

1 / 38

[MS-MQMR-Diff] - v20160714
Message Queuing (MSMQ): Queue Manager Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

[MS-MQMR-Diff]:

Message Queuing (MSMQ): Queue Manager Management
Protocol

Intellectual Property Rights Notice for Open Specifications Documentation

 Technical Documentation. Microsoft publishes Open Specifications documentation (“this
documentation”) for protocols, file formats, data portability, computer languages, and standards
as well as overviews of the interaction among each of these technologiessupport. Additionally,
overview documents cover inter-protocol relationships and interactions.

 Copyrights. This documentation is covered by Microsoft copyrights. Regardless of any other

terms that are contained in the terms of use for the Microsoft website that hosts this

documentation, you maycan make copies of it in order to develop implementations of the
technologies that are described in the Open Specifications this documentation and maycan
distribute portions of it in your implementations usingthat use these technologies or in your
documentation as necessary to properly document the implementation. You maycan also distribute
in your implementation, with or without modification, any schema, IDL'sschemas, IDLs, or code

samples that are included in the documentation. This permission also applies to any documents
that are referenced in the Open Specifications. documentation.

 No Trade Secrets. Microsoft does not claim any trade secret rights in this documentation.

 Patents. Microsoft has patents that maymight cover your implementations of the technologies
described in the Open Specifications. documentation. Neither this notice nor Microsoft's delivery of
thethis documentation grants any licenses under those patents or any other Microsoft patents.
However, a given Open Specification maySpecifications document might be covered by the
Microsoft Open Specifications Promise or the Microsoft Community Promise. If you would prefer a

written license, or if the technologies described in the Open Specificationsthis documentation are
not covered by the Open Specifications Promise or Community Promise, as applicable, patent

licenses are available by contacting iplg@microsoft.com.

 Trademarks. The names of companies and products contained in this documentation maymight
be covered by trademarks or similar intellectual property rights. This notice does not grant any
licenses under those rights. For a list of Microsoft trademarks, visit
www.microsoft.com/trademarks.

 Fictitious Names. The example companies, organizations, products, domain names, e-mailemail

addresses, logos, people, places, and events that are depicted in this documentation are fictitious.
No association with any real company, organization, product, domain name, email address, logo,
person, place, or event is intended or should be inferred.

Reservation of Rights. All other rights are reserved, and this notice does not grant any rights other
than as specifically described above, whether by implication, estoppel, or otherwise.

Tools. The Open Specifications dodocumentation does not require the use of Microsoft programming
tools or programming environments in order for you to develop an implementation. If you have access

to Microsoft programming tools and environments, you are free to take advantage of them. Certain
Open Specifications documents are intended for use in conjunction with publicly available
standardstandards specifications and network programming art, and assumes, as such, assume that
the reader either is familiar with the aforementioned material or has immediate access to it.

http://go.microsoft.com/fwlink/?LinkId=214445
http://go.microsoft.com/fwlink/?LinkId=214448
mailto:iplg@microsoft.com
http://www.microsoft.com/trademarks

2 / 38

[MS-MQMR-Diff] - v20160714
Message Queuing (MSMQ): Queue Manager Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Revision Summary

Date
Revision
History

Revision
Class Comments

5/11/2007 0.1 New Version 0.1 release

8/10/2007 1.0 Major Updated and revised the technical content.

9/28/2007 1.0.1 Editorial Changed language and formatting in the technical content.

10/23/2007 1.0.2 Editorial Changed language and formatting in the technical content.

11/30/2007 1.0.3 Editorial Changed language and formatting in the technical content.

1/25/2008 1.0.4 Editorial Changed language and formatting in the technical content.

3/14/2008 1.0.5 Editorial Changed language and formatting in the technical content.

5/16/2008 1.0.6 Editorial Changed language and formatting in the technical content.

6/20/2008 1.0.7 Editorial Changed language and formatting in the technical content.

7/25/2008 1.0.8 Editorial Changed language and formatting in the technical content.

8/29/2008 2.0 Major Updated and revised the technical content.

10/24/2008 3.0 Major Updated and revised the technical content.

12/5/2008 4.0 Major Updated and revised the technical content.

1/16/2009 4.0.1 Editorial Changed language and formatting in the technical content.

2/27/2009 4.0.2 Editorial Changed language and formatting in the technical content.

4/10/2009 4.0.3 Editorial Changed language and formatting in the technical content.

5/22/2009 4.0.4 Editorial Changed language and formatting in the technical content.

7/2/2009 4.1 Minor Clarified the meaning of the technical content.

8/14/2009 4.1.1 Editorial Changed language and formatting in the technical content.

9/25/2009 4.2 Minor Clarified the meaning of the technical content.

11/6/2009 4.2.1 Editorial Changed language and formatting in the technical content.

12/18/2009 4.2.2 Editorial Changed language and formatting in the technical content.

1/29/2010 5.0 Major Updated and revised the technical content.

3/12/2010 5.0.1 Editorial Changed language and formatting in the technical content.

4/23/2010 5.0.2 Editorial Changed language and formatting in the technical content.

6/4/2010 6.0 Major Updated and revised the technical content.

7/16/2010 7.0 Major Updated and revised the technical content.

8/27/2010 8.0 Major Updated and revised the technical content.

10/8/2010 8.1 Minor Clarified the meaning of the technical content.

11/19/2010 8.1 None No changes to the meaning, language, or formatting of the

3 / 38

[MS-MQMR-Diff] - v20160714
Message Queuing (MSMQ): Queue Manager Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Date
Revision
History

Revision
Class Comments

technical content.

1/7/2011 8.1 None
No changes to the meaning, language, or formatting of the
technical content.

2/11/2011 8.1 None
No changes to the meaning, language, or formatting of the
technical content.

3/25/2011 8.1 None
No changes to the meaning, language, or formatting of the
technical content.

5/6/2011 8.1 None
No changes to the meaning, language, or formatting of the
technical content.

6/17/2011 8.2 Minor Clarified the meaning of the technical content.

9/23/2011 9.0 Major Updated and revised the technical content.

12/16/2011 10.0 Major Updated and revised the technical content.

3/30/2012 10.0 None
No changes to the meaning, language, or formatting of the
technical content.

7/12/2012 10.1 Minor Clarified the meaning of the technical content.

10/25/2012 11.0 Major Updated and revised the technical content.

1/31/2013 11.0 None
No changes to the meaning, language, or formatting of the
technical content.

8/8/2013 12.0 Major Updated and revised the technical content.

11/14/2013 12.0 None
No changes to the meaning, language, or formatting of the
technical content.

2/13/2014 12.0 None
No changes to the meaning, language, or formatting of the
technical content.

5/15/2014 12.0 None
No changes to the meaning, language, or formatting of the
technical content.

6/30/2015 13.0 Major Significantly changed the technical content.

10/16/2015 13.0
No
ChangeNone

No changes to the meaning, language, or formatting of the
technical content.

4 / 38

[MS-MQMR-Diff] - v20160714
Message Queuing (MSMQ): Queue Manager Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Table of Contents

1 Introduction .. 6
1.1 Glossary ... 6
1.2 References .. 8

1.2.1 Normative References ... 8
1.2.2 Informative References ... 9

1.3 Overview .. 9
1.4 Relationship to Other Protocols .. 11
1.5 Prerequisites/Preconditions ... 11
1.6 Applicability Statement ... 12
1.7 Versioning and Capability Negotiation ... 12
1.8 Vendor-Extensible Fields ... 12
1.9 Standards Assignments ... 12

2 Messages ... 13
2.1 Transport .. 13
2.2 Common Data Types .. 13

2.2.1 Structures ... 14
2.2.1.1 DL_ID.. 14
2.2.1.2 MGMT_OBJECT ... 14
2.2.1.3 MULTICAST_ID ... 14
2.2.1.4 OBJECTID .. 14
2.2.1.5 QUEUE_FORMAT ... 14

2.2.2 Enumerators .. 14
2.2.2.1 MgmtObjectType ... 14
2.2.2.2 QUEUE_FORMAT_TYPE .. 15

2.2.3 Property Identifiers ... 15
2.2.3.1 Management Machine Property Identifiers .. 15
2.2.3.2 Management Queue Property Identifiers .. 15

2.3 Directory Service Schema Elements ... 17

3 Protocol Details ... 18
3.1 qmmgmt Server Details .. 18

3.1.1 Abstract Data Model .. 18
3.1.1.1 Shared Data Elements ... 18

3.1.2 Timers .. 19
3.1.3 Initialization ... 19
3.1.4 Message Processing Events and Sequencing Rules .. 19

3.1.4.1 R_QMMgmtGetInfo (Opnum 0) ... 19
3.1.4.2 R_QMMgmtAction (Opnum 1) ... 25

3.1.5 Timer Events .. 27
3.1.6 Other Local Events .. 27

3.2 qmmgmt Client Details ... 27
3.2.1 Abstract Data Model .. 27
3.2.2 Timers .. 27
3.2.3 Initialization ... 28
3.2.4 Message Processing Events and Sequencing Rules .. 28
3.2.5 Timer Events .. 28
3.2.6 Other Local Events .. 28

4 Protocol Examples ... 29
4.1 QM Management Action and Retrieving QM Info Example 29

5 Security ... 31
5.1 Security Considerations for Implementers ... 31
5.2 Index of Security Parameters .. 31

5 / 38

[MS-MQMR-Diff] - v20160714
Message Queuing (MSMQ): Queue Manager Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

6 Appendix A: Full IDL .. 32

7 Appendix B: Product Behavior ... 33

8 Change Tracking .. 35

9 Index ... 36

6 / 38

[MS-MQMR-Diff] - v20160714
Message Queuing (MSMQ): Queue Manager Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

1 Introduction

The Message Queuing (MSMQ): Queue Manager Management Protocol is a remote procedure call
(RPC)-based protocol used for management operations on the MSMQ server, including monitoring
the MSMQ installation and the queues.

Operations that a client MAYcan perform using this protocol include:

 Getting information on MSMQ installation and queues.

 Performing actions on an MSMQ installation.

 Performing actions on a queue.

Sections 1.5, 1.8, 1.9, 2, and 3 of this specification are normative and can contain the terms MAY,
SHOULD, MUST, MUST NOT, and SHOULD NOT as defined in [RFC2119]. Sections 1.5 and 1.9 are also
normative but do not contain those terms. All other sections and examples in this specification are
informative.

1.1 Glossary

TheThis document uses the following terms are specific to this document:

active queue: A queue that contains messages or is currently opened by an application. Active
queues maycan be public queues, private queues, or outgoing queues.

administrator: A user who has complete and unrestricted access to the computer or domain.

dead-letter queue: A queue that contains messages that were sent from a host with a request
for negative source journaling and that could not be delivered. Message Queuing provides a
transactional dead-letter queue and a non-transactional dead-letter queue.

directory: The database that stores information about objects such as users, groups, computers,

printers, and the directory service that makes this information available to users and
applications.

distribution list: A collection of users, computers, contacts, or other groups that is used only for
email distribution, and addressed as a single recipient.

dynamic endpoint: A network-specific server address that is requested and assigned at run time.
For more information, see [C706].

endpoint: A client that is on a network and is requesting access to a network access server (NAS).

foreign queue: A messaging queue that resides on a computer that does not run an MSMQ

messaging application.

format name: A name that is used to reference a queue when making calls to API functions.

globally unique identifier (GUID): A term used interchangeably with universally unique

identifier (UUID) in Microsoft protocol technical documents (TDs). Interchanging the usage of
these terms does not imply or require a specific algorithm or mechanism to generate the value.
Specifically, the use of this term does not imply or require that the algorithms described in
[RFC4122] or [C706] must be used for generating the GUID. See also universally unique

identifier (UUID).

handle: Any token that can be used to identify and access an object such as a device, file, or a
window.

7 / 38

[MS-MQMR-Diff] - v20160714
Message Queuing (MSMQ): Queue Manager Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Interface Definition Language (IDL): The International Standards Organization (ISO) standard
language for specifying the interface for remote procedure calls. For more information, see

[C706] section 4.

message: A data structure representing a unit of data transfer between distributed applications. A

message has message properties, which may include message header properties, a message
body property, and message trailer properties.

Microsoft Message Queuing (MSMQ): A communications service that provides asynchronous
and reliable message passing between distributed applications. In Message Queuing,
applications send messages to queues and consume messages from queues. The queues
provide persistence of the messages, enabling the sending and receiving applications to
operate asynchronously from one another.

MSMQ Directory Service server: An MSMQ queue manager that provides MSMQ Directory
Service. The server can act in either of the MSMQ Directory Service roles: Primary Site
Controller (PSC) or Backup Site Controller (BSC).

MSMQ site: A network of computers, typically physically collocated, that have high connectivity as
measured in terms of latency (low) and throughput (high). A site is represented by a site object
in the directory service. An MSMQ site maps one-to-one with an Active Directory site when

Active Directory provides directory services to MSMQ.

opnum: An operation number or numeric identifier that is used to identify a specific remote
procedure call (RPC) method or a method in an interface. For more information, see [C706]
section 12.5.2.12 or [MS-RPCE].

outgoing queue: A temporary internal queue that holds messages for a remote destination
queue. The path name of an outgoing queue is identical to the path name of the
corresponding destination queue. An outgoing queue is distinguished from its corresponding

destination queue by the fact that the outgoing queue is located on the sending computer. The
format name of an outgoing queue is identical to the format name used by the messages to
reference the destination queue. Messages that reference the destination queue using a
different format name are placed in a different outgoing queue.

path name: The name of the receiving computer where the messages for a particular queue are
stored, and an optional PRIVATE$ key word indicating whether the queue is private, followed by
the name of the queue. Path names can also refer to subqueues; for more information, see

[MS-MQMQ] section 2.1.

private queue: An application-defined message queue that is not registered in the MSMQ
Directory Service. A private queue is deployed on a particular queue manager.

queue: An object that holds messages passed between applications or messages passed
between Message Queuing and applications. In general, applications can send messages to
queues and read messages from queues.

queue journal: A queue that contains copies of the messages sent from a host when positive
source journaling is requested.

queue manager (QM): A message queuing service that manages queues deployed on a
computer. A queue manager maycan also provide asynchronous transfer of messages to
queues deployed on other queue managers.

remote procedure call (RPC): A context-dependent term commonly overloaded with three
meanings. Note that much of the industry literature concerning RPC technologies uses this term

interchangeably for any of the three meanings. Following are the three definitions: (*) The
runtime environment providing remote procedure call facilities. The preferred usage for this
meaning is "RPC runtime". (*) The pattern of request and response message exchange between
two parties (typically, a client and a server). The preferred usage for this meaning is "RPC

8 / 38

[MS-MQMR-Diff] - v20160714
Message Queuing (MSMQ): Queue Manager Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

exchange". (*) A single message from an exchange as defined in the previous definition. The
preferred usage for this term is "RPC message". For more information about RPC, see [C706].

remote queue: For a queue manager, a queue that is hosted by a remote queue manager.
For an application, a queue hosted by a queue manager other than the one with which the

application communicates.

RPC transport: The underlying network services used by the remote procedure call (RPC) runtime
for communications between network nodes. For more information, see [C706] section 2.

subqueue: A message queue that is logically associated, through a naming hierarchy, with a
parent message queue. Subqueues maycan be used to partition messages within the queue.
For example, a queue journal maycan be a subqueue that holds a copy of each message
consumed from its parent queue.

transactional message: A message sent as part of a transaction. Transaction messages must
be sent to transactional queues.

transactional queue: A queue that contains only transactional messages.

universally unique identifier (UUID): A 128-bit value. UUIDs can be used for multiple
purposes, from tagging objects with an extremely short lifetime, to reliably identifying very
persistent objects in cross-process communication such as client and server interfaces, manager

entry-point vectors, and RPC objects. UUIDs are highly likely to be unique. UUIDs are also
known as globally unique identifiers (GUIDs) and these terms are used interchangeably in
the Microsoft protocol technical documents (TDs). Interchanging the usage of these terms does
not imply or require a specific algorithm or mechanism to generate the UUID. Specifically, the
use of this term does not imply or require that the algorithms described in [RFC4122] or [C706]
must be used for generating the UUID.

MAY, SHOULD, MUST, SHOULD NOT, MUST NOT: These terms (in all caps) are used as defined

in [RFC2119]. All statements of optional behavior use either MAY, SHOULD, or SHOULD NOT.

1.2 References

Links to a document in the Microsoft Open Specifications library point to the correct section in the

most recently published version of the referenced document. However, because individual documents
in the library are not updated at the same time, the section numbers in the documents may not
match. You can confirm the correct section numbering by checking the Errata.

1.2.1 Normative References

We conduct frequent surveys of the normative references to assure their continued availability. If you
have any issue with finding a normative reference, please contact dochelp@microsoft.com. We will
assist you in finding the relevant information.

[C706] The Open Group, "DCE 1.1: Remote Procedure Call", C706, August 1997,
https://www2.opengroup.org/ogsys/catalog/c706

[MS-ADTS] Microsoft Corporation, "Active Directory Technical Specification".

[MS-DTYP] Microsoft Corporation, "Windows Data Types".

[MS-ERREF] Microsoft Corporation, "Windows Error Codes".

[MS-MQDMPR] Microsoft Corporation, "Message Queuing (MSMQ): Common Data Model and
Processing Rules".

[MS-MQDS] Microsoft Corporation, "Message Queuing (MSMQ): Directory Service Protocol".

9 / 38

[MS-MQMR-Diff] - v20160714
Message Queuing (MSMQ): Queue Manager Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

[MS-MQMQ] Microsoft Corporation, "Message Queuing (MSMQ): Data Structures".

[MS-MQQB] Microsoft Corporation, "Message Queuing (MSMQ): Message Queuing Binary Protocol".

[MS-RPCE] Microsoft Corporation, "Remote Procedure Call Protocol Extensions".

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC

2119, March 1997, http://www.rfc-editor.org/rfc/rfc2119.txt

1.2.2 Informative References

[MS-MQDSSM] Microsoft Corporation, "Message Queuing (MSMQ): Directory Service Schema

Mapping".

[MS-MQOD] Microsoft Corporation, "Message Queuing Protocols Overview".

[MSDN-MQEIC] Microsoft Corporation, "Message Queuing Error and Information Codes",

http://msdn.microsoft.com/en-us/library/ms700106.aspx

1.3 Overview

The Message Queuing (MSMQ): Queue Manager Management Protocol allows an MSMQ client

application to perform management operations on an MSMQ server.

This protocol can be used to get the following information:

 Queue properties, such as:

 The path name of a queue.

 The format name of a queue.

 Whether a queue is (or is not) located on a computer, or whether it is a transactional queue
or a foreign queue.

 The retransmit interval for messages in an outgoing queue for which no order
acknowledgment has been received.

 The number of subqueues in a specified queue.<1>

 The names of the subqueues in a specified queue.<2>

 The version and build information for the computer operating system and the MSMQ
installation.

 Current queue state, such as:

 The number of messages in a queue or in a queue journal.

 The number of message bytes in a queue or in a queue journal.

 The connection state of an outgoing queue.

 The list of the active queues on a computer.

 The name of the current MSMQ Directory Service server for a computer.

 Whether a queue manager on a computer is disconnected from the network.

 The list of the path names of all the private queues registered on a computer.

10 / 38

[MS-MQMR-Diff] - v20160714
Message Queuing (MSMQ): Queue Manager Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 Auditing information, such as:

 The connection state history of a queue.<3>

 The number of messages sent from a computer to a queue for which no order
acknowledgment has been received.

 The number of messages sent from a computer to a queue for which an order
acknowledgment has been received, but a receive acknowledgment message has not been
received.

 The date and time when the last order acknowledgment for a message sent from a computer
to a queue was received.

 The time when MSMQ will attempt to retransmit a message from a computer to a queue.

 The number of times that the last message in the corresponding outgoing queue on a

computer was sent.

 The number of times that the last order acknowledgment for a message sent from a computer
to a queue has been received.

 The number of message bytes stored in all the queues on a computer.<4>

 Sequence information, such as:

 The address or a list of possible addresses for routing messages to the destination queue in

the next hop.

 The next message to be sent from a computer to a queue.

 The last message that was sent from a computer to a queue for which no order
acknowledgment has been received.

 The first message sent from a computer to a queue for which no order acknowledgment has

been received.

 An array of arrays of information on the transactional messages sent from all source computers

to a queue on a target computer. Each element of the overall array is an array (vector) containing
one of the following pieces of information for all of the source computers.

 The format names used to open a queue when the last messages were sent.

 The globally unique identifiers (GUIDs) of the sending queue managers.

 The last sequence identifiers.

 The sequence numbers of the last messages sent to a queue by one or more sending queue
managers.

 The times when each sending queue manager last accessed a queue.

 The number of times that the last messages were rejected.

The protocol can also be used to perform actions on a computer, such as:

 Connecting the queue manager on a computer to a network and an MSMQ Directory Service
server.

 Disconnecting the queue manager on a computer from a network and an MSMQ Directory Service

server.

11 / 38

[MS-MQMR-Diff] - v20160714
Message Queuing (MSMQ): Queue Manager Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 Deleting empty message files.

The protocol can also be used to perform actions on a queue, such as:

 Pausing the sending of messages from a computer. The queue manager will not send messages to
the applicable destination queue until a resume action is initiated.

 Restarting the sending of messages after a pause action is initiated.

 Resending the pending transaction sequence (as specified in [MS-MQQB]).

This is an RPC-based protocol. The server does not maintain client state information. The protocol
operation is stateless.

This is a simple request-response protocol. For each received method request, the server executes the
requested method and returns a completion status to the client. This is a stateless protocol; each
method call is independent of any previous method calls.

1.4 Relationship to Other Protocols

The Message Queuing (MSMQ): Queue Manager Management Protocol is dependent on RPC over
TCP/IP for its transport. This protocol uses RPC, as specified in section 2.1.

 The Message Queuing (MSMQ): Queue Manager Management Protocol uses shared state and
processing rules defined in [MS-MQDMPR].

Figure 1: Protocol relationships

No other protocol currently depends on the Message Queuing (MSMQ): Queue Manager Management
Protocol.

1.5 Prerequisites/Preconditions

The Message Queuing (MSMQ): Queue Manager Management Protocol is an RPC interface and, as a
result, has the prerequisites specified in [MS-RPCE] as being common to RPC interfaces.

This protocol does not include any means for a client to discover the name of a remote computer that
supports MSMQ. This protocol also does not include a means to discover the port number that a
specific MSMQ server uses. It is assumed that the client has obtained the relevant name and port
number through another means., implying:

 MSMQ clients MUST know the names of one or more remote computers that support MSMQ.

12 / 38

[MS-MQMR-Diff] - v20160714
Message Queuing (MSMQ): Queue Manager Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 MSMQ clients and servers MUST know the port number that is being used by the MSMQ site.

1.6 Applicability Statement

The Message Queuing (MSMQ): Queue Manager Management Protocol is used for administration of
queues. The operations exposed allow IT administrators to locally or remotely perform management
operations as well as to retrieve properties that describe how an MSMQ system is operating. This
allows operations staff to monitor the health and activity load flowing through an MSMQ system.

1.7 Versioning and Capability Negotiation

There are no versioning issues for this protocol.

1.8 Vendor-Extensible Fields

The Message Queuing (MSMQ): Queue Manager Management Protocol uses HRESULTs, as specified in

[MS-ERREF] section 2.1. Vendors can define their own HRESULT values provided that the C bit
(0x20000000) is set for each vendor-defined value, indicating that the value is a customer code.

1.9 Standards Assignments

This protocol uses the standard interfaces that are listed in the following table.

Parameter Value Reference

RPC interface UUID {41208ee0-e970-11d1-9b9e-00e02c064c39} [C706]

Interface version 1.0 [C706]

13 / 38

[MS-MQMR-Diff] - v20160714
Message Queuing (MSMQ): Queue Manager Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

2 Messages

The following sections specify how Message Queuing (MSMQ): Queue Manager Management Protocol
messages are transported and the common data types for this protocol.

2.1 Transport

The Message Queuing (MSMQ): Queue Manager Management Protocol uses the following remote
procedure call (RPC) protocol sequence: RPC over TCP/IP (ncacn_ip_tcp), as specified in [MS-RPCE].

This protocol uses RPC dynamic endpoints, as specified in Part 4 of [C706].

This protocol MUST use the universally unique identifier (UUID), as specified in section 1.9.

All structures are defined in the IDL syntax and are marshaled as specified in [C706] sections 4, 5,

and 6. The IDL is specified in section 6.

2.2 Common Data Types

The Message Queuing (MSMQ): Queue Manager Management Protocol MUST indicate to the RPC
runtime that it is to support the Network Data Representation (NDR) transfer syntax only, as specified

in Part 4 of [C706].

In addition to RPC base types (as specified in [C706], [MS-DTYP], and [MS-RPCE]) the following data
types are defined in the Microsoft Interface Definition Language (MIDL) specification for this RPC
interface.

The following table summarizes the types that are defined either in this specification or in [MS-
MQMQ].

Structure Description

DL_ID A distribution list queue identifier.

MGMT_OBJECT A structure containing information on a queue, a machine, or a session.

MULTICAST_ID A multicast queue identifier.

OBJECTID A structure that uniquely distinguishes a repository object from all other repository objects
represented in a repository database.

QUEUE_FORMAT Identifies the type of queue being managed and provides the appropriate connection address
information.

Enumeration Description

MgmtObjectType Identifies the type of management object being used.

QUEUE_FORMAT_TYPE Identifies the type of message queue being used.

14 / 38

[MS-MQMR-Diff] - v20160714
Message Queuing (MSMQ): Queue Manager Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

2.2.1 Structures

2.2.1.1 DL_ID

This specification uses the DL_ID ([MS-MQMQ] section 2.2.9) type.

2.2.1.2 MGMT_OBJECT

The MGMT_OBJECT structure defines information on a queue, a computer, or a session. The structure
includes an embedded discriminated union.

 typedef struct _MGMT_OBJECT {
 MgmtObjectType type;
 [switch_is(type)] union {
 [case(MGMT_QUEUE)]
 QUEUE_FORMAT* pQueueFormat;
 [case(MGMT_MACHINE)]
 DWORD Reserved1;
 [case(MGMT_SESSION)]
 DWORD Reserved2;
 };
 } MGMT_OBJECT;

type: An integer discriminator for the embedded discriminated union. The value of this field MUST be
1, 2, or 3, as specified in section 2.2.2.1.

pQueueFormat: A pointer to a QUEUE_FORMAT ([MS-MQMQ] section 2.2.7) structure that
describes the type of the queue.

Reserved1: A 32-bit unsigned integer.<5>

Reserved2: A 32-bit unsigned integer.<6>

2.2.1.3 MULTICAST_ID

This specification uses the MULTICAST_ID ([MS-MQMQ] section 2.2.10) type.<7>

2.2.1.4 OBJECTID

The OBJECTID ([MS-MQMQ] section 2.2.8) structure uniquely distinguishes a repository object from
all other repository objects represented in a repository database.

2.2.1.5 QUEUE_FORMAT

The QUEUE_FORMAT structure (as specified in [MS-MQMQ] section 2.2.7) describes the type of queue
being managed and provides the appropriate connection address information.

2.2.2 Enumerators

2.2.2.1 MgmtObjectType

The MgmtObjectType enumeration identifies the type of management object (as specified in section

2.2.1.2) being used.

 typedef enum __MgmtObjectType {
 MGMT_MACHINE = 1,

15 / 38

[MS-MQMR-Diff] - v20160714
Message Queuing (MSMQ): Queue Manager Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 MGMT_QUEUE = 2,
 MGMT_SESSION = 3,
 } MgmtObjectType;

MGMT_MACHINE: A machine management object.

MGMT_QUEUE: A queue management object.

MGMT_SESSION: A session management object.

2.2.2.2 QUEUE_FORMAT_TYPE

The QUEUE_FORMAT_TYPE ([MS-MQMQ] section 2.2.6) enumeration identifies the type of name
format being used. The QUEUE_FORMAT ([MS-MQMQ] section 2.2.7) structure uses the values for

the m_qft discriminated union member.

2.2.3 Property Identifiers

The R_QMMgmtGetInfo method uses property identifiers and corresponding property values. Property

identifiers and properties are specified in [MS-MQMQ].

2.2.3.1 Management Machine Property Identifiers

This protocol specifies the following properties for monitoring the queue manager on a computer.

Value Meaning

PROPID_MGMT_MSMQ_ACTIVEQUEUES

(0x00000001)

Retrieves a list of the active queues on a computer.

PROPID_MGMT_MSMQ_PRIVATEQ

(0x00000002)

Retrieves a list of the path names of all the private queues
registered on the computer.

PROPID_MGMT_MSMQ_DSSERVER

(0x00000003)

Retrieves the name of the current MSMQ Directory Service
server for the computer.

PROPID_MGMT_MSMQ_CONNECTED

(0x00000004)

Indicates whether the queue manager on a computer has been
disconnected from the network.

PROPID_MGMT_MSMQ_TYPE

(0x00000005)

Retrieves the version and build information for the computer
operating system and MSMQ installation.

PROPID_MGMT_MSMQ_BYTES_IN_ALL_QUEUES

(0x00000006)

Retrieves the number of message bytes stored in all the
queues on the computer.

2.2.3.2 Management Queue Property Identifiers

This protocol specifies the following properties for monitoring the active queues on a computer.

Value Meaning

PROPID_MGMT_QUEUE_PATHNAME

(0x00000001)

Retrieves the path name of a queue.

16 / 38

[MS-MQMR-Diff] - v20160714
Message Queuing (MSMQ): Queue Manager Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Value Meaning

PROPID_MGMT_QUEUE_FORMATNAME

(0x00000002)

Retrieves the format name of a queue.

PROPID_MGMT_QUEUE_TYPE

(0x00000003)

Retrieves a string that indicates whether a queue is a
public, private, system, connector, or multicast outgoing
queue.

PROPID_MGMT_QUEUE_LOCATION

(0x00000004)

Retrieves a string that indicates whether a queue is
located on the computer.

PROPID_MGMT_QUEUE_XACT

(0x00000005)

Retrieves a string that indicates whether a queue is
transactional.

PROPID_MGMT_QUEUE_FOREIGN

(0x00000006)

Retrieves a string that indicates whether a queue is a
foreign queue.

PROPID_MGMT_QUEUE_MESSAGE_COUNT

(0x00000007)

Retrieves the number of messages in a queue.

PROPID_MGMT_QUEUE_BYTES_IN_QUEUE

(0x00000008)

Retrieves the number of message bytes in a queue.

PROPID_MGMT_QUEUE_JOURNAL_MESSAGE_COUNT

(0x00000009)

Retrieves the number of messages in a queue journal.

PROPID_MGMT_QUEUE_BYTES_IN_JOURNAL

(0x0000000A)

Retrieves the number of message bytes in a queue
journal.

PROPID_MGMT_QUEUE_STATE

(0x0000000B)

Retrieves the connection state of an outgoing queue.

PROPID_MGMT_QUEUE_NEXTHOPS

(0x0000000C)

Retrieves the address or a list of possible addresses for
routing messages to a destination queue in the next hop.

PROPID_MGMT_QUEUE_EOD_LAST_ACK

(0x0000000D)

Retrieves the sequence information on the last message
sent from a computer to a queue for which an order
acknowledgment was received.

PROPID_MGMT_QUEUE_EOD_LAST_ACK_TIME

(0x0000000E)

Retrieves the date and time when the last order
acknowledgment was received for a message sent from a
computer to a queue.

PROPID_MGMT_QUEUE_EOD_LAST_ACK_COUNT

(0x0000000F)

Retrieves the number of times that the last order
acknowledgment was received for a message sent from a
computer to a queue.

PROPID_MGMT_QUEUE_EOD_FIRST_NON_ACK

(0x00000010)

Retrieves the sequence information on the first message
sent from a computer to a queue for which no order
acknowledgment has been received.

PROPID_MGMT_QUEUE_EOD_LAST_NON_ACK

(0x00000011)

Retrieves the sequence information on the last message
sent from a computer to a queue for which no order
acknowledgment has been received.

PROPID_MGMT_QUEUE_EOD_NEXT_SEQ

(0x00000012)

Retrieves the sequence information on the next message
to be sent from a computer to a queue.

PROPID_MGMT_QUEUE_EOD_NO_READ_COUNT

(0x00000013)

Retrieves the number of messages sent from a computer
to a queue for which an order acknowledgment has been

17 / 38

[MS-MQMR-Diff] - v20160714
Message Queuing (MSMQ): Queue Manager Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Value Meaning

received.

PROPID_MGMT_QUEUE_EOD_NO_ACK_COUNT

(0x00000014)

Retrieves the number of messages sent from a computer
to a queue for which no order acknowledgment has been
received.

PROPID_MGMT_QUEUE_EOD_RESEND_TIME

(0x00000015)

Retrieves the time when Message Queuing (MSMQ) will
attempt to retransmit a message from a computer to a
queue.

PROPID_MGMT_QUEUE_EOD_RESEND_INTERVAL

(0x00000016)

Retrieves the resend interval for the messages in the
outgoing queue for which no order acknowledgment has
been received.

PROPID_MGMT_QUEUE_EOD_RESEND_COUNT

(0x00000017)

Retrieves the number of times that the last message was
sent in the corresponding outgoing queue on a computer.

PROPID_MGMT_QUEUE_EOD_SOURCE_INFO

(0x00000018)

Retrieves information on the transactional messages sent
from all source computers to a queue.<8>

PROPID_MGMT_QUEUE_CONNECTION_HISTORY

(0x00000019)

Retrieves queue connection state history.<9>

PROPID_MGMT_QUEUE_SUBQUEUE_COUNT

(0x0000001A)

Retrieves a count of the number of subqueues for a given
queue.<10>

PROPID_MGMT_QUEUE_SUBQUEUE_NAMES

(0x0000001B)

Retrieves a list of subqueues for a given queue.<11>

2.3 Directory Service Schema Elements

This protocol uses ADM elements specified in section 3.1.1. A subset of these elements can be
published in a directory. This protocol SHOULD<12> access the directory using the algorithm
specified in [MS-MQDSSM] and using LDAP [MS-ADTS]. The Directory Service schema elements for
ADM elements published in the directory are defined in [MS-MQDSSM] section 2.4.<13>

18 / 38

[MS-MQMR-Diff] - v20160714
Message Queuing (MSMQ): Queue Manager Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

3 Protocol Details

The Message Queuing (MSMQ): Queue Manager Management Protocol is used for performing
management operations on the MSMQ installation and a queue.

The client side of this protocol is simply a pass-through. That is, there are no timers or other states
required on the client side. Calls made by a higher-layer protocol or an application are passed directly
to the transport, and the results returned by the transport are passed directly back to the higher-layer

protocol or application.

The client MUST have administrator privileges on the server machine.

This protocol permits establishing a connection to an RPC server. For each connection, the server uses
the underlying RPC protocol to retrieve the identity of the invoking client call, as specified in [MS-
RPCE] section 3.3.3.4.3. The server should useuses this identity to perform method-specific access
checks, as specified in section 3.1.4.

The methods comprising this RPC interface all return 0x00000000 on success and a nonzero

implementation-specific error code on failure. Unless otherwise specified in the following sections, a
server-side implementation of this protocol may chooseuses any nonzero Win32 error value to signify
an error condition, as specified in section 1.8. The client side of the Message Queuing (MSMQ): Queue
Manager Management Protocol does not need to interpret the error codes returned from the server;
instead, the client side can return the error code unprocessed to the invoking application without
taking any protocol action.

Note The phrases "client side" and "server side" refer to the initiating and receiving ends of the
protocol, respectively, rather than to client or server versions of an operating system. The receiving
end of the protocol—the server side—behaves the same regardless of whether the server side is
running on a client or server.

3.1 qmmgmt Server Details

This section describes a conceptual model of possible data organization that an implementation

maintains to participate in this protocol. The described organization is provided to facilitate the
explanation of how the protocol behaves. This document does not mandate that implementations
adhere to this model provided that their external behavior is consistent with what is described in this
document.

3.1.1 Abstract Data Model

The abstract data model for this protocol comprises elements that are shared between multiple MSMQ
protocols that are co-located at a common MSMQ queue manager. The shared abstract data model is
specified in [MS-MQDMPR] section 3.1.1 and the relationship between this protocol and other

protocols that share a common MSMQ queue manager is specified in [MS-MQOD].

3.1.1.1 Shared Data Elements

This protocol manipulates the following abstract data model elements from the shared abstract data
model defined in [MS-MQDMPR] section 3.1.1:

QueueManager: Defined in [MS-MQDMPR] section 3.1.1.1.

Queue: Defined in [MS-MQDMPR] section 3.1.1.2.

OutgoingQueue: Defined in [MS-MQDMPR] section 3.1.1.3.

OutgoingTransferInfo: Defined in [MS-MQDMPR] section 3.1.1.4.

19 / 38

[MS-MQMR-Diff] - v20160714
Message Queuing (MSMQ): Queue Manager Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

IncomingTransactionalTransferInfo: Defined in [MS-MQDMPR] section 3.1.1.5.

OpenQueueDescriptor: Defined in [MS-MQDMPR] section 3.1.1.16.

3.1.2 Timers

The Message Queuing (MSMQ): Queue Manager Management Protocol layer uses no timers. RPC does,
however, use timers internally, as specified in [MS-RPCE].

3.1.3 Initialization

Software that utilizes qmmgmt MUST establish an RPC connection to the client prior to utilizing this
protocol, as specified in [MS-RPCE] and section 2.1.

3.1.4 Message Processing Events and Sequencing Rules

The Message Queuing (MSMQ): Queue Manager Management Protocol MUST indicate to the RPC

runtime that it is to perform a strict NDR data consistency check at target level 6.0, as specified in
[MS-RPCE] section 3.

This protocol MUST indicate to the RPC runtime that it is to reject a NULL unique or full pointer with
nonzero conformant value, as specified in [MS-RPCE] section 3.

This protocol MUST indicate to the RPC runtime via the strict_context_handle attribute that it is to

reject use of context handles created by a method of a different RPC interface than this one, as
specified in [MS-RPCE] section 3.

This interface includes the following methods.

Methods in RPC Opnum Order

Method Description

R_QMMgmtGetInfo Called by the client. In response, the server returns information on a queue or the MSMQ
installation on the server.

Opnum: 0

R_QMMgmtAction Called by the client. In response, the server performs a queue management function
specified by the supplied MGMT_OBJECT structure.

Opnum: 1

All methods MUST NOT throw exceptions.

3.1.4.1 R_QMMgmtGetInfo (Opnum 0)

The R_QMMgmtGetInfo method requests information on an MSMQ installation on a server or on a
specific queue.

 HRESULT R_QMMgmtGetInfo(
 [in] handle_t hBind,
 [in] const MGMT_OBJECT* pObjectFormat,
 [in, range(1,128)] DWORD cp,
 [in, size_is(cp)] ULONG aProp[],
 [in, out, size_is(cp)] PROPVARIANT apVar[]
);

hBind: An RPC binding handle, as specified in [MS-RPCE] section 2.

20 / 38

[MS-MQMR-Diff] - v20160714
Message Queuing (MSMQ): Queue Manager Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

pObjectFormat: A pointer to an MGMT_OBJECT structure that defines the queue or computer on
which to return information.

cp: The length (in elements) of the arrays aProp and apVar MUST be at least 1, and MUST be at most
128.

aProp: Points to an array of property identifiers associated with the array of property values. This
array MUST contain at least one element. Each element MUST specify a value from the property
identifiers table, as specified in section 2.2.3. Each element MUST specify the property identifier
for the corresponding property value at the same element index in apVar. This array and the array
to which apVar points MUST be of the same length.

apVar: Points to an array that specifies the property values associated with the array of property
identifiers. Each element in this array specifies the property value for the corresponding property

identifier at the same element index in the array to which aProp points. This array MUST contain
at least one element. The property value in each element MUST correspond accordingly to the
property identifier from aProp, as specified in section 2.2.3, and MUST be set to VT_NULL<14>
(as specified in [MS-MQMQ] section 2.2.12) before each call to R_QMMgmtGetInfo. This array and

the array to which aProp points MUST be of the same length.

Return Values: On success, this method MUST return MQ_OK (0x00000000).

Return
value/code Description

0x00000000

MQ_OK

0xC00E0001

MQ_ERROR

Generic error code. This error code is also the first of several error codes beginning with the
string "MQ_ERR". A list of the errors prefaced with "MQ-ERR" is specified in 2.4.

Exceptions Thrown: No exceptions are thrown beyond those thrown by the underlying RPC protocol,
as specified in [MS-RPCE].

If an error occurs, the server MUST return a failure HRESULT and MUST NOT set any [out] parameter
values.

The opnum field value for this method MUST be 0 and is received at a dynamically assigned

endpoint supplied by the RPC endpoint mapper, as specified in [MS-RPCE].

If the pObjectFormat parameter specifies an MgmtObjectType of MGMT_MACHINE, the server MUST
return only those properties that pertain to the MSMQ installation. If pObjectFormat specifies an
MgmtObjectType of MGMT_QUEUE, the server MUST return only those properties that pertain to a
queue. If pObjectFormat specifies an MgmtObjectType of MGMT_SESSION, the call MUST fail, and the
error message MAY be MQ_ERROR_INVALID_PARAMETER (0xC00E0006).<15>

If the pObjectFormat parameter specifies a computer, and one or more of the properties specified in

aProp are different than those specified in section 2.2.3.1, the call MAY fail with
MQ_ERROR_ILLEGAL_PROPID (0xC00E0039). If the pObjectFormat parameter specifies a queue, and
one or more of the properties specified in aProp are different than those specified in section 2.2.3.2,

the call MAY fail with MQ_ERROR_ILLEGAL_PROPID (0xC00E0039).<16>

MSMQ properties are specified in [MS-MQMQ] section 2.

For MSMQ error codes, see [MSDN-MQEIC]. The structure and sequence of data on the wire are

specified in [C706] Transfer Syntax NDR.

 While processing this call, the server MUST use the QueueManager, Queue, OutgoingQueue, and
OutgoingTransferInfo data elements as specified in [MS-MQDMPR] section 3.1.1 to populate apVar
with values for corresponding property from aProp.

21 / 38

[MS-MQMR-Diff] - v20160714
Message Queuing (MSMQ): Queue Manager Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 If the pObjectFormat parameter specifies an MgmtObjectType of MGMT_MACHINE, the server MUST
use attributes of the QueueManager and Queue data elements.

For each property identifier in the aProp array, populate the corresponding position in the apVar array
as follows:

Property Identifier Value
 Variant
Type

PROPID_MGMT_MSMQ_ACTIVEQUEUES A vector of all the queue names from
QueueManager.QueueCollection, where
Queue.Active EQUALS True.

VT_LPWSTR

VT_VECTOR

PROPID_MGMT_MSMQ_PRIVATEQ A vector of path names of all the private
queues from
QueueManager.QueueCollection, where the
Queue.QueueType EQUALS Private.

VT_LPWSTR

VT_VECTOR

PROPID_MGMT_MSMQ_DSSERVER The first directory server in the list,
QueueManager.DirectoryServerList. If the
queue manager is not integrated with an MSMQ
Directory Service, then apVar will be set to
VT_NULL.

VT_LPWSTR

PROPID_MGMT_MSMQ_CONNECTED If QueueManager.ConnectionActive EQUALS

True then

 "CONNECTED"

else

 "DISCONNECTED".

VT_LPWSTR

PROPID_MGMT_MSMQ_TYPE MAY be set to an empty string. VT_LPWSTR

PROPID_MGMT_MSMQ_BYTES_IN_ALL_QUEUES Sum of all Queue.TotalBytes from the
QueueManager.QueueCollection.

VT_I8

If the pObjectFormat parameter specifies an MgmtObjectType of MGMT_QUEUE, the server MUST use
attributes of the Queue, OutgoingQueue , and OutgoingTransferInfo objects as follows:

 While processing this call, the Open Queue event SHOULD be used to get an
OpenQueueDescriptor as specified in [MS-MQDMPR] sections 3.1.1.16 and 3.1.7.1.5 as following:

 Generate an Open Queue event with the following inputs:

 iFormatName := reference to a Queue specified by pQueueFormat from pObjectFormat.

 iRequiredAccess := QueueAccessType.ReceiveAccess as specified in [MS-MQDMPR] section

3.1.1.17.

 iSharedMode := QueueShareMode.DenyNone as specified in [MS-MQDMPR] section
3.1.1.17.

 If rStatus NOT-EQUALS MQ_OK then R_QMMgmtGetInfo SHOULD exit with an MQ_ERROR
HRESULT value.

 Otherwise for each property identifier in the aProp array, populate the corresponding position in

the apVar array as follows:

Property Identifier Value Variant Type

PROPID_MGMT_QUEUE_PATHNAME rOpenQueueDescriptor.QueueReference.Pathname. VT_LPWSTR

22 / 38

[MS-MQMR-Diff] - v20160714
Message Queuing (MSMQ): Queue Manager Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Property Identifier Value Variant Type

PROPID_MGMT_QUEUE_FORMATNAME rOpenQueueDescriptor.QueueReference.QualifiedPat
hname.

VT_LPWSTR

PROPID_MGMT_QUEUE_TYPE If rOpenQueueDescriptor.QueueReference is of type
OutgoingQueue AND
rOpenQueueDescriptor.QueueReference.Multicast
EQUALS True then

 "MULTICAST"

else If
rOpenQueueDescriptor.QueueReference.QueueType
EQUALS Public then

 "PUBLIC"

else If
rOpenQueueDescriptor.QueueReference.QueueType
EQUALS Private then

 "PRIVATE"

else If
rOpenQueueDescriptor.QueueReference.QueueType
EQUALS System then

 "MACHINE"

else If
rOpenQueueDescriptor.QueueReference.QueueType
EQUALS Connector then

 "CONNECTOR".

VT_LPWSTR

PROPID_MGMT_QUEUE_LOCATION If rOpenQueueDescriptor.QueueReference is of type
OutgoingQueue then

"REMOTE"

else

 "LOCAL".

VT_LPWSTR

PROPID_MGMT_QUEUE_XACT If
rOpenQueueDescriptor.QueueReference.Transaction
al EQUALS True then

 "YES"

else

 "NO"

VT_LPWSTR

PROPID_MGMT_QUEUE_FOREIGN If QueueManager.DirectoryOffline is True

If
rOpenQueueDescriptor.QueueReference.QueueType
is Private

 "NO"

else

 "Unknown"

else

If QueueManager.ForeignSystem is True

 "YES"

else

 "NO"

VT_LPWSTR

PROPID_MGMT_QUEUE_MESSAGE_CO
UNT

 to the number of MessagePosition elements in the
rOpenQueueDescriptor.QueueReference.MessagePosi
tionList that are not in the Deleted state.

VT_UI4

23 / 38

[MS-MQMR-Diff] - v20160714
Message Queuing (MSMQ): Queue Manager Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Property Identifier Value Variant Type

PROPID_MGMT_QUEUE_BYTES_IN_QU
EUE

rOpenQueueDescriptor.QueueReference.TotalBytes. VT_UI4

PROPID_MGMT_QUEUE_JOURNAL_MES
SAGE_COUNT

If rOpenQueueDescriptor.QueueReference.
JournalQueueReference EQUALS NULL

else

 The number of elements in the
rOpenQueueDescriptor.QueueReference.
JournalQueueReference.MessagePositionList.

VT_UI4

PROPID_MGMT_QUEUE_BYTES_IN_JO
URNAL

If rOpenQueueDescriptor.QueueReference.Journaling
EQUALS True then
rOpenQueueDescriptor.QueueReference.

JournalQueueReference.TotalBytes.. else0.

VT_UI4

PROPID_MGMT_QUEUE_STATE If rOpenQueueDescriptor.QueueReference is not of
type OutgoingQueue then

 "LOCAL CONNECTION"

else If rOpenQueueDescriptor.QueueReference.State
EQUALS Connected then

 "CONNECTED"

else If rOpenQueueDescriptor.QueueReference.State
EQUALS Disconnected then

 "DISCONNECTED"

else If rOpenQueueDescriptor.QueueReference.State
EQUALS Disconnecting then

"DISCONNECTING"

else If rOpenQueueDescriptor.QueueReference.State
EQUALS Inactive then

 "INACTIVE"

else If rOpenQueueDescriptor.QueueReference.State
EQUALS Locked then

 "LOCKED"

else If rOpenQueueDescriptor.QueueReference.State
EQUALS NeedValidation then

 "NEED VALIDATION"

else If rOpenQueueDescriptor.QueueReference.State
EQUALS Waiting then

"WAITING"

else If rOpenQueueDescriptor.QueueReference.State
EQUALS OnHold then

 "ONHOLD".

VT_LPWSTR

PROPID_MGMT_QUEUE_NEXTHOPS If rOpenQueueDescriptor.QueueReference is of type
OutgoingQueue

If rOpenQueueDescriptor.QueueReference.State

EQUALS Connected

 If
rOpenQueueDescriptor.QueueReference.Multicast

EQUALS True then

rOpenQueueDescriptor.QueueReference.QualifiedPat
hname

else

rOpenQueueDescriptor.QueueReference.NextHops

VT_LPWSTR

VT_VECTOR

24 / 38

[MS-MQMR-Diff] - v20160714
Message Queuing (MSMQ): Queue Manager Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Property Identifier Value Variant Type

 else If
rOpenQueueDescriptor.QueueReference.State

EQUALS Waiting then

rOpenQueueDescriptor.QueueReference.NextHops.

PROPID_MGMT_QUEUE_EOD_LAST_AC
K

If rOpenQueueDescriptor.QueueReference is of type
OutgoingQueue AND
rOpenQueueDescriptor.QueueReference.
OutgoingTransferInfoReference.EodNoAckCount > 0

then

rOpenQueueDescriptor.QueueReference.
OutgoingTransferInfoReference.EodLastAck serialized
into a byte array according to the SEQUENCE_INFO
structure specified in [MS-MQMQ] section 2.2.5.1.

VT_BLOB

PROPID_MGMT_QUEUE_EOD_LAST_AC
K_TIME

If rOpenQueueDescriptor.QueueReference is of type
OutgoingQueue then

rOpenQueueDescriptor.QueueReference.
OutgoingTransferInfoReference.EodLastAckTime.

VT_I4

PROPID_MGMT_QUEUE_EOD_LAST_AC
K_COUNT

If rOpenQueueDescriptor.QueueReference is of type
OutgoingQueue then

rOpenQueueDescriptor.QueueReference.
OutgoingTransferInfoReference.EodLastAckCount.

VT_UI4

PROPID_MGMT_QUEUE_EOD_FIRST_N
ON_ACK

If rOpenQueueDescriptor.QueueReference is of type
OutgoingQueue then

rOpenQueueDescriptor.QueueReference.
OutgoingTransferInfoReference.EodFirstNonAck.

VT_BLOB

PROPID_MGMT_QUEUE_EOD_LAST_NO
N_ACK

If rOpenQueueDescriptor.QueueReference is of type
OutgoingQueue then

rOpenQueueDescriptor.QueueReference.
OutgoingTransferInfoReference.EodLastNonAck.

VT_BLOB

PROPID_MGMT_QUEUE_EOD_NEXT_SE
Q

If rOpenQueueDescriptor.QueueReference is of type
OutgoingQueue then

rOpenQueueDescriptor.QueueReference.
OutgoingTransferInfoReference.EodNextSeq.

VT_BLOB

PROPID_MGMT_QUEUE_EOD_NO_REA
D_COUNT

If rOpenQueueDescriptor.QueueReference is of type
OutgoingQueue then

rOpenQueueDescriptor.QueueReference.OutgoingTra
nsferInfoReference.EodNoReadCount.

VT_UI4

PROPID_MGMT_QUEUE_EOD_NO_ACK
_COUNT

If rOpenQueueDescriptor.QueueReference is of type
OutgoingQueue then

rOpenQueueDescriptor.QueueReference.
OutgoingTransferInfoReference.EodNoAckCount.

VT_UI4

PROPID_MGMT_QUEUE_EOD_RESEND
_TIME

If rOpenQueueDescriptor.QueueReference is of type
OutgoingQueue then

rOpenQueueDescriptor.QueueReference.
OutgoingTransferInfoReference.EodResendTime.

VT_I4

PROPID_MGMT_QUEUE_EOD_RESEND
_INTERVAL

If rOpenQueueDescriptor.QueueReference is of type
OutgoingQueue then

rOpenQueueDescriptor.QueueReference.
OutgoingTransferInfoReference.EodResendInterval.

VT_UI4

25 / 38

[MS-MQMR-Diff] - v20160714
Message Queuing (MSMQ): Queue Manager Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Property Identifier Value Variant Type

PROPID_MGMT_QUEUE_EOD_RESEND
_COUNT

If rOpenQueueDescriptor.QueueReference is of type
OutgoingQueue then

rOpenQueueDescriptor.QueueReference.
OutgoingTransferInfoReference.EodResendCount.

VT_UI4

PROPID_MGMT_QUEUE_EOD_SOURCE
_INFO

rOpenQueueDescriptor.QueueReference.IncomingTra
nsactionalTransferInfoCollection. The
IncomingTransactionalTransferInfoCollection ADM
element shouldis to be formatted into a Variant
VT_VECTOR type as specified in [MS-MQMQ] section
2.3.12.24.

VT_VARIANT

VT_VECTOR

PROPID_MGMT_QUEUE_CONNECTION_

HISTORY

If rOpenQueueDescriptor.QueueReference is of type

OutgoingQueue then

the
rOpenQueueDescriptor.QueueReference.OutgoingQu
eue.ConnectionHistory ADM element.attribute tuple is
formatted into a VT_VECTOR, as specified in [MS-MQMQ]
section 2.3.12.25.

VT_VARIANT

VT_VECTOR

PROPID_MGMT_QUEUE_SUBQUEUE_C
OUNT

The number of elements in the
rOpenQueueDescriptor.QueueReference.SubqueueCo
llection.

VT_UI4

PROPID_MGMT_QUEUE_SUBQUEUE_N
AMES

The vector of all subqueue names in the
rOpenQueueDescriptor.QueueReference.SubqueueCo
llection.

VT_VARIANT

VT_VECTOR

3.1.4.2 R_QMMgmtAction (Opnum 1)

The R_QMMgmtAction method requests the server to perform a management function on a specific

queue or MSMQ installation.

 HRESULT R_QMMgmtAction(
 [in] handle_t hBind,
 [in] const MGMT_OBJECT* pObjectFormat,
 [in] const wchar_t * lpwszAction
);

hBind: An RPC binding handle, as specified in [MS-RPCE] section 2.

pObjectFormat: A pointer to a MGMT_OBJECT structure that specifies the queue or computer to
which the action is being applied.

lpwszAction: A pointer to a null-terminated Unicode string that specifies the action to perform on
the computer. The lpwszAction value MUST be one of the following (the value is not case-

sensitive).

Value Meaning

"CONNECT" A machine action. Connects the computer to the network and the MSMQ Directory Service
server.

"DISCONNECT" A machine action. Disconnects the computer from the network and the MSMQ Directory Service
server.

26 / 38

[MS-MQMR-Diff] - v20160714
Message Queuing (MSMQ): Queue Manager Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Value Meaning

"TIDY" A machine action. Cleans up empty message files. MSMQ does this every 6 hours. It is helpful
when a large number of messages are deleted (purged or received by an application), and the
application needs the disk space immediately.

"PAUSE" A queue action. Valid for outgoing queues only. Stops the sending of messages from the
computer. The queue manager will not send messages to the applicable destination queue until
a RESUME action is initiated.

"RESUME" A queue action. Valid for outgoing queues only. Restarts the sending of messages after a
PAUSE action is initiated.

"EOD_RESEND" A queue action. Resends the pending transaction sequence.

Return Values: On success, this method MUST return MQ_OK (0x00000000).

MQ_OK (0x00000000)

MQ_ERROR (0xC00E0001)

Exceptions Thrown: No exceptions are thrown beyond those thrown by the underlying RPC protocol, as
specified in [MS-RPCE].

If pObjectFormat specifies an MgmtObjectType of MGMT_SESSION or an lpwszAction has different
value than those in the table above, the call MUST fail and the error message MAY be
MQ_ERROR_INVALID_PARAMETER (0xC00E0006).<17>

If an error occurs, the server MUST return a failure HRESULT.

The opnum field value for this method MUST be 1 and is received at a dynamically assigned endpoint

supplied by the RPC endpoint mapper, as specified in [MS-RPCE].

For MSMQ error codes, see [MSDN-MQEIC]. The structure and sequence of data on the wire are
specified in the Transfer Syntax NDR section in [C706].

While processing this call, the server MUST use the QueueManager and Queue data elements as
specified in [MS-MQDMPR] sections 3.1.1.1 and 3.1.1.2.

 While processing this call, the server MUST generate the following events specified in [MS-MQDMPR]:

 Bring Online (section 3.1.4.13)

 Take Offline (section 3.1.4.12)

 Purge Queue (section 3.1.7.1.7)

 Pause Queue (section 3.1.7.2.3)

 Resume Queue (section 3.1.7.2.4)

 The above-described data elements and events MUST be used as follows:

 If lpwszAction EQUALS "CONNECT" then generate the Bring Online event.

 If lpwszAction EQUALS "DISCONNECT" then generate the Take Offline event.

 If lpwszAction EQUALS "TIDY" then for each Queue in QueueManager.QueueCollection,
generate the Purge Queue event with following inputs:

 IQueue : = reference to a Queue specified by element from
QueueManager.QueueCollection.

27 / 38

[MS-MQMR-Diff] - v20160714
Message Queuing (MSMQ): Queue Manager Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 If lpwszAction EQUALS "PAUSE" then generate a Pause Queue event with following inputs:

 IQueue : = reference to a Queue specified by pQueueFormat from pObjectFormat.

 If lpwszAction EQUALS "RESUME" then generate a Resume Queue event with following inputs:

 IQueue : = reference to a Queue specified by pQueueFormat from pObjectFormat.

 If lpwszAction EQUALS "EOD_RESEND" then generate a Resend Transactional Sequence event
with following inputs:

 IQueue : = reference to a Queue specified by pQueueFormat from pObjectFormat.

3.1.5 Timer Events

No protocol timer events are required on the server beyond the timers required in the underlying RPC
transport.

3.1.6 Other Local Events

There are no local events used on the server beyond the events maintained in the underlying RPC
transport.

3.2 qmmgmt Client Details

3.2.1 Abstract Data Model

The client maintains an RPC binding handle that it passes to each of the following methods:

 R_QMMgmtAction

 R_QMMgmtGetInfo

The procedure for acquiring a binding handle is specified in [C706].

Figure 2: RPC binding and method calls

3.2.2 Timers

The Message Queuing (MSMQ): Queue Manager Management Protocol layer uses no timers. RPC does,

however, use timers internally (as specified in [MS-RPCE]).

28 / 38

[MS-MQMR-Diff] - v20160714
Message Queuing (MSMQ): Queue Manager Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

3.2.3 Initialization

Software that utilizes qmmgmt MUST establish an RPC connection to the server prior to utilizing this
protocol, as specified in [MS-RPCE] and section 2.1.

3.2.4 Message Processing Events and Sequencing Rules

The client side of the Message Queuing (MSMQ): Queue Manager Management Protocol requires no
special processing or interpretation of data or error messages beyond those required by the underlying
RPC protocol.

When a method completes, the client MUST return without modification all values returned by the RPC
to the upper layer.

The client MUST ignore errors returned from the RPC server and MUST notify the higher layer of the
error received. The client SHOULD ignore all out-parameter values when any failure HRESULT is
returned.

This protocol MUST indicate to the RPC runtime that it is to perform a strict NDR data consistency

check at target level 6.0, as specified in [MS-RPCE] section 3.

This protocol MUST indicate to the RPC runtime that it is to reject a NULL unique or full pointer with
nonzero conformant value, as specified in [MS-RPCE] section 3.

3.2.5 Timer Events

There are no timer events.

3.2.6 Other Local Events

There are no local events.

29 / 38

[MS-MQMR-Diff] - v20160714
Message Queuing (MSMQ): Queue Manager Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

4 Protocol Examples

The following example pseudocode demonstrates how to pause a public queue by using the
R_QMMgmtAction method.

 ///
 INIT qf of type QUEUE_FORMAT
 INIT mgmtObj of type MGMT_OBJECT

 SET qf.m_qft to QUEUE_FORMAT_TYPE_PUBLIC
 SET qf.m_SuffixAndFlags to 0
 SET qf.m_gPublicID to GUID of the public queue

 SET mgmtObj.type to MGMT_QUEUE;
 SET mgmtObj.pQueueFormat to qf;

 CALL R_QMMgmtAction with RPC binding handle, mgmtObj
 and action const "PAUSE"
 ///

4.1 QM Management Action and Retrieving QM Info Example

In the following example, an administrator needs to send messages to a remote queue on a server.
First, the administrator queries to see what private queues are available. Next, the administrator
chooses one of the queues and begins sending messages to it. While sending the messages, the

administrator notices that messages are being put into the dead-letter queue. The administrator
decides to stop producers while investigating the issue and to pause the OutgoingQueue abstract
data model (ADM) element instance.

Figure 3: QM Management Operations

30 / 38

[MS-MQMR-Diff] - v20160714
Message Queuing (MSMQ): Queue Manager Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

1. This protocol can be used to determine the available private queues on a remote machine to which
the client can send messages. The client retrieves a list of private queue path names by invoking

the R_QMMgmtGetInfo (section 3.1.4.1) method with a pObjectFormat parameter type member
set to the MGMT_MACHINE enumerated value, as defined in MgmtObjectType (section 2.2.2.1).

Next, the client can create a format name pointing to one of the returned queues. Finally, the
client can use the events in [MS-MQDMPR] to open the queue of the constructed format name and
to enqueue messages to it. The OutgoingQueue ADM element instance that was used to send
messages can be used in the subsequent step.

2. The client can pause an OutgoingQueue ADM element instance by performing the following
steps. First, construct a QUEUE_FORMAT ([MS-MQMQ] section 2.2.7) structure of type
QUEUE_FORMAT_TYPE_DIRECT and set the m_pDirectID member to the name identifier of a

direct queue (as specified in [MS-MQMQ] section 2.1 for the ABNF). Next, construct an
MGMT_OBJECT (section 2.2.1.2) structure of type MGMT_QUEUE and set the
MGMT_OBJECT.pQueueFormat member to the address of the constructed QUEUE_FORMAT
structure instance. Finally, the client pauses the OutgoingQueue ADM element instance by
invoking the R_QMMgmtAction (section 3.1.4.2) method with an lpwszAction parameter value
equal to "PAUSE" and a pObjectFormat parameter value set to the address of the constructed

MGMT_OBJECT structure.

31 / 38

[MS-MQMR-Diff] - v20160714
Message Queuing (MSMQ): Queue Manager Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

5 Security

The following sections specify security considerations for implementers of the Message Queuing
(MSMQ): Queue Manager Management Protocol.

5.1 Security Considerations for Implementers

As specified in section 3, this protocol allows a client with administrator privileges to connect to the
server. Security is dependent on the server performing security checks for each invocation of the
server interface methods specified in this document. Any security bug in the server implementation of
this protocol could be exploitable.

5.2 Index of Security Parameters

No security parameters are specified for this protocol.

32 / 38

[MS-MQMR-Diff] - v20160714
Message Queuing (MSMQ): Queue Manager Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

6 Appendix A: Full IDL

For ease of implementation, the full IDL is provided below, where "ms-dtyp.idl" refers to the IDL found
in [MS-DTYP] Appendix A (section 5), and "ms-mqmq.idl" refers to the IDL found in [MS-MQMQ]
Appendix A (section 5). The syntax uses the IDL syntax extensions defined in [MS-RPCE] sections
2.2.4 and 3.1.1.5.1. For example, as noted in [MS-RPCE] section 2.2.4.9, a pointer_default
declaration is not required, and pointer_default(unique) is assumed.

 import "ms-dtyp.idl";
 import "ms-mqmq.idl";

 [
 uuid(41208ee0-e970-11d1-9b9e-00e02c064c39),
 version(1.0),
 pointer_default(unique)
]
 interface qmmgmt
 {
 typedef enum __MgmtObjectType {
 MGMT_MACHINE = 1,
 MGMT_QUEUE = 2,
 MGMT_SESSION = 3,
 } MgmtObjectType;

 typedef struct _MGMT_OBJECT {
 MgmtObjectType type;
 [switch_is(type)] union
 {
 [case(MGMT_QUEUE)]
 QUEUE_FORMAT* pQueueFormat;
 [case(MGMT_MACHINE)]
 DWORD Reserved1;
 [case(MGMT_SESSION)]
 DWORD Reserved2;
 };
 } MGMT_OBJECT;

 /*===
 QM Management functions
 ===*/

 HRESULT R_QMMgmtGetInfo(
 [in] handle_t hBind,
 [in] const MGMT_OBJECT* pObjectFormat,
 [in, range(1,128)] DWORD cp,
 [in, size_is (cp)] ULONG aProp[],
 [in, out, size_is(cp)] PROPVARIANT apVar[]
);

 HRESULT R_QMMgmtAction(
 [in] handle_t hBind,
 [in] const MGMT_OBJECT* pObjectFormat,
 [in] const wchar_t * lpwszAction
);
 }

33 / 38

[MS-MQMR-Diff] - v20160714
Message Queuing (MSMQ): Queue Manager Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

7 Appendix B: Product Behavior

The information in this specification is applicable to the following Microsoft products or supplemental
software. References to product versions include released service packs.

Note: Some of the information in this section is subject to change because it applies to a preliminary
product version, and thus may differ from the final version of the software when released. All behavior
notes that pertain to the preliminary product version contain specific references to it as an aid to the

reader.

 Windows NT operating system

 Windows 2000 operating system

 Windows XP operating system

 Windows Server 2003 operating system

 Windows Vista operating system

 Windows Server 2008 operating system

 Windows 7 operating system

 Windows Server 2008 R2 operating system

 Windows 8 operating system

 Windows Server 2012 operating system

 Windows 8.1 operating system

 Windows Server 2012 R2 operating system

 Windows 10 operating system

 Windows Server 2016 Technical Preview operating system

Exceptions, if any, are noted below. If a service pack or Quick Fix Engineering (QFE) number appears
with the product version, behavior changed in that service pack or QFE. The new behavior also applies
to subsequent service packs of the product unless otherwise specified. If a product edition appears
with the product version, behavior is different in that product edition.

Unless otherwise specified, any statement of optional behavior in this specification that is prescribed

using the terms SHOULD or SHOULD NOT implies product behavior in accordance with the SHOULD or
SHOULD NOT prescription. Unless otherwise specified, the term MAY implies that the product does not
follow the prescription.

<1> Section 1.3: Not implemented in Windows NT, Windows 2000, Windows XP, and Windows Server
2003.

<2> Section 1.3: Not implemented in Windows NT, Windows 2000, Windows XP, and Windows Server

2003.

<3> Section 1.3: Not implemented in Windows NT, Windows 2000, Windows XP, and Windows Server
2003.

<4> Section 1.3: Not implemented in Windows NT, Windows 2000, and Windows XP.

<5> Section 2.2.1.2: The value of this member is ignored by Windows.

34 / 38

[MS-MQMR-Diff] - v20160714
Message Queuing (MSMQ): Queue Manager Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

<6> Section 2.2.1.2: The value of this member is ignored by Windows.

<7> Section 2.2.1.3: Not available for servers implemented on Windows NT and Windows 2000.

<8> Section 2.2.3.2: Not implemented in Windows NT and Windows 2000.

<9> Section 2.2.3.2: Not implemented in Windows NT, Windows 2000, Windows XP, and Windows

Server 2003.

<10> Section 2.2.3.2: Not implemented in Windows NT, Windows 2000, Windows XP, and Windows
Server 2003.

<11> Section 2.2.3.2: Not implemented in Windows NT, Windows 2000, Windows XP, and Windows
Server 2003.

<12> Section 2.3: For Windows NT and Windows 2000, this protocol uses the Message Queuing
(MSMQ): Directory Service Protocol [MS-MQDS].

<13> Section 2.3: For the Message Queuing (MSMQ): Directory Service Protocol [MS-MQDS], the

Directory Service schema elements are described in [MS-MQDS] sections 2.2.10 and 3.1.4.21.1
through 3.1.4.21.4.

<14> Section 3.1.4.1: If a server cannot retrieve a property value that corresponds to an occurrence
of the PROPID_MGMT_MSMQ_DSSERVER property identifier (section 2.2.3.1) in aProp, then the server
sets the corresponding apVar entry to VT_NULL.

<15> Section 3.1.4.1: The Windows NT and Windows 2000 implementations return MQ_ERROR
(0xC00E0001).

<16> Section 3.1.4.1: Not implemented in Windows NT, Windows 2000, and Windows XP.

<17> Section 3.1.4.2: The Windows NT and Windows 2000 implementations return MQ_ERROR
(0xC00E0001).

35 / 38

[MS-MQMR-Diff] - v20160714
Message Queuing (MSMQ): Queue Manager Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

8 Change Tracking

No table of changes is available. The document is either new or has had no changes since its last
release.

36 / 38

[MS-MQMR-Diff] - v20160714
Message Queuing (MSMQ): Queue Manager Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

9 Index

A

Abstract data model
 client 27
 server 18
Applicability 12

C

Capability negotiation 12
Change tracking 35
Client
 abstract data model 27
 initialization 28
 local events 28
 message processing 28
 sequencing rules 28
 timer events 28

 timers 27
Common data types 13

D

Data model - abstract
 client 27
 server 18
Data types 13
 common - overview 13
Directory service schema elements 17
DL_ID 14

E

Elements - directory service schema 17
Enumerators 14
Events
 local - client 28
 local - server 27
 timer - client 28
 timer - server 27
Examples 29
 overview 29
 qm management action and retrieving qm info example 29

F

Fields - vendor-extensible 12
Full IDL 32

G

Glossary 6

I

IDL 32
Implementer - security considerations 31
Index of security parameters 31
Informative references 9
Initialization
 client 28
 server 19

37 / 38

[MS-MQMR-Diff] - v20160714
Message Queuing (MSMQ): Queue Manager Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Interfaces - server
 qmmgmt 18
Introduction 6

L

Local events
 client 28
 server 27

M

Management Machine property identifiers 15
Management Queue property identifiers 15
Message processing
 client 28
 server 19
Messages
 common data types 13
 data types 13
 transport 13
Methods
 R_QMMgmtAction (Opnum 1) 25
 R_QMMgmtGetInfo (Opnum 0) 19
MGMT_OBJECT structure 14
MgmtObjectType enumeration 14
MULTICAST_ID 14

N

Normative references 8

O

OBJECTID 14
Overview 9
Overview (synopsis) 9

P

Parameters - security index 31
Preconditions 11
Prerequisites 11
Product behavior 33
Property identifiers 15
Protocol Details
 overview 18

Q

Qm management action and retrieving qm info example example 29
qmmgmt interface 18
QUEUE_FORMAT 14
QUEUE_FORMAT_TYPE 15

R

R_QMMgmtAction (Opnum 1) method 25
R_QMMgmtAction method 25
R_QMMgmtGetInfo (Opnum 0) method 19
R_QMMgmtGetInfo method 19
References 8
 informative 9
 normative 8

38 / 38

[MS-MQMR-Diff] - v20160714
Message Queuing (MSMQ): Queue Manager Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Relationship to other protocols 11

S

Schema elements - directory service 17
Security
 implementer considerations 31
 parameter index 31
Sequencing rules
 client 28
 server 19
Server
 abstract data model 18
 initialization 19
 local events 27
 message processing 19
 overview 18

 qmmgmt interface 18
 R_QMMgmtAction (Opnum 1) method 25
 R_QMMgmtGetInfo (Opnum 0) method 19
 sequencing rules 19
 timer events 27
 timers 19
Standards assignments 12
Structures 14

T

Timer events
 client 28
 server 27
Timers
 client 27
 server 19
Tracking changes 35
Transport 13

V

Vendor-extensible fields 12
Versioning 12

