[MS-IMSA-DIff]:

Internet Information Services (IIS) IMSAdminBaseW
Remote Protocol

Intellectual Property Rights Notice for Open Specifications Documentation

* Technical Documentation. Microsoft publishes Open Specifications documentation (“this
documentation”) for protocols, file formats, data portability, computer languages, and standards
support. Additionally, overview documents cover inter-protocol relationships and interactions.

* Copyrights. This documentation is covered by Microsoft copyrights. Regardless of any other
terms that are contained in the terms of use for the Microsoft website that hosts this
documentation, you can make copies of it in order to develop implementations of the technologies
that are described in this documentation and can distribute portions of it in your implementations
that use these technologies or in your documentation as necessary to properly document the
implementation. You can also distribute in your implementation, with or without modification, any
schemas, IDLs, or code samples that are included in the documentation. This permission also
applies to any documents that are referenced in the Open Specifications documentation.

* No Trade Secrets. Microsoft does not claim any trade secret rights in this documentation.

* Patents. Microsoft has patents that might cover your implementations of the technologies
described in the Open Specifications documentation. Neither this notice nor Microsoft's delivery of
this documentation grants any licenses under those patents or any other Microsoft patents.
However, a given Open Specifications document might be covered by the Microsoft Open
Specifications Promise or the Microsoft Community Promise. If you would prefer a written license,
or if the technologies described in this documentation are not covered by the Open Specifications
Promise or Community Promise, as applicable, patent licenses are available by contacting
iplg@microsoft.com.

* License Programs. To see all of the protocols in scope under a specific license program and the
associated patents, visit the Patent Map.

* Trademarks. The names of companies and products contained in this documentation might be
covered by trademarks or similar intellectual property rights. This notice does not grant any
licenses under those rights. For a list of Microsoft trademarks, visit
www.microsoft.com/trademarks.

* Fictitious Names. The example companies, organizations, products, domain names, email
addresses, logos, people, places, and events that are depicted in this documentation are fictitious.
No association with any real company, organization, product, domain name, email address, logo,
person, place, or event is intended or should be inferred.

Reservation of Rights. All other rights are reserved, and this notice does not grant any rights other
than as specifically described above, whether by implication, estoppel, or otherwise.

Tools. The Open Specifications documentation does not require the use of Microsoft programming
tools or programming environments in order for you to develop an implementation. If you have access
to Microsoft programming tools and environments, you are free to take advantage of them. Certain
Open Specifications documents are intended for use in conjunction with publicly available standards
specifications and network programming art and, as such, assume that the reader either is familiar
with the aforementioned material or has immediate access to it.

Support. For questions and support, please contact dochelp@microsoft.com.

1/143

[MS-IMSA-DIff] - v20240423

Internet Information Services (IIS) IMSAdminBaseW Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

https://go.microsoft.com/fwlink/?LinkId=214445
https://go.microsoft.com/fwlink/?LinkId=214445
https://go.microsoft.com/fwlink/?LinkId=214448
mailto:iplg@microsoft.com
https://aka.ms/AA9ufj8
https://www.microsoft.com/trademarks
mailto:dochelp@microsoft.com

Revision Summary

Revision Revision
Date History Class Comments
7/20/2007 0.1 Major MCPP Milestone 5 Initial Availability
9/28/2007 0.1.1 Editorial Changed language and formatting in the technical content.
10/23/2007 | 0.1.2 Editorial Changed language and formatting in the technical content.
11/30/2007 | 0.2 Minor Clarified the meaning of the technical content.
1/25/2008 0.2.1 Editorial Changed language and formatting in the technical content.
3/14/2008 0.2.2 Editorial Changed language and formatting in the technical content.
5/16/2008 0.2.3 Editorial Changed language and formatting in the technical content.
6/20/2008 1.0 Major Updated and revised the technical content.
7/25/2008 1.0.1 Editorial Changed language and formatting in the technical content.
8/29/2008 1.0.2 Editorial Changed language and formatting in the technical content.
10/24/2008 | 1.0.3 Editorial Changed language and formatting in the technical content.
12/5/2008 1.1 Minor Clarified the meaning of the technical content.
1/16/2009 1.2 Minor Clarified the meaning of the technical content.
2/27/2009 2.0 Major Updated and revised the technical content.
4/10/2009 3.0 Major Updated and revised the technical content.
5/22/2009 4.0 Major Updated and revised the technical content.
7/2/2009 5.0 Major Updated and revised the technical content.
8/14/2009 5.1 Minor Clarified the meaning of the technical content.
9/25/2009 5.2 Minor Clarified the meaning of the technical content.
11/6/2009 6.0 Major Updated and revised the technical content.
12/18/2009 | 6.1 Minor Clarified the meaning of the technical content.
1/29/2010 6.2 Minor Clarified the meaning of the technical content.
3/12/2010 6.2.1 Editorial Changed language and formatting in the technical content.
4/23/2010 6.2.2 Editorial Changed language and formatting in the technical content.
6/4/2010 6.2.3 Editorial Changed language and formatting in the technical content.
7/16/2010 6.2.3 None l%ﬁ:ig?izﬁgem? meaning, language, or formatting of the
8/27/2010 7.0 Major Updated and revised the technical content.
10/8/2010 2.0 None l%ﬁ:ig?izﬁgem? meaning, language, or formatting of the
11/19/2010 | 7.0 None It\le(z:r?:iiglgizrfge:r meaning, language, or formatting of the

[MS-IMSA-Diff] - v20240423

2/ 143

Internet Information Services (IIS) IMSAdminBaseW Remote Protocol
Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Revision Revision

Date History Class Comments

1/7/2011 8.0 Major Updated and revised the technical content.

2/11/2011 8.0 None No chgnges to the meaning, language, or formatting of the
technical content.
No changes to the meaning, language, or formatting of the

3/25/2011 8.0 None technical content.

5/6/2011 8.0 None No ch_anges to the meaning, language, or formatting of the
technical content.

6/17/2011 8.1 Minor Clarified the meaning of the technical content.
No changes to the meaning, language, or formatting of the

9/23/2011 8.1 None technical content.

12/16/2011 | 9.0 Major Updated and revised the technical content.
No changes to the meaning, language, or formatting of the

3/30/2012 2.0 None technical content.

7/12/2012 9.0 None No ch_anges to the meaning, language, or formatting of the
technical content.

10/25/2012 | 9.0 None No ch_anges to the meaning, language, or formatting of the
technical content.

1/31/2013 9.0 None No ch_anges to the meaning, language, or formatting of the
technical content.

8/8/2013 10.0 Major Updated and revised the technical content.

11/14/2013 | 10.0 None No ch_anges to the meaning, language, or formatting of the
technical content.

2/13/2014 10.0 None No chfanges to the meaning, language, or formatting of the
technical content.

5/15/2014 10.0 None No ch_anges to the meaning, language, or formatting of the
technical content.

6/30/2015 11.0 Major Significantly changed the technical content.

10/16/2015 | 11.0 None No ch_anges to the meaning, language, or formatting of the
technical content.

7/14/2016 11.0 None No ch_anges to the meaning, language, or formatting of the
technical content.
No changes to the meaning, language, or formatting of the

6/1/2017 11.0 None technical content.

9/15/2017 12.0 Major Significantly changed the technical content.

9/12/2018 13.0 Major Significantly changed the technical content.

4/7/2021 14.0 Major Significantly changed the technical content.

6/25/2021 15.0 Major Significantly changed the technical content.

4/23/2024 16.0) [Majon Significantly changed the technical content.

3/ 143

[MS-IMSA-DIff] - v20240423

Internet Information Services (IIS) IMSAdminBaseW Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

Table of Contents

B 1 & o o [T ot oo T 8
1.1 [0 T1== 1 PP 8
1.2] =] =] g ol T PP 11

1.2.1 (Updated Section) Normative ReferenCes......cccvviiiiiiiiiiiii i i 11

1.2.2 (Updated Section) Informative ReferencCesocveveieieiiiiiiiiiiiii e 12
1.3 L Y] YT 12
1.4 Relationship to Other ProtoCoIS ..uvuiirii i e e 12
1.5 Prerequisites/Preconditionsovieiiiiiiii e 12
1.6 Applicability StatemMENt ... e 13
1.7 Versioning and Capability Negotiation ..o 13
1.8 Vendor-EXtensible Fieldso.viieiiiiii i e e 13
1.9 Standards ASSIGNMENTS. 13

A 1 [T =T T o 1= 15
2.1 I r= 1 .17 oo] o o PP 15
2.2 COMMON DAta TYPES uuuitiiiiiiiitie it e st e e e e e e s e e rnenes 15

2.2.1 ADMINDATA_MAX_NAME_LEN ...ttt 15
2.2.2 IIS_CRYPTO_BLOB ..ueiiiiititiieeee et e e e e et e e e e n e e e e e e s e e e e r e rerennenenenenen 15
2.2.2.1 PUBLIC_KEY_BLOB. ...ttt st s s is s s e e e e e e sasaeas 16
2.2.2.2 SESSION_KEY _BLOB ...uiiiiiiii ittt e e e e e e e e e e e e nenenenes 17
2.2.2.2.1 (Updated Section) ENCRYPTED_SESSION_KEY_ BLOB.......c.cccvveieennnnne. 18
2.2.2.3 L S T = 1 19
2.2.2.4 CLEARTEXT_DATA_BLOB ..ttt e e e e e e e e e e e a e nenenenes 19
2.2.2.5 ENCRYPTED_DATA_BLOBuiiiiiiiiii e e e 20
2.2.2.5.1 CLEARTEXT_WITH_PREFIX_BLOBciiiiiieitiiiieaeienenee e e eeeeens 20
2.2.3 Secure Session Negotiation Constants.......ccoviiiiiiiiiiiiii e 21
2.2.4 METADATA_GETALL_RECORD ... ctititiieieeae e e reeaeneeeeeaenenesaeannnneneneneeaeens 21
2.2.5 METADATA_HANDLE ...t et e e e e e e e e e e e e e e e e e e eeeens 23
2.2.6 METADATA_HANDLE_INFO. ..ttt as e e e enans 23
2.2.7 METADATA_RECORDuiiiiiiieieieeatateeeeea e e s e s e s e aee e e e e e e e e e a e nnneneneneneenns 24
2.2.8 METADATA_MASTER_ROOT_HANDLEuiiiiiiiiii e 25
2.2.9 1 Y o4 = U 1 N PP 26
2.2.10 MD_APP_ISOLATED ..utititieiiiiiiii et e e e e s s e s a s e e e e e e es 26
2.2.11 MD_APP_APPPOOL _ID . euttiuiuiiiieeae e eteseneeaeeaeae e r e s e e aenenee e e e e e aeananes 26
2.2.12 MD_BACKUP_MAX_LEN ..ttt e e e e e e et e e s e s e e e e e e e eae e e annnnees 27

1C I o 3o Y o Yoo I 0 1= - T 28

3.1 IMSAdMINBaseW Server Details ..o 28

3.1.1 AbSEract Data Model.....cvieiiii i 28
3.1.1.1 Secure SessioN CONEXE ...t 28
3.1.2 LI L. L= 1= PP 29
3.1.3 |1 T 1 4= o] o PP 29
3.1.4 Message Processing Events and Sequencing Rulescooviiiiiiiiiiiiineene, 29
3.1.4.1 Transferring Sensitive Datavcvviiiiii i e 31
3.1.4.1.1 Secure Session Negotiation Server Rolec.coviiiiiiiiiii e 32
3.1.4.1.2 ENCrypting Datacoviiiiiiiii s 32
3.1.4.1.3 Decrypting Dataooviiiiiiiiii 33
3.1.4.1.4 Signed Hash Calculationoviiiiiii e 33
3.1.4.1.5 Signed Hash Validationcooiiiiiiii e 33
3.1.4.2 (O] o7=T 0 | =1V (@] T 010 1o o 1) P 34
3.1.4.3 CloseKey (OPNUM 18) 1uiuiuiiieie ittt st e e e e e e e e e e e e aeneneaes 35
3.1.4.4 PaNo [o 1= A (O] o] U] NG 3 T PP 36
3.1.4.5 (00e] 03V (AN (0] o] o 1012 o 102 1P 37
3.1.4.6 DeleteKey (OPNUM 4) ettt e e et e e e e e e eaes 38
3.1.4.7 DeleteChildKeys (OPNUM 5) ..o e e e ae e 39
3.1.4.8 DeleteData (OpnuUM 11) .. e e e e e e neaeaes 40
3.1.4.9 DeleteAllData (OpNUM 14) ..o e e e e 42

4 /143

[MS-IMSA-DIff] - v20240423

Internet Information Services (IIS) IMSAdminBaseW Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

3.1.4.10 CopyData (OPNUM 15) . et e e e e e e e e e e e e aeaeas 44
3.1.4.11 ENUMKEYS (OPNUM B) triiriiiiiiiitiitiate it ettt sitsassasease s eneraesaesaseaneanerneanens 46
3.1.4.12 R_EnumbData (OpNUM 12) ..uiuiiiiiiiiiiiiiire e e e e e e e 47
3.1.4.13 Backup (OPNUM 28) c.uiiuiiiiiii ittt iiee ittt a e e e ae s e e s e aaeaneeneanens 48
3.1.4.14 EnumBackups (OpNUM 30) ...ttt ee e e e e s ae e ane e aneanens 50
3.1.4.15 DeleteBackup (OPNUM 31) cuiuiiuiiiiiiiiineie i s e eraseaaaaeraas 51
3.1.4.16 ChangePermissions (OpnNUM 19) ..iiiiiiiiiiiiiiiiii i aeas 52
3.1.4.17 GetDataPaths (OpnUM 16)ciuiiiiiiiiiiiiiir s ae 53
3.1.4.18 GetDataSetNumber (OPpNUM 23) cuiiiiiiiiii i aaeaeeneaneas 55
3.1.4.19 GetHandleINfo (OPNUM 21) ..ttt e e e e e e nees 56
3.1.4.20 GetLastChangeTime (OpnuUM 25) .ot e 56
3.1.4.21 GetSystemChangeNumber (OpnuUM 22) ..iiiiiiiiiiiiiii i eeeaees 57
3.1.4.22 R_GetAllData (OpnuUM 13) . .uiuieiiiiiiiiiiiire i a e ae e 58
3.1.4.23 R_GetData (OpnuUM 10) ittt s et 60
3.1.4.24 R_GetServerGuid (OpnUM 33) ..iuiiuiiiiiiiiiiieiiereie s raseaaaaeans 62
3.1.4.25 R_KeyExchangePhasel (OpnuUM 26) ...ciiiiiiiiiiiiiiiiiiiii i it ieeneeneeneaneas 62
3.1.4.26 R_KeyExchangePhase2 (OpnUM 27) ..ouiiiieiiiieiiiniiiieiiinise e raseaasae e 64
3.1.4.27 R_SetData (OpNUM 9) c.uuiiiiiiiiiiii e e e e aae e 65
3.1.4.28 RenameKey (OPNUM 8) .iiuiiiiiiiiiiiiii i it ra e et st aae e e eaeanens 66
3.1.4.29 Restore (OPNUM 29) ..ot r e e e aane e 67
3.1.4.30 SaveData (OpnUM 20) ...iiiiiiiiiiiiii it a et re s aa e a e e e rneanens 69
3.1.4.31 SetLastChangeTime (OpNUM 24) ..o e aeae e 69
3.1.4.32 Unmarshallnterface (OpnuUM 32) ... ciiiiiiiiiiii it i reaaeas 70
3.1.5 LT = ==) = 71
3.1.6 (O a1 ol I Tr= B Y =T o | P 71
3.2 IMSAdMINBaseW Client Details ...o.viviiiiriiiiic i e 71
3.2.1 AbStract Data MOdel.....c.viiiiii i 71
3.2.1.1 Secure Session CoNtEXE ..o 71
3.2.2 LT 71
3.2.3 TR I 1 4= o o PP 71
3.2.4 Message Processing Events and Sequencing Rulesc.cocviiiiiiiiiiiiniene, 72
3.2.4.1 Secure Session Negotiation Client Roleocoiviiiiiii e 72
3.2.4.2 R_KeyExchangePhasel (OpNUM 26) ...cciriieiiiiiiiiiiiineieneiiinesenssnsnesneneenenes 72
3.2.4.3 R_KeyExchangePhase2 (OPNUM 27) ..o e e e 72
3.2.4.4 R_SetData (OpnUM 9) cuiiiiiii i e 73
3.2.4.5 R_GetData (OpnuUM 10) ouuiueieiiiiii it ae e e 74
3.2.4.6 R_EnNumMData (OpnUM 12) ittt e aea 74
3.2.4.7 R_GetAllData (OpnUM 13) .ttt e e e e e 74
3.2.5 LT = 2]) o= 74
3.2.6 Other LOCal EVENES .. vttt e e e e e e e e 75
3.3 IMSAdmMINBase2W Server Details ...ovvviriiriiiii i e e 75
3.3.1 AbSEract Data Model.....ovieiiiii e 75
3.3.2 LT 75
3.3.3 |1 F= 1 4= o] o PSPPI 75
3.3.4 Message Processing Events and Sequencing Rulescccovviiiiiiiiiiiiiinieen, 75
3.3.4.1 BackupWithPasswd (Opnum 34) ..o e 76
3.3.4.2 EnumHIStory (OpNUM 39) .ottt e et e e aaeas 77
3.3.4.3 [=ptqoTo] o ol (] o] o 18T G 1) P 79
3.3.4.4 | gl oYe] ool (0] 218 a2 JC 17 [P 80
3.3.4.5 RestoreHistory (Opnum 38) ... e 82
3.3.4.6 RestoreWithPasswd (OpnuUmM 35) ..c.eeieieiiiiii e e 83
3.3.5 LI L =2l == L PP 84
3.3.6 Other LoCal EVENES ..ottt e e e s 84
3.4 IMSAdMINBase2W Client Detailsvviiriiiiiiiii i ees 85
3.4.1 AbStract Data MOdel.....c.ciiiiii i 85
3.4.2 LI L. L= 1= PP 85
3.4.3 | T 4= u [] o PP 85
3.4.4 Message Processing Events and Sequencing Rulesc.cocviiiiiiiiiiiiiineeen, 85
5/ 143

[MS-IMSA-DIff] - v20240423

Internet Information Services (IIS) IMSAdminBaseW Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

3.4.5 LI L =2l = Z=T L PP 85
3.4.6 Other LOCal EVENES .. vttt et s e e e e e e e 85
3.5 IMSAdAMINBase3W Server Details ...oovviviiiiiii i eaens 85
3.5.1 Abstract Data Model.....oviuiiiii i 85
3.5.2 L2121 85
3.5.3 | T =] 2= [o PP 85
3.54 Message Processing Events and Sequencing RUl€Sccvviiiiiiiiiiiiiiiiiic s 86
3.5.4.1 GetChildPaths (OpnUM 40) ... e 86
3.5.5 LI L L= = V2= 88
3.5.6 (O a1 il I Y= I =T o | PP 88
3.6 IMSAdMINBase3W Client Detailsvvvvriiiiiiiiiiii i 88
3.6.1 AbStract Data Model......cviviiiii i e 88
3.6.2 LT .= 88
3.6.3 | TR T 1 4= o o o I PP 88
3.6.4 Message Processing Events and Sequencing Rulesc.cocviiiiiiiiiiinncen, 88
3.6.5 LI L L= = V2= 88
3.6.6 (O a1 il I Y= I =T o | PP 88
3.7 IWamAdmMIN Server DetailS.....vii i e e r e n e e e rneanens 89
3.7.1 AbStract Data Model.....oovieiiiii e 89
3.7.2 LT 89
3.7.3 | F=1 1 4= o o PP 89
3.7.4 Message Processing Events and Sequencing Rulescocviiiiiiiiiniiineeene, 89
3.7.4.1 APPCreate (OPNUM B) tuiiiiiiiiiii e a e et a e a e aeraeans 89
3.7.4.2 AppDelete (OPNUM 4) ... e e e e e e e 90
3.7.4.3 ApPPUNLOAd (OPNUM 5) 1uiuiiiiiiiiii s e e e e e e e e 91
3.7.4.4 APPGEetStatus (OPNUM 6) .ttt i i e e a e eeas 92
3.7.4.5 AppDeleteRecoverable (OPNUM 7) ..o eas 93
3.7.4.6 APPRECOVET (OPNUM 8) 1iuiiiiiiiiiiii it i r e et a e e aeaaeans 94
3.7.5 LT = ==) = 94
3.7.6 Other LOCal EVENES .. viiitiieii i e et e e a e aane e 94
3.8 IWamAdmin2 Server Details .. .o viriiii i 94
3.8.1 AbStract Data MOdel.....c.viiiiii i 94
3.8.2 LI L. L= P 95
3.8.3 | T = | = o T] o PPN 95
3.8.4 Message Processing Events and Sequencing Rulescccvvvviiiiiiiiiiiiiienie e, 95
3.8.4.1 APPCreate2 (OPNUM) .t e et e e e e neneeeas 95
3.8.5 LI L L= == PP 96
3.8.6 (0] =T ol W Tor= Y I V=T o | PPN 96
3.9 ITISApplicationAdmin Server DetailSovieiiiiiiii e 96
3.9.1 AbSEract Data Model.....ovieiiiii e 96
3.9.2 LT 96
3.9.3 |1 F= 1 4= o] o PP 97
3.9.4 Message Processing Events and Sequencing Rulescooviiiiiiiiiiiiineene, 97
3.94.1 CreateApplication (OPNUM 3) . e 97
3.9.4.2 DeleteApplication (OpnNUM 4) ...t e 99
3.9.4.3 CreateApplicationPool (OPNUM 5) ... e 99
3.9.4.4 DeleteApplicationPool (OpNUM 6) ...ciiiiiiiiiiiii i e ea 100
3.9.4.5 EnumerateApplicationsInPool (OpnUM 7) ..o e 101
3.9.4.6 RecycleApplicationPool (OpnUM 8)veieiiiiiii e 101
3.9.4.7 GetProcessMode (OPNUM) .ttt e e e e e e aaeneas 102
3.9.5 LI L 8 =2 7= L P 103
3.9.6 (0 1= T ol I Yo=Y I V=T o | PR 103
3.10 IIISCertObj Server DetailS....iiiuiiiii it e e e 103
3.10.1 AbStract Data Model.....ciuiiieiii i e 103
0 1 0 I o =T Pt 103
3.10.3 INIEI@liZation couu e e 103
3.10.4 Message Processing Events and Sequencing Rulesc.c.coviiiiiiiiiiiiiiiicineens 103
3.10.4.1 InstanceName (Set) (OpnuUM 10) ..ot e 105
6/ 143

[MS-IMSA-DIff] - v20240423

Internet Information Services (IIS) IMSAdminBaseW Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

3.10.4.2 IsInstalledRemote (OpNUM 12) ... e e aeans 105
3.10.4.3 IsExportableRemote (OpnumM 14) ..o e 106
3.10.4.4 GetCertInfoRemote (OpNUM 16) ..uiuiiieiniiiiiiiieere e e eeneeeeans 107
3.10.4.5 ImportFromBIob (OpnuUM 22) i e 108
3.10.4.6 ImportFromBlobGetHash (Opnum 23) .i.iiiiiiiiiiii i e 109
3.10.4.7 EXportToBIob (Opnum 25)...c.ciiiiiiiiiii e 111
3.10.5 Timer EVENES ..o e 112
3.10.6 Other LOCal EVENES...ciiriiiii ittt s e s e e e e s e e e rn e e e reaeanns 112
3.11 IIISCertObj Client DetailScuciuiiiiiiiiii i e e ae e eaas 112
3.11.1 Abstract Data MOdel......ovviriiiiiiii i 112
0 0 I 0 7= o= 112
3.11.3 INIEI@liZation coue e e 113
3.11.4 Message Processing Events and Sequencing Rulescovviiiiiiiiiiiiiiinens 113
3.11.4.1 InstanceName (Set) (OpnuUM 10) iiiiiiiiiiiiiiiii i e 113
0 I T I 0 1= ol V=T PN 113
3.11.6 Other LOCal EVENTS...uiiitiiii i e s e s e r e e raanens 113
4 Protocol EXamples ..cciciiciorimierimrsine s s s s sns s ns s a s nnnnnannnnnnnn 114
4.1 General HOOKUP EX@MIPIE .. .cruiiiiiii i ettt e e e s e e e 114
4.2 BackupWithPasswd Call EXample....c.iiiiiiiii i e e e 114
4.3 EnumHistory Call EXample......oii e 114
4.4 EXPOrt Call EXamIPIe ot et 115
4.5 IMPOrt Call EXamIPIe ..t 115
4.6 RestoreHistory Call EXample ... e 116
4.7 RestoreWithPasswd Call EXampPleo.vieieiiiiiiii e e e 116
4.8 GetChildPaths Call EXample . ..o e 117
4.9 Reading Sensitive Data from the Server.....cociciiiiiiiiii e 118
L T oL ¥ | o 1 120
5.1 Security Considerations for Implementerscciviiiiiiiiii 120
5.2 Index Of SECUrity ParameEtersouieieieiiiiieie e e e e e e e e e e e e e eeneneennnns 120
6 Appendix A: FUll IDL.....cciiciiiiiiirs s rsmas s ssa s sra s ssassasssassassasssnsanssnssnsnnssnnsnnnns 121
7 (Updated Section) Appendix B: Product Behavior........ccuicrieriemrsnamsasmsnssnssassassansas 128
8 Change TracKiNg...cuicverieirimreramrsinserasssrsse s s s s s sassasan s sanansansasansnsansasannnsnnsnsnns 134
2 TN o e = G 135
7/ 143

[MS-IMSA-DIff] - v20240423

Internet Information Services (IIS) IMSAdminBaseW Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

1 Introduction

The Internet Information Services (IIS) IMSAdminBaseW Remote Protocol defines interfaces that
provide Unicode-compliant methods for remotely accessing and administering the IIS metabase
associated with an application that manages IIS configuration, such as the IIS snap-in for Microsoft
Management Console (MMC).

Sections 1.5, 1.8, 1.9, 2, and 3 of this specification are normative. All other sections and examples in
this specification are informative.

1.1 Glossary
This document uses the following terms:
application pool: A collection of one or more processes hosting zero or more web applications.

base64 encoding: A binary-to-text encoding scheme whereby an arbitrary sequence of bytes is
converted to a sequence of printable ASCII characters, as described in [RFC4648].

certificate: A certificate is a collection of attributes and extensions that can be stored persistently.
The set of attributes in a certificate can vary depending on the intended usage of the certificate.
A certificate securely binds a public key to the entity that holds the corresponding private key. A
certificate is commonly used for authentication and secure exchange of information on open
networks, such as the Internet, extranets, and intranets. Certificates are digitally signed by the
issuing certification authority (CA) and can be issued for a user, a computer, or a service. The
most widely accepted format for certificates is defined by the ITU-T X.509 version 3
international standards. For more information about attributes and extensions, see [RFC3280]
and [X509] sections 7 and 8.

certificate chain: A sequence of certificates, where each certificate in the sequence is signed by
the subsequent certificate. The last certificate in the chain is normally a self-signed certificate.

certificate store: A database of certificates, or certificates and the accompanying private key.
Used to store a variety of certificates with different attributes or constraints.

class identifier (CLSID): A GUID that identifies a software component; for instance, a DCOM
object class or a COM class.

cleartext: In cryptography, cleartext is the form of a message (or data) that is transferred or
stored without cryptographic protection.

decryption: In cryptography, the process of transforming encrypted information to its original
clear text form.

Distributed Component Object Model (DCOM): The Microsoft Component Object Model (COM)
specification that defines how components communicate over networks, as specified in [MS-
DCOM].

dynamic endpoint: A network-specific server address that is requested and assigned at run time.
For more information, see [C706].

encryption: In cryptography, the process of obscuring information to make it unreadable without
special knowledge.

endpoint: A network-specific address of a remote procedure call (RPC) server process for remote
procedure calls. The actual name and type of the endpoint depends on the RPC protocol
sequence that is being used. For example, for RPC over TCP (RPC Protocol Sequence
ncacn_ip_tcp), an endpoint might be TCP port 1025. For RPC over Server Message Block (RPC
Protocol Sequence ncacn_np), an endpoint might be the name of a named pipe. For more
information, see [C706].

8/ 143

[MS-IMSA-DIff] - v20240423

Internet Information Services (IIS) IMSAdminBaseW Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

globally unique identifier (GUID): A term used interchangeably with universally unique
identifier (UUID) in Microsoft protocol technical documents (TDs). Interchanging the usage of
these terms does not imply or require a specific algorithm or mechanism to generate the value.
Specifically, the use of this term does not imply or require that the algorithms described in
[RFC4122] or [C706] must be used for generating the GUID. See also universally unique
identifier (UUID).

Interface Definition Language (IDL): The International Standards Organization (ISO) standard
language for specifying the interface for remote procedure calls. For more information, see
[C706] section 4.

Internet Information Services (IIS): The services provided in Windows implementation that
support web server functionality. IIS consists of a collection of standard Internet protocol
servers such as HTTP and FTP in addition to common infrastructures that are used by other
Microsoft Internet protocol servers such as SMTP, NNTP, and so on. IIS has been part of the
Windows operating system in some versions and a separate install package in others. IIS
version 5.0 shipped as part of Windows 2000 operating system, IIS version 5.1 as part of
Windows XP operating system, IIS version 6.0 as part of Windows Server 2003 operating
system, and IIS version 7.0 as part of Windows Vista operating system and Windows Server
2008 operating system.

Internet protocol server instance (server instance): A configuration collection for an Internet
protocol server that will establish its own network protocol endpoint. A single Internet protocol
server may configure multiple server instances that would each appear to clients as an
independent host (also referred to as a site).

key exchange key pair: A public/private key pair used to encrypt session keys so that they can
be safely stored and exchanged with other users.

key exchange private key: The private key of the key exchange key pair.
key exchange public key: The public key of a key exchange key pair.

man in the middle (MITM): An attack that deceives a server or client into accepting an
unauthorized upstream host as the actual legitimate host. Instead, the upstream host is an
attacker's host that is manipulating the network so that the attacker's host appears to be the
desired destination. This enables the attacker to decrypt and access all network traffic that
would go to the legitimate host. The attacker is able to read, insert, and modify at-will messages
between two hosts without either party knowing that the link between them is compromised.

MD5 hash: A hashing algorithm, as described in [RFC1321], that was developed by RSA Data
Security, Inc. An MD5 hash is used by the File Replication Service (FRS) to verify that a file on
each replica member is identical.

metabase: The name of the configuration storage implemented by Microsoft Internet Information
Services (IIS).

Microsoft Management Console (MMC): Provides a framework that consists of a graphical user
interface (GUI) and a programming platform in which snap-ins (collections of administrative
tools) can be created, opened, and saved. MMC is a multiple-document interface (MDI)
application.

Network Data Representation (NDR): A specification that defines a mapping from Interface
Definition Language (IDL) data types onto octet streams. NDR also refers to the runtime
environment that implements the mapping facilities (for example, data provided to NDR). For
more information, see [MS-RPCE] and [C706] section 14.

object: In the DCOM protocol, a software entity that implements one or more object remote
protocol (ORPC) interfaces and which is uniquely identified, within the scope of an object
exporter, by an object identifier (OID). For more information, see [MS-DCOM].

9/ 143

[MS-IMSA-DIff] - v20240423

Internet Information Services (IIS) IMSAdminBaseW Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

object identifier (OID): In the context of a directory service, a number identifying an object
class or attribute. Object identifiers are issued by the ITU and form a hierarchy. An OID is
represented as a dotted decimal string (for example, "1.2.3.4"). For more information on OIDs,
see [X660] and [RFC3280] Appendix A. OIDs are used to uniquely identify certificate templates
available to the certification authority (CA). Within a certificate, OIDs are used to identify
standard extensions, as described in [RFC3280] section 4.2.1.x, as well as non-standard
extensions.

opnum: An operation number or numeric identifier that is used to identify a specific remote
procedure call (RPC) method or a method in an interface. For more information, see [C706]
section 12.5.2.12 or [MS-RPCE].

private key: One of a pair of keys used in public-key cryptography. The private key is kept secret
and is used to decrypt data that has been encrypted with the corresponding public key. For an
introduction to this concept, see [CRYPTO] section 1.8 and [IEEE1363] section 3.1.

public key: One of a pair of keys used in public-key cryptography. The public key is distributed
freely and published as part of a digital certificate. For an introduction to this concept, see
[CRYPTO] section 1.8 and [IEEE1363] section 3.1.

RC4: A variable key-length symmetric encryption algorithm. For more information, see
[SCHNEIER] section 17.1.

relative distinguished name (RDN): As specified in [X500], the portion of a distinguished name
that is unique to an organization unit but might not be unique inside a domain.

remote procedure call (RPC): A communication protocol used primarily between client and
server. The term has three definitions that are often used interchangeably: a runtime
environment providing for communication facilities between computers (the RPC runtime); a set
of request-and-response message exchanges between computers (the RPC exchange); and the
single message from an RPC exchange (the RPC message). For more information, see [C706].

Rivest-Shamir-Adleman (RSA): A system for public key cryptography. RSA is specified in
[RFC8017].

RPC protocol sequence: A character string that represents a valid combination of a remote
procedure call (RPC) protocol, a network layer protocol, and a transport layer protocol, as
described in [C706] and [MS-RPCE].

RSA public key algorithm: A key exchange and signature algorithm based on the popular RSA
Public Key cipher.

secure session: An active communication channel that has associated cryptographic keys and
possibly other state.

Secure Sockets Layer (SSL): A security protocol that supports confidentiality and integrity of
messages in client and server applications that communicate over open networks. SSL supports
server and, optionally, client authentication using X.509 certificates [X509] and [RFC5280]. SSL
is superseded by Transport Layer Security (TLS). TLS version 1.0 is based on SSL version 3.0
[SSL3].

server: A computer on which the remote procedure call (RPC) server is executing.

session key: A relatively short-lived symmetric key (a cryptographic key negotiated by the client
and the server based on a shared secret). A session key's lifespan is bounded by the session to
which it is associated. A session key has to be strong enough to withstand cryptanalysis for the
lifespan of the session.

signature private key: The private key of a signature key pair.

10/ 143

[MS-IMSA-DIff] - v20240423

Internet Information Services (IIS) IMSAdminBaseW Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

signature public key: The public key of a signature key pair.
signed hash: A hash signed with a signature private key.

Unicode: A character encoding standard developed by the Unicode Consortium that represents
almost all of the written languages of the world. The Unicode standard [UNICODES5.0.0/2007]
provides three forms (UTF-8, UTF-16, and UTF-32) and seven schemes (UTF-8, UTF-16, UTF-16
BE, UTF-16 LE, UTF-32, UTF-32 LE, and UTF-32 BE).

universally unique identifier (UUID): A 128-bit value. UUIDs can be used for multiple
purposes, from tagging objects with an extremely short lifetime, to reliably identifying very
persistent objects in cross-process communication such as client and server interfaces, manager
entry-point vectors, and RPC objects. UUIDs are highly likely to be unique. UUIDs are also
known as globally unique identifiers (GUIDs) and these terms are used interchangeably in the
Microsoft protocol technical documents (TDs). Interchanging the usage of these terms does not
imply or require a specific algorithm or mechanism to generate the UUID. Specifically, the use of
this term does not imply or require that the algorithms described in [RFC4122] or [C706] must
be used for generating the UUID.

web application: A collection of URLs that share a server execution environment. This collection is
defined relative to a root URL. A web application runs in response to HTTP requests for the URLs
in the collection. The process or processes that run in response to such an HTTP request are
termed the application host.

well-known endpoint: A preassigned, network-specific, stable address for a particular
client/server instance. For more information, see [C706].

MAY, SHOULD, MUST, SHOULD NOT, MUST NOT: These terms (in all caps) are used as defined
in [RFC2119]. All statements of optional behavior use either MAY, SHOULD, or SHOULD NOT.

1.2 References

Links to a document in the Microsoft Open Specifications library point to the correct section in the
most recently published version of the referenced document. However, because individual documents
in the library are not updated at the same time, the section numbers in the documents may not
match. You can confirm the correct section numbering by checking the Errata.

1.2.1 (Updated Section) Normative References

We conduct frequent surveys of the normative references to assure their continued availability. If you
have any issue with finding a normative reference, please contact dochelp@microsoft.com. We will
assist you in finding the relevant information.

[C706] The Open Group, "DCE 1.1: Remote Procedure Call", C706, August 1997,
https://publications.opengroup.org/c706

Note Registration is required to download the document.

[MS-DCOM] Microsoft Corporation, "Distributed Component Object Model (DCOM) Remote Protocol".
[MS-DTYP] Microsoft Corporation, "Windows Data Types".

[MS-ERREF] Microsoft Corporation, "Windows Error Codes".

[MS-OAUT] Microsoft Corporation, "OLE Automation Protocol".

[MS-RPCE] Microsoft Corporation, "Remote Procedure Call Protocol Extensions".

11/ 143

[MS-IMSA-DIff] - v20240423

Internet Information Services (IIS) IMSAdminBaseW Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC
2119, March 1997, m://www.rfc—editor.org/rfc2119,n5

[RFC3280] Housley, R., Polk, W., Ford, W., and Solo, D., "Internet X.509 Public Key Infrastructure
Certificate and Certificate Revocation List (CRL) Profile", RFC 3280, April 2002, http://www.z

leditorRelgeirteinfollsies P10 txt

[RFC8017] Moriarty, K., Ed., Kaliski, B., Jonsson, J., and Rusch, A., "PKCS #1: RSA Cryﬁtography
Specifications Version 2.2", November 2016, https://www.rfc—editor.org/@/rchOUw

1.2.2 (Updated Section) Informative References

[MSDN-Colnitialize] Microsoft Corporation, "Colnitialize function", http://msdn.microsoft.com/en-
us/library/ms678543.aspx

1.3 Overview

The Internet Information Services (IIS) IMSAdminBaseW Remote Protocol is a client/server protocol
that is used for remotely managing a hierarchical configuration data store (metabase). The layout and
specifics of such a store are specified in section 3.1.1.

The Internet Information Services (IIS) IMSAdminBaseW Remote Protocol also provides DCOM
interfaces to manage server entities, such as web applications and public key certificates, which can
be defined or referenced in the metabase data store.

A remote metabase management session begins with the client initiating the connection request to the
server. If the server grants the request, the connection is established. The client can then make
multiple requests to read or modify the metabase on the server by using the same session until the
session is terminated.

A typical remote metabase management session involves the client connecting to the server and
requesting to open a metabase node on the server. If the server accepts the request, it responds with
an RPC context handle that refers to the node. The client uses this RPC context handle to operate on
that node. This involves sending another request to the server specifying the type of operation to
perform and any specific parameters that are associated with that operation. If the server accepts this
request, it attempts to change the state of the node based on the request and responds to the client
with the result of the operation. When the client is finished operating on the server nodes, it
terminates the protocol by sending a request to close the RPC context handle.

1.4 Relationship to Other Protocols

The IIS IMSAdminBaseW Remote Protocol relies on the remote protocol described in [MS-DCOM],
which uses RPC as a transport.

No other IIS protocols rely on this protocol.

1.5 Prerequisites/Preconditions

This protocol is implemented over DCOM and RPC and, as a result, has the prerequisites identified in
[MS-DCOM] and [MS-RPCE] as being common to DCOM and RPC interfaces.

12/ 143

[MS-IMSA-Diff] - v20240423

Internet Information Services (IIS) IMSAdminBaseW Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

The IIS IMSAdminBaseW Remote Protocol assumes that a client has obtained the name of a server
that supports this protocol suite before the protocol is invoked.

1.6 Applicability Statement

This protocol is applicable when an application needs to remotely configure an IIS server.

1.7 Versioning and Capability Negotiation

This document covers versioning issues in the following areas:

Supported Transports: The IIS IMSAdminBaseW Remote Protocol uses the remote protocol

described in [MS-DCOM] and multiple RPC protocol sequences, as specified in section 2.1.

Protocol Versions: This protocol has multiple interfaces, as specified in section 3.

Security and Authentication Methods: Authentication and security are provided as specified in

[MS-DCOM] and [MS-RPCE].

Capability Negotiation: The IIS IMSAdminBaseW Remote Protocol does not support negotiation of
the interface version to use. Instead, this protocol uses only the interface version number specified in

the IDL for versioning and capability negotiation.

1.8 Vendor-Extensible Fields

The IIS IMSAdminBaseW Remote Protocol does not have any vendor-extensible fields.

1.9 Standards Assignments

The following parameters are private Microsoft assignments.

[MS-IMSA-Diff] - v20240423

Internet Information Services (IIS) IMSAdminBaseW Remote Protocol

Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

Parameter Value Reference

DCOM CLSID for the IIS IMSAdminBaseW Remote Protocol A9E69610-B80D-11D0-B9B9- None

(CLSID_MSAdminBase_W) 00A0C922E750

DCOM CLSID for the IIS IMSAdminBaseW Remote Protocol 61738644-F196-11D0-9953- None

(CLSID_WamAdmin) 00C04FD919C1

DCOM CLSID for the IIS IMSAdminBaseW Remote Protocol 62B8CCBE-5A45-4372-8C4A- None

(CLSID_IISCertObj) 6A87DD3EDD60

RPC Interface UUID for IMSAdminBaseW 70B51430-B6CA-11d0-B9B9- None
00A0C922E750

RPC Interface UUID for IMSAdminBase2W 8298d101-f992-43b7-8eca- None
5052d885b995

RPC Interface UUID for IMSAdminBase3W f612954d-3b0b-4c56-9563- None
227b7be624b4

RPC Interface UUID for IWamAdmin 29822AB7-F302-11D0-9953- None
00C04FD919C1

RPC Interface UUID for IWamAdmin2 29822AB8-F302-11D0-9953- None
00C04FD919C1

RPC Interface UUID for IIISApplicationAdmin 7C4E1804-E342-483D-A43E- None
A850CFCC8D18

13/ 143

[MS-IMSA-Diff] - v20240423

Internet Information Services (IIS) IMSAdminBaseW Remote Protocol

Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

Parameter Value Reference
RPC Interface UUID for IIISCertObj BDOC73BC-805B-4043-9C30- None
9A28D64DD7D2
14 / 143

2 Messages

2.1 Transport

This protocol MUST use the remote protocol specified in [MS-DCOM] as its transport. On its behalf, the
remote protocol uses the following RPC protocol sequence: RPC over TCP, as specified in [MS-RPCE].
This protocol uses RPC dynamic endpoints, as specified in [C706] section 4.

This protocol MUST use the following UUIDs:

IMSAdminBaseW: 70B51430-B6CA-11D0-B9B9-00A0C922E750
IMSAdminBase2W: 8298D101-F992-43B7-8ECA-5052D885B995
IMSAdminBase3W: F612954D-3B0B-4C56-9563-227B7BE624B4
IWamAdmin:29822AB7-F302-11D0-9953-00C04FD919C1
IWamAdmin2: 29822AB8-F302-11D0-9953-00C04FD919C1
ITIISApplicationAdmin: 7C4E1804-E342-483D-A43E-A850CFCC8D18
IIISCertObj: BDOC73BC-805B-4043-9C30-9A28D64DD7D2

To receive incoming remote calls for these interfaces, the server MUST implement a DCOM Object
Class with the CLSIDs (specified in section 1.9) CLSID_MSAdminBase_W using the UUID {A9E69610-
B80D-11D0-B9B9-00A0C922E750%}, CLSID_WamAdmin using the UUID {61738644-F196-11D0-9953-
00C04FD919C1}, and CLSID_IISCertObj using the UUID {62B8CCBE-5A45-4372-8C4A-
6A87DD3EDD60}.

2.2 Common Data Types

In addition to RPC base types and definitions specified in [C706], [MS-DTYP], and [MS-OAUT],
additional data types are defined as follows.

All multiple-byte integer values in the messages declared in this section are stored using little-endian
byte order.

2.2.1 ADMINDATA_MAX_NAME_LEN

The ADMINDATA_MAX_NAME_LEN constant is used to define maximum buffer size, such as the buffer
that holds metabase subnodes or the buffer that contains the path to history files. The definition of
ADMINDATA_MAX_NAME_LEN follows.

#define ADMINDATA MAX NAME LEN 256

2.2.2 IIS_CRYPTO_BLOB

The IIS_CRYPTO_BLOB message defines a block of data, possibly encrypted, that is transferred
between client and server. It is used to transfer public keys, hash information, and encrypted and
cleartext data.

typedef struct IIS CRYPTO BLOB({
DWORD BlobSignature;
DWORD BlobDataLength;
[size is(BlobDataLength)] unsigned char BlobDatal[*];

15/ 143

[MS-IMSA-DIff] - v20240423

Internet Information Services (IIS) IMSAdminBaseW Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

} IIS CRYPTO BLOB;

BlobSignature: The structure signature for this binary large object (BLOB).

Value

Meaning

SESSION_KEY_BLOB_SIGNATURE
0x624b6349

The BlobData member contains the session key used to encrypt
sensitive data exchanged between client and server. See
SESSION_KEY_BLOB (section 2.2.2.2) for more information about the
BlobData layout.

PUBLIC_KEY_BLOB_SIGNATURE
0x62506349

The BlobData member contains the public key for a particular IIS
encryption behavior. See PUBLIC_KEY_BLOB (section 2.2.2.1) for
more information about the BlobData layout.

0x62446349

ENCRYPTED_DATA_BLOB_SIGNATURE

The BlobData member contains encrypted data. See
ENCRYPTED_DATA_BLOB (section 2.2.2.5) for more information
about the BlobData layout.

HASH_BLOB_SIGNATURE
0x62486349

The BlobData member contains a hash. See
HASH_BLOB (section 2.2.2.3) for more information about the
BlobData layout.

0x62436349

CLEARTEXT_DATA_BLOB_SIGNATURE

The BlobData member contains cleartext data. See CLEARTEXT
DATA_BLOB (section 2.2.2.4) for more information about the
BlobData layout.

BlobDataLength: The size, in bytes, of BlobData.

BlobData: A block of bytes that can be interpreted based on BlobSignature.

2.2.2.1 PUBLIC_KEY_BLOB

The PUBLIC_KEY_BLOB message is used to store information about RSA key exchange public keys and
RSA signature public keys. It is used during secure session negotiation.

The syntax of the PUBLIC_KEY_BLOB message is represented by the following diagram.

1
0

2 3
0 0

PublickeyBlobDatalLength

Reserved0

Type

Version

Reserved

AlgID

Magic

BitLen

PubExp

Modulus (variable)

[MS-IMSA-Diff] - v20240423

16 / 143

Internet Information Services (IIS) IMSAdminBaseW Remote Protocol

Copyright © 2024 Microsoft Corporation
Release: April 23, 2024

PublicKeyBlobDatalLength (4 bytes): A 32-bit unsigned integer. This field contains the total length
of the PUBLIC_KEY_BLOB instance excluding the PublicKkeyBlobDatalLength and ReservedO fields.

ReservedO (4 bytes): A 32-bit unsigned integer. This field MUST be set to 0x0.

Type (1 byte): An 8-bit unsigned integer. This field MUST be set to 0x6. This indicates that the public
key is transferred.

Version (1 byte): An 8-bit unsigned integer. This field MUST be set to 0x2.
Reserved (2 bytes): A 16-bit unsigned integer. This field MUST be set to 0xO0.

AlgID (4 bytes): A 32-bit unsigned integer. This field is set to the CALG_RSA_KEYX value if the key
exchange public key is stored in the BLOB or the CALG_RSA_SIGN value if the signature public
key is stored.

Value Meaning

CALG_RSA_KEYX | RSA public key exchange algorithm
0x0000A400

CALG_RSA_SIGN | RSA public key signature algorithm
0x00002400

Magic (4 bytes): A 32-bit unsigned integer. This field MUST be set to 0x31415352. The value can be
interpreted as the ASCII-encoded string "RSA1".

BitLen (4 bytes): A 32-bit unsigned integer that specifies the size of the public key in bits. This field
MUST be set to 0x200 (512) because the 512 (=0x200) bit RSA key is used.

PubExp (4 bytes): A 32-bit unsigned integer that is a public exponent, as specified in [RFC8017].

Modulus (variable): A variable-length array of bytes that stores the RSA public key. The size, in
bytes, of the Modulus field is BitLen/8.

2.2.2.2 SESSION_KEY_BLOB

The SESSION_KEY_BLOB is used to store session keys that are transferred during the secure session
negotiation.

—
N
w

EncryptedSessionKeyLength

SignedHashLength

EncryptedSessionKey (variable)

Padding (variable)

17/ 143

[MS-IMSA-DIff] - v20240423

Internet Information Services (IIS) IMSAdminBaseW Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

SignedHash (variable)

EncryptedSessionKeyLength (4 bytes): A 32-bit unsigned integer that contains the size, in bytes,
of the EncryptedSessionKey field.

SignedHashLength (4 bytes): A 32-bit unsigned integer that contains the size, in bytes, of the
SignedHash field.

EncryptedSessionKey (variable): A variable-length array of bytes that contains session key
information. For more information about the internal organization of data inside this field, see
ENCRYPTED_SESSION_KEY_BLOB (section 2.2.2.2.1).

Padding (variable): A variable-length array of bytes that contains zero to seven bytes of padding
based on the SessionKeyDatalLength field. The humber of padding bytes is calculated as the
difference between an 8-byte aligned EncryptedSessionKeyLength field and the actual
EncryptedSessionKeyLength field.

SignedHash (variable): A variable-length array of bytes that contain the signed hash of the session
key.

2.2.2.2.1 (Updated Section) ENCRYPTED_SESSION_KEY_ BLOB

The ENCRYPTED_SESSION_KEY_BLOB message layout is described in the following diagram.

0123456789(1)123456789512345678981
Type Version Reserved
AlgID
EncryptAlgID
SessionKey (variable)

Type (1 byte): An 8-bit unsigned integer that specifies that the session key is transferred. This field
MUST be set to Ox1.

Version (1 byte): An 8-bit unsigned integer value. This field MUST be set to 0x2.

Reserved (2 bytes): A 16-bit unsigned integer that MUST be set to 0x0000 and MUST be ignored on
receipt.

AlgID (4 bytes): A 32-bit unsigned integer. This field MUST be set to the CALG_RC4 value, which

MUST be used to indicate that the RC4 stream encryption algorithm will be used for the data
encryption, as MWIRC4}-SCHNEIER], section 17.1.

18/ 143

[MS-IMSA-DIff] - v20240423

Internet Information Services (IIS) IMSAdminBaseW Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

Value Meaning

CALG_RC4 The RC4 stream encryption algorithm.
0x00006801

EncryptAlgID (4 bytes): An unsigned 32-bit integer that MUST be set to the CALG_RSA_KEYX
value, which indicates that the session key was encrypted using the RSA public key algorithm.

Value Meaning

CALG_RSA_KEYX | The RSA public key algorithm.
0x0000a400

SessionKey (variable): A variable-length array of bytes that contains the actual session key of
AIgID type, which is encrypted by the algorithm specified by EncryptAlgID. The size of the
SessionKey field is always the same as the size of the modulus of the public key used for
encryption.

2.2.2.3 HASH_BLOB

The HASH_BLOB message stores the hash that is exchanged during the secure session negotiation.

01234567893123456789312345678931
HashDatalength
Reserved

HashData (variable)

HashDatalLength (4 bytes): A 32-bit unsigned integer that stores the size, in bytes, of the
HashData field.

Reserved (4 bytes): This field MUST be set to 0x00000000 and MUST be ignored on receipt.

HashData (variable): A variable-length array that contains the hash.

2.2.2.4 CLEARTEXT_DATA_BLOB

The CLEARTEXT_DATA_BLOB message stores cleartext data that does not need encryption, but uses
the IIS_CRYPTO_BLOB message to store the data.

N
w

1
0 0 0

ClearTextData (variable)

ClearTextData (variable): A variable-length array of bytes that contains cleartext data.

19/ 143

[MS-IMSA-DIff] - v20240423

Internet Information Services (IIS) IMSAdminBaseW Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

2.2.2.5 ENCRYPTED_DATA_BLOB

The ENCRYPTED_DATA_BLOB message stores the encrypted, sensitive data that is transferred
between client and server.

EncryptedDatalength

SignedHashLength

EncryptedData (variable)

Padding (variable)

SignedHash (variable)

EncryptedDatalLength (4 bytes): A 32-bit unsigned integer that stores the size, in bytes, of the
EncryptedData field.

SignedHashLength (4 bytes): A 32-bit unsigned integer that stores the size, in bytes, of the
SignedHash field.

EncryptedData (variable): A variable-length array of bytes containing encrypted data. The cleartext
data before the encryption is stored in CLEARTEXT_WITH_PREFIX_BLOB format.

Padding (variable): A variable-length array of bytes where the length of the padding is based on the
EncryptedDatalLength field. The number of padding bytes is calculated as the difference
between the 8-byte aligned EncryptedDatalLength field and the actual EncryptedDatalLength
field.

SignedHash (variable): A variable-length array of bytes that contains the signed hash of the
EncryptedData field.

2.2.2.5.1 CLEARTEXT_WITH_PREFIX_BLOB

The CLEARTEXT_WITH_PREFIX_BLOB message is used to store cleartext data before it is encrypted
and serialized into the BlobData field of the IIS_CRYPTO_BLOB message with the BlobSignature
field set to ENCRYPTED_DATA_BLOB_SIGNATURE.

1 2 3
0 0 0

Reserved

ClearTextData (variable)

20/ 143

[MS-IMSA-DIff] - v20240423

Internet Information Services (IIS) IMSAdminBaseW Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

Reserved (4 bytes): This field MUST be set to zero and MUST be ignored on receipt.

ClearTextData (variable): A variable-length array of bytes that contains cleartext data.

2.2.3 Secure Session Negotiation Constants

Constant/value Description

HASH_TEXT_STRING_1 The constant string used to calculate the hash sent by the client with the

"IIS Key Exchange Phase R_KeyExchangePhase2 call.

3n

HASH_TEXT_STRING_2 The constant string used to calculate the hash sent by the server in response to
"IIS Key Exchange Phase the R_KeyExchangePhase2 call.

4"

2.2.4 METADATA_GETALL_RECORD

The METADATA_GETALL_RECORD structure defines an analogous structure to METADATA_RECORD
but is used only to return data from a call to the R_GetAllData method. Data retrieval specifications
are provided in R_GetAllData method parameters, not in this structure (as is the case with
METADATA_RECORD). The R_GetAllData method returns the data from multiple entries as an array of
METADATA_GETALL_RECORD structures.

typedef struct METADATA GETALL_RECORD({
DWORD dwMDIdentifier;
DWORD dwMDAttributes;
DWORD dwMDUserType;
DWORD dwMDDataType;
DWORD dwMDDatalen;
DWORD dwMDDataOffset;
DWORD dwMDDataTag;
} METADATA GETALL RECORD, *PMETADATA GETALL RECORD;

dwMDIdentifier: An unsigned integer value that uniquely identifies the metabase entry.

dwMDAttributes: An unsigned integer value containing bit flags that specify how to set or get data
from the metabase. This member MUST be set to a valid combination of the following values.

Value Meaning

METADATA_INHERIT In Get methods: Return the inheritable data.

0x00000001 In Set methods: The data can be inherited.

METADATA_INSERT_PATH For a string data item.

0x00000040 In Get methods: Replace all occurrences of "<%INSERT_PATH%>" with the

path of the data item relative to the handle.

In Set methods: Indicate that the string contains the Unicode character
substring "<%INSERT_PATH%>".

METADATA_ISINHERITED In Get methods: Mark the data items that were inherited.
0x00000020 In Set methods: Not valid.

21/ 143

[MS-IMSA-DIff] - v20240423

Internet Information Services (IIS) IMSAdminBaseW Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

Value

Meaning

METADATA_NO_ATTRIBUTES

0x00000000

In Get methods: Not applicable. Data is returned regardless of this flag
setting.

In Set methods: The data does not have any attributes.

METADATA_PARTIAL_PATH

0x00000002

In Get methods: Return any inherited data even if the entire path is not
present. This flag is valid only if METADATA_INHERIT is also set.

In Set methods: Not valid.

METADATA_SECURE
0x00000004

In Get methods: Not valid.

In Set methods: The server and client transport and store the data in a
secure fashion, as specified in 3.1.4.1.1.

METADATA_VOLATILE
0x00000010

In Get methods: Not valid.
In Set methods: Do not save the data in long-term storage.

dwMDUserType: An unsigned integer value that specifies the user type of the data. The
dwMDUserType member MUST be set to one of the following values.

Value

Meaning

ASP_MD_UT_APP
0x00000065

The entry contains information specific to ASP application configuration.

IIS_MD_UT_FILE
0x00000002

The entry contains information about a file, such as access permissions or logon
methods.

IIS_MD_UT_SERVER
0x00000001

The entry contains information specific to the server, such as ports in use and IP
addresses.

IIS_MD_UT_WAM
0x00000064

The entry contains information specific to web application management.

dwMDDataType: An integer value that identifies the type of data in the metabase entry. The
dwMDDataType member MUST be set to one of the following values.

Value

Meaning

ALL_METADATA
0x00000000

Specifies all data, regardless of type.

BINARY_METADATA
0x00000003

Specifies binary data in any form.

DWORD_METADATA
0x00000001

Specifies all DWORD (unsigned 32-bit integer) data.

EXPANDSZ_METADATA
0x00000004

Specifies all data that consists of a string that includes the terminating null
character, and which contains environment variables that are not expanded.

MULTISZ_METADATA
0x00000005

Specifies all data represented as an array of strings, where each string includes the
terminating null character, and the array itself is terminated by two terminating
null characters.

STRING_METADATA
0x00000002

Specifies all data consisting of an ASCII string that includes the terminating null
character.

[MS-IMSA-Diff] - v20240423

22 /143

Internet Information Services (IIS) IMSAdminBaseW Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

dwMDDatalLen: An unsigned integer value that specifies the length, in bytes, of the data. If the
data is a string, this value includes the ending null character. For lists of strings, this includes an
additional terminating null character after the final string (double terminating null characters).

For example, the length of a string list containing two strings would be as follows.

(wcslen(stringA) + 1) * sizeof (WCHAR) + (wcslen(stringB) + 1)
* sizeof (WCHAR) + 1 * sizeof (WCHAR)

In-process clients need to specify dwMDDatalLen only when setting binary data in the metabase.
Remote clients MUST specify dwMDDataLen for all data types.

dwMDDataOffset: If the data was returned by value, this member contains the byte offset of the
data in the buffer specified by the pbMDBuffer parameter of the R_GetAllData method. All out-of-
process executions will return data by value. The array of records, excluding the data, is returned
in the first part of the buffer. The data associated with the records is returned in the buffer after
the array of records, and dwMDDataOffset is the offset to the beginning of the data associated
with each record in the array.

dwMDDataTag: A reserved member that is currently unused.

2.2.5 METADATA_HANDLE
The METADATA_HANDLE represents a node of the configuration storage tree.

This type is declared as follows:

typedef unsigned long METADATA HANDLE, *PMETADATA HANDLE;

2.2.6 METADATA_HANDLE_INFO

The METADATA_HANDLE_INFO structure defines information about a handle to a metabase entry.

typedef struct {

DWORD dwMDPermissions;

DWORD dwMDSystemChangeNumber;
} METADATA HANDLE_ INFO;

dwMDPermissions: An unsigned integer value containing the permissions with which the handle
was opened. This member MUST have a valid combination of the following flags set.

Value Meaning

METADATA_PERMISSION_READ The handle can read nodes and data.
0x00000001

METADATA_PERMISSION_WRITE | The handle can write nodes and data.
0x00000002

dwMDSystemChangeNumber: An unsigned integer value containing the system change number
when the handle was opened. The system change number is a 32-bit unsigned integer value that
is incremented when a change is made to the metabase. See
GetSystemChangeNumber (section 3.1.4.21) for a specification of the system change number.

23/ 143

[MS-IMSA-DIff] - v20240423

Internet Information Services (IIS) IMSAdminBaseW Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

2.2.7 METADATA_RECORD

The METADATA_RECORD structure defines information about a metabase entry.

typedef struct METADATA RECORD {
DWORD dwMDIdentifier;
DWORD dwMDAttributes;

DWORD dwMDUserType;
DWORD dwMDDataType;
DWORD dwMDDatalLen;

[unique, size is(dwMDDataLen)] unsigned char *pbMDData;

DWORD dwMDDataTag;
} METADATA RECORD;

dwMDIdentifier: An unsigned integer value that uniquely identifies the metabase entry.

dwMDAttributes: An unsigned integer value containing bit flags that specify how to get or set data
from the metabase. This member MUST have a valid combination of the following flags set.

Value

Meaning

METADATA_INHERIT

In Get methods: Returns inheritable data.

0x00000001 In Set methods: The data can be inherited.

METADATA_INSERT_PATH For a string data item.

0x00000040 In Get methods: Replaces all occurrences of "<%INSERT_PATH%>" with the
path of the data item relative to the handle.
In Set methods: Indicate that the string contains the Unicode character
substring "<%INSERT_PATH%>".

METADATA_ISINHERITED In Get methods: Marks data items that were inherited.

0x00000020 In Set methods: Not valid.

0x00000000

METADATA_NO_ATTRIBUTES | In Get methods: Not applicable. Data is returned regardless of this flag

setting.
In Set methods: The data does not have any attributes.

0x00000002

METADATA_PARTIAL_PATH In Get methods: Returns any inherited data even if the entire path is not

present. This flag is valid only if METADATA_INHERIT is also set.
In Set methods: Not valid.

METADATA_SECURE
0x00000004

In Get methods: Not valid.

In Set methods: Stores and transports the data in a secure fashion, as
specified in 3.1.4.1.

0x00000010

METADATA_VOLATILE

In Get methods: Not valid.
In Set methods: Does not save the data in long-term storage.

dwMDUserType: An integer value that specifies the user type of the data. The dwMDUserType
member MUST be set to one of the following values.

Value

Meaning

ASP_MD_UT_APP
0x00000065

The entry contains information specific to ASP application configuration.

IIS_MD_UT_FILE
0x00000002

The entry contains information about a file, such as access permissions or logon
methods.

[MS-IMSA-Diff] - v20240423

24 /143

Internet Information Services (IIS) IMSAdminBaseW Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

Value

Meaning

IIS_MD_UT_SERVER
0x00000001

The entry contains information specific to the server, such as ports in use and IP
addresses.

IIS_MD_UT_WAM
0x00000064

The entry contains information specific to WAM.

dwMDDataType: An unsigned integer value that identifies the type of data in the metabase entry.

The dwMDDataType member MUST be set to one of the following values.

Value

Meaning

ALL_METADATA
0x00000000

Specifies all data, regardless of type.

BINARY_METADATA
0x00000003

Specifies binary data.

DWORD_METADATA
0x00000001

Specifies all DWORD (unsigned 32-bit integer) data.

EXPANDSZ_METADATA
0x00000004

Specifies all data that consists of a string that includes the terminating null
character and which contains environment variables that are not expanded.

MULTISZ_METADATA
0x00000005

Specifies all data represented as an array of strings, where each string includes the
terminating null character, and the array itself is terminated by two terminating null
characters.

STRING_METADATA

Specifies all data consisting of an ASCII string that includes the terminating null

character.

0x00000002

dwMDDatalLen: An unsigned integer value that specifies the length of the data in bytes. If the data
is a string, this value includes the terminating null character. For lists of strings, this includes an
additional terminating null character after the final string (double terminating null characters).

For example, the length of a string list containing two strings would be as follows.

(wcslen (stringA)
* sizeof (WCHAR)

+ 1) * sizeof (WCHAR) +
+ 1 * sizeof (WCHAR)

(wcslen(stringB) + 1)

In-process clients need to specify dwMDDatalLen only when setting binary data in the metabase.
Remote clients MUST specify dwMDDatalLen for all data types.

pbMDData: When setting data in the metabase, this member contains a pointer to a buffer that
holds the data. When getting data from the metabase, this member contains a pointer to a buffer
that will receive the data.

dwMDDataTag: A reserved member that is currently unused.

2.2.8 METADATA_MASTER_ROOT_HANDLE

This predefined handle points to the root of the configuration storage tree. It is treated as a valid
handle for operations that require a METADATA_HANDLE opened with the
METADATA_PERMISSION_READ bit flag specified in section 3.1.4.2. It is represented by a null handle
and declared in the following way.

25/ 143

[MS-IMSA-DIff] - v20240423

Internet Information Services (IIS) IMSAdminBaseW Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

#define METADATA MASTER ROOT HANDLE

2.2.9 MD_APP_ROOT

MD_APP_ROOT is a metabase data object defined by a METADATA_RECORD structure. The following

METADATA_RECORD fields define MD_APP_ROOT.

Field

Value

dwMDIdentifier

MD_APP_ROOT

0x00000838
dwMDAttributes | METADATA_INHERIT

0x00000001
dwUserType IIS_MD_UT_WAM

0x00000064
dwMDDataType STRING_METADATA

0x00000002

2.2.10 MD_APP_ISOLATED

MD_APP_ISOLATED is a metabase data object defined by a METADATA_RECORD structure. The
following METADATA_RECORD fields define MD_APP_ISOLATED.

Field

Value

dwMDIdentifier

MD_APP_ISOLATED
0x00000838

dwMDAttributes

METADATA_INHERIT

0x00000001
dwUserType IIS_MD_UT_WAM

0x00000064
dwMDDataType DWORD_METADATA

0x00000001

2.2.11 MD_APP_APPPOOL_ID

MD_APP_APPPOOL_ID is a metabase data object defined by a METADATA_RECORD structure. The

following METADATA_RECORD fields define MD_APP_APPPOOL_ID.

Field

Value

dwMDIdentifier

MD_APP_APPPOOL_ID
0x0000238D

dwMDAttributes

METADATA_INHERIT

[MS-IMSA-Diff] - v20240423

Internet Information Services (IIS) IMSAdminBaseW Remote Protocol

Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

26 /143

Field Value
0x00000001
dwUserType IIS_MD_UT_SERVER
0x00000001
dwMDDataType STRING_METADATA

0x00000002

2.2.12 MD_BACKUP_MAX_LEN

The MD_BACKUP_MAX_LEN constant is used to define the maximum size of a string that specifies a

backup location. This constant is defined as follows.

#define MD BACKUP MAX LEN 100

[MS-IMSA-Diff] - v20240423

Internet Information Services (IIS) IMSAdminBaseW Remote Protocol

Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

27/ 143

3 Protocol Details

The client side of the IWamAdmin, IWamAdmin2, and IIISApplicationAdmin interfaces are simply a
pass-through. That is, no additional timers or other state is required on the client side of this protocol.
Calls made by the higher-layer protocol or application are passed directly to the transport, and the
results returned by the transport are passed directly back to the higher-layer protocol or application.

3.1 IMSAdminBaseW Server Details

3.1.1 Abstract Data Model

The following information must be maintained by the server for use in responding to client queries and
commands.

Configuration storage, interfaced by IMSAdminBaseW, is to be implemented as a hierarchical tree-like
store of data. Configuration data is accessed through the metabase path, where each node of the path
represents branch of the tree, similar to the registry key. The node is identified by a name that is
unique between siblings and the metabase path is combined from node names separated by
predefined separation characters. Each node could contain any number of data value items (data)
identified by numerical IDs, and any number of child nodes.

In addition to the registry-like features, the metabase provides data value items inheritance along the
metabase path in such a manner, that data value item defined on the node located closer to the root
of the tree could be inherited by lower level nodes. Each data value item carries an attribute that
could be used to find, if the data on any particular node is defined on that node, or inherited from the
parent node.

Each data on the metabase node has attributes describing the type of data that it contains and type of
use for this data. For a complete description of the data structure with all the attributes, see section
2.2.7.

The metabase root is defined by the predefined handle METADATA_MASTER_ROOT_HANDLE. When
the metabase is initialized, this handle is opened with read access and stays opened during the entire
session. When a caller is getting access to the nodes, which are located lower than root, the access
type is passed as a parameter. This access type could be read or write; see section 3.1.4.2. When a
caller requests write access, the server locks the metabase subtree starting from the node where
access is requested, including the parental nodes and all the child nodes. If at the moment of call the
requested part of metabase is already locked by another caller, the requesting call returns Win32 error
code ERROR_PATH_BUSY (see [MS-ERREF] section 2.2). The server keeps the state of the locked
subtree until the opened node is explicitly closed. When the caller requests read-only access, the
server locks the same portion of the tree from being opened for write access. Multiple calls could open
locked nodes for read-only access at the same time. If any caller requests write access to the portion
of the tree, which is currently locked for read-only access, then this call will return the Win32 error
code ERROR_PATH_BUSY (see [MS-ERREF] section 2.2).

The server must keep the counter of changes that were done to the configuration storage.

The server must keep record of last change time for each node.

3.1.1.1 Secure Session Context

When the client expects to exchange sensitive data marked with the METADATA_SECURE secure flag,
it will negotiate secure session. As part of the secure session negotiation, both client and server will
build the secure session context.

For each client, the server MUST maintain the following information related to the secure session:

= The server's key exchange private and public key.

28/ 143

[MS-IMSA-DIff] - v20240423

Internet Information Services (IIS) IMSAdminBaseW Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

= The server's signature private and public key.
= The client's key exchange public key.

= The client's signature public key.

= The server's session key.

= The client's session key.

3.1.2 Timers

No protocol timers are required beyond those used internally by RPC to implement resiliency to
network outages, as specified in [MS-RPCE] section 3.2.3.2.1.

3.1.3 Initialization

The IIS IMSAdminBaseW Remote Protocol server MUST be initialized by registering the RPC interface
and listening on the RPC well-known endpoint, as specified in section 2.1. The server MUST then wait
for IIS IMSAdminBaseW Remote Protocol clients to establish a connection.

3.1.4 Message Processing Events and Sequencing Rules

This DCOM interface inherits the IUnknown interface. Method opnum field values start with 3; opnum
values 0 through 2 represent the IUnknown_QuerylInterface, IUnknown_AddRef, and
IUnknown_Release methods, respectively, as specified in [MS-DCOM].

Methods with opnum field values 34 through 39 are defined in section 3.3.4, and field value 40 is
defined in section 3.5.4.

This protocol MUST indicate to the RPC runtime that it is to perform a strict Network Data
Representation (NDR) data consistency check at target level 5.0, as specified in [MS-RPCE] section 3.

Methods in RPC Opnum Order

Method Description

AddKey Creates a node and adds it to the metabase as a subnode of an existing node at
the specified path.
Opnum: 3

DeleteKey Deletes a node and all its data from the metabase. All of the node's subnodes are
recursively deleted.
Opnum: 4

DeleteChildKeys Deletes all subnodes of the specified node and any data they contain. It also
recursively deletes all nodes below the subnodes.
Opnum: 5

EnumKeys Enumerates the subnodes of the specified node.
Opnum: 6

CopyKey Copies or moves a node, including its subnodes and data, to a specified
destination. The copied or moved node becomes a subnode of the destination
node.
Opnum: 7

RenameKey Renames a node in the metabase.

29/ 143

[MS-IMSA-DIff] - v20240423

Internet Information Services (IIS) IMSAdminBaseW Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

Method Description
Opnum: 8

R_SetData Sets a data item for a particular node in the metabase.
Opnum: 9

R_GetData Returns a data entry from a particular node in the metabase.
Opnum: 10

DeleteData Deletes specific data entries from a node in the metabase.

Opnum: 11

R_EnumData

Enumerates the data entries of a node in the metabase.
Opnum: 12

R_GetAllData

Returns all data associated with a node in the metabase, including all values that
the node inherits.

Opnum: 13

DeleteAllData

Deletes all or a subset of local data associated with a particular node.
Opnum: 14

CopyData Copies or moves data between nodes.
Opnum: 15

GetDataPaths Returns the paths of all nodes in the subtree relative to a specified starting node
that contains the supplied identifier.
Opnum: 16

OpenKey Opens a node for read access, write access, or both. The returned handle can be
used by several of the other methods in IMSAdminBaseW.
Opnum: 17

CloseKey Closes a handle to a node.

Opnum: 18

ChangePermissions

Changes permissions on an open handle.
Opnum: 19

SaveData

Explicitly saves the metabase data to disk.
Opnum: 20

GetHandlelnfo

Returns information associated with the specified metabase handle.
Opnum: 21

GetSystemChangeNumber

Returns the number of changes made to data since the metabase was created.
Opnum: 22

GetDataSetNumber Returns all the data set numbers associated with a node in the metabase.
Opnum: 23
SetLastChangeTime Sets the last change time associated with a node in the metabase.

Opnum: 24

GetLastChangeTime

Returns the last change time associated with a node in the metabase.
Opnum: 25

R_KeyExchangePhasel

Receives a pair of encrypted client nodes and returns server encryption and
session keys.

30/ 143

[MS-IMSA-DIff] - v20240423

Internet Information Services (IIS) IMSAdminBaseW Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

Method Description

Opnum: 26

R_KeyExchangePhase2 Receives the encrypted client session and hash keys in response to
R_KeyExchangePhasel and returns the encrypted server hash keys.

Opnum: 27

Backup Backs up the metabase to a specified location.
Opnum: 28

Restore Restores the metabase from a backup.
Opnum: 29

EnumBackups Enumerates the metabase backups in a specified backup location, or in all backup
locations.

Opnum: 30

DeleteBackup Deletes a metabase backup from a backup location.
Opnum: 31

Unmarshallnterface Unmarshals a reference to the IMSAdminBaseW interface.
Opnum: 32

R_GetServerGuid Returns the GUID for the IIS instance that is running.
Opnum: 33

Structures

The Message Processing Events and Sequencing Rules interface defines the following structures.

Structure Description

METADATA_HANDLE_INFO Defines information about a handle to a metabase entry.

METADATA_RECORD Defines information about a metabase entry.

METADATA_GETALL_RECORD | Defines an analogous structure to METADATA_RECORD but is used only to
return data from a call to the R_GetAllData method.

IIS_CRYPTO_BLOB Defines a block of opaque data, possibly encrypted, for RPC marshaling
between IIS and a client.

3.1.4.1 Transferring Sensitive Data

Some of the data that is transferred between client and server is of sensitive nature and needs to be
protected. An example of sensitive data is a password. The IIS IMSAdminBaseW Remote Protocol
defines a way to protect sensitive data transferred in the METADATA_RECORD or
METADATA_GETALL_RECORD structures.

When the client expects transfer of sensitive data, it will initiate negotiation of a secure session. The
secure session is negotiated by processing R_KeyExchangePhasel and R_KeyExchangePhase?2 calls.
The 512-bit RSA key exchange keys are used to exchange 40-bit RC4 session keys. RC4 session keys
(one for the client and one for the server) are used to encrypt data over the wire. An MD5 hash signed
with 512-bit RSA signature keys is used for message integrity checks.<1>

There are four methods that take advantage of this protection:

31/143

[MS-IMSA-DIff] - v20240423

Internet Information Services (IIS) IMSAdminBaseW Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

= R_GetData
= R_EnumbData
= R_GetAllData
= R_SetData

Sensitive data is marked with the METADATA_SECURE secure flag in the METADATA_RECORD or
METADATA_GETALL_RECORD structure.<2>

3.1.4.1.1 Secure Session Negotiation Server Role

The purpose of the secure session negotiation is to exchange session keys and signature public keys
between the server and client. The session keys are used for encryption and decryption of sensitive
data, and signature public keys are used to ensure message integrity.

Secure session negotiation is initiated by the client using the R_KeyExchangePhasel and
R_KeyExchangePhase?2 call sequence; for more information, see 3.2.4.1. The server participates in the
secure session negotiation by responding to R_KeyExchangePhasel and R_KeyExchangePhase2 calls,
in that order.

The server MUST participate in the secure session negotiation initiated by the client. As a result of the
secure session negotiation, the server will receive the client's session key and signature public key.

3.1.4.1.2 Encrypting Data

Some data transferred between the client and server must be encrypted before it is sent. Encrypted
data will be transferred in an IIS_CRYPTO_BLOB message with the BlobSignature field set to
ENCRYPTED_DATA_BLOB_SIGNATURE.

Secure session MUST be negotiated before the data encryption takes place (see section 3.1.4.1.1).
Sender MUST perform the following steps to encrypt data and build IIS_CRYPTO_BLOB:
1. Create an instance of a CLEARTEXT_WITH_PREFIX_BLOB message:

= Set the Reserved field to zero.

= Place the data to be encrypted into the ClearTextData field.

2. Calculate the signed hash and hash length of the CLEARTEXT_WITH_PREFIX_BLOB message from
the previous step, as specified in section 3.1.4.1.4.

3. Encrypt the CLEARTEXT_WITH_PREFIX_BLOB message data using the session key of the sender.
The client will use the session key of the client, and the server will use the session key of the
server.

4. Create an instance of ENCRYPTED_DATA_BLOB:

= Set the EncryptedDatalLength field to the number of encrypted bytes from the previous
step.

= Store encrypted data from the earlier step in the EncryptedData field.

»= Calculate the padding size between zero and seven, so that EncryptedDatalLength +
padding length is a multiple of eight. Set padding bytes to 0x00.

= Set the SignedHashLength and SignedHash fields calculated in the earlier step.

5. Create an instance of an IIS_CRYPTO_BLOB message:

32/ 143

[MS-IMSA-DIff] - v20240423

Internet Information Services (IIS) IMSAdminBaseW Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

= Set the BlobSignature field to ENCRYPTED_DATA_BLOB_SIGNATURE.

= Calculate the BlobDatalLength field value in the IIS_CRYPTO_BLOB message by adding the
EncryptedDatalength + padding length + SignedHashLength.

= Store the ENCRYPTED_DATA_BLOB instance from the earlier step in the BlobData field.

3.1.4.1.3 Decrypting Data

Some data is encrypted before it is transferred between the client and server. The receiver MUST
decrypt the data before it can be used. Encrypted data is stored in an IIS_CRYPTO_BLOB message
with the BlobSignature field set to ENCRYPTED_DATA_BLOB_SIGNATURE.

The data decryption process assumes that secure session was already negotiated (see section
3.1.4.1.1).

The receiver MUST perform the following steps to decrypt the data:
1. Retrieve the BlobData field from an IIS_CRYPTO_BLOB message.
2. Interpret BlobData as an ENCRYPTED_DATA_BLOB message.

3. Retrieve the EncryptedData field or EncryptedDatalLength bytes from the
ENCRYPTED_DATA_BLOB message.

4. Decrypt the EncryptedData data using the session key of the sender. The server will use the
session key of the client and the client will use the session key of the server.

5. Follow the instructions in section 3.1.4.1.5 to validate the hash. Use the decrypted data from step
4,

If a hash validation fails, the receiver MUST reject the data and the method that is processing the
encrypted data MUST fail. Error messages from a failure are implementation-dependent.

6. Interpret the decrypted data from step 4 as a CLEARTEXT_WITH_PREFIX_BLOB message.

7. Retrieve the ClearTextData field from the CLEARTEXT_WITH_PREFIX_BLOB message. It will
contain the final decrypted data.

3.1.4.1.4 Signed Hash Calculation

The signed hash is used to provide integrity checking by the receiver.
The sender MUST perform the following steps to calculate the hash:
1. Compute an MD5 hash of cleartext data.

2. Use the sender's signature private key (the server will use the server's signature private key, and
the client will use the client's signature private key) to sign the MD5 hash, as specified in
[RFC8017].

3. The size of the signed hash will match the number of bits in the signature key. The 512-bit RSA
signature keys will be used for signing, so the signed hash will always be 0x40 bytes long.

3.1.4.1.5 Signed Hash Validation
Validation is to be performed by the receiver to verify the integrity of the received data.
The following steps MUST be performed by the receiver:

1. Compute an MD5 hash of decrypted data.

33/ 143

[MS-IMSA-DIff] - v20240423

Internet Information Services (IIS) IMSAdminBaseW Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

2. Use the MD5 hash from previous step and the sender's signature public key to verify against the
SignedHash field stored in the IIS_CRYPTO_BLOB message. The server will use the client's
signature public key, and the client will use the server's signature public key for verification. If the
signature does not match, the validation fails, as specified in [RFC8017].

3.1.4.2 OpenKey (Opnum 17)

The OpenKey method opens a node for read access, write access, or both. The returned handle can be
used by several of the other methods in the IMSAdminBaseW interface.

HRESULT OpenKey (
[in] METADATA HANDLE hMDHandle,
unique, in, string] LPCWSTR pszMDPath,
in] DWORD dwMDAccessRequested,
in] DWORD dwMDTimeOut,

[
[
[
[out] METADATA HANDLE* phMDNewHandle

hMDHandle: An unsigned 32-bit integer value containing a handle to a node in the metabase with
read permissions as returned by the OpenKey method or the metabase master root handle
(0x00000000).

pszMDPath: A pointer to a Unicode string that contains the path of the node to be opened, relative to
the hMDHandle parameter.

dwMDAccessRequested: A set of bit flags specifying the requested permissions for the handle. This
parameter MUST be set to at least one of the following values.

Value Meaning

METADATA_PERMISSION_READ Open the node for reading.
0x00000001

METADATA_PERMISSION_WRITE | Open the node for writing.
0x00000002

dwMDTimeOut: An unsigned 32-bit integer value specifying the time, in milliseconds, for the method
to wait on a successful open operation.

phMDNewHandle: A pointer to the newly opened metadata handle (see DWORD).

Return Values: A signed 32-bit value that indicates return status. If the method returns a negative
value, it failed. If the 12-bit facility code (bits 16-27) is set to 0x007, the value contains a Win32
error code in the lower 16 bits. Zero or positive values indicate success, with the lower 16 bits in
positive nonzero values containing warnings or flags defined in the method implementation. For
more information about Win32 error codes and HRESULT values, see [MS-ERREF].

Return value/code Description

0x00000000 The call was successful.

S_OK

0x80070003 The system cannot find the path specified.

ERROR_PATH_NOT_FOUND

0x80070006 The handle is invalid.
ERROR_INVALID_HANDLE

34 /143

[MS-IMSA-DIff] - v20240423

Internet Information Services (IIS) IMSAdminBaseW Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

Return value/code Description

0x80070094 The path specified cannot be used at this time.
ERROR_PATH_BUSY

0x80070057 One or more arguments are invalid.
E_INVALIDARG

The opnum field value for this method is 17.
When processing this call, the server MUST do the following:

= Check the handle parameter. This handle is valid if it is either the master root handle or a handle
returned from a previous OpenKey call. If the handle is invalid, return ERROR_INVALID_HANDLE
error.

= Check that the relative path points to a valid node; otherwise, return ERROR_PATH_NOT_FOUND.

= Determine if it is possible to provide the required access type for the destination node with the
path combined from the parent handle path and the relative path.

= If the destination node represents the root of the metabase and the requested access is for write,
the server returns an error.

= If the destination node falls into part of the metabase that is locked as described in 3.1.1, the
server SHOULD attempt to provide access during the time-out, which is passed as a parameter. If,
after this time-out, the node is still locked, the server SHOULD return ERROR_PATH_BUSY.<3>

= If access could be provided, the server calculates the handle of the destination node, increases its
lock count, and saves its state.

Return the following information to the client:

= The handle of the opened node.

3.1.4.3 CloseKey (Opnum 18)

The CloseKey method closes a handle to a node.

HRESULT CloseKey (
[in] METADATA HANDLE hMDHandle
)i

hMDHandle: An unsigned 32-bit integer value containing the handle to close, as returned by the
OpenKey method.

Return Values: A signed 32-bit value that indicates return status. If the method returns a negative
value, it failed. If the 12-bit facility code (bits 16-27) is set to 0x007, the value contains a Win32
error code in the lower 16 bits. Zero or positive values indicate success, with the lower 16 bits in
positive nonzero values containing warnings or flags defined in the method implementation. For
more information about Win32 error codes and HRESULT values, see [MS-ERREF].

Return value/code Description
0x00000000 The call was successful.
S_OK

0x80070006 The handle is invalid.

35/ 143

[MS-IMSA-DIff] - v20240423

Internet Information Services (IIS) IMSAdminBaseW Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

Return value/code Description

ERROR_INVALID_HANDLE

The opnum field value for this method is 18.
When processing this call, the server MUST do the following:

= Check the handle parameter. This handle is valid if it is either the master root handle or a handle
returned from a previous OpenKey (section 3.1.4.2) call. If the handle is invalid, return the
ERROR_INVALID_HANDLE error.

= Decrease the internal lock count in the state of the handle and release the lock, if it is possible.

3.1.4.4 AddKey (Opnum 3)

The AddKey method creates a node and adds it to the metabase as a subnode of an existing node at
the specified path.

HRESULT AddKey (
[in] METADATA HANDLE hMDHandle,
[unique, in, string] LPCWSTR pszMDPath
)i

hMDHandle: An unsigned 32-bit integer value containing an open metabase handle specifying the
node in the metabase where the new key is to be added.

pszMDPath: A pointer to a Unicode string that contains the new node's path, relative to the path of
the hMDHandle parameter.

Return Values: A signed 32-bit value that indicates return status. If the method returns a negative
value, it failed. If the 12-bit facility code (bits 16-27) is set to 0x007, the value contains a Win32
error code in the lower 16 bits. Zero or positive values indicate success, with the lower 16 bits in
positive nonzero values containing warnings or flags defined in the method implementation. For
more information about Win32 error codes and HRESULT values, see [MS-ERREF].

Return value/code Description

0x00000000 The call was successful.
S_OK

0x80070005 General access denied error.

E_ACCESSDENIED

0x80070006 The handle is invalid.
ERROR_INVALID_HANDLE

0x80070057 One or more arguments are invalid.
E_INVALIDARG

0x800700B7 Cannot create a file because that file already exists.
ERROR_ALREADY_EXISTS

The opnum field value for this method is 3.

When processing this call, the server MUST do the following:

36/ 143

[MS-IMSA-DIff] - v20240423

Internet Information Services (IIS) IMSAdminBaseW Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

= Check the handle parameter. This handle is valid if it is either the master root handle or a handle
returned from a previous OpenKey call. If the handle is invalid, return ERROR_INVALID_HANDLE
error.

= The server SHOULD check whether the parent handle, hMDHandle, was opened for write access. If
not, return E_ACCESSDENIED<4>.

= Check whether the relative path has the right syntax and length. If not, return an error.

= Check whether the relative path refers to an existing node. If so, return
ERROR_ALREADY_EXISTS.

= Add a new node to the tree that has the resultant path as a combined path of the parent node
specified by the hMDHandle parameter and the relative path specified by the pszMDPath
parameter. If any intermediate nodes are required, the server creates these nodes.

3.1.4.5 CopyKey (Opnum 7)

The CopyKey method copies or moves a node, including its subnodes and data, to a specified
destination. The copied or moved node becomes a subnode of the destination node.

HRESULT CopyKey (
[in] METADATA HANDLE hMDSourceHandle,
[unique, in, string] LPCWSTR pszMDSourcePath,
[in] METADATA HANDLE hMDDestHandle,
[unique, in, string] LPCWSTR pszMDDestPath,
[in] BOOL bMDOverwriteFlag,
[

in
in] BOOL bMDCopyFlag

hMDSourceHandle: An unsigned 32-bit integer value containing an open metabase handle specifying
the source node to be copied or moved.

pszMDSourcePath: A pointer to a Unicode string that contains the path of the node to be copied or
moved relative to the path of the hMDSourceHandle parameter.

hMDDestHandle: An unsigned 32-bit integer value containing an open metabase handle specifying
the destination node of the moved or copied metabase key.

pszMDDestPath: A pointer to a string that contains the path of the new or moved node, relative to
the hMDDestHandle parameter.

bMDOverwriteFlag: A Boolean value that determine the behavior if a node with the same name as
source is already a child of destination node. If TRUE, the existing node and all its data and
children are deleted prior to copying or moving the source. If FALSE, the existing node, data, and
children remain, and the source is merged with that data. In cases of data conflicts, the source
data overwrites the destination data.

bMDCopyFlag: A Boolean value that specifies whether to copy or move the specified node. If TRUE,
the node is copied. If FALSE, the node is moved, and the source node is deleted from its original
location.

Return Values: A signed 32-bit value that indicates return status. If the method returns a negative
value, it failed. If the 12-bit facility code (bits 16-27) is set to 0x007, the value contains a Win32
error code in the lower 16 bits. Zero or positive values indicate success, with the lower 16 bits in
positive nonzero values containing warnings or flags defined in the method implementation. For
more information about Win32 error codes and HRESULT values, see [MS-ERREF].

37/ 143

[MS-IMSA-DIff] - v20240423

Internet Information Services (IIS) IMSAdminBaseW Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

Return value/code Description

0x00000000 The call was successful.
S_OK
0x80070003 The system cannot find the path specified.

ERROR_PATH_NOT_FOUND

0x80070005 General access denied error.
E_ACCESSDENIED

0x80070006 The handle is invalid.
ERROR_INVALID_HANDLE

0x80070057 One or more arguments are invalid.
E_INVALIDARG

The opnum field value for this method is 7.

When processing this call, the server MUST do the following:

Check the source handle parameter. This handle is valid if it is either the master root handle or a
handle returned from a previous OpenKey call. If the handle is invalid, return
ERROR_INVALID_HANDLE.

Check the destination handle parameter. This handle is valid if it is either the master root handle
or a handle returned from a previous OpenKey call. If the handle is invalid, return
ERROR_INVALID_HANDLE.

The server SHOULD check whether the source and destination handles are opened with the correct
access mask. The destination handle, hMDDestHandle, SHOULD be opened with write access. If
bMDCopyFlag is TRUE the source handle, hMDSourceHandle, SHOULD be opened with write
access, otherwise it SHOULD be opened with read access. If the handles were not opened with the
correct access, return E_ACCESSDENIED.<5>

Check whether the source relative path points to the existing node. If not, return
ERROR_PATH_NOT_FOUND.

Check whether the destination relative path has the right syntax and length. If not, return an
error.

Check if the destination node exists. If it is true, check whether the overwrite parameter is set to
TRUE. If it is FALSE, then merge destination data with source data. When there is a conflict in this
merge, take the source data.

If the destination node does not exist, add a new node to the tree that has the resultant path as a
combined path of destination parent node and destination relative path. If any intermediate nodes
are required, the server creates these nodes. Copy all data from the source path to the destination
path.

If the copy flag is set to FALSE, delete the source node.

3.1.4.6 DeleteKey (Opnum 4)

The DeleteKey method deletes a node and all its data from the metabase. All of the subnodes are
recursively deleted.

HRESULT DeleteKey (
[in] METADATA HANDLE hMDHandle,

38/ 143

[MS-IMSA-DIff] - v20240423

Internet Information Services (IIS) IMSAdminBaseW Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

[unique, in, string] LPCWSTR pszMDPath
)

hMDHandle: An unsigned 32-bit integer value containing an open metabase handle specifying a node
in the metabase where the key is to be deleted.

pszMDPath: A pointer to a Unicode string that contains the path of the node to be deleted, relative to
the path of the hMDHandle parameter. This parameter MUST NOT be NULL.

Return Values: A signed 32-bit value that indicates return status. If the method returns a negative
value, it failed. If the 12-bit facility code (bits 16-27) is set to 0x007, the value contains a Win32
error code in the lower 16 bits. Zero or positive values indicate success, with the lower 16 bits in
positive nonzero values containing warnings or flags defined in the method implementation. For
more information about Win32 error codes and HRESULT values, see [MS-ERREF].

Return value/code Description

0x00000000 The call was successful.

S_OK

0x80070003 The system cannot find the path specified.

ERROR_PATH_NOT_FOUND

0x80070005 General access denied error.
E_ACCESSDENIED

0x80070006 The handle is invalid.
ERROR_INVALID_HANDLE

0x80070057 One or more arguments are invalid.
E_INVALIDARG

The opnum field value for this method is 4.
When processing this call, the server MUST do the following:

= Check the handle parameter. This handle is valid if it is a handle returned from a previous
OpenKey call. If the handle is invalid, return ERROR_INVALID_HANDLE error.

= The server SHOULD check whether the handle was opened for write access. If not, return
E_ACCESSDENIED.<6>

= Check whether the relative path points to the existing subnode of parent handle. If not, return
ERROR_PATH_NOT_FOUND.

= Delete the node that contains the path which was calculated to be the path of the parent handle
combined with the relative path.

= Delete all child nodes of this node.

3.1.4.7 DeleteChildKeys (Opnum 5)

The DeleteChildKeys method deletes all subnodes of the specified node and any data they contain. It
also recursively deletes all nodes below the subnodes.

HRESULT DeleteChildKeys (
[in] METADATA HANDLE hMDHandle,
[unique, in, string] LPCWSTR pszMDPath

39/ 143

[MS-IMSA-DIff] - v20240423

Internet Information Services (IIS) IMSAdminBaseW Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

hMDHandle: An unsigned 32-bit integer value containing an open metabase handle specifying the
node in the metabase where the child key is to be deleted.

pszMDPath: A pointer to a Unicode string that contains the path of the node whose subnodes are to
be deleted, relative to the path of the hMDHandle parameter.

Return Values: A signed 32-bit value that indicates return status. If the method returns a negative
value, it failed. If the 12-bit facility code (bits 16-27) is set to 0x007, the value contains a Win32
error code in the lower 16 bits. Zero or positive values indicate success, with the lower 16 bits in
positive nonzero values containing warnings or flags defined in the method implementation. For
more information about Win32 error codes and HRESULT values, see [MS-ERREF].

Return value/code Description

0x00000000 The call was successful.

S_OK

0x80070003 The system cannot find the path specified.

ERROR_PATH_NOT_FOUND

0x80070005 General access denied error.
E_ACCESSDENIED

0x80070006 The handle is invalid.
ERROR_INVALID_HANDLE

The opnum field value for this method is 5.
When processing this call, the server MUST do the following:

» Check the handle parameter. This handle is valid if it is either the master root handle or a handle
returned from a previous OpenKey call. If the handle is invalid, the server SHOULD return
ERROR_INVALID_HANDLE.<7>

= Check whether the handle was opened for write access. If not, return E_ACCESSDENIED.

= Check whether the relative path points to the existing subnode of the parent handle. If not, return
ERROR_PATH_NOT_FOUND.

= Delete all child nodes of this subnode.

3.1.4.8 DeleteData (Opnum 11)

The DeleteData method deletes specific data entries from a node in the metabase.

HRESULT DeleteData (

[in] METADATA HANDLE hMDHandle,
[unique, in, string] LPCWSTR pszMDPath,
[in] DWORD dwMDIdentifier,

[in] DWORD dwMDDataType

)

hMDHandle: An unsigned 32-bit integer value containing an open metabase handle specifying the
node in the metabase where the key data is to be deleted.

40/ 143

[MS-IMSA-DIff] - v20240423

Internet Information Services (IIS) IMSAdminBaseW Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

pszMDPath: A pointer to a Unicode string that contains the path of the node whose data is to be
deleted, relative to the path of the hMDHandle parameter.

dwMDIdentifier: An integer value specifying the data identifier.

dwMDDataType: An integer value specifying a data type. If this parameter is not set to
ALL_METADATA, the data item will be removed only if its data type matches the specified type.

Value

Meaning

ALL_METADATA
0x00000000

Specifies all data, regardless of type.

BINARY_METADATA
0x00000003

Specifies binary data in any form.

DWORD_METADATA
0x00000001

Specifies all DWORD (unsigned 32-bit integer) data.

EXPANDSZ_METADATA
0x00000004

Specifies all data consisting of a string that includes the terminating null
character, which contains unexpanded environment variables.

MULTISZ_METADATA
0x00000005

Specifies all data represented as an array of strings, where each string contains

two occurrences of the terminating null character.

STRING_METADATA
0x00000002

Specifies all data consisting of an ASCII string that includes the terminating null

character.

Return Values: A signed 32-bit value that indicates return status. If the method returns a negative
value, it failed. If the 12-bit facility code (bits 16-27) is set to 0x007, the value contains a Win32
error code in the lower 16 bits. Zero or positive values indicate success, with the lower 16 bits in
positive nonzero values containing warnings or flags defined in the method implementation. For
more information about Win32 error codes and HRESULT values, see [MS-ERREF].

Return value/code

Description

0x00000000 The call was successful.
S_OK
0x80070003 The system cannot find the path specified.

ERROR_PATH_NOT_FOUND

0x80070005
E_ACCESSDENIED

General access denied error.

0x80070006
ERROR_INVALID_HANDLE

The handle is invalid.

0x800CC801

MD_ERROR_DATA_NOT_FOUND

The specified metadata was not found.

The opnum field value for this

When processing this call, the

method is 11.

server MUST do the following:

» Check the handle parameter. This handle is valid if it is either the master root handle or a handle
returned from a previous OpenKey call. If the handle is invalid, return ERROR_INVALID_HANDLE.

[MS-IMSA-Diff] - v20240423

Internet Information Services (IIS) IMSAdminBaseW Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

41/ 143

= The server SHOULD check whether the handle was opened for write access. If not, return
E_ACCESSDENIED.<8>

= Check whether the relative path points to the existing subnode of the parent handle. If not, return
an error.

= Check whether the node has data with an ID equal to the ID parameter passed from the client. If
not, return MD_ERROR_DATA_NOT_FOUND.

= Check the data type parameter. If it is ALL_METADATA or if the data type matches the data
specified by the dwMDIdentifier, delete this data from the node. Otherwise return
MD_ERROR_DATA_NOT_FOUND.

3.1.4.9 DeleteAllData (Opnum 14)

The DeleteAllData method deletes all or a subset of local data associated with a particular node.

HRESULT DeleteAllData (

[in] METADATA HANDLE hMDHandle,
[unique, in, string] LPCWSTR pszMDPath,
[in] DWORD dwMDUserType,

[in] DWORD dwMDDataType
)i

hMDHandle: An unsigned 32-bit integer value containing an open metabase handle specifying the
node in the metabase where the key data is to be deleted.

pszMDPath: A pointer to a Unicode string that contains the path of the node with which the data to
be deleted is associated, relative to the path of the hMDHandle parameter.

dwMDUserType: An integer value specifying the data to delete based on user type.

Value Meaning

ALL_METADATA Specifies all data, regardless of type.

0x00000000

ASP_MD_UT_APP Specifies data specific to ASP application configuration.

0x00000065

IIS_MD_UT_FILE Specifies data specific to a file, such as access permissions or logon methods.
0x00000002

IIS_MD_UT_SERVER | Specifies data specific to the server, such as ports in use and IP addresses.
0x00000001

IIS_MD_UT_WAM Specifies data specific to WAM.
0x00000064

dwMDDataType: An integer value specifying a data type. If this parameter is not set to
ALL_METADATA, the data item will be removed only if its data type matches the specified type.

Value Meaning

ALL_METADATA Specifies all data, regardless of type.
0x00000000

BINARY_METADATA Specifies binary data in any form.

42 /143

[MS-IMSA-DIff] - v20240423

Internet Information Services (IIS) IMSAdminBaseW Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

Value Meaning

0x00000003

DWORD_METADATA Specifies all DWORD (unsigned 32-bit integer) data.
0x00000001

EXPANDSZ_METADATA | Specifies all data consisting of a string that includes the terminating null
0x00000004 character, which contains unexpanded environment variables.

MULTISZ_METADATA Specifies all data represented as an array of strings, where each string contains

0x00000005 two occurrences of the terminating null character.
STRING_METADATA Specifies all data consisting of an ASCII string that includes the terminating null
0x00000002 character.

Return Values: A signed 32-bit value that indicates return status. If the method returns a negative
value, it failed. If the 12-bit facility code (bits 16-27) is set to 0x007, the value contains a Win32
error code in the lower 16 bits. Zero or positive values indicate success, with the lower 16 bits in
positive nonzero values containing warnings or flags defined in the method implementation. For
more information about Win32 error codes and HRESULT values, see [MS-ERREF].

Return value/code Description

0x00000000 The call was successful.
S_OK

0x80070005 General access denied error.

E_ACCESSDENIED

0x80070006 The handle is invalid.
ERROR_INVALID_HANDLE

The opnum field value for this method is 14.
When processing this call, the server MUST do the following:

= Check the handle. This handle is valid if it is either the master root handle or a handle returned
from a previous OpenKey call. If the handle is invalid, return ERROR_INVALID_HANDLE.

= The server SHOULD check whether the handle was opened for write access. If not, return
E_ACCESSDENIED.<9>

= Check whether the relative path points to the existing subnode of the parent handle. If not, return
an error.

» For each data value that is defined on the destination node and not inherited from the parent
node, repeat the following:

= If the dwMDUserType and dwMDDataType parameters are equal to "ALL_METADATA", delete the
data.

= If the user type parameter equals the user type of the data and the data type parameter is equal
to the data type of the data or ALL_METADATA, delete this data value.

= If the data type parameter equals the data type of the data and the user type parameter is equal
to the user type of the data or ALL_METADATA, the server SHOULD delete this data value.<10>

43/ 143

[MS-IMSA-DIff] - v20240423

Internet Information Services (IIS) IMSAdminBaseW Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

3.1.4.10

HRESULT CopyData (

CopyData (Opnum 15)

The CopyData method copies or moves data between nodes.

[in] METADATA HANDLE hMDSourceHandle,

unique, in, string]

unique, in, string]

LPCWSTR pszMDSourcePath,

in] METADATA HANDLE hMDDestHandle,

LPCWSTR pszMDDestPath,

] DWORD dwMDAttributes,

] DWORD dwMDUserType,

DWORD dwMDDataType,

[
[
[
[in
[in
[in]
[in

] BOOL bMDCopyFlag

hMDSourceHandle: An unsigned 32-bit integer value containing an open metabase handle specifying

the source node from which the data is to be copied or moved.

pszMDSourcePath: A pointer to a Unicode string that contains the path of the node with which the

source data is associated, relative to the path of the hMDSourceHandle parameter.

hMDDestHandle: An unsigned 32-bit integer value containing an open metabase handle specifying

the destination node to which the data is to be copied or moved.

pszMDDestPath: A pointer to a Unicode string that contains the path of the node for data to be

copied to or moved to, relative to the path of the hMDDestHandle parameter.

dwMDAttributes: Flags used to filter the data, as specified in the METADATA_RECORD structure.

dwMDUserType: An integer value specifying the data to copy based on the user type.

Value

Meaning

ALL_METADATA
0x00000000

Specifies all data, regardless of user type.

ASP_MD_UT_APP
0x00000065

Specifies data specific to ASP application configuration.

IIS_MD_UT_FILE
0x00000002

Specifies data specific to a file, such as access permissions or logon methods.

IIS_MD_UT_SERVER
0x00000001

Specifies data specific to the server, such as ports in use and IP addresses.

IIS_MD_UT_WAM
0x00000064

Specifies data specific to WAM.

dwMDDataType: An integer value specifying a data type. If this parameter is not set to

ALL_METADATA, the data item will be copied only if its data type matches the specified type.

Value

Meaning

ALL_METADATA
0x00000000

Specifies all data, regardless of type.

BINARY_METADATA
0x00000003

Specifies binary data in any form.

[MS-IMSA-DIff] - v20240423
Internet Information Services (IIS) IMSAdminBaseW Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

44 / 143

Value Meaning

DWORD_METADATA Specifies all DWORD (unsigned 32-bit integer) data.
0x00000001

EXPANDSZ_METADATA | Specifies all data consisting of a string that includes the terminating null
0x00000004 character, which contains unexpanded environment variables.

MULTISZ_METADATA Specifies all data represented as an array of strings, where each string contains

0x00000005 two occurrences of the terminating null character.
STRING_METADATA Specifies all data consisting of an ASCII string that includes the terminating null
0x00000002 character.

bMDCopyFlag: A Boolean value that specifies whether to copy or move the data. If this parameter is

set to TRUE, the data is copied. If it is FALSE, the data is moved.

Return Values: A signed 32-bit value that indicates return status. If the method returns a negative

value, it failed. If the 12-bit facility code (bits 16-27) is set to 0x007, the value contains a Win32
error code in the lower 16 bits. Zero or positive values indicate success, with the lower 16 bits in
positive nonzero values containing warnings or flags defined in the method implementation. For
more information about Win32 error codes and HRESULT values, see [MS-ERREF].

Return value/code Description

0x00000000 The call was successful.

S_OK

0x80070003 The system cannot find the path specified.

ERROR_PATH_NOT_FOUND

0x80070005 General access denied error.
E_ACCESSDENIED

0x80070006 The handle is invalid.
ERROR_INVALID_HANDLE

0x80070057 One or more arguments are invalid.
E_INVALIDARG

0x80070008 There is not enough memory to complete the operation.
ERROR_NOT_ENOUGH_MEMORY

The opnum field value for this method is 15.

When processing this call, the server:

MUST check the hMDSourceHandle parameter. This handle is valid if it is either the master root
handle or a handle returned from a previous OpenKey call. If the handle is invalid, return
ERROR_INVALID_HANDLE error.

MUST check the hMDDestHandle parameter. This handle is valid if it is either the master root
handle or a handle returned from a previous OpenKey call. If the handle is invalid, return
ERROR_INVALID_HANDLE error.

MUST check whether the destination handle was opened for write access. If not, return
E_ACCESSDENIED.

45/ 143

[MS-IMSA-DIff] - v20240423

Internet Information Services (IIS) IMSAdminBaseW Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

= MUST check whether the source relative path points to the existing node. If not, return
ERROR_PATH_NOT_FOUND.

= SHOULD check whether the destination relative path points to an existing node. If not, return an
error.<11>

= MUST, if the dwMDUserType and the dwMDDataType parameters are not equal to
"ALL_METADATA", use these parameters as the data selection filter.

= MUST, if the dwMDAttributes parameter is defined, use this parameter to get the data.
= MUST copy the selected data from the source node to the destination node.

= MUST, if the bMDCopyFlag parameter is set to false, remove the selected data from the source.

3.1.4.11 EnumKeys (Opnum 6)

The EnumKeys method enumerates the subnodes of the specified node.

HRESULT EnumKeys (
[in] METADATA HANDLE hMDHandle,
[unique, in, string] LPCWSTR pszMDPath,
[out, size is(ADMINDATA MAX NAME LEN)]
LPWSTR pszMDName,
[in] DWORD dwMDEnumObjectIndex
)i

hMDHandle: An unsigned 32-bit integer value containing an open metabase handle specifying the
key to be enumerated.

pszMDPath: A pointer to a Unicode string that contains the path of the node whose subnodes are to
be enumerated, relative to the path of the hMDHandle parameter.

pszMDName: A pointer to a string buffer that receives the names of the enumerated metabase
subnodes.

dwMDEnumObjectIndex: An integer value specifying the index of the subnode to be retrieved.

Return Values: A signed 32-bit value that indicates return status. If the method returns a negative
value, it failed. If the 12-bit facility code (bits 16-27) is set to 0x007, the value contains a Win32
error code in the lower 16 bits. Zero or positive values indicate success, with the lower 16 bits in
positive nonzero values containing warnings or flags defined in the method implementation. For
more information about Win32 error codes and HRESULT values, see [MS-ERREF].

Return value/code Description

0x00000000 The call was successful.

S_OK

0x80070003 The system cannot find the path specified.

ERROR_PATH_NOT_FOUND

0x80070005 General access denied error.
E_ACCESSDENIED

0x80070006 The handle is invalid.
ERROR_INVALID_HANDLE

0x80070057 One or more arguments are invalid.

46 /143

[MS-IMSA-DIff] - v20240423

Internet Information Services (IIS) IMSAdminBaseW Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

Return value/code Description

E_INVALIDARG

0x80070103 No more data is available.
ERROR_NO_MORE_ITEMS

The opnum field value for this method is 6.

A subnode can be enumerated once per call. Subnodes are numbered from zero to (NumKeys - 1),
with NumKeys equal to the number of subnodes below the node.

When processing this call, the server MUST do the following:

= Check the handle. This handle is valid if it is either the master root handle or a handle returned
from a previous OpenKey call. If the handle is invalid, return ERROR_INVALID_HANDLE.

= The server SHOULD check whether the handle was opened for read access. If not, return an
error.<12>

= Check whether the relative path points to the existing subnode of the parent handle. If not, return
ERROR_PATH_NOT_FOUND.

= Find the child node of the destination node that has an index equal to the dwMDEnumKeyIndex
parameter. If there is no child with that index, return ERROR_NO_MORE_ITEMS.

= Copy the name of this child node to the pszMDName buffer.

3.1.4.12 R_EnumbData (Opnum 12)

The R_EnumData method enumerates the data entries of a node in the metabase.

HRESULT R _EnumData (
[in] METADATA HANDLE hMDHandle,
[unique, in, string] LPCWSTR pszMDPath,
[in, out] METADATA RECORD* pmdrMDData,
[in] DWORD dwMDEnumDatalIndex,
[out] DWORD* pdwMDRequiredDatalen,
[out] IIS_CRYPTO BLOB** ppDataBlob

hMDHandle: An unsigned 32-bit integer value containing an open metabase handle specifying the
key to be enumerated.

pszMDPath: A pointer to a Unicode string that contains the path of the node to be enumerated,
relative to the path of the hMDHandle parameter.

pmdrMDData: A pointer to a METADATA_RECORD structure that specifies the retrieved data.
dwMDEnumbDatalIndex: An integer value specifying the index of the entry retrieved.

pdwMDRequiredDatalen: Pointer to a DWORD that receives the required buffer size if the method
returns ERROR_INSUFFICIENT_BUFFER as specified in [MS-ERREF].

ppDataBlob: An IIS_CRYPTO_BLOB structure containing the data value as encrypted opaque data.

Return Values: A signed 32-bit value that indicates return status. If the method returns a negative
value, it failed. If the 12-bit facility code (bits 16-27) is set to 0x007, the value contains a Win32
error code in the lower 16 bits. Zero or positive values indicate success, with the lower 16 bits in

47/ 143

[MS-IMSA-DIff] - v20240423

Internet Information Services (IIS) IMSAdminBaseW Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

positive nonzero values containing warnings or flags defined in the method implementation. For

more information about Win32 error codes and HRESULT values, see [MS-ERREF].

ERROR_PATH_NOT_FOUND

Return value/code Description

0x00000000 The call was successful.

S_OK

0x80070003 The system cannot find the path specified.

0x80070005 General access denied error.
E_ACCESSDENIED

0x80070006 The handle is invalid.
ERROR_INVALID_HANDLE

E_INVALIDARG

0x80070057 One or more arguments are invalid.

ERROR_INSUFFICIENT_BUFFER

0x8007007A The data area passed to a system call is too small.

0x80070103 No more data is available.
ERROR_NO_MORE_ITEMS

The opnum field value for this method is 12.

The client indicates how much decrypted data it is ready to receive by passing the number of bytes in
the dwMDDatalen field of the pmdrMDData parameter. If this value is too small to contain the
decrypted data value, the server MUST return ERROR_INSUFFICIENT_BUFFER and return the number

of bytes required to hold the data in the pdwMDRequiredDatalLen parameter.

When processing this call, the server MUST do the following:

= Check the handle. This handle is valid if it is either the master root handle or a handle returned

from a previous OpenKey call. If the handle is invalid, return ERROR_INVALID_HANDLE.

= The server SHOULD check whether the handle was opened for read access. If not, return

E_ACCESSDENIED.<13>

= The server SHOULD check whether the relative path points to the existing subnode of the parent

handle. If not, return ERROR_PATH_NOT_FOUND.

= Obtain the requested data using an index parameter. If the index is equal or greater than the

number of data items associated with the node, return ERROR_NO_MORE_ITEMS.

= To return the data value to the client, build the IIS_CRYPTO_BLOB structure as specified in the

rules of the R_GetData method.

3.1.4.13 Backup (Opnum 28)

The Backup method backs up the metabase.

HRESULT Backup (
[unique, in, string] LPCWSTR pszMDBackupName,
[in] DWORD dwMDVersion,
[in] DWORD dwMDFlags

[MS-IMSA-DIff] - v20240423

Internet Information Services (IIS) IMSAdminBaseW Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

48/ 143

pszMDBackupName: A string of up to 100 Unicode characters that names the backup.

dwMDVersion: An integer value specifying the version number to be used for the backup.

Value Meaning

MD_BACKUP_HIGHEST_VERSION | Overwrite the highest existing backup version with the specified

OXFFFFFFFE backup name.
MD_BACKUP_NEXT_VERSION Use the next backup version number available with the specified
OXFFFFFFFF backup name.

dwMDFlags: An integer value containing the bit flags describing the type of backup operation to be
performed. The flags can be one or more of the following values.

Value Meaning

MD_BACKUP_FORCE_BACKUP | Force the backup even if the SaveData operation specified by
0x00000004 MD_BACKUP_SAVE_FIRST fails.

MD_BACKUP_OVERWRITE Back up even if a backup of the same name and version exists,
0x00000001 overwriting it if necessary.

MD_BACKUP_SAVE_FIRST Perform a SaveData operation before the backup.

0x00000002

Return Values: A signed 32-bit value that indicates return status. If the method returns a negative
value, it failed. If the 12-bit facility code (bits 16-27) is set to 0x007, the value contains a Win32
error code in the lower 16 bits. Zero or positive values indicate success, with the lower 16 bits in
positive nonzero values containing warnings or flags defined in the method implementation. For
more information about Win32 error codes and HRESULT values, see [MS-ERREF].

Return value/code Description

0x00000000 The call was successful.

S_OK

0x80070057 One or more arguments are invalid.

E_INVALIDARG

0x000CC809 The metadata save prior to backup failed. The previous version of the
MD_WARNING_SAVE FAILED data was backed up.
0x80070008 There is not enough memory to complete the operation.

ERROR_NOT_ENOUGH_MEMORY

The opnum field value for this method is 28.

The location string can be up to 100 Unicode characters in length. Multiple metabase backups can be
stored with the same name.

When processing this call, the server MUST do the following:

49/ 143

[MS-IMSA-DIff] - v20240423

Internet Information Services (IIS) IMSAdminBaseW Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

= Check the pszMDBackupName parameter. If the length of the string is 100 characters or more, or
if it contains any characters in the following set ('/', '\', "', ".", 2", ", &', '!", '@", '#', '$', '%', '™,
"¢,y =L+, Y, ') return E_INVALIDARG.

= Check the version parameter. If it is greater than the maximum allowed version number and is not
either MD_BACKUP_HIGHEST_VERSION or MD_BACKUP_NEXT_VERSION, return E_INVALIDARG.

= If the parameter flags have the bit MD_BACKUP_SAVE_FIRST set, flush the in-memory
configuration data first. If this operation fails, check the MD_BACKUP_FORCE_BACKUP bit. If this
bit is not set, return an error. Otherwise, continue the operation. If no subsequent error occurs,
return MD_WARNING_SAVE_FAILED.

= Check the MD_BACKUP_OVERWRITE bit. If it is not set, check if a backup with the target version
exists. If it is TRUE, return an error, otherwise overwrite the existing backup.

= If the value of the pszMDBackupName parameter is an empty string, the server uses a default
name for the backup.

= The server saves the persisted data using the backup name and the version number as a key so
that the data can be restored later.

3.1.4.14 EnumBackups (Opnum 30)

The EnumBackups method enumerates metabase backups with a specified backup name or all
backups.

HRESULT EnumBackups (
[in, out, size is(MD BACKUP MAX LEN)] LPWSTR pszMDBackupName,
[out] DWORD *pdwMDVersion,
[out] PFILETIME pftMDBackupTime,
[in] DWORD dwMDEnumIndex

pszMDBackupName: A buffer of size MD_BACKUP_MAX_LEN. On input, the buffer can contain either
a string of Unicode characters that names the backup set to be enumerated or an empty string.

pdwMDVersion: An integer value containing the version number of the backup.

pftMDBackupTime: A FILETIME structure containing the Coordinated Universal Time (UTC) date and
time when this backup was created.

dwMDEnumIndex: An integer value specifying the index number of the backup to be enumerated.

Return Values: A signed 32-bit value that indicates return status. If the method returns a negative
value, it failed. If the 12-bit facility code (bits 16-27) is set to 0x007, the value contains a Win32
error code in the lower 16 bits. Zero or positive values indicate success, with the lower 16 bits in
positive nonzero values containing warnings or flags defined in the method implementation. For
more information about Win32 error codes and HRESULT values, see [MS-ERREF].

Return value/code Description
0x00000000 The call was successful.
S_OK

0x80070103 No more data is available.

ERROR_NO_MORE_ITEMS

0x80070057 The pszMDBackupName parameter is NULL.

50/ 143

[MS-IMSA-DIff] - v20240423

Internet Information Services (IIS) IMSAdminBaseW Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

Return value/code Description

E_INVALIDARG

The opnum field value for this method is 30.
When processing this call, the server MUST do the following:
= If the pszMDBackupName parameter is NULL, the server MUST return the error E_INVALIDARG.

= If the pszMDBackupName parameter is an empty string, the server MUST enumerate all backups;
otherwise, it enumerates only backups that match the requested name.

= For the backups matching the name provided, find the backup with an index equal to the
dwMDEnumIndex parameter. If such a backup does not exist, return the error
ERROR_NO_MORE_ITEMS.

= If the pszMDBackupName parameter is an empty string, copy the name of the backup to the
pszMDBackupName buffer.

= Copy the version of the backup into the pdwMDVersion parameter.

= Copy the backup time into the pftMDBackupTime parameter.

3.1.4.15 DeleteBackup (Opnum 31)

The DeleteBackup method deletes a metabase backup.

HRESULT DeleteBackup (
[unique, in, string] LPCWSTR pszMDBackupName,
[in] DWORD dwMDVersion

)i

pszMDBackupName: A string of up to 100 Unicode characters that names the backup.

dwMDVersion: Either an integer value specifying the version humber of the backup to be deleted or
the following constant.

Value Meaning

MD_BACKUP_HIGHEST_VERSION | Delete the existing backup with the highest version number.
OxFFFFFFFE

Return Values: A signed 32-bit value that indicates return status. If the method returns a negative
value, it failed. If the 12-bit facility code (bits 16-27) is set to 0x007, the value contains a Win32
error code in the lower 16 bits. Zero or positive values indicate success, with the lower 16 bits in
positive nonzero values containing warnings or flags defined in the method implementation. For
more information about Win32 error codes and HRESULT values, see [MS-ERREF].

Return value/code Description

0x00000000 The call was successful.

S_OK

0x80070057 One or more arguments are invalid.

E_INVALIDARG

0x80070002 The system cannot find the file specified.

51 /143

[MS-IMSA-DIff] - v20240423

Internet Information Services (IIS) IMSAdminBaseW Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

Return value/code Description
ERROR_FILE_NOT_FOUND

0x80070008 There is not enough memory to complete the operation.
ERROR_NOT_ENOUGH_MEMORY

The opnum field value for this method is 31.
When processing this call, the server MUST do the following:

= If the pszMDBackupName parameter is not an empty string and it contains any characters in the
f0||OWing set (I/I’ l\l, |*|, '_l, l?l, llll’ l&l, l!l, l@l, I#l’ l$l’ IO/OI’ l/\l, l(l, L} l, I=I’ |+|, 1 |, [l’ INI), return
E_INVALIDARG.

= If the pszMDBackupName parameter is empty or is not the name of a backup, return
ERROR_FILE_NOT_FOUND.

= Check the dwMDVersion parameter. If this parameter is equal to
MD_BACKUP_HIGHEST_VERSION, find and delete the very last backup. Otherwise, find and delete
the backup with the requested version number. If a backup does not exist, return
ERROR_FILE_NOT_FOUND.

3.1.4.16 ChangePermissions (Opnum 19)

The ChangePermissions method changes permissions on an open handle.

HRESULT ChangePermissions (
[in] METADATA HANDLE hMDHandle,
[in] DWORD dwMDTimeOut,
[in] DWORD dwMDAccessRequested
)i

hMDHandle: An unsigned 32-bit integer value containing the handle to change the permissions for,
as returned by the OpenKey method.

dwMDTimeOut: An integer value specifying the time, in milliseconds, for the method to wait on a
successful permission change operation.

dwMDAccessRequested: A set of bit flags specifying the requested permissions for the handle. This
parameter MUST be set to at least one of the following values.

Value Meaning

METADATA_PERMISSION_READ Open the node for reading.
0x00000001

METADATA_PERMISSION_WRITE | Open the node for writing.
0x00000002

Return Values: A signed 32-bit value that indicates return status. If the method returns a negative
value, it failed. If the 12-bit facility code (bits 16-27) is set to 0x007, the value contains a Win32
error code in the lower 16 bits. Zero or positive values indicate success, with the lower 16 bits in
positive nonzero values containing warnings or flags defined in the method implementation. For
more information about Win32 error codes and HRESULT values, see [MS-ERREF].

52 /143

[MS-IMSA-DIff] - v20240423

Internet Information Services (IIS) IMSAdminBaseW Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

Return value/code Description

0x00000000 The call was successful.
S_OK
0x80070006 The handle is invalid.

ERROR_INVALID_HANDLE

0x80070057 One or more arguments are invalid.
E_INVALIDARG

0x80070094 The path specified cannot be used at this time.
ERROR_PATH_BUSY

The opnum field value for this method is 19.
When processing this call, the server MUST do the following:

= Check the handle parameter. This handle is valid if it is a handle returned from a previous
OpenKey call. If the handle is invalid, return ERROR_INVALID_HANDLE.

= Determine if it is possible to provide the requested access type for the specified node.

= If the caller requests write access to the handle and the node falls into part of the metabase for
which there are other open read handles, the server will wait for the time period specified by
dwMDTimeOut for the other read handles to close. If, after this time period expires, there are still
open read handles, return ERROR_PATH_BUSY.

= If access could be provided, the server updates the state of the handle.<14>

3.1.4.17 GetDataPaths (Opnum 16)

The GetDataPaths method returns the paths of all nodes in the subtree relative to a specified starting
node that contains the supplied identifier.

HRESULT GetDataPaths (
[in] METADATA HANDLE hMDHandle,
[unique, in, string] LPCWSTR pszMDPath,
[in] DWORD dwMDIdentifier,
[in] DWORD dwMDDataType,
[in] DWORD dwMDBufferSize,
[out, size_ is(dwMDBufferSize)] WCHAR* pszBuffer,
[out] DWORD* pdwMDRequiredBufferSize

hMDHandle: An unsigned 32-bit integer value containing an open metabase handle specifying the
key to be queried.

pszMDPath: A pointer to a Unicode string that contains the path of the node to be queried, relative to
the hMDHandle parameter.

dwMDIdentifier: An integer value identifying the data to be queried.

dwMDDataType: An integer value specifying a data type. If this parameter is not set to
ALL_METADATA, the data item will be returned only if its data type matches the specified type.

53/143

[MS-IMSA-DIff] - v20240423

Internet Information Services (IIS) IMSAdminBaseW Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

Value

Meaning

ALL_METADATA
0x00000000

Specifies all data, regardless of type.

BINARY_METADATA
0x00000003

Specifies binary data in any form.

DWORD_METADATA
0x00000001

Specifies all DWORD (unsigned 32-bit integer) data.

EXPANDSZ_METADATA
0x00000004

Specifies all data consisting of a string that includes the terminating null
character, which contains unexpanded environment variables.

MULTISZ_METADATA
0x00000005

Specifies all data represented as an array of strings, where each string contains
two occurrences of the terminating null character.

STRING_METADATA
0x00000002

Specifies all data consisting of an ASCII string that includes the terminating null
character.

dwMDBufferSize: An integer value specifying the size, in WCHARs, of the pszBuffer parameter.

pszBuffer: A pointer to a buffer that contains the retrieved data. If the method call is successful, the

buffer will contain a contiguous sequence of null-terminated strings in "multi-string" format. Each
string in the sequence is a metabase path at which data matching the dwMDIdentifier and
dwMDDataType fields were found.

pdwMDRequiredBufferSize: A pointer to an integer value that contains the buffer length required,

in WCHARs.

Return Values: A signed 32-bit value that indicates return status. If the method returns a negative
value, it failed. If the 12-bit facility code (bits 16-27) is set to 0x007, the value contains a Win32
error code in the lower 16 bits. Zero or positive values indicate success, with the lower 16 bits in
positive nonzero values containing warnings or flags defined in the method implementation. For

more information about Win32 error codes and HRESULT values, see [MS-ERREF].

Return value/code

Description

0x00000000 The call was successful.
S_OK
0x80070003 The system cannot find the path specified.

ERROR_PATH_NOT_FOUND

0x80070006

ERROR_INVALID_HANDLE

The handle is invalid.

0x80070057
E_INVALIDARG

One or more arguments are invalid.

0x8007007A

ERROR_INSUFFICIENT_BUFFER

The data area passed to a system call is too small.

The opnum field value for this method is 16.

When processing this call, the server MUST do the following:

Check the handle. This handle is valid if it is either the master root handle or a handle returned
from a previous OpenKey call. If the handle is invalid, return ERROR_INVALID_HANDLE.

[MS-IMSA-DIff] - v20240423
Internet Information Services (IIS) IMSAdminBaseW Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

54 /143

= Check that the relative path points to a valid node. Otherwise, return ERROR_PATH_NOT_FOUND.

= On the destination node, find data based on the data ID and the data type. If the data type is set
to anything but ALL_METADATA, check that the found data type is the same as the requested
parameter, dwMDDataType. If the data type matches or the requested data type is
ALL_METADATA, copy the path of the node relative to hMDHandle to the buffer pszBuffer.

= For all nodes below the destination node, repeat the same procedure. Find the data by data ID
and data type. If the data is available, check its inheritance flag. If the data is inherited, skip to
the next node. If the data is not inherited, append the node path to the buffer. Each new path is
appended to the buffer in "multi-string" format: Each string is separated by the null character, and
an extra null character is added at the end of buffer after the last string.

= If the size of the buffer as specified by the dwMDBufferSize parameter is insufficient to hold all the
path data, set the pdwMDRequiredBufferSize parameter to the required buffer size and return
ERROR_INSUFFICIENT_BUFFER.

3.1.4.18 GetDataSetNumber (Opnum 23)

The GetDataSetNumber method returns the dataset number associated with a node in the metabase.
A dataset number is a unique number identifying the data items at that node, including inherited data
items. Nodes with the same dataset number have identical data.

HRESULT GetDataSetNumber (
[in] METADATA HANDLE hMDHandle,
[unique, in, string] LPCWSTR pszMDPath,
[out] DWORD* pdwMDDataSetNumber

)i

hMDHandle: An unsigned 32-bit integer value containing an open metabase handle specifying the
key to be queried.

pszMDPath: A pointer to a Unicode string that contains the path of the node to have its dataset
number retrieved, relative to the path of the hMDHandle parameter.

pdwMDDataSetNumber: A pointer to an integer value that returns the number associated with this
dataset. This value can be used to identify datasets common to multiple nodes.

Return Values: A signed 32-bit value that indicates return status. If the method returns a negative
value, it failed. If the 12-bit facility code (bits 16-27) is set to 0x007, the value contains a Win32
error code in the lower 16 bits. Zero or positive values indicate success, with the lower 16 bits in
positive nonzero values containing warnings or flags defined in the method implementation. For
more information about Win32 error codes and HRESULT values, see [MS-ERREF].

Return
value/code Description

0x00000000 The call was successful.
S_OK

0x80070057 One or more arguments are invalid.
E_INVALIDARG

The opnum field value for this method is 23.

When processing this call, the server MUST do the following:

55/143

[MS-IMSA-DIff] - v20240423

Internet Information Services (IIS) IMSAdminBaseW Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

= Determine the metabase node that most closely matches the path specified by pszMDPath. If no
part of the path specified matches a node in the metabase, the server returns the data set number
of the metabase key referenced by the hMDHandle parameter. Otherwise, the server returns the
data set number of the most closely matching node. The dataset number for the
METADATA_MASTER_ROOT_HANDLE is 1.

3.1.4.19 GetHandleInfo (Opnum 21)

The GetHandlelnfo method returns information associated with the specified metabase handle.

HRESULT GetHandleInfo (

[in] METADATA HANDLE hMDHandle,

[out] METADATA HANDLE INFO* pmdhiInfo
)

hMDHandle: An unsigned 32-bit integer value containing a handle to a node in the metabase as
returned by the OpenKey method.

pmdhiInfo: A pointer to a METADATA_HANDLE_INFO structure containing information about the
specified handle.

Return Values: A signed 32-bit value that indicates return status. If the method returns a negative
value, it failed. If the 12-bit facility code (bits 16-27) is set to 0x007, the value contains a Win32
error code in the lower 16 bits. Zero or positive values indicate success, with the lower 16 bits in
positive nonzero values containing warnings or flags defined in the method implementation. For
more information about Win32 error codes and HRESULT values, see [MS-ERREF].

Return value/code Description
0x00000000 The call was successful.
S_OK

0x80070006 The handle is invalid.
ERROR_INVALID_HANDLE

The opnum field value for this method is 21.
When processing this call, the server MUST do the following:

» Check the handle parameter. This handle is valid if it is a handle returned from a previous
OpenKey call. If the handle is invalid, return ERROR_INVALID_HANDLE.

= Populate the supplied METADATA_HANDLE_INFO structure with the permission level for the handle
and the value of the system change number at the time the handle was opened. See
GetSystemChangeNumber (section 3.1.4.21) for a specification of the system change number.

3.1.4.20 GetLastChangeTime (Opnum 25)

The GetLastChangeTime method returns the last change time associated with a node in the metabase.

HRESULT GetLastChangeTime (
[in] METADATA HANDLE hMDHandle,
[unique, in, string] LPCWSTR pszMDPath,
[out] PFILETIME pftMDLastChangeTime,
[in] BOOL bLocalTime

)7

56/ 143

[MS-IMSA-DIff] - v20240423

Internet Information Services (IIS) IMSAdminBaseW Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

hMDHandle: An unsigned 32-bit integer value containing an open metabase handle specifying the
key to be queried.

pszMDPath: A pointer to a Unicode string containing the path of the node to be queried, relative to
the path of the hMDHandle parameter.

pftMDLastChangeTime: A pointer to a FILETIME structure that returns the last change time for the
node.

bLocalTime: A Boolean value indicating whether the time value returned in the
pftMDLastChangeTime parameter is specified as local time (TRUE) or UTC time (FALSE).

Return Values: A signed 32-bit value that indicates return status. If the method returns a negative
value, it failed. If the 12-bit facility code (bits 16-27) is set to 0x007, the value contains a Win32
error code in the lower 16 bits. Zero or positive values indicate success, with the lower 16 bits in
positive nonzero values containing warnings or flags defined in the method implementation. For
more information about Win32 error codes and HRESULT values, see [MS-ERREF].

Return value/code Description

0x00000000 The call was successful.

S_OK

0x80070003 The system cannot find the path specified.

ERROR_PATH_NOT_FOUND

0x80070057 One or more arguments are invalid.
E_INVALIDARG

The opnum field value for this method is 25.
When processing this call, the server MUST do the following:

= Check the path of the node indicated by hMDHandle and pszMDPath. If the path does not exist,
return ERROR_PATH_NOT_FOUND.

= If the path exists and is valid, the server SHOULD return the time that the node was modified in
the pftMDLastChangeTime structure. If bLocalTime is 0, the time is returned as UTC time.
Otherwise the time is the local server time.<15>

3.1.4.21 GetSystemChangeNumber (Opnum 22)

The GetSystemChangeNumber method returns the number of changes made to data since the
metabase was created.

HRESULT GetSystemChangeNumber (
[out] DWORD* pdwSystemChangeNumber
)7

pdwSystemChangeNumber: A pointer to an unsigned 32-bit integer value containing the system
change number. This number is increased each time the metabase is updated.

Return Values: A signed 32-bit value that indicates return status. If the method returns a negative
value, it failed. If the 12-bit facility code (bits 16-27) is set to 0x007, the value contains a Win32
error code in the lower 16 bits. Zero or positive values indicate success, with the lower 16 bits in
positive nonzero values containing warnings or flags defined in the method implementation. For
more information about Win32 error codes and HRESULT values, see [MS-ERREF].

57/ 143

[MS-IMSA-DIff] - v20240423

Internet Information Services (IIS) IMSAdminBaseW Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

Return

value/code Description
0x00000000 The call was successful.
S_OK

The opnum field value for this method is 22.
When processing this call, the server MUST do the following:

= Return the current system change number in the pdwSystemChangeNumber parameter. The
system change number is a 32-bit unsigned integer value that is incremented when a change is
made to the metabase. This value SHOULD be persisted between metabase sessions.<16>

3.1.4.22 R_GetAlIData (Opnum 13)

The R_GetAllData method returns all data associated with a node in the metabase, including all values
that the node inherits.

HRESULT R_GetAllData(
[in] METADATA HANDLE hMDHandle,

unique, in, string] LPCWSTR pszMDPath,

] DWORD dwMDAttributes,

] DWORD dwMDUserType,

n] DWORD dwMDDataType,

ut] DWORD* pdwMDNumDataEntries,

ut] DWORD* pdwMDDataSetNumber,

n] DWORD dwMDBufferSize,
t
t

in
in

ut] DWORD* pdwMDRequiredBufferSize,

[
[
[
[
[
[
[
[
[out] IIS CRYPTO BLOB** ppDataBlob

i
(0]
(0]
i
[e]
(0]
)i
hMDHandle: An unsigned 32-bit integer value containing an open metabase handle specifying the

key to be queried.

pszMDPath: A pointer to a Unicode string that contains the path of the node with which the data to
be returned is associated, relative to the path of the hMDHandle parameter.

dwMDAttributes: Flags used to specify the data, as listed in the METADATA_RECORD structure.

dwMDUserType: An integer value specifying the data to return based on user type.

Value Meaning

ALL_METADATA Returns all data, regardless of user type.

0x00000000

ASP_MD_UT_APP Returns data specific to ASP application configuration.

0x00000065

IIS_MD_UT_FILE Returns data specific to a file, such as access permissions or logon methods.
0x00000002

IIS_MD_UT_SERVER | Returns data specific to the server, such as ports in use and IP addresses.
0x00000001

IIS_MD_UT_WAM Returns data specific to WAM.
0x00000064

58/ 143

[MS-IMSA-DIff] - v20240423

Internet Information Services (IIS) IMSAdminBaseW Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

dwMDDataType: An integer value specifying a data type. If this parameter is not set to
ALL_METADATA, the data item will be returned only if its data type matches the specified type.

Value Meaning

ALL_METADATA Specifies all data, regardless of type.

0x00000000

BINARY_METADATA Specifies binary data in any form.

0x00000003

DWORD_METADATA Specifies all DWORD (unsigned 32-bit integer) data.
0x00000001

Specifies all data that consists of a null-terminated string containing environment
EXPANDSZ_METADATA | variables that are not expanded.

0x00000004

MULTISZ_METADATA Specifies all data represented as an array of null-terminated strings, terminated by
0x00000005 two null characters.

STRING_METADATA Specifies all data consisting of a null-terminated ASCII string.

0x00000002

pdwMDNumbDataEntries: A pointer to an integer value that contains the number of entries in the
array of METADATA_GETALL_RECORD structures returned in the ppDataBlob parameter.

pdwMDDataSetNumber: A pointer to an integer value used to identify the dataset number for the
metabase node whose data is being retrieved. The dataset number is obtained by the
GetDataSetNumber (section 3.1.4.18) method.

dwMDBufferSize: An integer value specifying the size, in bytes, required to hold the decrypted data
returned by the ppDataBlob parameter.

pdwMDRequiredBufferSize: A pointer to an integer value that contains the buffer length required,
in bytes, to contain the decrypted data referenced by the ppDataBlob parameter.

ppDataBlob: An IIS_CRYPTO_BLOB structure containing the requested values as encrypted opaque
data. The encrypted data returned in IIS_CRYPTO_BLOB is a contiguous buffer containing an array
of METADATA_GETALL_RECORD structures followed by the data referenced by the
METADATA_GETALL_RECORD structures.

Return Values: A signed 32-bit value that indicates return status. If the method returns a negative
value, it failed. If the 12-bit facility code (bits 16-27) is set to 0x007, the value contains a Win32
error code in the lower 16 bits. Zero or positive values indicate success, with the lower 16 bits in
positive nonzero values containing warnings or flags defined in the method implementation. For
more information about Win32 error codes and HRESULT values, see [MS-ERREF].

Note Invalid dwMDUserType or dwMDDataType parameters result in a E_INVALIDARG return

status.
Return value/code Description
0x00000000 The call was successful.
S_OK
0x80070003 The system cannot find the path specified.
ERROR_PATH_NOT_FOUND

59/ 143

[MS-IMSA-DIff] - v20240423

Internet Information Services (IIS) IMSAdminBaseW Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

Return value/code Description

0x80070005 General access denied error.
E_ACCESSDENIED

0x80070057 An invalid parameter value was specified.
E_INVALIDARG

0x8007007A The data area passed to a system call is too small.
ERROR_INSUFFICIENT_BUFFER

The opnum field value for this method is 13.

The client indicates how much decrypted data it is ready to receive by passing the number of bytes in
the dwMDBufferSize parameter.

When processing this call, the server MUST do the following:

= Check the path of the node indicated by hMDHandle and pszMDPath. If the path does not exist,
return ERROR_PATH_NOT_FOUND.

= If the value passed by the client in the dwMDBufferSize parameter is too small to contain an array
of METADATA_GETALL_RECORD structures for each property value stored at the metabase node
and their associated data, return ERROR_INSUFFICIENT_BUFFER and return the number of bytes
required to hold the data in the pdwMDRequiredBufferSize parameter.

= Check whether at least one of the METADATA_RECORD entries contains sensitive data. The
METADATA_SECURE secure flag in the dwMDAttributes member of the METADATA_RECORD
structure for all entries will be set.

If at least one matching entry with the METADATA_SECURE flag set is found:

= Encrypt the data value based on the procedure described in section 3.1.4.1.2. The encrypted data
BLOB will be stored in the IIS_CRYPTO_BLOB message format with the BlobSignature field set to
the ENCRYPTED_DATA_BLOB_SIGNATURE signature.

If no METADATA_RECORD entry with the METADATA_SECURE flag is found:

= Build the IIS_CRYPTO_BLOB message with the BlobSignature field set to
CLEARTEXT_DATA_BLOB_SIGNATURE. Store the cleartext data in the BlobData field. Set the
BlobDatalLength field to match the length of the BlobData field.

3.1.4.23 R_GetData (Opnum 10)

The R_GetData method returns a data entry from a particular node in the metabase.

HRESULT R GetData (

[in] METADATA HANDLE hMDHandle,
unique, in, string] LPCWSTR pszMDPath,
in, out] METADATA RECORD* pmdrMDData,
out] DWORD* pdwMDRequiredDatalen,

[
[
[
[out] IIS_CRYPTO BLOB** ppDataBlob

hMDHandle: An unsigned 32-bit integer value containing an open metabase handle specifying the
key to be queried.

pszMDPath: A pointer to a Unicode string that contains the path of the node containing the data,
relative to the path of the hMDHandle parameter.

60/ 143

[MS-IMSA-DIff] - v20240423

Internet Information Services (IIS) IMSAdminBaseW Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

pmdrMDData: A pointer to a METADATA_RECORD structure that describes the requested data.

pdwMDRequiredDatalen: A pointer to an integer value that contains the buffer length required, in
bytes, to contain the decrypted data referenced by the ppDataBlob parameter.

ppDataBlob: An IIS_CRYPTO_BLOB structure containing the requested data value as encrypted
opaque data.

Return Values: A signed 32-bit value that indicates return status. If the method returns a negative
value, it failed. If the 12-bit facility code (bits 16-27) is set to 0x007, the value contains a Win32
error code in the lower 16 bits. Zero or positive values indicate success, with the lower 16 bits in
positive nonzero values containing warnings or flags defined in the method implementation. For
more information about Win32 error codes and HRESULT values, see [MS-ERREF].

Return value/code Description

0x00000000 The call was successful.

S_OK

0x80070003 The system cannot find the path specified.

ERROR_PATH_NOT_FOUND

0x80070005 General access denied error.
E_ACCESSDENIED

0x80070057 An invalid parameter value was specified.
E_INVALIDARG

0x8007007A The data area passed to a system call is too small.
ERROR_INSUFFICIENT_BUFFER

0x800CC801 The specified metadata was not found.
MD_ERROR_DATA_NOT_FOUND

The opnum field value for this method is 10.

The client describes the data it is requesting by initializing the METADATA_RECORD passed in the
pmdrMDData parameter.

The client indicates how much decrypted data it is ready to receive by passing the number of bytes in
the dwMDDatalen field of the pmdrMDData parameter.

The pbMDData field of the pmdrMDData parameter is not used to transfer the actual data value. The
client MUST set the pbMDData field of pmdrMDData to NULL. The IIS_CRYPTO_BLOB structure is used
to transfer the actual data value returned by the server and can be encrypted when the server sends
data marked as secure.

When processing this call, the server MUST do the following:

= Check the path of the node indicated by hMDHandle and pszMDPath. If the path does not exist,
return ERROR_PATH_NOT_FOUND.

= If a data value matching the one described by the pmdrMDData parameter is not found at the
node indicated by hMDHandle and pszMDPath, return MD_ERROR_DATA_NOT_FOUND.

= If value passed by the client in the dwMDDatalLen field of the pmdrMDData parameter is less
than the size of the unencrypted data value, set the value of pdwMDRequiredDatalen to the size
of the unencrypted data value and return ERROR_INSUFFICIENT_BUFFER.

61 /143

[MS-IMSA-DIff] - v20240423

Internet Information Services (IIS) IMSAdminBaseW Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

The following set of steps MUST be performed by the server to encrypt or encode a data value and
build an IIS_CRYPTO_BLOB structure to be sent by the server.

1. Check whether the dwMDAttributes member of the METADATA_RECORD structure has the
METADATA_SECURE secure flag set.

2. If the METADATA_SECURE secure flag is set:

= Encrypt the data value based on the procedure described in section 3.1.4.1.2. The encrypted
data BLOB will be stored in the IIS_CRYPTO_BLOB message format with the BlobSignature
field set to the ENCRYPTED_DATA_BLOB_SIGNATURE signature.

3. If the METADATA_SECURE secure flag is not set:

= Build the IIS_CRYPTO_BLOB message with the BlobSignature field set to
CLEARTEXT_DATA_BLOB_SIGNATURE. Store the cleartext data in the BlobData field. Set the
BlobDatalLength field to match the length of the BlobData field.

3.1.4.24 R_GetServerGuid (Opnum 33)

The R_GetServerGuid method returns a GUID for this DCOM object.

HRESULT R_GetServerGuid(
[out] GUID* pServerGuid
)i

pServerGuid: A GUID uniquely identifying this DCOM object.

Return Values: A signed 32-bit value that indicates return status. If the method returns a negative
value, it failed. If the 12-bit facility code (bits 16-27) is set to 0x007, the value contains a Win32
error code in the lower 16 bits. Zero or positive values indicate success, with the lower 16 bits in
positive nonzero values containing warnings or flags defined in the method implementation. For
more information about Win32 error codes and HRESULT values, see [MS-ERREF].

Return

value/code Description
0x00000000 The call was successful.
S_OK

The opnum field value for this method is 33.
When processing this call, the server MUST do the following:

= If this is the first time the method has been called on this DCOM object, generate a GUID and
return it to the client in the pServerGuid parameter. Subsequent calls to the same DCOM object
MUST return the same GUID.

3.1.4.25 R_KeyExchangePhasel (Opnum 26)

The R_KeyExchangePhasel method receives a pair of encrypted client keys and returns server
encryption and session keys.

HRESULT R KeyExchangePhasel (
[unique, in] IIS CRYPTO BLOB* pClientKeyExchangeKeyBlob,
[unique, in] IIS CRYPTO BLOB* pClientSignatureKeyBlob,
[out] IIS_CRYPTO BLOB** ppServerKeyExchangeKeyBlob,
[out] IIS CRYPTO BLOB** ppServerSignatureKeyBlob,

62/ 143

[MS-IMSA-DIff] - v20240423

Internet Information Services (IIS) IMSAdminBaseW Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

[out] IIS CRYPTO BLOB** ppServerSessionKeyBlob
)i

pClientKeyExchangeKeyBlob: A pointer to an IIS_CRYPTO_BLOB structure containing the encrypted
client key used to decrypt client data.

pClientSignatureKeyBlob: A pointer to an IIS_CRYPTO_BLOB structure containing the encrypted
client signature key used for data verification.

ppServerKeyExchangeKeyBlob: A pointer to a set of IIS_CRYPTO_BLOB structures containing
encrypted server keys used by the client to decrypt server data.

ppServerSignatureKeyBlob: A pointer to a set of IIS_CRYPTO_BLOB structures containing
encrypted server signature keys used for data verification.

ppServerSessionKeyBlob: A pointer to a set of IIS_CRYPTO_BLOB structures containing encrypted
server session keys.

Return Values: A signed 32-bit value that indicates return status. If the method returns a negative
value, it failed. If the 12-bit facility code (bits 16-27) is set to 0x007, the value contains a Win32
error code in the lower 16 bits. Zero or positive values indicate success, with the lower 16 bits in
positive nonzero values containing warnings or flags defined in the method implementation. For
more information about Win32 error codes and HRESULT values, see [MS-ERREF].

Return

value/code Description
0x00000000 The call was successful.
S_OK

The opnum field value for this method is 26.

When the server receives the R_KeyExchangePhasel method, it SHOULD check the state of the secure
session. If the session was already negotiated, the server SHOULD return the E_INVALIDARG error
code.

If the session was not negotiated yet, the server MUST perform the following steps:
1. Store the client's key exchange public key that was received in the message.
Store the client's signature public key that was received in the message.

Generate or locate the server's key exchange private key.

Generate the server's session key.

2

3

4. Generate or locate the server's signature private key.

5

6. Encrypt the server's session key using the client's key exchange public key that was just received.
7

Calculate the signed hash of the encrypted server's session key, as described in section 3.1.4.1.4.
Use the server's signature private key for signing.

8. Build an IIS_CRYPTO_BLOB structure with the BlobSignature field set to
SESSION_KEY_BLOB_SIGNATURE to store the server's encrypted session key and signed hash as
calculated in the previous steps.

9. Build an IIS_CRYPTO_BLOB structure with the BlobSignature field set to
PUBLIC_KEY_BLOB_SIGNATURE to store the server's key exchange public key.

63/ 143

[MS-IMSA-DIff] - v20240423

Internet Information Services (IIS) IMSAdminBaseW Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

10. Build an IIS_CRYPTO_BLOB structure with the BlobSignature field set to
PUBLIC_KEY_BLOB_SIGNATURE to store the server's signature public key.

11. Send an IIS_CRYPTO_BLOB structure that was built in the previous three steps to the client in
response to the R_KeyExchangePhasel method.

3.1.4.26 R_KeyExchangePhase2 (Opnum 27)

The R_KeyExchangePhase2 method receives the encrypted client session and hash keys in response to
the R_KeyExchangePhasel method and returns the encrypted server hash keys.

HRESULT R_KeyExchangePhase2 (
[unique, in] IIS CRYPTO BLOB* pClientSessionKeyBlob,
[unique, in] IIS CRYPTO BLOB* pClientHashBlob,
[out] IIS CRYPTO BLOB** ppServerHashBlob

)i

pClientSessionKeyBlob: A pointer to an IIS_CRYPTO_BLOB structure containing the encrypted client
session key.

pClientHashBlob: A pointer to an IIS_CRYPTO_BLOB structure containing the encrypted client hash
key.

ppServerHashBlob: A pointer to a set of IIS_CRYPTO_BLOB structures containing the encrypted
session hash keys.

Return Values: A signed 32-bit value that indicates return status. If the method returns a negative
value, it failed. If the 12-bit facility code (bits 16-27) is set to 0x007, the value contains a Win32
error code in the lower 16 bits. Zero or positive values indicate success, with the lower 16 bits in
positive nonzero values containing warnings or flags defined in the method implementation. For
more information about Win32 error codes and HRESULT values, see [MS-ERREF].

Return

value/code Description
0x00000000 The call was successful.
S_OK

The opnum field value for this method is 27.

When the server receives the R_KeyExchangePhase2 method, it SHOULD check the state of the secure
session. If the session negotiation has not started yet by processing the R_KeyExchangePhasel
method, the MD_ERROR_SECURE_CHANNEL_FAILURE error code MUST be returned back to client.

If any of the parameters sent by the client are empty, the server SHOULD return an E_INVALIDARG
error code.

Upon successful validation, the server SHOULD perform the following steps:
1. Decrypt the encrypted client's session key using the server's key exchange private key.
2. Store the client's session key.
3. Compute the hash of the following 3 values (in this order):
1. Client's session key.

2. Server's session key.

64 /143

[MS-IMSA-DIff] - v20240423

Internet Information Services (IIS) IMSAdminBaseW Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

3. Value of HASH_TEXT_STRING_1, as specified in section 2.2.3.

4. Compare the hash computed in the previous step with the hash received from the client. If they
match, the client has proved that it owns the client's key exchange private key that matches the
client's key exchange public key. It proved it by being able to decrypt the server's session key that
was needed for the hash calculation.

5. Compute hash of the following 2 values (in this order):
1. Client's session key.
2. Value of HASH_TEXT_STRING_2, as specified in 2.2.3.

6. Build an IIS_CRYPTO_BLOB structure with the BlobSignature field set to
HASH_BLOB_SIGNATURE and store the hash calculated in the previous step.

7. Send the IIS_CRYPTO_BLOB structure calculated in the previous step to the client.

3.1.4.27 R_SetData (Opnum 9)

The R_SetData method sets a data item for a particular node in the metabase.

HRESULT R_SetData (
[in] METADATA HANDLE hMDHandle,
[unique, in, string] LPCWSTR pszMDPath,
[in] METADATA RECORD* pmdrMDData

)i

hMDHandle: An unsigned 32-bit integer value specifying a handle to a node in the metabase with
write permissions as returned by the OpenKey method.

pszMDPath: A pointer to a Unicode string that contains the path of the node that stores the entry,
relative to the path of the hMDHandle parameter.

pmdrMDData: A pointer to a METADATA_RECORD structure that contains the data to set.

Return Values: A signed 32-bit value that indicates return status. If the method returns a negative
value, it failed. If the 12-bit facility code (bits 16 27) is set to 0x007, the value contains a Win32
error code in the lower 16 bits. Zero or positive values indicate success, with the lower 16 bits in
positive nonzero values containing warnings or flags defined in the method implementation. For
more information about Win32 error codes and HRESULT values, see [MS-ERREF].

Return value/code Description

0x00000000 The call was successful.

S_OK

0x80070003 The system cannot find the path specified.

ERROR_PATH_NOT_FOUND

0x80070005 General access denied error.
E_ACCESSDENIED

0x80070057 An invalid parameter value was specified.
E_INVALIDARG

0x800CC808 The METADATA_SECURE attribute cannot be
MD ERROR CANNOT REMOVE SECURE ATTRIBUTE removed from a data item via the R_GetData

65/ 143

[MS-IMSA-DIff] - v20240423

Internet Information Services (IIS) IMSAdminBaseW Remote Protocol
Copyright © 2024 Microsoft Corporation

Release: April 23, 2024

Return value/code Description

method. Use the DeleteData method to remove
the secure data.

0x80070008 There is not enough memory to complete the
ERROR_NOT_ENOUGH_MEMORY operation.

The opnum field value for this method is 9.
When processing this call, the server MUST do the following:

= Check whether the handle, hMDHandle, was opened for write access. If not, return
E_ACCESSDENIED.

= Check the path of the node indicated by hMDHandle and pszMDPath. If the path does not exist,
return ERROR_PATH_NOT_FOUND.

= If data with the specified identifier does not exist at the specified node, create a new data item as
specified by the pmdrMDData parameter.

= If data with the specified identifier does exist at the specified node, update the data item with the
properties and data value specified by the pmdrMDData parameter. Before updating the existing
data item, the server SHOULD check whether it has the METADATA_SECURE flag set. If this flag is
set on the existing data item but is not set in the dwMDAttributes member of the pmdrMDData
parameter, the server SHOULD NOT update the existing data item and SHOULD return
MD_ERROR_CANNOT_REMOVE_SECURE_ATTRIBUTE.<17>

The pbMDData and dwMDDatalLen fields of METADATA_RECORD (referenced by the pmdrMDData
parameter) MUST be interpreted using the following steps:

1. Check whether the dwMDAttributes member of the METADATA_RECORD structure has the
METADATA_SECURE secure flag set.

2. If the METADATA_SECURE secure flag is set, the ppbMDData member of METADATA_RECORD
structure points to the