
1 / 186

[MS-MNPR] - v20160714
Microsoft NetMeeting Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

[MS-MNPR]:

Microsoft NetMeeting Protocol

Intellectual Property Rights Notice for Open Specifications Documentation

 Technical Documentation. Microsoft publishes Open Specifications documentation (“this
documentation”) for protocols, file formats, data portability, computer languages, and standards
support. Additionally, overview documents cover inter-protocol relationships and interactions.

 Copyrights. This documentation is covered by Microsoft copyrights. Regardless of any other
terms that are contained in the terms of use for the Microsoft website that hosts this
documentation, you can make copies of it in order to develop implementations of the technologies
that are described in this documentation and can distribute portions of it in your implementations

that use these technologies or in your documentation as necessary to properly document the
implementation. You can also distribute in your implementation, with or without modification, any
schemas, IDLs, or code samples that are included in the documentation. This permission also

applies to any documents that are referenced in the Open Specifications documentation.

 No Trade Secrets. Microsoft does not claim any trade secret rights in this documentation.

 Patents. Microsoft has patents that might cover your implementations of the technologies

described in the Open Specifications documentation. Neither this notice nor Microsoft's delivery of
this documentation grants any licenses under those patents or any other Microsoft patents.
However, a given Open Specifications document might be covered by the Microsoft Open
Specifications Promise or the Microsoft Community Promise. If you would prefer a written license,
or if the technologies described in this documentation are not covered by the Open Specifications
Promise or Community Promise, as applicable, patent licenses are available by contacting

iplg@microsoft.com.

 Trademarks. The names of companies and products contained in this documentation might be
covered by trademarks or similar intellectual property rights. This notice does not grant any
licenses under those rights. For a list of Microsoft trademarks, visit
www.microsoft.com/trademarks.

 Fictitious Names. The example companies, organizations, products, domain names, email
addresses, logos, people, places, and events that are depicted in this documentation are fictitious.

No association with any real company, organization, product, domain name, email address, logo,
person, place, or event is intended or should be inferred.

Reservation of Rights. All other rights are reserved, and this notice does not grant any rights other
than as specifically described above, whether by implication, estoppel, or otherwise.

Tools. The Open Specifications documentation does not require the use of Microsoft programming
tools or programming environments in order for you to develop an implementation. If you have access
to Microsoft programming tools and environments, you are free to take advantage of them. Certain

Open Specifications documents are intended for use in conjunction with publicly available standards

specifications and network programming art and, as such, assume that the reader either is familiar
with the aforementioned material or has immediate access to it.

http://go.microsoft.com/fwlink/?LinkId=214445
http://go.microsoft.com/fwlink/?LinkId=214445
http://go.microsoft.com/fwlink/?LinkId=214448
mailto:iplg@microsoft.com
http://www.microsoft.com/trademarks

2 / 186

[MS-MNPR] - v20160714
Microsoft NetMeeting Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Revision Summary

Date
Revision
History

Revision
Class Comments

7/20/2007 0.1 Major MCPP Milestone 5 Initial Availability

9/28/2007 1.0 Major Updated the technical content and added new content.

10/23/2007 2.0 Major Updated and revised the technical content.

11/30/2007 2.1 Minor Added informative content, including a diagram.

1/25/2008 2.1.1 Editorial Changed language and formatting in the technical content.

3/14/2008 3.0 Major Updated and revised the technical content.

5/16/2008 3.0.1 Editorial Changed language and formatting in the technical content.

6/20/2008 4.0 Major Updated and revised the technical content.

7/25/2008 5.0 Major Updated and revised the technical content.

8/29/2008 5.1 Minor Clarified the meaning of the technical content.

10/24/2008 6.0 Major Updated and revised the technical content.

12/5/2008 7.0 Major Updated and revised the technical content.

1/16/2009 8.0 Major Updated and revised the technical content.

2/27/2009 9.0 Major Updated and revised the technical content.

4/10/2009 10.0 Major Updated and revised the technical content.

5/22/2009 10.1 Minor Clarified the meaning of the technical content.

7/2/2009 10.1.1 Editorial Changed language and formatting in the technical content.

8/14/2009 11.0 Major Updated and revised the technical content.

9/25/2009 12.0 Major Updated and revised the technical content.

11/6/2009 13.0 Major Updated and revised the technical content.

12/18/2009 14.0 Major Updated and revised the technical content.

1/29/2010 15.0 Major Updated and revised the technical content.

3/12/2010 15.0.1 Editorial Changed language and formatting in the technical content.

4/23/2010 16.0 Major Updated and revised the technical content.

6/4/2010 16.0.1 Editorial Changed language and formatting in the technical content.

7/16/2010 16.0.1 None
No changes to the meaning, language, or formatting of the
technical content.

8/27/2010 16.0.1 None
No changes to the meaning, language, or formatting of the
technical content.

10/8/2010 16.0.1 None
No changes to the meaning, language, or formatting of the
technical content.

11/19/2010 16.0.1 None No changes to the meaning, language, or formatting of the

3 / 186

[MS-MNPR] - v20160714
Microsoft NetMeeting Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Date
Revision
History

Revision
Class Comments

technical content.

1/7/2011 16.0.1 None
No changes to the meaning, language, or formatting of the
technical content.

2/11/2011 16.0.1 None
No changes to the meaning, language, or formatting of the
technical content.

3/25/2011 16.0.1 None
No changes to the meaning, language, or formatting of the
technical content.

5/6/2011 16.0.1 None
No changes to the meaning, language, or formatting of the
technical content.

6/17/2011 16.1 Minor Clarified the meaning of the technical content.

9/23/2011 16.1 None
No changes to the meaning, language, or formatting of the
technical content.

12/16/2011 16.1 None
No changes to the meaning, language, or formatting of the
technical content.

3/30/2012 16.1 None
No changes to the meaning, language, or formatting of the
technical content.

7/12/2012 16.1 None
No changes to the meaning, language, or formatting of the
technical content.

10/25/2012 16.1 None
No changes to the meaning, language, or formatting of the
technical content.

1/31/2013 16.1 None
No changes to the meaning, language, or formatting of the
technical content.

8/8/2013 16.1 None
No changes to the meaning, language, or formatting of the
technical content.

11/14/2013 16.1 None
No changes to the meaning, language, or formatting of the

technical content.

2/13/2014 16.1 None
No changes to the meaning, language, or formatting of the
technical content.

5/15/2014 16.1 None
No changes to the meaning, language, or formatting of the
technical content.

6/30/2015 16.1 None
No changes to the meaning, language, or formatting of the
technical content.

10/16/2015 16.1 None
No changes to the meaning, language, or formatting of the
technical content.

7/14/2016 16.1 None
No changes to the meaning, language, or formatting of the
technical content.

4 / 186

[MS-MNPR] - v20160714
Microsoft NetMeeting Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Table of Contents

1 Introduction .. 8
1.1 Glossary ... 8
1.2 References .. 9

1.2.1 Normative References ... 9
1.2.2 Informative References ... 11

1.3 Overview .. 11
1.4 Relationship to Other Protocols .. 12
1.5 Prerequisites/Preconditions ... 12
1.6 Applicability Statement ... 12
1.7 Versioning and Capability Negotiation ... 13
1.8 Vendor-Extensible Fields ... 13
1.9 Standards Assignments ... 13

2 Messages ... 14
2.1 Transport .. 14
2.2 Message Syntax ... 14

2.2.1 Common Data Structures .. 14
2.2.1.1 Common Definitions .. 14

2.2.1.1.1 The x,y Coordinate System ... 14
2.2.1.2 Common Field Values .. 14

2.2.1.2.1 BackMode ... 14
2.2.1.2.2 BrushHatch ... 14
2.2.1.2.3 BrushStyle .. 15
2.2.1.2.4 PenStyle ... 15
2.2.1.2.5 ROP2 ... 16

2.2.2 Application Sharing ... 17
2.2.2.1 CPCALLCAPS .. 17

2.2.2.1.1 PROTCAPS_BITMAPCACHE .. 18
2.2.2.1.2 PROTCAPS_CM .. 19
2.2.2.1.3 PROTCAPS_GENERAL ... 20
2.2.2.1.4 PROTCAPS_ORDERS .. 22
2.2.2.1.5 PROTCAPS_PM .. 24
2.2.2.1.6 PROTCAPS_SC .. 25
2.2.2.1.7 PROTCAPS_SCREEN ... 25

2.2.2.2 S20_CREATE .. 27
2.2.2.3 S20_COLLISION ... 28
2.2.2.4 S20_DATA ... 28

2.2.2.4.1 ActiveWindowPDU ... 30
2.2.2.4.2 Cursor Management Orders .. 31

2.2.2.4.2.1 CursorId ... 31
2.2.2.4.2.2 CursorMove ... 32
2.2.2.4.2.3 SendColorCursor .. 32
2.2.2.4.2.4 SendColorCursorCacheId .. 33
2.2.2.4.2.5 SendMonoCursor ... 33

2.2.2.4.3 Control Orders for Application Sharing ... 34
2.2.2.4.3.1 Cooperate ... 34
2.2.2.4.3.2 Granted Control ... 35
2.2.2.4.3.3 Notify State ... 35
2.2.2.4.3.4 Request Control ... 36

2.2.2.4.4 Control Orders for Application Sharing Enhanced 36
2.2.2.4.4.1 Control Pause .. 36
2.2.2.4.4.2 Control Released .. 37
2.2.2.4.4.3 Control Revoked .. 37
2.2.2.4.4.4 Give Control .. 38
2.2.2.4.4.5 Give Control Reply ... 38

5 / 186

[MS-MNPR] - v20160714
Microsoft NetMeeting Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

2.2.2.4.4.6 Pass Control .. 39
2.2.2.4.4.7 Take Control ... 40
2.2.2.4.4.8 Take Control Reply ... 40

2.2.2.4.5 Font List ... 41
2.2.2.4.5.1 NETWORKFONT ... 41

2.2.2.4.6 Host Tracking .. 43
2.2.2.4.7 Input PDU .. 43

2.2.2.4.7.1 IMEVENT .. 44
2.2.2.4.7.1.1 IMKEYBOARD ... 44
2.2.2.4.7.1.2 IMMOUSE .. 45

2.2.2.4.8 Shared Window List ... 46
2.2.2.4.8.1 SWLPACKETCHUNK .. 48

2.2.2.4.8.1.1 NonRectData.. 48
2.2.2.4.8.1.1.1 RectangleData .. 48

2.2.2.4.8.2 SWLWINATTRIBUTES ... 49
2.2.2.4.9 Synchronization Order ... 50
2.2.2.4.10 Update Orders .. 50

2.2.2.4.10.1 Common Values for Multiple Parameters 52
2.2.2.4.10.1.1 ArcOrder ... 52
2.2.2.4.10.1.2 CacheBitmapOrder ... 55
2.2.2.4.10.1.3 CacheColorTableOrder ... 55
2.2.2.4.10.1.4 ChordOrder ... 56
2.2.2.4.10.1.5 Compressed Bitmap .. 60
2.2.2.4.10.1.6 DesktopScroll ... 64
2.2.2.4.10.1.7 DstBlt ... 65
2.2.2.4.10.1.8 EllipseOrder ... 66
2.2.2.4.10.1.9 ExtTextOrder ... 69
2.2.2.4.10.1.10 LineOrder .. 73
2.2.2.4.10.1.11 Mem3Blt.. 75
2.2.2.4.10.1.12 MemBlt ... 78
2.2.2.4.10.1.13 OE2 Control Flags ... 80
2.2.2.4.10.1.14 OpaqueRect ... 80
2.2.2.4.10.1.15 BoundsData ... 82
2.2.2.4.10.1.16 TSHR_COLOR ... 83
2.2.2.4.10.1.17 TSHR_RGBQUAD .. 84
2.2.2.4.10.1.18 TSHR_POINT16 .. 84
2.2.2.4.10.1.19 TSHR_RECT16 ... 84
2.2.2.4.10.1.20 OrderTypes .. 84
2.2.2.4.10.1.21 PatBlt .. 86
2.2.2.4.10.1.22 PieOrder .. 88
2.2.2.4.10.1.23 PolyBezierOrder ... 92
2.2.2.4.10.1.24 PolygonOrder ... 93
2.2.2.4.10.1.25 RectangleOrder .. 96
2.2.2.4.10.1.26 RoundRectOrder ... 99
2.2.2.4.10.1.27 SaveBitmap .. 102
2.2.2.4.10.1.28 ScreenBlt ... 104
2.2.2.4.10.1.29 TextOrder ... 105
2.2.2.4.10.1.30 UpdateBitmapPDU ... 108
2.2.2.4.10.1.31 UpdatePalettePDU ... 109
2.2.2.4.10.1.32 UpdateSynchronizePDU .. 109

2.2.2.5 S20_DELETE ... 110
2.2.2.6 S20_END .. 110
2.2.2.7 S20_JOIN ... 111
2.2.2.8 S20_LEAVE ... 111
2.2.2.9 S20_RESPOND .. 112

2.2.3 Chat Protocol .. 113
2.2.4 File Transfer Protocol ... 113
2.2.5 NetMeeting Object Manager .. 114

6 / 186

[MS-MNPR] - v20160714
Microsoft NetMeeting Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

2.2.5.1 NetMeeting Object Manager Hello... 115
2.2.5.2 NetMeeting Object Manager Lock Deny ... 116
2.2.5.3 NetMeeting Object Manager Lock Grant .. 117
2.2.5.4 NetMeeting Object Manager Lock Notify .. 117
2.2.5.5 NetMeeting Object Manager Lock Request ... 118
2.2.5.6 NetMeeting Object Manager More Data ... 118
2.2.5.7 NetMeeting Object Manager Object Add .. 119
2.2.5.8 NetMeeting Object Manager Object Catchup .. 120
2.2.5.9 NetMeeting Object Manager Object Delete .. 123
2.2.5.10 NetMeeting Object Manager Object Move .. 124
2.2.5.11 NetMeeting Object Manager Object Replace ... 125
2.2.5.12 NetMeeting Object Manager Object Update.. 126
2.2.5.13 NetMeeting Object Manager Unlock .. 127
2.2.5.14 NetMeeting Object Manager Welcome ... 128
2.2.5.15 NetMeeting Object Manager Workset Catchup .. 128
2.2.5.16 NetMeeting Object Manager Workset Clear .. 129
2.2.5.17 NetMeeting Object Manager Workset New ... 130
2.2.5.18 NetMeeting Object Manager WSGROUP Send Complete 131
2.2.5.19 NetMeeting Object Manager WSGROUP Send Deny 132
2.2.5.20 NetMeeting Object Manager WSGROUP Send Midway 133
2.2.5.21 NetMeeting Object Manager WSGROUP Send Request 134
2.2.5.22 Object Manager Data Packet Structures .. 134

2.2.5.22.1 NetMeeting Object Manager WSGROUP Info 134
2.2.5.22.2 NetMeeting Object Manager WSGROUP_REG_REC 135
2.2.5.22.3 WB_GRAPHIC .. 137

2.2.5.22.3.1 TOOLTYPE .. 140
2.2.5.22.4 WB_GRAPHIC_DIB ... 140
2.2.5.22.5 WB_GRAPHIC_FREEHAND ... 141
2.2.5.22.6 WB_GRAPHIC_TEXT .. 141
2.2.5.22.7 WB_PAGE_ORDER .. 143
2.2.5.22.8 WB_LOCK .. 144
2.2.5.22.9 WB_SYNC .. 144
2.2.5.22.10 WB_PERSON .. 145

2.2.6 Voice Communication Protocol ... 146
2.2.6.1 AudioCapability Element ... 146

2.2.7 Whiteboard Protocol Extensions ... 146
2.2.7.1 MSTextPDU ... 147
2.2.7.2 TEXTPDU_ATTRIB .. 147

2.2.7.2.1 POINT ... 148
2.2.7.3 TEXTPDU_HEADER ... 149
2.2.7.4 VARIABLE_STRING ... 149
2.2.7.5 VARIABLE_STRING_HEADER ... 150

2.2.8 Optional Elements in Q.931 Call SETUP PDU .. 150
2.2.9 Audio/Video Conferencing ... 153

2.2.9.1 User-User Signalling Information Element ... 153
2.2.9.2 nonStandardData Structure ... 154
2.2.9.3 Alerting-UUIE Response PDU ... 155

3 Protocol Details ... 157
3.1 Peer-to-Peer Protocol Details .. 157

3.1.1 Abstract Data Model ... 157
3.1.2 Timers ... 157
3.1.3 Initialization .. 157
3.1.4 Higher-Layer Triggered Events .. 157
3.1.5 Processing Events and Sequencing Rules .. 157

3.1.5.1 S20 Protocol MCS Channel .. 157
3.1.5.1.1 Standard Connection Establishment .. 158
3.1.5.1.2 Sequencing .. 160

7 / 186

[MS-MNPR] - v20160714
Microsoft NetMeeting Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

3.1.5.1.3 Interaction between S20 Protocol and MCS .. 163
3.1.5.1.4 MCS Broadcast Transport Service Functions for S20 Protocol 163

3.1.5.1.4.1 MCS Broadcast Transport Service Events for the S20 Protocol 164
3.1.5.1.4.1.1 MCS Handling of Network Transmission, Time-outs, and

Retransmissions .. 165
3.1.5.2 State Machine Control State Transitions .. 165
3.1.5.3 NetMeeting Object Manager Initial Join Protocol 166

3.1.5.3.1 Sequencing .. 167
3.1.5.4 NetMeeting Object Manager Late Joiner Protocol 168

3.1.5.4.1 Sequencing .. 169
3.1.5.5 NetMeeting Object Manager Sequence Stamps .. 170
3.1.5.6 NetMeeting Chat Protocol .. 171
3.1.5.7 NetMeeting File Transfer Protocol ... 172
3.1.5.8 NetMeeting Whiteboard Protocol .. 173

3.1.6 Timer Events ... 173
3.1.7 Other Local Events ... 173

4 Protocol Examples ... 174
4.1 Sample Session Establishment Packet Flows ... 174

4.1.1 Creating a New Application-Sharing Session with Multiple Nodes 174
4.1.2 Joining an Existing Application-Sharing Session ... 174
4.1.3 Leaving an Application-Sharing Session .. 175
4.1.4 Deleting a Node from an Application-Sharing Session 175
4.1.5 Ending an Application-Sharing Session ... 175

4.2 UUIE Response PDU: Use Case Scenario .. 175

5 Security ... 177
5.1 Security Considerations for Implementers .. 177
5.2 Index of Security Parameters ... 177

6 Appendix A: Product Behavior ... 178

7 Change Tracking .. 183

8 Index ... 184

8 / 186

[MS-MNPR] - v20160714
Microsoft NetMeeting Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

1 Introduction

The Microsoft NetMeeting Protocol specifies a set of extensions to the T.120 protocols. This set
includes extensions to the T.126 and T.127 protocols. In addition, the NetMeeting product in
Windows uses the S20 protocol for application sharing as a replacement for T.128 functionality.
NetMeeting also uses T.125 as a mechanism to transmit data for the Chat protocol. NetMeeting uses
the Object Manager protocol to provide the mechanism to coordinate object creation, deletion, and

synchronization between two or more nodes in an established session.

The Microsoft NetMeeting Protocol maintains backward compatibility with T.120, as specified in
[T120]. Although these extensions use the same transport layer as the T.120 protocol, they do not
impact the existing functionality of the T.120 protocol.

Sections 1.5, 1.8, 1.9, 2, and 3 of this specification are normative. All other sections and examples in
this specification are informative.

1.1 Glossary

This document uses the following terms:

American National Standards Institute (ANSI) character set: A character set defined by a
code page approved by the American National Standards Institute (ANSI). The term "ANSI" as

used to signify Windows code pages is a historical reference and a misnomer that persists in the
Windows community. The source of this misnomer stems from the fact that the Windows code
page 1252 was originally based on an ANSI draft, which became International Organization for
Standardization (ISO) Standard 8859-1 [ISO/IEC-8859-1]. In Windows, the ANSI character set
can be any of the following code pages: 1252, 1250, 1251, 1253, 1254, 1255, 1256, 1257,
1258, 874, 932, 936, 949, or 950. For example, "ANSI application" is usually a reference to a
non-Unicode or code-page-based application. Therefore, "ANSI character set" is often misused

to refer to one of the character sets defined by a Windows code page that can be used as an
active system code page; for example, character sets defined by code page 1252 or character
sets defined by code page 950. Windows is now based on Unicode, so the use of ANSI character

sets is strongly discouraged unless they are used to interoperate with legacy applications or
legacy data.

application-sharing session: A session that is established between two or more nodes that

allows every node in the session to simultaneously view running applications that are hosted on
a selected node. For example, one node might have an active document application that it would
like to share with other nodes in the established session.

ASCII: The American Standard Code for Information Interchange (ASCII) is an 8-bit character-
encoding scheme based on the English alphabet. ASCII codes represent text in computers,
communications equipment, and other devices that work with text. ASCII refers to a single 8-bit
ASCII character or an array of 8-bit ASCII characters with the high bit of each character set to

zero.

distributed model: In the S20 protocol, a group of nodes where one node (the creator node) is
responsible for creating an application-sharing session and other nodes are able to join that

same session.

Generic Conference Control (GCC): A high-level protocol for passing conference control
information during a conference between geographically dispersed computers. GCC provides a
set of services for setting up and managing the conference. For example, it includes information

such as who is currently in the roster and node authorization for conferencing primitives.
Additionally, the GCC protocol is used by applications to coordinate independent use of the MCS
channels. For more information about GCC, see [T124] section 6.

http://go.microsoft.com/fwlink/?LinkId=93311
http://go.microsoft.com/fwlink/?LinkId=90689
http://go.microsoft.com/fwlink/?LinkId=90542

9 / 186

[MS-MNPR] - v20160714
Microsoft NetMeeting Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

multicasting: The process by which data is transmitted over a network to multiple recipients
simultaneously.

Multipoint Communication Service (MCS): A data transmission protocol and set of services
defined by the ITU T.120 standard, specifically [T122] and [T125].

NetMeeting: A feature of Windows that uses the Microsoft NetMeeting Protocol. This feature allows
for voice, video, application-sharing, and text conferencing between two or more parties via
TCP/UDP networks.

object manager instance: An entity that coordinates object creation, deletion and
synchronization between two or more nodes in an established session. There is only one object
manager instance present in each node.

page control object: An object used in whiteboard processing which indicates various states of a

whiteboard page.

page control workset: A workset dedicated to hold Page Control Objects.

protocol data unit (PDU): Information that is delivered as a unit among peer entities of a
network and that may contain control information, address information, or data. For more
information on remote procedure call (RPC)-specific PDUs, see [C706] section 12.

S20: A protocol that is used by Microsoft NetMeeting for application-sharing. The S20 protocol was

originally known as Share v2.0.

share roster: A list that is built from a group of nodes on the same application-sharing
session.

workset: An item that contains a group of related objects used to update nodes joining a domain.

workset group: The NetMeeting Object Manager (section 2.2.5) protocol contains three different
workset groups as follows: The Object manager control workset group that contain various
worksets utilized to control the creation, modification, and deletion of objects across various

nodes. The Application loader workset group that contain various worksets used in

loading/unloading application functions across nodes. And the Whiteboard workset group that is
dedicated to sending and receiving whiteboard objects.

workset group ID: A predefined value assigned to each workset group. For NetMeeting Object
Manager (section 2.2.5) these values are as follows: 0 is assigned to the Object Manager
Control workset group. 1 is assigned to the Application Loader workset group and 2 is
assigned to the Whiteboard workset group.

MAY, SHOULD, MUST, SHOULD NOT, MUST NOT: These terms (in all caps) are used as defined
in [RFC2119]. All statements of optional behavior use either MAY, SHOULD, or SHOULD NOT.

1.2 References

Links to a document in the Microsoft Open Specifications library point to the correct section in the
most recently published version of the referenced document. However, because individual documents

in the library are not updated at the same time, the section numbers in the documents may not
match. You can confirm the correct section numbering by checking the Errata.

1.2.1 Normative References

We conduct frequent surveys of the normative references to assure their continued availability. If you
have any issue with finding a normative reference, please contact dochelp@microsoft.com. We will
assist you in finding the relevant information.

http://go.microsoft.com/fwlink/?LinkId=94993
http://go.microsoft.com/fwlink/?LinkId=90543
http://go.microsoft.com/fwlink/?LinkId=89824
http://go.microsoft.com/fwlink/?LinkId=90317
http://msdn.microsoft.com/en-us/library/dn781092.aspx
mailto:dochelp@microsoft.com

10 / 186

[MS-MNPR] - v20160714
Microsoft NetMeeting Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

[H225] ITU-T, "Call signalling protocols and media stream packetization for packet-based multimedia
communication systems", Recommendation H.225.0, version 1.2, February 1998,

http://www.itu.int/rec/T-REC-H.225.0-199802-S/e

[H245] ITU-T, "Control protocol for multimedia communication", Recommendation H.245, May 2006,
http://www.itu.int/rec/T-REC-H.245/en

[H323-1.2] ITU-T, "Packet-based multimedia communications systems", Recommendation H.323,

version 1.2, February 1998, http://www.itu.int/rec/T-REC-H.245-199802-S/en

[ITU-Q.931] ITU-T, "Digital subscriber Signaling System No. 1 - Network layer: ISDN user-network
interface layer 3 specification for basic call control", Recommendation Q.931 (I.451), May 1998,
http://www.itu.int/rec/T-REC-Q.931-199805-I/en

[MS-DTYP] Microsoft Corporation, "Windows Data Types".

[MS-EMF] Microsoft Corporation, "Enhanced Metafile Format".

[MS-H245] Microsoft Corporation, "H.245 Protocol: Microsoft Extensions".

[MS-RDPBCGR] Microsoft Corporation, "Remote Desktop Protocol: Basic Connectivity and Graphics
Remoting".

[MS-WMF] Microsoft Corporation, "Windows Metafile Format".

[RFC1006] Rose, M., and Cass, D., "ISO Transport Service on Top of the TCP Version: 3 (TPKT)", STD

35, RFC 1006, May 1987, http://www.ietf.org/rfc/rfc1006.txt

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC
2119, March 1997, http://www.rfc-editor.org/rfc/rfc2119.txt

[T120] ITU-T, "Data protocols for multimedia conferencing", Recommendation T.120, January 2007,
http://www.itu.int/rec/T-REC-T.120/en

Note There is a charge to download the specification.

[T122] ITU-T, "Multipoint communication service - Service definition", Recommendation T.122,

February 1998, http://www.itu.int/rec/T-REC-T.122/en

Note There is a charge to download the specification.

[T123] ITU-T, "Network-Specific Data Protocol Stacks for Multimedia Conferencing", Recommendation
T.123, May 1999, http://www.itu.int/rec/T-REC-T.123/en

Note There is a charge to download the specification.

[T124] ITU-T, "Generic Conference Control", Recommendation T.124, February 1998,
http://www.itu.int/rec/T-REC-T.124/en

Note There is a charge to download the specification.

[T125] ITU-T, "Multipoint Communication Service Protocol Specification", Recommendation T.125,
February 1998, http://www.itu.int/rec/T-REC-T.125-199802-I/en

Note There is a charge to download the specification.

[T126] ITU-T, "Multipoint still image and annotation protocol", July 1997, http://www.itu.int/rec/T-
REC-T.126-200708-I/en

Note There is a charge to download the specification.

http://go.microsoft.com/fwlink/?LinkId=159708
http://go.microsoft.com/fwlink/?LinkId=93032
http://go.microsoft.com/fwlink/?LinkId=159768
http://go.microsoft.com/fwlink/?LinkId=136540
%5bMS-DTYP%5d.pdf#Section_cca2742956894a16b2b49325d93e4ba2
%5bMS-EMF%5d.pdf#Section_91c257d7c39d4a369b1f63e3f73d30ca
%5bMS-H245%5d.pdf#Section_9f9c1b234d7c4dbb8f0cc83fc216b567
%5bMS-RDPBCGR%5d.pdf#Section_5073f4ed1e9345e1b0396e30c385867c
%5bMS-RDPBCGR%5d.pdf#Section_5073f4ed1e9345e1b0396e30c385867c
%5bMS-WMF%5d.pdf#Section_4813e7fd52d04f42965f228c8b7488d2
http://go.microsoft.com/fwlink/?LinkId=103612
http://go.microsoft.com/fwlink/?LinkId=90317
http://go.microsoft.com/fwlink/?LinkId=93311
http://go.microsoft.com/fwlink/?LinkId=94993
http://go.microsoft.com/fwlink/?LinkId=90541
http://go.microsoft.com/fwlink/?LinkId=90542
http://go.microsoft.com/fwlink/?LinkId=90543
http://go.microsoft.com/fwlink/?LinkId=93445
http://go.microsoft.com/fwlink/?LinkId=93445

11 / 186

[MS-MNPR] - v20160714
Microsoft NetMeeting Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

[T127] ITU-T, "Multipoint binary file transfer protocol", August 1995, http://www.itu.int/rec/T-REC-
T.127-200708-I/en

Note There is a charge to download the specification.

[T128-06/08] ITU-T, "Multipoint Application Sharing", Recommendation T.128, June 2008,
http://www.itu.int/rec/T-REC-T.128-200806-P/en

Note There is a charge to download the specification.

[X224] ITU-T, "Information technology - Open Systems Interconnection - Protocol for Providing the
Connection-Mode Transport Service", Recommendation X.224, November 1995,
http://www.itu.int/rec/T-REC-X.224-199511-I/en

Note There is a charge to download the specification.

1.2.2 Informative References

[G723.1] ITU-T, "Dual rate speech coder for multimedia communications transmitting at 5.3 and 6.3
kbit/s", Recommendation G.723.1, March 1996, http://www.itu.int/rec/T-REC-G.723.1-199603-S/en

[MSDN-TRO] Microsoft Corporation, "Ternary Raster Operations", http://msdn.microsoft.com/en-
us/library/dd145130.aspx

[RFC1951] Deutsch, P., "DEFLATE Compressed Data Format Specification version 1.3", RFC 1951, May

1996, http://www.ietf.org/rfc/rfc1951.txt

1.3 Overview

This document describes extensions that are made by Microsoft to the T.120 protocol set. This
document also describes extensions to the S20 protocol, which is a pre-T.120 protocol that is similar

to T.120. S20 is also used for backward-compatibility with older implementations.<1>

The Microsoft extensions to the T.120 protocol set, as specified in the Microsoft NetMeeting Protocol,
include:

 S20 Protocol: The S20 protocol is specific to an application-sharing session, which allows for
the transmission of a screen view of a remote node's running applications.

 NetMeeting Object Manager Protocol: The NetMeeting Object Manager provides the mechanism to
coordinate object creation, deletion, and synchronization between two or more nodes within an

established session. It is utilized while initially establishing a connection to bring the connecting
node up to date with existing objects (such as whiteboard, chat, or application-sharing objects).

 Chat Protocol: A protocol for communicating textual data between nodes. The Chat Protocol
utilizes MCS in order to transfer textual data between peers.

 Extensions to the T.127 Protocol: The T.127 protocol is used to transmit binary files between
nodes.

 Extensions to the T.126 Protocol: The T.126 protocol is used to transmit bitmaps and other
drawing primitives to support a shared whiteboard between nodes.

The following figure illustrates the various components and their relationship to the entire NetMeeting
protocol stack.

http://go.microsoft.com/fwlink/?LinkId=93446
http://go.microsoft.com/fwlink/?LinkId=93446
http://go.microsoft.com/fwlink/?LinkId=144118
http://go.microsoft.com/fwlink/?LinkId=90588
http://go.microsoft.com/fwlink/?LinkId=124083
http://go.microsoft.com/fwlink/?LinkId=90147
http://go.microsoft.com/fwlink/?LinkId=90147
http://go.microsoft.com/fwlink/?LinkId=90302

12 / 186

[MS-MNPR] - v20160714
Microsoft NetMeeting Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Figure 1: NetMeeting protocol stack

1.4 Relationship to Other Protocols

The Microsoft NetMeeting Protocol is implemented on top of the T.120 protocol set, as defined in
[T120].

These extensions use the following ports and protocols:

 Port 389 Internet Locator Server [Transmission Control Protocol] (TCP/IP)

 Port 522 User Location Server (TCP/IP)

 Port 1503 T.120 (TCP/IP and TPKT)

 Port 1720 H.245/H.225/[ITU-Q.931] call setup (TCP/IP)

Note H.245 uses the default port (1720) for initial call setup, and can use a different (dynamic)
port for subsequent communication.

 Port 1731 Audio call control (TCP/IP)

1.5 Prerequisites/Preconditions

The Microsoft NetMeeting Protocol requires the TCP and UDP protocols as a transport layer.

1.6 Applicability Statement

The Microsoft NetMeeting Protocol is used for multicasting multimedia communication.

http://go.microsoft.com/fwlink/?LinkId=93311
http://go.microsoft.com/fwlink/?LinkId=136540

13 / 186

[MS-MNPR] - v20160714
Microsoft NetMeeting Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

1.7 Versioning and Capability Negotiation

The host advertises its capabilities in an S20_CREATE PDU message sent to the client. The client in
turn will advertise its capabilities back to the host using an S20_RESPOND PDU. In addition, a client

joining an existing session will advertise its capabilities in an S20_JOIN PDU and the host will reply
back with its capabilities in an S20_RESPOND PDU.

Capability sets are packaged in a combined capability set structure (see section 2.2.2.1). This
structure contains a count of the number of capability sets, followed by the contents of the individual
capability sets.

Figure 2: Combined capability set structure

Information exchanged in the capability sets includes data such as supported PDUs and drawing
orders, desktop dimensions, and allowed color depths, cache structures, and feature support. When
the capability sets are received, the client and host each perform a merge operation between their

capabilities and the peer capabilities so that all NetMeeting traffic on the wire is consistent with
negotiated expectations and can be processed by each node.

1.8 Vendor-Extensible Fields

None.

1.9 Standards Assignments

The T.120 protocol uses the TCP port 1503. The Microsoft NetMeeting Protocol does not modify this.

14 / 186

[MS-MNPR] - v20160714
Microsoft NetMeeting Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

2 Messages

2.1 Transport

The Microsoft NetMeeting Protocol specifies transport layers as in [T120].

The Ethernet, IP, TCP, and TPKT ([RFC1006] section 5) layers MUST be present. The X.224 protocol,
T.125, and the Microsoft NetMeeting Protocol SHOULD be present. User data MUST be present as the
last bytes in each package or message.

2.2 Message Syntax

2.2.1 Common Data Structures

The following data structures and values are referred to in multiple locations in this document. They
are initially defined and then referenced again from within the document.

2.2.1.1 Common Definitions

2.2.1.1.1 The x,y Coordinate System

References to the x,y coordinate systems in this documentation are based on a system that defines

the 0,0 position as the upper-left corner. Positive x numbers are defined as moving to the right in the
coordinate system, and positive y numbers move down.

2.2.1.2 Common Field Values

2.2.1.2.1 BackMode

The BackMode enumeration describes the background color that is used to fill a specific region on a

drawing surface.

 typedef enum
 {
 TRANSPARENT = 0x00000001,
 OPAQUE = 0x00000002
 } BackMode;

TRANSPARENT: The region is filled with the background color before drawing is performed.

OPAQUE: The region is not filled with the background color before drawing is done.

2.2.1.2.2 BrushHatch

The BrushHatch enumeration describes the six predefined logical hatch brushes that are maintained

by the graphics device interface (GDI). These are used as fill patterns on a drawing surface.

 typedef enum
 {
 HS_HORIZONTAL = 0x00000000,
 HS_VERTICAL = 0x00000001,
 HS_FDIAGONAL = 0x00000002,
 HS_BDIAGONAL = 0x00000003,
 HS_CROSS = 0x00000004,
 HS_DIAGCROSS = 0x00000005

http://go.microsoft.com/fwlink/?LinkId=93311
http://go.microsoft.com/fwlink/?LinkId=103612

15 / 186

[MS-MNPR] - v20160714
Microsoft NetMeeting Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 } BrushHatch;

HS_HORIZONTAL: The lines are horizontal.

HS_VERTICAL: The lines are vertical.

HS_FDIAGONAL: A 45-degree downward, left-to-right line.

HS_BDIAGONAL: A 45-degree upward, right-to-left line.

HS_CROSS: Both HS_HORIZONTAL and HS_VERTICAL lines.

HS_DIAGCROSS: Both HS_FDIAGONAL and HS_BDIAGONAL lines.

2.2.1.2.3 BrushStyle

The BrushStyle enumeration defines the style and pattern of a physical brush to be used on a drawing

surface.

 typedef enum
 {
 BS_SOLID = 0x00000000,
 BS_NULL = 0x00000001,
 BS_HATCHED = 0x00000002,
 BS_PATTERN = 0x00000003
 } BrushStyle;

BS_SOLID: The brush uses a solid style.

BS_NULL: The brush is not drawn.

BS_HATCHED: The brush uses a hatched style.

BS_PATTERN: The pattern brush is defined by a device-independent bitmap (DIB) specification.

2.2.1.2.4 PenStyle

The PenStyle enumeration defines the style and width of a pen to be used on a drawing surface.

 typedef enum
 {
 PS_SOLID = 0x00000000,
 PS_DASH = 0x00000001,
 PS_DOT = 0x00000002,
 PS_DASHDOT = 0x00000003,
 PS_DASHDOTDOT = 0x00000004,
 PS_NULL = 0x00000005,
 PS_INSIDEFRAME = 0x00000006
 } PenStyle;

PS_SOLID: The pen is solid.

PS_DASH: The pen is dashed.

PS_DOT: The pen is dotted.

PS_DASHDOT: The pen has alternating dashes and dots.

PS_DASHDOTDOT: The pen has alternating dashes and double dots.

16 / 186

[MS-MNPR] - v20160714
Microsoft NetMeeting Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

PS_NULL: The pen is invisible.

PS_INSIDEFRAME: The pen is solid. When this pen is used with a bounding rectangle, the

dimensions of the figure are shrunk so that it fits entirely in the bounding rectangle and takes into
account the width of the pen. This applies only to geometric pens.

2.2.1.2.5 ROP2

The ROP2 enumeration describes the binary raster operation codes that define how the graphics
device interface (GDI) combines the bits from the selected pen with the bits in the destination bitmap.

 typedef enum
 {
 R2_BLACK = 0x00000001,
 R2_NOTMERGEPEN = 0x00000002,
 R2_MASKNOTPEN = 0x00000003,
 R2_NOTCOPYPEN = 0x00000004,
 R2_MASKPENNOT = 0x00000005,
 R2_NOT = 0x00000006,
 R2_XORPEN = 0x00000007,
 R2_NOTMASKPEN = 0x00000008,
 R2_MASKPEN = 0x00000009,
 R2_NOTXORPEN = 0x0000000A,
 R2_NOP = 0x0000000B,
 R2_MERGENOTPEN = 0x0000000C,
 R2_COPYPEN = 0x0000000D,
 R2_MERGEPENNOT = 0x0000000E,
 R2_MERGEPEN = 0x0000000F,
 R2_WHITE = 0x00000010
 } ROP2;

R2_BLACK: The pixel is always drawn as black.

R2_NOTMERGEPEN: The pixel is the inverse of the R2_MERGEPEN color.

R2_MASKNOTPEN: The pixel is a combination of the colors that are common to both the screen and

the inverse of the pen.

R2_NOTCOPYPEN: The pixel is the inverse of the pen color.

R2_MASKPENNOT: The pixel is a combination of the colors that are common to both the pen and
the inverse of the screen.

R2_NOT: The pixel is the inverse of the screen color.

R2_XORPEN: The pixel is a combination of the colors in the pen and in the screen, but not in both.

R2_NOTMASKPEN: The pixel is the inverse of the R2_MASKPEN color.

R2_MASKPEN: The pixel is a combination of the colors that are common to both the pen and the
screen.

R2_NOTXORPEN: The pixel is the inverse of the R2_XORPEN color.

R2_NOP: The pixel remains unchanged.

R2_MERGENOTPEN: The pixel is a combination of the screen color and the inverse of the pen color.

R2_COPYPEN: The pixel always has the color of the pen.

R2_MERGEPENNOT: The pixel is a combination of the pen color and the inverse of the screen color.

17 / 186

[MS-MNPR] - v20160714
Microsoft NetMeeting Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

R2_MERGEPEN: The pixel is a combination of the pen color and the screen color.

R2_WHITE: The pixel is always drawn as white.

2.2.2 Application Sharing

The Microsoft NetMeeting Protocol specifies a method of application sharing over the T.120 Multipoint
Communication Service (MCS) layer by using the S20 MCS Channel.

The NetMeeting S20 (Application Sharing) protocol was developed before the T.128 specification
became available. It is essentially the same protocol with some minor exceptions. For a detailed

description of how the S20 protocol works in conjunction with the T.120 protocol set, please refer to
the ITU T.128 (Application Sharing) Protocol documentation [T128-06/08].

Note: all unsigned 16-bit and unsigned 32-bit values are specified in little-endian format. The packet
version and type bit fields are transferred as a single unsigned 16-bit integer variable. Depending on
the hardware architectures of the client and the server, multiple-byte little-endian versus big-endian
reordering can determine how this variable is marshaled by the sender and interpreted by the

receiver.

2.2.2.1 CPCALLCAPS

The CPCALLCAPS structure defines the capabilities of an application-sharing session node.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

numCapabilities pad1

General (24 bytes)

...

...

Screen (28 bytes)

...

...

Orders (84 bytes)

...

...

Bitmaps (40 bytes)

...

...

http://go.microsoft.com/fwlink/?LinkId=144118

18 / 186

[MS-MNPR] - v20160714
Microsoft NetMeeting Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Cursor

...

Palette

...

Share

...

numCapabilities (2 bytes): MUST be set to 0x0007.

pad1 (2 bytes): Reserved. MUST be set to zero when sent and MUST be ignored on receipt.

General (24 bytes): A PROTCAPS_GENERAL packet that describes the general capabilities of the

node.

Screen (28 bytes): A PROTCAPS_SCREEN packet that describes the screen capabilities of the node.

Orders (84 bytes): A PROTCAPS_ORDERS packet that describes the orders supported by the node.

Bitmaps (40 bytes): A PROTCAPS_BITMAPCACHE packet that describes the bitmap cache of the
node.

Cursor (8 bytes): A PROTCAPS_CM packet that describes the cursor capabilities of the node.

Palette (8 bytes): A PROTCAPS_PM packet that describes the palette cache of the node.

Share (8 bytes): A PROTCAPS_SC packet that identifies the user.

2.2.2.1.1 PROTCAPS_BITMAPCACHE

The PROTCAPS_BITMAPCACHE structure describes the bitmap cache that is used by a node of an
application-sharing session.

The caps* elements define the allowance of bitmap caching for the S20 protocol. Bitmap caching

enables increased performance by allowing a remote node to send bitmap information and assign it a
reference that can be used later instead of retransmitting the bitmap information again. The protocol
allows for three bitmap cache sizes:

 Small: 16x16xBPP (bits per pixel)

 Medium: 32x32xBPP

 Large: 64x64xBPP

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

capID capSize

Unused

...

19 / 186

[MS-MNPR] - v20160714
Microsoft NetMeeting Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

...

capsSmallCacheNumEntries capsSmallCacheCellSize

capsMediumCacheNumEntries capsMediumCacheCellSize

capsLargeCacheNumEntries capsLargeCacheCellSize

obsolete1 obsolete2

obsolete3 obsolete4

obsolete5 obsolete6

capID (2 bytes): MUST be set to 0x0004.

capSize (2 bytes): MUST be set to 0x0028 (40).

Unused (12 bytes): Reserved. MUST be set to zero when sent and MUST be ignored on receipt.

capsSmallCacheNumEntries (2 bytes): The number of entries in the small bitmap cache that is
allocated on the local node.

capsSmallCacheCellSize (2 bytes): The size, in bytes, of bitmaps in the small bitmap cache that is
allocated on the local node.

capsMediumCacheNumEntries (2 bytes): The number of entries in the medium bitmap cache that
is allocated on the local node.

capsMediumCacheCellSize (2 bytes): The size, in bytes, of bitmaps in the medium bitmap cache
that is allocated on the local node.

capsLargeCacheNumEntries (2 bytes): The number of entries in the large bitmap cache that is
allocated on the local node.

capsLargeCacheCellSize (2 bytes): The size, in bytes, of bitmaps in the large bitmap cache that is
allocated on the local node.

obsolete1 (2 bytes): MUST be set to 0x7FFF.

obsolete2 (2 bytes): MUST be set to 0x7FFF.

obsolete3 (2 bytes): MUST be set to 0x7FFF.

obsolete4 (2 bytes): MUST be set to 0x7FFF.

obsolete5 (2 bytes): MUST be set to 0x7FFF.

obsolete6 (2 bytes): MUST be set to 0x7FFF.

2.2.2.1.2 PROTCAPS_CM

The PROTCAPS_CM structure describes the cursor capabilities of an application-sharing session node.

20 / 186

[MS-MNPR] - v20160714
Microsoft NetMeeting Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

capID capSize

capsSupportsColorCursors capsCursorCacheSize

capID (2 bytes): MUST be set to 0x0008.

capSize (2 bytes): MUST be set to 0x0008.

capsSupportsColorCursors (2 bytes): MUST be set to 0x0000 or 0x0001. If set to 0x0001, the

node supports color cursors. If set to 0x0000, the node does not support color cursors.

Name Value

COLOR_CURSOR_NOT_SUPPORTED 0x0000

COLOR_CURSOR_SUPPORTED 0x0001

capsCursorCacheSize (2 bytes): The number of elements that the cursor cache for the node can
contain.

2.2.2.1.3 PROTCAPS_GENERAL

The PROTCAPS_GENERAL structure describes the general capabilities of an application-sharing session
node.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

capID capSize

OSType OSVersion

version supportsDOS6Compression

genCompressionType typeFlags

supportsCapsUpdate supportsRemoteUnshare

genCompressionLevel pad1

capID (2 bytes): MUST be set to 0x0001.

capSize (2 bytes): MUST be set to 0x0018 (24).

OSType (2 bytes): MUST be set to 0x0001 for the operating system.

OSVersion (2 bytes): The version of the operating system that is being used, if any.<2>

version (2 bytes): The following values indicate which version of conferencing software is supported
by the node:

21 / 186

[MS-MNPR] - v20160714
Microsoft NetMeeting Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Value Meaning

CAPS_VERSION_20

0x0200

Supports only Microsoft NetMeeting 2.x.

CAPS_VERSION_30

0x0300

Supports versions 2.x and 3 of NetMeeting. If this value is enabled, full-screen
application sharing is enabled as well as passing control of shared applications to other
nodes.

supportsDOS6Compression (2 bytes): Obsolete. MUST be set to 0x0002.

genCompressionType (2 bytes): The following values indicate the types of compression that are

supported by the node. These values MAY be OR’d together to indicate that both types of
compression are supported.

Value Meaning

0x0000 No compression format is supported.

CT_NO_DICTIONARY

0x0001

Uses compression without a persistent dictionary.

CT_PERSIST_DICTIONARY

0x0002

Uses compression with a persistent dictionary for each type of S20_DATA
message.

Compression is applied to the S20_DATA packet payloads that are larger than, or equal to, 4096
bytes. For more information, see [RFC1951].

typeFlags (2 bytes): Flags indicating the mode that the conferencing software is running in:

0

1

2

3

4

5

6

7

8

9

1
0

1

2

3

4

5

0 0 0 0 0 0 0 0 0 0 0 0 0 0 U S

Where the bits are defined as:

Value Description

U

If no user is currently logged on for this session, set this bit to 1.

S

If the node is running in the background and waiting for a connection, set this bit to 1.

Bits marked 0 MUST be set to zero.

supportsCapsUpdate (2 bytes): MUST be set to 0x0000 or 0x0001. If set to 0x0001, the node

supports receiving capability changes. If set to 0x0000, the node does not support receiving
capability changes.

Value Meaning

0x0000 Does not support receiving capability changes.

0x0001 Supports receiving capability changes.

supportsRemoteUnshare (2 bytes): Reserved. MUST be set to "0x0002".

http://go.microsoft.com/fwlink/?LinkId=90302

22 / 186

[MS-MNPR] - v20160714
Microsoft NetMeeting Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

genCompressionLevel (2 bytes): The following values indicate the level of compression that are
supported by the node:

Value Meaning

CAPS_GEN_COMPRESSION_LEVEL_0

0x0001

Only compression that has a persistent dictionary for each type of
S20_DATA message is supported.

CAPS_GEN_COMPRESSION_LEVEL_1

0x0002

Any compression method that is supported by both the sender and
receiver is allowed.

pad1 (2 bytes): Reserved. MUST be set to zero when sent and MUST be ignored on receipt.

2.2.2.1.4 PROTCAPS_ORDERS

The PROTCAPS_ORDERS structure describes the orders that are supported by a node of an
application-sharing session.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

capID capSize

capsDisplayDriver (16 bytes)

...

...

capsSaveBitmapSize

capsSaveBitmapXGranularity capsSaveBitmapYGranularity

capsSaveBitmapMaxSaveLevel capsMaxOrderLevel

capsNumFonts capsEncodingLevel

capsOrders (32 bytes)

...

...

capsfFonts pad1

capsSendSaveBitmapSize

capsReceiveSaveBitmapSize

capsfSendScroll pad2

capID (2 bytes): MUST be set to 0x0003.

23 / 186

[MS-MNPR] - v20160714
Microsoft NetMeeting Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

capSize (2 bytes): MUST be set to 0x0054 (84).

capsDisplayDriver (16 bytes): Reserved. MUST be set to zero when sent and MUST be ignored on

receipt.

capsSaveBitmapSize (4 bytes): The bitmap size that the node uses for SaveBitmap orders. MUST

be set to 0x00027100 (160000).

capsSaveBitmapXGranularity (2 bytes): MUST be set to 0x0001.

capsSaveBitmapYGranularity (2 bytes): MUST be set to 0x0014 (20).

capsSaveBitmapMaxSaveLevel (2 bytes): MUST be set to 0x0000.

capsMaxOrderLevel (2 bytes): MUST be set to 0x0001.

capsNumFonts (2 bytes): Is 0x0000 when unable to determine fonts in the system (error);
otherwise it varies depending upon the maximum number of current fonts in the list derived from

the system.

capsEncodingLevel (2 bytes): MUST be set to 0x0002.

capsOrders (32 bytes): An array of bytes that contain 1, to indicate support for a specified order;
and 0, to indicate lack of support for a specified order.

Value Meaning

0x00 Support for a DstBlt order that contains a raster transfer of a rectangle.

0x01 Support for a PatBlt order that contains a brush paint.

0x02 Support for a ScreenBlt order that contains a bit-block transfer between regions of the screen.

0x03 Reserved. MUST be set to 1 and ignored upon receipt.

0x04 Reserved. MUST be set to 1 and ignored upon receipt.

0x05 Support for a TextOrder that contains a string.

0x06 Support for an ExtTextOrder that contains a string to be displayed and positions for the individual
characters.

0x07 Support for a RectangleOrder that contains a rectangle.

0x08 Support for a LineOrder that contains a line.

0x09 Reserved. MUST be set to zero when sent and MUST be ignored on receipt.

0x0A Support for an OpaqueRect order that contains an opaque rectangle.

0x0B Support for a SaveBitmap order that contains a region of the screen that the receiver MUST save
or restore.

0x0C Reserved. MUST be set to zero when sent and MUST be ignored on receipt.

0x0D Support for a MemBlt order that contains a transfer from the bitmap cache to the screen.

0x0E Support for a Mem3Blt order that contains a transfer from the bitmap cache to the screen using a
brush.

0x0F Support for a PolygonOrder that contains a polygon.

0x10 Support for a PieOrder that contains a pie wedge.

24 / 186

[MS-MNPR] - v20160714
Microsoft NetMeeting Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Value Meaning

0x11 Support for an EllipseOrder that contains an ellipse.

0x12 Support for an ArcOrder that contains an arc.

0x13 Support for a ChordOrder that contains a chord.

0x14 Support for a PolyBezierOrder that contains one or more Bezier curves.

0x15 Support for a RoundRectOrder that contains a rectangle with rounded corners.

0x16 The last ten bytes for orders are undefined.

0x17 Reserved. MUST be set to zero when sent and MUST be ignored on receipt.

0x18 Reserved. MUST be set to zero when sent and MUST be ignored on receipt.

0x19 Reserved. MUST be set to zero when sent and MUST be ignored on receipt.

0x1A Reserved. MUST be set to zero when sent and MUST be ignored on receipt.

0x1B Reserved. MUST be set to zero when sent and MUST be ignored on receipt.

0x1C Reserved. MUST be set to zero when sent and MUST be ignored on receipt.

0x1D Reserved. MUST be set to zero when sent and MUST be ignored on receipt.

0x1E Reserved. MUST be set to zero when sent and MUST be ignored on receipt.

0x1F Reserved. MUST be set to zero when sent and MUST be ignored on receipt.

capsfFonts (2 bytes): MUST be set to 0x03B5.

pad1 (2 bytes): Reserved. MUST be set to zero when sent and MUST be ignored on receipt.

capsSendSaveBitmapSize (4 bytes): MUST be set to 0x00027100 (160000).

capsReceiveSaveBitmapSize (4 bytes): MUST be set to 0x00027100 (160000).

capsfSendScroll (2 bytes): Reserved. MUST be set to zero when sent and MUST be ignored on

receipt.

pad2 (2 bytes): Reserved. MUST be set to zero when sent and MUST be ignored on receipt.

2.2.2.1.5 PROTCAPS_PM

The PROTCAPS_PM structure describes the palette cache of an application-sharing session node.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

capID capSize

capsColorTableCacheSize pad1

capID (2 bytes): MUST be set to 0x000A (10).

capSize (2 bytes): MUST be set to 0x0008.

capsColorTableCacheSize (2 bytes): MUST be set to 0x0006.

25 / 186

[MS-MNPR] - v20160714
Microsoft NetMeeting Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

pad1 (2 bytes): Reserved. MUST be set to zero when sent and MUST be ignored on receipt.

2.2.2.1.6 PROTCAPS_SC

The PROTCAPS_SC structure identifies the user.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

capID capSize

gccID

capID (2 bytes): MUST be set to 0x0009.

capSize (2 bytes): MUST be set to 0x0008.

gccID (4 bytes): The same user identifier that is used in the Multipoint Communication Service
(MCS) [T122] layer. For more information about the MCS user ID, see [T122] section 3
(Definitions) in the ITU-T Recommendation.

2.2.2.1.7 PROTCAPS_SCREEN

The PROTCAPS_SCREEN structure describes the screen capabilities of an application-sharing session
node.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

capID capSize

capsBPP capsSupports1BPP

capsSupports4BPP capsSupports8BPP

capsScreenWidth capsScreenHeight

capsSupportsV1Compression capsSupportsDesktopResize

capsSupportsV2Compression pad1

capsSupports24BPP pad2

capID (2 bytes): MUST be set to 0x0002.

capSize (2 bytes): MUST be set to 0x001C (28).

capsBPP (2 bytes): MUST be set to the bits per pixel currently in use by the node.

capsSupports1BPP (2 bytes): MUST be set to 0x0002 or 0x0001. If set to 0x0001, the node
supports 1-bit-per-pixel screens. If set to 0x0002, the node does not support 1-bit-per-pixel
screens.

http://go.microsoft.com/fwlink/?LinkId=94993

26 / 186

[MS-MNPR] - v20160714
Microsoft NetMeeting Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Value Meaning

0x0002 Does not support 1-bit-per-pixel screens.

0x0001 Supports 1-bpp screens.

capsSupports4BPP (2 bytes): MUST be set to 0x0002 or 0x0001. If set to 0x0001, the node
supports 4-bits-per-pixel screens. If set to 0x0002, the node does not support 4-bits-per-pixel

screens.

Value Meaning

0x0002 Does not support 4-bpp screens.

0x0001 Supports 4-bpp screens.

capsSupports8BPP (2 bytes): MUST be set to 0x0002 or 0x0001. If set to 0x0001, the node
supports 8-bits-per-pixel screens. If set to 0x0002, the node does not support 8-bits-per-pixel

screens.

Value Meaning

0x0002 Does not support 8-bpp screens.

0x0001 Supports 8-bpp screens.

capsScreenWidth (2 bytes): MUST be set to the width, in pixels, of the screen that is currently in
use by the node.

capsScreenHeight (2 bytes): MUST be set to the height, in pixels, of the screen that is currently in
use by the node.

capsSupportsV1Compression (2 bytes): MUST be set to 0x0002 or 0x0001. If set to 0x0001, the

node supports NetMeeting 2.x compression of bitmaps. If set to 0x0002, the node does not
support NetMeeting 2.x compression of bitmaps.

Value Meaning

0x0002 Does not support NetMeeting 2.x compression of bitmaps.

0x0001 Supports NetMeeting 2.x compression of bitmaps.

capsSupportsDesktopResize (2 bytes): MUST be set to 0x0002 or 0x0001. If set to 0x0001, the
node supports resizing its desktop. If set to 0x0002, the node does not support resizing its
desktop.

Value Meaning

0x0002 Does not support desktop resizing.

0x0001 Supports desktop resizing.

capsSupportsV2Compression (2 bytes): MUST be set to 0x0002 or 0x0001. If set to 0x0001, the
node supports NetMeeting 3 compression of bitmaps. If set to 0x0002, the node does not support
NetMeeting 3 compression of bitmaps.

27 / 186

[MS-MNPR] - v20160714
Microsoft NetMeeting Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Value Meaning

0x0002 Does not support NetMeeting 3 compression of bitmaps.

0x0001 Supports NetMeeting 3 compression of bitmaps.

pad1 (2 bytes): Reserved. MUST be set to zero when sent and MUST be ignored on receipt.

capsSupports24BPP (2 bytes): MUST be set to 0x0002 or 0x0001. If set to 0x0001, the node

supports 24-bits-per-pixel screens. If set to 0x0002, the node does not support 24-bits-per-pixel
screens.

Value Meaning

0x0002 Does not support 24-bpp screens.

0x0001 Supports 24-bpp screens.

pad2 (2 bytes): Reserved. MUST be set to zero when sent and MUST be ignored on receipt.

2.2.2.2 S20_CREATE

The S20_CREATE packet is sent by a host to create a new application-sharing session.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

length Version/Type

user Correlator

... lenName

lenCaps nameData (variable)

...

capsData (204 bytes)

...

...

length (2 bytes): The length, in bytes, of the packet including the 2 bytes required for this length
value.

Version/Type (2 bytes): MUST be set to 0x0031.

user (2 bytes): The local identifier of the user, which is obtained from the Multipoint Communication
Service (MCS) [T122] layer. For more information about the MCS user ID, see [T122] section 3
(Definitions) in the ITU-T Recommendation.

Correlator (4 bytes): The unique identifier for the new session. The first two bytes are the MCS user
identifier (described previously) followed by a monotonically increasing 2-byte sequence number
that starts at zero.

http://go.microsoft.com/fwlink/?LinkId=94993

28 / 186

[MS-MNPR] - v20160714
Microsoft NetMeeting Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

lenName (2 bytes): The length, in bytes, of nameData.

lenCaps (2 bytes): The length, in bytes, of capsData.

nameData (variable): A null-terminated array of 8-bit, unsigned ASCII characters, up to 65,535
characters in length. The name of the user.

capsData (204 bytes): A CPCALLCAPS structure that describes the capabilities of the sender.

2.2.2.3 S20_COLLISION

The S20_COLLISION packet is sent to indicate that an application-sharing session already exists with

the correlator that is specified in the original S20_CREATE packet. In the case of a collision, the
existing application-sharing session MUST be terminated.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Length Version/Type

User correlator

...

Length (2 bytes): The length, in bytes, of the packet including the 2 bytes required for this length
value.

Version/Type (2 bytes): MUST be set to 0x0038.

User (2 bytes): The local identifier of the user, which is obtained from the Multipoint Communication

Service (MCS) [T122] layer. For more information about the MCS user ID, see [T122] section 3
(Definitions) in the ITU-T Recommendation.

correlator (4 bytes): The unique identifier for the new session. The first two bytes are the MCS user
identifier (above), followed by a monotonically increasing 2-byte sequence number that starts at
zero.

2.2.2.4 S20_DATA

The S20_DATA packet is used by a host or client to send data to an application-sharing session.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Version/Type user

Correlator

ackID stream dataLength

datatype compressionType compressedLength

data (variable)

...

http://go.microsoft.com/fwlink/?LinkId=94993

29 / 186

[MS-MNPR] - v20160714
Microsoft NetMeeting Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Version/Type (2 bytes): MUST be set to 0x0037.

user (2 bytes): The local identifier of the user, which is obtained from the Multipoint Communication

Service (MCS) [T122] layer. For more information about the MCS user ID, see [T122] section 3
(Definitions) in the ITU-T Recommendation.

Correlator (4 bytes): The unique identifier for the new session. The first two bytes are the MCS user
identifier (above) followed by a monotonically increasing 2-byte sequence number that starts at
zero.

ackID (1 byte): Reserved. SHOULD be set to zero when sent and SHOULD be ignored on receipt.

stream (1 byte): The type of stream message being transmitted.

Value Meaning

STREAM_UPDATES

0x01

Sends window update information.

STREAM_MISC

0x02

Sends cursor update information.

STREAM_UNUSED

0x00

Reserved. MUST be set to zero when sent and MUST be ignored on receipt.

STREAM_INPUT

0x04

Sends mouse movement update information.

dataLength (2 bytes): The combined uncompressed size, in bytes, of the following data fields:

datatype, compressionType, and compressedLength.

datatype (1 byte): The following values indicate the contents of the data field.

Value Meaning

DT_AWC

0x17

An ActiveWindowPDU packet.

DT_CA

0x14

A Control Order for Application Sharing packet. This type of packet will be sent if
CAPS_VERSION_20 is set in the version field in the PROTCAPS_GENERAL structure.

DT_CA30

0x15

A Control Order for Application Sharing Enhanced packet. This type of packet will be sent if
CAPS_VERSION_30 is set from the version field in the PROTCAPS_GENERAL structure.

DT_CM

0x1B

A Cursor Management Order packet.

DT_CPC

0x20

A Screen Capabilities Update packet.

DT_FH

0x0B

A Font List packet.

DT_HET30

0x16

For a Host Tracking packet.

DT_HET

0x19

For a NetMeeting 2 compatible Host Tracking packet.

http://go.microsoft.com/fwlink/?LinkId=94993

30 / 186

[MS-MNPR] - v20160714
Microsoft NetMeeting Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Value Meaning

DT_IM

0x1C

An Input PDU packet.

DT_SNI

0x1F

A Synchronization Order packet.

DT_SWL

0x18

A Shared Window List packet.

DT_UP

0x02

An Update Order packet.

compressionType (1 byte): The following values indicate the type of compression that is used for
the data field:

Value Meaning

0x00 Uncompressed.

CT_NO_DICTIONARY

0x01

Uses compression without a persistent dictionary.

CT_PERSIST_DICTIONARY

0x02

Uses compression with a persistent dictionary for each type of S20_DATA
message.

Compression is applied to the S20_DATA packet payloads that are larger than or equal to 4,096
bytes. For more information, see [RFC1951].

compressedLength (2 bytes): The combined size, in bytes, of data when it is compressed,
datatype, compressionType, and compressedLength.

data (variable): One of the data structures that are appropriate to the value of the datatype field.

2.2.2.4.1 ActiveWindowPDU

The ActiveWindowPDU order manages the currently active, shared window.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Msg unused

data1

data2

Msg (2 bytes): The following values indicate the window message.

Value Meaning

AWC_MSG_ACTIVE_CHANGE_LOCAL

0x0001

The foreground window has changed.

AWC_MSG_ACTIVE_CHANGE_SHARED The shared window state has changed.

http://go.microsoft.com/fwlink/?LinkId=90302

31 / 186

[MS-MNPR] - v20160714
Microsoft NetMeeting Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Value Meaning

0x0002

AWC_MSG_ACTIVE_CHANGE_INVISIBLE

0x0003

The shared window has become invisible.

AWC_MSG_ACTIVATE_WINDOW

0x8001

The sender is requesting activation of the shared window.

AWC_MSG_RESTORE_WINDOW

0x8003

The sender is requesting restoration of the shared window.

AWC_MSG_SAS

0x8005

The sender is sending a CTRL+ALT+DELETE key sequence.

unused (2 bytes): MUST be set to 0xFFFF.

data1 (4 bytes): If msg is set to one of the following values, this field MUST be set to the unique
identifier for the window that is being application-shared. Otherwise, this field is unused.

 AWC_MSG_ACTIVE_CHANGE_LOCAL

 AWC_MSG_ACTIVE_CHANGE_SHARED

 AWC_MSG_ACTIVE_CHANGE_INVISIBLE

 AWC_MSG_ACTIVATE_WINDOW

 AWC_MSG_RESTORE_WINDOW

data2 (4 bytes): Reserved. MUST be set to zero when sent and MUST be ignored on receipt.

2.2.2.4.2 Cursor Management Orders

The following cursor management orders update the cursor position and shape of the receiver:

Name Description

CursorId Instructs the receiver to display a system cursor.

CursorMove Contains a cursor movement.

SendMonoCursor Contains a monochrome cursor that the receiver SHOULD display.

SendColorCursor Contains a color cursor that the receiver SHOULD display.

SendColorCursorCacheId Contains the cache identifier of a cursor that the receiver SHOULD display.

2.2.2.4.2.1 CursorId

The CursorId order instructs the receiver to display a system cursor.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

type flags

idc

32 / 186

[MS-MNPR] - v20160714
Microsoft NetMeeting Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

type (2 bytes): MUST be set to 0x0001.

flags (2 bytes): MUST be set to 0x0000.

idc (4 bytes): MUST be set to one of the cursor identifiers to display from the following list.

Value Meaning

CM_IDC_NULL

0x00000000

The cursor is hidden.

CM_IDC_ARROW

0x00007F00

The standard arrow cursor is displayed.

2.2.2.4.2.2 CursorMove

The CursorMove order contains a cursor movement.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

type operation

xPos yPos

type (2 bytes): MUST be set to 0x0003.

operation (2 bytes): One of the following values that describes the operation.

Value Meaning

default

0x0000

The receiver SHOULD only move the cursor to the specified location when the
receiver is in control of the session.

CM_SYNC_CURSORPOS

0x0001

The receiver SHOULD always move the cursor to the specified location.

xPos (2 bytes): The new x-coordinate, in screen coordinates, of the cursor.

yPos (2 bytes): The new y-coordinate, in screen coordinates, of the cursor.

2.2.2.4.2.3 SendColorCursor

The SendColorCursor order contains a color cursor that the receiver SHOULD use.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Type Flags

cacheIndex xHotSpot

yHotSpot Width

33 / 186

[MS-MNPR] - v20160714
Microsoft NetMeeting Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Height cbANDMask

cbXORMask aBits (variable)

...

Type (2 bytes): MUST be set to 0x0006.

Flags (2 bytes): MUST be set to 0x0000.

cacheIndex (2 bytes): Specifies a cache identifier to reference this cursor in future cursor

operations instead of having to send the cursor data repeatedly in its entirety. Used in subsequent
calls to SendColorCursorCacheId.

xHotSpot (2 bytes): The hot spot x-coordinate within the cursor. By default, the hot spot is set to
the upper-left corner of the cursor (coordinates 0,0).<3>

yHotSpot (2 bytes): The hot spot y-coordinate within the cursor. By default, the hot spot is set to
the upper-left corner of the cursor (coordinates 0,0).<4>

Width (2 bytes): The width, in pixels, of the cursor.

Height (2 bytes): The height, in pixels, of the cursor.

cbANDMask (2 bytes): The length, in bytes, of the AND mask of aBits.

cbXORMask (2 bytes): The length, in bytes, of the color XOR bitmap of aBits.

aBits (variable): The bits for a color XOR bitmap, followed by the bits for an AND mask.

2.2.2.4.2.4 SendColorCursorCacheId

The SendColorCursorCacheId order contains the cache identifier of a cursor that the receiver SHOULD

use.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Type flags

cacheIndex

Type (2 bytes): MUST be set to 0x0007.

flags (2 bytes): MUST be set to 0x0000.

cacheIndex (2 bytes): The cache identifier of the cursor that the receiver SHOULD display.

2.2.2.4.2.5 SendMonoCursor

The SendMonoCursor order contains a monochrome cursor that the receiver SHOULD use.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Type flags

34 / 186

[MS-MNPR] - v20160714
Microsoft NetMeeting Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

xHotSpot yHotSpot

Width height

cbBits aBits (variable)

...

Type (2 bytes): MUST be set to 0x0002.

flags (2 bytes): MUST be set to 0x0000.

xHotSpot (2 bytes): The hot spot x-coordinate within the cursor. By default, the hot spot is set to

the upper-left corner of the cursor (coordinates 0,0).<5>

yHotSpot (2 bytes): The hot spot y-coordinate within the cursor. By default, the hot spot is set to

the upper-left corner of the cursor (coordinates 0,0).<6>

Width (2 bytes): The width, in pixels, of the cursor.

height (2 bytes): The height, in pixels, of the cursor.

cbBits (2 bytes): The length, in bytes, of aBits.

aBits (variable): The bits for a monochrome XOR mask, followed by the bits for a monochrome AND
mask.

2.2.2.4.3 Control Orders for Application Sharing

The Control Orders for Application Sharing are specified below.

Name Description

Cooperate Indicates whether the sender is cooperating in controlling the host.

Granted Control Indicates that the sender has accepted control by the receiver.

Notify State Indicates whether the sender is currently controllable.

Request Control Requests control of the receiver by the sender.

2.2.2.4.3.1 Cooperate

The Cooperate order indicates whether the sender is cooperating in controlling the host.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

msg unused1

unused2

msg (2 bytes): If set to 0x0003, the sender is not cooperating with host control. If set to 0x0004,
the sender is cooperating to control the host. This order is provided for backward-compatibility
with NetMeeting version 2. For NetMeeting version 3, this value MUST be set to 0x0000.

MUST be set to one of the following values:

35 / 186

[MS-MNPR] - v20160714
Microsoft NetMeeting Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Value Meaning

0x0000 MUST be set to this value for NetMeeting version 3.

0x0003 The sender is not cooperating with host control. This value is provided for backward-compatibility
with NetMeeting version 2.

0x0004 The sender is cooperating with host control. This value is provided for backward-compatibility with
NetMeeting version 2.

unused1 (2 bytes): Reserved. MUST be set to zero when sent and MUST be ignored on receipt.

unused2 (4 bytes): Reserved. MUST be set to zero when sent and MUST be ignored on receipt.

2.2.2.4.3.2 Granted Control

The Granted Control order indicates that the sender has accepted control by the receiver.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Msg controllerId

CcontrolGeneration

Msg (2 bytes): MUST be set to 0x0002.

controllerId (2 bytes): The identifier of the user-granted control. This is the user identifier of the
node that is in control. If no node is in control, this field is set to zero.

CcontrolGeneration (4 bytes): The initial sequence number of the control operation. Whenever the
server receives a Granted Control order, it saves the value in this field as the current control
generation sequence number. After the server sends a Granted Control order that contains the

current control generation sequence number, it increments that sequence number for use in a

future Granted Control order, by the value of the local identifier of the user. This identifier is
obtained from S20 packets, such as S20_CREATE or S20_JOIN.

This order is provided for backward compatibility with NetMeeting version 2.

2.2.2.4.3.3 Notify State

The Notify State order is broadcast to indicate whether the sender is currently controllable.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Msg state

controllerId

Msg (2 bytes): MUST be set to 0x0000.

state (2 bytes): MUST be set to 0x0000 or 0x0001. If set to 0x0001, the sender is controllable. If
set to 0x0000, the sender is not controllable.

36 / 186

[MS-MNPR] - v20160714
Microsoft NetMeeting Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Value Meaning

0x0000 The sender is not controllable.

0x0001 The sender is controllable.

controllerId (4 bytes): The identifier of the client that is currently in control. If no client is in
control, controllerId MUST be set to 0x00000000.

This order is provided for backward compatibility with NetMeeting version 2.

2.2.2.4.3.4 Request Control

The Request Control order requests control of the receiver by the sender.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Msg unused1

unused2

Msg (2 bytes): MUST be set to 0x0001.

unused1 (2 bytes): Reserved. MUST be set to zero when sent and MUST be ignored on receipt.

unused2 (4 bytes): Reserved. MUST be set to zero when sent and MUST be ignored on receipt.

This order is provided for backward compatibility with NetMeeting version 2.

2.2.2.4.4 Control Orders for Application Sharing Enhanced

The following Control Orders for Enhanced Application Sharing are specified below.

Name Description

Control Pause Informs the receiver that the sender has paused or resumed session control.

Control Released Indicates that the sender is releasing control.

Control Revoked Indicates that the sender has revoked control by the receiver.

Give Control Queries the ability of the receiver to accept session control.

Give Control Reply Accepts or declines the request of the receiver to give control to the sender.

Pass Control Passes control from the sender to the receiver.

Take Control Requests control of the receiver by the sender.

Take Control Reply Accepts or declines the request of the receiver to control the sender.

2.2.2.4.4.1 Control Pause

The Control Pause order informs the receiver that the sender has paused or unpaused control.

37 / 186

[MS-MNPR] - v20160714
Microsoft NetMeeting Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Msg

viewerControlId

hostControlId

Msg (4 bytes): MUST contain either the value 0x00008003 for a pause or the value 0x00008004 for
an unpause.

Value Meaning

0x00008003 Pause.

0x00008004 Unpause.

viewerControlId (4 bytes): The unique identifier that is sent with the initial Take Control or Give
Control Reply order.

hostControlId (4 bytes): The unique identifier that is sent with the initial Take Control Reply or Give
Control order.

2.2.2.4.4.2 Control Released

The Control Released order indicates that the sender is releasing control.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Msg

viewerControlId

hostControlId

Msg (4 bytes): MUST contain the value 0x00008001.

viewerControlId (4 bytes): The unique identifier that is sent with the initial Take Control or Give
Control Reply order.

hostControlId (4 bytes): The unique identifier that is sent with the initial Take Control Reply or Give
Control order.

2.2.2.4.4.3 Control Revoked

The Control Revoked order indicates that the sender has revoked control by the receiver.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Msg

viewerControlId

38 / 186

[MS-MNPR] - v20160714
Microsoft NetMeeting Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

hostControlId

Msg (4 bytes): MUST contain the value 0x00008002.

viewerControlId (4 bytes): The unique identifier that is sent with the initial Take Control or Give
Control Reply order.

hostControlId (4 bytes): The unique identifier that is sent with the initial Take Control Reply or Give
Control order.

2.2.2.4.4.4 Give Control

The Give Control order asks the receiver if it is willing to accept session control.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Msg

hostControlId

mcsPassFrom

Msg (4 bytes): MUST contain the value 0x00000003.

hostControlId (4 bytes): The unique identifier that is used to match requests and replies. This field
can contain any 32-bit value but MUST NOT contain 0. The value is not globally unique. This is
generated in the local node by incrementing a UINT counter. The counter wraps around if
necessary, but 0 is never a valid value.

mcsPassFrom (4 bytes): The user identifier who is passing control. This field MUST be set to

0x00000000 if the host is passing control.

2.2.2.4.4.5 Give Control Reply

The Give Control Reply order accepts or declines the request of the receiver to give control to the
sender.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

msg

hostControlId

mcsPassFrom

result

viewerControlId

msg (4 bytes): MUST contain the value 0x00000004.

39 / 186

[MS-MNPR] - v20160714
Microsoft NetMeeting Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

hostControlId (4 bytes): The unique identifier that is used to match requests and replies. This field
can contain any 32-bit value but MUST NOT contain 0. The value is not globally unique. This is

generated in the local node by incrementing a UINT counter. The counter wraps around if
necessary, but 0 is never a valid value.

mcsPassFrom (4 bytes): The user identifier who is passing control. This field MUST be set to
0x00000000 if the host is passing control.

result (4 bytes): One of the following values indicating the response of the sender.

Value Meaning

CARESULT_CONFIRMED

0x00000000

The request was granted.

CARESULT_DENIED

0x00000001

The request was denied.

CARESULT_DENIED_BUSY

0x00000002

The request was denied because the user was occupied.

CARESULT_DENIED_USER

0x00000003

The request was denied because the user rejected the request.

CARESULT_DENIED_WRONGSTATE

0x00000004

The request was denied because the receiver was not in an acceptable
state to accept control.

CARESULT_DENIED_TIMEOUT

0x00000005

The request was denied due to user time-out.

viewerControlId (4 bytes): The unique identifier that is used to match requests and replies. This
field can contain any 32-bit value but MUST NOT contain 0. The value is not globally unique. This
is generated in the local node by incrementing a UINT counter. The counter wraps around if

necessary, but 0 is never a valid value.

2.2.2.4.4.6 Pass Control

The Pass Control order passes control from the sender to the receiver.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Msg

viewerControlID

hostControlId

mcsPassTo

Msg (4 bytes): MUST contain the value 0x00000005.

viewerControlID (4 bytes): The unique controller request identifier that is used to match requests
and replies from Take Control.

hostControlId (4 bytes): The unique identifier that is used to match requests and replies. This field

can contain any 32-bit value but MUST NOT contain 0. The value is not globally unique. This is

40 / 186

[MS-MNPR] - v20160714
Microsoft NetMeeting Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

generated in the local node by incrementing a UINT counter. The counter wraps around if
necessary, but 0 is never a valid value.

mcsPassTo (4 bytes): The user identifier to which the sender wants to pass control.

2.2.2.4.4.7 Take Control

The Take Control order requests control of the receiver by the sender.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Msg

viewerControlId

Msg (4 bytes): MUST contain the value 0x00000001.

viewerControlId (4 bytes): The unique identifier that is used to match requests and replies. This
field can contain any 32-bit value but MUST NOT contain 0. The value is not globally unique. This
is generated in the local node by incrementing a UINT counter. The counter wraps around if

necessary, but 0 is never a valid value.

2.2.2.4.4.8 Take Control Reply

The Take Control Reply order accepts or declines the request of the receiver to control the sender.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Msg

viewerControlId

result

hostControlId

Msg (4 bytes): MUST contain the value 0x00000002.

viewerControlId (4 bytes): The unique identifier that is used to match requests and replies. This
field can contain any 32-bit value but MUST NOT contain 0. The value is not globally unique. This
is generated in the local node by incrementing a UINT counter. The counter wraps around if
necessary, but 0 is never a valid value.

result (4 bytes): One of the following values indicating the response of the sender.

Value Meaning

CARESULT_CONFIRMED

0x00000000

The request was granted.

CARESULT_DENIED

0x00000001

The request was denied.

CARESULT_DENIED_BUSY The request was denied because the user was occupied.

41 / 186

[MS-MNPR] - v20160714
Microsoft NetMeeting Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Value Meaning

0x00000002

CARESULT_DENIED_USER

0x00000003

The request was denied because the user rejected the request.

CARESULT_DENIED_WRONGSTATE

0x00000004

The request was denied because the receiver was not in an
acceptable state to accept control.

CARESULT_DENIED_TIMEOUT

0x00000005

The request was denied because of a user time-out.

hostControlId (4 bytes): The unique identifier that is used to match requests and replies. This field
can contain any 32-bit value but MUST NOT contain 0. The value is not globally unique. This is
generated in the local node by incrementing a UINT counter. The counter wraps around if
necessary, but 0 is never a valid value.

2.2.2.4.5 Font List

The Font List order describes the fonts that the sender has installed.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

cFonts cbFontSize

aFonts (variable)

...

cFonts (2 bytes): The number of NETWORKFONT structures in aFonts.

cbFontSize (2 bytes): MUST be set to 0x0032 (50).

aFonts (variable): An array of NETWORKFONT structures. The length of this field is specified by

cFonts.

2.2.2.4.5.1 NETWORKFONT

The NETWORKFONT structure is the font description that is sent across the network when negotiating
font support.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

nfFaceName (32 bytes)

...

...

nfFontFlags nfAveWidth

nfAveHeight nfAspectX

42 / 186

[MS-MNPR] - v20160714
Microsoft NetMeeting Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

nfAspectY nfSigFats

nfSigThins nfSigSymbol

nfCodePage nfMaxAscent

nfFaceName (32 bytes): A 32-byte ASCII array that specifies the null-terminated face name of the
font. There can be 31 characters maximum with a zero at the end.

nfFontFlags (2 bytes): Flags that indicate the font control to use:

0

1

2

3

4

5

6

7

8

9

1
0

1

2

3

4

5

0 0 0 0 0 0 0 B T 0 0 S U I F P

Where the bits are defined as:

Value Description

B

The font is aligned on the text baseline.

T

The font is a TrueType font.

S

The font is struck out.

U

The font is underlined.

I

The font is italic.

F

The font is scalable.

P

The font has a fixed pitch.

Bits marked 0 MUST be set to zero.

nfAveWidth (2 bytes): The average width of the characters in the font, generally defined as the
width of the letter "x".<7>

nfAveHeight (2 bytes): The amount that characters are placed relative to the baseline minus the

internal leading amount for characters. Internal leading is the space where accent marks are often

placed.<8>

nfAspectX (2 bytes): The horizontal aspect of the device for which the font was designed.<9>

nfAspectY (2 bytes): The vertical aspect of the device for which the font was designed.<10>

nfSigFats (2 bytes): The signature of the font, expressed as the sum of the width, in pixels, of the
characters from 0 through 9, uppercase letters from A through Z, and the symbols @, $, %, and
&, divided by two.<11>

43 / 186

[MS-MNPR] - v20160714
Microsoft NetMeeting Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

nfSigThins (2 bytes): The signature of the font, expressed as the sum of the width, in pixels, of the
characters with ASCII codes from 0x02 through 0x7E, minus nfSigFats before dividing by two,

with the sum divided by two.<12>

nfSigSymbol (2 bytes): The signature of the font, expressed as the sum of the width, in pixels, of

the characters with ASCII codes from 0x00 through 0x18 and from 0x80 through 0xFE.<13>

nfCodePage (2 bytes): Either the codepage of the font or one of the following codepages:<14>

Value Meaning

WIN_ANSI

0x0000

The codepage is Windows ANSI.

OEM_FONT

0x00FF

The codepage is for an OEM font.

Unknown

0xFFFF

The codepage is unknown.

nfMaxAscent (2 bytes): For fixed size fonts, set to 0x0064.<15>

2.2.2.4.6 Host Tracking

The Host Tracking order notifies the receiver that the sender is starting or stopping application
sharing.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Msg hostState

Msg (2 bytes): MUST be set to 0x0001.

hostState (2 bytes): Informs the receiver of the sharing state of the sender.

Value Meaning

HET_NOTHOSTING

0x0000

The sender is no longer sharing applications or the desktop.

HET_APPSSHARED

0x0001

The sender is sharing one or more applications.

HET_DESKTOPSHARED

0xFFFF

The sender is sharing the entire desktop. This flag MUST NOT be included in
S20_DATA packets that have a datatype set to DT_HET30.

2.2.2.4.7 Input PDU

The Input PDU packet contains one or more input orders.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

numEvents unused

44 / 186

[MS-MNPR] - v20160714
Microsoft NetMeeting Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

aEvents (variable)

...

numEvents (2 bytes): The number of IMEVENT structures that are contained in aEvents.

unused (2 bytes): Reserved. MUST be set to zero when sent and MUST be ignored on receipt.

aEvents (variable): An array of IMEVENT structures.

2.2.2.4.7.1 IMEVENT

The IMEVENT structure defines keyboard and mouse events.

 typedef struct tagIMEVENT {
 UINT32 timeMS;
 UINT16 type;
 union {
 IMKEYBOARD keyboard;
 IMMOUSE mouse;
 } data;
 } IMEVENT;

timeMS: The time the message was generated, specified as the number of milliseconds since the
sending computer was started.

type: One of the following IMEVENT values, indicating the type of the event:

Value Meaning

IM_TYPE_SYNC

0x0000

Obsolete after version 2.

IM_TYPE_ASCII

0x0001

The event consists of standard keyboard input.

IM_TYPE_VK1

0x0002

The event consists of virtual keyboard keys, such as ALT, CTRL, or SHIFT.

IM_TYPE_VK2

0x0003

The event consists of keyboard hot keys (also called keyboard shortcuts).

IM_TYPE_3BUTTON

0x8001

The event consists of mouse input.

data: If the IMEVENT type equals IM_TYPE_3BUTTON, data will contain the IMMOUSE packet.
Otherwise, all other IMEVENT types will contain IMKEYBOARD packets.

2.2.2.4.7.1.1 IMKEYBOARD

The IMKEYBOARD packet specifies a keyboard event from the sender.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

flags keycode

45 / 186

[MS-MNPR] - v20160714
Microsoft NetMeeting Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

flags (2 bytes): Flags from a WM_KEYUP or WM_SYSKEYUP message are combined by using the
bitwise OR operation of the following values:<16>

0

1

2

3

4

5

6

7

8

9

1
0

1

2

3

4

5

U D A Q 0 0 0 E 0 0 0 0 0 0 0 R

Where the bits are defined as:

Value Description

U

IM_FLAG_KEYBOARD_RELEASE

If specified, the event is a key release. If neither this value nor
IM_FLAG_KEYBOARD_DOWN is specified, the event is a simple key
press.

D

IM_FLAG_KEYBOARD_DOWN

If specified, the event is a repeated keystroke. If neither this value nor
IM_FLAG_KEYBOARD_RELEASE is specified, the event is a simple key
press.

A

IM_FLAG_KEYBOARD_ALT_DOWN

The event is a keystroke from the numeric keypad.

Q

IM_FLAG_KEYBOARD_QUIET

The event SHOULD NOT be injected on the receiver.

E

IM_FLAG_KEYBOARD_EXTENDED

The event consists of an extended key. This flag is only set for the NUM
LOCK key.

R

IM_FLAG_KEYBOARD_RIGHT

The modifier in the event is located on the right side of the keyboard.
This flag is only set for the SHIFT key.

Bits marked 0 are obtained from either the WM_KEYUP or WM_SYSKEYUP events.

keycode (2 bytes): The virtual key code of the keyboard event.

2.2.2.4.7.1.2 IMMOUSE

The IMMOUSE packet specifies a mouse event from the sender.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

flags x

y

flags (2 bytes): A bitmap of the following values describing the event.

0

1

2

3

4

5

6

7

8

9

1
0

1

2

3

4

5

A B C D E F G H R 0 0 0 0 0 0 0

Where the bits are defined as:

46 / 186

[MS-MNPR] - v20160714
Microsoft NetMeeting Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Value Description

A

IM_FLAG_MOUSE_DOWN

The user pressed a mouse button.

B

IM_FLAG_MOUSE_BUTTON3

The user pressed the third mouse button.

C

IM_FLAG_MOUSE_BUTTON2

The user pressed the second mouse button.

D

IM_FLAG_MOUSE_BUTTON1

The user pressed the first mouse button.

E

IM_FLAG_MOUSE_MOVE

The user moved the mouse.

F

IM_FLAG_MOUSE_DOUBLE

The user double-clicked the mouse.

G

IM_FLAG_MOUSE_WHEEL

The user rotated the mouse wheel.

H

IM_FLAG_MOUSE_DIRECTION

If specified, the mouse wheel is rotating backward. If not specified,
the wheel is rotating forward.

R

IM_FLAG_MOUSE_ROTATION_MASK

When the mouse wheel is rotated, the amount is masked with this
value and encoded in the flags field. The rotation flag is already
masked with IM_FLAG_MOUSE_DIRECTION (flag H).

Bits marked 0 are part of the IM_FLAG_MOUSE_ROTATION_MASK.

x (2 bytes): The new x-coordinate of the cursor in screen coordinates.

y (2 bytes): The new y-coordinate of the cursor in screen coordinates.

2.2.2.4.8 Shared Window List

The Shared Window List order describes the windows of the sender to the receiver.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

msg flags

numWindows Tick

Token Reserved

aWindows (variable)

...

windowText (variable)

...

47 / 186

[MS-MNPR] - v20160714
Microsoft NetMeeting Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

nonRectInfo (variable)

...

msg (2 bytes): MUST be set to 0x0001.

flags (2 bytes): A bitmap of the following value.

0

1

2

3

4

5

6

7

8

9

1
0

1

2

3

4

5

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 S

Where the bits are defined as:

Value Description

S

The receiver SHOULD resend its entire window list. This message is only sent by NetMeeting 2.x
clients.

Bits marked "0" MUST be ignored.

numWindows (2 bytes): The number of SWLWINATTRIBUTES structures in the aWindows field.

Tick (2 bytes): The time the message was generated, which is specified as the number of
milliseconds since the sending computer was started.

Token (2 bytes): The sequence number that is incremented with each window list message that is
sent. Only NetMeeting 2.x clients look at this value.

Reserved (2 bytes): Reserved. MUST be set to zero when sent and MUST be ignored on receipt.

aWindows (variable): An array of SWLWINATTRIBUTES structures that describe the properties of

each window. The length of this field is specified by numWindows.

windowText (variable): An array of null-terminated ASCII strings that indicate the window titles of
each shared window.

Titles consist of null-terminated strings of up to SWL_MAX_WINDOW_TITLE_SEND characters;
SWL_MAX_WINDOW_TITLE_SEND is 50. If the title is NULL, the string is 0x00FF.

Titles appear in the same order as the corresponding windows in the SWLWINATTRIBUTES

structure. Windows MUST only be shown on the shared-application taskbar of the client if the
SWL_FLAG_WINDOW_HOSTED and SWL_FLAG_WINDOW_TASKBAR flags in SWLWINATTRIBUTES
are set.

nonRectInfo (variable): If a window has a nonrectangular shape, this field contains nonrectangular
data in a SWLPACKETCHUNK structure.

The list of windows has an associated z-order that can be used to divide the viewer window of the
receiver into the following region types.

 Any portion of a shared window that is not covered by an obscuring window results in a region
of the client viewer that visibly shows graphics data from the host.

 Any portion of an obscuring window that covers up a shared window results in a region of the
client viewer that is obscured.

48 / 186

[MS-MNPR] - v20160714
Microsoft NetMeeting Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 Any portion of the desktop of the sender that is not shared or obscured is represented as a
non-shared area.

The list that is sent can be either the full list of shared and obscuring windows, or simply updates
to the existing list.

2.2.2.4.8.1 SWLPACKETCHUNK

The SWLPACKETCHUNK structure contains the shape of non-rectangular windows in a shared window
list.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Size idChunk

aNonRectData (variable)

...

Size (2 bytes): The size, in bytes, of this structure.

idChunk (2 bytes): MUST be set to 0x524E.

aNonRectData (variable): Contains an array of non-rectangular shapes that are constructed as an
array of RectangleData structures.

This structure MUST be word-aligned with the other fields in a shared window list.

2.2.2.4.8.1.1 NonRectData

The NonRectData packet contains an array of RectangleData that are the components of non-

rectangular shapes.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Length rectangles (variable)

...

Length (2 bytes): The number of RectangleData structures that are used to compose the shape.

rectangles (variable): Contains an array of RectangleData structures.

2.2.2.4.8.1.1.1 RectangleData

The RectangleData packet contains information about rectangle data.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

DeltaLeft DeltaTop

DeltaRight DeltaBottom

49 / 186

[MS-MNPR] - v20160714
Microsoft NetMeeting Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

DeltaLeft (2 bytes): The difference between the left edge of the last rectangle and the left edge of
the current rectangle, expressed in pixels. For the first rectangle, the last edge is considered to

have a value of 0x0000.

DeltaTop (2 bytes): The difference between the top edge of the last rectangle and the top edge of

the current rectangle, expressed in pixels. For the first rectangle, the last edge is considered to
have a value of 0x0000.

DeltaRight (2 bytes): The difference between the right edge of the last rectangle and the right edge
of the current rectangle, expressed in pixels. For the first rectangle, the last edge is considered to
have a value of 0x0000.

DeltaBottom (2 bytes): The difference between the bottom edge of the last rectangle and the
bottom edge of the current rectangle, expressed in pixels. For the first rectangle, the last edge is

considered to have a value of 0x0000.

2.2.2.4.8.2 SWLWINATTRIBUTES

The SWLWINATTRIBUTES structure describes a window.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

winId

Extra

ownerWinID

Flags

Position

...

winId (4 bytes): MUST be set to the identifier of this window. If the window is not shared, this field

MUST be set to 0x00000000.

Extra (4 bytes): If the flags field contains the value SWL_FLAG_WINDOW_HOSTED, this field MUST
be set to the identifier of the thread that created the window. If the flags field does not contain
SWL_FLAG_WINDOW_HOSTED, this field MUST be set to 0x00000000.

ownerWinID (4 bytes): MUST be set to the identifier of the window that is closest to the desktop in
the parent chain of this window.

Flags (4 bytes): A 32-bit bitmap of the following flags.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 A 0 B 0 0 0 0 0 0 0 0 0 0 C 0 0 D E F

Where the bits are defined as:

50 / 186

[MS-MNPR] - v20160714
Microsoft NetMeeting Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Value Description

A

SWL_FLAG_WINDOW_MINIMIZED

The window is minimized.

B

SWL_FLAG_WINDOW_TAGGABLE

Set for compatibility with NetMeeting 2.x clients. This flag SHOULD
be set if the window is shared and has either the
WS_EX_APPWINDOW or WS_CAPTION styles.

C

SWL_FLAG_WINDOW_HOSTED

If set, the window is shared. If not set, the window is obscuring
another window.

D

SWL_FLAG_WINDOW_TOPMOST

Set for compatibility with NetMeeting 2.x clients. This flag SHOULD
be set if the window has the style WS_EX_TOPMOST but not the
style WS_EX_TRANSPARENT.

E

SWL_FLAG_WINDOW_TASKBAR

Indicates that the window title is displayed on the taskbar and the
window is shared.

F

SWL_FLAG_WINDOW_NONRECTANGLE

Indicates that the window does not have a rectangular shape. The
shape is contained in the nonRectInfo field of the Shared Window
List.

Bits marked 0 MUST be 0.

Position (8 bytes): A TSHR_RECT16 structure that specifies the left, top, right, and lower edges of
the region, in order.

2.2.2.4.9 Synchronization Order

The Synchronization Order packet indicates to the client that it SHOULD begin processing for this
application-sharing session.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Message destination

Message (2 bytes): MUST be set to0x0001.

destination (2 bytes): The MCS layer identifier of the client for which this order is intended. If the
identifier matches that of the receiving client, it SHOULD begin to process messages.

2.2.2.4.10 Update Orders

The Update Orders packet contains one or more update orders.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

updateType padding

cOrders sendBPP

data (variable)

...

51 / 186

[MS-MNPR] - v20160714
Microsoft NetMeeting Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

updateType (2 bytes): One of the following values, which indicate the type of update orders that are
contained in the structure.

Value Meaning

UPD_ORDERS

0x0000

The packet can contain one or more of the orders that are defined in the
Order Type enumeration. Possible values for the Order Type enumeration
are defined in section 2.2.2.4.10.1.20.

UPD_SCREEN_DATA

0x0001

Contains an UpdateBitmapPDU order that updates a region of the screen.

UPD_PALETTE

0x0002

Contains an UpdatePalettePDU order that describes the palette of
UpdateBitmapPDU orders.

UPD_SYNC

0x0003

Contains an UpdateSynchronizePDU order that resets the state of the
connection.

If this field is set to 0x0000, this packet can contain any of the following orders:

Name Description

ArcOrder Contains an arc.

CacheBitmapOrder Contains a bitmap to be cached.

CacheColorTableOrder Contains a color table to be cached.

ChordOrder Contains a chord.

DesktopScroll Contains a desktop scroll.

DstBlt Contains a raster transfer of a rectangle.

EllipseOrder Contains an ellipse.

ExtTextOrder Contains a string to be displayed and positions for the individual
characters.

LineOrder Contains a line.

MemBlt Contains a transfer from the bitmap cache to the screen.

Mem3Blt Contains a transfer from the bitmap cache to the screen through a brush.

OpaqueRect Contains an opaque rectangle.

PatBlt Contains a brush paint.

PieOrder Contains a pie wedge.

PolyBezierOrder Contains one or more Bezier curves.

PolygonOrder Contains a polygon.

RectangleOrder Contains a rectangle.

RoundRectOrder Contains a rectangle that has rounded corners.

SaveBitmap Contains a region of the screen that the receiver SHOULD save or restore.

ScreenBlt Contains a bit-block transfer between regions of the screen.

52 / 186

[MS-MNPR] - v20160714
Microsoft NetMeeting Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Name Description

TextOrder Contains a string.

padding (2 bytes): Reserved. MUST be set to zero when sent and MUST be ignored on receipt.

cOrders (2 bytes): The number of orders that are contained in data.

sendBPP (2 bytes): The bits per pixel that are in use by the sending application-sharing session
node.

data (variable): An array of orders that are appropriate to the value of updateType.

2.2.2.4.10.1 Common Values for Multiple Parameters

Various order structures are described in this section.

2.2.2.4.10.1.1 ArcOrder

The ArcOrder packet contains an arc.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

pControlFlags OrderType (optional) FieldBytes

Bounds (13 bytes, optional)

...

...

... BackMode (optional) nLeftRect (optional)

... nTopRect (optional) nRightRect (optional)

... nBottomRect (optional) nXStart (optional)

... nYStart (optional) nXEnd (optional)

... nYEnd (optional) BackColor (optional)

... ROP2 (optional) PenStyle (optional)

PenWidth (optional) PenColor (optional)

ArcDirection (optional)

pControlFlags (1 byte): MUST be set to the value OE2_CF_STANDARD_ENC from the OE2 Control
Flags enumeration. If the order differs in type from the last order that is sent, this field contains
the bitwise AND of the value OE2_CF_TYPE_CHANGE. If the bounding rectangle has changed
since the last order of the same type, this field contains the bitwise AND of the value
OE2_CF_BOUNDS. If the coordinates of the bounding rectangle are specified as deltas from the

53 / 186

[MS-MNPR] - v20160714
Microsoft NetMeeting Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

last bounding rectangle that is used, this field contains the bitwise AND of the value
OE2_CF_DELTACOORDS.

OrderType (1 byte): If the order differs in type from the last, this field MUST contain the value
OE2_ARC_ORDER from the Order Types enumeration. If the order is the same type as the last,

this field is not present.

FieldBytes (2 bytes): A 16-bit field, with each bit indicating which of the fields that follow Bounds is
present. A bit set to 1 indicates that the field is present and its value has changed since the same
order type was last sent.

0

1

2

3

4

5

6

7

8

9

1
0

1

2

3

4

5

A B C D E F G H I J K L M N O 0

Where the bits are defined as:

Value Description

A

The BackMode value is present.

B

The nLeftRect value is present.

C

The nTopRect value is present.

D

The nRightRect value is present.

E

The nBottomRect value is present.

F

The nXStart value is present.

G

The nYStart value is present.

H

The nXEnd value is present.

I

The nYEnd value is present.

J

The BackColor value is present.

K

The ROP2 value is present.

L

The PenStyle value is present.

M

The PenWidth value is present.

54 / 186

[MS-MNPR] - v20160714
Microsoft NetMeeting Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Value Description

N

The PenColor value is present.

O

The ArcDirection value is present.

Bits that are marked 0 MUST be set to zero.

Bounds (13 bytes): A byte array of a BoundsData structure. This field is present only if

pControlFlags contains the bitwise AND of the value OE2_CF_BOUNDS from the OE2 Control
Flags enumeration.

BackMode (2 bytes): This value MUST be present if the corresponding bit from FieldBytes is set.
This represents one of the BackMode values that are defined in section 2.2.1.2.1 and that specify
how the foreground and background SHOULD be mixed.

nLeftRect (2 bytes): This value MUST be present if the corresponding bit from FieldBytes is set.
This represents the left edge of the bounding rectangle in screen coordinates.

nTopRect (2 bytes): This value MUST be present if the corresponding bit from FieldBytes is set.
This represents the top edge of the bounding rectangle in screen coordinates.

nRightRect (2 bytes): This value MUST be present if the corresponding bit from FieldBytes is set.
This represents the right edge of the bounding rectangle in screen coordinates.

nBottomRect (2 bytes): This value MUST be present if the corresponding bit from FieldBytes is set.
This represents the bottom edge of the bounding rectangle in screen coordinates.

nXStart (2 bytes): This value MUST be present if the corresponding bit from FieldBytes is set. This
represents the x-coordinate of the first radial endpoint.

nYStart (2 bytes): This value MUST be present if the corresponding bit from FieldBytes is set. This

represents the y-coordinate of the first radial endpoint.

nXEnd (2 bytes): This value MUST be present if the corresponding bit from FieldBytes is set. This
represents the x-coordinate of the second radial endpoint.

nYEnd (2 bytes): This value MUST be present if the corresponding bit from FieldBytes is set. This

represents the y-coordinate of the second radial endpoint.

BackColor (3 bytes): This value MUST be present if the corresponding bit from FieldBytes is set.
This represents the background color value that is specified by a byte array of a TSHR_COLOR
structure.

ROP2 (1 byte): This value MUST be present if the corresponding bit from FieldBytes is set. This
represents one of the ROP2 values that are defined in section 2.2.1.2.5 and that specify the mix
mode of the foreground.

PenStyle (1 byte): This value MUST be present if the corresponding bit from FieldBytes is set. This
represents one of the PenStyle values that are defined in section 2.2.1.2.4.

PenWidth (1 byte): This value MUST be present if the corresponding bit from FieldBytes is set. This
represents the width, in pixels, of the pen.

PenColor (3 bytes): This value MUST be present if the corresponding bit from FieldBytes is set.
This represents the color value of the pen that specifies a byte array of a TSHR_COLOR structure.

55 / 186

[MS-MNPR] - v20160714
Microsoft NetMeeting Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

ArcDirection (1 byte): This value MUST be present if the corresponding bit from FieldBytes is set.
This represents the direction in which the arc SHOULD be drawn. Possible values are as follows:

Value Meaning

ORD_ARC_COUNTERCLOCKWISE

0x01

The arc SHOULD be drawn counterclockwise.

ORD_ARC_CLOCKWISE

0x02

The arc SHOULD be drawn clockwise.

2.2.2.4.10.1.2 CacheBitmapOrder

The CacheBitmapOrder packet contains a bitmap to be cached.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

pControlFlags cbOrderDataLength fOrderFlags

... bmcPacketType cacheId unused

cxSubBitmapWidth cxSubBitmapHeight Bpp cbBitmapBits

... iCacheEntry Data (variable)

...

pControlFlags (1 byte): MUST be set to the value OE2_CF_UNENCODED from the OE2 Control Flags

enumeration.

cbOrderDataLength (2 bytes): The length of the data that follows the fOrderFlags field.

fOrderFlags (2 bytes): MUST contain the value 0x0008.

bmcPacketType (1 byte): MUST be set to either 0 for uncompressed or 2 for compressed.

cacheId (1 byte): The identifier of the cache in which the bitmap SHOULD be stored.

unused (1 byte): Reserved. MUST be set to zero when sent and MUST be ignored on receipt.

cxSubBitmapWidth (1 byte): The width, in pixels, of the bitmap.

cxSubBitmapHeight (1 byte): The height, in pixels, of the bitmap.

Bpp (1 byte): The bits, per pixel, of the bitmap.

cbBitmapBits (2 bytes): The length, in bytes, of Data.

iCacheEntry (2 bytes): The first byte is an index that specifies which bitmap cache is to be used
(small, medium, large). The second byte is the index within the cache for the bitmap.

Data (variable): Either the uncompressed bitmap data or a Compressed Bitmap structure.

2.2.2.4.10.1.3 CacheColorTableOrder

56 / 186

[MS-MNPR] - v20160714
Microsoft NetMeeting Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

The CacheColorTableOrder packet contains a color table to be cached.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

pControlFlags cbOrderDataLength fOrderFlags

... bmcPacketType Index colorTableSize

... Data (variable)

...

pControlFlags (1 byte): MUST be set to the value OE2_CF_UNENCODED from the OE2 Control Flags
enumeration.

cbOrderDataLength (2 bytes): The length of the data that follows the fOrderFlags field.

fOrderFlags (2 bytes): MUST contain the value 0x0008.

bmcPacketType (1 byte): MUST be set to 0x01.

Index (1 byte): The index of the color table in the cache to be stored for future reference.

colorTableSize (2 bytes): The number of TSHR_RGBQUAD structures in the Data field.

Data (variable): An array of TSHR_RGBQUAD structures.

2.2.2.4.10.1.4 ChordOrder

The ChordOrder packet contains a chord.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

pControlFlags OrderType (optional) FieldBytes

... Bounds (13 bytes, optional)

...

...

... BackMode (optional)

nLeftRect (optional) nTopRect (optional)

nRightRect (optional) nBottomRect (optional)

nXStart (optional) nYStart (optional)

nXEnd (optional) nYEnd (optional)

BackColor (optional) ForeColor (optional)

57 / 186

[MS-MNPR] - v20160714
Microsoft NetMeeting Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

... BrushOrgX (optional) BrushOrgY (optional)

BrushStyle (optional) BrushHatch BrushExtra

...

... ROP2 (optional) PenStyle (optional) PenWidth (optional)

PenColor (optional) ArcDirection (optional)

pControlFlags (1 byte): MUST be set to the value OE2_CF_STANDARD_ENC from the OE2 Control
Flags enumeration. If the order differs in type from the last order that is sent, this field contains
the bitwise AND of the value OE2_CF_TYPE_CHANGE. If the bounding rectangle has changed

since the last order of the same type, this field contains the bitwise AND of the value
OE2_CF_BOUNDS. If the coordinates of the bounding rectangle are specified as deltas from the

last bounding rectangle used, this field contains the bitwise AND of the value
OE2_CF_DELTACOORDS.

OrderType (1 byte): If the order differs in type from the last, this field MUST contain the value
OE2_CHORD_ORDER from the Order Types enumeration. If the order is the same type as the last,

this field is not present.

FieldBytes (3 bytes): A 24-bit field, with each bit indicating which of the fields that follow Bounds is
present. A bit that is set to 1 indicates that the field is present and its value has changed since the
same order type was last sent.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

0 0 0 0 0 0 0 0 A B C D E F G H I J K L M N O P Q R S 0 0 0 0 0

Where the bits are defined as:

Value Description

A

The BackMode value is present.

B

The nLeftRect value is present.

C

The nTopRect value is present.

D

The nRightRect value is present.

E

The nBottomRect value is present.

F

The nXStart value is present.

G

The nYStart value is present.

58 / 186

[MS-MNPR] - v20160714
Microsoft NetMeeting Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Value Description

H

The nXEnd value is present.

I

The nYEnd value is present.

J

The BackColor value is present.

K

The ForeColor value is present.

L

The BrushOrgX value is present.

M

The BrushOrgY value is present.

N

The BrushStyle value is present.

O

The ROP2 value is present.

P

The PenStyle value is present.

Q

The PenWidth value is present.

R

The PenColor value is present.

S

The ArcDirection value is present.

Bits marked with 0 MUST be 0.

Bounds (13 bytes): A byte array of a BoundsData structure. This field is present only if
pControlFlags contains the bitwise AND of the value OE2_CF_BOUNDS from the OE2 Control
Flags enumeration.

BackMode (2 bytes): This value MUST be present if the corresponding bit from FieldBytes is set.
This represents one of the BackMode values that are defined in section 2.2.1.2.1 and that specify
how the foreground and background SHOULD be mixed.

nLeftRect (2 bytes): This value MUST be present if the corresponding bit from FieldBytes is set.

This represents the left edge of the bounding rectangle, in screen coordinates.

nTopRect (2 bytes): This value MUST be present if the corresponding bit from FieldBytes is set.

This represents the top edge of the bounding rectangle, in screen coordinates.

nRightRect (2 bytes): This value MUST be present if the corresponding bit from FieldBytes is set.
This represents the right edge of the bounding rectangle, in screen coordinates.

nBottomRect (2 bytes): This value MUST be present if the corresponding bit from FieldBytes is set.
This represents the bottom edge of the bounding rectangle, in screen coordinates.

59 / 186

[MS-MNPR] - v20160714
Microsoft NetMeeting Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

nXStart (2 bytes): This value MUST be present if the corresponding bit from FieldBytes is set. This
represents the x-coordinate of the first radial endpoint.

nYStart (2 bytes): This value MUST be present if the corresponding bit from FieldBytes is set. This
represents the y-coordinate of the first radial endpoint.

nXEnd (2 bytes): This value MUST be present if the corresponding bit from FieldBytes is set. This
represents the x-coordinate of the second radial endpoint.

nYEnd (2 bytes): This value MUST be present if the corresponding bit from FieldBytes is set. This
represents the y-coordinate of the second radial endpoint.

BackColor (3 bytes): This value MUST be present if the corresponding bit from FieldBytes is set.
This represents the background color value that is specified by a byte array of a TSHR_COLOR
structure.

ForeColor (3 bytes): This value MUST be present if the corresponding bit from FieldBytes is set.
This represents the foreground color value that is specified by a byte array of a TSHR_COLOR
structure.

BrushOrgX (1 byte): This value MUST be present if the corresponding bit from FieldBytes is set.
This represents the x-offset at which the brush begins. The offset is based on window coordinates
where the origin of (0,0) is upper left.

BrushOrgY (1 byte): This value MUST be present if the corresponding bit from FieldBytes is set.
This represents the y-offset at which the brush begins. The offset is based on window coordinates
where the origin of (0,0) is upper left.

BrushStyle (1 byte): This value MUST be present if the corresponding bit from FieldBytes is set.
This represents one of the BrushStyle values that are defined in section 2.2.1.2.3.

BrushHatch (1 byte): If BrushStyle is set to BS_PATTERN, this field is the first byte of the 64-by-
64 pixel monochrome bitmap of the brush, laid out in top-to-bottom, left-to-right order. If set to

BS_HATCHED, the BrushStyle values that are defined in section 2.2.1.2.2 specify the orientation
of the lines that are used to create the hatch. Otherwise, this field is not used.

BrushExtra (7 bytes): If BrushStyle is set to BS_PATTERN, this field is the last seven bytes of the
64-by-64 pixel monochrome bitmap of the brush, laid out in top-to-bottom, left-to-right order.
Otherwise, this field is not used.

ROP2 (1 byte): This value MUST be present if the corresponding bit from FieldBytes is set. This
represents one of the ROP2 values that are defined in section 2.2.1.2.5 and that specify the mix

mode of the foreground.

PenStyle (1 byte): This value MUST be present if the corresponding bit from FieldBytes is set. This
represents one of the PenStyle values that are defined in section 2.2.1.2.4.

PenWidth (1 byte): This value MUST be present if the corresponding bit from FieldBytes is set. This
represents the width, in pixels, of the pen.

PenColor (3 bytes): This value MUST be present if the corresponding bit from FieldBytes is set.

This represents the color value of the pen and is specified by a byte array of a TSHR_COLOR
structure.

ArcDirection (1 byte): This value MUST be present if the corresponding bit from FieldBytes is set.
This field represents one of the following values and indicates the direction in which the arc
SHOULD be drawn.

60 / 186

[MS-MNPR] - v20160714
Microsoft NetMeeting Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Value Meaning

ORD_ARC_COUNTERCLOCKWISE

0x01

The arc SHOULD be drawn counterclockwise.

ORD_ARC_CLOCKWISE

0x02

The arc SHOULD be drawn clockwise.

2.2.2.4.10.1.5 Compressed Bitmap

The Compressed Bitmap structure describes a compressed 4-bits-per-pixel or 8-bits-per-pixel bitmap.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

cbCompFirstRowSize cbCompMainBodySize

cbScanWidth cbUncompressedSize

data (variable)

...

cbCompFirstRowSize (2 bytes): MUST be set to 0x0000.

cbCompMainBodySize (2 bytes): The size, in bytes, of the data field.

cbScanWidth (2 bytes): The width, in bytes, of each bitmap row. This value MUST be divisible by 4.

cbUncompressedSize (2 bytes): The uncompressed size, in bytes, of the bitmap.

data (variable): An array of codes that describe compressed structures in the bitmap. The following
steps MUST be taken to decode structures.

1. If the highest order 2 bits of the first byte do not consist entirely of ones, compare the highest
order 3 bits to the 3-bit structure codes and choose the appropriate fields.

2. If the highest order 3 bits of the first byte do not consist entirely of ones, compare the highest
order 4 bits to the 4-bit structure codes and choose the appropriate fields.

3. Otherwise, compare the byte to the 8-bit structure codes and choose the appropriate fields.

3-Bit Structure Codes Meaning

MEGA_BG_RUN

0x0

A run where each byte matches the uncompressed byte from the previous
line and the other 5 bits of the code are all 0. The length of the run, in bytes,
is 32 plus the value (a number between 0 and 255) that is contained in the
next byte. If this code occurs on the first line, the last line SHOULD be
considered to have the value 0x00.

BG_RUN

0x0

A run where each byte matches the uncompressed byte from the previous
line and the other 5 bits of the code are not all 0. The length of the run, in
bytes, is the other 5 bits of the byte. If this code occurs on the first line, the
last line SHOULD be considered to have the value 0x00.

MEGA_FG_RUN A run where each byte is the XOR of the uncompressed byte from the

61 / 186

[MS-MNPR] - v20160714
Microsoft NetMeeting Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

3-Bit Structure Codes Meaning

0x1 previous line with the foreground color and the other 5 bits of the code are
all 0. The length of the run, in bytes, is 32 plus the value (a number between
0 and 255) that is contained in the next byte. If this code occurs on the first
line, the foreground color alone SHOULD be used.

FG_RUN

0x1

A run where each byte is the XOR of the uncompressed byte from the
previous line that has the foreground color, and the other 5 bits of the byte
are not all 0. The length of the run, in bytes, is the other 5 bits of the byte.
If this code occurs on the first line, the foreground color alone SHOULD be
used.

MEGA_FG_BG_IMAGE

0x2

A run where the other 5 bits of the code are all 0 and each byte is either the
matching uncompressed byte from the previous line or the XOR of that byte

with the foreground color. The length of the run, in bytes, is 1 plus the value
(a number between 0 and 255) that is contained in the next byte. The data
is specified in the following bytes: a 1 bit signifies the XOR of the byte from
the previous line that has the foreground color and a 0 bit signifies that byte
alone. If this code occurs on the first line, the last line SHOULD be
considered to have the value 0x00.

FG_BG_IMAGE

0x2

A run where the other 5 bits of the code are all not 0 and each byte is either
the matching uncompressed byte from the previous line or the XOR of that
byte with the foreground color. The length of the run, in bytes, is 8
multiplied by the value (a number between 0 and 31) of the other 5 bits of
the byte. The data is specified in the following bytes: a 1 bit signifies the
XOR of the byte from the previous line that has the foreground color and a 0
bit signifies that byte alone. If this code occurs on the first line, the last line
SHOULD be considered to have the value 0x00.

MEGA_COLOR_RUN

0x3

A single-color run where the other 5 bits of the code are all 0. The length of

the run, in bytes, is 32 plus the value (a number between 0 and 255) that is
contained in the next byte. The color is specified in the following byte.

COLOR_RUN

0x3

A single-color run where the other 5 bits of the code are not all 0. The length
of the run, in bytes, is the other 5 bits of the byte. The color is specified in
the following byte.

MEGA_COLOR_IMAGE

0x4

An uncompressed run where the other 5 bits of the code are all 0. The length
of the run, in bytes, is 32 plus the value (a number between 0 and 255) that
is contained in the next byte. The data is specified in the following bytes as 1
pixel per byte.

COLOR_IMAGE

0x4

An uncompressed run where the other 5 bits of the code are not all 0. The
length of the run, in bytes, is the other 5 bits of the byte. The data is
specified in the following bytes as 1 pixel per byte.

MEGA_PACKED_CLR_IMAGE

0x5

An uncompressed run where the other 5 bits of the code are all 0. The length
of the run, in bytes, is 32 plus the value (a number between 0 and 255) that
is contained in the next byte. The data is specified in the following bytes as 2
pixels per byte, because of the high-order nibble of all colors in the run that
contains 0.

PACKED_COLOR_IMAGE

0x5

An uncompressed run where the other 5 bits of the code are not all 0. The
length of the run, in bytes, is the other 5 bits of the byte. The data is
specified in the following bytes as 2 pixels per byte, because of the high-
order nibble of all colors in the run that contains 0.

4-Bit Structure Codes Meaning

SET_FG_MEGA_FG_RUN A run where each byte is the XOR of the uncompressed byte from the previous

62 / 186

[MS-MNPR] - v20160714
Microsoft NetMeeting Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

4-Bit Structure Codes Meaning

0xC line that has a new foreground color and the other 4 bits of the code are all 0. The
length of the run, in bytes, is 16 plus the value (a number between 0 and 255)
that is contained in the next byte. The new foreground color is specified in the
following byte. If this code occurs on the first line, the foreground color alone
SHOULD be used.

SET_FG_FG_RUN

0xC

A run where each byte is the XOR of the uncompressed byte from the previous
line that has a new foreground color and the other 4 bits of the code are not all 0.
The length of the run, in bytes, is the other 4 bits of the byte. The new
foreground color is specified in the following byte. If this code occurs on the first
line, the foreground color alone SHOULD be used.

SET_FG_MEGA_FG_BG

0xD

A run where the other 4 bits of the code are all 0 and each byte is either the

matching uncompressed byte from the previous line or the XOR of that byte with
the foreground color. The length of the run, in bytes, is 1 plus the value (a
number between 0 and 255) that is contained in the next byte. The new
foreground color is specified in the byte after the length. The data is specified in
the following bytes: a 1 bit signifies the XOR of the byte from the previous line
that has the new foreground color and a 0 bit signifies that byte alone. If this
code occurs on the first line, the last line SHOULD be considered to have the
value 0x00.

SET_FG_FG_BG

0xD

A run where the other 4 bits of the code are not all 0 and each byte is either the
matching uncompressed byte from the previous line or the XOR of that byte with
the foreground color. The length of the run, in bytes, is 8 multiplied by the value
(a number between 0 and 15) of the other 4 bits of the byte. The new foreground
color is specified in the next byte. The data is specified in the following bytes: a 1
bit that signifies the XOR of the byte from the previous line that has the new
foreground color and a 0 bit that signifies that byte alone. If this code occurs on
the first line, the last line SHOULD be considered to have the value 0x00.

MEGA_DITHERED_RUN

0xE

An alternating run of two colors where the other 4 bits of the code are all 0. The
length of the run, in bytes, is 16 plus the value (a number between 0 and 255)
that is contained in the next byte. The colors are specified in the following two
bytes as one byte each.

DITHERED_RUN

0xE

An alternating run of two colors where the other 4 bits of the code are not all 0.
The length of the run, in bytes, is the other 4 bits of the byte. The colors are
specified in the following 2 bytes as one byte each.

8-Bit Structure Codes Meaning

MEGA_MEGA_BG_RUN

0xF0

A run where each byte matches the uncompressed byte from the previous line.
The length of the run, in bytes, is specified in the next 2 bytes between 1 and
65,536. If this code occurs on the first line, the last line SHOULD be
considered to have the value 0x00.

MEGA_MEGA_FG_RUN

0xF1

A run where each byte is the XOR of the uncompressed byte from the previous
line that has the foreground color. The length of the run, in bytes, is specified
in the next 2 bytes between 1 and 65,536. If this code occurs on the first line,

the foreground color alone SHOULD be used.

MEGA_MEGA_FGBG

0xF2

A long run where each byte is either the uncompressed byte from the previous
line or the XOR of that byte that has the foreground color. The length of the
run, in bytes, is specified in the next two bytes, a value between 1 and
65,536. The data is specified in the following bytes: a 1 bit signifies the XOR
of the byte from the previous line that has the foreground color and a 0 bit
signifies that byte alone. If this code occurs on the first line, the last line
SHOULD be considered to have the value 0x00.

63 / 186

[MS-MNPR] - v20160714
Microsoft NetMeeting Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

8-Bit Structure Codes Meaning

MEGA_MEGA_COLOR_RUN

0xF3

A long single-color run of pixels. The length of the run, in bytes, is specified in
the next 2 bytes, a value between 1 and 65,536. The color is specified in the
following byte.

MEGA_MEGA_CLR_IMG

0xF4

A long, uncompressed run of pixels. The length of the run, in bytes, is
specified in the next 2 bytes, a value between 1 and 65,536. The data is
specified in the following bytes as 1 pixel per byte.

MEGA_MEGA_PACKED_CLR

0xF5

A long, uncompressed run of pixels that are packed 2 pixels to a byte. The
length of the run, in bytes, is specified in the next 2 bytes between 1 and
65,536. The data is specified in the following bytes as 2 pixels per byte, due to
the high-order nibble of all colors in the run that contains 0.

MEGA_MEGA_SET_FG_RUN

0xF6

A long run where each byte is the XOR of the uncompressed byte from the
previous line with a new foreground color. The length of the run, in bytes, is
specified in the next two bytes between 1 and 65,536. The new foreground
color is specified in the following byte. If this code occurs on the first line, the
foreground color alone SHOULD be used.

MEGA_MEGA_SET_FGBG

0xF7

A long run where each byte is either the uncompressed byte from the previous
line or the XOR of that byte with a new foreground color. The length of the
run, in bytes, is specified in the next 2 bytes between 1 and 65,536. The new
foreground color is specified in the byte after the length. The data is specified
in the following bytes, with a 1 bit signifying the XOR of the byte from the
previous line that has the foreground color and a 0 bit signifying that byte
alone. If this code occurs on the first line, the last line SHOULD be considered
to have the value 0x00.

MEGA_MEGA_DITHER

0xF8

A long alternating run of two colors. The length of the run, in bytes, is
specified in the next 2 bytes between 1 and 65,536. The colors are specified in
the following 2 bytes as 1 byte each.

SPECIAL_FGBG_CODE_1

0xF9

The 2 bytes that are the XOR of the uncompressed bytes from the previous
line that has the foreground color, followed by the 6 uncompressed bytes of
the previous line. If this code occurs on the first line, the last line SHOULD be
considered to have the value 0x00.

SPECIAL_FGBG_CODE_2

0xFA

A byte that is the XOR of the uncompressed bytes from the previous line that
has the foreground color, an uncompressed byte from the previous line,
another XOR byte, and finally 5 uncompressed bytes. If this code occurs on
the first line, the last line SHOULD be considered to have the value 0x00.

BLACK

0xFD

A single black pixel.

WHITE

0xFE

A single white pixel.

START_LOSSY

0xFF

A code specifying that all the following codes SHOULD have their byte count
doubled: MEGA_COLOR_IMAGE, COLOR_IMAGE, MEGA_PACKED_CLR_IMAGE,
PACKED_COLOR_IMAGE, MEGA_MEGA_CLR_IMG, and
MEGA_MEGA_PACKED_CLR. Pixel pairs that begin with black SHOULD render
as two black pixels followed by two of the next pixel. All other pairs SHOULD
render dithered.

By default, the foreground color is assumed to be 0xFF (white). This color can be changed at any point
in the bitmap for all the pixels through the use of the following codes: SET_FG_MEGA_FG_RUN,
SET_FG_FG_RUN, SET_FG_MEGA_FG_BG, SET_FG_FG_BG, MEGA_MEGA_SET_FG_RUN, or

MEGA_MEGA_SET_FGBG.

Encoding MUST NOT cross the boundary between the first line and the rest of the bitmap.

64 / 186

[MS-MNPR] - v20160714
Microsoft NetMeeting Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Any sequence of two BG_RUN codes MUST be separated by a single byte, which is the XOR of the byte
from the previous line with the foreground color. The same applies to any combination of

MEGA_MEGA_BG_RUN, MEGA_BG_RUN, and BG_RUN.

Note: 4 bits-per-pixel images MUST be expanded to a full byte before compression.

2.2.2.4.10.1.6 DesktopScroll

The DesktopScroll packet contains a desktop scroll.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

pControlFlags OrderType (optional) FieldBytes Bounds (13 bytes,
optional)

...

...

xOrigin (optional) yOrigin (optional)

pControlFlags (1 byte): MUST be set to the value OE2_CF_STANDARD_ENC from the OE2 Control
Flags enumeration. If the order differs in type from the last order that was sent, this field MUST
contain the bitwise AND of the value OE2_CF_TYPE_CHANGE. If the bounding rectangle has

changed since the last order of the same type, this field MUST contain the bitwise AND of the
value OE2_CF_BOUNDS. If the coordinates of the bounding rectangle are specified as deltas from
the last bounding rectangle that was used, this field contains the bitwise AND of the value
OE2_CF_DELTACOORDS.

OrderType (1 byte): If the order differs in type from the last, this field MUST contain the value
OE2_DESKSCROLL_ORDER from the Order Types enumeration. If the order is the same type as

the last, this field is not present.

FieldBytes (1 byte): An 8-bit field, with each bit indicating which of the fields that follow Bounds is
present. A bit set to 1 indicates that the field is present and its value has changed since the same
order type was last sent.

0

1

2

3

4

5

6

7

A B 0 0 0 0 0 0

Where the bits are defined as:

Value Description

A

The xOrigin value is present.

B

The yOrigin value is present.

Bits marked with 0 MUST be 0.

Bounds (13 bytes): A byte array of a BoundsData structure. This field is present only if
pControlFlags contains the bitwise AND of the value OE2_CF_BOUNDS from the OE2 Control
Flags enumeration.

65 / 186

[MS-MNPR] - v20160714
Microsoft NetMeeting Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

xOrigin (2 bytes): This value MUST be present if the corresponding bit from FieldBytes is set. This
represents the x-coordinate where the origin of the receiver's view of the desktop SHOULD be

moved.

yOrigin (2 bytes): This value MUST be present if the corresponding bit from FieldBytes is set. This

represents the y-coordinate where the origin of the receiver's view of the desktop SHOULD be
moved.

2.2.2.4.10.1.7 DstBlt

The DstBlt order contains a raster transfer of a rectangle.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

pControlFlags OrderType (optional) FieldBytes Bounds (13 bytes,
optional)

...

...

nLeftRect (optional) nTopRect (optional)

nWidth (optional) nHeight (optional)

bRop (optional)

pControlFlags (1 byte): MUST be set to the value OE2_CF_STANDARD_ENC from the OE2 Control

Flags enumeration. If the order differs in type from the last order that was sent, this field contains
the bitwise AND of the value OE2_CF_TYPE_CHANGE. If the bounding rectangle has changed
since the last order of the same type, this field contains the bitwise AND of the value

OE2_CF_BOUNDS. If the coordinates of the bounding rectangle are specified as deltas from the
last bounding rectangle that was used, this field contains the bitwise AND of the value
OE2_CF_DELTACOORDS.

OrderType (1 byte): If the order differs in type from the last, this field MUST contain the value
OE2_DSTBLT_ORDER from the Order Types enumeration. If the order is the same type as the last,
this field will not be present.

FieldBytes (1 byte): An 8-bit field, with each bit indicating which of the fields that follow Bounds is
present. A bit set to 1 indicates that the field is present and its value has changed since the same
order type was last sent.

0

1

2

3

4

5

6

7

A B C D E 0 0 0

Where the bits are defined as:

Value Description

A

The nLeftRect value is present.

B The nTopRect value is present.

66 / 186

[MS-MNPR] - v20160714
Microsoft NetMeeting Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Value Description

C

The nWidth value is present.

D

The nHeight value is present.

E

The bRop value is present.

Bits marked with 0 MUST be 0.

Bounds (13 bytes): A byte array of a BoundsData structure. This field is present only if
pControlFlags contains the bitwise AND of the value OE2_CF_BOUNDS from the OE2 Control
Flags enumeration.

nLeftRect (2 bytes): This value MUST be present if the corresponding bit from FieldBytes is set.
This represents the left edge of the rectangle in screen coordinates.

nTopRect (2 bytes): This value MUST be present if the corresponding bit from FieldBytes is set.
This represents the top edge of the rectangle in screen coordinates.

nWidth (2 bytes): This value MUST be present if the corresponding bit from FieldBytes is set. This
represents the width of the rectangle in pixels.

nHeight (2 bytes): This value MUST be present if the corresponding bit from FieldBytes is set. This
represents the height, in pixels, of the rectangle.

bRop (1 byte): This value MUST be present if the corresponding bit from FieldBytes is set. This
represents the high-order byte of a Windows GDI ternary raster operation code.<17>

2.2.2.4.10.1.8 EllipseOrder

The EllipseOrder packet contains an ellipse.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

pControlFlags OrderType (optional) FieldBytes

Bounds (13 bytes, optional)

...

...

... BackMode (optional) nLeftRect (optional)

... nTopRect (optional) nRightRect (optional)

... nBottomRect (optional) BackColor (optional)

... ForeColor (optional)

67 / 186

[MS-MNPR] - v20160714
Microsoft NetMeeting Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

... BrushOrgX (optional) BrushOrgY (optional) BrushStyle (optional)

BrushHatch BrushExtra

...

ROP2 (optional) PenStyle (optional) PenWidth (optional) PenColor (optional)

...

pControlFlags (1 byte): MUST be set to the value OE2_CF_STANDARD_ENC from the OE2 Control
Flags enumeration. If the order differs in type from the last order sent, this field contains the
bitwise AND of the value OE2_CF_TYPE_CHANGE. If the bounding rectangle has changed since

the last order of the same type, this field contains the bitwise AND of the value OE2_CF_BOUNDS.
If the coordinates of the bounding rectangle are specified as deltas from the last bounding

rectangle that was used, this field contains the bitwise AND of the value OE2_CF_DELTACOORDS.

OrderType (1 byte): If the order differs in type from the last, this field MUST contain the value
OE2_ELLIPSE_ORDER from the Order Types enumeration. If the order is the same type as the
last, this field is not present.

FieldBytes (2 bytes): A 16-bit field, with each bit indicating which of the fields that follow Bounds is
present. A bit set to 1 indicates that the field is present and its value has changed since the same
order type was last sent.

0

1

2

3

4

5

6

7

8

9

1
0

1

2

3

4

5

A B C D E F G H I J K L M N 0 0

Where the bits are defined as:

Value Description

A

The BackMode value is present.

B

The nLeftRect value is present.

C

The nTopRect value is present.

D

The nRightRect value is present.

E

The nBottomRect value is present.

F

The BackColor value is present.

G

The ForeColor value is present.

H The BrushOrgX value is present.

68 / 186

[MS-MNPR] - v20160714
Microsoft NetMeeting Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Value Description

I

The BrushOrgY value is present.

J

The BrushStyle value is present.

K

The ROP2 value is present.

L

The PenStyle value is present.

M

The PenWidth value is present.

N

The PenColor value is present.

Bits marked with 0 MUST be 0.

Bounds (13 bytes): A byte array of a BoundsData structure. This field is present only if
pControlFlags contains the bitwise AND of the value OE2_CF_BOUNDS from the OE2 Control

Flags enumeration.

BackMode (2 bytes): This value MUST be present if the corresponding bit from FieldBytes is set.
This represents one of the BackMode values that are defined in section 2.2.1.2.1 and that specify
how the foreground and background SHOULD be mixed.

nLeftRect (2 bytes): This value MUST be present if the corresponding bit from FieldBytes is set.
This represents the left edge of the bounding rectangle in screen coordinates.

nTopRect (2 bytes): This value MUST be present if the corresponding bit from FieldBytes is set.

This represents the top edge of the bounding rectangle in screen coordinates.

nRightRect (2 bytes): This value MUST be present if the corresponding bit from FieldBytes is set.
This represents the right edge of the bounding rectangle in screen coordinates.

nBottomRect (2 bytes): This value MUST be present if the corresponding bit from FieldBytes is set.
This represents the bottom edge of the bounding rectangle in screen coordinates.

BackColor (3 bytes): This value MUST be present if the corresponding bit from FieldBytes is set.

This represents the background color value that is specified by a byte array of a TSHR_COLOR
structure.

ForeColor (3 bytes): This value MUST be present if the corresponding bit from FieldBytes is set.
This represents the foreground color value that is specified by a byte array of a TSHR_COLOR

structure.

BrushOrgX (1 byte): This value MUST be present if the corresponding bit from FieldBytes is set.
This represents the x-offset where the brush begins. The offset is based on window coordinates

where the origin (0,0) is upper left.

BrushOrgY (1 byte): This value MUST be present if the corresponding bit from FieldBytes is set.
This represents the y-offset at which the brush begins. The offset is based on window coordinates
where the origin (0,0) is upper left.

69 / 186

[MS-MNPR] - v20160714
Microsoft NetMeeting Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

BrushStyle (1 byte): This value MUST be present if the corresponding bit from the FieldBytes field
is set. This represents one of the BrushStyle values that are defined in section 2.2.1.2.3.

BrushHatch (1 byte): If BrushStyle is set to BS_PATTERN, this field is the first byte of the 64-by-
64 pixel monochrome bitmap of the brush, laid out in top-to-bottom, left-to-right order. If set to

BS_HATCHED, one of the BrushHatch values that are defined in section 2.2.1.2.2 specifies the
orientation of the lines that are used to create the hatch. Otherwise, this field is not used.

BrushExtra (7 bytes): If BrushStyle is set to BS_PATTERN, this field is the last seven bytes of the
64-by-64 pixel monochrome bitmap of the brush, laid out in top-to-bottom, left-to-right order.
Otherwise, this field is not used.

ROP2 (1 byte): This value MUST be present if the corresponding bit from the FieldBytes field is set.
This represents one of the ROP2 values that are defined in section 2.2.1.2.5 and that specify the

mix mode of the foreground.

PenStyle (1 byte): This value MUST be present if the corresponding bit from FieldBytes is set. This
represents one of the PenStyle values that are defined in section 2.2.1.2.4.

PenWidth (1 byte): This value MUST be present if the corresponding bit from FieldBytes is set. This
represents the width, in pixels, of the pen.

PenColor (3 bytes): This value MUST be present if the corresponding bit from FieldBytes is set.

This represents the color value of the pen, which is specified by a byte array of a TSHR_COLOR
structure.

2.2.2.4.10.1.9 ExtTextOrder

The ExtTextOrder packet contains a string to be displayed and positions for the individual characters.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

pControlFlags OrderType (optional) FieldBytes

Bounds (13 bytes, optional)

...

...

... BackMode (optional) nXStart (optional)

... nYStart (optional) BackColor (optional)

... ForeColor (optional)

... CharExtra BreakExtra

... BreakCount FontHeight (optional)

... FontWidth (optional) FontWeight (optional)

... FontFlags (optional) FontIndex (optional)

70 / 186

[MS-MNPR] - v20160714
Microsoft NetMeeting Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

... fuOptions Left (optional)

... Top (optional) Right (optional)

... Bottom (optional) String (variable)

...

deltaX (variable)

...

pControlFlags (1 byte): MUST be set to the value OE2_CF_STANDARD_ENC from the OE2 Control
Flags enumeration. If the order differs in type from the last order that was sent, this field contains
the bitwise AND of the value OE2_CF_TYPE_CHANGE. If the bounding rectangle has changed

since the last order of the same type, this field contains the bitwise AND of the value
OE2_CF_BOUNDS. If the coordinates of the bounding rectangle are specified as deltas from the
last bounding rectangle that was used, this field contains the bitwise AND of the value
OE2_CF_DELTACOORDS.

OrderType (1 byte): If the order differs in type from the last, this field MUST contain the value
OE2_EXTTEXTOUT_ORDER from the Order Types enumeration. If the order is the same type as

the last, this field is not present.

FieldBytes (2 bytes): A 16-bit field, with each bit indicating which of the fields that follow Bounds is
present. A bit set to 1 indicates that the field is present and its value has changed since the same
order type was last sent.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5

A B C D E F G H I J K L M N 0 0

Where the bits are defined as:

Value Description

A

The BackMode value is present.

B

The nXStart value is present.

C

The nYStart value is present.

D

The BackColor value is present.

E

The ForeColor value is present.

F

The FontHeight value is present.

71 / 186

[MS-MNPR] - v20160714
Microsoft NetMeeting Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Value Description

G

The FontWidth value is present.

H

The FontWeight value is present.

I

The FontFlags value is present.

J

The FontIndex value is present.

K

The Left value is present.

L

The Top value is present.

M

The Right value is present.

N

The Bottom value is present.

Bits marked with 0 MUST be 0.

Bounds (13 bytes): A byte array of a BoundsData structure. This field is present only if
pControlFlags contains the bitwise AND of the value OE2_CF_BOUNDS from the OE2 Control
Flags enumeration.

BackMode (2 bytes): This value MUST be present if the corresponding bit from FieldBytes is set.

This represents one of the following values, which specify how the foreground and background
SHOULD be mixed.

Value Meaning

TRANSPARENT

0x0001

The region SHOULD be filled with the background color before the drawing is finished.

OPAQUE

0x0002

The region SHOULD NOT be filled with the background color before the drawing is finished.

nXStart (2 bytes): This value MUST be present if the corresponding bit from FieldBytes is set. This
represents the x-coordinate of the string in the window.

nYStart (2 bytes): This value MUST be present if the corresponding bit from FieldBytes is set. This
represents the y-coordinate of the string within the window.

BackColor (3 bytes): This value MUST be present if the corresponding bit from FieldBytes is set.

This represents the background color value that is specified by a byte array of a TSHR_COLOR
structure.

ForeColor (3 bytes): This value MUST be present if the corresponding bit from FieldBytes is set.
This represents the foreground color value that is specified by a byte array of a TSHR_COLOR
structure.

CharExtra (2 bytes): Reserved. MUST be set to zero when sent and MUST be ignored on receipt.

72 / 186

[MS-MNPR] - v20160714
Microsoft NetMeeting Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

BreakExtra (2 bytes): Reserved. MUST be set to zero when sent and MUST be ignored on receipt.

BreakCount (2 bytes): Reserved. MUST be set to zero when sent and MUST be ignored on receipt.

FontHeight (2 bytes): This value MUST be present if the corresponding bit from FieldBytes is set.
This represents the height of the font, in logical units.<18>

FontWidth (2 bytes): This value MUST be present if the corresponding bit from FieldBytes is set.
This represents the width of the font, in logical units.<19>

FontWeight (2 bytes): This value MUST be present if the corresponding bit from FieldBytes is set.
This represents the weight of the font, in logical units between 0x00000000 (0) and 0x000003E8
(1000).

FontFlags (2 bytes): A bitmap of the following values MUST be present if the corresponding bit from
FieldBytes is set, indicating attributes of the font.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

0 T K U I S P

Where the bits are defined as:

Value Description

P

The text SHOULD use a fixed pitch.

S

The text SHOULD use a fixed size.

I

The text SHOULD be italic.

U

The text SHOULD be underlined.

K

The text SHOULD use strikethrough formatting.

T

The text SHOULD be drawn with a TrueType font.

FontIndex (2 bytes): This value MUST be present if the corresponding bit from FieldBytes is set.
This represents the index of the font in the font table. The font index is an index into an array of
font names. For example, 0x41 is the first index into the remote font table that starts with the
character 'A'.

fuOptions (2 bytes): A bitmap of the following values MUST be present if the corresponding bit from
FieldBytes is set, indicating the actions to apply to the text.

Value Meaning

ETO_OPAQUE

0x0002

The background color fills the rectangle before the text is drawn.

ETO_CLIPPED The text is clipped to the rectangle.

73 / 186

[MS-MNPR] - v20160714
Microsoft NetMeeting Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Value Meaning

0x0004

Left (2 bytes): This value MUST be present if the corresponding bit from FieldBytes is set. This
represents the window coordinates of the left edge of the rectangle.

Top (2 bytes): This value MUST be present if the corresponding bit from FieldBytes is set. This
represents the window coordinates of the top edge of the rectangle.

Right (2 bytes): This value MUST be present if the corresponding bit from FieldBytes is set. This

represents the window coordinates of the right edge of the rectangle.

Bottom (2 bytes): This value MUST be present if the corresponding bit from FieldBytes is set. This
represents the window's coordinates of the bottom edge of the rectangle.

String (variable): A value MUST be present that represents the text to be drawn. The first byte of
the string is an integer that indicates the length of the string. The string can be from 1 to 256

bytes in length.

deltaX (variable): A value MUST be present that represents an array of delta positions between the
letters of the string. The first 2 bytes of the array represent the length of the array as an integer.
The entries that follow correspond directly to the characters in String and specify the delta
distance to the subsequent character. This field can be from 2 to 257 bytes in length.

2.2.2.4.10.1.10 LineOrder

The LineOrder packet contains a line.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

pControlFlags OrderType (optional) FieldBytes

Bounds (13 bytes, optional)

...

...

... BackMode nXStart (optional)

... nYStart (optional) nXEnd (optional)

... nYEnd (optional) BackColor (optional)

... ROP2 (optional) PenStyle (optional)

PenWidth (optional) PenColor (optional)

pControlFlags (1 byte): MUST be set to the value OE2_CF_STANDARD_ENC from the OE2 Control
Flags enumeration. If the order differs in type from the last order that was sent, this field contains
the bitwise AND of the value OE2_CF_TYPE_CHANGE. If the bounding rectangle has changed
since the last order of the same type, this field contains the bitwise AND of the value
OE2_CF_BOUNDS. If the coordinates of the bounding rectangle are specified as deltas from the

74 / 186

[MS-MNPR] - v20160714
Microsoft NetMeeting Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

last bounding rectangle that was used, this field contains the bitwise AND of the value
OE2_CF_DELTACOORDS.

OrderType (1 byte): If the order differs in type from the last, this field MUST contain the value
OE2_LINETO_ORDER from the Order Types enumeration. If the order is the same type as the last,

this field is not present.

FieldBytes (2 bytes): A 16-bit field, with each bit indicating which of the fields that follow is present.
A bit set to 1 indicates that the field is present and its value has changed since the same order
type was last sent.

0

1

2

3

4

5

6

7

8

9

1
0

1

2

3

4

5

A B C D E F G H I 0 0 0 0 0 0 0

Where the bits are defined as:

Value Description

A

The nXStart value is present.

B

The nYStart value is present.

C

The nXEnd value is present.

D

The nYEnd value is present.

E

The BackColor value is present.

F

The ROP2 value is present.

G

The PenStyle value is present.

H

The PenWidth value is present.

I

The PenColor value is present.

Bits that are marked with 0 MUST be set to zero.

Bounds (13 bytes): A byte array of a BoundsData structure. This field is present only if the
pControlFlags field contains the bitwise AND of the value OE2_CF_BOUNDS from the OE2

Control Flags enumeration.

BackMode (2 bytes): One of the BackMode values that are specified in section 2.2.1.2.1 MUST be
present to specify how the foreground and background SHOULD be mixed.

nXStart (2 bytes): This value MUST be present if the corresponding bit from FieldBytes is set. This
represents the x-coordinate within the window for the start of the line.

75 / 186

[MS-MNPR] - v20160714
Microsoft NetMeeting Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

nYStart (2 bytes): This value MUST be present if the corresponding bit from FieldBytes is set. This
represents the y-coordinate within the window for the start of the line.

nXEnd (2 bytes): This value MUST be present if the corresponding bit from FieldBytes is set. This
represents the x-coordinate within the window for the end of the line.

nYEnd (2 bytes): This value MUST be present if the corresponding bit from FieldBytes is set. This
represents the y-coordinate within the window for the end of the line.

BackColor (3 bytes): This value MUST be present if the corresponding bit from FieldBytes is set.
This field represents the background color value that is specified by a byte array of a
TSHR_COLOR structure.

ROP2 (1 byte): MUST be present if the corresponding bit from FieldBytes is set. This represents the
ROP2 values that are specified in section 2.2.1.2.5.

PenStyle (1 byte): This value MUST be present if the corresponding bit from FieldBytes is set. This
represents the PenStyle values that are specified in section 2.2.1.2.4.

PenWidth (1 byte): This value MUST be present if the corresponding bit from FieldBytes is set. This
represents the width, in pixels, of the pen.

PenColor (3 bytes): This value MUST be present if the corresponding bit from FieldBytes is set.
This represents the color value of the pen that is specified by a byte array of a TSHR_COLOR

structure.

2.2.2.4.10.1.11 Mem3Blt

The Mem3Blt packet contains a transfer from the bitmap cache to the screen through a brush.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

pControlFlags OrderType (optional) FieldBytes

Bounds (13 bytes, optional)

...

...

... cacheId nLeftRect (optional)

... nTopRect (optional) nWidth (optional)

... nHeight (optional) bRop (optional)

nXSrc (optional) nYSrc (optional)

BackColor (optional) ForeColor (optional)

... BrushOrgX (optional) BrushOrgY (optional)

BrushStyle (optional) BrushHatch BrushExtra

76 / 186

[MS-MNPR] - v20160714
Microsoft NetMeeting Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

...

... cacheIndex (optional)

pControlFlags (1 byte): MUST be set to the value OE2_CF_STANDARD_ENC from the OE2 Control
Flags enumeration. If the order differs in type from the last order that was sent, this field contains
the bitwise AND of the value OE2_CF_TYPE_CHANGE. If the bounding rectangle has changed

since the last order of the same type, this field contains the bitwise AND of the value
OE2_CF_BOUNDS. If the coordinates of the bounding rectangle are specified as deltas from the
last bounding rectangle that was used, this field contains the bitwise AND of the value
OE2_CF_DELTACOORDS.

OrderType (1 byte): If the order differs in type from the last, this field MUST contain the value
OE2_MEM3BLT_R2_ORDER from the Order Types enumeration. If the order is the same type as

the last, this field is not present.

FieldBytes (2 bytes): A 16-bit field, with each bit indicating which of the fields that follow Bounds is

present. A bit set to 1 indicates that the field is present and its value has changed since the same
order type was last sent.

0

1

2

3

4

5

6

7

8

9

1
0

1

2

3

4

5

A B C D E F G H I J K L M 0 0 0

Where the bits are defined as:

Value Description

A

The nLeftRect value is present.

B

The nTopRect value is present.

C

The nWidth value is present.

D

The nHeight value is present.

E

The bRop value is present.

F

The nXSrc value is present.

G

The nYSrc value is present.

H

The BackColor value is present.

I

The ForeColor value is present.

J The BrushOrgX value is present.

77 / 186

[MS-MNPR] - v20160714
Microsoft NetMeeting Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Value Description

K

The BrushOrgY value is present.

L

The BrushStyle value is present.

M

The cacheIndex value is present.

Bits marked with 0 MUST be set to zero.

Bounds (13 bytes): A byte array of a BoundsData structure. This field is present only if the
pControlFlags field contains the bitwise AND of the value OE2_CF_BOUNDS from the OE2
Control Flags enumeration.

cacheId (2 bytes): The first byte is an index that specifies which bitmap cache (small, medium, or
large) is to be used. The second byte is the index within the cache for the bitmap.

nLeftRect (2 bytes): This value MUST be present if the corresponding bit from FieldBytes is set.
This represents the x-coordinate within the window of the left edge of the target rectangle.

nTopRect (2 bytes): This value MUST be present if the corresponding bit from FieldBytes is set.
This represents the y-coordinate within the window of the upper edge of the target rectangle.

nWidth (2 bytes): This value MUST be present if the corresponding bit from FieldBytes is set. This
represents the width of the target rectangle in pixels.

nHeight (2 bytes): This value MUST be present if the corresponding bit from FieldBytes is set. This
represents the height of the target rectangle in pixels.

bRop (1 byte): This value MUST be present if the corresponding bit from FieldBytes is set. This
represents the high-order byte of a Windows GDI ternary raster operation code.<20>

nXSrc (2 bytes): This value MUST be present if the corresponding bit from FieldBytes is set. This

represents the x-coordinate within the window of the left side of the source rectangle within the
source bitmap in the cache.

nYSrc (2 bytes): This value MUST be present if the corresponding bit from FieldBytes is set. This
represents the y-coordinate within the window of the upper edge of the source rectangle within
the source bitmap in the cache.

BackColor (3 bytes): Value MUST be present if corresponding bit from FieldBytes is set. This
represents the background color value that is specified by a byte array of a TSHR_COLOR

structure.

ForeColor (3 bytes): This value MUST be present if the corresponding bit from FieldBytes is set.

This represents the foreground color value that is specified by a byte array of a TSHR_COLOR
structure.

BrushOrgX (1 byte): This value MUST be present if the corresponding bit from FieldBytes is set.
This represents the x-offset at which the brush begins. The offset is based on window coordinates

where the origin of (0,0) is upper left.

BrushOrgY (1 byte): This value MUST be present if the corresponding bit from FieldBytes is set.
This represents the y-offset at which the brush begins. The offset is based on window coordinates
where the origin of (0,0) is upper left.

78 / 186

[MS-MNPR] - v20160714
Microsoft NetMeeting Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

BrushStyle (1 byte): This value MUST be present if the corresponding bit from FieldBytes is set.
This represents the BrushStyle values that are specified in section 2.2.1.2.3.

BrushHatch (1 byte): If BrushStyle is set to BS_PATTERN, this field is the first byte of the 64-by-
64 pixel monochrome bitmap of the brush, laid out in top-to-bottom, left-to-right order. If set to

BS_HATCHED, the BrushHatch values that are specified in section 2.2.1.2.2 specify the orientation
of the lines that are used to create the hatch. Otherwise, this field is not used.

BrushExtra (7 bytes): If BrushStyle is set to BS_PATTERN, this field is the last seven bytes of the
64-by-64 pixel monochrome bitmap of the brush, laid out in top-to-bottom, left-to-right order.
Otherwise, this field is not used.

cacheIndex (2 bytes): This value MUST be present if the corresponding bit from FieldBytes is set.
This represents the identifier of the bitmap in the cache.

2.2.2.4.10.1.12 MemBlt

The MemBlt packet contains a transfer from the bitmap cache to the screen.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

pControlFlags OrderType (optional) FieldBytes

Bounds (13 bytes, optional)

...

...

... cacheId (optional) nLeftRect (optional)

... nTopRect (optional) nWidth (optional)

... nHeight (optional) bRop (optional)

nXSrc (optional) nYSrc (optional)

cacheIndex (optional)

pControlFlags (1 byte): MUST be set to the value OE2_CF_STANDARD_ENC from the OE2 Control
Flags enumeration. If the order differs in type from the last order that was sent, this field contains

the bitwise AND of the value OE2_CF_TYPE_CHANGE. If the bounding rectangle has changed
since the last order of the same type, this field contains the bitwise AND of the value
OE2_CF_BOUNDS. If the coordinates of the bounding rectangle are specified as deltas from the
last bounding rectangle that was used, this field contains the bitwise AND of the value

OE2_CF_DELTACOORDS.

OrderType (1 byte): If the order differs in type from the last, this field MUST contain the value
OE2_MEMBLT_R2_ORDER from the Order Types enumeration. If the order is the same type as the

last, this field is not present.

FieldBytes (2 bytes): A 16-bit field, with each bit indicating which of the fields that follow Bounds is
present. A bit set to 1 indicates that the field is present and its value has changed since the same
order type was last sent.

79 / 186

[MS-MNPR] - v20160714
Microsoft NetMeeting Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

0

1

2

3

4

5

6

7

8

9

1
0

1

2

3

4

5

A B C D E F G H I 0 0 0 0 0 0 0

Where the bits are defined as:

Value Description

A

The cacheId value is present.

B

The nLeftRect value is present.

C

The nTopRect value is present.

D

The nWidth value is present.

E

The nHeight value is present.

F

The bRop value is present.

G

The nXSrc value is present.

H

The nYSrc value is present.

I

The cachIndex value is present.

The bits marked with 0 MUST be set to zero.

Bounds (13 bytes): A byte array of a BoundsData structure. This field is present only if the
pControlFlags field contains the bitwise AND of the value OE2_CF_BOUNDS from the OE2
Control Flags enumeration.

cacheId (2 bytes): This value MUST be present if the corresponding bit from the FieldBytes field is
set. This represents the identifier of the cache where the bitmap is stored. MUST be one of the
following values.

Value Meaning

0x0000 Small

0x0001 Medium

0x0002 Large

nLeftRect (2 bytes): This value MUST be present if the corresponding bit from the FieldBytes field
is set. This represents the x-coordinate within the window of the left edge of the target rectangle.

80 / 186

[MS-MNPR] - v20160714
Microsoft NetMeeting Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

nTopRect (2 bytes): This value MUST be present if the corresponding bit from the FieldBytes field
is set. This represents the y-coordinate within the window of the upper edge of the target

rectangle.

nWidth (2 bytes): This value MUST be present if the corresponding bit from the FieldBytes field is

set. This represents the width, in pixels, of the target rectangle.

nHeight (2 bytes): This value MUST be present if the corresponding bit from the FieldBytes field is
set. This represents the height, in pixels, of the target rectangle.

bRop (1 byte): This value MUST be present if the corresponding bit from the FieldBytes field is set.
This represents the high-order byte of a Windows GDI ternary raster operation code.<21>

nXSrc (2 bytes): This value MUST be present if the corresponding bit from the FieldBytes field is
set. This represents the x-coordinate within the window of the left side of the source rectangle

within the source bitmap in the cache.

nYSrc (2 bytes): This value MUST be present if the corresponding bit from the FieldBytes field is
set. This represents the y-coordinates of the top side of the source rectangle within the source

bitmap in the cache.

cacheIndex (2 bytes): This value MUST be present if the corresponding bit from the FieldBytes
field is set. This represents the identifier of the bitmap within the cache.

2.2.2.4.10.1.13 OE2 Control Flags

The OE2 Control Flags enumeration defines the values that describe the contents and encoding of the
Update Order that is related to drawing.

 typedef enum
 {
 OE2_CF_STANDARD_ENC = 0x01,
 OE2_CF_UNENCODED = 0x02,
 OE2_CF_BOUNDS = 0x04,
 OE2_CF_TYPE_CHANGE = 0x08,
 OE2_CF_DELTACOORDS = 0x10
 } OE2_Control_Flags;

OE2_CF_STANDARD_ENC: The order is encoded in the OE2 format.

OE2_CF_UNENCODED: The order is un-encoded. This indicates that the following order will either

be a CacheBitmapOrder (section 2.2.2.4.10.1.2) or a
CacheColorTableOrder (section 2.2.2.4.10.1.3) depending on the bmcPacketType. If the
bmcPacketType is 0x00 (uncompressed) or 0x02 (compressed), then the following order will be
a CacheBitmapOrder. If the bmcPacketType is 0x01, then the following order will be a
CacheColorTableOrder.

OE2_CF_BOUNDS: The order contains a bounding rectangle for the drawing order.

OE2_CF_TYPE_CHANGE: The order contains an order type that is different from the last.

OE2_CF_DELTACOORDS: The coordinates of the order-bounding rectangle are specified as single-
byte delta values from those that are contained in the last order of the same type.

2.2.2.4.10.1.14 OpaqueRect

The OpaqueRect packet contains an opaque rectangle.

81 / 186

[MS-MNPR] - v20160714
Microsoft NetMeeting Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

pControlFlags OrderType (optional) FieldBytes Bounds (variable)

...

nLeftRect (optional) nTopRect (optional)

nRightRect (optional) nBottomRect (optional)

ForeColor (optional)

pControlFlags (1 byte): MUST be set to the value OE2_CF_STANDARD_ENC from the OE2 Control
Flags enumeration. If the order differs in type from the last order that was sent, this field contains
the bitwise AND of the value OE2_CF_TYPE_CHANGE. If the bounding rectangle has changed

since the last order of the same type, this field contains the bitwise AND of the value
OE2_CF_BOUNDS. If the coordinates of the bounding rectangle are specified as deltas from the
last bounding rectangle that was used, this field contains the bitwise AND of the value
OE2_CF_DELTACOORDS.

OrderType (1 byte): If the order differs in type from the last, this field MUST contain the value
OE2_OPAQUERECT_ORDER from the Order Types enumeration. If the order is the same type as

the last, this field is not present.

FieldBytes (1 byte): An 8-bit field, with each bit indicating which of the fields that follow Bounds is
present. A bit set to 1 indicates that the field is present and its value has changed since the same
order type was last sent.

0

1

2

3

4

5

6

7

A B C D E 0 0 0

Where the bits are defined as:

Value Description

A

The nLeftRect value is present.

B

The nTopRect value is present.

C

The nRightRect value is present.

D

The nBottomRect value is present.

E

The ForeColor value is present.

The bits that are marked with 0 MUST be set to zero.

82 / 186

[MS-MNPR] - v20160714
Microsoft NetMeeting Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Bounds (variable): A byte array of a BoundsData structure. This field is present only if
pControlFlags contains the bitwise AND of the value OE2_CF_BOUNDS from the OE2 Control

Flags enumeration.

nLeftRect (2 bytes): This value MUST be present if the corresponding bit from the FieldBytes field

is set. This represents the window's x-coordinate of the left edge of the rectangle.

nTopRect (2 bytes): This value MUST be present if the corresponding bit from the FieldBytes field
is set. This represents the window's y-coordinate of the top edge of the rectangle.

nRightRect (2 bytes): This value MUST be present if the corresponding bit from the FieldBytes field
is set. This represents the window's x-coordinate of the right edge of the rectangle.

nBottomRect (2 bytes): This value MUST be present if the corresponding bit from the FieldBytes
field is set. This represents the window's y-coordinate of the bottom edge of the rectangle.

ForeColor (3 bytes): This value MUST be present if the corresponding bit from the FieldBytes field
is set. This represents the color of the rectangle that is specified by a byte array of a
TSHR_COLOR structure.

2.2.2.4.10.1.15 BoundsData

The BoundsData structure describes a rectangular area. It encodes (x,y) values that are based on

changes from the previous rectangular position. Each value can be either a 16-bit absolute value or an
8-bit delta value, depending on the amount of change that took place.

The first byte of the BoundsData structure represents a set of flags that specify the type of data that is
contained in the BoundsData structure. The flag can represent either an absolute (16-bit) or delta (8-
bit) value for each x or y value that is supplied. If the flag is not set, then that x or y value is not
present in the BoundsData array. The possible flags are specified below.

For each boundary value, either an 8-bit delta or a 16-bit absolute value MAY be specified. The two

possible forms of representation MUST NOT be specified at the same time for any particular boundary.
For example, if X_DELTA_LEFT is present, X_ABSOLUTE_LEFT MUST NOT be present.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

flags X_ABSOLUTE_LEFT (optional) Y_ABSOLUTE_TOP
(optional)

... X_ABSOLUTE_RIGHT (optional) Y_ABSOLUTE_BOTTOM
(optional)

... X_DELTA_LEFT (optional) Y_DELTA_TOP (optional) X_DELTA_RIGHT
(optional)

Y_DELTA_BOTTOM
(optional)

flags (1 byte): A set of flags that has one or more of the following bits set. The flag can represent
either an absolute (16-bit) or delta (8-bit) value for each x or y value that is supplied. If a flag is

not set, that x or y value is not present in the BoundsData array.

The two possible forms of representation MUST NOT be specified at the same time for any

particular boundary. For example, if bit A is enabled, bit E MUST NOT be enabled.

0

1

2

3

4

5

6

7

H G F E D C B A

83 / 186

[MS-MNPR] - v20160714
Microsoft NetMeeting Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Where the bits are defined as:

Value Description

A

X_ABSOLUTE_LEFT

A 16-bit x (left) value is present.

B

Y_ABSOLUTE_TOP

A 16-bit y (top) value is present.

C

X_ABSOLUTE_RIGHT

A 16-bit x (right) value is present.

D

Y_ABSOLUTE_BOTTOM

A 16-bit y (bottom) value is present.

E

X_DELTA_LEFT

An 8-bit x (left) value is present.

F

Y_DELTA_TOP

An 8-bit y (top) value is present.

G

X_DELTA_RIGHT

An 8-bit x (right) value is present.

H

Y_DELTA_BOTTOM

An 8-bit y (bottom) value is present.

X_ABSOLUTE_LEFT (2 bytes): A 16-bit x (left) value. Present when bit A is set in the flags field.

Y_ABSOLUTE_TOP (2 bytes): A 16-bit y (top) value. Present when bit B is set in the flags field.

X_ABSOLUTE_RIGHT (2 bytes): A 16-bit x (right) value. Present when bit C is set in the flags
field.

Y_ABSOLUTE_BOTTOM (2 bytes): A 16-bit y (bottom) value. Present when bit D is set in the flags
field.

X_DELTA_LEFT (1 byte): An 8-bit x (left) value. Present when bit E is set in the flags field.

Y_DELTA_TOP (1 byte): An 8-bit y (top) value. Present when bit F is set in the flags field.

X_DELTA_RIGHT (1 byte): An 8-bit x (right) value. Present when bit G is set in the flags field.

Y_DELTA_BOTTOM (1 byte): An 8-bit y (bottom) value. Present when bit H is set in the flags field.

2.2.2.4.10.1.16 TSHR_COLOR

The TSHR_COLOR structure specifies a color value. Each color channel is represented by using a

standard scale of 0-255.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Red green blue

Red (1 byte): The color value that represents the red channel.

green (1 byte): The color value that represents the green channel.

84 / 186

[MS-MNPR] - v20160714
Microsoft NetMeeting Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

blue (1 byte): The color value that represents the blue channel.

2.2.2.4.10.1.17 TSHR_RGBQUAD

The TSHR_RGBQUAD structure specifies a color value to use. The TSHR_RGBQUAD structure also

contains a reserved field. Each color channel is represented by using a standard scale of 0-255.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

rgbBlue rgbGreen rgbRed rgbReserved

rgbBlue (1 byte): The color value that represents the blue channel.

rgbGreen (1 byte): The color value that represents the green channel.

rgbRed (1 byte): The color value that represents the red channel.

rgbReserved (1 byte): Reserved. MUST be set to zero when sent and MUST be ignored on receipt.

2.2.2.4.10.1.18 TSHR_POINT16

A TSHR_POINT16 structure contains data that represents an (x,y) point. The scale and range of the
structure depend on the use of TSHR_POINT16 by the implementation.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

X y

X (2 bytes): The location of the point on the x-axis.

y (2 bytes): The location of the point on the y-axis.

2.2.2.4.10.1.19 TSHR_RECT16

The TSHR_RECT16 structure specifies a rectangle that has coordinates that represent left, top, right,
and bottom.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

left Top

right Bottom

left (2 bytes): The x-coordinate of the left edge of the rectangle.

Top (2 bytes): The y-coordinate of the upper edge of the rectangle.

right (2 bytes): The x-coordinate of the right edge of the rectangle.

Bottom (2 bytes): The y-coordinate of the lower edge of the rectangle.

2.2.2.4.10.1.20 OrderTypes

85 / 186

[MS-MNPR] - v20160714
Microsoft NetMeeting Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

The OrderTypes enumeration defines the types of application-sharing orders and what is contained in
each order.

 typedef enum
 {
 OE2_DSTBLT_ORDER = 0x00,
 OE2_PATBLT_ORDER = 0x01,
 OE2_SCRBLT_ORDER = 0x02,
 OE2_TEXTOUT_ORDER = 0x05,
 OE2_EXTTEXTOUT_ORDER = 0x06,
 OE2_RECTANGLE_ORDER = 0x08,
 OE2_LINETO_ORDER = 0x09,
 OE2_OPAQUERECT_ORDER = 0x0A,
 OE2_SAVEBITMAP_ORDER = 0x0B,
 OE2_DESKSCROLL_ORDER = 0x0C,
 OE2_MEMBLT_R2_ORDER = 0x0D,
 OE2_MEM3BLT_R2_ORDER = 0x0E,
 OE2_POLYGON_ORDER = 0x0F,
 OE2_PIE_ORDER = 0x10,
 OE2_ELLIPSE_ORDER = 0x11,
 OE2_ARC_ORDER = 0x12,
 OE2_CHORD_ORDER = 0x13,
 OE2_POLYBEZIER_ORDER = 0x14,
 OE2_ROUNDRECT_ORDER = 0x15
 } OrderTypes;

OE2_DSTBLT_ORDER: The order contains a raster transfer (DstBlt).

OE2_PATBLT_ORDER: The order contains a brush paint (PatBlt).

OE2_SCRBLT_ORDER: The order contains a bit-block transfer between regions of the screen
(ScreenBlt).

OE2_TEXTOUT_ORDER: The order contains a string (TextOrder).

OE2_EXTTEXTOUT_ORDER: The order contains a string to be displayed and positions for the

individual characters (ExtTextOrder).

OE2_RECTANGLE_ORDER: The order contains a rectangle (RectangleOrder).

OE2_LINETO_ORDER: The order contains a line (LineOrder).

OE2_OPAQUERECT_ORDER: The order contains an opaque rectangle (OpaqueRect).

OE2_SAVEBITMAP_ORDER: The order contains a region of the screen that the receiver SHOULD
save or restore (SaveBitmap).

OE2_DESKSCROLL_ORDER: The order contains a desktop scroll operation (DesktopScroll).

OE2_MEMBLT_R2_ORDER: The order contains a transfer from the bitmap cache to the screen
(MemBlt).

OE2_MEM3BLT_R2_ORDER: The order contains a transfer from the bitmap cache to the screen

through a brush (Mem3Blt).

OE2_POLYGON_ORDER: The order contains a polygon (PolygonOrder).

OE2_PIE_ORDER: The order contains a pie wedge (PieOrder).

OE2_ELLIPSE_ORDER: The order contains an ellipse (EllipseOrder).

OE2_ARC_ORDER: The order contains an arc (ArcOrder).

86 / 186

[MS-MNPR] - v20160714
Microsoft NetMeeting Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

OE2_CHORD_ORDER: The order contains a chord (ChordOrder).

OE2_POLYBEZIER_ORDER: The order contains one or more Bezier curves (PolyBezierOrder).

OE2_ROUNDRECT_ORDER: The order contains a rectangle that has rounded corners
(RoundRectOrder).

2.2.2.4.10.1.21 PatBlt

The PatBlt order paints the specified rectangle by using the brush that is currently selected in the
specified device context. The brush pixels and the surface pixels are combined according to the
specified raster operation.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

pControlFlags OrderType (optional) FieldBytes

Bounds (13 bytes, optional)

...

...

... nLeftRect (optional) nTopRect (optional)

... nWidth (optional) nHeight (optional)

... bRop (optional) BackColor (optional)

... ForeColor (optional)

BrushOrgX (optional) BrushOrgY (optional) BrushStyle (optional) BrushHatch

BrushExtra

...

pControlFlags (1 byte): MUST be set to the value OE2_CF_STANDARD_ENC from the OE2 Control

Flags enumeration. If the order differs in type from the last order that was sent, this field contains
the bitwise AND of the value OE2_CF_TYPE_CHANGE. If the bounding rectangle has changed
since the last order of the same type, this field contains the bitwise AND of the value
OE2_CF_BOUNDS. If the coordinates of the bounding rectangle are specified as deltas from the
last bounding rectangle that was used, this field contains the bitwise AND of the value
OE2_CF_DELTACOORDS.

OrderType (1 byte): If the order differs in type from the last, this field MUST contain the value
OE2_PATBLT_ORDER from the Order Types enumeration. If the order is the same type as the last,
this field is not present.

FieldBytes (2 bytes): A 16-bit field, with each bit indicating which of the fields that follows Bounds
is present. A bit set to 1 indicates that the field is present and its value has changed since the
same order type was last sent.

87 / 186

[MS-MNPR] - v20160714
Microsoft NetMeeting Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

0

1

2

3

4

5

6

7

8

9

1
0

1

2

3

4

5

A B C D E F G H I J 0 0 0 0 0 0

Where the bits are defined as:

Value Description

A

The nLeftRect value is present.

B

The nTopRect value is present.

C

The nWidth value is present.

D

The nHeight value is present.

E

The bRop value is present.

F

The BackColor value is present.

G

The ForeColor value is present.

H

The BrushOrgX value is present.

I

The BrushOrgY value is present.

J

The BrushStyle value is present.

The bits that are marked with 0 MUST be 0.

Bounds (13 bytes): A byte array of a BoundsData structure. This field is present only if the

pControlFlags field contains the bitwise AND of the value OE2_CF_BOUNDS from the OE2
Control Flags enumeration.

nLeftRect (2 bytes): This value MUST be present if the corresponding bit from the FieldBytes field
is set. This represents the x-coordinate within the window of the left edge of the rectangle.

nTopRect (2 bytes): This value MUST be present if the corresponding bit from the FieldBytes field

is set. This represents the y-coordinate within the window of the top edge of the rectangle.

nWidth (2 bytes): This value MUST be present if the corresponding bit from the FieldBytes field is
set. This represents the width, in pixels, of the rectangle.

nHeight (2 bytes): This value MUST be present if the corresponding bit from the FieldBytes field is
set. This represents the height, in pixels, of the rectangle.

bRop (1 byte): This value MUST be present if the corresponding bit from the FieldBytes field is set.
This represents the high-order byte of a Windows GDI ternary raster operation code.<22>

88 / 186

[MS-MNPR] - v20160714
Microsoft NetMeeting Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

BackColor (3 bytes): This value MUST be present if the corresponding bit from the FieldBytes field
is set. This represents the background color value that is specified by a byte array of a

TSHR_COLOR structure.

ForeColor (3 bytes): This value MUST be present if the corresponding bit from the FieldBytes field

is set. This represents the foreground color value that is specified by a byte array of a
TSHR_COLOR structure.

BrushOrgX (1 byte): This value MUST be present if the corresponding bit from the FieldBytes field
is set. This represents the x-offset at which the brush begins. The offset is based on window
coordinates where the origin of (0,0) is upper left.

BrushOrgY (1 byte): This value MUST be present if the corresponding bit from the FieldBytes field
is set. This represents the y-offset at which the brush begins. The offset is based on window

coordinates, where the origin of (0,0) is upper left.

BrushStyle (1 byte): This value MUST be present if the corresponding bit from the FieldBytes field
is set. This represents one of the BrushStyle values that is specified in section 2.2.1.2.3.

BrushHatch (1 byte): If BrushStyle is set to BS_PATTERN, this field is the first byte of the 64-by-
64 pixel monochrome bitmap of the brush, laid out in top-to-bottom, left-to-right order. If set to
BS_HATCHED, one of the BrushHatch values (as specified in section 2.2.1.2.2) specifies the

orientation of the lines that are used to create the hatch. Otherwise, this field is not used.

BrushExtra (7 bytes): If BrushStyle is set to BS_PATTERN, this field is the last seven bytes of the
64-by-64 pixel monochrome bitmap of the brush, laid out in top-to-bottom, left-to-right order.
Otherwise, this field is not used.

2.2.2.4.10.1.22 PieOrder

The PieOrder order contains a pie wedge.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

pControlFlags OrderType (optional) FieldBytes

... Bounds (13 bytes, optional)

...

...

... BackMode

nLeftRect (optional) nTopRect (optional)

nRightRect (optional) nBottomRect (optional)

nXStart (optional) nYStart (optional)

nXEnd (optional) nYEnd (optional)

BackColor (optional) ForeColor (optional)

89 / 186

[MS-MNPR] - v20160714
Microsoft NetMeeting Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

... BrushOrgX (optional) BrushOrgY (optional)

BrushStyle (optional) BrushHatch BrushExtra

...

... ROP2 (optional) PenStyle (optional) PenWidth (optional)

PenColor (optional) ArcDirection (optional)

pControlFlags (1 byte): MUST be set to the value OE2_CF_STANDARD_ENC from the OE2 Control
Flags enumeration. If the order differs in type from the last order that was sent, this field contains
the bitwise AND of the value OE2_CF_TYPE_CHANGE. If the bounding rectangle has changed

since the last order of the same type, this field contains the bitwise AND of the value
OE2_CF_BOUNDS. If the coordinates of the bounding rectangle are specified as deltas from the

last bounding rectangle that was used, this field contains the bitwise AND of the value
OE2_CF_DELTACOORDS.

OrderType (1 byte): If the order differs in type from the last, this field MUST contain the value
OE2_PIE_ORDER from the Order Types enumeration. If the order is the same type as the last, this

field is not present.

FieldBytes (3 bytes): A 24-bit field, with each bit indicating which of the fields that follows Bounds
is present. A bit set to 1 indicates that the field is present and its value has changed since the
same order type was last sent.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

0 0 0 0 0 0 0 0 A B C D E F G H I J K L M N O P Q R 0 0 0 0 0 0

Where the bits are defined as:

Value Description

A

The nLeftRect value is present.

B

The nTopRect value is present.

C

The nRightRect value is present.

D

The nBottomRect value is present.

E

The nXStart value is present.

F

The nYStart value is present.

G

The nXEnd value is present.

90 / 186

[MS-MNPR] - v20160714
Microsoft NetMeeting Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Value Description

H

The nYEnd value is present.

I

The BackColor value is present.

J

The ForeColor value is present.

K

The BrushOrgX value is present.

L

The BrushOrgY value is present.

M

The BrushStyle value is present.

N

The ROP2 value is present.

O

The PenStyle value is present.

P

The PenWidth value is present.

Q

The PenColor value is present.

R

The ArcDirection value is present.

The bits that are marked with 0 MUST be 0.

Bounds (13 bytes): A byte array of a BoundsData structure. This field is present only if the
pControlFlags field contains the bitwise AND of the value OE2_CF_BOUNDS from the OE2
Control Flags enumeration.

BackMode (2 bytes): One of the BackMode values (as specified in section 2.2.1.2.1) MUST be
present to specify how the foreground and background SHOULD be mixed.

nLeftRect (2 bytes): This value MUST be present if the corresponding bit from the FieldBytes field
is set. This represents the x-coordinate within the window of the left edge of the bounding
rectangle.

nTopRect (2 bytes): This value MUST be present if the corresponding bit from the FieldBytes field

is set. This represents the y-coordinate within the window of the upper edge of the bounding
rectangle.

nRightRect (2 bytes): This value MUST be present if the corresponding bit from the FieldBytes field

is set. This represents the x-coordinate within the window of the right edge of the bounding
rectangle.

nBottomRect (2 bytes): This value MUST be present if the corresponding bit from the FieldBytes
field is set. This represents the y-coordinate within the window of the bottom edge of the
bounding rectangle.

91 / 186

[MS-MNPR] - v20160714
Microsoft NetMeeting Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

nXStart (2 bytes): This value MUST be present if the corresponding bit from the FieldBytes field is
set. This represents the x-coordinate of the first radial endpoint.

nYStart (2 bytes): This value MUST be present if the corresponding bit from the FieldBytes field is
set. This represents the y-coordinate of the first radial endpoint.

nXEnd (2 bytes): This value MUST be present if the corresponding bit from the FieldBytes field is
set. This represents the x-coordinate of the second radial endpoint.

nYEnd (2 bytes): This value MUST be present if the corresponding bit from the FieldBytes field is
set. This represents the y-coordinate of the second radial endpoint.

BackColor (3 bytes): This value MUST be present if the corresponding bit from the FieldBytes field
is set. This represents the background color value that is specified by a byte array of a
TSHR_COLOR structure.

ForeColor (3 bytes): This value MUST be present if the corresponding bit from the FieldBytes field
is set. This represents the foreground color value that is specified by a byte array of a
TSHR_COLOR structure.

BrushOrgX (1 byte): This value MUST be present if the corresponding bit from the FieldBytes field
is set. This represents the x-offset at which the brush begins. The offset is based on window
coordinates where the origin of (0,0) is upper left.

BrushOrgY (1 byte): This value MUST be present if the corresponding bit from the FieldBytes field
is set. This represents the y-offset at which the brush begins. The offset is based on window
coordinates where the origin of (0,0) is upper left.

BrushStyle (1 byte): This value MUST be present if the corresponding bit from the FieldBytes field
is set. This represents one of the BrushStyle values specified in section 2.2.1.2.3.

BrushHatch (1 byte): If BrushStyle is set to BS_PATTERN, this field is the first byte of the 64-by-
64 pixel monochrome bitmap of the brush, laid out in top-to-bottom, left-to-right order. If set to

BS_HATCHED, this field is set to one of the BrushHatch values that are specified in section
2.2.1.2.2 and that specify the orientation of the lines that are used to create the hatch. Otherwise,

this field is not used.

BrushExtra (7 bytes): If BrushStyle is set to BS_PATTERN, this field is the last seven bytes of the
64-by-64 pixel monochrome bitmap of the brush, laid out in top-to-bottom, left-to-right order.
Otherwise, this field is not used.

ROP2 (1 byte): This value MUST be present if the corresponding bit from the FieldBytes field is set.

This represents one of the ROP2 values that are specified in section 2.2.1.2.5 and that specify the
mix mode of the foreground.

PenStyle (1 byte): This value MUST be present if the corresponding bit from the FieldBytes field is
set. This represents one of the PenStyle values that are specified in section 2.2.1.2.4.

PenWidth (1 byte): This value MUST be present if the corresponding bit from the FieldBytes field is
set. This represents the width, in pixels, of the pen.

PenColor (3 bytes): This value MUST be present if the corresponding bit from the FieldBytes field is
set. This represents the color value of the pen that is specified by a byte array of a TSHR_COLOR
structure.

ArcDirection (1 byte): This value MUST be present if the corresponding bit from the FieldBytes
field is set. It MUST be one of the following values, which indicates the direction in which the arc
SHOULD be drawn.

92 / 186

[MS-MNPR] - v20160714
Microsoft NetMeeting Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Value Meaning

ORD_ARC_COUNTERCLOCKWISE

0x01

The arc SHOULD be drawn counterclockwise.

ORD_ARC_CLOCKWISE

0x02

The arc SHOULD be drawn clockwise.

2.2.2.4.10.1.23 PolyBezierOrder

The PolyBezierOrder packet contains one or more Bezier curves.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

pControlFlags OrderType (optional) FieldBytes Bounds (13 bytes,
optional)

...

...

BackMode BackColor (optional)

... ForeColor (optional)

ROP2 (optional) PenStyle (optional) PenWidth (optional) PenColor (optional)

... aPoints (variable)

...

pControlFlags (1 byte): MUST be set to the value OE2_CF_STANDARD_ENC from the OE2 Control
Flags enumeration. If the order differs in type from the last order that was sent, this field contains
the bitwise AND of the value OE2_CF_TYPE_CHANGE. If the bounding rectangle has changed
since the last order of the same type, this field contains the bitwise AND of the value

OE2_CF_BOUNDS. If the coordinates of the bounding rectangle are specified as deltas from the
last bounding rectangle that was used, this field contains the bitwise AND of the value
OE2_CF_DELTACOORDS.

OrderType (1 byte): If the order differs in type from the last, this field MUST contain the value
OE2_POLYBEZIER_ORDER from the Order Types enumeration. If the order is the same type as the
last, this field is not present.

FieldBytes (1 byte): An 8-bit field, with each bit indicating which of the fields that follow the
Bounds field is present. A bit set to 1 indicates that the field is present and its value has changed
since the same order type was last sent.

0

1

2

3

4

5

6

7

A B C D E F 0 0

Where the bits are defined as:

93 / 186

[MS-MNPR] - v20160714
Microsoft NetMeeting Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Value Description

A

The BackColor value is present.

B

The ForeColor value is present.

C

The ROP2 value is present.

D

The PenStyle value is present.

E

The PenWidth value is present.

F

The PenColor value is present.

The bit that is marked with 0 MUST be 0.

Bounds (13 bytes): A byte array of a BoundsData structure. This field is present only if the
pControlFlags field contains the bitwise AND of the value OE2_CF_BOUNDS from the OE2
Control Flags enumeration.

BackMode (2 bytes): One of the BackMode values that are defined in section 2.2.1.2.1 MUST be

present and specify how the foreground and background SHOULD be mixed.

BackColor (3 bytes): This value MUST be present if the corresponding bit from the FieldBytes field
is set. This represents the background color value that is specified by a byte array of a
TSHR_COLOR structure.

ForeColor (3 bytes): This value MUST be present if the corresponding bit from the FieldBytes field

is set. This represents the foreground color value that is specified by a byte array of a
TSHR_COLOR structure.

ROP2 (1 byte): This value MUST be present if the corresponding bit from the FieldBytes field is set.
This represents one of the ROP2 values that are defined in section 2.2.1.2.5 and that specify the
mix mode of the foreground.

PenStyle (1 byte): This value MUST be present if the corresponding bit from the FieldBytes field is
set. This represents one of the PenStyle values that are defined in section 2.2.1.2.4.

PenWidth (1 byte): This value MUST be present if the corresponding bit from the FieldBytes field is
set. This represents the width, in pixels, of the pen.

PenColor (3 bytes): This value MUST be present if the corresponding bit from the FieldBytes field is
set. This represents the color value of the pen that is specified by a byte array of a TSHR_COLOR
structure.

aPoints (variable): An array of TSHR_POINT16 structures that describe the curve. The first byte is
the number of bytes of data. Two bytes for each point follow: one byte for the x-coordinate and
one byte for the y-coordinate.

2.2.2.4.10.1.24 PolygonOrder

The PolygonOrder packet contains a polygon.

94 / 186

[MS-MNPR] - v20160714
Microsoft NetMeeting Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

pControlFlags OrderType (optional) FieldBytes

Bounds (13 bytes, optional)

...

...

... BackMode BackColor (optional)

... ForeColor (optional)

... BrushOrgX (optional) BrushOrgY (optional) BrushStyle (optional)

BrushHatch BrushExtra

...

ROP2 (optional) PenStyle (optional) PenWidth (optional) PenColor (optional)

... FillMode (optional) aPoints (variable)

...

pControlFlags (1 byte): MUST be set to the value OE2_CF_STANDARD_ENC from the OE2 Control
Flags enumeration. If the order differs in type from the last order that was sent, this field contains

the bitwise AND of the value OE2_CF_TYPE_CHANGE. If the bounding rectangle has changed

since the last order of the same type, this field contains the bitwise AND of the value
OE2_CF_BOUNDS. If the coordinates of the bounding rectangle are specified as deltas from the
last bounding rectangle that was used, this field contains the bitwise AND of the value
OE2_CF_DELTACOORDS.

OrderType (1 byte): If the order differs in type from the last, this field MUST contain the value
OE2_POLYGON_ORDER from the Order Types enumeration. If the order is the same type as the

last, this field is not present.

FieldBytes (2 bytes): A 16-bit field, with each bit indicating which of the fields that follow the
Bounds field is present. A bit that is set to 1 indicates that the field is present and its value has
changed since the same order type was last sent.

0

1

2

3

4

5

6

7

8

9

1
0

1

2

3

4

5

A B C D E F G H I J 0 0 0 0 0 0

Where the bits are defined as:

Value Description

A The BackColor value is present.

95 / 186

[MS-MNPR] - v20160714
Microsoft NetMeeting Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Value Description

B

The ForeColor value is present.

C

The BrushOrgX value is present.

D

The BrushOrgY value is present.

E

The BrushStyle value is present.

F

The ROP2 value is present.

G

The PenStyle value is present.

H

The PenWidth value is present.

I

The PenColor value is present.

J

The FillMode value is present.

The bit that is marked with 0 MUST be 0.

Bounds (13 bytes): A byte array of a BoundsData structure. This field is present only if the

pControlFlags field contains the bitwise AND of the value OE2_CF_BOUNDS from the OE2
Control Flags enumeration.

BackMode (2 bytes): One of the BackMode values that are defined in section 2.2.1.2.1. MUST be
present. Specifies how the foreground and background SHOULD be mixed.

BackColor (3 bytes): This value MUST be present if the corresponding bit from the FieldBytes field
is set. This represents the background color value and is specified by a byte array of a
TSHR_COLOR structure.

ForeColor (3 bytes): This value MUST be present if the corresponding bit from the FieldBytes field
is set. This represents the foreground color value and is specified by a byte array of a
TSHR_COLOR structure.

BrushOrgX (1 byte): This value MUST be present if the corresponding bit from the FieldBytes field
is set. This represents the x-offset at which the brush begins. The offset is based on window

coordinates where the origin of (0,0) is upper left.

BrushOrgY (1 byte): This value MUST be present if the corresponding bit from the FieldBytes field
is set. This represents the y-offset at which the brush begins. The offset is based on window
coordinates where the origin of (0,0) is upper left.

BrushStyle (1 byte): This value MUST be present if the corresponding bit from the FieldBytes field
is set. This represents one of the BrushStyle values that are defined in section 2.2.1.2.3.

96 / 186

[MS-MNPR] - v20160714
Microsoft NetMeeting Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

BrushHatch (1 byte): If BrushStyle is set to BS_PATTERN, this field is the first byte of the 64-by-
64 pixel monochrome bitmap of the brush; it is laid out in top-to-bottom, left-to-right order. If set

to BS_HATCHED, one of the BrushHatch values that are defined in section 2.2.1.2.2 and that
specify the orientation of the lines is used to create the hatch. Otherwise, this field is not used.

BrushExtra (7 bytes): If BrushStyle is set to BS_PATTERN, this field is the last seven bytes of the
64-by-64 pixel monochrome bitmap of the brush; it is laid out in top-to-bottom, left-to-right
order. Otherwise, this field is not used.

ROP2 (1 byte): This value MUST be present if the corresponding bit from the FieldBytes field is set.
This represents one of the ROP2 values that are defined in section 2.2.1.2.5 and that specify the
mix mode of the foreground.

PenStyle (1 byte): This value MUST be present if the corresponding bit from the FieldBytes field is

set. This represents one of the PenStyle values that are defined in section 2.2.1.2.4.

PenWidth (1 byte): This value MUST be present if the corresponding bit from the FieldBytes field is
set. This represents the width, in pixels, of the pen.

PenColor (3 bytes): This value MUST be present if the corresponding bit from the FieldBytes field is
set. This represents the color value of the pen and is specified by a byte array of a TSHR_COLOR
structure.

FillMode (1 byte): This value MUST be present if the corresponding bit from the FieldBytes field is
set. This represents one of the following values, which determine the fill mode of the polygon.

Value Meaning

ALTERNATE

0x01

Fills the area between odd-numbered and even-numbered polygon sides on each scan line.

WINDING

0x02

Fills any region with a nonzero winding value.

aPoints (variable): An array of TSHR_POINT16 structures that describe the curve. The first byte is
the number of bytes of data. Two bytes for each point follow: one byte for the x-coordinate and
one byte for the y-coordinate.

2.2.2.4.10.1.25 RectangleOrder

The RectangleOrder packet contains a rectangle.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

pControlFlags OrderType (optional) FieldBytes

Bounds (13 bytes, optional)

...

...

... BackMode nLeftRect (optional)

... nTopRect (optional) nRightRect (optional)

97 / 186

[MS-MNPR] - v20160714
Microsoft NetMeeting Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

... nBottomRect (optional) BackColor (optional)

... ForeColor (optional)

... BrushOrgX (optional) BrushOrgY (optional) BrushStyle (optional)

BrushHatch BrushExtra

...

ROP2 (optional) PenStyle (optional) PenWidth (optional) PenColor (optional)

...

pControlFlags (1 byte): MUST be set to the value OE2_CF_STANDARD_ENC from the OE2 Control

Flags enumeration. If the order differs in type from the last order that was sent, this field contains
the bitwise AND of the value OE2_CF_TYPE_CHANGE. If the bounding rectangle has changed

since the last order of the same type, this field contains the bitwise AND of the value
OE2_CF_BOUNDS. If the coordinates of the bounding rectangle are specified as deltas from the
last bounding rectangle that was used, this field contains the bitwise AND of the value
OE2_CF_DELTACOORDS.

OrderType (1 byte): If the order differs in type from the last, this field MUST contain the value
OE2_RECTANGLE_ORDER from the Order Types enumeration. If the order is the same type as the

last, this field is not present.

FieldBytes (2 bytes): A 16-bit field, with each bit indicating which of the fields that follow the
Bounds field is present. A bit that is set to 1 indicates that the field is present and its value has
changed since the same order type was last sent.

0

1

2

3

4

5

6

7

8

9

1
0

1

2

3

4

5

A B C D E F G H I J K L M 0 0 0

Where the bits are defined as:

Value Description

A

The nLeftRect value is present.

B

The nTopRect value is present.

C

The nRightRect value is present.

D

The nBottomRect value is present.

E

The BackColor value is present.

F The ForeColor value is present.

98 / 186

[MS-MNPR] - v20160714
Microsoft NetMeeting Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Value Description

G

The BrushOrgX value is present.

H

The BrushOrgY value is present.

I

The BrushStyle value is present.

J

The ROP2 value is present.

K

The PenStyle value is present.

L

The PenWidth value is present.

M

The PenColor value is present.

The bits that are marked with 0 MUST be 0.

Bounds (13 bytes): A byte array of a BoundsData structure. This field is present only if the
pControlFlags field contains the bitwise AND of the value OE2_CF_BOUNDS from the OE2
Control Flags enumeration.

BackMode (2 bytes): One of the BackMode values that are defined in section 2.2.1.2.1 MUST be
present to specify how the foreground and background SHOULD be mixed.

nLeftRect (2 bytes): This value MUST be present if the corresponding bit from the FieldBytes field

is set. This represents the x-coordinate within the window of the left edge of the rectangle.

nTopRect (2 bytes): This value MUST be present if the corresponding bit from the FieldBytes field
is set. This represents the y-coordinate within the window of the top edge of the rectangle.

nRightRect (2 bytes): This value MUST be present if the corresponding bit from the FieldBytes field
is set. This represents the x-coordinate within the window of the right edge of the rectangle.

nBottomRect (2 bytes): This value MUST be present if the corresponding bit from the FieldBytes
field is set. This represents the y-coordinate within the window of the bottom edge of the

rectangle.

BackColor (3 bytes): This value MUST be present if the corresponding bit from the FieldBytes field
is set. This represents the background color value that is specified by a byte array of a
TSHR_COLOR structure.

ForeColor (3 bytes): This value MUST be present if the corresponding bit from the FieldBytes field
is set. This represents the foreground color value that is specified by a byte array of a

TSHR_COLOR structure.

BrushOrgX (1 byte): This value MUST be present if the corresponding bit from the FieldBytes field
is set. This represents the x-offset at which the brush begins. The offset is based on window
coordinates where the origin of (0,0) is upper left.

99 / 186

[MS-MNPR] - v20160714
Microsoft NetMeeting Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

BrushOrgY (1 byte): This value MUST be present if the corresponding bit from the FieldBytes field
is set. This represents the y-offset at which the brush begins. The offset is based on window

coordinates where the origin of (0,0) is upper left.

BrushStyle (1 byte): This value MUST be present if the corresponding bit from the FieldBytes field

is set. This represents one of the BrushStyle values that are defined in section 2.2.1.2.3.

BrushHatch (1 byte): If BrushStyle is set to BS_PATTERN, this field is the first byte of the 64-by-
64 pixel monochrome bitmap of the brush; it is laid out in top-to-bottom, left-to-right order. If set
to BS_HATCHED, the BrushHatch values that are defined in section 2.2.1.2.2 and that specify the
orientation of the lines that are used to create the hatch. Otherwise, this field is not used.

BrushExtra (7 bytes): If BrushStyle is set to BS_PATTERN, this field is the last seven bytes of the
64-by-64 pixel monochrome bitmap of the brush, laid out in top-to-bottom, left-to-right order.

Otherwise, this field is not used.

ROP2 (1 byte): This value MUST be present if the corresponding bit from the FieldBytes field is set.
This represents one of the ROP2 values that are defined in section 2.2.1.2.5 and that specify the

mix mode of the foreground.

PenStyle (1 byte): This value MUST be present if the corresponding bit from the FieldBytes field is
set. This represents one of the PenStyle values that are defined in section 2.2.1.2.4.

PenWidth (1 byte): This value MUST be present if the corresponding bit from the FieldBytes field is
set. This represents the width, in pixels, of the pen.

PenColor (3 bytes): This value MUST be present if the corresponding bit from the FieldBytes field is
set. This represents the color value of the pen that is specified by a byte array of a TSHR_COLOR
structure.

2.2.2.4.10.1.26 RoundRectOrder

The RoundRectOrder packet contains a rectangle that has rounded corners.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

pControlFlags OrderType (optional) FieldBytes

... Bounds (13 bytes, optional)

...

...

... BackMode

nLeftRect (optional)

nTopRect (optional) nRightRect (optional)

nBottomRect (optional) nEllipseWidth (optional)

... nEllipseHeight (optional)

100 / 186

[MS-MNPR] - v20160714
Microsoft NetMeeting Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

BackColor (optional) ForeColor (optional)

... BrushOrgX (optional) BrushOrgY (optional)

BrushStyle (optional) BrushHatch BrushExtra

...

... ROP2 (optional) PenStyle (optional) PenWidth (optional)

PenColor (optional)

pControlFlags (1 byte): MUST be set to the value OE2_CF_STANDARD_ENC from the OE2 Control
Flags enumeration. If the order differs in type from the last order that was sent, this field contains
the bitwise AND of the value OE2_CF_TYPE_CHANGE. If the bounding rectangle has changed

since the last order of the same type, this field contains the bitwise AND of the value
OE2_CF_BOUNDS. If the coordinates of the bounding rectangle are specified as deltas from the
last bounding rectangle that was used, this field contains the bitwise AND of the value
OE2_CF_DELTACOORDS.

OrderType (1 byte): If the order differs in type from the last, this field MUST contain the value
OE2_ROUNDRECT_ORDER from the Order Types enumeration. If the order is the same type as the

last, this field is not present.

FieldBytes (3 bytes): A 24-bit field, with each bit indicating which of the fields that follow the
Bounds field is present. A bit that is set to 1 indicates that the field is present and its value has
changed since the same order type was last sent.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

0 0 0 0 0 0 0 0 A B C D E F G H I J K L M N O 0 0 0 0 0 0 0 0 0

Where the bits are defined as:

Value Description

A

The nLeftRect value is present.

B

The nTopRect value is present.

C

The nRightRect value is present.

D

The nBottomRect value is present.

E

The nEllipseWidth value is present.

F

The nEllipseHeight value is present.

101 / 186

[MS-MNPR] - v20160714
Microsoft NetMeeting Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Value Description

G

The BackColor value is present.

H

The ForeColor value is present.

I

The BrushOrgX value is present.

J

The BrushOrgY value is present.

K

The BrushStyle value is present.

L

The ROP2 value is present.

M

The PenStyle value is present.

N

The PenWidth value is present.

O

The PenColor value is present.

The bit that is marked with 0 MUST be 0.

Bounds (13 bytes): A byte array of a BoundsData structure. This field is present only if the
pControlFlags field contains the bitwise AND of the value OE2_CF_BOUNDS from the OE2

Control Flags enumeration.

BackMode (2 bytes): One of the BackMode values that are defined in section 2.2.1.2.1 MUST be
present to specify how the foreground and background SHOULD be mixed.

nLeftRect (4 bytes): This value MUST be present if the corresponding bit from FieldBytes is set.
This represents the x-coordinate within the window of the left edge of the rectangle.

nTopRect (2 bytes): This value MUST be present if the corresponding bit from FieldBytes is set.
This represents the y-coordinate within the window of the top edge of the rectangle.

nRightRect (2 bytes): This value MUST be present if the corresponding bit from FieldBytes is set.

This represents the x-coordinate within the window of the right edge of the rectangle.

nBottomRect (2 bytes): This value MUST be present if the corresponding bit from FieldBytes is set.
This represents the y-coordinate within the window of the bottom edge of the rectangle.

nEllipseWidth (4 bytes): This value MUST be present if the corresponding bit from FieldBytes is
set. This represents the width of the ellipse that is used to draw the rounded corners.

nEllipseHeight (2 bytes): This value MUST be present if the corresponding bit from FieldBytes is
set. This represents the height of the ellipse that is used to draw the rounded corners.

BackColor (3 bytes): This value MUST be present if the corresponding bit from FieldBytes is set.
This represents the background color value that is specified by a byte array of a TSHR_COLOR
structure.

102 / 186

[MS-MNPR] - v20160714
Microsoft NetMeeting Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

ForeColor (3 bytes): This value MUST be present if the corresponding bit from FieldBytes is set.
This represents the foreground color value that is specified by a byte array of a TSHR_COLOR

structure.

BrushOrgX (1 byte): This value MUST be present if the corresponding bit from FieldBytes is set.

This represents the x-offset at which the brush begins. The offset is based on window coordinates
where the origin of (0,0) is upper left.

BrushOrgY (1 byte): This value MUST be present if the corresponding bit from FieldBytes is set.
This represents the y-offset at which the brush begins. The offset is based on window coordinates
where the origin of (0,0) is upper left.

BrushStyle (1 byte): This value MUST be present if the corresponding bit from the FieldBytes field
is set. This represents one of the BrushStyle values that are defined in section 2.2.1.2.3.

BrushHatch (1 byte): If BrushStyle is set to BS_PATTERN, this field is the first byte of the 64-by-
64 pixel monochrome bitmap of the brush; it is laid out in top-to-bottom, left-to-right order. If set
to BS_HATCHED, the BrushHatch values are defined in section 2.2.1.2.2 and specify the

orientation of the lines that are used to create the hatch. Otherwise, this field is not used.

BrushExtra (7 bytes): If BrushStyle is set to BS_PATTERN, this field is the last 7 bytes of the 64-
by-64 pixel monochrome bitmap of the brush; it is laid out in top-to-bottom, left-to-right order.

Otherwise, this field is not used.

ROP2 (1 byte): This value MUST be present if the corresponding bit from the FieldBytes field is set.
This represents one of the ROP2 values that are defined in section 2.2.1.2.5 and that specify the
mix mode of the foreground.

PenStyle (1 byte): This value MUST be present if the corresponding bit from the FieldBytes field is
set. This represents one of the PenStyle values that are defined in section 2.2.1.2.4.

PenWidth (1 byte): This value MUST be present if the corresponding bit from the FieldBytes field is

set. This represents the width, in pixels, of the pen.

PenColor (3 bytes): This value MUST be present if the corresponding bit from the FieldBytes field is

set. This represents the color value of the pen that is specified by a byte array of a TSHR_COLOR
structure.

2.2.2.4.10.1.27 SaveBitmap

The SaveBitmap order contains a region of the screen that the receiver SHOULD save or restore.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

pControlFlags OrderType (optional) FieldBytes Bounds (13 bytes,
optional)

...

...

SavedBitmapPosition (optional)

nLeftRect (optional) nTopRect (optional)

nRightRect (optional) nBottomRect (optional)

103 / 186

[MS-MNPR] - v20160714
Microsoft NetMeeting Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Operation

pControlFlags (1 byte): MUST be set to the value OE2_CF_STANDARD_ENC from the OE2 Control
Flags enumeration. If the order differs in type from the last order that was sent, this field contains
the bitwise AND of the value OE2_CF_TYPE_CHANGE. If the bounding rectangle has changed

since the last order of the same type, this field contains the bitwise AND of the value
OE2_CF_BOUNDS. If the coordinates of the bounding rectangle are specified as deltas from the
last bounding rectangle that was used, this field contains the bitwise AND of the value
OE2_CF_DELTACOORDS.

OrderType (1 byte): If the order differs in type from the last, this field MUST contain the value
OE2_SAVEBITMAP_ORDER from the Order Types enumeration. If the order is the same type as

the last, this field is not present.

FieldBytes (1 byte): An 8-bit field, with each bit indicating which of the fields that follow the
Bounds field is present. A bit set to 1 indicates that the field is present and its value has changed
since the same order type was last sent.

0

1

2

3

4

5

6

7

A B C D E 0 0 0

Where the bits are defined as:

Value Description

A

The SavedBitmapPosition value is present.

B

The nLeftRect value is present.

C

The nTopRect value is present.

D

The nRightRect value is present.

E

The nBottomRect value is present.

The bits that are marked with 0 MUST be 0.

Bounds (13 bytes): A byte array of a BoundsData structure. This field is present only if the
pControlFlags field contains the bitwise AND of the value OE2_CF_BOUNDS from the OE2
Control Flags enumeration.

SavedBitmapPosition (4 bytes): This value MUST be present if the corresponding bit from the
FieldBytes field is set. This represents the start position for the rectangle in the saved bitmap of
the client.

nLeftRect (2 bytes): This value MUST be present if the corresponding bit from the FieldBytes field
is set. This represents the x-coordinate within the window of the left edge of the rectangle.

nTopRect (2 bytes): This value MUST be present if the corresponding bit from the FieldBytes field
is set. This represents the y-coordinate within the window of the top edge of the rectangle.

104 / 186

[MS-MNPR] - v20160714
Microsoft NetMeeting Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

nRightRect (2 bytes): This value MUST be present if the corresponding bit from the FieldBytes field
is set. This represents the x-coordinate within the window of the right edge of the rectangle.

nBottomRect (2 bytes): This value MUST be present if the corresponding bit from the FieldBytes
field is set. This represents the y-coordinate within the window of the bottom edge of the

rectangle.

Operation (2 bytes): MUST be set to 0x0000 or 0x0001. If set to 0x0000, the receiver SHOULD save
the referenced region of the screen. If set to 0x0001, the receiver SHOULD restore the referenced
region of the screen from the saved copy.

Value Meaning

0x0000 SHOULD save the referenced screen region.

0x0001 SHOULD restore the referenced screen region.

2.2.2.4.10.1.28 ScreenBlt

The ScreenBlt order contains a bit-block transfer between regions of the screen.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

pControlFlags OrderType (optional) FieldBytes Bounds (13 bytes,
optional)

...

...

nLeftRect (optional) nTopRect (optional)

nWidth (optional) nHeight (optional)

bRop (optional) nXSrc (optional) nYSrc (optional)

...

pControlFlags (1 byte): MUST be set to the value OE2_CF_STANDARD_ENC from the OE2 Control
Flags enumeration. If the order differs in type from the last order that was sent, this field contains
the bitwise AND of the value OE2_CF_TYPE_CHANGE. If the bounding rectangle has changed

since the last order of the same type, this field contains the bitwise AND of the value
OE2_CF_BOUNDS. If the coordinates of the bounding rectangle are specified as deltas from the
last bounding rectangle that was used, this field contains the bitwise AND of the value

OE2_CF_DELTACOORDS.

OrderType (1 byte): If the order differs in type from the last, this field MUST contain the value
OE2_SCRBLT_ORDER from the Order Types enumeration. If the order is the same type as the last,

this field is not present.

FieldBytes (1 byte): An 8-bit field, with each bit indicating which of the fields that follow the
Bounds field is present. A bit set to 1 indicates that the field is present and its value has changed
since the same order type was last sent.

105 / 186

[MS-MNPR] - v20160714
Microsoft NetMeeting Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

0

1

2

3

4

5

6

7

A B C D E F G 0

Where the bits are defined as:

Value Description

A

The nLeftRect value is present.

B

The nTopRect value is present.

C

The nWidth value is present.

D

The nHeight value is present.

E

The bRop value is present.

F

The nXSrc value is present.

G

The nYSrc value is present.

The bits that are marked with 0 MUST be 0.

Bounds (13 bytes): A byte array of a BoundsData structure. This field is present only if the

pControlFlags field contains the bitwise AND of the value OE2_CF_BOUNDS from the OE2
Control Flags enumeration.

nLeftRect (2 bytes): This value MUST be present if the corresponding bit from the FieldBytes field
is set. This represents the x-coordinate of the left edge of the target rectangle.

nTopRect (2 bytes): This value MUST be present if the corresponding bit from the FieldBytes field
is set. This represents the y-coordinate top edge of the target rectangle.

nWidth (2 bytes): This value MUST be present if the corresponding bit from the FieldBytes field is

set. This represents the width, in pixels, of the target rectangle.

nHeight (2 bytes): This value MUST be present if the corresponding bit from the FieldBytes field is
set. This represents the height, in pixels, of the target rectangle.

bRop (1 byte): This value MUST be present if the corresponding bit from the FieldBytes field is set.

This represents the high-order byte of a Windows GDI ternary raster operation code.<23>

nXSrc (2 bytes): This value MUST be present if the corresponding bit from the FieldBytes field is
set. This represents the x-coordinate of the left side of the source rectangle.

nYSrc (4 bytes): This value MUST be present if the corresponding bit from the FieldBytes field is
set. This represents the y-coordinate of the top side of the source rectangle.

2.2.2.4.10.1.29 TextOrder

106 / 186

[MS-MNPR] - v20160714
Microsoft NetMeeting Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

The TextOrder order contains a string.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

pControlFlags OrderType (optional) FieldBytes

Bounds (13 bytes, optional)

...

...

... BackMode (optional) nXStart (optional)

... nYStart (optional) BackColor (optional)

... ForeColor (optional)

... CharExtra BreakExtra

... BreakCount FontHeight (optional)

... FontWidth (optional) FontWeight (optional)

... FontFlags (optional) FontIndex (optional)

... String (variable)

...

pControlFlags (1 byte): MUST be set to the value OE2_CF_STANDARD_ENC from the OE2 Control
Flags enumeration. If the order differs in type from the last order that was sent, this field contains

the bitwise AND of the value OE2_CF_TYPE_CHANGE. If the bounding rectangle has changed
since the last order of the same type, this field contains the bitwise AND of the value
OE2_CF_BOUNDS. If the coordinates of the bounding rectangle are specified as deltas from the
last bounding rectangle that was used, this field contains the bitwise AND of the value
OE2_CF_DELTACOORDS.

OrderType (1 byte): If the order differs in type from the last, this field MUST contain the value

OE2_TEXTOUT_ORDER from the Order Types enumeration. If the order is the same type as the
last, this field is not present.

FieldBytes (2 bytes): A 16-bit field, with each bit indicating which of the fields that follow the

Bounds field is present. A bit set to 1 indicates that the field is present and its value has changed
since the same order type was last sent.

0

1

2

3

4

5

6

7

8

9

1
0

1

2

3

4

5

A B C D E F G H I J 0 0 0 0 0 0

Where the bits are defined as:

107 / 186

[MS-MNPR] - v20160714
Microsoft NetMeeting Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Value Description

A

The BackMode value is present.

B

The nXStart value is present.

C

The nYStart value is present.

D

The BackColor value is present.

E

The ForeColor value is present.

F

The FontHeight value is present.

G

The FontWidth value is present.

H

The FontWeight value is present.

I

The FontFlags value is present.

J

The FontIndex value is present.

The bits that are marked with 0 MUST be 0.

Bounds (13 bytes): A byte array of a BoundsData structure. This field is present only if the

pControlFlags field contains the bitwise AND of the value OE2_CF_BOUNDS from the OE2
Control Flags enumeration.

BackMode (2 bytes): This value MUST be present if the corresponding bit from the FieldBytes field
is set. This represents one of the BackMode values that are defined in section 2.2.1.2.1 and that
specify how the foreground and background SHOULD be mixed.

nXStart (2 bytes): This value MUST be present if the corresponding bit from the FieldBytes field is
set. This represents the window's x-coordinate of the string.

nYStart (2 bytes): This value MUST be present if the corresponding bit from the FieldBytes field is
set. This represents the window's y-coordinate of the string.

BackColor (3 bytes): This value MUST be present if the corresponding bit from the FieldBytes field

is set. This represents the background color value and is specified by a byte array of a
TSHR_COLOR structure.

ForeColor (3 bytes): This value MUST be present if the corresponding bit from the FieldBytes field

is set. This represents the foreground color value and is specified by a byte array of a
TSHR_COLOR structure.

CharExtra (2 bytes): Reserved. MUST be set to zero when sent and MUST be ignored on receipt.

BreakExtra (2 bytes): Reserved. MUST be set to zero when sent and MUST be ignored on receipt.

108 / 186

[MS-MNPR] - v20160714
Microsoft NetMeeting Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

BreakCount (2 bytes): Reserved. MUST be set to zero when sent and MUST be ignored on receipt.

FontHeight (2 bytes): This value MUST be present if the corresponding bit from the FieldBytes field

is set. This represents the height of the font, in logical units.<24>

FontWidth (2 bytes): This value MUST be present if the corresponding bit from the FieldBytes field

is set. This represents the width of the font, in logical units.<25>

FontWeight (2 bytes): This value MUST be present if the corresponding bit from the FieldBytes
field is set. This represents the weight of the font, in logical units from 0x00000000 through
0x000003E8 (1000).

FontFlags (2 bytes): This value MUST be present if the corresponding bit from the FieldBytes field
is set. This represents a bitmap of the following values, indicating attributes of the font.

Value Meaning

NF_FIXED_PITCH

0x00000001

The text SHOULD use a fixed pitch.

NF_FIXED_SIZE

0x00000002

The text SHOULD use a fixed size.

NF_ITALIC

0x00000004

The text SHOULD be italic.

NF_UNDERLINE

0x00000008

The text SHOULD be underlined.

NF_STRIKEOUT

0x00000010

The text SHOULD be struck out.

NF_TRUETYPE

0x00000080

The text SHOULD be drawn with a TrueType font.

FontIndex (2 bytes): This value MUST be present if the corresponding bit from the FieldBytes field
is set. This represents the index of the font in the font table. The font index is an index into an

array of font names. For example, 0x41 is the first index into the remote font table that starts
with the character 'A'.

String (variable): The text to be drawn. The first byte of the string is an integer that indicates the
length of the string. The string MUST be from 1 to 256 bytes in length.

2.2.2.4.10.1.30 UpdateBitmapPDU

The UpdateBitmapPDU order updates a region of the screen.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Position

...

realWidth realHeight

Format compressed

109 / 186

[MS-MNPR] - v20160714
Microsoft NetMeeting Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

dataSize data (variable)

...

Position (8 bytes): A byte array of a TSHR_RECT16 structure that specifies the left, upper, right,
and lower edges of the region, in order.

realWidth (2 bytes): The width of the included bitmap, which MAY exceed the width that is specified

in the position field because of padding in pixels.

realHeight (2 bytes): The height of the included bitmap, which MAY exceed the height that is
specified in the position field because of padding in pixels.

Format (2 bytes): The bits per pixel of the bitmap.

compressed (2 bytes): MUST be set to 0x0000 or 0x0001. If set to 0x0001, the bitmap is
compressed. If set to 0x0000, the bitmap is not compressed.

dataSize (2 bytes): The length, in bytes, of the data.

data (variable): Either the uncompressed bitmap data or a Compressed Bitmap structure.

2.2.2.4.10.1.31 UpdatePalettePDU

The UpdatePalettePDU order describes the palette for UpdateBitmapPDU orders.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

numColors

aColors (variable)

...

numColors (4 bytes): An integer that indicates the number of TSHR COLOR structures in aColors.

aColors (variable): An array of TSHR_COLOR structures, with each color specified as 1 byte each for
the red, green, and blue components.

2.2.2.4.10.1.32 UpdateSynchronizePDU

The UpdateSynchronizePDU order resets the state of the connection.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

cOrders sendBPP

data

Note that the values "cOrders", "sendBPP", and "data" MUST NOT be sent.

110 / 186

[MS-MNPR] - v20160714
Microsoft NetMeeting Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

2.2.2.5 S20_DELETE

The S20_DELETE packet is sent by a host to remove a client from an application-sharing session.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

length Version/Type

user correlator

... target

lenName capsData

length (2 bytes): The length, in bytes, of the packet including the 2 bytes required for this length

value.

Version/Type (2 bytes): MUST be set to 0x0034.

user (2 bytes): The local identifier of the user, which is obtained from the Multipoint Communication
Service (MCS) [T122] layer. For more information about the MCS user ID, see [T122] section 3
(Definitions) in the ITU-T Recommendation.

correlator (4 bytes): The unique identifier for the new session. The first two bytes are the MCS user

identifier (above) followed by a monotonically increasing 2-byte sequence number starting at zero.

target (2 bytes): The identifier of the node to remove from the session, which is obtained from the
Multipoint Communication Service (MCS) layer.

lenName (2 bytes): MUST be set to the value 0x0000.

capsData (1 byte): Reserved. MUST be set to zero when sent and MUST be ignored on receipt.

2.2.2.6 S20_END

The S20_END packet is sent by a host to end an application-sharing session.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

length Version/Type

user correlator

... lenName

capsData

length (2 bytes): The length, in bytes, of the packet including the 2 bytes required for this length
value.

Version/Type (2 bytes): MUST be set to 0x0036.

http://go.microsoft.com/fwlink/?LinkId=94993

111 / 186

[MS-MNPR] - v20160714
Microsoft NetMeeting Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

user (2 bytes): The local identifier of the user, which is obtained from the Multipoint Communication
Service (MCS) [T122] layer. For more information about the MCS user ID, see [T122] section 3

(Definitions) in the ITU-T Recommendation.

correlator (4 bytes): The unique identifier for the new session. The first two bytes are the MCS user

identifier (above) followed by a monotonically increasing 2-byte sequence number starting at zero.

lenName (2 bytes): SHOULD be set to the value 0x0000.

capsData (1 byte): Reserved. MUST be set to zero when sent and MUST be ignored on receipt.

2.2.2.7 S20_JOIN

The S20_JOIN packet is sent by a client to join an existing application-sharing session.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Length Version/Type

User lenName

lenCaps nameData (variable)

...

capsData (204 bytes)

...

...

Length (2 bytes): The length, in bytes, of the packet including the 2 bytes required for this length
value.

Version/Type (2 bytes): MUST be set to 0x0032.

User (2 bytes): The local identifier of the user, which is obtained from the Multipoint Communication

Service (MCS) [T122] layer. For more information about the MCS user ID, see [T122] section 3
(Definitions) in the ITU-T Recommendation.

lenName (2 bytes): The length, in bytes, of nameData.

lenCaps (2 bytes): The length, in bytes, of capsData.

nameData (variable): A null-terminated array of 8-bit, unsigned ASCII characters. The name of the
user. The default value of the nameData field is supplied by the user.<26>

capsData (204 bytes): A CPCALLCAPS structure that describes the capabilities of the sender.

2.2.2.8 S20_LEAVE

The S20_LEAVE packet is sent by a client to end its participation in an application-sharing session.

http://go.microsoft.com/fwlink/?LinkId=94993
http://go.microsoft.com/fwlink/?LinkId=94993

112 / 186

[MS-MNPR] - v20160714
Microsoft NetMeeting Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Length Version/Type

User correlator

...

Length (2 bytes): The length, in bytes, of the packet including the 2 bytes required for this length
value.

Version/Type (2 bytes): MUST be set to 0x0035.

User (2 bytes): The local identifier of the user, which is obtained from the Multipoint Communication
Server (MCS) [T122] layer. For more information about the MCS user ID, see [T122] section 3
(Definitions) in the ITU-T Recommendation.

correlator (4 bytes): The unique identifier for the new session. The first two bytes are the MCS user
identifier (above) followed by a monotonically increasing 2-byte sequence number starting at zero.

2.2.2.9 S20_RESPOND

The S20_RESPOND packet is sent from a host or client to respond to an S20_CREATE, S20_JOIN or
S20_RESPONDmessage.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Length Version/Type

User correlator

... originator

lenName lenCaps

nameData (variable)

...

capsData (204 bytes)

...

...

Length (2 bytes): The length, in bytes, of the packet including the 2 bytes required for this length

value.

Version/Type (2 bytes): MUST be set to 0x0033.

http://go.microsoft.com/fwlink/?LinkId=94993

113 / 186

[MS-MNPR] - v20160714
Microsoft NetMeeting Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

User (2 bytes): The local identifier of the user, which is obtained from the Multipoint Communication
Service (MCS) [T122] layer. For more information about the MCS user ID, see [T122] section 3

(Definitions) in the ITU-T Recommendation.

correlator (4 bytes): The unique identifier for the new session. The first two bytes are the MCS user

identifier (above) followed by a monotonically increasing 2-byte sequence number starting at zero.

originator (2 bytes): The identifier of the node to which this packet is in response, which is obtained
from the Multipoint Communication Service (MCS) layer.

lenName (2 bytes): The length, in bytes, of nameData.

lenCaps (2 bytes): The length, in bytes, of capsData.

nameData (variable): A null-terminated array of 8-bit, unsigned ASCII characters. The name of the
user. By default, the user supplies this name; otherwise, the computer name is used from

GetComputerName().

capsData (204 bytes): A CPCALLCAPS structure that describes the capabilities of the sender.

2.2.3 Chat Protocol

The Microsoft NetMeeting Protocol allows for peers to exchange text communication data in a packet
utilizing MCS. Note that the Chat Protocol uses MCS for its transport layer.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

length header

...

data (variable)

...

length (1 byte): The length of the header, including this field. MUST be set to 0x08.

header (7 bytes): MUST be set to 0x00000000000000.

data (variable): A null-terminated string that contains text data. Note that this string is in UTF-16
format and is transmitted in little-endian order.

2.2.4 File Transfer Protocol

Microsoft NetMeeting Protocol peers engage in File Transfer Protocol (FTP) through the International
Telecommunications Union (ITU) T.127 standard, as specified in [T127], except for the following

extensions.

Microsoft NetMeeting Extensions

For cases of NonStandardPDU messages in FTP, the following string constants are used.

Constant Value

PROSHARE_STRING "NetMeeting 1 MBFT"

http://go.microsoft.com/fwlink/?LinkId=94993
http://go.microsoft.com/fwlink/?LinkId=93446

114 / 186

[MS-MNPR] - v20160714
Microsoft NetMeeting Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Constant Value

PROSHARE_FILE_END_STRING "NetMeeting 1 FileEnd"

PROSHARE_CHANNEL_LEAVE_STRING "NetMeeting 1 ChannelLeave"

Sending NonStandardPDUs uses the following logic:

 If the NonStandardPDU is sent at the end of file transfer, the protocol data unit (PDU) is

transferred with a PROSHARE_FILE_END_STRING key.

 If the NonStandardPDU is sent while leaving the channel, the PDU is transferred with a
PROSHARE_CHANNEL_LEAVE_STRING key.

 Otherwise, the NonStandardPDU is sent with the PROSHARE_STRING key.

The following members are optional.

Member Description

ASNHandle

ASNfile_request_handle; /*
optional */

A unique handle to reference the file throughout the file transfer operation. Its
value is obtained from the ASNFile_OfferPDU structure.

ASNUserID

ASNmbft_ID; /* optional */

A unique handle to identify the user throughout the file transfer session. Its
value is obtained from the ASNFile_OfferPDU structure.

2.2.5 NetMeeting Object Manager

The NetMeeting Object Manager provides a generic way to manage abstract data. It manages the
creation, sequence, access control, update, and order of any abstract object in a session that has two
or more nodes. The NetMeeting Object Manager protocol defines a set of four control packet types to

be exchanged via the S20 protocol layer:

 Joiner

 Lock

 Wsgroup send

 Operation

Packets of type joiner, lock, and wsgroup send MUST be present as fixed-length data structures. The

operation packet length varies per operation message type. The operation packet length MUST be
used to determine whether a variable-length data packet follows. Each data packet MUST begin with
an unsigned 32-bit integer length field. For more information on each packet type, refer to sections
specified by the table below.

The late joiner protocol is defined as a subset of NetMeeting Object Manager messages. For more

information, refer to Late Joiner Protocol Overview (section 3.1.5.4).

Packet Name
Packet
Type Description of Packet Function

OMNET_HELLO joiner Requests user ID discovery.

OMNET_WELCOME joiner Replies to OMNET_HELLO.

OMNET_LOCK_REQ lock Requests a lock on a workset/object.

115 / 186

[MS-MNPR] - v20160714
Microsoft NetMeeting Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Packet Name
Packet
Type Description of Packet Function

OMNET_LOCK_GRANT lock Grants a lock on a workset/object.

OMNET_LOCK_DENY lock Denies a lock on a workset/object.

OMNET_LOCK_NOTIFY lock Sends notification granting a lock request.

OMNET_UNLOCK lock Unlocks a workset/object.

OMNET_WSGROUP_SEND_REQ wsgroup
send

Requests the current contents of a workset group after a
late join.

OMNET_WSGROUP_SEND_MIDWAY wsgroup
send

Notifies a late joiner that it knows about all worksets
currently in use.

OMNET_WSGROUP_SEND_COMPLETE wsgroup
send

Notifies the late joiner that all workset group contents
have been sent.

OMNET_WSGROUP_SEND_DENY wsgroup
send

Denies a late joiner catch-up request.

OMNET_WORKSET_CLEAR operation Requests that an Object Manager delete the contents of a
specific workset group.

OMNET_WORKSET_NEW operation Notifies a late joiner of each workset in a workset group.

OMNET_WORKSET_CATCHUP operation Notifies a late joiner of each workset in a workset group.

OMNET_OBJECT_ADD operation +
data

Adds an object at a relative position in a workset list.

OMNET_OBJECT_CATCHUP operation +
data

Notifies a late joiner of each object in a workset group.

OMNET_OBJECT_REPLACE operation +
data

Replaces a workset list object with new data.

OMNET_OBJECT_UPDATE operation +
data

Updates a workset list object with new data.

OMNET_OBJECT_DELETE operation Deletes a specified object from a workset group.

OMNET_OBJECT_MOVE operation Moves an object to a relative position in a workset list.

OMNET_MORE_DATA operation +
data

Sends an operation header plus an object segment in a
data packet. Invoked when an object cannot be sent in a
single buffer.

2.2.5.1 NetMeeting Object Manager Hello

A 'late joiner' object manager instance broadcasts an OMNET_HELLO packet on the well-known

ObManControl (Object Manager Control) channel after attaching to a domain that contains an
incoming call. ObManControl is used by the client to register a workset group. ObManControl also
allows the client to open and examine the contents of workset #0 to discover the names and profiles
of all workset groups existing in a domain. Each receiving object manager instance responds with an

OMNET WELCOME message. This exchange enables a 'late joiner' instance to discover the user IDs of
the other object manager instances in the domain. The 'late joiner' object manager instance later
requests a copy of the ObManControl workset group from one of the responding instances.

116 / 186

[MS-MNPR] - v20160714
Microsoft NetMeeting Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Sender messageType

capsLen

compressionCaps

Sender (2 bytes): The local identifier of the user, which is obtained from the Multipoint
Communication Service (MCS) [T122] layer. For more information about the MCS user ID, see
[T122] section 3 (Definitions) in the ITU-T Recommendation.

messageType (2 bytes): MUST be set to 0x000A.

capsLen (4 bytes): MUST be set to 0x00000004.

compressionCaps (4 bytes): The bitwise OR of OM_CAPS_ bits. MUST be one of the following
values.

Name Value

OM_CAPS_PKW_COMPRESSION 0x00000002

OM_CAPS_NO_COMPRESSION 0x00000004

2.2.5.2 NetMeeting Object Manager Lock Deny

An object manager instance replies to the sender of an OMNET_LOCK_REQ packet with an
OMNET_LOCK DENY packet to indicate an unsuccessful workset/object lock attempt.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Sender messageType

wsGroupID worksetID data1

reserved

Sender (2 bytes): The local identifier of the user, which is obtained from the Multipoint
Communication Service (MCS) [T122] layer. For more information about the MCS user ID, see
[T122] section 3 (Definitions) in the ITU-T Recommendation.

messageType (2 bytes): MUST be set to 0x0017.

wsGroupID (1 byte): Workset group ID (unique to the domain). This value is generated internally
by the NetMeeting Object Manager. It consists of a value from 0 to 63 that is checked for

uniqueness among other NetMeeting nodes present on the network.

worksetID (1 byte): An 8-bit workset ID defined within a workset group.

data1 (2 bytes): Unsigned 16-bit integer correlator.

http://go.microsoft.com/fwlink/?LinkId=94993
http://go.microsoft.com/fwlink/?LinkId=94993

117 / 186

[MS-MNPR] - v20160714
Microsoft NetMeeting Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

reserved (4 bytes): Reserved. MUST be set to zero when sent and MUST be ignored on receipt.

2.2.5.3 NetMeeting Object Manager Lock Grant

An object manager instance replies to the sender of an OMNET_LOCK_REQ packet with an
OMNET_LOCK_GRANT packet to indicate a successful workset/object lock attempt.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Sender messageType

wsGroupID worksetID data1

reserved

Sender (2 bytes): The local identifier of the user, which is obtained from the Multipoint
Communication Service (MCS) [T122] layer. For more information about the MCS user ID, see

[T122] section 3 (Definitions) in the ITU-T Recommendation.

messageType (2 bytes): MUST be set to 0x0016.

wsGroupID (1 byte): The workset group ID (unique to the domain). This value is generated
internally by the NetMeeting Object Manager. It consists of a value from 0 to 63 that is checked
for uniqueness among other NetMeeting nodes present on the network.

worksetID (1 byte): An 8-bit workset ID defined within a workset group.

data1 (2 bytes): An unsigned 16-bit integer correlator.

reserved (4 bytes): Reserved. MUST be set to zero when sent and MUST be ignored on receipt.

2.2.5.4 NetMeeting Object Manager Lock Notify

An object manager instance broadcasts an OMNET_LOCK_NOTIFY packet on the well-known
ObManControl channel after relinquishing a workset lock to another object manager instance.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Sender messageType

wsGroupID worksetID data1

reserved

Sender (2 bytes): The local identifier of the user, which is obtained from the Multipoint
Communication Service (MCS) [T122] layer. For more information about the MCS user ID, see
[T122] section 3 (Definitions) in the ITU-T Recommendation.

messageType (2 bytes): MUST be set to 0x0019.

wsGroupID (1 byte): The workset group ID (unique to the domain). This value is generated

internally by the NetMeeting Object Manager. It consists of a value from 0 to 63 that is checked
for uniqueness among other NetMeeting nodes present on the network.

http://go.microsoft.com/fwlink/?LinkId=94993
http://go.microsoft.com/fwlink/?LinkId=94993

118 / 186

[MS-MNPR] - v20160714
Microsoft NetMeeting Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

worksetID (1 byte): An 8-bit workset ID defined within a workset group.

data1 (2 bytes): An unsigned 16-bit integer correlator used to identify the locking instance.

reserved (4 bytes): Reserved. MUST be set to zero when sent and MUST be ignored on receipt.

2.2.5.5 NetMeeting Object Manager Lock Request

The OMNET_LOCK_REQ packet is the initial message of the NetMeeting Object Manager workset
locking protocol. An object manager instance attempts to lock a workset by enumerating the User IDs
of the other object manager instances currently using its workset group, and by adding these User IDs

to a list of 'expected respondents'. If this list is non-empty, the locking object manager instance sends
an OMNET_LOCK_REQ packet on the workset group channel to each object manager instance in the
list.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Sender messageType

wsGroupID worksetID data1

reserved

Sender (2 bytes): The local identifier of the user, which is obtained from the Multipoint
Communication Service (MCS) [T122] layer. For more information about the MCS user ID, see
[T122] section 3 (Definitions) in the ITU-T Recommendation.

messageType (2 bytes): MUST be set to 0x0015.

wsGroupID (1 byte): The workset group ID (unique to the domain). This value is generated
internally by the NetMeeting Object Manager. It consists of a value from 0 to 63 that is checked

for uniqueness among other NetMeeting nodes present on the network.

worksetID (1 byte): An 8-bit workset ID defined within a workset group.

data1 (2 bytes): Reserved. MUST be set to zero when sent and MUST be ignored on receipt.

reserved (4 bytes): Reserved. MUST be set to zero when sent and MUST be ignored on receipt.

2.2.5.6 NetMeeting Object Manager More Data

An object manager instance sends an OMNET_MORE_DATA packet on the workset group channel to
continue transmission of a workset object. This packet is immediately followed by a data packet

containing a full or partial workset object.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Sender messageType

dataLength

data (variable)

http://go.microsoft.com/fwlink/?LinkId=94993

119 / 186

[MS-MNPR] - v20160714
Microsoft NetMeeting Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

...

Sender (2 bytes): The local identifier of the user, which is obtained from the Multipoint
Communication Service (MCS) [T122] layer. For more information about the MCS user ID, see
[T122] section 3 (Definitions) in the ITU-T Recommendation.

messageType (2 bytes): MUST be set to 0x0046.

dataLength (4 bytes): The total byte length of the following data packet.

data (variable): Data packet containing a full or partial workset object, as specified in section
2.2.5.22 and subsections.

2.2.5.7 NetMeeting Object Manager Object Add

An Object Manager helper instance sends an OMNET_OBJECT_ADD message to a late joiner instance
on its single node channel. For each object in each workset in a workset group, an

OMNET_OBJECT_ADD message adds an object at a relative position in a workset list, as specified by
position and by the Object Manager sequence stamp that is contained in seqStamp_genNumber
and seqStamp_userID.

Depending on the enumerated value of position, (FIRST or LAST), the Object Manager searches
(forward / backward) from the (start / end) of the workset until finding an object that does not have a
(FIRST / LAST) position, or that has a (lower / higher) sequence stamp. The Object Manager inserts
the object to be added (before / after) the found object.

For more information about operations sequencing via sequence stamps, see NetMeeting Object
Manager Sequence Stamps.

Each OMNET_OBJECT_ADD message is followed by a data packet that contains a full or partial workset

object.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Sender messageType

wsGroupID worksetID position flags

seqStamp_genNumber

seqStamp_userID seqStamp_pad1

ObjectID_sequence

ObjectID_creator ObjectID_pad1

totalSize

updateSize

dataLength

data (variable)

http://go.microsoft.com/fwlink/?LinkId=94993

120 / 186

[MS-MNPR] - v20160714
Microsoft NetMeeting Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

...

Sender (2 bytes): The local identifier of the user, which is obtained from the Multipoint
Communication Service (MCS) [T122] layer. For more information about the MCS user ID, see
[T122] section 3 (Definitions) in the ITU-T Recommendation.

messageType (2 bytes): MUST be set to 0x0032.

wsGroupID (1 byte): The workset group ID (unique to the domain). This value is generated
internally by the NetMeeting Object Manager. It consists of a value from 0 to 63 that is checked
for uniqueness among other NetMeeting nodes that are present on the network.

worksetID (1 byte): An 8-bit workset ID that is defined in a workset group.

position (1 byte): An enumerated relative position in the workset that is defined as FIRST or LAST.

Value Meaning

0x02 FIRST

0x01 LAST

flags (1 byte): Reserved. MUST be set to zero when sent and MUST be ignored on receipt.

seqStamp_genNumber (4 bytes): The current workset generation number of the operation
sequence stamp as of the issue time.

seqStamp_userID (2 bytes): The MCS user ID of the issuing object manager instance.

seqStamp_pad1 (2 bytes): Reserved. MUST be set to zero when sent and MUST be ignored on

receipt.

ObjectID_sequence (4 bytes): An unsigned 32-bit integer sequence number (3.1.5.5).

ObjectID_creator (2 bytes): An unsigned 16-bit integer MCS userid of the object manager instance
that created the Object ID.

ObjectID_pad1 (2 bytes): Reserved. MUST be set to zero when sent and MUST be ignored on
receipt.

totalSize (4 bytes): The total byte length of the transferred data.

updateSize (4 bytes): The total byte length of the update data transferred.

dataLength (4 bytes): The total byte length of the following data packet.

data (variable): A data packet that contains a full or partial workset object, as specified in section

2.2.5.22 and its subsections.

2.2.5.8 NetMeeting Object Manager Object Catchup

The OMNET_OBJECT_CATCHUP message is part of the late-joiner message set. In response to an
OMNET_WSGROUP_SEND_REQ message from a late joiner instance, an Object Manager helper
instance sends an OMNET_OBJECT_CATCHUP message to a late joiner instance on its single node
channel for each object in each workset within its workset group.

http://go.microsoft.com/fwlink/?LinkId=94993

121 / 186

[MS-MNPR] - v20160714
Microsoft NetMeeting Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

The OMNET_OBJECT_CATCHUP message contains the OMNET_OBJECT_ADD message format and
specifies extra fields for the position, replace, and update stamps. Except for deleted workset objects,

the OMNET_OBJECT_CATCHUP message is followed by a data packet that contains a workset object.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Sender messageType

wsGroupID worksetID position flags

seqStamp_genNumber

seqStamp_userID seqStamp_pad1

ObjectID_sequence

ObjectID_creator ObjectID_pad1

totalSize

updateSize

positionStamp_genNumber

positionStamp_userID positionStamp_pad1

replaceStamp_genNumber

replaceStamp_userID replaceStamp_pad1

updateStamp_genNumber

updateStamp_userID updateStamp_pad1

dataLength

data (variable)

...

Sender (2 bytes): The local identifier of the user, which is obtained from the Multipoint
Communication Service (MCS) [T122] layer. For more information about the MCS user ID, see

[T122] section 3 (Definitions) in the ITU-T Recommendation.

messageType (2 bytes): MUST be set to 0x0033.

wsGroupID (1 byte): The workset group ID (unique to the domain). This value is generated
internally by the NetMeeting Object Manager. It consists of a value from 0 to 63 that is checked

for uniqueness among other NetMeeting nodes present on the network.

worksetID (1 byte): An 8-bit workset ID that is defined in a workset group.

http://go.microsoft.com/fwlink/?LinkId=94993

122 / 186

[MS-MNPR] - v20160714
Microsoft NetMeeting Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

position (1 byte): An enumerated relative position in the workset that is defined as FIRST or LAST.

Value Meaning

0x02 FIRST

0x01 LAST

flags (1 byte): Reserved. MUST be set to zero when sent and MUST be ignored on receipt.

seqStamp_genNumber (4 bytes): The current workset generation number of the operation
sequence stamp as of the issue time.

seqStamp_userID (2 bytes): The MCS user ID of the issuing object manager instance.

seqStamp_pad1 (2 bytes): Reserved. MUST be set to zero when sent and MUST be ignored on

receipt.

ObjectID_sequence (4 bytes): An unsigned 32-bit integer sequence number (3.1.5.5).

ObjectID_creator (2 bytes): An unsigned 16-bit integer MCS userid of the object manager instance

that created the Object ID.

ObjectID_pad1 (2 bytes): Reserved. MUST be set to zero when sent and MUST be ignored on
receipt.

totalSize (4 bytes): The total byte length of the transferred data.

updateSize (4 bytes): The total byte length of the update transferred data.

positionStamp_genNumber (4 bytes): The workset generation number of the operation position

stamp.

positionStamp_userID (2 bytes): The MCS user ID of the position stamp.

positionStamp_pad1 (2 bytes): Reserved. MUST be set to zero when sent and MUST be ignored on
receipt.

replaceStamp_genNumber (4 bytes): The workset generation number of the operation
replacement stamp.

replaceStamp_userID (2 bytes): The MCS user ID of the operation replacement stamp.

replaceStamp_pad1 (2 bytes): Reserved. MUST be set to zero when sent and MUST be ignored on
receipt.

updateStamp_genNumber (4 bytes): The workset generation number of the operation update
stamp.

updateStamp_userID (2 bytes): The MCS user ID of the operation update stamp.

updateStamp_pad1 (2 bytes): Reserved. MUST be set to zero when sent and MUST be ignored on
receipt.

dataLength (4 bytes): The total byte length of the following data packet.

data (variable): Data packet containing a full or partial workset object, as specified in section
2.2.5.22 and subsections.

123 / 186

[MS-MNPR] - v20160714
Microsoft NetMeeting Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

2.2.5.9 NetMeeting Object Manager Object Delete

An object manager instance broadcasts an OMNET_OBJECT_DELETE message on the workset group
channel to delete a specified object from a workset group. The object is uniquely identified by a

network user ID and a four-byte unsigned integer sequence number. Refer to fields
ObjectID_creator and ObjectID_sequence.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Sender messageType

wsGroupID worksetID position flags

seqStamp_genNumber

seqStamp_userID seqStamp_pad1

ObjectID_sequence

ObjectID_creator ObjectID_pad1

Sender (2 bytes): The local identifier of the user, which is obtained from the Multipoint
Communication Service (MCS) [T122] layer. For more information about the MCS user ID, see
[T122] section 3 (Definitions) in the ITU-T Recommendation.

messageType (2 bytes): MUST be set to 0x0036.

wsGroupID (1 byte): The workset group ID (unique to the domain). This value is generated
internally by the NetMeeting Object Manager. It consists of a value from 0 to 63 that is checked
for uniqueness among other NetMeeting nodes that are present on the network.

worksetID (1 byte): An 8-bit workset ID that is defined in a workset group.

position (1 byte): Reserved. MUST be set to zero when sent and MUST be ignored on receipt.

flags (1 byte): Reserved. MUST be set to zero when sent and MUST be ignored on receipt.

seqStamp_genNumber (4 bytes): The current workset generation number of the operation
sequence stamp as of the issue time.

seqStamp_userID (2 bytes): The MCS user ID of the issuing object manager instance.

seqStamp_pad1 (2 bytes): Reserved. MUST be set to zero when sent and MUST be ignored on
receipt.

ObjectID_sequence (4 bytes): An unsigned 32-bit integer sequence number (3.1.5.5).

ObjectID_creator (2 bytes): An unsigned 16-bit integer MCS userid of the object manager instance

that created the Object ID.

ObjectID_pad1 (2 bytes): Reserved. MUST be set to zero when sent and MUST be ignored on
receipt.

http://go.microsoft.com/fwlink/?LinkId=94993

124 / 186

[MS-MNPR] - v20160714
Microsoft NetMeeting Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

2.2.5.10 NetMeeting Object Manager Object Move

An object manager instance broadcasts an OMNET_OBJECT_MOVE message on the workset group
channel to move an object to a relative position in a workset list, as specified by position and by the

Object Manager sequence stamp that is formed from the ordered values of seqStamp_genNumber.
Depending on the enumerated value of position, (FIRST or LAST), the Object Manager searches
(forward / backward) from the (start / end) of the workset until it finds an object that is not (FIRST /
LAST), or that has a (lower / higher) position stamp. The Object Manager inserts the object to be
moved (before / after) the found object. For more information about relative stamp order, refer to
OMNET_OBJECT_ADD.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Sender messageType

wsGroupID worksetID position flags

seqStamp_genNumber

seqStamp_userID seqStamp_pad1

ObjectID_sequence

ObjectID_creator ObjectID_pad1

Sender (2 bytes): The local identifier of the user, which is obtained from the Multipoint
Communication Service (MCS) [T122] layer. For more information about the MCS user ID, see
[T122] section 3 (Definitions) in the ITU-T Recommendation.

messageType (2 bytes): MUST be set to 0x0037.

wsGroupID (1 byte): The workset group ID (unique to the domain). This value is generated
internally by the NetMeeting Object Manager. It consists of a value from 0 to 63 that is checked

for uniqueness among other NetMeeting nodes present on the network.

worksetID (1 byte): An 8-bit workset ID that is defined in a workset group.

position (1 byte): An enumerated relative position in the workset that is defined as FIRST or LAST.

Value Meaning

0x02 FIRST

0x01 LAST

flags (1 byte): Reserved. MUST be set to zero when sent and MUST be ignored on receipt.

seqStamp_genNumber (4 bytes): The current workset generation number of the operation

sequence stamp as of the issue time.

seqStamp_userID (2 bytes): The MCS user ID of the issuing object manager instance.

seqStamp_pad1 (2 bytes): Reserved. MUST be set to zero when sent and MUST be ignored on
receipt.

http://go.microsoft.com/fwlink/?LinkId=94993

125 / 186

[MS-MNPR] - v20160714
Microsoft NetMeeting Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

ObjectID_sequence (4 bytes): An unsigned 32-bit integer sequence number (3.1.5.5).

ObjectID_creator (2 bytes): An unsigned 16-bit integer MCS userid of the object manager instance

that created the Object ID.

ObjectID_pad1 (2 bytes): Reserved. MUST be set to zero when sent and MUST be ignored on

receipt.

2.2.5.11 NetMeeting Object Manager Object Replace

An object manager instance broadcasts an OMNET_OBJECT_REPLACE message on the workset group

channel to replace an object in a workset list with new object data that is sent in an attached data
packet. The replacement sequence stamp is sent in the seqStamp_genNumber and
seqStamp_userID fields.

For more information about operations sequencing via sequence stamps, refer to NetMeeting Object
Manager Sequence Stamps.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Sender messageType

wsGroupID worksetID position flags

seqStamp_genNumber

seqStamp_userID seqStamp_pad1

ObjectID_sequence

ObjectID_creator ObjectID_pad1

totalSize

dataLength

data (variable)

...

Sender (2 bytes): The local identifier of the user, which is obtained from the Multipoint

Communication Service (MCS) [T122] layer. For more information about the MCS user ID, see
[T122] section 3 (Definitions) in the ITU-T Recommendation.

messageType (2 bytes): MUST be set to 0x0034.

wsGroupID (1 byte): The workset group ID (unique to the domain). This value is generated
internally by the NetMeeting Object Manager. It consists of a value from 0 to 63 that is checked
for uniqueness among other NetMeeting nodes that are present on the network.

worksetID (1 byte): An 8-bit workset ID that is defined in a workset group.

position (1 byte): Reserved. MUST be set to zero when sent and MUST be ignored on receipt.

http://go.microsoft.com/fwlink/?LinkId=94993

126 / 186

[MS-MNPR] - v20160714
Microsoft NetMeeting Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

flags (1 byte): Reserved. MUST be set to zero when sent and MUST be ignored on receipt.

seqStamp_genNumber (4 bytes): The current workset generation number of the operation

sequence stamp as of the issue time.

seqStamp_userID (2 bytes): The MCS user ID of the issuing object manager instance.

seqStamp_pad1 (2 bytes): Reserved. MUST be set to zero when sent and MUST be ignored on
receipt.

ObjectID_sequence (4 bytes): An unsigned 32-bit integer sequence number (3.1.5.5).

ObjectID_creator (2 bytes): An unsigned 16-bit integer MCS userid of the object manager instance
that created the Object ID.

ObjectID_pad1 (2 bytes): Reserved. MUST be set to zero when sent and MUST be ignored on
receipt.

totalSize (4 bytes): The total byte length of the transferred data.

dataLength (4 bytes): The total byte length of the following data packet.

data (variable): The data packet that contains a full or partial workset object, as specified in section
2.2.5.22 and subsections.

2.2.5.12 NetMeeting Object Manager Object Update

An object manager instance broadcasts an OMNET_OBJECT_UPDATE message on the workset group
channel to update an object in a workset list with the new object data that is sent in an attached data
packet.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Sender messageType

wsGroupID worksetID position flags

seqStamp_genNumber

seqStamp_userID seqStamp_pad1

ObjectID_sequence

ObjectID_creator ObjectID_pad1

totalSize

dataLength

data (variable)

...

127 / 186

[MS-MNPR] - v20160714
Microsoft NetMeeting Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Sender (2 bytes): The local identifier of the user, which is obtained from the Multipoint
Communication Service (MCS) [T122] layer. For more information about the MCS user ID, see

[T122] section 3 (Definitions) in the ITU-T Recommendation.

messageType (2 bytes): MUST be set to 0x0035.

wsGroupID (1 byte): The workset group ID (unique to the domain). This value is generated
internally by the NetMeeting Object Manager. It consists of a value from 0 to 63 that is checked
for uniqueness among other NetMeeting nodes present on the network.

worksetID (1 byte): An 8-bit workset ID that is defined in a workset group.

position (1 byte): Reserved. MUST be set to zero when sent and MUST be ignored on receipt.

flags (1 byte): Reserved. MUST be set to zero when sent and MUST be ignored on receipt.

seqStamp_genNumber (4 bytes): The current workset generation number of the operation

sequence stamp as of the issue time.

seqStamp_userID (2 bytes): The MCS user ID of the issuing object manager instance.

seqStamp_pad1 (2 bytes): Reserved. MUST be set to zero when sent and MUST be ignored on
receipt.

ObjectID_sequence (4 bytes): An unsigned 32-bit integer sequence number (3.1.5.5).

ObjectID_creator (2 bytes): An unsigned 16-bit integer MCS user ID of the object manager

instance that created the Object ID.

ObjectID_pad1 (2 bytes): Reserved. MUST be set to zero when sent and MUST be ignored on
receipt.

totalSize (4 bytes): The total byte length of the transferred data.

dataLength (4 bytes): The total byte length of the following data packet.

data (variable): The data packet that contains a full or partial workset object, as specified in section
2.2.5.22 and its subsections.

2.2.5.13 NetMeeting Object Manager Unlock

An object manager instance broadcasts an OMNET_UNLOCK packet on the well-known ObManControl
channel to unlock a workset/object.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Sender messageType

wsGroupID worksetID data1

reserved

Sender (2 bytes): The local identifier of the user, which is obtained from the Multipoint
Communication Service (MCS) [T122] layer. For more information about the MCS user ID, see
[T122] section 3 (Definitions) in the ITU-T Recommendation.

messageType (2 bytes): MUST be set to 0x0018.

http://go.microsoft.com/fwlink/?LinkId=94993
http://go.microsoft.com/fwlink/?LinkId=94993

128 / 186

[MS-MNPR] - v20160714
Microsoft NetMeeting Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

wsGroupID (1 byte): The workset group ID (unique to the domain). This value is generated
internally by the NetMeeting Object Manager. It consists of a value from 0 to 63 that is checked

for uniqueness among other NetMeeting nodes present on the network.

worksetID (1 byte): An 8-bit workset ID defined within a workset group.

data1 (2 bytes): Reserved. MUST be set to zero when sent and MUST be ignored on receipt.

reserved (4 bytes): Reserved. MUST be set to zero when sent and MUST be ignored on receipt.

2.2.5.14 NetMeeting Object Manager Welcome

An object manager instance broadcasts an OMNET WELCOME packet on the well-known ObManControl
channel after (1) attaching to a domain that contains an outgoing call or (2) receiving an
OMNET_HELLO message.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Sender messageType

capsLen

compressionCaps

Sender (2 bytes): The local identifier of the user, which is obtained from the Multipoint
Communication Service (MCS) [T122] layer. For more information about the MCS user ID, see
[T122] section 3 (Definitions) in the ITU-T Recommendation.

messageType (2 bytes): MUST be set to 0x000B.

capsLen (4 bytes): MUST be set to 0x00000004.

compressionCaps (4 bytes): The bitwise OR of OM_CAPS_ bits. The only two bit values allowed are:

Name Value

OM_CAPS_PKW_COMPRESSION 0x00000002

OM_CAPS_NO_COMPRESSION 0x00000004

2.2.5.15 NetMeeting Object Manager Workset Catchup

The OMNET_WORKSET_CATCHUP message is part of the Object Manager late joiner message set. In
response to an OMNET_WSGROUP_SEND_REQ message from a late joiner instance, an Object

Manager helper instance sends an OMNET_WORKSET_CATCHUP message for each workset in a
workset group.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Sender messageType

wsGroupID worksetID position flags

http://go.microsoft.com/fwlink/?LinkId=94993

129 / 186

[MS-MNPR] - v20160714
Microsoft NetMeeting Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

seqStamp_genNumber

seqStamp_userID seqStamp_pad1

ObjectID_sequence

ObjectID_creator ObjectID_pad1

Sender (2 bytes): The local identifier of the user, which is obtained from the Multipoint
Communication Service (MCS) [T122] layer. For more information about the MCS user ID, see
[T122] section 3 (Definitions) in the ITU-T Recommendation.

messageType (2 bytes): MUST be set to 0x0030.

wsGroupID (1 byte): The workset group ID (unique to the domain). This value is generated
internally by the NetMeeting Object Manager. It consists of a value from 0 to 63 that is checked

for uniqueness among other NetMeeting nodes that are present on the network.

worksetID (1 byte): An 8-bit workset ID that is defined in a workset group.

position (1 byte): The low byte of a NET_PRIORITY value. A NET_PRIORITY value indicates the

priority for the workset for WORKSET_NEW/WORKSET_CATCHUP messages. NET_PRIORITY has a
size of two bytes. Priorities are contiguous numbers in the range NET_TOP_PRIORITY=0 and
NETPRIORITY_LOWEST=65535.

flags (1 byte): The high byte of a NET_PRIORITY value.

seqStamp_genNumber (4 bytes): The current workset generation number of the operation
sequence stamp as of the issue time.

seqStamp_userID (2 bytes): The MCS user ID of the issuing NetMeeting Object Manager instance.

seqStamp_pad1 (2 bytes): Reserved. MUST be set to zero when sent and MUST be ignored on
receipt.

ObjectID_sequence (4 bytes): An unsigned 32-bit integer sequence number. For
OMNET_WORKSET_NEW / OMNET_WORKSET_CATCHUP messages, the first byte contains a BOOL
flag that designates whether the workset is persistent. If the flag is set to 0 (false), then the
workset is not persistent. If the flag is set to any value other than 0, then the workset is
persistent.

ObjectID_creator (2 bytes): An unsigned 16-bit integer MCS user ID of the object manager
instance that created the Object ID.

ObjectID_pad1 (2 bytes): Reserved. MUST be set to zero when sent and MUST be ignored on
receipt.

2.2.5.16 NetMeeting Object Manager Workset Clear

An object manager instance broadcasts an OMNET_WORKSET_CLEAR message on the workset group
channel to delete all workset objects that have addition stamps lower than the clear stamp that is
specified by clearStamp_genNumber and clearStamp_userID. For more information about
relative stamp order, refer to OMNET_OBJECT_ADD.

http://go.microsoft.com/fwlink/?LinkId=94993

130 / 186

[MS-MNPR] - v20160714
Microsoft NetMeeting Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Sender messageType

wsGroupID worksetID position flags

clearStamp_genNumber

clearStamp_userID clearStamp_pad1

Sender (2 bytes): The local identifier of the user, which is obtained from the Multipoint
Communication Service (MCS) [T122] layer. For more information about the MCS user ID, see
[T122] section 3 (Definitions) in the ITU-T Recommendation.

messageType (2 bytes): MUST be set to 0x0028.

wsGroupID (1 byte): The workset group ID (unique to the domain). This value is generated
internally by the NetMeeting Object Manager. It consists of a value from 0 to 63 that is checked
for uniqueness among other NetMeeting nodes that are present on the network.

worksetID (1 byte): An 8-bit workset ID that is defined in a workset group.

position (1 byte): Reserved. MUST be set to zero when sent and MUST be ignored on receipt.

flags (1 byte): Reserved. MUST be set to zero when sent and MUST be ignored on receipt.

clearStamp_genNumber (4 bytes): The current workset generation number of the operation
sequence stamp as of the issue time.

clearStamp_userID (2 bytes): The MCS user ID of the issuing object manager instance.

clearStamp_pad1 (2 bytes): Reserved. MUST be set to zero when sent and MUST be ignored on

receipt.

2.2.5.17 NetMeeting Object Manager Workset New

The OMNET_WORKSET_NEW message is used to enumerate each workset in a workset group. For
each workset in its workset group, an Object Manager helper instance sends an
OMNET_WORKSET_NEW message to a late joiner instance on its single node channel.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Sender messageType

wsGroupID worksetID position flags

seqStamp_genNumber

seqStamp_userID seqStamp_pad1

ObjectID_sequence

ObjectID_creator ObjectID_pad1

http://go.microsoft.com/fwlink/?LinkId=94993

131 / 186

[MS-MNPR] - v20160714
Microsoft NetMeeting Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Sender (2 bytes): The local identifier of the user, which is obtained from the Multipoint
Communication Service (MCS) [T122] layer. For more information about the MCS user ID, see

[T122] section 3 (Definitions) in the ITU-T Recommendation.

messageType (2 bytes): MUST be set to 0x0029.

wsGroupID (1 byte): The workset group ID (unique to the domain). This value is generated
internally by the NetMeeting Object Manager. It consists of a value from 0 to 63 that is checked
for uniqueness among other NetMeeting nodes that are present on the network.

worksetID (1 byte): An 8-bit workset ID that is defined in a workset group.

position (1 byte): The low byte of a NET_PRIORITY value. A NET_PRIORITY value indicates the
priority for the workset for WORKSET_NEW/WORKSET_CATCHUP messages. NET_PRIORITY has a
size of two bytes. Priorities are contiguous numbers in the range NET_TOP_PRIORITY=0 and

NETPRIORITY_LOWEST=65535.

flags (1 byte): The high byte of a NET_PRIORITY value.

seqStamp_genNumber (4 bytes): The current workset generation number of the operation
sequence stamp as of the issue time.

seqStamp_userID (2 bytes): The MCS user ID of the issuing object manager instance.

seqStamp_pad1 (2 bytes): Reserved. MUST be set to zero when sent and MUST be ignored on

receipt.

ObjectID_sequence (4 bytes): An unsigned 32-bit integer sequence number. For the
OMNET_WORKSET_NEW / OMNET_WORKSET_CATCHUP messages, the first byte contains a BOOL
flag that designates whether the workset is persistent. If the flag is set to 0 (false), then the
workset is not persistent. If the flag is set to any value other than 0, then the workset is
persistent.

ObjectID_creator (2 bytes): An unsigned 16-bit integer MCS user ID of the object manager

instance that created the Object ID.

ObjectID_pad1 (2 bytes): Reserved. MUST be set to zero when sent and MUST be ignored on
receipt.

2.2.5.18 NetMeeting Object Manager WSGROUP Send Complete

An Object Manager helper instance sends an OMNET_WSGROUP_SEND_COMPLETE message to notify
an Object Manager late joiner instance that it has received a complete copy of the workset group
contents.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Sender messageType

wsGroupID pad1 correlator

Object ID sequence

Object ID creator Object ID pad1

maxObjIDSeqUsed

http://go.microsoft.com/fwlink/?LinkId=94993

132 / 186

[MS-MNPR] - v20160714
Microsoft NetMeeting Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Sender (2 bytes): The local identifier of the user, which is obtained from the Multipoint
Communication Service (MCS) [T122] layer. For more information about the MCS user ID, see

[T122] section 3 (Definitions) in the ITU-T Recommendation.

messageType (2 bytes): MUST be set to 0x0020.

wsGroupID (1 byte): The workset group ID (unique to the domain). This value is generated
internally by the NetMeeting Object Manager. It consists of a value from 0 to 63 that is checked
for uniqueness among other NetMeeting nodes present on the network.

pad1 (1 byte): Reserved. MUST be set to zero when sent and MUST be ignored on receipt.

correlator (2 bytes): A monotonically increasing 2-byte sequence number starting at zero.

Object ID sequence (4 bytes): An unsigned 32-bit integer sequence number.

Object ID creator (2 bytes): An unsigned 16-bit integer MCS userid of the object manager instance

which created the Object ID.

Object ID pad1 (2 bytes): Reserved. MUST be set to zero when sent and MUST be ignored on
receipt.

maxObjIDSeqUsed (4 bytes): Reserved. MUST be set to zero when sent and MUST be ignored on
receipt.

2.2.5.19 NetMeeting Object Manager WSGROUP Send Deny

An Object Manager helper instance sends an OMNET_WSGROUP_SEND DENY message as a negative
response to an OMNET_WSGROUP_SEND_REQ message from an Object Manager late joiner instance.
After receiving this message, the late joiner instance selects a different helper instance to enumerate
the workset group contents.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Sender messageType

wsGroupID pad1 correlator

Object ID sequence

Object ID creator Object ID pad1

maxObjIDSeqUsed

Sender (2 bytes): The local identifier of the user, which is obtained from the Multipoint
Communication Service (MCS) [T122] layer. For more information about the MCS user ID, see
[T122] section 3 (Definitions) in the ITU-T Recommendation.

messageType (2 bytes): MUST be set to 0x0021.

wsGroupID (1 byte): The workset group ID (unique to the domain). This value is generated

internally by the NetMeeting Object Manager. It consists of a value from 0 to 63 that is checked
for uniqueness among other NetMeeting nodes present on the network.

pad1 (1 byte): Reserved. MUST be set to zero when sent and MUST be ignored on receipt.

correlator (2 bytes): A monotonically increasing, 2-byte sequence number starting at zero.

http://go.microsoft.com/fwlink/?LinkId=94993
http://go.microsoft.com/fwlink/?LinkId=94993

133 / 186

[MS-MNPR] - v20160714
Microsoft NetMeeting Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Object ID sequence (4 bytes): An unsigned 32-bit integer sequence number.

Object ID creator (2 bytes): An unsigned 16-bit integer MCS user ID of the object manager

instance that created the Object ID.

Object ID pad1 (2 bytes): Reserved. MUST be set to zero when sent and MUST be ignored on

receipt.

maxObjIDSeqUsed (4 bytes): Reserved. MUST be set to zero when sent and MUST be ignored on
receipt.

2.2.5.20 NetMeeting Object Manager WSGROUP Send Midway

An Object Manager helper instance sends an OMNET_WSGROUP_SEND_MIDWAY message to advise
an Object Manager late joiner instance that its list of worksets currently in use is complete. A helper
instance sends this message after sending one or more OMNET_WORKSET_CATCHUP messages to
inform the late joiner instance of the workset group contents.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Sender messageType

wsGroupID pad1 correlator

Object ID sequence

Object ID creator Object ID pad1

maxObjIDSeqUsed

Sender (2 bytes): The local identifier of the user, which is obtained from the Multipoint

Communication Service (MCS) [T122] layer. For more information about the MCS user ID, see
[T122] section 3 (Definitions) in the ITU-T Recommendation.

messageType (2 bytes): MUST be set to 0x001F.

wsGroupID (1 byte): The workset group ID (unique to the domain). This value is generated
internally by the NetMeeting Object Manager. It consists of a value from 0 to 63 that is checked
for uniqueness among other NetMeeting nodes present on the network.

pad1 (1 byte): Reserved. MUST be set to zero when sent and MUST be ignored on receipt.

correlator (2 bytes): A monotonically increasing 2-byte sequence number starting at zero.

Object ID sequence (4 bytes): An unsigned 32-bit integer sequence number.

Object ID creator (2 bytes): An unsigned 16-bit integer MCS user ID of the object manager

instance that created the Object ID.

Object ID pad1 (2 bytes): Reserved. MUST be set to zero when sent and MUST be ignored on
receipt.

maxObjIDSeqUsed (4 bytes): An unsigned 32-bit integer representing the maximum Object ID
sequence number previously used by the late joiner user ID in the workset group. This value
prevents the re-use of Object IDs.

http://go.microsoft.com/fwlink/?LinkId=94993

134 / 186

[MS-MNPR] - v20160714
Microsoft NetMeeting Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

2.2.5.21 NetMeeting Object Manager WSGROUP Send Request

A late-joiner object manager instance requests a copy of the workset group contents by sending an
OMNET_WSGROUP_SEND_REQ packet at high priority on the user ID channel of an Object Manager

helper instance.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Sender messageType

wsGroupID pad1 correlator

Object ID sequence

Object ID creator Object ID pad1

maxObjIDSeqUsed

Sender (2 bytes): The local identifier of the user, which is obtained from the Multipoint
Communication Service (MCS) [T122] layer. For more information about the MCS user ID, see
[T122] section 3 (Definitions) in the ITU-T Recommendation.

messageType (2 bytes): MUST be set to 0x001E.

wsGroupID (1 byte): The workset group ID (unique to the domain). This value is generated

internally by the NetMeeting Object Manager. It consists of a value from 0 to 63 that is checked
for uniqueness among other NetMeeting nodes present on the network.

pad1 (1 byte): Reserved. MUST be set to zero when sent and MUST be ignored on receipt.

correlator (2 bytes): An unsigned 16-bit integer catchup correlator.

Object ID sequence (4 bytes): An unsigned 32-bit integer sequence number.

Object ID creator (2 bytes): An unsigned 16-bit integer MCS user ID of the object manager

instance that created the Object ID.

Object ID pad1 (2 bytes): Reserved. MUST be set to zero when sent and MUST be ignored on
receipt.

maxObjIDSeqUsed (4 bytes): Reserved. MUST be set to zero when sent and MUST be ignored on
receipt.

2.2.5.22 Object Manager Data Packet Structures

2.2.5.22.1 NetMeeting Object Manager WSGROUP Info

A WSGROUP Info (WORKSET GROUP IDENTIFICATION OBJECT) structure identifies a workset within a
domain. Objects of this form reside in workset #0 of ObManControl (Object Manager Control), known
as the INFO workset.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

length

http://go.microsoft.com/fwlink/?LinkId=94993

135 / 186

[MS-MNPR] - v20160714
Microsoft NetMeeting Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

idStamp

channelID creator

wsGroupID pad1 pad2

functionProfile (16 bytes)

...

...

wsGroupName (32 bytes)

...

...

length (4 bytes): The byte length of this data packet, exclusive of the byte length of this field.

idStamp (4 bytes): An unsigned 32-bit integer initialized to the equivalent of the character literal
'"OMWI"'.

channelID (2 bytes): An unsigned 16-bit integer containing the workset group MCS channel
number.

creator (2 bytes): An unsigned 16-bit integer MCS userid of the object manager instance which
created the workset group.

wsGroupID (1 byte): The workset group ID (unique to the domain).

pad1 (1 byte): For alignment.

pad2 (2 bytes): For alignment.

functionProfile (16 bytes): A NULL-terminated function profile name, of at most 16 characters,
including the NULL. This field MUST contain only ASCII characters between 0x2C and 0x5B. This
range includes all uppercase characters, all digits, and certain punctuation marks.

wsGroupName (32 bytes): A client-supplied NULL-terminated workset group name, of at most 32
characters, including the NULL. This field MUST contain only ASCII characters between0x2C and
0x5B. This range includes all uppercase characters, all digits and certain punctuation marks.

2.2.5.22.2 NetMeeting Object Manager WSGROUP_REG_REC

A WSGROUP_REG_REC (WORKSET GROUP REGISTRATION OBJECTS) structure identifies a node's

usage of a workset group. These objects can reside in any ObManControl (Object Manager Control)
workset. In the case of workset #0, these objects identify a node's usage of the ObManControl
workset group itself. Since all instances of ObMan in a Domain are used, the ObManControl workset
group, the registration objects in workset #0 form a complete list of all the instances of ObMan in a

Domain.

136 / 186

[MS-MNPR] - v20160714
Microsoft NetMeeting Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

length

idStamp

userID status

person (48 bytes)

...

...

handle

length (4 bytes): The byte length of this data packet, exclusive of the byte length of this field.

idStamp (4 bytes): An unsigned 32-bit integer initialized using the following algorithm.

 Initialize four input parameters: X1, X2, X3, and X4. This can be done using any

implementation-specific method. This algorithm MUST be able to accept any generic datatype
as a parameter. This algorithm MUST type cast the parameters as unsigned 32-bit integers
before performing any operations with them.

 Initialize an unsigned, 32-bit integer I to 0.

 Bitwise-OR X1 with I, and store the result in I.

 Left-shift X2 by 8 bits and Bitwise-OR the new value with I. Store the result of the OR

operation in I.

 Left-shift X3 by 16 bits and Bitwise-OR the new value with I. Store the result of the OR
operation in I.

 Left-shift X4 by 24 bits and Bitwise-OR the new value with I. Store the result of the OR
operation in I.

 Initialize idStamp with the value stored in I.

This algorithm can be represented algebraically using the following expression.

 idStamp = X1+X2*256+X3*65536+X4*16777216;

userID (2 bytes): The local identifier of the user, which is obtained from the Multipoint

Communication Service (MCS) [T122] layer. For more information about the MCS user ID, see
[T122] section 3 (Definitions) in the ITU-T Recommendation.

status (2 bytes): An unsigned 16-bit integer state field set to either 1 = CATCHING_UP or 2 =
READY_TO_SEND.

person (48 bytes): The name of the node. MUST be present as an array of UCHAR.

handle (4 bytes): Reserved. MUST be set to zero when sent and MUST be ignored on receipt.

http://go.microsoft.com/fwlink/?LinkId=94993

137 / 186

[MS-MNPR] - v20160714
Microsoft NetMeeting Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

2.2.5.22.3 WB_GRAPHIC

WB_GRAPHIC contains the header that is used on all graphic objects, such as lines, rectangles,
ellipses, and freehand drawings, that are used when representing a whiteboard object.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Length

Type Dataoffset

rectBounds

...

Color Locked

penWidth penStyle

Rect

...

lockPersonID

...

rasterOp smoothed Tooltype

LoadedFromfile loadingClientID

reserved1

reserved2

Length (4 bytes): The total length of the structure plus the length of the variable data that follows
this structure.

Type (2 bytes): The following values indicate the type of compression that is used for the type field.

Value Meaning

TYPE_GRAPHIC_FREEHAND

0x0003

A freehand drawing.

TYPE_GRAPHIC_LINE

0x0004

A line drawing.

TYPE_GRAPHIC_RECTANGLE

0x0005

A rectangle drawing.

TYPE_GRAPHIC_FILLED_RECTANGLE A filled rectangle drawing.

138 / 186

[MS-MNPR] - v20160714
Microsoft NetMeeting Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Value Meaning

0x0006

TYPE_GRAPHIC_ELLIPSE

0x0007

An ellipse drawing.

TYPE_GRAPHIC_FILLED_ELLIPSE

0x0008

A filled ellipse drawing.

TYPE_GRAPHIC_GRAPHIC_TEXT

0x0009

A line text string.

TYPE_GRAPHIC_GRAPHIC_DIB

0x000A

A device-independent bitmap.

Dataoffset (2 bytes): The size, in bytes, of this structure.

rectBounds (8 bytes): A TSHR_RECT16 structure that specifies the left, upper, right, and lower
edges of the drawings bounding rectangle.

Color (3 bytes): A value MAY be present that represents the pen color value that is specified by a
TSHR_COLOR structure.

Locked (1 byte): A value that indicates if a node that is editing the drawing could be 0 (for not
editing) or 1 (for editing).

Value Meaning

0x00 A node is not editing the drawing.

0x01 A node is editing the drawing.

penWidth (2 bytes): A value that indicates the width, in pixels, of the pen.

penStyle (2 bytes): One of the following pen style values MAY be present.

Value Meaning

PS_SOLID

0x0000

The pen is solid.

PS_DASH

0x0001

The pen is dashed.

PS_DOT

0x0002

The pen is dotted.

PS_DASHDOT

0x0003

The pen has alternating dashes and dots.

PS_DASHDOTDOT

0x0004

The pen has alternating dashes and double dots.

PS_NULL

0x0005

The pen is invisible.

PS_INSIDEFRAME

0x0006

The pen is solid. When this pen is used with a bounding rectangle, the dimensions of
the figure are shrunk so that it fits entirely in the bounding rectangle, taking into

139 / 186

[MS-MNPR] - v20160714
Microsoft NetMeeting Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Value Meaning

account the width of the pen. This applies only to geometric pens.

Rect (8 bytes): A TSHR_RECT16 structure that specifies the left, upper, right, and lower edges of the
drawings that define the rectangle.

lockPersonID (8 bytes): The ID of the locking person. This field is maintained internally and
SHOULD NOT be altered.

rasterOp (2 bytes): The raster operation that is used to draw the object.

Value Meaning

R2_BLACK

0x0001

The pixel is always drawn as black.

R2_NOTMERGEPEN

0x0002

The pixel is the inverse of the R2_MERGEPEN color.

R2_MASKNOTPEN

0x0003

The pixel is a combination of the colors that are common to both the screen and the
inverse of the pen.

R2_NOTCOPYPEN

0x0004

The pixel is the inverse of the pen color.

R2_MASKPENNOT

0x0005

The pixel is a combination of the colors that are common to both the pen and the
inverse of the screen.

R2_NOT

0x0006

The pixel is the inverse of the screen color.

R2_XORPEN

0x0007

The pixel is a combination of the colors in the pen and in the screen, but not in both.

R2_NOTMASKPEN

0x0008

The pixel is the inverse of the R2_MASKPEN color.

R2_MASKPEN

0x0009

The pixel is a combination of the colors that are common to both the pen and the
screen.

R2_NOTXORPEN

0x000A

The pixel is the inverse of the R2_XORPEN color.

R2_NOP

0x000B

The pixel SHOULD remain unchanged.

R2_MERGENOTPEN

0x000C

The pixel is a combination of the screen color and the inverse of the pen color.

R2_COPYPEN

0x000D

The pixel always has the color of the pen.

R2_MERGEPENNOT

0x000E

The pixel is a combination of the pen color and the inverse of the screen color.

R2_MERGEPEN

0x000F

The pixel is a combination of the pen color and the screen color.

140 / 186

[MS-MNPR] - v20160714
Microsoft NetMeeting Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Value Meaning

R2_WHITE

0x0010

The pixel is always drawn as white.

smoothed (1 byte): Flag field that MUST be set to 0x0 or 0x1, specifying if the drawing uses the
curve smoothing algorithm.

Name Value

No smoothing 0x00

Smoothing 0x01

Tooltype (1 byte): The type of tool that is used to create this drawing. It SHOULD be one of the

values that are specified in section 2.2.5.22.3.1.

LoadedFromfile (2 bytes): The flag that indicates if this drawing was loaded from a file.

loadingClientID (2 bytes): The local identifier of the user, which is obtained from the Multipoint
Communication Service (MCS) [T122] layer. For more information about the MCS user ID, see
[T122] section 3 (Definitions) in the ITU-T Recommendation.

reserved1 (4 bytes): Reserved. MUST be set to zero and ignored upon receipt.

reserved2 (4 bytes): Reserved. MUST be set to zero and ignored upon receipt.

2.2.5.22.3.1 TOOLTYPE

The TOOLTYPE enumeration indicates the type of tool that is used to create a drawing.

 typedef enum
 {
 TOOLTYPE_SELECT = 0x00,
 TOOLTYPE_ERASER,
 TOOLTYPE_TEXT,
 TOOLTYPE_HIGHLIGHT,
 TOOLTYPE_PEN,
 TOOLTYPE_LINE,
 TOOLTYPE_BOX,
 TOOLTYPE_FILLEDBOX,
 TOOLTYPE_ELLIPSE,
 TOOLTYPE_FILLEDELIPSE
 } TOOLTYPE;

2.2.5.22.4 WB_GRAPHIC_DIB

The WB_GRAPHIC_DIB packet consists of a header that is followed by a raw bitmap.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

header (56 bytes)

...

...

http://go.microsoft.com/fwlink/?LinkId=94993

141 / 186

[MS-MNPR] - v20160714
Microsoft NetMeeting Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

data (variable)

...

header (56 bytes): The basic information of the drawing. A WB_GRAPHIC structure.

data (variable): The raw data definition of a bitmap in memory.

2.2.5.22.5 WB_GRAPHIC_FREEHAND

The WB_GRAPHIC_FREEHAND packet contains TSHR_POINT16 structures.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

header (56 bytes)

...

...

pointCount points (variable)

...

header (56 bytes): The basic information about the drawing. A WB_GRAPHIC structure.

pointCount (2 bytes): The number of TSHR_POINT16 structures contained in points and specified in
units of points.

points (variable): An array of TSHR_POINT16 structures.

2.2.5.22.6 WB_GRAPHIC_TEXT

The WB_GRAPHIC_TEXT packet contains a string along with other data that is used to generate
graphic text.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

header (56 bytes)

...

...

charHeight averageCharWidth

strokeWeight italic underline

strikeout pitch faceName (32 bytes)

142 / 186

[MS-MNPR] - v20160714
Microsoft NetMeeting Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

...

...

... codePage

stringCount text (variable)

...

header (56 bytes): The basic information of the drawing, which consists of a byte array of
WB_GRAPHIC structures.

charHeight (2 bytes): The maximum height of characters in the text string.

averageCharWidth (2 bytes): The average character width in the text string.

strokeWeight (2 bytes): One of the following values.

Value Meaning

0x0000 The font weight is unspecified.

0x0064 Thin font.

0x00C8 Extra-light font.

0x012C Light font.

0x0190 Normal font.

0x01F4 Medium font.

0x0258 Semi-bold font.

0x02BC Bold font.

0x0320 Extra-bold font.

0x0384 Heavy font.

italic (1 byte): A flag value that indicates whether the font is normal (0x00) or italic (0x01).

Name Value

Normal 0x00

Italic 0x01

underline (1 byte): A flag value that indicates whether the font is normal (0x00) or underline

(0x01).

Name Value

Normal 0x00

Underline 0x01

143 / 186

[MS-MNPR] - v20160714
Microsoft NetMeeting Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

strikeout (1 byte): A flag value that indicates whether the font is normal (0x00) or strikeout (0x01).

Name Value

Normal 0x00

Strikeout 0x01

pitch (1 byte): One of the following values.

Value Meaning

Default

0x00

Default font pitch.

Fixed

0x01

Fixed font pitch.

Variable

0x02

Variable font pitch.

faceName (32 bytes): A 32-byte ASCII array that specifies the null-terminated face name of the
font. There can be 31 characters maximum. The string MUST be null-terminated.

codePage (2 bytes): Either the codepage of the font or one of the following codepages.

Value Meaning

WIN_ANSI

0x0000

The codepage is Windows ANSI.

OEM_FONT

0x00FF

The codepage is for an OEM font.

Unknown

0xFFFF

The codepage is unknown.

stringCount (2 bytes): The number of lines of text in text.

text (variable): Null-terminated text strings.

2.2.5.22.7 WB_PAGE_ORDER

The WB_PAGE_ORDER packet contains data that is used to build the page control object that is kept
in the page control workset.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

objectType generationLo

generationHi countPages

pages (250 bytes)

...

144 / 186

[MS-MNPR] - v20160714
Microsoft NetMeeting Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

...

...

objectType (2 bytes): The object type. MUST be set to 0x0002.

generationLo (2 bytes): The generation number of the object (low 16-bits).

generationHi (2 bytes): The generation number of the object (high 16-bits).

countPages (2 bytes): The number of active pages.

pages (250 bytes): The byte array of worksets (in page order).

2.2.5.22.8 WB_LOCK

The WB_LOCK packet contains the type and owner who is currently locking the whiteboard contents.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

objectType lockType

seqStamp_userID pad

objectType (2 bytes): MUST be set to 0x0002.

lockType (2 bytes): MUST be set to one of the following values:

Value Meaning

0x0000 No objects are locked.

0x0001 The entire whiteboard workspace is locked.

0x0002 The objects in the current page are locked.

seqStamp_userID (2 bytes): The MCS user ID of the issuing object manager instance.

pad (2 bytes): Reserved. MUST be set to zero when sent and MUST be ignored on receipt.

2.2.5.22.9 WB_SYNC

The WB_SYNC packet contains synchronization data.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

length

dataOffset currentPage pad

visibleRect

...

145 / 186

[MS-MNPR] - v20160714
Microsoft NetMeeting Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

zoomed

length (4 bytes): The total byte length of this packet.

dataOffset (2 bytes): The offset to data from start.

currentPage (1 byte): The current page identifier.

pad (1 byte): Reserved. MUST be set to zero and ignored upon receipt.

visibleRect (8 bytes): A TSHR_RECT16 structure that defines the area that is visible in the node's
window.

zoomed (2 bytes): The zoom synchronization participants.

2.2.5.22.10 WB_PERSON

The WB_PERSON packet contains the person object data.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

person (48 bytes)

...

...

colorID synced currentPage

visibleRect

...

pointerActive cmgPersonID

... reserved1

... reserved2

...

person (48 bytes): The name of the node. MUST be present as an array of UCHAR.

colorID (2 bytes): The offset to data from start.

synced (1 byte): 0x00 if not synchronized, 0x01 if synchronized.

Name Value

Not synchronized 0x00

Synchronized 0x01

currentPage (1 byte): The current page identifier.

146 / 186

[MS-MNPR] - v20160714
Microsoft NetMeeting Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

visibleRect (8 bytes): A TSHR_RECT16 structure that specifies the left, upper, right, and lower
edges of the region, in order.

pointerActive (1 byte): 0x00 if the pointer is inactive; 0x01 if the pointer is active.

Name Value

Inactive 0x00

Active 0x01

cmgPersonID (4 bytes): The Generic Conference Control (GCC) user ID.

reserved1 (4 bytes): Reserved. MUST be set to zero and ignored on receipt.

reserved2 (4 bytes): Reserved. MUST be set to zero and ignored on receipt.

2.2.6 Voice Communication Protocol

Peer nodes engage in voice communication through the H.245 Protocol: Microsoft Extensions, as
specified in [MS-H245].

2.2.6.1 AudioCapability Element

The AudioCapability element is a Capability element. Capability elements are part of the
capabilityTable field in the TerminalCapabilitySet request packet. The TerminalCapabilitySet
request packet is specified in [H245].

NetMeeting uses the G.723 standard [G723.1] by specifying the g7231 codepoint type in the
AudioCapability element. NetMeeting, however, offers bit-rates between 4.8 kbit/s and 64 kbit/s,
instead of the 24 kbit/s to 40 kbit/s range specified in [H245].

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

ChoiceValue Codepoint

ChoiceValue (1 byte): This field is set to 1 to indicate an Audio capability type, as specified in
[H245].

Codepoint (2 bytes): Indicates the type of audio codepoint in use. NetMeeting sets this field to the
g7231 code point, as specified in [H245].

2.2.7 Whiteboard Protocol Extensions

Microsoft NetMeeting Protocol peers engage in whiteboard data-sharing by exchanging International
Telecommunications Union (ITU) T.126 data, as specified in [T126], except for the following

extensions.

The Microsoft NetMeeting Protocol adds support to T.126 for the exchange of bitmaps and textual

data.

The bitmap data is transferred in T.126 BitmapCreate and BitmapCreateContinue packets. The
nonStandardParameter field of each is used, with nonStandardIdentifier set to the Octet String
"B500534C4269746D617032340" and data set to a BITMAPINFOHEADER structure, as defined in
[T126].

%5bMS-H245%5d.pdf#Section_9f9c1b234d7c4dbb8f0cc83fc216b567
http://go.microsoft.com/fwlink/?LinkId=93032
http://go.microsoft.com/fwlink/?LinkId=124083
http://go.microsoft.com/fwlink/?LinkId=93445

147 / 186

[MS-MNPR] - v20160714
Microsoft NetMeeting Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Up to 2000 bytes of bitmap data can be transferred per message, in the bitmapData field of
BitmapCreate or BitmapCreateContinue.

Textual data is transferred in a T.126 nonStandardPDU message. The nonStandardIdentifier field of
nonStandardParameter contains the Octet String "B5004C5354657874320", and the data field

contains an MSTextPDU structure.

2.2.7.1 MSTextPDU

The MSTextPDU structure provides associated information for text data.

 typedef struct {
 TEXTPDU_HEADER header;
 TEXTPDU_ATTRIB attrib;
 } MSTextPDU;

header: A TEXTPDU_HEADER that describes what to do with the text.

attrib: A TEXTPDU_ATTRIB that defines the attributes of the text.

One or more attributesFlag values in the TEXTPDU_ATTRIB field can be set that correspond to the
textPenColor, textFillColor, textViewState, textZOrder, textAnchorPoint, textFont,
numberOfLines, or textString fields. A field only contains valid data if its attribute flag is set.

If the nonStandardPdu field in TEXTPDU_HEADER is set to textDeletePDU_chosen (31), the attrib
field in MSTextPDU is not present.

2.2.7.2 TEXTPDU_ATTRIB

The TEXTPDU_ATTRIB structure defines the attributes of an MSTextPDU structure.

 typedef struct {
 DWORD attributesFlag;
 ColorRef textPenColor;
 ColorRef textFillColor;
 UINT textViewState;
 UINT textZOrder;
 POINT textAnchorPoint;
 LogFont textFont;
 UINT numberOfLines;
 VARIABLE_STRING textString;
 } TEXTPDU_ATTRIB,
 *PTEXTPDU_ATTRIB;

attributesFlag: The bitmap of flags that describe the changes of an edit operation.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

0 X N A Z V F P

Where the bits are defined as:

Value Description

X The text has changed.

148 / 186

[MS-MNPR] - v20160714
Microsoft NetMeeting Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Value Description

ChangedText

N

ChangedFont

The font has changed.

A

ChangedAnchorPoint

The position of the text has changed.

Z

ChangedZOrder

The Z-order has changed.

V

ChangedViewState

The view state has changed.

F

ChangedFillColor

The fill color has changed.

P

ChangedPenColor

The pen color has changed.

The bits that are marked 0 MUST be zero.

textPenColor: A ColorRef structure ([MS-WMF] section 2.2.2.8) that describes the color of the text.

textFillColor: A ColorRef structure ([MS-WMF] section 2.2.2.8) that describes the fill color.

textViewState: If set to 0x0000, the text is not selected. Otherwise, the text is selected.

textZOrder: The Z-order value of the text.

textAnchorPoint: A POINT structure that describes the position of the text.

textFont: A LogFont structure ([MS-EMF] section 2.2.13) that describes the text font.

numberOfLines: The number of lines that are spanned by the text.

textString: A VARIABLE_STRING structure that contains the text to change.

One or more attributesFlag values in the TEXTPDU_ATTRIB field can be set that correspond to the

textPenColor, textFillColor, textViewState, textZOrder, textAnchorPoint, textFont,
numberOfLines, or textString fields. A field only contains valid data if its attribute flag is set.

2.2.7.2.1 POINT

The POINT structure specifies the coordinates of a point on the x, y axis. x and y are both LONG
integers.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

x

y

%5bMS-WMF%5d.pdf#Section_4813e7fd52d04f42965f228c8b7488d2
%5bMS-EMF%5d.pdf#Section_91c257d7c39d4a369b1f63e3f73d30ca

149 / 186

[MS-MNPR] - v20160714
Microsoft NetMeeting Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

2.2.7.3 TEXTPDU_HEADER

The TEXTPDU_HEADER structure describes what SHOULD be done with the text in an MSTextPDU
structure.

 typedef struct {
 UINT nonStandardPdu;
 UINT textHandle;
 UINT workspaceHandle;
 } TEXTPDU_HEADER,
 *PTEXTPDU_HEADER;

nonStandardPdu: MUST be one of the following values.

Value Meaning

textCreatePDU_chosen

0x1E

The text SHOULD be added.

textDeletePDU_chosen

0x1F

The text SHOULD be deleted.

textEditPDU_chosen

0x20

The text SHOULD be changed.

textHandle: The device context of the text.

workspaceHandle: The device context of the window on which the text is drawn.

If the nonStandardPdu field in TEXTPDU_HEADER is set to textDeletePDU_chosen (31), the attrib
field in MSTextPDU is not present.

2.2.7.4 VARIABLE_STRING

The VARIABLE_STRING structure contains a string.

 typedef struct {
 VARIABLE_STRING_HEADER header;
 CHAR string[];
 } VARIABLE_STRING;

header: A VARIABLE_STRING_HEADER that describes the VARIABLE_STRING structure.

string: An array of ASCII characters.

2.2.7.5 VARIABLE_STRING_HEADER

The VARIABLE_STRING_HEADER structure describes a VARIABLE_STRING structure.

 typedef struct {
 ULONG len;
 TSHR_POINT16 start;
 } VARIABLE_STRING_HEADER;

len: The length, in bytes, of the VARIABLE_STRING structure, including this
VARIABLE_STRING_HEADER structure.

150 / 186

[MS-MNPR] - v20160714
Microsoft NetMeeting Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

start: A TSHR_POINT16 structure that describes the column (in the X field) and the line (in the Y
variable) at which the string SHOULD be placed.

2.2.8 Optional Elements in Q.931 Call SETUP PDU

This section describes optional information elements within an [ITU-Q.931] Call SETUP Request PDU.
This request is responsible for call control. The SETUP Request PDU is sent from the calling user to the
network and from the network to the called user to initiate a call establishment.

[ITU-Q.931] protocol messages have the following general structure. Optional field usage is described

below the following packet diagram.

The Call SETUP Request PDU has following structure:

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

ProtocolDiscriminator CallReference MessageType

Shift (optional) MoreData (optional) SendingComplete
(optional)

CongestionLevel (optional) RepeatIndicator (optional)

SegmentedMessage (optional)

BearerCapability

Cause (optional)

CallIdentity (optional)

CallState (optional)

ChannelIdentification (optional)

ProgressIndicator (optional)

NetworkFacilities (optional)

NotificationIndicator (optional)

Display

Date (optional)

Keypad (optional)

Signal (optional)

InformationRate (optional)

EndToEndTransitDelay (optional)

http://go.microsoft.com/fwlink/?LinkId=136540

151 / 186

[MS-MNPR] - v20160714
Microsoft NetMeeting Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

TransitDelay (optional)

PacketLayerBinaryParams (optional)

PacketLayerWindowSize (optional)

PacketSize (optional)

ClosedUserGroup (optional)

ReverseChargeIndication (optional)

CallingPartyNumber (optional)

CallingPartySubaddress (optional)

CalledPartyNumber (optional)

CalledPartySubaddress (optional)

RedirectingNumber (optional)

TransitNetworkSelection (optional)

RestartIndicator (optional)

LowLayerCompatibility (optional)

HighLayerCompatibility (optional)

Facility (optional)

UserToUser

ProtocolDiscriminator (1 byte): Used as specified in [ITU-Q.931].

CallReference (2 bytes): Used as specified in [ITU-Q.931].

MessageType (1 byte): MUST be set to 0x05 for SETUP.

Shift (2 bytes): Not used. MUST be set to 0 and ignored upon receipt.

MoreData (1 byte): Not used. MUST be set to 0 and ignored upon receipt.

SendingComplete (1 byte): Not used. MUST be set to 0 and ignored upon receipt.

CongestionLevel (2 bytes): Not used. MUST be set to 0 and ignored upon receipt.

RepeatIndicator (2 bytes): Not used. MUST be set to 0 and ignored upon receipt.

SegmentedMessage (4 bytes): Not used. MUST be set to 0 and ignored upon receipt.

BearerCapability (4 bytes): Used as specified in [ITU-Q.931].

152 / 186

[MS-MNPR] - v20160714
Microsoft NetMeeting Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Cause (4 bytes): Not used. MUST be set to 0 and ignored upon receipt.

CallIdentity (4 bytes): Not used. MUST be set to 0 and ignored upon receipt.

CallState (4 bytes): Not used. MUST be set to 0 and ignored upon receipt.

ChannelIdentification (4 bytes): Not used. MUST be set to 0 and ignored upon receipt.

ProgressIndicator (4 bytes): Not used. MUST be set to 0 and ignored upon receipt.

NetworkFacilities (4 bytes): Not used. MUST be set to 0 and ignored upon receipt.

NotificationIndicator (4 bytes): Not used. MUST be set to 0 and ignored upon receipt.

Display (4 bytes): Used as specified in [ITU-Q.931].

Date (4 bytes): Not used. MUST be set to 0 and ignored upon receipt.

Keypad (4 bytes): Not used. MUST be set to 0 and ignored upon receipt.

Signal (4 bytes): Not used. MUST be set to 0 and ignored upon receipt.

InformationRate (4 bytes): Not used. MUST be set to 0 and ignored upon receipt.

EndToEndTransitDelay (4 bytes): Not used. MUST be set to 0 and ignored upon receipt.

TransitDelay (4 bytes): Not used. MUST be set to 0 and ignored upon receipt.

PacketLayerBinaryParams (4 bytes): Not used. MUST be set to 0 and ignored upon receipt.

PacketLayerWindowSize (4 bytes): Not used. MUST be set to 0 and ignored upon receipt.

PacketSize (4 bytes): Not used. MUST be set to 0 and ignored upon receipt.

ClosedUserGroup (4 bytes): Not used. MUST be set to 0 and ignored upon receipt.

ReverseChargeIndication (4 bytes): Not used. MUST be set to 0 and ignored upon receipt.

CallingPartyNumber (4 bytes): Not used. MUST be set to 0 and ignored upon receipt.

CallingPartySubaddress (4 bytes): Not used. MUST be set to 0 and ignored upon receipt.

CalledPartyNumber (4 bytes): Not used. MUST be set to 0 and ignored upon receipt.

CalledPartySubaddress (4 bytes): Not used. MUST be set to 0 and ignored upon receipt.

RedirectingNumber (4 bytes): Not used. MUST be set to 0 and ignored upon receipt.

TransitNetworkSelection (4 bytes): Not used. MUST be set to 0 and ignored upon receipt.

RestartIndicator (4 bytes): Not used. MUST be set to 0 and ignored upon receipt.

LowLayerCompatibility (4 bytes): Not used. MUST be set to 0 and ignored upon receipt.

HighLayerCompatibility (4 bytes): Not used. MUST be set to 0 and ignored upon receipt.

Facility (4 bytes): Not used. MUST be set to 0 and ignored upon receipt.

UserToUser (4 bytes): Used as specified in [ITU-Q.931].

153 / 186

[MS-MNPR] - v20160714
Microsoft NetMeeting Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

2.2.9 Audio/Video Conferencing

NetMeeting includes audio conferencing and video conferencing based on the H.323 [H323-1.2]
infrastructure. NetMeeting interoperates with the generic H.323 protocol. NetMeeting use of H.323

messages, including extensions, is defined in subsections 2.2.9.1, 2.2.9.2, and 2.2.9.3.

The H.323 protocol includes several protocol layers that function in tandem to provide audio and video
transport. The Q.931 [ITU-Q.931] protocol defines the interaction and coordination between H.323
layers:

 Q.931 allows participants to determine compatible formats and successfully interoperate.

 Q.931 is a link layer protocol for establishing connections and framing data, providing part of the
H.323 call control functionality.

 Q.931 provides a method for defining logical channels inside of a larger channel.

 Q.931 messages contain a protocol discriminator that identifies each unique message with a call
reference value and a message type.

 The Q.931 protocol resides within H.225.0 [H225]. The H.225.0 layer specifies how Q.931
messages are received and processed.

 Q.931 messages contain audio/video conference data. For more information, see [H323-1.2], [H225],

and [ITU-Q.931].

2.2.9.1 User-User Signalling Information Element

The NetMeeting protocol sends the User-User Signalling Information Element specified in [ITU-Q.931]
section 4.5.30. This element carries information that is not interpreted by the network. This

information is delivered transparently to remote user(s).

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Information Element
identifier

Length Protocol Discriminator

Information Element identifier (1 byte): Defines the information element type. MUST be set to
0x08 for user-user signaling.

Length (2 bytes): Length of user-user contents. The NetMeeting protocol does not include user-user
contents. This field MUST be set to zero.

Protocol Discriminator (1 byte): Indicates the user protocol within the user information element.
The NetMeeting protocol sets this field to 0x00 for user-specific protocol, as specified in [ITU-
Q.931] section 4.5.30.

2.2.9.2 nonStandardData Structure

The nonStandardData structure is part of the H.323 [H323-1.2] protocol. NetMeeting uses the
nonStandardData structure to discover the status of nonstandard feature support.

The nonStandardData field consists of an identity and a set of parameters coded as an octet string,
as specified in [H225] Annex H .

http://go.microsoft.com/fwlink/?LinkId=159768
http://go.microsoft.com/fwlink/?LinkId=136540
http://go.microsoft.com/fwlink/?LinkId=159708
http://go.microsoft.com/fwlink/?LinkId=136540
http://go.microsoft.com/fwlink/?LinkId=159768
http://go.microsoft.com/fwlink/?LinkId=159708

154 / 186

[MS-MNPR] - v20160714
Microsoft NetMeeting Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

t35CountryCode t35Extension manufacturerCode

... DeterminantLength BinaryLargeObject (60 bytes)

...

...

...

t35CountryCode (2 bytes): Country code, as specified in [H323-1.2].

t35Extension (1 byte): The t35extension field contains an assigned provider code.

manufacturerCode (2 bytes): Manufacturer code, as specified in [H323-1.2].

DeterminantLength (1 byte): Length of the BinaryLargeObject field. MUST be set to 60 bytes.

BinaryLargeObject (60 bytes): A 60-byte octet string. This field includes additional, optional fields
that allow participants to determine the nonstandard feature support of other participants.

The BinaryLargeObject field has the following structure.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

NONSTANDARD_DATA_TYPE

SIZE_OF_APPLICATION_DATA

Reserved0

H323_UDF_FLAG

UNIQUE_NODE_GUID (16 bytes)

...

...

GUID string size for next parameter

LOCAL_GUID (16 bytes)

...

...

Reserved1

155 / 186

[MS-MNPR] - v20160714
Microsoft NetMeeting Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

...

NONSTANDARD_DATA_TYPE (4 bytes): A 32-bit unsigned integer. MUST be set to 0x0002.
This value indicates that the BinaryLargeObject describes an APPLICATION_DATA
structure.

SIZE_OF_APPLICATION_DATA (4 bytes): A 32-bit unsigned integer. MUST be set to 0x0028.

Reserved0 (4 bytes): Reserved. MUST be set to zero and MUST be ignored upon receipt.

H323_UDF_FLAG (4 bytes): A 32-bit unsigned integer. Indicates the conference state. Indicates
whether or not the conference supports video, audio, and the call state.

UNIQUE_NODE_GUID (16 bytes): A 16-byte GUID value, as specified in [MS-DTYP] section
2.3.4.2. MUST be set to "{74423881-cc84-11d2-b4e3-00a0c90d0660}" to indicate the

NetMeeting protocol.

GUID string size for next parameter (4 bytes): A 32-bit unsigned integer. MUST be set to 16
bytes (0x0010).

LOCAL_GUID (16 bytes): A 16-byte GUID value, as specified in [MS-DTYP] section 2.3.4.2.
Uniquely identifies the local participant.

Reserved1 (8 bytes): Reserved. MUST be set to zero and MUST be ignored upon receipt.

2.2.9.3 Alerting-UUIE Response PDU

The alerting response PDU is the part of the H.323 [H323-1.2] protocol that supports of the calling
party's alert information during an incoming call.

The alerting information element is specified in [H225] section 7.3.1 Alerting.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

ProtocolIdentifier destinationInfo

h245Address (optional) callIdentifier

h245SecurityMode (optional) Tokens (optional)

cryptoTokens (optional) fastStart (optional)

ProtocolIdentifier (2 bytes): This field identifies the protocol version, as specified in [H225] section
7.3.1 Alerting. NetMeeting sets this field to 0x0080 to indicate the H.225 protocol.

destinationInfo (2 bytes): Contains an EndpointType, as specified in [H225] section 7.3.1 Alerting.

h245Address (2 bytes): A specific transport address upon which to establish signaling, as specified
in [H225] section 7.3.1 Alerting. This field MAY be used with the NetMeeting protocol.<27>

callIdentifier (2 bytes): A globally unique call identifier, as specified in [H225] section 7.3.1

Alerting.

h245SecurityMode (2 bytes): An acceptable security mode, as specified in [H225] section 7.3.1
Alerting. This field MAY be used with the NetMeeting protocol.<28>

%5bMS-DTYP%5d.pdf#Section_cca2742956894a16b2b49325d93e4ba2
http://go.microsoft.com/fwlink/?LinkId=159768
http://go.microsoft.com/fwlink/?LinkId=159708

156 / 186

[MS-MNPR] - v20160714
Microsoft NetMeeting Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Tokens (2 bytes): This data field is specified in [H225] section 7.3.1 Alerting. This field MAY be used
with the NetMeeting protocol.<29>

cryptoTokens (2 bytes): This data field is specified in [H225] section 7.3.1 Alerting. This field MAY
be used with the NetMeeting protocol.<30>

fastStart (2 bytes): Describes media channels, as specified in [H225] section 7.3.1 Alerting. This
field MAY be used with the NetMeeting protocol.<31>

157 / 186

[MS-MNPR] - v20160714
Microsoft NetMeeting Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

3 Protocol Details

3.1 Peer-to-Peer Protocol Details

3.1.1 Abstract Data Model

There are no changes in the Microsoft NetMeeting Protocol from the abstract data model that is
defined in [T120].

3.1.2 Timers

No timers are specified in the [T120] protocol. Microsoft NetMeeting Protocol implementations MAY
use a connection time-out mechanism.<32>

3.1.3 Initialization

There are no changes in initialization procedure from those that are defined in [T120].

3.1.4 Higher-Layer Triggered Events

None.

3.1.5 Processing Events and Sequencing Rules

Malformed, unrecognized, and out-of-sequence packets MUST be ignored by the host and the client.

3.1.5.1 S20 Protocol MCS Channel

Share v2.0 (S20) is the protocol that is used by Microsoft NetMeeting. It is functionally similar to

T.120 but is an earlier legacy protocol.

The S20 protocol MCS channel provides session management for application-sharing between nodes in

a share session. The S20 protocol provides the session establishment for application-sharing, and
Multipoint Communication Service (MCS) provides the broadcast transport for the S20 protocol.

The S20 protocol functions on the distributed model: one node (the creator node) creates the share
session and other nodes join the share session. Each node builds its own share roster and keeps the
roster locally. Each roster is built from received S20_RESPOND packets. After a node joins the share
session, it can also share its local application with the other nodes in the share session.

The S20 protocol is used on each node in a session share to learn all the names and capabilities of
nodes that participate in the share session. Nodes that request application-sharing send control and
data packets via the S20 protocol. The S20 protocol sends the received control and data packets to
MCS. The S20 protocol also retrieves application-sharing control and data packets from MCS, and
forwards application and control data packets from MCS.

For interoperability, the S20 protocol MCS channel is designed to allow rudimentary communication
with legacy application-sharing clients. The preferred procedure for establishing a new T.128

application-sharing session is to use the advancements that are available through T.124 Generic
Conference Control (GCC) services, rather than the legacy S20 protocol.

The following table lists the S20 protocol session establishment control packets.

http://go.microsoft.com/fwlink/?LinkId=93311
http://go.microsoft.com/fwlink/?LinkId=93311
http://go.microsoft.com/fwlink/?LinkId=93311

158 / 186

[MS-MNPR] - v20160714
Microsoft NetMeeting Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Packet Name
Packet
Type Description of Packet Function

S20_CREATE Control
packet

Creates a new application-sharing session.

S20_JOIN Control
packet

Joins an existing share session.

S20_RESPOND Control
packet

Responds to an S20_CREATE, S20_JOIN, or S20_RESPOND message.

S20_DELETE Control
packet

Removes a node from a share session.

S20_LEAVE Control
packet

Used by a node to leave a share session.

S20_END Control
packet

Used by a share creator node to end a share session.

S20_DATA Data packet Used by any node as a general transport packet (part of the S20 data packet
payload).

S20_COLLISION Control
packet

Used to inform another node that is attempting to create a share that it is
already created.

3.1.5.1.1 Standard Connection Establishment

The goal of the Standard Connection Establishment sequence is to exchange client and host settings
and to negotiate common settings to use for the duration of the connection. This allows input,
graphics, and other data to be exchanged and processed between client and host. Standard
Connection Establishment is shown in the following figure.

All protocol data units (PDUs) in the client-to-host direction MUST be sent in the specified order. All
PDUs in the host-to-client direction MUST be sent in the specified order. Sending client-to-host PDUs
before host-to-client PDUs is not required. PDUs MAY be sent concurrently as long as the sequencing
in either direction is maintained.

159 / 186

[MS-MNPR] - v20160714
Microsoft NetMeeting Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Figure 3: NetMeeting Protocol standard connection establishment

The Standard Connection Establishment sequence can be divided into three phases:

1. Connection Initiation: The client initiates the connection by sending the host a class 0 X.224
Connection Request PDU ([MS-RDPBCGR] section 2.2.1.1). The host responds with a class 0 X.224
Connection Confirm PDU ([MS-RDPBCGR] section 2.2.1.2).

From this point, all subsequent data sent between client and host is wrapped in an [X224] data
PDU.

2. Basic Settings Exchange: Basic settings are exchanged between the client and host by using the

MCS Connect Initial PDU ([MS-RDPBCGR] section 2.2.1.3) and the MCS Connect Response PDU
([MS-RDPBCGR] section 2.2.1.4). The MCS Connect Initial PDU contains a Generic Conference
Control (GCC) Conference Invite Request. The MCS Connect Response PDU contains a GCC
Conference Invite Response.

These two GCC packets contain concatenated blocks of settings data (such as conference name,

node ID, and various privileges) that are utilized by client and host.

3. Channel Connection: The client sends an MCS Erect Domain Request PDU ([MS-RDPBCGR]

section 2.2.1.5) followed by an MCS Attach User Request PDU ([MS-RDPBCGR] section 2.2.1.6) to
attach the primary user identity to the MCS domain. The host responds with an MCS Attach User
Confirm PDU ([MS-RDPBCGR] section 2.2.1.7) containing the user channel ID. The client then
proceeds to join the user channel, the input/output (I/O) channel, and all of the static virtual
channels (the I/O and static virtual channel IDs are obtained from the data embedded in the GCC
packets) by using multiple MCS Channel Join Request PDUs ([MS-RDPBCGR] section 2.2.1.8). The

%5bMS-RDPBCGR%5d.pdf#Section_5073f4ed1e9345e1b0396e30c385867c
http://go.microsoft.com/fwlink/?LinkId=90588

160 / 186

[MS-MNPR] - v20160714
Microsoft NetMeeting Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

host confirms each channel with an MCS Channel Join Confirm PDU ([MS-RDPBCGR] section
2.2.1.9). The client sends an MCS Channel Join Request PDU only after it has received the MCS

Channel Join Confirm PDU for the previously sent request.

From this point, all subsequent data sent from the client to the host is wrapped in an MCS Send

Data Request PDU. Data sent from the host to the client is wrapped in an MCS Send Data
Indication PDU. This is in addition to the data being wrapped by an X.224 Data PDU [X224].

Besides input and graphics data, other data that can be exchanged between client and host after the
connection has been established include connection management information and virtual channel
messages (exchanged between client-side plug-ins and host-side applications).

Connection details are covered in [T124] section 7 and [T125] section 11.

3.1.5.1.2 Sequencing

A typical sequence for a host that creates a session is as follows.

http://go.microsoft.com/fwlink/?LinkId=90542
http://go.microsoft.com/fwlink/?LinkId=90543

161 / 186

[MS-MNPR] - v20160714
Microsoft NetMeeting Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Figure 4: Sequencing as a host creates a session

A typical sequence for a client that takes control of a session is as follows.

162 / 186

[MS-MNPR] - v20160714
Microsoft NetMeeting Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Figure 5: Sequencing as a client takes control of a session

The following table shows the detailed descriptions of the layer packet.

Packet Name Description

S20_CREATE Creates a new application-sharing session.

S20_JOIN Joins an existing application-sharing session.

S20_RESPOND Responds to an S20_CREATE or S20_JOIN message. Each host or client that receives the
S20_RESPOND packets from the other host or client MUST add each sender node to its local
share roster. If one of the participating nodes already has a node in its share roster, it MUST
not respond to the S20_RESPOND packet but MUST update its share roster with only the name
and capabilities of the sender node.

S20_DELETE Removes a client from an application-sharing session. After sending S20_DELETE, the host
MUST remove the client from its local share rosters and the client MUST destroy its local share
roster and MUST leave the application-sharing session.

S20_LEAVE Ends the participation of the sending client in an application-sharing session. After sending
S20_LEAVE, the host MUST remove the client from its local share rosters and the client MUST
destroy its local share roster and MUST leave the application-sharing session.

S20_END Ends an application-sharing session. After sending S20_END, the host and client MUST delete
their local share roster and leave the application-sharing session.

S20_COLLISION Indicates that a share already exists with the referenced correlator.

163 / 186

[MS-MNPR] - v20160714
Microsoft NetMeeting Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Packet Name Description

S20_DATA Sends data to an application-sharing session. S20_DATA MUST be sent to the nodes present in
the application-sharing session only after they complete the S20_CREATE and S20_RESPOND
negotiations.

Examples of S20 events can be found in Protocol Examples (section 4)

3.1.5.1.3 Interaction between S20 Protocol and MCS

Interactions between the Multipoint Communication Service (MCS) and S20 protocol for starting a
share session can be summarized as follows:

 S20 attaches itself through the MCS_ATTACH_USER function to the MCS session and waits for the
MCS_ATTACH_CONFIRM event.

 When the S20 protocol node receives the MCS_ATTACH_CONFIRM event, it joins its local channel
and the S20 protocol node broadcast channel through the MCS_CHANNEL_JOIN function.

 After the S20 protocol node receives both MCS_CHANNEL_JOIN_CONFIRM events, one for its local
channel and the other for the S20 protocol broadcast channel, it starts the S20 protocol state

machine.

Interactions between MCS and the S20 protocol for leaving (ending) a share session can be
summarized as follows:

 The S20 protocol node leaves (in the case of a non-creator node) or ends (in the case of the
creator node) the share session.

 The S20 protocol node leaves its local channel and the S20 protocol broadcast channel through
MCS_CHANNEL_LEAVE.

 The S20 protocol node detaches itself through MCS_DETACH_USER from the MCS session.

MCS provides the broadcast transport services for the Share v2.0 (S20) protocol.

3.1.5.1.4 MCS Broadcast Transport Service Functions for S20 Protocol

Nodes use the following MCS functions for the broadcast transport service for the S20 protocol.

Note A "node" in S20 protocol usage is a "user" in MCS. Also, the "MCS Top Provider" is the creator
node of an MCS session. The MCS session-creator node can be different from an S20 share-creator

node. The MCS session-creator node creates the MCS session. The S20 share-creator node creates the
application-sharing session.

Function Description

MCS_ATTACH_USER Attaches the node to the MCS session. The S20 protocol node MUST use this function to
attach the node to the session before it can create a share session.

MCS_DETACH_USER Detaches the node from the MCS session. The S20 protocol node MUST use this function
to detach itself from the session. This SHOULD happen after a node leaves or ends an
application-sharing session.

MCS_SEND_DATA Sends data to another node or all the nodes in the MCS session. The S20 protocol node
uses this function to send all S20 protocol control and data packets.

MCS_CHANNEL_JOIN Joins a channel in the MCS session. In MCS, every node (user) is associated with a
channel automatically. In order for this node to receive data, the node MUST join its
local channel. A node in the S20 protocol needs to join its local channel and the S20
protocol node broadcast channel before it can send any S20 protocol control and data

164 / 186

[MS-MNPR] - v20160714
Microsoft NetMeeting Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Function Description

packets.

MCS_CHANNEL_LEAVE Leaves a channel in the MCS session. A node in the S20 protocol needs to leave its local
channel and the S20 protocol node broadcast channel after leaving or ending the
application-sharing session.

3.1.5.1.4.1 MCS Broadcast Transport Service Events for the S20 Protocol

According to network activities (such as incoming data, new user attach, user detach, and time-out),
MCS sends the following events (notifications) to the S20 protocol nodes.

Event (Notification) Description

MCS_ATTACH_CONFIRM A node receives an MCS_ATTACH_CONFIRM event after it successfully
attaches itself to the MCS session. The S20 protocol node MUST attach

itself to the MCS session and wait for this confirmation before it can join
its local and S20 protocol broadcast channels.

MCS_DETACH_INDICATION A node can be detached voluntarily or involuntarily. A node can detach
itself voluntarily from the session by using MCS_DETACH_USER. A node
can be detached involuntarily from the session if the MCS top provider
deletes this node or its parent node, or if the TCP connection to this node
or its parent node times out or shuts down unexpectedly. In general, this
MCS_DETACH_INDICATION event means one of the following three
possibilities:

 This node has been forced out. This is the case when the user ID in
the event is equal to this node's user ID.

 A remote node has detached. This is the case when the event has a
single user ID that is not equal to this node's user ID.

 A set of remote nodes has been detached. This is the case when the
event contains a set of user IDs and none of them is equal to this
node's user ID.

MCS_CHANNEL_JOIN_CONFIRM A node receives this MCS_CHANNEL_JOIN_CONFIRM event after it
successfully joins a channel. The S20 protocol receives two such events:

 Joining its local channel.

Note Joining the local channel is required by MCS. Every node is
required to join its local channel in order to receive data that is sent
to this node.

 Joining the S20 protocol broadcast channel.

MCS_CHANNEL_LEAVE_INDICATION A node receives this MCS_CHANNEL_LEAVE_INDICATION event when it
voluntarily leaves this channel through the MCS_CHANNEL_LEAVE
function, or it is forced to leave this channel. In the S20 protocol, a node
can be forced to leave the S20 protocol broadcast channel by the
application-sharing creator; in which case, this node SHOULD detach itself
from MCS and terminate the share session locally.

MCS_SEND_INDICATION This event is triggered when another established node transmits an S20
protocol packet to this session. It can be an S20 protocol packet of any
type, for instance, S20_CREATE. The S20 protocol packet is contained
within the payload of the MCS data packet.

165 / 186

[MS-MNPR] - v20160714
Microsoft NetMeeting Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

3.1.5.1.4.1.1 MCS Handling of Network Transmission, Time-outs, and Retransmissions

All the network transmission time-outs and retransmissions are specified within MCS. If a time-out

causes the TCP connection to shut down, a user-detach indication with the lost nodes' user IDs MUST
be broadcast by MCS. The S20 protocol on live nodes SHOULD receive this user-detach indication and
remove the lost nodes from the live nodes' share rosters. For the lost nodes themselves, their local
MCS providers MUST send a user-detach indication locally to the S20 protocol node. Then the S20
protocol node in the lost nodes MUST terminate the share session locally.

The interaction between MCS and the S20 protocol for a node that leaves normally or abnormally (for
example, due to TCP time-out) can be summarized in the following steps. For the S20 protocol, it

cannot tell whether a node leaves normally or abnormally. All S20 protocol nodes receive a
MCS_DETACH_INDICATION event from MCS.

 After receiving a user-detach MCS_DETACH_INDICATION event that has a set of user IDs, the S20
protocol node MUST check to see if the set contains the nodes's user ID.

 If the node's user ID is in the set, this node is forced out, and the S20 protocol MUST terminate
the share session locally.

 If the node's user ID is not in the set, the S20 protocol removes the node (with matching user ID
in the set) from the share roster locally. The MCS session MUST remove the node with matching
user ID.

A node can be deleted by the MCS top provider. This happens when a node receives a user-detach
MCS_DETACH_INDICATION event. In this case, the S20 protocol node MUST destroy the share locally.
A node can also be forced out by the share creator. This happens when a node receives an
MCS_CHANNEL_LEAVE_INDICATION event, but this node did not leave the channel voluntarily through

the MCS_CHANNEL_LEAVE function. In this case, the S20 protocol node MUST destroy the share
locally and detach itself through the MCS_DETACH_USER function from the MCS session.

3.1.5.2 State Machine Control State Transitions

The state machine for the S20 protocol has seven transitions between the four control states. The

following table and diagram illustrate these seven transitions.

Control State
Transition Description

1 The session creator node sends an S20_CREATE packet, or a new node sends an S20_JOIN
packet.

2 A node receives an S20_CREATE packet from the creator node.

3 A node receives an S20_RESPOND packet from another node.

4 A node receives an S20_RESPOND packet from another node.

5 The creator node sends an S20_END packet or receives an S20_COLLISION packet. This
transition also occurs when a non-creator node sends an S20_LEAVE packet or receives either
an S20_END packet, an S20_DELETE packet, or an S20_COLLISION packet.

6 The creator node sends an S20_END packet or receives an S20_COLLISION packet. This
transition also occurs when a non-creator node sends an S20_LEAVE packet or receives either
an S20_END packet, an S20_DELETE packet, or an S20_COLLISION packet.

7 A node sends an S20_LEAVE packet or receives either an S20_END packet, S20_DELETE
packet, or an S20_COLLISION packet.

166 / 186

[MS-MNPR] - v20160714
Microsoft NetMeeting Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

The diagram in figure 5 illustrates the control flow of these seven transitions. Note that any requests
sent out of order (for example, S20_JOIN while in the Share State) are ignored and discarded.

Figure 6: S20 protocol control state transitions

3.1.5.3 NetMeeting Object Manager Initial Join Protocol

During the initial connecting sequence of two NetMeeting nodes, a minimal Object Manager packet
exchange is carried out between the two nodes. The first node created in the domain is considered the

host. The second node created and connecting to the first node is considered a joining client. The
NetMeeting Object Manager implements a joiner protocol to bring the joining client instance up to date
with the current contents of the host's workset group. When a NetMeeting client registers with a host's
workset group that exists in a domain, the client is treated as a joiner for the workset group.

The joiner instance sends a message to the host to announce its arrival and receives one or more
replies from the host instance.

The joiner object manager instance:

1. Sends an OMNET_WORKSET_NEW message indicating that a new joiner is attempting to join the
workset group. It sets the sender value to 0 indicating the beginning of a "join" operation.

2. Requests to join the host's workset group channel by broadcasting the OMNET_HELLO message.

3. Waits for the host instance to respond with an OMNET_WELCOME message.

167 / 186

[MS-MNPR] - v20160714
Microsoft NetMeeting Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

4. Sends a high-priority OMNET_WSGROUP_SEND_REQ message to the host on its user ID channel
requesting INFO Workset (Workset #0).

5. Receives the host's INFO Workset (Workset #0).

6. Examines the Object Manager's INFO Workset and determines the workset group MCS channel ID

and the MCS user ID of the host instance from which to request a workset group copy.

7. Sends an OMNET_OBJECT_UPDATE to indicate that Workset #0 retrieval is complete.

8. Sends an OMNET_WELCOME to the host.

9. Retrieves additional workset groups found in the INFO Workset (Workset #0).

The Host Manager Instance:

 Receives the OMNET_WSGROUP_SEND_REQ message.

 Marks its copy of the workset group as non-discardable.

 The joiner then broadcasts an OMNET_LOCK_REQ to the workset group, ensuring that all other
Object Manager instances in the domain keep their local workset group copies.

 Sends the first workset in the workset group using OMNET_OBJECT_ADD,
OMNET_WORKSET_CATCHUP, OMNET_WSGROUP_SEND_MIDWAY, and
OMNET_WSGROUP_SEND_COMPLETE.

 For each object in each workset within the workset group, sends one OMNET_OBJECT_ADD

message to the late joiner on its single node channel.

 Sends an OMNET_WSGROUP_SEND_COMPLETE message to advise the late joiner that it has
caught up with the state of the workset group as of the initial join time.

 Sends an OMNET_OBJECT_UPDATE to indicate that workset retrieval is complete.

3.1.5.3.1 Sequencing

The following illustration describes a typical join sequence. In this illustration, the host initiated the

meeting.

168 / 186

[MS-MNPR] - v20160714
Microsoft NetMeeting Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Figure 7: Typical sequencing during the arrival of a joiner.

In addition, other NetMeeting Object Manager events might take place during this operation. For

example, an OMNET_LOCK_DENY or OMNET_LOCK_NOTIFY can be issued in response to the
OMNET_LOCK_REQ. Refer to section 2.2.5, NetMeeting Object Manager, for a complete list of all
possible NetMeeting Object Manager packet request/response events.

3.1.5.4 NetMeeting Object Manager Late Joiner Protocol

The NetMeeting Object Manager implements the late joiner protocol to bring a late-joining instance up
to date with the current contents of the workset group. When a NetMeeting client registers with a
workset group that exists in a domain, the client is treated as a late joiner for the workset group.

The late joiner instance sends a message to the domain to announce its arrival, and receives one or
more replies from the current domain instances. Next, the late joiner instance selects the first
responding instance as its helper. The helper instance polls the other domain instances, assembles a

current copy of the workset, and sends it to the late joiner.

The late joiner object manager instance:

1. Sends an OMNET_WORKSET_NEW message indicating that a new late joiner is attempting to join
the workset group. It sets the "sender" value to 0 indicating the beginning of a "join" operation.

169 / 186

[MS-MNPR] - v20160714
Microsoft NetMeeting Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

2. Requests to join the workset group channel by broadcasting the OMNET_HELLO message and
waiting for replies.

3. Waits for one or more current instances to respond with an OMNET_WELCOME message.

4. Selects the first responding instance as its helper, and sends a high priority

OMNET_WSGROUP_SEND_REQ message to the helper on its user ID channel.

5. Examines the Object Manager workset group and determines the workset group MCS channel ID
and the MCS user ID of an instance from which to request a workset group copy.

6. Unlocks the Object Manager workset group by broadcasting an OMNET_UNLOCK message at low
priority on the Object Manager control channel.

The helper object manager instance:

1. Receives the OMNET_WSGROUP_SEND_REQ message.

2. Marks its copy of the workset group as not discardable.

3. Examines the workset and determines the MCS user IDs of the object manager instances that
already have copies of the workset group.

4. The helper then broadcasts an OMNET_LOCK_REQ to the workset group, ensuring that all other
object manager instances in the domain keep their local workset group copies.

5. Sends the first workset in the workset group using OMNET_WORKSET_CATCHUP,

OMNET_WSGROUP_SEND_MIDWAY, and OMNET_WSGROUP_SEND_COMPLETE.

6. For each additional workset in the workset group, sends one OMNET_WORKSET_NEW message to
the late joiner on its single-node channel.

7. For each object in each workset within the workset group, sends one OMNET_OBJECT_ADD
message to the late joiner on its single node channel.

8. Sends an OMNET_WSGROUP_SEND_COMPLETE message to advise the late joiner that it has
caught up with the state of the workset group as of the initial join time.

3.1.5.4.1 Sequencing

The following illustration describes a typical late joiner sequence. In this illustration, Host-A initiated a
meeting and Client-B had previously established a connection with Host-A. At a later time, Client-C
joins the meeting. The letters in parenthesis indicate where the packet originated:

170 / 186

[MS-MNPR] - v20160714
Microsoft NetMeeting Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Figure 8: Typical sequencing during the arrival of a late joiner

In addition, other NetMeeting Object Manager events might take place during this operation. For
example, an OMNET_LOCK_DENY or OMENT_LOCK_NOTIFY can be issued in response to the
OMNET_LOCK_REQ. Refer to section 2.2.5, NetMeeting Object Manager, for a complete list of all
possible NetMeeting Object Manager packet request/response events.

3.1.5.5 NetMeeting Object Manager Sequence Stamps

Operation Sequencing and Resequencing

The NetMeeting Object Manager protocol specifies one or more sequence stamps, which are used to
re-order packets that arrive in varying orders at different nodes. Before being broadcast, each
operation packet is assigned a sequence stamp that consists of an ordered pair of a workset
generation number and a node id. After receiving an operation packet, an object manager instance

compares the packet stamp to one or more stamps that are maintained locally. Depending on the
comparison results, an object manager instance executes or ignores the requested operation.

171 / 186

[MS-MNPR] - v20160714
Microsoft NetMeeting Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Sequence Stamps

The workset generation number is an unsigned integer that begins at zero when the workset is

created; increments whenever the Object Manager performs a local operation; and accepts the greater
of the existing local value or of the workset generation number that is contained in the network

operation sequence stamp whenever a network operation arrives.

The node id is the domain-unique integer user ID that is allocated by the MCS subsystem to the
object manager instance.

Sequence Stamp Types

Object Manager implements the following sequence stamps:

One clear stamp per workset, representing the last relative time that the workset was cleared;
initialized to <0.ID>, where ID is the ID of the node that created the workset.

Four sequence stamps per object:

The addition stamp, representing the relative time that the object was added to the workset.

The position stamp, representing the relative time that the object was last moved within the
workset.

The update stamp, representing the relative time that the object was last updated.

The replace stamp, representing the relative time that the object was last replaced.

The position-, update-, and replace- stamps are initialized with the addition stamp value.

Sequence Stamp Relative Order

The relative order of sequence stamps is defined as follows, where stamp_X =
workset_generation_ number_X.node_id_X:

If workset_generation_number_1 < workset_generation_number_2, then stamp_1 < ("is
lower than") stamp_2;

Else if workset_generation_number_1 = workset_generation_number_2, then:

If node_id_1 < node_id_2, then stamp_1 < stamp_2;

Else stamp_2 < stamp_1;

Else stamp_2 < stamp_1.

3.1.5.6 NetMeeting Chat Protocol

The NetMeeting Chat Protocol utilizes MCS as its transport mechanism in order to transfer textual
messages between peers. The following diagram illustrates the method of communication.

172 / 186

[MS-MNPR] - v20160714
Microsoft NetMeeting Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Figure 9: NetMeeting Chat Protocol communication method

3.1.5.7 NetMeeting File Transfer Protocol

Microsoft NetMeeting Protocol peers engage in File Transfer Protocol (FTP) through the International
Telecommunications Union (ITU) T.127 standard, as specified in [T127], with the exception of the
extensions outlined in section 2.2.4. The following diagram illustrates a typical file transfer sequence.

Figure 10: Typical sequencing during a file transfer

http://go.microsoft.com/fwlink/?LinkId=93446

173 / 186

[MS-MNPR] - v20160714
Microsoft NetMeeting Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

3.1.5.8 NetMeeting Whiteboard Protocol

Microsoft NetMeeting Protocol peers engage in whiteboard data-sharing by exchanging International
Telecommunications Union (ITU) T.126 data, as specified in [T126], with the exception of the

extensions outlined in section 2.2.7. The following diagram illustrates a typical white board exchange
sequence.

Figure 11: Typical sequencing during a whiteboard exchange

3.1.6 Timer Events

None.

3.1.7 Other Local Events

None.

http://go.microsoft.com/fwlink/?LinkId=93445

174 / 186

[MS-MNPR] - v20160714
Microsoft NetMeeting Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

4 Protocol Examples

4.1 Sample Session Establishment Packet Flows

The following sections provide examples that illustrate control packet flow for S20 session

establishment:

 Example one: Creating a new application-sharing session with multiple nodes in section 4.1.1.

 Example two: Joining an existing application-sharing session in section 4.1.2.

 Example three: Leaving an application-sharing session in section 4.1.3.

 Example four: Deleting a node from an application-sharing session in section 4.1.4.

 Example five: Ending an application-sharing session (node creator action) in section 4.1.5.

4.1.1 Creating a New Application-Sharing Session with Multiple Nodes

This application-sharing session is between four nodes. One node (node A) shares an application and
starts a new application-sharing session. Node B, node C, and node D are participants. The following
list describes the steps that are involved:

1. Node A creates a share session. Node A becomes the owner of the session.

2. Node A broadcasts an S20_CREATE packet to node B, node C, and node D. Node A is listed as the
owner.

3. Node B, node C, and node D each receive the S20_CREATE packet and broadcast an
S20_RESPOND packet to all nodes in the session. The S20_RESPOND packet contains the name
and capabilities of the responding node.

4. Each node receives the S20_RESPOND packets from the other nodes and adds each sender node

to its local share roster.

5. Each receiving node broadcasts another S20_RESPOND packet to indicate to the other nodes that
it received their responses.

6. If one of the participating nodes already has a node in its share roster, it does not respond to the
S20_RESPOND packet but updates its share roster with only the name and capabilities of the
sender node.

4.1.2 Joining an Existing Application-Sharing Session

This application-sharing session is between five nodes. Node E is new and wants to join the
application-sharing session with node A, node B, node C, and node D. The following list describes the
steps that are involved:

1. Node E broadcasts an S20_JOIN packet that contains its name and capabilities to the other nodes
in the session that node E wants to join.

2. Node A, node B, node C, and node D receive the S20_JOIN packet that is sent by node E. They in
turn, broadcast an S20_RESPOND packet that contains their name and capabilities to all other
nodes.

3. Node E receives all the S20_RESPOND packets from all the other nodes and adds each sender to
its local share roster.

175 / 186

[MS-MNPR] - v20160714
Microsoft NetMeeting Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

4. Node E broadcasts an S20_RESPOND packet that includes its name and capabilities to all the other
nodes.

5. If one of the participating nodes already has a node in its share roster, it does not respond to the
S20_RESPOND packet, but updates its share roster with only the name and capabilities of the

sender node.

4.1.3 Leaving an Application-Sharing Session

This application-sharing session is between five nodes. Node-E wants to leave the application-sharing

session. The following list describes the steps that are involved:

1. Node E broadcasts an S20_LEAVE packet to node A, node B, node C, and node D.

2. Node A, node B, node C, and node D all receive the S20_LEAVE packet that is sent by node E.
They delete node E from their local share rosters.

4.1.4 Deleting a Node from an Application-Sharing Session

This application-sharing session is between four nodes. Node A, the application-sharing session
creator, wants to delete node D from the application-sharing session. The following list describes the
steps that are involved:

1. Node A broadcasts an S20_DELETE packet that contains the name of node D to all other nodes.

2. Node B, node C, and node D receive the S20_DELETE packet. Node B and node C delete node D
from their local share rosters. Node D destroys its local share roster and leaves the application-

sharing session.

4.1.5 Ending an Application-Sharing Session

This application-sharing session is between three nodes. Node A, the application-sharing session

creator, wants to end the application-sharing session. The following list describes the steps that are

involved:

1. Node A broadcasts an S20_END packet to all other nodes.

2. Node B and node C receive the S20_END packet. All nodes delete their local share roster and
leave the application-sharing session.

4.2 UUIE Response PDU: Use Case Scenario

This section describes a use case for the Alerting-UUIE Response PDU (section 2.2.9.3) in the
NetMeeting protocol.

This use case involves two endpoints:

1. Endpoint 1 (the caller) makes a call to endpoint 2.

2. Endpoint 2 receives the call.

3. Endpoint 2 sends a request using the Alerting-UUIE Response PDU.

Endpoint 2 includes the following values in the request:

ProtocolIdentifier: This field contains the protocol version currently in use. NetMeeting sets this
field to the string "0.0.8.225.0.2", for the H.225 protocol version 2.

176 / 186

[MS-MNPR] - v20160714
Microsoft NetMeeting Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

DestinationInfo: This field contains the endpoint connection type. It can be a Terminal
connection type or a Gateway connection type. The Terminal connection type is used in

most cases.

CallIdentifier: This field is unique for each endpoint. In this use case, this field contains the

unique endpoint GUID for Endpoint 2.

4. All other fields in the Alerting-UUIE Response PDU, although supported, are set to zero by
Endpoint 2 and ignored by Endpoint 1.

5. The Alerting-UUIE Response PDU is encoded by Endpoint 2 and sent to Endpoint 1.

6. Endpoint 1 decodes the Alerting-UUIE Response PDU.

7. Endpoint 1 (the caller) performs the following actions:

 Endpoint 1 indicates to the user that call establishment is in progress (rings).

 Endpoint 1 sends a notification message to Endpoint 2.

This message indicates that Endpoint 1 is ready to proceed and currently awaits call
acceptance from Endpoint 2.

Endpoint 1 identifies Endpoint 2 for this callback by setting the CallIdentifier field to the
GUID for Endpoint 2.

177 / 186

[MS-MNPR] - v20160714
Microsoft NetMeeting Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

5 Security

5.1 Security Considerations for Implementers

MCS and GCC packets are encoded and decoded by using ASN.1.

Transport Layer Security (TLS) is negotiated by following T.123, as specified in [T123] Annex B. In a
secure mode, X.244 payloads are encrypted by using TLS, as specified in [X224]. Additional TLS can
also be used.<33>

5.2 Index of Security Parameters

None.

http://go.microsoft.com/fwlink/?LinkId=90541
http://go.microsoft.com/fwlink/?LinkId=90588

178 / 186

[MS-MNPR] - v20160714
Microsoft NetMeeting Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

6 Appendix A: Product Behavior

The information in this specification is applicable to the following Microsoft products or supplemental
software. References to product versions include released service packs.

 Windows 98 operating system Second Edition

 Windows 2000 operating system

 Windows 2000 Server operating system

 Windows Millennium Edition operating system

 Windows XP operating system

 Windows Server 2003 operating system

Exceptions, if any, are noted below. If a service pack or Quick Fix Engineering (QFE) number appears

with the product version, behavior changed in that service pack or QFE. The new behavior also applies
to subsequent service packs of the product unless otherwise specified. If a product edition appears

with the product version, behavior is different in that product edition.

Unless otherwise specified, any statement of optional behavior in this specification that is prescribed
using the terms SHOULD or SHOULD NOT implies product behavior in accordance with the SHOULD or
SHOULD NOT prescription. Unless otherwise specified, the term MAY implies that the product does not
follow the prescription.

<1> Section 1.3: The Microsoft implementation of the Microsoft NetMeeting Protocol exists in the
Windows NetMeeting feature. This implementation is backwards-compatible with the ITU T.120

protocols, as specified in [T128-06/08] and the S20 protocols.

<2> Section 2.2.2.1.3: The version of Windows being used is defined by one of the following values.
The OSVersion field is always set to one of these values by Windows.

Value Meaning

CAPS_WINDOWS_31

0x0001

Windows NT 3.1 operating system

CAPS_WINDOWS_95

0x0002

Windows 95 operating system, Microsoft Windows 98 operating system, or Windows
Millennium Edition

CAPS_WINDOWS_NT

0x0003

Windows XP, Windows 2000, or Windows Server 2003

<3> Section 2.2.2.4.2.3: The hot spot of a cursor is the point to which Windows refers when tracking
the cursor position.

<4> Section 2.2.2.4.2.3: The hot spot of a cursor is the point to which Windows refers when tracking
the cursor position.

<5> Section 2.2.2.4.2.5: The hot spot of a cursor is the point to which Windows refers when tracking

the cursor position.

<6> Section 2.2.2.4.2.5: The hot spot of a cursor is the point to which Windows refers when tracking
the cursor position.

http://go.microsoft.com/fwlink/?LinkId=144118

179 / 186

[MS-MNPR] - v20160714
Microsoft NetMeeting Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

<7> Section 2.2.2.4.5.1: The NetMeeting application obtains various information about fonts used
between application sharing from the following Windows GDI data structures:

 TEXTMETRIC: The TEXTMETRIC structure contains basic information about a physical font. All
sizes are specified in logical units; that is, they depend on the current mapping mode of the

display context.

 GetTextMetrics: The GetTextMetrics function fills the specified buffer with the metrics for the
currently selected font.

<8> Section 2.2.2.4.5.1: The NetMeeting application obtains various information about fonts used
between application sharing from the following Windows GDI data structures:

 TEXTMETRIC: The TEXTMETRIC structure contains basic information about a physical font. All
sizes are specified in logical units; that is, they depend on the current mapping mode of the

display context.

 GetTextMetrics: The GetTextMetrics function fills the specified buffer with the metrics for the
currently selected font.

<9> Section 2.2.2.4.5.1: The NetMeeting application obtains various information about fonts used
between application sharing from the following Windows GDI data structures:

 TEXTMETRIC: The TEXTMETRIC structure contains basic information about a physical font. All

sizes are specified in logical units; that is, they depend on the current mapping mode of the
display context.

 GetTextMetrics: The GetTextMetrics function fills the specified buffer with the metrics for the
currently selected font.

<10> Section 2.2.2.4.5.1: The NetMeeting application obtains various information about fonts used
between application sharing from the following Windows GDI data structures:

 TEXTMETRIC: The TEXTMETRIC structure contains basic information about a physical font. All

sizes are specified in logical units; that is, they depend on the current mapping mode of the

display context.

 GetTextMetrics: The GetTextMetrics function fills the specified buffer with the metrics for the
currently selected font.

<11> Section 2.2.2.4.5.1: The NetMeeting application obtains various information about fonts used
between application sharing from the following Windows GDI data structures:

 TEXTMETRIC: The TEXTMETRIC structure contains basic information about a physical font. All

sizes are specified in logical units; that is, they depend on the current mapping mode of the
display context.

 GetTextMetrics: The GetTextMetrics function fills the specified buffer with the metrics for the
currently selected font.

<12> Section 2.2.2.4.5.1: The NetMeeting application obtains various information about fonts used

between application sharing from the following Windows GDI data structures:

 TEXTMETRIC: The TEXTMETRIC structure contains basic information about a physical font. All
sizes are specified in logical units; that is, they depend on the current mapping mode of the
display context.

 GetTextMetrics: The GetTextMetrics function fills the specified buffer with the metrics for the
currently selected font.

180 / 186

[MS-MNPR] - v20160714
Microsoft NetMeeting Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

<13> Section 2.2.2.4.5.1: The NetMeeting application obtains various information about fonts used
between application sharing from the following Windows GDI data structures:

 TEXTMETRIC: The TEXTMETRIC structure contains basic information about a physical font. All
sizes are specified in logical units; that is, they depend on the current mapping mode of the

display context.

 GetTextMetrics: The GetTextMetrics function fills the specified buffer with the metrics for the
currently selected font.

<14> Section 2.2.2.4.5.1: The NetMeeting application obtains various information about fonts used
between application sharing from the following Windows GDI data structures:

 TEXTMETRIC: The TEXTMETRIC structure contains basic information about a physical font. All
sizes are specified in logical units; that is, they depend on the current mapping mode of the

display context.

 GetTextMetrics: The GetTextMetrics function fills the specified buffer with the metrics for the
currently selected font.

<15> Section 2.2.2.4.5.1: The NetMeeting application obtains various information about fonts used
between application sharing from the following Windows GDI data structures:

 TEXTMETRIC: The TEXTMETRIC structure contains basic information about a physical font. All

sizes are specified in logical units; that is, they depend on the current mapping mode of the
display context.

 GetTextMetrics: The GetTextMetrics function fills the specified buffer with the metrics for the
currently selected font.

<16> Section 2.2.2.4.7.1.1: WM_KEYUP Notification: The WM_KEYUP message is posted to the
window that has the keyboard focus when a nonsystem key is released. A nonsystem key is a key that
is pressed when the ALT key is not pressed, or a keyboard key that is pressed when a window has the

keyboard focus.

WM_SYSKEYUP Notification: The WM_SYSKEYUP message is posted to the window that has the
keyboard focus when the user releases a key that was pressed while the ALT key was held down. It
also occurs when no window currently has the keyboard focus; in this case, the WM_SYSKEYUP
message is sent to the active window. The window that receives the message can distinguish between
these two contexts by checking the context code in the lParam parameter.

<17> Section 2.2.2.4.10.1.7: Ternary raster-operation codes define how Windows GDI combines the

bits in a source bitmap with the bits in the destination bitmap.

Each raster-operation code represents a Boolean operation in which the values of the pixels in the
source, the selected brush, and the destination are combined. Refer to [MSDN-TRO] for additional
information.

<18> Section 2.2.2.4.10.1.9: The NetMeeting application obtains various information about fonts that
are used between application sharing from the following Windows GDI data structures:

 TEXTMETRIC: The TEXTMETRIC structure contains basic information about a physical font. All
sizes are specified in logical units; that is, they depend on the current mapping mode of the
display context.

 GetTextMetrics: The GetTextMetrics function fills the specified buffer with the metrics for the
currently selected font.

<19> Section 2.2.2.4.10.1.9: The NetMeeting application obtains various information about fonts that
are used between application sharing from the following Windows GDI data structures:

http://go.microsoft.com/fwlink/?LinkId=90147

181 / 186

[MS-MNPR] - v20160714
Microsoft NetMeeting Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 TEXTMETRIC: The TEXTMETRIC structure contains basic information about a physical font. All
sizes are specified in logical units; that is, they depend on the current mapping mode of the

display context.

 GetTextMetrics: The GetTextMetrics function fills the specified buffer with the metrics for the

currently selected font.

<20> Section 2.2.2.4.10.1.11: Ternary raster-operation codes define how Windows GDI combines the
bits in a source bitmap with the bits in the destination bitmap.

Each raster-operation code represents a Boolean operation in which the values of the pixels in the
source, the selected brush, and the destination are combined. Refer to [MSDN-TRO] for additional
information.

<21> Section 2.2.2.4.10.1.12: Ternary raster-operation codes define how Windows GDI combines the

bits in a source bitmap with the bits in the destination bitmap.

Each raster-operation code represents a Boolean operation in which the values of the pixels in the
source, the selected brush, and the destination are combined. Refer to [MSDN-TRO] for additional

information.

<22> Section 2.2.2.4.10.1.21: Ternary raster-operation codes define how Windows GDI combines the
bits in a source bitmap with the bits in the destination bitmap.

Each raster-operation code represents a Boolean operation in which the values of the pixels in the
source, the selected brush, and the destination are combined. Refer to [MSDN-TRO] for additional
information.

<23> Section 2.2.2.4.10.1.28: Ternary raster-operation codes define how Windows GDI combines the
bits in a source bitmap with the bits in the destination bitmap.

Each raster-operation code represents a Boolean operation in which the values of the pixels in the
source, the selected brush, and the destination are combined. Refer to [MSDN-TRO] for additional

information.

<24> Section 2.2.2.4.10.1.29: The NetMeeting application obtains various information about fonts
that are used between application sharing from the following Windows GDI data structures:

 TEXTMETRIC: The TEXTMETRIC structure contains basic information about a physical font. All
sizes are specified in logical units; that is, they depend on the current mapping mode of the
display context.

 GetTextMetrics: The GetTextMetrics function fills the specified buffer with the metrics for the

currently selected font.

<25> Section 2.2.2.4.10.1.29: The NetMeeting application obtains various information about fonts
that are used between application sharing from the following Windows GDI data structures:

 TEXTMETRIC: The TEXTMETRIC structure contains basic information about a physical font. All
sizes are specified in logical units; that is, they depend on the current mapping mode of the
display context.

 GetTextMetrics: The GetTextMetrics function fills the specified buffer with the metrics for the
currently selected font.

<26> Section 2.2.2.7: If the nameData field is not supplied by the user in a Windows
implementation, the computer name is taken from the Windows WMI Instrumentation API function
GetComputerName().

<27> Section 2.2.9.3: Microsoft NetMeeting implementations do not use the h245address field. On
NetMeeting implementations, this field is set to zero and ignored.

182 / 186

[MS-MNPR] - v20160714
Microsoft NetMeeting Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

<28> Section 2.2.9.3: NetMeeting implementations do not use the h245SecurityMode field. On
NetMeeting implementations, this field is set to zero and ignored.

<29> Section 2.2.9.3: NetMeeting implementations do not use the Tokens field. On NetMeeting
implementations, this field is set to zero and ignored.

<30> Section 2.2.9.3: NetMeeting implementations do not use the cryptoTokens field. On
NetMeeting implementations, this field is set to zero and ignored.

<31> Section 2.2.9.3: NetMeeting implementations do not use the fastStart field. On NetMeeting
implementations, this field is set to zero and ignored.

<32> Section 3.1.2: The NetMeeting implementation has a time-out mechanism for connection
establishment, which is to wait 20 seconds for a callee to respond. If no response is returned, the
implementation MUST declare a time-out and notify the user.

<33> Section 5.1: The Microsoft implementation uses TLS as specified in [T123].

http://go.microsoft.com/fwlink/?LinkId=90541

183 / 186

[MS-MNPR] - v20160714
Microsoft NetMeeting Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

7 Change Tracking

No table of changes is available. The document is either new or has had no changes since its last
release.

184 / 186

[MS-MNPR] - v20160714
Microsoft NetMeeting Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

8 Index

A

Abstract data model 157
ActiveWindowPDU [Protocol] 30
ActiveWindowPDU packet 30
ALERTING_UUIE_RESPONSE packet 155
Applicability 12
Application Sharing [AppSh] 17
Application Sharing message 17
ArcOrder [Protocol] 52
ArcOrder packet 52
Audio/Video Conferencing message 153
AudioCapability packet 146

B

BackMode enumeration 14
BoundsData packet 82

BrushHatch enumeration 14
BrushStyle enumeration 15

C

CacheBitmapOrder [Protocol] 55
CacheBitmapOrder packet 55
CacheColorTableOrder [Protocol] 55
CacheColorTableOrder packet 55
Call SETUP Request PDU packet 150
Capability negotiation 13
Change tracking 183
Chat Protocol [Chat] 113
Chat Protocol message 113
Chat_Protocol packet 113
ChordOrder [Protocol] 56
ChordOrder packet 56
Common Data Structures message 14
Compressed Bitmap [Protocol] 60
Compressed_Bitmap packet 60
Control Pause [Protocol] 36
Control Released [Protocol] 37
Control Revoked [Protocol] 37
Control_Pause packet 36
Control_Released packet 37
Control_Revoked packet 37
Cooperate [Protocol] 34
Cooperate packet 34
CPCALLCAPS [Protocol] 17
CPCALLCAPS packet 17
CursorId [Protocol] 31
CursorId packet 31
CursorMove [Protocol] 32
CursorMove packet 32

D

Data model - abstract 157
DesktopScroll [Protocol] 64
DesktopScroll packet 64
DstBlt [Protocol] 65
DstBlt packet 65

E

EllipseOrder [Protocol] 66
EllipseOrder packet 66
Examples 174
ExtTextOrder [Protocol] 69
ExtTextOrder packet 69

F

Fields - vendor-extensible 13
File Transfer Protocol [FTP] 113
File Transfer Protocol message 113
Font List [Protocol] 41
Font_List packet 41

G

Give Control [Protocol] 38

Give Control Reply [Protocol] 38
Give_Control packet 38
Give_Control_Reply packet 38
Glossary 8
Granted Control [Protocol] 35
Granted_Control packet 35

H

Higher-layer triggered events 157
Host Tracking [Protocol] 43
Host_Tracking packet 43

I

IMEVENT structure 44
IMKEYBOARD packet 44
IMMOUSE packet 45
Implementer - security considerations 177
Index of security parameters 177
Informative references 11
Initialization 157
Input PDU [Protocol] 43
Input_PDU packet 43
Introduction 8

L

LineOrder [Protocol] 73
LineOrder packet 73
Local events 173

M

Mem3Blt [Protocol] 75
Mem3Blt packet 75
MemBlt [Protocol] 78
MemBlt packet 78
Message processing 157
Messages
 Application Sharing 17
 Audio/Video Conferencing 153
 Chat Protocol 113
 Common Data Structures 14

185 / 186

[MS-MNPR] - v20160714
Microsoft NetMeeting Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 File Transfer Protocol 113
 NetMeeting Object Manager 114
 Optional Elements in Q.931 Call SETUP PDU 150
 syntax 14
 transport 14
 Voice Communication Protocol 146
 Whiteboard Protocol Extensions 146
Microsoft NetMeeting Protocols - Whiteboard Protocol

146
MSTextPDU [Protocol] 147
MSTextPDU structure 147

N

NetMeeting Object Manager message 114
NETMEETING_OBJECT_MANAGER_HELLO packet 115
NETMEETING_OBJECT_MANAGER_LOCK_DENY

packet 116
NETMEETING_OBJECT_MANAGER_LOCK_GRANT

packet 117
NETMEETING_OBJECT_MANAGER_LOCK_NOTIFY

packet 117
NETMEETING_OBJECT_MANAGER_LOCK_REQ packet

118
NETWORKFONT packet 41
NonRectData packet 48
nonStandardData packet 154
Normative references 9
Notify State [Protocol] 35
Notify_State packet 35

O

OE2 Control Flags [Protocol] 80
OE2_Control_Flags enumeration 80
OMNET_MORE_DATA packet 118
OMNET_OBJECT_ADD packet 119
OMNET_OBJECT_CATCHUP packet 120
OMNET_OBJECT_DELETE packet 123
OMNET_OBJECT_MOVE packet 124
OMNET_OBJECT_REPLACE packet 125
OMNET_OBJECT_UPDATE packet 126
OMNET_UNLOCK packet 127
OMNET_WELCOME packet 128
OMNET_WORKSET_CATCHUP packet 128
OMNET_WORKSET_CLEAR packet 129
OMNET_WORKSET_NEW packet 130
OMNET_WSGROUP_SEND_COMPLETE packet 131
OMNET_WSGROUP_SEND_DENY packet 132
OMNET_WSGROUP_SEND_MIDWAY packet 133
OMNET_WSGROUP_SEND_REQ packet 134
OpaqueRect [Protocol] 80
OpaqueRect packet 80
Optional Elements in Q.931 Call SETUP PDU message

150
Order Types [Protocol] 84
OrderTypes enumeration 84

Overview (synopsis) 11

P

Parameters - security index 177
Pass Control [Protocol] 39
Pass_Control packet 39
PatBlt [Protocol] 86

PatBlt packet 86
Peer-to-peer
 abstract data model 157
 higher-layer triggered events 157
 initialization 157
 timers 157
PenStyle enumeration 15
PieOrder [Protocol] 88
PieOrder packet 88
POINT packet 148
PolyBezier packet 92
PolyBezierOrder [Protocol] 92
PolygonOrder [Protocol] 93
PolygonOrder packet 93
Preconditions 12
Prerequisites 12
Product behavior 178
PROTCAPS_BITMAPCACHE [Protocol] 18
PROTCAPS_BITMAPCACHE packet 18
PROTCAPS_CM [Protocol] 19
PROTCAPS_CM packet 19
PROTCAPS_GENERAL [Protocol] 20
PROTCAPS_GENERAL packet 20

PROTCAPS_ORDERS [Protocol] 22
PROTCAPS_ORDERS packet 22
PROTCAPS_PM [Protocol] 24
PROTCAPS_PM packet 24
PROTCAPS_SC [Protocol] 25
PROTCAPS_SC packet 25
PROTCAPS_SCREEN [Protocol] 25
PROTCAPS_SCREEN packet 25
PTEXTPDU_ATTRIB 147
PTEXTPDU_HEADER 149

R

RectangleData packet 48
RectangleOrder [Protocol] 96
RectangleOrder packet 96
References 9
 informative 11
 normative 9
Relationship to other protocols 12
Request Control [Protocol] 36
Request_Control packet 36
ROP2 enumeration 16
RoundRectOrder [Protocol] 99
RoundRectOrder packet 99

S

S20_COLLISION [Protocol] 28
S20_COLLISION packet 28
S20_CREATE [Protocol] 27
S20_CREATE packet 27
S20_DATA [Protocol] 28
S20_DATA packet 28

S20_DELETE [Protocol] 110
S20_DELETE packet 110
S20_END [Protocol] 110
S20_END packet 110
S20_JOIN [Protocol] 111
S20_JOIN packet 111
S20_LEAVE [Protocol] 111
S20_LEAVE packet 111

186 / 186

[MS-MNPR] - v20160714
Microsoft NetMeeting Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

S20_RESPOND [Protocol] 112
S20_RESPOND packet 112
SaveBitmap [Protocol] 102
SaveBitmap packet 102
ScreenBlt [Protocol] 104
ScreenBlt packet 104
Security
 implementer considerations 177
 parameter index 177
SendColorCursor [Protocol] 32
SendColorCursor packet 32
SendColorCursorCacheId [Protocol] 33
SendColorCursorCacheId packet 33
SendMonoCursor [Protocol] 33
SendMonoCursor packet 33
Sequencing rules 157
Shared Window List [Protocol] 46
Shared_Window_List packet 46
Standards assignments 13
SWLPACKETCHUNK [Protocol] 48
SWLPACKETCHUNK packet 48
SWLWINATTRIBUTES [Protocol] 49
SWLWINATTRIBUTES packet 49

Synchronization Order [Protocol] 50
Synchronization_Order packet 50
Syntax 14

T

Take Control [Protocol] 40
Take Control Reply [Protocol] 40
Take_Control packet 40
Take_Control_Reply packet 40
TextOrder [Protocol] 105
TextOrder packet 105
TEXTPDU_ATTRIB [Protocol] 147
TEXTPDU_ATTRIB structure 147
TEXTPDU_HEADER [Protocol] 149
TEXTPDU_HEADER structure 149
Timer events 173
Timers 157
TOOLTYPE enumeration 140
Tracking changes 183
Transport 14
Triggered events - higher-layer 157
TSHR_COLOR packet 83
TSHR_POINT16 packet 84
TSHR_RECT16 packet 84
TSHR_RGBQUAD packet 84

U

Update Orders [Protocol] 50
Update_Orders packet 50
UpdateBitmapPDU [Protocol] 108
UpdateBitmapPDU packet 108
UpdatePalettePDU [Protocol] 109

UpdatePalettePDU packet 109
UpdateSynchronizePDU [Protocol] 109
UpdateSynchronizePDU packet 109
User_User_Signalling_Information_Element packet

153

V

VARIABLE_STRING [Protocol] 149
VARIABLE_STRING structure 149
VARIABLE_STRING_HEADER [Protocol] 150
VARIABLE_STRING_HEADER structure 150
Vendor-extensible fields 13
Versioning 13
Voice Communication Protocol [VCP] 146
Voice Communication Protocol message 146

W

WB_GRAPHIC packet 137
WB_GRAPHIC_DIB packet 140
WB_GRAPHIC_FREEHAND packet 141
WB_GRAPHIC_TEXT packet 141
WB_LOCK packet 144
WB_PAGE_ORDER packet 143

WB_PERSON packet 145
WB_SYNC packet 144
Whiteboard Protocol [WB] 146
Whiteboard Protocol Extensions [Protocol] 146
Whiteboard Protocol Extensions message 146
WSGROUP_Info packet 134
WSGROUP_REG_REC packet 135

	1 Introduction
	1.1 Glossary
	1.2 References
	1.2.1 Normative References
	1.2.2 Informative References

	1.3 Overview
	1.4 Relationship to Other Protocols
	1.5 Prerequisites/Preconditions
	1.6 Applicability Statement
	1.7 Versioning and Capability Negotiation
	1.8 Vendor-Extensible Fields
	1.9 Standards Assignments

	2 Messages
	2.1 Transport
	2.2 Message Syntax
	2.2.1 Common Data Structures
	2.2.1.1 Common Definitions
	2.2.1.1.1 The x,y Coordinate System

	2.2.1.2 Common Field Values
	2.2.1.2.1 BackMode
	2.2.1.2.2 BrushHatch
	2.2.1.2.3 BrushStyle
	2.2.1.2.4 PenStyle
	2.2.1.2.5 ROP2

	2.2.2 Application Sharing
	2.2.2.1 CPCALLCAPS
	2.2.2.1.1 PROTCAPS_BITMAPCACHE
	2.2.2.1.2 PROTCAPS_CM
	2.2.2.1.3 PROTCAPS_GENERAL
	2.2.2.1.4 PROTCAPS_ORDERS
	2.2.2.1.5 PROTCAPS_PM
	2.2.2.1.6 PROTCAPS_SC
	2.2.2.1.7 PROTCAPS_SCREEN

	2.2.2.2 S20_CREATE
	2.2.2.3 S20_COLLISION
	2.2.2.4 S20_DATA
	2.2.2.4.1 ActiveWindowPDU
	2.2.2.4.2 Cursor Management Orders
	2.2.2.4.2.1 CursorId
	2.2.2.4.2.2 CursorMove
	2.2.2.4.2.3 SendColorCursor
	2.2.2.4.2.4 SendColorCursorCacheId
	2.2.2.4.2.5 SendMonoCursor

	2.2.2.4.3 Control Orders for Application Sharing
	2.2.2.4.3.1 Cooperate
	2.2.2.4.3.2 Granted Control
	2.2.2.4.3.3 Notify State
	2.2.2.4.3.4 Request Control

	2.2.2.4.4 Control Orders for Application Sharing Enhanced
	2.2.2.4.4.1 Control Pause
	2.2.2.4.4.2 Control Released
	2.2.2.4.4.3 Control Revoked
	2.2.2.4.4.4 Give Control
	2.2.2.4.4.5 Give Control Reply
	2.2.2.4.4.6 Pass Control
	2.2.2.4.4.7 Take Control
	2.2.2.4.4.8 Take Control Reply

	2.2.2.4.5 Font List
	2.2.2.4.5.1 NETWORKFONT

	2.2.2.4.6 Host Tracking
	2.2.2.4.7 Input PDU
	2.2.2.4.7.1 IMEVENT
	2.2.2.4.7.1.1 IMKEYBOARD
	2.2.2.4.7.1.2 IMMOUSE

	2.2.2.4.8 Shared Window List
	2.2.2.4.8.1 SWLPACKETCHUNK
	2.2.2.4.8.1.1 NonRectData
	2.2.2.4.8.1.1.1 RectangleData

	2.2.2.4.8.2 SWLWINATTRIBUTES

	2.2.2.4.9 Synchronization Order
	2.2.2.4.10 Update Orders
	2.2.2.4.10.1 Common Values for Multiple Parameters
	2.2.2.4.10.1.1 ArcOrder
	2.2.2.4.10.1.2 CacheBitmapOrder
	2.2.2.4.10.1.3 CacheColorTableOrder
	2.2.2.4.10.1.4 ChordOrder
	2.2.2.4.10.1.5 Compressed Bitmap
	2.2.2.4.10.1.6 DesktopScroll
	2.2.2.4.10.1.7 DstBlt
	2.2.2.4.10.1.8 EllipseOrder
	2.2.2.4.10.1.9 ExtTextOrder
	2.2.2.4.10.1.10 LineOrder
	2.2.2.4.10.1.11 Mem3Blt
	2.2.2.4.10.1.12 MemBlt
	2.2.2.4.10.1.13 OE2 Control Flags
	2.2.2.4.10.1.14 OpaqueRect
	2.2.2.4.10.1.15 BoundsData
	2.2.2.4.10.1.16 TSHR_COLOR
	2.2.2.4.10.1.17 TSHR_RGBQUAD
	2.2.2.4.10.1.18 TSHR_POINT16
	2.2.2.4.10.1.19 TSHR_RECT16
	2.2.2.4.10.1.20 OrderTypes
	2.2.2.4.10.1.21 PatBlt
	2.2.2.4.10.1.22 PieOrder
	2.2.2.4.10.1.23 PolyBezierOrder
	2.2.2.4.10.1.24 PolygonOrder
	2.2.2.4.10.1.25 RectangleOrder
	2.2.2.4.10.1.26 RoundRectOrder
	2.2.2.4.10.1.27 SaveBitmap
	2.2.2.4.10.1.28 ScreenBlt
	2.2.2.4.10.1.29 TextOrder
	2.2.2.4.10.1.30 UpdateBitmapPDU
	2.2.2.4.10.1.31 UpdatePalettePDU
	2.2.2.4.10.1.32 UpdateSynchronizePDU

	2.2.2.5 S20_DELETE
	2.2.2.6 S20_END
	2.2.2.7 S20_JOIN
	2.2.2.8 S20_LEAVE
	2.2.2.9 S20_RESPOND

	2.2.3 Chat Protocol
	2.2.4 File Transfer Protocol
	2.2.5 NetMeeting Object Manager
	2.2.5.1 NetMeeting Object Manager Hello
	2.2.5.2 NetMeeting Object Manager Lock Deny
	2.2.5.3 NetMeeting Object Manager Lock Grant
	2.2.5.4 NetMeeting Object Manager Lock Notify
	2.2.5.5 NetMeeting Object Manager Lock Request
	2.2.5.6 NetMeeting Object Manager More Data
	2.2.5.7 NetMeeting Object Manager Object Add
	2.2.5.8 NetMeeting Object Manager Object Catchup
	2.2.5.9 NetMeeting Object Manager Object Delete
	2.2.5.10 NetMeeting Object Manager Object Move
	2.2.5.11 NetMeeting Object Manager Object Replace
	2.2.5.12 NetMeeting Object Manager Object Update
	2.2.5.13 NetMeeting Object Manager Unlock
	2.2.5.14 NetMeeting Object Manager Welcome
	2.2.5.15 NetMeeting Object Manager Workset Catchup
	2.2.5.16 NetMeeting Object Manager Workset Clear
	2.2.5.17 NetMeeting Object Manager Workset New
	2.2.5.18 NetMeeting Object Manager WSGROUP Send Complete
	2.2.5.19 NetMeeting Object Manager WSGROUP Send Deny
	2.2.5.20 NetMeeting Object Manager WSGROUP Send Midway
	2.2.5.21 NetMeeting Object Manager WSGROUP Send Request
	2.2.5.22 Object Manager Data Packet Structures
	2.2.5.22.1 NetMeeting Object Manager WSGROUP Info
	2.2.5.22.2 NetMeeting Object Manager WSGROUP_REG_REC
	2.2.5.22.3 WB_GRAPHIC
	2.2.5.22.3.1 TOOLTYPE

	2.2.5.22.4 WB_GRAPHIC_DIB
	2.2.5.22.5 WB_GRAPHIC_FREEHAND
	2.2.5.22.6 WB_GRAPHIC_TEXT
	2.2.5.22.7 WB_PAGE_ORDER
	2.2.5.22.8 WB_LOCK
	2.2.5.22.9 WB_SYNC
	2.2.5.22.10 WB_PERSON

	2.2.6 Voice Communication Protocol
	2.2.6.1 AudioCapability Element

	2.2.7 Whiteboard Protocol Extensions
	2.2.7.1 MSTextPDU
	2.2.7.2 TEXTPDU_ATTRIB
	2.2.7.2.1 POINT

	2.2.7.3 TEXTPDU_HEADER
	2.2.7.4 VARIABLE_STRING
	2.2.7.5 VARIABLE_STRING_HEADER

	2.2.8 Optional Elements in Q.931 Call SETUP PDU
	2.2.9 Audio/Video Conferencing
	2.2.9.1 User-User Signalling Information Element
	2.2.9.2 nonStandardData Structure
	2.2.9.3 Alerting-UUIE Response PDU

	3 Protocol Details
	3.1 Peer-to-Peer Protocol Details
	3.1.1 Abstract Data Model
	3.1.2 Timers
	3.1.3 Initialization
	3.1.4 Higher-Layer Triggered Events
	3.1.5 Processing Events and Sequencing Rules
	3.1.5.1 S20 Protocol MCS Channel
	3.1.5.1.1 Standard Connection Establishment
	3.1.5.1.2 Sequencing
	3.1.5.1.3 Interaction between S20 Protocol and MCS
	3.1.5.1.4 MCS Broadcast Transport Service Functions for S20 Protocol
	3.1.5.1.4.1 MCS Broadcast Transport Service Events for the S20 Protocol
	3.1.5.1.4.1.1 MCS Handling of Network Transmission, Time-outs, and Retransmissions

	3.1.5.2 State Machine Control State Transitions
	3.1.5.3 NetMeeting Object Manager Initial Join Protocol
	3.1.5.3.1 Sequencing

	3.1.5.4 NetMeeting Object Manager Late Joiner Protocol
	3.1.5.4.1 Sequencing

	3.1.5.5 NetMeeting Object Manager Sequence Stamps
	3.1.5.6 NetMeeting Chat Protocol
	3.1.5.7 NetMeeting File Transfer Protocol
	3.1.5.8 NetMeeting Whiteboard Protocol

	3.1.6 Timer Events
	3.1.7 Other Local Events

	4 Protocol Examples
	4.1 Sample Session Establishment Packet Flows
	4.1.1 Creating a New Application-Sharing Session with Multiple Nodes
	4.1.2 Joining an Existing Application-Sharing Session
	4.1.3 Leaving an Application-Sharing Session
	4.1.4 Deleting a Node from an Application-Sharing Session
	4.1.5 Ending an Application-Sharing Session

	4.2 UUIE Response PDU: Use Case Scenario

	5 Security
	5.1 Security Considerations for Implementers
	5.2 Index of Security Parameters

	6 Appendix A: Product Behavior
	7 Change Tracking
	8 Index

