

1 / 44

[MS-GKDI-Diff] - v20160714
Group Key Distribution Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

[MS-GKDI-Diff]:

Group Key Distribution Protocol

Intellectual Property Rights Notice for Open Specifications Documentation

 Technical Documentation. Microsoft publishes Open Specifications documentation (“this
documentation”) for protocols, file formats, data portability, computer languages, and standards
as well as overviews of the interaction among each of these technologiessupport. Additionally,

overview documents cover inter-protocol relationships and interactions.

 Copyrights. This documentation is covered by Microsoft copyrights. Regardless of any other
terms that are contained in the terms of use for the Microsoft website that hosts this
documentation, you maycan make copies of it in order to develop implementations of the

technologies that are described in the Open Specifications this documentation and maycan
distribute portions of it in your implementations usingthat use these technologies or in your
documentation as necessary to properly document the implementation. You maycan also distribute

in your implementation, with or without modification, any schema, IDL'sschemas, IDLs, or code
samples that are included in the documentation. This permission also applies to any documents
that are referenced in the Open Specifications. documentation.

 No Trade Secrets. Microsoft does not claim any trade secret rights in this documentation.

 Patents. Microsoft has patents that maymight cover your implementations of the technologies
described in the Open Specifications. documentation. Neither this notice nor Microsoft's delivery of
thethis documentation grants any licenses under those patents or any other Microsoft patents.
However, a given Open Specification maySpecifications document might be covered by the
Microsoft Open Specifications Promise or the Microsoft Community Promise. If you would prefer a

written license, or if the technologies described in the Open Specificationsthis documentation are
not covered by the Open Specifications Promise or Community Promise, as applicable, patent

licenses are available by contacting iplg@microsoft.com.

 Trademarks. The names of companies and products contained in this documentation maymight
be covered by trademarks or similar intellectual property rights. This notice does not grant any
licenses under those rights. For a list of Microsoft trademarks, visit
www.microsoft.com/trademarks.

 Fictitious Names. The example companies, organizations, products, domain names, e-mailemail
addresses, logos, people, places, and events that are depicted in this documentation are fictitious.
No association with any real company, organization, product, domain name, email address, logo,
person, place, or event is intended or should be inferred.

Reservation of Rights. All other rights are reserved, and this notice does not grant any rights other
than as specifically described above, whether by implication, estoppel, or otherwise.

Tools. The Open Specifications dodocumentation does not require the use of Microsoft programming

tools or programming environments in order for you to develop an implementation. If you have access

to Microsoft programming tools and environments, you are free to take advantage of them. Certain
Open Specifications documents are intended for use in conjunction with publicly available
standardstandards specifications and network programming art, and assumes, as such, assume that
the reader either is familiar with the aforementioned material or has immediate access to it.

http://go.microsoft.com/fwlink/?LinkId=214445
http://go.microsoft.com/fwlink/?LinkId=214448
mailto:iplg@microsoft.com
http://www.microsoft.com/trademarks

2 / 44

[MS-GKDI-Diff] - v20160714
Group Key Distribution Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Revision Summary

Date
Revision
History

Revision
Class Comments

6/17/2011 0.1 New Received document draft from product team.

12/16/2011 0.1 None
No changes to the meaning, language, or formatting of the
technical content.

3/30/2012 2.0 Major Significantly changed the technical content.

7/12/2012 3.0 Major Significantly changed the technical content.

10/25/2012 3.0 None
No changes to the meaning, language, or formatting of the
technical content.

1/31/2013 3.1 Minor Clarified the meaning of the technical content.

8/8/2013 3.2 Major Significantly changed the technical content.

11/14/2013 3.2 None
No changes to the meaning, language, or formatting of the
technical content.

2/13/2014 3.2 None
No changes to the meaning, language, or formatting of the
technical content.

5/15/2014 3.2 None
No changes to the meaning, language, or formatting of the
technical content.

6/30/2015 4.0 Major Significantly changed the technical content.

10/16/2015 4.0
No
ChangeNone

No changes to the meaning, language, or formatting of the
technical content.

3 / 44

[MS-GKDI-Diff] - v20160714
Group Key Distribution Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Table of Contents

1 Introduction .. 5
1.1 Glossary ... 5
1.2 References .. 9

1.2.1 Normative References ... 9
1.2.2 Informative References ... 10

1.3 Overview .. 10
1.4 Relationship to Other Protocols .. 11
1.5 Prerequisites/Preconditions ... 11
1.6 Applicability Statement ... 12
1.7 Versioning and Capability Negotiation ... 12
1.8 Vendor Extensible Fields ... 12
1.9 Standards Assignments ... 12

2 Messages ... 14
2.1 Transport .. 14
2.2 Common Data Types .. 14

2.2.1 KDF Parameters ... 14
2.2.2 FFC DH Parameters ... 15
2.2.3 Public Key Formats ... 16

2.2.3.1 FFC DH Key .. 16
2.2.3.2 ECDH Key .. 17

2.2.4 Group Key Envelope .. 18
2.3 Directory Service Schema Elements ... 21

3 Protocol Details ... 23
3.1 ISDKey Server Details .. 23

3.1.1 Abstract Data Model .. 23
3.1.2 Timers .. 24
3.1.3 Initialization ... 24
3.1.4 Message Processing Events and Sequencing Rules .. 25

3.1.4.1 GetKey (Opnum 0) .. 25
3.1.4.1.1 Creating a New Root Key .. 28
3.1.4.1.2 Generating a Group Key ... 29
3.1.4.1.3 Creating or Updating a Server Configuration Object 31

3.1.5 Timer Events .. 32
3.1.6 Other Local Events .. 32

3.2 ISDKey Client Details.. 32
3.2.1 Abstract Data Model .. 32
3.2.2 Timers .. 32
3.2.3 Initialization ... 33
3.2.4 Message Processing Events and Sequencing Rules .. 33

3.2.4.1 Client Side Processing.. 33
3.2.4.2 Retrieving a Group Key from a Server ... 34
3.2.4.3 Computing the Desired Group Key .. 35

3.2.5 Timer Events .. 36
3.2.6 Other Local Events .. 36

4 Protocol Examples ... 37

5 Security ... 38
5.1 Security Considerations for Implementers ... 38
5.2 Index of Security Parameters .. 38

6 Appendix A: Full IDL .. 39

7 Appendix B: Product Behavior ... 40

4 / 44

[MS-GKDI-Diff] - v20160714
Group Key Distribution Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

8 Change Tracking .. 41

9 Index ... 42

5 / 44

[MS-GKDI-Diff] - v20160714
Group Key Distribution Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

1 Introduction

The Group Key Distribution Protocol is used by clients to obtain cryptographic keys that correspond to
arbitrary security descriptors that can be evaluated by an Active Directory domain controller
(DC). These keys can then be used by the client for various purposes, including encrypting data such
that it can only be decrypted by a desired set of security principals.

Familiarity with cryptography concepts such as asymmetric and symmetric cryptography is required

for a complete understanding of this specification. For more information about cryptography concepts,
see [CRYPTO].

Sections 1.5, 1.8, 1.9, 2, and 3 of this specification are normative and can contain the terms MAY,
SHOULD, MUST, MUST NOT, and SHOULD NOT as defined in [RFC2119]. Sections 1.5 and 1.9 are also
normative but do not contain those terms. All other sections and examples in this specification are
informative.

1.1 Glossary

TheThis document uses the following terms are specific to this document:

access control entry (ACE): An entry in an access control list (ACL) that contains a set of user
rights and a security identifier (SID) that identifies a principal for whom the rights are allowed,

denied, or audited.

Active Directory: A general-purpose network directory service. Active Directory also refers to
the Windows implementation of a directory service. Active Directory stores information about
a variety of objects in the network. Importantly, user accounts, computer accounts, groups,
and all related credential information used by the Windows implementation of Kerberos are
stored in Active Directory. Active Directory is either deployed as Active Directory Domain
Services (AD DS) or Active Directory Lightweight Directory Services (AD LDS). [MS-ADTS]

describes both forms. For more information, see [MS-AUTHSOD] section 1.1.1.5.2, Lightweight
Directory Access Protocol (LDAP) versions 2 and 3, Kerberos, and DNS.

authentication level: A numeric value indicating the level of authentication or message protection
that remote procedure call (RPC) will apply to a specific message exchange. For more
information, see [C706] section 13.1.2.1 and [MS-RPCE].

big-endian: Multiple-byte values that are byte-ordered with the most significant byte stored in the

memory location with the lowest address.

binary large object (BLOB): A collection of binary data stored as a single entity in a database.

common name (CN): A string attribute of a certificate (1) that is one component of a
distinguished name (DN). In Microsoft Enterprise uses, a CN must be unique within the forest
where it is defined and any forests that share trust with the defining forest. The website or email
address of the certificate owner is often used as a common name. Client applications often refer
to a certification authority (CA) by the CN of its signing certificate.

container: An object in the directory that can serve as the parent for other objects. In the

absence of schema constraints, all objects would be containers. The schema allows only
objects of specific classes to be containers.

distinguished name (DN): A name that uniquely identifies an object by using the relative
distinguished name (RDN) for the object, and the names of container objects and domains
that contain the object. The distinguished name (DN) identifies the object and its location in a
tree.

domain: A set of users and computers sharing a common namespace and management
infrastructure. At least one computer member of the set must act as a domain controller (DC)

6 / 44

[MS-GKDI-Diff] - v20160714
Group Key Distribution Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

and host a member list that identifies all members of the domain, as well as optionally hosting
the Active Directory service. The domain controller provides authentication (2) of members,

creating a unit of trust for its members. Each domain has an identifier that is shared among its
members. For more information, see [MS-AUTHSOD] section 1.1.1.5 and [MS-ADTS].

domain controller (DC): The service, running on a server, that implements Active Directory, or
the server hosting this service. The service hosts the data store for objects and interoperates
with other DCs to ensure that a local change to an object replicates correctly across all DCs.
When Active Directory is operating as Active Directory Domain Services (AD DS), the DC
contains full NC replicas of the configuration naming context (config NC), schema naming
context (schema NC), and one of the domain NCs in its forest. If the AD DS DC is a global
catalog server (GC server), it contains partial NC replicas of the remaining domain NCs in its

forest. For more information, see [MS-AUTHSOD] section 1.1.1.5.2 and [MS-ADTS]. When
Active Directory is operating as Active Directory Lightweight Directory Services (AD LDS),
several AD LDS DCs can run on one server. When Active Directory is operating as AD DS, only
one AD DS DC can run on one server. However, several AD LDS DCs can coexist with one AD
DS DC on one server. The AD LDS DC contains full NC replicas of the config NC and the schema
NC in its forest. The domain controller is the server side of Authentication Protocol Domain

Support [MS-APDS].

Domain Name System (DNS): A hierarchical, distributed database that contains mappings of
domain names (1) to various types of data, such as IP addresses. DNS enables the location of
computers and services by user-friendly names, and it also enables the discovery of other
information stored in the database.

dynamic endpoint: A network-specific server address that is requested and assigned at run time.
For more information, see [C706].

forest: One or more domains that share a common schema and trust each other transitively. An
organization can have multiple forests. A forest establishes the security and administrative
boundary for all the objects that reside within the domains that belong to the forest. In
contrast, a domain establishes the administrative boundary for managing objects, such as
users, groups, and computers. In addition, each domain has individual security policies and
trust relationships with other domains.

forest: In the Active Directory directory service, a forest is a set of naming contexts (NCs)

consisting of one schema NC, one config NC, and one or more domain NCs. Because a set of
NCs can be arranged into a tree structure, a forest is also a set of one or several trees of NCs.

globally unique identifier (GUID): A term used interchangeably with universally unique
identifier (UUID) in Microsoft protocol technical documents (TDs). Interchanging the usage of
these terms does not imply or require a specific algorithm or mechanism to generate the value.
Specifically, the use of this term does not imply or require that the algorithms described in

[RFC4122] or [C706] must be used for generating the GUID. See also universally unique
identifier (UUID).

group key: A group seed key or group public key associated with a specified security descriptor in
an Active Directory forest.

group key identifier: A triple that identifies the time period for which a group key was intended.

A fully-specified group key identifier needs all three elements of the triple set to non-negative
integer values. All group key identifiers returned by the server of this protocol are fully

specified. One or more elements of the triple can be set to -1 in a client request to signify that
any value of those elements is acceptable to the client. Within an Active Directory forest, a
group key is identified uniquely by the combination of its associated security descriptor, its root
key identifier, and its group key identifier.

7 / 44

[MS-GKDI-Diff] - v20160714
Group Key Distribution Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

group private key: A private key associated with a specified security descriptor in an Active
Directory forest. It corresponds to the group public key for the same security descriptor and is

derived from the group seed key for that security descriptor through a deterministic algorithm.

group public key: A public key associated with a specified security descriptor in an Active

Directory forest. It corresponds to the group private key for the same security descriptor and is
derived from the group seed key for that security descriptor through a deterministic algorithm.

Interface Definition Language (IDL): The International Standards Organization (ISO) standard
language for specifying the interface for remote procedure calls. For more information, see
[C706] section 4.

key derivation: The act of deriving a cryptographic key from another value (for example, the
derivation of a cryptographic key from a password).

little-endian: Multiple-byte values that are byte-ordered with the least significant byte stored in
the memory location with the lowest address.

Network Data Representation (NDR): A specification that defines a mapping from Interface

Definition Language (IDL) data types onto octet streams. NDR also refers to the runtime
environment that implements the mapping facilities (for example, data provided to NDR). For
more information, see [MS-RPCE] and [C706] section 14.

object: A set of attributes (1), each with its associated values. Two attributes of an object have
special significance: an identifying attribute and a parent-identifying attribute. An identifying
attribute is a designated single-valued attribute that appears on every object; the value of this
attribute identifies the object. For the set of objects in a replica, the values of the identifying
attribute are distinct. A parent-identifying attribute is a designated single-valued attribute that
appears on every object; the value of this attribute identifies the object's parent. That is, this
attribute contains the value of the parent's identifying attribute, or a reserved value identifying

no object. For the set of objects in a replica, the values of this parent-identifying attribute define
a tree with objects as vertices and child-parent references as directed edges with the child as an
edge's tail and the parent as an edge's head. Note that an object is a value, not a variable; a
replica is a variable. The process of adding, modifying, or deleting an object in a replica replaces

the entire value of the replica with a new value. As the word replica suggests, it is often the
case that two replicas contain "the same objects". In this usage, objects in two replicas are
considered the same if they have the same value of the identifying attribute and if there is a

process in place (replication) to converge the values of the remaining attributes. When the
members of a set of replicas are considered to be the same, it is common to say "an object" as
shorthand referring to the set of corresponding objects in the replicas.

object: A set of attributes, each with its associated values. For more information on objects, see
[MS-ADTS] section 1 or [MS-DRSR] section 1.

private key: One of a pair of keys used in public-key cryptography. The private key is kept secret

and is used to decrypt data that has been encrypted with the corresponding public key. For an
introduction to this concept, see [CRYPTO] section 1.8 and [IEEE1363] section 3.1.

public key: One of a pair of keys used in public-key cryptography. The public key is distributed
freely and published as part of a digital certificate. For an introduction to this concept, see

[CRYPTO] section 1.8 and [IEEE1363] section 3.1.

read-only domain controller (RODC): A domain controller (DC) that does not accept
originating updates. Additionally, an RODC does not perform outbound replication. An RODC

cannot be the primary domain controller (PDC) for its domain.

relative distinguished name (RDN): An attribute-value pair used in the distinguished name of
an object. For more information, see [RFC2251].

8 / 44

[MS-GKDI-Diff] - v20160714
Group Key Distribution Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

remote procedure call (RPC): A context-dependent term commonly overloaded with three
meanings. Note that much of the industry literature concerning RPC technologies uses this term

interchangeably for any of the three meanings. Following are the three definitions: (*) The
runtime environment providing remote procedure call facilities. The preferred usage for this

meaning is "RPC runtime". (*) The pattern of request and response message exchange between
two parties (typically, a client and a server). The preferred usage for this meaning is "RPC
exchange". (*) A single message from an exchange as defined in the previous definition. The
preferred usage for this term is "RPC message". For more information about RPC, see [C706].

replication: The process of propagating the effects of all originating writes to any replica of a
naming context (NC), to all replicas of the NC. If originating writes cease and replication
continues, all replicas converge to a common application-visible state.

root key: A type of seed key, which can be used by Group Key Distribution Protocol servers to
derive group keys for any combination of security descriptor and group key identifier in an
Active Directory forest. Each root key is associated with a GUID, known as its root key identifier.

root key identifier: A GUID that identifies a root key, for use by a Group Key Distribution Protocol

server in deriving group keys.

RPC protocol sequence: A character string that represents a valid combination of a remote

procedure call (RPC) protocol, a network layer protocol, and a transport layer protocol, as
described in [C706] and [MS-RPCE].

search security descriptor: A Windows security descriptor.

security context: An abstract data structure that contains authorization information for a
particular security principal in the form of a Token/Authorization Context (see [MS-DTYP]
section 2.5.2). A server uses the authorization information in a security context to check
access to requested resources. A security context also contains a key identifier that associates

mutually established cryptographic keys, along with other information needed to perform secure
communication with another security principal.

security descriptor: A data structure containing the security information associated with a

securable object. A security descriptor identifies an object's owner by its security identifier
(SID). If access control is configured for the object, its security descriptor contains a
discretionary access control list (DACL) with SIDs for the security principals who are allowed
or denied access. Applications use this structure to set and query an object's security status.

The security descriptor is used to guard access to an object as well as to control which type
of auditing takes place when the object is accessed. The security descriptor format is
specified in [MS-DTYP] section 2.4.6; a string representation of security descriptors, called
SDDL, is specified in [MS-DTYP] section 2.5.1.

security principal: A unique entity, also referred to as a principal, that can be authenticated by
Active Directory. It frequently corresponds to a human user, but also can be a service that

offers a resource to other security principals. Other security principals might be a group, which
is a set of principals. Groups are supported by Active Directory.

seed key: A cryptographically random quantity that can be used to derive one or more
cryptographic keys for use with specific cryptographic algorithms.

server configuration: An Active Directory object that contains a set of configuration parameters
to be used when creating or updating a root key. A server configuration object is required in
Active Directory with the RDN described in section 1.9 for successful operation of the Group Key

Distribution Protocol.

Unicode string: A Unicode 8-bit string is an ordered sequence of 8-bit units, a Unicode 16-bit
string is an ordered sequence of 16-bit code units, and a Unicode 32-bit string is an ordered
sequence of 32-bit code units. In some cases, it maycould be acceptable not to terminate with a

9 / 44

[MS-GKDI-Diff] - v20160714
Group Key Distribution Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

terminating null character. Unless otherwise specified, all Unicode strings follow the UTF-16LE
encoding scheme with no Byte Order Mark (BOM).

universally unique identifier (UUID): A 128-bit value. UUIDs can be used for multiple
purposes, from tagging objects with an extremely short lifetime, to reliably identifying very

persistent objects in cross-process communication such as client and server interfaces, manager
entry-point vectors, and RPC objects. UUIDs are highly likely to be unique. UUIDs are also
known as globally unique identifiers (GUIDs) and these terms are used interchangeably in
the Microsoft protocol technical documents (TDs). Interchanging the usage of these terms does
not imply or require a specific algorithm or mechanism to generate the UUID. Specifically, the
use of this term does not imply or require that the algorithms described in [RFC4122] or [C706]
must be used for generating the UUID.

MAY, SHOULD, MUST, SHOULD NOT, MUST NOT: These terms (in all caps) are used as defined
in [RFC2119]. All statements of optional behavior use either MAY, SHOULD, or SHOULD NOT.

1.2 References

Links to a document in the Microsoft Open Specifications library point to the correct section in the
most recently published version of the referenced document. However, because individual documents
in the library are not updated at the same time, the section numbers in the documents may not
match. You can confirm the correct section numbering by checking the Errata.

1.2.1 Normative References

We conduct frequent surveys of the normative references to assure their continued availability. If you
have any issue with finding a normative reference, please contact dochelp@microsoft.com. We will
assist you in finding the relevant information.

[C706] The Open Group, "DCE 1.1: Remote Procedure Call", C706, August 1997,
https://www2.opengroup.org/ogsys/catalog/c706

[FIPS180-3] FIPS PUBS, "Secure Hash Standard (SHS)", FIPS PUB 180-3, October 2008,

http://csrc.nist.gov/publications/fips/fips180-3/fips180-3_final.pdf

[FIPS186] FIPS PUBS, "Digital Signature Standard (DSS)", FIPS PUB 186-3, June 2009,

http://csrc.nist.gov/publications/fips/fips186-3/fips_186-3.pdf

[FIPS198-1] FIPS PUBS, "The Keyed-Hash Message Authentication Code (HMAC)", FIPS PUB 198-1,
http://csrc.nist.gov/publications/fips/fips198-1/FIPS-198-1_final.pdf

[MS-ADA2] Microsoft Corporation, "Active Directory Schema Attributes M".

[MS-ADSC] Microsoft Corporation, "Active Directory Schema Classes".

[MS-ADTS] Microsoft Corporation, "Active Directory Technical Specification".

[MS-DTYP] Microsoft Corporation, "Windows Data Types".

[MS-ERREF] Microsoft Corporation, "Windows Error Codes".

[MS-NRPC] Microsoft Corporation, "Netlogon Remote Protocol".

[MS-RPCE] Microsoft Corporation, "Remote Procedure Call Protocol Extensions".

[MS-SPNG] Microsoft Corporation, "Simple and Protected GSS-API Negotiation Mechanism (SPNEGO)
Extension".

10 / 44

[MS-GKDI-Diff] - v20160714
Group Key Distribution Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC
2119, March 1997, http://www.rfc-editor.org/rfc/rfc2119.txt

[RFC2743] Linn, J., "Generic Security Service Application Program Interface Version 2, Update 1", RFC
2743, January 2000, http://www.rfc-editor.org/rfc/rfc2743.txt

[RFC4122] Leach, P., Mealling, M., and Salz, R., "A Universally Unique Identifier (UUID) URN
Namespace", RFC 4122, July 2005, http://www.ietf.org/rfc/rfc4122.txt

[RFC4178] Zhu, L., Leach, P., Jaganathan, K., and Ingersoll, W., "The Simple and Protected Generic
Security Service Application Program Interface (GSS-API) Negotiation Mechanism", RFC 4178, October
2005, http://www.rfc-editor.org/rfc/rfc4178.txt

[RFC5114] Lepinski, M., and Kent, S., "Additional Diffie-Hellman Groups for Use with IETF Standards",
RFC5114, January 2008, http://www.ietf.org/rfc/rfc5114.txt

[SP800-108] National Institute of Standards and Technology., "Special Publication 800-108,
Recommendation for Key Derivation Using Pseudorandom Functions", October 2009,

http://csrc.nist.gov/publications/nistpubs/800-108/sp800-108.pdf

[SP800-56A] NIST, "Recommendation for Pair-Wise Key Establishment Schemes Using Discrete
Logarithm Cryptography", March 2006, http://csrc.nist.gov/groups/ST/toolkit/documents/SP800-
56Arev1_3-8-07.pdf

1.2.2 Informative References

[CRYPTO] Menezes, A., Vanstone, S., and Oorschot, P., "Handbook of Applied Cryptography", 1997,
http://www.cacr.math.uwaterloo.ca/hac/

[FIPS140] FIPS PUBS, "Security Requirements for Cryptographic Modules", FIPS PUB 140, December
2002, http://csrc.nist.gov/publications/fips/fips140-2/fips1402.pdf

[FIPS197] FIPS PUBS, "Advanced Encryption Standard (AES)", FIPS PUB 197, November 2001,

http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf

[MS-WPO] Microsoft Corporation, "Windows Protocols Overview".

[MSDN-ALG] Microsoft Corporation, "CNG Algorithm Identifiers", http://msdn.microsoft.com/en-
us/library/aa375534(VS.85).aspx

[RFC3852] Housley, R., "Cryptographic Message Syntax (CMS)", RFC 3852, July 2004,
http://www.ietf.org/rfc/rfc3852.txt

1.3 Overview

The Group Key Distribution Protocol is used to obtain cryptographic keys corresponding to arbitrary
security descriptors that can be evaluated by an Active Directory DC. It can be used to obtain
symmetric as well as asymmetric keys for each of such security descriptors. One possible use of this

protocol is to obtain shared keys for a set of security principals that are defined by the client in the
form of a security descriptor. Based on an evaluation of the client's security context and the security
descriptor, the server may choose tocan return an error, a public key, or a seed key that can be
used to derive both the symmetric and asymmetric keys. Whenever the server returns a key of any
type, it also returns metadata that includes a unique identifier for the key.

The Group Key Distribution Protocol utilizes a single remote procedure call (RPC) method that is
described in section 3.1.4.1. Conceptually, this method can be used by a client for two types of

requests:

11 / 44

[MS-GKDI-Diff] - v20160714
Group Key Distribution Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

1. Requesting the most recent key for a security descriptor: after evaluating the client's security
context against the specified security descriptor, the server will return a seed key, a public key, or

an error.

2. Requesting a specific key for a security descriptor, or the key used for a set of security principals

at a specific time in the past: after evaluating the client's security context against the specified
security descriptor, the server will return either a seed key or an error.

Active Directory domain controllers with a DC functional level of DS_BEHAVIOR_WIN2012 or higher
can serve as Group Key Distribution Protocol servers. Clients can locate Group Key Distribution
Protocol servers by using the DC locator functionality, as specified in section 3.2.4.2. These servers
store a small amount of state in Active Directory (sections 2.3 and 3.1.1), which consists of
configuration information and one or more root key objects. Other than this, Group Key Distribution

Protocol servers retain no state across RPC calls.

1.4 Relationship to Other Protocols

The Group Key Distribution Protocol is built on the RPC interface, as specified in [C706] and [MS-

RPCE], with the TCP/IP protocol sequence ncacn_ip_tcp as its transport.

The Group Key Distribution Protocol uses the Simple and Protected GSS-API Negotiation Mechanism
(SPNEGO) Extension [MS-SPNG] [RFC4178] to negotiate an authentication mechanism. It uses the
authentication level and impersonation level security extensions described in [MS-RPCE] sections
2.2.1.1.8 and 2.2.1.1.9 to pass the client's security context to the server and to prevent exposure of
secrets to network eavesdroppers.

The Group Key Distribution Protocol server runs on a domain controller (DC) in an Active Directory

domain, as specified in section 1.5. Clients use the DC Locator functionality described in [MS-NRPC]
section 3.5.4.3.1 to locate a DC.

1.5 Prerequisites/Preconditions

The Group Key Distribution Protocol is an RPC interface. As a result, it has the prerequisites specified

in [MS-RPCE] that are common to RPC interfaces. In particular, the server has to be started and fully
initialized before the protocol can start.

The Group Key Distribution Protocol is used between clients and servers. The Group Key Distribution
Protocol server runs on a DC with a DC functional level of DS_BEHAVIOR_WIN2012 or higher in an
Active Directory domain. The client requires the ability to locate such a DC by using the DC Locator
functionality specified in [MS-NRPC] section 3.5.4.3.1.

To use the Group Key Distribution Protocol, the client first establishes an authenticated RPC
connection to the server's dynamic endpoint. The client and server require appropriate credentials to
set up such a session and to establish a mutually authenticated RPC connection over the session.

The Group Key Distribution Protocol requires the use of secure RPC. It is necessary for both client and
server to support mutual authentication through SPNEGO [MS-SPNG] [RFC4178] and to also support
security packages that implement impersonation support, along with packet privacy and integrity.

The server needs to maintain some state in Active Directory, which consists of a server

configuration object and a set of root key objects, as specified in section 3.1.1. This state has to be
accessible from the location specified in section 1.9 in the form of the object classes referenced in
section 2.3. At a minimum, a single valid server configuration object with a version number is required
to be present on the Active Directory DC. A procedure for creating or updating a server configuration
object is specified in section 3.1.4.1.3. Any server configuration that is created or updated in this
manner will be used by all servers in the Active Directory forest when creating future root keys, as

specified in section 3.1.4.1.1, but will not affect any existing root keys. This state is replicated

12 / 44

[MS-GKDI-Diff] - v20160714
Group Key Distribution Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

between domain controllers by using server-to-server replication mechanisms, as specified in [MS-
ADTS] section 6.2.

The server configuration object also needs protection from unauthorized modification, and the root
key objects require protection from unauthorized disclosure or modification. The server also requires a

method of generating cryptographically strong random numbers for use as root keys in this protocol.

1.6 Applicability Statement

The Group Key Distribution Protocol is appropriate for use when it is desirable to associate

cryptographic keys with security descriptors in an Active Directory domain. It is only appropriate for a
client to use this protocol when it has valid authentication credentials in a domain that contains at
least one DC with a DC functional level of DS_BEHAVIOR_WIN2012 or higher, as specified in section
1.5. Also, this protocol is not appropriate when protection against untrusted domain administrators is
desired, as specified in section 5.1.

1.7 Versioning and Capability Negotiation

This specification covers versioning issues in the following areas:

Supported Transports: This protocol uses the RPC protocol sequence ncacn_ip_tcp, as specified
in section 2.1.

Protocol Versions: This protocol has only one interface version, which is version 1.0, as specified in
section 2.1.

Security and Authentication Methods: [MS-RPCE] uses Generic Security Services (GSS)
[RFC2743] to negotiate the authentication mechanism with the protocol, as specified in [MS-SPNG]
and [RFC4178]. This negotiation is described in section 3.2.4.2 .

Capability Negotiation: This protocol does not perform any explicit capability negotiation between
client and server. The server configuration is stored in Active Directory and is versioned there. The
processing rules for this versioning scheme are described in section 3.1.4.1. Configuration information

is transferred from server to client unconditionally, as specified in section 3.1.4.1.

Currently, this protocol specifies a single version of the server configuration object (section 3.1.4.1),
and a fixed set of configuration choices for cryptographic algorithms. When any other cryptographic
algorithms are configured in the server configuration object, both server and client behavior is
undefined.

1.8 Vendor Extensible Fields

No vendor-extensible fields are used by this protocol.

This protocol uses HRESULT values as defined in [MS-ERREF] section 2.1. Vendors can define their
own HRESULT values, but they MUST set the C bit (0x20000000) for each vendor-defined value, to
indicate that the value is a customer code.

1.9 Standards Assignments

The following parameters are private Microsoft assignments.

Parameter Value Reference

UUID for ISDKey b9785960-524f-11df-8b6d-83dcded72085 [C706]

The following table provides the relative distinguished name (RDN) of the server configuration
object and the root key container in Active Directory.

13 / 44

[MS-GKDI-Diff] - v20160714
Group Key Distribution Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Parameter Value Reference

The RDN of the server
configuration object, relative to
forest root.

CN=SID Key Server Configuration,CN=Server
Configuration,CN=Sid Key
Service,CN=Services,CN=Configuration

Section
3.1.1

The RDN of the root key
container, relative to forest
root.

CN=Master Root Keys,CN=Sid Key
Service,CN=Services,CN=Configuration

Section
3.1.1

14 / 44

[MS-GKDI-Diff] - v20160714
Group Key Distribution Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

2 Messages

2.1 Transport

The client and server MUST communicate over RPC by using the TCP/IP protocol sequence

ncacn_ip_tcp.

This protocol uses RPC dynamic endpoints as defined in [C706], part 4.

The server interface MUST be identified by universal unique identifier (UUID) [b9785960-524f-
11df-8b6d-83dcded72085], version 1.0.

The server MUST use the RPC security extensions specified in [MS-RPCE]. It MUST support the use of
SPNEGO [MS-SPNG] [RFC4178] to negotiate security providers. The server MUST also register one or

more security packages that can be negotiated by using this protocol.

2.2 Common Data Types

This protocol MUST indicate to the RPC runtime that it supports both the Network Data
Representation (NDR) and NDR64 transfer syntaxes and provides a negotiation mechanism for

determining which transfer syntax will be used, as specified in [MS-RPCE] section 3.

In addition to RPC base types and definitions specified in [C706] and [MS-RPCE], additional data types
are defined in this section.

The following data types are specified in [MS-DTYP]:

Data type
name Section Description

FILETIME 2.3.3 A structure of 64-bit value that represents the number of 100-nanosecond intervals
that have elapsed since January 1, 1601, Coordinated Universal Time (UTC).

GUID 2.3.4.2 A packet representation of a globally unique identifier (GUID).

HRESULT 2.2.18 A 32-bit value that is used to describe an error or warning and contains the following
fields:
 A 1-bit code that indicates severity, where 0 represents success and 1 represents

failure.
 A 4-bit reserved value.
 An 11-bit code, also known as a facility code, that indicates responsibility for the

error or warning.
 A 16-bit code that describes the error or warning.

LONG 2.2.27 A 32-bit signed integer, in twos-complement format (range: –2147483648 through
2147483647 decimal). The first bit (Most Significant Bit (MSB)) is the signing bit.

ULONG 2.2.51 A 32-bit unsigned integer (range: 0 through 4294967295 decimal). Because a ULONG
is unsigned, its first bit (most significant bit (MSB)) is not reserved for signing.

2.2.1 KDF Parameters

The following specifies the format and field descriptions for the key derivation function (KDF)
parameters structure.

15 / 44

[MS-GKDI-Diff] - v20160714
Group Key Distribution Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

0x00 0x00 0x00 0x00

0x01 0x00 0x00 0x00

Length of hash name

0x00 0x00 0x00 0x00

Hash algorithm name (variable)

...

...

Length of hash name (4 bytes): A 32-bit unsigned integer. This field MUST be the length, in bytes,
of the Hash algorithm name field. This field is encoded using little-endian format.

Hash algorithm name (variable): A null-terminated Unicode string containing the name of the

hash algorithm to be used with the default KDF [SP800-108]. Valid values for this field are as
follows.

Value Meaning

L"SHA256" The SHA-256 algorithm, as specified in [FIPS180-3].

L"SHA384" The SHA-384 algorithm, as specified in [FIPS180-3].

L"SHA512" The SHA-512 algorithm, as specified in [FIPS180-3].

L"SHA1" The SHA-1 algorithm, as specified in [FIPS180-3].

2.2.2 FFC DH Parameters

This structure specifies field parameters for use in deriving finite field cryptography (FFC) Diffie-
Hellman (DH) ([SP800-56A] section 5.7.1) keys, as specified in section 3.1.4.1.2.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Length

0x44 0x48 0x50 0x4D

Key length

Field order (variable)

...

16 / 44

[MS-GKDI-Diff] - v20160714
Group Key Distribution Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

...

Generator (variable)

...

...

Length (4 bytes): A 32-bit unsigned integer. This field MUST be the length, in bytes, of the entire
structure. This field is encoded using little-endian format.

Key length (4 bytes): A 32-bit unsigned integer. This field MUST be the length, in bytes, of the

public key. This field is encoded using little-endian format.

Field order (variable): This is the large prime field order, and is a domain parameter for the FFC
DH algorithm ([SP800-56A] section 5.7.1). This field parameter is referred to as p in [SP800-56A]

section 3.2. It MUST be encoded in big-endian format. The length of this field, in bytes, MUST be
equal to the value of the Key length field.

Generator (variable): The generator of the subgroup, a domain parameter for the FFC DH

algorithm ([SP800-56A] section 5.7.1). This field parameter is referred to as g in [SP800-56A]
section 3.2. It MUST be encoded in big-endian format. The length of this field, in bytes, MUST be
equal to the value of the Key length field.

2.2.3 Public Key Formats

The formats in this section are used by the Group Key Distribution Protocol server to return public
keys to the client, as specified in section 3.1.4.1.

2.2.3.1 FFC DH Key

The following specifies the format and field descriptions for the FFC DH Key structure.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

0x44 0x48 0x50 0x42

Key length

Field order (variable)

...

...

Generator (variable)

...

...

17 / 44

[MS-GKDI-Diff] - v20160714
Group Key Distribution Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Public key (variable)

...

...

Key length (4 bytes): A 32-bit unsigned integer. The value in this field MUST be equal to the length,
in bytes, of the Public key field. This parameter is encoded using little-endian format.

Field order (variable): This is the large prime field order, and is a domain parameter for the FFC

DH algorithm ([SP800-56A] section 5.7.1). This field parameter is referred to as p in [SP800-56A]
section 3.2. It MUST be encoded in big-endian format. The length of this field, in bytes, MUST be
equal to the value in the Key length field.

Generator (variable): The generator of the subgroup, a domain parameter for the FFC DH
algorithm ([SP800-56A] section 5.7.1). This field parameter is referred to as g in [SP800-56A]

section 3.2. It MUST be encoded in big-endian format. The length of this field, in bytes, MUST be

equal to the value in the Key length field.

Public key (variable): The public key for the FFC DH algorithm ([SP800-56A] section 5.7.1). This
field parameter is referred to as y in [SP800-56A] section 3.2. It MUST be encoded in big-endian
format. The length of this field, in bytes, MUST be equal to the value of the Key length field.

2.2.3.2 ECDH Key

The following specifies the format and field descriptions for the Elliptic Curve Diffie-Hellman
(ECDH) Key structure [RFC5114].

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Magic

Key length

X (variable)

...

...

Y (variable)

...

...

Magic (4 bytes): A 32-bit unsigned integer encoded in little-endian format, representing the ECDH
field parameters. The following values are valid.

Value Meaning

0x314B4345 The values in the X and Y fields represent an ECDH [RFC5114] key over the elliptic curve P-

18 / 44

[MS-GKDI-Diff] - v20160714
Group Key Distribution Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Value Meaning

256 specified in Appendix D.1.2.3 of [FIPS186].

0x334B4345 The values in the X and Y fields represent an ECDH [RFC5114] key over the elliptic curve P-
384 specified in Appendix D.1.2.4 of [FIPS186].

0x354B4345 The values in the X and Y fields represent an ECDH [RFC5114] key over the elliptic curve P-
521 specified in Appendix D.1.2.5 of [FIPS186].

Key length (4 bytes): A 32-bit unsigned integer. This field MUST be the length, in bytes, of the
public key. This field is encoded using little-endian format.

X (variable): The x coordinate of the point P that represents the ECDH [RFC5114] public key. This
parameter is referred to as x in [SP800-56A] section 3.2. It MUST be encoded in big-endian
format. The length of this field, in bytes, MUST be equal to the value in the Key length field.

Y (variable): The y coordinate of the point P that represents the ECDH public key. This parameter is

referred to as y in [SP800-56A] section 3.2. It MUST be encoded in big-endian format. The length

of this field, in bytes, MUST be equal to the value in the Key length field.

2.2.4 Group Key Envelope

The following specifies the format and field descriptions for the Group Key Envelope structure.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Version

0x4B 0x44 0x53 0x4B

isPublicKey

L0 index

L1 index

L2 index

Root key indentifieridentifier (16 bytes)

...

...

cbKDFAlgorithm

cbKDFParameters

cbSecretAgreementAlgorithm

cbSecretAgreementParameters

19 / 44

[MS-GKDI-Diff] - v20160714
Group Key Distribution Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Private Key Length

Public Key Length

cbL1Key

cbL2Key

cbDomainName

cbForestName

KDF Algorithm (variable)

...

...

KDF Parameters (variable, optional)

...

...

Secret Agreement Algorithm (variable)

...

...

Secret Agreement Parameters (variable, optional)

...

...

Domain Name (variable)

...

...

Forest Name (variable)

...

...

L1 Key (64 bytes, optional)

20 / 44

[MS-GKDI-Diff] - v20160714
Group Key Distribution Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

...

...

L2 Key (variable, optional)

...

...

Version (4 bytes): A 32-bit unsigned integer. This field MUST be set to the version of the root key
ADM element. This field is encoded using little-endian format.

isPublicKey (4 bytes): A 32-bit unsigned integer. This field MUST be set to 1 when this structure is

being used to transport a public key, and otherwise set to 0. This field is encoded using little-

endian format.

L0 index (4 bytes): A 32-bit unsigned integer. This field MUST be the L0 index of the key being
enveloped. This field is encoded using little-endian format.

L1 index (4 bytes): A 32-bit unsigned integer. This field MUST be the L1 index of the key being
enveloped, and therefore MUST be a number between 0 and 31, inclusive. This field is encoded

using little-endian format.

L2 index (4 bytes): A 32-bit unsigned integer. This field MUST be the L2 index of the key being
enveloped, and therefore MUST be a number between 0 and 31, inclusive. This field is encoded
using little-endian format.

Root key identifier (16 bytes): A GUID containing the root key identifier of the key being
enveloped.

cbKDFAlgorithm (4 bytes): A 32-bit unsigned integer. This field MUST be the length, in bytes, of

the KDF Algorithm field. This field is encoded using little-endian format.

cbKDFParameters (4 bytes): A 32-bit unsigned integer. This field MUST be the length, in bytes, of
the KDF Parameters field. This field is encoded using little-endian format.

cbSecretAgreementAlgorithm (4 bytes): A 32-bit unsigned integer. This field MUST be the length,
in bytes, of the Secret Agreement Algorithm field. This field is encoded using little-endian
format.

cbSecretAgreementParameters (4 bytes): A 32-bit unsigned integer. This field MUST be the

length, in bytes, of the Secret Agreement Parameters field. This field is encoded using little-
endian format.

Private key length (4 bytes): A 32-bit unsigned integer. This field MUST be the private key length
associated with the root key, whose identifier is in the Root key identifier field. This field is
encoded using little-endian format.

Public key length (4 bytes): A 32-bit unsigned integer. This field MUST be the public key length

associated with the root key, whose identifier is in the Root key identifier field. This field is
encoded using little-endian format.

cbL1Key (4 bytes): A 32-bit unsigned integer. This field MUST be the length, in bytes, of the L1 key
field. This field is encoded using little-endian format. This field MUST be set to zero if the
isPublicKey field is set to 1, or if the L1 index field is set to zero and the value in the L2 index
field is not equal to 31.

21 / 44

[MS-GKDI-Diff] - v20160714
Group Key Distribution Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

cbL2Key (4 bytes): A 32-bit unsigned integer. This field MUST be the length, in bytes, of the L2 key
field. This field is encoded using little-endian format. This field MUST be zero if the value in the L2

index field is equal to 31.

cbDomainName (4 bytes): A 32-bit unsigned integer. This field MUST be the length, in bytes, of the

Domain name field. This field is encoded using little-endian format.

cbForestName (4 bytes): A 32-bit unsigned integer. This field MUST be the length, in bytes, of the
Forest name field. This field is encoded using little-endian format.

KDF Algorithm (variable): A null-terminated Unicode string. This field MUST be the ADM element
KDF algorithm name associated with the ADM element root key, whose identifier is in the Root
key identifier field.

KDF Parameters (variable, optional): This field MUST contain the KDF parameters associated

with the ADM element root key, whose identifier is in the Root key identifier field, in the format
specified in section 2.2.1. If the cbKDFParameters field is set to zero, this field is absent.

Secret Agreement Algorithm (variable): A null-terminated Unicode string. This field MUST be the

ADM element Secret agreement algorithm name associated with the ADM element root key,
whose identifier is in the Root key identifier field.

Secret Agreement Parameters (variable, optional): This field MUST contain the ADM element

Secret agreement algorithm associated with the ADM element root key, whose identifier is in
the Root key identifier field, in the format specified in section 2.2.2. If the
cbSecretAgreementParameters field is set to zero, this field is absent.

Domain Name (variable): A null-terminated Unicode string. This field MUST be the domain name of
the server in Domain Name System (DNS) format.

Forest Name (variable): A null-terminated Unicode string. This field MUST be the forest name of the
server in Domain Name System (DNS) format.

L1 key (64 bytes, optional): An L1 seed key ADM element in binary form. If the value in the
cbL1Key field is zero, this field is absent. Otherwise, if the value in the L2 index field is equal to

31, this contains the L1 key with group key identifier (L0 index, L1 index, -1). In all other
cases, this field contains the L1 key with group key identifier (L0 index, L1 index - 1, -1). If this
field is present, its length MUST be equal to 64 bytes.

L2 key (variable, optional): The L2 seed key ADM element or the group public key ADM element
with group key identifier (L0 index, L1 index, L2 index) in binary form. If the value in the

cbL2Key field is zero, this field is absent. If this field is present and the isPublicKey field is set to
1, then the length, in bytes, of this field MUST be equal to the value of the Public Key Length
field. If this field is present and the isPublicKey field is set to 0, the length of this field MUST be
equal to 64 bytes.

2.3 Directory Service Schema Elements

The Group Key Distribution Protocol accesses the directory service schema classes and attributes
listed in the following table.

For the syntactic specifications of the following <Class> or <Class><Attribute> pairs, refer to Active
Directory Domain Services (AD DS) ([MS-ADA2] sections 2.505514 through 2.515524 and [MS-ADSC]
sections 2.158 and 2.159).

Class Attributes

msKds-ProvServerConfiguration msKds-Version

msKds-KDF-AlgorithmID

22 / 44

[MS-GKDI-Diff] - v20160714
Group Key Distribution Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Class Attributes

msKds-KDF-Param

msKds-SecretAgreement-AlgorithmID

msKds-SecretAgreement-Param

msKds-PublicKey-Length

msKds-PrivateKey-Length

msKds-ProvRootKey common name

msKds-ProvServerConfiguration class attributes

msKds-DomainID

msKds-CreateTime

msKds-UseStartTime

msKds-RootKeyData

23 / 44

[MS-GKDI-Diff] - v20160714
Group Key Distribution Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

3 Protocol Details

3.1 ISDKey Server Details

3.1.1 Abstract Data Model

This section describes a conceptual model of possible data organization that an implementation
maintains to participate in this protocol. The described organization is provided to facilitate the
explanation of how the protocol behaves. This document does not mandate that implementations

adhere to this model as long as their external behavior is consistent with that described in this
document.

The server abstract data model (ADM) is Active Directory-based only and does not require any local
variables to store state for this protocol. The server ADM consists of a Server Configuration object
and root key objects along with their associated parameters and attributes, respectively, as specified
below.

Server Configuration (Public): The server stores a set of configuration parameters for use when

creating a new root key, as specified in section 3.1.4.1.1. These parameters are held in persisted
storage in Active Directory where they survive system restarts. They are stored in an object of the
msKds-ProvServerConfiguration class at the location specified in section 1.9, which is the RDN of
the Server Configuration object relative to the forest root. The parameters are replicated to all
servers in the Active Directory forest by Active Directory replication mechanisms.

Note The Active Directory schema for the Server Configuration object is specified in [MS-ADSC]
sections 2.158 and 2.159.

The configuration consists of the following parameters:

Configuration information version: A version number associated with the server configuration
format that is stored in the msKds-Version attribute of the Server Configuration object.

 KDF algorithm: An identifier indicating the key derivation function used to derive group keys
from a root key object data element. It is stored in the msKds-KDF-AlgorithmID attribute of
the Server Configuration object.

 KDF algorithm parameters: Additional parameters for the KDF algorithm data element. They
are stored in the msKds-KDF-Param attribute of the Server Configuration object.

 Secret agreement algorithm: An identifier indicating the secret agreement algorithm to be used
with the group public keys. It is stored in the msKds-SecretAgreement-AlgorithmID
attribute of the Server Configuration object.

 Secret agreement algorithm parameters: Additional parameters for the secret agreement
algorithm data element. They are stored in the msKds-SecretAgreement-Param attribute of

the Server Configuration object.

 Length of secret agreement public keys: The public key length of the secret agreement

algorithm data element. It is stored in the msKds-PublicKey-Length attribute of the Server
Configuration object.

 Length of secret agreement private keys: The private key length of the secret agreement
algorithm data element. It is stored in the msKds-PrivateKey-Length attribute of the Server
Configuration object.

Root keys (Public): The server holds zero or more root key objects in persisted storage in Active
Directory, where these objects survive system restarts. These root key data elements are stored as
objects of the msKds-ProvRootKey class inside the root key container, as specified in section 1.9.

24 / 44

[MS-GKDI-Diff] - v20160714
Group Key Distribution Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

They are replicated to all the servers in the Active Directory forest by Active Directory replication
mechanisms.

Each root key data element contains the following attributes:

Root key identifier: A unique identifier associated with this root key. This identifier is stored in the

Common-Name attribute of the root key object data element in Active Directory.

Root key configuration: The server configuration that was in force when this root key object was
created, and which will apply to this root key throughout its life cycle. The configuration is stored in
the following attributes of this root key data element in Active Directory:

 msKds-Version

 msKds-KDF-AlgorithmID

 msKds-KDF-Param

 msKds-SecretAgreement-AlgorithmID

 msKds-SecretAgreement-Param

 msKds-PublicKey-Length

 msKds-PrivateKey-Length

Root key domain: The distinguished name (DN) of the domain in which this root key object was
generated. It is stored in the msKds-DomainID attribute of this root key data element.

Root key creation time: The time at which this root key object was created. It is stored in the
msKds-CreateTime attribute of this root key data element.

Root key validity start time: The time after which this root key object can be used. It is stored in
the msKds-UseStartTime attribute of this root key data element.

Root key data: The actual random bits that will be used as this root key. It is stored in the msKds-
RootKeyData attribute of this root key data element.

Note that the abstract interface notation (Public) for the Server Configuration and Root key objects

indicates that these ADM elements can be directly accessed from outside this protocol. Specifically, an
authorized administrator can access these data elements directly by querying Active Directory at the
RDN locations specified in section 1.9.

3.1.2 Timers

None.

3.1.3 Initialization

The server MUST register a dynamic endpoint with the RPC runtime. It MUST indicate to the RPC

runtime that it is to negotiate security contexts using the SPNEGO protocol [MS-SPNG], and MUST
request the RPC runtime to reject any unauthenticated connections. The server MUST also instruct the
RPC runtime to reject any connections with an authentication level less than
RPC_C_AUTHN_LEVEL_PKT_PRIVACY.

A server in the Active Directory forest MUST initialize its Server Configuration and root key objects
from the corresponding values persisted in the Active Directory database on the DC. It MUST also
implement a means of monitoring this state for changes made through other protocols or through

Active Directory server-to-server replication mechanisms.

25 / 44

[MS-GKDI-Diff] - v20160714
Group Key Distribution Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

3.1.4 Message Processing Events and Sequencing Rules

This protocol MUST indicate to the RPC runtime that it is to perform a strict NDR data consistency
check at target level 6.0, as specified in [MS-RPCE] section 3.

This protocol MUST indicate to the RPC runtime that it is to reject a NULL unique or full pointer with
nonzero conformant value, as specified in [MS-RPCE] section 3.

This protocol MUST indicate to the RPC runtime via the strict_context_handle attribute ([MS-RPCE]
section 3.1.1.5.3.2.2.2), that it is to reject the use of context handles created by methods of an RPC
interface that are different than the method specified herein.

The ISDKey interface for the Group Key Distribution Protocol includes the following method:

Method Description

GetKey The following is the only opnum method defined by this protocol.

Opnum: 0

3.1.4.1 GetKey (Opnum 0)

The syntax for the GetKey (Opnum 0) method consists of the following.

 HRESULT GetKey(
 [in] handle_t hBinding,
 [in] ULONG cbTargetSD,
 [in] [size_is(cbTargetSD)] [ref] char* pbTargetSD,
 [in] [unique] GUID* pRootKeyID,
 [in] LONG L0KeyID,
 [in] LONG L1KeyID,
 [in] LONG L2KeyID,
 [out] unsigned long* pcbOut,
 [out] [size_is(, *pcbOut)] byte** ppbOut);

hBinding: This is an RPC binding handle parameter, as specified in [C706] and [MS-RPCE] section 2.

cbTargetSD: This parameter is equal to the length, in bytes, of the search security descriptor
supplied in pbTargetSD.

pbTargetSD: This parameter is a pointer to the security descriptor for which the group key is being

requested.

pRootKeyID: This parameter represents the root key identifier of the requested key. It can be set to
NULL.

L0KeyID: This parameter represents the L0 index of the requested group key. It MUST be a signed

32-bit integer greater than or equal to -1.

L1KeyID: This parameter represents the L1 index of the requested group key. It MUST be a signed

32-bit integer between -1 and 31 (inclusive).

L2KeyID: This parameter represents the L2 index of the requested group key. It MUST be a 32-bit
integer between -1 and 31 (inclusive).

pcbOut: This parameter is an unsigned, 32-bit integer. It MUST be equal to the length, in bytes, of
the data returned in ppbOut.

26 / 44

[MS-GKDI-Diff] - v20160714
Group Key Distribution Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

ppbOut: On successful processing of a request, the server MUST set this to a pointer that refers to
the output key binary large object (BLOB).

Return Values: The server MUST return zero if it successfully processes the message received from
the client; otherwise, it MUST return a nonzero value.

Exceptions Thrown: No exceptions are thrown beyond those thrown by the underlying RPC protocol
[MS-RPCE].

Processing rules for the GetKey request are specified herein. In general, there are four types of
requests, as follows:

 When the pRootKeyID parameter is equal to NULL and the values of the L0KeyID, L1KeyID, and
L2KeyID parameters are all equal to -1, the latest group key is being requested by the caller.

 When the pRootKeyID parameter is equal to NULL and the values of the L0KeyID, L1KeyID, and

L2KeyID parameters are all greater than -1, the seed key used at a specific time in the past is
being requested by the caller.

 When the pRootKeyID parameter is not equal to NULL and the values of the L0KeyID, L1KeyID,
and L2KeyID parameters are all equal to -1, the latest group key derived from the specified root
key is being requested by the caller.

 When the pRootKeyID parameter is not equal to NULL and the values of the L0KeyID, L1KeyID,

and L2KeyID parameters are all greater than -1, a specific seed key is being requested by the
caller.

When a Group Key Distribution Protocol server receives the GetKey request, it must first validate that
the pbTargetSD parameter is a valid security descriptor in self-relative format. The server MUST also
verify that the L0KeyID, L1KeyID, and L2KeyID parameters are either all equal to -1 or all greater
than or equal to 0. If any of these conditions are not met, the server MUST return an error and exit.

The server MUST further validate its arguments as follows:

1. Retrieve the current time in the FILETIME format specified in [MS-DTYP] section 2.3.3. Construct

an unsigned 64-bit number by setting the low-order word to dwLowDateTime and the high-order
word to dwHighDateTime. Call this 64-bit number CurrentTime.

2. Convert the CurrentTime value to a group key identifier (L0, L1, L2) as follows; the division
operator in the following calculations represents integer division:

 L0 = CurrentTime / (32 * 32 * 3.6 * 1011)

 L1 = (CurrentTime mod (32 * 32 * 3.6 * 1011)) / (32 * 3.6 * 1011)

 L2 = (CurrentTime mod (32 * 3.6 * 1011)) / (3.6 * 1011)

3. If (L0KeyID, L1KeyID, L2KeyID) is lexically greater than (L0, L1, L2), then return an error and
exit.

4. Otherwise, compute a group key identifier (GKID) as follows:

 If the pRootKeyID parameter is equal to NULL and L0KeyID >= 0, GKID = (L0KeyID, L1KeyID,
L2KeyID).

 Otherwise, if the pRootKeyID parameter is not equal to NULL and 0 =< L0KeyID < L0, GKID =
(L0KeyID, 31, 31).

 Otherwise, GKID = (L0, L1, L2).

27 / 44

[MS-GKDI-Diff] - v20160714
Group Key Distribution Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

5. Using the method specified in [MS-DTYP] section 2.5.3.2, perform an access check with the
pbTargetSD parameter value as the SecurityDescriptor, the caller's authorization context as the

Token, 0x3 as the Access Request mask, and with the Object Tree and PrincipalSelfSubst SID set
to NULL. If access is granted, the client is authorized to access seed keys. Otherwise, if access is

not granted, proceed to step 6.

6. If the L0KeyID, L1KeyID, and L2KeyID parameters are not all equal to -1, return an error and exit.

7. Otherwise, using the method specified in [MS-DTYP] section 2.5.3.2, perform an access check with
pbTargetSD parameter value as the SecurityDescriptor, the caller's authorization context as the
Token, 0x2 as the Access Request mask, and with the Object Tree and PrincipalSelfSubst SID set
to NULL. If access is granted, the client is only authorized to access public keys. Otherwise, if
access is not granted, return an error and exit.

The server MUST then determine whether it is running on a writable DC or a read-only domain
controller (RODC) via implementation-specific means. If it is running on an RODC, the server MUST
process the request as a client, as specified in section 3.2.4.1. Specifically, it MUST look for a cached
key using the group key identifier GKID computed in the previous step 4. If a matching key is not

found in the cache, the server MUST forward the request to a writable DC with group key identifier
(L0KeyID, L1KeyID, L2KeyID), as specified by the caller.

If the access check in the previous step 5 was successful, the server MUST return the seed key
obtained from the cache or the writable DC directly to the client, without performing any of the actions
specified in section 3.2.4.3. Otherwise, if a seed key is found (section 3.2.4.1), the server MUST
convert it to a public key with the requested group key identifier, using the method specified in section
3.1.4.1.2, and return the result to the caller.

If the server is running on a writable DC, it MUST proceed as follows:

1. If the pRootKeyID parameter is not NULL, locate the root key object whose CN matches the

pRootKeyID parameter value and proceed to step 5. If no such root key object is found, return an
error and exit.

2. If the L0KeyID, L1KeyID, and L2KeyID parameters are all equal to -1, select the root key object

that has the highest value in its msKds-UseStartTime attribute. If the set of root keys is
empty, create a new root key by using the method specified in section 3.1.4.1.1 and proceed to
step 5.

3. Convert the GKID value to an unsigned 64-bit number by reversing the method specified in step 2

of the previous procedure. Let this number be denoted KeyStartTime.

4. From the set of root key objects, select the subset of root keys that have the msKds-
UseStartTime attribute value less than or equal to KeyStartTime. If this subset contains more
than one root key object, select the one with the highest msKds-CreateTime attribute value. If
no suitable root key object can be found, return an error and exit.

5. Let the root key object selected in the above steps be denoted RK. Compute the seed key

corresponding to security descriptor pbTargetSD, root key RK, and group key identifier GKID, as
specified in section 3.1.4.1.2. Let this seed key be denoted SK.

6. If the client is only authorized to access public keys, as determined by the access checks in steps
5 and 7 of the previous procedure, compute the public key corresponding to the SK, as specified in
section 3.1.4.1.2. Return the result in the ppbOut parameter of the GetKey method, by using the
format specified in section 2.2.4, and then exit.

7. If the client is authorized to access seed keys, as determined by the access check in step 5 of the

previous procedure, then:

28 / 44

[MS-GKDI-Diff] - v20160714
Group Key Distribution Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 If the L2 component of GKID is equal to 31, return the L1 seed key corresponding to SK in
the ppbOut parameter by using the format specified in section 2.2.4, with the L2 key field

omitted.

 Otherwise, if the L1 component of GKID is equal to 0, return SK in the ppbOut parameter by

using the format specified in section 2.2.4, with the L1 key field omitted.

 If neither of the above two cases apply, construct the return value in the ppbOut parameter by
using the format specified in section 2.2.4, with SK in the L2 key field and the next older L1
seed key in the L1 key field.

3.1.4.1.1 Creating a New Root Key

If the root keys container in Active Directory on the DC is empty when a GetKey request is received

by the server, the server MUST create a new root key object based on the default Server
Configuration object that is present in Active Directory (section 1.5). If additional (new) root keys
are required, the server MUST create them based on either the default Server Configuration object
or an updated one that specifies optional configuration values.

Note The default Server Configuration can be overridden with specified configuration values. A
procedure for creating or updating a Server Configuration object is specified in section 3.1.4.1.3.

Any server configuration that is created or updated by the procedure in section 3.1.4.1.3 will be used
by all servers in the Active Directory forest when creating future root keys, but will not affect any
existing root keys.

To create a new root key object, the server MUST proceed as follows:

1. Using a cryptographically strong random number generator, generate a random 16-byte GUID.

2. Using a cryptographically strong random number generator, generate 64 random bytes for use as
the root key.

3. Retrieve the current time as a FILETIME ([MS-DTYP] section 2.3.3), and convert this to a single
64-bit integer.

4. Retrieve the Server Configuration from the Active Directory location specified in section 1.9.

5. Create a new Active Directory object of class msKds-ProvRootKey in the root key container
specified in section 1.9, and populate the attributes of the object as follows:

 Set the common name (CN) of the object to the result of step 1, represented in the string
format of a UUID as specified in [RFC4122] section 3.

 Set the msKds-RootKeyData attribute to the result of step 2.

 Set both the msKds-CreateTime and msKds-UseStartTime attributes of this root key
object to the result of step 3.

 Set the msKds-DomainID attribute to the DN of the server's Active Directory domain.

 Set the msKds-Version attribute of this root key object to the value of the msKds-Version

attribute in the Server Configuration object retrieved in step 4.

 Check for the existence of the msKds-KDF-AlgorithmID attribute in the Server
Configuration object retrieved in step 4. If it is present, set the msKds-KDF-AlgorithmID
and msKds-KDF-Param attributes of the root key object to the values of the corresponding
attributes in the Server Configuration object. If the msKds-KDF-AlgorithmID attribute is
not present in the Server Configuration object, set the msKds-KDF-AlgorithmID attribute
of this root key object to the Unicode string value "SP800_108_CTR_HMAC", and the msKds-

29 / 44

[MS-GKDI-Diff] - v20160714
Group Key Distribution Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

KDF-Param attribute to a KDF Parameters structure (section 2.2.1) that has the Hash
algorithm name field set to the null-terminated Unicode string "SHA512".

 Check for the existence of the msKds-SecretAgreement-AlgorithmID attribute in the
Server Configuration object retrieved in step 4. If it is present, set the msKds-

SecretAgreement-AlgorithmID, msKds-SecretAgreement-Param, msKds-PublicKey-
Length, and msKds-PrivateKey-Length attributes of this root key object to the values of
the corresponding attributes in the Server Configuration object. If the msKds-
SecretAgreement-AlgorithmID attribute is not present in the Server Configuration
object, set the msKds-SecretAgreement-AlgorithmID attribute of this root key object to
the Unicode string value "DH", the msKds-SecretAgreement-Param attribute to a FFC DH
Parameters structure (section 2.2.2) containing the constants specified in [RFC5114] section

2.3, the msKds-PublicKey-Length attribute to 2048, and the msKds-PrivateKey-Length
attribute to 256.

6. Add this new root key object to the server's state, as specified in section 3.1.1.

3.1.4.1.2 Generating a Group Key

This section specifies the processing rules for generating a group key for a given security descriptor,

root key identifier, and group key identifier. The following notational conventions are used in the
processing rules in this section:

 SD — is used to denote the specified security descriptor, expressed in self-relative form, as
specified in [MS-DTYP] section 2.4.6.

 RKID — denotes the specified root key identifier, represented in the binary format specified in
[MS-DTYP] section 2.3.4.2.

 RK — denotes the selected root key object corresponding to the root key identifier RKID. The

attributes of the root key object are denoted in the form RK.attributeName, where
attributeName is a particular Active Directory attribute of the root key object, as specified in
section 3.1.1. For example, RK.msKds-Version indicates the version of the root key RK.

 (L0, L1, L2) — refers to the specified group key identifier.

 Key(SD, RK, L0, L1, L2) — denotes the group seed key for security descriptor SD, root key
object RK, and group key identifier (L0, L1, L2).

 PubKey(SD, RK, L0, L1, L2) — denotes the group public key for security descriptor SD, root key

object RK, and group key identifier (L0, L1, L2).

 PrivKey(SD, RK, L0, L1, L2) — denotes the group private key for security descriptor SD, root
key object RK, and group key identifier (L0, L1, L2).

 KDF(HashAlg, KI, Label, Context, L) — denotes an execution of the [SP800-108] KDF in counter
mode ([SP800-108] section 5.1) by using the Hash Message Authentication Code (HMAC) specified
in [FIPS198-1], with HashAlg as the underlying hash algorithm (as the PRF), and with KI, Label,

Context, and L representing the identically named parameters specified in [SP800-108] section 5.

 SHA-1, SHA-256, SHA-384, and SHA-512 — denote the hash algorithms of the same names, as
specified in [FIPS180-3].

 || — this symbol refers to the concatenation operator.

In addition, the following assumptions apply unless specified otherwise:

 Each string constant is assumed to be a null-terminated Unicode string.

 All integer constants and variables are assumed to be 32-bit integers in little-endian format.

30 / 44

[MS-GKDI-Diff] - v20160714
Group Key Distribution Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

To generate the group key, the server MUST first check the root key configuration attributes of the
RK object.

1. Check that RK.msKds-Version is equal to 1. Otherwise, return an error.

2. Check that RK.msKds-KDF-AlgorithmID is equal to "SP800_108_CTR_HMAC".

Protocol behavior for other values of the KDF algorithm ID is undefined.<1>

3. Check that RK.msKds-KDF-Param is in the format specified in section 2.2.1, and that the hash
algorithm name therein is equal to one of the values that follow.

Protocol behavior for other values of the KDF parameter attribute is undefined.<2>

 If RK.msKds-KDF-Param is equal to "SHA1", set HashAlg to SHA-1.

 If RK.msKds-KDF-Param is equal to "SHA256", set HashAlg to SHA-256.

 If RK.msKds-KDF-Param is equal to "SHA384", set HashAlg to SHA-384.

 If RK.msKds-KDF-Param is equal to "SHA512", set HashAlg to SHA-512.

4. To derive an L0 seed key with a group key identifier (L0, -1, -1), the server MUST perform the
following computation:

Key(SD, RK, L0, -1, -1) = KDF(HashAlg, RK.msKds-RootKeyData, "KDS service", RKID || L0
|| 0xffffffff || 0xffffffff, 512)

5. To derive an L1 seed key with a group key identifier (L0, 31, -1), the server MUST proceed as

follows:

Key(SD, RK, L0, 31, -1) = KDF(HashAlg, Key(SD, RK, L0, -1, -1), "KDS service", RKID || L0 ||
31 || 0xffffffff || SD, 512)

6. To derive an L1 seed key with group key identifier (L0, n, -1), where n is an integer between 0

and 30 inclusive, the server MUST proceed as follows:

Key(SD, RK, L0, n, -1) = KDF(HashAlg, Key(SD, RK, L0, n+1, -1), "KDS service", RKID || L0 ||
n || 0xffffffff, 512)

7. To derive an L2 seed key with a group key identifier (L0, L1, n), where n is an integer between 0
and 31 inclusive, the server MUST proceed as follows:

Key(SD, RK, L0, L1, n) = KDF(HashAlg, Key(SD, RK, L0, L1, n+1), "KDS service", RKID || L0 ||
L1|| n, 512); where Key(SD, RK, L0, L1, 32) = Key(SD, RK, L0, L1, -1)

To derive a group public key with a group key identifier (L0, L1, L2), the server MUST proceed as
follows:

1. First, the server MUST validate the root key configuration attributes related to public keys:

 If RK.msKds-SecretAgreement-AlgorithmID is equal to "DH", RK.msKds-

SecretAgreement-Param MUST be in the format specified in section 2.2.2, and the Key
length field of RK.msKds-SecretAgreement-Param MUST be equal to RK.msKds-
PublicKey-Length.

 If RK.msKds-SecretAgreement-AlgorithmID is equal to "ECDH_P256", "ECDH_P384" or
"ECDH_P521", the RK.msKds-SecretAgreement-Param MUST be NULL.

Protocol behavior for other values of the secret agreement algorithm name and parameter
attributes is undefined.<3>

31 / 44

[MS-GKDI-Diff] - v20160714
Group Key Distribution Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

2. Having validated the root key configuration, the server MUST then compute the group private key
in the following manner:

PrivKey(SD, RK, L0, L1, L2) = KDF(HashAlg, Key(SD, RK, L0, L1, L2), "KDS service",
RK.msKds-SecretAgreement-AlgorithmID, RK.msKds-PrivateKey-Length)

Note If RK.msKds-PrivateKey-Length is not a multiple of 8, it needs to be rounded up to the
next multiple of 8.

3. Lastly, the server MUST compute the group public key PubKey(SD, RK, L0, L1, L2) as follows:

 If RK.msKds-SecretAgreement-AlgorithmID is equal to "DH", the server MUST compute
PubKey(SD, RK, L0, L1, L2) by using the method specified in [SP800-56A] section 5.6.1.1,
with the group parameters specified in RK.msKds-SecretAgreement-Param, and with
PrivKey(SD, RK, L0, L1, L2) as the private key.

 If RK.msKds-SecretAgreement-AlgorithmID is equal to "ECDH_P256", "ECDH_P384", or
"ECDH_P521", the server MUST compute PubKey(SD, RK, L0, L1, L2) by using the method
specified in [SP800-56A] section 5.6.1.2, with PrivKey(SD, RK, L0, L1, L2) as the private key

d, and by using the domain parameters from [FIPS186] Appendix D.1.2.3, D.1.2.4, or D.1.2.5,
respectively.

3.1.4.1.3 Creating or Updating a Server Configuration Object

As specified in section 1.5, a Server Configuration object MUST be present in the Active Directory
database for successful operation of this protocol. Server implementations MUST use the parameters
configured in this object when creating a new root key, as specified in section 3.1.4.1.1. The
procedure in this section specifies how to create or update a Server Configuration object in Active
Directory.

1. Locate the DC, as specified in [MS-NRPC] section 3.5.4.3.1.

2. To create a new Server Configuration object, create it in Active Directory under the
Configuration Naming Context with the msKds-ProvServerConfiguration class (section 2.3) at

the location specified in section 1.9, by using the procedure specified in [MS-ADTS] section
3.1.1.5.2.

3. Populate the Server Configuration object attributes with the values for the parameters specified
in the following table and then close the Active Directory connection.

Note All values in this table are optional, with exception of the required value for the msKds-

Version parameter. If the optional values are omitted, the server will behave as specified in
section 3.1.4.1.2.

Parameter name Values Data type

msKds-Version 1 32-bit unsigned integer

msKds-KDF-AlgorithmID "SP800_108_CTR_HMAC" Unicode string

msKds-KDF-Param KDF parameters Section 2.2.1 structure

msKds-SecretAgreement-
AlgorithmID

"DH", "ECDH_P256", "ECDH_P384",
or "ECDH_P521"

Unicode string

msKds-SecretAgreement-Param FFC DH parameters Section 2.2.2 structure

msKds-PublicKey-Length Defined by algorithm in use 32-bit unsigned integer

msKds-PrivateKey-Length Defined by algorithm in use 32-bit unsigned integer

 To update an existing Server Configuration object, locate the object in Active Directory
according to its DN and specify the modifications to be performed by using the procedure specified
in [MS-ADTS] section 3.1.1.5.3.

32 / 44

[MS-GKDI-Diff] - v20160714
Group Key Distribution Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Refer to the data in the table of this section when updating the attributes of the Server
Configuration object and close the Active Directory connection when complete.

Note Active Directory schema information for the Server Configuration object is specified
in [MS-ADSC] section 2.159.

3.1.5 Timer Events

None.

3.1.6 Other Local Events

A server in the Active Directory forest MUST update its Server Configuration object and set of root
key objects when the corresponding objects on the Active Directory DC are modified, either because
of changes by an authorized user or as the result of Active Directory replication.

3.2 ISDKey Client Details

3.2.1 Abstract Data Model

This section describes a conceptual model of possible data organization that an implementation
maintains to participate in this protocol. The described organization is provided to facilitate the
explanation of how the protocol behaves. This document does not mandate that implementations
adhere to this model as long as their external behavior is consistent with that described in this
document.

Group Key cache: The client SHOULD cache group keys corresponding to one or more security

descriptors. For every combination of Active Directory domain and security descriptor, the cache
contains zero or more of the following:

Group public key: The most recent public key retrieved for this domain and security descriptor,
along with its root key identifier and group key identifier. There is never more than one group public

key in the cache for any combination of domain and security descriptor. Also, there can never be a
group public key in the cache with the same set of domain, security descriptor, root key identifier,
and L0 index values as a group seed key in the cache, unless the group public key has a newer

group key identifier.

Group seed keys: Each group seed key object consists of one or more of the following. There is
never more than one group seed key object for a given combination of domain, security descriptor,
root key identifier, and L0 index.

 L1 seed key: The most recent L1 seed key retrieved from this domain for this security
descriptor and its group key identifier.

 L2 seed key: The most recent L2 seed key retrieved from this domain for this security

descriptor and its group key identifier.

Note Each Group public key and Group seed key also contain a Boolean attribute that

identifies whether the key was the current key at the time it was retrieved.

3.2.2 Timers

None.

33 / 44

[MS-GKDI-Diff] - v20160714
Group Key Distribution Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

3.2.3 Initialization

None.

3.2.4 Message Processing Events and Sequencing Rules

3.2.4.1 Client Side Processing

The Group Key Distribution Protocol client receives requests from a higher layer. The caller requests
the retrieval of a key for a given security descriptor, while optionally specifying a root key identifier
and group key identifier. The caller also specifies the name of the Active Directory domain from which
to retrieve keys and provides valid user credentials for authenticating in a specific domain.

Upon receiving such a request, the client SHOULD attempt to locate a matching key in the cache, as
follows:

1. If the caller specified a group key identifier but did not specify a root key identifier, then do not

attempt to locate a key in the cache.

2. If the caller specified a root key identifier, the client shouldmust first check if a group key identifier
was also specified. If the caller did not specify a group key identifier, the client should
convertconverts the current time to the group key identifier, as specified in section 3.1.4.1, and
useuses that as the requested group key identifier. The client should then attemptattempts to find
a group seed key in the cache that has the same domain and security descriptor, and whose

group key identifier is the same as the requested group key identifier, or whose group key
identifier is newer than the requested group key identifier, but has the same L0 index field value.
If such a key is found in the cache, the client uses it to derive the desired key, as specified in
section 3.2.4.3, and returns the result to the caller.

3. If the caller specified neither a root key identifier nor a group key identifier (for example, the
group key identifier was (-1, -1, -1)), the client should first convertconverts the current time to a
group key identifier, as specified in section 3.1.4.1. The client should then attemptattempts to find

a group key in the cache that has the same domain and security descriptor, which is marked as

current, and whose group key identifier is no older than the group key identifier just computed. If
such a key is found in the cache, the client uses it to compute the desired key, as specified in
section 3.2.4.3, and returns the result to the caller.

If no key is found in the cache, the client MUST attempt to connect to a server and retrieve a key as
specified in section 3.2.4.2.

If the client fails to retrieve a key from the server, and if the caller had not specified a root key
identifier, the client SHOULD attempt to find a cached group key with the same domainanddomain
and security descriptor that is marked as current and whose group key identifier is no more than 32
L2 periods older than the current time. If such a key is found, the client SHOULD return it to the
caller.

In all other cases, if the client fails to retrieve a key from the server, the client MUST return an error
to the caller.

If the client successfully retrieves a key from the server, it will have received a group key in the
format specified in section 2.2.4. The client MUST parse this format as follows:

1. If the isPublicKey field of the returned Group Key Envelope is set to 1, the value in the L2 key
field is a public key with group key identifier (L0 field, L1 field, L2 field).

2. If the isPublicKey field of the returned Group Key Envelope is set to 0 and the L2 Key field is
present, the value in the L2 key field is an L2 seed key with group key identifier (L0 field, L1
field, L2 field).

34 / 44

[MS-GKDI-Diff] - v20160714
Group Key Distribution Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

3. If the isPublicKey field of the returned Group Key Envelope is set to 0 and the L1 Key field is
present, then:

 If the value in the L2 index field is 31, the value in the L1 Key field is an L1 seed key with
group key identifier (L0 field, L1 field, -1).

 If the value in the L2 index field is not 31, the value in the L1 Key field is an L1 seed key
with group key identifier (L0 field, L1 field - 1, -1).

The client SHOULD then update its group key cache as follows.

1. If the server returned a public key, then:

 Check the cache for a group seed key for the same domain, the same security descriptor,
the same root key identifier, and the same or newer group key identifier. If such a key is
found, do not update the cache.

 Check the cache for a group public key with the same domain, the same security descriptor,
and an older group key identifier or different root key identifier. If such a key exists, replace it

with the retrieved group public key.

 If neither of the preceding cases apply, add the retrieved group public key to the cache.

2. If the server returned a seed key, then:

 Check the cache for a group public key with the same domain, the same security descriptor,

the same root key identifier, and same or older group key identifier. If such a key exists,
remove it from the cache and add the retrieved seed key to the cache.

 Check the cache for a seed key with the same domain, the same security descriptor, and the
same root key identifier. If such a key is found and it has an older group key identifier than
the retrieved key, replace it with the retrieved key. If such a key is found but it has a newer
group key identifier than the retrieved key, do not update the cache.

 If neither of the preceding cases apply, add the retrieved seed key to the cache.

3. If the caller for this request specified neither a root key identifier nor a group key identifier, then
mark the above key with the current attribute.

Lastly, the client MUST compute the requested key, as specified in section 3.2.4.3, and return the
result to the caller.

3.2.4.2 Retrieving a Group Key from a Server

To retrieve a group key from the server, the client MUST perform a GetKey call, as specified in
section 3.1.4.1. However, before making this call, the client MUST first perform the following:

1. Locate a DC.

The client MUST locate a suitable DC by using the method specified in [MS-NRPC] section
3.5.4.3.1, with the DomainName parameter set to the specified domain name, Flags set to the

bitwise OR of the R and U bits, and all other parameters set to zero or NULL.

2. The client MUST connect to this server over RPC with supplied user credentials. Each RPC
connection to the server MUST be configured as follows:

 The client MUST indicate to the RPC runtime that it is to perform a strict NDR data consistency
check at target level 6.0, as specified in [MS-RPCE] section 3.1.1.5.3.3.

 The client MUST indicate to the RPC runtime that it is to reject a NULL unique or full pointer
with nonzero conformant value, as specified in [MS-RPCE] section 3.1.1.5.3.3.1.2.

35 / 44

[MS-GKDI-Diff] - v20160714
Group Key Distribution Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 The client MUST instruct the RPC runtime to negotiate a security context by using the SPNEGO
protocol [MS-SPNG], as specified in [MS-RPCE] section 2.2.1.1.7.

 The client MUST also instruct the RPC runtime to negotiate the use of the packet privacy
authentication level, which provides both message confidentiality and integrity ([MS-RPCE]

section 2.2.1.1.8).

 If the server returned is a writable DC, the client MUST instruct the RPC runtime to use the
SECURITY_IMPERSONATION impersonation level, as specified in [MS-RPCE] section 2.2.1.1.9.
If the server returned is an RODC, the client MUST instruct the RPC runtime to use the
SECURITY_IDENTIFICATION impersonation level, as specified in [MS-RPCE] section 2.2.1.1.9.

 Lastly, the client SHOULD request the RPC runtime to perform mutual authentication with the
server.

3. Perform the GetKey call.

After establishing and configuring the DC connection, the client MUST perform the GetKey call
(section 3.1.4.1) with parameters specified by the caller. The client MUST treat all server errors

(non-zero return codes) identically. If the GetKey method fails, the client MUST return an error
to the caller.

3.2.4.3 Computing the Desired Group Key

The group key returned by the Group Key Distribution Protocol server maymight not have the same
group key identifier requested by the client, as specified in section 3.1.4.1. At other times, the client
might find a cached key that can be used to derive the requested key, thereby avoiding a network
round trip. In these cases, some processing may beis required on the client side to compute the key

that must be returned to the caller. The client MUST compute the group key to be returned to the
calling layer as follows:

1. If the root key identifier was not specified in the request from the higher layer (for example, the
higher layer requesting the most recent key), and the server returned a public key, the client
MUST return the public key to the caller.

2. Otherwise, the server MUST have returned a seed key. If no root key identifier was specified in the

request from the higher layer (for example, the higher layer was requesting the most recent key),
then:

 If the server's response contains an L2 key, return that to the caller.

 Otherwise, use the L1 key in the server's response to derive the L2 key with L2 index 31, as
specified in section 3.1.4.1.2, and return that to the caller.

3. If the server returned a seed key in response to a request with a specified root key identifier,
then:

 If the response contains an L2 key whose group key identifier matches the requested group
key identifier, return this L2 key to the caller.

 Otherwise, if the response contains an L2 key whose group key identifier is newer than the
requested group key but that has the same L0 and L1 indices, use this to derive the
requested group key, as specified in section 3.1.4.1.2, and return the result to the caller.

4. Otherwise, if the response contains an L1 key that has the same L0 index and the same or
greater L1 index as the requested group key, use this to derive the requested group key, as

specified in section 3.1.4.1.2, and return the result to the caller.

36 / 44

[MS-GKDI-Diff] - v20160714
Group Key Distribution Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

3.2.5 Timer Events

None.

3.2.6 Other Local Events

None.

37 / 44

[MS-GKDI-Diff] - v20160714
Group Key Distribution Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

4 Protocol Examples

To illustrate the operation of the Group Key Distribution Protocol, consider the example of a program
designed to send encrypted email to users within an Active Directory forest from a domain-joined
machine.

Given an email message and a set of recipients, the program would first construct a security
descriptor with one access control entry (ACE) per recipient that grants access mask 0x3, and a

final ACE that grants access mask 0x2 to the calling user. It would then use the Group Key
Distribution Protocol client functionality described in section 3.2.4.1 to request the latest key for this
security descriptor. To do this, it would make a request to the GetKey method described in section
3.1.4.1, with the pbTargetSD parameter set to the security descriptor constructed herein and the
pRootKeyID parameter set to NULL.

As a result of the GetKey method call, the protocol client will either return a public key or a seed key.

If a seed key is returned, this example program would execute a key derivation function (section
2.2.1) on this seed key to derive a key for a symmetric encryption algorithm such as the Advanced

Encryption Standard (AES) [FIPS197].

Next the example program would encrypt the email message by using the Cryptographic Message
Syntax (CMS) [RFC3852] with the public key or the above derived AES key, respectively. The domain
name, forest name, security descriptor, root key identifier, and group key identifier would be stored in
the CMS BLOB as a key identifier attribute. The encrypted email message would then be sent by using

standard methods.

The example program, running on behalf of the recipient, would then extract the domain name,
security descriptor, root key identifier, and group key identifier from the CMS BLOB, and would use
them to make a request for this group key, as specified in section 3.2.4. If the recipient is authorized,
the protocol client will return an L2 seed key. The program would then proceed as follows:

1. If the email message was encrypted with an AES key, use the seed key to derive the AES key by
executing a key derivation function, and decrypt the email message by using standard CMS

processing rules.

2. If the email message was encrypted with a public key, use the seed key to derive the group
private key by using the method described in section 3.1.4.1.2, and decrypt the email message by
using standard CMS processing rules [RFC3852].

The email message would then be displayed to the user.

38 / 44

[MS-GKDI-Diff] - v20160714
Group Key Distribution Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

5 Security

5.1 Security Considerations for Implementers

This protocol generates group keys from root keys stored in Active Directory, and distributes them on

the basis of authentication to an Active Directory domain. Therefore, security of this protocol depends
critically on the security of the Active Directory infrastructure. In particular, the protocol is not secure
against an attacker who obtains administrative privileges on an Active Directory DC, or who gains
access to the Active Directory database in some other way. Therefore, it is important that Active
Directory domain administrators are trusted, and that access to this protocol's root key objects be
restricted to these trusted administrators.

Also, since root keys are used to generate group keys for all security descriptors, it is very important
to ensure the cryptographic strength of these keys. Accordingly, root keys should onlyhave to be
generated only with a cryptographically strong random number generator, and new root keys should
be created periodically to limit the impact of root key compromise.

Client implementations need to restrict access to the client's group key cache. Moreover, an
implementation needs to ensure that a group key corresponding to a given security descriptor cannot
be read or modified by a user who would not normally be able to obtain that key. If the group key

cache is stored on disk, it is strongly recommended that it be stored in encrypted form.

Guidance on building strong cryptographic subsystems is available in [FIPS140]. An overview of the
Windows security architecture is available in [MS-WPO] section 9.

Any implementation of a protocol exposes code to inputs from attackers. It is strongly advised for
such code to be developed according to secure coding and development practices to avoid buffer
overflows, denial-of-service attacks, escalation of privilege, and disclosure of information. For more
information about these concepts, secure development best practices, and common errors, see

[HOWARD].

5.2 Index of Security Parameters

Security parameter Section

Authentication 1.7, 2.1

Use of RPC security 2.1, 3.1.4, 3.1.3, 3.2.4

Key derivation algorithm 3.1.4.1, 3.2.4

Secret agreement algorithm 3.1.4.1, 3.2.4

39 / 44

[MS-GKDI-Diff] - v20160714
Group Key Distribution Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

6 Appendix A: Full IDL

For ease of implementation, the full IDL is provided below, where "ms-dtyp.idl" refers to the IDL
found in [MS-DTYP] section 5. The syntax uses the IDL syntax extensions described in [MS-RPCE]
sections 2.2.4 and 3.1.1.5.1. For example, as noted in [MS-RPCE] section 2.2.4.9, a pointer_default
declaration is not required and pointer_default(unique) is assumed.

 import "ms-dtyp.idl";
 [uuid(b9785960-524f-11df-8b6d-83dcded72085)]
 [version(1.0)]
 [pointer_default(unique)]
 interface ISDKey {
 HRESULT GetKey(
 [in] handle_t hBinding,
 [in] ULONG cbTargetSD,
 [in] [size_is(cbTargetSD)] [ref] char * pbTargetSD,
 [in] [unique] GUID * pRootKeyID,
 [in] LONG L0KeyID,
 [in] LONG L1KeyID,
 [in] LONG L2KeyID,
 [out] unsigned long * pcbOut,
 [out] [size_is(, *pcbOut)] byte ** ppbOut);
 };

40 / 44

[MS-GKDI-Diff] - v20160714
Group Key Distribution Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

7 Appendix B: Product Behavior

The information in this specification is applicable to the following Microsoft products or supplemental
software. References to product versions include released service packs.

Note: Some of the information in this section is subject to change because it applies to a preliminary
product version, and thus may differ from the final version of the software when released. All behavior
notes that pertain to the preliminary product version contain specific references to it as an aid to the

reader.

 Windows 8 operating system

 Windows Server 2012 operating system

 Windows 8.1 operating system

 Windows Server 2012 R2 operating system

 Windows 10 operating system

 Windows Server 2016 Technical Preview operating system

Exceptions, if any, are noted below. If a service pack or Quick Fix Engineering (QFE) number appears
with the product version, behavior changed in that service pack or QFE. The new behavior also applies
to subsequent service packs of the product unless otherwise specified. If a product edition appears
with the product version, behavior is different in that product edition.

Unless otherwise specified, any statement of optional behavior in this specification that is prescribed
using the terms SHOULD or SHOULD NOT implies product behavior in accordance with the SHOULD or

SHOULD NOT prescription. Unless otherwise specified, the term MAY implies that the product does not
follow the prescription.

<1> Section 3.1.4.1.2: Windows implementations can choose to extend the protocol by supporting
additional values of this attribute. An implementation that chooses to extendextends the protocol in

such a way SHOULDwould typically choose its algorithm names in a manner consistent with [MSDN-
ALG].

<2> Section 3.1.4.1.2: Windows implementations can choose to extend the protocol by supporting

additional values of these attributes. An implementation that chooses to extendextends the protocol in
such a way SHOULDwould typically choose its algorithm names in a manner consistent with [MSDN-
ALG].

<3> Section 3.1.4.1.2: Windows implementations can choose to extend the protocol by supporting
additional values of these attributes. An implementation that chooses to extendextends the protocol in
such a way SHOULDwould typically choose its algorithm names in a manner consistent with [MSDN-

ALG].

41 / 44

[MS-GKDI-Diff] - v20160714
Group Key Distribution Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

8 Change Tracking

No table of changes is available. The document is either new or has had no changes since its last
release.

42 / 44

[MS-GKDI-Diff] - v20160714
Group Key Distribution Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

9 Index

A

Abstract data model
 client 32
 ISDKey 32
 server 23
 ISDKey 23
Applicability 12

C

Capability negotiation 12
Change tracking 41
Client
 abstract data model 32
 Client Side Processing method 33
 Computing the Desired Group Key method 35
 initialization 33

 ISDKey
 abstract data model 32
 Client Side Processing method 33
 Computing the Desired Group Key method 35
 initialization 33
 local events 36
 Retrieving a Group Key from a Server method 34
 timer events 36
 timers 32
 local events 36
 Retrieving a Group Key from a Server method 34
 timer events 36
 timers 32
Client Side Processing method 33
Common data types 14
Computing the Desired Group Key method 35

D

Data model - abstract
 client 32
 ISDKey 32
 server 23
 ISDKey 23
Data types
 common - overview 14
Directory service schema elements 21

E

Elements - directory service schema 21
Events
 local

 client
 ISDKey 36
 server
 ISDKey 32
 local - client 36
 local - server 32
 timer
 client
 ISDKey 36
 server
 ISDKey 32

43 / 44

[MS-GKDI-Diff] - v20160714
Group Key Distribution Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 timer - client 36
 timer - server 32
Examples
 overview 37

F

Fields - vendor extensible 12
Full IDL 39

G

GetKey (Opnum 0) method 25
Glossary 5

I

IDL 39
Implementer - security considerations 38
Index of security parameters 38
Informative references 10
Initialization
 client 33
 ISDKey 33
 server 24
 ISDKey 24
Introduction 5

L

Local events
 client 36
 ISDKey 36
 server 32
 ISDKey 32

M

Message processing

 server 25
 ISDKey 25
Messages
 common data types 14
 transport 14
Methods
 Client Side Processing 33
 Computing the Desired Group Key 35
 GetKey (Opnum 0) 25
 Retrieving a Group Key from a Server 34

N

Normative references 9

O

Overview (synopsis) 10

P

Parameters - security index 38
Preconditions 11
Prerequisites 11
Product behavior 40

44 / 44

[MS-GKDI-Diff] - v20160714
Group Key Distribution Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

R

References 9
 informative 10
 normative 9
Relationship to other protocols 11
Retrieving a Group Key from a Server method 34

S

Schema elements - directory service 21

Security
 implementer considerations 38
 parameter index 38
Sequencing rules
 ISDKey 25
 server 25
Server
 abstract data model 23
 GetKey (Opnum 0) method 25
 initialization 24
 ISDKey
 abstract data model 23
 GetKey (Opnum 0) method 25
 initialization 24
 local events 32
 message processing 25
 sequencing rules 25
 timer events 32
 timers 24
 local events 32
 message processing 25
 sequencing rules 25
 timer events 32
 timers 24
Standards assignments 12

T

Timer events
 client 36
 ISDKey 36
 server 32
 ISDKey 32
Timers
 client 32
 ISDKey 32
 server 24
 ISDKey 24
Tracking changes 41

Transport 14

V

Vendor extensible fields 12
Versioning 12

