
1 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

[MS-FSRM]:

File Server Resource Manager Protocol

Intellectual Property Rights Notice for Open Specifications Documentation

 Technical Documentation. Microsoft publishes Open Specifications documentation (“this
documentation”) for protocols, file formats, data portability, computer languages, and standards
support. Additionally, overview documents cover inter-protocol relationships and interactions.

 Copyrights. This documentation is covered by Microsoft copyrights. Regardless of any other
terms that are contained in the terms of use for the Microsoft website that hosts this
documentation, you can make copies of it in order to develop implementations of the technologies

that are described in this documentation and can distribute portions of it in your implementations
that use these technologies or in your documentation as necessary to properly document the

implementation. You can also distribute in your implementation, with or without modification, any
schemas, IDLs, or code samples that are included in the documentation. This permission also
applies to any documents that are referenced in the Open Specifications documentation.

 No Trade Secrets. Microsoft does not claim any trade secret rights in this documentation.
 Patents. Microsoft has patents that might cover your implementations of the technologies

described in the Open Specifications documentation. Neither this notice nor Microsoft's delivery of
this documentation grants any licenses under those patents or any other Microsoft patents.
However, a given Open Specifications document might be covered by the Microsoft Open
Specifications Promise or the Microsoft Community Promise. If you would prefer a written license,
or if the technologies described in this documentation are not covered by the Open Specifications
Promise or Community Promise, as applicable, patent licenses are available by contacting
iplg@microsoft.com.

 License Programs. To see all of the protocols in scope under a specific license program and the
associated patents, visit the Patent Map.

 Trademarks. The names of companies and products contained in this documentation might be
covered by trademarks or similar intellectual property rights. This notice does not grant any

licenses under those rights. For a list of Microsoft trademarks, visit
www.microsoft.com/trademarks.

 Fictitious Names. The example companies, organizations, products, domain names, email
addresses, logos, people, places, and events that are depicted in this documentation are fictitious.
No association with any real company, organization, product, domain name, email address, logo,
person, place, or event is intended or should be inferred.

Reservation of Rights. All other rights are reserved, and this notice does not grant any rights other
than as specifically described above, whether by implication, estoppel, or otherwise.

Tools. The Open Specifications documentation does not require the use of Microsoft programming

tools or programming environments in order for you to develop an implementation. If you have access
to Microsoft programming tools and environments, you are free to take advantage of them. Certain
Open Specifications documents are intended for use in conjunction with publicly available standards
specifications and network programming art and, as such, assume that the reader either is familiar
with the aforementioned material or has immediate access to it.

Support. For questions and support, please contact dochelp@microsoft.com.

http://go.microsoft.com/fwlink/?LinkId=214445
http://go.microsoft.com/fwlink/?LinkId=214445
http://go.microsoft.com/fwlink/?LinkId=214448
mailto:iplg@microsoft.com
https://msdn.microsoft.com/en-us/openspecifications/dn750984
http://www.microsoft.com/trademarks
mailto:dochelp@microsoft.com

2 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Revision Summary

Date
Revision
History

Revision
Class Comments

1/25/2008 0.1 Major MCPP Milestone RSAT Initial Availability

3/14/2008 0.1.1 Editorial Changed language and formatting in the technical content.

5/16/2008 0.1.2 Editorial Changed language and formatting in the technical content.

6/20/2008 0.2 Minor Clarified the meaning of the technical content.

7/25/2008 1.0 Major Updated and revised the technical content.

8/29/2008 2.0 Major Major update to IDL content throughout the document.

10/24/2008 2.0.1 Editorial Changed language and formatting in the technical content.

12/5/2008 3.0 Major Updated and revised the technical content.

1/16/2009 4.0 Major Updated and revised the technical content.

2/27/2009 5.0 Major Updated and revised the technical content.

4/10/2009 6.0 Major Updated and revised the technical content.

5/22/2009 7.0 Major Updated and revised the technical content.

7/2/2009 8.0 Major Updated and revised the technical content.

8/14/2009 9.0 Major Updated and revised the technical content.

9/25/2009 10.0 Major Updated and revised the technical content.

11/6/2009 11.0 Major Updated and revised the technical content.

12/18/2009 12.0 Major Updated and revised the technical content.

1/29/2010 13.0 Major Updated and revised the technical content.

3/12/2010 14.0 Major Updated and revised the technical content.

4/23/2010 15.0 Major Updated and revised the technical content.

6/4/2010 16.0 Major Updated and revised the technical content.

7/16/2010 17.0 Major Updated and revised the technical content.

8/27/2010 18.0 Major Updated and revised the technical content.

10/8/2010 19.0 Major Updated and revised the technical content.

11/19/2010 19.1 Minor Clarified the meaning of the technical content.

1/7/2011 19.1 None
No changes to the meaning, language, or formatting of the
technical content.

2/11/2011 20.0 Major Updated and revised the technical content.

3/25/2011 21.0 Major Updated and revised the technical content.

5/6/2011 22.0 Major Updated and revised the technical content.

6/17/2011 23.0 Major Updated and revised the technical content.

3 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Date
Revision
History

Revision
Class Comments

9/23/2011 24.0 Major Updated and revised the technical content.

12/16/2011 25.0 Major Updated and revised the technical content.

3/30/2012 25.0 None
No changes to the meaning, language, or formatting of the
technical content.

7/12/2012 26.0 Major Updated and revised the technical content.

10/25/2012 27.0 Major Updated and revised the technical content.

1/31/2013 28.0 Major Updated and revised the technical content.

8/8/2013 29.0 Major Updated and revised the technical content.

11/14/2013 30.0 Major Updated and revised the technical content.

2/13/2014 30.0 None
No changes to the meaning, language, or formatting of the

technical content.

5/15/2014 30.0 None
No changes to the meaning, language, or formatting of the
technical content.

6/30/2015 31.0 Major Significantly changed the technical content.

10/16/2015 31.0 None
No changes to the meaning, language, or formatting of the
technical content.

7/14/2016 31.0 None
No changes to the meaning, language, or formatting of the
technical content.

6/1/2017 31.0 None
No changes to the meaning, language, or formatting of the
technical content.

4 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Table of Contents

1 Introduction .. 16
1.1 Glossary ... 16
1.2 References .. 20

1.2.1 Normative References ... 21
1.2.2 Informative References ... 21

1.3 Overview .. 22
1.4 Relationship to Other Protocols .. 24
1.5 Prerequisites/Preconditions ... 25
1.6 Applicability Statement ... 25
1.7 Versioning and Capability Negotiation ... 25
1.8 Vendor-Extensible Fields ... 25
1.9 Standards Assignments ... 25

2 Messages ... 29
2.1 Transport .. 29
2.2 Message Syntax ... 29

2.2.1 Common Data Types ... 29
2.2.1.1 Data Types ... 29

2.2.1.1.1 FSRM_OBJECT_ID ... 30
2.2.1.1.2 FSRM_QUOTA_THRESHOLD .. 30

2.2.1.2 Enumerations ... 30
2.2.1.2.1 FsrmQuotaFlags .. 30
2.2.1.2.2 FsrmFileScreenFlags .. 31
2.2.1.2.3 FsrmRuleFlags .. 31
2.2.1.2.4 FsrmCollectionState ... 31
2.2.1.2.5 FsrmEnumOptions ... 32
2.2.1.2.6 FsrmCommitOptions .. 32
2.2.1.2.7 FsrmTemplateApplyOptions .. 32
2.2.1.2.8 FsrmAccountType .. 33
2.2.1.2.9 FsrmActionType .. 33
2.2.1.2.10 FsrmReportType .. 34
2.2.1.2.11 FsrmRuleType ... 35
2.2.1.2.12 FsrmPipelineModuleType .. 35
2.2.1.2.13 FsrmReportRunningStatus .. 35
2.2.1.2.14 FsrmReportFormat ... 36
2.2.1.2.15 FsrmReportGenerationContext .. 36
2.2.1.2.16 FsrmReportFilter ... 37
2.2.1.2.17 FsrmReportLimit .. 37
2.2.1.2.18 AdsCacheFlags .. 38
2.2.1.2.19 AdsCachePropertyFlags .. 39
2.2.1.2.20 FCI_ADS_SECURE_PROPERTY_TYPE .. 39

2.2.1.3 Structures .. 39
2.2.2 Interface-Specific Data Types ... 40

2.2.2.1 IFsrmActionEventLog Data Types .. 40
2.2.2.1.1 Enumerations.. 40

2.2.2.1.1.1 FsrmEventType .. 40
2.2.2.2 IFsrmAutoApplyQuota Data Types ... 40

2.2.2.2.1 Data Types ... 40
2.2.2.2.1.1 FsrmMaxExcludeFolders .. 40

2.2.2.3 IFsrmPropertyDefinition Data Types .. 40
2.2.2.3.1 Enumerations.. 40

2.2.2.3.1.1 FsrmPropertyDefinitionType .. 41
2.2.2.4 IFsrmPropertyDefinition2 Data Types .. 41

2.2.2.4.1 Enumerations.. 41
2.2.2.4.1.1 FsrmPropertyDefinitionFlags .. 41

5 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

2.2.2.4.1.2 FsrmPropertyDefinitionAppliesTo .. 42
2.2.2.5 IFsrmClassificationRule Data Types ... 42

2.2.2.5.1 Enumerations.. 42
2.2.2.5.1.1 FsrmExecutionOption ... 42
2.2.2.5.1.2 FsrmGetFilePropertyOptions .. 43

2.2.2.6 IFsrmProperty Data Types .. 43
2.2.2.6.1 Enumerations.. 43

2.2.2.6.1.1 FsrmPropertyFlags ... 44
2.2.2.7 IFsrmClassificationManager Data Types ... 45

2.2.2.7.1 Enumerations.. 45
2.2.2.7.1.1 FsrmClassificationLoggingFlags .. 45

2.2.2.8 IFsrmStorageModuleDefinition Data Types ... 45
2.2.2.8.1 Enumerations.. 45

2.2.2.8.1.1 FsrmStorageModuleCaps ... 45
2.2.2.8.1.2 FsrmStorageModuleType ... 46

2.2.2.9 IFsrmFileManagementJob Data Types .. 46
2.2.2.9.1 Enumerations.. 47

2.2.2.9.1.1 FsrmFileManagementType ... 47
2.2.2.9.1.2 FsrmFileManagementLoggingFlags ... 47

2.2.2.10 IFsrmPropertyCondition Data Types .. 47
2.2.2.10.1 Enumerations.. 48

2.2.2.10.1.1 FsrmPropertyConditionType .. 48
2.2.3 XML Import and Export Formats ... 49

2.2.3.1 XML Data Types .. 49
2.2.3.1.1 Standard Data Types ... 49
2.2.3.1.2 guidType Simple Type .. 49

2.2.3.2 XML Schema .. 49
2.2.3.2.1 Action Element .. 51
2.2.3.2.2 DatascreenTemplate Element .. 53
2.2.3.2.3 FileGroup Element ... 55
2.2.3.2.4 QuotaTemplate Element ... 56

2.2.4 Error Codes.. 57
2.3 Directory Service Schema Elements ... 58

2.3.1 Interaction Summary .. 58
2.3.2 Resource Property Lists ... 59
2.3.3 Resource Properties .. 59
2.3.4 ValueType References of msDS-ValueTypeReference 60
2.3.5 XML Schema of msDS-ClaimPossibleValues .. 60

3 Protocol Details ... 62
3.1 Client Role Details .. 62

3.1.1 Abstract Data Model .. 62
3.1.2 Timers .. 62
3.1.3 Initialization ... 62
3.1.4 Message Processing Events and Sequencing Rules .. 63

3.1.4.1 Processing Server Replies to Method Calls .. 63
3.1.4.1.1 File Server Resource Manager Protocol Object Relationships 63
3.1.4.1.2 Quota Objects ... 65
3.1.4.1.3 File Screen Objects .. 66
3.1.4.1.4 Storage Report Objects .. 67
3.1.4.1.5 Classification Objects ... 67
3.1.4.1.6 File Management Job Objects .. 68

3.1.4.2 Processing Notifications Sent from the Server to the Client......................... 69
3.1.5 Timer Events .. 69
3.1.6 Other Local Events .. 69

3.2 Server Role Details ... 69
3.2.1 Abstract Data Model .. 69

3.2.1.1 FSRM Base Object ... 70

6 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

3.2.1.2 Quota Model ... 71
3.2.1.2.1 Directory Quotas ... 72

3.2.1.2.1.1 Persisted Directory Quota ... 73
3.2.1.2.1.2 Non-Persisted Directory Quota Instance .. 73

3.2.1.2.2 Auto Apply Quotas ... 74
3.2.1.2.2.1 Persisted Auto Apply Quota ... 74
3.2.1.2.2.2 Non-Persisted Auto Apply Quota Instance 74

3.2.1.2.3 Directory Quota Templates ... 75
3.2.1.2.3.1 Persisted Directory Quota Template ... 75
3.2.1.2.3.2 Non-Persisted Directory Quota Template Instance 75

3.2.1.3 File Screen Model .. 76
3.2.1.3.1 File Screens .. 77

3.2.1.3.1.1 Persisted File Screen .. 78
3.2.1.3.1.2 Non-Persisted File Screen Instance .. 78

3.2.1.3.2 File Screen Exceptions ... 79
3.2.1.3.2.1 Persisted File Screen Exception .. 79
3.2.1.3.2.2 Non-Persisted File Screen Exception Instance 79

3.2.1.3.3 File Screen Templates .. 80
3.2.1.3.3.1 Persisted File Screen Template .. 80
3.2.1.3.3.2 Non-Persisted File Screen Template Instance 81

3.2.1.3.4 File Groups ... 81
3.2.1.3.4.1 Persisted File Group ... 81
3.2.1.3.4.2 Non-Persisted File Group Instance .. 82

3.2.1.4 Notification Model ... 82
3.2.1.5 Storage Reports Model... 84

3.2.1.5.1 Report Jobs .. 84
3.2.1.5.1.1 Persisted Report Job ... 85
3.2.1.5.1.2 Non-Persisted Report Job Instance ... 86
3.2.1.5.1.3 Running Job .. 86

3.2.1.5.2 Reports .. 86
3.2.1.5.3 Report Settings ... 88

3.2.1.6 Classification Model ... 89
3.2.1.6.1 Property Definitions ... 90

3.2.1.6.1.1 Persisted Property Definition ... 90
3.2.1.6.1.2 Non-Persisted Property Definition Instance 91
3.2.1.6.1.3 Property Value Definition .. 91

3.2.1.6.2 Module Definitions ... 91
3.2.1.6.2.1 Persisted Module Definition ... 93
3.2.1.6.2.2 Non-Persisted Module Definition Instance 93

3.2.1.6.3 Rules ... 93
3.2.1.6.3.1 Persisted Rule ... 94
3.2.1.6.3.2 Non-Persisted Rule Instance .. 95

3.2.1.6.4 Classification Job ... 95
3.2.1.6.5 Property Definition Instance .. 96

3.2.1.7 File Management Model ... 96
3.2.1.7.1 File Management Job ... 96

3.2.1.7.1.1 Persisted File Management Job .. 99
3.2.1.7.1.2 Non-Persisted File Management Job Instance 99

3.2.1.7.2 Property Condition ... 99
3.2.1.7.3 Notification period .. 100

3.2.1.8 FolderUsage Model ... 101
3.2.1.8.1 FolderUsage Instance .. 101

3.2.1.9 General Settings Model ... 101
3.2.1.10 Management of FSRM Objects ... 102
3.2.1.11 Enumeration of FSRM Objects .. 102
3.2.1.12 Asynchronous Tasks ... 103

3.2.1.12.1 Running Report Task ... 103
3.2.1.12.2 Running Classification Task .. 106

7 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

3.2.1.12.3 Running File Management Task .. 107
3.2.1.12.4 Quota Scanning .. 113
3.2.1.12.5 Active Directory Synchronization .. 113

3.2.2 Timers ... 116
3.2.3 Initialization .. 116
3.2.4 Message Processing Events and Sequencing Rules ... 118

3.2.4.1 Sequencing Rules ... 118
3.2.4.2 Message Processing Details ... 120

3.2.4.2.1 IFsrmCollection Methods ... 121
3.2.4.2.1.1 _NewEnum (Opnum 7) .. 122
3.2.4.2.1.2 Item (get) (Opnum 8) ... 122
3.2.4.2.1.3 Count (get) (Opnum 9) .. 123
3.2.4.2.1.4 State (get) (Opnum 10) ... 123
3.2.4.2.1.5 Cancel (Opnum 11) ... 124
3.2.4.2.1.6 WaitForCompletion (Opnum 12).. 124
3.2.4.2.1.7 GetById (Opnum 13) ... 125

3.2.4.2.2 IFsrmMutableCollection Methods .. 125
3.2.4.2.2.1 Add (Opnum 14) ... 126
3.2.4.2.2.2 Remove (Opnum 15) ... 126
3.2.4.2.2.3 RemoveById (Opnum 16) .. 127
3.2.4.2.2.4 Clone (Opnum 17) .. 127

3.2.4.2.3 IFsrmCommittableCollection Methods .. 128
3.2.4.2.3.1 Commit (Opnum 18) ... 128

3.2.4.2.4 IFsrmAction Methods .. 129
3.2.4.2.4.1 Id (get) (Opnum 7) ... 129
3.2.4.2.4.2 ActionType (get) (Opnum 8) .. 130
3.2.4.2.4.3 RunLimitInterval (get) (Opnum 9) ... 130
3.2.4.2.4.4 RunLimitInterval (put) (Opnum 10) ... 131
3.2.4.2.4.5 Delete (Opnum 11) ... 131

3.2.4.2.5 IFsrmActionEmail Methods ... 131
3.2.4.2.5.1 MailFrom (get) (Opnum 12) ... 132
3.2.4.2.5.2 MailFrom (put) (Opnum 13) ... 133
3.2.4.2.5.3 MailReplyTo (get) (Opnum 14) ... 133
3.2.4.2.5.4 MailReplyTo (put) (Opnum 15) ... 134
3.2.4.2.5.5 MailTo (get) (Opnum 16) ... 134
3.2.4.2.5.6 MailTo (put) (Opnum 17) ... 135
3.2.4.2.5.7 MailCc (get) (Opnum 18) ... 135
3.2.4.2.5.8 MailCc (put) (Opnum 19) ... 136
3.2.4.2.5.9 MailBcc (get) (Opnum 20) .. 136
3.2.4.2.5.10 MailBcc (put) (Opnum 21) .. 137
3.2.4.2.5.11 MailSubject (get) (Opnum 22) .. 137
3.2.4.2.5.12 MailSubject (put) (Opnum 23) .. 138
3.2.4.2.5.13 MessageText (get) (Opnum 24) .. 139
3.2.4.2.5.14 MessageText (put) (Opnum 25) .. 139

3.2.4.2.6 IFsrmActionEmail2 Methods ... 140
3.2.4.2.6.1 AttachmentFileListSize (get) (Opnum 26)..................................... 140
3.2.4.2.6.2 AttachmentFileListSize (put) (Opnum 27) 140

3.2.4.2.7 IFsrmActionReport Methods ... 141
3.2.4.2.7.1 ReportTypes (get) (Opnum 12) ... 141
3.2.4.2.7.2 ReportTypes (put) (Opnum 13) .. 142
3.2.4.2.7.3 MailTo (get) (Opnum 14) ... 142
3.2.4.2.7.4 MailTo (put) (Opnum 15) ... 143

3.2.4.2.8 IFsrmActionEventLog Methods ... 143
3.2.4.2.8.1 EventType (get) (Opnum 12) ... 144
3.2.4.2.8.2 EventType (put) (Opnum 13) ... 144
3.2.4.2.8.3 MessageText (get) (Opnum 14) .. 145
3.2.4.2.8.4 MessageText (put) (Opnum 15) .. 145

3.2.4.2.9 IFsrmActionCommand Methods .. 146

8 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

3.2.4.2.9.1 ExecutablePath (get) (Opnum 12) ... 146
3.2.4.2.9.2 ExecutablePath (put) (Opnum 13) ... 147
3.2.4.2.9.3 Arguments (get) (Opnum 14) ... 148
3.2.4.2.9.4 Arguments (put) (Opnum 15) ... 148
3.2.4.2.9.5 Account (get) (Opnum 16) ... 149
3.2.4.2.9.6 Account (put) (Opnum 17) ... 149
3.2.4.2.9.7 WorkingDirectory (get) (Opnum 18) .. 150
3.2.4.2.9.8 WorkingDirectory (put) (Opnum 19) .. 151
3.2.4.2.9.9 MonitorCommand (get) (Opnum 20) ... 151
3.2.4.2.9.10 MonitorCommand (put) (Opnum 21) ... 151
3.2.4.2.9.11 KillTimeout (get) (Opnum 22) .. 152
3.2.4.2.9.12 KillTimeout (put) (Opnum 23) .. 152
3.2.4.2.9.13 LogResult (get) (Opnum 24) .. 153
3.2.4.2.9.14 LogResult (put) (Opnum 25) .. 153

3.2.4.2.10 IFsrmObject Methods .. 154
3.2.4.2.10.1 Id (get) (Opnum 7) ... 154
3.2.4.2.10.2 Description (get) (Opnum 8) .. 155
3.2.4.2.10.3 Description (put) (Opnum 9) .. 155
3.2.4.2.10.4 Delete (Opnum 10) ... 156
3.2.4.2.10.5 Commit (Opnum 11) ... 156

3.2.4.2.11 IFsrmSetting Methods ... 157
3.2.4.2.11.1 SmtpServer (get) (Opnum 7) ... 158
3.2.4.2.11.2 SmtpServer (put) (Opnum 8) ... 158
3.2.4.2.11.3 MailFrom (get) (Opnum 9) ... 159
3.2.4.2.11.4 MailFrom (put) (Opnum 10) ... 159
3.2.4.2.11.5 AdminEmail (get) (Opnum 11) .. 159
3.2.4.2.11.6 AdminEmail (put) (Opnum 12) ... 160
3.2.4.2.11.7 DisableCommandLine (get) (Opnum 13) 160
3.2.4.2.11.8 DisableCommandLine (put) (Opnum 14) 161
3.2.4.2.11.9 EnableScreeningAudit (get) (Opnum 15) 161
3.2.4.2.11.10 EnableScreeningAudit (put) (Opnum 16)...................................... 162
3.2.4.2.11.11 EmailTest (Opnum 17) .. 162
3.2.4.2.11.12 SetActionRunLimitInterval (Opnum 18) 163
3.2.4.2.11.13 GetActionRunLimitInterval (Opnum 19) 163

3.2.4.2.12 IFsrmPathMapper Methods .. 164
3.2.4.2.12.1 GetSharePathsForLocalPath (Opnum 7) 164

3.2.4.2.13 IFsrmDerivedObjectsResult Methods ... 165
3.2.4.2.13.1 DerivedObjects (get) (Opnum 7)... 165
3.2.4.2.13.2 Results (get) (Opnum 8) .. 166

3.2.4.2.14 IFsrmQuotaBase Methods .. 167
3.2.4.2.14.1 Commit (Opnum 11) ... 167
3.2.4.2.14.2 QuotaLimit (get) (Opnum 12) ... 167
3.2.4.2.14.3 QuotaLimit (put) (Opnum 13) ... 168
3.2.4.2.14.4 QuotaFlags (get) (Opnum 14) .. 168
3.2.4.2.14.5 QuotaFlags (put) (Opnum 15) .. 169
3.2.4.2.14.6 Thresholds (get) (Opnum 16) ... 169
3.2.4.2.14.7 AddThreshold (Opnum 17) ... 170
3.2.4.2.14.8 DeleteThreshold (Opnum 18) ... 170
3.2.4.2.14.9 ModifyThreshold (Opnum 19) ... 171
3.2.4.2.14.10 CreateThresholdAction (Opnum 20) .. 172
3.2.4.2.14.11 EnumThresholdActions (Opnum 21) .. 172

3.2.4.2.15 IFsrmQuotaObject Methods ... 173
3.2.4.2.15.1 Commit (Opnum 11) ... 174
3.2.4.2.15.2 Path (get) (Opnum 22) .. 174
3.2.4.2.15.3 UserSid (get) (Opnum 23) ... 174
3.2.4.2.15.4 UserAccount (get) (Opnum 24) ... 175
3.2.4.2.15.5 SourceTemplateName (get) (Opnum 25) 175
3.2.4.2.15.6 MatchesSourceTemplate (get) (Opnum 26) 176

9 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

3.2.4.2.15.7 ApplyTemplate (Opnum 27) ... 177
3.2.4.2.16 IFsrmQuota Methods ... 177

3.2.4.2.16.1 Commit (Opnum 11) ... 178
3.2.4.2.16.2 QuotaUsed (get) (Opnum 28) ... 179
3.2.4.2.16.3 QuotaPeakUsage (get) (Opnum 29) .. 179
3.2.4.2.16.4 QuotaPeakUsageTime (get) (Opnum 30) 180
3.2.4.2.16.5 ResetPeakUsage (Opnum 31) ... 180
3.2.4.2.16.6 RefreshUsageProperties (Opnum 32) ... 180

3.2.4.2.17 IFsrmAutoApplyQuota Methods .. 181
3.2.4.2.17.1 Commit (Opnum 11) ... 181
3.2.4.2.17.2 ExcludeFolders (get) (Opnum 28) ... 182
3.2.4.2.17.3 ExcludeFolders (put) (Opnum 29) ... 183
3.2.4.2.17.4 CommitAndUpdateDerived (Opnum 30) 183

3.2.4.2.18 IFsrmQuotaManager Methods ... 184
3.2.4.2.18.1 ActionVariables (get) (Opnum 7) .. 184
3.2.4.2.18.2 ActionVariableDescriptions (get) (Opnum 8) 185
3.2.4.2.18.3 CreateQuota (Opnum 9) .. 185
3.2.4.2.18.4 CreateAutoApplyQuota (Opnum 10) .. 187
3.2.4.2.18.5 GetQuota (Opnum 11) ... 188
3.2.4.2.18.6 GetAutoApplyQuota (Opnum 12)... 189
3.2.4.2.18.7 GetRestrictiveQuota (Opnum 13) .. 190
3.2.4.2.18.8 EnumQuotas (Opnum 14) .. 190
3.2.4.2.18.9 EnumAutoApplyQuotas (Opnum 15) .. 192
3.2.4.2.18.10 EnumEffectiveQuotas (Opnum 16) .. 193
3.2.4.2.18.11 Scan (Opnum 17) ... 193
3.2.4.2.18.12 CreateQuotaCollection (Opnum 18) ... 194

3.2.4.2.19 IFsrmQuotaManagerEx Methods ... 195
3.2.4.2.19.1 IsAffectedByQuota (Opnum 19) .. 195

3.2.4.2.20 IFsrmQuotaTemplate Methods .. 196
3.2.4.2.20.1 Commit (Opnum 11) ... 196
3.2.4.2.20.2 QuotaFlags (put) (Opnum 15) .. 197
3.2.4.2.20.3 Name (get) (Opnum 22) .. 197
3.2.4.2.20.4 Name (put) (Opnum 23) .. 198
3.2.4.2.20.5 CopyTemplate (Opnum 24) .. 198
3.2.4.2.20.6 CommitAndUpdateDerived (Opnum 25) 199

3.2.4.2.21 IFsrmQuotaTemplateImported Methods ... 200
3.2.4.2.21.1 OverwriteOnCommit (get) (Opnum 16) .. 200
3.2.4.2.21.2 OverwriteOnCommit (put) (Opnum 17) 200

3.2.4.2.22 IFsrmQuotaTemplateManager Methods .. 201
3.2.4.2.22.1 CreateTemplate (Opnum 7) .. 201
3.2.4.2.22.2 GetTemplate (Opnum 8) .. 202
3.2.4.2.22.3 EnumTemplates (Opnum 9) ... 203
3.2.4.2.22.4 ExportTemplates (Opnum 10)... 204
3.2.4.2.22.5 ImportTemplates (Opnum 11) .. 205

3.2.4.2.23 IFsrmFileGroup Methods .. 206
3.2.4.2.23.1 Commit (Opnum 11) ... 206
3.2.4.2.23.2 Name (get) (Opnum 12) .. 207
3.2.4.2.23.3 Name (put) (Opnum 13) .. 208
3.2.4.2.23.4 Members (get) (Opnum 14) ... 208
3.2.4.2.23.5 Members (put) (Opnum 15) ... 209
3.2.4.2.23.6 NonMembers (get) (Opnum 16) .. 209
3.2.4.2.23.7 NonMembers (put) (Opnum 17) .. 210

3.2.4.2.24 IFsrmFileGroupImported Methods ... 210
3.2.4.2.24.1 OverwriteOnCommit (get) (Opnum 18) .. 211
3.2.4.2.24.2 OverwriteOnCommit (put) (Opnum 19) 211

3.2.4.2.25 IFsrmFileGroupManager Methods .. 212
3.2.4.2.25.1 CreateFileGroup (Opnum 7) ... 212
3.2.4.2.25.2 GetFileGroup (Opnum 8) .. 213

10 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

3.2.4.2.25.3 EnumFileGroups (Opnum 9) ... 214
3.2.4.2.25.4 ExportFileGroups (Opnum 10) .. 214
3.2.4.2.25.5 ImportFileGroups (Opnum 11) .. 215

3.2.4.2.26 IFsrmFileScreenBase Methods .. 216
3.2.4.2.26.1 BlockedFileGroups (get) (Opnum 12)... 216
3.2.4.2.26.2 BlockedFileGroups (put) (Opnum 13) .. 217
3.2.4.2.26.3 FileScreenFlags (get) (Opnum 14) .. 217
3.2.4.2.26.4 FileScreenFlags (put) (Opnum 15) .. 218
3.2.4.2.26.5 CreateAction (Opnum 16) .. 219
3.2.4.2.26.6 EnumActions (Opnum 17) .. 219

3.2.4.2.27 IFsrmFileScreen Methods ... 220
3.2.4.2.27.1 Commit (Opnum 11) ... 220
3.2.4.2.27.2 Path (get) (Opnum 18) .. 221
3.2.4.2.27.3 SourceTemplateName (get) (Opnum 19) 222
3.2.4.2.27.4 MatchesSourceTemplate (get) (Opnum 20) 222
3.2.4.2.27.5 UserSid (get) (Opnum 21) ... 223
3.2.4.2.27.6 UserAccount (get) (Opnum 22) ... 223
3.2.4.2.27.7 ApplyTemplate (Opnum 23) ... 224

3.2.4.2.28 IFsrmFileScreenException Methods ... 224
3.2.4.2.28.1 Commit (Opnum 11) ... 225
3.2.4.2.28.2 Path (get) (Opnum 12) .. 225
3.2.4.2.28.3 AllowedFileGroups (get) (Opnum 13) ... 226
3.2.4.2.28.4 AllowedFileGroups (put) (Opnum 14) .. 226

3.2.4.2.29 IFsrmFileScreenManager Methods ... 227
3.2.4.2.29.1 ActionVariables (Opnum 7) .. 227
3.2.4.2.29.2 ActionVariableDescriptions (Opnum 8) ... 228
3.2.4.2.29.3 CreateFileScreen (Opnum 9) .. 228
3.2.4.2.29.4 GetFileScreen (Opnum 10) ... 229
3.2.4.2.29.5 EnumFileScreens (Opnum 11) .. 230
3.2.4.2.29.6 CreateFileScreenException (Opnum 12) 231
3.2.4.2.29.7 GetFileScreenException (Opnum 13) ... 232
3.2.4.2.29.8 EnumFileScreenExceptions (Opnum 14) 233
3.2.4.2.29.9 CreateFileScreenCollection (Opnum 15) 234

3.2.4.2.30 IFsrmFileScreenTemplate Methods .. 235
3.2.4.2.30.1 Commit (Opnum 11) ... 235
3.2.4.2.30.2 Name (get) (Opnum 18) .. 236
3.2.4.2.30.3 Name (put) (Opnum 19) .. 237
3.2.4.2.30.4 CopyTemplate (Opnum 20) .. 237
3.2.4.2.30.5 CommitAndUpdateDerived (Opnum 21) 238

3.2.4.2.31 IFsrmFileScreenTemplateImported Methods 239
3.2.4.2.31.1 OverwriteOnCommit (get) (Opnum 22) .. 239
3.2.4.2.31.2 OverwriteOnCommit (put) (Opnum 23) 239

3.2.4.2.32 IFsrmFileScreenTemplateManager Methods .. 240
3.2.4.2.32.1 CreateTemplate (Opnum 7) .. 240
3.2.4.2.32.2 GetTemplate (Opnum 8) .. 241
3.2.4.2.32.3 EnumTemplates (Opnum 9) ... 242
3.2.4.2.32.4 ExportTemplates (Opnum 10)... 243
3.2.4.2.32.5 ImportTemplates (Opnum 11) .. 244

3.2.4.2.33 IFsrmReportManager Methods .. 245
3.2.4.2.33.1 EnumReportJobs (Opnum 7) .. 245
3.2.4.2.33.2 CreateReportJob (Opnum 8) ... 246
3.2.4.2.33.3 GetReportJob (Opnum 9) ... 247
3.2.4.2.33.4 GetOutputDirectory (Opnum 10) ... 248
3.2.4.2.33.5 SetOutputDirectory (Opnum 11) ... 249
3.2.4.2.33.6 IsFilterValidForReportType (Opnum 12) 250
3.2.4.2.33.7 GetDefaultFilter (Opnum 13) .. 250
3.2.4.2.33.8 SetDefaultFilter (Opnum 14) .. 251
3.2.4.2.33.9 GetReportSizeLimit (Opnum 15) ... 252

11 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

3.2.4.2.33.10 SetReportSizeLimit (Opnum 16) ... 253
3.2.4.2.34 IFsrmReportJob Methods ... 253

3.2.4.2.34.1 Commit (Opnum 11) ... 254
3.2.4.2.34.2 Task (get) (Opnum 12) .. 255
3.2.4.2.34.3 Task (put) (Opnum 13) ... 256
3.2.4.2.34.4 NamespaceRoots (get) (Opnum 14) .. 256
3.2.4.2.34.5 NamespaceRoots (put) (Opnum 15) .. 257
3.2.4.2.34.6 Formats (get) (Opnum 16) ... 257
3.2.4.2.34.7 Formats (put) (Opnum 17) ... 258
3.2.4.2.34.8 MailTo (get) (Opnum 18) ... 258
3.2.4.2.34.9 MailTo (put) (Opnum 19) ... 259
3.2.4.2.34.10 RunningStatus (get) (Opnum 20) .. 260
3.2.4.2.34.11 LastRun (get) (Opnum 21) ... 260
3.2.4.2.34.12 LastError (get) (Opnum 22) ... 261
3.2.4.2.34.13 LastGeneratedInDirectory (get) (Opnum 23) 261
3.2.4.2.34.14 EnumReports (Opnum 24) ... 262
3.2.4.2.34.15 CreateReport (Opnum 25) .. 262
3.2.4.2.34.16 Run (Opnum 26) ... 263
3.2.4.2.34.17 WaitForCompletion (Opnum 27).. 264
3.2.4.2.34.18 Cancel (Opnum 28) ... 265

3.2.4.2.35 IFsrmReport Methods .. 265
3.2.4.2.35.1 Type (get) (Opnum 7) ... 266
3.2.4.2.35.2 Name (get) (Opnum 8) .. 266
3.2.4.2.35.3 Name (put) (Opnum 9) .. 267
3.2.4.2.35.4 Description (get) (Opnum 10) .. 267
3.2.4.2.35.5 Description (put) (Opnum 11) .. 268
3.2.4.2.35.6 LastGeneratedFileNamePrefix (get) (Opnum 12) 268
3.2.4.2.35.7 GetFilter (Opnum 13) .. 268
3.2.4.2.35.8 SetFilter (Opnum 14) .. 269
3.2.4.2.35.9 Delete (Opnum 15) ... 270

3.2.4.2.36 IFsrmReportScheduler Methods .. 270
3.2.4.2.36.1 VerifyNamespaces (Opnum 7) .. 270
3.2.4.2.36.2 CreateScheduleTask (Opnum 8) ... 271
3.2.4.2.36.3 ModifyScheduleTask (Opnum 9).. 272
3.2.4.2.36.4 DeleteScheduleTask (Opnum 10) .. 273

3.2.4.2.37 IFsrmPropertyDefinition .. 273
3.2.4.2.37.1 Commit (Opnum 11) ... 274
3.2.4.2.37.2 Name (get) (Opnum 12) .. 275
3.2.4.2.37.3 Name (put) (Opnum 13) .. 275
3.2.4.2.37.4 Type (get) (Opnum 14) ... 276
3.2.4.2.37.5 Type (put) (Opnum 15) ... 276
3.2.4.2.37.6 PossibleValues (get) (Opnum 16) .. 277
3.2.4.2.37.7 PossibleValues (put) (Opnum 17) .. 277
3.2.4.2.37.8 ValueDescriptions (get) (Opnum 18) ... 278
3.2.4.2.37.9 ValueDescriptions (put) (Opnum 19) ... 278
3.2.4.2.37.10 Parameters (get) (Opnum 20) .. 279
3.2.4.2.37.11 Parameters (put) (Opnum 21) .. 279

3.2.4.2.38 IFsrmPropertyDefinition2 ... 280
3.2.4.2.38.1 PropertyDefinitionFlags (get) (Opnum 22) 280
3.2.4.2.38.2 DisplayName (get) (Opnum 23) .. 281
3.2.4.2.38.3 DisplayName (put) (Opnum 24) .. 282
3.2.4.2.38.4 AppliesTo (get) (Opnum 25) ... 282
3.2.4.2.38.5 AppliesTo (put) (Opnum 26) ... 282
3.2.4.2.38.6 ValueDefinitions (get) (Opnum 27).. 283

3.2.4.2.39 IFsrmPropertyDefinitionValue ... 283
3.2.4.2.39.1 Name (get) (Opnum 12) .. 284
3.2.4.2.39.2 DisplayName (get) (Opnum 13) .. 284
3.2.4.2.39.3 Description (get) (Opnum 14) .. 285

12 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

3.2.4.2.39.4 UniqueID (get) (Opnum 15) ... 285
3.2.4.2.40 IFsrmProperty .. 286

3.2.4.2.40.1 Name (get) (Opnum 12) .. 286
3.2.4.2.40.2 Value (get) (Opnum 13) .. 287
3.2.4.2.40.3 Sources (get) (Opnum 14) ... 287
3.2.4.2.40.4 PropertyFlags (get) (Opnum 15) ... 288

3.2.4.2.41 IFsrmRule.. 288
3.2.4.2.41.1 Name (get) (Opnum 12) .. 289
3.2.4.2.41.2 Name (put) (Opnum 13) .. 289
3.2.4.2.41.3 RuleType (get) (Opnum 14) ... 289
3.2.4.2.41.4 ModuleDefinitionName (get) (Opnum 15) 290
3.2.4.2.41.5 ModuleDefinitionName (put) (Opnum 16) 290
3.2.4.2.41.6 NamespaceRoots (get) (Opnum 17) .. 291
3.2.4.2.41.7 NamespaceRoots (put) (Opnum 18) .. 291
3.2.4.2.41.8 RuleFlags (get) (Opnum 19) ... 292
3.2.4.2.41.9 RuleFlags (put) (Opnum 20) ... 292
3.2.4.2.41.10 Parameters (get) (Opnum 21) .. 293
3.2.4.2.41.11 Parameters (put) (Opnum 22) .. 293
3.2.4.2.41.12 LastModified (get) (Opnum 23) ... 294

3.2.4.2.42 IFsrmClassificationRule ... 294
3.2.4.2.42.1 Commit (Opnum 11) ... 295
3.2.4.2.42.2 ExecutionOption (get) (Opnum 24) ... 296
3.2.4.2.42.3 ExecutionOption (put) (Opnum 25) ... 297
3.2.4.2.42.4 PropertyAffected (get) (Opnum 26) ... 297
3.2.4.2.42.5 PropertyAffected (put) (Opnum 27) ... 298
3.2.4.2.42.6 Value (get) (Opnum 28) .. 298
3.2.4.2.42.7 Value (put) (Opnum 29) .. 299

3.2.4.2.43 IFsrmPipelineModuleDefinition .. 299
3.2.4.2.43.1 ModuleClsid (get) (Opnum 12).. 300
3.2.4.2.43.2 ModuleClsid (put) (Opnum 13) ... 301
3.2.4.2.43.3 Name (get) (Opnum 14) .. 301
3.2.4.2.43.4 Name (put) (Opnum 15) .. 302
3.2.4.2.43.5 Company (get) (Opnum 16) ... 302
3.2.4.2.43.6 Company (put) (Opnum 17) ... 302
3.2.4.2.43.7 Version (get) (Opnum 18) .. 303
3.2.4.2.43.8 Version (put) (Opnum 19) .. 303
3.2.4.2.43.9 ModuleType (get) (Opnum 20) ... 303
3.2.4.2.43.10 Enabled (get) (Opnum 21) ... 304
3.2.4.2.43.11 Enabled (put) (Opnum 22) ... 305
3.2.4.2.43.12 NeedsFileContent (get) (Opnum 23) .. 305
3.2.4.2.43.13 NeedsFileContent (put) (Opnum 24) .. 305
3.2.4.2.43.14 Account (get) (Opnum 25) ... 306
3.2.4.2.43.15 Account (put) (Opnum 26) ... 306
3.2.4.2.43.16 SupportedExtensions (get) (Opnum 27) 307
3.2.4.2.43.17 SupportedExtensions (put) (Opnum 28) 307
3.2.4.2.43.18 Parameters (get) (Opnum 29) .. 308
3.2.4.2.43.19 Parameters (put) (Opnum 30) .. 308

3.2.4.2.44 IFsrmClassifierModuleDefinition .. 309
3.2.4.2.44.1 Commit (Opnum 11) ... 309
3.2.4.2.44.2 PropertiesAffected (get) (Opnum 31) ... 310
3.2.4.2.44.3 PropertiesAffected (put) (Opnum 32) .. 311
3.2.4.2.44.4 PropertiesUsed (get) (Opnum 33) ... 311
3.2.4.2.44.5 PropertiesUsed (put) (Opnum 34) ... 312
3.2.4.2.44.6 NeedsExplicitValue (get) (Opnum 35) .. 312
3.2.4.2.44.7 NeedsExplicitValue (put) (Opnum 36) .. 313

3.2.4.2.45 IFsrmClassificationManager ... 313
3.2.4.2.45.1 ClassificationReportFormats (get) (Opnum 7) 314
3.2.4.2.45.2 ClassificationReportFormats (put) (Opnum 8) 314

13 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

3.2.4.2.45.3 Logging (get) (Opnum 9) ... 315
3.2.4.2.45.4 Logging (put) (Opnum 10) ... 315
3.2.4.2.45.5 ClassificationReportMailTo (get) (Opnum 11) 316
3.2.4.2.45.6 ClassificationReportMailTo (put) (Opnum 12) 316
3.2.4.2.45.7 ClassificationReportEnabled (get) (Opnum 13).............................. 317
3.2.4.2.45.8 ClassificationReportEnabled (put) (Opnum 14) 317
3.2.4.2.45.9 ClassificationLastReportPathWithoutExtension (get) (Opnum 15) 318
3.2.4.2.45.10 ClassificationLastError (get) (Opnum 16) 318
3.2.4.2.45.11 ClassificationRunningStatus (get) (Opnum 17) 319
3.2.4.2.45.12 EnumPropertyDefinitions (Opnum 18) ... 319
3.2.4.2.45.13 CreatePropertyDefinition (Opnum 19) .. 320
3.2.4.2.45.14 GetPropertyDefinition (Opnum 20) .. 321
3.2.4.2.45.15 EnumRules (Opnum 21)... 322
3.2.4.2.45.16 CreateRule (Opnum 22) ... 323
3.2.4.2.45.17 GetRule (Opnum 23) ... 324
3.2.4.2.45.18 EnumModuleDefinitions (Opnum 24) ... 325
3.2.4.2.45.19 CreateModuleDefinition (Opnum 25) .. 326
3.2.4.2.45.20 GetModuleDefinition (Opnum 26) .. 328
3.2.4.2.45.21 RunClassification (Opnum 27) .. 329
3.2.4.2.45.22 WaitForClassificationCompletion (Opnum 28) 330
3.2.4.2.45.23 CancelClassification (Opnum 29) ... 330
3.2.4.2.45.24 EnumFileProperties (Opnum 30) ... 331
3.2.4.2.45.25 GetFileProperty (Opnum 31) .. 332
3.2.4.2.45.26 SetFileProperty (Opnum 32) ... 333
3.2.4.2.45.27 ClearFileProperty (Opnum 33) .. 335

3.2.4.2.46 IFsrmClassificationManager2 .. 336
3.2.4.2.46.1 ClassifyFiles (Opnum 34) ... 336

3.2.4.2.47 IFsrmStorageModuleDefinition ... 337
3.2.4.2.47.1 Commit (Opnum 11) ... 337
3.2.4.2.47.2 Capabilities (get) (Opnum 31) .. 339
3.2.4.2.47.3 Capabilities (put) (Opnum 32) .. 339
3.2.4.2.47.4 StorageType (get) (Opnum 33) .. 340
3.2.4.2.47.5 StorageType (put) (Opnum 34) .. 340
3.2.4.2.47.6 UpdatesFileContent (get) (Opnum 35) ... 340
3.2.4.2.47.7 UpdatesFileContent (put) (Opnum 36) ... 341

3.2.4.2.48 IFsrmFileManagementJob .. 341
3.2.4.2.48.1 Commit (Opnum 11) ... 343
3.2.4.2.48.2 Name (get) (Opnum 12) .. 345
3.2.4.2.48.3 Name (put) (Opnum 13) .. 346
3.2.4.2.48.4 NamespaceRoots (get) (Opnum 14) .. 346
3.2.4.2.48.5 NamespaceRoots (put) (Opnum 15) .. 347
3.2.4.2.48.6 Enabled (get) (Opnum 16) ... 347
3.2.4.2.48.7 Enabled (put) (Opnum 17) ... 348
3.2.4.2.48.8 OperationType (get) (Opnum 18) .. 348
3.2.4.2.48.9 OperationType (put) (Opnum 19) ... 349
3.2.4.2.48.10 ExpirationDirectory (get) (Opnum 20) ... 349
3.2.4.2.48.11 ExpirationDirectory (put) (Opnum 21) ... 350
3.2.4.2.48.12 CustomAction (get) (Opnum 22) ... 350
3.2.4.2.48.13 Notifications (get) (Opnum 23) ... 351
3.2.4.2.48.14 Logging (get) (Opnum 24) ... 351
3.2.4.2.48.15 Logging (put) (Opnum 25) ... 352
3.2.4.2.48.16 ReportEnabled (get) (Opnum 26) .. 352
3.2.4.2.48.17 ReportEnabled (put) (Opnum 27) .. 353
3.2.4.2.48.18 Formats (get) (Opnum 28) ... 354
3.2.4.2.48.19 Formats (put) (Opnum 29) ... 354
3.2.4.2.48.20 MailTo (get) (Opnum 30) ... 355
3.2.4.2.48.21 MailTo (put) (Opnum 31) ... 355
3.2.4.2.48.22 DaysSinceFileCreated (get) (Opnum 32) 356

14 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

3.2.4.2.48.23 DaysSinceFileCreated (put) (Opnum 33) 356
3.2.4.2.48.24 DaysSinceFileLastAccessed (get) (Opnum 34) 357
3.2.4.2.48.25 DaysSinceFileLastAccessed (put) (Opnum 35) 357
3.2.4.2.48.26 DaysSinceFileLastModified (get) (Opnum 36) 358
3.2.4.2.48.27 DaysSinceFileLastModified (put) (Opnum 37) 358
3.2.4.2.48.28 PropertyConditions (get) (Opnum 38) .. 359
3.2.4.2.48.29 FromDate (get) (Opnum 39) .. 359
3.2.4.2.48.30 FromDate (put) (Opnum 40) .. 360
3.2.4.2.48.31 Task (get) (Opnum 41) .. 360
3.2.4.2.48.32 Task (put) (Opnum 42) ... 361
3.2.4.2.48.33 Parameters (get) (Opnum 43) .. 361
3.2.4.2.48.34 Parameters (put) (Opnum 44) .. 362
3.2.4.2.48.35 RunningStatus (get) (Opnum 45) .. 362
3.2.4.2.48.36 LastError (get) (Opnum 46) ... 363
3.2.4.2.48.37 LastReportPathWithoutExtension (get) (Opnum 47) 364
3.2.4.2.48.38 LastRun (get) (Opnum 48) ... 364
3.2.4.2.48.39 FileNamePattern (get) (Opnum 49) ... 365
3.2.4.2.48.40 FileNamePattern (put) (Opnum 50) ... 365
3.2.4.2.48.41 Run (Opnum 51) ... 366
3.2.4.2.48.42 WaitForCompletion (Opnum 52).. 367
3.2.4.2.48.43 Cancel (Opnum 53) ... 368
3.2.4.2.48.44 AddNotification (Opnum 54) ... 368
3.2.4.2.48.45 DeleteNotification (Opnum 55) ... 369
3.2.4.2.48.46 ModifyNotification (Opnum 56) ... 369
3.2.4.2.48.47 CreateNotificationAction (Opnum 57) .. 370
3.2.4.2.48.48 EnumNotificationActions (Opnum 58) .. 372
3.2.4.2.48.49 CreatePropertyCondition (Opnum 59) .. 373
3.2.4.2.48.50 CreateCustomAction (Opnum 60) .. 374

3.2.4.2.49 IFsrmPropertyCondition ... 374
3.2.4.2.49.1 Name (get) (Opnum 7) .. 375
3.2.4.2.49.2 Name (put) (Opnum 8) .. 375
3.2.4.2.49.3 Type (get) (Opnum 9) ... 376
3.2.4.2.49.4 Type (put) (Opnum 10) ... 377
3.2.4.2.49.5 Value (get) (Opnum 11) .. 377
3.2.4.2.49.6 Value (put) (Opnum 12) .. 378
3.2.4.2.49.7 Delete (Opnum 13) ... 378

3.2.4.2.50 IFsrmFileManagementJobManager .. 378
3.2.4.2.50.1 EnumFileManagementJobs (Opnum 7) ... 378
3.2.4.2.50.2 CreateFileManagementJob (Opnum 8) ... 379
3.2.4.2.50.3 GetFileManagementJob (Opnum 9) ... 381

3.2.4.3 Macro Usage ... 382
3.2.4.3.1 Quota Macros ... 382
3.2.4.3.2 File Screen Macros .. 385
3.2.4.3.3 File Management Job Macros.. 387
3.2.4.3.4 General Macros .. 389

3.2.4.4 Running Notifications .. 390
3.2.4.4.1 Command Line Action Type.. 390
3.2.4.4.2 Email Action Type ... 391
3.2.4.4.3 Event Log Action Type ... 391
3.2.4.4.4 Report Action Type ... 391

3.2.4.5 Aggregating Property Definition Instance Values 392
3.2.4.6 Validating Property Values .. 392

3.2.5 General Classification Actions .. 393
3.2.5.1 Retrieve stored classification properties .. 393
3.2.5.2 Generate New Classification Properties ... 394
3.2.5.3 Store classification properties .. 396

3.2.6 Timer Events ... 396
3.2.7 Other Local Events ... 397

15 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

3.2.7.1 Quota Events ... 397
3.2.7.2 Quota Usage Update Events .. 397
3.2.7.3 Peak Quota Usage Events ... 397
3.2.7.4 File Screen Events .. 397
3.2.7.5 Directory Creation Events ... 398
3.2.7.6 Directory Deletion Events .. 398
3.2.7.7 Directory Rename Events .. 398
3.2.7.8 Volume Discovery Events .. 398
3.2.7.9 Volume Removal Events ... 398
3.2.7.10 File Classification Security Propagation ... 398
3.2.7.11 File Classification Event .. 399

4 Protocol Examples ... 400
4.1 Query Enumeration of File Server Resource Manager Protocol Directory Quotas 400
4.2 Retrieving Properties of File Server Resource Manager Protocol File Screens 402
4.3 Modifying File Server Resource Manager Protocol Directory Quota Properties Derived

from Templates .. 404
4.4 Scheduling File Server Resource Manager Protocol Storage Reports 406
4.5 Modifying File Server Resource Manager Protocol Global Settings 408
4.6 Enumerating Classification Properties .. 409
4.7 Adding Classification Rules ... 410
4.8 Modifying File Management Jobs ... 411
4.9 Updating Property Values for a File .. 413

5 Security ... 416

6 Appendix A: Full IDL .. 417

7 Appendix B: Product Behavior ... 453

8 Change Tracking .. 467

9 Index ... 468

16 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

1 Introduction

The File Server Resource Manager (FSRM) Protocol is a set of DCOM interfaces for managing the
configuration of directory quotas, file screens, classification properties, classification rules, file
management jobs, report jobs, classifier modules, and storage modules on a machine. The File
Server Resource Manager Protocol deals with operating system, file system, and storage concepts.
Although the basic concepts are outlined in this specification, the specification assumes that the

reader has familiarity with these technologies. For background information about storage, disk, and
volume concepts, see [MSDN-STC], [MSDN-DISKMAN], and [MSDN-PARTITIONINFO].

This protocol is used to programmatically enumerate and configure directory quotas, file screens,
report jobs, classifier modules, and storage modules on local and remote machines.<1>

Sections 1.5, 1.8, 1.9, 2, and 3 of this specification are normative. All other sections and examples in
this specification are informative.

1.1 Glossary

This document uses the following terms:

Active Directory: A general-purpose network directory service. Active Directory also refers to
the Windows implementation of a directory service. Active Directory stores information about

a variety of objects in the network. Importantly, user accounts, computer accounts, groups, and
all related credential information used by the Windows implementation of Kerberos are stored in
Active Directory. Active Directory is either deployed as Active Directory Domain Services
(AD DS) or Active Directory Lightweight Directory Services (AD LDS). [MS-ADTS]
describes both forms. For more information, see [MS-AUTHSOD] section 1.1.1.5.2, Lightweight
Directory Access Protocol (LDAP) versions 2 and 3, Kerberos, and DNS.

Active Directory Domain Services (AD DS): A directory service (DS) implemented by a domain

controller (DC). The DS provides a data store for objects that is distributed across multiple DCs.
The DCs interoperate as peers to ensure that a local change to an object replicates correctly
across DCs. For more information, see [MS-AUTHSOD] section 1.1.1.5.2 and [MS-ADTS]. For

information about product versions, see [MS-ADTS] section 1. See also Active Directory.

Active Directory Lightweight Directory Services (AD LDS): A directory service (DS)
implemented by a domain controller (DC). The most significant difference between AD LDS and

Active Directory Domain Services (AD DS) is that AD LDS does not host domain naming
contexts (domain NCs). A server can host multiple AD LDS DCs. Each DC is an independent
AD LDS instance, with its own independent state. AD LDS can be run as an operating system
DS or as a directory service provided by a standalone application (Active Directory Application
Mode (ADAM)). For more information, see [MS-ADTS]. See also Active Directory.

Active Directory possible value: A collection consisting of name, display name, and description.

Active Directory property definition: Global Property Definitions stored in Active Directory. See

Directory Service Schema Elements for details.

application programming interface (API): A set of routines used by an application program to

direct the performance of procedures used by the computer's operating system. Also called
application program interface.

auto apply quota: An FSRM object associated with a file system directory that causes
directory quotas to be automatically created on all subdirectories that currently exist or are
created in the future. See section 3.2.1.2.2 for details.

https://go.microsoft.com/fwlink/?LinkId=90139
https://go.microsoft.com/fwlink/?LinkId=89992
https://go.microsoft.com/fwlink/?LinkId=90059
%5bMS-ADTS%5d.pdf#Section_d243592709994c628c6d13ba31a52e1a
%5bMS-AUTHSOD%5d.pdf#Section_953d700a57cb4cf7b0c3a64f34581cc9

17 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

classification module: A module definition that encapsulates a mechanism to classify files. It
contains logic to determine what value a specific classification property on a file might be set to,

based on information about the file and the contents of the file. See section 3.2.1.6.2 for details.

classification rule: A FSRM object that defines a rule, which invokes a classification module

on the files in a set of directories to apply property definition instances to each of those files.

cluster: A group of computers that are able to dynamically assign resource tasks among nodes in
a group.

collection object: A collection that contains zero or more objects all of the same type. Collection
objects are generally returned from enumeration methods, but are also returned for some
object elements that have zero or more entries. For more information, see section 3.2.1.11.

common name (CN): A string attribute of a certificate that is one component of a distinguished

name (DN). In Microsoft Enterprise uses, a CN must be unique within the forest where it is
defined and any forests that share trust with the defining forest. The website or email address of
the certificate owner is often used as a common name. Client applications often refer to a

certification authority (CA) by the CN of its signing certificate.

Component Object Model (COM): An object-oriented programming model that defines how
objects interact within a single process or between processes. In COM, clients have access to an

object through interfaces implemented on the object. For more information, see [MS-DCOM].

directory quota: An FSRM object that is associated with a file system directory that limits the
amount of data, which the system or any user can store in a directory.

directory quota template: An FSRM object that captures all the properties of a directory
quota but is not associated with a specific file system directory. Templates are identified by a
name and are used to simplify configuration of directory quotas. See section 3.2.1.2.3 for
details.

directory quota threshold: A target directory size value that is represented as a percentage of
the directory quota limit. When the size of all data in the directory reaches the target, the
FSRM server can raise one or more FSRM notifications.

distinguished name (DN): A name that uniquely identifies an object by using the relative
distinguished name (RDN) for the object, and the names of container objects and domains
that contain the object. The distinguished name (DN) identifies the object and its location in a
tree.

Distributed Component Object Model (DCOM): The Microsoft Component Object Model (COM)
specification that defines how components communicate over networks, as specified in [MS-
DCOM].

domain naming context (domain NC): A partition of the directory that contains information
about the domain and is replicated with other domain controllers (DCs) in the same domain.

drive path: See mounted folder.

endpoint: A network-specific address of a remote procedure call (RPC) server process for remote

procedure calls. The actual name and type of the endpoint depends on the RPC protocol
sequence that is being used. For example, for RPC over TCP (RPC Protocol Sequence
ncacn_ip_tcp), an endpoint might be TCP port 1025. For RPC over Server Message Block (RPC
Protocol Sequence ncacn_np), an endpoint might be the name of a named pipe. For more
information, see [C706].

event log: A collection of records, each of which corresponds to an event.

%5bMS-DCOM%5d.pdf#Section_4a893f3dbd2948cd9f43d9777a4415b0
https://go.microsoft.com/fwlink/?LinkId=89824

18 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

FCI Alternate Data Stream: An alternate data stream in NTFS used by FSRM to store property
definition instances for a file. See [MS-FCIADS] section 2, for details on storing classification

properties.

file extension: The sequence of characters in a file's name between the end of the file's name and

the last "." character. Vendors of applications choose such sequences for the applications to
uniquely identify files that were created by those applications. This allows file management
software to determine which application are to be used to open a file.

file group: An FSRM object that contains a logical collection of file name patterns, which are
identified by name that is used to define file screens and file screen exceptions. File group
definitions can also be used for generating report jobs that are based on the file type.

file management job: A scheduled task that applies a command to a set of files as determined by

a list of conditions and a list of namespaces.

file name pattern: A string expression that defines a set of file names. The expression can
contain the wild card characters "*" and "?", which are evaluated as follows: a "*" matches 0 or

more characters and a "?" matches exactly 1 character. For example, the file name
"example.cpp" matches the pattern "e*.cpp", but not "e?.cpp". The file name "ex.cpp" would
match both patterns. Note that when the file name pattern is compared to a specific file name,

the pattern match is case-insensitive, as specified in section 3.2.7.4.

file screen: An FSRM object that is associated with a file system directory that limits the types
of files that the system or any user can store in a directory. When a restricted file is detected,
the FSRM server can raise one or more FSRM notifications.

file screen exception: An FSRM object associated with a file system directory that specifically
excludes types of files from file screen processing. See section 3.2.1.3.2 for details.

file screen template: An FSRM object that captures all the properties of a file screen but is not

associated with a specific file system directory. Templates are identified by a name and are
used to simplify configuration of file screens. See section 3.2.1.3.3 for details.

file security descriptor: A data structure containing the security information associated with a

securable object. See [MS-AZOD] section 1.1.1.3 for more information. Identifies an object's
owner by its security identifier (SID). The format of the structure is as specified in [MS-DTYP]
section 2.4.6.

file system: A set of data structures for naming, organizing, and storing files in a volume. NTFS,

FAT, and FAT32 are examples of file system types.

FSRM object: A general term referring to an object that can be manipulated by FSRM, where the
object can be any kind specified in section 3.2.1. Examples of FSRM objects include directory
quotas, file screens, and report jobs.

globally unique identifier (GUID): A term used interchangeably with universally unique
identifier (UUID) in Microsoft protocol technical documents (TDs). Interchanging the usage of

these terms does not imply or require a specific algorithm or mechanism to generate the value.
Specifically, the use of this term does not imply or require that the algorithms described in

[RFC4122] or [C706] must be used for generating the GUID. See also universally unique
identifier (UUID).

interface: A group of related function prototypes in a specific order, analogous to a C++ virtual
interface. Multiple objects, of different object class, may implement the same interface. A
derived interface may be created by adding methods after the end of an existing interface. In

the Distributed Component Object Model (DCOM), all interfaces initially derive from IUnknown.

%5bMS-FCIADS%5d.pdf#Section_629d7a1554ba4e1ca1b0547afba28485
%5bMS-AZOD%5d.pdf#Section_5a0a0a3ec7a742e1b5f2cc8d8bd9739e
%5bMS-DTYP%5d.pdf#Section_cca2742956894a16b2b49325d93e4ba2
https://go.microsoft.com/fwlink/?LinkId=90460

19 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

module definition: An FSRM object that implements a locally called API to participate in
determining how files are classified or how the property definition instances are stored for each

file. See section 3.2.1.6.2 for details.

NT file system (NTFS): A proprietary Microsoft file system. For more information, see [MSFT-

NTFS].

path: When referring to a file path on a file system, a hierarchical sequence of folders. When
referring to a connection to a storage device, a connection through which a machine can
communicate with the storage device.

process identifier (PID): A nonzero integer used by some operating systems (for example,
Windows and UNIX) to uniquely identify a process. For more information, see [PROCESS].

property condition: An FSRM object that defines a constraint for a file management job which

encapsulates a reference to a property definition, a comparison operator, and a value to
compare property definition instances against. See section 3.2.1.7.2 for details.

property definition: An FSRM object that encapsulates a metadata definition that indicates the

name of the metadata object and the type of values associated with it. See section 3.2.1.6.1 for
details.

property schema: A collection of FSRM objects that define the metadata parameters that can be

assigned to files.

property value: The value assigned to the property definition instance associated with a file.

quota template: A group of default quotas that can be applied to a site collection. It is stored in
the configuration database.

relative distinguished name (RDN): The name of an object relative to its parent. This is the
leftmost attribute-value pair in the distinguished name (DN) of an object. For example, in the
DN "cn=Peter Houston, ou=NTDEV, dc=microsoft, dc=com", the RDN is "cn=Peter Houston".

For more information, see [RFC2251].

remote procedure call (RPC): A context-dependent term commonly overloaded with three
meanings. Note that much of the industry literature concerning RPC technologies uses this term
interchangeably for any of the three meanings. Following are the three definitions: (*) The
runtime environment providing remote procedure call facilities. The preferred usage for this
meaning is "RPC runtime". (*) The pattern of request and response message exchange between
two parties (typically, a client and a server). The preferred usage for this meaning is "RPC

exchange". (*) A single message from an exchange as defined in the previous definition. The
preferred usage for this term is "RPC message". For more information about RPC, see [C706].

report job: An FSRM object that specifies a set of directories to be scanned to generate one or
more different report types that allow an administrator to analyze how the storage in the
directories in question is used. The job can also be associated with a scheduled task that will
trigger report generation. See section 3.2.1.5.1 for details.

RPC protocol sequence: A character string that represents a valid combination of a remote
procedure call (RPC) protocol, a network layer protocol, and a transport layer protocol, as

described in [C706] and [MS-RPCE].

security audit log: An event log that records audited security events on the server.

security identifier (SID): An identifier for security principals that is used to identify an account
or a group. Conceptually, the SID is composed of an account authority portion (typically a
domain) and a smaller integer representing an identity relative to the account authority, termed

the relative identifier (RID). The SID format is specified in [MS-DTYP] section 2.4.2; a string
representation of SIDs is specified in [MS-DTYP] section 2.4.2 and [MS-AZOD] section 1.1.1.2.

https://go.microsoft.com/fwlink/?LinkId=90200
https://go.microsoft.com/fwlink/?LinkId=90200
https://go.microsoft.com/fwlink/?LinkId=90251
https://go.microsoft.com/fwlink/?LinkId=90325
%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15

20 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

storage module: A module definition that encapsulates a mechanism to persist and/or provide
property definition instances for individual files on a file server.

Transmission Control Protocol (TCP): A protocol used with the Internet Protocol (IP) to send
data in the form of message units between computers over the Internet. TCP handles keeping

track of the individual units of data (called packets) that a message is divided into for efficient
routing through the Internet.

Unicode: A character encoding standard developed by the Unicode Consortium that represents
almost all of the written languages of the world. The Unicode standard [UNICODE5.0.0/2007]
provides three forms (UTF-8, UTF-16, and UTF-32) and seven schemes (UTF-8, UTF-16, UTF-16
BE, UTF-16 LE, UTF-32, UTF-32 LE, and UTF-32 BE).

unique identifier (UID): A pair consisting of a GUID and a version sequence number to identify

each resource uniquely. The UID is used to track the object for its entire lifetime through any
number of times that the object is modified or renamed.

Universal Naming Convention (UNC): A string format that specifies the location of a resource.

For more information, see [MS-DTYP] section 2.2.57.

universally unique identifier (UUID): A 128-bit value. UUIDs can be used for multiple
purposes, from tagging objects with an extremely short lifetime, to reliably identifying very

persistent objects in cross-process communication such as client and server interfaces, manager
entry-point vectors, and RPC objects. UUIDs are highly likely to be unique. UUIDs are also
known as globally unique identifiers (GUIDs) and these terms are used interchangeably in
the Microsoft protocol technical documents (TDs). Interchanging the usage of these terms does
not imply or require a specific algorithm or mechanism to generate the UUID. Specifically, the
use of this term does not imply or require that the algorithms described in [RFC4122] or [C706]
must be used for generating the UUID.

user principal name (UPN): A user account name (sometimes referred to as the user logon
name) and a domain name that identifies the domain in which the user account is located. This
is the standard usage for logging on to a Windows domain. The format is:
someone@example.com (in the form of an email address). In Active Directory, the

userPrincipalName attribute of the account object, as described in [MS-ADTS].

volume: A group of one or more partitions that forms a logical region of storage and the basis for
a file system. A volume is an area on a storage device that is managed by the file system as a

discrete logical storage unit. A partition contains at least one volume, and a volume can exist
on one or more partitions.

volume identifier (VolumeId): A 128-bit value used to represent a volume. The value of a
VolumeId is unique on a single computer (the local file system or a remote file server).

XML: The Extensible Markup Language, as described in [XML1.0].

XML schema: A description of a type of XML document that is typically expressed in terms of

constraints on the structure and content of documents of that type, in addition to the basic
syntax constraints that are imposed by XML itself. An XML schema provides a view of a
document type at a relatively high level of abstraction.

XML Schema (XSD): A language that defines the elements, attributes, namespaces, and data
types for XML documents as defined by [XMLSCHEMA1/2] and [W3C-XSD] standards. An XML
schema uses XML syntax for its language.

MAY, SHOULD, MUST, SHOULD NOT, MUST NOT: These terms (in all caps) are used as defined

in [RFC2119]. All statements of optional behavior use either MAY, SHOULD, or SHOULD NOT.

https://go.microsoft.com/fwlink/?LinkId=154659
https://go.microsoft.com/fwlink/?LinkId=90599
https://go.microsoft.com/fwlink/?LinkId=90607
https://go.microsoft.com/fwlink/?LinkId=90563
https://go.microsoft.com/fwlink/?LinkId=90317

21 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

1.2 References

Links to a document in the Microsoft Open Specifications library point to the correct section in the
most recently published version of the referenced document. However, because individual documents

in the library are not updated at the same time, the section numbers in the documents may not
match. You can confirm the correct section numbering by checking the Errata.

1.2.1 Normative References

We conduct frequent surveys of the normative references to assure their continued availability. If you

have any issue with finding a normative reference, please contact dochelp@microsoft.com. We will
assist you in finding the relevant information.

[C706] The Open Group, "DCE 1.1: Remote Procedure Call", C706, August 1997,
https://www2.opengroup.org/ogsys/catalog/c706

[MS-ADA1] Microsoft Corporation, "Active Directory Schema Attributes A-L".

[MS-ADA2] Microsoft Corporation, "Active Directory Schema Attributes M".

[MS-ADA3] Microsoft Corporation, "Active Directory Schema Attributes N-Z".

[MS-ADLS] Microsoft Corporation, "Active Directory Lightweight Directory Services Schema".

[MS-ADSC] Microsoft Corporation, "Active Directory Schema Classes".

[MS-DCOM] Microsoft Corporation, "Distributed Component Object Model (DCOM) Remote Protocol".

[MS-DTYP] Microsoft Corporation, "Windows Data Types".

[MS-ERREF] Microsoft Corporation, "Windows Error Codes".

[MS-FCIADS] Microsoft Corporation, "File Classification Infrastructure Alternate Data Stream (ADS)

File Format".

[MS-OAUT] Microsoft Corporation, "OLE Automation Protocol".

[MS-RPCE] Microsoft Corporation, "Remote Procedure Call Protocol Extensions".

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC
2119, March 1997, http://www.rfc-editor.org/rfc/rfc2119.txt

[RFC5322] Resnick, P., Ed., "Internet Message Format", RFC 5322, October 2008, http://www.rfc-
editor.org/rfc/rfc5322.txt

[RFC821] Postel, J., "SIMPLE MAIL TRANSFER PROTOCOL", STD 10, RFC 821, August 1982,
http://www.rfc-editor.org/rfc/rfc821.txt

[W3C-XSD] World Wide Web Consortium, "XML Schema Part 2: Datatypes Second Edition", October
2004, http://www.w3.org/TR/2004/REC-xmlschema-2-20041028

1.2.2 Informative References

[MS-TSCH] Microsoft Corporation, "Task Scheduler Service Remoting Protocol".

[MSDN-COMCLTSERVS] Microsoft Corporation, "COM Clients and Servers",
http://msdn.microsoft.com/en-us/library/ms683835(VS.85).aspx

http://msdn.microsoft.com/en-us/library/dn781092.aspx
mailto:dochelp@microsoft.com
https://go.microsoft.com/fwlink/?LinkId=89824
%5bMS-ADA1%5d.pdf#Section_19528560f41e4623a406dabcfff0660f
%5bMS-ADA2%5d.pdf#Section_e20ebc4e528540bab3bdffcb81c2783e
%5bMS-ADA3%5d.pdf#Section_4517e8353ee644d4bb95a94b6966bfb0
%5bMS-ADLS%5d.pdf#Section_9427994325ab4c139bf26d411cc2f796
%5bMS-ADSC%5d.pdf#Section_9abb5e97123d4da99557b353ab79b830
%5bMS-DCOM%5d.pdf#Section_4a893f3dbd2948cd9f43d9777a4415b0
%5bMS-DTYP%5d.pdf#Section_cca2742956894a16b2b49325d93e4ba2
%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90
%5bMS-FCIADS%5d.pdf#Section_629d7a1554ba4e1ca1b0547afba28485
%5bMS-FCIADS%5d.pdf#Section_629d7a1554ba4e1ca1b0547afba28485
%5bMS-OAUT%5d.pdf#Section_bbb05720f72445c78d17f83c3d1a3961
%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15
https://go.microsoft.com/fwlink/?LinkId=90317
https://go.microsoft.com/fwlink/?LinkId=183003
https://go.microsoft.com/fwlink/?LinkId=183003
https://go.microsoft.com/fwlink/?LinkId=90496
https://go.microsoft.com/fwlink/?LinkId=90563
%5bMS-TSCH%5d.pdf#Section_d1058a287e0249488b8d4a347fa64931
https://go.microsoft.com/fwlink/?LinkId=150262

22 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

[MSDN-DISKMAN] Microsoft Corporation, "Disk Management", http://msdn.microsoft.com/en-
us/library/aa363978.aspx

[MSDN-LocSvcAcct] Microsoft Corporation, "LocalService Account", http://msdn.microsoft.com/en-
us/library/ms684188(VS.85).aspx

[MSDN-LocSysAcct] Microsoft Corporation, "LocalSystem Account", http://msdn.microsoft.com/en-
us/library/ms684190(VS.85).aspx

[MSDN-NetworkSvcAcct] Microsoft Corporation, "NetworkService Account",
http://msdn.microsoft.com/en-us/library/ms684272(VS.85).aspx

[MSDN-NV] Microsoft Corporation, "Naming a Volume", http://msdn.microsoft.com/en-
us/library/aa365248(VS.85).aspx

[MSDN-ONO] Microsoft Corporation, "Owner of a New Object", http://msdn.microsoft.com/en-
us/library/aa379299(VS.85).aspx

[MSDN-PARTITIONINFO] Microsoft Corporation, "PARTITION_INFORMATION_EX structure",
http://msdn.microsoft.com/en-us/library/aa365448.aspx

[MSDN-RegEx] Microsoft Corporation, "Regular Expression Language Elements",

http://msdn.microsoft.com/en-us/library/az24scfc(VS.80).aspx

[MSDN-STC] Microsoft Corporation, "Storage Technologies Collection", March 2003,
http://technet2.microsoft.com/WindowsServer/en/Library/616e5e77-958b-42f0-a87f-
ba229ccd81721033.mspx

[MSDN-WLD] Microsoft Corporation, "MS-DOS and Windows Wildcard Characters",
http://msdn.microsoft.com/en-us/library/ms690414(v=vs.85).aspx

[MSFT-WINCMD] Microsoft Corporation, "Windows Server Commands, References, and Tools", June

2009, http://technet.microsoft.com/en-us/library/dd560674(WS.10).aspx

1.3 Overview

Using the File Server Resource Manager (FSRM) Protocol, a client can perform the following

operations:

 Limit the size of a given directory through directory quotas.

 Restrict the type of data that can be stored under a given directory through file screens.

 Define a property schema that can be used to label files stored on the server.

 Retrieve and modify the values assigned to classification properties for files stored on the server.

 Configure automatic mechanisms to assign values to classification properties.

 Register classification modules to alter the behavior of how files are classified and properties

stored.

 Register storage modules to alter the behavior of how the properties of a file are stored.

 Apply policy to subsets of files.

 Analyze storage utilization through report jobs.

The FSRM protocol is expressed as a set of DCOM interfaces. The FSRM server implements support for
the DCOM interface to manage FSRM objects. An FSRM client invokes method calls on the interface

https://go.microsoft.com/fwlink/?LinkId=89992
https://go.microsoft.com/fwlink/?LinkId=89992
https://go.microsoft.com/fwlink/?LinkId=150263
https://go.microsoft.com/fwlink/?LinkId=150263
https://go.microsoft.com/fwlink/?LinkId=150267
https://go.microsoft.com/fwlink/?LinkId=150267
https://go.microsoft.com/fwlink/?LinkID=150266
https://go.microsoft.com/fwlink/?LinkId=180414
https://go.microsoft.com/fwlink/?LinkId=180414
https://go.microsoft.com/fwlink/?LinkId=180415
https://go.microsoft.com/fwlink/?LinkId=180415
https://go.microsoft.com/fwlink/?LinkId=90059
https://go.microsoft.com/fwlink/?LinkId=158228
https://go.microsoft.com/fwlink/?LinkId=90139
https://go.microsoft.com/fwlink/?LinkId=90139
https://go.microsoft.com/fwlink/?LinkId=210151
https://go.microsoft.com/fwlink/?LinkId=180497

23 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

to perform various FSRM object configuration tasks on the server. More specifically, this protocol can
be used for the following purposes:

 Creating, enumerating, modifying, and deleting directory quotas and related objects (auto apply
quotas and quota templates) on the FSRM server.

 Creating, enumerating, modifying, and deleting file screens and related objects (file screen
exceptions and file groups) on the FSRM server.

 Creating, enumerating, modifying, and deleting classification properties on the FSRM server.

 Setting, enumerating, modifying, and deleting properties values for specific files on the FSRM
server.

 Creating, enumerating, modifying, and deleting classification rules on the FSRM server.

 Creating, enumerating, modifying, and deleting classification modules on the FSRM server.

 Creating, enumerating, modifying, and deleting storage modules on the FSRM server.

 Creating, enumerating, modifying, and deleting file management jobs on the FSRM server.

 Creating, enumerating, modifying, and deleting report jobs on the FSRM server.

 Querying and setting FSRM server general settings; for example, the Simple Mail Transfer Protocol
[RFC821] server name and report default parameters.

A typical FSRM session involves a client connecting to the server and requesting an interface that

allows performing high-level operations, such as enumeration and creation for a class of FSRM objects.
If the server accepts the request, it responds with the requested interface. The client can then use the
interface to request that the server enumerate the objects of the desired class. If the server accepts
the request, it responds with a collection of interfaces that allow access to the requested type of FSRM
object. The client uses the interfaces returned by the server to send additional requests to the server
specifying the type of operation to perform and any operation-specific parameters. If the server
accepts the operation request, it attempts to query or change the state of the corresponding FSRM

object based on the request parameters and returns to the client the result of the operation. To persist
changes to the manipulated FSRM objects, the client can explicitly request that the server commit any
outstanding changes.

The following are FSRM objects:

Directory Quotas:

A directory quota restricts the size of a specific directory to a configurable quota limit. In addition to
the limit, a directory quota can be configured with one or more directory quota thresholds that

define a set of highly customizable FSRM notifications that will be raised when the quota usage
reaches the threshold value.

Directory quotas can be created and configured in several different ways. A client can manipulate
directory quotas by directly querying and setting quota properties or by modifying properties in bulk
by applying a quota template. Alternatively, a client can configure an auto apply quota, which will

automatically create directory quotas on existing and newly created subfolders.

File Screens:

A file screen restricts the types of files that can be stored in a specific directory and its subdirectories.
For each file screen, there is a configurable list of blocked file groups that define a set of patterns,
based on the file name, that will be restricted. When a file is created or renamed, the server evaluates
whether the file name matches a pattern in any file group configured on a parent portion of the path.
If a match is found, the file is blocked, and a set of highly customizable FSRM notifications configured
for the file screen will be raised.

https://go.microsoft.com/fwlink/?LinkId=90496

24 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

In addition to configuring file screens, a client can request that the server create a file screen
exception that defines a list of file groups that are specifically allowed in a specific directory and its

subdirectories. A file screen exception will typically be configured on a directory that is in the subtree
of a directory with a file screen. In this case, the file screen exception list takes precedence when

evaluating screening rules and files with names that match the name patterns in the allowed file
groups that will not be blocked.

File screens can be created and configured in several different ways. A client can manipulate file
screens by directly querying and setting file screen properties or by modifying properties in bulk by
applying a file screen template.

Classification Properties:

A classification property defines one piece of metadata to be associated with files on the file server. It

specifies the type of property (boolean, string, date, number, ordered list, multi-choice, multi-string).
For certain types (ordered list, multi-choice) possible values are specified. Some properties (boolean,
ordered list, multi-choice) can have descriptions assigned to each possible value.

Classification Rules:

Classification values are applied automatically to files on the file server on a global schedule based on
a set of rules. Each of these rules will determine which portion of the volumes connected to the server

that classification rules are applied to. They use one of the registered classification modules to
determine what the property values might be. When the scheduled classification is run, it scans the
files on the system and determines which rules, if any, apply to each file. It will then invoke all rules
on the file and aggregate the property values to determine the property values for the file.

File Management Jobs:

File Management Jobs are scheduled tasks that process a subset of files on the file server. For each
file in this subset, a command is executed. By default this command moves the file to a configured

directory (known as an "expiration" operation). Custom commands can be configured to be performed
instead. The subset of files that the command will be applied to is determined by the scope of the file
management job (a list of directories) and a set of condition checks against certain file properties and

any property values associated with the file. File management jobs can also produce FSRM
notifications at configurable intervals before a file is affected by the configured task.

Report Jobs:

A report job specifies a set of directories that will be analyzed to generate one or more different report

types that will allow administrators to better understand how storage is utilized in the directories in
question. The client can configure report jobs that execute according to a schedule or can configure
report jobs that execute on-demand. In addition, the client can also query and set properties on the
report job to manipulate report generation parameters, format options, email delivery information,
and others.<2>

Classification Module:

A classification module is an internal software component that can be used to discover new property
values to be associated with files, according to the current set of classification rules.

Storage Module:

A storage module is an internal software component that can be used to store or retrieve existing
property values associated with files.

1.4 Relationship to Other Protocols

The File Server Resource Manager Protocol relies on the Distributed Component Object Model (DCOM)
Remote Protocol, which uses remote procedure call (RPC) as its transport.

25 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

The File Server Resource Manager Protocol uses Active Directory to retrieve property definitions
stored at the global level and synchronize them locally. See section 2.3 for details.<3>

1.5 Prerequisites/Preconditions

The File Server Resource Manager (FSRM) Protocol is implemented over DCOM and RPC and has the
prerequisites specified in [MS-DCOM], [MS-OAUT], and [MS-RPCE] that are common to DCOM, DCOM
"automation", and RPC interfaces.

The FSRM protocol assumes that a client has obtained the name of a server that supports this protocol

suite before the protocol is invoked. This name can be obtained using any implementation-specific
method. This protocol also assumes that the client has sufficient security privileges to configure FSRM
objects on the server.

An operating system on which an implementation of this protocol runs is required to support the
dynamic enumeration of directory quotas, file screens, and report jobs that are configured on the
server at run time. See sections 3.2.1.2, 3.2.1.3, 3.2.1.5, and 3.2.1.4, for more information about
these requirements.

The FSRM protocol classification functionality relies on COM servers that implement the functionality
for classification modules (section 3.2.4.2.44) and storage modules (section 3.2.4.2.47). As a
prerequisite for using these modules within FSRM, the necessary COM servers are required to be
deployed and registered with the COM infrastructure.<4> See section 3.2.1.6.2 for more information
about this requirement.

1.6 Applicability Statement

The File Server Resource Manager Protocol is applicable when an application is required to remotely
configure directory quotas, file screens, and report jobs on the server.<5>

1.7 Versioning and Capability Negotiation

Supported Transports: The FSRM protocol uses the Distributed Component Object Model (DCOM)
Remote Protocol [MS-DCOM], which in turn uses RPC over TCP, as its only transport. See section 2.1
for details.

Protocol Version: This protocol consists of 46 DCOM interfaces, all of which are version 1.0.<6>

Functionality Negotiation: The client negotiates for a given set of server functionalities by

specifying the UUID corresponding to the requested RPC interface via COM
IUnknown::QueryInterface when binding to the server. Certain interfaces are implemented by only
particular objects on the server. See section 2.1 for details.

Security and Authentication Methods: This protocol relies on the security and authentication
provided by DCOM and by Remote Procedure Call Protocol Extensions [MS-RPCE] and configures it as
specified in section 2.1.

1.8 Vendor-Extensible Fields

This protocol does not define any vendor-extensible fields.

1.9 Standards Assignments

 Parameter Value

Reference

RPC Interface UUID for IFsrmCollection F76FBF3B-8DDD-4B42-B05A- None

%5bMS-DCOM%5d.pdf#Section_4a893f3dbd2948cd9f43d9777a4415b0
%5bMS-OAUT%5d.pdf#Section_bbb05720f72445c78d17f83c3d1a3961
%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15
%5bMS-DCOM%5d.pdf#Section_4a893f3dbd2948cd9f43d9777a4415b0
%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15

26 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 Parameter Value

Reference

CB1C3FF1FEE8

RPC Interface UUID for IFsrmMutableCollection 1BB617B8-3886-49DC-AF82-
A6C90FA35DDA

None

RPC Interface UUID for IFsrmCommittableCollection 96DEB3B5-8B91-4A2A-9D93-
80A35D8AA847

None

RPC Interface UUID for IFsrmAction 6CD6408A-AE60-463B-9EF1-
E117534D69DC

None

RPC Interface UUID for IFsrmActionEmail D646567D-26AE-4CAA-9F84-
4E0AAD207FCA

None

RPC Interface UUID for IFsrmActionEmail2 8276702F-2532-4839-89BF-

4872609A2EA4

None

RPC Interface UUID for IFsrmActionReport 2DBE63C4-B340-48A0-A5B0-
158E07FC567E

None

RPC Interface UUID for IFsrmActionEventLog 4C8F96C3-5D94-4F37-A4F4-
F56AB463546F

None

RPC Interface UUID for IFsrmActionCommand 12937789-E247-4917-9C20-
F3EE9C7EE783

None

RPC Interface UUID for IFsrmObject 22BCEF93-4A3F-4183-89F9-
2F8B8A628AEE

None

RPC Interface UUID for IFsrmSetting F411D4FD-14BE-4260-8C40-
03B7C95E608A

None

Class ID for IFsrmSetting F556D708-6D4D-4594-9C61-
7DBB0DAE2A46

None

RPC Interface UUID for IFsrmPathMapper 6F4DBFFF-6920-4821-A6C3-
B7E94C1FD60C

None

Class ID for IFsrmPathMapper F3BE42BD-8AC2-409E-BBD8-
FAF9B6B41FEB

None

RPC Interface UUID for IFsrmDerivedObjectsResult 39322A2D-38EE-4D0D-8095-
421A80849A82

None

RPC Interface UUID for IFsrmQuotaBase 1568A795-3924-4118-B74B-
68D8F0FA5DAF

None

RPC Interface UUID for IFsrmQuotaObject 42DC3511-61D5-48AE-B6DC-
59FC00C0A8D6

None

RPC Interface UUID for IFsrmQuota 377F739D-9647-4B8E-97D2-
5FFCE6D759CD

None

RPC Interface UUID for IFsrmAutoApplyQuota F82E5729-6ABA-4740-BFC7-
C7F58F75FB7B

None

RPC Interface UUID for IFsrmQuotaManager 8BB68C7D-19D8-4FFB-809E-
BE4FC1734014

None

Class ID for IFsrmQuotaManager 90DCAB7F-347C-4BFC-B543-
540326305FBE

None

27 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 Parameter Value

Reference

RPC Interface UUID for IFsrmQuotaManagerEx 4846CB01-D430-494F-ABB4-
B1054999FB09

None

RPC Interface UUID for IFsrmQuotaTemplate A2EFAB31-295E-46BB-B976-
E86D58B52E8B

None

RPC Interface UUID for IFsrmQuotaTemplateImported 9A2BF113-A329-44CC-809A-
5C00FCE8DA40

None

RPC Interface UUID for IFsrmQuotaTemplateManager 4173AC41-172D-4D52-963C-
FDC7E415F717

None

Class ID for IFsrmQuotaTemplateManager 97D3D443-251C-4337-81E7-
B32E8F4EE65E

None

RPC Interface UUID for IFsrmFileGroup 8DD04909-0E34-4D55-AFAA-
89E1F1A1BBB9

None

RPC Interface UUID for IFsrmFileGroupImported AD55F10B-5F11-4BE7-94EF-
D9EE2E470DED

None

RPC Interface UUID for IFsrmFileGroupManager 426677D5-018C-485C-8A51-
20B86D00BDC4

None

Class ID for IFsrmFileGroupManager 8F1363F6-656F-4496-9226-
13AECBD7718F

None

RPC Interface UUID for IFsrmFileScreenBase F3637E80-5B22-4A2B-A637-
BBB642B41CFC

None

RPC Interface UUID for IFsrmFileScreen 5F6325D3-CE88-4733-84C1-
2D6AEFC5EA07

None

RPC Interface UUID for IFsrmFileScreenException BEE7CE02-DF77-4515-9389-
78F01C5AFC1A

None

RPC Interface UUID for IFsrmFileScreenManager FF4FA04E-5A94-4BDA-A3A0-
D5B4D3C52EBA

None

Class ID for IFsrmFileScreenManager 95941183-DB53-4C5F-B37B-
7D0921CF9DC7

None

RPC Interface UUID for IFsrmFileScreenTemplate 205BEBF8-DD93-452A-95A6-
32B566B35828

None

RPC Interface UUID for
IFsrmFileScreenTemplateImported

E1010359-3E5D-4ECD-9FE4-
EF48622FDF30

None

RPC Interface UUID for
IFsrmFileScreenTemplateManager

CFE36CBA-1949-4E74-A14F-
F1D580CEAF13

None

Class ID for IFsrmFileScreenTemplateManager 243111DF-E474-46AA-A054-
EAA33EDC292A

None

RPC Interface UUID for IFsrmReportManager 27B899FE-6FFA-4481-A184-
D3DAADE8A02B

None

Class ID for IFsrmReportManager 0058EF37-AA66-4C48-BD5B-
2FCE432AB0C8

None

RPC Interface UUID for IFsrmReportJob 38E87280-715C-4C7D-A280-
EA1651A19FEF

None

28 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 Parameter Value

Reference

RPC Interface UUID for IFsrmReport D8CC81D9-46B8-4FA4-BFA5-
4AA9DEC9B638

None

RPC Interface UUID for IFsrmReportScheduler 6879CAF9-6617-4484-8719-
71C3D8645F94

None

Class ID for IFsrmReportScheduler EA25F1B8-1B8D-4290-8EE8-
E17C12C2FE20

None

RPC Interface UUID for
IFsrmFileManagementJobManager

EE321ECB-D95E-48E9-907C-
C7685A013235

None

Class ID for IFsrmFileManagementJobManager EB18F9B2-4C3A-4321-B203-
205120CFF614

None

RPC Interface UUID for IFsrmFileManagementJob 0770687E-9F36-4D6F-8778-
599D188461C9

None

RPC Interface UUID for IFsrmPropertyCondition 326AF66F-2AC0-4F68-BF8C-
4759F054FA29

None

RPC Interface UUID for IFsrmPropertyDefinition EDE0150F-E9A3-419C-877C-
01FE5D24C5D3

None

RPC Interface UUID for IFsrmProperty 4A73FEE4-4102-4FCC-9FFB-
38614F9EE768

None

RPC Interface UUID for IFsrmRule CB0DF960-16F5-4495-9079-
3F9360D831DF

None

RPC Interface UUID for IFsrmClassificationRule AFC052C2-5315-45AB-841B-
C6DB0E120148

None

RPC Interface UUID for IFsrmPipelineModuleDefinition 515C1277-2C81-440E-8FCF-
367921ED4F59

None

RPC Interface UUID for
IFsrmClassifierModuleDefinition

BB36EA26-6318-4B8C-8592-
F72DD602E7A5

None

RPC Interface UUID for IFsrmStorageModuleDefinition 15A81350-497D-4ABA-80E9-
D4DBCC5521FE

None

Class ID for IFsrmClassificationManager B15C0E47-C391-45B9-95C8-
EB596C853F3A

None

RPC Interface UUID for IFsrmClassificationManager D2DC89DA-EE91-48A0-85D8-
CC72A56F7D04

None

29 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

2 Messages

2.1 Transport

The File Server Resource Manager (FSRM) Protocol uses the Distributed Component Object Model

(DCOM) Remote Protocol [MS-DCOM] as its transport. The DCOM Remote Protocol uses the following
RPC protocol sequence: RPC over TCP [MS-RPCE].

The FSRM interfaces use the underlying DCOM security framework [MS-DCOM] and rely upon it for
access control. DCOM differentiates between launch and access. An FSRM implementation can
differentiate between launch and access permission and impose different authorization requirements
on each interface.<7> To access an interface, an FSRM client requests a DCOM connection to its

object UUID endpoint on the server, as described in section 1.9.

An FSRM implementation MAY configure its DCOM implementation or underlying RPC transport with
authentication parameters to restrict client connections. The details of this behavior are

implementation-specific.<8>

The RPC version number for all interfaces is 5.0.

2.2 Message Syntax

The FSRM protocol references commonly used data types as defined in [MS-DTYP], in addition to RPC
base types and definitions specified in [C706] and [MS-RPCE]. Protocol-specific data types are defined
in this section.

The following table summarizes the types that are defined in this specification.<9>

Data type Section Description

Common data types 2.2.1 The data types, enumerations, and structures that are used in this
protocol.

Interface-specific data
types

2.2.2 The data types and enumerations that are used only in specific FSRM
interfaces.

XML import and export
formats

2.2.3 The XML data types and schema that define the format for import and
export objects.

Error codes 2.2.4 Error return values that are specific to the FSRM protocol.

2.2.1 Common Data Types

This section describes the data types, enumerations, and structures used in this protocol.

2.2.1.1 Data Types

The following data types are specified in [MS-DTYP]:

 BSTR

 DWORD

The following data types are specified in [MS-OAUT]:

%5bMS-DCOM%5d.pdf#Section_4a893f3dbd2948cd9f43d9777a4415b0
%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15
%5bMS-DTYP%5d.pdf#Section_cca2742956894a16b2b49325d93e4ba2
https://go.microsoft.com/fwlink/?LinkId=89824
%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15
%5bMS-DTYP%5d.pdf#Section_cca2742956894a16b2b49325d93e4ba2
%5bMS-OAUT%5d.pdf#Section_bbb05720f72445c78d17f83c3d1a3961

30 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 DATE

 DECIMAL

 SAFEARRAY

 VARIANT

 VARIANT_BOOL

The following data types are specified in this document:

 FSRM_OBJECT_ID

 FSRM_QUOTA_THRESHOLD

2.2.1.1.1 FSRM_OBJECT_ID

The FSRM_OBJECT_ID data type defines the FSRM object identifier (ID) as a globally unique

identifier (GUID), as defined in [MS-DTYP] sections 2.3.4, 2.3.4.2, and 2.3.4.3, for FSRM storage
objects.

This type is declared as follows:

 typedef GUID FSRM_OBJECT_ID;

2.2.1.1.2 FSRM_QUOTA_THRESHOLD

The FSRM_QUOTA_THRESHOLD data type defines the percentage of disk space used as an integer.
Once the percentage of disk space used is matching or exceeding this integer value, the server
triggers actions associated with the threshold. The value MUST be greater than 0 and less than 251.

This type is declared as follows:

 typedef long FSRM_QUOTA_THRESHOLD;

2.2.1.2 Enumerations

2.2.1.2.1 FsrmQuotaFlags

The FsrmQuotaFlags enumeration defines bitmasks for the possible states of the quota objects in the
File Server Resource Manager Protocol.

 typedef enum _FsrmQuotaFlags
 {
 FsrmQuotaFlags_Enforce = 0x00000100,
 FsrmQuotaFlags_Disable = 0x00000200,
 FsrmQuotaFlags_StatusIncomplete = 0x00010000,
 FsrmQuotaFlags_StatusRebuilding = 0x00020000
 } FsrmQuotaFlags;

FsrmQuotaFlags_Enforce: If the FsrmQuotaFlags_Enforce bitmask is set as part of the QuotaFlags
property of an IFsrmQuotaBase object, the server fails an I/O operation that causes the disk
space usage to exceed the quota limit. If not set, the server does not fail operations that violate
the I/O limit, but still run actions associated with the quota limit.

%5bMS-DTYP%5d.pdf#Section_cca2742956894a16b2b49325d93e4ba2

31 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

FsrmQuotaFlags_Disable: If the FsrmQuotaFlags_Disable bitmask is set as part of the QuotaFlags
property of an IFsrmQuotaBase object, the server does not track quota data for the quota and

does not run any actions associated with quota thresholds.

FsrmQuotaFlags_StatusIncomplete: If the FsrmQuotaFlags_StatusIncomplete bitmask is set as

part of the QuotaFlags property of an IFsrmQuotaBase object, a quota is defined on the server
but the rebuilding procedure has not yet started.

FsrmQuotaFlags_StatusRebuilding: If the FsrmQuotaFlags_StatusRebuilding bitmask is set as
part of the QuotaFlags property of an IFsrmQuotaBase object, a quota is rebuilding its data from
the disk.

2.2.1.2.2 FsrmFileScreenFlags

The FsrmFileScreenFlags enumeration defines bitmasks for possible states of the file screen objects in
the File Server Resource Manager Protocol.

 typedef enum _FsrmFileScreenFlags
 {
 FsrmFileScreenFlags_Enforce = 0x00000001
 } FsrmFileScreenFlags;

FsrmFileScreenFlags_Enforce: If this bitmask is set as part of the fileScreenFlags member of a
IFsrmFileScreenBase object, the server fails any I/O operation that violates the file screen. If
not set, the server does not fail operations that violate the file screen but still run actions
associated with the file screen.

2.2.1.2.3 FsrmRuleFlags

The FsrmRuleFlags enumeration defines the possible states of the rule objects in the File Server
Resource Manager Protocol.

 typedef enum _FsrmRuleFlags
 {
 FsrmRuleFlags_Disabled = 0x00000100,
 FsrmRuleFlags_Invalid = 0x00001000
 } FsrmRuleFlags;

FsrmRuleFlags_Disabled: If set, the server does not run the rule when classifying a file.

FsrmRuleFlags_Invalid: If the FsrmRuleFlags_Invalid flag is set, the rule defines an invalid set of
parameters and will not be run when classifying a file.

2.2.1.2.4 FsrmCollectionState

The FsrmCollectionState enumeration defines the possible states of collection objects in the File
Server Resource Manager Protocol.

 typedef enum _FsrmCollectionState
 {
 FsrmCollectionState_Fetching = 1,
 FsrmCollectionState_Committing = 2,
 FsrmCollectionState_Complete = 3,
 FsrmCollectionState_Cancelled = 4
 } FsrmCollectionState;

FsrmCollectionState_Fetching: The collection object is currently fetching data.

32 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

FsrmCollectionState_Committing: The collection object is currently committing its data.

FsrmCollectionState_Complete: The collection object is complete and has stopped fetching or

committing data.

FsrmCollectionState_Canceled: The collection's fetching or committing action was canceled.

2.2.1.2.5 FsrmEnumOptions

The FsrmEnumOptions enumeration defines the different options that can be used when enumerating
collections of File Server Resource Manager Protocol objects.

 typedef enum _FsrmEnumOptions
 {
 FsrmEnumOptions_None = 0x00000000,
 FsrmEnumOptions_Asynchronous = 0x00000001,
 FsrmEnumOptions_CheckRecycleBin = 0x00000002,
 FsrmEnumOptions_IncludeClusterNodes = 0x00000004,
 FsrmEnumOptions_IncludeDeprecatedObjects = 0x00000008
 } FsrmEnumOptions;

FsrmEnumOptions_None: Use no options and enumerate objects synchronously.

FsrmEnumOptions_Asynchronous: Enumerate the objects asynchronously.

FsrmEnumOptions_CheckRecycleBin: Include items that are in the Recycle Bin when
enumerating. This will include files that are located in a folder that has "$RECYCLE.BIN" in its path
regardless of capitalization. Without this option, those files will be excluded.

FsrmEnumOptions_IncludeClusterNodes: If the system is configured to be part of a cluster,
include all objects even if they are not currently available on the system (identified by the machine
name). Without this option, only objects available on the current system will be included.

FsrmEnumOptions_IncludeDeprecatedObjects: If any objects were marked Deprecated, they will

appear only when enumerated with this option.

2.2.1.2.6 FsrmCommitOptions

The FsrmCommitOptions enumeration defines the different options that can be used when committing
a collection of File Server Resource Manager Protocol objects.

 typedef enum _FsrmCommitOptions
 {
 FsrmCommitOptions_None = 0x00000000,
 FsrmCommitOptions_Asynchronous = 0x00000001
 } FsrmCommitOptions;

FsrmCommitOptions_None: Use no options and commit the collection of objects synchronously.

FsrmCommitOptions_Asynchronous: Commit the collection of objects asynchronously.

2.2.1.2.7 FsrmTemplateApplyOptions

The FsrmTemplateApplyOptions enumeration defines the different options that are available when
applying changes that have been made to a template to the objects derived from that template.

 typedef enum _FsrmTemplateApplyOptions
 {
 FsrmTemplateApplyOptions_ApplyToDerivedMatching = 1,

33 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 FsrmTemplateApplyOptions_ApplyToDerivedAll = 2
 } FsrmTemplateApplyOptions;

FsrmTemplateApplyOptions_ApplyToDerivedMatching: Apply template changes only to derived
objects whose properties match the template.

FsrmTemplateApplyOptions_ApplyToDerivedAll: Apply template changes to all derived objects,
whether their properties match the template's or not.

2.2.1.2.8 FsrmAccountType

The FsrmAccountType enumeration defines the set of machine account types under which an
FsrmActionType_Command action or a module definition can be run.

 typedef enum _FsrmAccountType
 {
 FsrmAccountType_Unknown = 0,
 FsrmAccountType_NetworkService = 1,
 FsrmAccountType_LocalService = 2,
 FsrmAccountType_LocalSystem = 3,
 FsrmAccountType_InProc = 4,
 FsrmAccountType_External = 5,
 FsrmAccountType_Automatic = 500
 } FsrmAccountType;

FsrmAccountType_Unknown: This enumeration value is not used by FSRM and MUST NOT be

referenced. If the server receives this enumeration value, it MUST consider the value invalid and
not apply any changes.

FsrmAccountType_NetworkService: Run the command or module definition under a restricted
account with network access (see [MSDN-NetworkSvcAcct] for more information).<10>

FsrmAccountType_LocalService: Run the command or module definition under a restricted

account without network access (see [MSDN-LocSvcAcct] for more information).<11>

FsrmAccountType_LocalSystem: Run the command or module definition under an administrative

account with network access. See [MSDN-LocSysAcct] for more information.<12>

FsrmAccountType_InProc: Run the module definition in an administrative account in the same
process used for pipeline processing.<13>

FsrmAccountType_External: Run the module definition in its own process.<14>

FsrmAccountType_Automatic: Run the module definition in a process determined by the
server.<15>

2.2.1.2.9 FsrmActionType

The FsrmActionType enumeration defines the set of the action types that can be triggered in response

to a quota or file screen event.

 typedef enum _FsrmActionType
 {
 FsrmActionType_Unknown = 0,
 FsrmActionType_EventLog = 1,
 FsrmActionType_Email = 2,
 FsrmActionType_Command = 3,
 FsrmActionType_Report = 4

https://go.microsoft.com/fwlink/?LinkID=150266
https://go.microsoft.com/fwlink/?LinkId=150263
https://go.microsoft.com/fwlink/?LinkId=150267

34 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 } FsrmActionType;

FsrmActionType_Unknown: This enumeration value is not used by FSRM and MUST NOT be
referenced. If the server receives this enumeration value, it MUST consider the value invalid and
not apply any changes.

FsrmActionType_EventLog: The action will log an event to the application event log.

FsrmActionType_Email: The action will send an email.

FsrmActionType_Command: The action will execute a command or script.

FsrmActionType_Report: The action will generate a report.

2.2.1.2.10 FsrmReportType

The FsrmReportType enumeration defines the set of report types that can be generated by the File

Server Resource Manager Protocol.

 typedef enum _FsrmReportType
 {
 FsrmReportType_Unknown = 0,
 FsrmReportType_LargeFiles = 1,
 FsrmReportType_FilesByType = 2,
 FsrmReportType_LeastRecentlyAccessed = 3,
 FsrmReportType_MostRecentlyAccessed = 4,
 FsrmReportType_QuotaUsage = 5,
 FsrmReportType_FilesByOwner = 6,
 FsrmReportType_ExportReport = 7,
 FsrmReportType_DuplicateFiles = 8,
 FsrmReportType_FileScreenAudit = 9,
 FsrmReportType_FilesByProperty = 10,
 FsrmReportType_AutomaticClassification = 11,
 FsrmReportType_Expiration = 12,
 FsrmReportType_FoldersByProperty = 13
 } FsrmReportType;

FsrmReportType_Unknown: This enumeration value is not used by FSRM and MUST NOT be
referenced. If the server receives this enumeration value, it MUST consider the value invalid and
not apply any changes.

FsrmReportType_LargeFiles: This report type lists files over a given size.

FsrmReportType_FilesByType: This report type lists files grouped by type.

FsrmReportType_LeastRecentlyAccessed: This report type lists files that have not been accessed
recently.

FsrmReportType_MostRecentlyAccessed: This report type lists files that have been accessed
most recently.

FsrmReportType_QuotaUsage: This report type lists quotas that exceed a certain threshold.

FsrmReportType_FilesByOwner: This report lists files grouped by their owner.

FsrmReportType_ExportReport: This report lists files without any grouping or limiting.

FsrmReportType_DuplicateFiles: This report lists duplicate files.<16>

FsrmReportType_FileScreenAudit: This report lists file screening events that have occurred.

35 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

FsrmReportType_FilesByProperty: This report lists files grouped by classification property.

FsrmReportType_AutomaticClassification: This report lists files that have been classified during

an automatic classification run.

FsrmReportType_Expiration: This report lists files that have been expired during a file

management operation.

FsrmReportType_FoldersByProperty: This report lists folders grouped by classification property.

2.2.1.2.11 FsrmRuleType

The FsrmRuleType enumeration defines the set of rule types that can be defined for automatic file
classification.

 typedef enum _FsrmRuleType
 {
 FsrmRuleType_Unknown = 0,
 FsrmRuleType_Classification = 1,
 FsrmRuleType_Generic = 2
 } FsrmRuleType;

FsrmRuleType_Unknown: The rule is of an unknown type.

FsrmRuleType_Classification: The rule defines parameters for how a classification module will
operate on a file.

FsrmRuleType_Generic: The rule defines parameters for how modules that are not classification
modules will operate on a file.

2.2.1.2.12 FsrmPipelineModuleType

The FsrmPipelineModuleType enumeration defines the set of types of modules used in the File Server
Resource Manager classification pipeline.

 typedef enum _FsrmPipelineModuleType
 {
 FsrmPipelineModuleType_Unknown = 0,
 FsrmPipelineModuleType_Storage = 1,
 FsrmPipelineModuleType_Classifier = 2,
 } FsrmPipelineModuleType;

FsrmPipelineModuleType_Unknown: This enumeration value is not used by FSRM and MUST NOT
be referenced. If the server receives this enumeration value, it MUST consider the value invalid
and not apply any changes.

FsrmPipelineModuleType_Storage: The module is a storage module, which can persist or
retrieve property values for files that it processes.

FsrmPipelineModuleType_Classifier: The module is a classifier, which can assign property values
to files that it processes based on classification rules.

2.2.1.2.13 FsrmReportRunningStatus

The FsrmReportRunningStatus enumeration defines the set of running states for a report,

classification, or file management job.

 typedef enum _FsrmReportRunningStatus

36 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 {
 FsrmReportRunningStatus_Unknown = 0,
 FsrmReportRunningStatus_NotRunning = 1,
 FsrmReportRunningStatus_Queued = 2,
 FsrmReportRunningStatus_Running = 3
 } FsrmReportRunningStatus;

FsrmReportRunningStatus_Unknown: This enumeration value is not used by FSRM and MUST

NOT be referenced. If the server receives this enumeration value, it MUST consider the value
invalid and not apply any changes.

FsrmReportRunningStatus_NotRunning: The report, classification, or file management job is not
running.

FsrmReportRunningStatus_Queued: The request to run the Report job, Classification job, or
File Management Job has been made and an associated Running Job (section 3.2.1.5.1.3),

Running Classification job has been added to the Running Report Job Queue, Running
Classification Job Queue, or Running File Management Job Queue respectively, but the task

is not running at the moment.

FsrmReportRunningStatus_Running: The Report job, Classification job, or File Management
Job is running.

2.2.1.2.14 FsrmReportFormat

The FsrmReportFormat enumeration defines the set of formats that the File Server Resource Manager
Protocol can use when generating reports.

 typedef enum _FsrmReportFormat
 {
 FsrmReportFormat_Unknown = 0,
 FsrmReportFormat_DHtml = 1,
 FsrmReportFormat_Html = 2,
 FsrmReportFormat_Txt = 3,
 FsrmReportFormat_Csv = 4,
 FsrmReportFormat_Xml = 5
 } FsrmReportFormat;

FsrmReportFormat_Unknown: This enumeration value is not used by FSRM and MUST NOT be
referenced. If the server receives this enumeration value, it MUST consider the value invalid and
not apply any changes.

FsrmReportFormat_DHtml: The report is rendered in Dynamic Hypertext Markup Language
(DHTML).

FsrmReportFormat_Html: The report is rendered in HTML.

FsrmReportFormat_Txt: The report is rendered as a text file.

FsrmReportFormat_Csv: The report is rendered as a comma-separated value file.

FsrmReportFormat_Xml: The report is rendered in XML.

2.2.1.2.15 FsrmReportGenerationContext

The FsrmReportGenerationContext enumeration defines the set of contexts under which a report is
run.

 typedef enum _FsrmReportGenerationContext

37 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 {
 FsrmReportGenerationContext_Undefined = 1,
 FsrmReportGenerationContext_ScheduledReport = 2,
 FsrmReportGenerationContext_InteractiveReport = 3,
 FsrmReportGenerationContext_IncidentReport = 4
 } FsrmReportGenerationContext;

FsrmReportGenerationContext_Undefined: This enumeration value is not used by FSRM and
MUST NOT be referenced. If the server receives this enumeration value, it MUST consider the
value invalid and not apply any changes.

FsrmReportGenerationContext_ScheduledReport: The report will run as a scheduled report.

FsrmReportGenerationContext_InteractiveReport: The report will run on demand.

FsrmReportGenerationContext_IncidentReport: The report will run in response to a quota or file
screen event.

2.2.1.2.16 FsrmReportFilter

The FsrmReportFilter enumeration defines the set of filters that can be used to limit the files listed in a

report.

 typedef enum _FsrmReportFilter
 {
 FsrmReportFilter_MinSize = 1,
 FsrmReportFilter_MinAgeDays = 2,
 FsrmReportFilter_MaxAgeDays = 3,
 FsrmReportFilter_MinQuotaUsage = 4,
 FsrmReportFilter_FileGroups = 5,
 FsrmReportFilter_Owners = 6,
 FsrmReportFilter_NamePattern = 7,
 FsrmReportFilter_Property = 8
 } FsrmReportFilter;

FsrmReportFilter_MinSize: The report will only show files that meet a minimum size.

FsrmReportFilter_MinAgeDays: The report will only show files that were accessed more than a
minimum number of days ago.

FsrmReportFilter_MaxAgeDays: The report will only show files that were accessed prior to a
maximum number of days ago.

FsrmReportFilter_MinQuotaUsage: The report will only show quotas that meet a certain disk
space usage level.

FsrmReportFilter_FileGroups: The report will only show files from a given set of groups.

FsrmReportFilter_Owners: The report will only show files that belong to a certain set of owners.

FsrmReportFilter_NamePattern: The report will only show files whose name matches the given
pattern.

FsrmReportFilter_Property: The report will show only files whose property matches the given
property name.

2.2.1.2.17 FsrmReportLimit

The FsrmReportLimit enumeration defines the set of maxima that can be used to limit the files listed in
a report.

38 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 typedef enum _FsrmReportLimit
 {
 FsrmReportLimit_MaxFiles = 1,
 FsrmReportLimit_MaxFileGroups = 2,
 FsrmReportLimit_MaxOwners = 3,
 FsrmReportLimit_MaxFilesPerFileGroup = 4,
 FsrmReportLimit_MaxFilesPerOwner = 5,
 FsrmReportLimit_MaxFilesPerDuplGroup = 6,
 FsrmReportLimit_MaxDuplicateGroups = 7,
 FsrmReportLimit_MaxQuotas = 8,
 FsrmReportLimit_MaxFileScreenEvents = 9,
 FsrmReportLimit_MaxPropertyValues = 10,
 FsrmReportLimit_MaxFilesPerPropertyValue = 11,
 FsrmReportLimit_MaxFolders = 12
 } FsrmReportLimit;

FsrmReportLimit_MaxFiles: The report will list a maximum number of files.

FsrmReportLimit_MaxFileGroups: The report will list a maximum number of file groups.

FsrmReportLimit_MaxOwners: The report will list a maximum number of owners.

FsrmReportLimit_MaxFilesPerFileGroup: The report will list a maximum number of files per file
group.

FsrmReportLimit_MaxFilesPerOwner: The report will be limited to a maximum number of files per
owner.

FsrmReportLimit_MaxFilesPerDuplGroup: The report will list a maximum number of file entries
per duplicated file.

FsrmReportLimit_MaxDuplicateGroups: The report will list a maximum number of groups for
duplicated files (each set of duplicate files is one group).

FsrmReportLimit_MaxQuotas: The report will list a maximum number of quotas.

FsrmReportLimit_MaxFileScreenEvents: The report will list a maximum number of file screen
events.

FsrmReportLimit_MaxPropertyValues: The report will list a maximum number of property values
per property.

FsrmReportLimit_MaxFilesPerPropertyValue: The report will list a maximum number of files per
property value.

FsrmReportLimit_MaxFolders: The report will list a maximum number of folders.

2.2.1.2.18 AdsCacheFlags

The AdsCacheFlags enumeration defines bitmasks for the possible states of the FCIADS stream in
the File Server Resource Manager protocol.

 typedef enum AdsCacheFlags
 {
 AdsCacheFlags_None = 0x00000000,
 AdsCacheFlags_Dirty = 0x00000001,
 AdsCacheFlags_PropertyFlagsValid = 0x00000002
 } AdsCacheFlags;

AdsCacheFlags_None: Indicates that no flags are set.

39 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

AdsCacheFlags_Dirty: If this flag is set, the cache might be out-of-date.

AdsCacheFlags_PropertyFlagsValid: If this flag is set, property flags of the

ADSSecurePropertyHeader (see [MS-FCIADS] section 2.4) and
ADSNonSecurePropertyHeader (see [MS-FCIADS] section 2.5) will correspond to flags in the

FCIADS streamPropertyFlags instead of FsrmPropertyFlags.<17>

2.2.1.2.19 AdsCachePropertyFlags

The AdsCachePropertyFlags enumeration defines bitmasks for the possible states of the secure and
nonsecure properties of the FCIADS stream in the File Server Resource Manager protocol.

 typedef enum AdsCachePropertyFlags
 {
 AdsCachePropertyFlags_None = 0x00000000,
 AdsCachePropertyFlags_Manual = 0x00000001,
 AdsCachePropertyFlags_Deleted = 0x00000002,
 AdsCachePropertyFlags_PolicyDerived = 0x00000004,
 AdsCachePropertyFlags_Inherited = 0x00000008
 } AdsCachePropertyFlags;

AdsCachePropertyFlags_None: Indicates that no flags are set.

AdsCachePropertyFlags_Manual: The AdsCachePropertyFlags_Manual flag is set to indicate that a
property has been manually classified.

AdsCachePropertyFlags_Deleted: The AdsCachePropertyFlags_Deleted flag is set to indicate that a
property has been manually deleted.

AdsCachePropertyFlags_PolicyDerived: The AdsCachePropertyFlags_PolicyDerived flag is set to
indicate whether the value in the cache was derived from classification properties.

AdsCachePropertyFlags_Inherited: The AdsCachePropertyFlags_Inherited flag is set to indicate
whether a property name value was inherited from a container.

2.2.1.2.20 FCI_ADS_SECURE_PROPERTY_TYPE

The FCI_ADS_SECURE_PROPERTY_TYPE enumeration defines bitmasks for the possible types of the
secure property of the FCIADS.

 typedef enum FCI_ADS_SECURE_PROPERTY_TYPE
 {
 FCI_ADS_SECURE_PROPERTY_TYPE_INT64 = 1,
 FCI_ADS_SECURE_PROPERTY_TYPE_STRING = 2
 } FCI_ADS_SECURE_PROPERTY_TYPE;

FCI_ADS_SECURE_PROPERTY_TYPE_INT64: If this flag is set, the property definition is of
integer type.

FCI_ADS_SECURE_PROPERTY_TYPE_STRING: If this flag is set, the property definition is of
string type.

2.2.1.3 Structures

The File Server Resource Manager Protocol uses the VARIANT structure as specified in [MS-OAUT].

%5bMS-FCIADS%5d.pdf#Section_629d7a1554ba4e1ca1b0547afba28485
%5bMS-OAUT%5d.pdf#Section_bbb05720f72445c78d17f83c3d1a3961

40 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

2.2.2 Interface-Specific Data Types

2.2.2.1 IFsrmActionEventLog Data Types

This section lists data types that are used exclusively by methods in the IFsrmActionEventLog
interface (section 3.2.4.2.8).

2.2.2.1.1 Enumerations

2.2.2.1.1.1 FsrmEventType

The FsrmEventType enumeration defines the set of event types that can be logged as part of an
FsrmActionType_EventLog action.

 typedef enum _FsrmEventType
 {
 FsrmEventType_Unknown = 0,
 FsrmEventType_Information = 1,
 FsrmEventType_Warning = 2,
 FsrmEventType_Error = 3
 } FsrmEventType;

FsrmEventType_Unknown: This enumeration value is not used by FSRM and MUST NOT be
referenced. If the server receives this enumeration value, it MUST consider the value invalid and
not apply any changes.

FsrmEventType_Information: The event is an information event.

FsrmEventType_Warning: The event is a warning event.

FsrmEventType_Error: The event is an error event.

2.2.2.2 IFsrmAutoApplyQuota Data Types

This section lists data types that are used exclusively by methods in the IFsrmAutoApplyQuota
interface (section 3.2.4.2.17).

2.2.2.2.1 Data Types

2.2.2.2.1.1 FsrmMaxExcludeFolders

The FsrmMaxExcludeFolders data type defines the maximum number of subdirectories that can be in
the ExcludedFolders property of an auto apply quota. MUST be set to 32.

This type is declared as follows:

 typedef ULONG FsrmMaxExcludeFolders;

2.2.2.3 IFsrmPropertyDefinition Data Types

This section lists data types that are used exclusively by methods in the IFsrmPropertyDefinition
interface (section 3.2.4.2.37).

2.2.2.3.1 Enumerations

41 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

2.2.2.3.1.1 FsrmPropertyDefinitionType

The FsrmPropertyDefinitionType enumeration defines the set of property definition types that can
be used to define file classification properties.

 typedef enum _FsrmPropertyDefinitionType
 {
 FsrmPropertyDefinitionType_Unknown = 0,
 FsrmPropertyDefinitionType_OrderedList = 1,
 FsrmPropertyDefinitionType_MultiChoiceList = 2,
 FsrmPropertyDefinitionType_SingleChoiceList = 3,
 FsrmPropertyDefinitionType_String = 4,
 FsrmPropertyDefinitionType_MultiString = 5,
 FsrmPropertyDefinitionType_Int = 6,
 FsrmPropertyDefinitionType_Bool = 7,
 FsrmPropertyDefinitionType_Date = 8
 } FsrmPropertyDefinitionType;

FsrmPropertyDefinitionType_Unknown: The property definition type is unknown.

FsrmPropertyDefinitionType_OrderedList: The property definition defines a list of possible
values, one of which can be assigned to the property.

FsrmPropertyDefinitionType_MultiChoiceList: The property definition defines a list of possible
values, one or more of which can be assigned to the property. When a property value of this

type is set for a file, the individual choices are separated with the "|" character.

FsrmPropertyDefinitionType_SingleChoiceList: The property definition defines a list of possible
values, one of which can be assigned to the property.<18>

FsrmPropertyDefinitionType_String: The property definition type indicates that an arbitrary string
value can be assigned to the property.

FsrmPropertyDefinitionType_MultiString: The property definition indicates that one or more
arbitrary string values can be assigned to the property. When a property value of this type is set

for a file, the individual strings are separated with the "|" character.

FsrmPropertyDefinitionType_Int: The property definition indicates that an integer value can be
assigned to the property.

FsrmPropertyDefinitionType_Bool: The property definition indicates that a Boolean value can be
assigned to the property.

FsrmPropertyDefinitionType_Date: The property definition indicates that a date value can be

assigned to the property.

2.2.2.4 IFsrmPropertyDefinition2 Data Types

This section lists data types that are used exclusively by methods in the interface
IFsrmPropertyDefinition2 (section 3.2.4.2.38).<19>

2.2.2.4.1 Enumerations

2.2.2.4.1.1 FsrmPropertyDefinitionFlags

The FsrmPropertyDefinitionFlags enumeration defines bitmasks for the possible states of the property
definition objects in the File Server Resource Manager protocol.

 typedef enum FsrmPropertyDefinitionFlags

42 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 {
 FsrmPropertyDefinitionFlags Global = 0x00000001,
 FsrmPropertyDefinitionFlags_Deprecated = 0x00000002,
 FsrmPropertyDefinitionFlags_Secure = 0x00000004
 } FsrmPropertyDefinitionFlags;

FsrmPropertyDefinitionFlags Global: If the FsrmPropertyDefinitionFlags_Global bitmask is set
as part of the PropertyDefinitionFlags property of an IFsrmPropertyDefinition2 object, the
server will not allow an API to modify the object.

FsrmPropertyDefinitionFlags_Deprecated: If the FsrmPropertyDefinitionFlags_Deprecated
bitmask is set as part of the PropertyDefinitionFlags property of an
IFsrmPropertyDefinition2 object, the server will not allow an API to modify the object but will

allow the removal of the object from the server. Any other objects that reference this
IFsrmPropertyDefinition2 object need to consider their configuration invalid.

FsrmPropertyDefinitionFlags_Secure: If the FsrmPropertyDefinitionFlags_Secure bitmask is

set as part of the PropertyDefinitionFlags property of a PropertyDefinitionFlags object, the
server will use instances of the property definition for security purposes. This flag is stored
within the file security descriptor of the file.

2.2.2.4.1.2 FsrmPropertyDefinitionAppliesTo

The FsrmPropertyDefinitionAppliesTo enumeration defines bitmasks for the possible states of the
property definition objects in the File Server Resource Manager Protocol.

 typedef enum FsrmPropertyDefinitionAppliesTo
 {
 FsrmPropertyDefinitionAppliesTo_Files = 0x00000001,
 FsrmPropertyDefinitionAppliesTo_Folders = 0x00000002
 } FsrmPropertyDefinitionAppliesTo;

FsrmPropertyDefinitionAppliesTo_Files: If the FsrmPropertyDefinitionAppliesTo_Files
bitmask is set as part of the AppliesTo property of an IFsrmPropertyDefinition2 object, the server
will allow instances of the property definition to be created for individual files.

FsrmPropertyDefinitionAppliesTo_Folders: If the FsrmPropertyDefinitionAppliesTo_Folders
bitmask is set as part of the AppliesTo property of an IFsrmPropertyDefinition2 object, the
server will allow instances of the property definition to be created for individual folders.

2.2.2.5 IFsrmClassificationRule Data Types

This section lists data types that are used exclusively by methods in the IFsrmClassificationRule
interface (section 3.2.4.2.42).

2.2.2.5.1 Enumerations

2.2.2.5.1.1 FsrmExecutionOption

The FsrmExecutionOption enumeration defines the set of execution options that can be used to specify
when a classification rule will be evaluated.

 typedef enum _FsrmExecutionOption
 {
 FsrmExecutionOption_Unknown = 0,
 FsrmExecutionOption_EvaluateUnset = 1,
 FsrmExecutionOption_ReEvaluate_ConsiderExistingValue = 2,

43 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 FsrmExecutionOption_ReEvaluate_IgnoreExistingValue = 3
 } FsrmExecutionOption;

FsrmExecutionOption_Unknown: The execution option is unknown.

FsrmExecutionOption_EvaluateUnset: The classification rule will be evaluated only if the property
it sets is not already set on the file.

FsrmExecutionOption_ReEvaluate_ConsiderExistingValue: The classification rule will always be

evaluated and the property value it tries to set will be aggregated with the current value of the
property in the file, if any.

FsrmExecutionOption_ReEvaluate_IgnoreExistingValue: The classification rule will always be
evaluated and the property value it tries to set will not be aggregated with the current value of the
property in the file, if any.

2.2.2.5.1.2 FsrmGetFilePropertyOptions

The FsrmGetFilePropertyOptions enumeration defines how classification properties associated with a
file are retrieved.

 typedef enum _FsrmGetFilePropertyOptions
 {
 FsrmGetFilePropertyOptions_None = 0x00000000,
 FsrmGetFilePropertyOptions_NoRuleEvaluation = 0x00000001,
 FsrmGetFilePropertyOptions_Persistent = 0x00000002,
 FsrmGetFilePropertyOptions_FailOnPersistErrors = 0x00000004,
 FsrmGetFilePropertyOptions_SkipOrphaned = 0x00000008
 } FsrmGetFilePropertyOptions;

FsrmGetFilePropertyOptions_None: If the FsrmGetFilePropertyOptions_None flag is set, File
Server Resource Manager retrieves classification properties for the given file.

FsrmGetFilePropertyOptions_NoRuleEvaluation: If the

FsrmGetFilePropertyOptions_NoRuleEvaluation flag is set, File Server Resource Manager retrieves
only classification properties that are not assigned by evaluating the current set of classification
rules.

FsrmGetFilePropertyOptions_Persistent: If the FsrmGetFilePropertyOptions_Persistent flag
is set, File Server Resource Manager retrieves classification properties and saves them.

FsrmGetFilePropertyOptions_FailOnPersistErrors: If the
FsrmGetFilePropertyOptions_FailOnPersistErrors flag is set, File Server Resource

Manager retrieves classification properties and fails the call if there are any errors while saving
them.

FsrmGetFilePropertyOptions_SkipOrphaned: If the
FsrmGetFilePropertyOptions_SkipOrphaned flag is set, File Server Resource Manager only
retrieves classification properties for which a Persisted Property Definition exists.

2.2.2.6 IFsrmProperty Data Types

 This section lists data types that are used exclusively by methods in the IFsrmProperty interface
(section 3.2.4.2.40).

2.2.2.6.1 Enumerations

44 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

2.2.2.6.1.1 FsrmPropertyFlags

The FsrmPropertyFlags enumeration defines the set of possible states of classification properties.

 typedef enum _FsrmPropertyFlags{
 FsrmPropertyFlags_Orphaned = 0x00000001,
 FsrmPropertyFlags_RetrievedFromCache = 0x00000002,
 FsrmPropertyFlags_RetrievedFromStorage = 0x00000004,
 FsrmPropertyFlags_SetByClassifier = 0x00000008,
 FsrmPropertyFlags_Deleted = 0x00000010,
 FsrmPropertyFlags_Reclassified = 0x00000020,
 FsrmPropertyFlags_AggregationFailed = 0x00000040,
 FsrmPropertyFlags_Existing = 0x00000080,
 FsrmPropertyFlags_FailedLoadingProperties = 0x00000100,
 FsrmPropertyFlags_FailedClassifyingProperties = 0x00000200,
 FsrmPropertyFlags_FailedSavingProperties = 0x00000400,
 FsrmPropertyFlags_Secure = 0x00000800,
 FsrmPropertyFlags_PolicyDerived = 0x00001000,
 FsrmPropertyFlags_Inherited = 0x00002000,
 FsrmPropertyFlags_Manual = 0x00004000,
 FsrmPropertyFlags_PropertySourceMask = 0x0000000E
 } FsrmPropertyFlags;

FsrmPropertyFlags_Orphaned: If set, the classification property does not have a corresponding
property definition defined in the File Server Resource Manager.

FsrmPropertyFlags_RetrievedFromCache: If set, the value of the classification property was
retrieved from a cache storage module.

FsrmPropertyFlags_RetrievedFromStorage: If set, the value of the classification property was

retrieved from the file content.

FsrmPropertyFlags_SetByClassifier: If set, the value of the classification property was set by a
classification rule.

FsrmPropertyFlags_Deleted: If set, indicates that the classification property has been deleted.

FsrmPropertyFlags_Reclassified: If set, the value was loaded by a storage module but changed by
a classification module.

FsrmPropertyFlags_AggregationFailed: If set, the server could not properly aggregate different

values of the property supplied by different pipeline modules.

FsrmPropertyFlags_Existing: If set, the property was initially retrieved from a storage module.

FsrmPropertyFlags_FailedLoadingProperties: If set, the classification property might only be
partially classified because a failure occurred while loading properties from storage.

FsrmPropertyFlags_FailedClassifyingProperties: If set, the classification property might only be
partially classified because a failure occurred while classifying properties.

FsrmPropertyFlags_FailedSavingProperties: If set, the classification property failed to be saved

by a storage module.

FsrmPropertyFlags_Secure: If set, the classification property is defined to be a secure property.

FsrmPropertyFlags_PolicyDerived: If set, the classification property was applied as a result of a
classification rule.

FsrmPropertyFlags_Inherited: If set, the classification property value was inherited from the
property value of the file's parent folder.

45 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

FsrmPropertyFlags_Manual: If set, the classification property value was set manually.

FsrmPropertyFlags_PropertySourceMask: This is the bitwise-OR'd combination of

FsrmPropertyFlags_RetrievedFromCache, FsrmPropertyFlags_RetrievedFromStorage,
and FsrmPropertyFlags_SetByClassifier, which reference to the source of the property.

2.2.2.7 IFsrmClassificationManager Data Types

 This section lists data types that are used exclusively by methods in the
IFsrmClassificationManager interface (section 3.2.4.2.45).

2.2.2.7.1 Enumerations

2.2.2.7.1.1 FsrmClassificationLoggingFlags

The FsrmClassificationLoggingFlags enumeration defines the different options for logging during
automatic classification.

 typedef enum _FsrmClassificationLoggingFlags
 {
 FsrmClassificationLoggingFlags_None = 0x00000000,
 FsrmClassificationLoggingFlags_ClassificationsInLogFile = 0x00000001,
 FsrmClassificationLoggingFlags_ErrorsInLogFile = 0x00000002,
 FsrmClassificationLoggingFlags_ClassificationsInSystemLog = 0x00000004,
 FsrmClassificationLoggingFlags_ErrorsInSystemLog = 0x00000008
 } FsrmClassificationLoggingFlags;

FsrmClassificationLoggingFlags_None: Indicates that no flags are set.

FsrmClassificationLoggingFlags_ClassificationsInLogFile: If the
FsrmClassificationLoggingFlags_ClassificationsInLogFile flag is set, File Server Resource Manager
will log how files are classified during automatic classification in a log file.

FsrmClassificationLoggingFlags_ErrorsInLogFile: If the
FsrmClassificationLoggingFlags_ErrorsInLogFile flag is set, File Server Resource Manager will log
errors that occur during automatic classification in a log file.

FsrmClassificationLoggingFlags_ClassificationsInSystemLog: If the
FsrmClassificationLoggingFlags_ClassificationsInSystemLog flag is set, File Server Resource
Manager will log how files are classified during automatic classification in the System event log.

FsrmClassificationLoggingFlags_ErrorsInSystemLog: If the
FsrmClassificationLoggingFlags_ErrorsInSystemLog flag is set, File Server Resource Manager will
log errors that occur during automatic classification in the System event log.

2.2.2.8 IFsrmStorageModuleDefinition Data Types

This section lists data types that are used exclusively by methods in the

IFsrmStorageModuleDefinition interface (section 3.2.4.2.47).

2.2.2.8.1 Enumerations

2.2.2.8.1.1 FsrmStorageModuleCaps

The FsrmStorageModuleCaps enumeration defines the capabilities of the storage module.

 typedef enum _FsrmStorageModuleCaps

46 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 {
 FsrmStorageModuleCaps_Unknown = 0x00000000,
 FsrmStorageModuleCaps_CanGet = 0x00000001,
 FsrmStorageModuleCaps_CanSet = 0x00000002,
 FsrmStorageModuleCaps_CanHandleDirectories = 0x00000004,
 FsrmStorageModuleCaps_CanHandleFiles = 0x00000008
 } FsrmStorageModuleCaps;

FsrmStorageModuleCaps_Unknown: This enumeration value is not used by FSRM and MUST NOT
be referenced. If the server receives this enumeration value, it MUST consider the value invalid
and not apply any changes.

FsrmStorageModuleCaps_CanGet: If the FsrmStorageModuleCaps_CanGet flag is set, the
storage module is allowed to retrieve classification properties.

FsrmStorageModuleCaps_CanSet: If the FsrmStorageModuleCaps_CanSet flag is set, the

storage module is allowed to store classification properties.

FsrmStorageModuleCaps_CanHandleDirectories: If the
FsrmStorageModuleCaps_CanHandleDirectories flag is set, the storage module can process
folders.

FsrmStorageModuleCaps_CanHandleFiles: If the FsrmStorageModuleCaps_CanHandleFiles
flag is set, the storage module can process files.

2.2.2.8.1.2 FsrmStorageModuleType

The FsrmStorageModuleType enumeration defines the possible storage module types.

 typedef enum _FsrmStorageModuleType
 {
 FsrmStorageModuleType_Unknown = 0x00000000,
 FsrmStorageModuleType_Cache = 0x00000001,
 FsrmStorageModuleType_InFile = 0x00000002,
 FsrmStorageModuleType_Database = 0x00000003,
 FsrmStorageModuleType_System = 0x00000064
 } FsrmStorageModuleType;

FsrmStorageModuleType_Unknown: The module type is unknown. Do not use this value.

FsrmStorageModuleType_Cache: If the FsrmStorageModuleType_Cache flag is set, the
classification properties are cached for quick access by storage module.

FsrmStorageModuleType_InFile: If the FsrmStorageModuleType_InFile flag is set, the

classification properties are cached within the file itself by storage.

FsrmStorageModuleType_Database: If the FsrmStorageModuleType_Database flag is set, the
classification properties are cached outside the file (such as using a local database) by storage
module.

FsrmStorageModuleType_System: If the FsrmStorageModuleType_ System flag is set, the
classification properties are cached in a system-specific storage.

2.2.2.9 IFsrmFileManagementJob Data Types

 This section lists data types that are used exclusively by methods in the IFsrmFileManagementJob
interface (section 3.2.4.2.48).

47 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

2.2.2.9.1 Enumerations

2.2.2.9.1.1 FsrmFileManagementType

The FsrmFileManagementType enumeration defines the set of file management job types that are
available in the File Server Resource Manager.

 typedef enum _FsrmFileManagementType
 {
 FsrmFileManagementType_Unknown = 0,
 FsrmFileManagementType_Expiration = 1,
 FsrmFileManagementType_Custom = 2,
 FsrmFileManagementType_Rms = 3
 } FsrmFileManagementType;

FsrmFileManagementType_Unknown: The file management job type is unknown.

FsrmFileManagementType_Expiration: This file management job performs an expiration policy on

files meeting a certain criteria.

FsrmFileManagementType_Custom: This file management job performs a custom policy on files
meeting a certain criteria.

FsrmFileManagementType_Rms: This file management job performs an Active Directory Rights
Management Services policy on files meeting certain criteria.

2.2.2.9.1.2 FsrmFileManagementLoggingFlags

The FsrmFileManagementLoggingFlags enumeration defines the different options for logging when
running a file management job.

 typedef enum _FsrmFileManagementLoggingFlags
 {
 FsrmFileManagementLoggingFlags_None = 0x00000000,
 FsrmFileManagementLoggingFlags_Error = 0x00000001,
 FsrmFileManagementLoggingFlags_Information = 0x00000002,
 FsrmFileManagementLoggingFlags_Audit = 0x00000004
 } FsrmFileManagementLoggingFlags;

FsrmFileManagementLoggingFlags_None: Indicates that no flags are set.

FsrmFileManagementLoggingFlags_Error: If the FsrmFileManagementLoggingFlags_Error flag is
set, File Server Resource Manager logs errors that occur when running the file management job to
the error log.

FsrmFileManagementLoggingFlags_Information: If the

FsrmFileManagementLoggingFlags_Information flag is set, File Server Resource Manager logs
information status messages that occur when running the file management job to the information
log.

FsrmFileManagementLoggingFlags_Audit: If the FsrmFileManagementLoggingFlags_Audit flag is
set, File Server Resource Manager logs information about files that are processed when the server
is running the file management job to the server's security audit log.

2.2.2.10 IFsrmPropertyCondition Data Types

 This section lists data types that are used exclusively by methods in the IFsrmPropertyCondition
interface (section 3.2.4.2.49).

48 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

2.2.2.10.1 Enumerations

2.2.2.10.1.1 FsrmPropertyConditionType

The FsrmPropertyConditionType enumeration defines the set of comparison operations that can be
used to determine whether a property value of a file meets a particular condition.

 typedef enum _FsrmPropertyConditionType
 {
 FsrmPropertyConditionType_Unknown = 0,
 FsrmPropertyConditionType_Equal = 1,
 FsrmPropertyConditionType_NotEqual = 2,
 FsrmPropertyConditionType_GreaterThan = 3,
 FsrmPropertyConditionType_LessThan = 4,
 FsrmPropertyConditionType_Contain = 5,
 FsrmPropertyConditionType_Exist = 6,
 FsrmPropertyConditionType_NotExist = 7,
 FsrmPropertyConditionType_StartWith = 8,
 FsrmPropertyConditionType_EndWith = 9,
 FsrmPropertyConditionType_ContainedIn = 10,
 FsrmPropertyConditionType_PrefixOf = 11,
 FsrmPropertyConditionType_SuffixOf = 12
 } FsrmPropertyConditionType;

FsrmPropertyConditionType_Unknown: The property condition type is unknown.

FsrmPropertyConditionType_Equal: This property condition is met if the property value is equal to
a specified value.

FsrmPropertyConditionType_NotEqual: This property condition is met if the property value is not
equal to a specified value.

FsrmPropertyConditionType_GreaterThan: This property condition is met if the property value is
greater than a specified value.

FsrmPropertyConditionType_LessThan: This property condition is met if the property value is less
than a specified value.

FsrmPropertyConditionType_Contain: This property condition is met if the property value is
contains a specified value.

FsrmPropertyConditionType_Exist: This property condition is met if the property value exists.

FsrmPropertyConditionType_NotExist: This property condition is met if the property value does
not exist.

FsrmPropertyConditionType_StartWith: This property condition is met if the property value starts
with a specified value.

FsrmPropertyConditionType_EndWith: This property condition is met if the property value ends
with a specified value.

FsrmPropertyConditionType_ContainedIn: This property condition is met if the property value is
one of a specified value.

FsrmPropertyConditionType_PrefixOf: This property condition is met if the property value is the
prefix of a specified value.

FsrmPropertyConditionType_SuffixOf: This property condition is met if the property value is the

suffix of a specified value.

49 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

2.2.3 XML Import and Export Formats

The FSRM protocol uses XML to define all objects that can be imported or exported. The following
methods can be used for import:

 IFsrmFileGroupManager::ImportFileGroups (section 3.2.4.2.25.5)

 IFsrmFileScreenTemplateManager::ImportTemplates (section 3.2.4.2.32.5)

 IFsrmQuotaTemplateManager::ImportTemplates (section 3.2.4.2.22.5)

The following methods can be used for export:

 IFsrmFileGroupManager::ExportFileGroups (section 3.2.4.2.25.4)

 IFsrmFileScreenTemplateManager::ExportTemplates (section 3.2.4.2.32.4)

 IFsrmQuotaTemplateManager::ExportTemplates (section 3.2.4.2.22.4)

Export and import XML documents MUST adhere to the XML schema (XSD) specified in this section.
The server validates an export or import XML document's conformance to this schema and return an
error if invalid, as specified for each of the preceding methods.

2.2.3.1 XML Data Types

This section specifies the following common data types used in the FSRM XML schema:

 Standard Data Types (section 2.2.3.1.1)

 guidType Simple Type (section 2.2.3.1.2)

2.2.3.1.1 Standard Data Types

The FSRM XML schema (section 2.2.3.2) uses the following standard XML data types:

 xs:decimal: A decimal value ([W3C-XSD] section 3.2.3).

 xs:integer: An integer value ([W3C-XSD] section 3.2.13).

 xs:string: A string ([W3C-XSD] section 3.2.1).

2.2.3.1.2 guidType Simple Type

The guidType simple type specifies a string that contains the representation of a GUID. The GUID
SHOULD be in the form {xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx}, where x is a hexadecimal digit.

 <xs:simpleType name="guidType">
 <xs:restriction base="xs:string">
 <xs:pattern value=
 "\{([0-9a-fA-F]){8}(\-[0-9a-fA-F]{4}){3}\-[0-9a-fA-F]{12}\}"/>
 </xs:restriction>
 </xs:simpleType>

2.2.3.2 XML Schema

This section specifies the overall XML schema for exporting and importing FSRM directory quota
templates, file screen templates, and file groups. The following referenced elements are specified in
sections that follow:

https://go.microsoft.com/fwlink/?LinkId=90563

50 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 <Action> element (section 2.2.3.2.1)

 <DatascreenTemplate> element (section 2.2.3.2.2)

 <FileGroup> element (section 2.2.3.2.3)

 <QuotaTemplate> element (section 2.2.3.2.4)

 <?xml version="1.0" encoding="utf-8"?>
 <xs:schema id="Root" xmlns=""
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:msdata="urn:schemas-microsoft-com:xml-msdata">

 <!-guidType Definition-->
 <!—Action Definition-->
 <!—QuotaTemplate Definition-->
 <!—FileGroup Definition-->
 <!—FileScreenTemplate Definition-->

 <xs:element name="Root" msdata:IsDataSet="true"
 msdata:UseCurrentLocale="true">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="Header">
 <xs:complexType>
 <xs:attribute name="DatabaseVersion" type="xs:decimal"
 use="required"/>
 </xs:complexType>
 </xs:element>
 <xs:element name="QuotaTemplates">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="QuotaTemplate" minOccurs="0"
 maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="DatascreenTemplates">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="DatascreenTemplate" minOccurs="0"
 maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="FileGroups">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="FileGroup" minOccurs="0"
 maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:schema>

Header: This attribute MUST be present. It contains the header information for the XML file.

DatabaseVersion: This attribute MUST be present. It contains the version of the database
information in the XML file. For FSRM version 1.0, the version of the database information MUST

be 2.0.

QuotaTemplates: This element MUST be present and MUST occur only once in the XML file. It is the
container for the individual directory quota templates.

51 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

QuotaTemplate: If present, this element MUST contain all the information listed under the
<QuotaTemplate> element (section 2.2.3.2.4).

DatascreenTemplates: This element MUST be present and MUST occur only once in the XML file. It
is the container for the individual file screen templates.

DatascreenTemplate: If present, this element MUST contain all of the information listed under the
<DatascreenTemplate> element (section 2.2.3.2.2).

FileGroups: This element MUST be present and MUST occur only once in the XML file. It is the
container for the individual file groups.

FileGroup: If present, this element MUST contain all of the information listed under the <FileGroup>
element (section 2.2.3.2.3).

2.2.3.2.1 Action Element

The <Action> element defines the properties of an action object, as specified in the following schema.

An <Action> element MUST NOT be present in XML outside of the references specified in the
<QuotaTemplate> (section 2.2.3.2.4) and <DatascreenTemplate> (section 2.2.3.2.2) elements.

 <xs:element name="Action">
 <xs:complexType>
 <xs:attribute name="Type" use="required">
 <xs:simpleType>
 <xs:restriction base="xs:integer">
 <xs:minInclusive value="1"/>
 <xs:maxInclusive value="4"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:attribute name="Id" type="guidType" use="required"/>
 <xs:attribute name="RunLimitInterval">
 <xs:simpleType>
 <xs:restriction base="xs:integer">
 <xs:minInclusive value="-1"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:attribute name="EventType" use="required">
 <xs:simpleType>
 <xs:restriction base="xs:integer">
 <xs:minInclusive value="1"/>
 <xs:maxInclusive value="3"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:attribute name="MessageText" type="xs:string"
 use="required"/>
 <xs:attribute name="MailTo" type="xs:string" use="required"/>
 <xs:attribute name="MailFrom" type="xs:string"/>
 <xs:attribute name="MailReplyTo" type="xs:string"/>
 <xs:attribute name="MailCc" type="xs:string"/>
 <xs:attribute name="MailBcc" type="xs:string"/>
 <xs:attribute name="MailSubject" type="xs:string"/>
 <xs:attribute name="ExecutablePath" type="xs:string"
 use="required"/>
 <xs:attribute name="Account" use="required"/>
 <xs:simpleType>
 <xs:restriction base="xs:integer">
 <xs:minInclusive value="1"/>
 <xs:maxInclusive value="3"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:attribute name="Arguments" type="xs:string"/>
 <xs:attribute name="WorkingDirectory" type="xs:string"/>

52 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 <xs:attribute name="MonitorCommand">
 <xs:simpleType>
 <xs:restriction base="xs:integer">
 <xs:minInclusive value="0"/>
 <xs:maxInclusive value="1"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:attribute name="KillTimeOut">
 <xs:simpleType>
 <xs:restriction base="xs:integer">
 <xs:minInclusive value="0"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:attribute name="LogResult"/>
 <xs:simpleType>
 <xs:restriction base="xs:integer">
 <xs:minInclusive value="0"/>
 <xs:maxInclusive value="1"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:attribute name="CurrentSid" type="xs:string"/>
 <xs:attribute name="ReportTypes" type="xs:string"
 use="required"/>
 <xs:attribute name="Mailto" type="xs:string"/>
 </xs:complexType>
 </xs:element>

Type: This attribute MUST be present. It contains the FsrmActionType (section 2.2.1.2.9)
enumeration of the action, which is the same value as returned by the IFsrmAction::ActionType
(get) (section 3.2.4.2.4.2) method.

Id: This attribute MUST be present. It contains the ID of the action, which is the same value as
returned by the IFsrmAction::Id (get) (section 3.2.4.2.4.1) method.

MailFrom: If Type equals 2, FsrmActionType_Email, this attribute MAY be present. It contains the

MailFrom value of the action, which is the same value as returned by the

IFsrmActionEmail::MailFrom (get) (section 3.2.4.2.5.1) method.

MailReplyTo: If Type equals 2, FsrmActionType_Email, this attribute MAY be present. It contains the
MailReplyTo value of the action, which is the same value as returned by the
IFsrmActionEmail::MailReplyTo (get) (section 3.2.4.2.5.3) method.

MailTo: If Type equals 2, FsrmActionType_Email, this attribute MUST be present. It contains the
MailTo value of the action, which is the same value as returned by the IFsrmActionEmail::MailTo

(get) (section 3.2.4.2.5.5) method. If Type equals 4, FsrmActionType_Report, this attribute MAY
be present. It contains the MailTo value of the action, which is the same value as returned by the
IFsrmActionReport::MailTo (get) (section 3.2.4.2.7.3) method.

MailCc: If Type equals 2, FsrmActionType_Email, this attribute MAY be present. It contains the
MailCc value of the action, which is the same value returned by the IFsrmActionEmail::MailCc
(get) (section 3.2.4.2.5.7) method.

MailBcc: If Type equals 2, FsrmActionType_Email, this attribute MAY be present. It contains the

MailBcc value of the action, which is the same value as returned by the
IFsrmActionEmail::MailBcc (get) (section 3.2.4.2.5.9) method.

MailSubject: If Type equals 2, FsrmActionType_Email, this attribute MAY be present. It contains the
MailSubject value of the action, which is the same value as returned by the
IFsrmActionEmail::MailSubject (get) (section 3.2.4.2.5.11) method.

53 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

MessageText: If Type equals 1 or 2, FsrmActionType_EventLog or FsrmActionType_Email, this
attribute MAY be present. It contains the MessageText value of the action, which is the same

value as returned by the IFsrmActionEventLog::MessageText (get) (section 3.2.4.2.8.3) or
IFsrmActionEmail::MessageText (get) (section 3.2.4.2.5.13) methods.

EventType: If Type equals 1, FsrmActionType_EventLog, this attribute MUST be present. It contains
the FsrmEventType (section 2.2.2.1.1.1) of the event, which is the same value as returned by the
IFsrmActionEventLog::EventType (get) (section 3.2.4.2.8.1) method.

ReportTypes: If Type equals 4, FsrmActionType_Report, this attribute MUST be present. It contains
the list of report types for the action, which is the same list as returned by the
IFsrmActionReport::ReportTypes (get) (section 3.2.4.2.7.1) method. The format of the string is
the value of the FsrmReportTypes (section 2.2.1.2.10) used, separated by a "|" character.

ExecutablePath: If Type equals 3, FsrmActionType_Command, this attribute MUST be present. It
contains the ExecutablePath of the command, which is the same value returned by the
IFsrmActionCommand::ExecutablePath (get) (section 3.2.4.2.9.1) method.

Arguments: If Type equals 3, FsrmActionType_Command, this attribute MAY be present. It contains
the Arguments of the command, which is the same value as returned by the
IFsrmActionCommand::Arguments (get) (section 3.2.4.2.9.3) method.

WorkingDirectory: If Type equals 3, FsrmActionType_Command, this attribute MAY be present. It
contains the WorkingDirectory of the command, which is the same value as returned by the
IFsrmActionCommand::WorkingDirectory (get) (section 3.2.4.2.9.7) method.

Account: If Type equals 3, FsrmActionType_Command, this attribute MUST be present. It contains
the FsrmAccountType value of the command, which is the same value as returned by the
IFsrmActionCommand::Account (get) (section 3.2.4.2.9.5) method.

MonitorCommand: If Type equals 3, FsrmActionType_Command, this attribute MAY be present. It

contains the MonitorCommand value of the command, which is the same value as returned by
the IFsrmActionCommand::MonitorCommand (get) (section 3.2.4.2.9.9) method. A value of zero
means MonitorCommand is false and a value of one means MonitorCommand is true.

KillTimeOut: If Type equals 3, FsrmActionType_Command, this attribute MAY be present. It contains
the KillTimeOut value of the command, which is the same value as returned by the
IFsrmActionCommand::KillTimeout (get) (section 3.2.4.2.9.11) method.

LogResult: If Type equals 3, FsrmActionType_Command, this attribute MAY be present. It contains

the LogResult value of the command, which is the same value as returned by the
IFsrmActionCommand::LogResult (get) (section 3.2.4.2.9.13) method. A value of zero means
LogResult is false and a value of one means LogResult is true.

CurrentSid: If Type equals 3 (FsrmActionType_Command) this attribute MUST be present. It
contains the CurrentSid of the command. This is the security descriptor of the user that created
the action. When the action is executed, the account of the current security identifier (SID) is

checked to make sure the account is still an administrator on the machine. If the account is no
longer an administrator account, the File Server Resource Manager Protocol does not run the
command.

2.2.3.2.2 DatascreenTemplate Element

The <DatascreenTemplate> element defines the properties of a file screen template object, as
specified in the following schema.

 <xs:element name="DatascreenTemplate" minOccurs="0"
 maxOccurs="unbounded">
 <xs:complexType>
 <xs:sequence>

54 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 <xs:element name="AllowedGroups">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="FileGroup" minOccurs="0"
 maxOccurs="unbounded">
 <xs:complexType>
 <xs:attribute name="FileGroupId" type="guidType"
 use="required"/>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="BlockedGroups">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="FileGroup" minOccurs="0"
 maxOccurs="unbounded">
 <xs:complexType>
 <xs:attribute name="FileGroupId" type="guidType"
 use="required"/>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="FileGroupActions">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="Action" minOccurs="0" maxOccurs="4"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 <xs:attribute name="Name" type="xs:string" use="required"/>
 <xs:attribute name="Id" type="guidType" use="required"/>
 <xs:attribute name="Flags" type="xs:integer" use="required"/>
 <xs:attribute name="Description" type="xs:string"
 use="required"/>
 </xs:complexType>
 </xs:element>

AllowedGroups: This element MUST be present, it MUST occur only once in the file screen template,

it MUST be empty, and it MUST NOT contain child elements.

BlockedGroups: This element MUST be present and MUST occur only once in the file screen
template. It is the containing element for individual file groups that are blocked.

FileGroup: If present, this element MUST contain the attribute FileGroupId.

FileGroupId: This attribute MUST be present. It contains the ID of the file group that is allowed,
which is one of the values returned by the IFsrmFileScreenBase::BlockedFileGroups
(get) (section 3.2.4.2.26.1) method.

FileGroupActions: This element MUST be present and MUST occur only once in the file screen

template. It is the containing element for the individual actions of the file screen template.

Action: If present, this element MUST contain all of the information listed under the <Action>
element (section 2.2.3.2.1). There MUST be no more than one action for each
FsrmActionType (section 2.2.1.2.9) enumeration value.

Name: This attribute MUST be present. It contains the name of the template, which is the same value
as returned by the IFsrmFileScreenTemplate::Name (get) (section 3.2.4.2.30.2) method.

55 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Id: This attribute MUST be present. It contains the ID of the template, which is the same value
returned by the IFsrmObject::Id (get) (section 3.2.4.2.10.1) method.

Flags: This attribute MUST be present. It contains the file screen flags of the template, which is the
same value returned by the IFsrmFileScreenBase::FileScreenFlags (get) (section 3.2.4.2.26.3)

method.

Description: This attribute MUST be present. It contains the description of the file group, which is
one of the values returned by the IFsrmObject::Description (get) (section 3.2.4.2.10.2) method.

2.2.3.2.3 FileGroup Element

The <FileGroup> element defines the properties of a file group object, as specified in the following
schema.

 <xs:element name="FileGroup" minOccurs="0"
 maxOccurs="unbounded">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="Members">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="Pattern" minOccurs="0"
 maxOccurs="unbounded">
 <xs:complexType>
 <xs:attribute name="PatternValue" type="xs:string"
 use="required"/>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="NonMembers">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="Pattern" minOccurs="0"
 maxOccurs="unbounded">
 <xs:complexType>
 <xs:attribute name="PatternValue" type="xs:string"
 use="required"/>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 <xs:attribute name="Name" type="xs:string" use="required"/>
 <xs:attribute name="Id" type="guidType" use="required"/>
 <xs:attribute name="Description" type="xs:string" use="required"/>
 </xs:complexType>
 </xs:element>

Members: This element MUST be present and MUST occur only once in the file group. It is the

containing element for the individual member patterns.

Pattern: If present, this element MUST contain the attribute PatternValue.

PatternValue: This attribute MUST be present. It contains a pattern value for the members of the file
group, which is one of the values returned by the IFsrmFileGroup::Members
(get) (section 3.2.4.2.23.4) method.

NonMembers: This element MUST be present and MUST occur only once in the file group. It is the
containing element for the individual non-member patterns.

56 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Pattern: If present, this element MUST contain the attribute PatternValue.

PatternValue: This attribute MUST be present. It contains a pattern value for the non-members of

the file group, which is one of the values returned by the IFsrmFileGroup::NonMembers
(get) (section 3.2.4.2.23.6) method.

Name: This attribute MUST be present. It contains the name of the template, which is the same value
returned by the IFsrmFileGroup::Name (get) (section 3.2.4.2.23.2) method.

Id: This attribute MUST be present. It contains the ID of the template, which is the same value
returned by the IFsrmObject::Id (get) (section 3.2.4.2.10.1) method.

Description: This attribute MUST be present. It contains the description of the file group, which is
one of the values returned by the IFsrmObject::Description (get) (section 3.2.4.2.10.2) method.

2.2.3.2.4 QuotaTemplate Element

The <QuotaTemplate> element defines the properties of a directory quota template object, as

specified in the following schema.

 <xs:element name="QuotaTemplate" minOccurs="0"
 maxOccurs="unbounded">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="Thresholds">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="Threshold" minOccurs="0" maxOccurs="16">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="ThresholdActions" minOccurs="0">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="Action" minOccurs="0"
 maxOccurs="4"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 <xs:attribute name="ThresholdValue" use="required">
 <xs:simpleType>
 <xs:restriction base="xs:integer">
 <xs:minInclusive value="1"/>
 <xs:maxInclusive value="250"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 <xs:attribute name="Name" type="xs:string" use="required"/>
 <xs:attribute name="Id" type="guidType" use="required"/>
 <xs:attribute name="Limit" type="xs:integer" use="required"/>
 <xs:attribute name="Flags" type="xs:integer" use="required"/>
 <xs:attribute name="Description" type="xs:string"
 use="required"/>
 </xs:complexType>
 </xs:element>

Thresholds: This element MUST be present and MUST only occur once in the quota template. It is the

containing element for the individual thresholds of the quota template.

57 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Threshold: If present, this element MUST specify the properties of a directory quota threshold.
There MUST NOT be more than 16 <Threshold> elements per quota template.

ThresholdActions: If present, this element MUST contain between one and four actions.

Action: If present, this element MUST contain all of the information listed under the <Action>

element (section 2.2.3.2.1). There MUST be no more than one action for each
FsrmActionType (section 2.2.1.2.9) enumeration value.

ThresholdValue: This attribute MUST be present. It contains the value of the threshold, which is one
of the values returned by the IFsrmQuotaBase::Thresholds (get) (section 3.2.4.2.14.6) method.

Name: This attribute MUST be present. It contains the name of the template, which is the same value
returned by the IFsrmQuotaTemplate::Name (get) (section 3.2.4.2.20.3) method.

Id: This attribute MUST be present. It contains the ID of the template, which is the same value

returned by the IFsrmObject::Id (get) (section 3.2.4.2.10.1) method.

Limit: This attribute MUST be present. It contains the quota limit of the template, which is the same

value returned by the IFsrmQuotaBase::QuotaLimit (get) (section 3.2.4.2.14.2) method.

Flags: This attribute MUST be present. It contains the quota flags of the template, which is the same
value returned by the IFsrmQuotaBase::QuotaFlags (get) (section 3.2.4.2.14.4) method.

Description: This attribute MUST be present. It contains the description of the template, which is one

of the values returned by the IFsrmObject::Description (get) (section 3.2.4.2.10.2) method.

2.2.4 Error Codes

This section lists the error codes specific to the FSRM protocol. Common error codes are specified in
[MS-ERREF].

Return value/code Description

0x80045301

FSRM_E_NOT_FOUND

The requested object was not found.

0x80045303

FSRM_E_ALREADY_EXISTS

The specified object already exists.

0x80045311

FSRM_E_NOT_SUPPORTED

The operation is not supported by the object.

0x80045332

FSRM_E_REPORT_TYPE_ALREADY_EXISTS

The report job already contains a report of the specified type.

0x8004530E

FSRM_E_REQD_PARAM_MISSING

The specified required property is missing.

0x80045324

FSRM_E_INVALID_DATASCREEN_DEFINITION

The specified file screen is not valid.

0x80045321

FSRM_E_INVALID_FILEGROUP_DEFINITION

The specified file group definition is not valid.

0x80045308

FSRM_E_INVALID_NAME

The specified name is not valid.

0x8004533E The classification is not currently running.

%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90

58 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Return value/code Description

FSRM_E_CLASSIFICATION_NOT_RUNNING

2.3 Directory Service Schema Elements

The protocol accesses directory service schema classes and attributes listed in the following
table.<20>

For syntactic specifications of the classes and attributes in the following table, refer to either of the
following:

 Active Directory Domain Services (AD DS) ([MS-ADA1], [MS-ADA2], [MS-ADA3], and [MS-
ADSC])

 Active Directory Lightweight Directory Services (AD LDS) ([MS-ADLS])

The directory service schema elements for ADM elements published in the directory are defined in
[MS-ADSC].

Class Attribute

Resource Property Lists msDS-MembersOfResourcePropertyList

Resource Properties Enabled

objectClass

objectGUID

cn

displayName

description

msDS-IsUsedAsResourceSecurityAttribute

msDS-ValueTypeReference

msDS-AppliesToResourceTypes

msDS-ClaimPossibleValues

msDS-ClaimSharesPossibleValuesWith

whenChanged

2.3.1 Interaction Summary

File Server Resource Manager interacts with Active Directory at specified intervals to reference the
Resource Properties and synchronize them locally. The property definitions contained in Resource

Property Lists are synchronized. The property definitions in Active Directory are referred to as AD
Property Definitions. Each AD Property Definition in the Resource Properties is searched using the
Relative Distinguished Name. If the AD Property Definition found has the Enabled attribute set to
TRUE, it is synchronized locally.

The following is the Distinguished Name (DN) of the container where the members of resource
property are stored:

 CN=Resource Property Lists,CN=Claims Configuration,CN=Services,CN=Configuration

%5bMS-ADA1%5d.pdf#Section_19528560f41e4623a406dabcfff0660f
%5bMS-ADA2%5d.pdf#Section_e20ebc4e528540bab3bdffcb81c2783e
%5bMS-ADA3%5d.pdf#Section_4517e8353ee644d4bb95a94b6966bfb0
%5bMS-ADSC%5d.pdf#Section_9abb5e97123d4da99557b353ab79b830
%5bMS-ADSC%5d.pdf#Section_9abb5e97123d4da99557b353ab79b830
%5bMS-ADLS%5d.pdf#Section_9427994325ab4c139bf26d411cc2f796

59 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

2.3.2 Resource Property Lists

The object encapsulates the Resource Properties (section 2.3.3) that are to be synchronized with the
local server.

The top-level Resource Property Lists object MUST be stored in the domain naming context at
the following Relative Distinguished Name (RDN), within each domain's Active Directory domain
DNS object.

 CN=Resource Property Lists,CN=Claims Configuration,CN=Services,CN=Configuration

The attribute of this object that File Server Resource Manager uses is:

msDS-MembersOfResourcePropertyList: It contains the list of all Resource Properties specified
by their Distinguished Names (DNs), which are to be synced locally. AD Property

Definitions are contained in the Resource Properties.

2.3.3 Resource Properties

Each Resource Property List object represents a set of Resource Properties. Each of the Resource

Properties objects has a number of AD Property Definitions. Resource Properties objects are
stored in the domain naming context at the following Relative Distinguished Name:

 "CN= Resource Properties,CN=Claims Configuration,CN=Services,CN=Configuration "

The attributes of an AD Property Definition object that File Server Resource Manager uses are as
follows:

Enabled: A Boolean value that specifies the state of the AD Property Definitions. If it is set to
TRUE, the AD Property Definition is available for synchronization.

objectClass: Specifies the class name to which the AD Property Definition belongs.

objectGUID: The unique identifier (UID) for the object. This value is a 16-byte GUID that is set

when the AD Property Definition is created in Active Directory. This field is used to find the
matching AD Property Definition in Active Directory.

Cn: A Unicode string that specifies the name of the AD Property Definition.

displayName: A Unicode string that uniquely identifies the AD Property Definition and specifies
the AD Property Definition name.

Description: A Unicode string that specifies a brief description of the AD Property Definition.

msDS-IsUsedAsResourceSecurityAttribute: A Boolean value that specifies whether the AD
Property Definition can be used for security-related purposes. If the value of the attribute is
TRUE, the AD Property Definition is suitable for security purposes.

msDS-ValueTypeReference: Specifies the value type of the AD Property Definition. See
section 2.3.4 for details.

msDS-AppliesToResourceTypes: Indicates whether the AD Property Definition applies to one
or more files or folders.

msDS-ClaimPossibleValues: This attribute is set when there are any possible values for the AD
Property Definition. See section 2.3.5 for details.

msDS-ClaimSharesPossibleValuesWith: The Distinguished Name of another AD Property
Definition or Claim type with which the AD Property Definition shares its possible values.

60 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

whenChanged: This field contains a time and date value specifying the creation or modification
date of the AD Property Definition.

2.3.4 ValueType References of msDS-ValueTypeReference

MS-DS-OrderedList: Specifies the list of integer type possible values of the AD Property
Definition.

MS-DS-MultivaluedChoice: Specifies the list of string type possible values of the AD Property
Definition.

MS-DS-Text: Specifies an arbitrary string value provided for an AD Property Definition.

MS-DS-MultivaluedText: Specifies one or more arbitrary string values provided for an AD
Property Definition.

MS-DS-Number: Specifies the integer value of the AD Property Definition.

MS-DS-YesNo: Indicates the Boolean value mentioned for the AD Property Definition.

MS-DS-DateTime: Specifies the date and time of the AD Property Definition.

2.3.5 XML Schema of msDS-ClaimPossibleValues

AD Property Definitions with msDs-ValueTypeReferences set to MS-DS-OrderedList or MS-DS-
MultivaluedChoice can have the msDS-ClaimPossibleValues attribute set. This attribute specifies
a list of values, names, display names, and descriptions that can be used for the associated AD
Property Definition. A collection consisting of name, display name, and description is referred to as an

AD Possible Value.

Following is the XML schema for representing the AD Possible Values of an AD Property Definition.

 <?xml version="1.0" encoding="utf-8"?>
 <xs:schema
targetNamespace="http://schemas.microsoft.com/2010/08/ActiveDirectory/PossibleValues"

 elementFormDefault="qualified"
 xmlns="http://schemas.microsoft.com/2010/08/ActiveDirectory/PossibleValues"
 xmlns:mstns="http://schemas.microsoft.com/2010/08/ActiveDirectory/PossibleValues"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 >
 <xs:complexType name="ClaimValueItemBaseType" abstract="true">
 <xs:sequence minOccurs ="1" maxOccurs="1">
 <xs:element name="ValueDisplayName" type="xs:string" minOccurs="0"
maxOccurs="unbounded" />

 <xs:element name="ValueDescription" type="xs:string" minOccurs="0"
maxOccurs="unbounded" />

 <xs:element name="ValueGUID" type="xs:string" minOccurs="0" maxOccurs="unbounded" />
 </xs:sequence>
 </xs:complexType>

 <xs:complexType name="IntegerItemType">
 <xs:complexContent>
 <xs:extension base="ClaimValueItemBaseType">
 <xs:sequence>
 <xs:element name="Value" type="xs:int" />
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
 <xs:complexType name="IntegerListType">
 <xs:sequence minOccurs ="1" maxOccurs="1">
 <xs:element name="Item" type="IntegerItemType" minOccurs="1" maxOccurs="unbounded"/>
 </xs:sequence>

61 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 </xs:complexType>

 <xs:complexType name="StringItemType">
 <xs:complexContent>
 <xs:extension base="ClaimValueItemBaseType">
 <xs:sequence>
 <xs:element name="Value" type="xs:string" />
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
 <xs:complexType name="StringListType">
 <xs:sequence minOccurs ="1" maxOccurs="1">
 <xs:element name="Item" type="StringItemType" minOccurs="1" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>

 <xs:complexType name="PossibleClaimValuesType">
 <xs:choice minOccurs="1" maxOccurs="1">
 <xs:element name="StringList" type="StringListType" />
 <xs:element name="IntegerList" type="IntegerListType" />
 </xs:choice>
 </xs:complexType>
 <xs:element name="PossibleClaimValues" type="mstns:PossibleClaimValuesType" />
 </xs:schema>

A single AD Possible Value consists of three elements:

ValueDisplayName: Specifies the possible display name value for the AD Property Definition.

ValueDescription: Specifies the possible value description for the AD Property Definition.

Value: If the msDs-ValueTypeReferences attribute of the AD Property Definition is MS-DS-
OrderedList, this holds an integer value. If the msDs-ValueTypeReferences attribute of the
AD Property Definition is set to MS-DS-MultivaluedChoice, this holds a string specifying the
possible name of the AD Property Definition.

62 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

3 Protocol Details

3.1 Client Role Details

3.1.1 Abstract Data Model

This section describes a conceptual model of possible data organization that an implementation
maintains to participate in this protocol. The described organization is provided to facilitate the
explanation of how the protocol behaves. This document does not mandate that implementations

adhere to this model as long as their external behavior is consistent with that described in this
document.

ADSyncListName: Maintains the name of the list containing property definitions in Active
Directory that are to be synchronized.<21>

3.1.2 Timers

No timers are required.

3.1.3 Initialization

A client initializes by creating an RPC binding handle to the interface(s) relating to the set of features
it works with. The following list shows the interfaces to initialize. These interfaces are the primary
FSRM protocol interfaces. All other FSRM interfaces can be discovered through the use of the
interfaces in the following list. The following list also includes a description of how to get a client-side
RPC binding handle for each interface.

 IFsrmSetting: Create an RPC binding handle to IFsrmSetting to manage service settings, such as
email settings and run limit intervals for actions.

 IFsrmPathMapper: Create an RPC binding handle to IFsrmPathMapper to get network shares for

local paths.

 IFsrmQuotaManager: Create an RPC binding handle to IFsrmQuotaManager to manage quota
objects.

 IFsrmQuotaTemplateManager: Create an RPC binding handle to IFsrmQuotaTemplateManager to
manage quota templates.

 IFsrmFileGroupManager: Create an RPC binding handle to IFsrmFileGroupManager to manage file

groups.

 IFsrmFileScreenManager: Create an RPC binding handle to IFsrmFileScreenManager to manage file
screens and file screen exceptions.

 IFsrmFileScreenTemplateManager: Create an RPC binding handle to
IFsrmFileScreenTemplateManager to manage file screen templates.

 IFsrmReportManager: Create an RPC binding handle to IFsrmReportManager to manage reports

and report jobs.

 IFsrmReportScheduler: Create an RPC binding handle to IFsrmReportScheduler to manage
scheduled tasks for report jobs.

 IFsrmClassificationManager: Create an RPC binding handle to IFsrmClassificationManager to
manage property definitions, module definitions, and rules and also to get and set properties on
an individual file.

63 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 IFsrmFileManagementJobManager: Create an RPC binding handle to
IFsrmFileManagementJobManager to manage file management jobs.

3.1.4 Message Processing Events and Sequencing Rules

3.1.4.1 Processing Server Replies to Method Calls

Upon receiving a reply from the server in response to a method call, the client MUST validate the
return code. Return codes from all method calls are HRESULTs. If the HRESULT indicates success, the
client can assume that any output parameters are present and valid.

The client MUST release any DCOM interfaces returned by the server when the client no longer has
any use for them.

Some FSRM method calls require no prerequisite calls against the server and simply query for
information or pass in parameters constructed by the client. The calls listed in the following

subsections, however, are made in sequence. In general, the prerequisite call is to an object

enumeration method which retrieves information about a specific set of FSRM objects such as
directory quotas, file screens, report jobs, property definitions, module definitions,
classification rules, or file management jobs. Information returned by the object enumeration
method is then used to supply input parameters for subsequent calls. Calls with such prerequisites are
grouped by FSRM object type in sections 3.1.4.1.1, 3.1.4.1.2, 3.1.4.1.3, 3.1.4.1.4, 3.1.4.1.5, and
3.1.4.1.6.

3.1.4.1.1 File Server Resource Manager Protocol Object Relationships

The following describes the hierarchy of interfaces and objects used by the File Server Resource
Manager Protocol and the relationships between those objects.

Service and Quotas: The first interface obtained by the client is the IFsrmQuotaManager interface
(section 3.2.4.2.18). The client invokes the IFsrmQuotaManager::CreateQuota method (section
3.2.4.2.18.3) to create a quota on a directory on a volume. The server MUST respond with an

IFsrmQuota interface (section 3.2.4.2.16) on which the client can call methods to configure the

quota. The client invokes the IFsrmQuotaManager::GetQuota method (section 3.2.4.2.18.5) to get
a quota for a directory on a volume. The server MUST respond with an IFsrmQuota interface
(section 3.2.4.2.16) on which the client can call methods to configure the quota. The client
invokes the IFsrmQuotaManager::EnumQuotas (section 3.2.4.2.18.8) or
IFsrmQuotaManager::EnumXXXQuotas method, where XXX is a placeholder for "Effective" or

"AutoApply", to get an enumeration of quotas. The server MUST respond with an
IFsrmCommittableCollection interface (section 3.2.4.2.3) that enumerates a list of IFsrmQuota
interfaces, one for each quota that matches the parameters of the
IFsrmQuotaManager::EnumXXXQuotas call.

Service and Quota Templates: The first interface obtained by the client is the
IFsrmQuotaTemplateManager interface (section 3.2.4.2.22). The client invokes the
IFsrmQuotaTemplateManager::CreateTemplate method (section 3.2.4.2.22.1) to create a quota

template. The server MUST respond with an IFsrmQuotaTemplate interface (section 3.2.4.2.20) on
which the client can call methods to configure the quota template. The client invokes the

IFsrmQuotaTemplateManager::GetTemplate method (section 3.2.4.2.22.2) to get a quota
template with a specific name. The server MUST respond with an IFsrmQuotaTemplate interface
on which the client can call methods to configure the quota template. The client invokes the
IFsrmQuotaTemplateManager::EnumTemplates method (section 3.2.4.2.22.3) to get an
enumeration of quota templates. The server MUST respond with an IFsrmCommittableCollection

interface that enumerates a list of IFsrmQuotaTemplate interfaces, one for each quota template on
the server.

Service and File Groups: The first interface obtained by the client is the IFsrmFileGroupManager
interface (section 3.2.4.2.25). The client invokes the IFsrmFileGroupManager::CreateFileGroup

64 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

method (section 3.2.4.2.25.1) to create a file group. The server MUST respond with an
IFsrmFileGroup interface (section 3.2.4.2.23) on which the client can call methods to configure the

file group. The client invokes the IFsrmFileGroupManager::GetFileGroup method (section
3.2.4.2.25.2) to get a file group with a specific name. The server MUST respond with an

IFsrmFileGroup interface on which the client can call methods to configure the file group. The
client invokes the IFsrmFileGroupManager::EnumFileGroups method (section 3.2.4.2.25.3) to get
an enumeration of file groups. The server MUST respond with an IFsrmCommittableCollection
interface that enumerates a list of IFsrmFileGroup interfaces, one for each file group on the
server.

Service and File Screens: The first interface obtained by the client is the IFsrmFileScreenManager
interface (section 3.2.4.2.29). The client invokes the IFsrmFileScreenManager::CreateFileScreen

method (section 3.2.4.2.29.3) to create a file screen. The server MUST respond with an
IFsrmFileScreen interface (section 3.2.4.2.27) on which the client can call methods to configure
the file screen. The client invokes the IFsrmFileScreenManager::GetFileScreen method (section
3.2.4.2.11.1) to get a file screen with a specific name. The server MUST respond with an
IFsrmFileScreen interface on which the client can call methods to configure the file screen. The
client invokes the IFsrmFileScreenManager::EnumFileScreens method (section 3.2.4.2.29.5) to get

an enumeration of file screens. The server MUST respond with an IFsrmCommittableCollection
interface that enumerates a list of IFsrmFileScreen interfaces, one for each file screen that
matches the parameters of the EnumFileScreens call.

Service and File Screen Exceptions: The first interface obtained by the client is the
IFsrmFileScreenManager interface. The client invokes the
IFsrmFileScreenManager::CreateFileScreenException method (section 3.2.4.2.29.6) to create a file
screen exception. The server MUST respond with an IFsrmFileScreenException interface (section

3.2.4.2.28) on which the client can call methods to configure the file screen exception. The client
invokes the IFsrmFileScreenManager::GetFileScreenException method (section 3.2.4.2.29.7) to
get a file screen exception with a specific name. The server MUST respond with an
IFsrmFileScreenException interface on which the client can call methods to configure the file
screen exception. The client invokes the IFsrmFileScreenManager::EnumFileScreenExceptions
method (section 3.2.4.2.29.8) to get an enumeration of file screen exceptions. The server MUST
respond with an IFsrmCommittableCollection interface that enumerates a list of

IFsrmFileScreenException interfaces, one for each file screen exception that matches the
parameters of the EnumFileScreenExceptions call.

Service and File Screen Templates: The first interface obtained by the client is the
IFsrmFileScreenTemplateManager interface (section 3.2.4.2.32). The client invokes the
IFsrmFileScreenTemplateManager::CreateTemplate method (section 3.2.4.2.32.1) to create a file
screen template. The server MUST respond with an IFsrmFileScreenTemplate interface (section

3.2.4.2.30) on which the client can call methods to configure the file screen template. The client
invokes the IFsrmFileScreenTemplateManager::GetTemplate method (section 3.2.4.2.32.2) to get
a file screen template with a specific name. The server MUST respond with an
IFsrmFileScreenTemplate interface on which the client can call methods to configure the file
screen template. The client invokes the IFsrmFileScreenTemplateManager::EnumTemplates
method (section 3.2.4.2.32.3) to get an enumeration of file screen templates. The server MUST
respond with an IFsrmCommittableCollection interface that enumerates a list of

IFsrmFileScreenTemplate interfaces, one for each file screen template on the server.

Service and Report Jobs: The first interface obtained by the client is the IFsrmReportManager
interface (section 3.2.4.2.33). The client invokes the IFsrmReportManager::CreateReportJob
method (section 3.2.4.2.33.2) to create a report job. The server MUST respond with an
IFsrmReportJob interface (section 3.2.4.2.34) on which the client can call methods to configure
the report job. The client invokes the IFsrmReportManager::GetReportJob method (section
3.2.4.2.33.3) to get a report job with a specific name. The server MUST respond with an

IFsrmReportJob interface on which the client can call methods to configure the report job. The
client invokes the IFsrmReportManager::EnumReportJobs method (section 3.2.4.2.33.1) to get an
enumeration of report jobs. The server MUST respond with an IFsrmCommittableCollection

65 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

interface that enumerates a list of IFsrmReportJob interfaces, one for each report job on the
server.

Service and Property Definitions: The first interface obtained by the client is the
IFsrmClassificationManager interface (section 3.2.4.2.45). The client invokes the

IFsrmClassificationManager::CreatePropertyDefinition method (section 3.2.4.2.45.13) to create a
property definition. The server MUST respond with an IFsrmPropertyDefinition (section 3.2.4.2.37)
interface (section 3.2.4.2.37) on which the client can call methods to configure the property
definition. The client invokes the IFsrmClassificationManager::GetPropertyDefinition method
(section 3.2.4.2.45.14) to get a property definition with a specific name. The server MUST respond
with an IFsrmPropertyDefinition interface on which the client can call methods to configure the
property definition. The client invokes the IFsrmClassificationManager:: EnumPropertyDefinitions

method (section 3.2.4.2.45.12) to get an enumeration of property definitions. The server MUST
respond with an IFsrmCollection interface (section 3.2.4.2.1) that enumerates a list of
IFsrmPropertyDefinition interfaces, one for each property definition on the server.

Service and Module Definitions: The first interface obtained by the client is the
IFsrmClassificationManager interface. The client invokes the

IFsrmClassificationManager::CreateModuleDefinition method (section 3.2.4.2.45.19) to create a

module definition. The server MUST respond with an IFsrmPipelineModuleDefinition interface
(section 3.2.4.2.43) on which the client can call methods to configure the module definition. The
client invokes the IFsrmClassificationManager::GetModuleDefinition method (section
3.2.4.2.45.20) to get a module definition with a specific name. The server MUST respond with an
IFsrmPipelineModuleDefinition interface on which the client can call methods to configure the
module definition. The client invokes the IFsrmClassificationManager::EnumModuleDefinitions
method (section 3.2.4.2.45.18) to get an enumeration of module definitions. The server MUST

respond with an IFsrmCollection interface that enumerates a list of
IFsrmPipelineModuleDefinition interfaces, one for each module definition on the server.

Service and Rules: The first interface obtained by the client is the IFsrmClassificationManager
interface. The client invokes the IFsrmClassificationManager::CreateRule method (section
3.2.4.2.45.16) to create a rule. The server MUST respond with an IFsrmRule interface (section
3.2.4.2.41) on which the client can call methods to configure the rule. The client invokes the
IFsrmClassificationManager::GetRule method (section 3.2.4.2.45.17) to get a rule with a specific

name. The server MUST respond with an IFsrmRule interface on which the client can call methods
to configure the rule. The client invokes the IFsrmClassificationManager::EnumRules method
(section 3.2.4.2.45.15) to get an enumeration of rules. The server MUST respond with an
IFsrmCollection interface that enumerates a list of IFsrmRule interfaces, one for each rule on the
server.

Service and File Management Jobs: The first interface obtained by the client is the

IFsrmFileManagementJobManager (section 3.2.4.2.50) interface (section 3.2.4.2.50). The client
invokes the IFsrmFileManagementJobManager::CreateFileManagementJob method (section
3.2.4.2.50.2) to create a file management job. The server MUST respond with an
IFsrmFileManagementJob interface (section 3.2.4.2.48) on which the client can call methods to
configure the file management job. The client invokes the
IFsrmFileManagementJobManager::GetFileManagementJob method (section 3.2.4.2.50.3) to get a
file management job with a specific name. The server MUST respond with an

IFsrmFileManagementJob interface (section 3.2.4.2.48) on which the client can call methods to

configure the file management job. The client invokes the
IFsrmFileManagementJobManager::EnumFileManagementJobs method (section 3.2.4.2.50.1) to
get an enumeration of file management jobs. The server MUST respond with an IFsrmCollection
interface (section 3.2.4.2.1) that enumerates a list of IFsrmFileManagementJob interfaces (section
3.2.4.2.48), one for each file management job on the server.

3.1.4.1.2 Quota Objects

66 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

IFsrmQuotaBase::DeleteThreshold: Prior to invoking the DeleteThreshold method (section
3.2.4.2.14.8), the client calls the IFsrmQuotaBase::Thresholds (get) method (section

3.2.4.2.14.6) or IFsrmQuotaBase::AddThreshold method (section 3.2.4.2.14.7). If the client
called Thresholds (get), the server MUST respond with a SAFEARRAY of threshold values for the

object. If the client called AddThreshold, the server MUST add the specified threshold to the
object's list of thresholds. The client MUST pass one of the returned threshold values returned
from Thresholds (get) or the threshold value sent to AddThreshold as the threshold input
parameter to DeleteThreshold.

IFsrmQuotaBase::ModifyThreshold: The ModifyThreshold (section 3.2.4.2.14.9) method has the
same call sequence description as IFsrmQuotaBase::DeleteThreshold.

IFsrmQuotaBase::CreateThresholdAction: The CreateThresholdAction (section 3.2.4.2.14.10)

method has the same call sequence description as IFsrmQuotaBase::DeleteThreshold.

IFsrmQuotaBase::EnumThresholdActions: The EnumThresholdActions (section 3.2.4.2.14.11)
method has the same call sequence description as IFsrmQuotaBase::DeleteThreshold.

IFsrmQuotaObject::ApplyTemplate: Prior to invoking the ApplyTemplate (section 3.2.4.2.15.7)
method, the client calls the IFsrmQuotaTemplateManager::EnumTemplates method (section
3.2.4.2.22.3). The server MUST respond with a collection of quota templates. The client calls the

IFsrmQuotaTemplate::Name (get) (section 3.2.4.2.20.3) method. The server MUST return the
name of the quota template. The client MUST pass the name of the template returned from
Name (get) as the quotaTemplateName input parameter to ApplyTemplate.

IFsrmQuota::Commit: The Commit (section 3.2.4.2.10) method is inherited from
IFsrmObject::Commit (section 3.2.4.2.10.5). Before calling this method on an
IFsrmQuota (section 3.2.4.2.16) interface returned from the IFsrmQuotaManager::CreateQuota
method (section 3.2.4.2.18.3), the client MUST call the IFsrmQuota::QuotaLimit

(put) (section 3.2.4.2.14.3) method (section 3.2.4.2.14.3) with a valid quota limit.

IFsrmQuotaTemplate::CopyTemplate: The CopyTemplate (section 3.2.4.2.20.5) method has the
same call sequence description as IFsrmQuotaObject::ApplyTemplate.

IFsrmQuotaTemplate::Commit: The Commit (section 3.2.4.2.20.1) method is inherited from
IFsrmObject::Commit. Before calling this method on an IFsrmQuotaTemplate interface (section
3.2.4.2.20) returned from the IFsrmQuotaTemplateManager::CreateTemplate method (section
3.2.4.2.22.1), the client MUST call IFsrmQuotaTemplate::QuotaLimit

(put) (section 3.2.4.2.14.3) with a valid quota limit.

3.1.4.1.3 File Screen Objects

IFsrmFileGroup::Commit: The Commit method (section 3.2.4.2.23.1) is inherited from the
IFsrmObject::Commit method (section 3.2.4.2.10.5). Before calling this method on an
IFsrmFileGroup interface (section 3.2.4.2.23) returned from the

IFsrmFileGroupManager::CreateFileGroup method (section 3.2.4.2.25.1), the client MUST call
the IFsrmFileGroup::Name (put) (section 3.2.4.2.23.3) and IFsrmFileGroup::Members
(put) (section 3.2.4.2.23.5) methods with valid values for each call.

IFsrmFileScreenBase::BlockedFileGroups (put): Prior to invoking the BlockedFileGroups (put)

method (section 3.2.4.2.26.2), the client calls the IFsrmFileGroupManager::EnumFileGroups
method (section 3.2.4.2.25.3). The server MUST respond with a collection of file groups. The
client calls the IFsrmFileGroup::Name (get) method (server 3.2.4.2.23.2). The server MUST

return the name of the file group. The client builds a SAFEARRAY by using the names of the file
groups returned from Name (get) as the blockedFileGroups input parameter to
BlockedFileGroups (put) (section 3.2.4.2.26.2).

IFsrmFileScreen::ApplyTemplate: Prior to invoking the ApplyTemplate method (section
3.2.4.2.27.7), the client calls the IFsrmFileScreenTemplateManager::EnumTemplates method

67 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

(section 3.2.4.2.32.3). The server MUST respond with a collection of file screen templates. The
client calls the IFsrmFileScreenTemplate::Name (get) method (section 3.2.4.2.30.2). The

server MUST return the name of the file screen template. The client passes the name of the
template returned from Name (get) as the fileScreenTemplateName input parameter to

ApplyTemplate.

IFsrmFileScreenException::AllowedFileGroups (put): The AllowedFileGroups (put) (section
3.2.4.2.28.4) method has the same call sequence description as
IFsrmFileScreenBase::BlockedFileGroups (put).

IFsrmFileScreen::Commit: The Commit method (section 3.2.4.2.27.1) is inherited from the
IFsrmObject::Commit method. Before calling this method on an IFsrmFileScreen interface
(section 3.2.4.2.27) returned from the IFsrmFileScreenManager::CreateFileScreen method

(section 3.2.4.2.29.3), the client MUST call the IFsrmFileScreenBase::BlockedFileGroups (put)
method (section 3.2.4.2.26.2) with a valid collection of file groups.

IFsrmFileScreenException::Commit: The Commit method (section 3.2.4.2.28.1) is inherited from
IFsrmObject::Commit. Before calling this method on an IFsrmFileScreenException interface

(section 3.2.4.2.28) returned from the IFsrmFileScreenManager::CreateFileScreenException
method (section 3.2.4.2.29.6), the client MUST call the

IFsrmFileScreenException::AllowedFileGroups (put) (section 3.2.4.2.28.4) method with a valid
collection of file groups.

IFsrmFileScreenTemplate::CopyTemplate: The CopyTemplate method (section 3.2.4.2.30.4) has
the same call sequence description as IFsrmFileScreen::ApplyTemplate.

IFsrmFileScreenTemplate::Commit: The Commit method (section 3.2.4.2.30.1) is inherited from
IFsrmObject::Commit. Before calling this method on an IFsrmFileScreenTemplate interface
(section 3.2.4.2.30) returned from

IFsrmFileScreenTemplateManager::CreateTemplate (section 3.2.4.2.32.1) the client MUST call
IFsrmFileScreenBase::BlockedFileGroups (put) with a valid collection of file groups.

3.1.4.1.4 Storage Report Objects

Report Jobs and Reports: The client MUST first get an IFsrmReportJob interface (section
3.2.4.2.34) by using the relationship specified in section 3.1.4.1.1 under "Service and Report
Jobs". The client invokes the IFsrmReportJob::CreateReport method (section 3.2.4.2.34.15) to

create a report. The server MUST respond with an IFsrmReport interface (section 3.2.4.2.35) on
which the client can call methods to configure the report. The client invokes the
IFsrmReportJob::EnumReports method (section 3.2.4.2.34.14) to get an enumeration of
reports. The server MUST respond with an IFsrmCollection interface (section 3.2.4.2.1) that
enumerates a list of IFsrmReport interfaces, one for each report configured for the report job.

IFsrmReportJob::Commit: The Commit method (section 3.2.4.2.34.1) is inherited from the

IFsrmObject::Commit method (section 3.2.4.2.10.5). Before calling this method on an
IFsrmReportJob interface returned from
IFsrmReportManager::CreateReportJob (section 3.2.4.2.33.2), the client MUST call the
IFsrmReportJob::NamespaceRoots (put) (section 3.2.4.2.34.5), IFsrmReportJob::Task
(put) (section 3.2.4.2.34.3), and IFsrmReportJob::CreateReport methods with valid values for

each method.

3.1.4.1.5 Classification Objects

IFsrmPropertyDefinition::Commit: The Commit method (section 3.2.4.2.37.1) is inherited from the
IFsrmObject::Commit method (section 3.2.4.2.10.5). Before calling this method on an
IFsrmPropertyDefinition interface (section 3.2.4.2.37) returned from the
IFsrmClassificationManager::CreatePropertyDefinition method (section 3.2.4.2.45.13), the client
MUST call the IFsrmPropertyDefinition::Name (put) (section 3.2.4.2.37.3) and
IFsrmPropertyDefinition::Type (put) (section 3.2.4.2.37.5) methods, and MAY call the

68 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

IFsrmPropertyDefinition::PossibleValues (put) method (section 3.2.4.2.37.7), with valid values
for each method.

IFsrmClassificationRule::Commit: The Commit (section 3.2.4.2.42.1) method is inherited from
IFsrmObject::Commit. Before calling this method on an IFsrmClassificationRule interface

(section 3.2.4.2.42) returned from the IFsrmClassificationManager::CreateRule method (section
3.2.4.2.45.16), the client MUST call the IFsrmRule::NamespaceRoots
(put) (section 3.2.4.2.41.7), IFsrmRule::Name (put) (section 3.2.4.2.41.2),
IFsrmRule::ModuleDefinitionName (put) (section 3.2.4.2.41.5), and
IFsrmClassificationRule::PropertyAffected (put) (section 3.2.4.2.42.5) methods. The client MAY
call the IFsrmClassificationRule::Value (put) method (section 3.2.4.2.42.7) with valid values for
each method.

IFsrmClassifierModuleDefinition::Commit: The Commit method (section 3.2.4.2.44.1) is inherited
from IFsrmObject::Commit. Before calling this method on an IFsrmClassifierModuleDefinition
interface 3.2.4.2.44 returned from the IFsrmClassificationManager::CreateModuleDefinition
method, the client MUST call the IFsrmPipelineModuleDefinition::Name
(put) (section 3.2.4.2.43.4), and IFsrmPipelineModuleDefinition::ModuleClsid

(put) (section 3.2.4.2.43.2) methods with valid values for each method.

IFsrmStorageModuleDefinition::Commit: The Commit method (section 3.2.4.2.47.1) is inherited
from IFsrmObject::Commit.<22> Before calling this method on an
IFsrmStorageModuleDefinition interface (section 3.2.4.2.47) returned from the
IFsrmClassificationManager::CreateModuleDefinition method, the client MUST call the
IFsrmPipelineModuleDefinition::Name (put), IFsrmPipelineModuleDefinition::ModuleClsid (put),
IFsrmStorageModuleDefinition::Capabilities (put) (section 3.2.4.2.47.3), and
IFsrmStorageModuleDefinition::StorageType (put) (section 3.2.4.2.47.5) methods with valid

values for each method.

3.1.4.1.6 File Management Job Objects

IFsrmFileManagementJob::DeleteNotification: Prior to invoking the DeleteNotification method
(section 3.2.4.2.48.45), the client MUST call the IFsrmFileManagementJob::Notifications
(get) (section 3.2.4.2.48.13) or

IFsrmFileManagementJob::AddNotification (section 3.2.4.2.48.44) method. If the client called

Notifications (get), the server MUST respond with a SAFEARRAY of days values for the object. If
the client called AddNotification, the server MUST add the specified days value to the object's list
of notifications. The client MUST pass one of the returned days values returned from
Notifications (get) or the days value sent to AddNotification as the days input parameter to
DeleteNotification.

IFsrmFileManagementJob::ModifyNotification: The ModifyNotification (section 3.2.4.2.48.46)

method has the same call sequence description as IFsrmFileManagementJob::DeleteNotification.

IFsrmFileManagementJob::CreateNotificationAction: The CreateNotificationAction method (section
3.2.4.2.48.47) has the same call sequence description as
IFsrmFileManagementJob::DeleteNotification.

IFsrmFileManagementJob::EnumNotificationActions: The EnumNotificationActions method (section

3.2.4.2.48.48) has the same call sequence description as
IFsrmFileManagementJob::DeleteNotification.

IFsrmFileManagementJob::Commit: The Commit method (section 3.2.4.2.48.1) is inherited from
IFsrmObject::Commit (section 3.2.4.2.10). Before calling this method on an
IFsrmFileManagementJob interface returned from the
IFsrmFileManagementJobManager::CreateFileManagementJob method (section 3.2.4.2.50.2),
the client MUST call the IFsrmFileManagementJob::Name (put) (section 3.2.4.2.48.3),
IFsrmFileManagementJob::NamespaceRoots (put) (section 3.2.4.2.48.5) and
IFsrmFileManagementJob::Formats (put) (section 3.2.4.2.48.19) methods, and MAY call the

69 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

IFsrmFileManagementJob::ExpirationDirectory (put) (section 3.2.4.2.48.11) or
IFsrmFileManagementJob::CreateCustomAction (section 3.2.4.2.48.50) methods, with valid

values for each method.

3.1.4.2 Processing Notifications Sent from the Server to the Client

No notifications are sent from the server to the client.

3.1.5 Timer Events

No timer events are used by the File Server Resource Manager Protocol.

3.1.6 Other Local Events

No other local events require special processing on the client.

3.2 Server Role Details

3.2.1 Abstract Data Model

This section describes a conceptual model of possible data organization that a server implementation
maintains in order to participate in the FSRM protocol. The described organization is provided to
facilitate the explanation of how the protocol behaves. This document does not mandate that
implementations adhere to this model as long as their external behavior is consistent with that

described in this document.

A server implementing the FSRM protocol maintains the persistent configuration of the following
objects:

 Directory quotas (section 3.2.1.2.1)

 Auto apply quotas (section 3.2.1.2.2)

 File screens (section 3.2.1.3.1)

 File screen exceptions (section 3.2.1.3.2)

 Directory quota templates (section 3.2.1.2.3)

 File screen templates (section 3.2.1.3.3)

 File groups (section 3.2.1.3.4)

 Report jobs (section 3.2.1.5.1)

 Reports (section 3.2.1.5.2)

 Property definitions (section 3.2.1.6.1)

 Module definitions (section 3.2.1.6.2)

 Rules (section 3.2.1.6.3)

 File management jobs (section 3.2.1.7.1)

A server implementation also maintains some volatile status data and tracks all relevant file system
I/O necessary to maintain accurate quota accounting and file screen prohibitions. In addition to
maintaining configuration and state for the objects mentioned earlier, a server implementation also

70 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

provides a set of interfaces for enumerating collections of objects and an abstraction for manipulating
action objects, which are used in quotas, file screens, and file management jobs.

With four exceptions, the abstract data model can be manipulated only through the protocol. These
exceptions are:

1. Folder deletion, where the folder has a quota, file screen, or file screen exception configured;

2. Folder creation, where the folder's parent folder has auto apply quota configured;

3. Folder rename, where the folder has a quota, file screen, or file screen exception configured;

4. Volume discovery, where the volume contains folders that have quotas, file screens, or file screen
exceptions configured.

These exceptions are discussed in more detail in section 3.2.7.

The abstract model that the server maintains is not made available directly through the protocol. The

protocol is an OLE Automation style DCOM protocol, as specified in [MS-OAUT]. With this type of

protocol, the server maintains an implementation of the abstract data model and provides access to
the model strictly through GET and SET operations on standard Automation data types (BSTR, long,
SAFEARRAY, IDispatch, and so on) and RPC methods where the method parameter types are
restricted to the same set of standard Automation data types. The result of the OLE Automation style
interface is that the wire protocol is restricted to standard RPC method calls using only standard data

types; no custom-marshaled data structures are possible on the wire with OLE Automation DCOM
protocols. See [MS-OAUT] for details on OLE Automation and the standard OLE data types used by the
FSRM protocol.

This section lists objects used by multiple functional areas of the FSRM protocol feature set. Following
subsections are organized by the specific functional areas of the feature set:

 Quotas (section 3.2.1.2)

 File screens (section 3.2.1.3)

 Storage reports (section 3.2.1.5)

 Classification (section 3.2.1.6)

 File management jobs (section 3.2.1.7)

Supporting abstractions such as file groups, templates, actions, rules, properties, modules, and
notifications are discussed as part of the functional areas that make use of them. Finally, abstractions
to support a set of common global settings are described.

The server maintains the following object used by multiple models:

Volume List: A volatile list of all the volumes on the server.

3.2.1.1 FSRM Base Object

The FRSM Base Object is an ADM element used for all objects used by the functional areas of the

FSRM protocol feature set defined in the Abstract Data Model (section 3.2.1). Objects used by each
functional area of the FSRM protocol derive from this ADM element.

The following configuration data is maintained by the server for each FSRM Base Object on the
system.

FSRM Base Object.Id: This property is a GUID associated with the object.

FSRM Base Object.Description: This property is a Unicode text description of the object.

%5bMS-OAUT%5d.pdf#Section_bbb05720f72445c78d17f83c3d1a3961

71 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

FSRM Base Object.Deleted: This Boolean property controls whether the FSRM object MUST be
deleted when it is committed. It is used only in non-persisted instances of objects derived from

the FSRM Base Object. Persisted objects derived from the FSRM Base Object do not have this
property.

The following is the list of objects used by the functional areas which derive from the FSRM Base
Object:

 Directory Quota (section 3.2.1.2.1)

 File Screen (section 3.2.1.3.1)

 File Screen Exception (section 3.2.1.3.2)

 File Group (section 3.2.1.3.4)

 Report Job (section 3.2.1.5.1)

 Property Definition (section 3.2.1.6.1)

 Module Definition (section 3.2.1.6.2)

 Rule (section 3.2.1.6.3)

 File Management Job (section 3.2.1.7.1)

3.2.1.2 Quota Model

The server maintains the following lists of persisted objects for the quota model. Each list contains
objects of a specific type that are currently present and configured on the server.

List of Persisted Directory Quotas: This is a volatile list of all the Persisted Directory
Quotas (section 3.2.1.2.1.1) configured on the server. The server maintains only one List of
Persisted Directory Quotas.

List of Persisted Auto Apply Quotas: This is a volatile list of all the Persisted Auto Apply
Quotas (section 3.2.1.2.2.1) configured on the server. The server maintains only one List of
Persisted Auto Apply Quotas.

List of Persisted Directory Quota Templates: This is a volatile list of all the Persisted Directory
Quota Templates (section 3.2.1.2.3.1) configured on the server. The server maintains only one
List of Persisted Directory Quota Templates.

The server maintains the following lists of non-persisted objects for the quota model. Lists of non-
persisted objects contain copies of the objects from the lists of persisted objects. The non-persisted
objects are used by clients to make changes that are propagated to the lists of persisted objects when
the client commits the non-persisted objects.

List of Non-Persisted Directory Quota Instances: This is a volatile list of Non-Persisted
Directory Quota Instances (section 3.2.1.2.1.2) configured on the server. The server maintains
zero or more List of Non-Persisted Directory Quota Instances.

List of Non-Persisted Auto Apply Quota Instances: This is a volatile list of Non-Persisted Auto
Apply Quota Instances (section 3.2.1.2.2.2) configured on the server. The server maintains zero
or more List of Non-Persisted Auto Apply Quota Instances.

List of Non-Persisted Directory Quota Template Instances: This is a volatile list of Non-
Persisted Directory Quota Template Instances (section 3.2.1.2.3.2) configured on the server.
The server maintains zero or more List of Non-Persisted Directory Quota Template
Instances.

72 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

3.2.1.2.1 Directory Quotas

For each directory quota, a minimal set of configuration and state properties is maintained by the
server. The configuration of a directory quota consists of all of the information required to define the

quota, and the state consists of the properties that are tracked in real time to maintain, enforce, and
report on quota usage. A directory quota configuration is maintained only for objects with a path on a
volume in the Volume List (section 3.2.1).

A Directory Quota is a type of FSRM Base Object (section 3.2.1.1) that has all the properties and state
of a FSRM Base Object. The following configuration data is maintained for each directory quota on the
system.

Directory Quota.Folder path: The quota configuration is associated with a particular folder on

the server. If the folder is renamed, the quota configuration continues to be associated with the
renamed folder with the same configuration and state as before the rename.

Quota limit: This property is the disk space usage limit, in number of bytes, above which the
server will consider the quota exceeded or spent.

Quota limit mode: This property controls the behavior of the quota when the quota limit is
reached. There are two modes available:

Hard quota: A hard quota will block file IO that exceeds the quota's limit from occurring and
run any existing actions that are associated with a threshold for the quota's limit.

Soft quota: A soft quota will not block file IO that exceeds the quota's limit, but will run any
existing actions that are associated with a threshold for the quota's limit.

Quota enable/disable: This property controls whether the quota usage is actively tracked and
whether the quota limit is enforced.

Thresholds: A set consisting of between zero and sixteen (16) values, expressed as a percentage

of the quota limit. A protocol client can initiate a change to a threshold value and can delete a
threshold.

Notifications (Actions): Each threshold defined for a quota can have associated with it between
zero and four actions that apply if the quota usage rises above the threshold value. A
threshold can be associated with at most one notification of each of the four distinct FSRM
notification types. See section 3.2.1.4 for more information. A protocol client can perform the
following management operations involving quota notifications:

 Create a notification for a specific threshold. See section 3.2.4.2.14.10 for more details.

 Enumerate a list of all the notifications for a specific threshold. See section 3.2.4.2.14.11
for more details.

 Change the configuration data of a notification for a specific threshold. For details, see
sections 3.2.4.2.5, 3.2.4.2.6, 3.2.4.2.7, 3.2.4.2.8, and 3.2.4.2.9.

 Delete a notification for a specific threshold. See section 3.2.4.2.4.5 for more details.

 Change the Notification status for a notification for a specific threshold whenever
required. See section 3.2.4.2.14.9 for more details.

Template id: If the quota configuration was copied from a quota template, this property is the ID
of the directory quota template that the quota configuration was copied from.

Auto apply quota id: If the quota configuration was created by an auto apply quota, this
property is the ID of the auto apply quota the quota configuration was created from.

The following state data is maintained for each directory quota on the system:

73 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Notification status: This property tracks each notification for a specific threshold, if an event
occurred when the Quota usage exceeded the specific threshold. This property is reset to

denote that no event occurred for this notification whenever the Quota usage again falls below
the specific threshold. This property is used to prevent repeated events for the same

threshold violation. This property is tracked and saved internally by the server for each
threshold in a notification.

Quota state: This property defines the states in which a quota can be found. There are three
possible quota states:

Incomplete: A quota in this state is configured in a persistent manner to the system, but
the procedure to calculate the current quota usage (the quota scan) has not yet started.

Rebuilding: A quota in this state is configured in a persistent manner to the system, but the

procedure to calculate the current quota usage, though started, has not yet completed.

Complete: A quota in this state is configured in a persistent manner to the system, and the
procedure to calculate the current quota usage has completed.

Quota usage: This property tracks the total disk space usage in the file system tree below the
folder path including files, directories, streams, metadata, and other means of persistently
storing data specific to file systems using implementation-specific mechanisms.

Peak quota usage: This property tracks the highest value that the quota usage property has
ever reached. A client can request, through this protocol, that this value be reset to the current
value of the quota usage.

Peak quota usage time stamp: This property maintains a time stamp that corresponds to the
chronological date/time that the Peak quota usage was assigned a new value. The time stamp
can reflect a change in value due to the quota usage reaching a new, higher peak level or due
to a protocol client-initiated reset operation.

3.2.1.2.1.1 Persisted Directory Quota

A Persisted Directory Quota is a type of Directory Quota (section 3.2.1.2.1) that has all the properties
and state of a directory quota, represents the persisted configuration of a directory quota on the
server and is stored in nonvolatile storage. There can be only one Persisted Directory Quota for a
specific folder path on the server.

A protocol client can perform the following management operations involving Persisted Directory

Quotas:

 Enumerate the List of Persisted Directory Quotas abstract data object (section 3.2.1.2) or a
subset of the List of Persisted Directory Quotas on the server. See EnumQuotas (Opnum
14) (section 3.2.4.2.18.8) for details.

 Get the configuration and state of a particular Persisted Directory Quota. See GetQuota (Opnum
11) (section 3.2.4.2.18.5) for details.

3.2.1.2.1.2 Non-Persisted Directory Quota Instance

A Non-Persisted Directory Quota Instance is a type of Directory Quota (section 3.2.1.2.1), which
has all the properties and state of a directory quota. A Non-Persisted Directory Quota Instance is a
copy, in memory, of an instance of a Persisted Directory Quota (section 3.2.1.2.1.1), and it is used by
a client to make changes to that Persisted Directory Quota. Changes, including deletion, that are made
to a Non-Persisted Directory Quota Instance are either discarded after use or applied to the associated

Persisted Directory Quota. There can be zero or more Non-Persisted Directory Quota Instances for
each Persisted Directory Quota.

74 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

A protocol client can perform the following management operations involving Non-Persisted Directory
Quota Instances:

 Create or change the configuration data for a Non-Persisted Directory Quota Instance. See
CreateQuota (Opnum 9) (section 3.2.4.2.18.3) and Commit (Opnum 11) (section 3.2.4.2.10.5) for

details.

 Commit changes, including deletion, from a Non-Persisted Directory Quota Instance into the
associated Persisted Directory Quota. See Delete (Opnum 10) (section 3.2.4.2.10.4) and Commit
(Opnum 11) (section 3.2.4.2.10.5) for details.

3.2.1.2.2 Auto Apply Quotas

For each auto apply quota, a minimal set of configuration properties is maintained by the server. An

auto apply quota is similar to a directory quota in terms of the abstract data model maintained by
the server implementation; however, the behavior is fundamentally different. A directory quota
configuration is applied to a particular folder; an auto apply quota configuration results in the
application of directory quota configurations to the subfolders of the folder on which the auto apply

quota is configured. An auto apply quota configuration is maintained only for objects with paths on a
volume in the Volume List (section 3.2.1).

There is no state data for an auto apply quota. With the exception of the Auto apply quota id, the
configuration data of an auto apply quota is the same as that is specified for a directory quota (section
3.2.1.2.1), with the following addition:

Exclude folders: This property is a list of subfolders that are excluded from tracking and limiting
of disk space usage if they exist or are created immediately underneath the auto apply quota
folder path.

3.2.1.2.2.1 Persisted Auto Apply Quota

A Persisted Auto Apply Quota is a type of Auto Apply Quota (section 3.2.1.2.2) that has all the
properties of an auto apply quota, represents the persisted configuration of an auto apply quota on
the server and is stored in nonvolatile storage. There can be only one Persisted Auto Apply Quota for a

specific Folder path on the server.

A protocol client can perform the following management operations involving Persisted Auto Apply
Quota:

 Enumerate the List of Persisted Auto Apply Quotas abstract data object (section 3.2.1.2) or a
subset of the List of Persisted Auto Apply Quotas on the server. See EnumAutoApplyQuotas
(Opnum 15) (section 3.2.4.2.18.9) for details.

 Get the configuration of a particular Persisted Auto Apply Quota. See GetAutoApplyQuota (Opnum
12) (section 3.2.4.2.18.6) for details.

3.2.1.2.2.2 Non-Persisted Auto Apply Quota Instance

A Non-Persisted Auto Apply Quota Instance is a type of Auto Apply Quota (section 3.2.1.2.2),
which has all the properties of an auto apply quota. A Non-Persisted Auto Apply Quota Instance is a

copy, in memory, of an instance of a Persisted Auto Apply Quota (section 3.2.1.2.2.1), and it is used
by a client to make changes to that Persisted Auto Apply Quota. Changes, including deletion, that are
made to a Non-Persisted Auto Apply Quota Instance are either discarded after use or applied to the
associated Persisted Auto Apply Quota. There can be zero or more Non-Persisted Auto Apply Quota

Instances for each Persisted Auto Apply Quota.

A protocol client can perform the following management operations involving Non-Persisted Auto
Apply Quota Instances:

75 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 Create or change the configuration data for a Non-Persisted Auto Apply Quota Instance. See
CreateAutoApplyQuota (Opnum 10) (section 3.2.4.2.18.4) and Commit (Opnum

11) (section 3.2.4.2.10.5) for details.

 Commit changes, including deletion, from a Non-Persisted Auto Apply Quota Instance into the

associated Persisted Auto Apply Quota. See Delete (Opnum 10) (section 3.2.4.2.10.4) and Commit
(Opnum 11) (section 3.2.4.2.10.5) for details.

The following configuration data is maintained for each Non-Persisted Auto Apply Quota Template
on the system:

DerivedQuotaObjects: A collection of derived objects that were updated as a result of the
directory quota template's call to CommitAndUpdateDerived.

DerivedQuotaResults: A collection of HRESULTs for the committing of derived objects that were

updated as a result of the directory quota template's call to CommitAndUpdateDerived.

3.2.1.2.3 Directory Quota Templates

For each directory quota template, a minimal set of configuration properties is maintained by the
server. A directory quota template is similar to a directory quota in terms of the abstract data model
maintained by a server implementation. A directory quota template does not have the state

information. A directory quota template has the same set of configuration properties as a directory
quota, but the configuration is not applied to a particular file system folder; it is used to create
directory quotas and auto apply quotas on one or more file system folder paths. A directory quota
template can also be used to create another directory quota template.

With the exception of the Auto apply quota id, Template id, and Directory Quota.Folder path
properties, the configuration data of a directory quota template is the same as that specified for a
directory quota (section 3.2.1.2.1), with the following additions:

Directory Quota Template.Name: This property is a unique, user-assigned, case-insensitive
Unicode string for the directory quota template.

Directory Quota Template.Overwrite on commit: This setting is a Boolean value that specifies
whether the existing Directory Quota Template is overwritten with the imported Directory
Quota Template.

3.2.1.2.3.1 Persisted Directory Quota Template

A Persisted Directory Quota Template is a type of Directory Quota Template (section 3.2.1.2.1) that
has all the properties of a directory quota template, represents the persisted configuration of a
directory quota template on the server and is stored in nonvolatile storage.

A protocol client can perform the following management operations involving Persisted Directory
Quota Templates:

 Enumerate the List of Persisted Directory Quota Templates abstract data object (section

3.2.1.2) or a subset of the List of Persisted Directory Quota Templates on the server. See
EnumTemplates (Opnum 9) (section 3.2.4.2.22.3) for details.

 Get the configuration and state of a particular directory quota template. See GetTemplate (Opnum
8) (section 3.2.4.2.22.2) for details.

 Apply a directory quota template to a directory quota object. See ApplyTemplate (Opnum
27) (section 3.2.4.2.15.7) for details.

3.2.1.2.3.2 Non-Persisted Directory Quota Template Instance

76 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

A Non-Persisted Directory Quota Template Instance is a type of Directory Quota
Template (section 3.2.1.2.3), which has all the properties and state of a directory quota template.

A Non-Persisted Directory Quota Template Instance is a copy, in memory, of an instance of a Persisted
Directory Quota Template (section 3.2.1.2.3.1), and it is used by a client to make changes to that

Persisted Directory Quota Template. Changes, including deletion, that are made to a Non-Persisted
Directory Quota Template Instance are either discarded after use or applied to the associated
Persisted Directory Quota Template. There can be zero or more Non-Persisted Directory Quota
Template Instances for each Persisted Directory Quota Template.

A protocol client can perform the following management operations involving Non-Persisted Directory
Quota Template Instances:

 Create or change the configuration data for a Non-Persisted Directory Quota Template Instance.

See CreateTemplate (Opnum 7) (section 3.2.4.2.22.1) and Commit (Opnum
11) (section 3.2.4.2.10.5) for details.

 Commit changes, including deletion, from a Non-Persisted Directory Quota Template Instance into
the associated Persisted Directory Quota Template. See Delete (Opnum 10) (section 3.2.4.2.10.4)

and Commit (Opnum 11) (section 3.2.4.2.10.5) for details.

The following configuration data is maintained for each non-persisted directory quota template on

the system:

DerivedQuotaObjects: A collection of derived objects that were updated as a result of the
directory quota template's call to CommitAndUpdateDerived.

DerivedQuotaResults: A collection of HRESULTs for committing derived objects that were
updated due to the directory quota template's call to CommitAndUpdateDerived.

3.2.1.3 File Screen Model

The server maintains the following lists of persisted objects for the file screen model. Each list
contains objects of a specific type that are currently present and configured on the server.

List of Persisted File Screens: This is a volatile list of all the Persisted File
Screens (section 3.2.1.3.1.1) configured on the server. The server maintains only one List of

Persisted File Screens.

List of Persisted File Screen Exceptions: This is a volatile list of all the Persisted File Screen
Exceptions (section 3.2.1.3.2.1) configured on the server. The server maintains only one List of
Persisted File Screen Exceptions.

List of Persisted File Screen Templates: This is a volatile list of all the Persisted File Screen
Templates (section 3.2.1.3.3.1) configured on the server. The server maintains only one List of
Persisted File Screen Templates.

List of Persisted File Groups: This is a volatile list of all the Persisted File
Groups (section 3.2.1.3.4.1) configured on the server. The server maintains only one List of
Persisted File Groups.

The server maintains the following lists of non-persisted objects for the file screen model. Lists of non-
persisted objects contain copies of the objects from the lists of persisted objects. The non-persisted
objects are used by clients to make changes that are propagated to the lists of persisted objects when
the client commits the non-persisted objects.

List of Non-persisted File Screen Instances: This is a volatile list of all the Non-Persisted File
Screen Instances (section 3.2.1.3.1.2) configured on the server. The server maintains zero or
more List of Non-Persisted File Screen Instances.

77 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

List of Non-persisted File Screen Exception Instances: This is a volatile list of all the Non-
Persisted File Screen Exception Instances (section 3.2.1.3.2.2) configured on the server. The

server maintains zero or more List of Non-Persisted File Screen Exception Instances.

List of Non-persisted File Screen Template Instance: This is a volatile list of all the Non-

Persisted File Screen Template Instances (section 3.2.1.3.3.2) configured on the server. The
server maintains zero or more List of Non-Persisted File Screen Template Instances.

List of Non-Persisted File Group Instance: This is a volatile list of all the Non-Persisted File
Group Instances (section 3.2.1.3.4.2) configured on the server. The server maintains zero or
more List of Non-Persisted File Group Instances.

3.2.1.3.1 File Screens

For each file screen, a minimal set of configuration properties is maintained by the server. The
configuration of a file screen consists of all of the information required to define the file screen. A file
screen configuration is maintained only for objects with a path on a volume in the Volume List
(section 3.2.1).

A File Screen is a type of FSRM Base Object (section 3.2.1.1) that has all the properties and state of a
FSRM Base Object. The following configuration data is maintained for each file screen on the system.

File Screen.Folder path: The file screen configuration is associated with a particular folder on the
server. If the folder is renamed, the file screen configuration continues to be associated with the
renamed folder with the same configuration and state as before the rename.

Blocked file groups: The file screen configuration contains at least one file group that represents
the files that the server will prevent from being saved under the folder path. See section
3.2.1.3.4 for details. A protocol client can perform the following management operations
involving blocked file groups:

 Get a list of all the blocked file groups. See section 3.2.4.2.26.1 for details.

 Add a reference to a file group to the list of blocked file groups. See section 3.2.4.2.2.1 for

details.

 Remove a reference to a file group from the list of blocked file groups. See section
3.2.4.2.2.2 for details.

 Set the list of blocked file groups. See section 3.2.4.2.26.2 for details.

Notifications (Actions): The file screen can be associated with between zero and four actions

that apply if the file screen is violated. A file screen can be associated with at most one
notification of each of the four distinct FSRM notification types. See section 3.2.1.4 for more
information. A protocol client can perform the following management operations involving file
screen notifications:

 Create a notification. See section 3.2.4.2.26.5 for details.

 Change the configuration data of notification for a file screen. See sections 3.2.4.2.5,

3.2.4.2.6, 3.2.4.2.7, 3.2.4.2.8, and 3.2.4.2.9 for details.

 Enumerate a list of all the notifications. See section 3.2.4.2.26.6 for details.

 Delete a notification. See section 3.2.4.2.4.5 for details.

File screen mode: This property controls the behavior of the file screen when a prohibited file is
detected. There are two modes available:

Hard screen: A hard screen will block file IO that violates the file screen, and cause the
server to run any existing actions that are associated with the file screen.

78 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Soft screen: A soft quota will not block file IO that violates the file screen, but it will cause
the server to run any existing actions that are associated with the file screen.

Template id: If the file screen configuration was copied from a file screen template, this property
is the ID of the file screen template the file screen configuration was copied from.

File Screen.Overwrite on commit: A Boolean value that specifies whether the existing file
screen is overwritten with the imported file screen.

The FSRM protocol reports feature includes a report that enumerates a file screening audit history.
This feature is available to protocol clients by configuring a report job appropriately to generate this
File Screen Audit report. The presence of this feature adds an additional requirement to the protocol
server. To generate this report, the file screen auditing feature MUST be enabled using the FSRM
General Settings model. Each file screen violation, including soft file screen violations that did not

prevent the prohibited file from being created, contains the following data:

 Folder path

 ID

 Blocked file group name

 File screen mode

 Time stamp when the prohibited file violation occurred

 The name of the process image that generated the prohibited I/O, if available

 The SID of the user principal that issued the prohibited I/O, if available

 The full path name of the prohibited file

 The server name

3.2.1.3.1.1 Persisted File Screen

A Persisted File Screen is a type of File Screen (section 3.2.1.3.1) that has all the properties of a file

screen, represents the persisted configuration of a file screen on the server and is stored in
nonvolatile storage. There can be only one Persisted File Screen for a specific folder path on the
server.

A protocol client can perform the following management operations involving Persisted File Screens:

 Enumerate the List of Persisted File Screens abstract data object (section 3.2.1.3) or a subset
of the List of Persisted File Screens on the server. See EnumFileScreens (Opnum
11) (section 3.2.4.2.29.5) for details.

 Get the configuration and state of a particular file screen. See GetFileScreen (Opnum
10) (section 3.2.4.2.29.4) for details.

3.2.1.3.1.2 Non-Persisted File Screen Instance

A Non-Persisted File Screen Instance is a type of File Screen (section 3.2.1.3.1), which has all the
properties of a file screen. A Non-Persisted File Screen Instance is a copy, in memory, of an instance

of a Persisted File Screen (section 3.2.1.3.1.1), and it is used by a client to make changes to that
Persisted File Screen. Changes, including deletion, that are made to a Non-Persisted File Screen
Instance are either discarded after use or applied to the associated Persisted File Screen. There can be
zero or more Non-Persisted File Screen Instances for each Persisted File Screen.

A protocol client can perform the following management operations involving Non-Persisted File
Screen Instances:

79 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 Create or change the configuration data for a Non-Persisted File Screen Instance. See
CreateFileScreen (Opnum 9) (section 3.2.4.2.29.3) and Commit (Opnum

11) (section 3.2.4.2.10.5) for details.

 Commit changes, including deletion, from a Non-Persisted File Screen Instance into the associated

Persisted File Screen. See Delete (Opnum 10) (section 3.2.4.2.10.4) and Commit (Opnum
11) (section 3.2.4.2.10.5) for details.

3.2.1.3.2 File Screen Exceptions

For each file screen exception, a minimal set of configuration properties is maintained by the
server. The configuration of a file screen exception consists of all the information required to define
the file screen exception.

A File Screen Exception is a type of FSRM Base Object (section 3.2.1.1) that has all the properties and
state of a FSRM Base Object. The following configuration data is maintained for each file screen
exception on the system.

File Screen Exception.Folder path: The file screen exception configuration is associated with a
particular folder on the server. If the folder is renamed, the file screen exception configuration
continues to be associated with the renamed folder with the same configuration and state as

before the rename.

Allowed file groups: The file screen exception configuration contains at least one file group that
represents the files that are allowed to be saved under the folder path, thereby overriding any
file screen configuration defined at a higher level in the file system directory tree. See section
3.2.1.3.4 for details. A protocol client can perform the following management operations
involving allowed file group:

 Get a list of all the allowed file groups. See section 3.2.4.2.28.3 for details.

 Add a reference to a file group to the list of allowed file groups. See section 3.2.4.2.2.1 for
details.

 Remove a reference to a file group from the list of allowed file groups. See section
3.2.4.2.2.2 for details.

 Set the list of allowed file groups. See section 3.2.4.2.28.4 for details.

3.2.1.3.2.1 Persisted File Screen Exception

A Persisted File Screen Exception is a type of File Screen Exception (section 3.2.1.3.2) that has all the
properties of a file screen exception, represents the persisted configuration of a file screen
exception on the server and is stored in nonvolatile storage. There can be only one Persisted File
Screen Exception for a specific folder path on the server.

A protocol client can perform the following management operations involving Persisted File Screen
Exceptions:

 Enumerate the List of Persisted File Screen Exceptions abstract data object (section 3.2.1.3)

or a subset of the List of Persisted File Screen Exceptions on the server. See
EnumFileScreenExceptions (Opnum 14) (section 3.2.4.2.29.8) for details.

 Get the configuration and state of a particular file screen exception. See GetFileScreenException
(Opnum 13) (section 3.2.4.2.29.7) for details.

3.2.1.3.2.2 Non-Persisted File Screen Exception Instance

A Non-Persisted File Screen Exception Instance is a type of File Screen
Exception (section 3.2.1.3.2), which has all the properties of a file screen exception. A Non-

80 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Persisted File Screen Exception Instance is a copy, in memory, of an instance of a Persisted File
Screen Exception (section 3.2.1.3.2.1), and it is used by a client to make changes to that Persisted

File Screen Exception. Changes, including deletion, that are made to a Non-Persisted File Screen
Exception Instance are either discarded after use or applied to the associated persisted file screen.

There can be zero or more Non-Persisted File Screen Exception Instances for each Persisted File
Screen Exception.

A protocol client can perform the following management operations involving Non-Persisted File
Screen Exception Instances:

 Create or change the configuration data for a Non-Persisted File Screen Exception Instance. See
CreateFileScreenException (Opnum 12) (section 3.2.4.2.29.6) and Commit (Opnum
11) (section 3.2.4.2.10.5) for details.

 Commit changes, including deletion, from a Non-Persisted File Screen Exception Instance into the
associated Persisted File Screen Exception. See Delete (Opnum 10) (section 3.2.4.2.10.4) and
Commit (Opnum 11) (section 3.2.4.2.10.5) for details.

3.2.1.3.3 File Screen Templates

For each File Screen Template, a minimal set of configuration properties is maintained by the server. A

File Screen Template is similar to a file screen in terms of the abstract data model maintained by a
server implementation. A File Screen Template has almost the same set of configuration properties as
a file screen, but the configuration is not applied to a particular file system folder. A File Screen
Template is a subset of file screen settings used to easily create active file screen configurations on
one or more file system Folder paths.

A protocol client can perform the following management operations involving File Screen Templates:

 Create or change the configuration data for a File Screen Template. See sections 3.2.4.2.32.1 and

3.2.4.2.10.5 for details.

 Enumerate the List of File Screen Templates on the server. See section 3.2.4.2.32.3 for details.

 Get the configuration and state of a particular File Screen Template. See section 3.2.4.2.32.2 for
details.

 Delete a File Screen Template. See sections 3.2.4.2.10.4 and 3.2.4.2.10.5 for details.

 Apply a File Screen Template to a file screen object. See section 3.2.4.2.27.7 for more details.

With the exception of the File Screen.Folder path and Template id properties, the configuration

data of a File Screen Template is the same as that specified for a file screen (section 3.2.1.3.1), with
the following addition:

File Screen Template.Name: This property is a unique, user-assigned, case-insensitive Unicode
string for the File Screen Template.

3.2.1.3.3.1 Persisted File Screen Template

A Persisted File Screen Template is a type of File Screen Template (section 3.2.1.3.3) that has all the
properties of a file screen template, represents the persisted configuration of a file screen template
on the server and is stored in nonvolatile storage. There can be only one Persisted File Screen
Template for a specific folder path on the server.

A protocol client can perform the following management operations involving Persisted File Screen
Templates:

 Enumerate the List of Persisted File Screen Templates abstract data object (section 3.2.1.3)

on the server. See EnumTemplates (Opnum 9) (section 3.2.4.2.32.3) for details.

81 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 Get the configuration and state of a particular Persisted File Screen Template. See GetTemplate
(Opnum 8) (section 3.2.4.2.32.2) for details.

 Apply a Persisted File Screen Template to a file screen object. See ApplyTemplate (Opnum
23) (section 3.2.4.2.27.7) for details.

3.2.1.3.3.2 Non-Persisted File Screen Template Instance

A Non-Persisted File Screen Template Instance is a type of File Screen
Template (section 3.2.1.3.3), which has all the properties of a file screen template. A Non-Persisted
File Screen Template Instance is a copy, in memory, of an instance of a Persisted File Screen
Template (section 3.2.1.3.3.1), and it is used by a client to make changes to that Persisted File Screen
Template. Changes, including deletion, that are made to a Non-Persisted File Screen Template

Instance are either discarded after use or applied to the associated persisted file screen. There can be
zero or more Non-Persisted File Screen Template Instances for each Persisted File Screen Template.

A protocol client can perform the following management operations involving Non-Persisted File
Screen Template Instances:

 Create or change the configuration data for a Non-Persisted File Screen Template Instance. See
CreateTemplate (Opnum 7) (section 3.2.4.2.32.1) and Commit (Opnum 11) (section 3.2.4.2.10.5)

for details.

 Commit changes, including deletion, from a Non-Persisted File Screen Template Instance into the
associated Persisted File Screen Template. See Delete (Opnum 10) (section 3.2.4.2.10.4) and
Commit (Opnum 11) (section 3.2.4.2.10.5) for details.

The following configuration data is maintained for each Non-Persisted File Screen Template on the
system:

DerivedFileScreenObjects: A collection of derived objects that were updated as a result of the

File Screen Template's call to CommitAndUpdateDerived.

DerivedFileScreenResults: A collection of HRESULTs for committing derived objects that were

updated as a result of the File Screen Template's call to CommitAndUpdateDerived.

3.2.1.3.4 File Groups

For each file group a minimal set of configuration properties is maintained by the server. The
configuration of a file group consists of all the information required to define the file group. There is no

state information to track for a file group.

A File Group is a type of FSRM Base Object (section 3.2.1.1) that has all the properties and state of a
FSRM Base Object. The following configuration data is maintained for each file group on the system:

File Group.Name: This property is a unique, user-assigned, case-insensitive Unicode string for the
file group.

Members: This property is a file name pattern that is used to compare file names to determine

membership in the file group. If a file name matches the pattern, it is considered to be a

member of the file group, unless it also matches the non-members pattern.

Non-members: This property is a file name pattern that is used to compare file names to
determine non-membership in the file group. If a file name matches the pattern, it is considered
to be a non-member of the file group.

File Group.Overwrite on commit: This setting is a Boolean value that specifies whether the
existing File Group is overwritten with the imported File Group.

3.2.1.3.4.1 Persisted File Group

82 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

A Persisted File Group is a type of File Group (section 3.2.1.3.4) that has all the properties of a file
group, represents the persisted configuration of a file group on the server and is stored in nonvolatile

storage. There can be only one Persisted File Group for a specific folder path on the server.

A protocol client can perform the following management operations involving Persisted File Groups:

 Enumerate the List of Persisted File Groups abstract data object (section 3.2.1.3) on the
server. See EnumFileGroups (Opnum 9) (section 3.2.4.2.25.3) for details.

 Get the configuration of a particular Persisted File Group. See GetFileGroup (Opnum
8) (section 3.2.4.2.25.2) for details.

 Add or remove a Persisted File Group to or from a file screen's blocked file groups list. See File
Screens (section 3.2.1.3.1) for details.

 Add or remove a Persisted File Group to or from a file screen exception's allowed file groups list.

See File Screen Exceptions (section 3.2.1.3.2) for details.

 Add or remove a Persisted File Group to or from a files-by-group storage report. See SetFilter

(Opnum 14) (section 3.2.4.2.35.8) for details.

3.2.1.3.4.2 Non-Persisted File Group Instance

A Non-Persisted File Group Instance is a type of File Group (section 3.2.1.3.4), which has all the

properties of a file group. A Non-Persisted File Group Instance is a copy, in memory, of an instance
of a Persisted File Group (section 3.2.1.3.4.1), and it is used by a client to make changes to that
Persisted File Group. Changes, including deletion, that are made to a Non-Persisted File Group
Instance are either discarded after use or applied to the associated persisted file screen. There can be
zero or more Non-Persisted File Group Instances for each Persisted File Group.

A protocol client can perform the following management operations involving Non-Persisted File Group
Instances:

 Create or change the configuration data for a Non-Persisted File Group Instance. See

CreateFileGroup (Opnum 7) (section 3.2.4.2.25.1) and Commit (Opnum 11) (section 3.2.4.2.10.5)
for details.

 Commit changes, including deletion, from a Non-Persisted File Group Instance into the associated
Persisted File Group. See Delete (Opnum 10) (section 3.2.4.2.10.4) and Commit (Opnum
11) (section 3.2.4.2.10.5) for details.

3.2.1.4 Notification Model

File Server Resource Manager Protocol notifications are a common set of abstractions used in
directory quotas, file screens, and file management jobs. The actual data backing these
abstractions is owned and encapsulated by the respective quota, file screen, or file management job

abstraction model. The configuration and state of a notification are saved concurrent with the
configuration data of the quota, file screen, or file management job that encapsulates the notification.
The notification abstraction model is presented here.

The management operations that a protocol client can perform involving notifications are specified in
sections 3.2.1.2.1, 3.2.1.3.1, and 3.2.1.7.1.

The following configuration data is maintained for each notification on the system:

Notification.Id: This property is a GUID associated with the notification.

Run limit interval: This property is a positive integer value of minutes that restricts how soon the
server can rerun the same notification for multiple occurrences of the same event.

83 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Action type: This property identifies the notification as one of four action types: Event Log, Email,
Command Line, and Report. The configuration data is different depending on which action type

the notification belongs to:

Event log action type: This action logs an event in the server's event log.

Event type: This property indicates the type of the event log that will result when the
action is eventually triggered. There are three legal event log types: Information,
Warning, or Error.

Message text: This property is a Unicode string that contains the event log message
text inside the event log that will result when the action is eventually triggered.

Email action type: This action sends an email. In addition to the following properties, the
server uses the SMTP server name and Mail-from email address from the General

Settings Model (section 3.2.1.9).

Mail from: This property is a Unicode string that will be used for the email FROM
address when the action is eventually triggered.

Mail to: This property is a Unicode string that will be used for the list of email TO
addresses when the action is eventually triggered.

Mail subject: This property is a Unicode string that will be used for the email SUBJECT

line when the action is eventually triggered.

Mail reply to: This property is a Unicode string that will be used for the email REPLY
TO address when the action is eventually triggered.

Mail cc: This property is a Unicode string that will be used for the list of email CC
addresses when the action is eventually triggered.

Mail bcc: This property is a Unicode string that will be used for the list of email BCC
addresses when the action is eventually triggered.

Message text: This property is a Unicode string that will be used for the email
message BODY when the action is eventually triggered.

Attachment file list size: This property indicates the number of lines to include in the
attachment for email actions associated with file management jobs.

Command line action type: This action runs a program on the server.

Executable path: This property is a Unicode string that specifies the program that will
be started when the action is eventually triggered.

Notification.Model.Arguments: This property is a Unicode string that specifies the
command line arguments to the program that will be started when the action is
eventually triggered.

Notification.Model.Account: This property specifies which account the program will

run when the action is eventually triggered. There are three built-in accounts:
LocalService, NetworkService, and LocalSystem.

Working directory: This property is a Unicode string that specifies the directory in
which the program will be started when the action is eventually triggered.

Monitor command: This property is a Boolean flag that indicates whether the server
monitors the program while it runs.

84 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Kill time-out: This property is a numeric integer value that specifies the number of
minutes that the program will be allowed to run before the server forcefully

terminates the program execution.

Log result: This property is a Boolean value that specifies whether the server logs an

event containing the return code result from the program after it terminates.

Report action type: This action generates a report and emails it to each email
address specified in the Mail To property. In addition to the Mail To property listed
later in this section, the server uses the SMTP server name and Mail-from email
address from the General Settings Model (section 3.2.1.9). Other fields required to
send the email, for example Subject, can be any appropriate value.

Report types: This property is an array of storage report types

(FsrmReportType (section 2.2.1.2.10)) that are executed when the action is
eventually triggered.

Mail to: This property is a Unicode string that will be used for the list of email TO

addresses to which the storage reports of the specified types will be emailed when
the action is eventually triggered.

The following state data is maintained for each notification on the system:

Last Run Time: This property maintains a time stamp that corresponds to the chronological
date/time the notification was last run.

3.2.1.5 Storage Reports Model

The server maintains the following list of persisted objects for the storage reports model. Each list

contains objects of a specific type that are currently present and configured on the server.

List of Persisted Report Jobs: This is a volatile list of all the Persisted Report
Jobs (section 3.2.1.5.1.1) configured on the server. The server maintains only one List of
Persisted Report Jobs.

The server maintains the following list of non-persisted objects for the storage report model. Lists of
non-persisted objects contain copies of the objects from the lists of persisted objects. The non-

persisted objects are used by clients to make changes that are propagated to the lists of persisted
objects when the client commits the non-persisted objects.

List of Non-Persisted Report Job Instances: This is a volatile list of all the Non-Persisted
Report Job Instances (section 3.2.1.5.1.2) configured on the server. The server maintains zero
or more List of Non-Persisted Report Job Instances.

The server also maintains the following queue of running report jobs for the storage reports model.

Running Report Job Queue: This is a volatile queue of Running Report Job (section 3.2.1.5.1.3),

each of which corresponds to a Report Job (section 3.2.1.5.1) that has been requested to run.
The order in which Running Report Jobs execute is non-deterministic. The times the job runs -
immediately or at a later time - is managed by the server. The server maintains only one

Running Report Job Queue and MUST NOT allow two or more Running Report Jobs in the
Running Report Job Queue whose parent Non-persisted Report Job Instance's Task name
has the same value.

3.2.1.5.1 Report Jobs

For each report job, a minimal set of configuration properties and state data is maintained by the
server. The configuration of a report job consists of all of the information required to define the report

85 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

job, and the state consists of the properties that are tracked while the report job is running and the
results of the successful or failed report job completion.

A Report Job is a type of FSRM Base Object (section 3.2.1.1) that has all the properties and state of a
FSRM Base Object. The following configuration data is maintained for each report job on the system:

Namespace roots: This property is a list of either full directory paths (referred to as static path
in this definition) or values from the FolderUsage list (referred to as dynamic path in this
definition). The set of file system namespaces (file system directory trees) that is scanned as
part of the report job data gathering phase consists of either the full directory path (for a static
path) or the FolderUsage Instance.Path values of each FolderUsage Instance in the
FolderUsage Mapping whose FolderUsage Instance.Value list contains the <value> portion of
a dynamic path.<23>

Report Job.Formats: This property describes the set of output formats to which the reports will
be transformed as a result of a successful execution of the report job. Supported formats are
DHTML, HTML, TXT, CSV, and XML.

Report Job.Mail to: This property is a Unicode string that will be used for the email TO addresses
to which the storage reports will be sent as a result of a successful execution of the report job.
In addition to the Report Job.Mail to property, the server uses the SMTP server name and

Mail-from email address from the General Settings Model (section 3.2.1.9). Other fields
required to send the email, for example Subject, can be any appropriate value.

Task name: This property is a Unicode string containing the name of an associated scheduled
task. Among all the Persisted Report Jobs (section 3.2.1.5.1.1) in the List of Persisted Report
Jobs, the Task name is unique, in a case-insensitive way.

Report Job.Reports: The report job configuration is associated with zero or more reports. See
section 3.2.1.5.2 for details. A protocol client can perform the following management operations

involving reports:

 Create a report to be generated with the report job. See section 3.2.4.2.34.15 for details.

 Enumerate a list of all the reports configured to be generated with the report job. See

section 3.2.4.2.34.14 for details.

 Delete a report from the report job. See section 3.2.4.2.35.9 for details.

The following state data is maintained for each report job on the system:

Running status: This property is a numeric value indicating the current running status of the

report job. Possible status values are defined in the
FsrmReportRunningStatus (section 2.2.1.2.13) enumeration.

Last run time: This property maintains a time stamp that corresponds to the chronological
date/time that the report job was last run.

Last error: This property maintains a Unicode string that corresponds to an error message
generated when the report job was last run. If the last run of the report job was successful, the

last error Unicode string is an empty string.

Last generated in directory: This property maintains the location where the individual reports
were stored when the report job was last run.

3.2.1.5.1.1 Persisted Report Job

A Persisted Report Job is a type of Report Job (section 3.2.1.5.1) that has all the properties and state
of a report job, represents the persisted configuration of a report job on the server and is stored in

nonvolatile storage.

86 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

A protocol client can perform the following management operations involving Persisted Report Jobs:

 Enumerate the List of Persisted Report Jobs abstract data object (section 3.2.1.5) on the

server. See EnumReportJobs (Opnum 7) (section 3.2.4.2.33.1) for details.

 Get the configuration and state of a particular Persisted Report Job. See GetReportJob (Opnum

9) (section 3.2.4.2.33.3) for details.

3.2.1.5.1.2 Non-Persisted Report Job Instance

A Non-Persisted Report Job Instance is a type of Report Job (section 3.2.1.5.1), which has all the
properties and state of a report job. A Non-Persisted Report Job Instance is a copy, in memory, of an
instance of a Persisted Report Job (section 3.2.1.5.1.1), and it is used by a client to make changes to
that Persisted Report Job. Changes, including deletion, that are made to a Non-Persisted Report Job

Instance are either discarded after use or applied to the associated Persisted Report Job. There can be
zero or more Non-Persisted Report Job Instances for each Persisted Report Job.

A protocol client can perform the following management operations involving Non-Persisted Report Job

Instances:

 Create or change the configuration data for a Non-Persisted Report Job Instance. See
CreateReportJob (Opnum 8) (section 3.2.4.2.33.2) and Commit (Opnum

11) (section 3.2.4.2.10.5) for details.

 Commit changes, including deletion, from a Non-Persisted Report Job Instance into the associated
Persisted Report Job. See Delete (Opnum 10) (section 3.2.4.2.10.4) and Commit (Opnum
11) (section 3.2.4.2.10.5) for details.

3.2.1.5.1.3 Running Job

A Running Job is a volatile object that represents a Report Job, a File Management Job, or a

Classification Job that has been requested to run by a call to
IFsrmReportJob::Run (section 3.2.4.2.34.16), IFsrmFileManagementJob::Run (section 3.2.4.2.48.41),
or IFsrmClassificationManager::RunClassification (section 3.2.4.2.45.21). See also Running Report

Task (section 3.2.1.12.1), Running File Management Job Task (section 3.2.1.12.3), and Running
Classification Task (section 3.2.1.12.2). The following configuration data is maintained for each object:

Running Job.Parent: This property is a reference to the Non-persisted Report Job Instance, Non-
persisted File Management Job Instance, or Classification Job that created this object. The

Running Job accesses and modifies some of the properties of the referenced object.

Reports directory: This property is a Unicode string that specifies where generated reports are to
be stored.

Running Job.Cancel: This property is a Boolean value indicating whether the job needs to be
canceled.

See IFsrmReportJob::Run (section 3.2.4.2.34.16) for more information.

3.2.1.5.2 Reports

The server maintains reports (section 3.2.1.5.1) associated with each report job and for each report
maintains a minimal set of configuration properties. The configuration of a report consists of all the
information to define the report. There is no state to track for a report. The actual data backing these
abstractions is owned and encapsulated by the report job abstraction model. The configuration of a
report is saved concurrent with the configuration data of the report job that encapsulates the report.

The management operations that a protocol client can perform involving reports are specified in
section 3.2.1.5.1.

87 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

The following configuration data is maintained for each report on the system:

Report.Type: This property is a numeric value that identifies the report. The File Server Resource

Manager Protocol defines a set of available report types. See section 2.2.1.2.10 for details.

Report.Name: This property is a unique, case-insensitive, Unicode string for the report.

Report.Description: This property is a Unicode text description of the report.

Last generated file name prefix: This property maintains a Unicode string that corresponds to
the file name prefix used for naming the files which constitute the generated report instance
when the report job was last run. The client can use this prefix as a means to identify the
collection of files that make up the generated report instance by examining the names of the
files found in the report job last generated in directory property. The prefix string uniquely
identifies a particular set of files that constitute a single instance of the generated report. The

exact format of the string is implementation-specific but could embed information such as the
report Name, Type, and a time stamp corresponding to when the report was generated.

Filters: A filter is a mechanism by which entries, files, or groups of files are included or excluded

from the generated report. The File Server Resource Manager Protocol defines a set of available
filters, and each report type supports a specific set of filters. A filter is identified by the numeric
ID defined in section 2.2.1.2.16 and the value of the filter is defined by a value or an array of

values.

The following state data is maintained for each report on the system:

Report.Deprecated: This Boolean property indicates whether the report job is valid.<24>

The filters a report configuration supports depend on the report type as follows:

Minimum size: This filter is defined by a single 64-bit integer value that specifies the minimum file
size for a file to be included in the report. This filter applies only to the Large Files report type.
When a report that supports this filter is generated, all files that are smaller than the value

specified in the filter are excluded from the report.

Minimum age: This filter is defined by a single 32-bit integer value that specifies the minimum file
age, in days, for a file to be included in the report. This filter applies to the Least Recently
Accessed and File Screen Audit report types. When a report that supports this filter is generated,
all files that are younger than the value specified in the filter are excluded from the report.

Maximum age: This filter is defined by a single 32-bit integer value that specifies the maximum
file age, in days, for a file to be included in the report. This filter applies only to the Most

Recently Accessed report type. When a report that supports this filter is generated, all files that
are older than the value specified in the filter are excluded from the report.

Minimum quota usage: This filter is defined by a single 32-bit integer value that specifies the
minimum quota usage, expressed as a percentage of the quota limit, for a quota record to be
included in the report. This filter applies only to the Quota Usage report type. When a report
that supports this filter is generated, all quotas whose percentage quota used is smaller than the

value specified in the filter are excluded from the report.

File groups: This filter is defined by an array of Unicode strings. These strings specify the set of
file groups to be included in the report. This filter applies only to the Files By Type report type.
When a report that supports this filter is generated, all files that are not members of any of the
file groups specified in the filter are excluded from the report.

Owners: This filter is defined by an array of Unicode strings that specifies the set of owners whose
files are to be included in the report. The format of the Unicode string can be either the user

principal name (UPN) or a SID in string format. This filter applies only to the Files By Owner

88 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

report type. When a report that supports this filter is generated, all files that are not owned by
any of the user principals specified in the filter are excluded from the report.

Name pattern: This filter is defined by a Unicode string value that specifies the pattern for files to
be included in the report. This filter applies to all report types except for Quota Usage and

Export types. When a report that supports this filter is generated, all files that do not match the
pattern specified in the filter are excluded from the report.

Property: This filter is defined by a Unicode string value that specifies the name of the property
definition (section 3.2.1.6.1) that will be inspected for each file in the report. This filter applies
only to File by Property and Folder by Property report types. This filter does not cause files to be
excluded from the report but limits what property value is displayed in the report for each file.

3.2.1.5.3 Report Settings

The server maintains a minimal set of general report settings properties. The report settings define
global default values that apply generally to all report jobs and reports unless they are overridden by
configuration that is local to a specific report job or report.

The following general configuration settings data is maintained:

Scheduled output directory: This setting maintains the full file system path location where

generated reports will be stored on the system for the report-generation context of
FsrmReportGenerationContext_ScheduledReport enumeration. See 2.2.1.2.15 for more details
about report-generation contexts.<25>

Interactive output directory: This setting maintains the full file system path location where
generated reports will be stored on the system for report-generation context of
FsrmReportGenerationContext_InteractiveReport enumeration. See 2.2.1.2.15 for more details
about report-generation contexts.<26>

Incident output directory: This setting maintains the full file system path location where
generated reports will be stored on the system for report-generation context of
FsrmReportGenerationContext_IncidentReport enumeration. See 2.2.1.2.15 for more details

about report-generation contexts.<27>

Default filters: These settings maintain the default filters to be applied to all reports when a
report does not include local filter overrides. The model for the default filters is identical to the
report specific filters. See section 3.2.1.5.2 for more details.

Report size limits: These settings maintain limits to the number of entries and groups that will be
included in each individual report. The FSRM protocol defines a set of report size limits and each
limit applies to a specific set of report types.

The report size limits limit the size of generated reports as follows:

 Maximum files - This setting limits the number of files that will be included in any generated
report.

 Maximum file groups - This setting limits the number of file groups that will be included in a

Files By Type report.

 Maximum owners - This setting limits the number of owners that will be included in a Files
By Owner report.

 Maximum files per file group - This setting limits the number of files that will be included for
each file group in a Files By Type report.

 Maximum files per owner - This setting limits the number of files for each owner that will be

included in a Files By Owner report.

89 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 Maximum files per duplicate group - This setting limits the number of files for each duplicate
group in a Duplicate Files report.

 Maximum duplicate groups - This setting limits the number of duplicate groups that will be
included in a Duplicate Files report.

 Maximum quotas - This setting limits the number of quota records that will be included in a
Quota Usage report.

 Maximum file screen audits - This setting limits the number of file screen audit records that
will be included in a File Screen Audit report.

 Maximum property values - This setting limits the number of property values that will be
included in a report.

 Maximum files per property value - This setting limits the number of files for each property

value that will be included in a report.

3.2.1.6 Classification Model

The server maintains the following lists of persisted objects for the classification model. Each list

contains objects of a specific type that are currently present and configured on the server.

List of Persisted Property Definitions: This is a volatile list of all the Persisted Property
Definitions (section 3.2.1.6.1.1) configured on the server. The server maintains only one List of
Persisted Property Definitions.

List of Persisted Module Definitions: This is a volatile list of all the Persisted Module
Definitions (section 3.2.1.6.2.1) configured on the server. The server maintains only one List of
Persisted Module Definitions.

List of Persisted Rules: This is a volatile list of all the Persisted Rules (section 3.2.1.6.3.1)
configured on the server. The server maintains only one List of Persisted Rules.

The server maintains the following lists of non-persisted objects for the classification model. Lists of
non-persisted objects contain copies of the objects from the lists of persisted objects. The non-
persisted objects are used by clients to make changes that are propagated to the lists of persisted
objects when the client commits the non-persisted objects.

List of Non-Persisted Property Definition Instances: This is a volatile list of all the Non-
Persisted Property Definition Instances (section 3.2.1.6.1.2) configured on the server. The
server maintains zero or more List of Non-Persisted Property Definition Instances.

List of Non-Persisted Module Definition Instances: This is a volatile list of all the Non-
Persisted Module Definition Instances (section 3.2.1.6.2.2) configured on the server. The server
maintains zero or more List of Non-Persisted Module Definition Instances.

List of Non-Persisted Rule Instances: This is a volatile list of all the Non-Persisted Rule

Instances (section 3.2.1.6.3.2) configured on the server. The server maintains zero or more List
of Non-Persisted Rule Instances.

The server also maintains the following list of property definition instances.

List of Property Definition Instances: This is a volatile list of Property Definition
Instances (section 3.2.1.6.5) created from name/value pairs for an individual file returned from
storage modules and classification modules. The server maintains zero or more List of
Property Definition Instances.

The server also maintains the following queue of Running Jobs for the classification model.

90 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Classification Job Queue: This is a volatile queue containing zero or one Running Jobs (section
3.2.1.5.1.3) that correspond to the Classification Job (section 3.2.1.5.1) that has been

requested to run. The times the job runs - immediately or at a later time - are managed by the
server. The server maintains only one Classification Job Queue and MUST NOT allow more

than one Running Job in the Classification Job Queue.

3.2.1.6.1 Property Definitions

For each property definition, a minimal set of configuration properties is maintained by the server.
The configuration of a property definition consists of all the information to define the property
definition.

A Property Definition is a type of FSRM Base Object (section 3.2.1.1) that has all the properties and

state of an FSRM Base Object. The following configuration data is maintained for each property
definition on the system:

Property Definition.Type: This property is a numeric value that identifies the type of the
property definition. The File Server Resource Manager Protocol defines a set of available

property definition types in the FsrmPropertyDefinitionType enumeration. See section
2.2.2.3.1.1 for details.

Property Definition.Name: This property is a unique, case-insensitive Unicode string for the
property definition.

Property Definition.Display Name: This property is a unique, case-insensitive Unicode string for
the property definition.<28>

Possible values: This property is an ordered list of Property Value Definitions that can be used
when setting this property on a file. Possible values are valid only for property definitions of type
FsrmPropertyDefinitionType_OrderedList, FsrmPropertyDefinitionType_SingleChoiceList, and

FsrmPropertyDefinitionType_MultiChoiceList.

Property Definition.Parameters: This property is a list of Unicode text strings that are
descriptive metadata for the property definition that can be used by consumers of the protocol

and that are not covered by the classification property definition. Clients can use these strings to
store additional descriptive information about the property definition. Examples of information
that a client can store here include "Author=jdoe" and "Created=12-5-10". See the definition for
parameter strings in section 3.2.4.2 for details regarding the individual text strings.

AppliesTo: This property identifies whether an instance of the property definition can be
associated with the file or a folder.<29>

Property Definition.Secure: This Boolean property indicates whether a property definition can be
used to make any security decisions.<30>

Property Definition.Global: This Boolean property indicates that the property definition cannot
be modified on the server via APIs.<31>

Property Definition.Deprecated: This Boolean property indicates whether the property definition
is valid.<32>

Property Definition.WhenChanged: This property indicates when the property was last updated
if it was defined by an AD Property Definition.<33>

3.2.1.6.1.1 Persisted Property Definition

A Persisted Property Definition is a type of Property Definition (section 3.2.1.6.1) that has all the

properties of a property definition, represents the persisted configuration of a property definition on
the server, and is stored in nonvolatile storage.

91 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

A protocol client can perform the following management operations involving Persisted Property
Definition:

 Enumerate the List of Persisted Property Definitions abstract data object (section 3.2.1.6) on
the server. See EnumPropertyDefinitions (Opnum 18) (section 3.2.4.2.45.12) for details.

 Get the configuration of a particular Persisted Property Definition. See GetPropertyDefinition
(Opnum 20) (section 3.2.4.2.45.14) for details.

3.2.1.6.1.2 Non-Persisted Property Definition Instance

A Non-Persisted Property Definition Instance is a type of Property Definition (section 3.2.1.6.1),
which has all the properties of a property definition. A Non-Persisted Property Definition Instance is
a copy, in memory, of an instance of a Persisted Property Definition (section 3.2.1.6.1.1), and it is

used by a client to make changes to that Persisted Property Definition. Changes, including deletion,
that are made to a Non-Persisted Property Definition Instance are either discarded after use or applied
to the associated Persisted Property Definition. There can be zero or more Non-Persisted Property
Definition Instances for each Persisted Property Definition.

A protocol client can perform the following management operations involving Non-Persisted Property
Definition Instances:

 Create or change the configuration data for a Non-Persisted Property Definition Instance. See
CreatePropertyDefinition (Opnum 19) (section 3.2.4.2.45.13) and Commit (Opnum
11) (section 3.2.4.2.10.5) for details.

 Commit changes, including deletion, from a Non-Persisted Property Definition Instance into the
associated Persisted Property Definition. See Delete (Opnum 10) (section 3.2.4.2.10.4) and
Commit (Opnum 11) (section 3.2.4.2.10.5) for details.

3.2.1.6.1.3 Property Value Definition

For each Property Value Definition, a minimal set of configuration properties is maintained by the
server. The configuration of a Property Value Definition consists of all the information to define the

Property Value Definition.

A Property Value Definition is a type of FSRM Base Object (section 3.2.1.1) that has all the properties
and state of an FSRM Base Object. The following configuration data is maintained for each property
definition on the system<34>:

Property Value Definition.Name: This property is a unique, case-insensitive Unicode string that
is the name of the Property Value Definition.

Property Value Definition.Display Name: This property is a unique, case-insensitive Unicode
string that is a name for the Property Value Definition that is suitable to be displayed to users.

Property Value Definition.Description: This property is a Unicode text string that is the
description of the Property Value Definition.

Property Value Definition.UniqueId: This property is a unique, case-insensitive Unicode string

that is a unique identifier for the Property Value Definition.

3.2.1.6.2 Module Definitions

For each module definition, a minimal set of configuration properties is maintained by the server.
The configuration of a module definition consists of all the information required to define the module
definition.

92 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

A Module Definition is a type of FSRM Base Object (section 3.2.1.1) that has all the properties and
state of a FSRM Base Object. The following configuration data is maintained for each module definition

on the system:

ModuleClsid: This property is the class identifier for a locally registered COM class on the server

that implements the COM object for the associated module implementation.<35>

Module Definition.Name: This property is a unique, case-insensitive, Unicode string for the
module definition.

Company: This property is a Unicode text string for the name of the company that implemented
the module.

Version: This property is a Unicode string for the version of the module.

Enabled/disabled: This property controls whether the module definition can be called during

classification.

Needs file content: This property controls whether the module requires the content of the file to

perform classification.

Module Definition.Account: This property identifies the built-in account in which the module is
executed during classification or property storage. This property can be any value of
FsrmAccountType (section 2.2.1.2.8).

Supported extensions: This property is a list of Unicode text strings that are the file extensions
supported by this module.

Module Definition.Parameters: This property is a list of Unicode text strings that are additional
parameters or descriptive metadata for the module definition that can be used by consumers of
the protocol. Clients can use these strings to store additional descriptive information about the
module definition. Examples of information that a client can store here include "Author=jdoe"
and "Created=12-5-10". See sections 3.2.1.12.1, 3.2.1.12.2, 3.2.1.12.3, 3.2.4.2.45.24, and

3.2.4.2.45.25 for details of how these strings affect server behavior. See the definition for
parameter strings in section 3.2.4.2 for details regarding the individual text strings.

Module type: This property identifies the type of the module as one of two module types:
Classifier and Storage.

Classifier module type: The following configuration data is maintained for a classifier
module type:

Properties affected: This property is descriptive metadata for the module definition.

Properties used: This property is descriptive metadata for the module definition.

Needs explicit value: This property controls whether the module needs an explicit
value provided by a rule that uses this module definition for classification.

Storage module type: The following configuration data is maintained for a storage module
type:

Capabilities: This property defines the capabilities of the storage module definition.

Possible values are defined in FsrmStorageModuleCaps (section 2.2.2.8.1.1).

Storage type: This property defines how the module definition stores the properties
for a file. Possible values are defined in
FsrmStorageModuleType (section 2.2.2.8.1.2).

Updates file content: This property is a Boolean value indicating whether the module
changes the contents of the file.

93 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

3.2.1.6.2.1 Persisted Module Definition

A Persisted Module Definition is a type of Module Definition (section 3.2.1.6.2) that has all the
properties of a module definition, represents the persisted configuration of a module definition on

the server and is stored in nonvolatile storage.

A protocol client can perform the following management operations involving Persisted Module
Definitions:

 Enumerate the List of Persisted Module Definitions abstract data object (section 3.2.1.6) on
the server. See EnumModuleDefinitions (Opnum 24) (section 3.2.4.2.45.18) for details.

3.2.1.6.2.2 Non-Persisted Module Definition Instance

A Non-Persisted Module Definition Instance is a type of Module Definition (section 3.2.1.6.2),
which has all the properties of a module definition. A Non-Persisted Module Definition Instance is a
copy, in memory, of an instance of a Persisted Module Definition (section 3.2.1.6.2.1), and it is used
by a client to make changes to that Persisted Module Definition. Changes, including deletion, that are

made to a Non-Persisted Module Definition Instance are either discarded after use or applied to the
associated Persisted Module Definition. There can be zero or more Non-Persisted Module Definition

Instances for each Persisted Module Definition.

A protocol client can perform the following management operations involving Non-Persisted Module
Definition Instances:

 Create or change the configuration data for a Non-Persisted Module Definition Instance. See
Commit (Opnum 11) (section 3.2.4.2.10.5) for details.

 Commit changes, including deletion, from a Non-Persisted Module Definition Instance into the
associated Persisted Module Definition. See Delete (Opnum 10) (section 3.2.4.2.10.4) and Commit

(Opnum 11) (section 3.2.4.2.10.5) for details.

3.2.1.6.3 Rules

For each classification rule, a minimal set of configuration properties is maintained by the server.
The configuration of a rule consists of all the information required to define the rule.

A Rule is a type of FSRM Base Object (section 3.2.1.1) that has all the properties and state of a FSRM
Base Object. The following configuration data is maintained for each rule on the system:

Rule.Name: This property is a unique, case-insensitive, Unicode string for the rule.

Module definition name: This property is a Unicode text string that is the name of the module
definition for the rule to use during classification.

Namespace roots: This property is a list of either full directory paths (referred to as static path
in this definition) or values from the FolderUsage list (referred to as dynamic path in this
definition). The set of file system namespaces (file system directory trees) that are scanned as
part of the classification job consists of either the full directory path (for a static path) or the

FolderUsage Instance.Path values of each FolderUsage Instance in the FolderUsage Mapping

whose FolderUsage Instance.Value list contains the <value> portion of a dynamic path.<36>

Enabled/disabled: This property controls whether the rule will be used during classification.

Valid/invalid: This property reflects whether the module definition used by this rule is enabled
and registered on the server. If the module definition used by the rule is either disabled or not
registered, this property is set to invalid.

Rule.Parameters: This property is a list of Unicode text strings that are additional parameters or
descriptive metadata regarding the classification rule that can be used by consumers of the

94 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

protocol. Clients can use these strings to store additional descriptive information about the
classification rule. Examples of information that a client can store here include "Author=jdoe"

and "Created=12-5-10". See sections 3.2.1.12.1, 3.2.1.12.2, 3.2.1.12.3, 3.2.4.2.45.24, and
3.2.4.2.45.25 for details of how these strings affect server behavior. See the definition for

parameter strings in section 3.2.4.2 for details regarding the individual text strings.

Last modified time: This property maintains a time stamp that corresponds to the chronological
date/time that the rule was last modified.

Rule type: This property identifies the rule as one of two rule types: Classification and Generic.
The set of properties for the rule is different depending on which rule type the rule belongs to:

Classification:

Execution option: This property identifies how the rule might be applied when

executing classification. The value can be one of three options:

Evaluate unset: This value indicates that the rule is applied only to files where a
property values is not already set for the file for the property affected.

Reevaluate and consider existing: This value indicates that the rule is applied
and any existing property values for the property affected is immediately
compared with the value supplied by the rule.

Reevaluate and ignore existing: This value indicates that the rule is always
applied and any existing property values for the property affected are ignored.

Property Affected: This property is a Unicode text string that contains the name of
the property definition the rule affects.

Rule.Value: This property is a Unicode text string that contains the value to be used
when applying the rule to a file.

ClearProperty: This flag, when set, indicates that the property is recommended to be

cleared.<37>

Generic: There are no properties specific to rules of this type.

The following state data is maintained for each rule in the system:

Rule.Deprecated: This Boolean property indicates whether the rule is valid.<38>

Rule.ClearAutoProperty: This Boolean flag, when set, indicates that a property specified on this
rule by an automatic classification can be cleared.<39>

Rule.ClearManualProperty: This Boolean flag, when set, indicates that a property specified on

this rule by a manual classification can be cleared.<40>

3.2.1.6.3.1 Persisted Rule

A Persisted Rule is a type of Rule (section 3.2.1.6.3) that has all the properties of a classification

rule, represents the persisted configuration of a rule on the server and is stored in nonvolatile
storage.

A protocol client can perform the following management operations involving Persisted Rules:

 Enumerate the List of Persisted Rules abstract data object (section 3.2.1.6) on the server. See
EnumRules (Opnum 21) (section 3.2.4.2.45.15) for details.

 Get the configuration of a particular Persisted Rule. See GetRule (Opnum
23) (section 3.2.4.2.45.17) for details.

95 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

3.2.1.6.3.2 Non-Persisted Rule Instance

A Non-Persisted Rule Instance is a type of Rule (section 3.2.1.6.3), which has all the properties of
a classification rule. A Non-Persisted Rule Instance is a copy, in memory, of an instance of a

Persisted Rule (section 3.2.1.6.3.1), and it is used by a client to make changes to that Persisted Rule.
Changes, including deletion, that are made to a Non-Persisted Rule Instance are either discarded after
use or applied to the associated Persisted Rule. There can be zero or more Non-Persisted Rule
Instances for each Persisted Rule.

A protocol client can perform the following management operations involving Non-Persisted Rule
Instances:

 Create or change the configuration data for a Non-Persisted Rule Instance. See CreateRule

(Opnum 22) (section 3.2.4.2.45.16) and Commit (Opnum 11) (section 3.2.4.2.10.5) for details.

 Commit changes, including deletion, from a Non-Persisted Rule Instance into the associated
Persisted Rule. See Delete (Opnum 10) (section 3.2.4.2.10.4) and Commit (Opnum
11) (section 3.2.4.2.10.5) for details.

3.2.1.6.4 Classification Job

The server maintains a minimal set of configuration properties and state data for a set of classification
jobs. The configuration of a classification job consists of all of the information required to define a
classification job, and the state consists of the properties that are tracked while the classification job is
running and the results of the successful or failed classification job completion.<41>

The following configuration data is maintained for the classification job:

Classification Job.Formats: This property describes the set of output formats to which the
classification report will be transformed as a result of a successful execution of the classification

job. Supported formats are DHTML, HTML, TXT, CSV, and XML.

Generate classification report: This Boolean property determines whether a report will be
generated as a result of a successful execution of the classification job.

Classification Job.Mail to: This property is a Unicode string that will be used for the email TO
addresses to which the classification report will be sent as a result of a successful execution of
the classification job. In addition to the Mail To property, the server uses the SMTP server
name and Mail-from email address from the General Settings Model (section 3.2.1.9). Other

fields required to send the email, for example, Subject, can be any appropriate value.

Classification Job.Logging: This property determines how logging will be handled for the
classification job. It is a bitwise combination (using the OR operator) of values of the
FsrmClassificationLoggingFlags (section 2.2.2.5.1.1) enumeration.

A protocol client can perform the following management operations involving the classification job:

 Query the state data for the classification job. See section 3.2.4.2.45.11 for details.

The following state data is maintained for the classification job:

Running status: This property is a numeric value indicating the current running status of the
classification job. Possible status values are defined in the
FsrmReportRunningStatus (section 2.2.1.2.13) enumeration.

Classification Job.Last error: This property maintains a Unicode string that corresponds to an
error message generated when the classification job was last run. If the last run of the
classification job was successful, the last error Unicode string is an empty string.

96 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Last generated path: This property maintains the location and file name where the classification
report was stored when the classification job was last run.

Classification Job.Namespace roots: This property is a list of the full directory paths defining
the set of file system namespaces (file system directory trees) that will be scanned as a part of

the report job data gathering phase.<42>

3.2.1.6.5 Property Definition Instance

The server maintains a single property definition instance for each name/value pair with a unique
name retrieved from storage modules and classification modules for a file. A property definition
instance has no configuration data persisted by the server and has only state data.

The following state data is maintained for the property definition instance:

Property definition instance.Name: This property is a unique Unicode string for the name of the
property definition instance.

Property definition instance.Value: This property is a Unicode string indicating the value of the
property definition instance.

Sources: This property is an array of case-insensitive Unicode strings that are module
definition.Names of the module definitions that provided the property definition

instance.Value.

Property definition instance.Flags: This property is a numeric value indicating the flags of the
property definition instance. It is a bitwise combination (using the bitwise-OR operator) of
values of the FsrmPropertyFlags enumeration (see section 2.2.2.6.1.1).

3.2.1.7 File Management Model

The server maintains the following list of persisted objects for the file management model. Each list
contains objects of a specific type that are currently present and configured on the server.

List of Persisted File Management Jobs: This is a volatile list of all the Persisted File
Management Jobs (section 3.2.1.7.1.1) configured on the server. The server maintains only one
List of Persisted File Management Jobs.

The server maintains the following lists of non-persisted objects for the file management model. Lists

of non-persisted objects contain copies of the objects from the lists of persisted objects. The non-
persisted objects are used by clients to make changes that are propagated to the lists of persisted
objects when the client commits the non-persisted objects.

List of Non-Persisted File Management Job Instances: This is a volatile list of all the Non-
Persisted File Management Job Instances (section 3.2.1.7.1.2) configured on the server. The
server maintains zero or more List of Non-Persisted File Management Job Instances.

3.2.1.7.1 File Management Job

For each file management job, a minimal set of configuration properties and state data is

maintained by the server. The configuration of a file management job consists of all the information
required to define the file management job. The state consists of the properties that are tracked while
the file management job is running and the results of both successfully completed and failed file
management jobs.

A File Management Job is a type of FSRM Base Object (section 3.2.1.1) that has all the properties and
state of a FSRM Base Object. The following configuration data is maintained for each file management
job on the system:

97 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

File Management Job.Name: This property is a unique, case-insensitive, user-assigned Unicode
string for the file management job.<43>

Namespace roots: This property is a list of either full directory paths (referred to as static path
in this definition) or values from the FolderUsage list (referred to as dynamic path in this

definition). The set of file system namespaces (file system directory trees) that will be scanned
as a part of the file management job consists of either the full directory path (for a static path)
or the FolderUsage Instance.Path values of each FolderUsage Instance in the FolderUsage
Mapping whose FolderUsage Instance.Value list contains the <value> portion of a dynamic
path.<44>

Enabled/disabled: This property controls whether the file management job will be run.

Operation type: This property identifies the file management job as one of two file management

types: expiration and custom, as defined in the FsrmFileManagementType (section 2.2.2.9.1.1)
enumeration. The set of properties for the file management job is different depending on which
file management type the file management job belongs to:

Expiration:

Expiration directory: This property is the folder on the server that files matching the
file management job's conditions will be moved to.

Custom:

Custom action: This property is a handle to an IFsrmActionCommand interface pointer
(section 3.2.4.2.9) that points to a command line action type notification object
that is called when all the file management job conditions are met by a file. A
protocol client can initiate a change to a custom action and can delete the custom
action. See section 3.2.1.4 for more information about data required for the action.

Notification periods: This property is a list of zero or more notification period objects. A

protocol client can initiate a change to a notification period value and can delete the
notification period.

Logging: This property determines how logging will be handled for the file management job. It is a
bitwise combination (using the OR operator) of values of the
FsrmFileManagementLoggingFlags (section 2.2.2.9.1.2) enumeration.

Report enabled: This property determines if the file management job will output a report of the
files that matched the file management job's conditions.

File Management Job.Formats: This property describes the set of output formats to which the
file management job's report will be transformed as a result of a successful execution of the file
management job. Supported formats are DHTML, HTML, TXT, CSV, and XML.

File Management Job.Mail to: This property is a Unicode string that will be used for the email TO
addresses to which the file management job's report will be sent as a result of a successful
execution of the file management job.

Conditions: The following properties are used when a file management job is run to determine if a

file is to be acted on by the file management job. The first three items describe specific
attributes of the file that will be compared when determining if a file is to be acted on. The
condition is met if the file's attribute is greater than the file management job's value for the
specific attribute. The fourth item is a list of property conditions specified by the client that
are used to determine if a file is to be acted on by the file management job. All the conditions
need to be met if the file is to be acted on.

Days since file created: This property is the number of days since the file was created.

98 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Days since file last accessed: This property is the number of days since the file was last
accessed.

Days since file last modified: This property is the number of days since the file was last
modified.

Property conditions: The file management job configuration can be associated with zero or
more property conditions. See section 3.2.1.7.2 for details. A protocol client can perform
the following management operations involving property conditions:

 Create a property condition to be used when determining what files might be affected
by the file management job. See section 3.2.4.2.45.13 for details.

 Enumerate a list of all the property conditions configured to be used when determining
what files might be affected by the file management job. See section 3.2.4.2.45.12 for

details.

 Delete a property condition from the file management job. See sections 3.2.4.2.10.4
and 3.2.4.2.10.5 for details.

From date: This property controls the date on which the file management job can be applied to
files.

Task name: This property is a Unicode string containing the name of an associated scheduled

task.

File Management Job.Parameters: This property is a list of Unicode text strings that are
additional parameters or descriptive metadata regarding the file management job that can be
used by consumers of the protocol. Clients can use these strings to store additional descriptive
information about the file management job. Examples of information that a client can store here
include "Author=jdoe" and "Created=12-5-10". See section 3.2.1.12.3 for details of how these
strings affect server behavior. See the definition for parameter strings in section 3.2.4.2 for

details regarding the individual text strings.

File name pattern: This property is a Unicode file name pattern that is used to compare file

names to be scanned as a part of the file management job. If no pattern is specified, all files
that are scanned will be included. If a pattern is specified, a file that is scanned will only be
included if it matches the pattern.

The following state data is maintained for each file management job in the system:

Running status: This property is a numeric value indicating the current running status of the file

management job. Possible status values are defined in the
FsrmReportRunningStatus (section 2.2.1.2.13) enumeration.

Last run time: This property maintains a time stamp that corresponds to the chronological
date/time that the file management job was last run.

Last error: This property maintains a Unicode string that corresponds to an error message
generated when the file management job was last run. If the last run of the file management

job was successful, the Last error Unicode string is an empty string.

Last report path without extension: This property maintains a Unicode string that corresponds
to the file path of the report last generated by the file management job. This property does not
include the file extension of the last report.<45>

Error log: This property is a list of all files where the file management job encountered an error
either when determining if the file met the conditions of the file management job or when the
file management job tried to act on the file. This list is maintained while the file management

99 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

job has a running status of Running and is persisted when the running status changes from
Running to Not Running.

Information log: This property is a list of all files that met the conditions of the file management
job and were acted on by the file management job. This list is maintained while the file

management job has a running status of Running. This list is persisted when the running status
changes from Running to Not Running.

File Management Job.Deprecated: This Boolean property indicates whether the file management
job is valid.<46>

3.2.1.7.1.1 Persisted File Management Job

A Persisted File Management Job is a type of File Management Job (section 3.2.1.7.1) that has all the

properties and state of a file management job, represents the persisted configuration of a file
management job on the server and is stored in nonvolatile storage.

A protocol client can perform the following management operations involving Persisted File

Management Jobs:

 Enumerate the List of Persisted File Management Jobs abstract data object (section 3.2.1.7)
on the server. See EnumFileManagementJobs (Opnum 7) (section 3.2.4.2.50.1) for details.

 Get the configuration of a particular Persisted File Management Job. See GetFileManagementJob
(Opnum 9) (section 3.2.4.2.50.3) for details.

3.2.1.7.1.2 Non-Persisted File Management Job Instance

A Non-Persisted File Management Job Instance is a type of File Management
Job (section 3.2.1.7.1), which has all the properties and state of a file management job. A Non-
Persisted File Management Job Instance is a copy, in memory, of an instance of a Persisted File

Management Job (section 3.2.1.7.1.1), and it is used by a client to make changes to that Persisted File
Management Job. Changes, including deletion, that are made to a Non-Persisted File Management Job
Instance are either discarded after use or applied to the associated Persisted File Management Job.

There can be zero or more Non-Persisted File Management Job Instances for each Persisted File
Management Job.

A protocol client can perform the following management operations involving Non-Persisted File
Management Job Instances:

 Create or change the configuration data for a Non-Persisted File Management Job Instance. See
CreateFileManagementJob (Opnum 8) (section 3.2.4.2.50.2) and Commit (Opnum
11) (section 3.2.4.2.10.5) for details.

 Commit changes, including deletion, from a Non-Persisted File Management Job Instance into the
associated Persisted File Management Job. See Delete (Opnum 10) (section 3.2.4.2.10.4) and
Commit (Opnum 11) (section 3.2.4.2.10.5) for details.

3.2.1.7.2 Property Condition

The server maintains a list of property conditions (section 3.2.1.7.1) associated with each file
management job, and for each property condition maintains a minimal set of configuration
properties. The actual data backing these abstractions is owned and encapsulated by the file
management job abstraction model. The configuration of a property condition is saved concurrent with
the configuration data of the file management job that encapsulates the property condition. A property

condition references a property definition (section 3.2.1.6.1) and is used to compare a file's property
value with a specific value using the specific type of comparison stored in the property condition.

100 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

The management operations that a protocol client can perform involving property conditions are
specified in section 3.2.1.7.1. The following configuration data is maintained for each property

condition on the system:

Property Condition.Name: This property is a Unicode string that is the name of the property

definition the property condition uses for comparison.

Property Condition.Type: This property identifies the property condition as one of 12 types of
property condition, as defined in the FsrmPropertyConditionType enumeration:

 Equal

 Not equal

 Greater than

 Less than

 Contains

 Exists

 Not exists

 Start with

 End with

 Contained in

 Prefix of

 Suffix of

Property Condition.Value: This property is a Unicode string that identifies the value to use when
comparing the property condition to a property on a file.

Property Condition.Parent: This property is a reference to the Non-persisted File Management
Job Instance that created this object. The Property condition maintains the reference to allow
removal of the object from the parent object.

3.2.1.7.3 Notification period

A Notification period is a volatile object that represents a set of Notifications that need to be run
by a File Management Job at a set interval before it processes a file. See also section 3.2.1.12.3,
Running File Management Task. The following configuration data is maintained for each object:

Notification interval: An integer value representing the number of days before a file will meet the
conditions of a file management job for which a set of Notifications need to be run. For example,

if a file management job has the operation type of expiration, a days since file created
value of 365, and a notification period whose Notification interval is 10 days with one or

more Notification period.Notifications, then files that were created 355 days ago will have
the associated Notification period.Notifications run.

Notification period.Notifications: Each notification period can have associated with it between
zero and four notifications that apply if any files in the file management job's namespace roots

meet all the file management job's conditions. See section 3.2.1.4 for more details.

A protocol client can perform the following management operations involving a Notification period:

101 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 Create a notification for a specific notification period. See section 3.2.4.2.48.47 for more
details.

 Change the configuration data of a notification for a specific notification period. For details, see
sections 3.2.4.2.5, 3.2.4.2.6, 3.2.4.2.7, 3.2.4.2.8, and 3.2.4.2.9.

 Enumerate a list of all the notifications for a specific notification period. See section
3.2.4.2.48.48 for more details.

 Delete a notification for a specific notification period. See section 3.2.4.2.5 for details.

A notification period can be referenced with at most one notification of each of the four distinct File
Server Resource Manager Protocol notification action types.

3.2.1.8 FolderUsage Model

The server maintains the following lists of persisted objects for the FolderUsage model:

FolderUsage List: This property is an ordered list of Unicode text strings that can be used to
describe folders. The format needs to be of the form [Folderusage_MS=<value>].<47>

FolderUsage mapping: A list of FolderUsage Instances that describes the mapping of a file
system folder path to an array of strings.<48>

3.2.1.8.1 FolderUsage Instance

For each FolderUsage instance, a minimal set of configuration properties is maintained by the
server. The configuration of a FolderUsage instance consists of all the information required to define
the FolderUsage instance. The following configuration data is maintained for each FolderUsage
instance on the system:

FolderUsage Instance.Folder Path: The FolderUsage instance configuration is associated with

a particular folder on the server. If the folder is renamed, the FolderUsage instance
configuration continues to be associated with the original folder path with the same

configuration and state as before the rename.

FolderUsage Instance.Value: This property is a list of Unicode text strings that indicate values
from FolderUsage List that were associated with the FolderUsage Instance.Folder Path.

3.2.1.9 General Settings Model

The server maintains a minimal set of general settings properties. The general settings define global
settings and default values that apply generally across the File Server Resource Manager Protocol
server implementation.

The following general configuration settings data is maintained:

SMTP server name: This setting is a Unicode string that maintains the network identity or IP

address of the SMTP server to use when sending email.

Mail from email address: This setting is a Unicode string that maintains the default value for the
email FROM address when the FSRM email action notifications and storage reports are sent
via email. This value is used when sending email if the notification or report Mail from
property is not set.

Administrator email address: This setting is a Unicode string that maintains the value to use

when expanding the [ADMIN EMAIL] variable when FSRM email action notifications and
report jobs are sent via email.

102 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Disable command line applications: This setting is a Boolean value that determines whether or
not notifications with an action type of command line action are run. This allows clients to

prevent command line actions from running without having to delete the actions.

Enable file screen audit: This setting is a Boolean value that maintains control over whether an

audit record will be persisted for each prohibited file violation that occurs for each configured file
screen on the system. When this setting is set to TRUE, audit records are stored for each file
screen prohibited file that is detected in such a way that the records can be scanned later and
presented in a File Screen Audit report. See section 3.2.1.3.1 for details on the audit log record
requirements.

Run limit intervals: These settings maintain the default values for the notification run limit
intervals as specified in section 3.2.1.4. There is one setting for each FSRM notification type.

3.2.1.10 Management of FSRM Objects

All objects listed in section 3.2.1 are created and returned through manager interfaces. Manager
interfaces have methods that can create or return individual objects or return a collection of objects,

which can be enumerated (see section 3.2.1.11 for details on enumerations of FSRM objects). The
following interfaces allow management of FSRM objects:

 IFsrmQuotaManager—Manages quota and auto apply quota objects.

 IFsrmQuotaTemplateManager—Manages quota template objects.

 IFsrmFileGroupManager—Manages file group objects.

 IFsrmFileScreenManager—Manages file screen and file screen exception objects.

 IFsrmFileScreenTemplateManager—Manages file screen template objects.

 IFsrmReportManager—Manages report job objects.

 IFsrmClassificationManager—Manages property definition, module definition, and rule objects.

 IFsrmFileManagementJobManager—Manages file management job objects.

 IFsrmSetting—Manages general FSRM settings.

3.2.1.11 Enumeration of FSRM Objects

All FSRM objects listed in section 3.2.1 can be returned via collection objects. Section 4.1 also
contains an example of how a collection object is created and used. When the client calls a method to
request a collection, the server creates a collection object implementing the IFsrmCollection
interface (section 3.2.4.2.1) and returns the interface pointer to the client to allow it to enumerate
through the requested objects. The collection remains valid until the client releases all of its references

to the interface. For each collection object, the server maintains the following information:

Objects Being Enumerated: A list of pointers to the FSRM objects being enumerated with the
following requirements:

 At the creation of the collection object, the list is populated with the objects to return,
dictated by the particular specification of the method that the client calls.

 The same object is not listed more than once.

 After the list has been populated, the order of entries in the list is static.

 New FSRM objects added to the server after initial populating are not added to the list of
objects being enumerated.

103 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 If an FSRM object in the list is removed from the server it is not removed from the list of
objects being enumerated. If the removed object is later accessed by the client, the server

will use the client's copy of the object whenever the client attempts to access the object's
interface methods.

state: The state of the collection of Objects Being Enumerated, which contains
FsrmCollectionState (section 2.2.1.2.4) values.

3.2.1.12 Asynchronous Tasks

The following are the asynchronous tasks in the File Server Resource Manager Protocol.

3.2.1.12.1 Running Report Task

The Running Report Task is a task that runs continuously, in a loop, and monitors the Running
Report Job Queue. As the server maintains only one Running Report Job Queue, there is only one
Running Report Task in the server.

Whenever the Running Report Job Queue is not empty, the task searches for one or more Running

Jobs in the queue for which the parent Non-persisted Report Job Instance – identified by the Running
Job.Parent reference – has a Running status of FsrmReportRunningStatus_Queued. The task processes
each such object by performing the following actions in sequence:

 Set the parent instance's Running status to FsrmReportRunningStatus_Running.

 Set the parent instance's Last run time to the current time.

 For each Report in the parent instance's Report Job.Reports, do the following in sequence:

 If the Running Job's Running Job.Cancel property is true, skip the remaining report

formats.

 If the Running Job's Running Job.Deprecated property is true, the server SHOULD skip the
remaining report formats.<49>

 Generate a unique file name prefix string, and store it in Report.Last generated file name
prefix. See Reports (section 3.2.1.5.2) for information about how to generate this prefix.

 If Report.Type is FsrmReportType_Unknown, FsrmReportType_AutomaticClassification, or
FsrmReportType_Expiration, the server MUST skip this Report.

 Create an empty volatile list of file references that will be referred to as Report item list for
the remaining steps.

 If Report.Type is FsrmReportType_LargeFiles, for each file whose path resides in at least one
of the parent instance's Namespace Roots, include the file in the Report item list:

 If the Minimum size filter in the report's Filters has its value set to less than or equal to
0 or the size of the file is equal to or larger than the value of the Minimum size filter in

the report's Filters, in bytes.

 If the Name pattern filter in the report's Filters has its value set to Null or the file name
matches the wildcard pattern (for more information about matching wildcard characters,
see [MSDN-WLD]) in the value of the Name pattern filter.

 If Report.Type is FsrmReportType_FilesByType, for each file whose path resides in at least
one of the parent instance's Namespace Roots:

 If the File group filter in the report's Filters has its value set to Null, include the file in

the Report item list.

https://go.microsoft.com/fwlink/?LinkId=210151

104 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 For each value in the File group filter, find the file group in the List of Persisted File
groups with the same File Group.Name. If the file name matches at least one of the file-

name patterns in the Members of the file group but does not match any of the file-name
patterns in the Non-members of the file group, include the file in the Report item list.

 If the Report.Type is FsrmReportType_LeastRecentlyAccessed, for each file whose path
resides in at least one of the parent instance's Namespace Roots:

 If the Minimum age filter in the report's Filters has its value set to less than or equal to
0 or the last accessed time of the file plus the value of the Minimum age filter in the
report's Filters is larger than the server's current date, include the file in the Report item
list.

 If the Name pattern filter in the report's Filters has its value set to Null or the file name

matches the wildcard pattern (for more information about matching wildcard characters,
see [MSDN-WLD]) in the value of the Name pattern filter, include the file in the Report
item list.

 If Report.Type is FsrmReportType_MostRecentlyAccessed, for each file whose path resides in
at least one of the parent instance's Namespace Roots, include the file in the Report item
list:

 If the Maximum age filter in the report's Filters has its value set to less than or equal to
0 or the last accessed time of the file plus the value of the Maximum age filter in the
report's Filters is smaller than or equal to the server's current date.

 If the Name pattern filter in the report's Filters has its value set to Null or the file name
matches the wildcard pattern (for more information about matching wildcard characters,
see [MSDN-WLD]) in the value of the Name pattern filter.

 If Report.Type is FsrmReportType_QuotaUsage, for each directory quota in the List of

Persisted Directory whose Directory Quota.Folder path resides within at least one of the
parent instance's Namespace Roots, include the directory quota and its Quota usage in the
Report item list.

 If Report.Type is FsrmReportType_FilesByOwner, for each file whose path resides in at least
one of the parent instance's Namespace Roots, include the file in the Report item list:

 If the Owners filter in the report's Filters has its value set to NULL or the file owner is
one of the values of the Owners filter in the report's Filters.

 If the Name pattern filter in the report's Filters has its value set to Null or the file name
matches the wildcard pattern (for more information about matching wildcard characters,
see [MSDN-WLD]) in the value of the Name pattern filter.

 If Report.Type is FsrmReportType_ExportReport, for each file whose path resides in at least
one of the parent instance's Namespace Roots, include the file in the Report item list.

 If Report.Type is FsrmReportType_DuplicateFiles, for each file whose path resides in at least

one of the parent instance's Namespace Roots and for which a duplicate file is present<50>
within the same Namespace Roots, include the file in the Report item list.

 If Report.Type is FsrmReportType_FileScreenAudit, for each file for which a file screen event
was recorded (see section 3.2.7.4) whose path resides in at least one of the parent instance's
Namespace Roots, include the file in the Report item list if the Owners filter in the
report's Filters has its value set to NULL or the file owner is one of the values of the Owners
filter in the report's Filters.

105 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 If Report.Type is FsrmReportType_FilesByProperty, the server performs the following steps in
sequence for each file whose path resides in at least one of the parent instance's Namespace

Roots:

1. If the Name pattern filter in the report's Filters has its value set to Null or the file name

matches the wildcard pattern (for more information about matching wildcard characters,
see [MSDN-WLD]) in the value of the Name pattern filter, include the file in the Report
item list.

2. Perform the Retrieve Stored Classification Properties for the file.

3. Perform the Generate New Classification Properties action for the file given the list of
Property Definition Instances from the previous action.

4. Perform the Store classification properties action for the file given the list of Property

Definition Instances from the previous action.

5. If the list of Property Definition Instances for the file includes a Property Definition
Instances whose Property definition instance.name is equal to the value of the Property

filter in the report's Filters, include the file in the Report item list.

 If Report.Type is FsrmReportType_FoldersByProperty, the server performs the following
steps in sequence for each folder whose path resides in at least one of the parent instance's

Namespace Roots:

1. If the Name pattern filter in the report's Filters has its value set to Null or the file name
matches the wildcard pattern (for more information about matching wildcard characters,
see [MSDN-WLD]) in the value of the Name pattern filter.

2. Perform the Retrieve Stored Classification Properties for the folder.

3. Perform the Generate New Classification Properties action for the folder given the list of
Property Definition Instances from the previous action.

4. If the list of Property Definition Instances for the folder includes a Property Definition

Instances whose Property definition instance.name is equal to the value of the Property
filter in the report's Filters, Property definition instance.Global and Property definition
instance.Secure are set, and Property definition instance.AppliesTo is set to Folders,
include the file in the Report item list.

 For each report format in the parent instance's Report Job.Formats, generate a storage
report of that format and of the type specified by Report.Type for the items in the Report

item list. If Report.Type is FsrmReportType_ExportReport (0x00000007), Report
Job.Formats MUST include FsrmReportFormat_Csv (0x0000004) or FsrmReportFormat_Xml
(0x00000005); otherwise, the reports will not be generated and the server will not return an
error code.

 Store all generated reports as files in Reports directory. All file names MUST begin with
Report.Last generated file name prefix.

 When all reports have been generated:

 Set the parent instance's Last error to an empty string – if no errors occurred – or to a string
describing the error encountered.

 Set the parent instance's Last generated in directory to Reports directory. If there is an
associated Persisted report job, also set that object's Last generated in directory to the
same value.

 Send emails with the generated reports to the email address recipient list in the parent

instance's Non-Persisted Report Job's Mail to, as follows:

106 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 If the parent instance's Non-Persisted Report job's Report Job.Mail to is an empty
string, the server MUST NOT email the report when the action is run.

 If the parent instance's Non-Persisted Report job's Report Job.Mail to contains the
string "[ADMIN EMAIL]", the server MUST send the report to the Administrator email

address (section 3.2.1.9) returned from IFsrmSetting::AdminEmail
(get) (section 3.2.4.2.11.5), in addition to other email addresses in Report Job.Mail to,
when emailing the report.

 Remove the Running Job from the Running Report Job Queue.

The order in which the task processes Running Job objects as described above is not deterministic.
Also, the task can choose to process multiple Running Jobs in parallel or just one at a time.

3.2.1.12.2 Running Classification Task

The Running Classification Task is a task that runs continuously, in a loop, and monitors the
Running Classification Job Queue. Because the server maintains only one Running Classification

Job Queue, there is only one Running Classification Task in the server.

Whenever the Running Classification Job Queue is not empty, the task searches for one Running
Job in the queue for which the parent Classification Job – identified by the Running Job.Parent

reference – has a Running status of FsrmReportRunningStatus_Queued. The task processes such an
object by performing the following actions in sequence:

1. Set the parent instance's Running status to FsrmReportRunningStatus_Running.

2. Create an empty volatile list of file references that will be referred to as Report item list for the
remaining steps.

3. The server performs the following steps listed here, in sequence, for each file whose path resides
in at least one of the parent instance's Classification Job.Namespace Roots.

1. If the Running Job's Running Job.Cancel property is true, skip to the Report step below.

2. Perform the Retrieve stored classification properties for the file.

3. Perform the Generate new classification properties action for the file given the list of Property
Definition Instances from the preceding action. If the property definition instance.flags of
any of the resulting Property Definition Instances contains FsrmPropertyFlags_SetByClassifier,
add the file to the Report item list.

4. Perform the Store classification properties action for the file given the list of Property

Definition Instances from the preceding action.

4. Report Step (in sequence):

1. If the parent instance's Generate classification report is false, skip the Report step.

2. For each report format in the parent instance's Classification Job.Formats, generate a
classification report of that format for the items in the Report item list.

3. Store all generated reports as files in Reports directory. All file names MUST begin with

Report.Last generated file name prefix.

5. After the Report Step (in sequence):

1. Set the parent instance's Classification Job.Last error to an empty string – if no errors
occurred – or to a string describing the error encountered.

2. Set the parent instance's Last generated path to Reports directory.

107 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

3. If reports were generated, send emails with the generated reports to the email address
recipient list in the parent instance's Classification Job.Mail to, as follows:

1. If the parent instance's Classification Job.Mail to is an empty string, the server MUST
NOT email the report when the action is run.

2. If the parent instance's Classification Job.Mail to contains the string "[ADMIN EMAIL]",
the server MUST send the report to the Administrator email address returned from
IFsrmSetting::AdminEmail (get), in addition to other email addresses in Mail to, when
emailing the report.

6. Set the parent instance's Running status to FsrmReportRunningStatus_NotRunning.

7. Remove the Running Report Job from the Running Classification Job Queue.

3.2.1.12.3 Running File Management Task

A Running File Management Task is a task performed by the server during the execution of the

associated file management job. For a given file management job, the execution of a running file
management task can be triggered in response to a client
IFsrmFileManagementJob::Run (section 3.2.4.2.48.41) request. At any given moment in time, there
can be at most one running file management task for every file management job configured on the

server.

The Running File Management Task is a task that runs continuously, in a loop, and monitors the
Running File Management Job Queue. Because the server maintains only one Running File
Management Job Queue, there is only one Running File Management Task on the server.

Whenever the Running File Management Job Queue is not empty, the task searches for one or
more Running Jobs in the queue for which the parent Non-persisted File Management Job Instance –
identified by the Running Job.Parent reference – has a Running status of

FsrmReportRunningStatus_Queued.

The task processes each such object by performing the following actions in sequence:

 For the parent instance (as identified by the Running Job.Parent reference)

 Set the Running status to FsrmReportRunningStatus_Running.

 Set the Last run time to the current time.

 Generate a unique file name prefix string, and store it in File Management Job.Last report
path without extension. See Reports (section 3.2.1.5.2) for information about how to

generate this prefix.

 Scan the namespaces specified in the parent instance's Namespace Roots to obtain the list of files
within these namespaces. On each of these files, perform the File Condition, Property Condition,
Future Notification, Date Condition, Action, and Action Notification steps listed below in sequence
for each file:

 File Condition step:

 If the Running Job's Running Job.Cancel property is true, skip the File Condition,
Property Condition, Future Notification, Date Condition, Action, and Action Notification
steps for all remaining files.

 If the parent instance has File name pattern set to something other than Null and the
file name does not match the wildcard pattern (for more information about matching
wildcard characters, see [MSDN-WLD]) in File name pattern, the server MUST skip the

https://go.microsoft.com/fwlink/?LinkId=210151

108 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

rest of the File Condition, Property Condition, Future Notification, Date Condition, Action,
and Action Notification steps for this file.

 Property Condition step (in sequence):

 If the parent instance has one or more Property conditions as part of its Conditions,

the following steps will be performed in sequence.

1. Perform the Retrieve stored classification properties for the file.

2. Perform the Generate new classification properties action for the file given the list of
Property Definition Instances from the previous action. If the property definition
instance.flags of any of the resulting Property Definition Instances contains
FsrmPropertyFlags_SetByClassifier, add the file to the Report item list.

3. Perform the Store classification properties action for the file given the list of Property

Definition Instances from the previous action.

 For each Property condition in the parent instance's Conditions, the server MUST

perform the following steps in sequence:

 For the rest of this sequence, associated property definition instance will refer to
the Property Definition Instance in property definition instances where Property
condition.Name is equal to property definition instance.Name.

 For the rest of this sequence, associated property definition will refer to the
property definition in the server's property definitions with the same Property
Definition.Name as the associated property definition.Name.

 If Property condition.Type is FsrmPropertyConditionType_Unknown, an error
SHOULD be generated and the Future Notification, Date Condition, Action, and Action
Notification steps are skipped for this file.

 If Property condition.Type is FsrmPropertyConditionType_Exist and there is an

associated property definition instance, the Future Notification, Date Condition,

Action, and Action Notification steps are skipped for this file.

 If Property condition.Type is FsrmPropertyConditionType_Not exist and there is
an associated property definition instance, the Future Notification, Date
Condition, Action, and Action Notification steps are skipped for this file.

 If Property condition.Type is FsrmPropertyConditionType_Equal, there is an
associated property definition instance, and the Property condition.Value is

equal to the associated property definition instance.Value, the Future
Notification, Date Condition, Action, and Action Notification steps are skipped for this
file.

 If Property condition.Type is FsrmPropertyConditionType_NotEqual, there is an
associated property definition instance, and the Property condition.Value is not
equal to the associated property definition instance.Value, the Future

Notification, Date Condition, Action, and Action Notification steps are skipped for this

file.

 If Property condition.Type is FsrmPropertyConditionType_LessThan and one or
more of the following are true, the Future Notification, Date Condition, Action, and
Action Notification steps are skipped for this file.

 The associated property definition.Type is
FsrmPropertyDefinitionType_String, FsrmPropertyDefinitionType_Int,

FsrmPropertyDefinitionType_Bool, or FsrmPropertyDefinitionType_Date

109 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

and associated property definition instance.Value is not less than Property
condition.Value.

 The associated property definition.Type is
FsrmPropertyDefinitionType_OrderedList and associated property

definition instance.Value does not appear as a Property Value
Definition.Name before Property condition.Value in the associated property
definition.Possible values list.

 The associated property definition.Type is
FsrmPropertyDefinitionType_Unknown,
FsrmPropertyDefinitionType_SingleChoiceList, or
FsrmPropertyDefinitionType_MultiChoiceList.

 If Property condition.Type is FsrmPropertyConditionType_GreaterThan and
one or more of the following are true, the Future Notification, Date Condition, Action,
and Action Notification steps are skipped for this file.

 The associated property definition.Type is
FsrmPropertyDefinitionType_String, FsrmPropertyDefinitionType_Int,
FsrmPropertyDefinitionType_Bool, or FsrmPropertyDefinitionType_Date

and associated property definition instance.Value is not greater than
Property condition.Value.

 The associated property definition.Type is
FsrmPropertyDefinitionType_OrderedList and associated property
definition instance.Value does not appear as a Property Value
Definition.Name after Property condition.Value in the associated property
definition.Possible values list.

 The associated property definition.Type is
FsrmPropertyDefinitionType_Unknown,
FsrmPropertyDefinitionType_SingleChoiceList, or
FsrmPropertyDefinitionType_MultiChoiceList.

 If Property condition.Type is FsrmPropertyConditionType_Contain and one or
more of the following are true, the Future Notification, Date Condition, Action, and
Action Notification steps are skipped for this file.

 The associated property definition.Type is not
FsrmPropertyDefinitionType_MultiChoiceList.

 The associated property definition.Type is not
FsrmPropertyDefinitionType_MultiString.

 The associated property definition.Type is not
FsrmPropertyDefinitionType_MultiChoiceList or

FsrmPropertyDefinitionType_MultiString and associated property
definition instance.Value does not contain Property condition.Value.

 If Property condition.Type is FsrmPropertyConditionType_ContainedIn and one
or more of the following are true, the Future Notification, Date Condition, Action, and
Action Notification steps are skipped for this file.

 The associated property definition.Type is not
FsrmPropertyDefinitionType_MultiChoiceList.

 The associated property definition.Type is not
FsrmPropertyDefinitionType_MultiString.

110 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 The associated property definition.Type is not
FsrmPropertyDefinitionType_MultiChoiceList or

FsrmPropertyDefinitionType_MultiString and associated property
definition instance.Value is not contained in Property condition.Value.

 If Property condition.Type is FsrmPropertyConditionType_StartWith and the
following is true, the Future Notification, Date Condition, Action, and Action
Notification steps are skipped for this file.

 The associated property definition.Type is not
FsrmPropertyDefinitionType_String or associated property definition
instance.Value does not begin with Property condition.Value.

 If Property condition.Type is FsrmPropertyConditionType_EndWith and the

following is true, the Future Notification, Date Condition, Action, and Action
Notification steps are skipped for this file.

 The associated property definition.Type is not

FsrmPropertyDefinitionType_String or associated property definition
instance.Value does not end with Property condition.Value.

 If Property condition.Type is FsrmPropertyConditionType_PrefixOf and the

following is true, the Future Notification, Date Condition, Action, and Action
Notification steps are skipped for this file.

 The associated property definition.Type is not
FsrmPropertyDefinitionType_String or associated property definition
instance.Value is not the prefix of Property condition.Value.

 If Property condition.Type is FsrmPropertyConditionType_SuffixOf and the
following is true, the Future Notification, Date Condition, Action, and Action

Notification steps are skipped for this file.

 The associated property definition.Type is not
FsrmPropertyDefinitionType_String or associated property definition

instance.Value is not the suffix of Property condition.Value.

 Future Notification step:

 For each of the parent instance's Notification periods, the server performs the following
steps in sequence:

 If the notification period's Notification interval is 0, skip to the next Notification
period.

 If the parent instance has Days since file created set to greater than
FsrmDateNotSpecified in its Conditions, and the sum of the file's creation date plus
the value of Days since file created minus the notification period's Notification
interval is greater than the server's current date or less than the parent instance's

File Management Job.Last Run Time, skip to the next Notification period.

 If the parent instance has Days since file last modified set to greater than
FsrmDateNotSpecified in its Conditions, and the sum of the file's modification date
plus the value of Days since file last modified minus the notification period's
Notification interval is greater than the server's current date or less than the parent
instance's File Management Job.Last Run Time, skip to the next Notification
period.

 If the parent instance has Days since file last accessed set to greater than
FsrmDateNotSpecified in its Conditions, and the sum of the file's last accessed date

111 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

plus the value of Days since file last accessed minus the notification period's
Notification interval is greater than the server's current date or less than the parent

instance's File Management Job.Last Run Time, skip to the next Notification
period.

 Run the notifications in the notification period's Notification period.Notifications of
the parent instance.

 Date Condition step:

 If the parent instance has Days since file created set to greater than
FsrmDateNotSpecified in its Conditions, and the sum of the file's creation date plus the
value of Days since file created is greater than or equal to the server's current date,
skip the Action and Action Notification steps.

 If the parent instance has Days since file last modified set to greater than
FsrmDateNotSpecified in its Conditions, and the sum of the file's modification date plus
the value of Days since file last modified is greater than or equal to the server's current

date, skip the Action and Action Notification steps.

 If the parent instance has Days since file last accessed set to greater than
FsrmDateNotSpecified in its Conditions, and the sum of the file's last accessed date plus

the value of Days since file last accessed is greater than or equal to the server's
current date, skip the Action and Action Notification steps.

 If the parent instance has From date set to greater than FsrmDateNotSpecified in its
Conditions, and From date is less than or equal to the current date/time, skip the Action
and Action Notification steps.

 Action step:

 If there were any errors in processing the file and the File Management

Job.Parameters of the parent instance do not include a value that starts with
"ActOnPartialClassification", the Action and Action Notification steps MUST be skipped
for this file.

 If the Operation type of the parent instance is set to
FsrmFileManagementType_Expiration, the server will move the file to the location
indicated by the Expiration directory of the parent instance.

 If the Operation type of the parent instance is set to

FsrmFileManagementType_Custom, the server will run the Custom Action of the
parent instance (see section 3.2.4.4, Running Notifications).

 If File Management Job.Logging contains
FsrmFileManagementLoggingFlags_Error, the server logs any error that have
occurred during the processing of the file in the file management job error log file.

 If File Management Job.Logging contains

FsrmFileManagementLoggingFlags_Information, the server logs the file to the file
management job information log file.

 If File Management Job.Logging contains
FsrmFileManagementLoggingFlags_Audit, the server logs the file to the server's
event log.

 Action Notification step:

112 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 If the parent instance has a notification period whose Notification interval is 0 as part of its
Notification periods, the server runs the notifications in the Notification

period.Notifications (see section 3.2.4.4) of that notification period.

 If report enabled is true, generate the file management report in each format specified in

File Management Job.Formats, and store it in Reports directory.

 Store all generated reports as files in Reports directory. All file names MUST begin with
the parent instance's File Management Job.Last report path without extension.

 Send emails with the generated reports to the email address recipient list in the parent
instance's Non-Persisted File Management Job Instance's File Management Job.Mail to,
as follows:

 If the parent instance's Non-Persisted File Management Job Instance's File Management

Job.Mail to is an empty string, the server MUST NOT email the report when the action is
run.

 If the parent instance's Non-Persisted File Management Job Instance's File Management

Job.Mail to contains the string "[ADMIN EMAIL]", the server MUST send the report to the
Administrator email address (section 3.2.1.9) returned from IFsrmSetting::AdminEmail
(get) (section 3.2.4.2.11.5), in addition to other email addresses in Mail to, when

emailing the report.

 Set the parent instance's Last error to an empty string if no errors occurred or to a string
describing the error encountered.

 Set the parent instance's Last generated in directory to Reports directory. If there is an
associated Persisted File Management job, also set that object's Last generated in directory to
the same value.

 Set the parent instance's Running status to FsrmReportRunningStatus_NotRunning.

 If File Management Job.Logging contains
FsrmFileManagementLoggingFlags_Information, the server persists the file management

job log file.

 If File Management Job.Logging contains FsrmFileManagementLoggingFlags_Error,
the server persists the file management job error log file.

 Remove the Running Job from the Running File Management Job Queue.

The order in which the task processes Running Job objects as previously described is not

deterministic. Also, the task can choose to process multiple Running Jobs in parallel or just one at a
time.

If the task is interrupted (for example, by IFsrmFileManagementJob::Cancel) while processing a
Running Job, the following steps will be performed in sequence:

 Complete the processing of the current file.

 Set the parent instance's Running status to FsrmReportRunningStatus_NotRunning.

 If File Management Job.Logging contains
FsrmFileManagementLoggingFlags_Information, the server persists the file management job
log file.

 If File Management Job.Logging contains FsrmFileManagementLoggingFlags_Error, the
server persists the file management job error log file.

 Remove the Running Job from the Running File Management Job Queue.

113 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

3.2.1.12.4 Quota Scanning

When the server performs a quota scan on a Persisted Directory Quota (section 3.2.1.2.1.1), it
updates the Quota Usage of the directory quota by calculating the total amount of storage used by

all files and subfolders under the Folder Path of the directory quota. When running a quota scan, the
server MUST perform the following steps:

1. Set the State of the directory quota to Rebuilding.

2. Calculate, recursively, the total disk space used by all files under the Folder Path of the directory
quota and in all subfolders of the Folder Path.

3. Set the Quota Usage of the directory quota to the total from step 2.

4. Set the State of the directory quota to Complete.

3.2.1.12.5 Active Directory Synchronization

Synchronization of the property definition from Active Directory to the local machine happens at
implementation-defined intervals.<51>

The following sequence of actions occurs during synchronization.

The Resource Property List name contained in ADSyncListName is used to synchronize the property

definitions from Active Directory.

1. The server MUST iterate through each of the Active Directory property definitions in the
retrieved resource property list. For each Active Directory property definition found in the resource
properties object whose Enabled attribute is set to true, the server MUST perform the following
steps in sequence:

1. If there is a persisted property definition with the same property definition.GlobalGUID as
the objectGUID of the Active Directory property definition, refer to this as the Relevant

Property Definition. Otherwise, the server MUST create a new persisted property definition
and add it to the List of Persisted Property Definitions. The new persisted property definition

needs to be referred to as the Relevant Property Definition and be initialized as follows:

1. Set FSRM Base Object.Id to the objectGUID of the Active Directory property definition.

2. Set Property Definition.Type to FsrmPropertyDefinitionType_Unknown.

3. Set Property Definition.Name to an empty string.

4. Set Property Definition.Deprecated to false.

5. Set Property Definition.Global to true.

6. Set Property Definition.AppliesTo to Files.

7. Set Property Definition.Secure to false.

8. Set Possible values to an empty list.

9. Set Property Definition.WhenChanged to never.

2. If whenChanged on the Active Directory property definition is newer than Property

Definition.WhenChanged, perform the following steps:

1. The Property Definition.Type of the Relevant Property Definition is updated with the
msDS-ValueTypeReference of the Active Directory property definition:

114 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

1. If msDS-ValueTypeReference is MS-DS-OrderedList, set Property Definition.Type to
FsrmPropertyDefinitionType_OrderedList.

2. If msDS-ValueTypeReference is MS-DS-MultivaluedChoice, set Property Definition.Type
to FsrmPropertyDefinitionType_MultiChoiceList.

3. If msDS-ValueTypeReference is MS-DS-Text, set Property Definition.Type to
FsrmPropertyDefinitionType_String.

4. If msDS-ValueTypeReference is MS-DS-MultivaluedText, set Property Definition.Type
to FsrmPropertyDefinitionType_MultiString.

5. If msDS-ValueTypeReference is MS-DS-Number, set Property Definition.Type to
FsrmPropertyDefinitionType_Int.

6. If msDS-ValueTypeReference is MS-DS-YesNo, set Property Definition.Type to

FsrmPropertyDefinitionType_Bool.

7. If msDS-ValueTypeReference is MS-DS-DateTime, set Property Definition.Type to

FsrmPropertyDefinitionType_Date.

2. If another persisted property definition exists on the server with a Property
Definition.Name matching the CN of the Active Directory property definition, the server
MUST perform the following steps:

1. Append the string "(deprecated)" to the name of that persisted property definition.

2. Set the Property Definition.Deprecated to true for that persisted property definition.

3. For any Report Jobs part of a Persisted Report Job that includes a filter of type
FsrmReportFilter_Property in its Filters whose value is the same as the Property
Definition.Name of that persisted property definition, set Report Job.Deprecated to
true.

4. For any Persisted Rule that has a Property Affected whose value is the same as the

Property Definition.Name of that persisted property definition, set Rule.Deprecated to
true.

5. For any Persisted File Management Jobs that has a Property Condition as part of its
Conditions whose Property Condition.Name is the same as the Property
Definition.Name of that persisted property definition, set Rule.Deprecated to true.

3. The Property Definition.Name of the Relevant Property Definition is updated with the
CN of the Active Directory property definition.

4. The Property Definition.Display Name of the Relevant Property Definition is updated
with the displayName of the Active Directory property definition.

5. The FSRM Base Object.Description of the Relevant Property Definition is updated with
the description of the Active Directory property definition.

6. If the CN for the matching Property Definition.Name is FolderUsage_MS, FolderUsage list
is also updated so that each value in the msDS-ClaimPossibleValues of the matching

Active Directory Property Definition appears as part of a [FolderUsage_MS=<value>]

string in the FolderUsage List. Every item in the FolderUsage List whose <value> does not

appear in the msDS-ClaimPossibleValues of the matching Active Directory Property

Definition is removed from the FolderUsage List.

7. If the msDS-ValueTypeReferences of the Active Directory property definition is MS-DS-
OrderedList or MS-DS-MultivaluedChoice, the server MUST perform the following steps:

115 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

1. If the msDS-ClaimSharesPossibleValuesWith of the persisted property definition has a
value, refer to the msDS-ClaimPossibleValues of the Active Directory property

definition whose CN matches the value in msDS-ClaimSharesPossibleValuesWith as the
Active Directory possible values for the following steps. Otherwise, msDS-

ClaimPossibleValues of the original Active Directory property definition will be referred
to as the Active Directory possible values for the following steps.

2. The persisted property definition is updated with the Active Directory possible values
by performing the following steps for each of its Active Directory possible value items
as follows (see section 2.3.5 for details on the format of Active Directory possible
values):

1. Create a new Property Value Definition object and set its properties as follows:

 Property Value Definition.Name = Value from the Active Directory possible
value.

 Property Value Definition.DisplayName = ValueDisplayName from the

Active Directory possible value.

 Property Value Definition.Description = ValueDescription from the
Active Directory possible value.

 Property Value Definition.UniqueId = ValueGUID from the Active
Directory possible value.

2. Extend the Possible values array by one entry, and set it to the newly created
Property Value Definition object.

8. The AppliesTo of the Relevant Property Definition is updated with the msDS-
AppliesToResourceTypes of the Active Directory property definition.

 If the msDS-AppliesToResourceTypes of the Active Directory property definition

contains "Files", the Property Definition.AppliesTo of the Relevant Property
Definition MUST be set to Files; if it contains "Folders", the Property

Definition.AppliesTo of the Relevant Property Definition MUST be set to Folders. If
it contains both, the Property Definition.AppliesTo of the Relevant Property
Definition MUST be set to Files and Folders.

9. The Property Definition.Secure of the Relevant Property Definition is updated with the
msDS-IsUsedAsResourceSecurityAttribute of the Active Directory property definition.

2. If there is no objectGUID of the Active Directory property definition matching the GlobalGUID of
any persisted property definition in the local machine, the server MUST remove that persisted
property definition from the List of Persisted Property Definitions and perform the following steps:

1. For any Report Jobs part of a Persisted Report Job that includes a filter of type
FsrmReportFilter_Property in its Filters whose value is the same as the Property
Definition.Name of that persisted property definition, set Report Job.Deprecated to true.

2. For any Persisted Rule that has a Property Affected whose value is the same as the Property

Definition.Name of that persisted property definition, set Rule.Deprecated to true.

3. For any Persisted File Management Jobs that has a Property Condition as part of its
Conditions whose Property Condition.Name is the same as the Property Definition.Name of
that persisted property definition, set Rule.Deprecated to true.

3. If the property definition.GlobalGUID of a persisted property definition is the same as the
objectGUID of the Active Directory property definition in Active Directory whose Enabled attribute

116 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

is set to false, the server MUST remove that persisted property definition from the List of Persisted
Property Definitions and perform the following steps:

1. For any Report Jobs part of a Persisted Report Job that includes a filter of type
FsrmReportFilter_Property in its Filters whose value is the same as the Property

Definition.Name of that persisted property definition, set Report Job.Deprecated to true.

2. For any Persisted Rule that has a Property Affected whose value is the same as the Property
Definition.Name of that persisted property definition, set Rule.Deprecated to true.

3. For any Persisted File Management Jobs that has a Property Condition as part of its
Conditions whose Property Condition.Name is the same as the Property Definition.Name of
that persisted property definition, set Rule.Deprecated to true.

3.2.2 Timers

No timers are required.

3.2.3 Initialization

The server MUST register all FSRM protocol interfaces, as specified in [MS-RPCE] section 3.2.2.

For objects that are stored on volumes (see Message Processing Details (section 3.2.4.2)), the server
MUST create the following lists of persisted FSRM abstract data model objects, if the lists do not
already exist. When a new list is created, it is initialized to an empty list with no objects.

Quota Model (section 3.2.1.2):

 List of Persisted Directory Quotas

 List of Persisted Auto Apply Quotas

File Screen Model (section 3.2.1.3):

 List of Persisted File Screens

 List of Persisted File Screen Exceptions

The server MUST create a Volume List (section 3.2.1) that contains all volumes on the server. For

each volume that contains persisted FSRM information for objects stored on volumes, see Message
Processing Details (section 3.2.4.2), the server MUST concatenate the following persisted object lists
with the corresponding persisted objects on the volume.

Quota Model (section 3.2.1.2):

 List of Persisted Directory Quotas

 List of Persisted Auto Apply Quotas

File Screen Model (section 3.2.1.3):

 List of Persisted File Screens

 List of Persisted File Screen Exceptions

Any persisted objects in the lists with the same folder path as a persisted object on the volume are
overwritten by the persisted objects on the volume. For any persisted object in the lists of persisted
objects with a folder path that is not associated with a volume in the volume list, the server MUST
remove the persisted object from the persisted object list.

%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15

117 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

For objects that are not stored on volumes (Message Processing Details (section 3.2.4.2)), the server
MUST create the following lists of persisted FSRM abstract data model objects, if the lists do not

already exist. When a new list is created, it is initialized to an empty list with no objects.

Quota Model (section 3.2.1.2):

 List of Persisted Directory Quota Templates

File Screen Model (section 3.2.1.3):

 List of Persisted File Screen Templates

 List of Persisted File Groups

Storage Reports Model (section 3.2.1.5):

 List of Persisted Report Jobs

For any Report Job in the List of Persisted Report Jobs that has a Report as part of its Report

Job.Reports where the Filters contain the FsrmReportFilter_Property filter and the filter value does
not have the same value as the Name of a Property Definition in List of Persisted Property
Definitions or where the matching Property Definition has its Property Definition.Deprecated set to
true, the server MUST set the corresponding Report.Deprecated to true.

Classification Model (section 3.2.1.6):

 List of Persisted Property Definitions

 List of Persisted Module Definitions

 List of Persisted Rules

For any Rule in the List of Persisted Rules where the Property affected does not have the same value
as the Name of a Property Definition in List of Persisted Property Definitions or where the matching
Property Definition has its Property Definition.Deprecated property set to true, the server MUST set

the Rule.Deprecated parameter to true.

For each rule in the List of Persisted Rules, the server SHOULD<52> do the following:

 If Rule Type is Classification, ClearProperty is set to false.

 Rule.ClearAutoProperty is set based on local configuration policy.

 Rule.ClearManualProperty is set based on local configuration policy.

File Management Model (section 3.2.1.7):

 List of Persisted File Management Jobs

For any File Management Job in the List of Persisted File Management Jobs where Property
Conditions has a Property condition whose Name does not have the same value as the Name of a

Property Definition in List of Persisted Property Definitions or where the matching Property Definition

has its Property Definition.Deprecated set to true, the server MUST set the File Management
Job.Deprecated parameter to true.

The server MUST create the following singular FSRM abstract data model objects if the objects do not
already exist. When a new object is created, it is initialized with the specified data.

Classification Model (section 3.2.1.6):

 A Classification Job, referred to as the Default Classification Job

118 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 Classification Job.Formats is set to an empty array.

 Generate classification report is set to false.

 Classification Job.Mail to is set to an empty string.

 Classification Job.Logging is set to 0.

 Classification Job.Last error is set to an empty string.

 Last generated path is set to an empty string.

3.2.4 Message Processing Events and Sequencing Rules

3.2.4.1 Sequencing Rules

Responding to Quota Events: If a Quota Event (section 3.2.7.1) occurs, the server MUST run
(section 3.2.4.4) each Notifications (Actions) (section 3.2.1.2.1) associated with the threshold of

the quota that caused the Quota Event. The server MUST NOT run any actions that cannot be

associated with the threshold of the quota that caused the event. If the quota's ratio of Quota usage
to Quota limit is greater than or equal to one, and if the quota's Quota limit mode is set to Hard
quota, the server MUST fail the I/O operation.

Responding to Quota Usage Update Events: If a Quota Usage Update Event (section 3.2.7.2)
occurs, the server MUST update the Quota usage of the quota with the size of the I/O operation. The
server MUST process Quota Usage Update Events before processing Peak Quota Usage Events.

Responding to Peak Quota Usage Events: If a Peak Quota Usage Event (section 3.2.7.3) occurs,

the server MUST set the Peak quota usage of the Persisted Directory Quota (section 3.2.1.2.1.1)
representing the quota that caused the Peak Quota Usage Event to the current Quota usage of the
quota. The server MUST also set the Peak quota usage time stamp of the Persisted Directory Quota
to the current time.

Responding to File Screen Events: If a File Screen Event (section 3.2.7.4) occurs, the server MUST

run (section 3.2.4.4) each Notification (Actions) (section 3.2.1.3.1) associated with the File

Screen (section 3.2.1.3.1) that caused the File Screen Event. If the File screen mode is set to Hard
screen, then the File Screen will block file I/O that violates the File Screen. If the File screen mode
is set to Soft screen, then the File Screen will not block file I/O that violates the File Screen. If
Enable file screen audit (section 3.2.1.9) is set to true, the server MUST store an audit record for
each File Screen prohibited file so that the record can be scanned later and presented in a File Screen
Audit report. For details about the audit log record requirements, see section 3.2.1.3.1.

Responding to Directory Creation Events: If a Directory Creation Event (section 3.2.7.5) occurs,

the server MUST create a Persisted Directory Quota for the new subdirectory and add it to the List of
Persisted Directory Quotas (section 3.2.1.2). The new Persisted Directory Quota MUST have the
same properties as the Auto Apply Quota (section 3.2.1.2.2) that caused the Directory Creation Event,
with the following exceptions:

 The server MUST set the Folder path to the directory that caused the Directory Creation Event.

 The server MUST set the Auto apply quota id to the ID of the Auto Apply
Quota (section 3.2.1.2.2) that caused the Directory Creation Event.

 Peak quota usage is set to zero.

 Peak quota usage time stamp is set to the current time.

 Quota usage is set to zero.

119 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 Quota state is set to incomplete.

After creating the new Persisted Directory Quota, the server MUST start a quota scan (section

3.2.1.12.4) for the new Persisted Directory Quota and add it to the List of Persisted Directory
Quotas.

Responding to Directory Deletion Events: If a Directory Deletion Event (section 3.2.7.6) occurs,
the server MUST remove from the associated list any of the following objects configured with the
deleted directory as their Folder path:

 Any Persisted Directory Quota for the deleted directory MUST be removed from the List of
Persisted Directory Quotas.

 Any Persisted Auto Apply Quota (section 3.2.1.2.2.1) for the deleted directory MUST be removed
from the List of Persisted Auto Apply Quota (section 3.2.1.2.2).

 Any Persisted File Screen (section 3.2.1.3.1.1) for the deleted directory MUST be removed from
the List of Persisted File Screen (section 3.2.1.3.1).

 Any Persisted File Screen Exception (section 3.2.1.3.2.1) for the deleted directory MUST be
removed from the List of Persisted File Screen Exceptions (section 3.2.1.3.2).

Any non-persisted objects with the deleted directory configured as their Folder path MUST NOT be
changed. Any persisted or non-persisted object where the deleted directory is a value in the

namespace roots of the object MUST NOT be changed. Any Persisted Auto Apply Quota where the
deleted directory is a value of the Exclude folders MUST NOT be changed.

Responding to Directory Rename Events: If a Directory Rename Event (section 3.2.7.7) occurs,
the server MUST update the Folder path of any Persisted Directory Quotas, Persisted Auto Apply
Quota, Persisted File Screens, or Persisted File Screen Exceptions where the Folder path equals the
old directory path, to the new directory path, without any manual configuration changes from the
client. Any non-persisted objects with the renamed directory configured as their Folder path MUST

NOT be changed. Any persisted or non-persisted object where the renamed directory is a value in the
namespace roots of the object MUST NOT be changed. Any Persisted Auto Apply Quota where the
renamed directory is a value of the Exclude folders MUST NOT be changed.

Responding to Volume Discovery Events: If a Volume Discovery Event (section 3.2.7.8) occurs,
the server MUST add the volume to the Volume List (section 3.2.1). If the server has previously
stored Persisted Directory Quotas on that volume, the server MUST concatenate the List of Persisted
Directory Quotas with the Persisted Directory Quotas on the volume. If the server has previously

stored Persisted Auto Apply Quota on that volume, the server MUST concatenate the List of
Persisted Auto Apply Quotas with the Persisted Auto Apply Quota on the volume. If the server has
previously stored Persisted File Screens on that volume, the server MUST concatenate the List of
Persisted File Screens with the Persisted File Screens on the volume. If the server has previously
stored Persisted File Screen Exceptions on that volume, the server MUST concatenate the List of
Persisted File Screen Exceptions with the Persisted File Screen Exceptions on the volume.

Responding to Volume Removal Events: If a Volume Removal Event (section 3.2.7.9) occurs, the
server MUST remove the volume from the Volume List. If there are any Persisted Directory Quotas
with a Folder path on the volume, the server MUST remove the Persisted Directory Quota from the

List of Persisted Directory Quotas. If there are any Persisted Auto Apply Quotas with a path on the
volume, the server MUST remove the Persisted Auto Apply Quota from the List of Persisted Auto
Apply Quotas. If there are any Persisted File Screens with a path on the volume, the server MUST
remove the Persisted File Screen from the List of Persisted File Screens. If there are any Persisted

File Screen Exceptions with a path on the volume, the server MUST remove the Persisted File Screen
Exceptions from List of Persisted File Screen Exceptions. Any Non-Persisted Directory Quotas,
Non-Persisted Auto Apply Quotas, Non-Persisted File Screens, or Non-Persisted File Screen
Exceptions that have a Folder path on the removed volume MUST NOT be removed from any lists of
non-persisted objects they are a member of.

120 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

3.2.4.2 Message Processing Details

Before processing any of the following methods, the server SHOULD obtain identity and authorization
information for the client from the underlying DCOM or RPC runtime to verify that the client has

sufficient permissions to create, modify, or delete the object as appropriate. These methods SHOULD
impose an authorization policy decision before performing the function. The suggested minimum
requirement is that the caller has permission to create, modify, or delete the object as appropriate.

All FSRM protocol interfaces inherit the IDispatch interface. Method opnum field values for all FSRM
protocol interfaces start with 7; opnum values 0 through 6 represent the following methods:

 IUnknown::QueryInterface (Opnum 0)

 IUnknown::AddRef (Opnum 1)

 IUnknown::Release (Opnum 2)

 IDispatch::GetTypeInfoCount (Opnum 3)

 IDispatch::GetTypeInfo (Opnum 4)

 IDispatch::GetIDsOfNames (Opnum 5)

 IDispatch::Invoke (Opnum 6)

To retrieve an interface of a particular object, call the QueryInterface method on the object's DCOM

IUnknown interface. Details are specified in [MS-DCOM] and [MS-OAUT].

Unless otherwise specified, all methods MUST return zero on success, or a nonzero error code on
failure. Unless otherwise specified as follows, client implementations of the protocol MUST NOT take
any action on an error code but rather simply return the error to the invoking application.

All methods of all interfaces MUST be implemented, except the following list, which SHOULD be
implemented:

 IFsrmCollection::GetById (section 3.2.4.2.1.7)

 IFsrmMutableCollection::RemoveById (section 3.2.4.2.2.3)

And the following list, which MAY be implemented:

 IFsrmCollection::WaitForCompletion (section 3.2.4.2.1.6)

 IFsrmCollection::Cancel (section 3.2.4.2.1.5)

 IFsrmMutableCollection::Clone (section 3.2.4.2.2.4)

 IFsrmQuotaObject::UserSid (get) (section 3.2.4.2.15.3)

 IFsrmQuotaObject::UserAccount (get) (section 3.2.4.2.15.4)

 IFsrmFileScreen:: UserSid (get) (section 3.2.4.2.27.5)

 IFsrmFileScreen:: UserAccount (get) (section 3.2.4.2.27.6)

parameter strings: The format of the client-supplied parameter strings is driven by the purpose of
the parameter strings in providing additional descriptions or parameters specific to the object to which
the parameter strings apply. Each string is of the format "name=value", where "name" and "value"
are placeholders for text supplied by the client but each string is not further broken down into

individual "name" and "value" pieces.

%5bMS-DCOM%5d.pdf#Section_4a893f3dbd2948cd9f43d9777a4415b0
%5bMS-OAUT%5d.pdf#Section_bbb05720f72445c78d17f83c3d1a3961

121 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

mailTo string: The form of the mailTo string (sections 3.2.4.2.5.5 to 3.2.4.2.5.10, 3.2.4.2.7.3,
3.2.4.2.7.4, 3.2.4.2.34.8, 3.2.4.2.34.9, 3.2.4.2.45.5, 3.2.4.2.45.6, 3.2.4.2.48.20, and 3.2.4.2.48.21)

is "email_address1;email_address2", where two or more email addresses are separated by
semicolons. If only one email address is specified, no semicolon is needed.

illegal name characters: The set of illegal name characters includes the following: comma ",", single
quotation mark "'", double quotation mark """, and the vertical bar "|". Method parameters will state if
illegal name characters are not allowed.

illegal pattern characters: The set of illegal pattern characters includes the following: double
quotation mark """, backward slash "\", forward slash "/", colon ":", less than "<", greater than ">",
and the vertical bar "|". Method parameters will state if illegal pattern characters are not allowed.

objects stored on volumes: The only FSRM objects that are stored on volumes include the

following:

 Directory Quotas (section 3.2.1.2.1)

 Auto Apply Quotas (section 3.2.1.2.2)

 File Screens (section 3.2.1.3.1)

 File Screen Exceptions (section 3.2.1.3.2)

The storage location is not dictated for all other FSRM objects, which include the following:

 Directory Quota Templates (section 3.2.1.2.3)

 File Screen Templates (section 3.2.1.3.3)

 File Groups (section 3.2.1.3.4)

 Report Jobs (section 3.2.1.5.1)

 Report Settings (section 3.2.1.5.3)

 Property Definitions (section 3.2.1.6.1)

 Module Definitions (section 3.2.1.6.2)

 Rules (section 3.2.1.6.3)

 Classification Job (section 3.2.1.6.4)

 File Management Job (section 3.2.1.7.1)

 General Settings (section 3.2.1.9)

3.2.4.2.1 IFsrmCollection Methods

The IFsrmCollection interface inherits the IDispatch interface. Method opnum field values start with

7. Opnum values 0 through 2 represent the IUnknown::QueryInterface, IUnknown::AddRef, and

IUnknown::Release methods as specified in [MS-DCOM], while opnum values 3 through 6 represent
the IDispatch::GetTypeInfoCount, IDispatch::GetTypeInfo, IDispatch::GetIDsOfNames, and
IDispatch::Invoke methods as specified in [MS-OAUT].

To receive incoming remote calls for this interface, the server MUST implement a DCOM object using
the UUID {f76fbf3b-8ddd-4b42-b05a-cb1c3ff1fee8}.

Methods in RPC Opnum Order

%5bMS-DCOM%5d.pdf#Section_4a893f3dbd2948cd9f43d9777a4415b0
%5bMS-OAUT%5d.pdf#Section_bbb05720f72445c78d17f83c3d1a3961

122 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Method Description

_NewEnum Opnum: 7

Item Opnum: 8

Count Opnum: 9

State Opnum: 10

Cancel Opnum: 11

WaitForCompletion Opnum: 12

GetById Opnum: 13

3.2.4.2.1.1 _NewEnum (Opnum 7)

The _NewEnum method creates a new collection of Objects Being Enumerated.

 [propget, id(DISPID_NEWENUM), restricted] HRESULT _NewEnum(
 [out, retval] IUnknown** unknown
);

unknown: Pointer to an IUnknown interface pointer. Upon successful completion, receives the
IUnknown pointer of a new IEnumVARIANT enumeration for the items in the collection of Objects
Being Enumerated. The returned object MUST implement the IEnumVARIANT interface and

support enumeration methods on the same data as the IFsrmCollection object. See [MS-OAUT] for
IEnumVARIANT protocol documentation.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return value/code Description

0x80004003

E_POINTER

The unknown parameter is NULL.

Upon receiving this message, the server MUST validate parameters:

 Verify that IUnknown is not NULL.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

The server MUST set IUnknown to the IUnknown interface of a new IEnumVARIANT enumeration

that contains pointers to all the Objects Being Enumerated in the collection.

3.2.4.2.1.2 Item (get) (Opnum 8)

The Item method returns a pointer to the object at the requested position in the collection of Objects
Being Enumerated.

 [propget, id(DISPID_VALUE)] HRESULT Item(
 [in] long index,
 [out, retval] VARIANT* item
);

%5bMS-OAUT%5d.pdf#Section_bbb05720f72445c78d17f83c3d1a3961

123 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

index: The position of the item in the collection of Objects Being Enumerated to return.

item: Pointer to a VARIANT structure. Upon successful completion, receives the pointer to the

IDispatch interface for the object.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return value/code Description

0x80004003

E_POINTER

The item parameter is NULL.

0x80131502

COR_E_ARGUMENTOUTOFRANGE

The value of the index parameter is greater than the number of
Objects Being Enumerated in the collection.

Upon receiving this message, the server MUST validate parameters:

 Verify that index is not greater than the number of Objects Being Enumerated in the collection.

 Verify that item is not NULL.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

The server MUST set item to the IDispatch interface of the corresponding object at the index location

in the collection of Objects Being Enumerated.

3.2.4.2.1.3 Count (get) (Opnum 9)

The Count method returns the number of objects in the collection of Objects Being Enumerated.

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_COLLECTION | 0x01))] HRESULT Count(
 [out, retval] long* count
);

count: Pointer to a variable that upon successful completion receives the number of objects in the
collection of Objects Being Enumerated.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return
value/code Description

0x80004003

E_POINTER

The count parameter is NULL.

Upon receiving this message, the server MUST validate parameters:

 Verify that count is not NULL.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

The server MUST set count to the number of objects in the collection of Objects Being Enumerated.

3.2.4.2.1.4 State (get) (Opnum 10)

The State method returns the state FsrmCollectionState_Complete.

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_COLLECTION | 0x02))] HRESULT State(

124 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 [out, retval] FsrmCollectionState* state
);

state: Pointer to a variable that upon completion contains the state FsrmCollectionState_Complete.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return
value/code Description

0x80004003

E_POINTER

The state parameter is NULL.

Upon receiving this message, the server MUST validate parameters:

 Verify that state is not NULL.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

The server MUST set state to FsrmCollectionState_Complete.

3.2.4.2.1.5 Cancel (Opnum 11)

The Cancel method returns S_OK.

 [id(FSRM_DISPID_COLLECTION | 0x01)] HRESULT Cancel();

This method has no parameters.

Return Values: The method MUST return S_OK.<53>

3.2.4.2.1.6 WaitForCompletion (Opnum 12)

The WaitForCompletion method limits the time that an asynchronous collection can take to collect the

objects. <54>

 [id(FSRM_DISPID_COLLECTION | 0x02)] HRESULT WaitForCompletion(
 [in] long waitSeconds,
 [out, retval] VARIANT_BOOL* completed
);

waitSeconds: This parameter is ignored.

completed: Pointer to VARIANT_BOOL that upon successful completion contains VARIANT_TRUE.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return
value/code Description

0x80004003

E_POINTER

The completed parameter is NULL

Upon receiving this message, the server MUST validate parameters:

 Verify that completed is not NULL.

125 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

If any validation fails, the server MUST terminate processing and return a nonzero error code.

The server MUST set completed to VARIANT_TRUE.

3.2.4.2.1.7 GetById (Opnum 13)

The GetById method returns the object from the collection of Objects Being Enumerated (section
3.2.1.11) whose ID matches the specified id.

 [id(FSRM_DISPID_COLLECTION | 0x03)] HRESULT GetById(
 [in] FSRM_OBJECT_ID id,
 [out, retval] VARIANT* entry
);

id: The ID to use for identifying the object to be returned.

entry: Pointer to a VARIANT structure. Upon successful completion, it SHOULD contain the IDispatch

interface of the object from the collection of Objects Being Enumerated whose ID matches the
specified id.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return value/code Description

0x80045301

FSRM_E_NOT_FOUND

An object with the specified ID was not found in the collection.

0x80070057

E_INVALIDARG

This code is returned for the following reasons:

 The entry parameter is NULL.

 The objects in the collection of Objects Being Enumerated are not one of the
following interfaces: IFsrmFileScreen, IFsrmFileScreenException,
IFsrmFileScreenTemplate, IFsrmFileGroup, IFsrmQuota,
IFsrmQuotaTemplate, IFsrmAction, IFsrmReportJob, IFsrmReport,
IFsrmClassifcationRule, IFsrmPropertyDefinition,
IFsrmPipelineModuleDefinition or IFsrmFileManagementJob.

Upon receiving this message, the server MUST validate parameters:

 Verify that entry is not NULL.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

The server MUST do one of the following:

 Set entry to the IDispatch interface of the object whose ID matches the value of the id parameter.

 If no object in the collection of Objects Being Enumerated has an ID that matches the specified
id, the server SHOULD return FSRM_E_NOT_FOUND.

 The server SHOULD return E_INVALIDARG if the objects in the collection of Objects Being
Enumerated are not one of the following interface types: IFsrmFileScreen,
IFsrmFileScreenException, IFsrmFileScreenTemplate, IFsrmFileGroup, IFsrmQuota,

IFsrmQuotaTemplate, IFsrmAction, IFsrmReportJob, IFsrmReport,
IFsrmClassifcationRule, IFsrmPropertyDefinition, IFsrmPipelineModuleDefinition or
IFsrmFileManagementJob.

3.2.4.2.2 IFsrmMutableCollection Methods

126 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

The IFsrmMutableCollection interface inherits the IFsrmCollection interface (section 3.2.4.2.1).
Method opnum field values start with 14.

To receive incoming remote calls for this interface, the server MUST implement a DCOM object using
the UUID {1bb617b8-3886-49dc-af82-a6c90fa35dda}.

Methods in RPC Opnum Order

Method Description

Add Opnum: 14

Remove Opnum: 15

RemoveById Opnum: 16

Clone Opnum: 17

3.2.4.2.2.1 Add (Opnum 14)

The Add method adds the specified object to the collection of Objects Being Enumerated.

 [id(FSRM_DISPID_COLLECTION_MUTABLE | 0x01)] HRESULT Add(
 [in] VARIANT item
);

item: A VARIANT structure that contains the IDispatch interface of the object to add to the collection
of Objects Being Enumerated.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return value/code Description

0x80045303

FSRM_E_ALREADY_EXISTS

The object pointed to by the IDispatch pointer that is contained in the
VARIANT structure already exists in the collection of Objects Being
Enumerated.

0x80070057

E_INVALIDARG

The item parameter is not a value type.

Upon receiving this message, the server SHOULD validate parameters:

 Verify that the object pointed to by the IDispatch pointer contained in the VARIANT structure is
the same type of object as other Objects Being Enumerated in the collection.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

The server MUST add item to the collection of Objects Being Enumerated.

3.2.4.2.2.2 Remove (Opnum 15)

The Remove method removes an object from the collection of Objects Being Enumerated.

 [id(FSRM_DISPID_COLLECTION_MUTABLE | 0x02)] HRESULT Remove(
 [in] long index
);

127 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

index: Contains the position of the object to remove from the collection of Objects Being
Enumerated.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return
value/code Description

0x80070057

E_INVALIDARG

The index is out of range; the index is less than one or greater than the size of the
collection.

Upon receiving this message, the server MUST validate parameters:

 Verify that index is between one and the number of Objects Being Enumerated in the collection,
inclusively.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

The server MUST remove the object at position index.

3.2.4.2.2.3 RemoveById (Opnum 16)

The RemoveById method removes from the collection of Objects Being Enumerated the object

whose ID matches the specified id.

 [id(FSRM_DISPID_COLLECTION_MUTABLE | 0x03)] HRESULT RemoveById(
 [in] FSRM_OBJECT_ID id
);

id: The ID to match for identifying the object to be removed.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return value/code Description

0x80045301

FSRM_E_NOT_FOUND

An object with the specified ID was not found in the collection.

The server MUST remove the matching item from the collection of Objects Being Enumerated or

return a nonzero error code.

If no object in the collection of Objects Being Enumerated has an ID that matches the specified id,
return FSRM_E_NOT_FOUND.

If the Objects Being Enumerated contained in the collection of Objects Being Enumerated are
not VT_UNKNOWN or VT_DISPATCH types, return E_INVALIDARG.

3.2.4.2.2.4 Clone (Opnum 17)

The Clone method returns a copy of the collection of Objects Being Enumerated.

 [id(FSRM_DISPID_COLLECTION_MUTABLE | 0x04)] HRESULT Clone(
 [out, retval] IFsrmMutableCollection** collection
);

128 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

collection: Pointer to an IFsrmMutableCollection interface pointer (section 3.2.4.2.2) that upon
successful completion contains the IFsrmMutableCollection pointer of a copy of this collection of

Objects Being Enumerated.

Return Values: The method MUST return a nonzero error code. Upon receiving this message, the

server MUST return E_NOTIMPL.

3.2.4.2.3 IFsrmCommittableCollection Methods

The IFsrmCommittableCollection interface inherits the IFsrmMutableCollection interface (section
3.2.4.2.2). Method opnum field values start with 18.

To receive incoming remote calls for this interface, the server MUST implement a DCOM object using
the UUID {96deb3b5-8b91-4a2a-9d93-80a35d8aa847}.

Methods in RPC Opnum Order

Method Description

Commit Opnum: 18

3.2.4.2.3.1 Commit (Opnum 18)

The Commit method commits all the Objects Being Enumerated of the collection and returns an
array of HRESULTs corresponding to the result returned when committing each individual object.

 [id(FSRM_DISPID_COLLECTION_COMMITTABLE | 0x01)] HRESULT Commit(
 [in] FsrmCommitOptions options,
 [out, retval] IFsrmCollection** results
);

options: A combination of FsrmCommitOptions (section 2.2.1.2.6) to use when committing the

collection of Objects Being Enumerated.

results: Pointer to an IFsrmCollection interface pointer (section 3.2.4.2.1) that upon successful
completion contains the array of HRESULTs that correspond to the HRESULT received when
committing each individual object in the collection of Objects Being Enumerated.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return value/code Description

0x80045304

FSRM_S_PARTIAL_BATCH

Not all objects in the collection could be committed.

0x80045311

FSRM_E_NOT_SUPPORTED

Options can only be FsrmCommitOptions_None.

0x80070057

E_INVALIDARG

The results parameter is NULL.

Upon receiving this message, the server MUST validate parameters:

 Verify that options contains a valid set of FsrmCommitOptions (section 2.2.1.2.6) values. If
options is not FsrmCommitOptions_None, the parameter MUST be considered an invalid value.

129 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 Verify that results is not NULL.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

The server MUST commit each of the objects in the collection, saving the HRESULTs for each object in
the results collection.

3.2.4.2.4 IFsrmAction Methods

The IFsrmAction interface provides methods that are the base interface for all action objects.

To receive incoming remote calls for this interface, the server MUST implement a DCOM object using
the UUID {6cd6408a-ae60-463b-9ef1-e117534d69dc}.

This DCOM interface inherits the IDispatch interface. Method opnum field values start with 7. Opnum
values 0 through 2 represent the IUnknown::QueryInterface, IUnknown::AddRef, and

IUnknown::Release methods as specified in [MS-DCOM], while opnum values 3 through 6 represent
the IDispatch::GetTypeInfoCount, IDispatch::GetTypeInfo, IDispatch::GetIDsOfNames, and

IDispatch::Invoke methods as specified in [MS-OAUT].

Methods in RPC Opnum Order

Method Description

Id (get) Opnum: 7

ActionType (get) Opnum: 8

RunLimitInterval (get) Opnum: 9

RunLimitInterval (get) Opnum: 10

Delete Opnum: 11

3.2.4.2.4.1 Id (get) (Opnum 7)

The Id (get) method returns the read-only ID of the action.

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_ACTION | 0x01))] HRESULT Id(
 [out, retval] FSRM_OBJECT_ID* id
);

id: Pointer to a variable that upon completion contains the ID of the action.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return
value/code Description

0x80070057

E_INVALIDARG

The id parameter is NULL.

Upon receiving this message, the server MUST validate parameters:

 Verify that id is not NULL.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

%5bMS-DCOM%5d.pdf#Section_4a893f3dbd2948cd9f43d9777a4415b0
%5bMS-OAUT%5d.pdf#Section_bbb05720f72445c78d17f83c3d1a3961

130 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

The server MUST set id to the Notification.Id of the action.

3.2.4.2.4.2 ActionType (get) (Opnum 8)

The ActionType (get) method returns the read-only action type property of the action.

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_ACTION | 0x02))] HRESULT ActionType(
 [out, retval] FsrmActionType* actionType
);

actionType: Pointer to a variable that upon completion contains the action type of the action.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return
value/code Description

0x80070057

E_INVALIDARG

The actionType parameter is NULL.

Upon receiving this message, the server MUST validate parameters:

 Verify that actionType is not NULL.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

The server MUST set actionType to the action type of the action.

3.2.4.2.4.3 RunLimitInterval (get) (Opnum 9)

The RunLimitInterval (get) method returns the run limit interval property of the action.

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_ACTION | 0x03))] HRESULT RunLimitInterval(
 [out, retval] long* minutes
);

minutes: Pointer to a variable that upon completion contains the run limit interval of the action.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return

value/code Description

0x80070057

E_INVALIDARG

The minutes parameter is NULL.

Upon receiving this message, the server MUST validate parameters:

 Verify that minutes is not NULL.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

The server MUST do one of the following:

 If the run limit interval is set to -1, set minutes to the general setting's run limit interval for
this type of action (SetActionRunLimitInterval (section 3.2.4.2.11.12)).

131 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 If the run limit interval is greater than -1, set minutes to the run limit interval.

3.2.4.2.4.4 RunLimitInterval (put) (Opnum 10)

The RunLimitInterval (put) method sets the run limit interval for the object.

 [propput, id(FSRM_PROPERTY(FSRM_DISPID_ACTION | 0x03))] HRESULT RunLimitInterval(
 [in] long minutes
);

minutes: Contains the run limit interval to use for this action.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return
value/code Description

0x80070057

E_INVALIDARG

The minutes parameter is not a valid value; it must be greater than -2.

Upon receiving this message, the server MUST validate parameters:

 Verify that minutes is greater than -2.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

The server MUST use minutes as the run limit interval for this action.

When determining if an action MUST be run, the server MUST do the following:

 If minutes is -1, the server MUST use the general setting's run limit interval for this type of
action (SetActionRunLimitInterval (section 3.2.4.2.11.12)).

 If minutes is 0, the server MUST run the action for each quota or file screen event.

 If minutes is greater than 0, the server MUST wait for the specified number of minutes before
running the same action for a quota or file screen event on the same disk directory path.

3.2.4.2.4.5 Delete (Opnum 11)

The Delete method removes the action object from the parent object's list of actions and returns S_OK
upon successful completion.

 [id(FSRM_DISPID_ACTION | 0x01)] HRESULT Delete();

This method has no parameters.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

The server MUST remove the action from the parent object's list of actions or return a nonzero
error code.

3.2.4.2.5 IFsrmActionEmail Methods

The IFsrmActionEmail interface implements all the methods of the IFsrmAction interface (section
3.2.4.2.4), as well as those listed in the following table.

132 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Methods in RPC Opnum Order

Method Description

MailFrom (get) Opnum: 12

MailFrom (put) Opnum: 13

MailReplyTo (get) Opnum: 14

MailReplyTo (put) Opnum: 15

MailTo (get) Opnum: 16

MailTo (put) Opnum: 17

MailCc (get) Opnum: 18

MailCc (put) Opnum: 19

MailBcc (get) Opnum: 20

MailBcc (put) Opnum: 21

MailSubject (get) Opnum: 22

MailSubject (put) Opnum: 23

MessageText (get) Opnum: 24

MessageText (put) Opnum: 25

3.2.4.2.5.1 MailFrom (get) (Opnum 12)

The MailFrom (get) method returns the mail from property of the action. The MailFrom string
parameter contains the address used as the sender of email generated by this action. The format of
the email address has to be as specified in [RFC5322].

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_ACTION_EMAIL | 0x01))] HRESULT MailFrom(
 [out, retval] BSTR* mailFrom
);

mailFrom: Pointer to a variable that upon completion contains the mail from value of the object. The
maximum length of this string MUST be 4,000 characters.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return
value/code Description

0x80070057

E_INVALIDARG

The mailFrom parameter is NULL.

Upon receiving this message, the server MUST validate parameters:

 Verify that mailFrom is not NULL.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

https://go.microsoft.com/fwlink/?LinkId=183003

133 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

The server MUST set mailFrom to the mail from email address of the action.

If the email address contains the special string "[ADMIN_EMAIL]", the server MUST return the email

address without resolving the "[ADMIN EMAIL]" macro.

3.2.4.2.5.2 MailFrom (put) (Opnum 13)

The MailFrom (put) method sets the mail from property of the action. The mailFrom string parameter
value will be used as the sender of email generated by this action. The format of the email address
has to be as specified in [RFC5322].

 [propput, id(FSRM_PROPERTY (FSRM_DISPID_ACTION_EMAIL | 0x01))] HRESULT MailFrom(
 [in] BSTR mailFrom
);

mailFrom: Contains the mail from email address to use for this action.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return value/code Description

0x8004530D

FSRM_E_OUT_OF_RANGE

The content of the mailfFrom parameter exceeds the maximum length of 4,000
characters.

0x80070057

E_INVALIDARG

The mailFrom parameter is NULL.

The server MUST use mailFrom as the mail from address for email generated by this action or return
a nonzero error code.

If mailFrom contains the string "[ADMIN EMAIL]", the server MUST store that string instead of
replacing it with the Administrator email address setting (section 3.2.1.9).

3.2.4.2.5.3 MailReplyTo (get) (Opnum 14)

The MailReplyTo (get) method returns the mail reply to property of the action. The MailReplyTo
string parameter value will show up as the reply to address of email generated by this action. The
format of the email address has to be as specified in [RFC5322].

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_ACTION_EMAIL | 0x02))] HRESULT MailReplyTo(
 [out, retval] BSTR* mailReplyTo
);

mailReplyTo: A pointer to a variable that, upon completion, contains the mail reply to email
address of the action.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return
value/code Description

0x80070057

E_INVALIDARG

The mailReplyTo parameter is NULL.

Upon receiving this message, the server MUST validate parameters:

 Verify that mailReplyTo is not NULL.

https://go.microsoft.com/fwlink/?LinkId=183003
https://go.microsoft.com/fwlink/?LinkId=183003

134 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

If any validation fails, the server MUST terminate processing and return a nonzero error code.

The server MUST set mailReplyTo to the mail reply to email address of the object.

If the list of email recipients contains the special string "[ADMIN_EMAIL]", the server MUST return the
list of email recipients without resolving the "[ADMIN EMAIL]" macro.

3.2.4.2.5.4 MailReplyTo (put) (Opnum 15)

The MailReplyTo (put) method sets the mail reply to property of the action. The mailReplyTo string
parameter value will show up as the address to use when replying to the email generated by this
action. The format of the email address has to be as specified in [RFC5322].

 [propput, id(FSRM_PROPERTY (FSRM_DISPID_ACTION_EMAIL | 0x02))] HRESULT MailReplyTo(
 [in] BSTR mailReplyTo
);

mailReplyTo: Contains the mail reply to email address to use for this action.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return value/code Description

0x8004530D

FSRM_E_OUT_OF_RANGE

The content of the mailRelyTo parameter exceeds the maximum length of 4,000
characters.

0x80070057

E_INVALIDARG

The mailReplyTo parameter is NULL.

The server MUST use mailReplyTo as the mail reply to address for email generated by this action or

return a nonzero error code.

If mailReplyTo contains the string "[ADMIN EMAIL]", the server MUST store that string instead of

replacing it with the Administrator email address setting (section 3.2.1.9).

3.2.4.2.5.5 MailTo (get) (Opnum 16)

The MailTo (get) method returns the mail to property of the action. The mailTo parameter value is the
list of email addresses to which the email generated by this action will be sent. The format of the

email address has to be as specified in [RFC5322].

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_ACTION_EMAIL | 0x03))] HRESULT MailTo(
 [out, retval] BSTR* mailTo
);

mailTo: Pointer to a variable that upon completion contains the email recipient list to which the email

generated by this action will be sent. The string returned in mailTo MUST be in the form of a

mailTo string (section 3.2.4.2).

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return
value/code Description

0x80070057

E_INVALIDARG

The mailTo parameter is NULL.

https://go.microsoft.com/fwlink/?LinkId=183003
https://go.microsoft.com/fwlink/?LinkId=183003

135 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Upon receiving this message, the server MUST validate parameters:

 Verify that mailTo is not NULL.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

The server MUST set mailTo to the mail to list of email addresses of the action.

If the list of email recipients contains the special string "[ADMIN_EMAIL]", the server MUST return the
list of email recipients without resolving the "[ADMIN _EMAIL]" macro.

3.2.4.2.5.6 MailTo (put) (Opnum 17)

The MailTo (put) method sets the mail to property of the action. The mailTo string parameter value
will be used as the list of addresses to send the email generated by this action. The format of the
email address has to be as specified in [RFC5322].

 [propput, id(FSRM_PROPERTY(FSRM_DISPID_ACTION_EMAIL | 0x03))] HRESULT MailTo(
 [in] BSTR mailTo
);

mailTo: Contains the list of email addresses to use for this action. The string in mailTo MUST be in the
form of a mailTo string (section 3.2.4.2).

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return value/code Description

0x8004530D

FSRM_E_OUT_OF_RANGE

The content of the mailTo parameter exceeds the maximum length of 4,000
characters.

0x80070057

E_INVALIDARG

The mailTo parameter is NULL.

The server MUST use mailTo as the mail to addresses of email generated by this action or return a
nonzero error code.

If mailTo contains the string "[ADMIN EMAIL]", the server MUST store that string instead of replacing
it with the Administrator email address setting (section 3.2.1.9).

3.2.4.2.5.7 MailCc (get) (Opnum 18)

The MailCc (get) method returns the list of carbon copy (CC) email addresses property of the action.
The mailCc parameter value is the list of CC email addresses to which the email generated by this
action will be sent. The format of the email address has to be as specified in [RFC5322].

 [propget, id(FSRM_PROPERTY (FSRM_DISPID_ACTION_EMAIL | 0x04))] HRESULT MailCc(
 [out, retval] BSTR* mailCc
);

mailCc: A pointer to a variable that, upon completion, contains the mail cc list of email addresses of
the action. The string returned in mailCc MUST be in the form of a mailTo string (section
3.2.4.2).

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

https://go.microsoft.com/fwlink/?LinkId=183003
https://go.microsoft.com/fwlink/?LinkId=183003

136 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Return
value/code Description

0x80070057

E_INVALIDARG

The mailCc parameter is NULL.

Upon receiving this message, the server MUST validate parameters:

 Verify that mailCc is not NULL.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

The server MUST set mailCc to the mail cc list of email addresses of the action.

If the list of email recipients contains the special string "[ADMIN_EMAIL]", the server MUST return the
list of email recipients without resolving the "[ADMIN EMAIL]" macro.

3.2.4.2.5.8 MailCc (put) (Opnum 19)

The MailCc (put) method sets the mail cc property of the action. The mailCc string parameter value is
used as the list of CC addresses to send the email generated by this action. The format of the email
address has to be as specified in [RFC5322].

 [propput, id(FSRM_PROPERTY(FSRM_DISPID_ACTION_EMAIL | 0x04))] HRESULT MailCc(
 [in] BSTR mailCc
);

mailCc: Contains the mail cc list of email addresses to use for this action. The string in mailCc MUST
be in the form of a mailTo string (section 3.2.4.2).

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return value/code Description

0x8004530D

FSRM_E_OUT_OF_RANGE

The content of the MailCc parameter exceeds the maximum length of 4,000
characters.

0x80070057

E_INVALIDARG

The mailCc parameter is NULL.

The server MUST use mailCc as the mail cc addresses of email generated by this action or return a
nonzero error code.

If mailCc contains the string "[ADMIN EMAIL]", the server MUST send the email to the Administrator
email address setting (section 3.2.1.9).

3.2.4.2.5.9 MailBcc (get) (Opnum 20)

The MailBcc (get) method returns the list of blind carbon copy (BCC) email addresses property of the
action. The mailBcc parameter value is the list of BCC email addresses to which the email generated
by this action will be sent. The format of the email address has to be as specified in [RFC5322].

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_ACTION_EMAIL | 0x05))] HRESULT MailBcc(
 [out, retval] BSTR* mailBcc
);

https://go.microsoft.com/fwlink/?LinkId=183003
https://go.microsoft.com/fwlink/?LinkId=183003

137 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

mailBcc: Pointer to a variable that upon completion contains the mail bcc list of email addresses of
the action. The string returned in mailBcc MUST be in the form of a mailTo string (section

3.2.4.2).

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return
value/code Description

0x80070057

E_INVALIDARG

The mailBcc parameter is NULL.

Upon receiving this message, the server MUST validate parameters:

 Verify that mailBcc is not NULL.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

The server MUST set mailBcc to the mail bcc list of email addresses of the action.

If the list of email recipients contains the special string "[ADMIN_EMAIL]", the server MUST return the
list of email recipients without resolving the "[ADMIN EMAIL]" macro.

3.2.4.2.5.10 MailBcc (put) (Opnum 21)

The MailBcc (put) method sets the mail bcc property of the action. The mailBcc string parameter
value will be used as the list of BCC addresses to send the email generated by this action. The format
of the email address has to be as specified in [RFC5322].

 [propput, id(FSRM_PROPERTY(FSRM_DISPID_ACTION_EMAIL | 0x05))] HRESULT MailBcc(
 [in] BSTR mailBcc
);

mailBcc: Contains the list of BCC email addresses to use for this action. The string in mailBcc MUST
be in the form of a mailTo string (section 3.2.4.2).

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return value/code Description

0x8004530D

FSRM_E_OUT_OF_RANGE

The content of the MailBcc parameter exceeds the maximum length of 4,000
characters.

0x80070057

E_INVALIDARG

The mailBcc parameter is NULL.

The server MUST use mailBcc as the list of BCC addresses of email generated by this action or return

a nonzero error code.

If mailBcc contains the string "[ADMIN EMAIL]", the server MUST send the email to the
Administrator email address setting (section 3.2.1.9).

3.2.4.2.5.11 MailSubject (get) (Opnum 22)

The MailSubject (get) method returns the mail subject property of the action. The mailSubject
parameter contains a string value that is the subject line of the email generated by this action.

https://go.microsoft.com/fwlink/?LinkId=183003

138 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_ACTION_EMAIL | 0x06))] HRESULT MailSubject(
 [out, retval] BSTR* mailSubject
);

mailSubject: A pointer to a variable that, upon completion, contains the string value of the subject of
the action.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return
value/code Description

0x80070057

E_INVALIDARG

The mailSubject parameter is NULL.

Upon receiving this message, the server MUST validate parameters:

 Verify that mailSubject is not NULL.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

The server MUST set mailSubject to the string value of the subject of the action.

The mail subject property of the action that is returned can contain macros, as specified in section
3.2.4.3. If this is the case, the server MUST return the subject of the action without having resolved
any of the macros.

3.2.4.2.5.12 MailSubject (put) (Opnum 23)

The MailSubject (put) method sets the mail subject property of the action. The mailSubject string
parameter value will be used as the subject line of email generated by this action.

 [propput, id(FSRM_PROPERTY (FSRM_DISPID_ACTION_EMAIL | 0x06))] HRESULT MailSubject(
 [in] BSTR mailSubject
);

mailSubject: Contains the subject to use for this action.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return value/code Description

0x8004530D

FSRM_E_OUT_OF_RANGE

The content of the mailSubject parameter exceeds the maximum length of 4,000
characters.

0x80070057

E_INVALIDARG

The mailSubject parameter is NULL.

The server MUST use mailSubject as the subject of email generated by this action or return a nonzero
error code.

The mailSubject can contain macros (section 3.2.4.3). If the mailSubject contains macros (section
3.2.4.3), the server MUST store mailSubject as provided, keeping the macros instead of resolving the
macros with the values they resolve to. The server MUST allow all macros from section 3.2.4.3. The
macros are resolved when the email for this notification is generated.

139 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

The server MUST NOT alter the stored mail subject of the action when the macros are resolved. The
mail subject with the resolved macro values is only used for the subject of the email being

generated.

3.2.4.2.5.13 MessageText (get) (Opnum 24)

The MessageText (get) method returns the message text property of the action. The messageText
parameter contains a string value that is the message body of the email generated by this action.

 [propget, id(FSRM_PROPERTY (FSRM_DISPID_ACTION_EMAIL | 0x07))] HRESULT MessageText(
 [out, retval] BSTR* messageText
);

messageText: A pointer to a variable that, upon completion, contains the string value of the
message text of the action.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return
value/code Description

0x80070057

E_INVALIDARG

The messageText parameter is NULL.

Upon receiving this message, the server MUST validate parameters:

 Verify that messageText is not NULL.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

The server MUST set messageText to the string value of the message text of the action.

The message text property of the action that is returned can contain macros, as specified in section

3.2.4.3. If this is the case, the server MUST return the message text of the action without having
resolved any of the macros.

3.2.4.2.5.14 MessageText (put) (Opnum 25)

The MessageText (put) method sets the message text property of the action. The messageText
string parameter value will be used as the message body of email generated by this action.

 [propput, id(FSRM_PROPERTY (FSRM_DISPID_ACTION_EMAIL | 0x07))] HRESULT MessageText(
 [in] BSTR messageText
);

messageText: Contains the message text to use for this action. The maximum length of this string
MUST be 4,000 characters.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return value/code Description

0x8004530D

FSRM_E_OUT_OF_RANGE

The content of the messageText parameter exceeds the maximum length of
4,000 characters.

0x80070057

E_INVALIDARG

The messageText parameter is NULL.

140 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

The server MUST use messageText as the message text of email generated by this action or return a
nonzero error code.

The messageText can contain macros (section 3.2.4.3). If the messageText contains macros (section
3.2.4.3), the server MUST store messageText as provided, keeping the macros instead of resolving

the macros with the values they resolve to. The server MUST allow all macros from section 3.2.4.3.
The macros are resolved when the email for this notification is generated.

The server MUST NOT alter the stored message text of the action when the macros are resolved. The
message text with the resolved macro values is only used for the message body of the email being
generated.

3.2.4.2.6 IFsrmActionEmail2 Methods

The IFsrmActionEmail2 interface implements all the methods of the IFsrmActionEmail interface
(section 3.2.4.2.5), as well as those listed in the following table.

Methods in RPC Opnum Order

Method Description

AttachmentFileListSize (get) Opnum: 26

AttachmentFileListSize (put) Opnum: 27

3.2.4.2.6.1 AttachmentFileListSize (get) (Opnum 26)

The AttachmentFileListSize (get) method returns the attachment file list size property of the action.

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_ACTION_EMAIL2 | 0x01))]
HRESULT AttachmentFileListSize(

 [out, retval] long* attachmentFileListSize
);

attachmentFileListSize: Pointer to a variable that upon completion contains the attachment file
list size property of the action.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return
value/code Description

0x80070057

E_INVALIDARG

The attachmentFileListSize parameter is NULL.

Upon receiving this message, the server MUST validate parameters:

 Verify that attachmentFileListSize is not NULL.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

The server MUST set attachmentFileListSize to the attachment file size property of the action.

3.2.4.2.6.2 AttachmentFileListSize (put) (Opnum 27)

The AttachmentFileListSize (put) method sets the attachment file list size property of the action.

141 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 [propput, id(FSRM_PROPERTY(FSRM_DISPID_ACTION_EMAIL2 | 0x01))]
HRESULT AttachmentFileListSize(

 [in] long attachmentFileListSize
);

attachmentFileListSize: Contains the number of lines of the attachment for the action.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return
value/code Description

0x80070057

E_INVALIDARG

The attachmentFileListSize parameter is not a valid value. The number of lines must be in
the range of 0 through 1000; the default is 100.

The server MUST use attachmentFileListSize as the attachment file list size property of the action.
The server MUST use the attachment file list size property as the maximum number of lines to

include in the attachment sent by this action.

3.2.4.2.7 IFsrmActionReport Methods

The IFsrmActionReport interface implements all the methods of the IFsrmAction interface (section
3.2.4.2.4), as well as those listed in the following table.

Methods in RPC Opnum Order

Method Description

ReportTypes (get) Opnum: 12

ReportTypes (put) Opnum: 13

MailTo (get) Opnum: 14

MailTo (put) Opnum: 15

3.2.4.2.7.1 ReportTypes (get) (Opnum 12)

The ReportTypes (get) method returns the report types property of the action. The reportTypes
property is an array of FsrmReportType (section 2.2.1.2.10) values that determine which reports the
action will generate if it is run.

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_ACTION_REPORT | 0x01))] HRESULT ReportTypes(
 [out, retval] SAFEARRAY (VARIANT)* reportTypes
);

reportTypes: Pointer to a SAFEARRAY variable that upon completion contains the report types for
the action.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return
value/code Description

0x80070057 The reportTypes parameter is NULL.

142 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Return
value/code Description

E_INVALIDARG

Upon receiving this message, the server MUST validate parameters:

 Verify that reportTypes is not NULL.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

The server MUST populate reportTypes with its list of report types for the action.

3.2.4.2.7.2 ReportTypes (put) (Opnum 13)

The ReportTypes (put) method sets the report types property of the action. The reportTypes
property is an array of FsrmReportType (section 2.2.1.2.10) values that determine which report types
the action will generate if it is run.

 [propput, id(FSRM_PROPERTY(FSRM_DISPID_ACTION_REPORT | 0x01))] HRESULT ReportTypes(
 [in] SAFEARRAY (VARIANT) reportTypes
);

reportTypes: Pointer to a SAFEARRAY that contains a list of FsrmReportType values.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return
value/code Description

0x80070057

E_INVALIDARG

The reportTypes parameter is not a valid value. If any one of the reportTypes is
FsrmReportType_Unknown, the parameter MUST be considered an invalid value.

Upon receiving this message, the server MUST validate parameters:

 Verify that reportTypes contains valid FsrmReportType values. If any one of the reportTypes are
FsrmReportType_Unknown, the parameter MUST be considered an invalid value.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

The server MUST use reportTypes as the set of reports to generate for the action if it is run.

3.2.4.2.7.3 MailTo (get) (Opnum 14)

The MailTo (get) method returns the mail to list of email addresses property of the action. The value
of the mailTo parameter is the list of email addresses that the reports generated by this action will be
sent to. The format of the email address has to be as specified in [RFC5322].

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_ACTION_REPORT | 0x02))] HRESULT MailTo(
 [out, retval] BSTR* mailTo
);

mailTo: A pointer to a variable that upon completion contains the mail to list of email addresses of
the action. The string returned in mailto MUST be in the form of a mailTo string (section
3.2.4.2).

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

https://go.microsoft.com/fwlink/?LinkId=183003

143 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Return
value/code Description

0x80070057

E_INVALIDARG

The mailTo parameter is NULL.

Upon receiving this message, the server MUST validate parameters:

 Verify that mailTo is not NULL.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

The server MUST set mailTo to the mail to list of email addresses for the reports generated by this

action.

If the list of email recipients contains the special string "[ADMIN_EMAIL]", the server MUST return the
list of email recipients without resolving the "[ADMIN EMAIL]" macro.

3.2.4.2.7.4 MailTo (put) (Opnum 15)

The MailTo (put) method sets the mailTo property of the action. The mailTo string will be used as the
list of email addresses to send the reports generated by this action. The format of the email address

has to be as specified in [RFC5322].

 [propput, id(FSRM_PROPERTY(FSRM_DISPID_ACTION_REPORT | 0x02))] HRESULT MailTo(
 [in] BSTR mailTo
);

mailTo: Contains the mail to list of email addresses to use for this action. The maximum length of
this string MUST be 4,000 characters. The string in mailTo MUST be in the form of a mailTo

string (section 3.2.4.2).

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return
value/code Description

0x80070057

E_INVALIDARG

This code is returned for the following reasons:

 The mailTo parameter is not a valid value.

 The content of the mailTo parameter exceeds the maximum length of 4,000
characters.

The server MUST use the mailTo parameter as the list of email addresses to send the reports
generated by this action or return a nonzero error code. If mailTo is an empty string, the server MUST
NOT email the report when the action is run.

If mailTo contains the string "[ADMIN EMAIL]", the server MUST send the email to the Administrator
email address setting (section 3.2.1.9).

3.2.4.2.8 IFsrmActionEventLog Methods

The IFsrmActionEventLog interface implements all the methods of the IFsrmAction interface
(section 3.2.4.2.4), as well as those listed in the following table.

Methods in RPC Opnum Order

https://go.microsoft.com/fwlink/?LinkId=183003

144 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Method Description

EventType (get) Opnum: 12

EventType (put) Opnum: 13

MessageText (get) Opnum: 14

MessageText (put) Opnum: 15

3.2.4.2.8.1 EventType (get) (Opnum 12)

The EventType (get) method returns the event type property of the action. The event type

determines what type of event the action will generate if it is run.

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_ACTION_EVENTLOG | 0x01))] HRESULT EventType(
 [out, retval] FsrmEventType* eventType
);

eventType: Pointer to a variable that upon completion contains the event type for the action.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return
value/code Description

0x80070057

E_INVALIDARG

The eventType parameter is NULL.

Upon receiving this message, the server MUST validate parameters:

 Verify that eventType is not NULL.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

The server MUST set eventType to the event type of the action.

3.2.4.2.8.2 EventType (put) (Opnum 13)

The EventType (put) method sets the event type property of the object. The event type property
determines what type of event the action will generate if it is run.

 [propput, id(FSRM_PROPERTY(FSRM_DISPID_ACTION_EVENTLOG | 0x01))] HRESULT EventType(
 [in] FsrmEventType eventType
);

eventType: Pointer to a variable that contains an FsrmEventType (section 2.2.2.1.1.1) value.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return
value/code Description

0x80070057

E_INVALIDARG

The eventType parameter is not a valid value. If eventType is FsrmEventType_Unknown,
the parameter MUST be considered an invalid value.

145 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Upon receiving this message, the server MUST validate parameters:

 Verify that eventType contains a valid FsrmEventType value. If eventType is

FsrmEventType_Unknown, the parameter MUST be considered an invalid value.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

The server MUST use eventType as the type of event to log if the action is run.

3.2.4.2.8.3 MessageText (get) (Opnum 14)

The MessageText (get) method returns the message text property of the action. The messageText
parameter contains a string value that will be used for the message of the event log generated by this
action.

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_ACTION_EVENTLOG | 0x02))] HRESULT MessageText(
 [out, retval] BSTR* messageText
);

messageText: A pointer to a variable that, upon completion, contains the string value of the
message text of the action.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return
value/code Description

0x80070057

E_INVALIDARG

The messageText parameter is NULL.

Upon receiving this message, the server MUST validate parameters:

 Verify that messageText is not NULL.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

The server MUST set messageText to the string value of the message text of the action.

The message text property of the action that is returned can contain macros, as specified in section
3.2.4.3. If this is the case, the server MUST return the message text of the action without having
resolved any of the macros.

3.2.4.2.8.4 MessageText (put) (Opnum 15)

The MessageText (put) method sets the message text property of the action. The messageText
string will be used for the message of the event log generated by this action.

 [propput, id(FSRM_PROPERTY(FSRM_DISPID_ACTION_EVENTLOG | 0x02))] HRESULT MessageText(
 [in] BSTR messageText
);

messageText: Contains the message text to use for this action.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

146 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Return value/code Description

0x8004530D

FSRM_E_OUT_OF_RANGE

The content of the messageText parameter exceeds the maximum length of
4,000 characters.

0x80070057

E_INVALIDARG

The messageText parameter is NULL or empty.

The server MUST use messageText as the message text for the event log generated by this action if it
is run or return a nonzero error code.

The messageText can contain macros (section 3.2.4.3). If the messageText contains macros (section
3.2.4.3), the server MUST store messageText as provided, keeping the macros instead of resolving
the macros with the values they resolve to. The server MUST allow all macros from section 3.2.4.3.
The macros are resolved when the event log for this notification is generated.

The server MUST NOT alter the stored message text of the action when the macros are resolved. The
message text with the resolved macro values is only used for the message of the event log being

generated.

3.2.4.2.9 IFsrmActionCommand Methods

The IFsrmActionCommand interface implements all the methods of the IFsrmAction interface
(section 3.2.4.2.4), as well as those listed in the following table.

Methods in RPC Opnum Order

Method Description

ExecutablePath (get) Opnum: 12

ExecutablePath (put) Opnum: 13

Arguments (get) Opnum: 14

Arguments (put) Opnum: 15

Account (get) Opnum: 16

Account (put) Opnum: 17

WorkingDirectory (get) Opnum: 18

WorkingDirectory (put) Opnum: 19

MonitorCommand (get) Opnum: 20

MonitorCommand (put) Opnum: 21

KillTimeout (get) Opnum: 22

KillTimeout (put) Opnum: 23

LogResult (get) Opnum: 24

LogResult (put) Opnum: 25

3.2.4.2.9.1 ExecutablePath (get) (Opnum 12)

147 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

The ExecutablePath (get) method returns the executable path property of the action. The
executable path is the directory path and file name of the application or script to run if this action is

run.

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_ACTION_COMMAND | 0x01))] HRESULT ExecutablePath(
 [out, retval] BSTR* executablePath
);

executablePath: Pointer to a variable that upon completion contains the path of the executable of
the action.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return
value/code Description

0x80070057

E_INVALIDARG

The executablePath parameter is NULL.

Upon receiving this message, the server MUST validate parameters:

 Verify that executablePath is not NULL.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

The server MUST set executablePath to the executable path of the action.

3.2.4.2.9.2 ExecutablePath (put) (Opnum 13)

The ExecutablePath (put) method sets the Executable path property (section 3.2.1.4) of the action.
The Executable path is the directory path and file name of the executable to run if this action is

performed.

 [propput, id(FSRM_PROPERTY(FSRM_DISPID_ACTION_COMMAND | 0x01))] HRESULT ExecutablePath(
 [in] BSTR executablePath
);

executablePath: Contains the Executable path to use for this action.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return value/code Description

0x80045306

FSRM_E_INVALID_PATH

The supplied path of the executable for the action is not valid. The supplied path
MUST be a full path to the executable program or script to be used, and can
contain environment variables. The supplied path is not valid if the path is
relative or if the path does not point to a file.

0x8004530D

FSRM_E_OUT_OF_RANGE

The content of the executablePath parameter exceeds the maximum length of
4,000 characters.

0x80045317

FSRM_E_INSECURE_PATH

This error code MUST be returned if the service determines that the supplied
executable path is not limited only to administrative access; that is, is accessible
for write access to users other than local administrators.

0x80045320

FSRM_E_LONG_CMDLINE

 After expanding the environment variables in the executable path of the action,
the command exceeds the maximum length of 260 characters.

148 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Return value/code Description

0x80070057

E_INVALIDARG

The executablePath parameter is NULL.

Upon receiving this message, the server MUST validate parameters:

 Verify that executablePath is not NULL.

 Verify that executablePath is an absolute path. If executablePath is not an absolute path, the
server MUST return FSRM_E_INVALID_PATH.

 Verify that executablePath is the path of a valid executable.

 Verify that executablePath is only writable by administrators, local system, backup operators, or
server operators.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

The server MUST use executablePath as the Executable path for this action.

3.2.4.2.9.3 Arguments (get) (Opnum 14)

The Arguments (get) method returns the arguments property of the action. The arguments
parameter contains a string value that will be used by the executable pointed to by the executable
path property if this action is run.

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_ACTION_COMMAND | 0x02))] HRESULT Arguments(
 [out, retval] BSTR* arguments
);

arguments: Pointer to a variable that upon completion contains the string value of the arguments of
the action.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return
value/code Description

0x80070057

E_INVALIDARG

The arguments parameter is NULL.

Upon receiving this message, the server MUST validate parameters:

 Verify that arguments is not NULL.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

The server MUST set arguments to the string value of the arguments of the action.

The Notification.Model.Arguments property of the action that is returned can contain macros, as
specified in section 3.2.4.3. If this is the case, the server MUST return the arguments of the action
without having resolved any of the macros.

3.2.4.2.9.4 Arguments (put) (Opnum 15)

The Arguments (put) method sets the arguments property of the action. The arguments will be
used by the executable pointed to by the executable path property if this action is run.

149 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 [propput, id(FSRM_PROPERTY(FSRM_DISPID_ACTION_COMMAND | 0x02))] HRESULT Arguments(
 [in] BSTR arguments
);

arguments: Contains the arguments to use for this action.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return value/code Description

0x8004530D

FSRM_E_OUT_OF_RANGE

The content of the arguments parameter exceeds the maximum length of 4,000
characters.

0x80070057

E_INVALIDARG

The arguments parameter is NULL.

The server MUST use arguments as the arguments for the executable pointed to by the executable

path for this action or return a nonzero error code.

The arguments can contain macros (section 3.2.4.3). If the arguments contains macros (section

3.2.4.3), the server MUST store arguments as provided, keeping the macros instead of resolving the
macros with the values they resolve to. The server MUST allow all macros from section 3.2.4.3. The
macros are resolved when the action is run.

The server MUST NOT alter the stored Notification.Model.Arguments of the action when the
macros are resolved. The arguments with the resolved macro values is only used to execute the
executable specified in action when it is run.

3.2.4.2.9.5 Account (get) (Opnum 16)

The Account (get) method returns the Nofitication.Account property of the action. The executable
for this action command will be run under this account type if the action runs.

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_ACTION_COMMAND | 0x03))] HRESULT Account(
 [out, retval] FsrmAccountType* account
);

account: Pointer to a variable that upon completion contains the Notification.Account property of
the action.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return
value/code Description

0x80070057

E_INVALIDARG

The account parameter is NULL.

Upon receiving this message, the server MUST validate parameters:

 Verify that account is not NULL.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

The server MUST set account to the Notification.Account property of the action.

3.2.4.2.9.6 Account (put) (Opnum 17)

150 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

The Account (put) method sets the Notification.Account property of the action. The executable for
this action will be run under this account type (if the action runs).

 [propput, id(FSRM_PROPERTY(FSRM_DISPID_ACTION_COMMAND | 0x03))] HRESULT Account(
 [in] FsrmAccountType account
);

account: Contains the account type to use for this action.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return
value/code Description

0x80070057

E_INVALIDARG

The account parameter is not a valid value. If account is FsrmAccountType_Unknown,
FsrmAccountType_Inproc or FsrmAccountType_External, the parameter MUST be
considered an invalid value.

Upon receiving this message, the server MUST validate parameters:

 Verify that account is a valid FsrmAccountType (section 2.2.1.2.8) value. If account is
FsrmAccountType_Unknown, FsrmAccountType_InProc or FsrmAccountType_External,

the parameter MUST be considered an invalid value.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

The server MUST do the following:

 set account to the Notification.Account property of the action.

 run the executable pointed to by the executable path property under this account, if it is run.

3.2.4.2.9.7 WorkingDirectory (get) (Opnum 18)

The WorkingDirectory (get) method returns the working directory property of the action. The
executable for this action will be run with this working directory if the action runs.

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_ACTION_COMMAND | 0x04))] HRESULT WorkingDirectory(
 [out, retval] BSTR* workingDirectory
);

workingDirectory: Pointer to a variable that upon completion contains the working directory of the

action.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return
value/code Description

0x80070057

E_INVALIDARG

The workingDirectory parameter is NULL.

Upon receiving this message, the server MUST validate parameters:

 Verify that workingDirectory is not NULL.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

151 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

The server MUST set workingDirectory to the working directory property of the action.

3.2.4.2.9.8 WorkingDirectory (put) (Opnum 19)

The WorkingDirectory (put) method sets the working directory property of the action. The

executable for this action will be run with this working directory if the action runs.

 [propput, id(FSRM_PROPERTY(FSRM_DISPID_ACTION_COMMAND | 0x04))] HRESULT WorkingDirectory(
 [in] BSTR workingDirectory
);

workingDirectory: Contains the working directory to use for this action.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return value/code Description

0x8004530D

FSRM_E_OUT_OF_RANGE

The content of the workingDirectory parameter exceeds the maximum length of
4,000 characters.

0x80070057

E_INVALIDARG

The workingDirectory parameter is NULL.

The server MUST use workingDirectory as the working directory for this action's executable or
return a nonzero error code.

3.2.4.2.9.9 MonitorCommand (get) (Opnum 20)

The MonitorCommand (get) method returns the monitor command property of the action. The

monitor command property determines if the File Server Resource Manager Protocol will monitor the
executable it starts if the action runs.

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_ACTION_COMMAND | 0x05))] HRESULT MonitorCommand(
 [out, retval] VARIANT_BOOL* monitorCommand
);

monitorCommand: Pointer to a variable that upon completion contains the monitor command

value of the action.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return
value/code Description

0x80070057

E_INVALIDARG

The monitorCommand parameter is NULL.

Upon receiving this message, the server MUST validate parameters:

 Verify that monitorCommand is not NULL.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

The server MUST set monitorCommand to the monitor command property of the action.

3.2.4.2.9.10 MonitorCommand (put) (Opnum 21)

152 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

The MonitorCommand (put) method sets the monitor command property of the action. The monitor
command property determines if the File Server Resource Manager Protocol will monitor the

executable it starts if the action runs.

 [propput, id(FSRM_PROPERTY(FSRM_DISPID_ACTION_COMMAND | 0x05))] HRESULT MonitorCommand(
 [in] VARIANT_BOOL monitorCommand
);

monitorCommand: Contains a Boolean value for the monitor command property for this action.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return
value/code Description

0x80070057

E_INVALIDARG

The monitorCommand parameter is not a valid variant type. If monitorCommand is not
VT_BOOL, the parameter is an invalid type.

The server MUST use monitorCommand to determine if it will monitor the action's executable if it is
run or return a nonzero error code.

If monitorCommand equals VARIANT_TRUE, the server MUST wait for the number of minutes specified
in the KillTimeout property. If the command is still running after that time, the server will terminate
the process that is running the executable.

If monitorCommand equals VARIANT_FALSE, the server MUST NOT monitor the process running the
executable.

3.2.4.2.9.11 KillTimeout (get) (Opnum 22)

The KillTimeout (get) method returns the kill time-out property of the action. The kill time-out is
the number of minutes the server waits before terminating the process that is running the executable.

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_ACTION_COMMAND | 0x06))] HRESULT KillTimeOut(
 [out, retval] long* minutes
);

minutes: Pointer to a variable that upon completion contains the kill time-out of the action.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return
value/code Description

0x80070057

E_INVALIDARG

The minutes parameter is NULL.

Upon receiving this message, the server MUST validate parameters:

 Verify that minutes is not NULL.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

The server MUST set a number of minutes to the kill time-out property of the action.

3.2.4.2.9.12 KillTimeout (put) (Opnum 23)

153 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

The KillTimeout (put) method sets the kill time-out property of the action. The kill time-out is the
number of minutes the server waits before terminating the process running the executable it started.

 [propput, id(FSRM_PROPERTY(FSRM_DISPID_ACTION_COMMAND | 0x06))] HRESULT KillTimeOut(
 [in] long minutes
);

minutes: Contains the kill time-out to use for this action.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return value/code Description

0x8004530D

FSRM_E_OUT_OF_RANGE

The content of the minutes parameter is less than zero.

0x80070057

E_INVALIDARG

The minutes parameter is NULL.

The server MUST use minutes as the kill time-out for this action's executable or return a nonzero

error code.

The server MUST terminate the process after waiting the specified time if the MonitorCommand
property is set to true.

3.2.4.2.9.13 LogResult (get) (Opnum 24)

The LogResult (get) method returns the log result property of the action. The log result property
determines if the server will log an application event when the executable started for this action

terminates.

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_ACTION_COMMAND | 0x07))] HRESULT LogResult(
 [out, retval] VARIANT_BOOL* logResults
);

logResults: Pointer to a variable that upon completion contains the log result property of the
action.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return
value/code Description

0x80070057

E_INVALIDARG

The logResults parameter is NULL.

Upon receiving this message, the server MUST validate parameters:

 Verify that logResults is not NULL.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

The server MUST set logResults to the log result property of the action.

3.2.4.2.9.14 LogResult (put) (Opnum 25)

154 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

The LogResult (put) method sets the log result property of the action. The log result property
determines if the server will log an application event when the executable started for this action

terminates.

 [propput, id(FSRM_PROPERTY(FSRM_DISPID_ACTION_COMMAND | 0x07))] HRESULT LogResult(
 [in] VARIANT_BOOL logResults
);

logResults: Contains the log result value to use for this action.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return
value/code Description

0x80070057

E_INVALIDARG

The logResults parameter is not a valid variant type. If logResults is not VT_BOOL, the
parameter is an invalid type.

The server MUST use logResults as the log result value for this action's executable or return a
nonzero error code.

The server MUST log an event when this action's executable terminates if logResults is true and the
MonitorCommand property is set to true.

The server MUST NOT log an event when this action's executable terminates if logResults is true and
the MonitorCommand property is set to false.

3.2.4.2.10 IFsrmObject Methods

The IFsrmObject interface is the base interface for all File Server Resource Manager Protocol objects,

with the exception of Action and Report. This is the interface that implements the FSRM Base
Object (section 3.2.1.1).

Methods in RPC Opnum Order

Method Description

Id (get) Opnum: 7

Description (get) Opnum: 8

Description (put) Opnum: 9

Delete Opnum: 10

Commit Opnum: 11

3.2.4.2.10.1 Id (get) (Opnum 7)

The Id (get) method returns the read-only FSRM Base Object.Id of the object.

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_OBJECT | 0x01))] HRESULT Id(
 [out, retval] FSRM_OBJECT_ID* id
);

155 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

id: Pointer to a variable that upon completion contains the FSRM Base Object.Id of the object.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return
value/code Description

0x80070057

E_INVALIDARG

The id parameter is NULL.

Upon receiving this message, the server MUST validate parameters:

 Verify that id is not NULL.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

The server MUST set id to the FSRM Base Object.Id of the object.

3.2.4.2.10.2 Description (get) (Opnum 8)

The Description (get) method returns the FSRM Base Object.Description of the object.

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_OBJECT | 0x02))] HRESULT Description(
 [out, retval] BSTR* description
);

description: Pointer to a variable that upon completion contains the FSRM Base
Object.Description of the object.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return
value/code Description

0x80070057

E_INVALIDARG

The description parameter is NULL.

Upon receiving this message, the server MUST validate parameters:

 Verify that description is not NULL.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

The server MUST set description to the FSRM Base Object.Description of the object.

3.2.4.2.10.3 Description (put) (Opnum 9)

The Description (put) method sets the FSRM Base Object.Description of the object.

 [propput, id(FSRM_PROPERTY(FSRM_DISPID_OBJECT | 0x02))] HRESULT Description(
 [in] BSTR description
);

description: Contains the FSRM Base Object.Description to use for this object. This string MUST
NOT contain illegal name characters (section 3.2.4.2). The maximum length of this string MUST be
4,000 characters.

156 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return value/code Description

0x8004530D

FSRM_E_OUT_OF_RANGE

The content of the description parameter exceeds the maximum length of 4,000
characters.

0x80070057

E_INVALIDARG

The description parameter contains non-valid characters or is NULL. The following are
considered invalid characters: comma (,), single quote ('), double quote ("), vertical
bar (|).

The server MUST use description as the FSRM Base Object.Description for this object or return a

nonzero error code.

3.2.4.2.10.4 Delete (Opnum 10)

The Delete method removes the object from the server's object list.

 [id(FSRM_DISPID_OBJECT | 0x01)] HRESULT Delete();

This method has no parameters.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

There are no parameters for this method.

The server MUST set the object's FSRM Base Object.Deleted property to true, so that the server
removes the object from the server's list of objects when Commit (Opnum 11) (section 3.2.4.2.10.5)
is called or returns a nonzero error code.

3.2.4.2.10.5 Commit (Opnum 11)

The Commit method commits the non-persisted version of the object's current state to the server's list

of objects.

 [id(FSRM_DISPID_OBJECT | 0x02)] HRESULT Commit();

This method has no parameters.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return value/code Description

0x80045310

FSRM_E_ALREADY_EXISTS

The object being created already exists.

0x80045310

FSRM_E_DUPLICATE_NAME

An object with the same name already exists.

0x8004530E

FSRM_E_REQD_PARAM_MISSING

A required parameter for the object was not set before calling commit.

There are no parameters for this method.

The server MUST do one of the following or return a nonzero error code:

157 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 If the FSRM Base Object.Deleted property is set to true, the server MUST delete the persisted
version of the object associated with this non-persisted version.

 If the FSRM Base Object.Deleted property is set to false, the server MUST apply the state of the
non-persisted version of the object to the persisted version of the object.

The specifics for deleting the persisted object or applying the non-persisted state vary according to the
type of object being committed:

 Directory Quota: IFsrmQuota::Commit (section 3.2.4.2.16.1)

 Auto Apply Quota: IFsrmAutoApplyQuota::Commit (section 3.2.4.2.17.1)

 Directory Quota Template: IFsrmQuotaTemplate::Commit (section 3.2.4.2.20.1)

 File Group: IFsrmFileGroup::Commit (section 3.2.4.2.23.1)

 File Screen: IFsrmFileScreen::Commit (section 3.2.4.2.27.1)

 File Screen Exception: IFsrmFileScreenException::Commit (section 3.2.4.2.28.1)

 File Screen Template: IFsrmFileScreenTemplate::Commit (section 3.2.4.2.30.1)

 Report Job: IFsrmReportJob::Commit (section 3.2.4.2.34.1)

 Property Definition: IFsrmPropertyDefinition::Commit (section 3.2.4.2.37.1)

 Classification Type Rule: IFsrmClassificationRule::Commit (section 3.2.4.2.42.1)

 Classifier Type Module Definition: IFsrmClassifierModuleDefinition::Commit (section 3.2.4.2.44.1)

 Storage Type Module Definition: IFsrmStorageModuleDefinition::Commit (section 3.2.4.2.47.1)

 File Management Job: IFsrmFileManagementJob::Commit (section 3.2.4.2.48.1)

3.2.4.2.11 IFsrmSetting Methods

The IFsrmSetting interface exposes methods that allow the caller to configure the File Server
Resource Manager Protocol.

Methods in RPC Opnum Order

Method Description

SmtpServer (get) Opnum: 7

SmtpServer (put) Opnum: 8

MailFrom (get) Opnum: 9

MailFrom (put) Opnum: 10

AdminEmail (get) Opnum: 11

AdminEmail (put) Opnum: 12

DisableCommandLine (get) Opnum: 13

DisableCommandLine (put) Opnum: 14

EnableScreeningAudit (get) Opnum: 15

158 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Method Description

EnableScreeningAudit (put) Opnum: 16

EmailTest Opnum: 17

SetActionRunLimitInterval Opnum: 18

GetActionRunLimitInterval Opnum: 19

3.2.4.2.11.1 SmtpServer (get) (Opnum 7)

The SmtpServer (get) method retrieves the SMTP server name that the File Server Resource Manager

Protocol is configured to use when sending email messages and returns S_OK upon successful
completion.

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_SETTING | 0x01))] HRESULT SmtpServer(
 [out, retval] BSTR* smtpServer
);

smtpServer: A pointer to a variable that upon completion contains the SMTP server name that the

File Server Resource Manager Protocol is configured to use.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return
value/code Description

0x80070057

E_INVALIDARG

The smtpServer parameter is NULL.

Upon receiving this message, the server MUST validate parameters:

 Verify that smtpServer is not NULL.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

The server MUST set smtpServer to the SMTP server name that the File Server Resource Manager
Protocol is configured to use.

3.2.4.2.11.2 SmtpServer (put) (Opnum 8)

The SmtpServer (put) method sets the SMTP server name for the File Server Resource Manager
Protocol to use when sending email messages and returns S_OK upon successful completion.

 [propput, id(FSRM_PROPERTY(FSRM_DISPID_SETTING | 0x01))] HRESULT SmtpServer(
 [in] BSTR smtpServer
);

smtpServer: Contains the SMTP server name for the File Server Resource Manager Protocol to use.
The maximum length of this string MUST be 4,000 characters.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

159 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

The server MUST use smtpServer as the SMTP server name for sending email messages or return a
nonzero error code.

3.2.4.2.11.3 MailFrom (get) (Opnum 9)

The MailFrom (get) method retrieves the default mail from email address that the File Server
Resource Manager Protocol is configured to use, and returns S_OK upon successful completion. The
format of the email address has to be as specified in [RFC5322].

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_SETTING | 0x02))] HRESULT MailFrom(
 [out, retval] BSTR* mailFrom
);

mailFrom: Pointer to a variable that upon completion contains the default mail from email address
that the File Server Resource Manager Protocol is configured to use.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return
value/code Description

0x80070057

E_INVALIDARG

The mailFrom parameter is NULL.

Upon receiving this message, the server MUST validate parameters:

 Verify that mailFrom is not NULL.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

The server MUST set mailFrom to the default mail from email address that the File Server Resource

Manager Protocol is configured to use.

3.2.4.2.11.4 MailFrom (put) (Opnum 10)

The MailFrom (put) method sets the default mail from email address that the File Server Resource
Manager Protocol will use and returns S_OK upon successful completion. The MailFrom string is the
default sender of emails generated by the File Server Resource Manager Protocol. The format of the
email address has to be as specified in [RFC5322].

 [propput, id(FSRM_PROPERTY(FSRM_DISPID_SETTING | 0x02))] HRESULT MailFrom(
 [in] BSTR mailFrom
);

mailFrom: Contains the default mail from email address for the File Server Resource Manager
Protocol to use. The maximum length of this string MUST be 4,000 characters.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

The server MUST use mailFrom as the mail from email address on email messages generated by
the File Server Resource Manager Protocol or return a nonzero error code.

3.2.4.2.11.5 AdminEmail (get) (Opnum 11)

The AdminEmail (get) retrieves the administrator email address, which is used for the Admin Email
macro that the File Server Resource Manager Protocol is configured to use, and returns S_OK upon
successful completion. The format of the email address has to be as specified in [RFC5322].

https://go.microsoft.com/fwlink/?LinkId=183003
https://go.microsoft.com/fwlink/?LinkId=183003
https://go.microsoft.com/fwlink/?LinkId=183003

160 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_SETTING | 0x03))] HRESULT AdminEmail(
 [out, retval] BSTR* adminEmail
);

adminEmail: Pointer to a variable that upon completion contains the administrator email address
that the File Server Resource Manager Protocol is configured to use.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return
value/code Description

0x80070057

E_INVALIDARG

The adminEmail parameter is NULL.

Upon receiving this message, the server MUST validate parameters:

 Verify that adminEmail is not NULL.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

The server MUST set adminEmail to the administrator email address that the File Server Resource

Manager Protocol is configured to use.

3.2.4.2.11.6 AdminEmail (put) (Opnum 12)

The AdminEmail (put) method sets the administrator email address that the File Server Resource
Manager Protocol will use and returns S_OK upon successful completion. The administrator email
address will be used if a configured email address contains the string "[ADMIN EMAIL]". The format
of the email address has to be as specified in [RFC5322].

 [propput, id(FSRM_PROPERTY(FSRM_DISPID_SETTING | 0x03))] HRESULT AdminEmail(
 [in] BSTR adminEmail
);

adminEmail: Contains the administrator email address for the File Server Resource Manager
Protocol to use. The maximum length of this string MUST be 4,000 characters.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

The server MUST use adminEmail as the replacement text for email addresses that contain the string
"[ADMIN EMAIL]" or return a nonzero error code.

3.2.4.2.11.7 DisableCommandLine (get) (Opnum 13)

The DisableCommandLine (get) method retrieves the Disable command line applications value that the
File Server Resource Manager Protocol is configured to use and returns S_OK upon successful

completion.

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_SETTING | 0x04))] HRESULT DisableCommandLine(
 [out, retval] VARIANT_BOOL* disableCommandLine
);

disableCommandLine: Pointer to a variable that upon completion contains the Disable command line
applications value that the File Server Resource Manager Protocol is configured to use.

https://go.microsoft.com/fwlink/?LinkId=183003

161 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return
value/code Description

0x80070057

E_INVALIDARG

The disableCommandLine parameter is NULL.

Upon receiving this message, the server MUST validate parameters:

 Verify that disableCommandLine is not NULL.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

The server MUST set disableCommandLine to the Disable command line applications value that the File
Server Resource Manager Protocol is configured to use.

3.2.4.2.11.8 DisableCommandLine (put) (Opnum 14)

The DisableCommandLine (put) method sets the Disable command line applications value for the File
Server Resource Manager Protocol to use and returns S_OK upon successful completion.

 [propput, id(FSRM_PROPERTY(FSRM_DISPID_SETTING | 0x04))] HRESULT DisableCommandLine(
 [in] VARIANT_BOOL disableCommandLine
);

disableCommandLine: Contains the Disable command line applications value for the File Server
Resource Manager Protocol to use.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

The server MUST set the Disable command line applications value to the value of the

disableCommandLine parameter or return a nonzero error code.

3.2.4.2.11.9 EnableScreeningAudit (get) (Opnum 15)

The EnableScreeningAudit (get) method retrieves the Enable file screen audit value that the File
Server Resource Manager Protocol is configured to use and returns S_OK upon successful completion.

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_SETTING | 0x05))] HRESULT EnableScreeningAudit(
 [out, retval] VARIANT_BOOL* enableScreeningAudit
);

enableScreeningAudit: Pointer to a variable that upon completion contains the Enable file screen
audit value that the File Server Resource Manager Protocol is configured to use.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return
value/code Description

0x80070057

E_INVALIDARG

The enableScreeningAudit parameter is NULL.

Upon receiving this message, the server MUST validate parameters:

 Verify that the enableScreeningAudit parameter is not NULL.

162 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

If any validation fails, the server MUST terminate processing and return a nonzero error code.

The server MUST set the enableScreeningAudit parameter to the Enable file screen audit value that

the File Server Resource Manager Protocol is configured to use.

3.2.4.2.11.10 EnableScreeningAudit (put) (Opnum 16)

The EnableScreeningAudit (put) method sets the Enable file screen audit value for the File Server
Resource Manager Protocol to use, and returns S_OK upon successful completion.

 [propput, id(FSRM_PROPERTY(FSRM_DISPID_SETTING | 0x05))] HRESULT EnableScreeningAudit(
 [in] VARIANT_BOOL enableScreeningAudit
);

enableScreeningAudit: Contains the Enable file screen audit value for the File Server Resource
Manager Protocol to use.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

The server MUST set the Enable file screen audit value to the enableScreeningAudit parameter or
return a nonzero error code.

3.2.4.2.11.11 EmailTest (Opnum 17)

The EmailTest method sends an email message to the specified email address using the settings that
the File Server Resource Manager Protocol is configured to use. The settings include SMTP server
name and Mail from email address. The format of the email address has to be as specified in
[RFC5322].

 [id(FSRM_DISPID_SETTING | 0x01)] HRESULT EmailTest(
 [in] BSTR mailTo
);

mailTo: Contains the email address for the File Server Resource Manager Protocol to send the test
email message to.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return value/code Description

0x8004530D

FSRM_E_OUT_OF_RANGE

The content of the mailTo parameter exceeds the maximum length of
4,000 characters.

0x80045318

FSRM_E_INVALID_SMTP_SERVER

The SmtpServer property is not set.

0x8004531C

FSRM_E_EMAIL_NOT_SENT

An email message could not be sent.

Upon receiving this message, the server MUST perform the following operations:

 If the email address mentioned in mailTo exceeds the maximum length of 4,000 characters, the
server MUST return FSRM_E_OUT_OF_RANGE.

 If Mail from email address set by MailFrom (put) (section 3.2.4.2.11.4) contains an invalid
email address, the server MUST return FSRM_E_INVALID_SMTP_SERVER.

https://go.microsoft.com/fwlink/?LinkId=183003

163 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

The server MUST send an email message to the email address specified by using the settings that the
File Server Resource Manager Protocol is configured to use or return FSRM_E_EMAIL_NOT_SENT.

3.2.4.2.11.12 SetActionRunLimitInterval (Opnum 18)

The SetActionRunLimitInterval method sets run limit intervals for actions that are configured to use
the general setting's run limit interval.

 [id(FSRM_DISPID_SETTING | 0x02)] HRESULT SetActionRunLimitInterval(
 [in] FsrmActionType actionType,
 [in] long delayTimeMinutes
);

actionType: Contains the action type that this run limit interval applies to.

delayTimeMinutes: Contains the run limit interval for this action type.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return
value/code Description

0x80070057

E_INVALIDARG

The actionType parameter is not a valid type. If actionType is FsrmActionType_Unknown,
the parameter MUST be considered an invalid value.

Upon receiving this message, the server MUST validate parameters:

 Verify that actionType is a valid FsrmActionType (section 2.2.1.2.9) value. If actionType is

FsrmActionType_Unknown, the parameter MUST be considered an invalid value. If actionType
contains FsrmActionType_Email or FsrmActionType_Report, the server will return
FSRM_E_NOT_SUPPORTED.

 Verify that delayTimeMinutes is greater than -1.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

The server MUST use delayTimeMinutes as the Run limit intervals.

3.2.4.2.11.13 GetActionRunLimitInterval (Opnum 19)

The GetActionRunLimitInterval method returns the Run limit interval for actions that are configured to
use the general setting's Run limit interval.

 [id(FSRM_DISPID_SETTING | 0x03)] HRESULT GetActionRunLimitInterval(
 [in] FsrmActionType actionType,
 [out, retval] long* delayTimeMinutes
);

actionType: Contains the action type to return the Run limit interval for.

delayTimeMinutes: Pointer to a variable that upon completion contains the Run limit interval for the
specified action type.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

164 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Return
value/code Description

0x80070057

E_INVALIDARG

This code is returned for the following reasons:

 The actionType parameter is not a valid type. If actionType is
FsrmActionType_Unknown, the parameter MUST be considered an invalid value.

 The delayTimeMinutes parameter is NULL.

Upon receiving this message, the server MUST validate parameters:

 Verify that actionType is a valid FsrmActionType (section 2.2.1.2.9) value. If the actionType is
FsrmActionType_Unknown, the parameter MUST be considered an invalid value.

 Verify that delayTimeMinutes is not NULL.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

Upon successful validation of parameters, the server MUST perform the following actions or return a
nonzero error code.

 Verify that Run limit interval is present for actionType.<55>

The server MUST set delayTimeMinutes to the general setting's Run limit interval for the specified
action type or return a nonzero error code.

3.2.4.2.12 IFsrmPathMapper Methods

The IFsrmPathMapper interface exposes methods for mapping local directories to network shares.

Methods in RPC Opnum Order

Method Description

GetSharePathsForLocalPath Opnum: 7

3.2.4.2.12.1 GetSharePathsForLocalPath (Opnum 7)

The GetSharePathsForLocalPath method returns all the network share paths that point to the specified
local path.

 [id(FSRM_DISPID_PATHMAPPER | 0x01)] HRESULT GetSharePathsForLocalPath(
 [in] BSTR localPath,
 [out, retval] SAFEARRAY (VARIANT)* sharePaths
);

localPath: Contains the local path for which to return network shares for.

sharePaths: Pointer to a SAFEARRAY that upon completion contains all the network share paths that
point to the specified path.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

165 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Return value/code Description

0x80045306

FSRM_E_INVALID_PATH

The local path to return network shares does not exist or exceeds the maximum
length of 260 characters.

0x80070057

E_INVALIDARG

This code is returned for the following reasons:

 The localPath parameter is empty or NULL.

 The sharePaths parameter is NULL.

Upon receiving this message, the server MUST validate parameters:

 Verify that localPath directory is not NULL or empty.

 Verify that sharePaths is not NULL.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

The server MUST populate sharePaths with all the network share paths that have the localPath as a
parent directory.

3.2.4.2.13 IFsrmDerivedObjectsResult Methods

The IFsrmDerivedObjectsResult interface is returned from the CommitAndUpdateDerived

methods of the IFsrmAutoApplyQuota (section 3.2.4.2.17), IFsrmQuotaTemplate (section
3.2.4.2.20), and IFsrmFileScreenTemplate (section 3.2.4.2.30) interfaces.

Methods in RPC Opnum Order

Method Description

DerivedObjects (get) Opnum: 7

Results (get) Opnum: 8

3.2.4.2.13.1 DerivedObjects (get) (Opnum 7)

The DerivedObjects (get) method returns the collection of derived objects for the calling template.

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_DERIVEDOBJECTSRESULT | 0x01))] HRESULT DerivedObjects(
 [out, retval] IFsrmCollection** derivedObjects
);

derivedObjects: Pointer to an IFsrmCollection interface pointer (section 3.2.4.2.1) that upon

completion contains interface pointers for the derived objects that were updated as a result of the

source template's call to CommitAndUpdateDerived. A caller MUST release the collection
interface received when it is done with it.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return
value/code Description

0x80070057 The derivedObjects parameter is NULL.

166 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Return
value/code Description

E_INVALIDARG

Upon receiving this message, the server MUST validate parameters:

 Verify that derivedObjects is not NULL.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

The server MUST do one of the following:

 Set derivedObjects to DerivedAutoApplyQuotaObjects if the calling template is an auto apply

quota.

 Set derivedObjects to DerivedQuotaObjects if the calling template is a directory quota
template.

 Set derivedObjects to DerivedFileScreenObjects if the calling template is a file screen template.

3.2.4.2.13.2 Results (get) (Opnum 8)

The Results (get) method returns the collection HRESULTS received when committing derived objects
that were updated as a result of the source template's call to CommitAndUpdateDerived.

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_DERIVEDOBJECTSRESULT | 0x02))] HRESULT Results(
 [out, retval] IFsrmCollection** results
);

results: Pointer to an IFsrmCollection interface pointer (section 3.2.4.2.1) that upon completion

contains HRESULTS for the committing of derived objects that were updated as a result of the
source template's call to CommitAndUpdateDerived. A caller MUST release the collection

interface received when it is done with it.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return
value/code Description

0x80070057

E_INVALIDARG

The results parameter is NULL.

Upon receiving this message, the server MUST validate parameters:

 Verify that results is not NULL.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

The server MUST set results to DerivedQuotaResults.

The server MUST do one of the following or return a nonzero error code:

 Set results to DerivedAutoApplyQuotaResults if the calling template is auto apply quota.

 Set results to DerivedQuotaResults if the calling template is a directory quota template.

 Set results to DerivedFileScreenResults if the calling template is a file screen template.

167 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

3.2.4.2.14 IFsrmQuotaBase Methods

IFsrmQuotaBase is the base interface for all the File Server Resource Manager Protocol quota
objects. IFsrmQuotaBase implements the methods of the IFsrmObject interface (section

3.2.4.2.10), as well as those listed in the following table.

Methods in RPC Opnum Order

Method Description

Commit Opnum: 11

QuotaLimit (get) Opnum: 12

QuotaLimit (put) Opnum: 13

QuotaFlags (get) Opnum: 14

QuotaFlags (put) Opnum: 15

Thresholds (get) Opnum: 16

AddThreshold Opnum: 17

DeleteThreshold Opnum: 18

ModifyThreshold Opnum: 19

CreateThresholdAction Opnum: 20

EnumThresholdActions Opnum: 21

3.2.4.2.14.1 Commit (Opnum 11)

The Commit method is implemented as one of the methods for the IFsrmObject interface (section
3.2.4.2.10). This method has the same behavior as described in section 3.2.4.2.10.5 with the
following additional behavior:

 If quota limit is zero, the server MUST return E_INVALIDARG.

3.2.4.2.14.2 QuotaLimit (get) (Opnum 12)

The QuotaLimit (get) method returns the quota limit for the object.

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_QUOTA_BASE | 0x01))] HRESULT QuotaLimit(
 [out, retval] VARIANT* quotaLimit
);

quotaLimit: A pointer to a variable that, upon completion, contains the quota limit of the object.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return
value/code Description

0x80070057

E_INVALIDARG

The quotaLimit parameter is NULL.

168 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Upon receiving this message, the server MUST validate parameters:

 Verify that quotaLimit is not NULL.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

The server MUST set quotaLimit to the quota limit of the object.

3.2.4.2.14.3 QuotaLimit (put) (Opnum 13)

The QuotaLimit (put) method sets the quota limit for the object.

 [propput, id(FSRM_PROPERTY(FSRM_DISPID_QUOTA_BASE | 0x01))] HRESULT QuotaLimit(
 [in] VARIANT quotaLimit
);

quotaLimit: Contains the quota limit for the object to use.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return value/code Description

0x8004530D

FSRM_E_OUT_OF_RANGE

The content of the quotaLimit parameter is less than 1,500 bytes.

0x80070057

E_INVALIDARG

The quotaLimit parameter is not a valid value; it must be greater than 1,500
bytes.

Upon receiving this message, the server MUST validate parameters:

 Verify that quotaLimit is greater than 1,500 bytes.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

The server MUST use quotaLimit as the quota limit for this object.

3.2.4.2.14.4 QuotaFlags (get) (Opnum 14)

The QuotaFlags (get) returns the quota state, quota limit mode, and quota enable/disable
values for the object.

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_QUOTA_BASE | 0x02))] HRESULT QuotaFlags(
 [out, retval] long* quotaFlags
);

quotaFlags: Pointer to a variable that upon completion contains the quota state, quota limit
mode, and quota enable/disable values of the object.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return
value/code Description

0x80070057

E_INVALIDARG

The quotaFlags parameter is NULL.

Upon receiving this message, the server MUST validate parameters:

169 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 Verify that quotaFlags is not NULL.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

The server MUST set quotaFlags to the quota state, quota limit mode, and quota enable/disable
values of the object.

3.2.4.2.14.5 QuotaFlags (put) (Opnum 15)

The QuotaFlags (put) method sets the quota limit mode and quota enable/disable values of the
object. Quota state, which is returned by QuotaFlags (get) (section 3.2.4.2.14.4), is not affected by
QuotaFlags (put).

 [propput, id(FSRM_PROPERTY(FSRM_DISPID_QUOTA_BASE | 0x02))] HRESULT QuotaFlags(
 [in] long quotaFlags
);

quotaFlags: Contains the quota limit mode and quota enable/disable values for the object to
use.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return
value/code Description

0x80070057

E_INVALIDARG

The quotaFlags parameter is NULL or not a valid type. If quotaFlags is not a
FsrmQuotaFlags (section 2.2.1.2.1), the parameter is considered an invalid value.

Upon receiving this message, the server MUST validate parameters:

 Verify that quotaFlags contains valid FsrmQuotaFlags (section 2.2.1.2.1) values.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

The server MUST do one of the following.

 If quotaFlags contains FsrmQuotaFlags_Enforce, the server MUST set the quota limit mode to
hard quota and fail any I/O operation that causes the path's disk space usage to exceed the
quota limit of the quota.

 If quotaFlags does not contain FsrmQuotaFlags_Enforce, the server MUST set the quota limit
mode to soft quota and allow any I/O operation that causes the path's disk space usage to

exceed the quota limit of the quota.

 If quotaFlags contains FsrmQuotaFlags_Disable, the server MUST set the quota limit mode to
soft quota and not track the disk space usage of the quota's path and not run actions associated
with thresholds of the quota.

 If quotaFlags does not contain FsrmQuotaFlags_Disable, the server MUST set the quota

enable/disable to enabled and track the disk space usage of the quota's path and run actions

associated with thresholds of the quota.

3.2.4.2.14.6 Thresholds (get) (Opnum 16)

The Thresholds (get) method returns the thresholds for the quota object.

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_QUOTA_BASE | 0x03))] HRESULT Thresholds(
 [out, retval] SAFEARRAY (VARIANT)* thresholds

170 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

);

thresholds: Pointer to a SAFEARRAY that upon completion contains all the threshold values for the
quota object. The caller MUST release the SAFEARRAY when it is done with it.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return
value/code Description

0x80070057

E_INVALIDARG

The thresholds parameter is NULL.

Upon receiving this message, the server MUST validate parameters:

 Verify that thresholds is not NULL.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

The server MUST create a SAFEARRAY object and populate it with all the thresholds for the quota
object.

3.2.4.2.14.7 AddThreshold (Opnum 17)

The AddThreshold method adds a threshold to the quota objects list of thresholds.

 [id(FSRM_DISPID_QUOTA_BASE | 0x01)] HRESULT AddThreshold(
 [in] FSRM_QUOTA_THRESHOLD threshold
);

threshold: Contains the value of the threshold to add to the quota object.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return value/code Description

0x80045303

FSRM_E_ALREADY_EXISTS

The object being created already exists.

0x8004530D

FSRM_E_OUT_OF_RANGE

The content of the threshold parameter is less than 1 or greater than 250.

Upon receiving this message, the server MUST validate parameters:

 Verify that threshold is greater than 0 and less than 251.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

The server MUST add the threshold to the quota object's list of thresholds.

3.2.4.2.14.8 DeleteThreshold (Opnum 18)

The DeleteThreshold method deletes a threshold from the quota objects list of thresholds.

 [id(FSRM_DISPID_QUOTA_BASE | 0x02)] HRESULT DeleteThreshold(
 [in] FSRM_QUOTA_THRESHOLD threshold

171 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

);

threshold: Contains the value of the threshold to delete from the quota object.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return value/code Description

0x80045301

FSRM_E_NOT_FOUND

No threshold was found on the quota object equal to the value specified in the
threshold parameter.

0x8004530D

FSRM_E_OUT_OF_RANGE

The content of the threshold parameter is less than 1 or greater than 250.

Upon receiving this message, the server MUST validate parameters:

 Verify that threshold is greater than 0 and less than 251.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

The server MUST delete the threshold from the quota object's list of thresholds or return a nonzero
error code. If the threshold does not exist for the quota object, the server MUST return
FSRM_E_NOT_FOUND.

3.2.4.2.14.9 ModifyThreshold (Opnum 19)

The ModifyThreshold method modifies the disk usage percentage of an existing threshold in the
quota object's list of thresholds.

 [id(FSRM_DISPID_QUOTA_BASE | 0x03)] HRESULT ModifyThreshold(
 [in] FSRM_QUOTA_THRESHOLD threshold,
 [in] FSRM_QUOTA_THRESHOLD newThreshold
);

threshold: Contains the value of the threshold to modify.

newThreshold: Contains the new value of the threshold.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return value/code Description

0x80045301

FSRM_E_NOT_FOUND

No threshold was found on the quota object equal to the value specified in the
threshold parameter.

0x80045303

FSRM_E_ALREADY_EXISTS

A threshold equal to the newThreshold parameter already exists for the quota
object.

0x8004530D

FSRM_E_OUT_OF_RANGE

The content of the threshold parameter is less than 1 or greater than 250.

Upon receiving this message, the server MUST validate parameters:

 Verify that threshold is greater than 0 and less than 251.

 Verify that newThreshold is greater than 0 and less than 251.

172 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

If any validation fails, the server MUST terminate processing and return a nonzero error code.

The server MUST modify the quota object's entry for threshold to use newThreshold or return a

nonzero error code. If the threshold does not exist for the quota object, the server MUST return
FSRM_E_NOT_FOUND.

3.2.4.2.14.10 CreateThresholdAction (Opnum 20)

The CreateThresholdAction method creates an action and associates it with the specified threshold.

 [id(FSRM_DISPID_QUOTA_BASE | 0x04)] HRESULT CreateThresholdAction(
 [in] FSRM_QUOTA_THRESHOLD threshold,
 [in] FsrmActionType actionType,
 [out, retval] IFsrmAction** action
);

threshold: Contains the threshold to create the action for.

actionType: Contains the type of action to be created.

action: Pointer to an IFsrmAction interface pointer (section 3.2.4.2.4) that upon completion points
to the newly created action. The caller MUST release the object when it is done with it.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return value/code Description

0x80045301

FSRM_E_NOT_FOUND

An object with the specified threshold could not be found.

0x80045303

FSRM_E_ALREADY_EXISTS

An action of the same type as the actionType parameter already exists for the
threshold.

0x8004530D

FSRM_E_OUT_OF_RANGE

The content of the threshold parameter is less than 1 or greater than 250.

0x80070057

E_INVALIDARG

This code is returned for the following reasons:

 The action parameter is NULL.

 The actionsType parameter is not a valid type.

Upon receiving this message, the server MUST validate parameters:

 Verify that threshold is greater than 0 and less than 251.

 Verify that actionType is a valid FsrmActionType (section 2.2.1.2.9) value. If actionType is
FsrmActionType_Unknown, the parameter MUST be considered an invalid value.

 Verify that action is not NULL.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

The server MUST create a new action object of the specified type and associate it with the specified
threshold or return a nonzero error code. If the threshold does not exist for the quota object, the

server MUST return FSRM_E_NOT_FOUND.

3.2.4.2.14.11 EnumThresholdActions (Opnum 21)

173 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

The EnumThresholdActions method enumerates all the actions for the specified threshold.

 [id(FSRM_DISPID_QUOTA_BASE | 0x05)] HRESULT EnumThresholdActions(
 [in] FSRM_QUOTA_THRESHOLD threshold,
 [out, retval] IFsrmCollection** actions
);

threshold: The threshold for which the associated actions will be enumerated.

actions: Pointer to an IFsrmCollection interface pointer (section 3.2.4.2.1) that upon completion

contains IFsrmAction interface pointers (section 3.2.4.2.4) of all the actions for the specified
action. The caller MUST release the collection when it is done with it.

To get the specific action interface for the action, the caller MUST call QueryInterface for the
interface corresponding to the action type of the actions.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return value/code Description

0x80045301

FSRM_E_NOT_FOUND

An object with the specified threshold could not be found.

0x8004530D

FSRM_E_OUT_OF_RANGE

The content of the threshold parameter is less than 1 or greater than 250.

0x80070057

E_INVALIDARG

The actions parameter is NULL.

Upon receiving this message, the server MUST validate parameters:

 Verify that threshold is greater than 0 and less than 251.

 Verify that actions is not NULL.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

The server MUST create a new IFsrmCollection object and populate it with the actions of the
specified threshold or return a nonzero error code. If the threshold does not exist for the quota
object, the server MUST return FSRM_E_NOT_FOUND.

3.2.4.2.15 IFsrmQuotaObject Methods

The IFsrmQuotaObject interface exposes methods for quota objects associated with a specific
directory path. IFsrmQuotaObject implements methods for the IFsrmObject (section 3.2.4.2.10)

and IFsrmQuotaBase (section 3.2.4.2.14) interfaces, as well as those listed in the following table.

Methods in RPC Opnum Order

Method Description

Commit Opnum: 11

Path (get) Opnum: 22

UserSid (get) Opnum: 23

UserAccount (get) Opnum: 24

174 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Method Description

SourceTemplateName (get) Opnum: 25

MatchesSourceTemplate (get) Opnum: 26

ApplyTemplate Opnum: 27

3.2.4.2.15.1 Commit (Opnum 11)

The Commit method is implemented as one of the methods for the IFsrmObject interface (section
3.2.4.2.10). This method has the same behavior as described in 3.2.4.2.10.5 and 3.2.4.2.14.1 with
the following additional behavior:

 If a quota already exists for the path specified, the server MUST return

E_FSRM_ALREADY_EXISTS.

3.2.4.2.15.2 Path (get) (Opnum 22)

The Path (get) method returns the read-only path of the quota object.

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_QUOTA_OBJECT | 0x01))] HRESULT Path(
 [out, retval] BSTR* path
);

path: Pointer to a variable that upon completion contains the path of the quota object.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return
value/code Description

0x80070057

E_INVALIDARG

The path parameter is NULL.

Upon receiving this message, the server MUST validate parameters:

 Verify that path is not NULL.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

The server MUST set path to the Directory Quota.Folder path of the quota object.

3.2.4.2.15.3 UserSid (get) (Opnum 23)

The UserSid (get) method returns a string representation of the read-only user SID of NULL ([MS-

DTYP] section 2.4.2.4).

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_QUOTA_OBJECT | 0x02))] HRESULT UserSid(
 [out, retval] BSTR* userSid
);

userSid: Pointer to a variable that upon completion contains the string representation of the user SID
of NULL.

%5bMS-DTYP%5d.pdf#Section_cca2742956894a16b2b49325d93e4ba2
%5bMS-DTYP%5d.pdf#Section_cca2742956894a16b2b49325d93e4ba2

175 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Return Values: The method MUST return zero on success, or a nonzero error code on failure.<56>

Return
value/code Description

0x80070057

E_INVALIDARG

The userSid parameter is NULL.

Upon receiving this message, the server MUST validate parameters:

 Verify that userSid is not NULL.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

The server MUST set userSid to the string representation of the user SID of NULL.

3.2.4.2.15.4 UserAccount (get) (Opnum 24)

The UserAccount (get) method returns a string representation of the user account corresponding to
the well-known SID of NULL ([MS-DTYP] section 2.4.2.4).

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_QUOTA_OBJECT | 0x03))] HRESULT UserAccount(
 [out, retval] BSTR* userAccount
);

userAccount: Pointer to a variable that upon completion contains the string representation of the
user account corresponding to the well-known SID of NULL.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.<57>

Return
value/code Description

0x80070057

E_INVALIDARG

The userAccount parameter is NULL.

Upon receiving this message, the server MUST validate parameters:

 Verify that userAccount is not NULL.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

The server MUST set userAccount to the string representation of the user account corresponding to
the well-known SID of NULL.

3.2.4.2.15.5 SourceTemplateName (get) (Opnum 25)

The SourceTemplateName (get) method returns the name of the template this quota object was

derived from.

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_QUOTA_OBJECT | 0x04))] HRESULT SourceTemplateName(
 [out, retval] BSTR* quotaTemplateName
);

quotaTemplateName: Pointer to a variable that upon completion contains the name of the template
that this quota object was derived from.

%5bMS-DTYP%5d.pdf#Section_cca2742956894a16b2b49325d93e4ba2

176 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return
value/code Description

0x80070057

E_INVALIDARG

The quotaTemplateName parameter is NULL.

Upon receiving this message, the server MUST validate parameters:

 Verify that quotaTemplateName is not NULL.

 Verify whether this quota object is derived from a template by searching the List of Persisted

Directory Quota Templates for a matching Template id.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

The server MUST set quotaTemplateName to the name of the template that this quota object was

derived from or return a nonzero error code.

If the quota object was not derived from a template, the server MUST return S_FALSE.

3.2.4.2.15.6 MatchesSourceTemplate (get) (Opnum 26)

The MatchesSourceTemplate (get) method returns whether this quota object's properties match the
template it was derived from or not.

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_QUOTA_OBJECT | 0x05))] HRESULT MatchesSourceTemplate(
 [out, retval] VARIANT_BOOL* matches
);

matches: Pointer to a variable that upon completion contains information regarding whether or not

this quota object's properties match the template it was derived from.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return
value/code Description

0x80070057

E_INVALIDARG

The matches parameter is NULL.

Upon receiving this message, the server MUST validate parameters:

 Verify that matches is not NULL.

 Verify whether this quota object is derived from a template by searching the List of Persisted
Directory Quota Templates for a matching Template id.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

The server MUST do one of the following or return a nonzero error code.

 If the quota object was not derived from a template, the server MUST return S_FALSE.

 If all the quota object's properties match those of the quota template it was derived from, the
server MUST set matches to VARIANT_TRUE.

177 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 If all the quota object's properties do not match those of the quota template it was derived from,
the server MUST set matches to VARIANT_FALSE.

3.2.4.2.15.7 ApplyTemplate (Opnum 27)

The ApplyTemplate method applies the properties of the specified quota template to this quota object.

 [id(FSRM_DISPID_QUOTA_OBJECT | 0x01)] HRESULT ApplyTemplate(
 [in] BSTR quotaTemplateName
);

quotaTemplateName: Contains the name of the quota template with properties to apply to this
quota object. The maximum length of this string MUST be 4,000 characters.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return value/code Description

0x80045301

FSRM_E_NOT_FOUND

The specified quota template could not be found.

0x80045308

FSRM_E_INVALID_NAME

The quotaTemplateName parameter is NULL.

0x8004530D

FSRM_E_OUT_OF_RANGE

The content of the quotaTemplateName parameter exceeds the maximum length
of 4,000 characters.

The server MUST do one of the following or return a nonzero error code.

 If no directory quota template with the specified name exists, the server MUST return
FSRM_E_NOT_FOUND.

 If the quota template does exist, the server MUST apply all settings from the specified template to

this quota object.

3.2.4.2.16 IFsrmQuota Methods

The IFsrmQuota interface exposes methods for quotas associated with a specific directory path.

IFsrmQuota implements methods for the IFsrmObject (section 3.2.4.2.10), IFsrmQuotaBase
(section 3.2.4.2.14), and IFsrmQuotaObject (section 3.2.4.2.15) interfaces, as well as those listed
in the following table.

Each instance of IFsrmQuota is associated with one Non-Persisted Directory Quota
Instance (section 3.2.1.2.1.2).

Methods in RPC Opnum Order

Method Description

Commit Opnum: 11

QuotaUsed (get) Opnum: 28

QuotaPeakUsage (get) Opnum: 29

QuotaPeakUsageTime (get) Opnum: 30

ResetPeakUsage Opnum: 31

178 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Method Description

RefreshUsageProperties Opnum: 32

3.2.4.2.16.1 Commit (Opnum 11)

The Commit method is implemented as one of the methods for the IFsrmObject interface (section
3.2.4.2.10). This method has the behavior specified in sections 3.2.4.2.10.5, 3.2.4.2.14.1, and

3.2.4.2.15.1, with the following additional behavior:

 If the FSRM Base Object.Deleted property is set to true for this Non-Persisted Directory Quota
Instance (section 3.2.1.2.1.2), the server MUST remove the Persisted Directory
Quota (section 3.2.1.2.1.1) from the List of Persisted Directory Quotas (section 3.2.1.2) that
has the same Directory Quota.Folder path property as this Non-Persisted Directory Quota
Instance, if one exists. This removal MUST occur even if other changes were made to the

configuration of the Non-Persisted Directory Quota Instance. If there is no Persisted Directory

Quota (section 3.2.1.2.1.1) in the List of Persisted Directory Quotas (section 3.2.1.2) that has
the same Directory Quota.Folder path property as this Non-Persisted Directory Quota
Instance (section 3.2.1.2.1.2) being deleted, the server does not perform any action and MUST
return zero. The server MUST return a nonzero error code if removal fails.

 If the FSRM Base Object.Deleted property is set to false for this Non-Persisted Directory Quota
Instance, the server MUST update the configuration data of the Persisted Directory Quota in the

List of Persisted Directory Quotas that has the same Directory Quota.Folder path property
as this Non-Persisted Directory Quota Instance, if one exists, with the configuration data from this
instance, or return a nonzero error code.

 If a Persisted Directory Quota does not exist with the same Directory Quota.Folder path
property, and the FSRM Base Object.Deleted property is set to false, the server MUST perform
the following steps:

1. Create a new Persisted Directory Quota.

2. Populate the new quota's configuration with the configuration from this Non-Persisted
Directory Quota Instance.

3. Add the new Persisted Directory Quota to the List of Persisted Directory Quotas.

4. Start a quota scan (section 3.2.1.12.4) for the new persisted directory quota.

To update or populate the configuration data from a Non-Persisted Directory Quota Instance to a
Persisted Directory Quota, the server MUST assign the values of all the properties listed below, of the

Non-Persisted Directory Quota Instance to the corresponding properties of the Persisted Directory
Quota.

 FSRM Base Object.Description

 Quota limit

 Quota limit mode

 Quota enable/disable

 Thresholds

 Notifications (Actions). For each notification in the list, the server MUST assign the values of all
properties that apply to the notification, depending on the type of action. See section 3.2.1.4 for

179 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

details on the possible action types and the set of notification properties maintained for each type
of action.

 Template id

 Auto apply quota id

3.2.4.2.16.2 QuotaUsed (get) (Opnum 28)

The QuotaUsed (get) method returns the current, read-only quota usage for this quota.

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_QUOTA | 0x01))] HRESULT QuotaUsed(
 [out, retval] VARIANT* used
);

used: Pointer to a variable, which upon completion, contains the quota usage for this quota.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return
value/code Description

0x80070057

E_INVALIDARG

The used parameter is NULL.

Upon receiving this message, the server MUST validate parameters:

 Verify that used is not NULL.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

The server MUST set used to quota usage for this quota.

3.2.4.2.16.3 QuotaPeakUsage (get) (Opnum 29)

The QuotaPeakUsage (get) method returns the peak quota usage of this quota.

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_QUOTA | 0x02))] HRESULT QuotaPeakUsage(
 [out, retval] VARIANT* peakUsage
);

peakUsage: Pointer to a variable that upon completion contains the peak quota usage of this quota.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return
value/code Description

0x80070057

E_INVALIDARG

The peakUsage parameter is NULL.

Upon receiving this message, the server MUST validate parameters:

 Verify that peakUsage is not NULL.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

180 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

The server MUST set peakUsage to the peak quota usage of this quota.

3.2.4.2.16.4 QuotaPeakUsageTime (get) (Opnum 30)

The QuotaPeakUsageTime (get) method returns the peak quota usage time stamp of this quota.

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_QUOTA | 0x03))] HRESULT QuotaPeakUsageTime(
 [out, retval] DATE* peakUsageDateTime
);

peakUsageDateTime: Pointer to a variable that upon completion contains peak quota usage time
stamp of this quota.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return
value/code Description

0x80070057

E_INVALIDARG

The peakUsageDateTime parameter is NULL.

Upon receiving this message, the server MUST validate parameters:

 Verify that peakUsageDateTime is not NULL.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

The server MUST set peakUsageDateTime to the peak quota usage time stamp of this quota.

3.2.4.2.16.5 ResetPeakUsage (Opnum 31)

The ResetPeakUsage method resets the peak quota usage of this quota to zero and returns S_OK

upon successful completion.

 [id(FSRM_DISPID_QUOTA | 0x01)] HRESULT ResetPeakUsage();

This method has no parameters.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

There are no parameters for this method.

The server MUST set peak quota usage of this quota to zero or return a nonzero error code.

3.2.4.2.16.6 RefreshUsageProperties (Opnum 32)

The RefreshUsageProperties method refreshes the quota usage information for the caller's copy of

the object.

 [id(FSRM_DISPID_QUOTA | 0x02)] HRESULT RefreshUsageProperties();

This method has no parameters.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

181 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Return value/code Description

0x80045301

FSRM_E_NOT_FOUND

The specified quota could not be found.

There are no parameters for this method.

If no Persisted Directory Quota exists that has the same Directory Quota.Folder path property as Non-
Persisted Directory Quota Instance, the server MUST return FSRM_E_NOT_FOUND.

Otherwise, the server MUST reset the quota usage, quota peak usage, and quota peak usage
time of the Non-Persisted Directory Quota Instance to the current values stored in the corresponding

properties of the Persisted Directory Quota that has the same Directory Quota.Folder path property as
this Non-Persisted Directory Quota Instance.

3.2.4.2.17 IFsrmAutoApplyQuota Methods

The IFsrmAutoApplyQuota interface exposes methods for quotas to be automatically applied to

subdirectories of a specific directory path. IFsrmAutoApplyQuota implements methods for the

IFsrmObject (section 3.2.4.2.10), IFsrmQuotaBase (section 3.2.4.2.14), and IFsrmQuotaObject
(section 3.2.4.2.15) interfaces, as well as those listed in the following table.

Each instance of IFsrmAutoApplyQuota is associated with one Non-Persisted Auto Apply Quota
Instance (section 3.2.1.2.2.2).

Methods in RPC Opnum Order

Method Description

Commit Opnum: 11

ExcludeFolders (get) Opnum: 28

ExcludeFolders (put) Opnum: 29

CommitAndUpdateDerived Opnum: 30

3.2.4.2.17.1 Commit (Opnum 11)

The Commit method is implemented as one of the methods for the IFsrmObject interface (section
3.2.4.2.10). This method has the behavior specified in sections 3.2.4.2.10.5, 3.2.4.2.14.1, and
3.2.4.2.15.1, with the following additional behavior:

 If the FSRM Base Object.Deleted property is set to true for this Non-Persisted Auto Apply Quota
Instance (section 3.2.1.2.2.2), the server MUST remove the Persisted Auto Apply
Quota (section 3.2.1.2.2.1) from the List of Persisted Auto Apply Quotas (section 3.2.1.2) that

has the same Directory Quota.Folder path property as this Non-Persisted Auto Apply Quota

Instance, if one exists. This removal MUST occur even if other changes were made to the
configuration of the Non-Persisted Auto Apply Quota Instance If there is no Persisted Auto Apply
Quota (section 3.2.1.2.2.1) in the List of Persisted Auto Apply Quotas (section 3.2.1.2) that
has the same Directory Quota.Folder path property as this Non-Persisted Auto Apply Quota
Instance (section 3.2.1.2.2.2) being deleted, the server does not perform any action and MUST
return zero. The server MUST return a nonzero error code if removal fails.

 If the FSRM Base Object.Deleted property is set to false for this Non-Persisted Auto Apply
Quota Instance, the server MUST update the configuration data of the Persisted Auto Apply Quota
in the List of Persisted Auto Apply Quotas that has the same Directory Quota.Folder path

182 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

property as this Non-Persisted Auto Apply Quota Instance, if one exists, with the configuration
data from this instance, or return a nonzero error code.

 If a Persisted Auto Apply Quota does not exist with the same Directory Quota.Folder path
property, and the FSRM Base Object.Deleted property is set to false, the server MUST create a

new Persisted Auto Apply Quota, populate its configuration with the configuration from this Non-
Persisted Auto Apply Quota Instance, and add the new Persisted Auto Apply Quota to the List of
Persisted Auto Apply Quotas.

To update or populate the configuration data from a Non-Persisted Auto Apply Quota Instance to a
Persisted Auto Apply Quota, the server MUST assign the values of all the properties in the list that
follows, of the Non-Persisted Auto Apply Quota Instance to the corresponding properties of the
Persisted Auto Apply Quota.

 FSRM Base Object.Description

 Quota limit

 Quota limit mode

 Quota enable/disable

 Thresholds

 Notifications (Actions). For each notification in the list, the server MUST assign the values of all

properties that apply to the notification, depending on the type of action. See section 3.2.1.4 for
details on the possible action types and the set of notification properties maintained for each type
of action.

 Template id

 Auto apply quota id

 Exclude folders

3.2.4.2.17.2 ExcludeFolders (get) (Opnum 28)

The ExcludeFolders (get) method returns the array of exclude folders for this auto apply quota.

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_AUTOAPPLYQUOTA | 0x01))] HRESULT ExcludeFolders(
 [out, retval] SAFEARRAY (VARIANT)* folders
);

folders: Pointer to a SAFEARRAY that upon completion contains the list of exclude folders for this

auto apply quota.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return
value/code Description

0x80070057

E_INVALIDARG

The folders parameter is NULL.

Upon receiving this message, the server MUST validate parameters:

 Verify that folders is not NULL.

183 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

The server MUST populate folders with the list of folders that are excluded from this auto apply quota
or return a nonzero error code.

3.2.4.2.17.3 ExcludeFolders (put) (Opnum 29)

The ExcludeFolders (put) method sets the array of exclude folders for this auto apply quota.

 [propput, id(FSRM_PROPERTY(FSRM_DISPID_AUTOAPPLYQUOTA | 0x01))] HRESULT ExcludeFolders(
 [in] SAFEARRAY (VARIANT) folders
);

folders: Contains an array of folders that will be excluded from this auto apply quota.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return
value/code Description

0x80070057

E_INVALIDARG

The folders parameter is empty.

The server MUST exclude the subdirectories in folders from the restrictions of this auto apply quota or
return a nonzero error code.<58>

The client MUST provide only the names of the subdirectories that are to be excluded. The client MUST
NOT give the full path to the subdirectories.

3.2.4.2.17.4 CommitAndUpdateDerived (Opnum 30)

The CommitAndUpdateDerived method commits the quota template and applies the template's

changes to the quota objects derived from auto apply quota.

 [id (FSRM_DISPID_AUTOAPPLYQUOTA | 0x01)] HRESULT CommitAndUpdateDerived(
 [in] FsrmCommitOptions commitOptions,
 [in] FsrmTemplateApplyOptions applyOptions,
 [out, retval] IFsrmDerivedObjectsResult** derivedObjectsResult
);

commitOptions: Contains the commit options to use when committing the collection of derived
objects.

applyOptions: Contains the apply options to use when building the collection of derived objects.

derivedObjectsResult: Pointer to an IFsrmDerivedObjectsResult interface pointer (section
3.2.4.2.13) that upon completion points to derived objects result interface for the derived objects
updated with this method. A caller MUST release the collection received when it is done with it.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return value/code Description

0x80045311

FSRM_E_NOT_SUPPORTED

The commitOptions parameter contains invalid
FsrmCommitOptions (section 2.2.1.2.6) values.

0x80070057

E_INVALIDARG

The derivedObjectsResult parameter is NULL.

184 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Upon receiving this message, the server MUST validate parameters:

 If commitOptions contains FsrmCommitOptions_Asynchronous or any value other than what is

specified in section 2.2.1.2.6, the server MUST return FSRM_E_NOT_SUPPORTED.

 If derivedObjectsResult is NULL, the server MUST return E_INVALIDARG.

The server MUST commit the quota template<59> and apply the template's new properties to the
collection of derived objects based on applyOptions or return a nonzero error code.

If applyOptions equals FsrmTemplateApplyOptions_ApplyToDerivedAll, the server MUST update
derivedObjectsResult with all quota objects that were derived from this auto apply quota.

If applyOptions equals FsrmTemplateApplyOptions_ApplyToDerivedMatching, the server MUST update
derivedObjectsResult with only those quota objects that were derived from this auto apply quota and
whose properties still match this auto apply quota.

3.2.4.2.18 IFsrmQuotaManager Methods

The IFsrmQuotaManager interface exposes methods for managing quota objects.

Methods in RPC Opnum Order

Method Description

ActionVariables (get) Opnum: 7

ActionVariableDescriptions (get) Opnum: 8

CreateQuota Opnum: 9

CreateAutoApplyQuota Opnum: 10

GetQuota Opnum: 11

GetAutoApplyQuota Opnum: 12

GetRestrictiveQuota Opnum: 13

EnumQuotas Opnum: 14

EnumAutoApplyQuotas Opnum: 15

EnumEffectiveQuotas Opnum: 16

Scan Opnum: 17

CreateQuotaCollection Opnum: 18

IsAffectedByQuota Opnum: 19

3.2.4.2.18.1 ActionVariables (get) (Opnum 7)

The ActionVariables (get) method returns the list of macro names (Quota Macros (section 3.2.4.3.1)
and General Macros (section 3.2.4.3.4)) that the FSRM protocol looks for when parsing action
properties.

 [propget, id(FSRM_PROPERTY (FSRM_DISPID_QUOTA_MANAGER | 0x01))] HRESULT ActionVariables(
 [out, retval] SAFEARRAY (VARIANT)* variables

185 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

);

variables: Pointer to a SAFEARRAY. Upon completion, variables contains a list of macros for action
settings that FSRM will replace with values specific to the event and the machine on which the
event occurred.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return
value/code Description

0x80070057

E_INVALIDARG

The variables parameter is NULL.

Upon receiving this message, the server MUST validate parameters:

 Verify that variables is not NULL.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

The server MUST populate variables with the list of macros (see Quota Macros (section 3.2.4.3.1) and

General Macros (section 3.2.4.3.1)).

3.2.4.2.18.2 ActionVariableDescriptions (get) (Opnum 8)

The ActionVariableDescriptions (get) method returns descriptions for the macros (Quota
Macros (section 3.2.4.3.1) and General Macros (section 3.2.4.3.4)) that are returned by the
ActionVariables (section 3.2.4.2.18.1) method.

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_QUOTA_MANAGER | 0x02))]
HRESULT ActionVariableDescriptions(

 [out, retval] SAFEARRAY (VARIANT)* descriptions
);

descriptions: A pointer to a SAFEARRAY that upon completion contains the descriptions for the
macros returned by ActionVariables.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return
value/code Description

0x80070057

E_INVALIDARG

The descriptions parameter is NULL.

Upon receiving this message, the server MUST validate parameters:

 Verify that descriptions is not NULL.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

The server MUST populate descriptions with the descriptions for the macros (see Quota

Macros (section 3.2.4.3.1) and General Macros (section 3.2.4.3.1)) returned by ActionVariables.

3.2.4.2.18.3 CreateQuota (Opnum 9)

186 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

The CreateQuota method creates a blank Non-Persisted Directory Quota Instance (section 3.2.1.2.1.2)
for the specified path.

 [id(FSRM_DISPID_QUOTA_MANAGER | 0x01)] HRESULT CreateQuota(
 [in] BSTR path,
 [out, retval] IFsrmQuota** quota
);

path: Contains the path of the local directory for the directory quota. The maximum length of this

string MUST be 260 characters.

quota: Pointer to an IFsrmQuota interface pointer (section 3.2.4.2.16) that upon completion points
to the newly created Non-Persisted Directory Quota Instance. To have the Non-Persisted Directory
Quota Instance added to the server's List of Persisted Directory Quota Instances (section
3.2.4.2.16.1), the caller MUST call Commit (section 3.2.4.2.10.5).

The caller MUST release the Non-Persisted Directory Quota Instance when the caller is done with

it.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return value/code Description

0x80045303

FSRM_E_ALREADY_EXISTS

The quota for the specified path already exists.

0x80070057

E_INVALIDARG

One of the quota parameters is NULL.

Upon receiving this message, the server MUST validate parameters:

 Verify that quota is not NULL.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

Upon successful validation of parameters, the server MUST perform the following actions.

 Create a new Non-Persisted Directory Quota Instance with the Folder path set to path.

 Set FSRM Base Object.Id to a GUID.

 Set Directory Quota.Folder path to an empty string.

 Set Quota limit to zero.

 Set Quota limit mode to Hard quota.

 Set Quota enable/disable to enable.

 Set Thresholds to empty set.

 Set Notifications to Hard quota.

 Set Template id to a GUID.

 Set Auto apply quota id to a GUID.

 Set Notification status to reset.

 Set Quota state to complete.

187 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 Set Quota usage to zero.

 Set Peak quota usage to zero.

 Set Peak quota usage time stamp to date in the distant past.

 Set quota to the IFsrmQuota interface of the new Non-Persisted Directory Quota Instance.

The new Non-Persisted Directory Quota Instance MUST NOT be associated with an existing Persisted
Directory Quota (section 3.2.1.2.1.1).

3.2.4.2.18.4 CreateAutoApplyQuota (Opnum 10)

The CreateAutoApplyQuota method creates a Non-Persisted Auto Apply Quota
Instance (section 3.2.1.2.2.2) for the specified path.

 [id(FSRM_DISPID_QUOTA_MANAGER | 0x02)] HRESULT CreateAutoApplyQuota(
 [in] BSTR quotaTemplateName,
 [in] BSTR path,
 [out, retval] IFsrmAutoApplyQuota** quota
);

quotaTemplateName: Contains the Name property of the directory quota template from which to
derive the auto apply quota. The maximum length of this string MUST be 4,000 characters.

path: Contains the path of the local directory for the auto apply quota. The maximum length of this

string MUST be 260 characters.

quota: Pointer to an IFsrmAutoApplyQuota interface pointer (section 3.2.4.2.17) that upon
completion points to the newly created Non-Persisted Auto Apply Quota Instance. To have the
Non-Persisted Auto Apply Quota Instance added to the server's List of Persisted Auto Apply
Quota Instances (section 3.2.1.2), the caller MUST call Commit (section 3.2.4.2.17.1).

The caller MUST release the Non-Persisted Auto Apply Quota Instance when the caller is done with

it.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return value/code Description

0x80045301

FSRM_E_NOT_FOUND

The specified auto apply quota could not be found.

0x80045303

FSRM_E_ALREADY_EXISTS

The auto apply quota for the specified path already exists.

0x80070057

E_INVALIDARG

One of the quota parameters is NULL.

Upon receiving this message, the server MUST validate parameters:

 Verify that quota is not NULL.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

Upon successful validation of parameters, the server MUST perform the following actions or return a
nonzero error code.

188 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 Create a new Non-Persisted Auto Apply Quota Instance with the properties of the named directory
quota template and the Folder path set to path.

 Set quota to the IFsrmAutoApplyQuota interface of the new Non-Persisted Auto Apply Quota
Instance.

The new Non-Persisted Auto Apply Quota Instance MUST NOT be associated with an existing Persisted
Auto Apply Quota (section 3.2.1.2.2.1).

If a directory quota template with the specified name does not exist, the server MUST return
FSRM_E_NOT_FOUND.

3.2.4.2.18.5 GetQuota (Opnum 11)

The GetQuota method returns the directory quota from the List of Persisted Directory Quotas

(section 3.2.1.2) for the specified path.

 [id(FSRM_DISPID_QUOTA_MANAGER | 0x03)] HRESULT GetQuota(
 [in] BSTR path,
 [out, retval] IFsrmQuota** quota
);

path: Contains the path to the requested directory quota.

quota: Pointer to an IFsrmQuota interface pointer (section 3.2.4.2.16) that upon completion points
to the directory quota for the specified path. The caller MUST release the quota when it is done
with it.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return value/code Description

0x80045301

FSRM_E_NOT_FOUND

The specified quota could not be found.

0x80045304

FSRM_E_PATH_NOT_FOUND

The quota for the specified path could not be found.

0x80045306

FSRM_E_INVALID_PATH

The content of the path parameter exceeds the maximum length of 4,000
characters.

0x80070057

E_INVALIDARG

This code is returned for the following reasons:

 The path parameter is NULL.

 The quota parameter is NULL.

Upon receiving this message, the server MUST validate parameters:

 Verify that quota is not NULL.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

Upon successful validation of parameters, the server MUST perform the following actions or return a
nonzero error code.

 Create a new Non-Persisted Directory Quota Instance and populate its configuration and state

data from the Persisted Directory Quota (section 3.2.1.2.1.1) in the List of Persisted Directory
Quotas with the specified path.

189 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 Set quota to the IFsrmQuota interface of the new Non-Persisted Directory Quota Instance.

If a directory quota does not exist for the specified path, the server MUST return

FSRM_E_NOT_FOUND.

3.2.4.2.18.6 GetAutoApplyQuota (Opnum 12)

The GetAutoApplyQuota method returns the auto apply quota from the List of Persisted Auto
Apply Quotas (section 3.2.1.2) for the specified path.

 [id(FSRM_DISPID_QUOTA_MANAGER | 0x04)] HRESULT GetAutoApplyQuota(
 [in] BSTR path,
 [out, retval] IFsrmAutoApplyQuota** quota
);

path: Contains the path to the requested auto apply quota.

quota: Pointer to an IFsrmAutoApplyQuota interface pointer (section 3.2.4.2.17) that upon
completion points to the auto apply quota for the specified path. The caller MUST release the

quota when it is done with it.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return value/code Description

0x80045301

FSRM_E_NOT_FOUND

The specified auto apply quota could not be found.

0x80045304

FSRM_E_PATH_NOT_FOUND

The auto apply quota for the specified path could not be found.

0x80045306

FSRM_E_INVALID_PATH

The content of the path parameter exceeds the maximum length of 260
characters.

0x80070057

E_INVALIDARG

This code is returned for the following reasons:

 The path parameter is NULL.

 The quota parameter is NULL.

Upon receiving this message, the server MUST validate parameters:

 Verify that quota is not NULL.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

Upon successful validation of parameters, the server MUST perform the following actions or return a

nonzero error code.

 Create a new Non-Persisted Auto Apply Quota Instance and populate its configuration and state
data from the Persisted Auto Apply Quota (section 3.2.1.2.2.1) in the List of Persisted Auto
Apply Quotas with the specified path.

 Set quota to the IFsrmAutoApplyQuota interface of the new Non-Persisted Auto Apply Quota
Instance.

If an auto apply quota does not exist for the specified path, the server MUST return

FSRM_E_NOTFOUND.

190 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

3.2.4.2.18.7 GetRestrictiveQuota (Opnum 13)

The GetRestrictiveQuota method returns the directory quota from the List of Persisted Directory
Quotas (section 3.2.1.2) with the lowest quota limit for the specified path.

 [id(FSRM_DISPID_QUOTA_MANAGER | 0x05)] HRESULT GetRestrictiveQuota(
 [in] BSTR path,
 [out, retval] IFsrmQuota** quota
);

path: Contains the path to return for the restrictive quota. The maximum length of this string MUST
be 260 characters.

quota: Pointer to an IFsrmQuota interface pointer (section 3.2.4.2.16) that upon completion points
to the most restrictive quota for the specified path. The caller MUST release the quota when it is
done with it.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return value/code Description

0x80045301

FSRM_E_NOT_FOUND

The specified quota could not be found.

0x80045304

FSRM_E_PATH_NOT_FOUND

The restrictive quota for the specified path could not be found.

0x80045306

FSRM_E_INVALID_PATH

The content of the path parameter exceeds the maximum length of 260
characters.

0x80070057

E_INVALIDARG

This code is returned for the following reasons:

 The path parameter is NULL.

 The quota parameter is NULL.

Upon receiving this message, the server MUST validate parameters:

 Verify that path is not NULL.

 Verify that quota is not NULL.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

Upon successful validation of parameters, the server MUST perform the following actions or return a
nonzero error code.

 Create a new Non-Persisted Directory Quota Instance and populate its configuration and state
data from the Persisted Directory Quota (section 3.2.1.2.1.1) that has the most restrictive quota

limit, in the List of Persisted Directory Quotas with the specified path.

 Set quota to the IFsrmQuota interface of the new Non-Persisted Directory Quota Instance.

If a directory quota does not exist for the specified path, the server MUST return FSRM_E_NOTFOUND.

3.2.4.2.18.8 EnumQuotas (Opnum 14)

The EnumQuotas method returns all the directory quotas from the List of Persisted Directory
Quotas (section 3.2.1.2) that fall under the specified path.

191 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 [id(FSRM_DISPID_QUOTA_MANAGER | 0x06)] HRESULT EnumQuotas(
 [in, defaultvalue(L"")] BSTR path,
 [in, defaultvalue(FsrmEnumOptions_None)]
 FsrmEnumOptions options,
 [out, retval] IFsrmCommittableCollection** quotas
);

path: Contains the path indicating the search location for quota numeration.

options: Contains the FsrmEnumOptions (section 2.2.1.2.5) to use when enumerating the quotas.

quotas: Pointer to an IFsrmCommittableCollection interface pointer (section 3.2.4.2.3) that upon

completion contains pointers to directory quotas belonging to the path specified based on the
wildcard characters specified in the path. The caller MUST release the collection when it is done
with it.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return value/code Description

0x80070057

E_INVALIDARG

The quotas parameter is NULL.

0x80045311

FSRM_E_NOT_SUPPORTED

The options parameter contains invalid FsrmEnumOptions (section
2.2.1.2.5) values.

Upon receiving this message, the server MUST validate parameters:

 If quotas is NULL, the server MUST return E_INVALIDARG.

 If options contains FsrmEnumOptions_Asynchronous or any value other than specified in
section 2.2.1.2.5, the server MUST return FSRM_E_NOT_SUPPORTED.

Upon successful validation of parameters, the server MUST perform all of the following actions or
return a nonzero error code:

 Create a List of Non-Persisted Directory Quota Instances (section 3.2.1.2) and populate it
with Non-Persisted Directory Quota Instances (section 3.2.1.2.1.2) copied from the Persisted

Directory Quotas (section 3.2.1.2.1.1) in the List of Persisted Directory Quotas, according to
the following rules:

 If path ends with "*", the server MUST populate the List of Non-Persisted Directory
Quota Instances with a copy of every Persisted Directory Quota from the List of Persisted
Directory Quotas that belongs to a subdirectory of path.

 If path ends with "\...", the server MUST populate the List of Non-Persisted Directory

Quota Instances with a copy of every Persisted Directory Quota from the List of Persisted
Directory Quotas that recursively belongs to a subdirectory of path.

 If path does not end with "*" or "\...", the server MUST populate the List of Non-Persisted

Directory Quota Instances with a copy of only the Persisted Directory Quota from the List
of Persisted Directory Quotas for path.

 If a Persisted Directory Quota does not exist for path, the server MUST return S_OK and set
quotas to an empty IFsrmCommittableCollection.

 After populating the List of Non-Persisted Directory Quota Instances, the server MUST
populate quotas with the IFsrmQuota interface pointer (section 3.2.4.2.16) of every Non-
Persisted Directory Quota Instance in the List of Non-Persisted Directory Quota Instances.

192 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

3.2.4.2.18.9 EnumAutoApplyQuotas (Opnum 15)

The EnumAutoApplyQuotas method returns all the auto apply quotas from the List of Persisted
Auto Apply Quotas (section 3.2.1.2) that fall under the specified path.

 [id(FSRM_DISPID_QUOTA_MANAGER | 0x07)] HRESULT EnumAutoApplyQuotas(
 [in, defaultvalue(L"")] BSTR path,
 [in, defaultvalue(FsrmEnumOptions_None)]
 FsrmEnumOptions options,
 [out, retval] IFsrmCommittableCollection** quotas
);

path: Contains the path indicating the search location for quota enumeration.

options: Contains the FsrmEnumOptions (section 2.2.1.2.5) to use when enumerating the quotas.

quotas: Pointer to an IFsrmCommittableCollection interface pointer (section 3.2.4.2.3) that upon
completion contains pointers to auto apply quotas belonging to the specified path based on the

wildcard specified in path. The caller MUST release the collection when it is done with it.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return value/code Description

0x80070057

E_INVALIDARG

The quotas parameter is NULL.

0x80045311

FSRM_E_NOT_SUPPORTED

The options parameter contains invalid FsrmEnumOptions (section
2.2.1.2.5) values.

Upon receiving this message, the server MUST validate parameters:

 If quotas is NULL, the server MUST return E_INVALIDARG.

 If options contains FsrmEnumOptions_Asynchronous or any value other than what is specified
in section 2.2.1.2.5, the server MUST return FSRM_E_NOT_SUPPORTED.

Upon successful validation of parameters, the server MUST perform all of the following actions:

 Create a List of Non-Persisted Auto Apply Quota Instances (section 3.2.1.2) and populate it
with Non-Persisted Auto Apply Quota Instances (section 3.2.1.2.2.2) copied from the Persisted
Auto Apply Quotas (section 3.2.1.2.2.1) in the List of Persisted Auto Apply Quotas, according
to the following rules:

 If path ends with "*", the server MUST populate the List of Non-Persisted Auto Apply
Quota Instances with a copy of every Persisted Auto Apply Quota from the List of

Persisted Auto Apply Quotas that belongs to a subdirectory of path.

 If path ends with "\...", the server MUST populate the List of Non-Persisted Auto Apply
Quota Instances with a copy of every Persisted Auto Apply Quota from the List of

Persisted Auto Apply Quotas that recursively belongs to a subdirectory of path.

 If path does not end with "*" or "\...", the server MUST populate the List of Non-Persisted
Auto Apply Quota Instances with a copy of only the Persisted Auto Apply Quota from the
List of Persisted Auto Apply Quotas for path.

 If a Persisted Auto Apply Quota does not exist for path, the server MUST return S_OK and set
quotas to an empty IFsrmCommittableCollection.

193 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 After populating the List of Non-Persisted Auto Apply Quota Instances, the server MUST
populate quotas with the IFsrmAutoApplyQuota interface pointer (section 3.2.4.2.17) of every

Non-Persisted Auto Apply Quota Instance in this List of Non-Persisted Auto Apply Quota
Instances.

3.2.4.2.18.10 EnumEffectiveQuotas (Opnum 16)

The EnumEffectiveQuotas method returns all the directory quotas from the List of Persisted
Directory Quotas (section 3.2.1.2) that affect the specified path.

 [id(FSRM_DISPID_QUOTA_MANAGER | 0x08)] HRESULT EnumEffectiveQuotas(
 [in] BSTR path,
 [in, defaultvalue(FsrmEnumOptions_None)]
 FsrmEnumOptions options,
 [out, retval] IFsrmCommittableCollection** quotas
);

path: Contains the path to return for the quotas. The maximum length of this string MUST be 260
characters.

options: Contains the FsrmEnumOptions (section 2.2.1.2.5) to use when enumerating the quotas.

quotas: Pointer to an IFsrmCommittableCollection interface pointer (section 3.2.4.2.3) that upon
completion contains pointers to every directory quota that affects the specified path. The caller
MUST release the collection when it is done with it.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return value/code Description

0x80070057

E_INVALIDARG

The quotas parameter is NULL.

0x80045311

FSRM_E_NOT_SUPPORTED

The options parameter contains invalid FsrmEnumOptions (section
2.2.1.2.5) values.

Upon receiving this message, the server MUST validate parameters:

 If quotas is NULL, the server MUST return E_INVALIDARG.

 If options contains FsrmEnumOptions_Asynchronous or any value other than what is specified
in section 2.2.1.2.5, the server MUST return FSRM_E_NOT_SUPPORTED.

Upon successful validation of parameters, the server MUST perform all of the following actions.

 Create a List of Non-Persisted Directory Quota Instances (section 3.2.1.2) and populate it

with Non-Persisted Directory Quota Instances (section 3.2.1.2.1.2) copied from the particular
Persisted Directory Quotas (section 3.2.1.2.1.1) in the List of Persisted Directory Quotas
whose Directory Quota.Folder path matches the specified path.

 If no Persisted Directory Quota affects the specified path, the server MUST return S_OK and set
quotas to an empty IFsrmCommittableCollection.

 After populating the List of Non-Persisted Directory Quota Instances, the server MUST
populate quotas with the IFsrmQuota interface pointer (section 3.2.4.2.16) of every Non-

Persisted Directory Quota Instance in the List of Non-Persisted Directory Quota Instances.

3.2.4.2.18.11 Scan (Opnum 17)

194 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

The Scan method starts a quota scan on the specified path.

 [id(FSRM_DISPID_QUOTA_MANAGER | 0x09)] HRESULT Scan(
 [in] BSTR strPath
);

strPath: Contains the path at which to start the quota scan. The maximum length of this string MUST
be 260 characters.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return value/code Description

0x80045301

FSRM_E_NOT_FOUND

A quota for the specified path could not be found.

0x80045306

FSRM_E_INVALID_PATH

The content of the strPath parameter exceeds the maximum length of 260
characters.

0x80070057

E_INVALIDARG

The strPath parameter is NULL or empty.

The server MUST search the List of Persisted Directory Quotas (section 3.2.1.2) for a Persisted
Directory Quota (section 3.2.1.2.1.1) with a Directory Quota.Folder path equal to strPath. If a
persisted directory quota is found, the server MUST start a quota scan (section 3.2.1.12.4) on the
persisted directory quota, or return a nonzero error code.

If a persisted directory quota does not exist for the path specified, the server MUST return

FSRM_E_NOT_FOUND. If a Persisted Directory Quota (section 3.2.1.2.1.1) exists for strPath and the
quota scan completes successfully, the server MUST return zero.

3.2.4.2.18.12 CreateQuotaCollection (Opnum 18)

The CreateQuotaCollection method creates an empty collection for callers to add quotas to.

 [id(FSRM_DISPID_QUOTA_MANAGER | 0x0A)] HRESULT CreateQuotaCollection(
 [out, retval] IFsrmCommittableCollection** collection
);

collection: Pointer to an IFsrmCommittableCollection interface pointer (section 3.2.4.2.3) that
upon completion points to an empty IFsrmCommittableCollection specific to quota objects. A
caller MUST release the collection received when it is done with it.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return
value/code Description

0x80070057

E_INVALIDARG

The collection parameter is NULL.

Upon receiving this message, the server MUST validate parameters:

 Verify that collection is not NULL.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

195 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

The server MUST create a new collection object and set collection to the new collection's
IFsrmCommittableCollection interface.

3.2.4.2.19 IFsrmQuotaManagerEx Methods

The IFsrmQuotaManagerEx interface exposes additional methods for managing quota objects.
IFsrmQuotaManagerEx implements methods for the IFsrmQuotaManager interface (section
3.2.4.2.18).

Methods in RPC Opnum Order

Method Description

IsAffectedByQuota Opnum: 19

3.2.4.2.19.1 IsAffectedByQuota (Opnum 19)

The IsAffectedByQuota method retrieves a value that determines whether a specified path is subject

to a Persisted Directory Quota (section 3.2.1.2.1.1).

 [id(FSRM_DISPID_QUOTA_MANAGER_EX | 0x01), helpstring("This method is used to check whether a
given path is subject to quota")] HRESULT IsAffectedByQuota(

 [in] BSTR path,
 [in, defaultvalue(FsrmEnumOptions_None)]
 FsrmEnumOptions options,
 [out, retval] VARIANT_BOOL* affected
);

path: The local directory path to determine whether a Persisted Directory Quota applies. The

maximum length of this string MUST be 260 characters.

options: The options to use when checking for a Persisted Directory Quota. For possible values, see
the FsrmEnumOptions (section 2.2.1.2.5) enumeration. It is ignored on receipt.

affected: Pointer to a Boolean variable that returns whether a specified path is subject to a Persisted
Directory Quota.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return
value/code Description

0x80070057

E_INVALIDARG

This code is returned for the following reasons:

 The affected parameter is NULL.

 The options parameter is not a valid FsrmEnumOptions (section 2.2.1.2.5) value.

0x80004003

E_POINTER

The path parameter is NULL.

Upon receiving this message, the server MUST validate parameters:

 Verify that path is not NULL.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

196 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

The server MUST set affected to VARIANT_TRUE if the Directory Quota.Folder path referred to by the
path parameter has quota enable/disable set to enabled; otherwise, affected is set to

VARIANT_FALSE.

3.2.4.2.20 IFsrmQuotaTemplate Methods

The IFsrmQuotaTemplate interface exposes methods for configuring templates that describe quota
objects. IFsrmQuotaTemplate implements methods for the IFsrmObject (section 3.2.4.2.10) and
IFsrmQuotaBase (section 3.2.4.2.14) interfaces, as well as those listed in the following table.

Each instance of IFsrmQuotaTemplate is associated with one Non-Persisted Directory Quota
Template Instance (section 3.2.1.2.3.2).

Methods in RPC Opnum Order

Method Description

Commit Opnum: 11

QuotaFlags (put) Opnum: 15

Name (get) Opnum: 22

Name (put) Opnum: 23

CopyTemplate Opnum: 24

CommitAndUpdateDerived Opnum: 25

3.2.4.2.20.1 Commit (Opnum 11)

The Commit method is implemented as one of the methods for the IFsrmObject interface (section

3.2.4.2.10). This method has the behavior specified in sections 3.2.4.2.10.5 and 3.2.4.2.14.1 with the
following additions:

 If quota limit is zero, the server MUST return E_INVALIDARG.

 If the FSRM Base Object.Deleted property is set to true for this Non-Persisted Directory Quota
Template Instance (section 3.2.1.2.3.2), the server MUST remove the Persisted Directory Quota

Template (section 3.2.1.2.3.1) from the List of Persisted Directory Quota Templates (section
3.2.1.2), which has the same Directory Quota.Folder path property as this Non-Persisted
Directory Quota Template Instance, if one exists. This removal MUST occur even if other changes
are made to the configuration of the Non-Persisted Directory Quota Template Instance. If there is
no Persisted Directory Quota Template (section 3.2.1.2.3.1) from the List of Persisted Directory
Quota Templates (section 3.2.1.2), which has the same Directory Quota.Folder path property

as this Non-Persisted Directory Quota Template Instance (section 3.2.1.2.3.2) being deleted, the
server does not perform any action and MUST return zero. The server MUST return a nonzero
error code if removal fails.

 If the FSRM Base Object.Deleted property is set to false for this Non-Persisted Directory Quota
Template Instance, the server MUST update the configuration data of the Persisted Directory
Quota Template in the List of Persisted Directory Quota Templates that has the same
Directory Quota.Folder path property as this Non-Persisted Directory Quota Template Instance,

if one exists, with the configuration data from this instance, or return a nonzero error code.

 If a Persisted Directory Quota Template does not exist with the same Directory Quota.Folder
path, and FSRM Base Object.Deleted is set to false, the server MUST create a new Persisted
Directory Quota Template, populate its configuration from this Non-Persisted Directory Quota

197 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Template Instance, and add the new Persisted Directory Quota Template to the List of Persisted
Directory Quota Templates.

To update or populate the configuration data from a Non-Persisted Directory Quota Template Instance
to a Persisted Directory Quota Template, the server MUST assign the values of all the properties listed

below, of the Non-Persisted Directory Quota Template Instance to the corresponding properties of the
Persisted Directory Quota Template.

 FSRM Base Object.Description

 Directory Quota Template.Name

 Quota limit

 Quota limit mode

 Quota enable/disable

 Thresholds

 Notifications (Actions). For each notification in the list, the server MUST assign the values of all
properties that apply to the notification, depending on the type of action. See section 3.2.1.4 for
details on the possible action types and the set of notification properties maintained for each type
of action.

3.2.4.2.20.2 QuotaFlags (put) (Opnum 15)

The QuotaFlags (put) method is implemented as one of the methods derived from the
IFsrmQuotaObject interface (section 3.2.4.2.15). This method is implemented with the same
behavior as described in IFsrmQuotaBase::QuotaFlags (put) (section 3.2.4.2.14.5), and with the
following additional behavior:

 If quotaFlags contains FsrmQuotaFlags_Disable, the server MUST return E_INVALIDARG.

3.2.4.2.20.3 Name (get) (Opnum 22)

The Name (get) method returns the name of the quota template.

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_QUOTA_TEMPLATE | 0x01))] HRESULT Name(
 [out, retval] BSTR* name
);

name: A pointer to a variable that upon completion contains the name of the quota template.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return
value/code Description

0x80070057

E_INVALIDARG

This code is returned for the following reasons:

 The name parameter is NULL.

 The name parameter contains non-valid characters or is NULL. The following are
considered invalid characters: comma (,), single quote ('), double quote ("), vertical
bar (|).

Upon receiving this message, the server MUST validate parameters:

198 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 Verify that name is not NULL.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

The server MUST set name to the Directory Quota Template.Name of the quota template.

3.2.4.2.20.4 Name (put) (Opnum 23)

The Name (put) method sets the name of the quota template.

 [propput, id(FSRM_PROPERTY(FSRM_DISPID_QUOTA_TEMPLATE | 0x01))] HRESULT Name(
 [in] BSTR name
);

name: Contains the name for the quota template to use. This string MUST NOT contain illegal name

characters (section 3.2.4.2).

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return value/code Description

0x8004530D

FSRM_E_OUT_OF_RANGE

The content of the name parameter exceeds the maximum length of 4,000

characters.

0x80070057

E_INVALIDARG

This code is returned for the following reasons:

 The name parameter is not a valid value.

 The name parameter contains non-valid characters or is NULL. The
following are considered invalid characters: comma (,), single quote ('),
double quote ("), vertical bar (|).

The server MUST validate name to be a unique case-insensitive Unicode string; otherwise, return

E_INVALIDARG.

The server MUST use name as the Directory Quota Template.Name for the quota template or
return a nonzero error code.

3.2.4.2.20.5 CopyTemplate (Opnum 24)

The CopyTemplate method copies the properties of the specified template to this template.

 [id(FSRM_DISPID_QUOTA_TEMPLATE | 0x01)] HRESULT CopyTemplate(
 [in] BSTR quotaTemplateName
);

quotaTemplateName: Contains the name of the quota template from which to copy property
values.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return value/code Description

0x80045301

FSRM_E_NOT_FOUND

The specified template could not be found.

0x80045308 The specified name is not valid.

199 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Return value/code Description

FSRM_E_INVALID_NAME

0x8004530D

FSRM_E_OUT_OF_RANGE

The content of the quotaTemplateName parameter exceeds the maximum length
of 4,000 characters.

The server MUST copy the properties of quotaTemplateName to this quota template or return a
nonzero error code.

If no quota template exists with the specified name, the server MUST return FSRM_E_NOT_FOUND.

3.2.4.2.20.6 CommitAndUpdateDerived (Opnum 25)

The CommitAndUpdateDerived method commits the quota template and applies the template's
changes to the quota objects derived from this template.

 [id(FSRM_DISPID_QUOTA_TEMPLATE | 0x02)] HRESULT CommitAndUpdateDerived(
 [in] FsrmCommitOptions commitOptions,
 [in] FsrmTemplateApplyOptions applyOptions,
 [out, retval] IFsrmDerivedObjectsResult** derivedObjectsResult
);

commitOptions: Contains the commit options to use when committing the collection of derived
objects.

applyOptions: Contains the apply options to use when building the collection of derived objects.

derivedObjectsResult: Pointer to an IFsrmDerivedObjectsResult interface pointer (section
3.2.4.2.13) that upon completion, points to a derived objects result interface for the derived

objects that have been updated by this method. A caller MUST release the collection received
when the caller is done with the collection.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return value/code Description

0x80045311

E_FSRM_E_NOT_SUPPORTED

The commitOptions parameter contains invalid
FsrmCommitOptions (section 2.2.1.2.6) values.

0x80070057

E_INVALIDARG

The derivedObjectsResult parameter is NULL.

Upon receiving this message, the server MUST validate parameters:

 If CommitOptions contains FsrmCommitOptions_Asynchronous or any value other than what
is specified in section 2.2.1.2.6, the server MUST return FSRM_E_NOT_SUPPORTED.

 If derivedObjectsResult is NULL, the server MUST return E_INVALIDARG.

The server MUST commit the quota template and apply the template's new properties to the collection
of derived objects based on applyOptions or return a nonzero error code.

If applyOptions equals FsrmTemplateApplyOptions_ApplyToDerivedAll, the server MUST update
derivedObjectsResult with all quota objects that were derived from this template.

If applyOptions equals FsrmTemplateApplyOptions_ApplyToDerivedMatching, the server MUST
update derivedObjectsResult with only those quota objects that were derived from this template
and whose properties still match this template.

200 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

3.2.4.2.21 IFsrmQuotaTemplateImported Methods

The IFsrmQuotaTemplateImported interface exposes methods for configuring imported quota
template objects. IFsrmQuotaTemplateImported implements methods for the IFsrmObject

(section 3.2.4.2.10), IFsrmQuotaBase (section 3.2.4.2.14), and IFsrmQuotaTemplate (section
3.2.4.2.20) interfaces, as well as those listed in the following table.

Each instance of IFsrmQuotaTemplateImported is associated with one Non-Persisted Directory
Quota Template Instance (section 3.2.1.2.3.2).

Methods in RPC Opnum Order

Method Description

OverwriteOnCommit (get) Opnum: 16

OverwriteOnCommit (put) Opnum: 17

3.2.4.2.21.1 OverwriteOnCommit (get) (Opnum 16)

The OverwriteOnCommit (get) method returns the overwrite on commit property of the imported
quota template.

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_QUOTA_TEMPLATE_IMPORTED | 0x01))]
HRESULT OverwriteOnCommit(

 [out, retval] VARIANT_BOOL* overwrite
);

overwrite: Pointer to a variable that upon completion contains the overwrite on commit property of

the imported quota template.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return
value/code Description

0x80070057

E_INVALIDARG

The overwrite parameter is NULL.

Upon receiving this message, the server MUST validate parameters:

 Verify that overwrite is not NULL.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

The server MUST set overwrite to the Directory Quota Template.Overwrite on commit property of the
imported quota template.

3.2.4.2.21.2 OverwriteOnCommit (put) (Opnum 17)

The OverwriteOnCommit (put) method sets the overwrite on commit property of the imported quota
template.

 [propput, id(FSRM_PROPERTY(FSRM_DISPID_QUOTA_TEMPLATE_IMPORTED | 0x01))]
HRESULT OverwriteOnCommit(

 [in] VARIANT_BOOL overwrite

201 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

);

overwrite: Contains the overwrite on commit property of the imported quota template.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return
value/code Description

0x80070057

E_INVALIDARG

The overwrite parameter is NULL.

The server MUST use overwrite as the Directory Quota Template.Overwrite on commit property of the
imported quota template or return a nonzero error code.

If a quota template exists on the server with the same name as this quota template, then to overwrite
its existing quota template with this imported template, the server MUST set overwrite to

VARIANT_TRUE; otherwise, overwrite is set to VARIANT_FALSE.

3.2.4.2.22 IFsrmQuotaTemplateManager Methods

The IFsrmQuotaTemplateManager interface exposes methods for managing quota template
objects.

Methods in RPC Opnum Order

Method Description

CreateTemplate Opnum: 7

GetTemplate Opnum: 8

EnumTemplates Opnum: 9

ExportTemplates Opnum: 10

ImportTemplates Opnum: 11

3.2.4.2.22.1 CreateTemplate (Opnum 7)

The CreateTemplate method creates a blank Non-Persisted Directory Quota Template
Instance (section 3.2.1.2.3.2).

 [id(FSRM_DISPID_QUOTA_TEMPLATE_MANAGER | 0x01)] HRESULT CreateTemplate(
 [out, retval] IFsrmQuotaTemplate** quotaTemplate
);

quotaTemplate: Pointer to an IFsrmQuotaTemplate interface pointer (section 3.2.4.2.20) that
upon completion points to a blank directory quota template. The caller MUST release the
template when it is done with it.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

202 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Return
value/code Description

0x80070057

E_INVALIDARG

The quotaTemplate parameter is NULL.

Upon receiving this message, the server MUST validate parameters:

 Verify that quotaTemplate is not NULL.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

Upon successful validation of parameters, the server MUST perform the following actions.

 Create a new Non-Persisted Directory Quota Template Instance.

 Set FSRM Base Object.Id to a GUID.

 Set Directory Quota Template.Name to an empty string.

 Set Directory Quota.Folder path to an empty string.

 Set Quota limit to zero.

 Set Quota limit mode to Hard quota.

 Set Quota enable/disable to enable.

 Set Thresholds to empty set.

 Set Notifications to Hard quota.

 Set Template id to a GUID.

 Set Auto apply quota id to a GUID.

 Set Notification status to reset.

 Set Quota state to complete.

 Set Quota usage to zero.

 Set Peak quota usage to zero.

 Set Peak quota usage time stamp to a date in the distant past.

 Set quotaTemplate to the IFsrmQuotaTemplate interface pointer (section 3.2.4.2.20) for the
new Non-Persisted Directory Quota Template Instance.

The new Non-Persisted Directory Quota Template Instance MUST NOT be associated with an existing
Persisted Directory Quota Template (section 3.2.1.2.3.1).

3.2.4.2.22.2 GetTemplate (Opnum 8)

The GetTemplate method returns a pointer to the directory quota template from the List of
Persisted Directory Quota Templates (section 3.2.1.2) with the specified Name property value.

 [id(FSRM_DISPID_QUOTA_TEMPLATE_MANAGER | 0x02)] HRESULT GetTemplate(
 [in, defaultvalue(L"")] BSTR name,
 [out, retval] IFsrmQuotaTemplate** quotaTemplate
);

203 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

name: Contains the Name property of the directory quota template to return.

quotaTemplate: Pointer to an IFsrmQuotaTemplate interface pointer (section 3.2.4.2.20) that

upon completion points to the directory quota template with the specified Name. The caller MUST
release the quota template when it is done with it.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return value/code Description

0x80045301

FSRM_E_NOT_FOUND

The specified quota template could not be found.

0x80045308

FSRM_E_INVALID_NAME

The specified name is not valid.

0x8004530D

FSRM_E_OUT_OF_RANGE

The content of the name parameter exceeds the maximum length of 4,000
characters.

0x80070057

E_INVALIDARG

The quotaTemplate parameter is NULL.

Upon receiving this message, the server MUST validate parameters:

 Verify that quotaTemplate is not NULL.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

Upon successful validation of parameters, the server MUST perform the following actions or return a
nonzero error code.

 Create a new Non-Persisted Directory Quota Template Instance (section 3.2.1.2.3.2).

 Populate the configuration data of the newly created instance from the Persisted Directory Quota

Template (section 3.2.1.2.3.1) in the List of Persisted Directory Quota Templates with the
specified Name.

 Set quotaTemplate to the IFsrmQuotaTemplate interface pointer of the newly created Non-
Persisted Directory Quota Template Instance.

If a Persisted Directory Quota Template with the specified Name does not exist, the server MUST

return FSRM_E_NOT_FOUND.

3.2.4.2.22.3 EnumTemplates (Opnum 9)

The EnumTemplates method returns all the directory quota templates from the List of Persisted
Directory Quota Templates (section 3.2.1.2) of the server.

 [id(FSRM_DISPID_QUOTA_TEMPLATE_MANAGER | 0x03)] HRESULT EnumTemplates(
 [in, defaultvalue(FsrmEnumOptions_None)]
 FsrmEnumOptions options,
 [out, retval] IFsrmCommittableCollection** quotaTemplates
);

options: Contains the FsrmEnumOptions (section 2.2.1.2.5) to use when enumerating the directory
quota templates.

204 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

quotaTemplates: Pointer to an IFsrmCommittableCollection interface pointer (section 3.2.4.2.3)
that upon completion contains pointers to every directory quota template on the server. The caller

MUST release the collection when it is done with it.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return value/code Description

0x80045311

FSRM_E_NOT_SUPPORTED

The options parameter contains invalid FsrmEnumOptions (section 2.2.1.2.5)
values.

0x80070057

E_INVALIDARG

The quotaTemplate parameter is NULL.

Upon receiving this message, the server MUST validate parameters:

 If quotaTemplates is NULL, the server MUST return E_INVALIDARG.

 If options contains FsrmEnumOptions_Asynchronous or any value other than what is specified
in section 2.2.1.2.5, the server MUST return FSRM_E_NOT_SUPPORTED.

Upon successful validation of parameters, the server MUST perform the following actions:

 Create a List of Non-Persisted Directory Quota Template Instances (section 3.2.1.2.

 Populate the newly created instances list with Non-Persisted Directory Quota Template
Instances (section 3.2.1.2.3.2) copied from every Persisted Directory Quota
Templates (section 3.2.1.2.3.1) in the List of Persisted Directory Quota Templates.

 Populate quotaTemplate with the IFsrmQuotaTemplate interface pointer (section 3.2.4.2.20) of
every Non-Persisted Directory Quota Template Instance in this List of Non-Persisted Directory

Quota Template Instances.

3.2.4.2.22.4 ExportTemplates (Opnum 10)

The ExportTemplates method exports an XML string representation of FSRM directory quota
templates from the List of Persisted Directory Quota Templates (section 3.2.1.2).

 [id(FSRM_DISPID_QUOTA_TEMPLATE_MANAGER | 0x04)] HRESULT ExportTemplates(
 [in, defaultvalue(NULL)] VARIANT* quotaTemplateNamesArray,
 [out, retval] BSTR* serializedQuotaTemplates
);

quotaTemplateNamesArray: Pointer to a SAFEARRAY that contains the names of quota templates
to export.

serializedQuotaTemplates: Pointer to a variable that upon completion contains the XML string
representation of all the specified quotas.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return value/code Description

0x80045301

FSRM_E_NOT_FOUND

The specified template could not be found.

0x80070057

E_INVALIDARG

This code is returned for the following reasons:

205 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Return value/code Description

 The serializedQuotaTemplates parameter is NULL.

 The quotaTemplateNamesArray does not contain strings.

Upon receiving this message, the server MUST validate parameters:

 Verify that serializedQuotaTemplates is not NULL.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

Upon successful validation of parameters, the server MUST perform one of the following actions.

 If quotaTemplateNamesArray is NULL, the server MUST return the XML string representation of all

Persisted Directory Quota Templates (section 3.2.1.2.3.1).

 If quotaTemplateNamesArray is not NULL, the server MUST return the XML string representation

of only those Persisted Directory Quota Templates that are specified in
quotaTemplateNamesArray.

3.2.4.2.22.5 ImportTemplates (Opnum 11)

The ImportTemplates method imports directory quota templates from the XML string of directory
quota templates.

 [id(FSRM_DISPID_QUOTA_TEMPLATE_MANAGER | 0x05)] HRESULT ImportTemplates(
 [in] BSTR serializedQuotaTemplates,
 [in, defaultvalue(NULL)] VARIANT* quotaTemplateNamesArray,
 [out, retval] IFsrmCommittableCollection** quotaTemplates
);

serializedQuotaTemplates: Contains the XML string representation of a list of quotaTemplates.

There is no maximum length for this string.

quotaTemplateNamesArray: Pointer to a SAFEARRAY that contains the names of quotaTemplates to
import.

quotaTemplates: Pointer to an IFsrmCommittableCollection interface pointer (section 3.2.4.2.3)
that upon completion contains IFsrmQuotaTemplate interface pointers (section 3.2.4.2.20) for
each of the imported quotaTemplates. The caller MUST release the collection when it is done with
it.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return value/code Description

0x80045301

FSRM_E_NOT_FOUND

The specified template could not be found.

0x8004530B

FSRM_E_INVALID_IMPORT_VERSION

The version of the XML string representation used is not consistent
with the schema defined for templates.

0x80070057

E_INVALIDARG

This code is returned for the following reasons:

 The quotaTemplates parameter is NULL.

 The serializedQuotaTemplates parameter is NULL.

206 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Return value/code Description

 The quotaTemplateNamesArray parameter does not contain
strings.

Upon receiving this message, the server MUST validate parameters:

 Verify that quotaTemplates is not NULL or empty.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

Upon successful validation of parameters, the server MUST perform one of the following actions.

 If quotaTemplateNamesArray is NULL, the server MUST create new Non-Persisted Directory Quota

Template Instances (section 3.2.1.2.3.2) for each template in the XML string, and populate
quotaTemplates with the IFsrmQuotaTemplate interface pointers for those templates.

 If quotaTemplateNamesArray is not NULL, the server MUST create new Non-Persisted Directory

Quota Template Instances for each template in the XML string whose Name properties are
included in the quotaTemplateNamesArray, and populate quotaTemplates with the
IFsrmQuotaTemplate interface pointers for those templates.

3.2.4.2.23 IFsrmFileGroup Methods

The IFsrmFileGroup interface exposes methods for configuring file group objects. IFsrmFileGroup
implements methods for the IFsrmObject interface (section 3.2.4.2.10), as well as those listed in the
following table.

Each instance of a IFsrmFileGroup is associated with one Non-Persisted File Group
Instance (section 3.2.1.3.4.2).

Methods in RPC Opnum Order

Method Description

Commit Opnum: 11

Name (get) Opnum: 12

Name (put) Opnum: 13

Members (get) Opnum: 14

Members (put) Opnum: 15

NonMembers (get) Opnum: 16

NonMembers (put) Opnum: 17

3.2.4.2.23.1 Commit (Opnum 11)

The Commit method is implemented as one of the methods for the IFsrmObject interface (section
3.2.4.2.10). This method has the behavior specified in section 3.2.4.2.10.5, with the following
additions:

 If FileGroup.Name is an empty string, the server MUST return FSRM_E_INVALID_NAME.

 If Members is an empty list, the server MUST return FSRM_E_INVALID_FILEGROUP_DEFINITION.

207 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 If FSRM Base Object.Deleted is set to true for this Non-Persisted File Group
Instance (section 3.2.1.3.4.2), the server MUST remove the Persisted File

Group (section 3.2.1.3.4.1) from the List of Persisted File Groups that has the same File
Group.Name as this Non-Persisted File Group Instance, if one exists. This removal MUST occur

even if other changes were made to the configuration of the Non-Persisted File Group Instance. If
there is no Persisted File Group in the List of Persisted File Groups that has the same File
Group.Name as this Non-Persisted File Group Instance being deleted, the server does not
perform any action and MUST return zero. The server MUST return a nonzero error code if removal
fails.

 If FSRM Base Object.Deleted is set to false for this Non-Persisted File Group Instance, the
server MUST update the configuration data of the Persisted File Group in the List of Persisted

File Groups that has the same File Group.Name as this Non-Persisted File Group Instance, if
one exists, with the configuration data from this instance, or return a nonzero error code.

 If a Persisted File Group (section 3.2.1.3.4.1) exists on the server with the same name as the
imported file group and its File Group.Overwrite on commit property is set to true, the existing
Persisted File Group is overwritten with the imported file group.

 If a Persisted File Group does not exist with the same File Group.Name and FSRM Base

Object.Deleted is set to false, the server MUST perform the following actions:

 Create a new Persisted File Group.

 Populate its configuration with the configuration from this Non-Persisted File Group Instance.

 Add the new Persisted File Group to the List of Persisted File Groups.

To update or populate the configuration data from a Non-Persisted File Group Instance to a Persisted
File Group, the server MUST assign the values of all the properties of the Non-Persisted File Group
Instance to the corresponding properties of the Persisted File Group. See section 3.2.1.3.4 for the list

of File Group properties.

3.2.4.2.23.2 Name (get) (Opnum 12)

The Name (get) method returns the name of the file group.

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_FILEGROUP | 0x01))] HRESULT Name(
 [out, retval] BSTR* name
);

name: A pointer to a variable that upon completion contains the name of the file group.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return
value/code Description

0x80004003

E_POINTER

The name parameter is NULL.

0x80070057

E_INVALIDARG

The name parameter contains non-valid characters or is NULL. The following are considered
invalid characters: comma (,), single quote ('), double quote ("), vertical bar (|).

Upon receiving this message, the server MUST validate parameters:

 Verify that name is not NULL.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

208 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

The server MUST set name to the File Group.Name of the file group.

3.2.4.2.23.3 Name (put) (Opnum 13)

The Name (put) method sets the name of the file group.

 [propput, id(FSRM_PROPERTY(FSRM_DISPID_FILEGROUP | 0x01))] HRESULT Name(
 [in] BSTR name
);

name: Contains the name for the file group to use. This string MUST NOT contain illegal name
characters (section 3.2.4.2). The maximum length of this string MUST be 4,000 characters.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return value/code Description

0x8004530D

FSRM_E_OUT_OF_RANGE

The content of the name parameter exceeds the maximum length of 4,000
characters.

0x80004003

E_POINTER

The name parameter is NULL.

0x80070057

E_INVALIDARG

The name parameter contains non-valid characters or is NULL. The following
are considered invalid characters: comma (,), single quote ('), double quote ("),
vertical bar (|).

The server MUST use name as the File Group.Name for the file group or return a nonzero error code.

3.2.4.2.23.4 Members (get) (Opnum 14)

The Members (get) method returns members of the file group.

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_FILEGROUP | 0x02))] HRESULT Members(
 [out, retval] IFsrmMutableCollection** members
);

members: Pointer to an IFsrmMutableCollection interface pointer (section 3.2.4.2.2) that upon

completion contains a list of all the file groups that are members of the file group. A caller MUST
release the collection received when it is done with it.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return
value/code Description

0x80070057

E_INVALIDARG

This code is returned for the following reasons:

 The members parameter is NULL.

 The members parameter contains non-valid characters or is NULL. The following are
considered invalid characters: comma (,), single quote ('), double quote ("), vertical
bar (|).

Upon receiving this message, the server MUST validate parameters:

 Verify that members is not NULL.

209 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

If any validation fails, the server MUST terminate processing and return a nonzero error code.

The server MUST populate members with the list of file name patterns that are members of the file

group.

3.2.4.2.23.5 Members (put) (Opnum 15)

The Members (put) method sets the members of the file group. Members are file name patterns
that need to be considered part of the group.

 [propput, id(FSRM_PROPERTY(FSRM_DISPID_FILEGROUP | 0x02))] HRESULT Members(
 [in] IFsrmMutableCollection* members
);

members: Contains an IFsrmMutableCollection populated with file name patterns to use as file
group members. Each pattern MUST NOT contain illegal pattern characters (section 3.2.4.2). The
maximum length for each pattern is 260 characters.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return value/code Description

0x8004530A

FSRM_E_INVALID_TEXT

One of the specified members contains an empty string.

0x80070057

E_INVALIDARG

This code is returned for the following reasons:

 The members parameter is NULL.

 The members parameter contains non-valid characters or is NULL. The
following are considered invalid characters: comma (,), single quote ('),
double quote ("), vertical bar (|).

 The variant is not a valid variant type. If the variant type is not VT_BSTR, the
variant is an invalid type.

The server MUST use the file name patterns in members as members of the file group or return a
nonzero error code.

3.2.4.2.23.6 NonMembers (get) (Opnum 16)

The NonMembers (get) method returns the non-members of the file group.

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_FILEGROUP | 0x03))] HRESULT NonMembers(
 [out, retval] IFsrmMutableCollection** nonMembers
);

nonMembers: Pointer to an IFsrmMutableCollection interface pointer (section 3.2.4.2.2) that upon

completion contains a list of all the file name patterns that are non-members of the file group.
A caller MUST release the collection received when it is done with it.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return
value/code Description

0x80070057 This code is returned for the following reasons:

210 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Return
value/code Description

E_INVALIDARG
 The nonMembers parameter is NULL.

 The nonMembers parameter contains non-valid characters or is NULL. The following
are considered invalid characters: comma (,), single quote ('), double quote ("),
vertical bar (|).

Upon receiving this message, the server MUST validate parameters:

 Verify that nonMembers is not NULL.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

The server MUST populate nonMembers with the list of file name patterns that are non-members of

the file group.

3.2.4.2.23.7 NonMembers (put) (Opnum 17)

The NonMembers (put) method sets the non-members of the file group. Non-members are file
name patterns that MUST NOT be considered part of the group.

 [propput, id(FSRM_PROPERTY(FSRM_DISPID_FILEGROUP | 0x03))] HRESULT NonMembers(
 [in] IFsrmMutableCollection* nonMembers
);

nonMembers: Contains an IFsrmMutableCollection populated with file name patterns to use as file
group non-members. Each pattern MUST NOT contain illegal pattern characters (section 3.2.4.2).
The maximum length for each pattern is 260 characters.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return value/code Description

0x8004530A

FSRM_E_INVALID_TEXT

One of the specified non-members contains an empty string.

0x80070057

E_INVALIDARG

This code is returned for the following reasons:

 The nonMembers parameter is NULL.

 The nonMembers parameter contains non-valid characters or is NULL. The

following are considered invalid characters: comma (,), single quote ('),
double quote ("), vertical bar (|).

The server MUST use the file name patterns in nonmembers as non-members for the file group or
return a nonzero error code.

3.2.4.2.24 IFsrmFileGroupImported Methods

The IFsrmFileGroupImported interface exposes methods for configuring imported file group

objects. IFsrmFileGroupImported implements methods for the IFsrmObject (section 3.2.4.2.10)
and IFsrmFileGroup (section 3.2.4.2.23) interfaces, as well as those listed in the following table.

Methods in RPC Opnum Order

211 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Method Description

OverwriteOnCommit (get) Opnum: 18

OverwriteOnCommit (put) Opnum: 19

3.2.4.2.24.1 OverwriteOnCommit (get) (Opnum 18)

The OverwriteOnCommit (get) method returns the overwrite on commit property of the imported file
group.

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_FILEGROUP_IMPORTED | 0x01))]
HRESULT OverwriteOnCommit(

 [out, retval] VARIANT_BOOL* overwrite
);

overwrite: Pointer to a variable that upon completion contains the overwrite on commit property of
the imported file group.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return
value/code Description

0x80070057

E_INVALIDARG

The overwrite parameter is NULL.

Upon receiving this message, the server MUST validate parameters:

 Verify that overwrite is not NULL.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

The server MUST set overwrite to the File Group.Overwrite on commit property of the imported file
group.

3.2.4.2.24.2 OverwriteOnCommit (put) (Opnum 19)

The OverwriteOnCommit (put) method sets the overwrite-on-commit property of the imported file

group.

 [propput, id(FSRM_PROPERTY(FSRM_DISPID_FILEGROUP_IMPORTED | 0x01))]
HRESULT OverwriteOnCommit(

 [in] VARIANT_BOOL overwrite
);

overwrite: Contains the overwrite-on-commit property of the imported file group.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return
value/code Description

0x80070057

E_INVALIDARG

The overwrite parameter is NULL.

212 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

The server MUST use overwrite as the File Group.Overwrite on commit property of the imported file
group or return a nonzero error code.

The server MUST set overwrite to the value VARIANT_TRUE if the File Group.Overwrite on commit
property of the imported file group is true; otherwise, overwrite is set to VARIANT_FALSE.

3.2.4.2.25 IFsrmFileGroupManager Methods

The IFsrmFileGroupManager interface exposes methods for managing file group objects.

Methods in RPC Opnum Order

Method Description

CreateFileGroup Opnum: 7

GetFileGroup Opnum: 8

EnumFileGroups Opnum: 9

ExportFileGroups Opnum: 10

ImportFileGroups Opnum: 11

3.2.4.2.25.1 CreateFileGroup (Opnum 7)

The CreateFileGroup method creates a blank Non-Persisted File Group Instance (section 3.2.1.3.4.2).

 [id(FSRM_DISPID_FILEGROUP_MANAGER | 0x01)] HRESULT CreateFileGroup(
 [out, retval] IFsrmFileGroup** fileGroup
);

fileGroup: Pointer to an IFsrmFileGroup interface pointer (section 3.2.4.2.23) that upon completion
points to a blank file group. To have the server add the file group to its List of Persisted File
Groups (section 3.2.1.3), the caller MUST call Commit (section 3.2.4.2.23.1) on the file group.
The caller MUST release the file group received when it is done with it.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return
value/code Description

0x80070057

E_INVALIDARG

The fileGroup parameter is NULL.

Upon receiving this message, the server MUST validate parameters:

 Verify that fileGroup is not NULL.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

Upon successful validation of parameters, the server MUST perform the following actions.

 Create a new Non-Persisted File Group Instance.

 Set FSRM Base Object.Id to a globally unique identifier.

213 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 Set File Group.Name to an empty string.

 Set Members to an empty list.

 Set Non-members to an empty list.

 Set fileGroup to the IFsrmFileGroup interface pointer for the newly created instance.

The new Non-Persisted File Group Instance MUST NOT be associated with an existing Persisted File
Group (section 3.2.1.3.4.1).

3.2.4.2.25.2 GetFileGroup (Opnum 8)

The GetFileGroup method returns a pointer to the file group with the specified Name property from
the List of Persisted File Groups (section 3.2.1.3).

 [id(FSRM_DISPID_FILEGROUP_MANAGER | 0x02)] HRESULT GetFileGroup(
 [in] BSTR name,
 [out, retval] IFsrmFileGroup** fileGroup
);

name: Contains the Name of the file group to return. The maximum length of this string MUST be
4,000 characters.

fileGroup: Pointer to an IFsrmFileGroup interface pointer (section 3.2.4.2.23) that upon completion
points to the file group with the specified Name property. The caller MUST release the file group
when it is done with it.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return value/code Description

0x80045301

FSRM_E_NOT_FOUND

The specified file group could not be found.

0x80045308

FSRM_E_INVALID_NAME

The specified name is not valid.

0x8004530D

FSRM_E_OUT_OF_RANGE

The content of the name parameter exceeds the maximum length of 4,000
characters.

0x80070057

E_INVALIDARG

The fileGroup parameter is NULL.

Upon receiving this message, the server MUST validate parameters:

 Verify that fileGroup is not NULL.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

Upon successful validation of parameters, the server MUST perform the following actions or return a
nonzero error code.

 Create a new Non-Persisted File Group Instance (section 3.2.1.3.4.2)

 Populate its configuration data from the Persisted File Group (section 3.2.1.3.4.1) in the List of

Persisted File Groups with the specified Name.

 Set fileGroup to the IFsrmFileGroup interface pointer of the newly created instance.

214 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

If a Persisted File Group with the specified Name property does not exist, the server MUST return
FSRM_E_NOT_FOUND.

3.2.4.2.25.3 EnumFileGroups (Opnum 9)

The EnumFileGroups method returns all the file groups from the List of Persisted File Groups
(section 3.2.1.3) of the server.

 [id(FSRM_DISPID_FILEGROUP_MANAGER | 0x03)] HRESULT EnumFileGroups(
 [in, defaultvalue(FsrmEnumOptions_None)]
 FsrmEnumOptions options,
 [out, retval] IFsrmCommittableCollection** fileGroups
);

options: Contains the FsrmEnumOptions (section 2.2.1.2.5) to use when enumerating the filegroups.

fileGroups: Pointer to an IFsrmCommittableCollection interface pointer (section 3.2.4.2.3) that

upon completion SHOULD contain a pointer to every file group on the server. The caller MUST
release the collection when it is done with it.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return value/code Description

0x80045311

FSRM_E_NOT_SUPPORTED

This options parameter contains invalid FsrmEnumOptions values.

0x80070057

E_INVALIDARG

The fileGroups parameter is NULL.

Upon receiving this message, the server MUST validate parameters:

 If fileGroups is NULL, the server MUST return E_INVALIDARG.

 If options contains FsrmEnumOptions_Asynchronous or any value other than what is specified
in section 2.2.1.2.5, the server MUST return FSRM_E_NOT_SUPPORTED.

Upon successful validation of parameters, the server MUST perform the following actions:

 Create a List of Non-Persisted File Group Instance (section 3.2.1.3).

 Populate the newly created instance list with Non-Persisted File Group

Instances (section 3.2.1.3.4.2) copied from the Persisted File Groups (section 3.2.1.3.4.1) in the
List of Persisted File Groups (section 3.2.1.3).

 Populate fileGroups with the IFsrmFileGroup interface pointer (section 3.2.4.2.23) of every Non-
Persisted File Group Instance in this List of Non-Persisted File Group Instance.

3.2.4.2.25.4 ExportFileGroups (Opnum 10)

The ExportFileGroups method exports an XML string representation of the File Server Resource

Manager Protocol file groups from the List of Persisted File Groups (section 3.2.1.3).

 [id(FSRM_DISPID_FILEGROUP_MANAGER | 0x04)] HRESULT ExportFileGroups(
 [in, defaultvalue(NULL)] VARIANT* fileGroupNamesArray,
 [out, retval] BSTR* serializedFileGroups
);

215 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

fileGroupNamesArray: Pointer to a SAFEARRAY that contains the names of file groups to export.

serializedFileGroups: Pointer to a variable that upon completion contains the XML string

representation of all the specified file groups.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return value/code Description

0x80045301

FSRM_E_NOT_FOUND

The specified file group could not be found.

0x80070057

E_INVALIDARG

This code is returned for the following reasons:

 The serializedFileGroups parameter is NULL.

 The fileGroupNamesArray parameter is not a variant array of BSTRs.

Upon receiving this message, the server MUST validate parameters:

 Verify that serializedFileGroups is not NULL.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

Upon successful validation of parameters, the server MUST perform one of the following actions.

 If fileGroupNamesArray is NULL, the server MUST return the XML string representation of all

Persisted File Groups (section 3.2.1.3.4.1) on the server.

 If fileGroupNamesArray is not NULL, the server MUST return the XML string representation of only
those Persisted File Groups specified in fileGroupNamesArray.

3.2.4.2.25.5 ImportFileGroups (Opnum 11)

The ImportFileGroups method imports file groups from the XML string of file groups.

 [id(FSRM_DISPID_FILEGROUP_MANAGER | 0x05)] HRESULT ImportFileGroups(
 [in] BSTR serializedFileGroups,
 [in, defaultvalue(NULL)] VARIANT* fileGroupNamesArray,
 [out, retval] IFsrmCommittableCollection** fileGroups
);

serializedFileGroups: Contains the XML string representation of a list of file groups. There is no
maximum length for this string.

fileGroupNamesArray: Pointer to a SAFEARRAY that contains the names of file groups to import.

fileGroups: Pointer to an IFsrmCommittableCollection interface pointer (section 3.2.4.2.3) that
upon completion contains an IFsrmFileGroup interface pointer (section 3.2.4.2.23) for each of

the imported file groups. The caller MUST release the collection when it is done with it.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return value/code Description

0x80045301

FSRM_E_NOT_FOUND

This specified file group could not be found.

0x8004530B The version of the imported objects is not valid.

216 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Return value/code Description

FSRM_E_INVALID_IMPORT_VERSION

0x80070057

E_INVALIDARG

This code is returned for the following reasons:

 The serializedFileGroups parameter is NULL.

 The fileGroups parameter is NULL.

 The fileGroupNamesArray parameter is not a variant array of
BSTRs.

Upon receiving this message, the server MUST validate parameters:

 Verify that serializedFileGroups is not NULL or empty.

 Verify that fileGroups is not NULL.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

Upon successful validation of parameters, the server MUST perform one of the following actions.

 If fileGroupNamesArray is NULL, the server MUST create new Non-Persisted File Group
Instances (section 3.2.1.3.4.2) for each file group in the XML string, and populate fileGroups with
the IFsrmFileGroup interface pointers for those Non-Persisted File Group Instances.

 If fileGroupNamesArray is not NULL, the server MUST create new Non-Persisted File Group
Instances for file groups in the XML string, whose names are included in fileGroupNamesArray,
and populate fileGroups with the IFsrmFileGroup interface pointers for those Non-Persisted File
Group Instances.

3.2.4.2.26 IFsrmFileScreenBase Methods

The IFsrmFileScreenBase interface is the base interface for file screen objects.

IFsrmFileScreenBase implements methods for the IFsrmObject interface (section 3.2.4.2.10), as
well as those listed in the following table.

Methods in RPC Opnum Order

Method Description

BlockedFileGroups (get) Opnum: 12

BlockedFileGroups (put) Opnum: 13

FileScreenFlags (get) Opnum: 14

FileScreenFlags (put) Opnum: 15

CreateAction Opnum: 16

EnumActions Opnum: 17

3.2.4.2.26.1 BlockedFileGroups (get) (Opnum 12)

The BlockedFileGroups (get) method returns the list of names of file groups blocked by this object.

217 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_FILESCREEN_BASE | 0x01))] HRESULT BlockedFileGroups(
 [out, retval] IFsrmMutableCollection** blockList
);

blockList: Pointer to an IFsrmMutableCollection interface pointer (section 3.2.4.2.2) that upon
completion contains the names of all the file groups blocked by this object. A caller MUST release
the collection received when it is done with it.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return
value/code Description

0x80070057

E_INVALIDARG

The blockList parameter is NULL.

Upon receiving this message, the server MUST validate parameters:

 Verify that blockList is not NULL.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

The server MUST populate blockList with the names of all the file groups blocked by this object.

3.2.4.2.26.2 BlockedFileGroups (put) (Opnum 13)

The BlockedFileGroups (put) method sets the file groups that this object blocks.

 [propput, id(FSRM_PROPERTY(FSRM_DISPID_FILESCREEN_BASE | 0x01))] HRESULT BlockedFileGroups(
 [in] IFsrmMutableCollection* blockList
);

blockList: Contains a collection of file group names for this object to block.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return
value/code Description

0x80070057

E_INVALIDARG

This code is returned for the following reasons:

 The blockList parameter is NULL.

 The variants in the array are not a valid variant type. If the variant type is not
VT_BSTR, the variant is an invalid type.

Upon receiving this message, the server MUST validate parameters:

 Verify that blockList contains the names of valid file groups.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

The server MUST block the file groups in blockList.

3.2.4.2.26.3 FileScreenFlags (get) (Opnum 14)

The FileScreenFlags (get) returns the file screen flags for the object.

218 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_FILESCREEN_BASE | 0x02))] HRESULT FileScreenFlags(
 [out, retval] long* fileScreenFlags
);

fileScreenFlags: A pointer to a variable that upon completion contains the file screen flags of the
object.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return
value/code Description

0x80070057

E_INVALIDARG

The fileScreenFlags parameter is NULL.

Upon receiving this message, the server MUST validate parameters:

 Verify that fileScreenFlags is not NULL.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

The server MUST set fileScreenFlags to the file screen flags of this object.

3.2.4.2.26.4 FileScreenFlags (put) (Opnum 15)

The FileScreenFlags (put) sets the file screen flags of the object.

 [propput, id(FSRM_PROPERTY(FSRM_DISPID_FILESCREEN_BASE | 0x02))] HRESULT FileScreenFlags(
 [in] long fileScreenFlags
);

fileScreenFlags: Contains the file screen flags for the object to use.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return
value/code Description

0x80070057

E_INVALIDARG

This code is returned for the following reasons:

 The fileScreenFlags parameter is NULL.

 The fileScreenFlags parameter contains invalid FsrmFileScreenFlags (section 2.2.1.2.2)

bitmask values.

Upon receiving this message, the server MUST validate parameters:

 Verify that fileScreenFlags contains valid FsrmFileScreenFlags bitmask values, or that the value is

0.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

The server MUST do one of the following or return a nonzero error code.

 If fileScreenFlags contains the FsrmFileScreenFlags_Enforce bitmask, the server MUST fail any I/O
that triggers a file screen event on this file screen's path.

219 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 If fileScreenFlags does not contain the FsrmFileScreenFlags_Enforce bitmask, the server MUST
NOT fail an I/O that triggers a file screen event on this file screen's path.

3.2.4.2.26.5 CreateAction (Opnum 16)

The CreateAction method creates an action for this file screen object.

 [id(FSRM_DISPID_FILESCREEN_BASE | 0x01)] HRESULT CreateAction(
 [in] FsrmActionType actionType,
 [out, retval] IFsrmAction** action
);

actionType: Contains the type of action to be created.

action: Pointer to an IFsrmAction interface pointer (section 3.2.4.2.4) that upon completion points
to the newly created action. A caller MUST release the object received when the caller is done with
it.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return value/code Description

0x80045303

FSRM_E_ALREADY_EXISTS

The object already exists.

0x80070057

E_INVALIDARG

This code is returned for the following reasons:

 The action parameter is NULL.

 The actionType parameter is not a valid type. If actionType is
FsrmActionType_Unknown, the parameter MUST be considered an invalid
value.

Upon receiving this message, the server MUST validate parameters:

 Verify that actionType is a valid FsrmActionType (section 2.2.1.2.9). If the actionType is
FsrmActionType_Unknown, the parameter MUST be considered an invalid value.

 Verify that action is not NULL.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

The server MUST create a new action object of the specified type and set action to the IFsrmAction
interface of the newly created action.

3.2.4.2.26.6 EnumActions (Opnum 17)

The EnumActions method enumerates all the actions for the file screen object.

 [id(FSRM_DISPID_FILESCREEN_BASE | 0x02)] HRESULT EnumActions(
 [out, retval] IFsrmCollection** actions
);

actions: Pointer to an IFsrmCollection interface pointer (section 3.2.4.2.1) that, upon completion,
contains IFsrmAction pointers of all the actions for the specified action. A caller MUST release the
collection received when the caller is done with it. To get the specific action interface for the
action, the caller MUST call QueryInterface for the interface corresponding to the action type of

the actions.

220 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return
value/code Description

0x80070057

E_INVALIDARG

The actions parameter is NULL.

Upon receiving this message, the server MUST validate parameters:

 Verify that actions is not NULL.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

The server MUST create a new IFsrmCollection object and populate it with the actions of this file
screen object.

3.2.4.2.27 IFsrmFileScreen Methods

The IFsrmFileScreen interface exposes methods for configuring file screen objects.
IFsrmFileScreen implements methods for the IFsrmObject (section 3.2.4.2.10) and
IFsrmFileScreenBase (section 3.2.4.2.26) interfaces, as well as those listed in the following table.

Each IFsrmFileScreen instance is associated with one Non-Persisted File Screen
Instance (section 3.2.1.3.1.2).

Methods in RPC Opnum Order

Method Description

Commit Opnum: 11

Path (get) Opnum: 18

SourceTemplateName (get) Opnum: 19

MatchesSourceTemplate (get) Opnum: 20

UserSid (get) Opnum: 21

UserAccount (get) Opnum: 22

ApplyTemplate Opnum: 23

3.2.4.2.27.1 Commit (Opnum 11)

The Commit method is implemented as one of the methods for the IFsrmObject interface (section

3.2.4.2.10). This method has the same behavior as described in section 3.2.4.2.10.5 with the

following additional behavior:

 If blocked file groups is an empty list, the server MUST return
FSRM_E_INVALID_DATASCREEN_DEFINITION.

 If FSRM Base Object.Deleted is set to true for this Non-Persisted File Screen
Instance (section 3.2.1.3.1.2), the server MUST remove the Persisted File
Screen (section 3.2.1.3.1.1) from the List of Persisted File Screens (section 3.2.1.3) that has

the same File Screen.Folder path as this Non-Persisted File Screen Instance, if one exists. This
removal MUST occur even if other changes were made to the configuration of the Non-Persisted

221 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

File Screen Instance. If there is no Persisted File Screen in the List of Persisted File Screens
that has the same File Screen.Folder path as this Persisted File Screen being deleted, the server

does not perform any action and MUST return zero. The server MUST return a nonzero error code
if removal fails.

 If FSRM Base Object.Deleted is set to false for this Non-Persisted File Screen Instance, the
server MUST update the configuration data of the Persisted File Screen in the List of Persisted
File Screens that has the same File Screen.Folder path as this Non-Persisted File Screen
Instance, if one exists, with the configuration data from this instance, or return a nonzero error
code.

 If a Persisted File Screen does not exist with the same File Screen.Folder path and with FSRM
Base Object.Deleted is set to false, the server MUST create a new Persisted File Screen,

populate its configuration with the configuration from this Non-Persisted File Screen Instance, and
add the new Persisted File Screen to the List of Persisted File Screens.

To update or populate the configuration data from a Non-Persisted File Screen Instance to a Persisted
File Screen, the server MUST assign the values of all the properties listed below, of the Non-Persisted

File Screen Instance to the corresponding properties of the Persisted File Screen.

 FSRM Base Object.Description

 Blocked file groups

 Notifications (Actions) for each notification in the list, the server MUST assign the values of all
properties that apply to the notification, depending on the type of action. See section 3.2.1.4 for
details on the possible action types and the set of notification properties maintained for each type
of action.

 File screen mode

 Template id

3.2.4.2.27.2 Path (get) (Opnum 18)

The Path (get) method returns the read-only path of the file screen object.

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_FILESCREEN | 0x01))] HRESULT Path(
 [out, retval] BSTR* path
);

path: Pointer to a variable that upon completion contains the path of the file screen object.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return
value/code Description

0x80070057

E_INVALIDARG

The path parameter is NULL.

Upon receiving this message, the server MUST validate parameters:

 Verify that path is not NULL.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

The server MUST set path to the path of the file screen object.

222 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

3.2.4.2.27.3 SourceTemplateName (get) (Opnum 19)

The SourceTemplateName (get) method returns the name of the template this file screen object was
derived from.

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_FILESCREEN | 0x02))] HRESULT SourceTemplateName(
 [out, retval] BSTR* fileScreenTemplateName
);

fileScreenTemplateName: Pointer to a variable that upon completion contains the name of the
template this file screen object was derived from.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return
value/code Description

0x80070057

E_INVALIDARG

The fileScreenTemplateName parameter is NULL.

Upon receiving this message, the server MUST validate parameters:

 Verify that fileScreenTemplateName is not NULL.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

The server MUST set fileScreenTemplateName to the name of the template this file screen object was
derived from or return a nonzero error code.

If the file screen object was not derived from a template, the server MUST return S_FALSE.

3.2.4.2.27.4 MatchesSourceTemplate (get) (Opnum 20)

The MatchesSourceTemplate (get) method returns whether this file screen object's properties match
those of the template it was derived from or not.

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_FILESCREEN | 0x03))] HRESULT MatchesSourceTemplate(
 [out, retval] VARIANT_BOOL* matches
);

matches: Pointer to a variable that upon completion contains whether this file screen object's
properties match the template it was derived from or not.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return
value/code Description

0x80070057

E_INVALIDARG

The matches parameter is NULL.

Upon receiving this message, the server MUST validate parameters:

 Verify that matches is not NULL.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

223 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

The server MUST do one of the following or return a nonzero error code.

 If the file screen object was not derived from a template, the server MUST return S_FALSE.

 If all the file screen object's properties match those of the file screen template that it was derived
from, the server MUST set matches to VARIANT_TRUE.

 If any of the file screen object's properties do not match those of the file screen template that it
was derived from, the server MUST set matches to VARIANT_FALSE.

3.2.4.2.27.5 UserSid (get) (Opnum 21)

The UserSid (get) method returns a string representation of the read-only user SID of NULL ([MS-
DTYP] section 2.4.2.4).

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_FILESCREEN | 0x04))] HRESULT UserSid(
 [out, retval] BSTR* userSid
);

userSid: Pointer to a variable that upon completion contains the string representation of the user SID
of NULL.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return
value/code Description

0x80070057

E_INVALIDARG

The userSid parameter is NULL.

Upon receiving this message, the server MUST validate parameters:

 Verify that userSid is not NULL.

The server MUST set userSid to the string representation of the user SID of NULL or return a nonzero
error code.

3.2.4.2.27.6 UserAccount (get) (Opnum 22)

The UserAccount (get) method returns a string representation of the user account corresponding to
the well-known SID of NULL ([MS-DTYP] section 2.4.2.4).

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_FILESCREEN | 0x05))] HRESULT UserAccount(
 [out, retval] BSTR* userAccount
);

userAccount: Pointer to a variable that upon completion contains the string representation of the
user account corresponding to the well-known SID of NULL.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return
value/code Description

0x80070057

E_INVALIDARG

The userAccount parameter is NULL.

%5bMS-DTYP%5d.pdf#Section_cca2742956894a16b2b49325d93e4ba2
%5bMS-DTYP%5d.pdf#Section_cca2742956894a16b2b49325d93e4ba2
%5bMS-DTYP%5d.pdf#Section_cca2742956894a16b2b49325d93e4ba2

224 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Upon receiving this message, the server MUST validate parameters:

 Verify that userAccount is not NULL.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

The server MUST set userAccount to the string representation of the user account corresponding to

the well-known SID of NULL.

3.2.4.2.27.7 ApplyTemplate (Opnum 23)

The ApplyTemplate method applies the properties of the specified file screen template to this file
screen object.

 [id(FSRM_DISPID_FILESCREEN | 0x01)] HRESULT ApplyTemplate(
 [in] BSTR fileScreenTemplateName
);

fileScreenTemplateName: Contains the name of the file screen template whose properties are to
be applied to this file screen object. The maximum length of this string MUST be 4,000.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return value/code Description

0x80045304

FSRM_E_NOT_FOUND

The specified template could not be found.

0x80045308

FSRM_E_INVALID_NAME

The specified name in the fileScreenTemplateName parameter is empty.

0x8004530D

FSRM_E_OUT_OF_RANGE

The content of the fileScreenTemplateName parameter exceeds the maximum
length of 4,000 characters.

0x80070057

E_INVALIDARG

The fileScreenTemplateName parameter is NULL.

The server MUST do one of the following or return a nonzero error code.

 If no file screen template with the specified name exists, the server MUST return
FSRM_E_NOT_FOUND.

 If the file screen template does exist, the server MUST apply all settings from the specified
template to this file screen object.

3.2.4.2.28 IFsrmFileScreenException Methods

The IFsrmFileScreenException interface exposes methods for configuring file screen exception

objects. IFsrmFileScreenException implements methods for the IFsrmObject interface (section

3.2.4.2.10), as well as those listed in the following table.

Each IFsrmFileScreenException instance is associated with one Non-Persisted File Screen Exception
Instance (section 3.2.1.3.1.2).

Methods in RPC Opnum Order

225 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Method Description

Commit Opnum: 11

Path (get) Opnum: 12

AllowedFileGroups (get) Opnum: 13

AllowedFileGroups (put) Opnum: 14

3.2.4.2.28.1 Commit (Opnum 11)

The Commit method is implemented as one of the methods for the IFsrmObject interface (section

3.2.4.2.10). This method has the behavior specified in section 3.2.4.2.10.5 with the following
additions:

 If Allowed File groups is an empty list, the server MUST return FSRM_E_ALREADY_EXISTS.

 If FSRM Base Object.Deleted is set to true for this Non-Persisted File Screen Exception
Instance (section 3.2.1.3.2.2), the server MUST remove the Persisted File Screen
Exception (section 3.2.1.3.2.1) from the List of Persisted File Screen Exceptions (3.2.1.3) that
has the same File Screen Exception.Folder path as this Non-Persisted File Screen Exception

Instance, if one exists. This removal MUST occur even if other changes were made to the
configuration of the Non-Persisted File Screen Exception Instance. If there is no Persisted File
Screen Exception in the List of Persisted File Screen Exceptions that has the same File
Screen Exception.Folder path as this Persisted File Screen Exception being deleted, the server
does not perform any action and MUST return zero. The server MUST return a nonzero error code
if removal fails.

 If FSRM Base Object.Deleted is set to false for this Non-Persisted File Screen Exception

Instance, the server MUST update the configuration data of the Persisted File Screen Exception in
the List of Persisted File Screen Exceptions that has the same File Screen Exception.Folder

path as this Non-Persisted File Screen Exception Instance, if one exists, with the configuration
data from this instance, or return a nonzero error code.

 If a Persisted File Screen Exception does not exist with the same File Screen Exception.Folder
path and with FSRM Base Object.Deleted is set to false, the server MUST create a new

Persisted File Screen Exception, populate its configuration with the configuration from this Non-
Persisted File Screen Exception Instance, and add the new Persisted File Screen Exception to the
List of Persisted File Screen Exceptions.

To update or populate the configuration data from a Non-Persisted File Screen Exception Instance to a
Persisted File Screen Exception, the server MUST assign the values of all the properties shown in the
list that follows, of the Non-Persisted File Screen Exception Instance to the corresponding properties of
the Persisted File Screen Exception.

 FSRM Base Object.Description

 Allowed file groups

3.2.4.2.28.2 Path (get) (Opnum 12)

The Path (get) method returns the read-only path of the file screen exception object.

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_FILESCREEN_EXCEPTION | 0x01))] HRESULT Path(
 [out, retval] BSTR* path
);

226 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

path: Pointer to a variable that upon completion contains the path of the file screen exception object.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return
value/code Description

0x80070057

E_INVALIDARG

The path parameter is NULL.

Upon receiving this message, the server MUST validate parameters:

 Verify that path is not NULL.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

The server MUST set path to the path of the file screen exception object.

3.2.4.2.28.3 AllowedFileGroups (get) (Opnum 13)

The AllowedFileGroups (get) method returns the list of names of file groups allowed by this file screen
exception.

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_FILESCREEN_EXCEPTION | 0x02))]
HRESULT AllowedFileGroups(

 [out, retval] IFsrmMutableCollection** allowList
);

allowList: Pointer to an IFsrmMutableCollection interface pointer (section 3.2.4.2.2) that upon

completion contains the names of all the file groups allowed by this object. A caller MUST release
the collection received when it is done with it.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return
value/code Description

0x80070057

E_INVALIDARG

The path parameter is NULL.

Upon receiving this message, the server MUST validate parameters:

 Verify that allowList is not NULL.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

The server MUST populate allowList with the names of all the file groups allowed by this file screen

exception.

3.2.4.2.28.4 AllowedFileGroups (put) (Opnum 14)

The AllowedFileGroups (put) method sets the file groups that this object allows.

 [propput, id(FSRM_PROPERTY(FSRM_DISPID_FILESCREEN_EXCEPTION | 0x02))]
HRESULT AllowedFileGroups(

 [in] IFsrmMutableCollection* allowList
);

227 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

allowList: Contains a collection of file group names for this object to allow.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return
value/code Description

0x80070057

E_INVALIDARG

The path parameter is NULL.

The server MUST allow writing files to the file screen exception's File Screen Exception.Folder path
if they belong to any file group in allowList or return a nonzero error code.

3.2.4.2.29 IFsrmFileScreenManager Methods

The IFsrmFileScreenManager interface exposes methods for managing file screen and file screen
exception objects.

Methods in RPC Opnum Order

Method Description

ActionVariables Opnum: 7

ActionVariableDescriptions Opnum: 8

CreateFileScreen Opnum: 9

GetFileScreen Opnum: 10

EnumFileScreens Opnum: 11

CreateFileScreenException Opnum: 12

GetFileScreenException Opnum: 13

EnumFileScreenExceptions Opnum: 14

CreateFileScreenCollection Opnum: 15

3.2.4.2.29.1 ActionVariables (Opnum 7)

The ActionVariables method returns the list of macro names (File Screen Macros (section 3.2.4.3.2)

and General Macros (section 3.2.4.3.4)) that the FSRM protocol looks for when parsing action
properties.

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_FILESCREEN_MANAGER | 0x01))] HRESULT ActionVariables(
 [out, retval] SAFEARRAY (VARIANT)* variables
);

variables: Pointer to a SAFEARRAY. Upon completion, variables contains a list of macros for action

settings that FSRM will replace with values specific to the event and the machine on which the
event occurred.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

228 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Return
value/code Description

0x80070057

E_INVALIDARG

The variables parameter is NULL.

Upon receiving this message, the server MUST validate parameters:

 Verify that variables is not NULL.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

The server MUST populate variables with the list of FSRM macros.

3.2.4.2.29.2 ActionVariableDescriptions (Opnum 8)

The ActionVariableDescriptions method returns descriptions for the macros (File Screen
Macros (section 3.2.4.3.2) and General Macros (section 3.2.4.3.4)) that are returned by the

ActionVariables (section 3.2.4.2.29.1) method.

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_FILESCREEN_MANAGER | 0x02))]
HRESULT ActionVariableDescriptions(

 [out, retval] SAFEARRAY (VARIANT)* descriptions
);

descriptions: A pointer to a SAFEARRAY that upon completion contains the descriptions for the
macros returned by ActionVariables.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return
value/code Description

0x80070057

E_INVALIDARG

The descriptions parameter is NULL.

Upon receiving this message, the server MUST validate parameters:

 Verify that descriptions is not NULL.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

The server MUST populate descriptions with the descriptions for the macros returned by
ActionVariables.

3.2.4.2.29.3 CreateFileScreen (Opnum 9)

The CreateFileScreen method creates a Non-Persisted File Screen Instance (section 3.2.1.3.1.2) on

the specified path.

 [id(FSRM_DISPID_FILESCREEN_MANAGER | 0x01)] HRESULT CreateFileScreen(
 [in] BSTR path,
 [out, retval] IFsrmFileScreen** fileScreen
);

path: Contains the path of the local directory to put the file screen on.

229 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

fileScreen: Pointer to an IFsrmFileScreen interface pointer (section 3.2.4.2.27) that upon
completion contains a pointer to the newly created file screen. To have the file screen added to

the server's List of Persisted File Screens (section 3.2.1.3), the caller MUST call
Commit (section 3.2.4.2.27.1). The caller MUST release the file screen when it is done with it.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return value/code Description

0x80045304

FSRM_E_PATH_NOT_FOUND

The specified path could not be found.

0x80045306

FSRM_E_INVALID_PATH

The content of the path parameter exceeds the maximum length of 260
characters.

0x80070057

E_INVALIDARG

The fileScreen parameter is NULL.

Upon receiving this message, the server MUST validate parameters:

 Verify that fileScreen is not NULL.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

Upon successful validation of parameters, the server MUST perform the following actions.

 Create a Non-Persisted File Screen Instance with the File Screen.Folder path property set to the
specified path.

 Set FSRM Base Object.Id to a GUID.

 Set Blocked file groups to an empty list.

 Set Notifications to an empty list.

 Set File screen mode to Hard screen.

 Set Template id to an empty string.

 Set fileScreen to the IFsrmFileScreen interface pointer of the newly created Non-Persisted File
Screen Instance.

The new Non-Persisted File Screen Instance MUST NOT be associated with an existing Persisted File
Screen (section 3.2.1.3.1.1).

3.2.4.2.29.4 GetFileScreen (Opnum 10)

The GetFileScreen method returns the file screen from the List of Persisted File Screens (section
3.2.1.3) for the specified path.

 [id(FSRM_DISPID_FILESCREEN_MANAGER | 0x02)] HRESULT GetFileScreen(
 [in] BSTR path,
 [out, retval] IFsrmFileScreen** fileScreen
);

path: Contains the path of the file screen to return.

230 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

fileScreen: Pointer to an IFsrmFileScreen interface pointer (section 3.2.4.2.27) that upon
completion contains a pointer to the file screen for the specified path. The caller MUST release the

file screen when it is done with it.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return value/code Description

0x80045304

FSRM_E_PATH_NOT_FOUND

The file screen for the specified path could not be found.

0x80045306

FSRM_E_INVALID_PATH

The content of the path parameter exceeds the maximum length of 260
characters.

0x80070057

E_INVALIDARG

This code is returned for the following reasons:

 The path parameter is NULL.

 The fileScreen parameter is NULL.

Upon receiving this message, the server MUST validate parameters:

 Verify that path is not NULL.

 Verify that fileScreen is not NULL.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

Upon successful validation of parameters, the server MUST perform the following actions.

 Create a new Non-Persisted File Screen Instance (section 3.2.1.3.1.2).

 Populate the configuration data of the Non-Persisted File Screen Instance from the Persisted File
Screen (section 3.2.1.3.1.1) in the List of Persisted File Screens with the specified path.

 Set fileScreen to the IFsrmFileScreen interface pointer of the newly created Non-Persisted File

Screen Instance.

If a file screen does not exist for the specified path, the server MUST return FSRM_E_NOT_FOUND.

3.2.4.2.29.5 EnumFileScreens (Opnum 11)

The EnumFileScreens method returns all the file screens from the List of Persisted File Screens
(section 3.2.1.3) that fall under the specified path.

 [id(FSRM_DISPID_FILESCREEN_MANAGER | 0x03)] HRESULT EnumFileScreens(
 [in, defaultvalue(L"")] BSTR path,
 [in, defaultvalue(FsrmEnumOptions_None)]
 FsrmEnumOptions options,
 [out, retval] IFsrmCommittableCollection** fileScreens
);

path: Contains the path for which to limit the return of file screens.

options: Contains the FsrmEnumOptions (section 2.2.1.2.5) to use when enumerating the file
screens.

fileScreens: Pointer to an IFsrmCommittableCollection interface pointer (section 3.2.4.2.3) that
upon completion contains pointers to every file screen belonging to a path related to the path

231 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

specified by the wildcards entered in path. The caller MUST release the collection when the caller
is done with it.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return value/code Description

0x80045301

FSRM_E_NOT_FOUND

A file screen has not been applied to the specified directories.

0x80070057

E_INVALIDARG

The fileScreens parameter is NULL.

0x80045311

FSRM_E_NOT_SUPPORTED

This options parameter contains invalid FsrmEnumOptions (section 2.2.1.2.5)
values.

Upon receiving this message, the server MUST validate parameters:

 If fileScreens is NULL, the server MUST return E_INVALIDARG.

 If options contains FsrmEnumOptions_Asynchronous or any value other than what is specified

in section 2.2.1.2.5, the server MUST return FSRM_E_NOT_SUPPORTED.

Upon successful validation of parameters, the server MUST perform the following actions:

 Create a new List of Non-Persisted File Screen Instances (section 3.2.1.3).

 Populate the List of Non-Persisted File Screen Instances with Non-Persisted File Screen
Instances (section 3.2.1.3.1.2) copied from the Persisted File Screens (section 3.2.1.3.1.1) in the
List of Persisted File Screens according to the following rules:

 If path ends with "*", the server MUST populate this List of Non-Persisted File Screen

Instances with a copy of every Persisted File Screen from the List of Persisted File
Screens that belongs to an immediate subdirectory of path.

 If path ends with "\...", the server MUST populate this List of Non-Persisted File Screen
Instances with a copy of every Persisted File Screen from the List of Persisted File
Screens that recursively belongs to a subdirectory of path.

 If path does not end with "*" or "\...", the server MUST populate this List of Non-Persisted
File Screen Instances with a copy of only the file screen for path.

 If a file screen does not exist for path, the server MUST return S_OK and MUST set
fileScreenExceptions to an empty IFsrmCommittableCollection.

 Populate fileScreens with the IFsrmFileScreen interface pointer (section 3.2.4.2.27) of every
Non-Persisted File Screen Instance in this List of Non-Persisted File Screen Instances.

3.2.4.2.29.6 CreateFileScreenException (Opnum 12)

The CreateFileScreenException method creates a Non-Persisted File Screen Exception
Instance (section 3.2.1.3.2.2) on the specified path.

 [id(FSRM_DISPID_FILESCREEN_MANAGER | 0x04)] HRESULT CreateFileScreenException(
 [in] BSTR path,
 [out, retval] IFsrmFileScreenException** fileScreenException
);

path: Contains the path of the directory to put the file screen exception on.

232 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

fileScreenException: Pointer to an IFsrmFileScreenException interface pointer (section
3.2.4.2.28) that upon completion contains a pointer to the newly created file screen exception. To

have the file screen exception added to the server's List of Persisted File Screen Exceptions
(section 3.2.1.3), the caller MUST call Commit (section 3.2.4.2.28.1). The caller MUST release the

file screen exception when it is done with it.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return value/code Description

0x80045306

FSRM_E_INVALID_PATH

The content of the path parameter exceeds the maximum length of 260
characters.

0x80070057

E_INVALIDARG

The fileScreenException parameter is NULL.

Upon receiving this message, the server MUST validate parameters:

 Verify that fileScreenException is not NULL.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

Upon successful validation of parameters, the server MUST perform the following actions.

 Create a new Non-Persisted File Screen Exception Instance (section 3.2.1.3.2.2) with the File
Screen Exception.Folder path set to the specified path.

 Set FSRM Base Object.Id to a GUID.

 Set Allowed file groups to an empty list.

 Set fileScreenException to the IFsrmFileScreenException interface pointer of the newly created

Non-Persisted File Screen Exception Instance.

The new Non-Persisted File Screen Exception Instance MUST NOT be associated with an existing
Persisted File Screen Exception (section 3.2.1.3.2.1).

3.2.4.2.29.7 GetFileScreenException (Opnum 13)

The GetFileScreenException method returns the file screen exception from the List of Persisted
File Screen Exceptions (section 3.2.1.3) for the specified path.

 [id(FSRM_DISPID_FILESCREEN_MANAGER | 0x05)] HRESULT GetFileScreenException(
 [in] BSTR path,
 [out, retval] IFsrmFileScreenException** fileScreenException
);

path: Contains the path of the file screen exception to return.

fileScreenException: Pointer to an IFsrmFileScreenException interface pointer (section
3.2.4.2.28) that upon completion contains a pointer to the file screen exception for the specified
path. The caller MUST release the file screen exception when it is done with it.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return value/code Description

0x80045301 A file screen exception has not been applied to the specified directory.

233 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Return value/code Description

FSRM_E_NOT_FOUND

0x80045304

FSRM_E_PATH_NOT_FOUND

The file screen exception for the specified path could not be found.

0x80045306

FSRM_E_INVALID_PATH

The content of the path parameter exceeds the maximum length of 260
characters.

0x80070057

E_INVALIDARG

This code is returned for the following reasons:

 The path parameter is NULL.

 The fileScreenException parameter is NULL.

Upon receiving this message, the server MUST validate parameters:

 Verify that path is not NULL.

 Verify that fileScreenException is not NULL.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

Upon successful validation of parameters, the server MUST perform the following actions or return a
nonzero error code.

 Create a new Non-Persisted File Screen Exception Instance (section 3.2.1.3.2.2).

 Populate its configuration data from the Persisted File Screen Exception (section 3.2.1.3.2.1) in
the List of Persisted File Screen Exceptions with the specified path.

 Set fileScreenException to the IFsrmFileScreenException interface pointer of the newly created

Non-Persisted File Screen Exception Instance.

If a file screen exception does not exist for the specified path, the server MUST return
FSRM_E_NOT_FOUND.

3.2.4.2.29.8 EnumFileScreenExceptions (Opnum 14)

The EnumFileScreenExceptions method returns all the file screen exceptions from the List of
Persisted File Screen Exceptions (section 3.2.1.3) that fall under the specified path.

 [id(FSRM_DISPID_FILESCREEN_MANAGER | 0x06)] HRESULT EnumFileScreenExceptions(
 [in, defaultvalue(L"")] BSTR path,
 [in, defaultvalue(FsrmEnumOptions_None)]
 FsrmEnumOptions options,
 [out, retval] IFsrmCommittableCollection** fileScreenExceptions
);

path: Contains the path for which to limit the return of file screen exceptions. Supports wildcards.

options: Contains the FsrmEnumOptions (section 2.2.1.2.5) to use when enumerating the file screen
exception.

fileScreenExceptions: Pointer to an IFsrmCommittableCollection interface pointer (section
3.2.4.2.3) that upon completion contains pointers to every file screen exception belonging to a
path that is part of the specified path. The caller MUST release the collection when the caller is

done with it.

234 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return value/code Description

0x80045301

FSRM_E_NOT_FOUND

A file screen exception has not been applied to the specified directory.

0x80070057

E_INVALIDARG

The fileScreenExceptions parameter is NULL.

0x80045311

FSRM_E_NOT_SUPPORTED

This options parameter contains invalid FsrmEnumOptions (section 2.2.1.2.5)
values.

Upon receiving this message, the server MUST validate parameters:

 If fileScreenExceptions is NULL, the server MUST return E_INVALIDARG.

 If options contains FsrmEnumOptions_Asynchronous or any value other than what is specified

in section 2.2.1.2.5, the server MUST return FSRM_E_NOT_SUPPORTED.

Upon successful validation of parameters, the server MUST perform the following actions:

 Create a new List of Non-Persisted File Screen Exception Instances (section 3.2.1.3).

 Populate it with Non-Persisted File Screen Exception Instances (section 3.2.1.3.2.2) copied from
the Persisted File Screen Exceptions (section 3.2.1.3.2.1) in the List of Persisted File Screen
Exceptions according to the following rules:

 If path ends with "*", the server MUST populate this new List of Non-Persisted File Screen
Exception Instances with a copy of every Persisted File Screen Exception from the List of
Persisted File Screen Exceptions that belongs to an immediate subdirectory of path.

 If path ends with "\...", the server MUST populate this new List of Non-Persisted File
Screen Exception Instances with a copy of every Persisted File Screen Exception from the

List of Persisted File Screen Exceptions that recursively belongs to a subdirectory of path.

 If path does not end with "*" or "\...", the server MUST populate this new List of Non-
Persisted File Screen Exception Instances with a copy of the only Persisted File Screen
Exception for path.

 If a file screen exception does not exist for path, the server MUST return S_OK and MUST set

fileScreenExceptions to an empty IFsrmCommittableCollection.

 Populate fileScreenExceptions with the IFsrmFileScreenException interface pointer (section
3.2.4.2.28) of every Non-Persisted File Screen Exception Instance in this List of Non-Persisted
File Screen Exception Instances.

3.2.4.2.29.9 CreateFileScreenCollection (Opnum 15)

The CreateFileScreenCollection method creates an empty collection. This creates a location where

callers can add file screens.

 [id(FSRM_DISPID_FILESCREEN_MANAGER | 0x07)] HRESULT CreateFileScreenCollection(
 [out, retval] IFsrmCommittableCollection** collection
);

collection: Pointer to an IFsrmCommittableCollection interface pointer (section 3.2.4.2.3) that,

upon completion, points to an empty IFsrmCommittableCollection specific to file screen
objects. A caller MUST release the collection received when the caller is done with it.

235 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return
value/code Description

0x80070057

E_INVALIDARG

The collection parameter is NULL.

Upon receiving this message, the server MUST validate parameters:

 Verify that collection is not NULL.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

The server MUST create a new collection object and set the collection parameter to the new
collection's IFsrmCommittableCollection interface object.

3.2.4.2.30 IFsrmFileScreenTemplate Methods

The IFsrmFileScreenTemplate interface exposes methods for configuring templates that describe
file screen objects. IFsrmFileScreenTemplate implements methods for the IFsrmObject (section
3.2.4.2.10) and IFsrmFileScreenBase (section 3.2.4.2.26) interfaces, as well as those listed in the

following table.

Each IFsrmFileScreenTemplate instance is associated with one Non-Persisted File Screen Template
Instance (section 3.2.1.3.3.2).

Methods in RPC Opnum Order

Method Description

Commit Opnum: 11

Name (get) Opnum: 18

Name (put) Opnum: 19

CopyTemplate Opnum: 20

CommitAndUpdateDerived Opnum: 21

3.2.4.2.30.1 Commit (Opnum 11)

The Commit method is implemented as one of the methods for the IFsrmObject interface (section
3.2.4.2.10). This method has the same behavior as described in section 3.2.4.2.10.5 with the
following additional behavior:

 If Blocked file groups is an empty list, the server MUST return

FSRM_E_INVALID_DATASCREEN_DEFINITION.

 If FSRM Base Object.Deleted is set to true for this Non-Persisted File Screen Template
Instance (section 3.2.1.3.3.2), the server MUST remove the Persisted File Screen
Template (section 3.2.1.3.3.1) from the List of Persisted File Screen Templates (section
3.2.1.3) that has the same File Screen Template.Name as this Non-Persisted File Screen
Template Instance, if one exists. This removal MUST occur even if other changes were made to
the configuration of the Non-Persisted File Screen Template Instance. If there is no Persisted File

Screen Template in the List of Persisted File Screen Templates that has the same File Screen
Template.Name as this Non-Persisted File Screen Template Instance being deleted, the server

236 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

does not perform any action and MUST return zero. The server MUST return a nonzero error code
if removal fails.

 If FSRM Base Object.Deleted is set to false for this Non-Persisted File Screen Template
Instance, the server MUST update the configuration data of the Persisted File Screen Template in

the List of Persisted File Screen Templates that has the same File Screen Template.Name
as this Non-Persisted File Screen Template Instance, if one exists, with the configuration data
from this instance.

 If a Persisted File Screen Template does not exist with the same File Screen Template.Name
and FSRM Base Object.Deleted is set to false, the server MUST perform the following actions:

 Create a new Persisted File Screen Template.

 Populate its configuration with the configuration from this Non-Persisted File Screen Template

Instance.

 Add the new Persisted File Screen Template to the List of Persisted File Screen Templates.

 If a Persisted File Screen Template exists on the server with the same name as the imported file
screen template and its File Screen.Overwrite on commit property set to true, the existing
Persisted File Screen Template is overwritten with the imported file screen template.

To update or populate the configuration data from a Non-Persisted File Screen Template Instance to a

Persisted File Screen Template, the server MUST assign the values of all the properties shown in the
list that follows of the Non-Persisted File Screen Template Instance to the corresponding properties of
the Persisted File Screen Template.

 FSRM Base Object.Description

 File Screen Template.Name

 Blocked file groups

 Notifications (Actions) for each notification in the list, the server MUST assign the values of all

properties that apply to the notification, depending on the type of action. See section 3.2.1.4 for
details on the possible action types and the set of notification properties maintained for each type
of action.

 File screen mode

3.2.4.2.30.2 Name (get) (Opnum 18)

The Name (get) method returns the name of the file screen template.

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_FILESCREEN_TEMPLATE | 0x01))] HRESULT Name(
 [out, retval] BSTR* name
);

name: Pointer to a variable that upon completion contains the name of the file screen template.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return
value/code Description

0x80004003

E_POINTER

The name parameter is NULL.

237 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Return
value/code Description

0x80070057

E_INVALIDARG

The name parameter contains non-valid characters or is NULL. The following are considered
invalid characters: comma (,), single quote ('), double quote ("), vertical bar (|).

Upon receiving this message, the server MUST validate parameters:

 Verify that name is not NULL.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

The server MUST set name to the File Screen Template.Name of the file screen template.

3.2.4.2.30.3 Name (put) (Opnum 19)

The Name (put) method sets the name of the file screen template.

 [propput, id(FSRM_PROPERTY(FSRM_DISPID_FILESCREEN_TEMPLATE | 0x01))] HRESULT Name(
 [in] BSTR name
);

name: Contains the name for the file screen template to use.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return value/code Description

0x8004530D

FSRM_E_OUT_OF_RANGE

The content of the name parameter exceeds the maximum length of 4,000
characters.

0x80004003

E_POINTER

The name parameter is NULL.

0x80070057

E_INVALIDARG

The name parameter contains non-valid characters or is NULL. The following are
considered invalid characters: comma (,), single quote ('), double quote ("),
vertical bar (|).

The server MUST use name as the File Screen Template.Name for the file screen template or return

a nonzero error code.

3.2.4.2.30.4 CopyTemplate (Opnum 20)

The CopyTemplate method copies the properties of the specified template to this template.

 [id(FSRM_DISPID_FILESCREEN_TEMPLATE | 0x01)] HRESULT CopyTemplate(
 [in] BSTR fileScreenTemplateName
);

fileScreenTemplateName: Contains the name of the file screen template to copy from.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return value/code Description

0x80045301 The specified template could not be found.

238 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Return value/code Description

FSRM_E_NOT_FOUND

0x80045308

FSRM_E_INVALID_NAME

The name supplied is not valid.

0x8004530D

FSRM_E_OUT_OF_RANGE

The content of the name parameter exceeds the maximum length of 4,000
characters.

The server MUST copy the properties of fileScreenTemplateName to this file screen template or return
a nonzero error code.

If no file screen template exists with the specified name, the server MUST return
FSRM_E_NOT_FOUND.

3.2.4.2.30.5 CommitAndUpdateDerived (Opnum 21)

The CommitAndUpdateDerived method commits the file screen template and applies the template's
changes to the file screen objects derived from this template.

 [id(FSRM_DISPID_FILESCREEN_TEMPLATE | 0x02)] HRESULT CommitAndUpdateDerived(
 [in] FsrmCommitOptions commitOptions,
 [in] FsrmTemplateApplyOptions applyOptions,
 [out, retval] IFsrmDerivedObjectsResult** derivedObjectsResult
);

commitOptions: Contains the commit options to use when committing the collection of derived

objects.

applyOptions: Contains the apply options to use when building the collection of derived objects.

derivedObjectsResult: Pointer to an IFsrmDerivedObjectsResult interface pointer (section

3.2.4.2.13) that upon completion points to derived objects result interface for the derived objects
updated with this method. A caller MUST release the collection received when it is done with it.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return value/code Description

0x80045311

FSRM_E_NOT_SUPPORTED

The commitOptions parameter contains invalid
FsrmCommitOptions (section 2.2.1.2.6) values.

0x80070057

E_INVALIDARG

The derivedObjectsResult parameter is NULL.

The applyOptions parameter is not a valid FsrmTemplateApplyOption
(section 2.2.1.2.7) value.

Upon receiving this message, the server MUST validate parameters:

 If commitOptions contains FsrmEnumOptions_Asynchronous or any value other than what is
specified in section 2.2.1.2.6, the server MUST return FSRM_E_NOT_SUPPORTED.

 If applyOptions contains any value other than what is specified in section 2.2.1.2.7, the server
MUST return E_INVALIDARG.

 If derivedObjectsResult is NULL, the server MUST return E_INVALIDARG.

The server MUST commit the file screen template and apply the template's new properties to the
collection of derived objects based on applyOptions.

239 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

If applyOptions equals FsrmTemplateApplyOptions_ApplyToDerivedAll, the server MUST update
derivedObjectsResult with all file screen objects that were derived from this template.

If applyOptions equals FsrmTemplateApplyOptions_ApplyToDerivedMatching, the server MUST update
derivedObjectsResult with only those file screen objects that were derived from this template and

whose properties still match this template.

3.2.4.2.31 IFsrmFileScreenTemplateImported Methods

The IFsrmFileScreenTemplateImported interface exposes methods for configuring imported file
screen templates. IFsrmFileScreenTemplateImported implements methods for the IFsrmObject
(section 3.2.4.2.10), IFsrmFileScreenBase (section 3.2.4.2.26), and IFsrmFileScreenTemplate
(section 3.2.4.2.30) interfaces, as well as those listed in the following table.

Each IFsrmFileScreenTemplateImported instance is associated with one Non-Persisted File Screen
Template Instance (section 3.2.1.3.3.2).

Methods in RPC Opnum Order

Method Description

OverwriteOnCommit (get) Opnum: 22

OverwriteOnCommit (put) Opnum: 23

3.2.4.2.31.1 OverwriteOnCommit (get) (Opnum 22)

The OverwriteOnCommit (get) method returns the overwrite-on-commit property of the imported file
screen template.

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_FILESCREEN_TEMPLATE_IMPORTED | 0x01))]
HRESULT OverwriteOnCommit(

 [out, retval] VARIANT_BOOL* overwrite
);

overwrite: Pointer to a variable that upon completion contains the overwrite-on-commit property of
the imported file screen template.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return value/code Description

0x80070057

E_INVALIDARG

The overwrite parameter is NULL.

Upon receiving this message, the server MUST validate parameters:

 Verify that overwrite is not NULL.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

The server MUST set overwrite to the File Screen.Overwrite on commit property of the imported file
screen template.

3.2.4.2.31.2 OverwriteOnCommit (put) (Opnum 23)

240 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

The OverwriteOnCommit (put) method sets the overwrite-on-commit property of the imported file
screen template.

 [propput, id(FSRM_PROPERTY(FSRM_DISPID_FILESCREEN_TEMPLATE_IMPORTED | 0x01))]
HRESULT OverwriteOnCommit(

 [in] VARIANT_BOOL overwrite
);

overwrite: Contains the overwrite-on-commit property of the imported file screen template.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return
value/code Description

0x80070057

E_INVALIDARG

The overwrite parameter is NULL.

The server MUST use overwrite as the File Screen.Overwrite on commit property of the imported file
screen template or return a nonzero error code.

The server MUST set overwrite to the value VARIANT_TRUE if the File Screen.Overwrite on commit
property of the imported file screen template is true; otherwise, overwrite is set to VARIANT_FALSE.

3.2.4.2.32 IFsrmFileScreenTemplateManager Methods

The IFsrmFileScreenTemplateManager interface exposes methods for managing file screen

template objects.

Methods in RPC Opnum Order

Method Description

CreateTemplate Opnum: 7

GetTemplate Opnum: 8

EnumTemplates Opnum: 9

ExportTemplates Opnum: 10

ImportTemplates Opnum: 11

3.2.4.2.32.1 CreateTemplate (Opnum 7)

The CreateTemplate method creates a blank Non-Persisted File Screen Template
Instance (section 3.2.1.3.3.2).

 [id(FSRM_DISPID_FILESCREEN_TEMPLATE_MANAGER | 0x01)] HRESULT CreateTemplate(
 [out, retval] IFsrmFileScreenTemplate** fileScreenTemplate
);

fileScreenTemplate: Pointer to an IFsrmFileScreenTemplate interface pointer (section 3.2.4.2.30)
that upon completion points to a blank file screen template. The caller MUST release the
template when the caller is done with it.

241 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return
value/code Description

0x80070057

E_INVALIDARG

The fileScreenTemplate parameter is NULL.

Upon receiving this message, the server MUST validate parameters:

 Verify that fileScreenTemplate is not NULL.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

Upon successful validation of parameters, the server MUST perform the following actions.

 Create a new Non-Persisted File Screen Template Instance.

 Set FSRM Base Object.Id to a GUID.

 Set File Screen Template.Name to an empty string.

 Set Blocked file groups to an empty list.

 Set Notifications to an empty list.

 Set File screen mode to Hard screen.

 Set fileScreenTemplate to the IFsrmFileScreenTemplate inteface pointer for the newly created
Non-Persisted File Screen Template Instance.

The new Non-Persisted File Screen Template Instance MUST NOT be associated with an existing
Persisted File Screen Template (section 3.2.1.3.3.1).

3.2.4.2.32.2 GetTemplate (Opnum 8)

The GetTemplate method returns a pointer to the file screen template with the specified Name from

the List of Persisted File Screen Templates (section 3.2.1.3).

 [id(FSRM_DISPID_FILESCREEN_TEMPLATE_MANAGER | 0x02)] HRESULT GetTemplate(
 [in] BSTR name,
 [out, retval] IFsrmFileScreenTemplate** fileScreenTemplate
);

name: Contains the Name of the file screen template to return.

fileScreenTemplate: Pointer to an IFsrmFileScreenTemplate interface pointer (section 3.2.4.2.30)
that upon completion points to the file screen template with the specified Name. The caller MUST
release the file screen template when the caller is done with it.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return value/code Description

0x80045301

FSRM_E_NOT_FOUND

The specified template could not be found.

0x80045308

FSRM_E_INVALID_NAME

The specified name is not valid.

242 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Return value/code Description

0x8004530D

FSRM_E_OUT_OF_RANGE

The content of the fileScreenTemplateName parameter exceeds the maximum
length of 4,000 characters.

0x80070057

E_INVALIDARG

The fileScreenTemplate parameter is NULL.

Upon receiving this message, the server MUST validate parameters:

 Verify that fileScreenTemplate is not NULL.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

Upon successful validation of parameters, the server MUST perform the following actions or return a
nonzero error code.

 Create a new Non-Persisted File Screen Template Instance (section 3.2.1.3.3.2).

 Populate its configuration from the Persisted File Screen Template (section 3.2.1.3.3.1) in the List
of Persisted File Screen Templates with the specified name.

 Set fileScreenTemplate to the IFsrmFileScreenTemplate interface pointer of the Non-Persisted

File Screen Template Instance.

If a file screen template with name does not exist, the server MUST return FSRM_E_NOT_FOUND.

3.2.4.2.32.3 EnumTemplates (Opnum 9)

The EnumTemplates method returns all the file screen templates from the List of Persisted File
Screen Templates (section 3.2.1.3) of the server.

 [id(FSRM_DISPID_FILESCREEN_TEMPLATE_MANAGER | 0x03)] HRESULT EnumTemplates(
 [in, defaultvalue(FsrmEnumOptions_None)]
 FsrmEnumOptions options,
 [out, retval] IFsrmCommittableCollection** fileScreenTemplates
);

options: Contains the FsrmEnumOptions (section 2.2.1.2.5) to use when enumerating the file screen
templates.

fileScreenTemplates: Pointer to an IFsrmCommittableCollection interface pointer (section

3.2.4.2.3) that upon completion contains pointers to every file screen template on the server. The
caller MUST release the collection when the caller is done with it.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return value/code Description

0x80045311

FSRM_E_NOT_SUPPORTED

The options parameter contains FsrmEnumOptions (section 2.2.1.2.5) values
that are not valid.

0x80070057

E_INVALIDARG

The fileScreenTemplate parameter is NULL.

Upon receiving this message, the server MUST validate parameters:

 If fileScreenTemplates is NULL, the server MUST return E_INVALIDARG.

243 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 If options contains FsrmEnumOptions_Asynchronous or any value other than what is specified
in section 2.2.1.2.5, the server MUST return FSRM_E_NOT_SUPPORTED.

Upon successful validation of parameters, the server MUST perform the following actions:

 Create a List of Non-Persisted File Screen Template Instances (section 3.2.1.3).

 Populate it with Non-Persisted File Screen Template Instances (section 3.2.1.3.3.2) copied from
the Persisted File Screen Templates (section 3.2.1.3.3.1) in the List of Persisted File Screen
Templates.

 Populate fileScreenTemplates with the IFsrmFileScreenTemplate interface pointer (section
3.2.4.2.30) of every Non-Persisted File Screen Template Instance in this List of Non-Persisted
File Screen Template Instance.

3.2.4.2.32.4 ExportTemplates (Opnum 10)

The ExportTemplates method exports an XML string representation of FSRM file screen templates

from the List of Persisted File Screen Templates (section 3.2.1.3).

 [id(FSRM_DISPID_FILESCREEN_TEMPLATE_MANAGER | 0x04)] HRESULT ExportTemplates(
 [in, defaultvalue(NULL)] VARIANT* fileScreenTemplateNamesArray,
 [out, retval] BSTR* serializedFileScreenTemplates
);

fileScreenTemplateNamesArray: Pointer to a SAFEARRAY that contains the names of file screen
templates to export.

serializedFileScreenTemplates: Pointer to a variable that upon completion contains the XML string

representation of all the specified fileScreens.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return value/code Description

0x80045301

FSRM_E_NOT_FOUND

The specified template could not be found.

0x80070057

E_INVALIDARG

This code is returned for the following reasons:

 The fileScreenTemplateNamesArray parameter is NULL.

 The fileScreenTemplateNamesArray parameter does not contain a variant array
of BSTRs.

Upon receiving this message, the server MUST validate parameters:

 Verify that serializedFileScreenTemplates is not NULL.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

Upon successful validation of parameters, the server MUST perform one of the following actions.

 If fileScreenTemplateNamesArray is NULL, the server MUST return the XML string representation
of all Persisted File Screen Templates (section 3.2.1.3.3.1).

 If fileScreenTemplateNamesArray is not NULL, the server MUST return the XML string
representation of only those Persisted File Screen Templates specified in
fileScreenTemplateNamesArray.

244 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

3.2.4.2.32.5 ImportTemplates (Opnum 11)

The ImportTemplates method imports file screen templates from an XML string of file screen
templates.

 [id(FSRM_DISPID_FILESCREEN_TEMPLATE_MANAGER | 0x05)] HRESULT ImportTemplates(
 [in] BSTR serializedFileScreenTemplates,
 [in, defaultvalue(NULL)] VARIANT* fileScreenTemplateNamesArray,
 [out, retval] IFsrmCommittableCollection** fileScreenTemplates
);

serializedFileScreenTemplates: Contains the XML string representation of a list of file screen
templates. There is no maximum character length for this string.

fileScreenTemplateNamesArray: Pointer to a SAFEARRAY that contains the names of the file screen

templates to import.

fileScreenTemplates: Pointer to an IFsrmCommittableCollection interface pointer (section

3.2.4.2.3) that upon completion contains IFsrmFileScreenTemplate interface pointers (section
3.2.4.2.30) for each of the imported file screen templates. The caller MUST release the collection
when the caller is done with it.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return value/code Description

0x80045301

FSRM_E_NOT_FOUND

The specified template could not be found.

0x8004530B

FSRM_E_INVALID_IMPORT_VERSION

The version of the imported objects is not valid.

0x80070057

E_INVALIDARG

This code is returned for the following reasons:

 The fileScreenTemplates parameter is NULL.

 The fileScreenTemplateNamesArray parameter does not contain
a variant array of BSTRs

Upon receiving this message, the server MUST validate parameters:

 Verify that serializedFileScreenTemplates is not NULL or empty.

 Verify that fileScreenTemplates is not NULL.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

Upon successful validation of parameters, the server MUST perform one of the following actions.

 If fileScreenTemplateNamesArray is NULL, the server MUST create new Non-Persisted File Screen

Template Instances (section 3.2.1.3.3.2) for each template in the XML string, and populate
fileScreenTemplates with the IFsrmFileScreenTemplate interface pointers for those Non-
Persisted File Screen Template Instances.

 If fileScreenTemplateNamesArray is not NULL, the server MUST create new Non-Persisted File
Screen Template Instances for file screen templates in the XML string whose Names properties
are included in fileScreenTemplateNamesArray, and populate fileScreenTemplates with the
IFsrmFileScreenTemplate interface pointers for those Non-Persisted File Screen Template
Instances.

245 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

3.2.4.2.33 IFsrmReportManager Methods

The IFsrmReportManager interface exposes methods for managing report jobs.

Methods in RPC Opnum Order

Method Description

EnumReportJobs Opnum: 7

CreateReportJob Opnum: 8

GetReportJob Opnum: 9

GetOutputDirectory Opnum: 10

SetOutputDirectory Opnum: 11

IsFilterValidForReportType Opnum: 12

GetDefaultFilter Opnum: 13

SetDefaultFilter Opnum: 14

GetReportSizeLimit Opnum: 15

SetReportSizeLimit Opnum: 16

3.2.4.2.33.1 EnumReportJobs (Opnum 7)

The EnumReportJobs method returns a collection of all the report jobs from the List of Persisted
Report Jobs (section 3.2.1.5) and those from the List of Non-Persisted Report Jobs (section
3.2.1.5) on the server.

 [id(FSRM_DISPID_REPORT_MANAGER | 0x01)] HRESULT EnumReportJobs(
 [in, defaultvalue(FsrmEnumOptions_None)]
 FsrmEnumOptions options,
 [out, retval] IFsrmCollection** reportJobs
);

options: Contains the FsrmEnumOptions (section 2.2.1.2.5) to use when enumerating the report
jobs.

reportJobs: Pointer to an IFsrmCollection interface pointer (section 3.2.4.2.1) that upon

completion contains a pointer to every report job on the server. The caller MUST release the collection
when the caller is done with it.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return value/code Description

0x80070057

E_INVALIDARG

This return code is returned for the following reasons:

 The reportJobs parameter is NULL.

0x80045311

FSRM_E_NOT_SUPPORTED

The options parameter contains FsrmEnumOptions (section 2.2.1.2.5) values
that are not valid.

246 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Upon receiving this message, the server MUST validate parameters:

 If reportJobs is NULL, the server MUST return E_INVALIDARG.

 If options contains FsrmEnumOptions_Asynchronous or any value other than what is specified
in section 2.2.1.2.5, the server MUST return FSRM_E_NOT_SUPPORTED.

Upon successful validation of parameters, the server MUST perform the following actions:

 Create a new List of Non-Persisted Reports Job Instances (section 3.2.1.5).

 Populate it with Non-Persisted Report Job Instances (section 3.2.1.5.1.2) copied from the
Persisted Report Jobs (section 3.2.1.5.1.1) in the List of Persisted Report Jobs.

 Populate it with Non-Persisted Report Job Instances in the List of Non-Persisted Report Jobs
that have a running status of Running.

 If options did not include FsrmEnumOptions_IncludeDeprecatedObjects, remove all Non-

Persisted Report Job Instances that have one or more report objects as part of their Report

Job.Reports that have Report.Deprecated set to true.

 Populate reportJobs with the IFsrmReportJob interface pointer (section 3.2.4.2.34) of every
Non-Persisted Report Job Instance in this List of Non-Persisted Reports Job Instance.

If there are no report jobs configured on the server, the method MUST return an IFsrmCollection
object that contains zero objects.

3.2.4.2.33.2 CreateReportJob (Opnum 8)

The CreateReportJob method creates a Non-Persisted Report Job Instance (section 3.2.1.5.1.2) and
returns S_OK upon successful completion.

 [id(FSRM_DISPID_REPORT_MANAGER | 0x02)] HRESULT CreateReportJob(
 [out, retval] IFsrmReportJob** reportJob
);

reportJob: Pointer to an IFsrmReportJob interface pointer (section 3.2.4.2.33) that upon
completion contains a pointer to the newly created report job. To have the report job added to
the server's List of Persisted Report Jobs (section 3.2.1.5), the caller MUST call
Commit (section 3.2.4.2.34.1). The caller MUST release the report job when the caller is done with
it.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return
value/code Description

0x80070057

E_INVALIDARG

The reportJob parameter is NULL.

Upon receiving this message, the server MUST validate parameters:

 Verify that reportJob is not NULL.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

Upon successful validation of parameters, the server MUST perform the following actions.

 Create a new Non-Persisted Report Job Instance.

247 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 Set FSRM Base Object.Id to a GUID.

 Set Report Job.Formats to DHTML and XML.

 Set FSRM Base Object.Description to an empty string.

 Set Namespace roots to an empty list.

 Set Task name to an empty string.

 Set Report Job.Mail to to an empty string.

 Set Report Job.Reports to an empty list.

 Set Running Status to FsrmReportRunningStatus_NotRunning.

 Set Last run time to a specific value in the past<60>. This value MUST be the same for all
new Non-Persisted Report Job Instances. Any value subsequently assigned to the property
that is on or before this specific value MUST be interpreted by the server as "never".

 Set Last error to an empty string.

 Set Last generated in directory to an empty string.

 Set reportJob to the IFsrmReportJob interface of the new Non-Persisted Report Job Instance.

The new Non-Persisted Report Job Instance MUST NOT be associated with an existing Persisted Report
Job (section 3.2.1.5.1.1).

3.2.4.2.33.3 GetReportJob (Opnum 9)

The GetReportJob method returns the report job associated with the specified task name from the
List of Persisted Report Jobs (section 3.2.1.5).

 [id(FSRM_DISPID_REPORT_MANAGER | 0x03)] HRESULT GetReportJob(
 [in] BSTR taskName,
 [out, retval] IFsrmReportJob** reportJob
);

taskName: Contains the task name for which the server will return the associated report job object.
The maximum length of this string MUST be 230 characters.

reportJob: Pointer to an IFsrmReportJob interface pointer (section 3.2.4.2.34) that upon

completion contains a pointer to the report job object for the task name specified. The caller MUST
release the report job when the caller is done with it.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return value/code Description

0x80045301

FSRM_E_NOT_FOUND

The specified report job could not be found.

0x80070057

E_INVALIDARG

This code is returned for the following reasons:

 The taskName parameter is NULL.

 The reportJob parameter is NULL.

Upon receiving this message, the server MUST validate parameters:

248 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 Verify that taskName is not NULL.

 Verify that reportJob is not NULL.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

Upon successful validation of parameters, the server MUST perform the following actions or return a

nonzero error code.

 Create a new Non-Persisted Report Job Instance (section 3.2.1.5.1.2).

 Populate the configuration and state data of the Non-Persisted Report Job Instance from the
Persisted Report Job (section 3.2.1.5.1.1) in the List of Persisted Report Jobs with the specified
task name.

 Set reportJob to the IFsrmReportJob interface pointer of the newly created Non-Persisted Report
Job Instance.

If a report job does not exist that is associated with the specified task name, the server MUST return

FSRM_E_NOT_FOUND.

3.2.4.2.33.4 GetOutputDirectory (Opnum 10)

The GetOutputDirectory method returns the output directory where storage reports generated with the
specified context will be stored.

 [id(FSRM_DISPID_REPORT_MANAGER | 0x04)] HRESULT GetOutputDirectory(
 [in] FsrmReportGenerationContext context,
 [out, retval] BSTR* path
);

context: Contains the value from the FsrmReportGenerationContext (section 2.2.1.2.15) enumeration
of the context to get.

path: Pointer to a variable that upon completion contains the output directory where storage reports
generated with the specified context will be stored.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return
value/code Description

0x80070057

E_INVALIDARG

This code is returned for the following reasons:

 The context parameter is not a valid
FsrmReportGenerationContext (section 2.2.1.2.15) value.

 The path parameter is NULL.

Upon receiving this message, the server MUST validate parameters:

 Verify that context is a valid FsrmReportGenerationContext (section 2.2.1.2.15) value. If the

context is FsrmReportGenerationContext_Undefined, the parameter MUST be considered an
invalid value.

 Verify that path is not NULL.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

249 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Upon successful validation of parameters, the server MUST perform one of the following actions:

 If the context parameter is equal to FsrmReportGenerationContext_ScheduledReport then the

server MUST set path to the scheduled output directory.

 If the context parameter is equal to FsrmReportGenerationContext_InteractiveReport then the

server MUST set path to the interactive output directory.

 If the context parameter is equal to FsrmReportGenerationContext_IncidentReport then the server
MUST set path to the incident output directory.

3.2.4.2.33.5 SetOutputDirectory (Opnum 11)

The SetOutputDirectory method sets the output directory where storage reports generated with the
specified context will be stored.

 [id(FSRM_DISPID_REPORT_MANAGER | 0x05)] HRESULT SetOutputDirectory(
 [in] FsrmReportGenerationContext context,
 [in] BSTR path
);

context: Contains the value from the FsrmReportGenerationContext (section 2.2.1.2.15) enumeration
of the context to set.

path: Contains the output directory where storage reports generated with the specified context will
be stored. The maximum length of this string MUST be 150 characters.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return
value/code Description

0x80070057

E_INVALIDARG

This code is returned for the following reasons:

 The path parameter is NULL.

 The content of the path parameter exceeds the maximum length of 150 characters.

 The context parameter is not a valid
FsrmReportGenerationContext (section 2.2.1.2.15) value.

Upon receiving this message, the server MUST validate parameters:

 Verify that path is not NULL.

 Verify that context contains a valid FsrmReportGenerationContext value.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

Upon successful validation of parameters, the server MUST perform one of the following actions:

 If context is equal to FsrmReportGenerationContext_ScheduledReport then the server MUST use
path as the Scheduled output directory for reports.

 If context is equal to FsrmReportGenerationContext_InteractiveReport then the server MUST use

path as the Interactive output directory for reports.

 If context is equal to FsrmReportGenerationContext_IncidentReport then the server MUST use
path as the Incident output directory for reports.

250 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

3.2.4.2.33.6 IsFilterValidForReportType (Opnum 12)

The IsFilterValidForReportType method returns an indication of whether a specified report filter is
configurable for the specified report type.

 [id(FSRM_DISPID_REPORT_MANAGER | 0x06)] HRESULT IsFilterValidForReportType(
 [in] FsrmReportType reportType,
 [in] FsrmReportFilter filter,
 [out, retval] VARIANT_BOOL* valid
);

reportType: Contains the value from the FsrmReportType (section 2.2.1.2.10) enumeration.

filter: Contains the value from the FsrmReportFilter (section 2.2.1.2.16) enumeration.

valid: Pointer to a variable that upon completion contains the Boolean indication of whether the

specified filter is configurable for the specified report type.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return
value/code Description

0x80070057

E_INVALIDARG

This code is returned for the following reasons:

 The reportType parameter is not a valid FsrmReportType 2.2.1.2.10 value.

 The filter parameter is not a valid FsrmReportFilter (section 2.2.1.2.16) value.

 The valid parameter is NULL.

Upon receiving this message, the server MUST validate parameters:

 Verify that valid is not NULL.

 Verify that reportType contains a valid FsrmReportType value. If the reportType is
FsrmReportType_Unknown, the parameter MUST be considered an invalid value.

 Verify that filter contains a valid FsrmReportFilter value.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

The server MUST set valid to the value VARIANT_TRUE or VARIANT_FALSE.

3.2.4.2.33.7 GetDefaultFilter (Opnum 13)

The GetDefaultFilter method returns the current value of the specified report filter for the specified
report type.

 [id(FSRM_DISPID_REPORT_MANAGER | 0x07)] HRESULT GetDefaultFilter(
 [in] FsrmReportType reportType,
 [in] FsrmReportFilter filter,
 [out, retval] VARIANT* filterValue
);

reportType: Contains the value from the FsrmReportType (section 2.2.1.2.10) enumeration.

filter: Contains the value from the FsrmReportFilter (section 2.2.1.2.16) enumeration.

251 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

filterValue: Pointer to a variable that upon completion contains the value of the specified filter for the
specified report type.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return
value/code Description

0x80070057

E_INVALIDARG

This code is returned for the following reasons:

 The reportType parameter is not a valid FsrmReportType (section 2.2.1.2.10) value.

 The filter parameter is not a valid FsrmReportFilter (section 2.2.1.2.16) value.

 The filterValue parameter is NULL.

Upon receiving this message, the server MUST validate parameters:

 Verify that filterValue is not NULL.

 Verify that reportType contains a valid FsrmReportType value. If reportType is
FsrmReportType_Unknown, the parameter MUST be considered an invalid value.

 Verify that filter contains a valid FsrmReportFilter value.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

The server MUST set filterValue to the current filter value for the specified report filter and report
type.

3.2.4.2.33.8 SetDefaultFilter (Opnum 14)

The SetDefaultFilter method sets the value of the specified report filter for the specified report type.

 [id(FSRM_DISPID_REPORT_MANAGER | 0x08)] HRESULT SetDefaultFilter(
 [in] FsrmReportType reportType,
 [in] FsrmReportFilter filter,
 [in] VARIANT filterValue
);

reportType: Contains the value from the FsrmReportType (section 2.2.1.2.10) enumeration.

filter: Contains the value from the FsrmReportFilter (section 2.2.1.2.16) enumeration.

filterValue: Contains the value of the specified filter for the specified report type.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return

value/code Description

0x80070057

E_INVALIDARG

This code is returned for the following reasons:

 The reportType parameter is not a valid FsrmReportType (section 2.2.1.2.10) value.

 The filter parameter is not a valid FsrmReportFilter (section 2.2.1.2.16) value.

 The filterValue parameter is not a valid value for the specified report filter.

252 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Upon receiving this message, the server MUST validate parameters:

 Verify that reportType contains a valid FsrmReportType value. If reportType is

FsrmReportType_Unknown, the parameter MUST be considered an invalid value.

 Verify that filter contains a valid FsrmReportFilter value.

 Verify that filterValue contains a valid value as follows:

 If filter is FsrmReportFilter_MinSize, the variant contains a non-negative value of type
short, int, or long.

 If filter is FsrmReportFilter_MinAgeDays or FsrmReportFilter_MaxAgeDays, the variant
contains a non-negative integer smaller than or equal to (2^31-1) and also the number of
days is smaller than the number of days from the current time until December 31, 9999 A.D.

 If filter is FsrmReportFilter_MinQuotaUsage, the variant contains a non-negative integer

less than or equal to (2^31-1).

 If filter is FsrmReportFilter_FileGroups, the variant contains an array of valid file group
names, specified in section 3.2.1.5.2.

 If filter is FsrmReportFilter_Owners, the variant contains an array of valid user names,
specified in section 3.2.1.5.2.

 If filter is FsrmReportFilter_NamePattern, the variant contains a valid pattern, specified in

section 3.2.1.5.2.

 If filter is FsrmReportFilter_Property, the variant contains a string representing a valid
property name, specified in section 3.2.1.5.2.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

3.2.4.2.33.9 GetReportSizeLimit (Opnum 15)

The GetReportSizeLimit method returns the report size limit value of the specified report limit.

 [id(FSRM_DISPID_REPORT_MANAGER | 0x09)] HRESULT GetReportSizeLimit(
 [in] FsrmReportLimit limit,
 [out, retval] VARIANT* limitValue
);

limit: Contains the value from the FsrmReportLimit (section 2.2.1.2.17) enumeration indicating the
report size limit for which the value is returned.

limitValue: Pointer to a variable that upon completion contains the report size limit of the specified
report limit.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return
value/code Description

0x80070057

E_INVALIDARG

This code is returned for the following reasons:

 The limit parameter is not a valid FsrmReportLimit (section 2.2.1.2.17) value.

 The limitValue parameter is NULL.

253 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Upon receiving this message, the server MUST validate parameters:

 Verify that limitValue is not NULL.

 Verify that limit contains a valid FsrmReportLimit value.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

The server MUST set limitValue to the report size limit for the specified report limit.

3.2.4.2.33.10 SetReportSizeLimit (Opnum 16)

The SetReportSizeLimit method sets the report size limit of the specified report limit.

 [id(FSRM_DISPID_REPORT_MANAGER | 0x0A)] HRESULT SetReportSizeLimit(
 [in] FsrmReportLimit limit,
 [in] VARIANT limitValue
);

limit: Contains the value from the FsrmReportLimit (section 2.2.1.2.17) enumeration indicating the
report size limit that is set.

limitValue: Contains the value of the specified report size limit.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return
value/code Description

0x80070057

E_INVALIDARG

This code is returned for the following reasons:

 The limit parameter is not a valid FsrmReportLimit (section 2.2.1.2.17) value.

 The limitValue parameter is not a valid value; it could not be converted to a positive,
long number.

Upon receiving this message, the server MUST validate parameters:

 Verify that limit contains a valid FsrmReportLimit value.

 Verify that limitValue contains a positive long number.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

The server MUST use limitValue as the report size limit for the specified report limit.

3.2.4.2.34 IFsrmReportJob Methods

The IFsrmReportJob interface exposes methods for configuring report jobs. IFsrmReportJob
implements methods for the IFsrmObject interface (section 3.2.4.2.10), as well as those listed in the

following table.

Each IFsrmReportJob instance is associated with one Non-Persisted Report Job
Instance (section 3.2.1.5.1.2).

Methods in RPC Opnum Order

254 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Method Description

Commit Opnum: 11

Task (get) Opnum: 12

Task (put) Opnum: 13

NamespaceRoots (get) Opnum: 14

NamespaceRoots (put) Opnum: 15

Formats (get) Opnum: 16

Formats (put) Opnum: 17

MailTo (get) Opnum: 18

MailTo (put) Opnum: 19

RunningStatus (get) Opnum: 20

LastRun (get) Opnum: 21

LastError (get) Opnum: 22

LastGeneratedInDirectory (get) Opnum: 23

EnumReports Opnum: 24

CreateReport Opnum: 25

Run Opnum: 26

WaitForCompletion Opnum: 27

Cancel Opnum: 28

3.2.4.2.34.1 Commit (Opnum 11)

The Commit method is implemented as one of the methods for the IFsrmObject interface (section
3.2.4.2.10). This method has the behavior specified in section 3.2.4.2.10.5 with the following

additions:

 If FSRM Base Object.Deleted is set to true for this Non-Persisted Report Job
Instance (section 3.2.1.5.1.2), the server MUST remove the Persisted Report
Job (section 3.2.1.5.1.1) from the List of Persisted Report Jobs (section 3.2.1.5) that has the
same Task name as this Non-Persisted Report Job Instance, if one exists. This removal MUST
occur even if other changes were made to the configuration of the Non-Persisted Report Job

Instance. If a Persisted Report Job does not exist, removal is not performed and the server MUST

return 0. The server MUST return a nonzero error code if removal fails.

 If FSRM Base Object.Deleted is set to false for this Non-Persisted Report Job Instance, the
server MUST perform the following actions:

 If any Report Job.Reports in this report job have their Report.Deprecated set to true, the
server MUST return FSRM_E_REQD_PARAM_MISSING.

 If the Namespace roots is empty, the server MUST return FSRM_E_REQD_PARAM_MISSING.

 If the Task name is NULL, the server MUST return FSRM_E_REQD_PARAM_MISSING.

255 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 If the Report Job.Reports list is empty, the server MUST return
FSRM_E_REQD_PARAM_MISSING.

 If there is a report object in Report Job.Reports that has the same Report.Name as any
other report object in the List Of Persisted Report Jobs, the server must return

FSRM_E_DUPLICATE_NAME.

 If a Persisted Report Job in the List of Persisted Report Jobs exists with the same Report
Jobs (section 3.2.1.5.1) Task name as the Non-Persisted Report Job Instance but a different
FSRM Base Object.Id, the server MUST return FSRM_E_ALREADY_EXISTS.

 If a Persisted Report Job in the List of Persisted Report Jobs exists that has the same Task
name as this Non-Persisted Report Job Instance, the server MUST update the configuration data
of that Persisted Report Job with the configuration data from this instance. The server MUST

return a nonzero error code if the update fails. Details on how configuration data for Persisted
Report Jobs are updated is given below in this section.

 If a Persisted Report Job does not exist with the same Task name and with FSRM Base

Object.Deleted set to false, the server MUST create a new Persisted Report Job, populate its
configuration with the configuration from this Non-Persisted Report Job Instance, and add the new
Persisted Report Job to the List of Persisted Report Jobs. The server MUST return a nonzero

error code if creation fails. Details on how configuration data for Persisted Report Jobs are updated
is given below in this section.

Comparison of the Report Job Task name MUST be case-insensitive.

To update or populate the configuration data from a Non-Persisted Report Job Instance to a Persisted
Report Job, the server MUST assign the values of all the properties of the Non-Persisted Report Job
Instance to the corresponding properties of the Persisted Report Job. See section 3.2.1.5.1 for the list
of Report Job properties.

In addition, the server MUST:

 Remove each Report in the Report Job.Reports list of the Persisted Report Job.

 For each Report (the source Report) in the Report Job.Reports list of the Non-Persisted Report
Job Instance:

 Create a new Report (the destination Report).

 Populate the configuration data from the source Report to the destination Report as
explained below.

 Add the destination Report to the Report Job.Reports list of the Persisted Report Job.

To populate the configuration data from a Report in the Non-Persisted Report Job Instance (the
source Report) to the corresponding Report in the Persisted Report Job (the destination Report), the
server MUST assign the values of all properties of the source Report to the corresponding properties
of the destination Report. See section 3.2.1.5.2 for the list of Report properties.

3.2.4.2.34.2 Task (get) (Opnum 12)

The Task (get) method returns the task name that is associated with the report job object.

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_REPORT_JOB | 0x01))] HRESULT Task(
 [out, retval] BSTR* taskName
);

256 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

taskName: Pointer to a variable that upon completion contains the task name that is associated with
the report job object.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return
value/code Description

0x80070057

E_INVALIDARG

The taskName parameter is NULL.

Upon receiving this message, the server MUST validate parameters:

 Verify that taskName is not NULL.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

The server MUST set taskName to the task name associated with the report job object.

3.2.4.2.34.3 Task (put) (Opnum 13)

The Task (put) method sets the task name that is associated with the report job object.

 [propput, id(FSRM_PROPERTY(FSRM_DISPID_REPORT_JOB | 0x01))] HRESULT Task(
 [in] BSTR taskName
);

taskName: Contains the task name to associate with the report job object. The maximum length of
this string MUST be 230 characters.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return
value/code Description

0x80070057

E_INVALIDARG

The taskName is not a valid value; it cannot contain the following characters: [^,\'/"|]+.

The server MUST set the task name property on the report job object or return a nonzero error code.

3.2.4.2.34.4 NamespaceRoots (get) (Opnum 14)

The NamespaceRoots (get) method returns the namespace roots that will be scanned when the
report job is generated.

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_REPORT_JOB | 0x02))] HRESULT NamespaceRoots(
 [out, retval] SAFEARRAY (VARIANT)* namespaceRoots
);

namespaceRoots: Pointer to a variable that upon completion contains the namespace roots that
will be scanned when the report job is generated.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

257 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Return
value/code Description

0x80070057

E_INVALIDARG

The namespaceRoots parameter is NULL.

Upon receiving this message, the server MUST validate parameters:

 Verify that namespaceRoots is not NULL.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

The server MUST set the namespaceRoots array to the namespace roots that the report job will scan

when it is generated.

3.2.4.2.34.5 NamespaceRoots (put) (Opnum 15)

The NamespaceRoots (put) method sets the namespace roots that the report job will scan when the

report job is generated.

 [propput, id(FSRM_PROPERTY (FSRM_DISPID_REPORT_JOB | 0x02))] HRESULT NamespaceRoots(
 [in] SAFEARRAY (VARIANT) namespaceRoots
);

namespaceRoots: Contains the array of namespace roots that will be scanned when the report job
is generated.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return
value/code Description

0x80070057

E_INVALIDARG

This code is returned for the following reasons:

 The namespaceRoots parameter is empty.

 One or more of the variants is not a string.

Upon receiving this message, the server MUST validate parameters:

 Verify that namespaceRoots contains valid local directories.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

The server MUST set namespaceRoots to the namespace roots of the report job object.

3.2.4.2.34.6 Formats (get) (Opnum 16)

The Formats (get) method returns an array of report formats that will be created when the report job
is generated.

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_REPORT_JOB | 0x03))] HRESULT Formats(
 [out, retval] SAFEARRAY (VARIANT)* formats
);

formats: Pointer to a variable that upon completion contains the array of report formats that will be
created when the report job is generated.

258 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return
value/code Description

0x80070057

E_INVALIDARG

The formats parameter is NULL.

Upon receiving this message, the server MUST validate parameters:

 Verify that formats is not NULL.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

The server MUST set the formats array to the Report Job.Formats list that the report job will create
when it is generated.

3.2.4.2.34.7 Formats (put) (Opnum 17)

The Formats (put) method sets the list of report formats that the report job will create when the
report job is generated.

 [propput, id(FSRM_PROPERTY (FSRM_DISPID_REPORT_JOB | 0x03))] HRESULT Formats(
 [in] SAFEARRAY (VARIANT) formats
);

formats: Contains the array of report formats that will be created when the report job is generated.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return
value/code Description

0x80070057

E_INVALIDARG

The formats parameter is not a valid value. If one of the formats is
FsrmReportFormat_Unknown, the parameter MUST be considered invalid.

Upon receiving this message, the server MUST validate parameters:

 Verify that formats contains valid FsrmReportFormat (section 2.2.1.2.14) values. If any one of the
formats is FsrmReportFormat_Unknown, the parameter MUST be considered an invalid value.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

The server MUST set the Report Job.Formats list on the report job object.

3.2.4.2.34.8 MailTo (get) (Opnum 18)

The MailTo (get) method returns the email address recipient list to which the reports will be emailed

when the report job is successfully completed. The format of the email address needs to be as

specified in [RFC5322].

 [propget, id(FSRM_PROPERTY (FSRM_DISPID_REPORT_JOB | 0x04))] HRESULT MailTo(
 [out, retval] BSTR* mailTo
);

https://go.microsoft.com/fwlink/?LinkId=183003

259 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

mailTo: Pointer to a variable that upon completion contains the email recipient list to which the
reports will be sent when the report job is generated. The string returned in mailTo MUST be in

the form of mailTo string (section 3.2.4.2).

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return
value/code Description

0x80070057

E_INVALIDARG

The mailTo parameter is NULL.

Upon receiving this message, the server MUST validate parameters:

 Verify that mailTo is not NULL.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

The server MUST set the mailTo parameter to Report Job.Mail to to which the reports will be sent
when the report job is generated.

If the list of email recipients contains the special string "[ADMIN_EMAIL]", the server MUST return the
list of email recipients without resolving the "[ADMIN EMAIL]" macro.

3.2.4.2.34.9 MailTo (put) (Opnum 19)

The MailTo (put) method sets the email address recipient list to which the reports will be emailed
when the report job is successfully completed. The format of the email address needs to be as
specified in [RFC5322].

 [propput, id(FSRM_PROPERTY(FSRM_DISPID_REPORT_JOB | 0x04))] HRESULT MailTo(
 [in] BSTR mailTo
);

mailTo: Contains the email address recipient list to which the reports will be emailed when the report
job is generated. The string in mailTo MUST be in the form of a mailTo string (section 3.2.4.2).
The maximum length of this string MUST be 255 characters.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return
value/code Description

0x80070057

E_INVALIDARG

This code is returned for the following reasons:

 The list of addresses in the mailTo parameter is too long. The maxiumum length of
each address is 255 characters.

 The mailTo parameter is not a valid value; one or more of the addresses are not
formatted correctly. The format of the email address needs to be as specified in
[RFC5322].

Upon receiving this message, the server MUST validate parameters:

 Verify that each email address in mailTo is less than 256 characters.

 Verify that all email addresses in mailTo are formatted correctly.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

https://go.microsoft.com/fwlink/?LinkId=183003

260 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

The server MUST set the Report Job.Mail to on the report job object.

If mailTo contains the string "[ADMIN EMAIL]" the server MUST store that string instead of replacing it

with the Administrator email address setting (section 3.2.1.9).

3.2.4.2.34.10 RunningStatus (get) (Opnum 20)

The RunningStatus (get) method retrieves the current running status of the Non-Persisted Report Job
Instance (section 3.2.1.5.1.2) as defined in the FsrmReportRunningStatus (section 2.2.1.2.13)
enumeration and returns S_OK upon successful completion.

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_REPORT_JOB | 0x05))] HRESULT RunningStatus(
 [out, retval] FsrmReportRunningStatus* runningStatus
);

runningStatus: Pointer to a variable that upon completion contains the current Running status of
the Non-Persisted Report Job Instance.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return
value/code Description

0x80070057

E_INVALIDARG

The runningStatus parameter is NULL.

Upon receiving this message, the server MUST validate parameters:

 Verify that runningStatus is not NULL.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

The server MUST set runningStatus to the Running Status of the Non-Persisted Report Job Instance.

3.2.4.2.34.11 LastRun (get) (Opnum 21)

The LastRun (get) method retrieves the last run time value corresponding to the time the report job
was previously generated and returns S_OK upon successful completion.

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_REPORT_JOB | 0x06))] HRESULT LastRun(
 [out, retval] DATE* lastRun
);

lastRun: Pointer to a variable that upon completion contains the last run time when the report job
was previously generated.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return
value/code Description

0x80070057

E_INVALIDARG

The lastRun parameter is NULL.

Upon receiving this message, the server MUST validate parameters:

 Verify that lastRun is not NULL.

261 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

If any validation fails, the server MUST terminate processing and return a nonzero error code.

The server MUST set lastRun to the last run time of the report job's previous generation.

3.2.4.2.34.12 LastError (get) (Opnum 22)

The LastError (get) method retrieves the last error, if any, from when the report job was previously
generated and returns S_OK upon successful completion. If no error occurred on the previous report
job generation, the returned string will be empty.

 [propget, id(FSRM_PROPERTY (FSRM_DISPID_REPORT_JOB | 0x07))] HRESULT LastError(
 [out, retval] BSTR* lastError
);

lastError: Pointer to a variable that upon completion contains the last error, if any, from when the
report job was previously generated.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return
value/code Description

0x80070057

E_INVALIDARG

The lastError parameter is NULL.

Upon receiving this message, the server MUST validate parameters:

 Verify that lastError is not NULL.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

The server MUST set lastError to the last error of the previous report job generation or an empty

string if no error occurred on the previous report job generation.

3.2.4.2.34.13 LastGeneratedInDirectory (get) (Opnum 23)

The LastGeneratedInDirectory (get) retrieves the last generated in directory for the report job and
returns S_OK upon successful completion.

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_REPORT_JOB | 0x08))] HRESULT LastGeneratedInDirectory(
 [out, retval] BSTR* path
);

path: Pointer to a variable that upon completion contains the last generated in directory.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return
value/code Description

0x80070057

E_INVALIDARG

The path parameter is NULL.

Upon receiving this message, the server MUST validate parameters:

 Verify that path is not NULL.

262 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

If any validation fails, the server MUST terminate processing and return a nonzero error code.

The server MUST set path to the last generated in directory.

3.2.4.2.34.14 EnumReports (Opnum 24)

The EnumReports method enumerates all the reports configured for the report job and returns S_OK
upon successful completion.

 [id(FSRM_DISPID_REPORT_JOB | 0x01)] HRESULT EnumReports(
 [out, retval] IFsrmCollection** reports
);

reports: Pointer to an IFsrmCollection interface pointer (section 3.2.4.2.1) that upon completion

contains pointers to the report objects configured for the report job. A caller MUST release the
collection received when the caller is done with it.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return
value/code Description

0x80070057

E_INVALIDARG

The reports parameter is NULL.

Upon receiving this message, the server MUST validate parameters:

 Verify that reports is not NULL.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

The server MUST populate reports with the IFsrmReport interface pointer (section 3.2.4.2.35) of

each report configured for the report job object.

If there are no reports configured for the report job (that is, the Report Job.Reports list is empty),
the server MUST return an IFsrmCollection object that contains zero objects.

3.2.4.2.34.15 CreateReport (Opnum 25)

The CreateReport method adds a report of the specified type to a report job object.

 [id(FSRM_DISPID_REPORT_JOB | 0x02)] HRESULT CreateReport(
 [in] FsrmReportType reportType,
 [out, retval] IFsrmReport** report
);

reportType: An FsrmReportType (section 2.2.1.2.10) enumeration value that identifies the type of
report contained in the report parameter.

report: A pointer to an IFsrmReport interface pointer (section 3.2.4.2.35) that upon completion
contains a pointer to the newly created report of the specified type. The caller MUST release the
report job when it is done with it.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

263 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Return value/code Description

0x80045332

FSRM_E_REPORT_TYPE_ALREADY_EXISTS

A report of the specified type already exists for the report job.

0x80070057

E_INVALIDARG

The reportType parameter is not a valid value. If reportType is
FsrmReportType_AutomaticClassification or
FsrmReportType_Expiration, the parameter MUST be
considered invalid. <61>

Upon receiving this message, the server MUST validate parameters:

 Verify that report is not NULL.

 Verify that reportType contains a valid FsrmReportType value. If the reportType is
FsrmReportType_Unknown, FsrmReportType_AutomaticClassification or
FsrmReportType_Expiration, the parameter MUST be considered an invalid value. Otherwise,
all other FsrmReportType values SHOULD be considered valid.<62>

If any validation fails, the server MUST terminate processing and return a nonzero error code.

The server MUST set the report parameter to the IFsrmReport interface of the newly created report

based on the reportType specified and add it to the Report Job.Reports element of the Non-
Persisted Report Job Instance (section 3.2.1.5.1.2) or return a nonzero error code.

In the report parameter, the server MUST set:

 The Report.Type to the reportType parameter specified.

 The report Name to a unique value auto-generated by the server to identify the report.

 The report Report.Description to an empty value.

 The report Report.Deprecated to false.

 The report Last generated file name prefix to an empty value.

 The report Filters to a value returned by
IFsrmReportManager::GetDefaultFilter (section 3.2.4.2.33.7).

If a report of the specified type already exists for the report job, the server MUST return
FSRM_E_REPORT_TYPE_ALREADY_EXISTS.

3.2.4.2.34.16 Run (Opnum 26)

The Run method queues a Running Job to the Running Report Job Queue.

 [id(FSRM_DISPID_REPORT_JOB | 0x03)] HRESULT Run(
 [in] FsrmReportGenerationContext context
);

context: Contains the value of the report generation context in which the associated running report
task will run.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return value/code Description

0x8004530E The report job does not contain reports to run.

264 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Return value/code Description

FSRM_E_REQD_PARAM_MISSING

0x80045333

FSRM_E_REPORT_JOB_ALREADY_RUNNING

The report job is already running. (A Running
Job (section 3.2.1.5.1.3) has already been created for this
report job.)

0x80070057

E_INVALIDARG

The context parameter is not a valid
FsrmReprotGenerationContext (section 2.2.1.2.15) value.

The server MUST perform the following actions or return a non-zero error code:

 If any Report Job.Reports in this report job has its Report.Deprecated property set to true, the
server MUST return FSRM_E_NOT_FOUND.

 If there is already a Running Job in the Running Report Job Queue with the same Task name
as this instance's Task name, the server MUST return
FSRM_E_REPORT_JOB_ALREADY_RUNNING.

 Create a Running Job and set its properties as follows:

 Running Job.Parent: reference to this instance

 Reports directory: file system path to the output directory associated with context. See
section 3.2.1.5.3 for details on selecting the output directory for different generation contexts.

 Running Job.Cancel: false.

 Queue the Running Job to Running Report Job Queue.

See section 3.2.1.12.1 for more information about how the server monitors running report tasks.

3.2.4.2.34.17 WaitForCompletion (Opnum 27)

The WaitForCompletion method blocks the caller for the specified time period or until the associated
running report task (section 3.2.1.12.1) if any, completes, whichever occurs first.

 [id(FSRM_DISPID_REPORT_JOB | 0x04)] HRESULT WaitForCompletion(
 [in] long waitSeconds,
 [out, retval] VARIANT_BOOL* completed
);

waitSeconds: Contains the maximum number of seconds the call will block before returning.

completed: Pointer to a VARIANT_BOOL variable that upon completion contains an indication of

whether the report job has completed.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return
value/code Description

0x80070057

E_INVALIDARG

The waitSeconds parameter is not a valid value; the number of seconds to wait must be in

the range of -1 through 2,147,483.

Upon receiving this message, the server MUST validate parameters:

 Verify that waitSeconds is greater than "-2".

265 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 If there is no associated Running Report Job (section 3.2.1.5.1.3) in the Running Report Jobs
Queue, the server SHOULD set completed to VARIANT_TRUE and return zero.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

If there is an associated Running Report Job in the Running Report Jobs Queue, the server MUST

monitor the instance's Running status element for a maximum of waitSeconds if waitSeconds is
greater than -1, forever if waitSeconds equals -1, or until Running status is
FsrmReportRunningStatus_NotRunning, whichever is sooner, or return a nonzero error code.

 If this instance's Running status changes to FsrmReportRunningStatus_NotRunning before
waitSeconds, the server MUST set completed to VARIANT_TRUE.

 If this instance's Running status does not change to FsrmReportRunningStatus_NotRunning
before waitSeconds, the server MUST set completed to VARIANT_FALSE.

To implement the timeout behaviour driven by the waitSeconds parameter, a compliant
implementation of this routine can simply poll for the task completion for a maximum period of time,
or use an internal timer, or mix polling with a timer driven architecture.

3.2.4.2.34.18 Cancel (Opnum 28)

The Cancel method stops the associated Running Job (section 3.2.1.5.1.3), if any, from continuing and

returns S_OK upon successful completion.

 [id(FSRM_DISPID_REPORT_JOB | 0x05)] HRESULT Cancel();

This method has no parameters.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

The Running Job whose Running Job.Parent in the Running Report Job Queue whose Task name

is equivalent to the Task name of this instance will be referred to as the associated running job.

The server MUST stop the associated Running Job as follows, or return a nonzero error code:

 If there is no associated Running Job in the Running Report Job Queue, the server MUST return
zero.

 If an associated Running Job exists, set the Running Job.Cancel property of the associated
Running Job to true.

See section 3.2.1.12.1 for details on how to associate a Running Report Task with a Report job.

3.2.4.2.35 IFsrmReport Methods

The IFsrmReport interface exposes methods for configuring a report.

Methods in RPC Opnum Order

Method Description

Type (get) Opnum: 7

Name (get) Opnum: 8

Name (put) Opnum: 9

Description (get) Opnum: 10

266 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Method Description

Description (put) Opnum: 11

LastGeneratedFileNamePrefix (get) Opnum: 12

GetFilter Opnum: 13

SetFilter Opnum: 14

Delete Opnum: 15

3.2.4.2.35.1 Type (get) (Opnum 7)

The Type (get) method retrieves the type of the report as defined in the
FsrmReportType (section 2.2.1.2.10) enumeration and returns S_OK upon successful completion.

 [propget, id(FSRM_PROPERTY (FSRM_DISPID_REPORT | 0x01))] HRESULT Type(
 [out, retval] FsrmReportType* reportType
);

reportType: Pointer to a variable that upon completion contains the type of the report.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return
value/code Description

0x80070057

E_INVALIDARG

The reportType parameter is NULL.

Upon receiving this message, the server MUST validate parameters:

 Verify that reportType is not NULL.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

The server MUST set reportType to the Report.Type.

3.2.4.2.35.2 Name (get) (Opnum 8)

The Name (get) method returns the name of the report.

 [propget, id(FSRM_PROPERTY (FSRM_DISPID_REPORT | 0x02))] HRESULT Name(
 [out, retval] BSTR* name
);

name: Pointer to a variable that upon completion contains the name of the report.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return
value/code Description

0x80070057 This code is returned for the following reasons:

267 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Return
value/code Description

E_INVALIDARG
 The name parameter is NULL.

 The name parameter is not a valid value; it cannot contain the following characters:
[^,\'/"|]+.

Upon receiving this message, the server MUST validate parameters:

 Verify that name is not NULL.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

The server MUST set name to the report Report.Name.

3.2.4.2.35.3 Name (put) (Opnum 9)

The Name (put) method sets the name of the report.

 [propput, id(FSRM_PROPERTY(FSRM_DISPID_REPORT | 0x02))] HRESULT Name(
 [in] BSTR name
);

name: Contains the name of the report. The maximum length of this string MUST be 50 characters.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

The server MUST set the Report.Name of the report object to the specified name or return a nonzero
error code.

3.2.4.2.35.4 Description (get) (Opnum 10)

The Description (get) method returns the description of the report.

 [propget, id(FSRM_PROPERTY (FSRM_DISPID_REPORT | 0x03))] HRESULT Description(
 [out, retval] BSTR* description
);

description: Pointer to a variable that upon completion contains the description of the report.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return
value/code Description

0x80070057

E_INVALIDARG

The description parameter is NULL.

Upon receiving this message, the server MUST validate parameters:

 Verify that description is not NULL.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

The server MUST set description to the report's Report.Description.

268 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

3.2.4.2.35.5 Description (put) (Opnum 11)

The Description (put) method sets the description of the report.

 [propput, id(FSRM_PROPERTY (FSRM_DISPID_REPORT | 0x03))] HRESULT Description(
 [in] BSTR description
);

description: Contains the description of the report. There is no maximum length for this string.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

The server MUST set the description of the report object to the specified Report.Description or
return a nonzero error code.

3.2.4.2.35.6 LastGeneratedFileNamePrefix (get) (Opnum 12)

The LastGeneratedFileNamePrefix (get) method retrieves the last generated file name prefix of the
report for the most recently generated report and returns S_OK upon successful completion.

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_REPORT | 0x04))] HRESULT LastGeneratedFileNamePrefix(
 [out, retval] BSTR* prefix
);

prefix: Pointer to a variable that upon completion contains the last generated file name prefix of
the report.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return
value/code Description

0x80070057

E_INVALIDARG

The prefix parameter is NULL.

Upon receiving this message, the server MUST validate parameters:

 Verify that prefix is not NULL.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

The server MUST set prefix to the last generated file name prefix.

3.2.4.2.35.7 GetFilter (Opnum 13)

The GetFilter method returns the current value of the specified report filter for the report object.

 [id(FSRM_DISPID_REPORT | 0x01)] HRESULT GetFilter(
 [in] FsrmReportFilter filter,
 [out, retval] VARIANT* filterValue
);

filter: Contains the value from the FsrmReportFilter (section 2.2.1.2.16) enumeration of the filter to
get.

filterValue: Pointer to a variable that upon completion contains the value of the specified filter for
the specified report type.

269 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return
value/code Description

0x80070057

E_INVALIDARG

This code is returned for the following reasons:

 The filter parameter is not a valid FsrmReportFilter (section 2.2.1.2.16) value.

 The filterValue parameter is NULL.

Upon receiving this message, the server MUST validate parameters:

 Verify that filterValue is not NULL.

 Verify that filter contains a valid FsrmReportFilter value.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

The server MUST set filterValue to the current value for the specified report filter.

3.2.4.2.35.8 SetFilter (Opnum 14)

The SetFilter method sets the value of the specified report filter for the report object. The filter value
will override the default value set by using the
IFsrmReportManager::SetDefaultFilter (section 3.2.4.2.33.8) method.

 [id(FSRM_DISPID_REPORT | 0x02)] HRESULT SetFilter(
 [in] FsrmReportFilter filter,
 [in] VARIANT filterValue
);

filter: Contains the value from the FsrmReportFilter (section 2.2.1.2.16) enumeration of the filter to

set.

filterValue: Contains the value of the specified filter for the specified report type.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return
value/code Description

0x80070057

E_INVALIDARG

This code is returned for the following reasons:

 The filter parameter is not a valid FsrmReportFilter (section 2.2.1.2.16) value.

 An attempt was made to set the FsrmReportFilter_Property filter value with a
supplied value that is not in a valid property name format, or the property does not
exist.

 The variant does not have the correct member set for the filter.

 The string filter values are not valid characters.

Upon receiving this message, the server MUST validate parameters:

 Verify that filter contains a valid FsrmReportFilter value.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

270 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

If filter is FsrmReportFilter_Property, the server MUST perform the following actions:

 If filterValue contains a valid Name of a Persisted Property Definition on the server whose

Property Definition.Deprecated is set to false, the server MUST set Report.Deprecated to false.
Otherwise, set Report.Deprecated to true.

The server MUST set the value of the specified filter for the report object to filterValue or return a
nonzero error code.

3.2.4.2.35.9 Delete (Opnum 15)

The Delete method removes the report object from the list of report objects associated with the
containing report job object and returns S_OK upon successful completion.

 [id(FSRM_DISPID_REPORT | 0x03)] HRESULT Delete();

This method has no parameters.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

The server MUST remove the report object from Report Job.Reports, which is the list of report
objects maintained by the report job object, or return a nonzero error code.

3.2.4.2.36 IFsrmReportScheduler Methods

The IFsrmReportScheduler interface inherits the IDispatch interface as specified in [MS-OAUT].
Method opnum field values start with 7. Opnum values 0 through 2 represent the
IUnknown::QueryInterface, IUnknown::AddRef, and IUnknown::Release methods as specified in
[MS-DCOM], while opnum values 3 through 6 represent the IDispatch::GetTypeInfoCount,
IDispatch::GetTypeInfo, IDispatch::GetIDsOfNames, and IDispatch::Invoke methods as specified in

[MS-OAUT]. The version for this interface is 1.0.

To receive incoming remote calls for this interface, the server MUST implement a DCOM object using

the UUID {6879caf9-6617-4484-8719-71c3d8645f94}.

Methods in RPC Opnum Order

Method Description

VerifyNamespaces Opnum: 7

CreateScheduleTask Opnum: 8

ModifyScheduleTask Opnum: 9

DeleteScheduleTask Opnum: 10

3.2.4.2.36.1 VerifyNamespaces (Opnum 7)

The VerifyNamespaces method checks that all namespaces passed in exist and are valid paths.

 [id(FSRM_DISPID_REPORT_SCHEDULER | 0x01)] HRESULT VerifyNamespaces(
 [in] VARIANT* namespacesSafeArray
);

%5bMS-OAUT%5d.pdf#Section_bbb05720f72445c78d17f83c3d1a3961
%5bMS-DCOM%5d.pdf#Section_4a893f3dbd2948cd9f43d9777a4415b0

271 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

namespacesSafeArray: Pointer to a variable that contains a VARIANT structure, which contains a
SAFEARRAY of VARIANT structures. The VARIANT structures contained in the SAFEARRAY MUST be

BSTR string values, each representing a local directory path that needs to be verified as supported by
the File Server Resource Manager Protocol storage reports.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return value/code Description

0x80045304

FSRM_E_PATH_NOT_FOUND

The specified path could not be found.

0x80045306

FSRM_E_INVALID_PATH

The supplied path is not valid.

0x80045315

FSRM_E_VOLUME_UNSUPPORTED

The volume is not an NTFS volume.

0x8004531F

FSRM_E_FILE_SYSTEM_CORRUPT

The file system is corrupt.

0x80070057

E_INVALIDARG

This code is returned for the following reasons:

 The namespacesSafeArray parameter is NULL.

 The namespacesSafeArray parameter does not contain a variant array of
BSTRs.

Upon receiving this message, the server MUST validate parameters:

 Verify that namespacesSafeArray is not NULL.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

The server MUST verify that each local directory path contained in namespacesSafeArray is valid and
supported for the File Server Resource Manager Protocol storage reports and return zero or return a
nonzero error code on failure.

3.2.4.2.36.2 CreateScheduleTask (Opnum 8)

The CreateScheduleTask method creates a task that is capable of triggering the generation of a File

Server Resource Manager Protocol report job.

 [id(FSRM_DISPID_REPORT_SCHEDULER | 0x02)] HRESULT CreateScheduleTask(
 [in] BSTR taskName,
 [in] VARIANT* namespacesSafeArray,
 [in] BSTR serializedTask
);

taskName: Contains the name of the Task Scheduler task to create.

namespacesSafeArray: Pointer to a variable that contains a VARIANT structure, which contains a

SAFEARRAY of VARIANT structures. The VARIANT structures contained in the SAFEARRAY MUST be
BSTR string values, each representing a local directory path that needs to be verified as supported
by the File Server Resource Manager Protocol storage.

serializedTask: Contains the XML representation of the task to be created.<63>

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

272 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Return value/code Description

0x80045303

FSRM_E_ALREADY_EXISTS

The object already exists.

0x80045311

FSRM_E_NOT_SUPPORTED

This function is not supported for this object.

0x80045316

FSRM_E_UNEXPECTED

An unexpected error occurred; check the application event log. You might get
this error if the XML is malformed.

0x80070057

E_INVALIDARG

This code is returned for the following reasons:

 The taskName parameter is NULL.

 The namespacesSafeArray parameter is NULL.

 The serializedTask parameter is NULL.

Upon receiving this message, the server MUST validate parameters:

 Verify that taskName is not NULL.

 Verify that namespacesSafeArray is not NULL.

 Verify that serializedTask is not NULL.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

The server MUST create the specified task in such a way that it is capable of triggering the File Server
Resource Manager Protocol report jobs.

3.2.4.2.36.3 ModifyScheduleTask (Opnum 9)

The ModifyScheduleTask method modifies the specified task that is capable of triggering the

generation of a File Server Resource Manager Protocol report job.

 [id(FSRM_DISPID_REPORT_SCHEDULER | 0x03)] HRESULT ModifyScheduleTask(
 [in] BSTR taskName,
 [in] VARIANT* namespacesSafeArray,
 [in] BSTR serializedTask
);

taskName: Contains the name of the Task Scheduler task to modify.

namespacesSafeArray: Pointer to a variable that contains a VARIANT structure, which contains a

SAFEARRAY of VARIANT structures. The VARIANT structures contained in the SAFEARRAY MUST be
BSTR string values, each representing a local directory path that needs to be verified as supported
by the File Server Resource Manager Protocol storage.

serializedTask: Contains the XML representation of the task to be modified.<64>

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return value/code Description

0x80045301

FSRM_E_NOT_FOUND

The specified task could not be found.

273 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Return value/code Description

0x80070057

E_INVALIDARG

This code is returned for the following reasons:

 The taskName parameter is NULL.

 The serializedTask parameter is NULL.

 The taskName parameter is not a valid value.

Upon receiving this message, the server MUST validate parameters:

 Verify that taskName is not NULL.

 Verify that namespacesSafeArray is not NULL.

 Verify that serializedTask is not NULL.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

The server MUST modify the specified task in such a way that it is capable of triggering File Server
Resource Manager Protocol report jobs.

3.2.4.2.36.4 DeleteScheduleTask (Opnum 10)

The DeleteScheduleTask method deletes the specified task so that it no longer triggers the generation
of a File Server Resource Manager Protocol report job.

 [id(FSRM_DISPID_REPORT_SCHEDULER | 0x04)] HRESULT DeleteScheduleTask(
 [in] BSTR taskName
);

taskName: Contains the name of the task to delete.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return value/code Description

0x80045301

FSRM_E_NOT_FOUND

The specified task could not be found.

0x80070057

E_INVALIDARG

The taskName parameter is NULL.

Upon receiving this message, the server MUST validate parameters:

 Verify that taskName is not NULL.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

The server MUST delete the specified task.

3.2.4.2.37 IFsrmPropertyDefinition

The IFsrmPropertyDefinition interface exposes methods for configuring property definitions.
IFsrmPropertyDefinition implements the methods of the IFsrmObject interface (section
3.2.4.2.10), as well as those listed in the following table.

274 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Each IFsrmPropertyDefinition instance is associated with one Non-Persisted Property Definition
Instance (section 3.2.1.6.1.2).

Methods in RPC Opnum Order

Method Description

Commit Opnum: 11

Name (get) Opnum: 12

Name (put) Opnum: 13

Type (get) Opnum: 14

Type (put) Opnum: 15

PossibleValues (get) Opnum: 16

PossibleValues (put) Opnum: 17

ValueDescriptions (get) Opnum: 18

ValueDescriptions (put) Opnum: 19

Parameters (get) Opnum: 20

Parameters (put) Opnum: 21

3.2.4.2.37.1 Commit (Opnum 11)

The Commit method is implemented as one of the methods for the IFsrmObject interface (section
3.2.4.2.10). This method has the behavior specified in section 3.2.4.2.10.5 with the following

additions:

 If the Property Definition.Name is an empty string, the server MUST return
FSRM_E_REQD_PARAM_MISSING.

 If the Property Definition.Type is not a valid FsrmPropertyDefinitionType (section 2.2.2.3.1.1)
value or is FsrmPropertyDefinitionType_Unknown, the server MUST return
FSRM_E_REQD_PARAM_MISSING.

 If Property Definition.Possible values is an empty list and Property Definition.Type is

FsrmPropertyDefinitionType_OrderedList or FsrmPropertyDefinitionType_MultiChoiceList
(FsrmPropertyDefinitionType (section 2.2.2.3.1.1)), the server MUST return E_INVALIDARG.

Additionally, if Property Definition.Possible values is an empty list and Property
Definition.Type is FsrmPropertyDefinitionType_SingleChoiceList, the server SHOULD return
E_INVALIDARG. <65>

 If FSRM Base Object.Deleted is set to true for this Non-Persisted Property Definition

Instance (section 3.2.1.6.1.2), the server MUST remove the Persisted Property
Definition (section 3.2.1.6.1.1) from the List of Persisted Property Definitions (section
3.2.1.6) that has the same Property Definiton.Name as this Non-Persisted Property Definition
Instance, if one exists. This removal MUST occur even if other changes were made to the
configuration of the Non-Persisted Property Definition Instance. If there is no Persisted Property
Definition (section 3.2.1.6.1.1) in the List of Persisted Property Definitions (section 3.2.1.6) that
has the same Property Definition.Name as this Non-Persisted Property Definition Instance being

275 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

deleted, the server doesn't perform any action and MUST return zero. The server MUST return a
nonzero error code if removal fails.

 If FSRM Base Object.Deleted is set to false for this Non-Persisted Property Definition Instance,
the server MUST update the configuration data of the Persisted Property Definition in the List of

Persisted Property Definitions that has the same Property Definition.Name as this Non-
Persisted Property Definition Instance, if one exists, with the configuration data from this instance,
or return a nonzero error code.

 If there is a Persisted Property Definition in the List of Persisted Property Definitions that has the
same Property Definition.Name as the one being committed but with a different FSRM Base
Object.Id, the server MUST return FSRM_E_ALREADY_EXISTS.

 If a Persisted Property Definition does not exist with the same Property Definition.Name and

with FSRM Base Object.Deleted is set to false, the server MUST create a new Persisted Property
Definition, populate its configuration with the configuration from this Non-Persisted Property
Definition Instance, and add the new Persisted Property Definition to the List of Persisted
Property Definitions.

To update or populate the configuration data from a Non-Persisted Property Definition Instance to a
Persisted Property Definition, the server MUST assign the values of all the properties of the Non-

Persisted Property Definition Instance to the corresponding properties of the Persisted Property
Definition. See Property Definition properties (section 3.2.1.6.1) for more information.

3.2.4.2.37.2 Name (get) (Opnum 12)

The Name (get) method returns the name of the property definition.

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_PROPERTY_DEFINITION | 0x01))] HRESULT Name(
 [out, retval] BSTR* name
);

name: Pointer to a variable that upon completion contains the name of the property definition.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return
value/code Description

0x80070057

E_INVALIDARG

The name parameter is NULL.

Upon receiving this message, the server MUST validate parameters:

 Verify that name is not NULL.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

The server MUST set name to the Property Definition.Name of the property definition.

3.2.4.2.37.3 Name (put) (Opnum 13)

The Name (put) method sets the name of the property definition.

 [propput, id(FSRM_PROPERTY(FSRM_DISPID_PROPERTY_DEFINITION | 0x01))] HRESULT Name(
 [in] BSTR name
);

276 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

name: Contains the name for the property definition to use. The maximum length of this string MUST
be 100 characters.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return
value/code Description

0x80070057

E_INVALIDARG

The name parameter is not a valid value.

The server MUST use name as the Property Definition.Name for the property definition or return a

nonzero error code.

3.2.4.2.37.4 Type (get) (Opnum 14)

The Type (get) method returns the type of the property definition as defined in the
FsrmPropertyDefinitionType (section 2.2.2.3.1.1) enumeration.

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_PROPERTY_DEFINITION | 0x02))] HRESULT Type(
 [out, retval] FsrmPropertyDefinitionType* type
);

type: Pointer to a variable that upon completion contains the type of the property definition.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return
value/code Description

0x80070057

E_INVALIDARG

The type parameter is NULL.

Upon receiving this message, the server MUST validate parameters:

 Verify that type is not NULL.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

The server MUST set type to the Property Definition.Type of the property definition.

3.2.4.2.37.5 Type (put) (Opnum 15)

The Type (put) method sets the type of the property definition.

 [propput, id(FSRM_PROPERTY(FSRM_DISPID_PROPERTY_DEFINITION | 0x02))] HRESULT Type(
 [in] FsrmPropertyDefinitionType type
);

type: Contains the type of the property definition.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

277 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Return
value/code Description

0x80070057

E_INVALIDARG

The type parameter is not a valid FsrmPropertyDefinitionType (section 2.2.2.3.1.1) value.

Upon receiving this message, the server MUST validate parameters:

 Verify that type contains a valid FsrmPropertyDefinitionType (section 2.2.2.3.1.1) value.

If the FsrmPropertyDefinitionType value is invalid, the server SHOULD return E_INVALIDARG.
<66>

If any validation fails, the server MUST terminate processing and return a nonzero error code.

 The server MUST set the Property Definition.Type to type.

3.2.4.2.37.6 PossibleValues (get) (Opnum 16)

The PossibleValues (get) method returns the Possible Value Definition.Names for the Possible
Values of the property definition.

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_PROPERTY_DEFINITION | 0x03))] HRESULT PossibleValues(
 [out, retval] SAFEARRAY(VARIANT)* possibleValues
);

possibleValues: Pointer to a variable that upon completion contains the array of Possible Value
Definition.Names for the property definition.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return
value/code Description

0x80070057

E_INVALIDARG

The possibleValues parameter is NULL.

 Upon receiving this message, the server MUST validate parameters:

 Verify that possibleValues is not NULL.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

 The server MUST set the elements of the possibleValues array to the Possible Value
Definition.Name property of the list of possible values of the property definition.

3.2.4.2.37.7 PossibleValues (put) (Opnum 17)

The PossibleValues (put) method sets the list of Possible Value Definition.Names for the Possible

Values of the property definition and returns S_OK upon successful completion.

 [propput, id(FSRM_PROPERTY(FSRM_DISPID_PROPERTY_DEFINITION | 0x03))] HRESULT PossibleValues(
 [in] SAFEARRAY(VARIANT) possibleValues
);

possibleValues: Contains the array of Possible Value Definition.Names for the property
definition.

278 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return value/code Description

0x80045339

FSRM_E_OBJECT_IN_USE

A value that was removed from the list is in use.

0x80070057

E_INVALIDARG

This code is returned for the following reasons:

 The possibleValues parameter is not of type VT_BSTR.

 The content of the possibleValues parameter exceeds the maximum length
of 100 characters.

The server MUST iterate over the possibleValues list and for each entry (referred to as CurrentName),

if CurrentName is not the Possible Value Definition.Name of a member of Possible Values, create
a new Possible Value Definition, set its Possible Value Definition.Name and Possible Value
Definition.DisplayName to CurrentName, and add it to the Possible Values list, or return a

nonzero error code.

The server MUST iterate over the Possible Values list and for each entry (referred to as
CurrentValue), if the Possible Value Definition.Name of CurrentValue is not in possibleValues and

not in use by at least one Rule, Report, or File Management Job when the call is made, remove
CurrentValue from to the Possible Values list, or return a nonzero error code.

3.2.4.2.37.8 ValueDescriptions (get) (Opnum 18)

The ValueDescriptions (get) method returns an array of Possible Value Definition.Descriptions of
the Possible Values for the property definition.

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_PROPERTY_DEFINITION | 0x04))]
HRESULT ValueDescriptions(

 [out, retval] SAFEARRAY(VARIANT)* valueDescriptions
);

valueDescriptions: Pointer to a variable that upon completion contains the array of Possible Value

Definition.Descriptions for the property definition.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return
value/code Description

0x80070057

E_INVALIDARG

The valueDescriptions parameter is NULL.

Upon receiving this message, the server MUST validate parameters:

 Verify that valueDescriptions is not NULL.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

The server MUST set the members of the valueDescriptions array to the Possible Value
Definition.Description property values of the list of Possible Values of the property definition, in

the same order.

3.2.4.2.37.9 ValueDescriptions (put) (Opnum 19)

279 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

The ValueDescriptions (put) method sets the Possible Value Definition.Description for the
Possible Values of the property definition and returns S_OK upon successful completion.

 [propput, id(FSRM_PROPERTY(FSRM_DISPID_PROPERTY_DEFINITION | 0x04))]
HRESULT ValueDescriptions(

 [in] SAFEARRAY(VARIANT) valueDescriptions
);

valueDescriptions: Contains the array of Property Value Definition.Descriptions for the property

definition.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return
value/code Description

0x80070057

E_INVALIDARG

This code is returned for the following reasons:

 The valueDescriptions parameter is not of type VT_BSTR.

 The content of valueDescriptions exceeds the maximum length of 100 characters.

The server MUST iterate over the valueDescriptions list and the Possible Values list. For each entry
(referred to as CurrentDescription and CurrentValue, respectively), set the Possible Value
Definition.Description of CurrentValue to CurrentDescription, and advance to the next item in each
list. Otherwise, the server MUST return a nonzero error code.

3.2.4.2.37.10 Parameters (get) (Opnum 20)

The Parameters (get) method returns an array of parameters for the property definition.

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_PROPERTY_DEFINITION | 0x05))] HRESULT Parameters(
 [out, retval] SAFEARRAY(VARIANT)* parameters
);

parameters: Pointer to a variable that upon completion contains the array of parameters for the

property definition.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return
value/code Description

0x80070057

E_INVALIDARG

The parameters value is NULL.

Upon receiving this message, the server MUST validate parameters:

 Verify that parameters is not NULL.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

The server MUST set the parameters array to the list of Property Definition.Parameters for the
property definition. See parameter strings in section 3.2.4.2 for more details on the format of the
elements of the array retrieved.

3.2.4.2.37.11 Parameters (put) (Opnum 21)

280 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

The Parameters (put) method sets the list of parameters for the property definition.

 [propput, id(FSRM_PROPERTY(FSRM_DISPID_PROPERTY_DEFINITION | 0x05))] HRESULT Parameters(
 [in] SAFEARRAY(VARIANT) parameters
);

parameters: Contains the array of parameters for the property definition.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return
value/code Description

0x80070057

E_INVALIDARG

The parameters value has an incorrect format or type.

Upon receiving this message, the server MUST perform the following operations or return a nonzero

error code:

 Verify that the elements of parameters have the correct format. (See parameter strings in
section 3.2.4.2 for more details on the format of the elements of the parameters array.) If they do

not, return E_INVALIDARG.

The server MUST set the list of Property Definition.Parameters for the property definition to
parameters or return a nonzero error code.

3.2.4.2.38 IFsrmPropertyDefinition2

The IFsrmPropertyDefinition2 interface exposes methods for configuring property definitions.
IFsrmPropertyDefinition2 implements the methods of the IFsrmPropertyDefinition interface as

well as those listed in the following table.

Each IFsrmPropertyDefinition2 instance is associated with one Non-Persisted Property Definition

Instance (section 3.2.1.6.1.2).

Methods in RPC Opnum Order

Method Description

PropertyDefinitionFlags (get) Opnum: 22

DisplayName (get) Opnum: 23

DisplayName (put) Opnum: 24

AppliesTo (get) Opnum: 25

AppliesTo (put) Opnum: 26

ValueDefinitions (get) Opnum: 27

3.2.4.2.38.1 PropertyDefinitionFlags (get) (Opnum 22)

The PropertyDefinitionFlags (get) method returns the Property Definition.Global, Property
Definition.Secure, and Property Definition.Deprecated values for the object.

281 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_PROPERTY_DEFINITION2 | 0x01)), helpstring("This
property contains the flags for the property definition")] HRESULT PropertyDefinitionFlags(

 [out, retval] long* propertyDefinitionFlags
);

propertyDefinitionFlags: Pointer to a variable that upon completion contains Property
Definition.Global, Property Definition.Secure, and Property Definition.Deprecated values for the
object.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return
value/code Description

0x80070057

E_INVALIDARG

The propertyDefinitionFlags parameter is NULL.

Upon receiving this message, the server MUST validate parameters:

 Verify that propertyDefinitionFlags is not NULL.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

If the object's Property Definition.Global value is set to true, the server MUST set
FsrmPropertyDefinitionFlags_Global on propertyDefinitionFlags.

If the object's Property Definition.Secure value is set to true, the server MUST set

FsrmPropertyDefinitionFlags.Secure on propertyDefinitionFlags.

If the object's Property Definition.Deprecated value is set to true, the server MUST set
FsrmPropertyDefinitionFlags.Deprecated on propertyDefinitionFlags.

3.2.4.2.38.2 DisplayName (get) (Opnum 23)

The DisplayName (get) method returns the Property Definition.DisplayName of the property definition.

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_PROPERTY_DEFINITION2 | 0x02)), helpstring("This
property is the display name of the property definition")] HRESULT DisplayName(

 [out, retval] BSTR* name
);

name: Pointer to a variable that upon completion contains the Property Definition.Display of the

property definition.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return
value/code Description

0x80070057

E_INVALIDARG

The name parameter is NULL.

Upon receiving this message, the server MUST validate parameters:

 Verify that name is not NULL.

282 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

The server MUST set name to the Property Definition.Name of the property definition or return a
nonzero error code.

3.2.4.2.38.3 DisplayName (put) (Opnum 24)

The DisplayName (put) method sets the Property Definition.Display Name of the property definition.

 [propput, id(FSRM_PROPERTY(FSRM_DISPID_PROPERTY_DEFINITION2 | 0x02)), helpstring("This
property is the display name of the property definition")] HRESULT DisplayName(

 [in] BSTR name
);

name: Contains the Property Definition.Display Name for the property definition to use. The maximum
length of this string MUST be 100 characters.

Return Values: The method MUST return zero on success or a nonzero error code on failure.

Return
value/code Description

0x80070057

E_INVALIDARG

The name parameter is not a valid value.

The server MUST use name as the Property Definition.Display Name for the property definition or
return a nonzero error code.

3.2.4.2.38.4 AppliesTo (get) (Opnum 25)

The AppliesTo (get) method returns what the property definition applies to as defined in the
FsrmPropertyDefinitionType (section 2.2.2.3.1.1) enumeration.

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_PROPERTY_DEFINITION2 | 0x03)), helpstring("This
property contains the object types the property definition can apply to")] HRESULT AppliesTo(

 [out, retval] long* appliesTo
);

appliesTo: Pointer to a variable that upon completion contains what the property definition applies to.

Return Values: The method MUST return zero on success or a nonzero error code on failure.

Return
value/code Description

0x80070057

E_INVALIDARG

The appliesTo parameter is NULL.

Upon receiving this message, the server MUST validate parameters:

 Verify that appliesTo is not NULL.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

The server MUST set appliesTo to the Property Definition.AppliesTo of the property definition.

3.2.4.2.38.5 AppliesTo (put) (Opnum 26)

The AppliesTo (put) method sets the type of the property definition.

283 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 [propput, id(FSRM_PROPERTY(FSRM_DISPID_PROPERTY_DEFINITION2 | 0x03)), helpstring("This
property contains the object types the property definition can apply to")] HRESULT AppliesTo(

 [in] long appliesTo
);

appliesTo: Contains the type of the property definition.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return
value/code Description

0x80070057

E_INVALIDARG

The appliesTo parameter is not a valid
FsrmPropertyDefinitionAppliesTo (section 2.2.2.3.1.1) value.

Upon receiving this message, the server MUST validate parameters:

 Verify that appliesTo contains a valid FsrmPropertyDefinitionAppliesTo (section 2.2.2.3.1.1) value.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

The server MUST set the Property Definition.AppliesTo to appliesTo.

3.2.4.2.38.6 ValueDefinitions (get) (Opnum 27)

The ValueDefinitions (get) method returns the property definitions Possible Values.

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_PROPERTY_DEFINITION2 | 0x04)), helpstring("This
property contains the possible value definitions of the property definition")]

HRESULT ValueDefinitions(

 [out, retval] IFsrmCollection** valueDefinitions
);

valueDefinitions: Pointer to a variable that, upon completion, contains the array of
IFsrmPropertyDefinitionValue elements as defined in the property definition.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return
value/code Description

0x80070057

E_INVALIDARG

The valueDefinitions parameter is NULL.

Upon receiving this message, the server MUST validate parameters:

 Verify that valueDefinitions is not NULL.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

The server MUST set valueDefinitions to the Property Values of the property definition.

3.2.4.2.39 IFsrmPropertyDefinitionValue

The IFsrmPropertyDefinitionValue interface exposes methods for configuring property definition
values. IFsrmPropertyDefinitionValue implements the methods listed in the following table.

Methods in RPC Opnum Order

284 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Method Description

Name (get) Opnum: 12

DisplayName (get) Opnum: 13

Description (get) Opnum: 14

UniqueID (get) Opnum: 15

3.2.4.2.39.1 Name (get) (Opnum 12)

The Name (get) method returns the name of the property definition value.

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_PROPERTY_DEFINITION_VALUE | 0x01)),
 helpstring("This property contains the name of the property definition value")] HRESULT Name(
 [out, retval] BSTR* name
);

name: Pointer to a variable that, upon completion, contains the name of the property definition
value.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return
value/code Description

0x80070057

E_INVALIDARG

The name parameter is NULL.

Upon receiving this message, the server MUST validate parameters:

 Verify that name is not NULL.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

The server MUST set name to the Property Definition Value.Name of the property definition.

3.2.4.2.39.2 DisplayName (get) (Opnum 13)

The DisplayName (get) method returns the Property Definition Value.DisplayName of the
property definition value.

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_PROPERTY_DEFINITION_VALUE | 0x02)) ,
 helpstring("This property contains the display name of the property definition value")]
HRESULT DisplayName(

 [out, retval] BSTR* displayName
);

displayName: Pointer to a variable that, upon completion, contains the Property Definition
Value.DisplayName of the property definition value.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

285 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Return
value/code Description

0x80070057

E_INVALIDARG

The displayName parameter is NULL.

Upon receiving this message, the server MUST validate parameters:

 Verify that displayName is not NULL.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

The server MUST set displayName to the Property Definition Value.DisplayName of the property

definition.

3.2.4.2.39.3 Description (get) (Opnum 14)

The Description (get) method returns the Property Definition Value.Description of the property

definition value.

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_PROPERTY_DEFINITION_VALUE | 0x03)),
 helpstring("This property contains the description of the property definition value")]
HRESULT Description(

 [out, retval] BSTR* description
);

description: Pointer to a variable that, upon completion, contains the Property Definition
Value.Description of the property definition value.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return
value/code Description

0x80070057

E_INVALIDARG

The description parameter is NULL.

Upon receiving this message, the server MUST validate parameters:

 Verify that description is not NULL.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

The server MUST set description to the Property Definition Value.Description of the property
definition.

3.2.4.2.39.4 UniqueID (get) (Opnum 15)

The UniqueID (get) method returns the Property Value Definition.UniqueId of the property

definition value.

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_PROPERTY_DEFINITION_VALUE | 0x04)) ,
 helpstring("This property contains the unique ID of the property definition value")]
HRESULT UniqueID(

 [out, retval] BSTR* uniqueID
);

286 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

uniqueID: Pointer to a variable that, upon completion, contains the Property Value
Definition.UniqueId of the property definition value.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return
value/code Description

0x80070057

E_INVALIDARG

The uniqueID parameter is NULL.

Upon receiving this message, the server MUST validate parameters:

 Verify that uniqueID is not NULL.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

The server MUST set uniqueID to the Property Definition Value.UniqueId of the property

definition.

3.2.4.2.40 IFsrmProperty

The IFsrmProperty interface represents a property definition instance. IFsrmProperty implements

the methods of the IDispatch interface as specified in [MS-OAUT], as well as those listed in the
following table.

Methods in RPC Opnum Order

Method Description

Name (get) Opnum: 12

Value (get) Opnum: 13

Sources (get) Opnum: 14

PropertyFlags (get) Opnum: 15

3.2.4.2.40.1 Name (get) (Opnum 12)

The Name (get) method retrieves the property definition instance.name of the property definition

instance and returns S_OK upon successful completion.

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_PROPERTY | 0x01))] HRESULT Name(
 [out, retval] BSTR* name
);

name: Pointer to a variable that upon completion contains the property definition instance.name
of the property definition instance.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return
value/code Description

0x80070057 The name parameter is NULL.

%5bMS-OAUT%5d.pdf#Section_bbb05720f72445c78d17f83c3d1a3961

287 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Return
value/code Description

E_INVALIDARG

Upon receiving this message, the server MUST validate parameters:

 Verify that name is not NULL.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

The server MUST set name to the property definition instance.name of the property definition
instance.

3.2.4.2.40.2 Value (get) (Opnum 13)

The Value (get) method retrieves the property definition instance.value of this property definition
instance and returns S_OK upon successful completion.

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_PROPERTY | 0x02))] HRESULT Value(
 [out, retval] BSTR* value
);

value: Pointer to a variable that upon completion contains the property definition instance.value
of this property definition instance.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return

value/code Description

0x80070057

E_INVALIDARG

The value parameter is NULL.

Upon receiving this message, the server MUST validate parameters:

 Verify that value is not NULL.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

The server MUST set value to the property definition instance.value of this property definition
instance.

3.2.4.2.40.3 Sources (get) (Opnum 14)

The Sources (get) method retrieves the sources for this Property Definition Instance and returns S_OK
upon successful completion.

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_PROPERTY | 0x03))] HRESULT Sources(
 [out, retval] SAFEARRAY(VARIANT)* sources
);

sources: Contains the array of sources for the Property Definition Instance.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

The server MUST set the sources to the list of sources for this Property Definition Instance or return a
nonzero error code.

288 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

3.2.4.2.40.4 PropertyFlags (get) (Opnum 15)

The PropertyFlags (get) retrieves the property definition instance.flags for the Property Definition
Instance in an FsrmPropertyFlags (section 2.2.2.6.1.1) enumeration and returns S_OK upon

successful completion.

 [propget,id(FSRM_PROPERTY(FSRM_DISPID_PROPERTY|0x04))] HRESULT PropertyFlags(
 [out, retval] long* flags
);

flags: Pointer to a variable that upon completion contains the property definition instance.flags of
the Property Definition Instance.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return
value/code Description

0x80070057

E_INVALIDARG

The flags parameter is NULL.

Upon receiving this message, the server MUST validate parameters:

 Verify that flags is not NULL.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

The server MUST set flags to the property definition instance.flags of the Property Definition
Instance as per FsrmPropertyFlags.

3.2.4.2.41 IFsrmRule

The IFsrmRule interface is the base interface for all the File Server Resource Manager Protocol rule

objects. IFsrmRule implements the methods of the IFsrmObject interface (section 3.2.4.2.10), as
well as those listed in the following table.

Methods in RPC Opnum Order

Method Description

Name (get) Opnum: 12

Name (put) Opnum: 13

RuleType (get) Opnum: 14

ModuleDefinitionName (get) Opnum: 15

ModuleDefinitionName (put) Opnum: 16

NamespaceRoots (get) Opnum: 17

NamespaceRoots (put) Opnum: 18

RuleFlags (get) Opnum: 19

RuleFlags (put) Opnum: 20

Parameters (get) Opnum: 21

289 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Method Description

Parameters (put) Opnum: 22

LastModified (get) Opnum: 23

3.2.4.2.41.1 Name (get) (Opnum 12)

The Name (get) method retrieves the name of the rule and returns S_OK upon successful completion.

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_RULE | 0x01))] HRESULT Name(
 [out, retval] BSTR* name
);

name: Pointer to a variable that upon completion contains the name of the rule.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return
value/code Description

0x80070057

E_INVALIDARG

The name parameter is NULL.

Upon receiving this message, the server MUST validate parameters:

 Verify that name is not NULL.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

The server MUST set name to the Rule.Name of the rule.

3.2.4.2.41.2 Name (put) (Opnum 13)

The Name (put) method sets the name of the rule and returns S_OK upon successful completion.

 [propput, id(FSRM_PROPERTY(FSRM_DISPID_RULE | 0x01))] HRESULT Name(
 [in] BSTR name
);

name: Contains the name for the rule to use. The maximum length of this string MUST be 100
characters.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

 The server MUST use name as the Rule.Name for the rule or return a nonzero error code.

3.2.4.2.41.3 RuleType (get) (Opnum 14)

The RuleType (get) method retrieves the rule type of the rule as defined in the
FsrmRuleType (section 2.2.1.2.11) enumeration and returns S_OK upon successful completion.

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_RULE | 0x02))] HRESULT RuleType(
 [out, retval] FsrmRuleType* ruleType

290 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

);

ruleType: Pointer to a variable that upon completion contains the rule type of the rule.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return
value/code Description

0x80070057

E_INVALIDARG

The type parameter is NULL.

Upon receiving this message, the server MUST validate parameters:

 Verify that type is not NULL.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

The server MUST set type to the rule type of the rule.

3.2.4.2.41.4 ModuleDefinitionName (get) (Opnum 15)

The ModuleDefinitionName (get) method retrieves the name of the module definition the rule
uses during classification and returns S_OK upon successful completion.

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_RULE | 0x03))] HRESULT ModuleDefinitionName(
 [out, retval] BSTR* moduleDefinitionName
);

moduleDefinitionName: Pointer to a variable that upon completion contains the name of the

module definition the rule uses during classification.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return
value/code Description

0x80070057

E_INVALIDARG

The moduleDefinitionName parameter is NULL.

Upon receiving this message, the server MUST validate parameters:

 Verify that moduleDefinitionName is not NULL.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

 The server MUST set moduleDefinitionName to the Module Definition.Name of the module

definition the rule uses during classification.

3.2.4.2.41.5 ModuleDefinitionName (put) (Opnum 16)

The ModuleDefinitionName (put) method sets the name of the module definition the rule uses
during classification and returns S_OK upon successful completion.

 [propput, id(FSRM_PROPERTY(FSRM_DISPID_RULE | 0x03))] HRESULT ModuleDefinitionName(
 [in] BSTR moduleDefinitionName

291 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

);

moduleDefinitionName: Contains the name of the module definition the rule uses during
classification.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

 The server MUST use the Module Definition.Name specified by moduleDefinitionName as the
module for the rule to use during classification or return a nonzero error code.

3.2.4.2.41.6 NamespaceRoots (get) (Opnum 17)

The NamespaceRoots (get) method returns the namespace roots that the rule will apply to when
classification is run.

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_RULE | 0x04))] HRESULT NamespaceRoots(
 [out, retval] SAFEARRAY(VARIANT)* namespaceRoots
);

namespaceRoots: Pointer to a variable that upon completion contains the namespace roots that

the rule will apply to when classification is run.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return
value/code Description

0x80070057

E_INVALIDARG

This code is returned for the following reasons:

 The namespaceRoots parameter is NULL.

 One or more of the variants are not a string.

Upon receiving this message, the server MUST validate parameters:

 Verify that namespaceRoots is not NULL.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

 The server MUST set the namespaceRoots array to the namespace roots that the rule will apply to
when classification is run.

3.2.4.2.41.7 NamespaceRoots (put) (Opnum 18)

The NamespaceRoots (put) method sets the namespace roots that the rule will apply to when
classification is run.

 [propput, id(FSRM_PROPERTY(FSRM_DISPID_RULE | 0x04))] HRESULT NamespaceRoots(
 [in] SAFEARRAY(VARIANT) namespaceRoots
);

namespaceRoots: Contains the namespace roots that the rule will apply to when classification is
run.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

292 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Return
value/code Description

0x80070057

E_INVALIDARG

This code is returned for the following reasons:

 The namespaceRoots parameter is empty.

 One of the variant types in the array is not a string.

Upon receiving this message, the server MUST validate parameters:

 Verify that namespaceRoots contains valid local directories.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

 The server MUST set the namespace roots of the rule to namespaceRoots.

3.2.4.2.41.8 RuleFlags (get) (Opnum 19)

The RuleFlags (get) method returns the enabled/disabled and valid/invalid properties of the rule
as defined in the FsrmRuleFlags (section 2.2.1.2.3) enumeration.

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_RULE | 0x05))] HRESULT RuleFlags(
 [out, retval] long* ruleFlags
);

ruleFlags: Pointer to a variable that upon completion contains the rule flags of the rule.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return
value/code Description

0x80070057

E_INVALIDARG

The ruleFlags parameter is NULL.

Upon receiving this message, the server MUST validate parameters:

 Verify that ruleFlags is not NULL.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

 The server MUST set ruleFlags to the rule flags of the rule.

If the rule is not enabled the server MUST set the FsrmRuleFlags_Disabled flag as specified in section
2.2.1.2.3.

If the FSRM rule definition the rule uses during classification is disabled or no longer registered on
the server, the server MUST set the FsrmRuleFlags_Invalid flag as specified in section 2.2.1.2.3.

3.2.4.2.41.9 RuleFlags (put) (Opnum 20)

The RuleFlags (put) method sets the enabled/disabled and valid/invalid properties of the rule.

 [propput, id(FSRM_PROPERTY(FSRM_DISPID_RULE | 0x05))] HRESULT RuleFlags(
 [in] long ruleFlags
);

293 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

ruleFlags: Contains the rule flags for this rule.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return
value/code Description

0x80070057

E_INVALIDARG

This code is returned for the following reasons:

 The ruleFlags parameter is not one of those listed in
FsrmRuleFlags (section 2.2.1.2.3).

 The ruleFlags parameter contains FsrmRuleFlags_Invalid.

Upon receiving this message, the server MUST validate parameters:

 Verify that ruleFlags contains only FsrmRuleFlags (section 2.2.1.2.3) values.

 Verify that ruleFlags doesn’t contain FsrmRuleFlags_Invalid.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

The server MUST do one of the following:

 If ruleFlags contains FsrmRuleFlags_Disabled, the server MUST disable the rule and not apply the
rule when running classification.

3.2.4.2.41.10 Parameters (get) (Opnum 21)

The Parameters (get) method retrieves an array of additional parameters for the rule and returns
S_OK upon successful completion.

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_RULE | 0x06))] HRESULT Parameters(
 [out, retval] SAFEARRAY(VARIANT)* parameters
);

parameters: Pointer to a variable that upon completion contains the array of additional parameters

for the rule.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return
value/code Description

0x80070057

E_INVALIDARG

The parameters parameter is NULL.

Upon receiving this message, the server MUST validate parameters:

 Verify that parameters is not NULL.

The server MUST set the parameters array to the list of Rule.Parameters for the property definition
or return a nonzero error code. See parameter strings in section 3.2.4.2 for more details on the
format of the elements of the array retrieved.

3.2.4.2.41.11 Parameters (put) (Opnum 22)

294 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

The Parameters (put) method sets the list of additional parameters for the rule and returns S_OK
upon successful completion.

 [propput, id(FSRM_PROPERTY(FSRM_DISPID_RULE | 0x06))] HRESULT Parameters(
 [in] SAFEARRAY(VARIANT) parameters
);

parameters: Contains the array of additional parameters for the rule.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return
value/code Description

0x80070057

E_INVALIDARG

One or more of the parameters parameter is not of the form "parameter=value", where
"parameter" and "value" are placeholders for text supplied by the client.

Upon receiving this message, the server MUST validate parameters:

 Verify that the elements of parameters have the correct format. (See parameter strings in
section 3.2.4.2 for more details on the format of the elements of the parameters array.) If they do

not, return E_INVALIDARG.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

The server MUST set the list of Rule.Parameters for the rule to parameters.

3.2.4.2.41.12 LastModified (get) (Opnum 23)

The LastModified (get) method retrieves the last modified time corresponding to the time the rule
was last modified and returns S_OK upon successful completion.

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_RULE | 0x07))] HRESULT LastModified(
 [out, retval] DATE* lastModified
);

lastModified: Pointer to a variable that upon completion contains the last modified time when the
rule was last modified.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return
value/code Description

0x80070057

E_INVALIDARG

The lastModified parameter is NULL.

Upon receiving this message, the server MUST validate parameters:

 Verify that lastModified is not NULL.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

The server MUST set lastModified to the last modified time when the rule was last modified.

3.2.4.2.42 IFsrmClassificationRule

295 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

The IFsrmClassificationRule interface exposes methods for configuring a classification rule.
IFsrmClassificationRule implements the methods of the IFsrmRule interface (section 3.2.4.2.41),

as well as those listed in the following table.

Each IFsrmClassificationRule instance is associated with one Non-Persisted Rule

Instance (section 3.2.1.6.3.2).

Methods in RPC Opnum Order

Method Description

Commit Opnum: 11

ExecutionOption (get) Opnum: 24

ExecutionOption (put) Opnum: 25

PropertyAffected (get) Opnum: 26

PropertyAffected (put) Opnum: 27

Value (get) Opnum: 28

Value (put) Opnum: 29

3.2.4.2.42.1 Commit (Opnum 11)

The Commit method is implemented as one of the methods for the IFsrmObject interface (section
3.2.4.2.10). This method has the behavior specified in section 3.2.4.2.10.5 with the following

additions:

 If Rule.Deprecated is true, the server MUST return FSRM_E_REQD_PARAM_MISSING.

 If Namespace roots is an empty list, the server MUST return FSRM_E_REQD_PARAM_MISSING.

 If Rule.Name is an empty string, the server MUST return FSRM_E_REQD_PARAM_MISSING.

 If Module Definition.Name is an empty string, the server MUST return
FSRM_E_REQD_PARAM_MISSING.

 If the module definition specified by Module Definition.Name does not have the Module type
FsrmPipelineModuleType_Classifier, the server MUST return E_INVALIDARG.

 If the module definition that the rule will use during classification has Needs explicit value
(section 3.2.1.6.2) set to true, and if Rule.Value is an empty string, the server MUST return
FSRM_E_REQD_PARAM_MISSING.

 If Rule.Value is not a valid value for the Persisted Property Definition identified by
Rule.Property Affected , the server MUST return E_INVALIDARG.

 If property affected is an empty string, the server MUST return
FSRM_E_REQD_PARAM_MISSING.

 If property affected is not contained in the properties affected of the classifier module
specified by Module Definition.Name, the server MUST return FSRM_E_NOT_FOUND.

 If FSRM Base Object.Deleted is set to true for this Non-Persisted Rule
Instance (section 3.2.1.6.3.2), the server MUST remove the Persisted Rule (section 3.2.1.6.3.1)
from the List of Persisted Rules (section 3.2.1.6) that has the same Rule.Name as this Non-

296 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Persisted Rule Instance, if one exists. This removal MUST occur even if other changes were made
to the configuration of the Non-Persisted Rule Instance. If there is no Persisted Rule in the List of

Persisted Rules that has the same Rule.Name as this Non-Persisted Rule Instance being
deleted, the server doesn't perform any action and MUST return zero. The server MUST return a

nonzero error code if removal fails.

 If FSRM Base Object.Deleted is set to false for this Non-Persisted Rule Instance, the server
MUST update the configuration data of the Persisted Rule in the List of Persisted Rules that has
the same Rule.Name as this Non-Persisted Rule Instance, if one exists, with the configuration
data from this instance, or return a nonzero error code.

 If a Persisted Rule does not exist with the same Rule.Name and with FSRM Base
Object.Deleted is set to false, the server MUST create a new Persisted Rule, populate its

configuration with the configuration from this Non-Persisted Rule Instance, and add the new
Persisted Rule to the List of Persisted Rules.

 If the Property Definition identified by Rule.Property Affected has Property Definition.Type as
FsrmPropertyDefinitionType_OrderedList, FsrmPropertyDefinitionType_SingleChoiceList, or

FsrmPropertyDefinitionType_MultiChoiceList, then the Rule.Value applied by the rule MUST
be one of the Property Definition's possible values.

To update or populate the configuration data from a Non-Persisted Rule Instance to a Persisted Rule,
the server MUST assign the values of all the properties in the list that follows, of the Non-Persisted
Rule Instance to the corresponding properties of the Persisted Rule.

 FSRM Base Object.Description

 Rule.Name

 Module definition name

 Namespace roots

 Enabled/disabled

 Valid/invalid

 Rule.Parameters

 Execution option

 Property Affected

 Rule.Value

3.2.4.2.42.2 ExecutionOption (get) (Opnum 24)

The ExecutionOption (get) method returns the execution option of the classification rule as
defined in the FsrmExecutionOption (section 2.2.2.5.1.1) enumeration.

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_CLASSIFICATION_RULE | 0x01))] HRESULT ExecutionOption(
 [out, retval] FsrmExecutionOption* executionOption
);

executionOption: Pointer to a variable that upon completion contains the execution option of the
classification rule.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

297 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Return
value/code Description

0x80070057

E_INVALIDARG

The executionOption parameter is NULL.

Upon receiving this message, the server MUST validate parameters:

 Verify that executionOption is not NULL.

The server MUST set executionOption to the execution option of the classification rule or return a
nonzero error code.

3.2.4.2.42.3 ExecutionOption (put) (Opnum 25)

The ExecutionOption (put) method sets the execution option of the classification rule.

 [propput, id(FSRM_PROPERTY(FSRM_DISPID_CLASSIFICATION_RULE | 0x01))] HRESULT ExecutionOption(
 [in] FsrmExecutionOption executionOption
);

executionOption: Contains the execution option for this classification rule.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return
value/code Description

0x80070057

E_INVALIDARG

The executionOption parameter is not a valid FsrmExecutionOption (section 2.2.2.5.1.1)
value.

Upon receiving this message, the server MUST validate parameters:

 Verify that executionOption contains valid FsrmExecutionOption (section 2.2.2.5.1.1) values.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

The server MUST do one of the following:

 If executionOption contains FsrmExecutionOption_EvaluateUnset, the server MUST apply the rule
only to files that do not currently have the property set.

 If executionOption contains FsrmExecutionOption_ReEvaluate_ConsiderExistingValue, the server
MUST compare the rule's value to the file's existing value before adding the resulting value to the
file's list of values to be aggregated for this property.

 If executionOption contains FsrmExecutionOption_ReEvaluate_IgnoreExistingValue, the server
MUST ignore the file's existing values of this property and add the rule's value to the file's list of
values to be aggregated for this property.

3.2.4.2.42.4 PropertyAffected (get) (Opnum 26)

The PropertyAffected (get) method retrieves the property affected property of by the rule and
returns S_OK upon successful completion.

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_CLASSIFICATION_RULE | 0x02))]
HRESULT PropertyAffected(

 [out, retval] BSTR* property

298 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

);

property: Pointer to a variable that upon completion contains the property affected property of the
rule.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return
value/code Description

0x80070057

E_INVALIDARG

The property parameter is NULL.

Upon receiving this message, the server MUST validate parameters:

 Verify that property is not NULL.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

The server MUST set property to the property affected property of the rule.

3.2.4.2.42.5 PropertyAffected (put) (Opnum 27)

The PropertyAffected (put) method sets the property affected property of the rule and returns S_OK
upon successful completion.

 [propput, id(FSRM_PROPERTY(FSRM_DISPID_CLASSIFICATION_RULE | 0x02))]
HRESULT PropertyAffected(

 [in] BSTR property
);

property: Contains the property affected property of the rule.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return
value/code Description

0x80070057

E_INVALIDARG

The specified property is not the name of a property definition that is currently configured
on the server, or is NULL.

Upon receiving this message, the server MUST validate parameters:

 Verify that property contains the name of a property definition currently configured on the
server.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

The server MUST perform the following:

 If the property definition with the same Name as property has its Property
definition.Deprecated set to true, the server MUST set Rule.Deprecated to true. Otherwise, it
MUST set Rule.Deprecated to false.

Set property affected to property.

3.2.4.2.42.6 Value (get) (Opnum 28)

299 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

The Value (get) method returns the value applied by the rule.

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_CLASSIFICATION_RULE | 0x03))] HRESULT Value(
 [out, retval] BSTR* value
);

value: Pointer to a variable that upon completion contains the value applied by the rule.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return
value/code Description

0x80070057

E_INVALIDARG

The value parameter is NULL.

Upon receiving this message, the server MUST validate parameters:

 Verify that value is not NULL.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

The server MUST set value to the Rule.value applied by the rule or return a nonzero error code. For

rules using a module that does not require an explicit value, the server MUST set the value parameter
to an empty string.

3.2.4.2.42.7 Value (put) (Opnum 29)

The Value (put) method sets the value applied by the rule.

 [propput, id(FSRM_PROPERTY(FSRM_DISPID_CLASSIFICATION_RULE | 0x03))] HRESULT Value(
 [in] BSTR value
);

value: Contains the value applied by the rule.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return
value/code Description

0x80070057

E_INVALIDARG

The content of the value parameter exceeds the maximum length of 1,000 characters.

Upon receiving this message, the server MUST validate parameters:

 If the module definition used by the rule has needs explicit value set to true, verify that value

contains valid data for the Property Definition.Type specified by PropertyAffected
(put) (section 3.2.4.2.42.5).

If any validation fails, the server MUST terminate processing and return a nonzero error code.

 The server MUST use value as the Rule.Value applied by the rule. The server MUST NOT allow the
client to persist the classification rule if value is set and the module definition used by the rule
has needs explicit value set to false.

3.2.4.2.43 IFsrmPipelineModuleDefinition

300 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

The IFsrmPipelineModuleDefinition interface provides methods for configuring module
definitions. IFsrmPipelineModuleDefinition implements the methods for the IFsrmObject

interface (section 3.2.4.2.10), as well as those listed in the following table.

Methods in RPC Opnum Order

Method Description

ModuleClsid (get) Opnum: 12

ModuleClsid (put) Opnum: 13

Name (get) Opnum: 14

Name (put) Opnum: 15

Company (get) Opnum: 16

Company (put) Opnum: 17

Version (get) Opnum: 18

Version (put) Opnum: 19

ModuleType (get) Opnum: 20

Enabled (get) Opnum: 21

Enabled (put) Opnum: 22

NeedsFileContent (get) Opnum: 23

NeedsFileContent (put) Opnum: 24

Account (get) Opnum: 25

Account (put) Opnum: 26

SupportedExtensions (get) Opnum: 27

SupportedExtensions (put) Opnum: 28

Parameters (get) Opnum: 29

Parameters (put) Opnum: 30

3.2.4.2.43.1 ModuleClsid (get) (Opnum 12)

The ModuleClsid (get) method retrieves the string version of the COM class ID of the module that is
being defined and returns S_OK upon successful completion.

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_PIPELINE_MODULE_DEFINITION | 0x01))]
HRESULT ModuleClsid(

 [out, retval] BSTR* moduleClsid
);

moduleClsid: Pointer to a variable that upon completion contains the string version of the COM class
ID of the module that is being defined.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

301 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Return
value/code Description

0x80070057

E_INVALIDARG

The moduleClsid parameter is NULL.

Upon receiving this message, the server MUST validate parameters:

 Verify that moduleClsid is not NULL.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

The server MUST set moduleClsid to the ModuleClsid of the module definition.

3.2.4.2.43.2 ModuleClsid (put) (Opnum 13)

The ModuleClsid (put) method sets the ModuleClsid of the pipeline module definition and returns
S_OK upon successful completion.

 [propput, id(FSRM_PROPERTY(FSRM_DISPID_PIPELINE_MODULE_DEFINITION | 0x01))]
HRESULT ModuleClsid(

 [in] BSTR moduleClsid
);

moduleClsid: Contains the ModuleClsid of the pipeline module definition.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

The server MUST set ModuleClsid of the module definition to moduleClsid or return a nonzero error

code.

3.2.4.2.43.3 Name (get) (Opnum 14)

The Name (get) method retrieves the Name of the module definition and returns S_OK upon
successful completion.

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_PIPELINE_MODULE_DEFINITION | 0x02))] HRESULT Name(
 [out, retval] BSTR* name
);

name: Pointer to a variable that upon completion contains the Name of the

module definition. The name MUST be limited to 100 Unicode characters or less.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return value/code Description

0x80070057

E_INVALIDARG

The name parameter is NULL.

Upon receiving this message, the server MUST validate parameters:

 Verify that name is not NULL.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

302 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 The server MUST set name to the Module Definition.Name of the module definition.

3.2.4.2.43.4 Name (put) (Opnum 15)

The Name (put) method sets the Name of the pipeline module definition and returns S_OK upon

successful completion.

 [propput, id(FSRM_PROPERTY(FSRM_DISPID_PIPELINE_MODULE_DEFINITION | 0x02))] HRESULT Name(
 [in] BSTR name
);

name: Contains the Name of the pipeline module definition.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return
value/code Description

0x80070057

E_INVALIDARG

The name parameter is NULL.

The server MUST set the Module Definition.Name of the pipeline module definition to name or
return a nonzero error code.

3.2.4.2.43.5 Company (get) (Opnum 16)

The Company (get) method retrieves the Company of the pipeline module definition and returns
S_OK upon successful completion.

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_PIPELINE_MODULE_DEFINITION | 0x03))] HRESULT Company(
 [out, retval] BSTR* company
);

company: Pointer to a variable that upon completion contains the Company of the pipeline module
definition. The name MUST be limited to 100 Unicode characters or less.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return
value/code Description

0x80070057

E_INVALIDARG

The company parameter is NULL.

Upon receiving this message, the server MUST validate parameters:

 Verify that company is not NULL.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

The server MUST set company to the Company of the pipeline module definition.

3.2.4.2.43.6 Company (put) (Opnum 17)

The Company (put) method sets the Company of the pipeline module definition and returns S_OK
upon successful completion.

303 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 [propput, id(FSRM_PROPERTY(FSRM_DISPID_PIPELINE_MODULE_DEFINITION | 0x03))] HRESULT Company(
 [in] BSTR company
);

company: Contains the Company of the pipeline module definition.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

The server MUST set the Company of the pipeline module definition to company or return a nonzero
error code.

3.2.4.2.43.7 Version (get) (Opnum 18)

The Version (get) method retrieves the Version of the pipeline module definition and returns S_OK

upon successful completion.

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_PIPELINE_MODULE_DEFINITION | 0x04))] HRESULT Version(
 [out, retval] BSTR* version
);

version: Pointer to a variable that upon completion contains the Version of the pipeline module
definition. The name MUST be limited to 10 Unicode characters or less.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return
value/code Description

0x80070057

E_INVALIDARG

The version parameter is NULL.

Upon receiving this message, the server MUST validate parameters:

 Verify that version is not NULL.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

The server MUST set version to the Version of the pipeline module definition.

3.2.4.2.43.8 Version (put) (Opnum 19)

The Version (put) method sets the Version of the pipeline module definition and returns S_OK upon
successful completion.

 [propput, id(FSRM_PROPERTY(FSRM_DISPID_PIPELINE_MODULE_DEFINITION | 0x04))] HRESULT Version(
 [in] BSTR version
);

version: Contains the Version of the pipeline module definition.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

The server MUST set the Version of the pipeline module definition to version or return a nonzero error
code.

3.2.4.2.43.9 ModuleType (get) (Opnum 20)

304 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

The ModuleType (get) method retrieves the Module type of the module definition as defined in the
FsrmPipelineModuleType (section 2.2.1.2.12) enumeration and returns S_OK upon successful

completion.

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_PIPELINE_MODULE_DEFINITION | 0x05))]
HRESULT ModuleType(

 [out, retval] FsrmPipelineModuleType* moduleType
);

moduleType: Pointer to a variable that upon completion contains the Module type of the module
definition.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return
value/code Description

0x80070057

E_INVALIDARG

The moduleType parameter is NULL.

Upon receiving this message, the server MUST validate parameters:

 Verify that moduleType is not NULL.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

The server MUST set moduleType to the Module type of the module definitions as specified in section

2.2.1.2.12.

3.2.4.2.43.10 Enabled (get) (Opnum 21)

The Enabled (get) method retrieves a value which indicates whether the module definition is
enabled/disabled and returns S_OK upon successful completion.

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_PIPELINE_MODULE_DEFINITION | 0x06))] HRESULT Enabled(
 [out, retval] VARIANT_BOOL* enabled
);

enabled: Pointer to a variable that upon completion contains the Boolean indication of whether the
module definition is enabled/disabled.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return

value/code Description

0x80070057

E_INVALIDARG

The enabled parameter is NULL.

Upon receiving this message, the server MUST validate parameters:

 Verify that enabled is not NULL.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

305 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

The server MUST set enabled to the value VARIANT_TRUE if the module definition's
enabled/disabled property is set to enabled or VARIANT_FALSE if the module definition's

enabled/disabled property is set to disabled.

3.2.4.2.43.11 Enabled (put) (Opnum 22)

The Enabled (put) method sets the enabled property of the pipeline module definition and returns
S_OK upon successful completion.

 [propput, id(FSRM_PROPERTY(FSRM_DISPID_PIPELINE_MODULE_DEFINITION | 0x06))] HRESULT Enabled(
 [in] VARIANT_BOOL enabled
);

enabled: Contains a Boolean value for the enabled/disabled property of the pipeline module
definition.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

The server MUST use the enabled parameter to determine if the module is enabled or disabled or
return a nonzero error code.

3.2.4.2.43.12 NeedsFileContent (get) (Opnum 23)

The NeedsFileContent (get) method retrieves the Needs file content property of the pipeline module
definition and returns S_OK upon successful completion.

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_PIPELINE_MODULE_DEFINITION | 0x07))]
HRESULT NeedsFileContent(

 [out, retval] VARIANT_BOOL* needsFileContent
);

needsFileContent: Pointer to a variable that upon completion contains the Boolean indication for the

Needs file content property of the pipeline module definition.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

The server MUST set needsFileContent to the value VARIANT_TRUE if the pipeline module definition's

Needs file content property is true or to the value VARIANT_FALSE if the pipeline module definition's
Needs file content property is false, or return a nonzero error code.

3.2.4.2.43.13 NeedsFileContent (put) (Opnum 24)

The NeedsFileContent (put) method sets the Needs file content property of the pipeline module
definition and returns S_OK upon successful completion. The Needs file content property determines
whether the module needs to read the contents of the files it performs classification on.

 [propput, id(FSRM_PROPERTY(FSRM_DISPID_PIPELINE_MODULE_DEFINITION | 0x07))]
HRESULT NeedsFileContent(

 [in] VARIANT_BOOL needsFileContent
);

needsFileContent: Contains a Boolean value for the Needs file content property of the pipeline
module definition.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

306 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

The server MUST use needsFileContent to determine whether the module will need to read the
contents of the files it performs classification on or return a nonzero error code.

 If needsFileContent equals VARIANT_TRUE, the server MUST provide access to the content of the
file.

 If needsFileContent equals VARIANT_FALSE, the server MUST NOT provide access to the content
of the file.

3.2.4.2.43.14 Account (get) (Opnum 25)

The Account (get) method retrieves the Account of the pipeline module definition to be used when
running the classification module and returns S_OK upon successful completion.

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_PIPELINE_MODULE_DEFINITION | 0x08))] HRESULT Account(
 [out, retval] FsrmAccountType* retrievalAccount
);

retrievalAccount: Pointer to a variable that upon completion contains the Account of the pipeline
module definition.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return
value/code Description

0x80070057

E_INVALIDARG

The retrievalAccount parameter is NULL.

Upon receiving this message, the server MUST validate parameters:

 Verify that retrievalAccount is not NULL.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

The server MUST set retrievalAccount to the Module Definition.Account of the pipeline module
definition.

3.2.4.2.43.15 Account (put) (Opnum 26)

The Account (put) method sets the Account of the pipeline module definition and returns S_OK upon

successful completion.

 [propput, id(FSRM_PROPERTY(FSRM_DISPID_PIPELINE_MODULE_DEFINITION | 0x08))] HRESULT Account(
 [in] FsrmAccountType retrievalAccount
);

retrievalAccount: Contains the Account of the pipeline module definition to be used when running

the classification module.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return
value/code Description

0x80070057

E_INVALIDARG

The retrievalAccount parameter is not a valid FsrmAccountType (section 2.2.1.2.8) value.

307 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Upon receiving this message, the server MUST validate parameters:

 Verify that retrievalAccount is a valid FsrmAccountType (section 2.2.1.2.8) value. If

retrievalAccount is FsrmAccountType_Unknown, the parameter MUST be considered an invalid
value.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

The server MUST set the Module Definition.Account of the pipeline module definition to
retrievalAccount.

3.2.4.2.43.16 SupportedExtensions (get) (Opnum 27)

The SupportedExtensions (get) method retrieves the Supported extensions of the pipeline module
definition and returns S_OK upon successful completion.

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_PIPELINE_MODULE_DEFINITION | 0x09))]
HRESULT SupportedExtensions(

 [out, retval] SAFEARRAY(VARIANT)* supportedExtensions
);

supportedExtensions: Pointer to a variable that upon completion contains the Supported
extensions of the pipeline module definition.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return
value/code Description

0x80070057

E_INVALIDARG

The supportedExtensions parameter is NULL.

Upon receiving this message, the server MUST validate parameters:

 Verify that supportedExtensions is not NULL.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

The server MUST set supportedExtensions to the Supported extensions of the pipeline module
definition.

3.2.4.2.43.17 SupportedExtensions (put) (Opnum 28)

The SupportedExtensions (put) method sets the Supported extensions of the pipeline module
definition and returns S_OK upon successful completion.

 [propput, id(FSRM_PROPERTY(FSRM_DISPID_PIPELINE_MODULE_DEFINITION | 0x09))]
HRESULT SupportedExtensions(

 [in] SAFEARRAY(VARIANT) supportedExtensions
);

supportedExtensions: Contains the Supported extensions of the pipeline module definition.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

The server MUST set the Supported extensions of the pipeline module definition to
supportedExtensions or return a nonzero error code.

308 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

3.2.4.2.43.18 Parameters (get) (Opnum 29)

The Parameters (get) method retrieves the Parameters of the pipeline module definition and returns
S_OK upon successful completion.

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_PIPELINE_MODULE_DEFINITION | 0xA))]
HRESULT Parameters(

 [out, retval] SAFEARRAY(VARIANT)* parameters
);

parameters: Pointer to a variable that upon completion contains the Parameters of the pipeline
module definition.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return
value/code Description

0x80070057

E_INVALIDARG

The parameters parameter is NULL.

Upon receiving this message, the server MUST validate parameters:

 Verify that parameters is not NULL.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

The server MUST set the parameters array to the list of Module Definition.Parameters for the

module definition. See parameter strings in section 3.2.4.2 for more details on the format of the
elements of the array retrieved.

3.2.4.2.43.19 Parameters (put) (Opnum 30)

The Parameters (put) method sets the Parameters of the pipeline module definition and returns
S_OK upon successful completion.

 [propput, id(FSRM_PROPERTY(FSRM_DISPID_PIPELINE_MODULE_DEFINITION | 0xA))]
HRESULT Parameters(

 [in] SAFEARRAY(VARIANT) parameters
);

parameters: Contains the Parameters of the pipeline module definition.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return
value/code Description

0x80070057

E_INVALIDARG

One or more of the parameters parameter is not of the form "parameter=value", where
"parameter" and "value" are placeholders for text supplied by the client.

Upon receiving this message, the server MUST validate parameters:

 Verify that the elements of parameters have the correct format. (See parameter strings in
section 3.2.4.2 for more details on the format of the elements of the parameters array.) If they do
not, return E_INVALIDARG.

309 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

If any validation fails, the server MUST terminate processing and return a nonzero error code.

The server MUST set the list of Module Definition.Parameters for the pipeline module definition to

parameters.

3.2.4.2.44 IFsrmClassifierModuleDefinition

The IFsrmClassifierModuleDefinition interface exposes methods for configuring a classifier module
definition. IFsrmClassifierModuleDefinition implements the methods of the
IFsrmPipelineModuleDefinition interface (section 3.2.4.2.43), as well as those listed in the
following table.

Each IFsrmClassifierModuleDefinition instance is associated with one Non-Persisted Module
Definition Instance (section 3.2.1.6.2.2).

Methods in RPC Opnum Order

Method Description

Commit Opnum: 11

PropertiesAffected (get) Opnum: 31

PropertiesAffected (put) Opnum: 32

PropertiesUsed (get) Opnum: 33

PropertiesUsed (put) Opnum: 34

NeedsExplicitValue (get) Opnum: 35

NeedsExplicitValue (put) Opnum: 36

3.2.4.2.44.1 Commit (Opnum 11)

The Commit method is implemented as one of the methods for the IFsrmObject interface (section
3.2.4.2.10). This method has the behavior specified in section 3.2.4.2.10.5 with the following

additions:

 If the Module Definition.Name is an empty string, the server MUST return
FSRM_E_REQD_PARAM_MISSING.

 If ModuleClsid is an empty string, the server MUST return FSRM_E_REQD_PARAM_MISSING.

 If FSRM Base Object.Deleted is set to true for this Non-Persisted Module Definition
Instance (section 3.2.1.6.2.2), the server MUST remove the Persisted Module
Definition (section 3.2.1.6.2.1) from the List of Persisted Module Definitions (section 3.2.1.6)

that has the same Module Definition.Name as this Non-Persisted Module Definition Instance, if
one exists. This removal MUST occur even if other changes were made to the configuration of the

Non-Persisted Module Definition Instance. If there is no Persisted Module Definition in List of
Persisted Module Definitions that has the same Module Definition.Name as this Non-
Persisted Module Definition Instance being deleted, the server doesn’t perform any action and
MUST return zero. The server MUST return a nonzero error code if removal fails.

 If FSRM Base Object.Deleted is set to false for this Non-Persisted Module Definition Instance,

the server MUST update the configuration data of the Persisted Module Definition in the List of
Persisted Module Definitions that has the same Module Definition.Name as this Non-

310 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Persisted Module Definition Instance, if one exists, with the configuration data from this instance,
or return a nonzero error code.

 If a Persisted Module Definition does not exist with the same Module Definition.Name and with
FSRM Base Object.Deleted is set to false, the server MUST create a new Persisted Module

Definition, populate its configuration with the configuration from this Non-Persisted Module
Definition Instance, and add the new Persisted Module Definition to the List of Persisted Module
Definitions.

To update or populate the configuration data from Non-Persisted Module Definition Instance to a
Persisted Module Definition, the server MUST assign the values of all the properties in the list that
follows, of the Non-Persisted Module Definition Instance to the corresponding properties of the
Persisted Module Definition.

 FSRM Base Object.Description

 ModuleClsid

 Module Definition.Name

 Company

 Version

 Enabled/disabled

 Needs file content

 Module Definition.Account

 Supported extensions

 Module Definition.Parameters

 Properties affected

 Properties used

 Needs explicit value

3.2.4.2.44.2 PropertiesAffected (get) (Opnum 31)

The PropertiesAffected (get) method returns Properties affected by the classifier module definition.

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_CLASSIFIER_MODULE_DEFINITION | 0x01))]
HRESULT PropertiesAffected(

 [out, retval] SAFEARRAY(VARIANT)* propertiesAffected
);

propertiesAffected: Pointer to a variable that upon completion contains the Properties affected by

the classifier module definition.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return
value/code Description

0x80070057

E_INVALIDARG

The propertiesAffected parameter is NULL.

311 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Upon receiving this message, the server MUST validate parameters:

 Verify that propertiesAffected is not NULL.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

The server MUST set the propertiesAffected array to the Properties affected by the classifier module

definition.

3.2.4.2.44.3 PropertiesAffected (put) (Opnum 32)

The PropertiesAffected (put) method sets the properties affected of the classifier module definition.

 [propput, id(FSRM_PROPERTY(FSRM_DISPID_CLASSIFIER_MODULE_DEFINITION | 0x01))]
HRESULT PropertiesAffected(

 [in] SAFEARRAY(VARIANT) propertiesAffected
);

propertiesAffected: Contains the names of the properties potentially affected by this classifier.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return
value/code Description

0x80070057

E_INVALIDARG

The propertiesAffected parameter is not of type VT_BSTR.

The server MUST set the properties affected of the classifier module definition to propertiesAffected

or return a nonzero error code.

3.2.4.2.44.4 PropertiesUsed (get) (Opnum 33)

The PropertiesUsed (get) method returns Properties used by the classifier module definition.

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_CLASSIFIER_MODULE_DEFINITION | 0x02))]
HRESULT PropertiesUsed(

 [out, retval] SAFEARRAY(VARIANT)* propertiesUsed
);

propertiesUsed: Pointer to a variable that upon completion contains the Properties used by the
classifier module definition.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return
value/code Description

0x80070057

E_INVALIDARG

The propertiesUsed parameter is NULL.

Upon receiving this message, the server MUST validate parameters:

 Verify that propertiesUsed is not NULL.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

312 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

The server MUST set the propertiesUsed array to the Properties used by the classifier module
definition.

3.2.4.2.44.5 PropertiesUsed (put) (Opnum 34)

The PropertiesUsed (put) method sets the propertiesUsed of the classifier module definition.

 [propput, id(FSRM_PROPERTY(FSRM_DISPID_CLASSIFIER_MODULE_DEFINITION | 0x02))]
HRESULT PropertiesUsed(

 [in] SAFEARRAY(VARIANT) propertiesUsed
);

propertiesUsed: Contains the names of the properties potentially used by this classifier.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return
value/code Description

0x80070057

E_INVALIDARG

The propertiesUsed parameter is not of type VT_BSTR.

The server MUST set the propertiesUsed of the classifier module definition to propertiesUsed or
return a nonzero error code. propertiesUsed is not used by the server during any processing. It is
kept for informational purposes about the classifier module definition.

3.2.4.2.44.6 NeedsExplicitValue (get) (Opnum 35)

The NeedsExplicitValue (get) method retrieves the Needs explicit value property of the classifier
module definition and returns S_OK upon successful completion.

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_CLASSIFIER_MODULE_DEFINITION | 0x03))]
HRESULT NeedsExplicitValue(

 [out, retval] VARIANT_BOOL* needsExplicitValue
);

needsExplicitValue: Pointer to a variable that upon completion contains the Boolean indication for
the Needs explicit value property of the classifier module definition.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return
value/code Description

0x80070057

E_INVALIDARG

The needsExplicitValue parameter is NULL.

Upon receiving this message, the server MUST validate parameters:

 Verify that needsExplicitValue is not NULL.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

The server MUST set needsExplicitValue to the value VARIANT_TRUE if the classifier module
definition's Needs explicit value property is true or set needsExplicitValue to the value
VARIANT_FALSE if the classifier module definition's Needs explicit value property is false or the
server MUST return a nonzero error code.

313 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

3.2.4.2.44.7 NeedsExplicitValue (put) (Opnum 36)

The NeedsExplicitValue (put) method sets the needs explicit value of the classifier module definition
and returns S_OK upon successful completion.

 [propput, id(FSRM_PROPERTY(FSRM_DISPID_CLASSIFIER_MODULE_DEFINITION | 0x03))]
HRESULT NeedsExplicitValue(

 [in] VARIANT_BOOL needsExplicitValue
);

needsExplicitValue: Determines if a rule using this classifier needs to provide an explicit value for
the property being modified.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

The server MUST set the needs explicit value of the classifier module definition to
needsExplicitValue or return a nonzero error code.

3.2.4.2.45 IFsrmClassificationManager

The IFsrmClassificationManager interface exposes methods for managing property definitions,
module definitions, and rules, and for running classification.

Methods in RPC Opnum Order

Method Description

ClassificationReportFormats (get) Opnum: 7

ClassificationReportFormats (put) Opnum: 8

Logging (get) Opnum: 9

Logging (put) Opnum: 10

ClassificationReportMailTo (get) Opnum: 11

ClassificationReportMailTo (put) Opnum: 12

ClassificationReportEnabled (get) Opnum: 13

ClassificationReportEnabled (put) Opnum: 14

ClassificationLastReportPathWithoutExtension (get) Opnum: 15

ClassificationLastError (get) Opnum: 16

ClassificationRunningStatus (get) Opnum: 17

EnumPropertyDefinitions Opnum: 18

CreatePropertyDefinition Opnum: 19

GetPropertyDefinition Opnum: 20

EnumRules Opnum: 21

CreateRule Opnum: 22

GetRule Opnum: 23

EnumModuleDefinitions Opnum: 24

314 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Method Description

CreateModuleDefinition Opnum: 25

GetModuleDefinition Opnum: 26

RunClassification Opnum: 27

WaitForClassificationCompletion Opnum: 28

CancelClassification Opnum: 29

EnumFileProperties Opnum: 30

GetFileProperty Opnum: 31

SetFileProperty Opnum: 32

ClearFileProperty Opnum: 33

3.2.4.2.45.1 ClassificationReportFormats (get) (Opnum 7)

The ClassificationReportFormats (get) method retrieves an array of report formats that will be
created when classification is run and returns S_OK upon successful completion.

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_CLASSIFICATION_MANAGER | 0x01))]
HRESULT ClassificationReportFormats(

 [out, retval] SAFEARRAY(VARIANT) *formats
);

formats: Pointer to a variable that upon completion contains the array of report formats that will be
created when classification is run.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return
value/code Description

0x80070057

E_INVALIDARG

The formats parameter is NULL.

Upon receiving this message, the server MUST validate parameters:

 Verify that formats is not NULL.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

The server MUST set the formats array to the Default Classification Job's Classification Job.Formats

list that will be created when classification is run.

3.2.4.2.45.2 ClassificationReportFormats (put) (Opnum 8)

The ClassificationReportFormats (put) method sets the list of report formats that will be created when
classification is run and returns S_OK upon successful completion.

 [propput, id(FSRM_PROPERTY(FSRM_DISPID_CLASSIFICATION_MANAGER | 0x01))]
HRESULT ClassificationReportFormats(

315 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 [in] SAFEARRAY(VARIANT) formats
);

formats: Contains the array of report formats that will be created when classification is run.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return
value/code Description

0x80070057

E_INVALIDARG

One or more values specified in the formats parameter is not a valid
FsrmReportFormat (section 2.2.1.2.14) value.

Upon receiving this message, the server MUST validate parameters:

 Verify that formats contains valid FsrmReportFormat (section 2.2.1.2.14) values. If any one of the

formats are FsrmReportFormat_Unknown, the parameter MUST be considered an invalid value.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

 The server MUST set the Default Classification Job's Classification Job.Formats list used for
classification to formats.

3.2.4.2.45.3 Logging (get) (Opnum 9)

The Logging (get) method retrieves the logging flags used for classification as defined in the

FsrmClassificationLoggingFlags (section 2.2.2.7.1.1) enumeration and returns S_OK upon successful
completion.

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_CLASSIFICATION_MANAGER | 0x02))] HRESULT Logging(
 [out, retval] long* logging
);

logging: Pointer to a variable that upon completion contains the logging flags used for classification.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return
value/code Description

0x80070057

E_INVALIDARG

The logging parameter is NULL.

Upon receiving this message, the server MUST validate parameters:

 Verify that logging is not NULL.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

The server MUST set logging to Default Classification Job's Classification Job.Logging.

3.2.4.2.45.4 Logging (put) (Opnum 10)

The Logging (put) method sets the logging flags used for classification and returns S_OK upon
successful completion.

316 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 [propput, id(FSRM_PROPERTY(FSRM_DISPID_CLASSIFICATION_MANAGER | 0x02))] HRESULT Logging(
 [in] long logging
);

logging: Contains the logging flags to use for classification.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return
value/code Description

0x80070057

E_INVALIDARG

The logging parameter is not a valid FsrmClassificationLoggingFlags (section 2.2.2.7.1.1)

value.

Upon receiving this message, the server MUST validate parameters:

 Verify that logging contains valid FsrmClassificationLoggingFlags (section 2.2.2.7.1.1) values.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

The server MUST set the Default Classification Job's Classification Job.Logging to logging.

3.2.4.2.45.5 ClassificationReportMailTo (get) (Opnum 11)

The ClassificationReportMailTo (get) method retrieves the email address recipient list to which reports
will be emailed when the classification is run and returns S_OK upon successful completion. The
format of the email address needs to be as specified in [RFC5322].

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_CLASSIFICATION_MANAGER | 0x03))]
HRESULT ClassificationReportMailTo(

 [out, retval] BSTR* mailTo
);

mailTo: Pointer to a variable that upon completion contains the email recipient list to which reports
will be sent when the classification is run.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return
value/code Description

0x80070057

E_INVALIDARG

The mailtTo parameter is NULL.

Upon receiving this message, the server MUST validate parameters:

 Verify that mailTo is not NULL.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

The server MUST set mailTo to the Default Classification Job's Classification Job.Mail to.

If the email address contains the special string "[ADMIN_EMAIL]", the server MUST return the email
address without resolving the "[ADMIN EMAIL]" macro.

3.2.4.2.45.6 ClassificationReportMailTo (put) (Opnum 12)

https://go.microsoft.com/fwlink/?LinkId=183003

317 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

The ClassificationReportMailTo (put) method sets the email address recipient list to which reports will
be emailed when the classification is run and returns S_OK upon successful completion. The format of

the email address needs to be as specified in [RFC5322].

 [propput, id(FSRM_PROPERTY(FSRM_DISPID_CLASSIFICATION_MANAGER | 0x03))]
HRESULT ClassificationReportMailTo(

 [in] BSTR mailTo
);

mailTo: Contains the email address recipient list to which reports will be emailed when the
classification is run. The maximum length of this string MUST be 255 characters.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

 The server MUST set the Default Classification Job's Classification Job.Mail to to mailTo or return a
nonzero error code.

If mailTo contains the string "[ADMIN EMAIL]", the server MUST send the email to the Administrator

email address setting (section 3.2.1.9).

3.2.4.2.45.7 ClassificationReportEnabled (get) (Opnum 13)

The ClassificationReportEnabled (get) method retrieves an indication of whether classification will
generate a report when it is run and returns S_OK upon successful completion.

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_CLASSIFICATION_MANAGER | 0x04))]
HRESULT ClassificationReportEnabled(

 [out, retval] VARIANT_BOOL* reportEnabled
);

reportEnabled: Pointer to a variable that upon completion contains the Boolean indication of whether
classification will generate a report when it is run.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return
value/code Description

0x80070057

E_INVALIDARG

The reportEnabled parameter is NULL.

Upon receiving this message, the server MUST validate parameters:

 Verify that reportEnabled is not NULL.

The server MUST set reportEnabled to Generate classification report or return a nonzero error
code.

3.2.4.2.45.8 ClassificationReportEnabled (put) (Opnum 14)

The ClassificationReportEnabled (put) method sets the report enabled property for classification and

returns S_OK upon successful completion. The report enabled property determines if classification will
generate a report when run.

 [propput, id(FSRM_PROPERTY(FSRM_DISPID_CLASSIFICATION_MANAGER|0x04))]
HRESULT ClassificationReportEnabled(

 [in] VARIANT_BOOL reportEnabled

https://go.microsoft.com/fwlink/?LinkId=183003

318 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

);

reportEnabled: Contains a Boolean value for the report enabled property for classification.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

 The server MUST set Generate classification report to reportEnabled or return a nonzero error code.

3.2.4.2.45.9 ClassificationLastReportPathWithoutExtension (get) (Opnum 15)

The ClassificationLastReportPathWithoutExtension (get) method retrieves the local directory path and
file name where the generated report(s) was (were) stored when classification was previously run and

returns S_OK upon successful completion.

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_CLASSIFICATION_MANAGER | 0x05))]
HRESULT ClassificationLastReportPathWithoutExtension(

 [out, retval] BSTR* lastReportPath
);

lastReportPath: Pointer to a variable that upon completion contains the path and file name where
the generated report(s) was (were) stored when classification was previously run.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return

value/code Description

0x80070057

E_INVALIDARG

The lastReportPath parameter is NULL.

Upon receiving this message, the server MUST validate parameters:

 Verify that lastReportPath is not NULL.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

The server MUST set lastReportPath to Last generated path.

3.2.4.2.45.10 ClassificationLastError (get) (Opnum 16)

The ClassificationLastError (get) method retrieves the last error, if any, from when classification was
previously run and returns S_OK upon successful completion. If no error occurred on the previous
classification run, the returned string will be empty and ClassificationLastError (get) MUST return
S_FALSE.

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_CLASSIFICATION_MANAGER | 0x06))]
HRESULT ClassificationLastError(

 [out, retval] BSTR* lastError
);

lastError: Pointer to a variable that upon completion contains the last error, if any, from when
classification was previously run.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

319 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Return
value/code Description

0x80070057

E_INVALIDARG

The lastError parameter is NULL.

Upon receiving this message, the server MUST validate parameters:

 Verify that lastError is not NULL.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

The server MUST set lastError to Default Classification Job's Classification Job.Last error.

3.2.4.2.45.11 ClassificationRunningStatus (get) (Opnum 17)

The ClassificationRunningStatus (get) method retrieves the current running status of the running
classification task, if present, as defined in the FsrmReportRunningStatus (section 2.2.1.2.13)

enumeration and returns S_OK upon successful completion.

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_CLASSIFICATION_MANAGER|0x07))]
HRESULT ClassificationRunningStatus(

 [out, retval] FsrmReportRunningStatus* runningStatus
);

runningStatus: A pointer to a variable that upon completion contains the current running status of
the running classification task.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return
value/code Description

0x80070057

E_INVALIDARG

The runningStatus parameter is NULL.

Upon receiving this message, the server MUST validate this parameter:

 Verify that runningStatus is not NULL.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

The server MUST set runningStatus to the Default Classification Job's current running status.

3.2.4.2.45.12 EnumPropertyDefinitions (Opnum 18)

The EnumPropertyDefinitions method returns all the property definitions from the List of Persisted
Property Definitions (section 3.2.1.6) on the server.

 [id(FSRM_DISPID_CLASSIFICATION_MANAGER | 0x01)] HRESULT EnumPropertyDefinitions(
 [in, defaultvalue(FsrmEnumOptions_None)]
 FsrmEnumOptions options,
 [out, retval] IFsrmCollection** propertyDefinitions
);

options: Contains the FsrmEnumOptions (section 2.2.1.2.5) to use when enumerating the property

definitions.

320 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

propertyDefinitions: Pointer to an IFsrmCollection interface pointer (section 3.2.4.2.1) that upon
completion contains a pointer to every property definition on the server. The caller MUST release

the collection when the caller is done with it.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return value/code Description

0x80045311

FSRM_E_NOT_SUPPORTED

The options parameter is not a valid FsrmEnumOptions (section 2.2.1.2.5)
value.

0x80070057

E_INVALIDARG

The propertyDefinitions parameter is NULL.

Upon receiving this message, the server MUST validate parameters:

 If propertyDefinitions is NULL, the server MUST return E_INVALIDARG.

 If options contains FsrmEnumOptions_Asynchronous or any value other than what is specified
in section 2.2.1.2.5, the server MUST return FSRM_E_NOT_SUPPORTED.

Upon successful validation of parameters, the server MUST perform the following actions:

 Create a new List of Non-Persisted Property Definition Instances (section 3.2.1.6).

 Populate it with Non-Persisted Property Definition Instances (section 3.2.1.6.1.2) copied from the
Persisted Property Definitions (section 3.2.1.6.1.1) in the List of Persisted Property
Definitions.

 If options did not include FsrmEnumOptions_IncludeDeprecatedObjects, remove all Non-Persisted
Property Definition Instances that have Property Definition.Deprecated set to true.

 Populate propertyDefinitions with objects that MUST implement the IFsrmPropertyDefiniton
interface pointer (section 3.2.4.2.37) and SHOULD<67> implement the

IFsrmPropertyDefinition2 (section 3.2.4.2.38) interface of every Non-Persisted Property Definition
Instance in this List of Non-Persisted Property Definition Instances.

3.2.4.2.45.13 CreatePropertyDefinition (Opnum 19)

The CreatePropertyDefinition method creates a blank Non-Persisted Property Definition

Instance (section 3.2.1.6.1.2) and returns S_OK upon successful completion.

 [id(FSRM_DISPID_CLASSIFICATION_MANAGER | 0x02)] HRESULT CreatePropertyDefinition(
 [out, retval] IFsrmPropertyDefinition **propertyDefinition
);

propertyDefinition: Pointer to an IFsrmPropertyDefinition interface pointer (section 3.2.4.2.37)
that upon completion points to a blank property definition. To have the property definition

added to the server's List of Persisted Property Definitions (section 3.2.1.6), the client MUST

call Commit (section 3.2.4.2.37.1). The caller MUST release the property definition when the caller
is done with it.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return
value/code Description

0x80070057 The propertyDefinition parameter is NULL.

321 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Return
value/code Description

E_INVALIDARG

Upon receiving this message, the server MUST validate parameters:

 Verify that PropertyDefinition is not NULL.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

Upon successful validation of parameters, the server MUST perform the following actions.

 Create a new Non-Persisted Property Definition Instance.

 Set FSRM Base Object.Id to a GUID.

 Set Property Definition.Type to FsrmPropertyDefinitionType_Unknown.

 Set Property Definition.Name to an empty string.

 Set Property Definition.Deprecated to false.

 Set Property Definition.Global to false.

 Set Property Definition.AppliesTo to Files.

 Set Property Definition.Secure to false.

 Set Possible values to an empty list.

 Set Value descriptions to an empty list.

 Set propertyDefinition to the IFsrmPropertyDefinition interface pointer for the newly created
Non-Persisted Property Definition Instance.

3.2.4.2.45.14 GetPropertyDefinition (Opnum 20)

The GetPropertyDefinition method returns a pointer to the property definition from the List of
Persisted Property Definitions (section 3.2.1.6) with the specified name.

 [id(FSRM_DISPID_CLASSIFICATION_MANAGER | 0x03)] HRESULT GetPropertyDefinition(
 [in] BSTR propertyName,
 [out, retval] IFsrmPropertyDefinition** propertyDefinition
);

propertyName: Contains the name of the property definition to return.

propertyDefinition: Pointer to an IFsrmPropertyDefinition interface pointer (section 3.2.4.2.37)
that upon completion points to the IFsrmPropertyDefinition with the specified name.

Additionally, the server SHOULD implement IFsrmPropertyDefinition2 for the same interface

pointer.<68> The caller MUST release the property definition when the caller is done with it.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return value/code Description

0x80045301

FSRM_E_NOT_FOUND

The specified property definition could not be found.

322 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Return value/code Description

0x80045308

FSRM_E_INVALID_NAME

The propertyName parameter is empty or NULL.

0x80070057

E_INVALIDARG

The propertyDefinition parameter is NULL.

Upon receiving this message, the server MUST validate parameters:

 Verify that propertyName is not empty or NULL.

 Verify that propertyDefinition is not NULL.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

Upon successful validation of parameters, the server MUST perform the following actions.

 Create a new Non-Persisted Property Definition Instance (section 3.2.1.6.1.2).

 Populate its configuration data from the Persisted Property Definition (section 3.2.1.6.1.1) in the
List of Persisted Property Definitions whose Property Definition.Name is equivalent to
propertyName.

 Set propertyDefinition to the IFsrmPropertyDefinition interface pointer of the newly created
Non-Persisted Property Definition Instance.

If a property definition with the specified name does not exist, the server MUST return
FSRM_E_NOT_FOUND.

3.2.4.2.45.15 EnumRules (Opnum 21)

The EnumRules method returns all the Rules from the List of Persisted Rules (section 3.2.1.6) on
the server that have the specified ruleType.

 [id(FSRM_DISPID_CLASSIFICATION_MANAGER | 0x04)] HRESULT EnumRules(
 [in] FsrmRuleType ruleType,
 [in, defaultvalue(FsrmEnumOptions_None)]
 FsrmEnumOptions options,
 [out, retval] IFsrmCollection** Rules
);

ruleType: Contains the FsrmRuleType (section 2.2.1.2.11) to which to limit the returned collection of
Rules.

options: Contains the FsrmEnumOptions (section 2.2.1.2.5) to use when enumerating the Rules.

Rules: Pointer to an IFsrmCollection interface pointer (section 3.2.4.2.1) that upon completion

contains pointers to every rule on the server that has the rule type specified by ruleType. A caller

MUST release the collection received when the caller is done with it.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return value/code Description

0x80045311

FSRM_E_NOT_SUPPORTED

The options parameter is not a valid FsrmEnumOptions (section 2.2.1.2.5)
value.

0x80070057 This code is returned for the following reasons:

323 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Return value/code Description

E_INVALIDARG
 The ruleType parameter is not a valid FsrmRuleType (section 2.2.1.2.11)

value.

 The Rules parameter is NULL.

Upon receiving this message, the server MUST validate parameters:

 If Rules is NULL, server MUST return E_INVALIDARG.

 If ruleType contains any value other than specified in section 2.2.1.2.11, server MUST return
E_INVALIDARG.

 If options contains FsrmEnumOptions_Asynchronous or any value other than what is specified
in section 2.2.1.2.5, the server MUST return FSRM_E_NOT_SUPPORTED.

Upon successful validation of parameters, the server MUST perform the following actions:

 Create a new List of Non-Persisted Rule Instances (section 3.2.1.6).

 Populate the newly created list with Non-Persisted Rule Instances (section 3.2.1.6.3.2) copied
from the Persisted Rules (section 3.2.1.6.3.1) in the List of Persisted Rules where each copied
instance's Rule Type is equivalent to ruleType.

 If options did not include FsrmEnumOptions_IncludeDeprecatedObjects, remove all Non-Persisted
Rule Instances that have Rule.Deprecated set to true.

 Populate Rules with the IFsrmRule interface pointer (section 3.2.4.2.41) of every Non-Persisted
Rule Instance in this List of Non-Persisted Rule Instances.

3.2.4.2.45.16 CreateRule (Opnum 22)

The CreateRule method creates a blank Non-Persisted Rule Instance (section 3.2.1.6.3.2) with the

specified classification rule type and returns S_OK upon successful completion.

 [id(FSRM_DISPID_CLASSIFICATION_MANAGER | 0x05)] HRESULT CreateRule(
 [in] FsrmRuleType ruleType,
 [out, retval] IFsrmRule** Rule
);

ruleType: Contains the FsrmRuleType (section 2.2.1.2.11) of the classification rule to create.

Rule: Pointer to an IFsrmRule interface pointer (section 3.2.4.2.41) that upon completion points to a
blank classification rule. To have the rule added to the server's List of Persisted Rules (section
3.2.1.6) the client MUST call Commit (section 3.2.4.2.10.5) on the rule. The caller MUST release
the rule when the caller is done with it.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return
value/code Description

0x80070057

E_INVALIDARG

This code is returned for the following reasons:

 The ruleType parameter is not FsrmRuleType_Classification.

 The rule parameter is NULL.

324 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Upon receiving this message, the server MUST validate parameters:

 Verify that Rule is not NULL.

 Verify that ruleType equals FsrmRuleType_Classification.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

Upon successful validation of parameters, the server MUST perform the following actions.

 Create a new Non-Persisted Rule Instance of the specified type.

 Set FSRM Base Object.Id to a GUID.

 Set FSRM Base Object.Description to an empty string.

 Set FSRM Base Object.Deleted to false.

 Set Rule.Name to an empty string.

 Set Rule type to ruleType.

 Set Module definition name to an empty string.

 Set Namespace roots to an empty list.

 Set Enabled/disabled to enabled.

 Set Valid/invalid to valid.

 Set Rule.Parameters to an empty list.

 Last modified time is unspecified until the rule is committed by calling Commit (section

3.2.4.2.44.1).

 Set Execution option to Evaluate unset.

 Set Rule.Value to an empty list.

 Set Rule.Deprecated to false.

 Set Rule.ClearAutoProperty to false.<69>

 Set Rule.ClearManualProperty to false.<70>

 Set Property Affected to an empty string.

 Set Rule to the IFsrmRule interface pointer for the newly created Non-Persisted Rule Instance.

3.2.4.2.45.17 GetRule (Opnum 23)

The GetRule method returns a pointer to the classification rule with the specified Name and Rule

type from the List of Persisted Rules (section 3.2.1.6).

 [id(FSRM_DISPID_CLASSIFICATION_MANAGER | 0x06)] HRESULT GetRule(
 [in] BSTR ruleName,
 [in] FsrmRuleType ruleType,
 [out, retval] IFsrmRule** Rule
);

ruleName: Contains the Name of the classification rule to return.

325 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

ruleType: Contains the FsrmRuleType (section 2.2.1.2.11) of the classification rule to return.

Rule: Pointer to an IFsrmRule interface pointer (section 3.2.4.2.41) that upon completion points to

the classification rule with the specified Name and Rule type. The caller MUST release the rule
when the caller is done with it.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return value/code Description

0x80045301

FSRM_E_NOT_FOUND

The specified rule could not be found.

0x80045308

FSRM_E_INVALID_NAME

The ruleName parameter is empty or NULL.

0x80070057

E_INVALIDARG

This code is returned for the following reasons:

 The ruleType parameter is a not a valid value. If ruleType is
FsrmRuleType_Generic, the parameter MUST be considered an valid value.

 The specified name exceeds the maximum length of 1000 characters.

Upon receiving this message, the server MUST validate parameters:

 Verify that Rule is not NULL.

 Verify that ruleType contains a valid FsrmRuleType value.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

Upon successful validation of parameters, the server MUST perform the following actions or return a
nonzero error code.

 Create a new Non-Persisted Rule Instance (section 3.2.1.6.3.2).

 Populate the configuration data of the Non-Persisted Rule Instance from the Persisted

Rule (section 3.2.1.6.3.1) in the List of Persisted Rules whose Rule.Name is equivalent to
ruleName and whose Rule.Type is equivalent to ruleType.

 Set Rule to the IFsrmRule interface pointer of the newly created Non-Persisted Rule Instance.

If a classification rule with the specified Name and Rule type does not exist, the server MUST return
FSRM_E_NOT_FOUND.

3.2.4.2.45.18 EnumModuleDefinitions (Opnum 24)

The EnumModuleDefinitions method returns all the moduleDefinitions from the List of Persisted
Module Definitions (section 3.2.1.6) on the server that have the specified moduleType.

 [id(FSRM_DISPID_CLASSIFICATION_MANAGER | 0x07)] HRESULT EnumModuleDefinitions(
 [in] FsrmPipelineModuleType moduleType,
 [in, defaultvalue(FsrmEnumOptions_None)]
 FsrmEnumOptions options,
 [out, retval] IFsrmCollection** moduleDefinitions
);

moduleType: Contains the FsrmPipelineModuleType (section 2.2.1.2.12) of the modules to get.

326 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

options: Contains the FsrmEnumOptions (section 2.2.1.2.5) to use when enumerating the
moduleDefinitions.

moduleDefinitions: Pointer to an IFsrmCollection interface pointer (section 3.2.4.2.1) that upon
completion contains pointers to every module definition on the server that has the specified

moduleType. A caller MUST release the collection received when the caller is done with it.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return value/code Description

0x80045311

FSRM_E_NOT_SUPPORTED

The options parameter does not contain a valid
FsrmEnumOptions (section 2.2.1.2.5) value.

0x80070057

E_INVALIDARG

This code is returned for the following reasons:

 The moduleType parameter is not a valid value. If the moduleType is
FsrmPipelineModuleType_Unknown, the parameter MUST be
considered an invalid value.

 The moduleDefinitions parameter is NULL.

Upon receiving this message, the server MUST validate parameters:

 If moduleDefinitions is NULL, server MUST return E_INVALIDARG.

 If moduleType is FsrmPipelineModuleType_Unknown or any value other than what is specified
in section 2.2.1.2.12, the server MUST return E_INVALIDARG.

 If options contains FsrmEnumOptions_Asynchronous or any value other than what is specified
in section 2.2.1.2.5, the server MUST return FSRM_E_NOT_SUPPORTED.

Upon successful validation of parameters, the server MUST perform the following actions:

 Create a List of Non-Persisted Module Definition Instances (section 3.2.1.6).

 Populate it with Non-Persisted Module Definition Instances (section 3.2.1.6.2.2) copied from the

Persisted Module Definitions (section 3.2.1.6.2.1) in the List of Persisted Module Definitions
where each copied instance's Module Type is equivalent to moduleType.

 Populate moduleDefinitions with the IFsrmPipelineModuleDefinition interface pointer (section
3.2.4.2.43) of every Non-Persisted Module Definition Instance in this newly created List of Non-
Persisted Module Definition Instances.

3.2.4.2.45.19 CreateModuleDefinition (Opnum 25)

The CreateModuleDefinition method is used to create a new Non-Persisted Module Definition
Instance (section 3.2.1.6.2.2) of a specified module type and returns S_OK upon successful
completion.

 [id(FSRM_DISPID_CLASSIFICATION_MANAGER | 0x08)] HRESULT CreateModuleDefinition(
 [in] FsrmPipelineModuleType moduleType,
 [out, retval] IFsrmPipelineModuleDefinition** moduleDefinition
);

moduleType: Contains the type of module to create (for example, a classifier or storage module). For
possible types, see the FsrmPipelineModuleType (section 2.2.1.2.12) enumeration.

327 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

moduleDefinition: An IFsrmPipelineModuleDefinition interface pointer (section 3.2.4.2.43) to the
new module definition. Query the IFsrmPipelineModuleDefinition interface to get the

interface for the specified module. To add the module definition to the server's List of Persisted
Module Definitions (section 3.2.1.6), the client MUST call Commit (section 3.2.4.2.10.5).

Return Values: The method MUST return zero on success, or an error code on failure.

Return
value/code Description

0x80070057

E_INVALIDARG

The moduleType parameter is not a valid FsrmPipelineModuleType (section 2.2.1.2.12)
value.

Upon receiving this message, the server MUST validate parameters:

 Verify that moduleType contains a valid FsrmPipelineModuleType value. If moduleType is
FsrmPipelineModuleType_Unknown, the parameter MUST be considered an invalid value.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

Upon successful validation of parameters, the server MUST perform the following actions.

 Create a new Non-Persisted Module Definition Instance (section 3.2.1.6.2.2) of the specified

module type.

 Set FSRM Base Object.Id to a GUID.

 Set FSRM Base Object.Description to an empty string.

 Set FSRM Base Object.Deleted to false.

 Set ModuleClsid to an empty string.

 Set Module Definition.Name to an empty string.

 Set Company to an empty string.

 Set Version to an empty string.

 Set Enabled/disabled to enabled.

 Set Needs file content to false.

 Set Module Definition.Account to FsrmAccountType_LocalService.

 Set Supported extensions to an empty list.

 Set Module Definition.Parameters to an empty list.

 Set Module type to moduleType.

 If Module type is FsrmPipelineModuleType_Classifier, the following elements MUST be

set:

 Set Properties affected to an empty list.

 Set Properties used to an empty list.

 Set Needs explicit value to true.

 If Module type is FsrmPipelineModuleType_Storage, the following elements MUST be set:

328 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 Set Capabilities to FsrmStorageModuleCaps_Unknown.

 Set Storage type to FsrmStorageModuleType_Unknown.

 Set Updates file contents to false.

 Set moduleDefinition to the IFsrmPipelineModuleDefinition interface pointer for the newly

created Non-Persisted Module Definition Instance.

3.2.4.2.45.20 GetModuleDefinition (Opnum 26)

The GetModuleDefinition method returns a pointer to the module definition with the specified Name
and Module type from the List of Persisted Module Definitions (section 3.2.1.6).

 [id(FSRM_DISPID_CLASSIFICATION_MANAGER | 0x09)] HRESULT GetModuleDefinition(
 [in] BSTR moduleName,
 [in] FsrmPipelineModuleType moduleType,
 [out, retval] IFsrmPipelineModuleDefinition** moduleDefinition
);

moduleName: Contains the name of the module definition to retrieve.

moduleType: Contains the type of the module definition to retrieve. For possible types, see the
FsrmPipelineModuleType (section 2.2.1.2.12) enumeration.

moduleDefinition: An IFsrmPipelineModuleDefinition interface pointer (section 3.2.4.2.43) to the

module definition. Query the IFsrmPipelineModuleDefinition interface to get the interface
pointer for the specified module.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return value/code Description

0x80045301

FSRM_E_NOT_FOUND

The specified module definition could not be found.

0x80045308

FSRM_E_INVALID_NAME

The specified name is empty or NULL.

0x80070057

E_INVALIDARG

This code is returned for the following reasons:

 The moduleType parameter is not a valid
FsrmPipelineModuleType (section 2.2.1.2.12) value.

 The specified name exceeds the maximum length of 100 characters.

 The moduleDefinitions parameter is NULL.

Upon receiving this message, the server MUST validate parameters:

 Verify that moduleName is not empty or NULL and does not exceed the maximum length of 100
characters.

 Verify that moduleDefinition is not NULL.

 Verify that moduleType contains a valid FsrmPipelineModuleType value. If moduleType is
FsrmPipelineModuleType_Unknown, the parameter MUST be considered an invalid value.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

329 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Upon successful validation of parameters, the server MUST perform the following actions.

 Create a new Non-Persisted Module Definition Instance (section 3.2.1.6.2.2).

 Populate the configuration data of the Non-Persisted Module Definition Instance from the Persisted
Module Definition (section 3.2.1.6.2.1) in the List of Persisted Module Definitions with the

specified module name.

 Set moduleDefinition to the IFsrmPipelineModuleDefinition interface pointer of the newly
created Non-Persisted Module Definition Instance.

3.2.4.2.45.21 RunClassification (Opnum 27)

The RunClassification method queues a Running Job to the Classification Job Queue.

 [id(FSRM_DISPID_CLASSIFICATION_MANAGER | 0x0A)] HRESULT RunClassification(
 [in] FsrmReportGenerationContext context,
 [in] BSTR reserved
);

context: Contains the value of the report generation context in which the running classification
task will run.

reserved: This parameter is reserved for future use.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return value/code Description

0x8004533D

FSRM_E_CLASSIFICATION_ALREADY_RUNNING

Classification is already running.

0x80070057

E_INVALIDARG

The context parameter is not a valid
FsrmReportGenerationContext (section 2.2.1.2.15) value.

 The server MUST do one of the following or return a nonzero error code:

 If there is already a Running Job in the Classification Job Queue, the server MUST return
FSRM_E_CLASSIFICATION_ALREADY_RUNNING.

 If the Classification Job Queue does not contain a Running Job, the server MUST:

 Create a Running Job, and set its properties as follows:

 Running Job.Parent: Reference to the Default Classification Job object.

 Reports directory: File system path to the output directory associated with context. See
section 3.2.1.5.3 for details on selecting the output directory for different generation

contexts.

 Running Job.Cancel: false

 Classification Job.Namespace Roots: Copy all paths in the Namespace Roots of all
classification rules that have Enabled/Disabled set to enabled.

 Queue the Running Job to the Classification Job Queue.

 Set the Running status of the Default Classification Job object to

FsrmReportRunningStatus_Queued.

330 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

See section 3.2.1.12.2 for more information about how the server monitors the running classification
job.

3.2.4.2.45.22 WaitForClassificationCompletion (Opnum 28)

The WaitForClassificationCompletion method blocks the caller for the specified time period or until the
running job associated with the single class (section 3.2.1.12.2), if present, completes, whichever
occurs first.

 [id(FSRM_DISPID_CLASSIFICATION_MANAGER | 0x0B)] HRESULT WaitForClassificationCompletion(
 [in] long waitSeconds,
 [out, retval] VARIANT_BOOL* completed
);

waitSeconds: Contains the maximum number of seconds the call will block before returning.

completed: Pointer to a VARIANT_BOOL variable that upon completion contains an indication of

whether the running classification task has completed.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return
value/code Description

0x80070057

E_INVALIDARG

The waitSeconds parameter is not a valid value; the number of seconds to wait must be in
the range of -1 through 2,147,483.

Upon receiving this message, the server MUST validate parameters:

 Verify that waitSeconds is greater than "-2".

If any validation fails, the server MUST terminate processing and return a nonzero error code.

The server MUST monitor the Default Classification Job's Running status for a maximum of
waitSeconds if waitSeconds is greater than -1, forever if waitSeconds equals -1, or until the Running
status is FsrmReportRunningStatus_NotRunning, whichever is sooner, or return a nonzero error

code.

 If there is no Running Job in the Classification Job Queue, the server MUST return
FSRM_E_CLASSIFICATION_NOT_RUNNING.

 If the Default Classification Job's Running status changes to
FsrmReportRunningStatus_NotRunning before waitSeconds, the server MUST set completed
to VARIANT_TRUE.

 If the Default Classification Job's Running status does not change to

FsrmReportRunningStatus_NotRunning before waitSeconds, the server MUST set completed
to VARIANT_FALSE.

To implement the time-out behavior driven by the waitSeconds parameter, a compliant
implementation of this routine can simply poll for the Default Classification Job's Running status
value for a maximum period of time, or use an internal timer, or mix polling with a timer-driven
architecture.

3.2.4.2.45.23 CancelClassification (Opnum 29)

The CancelClassification method stops the running job associated with the Default Classification job
object, if present, from continuing and returns S_OK upon successful completion.

331 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 [id(FSRM_DISPID_CLASSIFICATION_MANAGER | 0x0C)] HRESULT CancelClassification();

This method has no parameters.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return value/code Description

0x8004533E

FSRM_E_CLASSIFICATION_NOT_RUNNING

The classification is not currently running.

The server MUST stop the associated Running Job or return a nonzero error code as follows:

 If there is no Running Job in the Classification Job Queue, the server MUST return
FSRM_E_CLASSIFICATION_NOT_RUNNING.

 If there is a Running Job in the Classification Job Queue, the server MUST set the Running

Job.Cancel property of the Running job to true.

3.2.4.2.45.24 EnumFileProperties (Opnum 30)

The EnumFileProperties method enumerates the Property Definition Instances of the specified file or
folder.

 [id(FSRM_DISPID_CLASSIFICATION_MANAGER | 0x0D)] HRESULT EnumFileProperties(
 [in] BSTR filePath,
 [in, defaultvalue(FsrmGetFilePropertyOptions_None)]
 FsrmGetFilePropertyOptions options,
 [out, retval] IFsrmCollection** fileProperties
);

filePath: The file or folder that contains the Property Definition Instances that you want to

enumerate. You can specify an absolute or relative path to the file or folder. You cannot specify a
file share.

options: Contains the options to use for enumerating the file's Property Definition Instances. For
possible values, see the FsrmGetFilePropertyOptions (section 2.2.2.5.1.2) enumeration.

fileProperties: Pointer to IFsrmCollection interface pointer (section 3.2.4.2.1) that contains a
collection of file Property Definition Instances. Each item in the collection is a VARIANT of type
VT_DISPATCH. Query the pdispVal member of the variant for the IFsrmProperty interface
(section 3.2.4.2.40).

Return Values: The method MUST return zero on success or a nonzero error code on failure.

Return value/code Description

0x80045305

FSRM_S_PARTIAL_CLASSIFICATION

The enumerated properties could not be completely classified
because a failure occurred while loading or classifying the file
properties.

0x80045353

FSRM_E_ENUM_PROPERTIES_FAILED

The properties could not be enumerated because a failure occurred
while loading or classifying the file properties.

0x80070057

E_INVALIDARG

This code is returned for the following reasons:

 The options parameter is not a valid

332 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Return value/code Description

FsrmGetFilePropertyOptions (section 2.2.2.5.1.2) value.

 The fileProperties parameter is NULL.

 The filePath parameter is NULL.

Upon receiving this message, the server MUST validate parameters:

 Verify that filePath is not NULL.

 Verify that fileProperties is not NULL.

 Verify that options contains valid FsrmGetFilePropertyOptions values. If options contains

FsrmGetFilePropertyOptions_None, FSRM reruns classification on the file to ensure the correct
value is returned.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

The server MUST perform the following steps in sequence or return a nonzero error code:

1. Perform retrieve stored classification properties for the file.

2. If options does not contain FsrmGetFilePropertyOptions_NoRuleEvaluation, perform the Generate
new classification properties action for the file given the list of Property Definition Instances

from the previous action. If the property definition instance.flags of any of the resulting Property
Definition Instances contains FsrmPropertyFlags_SetByClassifier, add the file to the Report item
list.

3. If options contains FsrmGetFilePropertyOptions_Persistent, perform the Store classification
properties action for the file given the List of Property Definition Instances from the previous
actions.

4. If options contains FsrmGetFilePropertyOptions_SkipOrphaned, any of the Property Definition

Instance objects in the List of Property Definition Instances for which there is not a Property
Definition.Name in the List of Persisted Property Definitions that matches the Property
Definition.Name of the Property Definition Instance SHOULD be removed from the List of
Property Definition Instances.<71>

5. The server MUST populate fileProperties with the IFsrmProperty interface pointer of every
Property Definition Instance in the List of Property Definition Instances.

6. If options contains FsrmGetFilePropertyOptions_FailOnPersistErrors and any of the property
definition instance.flags of the Property Definition Instances in the list of Property Definition
Instances contains the flag FsrmPropertyFlags_FailedSavingProperties, the server MUST return
FSRM_S_PARTIAL_CLASSIFICATION.

3.2.4.2.45.25 GetFileProperty (Opnum 31)

The GetFileProperty method is used to get a specific Property Definition Instance from a file or

folder.

 [id(FSRM_DISPID_CLASSIFICATION_MANAGER | 0x0E)] HRESULT GetFileProperty(
 [in] BSTR filePath,
 [in] BSTR propertyName,
 [in, defaultvalue(FsrmGetFilePropertyOptions_None)]
 FsrmGetFilePropertyOptions options,
 [out, retval] IFsrmProperty** property

333 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

);

filePath: The file or folder that contains the Property Definition Instance that you want to retrieve.
You can specify an absolute or relative path to the file or folder. You cannot specify a file share.

propertyName: Contains the name of the Property Definition Instance to retrieve.

options: Contains the option to use for retrieving the file's Property Definition Instance. For possible
values, see the FsrmGetFilePropertyOptions (section 2.2.2.5.1.2) enumeration.

property: Pointer to an IFsrmProperty interface pointer (section 3.2.4.2.40) that contains the
retrieved Property Definition Instance.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return value/code Description

0x80045301

FSRM_E_NOT_FOUND

An object with the specified property name was not found.

0x80070057

E_INVALIDARG

The property parameter is NULL.

Upon receiving this message, the server MUST validate parameters:

 Verify that property is not NULL.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

The server MUST perform the following steps or return a nonzero error code:

1. Perform the Retrieve stored classification properties for the file.

2. If options does not contain FsrmGetFilePropertyOptions_NoRuleEvaluation, perform the Generate
new classification properties action for the file given the list of Property Definition Instances
from the previous action. If the property definition instance.flags of any of the resulting Property
Definition Instances contains FsrmPropertyFlags_SetByClassifier, add the file to the Report item
list.

3. If options contains FsrmGetFilePropertyOptions_Persistent, perform the Store classification

properties action for the file given the List of Property Definition Instances from the previous
actions.

4. If a Property Definition Instance with the Property Definition Instance specified by
propertyName does not exist, the server MUST return FSRM_E_NOT_FOUND.

5. The server MUST set property to the IFsrmProperty interface pointer of the Property Definition
Instance in the List of Property Definition Instances with the Property Definition.Name specified

by propertyName.

6. If options contains FsrmGetFilePropertyOptions_FailOnPersistErrors and any of the property
definition instance.flags of the property definition instances in the List of Property Definition
Instances contains the flag FsrmPropertyFlags_FailedSavingProperties, the server MUST return
FSRM_S_PARTIAL_CLASSIFICATION.

3.2.4.2.45.26 SetFileProperty (Opnum 32)

The SetFileProperty method is used to set a Property Definition Instance on a file or folder.

334 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 [id(FSRM_DISPID_CLASSIFICATION_MANAGER | 0x0F)] HRESULT SetFileProperty(
 [in] BSTR filePath,
 [in] BSTR propertyName,
 [in] BSTR propertyValue
);

filePath: The file or folder that contains the Property Definition Instance that you want to set. You can
specify an absolute or relative path to the file or folder. You cannot specify a file share.

propertyName: Contains the name of the Property Definition Instance whose value you want to set.

propertyValue: Contains the value to set the Property Definition Instance to.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return value/code Description

0x80045304

FSRM_E_PATH_NOT_FOUND

The specified file pointed to by the filePath parameter is not found.

0x80045306

FSRM_E_INVALID_PATH

The specified path is not valid. A path cannot be a relative path; it must
be a full, absolute path to a file. A file share path cannot be specified.

0x80045354

FSRM_E_SET_PROPERTY_FAILED

The property could not be set.

0x80070057

E_INVALIDARG

The propertyValue parameter is not a valid for the type of property
definition specified.

Upon receiving this message, the server MUST validate parameters:

 Verify that propertyName is the Property Definition.Name of a Persisted Property Definition.

 Verify that propertyValue is valid for the Persisted Property Definition specified by propertyName
(section 3.2.4.6).

If any validation fails, the server MUST terminate processing and return a nonzero error code.

The server MUST perform the following steps in sequence or return a nonzero error code.

1. If a Property Definition Instance with the Property Definition Instance specified by propertyName
does not exist, the server MUST return FSRM_E_NOT_FOUND.

2. Perform Retrieve Stored Classification Properties for the file.

3. If the List of Property Definition Instances contains a Property Definition Instance with the
Property Definition.Name specified by propertyName, that instance's property definition
instance.value MUST be set to propertyValue.

4. If the List of Property Definition Instances does not contain a Property Definition Instance with the

Property Definition.Name specified by propertyName, the server MUST create a new Property
Definition Instance whose Property Definition.Name is set to propertyName and whose property

definition instance.value is set to propertyValue. The server MUST then add that new instance to
the List of Property Definition Instances for the file.

5. If filePath is the path of a file and the List of Property Definition Instances contains a Property
Definition Instance with Property Definition.AppliesTo set to Folders, the server MUST return
E_INVALIDARG.

335 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

6. If filePath is the path of a folder and the List of Property Definition Instances contains a Property
Definition Instance with Property Definition.AppliesTo set to Files, the server MUST return

E_INVALIDARG.

7. Perform the Store Classification Properties action for the file given the List of Property Definition

Instances from the previous actions.

8. If any of the Property Definition instance.Flags of the Property Definition Instances in the List of
Property Definition Instances contains the flag FsrmPropertyFlags_FailedSavingProperties, the
server MUST return FSRM_E_SET_PROPERTY_FAILED.

3.2.4.2.45.27 ClearFileProperty (Opnum 33)

The ClearFileProperty method is used to clear the specified Property Definition Instance from a file

or folder.

 [id(FSRM_DISPID_CLASSIFICATION_MANAGER | 0x10)] HRESULT ClearFileProperty(
 [in] BSTR filePath,
 [in] BSTR property
);

filePath: The file or folder that contains the Property Definition Instance that you want to remove.
You can specify an absolute or relative path to the file or folder. You cannot specify a file share.

property: Contains the name of the Property Definition Instance to remove from the file.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return value/code Description

0x80045301

FSRM_E_NOT_FOUND

The specified property could not be found.

0x80045354

FSRM_E_SET_PROPERTY_FAILED

The property could not be set.

0x80045357

FSRM_E_PARTIAL_CLASSIFICATION_PROPERTY_NOT_FOUND

The requested property was not found, but
the file might only have partial classification
because a failure occurred while loading or
classifying the file properties.

The server MUST perform the following steps or return a nonzero error code.

1. If a Property Definition Instance with the Property Definition Instance specified by propertyName
does not exist, the server MUST return

FSRM_E_PARTIAL_CLASSIFICATION_PROPERTY_NOT_FOUND.

2. Perform the Retrieve Stored Classification Properties for the file.

3. If the List of Property Definition Instances contains a Property Definition Instance with the
Property Definition.Name specified by propertyName, the server MUST remove that instance from
the List of Property Definition Instances.

4. Perform the Store Classification Properties action for the file given the List of Property Definition

Instances from the previous actions.

5. If any of the property definition instance.flags of the Property Definition Instances in the List of
Property Definition Instances contains the flag FsrmPropertyFlags_FailedSavingProperties, the
server MUST return FSRM_E_SET_PROPERTY_FAILED.

336 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

3.2.4.2.46 IFsrmClassificationManager2

The IFsrmClassificationManager2 interface exposes additional methods for managing classification
property instances.

Methods in RPC Opnum Order

Method Description

ClassifyFiles Opnum: 34

3.2.4.2.46.1 ClassifyFiles (Opnum 34)

The ClassifyFiles method is used to get or set a specific Property Definition Instance from/on one or
more files/folders.

 [id(FSRM_DISPID_CLASSIFICATION_MANAGER2 | 0x01), helpstring("This method is used to perform
bulk enumeration, setting, and clearing of file properties")] HRESULT ClassifyFiles(

 [in] SAFEARRAY(VARIANT) filePaths,
 [in, unique] SAFEARRAY(VARIANT) propertyNames,
 [in, unique] SAFEARRAY(VARIANT) propertyValues,
 [in, defaultvalue(FsrmGetFilePropertyOptions_None)]
 FsrmGetFilePropertyOptions options
);

filePaths: The files or folders that contain the Property Definition Instances that you want to retrieve

or that you want to modify. You can specify an absolute or relative path to the files or folders. You
cannot specify a file share.

propertyNames: Contains the names of the Property Definition Instance to retrieve or set.

propertyValues: Contains the value to set the Property Definition Instances to.

options: Contains the option to use for retrieving the Property Definition Instances. For possible
values, see the FsrmGetFilePropertyOptions (section 2.2.2.4.1.2) enumeration.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return value/code Description

0x80045301

FSRM_E_NOT_FOUND

An object with the specified property name was not found.

0x80070057

E_INVALIDARG

The filePaths parameter is NULL.

The propertyNames parameter has a different length than propertyValues.

Upon receiving this message, the server MUST validate parameters:

 Verify that filePaths is not NULL.

 If PropertyNames is not NULL, verify that propertyValues is not NULL and that the length of the
propertyNames array is the same as the length of the propertyValues array.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

The server MUST perform the following steps or return a nonzero error code for all files within the
filePaths array:

337 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

1. If a Property Definition Instance with the Property Definition Instance specified by propertyName
does not exist, the server MUST return FSRM_E_NOT_FOUND.

2. For each file or folder listed in filePaths, the server MUST perform the following steps in sequence:

1. Perform the Retrieve Stored Classification Properties for the file.

2. Iterate over the propertyNames and propertyValues arrays in identical manner, selecting a
pair of values located at the same index from each array (referred to as propertyName and
propertyValue), and perform the following steps in sequence:

1. If propertyName is not NULL and the List of Property Definition Instances contains a
Property Definition Instance with the Property Definition.Name specified by propertyName,
that instance's property definition instance.value MUST be set to PropertyValue.

2. If propertyName is NULL and the List of Property Definition Instances contains a Property

Definition Instance with the Property Definition.Name specified by propertyName, the
server MUST remove that instance from the List of Property Definition Instances.

3. If the List of Property Definition Instances does not contain a Property Definition Instance
with the Property Definition.Name specified by propertyName and propertyValue is not
NULL, the server MUST create a new Property Definition Instance whose Property
Definition.Name is set to propertyName and whose property definition

instance.value is set to PropertyValue. The server MUST then add that new instance to
the List of Property Definition Instances for the file.

4. Perform the Store classification properties action for the file given the List of Property
Definition Instances from the previous actions.

3.2.4.2.47 IFsrmStorageModuleDefinition

The IFsrmStorageModuleDefinition interface exposes methods for configuring a storage module

definition. IFsrmStorageModuleDefinition implements the methods of the
IFsrmPipelineModuleDefinition interface (section 3.2.4.2.43), as well as those listed in the

following table.

Each IFsrmStorageModuleDefinition instance is associated with one Non-Persisted Module
Definition Instance (section 3.2.1.6.2.2).

Methods in RPC Opnum Order

Method Description

Commit Opnum: 11

Capabilities (get) Opnum: 31

Capabilities (put) Opnum: 32

StorageType (get) Opnum: 33

StorageType (put) Opnum: 34

UpdatesFileContent (get) Opnum: 35

UpdatesFileContent (put) Opnum: 36

3.2.4.2.47.1 Commit (Opnum 11)

338 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

The Commit method is implemented as one of the methods for the IFsrmObject interface (section
3.2.4.2.10).<72> This method has the same behavior as described in

IFsrmObject::Commit (section 3.2.4.2.10.5) with the following additional behavior:

 If FSRM Base Object.Deleted is set to true for this Non-Persisted Module Definition

Instance (section 3.2.1.6.2.2), the server MUST remove the Persisted Module
Definition (section 3.2.1.6.2.1) from the List of Persisted Module Definitions (section 3.2.1.6)
that has the same Module Definition.Name as this Non-Persisted Module Definition Instance, if
one exists. This removal MUST occur even if other changes were made to the configuration of the
Non-Persisted Module Definition Instance (section 3.2.1.6.2.2). If there is no Persisted Module
Definition (section 3.2.1.6.2.1) in the List of Persisted Module Definitions (section 3.2.1.6) that
has the same Module Definition.Name as the Non-Persisted Module Definition

Instance (section 3.2.1.6.2.2) being deleted, the server does not perform any action and MUST
return zero. The server MUST return a nonzero error code if removal fails.

 If FSRM Base Object.Deleted is set to false for this Non-Persisted Module Definition Instance,
the server MUST update the configuration data of the Persisted Module Definition in the List of
Persisted Module Definitions that has the same Module Definition.Name as this Non-

Persisted Module Definition Instance, if one exists, with the configuration data from this instance,

or return a nonzero error code.

 If a Persisted Module Definition does not exist with the same Module Definition.Name and
FSRM Base Object.Deleted is set to false, the server MUST perform the following actions:

 Create a new Persisted Module Definition.

 Populate its configuration with the configuration from this Non-Persisted Module Definition
Instance.

 Add the newly created Persisted Module Definition to the List of Persisted Module

Definitions.

To update or populate the configuration data from Non-Persisted Module Definition Instance to a
Persisted Module Definition, the server MUST assign the values of all the properties listed below, of the

Non-Persisted Module Definition Instance to the corresponding properties of the Persisted Module
Definition.

 FSRM Base Object.Description

 ModuleClsid

 Module Definition.Name

 Company

 Version

 Enabled/disabled

 Needs file content

 Module Definition.Account

 Supported extensions

 Module Definition.Parameters

 Capabilities

 Storage Type

339 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

3.2.4.2.47.2 Capabilities (get) (Opnum 31)

The Capabilities (get) method retrieves the Capabilities of the storage module and returns S_OK
upon successful completion.<73>

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_STORAGE_MODULE_DEFINITION | 0x01))]
HRESULT Capabilities(

 [out, retval] FsrmStorageModuleCaps* capabilities
);

capabilities: Pointer to a variable that upon completion contains the Capabilities of the storage
module. For possible capabilities, see the FsrmStorageModuleCaps (section 2.2.2.8.1.1)
enumeration.

Return Values: The method MUST return zero on success or a nonzero error code on failure.

Return
value/code Description

0x80070057

E_INVALIDARG

This code is returned for the following reasons:

 The capabilities parameter is NULL.

 One or more of the values specified in the capabilities parameter is not a valid
FsrmStorageModuleCaps (section 2.2.2.8.1.1) value.

Upon receiving this message, the server MUST validate parameters:

 Verify that capabilities is not NULL.

 Verify that capabilities contains valid FsrmStorageModuleCaps values.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

The server MUST set capabilities to the Capabilities of the storage module.

3.2.4.2.47.3 Capabilities (put) (Opnum 32)

The Capabilities (put) method sets the Capabilities of the storage module and returns S_OK upon
successful completion.<74>

 [propput, id(FSRM_PROPERTY(FSRM_DISPID_STORAGE_MODULE_DEFINITION | 0x01))]
HRESULT Capabilities(

 [in] FsrmStorageModuleCaps capabilities
);

capabilities: Contains the capabilities of the storage module. For possible capabilities, see the
FsrmStorageModuleCaps (section 2.2.2.8.1.1) enumeration.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Upon receiving this message, the server MUST validate parameters:

 Verify that capabilities contains valid FsrmStorageModuleCaps (section 2.2.2.8.1.1) values. If any
capabilities is FsrmStorageModuleCaps_Unknown, the parameter MUST be considered an

invalid value.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

340 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

The server MUST set the Capabilities of the storage module to capabilities.

3.2.4.2.47.4 StorageType (get) (Opnum 33)

The StorageType (get) method retrieves the Storage type property of the storage module and

returns S_OK upon successful completion.<75>

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_STORAGE_MODULE_DEFINITION | 0x02))]
HRESULT StorageType(

 [out, retval] FsrmStorageModuleType* storageType
);

storageType: A pointer to a variable that, upon completion, contains the type of storage that the
storage module uses. For possible storage types, see the
FsrmStorageModuleType (section 2.2.2.8.1.2) enumeration.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return
value/code Description

0x80070057

E_INVALIDARG

This code is returned for the following reasons:

 The storageType parameter is NULL.

 The storageType parameter is not a valid
FsrmStorageModuleType (section 2.2.2.8.1.2) value.

Upon receiving this message, the server MUST validate the following parameters by verifying that:

 The storageType is not NULL.

 The storageType contains valid FsrmStorageModuleType values.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

The server MUST set storageType to the Storage type of the storage module.

3.2.4.2.47.5 StorageType (put) (Opnum 34)

The StorageType (put) method sets the Storage type property of the storage module and returns

S_OK upon successful completion.<76>

 [propput, id(FSRM_PROPERTY(FSRM_DISPID_STORAGE_MODULE_DEFINITION | 0x02))]
HRESULT StorageType(

 [in] FsrmStorageModuleType storageType
);

storageType: Contains the type of storage that the storage module uses. For possible storage types,
see the FsrmStorageModuleType (section 2.2.2.8.1.2) enumeration.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

The server MUST set the Storage type of the storage module to storageType or return a nonzero
error code.

3.2.4.2.47.6 UpdatesFileContent (get) (Opnum 35)

341 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

The UpdatesFileContent (get) method retrieves the Updates file content property of the storage
module and returns S_OK upon successful completion.<77>

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_STORAGE_MODULE_DEFINITION | 0x03))]
HRESULT UpdatesFileContent(

 [out, retval] VARIANT_BOOL* updatesFileContent
);

updatesFileContent: Pointer to a variable that upon completion contains the Boolean indication for

the Updates file content property of the storage module.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

The server MUST set updatesFileContent to VARIANT_TRUE if Updates file content is set to true;
otherwise updatesFileContent is set to VARIANT_FALSE.

3.2.4.2.47.7 UpdatesFileContent (put) (Opnum 36)

The UpdatesFileContent (put) method sets the Updates file content of the storage module and

returns S_OK upon successful completion.<78>

 [propput, id(FSRM_PROPERTY(FSRM_DISPID_STORAGE_MODULE_DEFINITION | 0x03))]
HRESULT UpdatesFileContent(

 [in] VARIANT_BOOL updatesFileContent
);

updatesFileContent: Determines whether the module updates the contents of the file.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

The server MUST perform the following actions or return a nonzero error code:

 If updatesFileContent is VARIANT_TRUE, set Updates file content to true; otherwise, set it to

false.

3.2.4.2.48 IFsrmFileManagementJob

The IFsrmFileManagementJob interface exposes methods for configuring file management jobs.
IFsrmFileManagementJob implements methods for the IFsrmObject interface (section
3.2.4.2.10), as well as those listed in the following table.

Each IFsrmFileManagementJob instance is associated with one Non-Persisted File Management Job
Instance (section 3.2.1.7.1.2).

Methods in RPC Opnum Order

Method Description

Commit Opnum: 11

Name (get) Opnum: 12

Name (put) Opnum: 13

NamespaceRoots (get) Opnum: 14

NamespaceRoots (put) Opnum: 15

Enabled (get) Opnum: 16

342 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Method Description

Enabled (put) Opnum: 17

OperationType (get) Opnum: 18

OperationType (put) Opnum: 19

ExpirationDirectory (get) Opnum: 20

ExpirationDirectory (put) Opnum: 21

CustomAction (get) Opnum: 22

Notifications (get) Opnum: 23

Logging (get) Opnum: 24

Logging (put) Opnum: 25

ReportEnabled (get) Opnum: 26

ReportEnabled (put) Opnum: 27

Formats (get) Opnum: 28

Formats (put) Opnum: 29

MailTo (get) Opnum: 30

MailTo (put) Opnum: 31

DaysSinceFileCreated (get) Opnum: 32

DaysSinceFileCreated (put) Opnum: 33

DaysSinceFileLastAccessed (get) Opnum: 34

DaysSinceFileLastAccessed (put) Opnum: 35

DaysSinceFileLastModified (get) Opnum: 36

DaysSinceFileLastModified (put) Opnum: 37

PropertyConditions (get) Opnum: 38

FromDate (get) Opnum: 39

FromDate (put) Opnum: 40

Task (get) Opnum: 41

Task (put) Opnum: 42

Parameters (get) Opnum: 43

Parameters (put) Opnum: 44

RunningStatus (get) Opnum: 45

LastError (get) Opnum: 46

LastReportPathWithoutExtension (get) Opnum: 47

LastRun (get) Opnum: 48

343 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Method Description

FileNamePattern (get) Opnum: 49

FileNamePattern (put) Opnum: 50

Run Opnum: 51

WaitForCompletion Opnum: 52

Cancel Opnum: 53

AddNotification Opnum: 54

DeleteNotification Opnum: 55

ModifyNotification Opnum: 56

CreateNotificationAction Opnum: 57

EnumNotificationActions Opnum: 58

CreatePropertyCondition Opnum: 59

CreateCustomAction Opnum: 60

3.2.4.2.48.1 Commit (Opnum 11)

The Commit method is implemented as one of the methods of the IFsrmObject interface (section
3.2.4.2.10). This method has the same behavior as described in section 3.2.4.2.10.5, with the

following additional behavior:

 For the following, the Property definition that has a Name with the same value as the Name on a
given Property Condition will be referred to as the Relevant Property Definition for that

Property Condition.

 If any Property Condition in Property conditions does not have a Relevant Property
Definition, the server MUST return E_INVALIDARG.

 If the Relevant Property Definition for any Property Condition in Property conditions has its

Property Definition.Deprecated member set to true, the server MUST set the File Management
Job.Deprecated to true and return E_INVALIDARG. Otherwise, it MUST set File Management
Job.Deprecated to false.

 If File Management Job.Name is NULL, the server MUST return E_INVALIDARG.

 If namespace roots is NULL, the server MUST return FSRM_E_REQD_PARAM_MISSING.

 If the expiration directory is NULL, and if the Operation type of the job is
FsrmFileManagementType_Expiration, the server MUST return FSRM_E_REQD_PARAM_MISSING.

 If custom action or Executable path returned by the IFsrmActionCommand::ExecutablePath
(get) (section 3.2.4.2.9.1) is NULL, and if the Operation type of the job is
FsrmFileManagementType_Custom, the server MUST return FSRM_E_REQD_PARAM_MISSING.

 If the Operation type of the job is not FsrmFileManagementType_Custom, and if the custom
action of the file management job is not NULL, the server MUST ignore the custom action and not
persist it with the file management job.

344 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 If FSRM Base Object.Deleted is set to true for this Non-Persisted File Management Job
Instance (section 3.2.1.7.1.2), the server MUST remove the Persisted File Management

Job (section 3.2.1.7.1.1) from the List of Persisted File Management Jobs (section 3.2.1.7)
that has the same File Management Job.Name as this Non-Persisted File Management Job

Instance, if one exists. This removal MUST occur even if other changes were made to the
configuration of the Non-Persisted File Management Job Instance. If there is no Persisted File
Management Job (section 3.2.1.7.1.1) in the List of Persisted File Management Jobs 3.2.1.7
that has the same File Management Job.Name as this Non-Persisted File Management Job
Instance (section 3.2.1.7.1.2) being deleted, the server does not perform any action and MUST
return zero. The server MUST return a nonzero error code if removal fails.

 If FSRM Base Object.Deleted is set to false for this Non-Persisted File Management Job

Instance, the server MUST update the configuration data of the Persisted File Management Job in
the List of Persisted File Management Jobs that has the same File Management Job.Name
as this Non-Persisted File Management Job Instance, if one exists, with the configuration data
from this instance, or return a nonzero error code.

 If a Persisted File Management Job does not exist with the same File Management Job.Name

and FSRM Base Object.Deleted is set to false, the server MUST perform the following actions:

 Create a new Persisted File Management Job.

 Populate its configuration with the configuration from this Non-Persisted File Management Job
Instance.

 Add the newly created Persisted File Management Job to the List of Persisted File
Management Jobs.

To update or populate the configuration data from a Non-Persisted File Management Job Instance to a
Persisted File Management Job, the server MUST assign the values of all properties listed below, of the

Non-Persisted File Management Job Instance to the corresponding properties of the Persisted File
Management Job.

 FSRM Base Object.Description

 File Management Job.Name

 Namespace roots

 Enabled/disabled

 Operation type

 Notification periods

 Notifications (Actions). For each notification in the list, the server MUST assign the values of all
properties that apply to the notification, depending on the type of action. See section 3.2.1.4 for
details on the possible action types and the set of notification properties maintained for each type
of action.

 Logging

 Report enabled

 File Management Job.Formats

 File Management Job.Mail to

 Conditions. For details of how to make changes to this property, see property definition in
3.2.1.7.1.

345 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 Days since file created

 Days since file last accessed

 Days since file last modified

 Days since file last modified

 Property conditions

 From date

 Task name

 File Management Job.Parameters

 File name pattern

 Error log

 Information log

If the Operation type is Expiration, the following property MUST also be assigned.

 Expiration directory

If the Operation type is Custom, the following properties of the Command line action type
notification object referenced by Custom action MUST also be assigned:

 Executable path

 Notification.Model.Arguments

 Notification.Model.Account

 Working directory

3.2.4.2.48.2 Name (get) (Opnum 12)

The Name (get) gets the name property of the file management job.

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_FILE_MANAGEMENT_JOB | 0x01))] HRESULT Name(
 [out, retval] BSTR* name
);

name: Pointer to a variable that upon completion contains the name of the file management job.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return
value/code Description

0x80070057

E_INVALIDARG

This code is returned for the following reasons:

 The name parameter is NULL.

 The name of the file management job is too long.

Upon receiving this message, the server MUST validate parameters:

346 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 Verify that name is not NULL.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

The server MUST set name to the File Management Job.Name of the file management job.

3.2.4.2.48.3 Name (put) (Opnum 13)

The Name (put) method sets the name property of the file management job.

 [propput, id(FSRM_PROPERTY(FSRM_DISPID_FILE_MANAGEMENT_JOB | 0x01))] HRESULT Name(
 [in] BSTR name
);

name: Contains the name for the file management job to use. The maximum length of this string

MUST be 100 characters.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return
value/code Description

0x80070057

E_INVALIDARG

This code is returned for the following reasons:

 The name parameter is empty.

 The name of the file management job exceeds the maximum length of 1000
characters.

The server MUST use name as the File Management Job.Name for the file management job or
return a nonzero error code.

3.2.4.2.48.4 NamespaceRoots (get) (Opnum 14)

The NamespaceRoots (get) method returns the namespace roots that will be scanned when the file

management job is run.

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_FILE_MANAGEMENT_JOB | 0x02))] HRESULT NamespaceRoots(
 [out, retval] SAFEARRAY(VARIANT)* namespaceRoots
);

namespaceRoots: Pointer to a variable that upon completion contains the namespace roots that
will be scanned when file management job is run.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return
value/code Description

0x80070057

E_INVALIDARG

This code is returned for the following reasons:

 The namespaceRoots parameter is NULL.

 One or more of the variants are not a string.

Upon receiving this message, the server MUST validate parameters:

347 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 Verify that namespaceRoots is not NULL.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

The server MUST set the namespaceRoots array to the namespace roots that the file management
job will scan when it is run.

3.2.4.2.48.5 NamespaceRoots (put) (Opnum 15)

The NamespaceRoots (put) method sets the namespace roots that the file management job will scan
when the file management job is run.

 [propput, id(FSRM_PROPERTY(FSRM_DISPID_FILE_MANAGEMENT_JOB | 0x02))] HRESULT NamespaceRoots(
 [in] SAFEARRAY(VARIANT) namespaceRoots
);

namespaceRoots: Contains the namespace roots that will be scanned when the file management

job is run.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return value/code Description

0x80045306

FSRM_E_INVALID_PATH

One of the namespaceRoots parameter paths violates the specification for a valid
path. A valid path cannot contain wildcards and must be local.

0x80070057

E_INVALIDARG

This code is returned for the following reasons:

 The namespaceRoots is empty.

 One or more of the variants in the namespaceRoots parameter is not a string.

Upon receiving this message, the server MUST validate parameters:

 Verify that namespaceRoots contains valid local directories.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

 The server MUST set the namespace roots of the file management job object.

3.2.4.2.48.6 Enabled (get) (Opnum 16)

The Enabled (get) method retrieves a value that indicates whether the file management job is

enabled and returns S_OK upon successful completion.

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_FILE_MANAGEMENT_JOB | 0x03))] HRESULT Enabled(
 [out, retval] VARIANT_BOOL* enabled
);

enabled: Pointer to a variable that upon completion contains the Boolean indication of whether the
file management job is enabled.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

348 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Return
value/code Description

0x80070057

E_INVALIDARG

The enabled parameter is NULL

Upon receiving this message, the server MUST validate parameters:

 Verify that enabled is not NULL.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

The server MUST return a nonzero error code or do one of the following:

 Set enabled to the value VARIANT_TRUE if Enabled/disabled is set to enabled for the file
management job.

 Set enabled to the value VARIANT_FALSE if Enabled/disabled is set to disabled for the file

management job.

3.2.4.2.48.7 Enabled (put) (Opnum 17)

The Enabled (put) method sets the enabled property of the file management job and returns S_OK

upon successful completion. The enabled property determines if the File Server Resource Manager
Protocol will allow the file management job to run.

 [propput, id(FSRM_PROPERTY(FSRM_DISPID_FILE_MANAGEMENT_JOB | 0x03))] HRESULT Enabled(
 [in] VARIANT_BOOL enabled
);

enabled: Contains a Boolean value for the enabled property for this file management job.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

The server MUST use enabled to determine if it will allow the file management job to run or return a
nonzero error code.

 If enabled is VARIANT_TRUE, set Enabled/disabled for the file management job to enabled.

 If enabled is VARIANT_FALSE, set Enabled/disabled for the file management job to disabled.

3.2.4.2.48.8 OperationType (get) (Opnum 18)

The OperationType (get) method retrieves the operation type of the file management job as defined
in the FsrmFileManagementType (section 2.2.2.9.1.1) enumeration and returns S_OK upon successful
completion.

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_FILE_MANAGEMENT_JOB | 0x04))] HRESULT OperationType(
 [out, retval] FsrmFileManagementType* operationType
);

operationType: Pointer to a variable that upon completion contains the operation type of the file
management job.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

349 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Return
value/code Description

0x80070057

E_INVALIDARG

The operationType parameter is NULL.

Upon receiving this message, the server MUST validate parameters:

 Verify that operationType is not NULL.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

The server MUST set operationType to the operation type of the file management job.

3.2.4.2.48.9 OperationType (put) (Opnum 19)

The OperationType (put) method sets the operation type property of the file management job and
returns S_OK upon successful completion.

 [propput, id(FSRM_PROPERTY(FSRM_DISPID_FILE_MANAGEMENT_JOB | 0x04))] HRESULT OperationType(
 [in] FsrmFileManagementType operationType
);

operationType: Contains the operation type for this file management job.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return
value/code Description

0x80070057

E_INVALIDARG

The operationType parameter is not a valid FsrmFileManagementType (section 2.2.2.9.1.1)
value.

Upon receiving this message, the server MUST validate parameters:

 Verify that operationType contains a valid FsrmFileManagementType (section 2.2.2.9.1.1) value.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

The server MUST set the operation type property of the file management job to the operationType.

3.2.4.2.48.10 ExpirationDirectory (get) (Opnum 20)

The ExpirationDirectory (get) method returns the expiration directory of the file management job.

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_FILE_MANAGEMENT_JOB | 0x05))]
HRESULT ExpirationDirectory(

 [out, retval] BSTR* expirationDirectory
);

expirationDirectory: Pointer to a variable that upon completion contains the expiration directory
of the file management job.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

350 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Return
value/code Description

0x80070057

E_INVALIDARG

This code is returned for the following reasons:

 The expirationDirectory parameter is NULL.

 The expirationDirectory path string is too long.

 The expirationDirectory path does not refer to a location on an NTFS volume.

 The expirationDirectory path is not writable.

Upon receiving this message, the server MUST validate parameters:

 Verify that expirationDirectory is not NULL.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

The server MUST set expirationDirectory to the expiration directory of the file management job.

3.2.4.2.48.11 ExpirationDirectory (put) (Opnum 21)

The ExpirationDirectory (put) method sets the expiration directory the file management job.

 [propput, id(FSRM_PROPERTY(FSRM_DISPID_FILE_MANAGEMENT_JOB | 0x05))]
HRESULT ExpirationDirectory(

 [in] BSTR expirationDirectory
);

expirationDirectory: Contains the expiration directory where files matching all the file
management job's conditions will be moved to when the file management job is run.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return
value/code Description

0x80070057

E_INVALIDARG

This code is returned for the following reasons:

 The expirationDirectory parameter is not a valid value; the path is not writeable.

 The expirationDirectory parameter exceeds the maximum length of 148 characters.

 The expirationDirectory path does not refer to a location on an NTFS volume.

Upon receiving this message, the server MUST validate parameters:

 Verify that expirationDirectory contains a valid local directory that the File Server Resource

Manager service can write to.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

 The server MUST set the expiration directory for the file management job to expirationDirectory.

3.2.4.2.48.12 CustomAction (get) (Opnum 22)

The CustomAction (get) method retrieves the custom action of the file management job and returns
S_OK upon successful completion.

351 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_FILE_MANAGEMENT_JOB | 0x06))] HRESULT CustomAction(
 [out, retval] IFsrmActionCommand** action
);

action: Pointer to an IFsrmActionCommand interface pointer (section 3.2.4.2.9) that upon
completion contains the custom action of the file management job.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return
value/code Description

0x80070057

E_INVALIDARG

The action parameter is NULL.

Upon receiving this message, the server MUST validate parameters:

 Verify that action is not NULL.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

The server MUST set action to the IFsrmActionCommand interface of the custom action of the file

management job.

3.2.4.2.48.13 Notifications (get) (Opnum 23)

The Notifications (get) method retrieves the notification periods for the file management job and
returns S_OK upon successful completion.

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_FILE_MANAGEMENT_JOB | 0x07))] HRESULT Notifications(
 [out, retval] SAFEARRAY(VARIANT)* notifications
);

notifications: Pointer to a SAFEARRAY that upon completion contains all the notification period
values for the file management job. A caller MUST release the SAFEARRAY received when the
caller is done with it.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return
value/code Description

0x80070057

E_INVALIDARG

The notifications parameter is NULL.

Upon receiving this message, the server MUST validate parameters:

 Verify that notifications is not NULL.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

 The server MUST create a SAFEARRAY object and populate it with all the notification periods for the
file management job.

3.2.4.2.48.14 Logging (get) (Opnum 24)

352 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

The Logging (get) method retrieves the logging flags of the file management job as defined in the
FsrmFileManagementLoggingFlags (section 2.2.2.9.1.2) enumeration and returns S_OK upon

successful completion.

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_FILE_MANAGEMENT_JOB | 0x08))] HRESULT Logging(
 [out, retval] long* loggingFlags
);

loggingFlags: Pointer to a variable that upon completion contains the logging flags of the file
management job.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return
value/code Description

0x80070057

E_INVALIDARG

The loggingFlags parameter is
NULL.

Upon receiving this message, the server MUST validate parameters:

 Verify that loggingFlags is not NULL.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

The server MUST set loggingFlags to the logging flags of the file management job.

3.2.4.2.48.15 Logging (put) (Opnum 25)

The Logging (put) method sets the logging flags property of the file management job and returns
S_OK upon successful completion.

 [propput, id(FSRM_PROPERTY(FSRM_DISPID_FILE_MANAGEMENT_JOB | 0x08))] HRESULT Logging(
 [in] long loggingFlags
);

loggingFlags: Contains the logging flags for this file management job.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return
value/code Description

0x80070057

E_INVALIDARG

The loggingFlags parameter is not a valid
FsrmFileManagementLoggingFlags (section 2.2.2.9.1.2) value.

Upon receiving this message, the server MUST validate parameters:

 Verify that loggingFlags contains valid FsrmFileManagementLoggingFlags (section 2.2.2.9.1.2)

values.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

The server MUST set File Management Job.Logging of the file management job to loggingFlags.

3.2.4.2.48.16 ReportEnabled (get) (Opnum 26)

353 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

The ReportEnabled (get) method returns an indication of whether report enabled is true for the file
management job.

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_FILE_MANAGEMENT_JOB | 0x09))] HRESULT ReportEnabled(
 [out, retval] VARIANT_BOOL* reportEnabled
);

reportEnabled: Pointer to a variable that upon completion contains the Boolean indication of whether
report enabled is true for the file management job.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return
value/code Description

0x80070057

E_INVALIDARG

The reportEnabled parameter is not a valid variant type.

Upon receiving this message, the server MUST validate parameters:

 Verify that reportEnabled is not NULL.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

 The server MUST do one of the following.

 Set reportEnabled to the value VARIANT_TRUE if report enabled is true for the file management
job.

 Set reportEnabled to the value VARIANT_FALSE if report enabled is false for the file
management job.

3.2.4.2.48.17 ReportEnabled (put) (Opnum 27)

The ReportEnabled (put) method sets the report enabled property of the file management job. The
report enabled property determines if the file management job will generate a report when it is run.

 [propput, id(FSRM_PROPERTY(FSRM_DISPID_FILE_MANAGEMENT_JOB | 0x09))] HRESULT ReportEnabled(
 [in] VARIANT_BOOL reportEnabled
);

reportEnabled: Contains a Boolean value for the report enabled property for this file management
job.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return
value/code Description

0x80070057

E_INVALIDARG

The reportEnabled parameter is not a valid variant type. Variant type is considered
invalid if it not of type VT_BOOL, either VT_TRUE or VT_FALSE.

Upon receiving this message, the server MUST validate parameters:

 Verify that reportEnabled is of type VT_BOOL and is set to either VT_TRUE or VT_FALSE.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

354 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

The server must set the report enabled property of the file management task to true if
reportEnabled equals VARIANT_TRUE and false otherwise.

3.2.4.2.48.18 Formats (get) (Opnum 28)

The Formats (get) method retrieves an array of report formats that will be created when the file
management job is run and returns S_OK upon successful completion.

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_FILE_MANAGEMENT_JOB | 0x0a))] HRESULT Formats(
 [out, retval] SAFEARRAY(VARIANT)* formats
);

formats: Pointer to a variable that upon completion contains the array of report formats that will be

created when the file management job is run.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return
value/code Description

0x80070057

E_INVALIDARG

The formats parameter is NULL.

Upon receiving this message, the server MUST validate parameters:

 Verify that formats is not NULL.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

 The server MUST set the formats array to the File Management Job.Formats list that the file
management job will create when it is run.

3.2.4.2.48.19 Formats (put) (Opnum 29)

The Formats (put) method sets the list of report formats that the file management job will create
when the file management job is run and returns S_OK upon successful completion.

 [propput, id(FSRM_PROPERTY(FSRM_DISPID_FILE_MANAGEMENT_JOB | 0x0a))] HRESULT Formats(
 [in] SAFEARRAY(VARIANT) formats
);

formats: Contains the array of report formats that will be created when the file management job is
run.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return
value/code Description

0x80070057

E_INVALIDARG

One or more values specified in the formats parameter is not a valid
FsrmReportFormat (section 2.2.1.2.14) value.

Upon receiving this message, the server MUST validate parameters:

 Verify that formats contains valid FsrmReportFormat (section 2.2.1.2.14) values. If any one of the
formats is FsrmReportFormat_Unknown, the parameter MUST be considered an invalid value.

355 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

If any validation fails, the server MUST terminate processing and return a nonzero error code.

 The server MUST set the File Management Job.Formats list on the file management job object.

3.2.4.2.48.20 MailTo (get) (Opnum 30)

The MailTo (get) method returns the mail to email addresses to which the reports will be emailed
when the file management job is successfully completed. The format of the email address needs to be
as specified in [RFC5322].

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_FILE_MANAGEMENT_JOB | 0x0b))] HRESULT MailTo(
 [out, retval] BSTR* mailTo
);

mailTo: Pointer to a variable that upon completion contains the mail to email addresses to which the
reports will be sent when the file management job is run. The string returned in mailTo MUST be
in the form of a mailTo string (section 3.2.4.2).

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return
value/code Description

0x80070057

E_INVALIDARG

This code is returned for the following reasons:

 The mailTo parameter is NULL.

 The list of addresses in the mailTo parameter is too long.

 One or more of the addresses are not formatted correctly.

Upon receiving this message, the server MUST validate parameters:

 Verify that mailTo is not NULL.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

 The server MUST set mailTo to the File Management Job.Mail to email addresses to which the
reports will be emailed when the file management job is run.

If the list of email recipients contains the special string "[ADMIN_EMAIL]", the server MUST return the
list of email recipients without resolving the "[ADMIN EMAIL]" macro.

3.2.4.2.48.21 MailTo (put) (Opnum 31)

The MailTo (put) method sets the mail to email addresses to which the reports will be emailed when

the file management job is successfully completed. The format of the email address needs to be as
specified in [RFC5322].

 [propput, id(FSRM_PROPERTY(FSRM_DISPID_FILE_MANAGEMENT_JOB | 0x0b))] HRESULT MailTo(
 [in] BSTR mailTo
);

mailTo: Contains the mail to email addresses to which the reports will be emailed when the file

management job is run. The string in mailTo MUST be in the form of a mailTo string (section
3.2.4.2). The maximum length of this string MUST be 255 characters.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

https://go.microsoft.com/fwlink/?LinkId=183003
https://go.microsoft.com/fwlink/?LinkId=183003

356 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Return
value/code Description

0x80070057

E_INVALIDARG

This code is returned for the following reasons:

 The list of addresses in the mailTo parameter exceeds the maximum length of 255
characters.

 One or more of the addresses are not formatted correctly. Each email address needs
to be as specified in [RFC5322].

 The server MUST set the File Management Job.Mail to email addresses on the file management job
object or return a nonzero error code.

If mailTo contains the string "[ADMIN EMAIL]", the server MUST store that string instead of replacing
it with the Administrator email address setting (section 3.2.1.9).

3.2.4.2.48.22 DaysSinceFileCreated (get) (Opnum 32)

The DaysSinceFileCreated (get) method returns the days since file created property for the file
management job and returns S_OK upon successful completion.

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_FILE_MANAGEMENT_JOB | 0x0c))]
HRESULT DaysSinceFileCreated(

 [out, retval] long* daysSinceCreation
);

daysSinceCreation: Pointer to a variable that upon completion contains the days since file created
property for this file management job.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return
value/code Description

0x80070057

E_INVALIDARG

The daysSinceCreation parameter is NULL.

Upon receiving this message, the server MUST validate parameters:

 Verify that daysSinceCreation is not NULL.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

The server MUST set daysSinceCreation to the days since file created of this file management job.

3.2.4.2.48.23 DaysSinceFileCreated (put) (Opnum 33)

The DaysSinceFileCreated (put) method sets the days since file created property for the file

management job and returns S_OK upon successful completion.

 [propput, id(FSRM_PROPERTY(FSRM_DISPID_FILE_MANAGEMENT_JOB | 0x0c))]
HRESULT DaysSinceFileCreated(

 [in] long daysSinceCreation
);

daysSinceCreation: Contains the days since file created property for this file management job.

357 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return
value/code Description

0x80070057

E_INVALIDARG

The value of the daysSinceCreation parameter is not greater than -2.

Upon receiving this message, the server MUST validate parameters:

 Verify that daysSinceCreation is greater than negative 2.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

 The server MUST set the days since file created property of this file management job to
daysSinceCreation.

3.2.4.2.48.24 DaysSinceFileLastAccessed (get) (Opnum 34)

The DaysSinceFileLastAccessed (get) method returns the days since file last accessed property for
the file management job.

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_FILE_MANAGEMENT_JOB | 0x0d))]
HRESULT DaysSinceFileLastAccessed(

 [out, retval] long* daysSinceAccess
);

daysSinceAccess: Pointer to a variable that upon completion contains the days since file last

accessed property for this file management job.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return
value/code Description

0x80070057

E_INVALIDARG

The daysSinceAccess parameter is NULL.

Upon receiving this message, the server MUST validate parameters:

 Verify that daysSinceAccess is not NULL.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

 The server MUST set daysSinceAccess to the days since file last accessed this file management
job.

3.2.4.2.48.25 DaysSinceFileLastAccessed (put) (Opnum 35)

The DaysSinceFileLastAccessed (put) method sets the days since file last accessed property for the
file management job.

 [propput, id(FSRM_PROPERTY(FSRM_DISPID_FILE_MANAGEMENT_JOB | 0x0d))]
HRESULT DaysSinceFileLastAccessed(

 [in] long daysSinceAccess
);

358 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

daysSinceAccess: Contains the days since file last accessed property for this file management
job.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return
value/code Description

0x80070057

E_INVALIDARG

The daysSinceAccess parameter is less than 0.

Upon receiving this message, the server MUST validate parameters:

 Verify that daysSinceAccess is not less than zero.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

The server MUST set the days since file last accessed property of this file management job to

daysSinceAccess.

3.2.4.2.48.26 DaysSinceFileLastModified (get) (Opnum 36)

The DaysSinceFileLastModified (get) method returns the days since file last modified property for

the file management job.

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_FILE_MANAGEMENT_JOB | 0x0e))]
HRESULT DaysSinceFileLastModified(

 [out, retval] long* daysSinceModify
);

daysSinceModify: Pointer to a variable that upon completion contains the days since file last
modified property for this file management job.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return

value/code Description

0x80070057

E_INVALIDARG

The daysSinceModify parameter is NULL.

Upon receiving this message, the server MUST validate parameters:

 Verify that daysSinceModify is not NULL.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

 The server MUST set daysSinceModify to the days since file last modified of this file management
job.

3.2.4.2.48.27 DaysSinceFileLastModified (put) (Opnum 37)

The DaysSinceFileLastModified (put) method sets the days since file last modified property for the
file management job.

 [propput, id(FSRM_PROPERTY(FSRM_DISPID_FILE_MANAGEMENT_JOB | 0x0e))]
HRESULT DaysSinceFileLastModified(

 [in] long daysSinceModify

359 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

);

daysSinceModify: Contains the days since file last modified property for this file management
job.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Label
value/code Description

0x80070057

E_INVALIDARG

The daysSinceModify parameter is less than 0.

Upon receiving this message, the server MUST validate parameters:

 Verify that daysSinceModify is not less than zero.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

 The server MUST set the days since file last modified property of this file management job to
daysSinceModify.

3.2.4.2.48.28 PropertyConditions (get) (Opnum 38)

The PropertyConditions (get) method retrieves all the property conditions configured for the file
management job and returns S_OK upon successful completion.

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_FILE_MANAGEMENT_JOB | 0x0f))]
HRESULT PropertyConditions(

 [out, retval] IFsrmCollection** propertyConditions
);

propertyConditions: Pointer to an IFsrmCollection interface pointer (section 3.2.4.2.1) that upon
completion contains pointers to the property conditions configured for the file management job. A

caller MUST release the collection received when the caller is done with it.

Return Values: The method MUST return zero on success or a nonzero error code on failure.

Return
value/code Description

0x80070057

E_INVALIDARG

The propertyConditions parameter is NULL.

Upon receiving this message, the server MUST validate parameters:

 Verify that propertyCondtions is not NULL.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

The server MUST populate propertyCondtions with the IFsrmPropertyCondition interface pointer
(section 3.2.4.2.49) of each property condition configured for the file management job.

If there are no property conditions configured for the file management job, the server MUST return an
IFsrmCollection object that contains zero objects.

3.2.4.2.48.29 FromDate (get) (Opnum 39)

360 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

The FromDate (get) method returns the from date property for the file management job.

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_FILE_MANAGEMENT_JOB | 0x10))] HRESULT FromDate(
 [out, retval] DATE* fromDate
);

fromDate: Pointer to a variable that upon completion contains the from date property for this file
management job.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return
value/code Description

0x80070057

E_INVALIDARG

This code is returned for the following reasons:

 The fromDate parameter is NULL.

 The date is in an invalid format.

Upon receiving this message, the server MUST validate parameters:

 Verify that fromDate is not NULL.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

The server MUST set fromDate to the from date property of this file management job.

3.2.4.2.48.30 FromDate (put) (Opnum 40)

The FromDate (put) method sets the from date property for the file management job.

 [propput, id(FSRM_PROPERTY(FSRM_DISPID_FILE_MANAGEMENT_JOB | 0x10))] HRESULT FromDate(
 [in] DATE fromDate
);

fromDate: Contains the from date property for this file management job.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return
value/code Description

0x80070057

E_INVALIDARG

The fromDate parameter is not a valid value; it is in an invalid date format.

Upon receiving this message, the server MUST validate parameters:

 Verify that fromDate is a valid date or the value FsrmDateNotSpecified.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

The server MUST set the from date property of this file management job to fromDate.

3.2.4.2.48.31 Task (get) (Opnum 41)

The Task (get) method returns the task name that is associated with the file management job.

361 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_FILE_MANAGEMENT_JOB | 0x11))] HRESULT Task(
 [out, retval] BSTR* taskName
);

taskName: Pointer to a variable that upon completion contains the task name that is associated with
the file management job.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return
value/code Description

0x80070057

E_INVALIDARG

The taskName parameter is NULL.

Upon receiving this message, the server MUST validate parameters:

 Verify that taskName is not NULL.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

The server MUST set taskName to the task name associated with the file management job.

3.2.4.2.48.32 Task (put) (Opnum 42)

The Task (put) method sets the task name that is associated with the file management job.

 [propput, id(FSRM_PROPERTY(FSRM_DISPID_FILE_MANAGEMENT_JOB | 0x11))] HRESULT Task(
 [in] BSTR taskName
);

taskName: Contains the task name to associate with the file management job. The maximum length

of this string MUST be 230 characters.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return
value/code Description

0x80070057

E_INVALIDARG

The taskName parameter is not a valid value; it cannot contain the following characters:
[^,\'/"|]+.

The server MUST set the task name property on the file management job to taskName or return a
nonzero error code.

3.2.4.2.48.33 Parameters (get) (Opnum 43)

The Parameters (get) (Opnum 43) method retrieves an array of additional parameters for the file

management job and returns S_OK upon successful completion.

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_FILE_MANAGEMENT_JOB | 0x12))] HRESULT Parameters(
 [out, retval] SAFEARRAY(VARIANT)* parameters
);

parameters: Pointer to a variable that upon completion contains the array of additional parameters
for the file management job.

362 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return
value/code Description

0x80070057

E_INVALIDARG

The parameters parameter is NULL.

Upon receiving this message, the server MUST validate parameters:

 Verify that parameters is not NULL.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

The server MUST set the parameters array to the list of File Management Job.Parameters for the
file management job. See parameter strings in section 3.2.4.2 for more details on the format of the
elements of the array retrieved.

3.2.4.2.48.34 Parameters (put) (Opnum 44)

The Parameters (put) (Opnum 44) method returns an array of additional parameters for the file
management job and returns S_OK upon successful completion.

 [propput, id(FSRM_PROPERTY(FSRM_DISPID_FILE_MANAGEMENT_JOB | 0x12))] HRESULT Parameters(
 [in] SAFEARRAY(VARIANT) parameters
);

parameters: Contains the array of additional parameters for the file management job.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return
value/code Description

0x80070057

E_INVALIDARG

One or more of the values specified in the parameters parameter is not of the form
"parameter=value", where "parameter" and "value" are placeholders for text supplied by
the client.

Upon receiving this message, the server MUST validate parameters:

 Verify that the elements of parameters have the correct format. (See parameter strings in
section 3.2.4.2 for more details on the format of the elements of the parameters array.) If they
do not, return E_INVALIDARG.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

The server MUST set the list of File Management Job.Parameters for the file management job to
parameters.

3.2.4.2.48.35 RunningStatus (get) (Opnum 45)

The RunningStatus (get) method returns the current running status of the file management job as
defined in the FsrmReportRunningStatus (section 2.2.1.2.13) enumeration and returns S_OK upon
successful completion.

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_FILE_MANAGEMENT_JOB | 0x13))] HRESULT RunningStatus(
 [out, retval] FsrmReportRunningStatus* runningStatus

363 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

);

runningStatus: A pointer to a variable that upon completion contains the current running status of
the file management job.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return
value/code Description

0x80070057

E_INVALIDARG

The runningStatus parameter is NULL.

Upon receiving this message, the server MUST validate the parameters:

 Verify that runningStatus is not NULL.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

The parent instance of the Running Job in the Running File Management Job Queue whose
Name is equivalent to the Name of this instance will be referred to as the associated file

management task.

The server MUST do one of the following or return a nonzero error code:

 Set runningStatus to FsrmReportRunningStatus_Running if there is an associated file
management task for the file management job.

 Set runningStatus to the file management job's current running status if there is no associated
file management task.

3.2.4.2.48.36 LastError (get) (Opnum 46)

The LastError (get) method retrieves the last error, if any, from when the file management job was
previously run and returns S_OK upon successful completion. If no error occurred on the previous file
management job run, the returned string will be empty and LastError (get) MUST return S_FALSE.

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_FILE_MANAGEMENT_JOB | 0x14))] HRESULT LastError(
 [out, retval] BSTR* lastError
);

lastError: Pointer to a variable that upon completion contains the last error, if any, from when the
file management job was previously generated.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return
value/code Description

0x80070057

E_INVALIDARG

The lastError parameter is NULL.

Upon receiving this message, the server MUST validate parameters:

 Verify that lastError is not NULL.

364 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 Set lastError to the Last error of the file management job object instance or return a nonzero
error code.

 If lastError is an empty string, the server MUST return S_FALSE, otherwise it MUST return S_OK.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

3.2.4.2.48.37 LastReportPathWithoutExtension (get) (Opnum 47)

The LastReportPathWithoutExtension (get) method retrieves the last report directory without
extension where the generated report(s) was (were) stored when the file management job was
previously run and returns S_OK upon successful completion.

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_FILE_MANAGEMENT_JOB | 0x15))]
HRESULT LastReportPathWithoutExtension(

 [out, retval] BSTR* path
);

path: Pointer to a variable that upon completion contains the last report directory without

extension where the generated report(s) was (were) stored when the file management job was
previously run.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return value/code Description

0x80070057

E_INVALIDARG

The path parameter is NULL.

Upon receiving this message, the server MUST validate parameters:

 Verify that path is not NULL.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

The server MUST set path to the file management task object's Last report directory without

extension.

3.2.4.2.48.38 LastRun (get) (Opnum 48)

The LastRun (get) method retrieves the last run time corresponding to the time the file management
job was previously run and returns S_OK upon successful completion.

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_FILE_MANAGEMENT_JOB | 0x16))] HRESULT LastRun(
 [out, retval] DATE* lastRun
);

lastRun: Pointer to a variable that upon completion contains the last run time the file management

job was previously run.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return

value/code Description

0x80070057

E_INVALIDARG

The lastRun parameter is NULL.

365 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Upon receiving this message, the server MUST validate parameters:

 Verify that lastRun is not NULL.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

The server MUST set lastRun to the file management task object's Last run time.

3.2.4.2.48.39 FileNamePattern (get) (Opnum 49)

The FileNamePattern (get) (Opnum 49) method retrieves the file name pattern for files that will be
included when the file management job is run and returns S_OK upon successful completion.

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_FILE_MANAGEMENT_JOB | 0x17))] HRESULT FileNamePattern(
 [out, retval] BSTR* fileNamePattern
);

fileNamePattern: Pointer to a variable that upon completion contains the file name pattern, if any,
for files that will be included when the file management job is run.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return
value/code Description

0x80070057

E_INVALIDARG

This code is returned for the following reasons:

 The fileNamePattern parameter is NULL.

 The fileNamePattern parameter is not a valid pattern. The pattern cannot contain the
following characters: question mark (?), slash mark (/), backslash (\), greater than
sign (>), less than sign (<), vertical bar (|), or colon (:).

Upon receiving this message, the server MUST validate parameters:

 Verify that fileNamePattern is not NULL.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

The server MUST either set fileNamePattern to the file management job's file name pattern.

3.2.4.2.48.40 FileNamePattern (put) (Opnum 50)

The FileNamePattern (put) (Opnum 50) method sets the file name pattern for files that will be
included when the file management job is run and returns S_OK upon successful completion.

 [propput, id(FSRM_PROPERTY(FSRM_DISPID_FILE_MANAGEMENT_JOB | 0x17))] HRESULT FileNamePattern(
 [in] BSTR* fileNamePattern
);

fileNamePattern: Contains the file name pattern of files that the file management job will include
when it is run. The pattern MUST NOT contain illegal pattern characters (section 3.2.4.2).

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

366 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Return
value/code Description

0x80070057

E_INVALIDARG

The fileNamePattern parameter is not a valid pattern. The pattern cannot contain the
following characters: question mark (?), slash mark (/), backslash (\), greater than sign
(>), less than sign (<), vertical bar (|), or colon (:).

The server MUST either set the file management job's file name pattern to fileNamePattern or
return a nonzero error code.

3.2.4.2.48.41 Run (Opnum 51)

The Run method starts the running file management task associated with the file management job.

 [id(FSRM_DISPID_FILE_MANAGEMENT_JOB | 0x01)] HRESULT Run(
 [in] FsrmReportGenerationContext context
);

context: Contains the value of the report generation context in which the associated running file
management task will run.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return value/code Description

0x80045333

FSRM_E_REPORT_JOB_ALREADY_RUNNING

The file management job is already running.

0x80070057

E_INVALIDARG

The context parameter is not valid.

The server MUST perform the following actions in sequence or return a nonzero error code:

 If this file management job does not have its Enabled/disabled property set to enabled, the
server MUST return zero.

 For the following, the Property definition that has a Name with the same value as the Name on a

given Property Condition will be referred to as the Relevant Property Definition for that
Property Condition.

 If any Property Condition in Property conditions does not have a Relevant Property
Definition, the server MUST return E_INVALIDARG.

 If the Relevant Property Definition for any Property Condition in Property conditions has its
Property Definition.Deprecated member set to true, the server MUST set File Management
Job.Deprecated to true and return E_INVALIDARG. Otherwise, it MUST set File Management

Job.Deprecated to false.

 If there is already a Running Job in the Running File Management Job Queue whose
Running Job.Parent instance has the same File Management Job.Name as this instance's File
Management Job.Name, the server MUST return FSRM_E_REPORT_JOB_ALREADY_RUNNING.

 Create a Running Job and set its properties as follows:

 Running Job.Parent: Reference to this instance.

367 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 Reports directory: File system path to the output directory associated with context. See
section 3.2.1.5.3 for details on selecting the output directory for different generation

contexts.

 Running Job.Cancel: false.

 Queue the Running Job to Running File Management Job Queue.

 Set the Running status of this instance to FsrmReportRunningStatus_Queued.

See section 3.2.1.12.1 for more information about how the server monitors running report tasks.

3.2.4.2.48.42 WaitForCompletion (Opnum 52)

The WaitForCompletion method blocks the caller for the specified time period or until the associated
running file management task, if any, completes, whichever occurs first.

 [id(FSRM_DISPID_FILE_MANAGEMENT_JOB | 0x02)] HRESULT WaitForCompletion(
 [in] long waitSeconds,
 [out, retval] VARIANT_BOOL* completed
);

waitSeconds: Contains the maximum number of seconds the call will block before returning.

completed: Pointer to a VARIANT_BOOL variable that upon completion contains an indication of
whether the associated running file management task has completed.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return
value/code Description

0x80070057

E_INVALIDARG

The waitSeconds parameter is not a valid value; the number of seconds to wait must be in
the range of -1 through 2,147,483.

Upon receiving this message, the server MUST validate parameters:

 Verify that waitSeconds is greater than "-2".

If any validation fails, the server MUST terminate processing and return a nonzero error code.

The Running Job.Parent in the Running File Management Job Queue whose Name is equivalent
to the Name of this instance will be referred to as the associated file management task.

The server MUST monitor the associated file management task's Running Status for a maximum
of waitSeconds if waitSeconds is greater than -1, forever if waitSeconds equals -1, or until the
associated file management task's Running Status is FsrmReportRunningStatus_NotRunning,
whichever is sooner, or the server MUST return a nonzero error code.

 If there is no associated file management task, the server SHOULD set completed to

VARIANT_TRUE and return zero.

 If the associated file management task's Running Status changes to
FsrmReportRunningStatus_NotRunning before waitSeconds, the server MUST set completed
to VARIANT_TRUE.

 If the associated file management task's Running Status does not change to
FsrmReportRunningStatus_NotRunning before waitSeconds, the server MUST set completed

to VARIANT_FALSE.

368 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

To implement the timeout behaviour driven by the waitSeconds parameter, a compliant
implementation of this routine can simply poll for the task completion for a maximum period of time,

or use an internal timer, or mix polling with a timer-driven architecture.

3.2.4.2.48.43 Cancel (Opnum 53)

The Cancel method stops the associated running file management task, if any, from continuing and
returns S_OK upon successful completion.

 [id(FSRM_DISPID_FILE_MANAGEMENT_JOB | 0x03)] HRESULT Cancel();

This method has no parameters.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

The Running Job whose Running Job.Parent in the Running File Management Job Queue
whose Name is equivalent to the Name of this instance will be referred to as the associated running

job.

The server MUST set the Running Job.Cancel property of the associated running job to true or
return a nonzero error code.

If the Running Job.Parent of the associated running job has a Running status of
FsrmReportRunningStatus_NotRunning when the call is made, the method MUST be treated as
successful and return zero.

3.2.4.2.48.44 AddNotification (Opnum 54)

The AddNotification method adds a notification period to the file management job's list of
notification periods.

 [id(FSRM_DISPID_FILE_MANAGEMENT_JOB | 0x04)] HRESULT AddNotification(
 [in] long days
);

days: Contains the value of the notification period to add to the file management job.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return value/code Description

0x80045303

FSRM_E_ALREADY_EXISTS

The object already exists.

0x80070057

E_INVALIDARG

The days parameter is not a valid value; it is less than zero.

Upon receiving this message, the server MUST validate parameters:

 Verify that the days parameter is greater than or equal to 0.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

The server MUST perform the following steps in sequence:

 If the file management job's list of notification periods contains a Notification period whose

Notification Interval is equivalent to days, the server MUST return FSRM_E_ALREADY_EXISTS.

369 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 Create a new Notification period object, and set its members as follows:

 Notification Interval: Set to the value of days.

 Notification period.Notifications: Set to an empty list.

 Add the new Notification period to the file management job's list of notification periods.

3.2.4.2.48.45 DeleteNotification (Opnum 55)

The DeleteNotification method deletes a notification period from the file management job's list of
notification periods.

 [id(FSRM_DISPID_FILE_MANAGEMENT_JOB | 0x05)] HRESULT DeleteNotification(
 [in] long days
);

days: Contains the value of the notification period to delete from the file management job.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return value/code Description

0x80045301

FSRM_E_NOT_FOUND

The specified notification could not be found.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

The server MUST perform the following steps in sequence or return a nonzero error code as follows:

 Find the Notification period, if any, in the file management job's list of notification periods
whose Notification interval is equivalent to days. For the remainder of these steps, this will be

referred to as the affected notification period.

 If there is no affected notification period, the server MUST return FSRM_E_NOT_FOUND.

 Remove the affected notification period from the file management job's list of notification
periods.

3.2.4.2.48.46 ModifyNotification (Opnum 56)

The ModifyNotification method modifies the value of an existing notification period in the file

management job's list of notification periods.

 [id(FSRM_DISPID_FILE_MANAGEMENT_JOB | 0x06)] HRESULT ModifyNotification(
 [in] long days,
 [in] long newDays
);

days: Contains the value of the notification period to modify.

newDays: Contains the new value of the notification period.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

370 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Return value/code Description

0x80045301

FSRM_E_ NOT_FOUND

The specified notification could not be found.

0x80045303

FSRM_E_ALREADY_EXISTS

The object already exists.

0x80070057

E_INVALIDARG

This code is returned for the following reasons:

 The days parameter is not a valid value; it is less than zero.

 The newDays parameter is not a valid value; it is less than zero.

Upon receiving this message, the server MUST validate parameters:

 Verify that days is greater than or equal to 0.

 Verify that newDays is greater than or equal to 0.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

The server MUST perform the following steps in sequence or return a nonzero error code as follows:

 Find the Notification period, if any, in the file management job's list of notification periods

whose Notification Interval is equivalent to days. For the remainder of these steps, this will be
referred to as the affected notification period.

 If there is no affected notification period, the server MUST return FSRM_E_NOT_FOUND.

 If the file management job's list of notification periods contains a Notification period whose
Notification Interval is equivalent to newDays, the server MUST return
FSRM_E_ALREADY_EXISTS.

 Set the affected notification period's Notification interval to newDays.

3.2.4.2.48.47 CreateNotificationAction (Opnum 57)

The CreateNotificationAction method creates a notification and associates it with the specified
notification period.

 [id(FSRM_DISPID_FILE_MANAGEMENT_JOB | 0x07)] HRESULT CreateNotificationAction(
 [in] long days,
 [in] FsrmActionType actionType,
 [out, retval] IFsrmAction** action
);

days: The days parameter contains the notification period for which to create the action.

actionType: The actionType parameter contains the type of notification being created.

action: Pointer to an IFsrmAction interface pointer (section 3.2.4.2.4) that upon completion points
to the newly created action. A caller MUST release the SAFEARRAY received when the caller is
done with it.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

371 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Return value/code Description

0x80045301

FSRM_E_NOT_FOUND

The specified notification could not be found.

0x80045303

FSRM_E_
ALREADY_EXISTS

The object already exists.

0x80070057

E_INVALIDARG

This code is returned for the following reasons:

 The days parameter is not a valid value; it is less than zero.

 The actionType parameter is not a valid value. If actionType is
FsrmActionType_Unknown, the parameter MUST be considered an invalid
value.

 The action parameter is NULL.

Upon receiving this message, the server MUST validate parameters:

 Verify that days parameter is greater than or equal to 0.

 Verify that actionType is a valid FsrmActionType (section 2.2.1.2.9) value. If actionType is
FsrmActionType_Unknown or FsrmActionType_Report, the parameter MUST be considered
an invalid value.

 Verify that action is not NULL.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

The server MUST perform the following steps in sequence or return a nonzero error code as follows:

 Find the Notification period, if any, in the file management job's list of notification periods
whose Notification Interval is equivalent to days. For the remainder of these steps, this will be

referred to as the affected notification period.

 If there is no affected notification period, the server MUST return FSRM_E_NOT_FOUND.

 If there is an affected notification period, and one of its Notification period.Notifications has an
Event type that is equivalent to actionType, the server MUST return FSRM_E_AlREADY_EXISTS.

 Create a new notification object and set its parameters as follows:

 Set Notification.Id to a GUID.

 Set Run limit interval to -1.

 Set Action type to actionType.

 Set Last run time to a specific value in the past.<79> This value MUST be the same for all

new notifications. Any value subsequently assigned to the property that is on or before this
specific value MUST be interpreted by the server as "never".

 If actionType is FsrmActionType_EventLog, the following parameters MUST be set:

 Set Event type to Information.

 Set Message text to an empty string.

 If actionType is FsrmActionType_Email:

372 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 Set Mail from to the Mail from email address.

 Set Mail subject to an empty string.

 Set Mail reply to an empty string.

 Set Mail cc to an empty string.

 Set Mail bcc to an empty string.

 Set Message text to an empty string.

 If actionType is FsrmActionType_Command:

 Set Executable path to an empty string.

 Set Notification.Model.Arguments to an empty string.

 Set Notification.Model.Account to a LocalService.

 Set Working directory to an empty string.

 Set Monitor command to false.

 Set Kill time-out to -1.

 Set Log result to false.

 Add the new Notification object to the affected notification period's Notification
period.Notifications.

 Assign the new Notification object to the action parameter.

3.2.4.2.48.48 EnumNotificationActions (Opnum 58)

The EnumNotificationActions method enumerates all the notifications for the specified notification

period.

 [id(FSRM_DISPID_FILE_MANAGEMENT_JOB | 0x08)] HRESULT EnumNotificationActions(
 [in] long days,
 [out, retval] IFsrmCollection** actions
);

days: The days parameter contains the notification period for which notifications are to be
enumerated.

actions: Pointer to an IFsrmCollection interface pointer (section 3.2.4.2.1) that upon completion
contains IFsrmAction interface pointers of all the notifications for the specified notification
period. A caller MUST release the collection received when the caller is done with it. To get the
specific action interface for the action, the caller MUST call QueryInterface for the interface
corresponding to the action's action type.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return value/code Description

0x80045301

FSRM_E_NOT_FOUND

The specified notification could not be found.

0x80070057 The actions parameter is NULL.

373 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Return value/code Description

E_INVALIDARG

Upon receiving this message, the server MUST validate parameters:

 Verify that days is greater than or equal to 0.

 Verify that actions is not NULL.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

The server MUST perform the following steps in sequence or return a nonzero error code as follows:

 Find the Notification period, if any, in the file management job's list of notification periods
whose Notification Interval is equivalent to days. For the remainder of these steps, this will be
referred to as the affected notification period.

 If there is no affected notification period, the server MUST return FSRM_E_NOT_FOUND.

 The server MUST create a new IFsrmCollection object and populate it with any notifications
from the affected notification period's Notification period.Notifications property.

 The server MUST assign the new IFsrmCollection object to actions.

3.2.4.2.48.49 CreatePropertyCondition (Opnum 59)

The CreatePropertyCondition method creates a property condition associated with the file
management job.

 [id(FSRM_DISPID_FILE_MANAGEMENT_JOB_MANAGER | 0x09)] HRESULT CreatePropertyCondition(
 [in] BSTR name,
 [out, retval] IFsrmPropertyCondition** propertyCondition
);

name: Contains the name of the property condition to create.

propertyCondition: Pointer to an IFsrmPropertyCondition interface pointer (section 3.2.4.2.49)

that upon completion points to the newly created property condition. A caller MUST release the
SAFEARRAY received when it is done with it.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return value/code Description

0x80045301

FSRM_E_NOT_FOUND

A property definition with the specified name does not exist.

0x80045303

FSRM_E_
ALREADY_EXISTS

The object already exists.

0x80070057

E_ INVALIDARG

This code is returned for the following reasons:

 The propertyCondition parameter is NULL.

 The name parameter does not conform to the requirements for a property
definitions name.

374 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Upon receiving this message, the server MUST validate parameters:

 Verify that propertyCondition is not NULL.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

The server must perform the following steps:

 Create a new property condition object and set its parameters as follows:

 Set Property Condition.Name to name.

 Set Property Condition.Type to Exists.

 Set Property Condition.Value to an empty string.

 Set Property Condition.Parent to this file management job instance.

 Add the new property condition object to the file management job's Property conditions.

3.2.4.2.48.50 CreateCustomAction (Opnum 60)

The CreateCustomAction method creates a command line action type notification for the file
management job's custom action and returns S_OK upon successful completion.

 [id(FSRM_DISPID_FILE_MANAGEMENT_JOB_MANAGER | 0x0a)] HRESULT CreateCustomAction(
 [out, retval] IFsrmActionCommand** customAction
);

customAction: Pointer to an IFsrmActionCommand interface pointer (section 3.2.4.2.9) that upon
completion points to the newly created notification. A caller MUST release the
IFsrmActionCommand received when the caller is done with it.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return value/code Description

0x80045303

FSMR_E_ALREADY_EXISTS

A custom action already exists.

0x80070057

E_INVALIDARG

The customAction parameter is NULL.

Upon receiving this message, the server MUST validate parameters:

 Verify that customAction is not NULL.

The server MUST create a new command line action type notification and set the file management
job's custom action element to the new notification, regardless of the operation type of the file

management job or return a nonzero error code. If a custom action already exists for the file
management job, the server MUST return FSRM_E_ALREADY_EXISTS.

3.2.4.2.49 IFsrmPropertyCondition

The IFsrmPropertyCondition interface inherits the IDispatch interface as specified in [MS-OAUT].
Method opnum field values start with 7. Opnum values 0 through 2 represent the
IUnknown::QueryInterface, IUnknown::AddRef, and IUnknown::Release methods as specified in
[MS-DCOM], while opnum values 3 through 6 represent the IDispatch::GetTypeInfoCount,

%5bMS-OAUT%5d.pdf#Section_bbb05720f72445c78d17f83c3d1a3961
%5bMS-DCOM%5d.pdf#Section_4a893f3dbd2948cd9f43d9777a4415b0

375 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

IDispatch::GetTypeInfo, IDispatch::GetIDsOfNames, and IDispatch::Invoke methods as specified in
[MS-OAUT].

 To receive incoming remote calls for this interface, the server MUST implement a DCOM object using
the UUID {326af66f-2ac0-4f68-bf8c-4759f054fa29}.

Methods in RPC Opnum Order

Method Description

Name (get) Opnum: 7

Name (put) Opnum: 8

Type (get) Opnum: 9

Type (put) Opnum: 10

Value (get) Opnum: 11

Value (put) Opnum: 12

Delete Opnum: 13

3.2.4.2.49.1 Name (get) (Opnum 7)

The Name (get) method gets the name property used by the property condition.

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_PROPERTY_CONDITION | 0x01))] HRESULT Name(
 [out, retval] BSTR* name
);

name: Pointer to a variable that upon completion contains the name of the property definition used
by the property condition.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return value/code Description

0x80045301

FSRM_E_NOT_FOUND

A name is not an existing property definition.

0x80070057

E_INVALIDARG

The name parameter is NULL.

Upon receiving this message, the server MUST validate parameters:

 Verify that name is not NULL.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

The server MUST set name to the Property Condition.Name of the property definition used by the
property condition.

3.2.4.2.49.2 Name (put) (Opnum 8)

The Name (put) method sets the name property of the property condition.

376 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 [propput, id(FSRM_PROPERTY(FSRM_DISPID_PROPERTY_CONDITION | 0x01))] HRESULT Name(
 [in] BSTR name
);

name: Contains the name of the property definition for the property condition to use.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return value/code Description

0x80045301

FSRM_E_NOT_FOUND

A name is not an existing property definition.

0x80070057

E_INVALIDARG

The name parameter is not a valid value for an existing property definition.

Upon receiving this message, the server MUST validate parameters:

 Verify that name is the name of an existing property definition.

 For the following, the Property definition that has a Name with the same value as the Name will

be referred to as the Relevant Property Definition:

 If there is no Relevant Property Definition, the server MUST set the File Management
Job.Deprecated member of Property Condition.Parent to true.

 If the Relevant Property Definition has its Property Definition.Deprecated member set to
true, the server MUST set the File Management Job.Deprecated member of Property
Condition.Parent to true.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

The server MUST use name as the Property Condition.Name property for the property condition.

3.2.4.2.49.3 Type (get) (Opnum 9)

The Type (get) method gets the type of comparison used by the property condition. The type is
specified using a FsrmPropertyConditionType (section 2.2.2.10.1.1).

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_PROPERTY_CONDITION | 0x02))] HRESULT Type(
 [out, retval] FsrmPropertyConditionType* type
);

type: Pointer to a variable that upon completion contains the type of comparison used by the
property condition.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return
value/code Description

0x80070057

E_INVALIDARG

The type parameter is NULL.

Upon receiving this message, the server MUST validate parameters:

 Verify that type is not NULL.

377 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

If any validation fails, the server MUST terminate processing and return a nonzero error code.

The server MUST set type to the Property Condition.Type of comparison used by the property

condition.

3.2.4.2.49.4 Type (put) (Opnum 10)

The Type (put) method sets the type of comparison used by the property condition.

 [propput, id(FSRM_PROPERTY(FSRM_DISPID_PROPERTY_CONDITION|0x02))] HRESULT Type(
 [in] FsrmPropertyConditionType type
);

type: Contains the type of comparison for the property condition to use.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return
value/code Description

0x80070057

E_INVALIDARG

The type is invalid for a property value.

Upon receiving this message, the server MUST validate parameters:

 Verify that type contains a valid FsrmPropertyConditionType (section 2.2.2.10.1.1) value.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

The server MUST use type as the Property Condition.Type of comparison for the property condition.

3.2.4.2.49.5 Value (get) (Opnum 11)

The Value (get) method gets the value used by the property condition and returns S_OK upon
successful completion.

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_PROPERTY_CONDITION | 0x03))] HRESULT Value(
 [out, retval] BSTR* value
);

value: Pointer to a variable that upon completion contains the value used by the property condition.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return
value/code Description

0x80070057

E_INVALIDARG

The value parameter is NULL.

Upon receiving this message, the server MUST validate parameters:

 Verify that value is not NULL.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

The server MUST set value to the value used by the Property Condition.Value.

378 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

3.2.4.2.49.6 Value (put) (Opnum 12)

The Value (put) method sets the value used by the property condition and returns S_OK upon
successful completion.

 [propput, id(FSRM_PROPERTY(FSRM_DISPID_PROPERTY_CONDITION | 0x03))] HRESULT Value(
 [in] BSTR value
);

value: Contains the value for the property condition to use for comparison.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

The server MUST use value as the value for the Property Condition.Value or return a nonzero error

code.

3.2.4.2.49.7 Delete (Opnum 13)

The Delete method deletes the property condition from the file management job's list of property
condition and returns S_OK upon successful completion.

 [id(FSRM_DISPID_PROPERTY_CONDITION | 0x01)] HRESULT Delete();

This method has no parameters.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

The server MUST remove the first property condition from the Property Conditions in the file
management job referenced by Property Condition.Parent that matches this Property Condition's
PropertyCondition.Name, Property Condition.value, and Property Condition.Type or return a

nonzero error code.

3.2.4.2.50 IFsrmFileManagementJobManager

The IFsrmFileManagementJobManager interface inherits the IDispatch interface as specified in [MS-
OAUT]. Method opnum field values start with 7. Opnum values 0 through 2 represent the
IUnknown::QueryInterface, IUnknown::AddRef, and IUnknown::Release methods, while opnum
values 3 through 6 represent the IDispatch::GetTypeInfoCount, IDispatch::GetTypeInfo,

IDispatch::GetIDsOfNames, and IDispatch::Invoke methods as specified in [MS-OAUT]. The version
for this interface is 1.0.

 To receive incoming remote calls for this interface, the server MUST implement a DCOM object using
the UUID {ee321ecb-d95e-48e9-907c-c7685a013235}.

Methods in RPC Opnum Order

Method Description

EnumFileManagementJobs Opnum: 7

CreateFileManagementJob Opnum: 8

GetFileManagementJob Opnum: 9

3.2.4.2.50.1 EnumFileManagementJobs (Opnum 7)

%5bMS-OAUT%5d.pdf#Section_bbb05720f72445c78d17f83c3d1a3961
%5bMS-OAUT%5d.pdf#Section_bbb05720f72445c78d17f83c3d1a3961

379 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

The EnumFileManagementJobs method returns all the fileManagementJobs from the List of Persisted
File Management Jobs (section 3.2.1.7) on the server.

 [id(FSRM_DISPID_FILE_MANAGEMENT_JOB_MANAGER | 0x1)] HRESULT EnumFileManagementJobs(
 [in, defaultvalue(FsrmEnumOptions_None)] FsrmEnumOptions options,
 [out, retval] IFsrmCollection** fileManagementJobs

);

options: Contains the FsrmEnumOptions (section 2.2.1.2.5) to use when enumerating the

fileManagementJobs.

fileManagementJobs: Pointer to an IFsrmCollection interface pointer (section 3.2.4.2.1) that upon
completion contains pointers to every file management job on the server. A caller MUST release
the collection received when the caller is done with it.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return value/code Description

0x80070057

E_INVALIDARG

This code is returned for the following reasons:

 The fileManagementJobs parameter is NULL.

0x80045311

FSRM_E_NOT_SUPPORTED

The options parameter does not contain a valid FsrmEnumOptions (section
2.2.1.2.5) value.

Upon receiving this message, the server MUST validate parameters:

 If fileManagementJobs is NULL, the server MUST return E_INVALIDARG.

 If options contains FsrmEnumOptions_Asynchronous or any value other than what is specified
in section 2.2.1.2.5, the server MUST return FSRM_E_NOT_SUPPORTED.

Upon successful validation of parameters, the server MUST perform the following actions or return a
nonzero error code:

 Create a new List of Non-Persisted File Management Jobs Instance (section 3.2.1.7).

 Populate it with Non-Persisted File Management Job Instances (section 3.2.1.7.1.2) copied from
the Persisted File Management Jobs (section 3.2.1.7.1.1) in the List of Persisted File
Management Jobs.

 If options does not contain FsrmEnumOptions_IncludeClusterNodes, remove any Non-Persisted
File Management Job Instances from this List of Non-Persisted File Management Jobs Instances
where the Non-Persisted File Management Job Instances Namespace roots include a path

located on a volume not present on this machine, that is, the path is not prefixed by any volume
in Volume List.

 Populate fileManagementJobs with the IFsrmFileManagementJob interface pointer (section

3.2.4.2.48) of every Non-Persisted File Management Job Instance in this List of Non-Persisted
File Management Jobs Instance.

3.2.4.2.50.2 CreateFileManagementJob (Opnum 8)

The CreateFileManagementJob method creates a blank Non-Persisted File Management Job
Instance (section 3.2.1.7.1.2) and returns S_OK upon successful completion.

 [id(FSRM_DISPID_FILE_MANAGEMENT_JOB_MANAGER | 0x2)] HRESULT CreateFileManagementJob(

380 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 [out, retval] IFsrmFileManagementJob** fileManagementJob
);

fileManagementJob: Pointer to an IFsrmFileManagementJob interface pointer (section
3.2.4.2.48) that upon completion points to a blank fileManagementJob. A caller MUST release the
fileManagementJob received when the caller is done with it. To have the fileManagementJob added
to the server's List of Persisted File Management Jobs (section 3.2.1.7), the client MUST call

Commit (section 3.2.4.2.48.1).

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return
value/code Description

0x80070057

E_INVALIDARG

The fileManagementJob parameter is NULL.

Upon receiving this message, the server MUST validate parameters:

 Verify that fileManagementJob is not NULL.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

Upon successful validation of parameters, the server MUST perform the following actions.

 Create a new Non-Persisted File Management Job Instance.

 Set FSRM Base Object.Id to a GUID.

 Set File Management Job.Name to an empty string.

 Set Namespace roots to an empty list.

 Set Enabled/disabled to enabled.

 Set Operation type to Expiration.

 Set Notification periods to an empty list.

 Set Notifications to an empty list.

 Set Logging to FsrmFileManagementLoggingFlags_None.

 Set Report enabled to true.

 Set File Management Job.Formats to an empty list.

 Set File Management Job.Mail to to an empty string.

 Set Days since file created to FSRMDaysNotSpecified.

 Set Days since file last accessed to FSRMDaysNotSpecified.

 Set Days since file last modified to FSRMDaysNotSpecified.

 Set Property conditions to an empty list.

 Set From date to FSRMDaysNotSpecified.

 Set Task name to an empty string.

381 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 Set File Management Job.Parameters to an empty list.

 Set File Management Job.Deprecated to false.

 Set File name pattern to an empty string.

 Set Running status to FsrmReportRunningStatus_NotRunning.

 Set Last run time to a date in the distant past.

 Set Last error to an empty string.

 Set Last report path without extension to an empty string.

 Set Error log to an empty list.

 Set Information log to an empty list

 Set fileManagementJob to the IFsrmFileManagementJob interface pointer for the newly created

Non-Persisted File Management Job Instance.

The new Non-Persisted File Management Job Instance MUST NOT be associated with an existing
Persisted File Management Job (section 3.2.1.7.1.1).

3.2.4.2.50.3 GetFileManagementJob (Opnum 9)

The GetFileManagementJob method returns a pointer to the fileManagementJob with the specified
name from the List of Persisted File Management Jobs (section 3.2.1.7) and returns S_OK upon

successful completion.

 [id(FSRM_DISPID_FILE_MANAGEMENT_JOB_MANAGER | 0x3)] HRESULT GetFileManagementJob(
 [in] BSTR name,
 [out, retval] IFsrmFileManagementJob** fileManagementJob
);

name: Contains the name of the fileManagementJob to return.

fileManagementJob: Pointer to an IFsrmFileManagementJob interface pointer (section
3.2.4.2.48) that upon completion points to the fileManagementJob with the specified name. A
caller MUST release the fileManagementJob received when the caller is done with it.

Return Values: The method MUST return zero on success, or a nonzero error code on failure.

Return value/code Description

0x80045301

FSRM_E_NOT_FOUND

The specified file management job could not be found.

0x80070057

E_INVALIDARG

The fileManagementJob parameter is NULL.

Upon receiving this message, the server MUST validate parameters:

 Verify that fileManagementJob is not NULL.

If any validation fails, the server MUST terminate processing and return a nonzero error code.

Upon successful validation of parameters, the server MUST perform the following actions or return a
nonzero error code.

382 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 Create a new Non-Persisted File Management Job Instance (section 3.2.1.7.1.2).

 Populate its configuration and state data from the Persisted File Management

Job (section 3.2.1.7.1.1) in the List of Persisted File Management Jobs with the specified
name.

 Set fileManagementJob to the IFsrmFileManagementJob interface pointer of the newly created
Non-Persisted File Management Job Instance.

If a Persisted File Management Job with the specified name does not exist, the server MUST return
FSRM_E_NOT_FOUND.

3.2.4.3 Macro Usage

The subsections that follow contain lists of macro variables used by the following:

 Notification actions for quotas (section 3.2.4.3.1)

 Notification actions for file screens (section 3.2.4.3.2)

 Notification actions for file management jobs (section 3.2.4.3.3)

There is also a list of macro variables for general notification actions (section 3.2.4.3.4).

The macro values are placeholders that are replaced with appropriate text when the notification is run.
They are case-insensitive.

3.2.4.3.1 Quota Macros

This section specifies the macro variables that are used by notification actions for directory quotas
(see the table later in this topic which lists the quota macro variables). They are usable in the
following methods:

 MailSubject (get) (section 3.2.4.2.5.11), MailSubject (put) (section 3.2.4.2.5.12)

 MessageText (get) (section 3.2.4.2.5.13), MessageText (put) (section 3.2.4.2.5.14)

 MessageText (get) (section 3.2.4.2.8.3), MessageText (put) (section 3.2.4.2.8.4)

 Arguments (get) (section 3.2.4.2.9.3), Arguments (put) (section 3.2.4.2.9.4)

As defined in section 3.2.7.1, I/O operations happening on a path with a quota can trigger a quota
event if the current disk space usage on the path reaches or exceeds the configured threshold for the
quota. The path on which the quota event was triggered is called the source path. The source path can

have a number of attributes that are used to resolve quota macros, such as the following:

The file or directory object that the path represents: If the path is a file, it is called a source
file path. The source path can be formatted in different ways to be accessible from local and
remote machines. This includes the following:

 A drive path format.

 A canonical path format that refers to the path to the object, starting with the volume

identifier (VolumeId). For more information, see volume GUID path in [MSDN-NV].

 A remote path format that refers to the remote path to the object in Universal Naming
Convention (UNC) format.

The size of the object represented by the path: The size indicates how much space the object
occupies on disk. For files, the size indicates the space occupied by the file on disk. For

https://go.microsoft.com/fwlink/?LinkId=180414

383 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

directories, the size indicates the space occupied by files and directories residing in the
directory.

The owner information of the object represented by the path: The owner is a specific user
account associated with the object at the moment of its creation. One or more email addresses

can be associated with the owner of the object represented by the path. For more information,
see [MSDN-ONO].

The identifier for the process: A process identifier (PID) identifies the process that accessed
the object represented by the path.

The name of the process image: The process image name is a string representing the command
line associated with the process that accessed the object represented by the path.

The quota settings configured on the path: The settings contain details of quota limits, quota

usage (peak, free, and use quota) and notifications configured on the parent directories of the
object represented by the path. See Directory Quotas (section 3.2.1.2.1) for details of quota
settings.

The owner attributes of the I/O incurred on the path: The owner represents the user account
the application used when incurring I/O to access the source path. This user account can be
associated with one or more email addresses.

If any attributes could not be expanded while resolving a macro, the macro MUST be left unresolved.

Macro
variables

Type of resolved
macro value Description

[Quota Path] Directory Quota.Folder
Path (section 3.2.1.2.1)

The drive path of the quota on the source path. For more details,
see the description for the source file path attribute in the source
path of a quota notification, earlier in this section.

[Quota
Remote Paths]

Directory Quota.Folder
Path (section 3.2.1.2.1)

The remote paths of the quota on the source path. For more
details, see the description for the source file path attribute in the
source path of a quota notification, earlier in this section.

[Quota System
Path]

Directory Quota.Folder
Path (section 3.2.1.2.1)

The canonical path of the quota on the source path. For more
details, see the description for the source file path attribute in the
source path of a quota notification, earlier in this section.

[Quota Limit] Quota limit (section
3.2.1.2.1)

The quota limit, in bytes, of the quota on the source path. For
more details, see the description for the quota settings attribute in
the source path of a quota notification, earlier in this section.

[Quota Limit
KB]

Quota limit (section
3.2.1.2.1)

The quota limit, in kilobytes, of the quota on the source path. For
more details, see the description for the quota settings attribute in
the source path of a quota notification, earlier in this section.

[Quota Limit
MB]

Quota limit (section
3.2.1.2.1)

The quota limit, in megabytes, of the quota on the source path. For
more details, see the description for the quota settings attribute in
source path of a quota notification, earlier in this section.

[Quota
Threshold]

Thresholds (section
3.2.1.2.1)

The quota threshold, as a percentage, of the quota on the source
path. For more details, see the description for the quota settings
attribute in the source path of a quota notification, earlier in this
section.

[Quota Used] Quota usage (section
3.2.1.2.1)

The used quota, in bytes, of the quota on the source path. For
more details, see the description for the quota settings attribute in
the source path of a quota notification, earlier in this section.

[Quota Used
KB]

Quota usage (section
3.2.1.2.1)

The used quota, in kilobytes, of the quota on the source path. For
more details, see the description for the quota settings attribute in

https://go.microsoft.com/fwlink/?LinkId=180415

384 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Macro
variables

Type of resolved
macro value Description

the source path of a quota notification, earlier in this section.

[Quota Used
MB]

Quota usage (section
3.2.1.2.1)

The used quota, in megabytes, of the quota on the source path. For
more details, see the description for the quota settings attribute in
the source path of a quota notification, earlier in this section.

[Quota Used
Percent]

Quota usage,

Quota limit (section
3.2.1.2.1)

The quota used, as a percentage, of the quota on the source path.
For more details, see the description for the quota settings attribute
in the source path of a quota notification, earlier in this section.

[Quota Peak] Peak quota usage
(section 3.2.1.2.1)

The peak used quota, in bytes, of the quota on the source path. For
more details, see the description for the quota settings attribute in
the source path of a quota notification, earlier in this section.

[Quota Peak
KB]

Peak quota usage
(section 3.2.1.2.1)

The peak used quota, in kilobytes, of the quota on the source path.
For more details, see the description for the quota settings attribute
in the source path of a quota notification, earlier in this section.

[Quota Peak
MB]

Peak quota usage
(section 3.2.1.2.1)

The peak used quota, in megabytes, of the quota on the source
path. For more details, see the description for the quota settings
attribute in the source path of a quota notification, earlier in this
section.

[Quota Peak
Percent]

Peak quota usage,

Quota limit (section
3.2.1.2.1)

The peak used quota, as a percentage, of the quota on the source
path. For more details, see the description for the quota settings
attribute in the source path of a quota notification, earlier in this
section.

[Quota Peak
Time]

Peak quota usage time
stamp (section
3.2.1.2.1)

The time of the highest used quota of the quota in the source path.
For more details, see the description for the quota settings attribute
in the source path of a quota notification, earlier in this section.

[Quota Free] Quota usage (section
3.2.1.2.1)

The free quota, in bytes, of the quota on the source path. For more
details, see the description for the quota settings attribute in the
source path of a quota notification, earlier in this section.

[Quota Free
KB]

Quota usage (section
3.2.1.2.1)

The free quota, in kilobytes, of the quota on the source path. For
more details, see the description for the quota settings attribute in
the source path of a quota notification, earlier in this section.

[Quota Free
MB]

Quota usage (section
3.2.1.2.1)

The free quota, in megabytes, of the quota on the source path. For
more details, see the description for the quota settings attribute in
the source path of a quota notification, earlier in this section.

[Quota Free
Percent]

Quota usage (section
3.2.1.2.1)

The free quota, as a percentage of the quota on the source path.
For more details, see the description for the quota settings attribute
in the source path of a quota notification, earlier in this section.

[Source File
Path]

File path The source file path of the quota event. For more details, see the
description for the source file path attribute in the source path of a
quota notification, earlier in this section.

[Source File
Remote Paths]

File paths The remote paths for the quota event source file. For more details,
see the description for the source file path attribute in the source
path of a quota notification, earlier in this section.

[Source File
Owner]

The owner of the file
path

The owner of the source file of the quota event. For more details,
see the description for the owner attribute in the source path of a
quota notification, earlier in this section.

[Source File
Owner Email]

The email address of the
owner of the file path

The owner email address of the source file of the quota event. For
more details, see the description for the owner email address

385 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Macro
variables

Type of resolved
macro value Description

attribute in the source path of a quota notification, earlier in this
section.

[Source
Process Id]

The Process ID The process identifier of the source file of the quota event. For
more details, see the description for the process identifier attribute
in the source path of a quota notification, earlier in this section.

[Source
Process
Image]

The Process Image name The process image name of the source file of the quota event. For
more details, see the description for the process image name
attribute in the source path of a quota notification, earlier in this
section.

[Source Io
Owner]

The user account that
incurred the I/O.

The owner of the I/O incurred on the source path of the quota
event. For more details, see the description for the owner attributes
of I/O incurred in the source path of a quota notification, earlier in
this section.

[Source Io
Owner Email]

The email address of
user account that
incurred the I/O.

The owner email address of the I/O incurred in the source path of
the quota event. For more details, see the description for the owner
attributes of I/O incurred in the source path of a quota notification,
earlier in this section.

3.2.4.3.2 File Screen Macros

This section specifies the macro variables that are used by notification actions for file screens (see
the table later in this topic which lists the file screen macro variables). They are usable in the
following methods:

 MailSubject (get) (section 3.2.4.2.5.11), MailSubject (put) (section 3.2.4.2.5.12)

 MessageText (get) (section 3.2.4.2.5.13), MessageText (put) (section 3.2.4.2.5.14)

 MessageText (get) (section 3.2.4.2.8.3), MessageText (put) (section 3.2.4.2.8.4)

 Arguments (get) (section 3.2.4.2.9.3), Arguments (put) (section 3.2.4.2.9.4)

As specified in section 3.2.7.4, I/O operations happening on a path with a file screen, can trigger a file
screen event if the file name of the I/O is included in the set of file names defined by the file name
patterns in the file groups blocked by the file screen. The file path on which the file screen event was

triggered is called the source file path. The source file path can have various attributes that are used
to resolve file screen macros:

A source file path: Source file paths can be formatted in various ways to be accessible from local
and remote machines, including the following:

 A drive path format.

 A system path format that refers to the path to the object, starting with the volume
identifier (VolumeId). For more information, see volume GUID path in [MSDN-NV].

 A remote path format that refers to the remote path to the object in Universal Naming
Convention (UNC) format.

The owner information of the object that is represented by the source file path: The owner
is a specific user account associated with the object at the moment of its creation. For more
information, see the description of owner in [MSDN-ONO].

https://go.microsoft.com/fwlink/?LinkId=180414
https://go.microsoft.com/fwlink/?LinkId=180415

386 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

One or more email addresses can be associated with the owner of the object represented by the
source file path.

The identifier for the process: A process identifier (PID) identifies the process that accessed
the object represented by the source file path.

The name of process image of the process that accessed the object represented by the
source file path: The process image name is a string representing the command line
associated with the process.

The file screen settings configured on the file path: File screen settings contain details of file
groups and notifications that were configured on the parent directories under which the file
represented by the path was accessed that fired the event. See File Screen
Model (section 3.2.1.3) for details of file screen settings. File screen parent directory paths could

be formatted in various ways like the source file path described in the preceding section
(directory paths, system paths and remote paths).

The owner attributes of the I/O incurred on the path: The owner represents the user account

under which the application incurring the I/O was accessing the source file path. This user
account might be associated with one or more email addresses.

If any attributes of a source file path could not be expanded while resolving a macro for the source

path, the macro MUST be left unresolved.

Macro
variables

Type of resolved
macro value Description

[File Screen
Path]

File Screen.Folder
path (section 3.2.1.3.1)

The directory path of the file screen.

[File Screen
System Path]

File Screen.Folder
path (section 3.2.1.3.1)

The remote paths of the file screen.

[Violated File
Group]

Blocked file groups
(section 3.2.1.3.1)

The file screen event source file group.

[Source File
Path]

File path The drive path format of the file screen source file path. For more
details, see the description for the path attribute of the source file
path of a file screen notification earlier in this section.

[Source File
Remote
Paths]

File path The remote paths in remote path format of the file screen source file
path. For more details, see the description for the path attribute of
the source file path of a file screen notification earlier in this section.

[Source File
Owner]

Owner of file path The owner of the source file of the file screen event. For more
details, see the description for the owner attribute of the source file
path of a file screen notification earlier in this section.

[Source File
Owner Email]

The email address of
owner of file path.

The owner email of the source file path of the file screen event. For
more details, see the description for the owner email address
attribute of the source file path of a file screen notification earlier in
this section.

[Source
Process Id]

Process ID The process identifier of the source file of the file screen event. For
more details, see the description for the process identifier attribute
of the source file path of a file screen notification earlier in this
section.

[Source

Process
Image]

Process Image Name The process image name of the source file of the file screen event.

For more details, see the description for the process image name
attribute of the source file path of a file screen notification earlier in
this section.

387 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Macro
variables

Type of resolved
macro value Description

[Source Io
Owner]

User account that
incurred the I/O.

The owner of the I/O incurred on the source path of the file screen
event. For more details, see the description for the owner attributes
for I/O incurred in the source file path of a file screen notification
earlier in this section.

[Source Io
Owner Email]

The email address of
user account that
incurred the I/O.

The owner email address of the I/O incurred on the source path of
the file screen event. For more details, see the description for the
owner attributes for I/O incurred in the source file path of a file
screen notification earlier in this section.

3.2.4.3.3 File Management Job Macros

This section specifies the macro variables that are used by notification actions for file management

jobs (see the table later in this topic which lists the file management job macro variables). They are
usable in the following methods:

 MailSubject (get) (section 3.2.4.2.5.11), MailSubject (put) (section 3.2.4.2.5.12)

 MessageText (get) (section 3.2.4.2.5.13), MessageText (put) (section 3.2.4.2.5.14)

 MessageText (get) (section 3.2.4.2.8.3), MessageText (put) (section 3.2.4.2.8.4)

 Arguments (get) (section 3.2.4.2.9.3), Arguments (put) (section 3.2.4.2.9.4)

As specified in section 3.2.1.7, when a file management job is executed that results in an action being
performed on a file, the file for which the action is triggered is called the source file. The source file
can have various attributes that are used to resolve file management job macros:

Source file paths: Paths that are formatted in various ways to be accessible from local and
remote machines such as:

Drive path format: A drive path.

System path format: A path starting with a volume identifier. For more information, see
volume GUID path in [MSDN-NV].

Remote path format: The remote path format is the remote path to the object in
Universal Naming Convention (UNC) format.

Owner information for the source file path: The email address associated with the owner of

the source file path. The owner is a specific user account associated with the object at the
moment of creation. For more information, see [MSDN-ONO]. An owner of an object can be
associated with one or more email addresses.

In addition to the source file path, the file management job can be configured with various attributes
that are used to resolve file management job macros:

File management task name: The configured name for the file management job.

File management path: The configured path (namespace) on which the file management job is

configured to execute. The files under this path are the files on which actions can be performed.
As specified in the previously defined source file path attribute, the file management path could
be formatted in various ways (directory path, remote path and system path).

Destination directory: The path to which a file management job configured to expire files, moves
source files specified above. This path is stored and retrieved in the same format as configured.

https://go.microsoft.com/fwlink/?LinkId=180414
https://go.microsoft.com/fwlink/?LinkId=180415

388 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Summary file paths: The drive paths to files that store lists of source files (specified above) on
which the file management job resulted in actions. The file that contains all source file paths on

which the action was performed successfully is called the result list file. The file that contains all
source file paths on which the action resulted in errors is called the error list file. Both the result

and error list files can be created and populated with contents by the file management job using
file system functions.

Attributes: The following are attributes of the resulting file management action when the file
management job is executed:

File management action date: The date on which the file management job resulted in an
action on files (specified as source file above). This date can be queried from the
operating system. For more details, see the material on notification period specified in

section 3.2.1.7.1.

Number of files: The count of files on which the file management job resulted in an action
being performed. This count is maintained by the file management job when it is
executed. For more details see the material on notifications specified in section 3.2.1.7.1.

Days before file action: The estimate of how many days are left before the file
management task performs an action on a file. This estimate is computed by the file

management job when it is executed and is based on the configured conditions to be
applied on the file. This can affect the date when the file could be acted on.

If any attributes could not be expanded while resolving a macro, the macro MUST be left unresolved.

Macro variables

Type of
resolved macro
value Description

[Source File Path] File path The drive path format of the file management job source file path. See
the preceding description of the source file path attribute of the file
management job.

[Source File
Remote Paths]

File path Remote path format of the file management job source file path. See
the preceding description of the source file path attribute of the file
management.

[Source File
Owner]

Owner of file path Owner of the source file of the file management job. See the preceding
description of the source file owner attribute of the file management
job.

[Source File
Owner Email]

Email address of
owner of file path

Email address of the owner of the source file of the file management
job. See the preceding description of the source file owner email
address attribute of the file management job.

[Result List File] File path Path to the file that contains all the files with action applied during an
execution of file management job. See the preceding description of the
result list file attribute of the file management job.

[Error List File] File path Path to the file that contains all source file paths on which the action
resulted in errors during an execution of a file management task. See
the preceding description of the error list file attribute of the file
management job.

[Destination
Directory]

Expiration
directory (section
3.2.1.7.1)

The directory to which files are expired. See the preceding description
for destination directory attribute of the file management job.

[Task Name] Task name
(section

3.2.1.7.1)

The file management task name. See the preceding description of the
task name attribute of the file management job.

389 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Macro variables

Type of
resolved macro
value Description

[File Action Date] Date The date when a file management task applies an action to a source
file. See the preceding description of the file action date attribute of the
file management job.

[Days Before File
Action]

Number
indicating count
of days

Number of days before a file management task applies an action to a
source file. See the preceding description of the days before file action
attribute of the file management job.

[Number Of Files
Under Action]

Number
indicating the
count of files

Number of files with an action applied during an execution of a file
management job. See the preceding description of the number of files
under action attribute of the file management job.

[File Management
Path]

File path Drive path format of the file management job path. See the preceding
description of the file management path attribute of the file
management job.

[File Management
Remote Paths]

File path Remote path format of the file management job path. See the
preceding description of the file management path attribute of the file
management job.

[File Management
System Path]

File path System path format of the file management job path. See the
preceding description of the file management path attribute of the file
management job.

3.2.4.3.4 General Macros

The following table specifies the macro variables that are used by general notification actions.

Value
Abstract data model
elements referenced Methods where usable Description

[Server] MailSubject (get) (section 3.2.4.2.5.11),
MailSubject (put) (section 3.2.4.2.5.12),

MessageText (get) (section 3.2.4.2.5.13),
MessageText (put) (section 3.2.4.2.5.14),

MessageText (get) (section 3.2.4.2.8.3),
MessageText (put) (section 3.2.4.2.8.4),

Arguments (get) (section 3.2.4.2.9.3),
Arguments (put) (section 3.2.4.2.9.4)

NETBIOS name of
the server

[Server
Domain]

 MailSubject (get) (section 3.2.4.2.5.11),
MailSubject (put) (section 3.2.4.2.5.12),

MessageText (get) (section 3.2.4.2.5.13),
MessageText (put) (section 3.2.4.2.5.14),

MessageText (get) (section 3.2.4.2.8.3),
MessageText (put) (section 3.2.4.2.8.4),

Arguments (get) (section 3.2.4.2.9.3),
Arguments (put) (section 3.2.4.2.9.4)

Server domain
name

[Admin
Email]

Administrator email
address (General Settings
Model section 3.2.1.9)

MailTo (get) (section 3.2.4.2.34.8), MailTo
(put) (section 3.2.4.2.34.9),

MailReplyTo (get) (section 3.2.4.2.5.3),
MailReplyTo (put) (section 3.2.4.2.5.4),

MailFrom (get) (section 3.2.4.2.5.1), MailFrom

Administrator
email recipient
list

390 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Value
Abstract data model
elements referenced Methods where usable Description

(put) (section 3.2.4.2.5.2),

MailBcc (get) (section 3.2.4.2.5.9), MailBcc
(put) (section 3.2.4.2.5.10),

MailCc (get) (section 3.2.4.2.5.7), MailCc
(put) (section 3.2.4.2.5.8),

MailSubject (get) (section 3.2.4.2.5.11),
MailSubject (put) (section 3.2.4.2.5.12),

MessageText (get) (section 3.2.4.2.5.13),
MessageText (put) (section 3.2.4.2.5.14),

Arguments (get) (section 3.2.4.2.9.3),
Arguments (put) (section 3.2.4.2.9.4),

MailTo (get) (section 3.2.4.2.5.5), MailTo
(put) (section 3.2.4.2.5.6),

ClassificationReportMailTo
(get) (section 3.2.4.2.45.5),
ClassificationReportMailTo
(put) (section 3.2.4.2.45.6),

MailTo (get) (section 3.2.4.2.48.20), MailTo
(put) (section 3.2.4.2.48.21)

3.2.4.4 Running Notifications

The subsections that follow specify how the server runs Notifications (section 3.2.1.4). The sections
correspond to the possible Action Types for notifications. For Command Line Action Type, Email
Action Type, and Event Log Action Type, the sections describe the general behavior required to run

the notification. The specific mechanism for running the notification is implementation-specific. The
server MUST use the Report Job feature of this protocol to run Report Action Type notifications. If the
action has Run limit interval set to -1, the server MUST use the General Settings run limit interval.

Before running a specific notification the server MUST subtract the Last Run Time of the notification
from the current time. If that difference is less than the Run Limit Interval the server MUST NOT run
the action. If that difference is greater than or equal to the Run Limit Interval the server MUST run
the notification. If the server is going to run the action the server MUST update the notification's Last

Run Time with the current time before running the action.

If the server cannot run the notification for any reason, the server MUST log an event in the event
log.

3.2.4.4.1 Command Line Action Type

To run a notification of Command Line Action Type the server will run, as the account specified by
Account, the executable specified by the Executable Path with the arguments specified by

Notification.Model.Arguments in the directory specified by Working Directory.

If Monitor Command is set to true, the server will monitor the process running the executable
invoked while running a notification until it completes. Monitoring the executable includes terminating
the running process once Kill time-out is reached, if the process is still running and logging the result
returned from the process. If Monitor Command is set to true, Kill Time-out is greater than zero and
the application takes longer than Kill time-out to complete execution, the server will terminate the
executable. If the Monitor Command is set to true, Kill time-out is greater than zero and the

process completes execution before Kill time-out has expired, the server will not apply any changes.
If Monitor Command is set to true and Log Result is set to true the server will log the result of the

391 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

executable to the event log. If Monitor Command is set to false, the server ignores the Kill time-
out and Log result.

If Disable command line applications is true, the server MUST ignore method calls made through a
command-line utility. Otherwise, the server MUST respond to method calls made through a command-

line utility.

3.2.4.4.2 Email Action Type

To run a notification of Email Action Type the server will send an email with the following
requirements.

1. The subject of the email is the Mail Subject of the notification.

2. The body of the email is the Message Text of the notification.

3. The email is sent from the Mail From address of the notification. If the Mail From property is not
set, the Mail from email address setting from General Settings (section 3.2.1.9) is used.

4. The email is sent to the Mail To addresses of the notification.

5. The email is sent as a carbon copy to the Mail CC addresses of the notification.

6. The email is sent as a blind carbon copy to the Mail BCC addresses of the notification.

7. The email is sent using the SMTP Server Name from the server's general configuration.

3.2.4.4.3 Event Log Action Type

To run a notification of Event Log Action Type the server will log an event in the event log with the
Message Text and Event Type of the notification.

3.2.4.4.4 Report Action Type

To run a notification of Report Action Type the server MUST do all of the following steps.

1. Create a new Non-Persisted Report Job (section 3.2.1.5.1.2).

2. For each type in the notification's Report Types, add the specified report to the Report
Job.Reports.

3. For each report added to the Report Job.Reports, set the Report.Description to a non-
specified string that includes the following minimum information.

 If the notification is run in response to a Quota Event (section 3.2.7.1) the report's description
includes the Folder Path of the quota that caused the event and an indication that the report is

generated in response to a Quota Event.

 If the notification is run in response to a File Screen Event (section 3.2.7.4), the report
description contains the Folder Path of the file screen and an indication that the report is
generated in response to a File Screen Event.

4. Set the report job's Mail to to the notification's Mail to.

5. The Namespace Roots of the report job are set as follows.

 If the notification is run in response to a Quota Event (section 3.2.7.1) the report job's

Namespace Roots is set to the Folder Path of the quota that caused the Quota Event.

 If the notification is run in response to a File Screen Event (section 3.2.7.4) the report job's
Namespace Roots is set to the Folder Path of the file screen that caused the File Screen Event.

392 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

6. Run the report job (section 3.2.1.12.1).

3.2.4.5 Aggregating Property Definition Instance Values

This section specifies how the server aggregates new values with a property definition instance's
existing property definition instance.value. The process varies based on the Property
Definition.Type of the property definition specified by the property definition instance's property
definition instance.Name. If property definition instance.flags contains
FsrmPropertyFlags_Orphaned, the process for FsrmPropertyDefinitionType_String is used.

 FsrmPropertyDefinitionType_OrderedList: The resulting value is the value that comes first in
the Possible values of the property definition using a case-insensitive string comparison.

 FsrmPropertyDefinitionType_MultiChoiceList: The resulting value is the superset of the
individual choice values in property definition instance.value and the individual choice values
in the new value.

 FsrmPropertyDefinitionType_SingleChoiceList: Different single choice values cannot be

aggregated. The property definition instance.flags is bitwise-OR'd with

FsrmPropertyFlags_AggregationFailed.

 FsrmPropertyDefinitionType_String: Different string values cannot be aggregated. The
property definition instance.flags is bitwise-OR'd with
FsrmPropertyFlags_AggregationFailed.

 FsrmPropertyDefinitionType_MultiString: The resulting value is the superset of the individual
strings in property definition instance.value and the strings in the new value.

 FsrmPropertyDefinitionType_Int: Different integer values cannot be aggregated. The

property definition instance.flags is bitwise-OR'd with
FsrmPropertyFlags_AggregationFailed.

 FsrmPropertyDefinitionType_Bool: The resulting value is a logical OR of the property
definition instance.value and the new value.

 FsrmPropertyDefinitionType_Date: Different date values cannot be aggregated. The
property definition instance.flags is bitwise-OR'd with

FsrmPropertyFlags_AggregationFailed.

3.2.4.6 Validating Property Values

This section specifies how the server verifies whether a value supplied by the client is valid for a
property definition based on the property definition instance's property definition.type.

 FsrmPropertyDefinitionType_OrderedList: The supplied value must match one of the
Possible values of the property definition, using a case-insensitive string comparison.

 FsrmPropertyDefinitionType_MultiChoiceList: All entries in the supplied value must match
one of the Possible values of the property definition, using a case-insensitive string comparison.

 FsrmPropertyDefinitionType_SingleChoiceList: The supplied value must match one of the
Possible values of the property definition, using a case-insensitive string comparison.

 FsrmPropertyDefinitionType_String: No validation is done for this type.

 FsrmPropertyDefinitionType_MultiString: No validation is done for this type.

 FsrmPropertyDefinitionType_Int: The supplied value must be an integer value between -
2,147,483,648 and +2,147,483,647.

393 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 FsrmPropertyDefinitionType_Bool: The supplied value must be zero or one.

 FsrmPropertyDefinitionType_Date: The supplied value must be an integer value between zero

and +18,446,744,073,709,551,615.

3.2.5 General Classification Actions

This section specifies common actions that the server performs to:

 Retrieve stored classification properties for a file or folder.

 Generate new classification properties for a file or folder.

 Store classification properties for a file or folder.

3.2.5.1 Retrieve stored classification properties

This action is performed on a single file or folder and results in a list of Property Definition Instances.

To perform this action, the server MUST perform the following steps in sequence:

1. The server builds a list of all storage modules that have Enabled/Disabled set to enabled and
Capabilities that include FsrmStorageModuleCaps_CanGet. This list will be referred to as the
Retrieval Storage Module.

2. If the list of Retrieval Storage Modules is empty, the action results in an empty list of Property
Definition Instances.

3. For each Retrieval Storage Modules, the server executes the software module identified by
the ModuleClsid of the storage module. The software module is executed in a process specified

by Module Definition.Account. The parameters for the software module are the given local file or
folder path and instructions to return existing name/value pairs. If the storage module's Needs
file content is true, the server provides the contents of the file as an additional parameter. In turn,
the software module returns a set of name/value pairs for the file path to the server.

4. If the file extension of the file does not match any of the storage module's Supported
extensions, the server skips the storage module.

5. For each unique name in the lists of name/value pairs, the server creates a Property Definition
Instance and sets property definition instance.name to the unique name. The property definition
instance.value is set to the aggregated value (section 3.2.4.5) of all values returned from all
Retrieval Storage Modules.

6. If the property definition instance.value equals or contains the value returned from a storage
module, the name of the storage module is appended to the property definition instance's
sources.

7. The server checks whether the unique name is the property definition.name of a persisted
property definition. If not, the FsrmPropertyFlags_Orphaned flag is added to the property
definition instance.flags using a bitwise-OR.

8. If the storage module has the storage type FsrmStorageModuleType_Cache, the flag
FsrmPropertyFlags_RetrievedFromCache is added to the property definition instance.flags using a
bitwise-OR. Otherwise, the flag FsrmPropertyFlags_RetrievedFromStorage is added to the property
definition instance.flags using a bitwise-OR. The flag FsrmPropertyFlags_Existing is also added to

the property definition instance.flags using a bitwise-OR.

9. The server now has a list of Property Definition Instances with unique names for the file that have
come from the storage modules. This is the result of the action.

394 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

3.2.5.2 Generate New Classification Properties

This action is performed on a single file and a list of Property Definition Instances for that file. It
results in an updated version of that list of Property Definition Instances.

To perform this action, the server MUST perform the following steps in sequence:

1. The server builds a list of all classification rules that have Enabled/Disabled set to enabled.
This list is referred to as classification rules.

2. The server builds a list of all classification modules that have Enabled/Disabled set to
enabled. This list is referred to as classification modules.

3. If the list of classification modules is empty, the result of this action is the input list of Property
Definition Instances.

4. If the list of classification rules is empty, the result of this action is the input list of Property
Definition Instances.

5. For each classification rule in classification rules, the server performs the following steps:

1. If the file extension of the file does not match any of the classification module's Supported
extensions, the server skips the classification module.

2. If the classification rule's execution option is Evaluate unset and the file already has a Property

Definition Instance with the property definition instance.Name that is the same as the
classification rule's property affected, then the server does not execute the classification
module specified by the rule's Module definition name for this and the server goes to the next
classification rule.

3. Refer to the classification module in the list of classification modules with the property
definition instance.Name as provided by the rule's Module definition name as the relevant
classification module.

4. The server executes the software module identified by the ModuleClsid of the classification

module. The software module is executed in a process specified by Module
Definition.Account. The parameters for the software module are the given local file path,
the rule's Rule.Parameters, and instructions to determine the value for the name specified by
the classification rule's property affected. If the classification module's Needs file content is
true, the server provides the contents of the file as an additional parameter.

5. If the relevant classification module's Module Definition.Parameters contains a value that is

"StaticModuleName=Folder Classifier", the executed software module MUST return

true.

6. If the relevant classification module's Module Definition.Parameters contains a value that is
"StaticModuleName=Content Classifier", the executed software module MUST perform

the following steps in sequence:

1. The executed software module builds a list of all values in the rule's Rule.Parameters
that start with "String=" but stores only the remainder of the value after "String=" in

the list and refers to this list as the Parameter string list. The executed software
module builds a list of all values in the rule's Rule.Parameters that start with
"StringWithCase=" but stores only the remainder of the value after "StringWithCase="

in the list and refers to this list as Parameter case-sensitive string list.

2. The executed software module builds a list of all values in the rule's Rule.Parameters

that start with "RegularExpression=" but stores only the remainder of the value after

"RegularExpression=" in the list and refers to this list as the Parameter regular

expression list.

395 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

3. For each string in Parameter regular expression list, the executed software module
searches the contents of the file for any occurrence of the string, regardless of case, and,

if found, removes the string from Parameter string list.

4. For each string in Parameter case-sensitive string list, the executed software

module searches the contents of the file for any occurrence of the string, considering
case, and, if found, removes the string from Parameter case-sensitive string list.

5. For each regular expression (represented as a string) in Parameter regular expression
list, the executed software module searches the contents of the file for any matches of
the regular expression (see [MSDN-RegEx] for information about matching regular
expressions) and, if found, removes the regular expression from Parameter regular
expression list. If there is a value in the relevant classification module's Module

Definition.Parameters that starts with "MaxTimeoutSeconds=", the remainder of that value

after "MaxTimeoutSeconds=" will be referred to as the regex time-out period. If there is

a regex time-out period, the executed software module MUST stop attempting to find

a match for a single regular expression in the contents of the file after the regex time-
out period (in seconds) has elapsed.<80>

6. If Parameter string list, Parameter case-sensitive string list, and Parameter
regular expression list are empty, the executed software module MUST return true.

7. If the Relevant classification module's Module Definition.Parameters does not contain a
value that is "StaticModuleName=Folder Classifier" or "StaticModuleName=Content

Classifier", the software module returns a value to the server for the classification

rule's property affected.

7. If the classification module's Needs explicit value is true and the value returned from the

classification module is false, the server SHOULD<81> set ClearProperty to true and go to the
next classification rule. If the classification module's Needs explicit value is true and the value
returned from the classification module is true, the server assumes that the classification
module returned the classification rule's Rule.Value for the rest of the steps processing this
classification rule. If the classification module's Needs explicit value is false, and the
classification module returns no value for the Property affected, the server SHOULD <82>set

ClearProperty to true.

8. If the classification rule execution option is Evaluate unset and the file does not have a
Property Definition Instance with the property definition instance.Name that is the same as the
classification rule property affected, the server affected creates a new Property Definition
Instance; sets property definition instance.Name to the classification rule's property affected
and property definition instance.value to the value returned from the classification module;
and, if the file has not yet been added to the Report item list, adds the file to the Report
item list.

9. If the classification rule's execution option is Reevaluate and consider existing, the server
aggregates (section 3.2.4.5) the value returned from the classification module with the
existing Property Definition Instance for the classification rule's property affected and, if the
file has not yet been added to the Report item list, adds the file to the Report item list.

10. If the classification rule's execution option is Reevaluate and ignore existing, the server

replaces the existing property definition instance.value for the classification rule's property

affected with the value returned from the classification module and, if the file has not yet been
added to the Report item list, adds the file to the Report item list. The server
SHOULD<83> set ClearProperty to true.

11. If the property definition instance.value equals or contains the value returned from the
classification module, the FsrmPropertyFlags_SetByClassifier flag is added to the property
definition instance.flags using a bitwise-OR and Property Definition Instance's sources is
cleared and the name of the classification module and classification rule are added to it.

https://go.microsoft.com/fwlink/?LinkId=158228

396 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

12. If property definition instance.flags contains the flags FsrmPropertyFlags_Existing and
FsrmPropertyFlags_SetByClassifier using a bitwise-AND comparison and property definition

instance.value differs from the value supplied from the storage modules, the flag
FsrmPropertyFlags_Reclassified is added to the property definition instance.flags using a

bitwise-OR.

13. If the rule type is Classification and ClearProperty is set to true, the server SHOULD<84> do
the following:

1. If the property definition instance.flags contains the flag
FsrmPropertyFlags_SetByClassifier, and Rule.ClearAutoProperty is true, the server MUST
clear the property value for the property definition instance.

2. If the property definition instance.flags doesn't contain the flag

FsrmPropertyFlags_SetByClassifier, and Rule.ClearManualProperty is true, the server
MUST clear the property value for the property definition instance.

6. The server now has a list of Property Definition Instances with unique names for the file that have

come from the storage modules. This is the result of the action.

3.2.5.3 Store classification properties

This action is performed on a single file or folder and a list of Property Definition Instances for it.

To perform this action, the server MUST perform the following steps in sequence:

1. The server builds a list of all storage modules that have Enabled/Disabled set to enabled and
Capabilities that include FsrmStorageModuleCaps_CanSet. This list is referred to as the Setting
Storage Modules.

2. If the list of Setting Storage Modules is empty, the action completes successfully.

3. For each Setting Storage Modules, the server executes the software module identified by the
ModuleClsid of the storage module. The software module is executed in a process specified by

Module Definition.Account. The parameters for the software module are the given local file or
folder path, instructions to save name/value pairs, and all Property Definition Instances for the
file. If the storage module's Needs file content is true, the server provides the contents of the

file as an additional parameter.

4. If the file extension of the file does not match any of the storage module's Supported
extensions, the server skips the storage module.

3.2.6 Timer Events

No timer events are used by the File Server Resource Manager Protocol.

3.2.7 Other Local Events

The server MUST track I/O operations on the server volumes that have directories with File Server

Resource Manager Protocol objects configured for them. This section describes the types of events

generated by the File Server Resource Manager Protocol in response to I/O operations.

3.2.7.1 Quota Events

If an I/O operation happens on a path that is within the scope of a Directory Quota.Folder path of a

Quota, the File Server Resource Manager Protocol will calculate the ratio of Quota usage of the
Quota, plus the size of the I/O operation, to the Quota limit of the quota. A quota event occurs when
this ratio becomes greater than or equal to a configured threshold for the quota. A quota event

397 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

always occurs when this ratio becomes greater than or equal to one. The server will set the
Notification status for a threshold when a Quota Event is triggered for that threshold.

Subsequent I/O operations will verify the Notification status and not trigger a quota event for a
threshold after the ratio crosses that threshold as a result of a previous I/O operation until the

quota usage again falls below the threshold level. The server will reset the Notification status for
a threshold when the Quota usage falls below the value of that threshold. Section 3.2.4.1 specifies
how the File Server Resource Manager Protocol responds to quota events.

If Directory Quota notifications are setup when a Quota Event occurs, the server will resolve quota
macros from section 3.2.4.3.1 and general macros from section 3.2.4.3.4 that are specified in the
notification email messages, event messages and/or action arguments. Any other macros will be left
unresolved.

3.2.7.2 Quota Usage Update Events

If an I/O operation happens on a path that is within the scope of a Folder path of a Quota then a
quota usage update event MUST occur unless a Quota Event (section 3.2.7.1) is triggered that fails

the I/O operation. Section 3.2.4.1 specifies how the File Server Resource Manager Protocol [MS-FSRM]

responds to quota usage update events.

3.2.7.3 Peak Quota Usage Events

If an I/O operation happens on a path that is within the scope of a Folder path of a Quota, the File

Server Resource Manager Protocol MUST compare the ratio of Quota usage of the quota to the
current Peak quota usage of the quota. A peak quota usage event occurs when the Quota usage is
greater than the current Peak quota usage, except in the case where the I/O operation triggers a
Quota Event and the I/O operation fails due to the response to the quota event as described in
Sequencing Rules (section 3.2.4.1).

3.2.7.4 File Screen Events

If an I/O operation happens on a path that is within the scope of a File Screen.Folder path of a File

Screen (section 3.2.1.3.1), the File Server Resource Manager Protocol MUST check to see if the file
name of the I/O is blocked by the File Screen (section 3.2.1.3.1).

A File Screen Event MUST occur if the following criteria are met:

 The file name is part of at least one of the blocked file groups.

 The file name is not part of any of the allowed file groups of any file screen exceptions
configured on that path.

A file name is part of a file group if, and only if, the following criteria are met:

 The file name matches at least one of the file name patterns in the members of the file group.

 The file name does not match any of the file name patterns in the non-members of the file
group.

All comparisons of the file name with any of the patterns specified above MUST be case-insensitive.

Section 3.2.4.1 specifies how the File Server Resource Manager Protocol responds to File Screen
Events.

If FileScreen notifications are setup when a File Screen Event occurs, the server will resolve file screen
macros from section 3.2.4.3.2 and general macros from section 3.2.4.3.4 that are specified in the
notification email messages, event messages and/or action arguments. Any other macros will be left

unresolved.

398 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

If the Enable file screen audit parameter is true, the server MUST keep records of the file screen
events that can be used by FSRM when generating a file screen audit report. If the Enable file

screen audit parameter is false, the server does not keep records of file screen events.

3.2.7.5 Directory Creation Events

If a subdirectory is created under a directory with an auto apply quota, the server MUST do a case-
insensitive string comparison of the name of the subdirectory with the list of exclude folders for the
auto apply quota. If the new subdirectory comparison with the exclude folders list fails, a directory

creation event MUST occur. Section 3.2.4.1 specifies how the File Server Resource Manager Protocol
responds to directory creation events.

3.2.7.6 Directory Deletion Events

If a directory with a Persisted Directory Quota, Persisted Auto Apply Quota, Persisted File Screen, or

Persisted File Screen Exception configured on it is deleted, a directory deletion event MUST occur.
Section 3.2.4.1 specifies how the File Server Resource Manager Protocol responds to directory deletion

events.

3.2.7.7 Directory Rename Events

If a directory with Persisted Directory Quota, Persisted Auto Apply Quota, Persisted File Screen, or
Persisted File Screen Exception configured on it is renamed, a directory rename event MUST occur.
Section 3.2.4.1 specifies how the File Server Resource Manager Protocol responds to directory rename
events.

3.2.7.8 Volume Discovery Events

If a new volume is discovered on the server, a volume discovery event MUST occur. Section 3.2.4.1
specifies how the File Server Resource Manager Protocol responds to volume discovery events.

3.2.7.9 Volume Removal Events

If a volume is removed from the server, a volume removal event MUST occur. Section 3.2.4.1
specifies how the File Server Resource Manager Protocol responds to volume removal events. Any
Non-Persisted Directory Quotas, Non-Persisted Auto Apply Quotas, Non-Persisted File Screens, Non-
Persisted File Screen Exceptions that have a folder path on the removed volume are not removed from
any non-persistent lists they are part of.

3.2.7.10 File Classification Security Propagation

If an I/O operation that happens on the server modifies a file's FCI Alternate Data Stream, the
server MUST perform the following steps in sequence:<85>

1. The FCI Alternate Data Stream is read and parsed into a List of Property Definition Instances. See

[MS-FCIADS] section 2 for details.

2. Any Property Definition Instances in the List of Property Definition Instances that do not have
FsrmPropertyFlags_Secure as part of their Property Definition Instance.Flags are removed from
the List of Property Definition Instances stored in the file security descriptor of the file.

3. For each Property Definition Instance in the List of Property Definition Instances, the server MUST
store each Property Definition Instance.Name and Property Definition Instance.value within the file
security descriptor of the file.

%5bMS-FCIADS%5d.pdf#Section_629d7a1554ba4e1ca1b0547afba28485

399 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

3.2.7.11 File Classification Event

When an I/O operation modifies a file on a path that is within the scope of a path in the Namespace
roots of any classification rule whose Enabled/Disabled member is set to true, the server MUST then

do one of the following for that file or return a nonzero error code:

 If there is already a Running Job in the Classification Job Queue, the server MUST return
FSRM_E_CLASSIFICATION_ALREADY_RUNNING.

 If the Classification Job Queue does not contain a Running Job, the server MUST:

 Create a Running Job and set its properties as follows:

 Running Job.Parent: Create a new Classification job object and initialize it as follows:

 Classification Job.Formats is copied from Default Classification Job's Classification

Job.Formats.

 Generate classification report is copied from Default Classification Job's Generate

classification report.

 Classification Job.Mail to is copied from Default Classification Job's Classification
Job.Mail to.

 Classification Job.Logging is copied from Default Classification Job's Classification

Job.Logging.

 Classification Job.Last error is set to an empty string.

 Last generated path is set to an empty string.

 Namespace Roots is set to the aforementioned file.

 Reports directory: File system path to the output directory associated with context. See
section 3.2.1.5.3 for details on selecting the output directory for different generation

contexts.

 Running Job.Cancel: false.

 Queue the Running Job to the Classification Job Queue.

 Set the Running status of the Default Classification Job object to
FsrmReportRunningStatus_Queued. See section 3.2.1.12.2 for more information about how
the server monitors the running classification job.

See section 3.2.1.12.2 for more information about how the server monitors the running
classification job.

400 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

4 Protocol Examples

The following sections provide examples of how a File Server Resource Manager Protocol client and
server communicate in common scenarios.

The order in which a File Server Resource Manager Protocol client would typically do these operations
is:

1. Instantiate a File Server Resource Manager Protocol object manager.

2. Enumerate File Server Resource Manager Protocol objects.

3. Retrieve File Server Resource Manager Protocol object properties.

4. Perform configuration tasks and modify File Server Resource Manager Protocol object properties.

5. Release the File Server Resource Manager Protocol object manager.

4.1 Query Enumeration of File Server Resource Manager Protocol Directory Quotas

File Server Resource Manager Protocol directory quota objects are retrievable through an enumeration
via the IFsrmQuotaManager interface (section 3.2.4.2.18). The following describes how a client can
enumerate FSRM directory quota objects:

1. The client requests the creation of an instance of the Quota Manager on the local machine by
calling CoCreateInstance with the class GUID of the Quota Manager, requesting an instance of

the Quota Manager on the server.

2. The server returns a reference to the IFsrmQuotaManager interface.

3. The client calls the method IFsrmQuotaManager::EnumQuotas (section 3.2.4.2.18.8), passing it
the path on a volume on the server for which the client wants to enumerate quotas.

4. The server collects all the quota objects configured for the path specified and returns a reference

to the IFsrmCommittableCollection interface (section 3.2.4.2.3) back to the client.

5. The client calls IFsrmCommittableCollection::Count (section 3.2.4.2.3.1) to get the number of

quotas in the collection.

6. The server replies to the client with the number of quotas in the collection.

7. The client calls IFsrmCollection::Item (section 3.2.4.2.1.2) with the index set to 1 to get the first
quota in the collection.

8. The server returns a VARIANT with the pDispVal element set to the IDispatch interface for the first
quota in the collection.

9. The client calls VARIANT.pDispVal::QueryInterface with the GUID of the IFsrmQuota interface
(section 3.2.4.2.16).

10. The server returns the IFsrmQuota interface of the quota.

11. The client can make calls to any of the methods implemented by IFsrmQuota.

12. The server responds appropriately to the client call.

13. The client calls IFsrmQuota::Release.

14. The server decrements the number of references to the quota.

401 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

15. The client can repeat steps 7 through 13, incrementing the index used in the call to
IFsrmCollection::Item (section 3.2.4.2.1.2) until the index is equal to, but not greater than, the

count returned in step 5.

16. The client calls IFsrmCommittableCollection::Release.

17. The server decrements the number of references to the collection.

18. The client calls IFsrmQuotaManager::Release.

Steps 4 through 10 are same for any IFsrmCollection interface (section 3.2.4.2.1), provided the
client substitutes IFsrmQuota in steps 9 and 11 with an interface appropriate for the type of quota
objects returned in the collection during step 3.

402 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Figure 1: Flow diagram for query enumeration

4.2 Retrieving Properties of File Server Resource Manager Protocol File Screens

File Server Resource Manager Protocol directory file screen objects are retrievable through a method
call on the IFsrmFileScreenManager interface (section 3.2.4.2.29). The following describes how a
client gets an existing file screen and retrieves its properties:

1. The client requests the creation of an instance of the File Screen Manager on the local machine by
calling CoCreateInstance with the class GUID of the File Screen Manager, requesting an instance
of the File Screen Manager on the server.

403 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

2. The server returns a reference to the IFsrmFileScreenManager interface.

3. The client calls the method IFsrmFileScreenManager::GetFileScreen (section 3.2.4.2.29.4),

passing in the path on a volume on the server for which the client wants to get the file screen.

4. The server returns a reference to the IFsrmFileScreen interface (section 3.2.4.2.27) of the file

screen for the specified path back to the client.

5. The client calls the IFsrmFileScreenBase::FileScreenFlags (get) (section 3.2.4.2.26.3) method.

6. The server returns the file screen flags for the file screen.

7. The client calls the IFsrmFileScreenBase::EnumActions (section 3.2.4.2.26.6) method.

8. The server collects all the actions for the file screen and returns an IFsrmMutableCollection
interface (section 3.2.4.2.2) containing the actions for the file screen.

9. The client can enumerate the actions in the collection by following steps 5 through 15 of section

4.1.

404 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Figure 2: Flow diagram for querying file screen properties

4.3 Modifying File Server Resource Manager Protocol Directory Quota Properties

Derived from Templates

File Server Resource Manager Protocol directory quota screen object properties can be modified
through method calls on the IFsrmQuotaTemplate interface (section 3.2.4.2.20) of the source
template for the quota. The following describes how a client can change the properties of all the
quotas derived from a particular template:

405 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

1. The client requests the creation of an instance of the Quota Template Manager on the local
machine by calling CoCreateInstance with the class GUID of the Quota Template Manager,

requesting an instance of the Quota Template Manager on the server.

2. The server returns a reference to the IFsrmQuotaTemplateManager interface (section

3.2.4.2.22).

3. The client calls the method IFsrmQuotaTemplateManager::GetTemplate (section 3.2.4.2.22.2),
passing in the name of the quota template that the client wants to get.

4. The server returns a reference to the IFsrmQuotaTemplate interface of the quota template with
the specified name back to the client.

5. The client calls the IFsrmQuotaBase::QuotaLimit (put) (section 3.2.4.2.14.3) method with the new
quota limit for the template.

6. The server returns S_OK, signifying it is maintaining the new quota limit.

7. The client calls the IFsrmQuotaTemplate::CommitAndUpdateDerived (section 3.2.4.2.17.4)

method, specifying FsrmTemplateApplyOptions_ApplyToDerivedAll.

8. The server returns S_OK, signifying that it committed the changes to the template and updated all
the quotas and auto apply quotas that were derived from the template. The server creates a
DerivedObjectsResult object and populates it with the IFsrmQuotaTemplate pointers of the

updated quotas and the HRESULT values that correspond to the
IFsrmQuotaTemplate::CommitAndUpdateDerived (section 3.2.4.2.17.4) call for each template.

9. The client calls IFsrmDerivedObjectsResult::DerivedObjects (section 3.2.4.2.13.1).

10. The server returns the IFsrmCollection (section 3.2.4.2.1) of IFsrmQuotaTemplate pointers
that correspond to the updated quota template objects.

11. The client calls IFsrmDerivedObjectsResult::Results (get) (section 3.2.4.2.13.2).

12. The server returns the IFsrmCollection of HRESULT values that correspond to the

IFsrmQuotaTemplate::CommitAndUpdateDerived call for each template.

13. The client can enumerate the quota templates and HRESULTs in the two collections by following
steps 5 through 15 of section 4.1.

406 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Figure 3: Flow diagram for modifying directory quota properties

4.4 Scheduling File Server Resource Manager Protocol Storage Reports

File Server Resource Manager Protocol reports are configured through method calls on the
IFsrmReportJob interface (section 3.2.4.2.34), which is returned by the IFsrmReportManager
interface (section 3.2.4.2.33). The following describes how a client schedules the running of reports:

1. The client requests the creation of an instance of the Report Manager on the local machine by
calling CoCreateInstance with the class GUID of the Report Manager, requesting an instance of

the Report Manager on the server.

2. The server returns a reference to the IFsrmReportManager interface.

407 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

3. The client requests the creation of an instance of the Report Scheduler on the local machine by
calling CoCreateInstance with the class GUID of the Report Scheduler, requesting an instance of

the Report Scheduler on the server.

4. The server returns a reference to the IFsrmReportScheduler interface (section 3.2.4.2.36).

5. The client calls the method IFsrmReportManager::GetReportJob (section 3.2.4.2.33.3), passing in
the task name of the report job that the client requires.

6. The server returns a reference to the IFsrmReportJob interface of the report job with the
specified name back to the client.

7. The client calls IFsrmReportScheduler::CreateScheduleTask (section 3.2.4.2.36.2), passing in the
name, namespaces, and serialized text of the task.

8. The server returns S_OK, signifying it created the new task.

9. The client calls IFsrmReportJob::Task (put) (section 3.2.4.2.34.3), with the name of the scheduled
task used in step 7.

10. The server returns S_OK, signifying it is maintaining the new task name.

11. The client calls IFsrmQuotaTemplate::CommitAndUpdateDerived (section 3.2.4.2.20.6).

12. The server returns S_OK, signifying it committed the changes to the report job.

408 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Figure 4: Flow diagram of scheduling storage reports

4.5 Modifying File Server Resource Manager Protocol Global Settings

File Server Resource Manager Protocol global settings are retrievable through method calls on the
IFsrmSetting interface (section 3.2.4.2.11). The following describes how a client retrieves and sets
global settings:

1. The client requests the creation of an instance of the Settings object on the local machine by
calling CoCreateInstance with the class GUID of the File Server Resource Manager Protocol

Setting class, requesting an instance of the IFsrmSetting interface on the server.

2. The server returns a reference to the IFsrmSetting interface.

3. The client calls the method IFsrmSetting::SmtpServer (put) (section 3.2.4.2.11.2) with the name
of the SMTP mail server for the File Server Resource Manager Protocol to use.

4. The server maintains the SMTP server name for sending email messages.

409 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

5. The client calls IFsrmSetting::EmailTest (section 3.2.4.2.11.11) with the email address to send the
test message to.

6. The server creates an email message by using default text and current settings and sends the
email message to the email address on the SMTP server set in step 5.

4.6 Enumerating Classification Properties

File Server Resource Manager Protocol classification properties registered on the server are retrievable
through an enumeration via the IFsrmClassificationManager interface (section 3.2.4.2.45). The

following describes how a client can enumerate FSRM classification property objects:

1. The client requests the creation of an instance of the Classification Manager on the local machine
by calling CoCreateInstance with the class GUID of the Classification Manager, requesting an
instance of the Classification Manager on the server.

2. The server returns a reference to the IFsrmClassificationManager interface.

3. The client calls the method
IFsrmClassificationManager::EnumPropertyDefinitions (section 3.2.4.2.45.12).

4. The server collects all the classification properties configured for the server and returns back to
the client a reference to the IFsrmCollection interface (section 3.2.4.2.1).

5. The client calls the method IFsrmCollection::Count (section 3.2.4.2.1.3) to get the number of
classification properties in the collection.

6. The server replies to the client with the number of quotas in the collection.

7. The client calls the method IFsrmCollection::Item (section 3.2.4.2.1.2) with the index set to 1 to
get the first classification property in the collection.

8. The server returns a VARIANT with the pDispVal element set to the IDispatch interface for the
first classification property in the collection.

9. The client calls the method VARIANT.pDispVal::QueryInterface with the GUID of the
IFsrmPropertyDefinition interface (section 3.2.4.2.37).

10. The server returns the IFsrmPropertyDefinition interface of the property definition.

11. The client can make calls to any of the methods implemented by IFsrmPropertyDefinition.

12. The server responds appropriately to the client call.

13. The client calls the method IFsrmPropertyDefinition::Release.

14. The server decrements the number of references to the property definition.

15. The client can repeat steps 7 through 14, incrementing the index used in the call to
IFsrmCollection::Item until the index is equal to, but not greater than, the count returned in step
5.

16. The client calls the method IFsrmCollection::Release.

17. The server decrements the number of references to the collection.

18. The client calls the method IFsrmClassificationManager::Release.

410 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Figure 5: Flow diagram for query enumeration

4.7 Adding Classification Rules

File Server Resource Manager Protocol classification rules can be registered on the server via the

IFsrmClassificationManager interface (section 3.2.4.2.45). The following describes how a client can
add a new FSRM classification rule object:

1. The client requests the creation of an instance of the Classification Manager on the local machine
by calling CoCreateInstance with the class GUID of the Classification Manager, requesting an
instance of the Classification Manager on the server.

411 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

2. The server returns a reference to the IFsrmClassificationManager interface.

3. The client calls the method IFsrmClassificationManager::CreateRule (section 3.2.4.2.45.16) with

the value of the type of rule desired (FsrmRuleType (section 2.2.1.2.11)).

4. The server returns a reference to the IFsrmRule interface (section 3.2.4.2.41) back to the client.

5. The client can make calls to any of the methods implemented by IFsrmRule.

6. The server responds appropriately to the client call.

7. The client calls IFsrmObject::Commit (section 3.2.4.2.10.5).

8. The server updates the collection of classification rules to include the new classification rule.

9. The client calls IFsrmRule::Release.

10. The server decrements the number of references to the classification rules.

Figure 6: Flow diagram for adding new classification rules

4.8 Modifying File Management Jobs

File Server Resource Manager Protocol file management jobs registered on the server can be modified
via the IFsrmFileManagementJobManager interface (section 3.2.4.2.50). The following describes

how a client can modify a FSRM file management job to have a new classification property
condition:

412 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

1. The client requests the creation of an instance of the File Management Job Manager on the local
machine by calling CoCreateInstance with the class GUID of the File Management Job Manager,

requesting an instance of the File Management Job Manager on the server.

2. The server returns a reference to the IFsrmFileManagementJobManager interface.

3. The client calls the method
IFsrmFileManagementJobManager::GetFileManagementJob (section 3.2.4.2.50.3) with the name
of the file management job that it intends to modify.

4. The server returns a reference to the requested IFsrmFileManagementJob interface (section
3.2.4.2.48) back to the client.

5. The client calls the method
IFsrmFileManagementJob::CreatePropertyCondition (section 3.2.4.2.48.49) with the name of a

valid classification property on the server.

6. The server returns a reference to a new IFsrmPropertyCondition interface (section 3.2.4.2.49)
back to the client.

7. The client calls the method implemented by IFsrmPropertyCondition::Type
(put) (section 3.2.4.2.49.4) with the value of FsrmPropertyConditionType (section 2.2.2.10.1.1)
that is desired for the new condition.

8. The server maintains the condition type.

9. The client calls the method IFsrmPropertyCondition::Value (put) (section 3.2.4.2.49.6) with the
value that is desired for the new condition.

10. The server maintains the condition value.

11. The client calls the method IFsrmFileManagementJob::Commit.

12. The server stores the new definition of the file management job.

13. The client calls IFsrmFileManagementJob::Release.

14. The server decrements the number of references to the file management job.

413 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Figure 7: Flow diagram for File Management Job modification

4.9 Updating Property Values for a File

File Server Resource Manager Protocol can query and modify classification properties for files on the

server via the IFsrmClassificationManager interface (section 3.2.4.2.45). The following describes
how a client can retrieve and modify a classification property for a file on a server:

1. The client requests the creation of an instance of the Classification Manager on the local machine

by calling CoCreateInstance with the class GUID of the Classification Manager, requesting an
instance of the Classification Manager on the server.

2. The server returns a reference to the IFsrmClassificationManager interface.

3. The client calls the method

IFsrmClassificationManager::EnumFileProperties (section 3.2.4.2.45.24) with the name of the file
on the server that it intends to retrieve.

414 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

4. The server collects all the classification properties configured for the server and returns a
reference to the IFsrmCollection interface (section 3.2.4.2.1) back to the client.

5. The client calls the method IFsrmCollection::Count (section 3.2.4.2.1.3) to get the number of
classification properties in the collection.

6. The server replies to the client with the number of quotas in the collection.

7. The client calls the method IFsrmCollection::Item (section 3.2.4.2.1.2) with the index set to 1 to
get the first classification property in the collection.

8. The server returns a VARIANT with the pDispVal element set to the IDispatch interface for the
first classification property in the collection.

9. The client calls the method VARIANT.pDispVal::QueryInterface with the GUID of the
IFsrmProperty interface (section 3.2.4.2.40).

10. The server returns the IFsrmProperty interface of the property definition.

11. The client can make calls to any of the methods implemented by IFsrmProperty.

12. The server responds appropriately to the client call.

13. The client calls the method IFsrmProperty::Release.

14. The server decrements the number of references to the property definition.

15. The client can repeat steps 7 through 14, incrementing the index used in the call to

IFsrmCollection::Item (section 3.2.4.2.1.2) until the index is equal to, but not greater than, the
count returned in step 5.

16. The server responds appropriately to the client call.

17. The client calls the method IFsrmCollection::Release.

18. The server decrements the number of references to the collection.

19. The client calls the method IFsrmClassificationManager::SetFileProperty (section 3.2.4.2.45.26)
with the name of the file previously queried, a valid property name as retrieved in the collection of

IFsrmProperty interfaces, and a new value for that property.

20. The server stores the new property value for the file on the server.

415 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Figure 8: Flow diagram for enumerating classification properties on a file and updating one

416 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

5 Security

This protocol introduces no security considerations beyond those applicable to DCOM interfaces.
Details are as specified in [MS-DCOM] section 5.

%5bMS-DCOM%5d.pdf#Section_4a893f3dbd2948cd9f43d9777a4415b0

417 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

6 Appendix A: Full IDL

For ease of implementation, the full interface definition language (IDL) is provided as follows, where
"ms-dtyp.idl" is the IDL found in [MS-DTYP] section 5 and "ms-oaut.idl" is the IDL found in [MS-
OAUT].

This IDL does not include a pointer_default declaration. As noted in [MS-RPCE], this declaration is not
required in MIDL, and, in this case, pointer_default(unique) is assumed.

 import "ms-dtyp.idl";
 import "ms-oaut.idl";

 #define SAFEARRAY(VARIANT) SAFEARRAY

 typedef GUID FSRM_OBJECT_ID;

 typedef enum _FsrmQuotaFlags {
 FsrmQuotaFlags_Enforce = 0x00000100,
 FsrmQuotaFlags_Disable = 0x00000200,
 FsrmQuotaFlags_StatusIncomplete = 0x00010000,
 FsrmQuotaFlags_StatusRebuilding = 0x00020000

 } FsrmQuotaFlags;

 typedef enum _FsrmFileScreenFlags {

 FsrmFileScreenFlags_Enforce = 0x00000001

 } FsrmFileScreenFlags;

 typedef enum _FsrmCollectionState {

 FsrmCollectionState_Fetching = 1,
 FsrmCollectionState_Committing = 2,
 FsrmCollectionState_Complete = 3,
 FsrmCollectionState_Cancelled = 4

 } FsrmCollectionState;

 typedef enum _FsrmEnumOptions {

 FsrmEnumOptions_None = 0x00000000,
 FsrmEnumOptions_Asynchronous = 0x00000001,
 FsrmEnumOptions_CheckRecycleBin = 0x00000002,
 FsrmEnumOptions_IncludeClusterNodes
 = 0x00000004,
 FsrmEnumOptions_IncludeDeprecatedObjects
 = 0x00000008

 } FsrmEnumOptions;

 typedef enum _FsrmCommitOptions {

 FsrmCommitOptions_None = 0x00000000,
 FsrmCommitOptions_Asynchronous = 0x00000001

 } FsrmCommitOptions;

 typedef enum _FsrmTemplateApplyOptions {

 FsrmTemplateApplyOptions_ApplyToDerivedMatching = 1,
 FsrmTemplateApplyOptions_ApplyToDerivedAll = 2

 } FsrmTemplateApplyOptions;

 typedef enum _FsrmActionType {

%5bMS-DTYP%5d.pdf#Section_cca2742956894a16b2b49325d93e4ba2
%5bMS-OAUT%5d.pdf#Section_bbb05720f72445c78d17f83c3d1a3961
%5bMS-OAUT%5d.pdf#Section_bbb05720f72445c78d17f83c3d1a3961
%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15

418 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 FsrmActionType_Unknown = 0,
 FsrmActionType_EventLog = 1,
 FsrmActionType_Email = 2,
 FsrmActionType_Command = 3,
 FsrmActionType_Report = 4

 } FsrmActionType;

 typedef enum _FsrmEventType {

 FsrmEventType_Unknown = 0,
 FsrmEventType_Information = 1,
 FsrmEventType_Warning = 2,
 FsrmEventType_Error = 3

 } FsrmEventType;

 typedef enum _FsrmAccountType {

 FsrmAccountType_Unknown = 0,
 FsrmAccountType_NetworkService = 1,
 FsrmAccountType_LocalService = 2,
 FsrmAccountType_LocalSystem = 3,
 FsrmAccountType_InProc = 4,
 FsrmAccountType_External = 5,
 FsrmAccountType_Automatic = 500

 } FsrmAccountType;

 typedef enum _FsrmReportType {

 FsrmReportType_Unknown = 0,
 FsrmReportType_LargeFiles = 1,
 FsrmReportType_FilesByType = 2,
 FsrmReportType_LeastRecentlyAccessed = 3,
 FsrmReportType_MostRecentlyAccessed = 4,
 FsrmReportType_QuotaUsage = 5,
 FsrmReportType_FilesByOwner = 6,
 FsrmReportType_ExportReport = 7,
 FsrmReportType_DuplicateFiles = 8,
 FsrmReportType_FileScreenAudit = 9,
 FsrmReportType_FilesByProperty = 10,
 FsrmReportType_AutomaticClassification = 11,
 FsrmReportType_Expiration = 12,
 FsrmReportType_FoldersByProperty = 13

 } FsrmReportType;

 typedef enum _FsrmReportFormat {

 FsrmReportFormat_Unknown = 0,
 FsrmReportFormat_DHtml = 1,
 FsrmReportFormat_Html = 2,
 FsrmReportFormat_Txt = 3,
 FsrmReportFormat_Csv = 4,
 FsrmReportFormat_Xml = 5

 } FsrmReportFormat;

 typedef enum _FsrmReportRunningStatus {

 FsrmReportRunningStatus_Unknown = 0,
 FsrmReportRunningStatus_NotRunning = 1,
 FsrmReportRunningStatus_Queued = 2,
 FsrmReportRunningStatus_Running = 3

 } FsrmReportRunningStatus;

 typedef enum _FsrmReportGenerationContext {

419 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 FsrmReportGenerationContext_Undefined = 1,
 FsrmReportGenerationContext_ScheduledReport = 2,
 FsrmReportGenerationContext_InteractiveReport = 3,
 FsrmReportGenerationContext_IncidentReport = 4

 } FsrmReportGenerationContext;

 typedef enum _FsrmReportFilter {

 FsrmReportFilter_MinSize = 1,
 FsrmReportFilter_MinAgeDays = 2,
 FsrmReportFilter_MaxAgeDays = 3,
 FsrmReportFilter_MinQuotaUsage = 4,
 FsrmReportFilter_FileGroups = 5,
 FsrmReportFilter_Owners = 6,
 FsrmReportFilter_NamePattern = 7,
 FsrmReportFilter_Property = 8

 } FsrmReportFilter;

 typedef enum _FsrmReportLimit {

 FsrmReportLimit_MaxFiles = 1,
 FsrmReportLimit_MaxFileGroups = 2,
 FsrmReportLimit_MaxOwners = 3,
 FsrmReportLimit_MaxFilesPerFileGroup = 4,
 FsrmReportLimit_MaxFilesPerOwner = 5,
 FsrmReportLimit_MaxFilesPerDuplGroup = 6,
 FsrmReportLimit_MaxDuplicateGroups = 7,
 FsrmReportLimit_MaxQuotas = 8,
 FsrmReportLimit_MaxFileScreenEvents = 9,
 FsrmReportLimit_MaxPropertyValues = 10,
 FsrmReportLimit_MaxFilesPerPropertyValue = 11,
 FsrmReportLimit_MaxFolders = 12

 } FsrmReportLimit;

 typedef enum _FsrmPropertyDefinitionType {

 FsrmPropertyDefinitionType_Unknown = 0,
 FsrmPropertyDefinitionType_OrderedList = 1,
 FsrmPropertyDefinitionType_MultiChoiceList = 2,
 FsrmPropertyDefinitionType_SingleChoiceList = 3,
 FsrmPropertyDefinitionType_String = 4,
 FsrmPropertyDefinitionType_MultiString = 5,
 FsrmPropertyDefinitionType_Int = 6,
 FsrmPropertyDefinitionType_Bool = 7,
 FsrmPropertyDefinitionType_Date = 8

 } FsrmPropertyDefinitionType;

 typedef enum _FsrmRuleType {

 FsrmRuleType_Unknown = 0,
 FsrmRuleType_Classification = 1,
 FsrmRuleType_Generic = 2

 } FsrmRuleType;

 typedef enum _FsrmRuleFlags {

 FsrmRuleFlags_Disabled = 0x00000100,
 FsrmRuleFlags_Invalid = 0x00001000

 } FsrmRuleFlags;

 typedef enum _FsrmClassificationLoggingFlags {

420 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 FsrmClassificationLoggingFlags_None =
 0x00000000,
 FsrmClassificationLoggingFlags_ClassificationsInLogFile =
 0x00000001,
 FsrmClassificationLoggingFlags_ErrorsInLogFile =
 0x00000002,
 FsrmClassificationLoggingFlags_ClassificationsInSystemLog =
 0x00000004,
 FsrmClassificationLoggingFlags_ErrorsInSystemLog =
 0x00000008

 } FsrmClassificationLoggingFlags;

 typedef enum _FsrmExecutionOption {

 FsrmExecutionOption_Unknown = 0,
 FsrmExecutionOption_EvaluateUnset = 1,
 FsrmExecutionOption_ReEvaluate_ConsiderExistingValue = 2,
 FsrmExecutionOption_ReEvaluate_IgnoreExistingValue = 3

 } FsrmExecutionOption;

 typedef enum _FsrmStorageModuleCaps {

 FsrmStorageModuleCaps_Unknown = 0x00000000,
 FsrmStorageModuleCaps_CanGet = 0x00000001,
 FsrmStorageModuleCaps_CanSet = 0x00000002,
 FsrmStorageModuleCaps_CanHandleDirectories = 0x00000004,
 FsrmStorageModuleCaps_CanHandleFiles = 0x00000008

 } FsrmStorageModuleCaps;

 typedef enum _FsrmStorageModuleType {

 FsrmStorageModuleType_Unknown = 0x00000000,
 FsrmStorageModuleType_Cache = 0x00000001,
 FsrmStorageModuleType_InFile = 0x00000002,
 FsrmStorageModuleType_Database = 0x00000003,
 FsrmStorageModuleType_System = 0x00000064

 } FsrmStorageModuleType;

 typedef enum _FsrmPropertyFlags {

 FsrmPropertyFlags_Orphaned = 0x00000001,
 FsrmPropertyFlags_RetrievedFromCache = 0x00000002,
 FsrmPropertyFlags_RetrievedFromStorage = 0x00000004,
 FsrmPropertyFlags_SetByClassifier = 0x00000008,
 FsrmPropertyFlags_Deleted = 0x00000010,
 FsrmPropertyFlags_Reclassified = 0x00000020,
 FsrmPropertyFlags_AggregationFailed = 0x00000040,
 FsrmPropertyFlags_Existing = 0x00000080,
 FsrmPropertyFlags_FailedLoadingProperties = 0x00000100,
 FsrmPropertyFlags_FailedClassifyingProperties = 0x00000200,
 FsrmPropertyFlags_FailedSavingProperties = 0x00000400,
 FsrmPropertyFlags_Secure = 0x00000800,
 FsrmPropertyFlags_PolicyDerived = 0x00001000,
 FsrmPropertyFlags_Inherited = 0x00002000,
 FsrmPropertyFlags_Manual = 0x00004000,
 FsrmPropertyFlags_PropertySourceMask = 0x0000000E

 } FsrmPropertyFlags;

 typedef enum _FsrmPipelineModuleType {

 FsrmPipelineModuleType_Unknown = 0,

421 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 FsrmPipelineModuleType_Storage = 1,
 FsrmPipelineModuleType_Classifier = 2,

 } FsrmPipelineModuleType;

 typedef enum _FsrmGetFilePropertyOptions {

 FsrmGetFilePropertyOptions_None = 0x00000000,
 FsrmGetFilePropertyOptions_NoRuleEvaluation = 0x00000001,
 FsrmGetFilePropertyOptions_Persistent = 0x00000002,
 FsrmGetFilePropertyOptions_FailOnPersistErrors = 0x00000004,
 FsrmGetFilePropertyOptions_SkipOrphaned = 0x00000008
 } FsrmGetFilePropertyOptions;

 typedef enum _FsrmFileManagementType {

 FsrmFileManagementType_Unknown = 0,
 FsrmFileManagementType_Expiration = 1,
 FsrmFileManagementType_Custom = 2,
 FsrmFileManagementType_Rms = 3

 } FsrmFileManagementType;

 typedef enum _FsrmFileManagementLoggingFlags {

 FsrmFileManagementLoggingFlags_None = 0x00000000,
 FsrmFileManagementLoggingFlags_Error = 0x00000001,
 FsrmFileManagementLoggingFlags_Information = 0x00000002,
 FsrmFileManagementLoggingFlags_Audit = 0x00000004

 } FsrmFileManagementLoggingFlags;

 typedef enum _FsrmPropertyConditionType {

 FsrmPropertyConditionType_Unknown = 0,
 FsrmPropertyConditionType_Equal = 1,
 FsrmPropertyConditionType_NotEqual = 2,
 FsrmPropertyConditionType_GreaterThan = 3,
 FsrmPropertyConditionType_LessThan = 4,
 FsrmPropertyConditionType_Contain = 5,
 FsrmPropertyConditionType_Exist = 6,
 FsrmPropertyConditionType_NotExist = 7,
 FsrmPropertyConditionType_StartWith = 8,
 FsrmPropertyConditionType_EndWith = 9,
 FsrmPropertyConditionType_ContainedIn = 10,
 FsrmPropertyConditionType_PrefixOf = 11,
 FsrmPropertyConditionType_SuffixOf = 12

 } FsrmPropertyConditionType;

 interface IFsrmObject;

 interface IFsrmCollection;
 interface IFsrmMutableCollection;
 interface IFsrmCommittableCollection;

 interface IFsrmAction;
 interface IFsrmActionEmail;
 interface IFsrmActionReport;
 interface IFsrmActionEventLog;
 interface IFsrmActionCommand;

 interface IFsrmSetting;

 interface IFsrmPathMapper;

 const DISPID FSRM_DISPID_FEATURE_MASK = 0x0F000000;

422 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 const DISPID FSRM_DISPID_INTERFACE_A_MASK = 0x00F00000;
 const DISPID FSRM_DISPID_INTERFACE_B_MASK = 0x000F0000;
 const DISPID FSRM_DISPID_INTERFACE_C_MASK = 0x0000F000;
 const DISPID FSRM_DISPID_INTERFACE_D_MASK = 0x00000F00;
 const DISPID FSRM_DISPID_INTERFACE_MASK =
 FSRM_DISPID_INTERFACE_A_MASK |
 FSRM_DISPID_INTERFACE_B_MASK |
 FSRM_DISPID_INTERFACE_C_MASK |
 FSRM_DISPID_INTERFACE_D_MASK;

 const DISPID FSRM_DISPID_IS_PROPERTY = 0x00000080;
 const DISPID FSRM_DISPID_METHOD_NUM_MASK = 0x0000007F;
 const DISPID FSRM_DISPID_METHOD_MASK =
 FSRM_DISPID_IS_PROPERTY |
 FSRM_DISPID_METHOD_NUM_MASK;

 #define FSRM_PROPERTY(x) x | FSRM_DISPID_IS_PROPERTY

 const DISPID FSRM_DISPID_FEATURE_GENERAL = 0x01000000;
 const DISPID FSRM_DISPID_FEATURE_QUOTA = 0x02000000;
 const DISPID FSRM_DISPID_FEATURE_FILESCREEN = 0x03000000;
 const DISPID FSRM_DISPID_FEATURE_REPORTS = 0x04000000;
 const DISPID FSRM_DISPID_FEATURE_CLASSIFICATION = 0x05000000;
 const DISPID FSRM_DISPID_FEATURE_PIPELINE = 0x06000000;

 const DISPID FSRM_DISPID_OBJECT =
 FSRM_DISPID_FEATURE_GENERAL | 0x100000;

 const DISPID FSRM_DISPID_COLLECTION =
 FSRM_DISPID_FEATURE_GENERAL | 0x200000;
 const DISPID FSRM_DISPID_COLLECTION_MUTABLE =
 FSRM_DISPID_COLLECTION | 0x010000;
 const DISPID FSRM_DISPID_COLLECTION_COMMITTABLE =
 FSRM_DISPID_COLLECTION_MUTABLE | 0x001000;

 const DISPID FSRM_DISPID_ACTION =
 FSRM_DISPID_FEATURE_GENERAL | 0x300000;
 const DISPID FSRM_DISPID_ACTION_EMAIL =
 FSRM_DISPID_ACTION | 0x010000;
 const DISPID FSRM_DISPID_ACTION_REPORT =
 FSRM_DISPID_ACTION | 0x020000;
 const DISPID FSRM_DISPID_ACTION_EVENTLOG =
 FSRM_DISPID_ACTION | 0x030000;
 const DISPID FSRM_DISPID_ACTION_COMMAND =
 FSRM_DISPID_ACTION | 0x040000;
 const DISPID FSRM_DISPID_ACTION_EMAIL2 =
 FSRM_DISPID_ACTION | 0x050000;

 const DISPID FSRM_DISPID_SETTING =
 FSRM_DISPID_FEATURE_GENERAL | 0x400000;

 const DISPID FSRM_DISPID_PATHMAPPER =
 FSRM_DISPID_FEATURE_GENERAL | 0x500000;

 const DISPID FSRM_DISPID_DERIVEDOBJECTSRESULT =
 FSRM_DISPID_FEATURE_GENERAL | 0x700000;

 [
 object,
 uuid(22bcef93-4a3f-4183-89f9-2f8b8a628aee),
 dual,
 hidden,
 nonextensible,

 pointer_default(unique)
]interface IFsrmObject : IDispatch
 { [propget, id(FSRM_PROPERTY(FSRM_DISPID_OBJECT | 0x01))]
 HRESULT Id([out, retval] FSRM_OBJECT_ID *id);

423 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_OBJECT | 0x02))]
 HRESULT Description([out, retval] BSTR *description);

 [propput, id(FSRM_PROPERTY(FSRM_DISPID_OBJECT | 0x02))]
 HRESULT Description([in] BSTR description);

 [id(FSRM_DISPID_OBJECT | 0x01)]
 HRESULT Delete();

 [id(FSRM_DISPID_OBJECT | 0x02)]
 HRESULT Commit();
 };

 [
 object,
 uuid(f76fbf3b-8ddd-4b42-b05a-cb1c3ff1fee8),
 dual,
 hidden,
 nonextensible,

 pointer_default(unique)
]interface IFsrmCollection : IDispatch
 { [propget, id(DISPID_NEWENUM), restricted]
 HRESULT _NewEnum([out, retval] IUnknown **unknown);

 [propget, id(DISPID_VALUE)]
 HRESULT Item(
 [in] long index,
 [out, retval] VARIANT *item);

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_COLLECTION | 0x01))]
 HRESULT Count([out, retval] long *count);

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_COLLECTION | 0x02))]
 HRESULT State([out, retval] FsrmCollectionState *state);

 [id(FSRM_DISPID_COLLECTION | 0x01)]
 HRESULT Cancel();

 [id(FSRM_DISPID_COLLECTION | 0x02)]
 HRESULT WaitForCompletion(
 [in] long waitSeconds,
 [out, retval] VARIANT_BOOL *completed);

 [id(FSRM_DISPID_COLLECTION | 0x03)]
 HRESULT GetById(
 [in] FSRM_OBJECT_ID id,
 [out, retval] VARIANT *entry);
 };

 [
 object,
 uuid(1bb617b8-3886-49dc-af82-a6c90fa35dda),
 dual,
 hidden,
 nonextensible,

 pointer_default(unique)
]interface IFsrmMutableCollection : IFsrmCollection
 { [id(FSRM_DISPID_COLLECTION_MUTABLE | 0x01)]
 HRESULT Add([in] VARIANT item);

 [id(FSRM_DISPID_COLLECTION_MUTABLE | 0x02)]
 HRESULT Remove([in] long index);

 [id(FSRM_DISPID_COLLECTION_MUTABLE | 0x03)]
 HRESULT RemoveById([in] FSRM_OBJECT_ID id);

 [id(FSRM_DISPID_COLLECTION_MUTABLE | 0x04)]

424 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 HRESULT Clone([out, retval] IFsrmMutableCollection **collection);
 };

 [
 object,
 uuid(96deb3b5-8b91-4a2a-9d93-80a35d8aa847),
 dual,
 hidden,
 nonextensible,

 pointer_default(unique)
]interface IFsrmCommittableCollection : IFsrmMutableCollection
 { [id(FSRM_DISPID_COLLECTION_COMMITTABLE | 0x01)]
 HRESULT Commit(
 [in] FsrmCommitOptions options,
 [out, retval] IFsrmCollection **results);
 };

 [
 object,
 uuid(6cd6408a-ae60-463b-9ef1-e117534d69dc),
 dual,

 pointer_default(unique)
]interface IFsrmAction : IDispatch
 { [propget, id(FSRM_PROPERTY(FSRM_DISPID_ACTION | 0x01))]
 HRESULT Id([out, retval] FSRM_OBJECT_ID *id);

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_ACTION | 0x02))]
 HRESULT ActionType([out, retval] FsrmActionType *actionType);

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_ACTION | 0x03))]
 HRESULT RunLimitInterval([out, retval] long *minutes);

 [propput, id(FSRM_PROPERTY(FSRM_DISPID_ACTION | 0x03))]
 HRESULT RunLimitInterval([in] long minutes);

 [id(FSRM_DISPID_ACTION | 0x01)]
 HRESULT Delete();
 };

 [
 object,
 uuid(d646567d-26ae-4caa-9f84-4e0aad207fca),
 dual,

 pointer_default(unique)
]interface IFsrmActionEmail : IFsrmAction
 { [propget, id(FSRM_PROPERTY(FSRM_DISPID_ACTION_EMAIL | 0x01))]
 HRESULT MailFrom([out, retval] BSTR *mailFrom);

 [propput, id(FSRM_PROPERTY(FSRM_DISPID_ACTION_EMAIL | 0x01))]
 HRESULT MailFrom([in] BSTR mailFrom);

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_ACTION_EMAIL | 0x02))]
 HRESULT MailReplyTo([out, retval] BSTR *mailReplyTo);

 [propput, id(FSRM_PROPERTY(FSRM_DISPID_ACTION_EMAIL | 0x02))]
 HRESULT MailReplyTo([in] BSTR mailReplyTo);

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_ACTION_EMAIL | 0x03))]
 HRESULT MailTo([out, retval] BSTR *mailTo);

 [propput, id(FSRM_PROPERTY(FSRM_DISPID_ACTION_EMAIL | 0x03))]
 HRESULT MailTo([in] BSTR mailTo);

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_ACTION_EMAIL | 0x04))]
 HRESULT MailCc([out, retval] BSTR *mailCc);

425 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 [propput, id(FSRM_PROPERTY(FSRM_DISPID_ACTION_EMAIL | 0x04))]
 HRESULT MailCc([in] BSTR mailCc);

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_ACTION_EMAIL | 0x05))]
 HRESULT MailBcc([out, retval] BSTR *mailBcc);

 [propput, id(FSRM_PROPERTY(FSRM_DISPID_ACTION_EMAIL | 0x05))]
 HRESULT MailBcc([in] BSTR mailBcc);

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_ACTION_EMAIL | 0x06))]
 HRESULT MailSubject([out, retval] BSTR *mailSubject);

 [propput, id(FSRM_PROPERTY(FSRM_DISPID_ACTION_EMAIL | 0x06))]
 HRESULT MailSubject([in] BSTR mailSubject);

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_ACTION_EMAIL | 0x07))]
 HRESULT MessageText([out, retval] BSTR *messageText);

 [propput, id(FSRM_PROPERTY(FSRM_DISPID_ACTION_EMAIL | 0x07))]
 HRESULT MessageText([in] BSTR messageText);
 };

 [
 object,
 uuid(8276702f-2532-4839-89bf-4872609a2ea4),
 dual,

 pointer_default(unique)
]interface IFsrmActionEmail2 : IFsrmActionEmail
 { [propget, id(FSRM_PROPERTY(FSRM_DISPID_ACTION_EMAIL2 | 0x01))]
 HRESULT AttachmentFileListSize([out, retval]
 long *attachmentFileListSize);

 [propput, id(FSRM_PROPERTY(FSRM_DISPID_ACTION_EMAIL2 | 0x01))]
 HRESULT AttachmentFileListSize([in] long attachmentFileListSize);
 };

 [
 object,
 uuid(2dbe63c4-b340-48a0-a5b0-158e07fc567e),
 dual,

 pointer_default(unique)
]interface IFsrmActionReport : IFsrmAction
 { [propget, id(FSRM_PROPERTY(FSRM_DISPID_ACTION_REPORT | 0x01))]
 HRESULT ReportTypes([out, retval] SAFEARRAY(VARIANT)
 *reportTypes);

 [propput, id(FSRM_PROPERTY(FSRM_DISPID_ACTION_REPORT | 0x01))]
 HRESULT ReportTypes([in] SAFEARRAY(VARIANT) reportTypes);

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_ACTION_REPORT | 0x02))]
 HRESULT MailTo([out, retval] BSTR *mailTo);
 [propput, id(FSRM_PROPERTY(FSRM_DISPID_ACTION_REPORT | 0x02))]
 HRESULT MailTo([in] BSTR mailTo);
 };

 [
 object,
 uuid(4c8f96c3-5d94-4f37-a4f4-f56ab463546f),
 dual,

 pointer_default(unique)
]interface IFsrmActionEventLog : IFsrmAction
 { [propget, id(FSRM_PROPERTY(FSRM_DISPID_ACTION_EVENTLOG | 0x01))]
 HRESULT EventType([out, retval] FsrmEventType *eventType);

 [propput, id(FSRM_PROPERTY(FSRM_DISPID_ACTION_EVENTLOG | 0x01))]
 HRESULT EventType([in] FsrmEventType eventType);

426 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_ACTION_EVENTLOG | 0x02))]
 HRESULT MessageText([out, retval] BSTR *messageText);

 [propput, id(FSRM_PROPERTY(FSRM_DISPID_ACTION_EVENTLOG | 0x02))]
 HRESULT MessageText([in] BSTR messageText);
 };

 [
 object,
 uuid(12937789-e247-4917-9c20-f3ee9c7ee783),
 dual,

 pointer_default(unique)
]interface IFsrmActionCommand : IFsrmAction
 { [propget, id(FSRM_PROPERTY(FSRM_DISPID_ACTION_COMMAND | 0x01))]
 HRESULT ExecutablePath([out, retval] BSTR *executablePath);

 [propput, id(FSRM_PROPERTY(FSRM_DISPID_ACTION_COMMAND | 0x01))]
 HRESULT ExecutablePath([in] BSTR executablePath);

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_ACTION_COMMAND | 0x02))]
 HRESULT Arguments([out, retval] BSTR *arguments);

 [propput, id(FSRM_PROPERTY(FSRM_DISPID_ACTION_COMMAND | 0x02))]
 HRESULT Arguments([in] BSTR arguments);

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_ACTION_COMMAND | 0x03))]
 HRESULT Account([out, retval] FsrmAccountType *account);

 [propput, id(FSRM_PROPERTY(FSRM_DISPID_ACTION_COMMAND | 0x03))]
 HRESULT Account([in] FsrmAccountType account);

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_ACTION_COMMAND | 0x04))]
 HRESULT WorkingDirectory([out, retval] BSTR *workingDirectory);

 [propput, id(FSRM_PROPERTY(FSRM_DISPID_ACTION_COMMAND | 0x04))]
 HRESULT WorkingDirectory([in] BSTR workingDirectory);

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_ACTION_COMMAND | 0x05))]
 HRESULT MonitorCommand([out, retval] VARIANT_BOOL
 *monitorCommand);

 [propput, id(FSRM_PROPERTY(FSRM_DISPID_ACTION_COMMAND | 0x05))]
 HRESULT MonitorCommand([in] VARIANT_BOOL monitorCommand);

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_ACTION_COMMAND | 0x06))]
 HRESULT KillTimeOut([out, retval] long *minutes);

 [propput, id(FSRM_PROPERTY(FSRM_DISPID_ACTION_COMMAND | 0x06))]
 HRESULT KillTimeOut([in] long minutes);

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_ACTION_COMMAND | 0x07))]
 HRESULT LogResult([out, retval] VARIANT_BOOL *logResults);

 [propput, id(FSRM_PROPERTY(FSRM_DISPID_ACTION_COMMAND | 0x07))]
 HRESULT LogResult([in] VARIANT_BOOL logResults);
 };

 [
 object,
 uuid(f411d4fd-14be-4260-8c40-03b7c95e608a),
 dual,

 pointer_default(unique)
]interface IFsrmSetting : IDispatch
 { [propget, id(FSRM_PROPERTY(FSRM_DISPID_SETTING | 0x01))]
 HRESULT SmtpServer([out,retval] BSTR *smtpServer);

427 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 [propput, id(FSRM_PROPERTY(FSRM_DISPID_SETTING | 0x01))]
 HRESULT SmtpServer([in] BSTR smtpServer);

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_SETTING | 0x02))]
 HRESULT MailFrom([out,retval] BSTR *mailFrom);

 [propput, id(FSRM_PROPERTY(FSRM_DISPID_SETTING | 0x02))]
 HRESULT MailFrom([in] BSTR mailFrom);

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_SETTING | 0x03))]
 HRESULT AdminEmail([out,retval] BSTR *adminEmail);

 [propput, id(FSRM_PROPERTY(FSRM_DISPID_SETTING | 0x03))]
 HRESULT AdminEmail([in] BSTR adminEmail);

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_SETTING | 0x04))]
 HRESULT DisableCommandLine([out,retval] VARIANT_BOOL
 *disableCommandLine);

 [propput, id(FSRM_PROPERTY(FSRM_DISPID_SETTING | 0x04))]
 HRESULT DisableCommandLine([in] VARIANT_BOOL
 disableCommandLine);

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_SETTING | 0x05))]
 HRESULT EnableScreeningAudit([out,retval] VARIANT_BOOL
 *enableScreeningAudit);

 [propput, id(FSRM_PROPERTY(FSRM_DISPID_SETTING | 0x05))]
 HRESULT EnableScreeningAudit([in] VARIANT_BOOL
 enableScreeningAudit);

 [id(FSRM_DISPID_SETTING | 0x01)]
 HRESULT EmailTest([in] BSTR mailTo);

 [id(FSRM_DISPID_SETTING | 0x02)]
 HRESULT SetActionRunLimitInterval(
 [in] FsrmActionType actionType,
 [in] long delayTimeMinutes);

 [id(FSRM_DISPID_SETTING | 0x03)]
 HRESULT GetActionRunLimitInterval(
 [in] FsrmActionType actionType,
 [out, retval] long *delayTimeMinutes);
 };

 [
 object,
 uuid(6f4dbfff-6920-4821-a6c3-b7e94c1fd60c),
 dual,

 pointer_default(unique)
]interface IFsrmPathMapper : IDispatch
 { [id(FSRM_DISPID_PATHMAPPER | 0x01)]
 HRESULT GetSharePathsForLocalPath(
 [in] BSTR localPath,
 [out, retval] SAFEARRAY(VARIANT)* sharePaths);
 };

 [
 object,
 uuid(39322a2d-38ee-4d0d-8095-421a80849a82),
 dual,

 pointer_default(unique)
]interface IFsrmDerivedObjectsResult : IDispatch
 { [propget, id(FSRM_PROPERTY(FSRM_DISPID_DERIVEDOBJECTSRESULT | 0x01))]
 HRESULT DerivedObjects([out, retval] IFsrmCollection
 **derivedObjects);

428 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_DERIVEDOBJECTSRESULT | 0x02))]
 HRESULT Results([out, retval] IFsrmCollection **results);
 };

 interface IFsrmPropertyDefinition;
 interface IFsrmPropertyDefinition2;
 interface IFsrmPropertyDefinitionValue;
 interface IFsrmProperty;
 interface IFsrmRule;
 interface IFsrmClassificationRule;
 interface IFsrmPipelineModuleDefinition;

 const DISPID FSRM_DISPID_PROPERTY_DEFINITION =
 FSRM_DISPID_FEATURE_CLASSIFICATION | 0x100000;
 const DISPID FSRM_DISPID_PROPERTY_DEFINITION2 =
 FSRM_DISPID_PROPERTY_DEFINITION | 0x010000;

 const DISPID FSRM_DISPID_PROPERTY =
 FSRM_DISPID_FEATURE_CLASSIFICATION | 0x200000;

 const DISPID FSRM_DISPID_RULE =
 FSRM_DISPID_FEATURE_CLASSIFICATION | 0x300000;
 const DISPID FSRM_DISPID_CLASSIFICATION_RULE =
 FSRM_DISPID_RULE | 0x010000;
 const DISPID FSRM_DISPID_EXPIRATION_RULE =
 FSRM_DISPID_RULE | 0x020000;

 const DISPID FSRM_DISPID_PIPELINE_MODULE_DEFINITION =
 FSRM_DISPID_FEATURE_CLASSIFICATION | 0x400000;
 const DISPID FSRM_DISPID_CLASSIFIER_MODULE_DEFINITION =
 FSRM_DISPID_PIPELINE_MODULE_DEFINITION | 0x010000;
 const DISPID FSRM_DISPID_STORAGE_MODULE_DEFINITION =
 FSRM_DISPID_PIPELINE_MODULE_DEFINITION | 0x020000;

 const DISPID FSRM_DISPID_CLASSIFICATION_MANAGER =
 FSRM_DISPID_FEATURE_CLASSIFICATION | 0x500000;
 const DISPID FSRM_DISPID_CLASSIFICATION_MANAGER2 =
 FSRM_DISPID_CLASSIFICATION_MANAGER | 0x010000;

 const DISPID FSRM_DISPID_CLASSIFICATION_EVENTS =
 FSRM_DISPID_FEATURE_CLASSIFICATION | 0x600000;

 const DISPID FSRM_DISPID_PROPERTY_DEFINITION_VALUE =
 FSRM_DISPID_FEATURE_CLASSIFICATION | 0x700000;

 const DISPID FSRM_DISPID_PROPERTY_BAG =
 FSRM_DISPID_FEATURE_PIPELINE | 0x600000;

 const DISPID FSRM_DISPID_PIPELINE_MODULE_IMPLEMENTATION =
 FSRM_DISPID_FEATURE_PIPELINE | 0x700000;

 const DISPID FSRM_DISPID_PIPELINE_MODULE_CONNECTOR =
 FSRM_DISPID_FEATURE_PIPELINE | 0x800000;

 const DISPID FSRM_DISPID_PIPELINE_MODULE_HOST =
 FSRM_DISPID_FEATURE_PIPELINE | 0x900000;

 const ULONG FsrmMaxNumberPropertyDefinitions = 200;

 [
 object,
 uuid(ede0150f-e9a3-419c-877c-01fe5d24c5d3),
 dual,

 pointer_default(unique)
]
 interface IFsrmPropertyDefinition : IFsrmObject
 {[propget, id(FSRM_PROPERTY(FSRM_DISPID_PROPERTY_DEFINITION | 0x01))]
 HRESULT Name([out, retval] BSTR *name);

429 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 [propput, id(FSRM_PROPERTY(FSRM_DISPID_PROPERTY_DEFINITION | 0x01))]
 HRESULT Name([in] BSTR name);

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_PROPERTY_DEFINITION | 0x02))]
 HRESULT Type([out, retval] FsrmPropertyDefinitionType *type);

 [propput, id(FSRM_PROPERTY(FSRM_DISPID_PROPERTY_DEFINITION | 0x02))]
 HRESULT Type([in] FsrmPropertyDefinitionType type);

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_PROPERTY_DEFINITION | 0x03))]
 HRESULT PossibleValues([out, retval] SAFEARRAY(VARIANT)
 *possibleValues);

 [propput, id(FSRM_PROPERTY(FSRM_DISPID_PROPERTY_DEFINITION | 0x03))]
 HRESULT PossibleValues([in] SAFEARRAY(VARIANT) possibleValues);

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_PROPERTY_DEFINITION | 0x04))]
 HRESULT ValueDescriptions([out, retval] SAFEARRAY(VARIANT)
 *valueDescriptions);

 [propput, id(FSRM_PROPERTY(FSRM_DISPID_PROPERTY_DEFINITION | 0x04))]
 HRESULT ValueDescriptions([in] SAFEARRAY(VARIANT) valueDescriptions);

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_PROPERTY_DEFINITION | 0x05))]
 HRESULT Parameters([out, retval] SAFEARRAY(VARIANT) *parameters);

 [propput, id(FSRM_PROPERTY(FSRM_DISPID_PROPERTY_DEFINITION | 0x05))]
 HRESULT Parameters ([in] SAFEARRAY(VARIANT) parameters);
 };

 [
 object,
 uuid(47782152-d16c-4229-b4e1-0ddfe308b9f6),
 dual,
 helpstring("IFsrmPropertyDefinition2 Interface"),
 pointer_default(unique)
]
 interface IFsrmPropertyDefinition2 : IFsrmPropertyDefinition {

 //
 // Properties
 //

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_PROPERTY_DEFINITION2 | 0x01)), helpstring("This
property contains the flags for the property definition")]

 HRESULT PropertyDefinitionFlags([out, retval] long *propertyDefinitionFlags);

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_PROPERTY_DEFINITION2 | 0x02)), helpstring("This
property is the display name of the property definition")]

 HRESULT DisplayName([out, retval] BSTR *name);

 [propput, id(FSRM_PROPERTY(FSRM_DISPID_PROPERTY_DEFINITION2 | 0x02)), helpstring("This
property is the display name of the property definition")]

 HRESULT DisplayName([in] BSTR name);

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_PROPERTY_DEFINITION2 | 0x03)), helpstring("This
property contains the object types the property definition can apply to")]

 HRESULT AppliesTo([out, retval] long *appliesTo);

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_PROPERTY_DEFINITION2 | 0x04)), helpstring("This
property contains the possible value definitions of the property definition")]

 HRESULT ValueDefinitions([out, retval] IFsrmCollection **valueDefinitions);
 };

 [
 object,

430 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 uuid(E946D148-BD67-4178-8E22-1C44925ED710),
 dual,
 helpstring("IFsrmPropertyDefinitionValue Interface"),
 pointer_default(unique)
]
 interface IFsrmPropertyDefinitionValue : IDispatch
 {
 //
 // Properties
 //

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_PROPERTY_DEFINITION_VALUE | 0x01)),
helpstring("This property contains the name of the property definition value")]

 HRESULT Name([out, retval] BSTR *name);

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_PROPERTY_DEFINITION_VALUE | 0x02)),
helpstring("This property contains the display name of the property definition value")]

 HRESULT DisplayName([out, retval] BSTR *displayName);

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_PROPERTY_DEFINITION_VALUE | 0x03)),
helpstring("This property contains the description of the property definition value")]

 HRESULT Description([out, retval] BSTR *description);

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_PROPERTY_DEFINITION_VALUE | 0x04)),
helpstring("This property contains the unique ID of the property definition value")]

 HRESULT UniqueID([out, retval] BSTR *uniqueID);
 };

 [
 object,
 uuid(4a73fee4-4102-4fcc-9ffb-38614f9ee768),
 dual,

 pointer_default(unique)
]interface IFsrmProperty : IDispatch
 { [propget, id(FSRM_PROPERTY(FSRM_DISPID_PROPERTY | 0x01))]
 HRESULT Name([out, retval] BSTR *name);

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_PROPERTY | 0x02))]
 HRESULT Value([out, retval] BSTR *value);

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_PROPERTY | 0x03))]
 HRESULT Sources([out, retval] SAFEARRAY(VARIANT) *sources);

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_PROPERTY | 0x04))]
 HRESULT PropertyFlags([out, retval] long *flags);
 };

 [
 object,
 uuid(cb0df960-16f5-4495-9079-3f9360d831df),
 dual,

 pointer_default(unique)
]interface IFsrmRule : IFsrmObject
 { [propget, id(FSRM_PROPERTY(FSRM_DISPID_RULE | 0x01))]
 HRESULT Name([out, retval] BSTR *name);

 [propput, id(FSRM_PROPERTY(FSRM_DISPID_RULE | 0x01))]
 HRESULT Name([in] BSTR name);

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_RULE | 0x02))]
 HRESULT RuleType([out, retval] FsrmRuleType *ruleType);

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_RULE | 0x03))]
 HRESULT ModuleDefinitionName([out, retval] BSTR
 *moduleDefinitionName);

 [propput, id(FSRM_PROPERTY(FSRM_DISPID_RULE | 0x03))]

431 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 HRESULT ModuleDefinitionName([in] BSTR moduleDefinitionName);

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_RULE | 0x04))]
 HRESULT NamespaceRoots([out, retval] SAFEARRAY(VARIANT)
 *namespaceRoots);

 [propput, id(FSRM_PROPERTY(FSRM_DISPID_RULE | 0x04))]
 HRESULT NamespaceRoots([in] SAFEARRAY(VARIANT) namespaceRoots);

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_RULE | 0x05))]
 HRESULT RuleFlags([out, retval] long *ruleFlags);

 [propput, id(FSRM_PROPERTY(FSRM_DISPID_RULE | 0x05))]
 HRESULT RuleFlags([in] long ruleFlags);

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_RULE | 0x06))]
 HRESULT Parameters([out, retval] SAFEARRAY(VARIANT) *parameters);

 [propput, id(FSRM_PROPERTY(FSRM_DISPID_RULE | 0x06))]
 HRESULT Parameters([in] SAFEARRAY(VARIANT) parameters);

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_RULE | 0x07))]
 HRESULT LastModified([out, retval] DATE *lastModified);
 };

 [
 object,
 uuid(afc052c2-5315-45ab-841b-c6db0e120148),
 dual,

 pointer_default(unique)
]interface IFsrmClassificationRule : IFsrmRule
 {[propget, id(FSRM_PROPERTY(FSRM_DISPID_CLASSIFICATION_RULE | 0x01))]
 HRESULT ExecutionOption([out, retval] FsrmExecutionOption
 *executionOption);

 [propput, id(FSRM_PROPERTY(FSRM_DISPID_CLASSIFICATION_RULE | 0x01))]
 HRESULT ExecutionOption([in] FsrmExecutionOption executionOption);

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_CLASSIFICATION_RULE | 0x02))]
 HRESULT PropertyAffected([out, retval] BSTR *property);

 [propput, id(FSRM_PROPERTY(FSRM_DISPID_CLASSIFICATION_RULE | 0x02))]
 HRESULT PropertyAffected([in] BSTR property);

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_CLASSIFICATION_RULE | 0x03))]
 HRESULT Value([out, retval] BSTR *value);

 [propput, id(FSRM_PROPERTY(FSRM_DISPID_CLASSIFICATION_RULE | 0x03))]
 HRESULT Value([in] BSTR value);
 };

 [
 object,
 uuid(515c1277-2c81-440e-8fcf-367921ed4f59),
 dual,

 pointer_default(unique)
]interface IFsrmPipelineModuleDefinition : IFsrmObject
 {

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_PIPELINE_MODULE_DEFINITION | 0x01))]
 HRESULT ModuleClsid([out, retval] BSTR* moduleClsid);

 [propput, id(FSRM_PROPERTY(FSRM_DISPID_PIPELINE_MODULE_DEFINITION | 0x01))]
 HRESULT ModuleClsid([in] BSTR moduleClsid);

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_PIPELINE_MODULE_DEFINITION

432 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 | 0x02))]
 HRESULT Name([out, retval] BSTR *name);

 [propput, id(FSRM_PROPERTY(FSRM_DISPID_PIPELINE_MODULE_DEFINITION | 0x02))]
 HRESULT Name([in] BSTR name);

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_PIPELINE_MODULE_DEFINITION | 0x03))]
 HRESULT Company([out, retval] BSTR* company);

 [propput, id(FSRM_PROPERTY(FSRM_DISPID_PIPELINE_MODULE_DEFINITION | 0x03))]
 HRESULT Company([in] BSTR company);

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_PIPELINE_MODULE_DEFINITION | 0x04))]
 HRESULT Version([out, retval] BSTR* version);

 [propput, id(FSRM_PROPERTY(FSRM_DISPID_PIPELINE_MODULE_DEFINITION | 0x04))]
 HRESULT Version([in] BSTR version);

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_PIPELINE_MODULE_DEFINITION
 | 0x05))]
 HRESULT ModuleType([out, retval] FsrmPipelineModuleType
 *moduleType);

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_PIPELINE_MODULE_DEFINITION
 | 0x06))]
 HRESULT Enabled([out, retval] VARIANT_BOOL *enabled);

 [propput, id(FSRM_PROPERTY(FSRM_DISPID_PIPELINE_MODULE_DEFINITION | 0x06))]
 HRESULT Enabled([in] VARIANT_BOOL enabled);

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_PIPELINE_MODULE_DEFINITION | 0x07))]
 HRESULT NeedsFileContent([out, retval] VARIANT_BOOL* needsFileContent);

 [propput, id(FSRM_PROPERTY(FSRM_DISPID_PIPELINE_MODULE_DEFINITION | 0x07))]
 HRESULT NeedsFileContent([in] VARIANT_BOOL needsFileContent);

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_PIPELINE_MODULE_DEFINITION | 0x08))]
 HRESULT Account([out, retval] FsrmAccountType* retrievalAccount);

 [propput, id(FSRM_PROPERTY(FSRM_DISPID_PIPELINE_MODULE_DEFINITION | 0x08))]
 HRESULT Account([in] FsrmAccountType retrievalAccount);

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_PIPELINE_MODULE_DEFINITION | 0x09))]
 HRESULT SupportedExtensions([out, retval] SAFEARRAY(VARIANT)* supportedExtensions);

 [propput, id(FSRM_PROPERTY(FSRM_DISPID_PIPELINE_MODULE_DEFINITION | 0x09))]
 HRESULT SupportedExtensions([in] SAFEARRAY(VARIANT) supportedExtensions);

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_PIPELINE_MODULE_DEFINITION | 0xA))]
 HRESULT Parameters([out, retval] SAFEARRAY(VARIANT)* parameters);

 [propput, id(FSRM_PROPERTY(FSRM_DISPID_PIPELINE_MODULE_DEFINITION | 0xA))]
 HRESULT Parameters([in] SAFEARRAY(VARIANT) parameters);
 };

 [
 object,
 uuid(bb36ea26-6318-4b8c-8592-f72dd602e7a5),
 dual,

 pointer_default(unique)
]interface IFsrmClassifierModuleDefinition :
 IFsrmPipelineModuleDefinition
 { [propget, id(FSRM_PROPERTY(FSRM_DISPID_CLASSIFIER_MODULE_DEFINITION
 | 0x01))]
 HRESULT PropertiesAffected([out, retval] SAFEARRAY(VARIANT)
 *propertiesAffected);

433 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 [propput, id(FSRM_PROPERTY(FSRM_DISPID_CLASSIFIER_MODULE_DEFINITION | 0x01))]
 HRESULT PropertiesAffected([in] SAFEARRAY(VARIANT) propertiesAffected);

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_CLASSIFIER_MODULE_DEFINITION | 0x02))]
 HRESULT PropertiesUsed([out, retval] SAFEARRAY(VARIANT)* propertiesUsed);

 [propput, id(FSRM_PROPERTY(FSRM_DISPID_CLASSIFIER_MODULE_DEFINITION | 0x02))]
 HRESULT PropertiesUsed([in] SAFEARRAY(VARIANT) propertiesUsed);

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_CLASSIFIER_MODULE_DEFINITION
 | 0x03))]
 HRESULT NeedsExplicitValue([out, retval] VARIANT_BOOL
 *needsExplicitValue);

 [propput, id(FSRM_PROPERTY(FSRM_DISPID_CLASSIFIER_MODULE_DEFINITION | 0x03))]
 HRESULT NeedsExplicitValue([in] VARIANT_BOOL needsExplicitValue);
 };

 [
 object,
 uuid(d2dc89da-ee91-48a0-85d8-cc72a56f7d04),
 dual,

 pointer_default(unique)
]interface IFsrmClassificationManager : IDispatch
 { [propget, id(FSRM_PROPERTY(FSRM_DISPID_CLASSIFICATION_MANAGER
 | 0x01))]
 HRESULT ClassificationReportFormats([out, retval]
 SAFEARRAY(VARIANT) *formats);

 [propput, id(FSRM_PROPERTY(FSRM_DISPID_CLASSIFICATION_MANAGER
 | 0x01))]
 HRESULT ClassificationReportFormats([in] SAFEARRAY(VARIANT)
 formats);

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_CLASSIFICATION_MANAGER
 | 0x02))]
 HRESULT Logging([out, retval] long *logging);

 [propput, id(FSRM_PROPERTY(FSRM_DISPID_CLASSIFICATION_MANAGER
 | 0x02))]
 HRESULT Logging([in] long logging);

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_CLASSIFICATION_MANAGER
 | 0x03))]
 HRESULT ClassificationReportMailTo([out, retval] BSTR *mailTo);

 [propput, id(FSRM_PROPERTY(FSRM_DISPID_CLASSIFICATION_MANAGER
 | 0x03))]
 HRESULT ClassificationReportMailTo([in] BSTR mailTo);

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_CLASSIFICATION_MANAGER
 | 0x04))]
 HRESULT ClassificationReportEnabled([out, retval] VARIANT_BOOL
 *reportEnabled);

 [propput, id(FSRM_PROPERTY(FSRM_DISPID_CLASSIFICATION_MANAGER
 | 0x04))]
 HRESULT ClassificationReportEnabled([in] VARIANT_BOOL
 reportEnabled);

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_CLASSIFICATION_MANAGER
 | 0x05))]
 HRESULT ClassificationLastReportPathWithoutExtension(
 [out, retval] BSTR *lastReportPath);

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_CLASSIFICATION_MANAGER
 | 0x06))]
 HRESULT ClassificationLastError([out, retval] BSTR *lastError);

434 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_CLASSIFICATION_MANAGER
 | 0x07))]
 HRESULT ClassificationRunningStatus([out, retval]
 FsrmReportRunningStatus *runningStatus);

 [id(FSRM_DISPID_CLASSIFICATION_MANAGER | 0x01)]
 HRESULT EnumPropertyDefinitions(
 [in, defaultvalue(FsrmEnumOptions_None)]
 FsrmEnumOptions options,
 [out, retval] IFsrmCollection
 **propertyDefinitions);

 [id(FSRM_DISPID_CLASSIFICATION_MANAGER | 0x02)]
 HRESULT CreatePropertyDefinition(
 [out, retval] IFsrmPropertyDefinition
 **propertyDefinition);

 [id(FSRM_DISPID_CLASSIFICATION_MANAGER | 0x03)]
 HRESULT GetPropertyDefinition(
 [in] BSTR propertyName,
 [out, retval] IFsrmPropertyDefinition
 **propertyDefinition);

 [id(FSRM_DISPID_CLASSIFICATION_MANAGER | 0x04)]
 HRESULT EnumRules(
 [in] FsrmRuleType ruleType,
 [in, defaultvalue(FsrmEnumOptions_None)]
 FsrmEnumOptions options,
 [out, retval] IFsrmCollection **Rules);

 [id(FSRM_DISPID_CLASSIFICATION_MANAGER | 0x05)]
 HRESULT CreateRule(
 [in] FsrmRuleType ruleType,
 [out, retval] IFsrmRule **Rule);

 [id(FSRM_DISPID_CLASSIFICATION_MANAGER | 0x06)]
 HRESULT GetRule(
 [in] BSTR ruleName,
 [in] FsrmRuleType ruleType,
 [out, retval] IFsrmRule **Rule);

 [id(FSRM_DISPID_CLASSIFICATION_MANAGER | 0x07)]
 HRESULT EnumModuleDefinitions(
 [in] FsrmPipelineModuleType moduleType,
 [in, defaultvalue(FsrmEnumOptions_None)]
 FsrmEnumOptions options,
 [out, retval] IFsrmCollection
 **moduleDefinitions);

 [id(FSRM_DISPID_CLASSIFICATION_MANAGER | 0x08)]
 HRESULT CreateModuleDefinition(
 [in] FsrmPipelineModuleType moduleType,
 [out, retval] IFsrmPipelineModuleDefinition**
 moduleDefinition);

 [id(FSRM_DISPID_CLASSIFICATION_MANAGER | 0x09)]
 HRESULT GetModuleDefinition(
 [in] BSTR moduleName,
 [in] FsrmPipelineModuleType moduleType,
 [out, retval] IFsrmPipelineModuleDefinition**
 moduleDefinition);

 [id(FSRM_DISPID_CLASSIFICATION_MANAGER | 0x0A)]
 HRESULT RunClassification(
 [in] FsrmReportGenerationContext context,
 [in] BSTR reserved);

 [id(FSRM_DISPID_CLASSIFICATION_MANAGER | 0x0B)]

435 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 HRESULT WaitForClassificationCompletion(
 [in] long waitSeconds,
 [out, retval] VARIANT_BOOL *completed);

 [id(FSRM_DISPID_CLASSIFICATION_MANAGER | 0x0C)]
 HRESULT CancelClassification();

 [id(FSRM_DISPID_CLASSIFICATION_MANAGER | 0x0D)]
 HRESULT EnumFileProperties(
 [in] BSTR filePath,
 [in, defaultvalue(FsrmGetFilePropertyOptions_None)]
 FsrmGetFilePropertyOptions options,
 [out, retval] IFsrmCollection** fileProperties);

 [id(FSRM_DISPID_CLASSIFICATION_MANAGER | 0x0E)]
 HRESULT GetFileProperty([in] BSTR filePath,
 [in] BSTR propertyName,
 [in, defaultvalue(FsrmGetFilePropertyOptions_None)]
 FsrmGetFilePropertyOptions options,
 [out, retval] IFsrmProperty** property);

 [id(FSRM_DISPID_CLASSIFICATION_MANAGER | 0x0F)]
 HRESULT SetFileProperty(
 [in] BSTR filePath,
 [in] BSTR propertyName,
 [in] BSTR propertyValue);

 [id(FSRM_DISPID_CLASSIFICATION_MANAGER | 0x10)]
 HRESULT ClearFileProperty(
 [in] BSTR filePath,
 [in] BSTR property);
 };

 [
 object,
 uuid(15a81350-497d-4aba-80e9-d4dbcc5521fe),
 dual,
 pointer_default(unique)
] interface IFsrmStorageModuleDefinition : IFsrmPipelineModuleDefinition
 {
 [propget, id(FSRM_PROPERTY(FSRM_DISPID_STORAGE_MODULE_DEFINITION | 0x01))] HRESULT
 Capabilities(
 [out, retval] FsrmStorageModuleCaps* capabilities
);

 [propput, id(FSRM_PROPERTY(FSRM_DISPID_STORAGE_MODULE_DEFINITION | 0x01))]
 HRESULT Capabilities(
 [in] FsrmStorageModuleCaps capabilities
);

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_STORAGE_MODULE_DEFINITION | 0x02))]
 HRESULT StorageType(
 [out, retval] FsrmStorageModuleType* storageType
);

 [propput, id(FSRM_PROPERTY(FSRM_DISPID_STORAGE_MODULE_DEFINITION | 0x02))]
 HRESULT StorageType(
 [in] FsrmStorageModuleType storageType
);

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_STORAGE_MODULE_DEFINITION | 0x03))]
 HRESULT UpdatesFileContent(
 [out, retval] VARIANT_BOOL* updatesFileContent
);

 [propput, id(FSRM_PROPERTY(FSRM_DISPID_STORAGE_MODULE_DEFINITION | 0x03))]
 HRESULT UpdatesFileContent (
 [in] VARIANT_BOOL updatesFileContent
);

436 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 }

 interface IFsrmQuotaBase;
 interface IFsrmQuotaObject;
 interface IFsrmQuota;
 interface IFsrmAutoApplyQuota;
 interface IFsrmQuotaManager;
 interface IFsrmQuotaTemplate;
 interface IFsrmQuotaTemplateImported;
 interface IFsrmQuotaTemplateManager;

 const DISPID FSRM_DISPID_QUOTA_BASE =
 FSRM_DISPID_FEATURE_QUOTA | 0x100000;
 const DISPID FSRM_DISPID_QUOTA_OBJECT =
 FSRM_DISPID_QUOTA_BASE | 0x010000;
 const DISPID FSRM_DISPID_QUOTA =
 FSRM_DISPID_QUOTA_OBJECT | 0x001000;
 const DISPID FSRM_DISPID_AUTOAPPLYQUOTA =
 FSRM_DISPID_QUOTA_OBJECT | 0x002000;
 const DISPID FSRM_DISPID_QUOTA_TEMPLATE =
 FSRM_DISPID_QUOTA_BASE | 0x020000;
 const DISPID FSRM_DISPID_QUOTA_TEMPLATE_IMPORTED =
 FSRM_DISPID_QUOTA_TEMPLATE | 0x001000;

 const DISPID FSRM_DISPID_QUOTA_MANAGER =
 FSRM_DISPID_FEATURE_QUOTA | 0x200000;

 const DISPID FSRM_DISPID_QUOTA_TEMPLATE_MANAGER =
 FSRM_DISPID_FEATURE_QUOTA | 0x300000;

 const DISPID FSRM_DISPID_QUOTA_MANAGER_EX =
 FSRM_DISPID_FEATURE_QUOTA | 0x400000;

 typedef long FSRM_QUOTA_THRESHOLD;

 const ULONG FsrmMaxNumberThresholds = 16;
 const ULONG FsrmMinThresholdValue = 1;
 const ULONG FsrmMaxThresholdValue = 250;
 const ULONG FsrmMinQuotaLimit = 1024;
 const ULONG FsrmMaxExcludeFolders = 32;

 [
 object,
 uuid(1568a795-3924-4118-b74b-68d8f0fa5daf),
 dual,

 pointer_default(unique)
]interface IFsrmQuotaBase : IFsrmObject
 { [propget, id(FSRM_PROPERTY(FSRM_DISPID_QUOTA_BASE | 0x01))]
 HRESULT QuotaLimit([out, retval] VARIANT *quotaLimit);

 [propput, id(FSRM_PROPERTY(FSRM_DISPID_QUOTA_BASE | 0x01))]
 HRESULT QuotaLimit([in] VARIANT quotaLimit);

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_QUOTA_BASE | 0x02))]
 HRESULT QuotaFlags([out, retval] long *quotaFlags);

 [propput, id(FSRM_PROPERTY(FSRM_DISPID_QUOTA_BASE | 0x02))]
 HRESULT QuotaFlags([in] long quotaFlags);

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_QUOTA_BASE | 0x03))]
 HRESULT Thresholds([out, retval] SAFEARRAY(VARIANT) *thresholds);

 [id(FSRM_DISPID_QUOTA_BASE | 0x01)]
 HRESULT AddThreshold([in] FSRM_QUOTA_THRESHOLD threshold);

 [id(FSRM_DISPID_QUOTA_BASE | 0x02)]
 HRESULT DeleteThreshold([in] FSRM_QUOTA_THRESHOLD threshold);

437 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 [id(FSRM_DISPID_QUOTA_BASE | 0x03)]
 HRESULT ModifyThreshold(
 [in] FSRM_QUOTA_THRESHOLD threshold,
 [in] FSRM_QUOTA_THRESHOLD newThreshold);

 [id(FSRM_DISPID_QUOTA_BASE | 0x04)]
 HRESULT CreateThresholdAction(
 [in] FSRM_QUOTA_THRESHOLD threshold,
 [in] FsrmActionType actionType,
 [out, retval] IFsrmAction **action);

 [id(FSRM_DISPID_QUOTA_BASE | 0x05)]
 HRESULT EnumThresholdActions(
 [in] FSRM_QUOTA_THRESHOLD threshold,
 [out, retval] IFsrmCollection **actions);
 }

 [
 object,
 uuid(42dc3511-61d5-48ae-b6dc-59fc00c0a8d6),
 dual,

 pointer_default(unique)
]interface IFsrmQuotaObject : IFsrmQuotaBase
 { [propget, id(FSRM_PROPERTY(FSRM_DISPID_QUOTA_OBJECT | 0x01))]
 HRESULT Path([out, retval] BSTR *path);

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_QUOTA_OBJECT | 0x02))]
 HRESULT UserSid([out, retval] BSTR *userSid);

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_QUOTA_OBJECT | 0x03))]
 HRESULT UserAccount([out, retval] BSTR *userAccount);

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_QUOTA_OBJECT | 0x04))]
 HRESULT SourceTemplateName([out, retval] BSTR *quotaTemplateName);

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_QUOTA_OBJECT | 0x05))]
 HRESULT MatchesSourceTemplate([out, retval] VARIANT_BOOL
 *matches);

 [id(FSRM_DISPID_QUOTA_OBJECT | 0x01)]
 HRESULT ApplyTemplate([in] BSTR quotaTemplateName);
 };

 [
 object,
 uuid(377f739d-9647-4b8e-97d2-5ffce6d759cd),
 dual,

 pointer_default(unique)
]interface IFsrmQuota : IFsrmQuotaObject
 { [propget, id(FSRM_PROPERTY(FSRM_DISPID_QUOTA | 0x01))]
 HRESULT QuotaUsed([out, retval] VARIANT *used);

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_QUOTA | 0x02))]
 HRESULT QuotaPeakUsage([out, retval] VARIANT *peakUsage);

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_QUOTA | 0x03))]
 HRESULT QuotaPeakUsageTime([out, retval] DATE *peakUsageDateTime);

 [id(FSRM_DISPID_QUOTA | 0x01)]
 HRESULT ResetPeakUsage();

 [id(FSRM_DISPID_QUOTA | 0x02)]
 HRESULT RefreshUsageProperties();
 };

 [
 object,

438 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 uuid(f82e5729-6aba-4740-bfc7-c7f58f75fb7b),
 dual,

 pointer_default(unique)
]interface IFsrmAutoApplyQuota : IFsrmQuotaObject
 { [propget, id(FSRM_PROPERTY(FSRM_DISPID_AUTOAPPLYQUOTA | 0x01))]
 HRESULT ExcludeFolders([out, retval] SAFEARRAY(VARIANT) *folders);

 [propput, id(FSRM_PROPERTY(FSRM_DISPID_AUTOAPPLYQUOTA | 0x01))]
 HRESULT ExcludeFolders([in] SAFEARRAY(VARIANT) folders);

 [id(FSRM_DISPID_AUTOAPPLYQUOTA | 0x01)]
 HRESULT CommitAndUpdateDerived(
 [in] FsrmCommitOptions commitOptions,
 [in] FsrmTemplateApplyOptions applyOptions,
 [out, retval] IFsrmDerivedObjectsResult
 **derivedObjectsResult);
 };

 [
 object,
 uuid(8bb68c7d-19d8-4ffb-809e-be4fc1734014),
 dual,

 pointer_default(unique)
]interface IFsrmQuotaManager : IDispatch
 { [propget, id(FSRM_PROPERTY(FSRM_DISPID_QUOTA_MANAGER | 0x01))]
 HRESULT ActionVariables([out, retval] SAFEARRAY(VARIANT)
 *variables);

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_QUOTA_MANAGER | 0x02))]
 HRESULT ActionVariableDescriptions([out, retval]
 SAFEARRAY(VARIANT) *descriptions);

 [id(FSRM_DISPID_QUOTA_MANAGER | 0x01)]
 HRESULT CreateQuota(
 [in] BSTR path,
 [out, retval] IFsrmQuota **quota);

 [id(FSRM_DISPID_QUOTA_MANAGER | 0x02)]
 HRESULT CreateAutoApplyQuota(
 [in] BSTR quotaTemplateName,
 [in] BSTR path,
 [out, retval] IFsrmAutoApplyQuota **quota);

 [id(FSRM_DISPID_QUOTA_MANAGER | 0x03)]
 HRESULT GetQuota(
 [in] BSTR path,
 [out, retval] IFsrmQuota **quota);

 [id(FSRM_DISPID_QUOTA_MANAGER | 0x04)]
 HRESULT GetAutoApplyQuota(
 [in] BSTR path,
 [out, retval] IFsrmAutoApplyQuota **quota);

 [id(FSRM_DISPID_QUOTA_MANAGER | 0x05)]
 HRESULT GetRestrictiveQuota(
 [in] BSTR path,
 [out, retval] IFsrmQuota **quota);

 [id(FSRM_DISPID_QUOTA_MANAGER | 0x06)]
 HRESULT EnumQuotas(
 [in, defaultvalue(L"")] BSTR path,
 [in, defaultvalue(FsrmEnumOptions_None)]
 FsrmEnumOptions options,
 [out, retval] IFsrmCommittableCollection
 **quotas);

 [id(FSRM_DISPID_QUOTA_MANAGER | 0x07)]

439 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 HRESULT EnumAutoApplyQuotas(
 [in, defaultvalue(L"")] BSTR path,
 [in, defaultvalue(FsrmEnumOptions_None)]
 FsrmEnumOptions options,
 [out, retval] IFsrmCommittableCollection
 **quotas);

 [id(FSRM_DISPID_QUOTA_MANAGER | 0x08)]
 HRESULT EnumEffectiveQuotas(
 [in] BSTR path,
 [in, defaultvalue(FsrmEnumOptions_None)]
 FsrmEnumOptions options,
 [out, retval] IFsrmCommittableCollection
 **quotas);

 [id(FSRM_DISPID_QUOTA_MANAGER | 0x09)]
 HRESULT Scan([in] BSTR strPath);

 [id(FSRM_DISPID_QUOTA_MANAGER | 0x0A)]
 HRESULT CreateQuotaCollection([out, retval]
 IFsrmCommittableCollection **collection);
 };
 [
 object,
 uuid(4846cb01-d430-494f-abb4-b1054999fb09),
 dual,
 helpstring("IFsrmQuotaManagerEx Interface"),
 pointer_default(unique)
]
 interface IFsrmQuotaManagerEx : IFsrmQuotaManager
 {
 [id(FSRM_DISPID_QUOTA_MANAGER_EX | 0x01), helpstring("This method is used to check
whether a given path is subject to quota")]

 HRESULT IsAffectedByQuota(
 [in] BSTR path,
 [in, defaultvalue(FsrmEnumOptions_None)] FsrmEnumOptions options,
 [out, retval] VARIANT_BOOL *affected);
 }

 [
 object,
 uuid(a2efab31-295e-46bb-b976-e86d58b52e8b),
 dual,

 pointer_default(unique)
]interface IFsrmQuotaTemplate : IFsrmQuotaBase
 { [propget, id(FSRM_PROPERTY(FSRM_DISPID_QUOTA_TEMPLATE | 0x01))]
 HRESULT Name([out, retval] BSTR *name);

 [propput, id(FSRM_PROPERTY(FSRM_DISPID_QUOTA_TEMPLATE | 0x01))]
 HRESULT Name([in] BSTR name);

 [id(FSRM_DISPID_QUOTA_TEMPLATE | 0x01)]
 HRESULT CopyTemplate([in] BSTR quotaTemplateName);

 [id(FSRM_DISPID_QUOTA_TEMPLATE | 0x02)]
 HRESULT CommitAndUpdateDerived(
 [in] FsrmCommitOptions commitOptions,
 [in] FsrmTemplateApplyOptions applyOptions,
 [out, retval] IFsrmDerivedObjectsResult
 **derivedObjectsResult);
 };

 [
 object,
 uuid(9a2bf113-a329-44cc-809a-5c00fce8da40),
 dual,

 pointer_default(unique)

440 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

]interface IFsrmQuotaTemplateImported : IFsrmQuotaTemplate
 { [propget, id(FSRM_PROPERTY(FSRM_DISPID_QUOTA_TEMPLATE_IMPORTED
 | 0x01))]
 HRESULT OverwriteOnCommit([out, retval] VARIANT_BOOL *overwrite);

 [propput, id(FSRM_PROPERTY(FSRM_DISPID_QUOTA_TEMPLATE_IMPORTED
 | 0x01))]
 HRESULT OverwriteOnCommit([in] VARIANT_BOOL overwrite);
 };

 [
 object,
 uuid(4173ac41-172d-4d52-963c-fdc7e415f717),
 dual,

 pointer_default(unique)
]interface IFsrmQuotaTemplateManager : IDispatch
 { [id(FSRM_DISPID_QUOTA_TEMPLATE_MANAGER | 0x01)]
 HRESULT CreateTemplate([out,retval] IFsrmQuotaTemplate
 **quotaTemplate);

 [id(FSRM_DISPID_QUOTA_TEMPLATE_MANAGER | 0x02)]
 HRESULT GetTemplate(
 [in, defaultvalue(L"")] BSTR name,
 [out, retval] IFsrmQuotaTemplate
 **quotaTemplate);

 [id(FSRM_DISPID_QUOTA_TEMPLATE_MANAGER | 0x03)]
 HRESULT EnumTemplates(
 [in, defaultvalue(FsrmEnumOptions_None)] FsrmEnumOptions
 options,
 [out, retval] IFsrmCommittableCollection **quotaTemplates);

 [id(FSRM_DISPID_QUOTA_TEMPLATE_MANAGER | 0x04)]
 HRESULT ExportTemplates(
 [in, defaultvalue(NULL)] VARIANT*
 quotaTemplateNamesArray,
 [out, retval] BSTR *serializedQuotaTemplates);

 [id(FSRM_DISPID_QUOTA_TEMPLATE_MANAGER | 0x05)]
 HRESULT ImportTemplates(
 [in] BSTR serializedQuotaTemplates,
 [in, defaultvalue(NULL)] VARIANT*
 quotaTemplateNamesArray,
 [out, retval] IFsrmCommittableCollection
 **quotaTemplates);
 };

 interface IFsrmReportManager;
 interface IFsrmReportJob;
 interface IFsrmReport;
 interface IFsrmFileManagementJobManager;
 interface IFsrmFileManagementJob;
 interface IFsrmPropertyCondition;

 const DISPID FSRM_DISPID_REPORT_MANAGER =
 FSRM_DISPID_FEATURE_REPORTS | 0x100000;
 const DISPID FSRM_DISPID_REPORT_JOB =
 FSRM_DISPID_FEATURE_REPORTS | 0x200000;
 const DISPID FSRM_DISPID_REPORT =
 FSRM_DISPID_FEATURE_REPORTS | 0x300000;
 const DISPID FSRM_DISPID_REPORT_SCHEDULER =
 FSRM_DISPID_FEATURE_REPORTS | 0x400000;

 const DISPID FSRM_DISPID_FILE_MANAGEMENT_JOB_MANAGER =
 FSRM_DISPID_FEATURE_REPORTS | 0x500000;
 const DISPID FSRM_DISPID_FILE_MANAGEMENT_JOB =
 FSRM_DISPID_FEATURE_REPORTS | 0x600000;
 const DISPID FSRM_DISPID_FILE_MANAGEMENT_NOTIFICATION =

441 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 FSRM_DISPID_FEATURE_REPORTS | 0x700000;
 const DISPID FSRM_DISPID_PROPERTY_CONDITION =
 FSRM_DISPID_FEATURE_REPORTS | 0x800000;

 [
 odl,
 uuid(27b899fe-6ffa-4481-a184-d3daade8a02b),
 version(1.0),
 dual,
 oleautomation
]interface IFsrmReportManager : IDispatch {

 [id(FSRM_DISPID_REPORT_MANAGER | 0x01)]
 HRESULT EnumReportJobs(
 [in, defaultvalue(FsrmEnumOptions_None)] FsrmEnumOptions
 options,
 [out, retval] IFsrmCollection **reportJobs);

 [id(FSRM_DISPID_REPORT_MANAGER | 0x02)]
 HRESULT CreateReportJob(
 [out, retval] IFsrmReportJob **reportJob);

 [id(FSRM_DISPID_REPORT_MANAGER | 0x03)]
 HRESULT GetReportJob(
 [in] BSTR taskName,
 [out, retval] IFsrmReportJob **reportJob);

 [id(FSRM_DISPID_REPORT_MANAGER | 0x04)]
 HRESULT GetOutputDirectory(
 [in] FsrmReportGenerationContext context,
 [out, retval] BSTR *path);

 [id(FSRM_DISPID_REPORT_MANAGER | 0x05)]
 HRESULT SetOutputDirectory(
 [in] FsrmReportGenerationContext context,
 [in] BSTR path);

 [id(FSRM_DISPID_REPORT_MANAGER | 0x06)]
 HRESULT IsFilterValidForReportType(
 [in] FsrmReportType reportType,
 [in] FsrmReportFilter filter,
 [out, retval] VARIANT_BOOL *valid);

 [id(FSRM_DISPID_REPORT_MANAGER | 0x07)]
 HRESULT GetDefaultFilter(
 [in] FsrmReportType reportType,
 [in] FsrmReportFilter filter,
 [out, retval] VARIANT *filterValue);

 [id(FSRM_DISPID_REPORT_MANAGER | 0x08)]
 HRESULT SetDefaultFilter(
 [in] FsrmReportType reportType,
 [in] FsrmReportFilter filter,
 [in] VARIANT filterValue);

 [id(FSRM_DISPID_REPORT_MANAGER | 0x09)]
 HRESULT GetReportSizeLimit(
 [in] FsrmReportLimit limit,
 [out, retval] VARIANT *limitValue);

 [id(FSRM_DISPID_REPORT_MANAGER | 0x0A)]
 HRESULT SetReportSizeLimit(
 [in] FsrmReportLimit limit,
 [in] VARIANT limitValue);
 };

 [
 odl,
 uuid(38e87280-715c-4c7d-a280-ea1651a19fef),

442 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 version(1.0),
 dual,
 oleautomation
]interface IFsrmReportJob : IFsrmObject {

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_REPORT_JOB | 0x01))]
 HRESULT Task([out, retval] BSTR *taskName);

 [propput, id(FSRM_PROPERTY(FSRM_DISPID_REPORT_JOB | 0x01))]
 HRESULT Task([in] BSTR taskName);

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_REPORT_JOB | 0x02))]
 HRESULT NamespaceRoots([out, retval] SAFEARRAY(VARIANT)
 *namespaceRoots);

 [propput, id(FSRM_PROPERTY(FSRM_DISPID_REPORT_JOB | 0x02))]
 HRESULT NamespaceRoots([in] SAFEARRAY(VARIANT) namespaceRoots);

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_REPORT_JOB | 0x03))]
 HRESULT Formats([out, retval] SAFEARRAY(VARIANT) *formats);

 [propput, id(FSRM_PROPERTY(FSRM_DISPID_REPORT_JOB | 0x03))]
 HRESULT Formats([in] SAFEARRAY(VARIANT) formats);

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_REPORT_JOB | 0x04))]
 HRESULT MailTo([out, retval] BSTR *mailTo);

 [propput, id(FSRM_PROPERTY(FSRM_DISPID_REPORT_JOB | 0x04))]
 HRESULT MailTo([in] BSTR mailTo);

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_REPORT_JOB | 0x05))]
 HRESULT RunningStatus([out, retval] FsrmReportRunningStatus
 *runningStatus);

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_REPORT_JOB | 0x06))]
 HRESULT LastRun([out, retval] DATE *lastRun);

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_REPORT_JOB | 0x07))]
 HRESULT LastError([out, retval] BSTR *lastError);

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_REPORT_JOB | 0x08))]
 HRESULT LastGeneratedInDirectory([out, retval] BSTR *path);

 [id(FSRM_DISPID_REPORT_JOB | 0x01)]
 HRESULT EnumReports([out, retval] IFsrmCollection **reports);

 [id(FSRM_DISPID_REPORT_JOB | 0x02)]
 HRESULT CreateReport(
 [in] FsrmReportType reportType,
 [out, retval] IFsrmReport **report);

 [id(FSRM_DISPID_REPORT_JOB | 0x03)]
 HRESULT Run([in] FsrmReportGenerationContext context);

 [id(FSRM_DISPID_REPORT_JOB | 0x04)]
 HRESULT WaitForCompletion(
 [in] long waitSeconds,
 [out, retval] VARIANT_BOOL *completed);

 [id(FSRM_DISPID_REPORT_JOB | 0x05)]
 HRESULT Cancel();
 };

 [
 odl,
 uuid(d8cc81d9-46b8-4fa4-bfa5-4aa9dec9b638),
 version(1.0),
 dual,
 oleautomation

443 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

]interface IFsrmReport : IDispatch {

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_REPORT | 0x01))]
 HRESULT Type([out, retval] FsrmReportType *reportType);

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_REPORT | 0x02))]
 HRESULT Name([out, retval] BSTR *name);

 [propput, id(FSRM_PROPERTY(FSRM_DISPID_REPORT | 0x02))]
 HRESULT Name([in] BSTR name);

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_REPORT | 0x03))]
 HRESULT Description([out, retval] BSTR *description);

 [propput, id(FSRM_PROPERTY(FSRM_DISPID_REPORT | 0x03))]
 HRESULT Description([in] BSTR description);

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_REPORT | 0x04))]
 HRESULT LastGeneratedFileNamePrefix([out, retval] BSTR *prefix);

 [id(FSRM_DISPID_REPORT | 0x01)]
 HRESULT GetFilter(
 [in] FsrmReportFilter filter,
 [out, retval] VARIANT *filterValue);

 [id(FSRM_DISPID_REPORT | 0x02)]
 HRESULT SetFilter(
 [in] FsrmReportFilter filter,
 [in] VARIANT filterValue);

 [id(FSRM_DISPID_REPORT | 0x03)]
 HRESULT Delete();
 };

 [
 odl,
 uuid(6879caf9-6617-4484-8719-71c3d8645f94),
 version(1.0),
 dual,
 oleautomation
]interface IFsrmReportScheduler : IDispatch
 { [id(FSRM_DISPID_REPORT_SCHEDULER | 0x01)]
 HRESULT VerifyNamespaces([in] VARIANT* namespacesSafeArray);

 [id(FSRM_DISPID_REPORT_SCHEDULER | 0x02)]
 HRESULT CreateScheduleTask(
 [in] BSTR taskName,
 [in] VARIANT* namespacesSafeArray,
 [in] BSTR serializedTask);

 [id(FSRM_DISPID_REPORT_SCHEDULER | 0x03)]
 HRESULT ModifyScheduleTask(
 [in] BSTR taskName,
 [in] VARIANT* namespacesSafeArray,
 [in] BSTR serializedTask);

 [id(FSRM_DISPID_REPORT_SCHEDULER | 0x04)]
 HRESULT DeleteScheduleTask([in] BSTR taskName);
 };

 [
 odl,
 uuid(ee321ecb-d95e-48e9-907c-c7685a013235),
 version(1.0),
 dual,
 oleautomation
]interface IFsrmFileManagementJobManager : IDispatch
 { [propget, id(FSRM_PROPERTY(FSRM_DISPID_FILE_MANAGEMENT_JOB_MANAGER | 0x01))]
 HRESULT ActionVariables([out, retval] SAFEARRAY(VARIANT) *variables);

444 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_FILE_MANAGEMENT_JOB_MANAGER | 0x02))]
 HRESULT ActionVariableDescriptions([out, retval] SAFEARRAY(VARIANT) *descriptions);

 [id(FSRM_DISPID_FILE_MANAGEMENT_JOB_MANAGER | 0x1)]
 HRESULT EnumFileManagementJobs(
 [in, defaultvalue(FsrmEnumOptions_None)]
 FsrmEnumOptions options,
 [out, retval] IFsrmCollection
 **fileManagementJobs);

 [id(FSRM_DISPID_FILE_MANAGEMENT_JOB_MANAGER | 0x2)]
 HRESULT CreateFileManagementJob(
 [out, retval] IFsrmFileManagementJob**
 fileManagementJob);

 [id(FSRM_DISPID_FILE_MANAGEMENT_JOB_MANAGER | 0x3)]
 HRESULT GetFileManagementJob(
 [in] BSTR name,
 [out, retval] IFsrmFileManagementJob**
 fileManagementJob);
 };

 [
 odl,
 uuid(0770687e-9f36-4d6f-8778-599d188461c9),
 version(1.0),
 dual,
 oleautomation
]interface IFsrmFileManagementJob : IFsrmObject {

 const LONG FsrmDaysNotSpecified = -1;

 const DATE FsrmDateNotSpecified = ((DATE) -1);

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_FILE_MANAGEMENT_JOB | 0x01))]
 HRESULT Name([out, retval] BSTR *name);

 [propput, id(FSRM_PROPERTY(FSRM_DISPID_FILE_MANAGEMENT_JOB | 0x01))]
 HRESULT Name([in] BSTR name);

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_FILE_MANAGEMENT_JOB | 0x02))]
 HRESULT NamespaceRoots([out, retval] SAFEARRAY(VARIANT)
 *namespaceRoots);

 [propput, id(FSRM_PROPERTY(FSRM_DISPID_FILE_MANAGEMENT_JOB | 0x02))]
 HRESULT NamespaceRoots([in] SAFEARRAY(VARIANT) namespaceRoots);

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_FILE_MANAGEMENT_JOB | 0x03))]
 HRESULT Enabled([out, retval] VARIANT_BOOL *enabled);

 [propput, id(FSRM_PROPERTY(FSRM_DISPID_FILE_MANAGEMENT_JOB | 0x03))]
 HRESULT Enabled([in] VARIANT_BOOL enabled);

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_FILE_MANAGEMENT_JOB | 0x04))]
 HRESULT OperationType([out, retval] FsrmFileManagementType
 *operationType);

 [propput, id(FSRM_PROPERTY(FSRM_DISPID_FILE_MANAGEMENT_JOB | 0x04))]
 HRESULT OperationType([in] FsrmFileManagementType operationType);

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_FILE_MANAGEMENT_JOB | 0x05))]
 HRESULT ExpirationDirectory([out, retval] BSTR
 *expirationDirectory);

 [propput, id(FSRM_PROPERTY(FSRM_DISPID_FILE_MANAGEMENT_JOB | 0x05))]
 HRESULT ExpirationDirectory([in] BSTR expirationDirectory);

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_FILE_MANAGEMENT_JOB | 0x06))]

445 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 HRESULT CustomAction([out, retval] IFsrmActionCommand **action);

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_FILE_MANAGEMENT_JOB | 0x07))]
 HRESULT Notifications([out, retval] SAFEARRAY(VARIANT)
 *notifications);

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_FILE_MANAGEMENT_JOB | 0x08))]
 HRESULT Logging([out, retval] long *loggingFlags);

 [propput, id(FSRM_PROPERTY(FSRM_DISPID_FILE_MANAGEMENT_JOB | 0x08))]
 HRESULT Logging([in] long loggingFlags);

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_FILE_MANAGEMENT_JOB | 0x09))]
 HRESULT ReportEnabled([out, retval] VARIANT_BOOL *reportEnabled);

 [propput, id(FSRM_PROPERTY(FSRM_DISPID_FILE_MANAGEMENT_JOB | 0x09))]
 HRESULT ReportEnabled([in] VARIANT_BOOL reportEnabled);

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_FILE_MANAGEMENT_JOB | 0x0a))]
 HRESULT Formats([out, retval] SAFEARRAY(VARIANT) *formats);

 [propput, id(FSRM_PROPERTY(FSRM_DISPID_FILE_MANAGEMENT_JOB | 0x0a))]
 HRESULT Formats([in] SAFEARRAY(VARIANT) formats);

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_FILE_MANAGEMENT_JOB | 0x0b))]
 HRESULT MailTo([out, retval] BSTR *mailTo);

 [propput, id(FSRM_PROPERTY(FSRM_DISPID_FILE_MANAGEMENT_JOB | 0x0b))]
 HRESULT MailTo([in] BSTR mailTo);

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_FILE_MANAGEMENT_JOB | 0x0c))]
 HRESULT DaysSinceFileCreated([out, retval] long *daysSinceCreation);

 [propput, id(FSRM_PROPERTY(FSRM_DISPID_FILE_MANAGEMENT_JOB | 0x0c))]
 HRESULT DaysSinceFileCreated([in] long daysSinceCreation);

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_FILE_MANAGEMENT_JOB | 0x0d))]
 HRESULT DaysSinceFileLastAccessed([out, retval] long
 *daysSinceAccess);

 [propput, id(FSRM_PROPERTY(FSRM_DISPID_FILE_MANAGEMENT_JOB | 0x0d))]
 HRESULT DaysSinceFileLastAccessed([in] long daysSinceAccess);

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_FILE_MANAGEMENT_JOB | 0x0e))]
 HRESULT DaysSinceFileLastModified([out, retval] long
 *daysSinceModify);

 [propput, id(FSRM_PROPERTY(FSRM_DISPID_FILE_MANAGEMENT_JOB | 0x0e))]
 HRESULT DaysSinceFileLastModified([in] long daysSinceModify);

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_FILE_MANAGEMENT_JOB | 0x0f))]
 HRESULT PropertyConditions([out, retval] IFsrmCollection
 **propertyConditions);

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_FILE_MANAGEMENT_JOB | 0x10))]
 HRESULT FromDate([out, retval] DATE *fromDate);

 [propput, id(FSRM_PROPERTY(FSRM_DISPID_FILE_MANAGEMENT_JOB | 0x10))]
 HRESULT FromDate([in] DATE fromDate);

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_FILE_MANAGEMENT_JOB | 0x11))]
 HRESULT Task([out, retval] BSTR *taskName);

 [propput, id(FSRM_PROPERTY(FSRM_DISPID_FILE_MANAGEMENT_JOB | 0x11))]
 HRESULT Task([in] BSTR taskName);

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_FILE_MANAGEMENT_JOB | 0x12))]
 HRESULT Parameters([out, retval] SAFEARRAY(VARIANT) *parameters);

446 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 [propput, id(FSRM_PROPERTY(FSRM_DISPID_FILE_MANAGEMENT_JOB | 0x12))]
 HRESULT Parameters([in] SAFEARRAY(VARIANT) parameters);

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_FILE_MANAGEMENT_JOB | 0x13))]
 HRESULT RunningStatus([out, retval] FsrmReportRunningStatus
 *runningStatus);

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_FILE_MANAGEMENT_JOB | 0x14))]
 HRESULT LastError([out, retval] BSTR *lastError);

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_FILE_MANAGEMENT_JOB | 0x15))]
 HRESULT LastReportPathWithoutExtension([out, retval] BSTR* path);

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_FILE_MANAGEMENT_JOB | 0x16))]
 HRESULT LastRun([out, retval] DATE *lastRun);

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_FILE_MANAGEMENT_JOB | 0x17))]
 HRESULT FileNamePattern([out, retval] BSTR *fileNamePattern);

 [propput, id(FSRM_PROPERTY(FSRM_DISPID_FILE_MANAGEMENT_JOB | 0x17))]
 HRESULT FileNamePattern([in] BSTR *fileNamePattern);

 [id(FSRM_DISPID_FILE_MANAGEMENT_JOB | 0x01)]
 HRESULT Run([in] FsrmReportGenerationContext context);

 [id(FSRM_DISPID_FILE_MANAGEMENT_JOB | 0x02)]
 HRESULT WaitForCompletion(
 [in] long waitSeconds,
 [out, retval] VARIANT_BOOL *completed);

 [id(FSRM_DISPID_FILE_MANAGEMENT_JOB | 0x03)]
 HRESULT Cancel();

 [id(FSRM_DISPID_FILE_MANAGEMENT_JOB | 0x04)]
 HRESULT AddNotification([in] long days);

 [id(FSRM_DISPID_FILE_MANAGEMENT_JOB | 0x05)]
 HRESULT DeleteNotification([in] long days);

 [id(FSRM_DISPID_FILE_MANAGEMENT_JOB | 0x06)]
 HRESULT ModifyNotification(
 [in] long days,
 [in] long newDays);

 [id(FSRM_DISPID_FILE_MANAGEMENT_JOB | 0x07)]
 HRESULT CreateNotificationAction(
 [in] long days,
 [in] FsrmActionType actionType,
 [out, retval] IFsrmAction **action);

 [id(FSRM_DISPID_FILE_MANAGEMENT_JOB | 0x08)]
 HRESULT EnumNotificationActions(
 [in] long days,
 [out, retval] IFsrmCollection **actions);

 [id(FSRM_DISPID_FILE_MANAGEMENT_JOB_MANAGER | 0x09)]
 HRESULT CreatePropertyCondition(
 [in] BSTR name,
 [out, retval] IFsrmPropertyCondition** propertyCondition);

 [id(FSRM_DISPID_FILE_MANAGEMENT_JOB_MANAGER | 0x0a)]
 HRESULT CreateCustomAction(
 [out, retval] IFsrmActionCommand** customAction);
 };

 [
 odl,
 uuid(326af66f-2ac0-4f68-bf8c-4759f054fa29),

447 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 version(1.0),
 dual,
 oleautomation
]interface IFsrmPropertyCondition : IDispatch {

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_PROPERTY_CONDITION | 0x01))]
 HRESULT Name([out, retval] BSTR *name);

 [propput, id(FSRM_PROPERTY(FSRM_DISPID_PROPERTY_CONDITION | 0x01))]
 HRESULT Name([in] BSTR name);

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_PROPERTY_CONDITION | 0x02))]
 HRESULT Type([out, retval] FsrmPropertyConditionType *type);

 [propput, id(FSRM_PROPERTY(FSRM_DISPID_PROPERTY_CONDITION | 0x02))]
 HRESULT Type([in] FsrmPropertyConditionType type);

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_PROPERTY_CONDITION | 0x03))]
 HRESULT Value([out, retval] BSTR *value);

 [propput, id(FSRM_PROPERTY(FSRM_DISPID_PROPERTY_CONDITION | 0x03))]
 HRESULT Value([in] BSTR value);

 [id(FSRM_DISPID_PROPERTY_CONDITION | 0x01)]
 HRESULT Delete();
 };

 interface IFsrmFileGroup;
 interface IFsrmFileGroupImported;
 interface IFsrmFileGroupManager;

 interface IFsrmFileScreenBase;
 interface IFsrmFileScreen;
 interface IFsrmFileScreenException;
 interface IFsrmFileScreenManager;

 interface IFsrmFileScreenTemplate;
 interface IFsrmFileScreenTemplateImported;
 interface IFsrmFileScreenTemplateManager;

 const DISPID FSRM_DISPID_FILEGROUP =
 FSRM_DISPID_FEATURE_FILESCREEN | 0x100000;
 const DISPID FSRM_DISPID_FILEGROUP_IMPORTED =
 FSRM_DISPID_FILEGROUP | 0x010000;

 const DISPID FSRM_DISPID_FILEGROUP_MANAGER =
 FSRM_DISPID_FEATURE_FILESCREEN | 0x200000;

 const DISPID FSRM_DISPID_FILESCREEN_BASE =
 FSRM_DISPID_FEATURE_FILESCREEN | 0x300000;
 const DISPID FSRM_DISPID_FILESCREEN =
 FSRM_DISPID_FILESCREEN_BASE | 0x010000;
 const DISPID FSRM_DISPID_FILESCREEN_TEMPLATE =
 FSRM_DISPID_FILESCREEN_BASE | 0x020000;
 const DISPID FSRM_DISPID_FILESCREEN_TEMPLATE_IMPORTED =
 FSRM_DISPID_FILESCREEN_TEMPLATE | 0x001000;

 const DISPID FSRM_DISPID_FILESCREEN_EXCEPTION =
 FSRM_DISPID_FEATURE_FILESCREEN | 0x400000;

 const DISPID FSRM_DISPID_FILESCREEN_MANAGER =
 FSRM_DISPID_FEATURE_FILESCREEN | 0x500000;

 const DISPID FSRM_DISPID_FILESCREEN_TEMPLATE_MANAGER =
 FSRM_DISPID_FEATURE_FILESCREEN | 0x600000;

 [
 object,
 uuid(8dd04909-0e34-4d55-afaa-89e1f1a1bbb9),

448 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 dual,

 pointer_default(unique)
]interface IFsrmFileGroup : IFsrmObject
 { [propget, id(FSRM_PROPERTY(FSRM_DISPID_FILEGROUP | 0x01))]
 HRESULT Name([out, retval] BSTR *name);

 [propput, id(FSRM_PROPERTY(FSRM_DISPID_FILEGROUP | 0x01))]
 HRESULT Name([in] BSTR name);

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_FILEGROUP | 0x02))]
 HRESULT Members([out, retval] IFsrmMutableCollection **members);

 [propput, id(FSRM_PROPERTY(FSRM_DISPID_FILEGROUP | 0x02))]
 HRESULT Members([in] IFsrmMutableCollection *members);

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_FILEGROUP | 0x03))]
 HRESULT NonMembers([out, retval] IFsrmMutableCollection
 **nonMembers);

 [propput, id(FSRM_PROPERTY(FSRM_DISPID_FILEGROUP | 0x03))]
 HRESULT NonMembers([in] IFsrmMutableCollection *nonMembers);
 };

 [
 object,
 uuid(ad55f10b-5f11-4be7-94ef-d9ee2e470ded),
 dual,

 pointer_default(unique)
]interface IFsrmFileGroupImported : IFsrmFileGroup
 { [propget, id(FSRM_PROPERTY(FSRM_DISPID_FILEGROUP_IMPORTED | 0x01))]
 HRESULT OverwriteOnCommit([out, retval] VARIANT_BOOL *overwrite);

 [propput, id(FSRM_PROPERTY(FSRM_DISPID_FILEGROUP_IMPORTED | 0x01))]
 HRESULT OverwriteOnCommit([in] VARIANT_BOOL overwrite);
 };

 [
 object,
 uuid(426677d5-018c-485c-8a51-20b86d00bdc4),
 dual,

 pointer_default(unique)
]interface IFsrmFileGroupManager : IDispatch
 { [id(FSRM_DISPID_FILEGROUP_MANAGER | 0x01)]
 HRESULT CreateFileGroup([out, retval] IFsrmFileGroup **fileGroup);

 [id(FSRM_DISPID_FILEGROUP_MANAGER | 0x02)]
 HRESULT GetFileGroup(
 [in] BSTR name,
 [out, retval] IFsrmFileGroup **fileGroup);

 [id(FSRM_DISPID_FILEGROUP_MANAGER | 0x03)]
 HRESULT EnumFileGroups(
 [in, defaultvalue(FsrmEnumOptions_None)] FsrmEnumOptions
 options,
 [out, retval] IFsrmCommittableCollection **fileGroups);

 [id(FSRM_DISPID_FILEGROUP_MANAGER | 0x04)]
 HRESULT ExportFileGroups(
 [in, defaultvalue(NULL)] VARIANT* fileGroupNamesArray,
 [out, retval] BSTR *serializedFileGroups);

 [id(FSRM_DISPID_FILEGROUP_MANAGER | 0x05)]
 HRESULT ImportFileGroups(
 [in] BSTR serializedFileGroups,
 [in, defaultvalue(NULL)] VARIANT* fileGroupNamesArray,
 [out, retval] IFsrmCommittableCollection **fileGroups);

449 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 };

 [
 object,
 uuid(f3637e80-5b22-4a2b-a637-bbb642b41cfc),
 dual,

 pointer_default(unique)
]interface IFsrmFileScreenBase : IFsrmObject
 { [propget, id(FSRM_PROPERTY(FSRM_DISPID_FILESCREEN_BASE | 0x01))]
 HRESULT BlockedFileGroups([out, retval] IFsrmMutableCollection
 **blockList);

 [propput, id(FSRM_PROPERTY(FSRM_DISPID_FILESCREEN_BASE | 0x01))]
 HRESULT BlockedFileGroups([in] IFsrmMutableCollection *blockList);

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_FILESCREEN_BASE | 0x02))]
 HRESULT FileScreenFlags([out, retval] long *fileScreenFlags);

 [propput, id(FSRM_PROPERTY(FSRM_DISPID_FILESCREEN_BASE | 0x02))]
 HRESULT FileScreenFlags([in] long fileScreenFlags);

 [id(FSRM_DISPID_FILESCREEN_BASE | 0x01)]
 HRESULT CreateAction(
 [in] FsrmActionType actionType,
 [out, retval] IFsrmAction **action);

 [id(FSRM_DISPID_FILESCREEN_BASE | 0x02)]
 HRESULT EnumActions([out, retval] IFsrmCollection **actions);
 };

 [
 object,
 uuid(5f6325d3-ce88-4733-84c1-2d6aefc5ea07),
 dual,

 pointer_default(unique)
]interface IFsrmFileScreen : IFsrmFileScreenBase
 { [propget, id(FSRM_PROPERTY(FSRM_DISPID_FILESCREEN | 0x01))]
 HRESULT Path([out, retval] BSTR *path);

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_FILESCREEN | 0x02))]
 HRESULT SourceTemplateName([out, retval] BSTR
 *fileScreenTemplateName);

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_FILESCREEN | 0x03))]
 HRESULT MatchesSourceTemplate([out, retval] VARIANT_BOOL
 *matches);

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_FILESCREEN | 0x04))]
 HRESULT UserSid([out, retval] BSTR *userSid);

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_FILESCREEN | 0x05))]
 HRESULT UserAccount([out, retval] BSTR *userAccount);

 [id(FSRM_DISPID_FILESCREEN | 0x01)]
 HRESULT ApplyTemplate([in] BSTR fileScreenTemplateName);
 };

 [
 object,
 uuid(bee7ce02-df77-4515-9389-78f01c5afc1a),
 dual,

 pointer_default(unique)
]interface IFsrmFileScreenException : IFsrmObject
 { [propget, id(FSRM_PROPERTY(FSRM_DISPID_FILESCREEN_EXCEPTION
 | 0x01))]
 HRESULT Path([out, retval] BSTR *path);

450 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_FILESCREEN_EXCEPTION
 | 0x02))]
 HRESULT AllowedFileGroups([out, retval] IFsrmMutableCollection
 **allowList);

 [propput, id(FSRM_PROPERTY(FSRM_DISPID_FILESCREEN_EXCEPTION
 | 0x02))]
 HRESULT AllowedFileGroups([in] IFsrmMutableCollection *allowList);
 };

 [
 object,
 uuid(ff4fa04e-5a94-4bda-a3a0-d5b4d3c52eba),
 dual,

 pointer_default(unique)
]interface IFsrmFileScreenManager : IDispatch
 { [propget, id(FSRM_PROPERTY(FSRM_DISPID_FILESCREEN_MANAGER
 | 0x01))]
 HRESULT ActionVariables([out, retval] SAFEARRAY(VARIANT)
 *variables);

 [propget, id(FSRM_PROPERTY(FSRM_DISPID_FILESCREEN_MANAGER
 | 0x02))]
 HRESULT ActionVariableDescriptions([out, retval]
 SAFEARRAY(VARIANT) *descriptions);

 [id(FSRM_DISPID_FILESCREEN_MANAGER | 0x01)]
 HRESULT CreateFileScreen(
 [in] BSTR path,
 [out, retval] IFsrmFileScreen **fileScreen);

 [id(FSRM_DISPID_FILESCREEN_MANAGER | 0x02)]
 HRESULT GetFileScreen(
 [in] BSTR path,
 [out, retval] IFsrmFileScreen **fileScreen);

 [id(FSRM_DISPID_FILESCREEN_MANAGER | 0x03)]
 HRESULT EnumFileScreens(
 [in, defaultvalue(L"")] BSTR path,
 [in, defaultvalue(FsrmEnumOptions_None)]
 FsrmEnumOptions options,
 [out, retval] IFsrmCommittableCollection **fileScreens);

 [id(FSRM_DISPID_FILESCREEN_MANAGER | 0x04)]
 HRESULT CreateFileScreenException(
 [in] BSTR path,
 [out, retval] IFsrmFileScreenException **fileScreenException);

 [id(FSRM_DISPID_FILESCREEN_MANAGER | 0x05)]
 HRESULT GetFileScreenException(
 [in] BSTR path,
 [out, retval] IFsrmFileScreenException **fileScreenException);

 [id(FSRM_DISPID_FILESCREEN_MANAGER | 0x06)]
 HRESULT EnumFileScreenExceptions(
 [in, defaultvalue(L"")] BSTR path,
 [in, defaultvalue(FsrmEnumOptions_None)] FsrmEnumOptions
 options,
 [out, retval] IFsrmCommittableCollection
 **fileScreenExceptions);

 [id(FSRM_DISPID_FILESCREEN_MANAGER | 0x07)]
 HRESULT CreateFileScreenCollection([out, retval]
 IFsrmCommittableCollection **collection);
 };

 [

451 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 object,
 uuid(205bebf8-dd93-452a-95a6-32b566b35828),
 dual,

 pointer_default(unique)
]interface IFsrmFileScreenTemplate : IFsrmFileScreenBase
 { [propget, id(FSRM_PROPERTY(FSRM_DISPID_FILESCREEN_TEMPLATE
 | 0x01))]
 HRESULT Name([out, retval] BSTR *name);

 [propput, id(FSRM_PROPERTY(FSRM_DISPID_FILESCREEN_TEMPLATE
 | 0x01))]
 HRESULT Name([in] BSTR name);

 [id(FSRM_DISPID_FILESCREEN_TEMPLATE | 0x01)]
 HRESULT CopyTemplate([in] BSTR fileScreenTemplateName);

 [id(FSRM_DISPID_FILESCREEN_TEMPLATE | 0x02)]
 HRESULT CommitAndUpdateDerived(
 [in] FsrmCommitOptions commitOptions,
 [in] FsrmTemplateApplyOptions applyOptions,
 [out, retval] IFsrmDerivedObjectsResult
 **derivedObjectsResult);
 };

 [
 object,
 uuid(e1010359-3e5d-4ecd-9fe4-ef48622fdf30),
 dual,

 pointer_default(unique)
]interface IFsrmFileScreenTemplateImported : IFsrmFileScreenTemplate
 { [propget, id(FSRM_PROPERTY(FSRM_DISPID_FILESCREEN_TEMPLATE_IMPORTED
 | 0x01))]
 HRESULT OverwriteOnCommit([out, retval] VARIANT_BOOL *overwrite);

 [propput, id(FSRM_PROPERTY(FSRM_DISPID_FILESCREEN_TEMPLATE_IMPORTED
 | 0x01))]
 HRESULT OverwriteOnCommit([in] VARIANT_BOOL overwrite);
 };

 [
 object,
 uuid(cfe36cba-1949-4e74-a14f-f1d580ceaf13),
 dual,

 pointer_default(unique)
]interface IFsrmFileScreenTemplateManager : IDispatch
 { [id(FSRM_DISPID_FILESCREEN_TEMPLATE_MANAGER | 0x01)]
 HRESULT CreateTemplate([out, retval] IFsrmFileScreenTemplate
 **fileScreenTemplate);

 [id(FSRM_DISPID_FILESCREEN_TEMPLATE_MANAGER | 0x02)]
 HRESULT GetTemplate(
 [in] BSTR name,
 [out, retval] IFsrmFileScreenTemplate **fileScreenTemplate);

 [id(FSRM_DISPID_FILESCREEN_TEMPLATE_MANAGER | 0x03)]
 HRESULT EnumTemplates(
 [in, defaultvalue(FsrmEnumOptions_None)] FsrmEnumOptions
 options,
 [out, retval] IFsrmCommittableCollection
 **fileScreenTemplates);

 [id(FSRM_DISPID_FILESCREEN_TEMPLATE_MANAGER | 0x04)]
 HRESULT ExportTemplates(
 [in, defaultvalue(NULL)] VARIANT* fileScreenTemplateNamesArray,
 [out, retval] BSTR *serializedFileScreenTemplates);

452 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 [id(FSRM_DISPID_FILESCREEN_TEMPLATE_MANAGER | 0x05)]
 HRESULT ImportTemplates(
 [in] BSTR serializedFileScreenTemplates,
 [in, defaultvalue(NULL)] VARIANT* fileScreenTemplateNamesArray,
 [out, retval] IFsrmCommittableCollection
 **fileScreenTemplates);
 };

453 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

7 Appendix B: Product Behavior

The information in this specification is applicable to the following Microsoft products or supplemental
software. References to product versions include released service packs.

 Windows Vista operating system

 Windows Server 2008 operating system

 Windows 7 operating system

 Windows Server 2008 R2 operating system

 Windows 8 operating system

 Windows Server 2012 operating system

 Windows 8.1 operating system

 Windows Server 2012 R2 operating system

 Windows 10 operating system

 Windows Server 2016 operating system

Exceptions, if any, are noted below. If a service pack or Quick Fix Engineering (QFE) number appears
with the product version, behavior changed in that service pack or QFE. The new behavior also applies
to subsequent service packs of the product unless otherwise specified. If a product edition appears
with the product version, behavior is different in that product edition.

Unless otherwise specified, any statement of optional behavior in this specification that is prescribed
using the terms "SHOULD" or "SHOULD NOT" implies product behavior in accordance with the

SHOULD or SHOULD NOT prescription. Unless otherwise specified, the term "MAY" implies that the
product does not follow the prescription.

<1> Section 1: The following table lists the interfaces common to all storage management modules by
Windows Server operating system operating system version.

Interface

Windows
Server
2008

Windows
Server 2008
R2

Windows Server
2012, Windows
Server 2012 R2, and
Windows Server 2016

Windows 8,
Windows 8.1,
and Windows
10

IFsrmCollection X X X X

IFsrmMutableCollection X X X X

IFsrmCommittableCollection X X X

IFsrmAction X X X

IFsrmActionEmail X X X

IFsrmActionEmail2 X X

IFsrmActionReport X X X

IFsrmActionEventLog X X X

IFsrmActionCommand X X X

IFsrmObject X X X X

454 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Interface

Windows
Server
2008

Windows
Server 2008
R2

Windows Server
2012, Windows
Server 2012 R2, and
Windows Server 2016

Windows 8,
Windows 8.1,
and Windows
10

IFsrmSetting X X X

IFsrmPathMapper X X X

IFsrmDerivedObjects X X X

IFsrmQuotaBase X X X

IFsrmQuotaObject X X X

IFsrmQuota X X X

IFsrmAutoApplyQuota X X X

IFsrmQuotaManager X X X

IFsrmQuotaManagerEx X X

IFsrmQuotaTemplate X X X

IFsrmQuotaTemplateImported X X X

IFsrmQuotaTemplateManager X X X

IFsrmFileGroup X X X

IFsrmFileGroupImported X X X

IFsrmFileGroupManager X X X

IFsrmFileScreenBase X X X

IFsrmFileScreen X X X

IFsrmFileScreenException X X X

IFsrmFileScreenManager X X X

IFsrmFileScreenTemplate X X X

IFsrmFileScreenTemplateImported X X X

IFsrmFileScreenTemplateManager X X X

IFsrmReportManager X X X

IFsrmReportJob X X X

IFsrmReport X X X

IFsrmReportScheduler X X X

IFsrmPropertyCondition X X

IFsrmPropertyDefinition X X X

IFsrmPropertyDefinition2 X X

IFsrmPropertyDefinitionValue X X

455 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Interface

Windows
Server
2008

Windows
Server 2008
R2

Windows Server
2012, Windows
Server 2012 R2, and
Windows Server 2016

Windows 8,
Windows 8.1,
and Windows
10

IFsrmProperty X X X

IFsrmRule X X

IFsrmClassificationRule X X

IFsrmPipelineModuleDefinition X X

IFsrmStorageModuleDefinition X X

IFsrmClassifierModuleDefinition X X

IFsrmClassificationManager X X X

IFsrmClassificationManager2 X X

IFsrmFileManagementJob X X

IFsrmFileManagementJobManager X X

 The following table lists the Class IDs for interfaces common to all storage management by operating
system version.

Class ID for the -iInterface

Windows
Server
2008

Windows
Server
2008 R2

Windows Server
2012, Windows
Server 2012 R2, and
Windows Server
2016

Windows 8,
Windows 8.1,
and Windows
10

Class ID for IFsrmSetting X X X

Class ID for IFsrmPathMapper X X X

Class ID for IFsrmQuotaManager X X X

Class ID for
IFsrmQuotaTemplateManager

X X X

Class ID for
IFsrmFileGroupManager

X X X

Class ID for
IFsrmFileScreenManager

X X X

Class ID for
IFsrmFileScreenTemplateManager

X X X

Class ID for IFsrmReportManager X X X

Class ID for IFsrmReportScheduler X X X

Class ID for
IFsrmClassificationManager

 X X X

Class ID for
IFsrmClassificationManager2

 X X

Class ID for
IFsrmFileManagementJobManager

 X X

456 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

<2> Section 1.3: The FSRM server is implemented by the Windows File Server Resource Manager and

File Server Storage Reports services. An FSRM client is implemented by a number of components,
including the Windows File Server Resource Manager management console and the DIRQUOTA.EXE,

FILESCRN.EXE, and STORREPT.EXE command–line tools [MSFT-WINCMD].

<3> Section 1.4: Windows 8, Windows Server 2012, Windows 8.1, Windows Server 2012 R2,
Windows 10, and Windows Server 2016 are the only versions of Windows that interact with Active
Directory to synchronize the property definitions locally.

<4> Section 1.5: On Windows, the server for an FSRM classification module or storage module is
registered as a COM server. See [MSDN-COMCLTSERVS] for more information.

<5> Section 1.6: Windows Server 2008 and Windows Server 2008 R2 operating system implement

the File Server Resource Manager Protocol.

<6> Section 1.7: The following table lists the interfaces common to all storage management by
operating system version.

Interface

Windows
Server
2008

Windows
Server 2008
R2

Windows Server
2012, Windows
Server 2012 R2, and
Windows Server 2016

Windows 8,
Windows 8.1,
and Windows
10

IFsrmCollection X X X X

IFsrmMutableCollection X X X X

IFsrmCommittableCollection X X X

IFsrmAction X X X

IFsrmActionEmail X X X

IFsrmActionEmail2 X X

IFsrmActionReport X X X

IFsrmActionEventLog X X X

IFsrmActionCommand X X X

IFsrmObject X X X X

IFsrmSetting X X X

IFsrmPathMapper X X X

IFsrmDerivedObjects X X X

IFsrmQuotaBase X X X

IFsrmQuotaObject X X X

IFsrmQuota X X X

IFsrmAutoApplyQuota X X X

IFsrmQuotaManager X X X

IFsrmQuotaManagerEx X X X

https://go.microsoft.com/fwlink/?LinkId=180497
https://go.microsoft.com/fwlink/?LinkId=150262

457 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Interface

Windows
Server
2008

Windows
Server 2008
R2

Windows Server
2012, Windows
Server 2012 R2, and
Windows Server 2016

Windows 8,
Windows 8.1,
and Windows
10

IFsrmQuotaTemplate X X X

IFsrmQuotaTemplateImported X X X

IFsrmQuotaTemplateManager X X X

IFsrmFileGroup X X X

IFsrmFileGroupImported X X X

IFsrmFileGroupManager X X X

IFsrmFileScreenBase X X X

IFsrmFileScreen X X X

IFsrmFileScreenException X X X

IFsrmFileScreenManager X X X

IFsrmFileScreenTemplate X X X

IFsrmFileScreenTemplateImported X X X

IFsrmFileScreenTemplateManager X X X

IFsrmReportManager X X X

IFsrmReportJob X X X

IFsrmReport X X X

IFsrmReportScheduler X X X

IFsrmPropertyCondition X X

IFsrmPropertyDefinition X X X

IFsrmPropertyDefinition2 X X

IFsrmProperty X X X

IFsrmRule X X

IFsrmClassificationRule X X

IFsrmPipelineModuleDefinition X X

IFsrmStorageModuleDefinition X X

IFsrmClassifierModuleDefinition X X

IFsrmClassificationManager X X X

IFsrmClassificationManager2 X X

IFsrmFileManagementJob X X

IFsrmFileManagementJobManager X X

458 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 The following table lists the Class IDs for interfaces common to all storage management by operating
system version.

Class ID for interface

Windows
Server
2008

Windows
Server
2008 R2

Windows Server
2012, Windows
Server 2012 R2, and
Windows Server
2016

Windows 8,
Windows 8.1,
and Windows
10

Class ID for IFsrmSetting X X X

Class ID for IFsrmPathMapper X X X

Class ID for IFsrmQuotaManager X X X

Class ID for
IFsrmQuotaTemplateManager

X X X

Class ID for
IFsrmFileGroupManager

X X X

Class ID for
IFsrmFileScreenManager

X X X

Class ID for
IFsrmFileScreenTemplateManager

X X X

Class ID for IFsrmReportManager X X X

Class ID for IFsrmReportScheduler X X X

Class ID for
IFsrmClassificationManager

 X X X

Class ID for
IFsrmClassificationManager2

 X X

Class ID for
IFsrmFileManagementJobManager

 X X

The following table lists the interfaces common to all storage management by the Remote Server
Administration Tools (RSAT) package for Windows client OS versions.

Interface
RSAT for
Windows Vista

RSAT for
Windows 7

RSAT for Windows 8, Windows
8.1, and Windows 10

IFsrmCollection X X X

IFsrmMutableCollection X X X

IFsrmCommittableCollection X X X

IFsrmAction X X X

IFsrmActionEmail X X X

IFsmrActionEmail2 X X

IFsrmActionReport X X X

IFsrmActionEventLog X X X

IFsrmActionCommand X X X

459 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Interface
RSAT for
Windows Vista

RSAT for
Windows 7

RSAT for Windows 8, Windows
8.1, and Windows 10

IFsrmObject X X X

IFsrmSetting X X X

IFsrmPathMapper X X X

IFsrmDerivedObjects X X X

IFsrmQuotaBase X X X

IFsrmQuotaObject X X X

IFsrmQuota X X X

IFsrmAutoApplyQuota X X X

IFsrmQuotaManager X X X

IFsrmQuotaTemplate X X X

IFsrmQuotaTemplateImported X X X

IFsrmQuotaTemplateManager X X X

IFsrmFileGroup X X X

IFsrmFileGroupImported X X X

IFsrmFileGroupManager X X X

IFsrmFileScreenBase X X X

IFsrmFileScreen X X X

IFsrmFileScreenException X X X

IFsrmFileScreenManager X X X

IFsrmFileScreenTemplate X X X

IFsrmFileScreenTemplateImported X X X

IFsrmFileScreenTemplateManager X X X

IFsrmReportManager X X X

IFsrmReportJob X X X

IFsrmReport X X X

IFsrmReportScheduler X X X

IFsrmPropertyCondition X X

IFsrmPropertyDefinition X X

IFsrmPropertyDefinition2 X

IFsrmProperty X X

IFsrmRule X X

460 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Interface
RSAT for
Windows Vista

RSAT for
Windows 7

RSAT for Windows 8, Windows
8.1, and Windows 10

IFsrmClassificationRule X X

IFsrmPipelineModuleDefinition X X

IFsrmStorageModuleDefinition X X

IFsrmClassifierModuleDefinition X X

IFsrmClassificationManager X X

IFsrmClassificationManager2 X

IFsrmFileManagementJob X X

IFsrmFileManagementJobManager X X

The following table lists the Class IDs for interfaces common to all storage management by the

Remote Server Administration Tools (RSAT) package for Windows client OS versions.

Class ID for interface
RSAT for
Windows Vista

RSAT for
Windows 7

RSAT for Windows 8 and
Windows 8.1

Class ID for IFsrmSetting X X X

Class ID for IFsrmPathMapper X X X

Class ID for IFsrmQuotaManager X X X

Class ID for
IFsrmQuotaTemplateManager

X X X

Class ID for IFsrmFileGroupManager X X X

Class ID for IFsrmFileScreenManager X X X

Class ID for
IFsrmFileScreenTemplateManager

X X X

Class ID for IFsrmReportManager X X X

Class ID for IFsrmReportScheduler X X X

Class ID for IFsrmClassificationManager X X

Class ID for IFsrmClassificationManager X

Class ID for
IFsrmFileManagementJobManager

 X X

<7> Section 2.1:

The authorization constraints in Windows do not vary by operating system release. All interfaces
described in this document require a level of access corresponding to any of the following Windows
security groups, excluding the interfaces that require only that the caller be an authenticated user:

 Administrators

 Backup Operators

461 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 SYSTEM

The following interfaces require only that the caller be an authenticated user on the machine:

 IFsrmClassificationManager::EnumPropertyDefinitions

 IFsrmClassificationManager::GetPropertyDefinition

 IFsrmClassificationManager::EnumFileProperties

 IFsrmClassificationManager::GetFileProperty

 IFsrmClassificationManager::SetFileProperty

 IFsrmClassificationManager::ClearFileProperty

 IFsrmClassificationManager2::ClassifyFiles

 IFsrmCollection::*

 IFsrmMutableCollection::*

 IFsrmObject::*

 IFsrmPropertyDefinition::Name (get)

 IFsrmPropertyDefinition::Name (put)

 IFsrmPropertyDefinition::Type(get)

 IFsrmPropertyDefinition::Type(put)

 IFsrmPropertyDefinition::PossibleValues (get)

 IFsrmPropertyDefinition::PossibleValues (put)

 IFsrmPropertyDefinition::ValueDescriptions (get)

 IFsrmPropertyDefinition::ValueDescriptions (put)

 IFsrmPropertyDefinition::Parameters(get)

 IFsrmPropertyDefinition::Parameters (put)

 IFsrmPropertyDefinition2::DisplayName (get)

 IFsrmPropertyDefinition2::DisplayName (put)

 IFsrmPropertyDefinition2::AppliesTo (get)

 IFsrmPropertyDefinition2::AppliesTo (put)

 IFsrmPropertyDefinition2::PropertyDefinitionFlags

 IFsrmProperty::*

<8> Section 2.1:

Windows configures the underlying RPC transport with the following flags. The meanings of the
following flags are specified in [C706] and [MS-RPCE]:

 RPC_C_AUTHN_LEVEL_PKT_PRIVACY

https://go.microsoft.com/fwlink/?LinkId=89824
%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15

462 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 RPC_C_IMP_LEVEL_IDENTIFY

 EOAC_SECURE_REFS | EOAC_NO_CUSTOM_MARSHAL

<9> Section 2.2: Unless otherwise stated, all FSRM data types and messages are supported in
Windows Server 2008 and Windows Server 2008 R2.

<10> Section 2.2.1.2.8: This value corresponds to the predefined NetworkService account in Windows
as described in [MSDN-NetworkSvcAcct].

<11> Section 2.2.1.2.8: This value corresponds to the predefined LocalService account in Windows as
described in [MSDN-LocSvcAcct].

<12> Section 2.2.1.2.8: This value corresponds to the predefined LocalSystem account in Windows as
described in [MSDN-LocSysAcct].

<13> Section 2.2.1.2.8: The COM module needs to be registered as an in-proc COM server. See

[MSDN-COMCLTSERVS] for more information.

<14> Section 2.2.1.2.8: The actual account under which the module definition is running depends
upon how the module definition was registered as an out-of-process COM server. See [MSDN-
COMCLTSERVS] for more information.

<15> Section 2.2.1.2.8: Windows 8, Windows Server 2012, Windows 8.1, Windows Server 2012 R2,
Windows 10, and Windows Server 2016 are the only versions of Windows that use the

FsrmAccountType_Automatic enumeration value.

<16> Section 2.2.1.2.10: In Microsoft Windows, duplicate files are files that have the same name and
physical size.

<17> Section 2.2.1.2.18: Windows 8, Windows Server 2012, Windows 8.1, Windows Server 2012 R2,
Windows 10, and Windows Server 2016 will always set this flag while writing the FCIADS stream.
Windows Server 2008 R2 will never set this flag.

<18> Section 2.2.2.3.1.1: FsrmPropertyDefinitionType_SingleChoiceList is not supported in

Windows Vista, Windows Server 2008, Windows 7, and Windows Server 2008 R2. Windows 8,
Windows Server 2012, Windows 8.1, Windows Server 2012 R2, Windows 10, and Windows Server
2016 support FsrmPropertyDefinitionType_SingleChoiceList.

<19> Section 2.2.2.4: Windows 8, Windows Server 2012, Windows 8.1, Windows Server 2012 R2,
Windows 10, and Windows Server 2016 are the only versions of Windows that implement the
IFsrmPropertyDefinition2 data types.

<20> Section 2.3: Windows 8, Windows Server 2012, Windows 8.1, Windows Server 2012 R2,

Windows 10, and Windows Server 2016 are the only versions of Windows that interact with Active
Directory to synchronize property definitions locally.

<21> Section 3.1.1: Windows 8, Windows 8.1, and Windows 10 populate the available Resource
Property Lists using Group Policy from the domain. Group Policy updates the following registry key:

HKLM\SOFTWARE\Policies\Microsoft\Windows\FCI

If this key is not available, the ADSyncListName is set to "Global Resource Property List". If the key

has more than one value available, the ADSyncListName can be set to the name of any of the lists
that are to be synchronized.

<22> Section 3.1.4.1.5: The IFsrmStorageModuleDefinition::Commit method is supported only for
local use on all Windows implementations. Remote operations are not advised.

<23> Section 3.2.1.5.1: Windows Server 2012, Windows Server 2012 R2, and Windows Server 2016
are the only versions of Windows that accept dynamic path entries.

https://go.microsoft.com/fwlink/?LinkID=150266
https://go.microsoft.com/fwlink/?LinkId=150263
https://go.microsoft.com/fwlink/?LinkId=150267

463 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

<24> Section 3.2.1.5.2: Windows Server 2012, Windows Server 2012 R2, and Windows Server 2016
are the only versions of Windows that maintain deprecated state data for each report.

<25> Section 3.2.1.5.3: This property is initialized to "%SystemDrive%\StorageReports\Scheduled"".

<26> Section 3.2.1.5.3: This property is initialized to "%SystemDrive%\StorageReports\Interactive"".

<27> Section 3.2.1.5.3: This property is initialized to "%SystemDrive%\StorageReports\Incident"".

<28> Section 3.2.1.6.1: Windows Server 2012, Windows Server 2012 R2, and Windows Server 2016
are the only versions of Windows that maintain this data.

<29> Section 3.2.1.6.1: Windows Server 2012, Windows Server 2012 R2, and Windows Server 2016
are the only versions of Windows that maintain this data. Valid values are:

 Files

 Folders

 Files and Folders

<30> Section 3.2.1.6.1: Windows Server 2012, Windows Server 2012 R2, and Windows Server 2016
are the only versions of Windows that maintain this data.

<31> Section 3.2.1.6.1: Windows Server 2012, Windows Server 2012 R2, and Windows Server 2016
are the only versions of Windows that maintain this data.

<32> Section 3.2.1.6.1: Windows Server 2012, Windows Server 2012 R2, and Windows Server 2016

are the only versions of Windows that maintain this data.

<33> Section 3.2.1.6.1: Windows Server 2012, Windows Server 2012 R2, and Windows Server 2016
are the only versions of Windows that maintain this data.

<34> Section 3.2.1.6.1.3: The Property Value Definition.Display Name, Property Value
Definition.Description, and Property Value Definition.UniqueId configuration items are maintained only

by Windows 8, Windows 8.1, and Windows 10.

<35> Section 3.2.1.6.2: The COM class has to be registered before the module definition can be

committed with its class identifier. See [MSDN-COMCLTSERVS] for details.

<36> Section 3.2.1.6.3: Windows Server 2012, Windows Server 2012 R2, and Windows Server 2016
are the only versions of Windows that accept dynamic path entries.

<37> Section 3.2.1.6.3: Only Windows 8.1, Windows Server 2012 R2, Windows 10, and Windows
Server 2016 maintain this data.

<38> Section 3.2.1.6.3: Windows Server 2012, Windows Server 2012 R2, and Windows Server 2016
are the only versions of Windows that maintain this data.

<39> Section 3.2.1.6.3: Only Windows 8.1, Windows Server 2012 R2, Windows 10, and Windows
Server 2016 maintain this data.

<40> Section 3.2.1.6.3: Only Windows 8.1, Windows Server 2012 R2, Windows 10, and Windows
Server 2016 maintain this data.

<41> Section 3.2.1.6.4: Windows Server 2008 and Windows Server 2008 R2 maintain a single
classification job.

<42> Section 3.2.1.6.4: Windows Server 2012, Windows Server 2012 R2, and Windows Server 2016
are the only versions of Windows that maintain this data.

464 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

<43> Section 3.2.1.7.1: In Windows, the file management job name is used as a foreign key to
associate the file management job with a Windows Task Scheduler scheduled task.

<44> Section 3.2.1.7.1: Windows Server 2012, Windows Server 2012 R2, and Windows Server 2016
are the only versions of Windows that accept dynamic path entries.

<45> Section 3.2.1.7.1: If a file management job is set to generate a report and the report job fails,
then the server will set the last report without extension property to the location where the reports
would have been located had the job succeeded.

<46> Section 3.2.1.7.1: Windows Server 2012, Windows Server 2012 R2, and Windows Server 2016
are the only versions of Windows that maintain this data.

<47> Section 3.2.1.8: Windows Server 2012, Windows Server 2012 R2, and Windows Server 2016
are the only versions of Windows that maintain the FolderUsage list. The value is synchronized with

the msDS-ClaimPossibleValues of the Active Directory property definition during Active Directory
synchronization (section 3.2.1.12.5).

<48> Section 3.2.1.8: Windows Server 2012, Windows Server 2012 R2, and Windows Server 2016

are the only versions of Windows that maintain the FolderUsage mapping.

<49> Section 3.2.1.12.1: Windows Server 2012, Windows Server 2012 R2, and Windows Server 2016
are the only versions of Windows that skip the remaining report formats when the Report Job is

deprecated.

<50> Section 3.2.1.12.1: In Windows, duplicate files are files that have the same name and physical
size.

<51> Section 3.2.1.12.5: Windows 8, Windows 8.1, and Windows 10 synchronize when the client
joins a domain. Windows Server 2012, Windows Server 2012 R2, and Windows Server 2016
synchronize every 15 minutes if an error occurs; otherwise, once every hour.

<52> Section 3.2.3: Only Windows 8.1, Windows Server 2012 R2, and Windows Server 2016 support

this behavior.

<53> Section 3.2.4.2.1.5: This method is not supported and always returns S_OK.

<54> Section 3.2.4.2.1.6: This method is not supported.

<55> Section 3.2.4.2.11.13: If the Run limit interval is not present for actionType, the server uses 60
minutes for delayTimeMinutes.

<56> Section 3.2.4.2.15.3: This method is not supported.

<57> Section 3.2.4.2.15.4: This method is not supported.

<58> Section 3.2.4.2.17.3: Windows will only exclude subdirectories that exist at the time when the
IFsrmAutoApplyQuota object is committed. Folders that are created after the commit that match an
entry of the exclude folder array are not excluded.

<59> Section 3.2.4.2.17.4: When this method is called, the

IFsrmAutoApplyQuota (section 3.2.4.2.17) object is committed. However, only changes made using
the IFsrmQuotaObject::ApplyTemplate (section 3.2.4.2.15.7) method are applied to quota objects

derived from this IFsrmAutoApplyQuota object, based on the value of applyOptions supplied by the
client.

<60> Section 3.2.4.2.33.2: Windows Server uses "01/01/1900 12:00AM" for this value.

<61> Section 3.2.4.2.34.15: Windows Server 2008 is the only version of Windows that does not
implement the FsrmReportType_FilesByProperty value of FsrmReportType (section 2.2.1.2.10).

465 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

<62> Section 3.2.4.2.34.15: Windows Server 2008 is the only version of Windows that does not
implement the FsrmReportType_FilesByProperty value of FsrmReportType.

<63> Section 3.2.4.2.36.2: The XML schema for the task that is used in the Windows implementation
of this protocol is the Task Scheduler task XML schema. For more information, see [MS-TSCH].

<64> Section 3.2.4.2.36.3: The XML schema for the task that is used in the Windows implementation
of this protocol is the Task Scheduler task XML schema. For more information, see [MS-TSCH].

<65> Section 3.2.4.2.37.1: FsrmPropertyDefinitionType_SingleChoiceList is not supported in
Windows Vista, Windows Server 2008, Windows 7, and Windows Server 2008 R2. Windows 8,
Windows Server 2012, Windows 8.1, Windows Server 2012 R2, Windows 10, and Windows Server
2016 support FsrmPropertyDefinitionType_SingleChoiceList.

<66> Section 3.2.4.2.37.5: FsrmPropertyDefinitionType_SingleChoiceList is not supported in

Windows Vista, Windows Server 2008, Windows 7, and Windows Server 2008 R2. Windows 8,
Windows Server 2012, Windows 8.1, Windows Server 2012 R2, Windows 10, and Windows Server
2016 support FsrmPropertyDefinitionType_SingleChoiceList.

<67> Section 3.2.4.2.45.12: Windows Server 2012, Windows Server 2012 R2, and Windows Server
2016 are the only versions of Windows that implement IFsrmPropertyDefinition2.

<68> Section 3.2.4.2.45.14: Windows 8, Windows Server 2012, Windows 8.1, Windows Server 2012

R2, Windows 10, and Windows Server 2016 are the only versions of Windows that implement
IFsrmPropertyDefinition2.

<69> Section 3.2.4.2.45.16: Only Windows 8.1, Windows Server 2012 R2, Windows 10, and Windows
Server 2016 support this behavior.

<70> Section 3.2.4.2.45.16: Only Windows 8.1, Windows Server 2012 R2, Windows 10, and Windows
Server 2016 support this behavior.

<71> Section 3.2.4.2.45.24: This behavior is supported only on Windows 8, Windows 8.1, and

Windows 10.

<72> Section 3.2.4.2.47.1: The IFsrmStorageModuleDefinition::Commit method is supported only for
local use on all Windows implementations. Remote operations are not advised.

<73> Section 3.2.4.2.47.2: The Capabilities (get) method is supported only for local use on all
Windows implementations. Remote operations are not advised.

<74> Section 3.2.4.2.47.3: The Capabilities (put) method is supported only for local use on all
Windows implementations. Remote operations are not advised.

<75> Section 3.2.4.2.47.4: The StorageType (get) method is supported only for local use on all
Windows implementations. Remote operations are not advised.

<76> Section 3.2.4.2.47.5: The StorageType (put) method is supported only for local use on all
Windows implementations. Remote operations are not advised.

<77> Section 3.2.4.2.47.6: The UpdatesFileContent (get) method is supported only for local use on all

Windows implementations. Remote operations are not advised.

<78> Section 3.2.4.2.47.7: The UpdatesFileContent (put) method is supported only for local use on
all Windows implementations. Remote operations are not advised.

<79> Section 3.2.4.2.48.47: Windows Server uses "01/01/1900 12:00AM" for this value.

<80> Section 3.2.5.2: If the relevant classification module has a value in its Module
Definition.Parameters containing "StaticModuleName=Content Classifier", Windows can also

process values in the relevant classification module's Module Definition.Parameters that start with

%5bMS-TSCH%5d.pdf#Section_d1058a287e0249488b8d4a347fa64931

466 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

"IFilterInitFlags", "MaxTokenSize", "ReadBufferSize", "ChunkBreakType", "RegexOptions", or

"AppDomain" for performance purposes. However, these have no impact on functionality.

<81> Section 3.2.5.2: Only Windows 8.1, Windows Server 2012 R2, Windows 10, and Windows
Server 2016 support the ClearProperty.

<82> Section 3.2.5.2: Only Windows 8.1, Windows Server 2012 R2, Windows 10 and Windows Server
2016 support the ClearProperty.

<83> Section 3.2.5.2: Only Windows 8.1, Windows Server 2012 R2, Windows 10 and Windows Server

2016 support the ClearProperty.

<84> Section 3.2.5.2: Only Windows 8.1, Windows Server 2012 R2, Windows 10, and Windows
Server 2016 support the ClearProperty.

<85> Section 3.2.7.10: In Windows, the FCI Alternate Data Stream is supported for the files on a
fixed NTFS volume.

467 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

8 Change Tracking

No table of changes is available. The document is either new or has had no changes since its last
release.

468 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

9 Index

_

_FsrmAccountType enumeration 33
_FsrmEventType enumeration 40
_FsrmStorageModuleCaps enumeration 45
_FsrmStorageModuleType enumeration 46
_NewEnum method 122

A

Abstract data model
 client 62
 server 69
Account method (section 3.2.4.2.9.5 149, section

3.2.4.2.9.6 149, section 3.2.4.2.43.14 306,
section 3.2.4.2.43.15 306)

ActionType method 130
ActionVariableDescriptions method (section

3.2.4.2.18.2 185, section 3.2.4.2.29.2 228)
ActionVariables method (section 3.2.4.2.18.1 184,

section 3.2.4.2.29.1 227)
Add method 126
Adding classification rules example 410
AddNotification method 368
AddThreshold method 170
AdminEmail method (section 3.2.4.2.11.5 159,

section 3.2.4.2.11.6 160)
AdsCacheFlags enumeration 38
AdsCachePropertyFlags enumeration 39
AllowedFileGroups method (section 3.2.4.2.28.3 226,

section 3.2.4.2.28.4 226)
Applicability 25
AppliesTo method (section 3.2.4.2.38.4 282, section

3.2.4.2.38.5 282)
ApplyTemplate method (section 3.2.4.2.15.7 177,

section 3.2.4.2.27.7 224)
Arguments method (section 3.2.4.2.9.3 148, section

3.2.4.2.9.4 148)
AttachmentFileListSize method (section 3.2.4.2.6.1

140, section 3.2.4.2.6.2 140)

B

BlockedFileGroups method (section 3.2.4.2.26.1 216,

section 3.2.4.2.26.2 217)

C

Cancel method (section 3.2.4.2.1.5 124, section

3.2.4.2.34.18 265, section 3.2.4.2.48.43 368)
CancelClassification method 330

Capabilities method (section 3.2.4.2.47.2 339,
section 3.2.4.2.47.3 339)

Capability negotiation 25
Change tracking 467
ClassificationLastError method 318
ClassificationLastReportPathWithoutExtension

method 318
ClassificationReportEnabled method (section

3.2.4.2.45.7 317, section 3.2.4.2.45.8 317)
ClassificationReportFormats method (section

3.2.4.2.45.1 314, section 3.2.4.2.45.2 314)

ClassificationReportMailTo method (section
3.2.4.2.45.5 316, section 3.2.4.2.45.6 316)

ClassificationRunningStatus method 319
ClassifyFiles method 336
ClearFileProperty method 335
Client
 abstract data model 62
 initialization 62
 local events 69
 message processing 63
 sequencing rules 63
 timer events 69
 timers 62
Clone method 127
Commit method (section 3.2.4.2.3.1 128, section

3.2.4.2.10.5 156)
CommitAndUpdateDerived method (section

3.2.4.2.17.4 183, section 3.2.4.2.20.6 199,
section 3.2.4.2.30.5 238)

Common actions - server 393
Common data types 29
Common Data Types message 29
Company method (section 3.2.4.2.43.5 302, section

3.2.4.2.43.6 302)
CopyTemplate method (section 3.2.4.2.20.5 198,

section 3.2.4.2.30.4 237)
Count method 123
CreateAction method 219
CreateAutoApplyQuota method 187

CreateCustomAction method 374
CreateFileGroup method 212
CreateFileManagementJob method 379
CreateFileScreen method 228
CreateFileScreenCollection method 234
CreateFileScreenException method 231
CreateModuleDefinition method 326
CreateNotificationAction method 370
CreatePropertyCondition method 373
CreatePropertyDefinition method 320
CreateQuota method 185
CreateQuotaCollection method 194
CreateReport method 262
CreateReportJob method 246
CreateRule method 323
CreateScheduleTask method 271
CreateTemplate method (section 3.2.4.2.22.1 201,

section 3.2.4.2.32.1 240)
CreateThresholdAction method 172
CustomAction method 350

D

Data model - abstract
 client 62
 server 69
Data types
 common - overview 29
 interface-specific - overview 40
DatsSinceFileLastAccessed method 357
DaysSinceFileCreated method (section 3.2.4.2.48.22

356, section 3.2.4.2.48.23 356)
DaysSinceFileLastAccessed method 357

469 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

DaysSinceFileLastModified method (section
3.2.4.2.48.26 358, section 3.2.4.2.48.27 358)

Delete method (section 3.2.4.2.4.5 131, section
3.2.4.2.10.4 156, section 3.2.4.2.35.9 270,
section 3.2.4.2.49.7 378)

DeleteNotification method 369
DeleteScheduleTask method 273
DeleteThreshold method 170
DerivedObjects method 165
Description method (section 3.2.4.2.10.2 155,

section 3.2.4.2.10.3 155, section 3.2.4.2.35.4
267, section 3.2.4.2.35.5 268, section
3.2.4.2.39.3 285)

Directory service schema elements 58
DisableCommandLine method (section 3.2.4.2.11.7

160, section 3.2.4.2.11.8 161)
DisplayName method (section 3.2.4.2.38.2 281,

section 3.2.4.2.38.3 282, section 3.2.4.2.39.2
284)

E

Elements - directory service schema 58
EmailTest method 162
Enabled method (section 3.2.4.2.43.10 304, section

3.2.4.2.43.11 305, section 3.2.4.2.48.6 347,
section 3.2.4.2.48.7 348)

EnableScreeningAudit method (section 3.2.4.2.11.9
161, section 3.2.4.2.11.10 162)

EnumActions method 219
EnumAutoApplyQuotas method 192
EnumEffectiveQuotas method 193
Enumerating classification properties example 409
Enumerating directory quota objects example 400
EnumFileGroups method 214
EnumFileManagementJobs method 378
EnumFileProperties method 331
EnumFileScreenExceptions method 233
EnumFileScreens method 230
EnumModuleDefinitions method 325
EnumNotificationActions method 372
EnumPropertyDefinitions method 319
EnumQuotas method 190
EnumReportJobs method 245
EnumReports method 262
EnumRules method 322
EnumTemplates method (section 3.2.4.2.22.3 203,

section 3.2.4.2.32.3 242)
EnumThresholdActions method 172
Error codes 57
Error Codes message 57
EventType method (section 3.2.4.2.8.1 144, section

3.2.4.2.8.2 144)
Examples
 adding classification rules 410
 enumerating classification properties 409
 enumerating directory quota objects 400
 modifying directory quota properties 404
 modifying file management jobs 411
 modifying global settings 408
 overview 400
 retrieving file screen properties 402

 scheduling storage reports 406
 updating property values for file 413

ExcludeFolders method (section 3.2.4.2.17.2 182,
section 3.2.4.2.17.3 183)

ExecutablePath method (section 3.2.4.2.9.1 146,
section 3.2.4.2.9.2 147)

ExecutionOption method (section 3.2.4.2.42.2 296,
section 3.2.4.2.42.3 297)

ExpirationDirectory method (section 3.2.4.2.48.10
349, section 3.2.4.2.48.11 350)

Export format - XML documents 49
ExportFileGroups method 214
ExportTemplates method (section 3.2.4.2.22.4 204,

section 3.2.4.2.32.4 243)

F

FCI_ADS_SECURE_PROPERTY_TYPE enumeration 39
Fields - vendor-extensible 25

FileNamePattern method (section 3.2.4.2.48.39 365,
section 3.2.4.2.48.40 365)

FileScreenFlags method (section 3.2.4.2.26.3 217,
section 3.2.4.2.26.4 218)

Formats method (section 3.2.4.2.34.6 257, section
3.2.4.2.34.7 258, section 3.2.4.2.48.18 354,
section 3.2.4.2.48.19 354)

FromDate method (section 3.2.4.2.48.29 359,
section 3.2.4.2.48.30 360)

FsrmActionType enumeration 33
FsrmClassificationLoggingFlags enumeration 45
FsrmCollectionState enumeration 31
FsrmCommitOptions enumeration 32
FsrmEnumOptions enumeration 32
FsrmExecutionOption enumeration 42
FsrmFileManagementLoggingFlags enumeration 47
FsrmFileManagementType enumeration 47
FsrmFileScreenFlags enumeration 31
FsrmGetFilePropertyOptions enumeration 43
FsrmPipelineModuleType enumeration 35
FsrmPropertyConditionType enumeration 48
FsrmPropertyDefinitionAppliesTo enumeration 42
FsrmPropertyDefinitionFlags enumeration 41
FsrmPropertyDefinitionType enumeration 41
FsrmPropertyFlags enumeration 44
FsrmQuotaFlags enumeration 30
FsrmReportFilter enumeration 37
FsrmReportFormat enumeration 36
FsrmReportGenerationContext enumeration 36
FsrmReportLimit enumeration 37
FsrmReportRunningStatus enumeration 35
FsrmReportType enumeration 34
FsrmRuleFlags enumeration 31
FsrmRuleType enumeration 35
FsrmTemplateApplyOptions enumeration 32
Full IDL 417

G

General classification actions - server 393

GetActionRunLimitInterval method 163
GetAutoApplyQuota method 189
GetById method 125
GetDefaultFilter method 250
GetFileGroup method 213
GetFileManagementJob method 381
GetFileProperty method 332
GetFileScreen method 229

470 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

GetFileScreenException method 232
GetFilter method 268
GetModuleDefinition method 328
GetOutputDirectory method 248
GetPropertyDefinition method 321
GetQuota method 188
GetReportJob method 247
GetReportSizeLimit method 252
GetRestrictiveQuota method 190
GetRule method 324
GetSharePathsForLocalPath method 164
GetTemplate method (section 3.2.4.2.22.2 202,

section 3.2.4.2.32.2 241)
Glossary 16

I

Id method (section 3.2.4.2.4.1 129, section
3.2.4.2.10.1 154)

IDL 417
Import format - XML documents 49
ImportFileGroups method 215
ImportTemplates method (section 3.2.4.2.22.5 205,

section 3.2.4.2.32.5 244)
Informative references 21
Initialization
 client 62
 server 116
Interface-specific data types 40
Introduction 16
IsAffectedByQuota method 195
IsFilterValidForReportType method 250
Item method 122

K

KillTimeout method (section 3.2.4.2.9.11 152,

section 3.2.4.2.9.12 152)

L

LastError method (section 3.2.4.2.34.12 261, section

3.2.4.2.48.36 363)
LastGeneratedFileNamePrefix method 268
LastGeneratedInDirectory method 261
LastModified method 294
LastReportPathWithoutExtension method 364
LastRun method (section 3.2.4.2.34.11 260, section

3.2.4.2.48.38 364)
Local events
 client 69

 server 397
Logging method (section 3.2.4.2.45.3 315, section

3.2.4.2.45.4 315, section 3.2.4.2.48.14 351,
section 3.2.4.2.48.15 352)

LogResult method (section 3.2.4.2.9.13 153, section
3.2.4.2.9.14 153)

M

MailBcc method (section 3.2.4.2.5.9 136, section

3.2.4.2.5.10 137)
MailCc method (section 3.2.4.2.5.7 135, section

3.2.4.2.5.8 136)

MailFrom method (section 3.2.4.2.5.1 132, section
3.2.4.2.5.2 133, section 3.2.4.2.11.3 159,
section 3.2.4.2.11.4 159)

MailReplyTo method (section 3.2.4.2.5.3 133,
section 3.2.4.2.5.4 134)

MailSubject method (section 3.2.4.2.5.11 137,
section 3.2.4.2.5.12 138)

MailTo method (section 3.2.4.2.5.5 134, section
3.2.4.2.5.6 135, section 3.2.4.2.7.3 142, section
3.2.4.2.7.4 143, section 3.2.4.2.34.8 258,
section 3.2.4.2.34.9 259, section 3.2.4.2.48.20
355, section 3.2.4.2.48.21 355)

MatchesSourceTemplate method (section
3.2.4.2.15.6 176, section 3.2.4.2.27.4 222)

Members method (section 3.2.4.2.23.4 208, section
3.2.4.2.23.5 209)

Message processing
 client 63
 server 118
Messages
 Common Data Types 29
 Error Codes 57
 interface-specific data types 40

 syntax 29
 transport 29
 XML Import and Export Formats 49
MessageText method (section 3.2.4.2.5.13 139,

section 3.2.4.2.5.14 139, section 3.2.4.2.8.3
145, section 3.2.4.2.8.4 145)

Modifying directory quota properties example 404
Modifying file management jobs example 411
Modifying global settings example 408
ModifyNotification method 369
ModifyScheduleTask method 272
ModifyThreshold method 171
ModuleClsid method (section 3.2.4.2.43.1 300,

section 3.2.4.2.43.2 301)
ModuleDefinitionName method (section 3.2.4.2.41.4

290, section 3.2.4.2.41.5 290)
ModuleType method 303
MonitorCommand method (section 3.2.4.2.9.9 151,

section 3.2.4.2.9.10 151)

N

Name method (section 3.2.4.2.20.3 197, section

3.2.4.2.20.4 198, section 3.2.4.2.23.2 207,
section 3.2.4.2.23.3 208, section 3.2.4.2.30.2
236, section 3.2.4.2.30.3 237, section
3.2.4.2.35.2 266, section 3.2.4.2.35.3 267,
section 3.2.4.2.37.2 275, section 3.2.4.2.37.3
275, section 3.2.4.2.39.1 284, section
3.2.4.2.40.1 286, section 3.2.4.2.41.1 289,
section 3.2.4.2.41.2 289, section 3.2.4.2.43.3
301, section 3.2.4.2.43.4 302, section
3.2.4.2.48.2 345, section 3.2.4.2.48.3 346,
section 3.2.4.2.49.1 375, section 3.2.4.2.49.2
375)

NamespaceRoots method (section 3.2.4.2.34.4 256,
section 3.2.4.2.34.5 257, section 3.2.4.2.41.6
291, section 3.2.4.2.41.7 291, section
3.2.4.2.48.4 346, section 3.2.4.2.48.5 347)

NeedsExplicitValue method (section 3.2.4.2.44.6
312, section 3.2.4.2.44.7 313)

471 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

NeedsFileContent method (section 3.2.4.2.43.12
305, section 3.2.4.2.43.13 305)

NonMembers method (section 3.2.4.2.23.6 209,
section 3.2.4.2.23.7 210)

Normative references 21
Notifications method 351

O

OperationType method (section 3.2.4.2.48.8 348,

section 3.2.4.2.48.9 349)
Overview (synopsis) 22
OverwriteOnCommit method (section 3.2.4.2.21.1

200, section 3.2.4.2.21.2 200, section
3.2.4.2.24.1 211, section 3.2.4.2.24.2 211,
section 3.2.4.2.31.1 239, section 3.2.4.2.31.2
239)

P

Parameters method (section 3.2.4.2.37.10 279,

section 3.2.4.2.37.11 279, section 3.2.4.2.41.10
293, section 3.2.4.2.41.11 293, section
3.2.4.2.43.18 308, section 3.2.4.2.43.19 308,
section 3.2.4.2.48.33 361, section 3.2.4.2.48.34
362)

Path method (section 3.2.4.2.15.2 174, section
3.2.4.2.27.2 221, section 3.2.4.2.28.2 225)

PossibleValues method (section 3.2.4.2.37.6 277,
section 3.2.4.2.37.7 277)

Preconditions 25
Prerequisites 25
Product behavior 453
PropertiesAffected method (section 3.2.4.2.44.2 310,

section 3.2.4.2.44.3 311)
PropertiesUsed method (section 3.2.4.2.44.4 311,

section 3.2.4.2.44.5 312)
PropertyAffected method (section 3.2.4.2.42.4 297,

section 3.2.4.2.42.5 298)
PropertyConditions method 359
PropertyDefinitionFlags method 280
PropertyFlags method 288

Q

QuotaFlags method (section 3.2.4.2.14.4 168,

section 3.2.4.2.14.5 169)
QuotaLimit method (section 3.2.4.2.14.2 167,

section 3.2.4.2.14.3 168)
QuotaPeakUsage method 179
QuotaPeakUsageTime method 180

QuotaUsed method 179

R

References 20
 informative 21
 normative 21
RefreshUsageProperties method 180
Relationship to other protocols 24
Remove method 126
RemoveById method 127
ReportEnabled method (section 3.2.4.2.48.16 352,

section 3.2.4.2.48.17 353)

ReportTypes method (section 3.2.4.2.7.1 141,
section 3.2.4.2.7.2 142)

ResetPeakUsage method 180
Results method 166
Retrieving file screen properties example 402
RuleFlags method (section 3.2.4.2.41.8 292, section

3.2.4.2.41.9 292)
RuleType method 289
Run method (section 3.2.4.2.34.16 263, section

3.2.4.2.48.41 366)
RunClassification method 329
RunLimitInterval method (section 3.2.4.2.4.3 130,

section 3.2.4.2.4.4 131)
RunningStatus method (section 3.2.4.2.34.10 260,

section 3.2.4.2.48.35 362)

S

Scan method 193
Scheduling storage reports example 406
Schema elements - directory service 58
Security - overview 416
Sequencing rules
 client 63
 server 118
Server
 abstract data model 69
 general classification actions 393
 initialization 116
 local events 397
 message processing 118
 sequencing rules 118
 timer events 396
 timers 116
SetActionRunLimitInterval method 163
SetDefaultFilter method 251
SetFileProperty method 333
SetFilter method 269
SetOutputDirectory method 249
SetReportSizeLimit method 253
SmtpServer method (section 3.2.4.2.11.1 158,

section 3.2.4.2.11.2 158)
Sources method 287
SourceTemplateName method (section 3.2.4.2.15.5

175, section 3.2.4.2.27.3 222)
Standards assignments 25
State method 123
StorageType method (section 3.2.4.2.47.4 340,

section 3.2.4.2.47.5 340)
SupportedExtensions method (section 3.2.4.2.43.16

307, section 3.2.4.2.43.17 307)
Syntax 29

T

Task method (section 3.2.4.2.34.2 255, section

3.2.4.2.34.3 256, section 3.2.4.2.48.31 360,

section 3.2.4.2.48.32 361)
Thresholds method 169
Timer events
 client 69
 server 396
Timers
 client 62
 server 116

472 / 472

[MS-FSRM] - v20170601
File Server Resource Manager Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Tracking changes 467
Transport 29
Type method (section 3.2.4.2.35.1 266, section

3.2.4.2.37.4 276, section 3.2.4.2.37.5 276,
section 3.2.4.2.49.3 376, section 3.2.4.2.49.4
377)

U

UniqueID method 285
UpdatesFileContent method (section 3.2.4.2.47.6

340, section 3.2.4.2.47.7 341)
Updating property values for file example 413
UserAccount method (section 3.2.4.2.15.4 175,

section 3.2.4.2.27.6 223)
UserSid method (section 3.2.4.2.15.3 174, section

3.2.4.2.27.5 223)

V

Value method (section 3.2.4.2.40.2 287, section

3.2.4.2.42.6 298, section 3.2.4.2.42.7 299,
section 3.2.4.2.49.5 377, section 3.2.4.2.49.6
378)

ValueDefinitions method 283
ValueDescriptions method (section 3.2.4.2.37.8 278,

section 3.2.4.2.37.9 278)
Vendor-extensible fields 25
VerifyNamespaces method 270
Version method (section 3.2.4.2.43.7 303, section

3.2.4.2.43.8 303)
Versioning 25

W

WaitForClassificationCompletion method 330
WaitForCompletion method (section 3.2.4.2.1.6 124,

section 3.2.4.2.34.17 264, section 3.2.4.2.48.42
367)

WorkingDirectory method (section 3.2.4.2.9.7 150,
section 3.2.4.2.9.8 151)

X

XML documents

 export format 49
 import format 49
XML Import and Export Formats message 49

	1 Introduction
	1.1 Glossary
	1.2 References
	1.2.1 Normative References
	1.2.2 Informative References

	1.3 Overview
	1.4 Relationship to Other Protocols
	1.5 Prerequisites/Preconditions
	1.6 Applicability Statement
	1.7 Versioning and Capability Negotiation
	1.8 Vendor-Extensible Fields
	1.9 Standards Assignments

	2 Messages
	2.1 Transport
	2.2 Message Syntax
	2.2.1 Common Data Types
	2.2.1.1 Data Types
	2.2.1.1.1 FSRM_OBJECT_ID
	2.2.1.1.2 FSRM_QUOTA_THRESHOLD

	2.2.1.2 Enumerations
	2.2.1.2.1 FsrmQuotaFlags
	2.2.1.2.2 FsrmFileScreenFlags
	2.2.1.2.3 FsrmRuleFlags
	2.2.1.2.4 FsrmCollectionState
	2.2.1.2.5 FsrmEnumOptions
	2.2.1.2.6 FsrmCommitOptions
	2.2.1.2.7 FsrmTemplateApplyOptions
	2.2.1.2.8 FsrmAccountType
	2.2.1.2.9 FsrmActionType
	2.2.1.2.10 FsrmReportType
	2.2.1.2.11 FsrmRuleType
	2.2.1.2.12 FsrmPipelineModuleType
	2.2.1.2.13 FsrmReportRunningStatus
	2.2.1.2.14 FsrmReportFormat
	2.2.1.2.15 FsrmReportGenerationContext
	2.2.1.2.16 FsrmReportFilter
	2.2.1.2.17 FsrmReportLimit
	2.2.1.2.18 AdsCacheFlags
	2.2.1.2.19 AdsCachePropertyFlags
	2.2.1.2.20 FCI_ADS_SECURE_PROPERTY_TYPE

	2.2.1.3 Structures

	2.2.2 Interface-Specific Data Types
	2.2.2.1 IFsrmActionEventLog Data Types
	2.2.2.1.1 Enumerations
	2.2.2.1.1.1 FsrmEventType

	2.2.2.2 IFsrmAutoApplyQuota Data Types
	2.2.2.2.1 Data Types
	2.2.2.2.1.1 FsrmMaxExcludeFolders

	2.2.2.3 IFsrmPropertyDefinition Data Types
	2.2.2.3.1 Enumerations
	2.2.2.3.1.1 FsrmPropertyDefinitionType

	2.2.2.4 IFsrmPropertyDefinition2 Data Types
	2.2.2.4.1 Enumerations
	2.2.2.4.1.1 FsrmPropertyDefinitionFlags
	2.2.2.4.1.2 FsrmPropertyDefinitionAppliesTo

	2.2.2.5 IFsrmClassificationRule Data Types
	2.2.2.5.1 Enumerations
	2.2.2.5.1.1 FsrmExecutionOption
	2.2.2.5.1.2 FsrmGetFilePropertyOptions

	2.2.2.6 IFsrmProperty Data Types
	2.2.2.6.1 Enumerations
	2.2.2.6.1.1 FsrmPropertyFlags

	2.2.2.7 IFsrmClassificationManager Data Types
	2.2.2.7.1 Enumerations
	2.2.2.7.1.1 FsrmClassificationLoggingFlags

	2.2.2.8 IFsrmStorageModuleDefinition Data Types
	2.2.2.8.1 Enumerations
	2.2.2.8.1.1 FsrmStorageModuleCaps
	2.2.2.8.1.2 FsrmStorageModuleType

	2.2.2.9 IFsrmFileManagementJob Data Types
	2.2.2.9.1 Enumerations
	2.2.2.9.1.1 FsrmFileManagementType
	2.2.2.9.1.2 FsrmFileManagementLoggingFlags

	2.2.2.10 IFsrmPropertyCondition Data Types
	2.2.2.10.1 Enumerations
	2.2.2.10.1.1 FsrmPropertyConditionType

	2.2.3 XML Import and Export Formats
	2.2.3.1 XML Data Types
	2.2.3.1.1 Standard Data Types
	2.2.3.1.2 guidType Simple Type

	2.2.3.2 XML Schema
	2.2.3.2.1 Action Element
	2.2.3.2.2 DatascreenTemplate Element
	2.2.3.2.3 FileGroup Element
	2.2.3.2.4 QuotaTemplate Element

	2.2.4 Error Codes

	2.3 Directory Service Schema Elements
	2.3.1 Interaction Summary
	2.3.2 Resource Property Lists
	2.3.3 Resource Properties
	2.3.4 ValueType References of msDS-ValueTypeReference
	2.3.5 XML Schema of msDS-ClaimPossibleValues

	3 Protocol Details
	3.1 Client Role Details
	3.1.1 Abstract Data Model
	3.1.2 Timers
	3.1.3 Initialization
	3.1.4 Message Processing Events and Sequencing Rules
	3.1.4.1 Processing Server Replies to Method Calls
	3.1.4.1.1 File Server Resource Manager Protocol Object Relationships
	3.1.4.1.2 Quota Objects
	3.1.4.1.3 File Screen Objects
	3.1.4.1.4 Storage Report Objects
	3.1.4.1.5 Classification Objects
	3.1.4.1.6 File Management Job Objects

	3.1.4.2 Processing Notifications Sent from the Server to the Client

	3.1.5 Timer Events
	3.1.6 Other Local Events

	3.2 Server Role Details
	3.2.1 Abstract Data Model
	3.2.1.1 FSRM Base Object
	3.2.1.2 Quota Model
	3.2.1.2.1 Directory Quotas
	3.2.1.2.1.1 Persisted Directory Quota
	3.2.1.2.1.2 Non-Persisted Directory Quota Instance

	3.2.1.2.2 Auto Apply Quotas
	3.2.1.2.2.1 Persisted Auto Apply Quota
	3.2.1.2.2.2 Non-Persisted Auto Apply Quota Instance

	3.2.1.2.3 Directory Quota Templates
	3.2.1.2.3.1 Persisted Directory Quota Template
	3.2.1.2.3.2 Non-Persisted Directory Quota Template Instance

	3.2.1.3 File Screen Model
	3.2.1.3.1 File Screens
	3.2.1.3.1.1 Persisted File Screen
	3.2.1.3.1.2 Non-Persisted File Screen Instance

	3.2.1.3.2 File Screen Exceptions
	3.2.1.3.2.1 Persisted File Screen Exception
	3.2.1.3.2.2 Non-Persisted File Screen Exception Instance

	3.2.1.3.3 File Screen Templates
	3.2.1.3.3.1 Persisted File Screen Template
	3.2.1.3.3.2 Non-Persisted File Screen Template Instance

	3.2.1.3.4 File Groups
	3.2.1.3.4.1 Persisted File Group
	3.2.1.3.4.2 Non-Persisted File Group Instance

	3.2.1.4 Notification Model
	3.2.1.5 Storage Reports Model
	3.2.1.5.1 Report Jobs
	3.2.1.5.1.1 Persisted Report Job
	3.2.1.5.1.2 Non-Persisted Report Job Instance
	3.2.1.5.1.3 Running Job

	3.2.1.5.2 Reports
	3.2.1.5.3 Report Settings

	3.2.1.6 Classification Model
	3.2.1.6.1 Property Definitions
	3.2.1.6.1.1 Persisted Property Definition
	3.2.1.6.1.2 Non-Persisted Property Definition Instance
	3.2.1.6.1.3 Property Value Definition

	3.2.1.6.2 Module Definitions
	3.2.1.6.2.1 Persisted Module Definition
	3.2.1.6.2.2 Non-Persisted Module Definition Instance

	3.2.1.6.3 Rules
	3.2.1.6.3.1 Persisted Rule
	3.2.1.6.3.2 Non-Persisted Rule Instance

	3.2.1.6.4 Classification Job
	3.2.1.6.5 Property Definition Instance

	3.2.1.7 File Management Model
	3.2.1.7.1 File Management Job
	3.2.1.7.1.1 Persisted File Management Job
	3.2.1.7.1.2 Non-Persisted File Management Job Instance

	3.2.1.7.2 Property Condition
	3.2.1.7.3 Notification period

	3.2.1.8 FolderUsage Model
	3.2.1.8.1 FolderUsage Instance

	3.2.1.9 General Settings Model
	3.2.1.10 Management of FSRM Objects
	3.2.1.11 Enumeration of FSRM Objects
	3.2.1.12 Asynchronous Tasks
	3.2.1.12.1 Running Report Task
	3.2.1.12.2 Running Classification Task
	3.2.1.12.3 Running File Management Task
	3.2.1.12.4 Quota Scanning
	3.2.1.12.5 Active Directory Synchronization

	3.2.2 Timers
	3.2.3 Initialization
	3.2.4 Message Processing Events and Sequencing Rules
	3.2.4.1 Sequencing Rules
	3.2.4.2 Message Processing Details
	3.2.4.2.1 IFsrmCollection Methods
	3.2.4.2.1.1 _NewEnum (Opnum 7)
	3.2.4.2.1.2 Item (get) (Opnum 8)
	3.2.4.2.1.3 Count (get) (Opnum 9)
	3.2.4.2.1.4 State (get) (Opnum 10)
	3.2.4.2.1.5 Cancel (Opnum 11)
	3.2.4.2.1.6 WaitForCompletion (Opnum 12)
	3.2.4.2.1.7 GetById (Opnum 13)

	3.2.4.2.2 IFsrmMutableCollection Methods
	3.2.4.2.2.1 Add (Opnum 14)
	3.2.4.2.2.2 Remove (Opnum 15)
	3.2.4.2.2.3 RemoveById (Opnum 16)
	3.2.4.2.2.4 Clone (Opnum 17)

	3.2.4.2.3 IFsrmCommittableCollection Methods
	3.2.4.2.3.1 Commit (Opnum 18)

	3.2.4.2.4 IFsrmAction Methods
	3.2.4.2.4.1 Id (get) (Opnum 7)
	3.2.4.2.4.2 ActionType (get) (Opnum 8)
	3.2.4.2.4.3 RunLimitInterval (get) (Opnum 9)
	3.2.4.2.4.4 RunLimitInterval (put) (Opnum 10)
	3.2.4.2.4.5 Delete (Opnum 11)

	3.2.4.2.5 IFsrmActionEmail Methods
	3.2.4.2.5.1 MailFrom (get) (Opnum 12)
	3.2.4.2.5.2 MailFrom (put) (Opnum 13)
	3.2.4.2.5.3 MailReplyTo (get) (Opnum 14)
	3.2.4.2.5.4 MailReplyTo (put) (Opnum 15)
	3.2.4.2.5.5 MailTo (get) (Opnum 16)
	3.2.4.2.5.6 MailTo (put) (Opnum 17)
	3.2.4.2.5.7 MailCc (get) (Opnum 18)
	3.2.4.2.5.8 MailCc (put) (Opnum 19)
	3.2.4.2.5.9 MailBcc (get) (Opnum 20)
	3.2.4.2.5.10 MailBcc (put) (Opnum 21)
	3.2.4.2.5.11 MailSubject (get) (Opnum 22)
	3.2.4.2.5.12 MailSubject (put) (Opnum 23)
	3.2.4.2.5.13 MessageText (get) (Opnum 24)
	3.2.4.2.5.14 MessageText (put) (Opnum 25)

	3.2.4.2.6 IFsrmActionEmail2 Methods
	3.2.4.2.6.1 AttachmentFileListSize (get) (Opnum 26)
	3.2.4.2.6.2 AttachmentFileListSize (put) (Opnum 27)

	3.2.4.2.7 IFsrmActionReport Methods
	3.2.4.2.7.1 ReportTypes (get) (Opnum 12)
	3.2.4.2.7.2 ReportTypes (put) (Opnum 13)
	3.2.4.2.7.3 MailTo (get) (Opnum 14)
	3.2.4.2.7.4 MailTo (put) (Opnum 15)

	3.2.4.2.8 IFsrmActionEventLog Methods
	3.2.4.2.8.1 EventType (get) (Opnum 12)
	3.2.4.2.8.2 EventType (put) (Opnum 13)
	3.2.4.2.8.3 MessageText (get) (Opnum 14)
	3.2.4.2.8.4 MessageText (put) (Opnum 15)

	3.2.4.2.9 IFsrmActionCommand Methods
	3.2.4.2.9.1 ExecutablePath (get) (Opnum 12)
	3.2.4.2.9.2 ExecutablePath (put) (Opnum 13)
	3.2.4.2.9.3 Arguments (get) (Opnum 14)
	3.2.4.2.9.4 Arguments (put) (Opnum 15)
	3.2.4.2.9.5 Account (get) (Opnum 16)
	3.2.4.2.9.6 Account (put) (Opnum 17)
	3.2.4.2.9.7 WorkingDirectory (get) (Opnum 18)
	3.2.4.2.9.8 WorkingDirectory (put) (Opnum 19)
	3.2.4.2.9.9 MonitorCommand (get) (Opnum 20)
	3.2.4.2.9.10 MonitorCommand (put) (Opnum 21)
	3.2.4.2.9.11 KillTimeout (get) (Opnum 22)
	3.2.4.2.9.12 KillTimeout (put) (Opnum 23)
	3.2.4.2.9.13 LogResult (get) (Opnum 24)
	3.2.4.2.9.14 LogResult (put) (Opnum 25)

	3.2.4.2.10 IFsrmObject Methods
	3.2.4.2.10.1 Id (get) (Opnum 7)
	3.2.4.2.10.2 Description (get) (Opnum 8)
	3.2.4.2.10.3 Description (put) (Opnum 9)
	3.2.4.2.10.4 Delete (Opnum 10)
	3.2.4.2.10.5 Commit (Opnum 11)

	3.2.4.2.11 IFsrmSetting Methods
	3.2.4.2.11.1 SmtpServer (get) (Opnum 7)
	3.2.4.2.11.2 SmtpServer (put) (Opnum 8)
	3.2.4.2.11.3 MailFrom (get) (Opnum 9)
	3.2.4.2.11.4 MailFrom (put) (Opnum 10)
	3.2.4.2.11.5 AdminEmail (get) (Opnum 11)
	3.2.4.2.11.6 AdminEmail (put) (Opnum 12)
	3.2.4.2.11.7 DisableCommandLine (get) (Opnum 13)
	3.2.4.2.11.8 DisableCommandLine (put) (Opnum 14)
	3.2.4.2.11.9 EnableScreeningAudit (get) (Opnum 15)
	3.2.4.2.11.10 EnableScreeningAudit (put) (Opnum 16)
	3.2.4.2.11.11 EmailTest (Opnum 17)
	3.2.4.2.11.12 SetActionRunLimitInterval (Opnum 18)
	3.2.4.2.11.13 GetActionRunLimitInterval (Opnum 19)

	3.2.4.2.12 IFsrmPathMapper Methods
	3.2.4.2.12.1 GetSharePathsForLocalPath (Opnum 7)

	3.2.4.2.13 IFsrmDerivedObjectsResult Methods
	3.2.4.2.13.1 DerivedObjects (get) (Opnum 7)
	3.2.4.2.13.2 Results (get) (Opnum 8)

	3.2.4.2.14 IFsrmQuotaBase Methods
	3.2.4.2.14.1 Commit (Opnum 11)
	3.2.4.2.14.2 QuotaLimit (get) (Opnum 12)
	3.2.4.2.14.3 QuotaLimit (put) (Opnum 13)
	3.2.4.2.14.4 QuotaFlags (get) (Opnum 14)
	3.2.4.2.14.5 QuotaFlags (put) (Opnum 15)
	3.2.4.2.14.6 Thresholds (get) (Opnum 16)
	3.2.4.2.14.7 AddThreshold (Opnum 17)
	3.2.4.2.14.8 DeleteThreshold (Opnum 18)
	3.2.4.2.14.9 ModifyThreshold (Opnum 19)
	3.2.4.2.14.10 CreateThresholdAction (Opnum 20)
	3.2.4.2.14.11 EnumThresholdActions (Opnum 21)

	3.2.4.2.15 IFsrmQuotaObject Methods
	3.2.4.2.15.1 Commit (Opnum 11)
	3.2.4.2.15.2 Path (get) (Opnum 22)
	3.2.4.2.15.3 UserSid (get) (Opnum 23)
	3.2.4.2.15.4 UserAccount (get) (Opnum 24)
	3.2.4.2.15.5 SourceTemplateName (get) (Opnum 25)
	3.2.4.2.15.6 MatchesSourceTemplate (get) (Opnum 26)
	3.2.4.2.15.7 ApplyTemplate (Opnum 27)

	3.2.4.2.16 IFsrmQuota Methods
	3.2.4.2.16.1 Commit (Opnum 11)
	3.2.4.2.16.2 QuotaUsed (get) (Opnum 28)
	3.2.4.2.16.3 QuotaPeakUsage (get) (Opnum 29)
	3.2.4.2.16.4 QuotaPeakUsageTime (get) (Opnum 30)
	3.2.4.2.16.5 ResetPeakUsage (Opnum 31)
	3.2.4.2.16.6 RefreshUsageProperties (Opnum 32)

	3.2.4.2.17 IFsrmAutoApplyQuota Methods
	3.2.4.2.17.1 Commit (Opnum 11)
	3.2.4.2.17.2 ExcludeFolders (get) (Opnum 28)
	3.2.4.2.17.3 ExcludeFolders (put) (Opnum 29)
	3.2.4.2.17.4 CommitAndUpdateDerived (Opnum 30)

	3.2.4.2.18 IFsrmQuotaManager Methods
	3.2.4.2.18.1 ActionVariables (get) (Opnum 7)
	3.2.4.2.18.2 ActionVariableDescriptions (get) (Opnum 8)
	3.2.4.2.18.3 CreateQuota (Opnum 9)
	3.2.4.2.18.4 CreateAutoApplyQuota (Opnum 10)
	3.2.4.2.18.5 GetQuota (Opnum 11)
	3.2.4.2.18.6 GetAutoApplyQuota (Opnum 12)
	3.2.4.2.18.7 GetRestrictiveQuota (Opnum 13)
	3.2.4.2.18.8 EnumQuotas (Opnum 14)
	3.2.4.2.18.9 EnumAutoApplyQuotas (Opnum 15)
	3.2.4.2.18.10 EnumEffectiveQuotas (Opnum 16)
	3.2.4.2.18.11 Scan (Opnum 17)
	3.2.4.2.18.12 CreateQuotaCollection (Opnum 18)

	3.2.4.2.19 IFsrmQuotaManagerEx Methods
	3.2.4.2.19.1 IsAffectedByQuota (Opnum 19)

	3.2.4.2.20 IFsrmQuotaTemplate Methods
	3.2.4.2.20.1 Commit (Opnum 11)
	3.2.4.2.20.2 QuotaFlags (put) (Opnum 15)
	3.2.4.2.20.3 Name (get) (Opnum 22)
	3.2.4.2.20.4 Name (put) (Opnum 23)
	3.2.4.2.20.5 CopyTemplate (Opnum 24)
	3.2.4.2.20.6 CommitAndUpdateDerived (Opnum 25)

	3.2.4.2.21 IFsrmQuotaTemplateImported Methods
	3.2.4.2.21.1 OverwriteOnCommit (get) (Opnum 16)
	3.2.4.2.21.2 OverwriteOnCommit (put) (Opnum 17)

	3.2.4.2.22 IFsrmQuotaTemplateManager Methods
	3.2.4.2.22.1 CreateTemplate (Opnum 7)
	3.2.4.2.22.2 GetTemplate (Opnum 8)
	3.2.4.2.22.3 EnumTemplates (Opnum 9)
	3.2.4.2.22.4 ExportTemplates (Opnum 10)
	3.2.4.2.22.5 ImportTemplates (Opnum 11)

	3.2.4.2.23 IFsrmFileGroup Methods
	3.2.4.2.23.1 Commit (Opnum 11)
	3.2.4.2.23.2 Name (get) (Opnum 12)
	3.2.4.2.23.3 Name (put) (Opnum 13)
	3.2.4.2.23.4 Members (get) (Opnum 14)
	3.2.4.2.23.5 Members (put) (Opnum 15)
	3.2.4.2.23.6 NonMembers (get) (Opnum 16)
	3.2.4.2.23.7 NonMembers (put) (Opnum 17)

	3.2.4.2.24 IFsrmFileGroupImported Methods
	3.2.4.2.24.1 OverwriteOnCommit (get) (Opnum 18)
	3.2.4.2.24.2 OverwriteOnCommit (put) (Opnum 19)

	3.2.4.2.25 IFsrmFileGroupManager Methods
	3.2.4.2.25.1 CreateFileGroup (Opnum 7)
	3.2.4.2.25.2 GetFileGroup (Opnum 8)
	3.2.4.2.25.3 EnumFileGroups (Opnum 9)
	3.2.4.2.25.4 ExportFileGroups (Opnum 10)
	3.2.4.2.25.5 ImportFileGroups (Opnum 11)

	3.2.4.2.26 IFsrmFileScreenBase Methods
	3.2.4.2.26.1 BlockedFileGroups (get) (Opnum 12)
	3.2.4.2.26.2 BlockedFileGroups (put) (Opnum 13)
	3.2.4.2.26.3 FileScreenFlags (get) (Opnum 14)
	3.2.4.2.26.4 FileScreenFlags (put) (Opnum 15)
	3.2.4.2.26.5 CreateAction (Opnum 16)
	3.2.4.2.26.6 EnumActions (Opnum 17)

	3.2.4.2.27 IFsrmFileScreen Methods
	3.2.4.2.27.1 Commit (Opnum 11)
	3.2.4.2.27.2 Path (get) (Opnum 18)
	3.2.4.2.27.3 SourceTemplateName (get) (Opnum 19)
	3.2.4.2.27.4 MatchesSourceTemplate (get) (Opnum 20)
	3.2.4.2.27.5 UserSid (get) (Opnum 21)
	3.2.4.2.27.6 UserAccount (get) (Opnum 22)
	3.2.4.2.27.7 ApplyTemplate (Opnum 23)

	3.2.4.2.28 IFsrmFileScreenException Methods
	3.2.4.2.28.1 Commit (Opnum 11)
	3.2.4.2.28.2 Path (get) (Opnum 12)
	3.2.4.2.28.3 AllowedFileGroups (get) (Opnum 13)
	3.2.4.2.28.4 AllowedFileGroups (put) (Opnum 14)

	3.2.4.2.29 IFsrmFileScreenManager Methods
	3.2.4.2.29.1 ActionVariables (Opnum 7)
	3.2.4.2.29.2 ActionVariableDescriptions (Opnum 8)
	3.2.4.2.29.3 CreateFileScreen (Opnum 9)
	3.2.4.2.29.4 GetFileScreen (Opnum 10)
	3.2.4.2.29.5 EnumFileScreens (Opnum 11)
	3.2.4.2.29.6 CreateFileScreenException (Opnum 12)
	3.2.4.2.29.7 GetFileScreenException (Opnum 13)
	3.2.4.2.29.8 EnumFileScreenExceptions (Opnum 14)
	3.2.4.2.29.9 CreateFileScreenCollection (Opnum 15)

	3.2.4.2.30 IFsrmFileScreenTemplate Methods
	3.2.4.2.30.1 Commit (Opnum 11)
	3.2.4.2.30.2 Name (get) (Opnum 18)
	3.2.4.2.30.3 Name (put) (Opnum 19)
	3.2.4.2.30.4 CopyTemplate (Opnum 20)
	3.2.4.2.30.5 CommitAndUpdateDerived (Opnum 21)

	3.2.4.2.31 IFsrmFileScreenTemplateImported Methods
	3.2.4.2.31.1 OverwriteOnCommit (get) (Opnum 22)
	3.2.4.2.31.2 OverwriteOnCommit (put) (Opnum 23)

	3.2.4.2.32 IFsrmFileScreenTemplateManager Methods
	3.2.4.2.32.1 CreateTemplate (Opnum 7)
	3.2.4.2.32.2 GetTemplate (Opnum 8)
	3.2.4.2.32.3 EnumTemplates (Opnum 9)
	3.2.4.2.32.4 ExportTemplates (Opnum 10)
	3.2.4.2.32.5 ImportTemplates (Opnum 11)

	3.2.4.2.33 IFsrmReportManager Methods
	3.2.4.2.33.1 EnumReportJobs (Opnum 7)
	3.2.4.2.33.2 CreateReportJob (Opnum 8)
	3.2.4.2.33.3 GetReportJob (Opnum 9)
	3.2.4.2.33.4 GetOutputDirectory (Opnum 10)
	3.2.4.2.33.5 SetOutputDirectory (Opnum 11)
	3.2.4.2.33.6 IsFilterValidForReportType (Opnum 12)
	3.2.4.2.33.7 GetDefaultFilter (Opnum 13)
	3.2.4.2.33.8 SetDefaultFilter (Opnum 14)
	3.2.4.2.33.9 GetReportSizeLimit (Opnum 15)
	3.2.4.2.33.10 SetReportSizeLimit (Opnum 16)

	3.2.4.2.34 IFsrmReportJob Methods
	3.2.4.2.34.1 Commit (Opnum 11)
	3.2.4.2.34.2 Task (get) (Opnum 12)
	3.2.4.2.34.3 Task (put) (Opnum 13)
	3.2.4.2.34.4 NamespaceRoots (get) (Opnum 14)
	3.2.4.2.34.5 NamespaceRoots (put) (Opnum 15)
	3.2.4.2.34.6 Formats (get) (Opnum 16)
	3.2.4.2.34.7 Formats (put) (Opnum 17)
	3.2.4.2.34.8 MailTo (get) (Opnum 18)
	3.2.4.2.34.9 MailTo (put) (Opnum 19)
	3.2.4.2.34.10 RunningStatus (get) (Opnum 20)
	3.2.4.2.34.11 LastRun (get) (Opnum 21)
	3.2.4.2.34.12 LastError (get) (Opnum 22)
	3.2.4.2.34.13 LastGeneratedInDirectory (get) (Opnum 23)
	3.2.4.2.34.14 EnumReports (Opnum 24)
	3.2.4.2.34.15 CreateReport (Opnum 25)
	3.2.4.2.34.16 Run (Opnum 26)
	3.2.4.2.34.17 WaitForCompletion (Opnum 27)
	3.2.4.2.34.18 Cancel (Opnum 28)

	3.2.4.2.35 IFsrmReport Methods
	3.2.4.2.35.1 Type (get) (Opnum 7)
	3.2.4.2.35.2 Name (get) (Opnum 8)
	3.2.4.2.35.3 Name (put) (Opnum 9)
	3.2.4.2.35.4 Description (get) (Opnum 10)
	3.2.4.2.35.5 Description (put) (Opnum 11)
	3.2.4.2.35.6 LastGeneratedFileNamePrefix (get) (Opnum 12)
	3.2.4.2.35.7 GetFilter (Opnum 13)
	3.2.4.2.35.8 SetFilter (Opnum 14)
	3.2.4.2.35.9 Delete (Opnum 15)

	3.2.4.2.36 IFsrmReportScheduler Methods
	3.2.4.2.36.1 VerifyNamespaces (Opnum 7)
	3.2.4.2.36.2 CreateScheduleTask (Opnum 8)
	3.2.4.2.36.3 ModifyScheduleTask (Opnum 9)
	3.2.4.2.36.4 DeleteScheduleTask (Opnum 10)

	3.2.4.2.37 IFsrmPropertyDefinition
	3.2.4.2.37.1 Commit (Opnum 11)
	3.2.4.2.37.2 Name (get) (Opnum 12)
	3.2.4.2.37.3 Name (put) (Opnum 13)
	3.2.4.2.37.4 Type (get) (Opnum 14)
	3.2.4.2.37.5 Type (put) (Opnum 15)
	3.2.4.2.37.6 PossibleValues (get) (Opnum 16)
	3.2.4.2.37.7 PossibleValues (put) (Opnum 17)
	3.2.4.2.37.8 ValueDescriptions (get) (Opnum 18)
	3.2.4.2.37.9 ValueDescriptions (put) (Opnum 19)
	3.2.4.2.37.10 Parameters (get) (Opnum 20)
	3.2.4.2.37.11 Parameters (put) (Opnum 21)

	3.2.4.2.38 IFsrmPropertyDefinition2
	3.2.4.2.38.1 PropertyDefinitionFlags (get) (Opnum 22)
	3.2.4.2.38.2 DisplayName (get) (Opnum 23)
	3.2.4.2.38.3 DisplayName (put) (Opnum 24)
	3.2.4.2.38.4 AppliesTo (get) (Opnum 25)
	3.2.4.2.38.5 AppliesTo (put) (Opnum 26)
	3.2.4.2.38.6 ValueDefinitions (get) (Opnum 27)

	3.2.4.2.39 IFsrmPropertyDefinitionValue
	3.2.4.2.39.1 Name (get) (Opnum 12)
	3.2.4.2.39.2 DisplayName (get) (Opnum 13)
	3.2.4.2.39.3 Description (get) (Opnum 14)
	3.2.4.2.39.4 UniqueID (get) (Opnum 15)

	3.2.4.2.40 IFsrmProperty
	3.2.4.2.40.1 Name (get) (Opnum 12)
	3.2.4.2.40.2 Value (get) (Opnum 13)
	3.2.4.2.40.3 Sources (get) (Opnum 14)
	3.2.4.2.40.4 PropertyFlags (get) (Opnum 15)

	3.2.4.2.41 IFsrmRule
	3.2.4.2.41.1 Name (get) (Opnum 12)
	3.2.4.2.41.2 Name (put) (Opnum 13)
	3.2.4.2.41.3 RuleType (get) (Opnum 14)
	3.2.4.2.41.4 ModuleDefinitionName (get) (Opnum 15)
	3.2.4.2.41.5 ModuleDefinitionName (put) (Opnum 16)
	3.2.4.2.41.6 NamespaceRoots (get) (Opnum 17)
	3.2.4.2.41.7 NamespaceRoots (put) (Opnum 18)
	3.2.4.2.41.8 RuleFlags (get) (Opnum 19)
	3.2.4.2.41.9 RuleFlags (put) (Opnum 20)
	3.2.4.2.41.10 Parameters (get) (Opnum 21)
	3.2.4.2.41.11 Parameters (put) (Opnum 22)
	3.2.4.2.41.12 LastModified (get) (Opnum 23)

	3.2.4.2.42 IFsrmClassificationRule
	3.2.4.2.42.1 Commit (Opnum 11)
	3.2.4.2.42.2 ExecutionOption (get) (Opnum 24)
	3.2.4.2.42.3 ExecutionOption (put) (Opnum 25)
	3.2.4.2.42.4 PropertyAffected (get) (Opnum 26)
	3.2.4.2.42.5 PropertyAffected (put) (Opnum 27)
	3.2.4.2.42.6 Value (get) (Opnum 28)
	3.2.4.2.42.7 Value (put) (Opnum 29)

	3.2.4.2.43 IFsrmPipelineModuleDefinition
	3.2.4.2.43.1 ModuleClsid (get) (Opnum 12)
	3.2.4.2.43.2 ModuleClsid (put) (Opnum 13)
	3.2.4.2.43.3 Name (get) (Opnum 14)
	3.2.4.2.43.4 Name (put) (Opnum 15)
	3.2.4.2.43.5 Company (get) (Opnum 16)
	3.2.4.2.43.6 Company (put) (Opnum 17)
	3.2.4.2.43.7 Version (get) (Opnum 18)
	3.2.4.2.43.8 Version (put) (Opnum 19)
	3.2.4.2.43.9 ModuleType (get) (Opnum 20)
	3.2.4.2.43.10 Enabled (get) (Opnum 21)
	3.2.4.2.43.11 Enabled (put) (Opnum 22)
	3.2.4.2.43.12 NeedsFileContent (get) (Opnum 23)
	3.2.4.2.43.13 NeedsFileContent (put) (Opnum 24)
	3.2.4.2.43.14 Account (get) (Opnum 25)
	3.2.4.2.43.15 Account (put) (Opnum 26)
	3.2.4.2.43.16 SupportedExtensions (get) (Opnum 27)
	3.2.4.2.43.17 SupportedExtensions (put) (Opnum 28)
	3.2.4.2.43.18 Parameters (get) (Opnum 29)
	3.2.4.2.43.19 Parameters (put) (Opnum 30)

	3.2.4.2.44 IFsrmClassifierModuleDefinition
	3.2.4.2.44.1 Commit (Opnum 11)
	3.2.4.2.44.2 PropertiesAffected (get) (Opnum 31)
	3.2.4.2.44.3 PropertiesAffected (put) (Opnum 32)
	3.2.4.2.44.4 PropertiesUsed (get) (Opnum 33)
	3.2.4.2.44.5 PropertiesUsed (put) (Opnum 34)
	3.2.4.2.44.6 NeedsExplicitValue (get) (Opnum 35)
	3.2.4.2.44.7 NeedsExplicitValue (put) (Opnum 36)

	3.2.4.2.45 IFsrmClassificationManager
	3.2.4.2.45.1 ClassificationReportFormats (get) (Opnum 7)
	3.2.4.2.45.2 ClassificationReportFormats (put) (Opnum 8)
	3.2.4.2.45.3 Logging (get) (Opnum 9)
	3.2.4.2.45.4 Logging (put) (Opnum 10)
	3.2.4.2.45.5 ClassificationReportMailTo (get) (Opnum 11)
	3.2.4.2.45.6 ClassificationReportMailTo (put) (Opnum 12)
	3.2.4.2.45.7 ClassificationReportEnabled (get) (Opnum 13)
	3.2.4.2.45.8 ClassificationReportEnabled (put) (Opnum 14)
	3.2.4.2.45.9 ClassificationLastReportPathWithoutExtension (get) (Opnum 15)
	3.2.4.2.45.10 ClassificationLastError (get) (Opnum 16)
	3.2.4.2.45.11 ClassificationRunningStatus (get) (Opnum 17)
	3.2.4.2.45.12 EnumPropertyDefinitions (Opnum 18)
	3.2.4.2.45.13 CreatePropertyDefinition (Opnum 19)
	3.2.4.2.45.14 GetPropertyDefinition (Opnum 20)
	3.2.4.2.45.15 EnumRules (Opnum 21)
	3.2.4.2.45.16 CreateRule (Opnum 22)
	3.2.4.2.45.17 GetRule (Opnum 23)
	3.2.4.2.45.18 EnumModuleDefinitions (Opnum 24)
	3.2.4.2.45.19 CreateModuleDefinition (Opnum 25)
	3.2.4.2.45.20 GetModuleDefinition (Opnum 26)
	3.2.4.2.45.21 RunClassification (Opnum 27)
	3.2.4.2.45.22 WaitForClassificationCompletion (Opnum 28)
	3.2.4.2.45.23 CancelClassification (Opnum 29)
	3.2.4.2.45.24 EnumFileProperties (Opnum 30)
	3.2.4.2.45.25 GetFileProperty (Opnum 31)
	3.2.4.2.45.26 SetFileProperty (Opnum 32)
	3.2.4.2.45.27 ClearFileProperty (Opnum 33)

	3.2.4.2.46 IFsrmClassificationManager2
	3.2.4.2.46.1 ClassifyFiles (Opnum 34)

	3.2.4.2.47 IFsrmStorageModuleDefinition
	3.2.4.2.47.1 Commit (Opnum 11)
	3.2.4.2.47.2 Capabilities (get) (Opnum 31)
	3.2.4.2.47.3 Capabilities (put) (Opnum 32)
	3.2.4.2.47.4 StorageType (get) (Opnum 33)
	3.2.4.2.47.5 StorageType (put) (Opnum 34)
	3.2.4.2.47.6 UpdatesFileContent (get) (Opnum 35)
	3.2.4.2.47.7 UpdatesFileContent (put) (Opnum 36)

	3.2.4.2.48 IFsrmFileManagementJob
	3.2.4.2.48.1 Commit (Opnum 11)
	3.2.4.2.48.2 Name (get) (Opnum 12)
	3.2.4.2.48.3 Name (put) (Opnum 13)
	3.2.4.2.48.4 NamespaceRoots (get) (Opnum 14)
	3.2.4.2.48.5 NamespaceRoots (put) (Opnum 15)
	3.2.4.2.48.6 Enabled (get) (Opnum 16)
	3.2.4.2.48.7 Enabled (put) (Opnum 17)
	3.2.4.2.48.8 OperationType (get) (Opnum 18)
	3.2.4.2.48.9 OperationType (put) (Opnum 19)
	3.2.4.2.48.10 ExpirationDirectory (get) (Opnum 20)
	3.2.4.2.48.11 ExpirationDirectory (put) (Opnum 21)
	3.2.4.2.48.12 CustomAction (get) (Opnum 22)
	3.2.4.2.48.13 Notifications (get) (Opnum 23)
	3.2.4.2.48.14 Logging (get) (Opnum 24)
	3.2.4.2.48.15 Logging (put) (Opnum 25)
	3.2.4.2.48.16 ReportEnabled (get) (Opnum 26)
	3.2.4.2.48.17 ReportEnabled (put) (Opnum 27)
	3.2.4.2.48.18 Formats (get) (Opnum 28)
	3.2.4.2.48.19 Formats (put) (Opnum 29)
	3.2.4.2.48.20 MailTo (get) (Opnum 30)
	3.2.4.2.48.21 MailTo (put) (Opnum 31)
	3.2.4.2.48.22 DaysSinceFileCreated (get) (Opnum 32)
	3.2.4.2.48.23 DaysSinceFileCreated (put) (Opnum 33)
	3.2.4.2.48.24 DaysSinceFileLastAccessed (get) (Opnum 34)
	3.2.4.2.48.25 DaysSinceFileLastAccessed (put) (Opnum 35)
	3.2.4.2.48.26 DaysSinceFileLastModified (get) (Opnum 36)
	3.2.4.2.48.27 DaysSinceFileLastModified (put) (Opnum 37)
	3.2.4.2.48.28 PropertyConditions (get) (Opnum 38)
	3.2.4.2.48.29 FromDate (get) (Opnum 39)
	3.2.4.2.48.30 FromDate (put) (Opnum 40)
	3.2.4.2.48.31 Task (get) (Opnum 41)
	3.2.4.2.48.32 Task (put) (Opnum 42)
	3.2.4.2.48.33 Parameters (get) (Opnum 43)
	3.2.4.2.48.34 Parameters (put) (Opnum 44)
	3.2.4.2.48.35 RunningStatus (get) (Opnum 45)
	3.2.4.2.48.36 LastError (get) (Opnum 46)
	3.2.4.2.48.37 LastReportPathWithoutExtension (get) (Opnum 47)
	3.2.4.2.48.38 LastRun (get) (Opnum 48)
	3.2.4.2.48.39 FileNamePattern (get) (Opnum 49)
	3.2.4.2.48.40 FileNamePattern (put) (Opnum 50)
	3.2.4.2.48.41 Run (Opnum 51)
	3.2.4.2.48.42 WaitForCompletion (Opnum 52)
	3.2.4.2.48.43 Cancel (Opnum 53)
	3.2.4.2.48.44 AddNotification (Opnum 54)
	3.2.4.2.48.45 DeleteNotification (Opnum 55)
	3.2.4.2.48.46 ModifyNotification (Opnum 56)
	3.2.4.2.48.47 CreateNotificationAction (Opnum 57)
	3.2.4.2.48.48 EnumNotificationActions (Opnum 58)
	3.2.4.2.48.49 CreatePropertyCondition (Opnum 59)
	3.2.4.2.48.50 CreateCustomAction (Opnum 60)

	3.2.4.2.49 IFsrmPropertyCondition
	3.2.4.2.49.1 Name (get) (Opnum 7)
	3.2.4.2.49.2 Name (put) (Opnum 8)
	3.2.4.2.49.3 Type (get) (Opnum 9)
	3.2.4.2.49.4 Type (put) (Opnum 10)
	3.2.4.2.49.5 Value (get) (Opnum 11)
	3.2.4.2.49.6 Value (put) (Opnum 12)
	3.2.4.2.49.7 Delete (Opnum 13)

	3.2.4.2.50 IFsrmFileManagementJobManager
	3.2.4.2.50.1 EnumFileManagementJobs (Opnum 7)
	3.2.4.2.50.2 CreateFileManagementJob (Opnum 8)
	3.2.4.2.50.3 GetFileManagementJob (Opnum 9)

	3.2.4.3 Macro Usage
	3.2.4.3.1 Quota Macros
	3.2.4.3.2 File Screen Macros
	3.2.4.3.3 File Management Job Macros
	3.2.4.3.4 General Macros

	3.2.4.4 Running Notifications
	3.2.4.4.1 Command Line Action Type
	3.2.4.4.2 Email Action Type
	3.2.4.4.3 Event Log Action Type
	3.2.4.4.4 Report Action Type

	3.2.4.5 Aggregating Property Definition Instance Values
	3.2.4.6 Validating Property Values

	3.2.5 General Classification Actions
	3.2.5.1 Retrieve stored classification properties
	3.2.5.2 Generate New Classification Properties
	3.2.5.3 Store classification properties

	3.2.6 Timer Events
	3.2.7 Other Local Events
	3.2.7.1 Quota Events
	3.2.7.2 Quota Usage Update Events
	3.2.7.3 Peak Quota Usage Events
	3.2.7.4 File Screen Events
	3.2.7.5 Directory Creation Events
	3.2.7.6 Directory Deletion Events
	3.2.7.7 Directory Rename Events
	3.2.7.8 Volume Discovery Events
	3.2.7.9 Volume Removal Events
	3.2.7.10 File Classification Security Propagation
	3.2.7.11 File Classification Event

	4 Protocol Examples
	4.1 Query Enumeration of File Server Resource Manager Protocol Directory Quotas
	4.2 Retrieving Properties of File Server Resource Manager Protocol File Screens
	4.3 Modifying File Server Resource Manager Protocol Directory Quota Properties Derived from Templates
	4.4 Scheduling File Server Resource Manager Protocol Storage Reports
	4.5 Modifying File Server Resource Manager Protocol Global Settings
	4.6 Enumerating Classification Properties
	4.7 Adding Classification Rules
	4.8 Modifying File Management Jobs
	4.9 Updating Property Values for a File

	5 Security
	6 Appendix A: Full IDL
	7 Appendix B: Product Behavior
	8 Change Tracking
	9 Index

