messages via a queue hosted by the queue manager, even if the client applications

never execute at the same time.

The queue manager may need to perform operations on a remote queue. When this scenario occurs,
a protocol is required to insert messages into the remote queue, and another protocol is required to
consume messages from the remote queue. The Message Queuing (MSMQ): Queue Manager to
Queue Manager Protocol provides a protocol for consuming messages from a remote queue.

The Queue Manager to Queue Manager Protocol is used only to read messages from a queue or to

purge messages from the queue. Reading a message also implies deleting the message after it is
read, as specified in Queue Operations (section 1.3.3).

1.3.1 Messages

Each message that is exchanged in a message queuing system typically has a set of message
properties that contain metadata about the message and a distinguished property, called a
message body, that contains the application payload.

Message properties that are serialized in front of the message body are referred to as message
headers, and message properties that are serialized after the message body property are referred
to as message trailers.

Messages that are carried by this protocol are treated as payload. The format and structure of the
application messages are opaque to the protocol.

The protocol also requires that each message have a lookup identifier that is unique in the queue.
This identifier is not part of the message but is instead assigned by the server.

1.3.2 Queues

A queue is a logical data structure containing an ordered first-in-first-out (FIFO) list of zero or more
messages.

This protocol provides a mechanism to open a queue. Opening provides an opportunity to check for
the existence of the queue and to perform authorization checks. The protocol provides for the return
of an RPC context handle that is used by the client to specify the queue to operate on in subsequent

requests. The use of an RPC context handle provides a mechanism to ensure that server state is
cleaned up if the connection between the client and server is lost.

When opening a queue, the client can specify an access mode that determines the operations (Peek,
Receive, CancelReceive, and Purge) for which the returned handle can subsequently be used. The
client can specify a sharing mode that either allows other clients to access the queue concurrently or
ensures that the client has exclusive access to the queue. The exclusive access sharing mode can be

used to avoid race conditions caused by other clients operating on the queue at the same time. This
sharing mode is specified when opening a remote queue, as specified in [MS-MQMP] section 3.1.4.2.

%5bMS-MQMQ%5d.pdf
%5bMS-MQMQ%5d.pdf
%5bMS-MQMQ%5d.pdf
%5bMS-MQMQ%5d.pdf
%5bMS-MQMQ%5d.pdf
%5bMS-MQMQ%5d.pdf
%5bMS-MQMQ%5d.pdf
%5bMS-MQMQ%5d.pdf
%5bMS-MQMP%5d.pdf

9 / 62

[MS-MQQP] — v20140124
 Message Queuing (MSMQ): Queue Manager to Queue Manager Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

1.3.3 Queue Operations

The protocol provides mechanisms for the following operations against an open queue.

A message can be consumed from an open queue through a destructive read operation referred to

as Receive. This operation atomically reads the message and removes it from the queue. Since this
operation removes a message from a queue, losing a network connection during this operation could
result in permanent loss of the message.

To guard against this situation, the protocol provides a mechanism for the client to either positively
or negatively acknowledge receipt of the message. On receipt of positive acknowledgment from the
client, the server can remove the message from the queue. While the server is awaiting
acknowledgment from the client, access to the message by other clients is prevented.

A message can be read from an open queue through a nondestructive read operation referred to as
Peek. This operation reads the message but does not remove it from the queue.

All the messages can be removed from a queue through a Purge mechanism. The messages

removed through this mechanism are not returned to the client.

A client can inform the server that it has no need of a message via a CancelReceive operation. The
server can use this indication to inform the sender that the client did not consume the message.

How a server implements this notification functionality is not addressed in this specification.

When a client does a destructive read, the message is not deleted from the queue until the client
acknowledges receipt of the message via an EndReceive operation.

1.3.4 Access Patterns

Messages in a queue can be consumed in a FIFO access pattern. Because messages in a queue are
ordered, there is a head, representing the front of the queue, and a tail, representing the end of the

queue.

The protocol provides mechanisms to Peek or Receive the first message or the last message in the

queue.

The protocol also allows the client to specify exactly which message to Peek or Receive, regardless
of its position in the queue, through a unique lookup identifier assigned to each message by the
server. A message can also be specified relative to the message identified by the lookup identifier,
that is, the message immediately preceding or following the message identified by the lookup

identifier.

Finally, the protocol provides a mechanism, referred to as a cursor, for sequential forward access
through the queue. A cursor logically represents a current pointer that lies between the head and
the tail of the queue. A cursor can be specified to the Peek or Receive operation, which Peek or
Receive the message at the current pointer represented by the cursor. The cursor's current pointer
can be used, through a modified Peek operation called PeekNext, to do a Peek on the next message

in the queue without moving the cursor's current position. A Receive operation intrinsically moves
the cursor forward.

Because cursors are stateful, the protocol provides mechanisms to close a cursor opened as
specified in [MS-MQMP] section 3.1.4.4. Because a cursor represents a position within a queue, the
protocol logically relates the cursor to the context handle associated with an open queue. The
protocol places no limit on the number of concurrent cursors associated with a queue context
handle.

%5bMS-MQMQ%5d.pdf
%5bMS-MQMP%5d.pdf

10 / 62

[MS-MQQP] — v20140124
 Message Queuing (MSMQ): Queue Manager to Queue Manager Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

1.4 Relationship to Other Protocols

This protocol is dependent on RPC for its transport. This protocol uses RPC, as specified in section
2.1.

This protocol is tightly coupled with the Message Queuing (MSMQ): Queue Manager Client Protocol
[MS-MQMP] and therefore if one protocol is implemented, the other one MUST be implemented as
well. The methods of this protocol are invoked only by the processing rules of Message Queuing
(MSMQ): Queue Manager Client Protocol. The functionalities of this protocol coupled with the
functionalities of Message Queuing (MSMQ): Queue Manager Client Protocol together provide the
ability for reading and browsing messages from a remote queue. Furthermore, the arguments
required for these methods are obtained from the qmcomm RPC interface, as specified in [MS-

MQMP]. The following diagram illustrates the protocol layering for this protocol.

Figure 1: Protocol relationships

This protocol has been deprecated by the RemoteRead RPC interface, as specified in [MS-MQRR].

This protocol uses shared state and processing rules defined in [MS-MQDMPR].

1.5 Prerequisites/Preconditions

The Message Queuing (MSMQ): Queue Manager to Queue Manager Protocol is an RPC interface and,
as a result, has prerequisites, as specified in [MS-RPCE], that are common to RPC interfaces.

1.6 Applicability Statement

This protocol provides functionality related to consumption of messages from a queue hosted at a
queue manager running on a remote computer.<1> It does not provide functionality related to
inserting messages into a queue.

The server side of the Message Queuing (MSMQ): Queue Manager to Queue Manager Protocol is
applicable for implementation by a queue manager providing message queuing communication
services to clients. The client side of this protocol is applicable for implementation by client libraries
providing message queuing services to applications or by a client queue manager delegating

requests on behalf of client applications.

1.7 Versioning and Capability Negotiation

Supported Transports: This protocol uses the RPC over TCP/IP protocol sequence, as specified in
section 2.1. However, it supports a mechanism for explicitly negotiating the RPC endpoint to be
used. For more information, see RemoteQMGetQMQMServerPort.

%5bMS-MQMP%5d.pdf
%5bMS-MQRR%5d.pdf
%5bMS-MQDMPR%5d.pdf
%5bMS-RPCE%5d.pdf
%5bMS-GLOS%5d.pdf

11 / 62

[MS-MQQP] — v20140124
 Message Queuing (MSMQ): Queue Manager to Queue Manager Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

Protocol Versions: This protocol uses a single version of the RPC interface, but that interface has
been extended by adding the following methods at the end:<2>

RemoteQmGetVersion (section 3.1.4.9)

RemoteQMStartReceive2 (section 3.1.4.10)

RemoteQMStartReceiveByLookupId (section 3.1.4.11)

1.8 Vendor-Extensible Fields

This protocol uses HRESULTs, as specified in [MS-DTYP] section 2.2.18. Vendors can define their
own HRESULT values, provided that they set the C bit (0x20000000) for each vendor-defined value,

indicating that the value is a customer code.

1.9 Standards Assignments

Parameter Value Reference

RPC interface UUID {1088a980-eae5-11d0-8d9b-00a02453c337} As specified in [C706].

Interface version 1.0 As specified in [C706].

%5bMS-DTYP%5d.pdf
%5bMS-GLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=89824
http://go.microsoft.com/fwlink/?LinkId=89824

12 / 62

[MS-MQQP] — v20140124
 Message Queuing (MSMQ): Queue Manager to Queue Manager Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

2 Messages

The following sections specify how Message Queuing (MSMQ): Queue Manager to Queue Manager
Protocol messages are transported and the common data types for this protocol.

2.1 Transport

This protocol SHOULD use the RPC protocol sequence RPC over TCP/IP (ncacn_ip_tcp), as defined in
[MS-RPCE].<3> This protocol MAY use the RPC over SPX (ncacn_spx) protocol sequence if TCP/IP is
unavailable.<4>

This protocol SHOULD use RPC dynamic endpoints, as specified in [C706], Part 4. This protocol
MAY use an RPC static endpoint, as specified in RemoteQMGetQMQMServerPort, section 3.1.4.8.<5>

This protocol allows any user to establish a connection to the RPC server. The Message Queuing
(MSMQ): Queue Manager to Queue Manager Protocol depends on the qmcomm interface, as

specified in [MS-MQMP], to use the underlying RPC protocol to retrieve the identity of the invoking
client, as specified in [MS-RPCE], section 3.3.3.4.3. The qmcomm server uses this identity to
perform method-specific access checks as specified in [MS-MQMP], section 3.1.4.

2.2 Common Data Types

This protocol MUST indicate to the RPC runtime that it is to support both the Network Data
Representation (NDR) and NDR64 transfer syntaxes, and it MUST provide a negotiation
mechanism for determining which transfer syntax will be used, as specified in [MS-RPCE] section 3.

HRESULT: This specification uses the HRESULT type, as specified in [MS-ERREF] section 2.1.1. Note:
Throughout this specification, the phrase "a failure HRESULT" means any HRESULT where the

Severity (S) bit is set, as specified by [MS-ERREF]. When this specification mandates the return of
"a failure HRESULT" from a method, the specific error code is not relevant to the protocol, as long as
the Severity bit is set. In this circumstance, the server MAY return MQ_ERROR (0xC00E0001), or
any other HRESULT value where the Severity bit is set, such as a context-specific message queuing

error code, as specified in [MS-MQMQ] section 2.4.

In addition to the RPC base types and definitions, as specified in [C706] and [MS-RPCE], additional

data types are defined as follows.

The following table summarizes the types defined in this specification.

Data type name Description

PCTX_RRSESSION_HANDLE_TYPE A context handle representing an open queue.

PCTX_REMOTEREAD_HANDLE_TYPE A context handle representing a read session.

REMOTEREADACK An enumeration that represents an acknowledgment (ACK) or a

negative acknowledgment (NACK).

REMOTEREADDESC A structure used for receiving messages from a queue.

REMOTEREADDESC2 A structure containing the REMOTEREADDESC structure and

defining an additional element for tracking transaction-related

information.

%5bMS-RPCE%5d.pdf
%5bMS-GLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=89824
http://go.microsoft.com/fwlink/?LinkId=89831
%5bMS-MQMP%5d.pdf
%5bMS-RPCE%5d.pdf
%5bMS-MQMP%5d.pdf
%5bMS-MQMP%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-RPCE%5d.pdf
%5bMS-ERREF%5d.pdf
%5bMS-MQMQ%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=89824
%5bMS-RPCE%5d.pdf

13 / 62

[MS-MQQP] — v20140124
 Message Queuing (MSMQ): Queue Manager to Queue Manager Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

2.2.1 Data Types

2.2.1.1 PCTX_RRSESSION_HANDLE_TYPE

The PCTX_RRSESSION_HANDLE_TYPE is a data type that defines an RPC context handle
corresponding to an open queue handle. A client MUST call RemoteQMOpenQueue to create a
PCTX_RRSESSION_HANDLE_TYPE and RemoteQMCloseQueue to delete a
PCTX_RRSESSION_HANDLE_TYPE.

This type is declared as follows:

typedef [context_handle] void* PCTX_RRSESSION_HANDLE_TYPE;

2.2.1.2 PCTX_REMOTEREAD_HANDLE_TYPE

The PCTX_REMOTEREAD_HANDLE_TYPE is a data type that defines an RPC context handle
corresponding to an open read session. A client MUST call RemoteQMStartReceive,
RemoteQMStartReceive2, or RemoteQMStartReceiveByLookupId to create a
PCTX_REMOTEREAD_HANDLE_TYPE context handle and call RemoteQMEndReceive to delete
the PCTX_REMOTEREAD_HANDLE_TYPE handle.

This type is declared as follows:

typedef [context_handle] void* PCTX_REMOTEREAD_HANDLE_TYPE;

2.2.1.3 REMOTEREADACK

The REMOTEREADACK enumeration represents an acknowledgment (ACK) or a negative
acknowledgment (NACK), indicating a successfully or an unsuccessfully delivered packet,

respectively.

typedef enum _REMOTEREADACK

{

 RR_UNKNOWN = 0x0000,

 RR_NACK = 0x0001,

 RR_ACK = 0x0002

} REMOTEREADACK;

RR_UNKNOWN: No acknowledgment.

RR_NACK: Negative acknowledgment for a packet.

RR_ACK: Acknowledgment for a packet.

14 / 62

[MS-MQQP] — v20140124
 Message Queuing (MSMQ): Queue Manager to Queue Manager Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

2.2.2 Structures

2.2.2.1 REMOTEREADDESC

This structure is used to encapsulate the information necessary to perform operations
RemoteQMStartReceive, RemoteQMStartReceive2, and RemoteQMStartReceiveByLookupId.

typedef struct _REMOTEREADDESC {

 DWORD hRemoteQueue;

 DWORD hCursor;

 DWORD ulAction;

 DWORD ulTimeout;

 [range(0, 4325376)] DWORD dwSize;

 DWORD dwQueue;

 DWORD dwRequestID;

 DWORD Reserved;

 DWORD dwArriveTime;

 REMOTEREADACK eAckNack;

 [unique, size_is(dwSize), length_is(dwSize)]

 byte* lpBuffer;

} REMOTEREADDESC;

hRemoteQueue: A handle to the queue as obtained from the phQueue parameter of the
qmcomm:R_QMOpenRemoteQueue method, as specified in [MS-MQMP] section 3.1.4.2.

This value is set by the client.

hCursor: If nonzero, specifies a handle to a cursor that MUST have been obtained from the
phCursor parameter of the qmcomm:R_QMCreateRemoteCursor method, as specified in
[MS-MQMP] section 3.1.4.4. This value is set by the client.

ulAction: The following table describes possible actions. The Peek and Receive operations both
enable access to the contents of a message. This value is set by the client.

Value Type/Meaning

MQ_ACTION_RECEIVE

0x00000000

Type = Receive

Reads and removes a message from the current cursor location

if hCursor is nonzero or from the front of the queue if

hCursor is set to zero.

MQ_ACTION_PEEK_CURRENT

0x80000000

Type = Peek

Reads a message from the current cursor location if hCursor is

nonzero or from the front of the queue if hCursor is set to

zero but does not remove it from the queue.

MQ_ACTION_PEEK_NEXT

0x80000001

Type = Peek

Reads a message following the message at the current cursor

location but does not remove it from the queue.

MQ_LOOKUP_PEEK_CURRENT

0x40000010

Type = Peek

Reads the message specified by a lookup identifier but does

not remove it from the queue.

MQ_LOOKUP_PEEK_NEXT Type = Peek

%5bMS-MQMP%5d.pdf
%5bMS-MQMP%5d.pdf

15 / 62

[MS-MQQP] — v20140124
 Message Queuing (MSMQ): Queue Manager to Queue Manager Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

Value Type/Meaning

0x40000011 Reads the message following the message specified by a

lookup identifier but does not remove it from the queue.

MQ_LOOKUP_PEEK_PREV

0x40000012

Type = Peek

Reads the message preceding the message specified by a

lookup identifier but does not remove it from the queue.

MQ_LOOKUP_RECEIVE_CURRENT

0x40000020

Type = Receive

Reads the message specified by a lookup identifier and

removes it from the queue.

MQ_LOOKUP_RECEIVE_NEXT

0x40000021

Type = Receive

Reads the message following the message specified by a

lookup identifier and removes it from the queue.

MQ_LOOKUP_RECEIVE_PREV

0x40000022

Type = Receive

Reads the message preceding the message specified by a

lookup identifier and removes it from the queue.

ulTimeout: Specifies a time-out in milliseconds for the server to wait for a message to become
available in the queue. This value is set by the client. To specify an infinite time-out, the client

MUST set this field to 0xFFFFFFFF.

dwSize: Specifies the size, in bytes, of lpBuffer. The valid range is 0 to 0x00420000. This
value is set by the server and MUST be set to 0 by the client.

dwQueue: A DWORD pointed to by the dwpQueue parameter of the
qmcomm:R_QMOpenRemoteQueue method, as specified in [MS-MQMP] section 3.1.4.2.
This value is set by the client.

dwRequestID: The client MUST set this member to a unique identifier for the receive request,

which could later be used to identify and cancel the receive request. This value is set by the
client. The client SHOULD NOT<6> reuse this identifier until a call to the
RemoteQMEndReceive (Opnum 1) method or to the RemoteQMCancelReceive (Opnum
5) method has been made for that receive request.

Reserved: This is a reserved field of type DWORD that MUST be ignored.

Value Meaning

0x00000000 Returned by client.

0x00000001 Returned by server.

dwArriveTime: The server MUST set this value to the time that the message was added to the
queue. The time MUST be expressed as the number of seconds elapsed since 00:00:00.0,

January 1, 1970 Coordinated Universal Time (UTC).

eAckNack: This is a reserved field and MUST be ignored by the client and the server.

lpBuffer: This field represents a pointer to a buffer containing the UserMessage Packet ([MS-
MQMQ] section 2.2.20). The size of this field is specified by dwSize. This value is set by the
server and MUST be set to NULL by the client.

%5bMS-DTYP%5d.pdf
%5bMS-MQMP%5d.pdf
%5bMS-MQMQ%5d.pdf
%5bMS-MQMQ%5d.pdf
%5bMS-MQMQ%5d.pdf

16 / 62

[MS-MQQP] — v20140124
 Message Queuing (MSMQ): Queue Manager to Queue Manager Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

2.2.2.2 REMOTEREADDESC2

This structure is used by RemoteQMStartReceive2 and RemoteQMStartReceiveByLookupId to
encapsulate the parameters necessary for execution of these operations.

typedef struct _REMOTEREADDESC2 {

 REMOTEREADDESC* pRemoteReadDesc;

 ULONGLONG SequentialId;

} REMOTEREADDESC2;

pRemoteReadDesc: A pointer to a REMOTEREADDESC structure, as specified in section

2.2.2.1.

SequentialId: This field is set by the server to the value of a unique message identifier that
corresponds to a received message.

2.3 Directory Service Schema Elements

This protocol uses ADM elements specified in section 3.1.1. A subset of these elements can be

published in a directory. This protocol SHOULD<7> access the directory using the algorithm
specified in [MS-MQDSSM] and using LDAP [MS-ADTS]. The Directory Service schema elements for
ADM elements published in the directory are defined in [MS-MQDSSM] section 2.4.<8>

%5bMS-MQDSSM%5d.pdf
%5bMS-ADTS%5d.pdf
%5bMS-MQDSSM%5d.pdf

17 / 62

[MS-MQQP] — v20140124
 Message Queuing (MSMQ): Queue Manager to Queue Manager Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

3 Protocol Details

The following sections specify details of the Message Queuing (MSMQ): Queue Manager to Queue
Manager Protocol including the abstract data model, interface method syntax, and message
processing rules.

3.1 qm2qm Server Details

3.1.1 Abstract Data Model

This section describes a conceptual model of possible data organization that an implementation
maintains to participate in this protocol. The described organization is provided to facilitate the
explanation of how the protocol behaves. This document does not mandate that implementations
adhere to this model as long as their external behavior is consistent with that described in this
document.

The abstract data model for this protocol comprises elements that are private to this protocol and

others that are shared between multiple MSMQ protocols that are colocated at a common queue

manager. The shared abstract data model is defined in [MS-MQDMPR] section 3.1.1 and the
relationship between this protocol, a queue manager, and other protocols which share a common
queue manager, is described in [MS-MQOD].

Section 3.1.1.1 details the elements from the shared data model that are manipulated by this
protocol, and sections 3.1.1.2 through 3.1.1.5 detail the data model elements that are private to
this protocol.

3.1.1.1 Shared Data Elements

This protocol manipulates the following abstract data model elements from the shared abstract data
model defined in [MS-MQDMPR] section 3.1.1.

QueueManager: Defined in [MS-MQDMPR] section 3.1.1.1.

Queue: Defined in [MS-MQDMPR] section 3.1.1.2.

Message: Defined in [MS-MQDMPR] section 3.1.1.12.

Cursor: Defined in [MS-MQDMPR] section 3.2.

OpenQueueDescriptor: Defined in [MS-MQDMPR] section 3.1.1.16.

3.1.1.2 RemoteReadEntry

The RemoteReadEntry is an ADM element that encapsulates an initialized, pending, or completed
remote read operation. This element has the following attributes:

OpenQueueDescriptorHandle: The OpenQueueDescriptor.Handle for the queue being read

from.

Timeout: Time-out associated with the read request.

Action (peek/receive): The type of read operation performed.

RequestId: A unique DWORD value that identifies the pending read request. This value is
generated by the client and passed to the server in a REMOTEREADDESC (section 2.2.2.1)
structure.

%5bMS-MQDMPR%5d.pdf
%5bMS-MQOD%5d.pdf
%5bMS-MQDMPR%5d.pdf
%5bMS-MQDMPR%5d.pdf
%5bMS-MQDMPR%5d.pdf
%5bMS-MQDMPR%5d.pdf
%5bMS-MQDMPR%5d.pdf
%5bMS-MQDMPR%5d.pdf
%5bMS-MQMQ%5d.pdf
%5bMS-DTYP%5d.pdf

18 / 62

[MS-MQQP] — v20140124
 Message Queuing (MSMQ): Queue Manager to Queue Manager Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

UserMessagepacket: The message.

This element is referenced by means of a PCTX_REMOTEREAD_HANDLE_TYPE value.

3.1.1.3 RemoteReadEntryCollection

The RemoteReadEntryCollection represents a collection of RemoteReadEntry elements, each of
which represents a pending request to PEEK or receive a message from a queue. The server MUST
maintain an instance of this element referred to as rRemoteReadEntryCollection. The server
MUST serialize concurrent read, write, and iteration operations to rRemoteReadEntryCollection.
For iterations, the serialization MUST include the processing of each element, if any, in the loop.

3.1.1.4 OpenQueueEntry

The OpenQueueEntry is an ADM element that encapsulates an initialized, pending, or completed
remote open queue operation. This element has the following attributes:

OpenQueueDescriptorHandle: OpenQueueDescriptor.Handle for the queue.

ClientId: A GUID that uniquely identifies the client opening the queue.

This element is referenced by means of a PCTX_RRSESSION_HANDLE_TYPE value.

3.1.1.5 OpenQueueEntryCollection

The OpenQueueEntryCollection represents a collection of OpenQueueEntry elements, each of
which represents a remote queue opened by a client. The server MUST maintain an instance of this
element referred to as rOpenQueueEntryCollection. The server MUST serialize concurrent read,
write, and iteration operations to the rOpenQueueEntryCollection. For iterations, the serialization
MUST include the processing of each element, if any, in the loop.

3.1.2 Timers

Beyond protocol timers used internally by RPC to implement resiliency to network outages (for more
information, see [MS-RPCE]), the server MUST maintain the following timers:

Call Timer: The server MUST maintain a per-call timer for each call to RemoteQMStartReceive
or RemoteQMStartReceive2 in which the REMOTEREADDESC.ulTimeout parameter is nonzero.
The timer MUST be set to the REMOTEREADDESC.ulTimeout parameter that is specified on the
call.

3.1.3 Initialization

The server MUST listen on the RPC protocol, as specified in section 2.1.

3.1.4 Message Processing Events and Sequencing Rules

This protocol SHOULD <9> indicate to the RPC runtime that it is to perform a strict NDR data
consistency check at target level 6.0, as specified in [MS-RPCE] section 3.

The qm2qm interface includes the following methods.

Methods in RPC Opnum Order

%5bMS-GLOS%5d.pdf
%5bMS-RPCE%5d.pdf
%5bMS-RPCE%5d.pdf

19 / 62

[MS-MQQP] — v20140124
 Message Queuing (MSMQ): Queue Manager to Queue Manager Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

Method Description

RemoteQMStartReceive Initiates a Receive or Peek request on the queue.

Opnum: 0

RemoteQMEndReceive Finishes a Receive request.

Opnum: 1

RemoteQMOpenQueue Opens a queue.

Opnum: 2

RemoteQMCloseQueue Closes a queue.

Opnum: 3

RemoteQMCloseCursor Closes a cursor.

Opnum: 4

RemoteQMCancelReceive Cancels a pending Receive request.

Opnum: 5

RemoteQMPurgeQueue Deletes all messages in a queue.

Opnum: 6

RemoteQMGetQMQMServerPort Returns an RPC endpoint port number to use in subsequent calls

on the interface.

Opnum: 7

RemoteQmGetVersion Returns the server version.

Opnum: 8

RemoteQMStartReceive2 Initiates a Receive or Peek request on the queue by using a

sequential ID.

Opnum: 9

RemoteQMStartReceiveByLookupId Initiates a Receive or Peek request on the queue by using a

lookup ID.

Opnum: 10

3.1.4.1 RemoteQMStartReceive (Opnum 0)

The RemoteQMStartReceive method peeks or receives a message from an open queue.

If RemoteQMStartReceive is invoked with a Peek action type, as specified in the ulAction member

of the lpRemoteReadDesc parameter, the operation completes when RemoteQMStartReceive
returns.

If RemoteQMStartReceive is invoked with a Receive action type, as specified in the ulAction

member of the lpRemoteReadDesc parameter, the client MUST pair each call to
RemoteQMStartReceive with a call to RemoteQMEndReceive to complete the operation, or to
RemoteQMCancelReceive to cancel the operation.

For each call to RemoteQMCancelReceive, the dwRequestID parameter MUST match the

dwRequestID member of the lpRemoteReadDesc parameter in a previous call to
RemoteQMStartReceive.

20 / 62

[MS-MQQP] — v20140124
 Message Queuing (MSMQ): Queue Manager to Queue Manager Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

If the client specifies a nonzero value for the ulTimeout member of the lpRemoteReadDesc
parameter, and a message is not available in the queue at the time of the call, the server waits up

to the specified time-out for a message to become available in the queue before responding to the
call. The client can call RemoteQMCancelReceive with a matching

REMOTEREADDESC.dwRequestID to cancel the pending RemoteQMStartReceive request.

Before calling this method, the client MUST have already called RemoteQMOpenQueue.

HRESULT RemoteQMStartReceive(

 [in] handle_t hBind,

 [out] PCTX_REMOTEREAD_HANDLE_TYPE* pphContext,

 [in, out] REMOTEREADDESC* lpRemoteReadDesc

);

hBind: An RPC binding handle parameter, as specified in [MS-RPCE] section 2, that MUST be

specified.

pphContext: The server MUST return a non-NULL value for this handle upon success for receive
calls. This handle will be used by the client in subsequent calls to RemoteQMEndReceive.
This handle MUST NOT be set upon failure, or for peek calls. If this method returns an error,

pphContext is undefined and MUST NOT be used as an argument for a call to
RemoteQMEndReceive.

lpRemoteReadDesc: A pointer to an instance of a REMOTEREADDESC (section 2.2.2.1)
structure.

In addition, the ulAction member of the lpRemoteReadDesc parameter MUST be one of the
following values.

Value of ulAction Meaning

MQ_ACTION_RECEIVE

0x00000000

If hCursor is nonzero, read and remove the first message available

at the current cursor's location walking towards the end of the

queue.

If hCursor is zero, read and remove the message from the front of

the queue.

MQ_ACTION_PEEK_CURRENT

0x80000000

If hCursor is nonzero, read the message at the current cursor

location, but do not remove it from the queue. The cursor location

does not change after the operation.

If hCursor is zero, read the message at the front of the queue, but

do not remove it from the queue.

MQ_ACTION_PEEK_NEXT

0x80000001

Read the message following the message at the current cursor

location, but do not remove it. The cursor location will then change

to the next available message, walking towards the end of the

queue.

The hCursor parameter MUST be set to a nonzero cursor handle.

The hCursor member of lpRemoteReadDesc specifies a handle to an opened cursor. A value of
zero indicates that a cursor is not used for this operation.

The dwRequestID member of the lpRemoteReadDesc parameter is used in a subsequent call
to RemoteQMCancelReceive to correlate that call with the call to
RemoteQMStartReceive.

%5bMS-RPCE%5d.pdf

21 / 62

[MS-MQQP] — v20140124
 Message Queuing (MSMQ): Queue Manager to Queue Manager Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

Return Values: The method MUST return MQ_OK (0x00000000) on success; otherwise, it MUST
return a failure HRESULT, and the client MUST treat all failure HRESULTs identically.

MQ_OK (0x00000000)
MQ_ERROR_INVALID_HANDLE (0xC00E0007)

MQ_ERROR_INVALID_PARAMETER (0xC00E0006)
STATUS_INVALID_PARAMETER (0xC000000D)

Exceptions Thrown: None except those thrown by the underlying RPC protocol, as specified in
[MS-RPCE].

While processing this method, the server MUST:

Return MQ_ERROR_INVALID_HANDLE (0xC00E0007) if lpRemoteReadDesc is NULL.

Return MQ_ERROR_INVALID_PARAMETER (0xC00E0006) if lpRemoteReadDesc.dwQueue is set

to 0x00000000 or lpRemoteReadDesc.dwQueue is not equal to

lpRemoteReadDesc.hRemoteQueue.

The server SHOULD return MQ_ERROR_INVALID_PARAMETER (0xC00E0006) if the

lpRemoteReadDesc.dwRequestID does not uniquely identify the receive request. This duplicate

detection is performed by searching for a RemoteReadEntry (section 3.1.1.2) ADM element
instance, referred to as rRemoteReadEntry, in rRemoteReadEntryCollection such that
rRemoteReadEntry.OpenQueueDescriptorHandle = lpRemoteReadDesc.hRemoteQueue
and rRemoteReadEntry.RequestId = lpRemoteReadDesc.dwRequestID.<10>

Return STATUS_INVALID_PARAMETER (0xC000000D) if lpRemoteReadDesc.hCursor is set to

0x00000000 and the lpRemoteReadDesc.ulAction is set to MQ_ACTION_PEEK_NEXT.

Search the rOpenQueueEntryCollection where

OpenQueueEntry.OpenQueueDescriptorHandle = lpRemoteReadDesc.hRemoteQueue.

If the OpenQueueDescriptorHandle is not found, return MQ_ERROR_INVALID_PARAMETER

(0xc00e0006).

Find the OpenQueueDescriptor, referred to as rOpenQueueDescriptor, in the

Queue.OpenQueueDescriptorCollection of each queue object in
QueueManager.QueueCollection such that rOpenQueueDescriptor.Handle =
lpRemoteReadDesc.hRemoteQueue.

If lpRemoteReadDesc.hCursor is not 0x00000000, find the cursor object, referred to as rCursor,

in the rOpenQueueDescriptor.CursorCollection with a Handle property equal to
lpRemoteReadDesc.hCursor.

If no cursor object is found, return STATUS_INVALID_PARAMETER.

If lpRemoteReadDesc.hCursor is 0x00000000, set rCursor to NULL.

Create a new RemoteReadEntry ADM element instance, referred to as rrEntry, with the

following attributes:

OpenQueueDescriptorHandle = lpRemoteReadDesc.hRemoteQueue

Timeout = lpRemoteReadDesc.ulTimeout

UserMessagePacket = lpRemoteReadDesc.lpBuffer

%5bMS-DTYP%5d.pdf

22 / 62

[MS-MQQP] — v20140124
 Message Queuing (MSMQ): Queue Manager to Queue Manager Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

Action = lpRemoteReadDesc.ulAction

RequestId = lpRemoteReadDesc.dwRequestID

Add rrEntry to rRemoteReadEntryCollection.

If the ulAction member of the lpRemoteReadDesc parameter is MQ_ACTION_RECEIVE, generate

a Dequeue Message Begin event ([MS-MQDMPR] section 3.1.7.1.11) with the following inputs:

iQueueDesc := reference to OpenQueueDescriptor obtained earlier.

iTimeout := lpRemoteReadDesc.ulTimeout

iTag := lpRemoteReadDesc.dwRequestID

iCursor := rCursor

If the ulAction member of the lpRemoteReadDesc parameter is MQ_ACTION_PEEK_CURRENT,

generate a Peek Message event with the following inputs:

iQueueDesc := reference to OpenQueueDescriptor obtained earlier.

iTimeout := lpRemoteReadDesc.ulTimeout

iCursor := rCursor

If the ulAction member of the lpRemoteReadDesc parameter is MQ_ACTION_PEEK_NEXT,

generate a Peek Next Message event with the following inputs:

iQueueDesc := reference to OpenQueueDescriptor obtained earlier.

iTimeout := lpRemoteReadDesc.ulTimeout

iCursor := rCursor

If the rStatus value returned from the preceding events is MQ_OK (0x00000000), the server

MUST process the returned rMessage as follows:

Generate a Construct a UserMessage Packet ([MS-MQDMPR] section 3.1.7.1.30) event with

the following argument:

iMessage := rMessage

Generate a Serialize Message to Buffer ([MS-MQDMPR] section 3.1.7.1.32) event with the

following arguments:

iMessage := rMessage

iBuffer := rUserMessage returned by the Construct a UserMessage Packet event.

Assign rUserMessage to the lpBuffer member of the lpRemoteReadDesc parameter.

Assign rUserMessage.BaseHeader.PacketSize to lpRemoteReadDesc.dwSize.

Remove the RemoteReadEntry ADM element instance from rRemoteReadEntryCollection for

which RemoteReadEntry.RequestId equals lpRemoteReadDesc.dwRequestID and

RemoteReadEntry.OpenQueueDescriptorHandle equals
lpRemoteReadDesc.hRemoteQueue.

%5bMS-MQDMPR%5d.pdf
%5bMS-MQDMPR%5d.pdf
%5bMS-MQDMPR%5d.pdf
%5bMS-MQDMPR%5d.pdf
%5bMS-MQDMPR%5d.pdf
%5bMS-MQDMPR%5d.pdf
%5bMS-MQDMPR%5d.pdf
%5bMS-MQDMPR%5d.pdf

23 / 62

[MS-MQQP] — v20140124
 Message Queuing (MSMQ): Queue Manager to Queue Manager Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

If rStatus is MQ_OK (0x00000000) and lpRemoteReadDesc.ulAction is MQ_ACTION_RECEIVE,

set pphContext to rrEntry; otherwise, delete rrEntry.

Return rStatus.

3.1.4.2 RemoteQMEndReceive (Opnum 1)

The client MUST invoke the RemoteQMEndReceive method to advise the server that the message
packet returned by the RemoteQMStartReceive, RemoteQMStartReceive2, or
RemoteQMStartReceiveByLookupId method has been received.

The combination of the RemoteQMStartReceive, RemoteQMStartReceive2, or
RemoteQMStartReceiveByLookupId method and the positive acknowledgment of the

RemoteQMEndReceive method ensures that a message packet is not lost in transit from the
server to the client due to a network outage during the call sequence.

Before calling this method, the following methods MUST be called:

RemoteQMOpenQueue

RemoteQMStartReceive, RemoteQMStartReceive2, or RemoteQMStartReceiveByLookupId

HRESULT RemoteQMEndReceive(

 [in] handle_t hBind,

 [in, out] PCTX_REMOTEREAD_HANDLE_TYPE* pphContext,

 [in, range(1, 2)] DWORD dwAck

);

hBind: MUST be an RPC binding handle parameter for use by the server, as specified in [MS-

RPCE] section 2.

pphContext: A pointer to a context handle of a pending remote read operation.

dwAck: An ACK or NACK about the status of the message packet of the pending remote read
operation.

Value Meaning

RR_NACK

0x00000001

The client acknowledges that the message packet was not delivered successfully.

The server MUST keep the message in the queue and make it available for

subsequent consumption.

RR_ACK

0x00000002

The client acknowledges that the message packet was delivered successfully.

The server MUST remove the message from the queue and make it unavailable for

subsequent consumption.

Return Values: The method MUST return MQ_OK (0x00000000) on success; otherwise, it MUST

return a failure HRESULT, and the client MUST treat all failure HRESULTs identically.

MQ_OK (0x00000000)
MQ_ERROR_INVALID_HANDLE (0xC00E0007)
MQ_ERROR_INVALID_PARAMETER (0xC00E0006)
MQ_ERROR_TRANSACTION_SEQUENCE (0xC00E0051)

%5bMS-RPCE%5d.pdf
%5bMS-RPCE%5d.pdf

24 / 62

[MS-MQQP] — v20140124
 Message Queuing (MSMQ): Queue Manager to Queue Manager Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

Exceptions Thrown: No exceptions are thrown except those thrown by the underlying RPC
protocol, [MS-RPCE].

When processing this call, the server MUST:

Return MQ_ERROR_INVALID_HANDLE (0xc00e0007) if pphContext is NULL.

Use pphContext as RemoteReadEntry.

The server MAY search rRemoteReadEntryCollection where OpenQueueDescriptorHandle =

RemoteReadEntry.OpenQueueDescriptorHandle and return
MQ_ERROR_INVALID_PARAMETER (0xC00E0006) if the OpenQueueDescriptorHandle is not
found.<11>

Within the OpenQueueDescriptorCollection properties of all queues present in

QueueManager.QueueCollection, find the OpenQueueDescriptor where
OpenQueueDescriptor.Handle = RemoteReadEntry.OpenQueueDescriptorHandle and
generate a Dequeue Message End event with the following inputs:

iQueueDesc:= reference to OpenQueueDescriptor obtained.

iMessage:= RemoteReadEntry.UserMessagePacket.

iDeleteMessage:= true if dwAck is equal to RR_ACK, and false if dwAck is equal to RR_NACK.

Delete the RemoteReadEntry, and set pphContext to NULL.

Return rStatus.

3.1.4.3 RemoteQMOpenQueue (Opnum 2)

The RemoteQMOpenQueue method opens a queue in preparation for subsequent operations
against it. This method assumes that the client has called qmcomm:R_QMOpenRemoteQueue to
obtain a queue handle; for more information, see [MS-MQMP] section 3.1.4.2. This method is called

as part of the sequence of events involved in opening a remote queue by an MQMP application as
described in [MS-MQMP] section 4.2. This method MUST be called prior to calling any of the
following operations:

RemoteQMStartReceive

RemoteQMEndReceive

RemoteQMCloseQueue

RemoteQMCloseCursor

RemoteQMCancelReceive

RemoteQMPurgeQueue

RemoteQMStartReceive2

RemoteQMStartReceiveByLookupId

HRESULT RemoteQMOpenQueue(

 [in] handle_t hBind,

 [out] PCTX_RRSESSION_HANDLE_TYPE* phContext,

 [in] GUID* pLicGuid,

%5bMS-RPCE%5d.pdf
%5bMS-MQDMPR%5d.pdf
%5bMS-MQMP%5d.pdf
%5bMS-MQMP%5d.pdf
%5bMS-MQMP%5d.pdf

25 / 62

[MS-MQQP] — v20140124
 Message Queuing (MSMQ): Queue Manager to Queue Manager Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

 [in, range(0, 16)] DWORD dwMQS,

 [in] DWORD hQueue,

 [in] DWORD pQueue,

 [in] DWORD dwpContext

);

hBind: MUST be set to an RPC binding handle, as specified in [MS-RPCE] section 2.

phContext: A pointer to a context handle that contains the information about the opened queue,
which corresponds to the abstract data model's OpenQueueEntry. The server MUST set this
value; it gets deleted on a call to RemoteQMCloseQueue.

pLicGuid: A pointer to a valid GUID ([MS-DTYP] section 2.3.4) that uniquely identifies the client.
This value is set to the QueueManager.Identifier ADM element of the queue manager at the
client end.

dwMQS: This value MAY be used by the server to impose an implementation-specific limit on the

number of concurrent callers.<12>

hQueue: A queue identifier. This value SHOULD be ignored by the server.<13>

pQueue: A DWORD that references an OpenQueueDescriptor of a remote opened queue.

dwpContext: A DWORD that references an OpenQueueDescriptor of a remote opened queue.

Return Values: The method MUST return MQ_OK (0x00000000) on success; otherwise, it MUST
return a failure HRESULT, and the client MUST treat all failure HRESULTs identically.

MQ_OK (0x00000000)
MQ_ERROR_INVALID_PARAMETER (0xC00E0006)

Exceptions Thrown:

No exceptions are thrown except those thrown by the underlying RPC protocol (see [MS-RPCE]).

When processing this call, the server MUST do the following:

Return MQ_ERROR_INVALID_PARAMETER (0xc00e0006) if pLicGuid is NULL or if pQueue or

dwpContext is equal to zero.

The server SHOULD return MQ_ERROR_INVALID_PARAMETER (0xc00e0006) if pQueue is not

equal to dwpContext.<14>

Create a new OpenQueueEntry:

The server should set OpenQueueDescriptorHandle to dwpContext.<15>

Set ClientId to the pLicGuid parameter.

Add the OpenQueueEntry to the rOpenQueueEntryCollection.

Set phContext to the OpenQueueEntry value, and return MQ_OK (0x00000000).

%5bMS-RPCE%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-MQDMPR%5d.pdf

26 / 62

[MS-MQQP] — v20140124
 Message Queuing (MSMQ): Queue Manager to Queue Manager Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

3.1.4.4 RemoteQMCloseQueue (Opnum 3)

The RemoteQMCloseQueue method closes a PCTX_RRSESSION_HANDLE_TYPE that was
previously opened by using a call to the RemoteQMOpenQueue method. The client MUST call this

method to reclaim resources on the server allocated by the RemoteQMOpenQueue method.

HRESULT RemoteQMCloseQueue(

 [in] handle_t hBind,

 [in, out] PCTX_RRSESSION_HANDLE_TYPE* pphContext

);

hBind: MUST specify an RPC binding handle parameter, as specified in [MS-RPCE] section 2.

pphContext: A PCTX_RRSESSION_HANDLE_TYPE to a remote opened queue.

Return Values: The method MUST return MQ_OK (0x00000000) on success; otherwise, it MUST
return a failure HRESULT, and the client MUST treat all failure HRESULTs identically.

MQ_OK (0x00000000)

MQ_ERROR_INVALID_HANDLE (0xC00E0007)
MQ_ERROR_INVALID_PARAMETER (0xC00E0006)

Exceptions Thrown: No exceptions are thrown except those thrown by the underlying RPC
protocol, as specified in [MS-RPCE].

When processing this call, the server MUST:

If pphContext is NULL, return MQ_ERROR_INVALID_HANDLE(0xC00E0007).

Use pphContext as the OpenQueueEntry.

The server MAY search the rOpenQueueEntryCollection for OpenQueueDescriptorHandle=

OpenQueueEntry.OpenQueueDescriptorHandle and return
MQ_ERROR_INVALID_PARAMETER (0xC00E0006) if the OpenQueueDescriptorHandle is not
found.

<16>

Remove OpenQueueEntry from rOpenQueueEntryCollection.

Loop over rRemoteReadEntryCollection, and for each entry where

OpenQueueDescriptorHandle = OpenQueueEntry.OpenQueueDescriptorHandle:

Cancel the operation, as specified in RemoteQMCancelReceive.

For each queue present in the QueueManager.QueueCollection:

For each OpenQueueDescriptor in Queue.OpenQueueDescriptorCollection:

If OpenQueueDescriptor.Handle= OpenQueueEntry.OpenQueueDescriptorHandle, use

that OpenQueueDescriptor for processing.

Generate a Close Queue event with the following parameters:

iQueueDesc:= reference to OpenQueueDescriptor obtained earlier.

%5bMS-RPCE%5d.pdf
%5bMS-RPCE%5d.pdf
%5bMS-MQDMPR%5d.pdf

27 / 62

[MS-MQQP] — v20140124
 Message Queuing (MSMQ): Queue Manager to Queue Manager Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

Delete the OpenQueueEntry.

Set pphContext to NULL.

Return MQ_OK (0x00000000).

3.1.4.5 RemoteQMCloseCursor (Opnum 4)

The RemoteQMCloseCursor method closes the handle for a previously created cursor. The client
MUST call this method to reclaim resources on the server allocated by the
qmcomm:R_QMCreateRemoteCursor method, as specified in [MS-MQMP] section 3.1.4.4.

HRESULT RemoteQMCloseCursor(

 [in] handle_t hBind,

 [in] DWORD hQueue,

 [in] DWORD hCursor

);

hBind: MUST be set to an RPC binding handle, as specified in [MS-RPCE] section 2.

hQueue: A queue handle value upon which the cursor operates.

hCursor: Specifies the cursor handle to be closed.

Return Values: The method MUST return MQ_OK (0x00000000) on success; otherwise, it MUST
return a failure HRESULT, and the client MUST treat all failure HRESULTs identically.

MQ_OK (0x00000000)
MQ_ERROR_INVALID_HANDLE (0xC00E0007)

Exceptions Thrown: No exceptions are thrown except those thrown by the underlying RPC
protocol, as specified in [MS-RPCE].

When processing this call, the server MUST:

For each queue present in the QueueManager.QueueCollection:

For each OpenQueueDescriptor in Queue.OpenQueueDescriptorCollection:

If OpenQueueDescriptor.Handle= hQueue, use that OpenQueueDescriptor for

processing.

For each cursor in OpenQueueDescriptor.CursorCollection:

If Cursor.Handle= hCursor, use that cursor object for processing.

If hQueue or hCursor is not found, return MQ_ERROR_INVALID_HANDLE(0xc00e0007).

Generate a Close Cursor event with the following inputs:

iCursor:= reference to cursor object obtained earlier.

Return MQ_OK (0x00000000).

%5bMS-MQMP%5d.pdf
%5bMS-MQMP%5d.pdf
%5bMS-RPCE%5d.pdf
%5bMS-MQDMPR%5d.pdf

28 / 62

[MS-MQQP] — v20140124
 Message Queuing (MSMQ): Queue Manager to Queue Manager Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

3.1.4.6 RemoteQMCancelReceive (Opnum 5)

The RemoteQMCancelReceive method cancels a pending call to RemoteQMStartReceive and
provides a way for the client to cancel a blocked request.

Before calling this method, the following methods MUST be called:

RemoteQMOpenQueue

RemoteQMStartReceive or RemoteQMStartReceive2

HRESULT RemoteQMCancelReceive(

 [in] handle_t hBind,

 [in] DWORD hQueue,

 [in] DWORD pQueue,

 [in] DWORD dwRequestID

);

hBind: MUST be set to an RPC binding handle, as specified in [MS-RPCE] section 2.

hQueue: Queue identifier to cancel receive. Its value is validated in the method's processing
rules.

pQueue: Queue descriptor to cancel receive. Its value is validated in the method's processing

rules.

dwRequestID: A unique value that identifies a pending remote read operation.

Return Values: The method MUST return MQ_OK (0x00000000) on success; otherwise, it MUST
return a failure HRESULT, and the client MUST treat all failure HRESULTs identically.

MQ_OK (0x00000000)
MQ_ERROR (0xC00E0001)
MQ_ERROR_INVALID_PARAMETER (0xC00E0006)

MQ_ERROR_INVALID_HANDLE (0xC00E0007)
STATUS_NOT_FOUND (0xC0000225)

Exceptions Thrown: No exceptions are thrown except those thrown by the underlying RPC
protocol, as specified in [MS-RPCE].

When processing this call, the server MUST do the following:

Return MQ_ERROR_INVALID_PARAMETER (0xc00e0006) if pQueue is equal to zero or not equal

to hQueue. <17>

Find the subset of RemoteReadEntry elements in rRemoteReadEntryCollection where

hQueue = RemoteReadEntry.OpenQueueDescriptorHandle.

If no such entry is found, return MQ_ERROR_INVALID_HANDLE(0xc00e0007).

Find RemoteReadEntry from the collection preceding where

RemoteReadEntry.RequestId=dwRequestID.

If no such entry is found, return MQ_ERROR(0xC00E0001).

For each queue in the QueueManager.QueueCollection:

%5bMS-RPCE%5d.pdf

29 / 62

[MS-MQQP] — v20140124
 Message Queuing (MSMQ): Queue Manager to Queue Manager Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

For each OpenQueueDescriptor in Queue.OpenQueueDescriptorCollection:

Find the OpenQueueDescriptor where

OpenQueueDescriptor.Handle=RemoteReadEntry.OpenQueueDescriptorHandle.

Generate a Cancel Waiting Message Read Request ([MS-MQDMPR] section 3.1.7.1.17) event with

the following inputs:

iQueue:=QueueReference member of the OpenQueueDescriptor obtained earlier.

iTag:= dwRequestID.

iStatus:= MQ_INFORMATION_REMOTE_CANCELED_BY_CLIENT (0x400E03E9).

Delete the RemoteReadEntry.

Return rStatus of the Cancel Waiting Message Read Request event.

3.1.4.7 RemoteQMPurgeQueue (Opnum 6)

The RemoteQMPurgeQueue method removes all messages from the queue.

Before calling this method, the RemoteQMOpenQueue method MUST be called.

HRESULT RemoteQMPurgeQueue(

 [in] handle_t hBind,

 [in] DWORD hQueue

);

hBind: MUST specify an RPC binding handle parameter, as specified in [MS-RPCE] section 2.

hQueue: A queue handle value acquired from the phQueue parameter of the
qmcomm:R_QMOpenRemoteQueue method as specified in [MS-MQMP] section 3.1.4.2.

Return Values: The method MUST return MQ_OK (0x00000000) on success; otherwise, it MUST
return a failure HRESULT, and the client MUST treat all failure HRESULTs identically.

MQ_OK (0x00000000)

MQ_ERROR_INVALID_HANDLE (0xC00E0007)

Exceptions Thrown: Failure HRESULTs returned by this method MAY<18> be thrown as
exceptions as well as those thrown by the underlying RPC protocol, as specified in [MS-RPCE].

When processing this call, the server MUST:

Look up OpenQueueEntry in the rOpenQueueEntryCollection where

OpenQueueEntry.OpenQueueDescriptorHandle= hQueue.

If no such entry is found, return MQ_ERROR_INVALID_HANDLE (0xC00E0007).

For each queue present in the QueueManager.QueueCollection:

For each OpenQueueDescriptor in Queue.OpenQueueDescriptorCollection:

IfOpenQueueDescriptor.Handle=RemoteReadEntry.OpenQueueDescriptorHandle,

use that OpenQueueDescriptor for processing.

%5bMS-MQDMPR%5d.pdf
%5bMS-MQDMPR%5d.pdf
%5bMS-RPCE%5d.pdf
%5bMS-MQMP%5d.pdf
%5bMS-MQMP%5d.pdf
%5bMS-RPCE%5d.pdf

30 / 62

[MS-MQQP] — v20140124
 Message Queuing (MSMQ): Queue Manager to Queue Manager Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

Generate a Purge Queue event ([MS-MQDMPR] section 3.1.7.1.7) with the following inputs:

iQueue:=QueueReference member of the OpenQueueDescriptor obtained earlier.

Return MQ_OK (0x00000000).

3.1.4.8 RemoteQMGetQMQMServerPort (Opnum 7)

The RemoteQMGetQMQMServerPort method returns an RPC port number (see [MS-RPCE]) for
the requested combination of interface and protocol.

DWORD RemoteQMGetQMQMServerPort(

 [in] handle_t hBind,

 [in, range(0, 3)] DWORD dwPortType

);

hBind: MUST be set to an RPC binding handle, as specified in [MS-RPCE] section 2.

dwPortType: Specifies the interface for which a port value is to be returned. One of the

following values MUST be specified; otherwise, this method MUST return 0x00000000 to
indicate failure.

Value Meaning

IP_HANDSHAKE

0x00000000

Requests that the server return the RPC port number for the qmcomm and

qmcomm2 interfaces bound to TCP/IP. For more information on the qmcomm

and qmcomm2 interfaces, see [MS-MQMP]. The default port number is 2103.

IP_READ

0x00000001

Requests that the server return the RPC port number for the qm2qm interface

bound to TCP/IP. For more information on the qm2qm interface, see section

3.1.4. The default port number is 2105.

IPX_HANDSHAKE

0x00000002

Requests that the server return the RPC port number for the qmcomm and

qmcomm2 interfaces bound to SPX.<19> For more information on the

qmcomm and qmcomm2 interfaces, see [MS-MQMP]. The default port number

is 2103.

IPX_READ

0x00000003

Requests that the server return the RPC port number for the qm2qm interface

bound to SPX.<20> For more information on the qm2qm interface, see section

3.1.4. The default port number is 2105.

Return Values: On success, this method returns a nonzero IP port value for the RPC interface

specified by the dwPortType parameter. If an invalid value is specified for dwPortType, or if
the requested interface is otherwise unavailable, or if any other error is encountered, this
method MUST return 0x00000000.

Exceptions Thrown: No exceptions are thrown beyond those thrown by the underlying RPC
protocol (see [MS-RPCE]).

As specified in section 3.1.3, this protocol configures a fixed listening endpoint at an RPC port
number, which may vary. For the interface and protocol specified by the dwPortType parameter, this

method returns the RPC port number determined at server initialization time. If the default port is
already in use, the server SHOULD increment the port number by 11 until an unused port is found.

%5bMS-MQDMPR%5d.pdf
%5bMS-MQDMPR%5d.pdf
%5bMS-RPCE%5d.pdf
%5bMS-RPCE%5d.pdf
%5bMS-MQMP%5d.pdf

31 / 62

[MS-MQQP] — v20140124
 Message Queuing (MSMQ): Queue Manager to Queue Manager Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

3.1.4.9 RemoteQmGetVersion (Opnum 8)

The RemoteQmGetVersion method retrieves the Message Queuing version of the server; this
method is called before the RemoteQMOpenQueue method.<21>

void RemoteQmGetVersion(

 [in] handle_t hBind,

 [out] unsigned char* pMajor,

 [out] unsigned char* pMinor,

 [out] unsigned short* pBuildNumber

);

hBind: MUST be set to an RPC binding handle, as specified in [MS-RPCE] section 2.

pMajor: A pointer to an unsigned character. The server SHOULD<22> set this parameter to
0x06.

pMinor: A pointer to an unsigned character. The server SHOULD<23> set this parameter to
0x01.

pBuildNumber: A pointer to an unsigned short. The server SHOULD<24> set this parameter to
an implementation-specific build number.

Return Values: This method has no return values.

Exceptions Thrown: No exceptions are thrown except those thrown by the underlying RPC
protocol, as specified in [MS-RPCE].

3.1.4.10 RemoteQMStartReceive2 (Opnum 9)

The RemoteQMStartReceive2 method functions in the same way as RemoteQMStartReceive
(section 3.1.4.1), except that it returns a structure that contains the SequentialId of the
message.<25>

HRESULT RemoteQMStartReceive2(

 [in] handle_t hBind,

 [out] PCTX_REMOTEREAD_HANDLE_TYPE* pphContext,

 [in, out] REMOTEREADDESC2* lpRemoteReadDesc2

);

hBind: MUST be set to an RPC binding handle, as specified in [MS-RPCE] section 2.

pphContext: The server MUST return a non-NULL value for this handle upon success for receive
calls. This handle will be used by the client in subsequent calls to RemoteQMEndReceive
(section 3.1.4.2). This handle MUST NOT be set upon failure or for peek calls. If this method
returns an error, pphContext is undefined and MUST NOT be used as an argument for a call to
RemoteQMEndReceive.

lpRemoteReadDesc2: A pointer to an instance of a REMOTEREADDESC2 (section 2.2.2.2)

structure. The SequentialId member MUST be set to the least significant 7 bytes of the
Message.LookupIdentifier ([MS-MQDMPR] section 3.1.1.12) of the message that is
returned by this method.

The client MUST provide all parameters of lpRemoteReadDesc2.pRemoteReadDesc that are
marked as to be set by the client in section 2.2.2.1.

%5bMS-RPCE%5d.pdf
%5bMS-RPCE%5d.pdf
%5bMS-MQDMPR%5d.pdf

32 / 62

[MS-MQQP] — v20140124
 Message Queuing (MSMQ): Queue Manager to Queue Manager Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

The lpRemoteReadDesc2.pRemoteReadDesc.ulAction parameter MUST be one of the following
values.

Value of ulAction Meaning

MQ_ACTION_RECEIVE

0x00000000

If hCursor is nonzero, read and remove the first message available

at the current cursor location walking toward the end of the queue.

If hCursor is zero, read and remove the message from the front of

the queue.

MQ_ACTION_PEEK_CURRENT

0x80000000

If hCursor is nonzero, read the message at the current cursor

location, but do not remove it from the queue. The cursor location

does not change after the operation.

If hCursor is zero, read the message at the front of the queue, but

do not remove it from the queue.

MQ_ACTION_PEEK_NEXT

0x80000001

Read the message following the message at the current cursor

location, but do not remove it. The cursor location will then change

to the next available message, walking toward the end of the

queue.

The hCursor parameter MUST be set to a nonzero cursor handle.

The hCursor member of lpRemoteReadDesc specifies a handle to an opened cursor. A value of
zero indicates that a cursor is not used for this operation.

The dwRequestID member of the lpRemoteReadDesc parameter is used in a subsequent call
to RemoteQMEndReceive or RemoteQMCancelReceive to correlate that call with the call
to RemoteQMStartReceive2.

Return Values: On success, this method MUST return MQ_OK (0x00000000).

If an error occurs, the server MUST return a failure HRESULT, and the client MUST treat all
failure HRESULTs identically.

Exceptions Thrown: No exceptions are thrown except those thrown by the underlying RPC
protocol, as specified in [MS-RPCE].

While processing this method, the server MUST:

Return MQ_ERROR_INVALID_HANDLE (0xC00E0007) if lpRemoteReadDesc2 is NULL.

Return MQ_ERROR_INVALID_HANDLE (0xC00E0007) if lpRemoteReadDesc2.pRemoteReadDesc is

NULL.

Return MQ_ERROR_INVALID_PARAMETER (0xC00E0006) if

lpRemoteReadDesc2.pRemoteReadDesc.dwQueue is set to 0x00000000 or
lpRemoteReadDesc2.pRemoteReadDesc.dwQueue is not equal to
lpRemoteReadDesc2.pRemoteReadDesc.hRemoteQueue.

The server SHOULD return MQ_ERROR_INVALID_PARAMETER (0xC00E0006) if the

lpRemoteReadDesc2.pRemoteReadDesc.dwRequestID does not uniquely identify the receive
request. This duplicate detection is performed by searching for a RemoteReadEntry, referred to
as rRemoteReadEntry, in rRemoteReadEntryCollection such that
rRemoteReadEntry.OpenQueueDescriptorHandle =
lpRemoteReadDesc2.pRemoteReadDesc.hRemoteQueue and rRemoteReadEntry.RequestId =

lpRemoteReadDesc2.pRemoteReadDesc.dwRequestID.<26>

%5bMS-DTYP%5d.pdf
%5bMS-RPCE%5d.pdf

33 / 62

[MS-MQQP] — v20140124
 Message Queuing (MSMQ): Queue Manager to Queue Manager Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

Return STATUS_INVALID_PARAMETER (0xC000000D) if

lpRemoteReadDesc2.pRemoteReadDesc.hCursor is set to 0x00000000 and the

lpRemoteReadDesc2.pRemoteReadDesc.ulAction is set to MQ_ACTION_PEEK_NEXT.

Search the rOpenQueueEntryCollection where

OpenQueueEntry.OpenQueueDescriptorHandle =
lpRemoteReadDesc2.pRemoteReadDesc.hRemoteQueue.

If the OpenQueueDescriptorHandle is not found, return MQ_ERROR_INVALID_PARAMETER

(0xC00E0006).

Find the OpenQueueDescriptor, referred to as rOpenQueueDescriptor, in the

Queue.OpenQueueDescriptorCollection of each queue object in
QueueManager.QueueCollection such that rOpenQueueDescriptor.Handle =
lpRemoteReadDesc2.pRemoteReadDesc.hRemoteQueue.

If lpRemoteReadDesc2.pRemoteReadDesc.hCursor is not 0x00000000, find the cursor object,

referred to by rCursor, in the rOpenQueueDescriptor.CursorCollection with a Handle

property equal to lpRemoteReadDesc2.pRemoteReadDesc.hCursor.

If no cursor object is found, return STATUS_INVALID_PARAMETER.

If lpRemoteReadDesc2.pRemoteReadDesc.hCursor is 0x00000000, set rCursor to NULL.

Create a new RemoteReadEntry, referred to as rrEntry, with the following attributes:

OpenQueueDescriptorHandle = lpRemoteReadDesc2.pRemoteReadDesc.hRemoteQueue

Timeout = lpRemoteReadDesc2.pRemoteReadDesc.ulTimeout

UserMessagePacket = lpRemoteReadDesc2.pRemoteReadDesc.lpBuffer

Action = lpRemoteReadDesc2.pRemoteReadDesc.ulAction

RequestId = lpRemoteReadDesc2.pRemoteReadDesc.dwRequestID

Add rrEntry to rRemoteReadEntryCollection.

If the ulAction member of the lpRemoteReadDesc2.pRemoteReadDesc parameter is

MQ_ACTION_RECEIVE, generate a Dequeue Message Begin event ([MS-MQDMPR] section
3.1.7.1.11) with the following inputs:

iQueueDesc := rOpenQueueDescriptor obtained in a preceding step.

iTimeout := lpRemoteReadDesc2.pRemoteReadDesc.ulTimeout.

iTag := lpRemoteReadDesc2.pRemoteReadDesc.dwRequestID.

iCursor := rCursor.

If the ulAction member of the lpRemoteReadDesc2.pRemoteReadDesc parameter is

MQ_ACTION_PEEK_CURRENT, generate a Peek Message ([MS-MQDMPR] section 3.1.7.1.15)
event with the following inputs:

iQueueDesc := rOpenQueueDescriptor obtained in a preceding step.

iTimeout := lpRemoteReadDesc2.pRemoteReadDesc.ulTimeout.

%5bMS-MQDMPR%5d.pdf
%5bMS-MQDMPR%5d.pdf
%5bMS-MQDMPR%5d.pdf
%5bMS-MQDMPR%5d.pdf

34 / 62

[MS-MQQP] — v20140124
 Message Queuing (MSMQ): Queue Manager to Queue Manager Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

iCursor := rCursor.

If the ulAction member of the lpRemoteReadDesc2.pRemoteReadDesc parameter is

MQ_ACTION_PEEK_NEXT, generate a Peek Next Message ([MS-MQDMPR] section 3.1.7.1.14)

event with the following inputs:

iQueueDesc := rOpenQueueDescriptor obtained in a preceding step.

iTimeout := lpRemoteReadDesc2.pRemoteReadDesc.ulTimeout.

iCursor := rCursor.

If the rStatus value returned from the preceding events is MQ_OK (0x00000000), the server

MUST process the returned rMessage as follows:

Generate a Construct a UserMessage Packet ([MS-MQDMPR] section 3.1.7.1.30) event with

the following argument:

iMessage := rMessage

Generate a Serialize Message to Buffer ([MS-MQDMPR] section 3.1.7.1.32) event with the

following arguments:

iMessage := rMessage

iBuffer := rUserMessage returned by the Construct a UserMessage Packet event.

Assign rUserMessage to lpRemoteReadDesc2.pRemoteReadDesc.lpBuffer.

Assign rUserMessage.BaseHeader.PacketSize to

lpRemoteReadDesc2.pRemoteReadDesc.dwSize

Assign the least significant seven bytes of rMessage.LookupIdentifier to the SequentialId

member of lpRemoteReadDesc2.

Remove the RemoteReadEntry ADM element instance from rRemoteReadEntryCollection for

which RemoteReadEntry.RequestId equals

lpRemoteReadDesc2.pRemoteReadDesc.dwRequestID and
RemoteReadEntry.OpenQueueDescriptorHandle equals
lpRemoteReadDesc2.pRemoteReadDesc.hRemoteQueue.

If rStatus is MQ_OK (0x00000000) and lpRemoteReadDesc2.pRemoteReadDesc.ulAction is

MQ_ACTION_RECEIVE, set pphContext to rrEntry; otherwise, delete rrEntry.

Return rStatus.

3.1.4.11 RemoteQMStartReceiveByLookupId (Opnum 10)

The RemoteQMStartReceiveByLookupId method reads a message from the opened remote
queue by using the lookup identifier.<27>

HRESULT RemoteQMStartReceiveByLookupId(

 [in] handle_t hBind,

 [in] ULONGLONG LookupId,

 [out] PCTX_REMOTEREAD_HANDLE_TYPE* pphContext,

 [in, out] REMOTEREADDESC2* lpRemoteReadDesc2

);

%5bMS-MQDMPR%5d.pdf
%5bMS-MQDMPR%5d.pdf
%5bMS-MQDMPR%5d.pdf
%5bMS-MQDMPR%5d.pdf
%5bMS-MQDMPR%5d.pdf
%5bMS-MQDMPR%5d.pdf

35 / 62

[MS-MQQP] — v20140124
 Message Queuing (MSMQ): Queue Manager to Queue Manager Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

hBind: MUST be set to an RPC binding handle, as specified in [MS-RPCE] section 2.

LookupId: Lookup identifier of the message to be returned.

pphContext: The server MUST return a non-NULL value for this handle, on success for receive
calls. This handle is used by the client in subsequent calls to RemoteQMEndReceive. This

handle MUST NOT be set on failure, or for peek calls. If this method returns an error,
pphContext is undefined and MUST NOT be used as an argument for a call to
RemoteQMEndReceive.

lpRemoteReadDesc2: A REMOTEREADDESC2 (section 2.2.2.2) instance that contains the
remote description accompanied by a sequential ID. The members of the pRemoteReadDesc
member of the lpRemoteReadDesc2 parameter MUST be assigned in the same manner as that
specified in RemoteQMStartReceive and section 2.2.2.1. In addition, the SequentialId

member MUST be set to the least significant 7 bytes of the Message.LookupIdentifier
([MS-MQDMPR] section 3.1.1.12) of the message that is returned by this method.

The client must provide all parameters of lpRemoteReadDesc2.pRemoteReadDesc that are

marked as to be set by the client in section 2.2.2.1.

lpRemoteReadDesc2.pRemoteReadDesc.ulAction MUST be set to one of the following values.

Value of ulAction Meaning

MQ_LOOKUP_PEEK_CURRENT

0x40000010

Read the message that is specified by the LookupId parameter,

but do not remove it from the queue.

The lpRemoteReadDesc2.pRemoteReadDesc.hCursor

parameter MUST be set to zero.

The LookupId parameter MUST NOT be set to 0.

The lpRemoteReadDesc2.pRemoteReadDesc.ulTimeout

parameter MUST be set to 0x00000000.

MQ_LOOKUP_PEEK_NEXT

0x40000011

If LookupId is 0, read the first message. Otherwise, read the

message following the message that is specified by LookupId.

In either case, do not remove the message.

The lpRemoteReadDesc2.pRemoteReadDesc.hCursor

parameter MUST be set to zero.

The lpRemoteReadDesc2.pRemoteReadDesc.ulTimeout

parameter MUST be set to 0x00000000.

MQ_LOOKUP_PEEK_PREV

0x40000012

If LookupId is 0xFFFFFFFFFFFFFFFF, read the last message.

Otherwise, read the message preceding the message that is

specified by the LookupId parameter. In either case, do not

remove the message from the queue.

The lpRemoteReadDesc2.pRemoteReadDesc.hCursor

parameter MUST be set to zero.

The LookupId parameter MUST NOT be set to 0.

The lpRemoteReadDesc2.pRemoteReadDesc.ulTimeout

parameter MUST be set to 0x00000000.

MQ_LOOKUP_RECEIVE_CURRENT

0x40000020

Read the message that is specified by the LookupId parameter,

and remove it from the queue.

The lpRemoteReadDesc2.pRemoteReadDesc.hCursor

parameter MUST be set to zero.

The LookupId parameter MUST NOT be set to 0.

%5bMS-RPCE%5d.pdf
%5bMS-MQDMPR%5d.pdf

36 / 62

[MS-MQQP] — v20140124
 Message Queuing (MSMQ): Queue Manager to Queue Manager Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

Value of ulAction Meaning

The lpRemoteReadDesc2.pRemoteReadDesc.ulTimeout

parameter MUST be set to 0x00000000.

MQ_LOOKUP_RECEIVE_NEXT

0x40000021

If LookupId is 0, read the first message. Otherwise, read the

message following the message that is specified by the

LookupId parameter. Remove the message from the queue.

The lpRemoteReadDesc2.pRemoteReadDesc.hCursor

parameter MUST be set to zero.

The lpRemoteReadDesc2.pRemoteReadDesc.ulTimeout

parameter MUST be set to 0x00000000.

MQ_LOOKUP_RECEIVE_PREV

0x40000022

If LookupId is 0xFFFFFFFFFFFFFFFF, read the last message.

Otherwise, read the message preceding the message that is

specified by the LookupId parameter. Remove the message

from the queue.

The lpRemoteReadDesc2.pRemoteReadDesc.hCursor

parameter MUST be set to zero.

The LookupId parameter MUST NOT be set to 0.

The lpRemoteReadDesc2.pRemoteReadDesc.ulTimeout

parameter MUST be set to 0x00000000.

Return Values: The method MUST return MQ_OK (0x00000000) on success; otherwise, it MUST
return a failure HRESULT and the client MUST treat all failure HRESULTs identically.

MQ_OK (0x00000000)
MQ_ERROR_INVALID_HANDLE (0xC00E0007)
MQ_ERROR_INVALID_PARAMETER (0xC00E0006)

MQ_ERROR_IO_TIMEOUT ((0xC00E001B))
MQ_ERROR_MESSAGE_ALREADY_RECEIVED ((0xC00E001D))

Exceptions Thrown: No exceptions are thrown except those thrown by the underlying RPC
protocol, as specified in [MS-RPCE].

While processing this method, the server MUST:

Return MQ_ERROR_INVALID_HANDLE (0xC00E0007) if lpRemoteReadDesc2 is NULL.

Return MQ_ERROR_INVALID_PARAMETER (0xC00E0006) if:

lpRemoteReadDesc2.pRemoteReadDesc.hRemoteQueue is set to 0.

lpRemoteReadDesc2.pRemoteReadDesc.ulTimeout is not set to 0.

lpRemoteReadDesc2.pRemoteReadDesc.hCursor is not set to 0.

Search the rOpenQueueEntryCollection where

OpenQueueEntry.OpenQueueDescriptorHandle=

lpRemoteReadDesc2.pRemoteReadDesc.hRemoteQueue.

If the OpenQueueDescriptorHandle is not found, return MQ_ERROR_INVALID_PARAMETER

(0xC00E0006).

For each queue present in the QueueManager.QueueCollection:

%5bMS-DTYP%5d.pdf
%5bMS-RPCE%5d.pdf

37 / 62

[MS-MQQP] — v20140124
 Message Queuing (MSMQ): Queue Manager to Queue Manager Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

For each OpenQueueDescriptor in Queue.OpenQueueDescriptorCollection:

If OpenQueueDescriptor.Handle=

lpRemoteReadDesc2.pRemoteReadDesc.hRemoteQueue, use that OpenQueueDescriptor

for processing.

Create a new RemoteReadEntry, referred to as rrEntry, with the following attributes:

OpenQueueDescriptorHandle= lpRemoteReadDesc2.lpRemoteReadDesc.hRemoteQueue

Timeout= lpRemoteReadDesc2.pRemoteReadDesc.ulTimeout

UserMessagePacket= lpRemoteReadDesc2.pRemoteReadDesc.lpBuffer

Action= lpRemoteReadDesc2.pRemoteReadDesc.ulAction

RequestId= lpRemoteReadDesc2.pRemoteReadDesc.dwRequestID

Add rrEntry to rRemoteReadEntryCollection.

Generate a Read Message By Lookup Identifier event with the following inputs ('*' is used as a

wildcard for possible symbolic names of lpRemoteReadDesc2.pRemoteReadDesc.ulAction as
specified in the preceding Value of ulAction table):

iQueueDesc:=QueueReference member of the OpenQueueDescriptor obtained earlier

iLookupId:= LookupId

iPeekOperation:= true if the value for lpRemoteReadDesc2.pRemoteReadDesc.ulAction is

MQ_LOOKUP_PEEK_*; otherwise, false

iLookupOperation:=

SeekFirst, if lpRemoteReadDesc2.pRemoteReadDesc.ulAction is MQ_LOOKUP_*_NEXT, and

LookupId is 0.

SeekLast, if lpRemoteReadDesc2.pRemoteReadDesc.ulAction is MQ_LOOKUP_*_PREV, and

LookupId is 0xFFFFFFFFFFFFFFFF.

SeekPrevious, if lpRemoteReadDesc2.pRemoteReadDesc.ulAction is MQ_LOOKUP_*_PREV,

and LookupId does not equal 0xFFFFFFFFFFFFFFFF.

SeekCurrent, if lpRemoteReadDesc2.pRemoteReadDesc.ulAction is

MQ_LOOKUP_*_CURRENT.

SeekNext, if lpRemoteReadDesc2.pRemoteReadDesc.ulAction is MQ_LOOKUP_*_NEXT, and

LookupId does not equal 0.

If the rStatus value returned from the Read Message By Lookup Identifier event is MQ_OK

(0x00000000), the server MUST process the returned rMessage as follows:

Generate a Construct a UserMessage Packet ([MS-MQDMPR] section 3.1.7.1.30) event with

the following argument:

iMessage := rMessage

Generate a Serialize Message to Buffer ([MS-MQDMPR] section 3.1.7.1.32) event with the

following arguments:

%5bMS-MQDMPR%5d.pdf
%5bMS-MQDMPR%5d.pdf
%5bMS-MQDMPR%5d.pdf
%5bMS-MQDMPR%5d.pdf
%5bMS-MQDMPR%5d.pdf

38 / 62

[MS-MQQP] — v20140124
 Message Queuing (MSMQ): Queue Manager to Queue Manager Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

iMessage := rMessage

iBuffer := rUserMessage returned by the Construct a UserMessage Packet event.

Assign rUserMessage to lpRemoteReadDesc2.pRemoteReadDesc.lpBuffer.

Assign rUserMessage.BaseHeader.PacketSize to

lpRemoteReadDesc2.pRemoteReadDesc.dwSize.

Assign the least significant 7 bytes of rMessage.LookupIdentifier to the SequentialId member

of lpRemoteReadDesc2.

Remove the RemoteReadEntry ADM element instance from rRemoteReadEntryCollection for

which RemoteReadEntry.RequestId equals
lpRemoteReadDesc2.pRemoteReadDesc.dwRequestID and
RemoteReadEntry.OpenQueueDescriptorHandle equals
lpRemoteReadDesc2.pRemoteReadDesc.hRemoteQueue.

If rStatus is MQ_OK (0x00000000) and lpRemoteReadDesc2.pRemoteReadDesc.ulAction is

MQ_LOOKUP_RECEIVE_*, set pphContext to rrEntry; otherwise, delete rrEntry.

Return rStatus.

3.1.5 Timer Events

None.

3.1.6 Other Local Events

The following local events trigger operations on the server:

PCTX_RRSESSION_HANDLE_TYPE rundown.

PCTX_REMOTEREAD_HANDLE_TYPE rundown.

3.1.6.1 PCTX_RRSESSION_HANDLE_TYPE Rundown

This event occurs when a PCTX_RRSESSION_HANDLE_TYPE context handle has been established

between a client and server through a call to RemoteQMOpenQueue, and the connection between
the client and server is severed before the context handle is closed via a call to
RemoteQMCloseQueue.

The server MUST use the context handle supplied as an event argument to RemoteQMCloseQueue
to look up the context handle in the OpenSessionHandle table and close the OpenSessionHandle, as
specified in RemoteQMCloseQueue.

3.1.6.2 PCTX_REMOTEREAD_HANDLE_TYPE Rundown

This event occurs when PCTX_REMOTEREAD_HANDLE_TYPE context handle has been

established between a client and server through a call to RemoteQMStartReceive, and the
connection between the client and server is severed before the context handle is closed via a call to
RemoteQMEndReceive.

The server MUST use the context handle supplied as an event argument to look up the context
handle in the RemoteReadEntry and close it, as specified in RemoteQMEndReceive. The server

MUST set the dwAck parameter to RR_NACK in this case to RemoteQMEndReceive.

39 / 62

[MS-MQQP] — v20140124
 Message Queuing (MSMQ): Queue Manager to Queue Manager Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

3.2 qm2qm Client Details

3.2.1 Abstract Data Model

3.2.1.1 PendingRemoteReadEntry

The PendingRemoteReadEntry is an ADM element that encapsulates a pending remote read
operation. This element has the following attributes:

OpenQueueDescriptorHandle: The OpenQueueDescriptor.Handle for the queue being read
from.

RequestId: A unique DWORD value that identifies the pending read request. This value is used

to correlate calls to the server. It is initially generated when peeking or receiving a message
and is subsequently used to advise the server that the message was received, or to cancel the
pending peek or receive.

RemoteReadHandle: A PCTX_REMOTEREAD_HANDLE_TYPE value.

3.2.1.2 PendingRemoteReadEntryCollection

The PendingRemoteReadEntryCollection represents a collection of PendingRemoteReadEntry, each of

which represents a pending request to receive a message from a queue. The client MUST maintain
an instance of this collection, referred to as rPendingRemoteReadEntryCollection, to keep track
of all pending receive requests made by the client.

3.2.1.3 RemoteOpenQueueEntry

The RemoteOpenQueueEntry is an ADM element that encapsulates a remote open queue. This
element has the following attributes:

OpenQueueDescriptorHandle: The OpenQueueDescriptor.Handle for the queue being read
from.

RRSessionHandle: A PCTX_RRSESSION_HANDLE_TYPE value.

3.2.1.4 RemoteOpenQueueEntryCollection

The RemoteOpenQueueEntryCollection represents a collection of RemoteOpenQueueEntry elements,

each of which represents a remote opened queue. The client MUST maintain an instance of this
collection, referred to as rRemoteOpenQueueEntryCollection, to keep track of all remote queues
opened by the client.

3.2.2 Timers

No protocol timers are required beyond those used internally by RPC to implement resiliency to
network outages. For more information, see [MS-RPCE].

3.2.3 Initialization

None.

%5bMS-DTYP%5d.pdf
%5bMS-RPCE%5d.pdf

40 / 62

[MS-MQQP] — v20140124
 Message Queuing (MSMQ): Queue Manager to Queue Manager Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

3.2.4 Message Processing Events and Sequencing Rules

The operation of the protocol is initiated and subsequently driven by the following higher-layer
triggered events.

A message queuing application:

Opens a queue.

Peeks or Receives a message.

Cancels a pending Peek or Receive.

Purges a queue.

Uses a cursor to Peek or Receive messages.

Closes a cursor.

Closes a queue.

3.2.4.1 Opening a Queue

To open a queue, the following inputs are expected:

RemoteServer: the name or network address that identifies the machine where the queue

resides.

QueueHandle: A value returned in the phQueue parameter by the remote server when the

qmcomm:R_QMOpenRemoteQueue method is called ([MS-MQMP] section 3.1.4.2) by the
MQMP application.

QueueDescriptor: A value returned in the dwpQueue parameter by the remote server when the

qmcomm:R_QMOpenRemoteQueue method is called ([MS-MQMP] section 3.1.4.2) by the

MQMP application.

OpenContext: A value returned in the pdwContext parameter by the remote server when the

qmcomm:R_QMOpenRemoteQueue method is called ([MS-MQMP] section 3.1.4.2) by the

MQMP application.

The supporting server MUST perform the following actions to process this event:

Construct an RPC binding handle to the qm2qm interface on the remote server identified by

RemoteServer, as specified in [C706] section 2.3.

Call the RemoteQMGetQMQMServerPort method using the RPC handle from the previous step.

This method returns the RPC endpoint port on which subsequent method calls to this interface

are to be invoked.

Construct a new RPC binding handle to the remote server using the RPC endpoint port

determined in the previous step and close the initial RPC binding handle to the remote server.

Any subsequent calls to the remote server require the new RPC binding handle to be successfully
created. The new handle is closed when the queue is closed as specified in section 3.2.4.9.

Call the RemoteQMOpenQueue method and specify the following parameter values:

The RPC binding handle constructed in previous steps.

%5bMS-MQMP%5d.pdf
%5bMS-MQMP%5d.pdf
%5bMS-MQMP%5d.pdf
%5bMS-MQMP%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=89824
http://go.microsoft.com/fwlink/?LinkId=89828

41 / 62

[MS-MQQP] — v20140124
 Message Queuing (MSMQ): Queue Manager to Queue Manager Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

pLicGuid set to the QueueManager.Identifier of the queue manager.

If QueueManager.RoutingServer is True or QueueManager.DirectoryServer is True, set

dwMQS to 0x00000001; otherwise set dwMQS to 0x00000000.

hQueue set to QueueHandle.

pQueue set to QueueDescriptor.

dwContext set to OpenContext.

The time-out for the RemoteQMOpenQueue method SHOULD be five minutes, and if the RPC

call does not complete within this time, the call is canceled with the cancel time-out of zero

minutes. For details on canceling an RPC call, refer to [C706] section 6.1.8.

Create a new RemoteOpenQueueEntry using the following:

OpenQueueDescriptorHandle = QueueHandle

RRSessionHandle = the returned phContext

Add the RemoteOpenQueueEntry to rRemoteOpenQueueEntryCollection.

3.2.4.2 Peeking a Message

To peek a message, the following inputs are expected:

QueueHandle: Handle of the queue to be read from.

TimeOut: Set to the time-out in milliseconds.

Action: Set to MQ_ACTION_PEEK_CURRENT or MQ_ACTION_PEEK_NEXT as described in section

3.1.4.1.

The client MUST perform the following actions to process this event:

Create a PendingRemoteReadEntry (section 3.2.1.1), referred to as

rPendingRemoteReadEntry, and do the following:

Set rPendingRemoteReadEntry.OpenQueueDescriptorHandle equal to QueueHandle.

Set rPendingRemoteReadEntry.RequestId equal to a value that uniquely identifies this call

from all other pending calls to this protocol. This value MUST NOT be equal to the RequestId
of any other PendingRemoteReadEntry in rPendingRemoteReadEntryCollection.

Add rPendingRemoteReadEntry to rPendingRemoteReadEntryCollection.

After creating a PendingRemoteReadEntry, the client SHOULD<28> call the
RemoteQmGetVersion method to determine the capabilities of the server. The client SHOULD

check for the following conditions:

pMajor is less than 5.

pMajor is equal to 5, and pMinor is less than 1.

pMajor is equal to 5, and pMinor is less than 1, and pBuildNumber is less than 951.

If any of the above conditions are satisfied, the client MUST:

http://go.microsoft.com/fwlink/?LinkId=89824

42 / 62

[MS-MQQP] — v20140124
 Message Queuing (MSMQ): Queue Manager to Queue Manager Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

Call the RemoteQMStartReceive method and MUST specify the following parameter values

for the REMOTEREADDESC structure (lpRemoteReadDesc):

hRemoteQueue set to the phQueue out parameter of the

qmcomm:R_QMOpenRemoteQueue, as specified in [MS-MQMP] section 3.1.4.2.

dwQueue set to the DWORD pointed to by the dwpQueue out parameter of the

qmcomm:R_QMOpenRemoteQueue, as specified in [MS-MQMP] section 3.1.4.2.

dwSize set to 0.

lpBuffer set to NULL.

hCursor set to NULL.

ulAction set to Action.

ulTimeout set to TimeOut.

dwRequestID set to rPendingRemoteReadEntry.RequestId.

Else if none of the above conditions are satisfied, the client MUST:

Call the RemoteQMStartReceive2 method and MUST specify the following parameter values

for the REMOTEREADDESC2 structure (lpRemoteReadDesc2):

hRemoteQueue set to the phQueue out parameter of the

qmcomm:R_QMOpenRemoteQueue, as specified in [MS-MQMP] section 3.1.4.2.

dwQueue set to the DWORD pointed to by the dwpQueue out parameter of the

qmcomm:R_QMOpenRemoteQueue, as specified in [MS-MQMP] section 3.1.4.2.

dwSize set to 0.

lpBuffer set to NULL.

hCursor set to NULL.

ulAction set to Action.

ulTimeout set to TimeOut.

dwRequestID set to rPendingRemoteReadEntry.RequestId.

SequentialId set to 0.

The client MUST then perform the following actions to process this event:

Set rPendingRemoteReadEntry.RemoteReadHandle to the returned pphContext.

Reconstruct the message, as specified in [MS-MQMQ] section 2.2.18, from the returned lpBuffer

element of the REMOTEREADDESC structure (lpRemoteReadDesc), which contains a

UserMessage Packet ([MS-MQMQ] section 2.2.20).

Remove the rPendingRemoteReadEntry element from

rPendingRemoteReadEntryCollection.

%5bMS-MQMP%5d.pdf
%5bMS-MQMP%5d.pdf
%5bMS-MQMP%5d.pdf
%5bMS-MQMP%5d.pdf
%5bMS-MQMP%5d.pdf
%5bMS-MQMQ%5d.pdf
%5bMS-MQMQ%5d.pdf
%5bMS-MQMQ%5d.pdf

43 / 62

[MS-MQQP] — v20140124
 Message Queuing (MSMQ): Queue Manager to Queue Manager Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

3.2.4.3 Receiving a Message

To receive a message, the following inputs are expected:

QueueHandle: Handle of the queue to be read from.

TimeOut: Set to the time-out in milliseconds.

The client MUST perform the following actions to process this event:

Create a PendingRemoteReadEntry (section 3.2.1.1), referred to as

rPendingRemoteReadEntry, and do the following:

Set rPendingRemoteReadEntry.OpenQueueDescriptorHandle equal to QueueHandle.

Set rPendingRemoteReadEntry.RequestId equal to a value that uniquely identifies this call

from all other pending calls to this protocol. This value MUST NOT be equal to the RequestId
of any other PendingRemoteReadEntry in rPendingRemoteReadEntryCollection.

Add rPendingRemoteReadEntry to rPendingRemoteReadEntryCollection.

After creating a PendingRemoteReadEntry, the client SHOULD<29> call the
RemoteQmGetVersion method to determine the capabilities of the server. The client SHOULD

check for the following conditions:

pMajor is less than 5.

pMajor is equal to 5, and pMinor is less than 1.

pMajor is equal to 5, and pMinor is less than 1, and pBuildNumber is less than 951.

If any of the above conditions are satisfied, the client MUST:

Call the RemoteQMStartReceive method and MUST specify the following parameter values

for the REMOTEREADDESC structure (lpRemoteReadDesc):

hRemoteQueue set to the phQueue out parameter of the

qmcomm:R_QMOpenRemoteQueue, as specified in [MS-MQMP] section 3.1.4.2.

dwQueue set to the DWORD pointed to by the dwpQueue out parameter of the

qmcomm:R_QMOpenRemoteQueue, as specified in [MS-MQMP] section 3.1.4.2.

hCursor set to NULL.

dwSize set to 0.

lpBuffer set to NULL.

ulAction set to MQ_ACTION_RECEIVE.

ulTimeout set to TimeOut.

dwRequestID set to rPendingRemoteReadEntry.RequestId.

Else if none of the above conditions are satisfied, the client MUST:

Call the RemoteQMStartReceive2 method and MUST specify the following parameter values

for the REMOTEREADDESC2 structure (lpRemoteReadDesc2):

%5bMS-MQMP%5d.pdf
%5bMS-MQMP%5d.pdf
%5bMS-MQMP%5d.pdf

44 / 62

[MS-MQQP] — v20140124
 Message Queuing (MSMQ): Queue Manager to Queue Manager Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

hRemoteQueue set to the phQueue out parameter of the

qmcomm:R_QMOpenRemoteQueue, as specified in [MS-MQMP] section 3.1.4.2.

dwQueue set to the DWORD pointed to by the dwpQueue out parameter of the

qmcomm:R_QMOpenRemoteQueue, as specified in [MS-MQMP] section 3.1.4.2.

hCursor set to NULL.

dwSize set to 0.

lpBuffer set to NULL.

ulAction set to MQ_ACTION_RECEIVE.

ulTimeout set to TimeOut.

dwRequestID set to rPendingRemoteReadEntry.RequestId.

SequentialId set to 0.

The client MUST then perform the following actions to process this event:

Set rPendingRemoteReadEntry.RemoteReadHandle to the returned pphContext.

Reconstruct the message, as specified in [MS-MQMQ] section 2.2.18, from the returned lpBuffer

element of the REMOTEREADDESC structure (lpRemoteReadDesc), which contains a
UserMessage Packet ([MS-MQMQ] section 2.2.20).

Advise the server that the message was received by calling the RemoteQMEndReceive method

with the following parameter values:

pphContext set to the rPendingRemoteReadEntry.RemoteReadHandle.

dwAck set to 0x00000002 (RR_ACK).

Remove the rPendingRemoteReadEntry element from

rPendingRemoteReadEntryCollection.

3.2.4.4 Purging a Queue

To purge a queue, the following input is expected:

QueueHandle: Handle of the queue to be purged.

The client MUST perform the following actions to process this event:

Call the RemoteQMPurgeQueue method with the hQueue parameter set to QueueHandle.

3.2.4.5 Peeking a Message by Using a Cursor

To peek a message by using a cursor, the following inputs are expected:

QueueHandle: Handle of the queue to be peeked from.

TimeOut: Set to the time-out in milliseconds.

Action: Set to MQ_ACTION_PEEK_CURRENT or MQ_ACTION_PEEK_NEXT, as described in section
3.1.4.1.

%5bMS-MQMP%5d.pdf
%5bMS-MQMP%5d.pdf
%5bMS-MQMQ%5d.pdf
%5bMS-MQMQ%5d.pdf
%5bMS-MQMQ%5d.pdf

45 / 62

[MS-MQQP] — v20140124
 Message Queuing (MSMQ): Queue Manager to Queue Manager Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

The client MUST perform the following actions to process this event:

Create a PendingRemoteReadEntry (section 3.2.1.1), referred to as

rPendingRemoteReadEntry, and do the following:

Set rPendingRemoteReadEntry.OpenQueueDescriptorHandle equal to QueueHandle.

Set rPendingRemoteReadEntry.RequestId equal to a value that uniquely identifies this call

from all other pending calls to this protocol. This value MUST NOT be equal to the RequestId
of any other PendingRemoteReadEntry in rPendingRemoteReadEntryCollection.

Add rPendingRemoteReadEntry to rPendingRemoteReadEntryCollection.

After creating a PendingRemoteReadEntry, the client SHOULD<30> call the

RemoteQmGetVersion method to determine the capabilities of the server. The client SHOULD
check for the following conditions:

pMajor is less than 5.

pMajor is equal to 5, and pMinor is less than 1.

pMajor is equal to 5, and pMinor is less than 1, and pBuildNumber is less than 951.

If any of the above conditions are satisfied, the client MUST:

Call the RemoteQMStartReceive method and MUST specify the following parameter values

for the REMOTEREADDESC structure (lpRemoteReadDesc):

hRemoteQueue set to the phQueue out parameter of the

qmcomm:R_QMOpenRemoteQueue, as specified in [MS-MQMP] section 3.1.4.2.

dwQueue set to the DWORD pointed to by the dwpQueue out parameter of the

qmcomm:R_QMOpenRemoteQueue, as specified in [MS-MQMP] section 3.1.4.2.

hCursor set to the cursor handle obtained from qmcomm:R_QMCreateRemoteCursor,

as specified in [MS-MQMP] section 3.1.4.4.

dwSize set to 0.

lpBuffer set to NULL.

ulAction set to Action.

ulTimeout set to TimeOut.

dwRequestID set to rPendingRemoteReadEntry.RequestId.

Else if none of the above conditions are satisfied, the client MUST:

Call the RemoteQMStartReceive2 method and MUST specify the following parameter values

for the REMOTEREADDESC2 structure (lpRemoteReadDesc2):

hRemoteQueue set to the phQueue out parameter of the

qmcomm:R_QMOpenRemoteQueue, as specified in [MS-MQMP] section 3.1.4.2.

dwQueue set to the DWORD pointed to by the dwpQueue out parameter of the

qmcomm:R_QMOpenRemoteQueue, as specified in [MS-MQMP] section 3.1.4.2.

%5bMS-MQMP%5d.pdf
%5bMS-MQMP%5d.pdf
%5bMS-MQMP%5d.pdf
%5bMS-MQMP%5d.pdf
%5bMS-MQMP%5d.pdf
%5bMS-MQMP%5d.pdf
%5bMS-MQMP%5d.pdf

46 / 62

[MS-MQQP] — v20140124
 Message Queuing (MSMQ): Queue Manager to Queue Manager Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

hCursor set to the cursor handle obtained from qmcomm:R_QMCreateRemoteCursor,

as specified in [MS-MQMP] section 3.1.4.4.

dwSize set to 0.

lpBuffer set to NULL.

ulAction set to Action.

ulTimeout set to TimeOut.

dwRequestID set to rPendingRemoteReadEntry.RequestId.

SequentialId set to 0.

The client MUST then perform the following actions to process this event:

Set rPendingRemoteReadEntry.RemoteReadHandle to the returned pphContext.

Reconstruct the message, as specified in [MS-MQMQ] section 2.2.18, from the returned lpBuffer

element of the REMOTEREADDESC structure (lpRemoteReadDesc), which contains a
UserMessage Packet ([MS-MQMQ] section 2.2.20).

Remove the rPendingRemoteReadEntry element from

rPendingRemoteReadEntryCollection.

3.2.4.6 Receiving a Message by Using a Cursor

To receive a message by using a cursor, the following inputs are expected:

QueueHandle: Handle of the queue to be read from.

TimeOut: Set to the time-out in milliseconds.

The client MUST perform the following actions to process this event:

Create a PendingRemoteReadEntry (section 3.2.1.1), referred to as

rPendingRemoteReadEntry, and do the following:

Set rPendingRemoteReadEntry.OpenQueueDescriptorHandle equal to QueueHandle.

Set rPendingRemoteReadEntry.RequestId equal to a value that uniquely identifies this call

from all other pending calls to this protocol. This value MUST NOT be equal to the RequestId
of any other PendingRemoteReadEntry in rPendingRemoteReadEntryCollection.

Add rPendingRemoteReadEntry to rPendingRemoteReadEntryCollection.

After creating a PendingRemoteReadEntry, the client SHOULD<31> call the
RemoteQmGetVersion method to determine the capabilities of the server. The client SHOULD

check for the following conditions:

pMajor is less than 5.

pMajor is equal to 5, and pMinor is less than 1.

pMajor is equal to 5, and pMinor is less than 1, and pBuildNumber is less than 951.

If any of the above conditions are satisfied, the client MUST:

%5bMS-MQMP%5d.pdf
%5bMS-MQMQ%5d.pdf
%5bMS-MQMQ%5d.pdf
%5bMS-MQMQ%5d.pdf

47 / 62

[MS-MQQP] — v20140124
 Message Queuing (MSMQ): Queue Manager to Queue Manager Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

Call the RemoteQMStartReceive method and MUST specify the following parameter values

for the REMOTEREADDESC structure (lpRemoteReadDesc):

hRemoteQueue set to the phQueue out parameter of the

qmcomm:R_QMOpenRemoteQueue, as specified in [MS-MQMP] section 3.1.4.2.

dwQueue set to the DWORD pointed to by the dwpQueue out parameter of the

qmcomm:R_QMOpenRemoteQueue, as specified in [MS-MQMP] section 3.1.4.2.

hCursor set to the cursor handle obtained from qmcomm:R_QMCreateRemoteCursor,

as specified in [MS-MQMP] section 3.1.4.4.

dwSize set to 0.

lpBuffer set to NULL.

ulAction set to MQ_ACTION_RECEIVE.

ulTimeout set to TimeOut.

dwRequestID set to rPendingRemoteReadEntry.RequestId.

Else if none of the above conditions is satisfied, the client MUST:

Call the RemoteQMStartReceive2 method and MUST specify the following parameter values

for the REMOTEREADDESC2 structure (lpRemoteReadDesc2):

hRemoteQueue set to the phQueue out parameter of the

qmcomm:R_QMOpenRemoteQueue, as specified in [MS-MQMP] section 3.1.4.2.

dwQueue set to the DWORD pointed to by the dwpQueue out parameter of the

qmcomm:R_QMOpenRemoteQueue, as specified in [MS-MQMP] section 3.1.4.2.

hCursor set to the cursor handle obtained from qmcomm:R_QMCreateRemoteCursor,

as specified in [MS-MQMP] section 3.1.4.4.

dwSize set to 0.

lpBuffer set to NULL.

ulAction set to MQ_ACTION_RECEIVE.

ulTimeout set to TimeOut.

dwRequestID set to rPendingRemoteReadEntry.RequestId.

SequentialId set to 0.

The client MUST then perform the following actions to process this event:

Set rPendingRemoteReadEntry.RemoteReadHandle to the returned pphContext.

Reconstruct the message, as specified in [MS-MQMQ] section 2.2.18, from the returned lpBuffer

element of the REMOTEREADDESC structure (lpRemoteReadDesc), which contains a
UserMessage Packet ([MS-MQMQ] section 2.2.20).

Advise the server that the message was received by calling the RemoteQMEndReceive method

with the following parameter values:

%5bMS-MQMP%5d.pdf
%5bMS-MQMP%5d.pdf
%5bMS-MQMP%5d.pdf
%5bMS-MQMP%5d.pdf
%5bMS-MQMP%5d.pdf
%5bMS-MQMP%5d.pdf
%5bMS-MQMP%5d.pdf
%5bMS-MQMP%5d.pdf
%5bMS-MQMQ%5d.pdf
%5bMS-MQMQ%5d.pdf
%5bMS-MQMQ%5d.pdf

48 / 62

[MS-MQQP] — v20140124
 Message Queuing (MSMQ): Queue Manager to Queue Manager Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

pphContext set to the rPendingRemoteReadEntry.RemoteReadHandle.

dwAck set to 0x00000002 (RR_ACK).

Remove the rPendingRemoteReadEntry element from

rPendingRemoteReadEntryCollection.

3.2.4.7 Canceling a Pending Peek or Receive

The client MAY trigger this event while processing the Closing a Queue event as specified in
section 3.2.4.9, to explicitly cancel all pending peek and receive operations on the queue, prior to
closing the queue.

To cancel a pending peek or receive, the following inputs are expected:

A queue handle value acquired from the phQueue out parameter of the
qmcomm:R_QMOpenRemoteQueue method, as specified in [MS-MQMP] section 3.1.4.2.

RequestId: The requestId that uniquely identifies the pending remote read operation.

The client MUST perform the following actions to process this event:

Find the PendingRemoteReadEntry, referred to as rPendingRemoteReadEntry, in the

rPendingRemoteReadEntryCollection, where
rPendingRemoteReadEntry.OpenQueueDescriptorHandle = QueueHandle, and
rPendingRemoteReadEntry.RequestId = RequestId.

Call the RemoteQMCancelReceive method with the following:

hQueue set to QueueHandle.

pQueue set to the dwpQueue out parameter of the qmcomm:R_QMOpenRemoteQueue

method, as specified in [MS-MQMP] section 3.1.4.2.

dwRequestID set to RequestId.

Remove the rPendingRemoteReadEntry element from

rPendingRemoteReadEntryCollection.

3.2.4.8 Closing a Cursor

To close a cursor, the following inputs are expected:

CursorHandle: Handle of the cursor obtained in a previous call to
qmcomm:R_QMCreateRemoteCursor, as specified in [MS-MQMP] section 3.1.4.4.

The client MUST perform the following actions to process this event:

Call the RemoteQMCloseCursor method with the following:

hQueue set to the phQueue out parameter of qmcomm:R_QMOpenRemoteQueue method,

as specified in [MS-MQMP].

hCursor set to CursorHandle.

3.2.4.9 Closing a Queue

To close a queue, the following inputs are expected:

%5bMS-MQMP%5d.pdf
%5bMS-MQMP%5d.pdf
%5bMS-MQMP%5d.pdf
%5bMS-MQMP%5d.pdf
%5bMS-MQMP%5d.pdf
%5bMS-MQMP%5d.pdf

49 / 62

[MS-MQQP] — v20140124
 Message Queuing (MSMQ): Queue Manager to Queue Manager Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

QueueHandle: Handle of the queue to be closed.

RequestId: The requestId that uniquely identifies the pending remote read operation.

The client MUST perform the following actions to process this event:

Find the RemoteOpenQueueEntry, referred to as rRemoteOpenQueueEntry, in the

rRemoteOpenQueueEntryCollection, where
rRemoteOpenQueueEntry.OpenQueueDescriptorHandle = QueueHandle.

The client MAY explicitly cancel all pending peek or receive operations on the queue by finding all

PendingRemoteReadEntry elements from rPendingRemoteReadEntryCollection, where
PendingRemoteReadEntry.OpenQueueDescriptorHandle = QueueHandle, and for each such
element, raise the Canceling a Pending Peek or Receive (section 3.2.4.7) event with the

following:

QueueHandle set to PendingRemoteReadEntry.OpenQueueDescriptorHandle.

RequestId set to PendingRemoteReadEntry.RequestId.

Call the RemoteQMCloseQueue (section 3.1.4.4) method with the following:

pphContext set to rRemoteOpenQueueEntry.RRSessionHandle.

Remove the rRemoteOpenQueueEntry element from rPendingRemoteReadEntryCollection.

3.2.5 Timer Events

There are no timer events.

3.2.6 Other Local Events

There are no local events.

50 / 62

[MS-MQQP] — v20140124
 Message Queuing (MSMQ): Queue Manager to Queue Manager Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

4 Protocol Examples

The following sections describe several operations as used in common scenarios to illustrate the
function of the Message Queuing (MSMQ): Queue Manager to Queue Manager Protocol.

4.1 Receive Example

The following sequence diagram illustrates a supporting server receiving a message from a queue on
a remote queue manager on behalf of an MQMP application. It is closely related to the example in
section 4.2 of [MS-MQMP] and represents an expansion of step 12 of that example. This example

assumes that steps 1-11 of that example have been executed prior to the beginning of the following
sequence diagram, and that steps 13 and 14 of that example will be executed after the end of the
following sequence diagram.

Figure 2: Client receive

In response to the MQMP application invoking the rpc_ACReceiveMessageEx method of [MS-
MQMP], the supporting server invokes methods on the remote queue manager on the MQMP
application's behalf:

1. The supporting server calls RemoteQMStartReceive on the remote queue manager with a
ulAction value of MQ_ACTION_RECEIVE (0x00000000) and a unique dwRequestID value chosen
by the client.

2. The remote queue manager associates a pending request with the passed dwRequestID, which
will be used to correlate a subsequent call to RemoteQMEndReceive or
RemoteQMCancelReceive with the same value for dwRequestID. In addition, the remote queue
manager returns the message and MQ_OK (0x00000000) to indicate success.

3. The supporting server indicates that the message was successfully received by calling
RemoteQMEndReceive, specifying RR_ACK (0x00000002) for dwAck.

%5bMS-MQMP%5d.pdf
%5bMS-MQMP%5d.pdf
%5bMS-MQMP%5d.pdf

51 / 62

[MS-MQQP] — v20140124
 Message Queuing (MSMQ): Queue Manager to Queue Manager Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

4. The remote queue manager completes the corresponding pending request created by the call to
RemoteQMStartReceive and, because RR_ACK is specified, removes the message from the

queue. It also returns MQ_OK (0x00000000) to indicate success.

4.2 Purge Example

The following sequence diagram illustrates a supporting server purging a queue on a remote queue
manager on behalf of an MQMP application. It is closely related to the example in section 4.2 of
[MS-MQMP] and represents an expansion of step 12 of that example. This example assumes that
steps 1-11 of that example have been executed prior to the beginning of the following sequence
diagram, and that steps 13 and 14 of that example will be executed after the end of the following
sequence diagram.

Figure 3: Purging a queue

In response to the MQMP application invoking the rpc_ACPurgeQueue method of [MS-MQMP], the
supporting server invokes methods on the remote queue manager on the MQMP application's behalf:

1. The supporting server calls RemoteQMPurgeQueue on the remote queue manager.

2. The remote queue manager removes all messages from the queue and returns MQ_OK
(0x00000000) to indicate success.

%5bMS-MQMP%5d.pdf
%5bMS-MQMP%5d.pdf
%5bMS-MQMP%5d.pdf

52 / 62

[MS-MQQP] — v20140124
 Message Queuing (MSMQ): Queue Manager to Queue Manager Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

5 Security

Clients MAY invoke methods of this interface at the "none" authentication level, depending on the
network environment. Server implementations SHOULD be designed with careful consideration given
to the security implications of accepting method calls from unauthenticated clients. Server
implementations SHOULD reject methods invoked by unauthenticated clients by returning
MQ_ERROR_ACCESS_DENIED (0xC00E0025).

The Message Queuing (MSMQ): Queue Manager to Queue Manager Protocol depends on security
checks being done when the queue is opened by using the qmcomm:R_QMOpenRemoteQueue

method, as specified in [MS-MQMP] section 3.1.4.2.

The RemoteQMGetQMQMServerPort method is an exception to this consideration, because clients
MAY, depending on the network environment, invoke RemoteQMGetQMQMServerPort prior to
configuring security for the RPC binding. For this reason, server implementations MUST NOT restrict
access to the RemoteQMGetQMQMServerPort method.

5.1 Security Considerations for Implementers

None.

5.2 Index of Security Parameters

None.

%5bMS-GLOS%5d.pdf
%5bMS-MQMP%5d.pdf
%5bMS-MQMP%5d.pdf

53 / 62

[MS-MQQP] — v20140124
 Message Queuing (MSMQ): Queue Manager to Queue Manager Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

6 Appendix A: Full IDL

For ease of implementation, the full IDL is provided below, where "ms-dtyp.idl" is the IDL found in
[MS-DTYP] Appendix A (section 5) and "ms-mqmq.idl" is the IDL found in [MS-MQMQ] Appendix A
(section 5).

import "ms-dtyp.idl";

import "ms-mqmq.idl";

[

 uuid(1088a980-eae5-11d0-8d9b-00a02453c337),

 version(1.0),

 pointer_default(unique)

]

interface qm2qm

{

 typedef [context_handle] void *PCTX_RRSESSION_HANDLE_TYPE;

 typedef [context_handle] void *PCTX_REMOTEREAD_HANDLE_TYPE;

 typedef enum _REMOTEREADACK {

 RR_UNKNOWN,

 RR_NACK,

 RR_ACK

 } REMOTEREADACK ;

 typedef struct _REMOTEREADDESC {

 DWORD hRemoteQueue ;

 DWORD hCursor ;

 DWORD ulAction ;

 DWORD ulTimeout ;

 [range (0, 4325376)] DWORD dwSize ;

 DWORD dwQueue ;

 DWORD dwRequestID;

 DWORD Reserved;

 DWORD dwArriveTime ;

 REMOTEREADACK eAckNack ;

 [unique, size_is(dwSize), length_is(dwSize)] byte *lpBuffer ;

 } REMOTEREADDESC ;

 HRESULT

 RemoteQMStartReceive(

 [in] handle_t hBind,

 [out] PCTX_REMOTEREAD_HANDLE_TYPE *pphContext,

 [in, out] REMOTEREADDESC* lpRemoteReadDesc

);

 HRESULT

 RemoteQMEndReceive(

 [in] handle_t hBind,

 [in, out] PCTX_REMOTEREAD_HANDLE_TYPE *pphContext,

 [in, range(1, 2)] DWORD dwAck

);

 HRESULT

 RemoteQMOpenQueue (

 [in] handle_t hBind,

%5bMS-GLOS%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-MQMQ%5d.pdf
%5bMS-MQMQ%5d.pdf
%5bMS-MQMQ%5d.pdf
%5bMS-MQMQ%5d.pdf
%5bMS-MQMQ%5d.pdf

54 / 62

[MS-MQQP] — v20140124
 Message Queuing (MSMQ): Queue Manager to Queue Manager Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

 [out] PCTX_RRSESSION_HANDLE_TYPE *phContext,

 [in] GUID *pLicGuid,

 [in, range(0, 16)] DWORD dwMQS,

 [in] DWORD hQueue,

 [in] DWORD pQueue,

 [in] DWORD dwpContext

);

 HRESULT

 RemoteQMCloseQueue (

 [in] handle_t hBind,

 [in, out] PCTX_RRSESSION_HANDLE_TYPE *pphContext

);

 HRESULT

 RemoteQMCloseCursor (

 [in] handle_t hBind,

 [in] DWORD hQueue,

 [in] DWORD hCursor

);

 HRESULT

 RemoteQMCancelReceive (

 [in] handle_t hBind,

 [in] DWORD hQueue,

 [in] DWORD pQueue,

 [in] DWORD dwRequestID

);

 HRESULT

 RemoteQMPurgeQueue (

 [in] handle_t hBind,

 [in] DWORD hQueue

);

 DWORD

 RemoteQMGetQMQMServerPort (

 [in] handle_t hBind,

 [in, range(0, 3)] DWORD dwPortType

);

 typedef struct _REMOTEREADDESC2 {

 REMOTEREADDESC * pRemoteReadDesc;

 ULONGLONG SequentialId;

 } REMOTEREADDESC2;

 void

 RemoteQmGetVersion(

 [in] handle_t hBind,

 [out] unsigned char * pMajor,

 [out] unsigned char * pMinor,

 [out] unsigned short * pBuildNumber

);

 HRESULT

 RemoteQMStartReceive2(

 [in] handle_t hBind,

 [out] PCTX_REMOTEREAD_HANDLE_TYPE *pphContext,

 [in, out] REMOTEREADDESC2* lpRemoteReadDesc2

55 / 62

[MS-MQQP] — v20140124
 Message Queuing (MSMQ): Queue Manager to Queue Manager Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

);

 HRESULT

 RemoteQMStartReceiveByLookupId(

 [in] handle_t hBind,

 [in] ULONGLONG LookupId,

 [out] PCTX_REMOTEREAD_HANDLE_TYPE *pphContext,

 [in, out] REMOTEREADDESC2* lpRemoteReadDesc2

);

}

56 / 62

[MS-MQQP] — v20140124
 Message Queuing (MSMQ): Queue Manager to Queue Manager Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

7 Appendix B: Product Behavior

The information in this specification is applicable to the following Microsoft products or supplemental
software. References to product versions include released service packs:

Windows NT operating system

Windows 2000 operating system

Windows XP operating system

Windows Server 2003 operating system

Windows Vista operating system

Windows Server 2008 operating system

Windows 7 operating system

Windows Server 2008 R2 operating system

Windows 8 operating system

Windows Server 2012 operating system

Windows 8.1 operating system

Windows Server 2012 R2 operating system

Exceptions, if any, are noted below. If a service pack or Quick Fix Engineering (QFE) number
appears with the product version, behavior changed in that service pack or QFE. The new behavior
also applies to subsequent service packs of the product unless otherwise specified. If a product

edition appears with the product version, behavior is different in that product edition.

Unless otherwise specified, any statement of optional behavior in this specification that is prescribed
using the terms SHOULD or SHOULD NOT implies product behavior in accordance with the SHOULD
or SHOULD NOT prescription. Unless otherwise specified, the term MAY implies that the product
does not follow the prescription.

<1> Section 1.6: This protocol is used only when an application is receiving messages from a

remote queue using the [MS-MQMP] protocol through an MSMQ supporting server. The supporting
server uses this protocol regardless of the Windows version on the destination machine of the
queue. Only Windows NT, Windows 2000, or Windows XP 32-bit and Windows Server 2003 32-bit on
domain joined machines can be configured to support such applications. Applications can also
receive messages from a remote queue using the [MC-MQAC] protocol. In such case, the [MC-
MQAC] protocol server uses the RemoteRead [MS-MQRR] protocol for equivalent functionality.

<2> Section 1.7: These methods are not implemented by Windows NT or Windows 2000. All other

versions of Windows implement these methods.

<3> Section 2.1: The ncacn_spx protocol sequence is supported only by Windows NT and
Windows 2000. Support for IPX and the ncacn_spx protocol sequence is deprecated on Windows XP,
Windows Server 2003, Windows Vista, Windows 7, Windows Server 2008 R2, Windows 8, Windows
Server 2012, Windows 8.1, and Windows Server 2012 R2.

<4> Section 2.1: The ncacn_spx protocol sequence is supported only by Windows NT and
Windows 2000. Support for IPX and the ncacn_spx protocol sequence is deprecated on Windows XP,

%5bMS-MQMP%5d.pdf
%5bMS-MQMQ%5d.pdf
%5bMC-MQAC%5d.pdf
%5bMC-MQAC%5d.pdf
%5bMC-MQAC%5d.pdf
%5bMS-MQRR%5d.pdf

57 / 62

[MS-MQQP] — v20140124
 Message Queuing (MSMQ): Queue Manager to Queue Manager Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

Windows Server 2003, Windows Vista, Windows 7, Windows Server 2008 R2, Windows 8, Windows
Server 2012, Windows 8.1, and Windows Server 2012 R2.

<5> Section 2.1: Windows NT, Windows 2000, Windows XP, and Windows Server 2003 clients use
RPC dynamic endpoints to obtain the initial RPC binding handle. These clients make the

RemoteQMGetQMQMServerPort call as specified in section 3.1.4.8 with the initial binding handle
and use the returned value to obtain a new RPC binding handle to be used for all subsequent RPC
method calls on the protocol. On all other versions of the Windows operating system, the protocol
clients do not call the RemoteQMGetQMQMServerPort method; instead, the clients use RPC
dynamic endpoints to obtain the RPC binding handle and use this handle for all subsequent RPC
method calls on the protocol.

<6> Section 2.2.2.1: The server returns an error if the receive request identifier supplied by the

client is currently in use, as described in sections 3.1.4.1 and 3.1.4.10. Windows NT, Windows 2000,
and Windows XP do not perform this validation.

<7> Section 2.3: For Windows NT and Windows 2000, this protocol uses the Message Queuing
(MSMQ): Directory Service Protocol [MS-MQDS].

<8> Section 2.3: For the Message Queuing (MSMQ): Directory Service Protocol [MS-MQDS], the
Directory Service schema elements are described in [MS-MQDS] sections 2.2.10 and 3.1.4.21.1

through 3.1.4.21.4.

<9> Section 3.1.4: Windows 2000, Windows XP, and Windows Server 2003 use target level 5.0.
Windows NT disables strict NDR data consistency checks.

<10> Section 3.1.4.1: Windows NT, Windows 2000, and Windows XP do not perform this validation.

<11> Section 3.1.4.2: On Windows Server 2003, Windows Vista, Windows Server 2008, Windows 7,
Windows Server 2008 R2, Windows 8, Windows Server 2012, Windows 8.1, and Windows Server
2012 R2, the server does not perform this search.

<12> Section 3.1.4.3: On Windows NT, Windows 2000, Windows XP, and Windows Server 2003, if
the value of this parameter is 0x00000000, the server enforces the client access licensing

restrictions; if it is nonzero, the server does not enforce the restrictions. This parameter is ignored
by Windows Vista, Windows Server 2008, Windows 7, Windows Server 2008 R2, Windows 8,
Windows Server 2012, Windows 8.1, and Windows Server 2012 R2.

<13> Section 3.1.4.3: In Windows NT and Windows 2000 the hQueue parameter is required to be
set to the same value as the phQueue out parameter of qmcomm:R_QMOpenRemoteQueue, as

specified in [MS-MQMP] section 3.1.4.2. If an OpenQueueDescriptor whose Handle equals
hQueue does not exist in the OpenQueueDescriptorCollection of any queue in
QueueManager.QueueCollection, the server returns MQ_ERROR_INVALID_PARAMETER
(0xC00E0006) when it starts processing the call.

<14> Section 3.1.4.3: Windows NT, Windows 2000, and Windows XP do not perform this validation.

<15> Section 3.1.4.3: Windows NT and Windows 2000 set OpenQueueDescriptorHandle to

hQueue.

<16> Section 3.1.4.4: On Windows Server 2003, Windows Vista, Windows Server 2008, Windows 7,
Windows Server 2008 R2, Windows 8, Windows Server 2012, Windows 8.1, and Windows Server
2012 R2, the server does not perform this search.

<17> Section 3.1.4.6: In Windows NT and Windows 2000, MQ_ERROR_INVALID_HANDLE
(0xc00e0007) is returned if pQueue or hQueue is NULL

%5bMS-MQDS%5d.pdf
%5bMS-MQDS%5d.pdf
%5bMS-MQDS%5d.pdf
%5bMS-MQDS%5d.pdf
%5bMS-MQDS%5d.pdf
%5bMS-MQDS%5d.pdf
%5bMS-MQMP%5d.pdf
%5bMS-MQMP%5d.pdf

58 / 62

[MS-MQQP] — v20140124
 Message Queuing (MSMQ): Queue Manager to Queue Manager Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

<18> Section 3.1.4.7: All Windows implementations of this method other than Windows NT,
Windows 2000 and Windows XP throw an exception instead of returning the mentioned error codes

in case of failure. The exception code contains the specific error code.

<19> Section 3.1.4.8: RPC over SPX is supported only by Windows NT and Windows 2000.

Windows XP, Windows Server 2003, Windows Vista, Windows Server 2008, Windows 7, Windows
Server 2008 R2, Windows 8, Windows Server 2012, Windows 8.1, and Windows Server 2012 R2 do
not support this value, and the MQQP server returns 0x00000000 to indicate failure.

<20> Section 3.1.4.8: RPC over SPX is supported only by Windows NT and Windows 2000.
Windows XP, Windows Server 2003, Windows Vista, Windows Server 2008, Windows 7, Windows
Server 2008 R2, Windows 8, Windows Server 2012, Windows 8.1, and Windows Server 2012 R2 do
not support this value, and the MQQP server returns 0x00000000 to indicate failure.

<21> Section 3.1.4.9: This method is not implemented by Windows NT or Windows 2000. All other
versions of Windows implement this method.

<22> Section 3.1.4.9: Microsoft implementations of MQQP server on Windows set this value to the

major version number of the underlying Windows operating system. The major version number is
0x05 for Windows XP or Windows Server 2003 and 0x06 for Windows Vista, Windows Server 2008,
Windows 7, Windows Server 2008 R2, Windows 8, Windows Server 2012, Windows 8.1, or Windows

Server 2012 R2.

<23> Section 3.1.4.9: Microsoft implementations of MQQP server on Windows set this value to the
minor version number of the underlying Windows operating system. The minor version number is
0x01 for Windows XP; 0x02 for Windows Server 2003; 0x00 for Windows Vista or Windows
Server 2008; and 0x1 for Windows 7, Windows Server 2008 R2, Windows 8, Windows Server 2012,
Windows 8.1, or Windows Server 2012 R2.

<24> Section 3.1.4.9: Microsoft implementations of MQQP server on Windows set this value to the

specific build number of the underlying Windows operating system. The initial build numbers for
Windows 2000, Windows XP, Windows Server 2003, Windows Vista, and Windows Server 2008 are
645, 1020, 1716, 6000, and 6001 respectively. The build number is 6531 or greater if the MQQP
server is running on Windows 7, Windows Server 2008 R2, Windows 8, Windows Server 2012,

Windows 8.1, or Windows Server 2012 R2. The build number is updated with each service pack or
hot fix release of the operating system.

<25> Section 3.1.4.10: This method is not implemented by Windows NT or Windows 2000. All other

versions of Windows implement this method.

<26> Section 3.1.4.10: Windows NT, Windows 2000, and Windows XP do not perform this
validation.

<27> Section 3.1.4.11: This method is not implemented by Windows NT or Windows 2000. All other
versions of Windows implement this method.

<28> Section 3.2.4.2: Windows NT and Windows 2000 clients do not make a call to

RemoteQmGetVersion, and always call RemoteQMStartReceive rather than
RemoteQMStartReceive2.

<29> Section 3.2.4.3: Windows NT and Windows 2000 clients do not make a call to
RemoteQmGetVersion, and always call RemoteQMStartReceive rather than
RemoteQMStartReceive2.

<30> Section 3.2.4.5: Windows NT and Windows 2000 clients do not make a call to
RemoteQmGetVersion, and always call RemoteQMStartReceive rather than

RemoteQMStartReceive2.

59 / 62

[MS-MQQP] — v20140124
 Message Queuing (MSMQ): Queue Manager to Queue Manager Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

<31> Section 3.2.4.6: Windows NT and Windows 2000 clients do not make a call to
RemoteQmGetVersion, and always call RemoteQMStartReceive rather than

RemoteQMStartReceive2.

60 / 62

[MS-MQQP] — v20140124
 Message Queuing (MSMQ): Queue Manager to Queue Manager Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

8 Change Tracking

No table of changes is available. The document is either new or has had no changes since its last
release.

61 / 62

[MS-MQQP] — v20140124
 Message Queuing (MSMQ): Queue Manager to Queue Manager Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

9 Index

A

Abstract data model
client 39
server 17

Access patterns - overview 9
Applicability 10

C

Canceling
pending peek 48
pending receive 48

Capability negotiation 10
Change tracking 60
Client

abstract data model 39
initialization 39
local events 49
message processing 40
sequencing rules 40
timer events 49
timers 39

Closing
cursor 48
queue 48

Common data types 12
Cursor

closing 48
peeking messages 44
receiving messages 46
state diagram 17

D

Data model - abstract
client 39
server 17

Data types 13

E

Examples
purge example 51
receive example 50

F

Fields - vendor-extensible 11
Full IDL 53

G

Glossary 6

I

IDL 53
Implementers - security considerations 52

Informative references 7
Initialization

client 39
server 18

Introduction 6

L

Local events
client 49
server 38

M

Message processing
client 40
server 18

Messages
overview (section 1.3.1 8, section 2 12)
peeking - canceling pending 48
peeking - cursor 44
peeking - overview 41
receiving 50
receiving - canceling 48
receiving - cursor 46
receiving - overview 43
transport 12

N

Normative references 7

O

Opening queue 40
Overview 8

P

Parameters - security 52
PCTX_REMOTEREAD_HANDLE_TYPE 38
PCTX_RRSESSION_HANDLE_TYPE 38
Peeking messages

canceling pending 48
cursor 44
overview 41

Preconditions 10
Prerequisites 10
Product behavior 56
Purging queue (section 3.2.4.4 44, section 4.2 51)

Q

Queue operations - overview 9
Queues

closing 48
opening 40
overview 8
purging (section 3.2.4.4 44, section 4.2 51)

62 / 62

[MS-MQQP] — v20140124
 Message Queuing (MSMQ): Queue Manager to Queue Manager Protocol

 Copyright © 2014 Microsoft Corporation.

 Release: Thursday, February 13, 2014

state diagram 17

R

Receiving messages 50
canceling pending 48
cursor 46
overview 43

References
informative 7
normative 7

Relationship to other protocols 10
RemoteQMCancelReceive method 28
RemoteQMCloseCursor method 27
RemoteQMCloseQueue method 26
RemoteQMEndReceive method 23
RemoteQMGetQMQMServerPort method 30
RemoteQmGetVersion method 31
RemoteQMOpenQueue method 24

RemoteQMPurgeQueue method 29
RemoteQMStartReceive method 19
RemoteQMStartReceive2 method 31
RemoteQMStartReceiveByLookupId method 34
REMOTEREADACK enumeration 13
REMOTEREADDESC structure 14
REMOTEREADDESC2 structure 16

S

Security 52
Sequencing rules

client 40
server 18

Server
abstract data model 17
initialization 18
local events 38
message processing 18
sequencing rules 18
timer events 38
timers 18

Standards assignments 11
Structures 14

T

Timer events
client 49
server 38

Timers
client 39
server 18

Tracking changes 60
Transport - message 12

V

Vendor-extensible fields 11
Versioning 10

	Contents
	1 Introduction
	1.1 Glossary
	1.2 References
	1.2.1 Normative References
	1.2.2 Informative References

	1.3 Overview
	1.3.1 Messages
	1.3.2 Queues
	1.3.3 Queue Operations
	1.3.4 Access Patterns

	1.4 Relationship to Other Protocols
	1.5 Prerequisites/Preconditions
	1.6 Applicability Statement
	1.7 Versioning and Capability Negotiation
	1.8 Vendor-Extensible Fields
	1.9 Standards Assignments

	2 Messages
	2.1 Transport
	2.2 Common Data Types
	2.2.1 Data Types
	2.2.1.1 PCTX_RRSESSION_HANDLE_TYPE
	2.2.1.2 PCTX_REMOTEREAD_HANDLE_TYPE
	2.2.1.3 REMOTEREADACK

	2.2.2 Structures
	2.2.2.1 REMOTEREADDESC
	2.2.2.2 REMOTEREADDESC2

	2.3 Directory Service Schema Elements

	3 Protocol Details
	3.1 qm2qm Server Details
	3.1.1 Abstract Data Model
	3.1.1.1 Shared Data Elements
	3.1.1.2 RemoteReadEntry
	3.1.1.3 RemoteReadEntryCollection
	3.1.1.4 OpenQueueEntry
	3.1.1.5 OpenQueueEntryCollection

	3.1.2 Timers
	3.1.3 Initialization
	3.1.4 Message Processing Events and Sequencing Rules
	3.1.4.1 RemoteQMStartReceive (Opnum 0)
	3.1.4.2 RemoteQMEndReceive (Opnum 1)
	3.1.4.3 RemoteQMOpenQueue (Opnum 2)
	3.1.4.4 RemoteQMCloseQueue (Opnum 3)
	3.1.4.5 RemoteQMCloseCursor (Opnum 4)
	3.1.4.6 RemoteQMCancelReceive (Opnum 5)
	3.1.4.7 RemoteQMPurgeQueue (Opnum 6)
	3.1.4.8 RemoteQMGetQMQMServerPort (Opnum 7)
	3.1.4.9 RemoteQmGetVersion (Opnum 8)
	3.1.4.10 RemoteQMStartReceive2 (Opnum 9)
	3.1.4.11 RemoteQMStartReceiveByLookupId (Opnum 10)

	3.1.5 Timer Events
	3.1.6 Other Local Events
	3.1.6.1 PCTX_RRSESSION_HANDLE_TYPE Rundown
	3.1.6.2 PCTX_REMOTEREAD_HANDLE_TYPE Rundown

	3.2 qm2qm Client Details
	3.2.1 Abstract Data Model
	3.2.1.1 PendingRemoteReadEntry
	3.2.1.2 PendingRemoteReadEntryCollection
	3.2.1.3 RemoteOpenQueueEntry
	3.2.1.4 RemoteOpenQueueEntryCollection

	3.2.2 Timers
	3.2.3 Initialization
	3.2.4 Message Processing Events and Sequencing Rules
	3.2.4.1 Opening a Queue
	3.2.4.2 Peeking a Message
	3.2.4.3 Receiving a Message
	3.2.4.4 Purging a Queue
	3.2.4.5 Peeking a Message by Using a Cursor
	3.2.4.6 Receiving a Message by Using a Cursor
	3.2.4.7 Canceling a Pending Peek or Receive
	3.2.4.8 Closing a Cursor
	3.2.4.9 Closing a Queue

	3.2.5 Timer Events
	3.2.6 Other Local Events

	4 Protocol Examples
	4.1 Receive Example
	4.2 Purge Example

	5 Security
	5.1 Security Considerations for Implementers
	5.2 Index of Security Parameters

	6 Appendix A: Full IDL
	7 Appendix B: Product Behavior
	8 Change Tracking
	9 Index

