
1 / 32

[MS-IOI] - v20190313
IManagedObject Interface Protocol
Copyright © 2019 Microsoft Corporation
Release: March 13, 2019

[MS-IOI]:

IManagedObject Interface Protocol

Intellectual Property Rights Notice for Open Specifications Documentation

 Technical Documentation. Microsoft publishes Open Specifications documentation (“this
documentation”) for protocols, file formats, data portability, computer languages, and standards
support. Additionally, overview documents cover inter-protocol relationships and interactions.

 Copyrights. This documentation is covered by Microsoft copyrights. Regardless of any other
terms that are contained in the terms of use for the Microsoft website that hosts this
documentation, you can make copies of it in order to develop implementations of the technologies
that are described in this documentation and can distribute portions of it in your implementations
that use these technologies or in your documentation as necessary to properly document the

implementation. You can also distribute in your implementation, with or without modification, any
schemas, IDLs, or code samples that are included in the documentation. This permission also

applies to any documents that are referenced in the Open Specifications documentation.
 No Trade Secrets. Microsoft does not claim any trade secret rights in this documentation.
 Patents. Microsoft has patents that might cover your implementations of the technologies

described in the Open Specifications documentation. Neither this notice nor Microsoft's delivery of
this documentation grants any licenses under those patents or any other Microsoft patents.
However, a given Open Specifications document might be covered by the Microsoft Open
Specifications Promise or the Microsoft Community Promise. If you would prefer a written license,

or if the technologies described in this documentation are not covered by the Open Specifications
Promise or Community Promise, as applicable, patent licenses are available by contacting
iplg@microsoft.com.

 License Programs. To see all of the protocols in scope under a specific license program and the
associated patents, visit the Patent Map.

 Trademarks. The names of companies and products contained in this documentation might be

covered by trademarks or similar intellectual property rights. This notice does not grant any
licenses under those rights. For a list of Microsoft trademarks, visit
www.microsoft.com/trademarks.

 Fictitious Names. The example companies, organizations, products, domain names, email
addresses, logos, people, places, and events that are depicted in this documentation are fictitious.
No association with any real company, organization, product, domain name, email address, logo,
person, place, or event is intended or should be inferred.

Reservation of Rights. All other rights are reserved, and this notice does not grant any rights other
than as specifically described above, whether by implication, estoppel, or otherwise.

Tools. The Open Specifications documentation does not require the use of Microsoft programming
tools or programming environments in order for you to develop an implementation. If you have access
to Microsoft programming tools and environments, you are free to take advantage of them. Certain
Open Specifications documents are intended for use in conjunction with publicly available standards
specifications and network programming art and, as such, assume that the reader either is familiar

with the aforementioned material or has immediate access to it.

Support. For questions and support, please contact dochelp@microsoft.com.

https://go.microsoft.com/fwlink/?LinkId=214445
https://go.microsoft.com/fwlink/?LinkId=214445
https://go.microsoft.com/fwlink/?LinkId=214448
mailto:iplg@microsoft.com
https://msdn.microsoft.com/en-us/openspecifications/dn750984
https://www.microsoft.com/trademarks
mailto:dochelp@microsoft.com

2 / 32

[MS-IOI] - v20190313
IManagedObject Interface Protocol
Copyright © 2019 Microsoft Corporation
Release: March 13, 2019

Revision Summary

Date
Revision
History

Revision
Class Comments

7/20/2007 0.1 Major MCPP Milestone 5 Initial Availability

9/28/2007 1.0 Major Updated and revised the technical content.

10/23/2007 1.1 Minor Clarified the meaning of the technical content.

11/30/2007 2.0 Major Clarified the state requirements of .NET object versioning.

1/25/2008 2.0.1 Editorial Changed language and formatting in the technical content.

3/14/2008 3.0 Major Updated and revised the technical content.

5/16/2008 4.0 Major Updated and revised the technical content.

6/20/2008 5.0 Major Updated and revised the technical content.

7/25/2008 6.0 Major Updated and revised the technical content.

8/29/2008 6.0.1 Editorial Fix capitalization issues

10/24/2008 7.0 Major Updated and revised the technical content.

12/5/2008 8.0 Major Updated and revised the technical content.

1/16/2009 9.0 Major Updated and revised the technical content.

2/27/2009 9.0.1 Editorial Changed language and formatting in the technical content.

4/10/2009 9.0.2 Editorial Changed language and formatting in the technical content.

5/22/2009 10.0 Major Updated and revised the technical content.

7/2/2009 11.0 Major Updated and revised the technical content.

8/14/2009 12.0 Major Updated and revised the technical content.

9/25/2009 12.1 Minor Clarified the meaning of the technical content.

11/6/2009 12.1.1 Editorial Changed language and formatting in the technical content.

12/18/2009 12.1.2 Editorial Changed language and formatting in the technical content.

1/29/2010 13.0 Major Updated and revised the technical content.

3/12/2010 13.0.1 Editorial Changed language and formatting in the technical content.

4/23/2010 13.0.2 Editorial Changed language and formatting in the technical content.

6/4/2010 14.0 Major Updated and revised the technical content.

7/16/2010 15.0 Major Updated and revised the technical content.

8/27/2010 15.0 None
No changes to the meaning, language, or formatting of the
technical content.

10/8/2010 15.0 None
No changes to the meaning, language, or formatting of the
technical content.

11/19/2010 15.0 None
No changes to the meaning, language, or formatting of the
technical content.

3 / 32

[MS-IOI] - v20190313
IManagedObject Interface Protocol
Copyright © 2019 Microsoft Corporation
Release: March 13, 2019

Date
Revision
History

Revision
Class Comments

1/7/2011 15.0 None
No changes to the meaning, language, or formatting of the
technical content.

2/11/2011 15.0 None
No changes to the meaning, language, or formatting of the
technical content.

3/25/2011 15.0 None
No changes to the meaning, language, or formatting of the
technical content.

5/6/2011 15.0 None
No changes to the meaning, language, or formatting of the
technical content.

6/17/2011 15.1 Minor Clarified the meaning of the technical content.

9/23/2011 15.1 None
No changes to the meaning, language, or formatting of the

technical content.

12/16/2011 16.0 Major Updated and revised the technical content.

3/30/2012 16.0 None
No changes to the meaning, language, or formatting of the
technical content.

7/12/2012 16.0 None
No changes to the meaning, language, or formatting of the
technical content.

10/25/2012 17.0 Major Updated and revised the technical content.

1/31/2013 17.0 None
No changes to the meaning, language, or formatting of the
technical content.

8/8/2013 17.0 None
No changes to the meaning, language, or formatting of the
technical content.

11/14/2013 17.0 None
No changes to the meaning, language, or formatting of the
technical content.

2/13/2014 17.0 None
No changes to the meaning, language, or formatting of the
technical content.

5/15/2014 17.0 None
No changes to the meaning, language, or formatting of the
technical content.

6/30/2015 18.0 Major Significantly changed the technical content.

10/16/2015 18.0 None
No changes to the meaning, language, or formatting of the
technical content.

7/14/2016 18.0 None
No changes to the meaning, language, or formatting of the
technical content.

3/16/2017 19.0 Major Significantly changed the technical content.

6/1/2017 19.0 None
No changes to the meaning, language, or formatting of the
technical content.

3/13/2019 20.0 Major Significantly changed the technical content.

4 / 32

[MS-IOI] - v20190313
IManagedObject Interface Protocol
Copyright © 2019 Microsoft Corporation
Release: March 13, 2019

Table of Contents

1 Introduction .. 6
1.1 Glossary ... 6
1.2 References .. 8

1.2.1 Normative References ... 8
1.2.2 Informative References ... 8

1.3 Overview .. 8
1.3.1 IRemoteDispatch Interface and IServicedComponentInfo Interface 11

1.4 Relationship to Other Protocols .. 12
1.5 Prerequisites/Preconditions ... 12
1.6 Applicability Statement ... 12
1.7 Versioning and Capability Negotiation ... 12
1.8 Vendor-Extensible Fields ... 13
1.9 Standards Assignments ... 13

2 Messages ... 14
2.1 Transport .. 14
2.2 Common Data Types .. 14

2.2.1 CCW_PTR .. 14

3 Protocol Details ... 15
3.1 IManagedObject Server Details .. 15

3.1.1 Abstract Data Model .. 15
3.1.2 Timers .. 15
3.1.3 Initialization ... 15
3.1.4 Message Processing Events and Sequencing Rules .. 15

3.1.4.1 IManagedObject.. 15
3.1.4.1.1 GetSerializedBuffer (Opnum 3) ... 16
3.1.4.1.2 IManagedObject::GetObjectIdentity (Opnum 4) 16

3.1.4.2 IRemoteDispatch Interface ... 17
3.1.4.2.1 RemoteDispatchAutoDone (Opnum 7) .. 17
3.1.4.2.2 RemoteDispatchNotAutoDone (Opnum 8) ... 18

3.1.4.3 IServicedComponentInfo Interface .. 18
3.1.4.3.1 GetComponentInfo (Opnum 3) .. 19

3.1.5 Timer Events .. 19
3.1.6 Other Local Events .. 20

3.2 IManagedObject Client Details ... 20
3.2.1 Abstract Data Model .. 20
3.2.2 Timers .. 20
3.2.3 Initialization ... 20
3.2.4 Message Processing Events and Sequencing Rules .. 20
3.2.5 Timer Events .. 20
3.2.6 Other Local Events .. 20

4 Protocol Examples ... 21
4.1 Using the IManagedObject Interface ... 21
4.2 Determining Server Object Identity .. 21
4.3 Dispatching a Call on the Server Using Deactivate .. 22

5 Security ... 27
5.1 Security Considerations for Implementers ... 27
5.2 Index of Security Parameters .. 27

6 Appendix A: Full IDL .. 28

7 Appendix B: Product Behavior ... 29

8 Change Tracking .. 30

5 / 32

[MS-IOI] - v20190313
IManagedObject Interface Protocol
Copyright © 2019 Microsoft Corporation
Release: March 13, 2019

9 Index ... 31

6 / 32

[MS-IOI] - v20190313
IManagedObject Interface Protocol
Copyright © 2019 Microsoft Corporation
Release: March 13, 2019

1 Introduction

The IManagedObject Interface Protocol provides interoperability support for the common language
runtime (CLR). The common language runtime (CLR) is a virtual machine for the execution of
software. The IManagedObject interface provides a bridge between existing computer systems and the
virtual execution environment.

In particular, the CLR supports interoperability with the Component Object Model (COM).<1> The CLR

supports exposing its own objects to COM for use as native COM objects and supports consuming
COM objects.

In order to determine whether a COM object that enters the CLR is actually one of its own managed
objects, the IManagedObject interface was created to allow for the CLR to identify its own objects. The
IManagedObject Interface Protocol mechanism is detailed in this specification.

Sections 1.5, 1.8, 1.9, 2, and 3 of this specification are normative. All other sections and examples in

this specification are informative.

1.1 Glossary

This document uses the following terms:

activation: In COM, a local mechanism by which a client provides the CLSID of an object class

and obtains an object, either an object from that object class or a class factory that is able to
create such objects.

application domain: A virtual process space within which managed code applications are hosted
and executed. It is possible to have multiple managed code applications running inside a single
process. Each managed code application runs within its own application domain and is isolated
from other applications that are running in separate application domains. An application
domain has a unique identifier used as part of the identifying key on a state server when storing

and retrieving session data.

application domain identifier (ID): A number used to uniquely identify an application domain.

class identifier (CLSID): A GUID that identifies a software component; for instance, a DCOM
object class or a COM class.

common language runtime (CLR): The core runtime engine in the Microsoft .NET Framework for
executing applications. The common language runtime supplies managed code with services

such as cross-language integration, code access security, object lifetime management, and
debugging and profiling support.

deactivation: Resetting the state of the server object instance such that a new server object
instance is created when the object instance is called again by the client.

dynamic endpoint: A network-specific server address that is requested and assigned at run time.
For more information, see [C706].

endpoint: A network-specific address of a remote procedure call (RPC) server process for remote

procedure calls. The actual name and type of the endpoint depends on the RPC protocol
sequence that is being used. For example, for RPC over TCP (RPC Protocol Sequence
ncacn_ip_tcp), an endpoint might be TCP port 1025. For RPC over Server Message Block (RPC
Protocol Sequence ncacn_np), an endpoint might be the name of a named pipe. For more
information, see [C706].

garbage collection: The process of identifying logically deleted objects (also known as
tombstones) and link values that have passed their tombstone lifetime, and then permanently

https://go.microsoft.com/fwlink/?LinkId=89824

7 / 32

[MS-IOI] - v20190313
IManagedObject Interface Protocol
Copyright © 2019 Microsoft Corporation
Release: March 13, 2019

removing these objects from a naming context (NC) replica. Garbage collection does not
generate replication traffic.

globally unique identifier (GUID): A term used interchangeably with universally unique
identifier (UUID) in Microsoft protocol technical documents (TDs). Interchanging the usage of

these terms does not imply or require a specific algorithm or mechanism to generate the value.
Specifically, the use of this term does not imply or require that the algorithms described in
[RFC4122] or [C706] must be used for generating the GUID. See also universally unique
identifier (UUID).

Interface Definition Language (IDL): The International Standards Organization (ISO) standard
language for specifying the interface for remote procedure calls. For more information, see
[C706] section 4.

interface pointer: A pointer to an interface that is implemented by an [MS-DCOM] object.

Network Data Representation (NDR): A specification that defines a mapping from Interface
Definition Language (IDL) data types onto octet streams. NDR also refers to the runtime

environment that implements the mapping facilities (for example, data provided to NDR). For
more information, see [MS-RPCE] and [C706] section 14.

object: In COM, a software entity that implements the IUnknown interface and zero or more

additional interfaces that may be obtained from each other using the IUnknown interface. A
COM object can be exposed to remote clients via the DCOM protocol, in which case it is also a
DCOM object.

object class: In COM, a category of objects identified by a CLSID, members of which can be
obtained through activation of the CLSID.

opnum: An operation number or numeric identifier that is used to identify a specific remote
procedure call (RPC) method or a method in an interface. For more information, see [C706]

section 12.5.2.12 or [MS-RPCE].

process identifier (PID): A nonzero integer used by some operating systems (for example,
Windows and UNIX) to uniquely identify a process. For more information, see [PROCESS].

remote procedure call (RPC): A communication protocol used primarily between client and
server. The term has three definitions that are often used interchangeably: a runtime
environment providing for communication facilities between computers (the RPC runtime); a set
of request-and-response message exchanges between computers (the RPC exchange); and the

single message from an RPC exchange (the RPC message). For more information, see [C706].

Uniform Resource Identifier (URI): A string that identifies a resource. The URI is an addressing
mechanism defined in Internet Engineering Task Force (IETF) Uniform Resource Identifier (URI):
Generic Syntax [RFC3986].

universally unique identifier (UUID): A 128-bit value. UUIDs can be used for multiple
purposes, from tagging objects with an extremely short lifetime, to reliably identifying very

persistent objects in cross-process communication such as client and server interfaces, manager
entry-point vectors, and RPC objects. UUIDs are highly likely to be unique. UUIDs are also

known as globally unique identifiers (GUIDs) and these terms are used interchangeably in
the Microsoft protocol technical documents (TDs). Interchanging the usage of these terms does
not imply or require a specific algorithm or mechanism to generate the UUID. Specifically, the
use of this term does not imply or require that the algorithms described in [RFC4122] or [C706]
must be used for generating the UUID.

MAY, SHOULD, MUST, SHOULD NOT, MUST NOT: These terms (in all caps) are used as defined
in [RFC2119]. All statements of optional behavior use either MAY, SHOULD, or SHOULD NOT.

https://go.microsoft.com/fwlink/?LinkId=90460
%5bMS-DCOM%5d.pdf#Section_4a893f3dbd2948cd9f43d9777a4415b0
%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15
https://go.microsoft.com/fwlink/?LinkId=90251
https://go.microsoft.com/fwlink/?LinkId=90453
https://go.microsoft.com/fwlink/?LinkId=90317

8 / 32

[MS-IOI] - v20190313
IManagedObject Interface Protocol
Copyright © 2019 Microsoft Corporation
Release: March 13, 2019

1.2 References

Links to a document in the Microsoft Open Specifications library point to the correct section in the
most recently published version of the referenced document. However, because individual documents

in the library are not updated at the same time, the section numbers in the documents may not
match. You can confirm the correct section numbering by checking the Errata.

1.2.1 Normative References

We conduct frequent surveys of the normative references to assure their continued availability. If you

have any issue with finding a normative reference, please contact dochelp@microsoft.com. We will
assist you in finding the relevant information.

[C706] The Open Group, "DCE 1.1: Remote Procedure Call", C706, August 1997,
https://www2.opengroup.org/ogsys/catalog/c706

[MS-DCOM] Microsoft Corporation, "Distributed Component Object Model (DCOM) Remote Protocol".

[MS-DTYP] Microsoft Corporation, "Windows Data Types".

[MS-ERREF] Microsoft Corporation, "Windows Error Codes".

[MS-NRBF] Microsoft Corporation, ".NET Remoting: Binary Format Data Structure".

[MS-NRTP] Microsoft Corporation, ".NET Remoting: Core Protocol".

[MS-OAUT] Microsoft Corporation, "OLE Automation Protocol".

[MS-RPCE] Microsoft Corporation, "Remote Procedure Call Protocol Extensions".

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC
2119, March 1997, http://www.rfc-editor.org/rfc/rfc2119.txt

[RFC3986] Berners-Lee, T., Fielding, R., and Masinter, L., "Uniform Resource Identifier (URI): Generic

Syntax", STD 66, RFC 3986, January 2005, http://www.rfc-editor.org/rfc/rfc3986.txt

1.2.2 Informative References

[MS-NETOD] Microsoft Corporation, "Microsoft .NET Framework Protocols Overview".

[MSDN-.NETFROVW] Microsoft Corporation, ".NET Framework Remoting Overview",
http://msdn.microsoft.com/en-us/library/kwdt6w2k

[MSDN-CCW] Microsoft Corporation, "COM Callable Wrapper", http://msdn.microsoft.com/en-
us/library/f07c8z1c.aspx

[MSDN-RCW] Microsoft Corporation, "Runtime Callable Wrapper", http://msdn.microsoft.com/en-
us/library/8bwh56xe.aspx

[MSFT-DCOMTECHOVW] Microsoft Corporation, "DCOM Technical Overview",
http://technet.microsoft.com/en-us/library/cc722925.aspx

1.3 Overview

The IManagedObject interface is a COM interface used by the common language runtime (CLR) to
identify managed objects (objects created by the CLR) that are exported for interoperability with the
Component Object Model (COM). The IManagedObject interface allows these objects to be identified
when they reenter the CLR.

https://go.microsoft.com/fwlink/?linkid=850906
mailto:dochelp@microsoft.com
https://go.microsoft.com/fwlink/?LinkId=89824
%5bMS-DCOM%5d.pdf#Section_4a893f3dbd2948cd9f43d9777a4415b0
%5bMS-DTYP%5d.pdf#Section_cca2742956894a16b2b49325d93e4ba2
%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90
%5bMS-NRBF%5d.pdf#Section_75b9fe09be15475f85b8ae7b7558cfe5
%5bMS-NRTP%5d.pdf#Section_3acb31b0b8734aaf85039727ec40fbec
%5bMS-OAUT%5d.pdf#Section_bbb05720f72445c78d17f83c3d1a3961
%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15
https://go.microsoft.com/fwlink/?LinkId=90317
https://go.microsoft.com/fwlink/?LinkId=90453
%5bMS-NETOD%5d.pdf#Section_bcca8164da0843f2a983c34ed99171b0
https://go.microsoft.com/fwlink/?LinkId=264697
https://go.microsoft.com/fwlink/?LinkId=264695
https://go.microsoft.com/fwlink/?LinkId=264695
https://go.microsoft.com/fwlink/?LinkId=264694
https://go.microsoft.com/fwlink/?LinkId=264694
https://go.microsoft.com/fwlink/?LinkId=264696

9 / 32

[MS-IOI] - v20190313
IManagedObject Interface Protocol
Copyright © 2019 Microsoft Corporation
Release: March 13, 2019

The IManagedObject interface is used specifically for scenarios in which managed code uses COM and
interacts with a managed object. This interface is an optimization that allows managed code to avoid

going through COM to interact with the managed object. There are two different scenarios in which
this can occur: Either the managed object is within the same process division, the same application

domain, or the managed object is in a different process division (application domain). In either case,
this document discusses what is done instead of using DCOM [MS-DCOM] to interact between the CLR
and managed objects.

When using COM, the COM Callable Wrapper (CCW) is the view of the object to COM, as defined in
[MSDN-CCW]. When the CLR identifies a COM object that includes a CCW, a Runtime Callable Wrapper
(RCW) is required in order to interact with the COM object, as defined in [MSDN-RCW]. If an RCW
doesn't exist, the CLR attempts to create an RCW. If the object implements IManagedObject, the CLR

determines that it is a .NET object. For more information on CCW and RCW, see [MSDN-CCW] and
[MSDN-RCW].

In cases in which the .NET object is in the same process division, the CLR interacts directly with the
.NET object.

Figure 1: CLR interacts directly with .NET object

The steps describing the CLR and the .NET object interaction are as follows:

1. A COM object, which is a CCW wrapping a local CLR object, reenters the CLR through a COM call.
The CLR calls the QueryInterface method on the CCW for the IManagedObject interface in order
to determine whether this COM object is a CCW or not.

2. Since the COM object is a CCW, it returns the IManagedObject call with S_OK and a pointer to its
IManagedObject interface.

3. The CLR calls IManagedObject::GetObjectIdentity on the IManagedObject interface obtained in

step 2 in order to determine if the object is local to the current process and application domain.

4. The CCW responds back with its ID, and the CLR notes that this ID is local to the current process

and application domain.

5. As established in step 4, the wrapped object belongs to this instance of the CLR, and the CLR can
interact with the object directly instead of going through an RCW / CCW pair and communicating
over a COM channel.

In cases in which the .NET object is in a different process division (different application domain or

process), a remoting proxy is used to interact with the .NET object. In such a case, the CCW
implementing IManagedObject returns a Server Object Identity / AppDomainID from

%5bMS-DCOM%5d.pdf#Section_4a893f3dbd2948cd9f43d9777a4415b0
https://go.microsoft.com/fwlink/?LinkId=264695
https://go.microsoft.com/fwlink/?LinkId=264694

10 / 32

[MS-IOI] - v20190313
IManagedObject Interface Protocol
Copyright © 2019 Microsoft Corporation
Release: March 13, 2019

IManagedObject::GetObjectIdentity that does not correspond to the current process. The CLR will then
ask for the remoting ID for the object (IManagedObject::GetSerializedBuffer). This can be used to

generate a transparent remoting proxy to communicate to the original object. At this point, the
communication endpoints are now remoting .NET objects, and CCWs / RCWs are not used:

Figure 2: CLR interacts via remoting proxy

The steps describing the CLR interaction via remoting proxy are as follows:

1. A COM object, which is a CCW wrapping a CLR object, from a different application domain or
process enters the CLR through a COM call. The CLR calls the QueryInterface method on the

CCW for the IManagedObject interface in order to determine whether this COM object is a CCW or
not.

2. Because the COM object is a CCW, it responds to the QueryInterface call with S_OK and a
pointer to its IManagedObject interface.

3. The CLR calls IManagedObject::GetObjectIdentity on the IManagedObject interface obtained in
step 2 in order to determine whether the object is local to the current process and application
domain.

4. The CCW responds back with its ID, and the CLR notes that this ID is not local to the current
process and application domain.

5. The CLR calls IManagedObject::GetSerializedBuffer to get information to set up a .NET Remoting
connection to the remote CLR object.

6. The CCW responds back with the remoting information.

7. The CLR uses the remoting information obtained in step 6 to create a remoting proxy that
communicates with the .NET object via .NET Remoting, rather than using an RCW/CCW pair and
communicating over a COM channel.

CLR-managed objects can be exposed to COM clients as COM objects. They can implement any
number of COM interfaces, but all such exported objects implement IManagedObject.

11 / 32

[MS-IOI] - v20190313
IManagedObject Interface Protocol
Copyright © 2019 Microsoft Corporation
Release: March 13, 2019

The CLR also allows COM objects to be imported and used as managed objects. In this case,
IManagedObject is used to determine if an object is truly a COM object or if it is actually originated as

a CLR-managed object.

When a COM object enters the CLR, the CLR uses the standard COM interface querying mechanism

(QueryInterface) to determine if the given object implements IManagedObject. If the object
supports IManagedObject, IManagedObject::GetObjectIdentity is called.

At CLR instantiation, the CLR creates a unique GUID to identify a specific CLR instance within a given
process. This GUID is formatted as a string ([MS-DTYP] section 2.3.4.3) and is saved. All CLR-
managed objects originating from this specific instance of the CLR will return this unique identifier as
the first parameter of the call to IManagedObject::GetObjectIdentity. This GUID is used to recognize
that an imported managed object originated in this runtime.

The CLR can support even finer-grained levels of grouping than the process. Objects exported from a
given process division are tagged and return the identifier used for process division in their second
parameter to IManagedObject::GetObjectIdentity. This identifier is also used to indicate whether or
not the given object originated in the correct process division. If the process identifier and process

division match, the last parameter of IManagedObject::GetObjectIdentity is a pointer to the
implementation-specific representation of the managed object.

If the given object does not match the current CLR instance and process division,
IManagedObject::GetSerializedBuffer is called to return a binary representation of a managed object,
as specified by the .NET Remoting: Binary Format Data Structure [MS-NRBF]. It is the responsibility of
the caller on the client CLR to interpret the deserialized opaque object reference.

Figure 3: IManagedObject request-response

1.3.1 IRemoteDispatch Interface and IServicedComponentInfo Interface

A server object instance can associate a unique identity with itself. This identity can be used by the
client to track multiple instances of the server object. The server can use IServicedComponentInfo to
allow the client to query for its identity.

%5bMS-DTYP%5d.pdf#Section_cca2742956894a16b2b49325d93e4ba2
%5bMS-NRBF%5d.pdf#Section_75b9fe09be15475f85b8ae7b7558cfe5

12 / 32

[MS-IOI] - v20190313
IManagedObject Interface Protocol
Copyright © 2019 Microsoft Corporation
Release: March 13, 2019

The IRemoteDispatch interface can be used by the server to provide an alternative way to dispatch
method calls on its object instance. A client can further use this interface to perform deactivation of

the server object instance.

1.4 Relationship to Other Protocols

This protocol uses the OLE Automation Protocol [MS-OAUT], making use of the BSTR and VARIANT
types from the IDispatch interface.

The IManagedObject interface uses the Distributed Component Object Model (DCOM) Remote Protocol

[MS-DCOM].

The IRemoteDispatch and IServicedComponentInfo interfaces use DCOM [MS-DCOM] to communicate
over the wire and to authenticate all requests issued against the infrastructure.

This protocol allows for encodings defined in [MS-NRTP] and [MS-NRBF].

1.5 Prerequisites/Preconditions

This protocol requires the Distributed Component Object Model (DCOM) Remote Protocol [MS-DCOM]
and the OLE Automation Protocol [MS-OAUT]. This protocol requires the CLR to be installed on the
client machine.

All interfaces assume that the client is in possession of valid credentials recognized by the server that
is accepting the client requests.

This protocol assumes that the client has relied on QueryInterface to determine if the server

supports the IManagedObject interface or the IRemoteDispatch interface. The protocol also assumes
that the client has the server object Microsoft .NET Framework type information prior to initialization.

1.6 Applicability Statement

IManagedObject is useful as part of the infrastructure for allowing the CLR to interoperate with COM.

Interoperability between the CLR and COM offers the following benefits.

 Existing COM objects can be used from the CLR.

 Managed objects created in the CLR can be used from existing COM applications.

 The managed identity of an object is not lost when it is passed out to COM and then back to the
CLR.

The IRemoteDispatch interface is used for method call dispatch and deactivation.

The IServicedComponentInfo interface is used for determining server object instance identity.

1.7 Versioning and Capability Negotiation

Supported Transports: This protocol uses the DCOM Remote Protocol as its transport, as described in
[MS-DCOM].

Protocol Version: The IManagedObject protocol consists of one DCOM interface, IManagedObject
version 0.0. The interfaces defined in this specification have no versioning or capability negotiation
beyond those of the underlying transport.

For both of these interfaces, it is assumed that the client has the .NET Framework information (such
as type information of server objects) prior to initialization.

%5bMS-OAUT%5d.pdf#Section_bbb05720f72445c78d17f83c3d1a3961
%5bMS-DCOM%5d.pdf#Section_4a893f3dbd2948cd9f43d9777a4415b0
%5bMS-NRTP%5d.pdf#Section_3acb31b0b8734aaf85039727ec40fbec
%5bMS-NRBF%5d.pdf#Section_75b9fe09be15475f85b8ae7b7558cfe5
%5bMS-DCOM%5d.pdf#Section_4a893f3dbd2948cd9f43d9777a4415b0
%5bMS-OAUT%5d.pdf#Section_bbb05720f72445c78d17f83c3d1a3961
%5bMS-DCOM%5d.pdf#Section_4a893f3dbd2948cd9f43d9777a4415b0

13 / 32

[MS-IOI] - v20190313
IManagedObject Interface Protocol
Copyright © 2019 Microsoft Corporation
Release: March 13, 2019

The client relies on QueryInterface to determine if the server supports IManagedObject or
IRemoteDispatch.

1.8 Vendor-Extensible Fields

This protocol uses universally unique identifiers (UUIDs). Vendors can create their own UUIDs, as
described in [MS-DTYP] section 2.3.4.

This protocol uses HRESULT values as defined in [MS-DTYP] section 2.2.18. Vendors can define their
own HRESULT values, provided that they set the C bit (0x20000000) for each vendor-defined value,

indicating that the value is a customer code.

This protocol uses Win32 error codes. These values are taken from the Windows error number space,
as specified in [MS-ERREF] section 2.2. It is recommended that vendors reuse those values with their
indicated meaning. Choosing any other value runs the risk of a collision in the future.

1.9 Standards Assignments

 Constant/value Description

IManagedObject

{C3FCC19E-A970-11D2-8B5A-
00A0C9B7C9C4}

The GUID associated with the IManagedObject interface.

IRemoteDispatch

{6619a740-8154-43be-a186-0319578e02db}

The GUID associated with the IRemoteDispatch interface.

IServicedComponentInfo

{8165B19E-8D3A-4d0b-80C8-
97DE310DB583}

The GUID associated with the IServicedComponentInfo
interface.

%5bMS-DTYP%5d.pdf#Section_cca2742956894a16b2b49325d93e4ba2
%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90

14 / 32

[MS-IOI] - v20190313
IManagedObject Interface Protocol
Copyright © 2019 Microsoft Corporation
Release: March 13, 2019

2 Messages

2.1 Transport

This protocol uses RPC dynamic endpoints as specified in [C706] Part 4 and [MS-DCOM].

To access an interface, the client MUST request a remote protocol connection to its well-known object
UUID endpoint on the server, as specified in section 1.9.

The RPC version number for all interfaces MUST be 0.0.

2.2 Common Data Types

This protocol MUST indicate to the RPC runtime that it is to support the NDR transfer syntax only, as
specified in [C706] part 4.

In addition to RPC base types and definitions specified in [C706] and [MS-DTYP], additional data types

are defined in the following subsection.

2.2.1 CCW_PTR

CCW_PTR is an opaque pointer that is up to the implementation to interpret.

The wire representation will consist of the pointer representation used for the transfer syntax in use
(either NDR or NDR64) followed by the wire representation of the content of the int or __int64.

The pointer representation used in NDR transfer syntax is 4 octets in length. NDR transfer syntax is
specified in [C706] Chapter 14, section 14.3.10. The pointer representation used in NDR64 transfer

syntax is specified in [MS-RPCE] 2.2.5.3.5, and is 8 octets in length.

If _64BIT is defined, the pointer representation will be followed by the wire representation of the
__int64. The wire representation of __int64 is specified in [MS-RPCE] 2.2.4.1.3. The __int64 is

synonymous to hyper in [C706], which is 8 octets in length.

If _64BIT is not defined, the pointer representation will be the same, but followed by the wire
representation of int. This int will be treated as a long, as specified in [C706] section 14.2.5, and is 4

octets in length.

No negotiation occurs to determine whether _64BIT has been defined. The wire syntax for CCW_PTR
can be made consistent using any implementation-specific method.

The type definition of CCW_PTR is as follows.

 #ifdef _64BIT
 typedef __int64* CCW_PTR;
 #else
 typedef int* CCW_PTR;
 #endif

https://go.microsoft.com/fwlink/?LinkId=89824
%5bMS-DCOM%5d.pdf#Section_4a893f3dbd2948cd9f43d9777a4415b0
https://go.microsoft.com/fwlink/?LinkId=89824
%5bMS-DTYP%5d.pdf#Section_cca2742956894a16b2b49325d93e4ba2
https://go.microsoft.com/fwlink/?LinkId=89824
%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15

15 / 32

[MS-IOI] - v20190313
IManagedObject Interface Protocol
Copyright © 2019 Microsoft Corporation
Release: March 13, 2019

3 Protocol Details

The following sections specify details of the IManagedObject Interface Protocol, including abstract data
model, interface method syntax, and message processing rules.

The IRemoteDispatch and IServicedComponentInfo client applications initiate the conversation with
the server by performing remote protocol activation ([MS-DCOM] section 3.2.4.1.1) of an
application-specific CLSID of an object that supports these interfaces. After the client application

uses activation to get the interface pointer to the remote protocol object, it works with this object
by making calls on the remote protocol interface supported by the object. After it has finished making
calls, the client application does a release on the interface pointer.

3.1 IManagedObject Server Details

A CLR-managed object that has been exposed to COM will expose the COM interface
IManagedObject. This interface is used to determine whether COM objects that enter the CLR are
actually CLR-managed objects and can be mapped directly to the managed object. This allows CLR-

managed objects to roundtrip from managed to COM and back to managed while maintaining their
original identity.

3.1.1 Abstract Data Model

The CLR implementation that exposes objects to COM MUST maintain a unique UUID to differentiate
its objects from those of other CLR instances and implementations. If the CLR supports per-process
divisions, it will also need to maintain unique identifiers for each division to map objects back to their
originating process division. In addition, the CLR will also need to use an opaque identifier that is used

to map back internally from the COM interface pointer to IManagedObject to the underlying
managed object.

In the case that the CLR-managed object does not belong to the given CLR process instance and
process subdivision, the implementation of IManagedObject MUST provide a mechanism that returns a
binary-formatted version of the underlying managed object.

Server Object Identity: The remote server object instance MUST have a unique Uniform Resource

Identifier (URI), as specified in [RFC3986]. This URI represents the unique identity of the server
object instance. The client uses this identity to track multiple instances of the server object.

3.1.2 Timers

None.

3.1.3 Initialization

The server MUST create a unique UUID to identify this CLR instance upon startup. Upon the startup
of each process division, a unique identifier also needs to be generated.

3.1.4 Message Processing Events and Sequencing Rules

3.1.4.1 IManagedObject

The IManagedObject interface includes the following methods.

The client MUST be implemented with the type information for the remote object.<2>

Methods in RPC Opnum Order

%5bMS-DCOM%5d.pdf#Section_4a893f3dbd2948cd9f43d9777a4415b0
https://go.microsoft.com/fwlink/?LinkId=90453

16 / 32

[MS-IOI] - v20190313
IManagedObject Interface Protocol
Copyright © 2019 Microsoft Corporation
Release: March 13, 2019

Method Description

GetSerializedBuffer Returns a binary-formatted representation of a managed object, as specified in [MS-NRBF]
section 2.3.

Opnum: 3

GetObjectIdentity Used to determine if a COM object is a managed object that belongs to this CLR instance
and process subdivision.

Opnum: 4

3.1.4.1.1 GetSerializedBuffer (Opnum 3)

The GetSerializedBuffer method converts the given managed object to a binary-formatted string
representation that can be used to create a managed object.

 HRESULT GetSerializedBuffer(
 [out] BSTR *pBSTR
);

pbSTR: The value MUST contain a binary-formatted string representation of the class record for the
underlying managed object, as specified in [MS-NRBF] section 2.3. For more information on binary
format mapping, see [MS-NRTP] section 3.1.5.1.

Return Values: The method MUST return a positive value or 0 to indicate successful completion or a
negative value to indicate failure.

Return
value/code Description

0x00000000

ERROR_SUCCESS

Success.

Exceptions Thrown: No exceptions are thrown from this method beyond those thrown by the
underlying RPC protocol.

3.1.4.1.2 IManagedObject::GetObjectIdentity (Opnum 4)

The IManagedObject::GetObjectIdentity method is used by a CLR instance to determine whether a

COM object entering the system is really a managed object that originated in this CLR instance and
within the current process division.

 HRESULT GetObjectIdentity(
 [out] BSTR* pBSTRGUID,
 [out] int* AppDomainID,
 [out] CCW_PTR pCCW
);

pBSTRGUID: The pBSTRGUID parameter is a GUID ([MS-DTYP] section 2.3.4.3). The pBSTRGUID

parameter MUST indicate the CLR instance in which this object was created.

AppDomainID: Optional parameter that contains implementation-specific, opaque, process-unique
identifiers. If present, the AppDomainID parameter MUST denote the process subdivision in which
this object resides.

%5bMS-NRBF%5d.pdf#Section_75b9fe09be15475f85b8ae7b7558cfe5
%5bMS-NRBF%5d.pdf#Section_75b9fe09be15475f85b8ae7b7558cfe5
%5bMS-NRTP%5d.pdf#Section_3acb31b0b8734aaf85039727ec40fbec
%5bMS-DTYP%5d.pdf#Section_cca2742956894a16b2b49325d93e4ba2

17 / 32

[MS-IOI] - v20190313
IManagedObject Interface Protocol
Copyright © 2019 Microsoft Corporation
Release: March 13, 2019

pCCW: Optional field. Implementation-specific, opaque value that helps identify the managed object.
If present, this field MUST map back to the implementation's internal representation of a managed

object.

Return Values: The method MUST return a positive value or 0 to indicate successful completion or a

negative value to indicate failure.

Return
value/code Description

0x00000000

ERROR_SUCCESS

Success

Exceptions Thrown: No exceptions are thrown from this method beyond those thrown by the
underlying RPC protocol.

3.1.4.2 IRemoteDispatch Interface

The IRemoteDispatch interface provides methods to dispatch calls on the server object. A client can
optionally use this interface to deactivate the server object instance after the method call completes.
The interface inherits opnums 0 to 6 from IDispatch ([MS-OAUT] section 3.1.4). The version for this
interface is 0.0.

To receive incoming remote calls for this interface, the server MUST implement a DCOM object class
that supports this interface by using the UUID {6619a740-81c4-43be-a186-0319578e02db} for this
interface.

The client MUST be implemented with the type information for the remote object.

The interface includes the following methods beyond those in IDispatch.<3>

Methods in RPC Opnum Order

Method Description

RemoteDispatchAutoDone Invokes a call on the server object and deactivates it when the call completes.

Opnum: 7

RemoteDispatchNotAutoDone Invokes a call on the server object without deactivating it when the call
completes.

Opnum: 8

3.1.4.2.1 RemoteDispatchAutoDone (Opnum 7)

The RemoteDispatchAutoDone method is called by the client to invoke a method on the server.

 [id(0x60020000)] HRESULT RemoteDispatchAutoDone(
 [in] BSTR s,
 [out, retval] BSTR* pRetVal
);

s: The s parameter contains binary data representing the input parameters of the method called on
the server. The binary data MUST be marshaled as specified in [MS-NRTP] section 3.1.5.1.1. The
data is specified as is in the BSTR, such that the length of the BSTR is the size of the data divided
by 2 (rounded up if necessary).

%5bMS-OAUT%5d.pdf#Section_bbb05720f72445c78d17f83c3d1a3961
%5bMS-NRTP%5d.pdf#Section_3acb31b0b8734aaf85039727ec40fbec

18 / 32

[MS-IOI] - v20190313
IManagedObject Interface Protocol
Copyright © 2019 Microsoft Corporation
Release: March 13, 2019

pRetVal: The pRetVal parameter contains the binary data representing the output parameters of the
method called on the server. The binary data MUST be marshaled as specified in [MS-NRTP]

section 3.1.5.1.1. The data is specified as is in the BSTR, such that the length of the BSTR is the
size of the data divided by 2 (rounded up if necessary).

Return Values: An HRESULT that specifies success or failure. All success HRESULT values MUST be
treated as success and all failure HRESULT values MUST be treated as failure.

When this method is invoked, the server MUST unmarshal the method input parameters and formulate
a method call request. If the payload is a valid method call request for the given server object
instance, the server MUST dispatch the method on the server object instance. Otherwise it MUST fail
the call. After the server object instance completes the method call, the server MUST marshal the
output parameters as specified in [MS-NRTP] section 3.1.5.1.1, and return the encoded reply through

the pRetVal argument. It MUST then deactivate the instance of the server object that services the call.

3.1.4.2.2 RemoteDispatchNotAutoDone (Opnum 8)

The RemoteDispatchNotAutoDone method is called by the client to invoke a method on the server.

 [id(0x60020001)] HRESULT RemoteDispatchNotAutoDone(
 [in] BSTR s,
 [out, retval] BSTR* pRetVal
);

s: The s parameter contains binary data representing the input parameters of the method called on
the server. The binary data MUST be marshaled as specified in [MS-NRTP] section 3.1.5.1.1. The

data is specified as is in the BSTR, such that the length of the BSTR is the size of the data divided
by 2 (rounded up if necessary).

pRetVal: The pRetVal parameter contains the binary data representing the output parameters of the
method called on the server. The binary data MUST be marshaled as specified in [MS-NRTP]
section 3.1.5.1.1. The data is specified as is in the BSTR, such that the length of the BSTR is the
size of the data divided by 2 (rounded up if necessary).

Return Values: An HRESULT that specifies success or failure. All success HRESULT values MUST be
treated as success and all failure HRESULT values MUST be treated as failure.

When this method is invoked, the server MUST unmarshal the method input parameters and formulate
a method call request. If the payload is a valid method call request for the given server object
instance, the server MUST dispatch the method on the server object instance. Otherwise it MUST fail
the call. After the server object instance completes the method call, the server MUST marshal the
output parameters as specified in [MS-NRTP] section 3.1.5.1.1 and return the encoded reply through

the pRetVal argument.

3.1.4.3 IServicedComponentInfo Interface

This interface is used to get the object identity of the server object instance that supports this
interface. Because this is an [MS-DCOM] interface, opnum 0 to opnum 2 are IUnknown methods, as

specified in [MS-DCOM] section 3.1.1.5.8. The version for this interface is 0.0.

To receive incoming remote calls for this interface, the server MUST implement a [MS-DCOM] object
class that supports this interface by using the UUID {8165B19E-8D3A-4d0b-80C8-97DE310DB583}
for this interface.

The interface contains the following methods beyond those of IUnknown.

Methods in RPC Opnum Order

%5bMS-NRTP%5d.pdf#Section_3acb31b0b8734aaf85039727ec40fbec
%5bMS-DCOM%5d.pdf#Section_4a893f3dbd2948cd9f43d9777a4415b0

19 / 32

[MS-IOI] - v20190313
IManagedObject Interface Protocol
Copyright © 2019 Microsoft Corporation
Release: March 13, 2019

Method Description

GetComponentInfo Gets the server object identity associated with the server object instance.

Opnum: 3

3.1.4.3.1 GetComponentInfo (Opnum 3)

The GetComponentInfo method is used to determine the environment of the server object.

 HRESULT GetComponentInfo(
 [in, out] int* infoMask,
 [out] SAFEARRAY(BSTR)* infoArray
);

infoMask: A bitwise OR of zero of more of the following values:

Value Meaning

0x00000001 The serviced component's process identifier (PID).

0x00000002 The serviced component's application domain identifier (ID).

0x00000004 The serviced component's remote URI [RFC3986], which represents the server object
identity.

On input, the bits set indicate the information the client is requesting that the server return. On
output, the bits set indicate the information actually returned in the infoArray.

infoArray: An array that contains a set of values returned by the server corresponding to the bits set
in infoMask.

Return Values: An HRESULT that specifies success or failure. All success HRESULT values MUST be
treated as success and all failure HRESULT values MUST be treated as failure.

When this method is invoked, the server MUST do the following. If any bits not defined above in
infoMask are set, the server first MUST update infoMask to clear those bits.

The server MUST return in infoArray a SAFEARRAY ([MS-OAUT] section 2.2.30.10) of type VT_BSTR.
This SAFEARRAY MUST contain, in order, the (possibly empty) subset of the following items,
corresponding to the bits set in infoMask.

 Process ID

 Application Domain ID

 The serviced component's remote URI [RFC3986]

The type of each element MUST be a BSTR ([MS-OAUT] section 2.2.23.2). The server then MUST

return success.

3.1.5 Timer Events

None.

https://go.microsoft.com/fwlink/?LinkId=90453
%5bMS-OAUT%5d.pdf#Section_bbb05720f72445c78d17f83c3d1a3961

20 / 32

[MS-IOI] - v20190313
IManagedObject Interface Protocol
Copyright © 2019 Microsoft Corporation
Release: March 13, 2019

3.1.6 Other Local Events

There are no protocol-specific local events.

3.2 IManagedObject Client Details

3.2.1 Abstract Data Model

The client is essentially the same as the server. The IManagedObject interface is used to identify CLR-
mapped COM objects after they are exported to COM and returned as COM objects. Implementation
of the IManagedObject class denotes that a given COM object is really a CLR-managed COM object.
The methods of IManagedObject are used to determine if the COM object lives in this CLR instance
and process subdivision. These methods will otherwise return a CLR-managed object underlying the
COM object. The deserialized opaque object reference is returned to the caller on the client CLR for

interpretation.

3.2.2 Timers

There are no protocol-specific timers.

3.2.3 Initialization

The initialization is the same as for server. See section 3.1.3.

3.2.4 Message Processing Events and Sequencing Rules

The client determines if it is the server by matching values returned from the
IManagedObject::GetObjectIdentity method. The client matches the value of pBSTRGUID against the
GUID of the client CLR instance and uses the implementation-specific helper values in AppDomainID
and pCCW to help decide if the COM object originated in the client CLR instance. Otherwise, the client
fetches a binary-formatted string representation ([MS-NRBF] section 2.3) to the underlying managed

object by using GetSerializedBuffer, which can be used to create a managed object.

When the IServiceComponentInfo interface is used, the client determines the server instance identity
by means of the URI returned from the IServiceComponentInfo::GetComponentInfo method.

Note the following:

 A COM reference to a CCW, as defined in [MSDN-CCW], keeps the managed object rooted for the
garbage collection routine.

 Managed object references also keep the object rooted for the garbage collection.

 The garbage collection only collects an object once there are no longer COM object references to it
and there are no further managed references to it.

 In the event that the application domain that hosts the object is torn down, the CCW that

implements IManagedObject is kept alive by the CLR, but calls to it will return failure HRESULT.

3.2.5 Timer Events

There are no protocol-specific timers.

3.2.6 Other Local Events

None.

%5bMS-NRBF%5d.pdf#Section_75b9fe09be15475f85b8ae7b7558cfe5
https://go.microsoft.com/fwlink/?LinkId=264695

21 / 32

[MS-IOI] - v20190313
IManagedObject Interface Protocol
Copyright © 2019 Microsoft Corporation
Release: March 13, 2019

4 Protocol Examples

4.1 Using the IManagedObject Interface

A CLR instance uses the IManagedObject interface in the following manner.

1. A CLR instance starts up and generates a UUID to uniquely identify itself. It later creates a
process subdivision and creates a unique value to identify the process subdivision.

2. A COM object enters the CLR, and the CLR then calls the IUnknown::QueryInterface method
to determine whether the object implements IManagedObject. The object returns S_OK and
returns a pointer to an IManagedObject interface pointer.

3. The CLR then calls the IManagedObject::GetObjectIdentity method and matches the pBSTRGUID

against its UUID and, if they match, compares the AppDomainID to the identifier of the current
process subdivision. If they match, the CLR converts pCCW to the underlying CLR-managed
object. If they do not match, it calls the IManagedObject::GetSerializedBuffer method and uses

the binary-formatted version of the object converted to a string to create a copy of the object that
resides in another CLR (which could be a completely different implementation). The caller on the
client CLR is then able to interpret the deserialized opaque object reference. For more information
about how to create the binary-formatted string representation of an object, see [MS-NRBF]

section 2.3.

4.2 Determining Server Object Identity

This example assumes that the client already has an interface pointer to an instance of an object
that implements IServicedComponentInfo. The example also assumes that the server already has a

unique identifier encoded into a URI to identify the server object instance. The following diagram helps
to illustrate this example.

Figure 4: Call sequence for determining server object identity

1. The client calls the IServicedComponentInfo::GetComponentInfo method.

 HRESULT
 GetComponentInfo{
 [in,out] int* infoMask = 0x00000004,
 [out] SAFEARRAY(BSTR)* infoArray = {An uninitialized pointer to
 receive the SAFEARRAY}};

%5bMS-NRBF%5d.pdf#Section_75b9fe09be15475f85b8ae7b7558cfe5

22 / 32

[MS-IOI] - v20190313
IManagedObject Interface Protocol
Copyright © 2019 Microsoft Corporation
Release: March 13, 2019

2. The server receives the call, verifies the parameters, and returns a SAFEARRAY of type VT_BSTR
into the infoArray that contains the URI for the server object instance.

 HRESULT = S_OK
 GetComponentInfo{
 [in,out] int* infoMask = 0x00000004,
 [out] SAFEARRAY(BSTR)* infoArray = {VT_BSTR,
 "http://56C8D6F0ED8B4d658F42148430C65CEE" }};

3. The client records the URI of the server object instance, and uses it to distinguish between two

different server object instances.

4.3 Dispatching a Call on the Server Using Deactivate

This example assumes that the client already has an interface pointer to an instance of an object
that implements IRemoteDispatch. The following diagram helps to illustrate this example. The

scenario is around a remote server object which has a method named Method. This method takes two
string parameters. The first parameter a is an in only parameter, the second parameter b is the out
only parameter.

 Method(string a, out string b);

The call graph for this on the client side is given below.

Figure 5: Call sequence for dispatching a call with Deactivate from client to server

23 / 32

[MS-IOI] - v20190313
IManagedObject Interface Protocol
Copyright © 2019 Microsoft Corporation
Release: March 13, 2019

Figure 6: Call graph on the client side for the given scenario

1. The client accepts a call for "Method" taking two parameters a and b.

2. The client transforms the method call into a byte representation as specified in [MS-NRTP] section
3.1.5.1.1.

3. The client then takes the byte representation and passes it as a BSTR in the s parameter over
RemoteDispatchAutoDone.

The representative BSTR for the current example would look like the following.

 00000000 00000000 00000100 00000000
 00121500 06120000 6874654d 5112646f Method.Q
 74736554 706d6f43 6574202c 202c7473 TestComp, test,
 73726556 3d6e6f69 2e302e30 2c302e30 Version=0.0.0.0,
 6c754320 65727574 75656e3d 6c617274 Culture=neutral
 7550202c 63696c62 5479654b 6e656b6f , PublicKeyToken
 3030313d 66663066 65643064 34336662 =100f0ffd0debf34
 00000233 48051200 6f6c6c65 00000b11 3......Hello....
 00650073 00000073 78adbf68 00000642 s.e.s...h..xB...
 61df552e 800000d1 0000017e 00000006 .U.a....~.......
 00000000 00001771 00000002 76726553 q.......Serv
 20656369 6b636150 202c3120 36322e76 ice Pack 1, v.26
 00000037 00000002 0000004c 00000009 7.......L.......
 00000002 00000059 00000013 00000004 Y...........
 0000005d 00000015 00000002 0000006a]...........j...

%5bMS-NRTP%5d.pdf#Section_3acb31b0b8734aaf85039727ec40fbec

24 / 32

[MS-IOI] - v20190313
IManagedObject Interface Protocol
Copyright © 2019 Microsoft Corporation
Release: March 13, 2019

 0000001f 00000004 0000006e 00000021 n...!...

4. The server receives the call and transforms the incoming BSTR in parameter s into a method call.
The server then dispatches the method call on the object.

Figure 7: Call graph on the server side for the given scenario.

5. "Method" completes. On completion, it populates "World" into the out parameter b.

25 / 32

[MS-IOI] - v20190313
IManagedObject Interface Protocol
Copyright © 2019 Microsoft Corporation
Release: March 13, 2019

Figure 8: Return call graph on the server side for the given scenario.

6. The server now takes the return call and packages it again into a byte representation as specified
in [MS-NRTP] section 3.1.5.1.1.

RemoteDispatchAutoDone implementation takes the binary representation and makes it a payload

for BSTR out parameter pRetVal.

The representative BSTR for the current example would look like the following.

 00000000 00000000 00000100 00000000
 04121600 00020000 12110000 726f5705 Wor
 000b646c 00000000 0020f490 00000000 ld........
 61df71bf 800000d1 0000003a 00000000 .q.a....:.......
 00000000 00000000 ff6c5db0 ]l.

7. RemoteDispatchAutoDone implementation deactivates the server object by releasing all references
to it such that the particular instance of the server is destroyed.

8. As the client call returns the data received on the client side in the pRetVal BSTR parameter is
converted back to a return call parameters and the control is transferred back to the caller.

26 / 32

[MS-IOI] - v20190313
IManagedObject Interface Protocol
Copyright © 2019 Microsoft Corporation
Release: March 13, 2019

Figure 9: Return call graph on the client side for the given scenario.

27 / 32

[MS-IOI] - v20190313
IManagedObject Interface Protocol
Copyright © 2019 Microsoft Corporation
Release: March 13, 2019

5 Security

5.1 Security Considerations for Implementers

None.

5.2 Index of Security Parameters

None.

28 / 32

[MS-IOI] - v20190313
IManagedObject Interface Protocol
Copyright © 2019 Microsoft Corporation
Release: March 13, 2019

6 Appendix A: Full IDL

For convenience, the full IDL is provided with this specification.

 import "ms-oaut.idl";

 #ifdef _64BIT

 typedef __int64* CCW_PTR;

 #else

 typedef int* CCW_PTR;

 #endif

 #define SAFEARRAY(type) SAFEARRAY

 [
 object,
 oleautomation,
 uuid(C3FCC19E-A970-11d2-8B5A-00A0C9B7C9C4),
 helpstring("Managed Object Interface"),
 pointer_default(unique)
]
 interface IManagedObject : IUnknown
 {
 HRESULT GetSerializedBuffer([out] BSTR *pBSTR);

 HRESULT GetObjectIdentity([out] BSTR* pBSTRGUID, [out] int* AppDomainID, [out] CCW_PTR
pCCW);

 };

 [
 object,
 uuid(6619a740-8154-43be-a186-0319578e02db),
 helpstring("RemoteDispatch Interface"),
 dual,
 pointer_default(unique)
]
 interface IRemoteDispatch: IDispatch
 {
 [id(0x60020000)]
 HRESULT RemoteDispatchAutoDone([in] BSTR s, [out, retval] BSTR* pRetVal);
 [id(0x60020001)]
 HRESULT RemoteDispatchNotAutoDone([in] BSTR s, [out, retval] BSTR* pRetVal);
 };

 [
 object,
 uuid(8165B19E-8D3A-4d0b-80C8-97DE310DB583),
 helpstring("ServicedComponentInfo Interface"),
 pointer_default(unique)
]
 interface IServicedComponentInfo : IUnknown{
 HRESULT GetComponentInfo([in,out] int* infoMask, [out] SAFEARRAY(BSTR)* infoArray);
 };

29 / 32

[MS-IOI] - v20190313
IManagedObject Interface Protocol
Copyright © 2019 Microsoft Corporation
Release: March 13, 2019

7 Appendix B: Product Behavior

The information in this specification is applicable to the following Microsoft products or supplemental
software. References to product versions include updates to those products.

This document specifies version-specific details in the Microsoft .NET Framework. For information
about which versions of the .NET Framework are available in each released Windows product or as
supplemental software, see [MS-NETOD] section 4.

 Microsoft .NET Framework 1.0

 Microsoft .NET Framework 2.0

 Microsoft .NET Framework 3.0

 Microsoft .NET Framework 3.5

 Microsoft .NET Framework 4.0

 Microsoft .NET Framework 4.5

 Microsoft .NET Framework 4.6

 Microsoft .NET Framework 4.7

 Microsoft .NET Framework 4.8

Exceptions, if any, are noted in this section. If an update version, service pack or Knowledge Base
(KB) number appears with a product name, the behavior changed in that update. The new behavior
also applies to subsequent updates unless otherwise specified. If a product edition appears with the
product version, behavior is different in that product edition.

Unless otherwise specified, any statement of optional behavior in this specification that is prescribed
using the terms "SHOULD" or "SHOULD NOT" implies product behavior in accordance with the
SHOULD or SHOULD NOT prescription. Unless otherwise specified, the term "MAY" implies that the

product does not follow the prescription.

<1> Section 1: The Microsoft common language runtime (CLR) and Component Object Model
(COM) are capable of interoperating over the IManagedObject Interface Protocol mechanism. For more
information on DCOM and remoting, see [MSFT-DCOMTECHOVW] and [MSDN-.NETFROVW].

<2> Section 3.1.4.1: On the Windows platform, the IManagedObject interface is implemented by all
.NET Framework components when they are exposed through the COM-Interop feature of the .NET
Framework.

<3> Section 3.1.4.2: On the Windows platform, the IRemoteDispatch interface is exposed only by
components inheriting from System.EnterpriseServices.ServicedComponent.

%5bMS-NETOD%5d.pdf#Section_bcca8164da0843f2a983c34ed99171b0
https://go.microsoft.com/fwlink/?LinkId=264696
https://go.microsoft.com/fwlink/?LinkId=264697

30 / 32

[MS-IOI] - v20190313
IManagedObject Interface Protocol
Copyright © 2019 Microsoft Corporation
Release: March 13, 2019

8 Change Tracking

This section identifies changes that were made to this document since the last release. Changes are
classified as Major, Minor, or None.

The revision class Major means that the technical content in the document was significantly revised.
Major changes affect protocol interoperability or implementation. Examples of major changes are:

 A document revision that incorporates changes to interoperability requirements.

 A document revision that captures changes to protocol functionality.

The revision class Minor means that the meaning of the technical content was clarified. Minor changes
do not affect protocol interoperability or implementation. Examples of minor changes are updates to
clarify ambiguity at the sentence, paragraph, or table level.

The revision class None means that no new technical changes were introduced. Minor editorial and
formatting changes may have been made, but the relevant technical content is identical to the last

released version.

The changes made to this document are listed in the following table. For more information, please
contact dochelp@microsoft.com.

Section Description Revision class

7 Appendix B: Product Behavior Added .NET Framework v4.8 to the applicability list. Major

mailto:dochelp@microsoft.com

31 / 32

[MS-IOI] - v20190313
IManagedObject Interface Protocol
Copyright © 2019 Microsoft Corporation
Release: March 13, 2019

9 Index

A

Abstract data model
 client 20
 server 15
Applicability 12

C

Capability negotiation 12
Change tracking 30
Client
 abstract data model 20
 initialization 20
 local events 20
 message processing 20
 sequencing rules 20
 timer events 20

 timers 20
Common data types 14

D

Data model - abstract
 client 20
 server 15
Data types 14
 common - overview 14
Deactivate - dispatching a call - server 22
Determining server object identity example 21
Dispatching a call - server - deactivate 22
Dispatching a call on the server using deactivate

example 22

E

Events
 local - client 20
 local - server 20
 timer - client 20
 timer - server 19
Examples 21
 determining server object identity 21
 dispatching a call on the server using deactivate

22
 using the imanagedobject interface 21

F

Fields - vendor-extensible 13
Full IDL 28

G

GetComponentInfo method 19
GetObjectIdentity method 16
GetSerializedBuffer method 16
Glossary 6

I

IDL 28
imanagedobject interface 15
IManagedObject interface - use of 21
IManagedObject method 15
Implementer - security considerations 27
Index of security parameters 27
Informative references 8
Initialization
 client 20
 server 15
Interfaces - server
 imanagedobject 15
Introduction 6
IRemoteDispatch Interface 11
IRemoteDispatch Interface method 17
IServicedComponentInfo Interface 11
IServicedComponentInfo Interface method 18

L

Local events
 client 20
 server 20

M

Message processing
 client 20
 server 15
Messages
 common data types 14
 data types 14
 transport 14
Methods
 IManagedObject 15
 IRemoteDispatch Interface 17
 IServicedComponentInfo Interface 18

N

Normative references 8

O

Object identity - server - determining 21
Overview 8
Overview (synopsis) 8

P

Parameters - security index 27
Preconditions 12
Prerequisites 12
Product behavior 29
Protocol Details
 overview 15

R

References 8
 informative 8

32 / 32

[MS-IOI] - v20190313
IManagedObject Interface Protocol
Copyright © 2019 Microsoft Corporation
Release: March 13, 2019

 normative 8
Relationship to other protocols 12
RemoteDispatchAutoDone method 17
RemoteDispatchNotAutoDone method 18

S

Security
 implementer considerations 27
 parameter index 27
Sequencing rules
 client 20
 server 15
Server
 abstract data model 15
 imanagedobject interface 15
 IManagedObject method 15

 initialization 15
 IRemoteDispatch Interface method 17
 IServicedComponentInfo Interface method 18
 local events 20
 message processing 15
 object identity - determining 21
 overview 15
 sequencing rules 15
 timer events 19
 timers 15
Standards assignments 13

T

Timer events
 client 20
 server 19
Timers
 client 20
 server 15
Tracking changes 30
Transport 14

U

Using the imanagedobject interface example 21

V

Vendor-extensible fields 13
Versioning 12

	1 Introduction
	1.1 Glossary
	1.2 References
	1.2.1 Normative References
	1.2.2 Informative References

	1.3 Overview
	1.3.1 IRemoteDispatch Interface and IServicedComponentInfo Interface

	1.4 Relationship to Other Protocols
	1.5 Prerequisites/Preconditions
	1.6 Applicability Statement
	1.7 Versioning and Capability Negotiation
	1.8 Vendor-Extensible Fields
	1.9 Standards Assignments

	2 Messages
	2.1 Transport
	2.2 Common Data Types
	2.2.1 CCW_PTR

	3 Protocol Details
	3.1 IManagedObject Server Details
	3.1.1 Abstract Data Model
	3.1.2 Timers
	3.1.3 Initialization
	3.1.4 Message Processing Events and Sequencing Rules
	3.1.4.1 IManagedObject
	3.1.4.1.1 GetSerializedBuffer (Opnum 3)
	3.1.4.1.2 IManagedObject::GetObjectIdentity (Opnum 4)

	3.1.4.2 IRemoteDispatch Interface
	3.1.4.2.1 RemoteDispatchAutoDone (Opnum 7)
	3.1.4.2.2 RemoteDispatchNotAutoDone (Opnum 8)

	3.1.4.3 IServicedComponentInfo Interface
	3.1.4.3.1 GetComponentInfo (Opnum 3)

	3.1.5 Timer Events
	3.1.6 Other Local Events

	3.2 IManagedObject Client Details
	3.2.1 Abstract Data Model
	3.2.2 Timers
	3.2.3 Initialization
	3.2.4 Message Processing Events and Sequencing Rules
	3.2.5 Timer Events
	3.2.6 Other Local Events

	4 Protocol Examples
	4.1 Using the IManagedObject Interface
	4.2 Determining Server Object Identity
	4.3 Dispatching a Call on the Server Using Deactivate

	5 Security
	5.1 Security Considerations for Implementers
	5.2 Index of Security Parameters

	6 Appendix A: Full IDL
	7 Appendix B: Product Behavior
	8 Change Tracking
	9 Index

