

1 / 135

[MS-MQMP-Diff] - v20170915
Message Queuing (MSMQ): Queue Manager Client Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

[MS-MQMP-Diff]:

Message Queuing (MSMQ): Queue Manager Client Protocol

Intellectual Property Rights Notice for Open Specifications Documentation

▪ Technical Documentation. Microsoft publishes Open Specifications documentation (“this
documentation”) for protocols, file formats, data portability, computer languages, and standards
support. Additionally, overview documents cover inter-protocol relationships and interactions.

▪ Copyrights. This documentation is covered by Microsoft copyrights. Regardless of any other
terms that are contained in the terms of use for the Microsoft website that hosts this
documentation, you can make copies of it in order to develop implementations of the technologies

that are described in this documentation and can distribute portions of it in your implementations
that use these technologies or in your documentation as necessary to properly document the

implementation. You can also distribute in your implementation, with or without modification, any
schemas, IDLs, or code samples that are included in the documentation. This permission also
applies to any documents that are referenced in the Open Specifications documentation.

▪ No Trade Secrets. Microsoft does not claim any trade secret rights in this documentation.
▪ Patents. Microsoft has patents that might cover your implementations of the technologies

described in the Open Specifications documentation. Neither this notice nor Microsoft's delivery of
this documentation grants any licenses under those patents or any other Microsoft patents.
However, a given Open Specifications document might be covered by the Microsoft Open
Specifications Promise or the Microsoft Community Promise. If you would prefer a written license,
or if the technologies described in this documentation are not covered by the Open Specifications
Promise or Community Promise, as applicable, patent licenses are available by contacting
iplg@microsoft.com.

▪ License Programs. To see all of the protocols in scope under a specific license program and the
associated patents, visit the Patent Map.

▪ Trademarks. The names of companies and products contained in this documentation might be

covered by trademarks or similar intellectual property rights. This notice does not grant any
licenses under those rights. For a list of Microsoft trademarks, visit
www.microsoft.com/trademarks.

▪ Fictitious Names. The example companies, organizations, products, domain names, email
addresses, logos, people, places, and events that are depicted in this documentation are fictitious.
No association with any real company, organization, product, domain name, email address, logo,
person, place, or event is intended or should be inferred.

Reservation of Rights. All other rights are reserved, and this notice does not grant any rights other
than as specifically described above, whether by implication, estoppel, or otherwise.

Tools. The Open Specifications documentation does not require the use of Microsoft programming

tools or programming environments in order for you to develop an implementation. If you have access
to Microsoft programming tools and environments, you are free to take advantage of them. Certain
Open Specifications documents are intended for use in conjunction with publicly available standards
specifications and network programming art and, as such, assume that the reader either is familiar

with the aforementioned material or has immediate access to it.

Support. For questions and support, please contact dochelp@microsoft.com.

http://go.microsoft.com/fwlink/?LinkId=214445
http://go.microsoft.com/fwlink/?LinkId=214445
http://go.microsoft.com/fwlink/?LinkId=214448
mailto:iplg@microsoft.com
https://msdn.microsoft.com/en-us/openspecifications/dn750984

2 / 135

[MS-MQMP-Diff] - v20170915
Message Queuing (MSMQ): Queue Manager Client Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

Revision Summary

Date
Revision
History

Revision
Class Comments

5/11/2007 0.1 New Version 0.1 release

8/10/2007 1.0 Major Updated and revised the technical content.

9/28/2007 2.0 Major Updated and revised the technical content.

10/23/2007 3.0 Major
Revised method error code return text and made changes to
cursor state diagrams.

11/30/2007 4.0 Major Updated and revised the technical content.

1/25/2008 4.0.1 Editorial Changed language and formatting in the technical content.

3/14/2008 5.0 Major Updated and revised the technical content.

5/16/2008 6.0 Major Updated and revised the technical content.

6/20/2008 7.0 Major Updated and revised the technical content.

7/25/2008 7.0.1 Editorial Changed language and formatting in the technical content.

8/29/2008 8.0 Major Updated and revised the technical content.

10/24/2008 9.0 Major Updated and revised the technical content.

12/5/2008 10.0 Major Updated and revised the technical content.

1/16/2009 10.1 Minor Clarified the meaning of the technical content.

2/27/2009 10.2 Minor Clarified the meaning of the technical content.

4/10/2009 11.0 Major Updated and revised the technical content.

5/22/2009 11.1 Minor Clarified the meaning of the technical content.

7/2/2009 12.0 Major Updated and revised the technical content.

8/14/2009 12.1 Minor Clarified the meaning of the technical content.

9/25/2009 12.2 Minor Clarified the meaning of the technical content.

11/6/2009 13.0 Major Updated and revised the technical content.

12/18/2009 14.0 Major Updated and revised the technical content.

1/29/2010 15.0 Major Updated and revised the technical content.

3/12/2010 15.1 Minor Clarified the meaning of the technical content.

4/23/2010 15.1.1 Editorial Changed language and formatting in the technical content.

6/4/2010 16.0 Major Updated and revised the technical content.

7/16/2010 16.0 None
No changes to the meaning, language, or formatting of the
technical content.

8/27/2010 17.0 Major Updated and revised the technical content.

10/8/2010 18.0 Major Updated and revised the technical content.

3 / 135

[MS-MQMP-Diff] - v20170915
Message Queuing (MSMQ): Queue Manager Client Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

Date
Revision
History

Revision
Class Comments

11/19/2010 18.0 None
No changes to the meaning, language, or formatting of the
technical content.

1/7/2011 18.0 None
No changes to the meaning, language, or formatting of the
technical content.

2/11/2011 19.0 Major Updated and revised the technical content.

3/25/2011 20.0 Major Updated and revised the technical content.

5/6/2011 21.0 Major Updated and revised the technical content.

6/17/2011 21.1 Minor Clarified the meaning of the technical content.

9/23/2011 22.0 Major Updated and revised the technical content.

12/16/2011 23.0 Major Updated and revised the technical content.

3/30/2012 23.0 None
No changes to the meaning, language, or formatting of the
technical content.

7/12/2012 23.1 Minor Clarified the meaning of the technical content.

10/25/2012 24.0 Major Updated and revised the technical content.

1/31/2013 24.0 None
No changes to the meaning, language, or formatting of the
technical content.

8/8/2013 25.0 Major Updated and revised the technical content.

11/14/2013 25.0 None
No changes to the meaning, language, or formatting of the
technical content.

2/13/2014 25.0 None
No changes to the meaning, language, or formatting of the
technical content.

5/15/2014 25.0 None
No changes to the meaning, language, or formatting of the
technical content.

6/30/2015 26.0 Major Significantly changed the technical content.

10/16/2015 26.0 None
No changes to the meaning, language, or formatting of the
technical content.

7/14/2016 26.0 None
No changes to the meaning, language, or formatting of the
technical content.

6/1/2017 26.0 None
No changes to the meaning, language, or formatting of the
technical content.

9/15/2017 27.0 Major Significantly changed the technical content.

4 / 135

[MS-MQMP-Diff] - v20170915
Message Queuing (MSMQ): Queue Manager Client Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

Table of Contents

1 Introduction .. 7
1.1 Glossary ... 7
1.2 References .. 11

1.2.1 Normative References ... 11
1.2.2 Informative References ... 12

1.3 Overview .. 12
1.4 Relationship to Other Protocols .. 12
1.5 Prerequisites/Preconditions ... 13
1.6 Applicability Statement ... 13
1.7 Versioning and Capability Negotiation ... 13
1.8 Vendor-Extensible Fields ... 14
1.9 Standards Assignments ... 14

2 Messages ... 15
2.1 Transport .. 15
2.2 Common Data Types .. 15

2.2.1 Data Types .. 16
2.2.1.1 Handle Data Types .. 16

2.2.1.1.1 RPC_INT_XACT_HANDLE .. 16
2.2.1.1.2 RPC_QUEUE_HANDLE .. 16
2.2.1.1.3 PCTX_OPENREMOTE_HANDLE_TYPE .. 16

2.2.2 Enumerations ... 16
2.2.2.1 TRANSFER_TYPE ... 17

2.2.3 Structures ... 17
2.2.3.1 XACTUOW .. 17
2.2.3.2 CACTransferBufferV1 ... 17
2.2.3.3 CACTransferBufferV2 ... 29
2.2.3.4 CACCreateRemoteCursor ... 29
2.2.3.5 OBJECT_FORMAT .. 29

2.3 Directory Service Schema Elements ... 30

3 Protocol Details ... 31
3.1 qmcomm and qmcomm2 Server Details .. 31

3.1.1 Abstract Data Model .. 31
3.1.1.1 Shared Data Elements ... 31
3.1.1.2 LocalQueueContextHandleTable .. 32
3.1.1.3 LocalQueueContextHandle .. 32
3.1.1.4 RemoteQueueProxyHandleTable .. 32
3.1.1.5 RemoteQueueProxyHandle ... 32
3.1.1.6 CursorProxy ... 33
3.1.1.7 RemoteQueueOpenContextHandleTable ... 33
3.1.1.8 RemoteQueueOpenContextHandle ... 33
3.1.1.9 TransactionHandleTable ... 34
3.1.1.10 TransactionHandle .. 34
3.1.1.11 Message to CACTransferBufferV2 Translation .. 34
3.1.1.12 Queue PROPID to Abstract Queue Property Translation 37

3.1.2 Timers .. 37
3.1.3 Initialization ... 37
3.1.4 Message Processing Events and Sequencing Rules for qmcomm 37

3.1.4.1 R_QMGetRemoteQueueName (Opnum 1) ... 40
3.1.4.2 R_QMOpenRemoteQueue (Opnum 2) ... 41
3.1.4.3 R_QMCloseRemoteQueueContext (Opnum 3) .. 44
3.1.4.4 R_QMCreateRemoteCursor (Opnum 4) ... 45
3.1.4.5 R_QMCreateObjectInternal (Opnum 6) .. 46
3.1.4.6 R_QMSetObjectSecurityInternal (Opnum 7) ... 47

5 / 135

[MS-MQMP-Diff] - v20170915
Message Queuing (MSMQ): Queue Manager Client Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

3.1.4.7 R_QMGetObjectSecurityInternal (Opnum 8) ... 48
3.1.4.8 R_QMDeleteObject (Opnum 9) .. 50
3.1.4.9 R_QMGetObjectProperties (Opnum 10) .. 51
3.1.4.10 R_QMSetObjectProperties (Opnum 11) .. 52
3.1.4.11 R_QMObjectPathToObjectFormat (Opnum 12) .. 53
3.1.4.12 R_QMGetTmWhereabouts (Opnum 14) .. 54
3.1.4.13 R_QMEnlistTransaction (Opnum 15) .. 55
3.1.4.14 R_QMEnlistInternalTransaction (Opnum 16) ... 56
3.1.4.15 R_QMCommitTransaction (Opnum 17) ... 57
3.1.4.16 R_QMAbortTransaction (Opnum 18) .. 58
3.1.4.17 rpc_QMOpenQueueInternal (Opnum 19) .. 58
3.1.4.18 rpc_ACCloseHandle (Opnum 20) ... 63
3.1.4.19 rpc_ACCloseCursor (Opnum 22) ... 64
3.1.4.20 rpc_ACSetCursorProperties (Opnum 23) .. 66
3.1.4.21 rpc_ACHandleToFormatName (Opnum 26) ... 67
3.1.4.22 rpc_ACPurgeQueue (Opnum 27) ... 69
3.1.4.23 R_QMQueryQMRegistryInternal (Opnum 28) .. 70
3.1.4.24 R_QMGetRTQMServerPort (Opnum 31) .. 71

3.1.5 Message Processing Events and Sequencing Rules for qmcomm2 72
3.1.5.1 QMSendMessageInternalEx (Opnum 0) .. 73
3.1.5.2 rpc_ACSendMessageEx (Opnum 1) .. 74
3.1.5.3 rpc_ACReceiveMessageEx (Opnum 2) .. 78
3.1.5.4 rpc_ACCreateCursorEx (Opnum 3) .. 86

3.1.6 Timer Events .. 87
3.1.7 Other Local Events .. 87

3.1.7.1 RPC_QUEUE_HANDLE Context Handle Rundown Routine 87
3.1.7.2 PCTX_OPENREMOTE_HANDLE_TYPE Context Handle Rundown Routine 88
3.1.7.3 RPC_INT_XACT_HANDLE Context Handle Rundown Routine 88

3.2 qmcomm and qmcomm2 Client Details ... 89
3.2.1 Abstract Data Model .. 89

3.2.1.1 LicenceGuid .. 89
3.2.1.2 OpenQueueContext ... 89
3.2.1.3 CursorIdentifier .. 89

3.2.2 Timers .. 89
3.2.3 Initialization ... 89
3.2.4 Message Processing Events and Sequencing Rules .. 90

3.2.4.1 Creating a Local Private Queue ... 90
3.2.4.2 Deleting a Local Private Queue ... 91
3.2.4.3 Updating Local Private Queue Security ... 91
3.2.4.4 Retrieving Local Private Queue Security ... 91
3.2.4.5 Updating Local Private Queue Properties .. 92
3.2.4.6 Retrieving Local Private Queue Properties .. 92
3.2.4.7 Opening a Queue .. 93
3.2.4.8 Creating a Cursor .. 95
3.2.4.9 Purging a Queue ... 96
3.2.4.10 Sending a Message ... 96
3.2.4.11 Peeking a Message .. 97
3.2.4.12 Receiving a Message ... 97
3.2.4.13 Retrieving a Format Name for a Queue Path Name 97
3.2.4.14 Retrieving a Format Name for a Queue Context Handle 98
3.2.4.15 Closing a Queue .. 98
3.2.4.16 Closing a Cursor ... 98

3.2.5 Timer Events .. 98
3.2.6 Other Local Events .. 98

4 Protocol Examples ... 99
4.1 Application Opening and Closing a Local Queue Example 99
4.2 Application Opening and Closing a Remote Queue Example 100

6 / 135

[MS-MQMP-Diff] - v20170915
Message Queuing (MSMQ): Queue Manager Client Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

4.3 Application Creating and Closing a Local Cursor Example 101
4.4 Application Creating and Closing a Remote Cursor Example 102
4.5 Application Internal Transaction Example ... 104

5 Security ... 106
5.1 Security Considerations for Implementers .. 106
5.2 Index of Security Parameters ... 106

6 Appendix A: Full IDL .. 107

7 Appendix B: Product Behavior ... 114

8 Change Tracking .. 129

9 Index ... 130

7 / 135

[MS-MQMP-Diff] - v20170915
Message Queuing (MSMQ): Queue Manager Client Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

1 Introduction

The Message Queuing (MSMQ): Queue Manager Client Protocol is an RPC-based protocol, which
enables communication between an application and an MSMQ supporting server or a remote MSMQ
queue manager. Operations that an MSMQ application performs using this protocol include:

▪ Managing private queues that are local queues.

▪ Opening and closing local queue handles and remote queue handles.

▪ Enlisting, committing, and aborting internal transactions.

▪ Enlisting the queue manager in external transactions.

▪ Purging queues.

▪ Creating cursors for local queues and remote queues.

▪ Sending messages.

▪ Reading messages.

Sections 1.5, 1.8, 1.9, 2, and 3 of this specification are normative. All other sections and examples in
this specification are informative.

1.1 Glossary

This document uses the following terms:

administration queue: A messaging queue that receives Message Queuing (MSMQ) system-
generated acknowledgment messages. An administration queue is available to MSMQ
applications for checking message status.

application: A participant that is responsible for beginning, propagating, and completing an atomic

transaction. An application communicates with a transaction manager in order to begin and
complete transactions. An application communicates with a transaction manager in order to
marshal transactions to and from other applications. An application also communicates in

application-specific ways with a resource manager in order to submit requests for work on
resources.

authentication level: A numeric value indicating the level of authentication or message protection
that remote procedure call (RPC) will apply to a specific message exchange. For more
information, see [C706] section 13.1.2.1 and [MS-RPCE].

client: A computer on which the remote procedure call (RPC) client is executing.

Coordinated Universal Time (UTC): A high-precision atomic time standard that approximately
tracks Universal Time (UT). It is the basis for legal, civil time all over the Earth. Time zones
around the world are expressed as positive and negative offsets from UTC. In this role, it is also
referred to as Zulu time (Z) and Greenwich Mean Time (GMT). In these specifications, all

references to UTC refer to the time at UTC-0 (or GMT).

cryptographic service provider (CSP): A software module that implements cryptographic
functions for calling applications that generates digital signatures. Multiple CSPs may be

installed. A CSP is identified by a name represented by a NULL-terminated Unicode string.

cursor: A data structure providing sequential access over a message queue. A cursor has a current
pointer that lies between the head and tail pointer of the queue. The pointer can be moved
forward or backward through an operation on the cursor (Next). A message at the current

8 / 135

[MS-MQMP-Diff] - v20170915
Message Queuing (MSMQ): Queue Manager Client Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

pointer can be accessed through a nondestructive read (Peek) operation or a destructive read
(Receive) operation.

dead-letter queue: A queue that contains messages that were sent from a host with a request for
negative source journaling and that could not be delivered. Message Queuing provides a

transactional dead-letter queue and a non-transactional dead-letter queue.

directory: The database that stores information about objects such as users, groups, computers,
printers, and the directory service that makes this information available to users and
applications.

dynamic endpoint: A network-specific server address that is requested and assigned at run time.
For more information, see [C706].

endpoint: A network-specific address of a remote procedure call (RPC) server process for remote

procedure calls. The actual name and type of the endpoint depends on the RPC protocol
sequence that is being used. For example, for RPC over TCP (RPC Protocol Sequence
ncacn_ip_tcp), an endpoint might be TCP port 1025. For RPC over Server Message Block (RPC

Protocol Sequence ncacn_np), an endpoint might be the name of a named pipe. For more
information, see [C706].

external transaction: An atomic transaction context dispensed by a transaction coordinator other

than an MSMQ queue manager, such as by a distributed transaction coordinator (DTC), and
used by an MSMQ queue manager to coordinate its state changes with state changes in other
resource managers. For more information on transactions, see [MS-DTCO].

foreign queue: A messaging queue that resides on a computer that does not run an MSMQ
messaging application.

format name: A name that is used to reference a queue when making calls to API functions.

globally unique identifier (GUID): A term used interchangeably with universally unique

identifier (UUID) in Microsoft protocol technical documents (TDs). Interchanging the usage of
these terms does not imply or require a specific algorithm or mechanism to generate the value.

Specifically, the use of this term does not imply or require that the algorithms described in
[RFC4122] or [C706] must be used for generating the GUID. See also universally unique
identifier (UUID).

Interface Definition Language (IDL): The International Standards Organization (ISO) standard
language for specifying the interface for remote procedure calls. For more information, see

[C706] section 4.

internal transaction: An atomic transaction context dispensed by an MSMQ Queue Manager
instance that can be used to atomically commit or roll back state changes within that MSMQ
Queue Manager. The dispensing MSMQ Queue Manager instance is the transaction coordinator
and is also the only resource manager participant supported by the transaction context. An
internal transaction cannot, therefore, be used to coordinate state changes with other resource

managers, including other MSMQ Queue Manager instances.

local queue: For a queue manager, a queue hosted by the queue manager itself. For an

application, a queue hosted by the queue manager with which the application communicates.

message: A data structure representing a unit of data transfer between distributed applications. A
message has message properties, which may include message header properties, a message
body property, and message trailer properties.

message queuing: A communications service that provides asynchronous and reliable message

passing between distributed client applications. In message queuing, clients send messages to
message queues and consume messages from message queues. The message queues provide

9 / 135

[MS-MQMP-Diff] - v20170915
Message Queuing (MSMQ): Queue Manager Client Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

persistence of the messages, which enables the sending and receiving client applications to
operate asynchronously from each other.

Microsoft Message Queuing (MSMQ): A communications service that provides asynchronous
and reliable message passing between distributed applications. In Message Queuing,

applications send messages to queues and consume messages from queues. The queues provide
persistence of the messages, enabling the sending and receiving applications to operate
asynchronously from one another.

MSMQ 1.0 digital signature: A digital signature based on a hash of the MSMQ 1.0 Digital
Signature Properties section in [MS-MQMQ]. This signature type is supported by all versions of
Message Queuing.

MSMQ 2.0 digital signature: A digital signature that is more robust than the MSMQ 1.0 digital

signature and is based on a hash of the MSMQ 2.0 Digital Signature Properties section in [MS-
MQMQ]. This signature type is not supported by MSMQ version 1.

MSMQ 3.0 digital signature: A digital signature that is used only for messages sent to

distribution lists or multiple-element format names and is based on a hash of the MSMQ 3.0
Digital Signature Properties section in [MS-MQMQ]. This signature type is not supported by
MSMQ version 1 nor MSMQ version 2.

MSMQ queue manager: An MSMQ service hosted on a machine that provides queued messaging
services. Queue managers manage queues deployed on the local computer and provide
asynchronous transfer of messages to queues located on other computers. A queue manager is
identified by a globally unique identifier (GUID).

MSMQ supporting server: A role played by an MSMQ queue manager. An MSMQ supporting
server supports applications to send and receive messages through the Message Queuing
(MSMQ): Queue Manager Client Protocol [MS-MQMP].

Network Data Representation (NDR): A specification that defines a mapping from Interface
Definition Language (IDL) data types onto octet streams. NDR also refers to the runtime
environment that implements the mapping facilities (for example, data provided to NDR). For

more information, see [MS-RPCE] and [C706] section 14.

opnum: An operation number or numeric identifier that is used to identify a specific remote
procedure call (RPC) method or a method in an interface. For more information, see [C706]
section 12.5.2.12 or [MS-RPCE].

order queue: A messaging queue that is used to monitor the arrival order of messages that are
sent as part of a transaction.

outgoing queue: A temporary internal queue that holds messages for a remote destination
queue. The path name of an outgoing queue is identical to the path name of the corresponding
destination queue. An outgoing queue is distinguished from its corresponding destination queue
by the fact that the outgoing queue is located on the sending computer. The format name of an

outgoing queue is identical to the format name used by the messages to reference the
destination queue. Messages that reference the destination queue using a different format name
are placed in a different outgoing queue.

path name: The name of the receiving computer where the messages for a particular queue are
stored, and an optional PRIVATE$ key word indicating whether the queue is private, followed by
the name of the queue. Path names can also refer to subqueues; for more information, see [MS-
MQMQ] section 2.1.

private queue: An application-defined message queue that is not registered in the MSMQ
Directory Service. A private queue is deployed on a particular queue manager.

10 / 135

[MS-MQMP-Diff] - v20170915
Message Queuing (MSMQ): Queue Manager Client Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

queue: An object that holds messages passed between applications or messages passed between
Message Queuing and applications. In general, applications can send messages to queues and

read messages from queues.

queue journal: A queue that contains copies of the messages sent from a host when positive

source journaling is requested.

queue manager (QM): A message queuing service that manages queues deployed on a
computer. A queue manager can also provide asynchronous transfer of messages to queues
deployed on other queue managers.

queue property: A data structure that contains a property identifier and a value, and is associated
with a message queue.

remote procedure call (RPC): A context-dependent term commonly overloaded with three

meanings. Note that much of the industry literature concerning RPC technologies uses this term
interchangeably for any of the three meanings. Following are the three definitions: (*) The
runtime environment providing remote procedure call facilities. The preferred usage for this

meaning is "RPC runtime". (*) The pattern of request and response message exchange between
two parties (typically, a client and a server). The preferred usage for this meaning is "RPC
exchange". (*) A single message from an exchange as defined in the previous definition. The

preferred usage for this term is "RPC message". For more information about RPC, see [C706].

remote queue: For a queue manager, a queue that is hosted by a remote queue manager. For an
application, a queue hosted by a queue manager other than the one with which the application
communicates.

remote read: The act of reading (receiving) messages from a remote queue.

resource manager (RM): The participant that is responsible for coordinating the state of a
resource with the outcome of atomic transactions. For a specified transaction, a resource

manager enlists with exactly one transaction manager to vote on that transaction outcome and
to obtain the final outcome. A resource manager is either durable or volatile, depending on its
resource.

RPC protocol sequence: A character string that represents a valid combination of a remote
procedure call (RPC) protocol, a network layer protocol, and a transport layer protocol, as
described in [C706] and [MS-RPCE].

server: A computer on which the remote procedure call (RPC) server is executing.

session: An authenticated communication channel between the client and server correlating a
group of messages into a conversation.

supporting server: See MSMQ supporting server.

transaction: A unit of interaction that guarantees the ACID properties— atomicity, consistency,
isolation, and durability—as specified by the MSDTC Connection Manager: OleTx Transaction
Protocol ([MS-DTCO])

transaction manager: The party that is responsible for managing and distributing the outcome of

atomic transactions. A transaction manager is either a root transaction manager or a
subordinate transaction manager for a specified transaction.

unit of work: A set of individual operations that MSMQ must successfully complete before any of
the individual MSMQ operations can be considered complete.

universally unique identifier (UUID): A 128-bit value. UUIDs can be used for multiple
purposes, from tagging objects with an extremely short lifetime, to reliably identifying very

persistent objects in cross-process communication such as client and server interfaces, manager

11 / 135

[MS-MQMP-Diff] - v20170915
Message Queuing (MSMQ): Queue Manager Client Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

entry-point vectors, and RPC objects. UUIDs are highly likely to be unique. UUIDs are also
known as globally unique identifiers (GUIDs) and these terms are used interchangeably in the

Microsoft protocol technical documents (TDs). Interchanging the usage of these terms does not
imply or require a specific algorithm or mechanism to generate the UUID. Specifically, the use of

this term does not imply or require that the algorithms described in [RFC4122] or [C706] must
be used for generating the UUID.

XML digital signature: A digital signature that is designed for use in XML operations.

MAY, SHOULD, MUST, SHOULD NOT, MUST NOT: These terms (in all caps) are used as defined
in [RFC2119]. All statements of optional behavior use either MAY, SHOULD, or SHOULD NOT.

1.2 References

Links to a document in the Microsoft Open Specifications library point to the correct section in the
most recently published version of the referenced document. However, because individual documents
in the library are not updated at the same time, the section numbers in the documents may not
match. You can confirm the correct section numbering by checking the Errata.

1.2.1 Normative References

We conduct frequent surveys of the normative references to assure their continued availability. If you
have any issue with finding a normative reference, please contact dochelp@microsoft.com. We will
assist you in finding the relevant information.

[C706] The Open Group, "DCE 1.1: Remote Procedure Call", C706, August 1997,
https://www2.opengroup.org/ogsys/catalog/c706

[FIPS180-2] National Institute of Standards and Technology, "Secure Hash Standard", FIPS PUB 180-
2, August 2002, http://csrc.nist.gov/publications/fips/fips180-2/fips180-2.pdf

[MS-ADTS] Microsoft Corporation, "Active Directory Technical Specification".

[MS-DTCO] Microsoft Corporation, "MSDTC Connection Manager: OleTx Transaction Protocol".

[MS-DTYP] Microsoft Corporation, "Windows Data Types".

[MS-ERREF] Microsoft Corporation, "Windows Error Codes".

[MS-MQDMPR] Microsoft Corporation, "Message Queuing (MSMQ): Common Data Model and
Processing Rules".

[MS-MQDS] Microsoft Corporation, "Message Queuing (MSMQ): Directory Service Protocol".

[MS-MQMQ] Microsoft Corporation, "Message Queuing (MSMQ): Data Structures".

[MS-MQQB] Microsoft Corporation, "Message Queuing (MSMQ): Message Queuing Binary Protocol".

[MS-MQQP] Microsoft Corporation, "Message Queuing (MSMQ): Queue Manager to Queue Manager

Protocol".

[MS-MQRR] Microsoft Corporation, "Message Queuing (MSMQ): Queue Manager Remote Read
Protocol".

[MS-RPCE] Microsoft Corporation, "Remote Procedure Call Protocol Extensions".

[RC4] RSA Data Security, Inc., "The RC4 Encryption Algorithm",
http://www.rsa.com/node.aspx?id=1204

12 / 135

[MS-MQMP-Diff] - v20170915
Message Queuing (MSMQ): Queue Manager Client Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

[RFC1319] Kaliski, B., "The MD2 Message-Digest Algorithm", RFC 1319, April 1992, http://www.rfc-
editor.org/rfc/rfc1319.txt

[RFC1320] Rivest, R., "The MD4 Message-Digest Algorithm", RFC 1320, April 1992,
http://www.ietf.org/rfc/rfc1320.txt

[RFC1321] Rivest, R., "The MD5 Message-Digest Algorithm", RFC 1321, April 1992,
http://www.ietf.org/rfc/rfc1321.txt

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC
2119, March 1997, http://www.rfc-editor.org/rfc/rfc2119.txt

[RFC2268] Rivest, R., "A Description of the RC2(r) Encryption Algorithm", RFC 2268, March 1998,
http://www.rfc-editor.org/rfc/rfc2268.txt

[RFC3174] Eastlake III, D., and Jones, P., "US Secure Hash Algorithm 1 (SHA1)", RFC 3174,
September 2001, http://www.ietf.org/rfc/rfc3174.txt

1.2.2 Informative References

[MS-MQDSSM] Microsoft Corporation, "Message Queuing (MSMQ): Directory Service Schema
Mapping".

[MS-MQOD] Microsoft Corporation, "Message Queuing Protocols Overview".

[MSDN-MQEIC] Microsoft Corporation, "Message Queuing Error and Information Codes",
http://msdn.microsoft.com/en-us/library/ms700106.aspx

1.3 Overview

This protocol provides a means for applications to communicate with a supporting server. An MSMQ
application uses this protocol to perform basic message queuing operations on a supporting server,
such as creating queues, altering queue properties, sending messages, and receiving messages. An

MSMQ application also uses this protocol to communicate with a remote MSMQ queue manager to
open and close remote queues.

1.4 Relationship to Other Protocols

This protocol is dependent upon RPC for its transport. This protocol uses RPC, as specified in section

2.1.

This protocol is tightly coupled with the Message Queuing (MSMQ) Queue Manager to Queue Manager
Protocol [MS-MQQP], and therefore if one protocol is implemented, the other one has to be
implemented also. The processing rules for this protocol invoke methods on the qm2qm RPC interface
of the Message Queuing (MSMQ) Queue Manager to Queue Manager Protocol. Furthermore, the
arguments required for these methods are obtained from the qmcomm RPC interface of this protocol.

The following diagram illustrates the protocol relationships for this protocol.

13 / 135

[MS-MQMP-Diff] - v20170915
Message Queuing (MSMQ): Queue Manager Client Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

Figure 1: Protocol relationships

Additionally, the MSDTC Connection Manager: OleTx Transaction Protocol [MS-DTCO] is used by
applications to orchestrate external transaction scenarios for this protocol.

This protocol uses shared state and processing rules defined in [MS-MQDMPR].

1.5 Prerequisites/Preconditions

The Message Queuing (MSMQ): Queue Manager Client Protocol is an RPC interface and, as a result,
has the prerequisites specified in [MS-RPCE] as being common to RPC interfaces.

It is assumed that a Message Queuing (MSMQ): Queue Manager Client Protocol client has obtained the
name of a remote computer that supports the Message Queuing (MSMQ): Queue Manager Client
Protocol before this protocol is invoked. This specification does not address how this information is
acquired. In the context of a remote read operation, this protocol provides the name of a remote
server, as described in sections 3.1.4.1 and 3.1.4.17.

1.6 Applicability Statement

This protocol provides functionality for message queuing applications to perform operations on a
remote supporting server.

The server side of the Message Queuing (MSMQ): Queue Manager Client Protocol is applicable for
implementation by a queue manager providing supporting server services to applications. The client

side of this protocol is applicable for implementation by client libraries providing message queuing
services to applications, or by a queue manager delegating requests on behalf of a client.

Due to performance and security limitations, this protocol is deprecated and suitable only for
interoperability with existing legacy servers and clients.<1> Implementers of new message queuing
applications are encouraged to invoke the MSMQ COM API remotely via DCOM in preference to the
capabilities specified by the Message Queuing (MSMQ): Queue Manager Client Protocol.

1.7 Versioning and Capability Negotiation

This protocol supports a mechanism for explicitly negotiating the RPC endpoint to be used. For more
information, see section 3.1.4.24.

14 / 135

[MS-MQMP-Diff] - v20170915
Message Queuing (MSMQ): Queue Manager Client Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

1.8 Vendor-Extensible Fields

This protocol uses HRESULT values as defined in [MS-ERREF] section 2.1.1. Vendors can define their
own HRESULT values, provided that they set the C bit (0x20000000) for each vendor-defined value,

indicating that the value is a customer code.

1.9 Standards Assignments

This protocol uses the standard interfaces that are listed in the following table.

Parameter Value Reference

RPC Interface UUID for
qmcomm interface

fdb3a030-065f-11d1-bb9b-00a024ea5525 As specified in
[C706].

RPC Interface UUID for
qmcomm2 interface

76d12b80-3467-11d3-91ff-0090272f9ea3 As specified in
[C706].

Interface Version 1.0 As specified in
[C706].

Port Information This protocol uses RPC dynamic endpoints as specified in [C706]
Part 4, as well as a fixed endpoint as described in section 2.1.

As specified in
[C706].

15 / 135

[MS-MQMP-Diff] - v20170915
Message Queuing (MSMQ): Queue Manager Client Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

2 Messages

2.1 Transport

This protocol SHOULD use the following RPC protocol sequence: RPC over TCP/IP (ncacn_ip_tcp), as

specified in [MS-RPCE].<2> This protocol MAY use the RPC over SPX (ncacn_spx) protocol sequence if
TCP/IP is unavailable.

This protocol SHOULD use RPC dynamic endpoints, as specified in [C706] part 4. This protocol MAY
use an RPC static endpoint, as specified in [C706] part 4.

This protocol allows any user to establish a connection to the RPC server. For each connection, the
server uses the underlying RPC protocol to retrieve the identity of the invoking client, as specified in

the second bullet point of [MS-RPCE] section 3.3.3.4.3. The server SHOULD use this identity to
perform method-specific access checks, as specified in section 3.1.4.

2.2 Common Data Types

All structures are defined in the IDL syntax and are marshaled as specified in [C706] part 3. The IDL is

specified in section 6.

Note that LPWSTR or WCHAR* types specified in an IDL structure that are annotated with the
[string] attribute MUST be null-terminated, as specified in [C706].

HRESULT: This specification uses the HRESULT type, as specified in [MS-ERREF] section 2.1.1.

Note that throughout this specification, the phrase "a failure HRESULT" means any HRESULT
where the Severity (S) bit is set, as specified by [MS-ERREF]. When this specification mandates
the return of "a failure HRESULT" from a method, the specific error code is not relevant to the

protocol, as long as the Severity bit is set. In this circumstance, the server can return MQ_ERROR
(0xC00E0001), or any other HRESULT value where the Severity bit is set, such as a context-
specific message queuing error code, as specified in [MS-MQMQ] section 2.4.

GUID and UUID: This type specifies a globally unique identifier (GUID), as specified in [MS-DTYP]
section 2.3.4.

QUEUE_FORMAT and OBJECTID: These structures are defined in [MS-MQMQ] section 2.2.

In addition to RPC base types and definitions specified in [C706] and [MS-RPCE], additional data types
are defined below.

The following table summarizes the types that are defined in this specification.

Data type name Description

RPC_INT_XACT_HANDLE A context handle representing an internal transaction.

RPC_QUEUE_HANDLE A context handle representing a queue object.

PCTX_OPENREMOTE_HANDLE_TYPE A context handle representing a remote queue object.

CACTransferBufferV1 A structure used for sending and receiving messages.

CACTransferBufferV2 A structure containing the CACTransferBufferV1 (section 2.2.3.2) structure
used for sending and receiving messages with additional transaction
tracking capabilities.

CACCreateRemoteCursor A structure used for creating a cursor on a message queue.

16 / 135

[MS-MQMP-Diff] - v20170915
Message Queuing (MSMQ): Queue Manager Client Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

Data type name Description

OBJECT_FORMAT A structure containing a QUEUE_FORMAT ([MS-MQMQ] section 2.2.7)
structure and a specification as to whether the QUEUE_FORMAT is local
or remote.

XACTUOW Identifies the unit of work for a transactional operation.

2.2.1 Data Types

2.2.1.1 Handle Data Types

2.2.1.1.1 RPC_INT_XACT_HANDLE

The RPC_INT_XACT_HANDLE handle is a remote procedure call (RPC) context handle representing an

internal transaction, as specified in [C706] section 14.2.16.6. A client MUST call
R_QMEnlistInternalTransaction (section 3.1.4.14) to create an RPC_INT_XACT_HANDLE handle, and it
MUST call R_QMCommitTransaction (section 3.1.4.15) or R_QMAbortTransaction (section 3.1.4.16) to

delete an RPC_INT_XACT_HANDLE.

This type is declared as follows:

 typedef [context_handle] void* RPC_INT_XACT_HANDLE;

2.2.1.1.2 RPC_QUEUE_HANDLE

The RPC_QUEUE_HANDLE handle is an RPC context handle representing a queue object, as specified
in [C706] section 14.2.16.6. A client MUST call rpc_QMOpenQueueInternal (section 3.1.4.17) to create
an RPC_QUEUE_HANDLE handle and rpc_ACCloseHandle (section 3.1.4.18) to close an

RPC_QUEUE_HANDLE.

This type is declared as follows:

 typedef [context_handle] void* RPC_QUEUE_HANDLE;

2.2.1.1.3 PCTX_OPENREMOTE_HANDLE_TYPE

The PCTX_OPENREMOTE_HANDLE_TYPE handle is an RPC context handle representing a queue object
at a queue manager other than the supporting server, as specified in [C706] section 14.2.16.6. A
client MUST call R_QMOpenRemoteQueue (section 3.1.4.2) to create a

PCTX_OPENREMOTE_HANDLE_TYPE handle, and R_QMCloseRemoteQueueContext (section 3.1.4.3) to
close a PCTX_OPENREMOTE_HANDLE_TYPE.

This type is declared as follows:

 typedef [context_handle] void* PCTX_OPENREMOTE_HANDLE_TYPE;

2.2.2 Enumerations

The following enumerated type is defined in the following section:

▪ TRANSFER_TYPE

17 / 135

[MS-MQMP-Diff] - v20170915
Message Queuing (MSMQ): Queue Manager Client Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

2.2.2.1 TRANSFER_TYPE

The TRANSFER_TYPE enumeration specifies the valid cases for the unnamed union defined in the
CACTransferBufferV1 structure (section 2.2.3.2).

 typedef enum {
 CACTB_SEND = 0,
 CACTB_RECEIVE,
 CACTB_CREATECURSOR
 } TRANSFER_TYPE;

CACTB_SEND: A send operation (that is, a message placed into a queue for delivery) is to be
performed.

CACTB_RECEIVE: A receive operation (that is, a message is to be read from a queue) is to be

performed.

CACTB_CREATECURSOR: A cursor creation is to be performed.

2.2.3 Structures

2.2.3.1 XACTUOW

The XACTUOW structure ([MS-MQMQ] section 2.2.18.1.8) uniquely identifies the unit of work (UOW)
for a transactional operation. For an external transaction, this value MUST be acquired from the
transaction coordinator. For an internal transaction, a client MUST create a unique random value for

each transaction.<3>

2.2.3.2 CACTransferBufferV1

The CACTransferBufferV1 structure is used to send and receive messages via MSMQ.

Following is the layout of the CACTransferBufferV1 structure with IDL annotations followed by
descriptions of the structure members.

 typedef struct CACTransferBufferV1 {
 [range(0,2)] DWORD uTransferType;
 [switch_is(uTransferType)] union {
 [case(CACTB_SEND)]
 struct {
 QUEUE_FORMAT* pAdminQueueFormat;
 QUEUE_FORMAT* pResponseQueueFormat;
 } Send;
 [case(CACTB_RECEIVE)]
 struct {
 DWORD RequestTimeout;
 DWORD Action;
 DWORD Asynchronous;
 DWORD Cursor;
 [range(0,1024)] DWORD ulResponseFormatNameLen;
 [size_is(,ulResponseFormatNameLen)]
 WCHAR** ppResponseFormatName;
 DWORD* pulResponseFormatNameLenProp;
 [range(0,1024)] DWORD ulAdminFormatNameLen;
 [size_is(,ulAdminFormatNameLen)]
 WCHAR** ppAdminFormatName;
 DWORD* pulAdminFormatNameLenProp;
 [range(0,1024)] DWORD ulDestFormatNameLen;
 [size_is(,ulDestFormatNameLen)]
 WCHAR** ppDestFormatName;
 DWORD* pulDestFormatNameLenProp;

18 / 135

[MS-MQMP-Diff] - v20170915
Message Queuing (MSMQ): Queue Manager Client Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

 [range(0,1024)] DWORD ulOrderingFormatNameLen;
 [size_is(,ulOrderingFormatNameLen)]
 WCHAR** ppOrderingFormatName;
 DWORD* pulOrderingFormatNameLenProp;
 } Receive;
 [case(CACTB_CREATECURSOR)]
 struct CACCreateRemoteCursor CreateCursor;
 };
 unsigned short* pClass;
 OBJECTID** ppMessageID;
 [size_is(,20), length_is(,20)] unsigned char** ppCorrelationID;
 DWORD* pSentTime;
 DWORD* pArrivedTime;
 unsigned char* pPriority;
 unsigned char* pDelivery;
 unsigned char* pAcknowledge;
 unsigned char* pAuditing;
 DWORD* pApplicationTag;
 [size_is(,ulAllocBodyBufferInBytes), length_is(,ulBodyBufferSizeInBytes)]
 unsigned char** ppBody;
 DWORD ulBodyBufferSizeInBytes;
 DWORD ulAllocBodyBufferInBytes;
 DWORD* pBodySize;
 [size_is(,ulTitleBufferSizeInWCHARs), length_is(,ulTitleBufferSizeInWCHARs)]
 WCHAR** ppTitle;
 DWORD ulTitleBufferSizeInWCHARs;
 DWORD* pulTitleBufferSizeInWCHARs;
 DWORD ulAbsoluteTimeToQueue;
 DWORD* pulRelativeTimeToQueue;
 DWORD ulRelativeTimeToLive;
 DWORD* pulRelativeTimeToLive;
 unsigned char* pTrace;
 DWORD* pulSenderIDType;
 [size_is(,uSenderIDLen)] unsigned char** ppSenderID;
 DWORD* pulSenderIDLenProp;
 DWORD* pulPrivLevel;
 DWORD ulAuthLevel;
 unsigned char* pAuthenticated;
 DWORD* pulHashAlg;
 DWORD* pulEncryptAlg;
 [size_is(,ulSenderCertLen)] unsigned char** ppSenderCert;
 DWORD ulSenderCertLen;
 DWORD* pulSenderCertLenProp;
 [size_is(,ulProvNameLen)] WCHAR** ppwcsProvName;
 DWORD ulProvNameLen;
 DWORD* pulAuthProvNameLenProp;
 DWORD* pulProvType;
 long fDefaultProvider;
 [size_is(,ulSymmKeysSize)] unsigned char** ppSymmKeys;
 DWORD ulSymmKeysSize;
 DWORD* pulSymmKeysSizeProp;
 unsigned char bEncrypted;
 unsigned char bAuthenticated;
 unsigned short uSenderIDLen;
 [size_is(,ulSignatureSize)] unsigned char** ppSignature;
 DWORD ulSignatureSize;
 DWORD* pulSignatureSizeProp;
 GUID** ppSrcQMID;
 XACTUOW* pUow;
 [size_is(,ulMsgExtensionBufferInBytes), length_is(,ulMsgExtensionBufferInBytes)]
 unsigned char** ppMsgExtension;
 DWORD ulMsgExtensionBufferInBytes;
 DWORD* pMsgExtensionSize;
 GUID** ppConnectorType;
 DWORD* pulBodyType;
 DWORD* pulVersion;
 } CACTransferBufferV1;

19 / 135

[MS-MQMP-Diff] - v20170915
Message Queuing (MSMQ): Queue Manager Client Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

uTransferType: The uTransferType member specifies which of the Send, Receive, or
CreateCursor union members is present in the CACTransferBufferV1 structure. The

uTransferType member MUST be assigned a value from the TRANSFER_TYPE (section 2.2.2.1)
enumeration.

Send: The Send structure is present in the CACTransferBufferV1 structure when the value of the
uTransferType member is 0x00000000 (CACTB_SEND). The Send structure is defined inline to
the CACTransferBufferV1 structure. The Send structure members are defined as follows:

pAdminQueueFormat: The pAdminQueueFormat member is a QUEUE_FORMAT ([MS-MQMQ]
section 2.2.7) structure. If present, the pAdminQueueFormat member describes the
administration queue that is to be used for send operation acknowledgments.

pResponseQueueFormat: The pResponseQueueFormat member is a QUEUE_FORMAT

structure. If present, the pResponseQueueFormat member describes the queue that is to be
used for application-specific responses. As an application-specific value, this field SHOULD be
ignored by the server.

Receive: The Receive structure is present in the CACTransferBufferV1 structure when the value of
the uTransferType member is 0x00000001 (CACTB_RECEIVE). The Receive structure is defined
inline to the CACTransferBufferV1 structure. The Receive structure members are defined as

follows:

RequestTimeout: The RequestTimeout member specifies the amount of time (in milliseconds) to
wait for a message to be returned before returning a failure.

Action: The Action member specifies the type of receive operation that is to be performed. The
Action member MUST specify one of the values: 0x00000000 (MQ_ACTION_RECEIVE),
0x80000000 (MQ_ACTION_PEEK_CURRENT), or 0x80000001 (MQ_ACTION_PEEK_NEXT).

Name Value

MQ_ACTION_RECEIVE 0x00000000

MQ_ACTION_PEEK_CURRENT 0x80000000

MQ_ACTION_PEEK_NEXT 0x80000001

Asynchronous: The Asynchronous member is used as a Boolean variable to indicate if the receive
is to be performed asynchronously. An Asynchronous member value of 0x00000000 SHOULD be
interpreted as specifying FALSE (receive operation is not to be performed asynchronously) and all
other values SHOULD be interpreted as TRUE (receive operation is to be performed

asynchronously).<4>

Cursor: A cursor handle obtained from rpc_ACCreateCursorEx (section 3.1.5.4). A cursor can be used
to reference a specific position within the message queue, rather than the first message in the
queue, from which the message will be retrieved.

ulResponseFormatNameLen: The ulResponseFormatNameLen member specifies the size (in
count of Unicode characters) of the string allocated for the ppResponseFormatName member.

The ulResponseFormatNameLen member MUST have a value in the range of 0 to 1024,
inclusive.

ppResponseFormatName: A null-terminated Unicode string containing a format name (as specified
in [MS-MQMQ]) which indicates an application-defined queue which can be used for response
messages. This value is used only by MSMQ applications, and it MUST be ignored by MSMQ queue
managers.

20 / 135

[MS-MQMP-Diff] - v20170915
Message Queuing (MSMQ): Queue Manager Client Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

pulResponseFormatNameLenProp: The pulResponseFormatNameLenProp member specifies
the size (in count of Unicode characters) of the string contained in the ppResponseFormatName

member.

ulAdminFormatNameLen: The ulAdminFormatNameLen member specifies the size (in count of

Unicode characters) of the string allocated for the ppAdminFormatName member. The
ulAdminFormatNameLen member MUST have a value in the range of 0 to 1024, inclusive.

ppAdminFormatName: A null-terminated Unicode string containing a format name (as specified in
[MS-MQMQ]) which indicates an application-defined administration queue to which
acknowledgment messages will be directed.

pulAdminFormatNameLenProp: The pulAdminFormatNameLenProp member specifies the size
(in count of Unicode characters) of the string contained in the ppAdminFormatName member.

ulDestFormatNameLen: The ulDestFormatNameLen member specifies the size (in count of
Unicode characters) of the string allocated for the ppDestFormatName member. The
ulDestFormatNameLen member MUST have a value in the range of 0 to 1024, inclusive.

ppDestFormatName: A null-terminated Unicode string containing a format name (as specified in
[MS-MQMQ]) that indicates the name of a message's destination queue.

pulDestFormatNameLenProp: The pulDestFormatNameLenProp member specifies the size (in

count of Unicode characters) of the string contained in the ppDestFormatName member.

ulOrderingFormatNameLen: The ulOrderingFormatNameLen member specifies the size (in
count of Unicode characters) of the string allocated for the ppOrderingFormatName member.
The ulOrderingFormatNameLen member MUST have a value in the range of 0 to 1024,
inclusive.

ppOrderingFormatName: A null-terminated Unicode string containing a format name (as specified
in [MS-MQMQ]) that indicates the name of the MSMQ order queue that tracks the ordering of

transactional messages.

pulOrderingFormatNameLenProp: The pulOrderingFormatNameLenProp member specifies the

size (in count of Unicode characters) of the string contained in the ppOrderingFormatName
member.

CreateCursor: The CreateCursor member contains information for creating a cursor which is used
when receiving messages from a queue. The CreateCursor member is present in the
CACTransferBufferV1 structure when the value of the uTransferType member is 0x00000002

(CACTB_CREATECURSOR). The CreateCursor member is not used by any of the methods defined
by the qmcomm and qmcomm2 interfaces.

pClass: This field indicates the message classification, such as a positive acknowledgment, a system-
generated report message, or a normal application-generated message. It contains a 16-bit
structure as defined below:

0 1 2 3 4 5 6 7 8 9 1 0 1 2 3 4 5

Class Code Reserved H R S

Value Meaning

Class
Code

0x00 —

Specifies the type of the acknowledgment. This field uniquely classifies the message type
within the groupings defined by the fields described above. If the H bit is set, this field
contains an HTTP status code.

21 / 135

[MS-MQMP-Diff] - v20170915
Message Queuing (MSMQ): Queue Manager Client Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

Value Meaning

0xFF

Reserved

0x0000

MUST be set to all zeros. Clients and servers MUST ignore the Reserved member.

H

0 — 1

Specifies whether or not HTTP is being used. A value of 0 MUST be used to specify that
HTTP is not being used. A value of 1 MUST be used to specify that HTTP is being used. If 1,
the Class Code field contains an HTTP status code.

R

0 — 1

Specifies the stage at which the acknowledgment is to occur. A value of 0 MUST be used to
specify that the acknowledgment is for the delivery (arrival) stage. A value of 1 MUST be
used to specify that the acknowledgment is for the receive stage.

S

0 — 1

Specifies the type of acknowledgment. A value of 0 MUST be used to specify that normal
(positive acknowledgment) message processing has occurred. A value of 1 MUST be used
to specify that abnormal (negative acknowledgment) message processing has occurred.

The following table provides correspondence between the message class values defined in [MS-

MQMQ] section 2.2.18.1.6 with the abstract message class types defined in [MS-MQDMPR] section
3.1.1.12.

Message Class Value Message Class Type

MQMSG_CLASS_NORMAL

0x0000

Normal

MQMSG_CLASS_REPORT

0x0001

Report

MQMSG_CLASS_ACK_REACH_QUEUE

0x0002

AckReachQueue

MQMSG_CLASS_ACK_RECEIVE

0x4000

AckReceive

MQMSG_CLASS_NACK_BAD_DST_Q

0x8000

NackBadDestQueue

MQMSG_CLASS_NACK_DELETED

0x8001

NackPurged

MQMSG_CLASS_NACK_REACH_QUEUE_TIMEOUT

0x8002

NackReachQueueTimeout

MQMSG_CLASS_NACK_Q_EXCEED_QUOTA

0x8003

NackQueueExceedQuota

MQMSG_CLASS_NACK_ACCESS_DENIED

0x8004

NackAccessDenied

MQMSG_CLASS_NACK_HOP_COUNT_EXCEEDED

0x8005

NackHopCountExceeded

MQMSG_CLASS_NACK_BAD_SIGNATURE

0x8006

NackBadSignature

MQMSG_CLASS_NACK_BAD_ENCRYPTION

0x8007

NackBadEncryption

22 / 135

[MS-MQMP-Diff] - v20170915
Message Queuing (MSMQ): Queue Manager Client Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

Message Class Value Message Class Type

MQMSG_CLASS_NACK_NOT_TRANSACTIONAL_Q

0x8009

NackNotTransactionalQueue

MQMSG_CLASS_NACK_NOT_TRANSACTIONAL_MSG

0x800a

NackNotTransactionalMessage

MQMSG_CLASS_NACK_UNSUPPORTED_CRYPTO_PROVIDER

0x800b

NackUnsupportedCryptoProvider

MQMSG_CLASS_NACK_Q_DELETED

0xc000

NackQueueDeleted

MQMSG_CLASS_NACK_Q_PURGED

0xc001

NackQueuePurged

MQMSG_CLASS_NACK_RECEIVE_TIMEOUT

0xc002

NackReceiveTimeout

MQMSG_CLASS_NACK_RECEIVE_REJECTED

0xc004

NackReceiveRejected

ppMessageID: The ppMessageID member, if present, specifies a value that can be used to
correlate response messages to sent messages.

ppCorrelationID: If present, the ppCorrelationID member is an array of bytes containing an

OBJECTID structure (as specified in [MS-MQMQ] section 2.2.8). The ppCorrelationID member, if
present, contains a value copied from the ppMessageID member of a previous request and can
be used to correlate responses with previously sent messages. The size (in count of bytes) of
ppCorrelationID MUST NOT exceed 20.

pSentTime: The pSentTime member is formatted in UTC. The pSentTime member specifies the

time that the message was sent.

pArrivedTime: The pArrivedTime member is formatted in UTC. The pArrivedTime member
specifies the time the message was received.

pPriority: The pPriority member is a single byte. The pPriority member specifies the processing
priority for the message with larger values indicating a higher priority. The byte value MUST be in
the range of 0x00 to 0x07. If no priority is set, the default priority value of 0x03 is used. The
pPriority member is ignored for transactional messages. Messages that are not part of a
transaction will be processed in arrival sequence within priority. The pPriority member is ignored

if the message is a part of a transaction.

pDelivery: The pDelivery member is a single byte. The pDelivery member MUST specify a value of
0x00 or 0x01.

Value Meaning

0x00 A value of 0x00 specifies that the message is not recoverable. The message can remain in volatile
storage and is subject to loss in the event of a system crash. This value corresponds to
Message.DeliveryGuarantee.Express as defined in [MS-MQDMPR] section 3.1.1.12.

0x01 A value of 0x01 specifies that the message is recoverable and is to be written to non-volatile storage as
it moves through the network to its destination and can survive a system crash. Recoverable messages
do not have to be part of a transaction. This value corresponds to
Message.DeliveryGuarantee.Recoverable as defined in [MS-MQDMPR] section 3.1.1.12.

23 / 135

[MS-MQMP-Diff] - v20170915
Message Queuing (MSMQ): Queue Manager Client Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

pAcknowledge: The pAcknowledge member is a single byte. The pAcknowledge member value
specifies the types of acknowledgment messages that are to be generated for this message.

Acknowledgment messages are returned in the administration queue. The pAcknowledge
member value MUST be assigned from the following list:

Value Meaning

MQMSG_ACKNOWLEDGMENT_NONE

0x00

No acknowledgment needed. This value corresponds to
Message.AcknowledgementsRequested.None as defined in
[MS-MQDMPR] section 3.1.1.12.

MQMSG_ACKNOWLEDGMENT_POS_ARRIVAL

0x01

Positive acknowledgment is to be sent when the message
is placed in the destination queue. This value corresponds
to Message.AcknowledgementsRequested.AckPosArrival as
defined in [MS-MQDMPR] section 3.1.1.12.

MQMSG_ACKNOWLEDGMENT_POS_RECEIVE

0x02

Positive acknowledgment is to be sent when the message
is received from the destination queue. This value
corresponds to
Message.AcknowledgementsRequested.AckPosReceive as
defined in [MS-MQDMPR] section 3.1.1.12.

MQMSG_ACKNOWLEDGMENT_NEG_ARRIVAL

0x04

Negative acknowledgment is to be sent when the message
fails to arrive at the destination queue. This value

corresponds to
Message.AcknowledgementsRequested.AckNegArrival as
defined in [MS-MQDMPR] section 3.1.1.12.

MQMSG_ACKNOWLEDGMENT_NACK_REACH_QUEUE

0x04

Negative acknowledgment is to be sent when the message
fails to arrive at the destination queue. This value
corresponds to
Message.AcknowledgementsRequested.AckNegArrival as
defined in [MS-MQDMPR] section 3.1.1.12.

MQMSG_ACKNOWLEDGMENT_FULL_REACH_QUEUE

0x05

Positive acknowledgment is to be sent when the message
is placed in the destination queue and/or negative
acknowledgment is to be sent when the message fails to
arrive at the destination queue. This value corresponds to
a combination of
Message.AcknowledgementsRequested.AckPosArrival and
AckNegArrival as defined in [MS-MQDMPR] section

3.1.1.12.

MQMSG_ACKNOWLEDGMENT_NEG_RECEIVE

0x08

Negative acknowledgment is to be sent when the message
fails to be received from the destination queue. This value
corresponds to
Message.AcknowledgementsRequested.AckNegReceive as
defined in [MS-MQDMPR] section 3.1.1.12.

MQMSG_ACKNOWLEDGMENT_NACK_RECEIVE

0x0C

Negative acknowledgment is to be sent when the message
fails to arrive at the destination queue or when a receive
for the message from the destination queue fails. This
value corresponds to a combination of
Message.AcknowledgementsRequested.AckNegReceive and
AckNegArrival as defined in [MS-MQDMPR] section
3.1.1.12.

MQMSG_ACKNOWLEDGMENT_FULL_RECEIVE

0x0E

Positive acknowledgment is to be sent when the message
is received from the destination queue and a negative
acknowledgment is to be sent when the message fails to
arrive at the destination queue or a negative
acknowledgment is to be sent when a receive for the
message from the destination queue fails. This value
corresponds to a combination of

24 / 135

[MS-MQMP-Diff] - v20170915
Message Queuing (MSMQ): Queue Manager Client Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

Value Meaning

Message.AcknowledgementsRequested.AckNegReceive,
AckNegArrival, and AckPosReceive as defined in [MS-
MQDMPR] section 3.1.1.12.

pAuditing: The pAuditing member is a single byte. The pAuditing member value specifies the
conditions under which copies of the message are to be stored as the message is routed to the
destination queue. The pAuditing member value MUST be assigned from the following list:

Value Meaning

MQMSG_JOURNAL_NONE

0x00

Do not store copies. This value corresponds to a
Message.PositiveJournalingRequested value of False and a
Message.NegativeJournalingRequested value of False, as defined
in [MS-MQDMPR] section 3.1.1.12.

MQMSG_DEADLETTER

0x01

Store copy in dead-letter queue on failure. This value corresponds to
a Message.PositiveJournalingRequested value of False and a
Message.NegativeJournalingRequested value of True, as defined
in [MS-MQDMPR] section 3.1.1.12.

MQMSG_JOURNAL

0x02

Store copy in queue journal upon successful delivery to next
computer. This value corresponds to a
Message.PositiveJournalingRequested value of True and a
Message.NegativeJournalingRequested value of False, as defined
in [MS-MQDMPR] section 3.1.1.12.

MQMSG_DEADLETTER|MQMSG_JOURNAL

0x03

Store copy in queue journal upon successful delivery to next
computer. Store copy in dead-letter queue on failure. This value
corresponds to a Message.PositiveJournalingRequested value of
True and a Message.NegativeJournalingRequested value of True,
as defined in [MS-MQDMPR] section 3.1.1.12.

pApplicationTag: The pApplicationTag member value is a user-provided item that is passed

through unmodified to the message-receiving application. A common use of the pApplicationTag
member value is to indicate to the receiving application the type of data contained in the
ppMsgExtension member.

ppBody: The ppBody member is an array of bytes. When the ppBody member is present it contains
the user message payload.

ulBodyBufferSizeInBytes: The ulBodyBufferSizeInBytes member specifies the size (in count of
bytes) of the data present in the ppBody member. The value of the ulBodyBufferSizeInBytes
member MUST be less than or equal to the value in the ulAllocBodyBufferInBytes member.

ulAllocBodyBufferInBytes: The ulAllocBodyBufferInBytes member specifies the size (in count of
bytes) of the buffer that is allocated to contain the ppBody member.

pBodySize: The pBodySize member specifies the size (in count of bytes) of the data present in the
ppBody member after an encryption or decryption operation has been performed on the ppBody

member. The value of the pBodySize member MUST be less than or equal to the value in the
ulAllocBodyBufferInBytes member.

ppTitle: The ppTitle member, when present, is a Unicode string. The ppTitle member specifies a
title associated with the message.

ulTitleBufferSizeInWCHARs: The ulTitleBufferSizeInWCHARs member specifies the size (in
count of Unicode characters) of the ppTitle member. The ulTitleBufferSizeInWCHARs member
MUST NOT exceed 250.

25 / 135

[MS-MQMP-Diff] - v20170915
Message Queuing (MSMQ): Queue Manager Client Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

pulTitleBufferSizeInWCHARs: The pulTitleBufferSizeInWCHARs member specifies the actual
size (in count of Unicode characters) of the string, if present, in the ppTitle member Unicode

string.

ulAbsoluteTimeToQueue: The ulAbsoluteTimeToQueue member value provided by the client

specifies the number of seconds within which the message MUST reach the destination queue or
be discarded. Internally, ulAbsoluteTimeToQueue is converted to a UTC time using the clock of
the system on which the queue manager is executing.

pulRelativeTimeToQueue: The pulRelativeTimeToQueue member specifies the number of
seconds within which the response message MUST reach the destination queue or be discarded.

ulRelativeTimeToLive: The ulRelativeTimeToLive member value specifies the number of seconds
within which the message MUST be received from the destination queue or be discarded.

Internally, ulRelativeTimeToLive is converted to a UTC time using the clock of the system on
which the queue manager is executing.

pulRelativeTimeToLive: The pulRelativeTimeToLive member specifies the number of seconds

remaining before the response message will be discarded if it is not received from the destination
queue.

pTrace: The pTrace member MUST be a single byte and indicates whether or not tracing is active.

Value Meaning

0x00 A value of 0x00 MUST be used to specify that tracing is not active. This value corresponds to
Message.TracingRequested value of False, as defined in [MS-MQDMPR] section 3.1.1.12.

0x01 A value of 0x01 MUST be used to specify that tracing is active. This value corresponds to
Message.TracingRequested value of True, as defined in [MS-MQDMPR] section 3.1.1.12.

pulSenderIDType: The pulSenderIDType member specifies the type of the ppSenderID member
contents. The pulSenderIDType member value MUST be assigned from the following list:

Value Meaning

MQMSG_SENDERID_TYPE_NONE

0x00000000

No sender ID is present. This value corresponds to
Message.SenderIdentifierType value of None, as defined in [MS-MQDMPR]
section 3.1.1.12.

MQMSG_SENDERID_TYPE_SID

0x00000001

The sender ID is a SID. This value corresponds to
Message.SenderIdentifierType value of Sid, as defined in [MS-MQDMPR]
section 3.1.1.12.

MQMSG_SENDERID_TYPE_QM

0x00000002

The sender ID is the GUID assigned to a queue manager. This value
corresponds to Message.SenderIdentifierType value of
QueueManagerIdentifier, as defined in [MS-MQDMPR] section 3.1.1.12.

ppSenderID: The ppSenderID member MUST be an array of bytes. When the value of the
pulSenderIDType member is 0x00000000 (MQMSG_SENDERID_TYPE_NONE), the ppSenderID

member MUST NOT be present. If the value of the pulSenderIDType member is 0x00000001
(MQMSG_SENDERID_TYPE_SID), the ppSenderID member MUST contain a SID. If the value of
the pulSenderIDType member is 0x00000002 (MQMSG_SENDERID_TYPE_QM), the

ppSenderID member MUST contain a valid MSMQ Site GUID.

pulSenderIDLenProp: The pulSenderIDLenProp member specifies the size (in count of bytes) of
the data present in the ppSenderID member.

pulPrivLevel: The pulPrivLevel member specifies the privacy level that is used for processing the
message. The pulPrivLevel member value MUST be assigned from the following list:

26 / 135

[MS-MQMP-Diff] - v20170915
Message Queuing (MSMQ): Queue Manager Client Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

Value Meaning

MQMSG_PRIV_LEVEL_NONE

0x00000000

The message is not private. This value corresponds to
Message.PrivacyLevel value of None, as defined in [MS-MQDMPR]
section 3.1.1.12.

MQMSG_PRIV_LEVEL_BODY_BASE

0x00000001

The message is private and the Cryptographic Service Provider (CSP)
will use a 40-bit encryption key to encrypt and decrypt the message
body. This value corresponds to Message.PrivacyLevel value of
Base, as defined in [MS-MQDMPR] section 3.1.1.12.

MQMSG_PRIV_LEVEL_BODY_ENHANCED

0x00000002

The message is private and the CSP will use a 128-bit encryption key
to encrypt and decrypt the message body. This value corresponds to
Message.PrivacyLevel value of Enhanced, as defined in [MS-
MQDMPR] section 3.1.1.12.

ulAuthLevel: The ulAuthLevel member is used only in local interprocess communication and
therefore has no meaning when this protocol is used over a network. Servers MUST ignore this
field, and clients can specify any value.

pAuthenticated: The pAuthenticated member is a single byte. The pAuthenticated member
value is used to determine the level of authentication that has been performed on the message.

The pAuthenticated member value MUST be assigned from the following list:

Value Meaning

MQMSG_AUTHENTICATION_NOT_REQUESTED

0x00

Authentication has not been performed. This value corresponds
to Message.AuthenticationLevel value of None, as defined in
[MS-MQDMPR] section 3.1.1.12.

MQMSG_AUTHENTICATED_SIG10

0x01

Authentication has been performed using an MSMQ 1.0 digital
signature. This value corresponds to
Message.AuthenticationLevel value of Sig10, as defined in
[MS-MQDMPR] section 3.1.1.12.

MQMSG_AUTHENTICATED_SIG20

0x03

Authentication has been performed using an MSMQ 2.0 digital
signature. This value corresponds to
Message.AuthenticationLevel value of Sig20, as defined in
[MS-MQDMPR] section 3.1.1.12.

MQMSG_AUTHENTICATED_SIG30

0x05

Authentication has been performed using an MSMQ 3.0 digital
signature. This value corresponds to
Message.AuthenticationLevel value of Sig30, as defined in
[MS-MQDMPR] section 3.1.1.12.

MQMSG_AUTHENTICATED_SIGXML

0x09

Authentication has been performed using an XML digital
signature. This value corresponds to
Message.AuthenticationLevel value of XMLSig, as defined in
[MS-MQDMPR] section 3.1.1.12.

pulHashAlg: The pulHashAlg member specifies the hashing algorithm that is to be used in the
digital signing process and by the authentication process. The pulHashAlg member value MUST

be assigned from the following list:

Value Meaning

MQMSG_CALG_MD2

0x00008001

Use the MD2 algorithm as specified in [RFC1319]. This value corresponds to the
Message.HashAlgorithm value of MD2, as defined in [MS-MQDMPR] section
3.1.1.12.

MQMSG_CALG_MD4 Use the MD4 algorithm as specified in [RFC1320]. This value corresponds to the
Message.HashAlgorithm value of MD4, as defined in [MS-MQDMPR] section

27 / 135

[MS-MQMP-Diff] - v20170915
Message Queuing (MSMQ): Queue Manager Client Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

Value Meaning

0x00008002 3.1.1.12.

MQMSG_CALG_MD5

0x00008003

Use the MD5 algorithm as specified in [RFC1321]. This value corresponds to the
Message.HashAlgorithm value of MD5, as defined in [MS-MQDMPR] section
3.1.1.12.

MQMSG_CALG_SHA1

0x00008004

Use the SHA-1 algorithm as specified in [RFC3174]. This value corresponds to the
Message.HashAlgorithm value of SHA1, as defined in [MS-MQDMPR] section
3.1.1.12.

MQMSG_CALG_SHA_256

 0x0000800C

Use the SHA-256 algorithm, as specified in [FIPS180-2]. This value corresponds to
the Message.HashAlgorithm value of SHA_256, as defined in [MS-MQDMPR] section
3.1.1.12.

MQMSG_CALG_SHA_512

0x0000800E

Use the SHA-512 algorithm, as specified in [FIPS180-2]. This value corresponds to
the Message.HashAlgorithm value of SHA_512, as defined in [MS-MQDMPR] section
3.1.1.12.

pulEncryptAlg: The pulEncryptAlg member specifies that the encryption algorithm is to be used to

encrypt and decrypt the message body. The pulEncryptAlg member value MUST be assigned
from the following list:

Value Meaning

MQMSG_CALG_RC2

0x00006602

Use the RC2 encryption algorithm as specified in [RFC2268]. This value corresponds to
Message.EncryptionAlgorithm value of RC2, as defined in [MS-MQDMPR] section
3.1.1.12.

MQMSG_CALG_RC4

0x00006801

Use the RC4 encryption algorithm as specified in [RC4]. This value corresponds to
Message.EncryptionAlgorithm value of RC4, as defined in [MS-MQDMPR] section
3.1.1.12.

ppSenderCert: The ppSenderCert member is an array of bytes. If not NULL, the ppSenderCert

member MUST contain the message sender's X509 certificate. The byte length of the buffer MUST

be indicated by ulSenderCertLen.

ulSenderCertLen: The ulSenderCertLen member specifies the byte length of the certificate
contained in ppSenderCert.

pulSenderCertLenProp: The pulSenderCertLenProp member specifies the length (in count of
bytes) of the certificate contained in ppSenderCert.

ppwcsProvName: The ppwcsProvName member is a Unicode string. If present, the
ppwcsProvName member specifies the name of the Cryptographic Service Provider (CSP) that is

used to generate digital signatures for the message.

ulProvNameLen: The ulProvNameLen member specifies the size (in count of Unicode characters)
of the buffer that was allocated to contain the ppwcsProvName string.

pulAuthProvNameLenProp: The pulAuthProvNameLenProp member specifies the size (in count
of Unicode characters) of the CSP name contained in ppwcsProvName, plus the size of an
enhanced signature appended to the ppSignature buffer. Rules for computing and understanding
values for this field are defined in sections 3.1.5.3 and 3.1.5.4.

pulProvType: The pulProvType member specifies the type of CSP that is named by
ppwcsProvName.

fDefaultProvider: The fDefaultProvider member specifies if the CSP named by ppwcsProvName
is a default CSP. A value of 0x00000000 MUST be used to specify that the ppwcsProvName is

28 / 135

[MS-MQMP-Diff] - v20170915
Message Queuing (MSMQ): Queue Manager Client Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

not the default name and all other values MUST be interpreted as specifying that the
ppwcsProvName is the default name.

ppSymmKeys: The ppSymmKeys member is an array of bytes. The ppSymmKeys member, if
present, contains an encrypted symmetric key.

ulSymmKeysSize: The ulSymmKeysSize member specifies the size (in count of bytes) of the
buffer that was allocated to contain the ppSymmKeys member.

pulSymmKeysSizeProp: The pulSymmKeysSizeProp member specifies the size (in count of
bytes) of the ppSymmKeys member.

bEncrypted: The bEncrypted member is a single byte. The bEncrypted member specifies if the
message body is encrypted or is not encrypted. A bEncrypted member value of 0x00 MUST be
interpreted as specifying that the message is not encrypted (FALSE) and all other values MUST be

interpreted as specifying that the message is encrypted (TRUE).

bAuthenticated: The bAuthenticated member is a single byte. The bAuthenticated member
specifies if the message has been authenticated or has not been authenticated. A

bAuthenticated member value of 0x00 MUST be used to specify that the message has not been
authenticated (FALSE) and all other values MUST be interpreted as specifying that the message
has been authenticated (TRUE).

uSenderIDLen: The uSenderIDLen member specifies the maximum size (in count of bytes) that is
available to contain data in the ppSenderID member.

ppSignature: The ppSignature member is an array of bytes. The ppSignature member contains
the signature(s) used to authenticate the message.<5>

ulSignatureSize: The ulSignatureSize member specifies the size (in count of bytes) allocated to
hold the ppSignature member.

pulSignatureSizeProp: The pulSignatureSizeProp member specifies the size (in count of bytes)

of the authentication signature(s) in the ppSignature member.

ppSrcQMID: The ppSrcQMID member is a GUID. The member contains the GUID assigned to the
MSMQ installation that is the source of the message.

pUow: The pUow member is an XACTUOW structure ([MS-MQMQ] section 2.2.18.1.8). If not NULL,
this field identifies a transaction for a Send or Receive operation.

ppMsgExtension: The ppMsgExtension member is an array of bytes. The ppMsgExtension
member, when present, contains application-specific data. The ppMsgExtension member is

primarily used to pass information to foreign queues.

ulMsgExtensionBufferInBytes: The ulMsgExtensionBufferInBytes member specifies the size (in
count of bytes) of the buffer allocated for the ppMsgExtension array.

pMsgExtensionSize: The pMsgExtensionSize member specifies the size (in count of bytes) of the
data contained in the ppMsgExtension array.

ppConnectorType: The ppConnectorType member, if present, is a GUID. The ppConnectorType

member specifies the identifier of a foreign queue that is used to communicate with a foreign
messaging system.

pulBodyType: The pulBodyType member value MUST be one of the valid values allowed for a
VARTYPE as specified in [MS-MQMQ] section 2.2.12.

pulVersion: The pulVersion member specifies the MSMQ packet version.<6>

29 / 135

[MS-MQMP-Diff] - v20170915
Message Queuing (MSMQ): Queue Manager Client Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

2.2.3.3 CACTransferBufferV2

The CACTransferBufferV2 structure is used to send and receive messages via MSMQ.

Following is the layout of the CACTransferBufferV2 structure followed by descriptions of the structure

members.

 typedef struct CACTransferBufferV2 {
 struct CACTransferBufferV1 old;
 unsigned char* pbFirstInXact;
 unsigned char* pbLastInXact;
 OBJECTID** ppXactID;
 } CACTransferBufferV2;

old: The CACTransferBufferOld MUST be a CACTransferBufferV1, as defined in section 2.2.3.2.

pbFirstInXact: The pbFirstInXact member MUST be a single byte. The pbFirstInXact member
MUST be set to a value of 0x00 (FALSE) when the associated message is not the first message in

a transaction. A value other than 0x00 MUST be interpreted as indicating (TRUE) that the
associated message is the first message in a transaction.

pbLastInXact: The pbLastInXact member MUST be a single byte. The pbLastInXact member
MUST be set to a value of 0x00 (FALSE) when the associated message is not the last message in a
transaction. A value other than 0x00 MUST be interpreted as indicating (TRUE) that the associated
message is the last message in a transaction.

ppXactID: The ppXactID member, if present, MUST be an OBJECTID structure, as specified in [MS-
MQMQ] section 2.2.8.

2.2.3.4 CACCreateRemoteCursor

The CACCreateRemoteCursor structure contains the elements necessary for creating a cursor on a
queue.

 typedef struct CACCreateRemoteCursor {
 DWORD hCursor;
 DWORD srv_hACQueue;
 DWORD cli_pQMQueue;
 } CACCreateRemoteCursor;

hCursor: The value for this field returned from rpc_ACCreateCursorEx (section 3.1.5.4) contains a
DWORD value representing an opened cursor.

srv_hACQueue: The value for this field returned from rpc_ACCreateCursorEx is passed to the
hQueue parameter of R_QMCreateRemoteCursor (section 3.1.4.4) when invoked as part of a
remote cursor creation call sequence.

cli_pQMQueue: The value for this field returned from rpc_ACCreateCursorEx is passed to the

pQueue parameter of R_QMGetRemoteQueueName (section 3.1.4.1) when invoked as part of a

remote cursor creation call sequence.

2.2.3.5 OBJECT_FORMAT

An OBJECT_FORMAT structure wraps a pointer to a QUEUE_FORMAT structure ([MS-MQMQ] section
2.2.7).

30 / 135

[MS-MQMP-Diff] - v20170915
Message Queuing (MSMQ): Queue Manager Client Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

 typedef struct OBJECT_FORMAT {
 [range(1,2)] DWORD ObjType;
 [switch_is(ObjType)] union {
 [case(1)]
 QUEUE_FORMAT* pQueueFormat;
 };
 } OBJECT_FORMAT;

ObjType: This value MUST be 0x00000001. The value 0x00000002 is defined for local-only use and
MUST NOT appear on the wire.

pQueueFormat: This MUST point to a QUEUE_FORMAT structure.

2.3 Directory Service Schema Elements

This protocol uses ADM elements specified in section 3.1.1. A subset of these elements can be
published in a directory. This protocol SHOULD<7> access the directory using the algorithm specified

in [MS-MQDSSM] and using LDAP [MS-ADTS]. The Directory Service schema elements for ADM
elements published in the directory are defined in [MS-MQDSSM] section 2.4.<8>

31 / 135

[MS-MQMP-Diff] - v20170915
Message Queuing (MSMQ): Queue Manager Client Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

3 Protocol Details

The client side of this protocol is simply a pass-through. That is, there are no additional timers or
other states required on the client side of this protocol. Calls made by the higher-layer protocol or
application are passed directly to the transport, and the results returned by the transport are passed
directly back to the higher-layer protocol or application.

3.1 qmcomm and qmcomm2 Server Details

3.1.1 Abstract Data Model

This section describes a conceptual model of possible data organization that an implementation
maintains to participate in this protocol. The described organization is provided to facilitate the
explanation of how the protocol behaves. This document does not mandate that implementations
adhere to this model as long as their external behavior is consistent with that described in this
document.

 The abstract data model for this protocol comprises elements that are private to this protocol and

others that are shared between multiple MSMQ protocols that are co-located at a common
QueueManager ([MS-MQDMPR] section 3.1.1.1) abstract data model (ADM) element instance. The
shared abstract data model is defined in [MS-MQDMPR] section 3.1.1. The relationship between this
protocol, a QueueManager ADM element instance, and other protocols that share a common
QueueManager ADM element instance is described in [MS-MQOD].

Section 3.1.1.1 details the elements from the shared data model that are manipulated by this
protocol. Sections 3.1.1.2 through 3.1.1.10 detail the data model elements that are private to this

protocol.

Servers MUST maintain instances of the following ADM elements described in the following sections:

▪ Shared Data Elements (section 3.1.1.1)

▪ LocalQueueContextHandleTable (section 3.1.1.2)

▪ LocalQueueContextHandle (section 3.1.1.3)

▪ RemoteQueueProxyHandleTable (section 3.1.1.4)

▪ RemoteQueueProxyHandle (section 3.1.1.5)

▪ CursorProxy (section 3.1.1.6)

▪ RemoteQueueOpenContextHandleTable (section 3.1.1.7)

▪ RemoteQueueOpenContextHandle (section 3.1.1.8)

▪ TransactionHandleTable (section 3.1.1.9)

▪ TransactionHandle (section 3.1.1.10)

▪ Message to CACTransferBufferV2 Translation (section 3.1.1.11)

▪ Queue PROPID to Abstract Queue Property Translations (section 3.1.1.12)

3.1.1.1 Shared Data Elements

This protocol manipulates instances of the following abstract data model elements from the shared
abstract data model defined in [MS-MQDMPR] section 3.1.1.

32 / 135

[MS-MQMP-Diff] - v20170915
Message Queuing (MSMQ): Queue Manager Client Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

▪ QueueManager: [MS-MQDMPR] section 3.1.1.1.

▪ OpenQueueDescriptor: [MS-MQDMPR] section 3.1.1.16.

▪ Queue: [MS-MQDMPR] section 3.1.1.2.

▪ Message: [MS-MQDMPR] section 3.1.1.12.

▪ Cursor: [MS-MQDMPR] section 3.2.

▪ Transaction: [MS-MQDMPR] section 3.1.1.14.

3.1.1.2 LocalQueueContextHandleTable

The LocalQueueContextHandleTable ADM element contains a table of
LocalQueueContextHandle (section 3.1.1.3) ADM element instances, keyed by the Handle attribute of
the LocalQueueContextHandle ADM element. The server maintains a single
LocalQueueContextHandleTable ADM element instance, which is referred to as

iLocalQueueContextHandleTable.

3.1.1.3 LocalQueueContextHandle

 The LocalQueueContextHandle ADM element associates an
RPC_QUEUE_HANDLE (section 2.2.1.1.2) context handle with an OpenQueueDescriptor ([MS-
MQDMPR] section 3.1.1.16) ADM element instance that references a local queue. This ADM element
MUST contain the following attributes:

Handle: An RPC_QUEUE_HANDLE context handle that uniquely identifies the

LocalQueueContextHandle ADM element instance within its
LocalQueueContextHandleTable (section 3.1.1.2) ADM element instance.

OpenQueueDescriptorReference: A reference to an OpenQueueDescriptor ADM element
instance.

3.1.1.4 RemoteQueueProxyHandleTable

 The RemoteQueueProxyHandleTable ADM element contains a table of
RemoteQueueProxyHandle (section 3.1.1.5) ADM element instances, keyed by the Handle attribute of
the RemoteQueueProxyHandle ADM element. The server maintains a single
RemoteQueueProxyHandleTable ADM element instance, which is referred to as
iRemoteQueueProxyHandleTable.

3.1.1.5 RemoteQueueProxyHandle

The RemoteQueueProxyHandle ADM element associates an
RPC_QUEUE_HANDLE (section 2.2.1.1.2) context handle with information pertaining to an
OpenQueueDescriptor ([MS-MQDMPR] section 3.1.1.16) ADM element instance located at a remote

QueueManager ([MS-MQDMPR] section 3.1.1.1) ADM element instance other than the server. This

ADM element MUST contain the following attributes:

Handle: An RPC_QUEUE_HANDLE context handle that uniquely identifies the
RemoteQueueProxyHandle ADM element instance within its
RemoteQueueProxyHandleTable (section 3.1.1.4) ADM element instance.

Context: A DWORD value that uniquely identifies the RemoteQueueProxyHandle ADM element

instance within the RemoteQueueProxyHandleTable ADM element instance.

33 / 135

[MS-MQMP-Diff] - v20170915
Message Queuing (MSMQ): Queue Manager Client Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

RemoteHandle: A PCTX_RRSESSION_HANDLE_TYPE ([MS-MQQP] section 2.2.1.1) context
handle obtained from a remote QueueManager ADM element instance other than the server.

RemoteBindingHandle: An RPC binding handle established to obtain a RemoteHandle attribute.

RemoteContext: A DWORD value that uniquely identifies an OpenQueueDescriptor ADM

element instance at the QueueManager ADM element instance from which a RemoteHandle
attribute was obtained.

PathName: A path name string, as defined in [MS-MQMQ] section 2.1.1, which contains the name
of the queue and the name of the QueueManager ADM element instance from which a
RemoteHandle attribute was obtained.

FormatName: Contains the format name string that was specified when the
OpenQueueDescriptor ADM element instance referenced by a RemoteContext attribute was

created.

CursorProxyCollection: A collection of CursorProxy (section 3.1.1.6) ADM element instances.

3.1.1.6 CursorProxy

The CursorProxy ADM element associates an identifier DWORD that is unique to the server with the
Handle attribute value of a Cursor ([MS-MQDMPR] section 3.2) ADM element instance for a remote
queue. This ADM element MUST contain the following attributes:

Handle: A DWORD value that uniquely identifies the CursorProxy ADM element instance within
the scope of the CursorProxyCollection attribute of the RemoteQueueProxyHandle ADM
element instance in which it is contained.

RemoteCursorHandle: If the IsRemoteCursorHandleInitialized attribute is true, this attribute

contains a DWORD value that uniquely identifies a Cursor ADM element instance for a remote
queue; otherwise, this attribute contains no relevant information.

IsRemoteCursorHandleInitialized: A Boolean value that indicates whether the

RemoteCursorHandle attribute has been initialized.

3.1.1.7 RemoteQueueOpenContextHandleTable

 The RemoteQueueOpenContextHandleTable ADM element contains a table of
RemoteQueueOpenContextHandle (section 3.1.1.8) ADM element instances keyed by the Handle
attribute of the RemoteQueueOpenContextHandle ADM element. The server maintains a single
RemoteQueueOpenContextHandleTable ADM element instance, which is referenced as
iRemoteQueueOpenContextHandleTable.

3.1.1.8 RemoteQueueOpenContextHandle

The RemoteQueueOpenContextHandle ADM element associates a
PCTX_OPENREMOTE_HANDLE_TYPE (section 2.2.1.1.3) context handle with a reference to an
OpenQueueDescriptor ([MS-MQDMPR] section 3.1.1.16) ADM element instance created for remote

read. This ADM element MUST contain the following attributes:

Handle: A PCTX_OPENREMOTE_HANDLE_TYPE context handle that uniquely identifies the
RemoteQueueOpenContextHandle ADM element instance within its
RemoteQueueOpenContextHandleTable (section 3.1.1.7) ADM element instance.

OpenQueueDescriptorReference: A reference to an OpenQueueDescriptor ADM element
instance created for remote read.

34 / 135

[MS-MQMP-Diff] - v20170915
Message Queuing (MSMQ): Queue Manager Client Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

3.1.1.9 TransactionHandleTable

 The TransactionHandleTable ADM element contains a table of TransactionHandle (section 3.1.1.10)
ADM element instances keyed by the Handle attribute of the TransactionHandle ADM element. The

server maintains a single TransactionHandleTable ADM element instance, which is referenced as
iTransactionHandleTable.

3.1.1.10 TransactionHandle

The TransactionHandle ADM element represents a handle that contains a reference to a

Transaction ([MS-MQDMPR] section 3.1.1.14) ADM element instance. This ADM element MUST
contain the following attributes:

Handle: An RPC_INT_XACT_HANDLE (section 2.2.1.1.1) that uniquely identifies the
TransactionHandleEntry within the TransactionHandleTable (section 3.1.1.9) ADM element.

TransactionReference: A reference to a Transaction ADM element instance.

3.1.1.11 Message to CACTransferBufferV2 Translation

A Message ([MS-MQDMPR] section 3.1.1.12) ADM element instance is placed in the
CACTransferBufferV2 (section 2.2.3.3) structure when conveyed via this protocol. The following table
defines the relationship(s) between a CACTransferBufferV2 structure member and its corresponding
Message ADM element attribute(s). The CACTransferBufferV2 structure members that are absent

from the table are specific to this protocol and have no direct relationship(s) with Message ADM
element attribute(s).

CACTransferBufferV2 Member Corresponding Message ADM element attribute(s)

 old.Send.pAdminQueueFormat AdministrationQueueFormatName

 old.Send.pResponseQueueFormat ResponseQueueFormatName

 old.Receive.ulResponseFormatNameLen Length of ResponseQueueFormatName

old.Receive.ppResponseFormatName ResponseQueueFormatName

old.Receive.pulResponseFormatNameLenProp Length of ResponseQueueFormatName

old.Receive.ulAdminFormatNameLen Length of AdministrationQueueFormatName

old.Receive.ppAdminFormatName AdministrationQueueFormatName

old.Receive.pulAdminFormatNameLenProp Length of AdministrationQueueFormatName

old.Receive.ulDestFormatNameLen Length of DestinationQueueFormatName

old.Receive.ppDestFormatName DestinationQueueFormatName

old.Receive.pulDestFormatNameLenProp Length of DestinationQueueFormatName

old.Receive.ulOrderingFormatNameLen Length of TransactionStatusQueueFormatName

old.Receive.ppOrderingFormatName TransactionStatusQueueFormatName

old.Receive.pulOrderingFormatNameLenProp Length of TransactionStatusQueueFormatName

old.pClass Class

Mappings for individual CACTransferBufferV2.old.pClass

values to the enumerated type defined for Message.Class
are specified in section 2.2.3.2.

35 / 135

[MS-MQMP-Diff] - v20170915
Message Queuing (MSMQ): Queue Manager Client Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

CACTransferBufferV2 Member Corresponding Message ADM element attribute(s)

old.ppMessageID Identifier

old.ppCorrelationID CorrelationIdentifier

old.pSentTime SentTime

old.pArrivedTime ArrivalTime

old.pPriority Priority

old.pDelivery DeliveryGuarantee

Mappings for the enumerated values are provided in section
2.2.3.2.

old.pAcknowledge AcknowledgementsRequested

Mappings for the enumerated values are provided in section
2.2.3.2.

old.pAuditing PositiveJournalingRequested,
NegativeJournalingRequested

Mappings for the enumerated values are provided in section
2.2.3.2.

old.pApplicationTag ApplicationTag

old.ppBody Body

old.ulBodyBufferSizeInBytes Length of Body

old.ulAllocBodyBufferInBytes Length of Body

old.pBodySize Length of Body

old.ppTitle Label

old.ulTitleBufferSizeInWCHARs Length of Label

old.pulTitleBufferSizeInWCHARs Length of Label

old.ulAbsoluteTimeToQueue TimeToReachQueue

old.pulRelativeTimeToQueue TimeToReachQueue

old.ulRelativeTimeToLive TimeToBeReceived

old.pulRelativeTimeToLive TimeToBeReceived

old.pTrace TracingRequested

Mappings for the enumerated values are provided in section
2.2.3.2.

old.pulSenderIDType SenderIdentifierType

Mappings for the enumerated values are provided in section
2.2.3.2.

old.ppSenderID SenderIdentifier

old.pulSenderIDLenProp Length of SenderIdentifier

old.pulPrivLevel PrivacyLevel

Mappings for the enumerated values are provided in section

36 / 135

[MS-MQMP-Diff] - v20170915
Message Queuing (MSMQ): Queue Manager Client Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

CACTransferBufferV2 Member Corresponding Message ADM element attribute(s)

2.2.3.2.

old.pAuthenticated AuthenticationLevel

Mappings for the enumerated values are provided in section
2.2.3.2.

old.pulHashAlg HashAlgorithm

Mappings for the enumerated values are provided in section
2.2.3.2.

old.pulEncryptAlg EncryptionAlgorithm

Mappings for the enumerated values are provided in section
2.2.3.2.

old.ppSenderCert SenderCertificate

old.ulSenderCertLen Length of SenderCertificate

old.pulSenderCertLenProp Length of SenderCertificate

old.ppwcsProvName AuthenticationProviderName

old.ulProvNameLen Length of AuthenticationProviderName

old.pulAuthProvNameLenProp Length of AuthenticationProviderName

old.pulProvType AuthenticationProviderType

old.ppSymmKeys SymmetricKey

old.ulSymmKeysSize Length of SymmetricKey

old.pulSymmKeysSizeProp Length of SymmetricKey

old.uSenderIDLen Length of SenderIdentifier

old.ppSignature Signature

old.ulSignatureSize Length of Signature

old.pulSignatureSizeProp Length of Signature

old.ppSrcQMID SourceMachineIdentifier

old.ppMsgExtension Extension

old.ulMsgExtensionBufferInBytes Length of Extension

old.pMsgExtensionSize Length of Extension

old.ppConnectorType ConnectorTypeIdentifier

old.pulBodyType BodyType

pbFirstInXact FirstInTransaction

pbLastInXact LastInTransaction

ppXactID TransactionIdentifier

37 / 135

[MS-MQMP-Diff] - v20170915
Message Queuing (MSMQ): Queue Manager Client Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

3.1.1.12 Queue PROPID to Abstract Queue Property Translation

The methods R_QMCreateObjectInternal (section 3.1.4.5), R_QMGetObjectProperties (section 3.1.4.9)
and R_QMSetObjectProperties (section 3.1.4.10) reference properties of the Queue ([MS-MQDMPR]

section 3.1.1.2) ADM element using numerical identifiers (PROPIDs) defined in [MS-MQMQ] section
2.3. The following table provides correlation between the numerical queue property identifiers and the
abstract queue properties used by this protocol:

Queue Property Identifier (PROPID) Abstract Queue Property Applicable Method(s)

PROPID_Q_INSTANCE (101) Identifier Get

PROPID_Q_TYPE (102) Type Create, Set, Get

PROPID_Q_PATHNAME (103) Pathname Create, Get

PROPID_Q_JOURNAL (104) Journaling Create, Set, Get

PROPID_Q_QUOTA (105) Quota Create, Set, Get

PROPID_Q_BASEPRIORITY (106) BasePriority Create, Set, Get

PROPID_Q_JOURNAL_QUOTA (107) JournalQuota Create, Set, Get

PROPID_Q_LABEL (108) Label Create, Set, Get

PROPID_Q_CREATE_TIME (109) CreateTime Get

PROPID_Q_MODIFY_TIME (110) ModifyTime Get

PROPID_Q_AUTHENTICATE (111) Authentication Create, Set, Get

PROPID_Q_PRIV_LEVEL (112) PrivacyLevel Create, Set, Get

PROPID_Q_TRANSACTION (113) Transactional Create, Get

PROPID_Q_PATHNAME_DNS (124) QualifiedPathname Get

PROPID_Q_MULTICAST_ADDRESS (125) MulticastAddress Create, Set, Get

PROPID_Q_ADS_PATH (126) DirectoryPath Get

The protocol MUST NOT send property identifiers that are not applicable to the method to be invoked,
as defined in the preceding table.

3.1.2 Timers

None.

3.1.3 Initialization

The server MUST listen on the RPC protocols, as specified in section 2.1.

3.1.4 Message Processing Events and Sequencing Rules for qmcomm

This protocol SHOULD indicate to the RPC run time that it is to perform a strict NDR data consistency
check at target level 6.0, as specified in [MS-RPCE] section 3.<9>

Methods in RPC Opnum Order

38 / 135

[MS-MQMP-Diff] - v20170915
Message Queuing (MSMQ): Queue Manager Client Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

Method Description

Opnum0NotUsedOnWire Reserved for local use.

Opnum: 0

R_QMGetRemoteQueueName Retrieves the name of the queue associated with the given
RPC_QUEUE_HANDLE (section 2.2.1.1.2).

Opnum: 1

R_QMOpenRemoteQueue Opens a queue for remote read.

Opnum: 2

R_QMCloseRemoteQueueContext Closes a PCTX_OPENREMOTE_HANDLE_TYPE (section 2.2.1.1.3).

Opnum: 3

R_QMCreateRemoteCursor Creates a cursor for a remote queue.

Opnum: 4

Opnum5NotUsedOnWire Reserved for local use.

Opnum: 5

R_QMCreateObjectInternal Creates a local private queue.

Opnum: 6

R_QMSetObjectSecurityInternal Updates the security configuration of a local private queue.

Opnum: 7

R_QMGetObjectSecurityInternal Retrieves the security configuration of a local private queue.

Opnum: 8

R_QMDeleteObject Deletes a local private queue.

Opnum: 9

R_QMGetObjectProperties Retrieves queue properties from local private queues.

Opnum: 10

R_QMSetObjectProperties Updates queue properties of local private queues.

Opnum: 11

R_QMObjectPathToObjectFormat Returns a complete format name for a private queue when only the path
name is known to the caller.

Opnum: 12

Opnum13NotUsedOnWire Reserved for local use.

Opnum: 13

R_QMGetTmWhereabouts Returns transaction manager whereabouts information.

Opnum: 14

R_QMEnlistTransaction Enlists the supporting server resource manager (RM) in an external
transaction.

Opnum: 15

R_QMEnlistInternalTransaction Enlists the supporting server resource manager (RM) in an internal
transaction.

Opnum: 16

R_QMCommitTransaction Commits an internal transaction.

Opnum: 17

39 / 135

[MS-MQMP-Diff] - v20170915
Message Queuing (MSMQ): Queue Manager Client Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

Method Description

R_QMAbortTransaction Aborts an internal transaction.

Opnum: 18

rpc_QMOpenQueueInternal Opens a queue for sending, reading, or purging messages.

Opnum: 19

rpc_ACCloseHandle Closes a queue handle.

Opnum: 20

Opnum21NotUsedOnWire Reserved for local use.

Opnum: 21

rpc_ACCloseCursor Closes a cursor.

Opnum: 22

rpc_ACSetCursorProperties Associates a remote cursor with a local cursor handle.

Opnum: 23

Opnum24NotUsedOnWire Reserved for local use.

Opnum: 24

Opnum25NotUsedOnWire Reserved for local use.

Opnum: 25

rpc_ACHandleToFormatName Retrieves a format name for a queue handle.

Opnum: 26

rpc_ACPurgeQueue Purges an opened queue.

Opnum: 27

R_QMQueryQMRegistryInternal Retrieves string values from a supporting server.

Opnum: 28

Opnum29NotUsedOnWire Reserved for local use.

Opnum: 29

Opnum30NotUsedOnWire Reserved for local use.

Opnum: 30

R_QMGetRTQMServerPort Returns the RPC server port for use in subsequent method calls.

Opnum: 31

Opnum32NotUsedOnWire Reserved for local use.

Opnum: 32

Opnum33NotUsedOnWire Reserved for local use.

Opnum: 33

Opnum34NotUsedOnWire Reserved for local use.

Opnum: 34

In the preceding table, the term "Reserved for local use" means that the client MUST NOT send the
opnum, and the server behavior is undefined<10> because it does not affect interoperability.

If LocalQueueManager.SupportingServer is False, the server MUST return an error if any of the
following methods is called.

40 / 135

[MS-MQMP-Diff] - v20170915
Message Queuing (MSMQ): Queue Manager Client Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

Opnum Name

1 R_QMGetRemoteQueueName

6 R_QMCreateObjectInternal

7 R_QMSetObjectSecurityInternal

8 R_QMGetObjectSecurityInternal

9 R_QMDeleteObject

10 R_QMGetObjectProperties

11 R_QMSetObjectProperties

12 R_QMObjectPathToObjectFormat

14 R_QMGetTmWhereabouts

15 R_QMEnlistTransaction

16 R_QMEnlistInternalTransaction

17 R_QMCommitTransaction

18 R_QMAbortTransaction

19 rpc_QMOpenQueueInternal

20 rpc_ACCloseHandle

22 rpc_ACCloseCursor

23 rpc_ACSetCursorProperties

26 rpc_ACHandleToFormatName

27 rpc_ACPurgeQueue

28 R_QMQueryQMRegistryInternal

3.1.4.1 R_QMGetRemoteQueueName (Opnum 1)

During the process of creating a remote cursor, a client calls the R_QMGetRemoteQueueName method

to retrieve the name of the remote queue associated with a queue handle. This method is obsolete
and the server SHOULD take no action and immediately raise the exception
MQ_ERROR_ILLEGAL_OPERATION (0xc00e0064).<11>

 HRESULT R_QMGetRemoteQueueName(
 [in] handle_t hBind,
 [in] DWORD pQueue,
 [in, out, ptr, string] WCHAR** lplpRemoteQueueName
);

hBind: MUST be set to an RPC binding handle as described in [MS-RPCE] section 2.

pQueue: MUST be a DWORD that contains a queue context value obtained from the cli_pQMQueue
member of the structure returned by the rpc_ACCreateCursorEx method of the qmcomm2
interface. See section 4.4 for an example illustrating this value being obtained.

41 / 135

[MS-MQMP-Diff] - v20170915
Message Queuing (MSMQ): Queue Manager Client Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

lplpRemoteQueueName: A pointer to a buffer to receive the null-terminated name of the remote
queue associated with pQueue. On input, this value MUST be NULL.

Return Values: On success, this method MUST return MQ_OK (0x00000000); otherwise, the server
MUST return a failure HRESULT, and the client MUST treat all failure HRESULTs identically.

Additionally, if a failure HRESULT is returned, the client MUST disregard all out-parameter values.

Exceptions Thrown: This method SHOULD take no action and SHOULD immediately raise the exception
MQ_ERROR_ILLEGAL_OPERATION (0xc00e0064).<12>

During the remote cursor creation sequence, the supporting server MAY indicate that the client MUST
contact a remote queue manager to proceed.<13> In response, this method is called by the client to
determine where to find the remote queue manager. Supporting servers SHOULD contact the remote
queue manager on behalf of the client, thus eliminating the purpose of this method.<14>

This method is invoked at the dynamically assigned endpoint returned by the
R_QMGetRTQMServerPort method when IP_HANDSHAKE (0x00000000) or IPX_HANDSHAKE
(0x00000002) is the interface specified by the fIP parameter.

 When processing this call, the server MUST do the following:

▪ Locate the RemoteQueueProxyHandle (section 3.1.1.5) ADM element instance in the server's
iRemoteQueueProxyHandleTable where the Context attribute value of the

RemoteQueueProxyHandle ADM element instance equals pQueue.

▪ If no such RemoteQueueProxyHandle ADM element instance exists, take no further action and
return a failure HRESULT.

▪ Set lplpRemoteQueueName to the PathName attribute of the located
RemoteQueueProxyHandle ADM element instance.

▪ Return MQ_OK (0x00000000).

3.1.4.2 R_QMOpenRemoteQueue (Opnum 2)

A client calls R_QMOpenRemoteQueue to obtain a valid queue handle on a remote queue as part of
the sequence of events involved in opening a remote queue as described in section 4.2.

 HRESULT R_QMOpenRemoteQueue(
 [in] handle_t hBind,
 [out] PCTX_OPENREMOTE_HANDLE_TYPE* pphContext,
 [out] DWORD* pdwContext,
 [in, unique] QUEUE_FORMAT* pQueueFormat,
 [in] DWORD dwCallingProcessID,
 [in] DWORD dwDesiredAccess,
 [in] DWORD dwShareMode,
 [in] GUID* pLicGuid,
 [in] DWORD dwMQS,
 [out] DWORD* dwpQueue,
 [out] DWORD* phQueue
);

hBind: MUST be set to an RPC binding handle as described in [MS-RPCE] section 2.

pphContext: A pointer to a variable to receive the
PCTX_OPENREMOTE_HANDLE_TYPE (section 2.2.1.1.3) context handle.

pdwContext: A pointer to a variable to receive the value of the Handle attribute for the new
OpenQueueDescriptor ([MS-MQDMPR] section 3.1.1.16) ADM element instance created by this
method. It MUST NOT be NULL.

42 / 135

[MS-MQMP-Diff] - v20170915
Message Queuing (MSMQ): Queue Manager Client Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

pQueueFormat: A QUEUE_FORMAT ([MS-MQMQ] section 2.2.7) structure that identifies the queue
to be opened. It MUST NOT be NULL and MUST conform to the format name syntax rules defined

in [MS-MQMQ]. It MUST NOT be a distribution list or multicast format name. For direct format
names, the protocol MUST NOT be HTTP.

dwCallingProcessID: MUST be ignored. Clients MAY pass 0x00000000.<15>

dwDesiredAccess: A DWORD that specifies the access mode requested for the queue. The access
mode defines the set of operations that can be invoked using the returned queue handle. The
value MUST be one of the following:

Value Meaning

MQ_RECEIVE_ACCESS

0x00000001

The returned queue handle MUST only permit message peek, message receive (peek
and delete), and queue purge operations.

MQ_PEEK_ACCESS

0x00000020

The returned queue handle MUST only permit message peek operations.

dwShareMode: Specifies the exclusivity level for the opened queue. The value MUST be one of the

following:

Value Meaning

MQ_DENY_NONE

0x00000000

The queue is not opened exclusively.

MQ_DENY_RECEIVE_SHARE

0x00000001

The queue is to be opened for exclusive read access. If the queue has already been
opened for read access, the server MUST return STATUS_SHARING_VIOLATION
(0xc0000043). If the queue is opened successfully for exclusive read access,
subsequent attempts to open the same queue for read access MUST return
STATUS_SHARING_VIOLATION (0xc0000043) until the queue has been closed.

pLicGuid: MUST be a pointer to a valid GUID that uniquely identifies the client.<16><17> The
server MAY ignore this parameter.<18>

dwMQS: MUST be set by clients to indicate the client operating system category. Servers MAY ignore

this value.<19> The following values are defined:

Value Are server connection licensing limitations enforced?/Meaning

0x00000000<20> None. The operating system (OS) version is not declared.

0x00000100 Yes. For supported operating systems.<21>

0x00000200 Yes. For supported operating systems.<22>

0x00000300 Yes. For supported operating systems.<23>

0x00000400 No. For supported operating systems.<24>

0x00000500 No. For supported operating systems.<25>

dwpQueue: A pointer to a variable to receive a value that identifies the new OpenQueueDescriptor

ADM element instance created by this method, as specified in the processing rules section for this
method. It MUST NOT be NULL.

phQueue: A pointer to a variable to receive the value of the Handle attribute for the new
OpenQueueDescriptor ADM element instance created by this method. It MUST NOT be NULL.

43 / 135

[MS-MQMP-Diff] - v20170915
Message Queuing (MSMQ): Queue Manager Client Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

Return Values: On success, this method MUST return MQ_OK (0x00000000); otherwise, the server
MUST return a failure HRESULT <26>, and the client MUST treat all failure HRESULTs identically.

Additionally, if a failure HRESULT is returned, the client MUST disregard all out-parameter values.

Exceptions Thrown: In addition to the exceptions thrown by the underlying RPC protocol [MS-RPCE],

the method can throw HRESULT failure codes as RPC exceptions. The client MUST treat all thrown
HRESULT codes identically. Additionally, the client MUST disregard all out-parameter values when any
failure HRESULT is thrown.

This method is invoked at the dynamically assigned endpoint returned by the
R_QMGetRTQMServerPort method when IP_HANDSHAKE (0x00000000) or IPX_HANDSHAKE
(0x00000002) is the interface specified by the fIP parameter.

When processing this call, the server MUST:

▪ Determine if input parameter values violate constraints specified above. If an invalid parameter is
detected, the server MUST take no further action and return a failure HRESULT.

▪ Generate an Open Queue ([MS-MQDMPR] section 3.1.7.1.5) event with the following argument

values:

▪ iFormatName := pQueueFormat

▪ iRequiredAccess :=dwDesiredAccess, according to the following values:

▪ MQ_RECEIVE_ACCESS (0x00000001): ReceiveAccess

▪ MQ_PEEK_ACCESS (0x00000020): PeekAccess

▪ iSharedMode := dwShareMode, according to the following values:

▪ MQ_DENY_NONE (0x00000000): DenyNone

▪ MQ_DENY_RECEIVE_SHARE (0x00000001): DenyReceive

▪ If the rStatus out-argument of the Open Queue event indicates failure, take no further action and
return the rStatus value.

▪ The rOpenQueueDescriptor out-argument of the Open Queue event contains a reference to the
OpenQueueDescriptor ADM element instance created by the Open Queue event.

▪ Set rOpenQueueDescriptor.RemoteReadState to Opened.

▪ Declare iNewRemoteQueueOpenContextHandle as a RemoteQueueOpenContextHandle ADM
element instance and set its attributes to the following values:

▪ Handle := PCTX_OPENREMOTE_HANDLE_TYPE reference to
rOpenQueueDescriptor.Handle.

▪ OpenQueueDescriptorReference := The rOpenQueueDescriptor out-argument of the Open
Queue event generated preceding.

▪ Add iNewRemoteQueueOpenContextHandle to iRemoteQueueOpenContextHandleTable.

▪ Set the out-parameter values accordingly:

▪ pphContext := iNewRemoteQueueOpenContextHandle.Handle

Additionally, the server SHOULD set the following out-parameter values accordingly:

▪ Either to:<27>

44 / 135

[MS-MQMP-Diff] - v20170915
Message Queuing (MSMQ): Queue Manager Client Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

▪ pdwContext := rOpenQueueDescriptor.Handle

▪ phQueue := rOpenQueueDescriptor.Handle

▪ dwpQueue := iNewRemoteQueueOpenContextHandle. OpenQueueDescriptorReference

▪ Or to:<28>

▪ pdwContext := rOpenQueueDescriptor.Handle

▪ phQueue := rOpenQueueDescriptor.Handle

▪ dwpQueue := rOpenQueueDescriptor.Handle

▪ Return MQ_OK (0x00000000).

3.1.4.3 R_QMCloseRemoteQueueContext (Opnum 3)

The R_QMCloseRemoteQueueContext method closes a remote queue handle originally obtained from

R_QMOpenRemoteQueue (section 3.1.4.2).

 void R_QMCloseRemoteQueueContext(
 [in, out] PCTX_OPENREMOTE_HANDLE_TYPE* pphContext
);

pphContext: An RPC context handle as defined in [MS-RPCE] section 2. This handle MUST have been
acquired from the pphContext parameter of the R_QMOpenRemoteQueue method.

Return Values: None.

Exceptions Thrown: No exceptions are thrown beyond those thrown by the underlying RPC protocol, as
specified in [MS-RPCE].

This method is invoked at the dynamically assigned endpoint returned by the

R_QMGetRTQMServerPort (section 3.1.4.24) method when IP_HANDSHAKE (0x00000000) or
IPX_HANDSHAKE (0x00000002) is the interface specified by the fIP parameter.

When processing this call, the server MUST:

▪ Locate the RemoteQueueOpenContextHandle (section 3.1.1.8) ADM element instance in the
iRemoteQueueOpenContextHandleTable (section 3.1.1.7) of the server where the value of the
Handle attribute of the RemoteQueueOpenContextHandle ADM element instance equals
pphContext.

▪ If no such RemoteQueueOpenContextHandle ADM element instance exists, take no further
action and immediately return.

▪ Declare iLocatedRemoteQueueOpenContextHandle and set it to a reference to the located
RemoteQueueOpenContextHandle ADM element instance.

▪ If iLocatedRemoteQueueOpenContextHandle.
OpenQueueDescriptorReference.RemoteReadState is Opened:

▪ Generate a Close Queue ([MS-MQDMPR] section 3.1.7.1.6) event with the following argument
value:

▪ iQueueDesc :=
iLocatedRemoteQueueOpenContextHandle.OpenQueueDescriptorReference

45 / 135

[MS-MQMP-Diff] - v20170915
Message Queuing (MSMQ): Queue Manager Client Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

▪ Delete the iLocatedRemoteQueueOpenContextHandle from
iRemoteQueueOpenContextHandleTable.

▪ Set the pphContext parameter to NULL.

3.1.4.4 R_QMCreateRemoteCursor (Opnum 4)

The R_QMCreateRemoteCursor method creates a cursor at the server for use during remote read.

 HRESULT R_QMCreateRemoteCursor(
 [in] handle_t hBind,
 [in] struct CACTransferBufferV1* ptb1,
 [in] DWORD hQueue,
 [out] DWORD* phCursor
);

hBind: MUST be set to an RPC binding handle, as specified in [MS-RPCE] section 2.

ptb1: MUST be ignored. Clients SHOULD pass NULL.<29>

hQueue: A DWORD that contains the value of the Handle attribute of an OpenQueueDescriptor
([MS-MQDMPR] section 3.1.1.16) ADM element instance. The client obtains this value from either
the pcc.srv_hACQueue out-parameter of rpc_ACCreateCursorEx or the phQueue out-parameter of
R_QMOpenRemoteQueue.

phCursor: A pointer to a DWORD to receive the value of the Handle attribute of the Cursor ([MS-
MQDMPR] section 3.2) ADM element instance that references the created cursor. It MUST NOT be

NULL on input.

Return Values: On success, this method MUST return MQ_OK (0x00000000); otherwise, the server
MUST return a failure HRESULT, and the client MUST treat all failure HRESULTs identically.
Additionally, if a failure HRESULT is returned, the client MUST disregard all out-parameter values.

Exceptions Thrown: No exceptions are thrown beyond those thrown by the underlying RPC protocol,
as specified in [MS-RPCE].

This method is invoked at the dynamically assigned endpoint returned by the

R_QMGetRTQMServerPort method when IP_HANDSHAKE (0x00000000) or IPX_HANDSHAKE
(0x00000002) is the interface specified by the fIP parameter.

When processing this call, the server MUST:

▪ Search the OpenQueueDescriptorCollection attribute of each Queue ([MS-MQDMPR] section
3.1.1.2) ADM element instance that is contained in the server's
LocalQueueManager.QueueCollection attribute for an OpenQueueDescriptor ADM element
instance where the value of the Handle attribute of the OpenQueueDescriptor ADM element

instance equals hQueue.

▪ If no such OpenQueueDescriptor ADM element instance exists, take no further action and return

a failure HRESULT.

▪ Generate an Open Cursor ([MS-MQDMPR] section 3.1.7.1.1) event with the following argument
value:

▪ iQueueDesc := The OpenQueueDescriptor ADM element instance found preceding.

▪ The Open Cursor event returns a reference to the Cursor ADM element instance, rCursor.

▪ Set the phCursor parameter to rCursor.Handle.

46 / 135

[MS-MQMP-Diff] - v20170915
Message Queuing (MSMQ): Queue Manager Client Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

▪ Return MQ_OK (0x00000000).

3.1.4.5 R_QMCreateObjectInternal (Opnum 6)

A client calls the R_QMCreateObjectInternal method to create a new private queue located on the
supporting server.

 HRESULT R_QMCreateObjectInternal(
 [in] handle_t hBind,
 [in] DWORD dwObjectType,
 [in, string] const WCHAR* lpwcsPathName,
 [in, range(0, 524288)] DWORD SDSize,
 [in, unique, size_is(SDSize)] unsigned char* pSecurityDescriptor,
 [in, range(1, 128)] DWORD cp,
 [in, size_is(cp)] DWORD aProp[],
 [in, size_is(cp)] PROPVARIANT apVar[]
);

hBind: MUST be set to an RPC binding handle as described in [MS-RPCE] section 2.

dwObjectType: MUST be 0x00000001 in order to specify a queue.

lpwcsPathName: MUST be a pointer to a null-terminated string containing a path name for the
queue to be created. The path name MUST identify a private queue local to the supporting server
by including "." as the computer name or by using the supporting server computer name.

SDSize: MUST be set to the byte length of the SECURITY_DESCRIPTOR buffer pointed to by
pSecurityDescriptor. If pSecurityDescriptor is NULL, this parameter MUST be 0x00000000.

pSecurityDescriptor: Must be a pointer to an array of bytes containing a SECURITY_DESCRIPTOR
structure. The SECURITY_DESCRIPTOR specifies the initial security configuration for the queue

to be created. This value can be NULL, in which case the server MUST provide a default security
configuration for the new queue. The SECURITY_DESCRIPTOR structure is defined in [MS-DTYP]
section 2.4.6.

cp: MUST be set to the size (in elements) of the arrays aProp and apVar. The arrays aProp and apVar
MUST have an identical number of elements and MUST contain at least one element.

aProp: MUST be an array of queue property identifiers that, together with the apVar array, specify

the initial queue property values for the new queue. Each element MUST specify a value from the
queue property identifiers table defined in [MS-MQMQ] section 2.3.1. Each element MUST specify
the property identifier for the corresponding property value at the same element index in apVar
and MUST contain at least one element. Each element MUST contain a queue property identifier;
identifiers for other properties are not permitted.

If the queue identified by lpwcsPathName already exists, the server MUST NOT alter the existing
queue.

apVar: MUST be an array that specifies the property values to associate with the new queue. Each
element MUST specify the property value for the corresponding property identifier at the same

element index in aProp and MUST contain at least one element.

Return Values: On success, this method MUST return MQ_OK (0x00000000); otherwise, the server
MUST return a failure HRESULT.<30><31> If the returned HRESULT value is
MQ_ERROR_QUEUE_EXISTS (0xc00e0005), the client can treat it as a success and continue with other
operations. The client MUST treat all other failure HRESULTs identically.

Exceptions Thrown: No exceptions are thrown beyond those thrown by the underlying RPC protocol, as
specified in [MS-RPCE].

47 / 135

[MS-MQMP-Diff] - v20170915
Message Queuing (MSMQ): Queue Manager Client Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

This method is invoked at the dynamically assigned endpoint returned by the
R_QMGetRTQMServerPort method when IP_HANDSHAKE (0x00000000) or IPX_HANDSHAKE

(0x00000002) is the interface specified by the fIP parameter.

When processing this call, the server MUST:

▪ Determine if input parameter values violate the constraints specified above. If an invalid
parameter is detected, the server MUST take no further action and return a failure HRESULT other
than MQ_ERROR_QUEUE_EXISTS (0xc00e0005).

▪ Locate a Queue ([MS-MQDMPR] section 3.1.1.2) ADM element instance in the QueueCollection
attribute of the server's LocalQueueManager ([MS-MQDMPR] section 3.1.1) ADM element
instance where the value of the Pathname attribute of the Queue ADM element instance
matches the lpwcsPathName parameter.

▪ If found, take no further action, and return MQ_ERROR_QUEUE_EXISTS (0xc00e0005).

▪ Let newQueue be a new Queue ADM element instance.

▪ Generate a Set Queue Defaults ([MS-MQDMPR] section 3.1.7.1.33) event with the following
argument value:

▪ iQueue := newQueue

▪ Set newQueue.Pathname to lpwcsPathName.

▪ Set newQueue.Security to the value contained in the pSecurityDescriptor parameter.

▪ Initialize the remaining attribute values of newQueue using the aProp parameter and the apVar
parameter property arrays described preceding. The queue property identifiers and their
relationships to the Queue ADM element are specified in section 3.1.1.12.

▪ Generate a Create Queue ([MS-MQDMPR] section 3.1.7.1.3) event with the following argument
value:

▪ iQueue := newQueue

▪ Return the rStatus of the Create Queue event.

3.1.4.6 R_QMSetObjectSecurityInternal (Opnum 7)

A client calls the R_QMSetObjectSecurityInternal method to update the security configuration of a

private queue located on the supporting server.

 HRESULT R_QMSetObjectSecurityInternal(
 [in] handle_t hBind,
 [in] struct OBJECT_FORMAT* pObjectFormat,
 [in] DWORD SecurityInformation,
 [in, range(0, 524288)] DWORD SDSize,
 [in, unique, size_is(SDSize)] unsigned char* pSecurityDescriptor
);

hBind: MUST be set to an RPC binding handle as described in [MS-RPCE] section 2.

pObjectFormat: MUST point to an OBJECT_FORMAT structure that identifies an existing local private

queue on the supporting server for which the security configuration will be updated. This MUST
NOT be NULL. The ObjType member of the structure MUST be 0x00000001. The pQueueFormat
member MUST NOT be NULL.

48 / 135

[MS-MQMP-Diff] - v20170915
Message Queuing (MSMQ): Queue Manager Client Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

SecurityInformation: MUST contain a value from the SECURITY_INFORMATION enumeration which
indicates the portions of the provided SECURITY_DESCRIPTOR to be applied to the queue

identified by pObjectFormat. The SECURITY_INFORMATION enumeration is defined in [MS-MQMQ]
section 2.2.3.

SDSize: MUST be set to the byte length of the buffer pointed to by pSecurityDescriptor.

pSecurityDescriptor: MUST be a pointer to an array of bytes containing a SECURITY_DESCRIPTOR
structure (see [MS-DTYP] section 2.4.6).

Return Values: On success, this method MUST return MQ_OK (0x00000000); otherwise, the server
MUST return a failure HRESULT,<32> and the client MUST treat all failure HRESULTs identically.

Exceptions Thrown: No exceptions are thrown beyond those thrown by the underlying RPC protocol, as
specified in [MS-RPCE].

This method is invoked at the dynamically assigned endpoint returned by the
R_QMGetRTQMServerPort method when IP_HANDSHAKE (0x00000000) or IPX_HANDSHAKE
(0x00000002) is the interface specified by the fIP parameter.

When processing this call, the server MUST:

▪ Determine if input parameter values violate constraints specified above. If an invalid parameter is
detected, the server MUST take no further action and return a failure HRESULT.

▪ Locate a Queue in the QueueCollection of the server's QueueManager identified by
pObjectFormat.

▪ Locate a Queue ([MS-MQDMPR] section 3.1.1.2) ADM element instance in the QueueCollection
attribute of the server's LocalQueueManager ([MS-MQDMPR] section 3.1.1) ADM element
instance identified by the pObjectFormat parameter.

▪ If no entry is resolved, return a failure HRESULT.

▪ Update the Security attribute of the Queue ADM element instance resolved preceding with the

information provided by SecurityInformation, SDSize, and pSecurityDescriptor.

▪ Return MQ_OK (0x00000000).

3.1.4.7 R_QMGetObjectSecurityInternal (Opnum 8)

A client calls the R_QMGetObjectSecurityInternal method to retrieve the security configuration of a
private queue located on the supporting server.

 HRESULT R_QMGetObjectSecurityInternal(
 [in] handle_t hBind,
 [in] struct OBJECT_FORMAT* pObjectFormat,
 [in] DWORD RequestedInformation,
 [out, size_is(nLength)] unsigned char* pSecurityDescriptor,
 [in, range(0, 524288)] DWORD nLength,
 [out] DWORD* lpnLengthNeeded
);

hBind: MUST be set to an RPC binding handle as described in [MS-RPCE] section 2.

pObjectFormat: MUST point to an OBJECT_FORMAT structure which identifies an existing local
private queue on the supporting server for which the security configuration is to be retrieved. It
MUST NOT be NULL. The ObjType member of the structure MUST be 0x00000001, and the

pQueueFormat member MUST NOT be NULL.

49 / 135

[MS-MQMP-Diff] - v20170915
Message Queuing (MSMQ): Queue Manager Client Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

RequestedInformation: MUST contain a value from the SECURITY_INFORMATION enumeration
which indicates the portions of the SECURITY_DESCRIPTOR ([MS-DTYP] section 2.4.6) to be

retrieved from the queue identified by pObjectFormat. The SECURITY_INFORMATION enumeration
is defined in [MS-MQMQ] section 2.2.3.

pSecurityDescriptor: MUST be a pointer to an array of bytes into which the server MUST write a
self-relative SECURITY_DESCRIPTOR structure. The server MUST NOT write more than nLength
bytes to the buffer. If the buffer provided by the client is too small (as indicated by the nLength
parameter) to contain the SECURITY_DESCRIPTOR for the queue identified by pObjectFormat,
the server MUST return MQ_ERROR_SECURITY_DESCRIPTOR_TOO_SMALL (0xc00e0023). This
parameter can be NULL if nLength is 0x00000000.

The SECURITY_DESCRIPTOR structure is defined in [MS-DTYP] section 2.4.6.

nLength: MUST indicate the byte length of the buffer pointed to by pSecurityDescriptor. This value
can be 0x00000000.

lpnLengthNeeded: MUST NOT be NULL. The server MUST set this DWORD to the byte length of the

SECURITY_DESCRIPTOR structure for the queue identified by pObjectFormat.

Return Values: On success, this method MUST return MQ_OK (0x00000000); otherwise, the server
MUST return a failure HRESULT,<33> and the client MUST treat all failure HRESULTs identically.

Additionally, if a failure HRESULT is returned, the client MUST disregard all out-parameter values with
the following exception:

If nLength is less than the byte length of the buffer required to contain the SECURITY_DESCRIPTOR
for the queue identified by pObjectFormat, the server MUST return the byte length of the buffer
required to contain the SECURITY_DESCRIPTOR in the lpnLengthNeeded parameter and MUST
return MQ_ERROR_SECURITY_DESCRIPTOR_TOO_SMALL (0xc00e0023).

Exceptions Thrown: No exceptions are thrown beyond those thrown by the underlying RPC protocol, as

specified in [MS-RPCE].

This method is invoked at the dynamically assigned endpoint returned by the

R_QMGetRTQMServerPort method when IP_HANDSHAKE (0x00000000) or IPX_HANDSHAKE
(0x00000002) is the interface specified by the fIP parameter.

When processing this call, the server MUST:

▪ Determine if input parameter values violate constraints specified preceding. If an invalid
parameter is detected, the server MUST take no further action and return a failure HRESULT.

▪ Raise a Get Queue Path event ([MS-MQDMPR] section 3.1.7.1.26) with the following argument:

▪ iFormatName: pObjectFormat.pQueueFormat.m_qft

▪ If the rStatus return argument value is not MQ_OK (0x00000000) or the rPathName return
argument is empty, take no further action and return a failure HRESULT.

▪ Locate a Queue ([MS-MQDMPR] section 3.1.1.2) ADM element instance in the QueueCollection
attribute of the server's LocalQueueManager ([MS-MQDMPR] section 3.1.1) ADM element

instance identified by the rPathName return argument value.

▪ If no entry is resolved, return a failure HRESULT.

▪ Let ReturnedDescriptor be a SECURITY_DESCRIPTOR initialized to be empty.

▪ If the OWNER_SECURITY_INFORMATION bit is set in RequestedInformation:

▪ Copy the contents of the Queue.Security.OwnerSid field ([MS-DTYP] section 2.4.6) to
ReturnedDescriptor.OwnerSid.

50 / 135

[MS-MQMP-Diff] - v20170915
Message Queuing (MSMQ): Queue Manager Client Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

▪ Else If the GROUP_SECURITY_INFORMATION bit is set in RequestedInformation:

▪ Copy the contents of the Queue.Security.GroupSid field ([MS-DTYP] section 2.4.6) to

ReturnedDescriptor.GroupSid.

▪ Else If the DACL_SECURITY_INFORMATION bit is set in RequestedInformation:

▪ Copy the contents of the Queue.Security.Dacl field ([MS-DTYP] section 2.4.6) to
ReturnedDescriptor.Dacl.

▪ Else If the SACL_SECURITY_INFORMATION bit is set in RequestedInformation:

▪ Copy the contents of the Queue.Security.Sacl field ([MS-DTYP] section 2.4.6) to
ReturnedDescriptor.Sacl.

▪ Set lpnLengthNeeded to the size in bytes of ReturnedDescriptor.

▪ If lpnLengthNeeded is greater than nLength, return

MQ_ERROR_SECURITY_DESCRIPTOR_TOO_SMALL(0xc00e0023).

▪ Else copy ReturnedDescriptor into the pSecurityDescriptor buffer.

▪ Return MQ_OK (0x00000000).

3.1.4.8 R_QMDeleteObject (Opnum 9)

A client calls R_QMDeleteObject to delete a private queue located on the supporting server.

 HRESULT R_QMDeleteObject(
 [in] handle_t hBind,
 [in] struct OBJECT_FORMAT* pObjectFormat
);

hBind: MUST be set to an RPC binding handle as described in [MS-RPCE] section 2.

pObjectFormat: MUST point to an OBJECT_FORMAT structure that identifies an existing local private
queue on the supporting server. MUST NOT be NULL. The ObjType member of the structure MUST
be 0x00000001. The pQueueFormat member MUST NOT be NULL.

Return Values: On success, this method MUST return MQ_OK (0x00000000); otherwise, the server
MUST return a failure HRESULT,<34><35> and the client MUST treat all failure HRESULTs identically.

Exceptions Thrown: No exceptions are thrown beyond those thrown by the underlying RPC protocol, as
specified in [MS-RPCE].

This method is invoked at the dynamically assigned endpoint returned by the
R_QMGetRTQMServerPort method when IP_HANDSHAKE (0x00000000) or IPX_HANDSHAKE
(0x00000002) is the interface specified by the fIP parameter.

When processing this call, the server MUST:

▪ Determine if input parameter values violate the constraints previously specified. If an invalid
parameter is detected, the server MUST take no further action and return a failure HRESULT.

▪ Locate a Queue ([MS-MQDMPR] section 3.1.1.2) ADM element instance in the QueueCollection
attribute of the server's LocalQueueManager ([MS-MQDMPR] section 3.1.1) ADM element
instance that is identified by the pObjectFormat parameter.

▪ If no entry is resolved, return a failure HRESULT.

51 / 135

[MS-MQMP-Diff] - v20170915
Message Queuing (MSMQ): Queue Manager Client Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

▪ Generate a Delete Queue ([MS-MQDMPR] section 3.1.7.1.4) event, specifying the Queue ADM
element instance located preceding for the iQueue argument.

▪ Return the rStatus of the Delete Queue event.

3.1.4.9 R_QMGetObjectProperties (Opnum 10)

A client calls R_QMGetObjectProperties to retrieve properties from a private queue located on a
supporting server.

 HRESULT R_QMGetObjectProperties(
 [in] handle_t hBind,
 [in] struct OBJECT_FORMAT* pObjectFormat,
 [in, range(1, 128)] DWORD cp,
 [in, size_is(cp)] DWORD aProp[],
 [in, out, size_is(cp)] PROPVARIANT apVar[]
);

hBind: MUST be set to an RPC binding handle as described in [MS-RPCE] section 2.

pObjectFormat: MUST point to an OBJECT_FORMAT structure which identifies an existing local
private queue on the supporting server. MUST NOT be NULL. The ObjType member of the
structure MUST be 0x00000001. The pQueueFormat member MUST NOT be NULL.

cp: MUST be set to the size (in elements) of the arrays aProp and apVar. The arrays aProp and apVar
MUST have an identical number of elements and MUST contain at least one element.

aProp: MUST be an array of queue property identifiers of properties to retrieve. Each element MUST
specify a value from the queue property identifiers table defined in [MS-MQMQ] section 2.3.1.
Each element MUST specify the queue property identifier for the corresponding queue property
value at the same element index in apVar. MUST contain at least one element.

apVar: MUST contain at least one element. On input, each element MUST be initialized to the

appropriate VARTYPE for the associated property specified by the same element in aProp, or
VT_NULL. Otherwise, the server SHOULD return the failure HRESULT MQ_ERROR_PROPERTY
(0xc00e0002).<36> On success, the server MUST populate the elements of this array with
property values for the properties identified by the corresponding elements of aProp.

Return Values: On success, this method MUST return MQ_OK (0x00000000); otherwise, the server
MUST return a failure HRESULT,<37><38> and the client MUST treat all failure HRESULTs identically.

Additionally, if a failure HRESULT is returned, the client MUST disregard all out-parameter values.

Exceptions Thrown: No exceptions are thrown beyond those thrown by the underlying RPC protocol, as
specified in [MS-RPCE].

This method is invoked at the dynamically assigned endpoint returned by the
R_QMGetRTQMServerPort method when IP_HANDSHAKE (0x00000000) or IPX_HANDSHAKE
(0x00000002) is the interface specified by the fIP parameter.

When processing this call, the server MUST:

▪ Determine if input parameter values violate constraints specified above. If an invalid parameter is
detected, the server MUST take no further action and return a failure HRESULT.

▪ Locate a Queue ([MS-MQDMPR] section 3.1.1.2) ADM element instance in the QueueCollection
attribute of the server's LocalQueueManager ([MS-MQDMPR] section 3.1.1) ADM element
instance identified by the pObjectFormat parameter.

▪ If no entry is resolved, return a failure HRESULT.

52 / 135

[MS-MQMP-Diff] - v20170915
Message Queuing (MSMQ): Queue Manager Client Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

▪ Copy the values of the Queue ADM element instance attributes indicated by aProp into apVar.
Queue property identifiers and their associated Queue ADM element attributes are specified in

section 3.1.1.12.

▪ Return MQ_OK (0x00000000).

3.1.4.10 R_QMSetObjectProperties (Opnum 11)

The R_QMSetObjectProperties method is called by a client to update properties of a local private
queue.

 HRESULT R_QMSetObjectProperties(
 [in] handle_t hBind,
 [in] struct OBJECT_FORMAT* pObjectFormat,
 [in, range(1, 128)] DWORD cp,
 [in, unique, size_is(cp)] DWORD aProp[],
 [in, unique, size_is(cp)] PROPVARIANT apVar[]
);

hBind: MUST be set to an RPC binding handle as described in [MS-RPCE] section 2.

pObjectFormat: MUST point to an OBJECT_FORMAT structure which identifies an existing local
private queue on the supporting server. MUST NOT be NULL. The ObjType member of the

structure MUST be 0x00000001. The pQueueFormat member MUST NOT be NULL.

cp: MUST be set to the size (in elements) of the arrays aProp and apVar. The arrays aProp and apVar
MUST have an identical number of elements, and MUST contain at least one element.

aProp: MUST be an array of queue property identifiers for properties to be updated. Each element
MUST specify a value from the queue property identifiers table defined in [MS-MQMQ] section
2.3.1. Each element MUST specify the queue property identifier for the corresponding queue

property value at the same element index in apVar. MUST contain at least one element.

apVar: MUST be an array that specifies the property values to update. Each element MUST specify
the property value for the corresponding property identifier at the same element index in aProp.
MUST contain at least one element. The vt (VARTYPE) member of each PROPVARIANT element
MUST be set to the appropriate type for the property being updated; otherwise, the server
SHOULD return the failure HRESULT MQ_ERROR_PROPERTY (0xc00e0002).<39> Queue properties
and their appropriate VARTYPEs are specified by [MS-MQMQ] section 2.3.1.

Return Values: On success, this method MUST return MQ_OK (0x00000000); otherwise, the server
MUST return a failure HRESULT,<40> and the client MUST treat all failure HRESULTs identically.

Exceptions Thrown: No exceptions are thrown beyond those thrown by the underlying RPC protocol, as
specified in [MS-RPCE].

This method is invoked at the dynamically assigned endpoint returned by the
R_QMGetRTQMServerPort method when IP_HANDSHAKE (0x00000000) or IPX_HANDSHAKE
(0x00000002) is the interface specified by the fIP parameter.

When processing this call, the server MUST:

▪ Determine if input parameter values violate constraints specified above. If an invalid parameter is
detected, the server MUST take no further action and return a failure HRESULT.

▪ Locate a Queue ([MS-MQDMPR] section 3.1.1.2) ADM element instance in the QueueCollection
attribute of the server's LocalQueueManager ([MS-MQDMPR] section 3.1.1.2) ADM element
instance identified by the pObjectFormat parameter.

53 / 135

[MS-MQMP-Diff] - v20170915
Message Queuing (MSMQ): Queue Manager Client Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

▪ If no entry is resolved, return a failure HRESULT.

▪ Update the attributes of the Queue ADM element instance using the values contained in aProp

and apVar. Queue property identifiers and their associated Queue ADM element attributes are
specified in section 3.1.1.12.

▪ Return MQ_OK (0x00000000).

3.1.4.11 R_QMObjectPathToObjectFormat (Opnum 12)

A client calls R_QMObjectPathToObjectFormat to determine a format name for a queue identified by a

given path name.

 HRESULT R_QMObjectPathToObjectFormat(
 [in] handle_t hBind,
 [in, string] const WCHAR* lpwcsPathName,
 [in, out] struct OBJECT_FORMAT* pObjectFormat
);

hBind: MUST be set to an RPC binding handle as described in [MS-RPCE] section 2.

lpwcsPathName: MUST be a pointer to a null-terminated path name string, as defined by [MS-

MQMQ] section 2.1.1. The path name MUST identify an existing private queue located on a
supporting server.

pObjectFormat: MUST be a pointer to an OBJECT_FORMAT structure, as specified in section 2.2.3.5.
On success, this structure MUST be populated with a direct format name or private format name
for the queue identified by lpwcsPathName. This specification does not mandate the process
through which a server produces a format name for a given path name.

On input, pObjectFormat MUST NOT be NULL, the ObjType member MUST be 0x00000001, and

the m_qft member MUST be QUEUE_FORMAT_TYPE_UNKNOWN (0x00000000).

Return Values: On success, this method MUST return MQ_OK (0x00000000); otherwise, the server
MUST return a failure HRESULT,<41><42> and the client MUST treat all failure HRESULTs identically.
Additionally, if a failure HRESULT is returned, the client MUST disregard all out-parameter values.

Exceptions Thrown: No exceptions are thrown beyond those thrown by the underlying RPC protocol, as
specified in [MS-RPCE].

This method is invoked at the dynamically assigned endpoint returned by the
R_QMGetRTQMServerPort method when IP_HANDSHAKE (0x00000000) or IPX_HANDSHAKE
(0x00000002) is the interface specified by the fIP parameter.

When processing this call, the server MUST:

▪ Determine if input parameter values violate constraints specified above. If an invalid parameter is
detected, the server MUST take no further action and return a failure HRESULT.

▪ Locate a Queue ([MS-MQDMPR] section 3.1.1.2) ADM element instance in the QueueCollection

attribute of the server's LocalQueueManager ([MS-MQDMPR] section 3.1.1) ADM element
instance where the value of the Pathname attribute of the Queue ADM element instance
matches the lpwcsPathName parameter.

▪ If no entry is located, return a failure HRESULT.

▪ Set the pObjectFormat parameter to a private format name, as specified in [MS-MQMQ] section
2.1.4, which resolves to the Queue ADM element instance located preceding.

54 / 135

[MS-MQMP-Diff] - v20170915
Message Queuing (MSMQ): Queue Manager Client Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

▪ Return MQ_OK (0x00000000).

3.1.4.12 R_QMGetTmWhereabouts (Opnum 14)

A client calls R_QMGetTmWhereabouts to obtain transaction manager whereabouts, as specified in
[MS-DTCO], from the supporting server. The whereabouts enable callers to generate exported
transaction cookies, which are required to enlist the supporting server's resource manager (RM) in an
external transaction.

 HRESULT R_QMGetTmWhereabouts(
 [in] handle_t hBind,
 [in, range(0,131072)] DWORD cbBufSize,
 [out, size_is(cbBufSize)] unsigned char* pbWhereabouts,
 [out] DWORD* pcbWhereabouts
);

hBind: MUST be set to an RPC binding handle as described in [MS-RPCE] section 2.

cbBufSize: MUST be set to the byte length of the buffer pointed to by pbWhereabouts. If this value is
0x00000000, the server MUST ignore the pbWhereabouts parameter.

pbWhereabouts: On success, points to an array of bytes containing a Distributed Transaction
Coordinator (DTC) SWhereabouts structure, as specified in [MS-DTCO] section 2.2.5.11.

pcbWhereabouts: On success, or ifMQ_ERROR_USER_BUFFER_TOO_SMALL (0xc00e0028) is
returned, pcbWhereabouts points to a DWORD containing the byte length of the SWhereabouts

structure retrieved from the DTC; otherwise, this parameter MUST be ignored.

Return Values: On success, this method MUST return MQ_OK (0x00000000); otherwise, the server
MUST return a failure HRESULT. The client MUST treat all failure HRESULTs identically and disregard
all out-parameter values, with the following exception:

If cbBufSize is less than the size of the SWhereabouts structure returned by the DTC, the server

MUST return MQ_ERROR_USER_BUFFER_TOO_SMALL (0xc00e0028).

Exceptions Thrown: No exceptions are thrown beyond those thrown by the underlying RPC protocol, as

specified in [MS-RPCE].

This method is invoked at the dynamically assigned endpoint returned by the
R_QMGetRTQMServerPort method when IP_HANDSHAKE (0x00000000) or IPX_HANDSHAKE
(0x00000002) is the interface specified by the fIP parameter.

When processing this call, the server MUST:

▪ If input parameter values violate the constraints specified above, the server MUST take no further
action and return a failure HRESULT.

▪ Raise the Obtaining Extended Whereabouts Using CONNTYPE_TXUSER_EXTENDEDWHEREABOUTS
event as specified in [MS-DTCO] section 3.3.4.10 to obtain an SWhereabouts structure from the

DTC.

▪ If the server successfully retrieves the SWhereabouts structure from the DTC, but the size of the
buffer provided by the caller (as indicated by the cbBufSize parameter) is too small to contain the
entire SWhereabouts structure, the server MUST take the following actions:

▪ The server MUST ignore the pbWhereabouts pointer.

▪ The server MUST set the pcbWhereabouts parameter to the size of the SWhereabouts
structure retrieved from the DTC.

55 / 135

[MS-MQMP-Diff] - v20170915
Message Queuing (MSMQ): Queue Manager Client Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

▪ The server MUST return MQ_ERROR_USER_BUFFER_TOO_SMALL (0xc00e0028). This return
value indicates to the caller that a larger buffer is required for this function to succeed.

▪ If any other error occurs, the server MUST return a failure HRESULT.

▪ Place the entire SWhereabouts structure retrieved from the DTC into the pbWhereabouts buffer

provided by the caller. The server MUST also return the byte length of the SWhereabouts
structure in the pcbWhereabouts parameter.

▪ Return MQ_OK (0x00000000).

3.1.4.13 R_QMEnlistTransaction (Opnum 15)

A client calls the R_QMEnlistTransaction method to enlist the supporting server's resource manager
(RM) in an external transaction.

 HRESULT
 R_QMEnlistTransaction(
 [in] handle_t hBind,
 [in] XACTUOW* pUow,
 [in, range(0, 131072)] DWORD cbCookie,
 [in, size_is (cbCookie)] unsigned char* pbCookie
);

hBind: MUST be set to an RPC binding handle as described in [MS-RPCE] section 2.

pUow: MUST point to an XACTUOW structure ([MS-MQMQ] section 2.2.18.1.8) that identifies the
external transaction in which the server is to enlist, as specified in section 2.2.3.1.

cbCookie: MUST be set to the byte length of the buffer pointed to by pbCookie.

pbCookie: MUST be a pointer to an array of bytes containing an exported transaction cookie, which
can be obtained as specified in [MS-DTCO] section 3.3.4.14.

Return Values: On success, this method MUST return MQ_OK (0x00000000); otherwise, the server
MUST return a failure HRESULT,<43> and the client MUST treat all failure HRESULTs identically.

Exceptions Thrown: No exceptions are thrown beyond those thrown by the underlying RPC protocol, as
specified in [MS-RPCE].

This method is invoked at the dynamically assigned endpoint returned by the
R_QMGetRTQMServerPort method when IP_HANDSHAKE (0x00000000) or IPX_HANDSHAKE
(0x00000002) is the interface specified by the fIP parameter.

When processing this call, the server MUST:

▪ Look up a Transaction ([MS-MQDMPR] section 3.1.1.14) ADM element instance in the server's
LocalQueueManager.TransactionCollection where Transaction.Identifier matches the pUow
parameter.

▪ If found:

▪ The transaction has already been enlisted. Take no further action and return MQ_OK
(0x00000000).

▪ Else:

▪ Raise the Importing a Transaction event as specified in [MS-DTCO] section 3.3.4.6. Provide
pbCookie as the STxInfo structure.

56 / 135

[MS-MQMP-Diff] - v20170915
Message Queuing (MSMQ): Queue Manager Client Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

▪ Raise the Enlisting on a Specific Transaction event as specified in [MS-DTCO] section 3.5.4.3.
Provide the transaction object that was created while importing the transaction in the previous

step as the transaction object argument to this event.

▪ Generate a Create Transaction ([MS-MQDMPR] section 3.1.7.1.8) event with the following

argument value:

▪ iTransactionIdentifier := pUow

▪ Return MQ_OK (0x00000000).

3.1.4.14 R_QMEnlistInternalTransaction (Opnum 16)

A client calls the R_QMEnlistInternalTransaction method to enlist the supporting server's resource
manager (RM) in an internal transaction. The server returns a transaction handle associated with the
given unit of work identifier (XACTUOW). The returned transaction handle is used when calling
R_QMCommitTransaction or R_QMAbortTransaction. The XACTUOW structure ([MS-MQMQ] section
2.2.18.1.8) is provided for calls to rpc_ACSendMessageEx and rpc_ACReceiveMessageEx of the

qmcomm2 RPC interface.

 HRESULT R_QMEnlistInternalTransaction(
 [in] handle_t hBind,
 [in] XACTUOW* pUow,
 [out] RPC_INT_XACT_HANDLE* phIntXact
);

hBind: MUST be set to an RPC binding handle as described in [MS-RPCE] section 2.

pUow: MUST point to an XACTUOW structure that uniquely identifies the internal transaction in which
the server is to enlist.<44>

phIntXact: A pointer to receive the new RPC_INT_XACT_HANDLE which represents the new internal
transaction context.

Return Values: On success, this method MUST return MQ_OK (0x00000000); otherwise, the server
MUST return a failure HRESULT, and the client MUST treat all failure HRESULTs identically.
Additionally, if a failure HRESULT is returned, the client MUST disregard all out-parameter values.

Exceptions Thrown: No exceptions are thrown beyond those thrown by the underlying RPC protocol, as

specified in [MS-RPCE].

This method is invoked at the dynamically assigned endpoint returned by the
R_QMGetRTQMServerPort method when IP_HANDSHAKE (0x00000000) or IPX_HANDSHAKE
(0x00000002) is the interface specified by the fIP parameter.

When processing this call, the server MUST:

▪ Determine if input parameter values violate constraints specified above. If an invalid parameter is
detected, the server MUST take no further action and return a failure HRESULT.

▪ Look up a Transaction ([MS-MQDMPR] section 3.1.1.14) ADM element instance in the server's
LocalQueueManager.TransactionCollection where Transaction.Identifier matches the pUow
parameter.

▪ If found:

▪ Take no further action and return MQ_ERROR_TRANSACTION_SEQUENCE (0xC00E0051).

▪ Else:

57 / 135

[MS-MQMP-Diff] - v20170915
Message Queuing (MSMQ): Queue Manager Client Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

▪ Generate a Create Transaction ([MS-MQDMPR] section 3.1.7.1.8) event with the following
argument value:

▪ iTransactionIdentifier := pUow

▪ The Create Transaction event returns a reference to a Transaction ADM element instance

rTransaction.

▪ Declare iNewTransactionHandle as a TransactionHandle (section 3.1.1.10) ADM element
instance and set its attributes to the following values:

▪ Handle := A new RPC_INT_XACT_HANDLE context handle.

▪ TransactionReference := rTransaction

▪ Add iNewTransactionHandle to iTransactionHandleTable.

▪ Set the phIntXact parameter to iNewTransactionHandle.Handle.

▪ Return MQ_OK (0x00000000).

3.1.4.15 R_QMCommitTransaction (Opnum 17)

A client calls the R_QMCommitTransaction method to commit an internal transaction.

 HRESULT R_QMCommitTransaction(
 [in, out] RPC_INT_XACT_HANDLE* phIntXact
);

phIntXact: MUST be an RPC_INT_XACT_HANDLE (section 2.2.1.1.1) identifying the internal
transaction to commit. MUST NOT be NULL. The value of this handle MUST have been acquired
from R_QMEnlistInternalTransaction (section 3.1.4.14). On return, the server MUST set this

parameter to NULL.

Return Values: On success, this method MUST return MQ_OK (0x00000000) and set phIntXact to
NULL; otherwise, the server MUST return a failure HRESULT, and the client MUST treat all failure
HRESULTs identically.

Exceptions Thrown: No exceptions are thrown beyond those thrown by the underlying RPC protocol, as
specified in [MS-RPCE].

This method is invoked at the dynamically assigned endpoint returned by the

R_QMGetRTQMServerPort (section 3.1.4.24) method when IP_HANDSHAKE (0x00000000) or
IPX_HANDSHAKE (0x00000002) is the interface specified by the fIP parameter.

When processing this call, the server MUST:

▪ Locate the TransactionHandle (section 3.1.1.10) ADM element instance in the server's
iTransactionHandleTable (section 3.1.1.9) where the value of the Handle attribute of the

TransactionHandle ADM element instance equals the phIntXact parameter.

▪ If no such TransactionHandle ADM element instance exists, take no further action and return a
failure HRESULT.

▪ Declare iLocatedTransactionHandle and set it to a reference to the located TransactionHandle
ADM element instance.

▪ Generate a Transaction Commit ([MS-MQDMPR] section 3.1.4.4) event with the following
argument value:

58 / 135

[MS-MQMP-Diff] - v20170915
Message Queuing (MSMQ): Queue Manager Client Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

▪ iTransactionIdentifier := iLocatedTransactionHandle.TransactionReference.Identifier

▪ Remove the iLocatedTransactionHandle from the iTransactionHandleTable.

▪ Set the phIntXact parameter to NULL.

▪ Return MQ_OK (0x00000000).

3.1.4.16 R_QMAbortTransaction (Opnum 18)

A client calls the R_QMAbortTransaction method to abort an internal transaction.

 HRESULT R_QMAbortTransaction(
 [in, out] RPC_INT_XACT_HANDLE* phIntXact
);

phIntXact: MUST be an RPC_INT_XACT_HANDLE identifying the internal transaction to abort. MUST

NOT be NULL. The value of this handle MUST have been acquired from
R_QMEnlistInternalTransaction. On return, the server MUST set this parameter to NULL.

Return Values: On success, this method MUST return MQ_OK (0x00000000) and MUST set

phIntXact to NULL; otherwise, the server MUST return a failure HRESULT, and the client MUST treat all
failure HRESULTs identically.

Exceptions Thrown: No exceptions are thrown beyond those thrown by the underlying RPC protocol, as
specified in [MS-RPCE].

This method is invoked at the dynamically assigned endpoint returned by the
R_QMGetRTQMServerPort method when IP_HANDSHAKE (0x00000000) or IPX_HANDSHAKE
(0x00000002) is the interface specified by the fIP parameter.

When processing this call, the server MUST:

▪ Locate the TransactionHandle (section 3.1.1.10) ADM element instance in the server's
iTransactionHandleTable where the value of the Handle attribute of the TransactionHandle ADM
element instance equals the phIntXact parameter.

▪ If no such TransactionHandle ADM element instance exists, take no further action and return a
failure HRESULT.

▪ Declare iLocatedTransactionHandle and set it to a reference to the located TransactionHandle

ADM element instance.

▪ Generate a Transaction Abort ([MS-MQDMPR] section 3.1.4.5) event with the following argument
value:

▪ iTransactionIdentifier := iLocatedTransactionHandle.TransactionReference.Identifier

▪ Remove the iLocatedTransactionHandle from the iTransactionHandleTable.

▪ Set the phIntXact parameter to NULL.

▪ Return MQ_OK (0x00000000).

3.1.4.17 rpc_QMOpenQueueInternal (Opnum 19)

A client calls rpc_QMOpenQueueInternal to obtain a local queue context handle, to determine if a
queue is located at a remote queue manager (section 4.2), or to obtain a local context handle for an

opened remote queue. If the call to RemoteQMOpenQueue ([MS-MQQP] section 3.1.4.3) fails, the

59 / 135

[MS-MQMP-Diff] - v20170915
Message Queuing (MSMQ): Queue Manager Client Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

result MUST be returned to the client, and the remote open queue sequence is discontinued. In the
case of failure, any state changes need to be rolled back.

 HRESULT rpc_QMOpenQueueInternal(
 [in] handle_t hBind,
 [in] QUEUE_FORMAT* pQueueFormat,
 [in] DWORD dwDesiredAccess,
 [in] DWORD dwShareMode,
 [in] DWORD hRemoteQueue,
 [in, out, ptr, string] WCHAR** lplpRemoteQueueName,
 [in] DWORD* dwpQueue,
 [in] GUID* pLicGuid,
 [in, string] WCHAR* lpClientName,
 [out] DWORD* pdwQMContext,
 [out] RPC_QUEUE_HANDLE* phQueue,
 [in] DWORD dwRemoteProtocol,
 [in] DWORD dwpRemoteContext
);

hBind: MUST be set to an RPC binding handle as described in [MS-RPCE] section 2.

pQueueFormat: MUST be a pointer to a QUEUE_FORMAT ([MS-MQMQ] section 2.2.7) structure,
which identifies an existing queue to be opened. MUST NOT be NULL and MUST conform to the

format name syntax rules defined in [MS-MQMQ].

dwDesiredAccess: A DWORD that specifies the access mode requested for the queue. The access
mode defines the set of operations which can be invoked using the returned queue handle. The
value MUST be one of the following:

Value Meaning

MQ_RECEIVE_ACCESS

0x00000001

The server MUST permit only the following operations using the
returned queue handle:

▪ Message peek

▪ Message receive (peek and delete)

▪ Queue purge

MQ_SEND_ACCESS

0x00000002

The server MUST permit only message send operations using the
returned queue handle.

MQ_PEEK_ACCESS

0x00000020

The server MUST permit only message peek operations using the
returned queue handle.

MQ_RECEIVE_ACCESS|MQ_ADMIN_ACCESS

0x00000081

The returned queue handle MUST perform operations on the
outgoing queue associated with the queue identified by
pQueueFormat. Additionally, the server MUST permit only the
following operations using the returned queue handle:

▪ Message peek

▪ Message receive (peek and delete)

▪ Queue purge

MQ_PEEK_ACCESS|MQ_ADMIN_ACCESS

0x000000a0

The returned queue handle MUST perform operations on the
outgoing queue associated with the queue identified by
pQueueFormat. Additionally, the server MUST permit only message

peek operations using the returned queue handle.

60 / 135

[MS-MQMP-Diff] - v20170915
Message Queuing (MSMQ): Queue Manager Client Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

If pQueueFormat contains an HTTP or multicast format name,
R_QMOpenRemoteQueue (section 3.1.4.2) MUST be MQ_SEND_ACCESS (0x00000002).

If pQueueFormat identifies a sub-queue, dwDesiredAccess MUST NOT be MQ_SEND_ACCESS
(0x00000002).

If pQueueFormat identifies a system, journal, machine, or connector queue, dwDesiredAccess
MUST be MQ_RECEIVE_ACCESS (0x00000001) or MQ_PEEK_ACCESS (0x00000020).

If pQueueFormat identifies a remote queue, dwDesiredAccess MUST be MQ_RECEIVE_ACCESS
(0x00000001) or MQ_PEEK_ACCESS (0x00000020).

dwShareMode: Specifies the exclusivity level for the opened queue. The value MUST be one of the
following:

Value Meaning

MQ_DENY_NONE

0x00000000

The queue is not opened exclusively.

MQ_DENY_RECEIVE_SHARE

0x00000001

The queue is opened for exclusive read access. If the queue has already been

opened for read access, the server MUST return a failure HRESULT. If the queue is
opened successfully for exclusive read access, subsequent attempts to open the
same queue for read access MUST return a failure HRESULT until the queue has
been closed.

If dwDesiredAccess is MQ_SEND_ACCESS (0x00000002), dwShareMode MUST be
MQ_DENY_NONE (0x00000000).

hRemoteQueue: MUST be 0x00000000, or MUST contain a DWORD value obtained from the
phQueue out-parameter of the R_QMOpenRemoteQueue method invoked at a remote queue
manager.

lplpRemoteQueueName: On input, the server MUST ignore lplpRemoteQueueName. If

hRemoteQueue is 0x00000000 and the queue identified by pQueueFormat is located at a remote
queue manager, the server MUST set this string to a null-terminated path name, from which the
client can determine the computer name of the remote queue manager, as specified in [MS-
MQMQ] section 2.1.1.

If pQueueFormat identifies a queue local to the supporting server, the server MUST set
lplpRemoteQueueName to NULL.

dwpQueue: If hRemoteQueue is 0x00000000, dwpQueue MUST be NULL; otherwise, dwpQueue
MUST contain a DWORD value obtained from the dwpQueue out-parameter of the
R_QMOpenRemoteQueue method invoked at a remote queue manager.

pLicGuid: MUST be a pointer to a valid GUID which uniquely identifies the client.<45><46> The
server MAY ignore this parameter.<47>

lpClientName: MUST be a null-terminated string containing the client's computer name.<48>

Servers MAY use this parameter in concert with the pLicGuid parameter to implement limits on the
number of unique clients which can open queue handles.<49> Implementing connection limits is
optional and not recommended.

pdwQMContext: A pointer to a variable to receive a DWORD value that identifies either an
OpenQueueDescriptor ([MS-MQDMPR] section 3.1.1.16) ADM element instance at the server or
a RemoteQueueProxyHandle (section 3.1.1.5) ADM element instance that contains information
pertaining to an OpenQueueDescriptor ADM element instance at a remote server. When the

client calls rpc_ACReceiveMessageEx (section 3.1.5.3), it specifies a queue by providing the value

61 / 135

[MS-MQMP-Diff] - v20170915
Message Queuing (MSMQ): Queue Manager Client Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

that is returned by this parameter. On return, the client MUST ignore pdwQMContext if the value
returned via lplpRemoteQueueName is non-NULL.

phQueue: A pointer to a variable to receive a new RPC_QUEUE_HANDLE (section 2.2.1.1.2) context
handle. On return, the client MUST ignore phQueue if the value returned via

lplpRemoteQueueName is non-NULL.

dwRemoteProtocol: Clients MUST set this parameter to 0x00000000. Servers SHOULD ignore this
parameter.<50>

Value Meaning

0x00000000 The TCP/IP protocol sequence is to be used.

0x00000003 The IPX/SPX protocol sequence is to be used.

dwpRemoteContext: If hRemoteQueue is 0x00000000, dwpRemoteContext MUST contain
0x000000000; otherwise, dwpRemoteContext MUST contain a DWORD value obtained from the

pdwContext out-parameter of the R_QMOpenRemoteQueue (section 3.1.4.2) method invoked at a
remote queue manager.

Return Values: On success, this method MUST return MQ_OK (0x00000000); otherwise, if an error
occurs, the server MUST return a failure HRESULT,<51> and the client MUST treat all failure
HRESULTs identically. Additionally, if a failure HRESULT is returned, the client MUST disregard all out-
parameter values.

Exceptions Thrown: In addition to the exceptions thrown by the underlying RPC protocol, as specified

in [MS-RPCE], the method can throw HRESULT failure codes as RPC exceptions. The client MUST treat
all thrown HRESULT codes identically. Additionally, the client MUST disregard all out-parameter values
when any failure HRESULT is thrown.

This method is invoked at the dynamically assigned endpoint returned by the
R_QMGetRTQMServerPort (section 3.1.4.24) method when IP_HANDSHAKE (0x00000000) or
IPX_HANDSHAKE (0x00000002) is the interface specified by the fIP parameter.

When processing this call, the server MUST do the following:

▪ Determine if input parameter values violate constraints specified above. If an invalid parameter is
detected, the server MUST take no further action and return a failure HRESULT.

▪ If hRemoteQueue is nonzero:

▪ By providing a nonzero value for hRemoteQueue, the client indicates that it has successfully
obtained a PCTX_OPENREMOTE_HANDLE_TYPE (section 2.2.1.1.3) by invoking
R_QMOpenRemoteQueue (section 3.1.4.2) at a remote server. In response, this server

attempts to contact the remote server to validate the provided handle, and to return a new
RPC_QUEUE_HANDLE to the client.

▪ Raise a Get Queue Path ([MS-MQDMPR] section 3.1.7.1.26) event with the input argument
iFormatName set to pQueueFormat. If the rStatus returned by the event is not MQ_OK

(0x00000000) or the rPathName return argument is empty, take no further action and return
a failure HRESULT; otherwise, set remoteServer to the rMachineName return argument value.

▪ Declare the iPathName variable and set its value to the rPathName return argument value

obtained from the Get Queue Path event.

▪ Invoke the MSMQ: Queue Manager to Queue Manager Protocol to open the queue, as specified
in [MS-MQQP] section 3.2.4.1, and provide the following inputs:

▪ RemoteServer set to remoteServer

62 / 135

[MS-MQMP-Diff] - v20170915
Message Queuing (MSMQ): Queue Manager Client Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

▪ QueueHandle set to hRemoteQueue

▪ QueueDescriptor set to dwpQueue

▪ OpenContext set to the value pointed to by dwpRemoteContext

If the method is unsuccessful for any reason, including transport failures, errors raised by [MS-

MQQP], timeouts, and unbind, take no further action, and return a failure HRESULT.

▪ Declare iNewRemoteQueueProxyHandle as a RemoteQueueProxyHandle ADM element
instance and set its attributes to the following values:

▪ Handle := New RPC_QUEUE_HANDLE context handle.

▪ Context := A new DWORD value that uniquely identifies the
RemoteQueueProxyHandle ADM element instance within
iRemoteQueueProxyHandleTable.

▪ RemoteHandle := The phContext out-parameter value received from

RemoteQMOpenQueue.

▪ RemoteBindingHandle := The binding handle established preceding.

▪ RemoteContext := hRemoteQueue

▪ FormatName := pQueueFormat

▪ PathName := iPathName

▪ Add iNewRemoteQueueProxyHandle to iRemoteQueueProxyHandleTable (section 3.1.1.4).

▪ Set lplpRemoteQueueName to NULL.

▪ Set phQueue to iNewRemoteQueueProxyHandle.Handle.

▪ Set pdwQMContext to iNewRemoteQueueProxyHandle.Context.

▪ Take no further action and return MQ_OK (0x00000000).

▪ Else: hRemoteQueue is 0x00000000.

▪ Generate an Open Queue ([MS-MQDMPR] section 3.1.7.1.5) event with the following

argument values:

▪ iFormatName := pQueueFormat

▪ iRequiredAccess := dwDesiredAccess, according to the following values:

▪ MQ_RECEIVE_ACCESS (0x00000001): ReceiveAccess

▪ MQ_SEND_ACCESS (0x00000002): SendAccess

▪ MQ_PEEK_ACCESS (0x00000020): PeekAccess

▪ iSharedMode := dwShareMode, according to the following values:

▪ MQ_DENY_NONE (0x00000000): DenyNone

▪ MQ_DENY_RECEIVE_SHARE (0x00000001): DenyReceive

▪ If the rStatus out-argument of the Open Queue event indicates success:

63 / 135

[MS-MQMP-Diff] - v20170915
Message Queuing (MSMQ): Queue Manager Client Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

▪ Add a new LocalQueueContextHandle (section 3.1.1.3) ADM element instance to the
server's iLocalQueueContextHandleTable (section 3.1.1.2) with the following values:

▪ Handle := New RPC_QUEUE_HANDLE context handle.

▪ OpenQueueDescriptorReference := The rOpenQueueDescriptor out-argument of

the Open Queue event.

▪ Set lplpRemoteQueueName to NULL.

▪ Set phQueue to the iLocalQueueContextHandleTable.Handle.

▪ Set pdwQMContext to rOpenQueueDescriptor.Handle.

▪ Take no further action and return MQ_OK (0x00000000).

▪ Else, if rStatus indicates MQ_ERROR_QUEUE_NOT_FOUND, and dwDesiredAccess is not
MQ_SEND_ACCESS (0x00000002):

▪ Attempt to resolve the format name in pQueueFormat to a path name by raising a Get
Queue Path event ([MS-MQDMPR] section 3.1.7.1.26) with the input argument
iFormatName set to pQueueFormat.

▪ If rStatus returned in the preceding step is not MQ_OK (0x00000000) or the rPathName
return argument is empty, take no further action and return a failure HRESULT.

▪ Set lplpRemoteQueueName to the resolved path name.

▪ Set phQueue to NULL.

▪ Set pdwQMContext to zero (0x00000000).

▪ Take no further action and return MQ_OK (0x00000000).

▪ Else:

▪ Return rStatus.

3.1.4.18 rpc_ACCloseHandle (Opnum 20)

A client calls the rpc_ACCloseHandle method to close context handles acquired from
rpc_QMOpenQueueInternal (section 3.1.4.17).

 HRESULT rpc_ACCloseHandle(
 [in, out] RPC_QUEUE_HANDLE* phQueue
);

phQueue: MUST be a context handle acquired from the phQueue out-parameter of the
rpc_QMOpenQueueInternal method. On success, the server MUST set this parameter to NULL.

Return Values: On success, this method MUST return MQ_OK (0x00000000); otherwise, the server
MUST return a failure HRESULT,<52> and the client MUST treat all failure HRESULTs identically.
Additionally, if a failure HRESULT is returned, the client MUST disregard all out-parameter values.

Exceptions Thrown: No exceptions are thrown beyond those thrown by the underlying RPC protocol, as
specified in [MS-RPCE].

This method is invoked at the dynamically assigned endpoint returned by the
R_QMGetRTQMServerPort (section 3.1.4.24) method when IP_HANDSHAKE (0x00000000) or
IPX_HANDSHAKE (0x00000002) is the interface specified by the fIP parameter.

64 / 135

[MS-MQMP-Diff] - v20170915
Message Queuing (MSMQ): Queue Manager Client Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

When processing this call, the server MUST:

▪ Locate a LocalQueueContextHandle (section 3.1.1.3) ADM element instance in the server's

iLocalQueueContextHandleTable (section 3.1.1.2) where the value of the Handle attribute of the
LocalQueueContextHandle ADM element instance equals phQueue.

▪ If such a LocalQueueContextHandle ADM element instance exists:

▪ Declare iLocatedLocalQueueContextHandle and set it to a reference to the located
LocalQueueContextHandle ADM element instance.

▪ Generate a Close Queue ([MS-MQDMPR] section 3.1.7.1.2) event with the following argument
value:

▪ iQueueDesc := iLocatedLocalQueueContextHandle.OpenQueueDescriptorReference

▪ Delete iLocatedLocalQueueContextHandle from the server's iLocalQueueContextHandleTable.

▪ Set phQueue to NULL.

▪ Take no further action and return MQ_OK (0x00000000).

▪ Else:

▪ Locate a RemoteQueueProxyHandle (section 3.1.1.5) ADM element instance in the server's
iRemoteQueueProxyHandleTable (section 3.1.1.4) where the value of the Handle attribute of
the RemoteQueueProxyHandle ADM element instance equals phQueue.

▪ If no such RemoteQueueProxyHandle ADM element instance exists, take no further action
and return a failure HRESULT.

▪ Declare iLocatedRemoteQueueProxyHandle and set it to a reference to the located
RemoteQueueProxyHandle ADM element instance.

▪ Invoke the RemoteQMCloseQueue method of the qm2qm RPC interface as specified in [MS-

MQQP] section 3.1.4.4 using the binding handle in
iLocatedRemoteQueueProxyHandle.RemoteBindingHandle and the following parameter

value:

▪ pphContext := iLocatedRemoteQueueProxyHandle.RemoteHandle

▪ Upon completion of the RemoteQMCloseQueue method, successful or not, dispose of the
iLocatedRemoteQueueProxyHandle.RemoteBindingHandle as appropriate.

▪ Note: This method SHOULD<53> start a parallel process to perform the above operations
and return S_OK without waiting for the process to complete. Since S_OK is returned to
the client without regard for the activities in the parallel process, failures that occur in the

parallel process will not be conveyed to the client, which will delay reclamation of
resources in the [MS-MQQP] server.

▪ Delete iLocatedRemoteQueueProxyHandle from iRemoteQueueProxyHandleTable.

▪ Set phQueue to NULL.

▪ Return MQ_OK (0x00000000).

3.1.4.19 rpc_ACCloseCursor (Opnum 22)

A client calls the rpc_ACCloseCursor method to close a cursor acquired from the
rpc_ACCreateCursorEx (section 3.1.5.4) method of the qmcomm2 RPC interface.

65 / 135

[MS-MQMP-Diff] - v20170915
Message Queuing (MSMQ): Queue Manager Client Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

 HRESULT rpc_ACCloseCursor(
 [in] RPC_QUEUE_HANDLE hQueue,
 [in] DWORD hCursor
);

hQueue: MUST contain the RPC_QUEUE_HANDLE (section 2.2.1.1.2) context handle passed to
rpc_ACCreateCursorEx when the cursor specified by hCursor was created.

hCursor: MUST contain a DWORD value obtained from the pcc.hCursor out-parameter of

rpc_ACCreateCursorEx, or the reserved value 0x0000000b.

Return Values: On success, this method MUST return MQ_OK (0x00000000); otherwise, the server
MUST return a failure HRESULT,<54> and the client MUST treat all failure HRESULTs identically.

Exceptions Thrown: No exceptions are thrown beyond those thrown by the underlying RPC protocol, as
specified in [MS-RPCE].

This method is invoked at the dynamically assigned endpoint returned by the

R_QMGetRTQMServerPort (section 3.1.4.24) method when IP_HANDSHAKE (0x00000000) or

IPX_HANDSHAKE (0x00000002) is the interface specified by the fIP parameter.

When processing this call, the server MUST:

▪ If hCursor is 0x0000000b, take no further action and return MQ_OK (0x00000000).

▪ Locate a LocalQueueContextHandle (section 3.1.1.3) ADM element instance in the server's
iLocalQueueContextHandleTable (section 3.1.1.2) where the value of the Handle attribute of the
LocalQueueContextHandle ADM element instance equals hQueue.

▪ If such a LocalQueueContextHandle ADM element instance exists:

▪ Declare iLocatedLocalQueueContextHandle and set it to a reference to the located
LocalQueueContextHandle ADM element instance.

▪ Locate a Cursor ([MS-MQDMPR] section 3.2) ADM element instance in
iLocatedLocalQueueContextHandle.OpenQueueDescriptorReference.CursorCollection
where the Handle attribute of the Cursor ADM element instance equals hCursor.

▪ If no such Cursor ADM element instance exists, take no further action and return a failure

HRESULT.

▪ Generate a Close Cursor ([MS-MQDMPR] section 3.1.7.1.2) event with the following argument
value:

iCursor := The Cursor ADM element instance located preceding.

▪ Take no further action and return MQ_OK (0x00000000).

▪ Else:

▪ Locate a RemoteQueueProxyHandle (section 3.1.1.5) ADM element instance in the server's

iRemoteQueueProxyHandleTable (section 3.1.1.4) where the value of the Handle attribute of
the RemoteQueueProxyHandle ADM element instance equals hQueue.

▪ If no such RemoteQueueProxyHandle ADM element instance exists, take no further action
and return a failure HRESULT.

▪ Declare iLocatedRemoteQueueProxyHandle and set it to a reference to the located
RemoteQueueProxyHandle ADM element instance.

66 / 135

[MS-MQMP-Diff] - v20170915
Message Queuing (MSMQ): Queue Manager Client Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

▪ Locate a CursorProxy (section 3.1.1.6) ADM element instance in
iLocatedRemoteQueueProxyHandle.CursorProxyCollection where the value of the Handle

attribute of the CursorProxy ADM element instance equals hCursor.

▪ If no such CursorProxy ADM element instance exists, take no further action and return a

failure HRESULT.

▪ Declare iLocatedCursorProxy and set it to a reference to the located CursorProxy ADM
element instance.

▪ Using the binding handle contained in
iLocatedRemoteQueueProxyHandle.RemoteBindingHandle, invoke the
RemoteQMCloseCursor method of the qm2qm RPC interface specified in [MS-MQQP] section
3.1.4.5 using the following parameter values:

▪ hQueue := iLocatedRemoteQueueProxyHandle.RemoteContext

▪ hCursor := iLocatedCursorProxy.RemoteCursorHandle

▪ Delete iLocatedCursorProxy from iLocatedRemoteQueueProxyHandle.CursorProxyCollection.

▪ Return the result from RemoteQMCloseCursor and take no further action.

3.1.4.20 rpc_ACSetCursorProperties (Opnum 23)

A client calls the rpc_ACSetCursorProperties method to associate a remote cursor created via
R_QMCreateRemoteCursor (section 3.1.4.4) with a local CursorProxy (section 3.1.1.6) created using
rpc_ACCreateCursorEx (section 3.1.5.4).

Note This method is obsolete. The server SHOULD take no action and return
MQ_ERROR_ILLEGAL_OPERATION (0xc00e0064).<55>

 HRESULT rpc_ACSetCursorProperties(
 [in] RPC_QUEUE_HANDLE hProxy,
 [in] DWORD hCursor,
 [in] DWORD hRemoteCursor
);

hProxy: MUST contain the RPC_QUEUE_HANDLE (section 2.2.1.1.2) context handle passed to
rpc_ACCreateCursorEx when the cursor specified by hCursor was created.

hCursor: MUST contain a CursorProxy.Handle obtained from the pcc.hCursor out-parameter of
rpc_ACCreateCursorEx.

hRemoteCursor: MUST contain a Cursor.Handle for a remote cursor acquired from the phCursor
out-parameter of R_QMCreateRemoteCursor invoked at a remote queue manager.

Return Values: On success, this method MUST return MQ_OK (0x00000000); otherwise, the server
MUST return a failure HRESULT, and the client MUST treat all failure HRESULTs identically.

This method is obsolete. Servers SHOULD take no action and return MQ_ERROR_ILLEGAL_OPERATION

(0xc00e0064). Servers SHOULD contact the remote queue manager on behalf of the client when
rpc_ACCreateCursorEx is called to create a remote cursor.

Exceptions Thrown: No exceptions are thrown beyond those thrown by the underlying RPC protocol, as
specified in [MS-RPCE].

During the client cursor creation sequence, the supporting server MAY indicate that the client MUST
contact a remote queue manager to proceed.<56> In response, the client MUST call

67 / 135

[MS-MQMP-Diff] - v20170915
Message Queuing (MSMQ): Queue Manager Client Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

R_QMGetRemoteQueueName (section 3.1.4.1) to determine the remote queue manager name and
MUST then invoke R_QMCreateRemoteCursor at the remote queue manager. Next, the client MUST

call this method to associate the Cursor.Handle obtained from R_QMCreateRemoteCursor with the
original CursorProxy.Handle obtained from rpc_ACCreateCursorEx.

This method is invoked at the dynamically assigned endpoint returned by the
R_QMGetRTQMServerPort (section 3.1.4.24) method when IP_HANDSHAKE (0x00000000) or
IPX_HANDSHAKE (0x00000002) is the interface specified by the fIP parameter.

When processing this call, the server MUST:

▪ Locate a RemoteQueueProxyHandle (section 3.1.1.5) in the server's
RemoteQueueProxyHandleTable (section 3.1.1.4) where RemoteQueueProxyHandle.Handle
equals hProxy.

▪ If no such RemoteQueueProxyHandle exists, take no further action and return a failure
HRESULT.

▪ Locate a CursorProxy in RemoteQueueProxyHandle.CursorProxyCollection where

CursorProxy.Handle equals hCursor.

▪ If no such CursorProxy exists, take no further action and return a failure HRESULT.

▪ Set CursorProxy.RemoteCursorHandle := hRemoteCursor.

▪ Set CursorProxy.IsRemoteCursorHandleInitialized := True.

▪ Return MQ_OK (0x00000000).

3.1.4.21 rpc_ACHandleToFormatName (Opnum 26)

A client calls the rpc_ACHandleToFormatName method to retrieve a format name for a queue handle.

 HRESULT rpc_ACHandleToFormatName(
 [in] RPC_QUEUE_HANDLE hQueue,
 [in, range(0, 524288)] DWORD dwFormatNameRPCBufferLen,
 [in, out, unique, size_is(dwFormatNameRPCBufferLen), length_is(dwFormatNameRPCBufferLen)]
 WCHAR* lpwcsFormatName,
 [in, out] DWORD* pdwLength
);

hQueue: MUST be an RPC_QUEUE_HANDLE (section 2.2.1.1.2) acquired from the phQueue
parameter of rpc_QMOpenQueueInternal (section 3.1.4.17). Prior to this method being invoked,

the queue MUST NOT have been deleted, and the queue handle MUST NOT have been closed.

dwFormatNameRPCBufferLen: Length of the buffer (in Unicode characters) provided for the
lpwcsFormatName parameter.

lpwcsFormatName: Pointer to a Unicode character buffer into which the server writes the format
name (as specified in [MS-MQMQ]) for the queue identified by the hQueue parameter. The

character buffer MUST be null-terminated by the server prior to returning, even if the provided
buffer is not large enough to contain the entire format name string. Can be NULL if

dwFormatNameRPCBufferLen is 0x00000000. MUST NOT be NULL if dwFormatNameRPCBufferLen
is nonzero.

pdwLength: On input, the maximum number of Unicode characters to write to the
lpwcsFormatName buffer. This value MUST be equal to the dwFormatNameRPCBufferLen
parameter. On return, the server MUST update the value of this parameter to indicate the

68 / 135

[MS-MQMP-Diff] - v20170915
Message Queuing (MSMQ): Queue Manager Client Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

complete length of the format name string for the queue identified by hQueue, without regard for
the size of the provided buffer.

Return Values: If the provided buffer is long enough to contain the null-terminated format name for
the queue identified by hQueue, the server MUST take the following actions:

▪ Copy the null-terminated format name into the lpwcsFormatName buffer.

▪ Set pdwLength to the length (in Unicode characters) of the format name, including the terminating
null character.

▪ Return MQ_OK (0x00000000).

If the provided buffer is too small to contain the complete format name for the queue identified by
hQueue (including the terminating null character), the server MUST take the following actions:

▪ If the buffer length (indicated by pdwLength) is greater than 0x00000000, and if

lpwcsFormatName is non-NULL, copy the format name to the lpwcsFormatName buffer, truncated
to fit the length indicated by the input value for pdwLength. The string MUST be null-terminated

post-truncation.

▪ Set pdwLength to the length of the untruncated format name, including the terminating null
character.

▪ Take no further action and return MQ_ERROR_FORMATNAME_BUFFER_TOO_SMALL (0xc00e001f).

If input parameter values violate constraints specified above, the server MUST take no further action
and return a failure HRESULT.

If any other error occurs, the server MUST return a failure HRESULT,<57> and the client MUST treat
all other failure HRESULTs identically. Additionally, if any other failure HRESULT is returned, the client
MUST disregard all out-parameter values.

Exceptions Thrown: No exceptions are thrown beyond those thrown by the underlying RPC protocol, as
specified in [MS-RPCE].

This method is invoked at the dynamically assigned endpoint returned by the
R_QMGetRTQMServerPort (section 3.1.4.24) method when IP_HANDSHAKE (0x00000000) or
IPX_HANDSHAKE (0x00000002) is the interface specified by the fIP parameter.

 The format name to be returned to the client (using the rules defined above) is determined as
follows:

▪ Locate a LocalQueueContextHandle (section 3.1.1.3) ADM element instance in the server's
iLocalQueueContextHandleTable (section 3.1.1.2) where the value of the Handle attribute of the

LocalQueueContextHandle ADM element instance equals hQueue.

▪ If such a LocalQueueContextHandle ADM element instance exists:

▪ Declare iLocatedLocalQueueContextHandle and set it to a reference to the located
LocalQueueContextHandle ADM element instance.

▪ The format name to be returned to the client is
iLocatedLocalQueueContextHandle.OpenQueueDescriptorReference.FormatName.

▪ Else:

▪ Locate a RemoteQueueProxyHandle (section 3.1.1.5) ADM element instance in the server's
iRemoteQueueProxyHandleTable (section 3.1.1.4) where the value of the Handle attribute of
the RemoteQueueProxyHandle ADM element instance equals hQueue.

69 / 135

[MS-MQMP-Diff] - v20170915
Message Queuing (MSMQ): Queue Manager Client Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

▪ If no such RemoteQueueProxyHandle ADM element instance exists, take no further action
and return a failure HRESULT.

▪ Declare iLocatedRemoteQueueProxyHandle and set it to a reference to the located
RemoteQueueProxyHandle ADM element instance.

▪ The format name to be returned to the client is
iLocatedRemoteQueueProxyHandle.FormatName.

3.1.4.22 rpc_ACPurgeQueue (Opnum 27)

The rpc_ACPurgeQueue method is called by a client to purge an opened queue.

 HRESULT rpc_ACPurgeQueue(
 [in] RPC_QUEUE_HANDLE hQueue
);

hQueue: MUST be an RPC_QUEUE_HANDLE (section 2.2.1.1.2) obtained from the phQueue
parameter of the rpc_QMOpenQueueInternal (section 3.1.4.17) method. Prior to this method

being invoked, the queue MUST NOT have been deleted, and the queue handle MUST NOT have
been closed.

Return Values: On success, this method MUST return MQ_OK (0x00000000); otherwise, the server
MUST return a failure HRESULT,<58> and the client MUST treat all failure HRESULTs identically.

Exceptions Thrown: No exceptions are thrown beyond those thrown by the underlying RPC protocol, as
specified in [MS-RPCE].

This method is invoked at the dynamically assigned endpoint returned by the

R_QMGetRTQMServerPort (section 3.1.4.24) method when IP_HANDSHAKE (0x00000000) or
IPX_HANDSHAKE (0x00000002) is the interface specified by the fIP parameter.

When processing this call, the server MUST:

▪ Locate a LocalQueueContextHandle (section 3.1.1.3) ADM element instance in the server's
iLocalQueueContextHandleTable (section 3.1.1.2) where the Handle attribute of the
LocalQueueContextHandle ADM element instance equals hQueue.

▪ If such a LocalQueueContextHandle ADM element instance exists:

▪ Declare iLocatedLocalQueueContextHandle and set it to a reference to the located
LocalQueueContextHandle ADM element instance.

▪ Generate a Purge Queue ([MS-MQDMPR] section 3.1.7.1.7) event with the following argument
value:

▪ iQueue :=
iLocatedLocalQueueContextHandle.OpenQueueDescriptorReference.QueueReference

▪ Take no further action and return MQ_OK (0x00000000).

▪ Else:

▪ Locate a RemoteQueueProxyHandle (section 3.1.1.5) ADM element instance in the server's
iRemoteQueueProxyHandleTable (section 3.1.1.4) where the value of the Handle attribute of
the RemoteQueueProxyHandle ADM element instance equals hQueue.

▪ If no such RemoteQueueProxyHandle ADM element instance exists, take no further action
and return a failure HRESULT.

70 / 135

[MS-MQMP-Diff] - v20170915
Message Queuing (MSMQ): Queue Manager Client Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

▪ Declare iLocatedRemoteQueueProxyHandle and set it to a reference to the located
RemoteQueueProxyHandle ADM element instance.

▪ Using the binding handle contained in
iLocatedRemoteQueueProxyHandle.RemoteBindingHandle, invoke the method

RemoteQMPurgeQueue of the qm2qm interface defined in [MS-MQQP] section 3.1.4.7 with the
following argument value:

▪ hQueue := iLocatedRemoteQueueProxyHandle.RemoteContext

▪ Return the return code produced by RemoteQMPurgeQueue.

3.1.4.23 R_QMQueryQMRegistryInternal (Opnum 28)

A client calls the R_QMQueryQMRegistryInternal method to retrieve various string values from the
supporting server.

 HRESULT R_QMQueryQMRegistryInternal(
 [in] handle_t hBind,
 [in] DWORD dwQueryType,
 [out, string] WCHAR** lplpMQISServer
);

hBind: MUST be set to an RPC binding handle as described in [MS-RPCE] section 2.

dwQueryType: Specifies the type and format of the data to return to the caller via the
lplpMQISServer parameter. MUST be one of the values in the following table:

Value Meaning

0x00000000 A comma-delimited list of MQIS server names configured on the supporting server. This value is
retrieved from the DirectoryServerList attribute of the server's LocalQueueManager ADM
element instance.

0x00000001 The server's default time-to-reach-queue message property value, expressed in seconds,
converted to a string.<59><60>

0x00000002 The GUID that represents the entire MSMQ forest.<61> See following for the curly braced GUID
string representation to use. The string uses the "braceless" format.

0x00000003 A string representation of the supporting server version.<62>

0x00000004 The content of the Identifier attribute of the server's LocalQueueManager ADM element
instance. The curly braced GUID string representation uses a "braceless" format given
following.<63><64>

The format for the comma-delimited list of MQIS server names (0x00000000) is given by the following
augmented BNF:

 list = [list ","] computer-name
 computer-name = 1*15digit
 digit = num-digit / uppercase-alpha-digit / lowercase-alpha-digit
 / special-digit
 num-digit = %x30-39
 uppercase-alpha-digit = %x41-5Alowercase-alpha-digit = %x61-7A
 special-digit = "!" / "@" / "#" / "$" / "%" / "^" / "&" / "'"
 / ")" / "(" / "." / "-" / "_" / "{" / "}" / "~"

71 / 135

[MS-MQMP-Diff] - v20170915
Message Queuing (MSMQ): Queue Manager Client Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

The GUID string for the MSMQ forest (0x00000002) uses the "braceless" format depicted in the
following augmented BNF:

 braceless-guid = dword-part "-" word-part "-" word-part "-"
 2byte-part "-" 6byte-part
 dword-part = 2word-part
 word-part = 2byte-part
 byte-part = 2hex-digit
 hex-digit = %x30-39 / %x41-46 / %x61-66

The string format used for the supporting server version (0x00000003), depicted in augmented BNF,

is as follows:

 version = version-part "." version-part "." version-part
 version-part = 1*4num-digit
 num-digit = %x30-39

The GUID for the server queue manager (0x00000004) uses the following "braceless" format, depicted
in augmented BNF:

 braceless-guid = dword-part "-" word-part "-" word-part "-"
 2byte-part "-" 6byte-part
 dword-part = 2word-part
 word-part = 2byte-part
 byte-part = 2hex-digit
 hex-digit = %x30-39 / %x41-46 / %x61-66

lplpMQISServer: On success, the server returns the string indicated by dwQueryType through this

parameter. The server can set this parameter to NULL in the event of an error.

Return Values: On success, this method MUST return MQ_OK (0x00000000).

If input parameter values violate constraints specified above, the server MUST take no further action
and return a failure HRESULT.

If any other error occurs, the server MUST return a failure HRESULT, and the client MUST treat all
other failure HRESULTs identically. Additionally, if any other failure HRESULT is returned, the client
MUST disregard all out-parameter values.

Exceptions Thrown: No exceptions are thrown beyond those thrown by the underlying RPC protocol, as
specified in [MS-RPCE].

This method is invoked at the dynamically assigned endpoint returned by the
R_QMGetRTQMServerPort method when IP_HANDSHAKE (0x00000000) or IPX_HANDSHAKE

(0x00000002) is the interface specified by the fIP parameter.

3.1.4.24 R_QMGetRTQMServerPort (Opnum 31)

The R_QMGetRTQMServerPort method returns an RPC port number, as specified in [MS-RPCE], for the
requested combination of interface and protocol. The returned RPC port number can be used for all
qmcomm and qmcomm2 methods.

 DWORD R_QMGetRTQMServerPort(

72 / 135

[MS-MQMP-Diff] - v20170915
Message Queuing (MSMQ): Queue Manager Client Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

 [in] handle_t hBind,
 [in] DWORD fIP
);

hBind: MUST be set to an RPC binding handle as described in [MS-RPCE] section 2.

fIP: Specifies the interface for which a port value is to be returned. One of the following values MUST

be specified; otherwise, this method MUST return 0x00000000 to indicate failure.

Value Meaning

IP_HANDSHAKE

0x00000000

Requests that the server return the RPC port number for the qmcomm and qmcomm2
interfaces bound to TCP/IP. The default port number is 2103.

IP_READ

0x00000001

Requests that the server return the RPC port number for the qm2qm interface, as specified in
[MS-MQQP], bound to TCP/IP. The default port number is 2105.

IPX_HANDSHAKE

0x00000002

Requests that the server return the RPC port number for the qmcomm and qmcomm2
interfaces bound to SPX.<65> The default port number is 2103.

IPX_READ

0x00000003

Requests that the server return the RPC port number for the qm2qm interface, as specified in
[MS-MQQP], bound to SPX.<66> The default port number is 2105.

Return Values: On success, this method returns a non-zero IP port value for the RPC interface
specified by the fIP parameter. If an invalid value is specified for fIP, this method MUST return
0x00000000.

Exceptions Thrown: No exceptions are thrown beyond those thrown by the underlying RPC protocol, as
specified in [MS-RPCE].

As specified in section 3.1.3, this protocol configures a fixed listening endpoint at an RPC port number.

For the interface and protocol specified by the fIP parameter, this method returns the RPC port
number determined at server initialization time. If the default port is already in use, the server

SHOULD increment the port number by 11 until an unused port is found.

 Security consideration: Servers MUST NOT enforce security limitations for this method, since clients
can call this method before configuring RPC binding security. See section 5.1 for details.

3.1.5 Message Processing Events and Sequencing Rules for qmcomm2

The following methods comprise the Message Queuing (MSMQ): Queue Manager Client Protocol
version 2 (qmcomm2) interface. If LocalQueueManager.SupportingServer is False, the server
MUST return an error if any of the following methods is called.

Methods in RPC Opnum Order

Method Description

QMSendMessageInternalEx Sends a message to the specified queue.

Opnum: 0

rpc_ACSendMessageEx Sends a message to the specified queue.

Opnum: 1

rpc_ACReceiveMessageEx Receives a message from the specified queue.

Opnum: 2

rpc_ACCreateCursorEx Creates a cursor for accessing the specified queue.

73 / 135

[MS-MQMP-Diff] - v20170915
Message Queuing (MSMQ): Queue Manager Client Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

Method Description

Opnum: 3

3.1.5.1 QMSendMessageInternalEx (Opnum 0)

A client invokes QMSendMessageInternalEx if the server returns STATUS_RETRY (0xc000022d) from a
prior call to rpc_ACSendMessageEx. Implementations of this protocol SHOULD NOT return
STATUS_RETRY from rpc_ACSendMessageEx, rendering this method unnecessary. Such
implementations MUST take no action when QMSendMessageInternalEx is invoked and return
MQ_ERROR_ILLEGAL_OPERATION (0xc00e0064).

 HRESULT QMSendMessageInternalEx(
 [in] handle_t hBind,
 [in] QUEUE_FORMAT* pQueueFormat,
 [in] struct CACTransferBufferV2* ptb,
 [in, out, unique] OBJECTID* pMessageID
);

hBind: MUST be set to an RPC binding handle as described in [MS-RPCE] section 2.

pQueueFormat: MUST be a pointer to a QUEUE_FORMAT ([MS-MQMQ] section 2.2.7) structure,
which identifies an existing queue to be opened. MUST NOT be NULL, and MUST conform to the
format name syntax rules defined in [MS-MQMQ]. The queue identified by pQueueFormat MUST be
local to the supporting server, and MUST be successfully openable via a call to
rpc_QMOpenQueueInternal with a dwDesiredAccess level of MQ_SEND_ACCESS (0x00000002).

ptb: A CACTransferBufferV2 structure pointer as described in section 2.2.3.3. See the identical

parameter in section 3.1.5.2 for details on this parameter.

pMessageID: An OBJECTID as defined in [MS-MQMQ] section 2.2.8. See the identical parameter in

section 3.1.5.2 for details on this parameter.

Return Values: On success, this method MUST return MQ_OK (0x00000000); otherwise, the server
MUST return a failure HRESULT,<67> and the client MUST treat all failure HRESULTs identically.
Additionally, if a failure HRESULT is returned, the client MUST disregard all out-parameter values.

Exceptions Thrown: No exceptions are thrown beyond those thrown by the underlying RPC protocol, as

specified in [MS-RPCE].

This method is invoked at the dynamically assigned endpoint returned by the
R_QMGetRTQMServerPort method when IP_HANDSHAKE (0x00000000) or IPX_HANDSHAKE
(0x00000002) is the interface specified by the fIP parameter.

When processing this call, the server MUST:

▪ Determine if input parameter values violate constraints specified above. If an invalid parameter is

detected, the server MUST take no further action and return a failure HRESULT.

▪ Open the queue identified by pQueueFormat by invoking rpc_QMOpenQueueInternal with
dwDesiredAccess of MQ_SEND_ACCESS (0x00000002).

▪ If this process is successful:

▪ With the queue handle obtained from rpc_QMOpenQueueInternal, invoke
rpc_ACSendMessageEx as specified in section 3.1.5.2.

74 / 135

[MS-MQMP-Diff] - v20170915
Message Queuing (MSMQ): Queue Manager Client Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

▪ Invoke rpc_ACCloseHandle to dispose the handle obtained above. Return the result of
rpc_ACSendMessageEx.

▪ Else:

▪ Return a failure HRESULT.

3.1.5.2 rpc_ACSendMessageEx (Opnum 1)

A client calls the rpc_ACSendMessageEx method to place a message into a message queue for
delivery.

 HRESULT rpc_ACSendMessageEx(
 [in] RPC_QUEUE_HANDLE hQueue,
 [in] struct CACTransferBufferV2* ptb,
 [in, out, unique] OBJECTID* pMessageID
);

hQueue: MUST be an RPC_QUEUE_HANDLE (section 2.2.1.1.2) obtained from the phQueue
parameter of the rpc_QMOpenQueueInternal (section 3.1.4.17) method called with the
dwDesiredAccess parameter set to MQ_SEND_ACCESS. Prior to this method being invoked, the

queue MUST NOT have been deleted, and the queue handle MUST NOT have been closed.

ptb: MUST NOT be NULL. ptb points to a CACTransferBufferV2 (section 2.2.3.3) structure. Refer to
section 2.2.3.3 for definitions of the CACTransferBufferV2 members. Constraints for the members
are defined following. In the section following, "ptb.old" is used as shorthand to refer to the
CACTransferBufferOld member of the CACTransferBufferV2 structure.

ptb.old.uTransferType MUST be CACTB_SEND (0x00000000).

ptb.old.Send.pAdminQueueFormat can be NULL, in which case no administration queue format

name is associated with the message. If not NULL, ptb.old.Send.pAdminQueueFormat MUST point
to a QUEUE_FORMAT ([MS-MQMQ] section 2.2.7) structure.

ptb.old.Send.pResponseQueueFormat can be NULL, in which case no response queue format name
is associated with the message. If not NULL, ptb.old.Send.pResponseQueueFormat MUST point to
a QUEUE_FORMAT structure.

If the queue identified hQueue was opened using a direct format name, as specified in [MS-

MQMQ] section 2.1.2, ptb.old.pulPrivLevel MUST be NULL or, if not NULL, MUST point to the value
MQMSG_PRIV_LEVEL_NONE (0x00000000). Encryption MUST NOT be requested for queues
opened with direct format name.

If the queue identified by hQueue is not an outgoing queue (rather, it is a queue which is local to
the supporting server), and ptb.bEncrypted is not 0x00, the server MAY return STATUS_RETRY
(0xc000022d) and take no action.<68>

ptb.old.pPriority can be NULL; otherwise, the value MUST be from 0x00 to 0x07 inclusive. If the

value is NULL, the server MUST substitute the default value of 0x03.

ptb.old.pTrace can be NULL, in which case the server MUST substitute the default value of 0x00.

If ptb.old.ulAbsoluteTimeToQueue is 0x00000000, the server MUST substitute the default value of
0xffffffff.

ptb.old.ppMessageID can be NULL. If not NULL, the server MUST ignore the in-value.

ptb.old.ppConnectorType can be NULL. If NULL, then no connector type value is associated with
the message.

75 / 135

[MS-MQMP-Diff] - v20170915
Message Queuing (MSMQ): Queue Manager Client Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

ptb.old.pDelivery can be NULL, in which case the server MUST substitute the default value of
0x00. However, if ptb.old.pUow contains a nonzero value, the server MUST substitute the value

0x01 for ptb.old.pDelivery, since transactional messages are by definition stored as recoverable.

ptb.old.pAuditing can be NULL, in which case the server MUST substitute the default value of

0x00.

ptb.old.pClass can be NULL, in which case the server MUST substitute the default value of 0x0000.
This field can be used by connector applications to produce acknowledgment messages. Typical
applications will always specify MQMSG_CLASS_NORMAL (0x0000).

ptb.old.ppCorrelationID can be NULL, in which case the server MUST substitute the default value
by filling the array of bytes with hexadecimal zeros (0x00).

ptb.old.pAcknowledge can be NULL, in which case the server MUST substitute the default value of

0x00.

ptb.old.pApplicationTag can be NULL, in which case the server MUST substitute the default value
of 0x00000000.

ptb.old.ppTitle can be NULL, in which case the server MUST treat the value as an empty string and
MUST ignore the value of ptb.old.ulTitleBufferSizeInWCHARs. If ptb.old.ppTitle is NOT NULL, the
server MUST take the number of Unicode characters indicated by

ptb.old.ulTitleBufferSizeInWCHARs. If ptb.old.ulTitleBufferSizeInWCHARs is greater than 250, the
value MUST be truncated to 250. The server MUST null-terminate the resulting character array.

ptb.old.ppMsgExtension can be NULL, in which case no extension array is associated with the
message and the server MUST ignore the value of ptb.old.ulMsgExtensionBufferInBytes. If
ptb.old.ppMsgExtension is NOT NULL, the server MUST take the number of bytes indicated by
ptb.old.ulMsgExtensionBufferInBytes. The buffer is an opaque array of bytes and a terminating
null character is not required.

ptb.old.ppBody can be NULL, in which case no body array is associated with the message and the
server MUST ignore the values of ptb.old.ulBodyBufferSizeInBytes and

ptb.old.ulAllocBodyBufferInBytes. If ptb.old.ppBody is NOT NULL, the server MUST take the
number of bytes indicated by ptb.old.ulBodyBufferSizeInBytes, and allocate body storage for the
number of bytes indicated by ptb.old.ulAllocBodyBufferInBytes. The message body is an opaque
array of bytes and a terminating null character is not required.

ptb.old.pulPrivLevel can be NULL, in which case the server MUST substitute the default value of

0x00000000.

ptb.old.pulHashAlg can be NULL if ptb.old.ulSignatureSize is 0x00000000; otherwise, it MUST be
set to the hash algorithm used to produce the signature of the message, as specified in section
2.2.3.2.<69> If it is set to NULL, the server MUST substitute the value of 0x00000000.

ptb.old.pulEncryptAlg can be NULL if ptb.old.pulPrivLevel is set to NULL; otherwise, it MUST be set
to the encryption algorithm associated with ptb.old.pulPrivLevel, as specified in section

2.2.3.2.<70> If it is set to NULL, the server MUST substitute the value of 0x00000000.

ptb.old.pulBodyType can be NULL, in which case the server MUST substitute the default value of
0x00000000.

ptb.old.ppSenderCert can be NULL if ptb.old.ulSenderCertLen is 0x00000000, in which case an
X509 certificate for the sender is not associated with the message.

ptb.old.pulSenderIDType MUST NOT be NULL if ptb.old.uSenderIDLen is nonzero.

76 / 135

[MS-MQMP-Diff] - v20170915
Message Queuing (MSMQ): Queue Manager Client Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

ptb.old.pSenderID can be NULL if ptb.old.uSenderIDLen is zero and ptb.old.pulSenderIDType is
MQMSG_SENDERID_TYPE_NONE (0x00000000), in which case a SID is not associated with the

message.

ptb.old.ppSymmKeys can be NULL if ptb.old.ulSymmKeysSize is zero (0x00000000), in which case

an encrypted symmetric key is not associated with the message. Otherwise, ptb.old.ppSymKeys
MUST contain the symmetric key used to encrypt the message body. The symmetric key MUST be
encrypted with the public key of the recipient QM. The manner by which the public key for the
recipient QM is obtained is beyond the scope of this network protocol.

If ptb.old.ulSignatureSize is 0x00000000: no digital signature is associated with the message.

Else, if ptb.old.ulSignatureSize is not 0x00000000:

▪ If ptb.old.fDefaultProvider is 0x00000000, ptb.old.ppwcsProvName MUST NOT be NULL. If

ptb.old.pulProvType is NOT NULL, it MUST specify the provider type of the CSP named by
ptb.old.ppwcsProvName; otherwise, the server MUST substitute the value of 0x00000000.
Note that ptb.old.ulProvNameLen is used only to affect RPC marshaling of the

ptb.old.ppwcsProvName buffer. The server MUST otherwise ignore ptb.old.ulProvNameLen and
treat ptb.old.ppwcsProvName as a null-terminated string.

▪ If ptb.old.fDefaultProvider is not 0x00000000, ptb.old.pulProvType MUST NOT be NULL, and

MUST contain PROV_RSA_FULL (0x00000001).

▪ If ptb.old.pulAuthProvNameLenProp is NULL:

▪ If not NULL, the ptb.old.ppSignature buffer contains a simple array of bytes containing the
MSMQ 1.0 digital signature. The byte length of the buffer is indicated by
ptb.old.ulSignatureSize.

▪ Else, if ptb.old.pulAuthProvNameLenProp is NOT NULL:

▪ If not NULL, the ptb.old.ppSignature buffer contains two distinct byte array parts. The first

part MUST be ignored by the server. The second part contains an MSMQ 2.0 digital
signature.

▪ The byte length of the first part is indicated by subtracting the length of the second part
from ptb.old.ulSignatureSize. (Thus, length([first part]) + length([second part]) =
ptb.old.ulSignatureSize.)

▪ The byte length of the second part is indicated by subtracting ptb.old.ulProvNameLen from
ptb.old.pulAuthProvNameLenProp.

▪ The second part begins immediately after the first.

The following members MUST be ignored by the server:

▪ ptb.old.Receive

▪ ptb.old.CreateCursor

▪ ptb.old.pSentTime

▪ ptb.old.pArrivedTime

▪ ptb.old.pBodySize

▪ ptb.old.pulTitleBufferSizeInWCHARs

▪ ptb.old.pulRelativeTimeToQueue

77 / 135

[MS-MQMP-Diff] - v20170915
Message Queuing (MSMQ): Queue Manager Client Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

▪ ptb.old.pulRelativeTimeToLive

▪ ptb.old.pulSenderIDLenProp

▪ ptb.old.ulAuthLevel

▪ ptb.old.pAuthenticated

▪ ptb.old.bAuthenticated

▪ ptb.old.pulSenderCertLenProp

▪ ptb.old.pulSymmKeysSizeProp

▪ ptb.old.pulSignatureSizeProp

▪ ptb.old.ppSrcQMID

▪ ptb.old.pMsgExtensionSize

▪ ptb.old.pulVersion

▪ ptb.pbFirstInXact

▪ ptb.pbLastInXact

▪ ptb.ppXactID

The ptb.old.pulAuthProvNameLenProp field SHOULD be interpreted as specified in section
3.1.5.2.<71>

pMessageID: An OBJECTID as defined in [MS-MQMQ] section 2.2.8. This value can be NULL. If not

NULL, the server MUST return a message identifier for the new message if this method succeeds.

Return Values: On success, this method MUST return MQ_OK (0x00000000); otherwise, the server
MUST return a failure HRESULT,<72> and the client MUST treat all failure HRESULTs identically.

Additionally, if a failure HRESULT is returned, the client MUST disregard all out-parameter values.

Exceptions Thrown: No exceptions are thrown beyond those thrown by the underlying RPC protocol, as
specified in [MS-RPCE].

This method is invoked at the dynamically assigned endpoint returned by the

R_QMGetRTQMServerPort (section 3.1.4.24) method when IP_HANDSHAKE (0x00000000) or
IPX_HANDSHAKE (0x00000002) is the interface specified by the fIP parameter.

 Security Considerations: The caller can request that the server perform security related operations
such as signing and encrypting the message. These operations are requested by setting members of
the ptb.CACTransferBufferOld structure.

When processing this call, the server MUST:

▪ Determine if the input parameter values violate the constraints previously specified. If an invalid

parameter is detected, the server MUST take no further action and return a failure HRESULT.

▪ Locate a LocalQueueContextHandle (section 3.1.1.3) ADM element instance in the server's
iLocalQueueContextHandleTable (section 3.1.1.2) where the value of the Handle attribute of the
LocalQueueContextHandle ADM element instance equals hQueue.

▪ If no such LocalQueueContextHandle ADM element instance exists, take no further action and
return a failure HRESULT.

78 / 135

[MS-MQMP-Diff] - v20170915
Message Queuing (MSMQ): Queue Manager Client Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

▪ Declare iLocatedLocalQueueContextHandle and set it to a reference to the located
LocalQueueContextHandle ADM element instance.

▪ If ptb.old.pUow is non-NULL:

▪ Look up a Transaction ([MS-MQDMPR] section 3.1.1.14) ADM element instance in the

server's LocalQueueManager.TransactionCollection with an identifier matching
ptb.old.pUow. If no such entry exists, the client did not enlist the transaction before
attempting to perform a transactional send operation. In this event, return a failure
HRESULT.

▪ Create a new Message ([MS-MQDMPR] section 3.1.1.12) ADM element instance with contents
from ptb using the defined translation table.

▪ If the message body is encrypted (ptb.old.bEncrypted is not 0x00, ppSymmKeys is not NULL, and

ppSymmKeysSize is not 0x00000000) and the destination queue is located on the supporting
server, the message body MUST be decrypted. Using the algorithm indicated by
ptb.old.pulEncryptAlg, decrypt the symmetric key that is contained in ppSymmKeysSize with the

server's private key. Finally, use the decrypted symmetric key to decrypt the message body.

▪ Generate an Enqueue Message To An Open Queue ([MS-MQDMPR] section 3.1.7.1.27) event with
the following argument values:

▪ iOpenQueueDescriptor :=
iLocatedLocalQueueContextHandle.OpenQueueDescriptorReference

▪ iMessage := The Message ADM element instance previously created.

▪ iTransaction := The Transaction ADM element instance previously resolved; or, if
ptb.old.pUow is NULL, this optional argument is not specified.

▪ If the rStatus result of the Enqueue Message To An Open Queue event is zero, return MQ_OK
(0x00000000); otherwise, return a failure HRESULT.

3.1.5.3 rpc_ACReceiveMessageEx (Opnum 2)

A client calls rpc_ACReceiveMessageEx to peek or receive a message from a message queue.

 HRESULT rpc_ACReceiveMessageEx(
 [in] handle_t hBind,
 [in] DWORD hQMContext,
 [in, out] struct CACTransferBufferV2* ptb
);

hBind: MUST be set to an RPC binding handle as described in [MS-RPCE] section 2.

hQMContext: A queue context value obtained from the pdwQMContext parameter of
rpc_QMOpenQueueInternal. The queue MUST have been opened with MQ_PEEK_ACCESS or
MQ_RECEIVE_ACCESS as the dwDesiredAccess parameter when rpc_QMOpenQueueInternal was

called. Prior to this method being invoked, the queue MUST NOT have been deleted, and the
queue handle for the open queue MUST NOT have been closed.

ptb: MUST NOT be NULL. The ptb parameter points to a CACTransferBufferV2 (section 2.2.3.3)
structure. Constraints for the member fields are defined following. In the sections following,
"ptb.old" is used as shorthand to refer to the CACTransferBufferOld member of the
CACTransferBufferV2 structure.

ptb.old.uTransferType MUST be CACTB_RECEIVE (0x00000001).

79 / 135

[MS-MQMP-Diff] - v20170915
Message Queuing (MSMQ): Queue Manager Client Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

ptb.old.Receive.Action MUST contain one of the following values: 0x00000000
(MQ_ACTION_RECEIVE), 0x80000000 (MQ_ACTION_PEEK_CURRENT) or 0x80000001

(MQ_ACTION_PEEK_NEXT).

On input, ptb.old.Receive.Cursor can be 0x00000000, in which case no cursor is associated with

the receive operation. Otherwise, ptb.old.Receive.Cursor MUST contain a Cursor Handle obtained
from the pcc.hCursor parameter of rpc_ACCreateCursorEx. The cursor MUST have been created
using the queue handle associated with the queue context value provided for the hQMContext
parameter, and the cursor MUST NOT have been closed prior to this call. On output, the value of
ptb.old.Receive.Cursor MUST be the same as it was on input.

ptb.old.Receive.ulResponseFormatNameLen is used for RPC marshaling of the
ppResponseFormatName buffer. On input, the client MUST set this value to the minimum of

pulResponseFormatNameLenProp and 1024 bytes. If ptb.old.Receive.ppResponseFormatName is
NULL, this value MUST be 0x00000000. On output, the server MUST set this value to the minimum
of ulResponseFormatNameLen and pulResponseFormatNameLenProp.

On input, ptb.old.Receive.pulResponseFormatNameLenProp indicates the Unicode character length

of the buffer contained in ppResponseFormatName. On output, the server MUST set this value to
indicate the full length of the response queue format name associated with the message being

retrieved.

On input, ptb.old.Receive.ppResponseFormatName can be NULL, in which case it MUST be NULL
on output. Otherwise, on successful retrieval of a message and prior to filling the buffer, the
server MUST verify that the pulResponseFormatNameLenProp field indicates that the buffer is
large enough to contain the response queue format name for the retrieved message.

ptb.old.Receive.ulAdminFormatNameLen is used for RPC marshaling of the ppAdminFormatName
buffer. On input, the client MUST set this value to the minimum of pulAdminFormatNameLenProp

and 1024 bytes. If ptb.old.Receive.ppAdminFormatName is NULL, this value MUST be
0x00000000. On output, the server MUST set this value to the minimum of
ulAdminFormatNameLen and pulAdminFormatNameLenProp.

On input, ptb.old.Receive.pulAdminFormatNameLenProp indicates the Unicode character length of

the buffer contained in ppAdminFormatName. On output, the server MUST set this value to
indicate the full length of the administration queue format name associated with the message
being retrieved.

On input, ptb.old.Receive.ppAdminFormatName can be NULL, in which case it MUST be NULL on
output. Otherwise, on successful retrieval of a message and prior to filling the buffer, the server
MUST verify that the pulAdminFormatNameLenProp field indicates that the buffer is large enough
to contain the administration queue format name for the retrieved message.

ptb.old.Receive.ulDestFormatNameLen is used for RPC marshaling of the ppDestFormatName
buffer. On input, the client MUST set this value to the minimum of pulDestFormatNameLenProp

and 1024 bytes. If ptb.old.Receive.ppDestFormatName is NULL, this value MUST be 0x00000000.
On output, the server MUST set this value to the minimum of ulDestFormatNameLen and
pulDestFormatNameLenProp.

On input, ptb.old.Receive.pulDestFormatNameLenProp indicates the Unicode character length of

the buffer contained in ppDestFormatName. On output, the server MUST set this value to indicate
the full length of the destination queue format name associated with the message being retrieved.

On input, ptb.old.Receive.ppDestFormatName can be NULL, in which case it MUST be NULL on

output. Otherwise, on successful retrieval of a message and prior to filling the buffer, the server
MUST verify that the pulDestFormatNameLenProp field indicates that the buffer is large enough to
contain the destination queue format name for the retrieved message.

ptb.old.Receive.ulOrderingFormatNameLen is used for RPC marshaling of the
ppOrderingFormatName buffer. On input, the client MUST set this value to the minimum of

80 / 135

[MS-MQMP-Diff] - v20170915
Message Queuing (MSMQ): Queue Manager Client Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

pulOrderingFormatNameLenProp and 1024 bytes. If ptb.old.Receive.ppOrderingFormatName is
NULL, this value MUST be 0x00000000. On output, the server MUST set this value to the minimum

of ulOrderingFormatNameLen and pulOrderingFormatNameLenProp.

On input, ptb.old.Receive.pulOrderingFormatNameLenProp indicates the Unicode character length

of the buffer contained in ppOrderingFormatName. On output, the server MUST set this value to
indicate the full length of the order queue format name associated with the message being
retrieved.

On input, ptb.old.Receive.ppOrderingFormatName can be NULL, in which case it MUST be NULL on
output. Otherwise, on successful retrieval of a message and prior to filling the buffer, the server
MUST verify that the pulOrderingFormatNameLenProp field indicates that the buffer is large
enough to contain the order queue format name for the retrieved message.

On input, ptb.old.ppBody can be NULL, in which case it MUST be NULL on output. Otherwise, on
successful retrieval of a message, prior to filling the buffer, the server MUST verify that the
ulBodyBufferSizeInBytes field indicates that the buffer is large enough to contain the message
body for the retrieved message. On output, the byte length of the complete body for the retrieved

message MUST be returned in the pBodySize field, if it is not NULL.

On input, ptb.old.ulBodyBufferSizeInBytes MUST be 0x00000000 if ptb.old.ppBody is NULL. On

output, the value of ptb.old.ulBodyBufferSizeInBytes MUST be the same as it was on input.

ptb.old.ulAllocBodyBufferInBytes is used for RPC marshaling of the ppBody buffer. If ppBody is
NULL, this value MUST be 0x00000000.

On input, ptb.old.pBodySize can be NULL, in which case it MUST be NULL on output. Otherwise, on
successful retrieval of a message, the server MUST set this value to the byte length of the
message body.

ptb.old.ulTitleBufferSizeInWCHARs is used for RPC marshaling of the ptb.old.ppTitle buffer. On

input, the client MUST set this value to the minimum of pulTitleBufferSizeInWCHARs and 250. If
ptb.old.ppTitle is NULL, this value MUST be 0x00000000. On output, the server MUST set this
value to the minimum of ulTitleBufferSizeInWCHARs and pulTitleBufferSizeInWCHARs.

On input, ptb.old.pulTitleBufferSizeInWCHARs indicates the Unicode character length of the buffer
contained in ppTitle. On output, the server MUST set this value to indicate the full length of the
message label associated with the message being retrieved.

On input, ptb.old.ppTitle can be NULL, in which case it MUST be NULL on output. Otherwise, on

successful retrieval of a message, prior to filling the buffer, the server MUST verify that the
pulTitleBufferSizeInWCHARs field indicates that the buffer is large enough to contain the message
label for the retrieved message.

On input, ptb.old.ppMsgExtension can be NULL, in which case it MUST be NULL on output.
Otherwise, on successful retrieval of a message, prior to filling the buffer, the server MUST verify
that the ptb.old.ulMsgExtensionBufferInBytes field indicates that the buffer is large enough to

contain the message extension array for the retrieved message.

On input, ptb.old.ulMsgExtensionBufferInBytes MUST be 0x00000000 if ptb.old.ppMsgExtension is

NULL. On output, the value of ptb.old.ulMsgExtensionBufferInBytes MUST be the same as it was
on input.

On input, ptb.old.pMsgExtensionSize can be NULL, in which case it MUST be NULL on output.
Otherwise, the server MUST return the full length of the retrieved message extension array in
ptb.old.pMsgExtensionSize.

On input, ptb.old.pUow can be NULL, in which case the Receive operation is not associated with a
transaction. Otherwise, ptb.old.pUow MUST contain a 16-byte transaction identifier which has

81 / 135

[MS-MQMP-Diff] - v20170915
Message Queuing (MSMQ): Queue Manager Client Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

been enlisted by a prior call to R_QMEnlistTransaction or R_QMEnlistInternalTransaction. On
output, the value of ptb.old.pUow MUST be the same as it was on input.

On input, ptb.old.ppSenderID can be NULL, in which case it MUST be NULL on output. Otherwise,
on successful retrieval of a message and prior to filling the buffer, the server MUST verify that the

ptb.old.uSenderIDLen field indicates that the buffer is large enough to contain the sender ID
buffer for the retrieved message.

On input, ptb.old.pulSenderIDLenProp can be NULL; otherwise, on output, the server MUST return
the full length of the sender ID buffer for the retrieved message in ptb.old.pulSenderIDLenProp, or
0x00000000 if the value was not included in the retrieved message.

On input, ptb.old.ppwcsProvName can be NULL, in which case it MUST be NULL on output.
Otherwise, prior to filling the buffer, the server MUST verify that the ptb.old.ulProvNameLen field

indicates that the buffer is large enough to contain the null-terminated CSP name string. If the
retrieved message does not include a CSP name buffer, the server MUST return 0x00000000 for
ptb.old.pulAuthProvNameLenProp if the pulAuthProvNameLenProp pointer is not NULL.

On input, ptb.old.pulAuthProvNameLenProp can be NULL, in which case it MUST be NULL on
output. Otherwise, the server MUST return the length of the CSP name buffer for the retrieved
message in ptb.old.pulAuthProvNameLenProp, or 0x00000000 if the value was not included in the

retrieved message.

On input, ptb.old.ppSenderCert can be NULL, in which case it MUST be NULL on output.
Otherwise, prior to filling the buffer, the server MUST verify that the ptb.old.ulSenderCertLen field
indicates that the buffer is large enough to contain the sender certificate buffer. If the retrieved
message does not include a sender certificate, the server MUST return 0x00000000 for
ptb.old.pulSenderCertLenProp if the pulSenderCertLenProp pointer is not NULL.

On input, ptb.old.pulSenderCertLenProp can be NULL, in which case it MUST be NULL on output.

Otherwise, the server MUST return the length of the sender certificate buffer for the retrieved
message in ptb.old.pulSenderCertLenProp, or 0x00000000 if the value is not included in the
retrieved message.

On input, ptb.old.ppSymmKeys can be NULL, in which case it MUST be NULL on output. Otherwise,
prior to filling the buffer, the server MUST verify that the ptb.old.ulSymmKeysSize field indicates
that the buffer is large enough to contain the symmetric key buffer. If the retrieved message does
not include a symmetric key, the server MUST return 0x00000000 for

ptb.old.pulSymmKeysSizeProp if the pulSymmKeysSizeProp pointer is not NULL.

On input, ptb.old.pulSymmKeysSizeProp can be NULL, in which case it MUST be NULL on output.
Otherwise, the server MUST return the length of the symmetric key buffer for the retrieved
message in ptb.old.pulSymmKeysSizeProp or 0x00000000 if the value is not included in the
retrieved message.

On input, ptb.old.ppSignature can be NULL, in which case it MUST be NULL on output. Otherwise,

prior to filling the buffer, the server MUST verify that the ptb.old.ulSignatureSize field indicates
that the buffer is large enough to contain the signed hash buffer. If the retrieved message does
not include a signed hash, the server MUST return 0x00000000 for ptb.old.pulSignatureSizeProp if
the pulSignatureSizeProp pointer is not NULL.

On input, ptb.old.pulSignatureSizeProp can be NULL, in which case it MUST be NULL on output.
Otherwise, the server MUST return the length of the signed hash buffer for the retrieved message
in ptb.old.pulSignatureSizeProp, or 0x00000000 if the value is not included in the retrieved

message.

The following fields can be NULL, in which case the server MUST ignore them. On successful
retrieval of a message, the server MUST return the appropriate message property value into each
non-NULL field. See section 2.2.3.2 for definitions of these fields:

82 / 135

[MS-MQMP-Diff] - v20170915
Message Queuing (MSMQ): Queue Manager Client Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

▪ ptb.old.pClass

▪ ptb.old.ppMessageID

▪ ptb.old.ppCorrelationID

▪ ptb.old.pSentTime

▪ ptb.old.pArrivedTime

▪ ptb.old.pPriority

▪ ptb.old.pDelivery

▪ ptb.old.pAcknowledge

▪ ptb.old.pAuditing

▪ ptb.old.pApplicationTag

▪ ptb.old.pulRelativeTimeToQueue

▪ ptb.old.pulRelativeTimeToLive

▪ ptb.old.pTrace

▪ ptb.old.pulPrivLevel

▪ ptb.old.pAuthenticated

▪ ptb.old.pulHashAlg

▪ ptb.old.pulEncryptAlg

▪ ptb.old.pulProvType

▪ ptb.old.pulSenderIDType

▪ ptb.old.ppSrcQMID

▪ ptb.old.ppConnectorType

▪ ptb.old.pulBodyType

▪ ptb.old.pulVersion

▪ ptb.pbFirstInXact

▪ ptb.pbLastInXact

▪ ptb.ppXactID

The following fields MUST be ignored by the server:

▪ ptb.old.Send

▪ ptb.old.CreateCursor

▪ ptb.old.Receive.Asynchronous

▪ ptb.old.ulAbsoluteTimeToQueue

▪ ptb.old.ulRelativeTimeToLive

83 / 135

[MS-MQMP-Diff] - v20170915
Message Queuing (MSMQ): Queue Manager Client Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

▪ ptb.old.ulAuthLevel

▪ ptb.old.bEncrypted

▪ ptb.old.bAuthenticated

▪ ptb.old.fDefaultProvider

Return Values: On success, this method MUST return MQ_OK (0x00000000); otherwise, the server
MUST return a failure HRESULT,<73><74> and the client MUST treat all failure HRESULTs identically.
Additionally, if a failure HRESULT is returned, the client MUST disregard all out-parameter values.

Exceptions Thrown: No exceptions are thrown beyond those thrown by the underlying RPC protocol, as
specified in [MS-RPCE].

This method is invoked at the dynamically assigned endpoint returned by the
R_QMGetRTQMServerPort method when IP_HANDSHAKE (0x00000000) or IPX_HANDSHAKE

(0x00000002) is the interface specified by the fIP parameter.

When processing this call, the server MUST:

▪ Determine if the input parameter values violate the constraints previously specified. If an invalid
parameter is detected, the server MUST take no further action and return a failure HRESULT.

▪ If ptb.old.pUow is non-NULL:

▪ Look up a Transaction ([MS-MQDMPR] section 3.1.1.14) ADM element instance in the

server's LocalQueueManager.TransactionCollection where ptb.old.pUow matches
Transaction.Identifier.

▪ If no such Transaction ADM element instance exists, take no further action and return a
failure HRESULT.

▪ Locate a RemoteQueueProxyHandle (section 3.1.1.5) ADM element instance in the server's
iRemoteQueueProxyHandleTable (section 3.1.1.4) where the Context attribute of the

RemoteQueueProxyHandle ADM element instance equals hQMContext.

▪ If such a RemoteQueueProxyHandle ADM element instance exists:

▪ Declare iLocatedRemoteQueueProxyHandle and set it to a reference to the located
RemoteQueueProxyHandle ADM element instance.

▪ If ptb.old.pUow is non-NULL, take no further action and return a failure HRESULT.

▪ If ptb.old.Receive.Cursor is not zero (0x00000000):

▪ Locate a CursorProxy ADM element instance in
iLocatedRemoteQueueProxyHandle.CursorProxyCollection where the value of the

Handle attribute of the CursorProxy ADM element instance equals
ptb.old.Receive.Cursor.

▪ If no such CursorProxy ADM element instance exists, take no further action and return a
failure HRESULT.

▪ Declare iLocatedCursorProxy and set it to a reference to the located CursorProxy ADM
element instance.

▪ Using iLocatedRemoteQueueProxyHandle.RemoteBindingHandle, invoke the
RemoteQMStartReceive method of the qm2qm RPC interface specified in [MS-MQQP]
section 3.1.4.1. Specify the following input values in the REMOTEREADDESC structure ([MS-
MQQP] section 2.2.2.1):

84 / 135

[MS-MQMP-Diff] - v20170915
Message Queuing (MSMQ): Queue Manager Client Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

▪ hRemoteQueue := iLocatedRemoteQueueProxyHandle.RemoteContext

▪ hCursor := If ptb.old.Receive.Cursor is not zero (0x00000000),

iLocatedCursorProxy.RemoteCursorHandle; otherwise, zero (0x00000000).

▪ ulAction := ptb.old.Receive.Action

▪ ulTimeout := ptb.old.Receive.RequestTimeout

▪ dwpQueue := iLocatedRemoteQueueProxyHandle.RemoteContext

▪ dwRequestID := Create a DWORD value to uniquely identify this invocation of the
RemoteQMStartReceive method among any other simultaneous invocations occurring
between this RPC client (the Message Queuing (MSMQ): Queue Manager Client Protocol
server) and the Message Queuing (MSMQ): Queue Manager to Queue Manager Protocol
server. This DWORD value is used to correlate the call to RemoteQMStartReceive with an

associated call to RemoteQMEndReceive following.

▪ Reserved := 0x00000000

▪ eAckNack := RR_UNKNOWN (0x0000)

▪ If RemoteQMStartReceive did not return MQ_OK (0x00000000), take no further action and
return the value returned by RemoteQMStartReceive.

▪ Generate the Get Message Data Element From Buffer event ([MS-MQQB] section 3.1.7.10)

with the following argument:

▪ iBuffer: MUST be set to REMOTEREADDESC.lpBuffer

▪ Copy the contents of the returned rMessage into the ptb structure using the defined
translation rules.

▪ Using iLocatedRemoteQueueProxyHandle.RemoteBindingHandle, invoke the
RemoteQMEndReceive method of the qm2qm RPC interface specified in [MS-MQQP] section

3.1.4.2. Specify the following parameter values:

▪ pphContext := Set to the value returned from the pphContext out-parameter of
RemoteQMStartReceive previously invoked.

▪ dwAck := If the process of converting the content of REMOTEREADDESC.lpBuffer to a
Message ([MS-MQDMPR] section 3.1.1.12) ADM element instance and then to ptb was
successful, specify RR_ACK (0x00000002); otherwise, specify RR_NACK (0x00000001).

▪ Take no further action and return the result of RemoteQMEndReceive.

▪ Else (hQMContext did not match a RemoteQueueProxyHandle ADM element instance):

▪ Locate a LocalQueueContextHandle (section 3.1.1.3) ADM element instance in the server's
iLocalQueueContextHandleTable where the value of the Handle attribute of the
LocalQueueContextHandle ADM element instance equals hQueue.

▪ If no such LocalQueueContextHandle ADM element instance exists, take no further action
and return a failure HRESULT.

▪ Declare iLocalQueueContextHandle and set it to a reference to the located

LocalQueueContextHandle ADM element instance.

▪ If the iLocalQueueContextHandle.OpenQueueDescriptorReference.AccessMode value is
SendAccess, take no further action and return a failure HRESULT.

85 / 135

[MS-MQMP-Diff] - v20170915
Message Queuing (MSMQ): Queue Manager Client Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

▪ If the iLocalQueueContextHandle.OpenQueueDescriptorReference.AccessMode value is
PeekAccess, confirm that ptb.old.Receive.Action is not MQ_ACTION_RECEIVE (0x00000000);

otherwise, return a failure HRESULT.

▪ If ptb.old.Receive.Cursor is not zero (0x00000000):

▪ Locate a Cursor ([MS-MQDMPR] section 3.2) ADM element instance in
iLocalQueueContextHandle.OpenQueueDescriptorReference.CursorCollection where
the value of the Handle attribute of the Cursor ADM element instance equals
ptb.old.Receive.Cursor.

▪ If no such Cursor ADM element instance exists, take no further action and return a failure
HRESULT.

▪ If ptb.old.Receive.Action is MQ_ACTION_RECEIVE (0x00000000):

▪ Generate a Dequeue Message ([MS-MQDMPR] section 3.1.7.1.10) event with the following
argument values:

▪ iQueueDesc := iLocalQueueContextHandle.OpenQueueDescriptorReference

▪ iTimeout := ptb.old.Receive.RequestTimeout

▪ iCursor := If ptb.old.Receive.Cursor is not zero, the Cursor ADM element instance
resolved preceding; otherwise, this optional argument is not specified.

▪ iTransaction := If ptb.old.pUow is non-NULL, the Transaction ADM element instance
resolved preceding; otherwise, this optional argument is not specified.

▪ iTag := Optional argument not specified.

▪ iTwoPhaseRead := False

▪ If the rStatus return value from the Dequeue Message event is not MQ_OK (0x00000000),
take no further action and return rStatus.

▪ Copy the contents of the rMessage return value from the Dequeue Message event to the

ptb structure using the defined translation rules.

▪ Take no further action and return MQ_OK (0x00000000).

▪ Else, if ptb.old.Receive.Action is MQ_ACTION_PEEK_CURRENT (0x80000000):

▪ Generate a Peek Message ([MS-MQDMPR] section 3.1.7.1.15) event with the following
argument values:

▪ iQueueDesc := iLocalQueueContextHandle.OpenQueueDescriptorReference

▪ iTimeout := ptb.old.Receive.RequestTimeout

▪ iCursor := If ptb.old.Receive.Cursor is not zero, the Cursor ADM element instance
resolved preceding; otherwise, this optional argument is not specified.

▪ If the rStatus return value from the Peek Message event is not MQ_OK (0x00000000),
take no further action and return rStatus.

▪ Copy the contents of the rMessage return value from the Peek Message event to the ptb
structure using the defined translation rules.

▪ Take no further action and return MQ_OK (0x00000000).

▪ Else, if ptb.old.Receive.Action is MQ_ACTION_PEEK_NEXT (0x80000001):

86 / 135

[MS-MQMP-Diff] - v20170915
Message Queuing (MSMQ): Queue Manager Client Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

▪ Generate a Peek Next Message ([MS-MQDMPR] section 3.1.7.1.14) event with the
following argument values:

▪ iQueueDesc := iLocalQueueContextHandle.OpenQueueDescriptorReference

▪ iTimeout := ptb.old.Receive.RequestTimeout

▪ iCursor := If ptb.old.Receive.Cursor is not zero, the Cursor ADM element instance
resolved preceding; otherwise, this optional argument is not specified.

▪ If the rStatus return value from the Peek Next Message event is not MQ_OK
(0x00000000), take no further action and return rStatus.

▪ Copy the contents of the rMessage return value from the Peek Next Message event to the
ptb structure using the defined translation rules.

3.1.5.4 rpc_ACCreateCursorEx (Opnum 3)

A client calls rpc_ACCreateCursorEx to create a cursor for use when peeking and receiving from a
message queue.

 HRESULT rpc_ACCreateCursorEx(
 [in] RPC_QUEUE_HANDLE hQueue,
 [in, out] struct CACCreateRemoteCursor* pcc
);

hQueue: MUST be an RPC_QUEUE_HANDLE (section 2.2.1.1.2) acquired from the phQueue

parameter of rpc_QMOpenQueueInternal (section 3.1.4.17). Prior to this method being invoked,
the queue MUST NOT have been deleted, and the queue handle MUST NOT have been closed.

pcc: A pointer to a CACCreateRemoteCursor (section 2.2.3.4) structure. MUST NOT be NULL.

Return Values: On success, this method MUST return MQ_OK (0x00000000); otherwise, the server

MUST return a failure HRESULT,<75> and the client MUST treat all failure HRESULTs identically.
Additionally, if a failure HRESULT is returned, the client MUST disregard all out-parameter values.

Exceptions Thrown: No exceptions are thrown beyond those thrown by the underlying RPC protocol, as
specified in [MS-RPCE].

This method is invoked at the dynamically assigned endpoint returned by the
R_QMGetRTQMServerPort (section 3.1.4.24) method when IP_HANDSHAKE (0x00000000) or
IPX_HANDSHAKE (0x00000002) is the interface specified by the fIP parameter.

When processing this call, the server SHOULD:<76>

▪ Determine whether the input parameter values violate the constraints previously specified. If an

invalid parameter is detected, the server MUST take no further action and return a failure
HRESULT.

▪ Locate a LocalQueueContextHandle (section 3.1.1.3) ADM element instance in the server's
iLocalQueueContextHandleTable (section 3.1.1.2) where the value of the Handle attribute of the
LocalQueueContextHandle ADM element instance equals hQueue.

▪ If such a LocalQueueContextHandle ADM element instance exists:

▪ Declare iLocatedLocalQueueContextHandle and set it to a reference to the located

LocalQueueContextHandle ADM element instance.

87 / 135

[MS-MQMP-Diff] - v20170915
Message Queuing (MSMQ): Queue Manager Client Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

▪ Generate an Open Cursor ([MS-MQDMPR] section 3.1.7.1.1) event with the following
argument value:

▪ iQueueDesc := iLocatedLocalQueueContextHandle.OpenQueueDescriptorReference.

▪ The Open Cursor event returns rCursor, a reference to a Cursor ADM element instance.

▪ Set pcc.hCursor to rCursor.Handle.

▪ Take no further action and return MQ_OK (0x00000000).

▪ Else:

▪ Locate a RemoteQueueProxyHandle (section 3.1.1.5) ADM element instance in the server's
iRemoteQueueProxyHandleTable (section 3.1.1.4) where the value of the Handle attribute of
the RemoteQueueProxyHandle ADM element instance equals hQueue.

▪ If no such RemoteQueueProxyHandle ADM element instance exists, take no further action

and return a failure HRESULT.

▪ Declare iLocatedRemoteQueueProxyHandle and set it to a reference to the located
RemoteQueueProxyHandle ADM element instance.

▪ Bind to the remote server indicated by iLocatedRemoteQueueProxyHandle.PathName and
invoke the R_QMCreateRemoteCursor (Opnum 4) (section 3.1.4.4) method. Specify the
following parameter values:

▪ hQueue := iLocatedRemoteQueueProxyHandle.RemoteContext.

▪ The phCursor out-parameter.

▪ If the R_QMCreateRemoteCursor (Opnum 4) method fails for any reason, return a failure
HRESULT.

▪ Declare iNewCursorProxy as a CursorProxy ADM element instance and set its attributes using

the following values:

▪ Identifier := A new DWORD value unique to

iLocatedRemoteQueueProxyHandle.CursorProxyCollection.

▪ RemoteCursorHandle := phCursor.

▪ IsRemoteCursorHandleInitialized := True.

▪ Add iNewCursorProxy to iLocatedRemoteQueueProxyHandle.CursorProxyCollection.

▪ Set pcc.hCursor := iNewCursorProxy.Handle.

▪ Return MQ_OK (0x00000000).

3.1.6 Timer Events

None.

3.1.7 Other Local Events

3.1.7.1 RPC_QUEUE_HANDLE Context Handle Rundown Routine

This event occurs on rundown of a context handle of type RPC_QUEUE_HANDLE (section 2.2.1.1.2), as

specified in [C706] section 5.1.6.

88 / 135

[MS-MQMP-Diff] - v20170915
Message Queuing (MSMQ): Queue Manager Client Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

 When processing this event, the server MUST:

▪ Locate a LocalQueueContextHandle (section 3.1.1.3) ADM element instance in the server's

iLocalQueueContextHandleTable (section 3.1.1.2) where the value of the Handle attribute of the
LocalQueueContextHandle ADM element instance equals hQueue.

▪ If such a LocalQueueContextHandle ADM element instance exists:

▪ Declare iLocatedLocalQueueContextHandle and set it to a reference to the located
LocalQueueContextHandle ADM element instance.

▪ Generate a Close Queue ([MS-MQDMPR] section 3.1.7.1.6) event with the following argument
value:

▪ iQueueDesc := iLocatedLocalQueueContextHandle.OpenQueueDescriptorReference

▪ Delete iLocatedLocalQueueContextHandle from iLocalQueueContextHandleTable.

▪ Take no further action and return MQ_OK (0x00000000).

▪ Else:

▪ Locate a RemoteQueueProxyHandle (section 3.1.1.5) ADM element instance in the server's
iRemoteQueueProxyHandleTable (section 3.1.1.4) where the value of the Handle attribute of
the RemoteQueueProxyHandle ADM element instance equals hQueue.

▪ If no such RemoteQueueProxyHandle ADM element instance exists, take no further action.

▪ Declare iLocatedRemoteQueueProxyHandle and set it to a reference to the located
RemoteQueueProxyHandle ADM element instance.

▪ Invoke the RemoteQMCloseQueue method of the qm2qm RPC interface as specified in [MS-
MQQP] section 3.1.4.4 using the binding handle in
iLocatedRemoteQueueProxyHandle.RemoteBindingHandle and the following parameter
value:

▪ pphContext := iLocatedRemoteQueueProxyHandle.RemoteHandle

▪ Upon completion of RemoteQMCloseQueue, successful or not, dispose of the
iLocatedRemoteQueueProxyHandle.RemoteBindingHandle as appropriate.

▪ Delete iLocatedRemoteQueueProxyHandle from iRemoteQueueProxyHandleTable.

3.1.7.2 PCTX_OPENREMOTE_HANDLE_TYPE Context Handle Rundown Routine

 This event occurs on rundown of a context handle of type PCTX_OPENREMOTE_HANDLE_TYPE, as
specified in [C706] section 5.1.6.

 When processing this event, the server MUST:

▪ Execute the steps defined for the method R_QMCloseRemoteQueueContext.

3.1.7.3 RPC_INT_XACT_HANDLE Context Handle Rundown Routine

 This event occurs on rundown of a context handle of type RPC_INT_XACT_HANDLE, as specified in
[C706] section 5.1.6.

 When processing this event, the server MUST:

▪ Execute the steps defined for the method R_QMAbortTransaction.

89 / 135

[MS-MQMP-Diff] - v20170915
Message Queuing (MSMQ): Queue Manager Client Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

3.2 qmcomm and qmcomm2 Client Details

3.2.1 Abstract Data Model

The client MUST maintain instances of the following ADM elements:

▪ LicenceGuid (section 3.2.1.1)

▪ OpenQueueContext (section 3.2.1.2)

▪ CursorIdentifier (section 3.2.1.3)

3.2.1.1 LicenceGuid

A GUID that serves as an identifier for the client's computer for the purpose of enabling the server to
uniquely identify the client's computer. This value MUST be generated on first access and MUST
remain unchanged thereafter. The ADM element instance generated on first access is referred to as

iLicenceGuid.

3.2.1.2 OpenQueueContext

The attributes of this ADM element represent a queue that has been opened for message operations
by the client.

This ADM element contains the following attributes:

Handle: An RPC_QUEUE_HANDLE context handle. This value is obtained from the phQueue out-
parameter of rpc_QMOpenQueueInternal.

Context: A DWORD. This value is obtained form the pdwQMContext out-parameter of
rpc_QMOpenQueueInternal.

When the client successfully invokes rpc_QMOpenQueueInternal, the two output parameters MUST

be maintained by the client in association with one another; and the OpenQueueContext ADM
element provides this association.

The client maintains an instance of the OpenQueueContext ADM element associating the queue
opened for message operations, which is referred to as iOpenQueueContext.

3.2.1.3 CursorIdentifier

 A DWORD value representing an opened cursor. This ADM element instance is obtained by
successfully invoking the rpc_ACCreateCursorEx (section 3.1.5.4) method with the hQueue parameter
set to iOpenQueueContext.Handle.

3.2.2 Timers

No protocol timers are required beyond those used internally by RPC to implement resiliency to

network outages. For more information, see [MS-RPCE].

3.2.3 Initialization

The client MUST create an RPC connection to the remote computer, using the details specified in
section 2.1.

90 / 135

[MS-MQMP-Diff] - v20170915
Message Queuing (MSMQ): Queue Manager Client Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

3.2.4 Message Processing Events and Sequencing Rules

The operation of the protocol is initiated and subsequently driven by the following higher-layer
triggered events:

▪ An MSMQ application creates a local private queue.

▪ An MSMQ application deletes a local private queue.

▪ An MSMQ application updates the security configuration of a local private queue.

▪ An MSMQ application retrieves the security configuration of a local private queue.

▪ An MSMQ application updates the properties of a local private queue.

▪ An MSMQ application retrieves the properties of a local private queue.

▪ An MSMQ application opens a queue.

▪ An MSMQ application creates a cursor.

▪ An MSMQ application purges a queue.

▪ An MSMQ application sends a message.

▪ An MSMQ application peeks a message.

▪ An MSMQ application receives a message.

▪ An MSMQ application sends or receives a message in the context of an external transaction.

▪ An MSMQ application sends or receives messages in the context of an internal transaction.

▪ An MSMQ application peeks a message using a cursor.

▪ An MSMQ application requests a format name for a queue path name.

▪ An MSMQ application requests a format name for a queue context handle.

▪ An MSMQ application closes a queue handle.

▪ An MSMQ application closes a cursor.

Prior to performing any operations over this protocol, the client MUST first construct an RPC binding

handle to the server, as specified in [C706] section 2.3. The client can call the
R_QMGetRTQMServerPort method using the RPC handle described above. This method returns an RPC
port number with which subsequent method calls to this interface can be invoked. The client can
construct a new RPC binding handle using the RPC port number acquired from
R_QMGetRTQMServerPort and use the new binding handle for subsequent method invocations.

The client MUST call the R_QMQueryQMRegistryInternal method to retrieve various string values from
the supporting server as specified in section 3.1.4.23. The strings returned by this call are required as

input to other methods.

3.2.4.1 Creating a Local Private Queue

The MSMQ application MUST supply a queue name and can supply a SECURITY_DESCRIPTOR and

queue properties for the new queue. Creating a new local private queue consists of the following
operations:

▪ The client MUST call R_QMCreateObjectInternal, supplying the following parameter values:

91 / 135

[MS-MQMP-Diff] - v20170915
Message Queuing (MSMQ): Queue Manager Client Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

▪ dwObjectType MUST 0x00000001.

▪ lpwcsPathName MUST contain the null-terminated queue name string.

▪ An initial SECURITY_DESCRIPTOR can be specified for the new queue using the
pSecurityDescriptor and SDSize parameters as specified in section 3.1.4.5.

▪ Initial property values can be supplied for the new queue using the cp, aProp, and apVar
parameters as specified in section 3.1.4.5. The property identifiers in aProp MUST be in the
table in section 3.1.1.12 and MUST be marked as applicable for a Create operation. To not
specify any initial property values for the new queue, yet meet the requirement of specifying
at least one property value, the client can supply the queue property PROPID_Q_PATHNAME
using the same value specified for lpwcsPathName. MSMQ queue property values are defined
in [MS-MQMQ] section 2.3.1.

▪ To receive or send messages to the new queue, the client application MUST first open the queue,
as specified in section 3.2.4.7. Opening a queue requires a format name, which is either
constructed by the MSMQ application or acquired from the server, as specified in section 3.2.4.13.

3.2.4.2 Deleting a Local Private Queue

The MSMQ application MUST supply a format name for the local private queue to be deleted.

▪ The given format name MUST be of the "private" or "direct" variety, as specified in [MS-MQMQ]
section 2.1.

▪ The client MUST call R_QMDeleteObject, supplying the following parameter value:

▪ A pointer to an OBJECT_FORMAT structure containing the format name of the queue to be
deleted, as specified in section 3.1.4.8.

3.2.4.3 Updating Local Private Queue Security

The MSMQ application MUST supply a format name for a local private queue for which the security
configuration is to be updated, a new SECURITY_DESCRIPTOR for the queue, and a

SECURITY_DESCRIPTOR value indicating which portions of the SECURITY_DESCRIPTOR are to be
applied to the queue. SECURITY_DESCRIPTOR is specified in [MS-DTYP] section 2.4.6 and
SECURITY_INFORMATION is specified in [MS-MQMQ] section 2.2.3.

▪ The given format name MUST be of the "private" or "direct" variety, as specified in [MS-MQMQ]
section 2.1.

▪ The given SECURITY_DESCRIPTOR MUST be in self-relative form.

▪ The client MUST call R_QMSetObjectSecurityInternal, supplying the following parameter values:

▪ A pointer to an OBJECT_FORMAT structure containing the format name of the queue, as
specified in section 3.1.4.6.

▪ The SecurityInformation, SDSize, and pSecurityDescriptor parameters MUST be supplied as

specified in section 3.1.4.6.

3.2.4.4 Retrieving Local Private Queue Security

The MSMQ application MUST supply a format name for a local private queue and a
SECURITY_INFORMATION value indicating which portions of the security configuration to retrieve. The
client can provide a buffer into which the server returns a SECURITY_DESCRIPTOR.
SECURITY_DESCRIPTOR is specified in [MS-DTYP] section 2.4.6 and SECURITY_INFORMATION as
specified in [MS-MQMQ] section 2.1.

92 / 135

[MS-MQMP-Diff] - v20170915
Message Queuing (MSMQ): Queue Manager Client Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

▪ The given format name MUST be of the "private" or "direct" variety, as specified in [MS-MQMQ]
section 2.1.2.

▪ The client MUST call R_QMGetObjectSecurityInternal, specifying the following parameter values:

▪ A pointer to an OBJECT_FORMAT structure containing the format name of the queue, as

specified in section 3.1.4.7.

▪ pSecurityDescriptor can be NULL, in which case nLength MUST be NULL. If pSecurityDescriptor
is not NULL, it points to an array of bytes and nLength MUST specify the byte length of the
array.

▪ lpnLengthNeeded MUST point to a DWORD that receives the actual byte length of the
requested SECURITY_DESCRIPTOR.

▪ If the server returns MQ_OK (0x00000000), the buffer pointed to by pSecurityDescriptor contains

the requested SECURITY_DESCRIPTOR. The length of the SECURITY_DESCRIPTOR is pointed to by
lpnLengthNeeded.

▪ If the server returns MQ_ERROR_SECURITY_DESCRIPTOR_TOO_SMALL (0xc00e0023),
lpnLengthNeeded points to a DWORD containing the byte length required to contain the requested
SECURITY_DESCRIPTOR. A subsequent call to R_QMGetObjectSecurityInternal using a buffer of
the byte length indicated by lpnLengthNeeded can succeed.

3.2.4.5 Updating Local Private Queue Properties

The MSMQ application MUST supply a format name for a local private queue for which property values
are to be updated and one or more new queue property values for the indicated queue. MSMQ queue
property values are defined in [MS-MQMQ] section 2.3.1.

▪ The given format name MUST be of the "private" or "direct" variety, as specified in [MS-MQMQ]
section 2.1.

▪ The client MUST call R_QMSetObjectProperties, supplying the following parameter values:

▪ A pointer to an OBJECT_FORMAT structure containing the format name of the queue, as
specified in section 3.1.4.10.

▪ Updated property values for the queue are provided using the cp, aProp, and apVar

parameters as described in section 3.1.4.10. The property identifiers in aProp MUST be in the
table in section 3.1.1.12 and MUST be marked as applicable for a Set operation.

3.2.4.6 Retrieving Local Private Queue Properties

The MSMQ application MUST supply a format name for a local private queue from which to retrieve

property values and a set of property identifiers for which values are to be retrieved. Additionally, the
client MUST provide a set of PROPVARIANTs into which the server will place the requested property
values. MSMQ queue property values and the PROPVARIANT structure are defined in [MS-MQMQ]
section 2.2.13.2.

▪ The given format name MUST be of the "private" or "direct" variety, as specified in [MS-MQMQ]
section 2.1.

▪ The client MUST call R_QMGetObjectProperties, supplying the following parameter values:

▪ A pointer to an OBJECT_FORMAT structure containing the format name of the queue, as
specified in section 3.1.4.9.

▪ cp MUST contain the number of properties to be retrieved.

93 / 135

[MS-MQMP-Diff] - v20170915
Message Queuing (MSMQ): Queue Manager Client Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

▪ aProp MUST contain an array of queue property identifiers requested by the MSMQ application.
The array MUST contain cp elements. The property identifiers in aProp MUST be in the table in

section 3.1.1.12 and MUST be marked as applicable for a Get operation.

▪ apVar MUST contain an array of PROPVARIANT structures to be populated by the server.

The array MUST contain cp elements.

3.2.4.7 Opening a Queue

 To open a queue, the client application is expected to provide the following inputs:

▪ FormatName: A string containing a format name.

▪ AccessMode: A DWORD value corresponding to the values defined for the dwDesiredAccess
parameter of the rpc_QMOpenQueueInternal method.

▪ ShareMode: A DWORD value corresponding to the values defined for the dwShareMode
parameter of the rpc_QMOpenQueueInternal method.

The client MUST execute the following steps:

▪ The client MUST call the rpc_QMOpenQueueInternal method, supplying the following parameter

values:

▪ pQueueFormat := FormatName.

▪ dwDesiredAccess := AccessMode.

▪ dwShareMode := ShareMode.

▪ hRemoteQueue := 0x00000000.

▪ lplpRemoteQueueName := in/out parameter:

▪ In: NULL.

▪ Out: Retrieve this value from the server.

▪ dwpQueue := NULL.

▪ pLicGuid :=iLicenceGuid.

▪ lpClientName := This client's computer name.

▪ pdwQMContext := Output parameter. Retrieve this value from the server.

▪ phQueue := Output parameter. Retrieve this value from the server.

▪ dwRemoteProtocol := 0x00000000.

▪ dwpRemoteContext := 0x00000000.

▪ If MQ_OK (0x00000000) is returned, and the out-parameter value for lplpRemoteQueueName is
NULL:

▪ Assign values to the iOpenQueueContext attributes as follows:

▪ iOpenQueueContext.Handle := phQueue

▪ iOpenQueueContext.Context := pdwQMContext

94 / 135

[MS-MQMP-Diff] - v20170915
Message Queuing (MSMQ): Queue Manager Client Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

▪ Take no further action. The queue has been successfully opened. Use iOpenQueueContext for
subsequent message operations against the queue.

▪ Else, if MQ_OK (0x00000000) is returned, and the out-parameter value for
lplpRemoteQueueName is non-NULL:

▪ Using the RPC binding procedure as specified in section 3.2.4, bind to the remote server
indicated by the path name contained in lplpRemoteQueueName.

▪ At the remote server, invoke the R_QMOpenRemoteQueue method, supplying the following
parameter values:

▪ pphContext := Output parameter. Retrieve this value from the server.

▪ pdwContext := Output parameter. Retrieve this value from the server.

▪ pQueueFormat := FormatName.

▪ dwCallingProcessID := 0x00000000. (Details of this parameter are described in section

3.1.4.2.)

▪ dwDesiredAccess := AccessMode.

▪ dwShareMode := ShareMode.

▪ pLicGuid := iLicenceGuid.

▪ dwMQS := A value indicating the client operating system, as defined in section 3.1.4.2.

▪ dwpQueue := Output parameter. Retrieve this value from the server.

▪ phQueue := Output parameter. Retrieve this value from the server.

▪ At the original server, invoke the rpc_QMOpenQueueInternal method once more, specifying
the following parameter values:

▪ pQueueFormat := FormatName.

▪ dwDesiredAccess := AccessMode.

▪ dwShareMode := ShareMode.

▪ hRemoteQueue := phQueue (out-parameter value obtained from the
R_QMOpenRemoteQueue method).

▪ lplpRemoteQueueName := in/out parameter:

▪ In: NULL.

▪ Out: MUST be ignored.

▪ dwpQueue := dwpQueue (out-parameter value obtained from the

R_QMOpenRemoteQueue method).

▪ pLicGuid := iLicenceGuid.

▪ lpClientName := This client's computer name.

▪ pdwQMContext := Output parameter. Retrieve this value from the server.

▪ phQueue := Output parameter. Retrieve this value from the server.

▪ dwRemoteProtocol := 0x00000000.

95 / 135

[MS-MQMP-Diff] - v20170915
Message Queuing (MSMQ): Queue Manager Client Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

▪ dwpRemoteContext := pdwContext (out-parameter value obtained from the
R_QMOpenRemoteQueue method).

▪ At the remote server where the R_QMOpenRemoteQueue method was invoked, invoke the
R_QMCloseRemoteQueueContext method with the following parameter value:

▪ pphContext := pphContext (out-parameter value obtained from the
R_QMOpenRemoteQueue method).

▪ Assign values to the iOpenQueueContext attributes as follows:

▪ iOpenQueueContext.Handle := phQueue (out-parameter value obtained from the last call
to the rpc_QMOpenQueueInternal method).

▪ iOpenQueueContext.Context := pdwQMContext (out-parameter value obtained from the
last call to the rpc_QMOpenQueueInternal method).

▪ Take no further action. The queue has been successfully opened. Use iOpenQueueContext for
subsequent message operations against the queue.

▪ Else, or if any of the preceding method invocations failed:

▪ The queue could not be opened.

3.2.4.8 Creating a Cursor

The client MUST execute the following steps:

▪ Invoke the rpc_ACCreateCursorEx method with the following parameter values:

▪ hQueue := iOpenQueueContext.Handle

▪ pcc := In/Out structure. The member input values are ignored by the server. Retrieve the
output values from the server.

▪ If the rpc_ACCreateCursorEx method returns a failure HRESULT, the cursor cannot be created.
Take no further action.

▪ Else, if the rpc_ACCreateCursorEx method returns MQ_OK (0x00000000):

▪ Store the CursorIdentifier (section 3.2.1.3) ADM element instance returned by pcc.hCursor
for subsequent operations on the cursor.

▪ Take no further action. The cursor was created successfully.

▪ Else, if the rpc_ACCreateCursorEx method returns MQ_INFORMATION_REMOTE_OPERATION
(0x400E03E8):

▪ Invoke the R_QMGetRemoteQueueName method with the following parameter values:

▪ pQueue := pcc.cli_pQMQueue (out-parameter value from the rpc_ACCreateCursorEx

method)

▪ lplpRemoteQueueName := in/out parameter:

▪ In: NULL.

▪ Out: Retrieve this value from the server.

▪ Using the RPC binding procedure as specified in section 3.2.4, bind to the remote server
indicated by the path name contained in lplpRemoteQueueName.

96 / 135

[MS-MQMP-Diff] - v20170915
Message Queuing (MSMQ): Queue Manager Client Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

▪ At the remote server, invoke the R_QMCreateRemoteCursor method, supplying the following
parameter values:

▪ hQueue := pcc.srv_hACQueue (out-parameter value from the rpc_ACCreateCursorEx
method)

▪ phCursor := Retrieve this out-parameter value from the server.

▪ At the original server (where the rpc_ACCreateCursorEx method was invoked), invoke the
rpc_ACSetCursorProperties method with the following parameter values:

▪ hProxy := iOpenQueueContext.Handle

▪ hCursor := pcc.hCursor (out-parameter value from the rpc_ACCreateCursorEx method)

▪ hRemoteCursor := phCursor (out-parameter value from the R_QMCreateRemoteCursor
method)

▪ If any of the R_QMGetRemoteQueueName, R_QMCreateRemoteCursor, or

rpc_ACSetCursorProperties method invocations fails for any reason:

▪ Invoke the rpc_ACCloseCursor method with the following parameter values:

▪ hQueue := iOpenQueueContext.Handle

▪ hCursor := pcc.hCursor (out-parameter value from the rpc_ACCreateCursorEx
method)

▪ Take no further action. The cursor cannot be created.

▪ Else:

▪ Store the CursorIdentifier ADM element instance returned by pcc.hCursor for
subsequent operations on the cursor.

▪ The cursor was created successfully.

3.2.4.9 Purging a Queue

The client MUST execute the following steps:

▪ Invoke the rpc_ACPurgeQueue method with the following parameter value:

▪ hQueue := iOpenQueueContext.Handle

3.2.4.10 Sending a Message

To perform the send operation in the context of a transaction, the client first MUST call
R_QMGetTmWhereabouts to obtain transaction manager whereabouts and then enlist the transaction
by calling R_QMEnlistTransaction or R_QMEnlistInternalTransaction, as described in sections 3.1.4.13

and 3.1.4.14.

The client MUST execute the following steps:

▪ Invoke the rpc_ACSendMessageEx method with the following parameter values:

▪ hQueue := iOpenQueueContext.Handle

▪ ptb := CACTransferBufferV2 structure:

▪ ptb.old.uTransferType := CACTB_SEND (0x00000000)

97 / 135

[MS-MQMP-Diff] - v20170915
Message Queuing (MSMQ): Queue Manager Client Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

▪ ptb.old.pUow := A transaction identifier, or NULL.

▪ The remainder of the fields MUST be populated according to the limitations and definitions

in section 3.1.5.2.

▪ pMessageID := A 20-byte buffer to receive the message identifier, or NULL.

3.2.4.11 Peeking a Message

The client MUST execute the following steps:

▪ Invoke the rpc_ACReceiveMessageEx method with the following parameter values:

▪ hQMContext := iOpenQueueContext.Context

▪ ptb := CACTransferBufferV2 structure:

▪ ptb.old.uTransferType := CACTB_RECEIVE (0x00000001)

▪ ptb.old.Receive.Action := MQ_ACTION_PEEK_CURRENT (0x80000000); or, if a
CursorIdentifier (section 3.2.1.3) ADM element instance is provided for
ptb.old.Receive.Cursor, MQ_ACTION_PEEK_NEXT (0x80000001) is also acceptable. The
behavior for these values is described in section 3.1.5.3.

▪ The remainder of the fields MUST be populated according to the limitations and definitions
in section 3.1.5.3.

3.2.4.12 Receiving a Message

To perform the receive operation in the context of a transaction, the client first MUST call the

R_QMGetTmWhereabouts method to obtain transaction manager whereabouts and then enlist the
transaction by calling the R_QMEnlistTransaction method or the R_QMEnlistInternalTransaction
method, as described in sections 3.1.4.13 and 3.1.4.14.

The client MUST execute the following steps:

▪ Invoke the rpc_ACReceiveMessageEx method with the following parameter values:

▪ hQMContext := iOpenQueueContext.Context

▪ ptb := CACTransferBufferV2 structure:

▪ ptb.old.uTransferType := CACTB_RECEIVE (0x00000001)

▪ ptb.old.pUow := A transaction identifier, or NULL.

▪ ptb.old.Receive.Action := MQ_ACTION_RECEIVE (0x00000000)

▪ The remainder of the fields MUST be populated according to the limitations and definitions
in section 3.1.5.3.

3.2.4.13 Retrieving a Format Name for a Queue Path Name

The MSMQ application MUST supply a queue path for which a format name is to be retrieved by the
server.

▪ The client MUST call R_QMObjectPathToObjectFormat (section 3.1.4.11), supplying the following
parameter values:

▪ lpwcsPathName MUST contain a path name.

98 / 135

[MS-MQMP-Diff] - v20170915
Message Queuing (MSMQ): Queue Manager Client Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

▪ pObjectFormat MUST point to a QUEUE_FORMAT ([MS-MQMQ] section 2.2.7) structure to be
populated by the server.

3.2.4.14 Retrieving a Format Name for a Queue Context Handle

The client application is required to provide a buffer into which the format name string is to be placed.

The client MUST execute the following steps:

▪ Invoke the rpc_ACHandleToFormatName method with the following parameter values:

▪ hQueue := iOpenQueueContext.Handle

▪ lpwcsFormatName := A Unicode character array into which the server copies a format name,
or NULL.

▪ dwFormatNameRPCBufferLen := The length of the lpwcsFormatName buffer; or, if
lpwcsFormatName is NULL, 0x00000000.

▪ pdwLength := The length of the lpwcsFormatName buffer; or, if lpwcsFormatName is NULL,
0x00000000. In the event that the buffer provided for the lpwcsFormatName parameter is not
large enough to contain the resulting format name, the server sets the value of this parameter

to the length of the entire format name.

▪ If the rpc_ACHandleToFormatName method returns MQ_OK (0x00000000), lpwcsFormatName
contains a null-terminated format name.

▪ Else, if

MQ_ERROR_FORMATNAME_BUFFER_TOO_SMALL (0xc00e001f) is returned, the server could not
copy the entire format name into the buffer provided by the lpwcsFormatName parameter. The
pdwLength out-parameter contains the length of the full format name including the terminating

null character, in Unicode characters. Repeat the call to the rpc_ACHandleToFormatName
method with a sufficiently large lpwcsFormatName buffer to retrieve the entire format name

result.

3.2.4.15 Closing a Queue

Close a queue by invoking the rpc_ACCloseHandle method with the phQueue parameter set to
iOpenQueueContext.Handle.

3.2.4.16 Closing a Cursor

Close a cursor by invoking the rpc_ACCloseCursor method specifying the following parameter values:

▪ hQueue := iOpenQueueContext.Handle

▪ hCursor := The CursorIdentifier ADM element instance previously obtained in section 3.2.4.8.

3.2.5 Timer Events

None.

3.2.6 Other Local Events

None.

99 / 135

[MS-MQMP-Diff] - v20170915
Message Queuing (MSMQ): Queue Manager Client Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

4 Protocol Examples

The following sections describe several operations as used in common scenarios to illustrate the
function of the Message Queuing (MSMQ): Queue Manager Client Protocol.

4.1 Application Opening and Closing a Local Queue Example

The following sequence diagram illustrates an application interacting with a supporting server to open
a queue handle for a queue located at the supporting server.

Figure 2: Queue opening

1. The application begins the RPC session by invoking R_QMGetRTQMServerPort to query the RPC
port number for subsequent method invocations.

2. The application invokes rpc_QMOpenQueueInternal, specifying a format name identifying the
queue to open.

3. The supporting server's determines that the queue identified by the format name is located locally.

A local queue handle is returned. lplpRemoteQueueName is NULL, to indicate that a remote queue
open sequence (demonstrated in section 4.2) is not necessary.

100 / 135

[MS-MQMP-Diff] - v20170915
Message Queuing (MSMQ): Queue Manager Client Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

4. The application performs operations utilizing the local queue handle, such as send, receive, peek,
or purge.

5. The application closes the local queue handle when it is no longer required.

4.2 Application Opening and Closing a Remote Queue Example

The following sequence diagram illustrates an application interacting with a supporting server to
create a queue handle for a queue located at a remote queue manager.

Figure 3: Creating a queue handle

101 / 135

[MS-MQMP-Diff] - v20170915
Message Queuing (MSMQ): Queue Manager Client Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

1. The application invokes the rpc_QMOpenQueueInternal method, providing a format name for a
queue to open. NULL is specified for hRemoteQueue.

2. The supporting server determines that the queue identified by the format name is a remote
queue. A path name for the remote queue is returned via lplpRemoteQueueName. All returned

handles are NULL.

3. The application uses the path name returned by the rpc_QMOpenQueueInternal method to
determine the computer name of the remote queue manager, as specified in [MS-MQMQ] section
2.1.1. The application then establishes an RPC connection with the remote queue manager and
begins the session by invoking the R_QMGetRTQMServerPort method.

4. The remote queue manager returns the RPC port number requested by the application.

5. The application invokes the R_QMOpenRemoteQueue method at the remote queue manager, using

the RPC port returned by the R_QMGetRTQMServerPort method and specifying the format name of
the queue to be opened.

6. The remote queue manager opens the requested queue and returns a context handle and an

OpenQueueDescriptor ADM element instance with its Handle attribute set to the application.

7. The application invokes the rpc_QMOpenQueueInternal method on the supporting server once
again. For this invocation, the client provides the value of the Handle attribute of the

OpenQueueDescriptor ADM element instance returned from the R_QMOpenRemoteQueue
method.

8. The supporting server binds to the remote queue manager and utilizes the qm2qm RPC protocol,
as defined by [MS-MQQP], to create a remote read session. The client passes the value of the
Handle attribute of the OpenQueueDescriptor ADM element instance returned at step 6, which
the server uses to correlate the requests.

9. The qm2qm protocol exchange between the supporting server and the remote queue manager

produces a remote read session handle, as specified in [MS-MQQP].

10. The supporting server internally associates the qm2qm session handle with a new local queue

handle and returns the local queue handle to the application.

11. The application, having successfully acquired a local queue handle, closes the intermediate context
handle using the R_QMCloseRemoteQueueContext method.

12. The application utilizes the local queue handle to execute remote read message operations via the
qmcomm2 interface. The supporting server uses the remote read session handle to contact the

remote queue manager as necessary to carry out the message operations. This process is defined
by [MS-MQQP].

13. The application is finished utilizing the local queue handle and closes it with a call to the
rpc_ACCloseHandle method.

14. The supporting server closes the remote read session handle (via the qm2qm protocol, as
specified in [MS-MQQP]) that was associated with the local queue handle passed by the application

at step 13. Note that the supporting server invokes the qm2qm protocol in parallel and does not

block the rpc_ACCloseHandle method invocation while the session handle is being closed.

4.3 Application Creating and Closing a Local Cursor Example

The following sequence diagram illustrates an application interacting with a supporting server to

create and close a cursor for a queue located at the supporting server.

102 / 135

[MS-MQMP-Diff] - v20170915
Message Queuing (MSMQ): Queue Manager Client Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

Figure 4: Creating and closing a local cursor

1. The application creates a local cursor using the qmcomm2 interface.

2. The application utilizes the local cursor to perform messaging operations.

3. The application closes the cursor via the rpc_ACCloseCursor method.

4.4 Application Creating and Closing a Remote Cursor Example

The following sequence diagram illustrates an application interacting with a supporting server to
create a cursor for a queue located at a remote queue manager.<77>

103 / 135

[MS-MQMP-Diff] - v20170915
Message Queuing (MSMQ): Queue Manager Client Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

Figure 5: Creating and closing a remote cursor

1. The application begins the process of creating a cursor by calling the rpc_ACCreateCursorEx
(Opnum 3) (section 3.1.5.4) method of the qmcomm2 interface. A queue handle is specified,
which identifies the queue with which to associate the cursor.

2. The supporting server, having determined that the queue is located remotely, returns the

following information to the client:

1. A new local CursorProxy (section 3.1.1.6) ADM element instance with its Handle attribute set.

2. Queue context identifiers with meaning to the supporting server and remote queue manager.

3. A special return code: MQ_INFORMATION_REMOTE_OPERATION (0x400e03e8).

104 / 135

[MS-MQMP-Diff] - v20170915
Message Queuing (MSMQ): Queue Manager Client Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

3. The application detects the special return code MQ_INFORMATION_REMOTE_OPERATION
(0x400e03e8), which indicates that the remote queue manager has to create the cursor. In order

to bind to the remote queue manager, the application determines the computer name of the
remote queue manager. The application invokes the

R_QMGetRemoteQueueName (section 3.1.4.1) method using the context identifier described at
step 2.2.

4. The supporting server returns the path name for the remote queue.

5. The application determines the remote queue manager computer name using the path name
returned at step 4. An RPC binding is established, and the port number is queried via the
R_QMGetRTQMServerPort (section 3.1.4.24) method. The application then invokes the
R_QMCreateRemoteCursor (section 3.1.4.4) method at the remote queue manager, specifying the

context identifier returned at step 2.2.

6. The remote queue manager creates and returns a remote cursor identifier to the application.

7. The application invokes the rpc_ACSetCursorProperties (section 3.1.4.20) method, specifying the

original context handle from step 1, the value of the Handle attribute of the CursorProxy ADM
element instance for the local cursor from step 2.1, and the value of the Handle attribute of the
Cursor ([MS-MQDMPR] section 3.2) ADM element instance for the remote cursor from step 6. The

supporting server associates these values for future reference.

8. The application can now utilize the value of the Handle attribute of the CursorProxy ADM
element instance returned at step 2.1 to perform messaging operations via the qmcomm2
interface. The supporting server delegates the operations to the remote queue manager via the
qm2qm interface, as specified in [MS-MQQP].

9. The application closes the CursorProxy ADM element instance.

10. The supporting server closes the remote cursor created at step 6 via the qm2qm interface, as

specified in [MS-MQQP]. Note that this step is performed in parallel and need not block the return
from the rpc_ACCloseCursor (section 3.1.4.19) method invocation.

4.5 Application Internal Transaction Example

The following sequence diagram illustrates an application interacting with a supporting server to enlist
the supporting server's resource manager (RM) in an internal transaction, perform operations in the
scope of the internal transaction, and finally commit the transaction.

105 / 135

[MS-MQMP-Diff] - v20170915
Message Queuing (MSMQ): Queue Manager Client Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

Figure 6: Using server resource manager for internal transaction

1. Prior to invoking R_QMEnlistInternalTransaction (section 3.1.4.14), the application creates a new

unique transactional unit of work identifier XACTUOW ([MS-MQMQ] section 2.2.18.1.8).<78>

2. The application invokes R_QMEnlistInternalTransaction to create an internal transaction handle for
the XACTUOW.

3. The application utilizes the XACTUOW identifier created at step 1 to perform operations in the
scope of the transaction via the qmcomm2 interface.

4. The application finally commits the transaction by calling

R_QMCommitTransaction (section 3.1.4.15), specifying the internal transaction handle obtained at
step 2.

106 / 135

[MS-MQMP-Diff] - v20170915
Message Queuing (MSMQ): Queue Manager Client Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

5 Security

The following sections describe security considerations for implementers of the Message Queuing
(MSMQ): Queue Manager Client Protocol.

5.1 Security Considerations for Implementers

Clients can invoke methods of this interface at the "none" authentication level as defined by [MS-
RPCE]. Server implementations have to be designed with careful consideration given to the security
implications of accepting method calls from unauthenticated clients. Server implementations can
reject methods invoked by unauthenticated clients by returning RPC_S_ACCESS_DENIED
(0x00000005).

The R_QMGetRTQMServerPort method is an exception to the above consideration since clients can
invoke R_QMGetRTQMServerPort prior to configuring security for the RPC binding. For this reason,
server implementations do not restrict access to the R_QMGetRTQMServerPort method.

5.2 Index of Security Parameters

None.

107 / 135

[MS-MQMP-Diff] - v20170915
Message Queuing (MSMQ): Queue Manager Client Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

6 Appendix A: Full IDL

For ease of implementation, the full IDL is provided below, where "ms-dtyp.idl" is the IDL found in
[MS-DTYP] Appendix A (section 5), "ms-mqrr.idl" is the IDL found in [MS-MQRR] Appendix
A (section 6), and "ms-mqmq.idl" is the IDL found in [MS-MQMQ] Appendix A (section 5).

 // Please refer to [MS-MQMQ] for definitions of the
 // following types:

 // MULTICAST_ID
 // OBJECTID
 // PROPVARIANT
 // QUEUE_FORMAT
 // XACTUOW
 import "ms-mqmq.idl";

 // Please refer to [MS-MQRR] for definitions of the
 // following types:
 // DL_ID
 import "ms-mqrr.idl";

 // Please refer to [MS-DTYP] for definitions of the
 // following types:
 // DWORD
 // GUID

 [
 uuid(fdb3a030-065f-11d1-bb9b-00a024ea5525),
 version(1.0),
 pointer_default(unique)
]
 interface qmcomm
 {

 typedef struct CACCreateRemoteCursor {
 DWORD hCursor;
 DWORD srv_hACQueue;
 DWORD cli_pQMQueue;
 } CACCreateRemoteCursor;

 typedef enum {
 CACTB_SEND = 0,
 CACTB_RECEIVE,
 CACTB_CREATECURSOR
 } TRANSFER_TYPE;

 typedef struct CACTransferBufferV1 {
 [range(0,2)] DWORD uTransferType;
 [switch_is(uTransferType)] union {
 [case(CACTB_SEND)]
 struct {
 QUEUE_FORMAT* pAdminQueueFormat;
 QUEUE_FORMAT* pResponseQueueFormat;
 } Send;
 [case(CACTB_RECEIVE)]
 struct {
 DWORD RequestTimeout;
 DWORD Action;
 DWORD Asynchronous;
 DWORD Cursor;
 [range(0,1024)] DWORD ulResponseFormatNameLen;
 [size_is(,ulResponseFormatNameLen)]
 WCHAR** ppResponseFormatName;
 DWORD* pulResponseFormatNameLenProp;
 [range(0,1024)] DWORD ulAdminFormatNameLen;
 [size_is(,ulAdminFormatNameLen)]

108 / 135

[MS-MQMP-Diff] - v20170915
Message Queuing (MSMQ): Queue Manager Client Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

 WCHAR** ppAdminFormatName;
 DWORD* pulAdminFormatNameLenProp;
 [range(0,1024)] DWORD ulDestFormatNameLen;
 [size_is(,ulDestFormatNameLen)]
 WCHAR** ppDestFormatName;
 DWORD* pulDestFormatNameLenProp;
 [range(0,1024)] DWORD ulOrderingFormatNameLen;
 [size_is(,ulOrderingFormatNameLen)]
 WCHAR** ppOrderingFormatName;
 DWORD* pulOrderingFormatNameLenProp;
 } Receive;
 [case(CACTB_CREATECURSOR)]
 struct CACCreateRemoteCursor CreateCursor;
 };
 unsigned short* pClass;
 OBJECTID** ppMessageID;
 [size_is(,20), length_is(,20)] unsigned char** ppCorrelationID;
 DWORD* pSentTime;
 DWORD* pArrivedTime;
 unsigned char* pPriority;
 unsigned char* pDelivery;
 unsigned char* pAcknowledge;
 unsigned char* pAuditing;
 DWORD* pApplicationTag;
 [size_is(,ulAllocBodyBufferInBytes), length_is(,ulBodyBufferSizeInBytes)]
 unsigned char** ppBody;
 DWORD ulBodyBufferSizeInBytes;
 DWORD ulAllocBodyBufferInBytes;
 DWORD* pBodySize;
 [size_is(,ulTitleBufferSizeInWCHARs), length_is(,ulTitleBufferSizeInWCHARs)]
 WCHAR** ppTitle;
 DWORD ulTitleBufferSizeInWCHARs;
 DWORD* pulTitleBufferSizeInWCHARs;
 DWORD ulAbsoluteTimeToQueue;
 DWORD* pulRelativeTimeToQueue;
 DWORD ulRelativeTimeToLive;
 DWORD* pulRelativeTimeToLive;
 unsigned char* pTrace;
 DWORD* pulSenderIDType;
 [size_is(,uSenderIDLen)] unsigned char** ppSenderID;
 DWORD* pulSenderIDLenProp;
 DWORD* pulPrivLevel;
 DWORD ulAuthLevel;
 unsigned char* pAuthenticated;
 DWORD* pulHashAlg;
 DWORD* pulEncryptAlg;
 [size_is(,ulSenderCertLen)] unsigned char** ppSenderCert;
 DWORD ulSenderCertLen;
 DWORD* pulSenderCertLenProp;
 [size_is(,ulProvNameLen)] WCHAR** ppwcsProvName;
 DWORD ulProvNameLen;
 DWORD* pulAuthProvNameLenProp;
 DWORD* pulProvType;
 long fDefaultProvider;
 [size_is(,ulSymmKeysSize)] unsigned char** ppSymmKeys;
 DWORD ulSymmKeysSize;
 DWORD* pulSymmKeysSizeProp;
 unsigned char bEncrypted;
 unsigned char bAuthenticated;
 unsigned short uSenderIDLen;
 [size_is(,ulSignatureSize)] unsigned char** ppSignature;
 DWORD ulSignatureSize;
 DWORD* pulSignatureSizeProp;
 GUID** ppSrcQMID;
 XACTUOW* pUow;
 [size_is(,ulMsgExtensionBufferInBytes), length_is(,ulMsgExtensionBufferInBytes)]
 unsigned char** ppMsgExtension;
 DWORD ulMsgExtensionBufferInBytes;
 DWORD* pMsgExtensionSize;
 GUID** ppConnectorType;

109 / 135

[MS-MQMP-Diff] - v20170915
Message Queuing (MSMQ): Queue Manager Client Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

 DWORD* pulBodyType;
 DWORD* pulVersion;
 } CACTransferBufferV1;

 typedef struct CACTransferBufferV2 {
 struct CACTransferBufferV1 old;
 unsigned char* pbFirstInXact;
 unsigned char* pbLastInXact;
 OBJECTID** ppXactID;
 } CACTransferBufferV2;

 typedef struct OBJECT_FORMAT {
 [range(1,2)] DWORD ObjType;
 [switch_is(ObjType)] union {
 [case(1)]
 QUEUE_FORMAT* pQueueFormat;
 };
 } OBJECT_FORMAT;

 typedef [context_handle] void* PCTX_OPENREMOTE_HANDLE_TYPE;
 typedef [context_handle] void* RPC_QUEUE_HANDLE;
 typedef [context_handle] void* RPC_INT_XACT_HANDLE;

 // opnum 0
 void
 Opnum0NotUsedOnWire (void);

 // opnum 1
 HRESULT
 R_QMGetRemoteQueueName(
 [in] handle_t hBind,
 [in] DWORD pQueue,
 [in, out, ptr, string] WCHAR** lplpRemoteQueueName
);

 // opnum 2
 HRESULT
 R_QMOpenRemoteQueue(
 [in] handle_t hBind,
 [out] PCTX_OPENREMOTE_HANDLE_TYPE *pphContext,
 [out] DWORD *pdwContext,

 [in, unique] QUEUE_FORMAT *pQueueFormat,
 [in] DWORD dwCallingProcessID,
 [in] DWORD dwDesiredAccess,
 [in] DWORD dwShareMode,
 [in] GUID* pLicGuid,
 [in] DWORD dwMQS,
 [out] DWORD *dwpQueue,
 [out] DWORD *phQueue
);

 // opnum 3
 void
 R_QMCloseRemoteQueueContext(
 [in, out] PCTX_OPENREMOTE_HANDLE_TYPE *pphContext
);

 // opnum 4
 HRESULT
 R_QMCreateRemoteCursor(
 [in] handle_t hBind,
 [in] struct CACTransferBufferV1 * ptb1,
 [in] DWORD hQueue,
 [out] DWORD * phCursor
);

 // opnum 5
 void
 Opnum5NotUsedOnWire (void);

110 / 135

[MS-MQMP-Diff] - v20170915
Message Queuing (MSMQ): Queue Manager Client Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

 // opnum 6
 HRESULT
 R_QMCreateObjectInternal(
 [in] handle_t hBind,
 [in] DWORD dwObjectType,
 [in, string] const WCHAR* lpwcsPathName,
 [in, range(0, 524288)] DWORD SDSize,
 [in, unique, size_is (SDSize)]
 unsigned char *pSecurityDescriptor,
 [in, range(1, 128)] DWORD cp,
 [in, size_is (cp)] DWORD aProp[],
 [in, size_is (cp)] PROPVARIANT apVar[]
);

 // opnum 7
 HRESULT
 R_QMSetObjectSecurityInternal(
 [in] handle_t hBind,
 [in] struct OBJECT_FORMAT* pObjectFormat,
 [in] DWORD SecurityInformation,
 [in, range(0, 524288)] DWORD SDSize,
 [in, unique, size_is (SDSize)]
 unsigned char *pSecurityDescriptor);

 // opnum 8
 HRESULT
 R_QMGetObjectSecurityInternal(
 [in] handle_t hBind,
 [in] struct OBJECT_FORMAT* pObjectFormat,
 [in] DWORD RequestedInformation,
 [out, size_is (nLength)] unsigned char *pSecurityDescriptor,
 [in, range(0, 524288)] DWORD nLength,
 [out] DWORD* lpnLengthNeeded
);

 // opnum 9
 HRESULT
 R_QMDeleteObject(
 [in] handle_t hBind,
 [in] struct OBJECT_FORMAT* pObjectFormat
);

 // opnum 10
 HRESULT
 R_QMGetObjectProperties(
 [in] handle_t hBind,
 [in] struct OBJECT_FORMAT* pObjectFormat,
 [in, range(1, 128)] DWORD cp,
 [in, size_is (cp)] DWORD aProp[],
 [in, out, size_is(cp)] PROPVARIANT apVar[]
);

 // opnum 11
 HRESULT
 R_QMSetObjectProperties(
 [in] handle_t hBind,
 [in] struct OBJECT_FORMAT* pObjectFormat,
 [in, range(1, 128)] DWORD cp,
 [in, unique, size_is (cp)] DWORD aProp[],
 [in, unique, size_is(cp)] PROPVARIANT apVar[]
);

 // opnum 12
 HRESULT
 R_QMObjectPathToObjectFormat(
 [in] handle_t hBind,
 [in, string] const WCHAR* lpwcsPathName,

111 / 135

[MS-MQMP-Diff] - v20170915
Message Queuing (MSMQ): Queue Manager Client Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

 [in, out] struct OBJECT_FORMAT *pObjectFormat
);

 // opnum 13
 void
 Opnum13NotUsedOnWire (void);

 // opnum 14
 HRESULT
 R_QMGetTmWhereabouts(
 [in] handle_t hBind,
 [in, range(0, 131072)] DWORD cbBufSize,
 [out, size_is (cbBufSize)] unsigned char* pbWhereabouts,
 [out] DWORD *pcbWhereabouts
);

 // opnum 15
 HRESULT
 R_QMEnlistTransaction(
 [in] handle_t hBind,
 [in] XACTUOW* pUow,
 [in, range(0, 131072)] DWORD cbCookie,
 [in, size_is (cbCookie)] unsigned char* pbCookie
);

 // opnum 16
 HRESULT
 R_QMEnlistInternalTransaction(
 [in] handle_t hBind,
 [in] XACTUOW* pUow,
 [out] RPC_INT_XACT_HANDLE* phIntXact
);

 // opnum 17
 HRESULT
 R_QMCommitTransaction(
 [in, out] RPC_INT_XACT_HANDLE* phIntXact
);

 // opnum 18
 HRESULT
 R_QMAbortTransaction(
 [in, out] RPC_INT_XACT_HANDLE* phIntXact
);

 // opnum 19
 HRESULT
 rpc_QMOpenQueueInternal(
 [in] handle_t hBind,

 [in] QUEUE_FORMAT* pQueueFormat,
 [in] DWORD dwDesiredAccess,
 [in] DWORD dwShareMode,
 [in] DWORD hRemoteQueue,
 [in, out, ptr, string] WCHAR** lplpRemoteQueueName,
 [in] DWORD* dwpQueue,
 [in] GUID* pLicGuid,
 [in, string] WCHAR* lpClientName,
 [out] DWORD* pdwQMContext,
 [out] RPC_QUEUE_HANDLE* phQueue,
 [in] DWORD dwRemoteProtocol,
 [in] DWORD dwpRemoteContext
);

 // opnum 20
 HRESULT
 rpc_ACCloseHandle(
 [in, out] RPC_QUEUE_HANDLE* phQueue
);

112 / 135

[MS-MQMP-Diff] - v20170915
Message Queuing (MSMQ): Queue Manager Client Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

 // opnum 21
 void
 Opnum21NotUsedOnWire (void);

 // opnum 22
 HRESULT
 rpc_ACCloseCursor(
 [in] RPC_QUEUE_HANDLE hQueue,
 [in] DWORD hCursor
);

 // opnum 23
 HRESULT
 rpc_ACSetCursorProperties(
 [in] RPC_QUEUE_HANDLE hProxy,
 [in] DWORD hCursor,
 [in] DWORD hRemoteCursor
);

 // opnum 24
 void
 Opnum24NotUsedOnWire (void);

 // opnum 25
 void
 Opnum25NotUsedOnWire(void);

 // opnum 26
 HRESULT
 rpc_ACHandleToFormatName(
 [in] RPC_QUEUE_HANDLE hQueue,
 [in, range(0, 524288)] DWORD dwFormatNameRPCBufferLen,
 [in, out, unique,
 size_is(dwFormatNameRPCBufferLen),
 length_is(dwFormatNameRPCBufferLen)] WCHAR* lpwcsFormatName,
 [in, out] DWORD* pdwLength
);

 // opnum 27
 HRESULT
 rpc_ACPurgeQueue(
 [in] RPC_QUEUE_HANDLE hQueue
);

 // opnum 28
 HRESULT
 R_QMQueryQMRegistryInternal(
 [in] handle_t hBind,
 [in] DWORD dwQueryType,
 [out, string] WCHAR** lplpMQISServer
);

 // opnum 29
 void
 Opnum29NotUsedOnWire (void);

 // opnum 30
 void
 Opnum30NotUsedOnWire (void);

 // opnum 31
 DWORD
 R_QMGetRTQMServerPort(
 [in] handle_t hBind,
 [in] DWORD fIP
);

113 / 135

[MS-MQMP-Diff] - v20170915
Message Queuing (MSMQ): Queue Manager Client Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

 // opnum 32
 void
 Opnum32NotUsedOnWire (void);

 // opnum 33
 void
 Opnum33NotUsedOnWire (void);

 // opnum 34
 void
 Opnum34NotUsedOnWire(void);

 } // interface qmcomm

 [
 uuid(76d12b80-3467-11d3-91ff-0090272f9ea3),
 version(1.0),
 pointer_default(unique)
]
 interface qmcomm2
 {

 // opnum 0
 HRESULT
 QMSendMessageInternalEx(
 [in] handle_t hBind,

 [in] QUEUE_FORMAT * pQueueFormat,
 [in] struct CACTransferBufferV2 * ptb,
 [in, out, unique] OBJECTID * pMessageID
);

 // opnum 1
 HRESULT
 rpc_ACSendMessageEx(
 [in] RPC_QUEUE_HANDLE hQueue,
 [in] struct CACTransferBufferV2 * ptb,
 [in, out, unique] OBJECTID * pMessageID
);

 // opnum 2
 HRESULT
 rpc_ACReceiveMessageEx(
 [in] handle_t hBind,
 [in] DWORD hQMContext,
 [in, out] struct CACTransferBufferV2 * ptb
);

 // opnum 3
 HRESULT
 rpc_ACCreateCursorEx(
 [in] RPC_QUEUE_HANDLE hQueue,
 [in, out] struct CACCreateRemoteCursor * pcc
);

 } // interface qmcomm2

114 / 135

[MS-MQMP-Diff] - v20170915
Message Queuing (MSMQ): Queue Manager Client Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

7 Appendix B: Product Behavior

The information in this specification is applicable to the following Microsoft products or supplemental
software. References to product versions include released service packsupdates to those products.

The terms "earlier" and "later", when used with a product version, refer to either all preceding
versions or all subsequent versions, respectively. The term "through" refers to the inclusive range of
versions. Applicable Microsoft products are listed chronologically in this section.

Windows Client

▪ Windows NT Workstation operating system

▪ Windows 2000 Professional operating system

▪ Windows XP operating system

▪ Windows Vista operating system

▪ Windows 7 operating system

▪ Windows 8 operating system

▪ Windows 8.1 operating system

▪ Windows 10 operating system

Windows Server

▪ Windows NT Server operating system

▪ Windows 2000 Server operating system

▪ Windows Server 2003 operating system

▪ Windows Server 2008 operating system

▪ Windows Server 2008 R2 operating system

▪ Windows Server 2012 operating system

▪ Windows Server 2012 R2 operating system

▪ Windows Server 2016 operating system

▪ Windows Server operating system

Exceptions, if any, are noted below.in this section. If a an update version, service pack or Quick Fix

Engineering (QFEKnowledge Base (KB) number appears with thea product version,name, the behavior
changed in that service pack or QFE.update. The new behavior also applies to subsequent service
packs of the productupdates unless otherwise specified. If a product edition appears with the product

version, behavior is different in that product edition.

Unless otherwise specified, any statement of optional behavior in this specification that is prescribed
using the terms "SHOULD" or "SHOULD NOT" implies product behavior in accordance with the

SHOULD or SHOULD NOT prescription. Unless otherwise specified, the term "MAY" implies that the
product does not follow the prescription.

<1> Section 1.6: Only Windows NT operating system, Windows 2000 operating system, Windows XP
32-bit, and Windows Server 2003 32-bit on domain-joined machines can be configured as clients of a
supporting server. Servers running Windows NT and Windows 2000 act as supporting servers. By

115 / 135

[MS-MQMP-Diff] - v20170915
Message Queuing (MSMQ): Queue Manager Client Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

default, Windows Server 2003, Windows Server 2008 and Windows Server 2008 R2 operating system
do not act as supporting servers, although an administrator can enable support when the MSMQ

service is integrated with a directory service.

<2> Section 2.1: The ncacn_spx protocol sequence is supported only by Windows NT and Windows

2000 and is supported only if TCP/IP is unavailable. Support for IPX and the ncacn_spx protocol
sequence is deprecated on Windows XP and later client versions, and on Windows Server 2003 and
later server versions. The ncacn_ip_tcp protocol sequence is supported when TCP/IP is available.

<3> Section 2.2.3.1: All Windows clients produce new XACTUOW values by calling the Windows RPC
function UuidCreate.

<4> Section 2.2.3.2: All Windows implementations of qmcomm and qmcomm2 Server ignore this
value. If this field is not set to FALSE, clients on Windows NT, Windows 2000, Windows XP, and

Windows Server 2003 create a new thread that is used to perform the steps described in Receiving a
Message (section 3.2.4.12).

<5> Section 2.2.3.2: With MSMQ version 2 and higher, the ppSignature member contains an MSMQ

1.0 digital signature followed by an MSMQ 2.0 digital signature.

<6> Section 2.2.3.2: The only value supported by Windows is FALCON_PACKET_VERSION
(0x00000010).

<7> Section 2.3: For Windows NT and Windows 2000, this protocol uses the Message Queuing
(MSMQ): Directory Service Protocol [MS-MQDS].

<8> Section 2.3: For the Message Queuing (MSMQ): Directory Service Protocol [MS-MQDS], the
Directory Service schema elements are described in [MS-MQDS] sections 2.2.10 and 3.1.4.21.1
through 3.1.4.21.4.

<9> Section 3.1.4: Windows 2000 and Windows Server 2003 use target level 5.0. Windows NT
disables strict NDR data consistency checks.

<10> Section 3.1.4: Opnums reserved for local use apply to Windows as follows:

Opnum Description

0 Used only locally by Windows, never remotely.

5 Not used by Windows.

13 Used only locally by Windows, never remotely.

21 Not used by Windows.

24 Not used by Windows.

25 Not used by Windows.

29 Used only locally by Windows, never remotely.

30 Used only locally by Windows, never remotely.

32 Used only locally by Windows, never remotely.

33 Used only locally by Windows, never remotely.

34 Used only locally by Windows, never remotely.

116 / 135

[MS-MQMP-Diff] - v20170915
Message Queuing (MSMQ): Queue Manager Client Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

<11> Section 3.1.4.1: Only Windows NT and Windows 2000 servers implement this method. The
remote cursor creation process was revised for Windows Server 2003, Windows Server 2008, and

Windows Server 2008 R2.

For Windows NT and Windows 2000 servers, the method rpc_ACCreateCursorEx returns

MQ_INFORMATION_REMOTE_OPERATION (0x400e03e8) to the client to indicate that a different queue
manager is required to create the cursor. Upon receiving this return code, a client can proceed with
cursor creation by calling R_QMGetRemoteQueueName to determine which queue manager to contact.
For Windows Server 2003, Windows Server 2008, and Windows Server 2008 R2, this process was
revised such that rpc_ACCreateCursorEx contacts the remote queue on behalf of the client, eliminating
the need for R_QMGetRemoteQueueName to exist. If invoked, R_QMGetRemoteQueueName on
Windows Server 2003 immediately raises the exception MQ_ERROR_ILLEGAL_OPERATION

(0xc00e0064); R_QMGetRemoteQueueName on Windows Server 2008 and Windows Server 2008 R2
returns RPC_S_ACCESS_DENIED (0x00000005).

<12> Section 3.1.4.1: For Windows NT and Windows 2000 servers, the method
rpc_ACCreateCursorEx returns MQ_INFORMATION_REMOTE_OPERATION (0x400e03e8) to the client
to indicate that a different queue manager is required to create the cursor. Upon receiving this return

code, a client can proceed with cursor creation by calling R_QMGetRemoteQueueName to determine

which queue manager to contact. For Windows Server 2003, Windows Server 2008, and Windows
Server 2008 R2, this process was revised such that rpc_ACCreateCursorEx contacts the remote queue
on behalf of the client, which eliminates the need for R_QMGetRemoteQueueName to exist. If invoked,
R_QMGetRemoteQueueName on Windows Server 2003 immediately raises the exception
MQ_ERROR_ILLEGAL_OPERATION (0xc00e0064); R_QMGetRemoteQueueName on Windows Server
2008 and Windows Server 2008 R2 returns RPC_S_ACCESS_DENIED (0x00000005).

<13> Section 3.1.4.1: For Windows NT and Windows 2000 servers, the method

rpc_ACCreateCursorEx returns MQ_INFORMATION_REMOTE_OPERATION (0x400e03e8) to the client
to indicate that a different queue manager is required to create the cursor. Upon receiving this return
code, a client can proceed with cursor creation by calling R_QMGetRemoteQueueName to determine
which queue manager to contact. For Windows Server 2003, Windows Server 2008, and Windows
Server 2008 R2, this process was revised such that rpc_ACCreateCursorEx contacts the remote queue
on behalf of the client, eliminating the need for R_QMGetRemoteQueueName to exist. If invoked,
R_QMGetRemoteQueueName on Windows Server 2003 immediately raises the exception

MQ_ERROR_ILLEGAL_OPERATION (0xc00e0064); R_QMGetRemoteQueueName on Windows Server
2008 and Windows Server 2008 R2 returns RPC_S_ACCESS_DENIED (0x00000005).

<14> Section 3.1.4.1: For Windows NT and Windows 2000 servers, the method
rpc_ACCreateCursorEx returns MQ_INFORMATION_REMOTE_OPERATION (0x400e03e8) to the client
to indicate that a different queue manager is required to create the cursor. Upon receiving this return
code, a client can proceed with cursor creation by calling R_QMGetRemoteQueueName to determine

which queue manager to contact. For Windows Server 2003, Windows Server 2008, and Windows
Server 2008 R2, this process was revised such that rpc_ACCreateCursorEx contacts the remote queue
on behalf of the client, eliminating the need for R_QMGetRemoteQueueName to exist. If invoked,
R_QMGetRemoteQueueName on Windows Server 2003 immediately raises the exception
MQ_ERROR_ILLEGAL_OPERATION (0xc00e0064); R_QMGetRemoteQueueName on Windows Server
2008 and Windows Server 2008 R2 returns RPC_S_ACCESS_DENIED (0x00000005).

<15> Section 3.1.4.2: A Windows client passes its Windows process ID, as returned by the Windows

SDK function GetCurrentProcessId. Servers ignore the value of this parameter. Therefore, clients
can pass 0x00000000.

<16> Section 3.1.4.2: Clients identify themselves to the server using a GUID generated at install
time, and never subsequently modified.

<17> Section 3.1.4.2: These parameters are used to implement client access licensing restrictions.
Such restrictions are enforced only by servers running Windows NT, Windows 2000, and Windows
Server 2003. The parameters are otherwise ignored.

117 / 135

[MS-MQMP-Diff] - v20170915
Message Queuing (MSMQ): Queue Manager Client Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

<18> Section 3.1.4.2: Servers running Windows NT, Windows 2000, and Windows Server 2003 can
limit the number of unique callers. If the limit is exceeded, the server can take no action and return

MQ_ERROR_DEPEND_WKS_LICENSE_OVERFLOW (0xc00e0067).

<19> Section 3.1.4.2: These parameters are used to implement client access licensing restrictions.

Such restrictions are enforced only by servers running Windows NT, Windows 2000, and Windows
Server 2003. The parameters are otherwise ignored.

<20> Section 3.1.4.2: These parameters are used to implement client access licensing restrictions.
Such restrictions are enforced only by servers running Windows NT, Windows 2000, and Windows
Server 2003. The parameters are otherwise ignored.

<21> Section 3.1.4.2: A non-Microsoft OS.

<22> Section 3.1.4.2: Any edition of Windows 95 operating system, Windows 98 operating system, or

Windows Millennium Edition operating system.

<23> Section 3.1.4.2: All Windows Client operating system versions listed in the applicability lists.

<24> Section 3.1.4.2: All applicable Windows Server operating system listed in the applicability
listreleases, plus Windows Clientclient versions, Windows Vista, and later.

<25> Section 3.1.4.2: Any premium, advanced, or data center edition of an NT-class Windows
Serverserver operating system.

<26> Section 3.1.4.2: Windows applications typically invoke R_QMOpenRemoteQueue indirectly via
the Windows API function MQOpenQueue. The Windows API documentation for MQOpenQueue
includes the following error codes. For their descriptions, refer to [MS-MQMQ] section 2.4 or to
[MSDN-MQEIC] for those not described in [MS-MQMQ].

Name Value

MQ_ERROR_ACCESS_DENIED 0xc00E0025

MQ_ERROR_ILLEGAL_FORMATNAME 0xC00E001E

MQ_ERROR_NO_DS 0xC00E0013

MQ_ERROR_QUEUE_NOT_FOUND 0xC00E0003

MQ_ERROR_REMOTE_MACHINE_NOT_AVAILABLE 0xC00E0069

MQ_ERROR_SERVICE_NOT_AVAILABLE 0xc00E000B

MQ_ERROR_SHARING_VIOLATION 0xC00E0009

MQ_ERROR_UNSUPPORTED_ACCESS_MODE 0xC00E0045

MQ_ERROR_UNSUPPORTED_FORMATNAME_OPERATION 0xC00E0020

LDAP_BUSY 0x8007200E

MQ_ERROR_INVALID_PARAMETER 0xC00E0006

<27> Section 3.1.4.2: Windows NT and Windows 2000 support these R_QMOpenRemoteQueue out-
parameter assignments.

<28> Section 3.1.4.2: These R_QMOpenRemoteQueue out-parameter assignments are supported on
Windows Server 2003 and later server versions, and on Windows XP and later client versions.

118 / 135

[MS-MQMP-Diff] - v20170915
Message Queuing (MSMQ): Queue Manager Client Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

<29> Section 3.1.4.4: Windows clients pass a non-NULL pointer to a zeroed-out CACTransferBufferV1
structure when calling R_QMCreateRemoteCursor. The server ignores the CACTransferBufferV1

pointer.

<30> Section 3.1.4.5: Windows applications typically invoke R_QMCreateObjectInternal indirectly via

the Windows API function MQCreateQueue. The Windows API documentation for MQCreateQueue
includes the following error codes. For descriptions of the following error codes, see [MS-MQMQ]
section 2.4. For error codes not described in [MS-MQMQ], refer to [MSDN-MQEIC].

Name Value

MQ_ERROR_ACCESS_DENIED 0xc00e0025

MQ_ERROR_ILLEGAL_PROPERTY_VALUE 0xc00e0018

MQ_ERROR_ILLEGAL_QUEUE_PATHNAME 0xc00e0014

MQ_ERROR_ILLEGAL_SECURITY_DESCRIPTOR 0xc00e0021

MQ_ERROR_INSUFFICIENT_PROPERTIES 0xc00e003f

MQ_ERROR_INVALID_OWNER 0xc00e0044

MQ_ERROR_NO_DS 0xc00e0013

MQ_ERROR_PROPERTY 0xc00e0002

MQ_ERROR_PROPERTY_NOTALLOWED 0xc00e003e

MQ_ERROR_QUEUE_EXISTS 0xc00e0005

MQ_ERROR_SERVICE_NOT_AVAILABLE 0xc00e000b

MQ_ERROR_WRITE_NOT_ALLOWED 0xc00e0065

MQ_INFORMATION_FORMATNAME_BUFFER_TOO_SMALL 0x400e0009

MQ_INFORMATION_PROPERTY 0x400e0001

LDAP_BUSY 0x8007200e

MQ_ERROR_INVALID_PARAMETER 0xC00E0006

<31> Section 3.1.4.5: Windows components that invoke R_QMCreateObjectInternal indirectly via the

Windows API function MQCreateQueue test for the following return value. For a description of the
following error code, see [MS-MQMQ] section 2.4.

Name Value

MQ_ERROR_FORMATNAME_BUFFER_TOO_SMALL 0xc00e001f

<32> Section 3.1.4.6: Windows applications typically invoke R_QMSetObjectSecurityInternal indirectly
via the Windows API function MQSetQueueSecurity. The Windows API documentation for
MQSetQueueSecurity includes the following error codes. For descriptions of the following error codes,
see [MS-MQMQ] section 2.4. For error codes not described in [MS-MQMQ], refer to [MSDN-MQEIC].

119 / 135

[MS-MQMP-Diff] - v20170915
Message Queuing (MSMQ): Queue Manager Client Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

Name Value

MQ_ERROR_ACCESS_DENIED 0xc00e0025

MQ_ERROR_ILLEGAL_FORMATNAME 0xc00e001e

MQ_ERROR_NO_DS 0xc00e0013

MQ_ERROR_PRIVILEGE_NOT_HELD 0xc00e0026

MQ_ERROR_SERVICE_NOT_AVAILABLE 0xc00e000b

MQ_ERROR_UNSUPPORTED_FORMATNAME_OPERATION 0xc00e0020

MQ_INFORMATION_OWNER_IGNORED 0x400e000b

LDAP_BUSY 0x8007200e

<33> Section 3.1.4.7: Windows applications typically invoke R_QMGetObjectSecurityInternal
indirectly via the Windows API function MQGetQueueSecurity. The Windows API documentation for
MQGetQueueSecurity includes the following error codes. For descriptions of the following error codes,
see [MS-MQMQ] section 2.4. For error codes not described in [MS-MQMQ], refer to [MSDN-MQEIC].

Name Value

MQ_ERROR_ACCESS_DENIED 0xc00e0025

MQ_ERROR_ILLEGAL_FORMATNAME 0xc00e001e

MQ_ERROR_NO_DS 0xc00e0013

MQ_ERROR_PRIVILEGE_NOT_HELD 0xc00e0026

MQ_ERROR_SECURITY_DESCRIPTOR_TOO_SMALL 0xc00e0023

MQ_ERROR_UNSUPPORTED_FORMATNAME_OPERATION 0xc00e0020

LDAP_BUSY 0x8007200e

<34> Section 3.1.4.8: Windows applications typically invoke R_QMDeleteObject indirectly via the
Windows API function MQDeleteQueue. The Windows API documentation for MQDeleteQueue includes

the following error codes. For descriptions of the following error codes, see [MS-MQMQ] section 2.4.
For error codes not described in [MS-MQMQ], refer to [MSDN-MQEIC].

Name Value

MQ_ERROR_ACCESS_DENIED 0xc00e0025

MQ_ERROR_ILLEGAL_FORMATNAME 0xc00e001e

MQ_ERROR_NO_DS 0xc00e0013

MQ_ERROR_SERVICE_NOT_AVAILABLE 0xc00e000b

MQ_ERROR_UNSUPPORTED_FORMATNAME_OPERATION 0xc00e0020

MQ_ERROR_WRITE_NOT_ALLOWED 0xc00e0065

120 / 135

[MS-MQMP-Diff] - v20170915
Message Queuing (MSMQ): Queue Manager Client Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

Name Value

LDAP_BUSY 0x8007200e

<35> Section 3.1.4.8: Windows components that invoke R_QMDeleteObject indirectly via the
Windows API function MQDeleteQueue test for the following return value. For a description of the
following error code, see [MS-MQMQ] section 2.4.

Name Value

MQ_ERROR_QUEUE_DELETED 0xc00e005a

<36> Section 3.1.4.9: Windows NT, Windows 2000, Windows Server 2003, and Windows Server 2008

return MQ_ERROR_ILLEGAL_PROPERTY_VT (0xc00e0019).

<37> Section 3.1.4.9: Windows applications typically invoke R_QMGetObjectProperties indirectly via
the Windows API function MQGetQueueProperties. The Windows API documentation for
MQGetQueueProperties includes the following error codes. For descriptions of the following error
codes, see [MS-MQMQ] section 2.4. For error codes not described in [MS-MQMQ], refer to [MSDN-
MQEIC].

Name Value

MQ_ERROR_ACCESS_DENIED 0xc00e0025

MQ_ERROR_ILLEGAL_FORMATNAME 0xc00e001e

 MQ_ERROR_ILLEGAL_PROPERTY_VT 0xc00e0019

MQ_ERROR_NO_DS 0xc00e0013

MQ_ERROR_SERVICE_NOT_AVAILABLE 0xc00e000b

MQ_ERROR_UNSUPPORTED_FORMATNAME_OPERATION 0xc00e0020

MQ_INFORMATION_DUPLICATE_PROPERTY 0x400e0005

MQ_INFORMATION_PROPERTY 0x400e0001

MQ_INFORMATION_UNSUPPORTED_PROPERTY 0x400e0004

LDAP_BUSY 0x8007200e

<38> Section 3.1.4.9: Windows components that invoke R_QMGetObjectProperties indirectly via the
Windows API function MQGetQueueProperties test for the following return value. For a description of

the following error code, see [MS-MQMQ] section 2.4.

Name Value

MQ_ERROR 0xc00e0001

121 / 135

[MS-MQMP-Diff] - v20170915
Message Queuing (MSMQ): Queue Manager Client Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

<39> Section 3.1.4.10: Windows NT, Windows 2000, Windows Server 2003, and Windows Server
2008 return MQ_ERROR_ILLEGAL_PROPERTY_VT (0xc00e0019).

<40> Section 3.1.4.10: Windows applications typically invoke R_QMSetObjectProperties indirectly via
the Windows API function MQSetQueueProperties. The Windows API documentation for

MQSetQueueProperties includes the following error codes. For descriptions of the following error
codes, see [MS-MQMQ] section 2.4. For error codes not described in [MS-MQMQ], refer to [MSDN-
MQEIC].

Name Value

MQ_ERROR_ACCESS_DENIED 0xc00e0025

MQ_ERROR_ILLEGAL_FORMATNAME 0xc00e001e

MQ_ERROR_ILLEGAL_PROPERTY_VALUE 0xc00e0018

MQ_ERROR_NO_DS 0xc00e0013

MQ_ERROR_PROPERTY 0xc00e0002

MQ_ERROR_SERVICE_NOT_AVAILABLE 0xc00e000b

MQ_ERROR_UNSUPPORTED_FORMATNAME_OPERATION 0xc00e0020

MQ_ERROR_WRITE_NOT_ALLOWED 0xc00e0065

MQ_INFORMATION_PROPERTY 0x400e0001

LDAP_BUSY 0x8007200e

<41> Section 3.1.4.11: Windows applications typically invoke R_QMObjectPathToObjectFormat
indirectly via the Windows API function MQPathNameToFormatName. The Windows API documentation

for MQPathNameToFormatName includes the following error codes. For descriptions of the following
error codes, see [MS-MQMQ] section 2.4. For error codes not described in [MS-MQMQ], refer to
[MSDN-MQEIC].

Name Value

MQ_ERROR_FORMATNAME_BUFFER_TOO_SMALL 0xc00e001f

MQ_ERROR_ILLEGAL_QUEUE_PATHNAME 0xc00e0014

MQ_ERROR_NO_DS 0xc00e0013

MQ_ERROR_QUEUE_NOT_FOUND 0xc00e0003

MQ_ERROR_SERVICE_NOT_AVAILABLE 0xc00e000b

LDAP_BUSY 0x8007200e

<42> Section 3.1.4.11: Windows components that invoke R_QMObjectPathToObjectFormat indirectly
via the Windows API function MQPathNameToFormatName test for the following return value. For a
description of the following error code, see [MS-MQMQ] section 2.4.

122 / 135

[MS-MQMP-Diff] - v20170915
Message Queuing (MSMQ): Queue Manager Client Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

Name Value

MQ_ERROR_UNSUPPORTED_OPERATION 0xc00e006a

<43> Section 3.1.4.13: Windows components that invoke R_QMEnlistTransaction indirectly via the
Windows API function MQBeginTransaction test for the following return value. For a description of the
following error code, see [MS-MQMQ] section 2.4.

Name Value

MQ_ERROR_INSUFFICIENT_RESOURCES 0xC00E0027

<44> Section 3.1.4.14: All Windows clients produce new XACTUOW values by calling the Windows

RPC function UuidCreate.

<45> Section 3.1.4.17: Clients identify themselves to the server using a GUID generated at install
time, and never subsequently modified.

<46> Section 3.1.4.17: These parameters are used to implement client access licensing restrictions.
Such restrictions are enforced only by Windows NT, Windows 2000, and Windows Server 2003
servers. The parameters are ignored by Windows Server 2008 and Windows Server 2008 R2.

<47> Section 3.1.4.17: Windows NT, Windows 2000, and Windows Server 2003 servers can limit the
number of unique callers. If the limit is exceeded, the server can take no action and can return
MQ_ERROR_DEPEND_WKS_LICENSE_OVERFLOW (0xc00e0067).

<48> Section 3.1.4.17: Windows clients obtain this string from the Windows SDK function
GetComputerName.

<49> Section 3.1.4.17: Client access licensing restrictions are only enforced by Windows NT, Windows

2000, and Windows Server 2003 supporting servers.

<50> Section 3.1.4.17: Applicable Windows serversServer releases accept the value 0x00000000 to
indicate that the TCP/IP protocol sequence is used when connecting to a remote queue manager for
remote read. Windows NT and Windows 2000 servers accept the value 0x00000003 to indicate that
the IPX/SPX protocol sequence is used when connecting to a remote queue manager for remote read.
Windows XP and later clients and Windows Server 2003 and later servers ignore the parameter.

<51> Section 3.1.4.17: Windows applications typically invoke rpc_QMOpenQueueInternal indirectly
via the Windows API function MQOpenQueue. The Windows API documentation for MQOpenQueue

includes the following error codes. For descriptions of the following error codes, see [MS-MQMQ]
section 2.4. For error codes not described in [MS-MQMQ], refer to [MSDN-MQEIC].

Name Value

MQ_ERROR_ACCESS_DENIED 0xc00e0025

MQ_ERROR_ILLEGAL_FORMATNAME 0xc00e001e

MQ_ERROR_NO_DS 0xc00e0013

MQ_ERROR_QUEUE_NOT_FOUND 0xc00e0003

MQ_ERROR_REMOTE_MACHINE_NOT_AVAILABLE 0xc00e0069

MQ_ERROR_SERVICE_NOT_AVAILABLE 0xc00e000b

123 / 135

[MS-MQMP-Diff] - v20170915
Message Queuing (MSMQ): Queue Manager Client Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

Name Value

MQ_ERROR_SHARING_VIOLATION 0xc00e0009

MQ_ERROR_UNSUPPORTED_ACCESS_MODE 0xc00e0045

MQ_ERROR_UNSUPPORTED_FORMATNAME_OPERATION 0xc00e0020

<52> Section 3.1.4.18: Windows applications typically invoke rpc_ACCloseHandle indirectly via the
Windows API function MQCloseQueue. The Windows API documentation for MQCloseQueue includes
the following error code. For a description of the following error code, see [MS-MQMQ] section 2.4.

Name Value

MQ_ERROR_INVALID_HANDLE 0xc00e0007

<53> Section 3.1.4.18: All applicable Windows Server implementationsreleases invoke the [MS-
MQQP] method RemoteQMCloseQueue using a parallel process, permitting immediate return of control

to the client. Note that this introduces the possibility that RemoteQMCloseQueue could fail and that
the client would not be informed.

<54> Section 3.1.4.19: Windows applications typically invoke rpc_ACCloseCursor indirectly via the
Windows API function MQCloseCursor. The Windows API documentation for MQCloseCursor includes
the following error code. For a description of the following error code, see [MS-MQMQ] section 2.4.

Name Value

MQ_ERROR_INVALID_HANDLE 0xc00e0007

<55> Section 3.1.4.20: This method is implemented only on Windows NT and Windows 2000. Due to
revisions to the cursor creation process, the method rpc_ACSetCursorProperties is obsolete on all

other Windows versions. If the server implementation does not support rpc_ACSetCursorProperties, it
takes no action and returns MQ_ERROR_ILLEGAL_OPERATION (0xc00e0064). Note that this differs
from the behavior of other obsolete methods that raise MQ_ERROR_ILLEGAL_OPERATION as an RPC
exception.

<56> Section 3.1.4.20: For Windows NT and Windows 2000 servers, the method
rpc_ACCreateCursorEx returns MQ_INFORMATION_REMOTE_OPERATION (0x400e03e8) to the client
to indicate that a different queue manager is required to create the cursor. Upon receiving this return

code, a client can proceed with cursor creation by calling
R_QMGetRemoteQueueName (section 3.1.4.1) to determine which queue manager to contact. For
Windows Server 2003, Windows Server 2008, Windows Server 2008 R2 operating system, and
Windows Server 2012, this process was revised such that rpc_ACCreateCursorEx contacts the remote

queue on behalf of the client, eliminating the need for R_QMGetRemoteQueueName to exist. If
invoked, R_QMGetRemoteQueueName on Windows Server 2003 takes no action and immediately

raises the exception MQ_ERROR_ILLEGAL_OPERATION (0xc00e0064); R_QMGetRemoteQueueName
on Windows Server 2008, Windows Server 2008 R2, and Windows Server 2012 returns
RPC_S_ACCESS_DENIED (0x00000005).

<57> Section 3.1.4.21: Windows applications typically invoke rpc_ACHandleToFormatName indirectly
via the Windows API function MQHandleToFormatName. The Windows API documentation for
MQHandleToFormatName includes the following error codes. For descriptions of the following error

124 / 135

[MS-MQMP-Diff] - v20170915
Message Queuing (MSMQ): Queue Manager Client Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

codes, see [MS-MQMQ] section 2.4. For error codes not described in [MS-MQMQ], refer to [MSDN-
MQEIC].

Name Value

MQ_ERROR_FORMATNAME_BUFFER_TOO_SMALL 0xc00e001f

MQ_ERROR_INVALID_HANDLE 0xc00e0007

MQ_ERROR_SERVICE_NOT_AVAILABLE 0xc00e000b

MQ_ERROR_STALE_HANDLE 0xc00e0056

<58> Section 3.1.4.22: Windows applications typically invoke rpc_ACPurgeQueue indirectly via the

Windows API function MQPurgeQueue. The Windows API documentation for MQPurgeQueue includes
the following error code. For a description of the following error code, see [MS-MQMQ] section 2.4.

Name Value

MQ_ERROR_INVALID_HANDLE 0xc00e0007

<59> Section 3.1.4.23: For Windows NT and Windows 2000 Server operating systemservers, this
value defaults to "7776000" (90 days). For Windows Server 2003 and Windows Server 2008, the
default value is "345600" (4 days).

<60> Section 3.1.4.23: Applicable Windows serversServer releases store and retrieve these values
from the registry.

<61> Section 3.1.4.23: Applicable Windows serversServer releases store and retrieve these values
from the registry.

<62> Section 3.1.4.23: This value is supported by Windows 2000 Server operating system and later
server versions and by Windows 2000 Professional and later client versions. Windows NT servers
return a failure HRESULT.

<63> Section 3.1.4.23: This value is supported by Windows 2000 Server and later server versions

and by Windows 2000 Professional and later client versions. Windows NT servers return a failure
HRESULT.

<64> Section 3.1.4.23: Applicable Windows serversServer releases store and retrieve these values
from the registry.

<65> Section 3.1.4.24: RPC over SPX is supported only by Windows NT and Windows 2000. This
value is not supported by Windows XP or later client versions, or by Windows Server 2003 or later
server versions. The server returns 0x00000000 to indicate failure.

<66> Section 3.1.4.24: RPC over SPX is supported only by Windows NT and Windows 2000. This
value is not supported by Windows XP or later client versions, or by Windows Server 2003 or later
server versions. The server returns 0x00000000 to indicate failure.

<67> Section 3.1.5.1: Windows applications typically invoke QMSendMessageInternalEx indirectly via
the Windows API function MQSendMessage. The Windows API documentation for MQSendMessage
includes the following error codes. For descriptions of the following error codes, see [MS-MQMQ]
section 2.4. For error codes not described in [MS-MQMQ], refer to [MSDN-MQEIC].

125 / 135

[MS-MQMP-Diff] - v20170915
Message Queuing (MSMQ): Queue Manager Client Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

Name Value

MQ_ERROR_ACCESS_DENIED 0xc00e0025

MQ_ERROR_BAD_SECURITY_CONTEXT 0xc00e0035

MQ_ERROR_CERTIFICATE_NOT_PROVIDED 0xc00e006d

MQ_ERROR_CORRUPTED_INTERNAL_CERTIFICATE 0xc00e002d

MQ_ERROR_CORRUPTED_PERSONAL_CERT_STORE 0xc00e0031

MQ_ERROR_CORRUPTED_SECURITY_DATA 0xc00e0030

MQ_ERROR_COULD_NOT_GET_USER_SID 0xc00e0036

MQ_ERROR_DTC_CONNECT 0xc00e004c

MQ_ERROR_ILLEGAL_FORMATNAME 0xc00e001e

MQ_ERROR_INSUFFICIENT_RESOURCES 0xc00e0027

MQ_ERROR_INVALID_CERTIFICATE 0xc00e002c

MQ_ERROR_INVALID_HANDLE 0xc00e0007

MQ_ERROR_MESSAGE_STORAGE_FAILED 0xc00e002a

MQ_ERROR_NO_INTERNAL_USER_CERT 0xc00e002f

MQ_ERROR_PROPERTY 0xc00e0002

MQ_ERROR_SERVICE_NOT_AVAILABLE 0xc00e000b

MQ_ERROR_STALE_HANDLE 0xc00e0056

MQ_ERROR_TRANSACTION_USAGE 0xc00e0050

MQ_ERROR_TRANSACTION_ENLIST 0xc00e0058

MQ_ERROR_TRANSACTION_SEQUENCE 0xc00e0051

MQ_ERROR_UNSUPPORTED_FORMATNAME_OPERATION 0xc00e0020

MQ_INFORMATION_PROPERTY 0x400e0001

<68> Section 3.1.5.2: Message bodies are stored encrypted when messages reach their destination

queues. Servers running Windows NT and Windows 2000 only perform message body decryption in
the QMSendMessageInternalEx (section 3.1.5.1) method. If a message with an encrypted body is sent
directly to a target queue via the rpc_ACSendMessageEx method, servers running Windows NT and
Windows 2000 return STATUS_RETRY (0xc000022d) to indicate that the client calls

QMSendMessageInternalEx instead.

<69> Section 3.1.5.2: Clients running Windows NT and Windows 2000 use MQMSG_CALG_MD5

(0x00008003) as the default hash algorithm. Clients running Windows XP 32-bit and Windows Server
2003 32-bit use MQMSG_CALG_SHA1 (0x00008004) as the default hash algorithm.

<70> Section 3.1.5.2: Clients on supported Windows platforms use MQMSG_CALG_RC2
(0x00006602) as the default encryption algorithm value.

126 / 135

[MS-MQMP-Diff] - v20170915
Message Queuing (MSMQ): Queue Manager Client Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

<71> Section 3.1.5.2: The ptb.old.pulAuthProvNameLenProp field is ignored on input to send
operations on Windows NT.

<72> Section 3.1.5.2: Windows applications typically invoke rpc_ACSendMessageEx indirectly via the
Windows API function MQSendMessage. The Windows API documentation for MQSendMessage includes

the following error codes. For descriptions of the following error codes, see [MS-MQMQ] section 2.4.
For error codes not described in [MS-MQMQ], refer to [MSDN-MQEIC].

Name Value

MQ_ERROR_ACCESS_DENIED 0xc00e0025

MQ_ERROR_BAD_SECURITY_CONTEXT 0xc00e0035

MQ_ERROR_CERTIFICATE_NOT_PROVIDED 0xc00e006d

MQ_ERROR_CORRUPTED_INTERNAL_CERTIFICATE 0xc00e002d

MQ_ERROR_CORRUPTED_PERSONAL_CERT_STORE 0xc00e0031

MQ_ERROR_CORRUPTED_SECURITY_DATA 0xc00e0030

MQ_ERROR_COULD_NOT_GET_USER_SID 0xc00e0036

MQ_ERROR_DTC_CONNECT 0xc00e004c

MQ_ERROR_ILLEGAL_FORMATNAME 0xc00e001e

MQ_ERROR_INSUFFICIENT_RESOURCES 0xc00e0027

MQ_ERROR_INVALID_CERTIFICATE 0xc00e002c

MQ_ERROR_INVALID_HANDLE 0xc00e0007

MQ_ERROR_MESSAGE_STORAGE_FAILED 0xc00e002a

MQ_ERROR_NO_INTERNAL_USER_CERT 0xc00e002f

MQ_ERROR_PROPERTY 0xc00e0002

MQ_ERROR_SERVICE_NOT_AVAILABLE 0xc00e000b

MQ_ERROR_STALE_HANDLE 0xc00e0056

MQ_ERROR_TRANSACTION_USAGE 0xc00e0050

MQ_ERROR_TRANSACTION_ENLIST 0xc00e0058

MQ_ERROR_TRANSACTION_SEQUENCE 0xc00e0051

MQ_ERROR_UNSUPPORTED_FORMATNAME_OPERATION 0xc00e0020

MQ_INFORMATION_PROPERTY 0x400e0001

<73> Section 3.1.5.3: Windows applications typically invoke rpc_ACReceiveMessageEx indirectly via

the Windows API function MQReceiveMessage. The Windows API documentation for
MQReceiveMessage includes the following error codes. For descriptions of the following error codes,
see [MS-MQMQ] section 2.4. For error codes not described in [MS-MQMQ], refer to [MSDN-MQEIC].

127 / 135

[MS-MQMP-Diff] - v20170915
Message Queuing (MSMQ): Queue Manager Client Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

Name Value

MQ_ERROR_ACCESS_DENIED 0xc00e0025

MQ_ERROR_BUFFER_OVERFLOW 0xc00e001a

MQ_ERROR_DTC_CONNECT 0xc00e004c

MQ_ERROR_FORMATNAME_BUFFER_TOO_SMALL 0xc00e001f

MQ_ERROR_ILLEGAL_CURSOR_ACTION 0xc00e001c

MQ_ERROR_INSUFFICIENT_PROPERTIES 0xc00e003f

MQ_ERROR_INVALID_HANDLE 0xc00e0007

MQ_ERROR_IO_TIMEOUT 0xc00e001b

MQ_ERROR_LABEL_BUFFER_TOO_SMALL 0xc00e005e

MQ_ERROR_MESSAGE_ALREADY_RECEIVED 0xc00e001d

MQ_ERROR_OPERATION_CANCELLED 0xc00e0008

MQ_ERROR_PROV_NAME_BUFFER_TOO_SMALL 0xc00e0063

MQ_ERROR_PROPERTY 0xc00e0002

MQ_ERROR_QUEUE_DELETED 0xc00e005a

MQ_ERROR_SENDER_CERT_BUFFER_TOO_SMALL 0xc00e002b

MQ_ERROR_SENDERID_BUFFER_TOO_SMALL 0xc00e0022

MQ_ERROR_SERVICE_NOT_AVAILABLE 0xc00e000b

MQ_ERROR_SIGNATURE_BUFFER_TOO_SMALL 0xc00e0062

MQ_ERROR_STALE_HANDLE 0xc00e0056

MQ_ERROR_SYMM_KEY_BUFFER_TOO_SMALL 0xc00e0061

MQ_ERROR_TRANSACTION_USAGE 0xc00e0050

MQ_INFORMATION_OPERATION_PENDING 0x400e0006

MQ_INFORMATION_PROPERTY 0x400e0001

<74> Section 3.1.5.3: Windows components that invoke rpc_ACReceiveMessageEx indirectly via the
Windows API function MQReceiveMessage test for the following return value. For a description of the
following error code, see [MS-ERREF] section 2.1.

Name Value

E_OUTOFMEMORY 0x8007000E

<75> Section 3.1.5.4: Windows applications typically invoke rpc_ACCreateCursorEx indirectly via the
Windows API function MQCreateCursor. The Windows API documentation for MQCreateCursor

128 / 135

[MS-MQMP-Diff] - v20170915
Message Queuing (MSMQ): Queue Manager Client Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

includes the following error codes. For descriptions of the following error codes, see [MS-MQMQ]
section 2.4. For error codes not described in [MS-MQMQ], refer to [MSDN-MQEIC].

Name Value

MQ_ERROR_INVALID_HANDLE 0xc00e0007

MQ_ERROR_INSUFFICIENT_RESOURCES 0xc00e0027

MQ_ERROR_REMOTE_MACHINE_NOT_AVAILABLE 0xc00e0069

MQ_ERROR_STALE_HANDLE 0xc00e0056

<76> Section 3.1.5.4: The described behavior is for Windows Server 2003, and later server versions,

and Windows Vista, and later client versions. Servers running Windows NT, Windows 2000, and
Windows XP behave as follows: if the given queue handle represents a queue that is NOT local

(remote) to the supporting server, the server creates a cursor object and returns a handle to it via the
hCursor member of pcc. Additionally, the server also sets pcc.srv_hQueue to
RemoteQueueProxyHandle.RemoteContext and sets pcc.cli_pQMQueue to
RemoteQueueProxyHandle.Context. Note that the value returned for pcc.cli_pQMQueue is not
required to equal the RemoteQueueProxyHandle.Context; instead, the server is permitted to use

any value that can be correlated to the impending invocation of rpc_ACSetCursorProperties.
Abstractly, the value in RemoteQueueProxyHandle.Context is most suitable for this purpose;
however, Windows NT, Windows 2000, and Windows XP correlate the subsequent call
rpc_ACSetCursorProperties using a different DWORD value.

The server then returns MQ_INFORMATION_REMOTE_OPERATION (0x400e03e8). This specific return
code instructs the client to contact a remote queue manager to create a remote cursor via
R_QMCreateRemoteCursor and to associate the result with the local cursor handle via

rpc_ACSetCursorProperties. The caller completes these operations successfully prior to using the
cursor handle returned by this method.

<77> Section 4.4: In this example, the supporting server is exhibiting the behavior of Windows NT
and Windows 2000 with regard to creating a cursor for a remote queue.

<78> Section 4.5: All Windows clients produce new XACTUOW ([MS-MQMQ] section 2.2.18.1.8)
values by calling the Windows RPC function UuidCreate.

129 / 135

[MS-MQMP-Diff] - v20170915
Message Queuing (MSMQ): Queue Manager Client Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

8 Change Tracking

No table of This section identifies changes is available. The that were made to this document is either
new or has had no changes since itsthe last release. Changes are classified as Major, Minor, or None.

The revision class Major means that the technical content in the document was significantly revised.
Major changes affect protocol interoperability or implementation. Examples of major changes are:

▪ A document revision that incorporates changes to interoperability requirements.

▪ A document revision that captures changes to protocol functionality.

The revision class Minor means that the meaning of the technical content was clarified. Minor changes
do not affect protocol interoperability or implementation. Examples of minor changes are updates to
clarify ambiguity at the sentence, paragraph, or table level.

The revision class None means that no new technical changes were introduced. Minor editorial and
formatting changes may have been made, but the relevant technical content is identical to the last

released version.

The changes made to this document are listed in the following table. For more information, please
contact dochelp@microsoft.com.

Section Description Revision class

7 Appendix B: Product Behavior Added Windows Server to the list of applicable products. Major

130 / 135

[MS-MQMP-Diff] - v20170915
Message Queuing (MSMQ): Queue Manager Client Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

9 Index

A

Abstract data model
 client 89
 server 31
Applicability 13
Application creating and closing a local cursor example example 101
Application creating and closing a remote cursor example example 102
Application internal transaction example example 104
Application opening and closing a local queue example example 99
Application opening and closing a remote queue example example 100

C

CACCreateRemoteCursor structure 29
CACTransferBufferV2 structure 29
Capability negotiation 13
Change tracking 129

Client
 abstract data model 89
 Closing a Cursor method 98
 Closing a Queue method 98
 Creating a Cursor method 95
 Creating a Local Private Queue method 90
 Deleting a Local Private Queue method 91
 initialization 89
 local events 98
 message processing 90
 Opening a Queue method 93
 Peeking a Message method 97
 Purging a Queue method 96
 Receiving a Message method 97
 Retrieving a Format Name for a Queue Context Handle method 98
 Retrieving a Format Name for a Queue Path Name method 97
 Retrieving Local Private Queue Properties method 92
 Retrieving Local Private Queue Security method 91
 Sending a Message method 96
 sequencing rules 90
 timer events 98
 timers 89
 Updating Local Private Queue Properties method 92
 Updating Local Private Queue Security method 91
Closing a Cursor method 98
Closing a Queue method 98
Common data types 15
Creating a Cursor method 95
Creating a Local Private Queue method 90
Cursor
 closing 98
 creating 95
CursorContextValue 89

D

Data model - abstract
 client 89
 server 31

Data types
 common 15
 common - overview 15
 handle 16

131 / 135

[MS-MQMP-Diff] - v20170915
Message Queuing (MSMQ): Queue Manager Client Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

Deleting a Local Private Queue method 91
Directory service schema elements 30

E

Elements - directory service schema 30
Enumerations 16
Events
 local - client 98
 timer - client 98
 timer - server 87
Examples
 application creating and closing a local cursor example 101
 application creating and closing a remote cursor example 102
 application internal transaction example 104
 application opening and closing a local queue example 99
 application opening and closing a remote queue example 100

 internal transaction example 104
 local cursor example 101
 local queue example 99
 overview 99
 remote cursor example 102
 remote queue example 100

F

Fields - vendor-extensible 14
Format name
 retrieving for queue context handle 98
 retrieving for queue path name 97
Full IDL 107

G

Glossary 7

H

Handle data types 16

I

IDL 107
Implementer - security considerations 106
Index of security parameters 106
Informative references 12
Initialization
 client 89
 server 37
Internal transaction example 104
Introduction 7

L

Local cursor example 101
Local events
 client 98
 server 87
Local private queue
 creating 90
 deleting 91
 retrieving properties 92
 retrieving security 91
 updating properties 92

132 / 135

[MS-MQMP-Diff] - v20170915
Message Queuing (MSMQ): Queue Manager Client Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

 updating security 91
Local queue example 99

M

Message processing
 client 90
 server (section 3.1.4 37, section 3.1.5 72)
 qmcomm 37
 qmcomm2 72
Messages
 common data types 15
 data types (section 2.2 15, section 2.2.1 16)
 enumerations 16
 peeking 97
 receiving 97
 sending 96

 structures 17
 transport 15
Methods
 Closing a Cursor 98
 Closing a Queue 98
 Creating a Cursor 95
 Creating a Local Private Queue 90
 Deleting a Local Private Queue 91
 Opening a Queue 93
 Peeking a Message 97
 Purging a Queue 96
 QMSendMessageInternalEx (Opnum 0) 73
 R_QMAbortTransaction (Opnum 18) 58
 R_QMCloseRemoteQueueContext (Opnum 3) 44
 R_QMCommitTransaction (Opnum 17) 57
 R_QMCreateObjectInternal (Opnum 6) 46
 R_QMCreateRemoteCursor (Opnum 4) 45
 R_QMDeleteObject (Opnum 9) 50
 R_QMEnlistInternalTransaction (Opnum 16) 56
 R_QMEnlistTransaction (Opnum 15) 55
 R_QMGetObjectProperties (Opnum 10) 51
 R_QMGetObjectSecurityInternal (Opnum 8) 48
 R_QMGetRemoteQueueName (Opnum 1) 40
 R_QMGetRTQMServerPort (Opnum 31) 71
 R_QMGetTmWhereabouts (Opnum 14) 54
 R_QMObjectPathToObjectFormat (Opnum 12) 53
 R_QMOpenRemoteQueue (Opnum 2) 41
 R_QMQueryQMRegistryInternal (Opnum 28) 70
 R_QMSetObjectProperties (Opnum 11) 52
 R_QMSetObjectSecurityInternal (Opnum 7) 47
 Receiving a Message 97
 Retrieving a Format Name for a Queue Context Handle 98
 Retrieving a Format Name for a Queue Path Name 97
 Retrieving Local Private Queue Properties 92
 Retrieving Local Private Queue Security 91
 rpc_ACCloseCursor (Opnum 22) 64
 rpc_ACCloseHandle (Opnum 20) 63
 rpc_ACCreateCursorEx (Opnum 3) 86
 rpc_ACHandleToFormatName (Opnum 26) 67
 rpc_ACPurgeQueue (Opnum 27) 69
 rpc_ACReceiveMessageEx (Opnum 2) 78
 rpc_ACSendMessageEx (Opnum 1) 74
 rpc_ACSetCursorProperties (Opnum 23) 66
 rpc_QMOpenQueueInternal (Opnum 19) 58
 Sending a Message 96

 Updating Local Private Queue Properties 92
 Updating Local Private Queue Security 91

133 / 135

[MS-MQMP-Diff] - v20170915
Message Queuing (MSMQ): Queue Manager Client Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

N

Normative references 11

O

Opening a Queue method 93
Overview (synopsis) 12

P

Parameters - security index 106
Peeking a Message method 97
Preconditions 13
Prerequisites 13
Product behavior 114
Protocol Details
 overview 31
Purging a Queue method 96

Q

QMSendMessageInternalEx (Opnum 0) method 73
QMSendMessageInternalEx method 73
Queue
 opening 93
 purging 96
Queue context handle
 closing 98
 retrieving format name 98
Queue path name - retrieving format name 97
QueueContextHandle 89

R

R_QMAbortTransaction (Opnum 18) method 58
R_QMAbortTransaction method 58
R_QMCloseRemoteQueueContext (Opnum 3) method 44
R_QMCloseRemoteQueueContext method 44

R_QMCommitTransaction (Opnum 17) method 57
R_QMCommitTransaction method 57
R_QMCreateObjectInternal (Opnum 6) method 46
R_QMCreateObjectInternal method 46
R_QMCreateRemoteCursor (Opnum 4) method 45
R_QMCreateRemoteCursor method 45
R_QMDeleteObject (Opnum 9) method 50
R_QMDeleteObject method 50
R_QMEnlistInternalTransaction (Opnum 16) method 56
R_QMEnlistInternalTransaction method 56
R_QMEnlistTransaction (Opnum 15) method 55
R_QMEnlistTransaction method 55
R_QMGetObjectProperties (Opnum 10) method 51
R_QMGetObjectProperties method 51
R_QMGetObjectSecurityInternal (Opnum 8) method 48
R_QMGetObjectSecurityInternal method 48
R_QMGetRemoteQueueName (Opnum 1) method 40
R_QMGetRemoteQueueName method 40
R_QMGetRTQMServerPort (Opnum 31) method 71
R_QMGetRTQMServerPort method 71
R_QMGetTmWhereabouts (Opnum 14) method 54
R_QMGetTmWhereabouts method 54
R_QMObjectPathToObjectFormat (Opnum 12) method 53
R_QMObjectPathToObjectFormat method 53
R_QMOpenRemoteQueue (Opnum 2) method 41

134 / 135

[MS-MQMP-Diff] - v20170915
Message Queuing (MSMQ): Queue Manager Client Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

R_QMOpenRemoteQueue method 41
R_QMQueryQMRegistryInternal (Opnum 28) method 70
R_QMQueryQMRegistryInternal method 70
R_QMSetObjectProperties (Opnum 11) method 52
R_QMSetObjectProperties method 52
R_QMSetObjectSecurityInternal (Opnum 7) method 47
R_QMSetObjectSecurityInternal method 47
Receiving a Message method 97
References 11
 informative 12
 normative 11
Relationship to other protocols 12
Remote cursor example 102
Remote queue example 100
Retrieving a Format Name for a Queue Context Handle method 98
Retrieving a Format Name for a Queue Path Name method 97
Retrieving Local Private Queue Properties method 92
Retrieving Local Private Queue Security method 91
rpc_ACCloseCursor (Opnum 22) method 64
rpc_ACCloseCursor method 64
rpc_ACCloseHandle (Opnum 20) method 63
rpc_ACCloseHandle method 63
rpc_ACCreateCursorEx (Opnum 3) method 86

rpc_ACCreateCursorEx method 86
rpc_ACHandleToFormatName (Opnum 26) method 67
rpc_ACHandleToFormatName method 67
rpc_ACPurgeQueue (Opnum 27) method 69
rpc_ACPurgeQueue method 69
rpc_ACReceiveMessageEx (Opnum 2) method 78
rpc_ACReceiveMessageEx method 78
rpc_ACSendMessageEx (Opnum 1) method 74
rpc_ACSendMessageEx method 74
rpc_ACSetCursorProperties (Opnum 23) method 66
rpc_ACSetCursorProperties method 66
rpc_QMOpenQueueInternal (Opnum 19) method 58
rpc_QMOpenQueueInternal method 58

S

Schema elements - directory service 30
Security
 implementer considerations 106
 parameter index 106
Sending a Message method 96
Sequencing rules
 client 90
 server (section 3.1.4 37, section 3.1.5 72)
 qmcomm 37
 qmcomm2 72
Server
 abstract data model 31
 initialization 37
 local events 87
 message processing (section 3.1.4 37, section 3.1.5 72)
 qmcomm 37
 qmcomm2 72
 QMSendMessageInternalEx (Opnum 0) method 73
 R_QMAbortTransaction (Opnum 18) method 58
 R_QMCloseRemoteQueueContext (Opnum 3) method 44
 R_QMCommitTransaction (Opnum 17) method 57
 R_QMCreateObjectInternal (Opnum 6) method 46
 R_QMCreateRemoteCursor (Opnum 4) method 45

 R_QMDeleteObject (Opnum 9) method 50
 R_QMEnlistInternalTransaction (Opnum 16) method 56
 R_QMEnlistTransaction (Opnum 15) method 55

135 / 135

[MS-MQMP-Diff] - v20170915
Message Queuing (MSMQ): Queue Manager Client Protocol
Copyright © 2017 Microsoft Corporation
Release: September 15, 2017

 R_QMGetObjectProperties (Opnum 10) method 51
 R_QMGetObjectSecurityInternal (Opnum 8) method 48
 R_QMGetRemoteQueueName (Opnum 1) method 40
 R_QMGetRTQMServerPort (Opnum 31) method 71
 R_QMGetTmWhereabouts (Opnum 14) method 54
 R_QMObjectPathToObjectFormat (Opnum 12) method 53
 R_QMOpenRemoteQueue (Opnum 2) method 41
 R_QMQueryQMRegistryInternal (Opnum 28) method 70
 R_QMSetObjectProperties (Opnum 11) method 52
 R_QMSetObjectSecurityInternal (Opnum 7) method 47
 rpc_ACCloseCursor (Opnum 22) method 64
 rpc_ACCloseHandle (Opnum 20) method 63
 rpc_ACCreateCursorEx (Opnum 3) method 86
 rpc_ACHandleToFormatName (Opnum 26) method 67
 rpc_ACPurgeQueue (Opnum 27) method 69
 rpc_ACReceiveMessageEx (Opnum 2) method 78
 rpc_ACSendMessageEx (Opnum 1) method 74
 rpc_ACSetCursorProperties (Opnum 23) method 66
 rpc_QMOpenQueueInternal (Opnum 19) method 58
 sequencing rules (section 3.1.4 37, section 3.1.5 72)
 qmcomm 37
 qmcomm2 72
 timer events 87

 timers 37
Standards assignments 14
structure (section 2.2.3.2 17, section 2.2.3.5 29)
Structures 17

T

Timer events
 client 98
 server 87
Timers
 client 89
 server 37
Tracking changes 129
TRANSFER_TYPE enumeration 17
Transport 15

U

Updating Local Private Queue Properties method 92
Updating Local Private Queue Security method 91

V

Vendor-extensible fields 14
Versioning 13

	1 Introduction
	1.1 Glossary
	1.2 References
	1.2.1 Normative References
	1.2.2 Informative References

	1.3 Overview
	1.4 Relationship to Other Protocols
	1.5 Prerequisites/Preconditions
	1.6 Applicability Statement
	1.7 Versioning and Capability Negotiation
	1.8 Vendor-Extensible Fields
	1.9 Standards Assignments

	2 Messages
	2.1 Transport
	2.2 Common Data Types
	2.2.1 Data Types
	2.2.1.1 Handle Data Types
	2.2.1.1.1 RPC_INT_XACT_HANDLE
	2.2.1.1.2 RPC_QUEUE_HANDLE
	2.2.1.1.3 PCTX_OPENREMOTE_HANDLE_TYPE

	2.2.2 Enumerations
	2.2.2.1 TRANSFER_TYPE

	2.2.3 Structures
	2.2.3.1 XACTUOW
	2.2.3.2 CACTransferBufferV1
	2.2.3.3 CACTransferBufferV2
	2.2.3.4 CACCreateRemoteCursor
	2.2.3.5 OBJECT_FORMAT

	2.3 Directory Service Schema Elements

	3 Protocol Details
	3.1 qmcomm and qmcomm2 Server Details
	3.1.1 Abstract Data Model
	3.1.1.1 Shared Data Elements
	3.1.1.2 LocalQueueContextHandleTable
	3.1.1.3 LocalQueueContextHandle
	3.1.1.4 RemoteQueueProxyHandleTable
	3.1.1.5 RemoteQueueProxyHandle
	3.1.1.6 CursorProxy
	3.1.1.7 RemoteQueueOpenContextHandleTable
	3.1.1.8 RemoteQueueOpenContextHandle
	3.1.1.9 TransactionHandleTable
	3.1.1.10 TransactionHandle
	3.1.1.11 Message to CACTransferBufferV2 Translation
	3.1.1.12 Queue PROPID to Abstract Queue Property Translation

	3.1.2 Timers
	3.1.3 Initialization
	3.1.4 Message Processing Events and Sequencing Rules for qmcomm
	3.1.4.1 R_QMGetRemoteQueueName (Opnum 1)
	3.1.4.2 R_QMOpenRemoteQueue (Opnum 2)
	3.1.4.3 R_QMCloseRemoteQueueContext (Opnum 3)
	3.1.4.4 R_QMCreateRemoteCursor (Opnum 4)
	3.1.4.5 R_QMCreateObjectInternal (Opnum 6)
	3.1.4.6 R_QMSetObjectSecurityInternal (Opnum 7)
	3.1.4.7 R_QMGetObjectSecurityInternal (Opnum 8)
	3.1.4.8 R_QMDeleteObject (Opnum 9)
	3.1.4.9 R_QMGetObjectProperties (Opnum 10)
	3.1.4.10 R_QMSetObjectProperties (Opnum 11)
	3.1.4.11 R_QMObjectPathToObjectFormat (Opnum 12)
	3.1.4.12 R_QMGetTmWhereabouts (Opnum 14)
	3.1.4.13 R_QMEnlistTransaction (Opnum 15)
	3.1.4.14 R_QMEnlistInternalTransaction (Opnum 16)
	3.1.4.15 R_QMCommitTransaction (Opnum 17)
	3.1.4.16 R_QMAbortTransaction (Opnum 18)
	3.1.4.17 rpc_QMOpenQueueInternal (Opnum 19)
	3.1.4.18 rpc_ACCloseHandle (Opnum 20)
	3.1.4.19 rpc_ACCloseCursor (Opnum 22)
	3.1.4.20 rpc_ACSetCursorProperties (Opnum 23)
	3.1.4.21 rpc_ACHandleToFormatName (Opnum 26)
	3.1.4.22 rpc_ACPurgeQueue (Opnum 27)
	3.1.4.23 R_QMQueryQMRegistryInternal (Opnum 28)
	3.1.4.24 R_QMGetRTQMServerPort (Opnum 31)

	3.1.5 Message Processing Events and Sequencing Rules for qmcomm2
	3.1.5.1 QMSendMessageInternalEx (Opnum 0)
	3.1.5.2 rpc_ACSendMessageEx (Opnum 1)
	3.1.5.3 rpc_ACReceiveMessageEx (Opnum 2)
	3.1.5.4 rpc_ACCreateCursorEx (Opnum 3)

	3.1.6 Timer Events
	3.1.7 Other Local Events
	3.1.7.1 RPC_QUEUE_HANDLE Context Handle Rundown Routine
	3.1.7.2 PCTX_OPENREMOTE_HANDLE_TYPE Context Handle Rundown Routine
	3.1.7.3 RPC_INT_XACT_HANDLE Context Handle Rundown Routine

	3.2 qmcomm and qmcomm2 Client Details
	3.2.1 Abstract Data Model
	3.2.1.1 LicenceGuid
	3.2.1.2 OpenQueueContext
	3.2.1.3 CursorIdentifier

	3.2.2 Timers
	3.2.3 Initialization
	3.2.4 Message Processing Events and Sequencing Rules
	3.2.4.1 Creating a Local Private Queue
	3.2.4.2 Deleting a Local Private Queue
	3.2.4.3 Updating Local Private Queue Security
	3.2.4.4 Retrieving Local Private Queue Security
	3.2.4.5 Updating Local Private Queue Properties
	3.2.4.6 Retrieving Local Private Queue Properties
	3.2.4.7 Opening a Queue
	3.2.4.8 Creating a Cursor
	3.2.4.9 Purging a Queue
	3.2.4.10 Sending a Message
	3.2.4.11 Peeking a Message
	3.2.4.12 Receiving a Message
	3.2.4.13 Retrieving a Format Name for a Queue Path Name
	3.2.4.14 Retrieving a Format Name for a Queue Context Handle
	3.2.4.15 Closing a Queue
	3.2.4.16 Closing a Cursor

	3.2.5 Timer Events
	3.2.6 Other Local Events

	4 Protocol Examples
	4.1 Application Opening and Closing a Local Queue Example
	4.2 Application Opening and Closing a Remote Queue Example
	4.3 Application Creating and Closing a Local Cursor Example
	4.4 Application Creating and Closing a Remote Cursor Example
	4.5 Application Internal Transaction Example

	5 Security
	5.1 Security Considerations for Implementers
	5.2 Index of Security Parameters

	6 Appendix A: Full IDL
	7 Appendix B: Product Behavior
	8 Change Tracking
	9 Index

