

1 / 41

[MS-GKDI] — v20131025
 Group Key Distribution Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

[MS-GKDI]:
Group Key Distribution Protocol

Intellectual Property Rights Notice for Open Specifications Documentation

 Technical Documentation. Microsoft publishes Open Specifications documentation for

protocols, file formats, languages, standards as well as overviews of the interaction among each
of these technologies.

 Copyrights. This documentation is covered by Microsoft copyrights. Regardless of any other
terms that are contained in the terms of use for the Microsoft website that hosts this

documentation, you may make copies of it in order to develop implementations of the
technologies described in the Open Specifications and may distribute portions of it in your
implementations using these technologies or your documentation as necessary to properly

document the implementation. You may also distribute in your implementation, with or without
modification, any schema, IDL’s, or code samples that are included in the documentation. This
permission also applies to any documents that are referenced in the Open Specifications.

 No Trade Secrets. Microsoft does not claim any trade secret rights in this documentation.

 Patents. Microsoft has patents that may cover your implementations of the technologies
described in the Open Specifications. Neither this notice nor Microsoft's delivery of the
documentation grants any licenses under those or any other Microsoft patents. However, a given

Open Specification may be covered by Microsoft Open Specification Promise or the Community
Promise. If you would prefer a written license, or if the technologies described in the Open
Specifications are not covered by the Open Specifications Promise or Community Promise, as

applicable, patent licenses are available by contacting iplg@microsoft.com.

 Trademarks. The names of companies and products contained in this documentation may be
covered by trademarks or similar intellectual property rights. This notice does not grant any

licenses under those rights. For a list of Microsoft trademarks, visit
www.microsoft.com/trademarks.

 Fictitious Names. The example companies, organizations, products, domain names, email
addresses, logos, people, places, and events depicted in this documentation are fictitious. No
association with any real company, organization, product, domain name, email address, logo,
person, place, or event is intended or should be inferred.

Reservation of Rights. All other rights are reserved, and this notice does not grant any rights

other than specifically described above, whether by implication, estoppel, or otherwise.

Tools. The Open Specifications do not require the use of Microsoft programming tools or

programming environments in order for you to develop an implementation. If you have access to
Microsoft programming tools and environments you are free to take advantage of them. Certain
Open Specifications are intended for use in conjunction with publicly available standard
specifications and network programming art, and assumes that the reader either is familiar with the
aforementioned material or has immediate access to it.

http://go.microsoft.com/fwlink/?LinkId=214445
http://go.microsoft.com/fwlink/?LinkId=214448
http://go.microsoft.com/fwlink/?LinkId=214448
mailto:iplg@microsoft.com
http://www.microsoft.com/trademarks

2 / 41

[MS-GKDI] — v20131025
 Group Key Distribution Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

Revision Summary

Date

Revision

History

Revision

Class Comments

06/17/2011 0.1 New Received document draft from product team.

12/16/2011 0.1 No change No changes to the meaning, language, or formatting of

the technical content.

03/30/2012 2.0 Major Significantly changed the technical content.

07/12/2012 3.0 Major Significantly changed the technical content.

10/25/2012 3.0 No change No changes to the meaning, language, or formatting of

the technical content.

01/31/2013 3.1 Minor Clarified the meaning of the technical content.

08/08/2013 3.2 Major Significantly changed the technical content.

11/14/2013 3.2 No change No changes to the meaning, language, or formatting of

the technical content.

3 / 41

[MS-GKDI] — v20131025
 Group Key Distribution Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

Contents

1 Introduction ... 5
1.1 Glossary ... 5
1.2 References .. 7

1.2.1 Normative References ... 7
1.2.2 Informative References ... 8

1.3 Overview .. 8
1.4 Relationship to Other Protocols .. 9
1.5 Prerequisites/Preconditions ... 9
1.6 Applicability Statement ... 10
1.7 Versioning and Capability Negotiation ... 10
1.8 Vendor Extensible Fields ... 10
1.9 Standards Assignments .. 10

2 Messages.. 12
2.1 Transport .. 12
2.2 Common Data Types .. 12

2.2.1 KDF Parameters ... 13
2.2.2 FFC DH Parameters .. 13
2.2.3 Public Key Formats ... 14

2.2.3.1 FFC DH Key ... 14
2.2.3.2 ECDH Key .. 15

2.2.4 Group Key Envelope ... 15
2.3 Directory Service Schema Elements ... 18

3 Protocol Details .. 20
3.1 ISDKey Server Details .. 20

3.1.1 Abstract Data Model ... 20
3.1.2 Timers .. 21
3.1.3 Initialization .. 21
3.1.4 Message Processing Events and Sequencing Rules .. 22

3.1.4.1 GetKey (Opnum 0) ... 22
3.1.4.1.1 Creating a New Root Key ... 25
3.1.4.1.2 Generating a Group Key ... 26
3.1.4.1.3 Creating or Updating a Server Configuration Object 28

3.1.5 Timer Events ... 30
3.1.6 Other Local Events ... 30

3.2 ISDKey Client Details ... 30
3.2.1 Abstract Data Model ... 30
3.2.2 Timers .. 30
3.2.3 Initialization .. 31
3.2.4 Message Processing Events and Sequencing Rules .. 31

3.2.4.1 Client Side Processing ... 31
3.2.4.2 Retrieving a Group Key from a Server ... 32
3.2.4.3 Computing the Desired Group Key .. 33

3.2.5 Timer Events ... 34
3.2.6 Other Local Events ... 34

4 Protocol Examples .. 35

5 Security .. 36
5.1 Security Considerations for Implementers ... 36

4 / 41

[MS-GKDI] — v20131025
 Group Key Distribution Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

5.2 Index of Security Parameters .. 36

6 Appendix A: Full IDL ... 37

7 Appendix B: Product Behavior .. 38

8 Change Tracking... 39

9 Index ... 40

5 / 41

[MS-GKDI] — v20131025
 Group Key Distribution Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

1 Introduction

The Group Key Distribution Protocol is used by clients to obtain cryptographic keys that correspond
to arbitrary security descriptors that can be evaluated by an Active Directory domain
controller (DC). These keys can then be used by the client for various purposes, including
encrypting data such that it can only be decrypted by a desired set of security principals.

Familiarity with cryptography concepts such as asymmetric and symmetric cryptography is required
for a complete understanding of this specification. For more information about cryptography
concepts, see [CRYPTO].

Sections 1.8, 2, and 3 of this specification are normative and can contain the terms MAY, SHOULD,
MUST, MUST NOT, and SHOULD NOT as defined in RFC 2119. Sections 1.5 and 1.9 are also
normative but cannot contain those terms. All other sections and examples in this specification are
informative.

1.1 Glossary

The following terms are defined in [MS-GLOS]:

access control entry (ACE)
ACE
Active Directory
AD
authentication level

big-endian
binary large object (BLOB)
BLOB
common name (CN)
container
DC

distinguished name (DN)

DN
domain
domain controller (DC)
domain controllers (DCs)
Domain Name System (DNS)
dynamic endpoint
forest

globally unique identifier (GUID)
GUID
IDL
key derivation
little-endian
Network Data Representation (NDR)

object

private key
public key
RDN
read-only domain controller (RODC)
relative distinguished name (RDN)
remote procedure call (RPC)

replication

%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=89841
%5bMS-GLOS%5d.pdf

6 / 41

[MS-GKDI] — v20131025
 Group Key Distribution Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

RPC protocol sequence
security context

security descriptor
Unicode

Unicode string
UUID

The following terms are specific to this document:

group key: A group seed key or group public key associated with a specified security descriptor
in an Active Directory forest.

group key identifier: A triple that identifies the time period for which a group key was
intended. A fully-specified group key identifier needs all three elements of the triple set to

non-negative integer values. All group key identifiers returned by the server of this protocol
are fully specified. One or more elements of the triple can be set to -1 in a client request to
signify that any value of those elements is acceptable to the client. Within an Active Directory
forest, a group key is identified uniquely by the combination of its associated security

descriptor, its root key identifier, and its group key identifier.

group private key: A private key associated with a specified security descriptor in an Active

Directory forest. It corresponds to the group public key for the same security descriptor and is
derived from the group seed key for that security descriptor through a deterministic algorithm.

group public key: A public key associated with a specified security descriptor in an Active
Directory forest. It corresponds to the group private key for the same security descriptor and
is derived from the group seed key for that security descriptor through a deterministic
algorithm.

root key: A type of seed key, which can be used by Group Key Distribution Protocol servers to

derive group keys for any combination of security descriptor and group key identifier in an
Active Directory forest. Each root key is associated with a GUID, known as its root key
identifier.

root key identifier: A GUID that identifies a root key, for use by a Group Key Distribution
Protocol server in deriving group keys.

security principal: A unique entity, also referred to as a principal, that can be authenticated by
Active Directory. It frequently corresponds to a human user, but also can be a service that

offers a resource to other security principals. Other security principals might be a group, which
is a set of principals. Groups are supported by Active Directory.

seed key: A cryptographically random quantity that can be used to derive one or more
cryptographic keys for use with specific cryptographic algorithms.

server configuration: An Active Directory object that contains a set of configuration parameters
to be used when creating or updating a root key. A server configuration object is required in

Active Directory with the RDN described in section 1.9 for successful operation of the Group
Key Distribution Protocol.

MAY, SHOULD, MUST, SHOULD NOT, MUST NOT: These terms (in all caps) are used as
described in [RFC2119]. All statements of optional behavior use either MAY, SHOULD, or
SHOULD NOT.

http://go.microsoft.com/fwlink/?LinkId=90317

7 / 41

[MS-GKDI] — v20131025
 Group Key Distribution Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

1.2 References

References to Microsoft Open Specifications documentation do not include a publishing year because
links are to the latest version of the documents, which are updated frequently. References to other

documents include a publishing year when one is available.

A reference marked "(Archived)" means that the reference document was either retired and is no
longer being maintained or was replaced with a new document that provides current implementation
details. We archive our documents online [Windows Protocol].

1.2.1 Normative References

We conduct frequent surveys of the normative references to assure their continued availability. If

you have any issue with finding a normative reference, please contact dochelp@microsoft.com. We
will assist you in finding the relevant information. Please check the archive site,
http://msdn2.microsoft.com/en-us/library/E4BD6494-06AD-4aed-9823-445E921C9624, as an
additional source.

[C706] The Open Group, "DCE 1.1: Remote Procedure Call", C706, August 1997,
https://www2.opengroup.org/ogsys/catalog/c706

[FIPS180-3] FIPS PUBS, "Secure Hash Standard (SHS)", FIPS PUB 180-3, October 2008,
http://csrc.nist.gov/publications/fips/fips180-3/fips180-3_final.pdf

[FIPS186] FIPS PUBS, "Digital Signature Standard (DSS)", FIPS PUB 186-3, June 2009,
http://csrc.nist.gov/publications/fips/fips186-3/fips_186-3.pdf

[FIPS198-1] FIPS PUBS, "The Keyed-Hash Message Authentication Code (HMAC)", FIPS PUB 198-1,
March 2002, http://csrc.nist.gov/publications/fips/fips198-1/FIPS-198-1_final.pdf

[MS-ADA2] Microsoft Corporation, "Active Directory Schema Attributes M".

[MS-ADSC] Microsoft Corporation, "Active Directory Schema Classes".

[MS-ADTS] Microsoft Corporation, "Active Directory Technical Specification".

[MS-DTYP] Microsoft Corporation, "Windows Data Types".

[MS-ERREF] Microsoft Corporation, "Windows Error Codes".

[MS-NRPC] Microsoft Corporation, "Netlogon Remote Protocol".

[MS-RPCE] Microsoft Corporation, "Remote Procedure Call Protocol Extensions".

[MS-SPNG] Microsoft Corporation, "Simple and Protected GSS-API Negotiation Mechanism (SPNEGO)

Extension".

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC
2119, March 1997, http://www.rfc-editor.org/rfc/rfc2119.txt

[RFC2743] Linn, J., "Generic Security Service Application Program Interface Version 2, Update 1",

RFC 2743, January 2000, http://www.ietf.org/rfc/rfc2743.txt

[RFC4122] Leach, P., Mealling, M., and Salz, R., "A Universally Unique Identifier (UUID) URN

Namespace", RFC 4122, July 2005, http://www.ietf.org/rfc/rfc4122.txt

http://msdn.microsoft.com/en-us/library/jj633107.aspx
mailto:dochelp@microsoft.com
http://msdn2.microsoft.com/en-us/library/E4BD6494-06AD-4aed-9823-445E921C9624
http://go.microsoft.com/fwlink/?LinkId=89824
http://go.microsoft.com/fwlink/?LinkId=180409
http://go.microsoft.com/fwlink/?LinkId=89869
http://go.microsoft.com/fwlink/?LinkId=186032
%5bMS-ADA2%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADTS%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-ERREF%5d.pdf
%5bMS-NRPC%5d.pdf
%5bMS-RPCE%5d.pdf
%5bMS-SPNG%5d.pdf
%5bMS-SPNG%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90317
http://go.microsoft.com/fwlink/?LinkId=90378
http://go.microsoft.com/fwlink/?LinkId=90460

8 / 41

[MS-GKDI] — v20131025
 Group Key Distribution Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

[RFC4178] Zhu, L., Leach, P., Jaganathan, K., and Ingersoll, W., "The Simple and Protected Generic
Security Service Application Program Interface (GSS-API) Negotiation Mechanism", RFC 4178,

October 2005, http://www.ietf.org/rfc/rfc4178.txt

[RFC5114] Lepinski, M., and Kent, S., "Additional Diffie-Hellman Groups for Use with IETF

Standards", RFC5114, January 2008, http://www.ietf.org/rfc/rfc5114.txt

[SP800-108] National Institute of Standards and Technology. "Special Publication 800-108,
Recommendation for Key Derivation Using Pseudorandom Functions", October 2009,
http://csrc.nist.gov/publications/nistpubs/800-108/sp800-108.pdf

[SP800-56A] Barker, E., Johnson, D., and Smid, M., "Recommendation for Pair-Wise Key
Establishment Schemes Using Discrete Logarithm Cryptography", March 2006,
http://csrc.nist.gov/groups/ST/toolkit/documents/SP800-56Arev1_3-8-07.pdf

1.2.2 Informative References

[CRYPTO] Menezes, A., Vanstone, S., and Oorschot, P., "Handbook of Applied Cryptography", 1997,

http://www.cacr.math.uwaterloo.ca/hac/

[FIPS140] FIPS PUBS, "Security Requirements for Cryptographic Modules", FIPS PUB 140, December
2002, http://csrc.nist.gov/publications/fips/fips140-2/fips1402.pdf

[FIPS197] FIPS PUBS, "Advanced Encryption Standard (AES)", FIPS PUB 197, November 2001,
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf

[MSDN-ALG] Microsoft Corporation, "CNG Algorithm Identifiers", http://msdn.microsoft.com/en-
us/library/aa375534(VS.85).aspx

[MS-GLOS] Microsoft Corporation, "Windows Protocols Master Glossary".

[MS-WPO] Microsoft Corporation, "Windows Protocols Overview".

[RFC3852] Housley, R., "Cryptographic Message Syntax (CMS)", RFC 3852, July 2004,

http://www.ietf.org/rfc/rfc3852.txt

1.3 Overview

The Group Key Distribution Protocol is used to obtain cryptographic keys corresponding to arbitrary
security descriptors that can be evaluated by an Active Directory DC. It can be used to obtain
symmetric as well as asymmetric keys for each of such security descriptors. One possible use of this
protocol is to obtain shared keys for a set of security principals that are defined by the client in the

form of a security descriptor. Based on an evaluation of the client's security context and the
security descriptor, the server may choose to return an error, a public key, or a seed key that can
be used to derive both the symmetric and asymmetric keys. Whenever the server returns a key of
any type, it also returns metadata that includes a unique identifier for the key.

The Group Key Distribution Protocol utilizes a single remote procedure call (RPC) method that is
described in section 3.1.4.1. Conceptually, this method can be used by a client for two types of

requests:

1. Requesting the most recent key for a security descriptor: after evaluating the client's security
context against the specified security descriptor, the server will return a seed key, a public key,
or an error.

http://go.microsoft.com/fwlink/?LinkId=90461
http://go.microsoft.com/fwlink/?LinkId=221923
http://go.microsoft.com/fwlink/?LinkId=186039
http://go.microsoft.com/fwlink/?LinkId=90525
http://go.microsoft.com/fwlink/?LinkId=89841
http://go.microsoft.com/fwlink/?LinkId=89866
http://go.microsoft.com/fwlink/?LinkId=89870
http://go.microsoft.com/fwlink/?LinkId=187044
http://go.microsoft.com/fwlink/?LinkId=187044
%5bMS-GLOS%5d.pdf
%5bMS-WPO%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90445
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf

9 / 41

[MS-GKDI] — v20131025
 Group Key Distribution Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

2. Requesting a specific key for a security descriptor, or the key used for a set of security principals
at a specific time in the past: after evaluating the client's security context against the specified

security descriptor, the server will return either a seed key or an error.

Active Directory domain controllers with a DC functional level of DS_BEHAVIOR_WIN2012 or

higher can serve as Group Key Distribution Protocol servers. Clients can locate Group Key
Distribution Protocol servers by using the DC locator functionality, as specified in section 3.2.4.2.
These servers store a small amount of state in Active Directory (sections 2.3 and 3.1.1), which
consists of configuration information and one or more root key objects. Other than this, Group Key
Distribution Protocol servers retain no state across RPC calls.

1.4 Relationship to Other Protocols

The Group Key Distribution Protocol is built on the RPC interface, as specified in [C706] and [MS-
RPCE], with the TCP/IP protocol sequence ncacn_ip_tcp as its transport.

The Group Key Distribution Protocol uses the Simple and Protected GSS-API Negotiation Mechanism
(SPNEGO) Extension [MS-SPNG] [RFC4178] to negotiate an authentication mechanism. It uses the

authentication level and impersonation level security extensions described in [MS-RPCE] sections
2.2.1.1.8 and 2.2.1.1.9 to pass the client's security context to the server and to prevent exposure of

secrets to network eavesdroppers.

The Group Key Distribution Protocol server runs on a domain controller (DC) in an Active Directory
domain, as specified in section 1.5. Clients use the DC Locator functionality described in [MS-NRPC]
section 3.5.4.3.1 to locate a DC.

1.5 Prerequisites/Preconditions

The Group Key Distribution Protocol is an RPC interface. As a result, it has the prerequisites

specified in [MS-RPCE] that are common to RPC interfaces. In particular, the server has to be
started and fully initialized before the protocol can start.

The Group Key Distribution Protocol is used between clients and servers. The Group Key Distribution

Protocol server runs on a DC with a DC functional level of DS_BEHAVIOR_WIN2012 or higher in an
Active Directory domain. The client requires the ability to locate such a DC by using the DC Locator
functionality specified in [MS-NRPC] section 3.5.4.3.1.

To use the Group Key Distribution Protocol, the client first establishes an authenticated RPC

connection to the server's dynamic endpoint. The client and server require appropriate credentials
to set up such a session and to establish a mutually authenticated RPC connection over the session.

The Group Key Distribution Protocol requires the use of secure RPC. It is necessary for both client
and server to support mutual authentication through SPNEGO [MS-SPNG] [RFC4178] and to also
support security packages that implement impersonation support, along with packet privacy and
integrity.

The server needs to maintain some state in Active Directory, which consists of a server
configuration object and a set of root key objects, as specified in section 3.1.1. This state has to
be accessible from the location specified in section 1.9 in the form of the object classes referenced

in section 2.3. At a minimum, a single valid server configuration object with a version number is
required to be present on the Active Directory DC. A procedure for creating or updating a server
configuration object is specified in section 3.1.4.1.3. Any server configuration that is created or
updated in this manner will be used by all servers in the Active Directory forest when creating

future root keys, as specified in section 3.1.4.1.1, but will not affect any existing root keys. This
state is replicated between domain controllers by using server-to-server replication mechanisms,
as specified in [MS-ADTS] section 6.2.

%5bMS-GLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=89824
%5bMS-RPCE%5d.pdf
%5bMS-RPCE%5d.pdf
%5bMS-SPNG%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90461
%5bMS-GLOS%5d.pdf
%5bMS-RPCE%5d.pdf
%5bMS-RPCE%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-NRPC%5d.pdf
%5bMS-RPCE%5d.pdf
%5bMS-NRPC%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-SPNG%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90461
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-ADTS%5d.pdf

10 / 41

[MS-GKDI] — v20131025
 Group Key Distribution Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

The server configuration object also needs protection from unauthorized modification, and the root
key objects require protection from unauthorized disclosure or modification. The server also requires

a method of generating cryptographically strong random numbers for use as root keys in this
protocol.

1.6 Applicability Statement

The Group Key Distribution Protocol is appropriate for use when it is desirable to associate
cryptographic keys with security descriptors in an Active Directory domain. It is only appropriate for
a client to use this protocol when it has valid authentication credentials in a domain that contains at
least one DC with a DC functional level of DS_BEHAVIOR_WIN2012 or higher, as specified in section
1.5. Also, this protocol is not appropriate when protection against untrusted domain administrators

is desired, as specified in section 5.1.

1.7 Versioning and Capability Negotiation

This specification covers versioning issues in the following areas:

Supported Transports: This protocol uses the RPC protocol sequence ncacn_ip_tcp, as
specified in section 2.1.

Protocol Versions: This protocol has only one interface version, which is version 1.0, as specified
in section 2.1.

Security and Authentication Methods: [MS-RPCE] uses Generic Security Services (GSS)
[RFC2743] to negotiate the authentication mechanism with the protocol, as specified in [MS-SPNG]
and [RFC4178]. This negotiation is described in section 3.2.4.2 .

Capability Negotiation: This protocol does not perform any explicit capability negotiation between
client and server. The server configuration is stored in Active Directory and is versioned there. The

processing rules for this versioning scheme are described in section 3.1.4.1. Configuration
information is transferred from server to client unconditionally, as specified in section 3.1.4.1.

Currently, this protocol specifies a single version of the server configuration object (section 3.1.4.1),
and a fixed set of configuration choices for cryptographic algorithms. When any other cryptographic
algorithms are configured in the server configuration object, both server and client behavior is
undefined.

1.8 Vendor Extensible Fields

No vendor-extensible fields are used by this protocol.

This protocol uses HRESULT values as defined in [MS-ERREF] section 2.1. Vendors can define their
own HRESULT values, but they MUST set the C bit (0x20000000) for each vendor-defined value, to
indicate that the value is a customer code.

1.9 Standards Assignments

The following parameters are private Microsoft assignments.

Parameter Value Reference

UUID for ISDKey b9785960-524f-11df-8b6d-83dcded72085 [C706]

%5bMS-GLOS%5d.pdf
%5bMS-RPCE%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90378
%5bMS-SPNG%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90461
%5bMS-ERREF%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=89824

11 / 41

[MS-GKDI] — v20131025
 Group Key Distribution Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

The following table provides the relative distinguished name (RDN) of the server configuration
object and the root key container in Active Directory.

Parameter Value Reference

The RDN of the server

configuration object,

relative to forest root.

CN=SID Key Server Configuration,CN=Server

Configuration,CN=Sid Key

Service,CN=Services,CN=Configuration

Section

3.1.1

The RDN of the root key

container, relative to

forest root.

CN=Master Root Keys,CN=Sid Key

Service,CN=Services,CN=Configuration

Section

3.1.1

%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf

12 / 41

[MS-GKDI] — v20131025
 Group Key Distribution Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

2 Messages

2.1 Transport

The client and server MUST communicate over RPC by using the TCP/IP protocol sequence
ncacn_ip_tcp.

This protocol uses RPC dynamic endpoints as defined in [C706], part 4.

The server interface MUST be identified by universal unique identifier (UUID) [b9785960-524f-11df-
8b6d-83dcded72085], version 1.0.

The server MUST use the RPC security extensions specified in [MS-RPCE]. It MUST support the use
of SPNEGO [MS-SPNG] [RFC4178] to negotiate security providers. The server MUST also register
one or more security packages that can be negotiated by using this protocol.

2.2 Common Data Types

This protocol MUST indicate to the RPC runtime that it supports both the Network Data
Representation (NDR) and NDR64 transfer syntaxes and provides a negotiation mechanism for

determining which transfer syntax will be used, as specified in [MS-RPCE] section 3.

In addition to RPC base types and definitions specified in [C706] and [MS-RPCE], additional data
types are defined in this section.

The following data types are specified in [MS-DTYP]:

Data type

name Section Description

FILETIME 2.3.3 A structure of 64-bit value that represents the number of 100-nanosecond

intervals that have elapsed since January 1, 1601, Coordinated Universal Time

(UTC).

GUID 2.3.4.2 A packet representation of a globally unique identifier (GUID).

HRESULT 2.2.18 A 32-bit value that is used to describe an error or warning and contains the

following fields:

A 1-bit code that indicates severity, where 0 represents success and 1

represents failure.

A 4-bit reserved value.

An 11-bit code, also known as a facility code, that indicates responsibility

for the error or warning.

-bit code that describes the error or warning.

LONG 2.2.27 A 32-bit signed integer, in twos-complement format (range: –2147483648

through 2147483647 decimal). The first bit (Most Significant Bit (MSB)) is the

signing bit.

ULONG 2.2.51 A 32-bit unsigned integer (range: 0 through 4294967295 decimal). Because a

ULONG is unsigned, its first bit (most significant bit (MSB)) is not reserved for

signing.

http://go.microsoft.com/fwlink/?LinkId=89824
%5bMS-RPCE%5d.pdf
%5bMS-SPNG%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90461
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-RPCE%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=89824
%5bMS-DTYP%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-DTYP%5d.pdf

13 / 41

[MS-GKDI] — v20131025
 Group Key Distribution Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

2.2.1 KDF Parameters

The following specifies the format and field descriptions for the key derivation function (KDF)
parameters structure.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

0x00 0x00 0x00 0x00

0x01 0x00 0x00 0x00

Length of hash name

0x00 0x00 0x00 0x00

Hash algorithm name (variable)

Length of hash name (4 bytes): A 32-bit unsigned integer. This field MUST be the length, in
bytes, of the Hash algorithm name field. This field is encoded using little-endian format.

Hash algorithm name (variable): A null-terminated Unicode string containing the name of the

hash algorithm to be used with the default KDF [SP800-108]. Valid values for this field are as
follows.

Value Meaning

L"SHA256" The SHA-256 algorithm, as specified in [FIPS180-3].

L"SHA384" The SHA-384 algorithm, as specified in [FIPS180-3].

L"SHA512" The SHA-512 algorithm, as specified in [FIPS180-3].

L"SHA1" The SHA-1 algorithm, as specified in [FIPS180-3].

2.2.2 FFC DH Parameters

This structure specifies field parameters for use in deriving finite field cryptography (FFC) Diffie-
Hellman (DH) ([SP800-56A] section 5.7.1) keys, as specified in section 3.1.4.1.2.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

Length

0x44 0x48 0x50 0x4D

Key length

Field order (variable)

%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=186039
http://go.microsoft.com/fwlink/?LinkId=180409
http://go.microsoft.com/fwlink/?LinkId=180409
http://go.microsoft.com/fwlink/?LinkId=180409
http://go.microsoft.com/fwlink/?LinkId=180409
http://go.microsoft.com/fwlink/?LinkId=90525

14 / 41

[MS-GKDI] — v20131025
 Group Key Distribution Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

Generator (variable)

Length (4 bytes): A 32-bit unsigned integer. This field MUST be the length, in bytes, of the entire
structure. This field is encoded using little-endian format.

Key length (4 bytes): A 32-bit unsigned integer. This field MUST be the length, in bytes, of the
public key. This field is encoded using little-endian format.

Field order (variable): This is the large prime field order, and is a domain parameter for the FFC
DH algorithm ([SP800-56A] section 5.7.1). This field parameter is referred to as p in [SP800-56A]

section 3.2. It MUST be encoded in big-endian format. The length of this field, in bytes, MUST be
equal to the value of the Key length field.

Generator (variable): The generator of the subgroup, a domain parameter for the FFC DH
algorithm ([SP800-56A] section 5.7.1). This field parameter is referred to as g in [SP800-56A]
section 3.2. It MUST be encoded in big-endian format. The length of this field, in bytes, MUST be
equal to the value of the Key length field.

2.2.3 Public Key Formats

The formats in this section are used by the Group Key Distribution Protocol server to return public
keys to the client, as specified in section 3.1.4.1.

2.2.3.1 FFC DH Key

The following specifies the format and field descriptions for the FFC DH Key structure.

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

0x44 0x48 0x50 0x42

Key length

Field order (variable)

Generator (variable)

Public key (variable)

Key length (4 bytes): A 32-bit unsigned integer. The value in this field MUST be equal to the
length, in bytes, of the Public key field. This parameter is encoded using little-endian format.

Field order (variable): This is the large prime field order, and is a domain parameter for the FFC
DH algorithm ([SP800-56A] section 5.7.1). This field parameter is referred to as p in [SP800-56A]

section 3.2. It MUST be encoded in big-endian format. The length of this field, in bytes, MUST be
equal to the value in the Key length field.

Generator (variable): The generator of the subgroup, a domain parameter for the FFC DH
algorithm ([SP800-56A] section 5.7.1). This field parameter is referred to as g in [SP800-56A]
section 3.2. It MUST be encoded in big-endian format. The length of this field, in bytes, MUST be
equal to the value in the Key length field.

http://go.microsoft.com/fwlink/?LinkId=90525
http://go.microsoft.com/fwlink/?LinkId=90525
%5bMS-GLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90525
http://go.microsoft.com/fwlink/?LinkId=90525
http://go.microsoft.com/fwlink/?LinkId=90525
http://go.microsoft.com/fwlink/?LinkId=90525
http://go.microsoft.com/fwlink/?LinkId=90525
http://go.microsoft.com/fwlink/?LinkId=90525

15 / 41

[MS-GKDI] — v20131025
 Group Key Distribution Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

Public key (variable): The public key for the FFC DH algorithm ([SP800-56A] section 5.7.1). This
field parameter is referred to as y in [SP800-56A] section 3.2. It MUST be encoded in big-endian

format. The length of this field, in bytes, MUST be equal to the value of the Key length field.

2.2.3.2 ECDH Key

The following specifies the format and field descriptions for the Elliptic Curve Diffie-Hellman
(ECDH) Key structure [RFC5114].

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

Magic

Key length

X (variable)

Y (variable)

Magic (4 bytes): A 32-bit unsigned integer encoded in little-endian format, representing the ECDH
field parameters. The following values are valid.

Value Meaning

0x314B4345 The values in the X and Y fields represent an ECDH [RFC5114] key over the elliptic curve

P-256 specified in Appendix D.1.2.3 of [FIPS186].

0x334B4345 The values in the X and Y fields represent an ECDH [RFC5114] key over the elliptic curve

P-384 specified in Appendix D.1.2.4 of [FIPS186].

0x354B4345 The values in the X and Y fields represent an ECDH [RFC5114] key over the elliptic curve

P-521 specified in Appendix D.1.2.5 of [FIPS186].

Key length (4 bytes): A 32-bit unsigned integer. This field MUST be the length, in bytes, of the
public key. This field is encoded using little-endian format.

X (variable): The x coordinate of the point P that represents the ECDH [RFC5114] public key. This

parameter is referred to as x in [SP800-56A] section 3.2. It MUST be encoded in big-endian format.
The length of this field, in bytes, MUST be equal to the value in the Key length field.

Y (variable): The y coordinate of the point P that represents the ECDH public key. This parameter
is referred to as y in [SP800-56A] section 3.2. It MUST be encoded in big-endian format. The length
of this field, in bytes, MUST be equal to the value in the Key length field.

2.2.4 Group Key Envelope

The following specifies the format and field descriptions for the Group Key Envelope structure.

http://go.microsoft.com/fwlink/?LinkId=90525
http://go.microsoft.com/fwlink/?LinkId=90525
http://go.microsoft.com/fwlink/?LinkId=221923
http://go.microsoft.com/fwlink/?LinkId=221923
http://go.microsoft.com/fwlink/?LinkId=89869
http://go.microsoft.com/fwlink/?LinkId=221923
http://go.microsoft.com/fwlink/?LinkId=89869
http://go.microsoft.com/fwlink/?LinkId=221923
http://go.microsoft.com/fwlink/?LinkId=89869
http://go.microsoft.com/fwlink/?LinkId=221923
http://go.microsoft.com/fwlink/?LinkId=90525
http://go.microsoft.com/fwlink/?LinkId=90525

16 / 41

[MS-GKDI] — v20131025
 Group Key Distribution Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

0

1

2

3

4

5

6

7

8

9

1

0

1

2

3

4

5

6

7

8

9

2

0

1

2

3

4

5

6

7

8

9

3

0

1

Version

0x4B 0x44 0x53 0x4B

isPublicKey

L0 index

L1 index

L2 index

Root key identifier

…

…

…

cbKDFAlgorithm

cbKDFParameters

cbSecretAgreementAlgorithm

cbSecretAgreementParameters

Private Key Length

Public Key Length

cbL1Key

cbL2Key

cbDomainName

cbForestName

KDF Algorithm (variable)

KDF Parameters (variable, optional)

17 / 41

[MS-GKDI] — v20131025
 Group Key Distribution Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

Secret Agreement Algorithm (variable)

Secret Agreement Parameters (variable, optional)

Domain Name (variable)

Forest Name (variable)

L1 Key (64 bytes, optional)

L2 Key (variable, optional)

Version (4 bytes): A 32-bit unsigned integer. This field MUST be set to the version of the root key
ADM element. This field is encoded using little-endian format.

isPublicKey (4 bytes): A 32-bit unsigned integer. This field MUST be set to 1 when this structure

is being used to transport a public key, and otherwise set to 0. This field is encoded using little-
endian format.

L0 index (4 bytes): A 32-bit unsigned integer. This field MUST be the L0 index of the key being
enveloped. This field is encoded using little-endian format.

L1 index (4 bytes): A 32-bit unsigned integer. This field MUST be the L1 index of the key being
enveloped, and therefore MUST be a number between 0 and 31, inclusive. This field is encoded

using little-endian format.

L2 index (4 bytes): A 32-bit unsigned integer. This field MUST be the L2 index of the key being
enveloped, and therefore MUST be a number between 0 and 31, inclusive. This field is encoded
using little-endian format.

Root key identifier (16 bytes): A GUID containing the root key identifier of the key being

enveloped.

cbKDFAlgorithm (4 bytes): A 32-bit unsigned integer. This field MUST be the length, in bytes, of

the KDF Algorithm field. This field is encoded using little-endian format.

cbKDFParameters (4 bytes): A 32-bit unsigned integer. This field MUST be the length, in bytes,
of the KDF Parameters field. This field is encoded using little-endian format.

cbSecretAgreementAlgorithm (4 bytes): A 32-bit unsigned integer. This field MUST be the
length, in bytes, of the Secret Agreement Algorithm field. This field is encoded using little-endian
format.

cbSecretAgreementParameters (4 bytes): A 32-bit unsigned integer. This field MUST be the

length, in bytes, of the Secret Agreement Parameters field. This field is encoded using little-
endian format.

Private key length (4 bytes): A 32-bit unsigned integer. This field MUST be the private key
length associated with the root key, whose identifier is in the Root key identifier field. This field is
encoded using little-endian format.

Public key length (4 bytes): A 32-bit unsigned integer. This field MUST be the public key length

associated with the root key, whose identifier is in the Root key identifier field. This field is
encoded using little-endian format.

%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf

18 / 41

[MS-GKDI] — v20131025
 Group Key Distribution Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

cbL1Key (4 bytes): A 32-bit unsigned integer. This field MUST be the length, in bytes, of the L1
key field. This field is encoded using little-endian format. This field MUST be set to zero if the

isPublicKey field is set to 1, or if the L1 index field is set to zero and the value in the L2 index
field is not equal to 31.

cbL2Key (4 bytes): A 32-bit unsigned integer. This field MUST be the length, in bytes, of the L2
key field. This field is encoded using little-endian format. This field MUST be zero if the value in the
L2 index field is equal to 31.

cbDomainName (4 bytes): A 32-bit unsigned integer. This field MUST be the length, in bytes, of
the Domain name field. This field is encoded using little-endian format.

cbForestName (4 bytes): A 32-bit unsigned integer. This field MUST be the length, in bytes, of
the Forest name field. This field is encoded using little-endian format.

KDF Algorithm (variable): A null-terminated Unicode string. This field MUST be the ADM element
KDF algorithm name associated with the ADM element root key, whose identifier is in the Root
key identifier field.

KDF Parameters (variable, optional): This field MUST contain the KDF parameters associated
with the ADM element root key, whose identifier is in the Root key identifier field, in the format
specified in section 2.2.1. If the cbKDFParameters field is set to zero, this field is absent.

Secret Agreement Algorithm (variable): A null-terminated Unicode string. This field MUST be
the ADM element Secret agreement algorithm name associated with the ADM element root key,
whose identifier is in the Root key identifier field.

Secret Agreement Parameters (variable, optional): This field MUST contain the ADM element
Secret agreement algorithm associated with the ADM element root key, whose identifier is in
the Root key identifier field, in the format specified in section 2.2.2. If the
cbSecretAgreementParameters field is set to zero, this field is absent.

Domain Name (variable): A null-terminated Unicode string. This field MUST be the domain name
of the server in Domain Name System (DNS) format.

Forest Name (variable): A null-terminated Unicode string. This field MUST be the forest name of
the server in Domain Name System (DNS) format.

L1 key (64 bytes, optional): An L1 seed key ADM element in binary form. If the value in the
cbL1Key field is zero, this field is absent. Otherwise, if the value in the L2 index field is equal to
31, this contains the L1 key with group key identifier (L0 index, L1 index, -1). In all other

cases, this field contains the L1 key with group key identifier (L0 index, L1 index - 1, -1). If this
field is present, its length MUST be equal to 64 bytes.

L2 key (variable, optional): The L2 seed key ADM element or the group public key ADM
element with group key identifier (L0 index, L1 index, L2 index) in binary form. If the value in the
cbL2Key field is zero, this field is absent. If this field is present and the isPublicKey field is set to
1, then the length, in bytes, of this field MUST be equal to the value of the Public Key Length field.

If this field is present and the isPublicKey field is set to 0, the length of this field MUST be equal to
64 bytes.

2.3 Directory Service Schema Elements

The Group Key Distribution Protocol accesses the directory service schema classes and attributes
listed in the following table.

%5bMS-GLOS%5d.pdf

19 / 41

[MS-GKDI] — v20131025
 Group Key Distribution Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

For the syntactic specifications of the following <Class> or <Class><Attribute> pairs, refer to Active
Directory Domain Services (AD/DS) ([MS-ADA2] sections 2.489 through 2.499 and [MS-ADSC]

sections 2.153 and 2.154).

Class Attributes

msKds-ProvServerConfiguration msKds-Version

msKds-KDF-AlgorithmID

msKds-KDF-Param

msKds-SecretAgreement-AlgorithmID

msKds-SecretAgreement-Param

msKds-PublicKey-Length

msKds-PrivateKey-Length

msKds-ProvRootKey common name

msKds-ProvServerConfiguration class attributes

msKds-DomainID

msKds-CreateTime

msKds-UseStartTime

msKds-RootKeyData

%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADA2%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf

20 / 41

[MS-GKDI] — v20131025
 Group Key Distribution Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

3 Protocol Details

3.1 ISDKey Server Details

3.1.1 Abstract Data Model

This section describes a conceptual model of possible data organization that an implementation
maintains to participate in this protocol. The described organization is provided to facilitate the
explanation of how the protocol behaves. This document does not mandate that implementations

adhere to this model as long as their external behavior is consistent with that described in this
document.

The server abstract data model (ADM) is Active Directory-based only and does not require any local
variables to store state for this protocol. The server ADM consists of a Server Configuration object
and root key objects along with their associated parameters and attributes, respectively, as
specified below.

Server Configuration (Public): The server stores a set of configuration parameters for use when

creating a new root key, as specified in section 3.1.4.1.1. These parameters are held in persisted
storage in Active Directory where they survive system restarts. They are stored in an object of the
msKds-ProvServerConfiguration class at the location specified in section 1.9, which is the RDN of
the Server Configuration object relative to the forest root. The parameters are replicated to all
servers in the Active Directory forest by Active Directory replication mechanisms.

Note The Active Directory schema for the Server Configuration object is specified in [MS-ADSC]
sections 2.153 and 2.154.

The configuration consists of the following parameters:

Configuration information version: A version number associated with the server configuration
format that is stored in the msKds-Version attribute of the Server Configuration object.

KDF algorithm: An identifier indicating the key derivation function used to derive group keys

from a root key object data element. It is stored in the msKds-KDF-AlgorithmID attribute of
the Server Configuration object.

KDF algorithm parameters: Additional parameters for the KDF algorithm data element. They

are stored in the msKds-KDF-Param attribute of the Server Configuration object.

Secret agreement algorithm: An identifier indicating the secret agreement algorithm to be

used with the group public keys. It is stored in the msKds-SecretAgreement-AlgorithmID
attribute of the Server Configuration object.

Secret agreement algorithm parameters: Additional parameters for the secret agreement

algorithm data element. They are stored in the msKds-SecretAgreement-Param attribute of
the Server Configuration object.

Length of secret agreement public keys: The public key length of the secret agreement

algorithm data element. It is stored in the msKds-PublicKey-Length attribute of the Server
Configuration object.

Length of secret agreement private keys: The private key length of the secret agreement

algorithm data element. It is stored in the msKds-PrivateKey-Length attribute of the Server
Configuration object.

%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADSC%5d.pdf

21 / 41

[MS-GKDI] — v20131025
 Group Key Distribution Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

Root keys (Public): The server holds zero or more root key objects in persisted storage in Active
Directory, where these objects survive system restarts. These root key data elements are stored as

objects of the msKds-ProvRootKey class inside the root key container, as specified in section 1.9.
They are replicated to all the servers in the Active Directory forest by Active Directory replication

mechanisms.

Each root key data element contains the following attributes:

Root key identifier: A unique identifier associated with this root key. This identifier is stored in
the Common-Name attribute of the root key object data element in Active Directory.

Root key configuration: The server configuration that was in force when this root key object was
created, and which will apply to this root key throughout its life cycle. The configuration is stored in
the following attributes of this root key data element in Active Directory:

msKds-Version

msKds-KDF-AlgorithmID

msKds-KDF-Param

msKds-SecretAgreement-AlgorithmID

msKds-SecretAgreement-Param

msKds-PublicKey-Length

msKds-PrivateKey-Length

Root key domain: The distinguished name (DN) of the domain in which this root key object
was generated. It is stored in the msKds-DomainID attribute of this root key data element.

Root key creation time: The time at which this root key object was created. It is stored in the
msKds-CreateTime attribute of this root key data element.

Root key validity start time: The time after which this root key object can be used. It is stored in
the msKds-UseStartTime attribute of this root key data element.

Root key data: The actual random bits that will be used as this root key. It is stored in the
msKds-RootKeyData attribute of this root key data element.

Note that the abstract interface notation (Public) for the Server Configuration and Root key

objects indicates that these ADM elements can be directly accessed from outside this protocol.
Specifically, an authorized administrator can access these data elements directly by querying Active
Directory at the RDN locations specified in section 1.9.

3.1.2 Timers

None.

3.1.3 Initialization

The server MUST register a dynamic endpoint with the RPC runtime. It MUST indicate to the RPC
runtime that it is to negotiate security contexts using the SPNEGO protocol [MS-SPNG], and MUST
request the RPC runtime to reject any unauthenticated connections. The server MUST also instruct
the RPC runtime to reject any connections with an authentication level less than
RPC_C_AUTHN_LEVEL_PKT_PRIVACY.

%5bMS-GLOS%5d.pdf
%5bMS-SPNG%5d.pdf

22 / 41

[MS-GKDI] — v20131025
 Group Key Distribution Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

A server in the Active Directory forest MUST initialize its Server Configuration and root key
objects from the corresponding values persisted in the Active Directory database on the DC. It

MUST also implement a means of monitoring this state for changes made through other protocols or
through Active Directory server-to-server replication mechanisms.

3.1.4 Message Processing Events and Sequencing Rules

This protocol MUST indicate to the RPC runtime that it is to perform a strict NDR data consistency
check at target level 6.0, as specified in [MS-RPCE] section 3.

This protocol MUST indicate to the RPC runtime that it is to reject a NULL unique or full pointer with
nonzero conformant value, as specified in [MS-RPCE] section 3.

This protocol MUST indicate to the RPC runtime via the strict_context_handle attribute ([MS-RPCE]

section 3.1.1.5.3.2.2.2), that it is to reject the use of context handles created by methods of an RPC
interface that are different than the method specified herein.

The ISDKey interface for the Group Key Distribution Protocol includes the following method:

Method Description

GetKey The following is the only opnum method defined by this protocol.

Opnum: 0

3.1.4.1 GetKey (Opnum 0)

The syntax for the GetKey (Opnum 0) method consists of the following.

HRESULT GetKey(

 [in] handle_t hBinding,

 [in] ULONG cbTargetSD,

 [in] [size_is(cbTargetSD)] [ref] char* pbTargetSD,

 [in] [unique] GUID* pRootKeyID,

 [in] LONG L0KeyID,

 [in] LONG L1KeyID,

 [in] LONG L2KeyID,

 [out] unsigned long* pcbOut,

 [out] [size_is(, *pcbOut)] byte** ppbOut);

hBinding: This is an RPC binding handle parameter, as specified in [C706] and [MS-RPCE] section

2.

cbTargetSD: This parameter is equal to the length, in bytes, of the security descriptor supplied in
pbTargetSD.

pbTargetSD: This parameter is a pointer to the security descriptor for which the group key is being
requested.

pRootKeyID: This parameter represents the root key identifier of the requested key. It can be set
to NULL.

L0KeyID: This parameter represents the L0 index of the requested group key. It MUST be a
signed 32-bit integer greater than or equal to -1.

%5bMS-RPCE%5d.pdf
%5bMS-RPCE%5d.pdf
%5bMS-RPCE%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=89824
%5bMS-RPCE%5d.pdf

23 / 41

[MS-GKDI] — v20131025
 Group Key Distribution Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

L1KeyID: This parameter represents the L1 index of the requested group key. It MUST be a
signed 32-bit integer between -1 and 31 (inclusive).

L2KeyID: This parameter represents the L2 index of the requested group key. It MUST be a 32-
bit integer between -1 and 31 (inclusive).

pcbOut: This parameter is an unsigned, 32-bit integer. It MUST be equal to the length, in bytes, of
the data returned in ppbOut.

ppbOut: On successful processing of a request, the server MUST set this to a pointer that refers to
the output key binary large object (BLOB).

Return Values: The server MUST return zero if it successfully processes the message received from
the client; otherwise, it MUST return a nonzero value.

Exceptions Thrown: No exceptions are thrown beyond those thrown by the underlying RPC

protocol [MS-RPCE].

Processing rules for the GetKey request are specified herein. In general, there are four types of
requests, as follows:

When the pRootKeyID parameter is equal to NULL and the values of the L0KeyID, L1KeyID, and

L2KeyID parameters are all equal to -1, the latest group key is being requested by the caller.

When the pRootKeyID parameter is equal to NULL and the values of the L0KeyID, L1KeyID, and

L2KeyID parameters are all greater than -1, the seed key used at a specific time in the past is
being requested by the caller.

When the pRootKeyID parameter is not equal to NULL and the values of the L0KeyID, L1KeyID,

and L2KeyID parameters are all equal to -1, the latest group key derived from the specified root
key is being requested by the caller.

When the pRootKeyID parameter is not equal to NULL and the values of the L0KeyID, L1KeyID,

and L2KeyID parameters are all greater than -1, a specific seed key is being requested by the

caller.

When a Group Key Distribution Protocol server receives the GetKey request, it must first validate
that the pbTargetSD parameter is a valid security descriptor in self-relative format. The server MUST
also verify that the L0KeyID, L1KeyID, and L2KeyID parameters are either all equal to -1 or all
greater than or equal to 0. If any of these conditions are not met, the server MUST return an error

and exit.

The server MUST further validate its arguments as follows:

1. Retrieve the current time in the FILETIME format specified in [MS-DTYP] section 2.3.3. Construct
an unsigned 64-bit number by setting the low-order word to dwLowDateTime and the high-order
word to dwHighDateTime. Call this 64-bit number CurrentTime.

2. Convert the CurrentTime value to a group key identifier (L0, L1, L2) as follows; the division

operator in the following calculations represents integer division:

L0 = CurrentTime / (32 * 32 * 3.6 * 1011)

L1 = (CurrentTime mod (32 * 32 * 3.6 * 1011)) / (32 * 3.6 * 1011)

L2 = (CurrentTime mod (32 * 3.6 * 1011)) / (3.6 * 1011)

%5bMS-GLOS%5d.pdf
%5bMS-DTYP%5d.pdf

24 / 41

[MS-GKDI] — v20131025
 Group Key Distribution Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

3. If (L0KeyID, L1KeyID, L2KeyID) is lexically greater than (L0, L1, L2), then return an error and
exit.

4. Otherwise, compute a group key identifier (GKID) as follows:

If the pRootKeyID parameter is equal to NULL and L0KeyID >= 0, GKID = (L0KeyID,

L1KeyID, L2KeyID).

Otherwise, if the pRootKeyID parameter is not equal to NULL and 0 =< L0KeyID < L0, GKID =

(L0KeyID, 31, 31).

Otherwise, GKID = (L0, L1, L2).

5. Using the method specified in [MS-DTYP] section 2.5.3.2, perform an access check with the

pbTargetSD parameter value as the SecurityDescriptor, the caller's authorization context as the
Token, 0x3 as the Access Request mask, and with the Object Tree and PrincipalSelfSubst SID set
to NULL. If access is granted, the client is authorized to access seed keys. Otherwise, if access is
not granted, proceed to step 6.

6. If the L0KeyID, L1KeyID, and L2KeyID parameters are not all equal to -1, return an error and
exit.

7. Otherwise, using the method specified in [MS-DTYP] section 2.5.3.2, perform an access check

with pbTargetSD parameter value as the SecurityDescriptor, the caller's authorization context as
the Token, 0x2 as the Access Request mask, and with the Object Tree and PrincipalSelfSubst SID
set to NULL. If access is granted, the client is only authorized to access public keys. Otherwise, if
access is not granted, return an error and exit.

The server MUST then determine whether it is running on a writable DC or a read-only domain
controller (RODC) via implementation-specific means. If it is running on an RODC, the server

MUST process the request as a client, as specified in section 3.2.4.1. Specifically, it MUST look for a
cached key using the group key identifier GKID computed in the previous step 4. If a matching key
is not found in the cache, the server MUST forward the request to a writable DC with group key
identifier (L0KeyID, L1KeyID, L2KeyID), as specified by the caller.

If the access check in the previous step 5 was successful, the server MUST return the seed key
obtained from the cache or the writable DC directly to the client, without performing any of the
actions specified in section 3.2.4.3. Otherwise, if a seed key is found (section 3.2.4.1), the server

MUST convert it to a public key with the requested group key identifier, using the method specified
in section 3.1.4.1.2, and return the result to the caller.

If the server is running on a writable DC, it MUST proceed as follows:

1. If the pRootKeyID parameter is not NULL, locate the root key object whose CN matches the
pRootKeyID parameter value and proceed to step 5. If no such root key object is found, return
an error and exit.

2. If the L0KeyID, L1KeyID, and L2KeyID parameters are all equal to -1, select the root key object

that has the highest value in its msKds-UseStartTime attribute. If the set of root keys is
empty, create a new root key by using the method specified in section 3.1.4.1.1 and proceed to

step 5.

3. Convert the GKID value to an unsigned 64-bit number by reversing the method specified in step
2 of the previous procedure. Let this number be denoted KeyStartTime.

4. From the set of root key objects, select the subset of root keys that have the msKds-

UseStartTime attribute value less than or equal to KeyStartTime. If this subset contains more

%5bMS-DTYP%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf

25 / 41

[MS-GKDI] — v20131025
 Group Key Distribution Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

than one root key object, select the one with the highest msKds-CreateTime attribute value. If
no suitable root key object can be found, return an error and exit.

5. Let the root key object selected in the above steps be denoted RK. Compute the seed key
corresponding to security descriptor pbTargetSD, root key RK, and group key identifier GKID, as

specified in section 3.1.4.1.2. Let this seed key be denoted SK.

6. If the client is only authorized to access public keys, as determined by the access checks in steps
5 and 7 of the previous procedure, compute the public key corresponding to the SK, as specified
in section 3.1.4.1.2. Return the result in the ppbOut parameter of the GetKey method, by using
the format specified in section 2.2.4, and then exit.

7. If the client is authorized to access seed keys, as determined by the access check in step 5 of the
previous procedure, then:

If the L2 component of GKID is equal to 31, return the L1 seed key corresponding to SK in

the ppbOut parameter by using the format specified in section 2.2.4, with the L2 key field
omitted.

Otherwise, if the L1 component of GKID is equal to 0, return SK in the ppbOut parameter by

using the format specified in section 2.2.4, with the L1 key field omitted.

If neither of the above two cases apply, construct the return value in the ppbOut parameter

by using the format specified in section 2.2.4, with SK in the L2 key field and the next older
L1 seed key in the L1 key field.

3.1.4.1.1 Creating a New Root Key

If the root keys container in Active Directory on the DC is empty when a GetKey request is
received by the server, the server MUST create a new root key object based on the default Server

Configuration object that is present in Active Directory (section 1.5). If additional (new) root keys
are required, the server MUST create them based on either the default Server Configuration
object or an updated one that specifies optional configuration values.

Note The default Server Configuration can be overridden with specified configuration values. A
procedure for creating or updating a Server Configuration object is specified in section 3.1.4.1.3.
Any server configuration that is created or updated by the procedure in section 3.1.4.1.3 will be

used by all servers in the AD forest when creating future root keys, but will not affect any existing
root keys.

To create a new root key object, the server MUST proceed as follows:

1. Using a cryptographically strong random number generator, generate a random 16-byte GUID.

2. Using a cryptographically strong random number generator, generate 64 random bytes for use as
the root key.

3. Retrieve the current time as a FILETIME ([MS-DTYP] section 2.3.3), and convert this to a single

64-bit integer.

4. Retrieve the Server Configuration from the Active Directory location specified in section 1.9.

5. Create a new Active Directory object of class msKds-ProvRootKey in the root key container
specified in section 1.9, and populate the attributes of the object as follows:

Set the common name (CN) of the object to the result of step 1, represented in the string

format of a UUID as specified in [RFC4122] section 3.

%5bMS-GLOS%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90460

26 / 41

[MS-GKDI] — v20131025
 Group Key Distribution Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

Set the msKds-RootKeyData attribute to the result of step 2.

Set both the msKds-CreateTime and msKds-UseStartTime attributes of this root key

object to the result of step 3.

Set the msKds-DomainID attribute to the DN of the server's Active Directory domain.

Set the msKds-Version attribute of this root key object to the value of the msKds-Version

attribute in the Server Configuration object retrieved in step 4.

Check for the existence of the msKds-KDF-AlgorithmID attribute in the Server

Configuration object retrieved in step 4. If it is present, set the msKds-KDF-AlgorithmID

and msKds-KDF-Param attributes of the root key object to the values of the corresponding
attributes in the Server Configuration object. If the msKds-KDF-AlgorithmID attribute is
not present in the Server Configuration object, set the msKds-KDF-AlgorithmID attribute
of this root key object to the Unicode string value "SP800_108_CTR_HMAC", and the msKds-
KDF-Param attribute to a KDF Parameters structure (section 2.2.1) that has the Hash
algorithm name field set to the null-terminated Unicode string "SHA512".

Check for the existence of the msKds-SecretAgreement-AlgorithmID attribute in the

Server Configuration object retrieved in step 4. If it is present, set the msKds-
SecretAgreement-AlgorithmID, msKds-SecretAgreement-Param, msKds-PublicKey-
Length, and msKds-PrivateKey-Length attributes of this root key object to the values of
the corresponding attributes in the Server Configuration object. If the msKds-
SecretAgreement-AlgorithmID attribute is not present in the Server Configuration
object, set the msKds-SecretAgreement-AlgorithmID attribute of this root key object to

the Unicode string value "DH", the msKds-SecretAgreement-Param attribute to a FFC DH
Parameters structure (section 2.2.2) containing the constants specified in [RFC5114] section
2.3, the msKds-PublicKey-Length attribute to 2048, and the msKds-PrivateKey-Length
attribute to 256.

6. Add this new root key object to the server's state, as specified in section 3.1.1.

3.1.4.1.2 Generating a Group Key

This section specifies the processing rules for generating a group key for a given security descriptor,
root key identifier, and group key identifier. The following notational conventions are used in the
processing rules in this section:

SD — is used to denote the specified security descriptor, expressed in self-relative form, as

specified in [MS-DTYP] section 2.4.6.

RKID — denotes the specified root key identifier, represented in the binary format specified in

[MS-DTYP] section 2.3.4.2.

RK — denotes the selected root key object corresponding to the root key identifier RKID. The

attributes of the root key object are denoted in the form RK.attributeName, where
attributeName is a particular Active Directory attribute of the root key object, as specified in
section 3.1.1. For example, RK.msKds-Version indicates the version of the root key RK.

(L0, L1, L2) — refers to the specified group key identifier.

Key(SD, RK, L0, L1, L2) — denotes the group seed key for security descriptor SD, root key

object RK, and group key identifier (L0, L1, L2).

PubKey(SD, RK, L0, L1, L2) — denotes the group public key for security descriptor SD, root key

object RK, and group key identifier (L0, L1, L2).

%5bMS-GLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=221923
%5bMS-DTYP%5d.pdf
%5bMS-DTYP%5d.pdf

27 / 41

[MS-GKDI] — v20131025
 Group Key Distribution Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

PrivKey(SD, RK, L0, L1, L2) — denotes the group private key for security descriptor SD, root

key object RK, and group key identifier (L0, L1, L2).

KDF(HashAlg, KI, Label, Context, L) — denotes an execution of the [SP800-108] KDF in counter

mode ([SP800-108] section 5.1) by using the Hash Message Authentication Code (HMAC)
specified in [FIPS198-1], with HashAlg as the underlying hash algorithm (as the PRF), and with
KI, Label, Context, and L representing the identically named parameters specified in [SP800-108]
section 5.

SHA-1, SHA-256, SHA-384, and SHA-512 — denote the hash algorithms of the same names, as

specified in [FIPS180-3].

|| — this symbol refers to the concatenation operator.

In addition, the following assumptions apply unless specified otherwise:

Each string constant is assumed to be a null-terminated Unicode string.

All integer constants and variables are assumed to be 32-bit integers in little-endian format.

To generate the group key, the server MUST first check the root key configuration attributes of the

RK object.

1. Check that RK.msKds-Version is equal to 1. Otherwise, return an error.

2. Check that RK.msKds-KDF-AlgorithmID is equal to "SP800_108_CTR_HMAC".

Protocol behavior for other values of the KDF algorithm ID is undefined.<1>

3. Check that RK.msKds-KDF-Param is in the format specified in section 2.2.1, and that the hash
algorithm name therein is equal to one of the values that follow.

Protocol behavior for other values of the KDF parameter attribute is undefined.<2>

If RK.msKds-KDF-Param is equal to "SHA1", set HashAlg to SHA-1.

If RK.msKds-KDF-Param is equal to "SHA256", set HashAlg to SHA-256.

If RK.msKds-KDF-Param is equal to "SHA384", set HashAlg to SHA-384.

If RK.msKds-KDF-Param is equal to "SHA512", set HashAlg to SHA-512.

4. To derive an L0 seed key with a group key identifier (L0, -1, -1), the server MUST perform the

following computation:

Key(SD, RK, L0, -1, -1) = KDF(HashAlg, RK.msKds-RootKeyData, "KDS service", RKID || L0 ||
0xffffffff || 0xffffffff, 512)

5. To derive an L1 seed key with a group key identifier (L0, 31, -1), the server MUST proceed as
follows:

Key(SD, RK, L0, 31, -1) = KDF(HashAlg, Key(SD, RK, L0, -1, -1), "KDS service", RKID || L0 || 31

|| 0xffffffff || SD, 512)

6. To derive an L1 seed key with group key identifier (L0, n, -1), where n is an integer between 0
and 30 inclusive, the server MUST proceed as follows:

http://go.microsoft.com/fwlink/?LinkId=186039
http://go.microsoft.com/fwlink/?LinkId=186039
http://go.microsoft.com/fwlink/?LinkId=186032
http://go.microsoft.com/fwlink/?LinkId=186039
http://go.microsoft.com/fwlink/?LinkId=180409
%5bMS-GLOS%5d.pdf

28 / 41

[MS-GKDI] — v20131025
 Group Key Distribution Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

Key(SD, RK, L0, n, -1) = KDF(HashAlg, Key(SD, RK, L0, n+1, -1), "KDS service", RKID || L0 || n
|| 0xffffffff, 512)

7. To derive an L2 seed key with a group key identifier (L0, L1, n), where n is an integer between
0 and 31 inclusive, the server MUST proceed as follows:

Key(SD, RK, L0, L1, n) = KDF(HashAlg, Key(SD, RK, L0, L1, n+1), "KDS service", RKID || L0 ||
L1|| n, 512); where Key(SD, RK, L0, L1, 32) = Key(SD, RK, L0, L1, -1)

To derive a group public key with a group key identifier (L0, L1, L2), the server MUST proceed as
follows:

1. First, the server MUST validate the root key configuration attributes related to public keys:

If RK.msKds-SecretAgreement-AlgorithmID is equal to "DH", RK.msKds-

SecretAgreement-Param MUST be in the format specified in section 2.2.2, and the Key
length field of RK.msKds-SecretAgreement-Param MUST be equal to RK.msKds-
PublicKey-Length.

If RK.msKds-SecretAgreement-AlgorithmID is equal to "ECDH_P256", "ECDH_P384" or

"ECDH_P521", the RK.msKds-SecretAgreement-Param MUST be NULL.

Protocol behavior for other values of the secret agreement algorithm name and parameter

attributes is undefined.<3>

2. Having validated the root key configuration, the server MUST then compute the group private
key in the following manner:

PrivKey(SD, RK, L0, L1, L2) = KDF(HashAlg, Key(SD, RK, L0, L1, L2), "KDS service", RK.msKds-
SecretAgreement-AlgorithmID, RK.msKds-PrivateKey-Length)

Note If RK.msKds-PrivateKey-Length is not a multiple of 8, it needs to be rounded up to the
next multiple of 8.

3. Lastly, the server MUST compute the group public key PubKey(SD, RK, L0, L1, L2) as follows:

If RK.msKds-SecretAgreement-AlgorithmID is equal to "DH", the server MUST compute

PubKey(SD, RK, L0, L1, L2) by using the method specified in [SP800-56A] section 5.6.1.1,
with the group parameters specified in RK.msKds-SecretAgreement-Param, and with
PrivKey(SD, RK, L0, L1, L2) as the private key.

If RK.msKds-SecretAgreement-AlgorithmID is equal to "ECDH_P256", "ECDH_P384", or

"ECDH_P521", the server MUST compute PubKey(SD, RK, L0, L1, L2) by using the method
specified in [SP800-56A] section 5.6.1.2, with PrivKey(SD, RK, L0, L1, L2) as the private key
d, and by using the domain parameters from [FIPS186] Appendix D.1.2.3, D.1.2.4, or
D.1.2.5, respectively.

3.1.4.1.3 Creating or Updating a Server Configuration Object

As specified in section 1.5, a Server Configuration object MUST be present in the Active Directory

database for successful operation of this protocol. Server implementations MUST use the parameters
configured in this object when creating a new root key, as specified in section 3.1.4.1.1. The
procedure in this section specifies how to create or update a Server Configuration object in Active
Directory.

1. Locate the DC, as specified in [MS-NRPC] section 3.5.4.3.1.

http://go.microsoft.com/fwlink/?LinkId=90525
http://go.microsoft.com/fwlink/?LinkId=90525
http://go.microsoft.com/fwlink/?LinkId=89869
%5bMS-NRPC%5d.pdf

29 / 41

[MS-GKDI] — v20131025
 Group Key Distribution Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

2. To create a new Server Configuration object, create it in Active Directory under the
Configuration Naming Context with the msKds-ProvServerConfiguration class (section 2.3) at

the location specified in section 1.9, by using the procedure specified in [MS-ADTS] section
3.1.1.5.2.

3. Populate the Server Configuration object attributes with the values for the parameters
specified in the following table and then close the Active Directory connection.

Note All values in this table are optional, with exception of the required value for the msKds-
Version parameter. If the optional values are omitted, the server will behave as specified in
section 3.1.4.1.2.

Parameter name Values Data type

msKds-Version

1

32-bit unsigned
integer

msKds-KDF-AlgorithmID

"SP800_108_CTR_HMAC"

Unicode string

msKds-KDF-Param

KDF parameters

Section 2.2.1

structure

msKds-SecretAgreement-
AlgorithmID

"DH", "ECDH_P256", "ECDH_P384", or
"ECDH_P521"

Unicode string

msKds-SecretAgreement-
Param

FFC DH parameters

Section 2.2.2
structure

msKds-PublicKey-Length

Defined by algorithm in use

32-bit unsigned
integer

msKds-PrivateKey-Length

Defined by algorithm in use

32-bit unsigned
integer

To update an existing Server Configuration object, locate the object in Active Directory

according to its DN and specify the modifications to be performed by using the procedure
specified in [MS-ADTS] section 3.1.1.5.3.

%5bMS-ADTS%5d.pdf
%5bMS-ADTS%5d.pdf

30 / 41

[MS-GKDI] — v20131025
 Group Key Distribution Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

Refer to the data in the table of this section when updating the attributes of the Server
Configuration object and close the Active Directory connection when complete.

Note Active Directory schema information for the Server Configuration object is specified in
[MS-ADSC] section 2.154.

3.1.5 Timer Events

None.

3.1.6 Other Local Events

A server in the Active Directory forest MUST update its Server Configuration object and set of
root key objects when the corresponding objects on the Active Directory DC are modified, either

because of changes by an authorized user or as the result of Active Directory replication.

3.2 ISDKey Client Details

3.2.1 Abstract Data Model

This section describes a conceptual model of possible data organization that an implementation
maintains to participate in this protocol. The described organization is provided to facilitate the

explanation of how the protocol behaves. This document does not mandate that implementations
adhere to this model as long as their external behavior is consistent with that described in this
document.

Group Key cache: The client SHOULD cache group keys corresponding to one or more security
descriptors. For every combination of Active Directory domain and security descriptor, the cache
contains zero or more of the following:

Group public key: The most recent public key retrieved for this domain and security descriptor,
along with its root key identifier and group key identifier. There is never more than one group
public key in the cache for any combination of domain and security descriptor. Also, there can

never be a group public key in the cache with the same set of domain, security descriptor, root
key identifier, and L0 index values as a group seed key in the cache, unless the group public
key has a newer group key identifier.

Group seed keys: Each group seed key object consists of one or more of the following. There is

never more than one group seed key object for a given combination of domain, security
descriptor, root key identifier, and L0 index.

L1 seed key: The most recent L1 seed key retrieved from this domain for this security descriptor
and its group key identifier.

L2 seed key: The most recent L2 seed key retrieved from this domain for this security descriptor
and its group key identifier.

Note Each Group public key and Group seed key also contain a Boolean attribute that identifies
whether the key was the current key at the time it was retrieved.

3.2.2 Timers

None.

%5bMS-ADSC%5d.pdf

31 / 41

[MS-GKDI] — v20131025
 Group Key Distribution Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

3.2.3 Initialization

None.

3.2.4 Message Processing Events and Sequencing Rules

3.2.4.1 Client Side Processing

The Group Key Distribution Protocol client receives requests from a higher layer. The caller requests
the retrieval of a key for a given security descriptor, while optionally specifying a root key
identifier and group key identifier. The caller also specifies the name of the Active Directory
domain from which to retrieve keys and provides valid user credentials for authenticating in a

specific domain.

Upon receiving such a request, the client SHOULD attempt to locate a matching key in the cache, as
follows:

1. If the caller specified a group key identifier but did not specify a root key identifier, then do not
attempt to locate a key in the cache.

2. If the caller specified a root key identifier, the client should first check if a group key identifier
was also specified. If the caller did not specify a group key identifier, the client should convert

the current time to the group key identifier, as specified in section 3.1.4.1, and use that as the
requested group key identifier. The client should then attempt to find a group seed key in the
cache that has the same domain and security descriptor, and whose group key identifier is the
same as the requested group key identifier, or whose group key identifier is newer than the
requested group key identifier, but has the same L0 index field value. If such a key is found in
the cache, the client uses it to derive the desired key, as specified in section 3.2.4.3, and returns

the result to the caller.

3. If the caller specified neither a root key identifier nor a group key identifier (for example, the
group key identifier was (-1, -1, -1)), the client should first convert the current time to a group
key identifier, as specified in section 3.1.4.1. The client should then attempt to find a group key

in the cache that has the same domain and security descriptor, which is marked as current, and
whose group key identifier is no older than the group key identifier just computed. If such a key
is found in the cache, the client uses it to compute the desired key, as specified in section

3.2.4.3, and returns the result to the caller.

If no key is found in the cache, the client MUST attempt to connect to a server and retrieve a key as
specified in section 3.2.4.2.

If the client fails to retrieve a key from the server, and if the caller had not specified a root key
identifier, the client SHOULD attempt to find a cached group key with the same domain and
security descriptor that is marked as current and whose group key identifier is no more than 32 L2
periods older than the current time. If such a key is found, the client SHOULD return it to the caller.

In all other cases, if the client fails to retrieve a key from the server, the client MUST return an error
to the caller.

If the client successfully retrieves a key from the server, it will have received a group key in the
format specified in section 2.2.4. The client MUST parse this format as follows:

1. If the isPublicKey field of the returned Group Key Envelope is set to 1, the value in the L2
key field is a public key with group key identifier (L0 field, L1 field, L2 field).

32 / 41

[MS-GKDI] — v20131025
 Group Key Distribution Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

2. If the isPublicKey field of the returned Group Key Envelope is set to 0 and the L2 Key field is
present, the value in the L2 key field is an L2 seed key with group key identifier (L0 field, L1

field, L2 field).

3. If the isPublicKey field of the returned Group Key Envelope is set to 0 and the L1 Key field is

present, then:

If the value in the L2 index field is 31, the value in the L1 Key field is an L1 seed key with

group key identifier (L0 field, L1 field, -1).

If the value in the L2 index field is not 31, the value in the L1 Key field is an L1 seed key

with group key identifier (L0 field, L1 field - 1, -1).

The client SHOULD then update its group key cache as follows.

1. If the server returned a public key, then:

Check the cache for a group seed key for the same domain, the same security descriptor,

the same root key identifier, and the same or newer group key identifier. If such a key is
found, do not update the cache.

Check the cache for a group public key with the same domain, the same security descriptor,

and an older group key identifier or different root key identifier. If such a key exists, replace
it with the retrieved group public key.

If neither of the preceding cases apply, add the retrieved group public key to the cache.

2. If the server returned a seed key, then:

Check the cache for a group public key with the same domain, the same security descriptor,

the same root key identifier, and same or older group key identifier. If such a key exists,

remove it from the cache and add the retrieved seed key to the cache.

Check the cache for a seed key with the same domain, the same security descriptor, and the

same root key identifier. If such a key is found and it has an older group key identifier than
the retrieved key, replace it with the retrieved key. If such a key is found but it has a newer
group key identifier than the retrieved key, do not update the cache.

If neither of the preceding cases apply, add the retrieved seed key to the cache.

3. If the caller for this request specified neither a root key identifier nor a group key identifier,
then mark the above key with the current attribute.

Lastly, the client MUST compute the requested key, as specified in section 3.2.4.3, and return the
result to the caller.

3.2.4.2 Retrieving a Group Key from a Server

To retrieve a group key from the server, the client MUST perform a GetKey call, as specified in
section 3.1.4.1. However, before making this call, the client MUST first perform the following:

1. Locate a DC.

The client MUST locate a suitable DC by using the method specified in [MS-NRPC] section
3.5.4.3.1, with the DomainName parameter set to the specified domain name, Flags set to the
bitwise OR of the R and U bits, and all other parameters set to zero or NULL.

%5bMS-NRPC%5d.pdf

33 / 41

[MS-GKDI] — v20131025
 Group Key Distribution Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

2. The client MUST connect to this server over RPC with supplied user credentials. Each RPC
connection to the server MUST be configured as follows:

The client MUST indicate to the RPC runtime that it is to perform a strict NDR data consistency

check at target level 6.0, as specified in [MS-RPCE] section 3.1.1.5.3.3.

The client MUST indicate to the RPC runtime that it is to reject a NULL unique or full pointer

with nonzero conformant value, as specified in [MS-RPCE] section 3.1.1.5.3.3.1.2.

The client MUST instruct the RPC runtime to negotiate a security context by using the SPNEGO

protocol [MS-SPNG], as specified in [MS-RPCE] section 2.2.1.1.7.

The client MUST also instruct the RPC runtime to negotiate the use of the packet privacy

authentication level, which provides both message confidentiality and integrity ([MS-RPCE]
section 2.2.1.1.8).

If the server returned is a writable DC, the client MUST instruct the RPC runtime to use the

SECURITY_IMPERSONATION impersonation level, as specified in [MS-RPCE] section 2.2.1.1.9.

If the server returned is an RODC, the client MUST instruct the RPC runtime to use the
SECURITY_IDENTIFICATION impersonation level, as specified in [MS-RPCE] section 2.2.1.1.9.

Lastly, the client SHOULD request the RPC runtime to perform mutual authentication with the

server.

3. Perform the GetKey call.

After establishing and configuring the DC connection, the client MUST perform the GetKey call
(section 3.1.4.1) with parameters specified by the caller. The client MUST treat all server errors
(non-zero return codes) identically. If the GetKey method fails, the client MUST return an error

to the caller.

3.2.4.3 Computing the Desired Group Key

The group key returned by the Group Key Distribution Protocol server may not have the same group

key identifier requested by the client, as specified in section 3.1.4.1. At other times, the client might
find a cached key that can be used to derive the requested key, thereby avoiding a network round
trip. In these cases, some processing may be required on the client side to compute the key that

must be returned to the caller. The client MUST compute the group key to be returned to the calling
layer as follows:

1. If the root key identifier was not specified in the request from the higher layer (for example,
the higher layer requesting the most recent key), and the server returned a public key, the client
MUST return the public key to the caller.

2. Otherwise, the server MUST have returned a seed key. If no root key identifier was specified in

the request from the higher layer (for example, the higher layer was requesting the most recent
key), then:

If the server's response contains an L2 key, return that to the caller.

Otherwise, use the L1 key in the server's response to derive the L2 key with L2 index 31, as

specified in section 3.1.4.1.2, and return that to the caller.

3. If the server returned a seed key in response to a request with a specified root key identifier,

then:

%5bMS-RPCE%5d.pdf
%5bMS-RPCE%5d.pdf
%5bMS-SPNG%5d.pdf
%5bMS-RPCE%5d.pdf
%5bMS-RPCE%5d.pdf
%5bMS-RPCE%5d.pdf
%5bMS-RPCE%5d.pdf

34 / 41

[MS-GKDI] — v20131025
 Group Key Distribution Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

If the response contains an L2 key whose group key identifier matches the requested group

key identifier, return this L2 key to the caller.

Otherwise, if the response contains an L2 key whose group key identifier is newer than the

requested group key but that has the same L0 and L1 indices, use this to derive the
requested group key, as specified in section 3.1.4.1.2, and return the result to the caller.

4. Otherwise, if the response contains an L1 key that has the same L0 index and the same or
greater L1 index as the requested group key, use this to derive the requested group key, as
specified in section 3.1.4.1.2, and return the result to the caller.

3.2.5 Timer Events

None.

3.2.6 Other Local Events

None.

35 / 41

[MS-GKDI] — v20131025
 Group Key Distribution Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

4 Protocol Examples

To illustrate the operation of the Group Key Distribution Protocol, consider the example of a program
designed to send encrypted email to users within an Active Directory forest from a domain-joined
machine.

Given an email message and a set of recipients, the program would first construct a security
descriptor with one access control entry (ACE) per recipient that grants access mask 0x3, and a
final ACE that grants access mask 0x2 to the calling user. It would then use the Group Key
Distribution Protocol client functionality described in section 3.2.4.1 to request the latest key for this

security descriptor. To do this, it would make a request to the GetKey method described in section
3.1.4.1, with the pbTargetSD parameter set to the security descriptor constructed herein and the
pRootKeyID parameter set to NULL.

As a result of the GetKey method call, the protocol client will either return a public key or a seed
key. If a seed key is returned, this example program would execute a key derivation function
(section 2.2.1) on this seed key to derive a key for a symmetric encryption algorithm such as the

Advanced Encryption Standard (AES) [FIPS197].

Next the example program would encrypt the email message by using the Cryptographic Message
Syntax (CMS) [RFC3852] with the public key or the above derived AES key, respectively. The
domain name, forest name, security descriptor, root key identifier, and group key identifier would
be stored in the CMS BLOB as a key identifier attribute. The encrypted email message would then
be sent by using standard methods.

The example program, running on behalf of the recipient, would then extract the domain name,

security descriptor, root key identifier, and group key identifier from the CMS BLOB, and would
use them to make a request for this group key, as specified in section 3.2.4. If the recipient is
authorized, the protocol client will return an L2 seed key. The program would then proceed as
follows:

1. If the email message was encrypted with an AES key, use the seed key to derive the AES key by
executing a key derivation function, and decrypt the email message by using standard CMS

processing rules.

2. If the email message was encrypted with a public key, use the seed key to derive the group
private key by using the method described in section 3.1.4.1.2, and decrypt the email message
by using standard CMS processing rules [RFC3852].

The email message would then be displayed to the user.

%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=89870
http://go.microsoft.com/fwlink/?LinkId=90445
%5bMS-GLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90445

36 / 41

[MS-GKDI] — v20131025
 Group Key Distribution Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

5 Security

5.1 Security Considerations for Implementers

This protocol generates group keys from root keys stored in Active Directory, and distributes them
on the basis of authentication to an Active Directory domain. Therefore, security of this protocol
depends critically on the security of the Active Directory infrastructure. In particular, the protocol is
not secure against an attacker who obtains administrative privileges on an Active Directory DC, or
who gains access to the Active Directory database in some other way. Therefore, it is important that

Active Directory domain administrators are trusted, and that access to this protocol's root key
objects be restricted to these trusted administrators.

Also, since root keys are used to generate group keys for all security descriptors, it is very
important to ensure the cryptographic strength of these keys. Accordingly, root keys should only
be generated with a cryptographically strong random number generator, and new root keys should
be created periodically to limit the impact of root key compromise.

Client implementations need to restrict access to the client's group key cache. Moreover, an

implementation needs to ensure that a group key corresponding to a given security descriptor
cannot be read or modified by a user who would not normally be able to obtain that key. If the
group key cache is stored on disk, it is strongly recommended that it be stored in encrypted form.

Guidance on building strong cryptographic subsystems is available in [FIPS140]. An overview of the
Windows security architecture is available in [MS-WPO] section 9.

Any implementation of a protocol exposes code to inputs from attackers. It is strongly advised for

such code to be developed according to secure coding and development practices to avoid buffer
overflows, denial-of-service attacks, escalation of privilege, and disclosure of information. For more
information about these concepts, secure development best practices, and common errors, see
[HOWARD].

5.2 Index of Security Parameters

Security parameter Section

Authentication 1.7, 2.1

Use of RPC security 2.1, 3.1.4, 3.1.3, 3.2.4

Key derivation algorithm 3.1.4.1, 3.2.4

Secret agreement algorithm 3.1.4.1, 3.2.4

http://go.microsoft.com/fwlink/?LinkId=89866
%5bMS-WPO%5d.pdf

37 / 41

[MS-GKDI] — v20131025
 Group Key Distribution Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

6 Appendix A: Full IDL

For ease of implementation, the full IDL is provided below, where "ms-dtyp.idl" refers to the IDL
found in [MS-DTYP] section 5. The syntax uses the IDL syntax extensions described in [MS-RPCE]
sections 2.2.4 and 3.1.1.5.1. For example, as noted in [MS-RPCE] section 2.2.4.9, a pointer_default
declaration is not required and pointer_default(unique) is assumed.

import "ms-dtyp.idl";

[uuid(b9785960-524f-11df-8b6d-83dcded72085)]

[version(1.0)]

[pointer_default(unique)]

interface ISDKey {

 HRESULT GetKey(

 [in] handle_t hBinding,

 [in] ULONG cbTargetSD,

 [in] [size_is(cbTargetSD)] [ref] char * pbTargetSD,

 [in] [unique] GUID * pRootKeyID,

 [in] LONG L0KeyID,

 [in] LONG L1KeyID,

 [in] LONG L2KeyID,

 [out] unsigned long * pcbOut,

 [out] [size_is(, *pcbOut)] byte ** ppbOut);

};

%5bMS-GLOS%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-RPCE%5d.pdf
%5bMS-RPCE%5d.pdf
%5bMS-RPCE%5d.pdf
%5bMS-RPCE%5d.pdf

38 / 41

[MS-GKDI] — v20131025
 Group Key Distribution Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

7 Appendix B: Product Behavior

The information in this specification is applicable to the following Microsoft products or supplemental
software. References to product versions include released service packs:

Windows 8 operating system

Windows Server 2012 operating system

Windows 8.1 operating system

Windows Server 2012 R2 operating system

Exceptions, if any, are noted below. If a service pack or Quick Fix Engineering (QFE) number

appears with the product version, behavior changed in that service pack or QFE. The new behavior
also applies to subsequent service packs of the product unless otherwise specified. If a product
edition appears with the product version, behavior is different in that product edition.

Unless otherwise specified, any statement of optional behavior in this specification that is prescribed
using the terms SHOULD or SHOULD NOT implies product behavior in accordance with the SHOULD
or SHOULD NOT prescription. Unless otherwise specified, the term MAY implies that the product
does not follow the prescription.

<1> Section 3.1.4.1.2: Windows 8, Windows Server 2012, Windows 8.1, and Windows Server 2012
R2 implementations MAY choose to extend the protocol by supporting additional values of this
attribute. An implementation that chooses to extend the protocol in such a way SHOULD choose its
algorithm names in a manner consistent with [MSDN-ALG].

<2> Section 3.1.4.1.2: Windows 8, Windows Server 2012, Windows 8.1, and Windows Server 2012
R2 implementations MAY choose to extend the protocol by supporting additional values of these
attributes. An implementation that chooses to extend the protocol in such a way SHOULD choose its

algorithm names in a manner consistent with [MSDN-ALG].

<3> Section 3.1.4.1.2: Windows 8, Windows Server 2012, Windows 8.1, and Windows Server 2012
R2 implementations MAY choose to extend the protocol by supporting additional values of these
attributes. An implementation that chooses to extend the protocol in such a way SHOULD choose its
algorithm names in a manner consistent with [MSDN-ALG].

http://go.microsoft.com/fwlink/?LinkId=187044
http://go.microsoft.com/fwlink/?LinkId=187044
http://go.microsoft.com/fwlink/?LinkId=187044

39 / 41

[MS-GKDI] — v20131025
 Group Key Distribution Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

8 Change Tracking

No table of changes is available. The document is either new or has had no changes since its last
release.

40 / 41

[MS-GKDI] — v20131025
 Group Key Distribution Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

9 Index

A

Abstract data model
client

ISDKey 30
server

ISDKey 20
Applicability 10

C

Capability negotiation 10
Change tracking 39
Client

ISDKey
abstract data model 30
Client Side Processing method 31
Computing the Desired Group Key method 33
initialization 31
local events 34
Retrieving a Group Key from a Server method

32
timer events 34
timers 30

Client Side Processing method 31
Common data types 12
Computing the Desired Group Key method 33

D

Data model - abstract
client

ISDKey 30
server

ISDKey 20
Data types

common - overview 12
Directory service schema elements 18

E

Elements - directory service schema 18
Events

local
client

ISDKey 34
server

ISDKey 30
timer

client
ISDKey 34

server
ISDKey 30

Examples
overview 35

F

Fields - vendor extensible 10

Full IDL 37

G

GetKey (Opnum 0) method 22
Glossary 5

I

IDL 37
Implementer - security considerations 36
Index of security parameters 36
Informative references 8
Initialization

client
ISDKey 31

server
ISDKey 21

Introduction 5

L

Local events
client

ISDKey 34
server

ISDKey 30

M

Message processing
server

ISDKey 22
Messages

common data types 12
transport 12

Methods
Client Side Processing 31
Computing the Desired Group Key 33
GetKey (Opnum 0) 22
Retrieving a Group Key from a Server 32

N

Normative references 7

O

Overview (synopsis) 8

P

Parameters - security index 36
Preconditions 9
Prerequisites 9
Product behavior 38

R

41 / 41

[MS-GKDI] — v20131025
 Group Key Distribution Protocol

 Copyright © 2013 Microsoft Corporation.

 Release: Friday, October 25, 2013

References
informative 8
normative 7

Relationship to other protocols 9
Retrieving a Group Key from a Server method 32

S

Schema elements - directory service 18
Security

implementer considerations 36
parameter index 36

Sequencing rules
ISDKey 22

Server
ISDKey

abstract data model 20
GetKey (Opnum 0) method 22
initialization 21

local events 30
message processing 22
sequencing rules 22
timer events 30
timers 21

Standards assignments 10

T

Timer events
client

ISDKey 34
server

ISDKey 30
Timers

client
ISDKey 30

server
ISDKey 21

Tracking changes 39
Transport 12

V

Vendor extensible fields 10
Versioning 10

	Contents
	1 Introduction
	1.1 Glossary
	1.2 References
	1.2.1 Normative References
	1.2.2 Informative References

	1.3 Overview
	1.4 Relationship to Other Protocols
	1.5 Prerequisites/Preconditions
	1.6 Applicability Statement
	1.7 Versioning and Capability Negotiation
	1.8 Vendor Extensible Fields
	1.9 Standards Assignments

	2 Messages
	2.1 Transport
	2.2 Common Data Types
	2.2.1 KDF Parameters
	2.2.2 FFC DH Parameters
	2.2.3 Public Key Formats
	2.2.3.1 FFC DH Key
	2.2.3.2 ECDH Key

	2.2.4 Group Key Envelope

	2.3 Directory Service Schema Elements

	3 Protocol Details
	3.1 ISDKey Server Details
	3.1.1 Abstract Data Model
	3.1.2 Timers
	3.1.3 Initialization
	3.1.4 Message Processing Events and Sequencing Rules
	3.1.4.1 GetKey (Opnum 0)
	3.1.4.1.1 Creating a New Root Key
	3.1.4.1.2 Generating a Group Key
	3.1.4.1.3 Creating or Updating a Server Configuration Object

	3.1.5 Timer Events
	3.1.6 Other Local Events

	3.2 ISDKey Client Details
	3.2.1 Abstract Data Model
	3.2.2 Timers
	3.2.3 Initialization
	3.2.4 Message Processing Events and Sequencing Rules
	3.2.4.1 Client Side Processing
	3.2.4.2 Retrieving a Group Key from a Server
	3.2.4.3 Computing the Desired Group Key

	3.2.5 Timer Events
	3.2.6 Other Local Events

	4 Protocol Examples
	5 Security
	5.1 Security Considerations for Implementers
	5.2 Index of Security Parameters

	6 Appendix A: Full IDL
	7 Appendix B: Product Behavior
	8 Change Tracking
	9 Index

