[bookmark: _GoBack][MS-FSCC]:
File System Control Codes

Intellectual Property Rights Notice for Open Specifications Documentation
· Technical Documentation. Microsoft publishes Open Specifications documentation (“this documentation”) for protocols, file formats, data portability, computer languages, and standards support. Additionally, overview documents cover inter-protocol relationships and interactions.
· Copyrights. This documentation is covered by Microsoft copyrights. Regardless of any other terms that are contained in the terms of use for the Microsoft website that hosts this documentation, you can make copies of it in order to develop implementations of the technologies that are described in this documentation and can distribute portions of it in your implementations that use these technologies or in your documentation as necessary to properly document the implementation. You can also distribute in your implementation, with or without modification, any schemas, IDLs, or code samples that are included in the documentation. This permission also applies to any documents that are referenced in the Open Specifications documentation.
· No Trade Secrets. Microsoft does not claim any trade secret rights in this documentation.
· Patents. Microsoft has patents that might cover your implementations of the technologies described in the Open Specifications documentation. Neither this notice nor Microsoft's delivery of this documentation grants any licenses under those patents or any other Microsoft patents. However, a given Open Specifications document might be covered by the Microsoft Open Specifications Promise or the Microsoft Community Promise. If you would prefer a written license, or if the technologies described in this documentation are not covered by the Open Specifications Promise or Community Promise, as applicable, patent licenses are available by contacting iplg@microsoft.com.
· License Programs. To see all of the protocols in scope under a specific license program and the associated patents, visit the Patent Map.
· Trademarks. The names of companies and products contained in this documentation might be covered by trademarks or similar intellectual property rights. This notice does not grant any licenses under those rights. For a list of Microsoft trademarks, visit www.microsoft.com/trademarks.
· Fictitious Names. The example companies, organizations, products, domain names, email addresses, logos, people, places, and events that are depicted in this documentation are fictitious. No association with any real company, organization, product, domain name, email address, logo, person, place, or event is intended or should be inferred.
Reservation of Rights. All other rights are reserved, and this notice does not grant any rights other than as specifically described above, whether by implication, estoppel, or otherwise.
Tools. The Open Specifications documentation does not require the use of Microsoft programming tools or programming environments in order for you to develop an implementation. If you have access to Microsoft programming tools and environments, you are free to take advantage of them. Certain Open Specifications documents are intended for use in conjunction with publicly available standards specifications and network programming art and, as such, assume that the reader either is familiar with the aforementioned material or has immediate access to it.
Support. For questions and support, please contact dochelp@microsoft.com.
Revision Summary
	Date
	Revision History
	Revision Class
	Comments

	4/3/2007
	0.01
	New
	Version 0.01 release

	7/3/2007
	1.0
	Major
	MLonghorn+90

	7/20/2007
	2.0
	Major
	Updated and revised the technical content.

	8/10/2007
	3.0
	Major
	Updated and revised the technical content.

	9/28/2007
	4.0
	Major
	Updated and revised the technical content.

	10/23/2007
	5.0
	Major
	Updated and revised the technical content.

	11/30/2007
	5.0.1
	Editorial
	Changed language and formatting in the technical content.

	1/25/2008
	5.0.2
	Editorial
	Changed language and formatting in the technical content.

	3/14/2008
	5.0.3
	Editorial
	Changed language and formatting in the technical content.

	5/16/2008
	6.0
	Major
	Updated and revised the technical content.

	6/20/2008
	7.0
	Major
	Updated and revised the technical content.

	7/25/2008
	8.0
	Major
	Updated and revised the technical content.

	8/29/2008
	9.0
	Major
	Updated and revised the technical content.

	10/24/2008
	10.0
	Major
	Updated and revised the technical content.

	12/5/2008
	11.0
	Major
	Updated and revised the technical content.

	1/16/2009
	12.0
	Major
	Updated and revised the technical content.

	2/27/2009
	13.0
	Major
	Updated and revised the technical content.

	4/10/2009
	14.0
	Major
	Updated and revised the technical content.

	5/22/2009
	15.0
	Major
	Updated and revised the technical content.

	7/2/2009
	16.0
	Major
	Updated and revised the technical content.

	8/14/2009
	17.0
	Major
	Updated and revised the technical content.

	9/25/2009
	18.0
	Major
	Updated and revised the technical content.

	11/6/2009
	19.0
	Major
	Updated and revised the technical content.

	12/18/2009
	20.0
	Major
	Updated and revised the technical content.

	1/29/2010
	21.0
	Major
	Updated and revised the technical content.

	3/12/2010
	22.0
	Major
	Updated and revised the technical content.

	4/23/2010
	23.0
	Major
	Updated and revised the technical content.

	6/4/2010
	24.0
	Major
	Updated and revised the technical content.

	7/16/2010
	25.0
	Major
	Updated and revised the technical content.

	8/27/2010
	26.0
	Major
	Updated and revised the technical content.

	10/8/2010
	27.0
	Major
	Updated and revised the technical content.

	11/19/2010
	27.1
	Minor
	Clarified the meaning of the technical content.

	1/7/2011
	27.1
	None
	No changes to the meaning, language, or formatting of the technical content.

	2/11/2011
	28.0
	Major
	Updated and revised the technical content.

	3/25/2011
	29.0
	Major
	Updated and revised the technical content.

	5/6/2011
	30.0
	Major
	Updated and revised the technical content.

	6/17/2011
	30.1
	Minor
	Clarified the meaning of the technical content.

	9/23/2011
	30.2
	Minor
	Clarified the meaning of the technical content.

	12/16/2011
	31.0
	Major
	Updated and revised the technical content.

	3/30/2012
	32.0
	Major
	Updated and revised the technical content.

	7/12/2012
	33.0
	Major
	Updated and revised the technical content.

	10/25/2012
	34.0
	Major
	Updated and revised the technical content.

	1/31/2013
	35.0
	Major
	Updated and revised the technical content.

	8/8/2013
	36.0
	Major
	Updated and revised the technical content.

	11/14/2013
	36.0
	None
	No changes to the meaning, language, or formatting of the technical content.

	2/13/2014
	37.0
	Major
	Updated and revised the technical content.

	5/15/2014
	37.0
	None
	No changes to the meaning, language, or formatting of the technical content.

	6/30/2015
	38.0
	Major
	Significantly changed the technical content.

	10/16/2015
	39.0
	Major
	Significantly changed the technical content.

	7/14/2016
	40.0
	Major
	Significantly changed the technical content.

	6/1/2017
	41.0
	Major
	Significantly changed the technical content.

	9/15/2017
	42.0
	Major
	Significantly changed the technical content.

	12/1/2017
	43.0
	Major
	Significantly changed the technical content.

	3/16/2018
	44.0
	Major
	Significantly changed the technical content.

	9/12/2018
	45.0
	Major
	Significantly changed the technical content.

	9/23/2019
	46.0
	Major
	Significantly changed the technical content.

	3/4/2020
	47.0
	Major
	Significantly changed the technical content.

	8/26/2020
	48.0
	Major
	Significantly changed the technical content.

	4/7/2021
	49.0
	Major
	Significantly changed the technical content.

	6/2/2021
	50.0
	Major
	Significantly changed the technical content.

	6/25/2021
	51.0
	Major
	Significantly changed the technical content.

	4/29/2022
	52.0
	Major
	Significantly changed the technical content.

	9/20/2023
	53.0
	Major
	Significantly changed the technical content.

	4/23/2024
	54.0
	Major
	Significantly changed the technical content.

	7/8/2024
	55.0
	Major
	Significantly changed the technical content.

	9/16/2024
	55.0
	None
	No changes to the meaning, language, or formatting of the technical content.

	10/7/2024
	56.0
	Major
	Significantly changed the technical content.

Table of Contents
1	Introduction	10
1.1	Glossary	10
1.2	References	14
1.2.1	Normative References	14
1.2.2	Informative References	15
1.3	Overview	16
1.4	Relationship to Protocols and Other Structures	16
1.5	Applicability Statement	16
1.6	Versioning and Localization	17
1.7	Vendor-Extensible Fields	17
2	Structures	18
2.1	Common Data Types	18
2.1.1	Time	18
2.1.2	Reparse Point Data Structures	18
2.1.2.1	Reparse Tags	18
2.1.2.2	REPARSE_DATA_BUFFER	22
2.1.2.3	REPARSE_GUID_DATA_BUFFER	22
2.1.2.4	Symbolic Link Reparse Data Buffer	23
2.1.2.5	Mount Point Reparse Data Buffer	24
2.1.2.6	Network File System (NFS) Reparse Data Buffer	25
2.1.3	FILE_OBJECTID_BUFFER Structure	27
2.1.3.1	FILE_OBJECTID_BUFFER Type 1	27
2.1.3.2	FILE_OBJECTID_BUFFER Type 2	28
2.1.4	Alternate Data Streams	28
2.1.5	Pathname	29
2.1.5.1	Dot Directory Names	29
2.1.5.2	Filename	29
2.1.5.2.1	8.3 Filename	30
2.1.5.3	Streamname	30
2.1.5.4	Streamtype	30
2.1.6	Share name	30
2.1.7	FILE_NAME_INFORMATION	31
2.1.8	Boolean	31
2.1.9	64-bit file ID	31
2.1.10	128-bit file ID	32
2.1.11	STORAGE_OFFLOAD_TOKEN	32
2.2	Status Codes	33
2.3	FSCTL Structures	33
2.3.1	FSCTL_CREATE_OR_GET_OBJECT_ID Request	35
2.3.2	FSCTL_CREATE_OR_GET_OBJECT_ID Reply	35
2.3.3	FSCTL_DELETE_OBJECT_ID Request	36
2.3.4	FSCTL_DELETE_OBJECT_ID Reply	36
2.3.5	FSCTL_DELETE_REPARSE_POINT Request	36
2.3.6	FSCTL_DELETE_REPARSE_POINT Reply	36
2.3.7	FSCTL_DUPLICATE_EXTENTS_TO_FILE Request	37
2.3.7.1	DUPLICATE_EXTENTS_DATA	37
2.3.7.2	SMB2_DUPLICATE_EXTENTS_DATA	38
2.3.8	FSCTL_DUPLICATE_EXTENTS_TO_FILE Reply	39
2.3.9	FSCTL_DUPLICATE_EXTENTS_TO_FILE_EX Request	39
2.3.9.1	DUPLICATE_EXTENTS_DATA_EX	40
2.3.9.2	SMB2_DUPLICATE_EXTENTS_DATA_EX	41
2.3.10	FSCTL_DUPLICATE_EXTENTS_TO_FILE_EX Reply	42
2.3.11	FSCTL_FILESYSTEM_GET_STATISTICS Request	43
2.3.12	FSCTL_FILESYSTEM_GET_STATISTICS Reply	43
2.3.12.1	FILESYSTEM_STATISTICS	43
2.3.12.2	NTFS_STATISTICS	45
2.3.12.2.1	MftWritesUserLevel	50
2.3.12.2.2	Mft2WritesUserLevel	50
2.3.12.2.3	BitmapWritesUserLevel	51
2.3.12.2.4	MftBitmapWritesUserLevel	51
2.3.12.2.5	Allocate	51
2.3.12.3	FAT_STATISTICS	53
2.3.12.4	EXFAT_STATISTICS	54
2.3.13	FSCTL_FILE_LEVEL_TRIM Request	55
2.3.13.1	FILE_LEVEL_TRIM_RANGE	55
2.3.14	FSCTL_FILE_LEVEL_TRIM Reply	55
2.3.15	FSCTL_FIND_FILES_BY_SID Request	56
2.3.16	FSCTL_FIND_FILES_BY_SID Reply	57
2.3.17	FSCTL_GET_COMPRESSION Request	57
2.3.18	FSCTL_GET_COMPRESSION Reply	57
2.3.19	FSCTL_GET_INTEGRITY_INFORMATION Request	58
2.3.20	FSCTL_GET_INTEGRITY_INFORMATION Reply	58
2.3.21	FSCTL_GET_NTFS_VOLUME_DATA Request	60
2.3.22	FSCTL_GET_NTFS_VOLUME_DATA Reply	60
2.3.23	FSCTL_GET_REFS_VOLUME_DATA Request	62
2.3.24	FSCTL_GET_REFS_VOLUME_DATA Reply	62
2.3.25	FSCTL_GET_OBJECT_ID Request	64
2.3.26	FSCTL_GET_OBJECT_ID Reply	65
2.3.27	FSCTL_GET_REPARSE_POINT Request	65
2.3.28	FSCTL_GET_REPARSE_POINT Reply	65
2.3.29	FSCTL_GET_RETRIEVAL_POINTER_COUNT Request	66
2.3.30	FSCTL_GET_RETRIEVAL_POINTER_COUNT Reply	66
2.3.31	FSCTL_GET_RETRIEVAL_POINTERS Request	67
2.3.32	FSCTL_GET_RETRIEVAL_POINTERS Reply	67
2.3.32.1	EXTENTS	68
2.3.33	FSCTL_GET_RETRIEVAL_POINTERS_AND_REFCOUNT Request	69
2.3.34	FSCTL_GET_RETRIEVAL_POINTERS_AND_REFCOUNT Reply	69
2.3.34.1	EXTENT_AND_REFCOUNTS	70
2.3.35	FSCTL_IS_PATHNAME_VALID Request	71
2.3.36	FSCTL_IS_PATHNAME_VALID Reply	72
2.3.37	FSCTL_LMR_SET_LINK_TRACKING_INFORMATION Request	72
2.3.37.1	FSCTL_LMR_SET_LINK_TRACKING_INFORMATION Request for SMB	72
2.3.37.2	FSCTL_LMR_SET_LINK_TRACKING_INFORMATION Request for SMB2	72
2.3.37.3	TARGET_LINK_TRACKING_INFORMATION_Buffer	73
2.3.37.3.1	TARGET_LINK_TRACKING_INFORMATION_Buffer_1	73
2.3.37.3.2	TARGET_LINK_TRACKING_INFORMATION_Buffer_2	73
2.3.38	FSCTL_LMR_SET_LINK_TRACKING_INFORMATION Reply	74
2.3.39	FSCTL_MARK_HANDLE Request	75
2.3.40	FSCTL_MARK_HANDLE Reply	75
2.3.41	FSCTL_OFFLOAD_READ Request	76
2.3.42	FSCTL_OFFLOAD_READ Reply	77
2.3.43	FSCTL_OFFLOAD_WRITE Request	79
2.3.44	FSCTL_OFFLOAD_WRITE Reply	80
2.3.45	FSCTL_PIPE_PEEK Request	82
2.3.46	FSCTL_PIPE_PEEK Reply	82
2.3.47	FSCTL_PIPE_TRANSCEIVE Request	84
2.3.48	FSCTL_PIPE_TRANSCEIVE Reply	84
2.3.49	FSCTL_PIPE_WAIT Request	84
2.3.50	FSCTL_PIPE_WAIT Reply	85
2.3.51	FSCTL_QUERY_ALLOCATED_RANGES Request	86
2.3.52	FSCTL_QUERY_ALLOCATED_RANGES Reply	86
2.3.53	FSCTL_QUERY_FAT_BPB Request	87
2.3.54	FSCTL_QUERY_FAT_BPB Reply	87
2.3.55	FSCTL_QUERY_FILE_REGIONS Request	88
2.3.56	FSCTL_QUERY_FILE_REGIONS Reply	89
2.3.56.1	FILE_REGION_INFO	90
2.3.57	FSCTL_QUERY_ON_DISK_VOLUME_INFO Request	90
2.3.58	FSCTL_QUERY_ON_DISK_VOLUME_INFO Reply	91
2.3.59	FSCTL_QUERY_SPARING_INFO Request	93
2.3.60	FSCTL_QUERY_SPARING_INFO Reply	93
2.3.61	FSCTL_READ_FILE_USN_DATA Request	94
2.3.62	FSCTL_READ_FILE_USN_DATA Reply	94
2.3.62.1	USN_RECORD_COMMON_HEADER	94
2.3.62.2	USN_RECORD_V2	95
2.3.62.3	USN_RECORD_V3	98
2.3.63	FSCTL_RECALL_FILE Request	100
2.3.64	FSCTL_RECALL_FILE Reply	100
2.3.65	FSCTL_REFS_STREAM_SNAPSHOT_MANAGEMENT Request	100
2.3.65.1	REFS_STREAM_SNAPSHOT_QUERY_DELTAS_INPUT_BUFFER	102
2.3.66	FSCTL_REFS_STREAM_SNAPSHOT_MANAGEMENT Reply	103
2.3.66.1	REFS_STREAM_SNAPSHOT_LIST_OUTPUT_BUFFER	103
2.3.66.1.1	REFS_STREAM_SNAPSHOT_LIST_OUTPUT_BUFFER_ENTRY	104
2.3.66.2	REFS_STREAM_SNAPSHOT_QUERY_DELTAS_OUTPUT_BUFFER	105
2.3.66.2.1	REFS_STREAM_EXTENT	105
2.3.67	FSCTL_SET_COMPRESSION Request	106
2.3.68	FSCTL_SET_COMPRESSION Reply	107
2.3.69	FSCTL_SET_DEFECT_MANAGEMENT Request	107
2.3.70	FSCTL_SET_DEFECT_MANAGEMENT Reply	108
2.3.71	FSCTL_SET_ENCRYPTION Request	108
2.3.72	FSCTL_SET_ENCRYPTION Reply	109
2.3.72.1	DECRYPTION_STATUS_BUFFER	110
2.3.73	FSCTL_SET_INTEGRITY_INFORMATION Request	110
2.3.74	FSCTL_SET_INTEGRITY_INFORMATION Reply	111
2.3.75	FSCTL_SET_INTEGRITY_INFORMATION_EX Request	112
2.3.76	FSCTL_SET_INTEGRITY_INFORMATION_EX Reply	113
2.3.77	FSCTL_SET_OBJECT_ID Request	113
2.3.78	FSCTL_SET_OBJECT_ID Reply	113
2.3.79	FSCTL_SET_OBJECT_ID_EXTENDED Request	114
2.3.80	FSCTL_SET_OBJECT_ID_EXTENDED Reply	114
2.3.81	FSCTL_SET_REPARSE_POINT Request	115
2.3.82	FSCTL_SET_REPARSE_POINT Reply	115
2.3.83	FSCTL_SET_SPARSE Request	115
2.3.84	FSCTL_SET_SPARSE Reply	116
2.3.85	FSCTL_SET_ZERO_DATA Request	116
2.3.86	FSCTL_SET_ZERO_DATA Reply	117
2.3.87	FSCTL_SET_ZERO_ON_DEALLOCATION Request	117
2.3.88	FSCTL_SET_ZERO_ON_DEALLOCATION Reply	117
2.3.89	FSCTL_SIS_COPYFILE Request	118
2.3.90	FSCTL_SIS_COPYFILE Reply	119
2.3.91	FSCTL_VIRTUAL_STORAGE_QUERY_PROPERTY Request	119
2.3.92	FSCTL_WRITE_USN_CLOSE_RECORD Request	119
2.3.93	FSCTL_WRITE_USN_CLOSE_RECORD Reply	120
2.4	File Information Classes	120
2.4.1	FileAccessInformation	122
2.4.2	FileAllInformation	122
2.4.3	FileAlignmentInformation	124
2.4.4	FileAllocationInformation	125
2.4.5	FileAlternateNameInformation	125
2.4.6	FileAttributeTagInformation	126
2.4.7	FileBasicInformation	127
2.4.8	FileBothDirectoryInformation	128
2.4.9	FileCompressionInformation	130
2.4.10	FileDirectoryInformation	132
2.4.11	FileDispositionInformation	134
2.4.12	FileEaInformation	134
2.4.13	FileEndOfFileInformation	135
2.4.14	FileFullDirectoryInformation	135
2.4.15	FileFullEaInformation	138
2.4.15.1	FILE_GET_EA_INFORMATION	139
2.4.16	FileHardLinkInformation	140
2.4.16.1	FILE_LINK_ENTRY_INFORMATION	141
2.4.17	FileId64ExtdBothDirectoryInformation	141
2.4.18	FileId64ExtdDirectoryInformation	144
2.4.19	FileIdAllExtdBothDirectoryInformation	146
2.4.20	FileIdAllExtdDirectoryInformation	149
2.4.21	FileIdBothDirectoryInformation	152
2.4.22	FileIdExtdDirectoryInformation	154
2.4.23	FileIdFullDirectoryInformation	157
2.4.24	FileIdGlobalTxDirectoryInformation	159
2.4.25	FileIdInformation	162
2.4.26	FileInternalInformation	163
2.4.27	FileLinkInformation	163
2.4.27.1	FileLinkInformation for the SMB Protocol	164
2.4.27.2	FileLinkInformation for the SMB2 Protocol	165
2.4.28	FileMailslotQueryInformation	166
2.4.29	FileMailslotSetInformation	166
2.4.30	FileModeInformation	167
2.4.31	FileNameInformation	168
2.4.32	FileNamesInformation	169
2.4.33	FileNetworkOpenInformation	170
2.4.34	FileNormalizedNameInformation	171
2.4.35	FileObjectIdInformation	172
2.4.35.1	FILE_OBJECTID_INFORMATION_TYPE_1	172
2.4.35.2	FILE_OBJECTID_INFORMATION_TYPE_2	173
2.4.36	FilePipeInformation	174
2.4.37	FilePipeLocalInformation	175
2.4.38	FilePipeRemoteInformation	177
2.4.39	FilePositionInformation	178
2.4.40	FileQuotaInformation	179
2.4.40.1	FILE_GET_QUOTA_INFORMATION	180
2.4.41	FileRenameInformation	181
2.4.41.1	FileRenameInformation for SMB	182
2.4.41.2	FileRenameInformation for SMB2	182
2.4.42	FileReparsePointInformation	183
2.4.43	FileSfioReserveInformation	184
2.4.44	FileShortNameInformation	185
2.4.45	FileStandardInformation	186
2.4.46	FileStandardLinkInformation	187
2.4.47	FileStreamInformation	187
2.4.48	FileValidDataLengthInformation	189
2.5	File System Information Classes	189
2.5.1	FileFsAttributeInformation	190
2.5.2	FileFsControlInformation	192
2.5.3	FileFsDriverPathInformation	195
2.5.4	FileFsFullSizeInformation	195
2.5.5	FileFsLabelInformation	196
2.5.6	FileFsObjectIdInformation	197
2.5.7	FileFsSectorSizeInformation	198
2.5.8	FileFsSizeInformation	199
2.5.9	FileFsVolumeInformation	200
2.5.10	FileFsDeviceInformation	201
2.6	File Attributes	203
2.7	Directory Change Notifications	204
2.7.1	FILE_NOTIFY_INFORMATION	205
2.8	Cluster Shared Volume File System IOCTLs	206
2.8.1	IOCTL_STORAGE_QUERY_PROPERTY Request	206
2.8.2	IOCTL_STORAGE_QUERY_PROPERTY Reply	207
2.8.3	IOCTL_VOLUME_GET_GPT_ATTRIBUTES Request	207
2.8.4	IOCTL_VOLUME_GET_GPT_ATTRIBUTES Reply	208
3	Structure Examples	209
4	Security	210
4.1	Security Considerations for Implementers	210
4.2	Index of Security Parameters	210
5	Appendix A: NTFS Alternate Streams	211
5.1	NTFS Streams	211
5.2	NTFS Attribute Types	211
5.3	NTFS Reserved File Names	212
5.4	NTFS Stream Names	213
5.5	NTFS Stream Types	213
5.6	Known Alternate Stream Names	214
5.6.1	Zone.Identifier Stream Name	214
5.6.2	Outlook Express Properties Stream Name	214
5.6.3	Document Properties Stream Name	214
5.6.4	Encryptable Thumbnails Stream Name	215
5.6.5	Internet Explorer Favicon Stream Name	215
5.6.6	Macintosh Supported Stream Names	215
5.6.7	XPRESS Stream Name	215
6	Appendix B: Product Behavior	216
7	Change Tracking	235
8	Index	236

[bookmark: section_9c3b6720aa0d43ccbc7d3afa5c3a9c59][bookmark: _Toc178847411]Introduction
This specification defines the network format of native Windows structures that can be used within other protocols. It also describes the structure of common Windows native file system control codes, file information levels, and file system information levels that are issued in client/server and server/server communications. These structures do not result in a protocol, but their structure is common across multiple protocols. As such, they are placed in this document as a reference that can be used by other protocols to ensure consistency and accuracy.
Sections 1.7 and 2 of this specification are normative. All other sections and examples in this specification are informative.
[bookmark: section_8ac44452328c4d7ba784d72afd19bd9f][bookmark: _Toc178847412]Glossary
This document uses the following terms:
[bookmark: gt_d2302116-d3d3-4465-a72e-c07a7737b7ae]8.3 name: A file name string restricted in length to 12 characters that includes a base name of up to eight characters, one character for a period, and up to three characters for a file name extension. For more information on 8.3 file names, see [MS-CIFS] section 2.2.1.1.1.
[bookmark: gt_9f92aa05-dd0a-45f2-88d6-89f1fb654395]access control list (ACL): A list of access control entries (ACEs) that collectively describe the security rules for authorizing access to some resource; for example, an object or set of objects.
[bookmark: gt_8b745eca-dc27-4455-a35d-bedef9fa29e7]alternate name: An 8.3 name that can optionally be generated when a file is created. A file will not have an alternate name if the user wants to optimize performance, or if the name of the file already uses the 8.3 format.
[bookmark: gt_ad861812-8cb0-497a-80bb-13c95aa4e425]binary large object (BLOB): A collection of binary data stored as a single entity in a database.
[bookmark: gt_6c1aef9a-ae5a-4c85-ac7c-84da5eaacbab]chunk: The amount of data that the operating system's implementation of the Lempel-Ziv compression algorithm tries to compress at one time. The compression unit size used by the file system is always a multiple of the underlying compression algorithm's chunk size. For more information on the Lempel-Ziv compression algorithm, see [UASDC].
[bookmark: gt_feef37b3-c173-4f51-aab6-b55a6366259b]cluster: The smallest allocation unit on a volume.
[bookmark: gt_ce0d64e7-0847-4910-9611-b3044f3aae2d]compression unit: The amount of data that NTFS tries to compress at one time. Compression of large files is accomplished as a series of compressions of data blocks, each at the most compression unit bytes in size.
[bookmark: gt_4259c4db-f267-4dfc-80a6-fa2306056a34]compression unit shift: The number of bits by which to left-shift a 1 bit to arrive at the compression unit size.
[bookmark: gt_f83c4971-a0c2-41a5-af59-6fae035ecb4a]content indexing service: A service that extracts content from files and constructs an indexed catalog to facilitate efficient and rapid searching.
[bookmark: gt_82dfddec-0095-4f51-9b36-b6f5a0458e22]disk quota: Maximum amount of data a user can store on a disk volume.
[bookmark: gt_5c3cacdf-4505-454f-a359-653e71415be0]Distributed Link Tracking (DLT): A protocol that enables client applications to track sources that have been sent to remote locations using remote procedure call (RPC) interfaces, and to maintain links to files. It exposes methods that belong to two interfaces, one of which exists on the server (trksvr) and the other on a workstation (trkwks).
[bookmark: gt_d45f0f94-9d52-490d-a8c4-2366a8008cb7]dot directory name: In a pathname, a directory name component of "." (single period) or ".." (two periods). For more details, see [MS-FSCC] section 2.1.5.1.
[bookmark: gt_5173ca58-7cec-499e-ae5a-c07d81ff5676]FAT file system: A file system used to organize and manage files. The file allocation table (FAT) is a data structure that the operating system creates when a volume is formatted by using FAT or FAT32 file systems. The operating system stores information about each file in the FAT so that it can retrieve the file later.
[bookmark: gt_ab858f4d-7f0c-474c-9697-50f0af92f766]Fid: A 16-bit value that the Server Message Block (SMB) server uses to represent an opened file, named pipe, printer, or device. A Fid is returned by an SMB server in response to a client request to open or create a file, named pipe, printer, or device. The SMB server guarantees that the Fid value returned is unique for a given SMB connection until the SMB connection is closed, at which time the Fid value can be reused. The Fid is used by the SMB client in subsequent SMB commands to identify the opened file, named pipe, printer, or device.
[bookmark: gt_f2bf797b-e733-4fb9-b5e5-7e122f4abbe0]file allocation table (FAT): A data structure that the operating system creates when a volume is formatted by using FAT or FAT32 file systems. The operating system stores information about each file in the FAT so that it can retrieve the file later.
[bookmark: gt_fbbda8a1-53a1-4637-b0c9-8d04616913d5]file name component: The portion of a file name between path separator characters (or backslashes).
[bookmark: gt_9fc9f85b-fef7-4658-ba27-f0e8f49d0d49]file record segment: A record in the master file table that contains attributes for a specific file on an NTFS volume. The file record segment is always 1,024 bytes (1 kilobyte) in size.
[bookmark: gt_fd067b59-38c3-4b13-9e3f-76d2089488c6]file stream: See main stream and named stream.
[bookmark: gt_4ffb96a7-5fad-488e-9438-b7707d2e4226]file system control (FSCTL): A command issued to a file system to alter or query the behavior of the file system and/or set or query metadata that is associated with a particular file or with the file system itself.
[bookmark: gt_ffbe7b55-8e84-4f41-a18d-fc29191a4cda]filter: Type of driver that is layered between the kernel and a base file system (such as FAT or NTFS) that receives I/O request packets on their way to and from the base file system. The term filter can refer to legacy filters or minifilters.
[bookmark: gt_09f024eb-3598-47db-91e0-37c83b82bf68]filter manager: A file system filter driver that simplifies the development of other file system filter drivers. Although it is possible to write a filter driver that manages other filters, for the purposes of this document, the phrase filter manager refers only to the file system filter manager, which is an operating system component. A filter driver developed to the filter manager model is called a minifilter.
[bookmark: gt_f49694cc-c350-462d-ab8e-816f0103c6c1]globally unique identifier (GUID): A term used interchangeably with universally unique identifier (UUID) in Microsoft protocol technical documents (TDs). Interchanging the usage of these terms does not imply or require a specific algorithm or mechanism to generate the value. Specifically, the use of this term does not imply or require that the algorithms described in [RFC4122] or [C706] have to be used for generating the GUID. See also universally unique identifier (UUID).
[bookmark: gt_b330cb96-68e2-41be-a53f-cae98c2b5d32]GUIDString: A GUID in the form of an ASCII or Unicode string, consisting of one group of 8 hexadecimal digits, followed by three groups of 4 hexadecimal digits each, followed by one group of 12 hexadecimal digits. It is the standard representation of a GUID, as described in [RFC4122] section 3. For example, "6B29FC40-CA47-1067-B31D-00DD010662DA". Unlike a curly braced GUID string, a GUIDString is not enclosed in braces.
[bookmark: gt_09d6bc87-34ed-48e8-b4d4-962e90543462]I/O control (IOCTL): A command that is issued to a target file system or target device in order to query or alter the behavior of the target; or to query or alter the data and attributes that are associated with the target or the objects that are exposed by the target.
[bookmark: gt_2791e303-305a-48a4-8e4c-2799d4e34189]independent software vendor (ISV): A company or organization that develops software solutions that can utilize this specification.
[bookmark: gt_a33da7f8-78bf-41a4-a4c0-a1d4caafa456]logical cluster number (LCN): The cluster number relative to the beginning of the volume. The first cluster on a volume is zero (0).
[bookmark: gt_f53fe4b9-8e1d-4366-9254-3c4f73269e78]mailslot: A mechanism for one-way interprocess communications (IPC). For more information, see [MSLOT] and [MS-MAIL].
[bookmark: gt_d379ab3d-69a9-46b2-8927-423c5a0970f1]master file table (MFT): On an NTFS volume, the MFT is a relational database that consists of rows of file records and columns of file attributes. It contains at least one entry for every file on an NTFS volume, including the MFT itself. The MFT stores the information required to retrieve files from the NTFS partition.
[bookmark: gt_1e8c5c1d-10a9-452c-ad88-16ae095461f1]master file table mirror (MFT2/MFTMirr): On an NTFS volume, the MFT2 is a redundant copy of the first four (4) records of the MFT.
[bookmark: gt_03d3ec14-995b-486a-8938-e2a73f6de7e1]named stream: A place within a file in addition to the main stream where data is stored, or the data stored therein. File systems support a mode in which it is possible to open either the main stream of a file and/or to open a named stream. Named streams and the main stream each have different data than each other and can be read and written independently. Not all file systems support named streams. See also stream.
[bookmark: gt_0334e0bd-2755-42f6-aeff-2d4a22bf4abf]NetBIOS name: A 16-byte address that is used to identify a NetBIOS resource on the network. For more information, see [RFC1001] and [RFC1002].
[bookmark: gt_86f79a17-c0be-4937-8660-0cf6ce5ddc1a]NT file system (NTFS): A proprietary Microsoft file system. For more information, see [MSFT-NTFS].
[bookmark: gt_2467c614-592b-4177-b82b-2d2d130752fc]Object ID: See ObjectID.
[bookmark: gt_aaaf2f1a-0b0a-487e-a0f0-c3510a6091b2]object identifier (OID): In the context of an object server, a 64-bit number that uniquely identifies an object.
[bookmark: gt_fbc5b8e4-ba0b-497d-ab17-1cfc3f81554c]object-oriented file system: In the context of file system control codes, a file system that allows the assignment of object IDs to files.
[bookmark: gt_cce551b7-ef87-4cd1-ac7f-9d8d019cfbf3]Offload Read: A variant to a normal read operation where a target device generates and returns a Token instead of a buffer containing the data to be read. The Token is maintained by the target device until it invalidates the Token for any vendor-specific reason. The data logically represented by the Token cannot change, and the target device is required to maintain this representation. An example of a target device is a SAN Storage Array with support for the associated low-level storage commands. For more information on Offload Read, see [INCITS-T10/11-059].
[bookmark: gt_4755684a-cd1e-4166-a8b4-c888912b2b01]Offload Write: A variant to a normal write operation where the host provides a Token instead of a buffer containing the data to be written. Upon receipt of the Offload Write, the target device parses the Token and determines whether the data movement (the Write) can be completed to the requested location. An example of a target device is a SAN Storage Array with support for the associated low-level storage commands. For more information on Offload Write, see [INCITS-T10/11-059].
[bookmark: gt_4fed0b53-5fc8-4818-886f-93d87f3035e1]reparse point: An attribute that can be added to a file to store a collection of user-defined data that is opaque to NTFS or ReFS. If a file that has a reparse point is opened, the open will normally fail with STATUS_REPARSE, so that the relevant file system filter driver can detect the open of a file associated with (owned by) this reparse point. At that point, each installed filter driver can check to see if it is the owner of the reparse point, and, if so, perform any special processing required for a file with that reparse point. The format of this data is understood by the application that stores the data and the file system filter that interprets the data and processes the file. For example, an encryption filter that is marked as the owner of a file's reparse point could look up the encryption key for that file. A file can have (at most) 1 reparse point associated with it. For more information, see [MS-FSCC].
[bookmark: gt_0be8a9c1-34d6-4632-b430-c5cf4ecc38a7]reparse point tag: A unique identifier for a file system filter driver stored within a file's optional reparse point data that indicates the file system filter driver that performs additional filter-defined processing on a file during I/O operations. An implementer can request more than one reparse point for use with a file system, a file system filter driver, or a minifilter driver. To request a reparse point tag, use the reparse point tag request form. For more information, see [WHDC-RPTR].
[bookmark: gt_6cef9d9c-c366-490a-8e4e-a350688731ca]replica set: In File Replication Service (FRS), the replication of files and directories according to a predefined topology and schedule on a specific folder. The topology and schedule are collectively called a replica set. A replica set contains a set of replicas, one for each machine that participates in replication.
[bookmark: gt_b5bbe646-aa5f-4b4e-ae9e-bdae444cbfa2]sector: The smallest addressable unit of a disk.
[bookmark: gt_83f2020d-0804-4840-a5ac-e06439d50f8d]security identifier (SID): An identifier for security principals that is used to identify an account or a group. Conceptually, the SID is composed of an account authority portion (typically a domain) and a smaller integer representing an identity relative to the account authority, termed the relative identifier (RID). The SID format is specified in [MS-DTYP] section 2.4.2; a string representation of SIDs is specified in [MS-DTYP] section 2.4.2 and [MS-AZOD] section 1.1.1.2.
[bookmark: gt_0e05d13e-4bda-44f7-8650-e1c1b53cca17]short name: This has the same definition as alternate name.
[bookmark: gt_40c57198-06d7-4dcb-a011-d8152b64d2cb]single-instance storage (SIS): An NTFS feature that implements links with the semantics of copies for files stored on an NTFS volume. SIS uses copy-on-close to implement the copy semantics of its links.
[bookmark: gt_57c7faf0-6002-4b1a-b8fc-fc9244d5a6e5]sparse file: A file containing large sections of data composed only of zeros. This file is marked as a sparse file in the file system, which saves disk space by only allocating as many ranges on disk as are required to completely reconstruct the non-zero data. When an attempt is made to read in the nonallocated portions of the file (also known as holes), the file system automatically returns zeros to the caller.
[bookmark: gt_f3529cd8-50da-4f36-aa0b-66af455edbb6]stream: A sequence of bytes written to a file on the target file system. Every file stored on a volume that uses the file system contains at least one stream, which is normally used to store the primary contents of the file. Additional streams within the file can be used to store file attributes, application parameters, or other information specific to that file. Every file has a default data stream, which is unnamed by default. That data stream, and any other data stream associated with a file, can optionally be named.
[bookmark: gt_ec3f0097-f724-412e-baa2-d2341dbd6bce]sub-read and sub-write: An I/O operation sent by the file system to the storage stack that is part of a larger file I/O operation. Sometimes large file reads and writes are broken down by the file system into smaller reads and writes, which are then sent to the storage stack.
[bookmark: gt_04f1ed93-15cb-4090-8204-c43bec8c7398]symbolic link: A symbolic link is a reparse point that points to another file system object. The object being pointed to is called the target. Symbolic links are transparent to users; the links appear as normal files or directories, and can be acted upon by the user or application in exactly the same manner. Symbolic links can be created using the FSCTL_SET_REPARSE_POINT request as specified in [MS-FSCC] section 2.3.81. They can be deleted using the FSCTL_DELETE_REPARSE_POINT request as specified in [MS-FSCC] section 2.3.5. Implementing symbolic links is optional for a file system.
[bookmark: gt_bfa52023-7248-4ab5-b889-6b53348a773b]tag: Another name for a reparse point. For instance, the file system filter manager FltTagFile routine sets a reparse point on a file. Tag is also used to refer to the field in a reparse point that identifies what software component put the reparse point there.
[bookmark: gt_95f17071-c8f1-403a-8a92-cf87aa7d40f5]token: A 512-byte length opaque string that is generated and maintained by a supported target device. A Token functions logically as an immutable point-in-time representation for a set of data specified by a host and can be conceptualized as a compressed representation of the data that only a certain class of storage subsystems can interpret. A Token can also be constructed from a set of well-known Tokens to enable the client to describe a homogeneous attribute for a set of data (for example, all zeros) or to enable a server to apply a homogeneous attribute to a set of data (for example, a set of all zeros). For more information on Tokens, see [INCITS-T10/11-059].
[bookmark: gt_fd33af2e-e1ce-4f8e-a706-f9fb8123f9b0]Unicode character: Unless otherwise specified, a 16-bit UTF-16 code unit.
[bookmark: gt_433a4fb7-ef84-46b0-ab65-905f5e3a80b1]Uniform Resource Locator (URL): A string of characters in a standardized format that identifies a document or resource on the World Wide Web. The format is as specified in [RFC1738].
[bookmark: gt_cb5a1da2-5cc8-4e3f-80b9-32d55c5ca95f]Universal Disk Format (UDF): A type of file system for storing files on optical media.
[bookmark: gt_01936446-8739-4b98-b83f-fb5e2a53ce4c]update sequence number (USN): The offset from the beginning of the change journal stream that uniquely identifies a change journal record.
[bookmark: gt_a80257f7-33b1-45d6-aafc-36ecdd5e11ae]virtual cluster number (VCN): The cluster number relative to the beginning of the file, directory, or stream within a file. The cluster describing byte 0 in a file is VCN 0.
[bookmark: gt_9a876829-33a1-4f0b-8b81-8552b7e5561c]volume: A group of one or more partitions that forms a logical region of storage and the basis for a file system. A volume is an area on a storage device that is managed by the file system as a discrete logical storage unit. A partition contains at least one volume, and a volume can exist on one or more partitions.
MAY, SHOULD, MUST, SHOULD NOT, MUST NOT: These terms (in all caps) are used as defined in [RFC2119]. All statements of optional behavior use either MAY, SHOULD, or SHOULD NOT.
[bookmark: section_b18f97252ecc4662a99b43f6be11b916][bookmark: _Toc178847413]References
Links to a document in the Microsoft Open Specifications library point to the correct section in the most recently published version of the referenced document. However, because individual documents in the library are not updated at the same time, the section numbers in the documents may not match. You can confirm the correct section numbering by checking the Errata.
[bookmark: section_4c200e3f11624dc6b8c6641d0bca98fd][bookmark: _Toc178847414]Normative References
We conduct frequent surveys of the normative references to assure their continued availability. If you have any issue with finding a normative reference, please contact dochelp@microsoft.com. We will assist you in finding the relevant information.
[MS-DTYP] Microsoft Corporation, "Windows Data Types".
[MS-ERREF] Microsoft Corporation, "Windows Error Codes".
[MS-FSA] Microsoft Corporation, "File System Algorithms".
[MS-LSAD] Microsoft Corporation, "Local Security Authority (Domain Policy) Remote Protocol".
[MS-RDPBCGR] Microsoft Corporation, "Remote Desktop Protocol: Basic Connectivity and Graphics Remoting".
[MS-SMB2] Microsoft Corporation, "Server Message Block (SMB) Protocol Versions 2 and 3".
[MS-SMB] Microsoft Corporation, "Server Message Block (SMB) Protocol".
[MS-SQLRS] Microsoft Corporation, "SQL Server Remote Storage Profile".
[RFC1094] Sun Microsystems, Inc., "NFS: Network File System Protocol Specification", RFC 1094, March 1989, https://www.rfc-editor.org/info/rfc1094
[RFC1813] Callaghan, B., Pawlowski, B., and Staubach, P., "NFS Version 3 Protocol Specification", RFC 1813, June 1995, https://www.rfc-editor.org/info/rfc1813
[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, March 1997, https://www.rfc-editor.org/info/rfc2119
[bookmark: section_66ef5e9e665e4ef0894271b661fbc65a][bookmark: _Toc178847415]Informative References
[FSBO] Microsoft Corporation, "File System Behavior in the Microsoft Windows Environment", June 2008, http://download.microsoft.com/download/4/3/8/43889780-8d45-4b2e-9d3a-c696a890309f/File%20System%20Behavior%20Overview.pdf
[INCITS-T10/11-059] INCITS, "T10 specification 11-059", http://www.t10.org/cgi-bin/ac.pl?t=d&f=11-059r9.pdf
[MS-CIFS] Microsoft Corporation, "Common Internet File System (CIFS) Protocol".
[MS-DFSC] Microsoft Corporation, "Distributed File System (DFS): Referral Protocol".
[MS-DLTW] Microsoft Corporation, "Distributed Link Tracking: Workstation Protocol".
[MS-EFSR] Microsoft Corporation, "Encrypting File System Remote (EFSRPC) Protocol".
[MS-WDVME] Microsoft Corporation, "Web Distributed Authoring and Versioning (WebDAV) Protocol: Microsoft Extensions".
[MSDFS] Microsoft Corporation, "How DFS Works", March 2003, http://technet.microsoft.com/en-us/library/cc782417%28WS.10%29.aspx
[MSDN-CJ] Microsoft Corporation, "Change Journals", http://msdn.microsoft.com/en-us/library/aa363798.aspx
[MSDN-SECZONES] Microsoft Corporation, "About URL Security Zones", http://msdn.microsoft.com/en-us/library/ms537183.aspx
[MSFT-NTFSWorks] Microsoft Corporation, "How NTFS Works", March 2003, http://technet.microsoft.com/en-us/library/cc781134(WS.10).aspx
[MSFT-NTFS] Microsoft Corporation, "NTFS Technical Reference", March 2003, http://technet2.microsoft.com/WindowsServer/en/Library/81cc8a8a-bd32-4786-a849-03245d68d8e41033.mspx
[MSKB-5014019] Microsoft Corporation, "KB5014019 May 2022", KB5014019 May 2022, https://support.microsoft.com/en-us/topic/may-24-2022-kb5014019-os-build-22000-708-preview-442dbde4-ce28-4345-aecf-2d4744376418
[MSKB-5014021] Microsoft Corporation, "KB5014021 May 2022", KB5014021 May 2022, https://support.microsoft.com/en-us/topic/may-24-2022-kb5014021-os-build-20348-740-preview-2b180bd4-dceb-4c49-b8cf-402b342ebc84
[MSKB-5014022] Microsoft Corporation, "KB5014022 May 2022", KB5014022 May 2022, https://support.microsoft.com/en-us/topic/may-24-2022-kb5014022-os-build-17763-2989-preview-08f88943-2fc8-4fdb-a13b-ba89af313d06
[MSKB-5014023] Microsoft Corporation, "KB5014023 June 2022", https://support.microsoft.com/en-us/topic/june-2-2022-kb5014023-os-builds-19042-1741-19043-1741-and-19044-1741-preview-65ac6a5d-439a-4e88-b431-a5e2d4e2516a
[MSKB-5014702] Microsoft Corporation, "KB5014702 - June 2022", KB5014702, June 14, 2022, https://support.microsoft.com/en-us/topic/june-14-2022-kb5014702-os-build-14393-5192-e60ac0e1-44a4-49f9-871f-7c25eb0e5bb1
[PIPE] Microsoft Corporation, "Named Pipes", http://msdn.microsoft.com/en-us/library/aa365590.aspx
[REPARSE] Microsoft Corporation, "Reparse Points", http://msdn.microsoft.com/en-us/library/aa365503.aspx
[SPARSE] Microsoft Corporation, "Sparse Files", http://msdn.microsoft.com/en-us/library/aa365564.aspx
[UASDC] Ziv, J. and Lempel, A., "A Universal Algorithm for Sequential Data Compression", May 1977, http://www.cs.duke.edu/courses/spring03/cps296.5/papers/ziv_lempel_1977_universal_algorithm.pdf
[UDF] Optical Storage Technology Association, "UDF Specification, Revision 2.60", March 2005, http://www.osta.org/specs/pdf/udf260.pdf
[WHDC-RPTR] Microsoft Corporation, "Reparse Point Tag Request", https://learn.microsoft.com/en-us/windows-hardware/drivers/ifs/reparse-point-tag-request
[WININTERNALS] Russinovich, M., and Solomon, D., "Microsoft Windows Internals, Fourth Edition", Microsoft Press, 2005, ISBN: 0735619174.
[bookmark: section_e45c929ca8d342e2b9e0a12d5820dd21][bookmark: _Toc178847416]Overview
This document describes the structure of common file system control (FSCTL) codes, file information levels, and file system information levels that are issued in client/server and server/server communications. These structures do not result in a protocol, but their structure is common across multiple protocols. As such, they are placed in this document as a reference that can be used by other protocols to ensure consistency and accuracy.
File system control codes are parameters to the device I/O control interface between applications and the operating system. These device I/O control functions, like other I/O functions, accept a file handle as a parameter, indicating the resource on which the requested operation is performed. When the operating system detects that a handle corresponds to a file on a remote file server, the request can be redirected over the network to the server where the file is stored.
The following topics are addressed in this specification:
· Common file system control operations, including the control code itself and the input/output parameters.
· File information classes and their corresponding structures.
· File system information classes and their corresponding structures.
· File attribute definitions and NTSTATUS code definitions referenced by the file system control code, file information level, and file system information-level documentation.
[bookmark: section_007c4a2d65804f07ac39bbb2fd4c180e][bookmark: _Toc178847417]Relationship to Protocols and Other Structures
Versions 1 and 2 of the Server Message Block (SMB) Protocol, as specified in [MS-SMB] and [MS-SMB2], rely on the structures and definitions in this document to interpret certain fields that can be sent or received as part of its processing.
[bookmark: section_87cdd28ab2a14e7cb5294aeef22ad29a][bookmark: _Toc178847418]Applicability Statement
The structures and classes defined in this document are useful for any lower-level protocol that serializes and exchanges file information levels, file system information levels, and file system control operations without needing to remap this information into a protocol-specific representation.
[bookmark: section_6f68b1c2847a4e59937fb508384a7ca5][bookmark: _Toc178847419]Versioning and Localization
None.
[bookmark: section_0ff2005f94a24593b83cf6def8207f41][bookmark: _Toc178847420]Vendor-Extensible Fields
File system control codes that are used to set reparse point data specify a ReparseTag field value that identifies the file system filter that understands the application-specific reparse point data format. A vendor developing an application protocol that sets reparse point data MUST request a unique reparse tag for that application from Microsoft by following the instructions described in [WHDC-RPTR]. For more information about reparse points, see [REPARSE].
This protocol uses NTSTATUS values, as specified in [MS-ERREF]. Vendors are free to choose their own values for this field as long as the C bit (0x20000000) is set, indicating it is a customer code.
[bookmark: section_cb1e6035d4864140993eb89559ec62ae][bookmark: _Toc178847421]Structures
The structures specified in this document have no transport requirements of their own. Instead, they are packaged and transported in accordance with the protocol that makes use of them, such as the Server Message Block (SMB) Protocol, as specified in [MS-SMB]. A server receiving one of these structures passes the structure to an implementation-defined function that performs the indicated operation on a file, a file system, or a volume.
The following sections specify how File System Control Codes messages are encapsulated on the wire and common File System Control Codes data types.
This document references commonly used data types as defined in [MS-DTYP].
Unless otherwise qualified, instances of GUID in this section refer to [MS-DTYP] section 2.3.4.
[bookmark: section_151e5624e88c4394914a219a20d320ed][bookmark: _Toc178847422]Common Data Types
[bookmark: section_a69cc039d28846739598772b6083f8bf][bookmark: _Toc178847423]Time
Unless otherwise noted, Time fields are 64-bit signed integers representing the number of 100-nanosecond intervals that have elapsed since January 1, 1601, Coordinated Universal Time (UTC).
See FILETIME ([MS-DTYP] section 2.3.3) for related information.
For information regarding the semantics of the file timestamps of the CreationTime, LastAccessTime, LastWriteTime, and ChangeTime fields, see [FSBO] section 6.
[bookmark: section_e57148b1300b4d1e8f67091de2de815e][bookmark: _Toc178847424]Reparse Point Data Structures
For conceptual information about reparse points, see [REPARSE].
[bookmark: section_c8e77b3739094fe6a4ea2b9d423b1ee4][bookmark: _Toc178847425]Reparse Tags
Each reparse point has a reparse tag. The reparse tag uniquely identifies the owner of that reparse point. The owner is the implementer of the file system filter driver associated with a reparse tag.
[bookmark: Appendix_A_Target_1]Reparse tags are exposed to clients for third-party applications. Those applications can set, get, and process reparse tags as needed. Third parties MUST request a reserved reparse tag value to ensure that conflicting tag values do not occur. [WHDC-RPTR] <1>
[bookmark: Appendix_A_Target_2]The following reparse tags, with the exception of IO_REPARSE_TAG_SYMLINK, are processed on the server and are not processed by a client after transmission over the wire. Clients SHOULD treat associated reparse data as opaque data.<2>
	Value
	Meaning

	IO_REPARSE_TAG_RESERVED_ZERO
0x00000000
	Reserved reparse tag value.

	IO_REPARSE_TAG_RESERVED_ONE
0x00000001
	Reserved reparse tag value.

	IO_REPARSE_TAG_RESERVED_TWO
0x00000002
	Reserved reparse tag value.

	IO_REPARSE_TAG_MOUNT_POINT
0xA0000003
	Used for mount point support, specified in section 2.1.2.5.

	IO_REPARSE_TAG_HSM
0xC0000004
	Obsolete. Used by legacy Hierarchical Storage Manager Product.

	IO_REPARSE_TAG_DRIVE_EXTENDER
0x80000005
	[bookmark: Appendix_A_Target_3]Home server drive extender.<3>

	IO_REPARSE_TAG_HSM2
0x80000006
	Obsolete. Used by legacy Hierarchical Storage Manager Product.

	IO_REPARSE_TAG_SIS
0x80000007
	Used by single-instance storage (SIS) filter driver. Server-side interpretation only, not meaningful over the wire.

	IO_REPARSE_TAG_WIM
0x80000008
	Used by the WIM Mount filter. Server-side interpretation only, not meaningful over the wire.

	IO_REPARSE_TAG_CSV
0x80000009
	Obsolete. Used by Clustered Shared Volumes (CSV) version 1 in Windows Server 2008 R2 operating system. Server-side interpretation only, not meaningful over the wire.

	IO_REPARSE_TAG_DFS
0x8000000A
	Used by the DFS filter. The DFS is described in the Distributed File System (DFS): Referral Protocol Specification [MS-DFSC]. Server-side interpretation only, not meaningful over the wire.

	IO_REPARSE_TAG_FILTER_MANAGER
0x8000000B
	[bookmark: Appendix_A_Target_4]Used by filter manager test harness.<4>

	IO_REPARSE_TAG_SYMLINK
0xA000000C
	Used for symbolic link support. See section 2.1.2.4.

	IO_REPARSE_TAG_IIS_CACHE
0xA0000010
	Used by Microsoft Internet Information Services (IIS) caching. Server-side interpretation only, not meaningful over the wire.

	IO_REPARSE_TAG_DFSR
0x80000012
	Used by the DFS filter. The DFS is described in [MS-DFSC]. Server-side interpretation only, not meaningful over the wire.

	IO_REPARSE_TAG_DEDUP
0x80000013
	Used by the Data Deduplication (Dedup) filter. Server-side interpretation only, not meaningful over the wire.

	IO_REPARSE_TAG_APPXSTRM
0xC0000014
	Not used.

	IO_REPARSE_TAG_NFS
0x80000014
	Used by the Network File System (NFS) component. Server-side interpretation only, not meaningful over the wire.

	IO_REPARSE_TAG_FILE_PLACEHOLDER
0x80000015
	Obsolete. Used by Windows Shell for legacy placeholder files in Windows 8.1. Server-side interpretation only, not meaningful over the wire.

	IO_REPARSE_TAG_DFM
0x80000016
	Used by the Dynamic File filter. Server-side interpretation only, not meaningful over the wire.

	IO_REPARSE_TAG_WOF
0x80000017
	Used by the Windows Overlay filter, for either WIMBoot or single-file compression. Server-side interpretation only, not meaningful over the wire.

	IO_REPARSE_TAG_WCI
0x80000018
	Used by the Windows Container Isolation filter. Server-side interpretation only, not meaningful over the wire.

	IO_REPARSE_TAG_WCI_1
0x90001018
	Used by the Windows Container Isolation filter. Server-side interpretation only, not meaningful over the wire.

	IO_REPARSE_TAG_GLOBAL_REPARSE
0xA0000019
	Used by NPFS to indicate a named pipe symbolic link from a server silo into the host silo. Server-side interpretation only, not meaningful over the wire.

	IO_REPARSE_TAG_CLOUD
0x9000001A
	Used by the Cloud Files filter, for files managed by a sync engine such as Microsoft OneDrive. Server-side interpretation only, not meaningful over the wire.

	IO_REPARSE_TAG_CLOUD_1
0x9000101A
	Used by the Cloud Files filter, for files managed by a sync engine such as OneDrive. Server-side interpretation only, not meaningful over the wire.

	IO_REPARSE_TAG_CLOUD_2
0x9000201A
	Used by the Cloud Files filter, for files managed by a sync engine such as OneDrive. Server-side interpretation only, not meaningful over the wire.

	IO_REPARSE_TAG_CLOUD_3
0x9000301A
	Used by the Cloud Files filter, for files managed by a sync engine such as OneDrive. Server-side interpretation only, not meaningful over the wire.

	IO_REPARSE_TAG_CLOUD_4
0x9000401A
	Used by the Cloud Files filter, for files managed by a sync engine such as OneDrive. Server-side interpretation only, not meaningful over the wire.

	IO_REPARSE_TAG_CLOUD_5
0x9000501A
	Used by the Cloud Files filter, for files managed by a sync engine such as OneDrive. Server-side interpretation only, not meaningful over the wire.

	IO_REPARSE_TAG_CLOUD_6
0x9000601A
	Used by the Cloud Files filter, for files managed by a sync engine such as OneDrive. Server-side interpretation only, not meaningful over the wire.

	IO_REPARSE_TAG_CLOUD_7
0x9000701A
	Used by the Cloud Files filter, for files managed by a sync engine such as OneDrive. Server-side interpretation only, not meaningful over the wire.

	IO_REPARSE_TAG_CLOUD_8
0x9000801A
	Used by the Cloud Files filter, for files managed by a sync engine such as OneDrive. Server-side interpretation only, not meaningful over the wire.

	IO_REPARSE_TAG_CLOUD_9
0x9000901A
	Used by the Cloud Files filter, for files managed by a sync engine such as OneDrive. Server-side interpretation only, not meaningful over the wire.

	IO_REPARSE_TAG_CLOUD_A
0x9000A01A
	Used by the Cloud Files filter, for files managed by a sync engine such as OneDrive. Server-side interpretation only, not meaningful over the wire.

	IO_REPARSE_TAG_CLOUD_B
0x9000B01A
	Used by the Cloud Files filter, for files managed by a sync engine such as OneDrive. Server-side interpretation only, not meaningful over the wire.

	IO_REPARSE_TAG_CLOUD_C
0x9000C01A
	Used by the Cloud Files filter, for files managed by a sync engine such as OneDrive. Server-side interpretation only, not meaningful over the wire.

	IO_REPARSE_TAG_CLOUD_D
0x9000D01A
	Used by the Cloud Files filter, for files managed by a sync engine such as OneDrive. Server-side interpretation only, not meaningful over the wire.

	IO_REPARSE_TAG_CLOUD_E
0x9000E01A
	Used by the Cloud Files filter, for files managed by a sync engine such as OneDrive. Server-side interpretation only, not meaningful over the wire.

	IO_REPARSE_TAG_CLOUD_F
0x9000F01A
	Used by the Cloud Files filter, for files managed by a sync engine such as OneDrive. Server-side interpretation only, not meaningful over the wire.

	IO_REPARSE_TAG_APPEXECLINK
0x8000001B
	Used by Universal Windows Platform (UWP) packages to encode information that allows the application to be launched by CreateProcess. Server-side interpretation only, not meaningful over the wire.

	IO_REPARSE_TAG_PROJFS
0x9000001C
	Used by the Windows Projected File System filter, for files managed by a user mode provider such as VFS for Git. Server-side interpretation only, not meaningful over the wire.

	IO_REPARSE_TAG_LX_SYMLINK
0xA000001D
	Used by the Windows Subsystem for Linux (WSL) to represent a UNIX symbolic link. Server-side interpretation only, not meaningful over the wire.

	IO_REPARSE_TAG_STORAGE_SYNC
0x8000001E
	Used by the Azure File Sync (AFS) filter. Server-side interpretation only, not meaningful over the wire.

	IO_REPARSE_TAG_STORAGE_SYNC_FOLDER
0x90000027
	Used by the Azure File Sync (AFS) filter for folder. Server-side interpretation only, not meaningful over the wire.

	IO_REPARSE_TAG_WCI_TOMBSTONE
0xA000001F
	Used by the Windows Container Isolation filter. Server-side interpretation only, not meaningful over the wire.

	IO_REPARSE_TAG_UNHANDLED
0x80000020
	Used by the Windows Container Isolation filter. Server-side interpretation only, not meaningful over the wire.

	IO_REPARSE_TAG_ONEDRIVE
0x80000021
	Not used.

	IO_REPARSE_TAG_PROJFS_TOMBSTONE
0xA0000022
	Used by the Windows Projected File System filter, for files managed by a user mode provider such as VFS for Git. Server-side interpretation only, not meaningful over the wire.

	IO_REPARSE_TAG_AF_UNIX
0x80000023
	Used by the Windows Subsystem for Linux (WSL) to represent a UNIX domain socket. Server-side interpretation only, not meaningful over the wire.

	IO_REPARSE_TAG_LX_FIFO
0x80000024
	Used by the Windows Subsystem for Linux (WSL) to represent a UNIX FIFO (named pipe). Server-side interpretation only, not meaningful over the wire.

	IO_REPARSE_TAG_LX_CHR
0x80000025
	Used by the Windows Subsystem for Linux (WSL) to represent a UNIX character special file. Server-side interpretation only, not meaningful over the wire.

	IO_REPARSE_TAG_LX_BLK
0x80000026
	Used by the Windows Subsystem for Linux (WSL) to represent a UNIX block special file. Server-side interpretation only, not meaningful over the wire.

	IO_REPARSE_TAG_WCI_LINK
0xA0000027
	Used by the Windows Container Isolation filter. Server-side interpretation only, not meaningful over the wire.

	IO_REPARSE_TAG_WCI_LINK_1
0xA0001027
	Used by the Windows Container Isolation filter. Server-side interpretation only, not meaningful over the wire.

[bookmark: section_c3a420cb8a724adf87e8eee95379d78f][bookmark: _Toc178847426]REPARSE_DATA_BUFFER
The REPARSE_DATA_BUFFER data element stores data for a reparse point. This reparse data buffer MUST be used only with reparse tag values whose high bit is set to 1.
This data element has two subtypes: Symbolic Link Reparse Data Buffer (section 2.1.2.4) and Mount Point Reparse Data Buffer (section 2.1.2.5).
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	ReparseTag

	ReparseDataLength
	Reserved

	DataBuffer (variable)

	...

ReparseTag (4 bytes): A 32-bit unsigned integer value containing the reparse point tag that uniquely identifies the owner of the reparse point.
ReparseDataLength (2 bytes): A 16-bit unsigned integer value containing the size, in bytes, of the reparse data in the DataBuffer member.
Reserved (2 bytes): A 16-bit field. This field is reserved. This field SHOULD be set to 0, and MUST be ignored.
DataBuffer (variable): A variable-length array of 8-bit unsigned integer values containing reparse-specific data for the reparse point. The format of this data is defined by the owner (that is, the implementer of the filter driver associated with the specified ReparseTag) of the reparse point.
[bookmark: section_a4d083740e9243e28f8888b94112f070][bookmark: _Toc178847427]REPARSE_GUID_DATA_BUFFER
The REPARSE_GUID_DATA_BUFFER data element stores data for a reparse point and associates a GUID with the reparse tag. This reparse data buffer MUST be used only with reparse tag values whose high bit is set to 0.
Reparse point GUIDs are assigned by the independent software vendor (ISV). An ISV MUST link one GUID to each assigned reparse point tag and MUST always use that GUID with that tag.
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	ReparseTag

	ReparseDataLength
	Reserved

	ReparseGuid (16 bytes)

	...

	...

	DataBuffer (variable)

	...

ReparseTag (4 bytes): A 32-bit unsigned integer value containing the reparse point tag that uniquely identifies the owner of the reparse point.
ReparseDataLength (2 bytes): A 16-bit unsigned integer value containing the size, in bytes, of the reparse data in the DataBuffer member.
Reserved (2 bytes): A 16-bit field. This field SHOULD be set to 0 by the client, and MUST be ignored by the server.
ReparseGuid (16 bytes): A 16-byte GUID that uniquely identifies the owner of the reparse point. Reparse point GUIDs are not assigned by Microsoft. A reparse point implementer MUST select one GUID to be used with their assigned reparse point tag to uniquely identify that reparse point. For more information, see [REPARSE].
DataBuffer (variable): The content of this buffer is opaque to the file system. On receipt, its content MUST be preserved and properly returned to the caller.
[bookmark: section_b41f1cbf10df4a4798d41c52a833d913][bookmark: _Toc178847428]Symbolic Link Reparse Data Buffer
The Symbolic Link Reparse Data Buffer data element is a subtype of REPARSE_DATA_BUFFER, which contains information on symbolic link reparse points. This reparse data buffer MUST be used only with reparse tag values whose high bit is set to 1.
A symbolic link has a substitute name and a print name associated with it. The substitute name is a pathname (section 2.1.5) identifying the target of the symbolic link. The print name SHOULD be an informative pathname, suitable for display to a user, that also identifies the target of the symbolic link. Either pathname can contain dot directory names as specified in section 2.1.5.1.
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	ReparseTag

	ReparseDataLength
	Reserved

	SubstituteNameOffset
	SubstituteNameLength

	PrintNameOffset
	PrintNameLength

	Flags

	PathBuffer (variable)

	...

ReparseTag (4 bytes): A 32-bit unsigned integer value containing the reparse point tag that uniquely identifies the owner (that is, the implementer of the filter driver associated with this ReparseTag) of the reparse point. This value MUST be 0xA000000C.
ReparseDataLength (2 bytes): A 16-bit unsigned integer value containing the size, in bytes, of the reparse data that follows the common portion of the REPARSE_DATA_BUFFER element. This value is the length of the data starting at the SubstituteNameOffset field (or the size of the PathBuffer field, in bytes, plus 12).
Reserved (2 bytes): A 16-bit field. This field is not used. It SHOULD be set to 0 and MUST be ignored.
SubstituteNameOffset (2 bytes): A 16-bit unsigned integer that contains the offset, in bytes, of the substitute name string in the PathBuffer array, computed as an offset from byte 0 of PathBuffer. Note that this offset is divided by 2 to get the array index.
SubstituteNameLength (2 bytes): A 16-bit unsigned integer that contains the length, in bytes, of the substitute name string. If this string is null-terminated, SubstituteNameLength does not include the Unicode null character.
PrintNameOffset (2 bytes): A 16-bit unsigned integer that contains the offset, in bytes, of the print name string in the PathBuffer array, computed as an offset from byte 0 of PathBuffer. Note that this offset is divided by 2 to get the array index.
PrintNameLength (2 bytes): A 16-bit unsigned integer that contains the length, in bytes, of the print name string. If this string is null-terminated, PrintNameLength does not include the Unicode null character.
Flags (4 bytes): A 32-bit field that specifies whether the substitute name is a full path name or a path name relative to the directory containing the symbolic link.
This field contains one of the values in the following table.
	Value
	Meaning

	0x00000000
	The substitute name is a full path name.

	SYMLINK_FLAG_RELATIVE
0x00000001
	The substitute name is a path name relative to the directory containing the symbolic link.

PathBuffer (variable): Unicode character array that contains the substitute name string and print name string. The substitute name and print name strings can appear in any order in the PathBuffer. To locate the substitute name and print name strings in the PathBuffer, use the SubstituteNameOffset, SubstituteNameLength, PrintNameOffset, and PrintNameLength members.
[bookmark: section_ca069daded1642aab057b6b207f447cc][bookmark: _Toc178847429]Mount Point Reparse Data Buffer
The Mount Point Reparse Data Buffer data element is a subtype of REPARSE_DATA_BUFFER, which contains information about mount point reparse points. This reparse data buffer MUST be used only with reparse tag values whose high bit is set to 1.
A mount point has a substitute name and a print name associated with it. The substitute name is a pathname (section 2.1.5) identifying the target of the mount point. The print name SHOULD be an informative pathname, suitable for display to a user, that also identifies the target of the mount point. Neither of these pathnames can contain dot directory names.
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	ReparseTag

	ReparseDataLength
	Reserved

	SubstituteNameOffset
	SubstituteNameLength

	PrintNameOffset
	PrintNameLength

	PathBuffer (variable)

	...

ReparseTag (4 bytes): A 32-bit unsigned integer value containing the reparse point tag that uniquely identifies the owner (that is, the implementer of the filter driver associated with this ReparseTag) of the reparse point. This value MUST be 0xA0000003.
ReparseDataLength (2 bytes): A 16-bit unsigned integer value containing the size, in bytes, of the reparse data that follows the common portion of the REPARSE_DATA_BUFFER element. This value is the length of the data starting at the SubstituteNameOffset field (or the size of the PathBuffer field, in bytes, plus 8).
Reserved (2 bytes): A 16-bit field. This field is not used. It SHOULD be set to 0 and MUST be ignored.
SubstituteNameOffset (2 bytes): A 16-bit unsigned integer that contains the offset, in bytes, of the substitute name string in the PathBuffer array, computed as an offset from byte 0 of PathBuffer. Note that this offset is divided by 2 to get the array index.
SubstituteNameLength (2 bytes): A 16-bit unsigned integer that contains the length, in bytes, of the substitute name string. If this string is null-terminated, SubstituteNameLength does not include the Unicode null character.
PrintNameOffset (2 bytes): A 16-bit unsigned integer that contains the offset, in bytes, of the print name string in the PathBuffer array, computed as an offset from byte 0 of PathBuffer. Note that this offset is divided by 2 to get the array index.
PrintNameLength (2 bytes): A 16-bit unsigned integer that contains the length, in bytes, of the print name string. If this string is null-terminated, PrintNameLength does not include the Unicode null character.
PathBuffer (variable): Unicode character array that contains the substitute name string and print name string. The substitute name and print name strings can appear in any order in PathBuffer. To locate the substitute name and print name strings in the PathBuffer field, use the SubstituteNameOffset, SubstituteNameLength, PrintNameOffset, and PrintNameLength members.
[bookmark: section_ff4df6587f27476a80254074c0121eec][bookmark: _Toc178847430]Network File System (NFS) Reparse Data Buffer
The Network File System Reparse Data Buffer data element is a subtype of REPARSE_DATA_BUFFER, which contains information about symbolic files and devices created by the Network File System client.
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	ReparseTag

	ReparseDataLength
	Reserved

	GenericReparseBuffer (variable)

	...

ReparseTag (4 bytes): A 32-bit unsigned integer value containing the reparse point tag that uniquely identifies the owner (that is, the implementer of the filter driver associated with this ReparseTag) of the reparse point. This value MUST be 0x80000014.
ReparseDataLength (2 bytes): A 16-bit unsigned integer value containing the size, in bytes, of the reparse data that follows the common portion of the REPARSE_DATA_BUFFER element. This value is the length of the data starting at the GenericReparseBuffer field.
Reserved (2 bytes): A 16-bit field. This field is not used. It SHOULD be set to 0 and MUST be ignored.
GenericReparseBuffer (variable): The data in this variable buffer takes the following format.
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	Type

	...

	DataBuffer (variable)

	...

Type (8 bytes): A 64-bit unsigned integer value describing the type and format of the data stored in the DataBuffer field. The valid values for this field are:
	Value
	Meaning

	NFS_SPECFILE_LNK
0x00000000014B4E4C
	Indicates that the DataBuffer field has a Unicode string containing the symbolic link data.

	NFS_SPECFILE_CHR
0x0000000000524843
	Indicates that the DataBuffer field has two 32–bit integers that contain the major and minor device numbers for the character special device created by the Network File System client.

	NFS_SPECFILE_BLK
0x00000000004B4C42
	Indicates that the DataBuffer field has two 32–bit integers that contain the major and minor device numbers for the block special device created by the Network File System client.

	NFS_SPECFILE_FIFO
0x000000004F464946
	Indicates that the file containing the NFS reparse point is a named pipe device created by the Network File System client. The DataBuffer field is empty.

	NFS_SPECFILE_SOCK
0x000000004B434F53
	Indicates that the file containing the NFS reparse point is a socket device created by the Network File System client. The DataBuffer field is empty.

DataBuffer (variable): A variable buffer that has the following formats depending upon the Type field defined earlier.
· NFS_SPECFILE_CHR and NFS_SPECFILE_BLK: The DataBuffer field contains two 32-bit integers that represent major and minor device numbers.
· NFS_SPECFILE_LNK: The DataBuffer field contains the symbolic link target path specified by the Network File System client in its NFSPROC_SYMLINK request, [RFC1813] section 3.3.10 and [RFC1094] section 2.2.14, represented in Unicode format and not NULL-terminated. The upper limit on the size of the symbolic link data is 2050 bytes.
· NFS_SPECFILE_FIFO and NFS_SPECFILE_SOCK: The DataBuffer field is empty.
[bookmark: section_5982df014b944feba6cd26a5eeaa9880][bookmark: _Toc178847431]FILE_OBJECTID_BUFFER Structure
The FILE_OBJECTID_BUFFER structure contains extended metadata for a file system object, including its object ID. This data element MUST be in one of the following two formats:
· FILE_OBJECTID_BUFFER Type 1
· FILE_OBJECTID_BUFFER Type 2
[bookmark: section_34a727a2960a48259cd26100c84e3a81][bookmark: _Toc178847432]FILE_OBJECTID_BUFFER Type 1
The first possible structure for the FILE_OBJECTID_BUFFER data element is as follows.
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	ObjectId (16 bytes)

	...

	...

	BirthVolumeId (16 bytes)

	...

	...

	BirthObjectId (16 bytes)

	...

	...

	DomainId (16 bytes)

	...

	...

ObjectId (16 bytes): A 16-byte GUID that uniquely identifies the file or directory within the volume on which it resides. Specifically, the same object ID can be assigned to another file or directory on a different volume, but it MUST NOT be assigned to another file or directory on the same volume.
BirthVolumeId (16 bytes): A 16-byte GUID that uniquely identifies the volume on which the object resided when the object identifier was created, or zero if the volume had no object identifier at that time. After copy operations, move operations, or other file operations, this value is potentially different from the object identifier of the volume on which the object presently resides.
[bookmark: Appendix_A_Target_5]BirthObjectId (16 bytes): A 16-byte GUID value containing the object identifier of the object at the time it was created. Copy operations, move operations, or other file operations MAY change the value of the ObjectId member. Therefore, the BirthObjectId is potentially different from the ObjectId member at present. Specifically, the same object ID MAY be assigned to another file or directory on a different volume, but it MUST NOT be assigned to another file or directory on the same volume. The object ID is assigned at file creation time.<5>
[bookmark: Appendix_A_Target_6]DomainId (16 bytes): A 16-byte GUID value containing the domain identifier. This value is unused; it SHOULD be zero, and MUST be ignored.<6>
[bookmark: section_e9f94ce6c61c4f05b772af90f9d59d8f][bookmark: _Toc178847433]FILE_OBJECTID_BUFFER Type 2
The second possible structure for the FILE_OBJECTID_BUFFER data element is as follows.
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	ObjectId (16 bytes)

	...

	...

	ExtendedInfo (48 bytes)

	...

	...

ObjectId (16 bytes): A 16-byte GUID that uniquely identifies the file or directory within the volume on which it resides. Specifically, the same object ID can be assigned to another file or directory on a different volume, but it MUST NOT be assigned to another file or directory on the same volume.
[bookmark: Appendix_A_Target_7]ExtendedInfo (48 bytes): A 48-byte value containing extended data that was set with the FSCTL_SET_OBJECT_ID_EXTENDED request. This field contains application-specific data.<7>
[bookmark: section_e2b19412a9254360b00986e3b8a020c8][bookmark: _Toc178847434]Alternate Data Streams
[bookmark: Appendix_A_Target_8]A file system MAY<8> support alternate data streams within a file or a directory. For a general description of file streams, section 1.1.
Every file has a default stream, which is the stream that is referenced when no stream name component is specified as part of the pathname. A directory does not have a default data stream; however, it can have named alternate data streams.
For more information on stream naming, see section 2.1.5; for more information on streams in general, see section 5.
[bookmark: section_ffb795f3027d4a3c997d3085f2332f6f][bookmark: _Toc178847435]Pathname
A pathname has the following characteristics:
· A pathname MUST be no more than 32,760 characters in length.
· A pathname is composed of one or more pathname components separated by the "\" backslash character. All pathname components other than the last pathname component denote directories or reparse points. The last pathname component denotes a directory, a file, a stream, or a reparse point.
· A leading "\" backslash character is optional, and determines whether a pathname is absolute or relative:
· A pathname that begins with a leading "\" backslash character, for example, "\a\b\c", is an absolute pathname. An absolute pathname SHOULD be evaluated relative to the root directory.
· A pathname that omits a leading "\" backslash character, for example, "a\b\c", is a relative pathname. A relative pathname MAY be evaluated relative to any directory, such as an application's current working directory.
· Each pathname component has one of the following forms:
· A dot directory name as specified in section 2.1.5.1.
· A filename as specified in section 2.1.5.2, optionally followed by a ":" colon character and a streamname as specified in section 2.1.5.3, optionally followed by a ":" colon character and a streamtype as specified in section 2.1.5.4. The streamname, if specified, MAY be zero-length only if streamtype is also specified; otherwise, it MUST be at least one character. The streamtype, if specified, MUST be at least one character.
[bookmark: section_fccd0313036445bdb75c924fd6a5662f][bookmark: _Toc178847436]Dot Directory Names
The pathname components of "." (single period) and ".." (two periods) are reserved as dot directory names.
Except where explicitly permitted, a pathname component that is a dot directory name MUST NOT be sent over the wire.
When parsing pathname components, a dot directory name of "." refers to the current directory name component and a dot directory name of ".." refers to the parent directory name of the current directory name component.
Some examples to illustrate:
· In the pathname "dirA\.\dirB", the "." refers to dirA, so this expression is equivalent to "dirA\dirB".
· In the pathname "dirA\dirB\..\dirC", the ".." refers to dirA, so this expression is equivalent to "dirA\dirC".
A dot directory name of ".." at the root of a share MUST be treated as equivalent to ".". For example: \\ServerX\ShareY\..\dirA is equivalent to \\ServerX\ShareY\.\dirA (which is equivalent to \\ServerX\ShareY\dirA).
[bookmark: section_2917da5c253c4c0eaaf69dddc37d2e6e][bookmark: _Toc178847437]Filename
· All Unicode characters are legal in a filename except the following:
· The characters
" \ / : | < > * ?
· Control characters, ranging from 0x00 through 0x1F.
· A filename MUST be at least one character but no more than 255 characters in length.
[bookmark: section_18e63b13ba434f5fa5b711e871b71f14][bookmark: _Toc178847438]8.3 Filename
An 8.3 filename (also referred to as a DOS name, a short name, or an 8.3-compliant filename) is a filename that conforms to the following restrictions:
· An 8.3 filename MUST only contain characters that can be represented in ASCII, in the range below 0x80.
· An 8.3 filename MUST NOT contain the " " space character.
· An 8.3 filename MUST NOT contain more than one "." period character.
· The general form of a valid 8.3 filename is a base filename, optionally followed by the "." period character and a filename extension.
· The base filename MUST be 1-8 characters in length and MUST NOT contain a "." period character.
· The filename extension, if present, MUST be 1-3 characters in length and MUST NOT contain a "." period character.
[bookmark: section_5953f072b28c4fbfae5009b0173317b9][bookmark: _Toc178847439]Streamname
· All Unicode characters are legal in a streamname component except the following:
· The characters \ / :
· Control character 0x00.
· A streamname MUST be no more than 255 characters in length.
· A zero-length streamname denotes the default stream.
See section 5 for additional information on alternate streams in the NTFS file system.
[bookmark: section_0b4fa45352fd4b4a96eb4e6a149776e6][bookmark: _Toc178847440]Streamtype
· All Unicode characters are legal in a streamtype component except the following:
· The characters \ / :
· Control character 0x00.
[bookmark: section_dc9978d762994c5aa22da039cdc716ea][bookmark: _Toc178847441]Share name
A share name has the following characteristics:
· A share name MUST be no more than 80 characters in length.
· The following characters are illegal in a share name:
" \ / [] : | < > + = ; , * ?
· Control characters in range 0x00 through 0x1F, inclusive, are illegal in a share name.
· All other Unicode characters are legal.
[bookmark: section_20406fb1605f4629ba9ac67ee25f23d2][bookmark: _Toc178847442]FILE_NAME_INFORMATION
The FILE_NAME_INFORMATION data element is as follows.
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	FileNameLength

	FileName (variable)

	...

FileNameLength (4 bytes): A 32-bit unsigned integer that specifies the length, in bytes, of the file name contained within the FileName field.
FileName (variable): A sequence of Unicode characters containing a pathname (section 2.1.5). The meaning of the pathname depends on the operation. The name string is not null-terminated. There are scenarios where one or more padding characters can be at the end of the string due to buffer alignment requirements, but their presence and their values MUST NOT be relied upon. When working with this field, use FileNameLength to determine the length of the file name rather than assuming the presence of a trailing null delimiter.
[bookmark: section_8ce7b38cd3cc415dab39944000ea77ff][bookmark: _Toc178847443]Boolean
A Boolean data type is a primitive that has one of two possible values: TRUE and FALSE, which are defined as follows:
[bookmark: Appendix_A_Target_9]TRUE: A sender MUST use any nonzero value to denote a TRUE. A receiver MUST interpret any nonzero value as TRUE.<9>
FALSE: A sender MUST use a zero value to denote a FALSE. A receiver MUST interpret a zero value as FALSE.
[bookmark: section_2d3333fefc984a6f98a24bb805aff407][bookmark: _Toc178847444]64-bit file ID
[bookmark: Appendix_A_Target_10]A 64-bit file ID value uniquely identifies a file within a given volume. This identifier is generated and stored by the file system. The identifier SHOULD<10> be unique to the volume and stable until the file is deleted.
For file systems that do not support a 64-bit file ID, this field MUST be set to 0, and MUST be ignored.
For files for which a unique 64-bit file ID cannot be established, this field MUST be set to 0xFFFFFFFFFFFFFFFF, and MUST be ignored.
[bookmark: section_988604161caf4c80a9ab8d61e1ccf5a5][bookmark: _Toc178847445]128-bit file ID
[bookmark: Appendix_A_Target_11]A 128-bit file ID value uniquely identifies a file within a given volume. This identifier is generated and stored by the file system. The identifier SHOULD<11> be unique to the volume and stable until the file is deleted.
For file systems that do not support a 128-bit file ID, this field MUST be set to 0, and MUST be ignored.
For files for which a unique 128-bit file ID cannot be established, this field MUST be set to 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF, and MUST be ignored.
[bookmark: section_b8d041b82cd84ee0910c715c6449e372][bookmark: _Toc178847446]STORAGE_OFFLOAD_TOKEN
[bookmark: Appendix_A_Target_12]The STORAGE_OFFLOAD_TOKEN structure contains the Token to be used as a representation of the data contained within the portion of the file specified in the FSCTL_OFFLOAD_READ_INPUT data element at the time of the FSCTL_OFFLOAD_READ operation. This Token is used in FSCTL_OFFLOAD_READ and FSCTL_OFFLOAD_WRITE operations. The format of the data within this field is either vendor-specific or of a well-known type. The contents of this field MUST NOT be modified during subsequent operations.<12>
The TokenType and TokenIdLength fields of STORAGE_OFFLOAD_TOKEN structure MUST be sent in big-endian format. The TokenId field is a stream of bytes and has no endian property.
The STORAGE_OFFLOAD_TOKEN structure is as follows.
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	TokenType

	Reserved
	TokenIdLength

	TokenId (504 bytes)

	...

	...

TokenType (4 bytes): A 32-bit unsigned integer that defines the type of Token that is contained within the STORAGE_OFFLOAD_TOKEN structure. This field MUST contain one of the following values.
	Value
	Meaning

	STORAGE_OFFLOAD_TOKEN_TYPE_ZERO_DATA
0xFFFF0001
	[bookmark: Appendix_A_Target_13]A well-known Token that indicates that the data logically represented by the Token is logically equivalent to zero.<13>

	Reserved
0xFFFF0002 – 0xFFFFFFFF
	Reserved for other well-known Tokens currently undefined.

	Any other value.

	A vendor-specific Token format is contained within the Token field.

Reserved (2 bytes): A 16-bit unsigned integer that is reserved. This field SHOULD be set to 0x0000 and MUST be ignored.
TokenIdLength (2 bytes): A 16-bit unsigned integer that defines the length of the TokenId field in bytes.
TokenId (504 bytes): A 504-byte unsigned integer that contains opaque vendor-specific data.
[bookmark: section_a7527db8cbfe4f2aabc3133bf5160bd7][bookmark: _Toc178847447]Status Codes
This specification uses NTSTATUS status codes, as specified in [MS-ERREF] section 2.3. The format of a status code MUST be as specified in [MS-ERREF].
The reply message lists the common error codes that are directly generated by the function. Error codes can also be generated by code below the file system (such as RAID drivers or disk drivers) or above the file system (such as virus scanners).
[bookmark: Appendix_A_Target_14][bookmark: Appendix_A_Target_15]A server SHOULD return a status of STATUS_INVALID_DEVICE_REQUEST when a message is not supported remotely or is not supported on the file system on which the file or directory handle specified exists.<14><15>
STATUS_BUFFER_OVERFLOW is a warning code and not an error code. This warning means that the given output buffer is not large enough to contain all of the requested information. Unless otherwise noted, a given operation SHOULD attempt to return as much data as it reasonably can.
[bookmark: section_4dc027799d9543f8bba48d4ce4961458][bookmark: _Toc178847448]FSCTL Structures
[bookmark: Appendix_A_Target_16]A process invokes an FSCTL on a handle to perform an action against the file or directory associated with the handle. When a server receives an FSCTL request, it SHOULD use the information in the request, which includes a handle and, optionally, an input data buffer, to perform the requested action. How a server performs the action requested by an FSCTL is implementation-dependent.<16>
The following table specifies the system defined generic FSCTLs that are permitted to be invoked across the network. Generic FSCTLs are used by the local file systems or by multiple components within the system. Any application, service, or driver can define private FSCTLs. Most private FSCTLs are used locally in the internal driver stacks and do not flow over the wire. However, if a component allows its private FSCTLs to flow over the wire, that component is responsible for ensuring the FSCTLs and associated data structures are documented. Examples of such private FSCTLs can be found in [MS-SMB2] and [MS-DFSC].
	FSCTL name
	FSCTL function number

	FSCTL_CREATE_OR_GET_OBJECT_ID
	0X900C0

	FSCTL_DELETE_OBJECT_ID
	0X900A0

	FSCTL_DELETE_REPARSE_POINT
	0X900AC

	FSCTL_DUPLICATE_EXTENTS_TO_FILE
	0X98344

	FSCTL_DUPLICATE_EXTENTS_TO_FILE_EX
	0x983E8

	FSCTL_FILESYSTEM_GET_STATISTICS
	0X90060

	FSCTL_FILE_LEVEL_TRIM
	0X98208

	FSCTL_FIND_FILES_BY_SID
	0X9008F

	FSCTL_GET_COMPRESSION
	0X9003C

	FSCTL_GET_INTEGRITY_INFORMATION
	0X9027C

	FSCTL_GET_NTFS_VOLUME_DATA
	0X90064

	FSCTL_GET_REFS_VOLUME_DATA
	0X902D8

	FSCTL_GET_OBJECT_ID
	0X9009C

	FSCTL_GET_REPARSE_POINT
	0X900A8

	FSCTL_GET_RETRIEVAL_POINTER_COUNT
	0x9042B

	FSCTL_GET_RETRIEVAL_POINTERS
	0X90073

	FSCTL_GET_RETRIEVAL_POINTERS_AND_REFCOUNT
	0x903D3

	FSCTL_IS_PATHNAME_VALID
	0X9002C

	FSCTL_LMR_SET_LINK_TRACKING_INFORMATION
	0X1400EC

	FSCTL_MARK_HANDLE
	0x900FC

	FSCTL_OFFLOAD_READ
	0X94264

	FSCTL_OFFLOAD_WRITE
	0X98268

	FSCTL_PIPE_PEEK
	0X11400C

	FSCTL_PIPE_TRANSCEIVE
	0X11C017

	FSCTL_PIPE_WAIT
	0X110018

	FSCTL_QUERY_ALLOCATED_RANGES
	0X940CF

	FSCTL_QUERY_FAT_BPB
	0X90058

	FSCTL_QUERY_FILE_REGIONS
	0X90284

	FSCTL_QUERY_ON_DISK_VOLUME_INFO
	0X9013C

	FSCTL_QUERY_SPARING_INFO
	0X90138

	FSCTL_READ_FILE_USN_DATA
	0X900EB

	FSCTL_RECALL_FILE
	0X90117

	FSCTL_REFS_STREAM_SNAPSHOT_MANAGEMENT
	0x90440

	FSCTL_SET_COMPRESSION
	0X9C040

	FSCTL_SET_DEFECT_MANAGEMENT
	0X98134

	FSCTL_SET_ENCRYPTION
	0X900D7

	FSCTL_SET_INTEGRITY_INFORMATION
	0X9C280

	FSCTL_SET_INTEGRITY_INFORMATION_EX
	0x90380

	FSCTL_SET_OBJECT_ID
	0X90098

	FSCTL_SET_OBJECT_ID_EXTENDED
	0X900BC

	FSCTL_SET_REPARSE_POINT
	0X900A4

	FSCTL_SET_SPARSE
	0X900C4

	FSCTL_SET_ZERO_DATA
	0X980C8

	FSCTL_SET_ZERO_ON_DEALLOCATION
	0X90194

	FSCTL_SIS_COPYFILE
	0X90100

	FSCTL_WRITE_USN_CLOSE_RECORD
	0X900EF

[bookmark: section_a56345dc13ed4feeaed1f12afcb71be8][bookmark: _Toc178847449]FSCTL_CREATE_OR_GET_OBJECT_ID Request
This message requests that the server return the object identifier for the file or directory associated with the handle on which this FSCTL was invoked. If no object identifier exists, the server MUST create one.
This message does not contain any additional data elements.
[bookmark: section_75f02ca02c6242a3a2c1a591ef0bdb5a][bookmark: _Toc178847450]FSCTL_CREATE_OR_GET_OBJECT_ID Reply
This message returns the results of the FSCTL_CREATE_OR_GET_OBJECT_ID request in a FILE_OBJECTID_BUFFER (section 2.1.3).
The buffer can be either Type 1 or Type 2 as follows:
· If neither FSCTL_SET_OBJECT_ID_EXTENDED nor FSCTL_SET_OBJECT_ID has been previously issued on the file, then the buffer is of Type 1 and contains implementation-generated values as specified in section 2.1.3.1.
· If FSCTL_SET_OBJECT_ID was used to set the object ID, then the buffer is of the type that was used during that FSCTL_SET_OBJECT_ID call.
· If FSCTL_SET_OBJECT_ID_EXTENDED was issued to change the object ID's extended information, then the buffer is of Type 2.
There is no way for the issuer of this FSCTL to determine the returned buffer type without knowing whether the object ID was previously set or modified and by what means (FSCTL_SET_OBJECT_ID_EXTENDED or FSCTL_SET_OBJECT_ID).
This message also returns a status code as specified in section 2.2. Upon success, the status code returned by the function that processes this FSCTL is STATUS_SUCCESS. The most common error codes are listed in the following table.
	 Error code
	 Meaning

	STATUS_DUPLICATE_NAME
0xC00000BD
	[bookmark: Appendix_A_Target_17]The file has no object ID yet, and the file system is unable to generate a unique ID (to this volume).<17>

	STATUS_INVALID_PARAMETER
0xC000000D
	The handle is not to a file or directory, or the output buffer is not large enough to contain a FILE_OBJECTID_BUFFER structure.

	STATUS_MEDIA_WRITE_PROTECTED
0xC00000A2
	The volume is write-protected and changes to it cannot be made. This error code is returned even if the file already has an object ID assigned to it.

	STATUS_INVALID_DEVICE_REQUEST
0xC0000010
	The file system does not support the use of object IDs.

[bookmark: section_cfc2c554a89e4d38bb7ebf8633711eab][bookmark: _Toc178847451]FSCTL_DELETE_OBJECT_ID Request
This message requests that the server remove the object identifier from the file or directory associated with the handle on which this FSCTL was invoked. The underlying object MUST NOT be deleted. If the file or directory has no object identifier, the request MUST be considered successful.
This message does not contain any additional data elements.
[bookmark: section_24bce0fe0ac1440bacd08579bfd5d891][bookmark: _Toc178847452]FSCTL_DELETE_OBJECT_ID Reply
This message returns the results of the FSCTL_DELETE_OBJECT_ID request.
The only data item this message returns is a status code, as specified in section 2.2. Upon success, the status code returned by the function that processes this FSCTL is STATUS_SUCCESS. The most common error codes are listed in the following table.
	 Error code
	 Meaning

	STATUS_ACCESS_DENIED
0xC0000022
	The handle was not opened with write access or write attributes access.

	STATUS_OBJECT_NAME_NOT_FOUND
0xC0000034
	The file or directory has no object ID. This status is not returned on a healthy volume but can be returned if the volume is corrupt.

	STATUS_MEDIA_WRITE_PROTECTED
0xC00000A2
	The volume is write-protected and changes to it cannot be made.

	STATUS_INVALID_DEVICE_REQUEST
0xC0000010
	The file system does not support the use of object IDs.

[bookmark: section_1759b3335fca41368c655848758f1c6b][bookmark: _Toc178847453]FSCTL_DELETE_REPARSE_POINT Request
This message requests that the server delete the reparse point from the file or directory associated with the handle on which this FSCTL was invoked. The underlying file or directory MUST NOT be deleted.
The message MUST contain a REPARSE_GUID_DATA_BUFFER or a REPARSE_DATA_BUFFER data element (including subtypes). Both the REPARSE_GUID_DATA_BUFFER and the REPARSE_DATA_BUFFER structures begin with a ReparseTag field. The ReparseTag value uniquely identifies the filter driver that creates/uses the reparse point, and the application's filter driver processes the reparse point data as either a REPARSE_GUID_DATA_BUFFER or a REPARSE_DATA_BUFFER, depending on the structure implemented by the filter driver for that type of reparse point.
This message MUST only be sent for a file or directory handle.
[bookmark: section_97905acea734442dac18bc7b11433871][bookmark: _Toc178847454]FSCTL_DELETE_REPARSE_POINT Reply
This message returns the result of the FSCTL_DELETE_REPARSE_POINT request.
The only data item this message returns is a status code, as specified in section 2.2. Upon success, the status code returned by the function that processes this FSCTL is STATUS_SUCCESS. The most common error codes are listed in the following table.
	 Error code
	 Meaning

	STATUS_INVALID_PARAMETER
0xC000000D
	A nonzero value was passed for the output buffer's length, or the handle is not to a file or directory.

	STATUS_ACCESS_DENIED
0xC0000022
	The handle was not opened to write file data or file attributes.

	STATUS_IO_REPARSE_DATA_INVALID
0xC0000278
	The input buffer's length is neither the size of a REPARSE_DATA_BUFFER nor a REPARSE_GUID_DATA_BUFFER; or the reparse data length is nonzero; or the reparse tag is a third party reparse tag, and the length is other than the size of REPARSE_GUID_DATA_BUFFER.

	STATUS_IO_REPARSE_TAG_INVALID
0xC0000276
	The specified reparse tag with a value of 0 or 1 is reserved for use by the system and cannot be deleted.

	STATUS_NOT_A_REPARSE_POINT
0xC0000275
	The file or directory does not have a reparse point.

	STATUS_IO_REPARSE_TAG_MISMATCH
0xC0000277
	The file or directory has a reparse point but not one with the reparse tag that was specified in this call.

	STATUS_REPARSE_ATTRIBUTE_CONFLICT
0xC00002B2
	The file or directory has a third party tag, and the Reparse GUID provided does not match the one in the reparse point for this file or directory.

[bookmark: section_78e67b4b84a44730a34fdcdcb2224e49][bookmark: _Toc178847455]FSCTL_DUPLICATE_EXTENTS_TO_FILE Request
[bookmark: Appendix_A_Target_18]The FSCTL_DUPLICATE_EXTENTS_TO_FILE<18> request message requests that the server copy the specified portion of one file (that is the source file) into a specified portion of another file (target file) on the same volume. The logical sizes of the portions have to be the same. The two files involved in this operation can refer to the same file, but in that case, the logical portions have to refer to disjoint regions on the file. The FSCTL is sent on a handle opened to the target file.
When used locally, the request message takes the form of DUPLICATE_EXTENTS_DATA as specified in section 2.3.7.1. When used remotely with [MS-SMB2], the request message takes the form of SMB2_DUPLICATE_EXTENTS_DATA as specified in section 2.3.7.2.
[bookmark: section_41d997f19437416f88ed8a70c02613ee][bookmark: _Toc178847456]DUPLICATE_EXTENTS_DATA
A DUPLICATE_EXTENTS_DATA data element is defined as follows:
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	FileHandle

	...

	SourceFileOffset

	...

	TargetFileOffset

	...

	ByteCount

	...

FileHandle (8 bytes): A HANDLE ([MS-DTYP] section 2.2.16) data type that is an identifier of the open to the source file.
SourceFileOffset (8 bytes): A 64-bit signed integer that contains the file offset, in bytes, of the start of a range of bytes in a source file from which the data is to be copied. The value of this field MUST be greater than or equal to 0x0000000000000000 and MUST be aligned to a logical cluster boundary.
TargetFileOffset (8 bytes): A 64-bit signed integer that contains the file offset, in bytes, of the start of a range of bytes in a target file to which the data is to be copied. The value of this field MUST be greater than or equal to 0x0000000000000000 and MUST be aligned to a logical cluster boundary.
ByteCount (8 bytes): A 64-bit signed integer that contains the number of bytes to copy from source to target. The value of this field MUST be greater than or equal to 0x0000000000000000 and MUST be aligned to a logical cluster boundary.
[bookmark: section_1ee611b743f0468c8a9d28f04cdc3376][bookmark: _Toc178847457]SMB2_DUPLICATE_EXTENTS_DATA
A SMB2_DUPLICATE_EXTENTS_DATA data element is defined as follows:
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	SourceFileID

	...

	...

	...

	SourceFileOffset

	...

	TargetFileOffset

	...

	ByteCount

	...

SourceFileID (16 bytes): An SMB2_FILEID structure, as specified in [MS-SMB2] section 2.2.14.1, that is an identifier of the open to the source file.
SourceFileOffset (8 bytes): A 64-bit signed integer that contains the file offset, in bytes, of the start of a range of bytes in a source file from which the data is to be copied. The value of this field MUST be greater than or equal to 0x0000000000000000 and MUST be aligned to a logical cluster boundary.
TargetFileOffset (8 bytes): A 64-bit signed integer that contains the file offset, in bytes, of the start of a range of bytes in a target file to which the data is to be copied. The value of this field MUST be greater than or equal to 0x0000000000000000 and MUST be aligned to a logical cluster boundary.
ByteCount (8 bytes): A 64-bit signed integer that contains the number of bytes to copy from source to target. The value of this field MUST be greater than or equal to 0x0000000000000000 and MUST be aligned to a logical cluster boundary.
[bookmark: section_1f7ddf4d930242b983740aecb0f2569a][bookmark: _Toc178847458]FSCTL_DUPLICATE_EXTENTS_TO_FILE Reply
[bookmark: Appendix_A_Target_19]This message returns the result of the FSCTL_DUPLICATE_EXTENTS_TO_FILE<19> request.
[bookmark: Appendix_A_Target_20]The only data item this message returns is a status code, as specified in section 2.2. Upon success, the status code returned by the function that processes this FSCTL SHOULD<20> be STATUS_SUCCESS. The most common error codes are listed in the following table.
	Error Code
	Meaning

	STATUS_NOT_SUPPORTED
0xC00000BB
	· The source and target destination ranges overlap on the same file.
· Source file is sparse, while target is a non-sparse file.
· The source range is beyond the source file's allocation size.

	STATUS_INVALID_PARAMETER
0xC000000D
	The FileHandle parameter is either invalid or does not represent a handle to an opened file on the same volume.

	STATUS_INSUFFICIENT_RESOURCES
0xC000009A
	There were insufficient resources to complete the operation.

	STATUS_DISK_FULL
0xC000007F
	The disk is full.

	STATUS_MEDIA_WRITE_PROTECTED
0xC00000A2
	The volume is read-only.

	STATUS_INVALID_DEVICE_REQUEST
0xC0000010
	The file system does not support duplicating extents.

[bookmark: section_0f4a4b47ad624de59abac0750157d5ae][bookmark: _Toc178847459]FSCTL_DUPLICATE_EXTENTS_TO_FILE_EX Request
[bookmark: Appendix_A_Target_21]The FSCTL_DUPLICATE_EXTENTS_TO_FILE_EX<21> request message requests that the server copy the specified portion of the source file into a specified portion of the target file on the same volume. The logical sizes of the portions MUST be the same. The two files involved in this operation can refer to the same file but the logical portions have to refer to disjoint regions on the file. The FSCTL is sent on a handle opened to the target file. When the DUPLICATE_EXTENTS_DATA_EX_SOURCE_ATOMIC flag isn’t set, the behavior is identical to FSCTL_DUPLICATE_EXTENTS_TO_FILE. When the flag is set, duplication is atomic from the source's point of view. It means duplication fully succeeds or fails without side effect (when only part of source file region is duplicated).
When used locally, the request message takes the form of DUPLICATE_EXTENTS_DATA_EX as specified in section 2.3.9.1. When used remotely with [MS-SMB2], the request message takes the form of SMB2_DUPLICATE_EXTENTS_DATA_EX as specified in section 2.3.9.2.
[bookmark: section_6f0ae86ce5d64045ac0e1404108f3e41][bookmark: _Toc178847460]DUPLICATE_EXTENTS_DATA_EX
A DUPLICATE_EXTENTS_DATA_EX data element is defined as follows:
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	StructureSize

	…

	FileHandle

	...

	SourceFileOffset

	...

	TargetFileOffset

	...

	ByteCount

	...

	Flags

StructureSize (8 bytes): A SIZE_T [MS-DTYP] section 2.2.43) data type that specifies the size of the structure, in bytes.
FileHandle (8 bytes): A HANDLE ([MS-DTYP] section 2.2.16) data type that is an identifier of the open to the source file.
SourceFileOffset (8 bytes): A 64-bit signed integer that contains the file offset, in bytes, of the start of a range of bytes in a source file from which the data is to be copied. The value of this field MUST be greater than or equal to 0x0000000000000000 and MUST be aligned to a logical cluster boundary.
TargetFileOffset (8 bytes): A 64-bit signed integer that contains the file offset, in bytes, of the start of a range of bytes in a target file to which the data is to be copied. The value of this field MUST be greater than or equal to 0x0000000000000000 and MUST be aligned to a logical cluster boundary.
ByteCount (8 bytes): A 64-bit signed integer that contains the number of bytes to copy from source to target. The value of this field MUST be greater than or equal to 0x0000000000000000 and MUST be aligned to a logical cluster boundary.
Flags (4 bytes): A 32-bit unsigned integer that contains zero or more of the following flag values. Flag values not specified in the following table SHOULD be set to 0 and MUST be ignored.
	Value
	Meaning

	DUPLICATE_EXTENTS_DATA_EX_SOURCE_ATOMIC
0x00000001
	Indicates that duplication is atomic from source point of view.

[bookmark: section_0f049e618d014774a835d432f5e5970a][bookmark: _Toc178847461]SMB2_DUPLICATE_EXTENTS_DATA_EX
A SMB2_DUPLICATE_EXTENTS_DATA_EX data element is defined as follows:
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	StructureSize

	…

	SourceFileID

	...

	...

	...

	SourceFileOffset

	...

	TargetFileOffset

	...

	ByteCount

	...

	Flags

	Reserved

StructureSize (8 bytes): A 64-bit unsigned integer value that specifies the size of the structure, in bytes. This field MUST be set to 0x30.
SourceFileID (16 bytes): An SMB2_FILEID structure, as specified in [MS-SMB2] section 2.2.14.1, that is an identifier of the open to the source file.
SourceFileOffset (8 bytes): A 64-bit signed integer that contains the file offset, in bytes, of the start of a range of bytes in a source file from which the data is to be copied. The value of this field MUST be greater than or equal to 0x0000000000000000 and MUST be aligned to a logical cluster boundary.
TargetFileOffset (8 bytes): A 64-bit signed integer that contains the file offset, in bytes, of the start of a range of bytes in a target file to which the data is to be copied. The value of this field MUST be greater than or equal to 0x0000000000000000 and MUST be aligned to a logical cluster boundary.
ByteCount (8 bytes): A 64-bit signed integer that contains the number of bytes to copy from source to target. The value of this field MUST be greater than or equal to 0x0000000000000000 and MUST be aligned to a logical cluster boundary.
Flags (4 bytes): A 32-bit unsigned integer that contains zero or more of the following flag values. Flag values not specified in the following table SHOULD be set to 0 and MUST be ignored.
	Value
	Meaning

	DUPLICATE_EXTENTS_DATA_EX_SOURCE_ATOMIC
0x00000001
	Indicates that duplication is atomic from source point of view.

Reserved (4 bytes): This field SHOULD be set to zero and MUST be ignored.
[bookmark: section_6c268ef711c54830ba0a20fbe0557646][bookmark: _Toc178847462]FSCTL_DUPLICATE_EXTENTS_TO_FILE_EX Reply
[bookmark: Appendix_A_Target_22]This message returns the result of the FSCTL_DUPLICATE_EXTENTS_TO_FILE_EX request<22>.
The only data item this message returns is a status code, as specified in section 2.2. Upon success, the status code returned by the function that processes this FSCTL SHOULD be STATUS_SUCCESS. The most common error codes are listed in the following table.
	Error Code
	Meaning

	STATUS_NOT_SUPPORTED
0xC00000BB
	· The source and target destination ranges overlap on the same file.
· Source file is sparse, while target is a non-sparse file.
· The source range is beyond the source file's allocation size.

	STATUS_INVALID_PARAMETER
0xC000000D
	The FileHandle parameter is either invalid or does not represent a handle to an opened file on the same volume.

	STATUS_INSUFFICIENT_RESOURCES
0xC000009A
	There were insufficient resources to complete the operation.

	STATUS_DISK_FULL
0xC000007F
	The disk is full.

	STATUS_MEDIA_WRITE_PROTECTED
0xC00000A2
	The volume is read-only.

	STATUS_INVALID_DEVICE_REQUEST
0xC0000010
	The file system does not support duplicating extents.

[bookmark: section_861c2336b21043f4a5c3583b0af7316f][bookmark: _Toc178847463]FSCTL_FILESYSTEM_GET_STATISTICS Request
[bookmark: Appendix_A_Target_23]This message requests that the server return the statistical information of the file system such as Type, Version, and so on, as specified in FSCTL_FILESYSTEM_GET_STATISTICS reply, for the file or directory associated with the handle on which this FSCTL was invoked.<23>
This message does not contain any additional data elements.
[bookmark: section_3b496011eca34ffb809a17c6bab9fca4][bookmark: _Toc178847464]FSCTL_FILESYSTEM_GET_STATISTICS Reply
[bookmark: Appendix_A_Target_24]This message returns the result of the FSCTL_FILESYSTEM_GET_STATISTICS request message as a pair of structures: a generic structure, FILESYSTEM_STATISTICS, optionally followed by a file system type specific structure that can be either NTFS_STATISTICS, FAT_STATISTICS, or EXFAT_STATISTICS, depending on the underlying file system type. There is one pair of these structures for each processor.<24>
These statistics contain information about both user and metadata files. User files are available for the user. Metadata files are system files that contain information that the file system uses for its internal organization.
The statistics structures contain fields that can overflow during the server's lifetime. This is by design. When an overflow occurs, the value just wraps. For example, 0XFFFFF000 + 0x2000 will result in 0x1000.
The structures within the output buffer MUST all start on 64-byte boundaries. The final output MUST be padded to a 64-byte boundary. Any padding bytes MUST be filled with zeros.
This message also returns a status code as specified in section 2.2. Upon success, the status code returned by the function that processes this FSCTL is STATUS_SUCCESS. The most common error codes are listed in the following table.
	Error code
	Meaning

	STATUS_BUFFER_TOO_SMALL
0xC0000023
	The output buffer is too small to contain a FILESYSTEM_STATISTICS structure.

	STATUS_BUFFER_OVERFLOW
0x80000005
	The output buffer was filled before all the statistics data could be returned.

[bookmark: section_4996cca71e114d9fa473e6bee7a6d8b6][bookmark: _Toc178847465]FILESYSTEM_STATISTICS
The FILESYSTEM_STATISTICS data element is returned with a FSCTL_FILESYSTEM_GET_STATISTICS reply message. It contains the generic information for the message.
The FILESYSTEM_STATISTICS data element is as follows:
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	FileSystemType
	Version

	SizeOfCompleteStructure

	UserFileReads

	UserFileReadBytes

	UserDiskReads

	UserFileWrites

	UserFileWriteBytes

	UserDiskWrites

	MetaDataReads

	MetaDataReadBytes

	MetaDataDiskReads

	MetaDataWrites

	MetaDataWriteBytes

	MetaDataDiskWrites

FileSystemType (2 bytes): A 16-bit unsigned integer value containing the type of file system. This field MUST contain one of the following values.
	Value
	Meaning

	FILESYSTEM_STATISTICS_TYPE_NTFS
0x0001
	The file system is an NTFS file system. If this value is set, this structure is followed by an NTFS_STATISTICS structure.

	FILESYSTEM_STATISTICS_TYPE_FAT
0x0002
	The file system is a FAT file system. If this value is set, this structure is followed by a FAT_STATISTICS structure.

	FILESYSTEM_STATISTICS_TYPE_EXFAT
0x0003
	The file system is an exFAT file system. If this value is set, this structure is followed by an EXFAT_STATISTICS structure.

	FILESYSTEM_STATISTICS_TYPE_REFS
0x0004
	The file system is an ReFS file system. If this value is set, this structure is not followed by a structure specific to file system type.

Version (2 bytes): A 16-bit unsigned integer value containing the version. This field MUST be set to the value 0x0001.
SizeOfCompleteStructure (4 bytes): A 32-bit unsigned integer value that indicates the size, in bytes, of this structure plus the size of the file system-specific structure that follows this structure, each rounded up to a multiple of 64, then the sum is multiplied by the number of processors. For example, if the size of FILESYSTEM_STATISTICS is 0x38, the size of NTFS_STATISTICS is 0XD4, and there are two processors, the size of the buffer allocated is 0x280. This is the sum of the sizes of the NTFS_STATISTICS structure and the FILESYSTEM_STATISTICS structure, both rounded up to a multiple of 64 (0x40 + 0x100 = 0x140) and multiplied by the number of processors.
UserFileReads (4 bytes): A 32-bit unsigned integer value containing the number of read operations on user files.
UserFileReadBytes (4 bytes): A 32-bit unsigned integer value containing the number of bytes read from user files.
UserDiskReads (4 bytes): A 32-bit unsigned integer value containing the number of read operations on user files that went to the disk rather than the cache. This value includes sub-read operations.
UserFileWrites (4 bytes): A 32-bit unsigned integer value containing the number of write operations on user files.
UserFileWriteBytes (4 bytes): A 32-bit unsigned integer value containing the number of bytes written to user files.
UserDiskWrites (4 bytes): A 32-bit unsigned integer value containing the number of write operations on user files that went to disk rather than the cache. This value includes sub-write operations.
MetaDataReads (4 bytes): A 32-bit unsigned integer value containing the number of read operations on metadata files.
MetaDataReadBytes (4 bytes): A 32-bit unsigned integer value containing the number of bytes read from metadata files.
MetaDataDiskReads (4 bytes): A 32-bit unsigned integer value containing the number of read operations on metadata files. This value includes sub-read operations.
MetaDataWrites (4 bytes): A 32-bit unsigned integer value containing the number of write operations on metadata files.
MetaDataWriteBytes (4 bytes): A 32-bit unsigned integer value containing the number of bytes written to metadata files.
MetaDataDiskWrites (4 bytes): A 32-bit unsigned integer value containing the number of write operations on metadata files. This value includes sub-write operations.
[bookmark: section_2db81d0c4bb840b7b226ac2a937a9845][bookmark: _Toc178847466]NTFS_STATISTICS
The NTFS_STATISTICS data element is returned with a FSCTL_FILESYSTEM_GET_STATISTICS reply message when NTFS file system statistics are requested.
The NTFS_STATISTICS data element is as follows:
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	LogFileFullExceptions

	OtherExceptions

	MftReads

	MftReadBytes

	MftWrites

	MftWriteBytes

	MftWritesUserLevel

	...

	MftWritesFlushForLogFileFull
	MftWritesLazyWriter

	MftWritesUserRequest
	Padding1

	Mft2Writes

	Mft2WriteBytes

	Mft2WritesUserLevel

	...

	Mft2WritesFlushForLogFileFull
	Mft2WritesLazyWriter

	Mft2WritesUserRequest
	Padding2

	RootIndexReads

	RootIndexReadBytes

	RootIndexWrites

	RootIndexWriteBytes

	BitmapReads

	BitmapReadBytes

	BitmapWrites

	BitmapWriteBytes

	BitmapWritesFlushForLogFileFull
	BitmapWritesLazyWriter

	BitmapWritesUserRequest
	BitmapWritesUserLevel

	...

	MftBitmapReads

	MftBitmapReadBytes

	MftBitmapWrites

	MftBitmapWriteBytes

	MftBitmapWritesFlushForLogFileFull
	MftBitmapWritesLazyWriter

	MftBitmapWritesUserRequest
	MftBitmapWritesUserLevel

	...

	...
	Padding3

	UserIndexReads

	UserIndexReadBytes

	UserIndexWrites

	UserIndexWriteBytes

	LogFileReads

	LogFileReadBytes

	LogFileWrites

	LogFileWriteBytes

	Allocate (40 bytes)

	...

	...

LogFileFullExceptions (4 bytes): A 32-bit unsigned integer value containing the number of exceptions generated due to the log file being full.
OtherExceptions (4 bytes): A 32-bit unsigned integer value containing the number of other exceptions generated.
MftReads (4 bytes): A 32-bit unsigned integer value containing the number of read operations on the Master File Table (MFT).
MftReadBytes (4 bytes): A 32-bit unsigned integer value containing the number of bytes read from the MFT.
MftWrites (4 bytes): A 32-bit unsigned integer value containing the number of write operations on the MFT.
MftWriteBytes (4 bytes): A 32-bit unsigned integer value containing the number of bytes written to the MFT.
MftWritesUserLevel (8 bytes): An MftWritesUserLevel structure containing statistics about writes resulting from certain user-level operations.
MftWritesFlushForLogFileFull (2 bytes): A 16-bit unsigned integer containing the number of flushes of the MFT performed because the log file was full.
MftWritesLazyWriter (2 bytes): A 16-bit unsigned integer containing the number of MFT write operations performed by the lazy writer thread.
MftWritesUserRequest (2 bytes): A 16-bit unsigned integer that is the sum of the four fields in the MftWritesUserLevel structure.
Padding1 (2 bytes): Unused. This field SHOULD be set to 0 and MUST be ignored.
Mft2Writes (4 bytes): A 32-bit unsigned integer value containing the number of write operations on the master file table mirror (MFT2).
Mft2WriteBytes (4 bytes): A 32-bit unsigned integer value containing the number of bytes written to the MFT2.
Mft2WritesUserLevel (8 bytes): An MftWritesUserLevel structure containing statistics about writes resulting from certain user-level operations.
Mft2WritesFlushForLogFileFull (2 bytes): A 16-bit unsigned integer containing the number of flushes of the MFT2 performed because the log file was full.
Mft2WritesLazyWriter (2 bytes): A 16-bit unsigned integer containing the number of MFT2 write operations performed by the lazy writer thread.
Mft2WritesUserRequest (2 bytes): A 16-bit unsigned integer that contains the sum of the four fields in the Mft2WritesUserLevel structure.
Padding2 (2 bytes): Unused. This field SHOULD be set to 0 and MUST be ignored.
RootIndexReads (4 bytes): A 32-bit unsigned integer value containing the number of read operations on the root index.
RootIndexReadBytes (4 bytes): A 32-bit unsigned integer value containing the number of bytes read from the root index.
RootIndexWrites (4 bytes): A 32-bit unsigned integer value containing the number of write operations on the root index.
RootIndexWriteBytes (4 bytes): A 32-bit unsigned integer value containing the number of bytes written to the root index.
BitmapReads (4 bytes): A 32-bit unsigned integer value containing the number of read operations on the cluster allocation bitmap.
BitmapReadBytes (4 bytes): A 32-bit unsigned integer value containing the number of bytes read from the cluster allocation bitmap.
BitmapWrites (4 bytes): A 32-bit unsigned integer value containing the number of write operations on the cluster allocation bitmap. This is the sum of the BitmapWritesFlushForLogFileFull, BitmapWritesLazyWriter and BitmapWritesUserRequest fields.
BitmapWriteBytes (4 bytes): A 32-bit unsigned integer value containing the number of bytes written to the cluster allocation bitmap.
BitmapWritesFlushForLogFileFull (2 bytes): A 16-bit unsigned integer containing the number of flushes of the bitmap performed because the log file was full.
BitmapWritesLazyWriter (2 bytes): A 16-bit unsigned integer containing the number of bitmap write operations performed by the lazy writer thread.
BitmapWritesUserRequest (2 bytes): A 16-bit unsigned integer that is the sum of the fields in the BitmapWritesUserLevel structure.
BitmapWritesUserLevel (6 bytes): A BitmapWritesUserLevel structure containing statistics about bitmap writes resulting from certain user-level operations.
MftBitmapReads (4 bytes): A 32-bit unsigned integer value containing the number of read operations on the MFT bitmap.
MftBitmapReadBytes (4 bytes): A 32-bit unsigned integer value containing the number of bytes read from the MFT bitmap.
MftBitmapWrites (4 bytes): A 32-bit unsigned integer value containing the number of write operations on the MFT bitmap. This value is the sum of the MftBitmapWritesFlushForLogFileFull, MftBitmapWritesLazyWriter and MftBitmapWritesUserRequest fields.
MftBitmapWriteBytes (4 bytes): A 32-bit unsigned integer value containing the number of bytes written to the MFT bitmap.
MftBitmapWritesFlushForLogFileFull (2 bytes): A 16-bit unsigned integer containing the number of flushes of the MFT bitmap performed because the log file was full.
MftBitmapWritesLazyWriter (2 bytes): A 16-bit unsigned integer value containing the number of MFT bitmap write operations performed by the lazy writer thread.
MftBitmapWritesUserRequest (2 bytes): A 16-bit unsigned integer that is the sum of all the fields in the MftBitmapWritesUserLevel structure.
MftBitmapWritesUserLevel (8 bytes): An MftBitmapWritesUserLevel structure containing statistics about MFT bitmap writes resulting from certain user-level operations.
Padding3 (2 bytes): Unused. This field SHOULD be set to 0 and MUST be ignored.
UserIndexReads (4 bytes): A 32-bit unsigned integer value containing the number of read operations on the user index.
UserIndexReadBytes (4 bytes): A 32-bit unsigned integer value containing the number of bytes read from user indices.
UserIndexWrites (4 bytes): A 32-bit unsigned integer value containing the number of write operations on user indices.
UserIndexWriteBytes (4 bytes): A 32-bit unsigned integer value containing the number of bytes written to user indices.
LogFileReads (4 bytes): A 32-bit unsigned integer value containing the number of read operations on the log file.
LogFileReadBytes (4 bytes): A 32-bit unsigned integer value containing the number of bytes read from the log file.
LogFileWrites (4 bytes): A 32-bit unsigned integer value containing the number of write operations on the log file.
LogFileWriteBytes (4 bytes): A 32-bit unsigned integer value containing the number of bytes written to the log file.
Allocate (40 bytes): An Allocate structure describes cluster allocation patterns in NTFS.
[bookmark: section_3a7b4ffd403145428adbcbe171062f1e][bookmark: _Toc178847467]MftWritesUserLevel
The MftWritesUserLevel structure contains statistics about writes resulting from certain user-level operations.
The MftWritesUserLevel structure is as follows.
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	Write
	Create

	SetInfo
	Flush

Write (2 bytes): A 16-bit unsigned integer containing the number of MFT writes due to a write operation.
Create (2 bytes): A 16-bit unsigned integer containing the number of MFT writes due to a create operation.
SetInfo (2 bytes): A 16-bit unsigned integer containing the number of MFT writes due to a set file information operation.
Flush (2 bytes): A 16-bit unsigned integer containing the number of MFT writes due to a flush operation.
[bookmark: section_4912f122a24646a09993de0ba251b7b4][bookmark: _Toc178847468]Mft2WritesUserLevel
The Mft2WritesUserLevel structure contains statistics about writes resulting from certain user-level operations.
The Mft2WritesUserLevel structure is as follows.
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	Write
	Create

	SetInfo
	Flush

Write (2 bytes): A 16-bit unsigned integer containing the number of MFT2 writes due to a write operation.
Create (2 bytes): A 16-bit unsigned integer containing the number of MFT2 writes due to a create operation.
SetInfo (2 bytes): A16-bit unsigned integer containing the number of MFT2 writes due to a set file information operation.
Flush (2 bytes): A 16-bit unsigned integer containing the number of MFT2 writes due to a flush operation.
[bookmark: section_0d2a2afdfe6543fd9f23bd42a362f278][bookmark: _Toc178847469]BitmapWritesUserLevel
The BitmapWritesUserLevel structure contains statistics about bitmap writes resulting from certain user-level operations.
The BitmapWritesUserLevel structure is as follows.
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	Write
	Create

	SetInfo

Write (2 bytes): A 16-bit unsigned integer containing the number of bitmap writes due to a write operation.
Create (2 bytes): A 16-bit unsigned integer containing the number of bitmap writes due to a create operation.
SetInfo (2 bytes): A 16-bit unsigned integer containing the number of bitmap writes due to a set file information operation.
[bookmark: section_d3bfcebbe34a4b1cbbfdae0e2e7324e6][bookmark: _Toc178847470]MftBitmapWritesUserLevel
The MftBitmapWritesUserLevel structure contains statistics about MFT bitmap write operations resulting from certain user-level operations.
The MftBitmapWritesUserLevel structure is as follows.
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	Write
	Create

	SetInfo
	Flush

Write (2 bytes): A 16-bit unsigned integer containing the number of MFT bitmap write operations due to a write operation.
Create (2 bytes): A 16-bit unsigned integer containing the number of MFT bitmap write operations due to a create operation.
SetInfo (2 bytes): A 16-bit unsigned integer containing the number of MFT bitmap write operations due to a set file information operation.
Flush (2 bytes): A 16-bit unsigned integer containing the number of MFT bitmap write operations due to a flush operation.
[bookmark: section_9ca092ba1a5446c0a38450718bfd83c5][bookmark: _Toc178847471]Allocate
The Allocate structure describes cluster allocation patterns in NTFS. The cache refers to in-memory structures that allow quick lookups of free cluster runs either by logical cluster number (LCN) or by run length.
The Allocate structure is as follows.
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	Calls

	Clusters

	Hints

	RunsReturned

	HintsHonored

	HintsClusters

	Cache

	CacheClusters

	CacheMiss

	CacheMissClusters

Calls (4 bytes): A 32-bit unsigned integer value containing the number of individual calls to allocate clusters.
Clusters (4 bytes): A 32-bit unsigned integer value containing the number of clusters allocated.
Hints (4 bytes): A 32-bit unsigned integer value containing the number of times a hint was specified when trying to determine which clusters to allocate.
RunsReturned (4 bytes): A 32-bit unsigned integer value containing the number of runs used to satisfy all the requests.
HintsHonored (4 bytes): A 32-bit unsigned integer value containing the number of times the starting LCN hint was used to determine which clusters to allocate.
HintsClusters (4 bytes): A 32-bit unsigned integer value containing the number of clusters allocated via the starting LCN hint.
Cache (4 bytes): A 32-bit unsigned integer value containing the number of times the run length cache was useful.
CacheClusters (4 bytes): A 32-bit unsigned integer value containing the number of clusters allocated via the run length cache.
CacheMiss (4 bytes): A 32-bit unsigned integer value containing the number of times the cache was not useful and the bitmapped had to be scanned for free clusters.
CacheMissClusters (4 bytes): A 32-bit unsigned integer value containing the number of clusters allocated by scanning the bitmap.
[bookmark: section_8543e12b937f42ff87de2ced65f120c9][bookmark: _Toc178847472]FAT_STATISTICS
The FAT_STATISTICS data element is returned with a FSCTL_FILESYSTEM_GET_STATISTICS reply message when FAT file system statistics are requested.
The FAT_STATISTICS data element is as follows:
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	CreateHits

	SuccessfulCreates

	FailedCreates

	NonCachedReads

	NonCachedReadBytes

	NonCachedWrites

	NonCachedWriteBytes

	NonCachedDiskReads

	NonCachedDiskWrites

CreateHits (4 bytes): A 32-bit unsigned integer value containing the number of create operations.
SuccessfulCreates (4 bytes): A 32-bit unsigned integer value containing the number of successful create operations.
FailedCreates (4 bytes): A 32-bit unsigned integer value containing the number of failed create operations.
NonCachedReads (4 bytes): A 32-bit unsigned integer value containing the number of read operations that were not cached.
NonCachedReadBytes (4 bytes): A 32-bit unsigned integer value containing the number of bytes read from a file that were not cached.
NonCachedWrites (4 bytes): A 32-bit unsigned integer value containing the number of write operations that were not cached.
NonCachedWriteBytes (4 bytes): A 32-bit unsigned integer value containing the number of bytes written to a file that were not cached.
NonCachedDiskReads (4 bytes): A 32-bit unsigned integer value containing the number of read operations that were not cached. This value includes sub-read operations.
NonCachedDiskWrites (4 bytes): A 32-bit unsigned integer value containing the number of write operations that were not cached. This value includes sub-write operations.
[bookmark: section_7e0a16ae0b044dbca707d8c11d857599][bookmark: _Toc178847473]EXFAT_STATISTICS
The EXFAT_STATISTICS data element is returned with a FSCTL_FILESYSTEM_GET_STATISTICS reply message when exFAT file system statistics are requested.
The EXFAT_STATISTICS data element is as follows:
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	CreateHits

	SuccessfulCreates

	FailedCreates

	NonCachedReads

	NonCachedReadBytes

	NonCachedWrites

	NonCachedWriteBytes

	NonCachedDiskReads

	NonCachedDiskWrites

CreateHits (4 bytes): A 32-bit unsigned integer value containing the number of create operations.
SuccessfulCreates (4 bytes): A 32-bit unsigned integer value containing the number of successful create operations.
FailedCreates (4 bytes): A 32-bit unsigned integer value containing the number of failed create operations.
NonCachedReads (4 bytes): A 32-bit unsigned integer value containing the number of read operations that were not cached.
NonCachedReadBytes (4 bytes): A 32-bit unsigned integer value containing the number of bytes read from a file that were not cached.
NonCachedWrites (4 bytes): A 32-bit unsigned integer value containing the number of write operations that were not cached.
NonCachedWriteBytes (4 bytes): A 32-bit unsigned integer value containing the number of bytes written to a file that were not cached.
NonCachedDiskReads (4 bytes): A 32-bit unsigned integer value containing the number of read operations that were not cached. This value includes sub-read operations.
NonCachedDiskWrites (4 bytes): A 32-bit unsigned integer value containing the number of write operations that were not cached. This value includes sub-write operations.
[bookmark: section_02f82180d6054682a9540252576ee760][bookmark: _Toc178847474]FSCTL_FILE_LEVEL_TRIM Request
The FSCTL_FILE_LEVEL_TRIM operation informs the underlying storage medium that the contents of the given range of the file no longer needs to be maintained. This message allows the storage medium to manage its space more efficiently. This operation is required most commonly for Solid State Devices (SSD), as well as for thinly provisioned storage environments.
The FILE_LEVEL_TRIM data element follows.
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	Key

	NumRanges

	Ranges (variable)

	...

Key (4 bytes): This field is used for byte range locks to uniquely identify different consumers of byte range locks on the same thread. Typically, this field is used only by remote protocols such as SMB or SMB2.
NumRanges (4 bytes): A count of how many Offset, Length pairs follow in the data item.
Ranges (variable): An array of zero or more FILE_LEVEL_TRIM_RANGE (section 2.3.13.1) data elements. The NumRanges field contains the number of FILE_LEVEL_TRIM_RANGE data elements in the array.
[bookmark: section_92d8da82cbd744e5a871416c90fa52ea][bookmark: _Toc178847475]FILE_LEVEL_TRIM_RANGE
The FILE_LEVEL_TRIM_RANGE data element follows.
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	Offset

	...

	Length

	...

Offset (8 bytes): A 64-bit unsigned integer that contains a byte offset into the given file at which to start the trim request.
Length (8 bytes): A 64-bit unsigned integer that contains the length, in bytes, of how much of the file to trim, starting at Offset.
[bookmark: section_b949a580d8db439ba79117ddc7565c4b][bookmark: _Toc178847476]FSCTL_FILE_LEVEL_TRIM Reply
This message returns the results of the FSCTL_FILE_LEVEL_TRIM Request (section 2.3.13).
The FILE_LEVEL_TRIM_OUTPUT data element follows.
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	NumRangesProcessed

NumRangesProcessed (4 bytes): A 32-bit unsigned integer identifying the number of input ranges that were processed.
This message returns a status code as specified in section 2.2. Upon success, the status code returned by the function that processes this FSCTL is STATUS_SUCCESS. The most common error codes are listed in the following table.
	Error code
	Meaning

	STATUS_INVALID_PARAMETER
0xC000000D
	The given file is compressed or encrypted, or the size of the input buffer is smaller than the size of the FILE_LEVEL_TRIM data element, or no FILE_LEVEL_TRIM_RANGE (section 2.3.13.1) structures were given, or the output buffer is smaller than the size of FILE_LEVEL_TRIM_OUTPUT.

	STATUS_INVALID_DEVICE_REQUEST
0xC0000010
	The file system does not support this operation.

	STATUS_INTEGER_OVERFLOW
0xC0000095
	An operation on a parameter in the FSCTL_FILE_LEVEL_TRIM input structure overflowed 64 bits.

	STATUS_NO_RANGES_PROCESSED
0xC0000460
	The operation was successful, but no range was processed.

[bookmark: section_e904e83a98da49db911de1c5ea0783b7][bookmark: _Toc178847477]FSCTL_FIND_FILES_BY_SID Request
The FSCTL_FIND_FILES_BY_SID Request message requests that the server return a list of the files and directories whose owner matches the specified security identifier (SID), in no necessary order. The search spans the file system subtree descending from the directory associated with the handle on which this FSCTL was invoked. This message contains a FIND_BY_SID_DATA data element.
The FIND_BY_SID_DATA data element is as follows.
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	Restart

	SID (variable)

	...

Restart (4 bytes): A 32-bit unsigned integer value that indicates to restart the search. This value MUST be 0x00000001 on the first call so that the search starts from the beginning of the directory on which the operation is requested. For subsequent calls, this member SHOULD be zero so that the search resumes at the point where it stopped.
SID (variable): A SID ([MS-DTYP] section 2.4.2.2) data element that specifies the owner.
[bookmark: section_74d1fc51dda04a7d9ef6214897eb94c6][bookmark: _Toc178847478]FSCTL_FIND_FILES_BY_SID Reply
[bookmark: Appendix_A_Target_25]The FSCTL_FIND_FILES_BY_SID Reply message returns the results of the FSCTL_FIND_FILES_BY_SID Request (section 2.3.15) as an array of FILE_NAME_INFORMATION (section 2.1.7) data elements containing relative pathnames (section 2.1.5), one for each matching file or directory that is found, in no necessary order. All returned file names MUST be relative to the directory on which the FSCTL_FIND_FILES_BY_SID Request was issued. This returns as many FILE_NAME_INFORMATION data elements as will fit in the provided output buffer. The beginning of each FILE_NAME_INFORMATION data element MUST be aligned to an 8-byte boundary, as measured from the beginning of the buffer. The last FILE_NAME_INFORMATION structure returned MAY<25> contain trailing padding.
This message also returns a status code as specified in section 2.2. Upon success, the status code returned by the function that processes this FSCTL is STATUS_SUCCESS. The most common error codes are listed in the following table.
	Status code
	Meaning

	STATUS_NO_QUOTAS_FOR_ACCOUNT
0x0000010D
	Quota tracking is not enabled; therefore, the file system does not keep a record of file owners. This is considered a success code. The reply MUST NOT contain any data elements.

	STATUS_INVALID_PARAMETER
0xC000000D
	The handle specified is not the handle to a directory.

	STATUS_ACCESS_DENIED
0xC0000022
	Neither the SeManageVolumePrivilege nor the SeBackupPrivilege, as specified in [MS-LSAD] section 3.1.1.2.1, privilege is held.

	STATUS_BUFFER_TOO_SMALL
0xC0000023
	The output buffer is not large enough to contain the FILE_NAME_INFORMATION structure (including any trailing padding) for the first matching file or directory.

	STATUS_INVALID_USER_BUFFER
0xC00000E8
	The input buffer is less than the size of a long integer (4 bytes) plus the length of the SID provided, or the input or output buffer is not aligned to the native word size of the platform, or the size of the output buffer is less than the minimum size of a FILE_NAME_INFORMATION structure (8 bytes), or the restart value is greater than 1.

When the status code is STATUS_SUCCESS, the responder MUST retain an implementation-dependent indication of where the directory processing ended, which is required to support a subsequent FSCTL_FIND_FILES_BY_SID Request with the Restart field set to 0x00000000. For an example of FSCTL_FIND_FILES_BY_SID restart handling, see [MS-FSA] section 2.1.5.10.8.
[bookmark: section_5ef1860f4ba2449ca28131aeac05f987][bookmark: _Toc178847479]FSCTL_GET_COMPRESSION Request
This message requests that the server return the current compression state of the file or directory associated with the handle on which this FSCTL was invoked.
This message does not contain any additional data elements.
[bookmark: section_62de177ded904884ae049de52f1180f1][bookmark: _Toc178847480]FSCTL_GET_COMPRESSION Reply
The FSCTL_GET_COMPRESSION reply message returns the results of the FSCTL_GET_COMPRESSION request as a 16-bit unsigned integer value that indicates the current compression state of the file or directory.
The CompressionState element is as follows.
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	CompressionState

CompressionState (2 bytes): One of the following standard values MUST be returned.
	Value
	Meaning

	COMPRESSION_FORMAT_NONE
0x0000
	The file or directory is not compressed.

	COMPRESSION_FORMAT_LZNT1
0x0002
	The file or directory is compressed by using the LZNT1 compression algorithm. For more information, see [UASDC].

	All other values
	Reserved for future use and MUST NOT be used.

[bookmark: Appendix_A_Target_26]The actual file or directory compression format is implementation-dependent.<26>
If the file system of the volume that contains the specified file or directory does not support per-file or per-directory compression, the request MUST NOT succeed. The error code that is returned in this situation MUST be as specified in section 2.2.
This message also returns a status code as specified in section 2.2. Upon success, the status code returned by the function that processes this FSCTL is STATUS_SUCCESS. The most common error codes are listed in the following table.
	 Error code
	 Meaning

	STATUS_INVALID_PARAMETER
0xC000000D
	The output buffer length is less than 2, or the handle is not to a file or directory.

	STATUS_INVALID_DEVICE_REQUEST
0xC0000010
	[bookmark: Appendix_A_Target_27]The volume does not support compression.<27>

[bookmark: section_71b7a0a38f0c414cb4f8da9b957e56bc][bookmark: _Toc178847481]FSCTL_GET_INTEGRITY_INFORMATION Request
[bookmark: Appendix_A_Target_28]The FSCTL_GET_INTEGRITY_INFORMATION Request message requests that the server return the current integrity state of the file or directory associated with the handle on which this FSCTL is invoked.<28>
If the file system of the volume containing the specified file or directory does not support the use of integrity, the request will not succeed. The error code returned in this situation varies, depending on the file system.
This message does not contain additional data elements.
[bookmark: section_7264048466fb4b8faec66ab56d63831b][bookmark: _Toc178847482]FSCTL_GET_INTEGRITY_INFORMATION Reply
The FSCTL_GET_INTEGRITY_INFORMATION Reply message returns the results of the FSCTL_GET_INTEGRITY_INFORMATION Request (section 2.3.19) and indicates the current integrity state of the file or directory.
The FSCTL_GET_INTEGRITY_INFORMATION_BUFFER data element is as follows.
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	ChecksumAlgorithm
	Reserved

	Flags

	ChecksumChunkSizeInBytes

	ClusterSizeInBytes

ChecksumAlgorithm (2 bytes): For ReFS v1, the field MUST be set to one of the following standard values.
	Value
	Meaning

	CHECKSUM_TYPE_NONE
0x0000
	The file or directory is not configured to use integrity.

	CHECKSUM_TYPE_CRC64
0x0002
	The file or directory is configured to use a CRC64 checksum to provide integrity.

	All other values
	Reserved for future use and MUST NOT be used.

For ReFS v2, the field MUST be set to one of the following standard values.
	Value
	Meaning

	CHECKSUM_TYPE_NONE
0x0000
	The file or directory is not configured to use integrity.

	CHECKSUM_TYPE_CRC32
0x0001
	The file or directory is configured to use a CRC32 checksum to provide integrity.

	CHECKSUM_TYPE_CRC64
0x0002
	The file or directory is configured to use a CRC64 checksum to provide integrity.

	All other values
	Reserved for future use and MUST NOT be used.

Reserved (2 bytes): A 16-bit reserved value. This field MUST be set to 0x0000 and MUST be ignored.
Flags (4 bytes): A 32-bit unsigned integer that contains zero or more of the following flag values. Flag values not specified in the following table SHOULD be set to 0 and MUST be ignored.
	Value
	Meaning

	FSCTL_INTEGRITY_FLAG_CHECKSUM_ENFORCEMENT_OFF
0x00000001
	Indicates that checksum enforcement is not currently enabled on the target file.

	All other values
	Reserved for future use and MUST NOT be used.

ChecksumChunkSizeInBytes (4 bytes): A 32-bit unsigned integer specifying the size in bytes of each chunk in a stream that is configured with integrity.
ClusterSizeInBytes (4 bytes): A 32-bit unsigned integer specifying the size of a cluster for this volume in bytes.
This message also returns a status code, as specified in section 2.2. Upon success, the status code returned by the function that processes this FSCTL MUST be STATUS_SUCCESS or one of the following.
	Error code
	Meaning

	STATUS_INVALID_PARAMETER
0xC000000D
	The output buffer length is less than the size of the FSCTL_GET_INTEGRITY_INFORMATION_BUFFER data element, or the handle is not to a file or directory.

	STATUS_INVALID_DEVICE_REQUEST
0xC0000010
	The volume does not support integrity.

[bookmark: section_fbe90f354d114b19b53c8f625636eaff][bookmark: _Toc178847483]FSCTL_GET_NTFS_VOLUME_DATA Request
This message requests that the server return information about the NTFS file system volume that contains the file or directory that is associated with the handle on which this FSCTL was invoked.
This message does not contain any parameters.
[bookmark: section_a5bae3a390254f07b70de2247b01faa6][bookmark: _Toc178847484]FSCTL_GET_NTFS_VOLUME_DATA Reply
The FSCTL_GET_NTFS_VOLUME_DATA reply message returns the results of the FSCTL_GET_NTFS_VOLUME_DATA request as an NTFS_VOLUME_DATA_BUFFER element.
The NTFS_VOLUME_DATA_BUFFER contains information on a volume. For more information about the NTFS file system, see [MSFT-NTFS].
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	VolumeSerialNumber

	...

	NumberSectors

	...

	TotalClusters

	...

	FreeClusters

	...

	TotalReserved

	...

	BytesPerSector

	BytesPerCluster

	BytesPerFileRecordSegment

	ClustersPerFileRecordSegment

	MftValidDataLength

	...

	MftStartLcn

	...

	Mft2StartLcn

	...

	MftZoneStart

	...

	MftZoneEnd

	...

VolumeSerialNumber (8 bytes): A 64-bit signed integer that contains the serial number of the volume. This is a unique number assigned to the volume media by the operating system when the volume is formatted.
NumberSectors (8 bytes): A 64-bit signed integer that contains the number of sectors in the specified volume.
TotalClusters (8 bytes): A 64-bit signed integer that contains the total number of clusters in the specified volume.
FreeClusters (8 bytes): A 64-bit signed integer that contains the number of free clusters in the specified volume.
TotalReserved (8 bytes): A 64-bit signed integer that contains the number of reserved clusters in the specified volume. Reserved clusters are free clusters reserved for when the volume becomes full. Reserved clusters used to guarantee clusters are available at points when the file system can't properly report allocation failures.
BytesPerSector (4 bytes): A 32-bit unsigned integer that contains the number of bytes in a sector on the specified volume.
BytesPerCluster (4 bytes): A 32-bit unsigned integer that contains the number of bytes in a cluster on the specified volume. This value is also known as the cluster factor.
BytesPerFileRecordSegment (4 bytes): A 32-bit unsigned integer that contains the number of bytes in a file record segment.
ClustersPerFileRecordSegment (4 bytes): A 32-bit unsigned integer that contains the number of clusters in a file record segment.
MftValidDataLength (8 bytes): A 64-bit signed integer that contains the size of the master file table in bytes.
MftStartLcn (8 bytes): A 64-bit signed integer that contains the starting logical cluster number (LCN) of the master file table.
Mft2StartLcn (8 bytes): A 64-bit signed integer that contains the starting logical cluster number of the master file table mirror.
MftZoneStart (8 bytes): A 64-bit signed integer that contains the starting logical cluster number of the master file table zone.
MftZoneEnd (8 bytes): A 64-bit signed integer that contains the ending logical cluster number of the master file table zone. The size of the master file table zone is (MftZoneEnd - MftZoneStart) clusters.
This message also returns a status code as specified in section 2.2. Upon success, the status code returned directly by the function that processes this FSCTL is STATUS_SUCCESS. The most common error codes are listed in the following table.
	 Error code
	 Meaning

	STATUS_INVALID_PARAMETER
0xC000000D
	The handle specified is not open.

	STATUS_VOLUME_DISMOUNTED
0xC000026E
	The specified volume is no longer mounted.

	STATUS_BUFFER_TOO_SMALL
0xC0000023
	The output buffer is too small to contain an NTFS_VOLUME_DATA_BUFFER structure.

[bookmark: section_e64a902d1de3490da5ab40fa2b5a6f5f][bookmark: _Toc178847485]FSCTL_GET_REFS_VOLUME_DATA Request
This message requests that the server return information about the ReFS file system volume that contains the file or directory that is associated with the handle on which this FSCTL was invoked.
This message does not contain any parameters.
[bookmark: section_8821cc2c9aa747d8825ea977d221feeb][bookmark: _Toc178847486]FSCTL_GET_REFS_VOLUME_DATA Reply
The FSCTL_GET_REFS_VOLUME_DATA reply message returns the results of the FSCTL_GET_REFS_VOLUME_DATA request as an REFS_VOLUME_DATA_BUFFER element.
The REFS_VOLUME_DATA_BUFFER contains information on a volume.
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	ByteCount

	MajorVersion

	MinorVersion

	BytesPerPhysicalSector

	VolumeSerialNumber

	...

	NumberSectors

	...

	TotalClusters

	...

	FreeClusters

	...

	TotalReserved

	...

	BytesPerSector

	BytesPerCluster

	MaximumSizeOfResidentFile

	...

	Reserved (80 bytes)

	...

	...

ByteCount (4 bytes): A 32-bit unsigned integer that contains the valid data length for this structure. ByteCount can be less than the size of this structure. Only the fields that entirely fit within the valid data length for this structure, as defined by ByteCount, are valid.
MajorVersion (4 bytes): A 32-bit unsigned integer that contains the major version of the ReFS volume.
MinorVersion (4 bytes): A 32-bit unsigned integer that contains the minor version of the ReFS volume.
BytesPerPhysicalSector (4 bytes): A 32-bit unsigned integer that defines the number of bytes in a physical sector on the specified volume.
VolumeSerialNumber (8 bytes): A 64-bit signed integer that contains the serial number of the volume. This is a unique number assigned to the volume media by the operating system when the volume is formatted.
NumberSectors (8 bytes): A 64-bit signed integer that contains the number of sectors in the specified volume.
TotalClusters (8 bytes): A 64-bit signed integer that contains the total number of clusters in the specified volume.
FreeClusters (8 bytes): A 64-bit signed integer that contains the number of free clusters in the specified volume.
TotalReserved (8 bytes): A 64-bit signed integer that contains the number of reserved clusters in the specified volume. Reserved clusters are used to guarantee clusters are available at points when the file system can't properly report allocation failures.
BytesPerSector (4 bytes): A 32-bit unsigned integer that contains the number of bytes in a sector on the specified volume.
BytesPerCluster (4 bytes): A 32-bit unsigned integer that contains the number of bytes in a cluster on the specified volume. This value is also known as the cluster factor.
MaximumSizeOfResidentFile (8 bytes): A 64-bit unsigned integer that defines the maximum number of bytes a file can contain and be co-located with the file system metadata that describes the file (commonly known as resident files).
Reserved (80 bytes): 80 bytes which, if included, as per the ByteCount field, are reserved, have an undefined value, and are not interpreted.
This message also returns a status code as specified in section 2.2. Upon success, the status code returned directly by the function that processes this FSCTL is STATUS_SUCCESS. The most common error codes are listed in the following table.
	Error code
	Meaning

	STATUS_INVALID_PARAMETER
0xC000000D
	The handle specified is not open.

	STATUS_VOLUME_DISMOUNTED
0xC000026E
	The specified volume is no longer mounted.

	STATUS_BUFFER_TOO_SMALL
0xC0000023
	The output buffer is too small to contain a REFS_VOLUME_DATA_BUFFER structure.

[bookmark: section_00b1c04a2dd74bc3b15826b3eb47afa3][bookmark: _Toc178847487]FSCTL_GET_OBJECT_ID Request
This message requests that the server return the object identifier for the file or directory associated with the handle on which this FSCTL was invoked.
Object identifiers are 16-byte opaque values that are used to track files and directories, and they are generated by the server. File and directory object identifiers are invisible to most applications and SHOULD never be modified by applications.
This message does not contain any additional data elements.
[bookmark: section_09a79caeb2d44e958bf7c6526a88078f][bookmark: _Toc178847488]FSCTL_GET_OBJECT_ID Reply
This message returns the results of an FSCTL_GET_OBJECT_ID request in a FILE_OBJECTID_BUFFER (section 2.1.3).
If the file system of the volume containing the specified file or directory does not support the use of object IDs, the request will not succeed. The error code returned in this situation is specified in section 2.2.
This message also returns a status code as specified in section 2.2. Upon success, the status code returned by the function that processes this FSCTL is STATUS_SUCCESS. The most common error codes are listed in the following table.
	 Error code
	 Meaning

	STATUS_INVALID_PARAMETER
0xC000000D
	The output buffer length is less than the size of a FILE_OBJECTID_BUFFER or the handle is not to a file or directory.

	STATUS_OBJECTID_NOT_FOUND
0xC00002F0
	The file or directory has no object ID.

	STATUS_INVALID_DEVICE_REQUEST
0xC0000010
	The file system does not support the use of object IDs.

[bookmark: section_b68d9eda15d24edea94d58a81f331429][bookmark: _Toc178847489]FSCTL_GET_REPARSE_POINT Request
This message requests that the server return the reparse point data for the file or directory associated with the handle on which this FSCTL was invoked.
This message MUST only be sent for a file or directory handle.
This message does not contain any additional data elements.
[bookmark: section_d86a4c4da996403a8b929c0e1a300e22][bookmark: _Toc178847490]FSCTL_GET_REPARSE_POINT Reply
This message returns the results of the FSCTL_GET_REPARSE_POINT request. The message contains a REPARSE_GUID_DATA_BUFFER (including subtypes) or a REPARSE_DATA_BUFFER data element.
Both the REPARSE_GUID_DATA_BUFFER and the REPARSE_DATA_BUFFER structures begin with a ReparseTag field. The ReparseTag value uniquely identifies the filter driver that creates/uses the reparse point, and the application's filter driver processes the reparse point data as either a REPARSE_GUID_DATA_BUFFER or a REPARSE_DATA_BUFFER, depending on the structure implemented by the filter driver for that type of reparse point. A particular filter driver is implemented with specific support for the type of reparse point data structure it accepts.
[bookmark: Appendix_A_Target_29]If the file system of the volume containing the specified file or directory does not support the use of reparse points, the request will not succeed. The error code returned in this situation MAY vary, depending on the file system.<29>
This message also returns a status code as specified in section 2.2. Upon success, the status code returned by the function that processes this FSCTL is STATUS_SUCCESS. The most common error codes are listed in the following table.
	 Error code
	 Meaning

	STATUS_BUFFER_TOO_SMALL
0xC0000023
	The output buffer is too small to contain a REPARSE_GUID_DATA_BUFFER.

	STATUS_INVALID_PARAMETER
0xC000000D
	The handle is not to a file or directory.

	STATUS_BUFFER_OVERFLOW
0x80000005
	The output buffer filled before all the reparse point data was returned.

	STATUS_NOT_A_REPARSE_POINT
0xC0000275
	The file or directory is not a reparse point.

	STATUS_INVALID_DEVICE_REQUEST
0xC0000010
	The file system does not support the use of reparse points.

[bookmark: section_175b2d5c0e614c148e5b3af0ac2df6d7][bookmark: _Toc178847491]FSCTL_GET_RETRIEVAL_POINTER_COUNT Request
The FSCTL_GET_RETRIEVAL_POINTER_COUNT request message requests that the server return a count of extents for the file or directory associated with the handle on which this FSCTL was invoked. The extents describe the mapping between virtual cluster numbers (VCNs) and logical cluster numbers (LCNs). This request is most commonly used by defragmentation utilities. This message contains a STARTING_VCN_INPUT_BUFFER data element.
The STARTING_VCN_INPUT_BUFFER data element is as follows.
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	StartingVcn

	...

StartingVcn (8 bytes): A 64-bit signed integer that contains the virtual cluster number (VCN) at which to begin retrieving extents in the file. This value MUST be greater than or equal to 0.
[bookmark: section_13ce4915fc9c4731ab5660224752e13e][bookmark: _Toc178847492]FSCTL_GET_RETRIEVAL_POINTER_COUNT Reply
The FSCTL_GET_RETRIEVAL_POINTER_COUNT reply message returns the results of the FSCTL_GET_RETRIEVAL_POINTER_COUNT request as a fixed size data element, RETRIEVAL_POINTER_COUNT, that specifies the number of extents on disk of a specific file.
[bookmark: Appendix_A_Target_30]The FSCTL_GET_RETRIEVAL_POINTER_COUNT reply returns the number of extents of nonresident data. A file system MAY allow resident data, which is data that can be written to disk within the file's directory record. Because resident data requires no additional disk space allocation, no extent locations are associated with resident data.<30>
The RETRIEVAL_POINTER_COUNT data element is as follows.
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	ExtentCount

ExtentCount (4 bytes): A 32-bit unsigned integer that contains the number of extents. This number can be zero if there are no clusters allocated at (or beyond) the specified StartingVcn.
This message also returns a status code as specified in section 2.2. Upon success, the status code returned by the function that processes this FSCTL is STATUS_SUCCESS. The most common error codes are listed in the following table.
	Error code
	Meaning

	STATUS_BUFFER_TOO_SMALL
0xC0000023
	The output buffer is too small to contain a RETRIEVAL_POINTER_COUNT structure.

	STATUS_INVALID_PARAMETER
0xC000000D
	The input buffer is too small to contain a STARTING_VCN_INPUT_BUFFER, or the StartingVcn given is negative, or the handle is not to a file or directory.

	STATUS_END_OF_FILE
0xC0000011
	The stream is resident in the MFT and has no clusters allocated, or the starting VCN is beyond the end of the file.

[bookmark: section_8e4688cb0bbe4a2895edb1c763d86193][bookmark: _Toc178847493]FSCTL_GET_RETRIEVAL_POINTERS Request
The FSCTL_GET_RETRIEVAL_POINTERS request message requests that the server return a list of extents for the file or directory associated with the handle on which this FSCTL was invoked. The extents describe the mapping between virtual cluster numbers (VCNs) and logical cluster numbers (LCNs). This request is most commonly used by defragmentation utilities. This message contains a STARTING_VCN_INPUT_BUFFER data element.
The STARTING_VCN_INPUT_BUFFER data element is as follows.
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	StartingVcn

	...

StartingVcn (8 bytes): A 64-bit signed integer that contains the virtual cluster number (VCN) at which to begin retrieving extents in the file. This value MUST be greater than or equal to 0.
[bookmark: section_b89a7eb024554c19a7c38c0b54b81960][bookmark: _Toc178847494]FSCTL_GET_RETRIEVAL_POINTERS Reply
The FSCTL_GET_RETRIEVAL_POINTERS reply message returns the results of the FSCTL_GET_RETRIEVAL_POINTERS request as a variably sized data element, RETRIEVAL_POINTERS_BUFFER, that specifies the allocation and location on disk of a specific file.
[bookmark: Appendix_A_Target_31]The FSCTL_GET_RETRIEVAL_POINTERS reply returns the extent locations (that is, locations of allocated regions of disk space) of nonresident data. A file system MAY allow resident data, which is data that can be written to disk within the file's directory record. Because resident data requires no additional disk space allocation, no extent locations are associated with resident data.<31>
The RETRIEVAL_POINTERS_BUFFER data element is as follows.
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	ExtentCount

	Unused

	StartingVcn

	...

	Extents (variable)

	...

ExtentCount (4 bytes): A 32-bit unsigned integer that contains the number of EXTENTS data elements in the Extents array. This number can be zero if there are no clusters allocated at (or beyond) the specified StartingVcn.
Unused (4 bytes): Reserved for alignment. This field can contain any value and MUST be ignored.
StartingVcn (8 bytes): A 64-bit signed integer that contains the starting virtual cluster number (VCN) returned by the FSCTL_GET_RETRIEVAL_POINTERS reply. This is not necessarily the VCN requested by the FSCTL_GET_RETRIEVAL_POINTERS request, as the file system driver might return the starting VCN of the extent containing the requested starting VCN. This value MUST be greater than or equal to 0.
Extents (variable): An array of zero or more EXTENTS data elements. For the number of EXTENTS data elements in the array, see ExtentCount.
[bookmark: section_707cdf5a9d5f4a40ae88fb7331d1aa33][bookmark: _Toc178847495]EXTENTS
The EXTENTS data element is as follows.
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	NextVcn

	...

	Lcn

	...

NextVcn (8 bytes): A 64-bit signed integer that contains the VCN at which the next extent begins. This value minus either StartingVcn (for the first Extents array element) or the NextVcn of the previous element of the array (for all other Extents array elements) is the length in clusters of the current extent.
Lcn (8 bytes): A 64-bit signed integer that contains the logical cluster number (LCN) at which the current extent begins on the volume. A 64-bit value of -1 indicates either a compression unit that is partially allocated or an unallocated region of a sparse file. For more information about sparse files, see [SPARSE]. Compression is performed in 16-cluster units. If a given 16-cluster unit compresses to fit in, for example, 9 clusters, there will be a 7-cluster extent of the file with an LCN of -1.
This message also returns a status code as specified in section 2.2. Upon success, the status code returned by the function that processes this FSCTL is STATUS_SUCCESS. The most common error codes are listed in the following table.
	 Error code
	 Meaning

	STATUS_BUFFER_TOO_SMALL
0xC0000023
	The output buffer is too small to contain a RETRIEVAL_POINTERS_BUFFER structure.

	STATUS_INVALID_PARAMETER
0xC000000D
	The input buffer is too small to contain a STARTING_VCN_INPUT_BUFFER, or the StartingVcn given is negative, or the handle is not to a file or directory.

	STATUS_END_OF_FILE
0xC0000011
	The stream is resident in the MFT and has no clusters allocated, or the starting VCN is beyond the end of the file.

	STATUS_BUFFER_OVERFLOW
0x80000005
	The output buffer filled before all the extents for this file were returned.

[bookmark: section_80ac720b374c40b7847ce57874260b64][bookmark: _Toc178847496]FSCTL_GET_RETRIEVAL_POINTERS_AND_REFCOUNT Request
[bookmark: Appendix_A_Target_32]The FSCTL_GET_RETRIEVAL_POINTERS_AND_REFCOUNT request message requests that the server return a list of extents and their reference counts for the file or directory associated with the handle on which this FSCTL was invoked. The extents describe the mapping between virtual cluster numbers (VCNs) and logical cluster numbers (LCNs). The reference count describes how many times these logical cluster numbers (LCNs) are being used within the volume. This request is most commonly used by deduplication utilities. This message contains a STARTING_VCN_INPUT_BUFFER data element.<32>
The STARTING_VCN_INPUT_BUFFER data element is as follows.
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	StartingVcn

	...

StartingVcn (8 bytes): A 64-bit signed integer that contains the virtual cluster number (VCN) at which to begin retrieving extents in the file. This value MUST be greater than or equal to 0.
[bookmark: section_bbbd76bf4a4743f88bae38bebba40dc7][bookmark: _Toc178847497]FSCTL_GET_RETRIEVAL_POINTERS_AND_REFCOUNT Reply
The FSCTL_GET_RETRIEVAL_POINTERS_AND_REFCOUNT reply message returns the results of the FSCTL_GET_RETRIEVAL_POINTERS AND_REFCOUNT request as a variably-sized data element, RETRIEVAL_POINTERS_AND_REFCOUNT_BUFFER, that specifies the allocation and location on disk of a specific file.
[bookmark: Appendix_A_Target_33]The FSCTL_GET_RETRIEVAL_POINTERS_AND_REFCOUNT reply returns the extent locations (that is, locations of allocated regions of disk space) and their reference counts of nonresident data. A file system MAY allow resident data, which is data that can be written to disk within the file's directory record. Because resident data requires no additional disk space allocation, no extent locations or reference counts are associated with resident data.<33>
The RETRIEVAL_POINTERS_AND_REFCOUNT_BUFFER data element is as follows.
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	ExtentCount

	Unused

	StartingVcn

	...

	Extents (variable)

	...

ExtentCount (4 bytes): A 32-bit unsigned integer that contains the number of EXTENT_AND_REFCOUNTS data elements in the Extents array. This number can be zero if there are no clusters allocated at (or beyond) the specified StartingVcn.
Unused (4 bytes): Reserved for alignment. This field can contain any value and MUST be ignored.
StartingVcn (8 bytes): A 64-bit signed integer that contains the starting virtual cluster number (VCN) returned by the FSCTL_GET_RETRIEVAL_POINTER_AND_REFCOUNT reply. This is not necessarily the VCN requested by the FSCTL_GET_RETRIEVAL_POINTERS request, as the file system driver might return the starting VCN of the extent containing the requested starting VCN. This value MUST be greater than or equal to 0.
Extents (variable): An array of zero or more EXTENT_AND_REFCOUNTS data elements. For the number of EXTENT_AND_REFCOUNTS data elements in the array, see ExtentCount.
[bookmark: section_dd2be29e4f604bb4b68a20f2c34ac0d2][bookmark: _Toc178847498]EXTENT_AND_REFCOUNTS
The EXTENT_AND_REFCOUNTS data element is as follows.
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	NextVcn

	...

	Lcn

	...

	ReferenceCount

NextVcn (8 bytes): A 64-bit signed integer that contains the VCN at which the next extent begins. This value minus either StartingVcn (for the first Extents array element) or the NextVcn of the previous element of the array (for all other Extents array elements) is the length in clusters of the current extent.
Lcn (8 bytes): A 64-bit signed integer that contains the logical cluster number (LCN) at which the current extent begins on the volume. A 64-bit value of -1 indicates either a compression unit that is partially allocated or an unallocated region of a sparse file. For more information about sparse files, see [SPARSE]. Compression is performed in 16-cluster units. If a given 16-cluster unit compresses to fit in, for example, 9 clusters, there will be a 7-cluster extent of the file with an LCN of -1.
ReferenceCount (4 bytes): A 32-bit unsigned integer that contains the reference count on the logical cluster number (LCN) at which the current extent begins on the volume. If no one else is using the corresponding LCN, the reference count will be 1.
This message also returns a status code as specified in section 2.2. Upon success, the status code returned by the function that processes this FSCTL is STATUS_SUCCESS. The most common error codes are listed in the following table.
	Error code
	Meaning

	STATUS_BUFFER_TOO_SMALL
0xC0000023
	The output buffer is too small to contain a RETRIEVAL_POINTERS_BUFFER structure.

	STATUS_INVALID_PARAMETER
0xC000000D
	The input buffer is too small to contain a STARTING_VCN_INPUT_BUFFER, or the StartingVcn given is negative, or the handle is not to a file or directory.

	STATUS_END_OF_FILE
0xC0000011
	The stream is resident in the MFT and has no clusters allocated, or the starting VCN is beyond the end of the file.

	STATUS_BUFFER_OVERFLOW
0x80000005
	The output buffer filled before all the extents for this file were returned.

[bookmark: section_38b85b3bed6d4a9ca83bb29f1684ba0b][bookmark: _Toc178847499]FSCTL_IS_PATHNAME_VALID Request
The FSCTL_IS_PATHNAME_VALID request message requests that the server indicate whether the specified pathname is well-formed (of acceptable length, with no invalid characters, and so on - see section 2.1.5) with respect to the volume that contains the file or directory associated with the handle on which this FSCTL was invoked.
The data element is as follows.
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	PathNameLength

	PathName (variable)

	...

PathNameLength (4 bytes): An unsigned 32-bit integer that specifies the length, in bytes, of the PathName data element.
PathName (variable): A variable-length Unicode string that specifies the path name.
[bookmark: section_afa2229987494f9d92145df0420bf4c8][bookmark: _Toc178847500]FSCTL_IS_PATHNAME_VALID Reply
This message returns the results of the FSCTL_IS_PATHNAME_VALID Request (section 2.3.35).
[bookmark: Appendix_A_Target_34]A STATUS_SUCCESS from this call means that the pathname is valid. An error means that the pathname is not valid.<34>
[bookmark: section_810bff3805fb43869faee103259757f3][bookmark: _Toc178847501]FSCTL_LMR_SET_LINK_TRACKING_INFORMATION Request
The FSCTL_LMR_SET_LINK_TRACKING_INFORMATION request message sets Distributed Link Tracking (DLT) information such as file system type, volume ID, object ID, and destination computer's NetBIOS name for the file or directory associated with the handle on which this FSCTL was invoked. For more information about Distributed Link Tracking (DLT), see [MS-DLTW] section 3.1.6.
There are two variations of this request, depending on whether it is embedded within [MS-SMB] or [MS-SMB2]. The request definitions are as follows.
· FSCTL_LMR_SET_LINK_TRACKING_INFORMATION Request for SMB
· FSCTL_LMR_SET_LINK_TRACKING_INFORMATION Request for SMB2
[bookmark: section_e688ad9537e94d58bb7624c5e6d96de1][bookmark: _Toc178847502]FSCTL_LMR_SET_LINK_TRACKING_INFORMATION Request for SMB
The message contains a REMOTE_LINK_TRACKING_INFORMATION32 data element. The SMB REMOTE_LINK_TRACKING_INFORMATION32 data element is as follows.
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	TargetFileObject

	TargetLinkTrackingInformationLength

	TargetLinkTrackingInformationBuffer (variable)

	...

TargetFileObject (4 bytes): The Fid of the file from which to obtain link tracking information. For Fid type, see [MS-SMB] section 2.2.7.2.1.
TargetLinkTrackingInformationLength (4 bytes): The length of the TargetLinkTrackingInformationBuffer.
TargetLinkTrackingInformationBuffer (variable): This field is as specified in TARGET_LINK_TRACKING_INFORMATION_Buffer.
[bookmark: section_a6a5985e913142f7aa521792967944f4][bookmark: _Toc178847503]FSCTL_LMR_SET_LINK_TRACKING_INFORMATION Request for SMB2
The message contains an SMB2_REMOTE_LINK_TRACKING_INFORMATION data element. The SMB2_REMOTE_LINK_TRACKING_INFORMATION data element is as follows.
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	TargetFileObject

	...

	TargetLinkTrackingInformationLength

	TargetLinkTrackingInformationBuffer (variable)

	...

TargetFileObject (8 bytes): Nonzero values of TargetFileObject are never used in the Server Message Block (SMB) Version 2 Protocol variant of the request. This field MUST be set to zero.
TargetLinkTrackingInformationLength (4 bytes): The length of the TargetLinkTrackingInformationBuffer field.
TargetLinkTrackingInformationBuffer (variable): This field is as specified in TARGET_LINK_TRACKING_INFORMATION_BUFFER.
[bookmark: section_0ac18b541d5542d8978f8054888f0cfc][bookmark: _Toc178847504]TARGET_LINK_TRACKING_INFORMATION_Buffer
The TARGET_LINK_TRACKING_INFORMATION_Buffer data element MUST take one of the following forms:
· TARGET_LINK_TRACKING_INFORMATION_Buffer_1 if the TargetLinkTrackingInformationLength value is less than 36.
· TARGET_LINK_TRACKING_INFORMATION_Buffer_2 if the TargetLinkTrackingInformationLength value is greater than or equal to 36.
[bookmark: section_6e267f448412498abbdabe12301857ac][bookmark: _Toc178847505]TARGET_LINK_TRACKING_INFORMATION_Buffer_1
If the TargetLinkTrackingInformationLength value is less than 36, the TARGET_LINK_TRACKING_INFORMATION_Buffer data element MUST be as follows.
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	NetBIOSName (variable)

	...

NetBIOSName (variable): A null-terminated ASCII string containing the NetBIOS name of the destination computer, if known. For more information, see [MS-DLTW] section 3.1.6. If not known, this field is zero length and contains nothing.
[bookmark: section_8581fb31a52c453f8014082006f0f5b6][bookmark: _Toc178847506]TARGET_LINK_TRACKING_INFORMATION_Buffer_2
If the TargetLinkTrackingInformationLength value is greater than or equal to 36, the TARGET_LINK_TRACKING_INFORMATION_Buffer data element MUST be as follows.
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	Type

	VolumeId (16 bytes)

	...

	...

	ObjectId (16 bytes)

	...

	...

	NetBIOSName (variable)

	...

Type (4 bytes): An unsigned 32-bit integer that indicates the type of file system on which the file is hosted on the destination computer. MUST be one of the following.
	Value
	Meaning

	0x00000000
	The destination file system is NTFS.

	0x00000001
	The destination file system is DFS. For more information, see [MSDFS].

VolumeId (16 bytes): A 16-byte GUID that uniquely identifies the volume for the object, as obtained from the ObjectId field of FileFsObjectIdInformation.
ObjectId (16 bytes): A 16-byte GUID that uniquely identifies the destination file or directory within the volume on which it resides, as indicated by VolumeId.
NetBIOSName (variable): A null-terminated ASCII string containing the NetBIOS name of the destination computer, if known. For more information, see [MS-DLTW] section 3.1.6. If not known, this field is zero length and contains nothing.
[bookmark: section_e502b3ae8caf44ebbd9b39009b417754][bookmark: _Toc178847507]FSCTL_LMR_SET_LINK_TRACKING_INFORMATION Reply
This message returns the results of the FSCTL_LMR_SET_LINK_TRACKING_INFORMATION request.
The only data item this message returns is a status code, as specified in section 2.2. Upon success, the status code returned by the function that processes this FSCTL is STATUS_SUCCESS. The most common error codes are listed in the following table.

	 Error code
	 Meaning

	STATUS_INVALID_PARAMETER
0xC000000D
	The input buffer length is smaller than the length of the required input data element.

[bookmark: section_2d5fef1713654af38285bd87c575f51d][bookmark: _Toc178847508]FSCTL_MARK_HANDLE Request
[bookmark: Appendix_A_Target_35]The FSCTL_MARK_HANDLE request is used to set specific operational state on the given file handle. This state is lost once the handle is closed.<35>
The MARK_HANDLE_INFO element is as follows:
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	CopyNumber

	Unused

	VolumeHandle

	...

	HandleInfo

	Reserved

CopyNumber (4 bytes): A 32-bit unsigned integer that identifies, when reading from a file which resides on redundant media, which copy to read.
Unused (4 bytes): Reserved for alignment. This field can contain any value and MUST be ignored.
VolumeHandle (8 bytes): A 64-bit HANDLE that is not used and MUST be set to zero.
HandleInfo (4 bytes): A 32-bit unsigned integer containing flags to identify the request. Only one of the following values can be set:
	Value
	Meaning

	MARK_HANDLE_READ_COPY
0x00000080
	When a file resides on redundant media (ex: mirrored or RAID) this tells the file system that read operations on this handle should only come from the specified copy of data.
When this state is not set a file system will return data from any copy available as it sees fit.
This operation is typically used by scrubber applications that want to validate the contents of all copies of data for a given file.

	MARK_HANDLE_NOT_READ_COPY
0x00000100
	When a file resides on redundant media (ex: mirrored or RAID) this tells the file system that read operations on this handle may come from any copy of the data as the file system sees fit. This turns off reading from a specific copy.

Reserved (4 Bytes): A 32-bit field. This field is reserved. This field SHOULD be set to 0, and MUST be ignored.
[bookmark: section_1e22e3bea73b4b7fb08bcfe7c88cca2a][bookmark: _Toc178847509]FSCTL_MARK_HANDLE Reply
This message returns the results of the FSCTL_MARK_HANDLE request.
The only data item this message returns is a status code, as specified in section 2.2. Upon success, the status code returned by the function that processes this FSCTL is STATUS_SUCCESS. The most common error codes are listed in the following table.
	Error code
	Meaning

	STATUS_INVALID_PARAMETER
0xC000000D
	This status is returned if:
· HandleInfo contains any flag other than one and only one of either MARK_HANDLE_READ_COPY or MARK_HANDLE_NOT_READ_COPY
· The file was opened for cached IO
· The specified copy number is greater than the number of available redundant copies

	STATUS_DIRECTORY_NOT_SUPPORTED
0xC000047C
	This operation is not supported on directory files.

	STATUS_NOT_REDUNDANT_STORAGE
0xC0000479
	This operation is only supported on redundant media.

	STATUS_COMPRESSED_FILE_NOT_SUPPORTED
0xC000047B
	This operation is not supported on compressed files.

[bookmark: section_5d41cf629ebc4f62b7d70d085552b6dd][bookmark: _Toc178847510]FSCTL_OFFLOAD_READ Request
[bookmark: Appendix_A_Target_36]The FSCTL_OFFLOAD_READ Request message requests that the server perform an Offload Read operation to a specified portion of a file on a target volume. On the client side, this request is received, processed, and sent down to an intelligent storage subsystem that generates and returns a Token in an FSCTL_OFFLOAD_READ Reply (section 2.3.42) message. This Token logically represents the data to be read and can be used with an FSCTL_OFFLOAD_WRITE Request (section 2.3.43) and an FSCTL_OFFLOAD_WRITE Reply (section 2.3.44) pair to complete the data movement.<36>
The request message contains an FSCTL_OFFLOAD_READ_INPUT data element, as follows.
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	Size

	Flags

	TokenTimeToLive

	Reserved

	FileOffset

	...

	CopyLength

	...

Size (4 bytes): A 32-bit unsigned integer that indicates the size, in bytes, of this data element.
Flags (4 bytes): A 32-bit unsigned integer that indicates the flags to be set for this operation. Currently, no flags are defined. This field SHOULD be set to 0x00000000 and MUST be ignored.
[bookmark: Appendix_A_Target_37]TokenTimeToLive (4 bytes): A 32-bit unsigned integer that contains the requested Time to Live (TTL) value in milliseconds for the generated Token. This value MUST be greater than or equal to 0x00000000. A value of 0x00000000 represents a default TTL interval.<37>
Reserved (4 bytes): A 32-bit unsigned integer field that is reserved. This field SHOULD be set to 0x00000000 and MUST be ignored.
FileOffset (8 bytes): A 64-bit unsigned integer that contains the file offset, in bytes, of the start of a range of bytes in a file from which to generate the Token. The value of this field MUST be greater than or equal to 0x0000000000000000 and MUST be aligned to a logical sector boundary on the volume.
[bookmark: Appendix_A_Target_38]CopyLength (8 bytes): A 64-bit unsigned integer that contains the size, in bytes, of the requested range of the file from which to generate the Token. The value of this field MUST be greater than or equal to 0x0000000000000000 and MUST be aligned to a logical sector boundary on the volume.<38>
[bookmark: section_b98a8325e6ec464abc1b8216b74f5828][bookmark: _Toc178847511]FSCTL_OFFLOAD_READ Reply
The FSCTL_OFFLOAD_READ Reply message returns the results of the FSCTL_OFFLOAD_READ Request (section 2.3.41).
The FSCTL_OFFLOAD_READ_OUTPUT data element is as follows.
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	Size

	Flags

	TransferLength

	...

	Token (512 bytes)

	...

	...

Size (4 bytes): A 32-bit unsigned integer that indicates the size, in bytes, of the returned data element.
Flags (4 bytes): A 32-bit unsigned integer that indicates which flags were returned for this operation. Possible values for the flags follow. All unused bits are reserved for future use, SHOULD be set to 0, and MUST be ignored.
	Value
	Meaning

	OFFLOAD_READ_FLAG_ALL_ZERO_BEYOND_CURRENT_RANGE
0x00000001
	The data beyond the current range is logically equivalent to zero.

TransferLength (8 bytes): A 64-bit unsigned integer that contains the amount, in bytes, of data that the Token logically represents. This value indicates a contiguous region of the file from the beginning of the requested offset in the FileOffset field in the FSCTL_OFFLOAD_READ_INPUT data element (section 2.3.41). This value can be smaller than the CopyLength field specified in the FSCTL_OFFLOAD_READ_INPUT data element, which indicates that less data was logically represented (logically read) with the Token than was requested. The value of this field MUST be greater than 0x0000000000000000 and MUST be aligned to a logical sector boundary on the volume.
[bookmark: Appendix_A_Target_39]Token (512 bytes): A STORAGE_OFFLOAD_TOKEN (section 2.1.11) structure that contains the generated Token to be used as a representation of the data contained within the portion of the file specified in the FSCTL_OFFLOAD_READ_INPUT data element at the time of the FSCTL_OFFLOAD_READ operation. The contents of this field MUST NOT be modified during subsequent operations.<39>
This message returns a status code as specified in section 2.2. Upon success, the status code returned by the function that processes this FSCTL is STATUS_SUCCESS. The most common error codes are listed in the following table.
	Error code
	Meaning

	STATUS_INVALID_DEVICE_REQUEST
0xC0000010
	The file system does not support offload operations.

	STATUS_INVALID_PARAMETER
0xC000000D
	At least one of the following assertions is true:
· The target file is smaller than the logical sector size.
· The FileOffset field is not a multiple of the logical sector size of the volume.
· The CopyLength field is not a multiple of the logical sector size of the volume.
· The Size field is not equivalent to the size of an FSCTL_OFFLOAD_READ_INPUT data element.
· Adding the FileOffset and CopyLength fields results in the overflow of a 64-bit value.

	STATUS_OFFLOAD_READ_FILE_NOT_SUPPORTED
0xC000A2A3
	Offload operations cannot be performed on:
· Compressed Files
· Sparse Files
· Encrypted Files
· File System Metadata Files

	STATUS_NOT_SUPPORTED
0xC00000BB
	The file system indicates that the volume does not support the Offload Read operation.

	STATUS_OFFLOAD_READ_FLT_NOT_SUPPORTED
0xC000A2A1
	A file system filter on the server has not opted in for Offload Read support.

	STATUS_FILE_DELETED
0xC0000123
	The specified data stream is not valid.

	STATUS_FILE_CLOSED
0xC0000128
	The specified file handle is closed.

	STATUS_END_OF_FILE
0xC0000011
	[bookmark: Appendix_A_Target_40]The file read starts beyond the End Of the File (EOF).<40>

	STATUS_INSUFFICIENT_RESOURCES
0xC000009A
	There were insufficient resources to complete the operation.

	STATUS_BUFFER_TOO_SMALL
0xC0000023
	The input buffer is too small to contain an FSCTL_OFFLOAD_READ_INPUT data element.
or
The output buffer is too small to contain an FSCTL_OFFLOAD_READ_OUTPUT data element.

	STATUS_DEVICE_FEATURE_NOT_SUPPORTED
0xC0000463
	The storage device does not support offload read.

[bookmark: section_3cd91845a5bb4c6cabcad4d731510d2e][bookmark: _Toc178847512]FSCTL_OFFLOAD_WRITE Request
[bookmark: Appendix_A_Target_41][bookmark: Appendix_A_Target_42]The FSCTL_OFFLOAD_WRITE Request message requests that the server perform an Offload Write operation to a specified portion of a file on a target volume, providing a Token to the server that indicates what data is to be logically written. On the server side, this request is received, processed, and sent to an intelligent storage subsystem that processes the Token and determines whether it can perform the data movement to the requested portion of the file. The Token is generated by an intelligent storage subsystem through an FSCTL_OFFLOAD_READ Request (section 2.3.41) or is constructed as a well-known Token type such as STORAGE_OFFLOAD_TOKEN in section 2.1.11.<41><42>
The request message contains an FSCTL_OFFLOAD_WRITE_INPUT data element, as follows:
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	Size

	Flags

	FileOffset

	...

	CopyLength

	...

	TransferOffset

	...

	Token (512 bytes)

	...

	...

Size (4 bytes): A 32-bit unsigned integer that indicates the size, in bytes, of this data element.
Flags (4 bytes): A 32-bit unsigned integer that indicates the flags to be set for this operation. Currently, no flags are defined. This field SHOULD be set to 0x00000000 and MUST be ignored.
FileOffset (8 bytes): A 64-bit unsigned integer that contains the file offset, in bytes, of the start of a range of bytes in a file at which to begin writing the data logically represented by the Token. The value of this field MUST be greater than or equal to 0x0000000000000000 and MUST be aligned to a logical sector boundary on the volume.
CopyLength (8 bytes): A 64-bit unsigned integer that contains the size, in bytes, of the requested range of the file to write the data logically represented by the Token. The value of this field MUST be greater than or equal to 0x0000000000000000 and MUST be aligned to a logical sector boundary on the volume. This value can be smaller than the size of the data logically represented by the Token.
TransferOffset (8 bytes): A 64-bit unsigned integer that contains the file offset, in bytes, relative to the front of a region of data logically represented by the Token at which to start writing. The value of this field MUST be greater than or equal to 0x0000000000000000 and MUST be aligned to a logical sector boundary on the volume.
Token (512 bytes): A STORAGE_OFFLOAD_TOKEN (section 2.1.11) structure that contains the generated (or constructed) Token to be used as a representation of the data to be logically written. The contents of this field MUST NOT be modified during subsequent operations.
[bookmark: section_14e885ff94764517bd16a82ddb29ca42][bookmark: _Toc178847513]FSCTL_OFFLOAD_WRITE Reply
The FSCTL_OFFLOAD_WRITE Reply message returns the results of the FSCTL_OFFLOAD_WRITE Request (section 2.3.43).
The FSCTL_OFFLOAD_WRITE_OUTPUT data element is as follows.
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	Size

	Flags

	LengthWritten

	...

Size (4 bytes): A 32-bit unsigned integer that indicates the size, in bytes, of the returned data element.
Flags (4 bytes): A 32-bit unsigned integer that indicates which flags were returned for this operation. Currently, no flags are defined. This field SHOULD be set to 0x00000000 and MUST be ignored.
[bookmark: Appendix_A_Target_43]LengthWritten (8 bytes): A 64-bit unsigned integer that contains the amount, in bytes, of data that was written. The value of this field MUST be greater than or equal to zero and MUST be aligned to a logical sector boundary on the volume. This value can be smaller than the CopyLength field specified in the FSCTL_OFFLOAD_WRITE_INPUT data element. A smaller value indicates that less data was logically written with the specified Token than was requested. This field MUST NOT be greater than the CopyLength field specified in the FSCTL_OFFLOAD_WRITE_INPUT data element, meaning it is incorrect to copy more than what was requested<43>.
This message returns a status code as specified in section 2.2. Upon success, the status code returned by the function that processes this FSCTL is STATUS_SUCCESS. The most common error codes are listed in the following table.
	Error code
	Meaning

	STATUS_INVALID_DEVICE_REQUEST
0xC0000010
	The file system does not support offload operations.

	STATUS_INVALID_PARAMETER
0xC000000D
	At least one of the following assertions is true:
· The target file is smaller than the logical sector size.
· The FileOffset field is not a multiple of the logical sector size of the volume.
· The CopyLength field is not a multiple of the logical sector size of the volume.
· The TransferOffset field is not a multiple of the logical sector size of the volume.
· The FileOffset field is greater than the Valid Data Length (VDL) for the file.
· The Size field is not equivalent to the size of an FSCTL_OFFLOAD_WRITE_INPUT data element.
· Adding the FileOffset and CopyLength fields results in the overflow of a 64-bit value.

	STATUS_OFFLOAD_WRITE_FILE_NOT_SUPPORTED
0xC000A2A4
	Offload operations cannot be performed on:
· Compressed Files
· Sparse Files
· Encrypted Files
· File System Metadata Files

	STATUS_NOT_SUPPORTED
0xC00000BB
	The file system indicates that the volume does not support the Offload Write operation.

	STATUS_OFFLOAD_WRITE_FLT_NOT_SUPPORTED
0xC000A2A2
	A file system filter on the server has not opted in for Offload Write support.

	STATUS_FILE_DELETED
0xC0000123
	The specified data stream was not valid.

	STATUS_FILE_CLOSED
0xC0000128
	The specified file handle is closed.

	STATUS_END_OF_FILE
0xC0000011
	The file offset for the write is beyond the End Of the File (EOF).

	STATUS_MEDIA_WRITE_PROTECTED
0xC00000A2
	The volume is read only.

	STATUS_INSUFFICIENT_RESOURCES
0xC000009A
	There were insufficient resources to complete the operation.

	STATUS_BUFFER_TOO_SMALL
0xC0000023
	The input buffer is too small to contain an FSCTL_OFFLOAD_WRITE_INPUT data element.
or
The output buffer is too small to contain an FSCTL_OFFLOAD_WRITE_OUTPUT data element.

	STATUS_DEVICE_FEATURE_NOT_SUPPORTED
0xC0000463
	The storage device does not support Offload Write.

	STATUS_DEVICE_UNREACHABLE
0xC0000464
	Data cannot be moved by Offload Write because the source device cannot communicate with the destination device.

	STATUS_INVALID_TOKEN
0xC0000465L
	The token representing the data is invalid or expired.

[bookmark: section_b6e51f60a6df4c2d9b2840092e816641][bookmark: _Toc178847514]FSCTL_PIPE_PEEK Request
The FSCTL_PIPE_PEEK request requests that the server copy a named pipe's data into a buffer for preview without removing it. The FSCTL_PIPE_PEEK request message is issued to invoke a reply, and does not have an associated data structure.
[bookmark: section_6b6c8b8bc5ac4fa59182619459fce7c7][bookmark: _Toc178847515]FSCTL_PIPE_PEEK Reply
The FSCTL_PIPE_PEEK response returns data from the pipe server's output buffer in the FSCTL output buffer. The structure of that data is as follows.
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	NamedPipeState

	ReadDataAvailable

	NumberOfMessages

	MessageLength

	Data (variable)

	...

NamedPipeState (4 bytes): A 32-bit unsigned integer referring to the current state of the pipe. The allowed values are shown in the following table.
	Pipe State
	Meaning

	FILE_PIPE_CONNECTED_STATE
0x00000003
	The specified named pipe is in the connected state.

	FILE_PIPE_CLOSING_STATE
0x00000004
	The server end of the specified named pipe has been closed, but data is still available for the client to read.

ReadDataAvailable (4 bytes): A 32-bit unsigned integer that specifies the size, in bytes, of the data available to read from the pipe.
NumberOfMessages (4 bytes): A 32-bit unsigned integer that specifies the number of messages available in the pipe if the pipe has been created as a message-type pipe. Otherwise, this field is 0.
MessageLength (4 bytes): A 32-bit unsigned integer that specifies the length of the first message available in the pipe if the pipe has been created as a message-type pipe. Otherwise, this field is 0.
Data (variable): A byte buffer of data from the pipe.
This message returns a status code as specified in section 2.2. Upon success, the status code returned by the function that processes this FSCTL is STATUS_SUCCESS. The most common error codes are listed in the following table.
	Error code
	Meaning

	STATUS_PIPE_DISCONNECTED
0xC00000B0
	The specified named pipe is in the disconnected state.

	STATUS_INVALID_PIPE_STATE
0xC00000AD
	The data cannot be read in the current state of the specified pipe.

	STATUS_PIPE_BROKEN
0xC000014B
	The pipe operation has failed because the other end of the pipe has been closed.

	STATUS_INVALID_USER_BUFFER
0xC00000E8
	An exception was raised while accessing a user buffer.

	STATUS_INSUFFICIENT_RESOURCES
0xC000009A
	There were insufficient resources to complete the operation.

	STATUS_INVALID_DEVICE_REQUEST
0xC0000010
	The type of the handle is not a pipe.

	STATUS_BUFFER_OVERFLOW
0x80000005
	The data was too large for the specified buffer. This is a warning, not an error. Response contains information including available data length and data that fits into the buffer.

For more information on named pipes, see [PIPE].
[bookmark: section_6598edc5374c4be2a65001a8189ca0d1][bookmark: _Toc178847516]FSCTL_PIPE_TRANSCEIVE Request
The FSCTL_PIPE_TRANSCEIVE request is used to send and receive data from an open pipe. Any bytes in the FSCTL input buffer are written as a binary large object (BLOB) to the input buffer of the pipe server.
The FSCTL input buffer does not have an associated structure. The buffer is a BLOB of bytes that are written into the associated pipe.
[bookmark: section_f48cecf198d848dc926f2f3a48f07cf6][bookmark: _Toc178847517]FSCTL_PIPE_TRANSCEIVE Reply
The FSCTL_PIPE_TRANSCEIVE response returns data from the pipe server's output buffer in the FSCTL output buffer.
This message returns a status code as specified in section 2.2. Upon success, the status code returned by the function that processes this FSCTL is STATUS_SUCCESS. The most common error codes are listed in the following table.
	 Error code
	 Meaning

	STATUS_PIPE_DISCONNECTED
0xC00000B0
	The specified named pipe is in the disconnected state.

	STATUS_INVALID_PIPE_STATE
0xC00000AD
	The named pipe is not in the connected state or not in the full-duplex message mode.

	STATUS_PIPE_BUSY
0xC00000AE
	The named pipe contains unread data.

	STATUS_INVALID_USER_BUFFER
0xC00000E8
	An exception was raised while accessing a user buffer.

	STATUS_INSUFFICIENT_RESOURCES
0xC000009A
	There were insufficient resources to complete the operation.

	STATUS_INVALID_DEVICE_REQUEST
0xC0000010
	The type of the handle is not a pipe.

	STATUS_BUFFER_OVERFLOW
0x80000005
	The data was too large to fit into the specified buffer.

For more information on named pipes, see [PIPE].
[bookmark: section_f030a3b9539c4c7ba89386b795b9b711][bookmark: _Toc178847518]FSCTL_PIPE_WAIT Request
The FSCTL_PIPE_WAIT Request requests that the server wait until either a time-out interval elapses, or an instance of the specified named pipe is available for connection.
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	Timeout

	...

	NameLength

	TimeoutSpecified
	Padding
	Name (variable)

	...

Timeout (8 bytes): A 64-bit signed integer that specifies the maximum amount of time, in units of 100 milliseconds, that the function can wait for an instance of the named pipe to be available.
NameLength (4 bytes): A 32-bit unsigned integer that specifies the size, in bytes, of the named pipe Name field.
TimeoutSpecified (1 byte): A Boolean (section 2.1.8) value that specifies whether or not the Timeout parameter will be ignored.
	Value
	Meaning

	FALSE
	Indicates that the server MUST wait forever (no timeout) for the named pipe. Any value in Timeout MUST be ignored.

	TRUE
	Indicates that the server MUST use the value in the Timeout parameter.

Padding (1 byte): The client SHOULD set this field to 0x00, and the server MUST ignore it.
Name (variable): A Unicode string that contains the name of the named pipe. Name MUST not include the "\pipe\", so if the operation was on \\server\pipe\pipename, the name would be "pipename".
For more information on named pipes, see [PIPE].
[bookmark: section_4d23fdb5840e456a858f6a238011179f][bookmark: _Toc178847519]FSCTL_PIPE_WAIT Reply
This message returns the results of the FSCTL_PIPE_WAIT request.
The only data item this message returns is a status code, as specified in section 2.2. Upon success, the status code returned by the function that processes this FSCTL is STATUS_SUCCESS. The most common error codes are listed in the following table.
	Error code
	Meaning

	STATUS_SUCCESS
0x00000000
	The specified named pipe is available for connection.

	STATUS_OBJECT_NAME_NOT_FOUND
0xC0000034
	The specified named pipe does not exist.
This error code is also returned when the pipe is closed during wait.

	STATUS_IO_TIMEOUT
0xC00000B5
	Timeout specified in the FSCTL_PIPE_WAIT request expired.

	STATUS_INSUFFICIENT_RESOURCES
0xC000009A
	There were insufficient resources to complete the operation.

	STATUS_INVALID_DEVICE_REQUEST
0xC0000010
	The type of the handle is not a pipe.

[bookmark: section_d2cde38ad0b94412b96652011f8cf6cb][bookmark: _Toc178847520]FSCTL_QUERY_ALLOCATED_RANGES Request
The FSCTL_QUERY_ALLOCATED_RANGES request message requests that the server scan a file or alternate stream looking for byte ranges that can contain nonzero data, and then return information on those ranges. Only sparse files can have zeroed ranges known to the operating system. For other files, the server will return only a single range that contains the starting point and the length requested. The request message contains a FILE_ALLOCATED_RANGE_BUFFER data element.
The FILE_ALLOCATED_RANGE_BUFFER data element is as follows.
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	FileOffset

	...

	Length

	...

FileOffset (8 bytes): A 64-bit signed integer that contains the file offset, in bytes, of the start of a range of bytes in a file. The value of this field MUST be greater than or equal to 0.
Length (8 bytes): A 64-bit signed integer that contains the size, in bytes, of the range. In a request message, the value of this field MUST be greater than or equal to 0. In a reply message, it MUST be greater than 0.
[bookmark: section_f413dfc431d34d688d87bd86ba896afd][bookmark: _Toc178847521]FSCTL_QUERY_ALLOCATED_RANGES Reply
The FSCTL_QUERY_ALLOCATED_RANGES Reply message returns the results of the FSCTL_QUERY_ALLOCATED_RANGES Request (section 2.3.51).
[bookmark: Appendix_A_Target_44]This message MUST return an array of zero or more FILE_ALLOCATED_RANGE_BUFFER data elements. The number of FILE_ALLOCATED_RANGE_BUFFER elements returned is computed by dividing the size of the returned output buffer (from either SMB or SMB2, the lower-layer protocol that carries the FSCTL) by the size of the FILE_ALLOCATED_RANGE_BUFFER element. Ranges returned MUST intersect the range specified in the FSCTL_QUERY_ALLOCATED_RANGES Request. Zero FILE_ALLOCATED_RANGE_BUFFER data elements MUST be returned when the file has no allocated ranges.<44>
The FILE_ALLOCATED_RANGE_BUFFER data element is as follows.
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	FileOffset

	...

	Length

	...

[bookmark: Appendix_A_Target_45][bookmark: Appendix_A_Target_46]FileOffset (8 bytes): A 64-bit signed integer that contains the file offset in bytes from the start of the file; the start of a range of bytes to which storage is allocated. If the file is a sparse file, it can contain ranges of bytes for which storage is not allocated; these ranges will be excluded from the list of allocated ranges returned by this FSCTL.<45> Because an application using a sparse file can choose whether or not to allocate disk space for each sequence of 0x00-valued bytes, the allocated ranges can contain 0x00-valued bytes. This value MUST be greater than or equal to 0.<46>
Length (8 bytes): A 64-bit signed integer that contains the size, in bytes, of the range. In a request message, the value of this field MUST be greater than or equal to 0. In a reply message, it MUST be greater than 0.
This message returns a status code as specified in section 2.2. Upon success, the status code returned by the function that processes this FSCTL is STATUS_SUCCESS. The most common error codes are listed in the following table.
	 Error code
	 Meaning

	STATUS_INVALID_PARAMETER
0xC000000D
	The handle is not to a file, or the size of the input buffer is less than the size of a FILE_ALLOCATED_RANGE_BUFFER structure, or the given FileOffset field value is less than zero, or the given Length field value is less than zero, or the given FileOffset field value plus the given Length field value is larger than 0x7FFFFFFFFFFFFFFF.

	STATUS_INVALID_USER_BUFFER
0xC00000E8
	The input buffer or output buffer is not aligned to a 4-byte boundary.

	STATUS_BUFFER_TOO_SMALL
0xC0000023
	The output buffer is too small to contain a FILE_ALLOCATED_RANGE_BUFFER structure.

	STATUS_BUFFER_OVERFLOW
0x80000005
	The output buffer is too small to contain the required number of FILE_ALLOCATED_RANGE_BUFFER structures.

[bookmark: section_2dbdd557ec024cfc87f0721d3cfb7628][bookmark: _Toc178847522]FSCTL_QUERY_FAT_BPB Request
This message requests that the server return the first 0x24 bytes of sector 0 for the volume that contains the file or directory associated with the handle on which this FSCTL was invoked. The first 0x24 bytes of sector 0 are known as the FAT BIOS Parameter Block (BPB), which contains hardware-specific bootstrap information.
This message does not contain any additional data elements.
This FSCTL is valid only for a FAT file system. All other file systems treat this as an invalid FSCTL.
[bookmark: section_0b136f58a290440080a0afb6f876c5a1][bookmark: _Toc178847523]FSCTL_QUERY_FAT_BPB Reply
The reply buffer contains the first 0x24 bytes of sector 0 for the volume associated with the handle on which this FSCTL was invoked.
This message also returns a status code as specified in section 2.2. Upon success, the status code returned by the function that processes this FSCTL is STATUS_SUCCESS. The most common error codes are listed in the following table.
	Error Code
	Meaning

	STATUS_INVALID_DEVICE_REQUEST
0xC0000010
	The specified request is not a valid operation for the target device.

	STATUS_BUFFER_TOO_SMALL
0xC0000023
	The buffer is too small to contain the entry. No information has been written to the buffer.

[bookmark: section_4630b33fa9554ce091b6fd4ba4aac1ce][bookmark: _Toc178847524]FSCTL_QUERY_FILE_REGIONS Request
The FSCTL_QUERY_FILE_REGIONS request message requests that the server return a list of file regions, based on a specified usage parameter, for the file associated with the handle on which this FSCTL was invoked. This message contains an optional FILE_REGION_INPUT data element. If no FILE_REGION_INPUT parameter is specified, information for the entire size of the file is returned.
A FILE_REGION_INPUT data element is as follows.
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	FileOffset

	...

	Length

	...

	DesiredUsage

	Reserved

FileOffset (8 bytes): A 64-bit signed integer that contains the file offset, in bytes, of the start of a range of bytes in a file.
Length (8 bytes): A 64-bit signed integer that contains the size, in bytes, of the range.
DesiredUsage (4 bytes): A 32-bit unsigned integer that indicates usage parameters for this operation. The following table provides the currently defined usage parameters.
	Value
	Meaning

	FILE_REGION_USAGE_VALID_CACHED_DATA
0x00000001
	[bookmark: Appendix_A_Target_47]Information about the valid data length for the specified file and file range in the cache will be returned.<47>

	FILE_REGION_USAGE_VALID_NONCACHED_DATA
0x00000002
	[bookmark: Appendix_A_Target_48]Information about the valid data length for the specified file and file range on disk will be returned.<48>

	All other values
	If a FILE_REGION_INPUT object is specified in FSCTL_QUERY_FILE_REGION, then any other value will return STATUS_INVALID_PARAMETER.

Reserved (4 bytes): A 32-bit unsigned integer that is reserved. This field SHOULD be 0x00000000 and MUST be ignored.
[bookmark: section_6a8b64a4ea264c5a8728c992dd657664][bookmark: _Toc178847525]FSCTL_QUERY_FILE_REGIONS Reply
The FSCTL_QUERY_FILE_REGIONS reply message returns the results of the FSCTL_QUERY_FILE_REGIONS Request as a variably sized data element, FILE_REGION_OUTPUT, which contains one or more FILE_REGION_INFO elements that contain the ranges computed as a result of the desired usage.
A FILE_REGION_OUTPUT data element is as follows.
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	Flags

	TotalRegionEntryCount

	RegionEntryCount

	Reserved

	Region (variable)

	...

	...

Flags (4 bytes): A 32-bit unsigned integer that indicates the flags for this operation. No flags are currently defined, thus this field SHOULD be set to 0x00000000 and MUST be ignored.
TotalRegionEntryCount (4 bytes): A 32-bit unsigned integer that indicates the total number of regions that could be returned.
RegionEntryCount (4 bytes): A 32-bit unsigned integer that indicates the number of regions that were actually returned and which are contained in this structure.
Reserved (4 bytes): A 32-bit unsigned integer that is reserved. This field SHOULD be set to 0x00000000 and MUST be ignored.
Region (variable): One or more FILE_REGION_INFO structures, as specified in section 2.3.56.1, that contain information on the desired ranges based on the desired usage indicated by the DesiredUsage field.
This message returns a status code as specified in section 2.2. Upon success, the status code returned by the function that processes this FSCTL is STATUS_SUCCESS. The most common error codes are listed in the following table.
	Error code
	Meaning

	STATUS_BUFFER_TOO_SMALL
0xC0000023
	The input buffer is too small to contain a FILE_REGION_INPUT structure, or the output buffer is too small to contain a FILE_REGION_OUTPUT structure.

	STATUS_BUFFER_OVERFLOW
0x80000005
	The output buffer was filled before all the desired regions for this file were returned.

	STATUS_INVALID_PARAMETER
0xC000000D
	A specified file region is invalid, or the specified desired usage flag is invalid, or the given handle is not for a file (but for a directory or volume instead).

[bookmark: section_3b8005c37ef04ef2a3e80dc96beb3420][bookmark: _Toc178847526]FILE_REGION_INFO
The FILE_REGION_INFO structure contains a computed region of a file based on a desired usage. This structure is used to store region information for the FSCTL_QUERY_FILE_REGIONS reply message, with the FILE_REGION_OUTPUT structure containing one or more FILE_REGION_INFO structures.
A FILE_REGION_INFO data element is as follows.
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	FileOffset

	...

	Length

	...

	DesiredUsage

	Reserved

FileOffset (8 bytes): A 64-bit signed integer that contains the file offset, in bytes, of the region.
Length (8 bytes): A 64-bit signed integer that contains the size, in bytes, of the region.
DesiredUsage (4 bytes): A 32-bit unsigned integer that indicates the usage for the given region of the file.
	Value
	Meaning

	0x00000000
	The given range is invalid. It does not match the criteria of the requested DesiredUsage as specified in section 2.3.55.

	FILE _USAGE_VALID_CACHED_DATA
0x00000001
	[bookmark: Appendix_A_Target_49]Defines those regions of the file that exists before VDL as it exists in the cache manager.<49>

	FILE _USAGE_VALID_NONCACHED_DATA
0x00000002
	[bookmark: Appendix_A_Target_50]Defines those regions of the files that exist before VDL on the storage device.<50>

Reserved (4 bytes): A 32-bit unsigned integer field that is reserved. This field SHOULD be set to 0x00000000 and MUST be ignored.
[bookmark: section_1361471ecf3a4437bcf35a742efd8f38][bookmark: _Toc178847527]FSCTL_QUERY_ON_DISK_VOLUME_INFO Request
This message requests UDF-specific volume information for the volume that contains the file or directory associated with the handle on which this FSCTL was invoked.
This message does not contain any additional data elements.
This FSCTL is only valid on UDF file systems. All other File Systems will treat this as an invalid FSCTL. For information regarding UDF, see [UDF].
[bookmark: section_69930ad31ad341d0810e12b19ecbf5e7][bookmark: _Toc178847528]FSCTL_QUERY_ON_DISK_VOLUME_INFO Reply
This message returns the results of the FSCTL_QUERY_ON_DISK_VOLUME_INFO request (section 2.3.57) as a FSCTL_QUERY_ON_DISK_VOLUME_INFO_BUFFER structure.
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	DirectoryCount

	...

	FileCount

	...

	FsFormatMajVersion
	FsFormatMinVersion

	FsFormatName (24 bytes)

	...

	...

	FormatTime

	...

	LastUpdateTime

	...

	CopyrightInfo (68 bytes)

	...

	...

	AbstractInfo (68 bytes)

	...

	...

	FormattingImplementationInfo (68 bytes)

	...

	...

	LastModifyingImplementationInfo (68 bytes)

	...

	...

DirectoryCount (8 bytes): A 64-bit signed integer. The number of directories on the specified volume. This member is -1 if the number is unknown.
[bookmark: Appendix_A_Target_51]For UDF file systems with a virtual allocation table, this information is available only if the UDF revision of the volume is greater than 1.50.<51>
FileCount (8 bytes): A 64-bit signed integer. The number of files on the specified volume. Returns -1 if the number is unknown.
For UDF file systems with a virtual allocation table, this information is available only if the UDF revision of the volume is greater than 1.50.
FsFormatMajVersion (2 bytes): A 16-bit signed integer. The major version number of the file system. Returns -1 if the number is unknown or not applicable. For example on UDF 1.02 file systems, 1 is returned.
FsFormatMinVersion (2 bytes): A 16-bit signed integer. The minor version number of the file system. Returns -1 if the number is unknown or not applicable. For example: on UDF 1.02 file systems, 2 is returned.
FsFormatName (24 bytes): Always returns "UDF" in Unicode characters followed by nine Unicode NULL characters.
FormatTime (8 bytes): The time the volume was formatted; see section 2.1.1.
LastUpdateTime (8 bytes): The time the volume was last updated; see section 2.1.1.
[bookmark: Appendix_A_Target_52]CopyrightInfo (68 bytes): A Unicode string containing any copyright notifications associated with the volume. This information is implementation-specific and will be padded with NULLs.<52>
[bookmark: Appendix_A_Target_53]AbstractInfo (68 bytes): A Unicode string containing any abstract information written on the volume. This information is implementation-specific and will be padded with NULLs.<53>
[bookmark: Appendix_A_Target_54]FormattingImplementationInfo (68 bytes): A Unicode string containing the operating system version that the volume was formatted by. This information is implementation-specific and will be padded with NULLs.<54>
[bookmark: Appendix_A_Target_55]LastModifyingImplementationInfo (68 bytes): A Unicode string containing the operating system version that the volume was last modified by. This information is implementation-specific and will be padded with NULLs.<55>
This message returns a status code as specified in section 2.2. Upon success, the status code returned by the function that processes this FSCTL is STATUS_SUCCESS. The most common error codes are listed in the following table.
	Error Code
	Meaning

	STATUS_INVALID_USER_BUFFER
0xC00000E8
	An access to a user buffer failed.

	STATUS_BUFFER_TOO_SMALL
0xC0000023
	The buffer is too small to contain the entry. No information has been written to the buffer.

	STATUS_INVALID_PARAMETER
0xC000000D
	An invalid parameter was passed to a service or function.

[bookmark: section_93578cd43ee645239195e6c055676a70][bookmark: _Toc178847529]FSCTL_QUERY_SPARING_INFO Request
Retrieves the defect management properties of the volume that contains the file or directory associated with the handle on which this FSCTL was invoked.
This message does not contain any additional data elements.
This FSCTL is only valid on UDF file systems. All other file systems will treat this as an invalid FSCTL. For information regarding UDF, see [UDF].
[bookmark: section_6ca2a1f50b7c45f5891b3ea5e9e757ae][bookmark: _Toc178847530]FSCTL_QUERY_SPARING_INFO Reply
This message returns the results of the FSCTL_QUERY_SPARING_INFO request (section 2.3.59) as a FSCTL_QUERY_SPARING_BUFFER structure.
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	SparingUnitBytes

	SoftwareSparing
	Reserved

	TotalSpareBlocks

	FreeSpareBlocks

SparingUnitBytes (4 bytes): A 32-bit unsigned integer that contains the size, in bytes, of a sparing packet, which is the same as the underlying error check and correction (ECC) block size of the media. For more information, see [UDF].
SoftwareSparing (1 byte): A Boolean (section 2.1.8) value. If TRUE, indicates that sparing behavior is software-based; if FALSE, it is hardware-based.
Reserved (3 bytes): A 24-bit reserved value. This field SHOULD be set to zero and MUST be ignored.
TotalSpareBlocks (4 bytes): A 32-bit unsigned integer that contains the total number of blocks allocated for sparing.
FreeSpareBlocks (4 bytes): A 32-bit unsigned integer that contains the number of blocks available for sparing.
This message returns a status code as specified in section 2.2. Upon success, the status code returned by the function that processes this FSCTL is STATUS_SUCCESS. The most common error codes are listed in the following table.
	Error code
	Meaning

	STATUS_INVALID_PARAMETER
0xC000000D
	An invalid parameter was passed to a service or function, or the buffer is too small to contain the entry.

[bookmark: section_d643cdfa5f4f4737a9054098d4577593][bookmark: _Toc178847531]FSCTL_READ_FILE_USN_DATA Request
[bookmark: Appendix_A_Target_56]This message requests that the server return the most recent change journal USN for the file or directory associated with the handle on which this FSCTL was invoked. This message contains an optional READ_FILE_USN_DATA data element.<56>
The READ_FILE_USN_DATA data element is as follows.
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	MinMajorVersion
	MaxMajorVersion

[bookmark: Appendix_A_Target_57]MinMajorVersion (2 bytes): A 16-bit unsigned integer that contains the minimum major version of records returned in the results of this request.<57>
[bookmark: Appendix_A_Target_58]MaxMajorVersion (2 bytes): A 16-bit unsigned integer that contains the maximum major version of records returned in the results of this request.<58>
[bookmark: section_8a86ae686d15487cb2b7da83a5ad5329][bookmark: _Toc178847532]FSCTL_READ_FILE_USN_DATA Reply
The FSCTL_READ_FILE_USN_DATA reply message returns the results of the FSCTL_READ_FILE_USN_DATA request as a USN_RECORD_V2 or a USN_RECORD_V3. Both forms of reply message begin with a USN_RECORD_COMMON_HEADER, which can be used to determine the form of the full reply message.
This message returns a status code as specified in section 2.2. Upon success, the status code returned by the function that processes this FSCTL is STATUS_SUCCESS. The most common error codes are listed in the following table.
	Error code
	Meaning

	STATUS_INVALID_PARAMETER
0xC000000D
	The handle is not to a file, directory or if invalid MinMajorVersion and MaxMajorVersion values are specified. .

	STATUS_INVALID_USER_BUFFER
0xC00000E8
	The output buffer is not aligned to a 4-byte boundary.

	STATUS_BUFFER_TOO_SMALL
0xC0000023
	The output buffer is too small to contain a USN_RECORD structure.

	STATUS_INVALID_DEVICE_REQUEST
0xC0000010
	The file system does not support the use of a USN change journal.

[bookmark: section_af93d2380e394847827d846e290f1a32][bookmark: _Toc178847533]USN_RECORD_COMMON_HEADER
The USN_RECORD_COMMON_HEADER element is as follows.
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	RecordLength

	MajorVersion
	MinorVersion

RecordLength (4 bytes): A 32-bit unsigned integer that contains the total length of the update sequence number (USN) record, in bytes.
[bookmark: Appendix_A_Target_59]MajorVersion (2 bytes): A 16-bit unsigned integer that contains the major version of the change journal software for this record. For example, if the change journal software is version 2.0, the major version number is 2.<59>
[bookmark: Appendix_A_Target_60]MinorVersion (2 bytes): A 16-bit unsigned integer that contains the minor version of the change journal software for this record. For example, if the change journal software is version 2.0, the minor version number is 0 (zero).<60>
[bookmark: section_d2a2b53ebf784ef390c721b918fab304][bookmark: _Toc178847534]USN_RECORD_V2
The USN_RECORD_V2 element is as follows.
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	RecordLength

	MajorVersion
	MinorVersion

	FileReferenceNumber

	...

	ParentFileReferenceNumber

	...

	Usn

	...

	TimeStamp

	...

	Reason

	SourceInfo

	SecurityId

	FileAttributes

	FileNameLength
	FileNameOffset

	FileName (variable)

	...

RecordLength (4 bytes): A 32-bit unsigned integer that contains the total length of the update sequence number (USN) record, in bytes.
MajorVersion (2 bytes): A 16-bit unsigned integer that contains the major version of the change journal software for this record. For a USN_RECORD_V2, the major version number is 2.
MinorVersion (2 bytes): A 16-bit unsigned integer that contains the minor version of the change journal software for this record. For a USN_RECORD_V2, the minor version number is 0 (zero).
FileReferenceNumber (8 bytes): The 64-bit file ID, as specified in section 2.1.9, of the file or directory for which this record notes changes.
ParentFileReferenceNumber (8 bytes): The 64-bit file ID, as specified in section 2.1.9, of the directory on which the file or directory that is associated with this record is located.
Usn (8 bytes): A 64-bit signed integer, opaque to the client, containing the USN of the record. This value is unique within the volume on which the file is stored. This value MUST be greater than or equal to 0. This value MUST be 0 if no USN change journal records have been logged for the file or directory associated with this record. For more information, see [MSDN-CJ].
TimeStamp (8 bytes): The absolute system time that this change journal event was logged; see section 2.1.1.
Reason (4 bytes): A 32-bit unsigned integer that contains flags that indicate reasons for changes that have accumulated in this file or directory journal record since the file or directory was opened. When a file or directory is closed, a final USN record is generated with the USN_REASON_CLOSE flag set in this field. The next change, occurring after the next open operation or deletion, starts a new record with a new set of reason flags. A rename or move operation generates two USN records: one that records the old parent directory for the item and one that records the new parent in the ParentFileReferenceNumber member. Possible values for the reason code are as follows (all unused bits are reserved for future use and MUST NOT be used).
	Value
	Meaning

	USN_REASON_BASIC_INFO_CHANGE
0x00008000
	A user has either changed one or more files or directory attributes (such as read-only, hidden, archive, or sparse) or one or more time stamps.

	USN_REASON_CLOSE
0x80000000
	The file or directory is closed.

	USN_REASON_COMPRESSION_CHANGE
0x00020000
	The compression state of the file or directory is changed from (or to) compressed.

	USN_REASON_DATA_EXTEND
0x00000002
	The file or directory is extended (added to).

	USN_REASON_DATA_OVERWRITE
0x00000001
	The data in the file or directory is overwritten.

	USN_REASON_DATA_TRUNCATION
0x00000004
	The file or directory is truncated.

	USN_REASON_EA_CHANGE
0x00000400
	The user made a change to the extended attributes of a file or directory. These NTFS file system attributes are not accessible to nonnative applications. This USN reason does not appear under normal system usage but can appear if an application or utility bypasses the Win32 API and uses the native API to create or modify extended attributes of a file or directory.

	USN_REASON_ENCRYPTION_CHANGE
0x00040000
	The file or directory is encrypted or decrypted.

	USN_REASON_FILE_CREATE
0x00000100
	The file or directory is created for the first time.

	USN_REASON_FILE_DELETE
0x00000200
	The file or directory is deleted.

	USN_REASON_HARD_LINK_CHANGE
0x00010000
	A hard link is added to (or removed from) the file or directory.

	USN_REASON_INDEXABLE_CHANGE
0x00004000
	A user changes the FILE_ATTRIBUTE_NOT_CONTEXT_INDEXED attribute. That is, the user changes the file or directory from one in which content can be indexed to one in which content cannot be indexed, or vice versa.

	USN_REASON_NAMED_DATA_EXTEND
0x00000020
	The one (or more) named data stream for a file is extended (added to).

	USN_REASON_NAMED_DATA_OVERWRITE
0x00000010
	The data in one (or more) named data stream for a file is overwritten.

	USN_REASON_NAMED_DATA_TRUNCATION
0x00000040
	One (or more) named data stream for a file is truncated.

	USN_REASON_OBJECT_ID_CHANGE
0x00080000
	The object identifier of a file or directory is changed.

	USN_REASON_RENAME_NEW_NAME
0x00002000
	A file or directory is renamed, and the file name in the USN_RECORD structure is the new name.

	USN_REASON_RENAME_OLD_NAME
0x00001000
	The file or directory is renamed, and the file name in the USN_RECORD structure is the previous name.

	USN_REASON_REPARSE_POINT_CHANGE
0x00100000
	The reparse point that is contained in a file or directory is changed, or a reparse point is added to (or deleted from) a file or directory.

	USN_REASON_SECURITY_CHANGE
0x00000800
	A change is made in the access rights to a file or directory.

	USN_REASON_STREAM_CHANGE
0x00200000
	A named stream is added to (or removed from) a file, or a named stream is renamed.

	USN_REASON_INTEGRITY_CHANGE
0x00800000
	A change is made in the integrity status of a file or directory.

SourceInfo (4 bytes): A 32-bit unsigned integer that provides additional information about the source of the change. When a thread writes a new USN record, the source information flags in the prior record continue to be present only if the thread also sets those flags. Therefore, the source information structure allows applications to filter out USN records that are set only by a known source, for example, an antivirus filter. This flag MUST contain one of the following values.
	Value
	Meaning

	USN_SOURCE_DATA_MANAGEMENT
0x00000001
	The operation provides information about a change to the file or directory that was made by the operating system. For example, a change journal record with this SourceInfo value is generated when the Remote Storage system moves data from external to local storage. This SourceInfo value indicates that the modifications did not change the application data in the file.

	USN_SOURCE_AUXILIARY_DATA
0x00000002
	The operation adds a private data stream to a file or directory. For example, a virus detector might add checksum information. As the virus detector modifies the item, the system generates USN records. This SourceInfo value indicates that the modifications did not change the application data in the file.

	USN_SOURCE_REPLICATION_MANAGEMENT
0x00000004
	The operation modified the file to match the content of the same file that exists in another member of the replica set for the File Replication Service (FRS).

SecurityId (4 bytes): A 32-bit unsigned integer that contains an index of a unique security identifier assigned to the file or directory associated with this record. This index is internal to the underlying object store and MUST be ignored.
FileAttributes (4 bytes): A 32-bit unsigned integer that contains attributes for the file or directory associated with this record. Attributes of streams associated with the file or directory are excluded. Valid file attributes are specified in section 2.6.
FileNameLength (2 bytes): A 16-bit unsigned integer that contains the length of the file or directory name associated with this record, in bytes. The FileName member contains this name. Use this member to determine file name length rather than depending on a trailing null to delimit the file name in FileName.
FileNameOffset (2 bytes): A 16-bit unsigned integer that contains the offset, in bytes, of the FileName member from the beginning of the structure.
FileName (variable): A variable-length field of Unicode characters containing the name of the file or directory associated with this record in Unicode format. When working with this field, do not assume that the file name will contain a trailing Unicode null character.
[bookmark: Appendix_A_Target_61]The fields Reason, TimeStamp, SourceInfo, and SecurityId for a USN RECORD element returned by this FSCTL MUST all be set to 0.<61>
[bookmark: section_bb07c6b874be49b5972304f4d9e3e44d][bookmark: _Toc178847535]USN_RECORD_V3
The USN_RECORD_V3 element is as follows.
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	RecordLength

	MajorVersion
	MinorVersion

	FileReferenceNumber (16 bytes)

	...

	...

	ParentFileReferenceNumber (16 bytes)

	...

	...

	Usn

	...

	TimeStamp

	...

	Reason

	SourceInfo

	SecurityId

	FileAttributes

	FileNameLength
	FileNameOffset

	FileName (variable)

	...

RecordLength (4 bytes): A 32-bit unsigned integer that contains the total length of the update sequence number (USN) record, in bytes.
MajorVersion (2 bytes): A 16-bit unsigned integer that contains the major version of the change journal software for this record. For a USN_RECORD_V3, the major version number is 3.
MinorVersion (2 bytes): A 16-bit unsigned integer that contains the minor version of the change journal software for this record. For a USN_RECORD_V3, the minor version number is 0 (zero).
FileReferenceNumber (16 bytes): The 128-bit file ID, as specified in section 2.1.10, of the file or directory for which this record notes changes.
ParentFileReferenceNumber (16 bytes): The 128-bit file ID, as specified in section 2.1.10, of the directory on which the file or directory that is associated with this record is located.
The fields Usn, TimeStamp, Reason, SourceInfo, SecurityId, FileAttributes, FileNameLength, FileNameOffset, and FileName for a USN RECORD_V3 element are as described for a USN_RECORD_V2 element; see section 2.3.62.2.
[bookmark: section_7458f032c36f4d66b3ebc905833ae4d8][bookmark: _Toc178847536]FSCTL_RECALL_FILE Request
This message requests that the server recall the file (associated with the handle on which this FSCTL was invoked) from storage media that Remote Storage manages. This FSCTL is not valid for directories.
Typically, files stored on media that is managed by Remote Storage are recalled when an application attempts to make the first access to data. An application that opens a file without immediately accessing the data can speed up the first access by using FSCTL_RECALL_FILE immediately after opening the file. For performance reasons, it is recommended that an application not recall a file unnecessarily.
This message does not contain any additional data elements.
[bookmark: section_5af8cf7a501848a9a9855cca387aa657][bookmark: _Toc178847537]FSCTL_RECALL_FILE Reply
This message returns the results of the FSCTL_RECALL_FILE request.
The only data item this message returns is a status code, as specified in section 2.2. Upon success, the status code returned by the function that processes this FSCTL is STATUS_SUCCESS. The most common error codes are listed in the following table.
	 Error code
	 Meaning

	STATUS_ACCESS_DENIED
0xC0000022
	The file is set to not allow recall.

	ERROR_INVALID_FUNCTION
0x00000001
	The Remote Storage option is not installed.

	STATUS_NOT_SUPPORTED
0xC00000BB
	The request is not supported.

	STATUS_INVALID_DEVICE_REQUEST
0xC0000010
	The supplied handle is not that of a file.

[bookmark: section_574ffe8609f94389a5b6104bcd00c63f][bookmark: _Toc178847538]FSCTL_REFS_STREAM_SNAPSHOT_MANAGEMENT Request
The FSCTL_REFS_STREAM_SNAPSHOT_MANAGEMENT request message requests that the server perform a specific stream snapshot operation on a given data stream contained in a file. The operation performed is dependent on the value defined in REFS_STREAM_SNAPSHOT_OPERATION. The request message takes the form of a REFS_STREAM_SNAPSHOT_MANAGEMENT_INPUT_BUFFER structure.
The REFS_STREAM_SNAPSHOT_MANAGEMENT_INPUT_BUFFER is as follows.
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	Operation

	SnapshotNameLength
	OperationInputBufferLength

	Reserved

	...

	...

	...

	NameAndInputBuffer (variable)

	...

Operation (4 bytes): This field specifies the operation and MUST contain one of the following values:
	Value
	Meaning

	REFS_STREAM_SNAPSHOT_OPERATION_INVALID
0x00000000
	All requests with this operational code MUST be failed by the server.

	REFS_STREAM_SNAPSHOT_OPERATION_CREATE
0x00000001
	This request message requests the server create a new snapshot of the UNICODE name contained within NameAndInputBuffer, saving a point-in-time view of the data stream represented by the handle the request is being sent on.

	REFS_STREAM_SNAPSHOT_OPERATION_LIST
0x00000002
	This request message requests the server return a list of all snapshots of the set containing the data stream represented by the handle the request is being sent on, and matching a given regular expression query string contained in NameAndInputBuffer.

	REFS_STREAM_SNAPSHOT_OPERATION_QUERY_DELTAS
0x00000003
	This request message requests the server return a list of all metadata extents that have incurred modifying operations between the data stream represented by the handle the request is being sent on, and the data stream represented by the UNICODE name contained in NameAndInputBuffer. The data stream represented by the handle must be of a newer creation time than the data stream represented by the UNICODE name.

	REFS_STREAM_SNAPSHOT_OPERATION_REVERT
0x00000004
	This request message requests the server revert the data stream represented by the handle the request is being sent on to a point-in-time snapshot view represented by the UNICODE name contained within NameAndInputBuffer.

	REFS_STREAM_SNAPSHOT_OPERATION_SET_SHADOW_BTREE
0x00000005
	This request message requests the server create a shadow data stream on the data stream represented by the handle the request is being sent on.

	REFS_STREAM_SNAPSHOT_OPERATION_CLEAR_SHADOW_BTREE
0x00000006
	This request message requests the server remove a shadow data stream on the data stream represented by the handle the request is being sent on.

	REFS_STREAM_SNAPSHOT_OPERATION_MAX
0x00000006
	The maximum operational code supported by the server. All operational codes larger than this numerical value will be failed.

SnapshotNameLength (2 bytes): An unsigned integer representing the length in bytes of the unicode name contained within NameAndInputBuffer field. If no such name is present in the message, then this value is set to zero.
OperationInputBufferLength (2 bytes): An unsigned integer representing the length in bytes of the operational control structure present in the message and contained within NameAndInputBuffer field. If no such control structure is present in the message, then this value is set to zero.
Reserved (16 bytes): This field MUST be set to zero and MUST be ignored.
NameAndInputBuffer (variable): An array of bytes optionally containing a unicode name as well as an operational control buffer. When a unicode name is present, it is located immediately within the first byte of NameAndInputBuffer. When an operational control buffer is present, it is located at the next quad aligned boundary past the end of the unicode name. If no such unicode name is present, then the operational control buffer is located at the first byte of NameAndInputBuffer.
The following Operation codes require a unicode name to be present:
· REFS_STREAM_SNAPSHOT_OPERATION_CREATE
· REFS_STREAM_SNAPSHOT_OPERATION_LIST
· REFS_STREAM_SNAPSHOT_OPERATION_QUERY_DELTAS
· REFS_STREAM_SNAPSHOT_OPERATION_REVERT
The following Operation code requires a control structure of the following type:
· REFS_STREAM_SNAPSHOT_OPERATION_QUERY_DELTAS requires a REFS_STREAM_SNAPSHOT_QUERY_DELTAS_INPUT_BUFFER to be present.
[bookmark: section_0bf8cad068924c57b2bf900dd08b4381][bookmark: _Toc178847539]REFS_STREAM_SNAPSHOT_QUERY_DELTAS_INPUT_BUFFER
The REFS_STREAM_SNAPSHOT_QUERY_DELTAS_INPUT_BUFFER is as follows:
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	StartingVcn

	...

	Flags

	Reserved

StartingVcn (8 bytes): A signed integer representing the starting VCN for which to perform the request on.
Flags (4 bytes): An unsigned integer representing flags to modify the behavior of the request. This field must be set to zero.
Reserved (4 bytes): This field MUST be set to zero and MUST be ignored.
[bookmark: section_0471b2c610064ac898bd356a522f1f72][bookmark: _Toc178847540]FSCTL_REFS_STREAM_SNAPSHOT_MANAGEMENT Reply
This message returns the result of the FSCTL_REFS_STREAM_SNAPSHOT_MANAGEMENT request.
The message returns either a status code, as specified in section 2.2, or depending on the operation, an output data payload.
The most common error codes are listed in the following table.
	Value
	Meaning

	STATUS_NOT_SUPPORTED
0xC00000BB
	The operation as requested is not supported, or the file system does not support snapshot operations.

	STATUS_INVALID_PARAMETER
0xC000000D
	One of the parameters to the request is incorrect.

	STATUS_INSUFFICIENT_RESOURCES
0xC000009A
	There were insufficient resources to complete the operation.

	STATUS_DISK_FULL
0xC000007F
	The disk is full.

	STATUS_MEDIA_WRITE_PROTECTED
0xC00000A2
	The volume is read-only.

	STATUS_SUCCESS
0x00000000
	The operation was successful.

[bookmark: section_454602e94103421490c8607771032997][bookmark: _Toc178847541]REFS_STREAM_SNAPSHOT_LIST_OUTPUT_BUFFER
The REFS_STREAM_SNAPSHOT_LIST_OUTPUT_BUFFER is as follows:
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	EntryCount

	BufferSizeRequiredForQuery

	Reserved

	...

	Entries (variable)

	...

EntryCount (4 bytes): An unsigned integer representing the number of entries contained within the Entries field.
BufferSizeRequiredForQuery (4 bytes): An unsigned integer representing the total number of bytes to fully satisfy the request. This value is accurate upon returning STATUS_SUCCESS as well as STATUS_BUFFER_OVERFLOW.
Reserved (8 bytes): This field MUST be set to zero and MUST be ignored.
Entries (variable): An array of REFS_STREAM_SNAPSHOT_LIST_OUTPUT_BUFFER_ENTRY structs.
[bookmark: section_f4b8edcab22149c79d1284dd9ab9d6aa][bookmark: _Toc178847542]REFS_STREAM_SNAPSHOT_LIST_OUTPUT_BUFFER_ENTRY
The REFS_STREAM_SNAPSHOT_LIST_OUTPUT_BUFFER_ENTRY is as follows:
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	NextEntryOffset

	SnapshotNameLength
	SnapshotCreationTime

	...

	...
	StreamSize

	...

	...
	StreamAllocationSize

	...

	...
	Reserved

	...

	...

	...

	...
	SnapshotName (variable)

	...

NextEntryOffset (4 bytes): An unsigned integer representing the offset in bytes to the next REFS_STREAM_SNAPSHOT_LIST_OUTPUT_BUFFER_ENTRY structure. When this value is zero there are no more entries in the array.
SnapshotNameLength (2 bytes): A unsigned integer representing the length of the UNICODE name contained in SnapshotName in bytes.
SnapshotCreationTime (8 bytes): An unsigned integer representing a FILETIME structure containing the creation time of the snapshot.
StreamSize (8 bytes): An unsigned integer representing the End-Of-File marker of the data stream represented by this entry.
StreamAllocationSize (8 bytes): An unsigned integer representing the size in bytes used by the data owned by the data stream represented by this entry.
Reserved (16 bytes): This field MUST be set to zero and MUST be ignored.
SnapshotName (variable): An array of WCHARs, as specified in [MS-DTYP] section 2.2.60, representing the UNICODE name for the snapshot representing this entry. The size of the array is defined in the SnapshotNameLength field.
[bookmark: section_c301f4d80d464c06a0d0454c97e72841][bookmark: _Toc178847543]REFS_STREAM_SNAPSHOT_QUERY_DELTAS_OUTPUT_BUFFER
The REFS_STREAM_SNAPSHOT_QUERY_DELTAS_OUTPUT_BUFFER is as follows:
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	ExtentCount

	Reserved

	...

	Extents (variable)

	...

ExtentCount (4 bytes): An unsigned integer representing the number of REFS_STREAM_EXTENT structs contained in the Extents field.
Reserved (8 bytes): This field MUST be set to zero and MUST be ignored.
Extents (variable): An array of REFS_STREAM_EXTENT structs.
[bookmark: section_cd428d958c7948c7806282746892ba20][bookmark: _Toc178847544]REFS_STREAM_EXTENT
The REFS_STREAM_EXTENT is as follows:
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	Vcn

	...

	Lcn

	...

	Length

	...

	Properties

Vcn (8 bytes): A signed integer representing a VCN within a data stream. This value will always be greater than zero.
Lcn (8 bytes): A signed integer representing the LCN mapping to Vcn in a data stream. This value will always be greater than zero.
Length (8 bytes): A signed integer representing the contiguous length in clusters for which the VCN to LCN mapping holds. This value will always be greater than zero.
Properties (4 bytes): A value representing the properties for this VCN to LCN mapping. The value MUST be one of the following:
	Value
	Meaning

	REFS_STREAM_EXTENT_PROPERTY_VALID
0x0010
	The metadata extent is considered valid, where the VCN to LCN mapping represents a written or zeroed extent.

	REFS_STREAM_EXTENT_PROPERTY_STREAM_RESERVED
0x0020
	The metadata extent does not map to an LCN, but instead contains a token representation an allocation reservation.

	REFS_STREAM_EXTENT_PROPERTY_CRC32
0x0080
	The metadata extent references data that is checksumed with the CRC32 algorithm.

	REFS_STREAM_EXTENT_PROPERTY_CRC64
0x0100
	The metadata extent references data that is checksumed with the CRC64 algorithm.

	REFS_STREAM_EXTENT_PROPERTY_GHOSTED
0x0200
	The metadata extent contains a ghosted recall buffer.

	REFS_STREAM_EXTENT_PROPERTY_READONLY
0x0400
	The metadata extent is a cached copy of a different metadata extent. This extent is immutable, and the LCN it references is not writable via this extent.

	REFS_STREAM_EXTENT_PROPERTY_SPARSE
0x0008
	The metadata extent represents a sparse range within the stream. The range represented by this extent is analogous to a sparse hole in the stream table.

[bookmark: section_77f650a3e3a24a25baac4bf9b36bcc46][bookmark: _Toc178847545]FSCTL_SET_COMPRESSION Request
The FSCTL_SET_COMPRESSION request message requests that the server set the compression state of the file or directory associated with the handle on which this FSCTL was invoked. The message contains a 16-bit unsigned integer.
The CompressionState element is as follows.
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	CompressionState

CompressionState (2 bytes): MUST be one of the following standard values.
	Value
	Meaning

	COMPRESSION_FORMAT_NONE
0x0000
	The file or directory is not compressed.

	COMPRESSION_FORMAT_DEFAULT
0x0001
	[bookmark: Appendix_A_Target_62]The file or directory is compressed by using the default compression algorithm.<62>

	COMPRESSION_FORMAT_LZNT1
0x0002
	The file or directory is compressed by using the LZNT1 compression algorithm. For more information, see [UASDC].

	All other values
	Reserved for future use and MUST NOT be used.

[bookmark: Appendix_A_Target_63]The actual file or directory compression performed when a server receives a request for COMPRESSION_FORMAT_DEFAULT and COMPRESSION_FORMAT_LZNT1 is implementation-dependent.<63>
If the file system of the volume containing the specified file or directory does not support per-file or per-directory compression, the request MUST NOT succeed. The error code returned in this situation is specified in section 2.2.
[bookmark: section_ff42e80601254fc2adf7e9db53bea161][bookmark: _Toc178847546]FSCTL_SET_COMPRESSION Reply
This message returns the results of the FSCTL_SET_COMPRESSION request.
The only data item this message returns is a status code, as specified in section 2.2. Upon success, the status code returned by the function that processes this FSCTL is STATUS_SUCCESS. The most common error codes are listed in the following table.
	 Error code
	 Meaning

	STATUS_INVALID_PARAMETER
0xC000000D
	The input buffer length is less than 2, or the handle is not to a file or directory, or the requested CompressionState is not one of the values listed in the table for CompressionState in FSCTL_SET_COMPRESSION Request (section 2.3.67).

	STATUS_INVALID_DEVICE_REQUEST
0xC0000010
	The volume does not allow compression.

	STATUS_DISK_FULL
0xC00007F
	The disk is full.

[bookmark: section_3ce96098fb24472eaf531fa211bda38b][bookmark: _Toc178847547]FSCTL_SET_DEFECT_MANAGEMENT Request
Sets the software defect management state for the specified file associated with the handle on which this FSCTL was invoked. Used for UDF file systems.
This message contains a FILE_SET_DEFECT_MGMT_BUFFER structure.
FILE_SET_DEFECT_MGMT_BUFFER is defined as follows.
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	Disable

Disable (1 byte): A Boolean (section 2.1.8) value. If TRUE, indicates that defect management will be disabled. If FALSE, indicates that defect management will be enabled.
This FSCTL is valid only on UDF file systems. All other file systems will treat this as an invalid FSCTL. For information regarding UDF, see [UDF].
[bookmark: section_ebfbf172018a4c56a29d409f83c36e34][bookmark: _Toc178847548]FSCTL_SET_DEFECT_MANAGEMENT Reply
The only data item this message returns is a status code, as specified in section 2.2. Upon success, the status code returned directly by the function that processes this FSCTL is STATUS_SUCCESS. The most common error codes are listed in the following table.
	Error code
	Meaning

	STATUS_INVALID_PARAMETER
0xC000000D
	An invalid parameter was passed to a service or function or the handle on which this FSCTL was invoked is that of a directory.

	STATUS_INVALID_DEVICE_REQUEST
0xC0000010
	The specified request is not a valid operation for the target device.

	STATUS_SHARING_VIOLATION
0xC0000043
	A file cannot be opened because the share access flags are incompatible.

	STATUS_VOLUME_DISMOUNTED
0xC000026E
	An operation was attempted to a volume after it was dismounted.

	STATUS_FILE_INVALID
0xC0000098
	The volume for a file has been externally altered such that the opened file is no longer valid.

	STATUS_WRONG_VOLUME
0xC0000012
	The wrong volume is in the drive.

	STATUS_VERIFY_REQUIRED
0x80000016
	The media has changed and a verify operation is in progress so no reads or writes can be performed to the device, except those used in the verify operation.

There are no additional data elements in this reply.
[bookmark: section_bf78ff7eb0a44ba988254af43682eb0d][bookmark: _Toc178847549]FSCTL_SET_ENCRYPTION Request
[bookmark: Appendix_A_Target_64][bookmark: Appendix_A_Target_65]The FSCTL_SET_ENCRYPTION request sets the encryption for the file or directory associated with the given handle.<64><65>
The message contains an ENCRYPTION_BUFFER structure that indicates whether to encrypt/decrypt a file or an individual stream.
ENCRYPTION_BUFFER is defined as follows.
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	EncryptionOperation

	Private
	Padding

EncryptionOperation (4 bytes): A 32-bit unsigned integer value that indicates the operation to be performed. The valid values are as follows.
	Value
	Meaning

	FILE_SET_ENCRYPTION
0x00000001
	[bookmark: Appendix_A_Target_66]This operation requests encryption of the specified file or directory.<66>

	FILE_CLEAR_ENCRYPTION
0x00000002
	[bookmark: Appendix_A_Target_67]This operation requests removal of encryption from the specified file or directory. It MUST fail if any streams for the file are marked encrypted.<67>

	STREAM_SET_ENCRYPTION
0x00000003
	[bookmark: Appendix_A_Target_68]This operation requests encryption of the specified stream.<68>

	STREAM_CLEAR_ENCRYPTION
0x00000004
	[bookmark: Appendix_A_Target_69]This operation requests the removal of encryption from the specified stream.<69>

[bookmark: Appendix_A_Target_70]Private (1 byte): An 8-bit unsigned char value.<70>
Padding (3 bytes): These bytes MUST be ignored.
[bookmark: section_4277a5592ebb4c2da26363ae5dc78115][bookmark: _Toc178847550]FSCTL_SET_ENCRYPTION Reply
This message returns the results of the FSCTL_SET_ENCRYPTION request. If the file system of the volume containing the specified file or directory does not support encryption, the request MUST NOT succeed. The error code returned in this situation varies, depending on the file system.
This message returns a status code, as specified in section 2.2, as well as a DECRYPTION_STATUS_BUFFER (section 2.3.72.1) if an output buffer is passed in.
[bookmark: Appendix_A_Target_71]Upon success, the status code returned by the function that processes this FSCTL is STATUS_SUCCESS<71>. The most common error codes are listed in the following table.
	 Error code
	 Meaning

	STATUS_MEDIA_WRITE_PROTECTED
0xC00000A2
	The disk cannot be written to because it is write-protected.

	STATUS_INVALID_PARAMETER
0xC000000D
	The EncryptionOperation field value is invalid, the open request is not for a file or directory or stream encryption has been requested on a stream that is compressed.

	STATUS_BUFFER_TOO_SMALL
0xC0000023
	The size of the input buffer is less than the size of the encryption buffer structure defined in section 2.3.71, or an output buffer is present and is smaller than a DECRYPTION_STATUS_BUFFER structure.

	STATUS_VOLUME_NOT_UPGRADED
0xC000029C
	[bookmark: Appendix_A_Target_72]The version of the file system on the volume does not support encryption.<72>

	STATUS_INVALID_DEVICE_REQUEST
0xC0000010
	[bookmark: Appendix_A_Target_73]The request was invalid for a system-specific reason.<73>

	STATUS_FILE_CORRUPT_ERROR
0xC0000102
	[bookmark: Appendix_A_Target_74]A required attribute is missing from a directory for which encryption was requested.<74>

	STATUS_VOLUME_DISMOUNTED
0xC000026E
	The volume is not mounted.

	STATUS_INVALID_USER_BUFFER
0xC00000E8
	An exception was raised while accessing a user buffer.

[bookmark: section_d02aafb50a9a4d35999063cc4a109849][bookmark: _Toc178847551]DECRYPTION_STATUS_BUFFER
The DECRYPTION_STATUS_BUFFER is defined as follows.
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	NoEncryptedStreams

NoEncryptedStreams (1 byte): A Boolean (section 2.1.8) value. A TRUE value means that the last encrypted stream of the specified file was just decrypted by an FSCTL_SET_ENCRYPTION operation; otherwise, a FALSE value is returned.
[bookmark: section_a4517cd53f5a4058a457bcff2baac011][bookmark: _Toc178847552]FSCTL_SET_INTEGRITY_INFORMATION Request
[bookmark: Appendix_A_Target_75]The FSCTL_SET_INTEGRITY_INFORMATION Request message requests that the server set the integrity state of the file or directory associated with the handle on which this FSCTL was invoked.<75>
If the file system of the volume containing the specified file or directory does not support integrity, the request MUST NOT succeed. The error code returned in this situation is specified in section 2.2.
The FSCTL_SET_INTEGRITY_INFORMATION_BUFFER element is as follows.
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	ChecksumAlgorithm
	Reserved

	Flags

ChecksumAlgorithm (2 bytes): For ReFS v1, the field MUST be set to one of the following standard values.
	Value
	Meaning

	CHECKSUM_TYPE_NONE
0x0000
	The file or directory is set to not use integrity.

	CHECKSUM_TYPE_CRC64
0x0002
	The file or directory is set to provide integrity using a CRC64 checksum.

	CHECKSUM_TYPE_UNCHANGED
0xFFFF
	The integrity status of the file or directory is unchanged.

	All other values
0x0003 — 0xFFFE
	Reserved for future use and MUST NOT be used.

For ReFS v2, the field MUST be set to one of the following standard values.
	Value
	Meaning

	CHECKSUM_TYPE_NONE
0x0000
	The file or directory is set to not use integrity.

	CHECKSUM_TYPE_CRC32
0x0001
	The file or directory is set to provide integrity using a CRC32 or CRC64 checksum. If the ReFS cluster size is 4KB, the checksum used is CRC32; otherwise, if the cluster size is 64K, the CRC64 checksum is used.

	CHECKSUM_TYPE_CRC64
0x0002
	The file or directory is set to provide integrity using a CRC32 or CRC64 checksum. If the ReFS cluster size is 4KB, the checksum used is CRC32; otherwise, if the cluster size is 64K, the CRC64 checksum is used.

	CHECKSUM_TYPE_UNCHANGED
0xFFFF
	The integrity status of the file or directory is unchanged.

	All other values
0x0003 — 0xFFFE
	Reserved for future use and MUST NOT be used.

Note that for ReFS v2 any value except CHECKSUM_TYPE_NONE or CHECKSUM_TYPE_UNCHANGED will set the integrity value to a file-system-selected integrity mechanism and is not guaranteed to use the user specified checksum value.
Reserved (2 bytes): A 16-bit reserved value. This field MUST be set to zero and MUST be ignored.
Flags (4 bytes): A 32-bit unsigned integer that contains zero or more of the following flag values. Flag values that are unspecified in the following table SHOULD be set to 0 and MUST be ignored.
	Value
	Meaning

	FSCTL_INTEGRITY_FLAG_CHECKSUM_ENFORCEMENT_OFF
0x00000001
	When set, if a checksum does not match, the associated I/O operation will not be failed.

[bookmark: section_1a8250db4db74f8d9027a8c7a6223dfe][bookmark: _Toc178847553]FSCTL_SET_INTEGRITY_INFORMATION Reply
This message returns the results of the FSCTL_SET_INTEGRITY_INFORMATION Request (section 2.3.73).
The only data item this message returns is a status code, as specified in section 2.2. Upon success, the status code returned by the function that processes this FSCTL is STATUS_SUCCESS. The most common error codes are listed in the following table.
	Error code
	Meaning

	STATUS_INVALID_PARAMETER
0xC000000D
	The input buffer length is less than the size, in bytes, of the FSCTL_SET_INTEGRITY_INFORMATION_BUFFER element; the handle is not to a file or directory; or the requested ChecksumAlgorithm field is not one of the values listed in the table for the ChecksumAlgorithm field in the FSCTL_SET_INTEGRITY_INFORMATION Request.

	STATUS_INVALID_DEVICE_REQUEST
0xC0000010
	The volume does not support integrity.

	STATUS_DISK_FULL
0xC000007F
	The disk is full.

	STATUS_NOT_SUPPORTED
0xC00000BB
	The file has been ghosted (allocation blocks are being shared).

[bookmark: section_e11a4bed4445494990b0d3bdbae36218][bookmark: _Toc178847554]FSCTL_SET_INTEGRITY_INFORMATION_EX Request
[bookmark: Appendix_A_Target_76]The FSCTL_SET_INTEGRITY_INFORMATION_EX Request message requests that the server set the integrity state of the file or directory associated with the handle on which this FSCTL was invoked.<76>
If the file system of the volume containing the specified file or directory does not support integrity, the request MUST NOT succeed. The error code returned in this situation is specified in section 2.2.
The FSCTL_SET_INTEGRITY_INFORMATION_BUFFER_EX element is as follows.
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	EnableIntegrity
	A
	Reserved1

	Flags

	Version
	Reserved2

	…

EnableIntegrity (1 byte): This field MUST be one of the following values:
	Value
	Meaning

	0x00
	The file or directory is set to not use integrity.

	0x01
	The file or directory is set to provide integrity using CRC32 or CRC64 checksum.

A - KeepIntegrityStateUnchanged (1 byte): This field MUST be one of the following values:
	Value
	Meaning

	0x00
	The file or directory integrity state should change based on the EnableIntegrity parameter.

	0x01
	The file or directory integrity state must not change.

Reserved1 (2 bytes): A 16-bit reserved value. This field MUST be set to zero and MUST be ignored.
Flags (4 bytes): A 32-bit unsigned integer that contains zero or more of the following flag values. Flag values that are unspecified in the following table SHOULD be set to 0 and MUST be ignored.
	Value
	Meaning

	FSCTL_INTEGRITY_FLAG_CHECKSUM_ENFORCEMENT_OFF
0x00000001
	When set, if a checksum does not match, the associated I/O operation will not be failed.

Version (1 byte): An 8-bit value. This field MUST be set to 1.
Reserved2 (7 bytes): A 56-bit reserved value. This field MUST be set to zero and MUST be ignored.
[bookmark: section_d4067aeaea8a4a2f979625ac0fa4f493][bookmark: _Toc178847555]FSCTL_SET_INTEGRITY_INFORMATION_EX Reply
This message returns the results of the FSCTL_SET_INTEGRITY_INFORMATION_EX Request (section 2.3.75).
The only data item this message returns is a status code, as specified in section 2.2. Upon success, the status code returned by the function that processes this FSCTL is STATUS_SUCCESS. The most common error codes are listed in the following table.
	Error code
	Meaning

	STATUS_INVALID_PARAMETER
0xC000000D
	The input buffer length is less than the size, in bytes, of the FSCTL_SET_INTEGRITY_INFORMATION_BUFFER_EX element; the handle is not to a file or directory; or Version is not equal to 1.

	STATUS_INVALID_DEVICE_REQUEST
0xC0000010
	The volume does not support integrity.

	STATUS_DISK_FULL
0xC000007F
	The disk is full.

	STATUS_NOT_SUPPORTED
0xC00000BB
	The file has been ghosted (allocation blocks are being shared).

[bookmark: section_f4bd6d4ad2d8424e818394ffdf0ad258][bookmark: _Toc178847556]FSCTL_SET_OBJECT_ID Request
[bookmark: Appendix_A_Target_77][bookmark: Appendix_A_Target_78]This message sets the object identifier for the file or directory associated with the handle on which this FSCTL was invoked. The message contains a FILE_OBJECTID_BUFFER (section 2.1.3) data element. Either a Type 1 or a Type 2 buffer is valid.<77><78>
[bookmark: section_786456745f2547abb41d777f8f218a88][bookmark: _Toc178847557]FSCTL_SET_OBJECT_ID Reply
This message returns the results of the FSCTL_SET_OBJECT_ID request.
If the file system of the volume containing the specified file or directory does not support the use of object IDs, the request will not succeed. The error code returned in this situation varies, depending on the file system.
The only data item this message returns is a status code, as specified in section 2.2. Upon success, the status code returned by the function that processes this FSCTL is STATUS_SUCCESS. The most common error codes are listed in the following table.
	 Error code
	 Meaning

	STATUS_INVALID_PARAMETER
0xC000000D
	The handle is not to a file or directory, or the input buffer's length is not equal to the size of a FILE_OBJECTID_BUFFER structure.

	STATUS_ACCESS_DENIED
0xC0000022
	The handle was not opened with write data or write attribute access as well as restore access.

	STATUS_OBJECT_NAME_COLLISION
0xC0000035
	The file or directory already has an object ID.

	STATUS_INVALID_DEVICE_REQUEST
0xC0000010
	The file system does not support the use of object IDs.

	STATUS_MEDIA_WRITE_PROTECTED
0xC00000A2
	The volume is write-protected and changes to it cannot be made.

[bookmark: section_757bc8faf24f44cf86dcadb2c113589d][bookmark: _Toc178847558]FSCTL_SET_OBJECT_ID_EXTENDED Request
The FSCTL_SET_OBJECT_ID_EXTENDED request message requests that the server set the extended information for the file or directory associated with the handle on which this FSCTL was invoked. The message contains an EXTENDED_INFO data element.
The EXTENDED_INFO data element is defined as follows.
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	ExtendedInfo (48 bytes)

	...

	...

[bookmark: Appendix_A_Target_79]ExtendedInfo (48 bytes): A 48-byte binary large object(BLOB) containing user-defined extended data that was passed to this FSCTL by an application. In this situation, the user refers to the implementer who is calling this FSCTL, meaning the extended info is opaque to NTFS; there are no rules enforced by NTFS as to what these last 48 bytes contain. Contrast this with the first 16 bytes of an object ID, which can be used to open the file, so NTFS requires that they be unique within a volume.<79>
[bookmark: section_aeb20b3d48e145ce88e92c2544b058a7][bookmark: _Toc178847559]FSCTL_SET_OBJECT_ID_EXTENDED Reply
This message returns the results of the FSCTL_SET_OBJECT_ID_EXTENDED request.
If the file system of the volume containing the specified file or directory does not support the use of ObjectIds, the request will not succeed. The error code returned in this situation varies, depending on the file system.
The only data item this message returns is a status code, as specified in section 2.2. Upon success, the status code returned by the function that processes this FSCTL is STATUS_SUCCESS. The most common error codes are listed in the following table.
	 Error code
	 Meaning

	STATUS_INVALID_PARAMETER
0xC000000D
	The handle is not to a file or directory, or the input buffer's length is not equal to the size of an EXTENDED_INFO structure.

	STATUS_ACCESS_DENIED
0xC0000022
	The handle was not opened with write data or write attribute access.

	STATUS_OBJECT_NAME_NOT_FOUND
0xC0000034
	The file or directory has no object ID.

	STATUS_INVALID_DEVICE_REQUEST
0xC0000010
	The file system does not support the use of object IDs.

[bookmark: section_4dc2b168f1774eeca14b25a51cbba2cf][bookmark: _Toc178847560]FSCTL_SET_REPARSE_POINT Request
This message requests that the server set a reparse point on the file or directory associated with the handle on which this FSCTL was invoked.
The message contains a REPARSE_GUID_DATA_BUFFER or a REPARSE_DATA_BUFFER (including subtypes) data element. Both the REPARSE_GUID_DATA_BUFFER and REPARSE_DATA_BUFFER structures begin with a ReparseTag field. The ReparseTag value uniquely identifies the filter driver that creates/uses the reparse point, and the filter driver processes the reparse point data as either a REPARSE_GUID_DATA_BUFFER or a REPARSE_DATA_BUFFER, depending on the structure implemented by the filter driver for that type of reparse point.
This message is applicable only to a file or directory handle, not to a volume handle.
[bookmark: section_da10bfabfe3b44e4b73ac91618e9ade6][bookmark: _Toc178847561]FSCTL_SET_REPARSE_POINT Reply
This message returns the results of the FSCTL_SET_REPARSE_POINT request.
If the file system of the volume containing the specified file or directory does not support reparse points, the request will not succeed. The error code returned in this situation varies, depending on the file system.
The only data item this message returns is a status code, as specified in section 2.2. Upon success, the status code returned by the function that processes this FSCTL is STATUS_SUCCESS. The most common error codes are listed in the following table.
	 Error code
	 Meaning

	STATUS_INVALID_PARAMETER
0xC000000D
	The handle is not to a file or directory, or the output buffer's length is greater than 0.

	STATUS_IO_REPARSE_DATA_INVALID
0xC0000278
	The input buffer length is less than the size of a REPARSE_DATA_BUFFER structure, or the input buffer length is greater than 16,384, or a REPARSE_DATA_BUFFER structure has been specified for a third party reparse tag, or the GUID specified for a third party reparse tag does not match the GUID known by the operating system for this reparse point, or the reparse tag is 0 or 1.

	STATUS_INVALID_DEVICE_REQUEST
0xC0000010
	The file system does not support reparse points.

[bookmark: section_6a884fe53da14abb84c4f419d349d878][bookmark: _Toc178847562]FSCTL_SET_SPARSE Request
[bookmark: Appendix_A_Target_80]This message requests that the server mark the file that is associated with the handle on which this FSCTL was invoked as sparse. In a sparse file, large ranges of zeros (0) might not require disk allocation. Space for nonzero data is allocated as the file is written. The message either has no data elements at all or it contains a FILE_SET_SPARSE_BUFFER element. If there is no data element, the sparse flag for the file is set, exactly as if the FILE_SET_SPARSE_BUFFER element was supplied and had a SetSparse value of TRUE.<80>
The FILE_SET_SPARSE_BUFFER element is as follows:
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	SetSparse

SetSparse (1 byte): A Boolean (section 2.1.8) value.
[bookmark: Appendix_A_Target_81]A FALSE value will cause the file system to attempt to "unsparse" the file by allocating clusters for any regions of the file that are currently sparsed. If the entire file is successfully unsparsed, the sparse flag is cleared for the file. If an error is encountered during unsparsing, any regions of the file that were unsparsed MAY<81> remain unsparsed.
[bookmark: Appendix_A_Target_82]A TRUE value will cause the sparse flag for the file to set. Currently allocated clusters SHOULD NOT<82> be deallocated.
[bookmark: section_17d3c7f7daef4f71b27fcec2c6561999][bookmark: _Toc178847563]FSCTL_SET_SPARSE Reply
This message returns the results of the FSCTL_SET_SPARSE request.
The only data item this message returns is a status code, as specified in section 2.2. Upon success, the status code returned by the function that processes this FSCTL is STATUS_SUCCESS. The most common error codes are listed in the following table.
	 Error code
	 Meaning

	STATUS_INVALID_PARAMETER
0xC000000D
	The handle is not to a file, or the input buffer length is nonzero and is less than the size of a FILE_SET_SPARSE_BUFFER structure.

	STATUS_ACCESS_DENIED
0xC0000022
	The handle is not open with write data or write attribute access.

[bookmark: section_6be5164f3eb64149b997c37df1444779][bookmark: _Toc178847564]FSCTL_SET_ZERO_DATA Request
The FSCTL_SET_ZERO_DATA request message requests that the server fill the specified range of the file (associated with the handle on which this FSCTL was invoked) with zeros. The message contains a FILE_ZERO_DATA_INFORMATION element.
The FILE_ZERO_DATA_INFORMATION element is as follows.
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	FileOffset

	...

	BeyondFinalZero

	...

FileOffset (8 bytes): A 64-bit signed integer that contains the file offset of the start of the range to set to zeros, in bytes. The value of this field MUST be greater than or equal to 0.
BeyondFinalZero (8 bytes): A 64-bit signed integer that contains the byte offset of the first byte beyond the last zeroed byte. The value of this field MUST be greater than or equal to 0.
[bookmark: Appendix_A_Target_83]How an implementation zeros data within a file is implementation-dependent. A file system MAY choose to deallocate regions of disk space that have been zeroed.<83>
[bookmark: section_c4c45fe52a4b4c51b7cc92648be8e70c][bookmark: _Toc178847565]FSCTL_SET_ZERO_DATA Reply
This message returns the results of the FSCTL_SET_ZERO_DATA request.
The only data item this message returns is a status code, as specified in section 2.2. Upon success, the status code returned by the function that processes this FSCTL is STATUS_SUCCESS. The most common error codes are listed in the following table.
	 Error code
	 Meaning

	STATUS_INVALID_PARAMETER
0xC000000D
	The handle is not to a file, or input buffer length is not equal to the size of a FILE_ZERO_DATA_INFORMATION structure, or the given FileOffset is less than zero, or the given BeyondFinalZero is less than zero, or the given FileOffset is greater than the given BeyondFinalZero.

	STATUS_ACCESS_DENIED
0xC0000022
	The handle is not open with write data or write attribute access.

[bookmark: section_e919ce3db6ab40c6a48e2c613911a5cf][bookmark: _Toc178847566]FSCTL_SET_ZERO_ON_DEALLOCATION Request
[bookmark: Appendix_A_Target_84]This message requests that the server fill the clusters of the target file with zeros when they are deallocated.<84> This is used to set a file to secure delete mode, which ensures that data will be zeroed upon file truncation or deletion.
There are several side effects associated with this operation.
· If the file is resident, it is converted to non-resident and the resident portion is zeroed.
· When reallocating ranges of a compressed file, the clusters are both zeroed and then replaced with a cluster representing compressed zeros before being reallocated.
This message does not contain any additional data elements.
[bookmark: section_023c3e6fae4c4513b0f529d09ac7dcdd][bookmark: _Toc178847567]FSCTL_SET_ZERO_ON_DEALLOCATION Reply
This message returns the results of the FSCTL_SET_ZERO_ON_DEALLOCATION request. The only data item this message returns is a status code, as specified in section 2.2. Upon success, the status code returned by the function that processes this FSCTL is STATUS_SUCCESS. The most common error codes are listed in the following table.
	 Error code
	 Meaning

	STATUS_ACCESS_DENIED
0xC0000022
	Zero on deallocation can only be set on a user file opened for write access and cannot be set on a directory.

[bookmark: section_2ceb5108f6e4484ebe43863a16a5b69a][bookmark: _Toc178847568]FSCTL_SIS_COPYFILE Request
The FSCTL_SIS_COPYFILE request message requests that the server use the single-instance storage (SIS) filter to copy a file. The message contains an SI_COPYFILE data element.
If the SIS filter is installed on the server, it will attempt to copy the specified source file to the specified destination file by creating an SIS link instead of actually copying the file data. If necessary and allowed, the source file is placed under SIS control before the destination file is created.
This FSCTL can be issued against either a file or directory handle. The source and destination files MUST reside on the volume associated with the given handle.
The SI_COPYFILE data element is as follows.
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	SourceFileNameLength

	DestinationFileNameLength

	Flags

	SourceFileName (variable)

	...

	DestinationFileName (variable)

	...

SourceFileNameLength (4 bytes): A 32-bit unsigned integer that contains the size, in bytes, of the SourceFileName element, including a terminating-Unicode null character.
DestinationFileNameLength (4 bytes): A 32-bit unsigned integer that contains the size, in bytes, of the DestinationFileName element, including a terminating-Unicode null character.
Flags (4 bytes): A 32-bit unsigned integer that contains zero or more of the following flag values. Flag values not specified in the following table SHOULD be set to 0 and MUST be ignored.
	Value
	Meaning

	COPYFILE_SIS_LINK
0x00000001
	If this flag is set, only create the destination file if the source file is already under SIS control. If the source file is not under SIS control, the FSCTL returns STATUS_OBJECT_TYPE_MISMATCH.
If this flag is not specified, place the source file under SIS control (if it is not already under SIS control), and create the destination file.

	COPYFILE_SIS_REPLACE
0x00000002
	If this flag is set, create the destination file if it does not exist; if it does exist, overwrite it.
If this flag is not specified, create the destination file if it does not exist; if it does exist, the FSCTL returns STATUS_OBJECT_NAME_COLLISION.

SourceFileName (variable): A null-terminated Unicode string containing the source file name.
[bookmark: Appendix_A_Target_85]DestinationFileName (variable): A null-terminated Unicode string containing the destination file name.<85>
[bookmark: section_6d9c22ab732f4f9e901748196fd0eb27][bookmark: _Toc178847569]FSCTL_SIS_COPYFILE Reply
This message returns the results of the FSCTL_SIS_COPYFILE request.
The only data item this message returns is a status code, as specified in section 2.2. Upon success, the status code returned by the function that processes this FSCTL is STATUS_SUCCESS. The most common error codes are listed in the following table.
	 Error code
	 Meaning

	STATUS_INVALID_PARAMETER
0xC000000D
	The input buffer is NULL, or the input buffer length is less than the size of the SI_COPYFILE structure, or the given SourceFileNameLength or DestinationFileNameLength is less than 2 or greater than the buffer length, or the given SourceFileNameLength plus DestinationFileNameLength is greater than the length of the given SourceFileName plus DestinationFileName in the input buffer, or the given SourceFileName or DestinationFileName is NULL, or the given SourceFileName or DestinationFileName is not null-terminated.

	STATUS_OBJECT_NAME_NOT_FOUND
0xC0000034
	The source file does not exist.

	STATUS_OBJECT_NAME_COLLISION
0xC0000035
	The COPYFILE_SIS_REPLACE flag was not specified, and the destination file exists, or the source and destination file are the same.

	STATUS_OBJECT_TYPE_MISMATCH
0xC0000024
	The COPYFILE_SIS_LINK flag was specified, and the source file is not under SIS control.

	STATUS_NOT_SAME_DEVICE
0xC00000D4
	The source and destination file names are not located on the same volume, or the source and destination file names are located on the same volume, but it is not the volume associated with the handle on which the FSCTL was performed.

	STATUS_INVALID_DEVICE_REQUEST
0xC0000010
	The single-instance storage (SIS) filter is not installed on the server.

	STATUS_FILE_IS_A_DIRECTORY
0xC00000BA
	The source or destination file is a directory.

	STATUS_ACCESS_DENIED
0xC0000022
	The caller is not an administrator.

[bookmark: section_0fdbe88960074522a5e5e3e94866df3d][bookmark: _Toc178847570]FSCTL_VIRTUAL_STORAGE_QUERY_PROPERTY Request
This request contains a message with the same structure as the IOCTL_STORAGE_QUERY_PROPERTY request (section 2.8.1) with the following values:
PropertyId (4 bytes): 0x00000004
QueryType (4 bytes): 0x00000000
[bookmark: Appendix_A_Target_86]Remote servers SHOULD ignore this request.<86>
[bookmark: section_059a4dea601f44a4b3687a7f5b668696][bookmark: _Toc178847571]FSCTL_WRITE_USN_CLOSE_RECORD Request
This message requests that the server generate a record in the server's file system change journal stream for the file or directory associated with the handle on which this FSCTL was invoked, indicating that the file or directory was closed. This FSCTL can be called independently of the actual file close operation to write a USN record and cause a post of any pending USN updates for the indicated file.
No data structure is associated with this request.
[bookmark: section_f2697e2dc79e4152ada232b2ea5a740f][bookmark: _Toc178847572]FSCTL_WRITE_USN_CLOSE_RECORD Reply
This message returns the results of the FSCTL_WRITE_USN_CLOSE_RECORD request as a single field, Usn, which is a 64-bit signed integer that contains the server file system's USN for the file or directory. This value MUST be greater than or equal to 0.
This message returns a status code as specified in section 2.2. Upon success, the status code returned by the function that processes this FSCTL is STATUS_SUCCESS. The most common error codes are listed in the following table.
	 Error code
	 Meaning

	STATUS_INVALID_PARAMETER
0xC000000D
	The handle is not to a file or directory, or the length of the output buffer is less than the size of a 64-bit integer, or the output buffer does not begin on a 4-byte boundary.

	STATUS_INVALID_DEVICE_REQUEST
0xC0000010
	The file system does not support the use of a USN change journal.

[bookmark: section_4718fc40e53940148e33b675af74e3e1][bookmark: _Toc178847573]File Information Classes
[bookmark: Appendix_A_Target_87][bookmark: Appendix_A_Target_88]File information classes are numerical values (specified by the Level column in the following table) that specify what information for a file is to be queried or set or for local use<87>. File information classes can require additional information to be included in the query or the response. When appropriate, the additional information is detailed in the file information class description. The table indicates which file information classes are supported for query and set operations.<88>
	File information class
	Level
	Uses

	FileAccessInformation
	8
	Query

	FileAlignmentInformation
	17
	Query

	FileAllInformation
	18
	Query

	FileAllocationInformation
	19
	Set

	FileAlternateNameInformation
	21
	Query

	FileAttributeTagInformation
	35
	Query

	FileBasicInformation
	4
	Query, Set

	FileBothDirectoryInformation
	3
	Query

	FileCompressionInformation
	28
	Query

	FileDirectoryInformation
	1
	Query

	FileDispositionInformation
	13
	Set

	FileEaInformation
	7
	Query

	FileEndOfFileInformation
	20
	Set

	FileFullDirectoryInformation
	2
	Query

	FileFullEaInformation
	15
	Query, Set

	FileHardLinkInformation
	46
	LOCAL

	FileId64ExtdBothDirectoryInformation
	79
	[bookmark: Appendix_A_Target_89]Query<89>

	FileId64ExtdDirectoryInformation
	78
	[bookmark: Appendix_A_Target_90]Query<90>

	FileIdAllExtdBothDirectoryInformation
	81
	[bookmark: Appendix_A_Target_91]Query<91>

	FileIdAllExtdDirectoryInformation
	80
	[bookmark: Appendix_A_Target_92]Query<92>

	FileIdBothDirectoryInformation
	37
	Query

	FileIdExtdDirectoryInformation
	60
	Query

	FileIdFullDirectoryInformation
	38
	Query

	FileIdGlobalTxDirectoryInformation
	50
	LOCAL

	FileIdInformation
	59
	[bookmark: Appendix_A_Target_93]Query<93>

	FileInternalInformation
	6
	Query

	FileLinkInformation
	11
	Set

	FileMailslotQueryInformation
	26
	LOCAL

	FileMailslotSetInformation
	27
	LOCAL

	FileModeInformation
	16
	[bookmark: Appendix_A_Target_94]Query, Set<94>

	FileMoveClusterInformation
	31
	<95>

	FileNameInformation
	9
	LOCAL

	FileNamesInformation
	12
	Query

	FileNetworkOpenInformation
	34
	Query

	FileNormalizedNameInformation
	48
	[bookmark: Appendix_A_Target_96]Query<96>

	FileObjectIdInformation
	29
	LOCAL

	FilePipeInformation
	23
	Query, Set

	FilePipeLocalInformation
	24
	Query

	FilePipeRemoteInformation
	25
	Query

	FilePositionInformation
	14
	Query, Set

	FileQuotaInformation
	32
	[bookmark: Appendix_A_Target_97]Query, Set<97>

	FileRenameInformation
	10
	Set

	FileReparsePointInformation
	33
	LOCAL

	FileSfioReserveInformation
	44
	LOCAL

	FileSfioVolumeInformation
	45
	<98>

	FileShortNameInformation
	40
	Set

	FileStandardInformation
	5
	Query

	FileStandardLinkInformation
	54
	LOCAL

	FileStreamInformation
	22
	Query

	FileTrackingInformation
	36
	LOCAL

	FileValidDataLengthInformation
	39
	Set

If an information class is specified that does not match the usage in the above table, STATUS_INVALID_INFO_CLASS MUST be returned. If a file system does not support a specific file information class, STATUS_INVALID_PARAMETER MUST be returned.
[bookmark: section_01cf43d2deb340d3a39b9e68693d7c90][bookmark: _Toc178847574]FileAccessInformation
This information class is used to query the access rights of a file that were granted when the file was opened.
A FILE_ACCESS_INFORMATION data element, defined as follows, is returned by the server.
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	AccessFlags

AccessFlags (4 bytes): A 32-bit unsigned integer that MUST contain values specified in [MS-SMB2] section 2.2.13.1.
This operation returns a status code as specified in section 2.2. Upon success, the status code returned by the function that processes this file information class is STATUS_SUCCESS. The most common error codes are listed in the following table.
	Error code
	Meaning

	STATUS_INFO_LENGTH_MISMATCH
0xC0000004
	The specified information record length does not match the length that is required for the specified information class.

[bookmark: section_95f3056aebc14f5db9383f68a44677a6][bookmark: _Toc178847575]FileAllInformation
This information class is used to query a collection of file information structures.
A FILE_ALL_INFORMATION data element, defined as follows, is returned by the server.
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	BasicInformation (40 bytes)

	...

	...

	StandardInformation (24 bytes)

	...

	...

	InternalInformation

	...

	EaInformation

	AccessInformation

	PositionInformation

	...

	ModeInformation

	AlignmentInformation

	NameInformation (variable)

	...

BasicInformation (40 bytes): A FILE_BASIC_INFORMATION structure specified in section 2.4.7.
StandardInformation (24 bytes): A FILE_STANDARD_INFORMATION structure specified in section 2.4.45.
InternalInformation (8 bytes): A FILE_INTERNAL_INFORMATION structure specified in section 2.4.26.
EaInformation (4 bytes): A FILE_EA_INFORMATION structure specified in section 2.4.12.
AccessInformation (4 bytes): A FILE_ACCESS_INFORMATION structure specified in section 2.4.1.
PositionInformation (8 bytes): A FILE_POSITION_INFORMATION structure specified in section 2.4.39.
ModeInformation (4 bytes): A FILE_MODE_INFORMATION structure specified in section 2.4.30.
AlignmentInformation (4 bytes): A FILE_ALIGNMENT_INFORMATION structure specified in section 2.4.3.
NameInformation (variable): A FILE_NAME_INFORMATION structure specified in section 2.4.31.
This operation returns a status code as specified in section 2.2. Upon success, the status code returned by the function that processes this file information class is STATUS_SUCCESS. The most common error codes are listed in the following table.
	Error code
	Meaning

	STATUS_INFO_LENGTH_MISMATCH
0xC0000004
	The specified information record length does not match the length that is required for the specified information class.

[bookmark: section_9b0b997185aa46518438f1c4298bcb0d][bookmark: _Toc178847576]FileAlignmentInformation
This information class is used to query the buffer alignment required by the underlying device.
A FILE_ALIGNMENT_INFORMATION data element, defined as follows, is returned by the server.
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	AlignmentRequirement

AlignmentRequirement (4 bytes): A 32-bit unsigned integer that MUST contain one of the following values.
	Value
	Meaning

	FILE_BYTE_ALIGNMENT
0x00000000
	Specifies that there are no alignment requirements for the device.

	FILE_WORD_ALIGNMENT
0x00000001
	Specifies that data MUST be aligned on a 2-byte boundary.

	FILE_LONG_ALIGNMENT
0x00000003
	Specifies that data MUST be aligned on a 4-byte boundary.

	FILE_QUAD_ALIGNMENT
0x00000007
	Specifies that data MUST be aligned on an 8-byte boundary.

	FILE_OCTA_ALIGNMENT
0X0000000F
	Specifies that data MUST be aligned on a 16-byte boundary.

	FILE_32_BYTE_ALIGNMENT
0X0000001F
	Specifies that data MUST be aligned on a 32-byte boundary.

	FILE_64_BYTE_ALIGNMENT
0X0000003F
	Specifies that data MUST be aligned on a 64-byte boundary.

	FILE_128_BYTE_ALIGNMENT
0X0000007F
	Specifies that data MUST be aligned on a 128-byte boundary.

	FILE_256_BYTE_ALIGNMENT
0X000000FF
	Specifies that data MUST be aligned on a 256-byte boundary.

	FILE_512_BYTE_ALIGNMENT
0X000001FF
	Specifies that data MUST be aligned on a 512-byte boundary.

This operation returns a status code as specified in section 2.2. Upon success, the status code returned by the function that processes this file information class is STATUS_SUCCESS. The most common error codes are listed in the following table.
	Error code
	Meaning

	STATUS_INFO_LENGTH_MISMATCH
0xC0000004
	The specified information record length does not match the length that is required for the specified information class.

[bookmark: section_0201c69b50db412dbab3dd97aeede13b][bookmark: _Toc178847577]FileAllocationInformation
[bookmark: Appendix_A_Target_99][bookmark: Appendix_A_Target_100]This information class is used to set but not to query the allocation size for a file. The file system is passed a 64-bit signed integer containing the file allocation size, in bytes. The file system rounds the requested allocation size up to an integer multiple of the cluster size for nonresident files, or an implementation-defined multiple for resident files.<99><100> All unused allocation (beyond EOF) is freed on the last handle close.
A FILE_ALLOCATION_INFORMATION data element, defined as follows, is provided by the client.
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	AllocationSize

	...

AllocationSize (8 bytes): A 64-bit signed integer that contains the desired allocation to be used by the given file.
This operation returns a status code as specified in section 2.2. Upon success, the status code returned by the function that processes this file information class is STATUS_SUCCESS. The most common error codes are listed in the following table.
	Error code
	Meaning

	STATUS_INVALID_PARAMETER
0xC000000D
	The handle is for a directory and not a file, or the allocation is greater than the maximum file size allowed.

	STATUS_ACCESS_DENIED
0xC0000022
	The handle was not opened to write file data or file attributes.

	STATUS_DISK_FULL
0xC000007F
	The disk is full.

	STATUS_INFO_LENGTH_MISMATCH
0xC0000004
	The specified information record length does not match the length that is required for the specified information class.

[bookmark: section_cb90d9e0695d44188d89a29e2ba9faf8][bookmark: _Toc178847578]FileAlternateNameInformation
[bookmark: Appendix_A_Target_101]This information class is used to query alternate name information for a file. The alternate name for a file is its 8.3 format name (eight characters that appear before the "." and three characters that appear after). A file MAY have an alternate name to achieve compatibility with the 8.3 naming requirements of legacy applications.<101>
A FILE_NAME_INFORMATION (section 2.1.7) data element containing an 8.3 file name (section 2.1.5.2.1) is returned by the server.
This operation returns a status code as specified in section 2.2. Upon success, the status code returned by the function that processes this file information class is STATUS_SUCCESS. The most common error codes are listed in the following table.
	Error code
	Meaning

	STATUS_INFO_LENGTH_MISMATCH
0xC0000004
	The specified information record length does not match the length that is required for the specified information class.

	STATUS_OBJECT_NAME_NOT_FOUND
0xC0000034
	The object name is not found or is empty.

	STATUS_BUFFER_OVERFLOW
0x80000005
	The output buffer was filled before the complete name could be returned.

[bookmark: section_d295752fce894b988553266d37c84f0e][bookmark: _Toc178847579]FileAttributeTagInformation
This information class is used to query for attribute and reparse tag information for a file.
A FILE_ATTRIBUTE_TAG_INFORMATION data element, defined as follows, is returned by the server.
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	FileAttributes

	ReparseTag

FileAttributes (4 bytes): A 32-bit unsigned integer that contains the file attributes. Valid file attributes are as specified in section 2.6.
ReparseTag (4 bytes): A 32-bit unsigned integer that specifies the reparse point tag. If the FileAttributes member includes the FILE_ATTRIBUTE_REPARSE_POINT attribute flag, this member specifies the reparse tag. Otherwise, this member SHOULD be set to 0, and MUST be ignored. Section 2.1.2.1 contains more details on reparse tags.
This operation returns a status code as specified in section 2.2. Upon success, the status code returned by the function that processes this file information class is STATUS_SUCCESS. The most common error codes are listed in the following table.
	Error code
	Meaning

	STATUS_INFO_LENGTH_MISMATCH
0xC0000004
	The specified information record length does not match the length that is required for the specified information class.

	STATUS_ACCESS_DENIED
0xC0000022
	The handle was not opened to read file data or file attributes.

[bookmark: section_160230258a78492f8b96c873b042ac50][bookmark: _Toc178847580]FileBasicInformation
This information class is used to query or set file information.
A FILE_BASIC_INFORMATION data element, defined as follows, is returned by the server or provided by the client.
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	CreationTime

	...

	LastAccessTime

	...

	LastWriteTime

	...

	ChangeTime

	...

	FileAttributes

	Reserved

[bookmark: Appendix_A_Target_102]CreationTime (8 bytes): The time when the file was created; see section 2.1.1. A valid time for this field is an integer greater than or equal to 0. When setting file attributes, a value of 0 indicates to the server that it MUST NOT change this attribute. When setting file attributes, a value of -1 indicates to the server that it MUST NOT change this attribute for all subsequent operations on the same file handle. When setting file attributes, a value of -2 indicates to the server that it MUST change this attribute for all subsequent operations on the same file handle. This field MUST NOT be set to a value less than -2.<102>
[bookmark: Appendix_A_Target_103]LastAccessTime (8 bytes): The last time the file was accessed; see section 2.1.1. A valid time for this field is an integer greater than or equal to 0. When setting file attributes, a value of 0 indicates to the server that it MUST NOT change this attribute. When setting file attributes, a value of -1 indicates to the server that it MUST NOT change this attribute for all subsequent operations on the same file handle. When setting file attributes, a value of -2 indicates to the server that it MUST change this attribute for all subsequent operations on the same file handle. This field MUST NOT be set to a value less than -2.<103>
[bookmark: Appendix_A_Target_104]LastWriteTime (8 bytes): The last time information was written to the file; see section 2.1.1. A valid time for this field is an integer greater than or equal to 0. When setting file attributes, a value of 0 indicates to the server that it MUST NOT change this attribute. When setting file attributes, a value of -1 indicates to the server that it MUST NOT change this attribute for all subsequent operations on the same file handle. When setting file attributes, a value of -2 indicates to the server that it MUST change this attribute for all subsequent operations on the same file handle. This field MUST NOT be set to a value less than -2.<104>
[bookmark: Appendix_A_Target_105]ChangeTime (8 bytes): The last time the file was changed; see section 2.1.1. A valid time for this field is an integer greater than or equal to 0. When setting file attributes, a value of 0 indicates to the server that it MUST NOT change this attribute. When setting file attributes, a value of -1 indicates to the server that it MUST NOT change this attribute for all subsequent operations on the same file handle. When setting file attributes, a value of -2 indicates to the server that it MUST change this attribute for all subsequent operations on the same file handle. This field MUST NOT be set to a value less than -2.<105>
FileAttributes (4 bytes): A 32-bit unsigned integer that contains the file attributes. Valid file attributes are specified in section 2.6.
Reserved (4 bytes): A 32-bit field. This field is reserved. This field can be set to any value, and MUST be ignored.
This operation returns a status code as specified in section 2.2. Upon success, the status code returned by the function that processes this file information class is STATUS_SUCCESS. The most common error codes are listed in the following table.
	Error code
	Meaning

	STATUS_INFO_LENGTH_MISMATCH
0xC0000004
	The specified information record length does not match the length that is required for the specified information class.

	STATUS_ACCESS_DENIED
0xC0000022
	The handle was not opened to read file data or file attributes.

[bookmark: section_270df3179ba54ccbba008d22be139bc5][bookmark: _Toc178847581]FileBothDirectoryInformation
This information class is used in directory enumeration to return detailed information about the contents of a directory.
This information class returns a list that contains a FILE_BOTH_DIR_INFORMATION data element for each file or directory within the target directory.
This information class differs from FileDirectoryInformation (section 2.4.10) in that it includes short names in the returns list.
When multiple FILE_BOTH_DIR_INFORMATION data elements are present in the buffer, each MUST be aligned on an 8-byte boundary. Any bytes inserted for alignment SHOULD be set to zero, and the receiver MUST ignore them. No padding is required following the last data element.
A FILE_BOTH_DIR_INFORMATION data element is as follows.
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	NextEntryOffset

	FileIndex

	CreationTime

	...

	LastAccessTime

	...

	LastWriteTime

	...

	ChangeTime

	...

	EndOfFile

	...

	AllocationSize

	...

	FileAttributes

	FileNameLength

	EaSize

	ShortNameLength
	Reserved
	ShortName (24 bytes)

	...

	...

	...
	FileName (variable)

	...

NextEntryOffset (4 bytes): A 32-bit unsigned integer that contains the byte offset from the beginning of this entry, at which the next FILE_BOTH_DIR_INFORMATION entry is located, if multiple entries are present in a buffer. This member is zero if no other entries follow this one. An implementation MUST use this value to determine the location of the next entry (if multiple entries are present in a buffer).
[bookmark: Appendix_A_Target_106]FileIndex (4 bytes): A 32-bit unsigned integer that contains the byte offset of the file within the parent directory. For file systems in which the position of a file within the parent directory is not fixed and can be changed at any time to maintain sort order, this field SHOULD be set to 0 and MUST be ignored.<106>
CreationTime (8 bytes): The time when the file was created; see section 2.1.1. This value MUST be greater than or equal to 0.
LastAccessTime (8 bytes): The last time the file was accessed; see section 2.1.1. This value MUST be greater than or equal to 0.
LastWriteTime (8 bytes): The last time information was written to the file; see section 2.1.1. This value MUST be greater than or equal to 0.
ChangeTime (8 bytes): The last time the file was changed; see section 2.1.1. This value MUST be greater than or equal to 0.
EndOfFile (8 bytes): A 64-bit signed integer that contains the absolute new end-of-file position as a byte offset from the start of the file. EndOfFile specifies the offset to the byte immediately following the last valid byte in the file. Because this value is zero-based, it actually refers to the first free byte in the file. That is, it is the offset from the beginning of the file at which new bytes appended to the file will be written. The value of this field MUST be greater than or equal to 0.
AllocationSize (8 bytes): A 64-bit signed integer that contains the file allocation size, in bytes. The value of this field MUST be an integer multiple of the cluster size.
FileAttributes (4 bytes): A 32-bit unsigned integer that contains the file attributes. Valid file attributes are specified in section 2.6.
FileNameLength (4 bytes): A 32-bit unsigned integer that specifies the length, in bytes, of the file name contained within the FileName member.
EaSize (4 bytes): If FILE_ATTRIBUTE_REPARSE_POINT is set in the FileAttributes field, this field MUST contain a reparse tag as specified in section 2.1.2.1. Otherwise, this field is a 32-bit unsigned integer that contains the combined length, in bytes, of the extended attributes (EA) for the file.
ShortNameLength (1 byte): An 8-bit signed integer that specifies the length, in bytes, of the file name contained in the ShortName member. This value MUST be greater than or equal to 0.
Reserved (1 byte): Reserved for alignment. This field can contain any value and MUST be ignored.
ShortName (24 bytes): A sequence of Unicode characters containing the short (8.3) file name. When working with this field, use ShortNameLength to determine the length of the file name rather than assuming the presence of a trailing null delimiter.
FileName (variable): A sequence of Unicode characters containing the file name. When working with this field, use FileNameLength to determine the length of the file name rather than assuming the presence of a trailing null delimiter. Dot directory names are valid for this field. For more details, see section 2.1.5.1.
This operation returns a status code as specified in section 2.2. Upon success, the status code returned by the function that processes this file information class is STATUS_SUCCESS. The most common error codes are listed in the following table.
	Error code
	Meaning

	STATUS_INFO_LENGTH_MISMATCH
0xC0000004
	The specified information record length does not match the length that is required for the specified information class.

[bookmark: section_0a7e50c42839438eaa6c0da7d681a5a7][bookmark: _Toc178847582]FileCompressionInformation
This information class is used to query compression information for a file.
A FILE_COMPRESSION_INFORMATION data element, defined as follows, is returned by the server.
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	CompressedFileSize

	...

	CompressionFormat
	CompressionUnitShift
	ChunkShift

	ClusterShift
	Reserved

CompressedFileSize (8 bytes): A 64-bit signed integer that contains the size, in bytes, of the compressed file. This value MUST be greater than or equal to 0.
[bookmark: Appendix_A_Target_107]CompressionFormat (2 bytes): A 16-bit unsigned integer that contains the compression format. The actual compression operation associated with each of these compression format values is implementation-dependent. An implementation can link any local compression algorithm with the values described in the following table because the compressed data does not travel across the wire in the context of FSCTL, FileInformation class, or FileSystemInformation class requests or replies.<107>
	Value
	Meaning

	COMPRESSION_FORMAT_NONE
0x0000
	The file or directory is not compressed.

	COMPRESSION_FORMAT_LZNT1
0x0002
	The file or directory is compressed by using the LZNT1 compression algorithm.

	All other values
	Reserved for future use.

[bookmark: Appendix_A_Target_108]CompressionUnitShift (1 byte): An 8-bit unsigned integer that contains the compression unit shift, which is the number of bits by which to left-shift a 1 bit to arrive at the compression unit size. The compression unit size is the number of bytes in a compression unit, that is, the number of bytes to be compressed. This value is implementation-defined.<108>
[bookmark: Appendix_A_Target_109]ChunkShift (1 byte): An 8-bit unsigned integer that contains the compression chunk size shift, which is the number of bits by which to left-shift a 1 bit to arrive at the compression chunk size. The chunk size is the number of bytes that the operating system's implementation of the Lempel-Ziv compression algorithm tries to compress at one time. This value is implementation-defined.<109>
[bookmark: Appendix_A_Target_110]ClusterShift (1 byte): An 8-bit unsigned integer that contains the cluster size shift, which is the number of bits by which to left-shift a 1 bit to arrive at the cluster size. The cluster size specifies the amount of space that is saved by compression to successfully compress a compression unit. If a cluster size amount of space is not saved by compression, the data in that compression unit is stored uncompressed. Each successfully compressed compression unit MUST occupy at least one cluster less than the uncompressed compression unit. This value is implementation-defined.<110>
Reserved (3 bytes): A 24-bit reserved value. This field SHOULD be set to 0, and MUST be ignored.
This operation returns a status code as specified in section 2.2. Upon success, the status code returned by the function that processes this file information class is STATUS_SUCCESS. The most common error codes are listed in the following table.
	Error code
	Meaning

	STATUS_INFO_LENGTH_MISMATCH
0xC0000004
	The specified information record length does not match the length that is required for the specified information class.

	STATUS_BUFFER_OVERFLOW
0x80000005
	The data was too large to fit into the specified buffer. No data is returned.

[bookmark: section_b38bf51890574c889ddd5e2d3976a64b][bookmark: _Toc178847583]FileDirectoryInformation
This information class is used in directory enumeration to return detailed information about the contents of a directory.
This information class returns a list that contains a FILE_DIRECTORY_INFORMATION data element for each file or directory within the target directory.
When multiple FILE_DIRECTORY_INFORMATION data elements are present in the buffer, each MUST be aligned on an 8-byte boundary. Any bytes inserted for alignment SHOULD be set to zero, and the receiver MUST ignore them. No padding is required following the last data element.
A FILE_DIRECTORY_INFORMATION data element is as follows.
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	NextEntryOffset

	FileIndex

	CreationTime

	...

	LastAccessTime

	...

	LastWriteTime

	...

	ChangeTime

	...

	EndOfFile

	...

	AllocationSize

	...

	FileAttributes

	FileNameLength

	FileName (variable)

	...

NextEntryOffset (4 bytes): A 32-bit unsigned integer that contains the byte offset from the beginning of this entry, at which the next FILE_DIRECTORY_INFORMATION entry is located, if multiple entries are present in a buffer. This member MUST be zero if no other entries follow this one. An implementation MUST use this value to determine the location of the next entry (if multiple entries are present in a buffer).
[bookmark: Appendix_A_Target_111]FileIndex (4 bytes): A 32-bit unsigned integer that contains the byte offset of the file within the parent directory. For file systems in which the position of a file within the parent directory is not fixed and can be changed at any time to maintain sort order, this field SHOULD be set to 0 and MUST be ignored.<111>
CreationTime (8 bytes): The time when the file was created; see section 2.1.1. This value MUST be greater than or equal to 0.
LastAccessTime (8 bytes): The last time the file was accessed; see section 2.1.1. This value MUST be greater than or equal to 0.
LastWriteTime (8 bytes): The last time information was written to the file; see section 2.1.1. This value MUST be greater than or equal to 0.
ChangeTime (8 bytes): The last time the file was changed; see section 2.1.1. This value MUST be greater than or equal to 0.
EndOfFile (8 bytes): A 64-bit signed integer that contains the absolute new end-of-file position as a byte offset from the start of the file. EndOfFile specifies the offset to the byte immediately following the last valid byte in the file. Because this value is zero-based, it actually refers to the first free byte in the file. That is, it is the offset from the beginning of the file at which new bytes appended to the file will be written. The value of this field MUST be greater than or equal to 0.
AllocationSize (8 bytes): A 64-bit signed integer that contains the file allocation size, in bytes. The value of this field MUST be an integer multiple of the cluster size.
FileAttributes (4 bytes): A 32-bit unsigned integer that contains the file attributes. Valid attributes are as specified in section 2.6.
FileNameLength (4 bytes): A 32-bit unsigned integer that specifies the length, in bytes, of the file name contained within the FileName member.
FileName (variable): A sequence of Unicode characters containing the file name. When working with this field, use FileNameLength to determine the length of the file name rather than assuming the presence of a trailing null delimiter. Dot directory names are valid for this field. For more details, see section 2.1.5.1.
This operation returns a status code as specified in section 2.2. Upon success, the status code returned by the function that processes this file information class is STATUS_SUCCESS. The most common error codes are listed in the following table.
	Error code
	Meaning

	STATUS_INFO_LENGTH_MISMATCH
0xC0000004
	The specified information record length does not match the length that is required for the specified information class.

[bookmark: section_12c3dd1c14f642299d2975fb2cb392f6][bookmark: _Toc178847584]FileDispositionInformation
This information class is used to mark a file for deletion.
A FILE_DISPOSITION_INFORMATION data element, defined as follows, is provided by the client.
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	DeletePending

[bookmark: Appendix_A_Target_112]DeletePending (1 byte): An 8-bit field that is set to 1 to indicate that a file SHOULD be deleted when it is closed; otherwise, 0.<112>
For a discussion of file deletion semantics, see [FSBO].
This operation returns a status code as specified in section 2.2. Upon success, the status code returned by the function that processes this file information class is STATUS_SUCCESS. The most common error codes are listed in the following table.
	Error code
	Meaning

	STATUS_ACCESS_DENIED
0xC0000022
	The handle was not opened with delete access.

	STATUS_INFO_LENGTH_MISMATCH
0xC0000004
	The specified information record length does not match the length that is required for the specified information class.

	STATUS_DIRECTORY_NOT_EMPTY
0xC0000101
	Indicates that the directory trying to be deleted is not empty.

[bookmark: section_db6cf109ead8441ab29ecb2032778b0f][bookmark: _Toc178847585]FileEaInformation
This information class is used to query for the size of the extended attributes (EA) for a file. An extended attribute is a piece of application-specific metadata that an application can link with a file that is not part of the file's data. For more information about extended attributes, see [MS-CIFS] section 2.2.1.2.
A FILE_EA_INFORMATION data element, defined as follows, is returned by the server.
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	EaSize

EaSize (4 bytes): A 32-bit unsigned integer that contains the combined length, in bytes, of the extended attributes (EA) for the file.
This operation returns a status code as specified in section 2.2. Upon success, the status code returned by the function that processes this file information class is STATUS_SUCCESS. The most common error codes are listed in the following table.
	Error code
	Meaning

	STATUS_INFO_LENGTH_MISMATCH
0xC0000004
	The specified information record length does not match the length that is required for the specified information class.

[bookmark: section_75241cca3167472f8058a52d77c6bb17][bookmark: _Toc178847586]FileEndOfFileInformation
This information class is used to set end-of-file information for a file.
A FILE_END_OF_FILE_INFORMATION data element, defined as follows, is provided by the client.
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	EndOfFile

	...

EndOfFile (8 bytes): A 64-bit signed integer that contains the absolute new end of file position as a byte offset from the start of the file. EndOfFile specifies the offset from the beginning of the file of the byte following the last byte in the file. That is, it is the offset from the beginning of the file at which new bytes appended to the file will be written. The value of this field MUST be greater than or equal to 0.
This operation returns a status code as specified in section 2.2. Upon success, the status code returned by the function that processes this file information class is STATUS_SUCCESS. The most common error codes are listed in the following table.
	Error code
	Meaning

	STATUS_INVALID_PARAMETER
0xC000000D
	The handle was for a directory and not a file, or the allocation is greater than the maximum file size allowed.

	STATUS_ACCESS_DENIED
0xC0000022
	The handle was not opened to read file data or file attributes.

	STATUS_DISK_FULL
0xC000007F
	The disk is full.

	STATUS_INFO_LENGTH_MISMATCH
0xC0000004
	The specified information record length does not match the length that is required for the specified information class.

[bookmark: section_e8d926d13a224654be9c58317a85540b][bookmark: _Toc178847587]FileFullDirectoryInformation
This information class is used in directory enumeration to return detailed information about the contents of a directory.
This information class returns a list that contains a FILE_FULL_DIR_INFORMATION data element for each file or directory within the target directory.
When multiple FILE_FULL_DIR_INFORMATION data elements are present in the buffer, each MUST be aligned on an 8-byte boundary; any bytes inserted for alignment SHOULD be set to zero, and the receiver MUST ignore them. No padding is required following the last data element.
A FILE_FULL_DIR_INFORMATION data element is as follows.
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	NextEntryOffset

	FileIndex

	CreationTime

	...

	LastAccessTime

	...

	LastWriteTime

	...

	ChangeTime

	...

	EndOfFile

	...

	AllocationSize

	...

	FileAttributes

	FileNameLength

	EaSize

	FileName (variable)

	...

NextEntryOffset (4 bytes): A 32-bit unsigned integer that contains the byte offset from the beginning of this entry, at which the next FILE_FULL_DIR_INFORMATION entry is located, if multiple entries are present in a buffer. This member is zero if no other entries follow this one. An implementation MUST use this value to determine the location of the next entry (if multiple entries are present in a buffer).
[bookmark: Appendix_A_Target_113]FileIndex (4 bytes): A 32-bit unsigned integer that contains the byte offset of the file within the parent directory. For file systems in which the position of a file within the parent directory is not fixed and can be changed at any time to maintain sort order, this field SHOULD be set to 0 and MUST be ignored.<113>
CreationTime (8 bytes): The time when the file was created; see section 2.1.1. This value MUST be greater than or equal to 0.
LastAccessTime (8 bytes): The last time the file was accessed; see section 2.1.1. This value MUST be greater than or equal to 0.
LastWriteTime (8 bytes): The last time information was written to the file; see section 2.1.1. This value MUST be greater than or equal to 0.
ChangeTime (8 bytes): The last time the file was changed; see section 2.1.1. This value MUST be greater than or equal to 0.
EndOfFile (8 bytes): A 64-bit signed integer that contains the absolute new end-of-file position as a byte offset from the start of the file. EndOfFile specifies the offset to the byte immediately following the last valid byte in the file. Because this value is zero-based, it actually refers to the first free byte in the file. That is, it is the offset from the beginning of the file at which new bytes appended to the file will be written. The value of this field MUST be greater than or equal to 0.
AllocationSize (8 bytes): A 64-bit signed integer that contains the file allocation size, in bytes. The value of this field MUST be an integer multiple of the cluster size.
FileAttributes (4 bytes): A 32-bit unsigned integer that contains the file attributes. For a list of valid file attributes, see section 2.6.
FileNameLength (4 bytes): A 32-bit unsigned integer that specifies the length, in bytes, of the file name contained within the FileName member.
EaSize (4 bytes): If FILE_ATTRIBUTE_REPARSE_POINT is set in the FileAttributes field, this field MUST contain a reparse tag as specified in section 2.1.2.1. Otherwise, this field is a 32-bit unsigned integer that contains the combined length, in bytes, of the extended attributes (EA) for the file.
FileName (variable): A sequence of Unicode characters containing the file name. When working with this field, use FileNameLength to determine the length of the file name rather than assuming the presence of a trailing null delimiter. Dot directory names are valid for this field. For more details, see section 2.1.5.1.
This operation returns a status code as specified in section 2.2. Upon success, the status code returned by the function that processes this file information class is STATUS_SUCCESS. The most common error codes are listed in the following table.
	Error code
	Meaning

	STATUS_INFO_LENGTH_MISMATCH
0xC0000004
	The specified information record length does not match the length that is required for the specified information class.

[bookmark: section_0eb94f486aac41dfa87879f4dcfd8989][bookmark: _Toc178847588]FileFullEaInformation
This information class is used to query or set extended attribute (EA) information for a file. For queries, the client provides a list of FILE_GET_EA_INFORMATION (section 2.4.15.1) structures, and a list of FILE_FULL_EA_INFORMATION structures is returned by the server. For setting EA information, the client provides a list of FILE_FULL_EA_INFORMATION structures, and a status code is returned by the server, as specified in section 2.2.
When multiple FILE_FULL_EA_INFORMATION data elements are present in the buffer, each MUST be aligned on a 4-byte boundary. Any bytes inserted for alignment SHOULD be set to zero, and the receiver MUST ignore them. No padding is required following the last data element.
A FILE_FULL_EA_INFORMATION data element is as follows.
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	NextEntryOffset

	Flags
	EaNameLength
	EaValueLength

	EaName (variable)

	...

	EaValue (variable)

	...

NextEntryOffset (4 bytes): A 32-bit unsigned integer that contains the byte offset from the beginning of this entry, at which the next FILE_FULL_EA_INFORMATION entry is located, if multiple entries are present in the buffer. This member MUST be zero if no other entries follow this one. An implementation MUST use this value to determine the location of the next entry (if multiple entries are present in a buffer).
Flags (1 byte): An 8-bit unsigned integer that MUST contain one of the following flag values.
	Value
	Meaning

	0x00000000
	If no flags are set, this EA does not prevent the file to which the EA belongs from being interpreted by applications that do not understand EAs.

	FILE_NEED_EA
0x00000080
	If this flag is set, the file to which the EA belongs cannot be interpreted by applications that do not understand EAs.

EaNameLength (1 byte): An 8-bit unsigned integer that contains the length, in bytes, of the extended attribute name in the EaName field. This value MUST NOT include the terminating null character to EaName.
EaValueLength (2 bytes): A 16-bit unsigned integer that contains the length, in bytes, of the extended attribute value in the EaValue field. When setting EA information, if this field is zero, then the given EaName and its current value are deleted from the given file.
EaName (variable): An array of 8-bit ASCII characters that contains the extended attribute name followed by a single terminating null character byte. The EaName MUST be less than 255 characters and MUST NOT contain any of the following characters:
ASCII values 0x00 - 0x1F, \ / : * ? " < > | , + = [] ;
EaValue (variable): An array of bytes that contains the extended attribute value. The length of this array is specified by the EaValueLength field.
This operation returns a status code as specified in section 2.2. Upon success, the status code returned by the function that processes this file information class is STATUS_SUCCESS. The most common error codes are listed in the following table.
	Error code
	Meaning

	STATUS_INVALID_DEVICE_REQUEST
0xC0000010
	The target file system does not implement this functionality.

	STATUS_ACCESS_DENIED
0xC0000022
	The handle was not opened to read file data or file attributes.

	STATUS_BUFFER_TOO_SMALL
0xC0000023
	The buffer is too small to contain the entry. No information has been written to the buffer.

	STATUS_NO_EAS_ON_FILE
0xC0000052
	The file for which EAs were requested has no EAs.

	STATUS_BUFFER_OVERFLOW
0x80000005
	The output buffer was filled before all of the EA data could be returned. Only complete FILE_FULL_EA_INFORMATION structures are returned.

	STATUS_INVALID_EA_NAME
0x80000013
	The Flags field contains a value other than zero or FILE_NEED_EA, or the EaName field is longer than 255 characters, or it contains any of the following characters:
ASCII values 0x00 - 0x1F, \ / : * ? " < > | , + = [] ;

[bookmark: section_79dc1ea1158c4b24b0e18c16c7e2af6b][bookmark: _Toc178847589]FILE_GET_EA_INFORMATION
This data structure can be used to specify an explicit list of attributes to query via the FileFullEaInformation (section 2.4.15) information class. If no FILE_GET_EA_INFORMATION elements are specified, all extended attributes for the given file are returned.
When multiple FILE_GET_EA_INFORMATION data elements are present in the buffer, each MUST be aligned on a 4-byte boundary. Any bytes inserted for alignment SHOULD be set to zero, and the receiver MUST ignore them. No padding is required following the last data element.
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	NextEntryOffset

	EaNameLength
	EaName (variable)

	...

NextEntryOffset (4 bytes): A 32-bit unsigned integer that contains the byte offset from the beginning of this entry, at which the next FILE_GET_EA_INFORMATION entry is located, if multiple entries are present in a buffer. This member MUST be zero if no other entries follow this one. An implementation MUST use this value to determine the location of the next entry (if multiple entries are present in a buffer).
EaNameLength (1 byte): An 8-bit unsigned integer that contains the length, in bytes, of the EaName field. This value MUST NOT include the terminating null character to EaName.
EaName (variable): An array of 8-bit ASCII characters that contains the extended attribute name followed by a single terminating null character byte.
[bookmark: section_46021e5229b1475cb6d3fe5497d23277][bookmark: _Toc178847590]FileHardLinkInformation
[bookmark: Appendix_A_Target_114]This information class is used locally to query hard links to an existing file.<114> At least one name MUST be returned.
A FILE_LINKS_INFORMATION data element, defined as follows, is returned to the caller.
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	BytesNeeded

	EntriesReturned

	Entries (variable)

	...

BytesNeeded (4 bytes): A 32-bit unsigned integer that MUST contain the number of bytes needed to hold all available names. This field MUST NOT be 0.
EntriesReturned (4 bytes): A 32-bit unsigned integer that MUST contain the number of FILE_LINK_ENTRY_INFORMATION structures that have been returned in the Entries field.
The query MUST return as many entries as will fit in the supplied output buffer. A value of 0x00000000 for this field indicates that there is insufficient room to return any entry. The error STATUS_BUFFER_OVERFLOW (0x80000005) indicates that not all available entries were returned.
Entries (variable): A buffer that MUST contain the returned FILE_LINK_ENTRY_INFORMATION structures. It MUST be BytesNeeded bytes in size to return all of the available entries.
This operation returns a status code as specified in section 2.2. Upon success, the status code returned by the function that processes this file information class is STATUS_SUCCESS. The most common error codes are listed in the following table.
	Error code
	Meaning

	STATUS_NOT_SUPPORTED
0xC00000BB
	The request is not supported.

	STATUS_BUFFER_OVERFLOW
0x80000005
	The output buffer was filled before all of the link information could be returned. Only complete FILE_LINK_ENTRY_INFORMATION structures are returned.

	STATUS_INFO_LENGTH_MISMATCH
0xC0000004
	The specified information record length does not match the length that is required for the specified information class.

[bookmark: section_070580ed46de450aa4289f98a0d71d6d][bookmark: _Toc178847591]FILE_LINK_ENTRY_INFORMATION
The FILE_LINK_ENTRY_INFORMATION packet is used to describe a single hard link to an existing file.
When multiple FILE_LINK_ENTRY_INFORMATION data elements are present in the buffer, each MUST be aligned on an 8-byte boundary. Any bytes inserted for alignment SHOULD be set to zero, and the receiver MUST ignore them. No padding is required following the last data element.
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	NextEntryOffset

	ParentFileId

	...

	FileNameLength

	FileName (variable)

	...

NextEntryOffset (4 bytes): A 32-bit unsigned integer that MUST specify the offset, in bytes, from the current FILE_LINK_ENTRY_INFORMATION structure to the next FILE_LINK_ENTRY_INFORMATION structure. A value of 0 indicates this is the last entry structure.
ParentFileId (8 bytes): The 64-bit file ID, as specified in section 2.1.9, of the parent directory of the given link. For file systems which do not support a 64-bit file ID, this field MUST be set to 0, and MUST be ignored.
FileNameLength (4 bytes): A 32-bit unsigned integer that MUST specify the length, in characters, of the FileName for the given link.
FileName (variable): A sequence of FileNameLength Unicode characters that MUST contain the Unicode string name of the given link.
[bookmark: section_b3a27a50454f4f8fb8eadecfedc5c454][bookmark: _Toc178847592]FileId64ExtdBothDirectoryInformation
This information class is used in directory enumeration to return extended information about the contents of a directory.
This information class returns a list that contains a FILE_ID_64_EXTD_BOTH_DIR_INFORMATION data element for each file or directory within the target directory.
When multiple FILE_ID_64_EXTD_BOTH_DIR_INFORMATION data elements are present in the buffer, each MUST be aligned on an 8-byte boundary. Any bytes inserted for alignment SHOULD be set to zero, and the receiver MUST ignore them. No padding is required following the last data element.
A FILE_ID_64_EXTD_BOTH_DIR_INFORMATION data element is as follows.
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	NextEntryOffset

	FileIndex

	CreationTime

	...

	LastAccessTime

	...

	LastWriteTime

	...

	ChangeTime

	...

	EndOfFile

	...

	AllocationSize

	...

	FileAttributes

	FileNameLength

	EaSize

	ReparsePointTag

	FileId

	...

	ShortNameLength
	Reserved1
	ShortName (24 bytes)

	...

	...

	FileName (variable)

	...

NextEntryOffset (4 bytes): A 32-bit unsigned integer that contains the byte offset from the beginning of this entry, at which the next FILE_ID_64_EXTD_BOTH_DIR_INFORMATION entry is located, if multiple entries are present in the buffer. This member MUST be zero if no other entries follow this one. An implementation MUST use this value to determine the location of the next entry (if multiple entries are present in a buffer).
[bookmark: Appendix_A_Target_115]FileIndex (4 bytes): A 32-bit unsigned integer that contains the byte offset of the file within the parent directory. For file systems in which the position of a file within the parent directory is not fixed and can be changed at any time to maintain sort order, this field SHOULD be set to 0 and MUST be ignored.<115>
CreationTime (8 bytes): The time when the file was created; see section 2.1.1. The value of this field MUST be greater than or equal to 0.
LastAccessTime (8 bytes): The last time the file was accessed; see section 2.1.1. The value of this field MUST be greater than or equal to 0.
LastWriteTime (8 bytes): The last time information was written; see section 2.1.1. The value of this field MUST be greater than or equal to 0.
ChangeTime (8 bytes): The last time the file was changed; see section 2.1.1. The value of this field MUST be greater than or equal to 0.
EndOfFile (8 bytes): A 64-bit signed integer that contains the absolute new end-of-file position as a byte offset from the start of the file. EndOfFile specifies the offset to the byte immediately following the last valid byte in the file. Because this value is zero-based, it actually refers to the first free byte in the file. That is, it is the offset from the beginning of the file at which new bytes appended to the file will be written. The value of this field MUST be greater than or equal to 0.
AllocationSize (8 bytes): A 64-bit signed integer that contains the file allocation size, in bytes. The value of this field MUST be an integer multiple of the cluster size.
FileAttributes (4 bytes): A 32-bit unsigned integer that contains the file attributes. Valid attributes are as specified in section 2.6.
FileNameLength (4 bytes): A 32-bit unsigned integer that specifies the length, in bytes, of the file name contained within the FileName member.
EaSize (4 bytes): A 32-bit unsigned integer that contains the combined length, in bytes, of the extended attributes (EA) for the file.
ReparsePointTag (4 bytes): If FILE_ATTRIBUTE_REPARSE_POINT is set in the FileAttributes field, this field MUST contain a 32-bit unsigned integer value containing the reparse point tag that uniquely identifies the owner of the reparse point. section 2.1.2.1 contains more details on reparse tags.
[bookmark: Appendix_A_Target_116]FileId (8 bytes): The 64-bit file ID, as specified in section 2.1.9, for the file. For file systems that do not support a 64-bit file ID, this field MUST be set to 0, and MUST be ignored. For file systems which do not explicitly store directory entries named ".." (synonymous with the parent directory), an implementation MAY set this field to 0 for the entry named "..", and this value MUST be ignored.<116>
ShortNameLength (1 byte): An 8-bit signed integer that specifies the length, in bytes, of the file name contained within the ShortName member.
Reserved1 (1 byte): An 8-bit field. This field is reserved. This field MUST be set to zero, and MUST be ignored.
ShortName (24 bytes): A sequence of Unicode characters containing the short (8.3) file name. When working with this field, use ShortNameLength to determine the length of the file name rather than assuming the presence of a trailing null delimiter.
FileName (variable): A sequence of Unicode characters containing the file name. When working with this field, use FileNameLength to determine the length of the file name rather than assuming the presence of a trailing null delimiter. Dot directory names are valid for this field. For more details, see section 2.1.5.1.
This operation returns a status code as specified in section 2.2. Upon success, the status code returned by the function that processes this file information class is STATUS_SUCCESS. The most common error codes are listed in the following table.
	Error code
	Meaning

	STATUS_INFO_LENGTH_MISMATCH
0xC0000004
	The specified information record length does not match the length that is required for the specified information class.

[bookmark: section_174921dd9be242ed822058c310b1b916][bookmark: _Toc178847593]FileId64ExtdDirectoryInformation
This information class is used in directory enumeration to return extended information about the contents of a directory.
This information class returns a list that contains a FILE_ID_64_EXTD_DIR_INFORMATION data element for each file or directory within the target directory.
When multiple FILE_ID_64_EXTD_DIR_INFORMATION data elements are present in the buffer, each MUST be aligned on an 8-byte boundary. Any bytes inserted for alignment SHOULD be set to zero, and the receiver MUST ignore them. No padding is required following the last data element.
A FILE_ID_64_EXTD_DIR_INFORMATION data element is as follows.
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	NextEntryOffset

	FileIndex

	CreationTime

	...

	LastAccessTime

	...

	LastWriteTime

	...

	ChangeTime

	...

	EndOfFile

	...

	AllocationSize

	...

	FileAttributes

	FileNameLength

	EaSize

	ReparsePointTag

	FileId

	...

	FileName (variable)

	...

NextEntryOffset (4 bytes): A 32-bit unsigned integer that contains the byte offset from the beginning of this entry, at which the next FILE_ID_64_EXTD_DIR_INFORMATION entry is located, if multiple entries are present in the buffer. This member MUST be zero if no other entries follow this one. An implementation MUST use this value to determine the location of the next entry (if multiple entries are present in a buffer).
[bookmark: Appendix_A_Target_117]FileIndex (4 bytes): A 32-bit unsigned integer that contains the byte offset of the file within the parent directory. For file systems in which the position of a file within the parent directory is not fixed and can be changed at any time to maintain sort order, this field SHOULD be set to 0 and MUST be ignored.<117>
CreationTime (8 bytes): The time when the file was created; see section 2.1.1. The value of this field MUST be greater than or equal to 0.
LastAccessTime (8 bytes): The last time the file was accessed; see section 2.1.1. The value of this field MUST be greater than or equal to 0.
LastWriteTime (8 bytes): The last time information was written; see section 2.1.1. The value of this field MUST be greater than or equal to 0.
ChangeTime (8 bytes): The last time the file was changed; see section 2.1.1. The value of this field MUST be greater than or equal to 0.
EndOfFile (8 bytes): A 64-bit signed integer that contains the absolute new end-of-file position as a byte offset from the start of the file. EndOfFile specifies the offset to the byte immediately following the last valid byte in the file. Because this value is zero-based, it actually refers to the first free byte in the file. That is, it is the offset from the beginning of the file at which new bytes appended to the file will be written. The value of this field MUST be greater than or equal to 0.
AllocationSize (8 bytes): A 64-bit signed integer that contains the file allocation size, in bytes. The value of this field MUST be an integer multiple of the cluster size.
FileAttributes (4 bytes): A 32-bit unsigned integer that contains the file attributes. Valid attributes are as specified in section 2.6.
FileNameLength (4 bytes): A 32-bit unsigned integer that specifies the length, in bytes, of the file name contained within the FileName member.
EaSize (4 bytes): A 32-bit unsigned integer that contains the combined length, in bytes, of the extended attributes (EA) for the file.
ReparsePointTag (4 bytes): If FILE_ATTRIBUTE_REPARSE_POINT is set in the FileAttributes field, this field MUST contain a 32-bit unsigned integer value containing the reparse point tag that uniquely identifies the owner of the reparse point. section 2.1.2.1 contains more details on reparse tags.
[bookmark: Appendix_A_Target_118]FileId (8 bytes): The 64-bit file ID, as specified in section 2.1.9, for the file. For file systems that do not support a 64-bit file ID, this field MUST be set to 0, and MUST be ignored. For file systems which do not explicitly store directory entries named ".." (synonymous with the parent directory), an implementation MAY set this field to 0 for the entry named "..", and this value MUST be ignored.<118>
FileName (variable): A sequence of Unicode characters containing the file name. When working with this field, use FileNameLength to determine the length of the file name rather than assuming the presence of a trailing null delimiter. Dot directory names are valid for this field. For more details, see section 2.1.5.1.
This operation returns a status code as specified in section 2.2. Upon success, the status code returned by the function that processes this file information class is STATUS_SUCCESS. The most common error codes are listed in the following table.
	Error code
	Meaning

	STATUS_INFO_LENGTH_MISMATCH
0xC0000004
	The specified information record length does not match the length that is required for the specified information class.

[bookmark: section_1dbb9619873e4834af01849dcce87d7d][bookmark: _Toc178847594]FileIdAllExtdBothDirectoryInformation
This information class is used in directory enumeration to return extended information about the contents of a directory.
This information class returns a list that contains a FILE_ID_ALL_EXTD_BOTH_DIR_INFORMATION data element for each file or directory within the target directory.
When multiple FILE_ID_ALL_EXTD_BOTH_DIR_INFORMATION data elements are present in the buffer, each MUST be aligned on an 8-byte boundary. Any bytes inserted for alignment SHOULD be set to zero, and the receiver MUST ignore them. No padding is required following the last data element.
A FILE_ID_ALL_EXTD_BOTH_DIR_INFORMATION data element is as follows.
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	NextEntryOffset

	FileIndex

	CreationTime

	...

	LastAccessTime

	...

	LastWriteTime

	...

	ChangeTime

	...

	EndOfFile

	...

	AllocationSize

	...

	FileAttributes

	FileNameLength

	EaSize

	ReparsePointTag

	FileId

	...

	FileId128

	…

	…

	…

	ShortNameLength
	Reserved1
	ShortName (24 bytes)

	...

	...

	FileName (variable)

	...

NextEntryOffset (4 bytes): A 32-bit unsigned integer that contains the byte offset from the beginning of this entry, at which the next FILE_ID_ALL_EXTD_BOTH_DIR_INFORMATION entry is located, if multiple entries are present in the buffer. This member MUST be zero if no other entries follow this one. An implementation MUST use this value to determine the location of the next entry (if multiple entries are present in a buffer).
[bookmark: Appendix_A_Target_119]FileIndex (4 bytes): A 32-bit unsigned integer that contains the byte offset of the file within the parent directory. For file systems in which the position of a file within the parent directory is not fixed and can be changed at any time to maintain sort order, this field SHOULD be set to 0 and MUST be ignored.<119>
CreationTime (8 bytes): The time when the file was created; see section 2.1.1. The value of this field MUST be greater than or equal to 0.
LastAccessTime (8 bytes): The last time the file was accessed; see section 2.1.1. The value of this field MUST be greater than or equal to 0.
LastWriteTime (8 bytes): The last time information was written; see section 2.1.1. The value of this field MUST be greater than or equal to 0.
ChangeTime (8 bytes): The last time the file was changed; see section 2.1.1. The value of this field MUST be greater than or equal to 0.
EndOfFile (8 bytes): A 64-bit signed integer that contains the absolute new end-of-file position as a byte offset from the start of the file. EndOfFile specifies the offset to the byte immediately following the last valid byte in the file. Because this value is zero-based, it actually refers to the first free byte in the file. That is, it is the offset from the beginning of the file at which new bytes appended to the file will be written. The value of this field MUST be greater than or equal to 0.
AllocationSize (8 bytes): A 64-bit signed integer that contains the file allocation size, in bytes. The value of this field MUST be an integer multiple of the cluster size.
FileAttributes (4 bytes): A 32-bit unsigned integer that contains the file attributes. Valid attributes are as specified in section 2.6.
FileNameLength (4 bytes): A 32-bit unsigned integer that specifies the length, in bytes, of the file name contained within the FileName member.
EaSize (4 bytes): A 32-bit unsigned integer that contains the combined length, in bytes, of the extended attributes (EA) for the file.
ReparsePointTag (4 bytes): If FILE_ATTRIBUTE_REPARSE_POINT is set in the FileAttributes field, this field MUST contain a 32-bit unsigned integer value containing the reparse point tag that uniquely identifies the owner of the reparse point. section 2.1.2.1 contains more details on reparse tags.
[bookmark: Appendix_A_Target_120]FileId (8 bytes): The 64-bit file ID, as specified in section 2.1.9, for the file. For file systems that do not support a 64-bit file ID, this field MUST be set to 0, and MUST be ignored. For file systems which do not explicitly store directory entries named ".." (synonymous with the parent directory), an implementation MAY set this field to 0 for the entry named "..", and this value MUST be ignored.<120>
FileId128 (16 bytes): The 128-bit file ID, as specified in section 2.1.10, of the file. For file systems that do not support a 128-bit file ID, this field MUST be set to 0, and MUST be ignored.
ShortNameLength (1 byte): An 8-bit signed integer that specifies the length, in bytes, of the file name contained within the ShortName member.
Reserved1 (1 byte): An 8-bit field. This field is reserved. This field MUST be set to zero, and MUST be ignored.
ShortName (24 bytes): A sequence of Unicode characters containing the short (8.3) file name. When working with this field, use ShortNameLength to determine the length of the file name rather than assuming the presence of a trailing null delimiter.
FileName (variable): A sequence of Unicode characters containing the file name. When working with this field, use FileNameLength to determine the length of the file name rather than assuming the presence of a trailing null delimiter. Dot directory names are valid for this field. For more details, see section 2.1.5.1.
This operation returns a status code as specified in section 2.2. Upon success, the status code returned by the function that processes this file information class is STATUS_SUCCESS. The most common error codes are listed in the following table.
	Error code
	Meaning

	STATUS_INFO_LENGTH_MISMATCH
0xC0000004
	The specified information record length does not match the length that is required for the specified information class.

[bookmark: section_02991a716610412793ef76b8ea80fef6][bookmark: _Toc178847595]FileIdAllExtdDirectoryInformation
This information class is used in directory enumeration to return extended information about the contents of a directory.
This information class returns a list that contains a FILE_ID_ALL_EXTD_DIR_INFORMATION data element for each file or directory within the target directory.
When multiple FILE_ID_ALL_EXTD_DIR_INFORMATION data elements are present in the buffer, each MUST be aligned on an 8-byte boundary. Any bytes inserted for alignment SHOULD be set to zero, and the receiver MUST ignore them. No padding is required following the last data element.
A FILE_ID_ALL_EXTD_DIR_INFORMATION data element is as follows.
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	NextEntryOffset

	FileIndex

	CreationTime

	...

	LastAccessTime

	...

	LastWriteTime

	...

	ChangeTime

	...

	EndOfFile

	...

	AllocationSize

	...

	FileAttributes

	FileNameLength

	EaSize

	ReparsePointTag

	FileId

	…

	FileId128

	…

	…

	...

	FileName (variable)

	...

NextEntryOffset (4 bytes): A 32-bit unsigned integer that contains the byte offset from the beginning of this entry, at which the next FILE_ID_ALL_EXTD_DIR_INFORMATION entry is located, if multiple entries are present in the buffer. This member MUST be zero if no other entries follow this one. An implementation MUST use this value to determine the location of the next entry (if multiple entries are present in a buffer).
[bookmark: Appendix_A_Target_121]FileIndex (4 bytes): A 32-bit unsigned integer that contains the byte offset of the file within the parent directory. For file systems in which the position of a file within the parent directory is not fixed and can be changed at any time to maintain sort order, this field SHOULD be set to 0 and MUST be ignored.<121>
CreationTime (8 bytes): The time when the file was created; see section 2.1.1. The value of this field MUST be greater than or equal to 0.
LastAccessTime (8 bytes): The last time the file was accessed; see section 2.1.1. The value of this field MUST be greater than or equal to 0.
LastWriteTime (8 bytes): The last time information was written; see section 2.1.1. The value of this field MUST be greater than or equal to 0.
ChangeTime (8 bytes): The last time the file was changed; see section 2.1.1. The value of this field MUST be greater than or equal to 0.
EndOfFile (8 bytes): A 64-bit signed integer that contains the absolute new end-of-file position as a byte offset from the start of the file. EndOfFile specifies the offset to the byte immediately following the last valid byte in the file. Because this value is zero-based, it actually refers to the first free byte in the file. That is, it is the offset from the beginning of the file at which new bytes appended to the file will be written. The value of this field MUST be greater than or equal to 0.
AllocationSize (8 bytes): A 64-bit signed integer that contains the file allocation size, in bytes. The value of this field MUST be an integer multiple of the cluster size.
FileAttributes (4 bytes): A 32-bit unsigned integer that contains the file attributes. Valid attributes are as specified in section 2.6.
FileNameLength (4 bytes): A 32-bit unsigned integer that specifies the length, in bytes, of the file name contained within the FileName member.
EaSize (4 bytes): A 32-bit unsigned integer that contains the combined length, in bytes, of the extended attributes (EA) for the file.
ReparsePointTag (4 bytes): If FILE_ATTRIBUTE_REPARSE_POINT is set in the FileAttributes field, this field MUST contain a 32-bit unsigned integer value containing the reparse point tag that uniquely identifies the owner of the reparse point. section 2.1.2.1 contains more details on reparse tags.
[bookmark: Appendix_A_Target_122]FileId (8 bytes): The 64-bit file ID, as specified in section 2.1.9, for the file. For file systems that do not support a 64-bit file ID, this field MUST be set to 0, and MUST be ignored. For file systems which do not explicitly store directory entries named ".." (synonymous with the parent directory), an implementation MAY set this field to 0 for the entry named "..", and this value MUST be ignored.<122>
FileId128 (16 bytes): The 128-bit file ID, as specified in section 2.1.10, of the file. For file systems that do not support a 128-bit file ID, this field MUST be set to 0, and MUST be ignored.
FileName (variable): A sequence of Unicode characters containing the file name. When working with this field, use FileNameLength to determine the length of the file name rather than assuming the presence of a trailing null delimiter. Dot directory names are valid for this field. For more details, see section 2.1.5.1.
This operation returns a status code as specified in section 2.2. Upon success, the status code returned by the function that processes this file information class is STATUS_SUCCESS. The most common error codes are listed in the following table.
	Error code
	Meaning

	STATUS_INFO_LENGTH_MISMATCH
0xC0000004
	The specified information record length does not match the length that is required for the specified information class.

[bookmark: section_1e144bffc05645aabd29c13d214ee2ba][bookmark: _Toc178847596]FileIdBothDirectoryInformation
This information class is used in directory enumeration to return detailed information about the contents of a directory.
This information class returns a list that contains a FILE_ID_BOTH_DIR_INFORMATION data element for each file or directory within the target directory.
When multiple FILE_ID_BOTH_DIR_INFORMATION data elements are present in the buffer, each MUST be aligned on an 8-byte boundary. Any bytes inserted for alignment SHOULD be set to zero, and the receiver MUST ignore them. No padding is required following the last data element.
A FILE_ID_BOTH_DIR_INFORMATION data element is as follows.
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	NextEntryOffset

	FileIndex

	CreationTime

	...

	LastAccessTime

	...

	LastWriteTime

	...

	ChangeTime

	...

	EndOfFile

	...

	AllocationSize

	...

	FileAttributes

	FileNameLength

	EaSize

	ShortNameLength
	Reserved1
	ShortName (24 bytes)

	...

	...

	...
	Reserved2

	FileId

	...

	FileName (variable)

	...

NextEntryOffset (4 bytes): A 32-bit unsigned integer that contains the byte offset from the beginning of this entry, at which the next FILE_ID_BOTH_DIR_INFORMATION entry is located, if multiple entries are present in the buffer. This member MUST be zero if no other entries follow this one. An implementation MUST use this value to determine the location of the next entry (if multiple entries are present in a buffer).
[bookmark: Appendix_A_Target_123]FileIndex (4 bytes): A 32-bit unsigned integer that contains the byte offset of the file within the parent directory. For file systems in which the position of a file within the parent directory is not fixed and can be changed at any time to maintain sort order, this field SHOULD be set to 0 and MUST be ignored.<123>
CreationTime (8 bytes): The time when the file was created; see section 2.1.1. The value of this field MUST be greater than or equal to 0.
LastAccessTime (8 bytes): The last time the file was accessed; see section 2.1.1. The value of this field MUST be greater than or equal to 0.
LastWriteTime (8 bytes): The last time information was written; see section 2.1.1. The value of this field MUST be greater than or equal to 0.
ChangeTime (8 bytes): The last time the file was changed; see section 2.1.1. The value of this field MUST be greater than or equal to 0.
EndOfFile (8 bytes): A 64-bit signed integer that contains the absolute new end-of-file position as a byte offset from the start of the file. EndOfFile specifies the offset to the byte immediately following the last valid byte in the file. Because this value is zero-based, it actually refers to the first free byte in the file. That is, it is the offset from the beginning of the file at which new bytes appended to the file will be written. The value of this field MUST be greater than or equal to 0.
AllocationSize (8 bytes): A 64-bit signed integer that contains the file allocation size, in bytes. The value of this field MUST be an integer multiple of the cluster size.
FileAttributes (4 bytes): A 32-bit unsigned integer that contains the file attributes. Valid attributes are as specified in section 2.6.
FileNameLength (4 bytes): A 32-bit unsigned integer that specifies the length, in bytes, of the file name contained within the FileName member.
EaSize (4 bytes): If FILE_ATTRIBUTE_REPARSE_POINT is set in the FileAttributes field, this field MUST contain a reparse tag as specified in section 2.1.2.1. Otherwise, this field is a 32-bit unsigned integer that contains the combined length, in bytes, of the extended attributes (EA) for the file.
ShortNameLength (1 byte): A 8-bit signed integer that specifies the length, in bytes, of the file name contained within the ShortName member.
Reserved1 (1 byte): An 8-bit field. This field is reserved. This field MUST be set to zero, and MUST be ignored.
ShortName (24 bytes): A sequence of Unicode characters containing the short (8.3) file name. When working with this field, use ShortNameLength to determine the length of the file name rather than assuming the presence of a trailing null delimiter.
Reserved2 (2 bytes): A 16-bit field. This field is reserved. This field MUST be set to zero, and MUST be ignored.
[bookmark: Appendix_A_Target_124]FileId (8 bytes): The 64-bit file ID, as specified in section 2.1.9, for the file. For file systems that do not support a 64-bit file ID, this field MUST be set to 0, and MUST be ignored. For file systems which do not explicitly store directory entries named ".." (synonymous with the parent directory), an implementation MAY set this field to 0 for the entry named "..", and this value MUST be ignored.<124>
FileName (variable): A sequence of Unicode characters containing the file name. When working with this field, use FileNameLength to determine the length of the file name rather than assuming the presence of a trailing null delimiter. Dot directory names are valid for this field. For more details, see section 2.1.5.1.
This operation returns a status code as specified in section 2.2. Upon success, the status code returned by the function that processes this file information class is STATUS_SUCCESS. The most common error codes are listed in the following table.
	Error code
	Meaning

	STATUS_INFO_LENGTH_MISMATCH
0xC0000004
	The specified information record length does not match the length that is required for the specified information class.

[bookmark: section_36172f0b8dce435a8748859978d632f8][bookmark: _Toc178847597]FileIdExtdDirectoryInformation
This information class is used in directory enumeration to return extended information about the contents of a directory.
This information class returns a list that contains a FILE_ID_EXTD_DIR_INFORMATION data element for each file or directory within the target directory.
When multiple FILE_ID_EXTD_DIR_INFORMATION data elements are present in the buffer, each MUST be aligned on an 8-byte boundary. Any bytes inserted for alignment SHOULD be set to zero, and the receiver MUST ignore them. No padding is required following the last data element.
A FILE_ID_EXTD_DIR_INFORMATION data element is as follows.
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	NextEntryOffset

	FileIndex

	CreationTime

	...

	LastAccessTime

	...

	LastWriteTime

	...

	ChangeTime

	...

	EndOfFile

	...

	AllocationSize

	...

	FileAttributes

	FileNameLength

	EaSize

	ReparsePointTag

	FileId

	…

	…

	...

	FileName (variable)

	...

NextEntryOffset (4 bytes): A 32-bit unsigned integer that contains the byte offset from the beginning of this entry, at which the next FILE_ID_EXTD_DIR_INFORMATION entry is located, if multiple entries are present in the buffer. This member MUST be zero if no other entries follow this one. An implementation MUST use this value to determine the location of the next entry (if multiple entries are present in a buffer).
[bookmark: Appendix_A_Target_125]FileIndex (4 bytes): A 32-bit unsigned integer that contains the byte offset of the file within the parent directory. For file systems in which the position of a file within the parent directory is not fixed and can be changed at any time to maintain sort order, this field SHOULD be set to 0 and MUST be ignored.<125>
CreationTime (8 bytes): The time when the file was created; see section 2.1.1. The value of this field MUST be greater than or equal to 0.
LastAccessTime (8 bytes): The last time the file was accessed; see section 2.1.1. The value of this field MUST be greater than or equal to 0.
LastWriteTime (8 bytes): The last time information was written; see section 2.1.1. The value of this field MUST be greater than or equal to 0.
ChangeTime (8 bytes): The last time the file was changed; see section 2.1.1. The value of this field MUST be greater than or equal to 0.
EndOfFile (8 bytes): A 64-bit signed integer that contains the absolute new end-of-file position as a byte offset from the start of the file. EndOfFile specifies the offset to the byte immediately following the last valid byte in the file. Because this value is zero-based, it actually refers to the first free byte in the file. That is, it is the offset from the beginning of the file at which new bytes appended to the file will be written. The value of this field MUST be greater than or equal to 0.
AllocationSize (8 bytes): A 64-bit signed integer that contains the file allocation size, in bytes. The value of this field MUST be an integer multiple of the cluster size.
FileAttributes (4 bytes): A 32-bit unsigned integer that contains the file attributes. Valid attributes are as specified in section 2.6.
FileNameLength (4 bytes): A 32-bit unsigned integer that specifies the length, in bytes, of the file name contained within the FileName member.
EaSize (4 bytes): A 32-bit unsigned integer that contains the combined length, in bytes, of the extended attributes (EA) for the file.
ReparsePointTag (4 bytes): If FILE_ATTRIBUTE_REPARSE_POINT is set in the FileAttributes field, this field MUST contain a 32-bit unsigned integer value containing the reparse point tag that uniquely identifies the owner of the reparse point. section 2.1.2.1 contains more details on reparse tags.
FileId (16 bytes): The 128-bit file ID, as specified in section 2.1.10, of the file. For file systems that do not support a 128-bit file ID, this field MUST be set to 0, and MUST be ignored.
FileName (variable): A sequence of Unicode characters containing the file name. When working with this field, use FileNameLength to determine the length of the file name rather than assuming the presence of a trailing null delimiter. Dot directory name are valid for this field. For more details, see section 2.1.5.1.
This operation returns a status code as specified in section 2.2. Upon success, the status code returned by the function that processes this file information class is STATUS_SUCCESS. The most common error codes are listed in the following table.
	Error code
	Meaning

	STATUS_INFO_LENGTH_MISMATCH
0xC0000004
	The specified information record length does not match the length that is required for the specified information class.

[bookmark: section_ab8e7558899c4be1a7c53a9ae8ab76a0][bookmark: _Toc178847598]FileIdFullDirectoryInformation
This information class is used in directory enumeration to return detailed information about the contents of a directory.
This information class returns a list that contains a FILE_ID_FULL_DIR_INFORMATION data element for each file or directory within the target directory.
When multiple FILE_ID_FULL_DIR_INFORMATION data elements are present in the buffer, each MUST be aligned on an 8-byte boundary. Any bytes inserted for alignment SHOULD be set to zero, and the receiver MUST ignore them. No padding is required following the last data element.
A FILE_ID_FULL_DIR_INFORMATION data element is as follows.
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	NextEntryOffset

	FileIndex

	CreationTime

	...

	LastAccessTime

	...

	LastWriteTime

	...

	ChangeTime

	...

	EndOfFile

	...

	AllocationSize

	...

	FileAttributes

	FileNameLength

	EaSize

	Reserved

	FileId

	...

	FileName (variable)

	...

[bookmark: Appendix_A_Target_126]NextEntryOffset (4 bytes): A 32-bit unsigned integer that contains the byte offset from the beginning of this entry, at which the next FILE_ID_FULL_DIR_INFORMATION entry is located, if multiple entries are present in a buffer. This field SHOULD<126> be zero if no other entries follow this one. An implementation MUST use this value to determine the location of the next entry (if multiple entries are present in a buffer).
[bookmark: Appendix_A_Target_127]FileIndex (4 bytes): A 32-bit unsigned integer that contains the byte offset of the file within the parent directory. For file systems in which the position of a file within the parent directory is not fixed and can be changed at any time to maintain sort order, this field SHOULD be set to 0 and MUST be ignored.<127>
CreationTime (8 bytes): The time when the file was created; see section 2.1.1. The value of this field MUST be greater than or equal to 0.
LastAccessTime (8 bytes): The last time the file was accessed; see section 2.1.1. The value of this field MUST be greater than or equal to 0.
LastWriteTime (8 bytes): The last time information was written; see section 2.1.1. The value of this field MUST be greater than or equal to 0.
ChangeTime (8 bytes): The last time the file was changed; see section 2.1.1. The value of this field MUST be greater than or equal to 0.
EndOfFile (8 bytes): A 64-bit signed integer that contains the absolute new end-of-file position as a byte offset from the start of the file. EndOfFile specifies the offset to the byte immediately following the last valid byte in the file. Because this value is zero-based, it actually refers to the first free byte in the file. That is, it is the offset from the beginning of the file at which new bytes appended to the file will be written. The value of this field MUST be greater than or equal to 0.
AllocationSize (8 bytes): A 64-bit signed integer that contains the file allocation size, in bytes. The value of this field MUST be an integer multiple of the cluster size.
FileAttributes (4 bytes): A 32-bit unsigned integer that contains the file attributes. Valid attributes are as specified in section 2.6.
FileNameLength (4 bytes): A 32-bit unsigned integer that specifies the length, in bytes, of the file name contained within the FileName member.
EaSize (4 bytes): If FILE_ATTRIBUTE_REPARSE_POINT is set in the FileAttributes field, this field MUST contain a reparse tag as specified in section 2.1.2.1. Otherwise, this field is a 32-bit unsigned integer that contains the combined length, in bytes, of the extended attributes (EA) for the file.
Reserved (4 bytes): Reserved for alignment. This field can contain any value and MUST be ignored.
[bookmark: Appendix_A_Target_128]FileId (8 bytes): The 64-bit file ID, as specified in section 2.1.9, for the file. For file systems that do not support a 64-bit file ID, this field MUST be set to 0, and MUST be ignored. For file systems which do not explicitly store directory entries named ".." (synonymous with the parent directory), an implementation MAY set this field to 0 for the entry named "..", and this value MUST be ignored.<128>
FileName (variable): A sequence of Unicode characters containing the file name. When working with this field, use FileNameLength to determine the length of the file name rather than assuming the presence of a trailing null delimiter. Dot directory names are valid for this field. For more details, see section 2.1.5.1.
This operation returns a status code as specified in section 2.2. Upon success, the status code returned by the function that processes this file information class is STATUS_SUCCESS. The most common error codes are listed in the following table.
	Error code
	Meaning

	STATUS_INFO_LENGTH_MISMATCH
0xC0000004
	The specified information record length does not match the length that is required for the specified information class.

[bookmark: section_84121f3227e140d1a25609f8ac3964c6][bookmark: _Toc178847599]FileIdGlobalTxDirectoryInformation
This information class is used locally to query transactional visibility information for the files in a directory. This information class MAY be implemented for file systems that return the FILE_SUPPORTS_TRANSACTIONS flag in response to FileFsAttributeInformation specified in section 2.5.1. This information class MUST NOT be implemented for file systems that do not return that flag.
This information class returns a list that contains a FILE_ID_GLOBAL_TX_DIR_INFORMATION data element for each file or directory within the target directory. This list MUST reflect the presence of a subdirectory named "." (synonymous with the target directory itself) within the target directory and one named ".." (synonymous with the parent directory of the target directory), unless the target directory is the root of the volume. For more details, see section 2.1.5.1.
When multiple FILE_ID_GLOBAL_TX_DIR_INFORMATION data elements are present in the buffer, each MUST be aligned on an 8-byte boundary. Any bytes inserted for alignment SHOULD be set to zero, and the receiver MUST ignore them. No padding is required following the last data element.
A FILE_ID_GLOBAL_TX_DIR_INFORMATION data element is as follows.
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	NextEntryOffset

	FileIndex

	CreationTime

	...

	LastAccessTime

	...

	LastWriteTime

	...

	ChangeTime

	...

	EndOfFile

	...

	AllocationSize

	...

	FileAttributes

	FileNameLength

	FileId

	...

	LockingTransactionId (16 bytes)

	...

	...

	TxInfoFlags

	FileName (variable)

	...

NextEntryOffset (4 bytes): A 32-bit unsigned integer that contains the byte offset from the beginning of this entry, at which the next FILE_ID_GLOBAL_TX_DIR_INFORMATION entry is located, if multiple entries are present in a buffer. This member MUST be zero if no other entries follow this one. An implementation MUST use this value to determine the location of the next entry (if multiple entries are present in a buffer).
[bookmark: Appendix_A_Target_129]FileIndex (4 bytes): A 32-bit unsigned integer that contains the byte offset of the file within the parent directory. For file systems in which the position of a file within the parent directory is not fixed and can be changed at any time to maintain sort order, this field SHOULD be set to 0 and MUST be ignored.<129>
CreationTime (8 bytes): The time when the file was created; see section 2.1.1. The value of this field MUST be greater than or equal to 0.
LastAccessTime (8 bytes): The last time the file was accessed; see section 2.1.1. The value of this field MUST be greater than or equal to 0.
LastWriteTime (8 bytes): The last time information was written to the file; see section 2.1.1. The value of this field MUST be greater than or equal to 0.
ChangeTime (8 bytes): The last time the file was changed; see section 2.1.1. The value of this field MUST be greater than or equal to 0.
EndOfFile (8 bytes): A 64-bit signed integer that contains the absolute new end-of-file position as a byte offset from the start of the file. EndOfFile specifies the offset to the byte immediately following the last valid byte in the file. Because this value is zero-based, it actually refers to the first free byte in the file. That is, it is the offset from the beginning of the file at which new bytes appended to the file will be written. The value of this field MUST be greater than or equal to 0.
AllocationSize (8 bytes): A 64-bit signed integer that contains the file allocation size, in bytes. The value of this field MUST be an integer multiple of the cluster size.
FileAttributes (4 bytes): A 32-bit unsigned integer that contains the file attributes. Valid attributes are as specified in section 2.6.
FileNameLength (4 bytes): A 32-bit unsigned integer that specifies the length, in bytes, of the file name contained within the FileName member.
[bookmark: Appendix_A_Target_130]FileId (8 bytes): The 64-bit file ID, as specified in section 2.1.9, for the file. For file systems that do not support a 64-bit file ID, this field MUST be set to 0, and MUST be ignored. For file systems which do not explicitly store directory entries named ".." (synonymous with the parent directory), an implementation MAY set this field to 0 for the entry named "..", and this value MUST be ignored.<130>
LockingTransactionId (16 bytes): A GUID value that is the ID of the transaction that has this file locked for modification. This number is generated and assigned by the file system. If the FILE_ID_GLOBAL_TX_DIR_INFO_FLAG_WRITELOCKED flag is not set in the TxInfoFlags field, this field MUST be ignored.
TxInfoFlags (4 bytes): A 32-bit unsigned integer that contains a bitmask of flags that indicate the transactional visibility of the file. The value of this field MUST be a bitwise OR of zero or more of the following values. Any flag values not explicitly mentioned here can be set to any value and MUST be ignored. If the FILE_ID_GLOBAL_TX_DIR_INFO_FLAG_WRITELOCKED flag is not set, the other flags MUST NOT be set. If flags other than FILE_ID_GLOBAL_TX_DIR_INFO_FLAG_WRITELOCKED are set, FILE_ID_GLOBAL_TX_DIR_INFO_FLAG_WRITELOCKED MUST be set.
	Value
	Meaning

	FILE_ID_GLOBAL_TX_DIR_INFO_FLAG_WRITELOCKED
0x00000001
	The file is locked for modification by a transaction. The transaction's ID MUST be contained in the LockingTransactionId field if this flag is set.

	FILE_ID_GLOBAL_TX_DIR_INFO_FLAG_VISIBLE_TO_TX
0x00000002
	The file is visible to transacted enumerators of the directory whose transaction ID is in the LockingTransactionId field.

	FILE_ID_GLOBAL_TX_DIR_INFO_FLAG_VISIBLE_OUTSIDE_TX
0x00000004
	The file is visible to transacted enumerators of the directory other than the one whose transaction ID is in the LockingTransactionId field, and it is visible to non-transacted enumerators of the directory.

FileName (variable): A sequence of Unicode characters containing the file name. When working with this field, use FileNameLength to determine the length of the file name rather than assuming the presence of a trailing null delimiter. Dot directory names are valid for this field. For more details, see section 2.1.5.1.
This operation returns a status code as specified in section 2.2. Upon success, the status code returned by the function that processes this file information class is STATUS_SUCCESS. The most common error codes are listed in the following table.
	Error code
	Meaning

	STATUS_NOT_SUPPORTED
0xC00000BB
	The request is not supported.

[bookmark: section_e4185a8aed8d4f98ab55ca34dc8916e6][bookmark: _Toc178847600]FileIdInformation
This information class is used to query the volume serial number and fileid information for a file.
A FILE_ID_INFORMATION data element, defined as follows, is provided by the server.
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	VolumeSerialNumber

	...

	FileId

	...

	...

	...

VolumeSerialNumber (8 bytes): A 64-bit unsigned integer that contains the serial number of the volume where the file is located.
FileId (16 bytes): The 128-bit file ID, as specified in section 2.1.10, of the file. For file systems that do not support a 128-bit file ID, this field MUST be set to 0, and MUST be ignored.
This operation returns a status code as specified in section 2.2. Upon success, the status code returned by the function that processes this file information class is STATUS_SUCCESS. The most common error codes are listed in the following table.
	Error Code
	Meaning

	STATUS_INFO_LENGTH_MISMATCH
0xC0000004
	The specified information record length does not match the length that is required for the specified information class.

[bookmark: section_7d7966112fa541ac8178b6fea3a017b3][bookmark: _Toc178847601]FileInternalInformation
This information class is used to query for the file system's 64-bit file ID, as specified in section 2.1.9.
A FILE_INTERNAL_INFORMATION data element, defined as follows, is returned by the server.
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	IndexNumber

	...

[bookmark: Appendix_A_Target_131]IndexNumber (8 bytes): The 64-bit file ID for the file. For file systems that do not support a 64-bit file ID, this field MUST be set to 0, and MUST be ignored. <131>
This operation returns a status code as specified in section 2.2. Upon success, the status code returned by the function that processes this file information class is STATUS_SUCCESS. The most common error codes are listed in the following table.
	Error code
	Meaning

	STATUS_INFO_LENGTH_MISMATCH
0xC0000004
	The specified information record length does not match the length that is required for the specified information class.

[bookmark: section_69643dd3b518465dbb0ee2e9c5b7875e][bookmark: _Toc178847602]FileLinkInformation
[bookmark: Appendix_A_Target_132]This information class is used to create a hard link to an existing file.<132> The Server Message Block (SMB) Protocol [MS-SMB] and the Server Message Block (SMB) Version 2 Protocol [MS-SMB2] implement unique structure variants:
· FILE_LINK_INFORMATION_TYPE_1, as specified in section 2.4.27.1.
· FILE_LINK_INFORMATION_TYPE_2, as specified in section 2.4.27.2.
This operation returns a status code as specified in section 2.2. Upon success, the status code returned by the function that processes this file information class is STATUS_SUCCESS. The most common error codes are listed in the following table.
	Error code
	Meaning

	STATUS_INVALID_PARAMETER
0xC000000D
	An invalid parameter was specified for the RootDirectory field.

	STATUS_FILE_IS_A_DIRECTORY
0xC00000BA
	The file that was specified is a directory.

	STATUS_ACCESS_DENIED
0xC0000022
	The object has been deleted.

	STATUS_OBJECT_NAME_INVALID
0xC0000033
	The object name is invalid for the target file system.

	STATUS_TOO_MANY_LINKS
0xC0000265
	An attempt was made to create more links on a file than the file system supports.

	STATUS_OBJECT_NAME_COLLISION
0xC0000035
	The specified name already exists and ReplaceIfExists is zero.

	STATUS_INFO_LENGTH_MISMATCH
0xC0000004
	The specified information record length does not match the length that is required for the specified information class.

	STATUS_NOT_SUPPORTED
0xC00000BB
	The request is not supported.

[bookmark: section_280df54049d64a06b3373cdef045cb2a][bookmark: _Toc178847603]FileLinkInformation for the SMB Protocol
This information class is used to create a hard link to an existing file via the SMB Protocol as specified in [MS-SMB].
A FILE_LINK_INFORMATION_TYPE_1 data element, defined as follows, is provided by the client.
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	ReplaceIfExists
	Reserved

	RootDirectory

	FileNameLength

	FileName (variable)

	...

ReplaceIfExists (1 byte): A Boolean (section 2.1.8) value. Set to TRUE to indicate that if the link already exists, it SHOULD be replaced with the new link. Set to FALSE to indicate that the link creation operation MUST fail if the link already exists.
Reserved (3 bytes): This field SHOULD be set to zero by the client and MUST be ignored by the server.
RootDirectory (4 bytes): A 32-bit unsigned integer that contains the file handle for the directory where the link is to be created. For network operations, this value MUST always be zero.
FileNameLength (4 bytes): A 32-bit unsigned integer that contains the length in bytes of the FileName field.
FileName (variable): A sequence of Unicode characters that contains the name to be assigned to the newly created link. When working with the FileName field, the FileNameLength field is used to determine the length of the file name rather than assuming the presence of a trailing null delimiter. If the RootDirectory field is zero, this field MUST specify a full pathname to the link to be created. For network operations, this pathname is relative to the root of the share. If the RootDirectory field is not zero, this field MUST specify a pathname, relative to RootDirectory, for the link name.
[bookmark: section_58f44021120d4662bf2c9905ed4940dc][bookmark: _Toc178847604]FileLinkInformation for the SMB2 Protocol
This information class is used to create a hard link to an existing file via the SMB Version 2 Protocol, as specified in [MS-SMB2].
A FILE_LINK_INFORMATION_TYPE_2 data element, defined as follows, is provided by the client.
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	ReplaceIfExists
	Reserved

	...

	RootDirectory

	...

	FileNameLength

	FileName (variable)

	...

ReplaceIfExists (1 byte): A Boolean (section 2.1.8) value. Set to TRUE to indicate that if the link already exists, it SHOULD be replaced with the new link. Set to FALSE to indicate that the link creation operation MUST fail if the link already exists.
Reserved (7 bytes): Reserved for alignment. This field can contain any value and MUST be ignored.
RootDirectory (8 bytes): A 64-bit unsigned integer that contains the file handle for the directory where the link is to be created. For network operations, this value MUST be zero.
FileNameLength (4 bytes): A 32-bit unsigned integer that specifies the length in bytes of the file name contained within the FileName field.
FileName (variable): A sequence of Unicode characters containing the name to be assigned to the newly created link. When working with this field, the FileNameLength field is used to determine the length of the file name rather than assuming the presence of a trailing null delimiter. If the RootDirectory field is zero, this field MUST specify a full pathname to the link to be created. For network operations, this pathname is relative to the root of the share. If the RootDirectory field is not zero, this field MUST specify a pathname, relative to RootDirectory, for the link name.
[bookmark: section_701a8cf499f84613b2f83cdab1d568f2][bookmark: _Toc178847605]FileMailslotQueryInformation
This information class is used locally to query information on a mailslot.
A FILE_MAILSLOT_QUERY_INFORMATION data element, defined as follows, is returned to the caller.
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	MaximumMessageSize

	MailslotQuota

	NextMessageSize

	MessagesAvailable

	ReadTimeout

	...

MaximumMessageSize (4 bytes): A 32-bit unsigned integer that contains the maximum size of a single message that can be written to the mailslot, in bytes. To specify that the message can be of any size, set this value to zero.
MailslotQuota (4 bytes): A 32-bit unsigned integer that contains the quota, in bytes, for the mailslot. The mailslot quota specifies the in-memory pool quota that is reserved for writes to this mailslot.
NextMessageSize (4 bytes): A 32-bit unsigned integer that contains the next message size, in bytes.
MessagesAvailable (4 bytes): A 32-bit unsigned integer that contains the total number of messages waiting to be read from the mailslot.
ReadTimeout (8 bytes): A 64-bit signed integer that contains the time a read operation can wait for a message to be written to the mailslot before a time-out occurs in milliseconds. The value of this field MUST be (-1) or greater than or equal to 0. A value of (-1) requests that the read wait forever for a message, without timing out. A value of 0 requests that the read not wait and return immediately whether a pending message is available to be read or not.
This operation returns a status code as specified in section 2.2. Upon success, the status code returned by the function that processes this file information class is STATUS_SUCCESS. The most common error codes are listed in the following table.
	Error code
	Meaning

	STATUS_INFO_LENGTH_MISMATCH
0xC0000004
	The specified information record length does not match the length that is required for the specified information class.

[bookmark: section_d3259c2bb84140af9debb51edb0f1ef5][bookmark: _Toc178847606]FileMailslotSetInformation
This information class is used locally to set information on a mailslot.
A FILE_MAILSLOT_SET_INFORMATION data element, defined as follows, is provided by the caller.
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	ReadTimeout

	...

ReadTimeout (8 bytes): A 64-bit signed integer that contains the time that a read operation can wait for a message to be written to the mailslot before a time-out occurs as follows:
· A positive value specifies the operation time-out as an absolute system time on the server, represented as a count of 100-nanosecond intervals since January 1, 1601.
· A negative value specifies the number of 100-nanosecond intervals for the operation to time out relative to the current server time.
· A value of -1 (0xFFFFFFFFFFFFFFFF) requests that the read wait forever for a message without timing out.
· A value of zero sends a request that the read not wait and return immediately, whether a pending message is available to be read or not.
This operation returns a status code as specified in section 2.2. Upon success, the status code returned by the function that processes this file information class is STATUS_SUCCESS. The most common error codes are listed in the following table.
	Error code
	Meaning

	STATUS_INFO_LENGTH_MISMATCH
0xC0000004
	The specified information record length does not match the length that is required for the specified information class.

[bookmark: section_52df77988330474bac319afe8075640c][bookmark: _Toc178847607]FileModeInformation
[bookmark: Appendix_A_Target_133]The FileModeInformation information class is used to query or set the mode of the file. The mode returned by a query corresponds to the CreateOptions used in the initial create operation, modified by any set FileModeInformation operations performed since the create operation.<133>
A FILE_MODE_INFORMATION data element, defined as follows, is returned by the server or provided by the client.
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	Mode

Mode (4 bytes): A 32-bit unsigned integer that specifies how the file will subsequently be accessed.
	Value
	Meaning

	FILE_WRITE_THROUGH
0x00000002
	When set, any system services, file system drivers (FSDs), and drivers that write data to the file are required to actually transfer the data into the file before any requested write operation is considered complete.

	FILE_SEQUENTIAL_ONLY
0x00000004
	[bookmark: Appendix_A_Target_134]This is a hint that informs the cache that it SHOULD<134> optimize for sequential access. Non-sequential access of the file can result in performance degradation.

	FILE_NO_INTERMEDIATE_BUFFERING
0x00000008
	When set, the file cannot be cached or buffered in a driver's internal buffers.

	FILE_SYNCHRONOUS_IO_ALERT
0x00000010
	When set, all operations on the file are performed synchronously. Any wait on behalf of the caller is subject to premature termination from alerts. This flag also causes the I/O system to maintain the file position context.

	FILE_SYNCHRONOUS_IO_NONALERT
0x00000020
	When set, all operations on the file are performed synchronously. Wait requests in the system to synchronize I/O queuing and completion are not subject to alerts. This flag also causes the I/O system to maintain the file position context.

	FILE_DELETE_ON_CLOSE
0x00001000
	 This flag is not implemented and is always returned as not set.

This operation returns a status code as specified in section 2.2. Upon success, the status code returned by the function that processes this file information class is STATUS_SUCCESS. The most common error codes are listed in the following table.
	Error code
	Meaning

	STATUS_INFO_LENGTH_MISMATCH
0xC0000004
	The specified information record length does not match the length that is required for the specified information class.

	STATUS_INVALID_PARAMETER
	An attempt to set the file mode returns STATUS_INVALID_PARAMETER in any of the following cases:
· The Mode field contains any flag other than FILE_WRITE_THROUGH, FILE_SEQUENTIAL_ONLY, FILE_SYNCHRONOUS_IO_ALERT, or FILE_SYNCHRONOUS_IO_NONALERT.
· FILE_SYNCHRONOUS_IO_ALERT or FILE_SYNCHRONOUS_IO_NONALERT is set and the file was not opened for synchronous I/O.
· Neither FILE_SYNCHRONOUS_IO_ALERT nor FILE_SYNCHRONOUS_IO_NONALERT are set and the file was opened for synchronous I/O.
· FILE_SYNCHRONOUS_IO_ALERT and FILE_SYNCHRONOUS_IO_NONALERT are both set.

[bookmark: section_cb30e41554c54483a346822ea90e1e89][bookmark: _Toc178847608]FileNameInformation
This information class is used locally to query the name of a file. This information class returns a FILE_NAME_INFORMATION data element containing an absolute pathname (section 2.1.5).
This operation returns a status code as specified in section 2.2. Upon success, the status code returned by the function that processes this file information class is STATUS_SUCCESS. The most common error codes are listed in the following table.
	Error code
	Meaning

	STATUS_NOT_SUPPORTED
0xC00000BB
	The resource is not supported.

	STATUS_BUFFER_OVERFLOW
0x80000005
	The output buffer was filled before the complete name could be returned.

[bookmark: section_a289f7a883d249278c88b2d328dde5a5][bookmark: _Toc178847609]FileNamesInformation
This information class is used in directory enumeration to return detailed information about the contents of a directory.
This information class returns a list that contains a FILE_NAMES_INFORMATION data element for each file or directory within the target directory.
When multiple FILE_NAMES_INFORMATION data elements are present in the buffer, each MUST be aligned on an 8-byte boundary. Any bytes inserted for alignment SHOULD be set to zero, and the receiver MUST ignore them. No padding is required following the last data element.
A FILE_NAMES_INFORMATION data element is as follows.
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	NextEntryOffset

	FileIndex

	FileNameLength

	FileName (variable)

	...

NextEntryOffset (4 bytes): A 32-bit unsigned integer that contains the byte offset from the beginning of this entry, at which the next FILE_NAMES_INFORMATION entry is located, if multiple entries are present in a buffer. This member MUST be zero if no other entries follow this one. An implementation MUST use this value to determine the location of the next entry (if multiple entries are present in a buffer).
[bookmark: Appendix_A_Target_135]FileIndex (4 bytes): A 32-bit unsigned integer that contains the byte offset of the file within the parent directory. For file systems in which the position of a file within the parent directory is not fixed and can be changed at any time to maintain sort order, this field SHOULD be set to 0 and MUST be ignored.<135>
FileNameLength (4 bytes): A 32-bit unsigned integer that specifies the length, in bytes, of the file name contained within the FileName member.
FileName (variable): A sequence of Unicode characters containing the file name. When working with this field, use FileNameLength to determine the length of the file name rather than assuming the presence of a trailing null delimiter. Dot directory names are valid for this field. For more details, see section 2.1.5.1.
This operation returns a status code as specified in section 2.2. Upon success, the status code returned by the function that processes this file information class is STATUS_SUCCESS. The most common error codes are listed in the following table.
	Error code
	Meaning

	STATUS_INFO_LENGTH_MISMATCH
0xC0000004
	The specified information record length does not match the length that is required for the specified information class.

[bookmark: section_26d261db58d14513a548074448cbb146][bookmark: _Toc178847610]FileNetworkOpenInformation
[bookmark: Appendix_A_Target_136]This information class is used to query for information that is commonly needed when a file is opened across a network.<136>
A FILE_NETWORK_OPEN_INFORMATION data element, defined as follows, is returned by the server.
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	CreationTime

	...

	LastAccessTime

	...

	LastWriteTime

	...

	ChangeTime

	...

	AllocationSize

	...

	EndOfFile

	...

	FileAttributes

	Reserved

CreationTime (8 bytes): The time when the file was created; see section 2.1.1. The value of this field MUST be greater than or equal to 0.
LastAccessTime (8 bytes): The last time the file was accessed; see section 2.1.1. The value of this field MUST be greater than or equal to 0.
LastWriteTime (8 bytes): The last time information was written to the file; see section 2.1.1. The value of this field MUST be greater than or equal to 0.
ChangeTime (8 bytes): The last time the file was changed; see section 2.1.1. The value of this field MUST be greater than or equal to 0.
AllocationSize (8 bytes): A 64-bit signed integer that contains the file allocation size, in bytes. The value of this field MUST be an integer multiple of the cluster size.
EndOfFile (8 bytes): A 64-bit signed integer that contains the absolute new end-of-file position as a byte offset from the start of the file. EndOfFile specifies the offset to the byte immediately following the last valid byte in the file. Because this value is zero-based, it actually refers to the first free byte in the file. That is, it is the offset from the beginning of the file at which new bytes appended to the file will be written. The value of this field MUST be greater than or equal to 0.
FileAttributes (4 bytes): A 32-bit unsigned integer that contains the file attributes. Valid attributes are as specified in section 2.6.
Reserved (4 bytes): A 32-bit field. This field is reserved. This field can be set to any value and MUST be ignored.
This operation returns a status code as specified in section 2.2. Upon success, the status code returned by the function that processes this file information class is STATUS_SUCCESS. The most common error codes are listed in the following table.
	Error code
	Meaning

	STATUS_INFO_LENGTH_MISMATCH
0xC0000004
	The specified information record length does not match the length that is required for the specified information class.

	STATUS_ACCESS_DENIED
0xC0000022
	The handle was not opened to read file data or file attributes.

[bookmark: section_20bcadba808c4880b7574af93e41edf6][bookmark: _Toc178847611]FileNormalizedNameInformation
[bookmark: Appendix_A_Target_137]This information class is used to query the normalized name of a file. A normalized name is an absolute pathname where each short name component has been replaced with the corresponding long name component, and each name component uses the exact letter casing stored on disk. This information class returns a FILE_NAME_INFORMATION data element containing an absolute pathname, as specified in section 2.1.7. <137>
This operation returns a status code as specified in section 2.2. Upon success, the status code returned by the function that processes this file information class is STATUS_SUCCESS. The most common error codes are listed in the following table.
	Error Code
	Meaning

	STATUS_NOT_SUPPORTED
0xC00000BB
	The resource is not supported.

	STATUS_BUFFER_OVERFLOW
0x80000005
	The output buffer was filled before the complete name could be returned.

[bookmark: section_217740d3776e40e0bbae6ae2aa959e13][bookmark: _Toc178847612]FileObjectIdInformation
[bookmark: Appendix_A_Target_138]This information class is used locally to query object ID information for the files in a directory on a volume. The query MUST fail if the file system does not support object IDs.<138>
[bookmark: Appendix_A_Target_139]The data returned to the caller will take one of two forms. The choice of which data structure to use, and the interpretation of the data within it, is application-specific. An application implementer chooses one of the following two data elements as the structure for its object ID information data.<139>
· FILE_OBJECTID_INFORMATION_TYPE_1 (section 2.4.35.1).
· FILE_OBJECTID_INFORMATION_TYPE_2 (section 2.4.35.2).
This operation returns a status code as specified in section 2.2. Upon success, the status code returned by the function that processes this file information class is STATUS_SUCCESS. The most common error codes are listed in the following table.
	Error code
	Meaning

	STATUS_INVALID_DEVICE_REQUEST
0xC0000010
	The target file system does not implement this functionality.

	STATUS_INVALID_INFO_CLASS
0xC0000003
	The specified information class is not a valid information class for the specified object.

	STATUS_INFO_LENGTH_MISMATCH
0xC0000004
	The specified information record length does not match the length that is required for the specified information class.

	STATUS_INVALID_PARAMETER
0xC000000D
	The file specified is not a valid parameter.

	STATUS_NO_SUCH_FILE
0xC000000F
	The file does not exist.

	STATUS_NO_MORE_FILES
0x80000006
	No more files were found which match the file specification.

	STATUS_BUFFER_OVERFLOW
0x80000005
	The output buffer was filled before all of the ObjectID information could be returned. Only complete FILE_OBJECTID_INFORMATION structures are returned.

[bookmark: section_63cdde1685ac480c95bf0bb8f5f09de8][bookmark: _Toc178847613]FILE_OBJECTID_INFORMATION_TYPE_1
A FILE_OBJECTID_INFORMATION_TYPE_1 data element is as follows.
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	FileReferenceNumber

	...

	ObjectId (16 bytes)

	...

	...

	BirthVolumeId (16 bytes)

	...

	...

	BirthObjectId (16 bytes)

	...

	...

	DomainId (16 bytes)

	...

	...

FileReferenceNumber (8 bytes): The 64-bit file ID, as specified in section 2.1.9, for the file. For file systems that do not support a 64-bit file ID, this field MUST be set to 0, and MUST be ignored.
ObjectId (16 bytes): A 16-byte GUID that uniquely identifies the file or directory within the volume on which it resides. Specifically, the same object ID can be assigned to another file or directory on a different volume, but it MUST NOT be assigned to another file or directory on the same volume.
BirthVolumeId (16 bytes): A 16-byte GUID that uniquely identifies the volume on which the object resided when the object identifier was created, or zero if the volume had no object identifier at that time. After copy operations, move operations, or other file operations, this might not be the same as the object identifier of the volume on which the object presently resides.
[bookmark: Appendix_A_Target_140]BirthObjectId (16 bytes): A 16-byte GUID value containing the object identifier of the object at the time it was created. After copy operations, move operations, or other file operations, this value might not be the same as the ObjectId member at present.<140>
DomainId (16 bytes): A 16-byte GUID value containing the domain identifier. This value is unused; it SHOULD be zero and MUST be ignored.
[bookmark: section_42fa165135a54cdd94fc881917b714b2][bookmark: _Toc178847614]FILE_OBJECTID_INFORMATION_TYPE_2
A FILE_OBJECTID_INFORMATION_TYPE_2 data element is as follows.
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	FileReferenceNumber

	...

	ObjectId (16 bytes)

	...

	...

	ExtendedInfo (48 bytes)

	...

	...

FileReferenceNumber (8 bytes): The 64-bit file ID, as specified in section 2.1.9, for the file. For file systems that do not support a 64-bit file ID, this field MUST be set to 0, and MUST be ignored.
ObjectId (16 bytes): A 16-byte GUID that uniquely identifies the file or directory within the volume on which it resides. Specifically, the same object ID can be assigned to another file or directory on a different volume, but it MUST NOT be assigned to another file or directory on the same volume.
ExtendedInfo (48 bytes): A 48-byte BLOB that contains application-specific extended information on the file object. If no extended information has been written for this file, the server MUST return 48 bytes of 0x00 in this field.
[bookmark: section_cd805dd292484024ac0fb87a702dd366][bookmark: _Toc178847615]FilePipeInformation
This information class is used to query or set information on a named pipe that is not specific to one end of the pipe or another.
A FILE_PIPE_INFORMATION data element, defined as follows, is returned by the server or provided by the client.
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	ReadMode

	CompletionMode

ReadMode (4 bytes): A 32-bit unsigned integer that MUST contain one of the following values.
	Value
	Meaning

	FILE_PIPE_BYTE_STREAM_MODE
0x00000000
	If this value is specified, data MUST be read from the pipe as a stream of bytes.

	FILE_PIPE_MESSAGE_MODE
0x00000001
	If this value is specified, data MUST be read from the pipe as a stream of messages.

If this field is set to FILE_PIPE_BYTE_STREAM_MODE, any attempt to subsequently change it MUST fail with a STATUS_INVALID_PARAMETER error code.
CompletionMode (4 bytes): A 32-bit unsigned integer that MUST contain one of the following values.
	Value
	Meaning

	FILE_PIPE_QUEUE_OPERATION
0x00000000
	If this value is specified, blocking mode MUST be enabled. When the pipe is being connected, read to, or written from, the operation is not completed until there is data to read, all data is written, or a client is connected. Use of this mode can result in the server waiting indefinitely for a client process to perform an action.

	FILE_PIPE_COMPLETE_OPERATION
0x00000001
	If this value is specified, non-blocking mode MUST be enabled. When the pipe is being connected, read to, or written from, the operation completes immediately.

This operation returns a status code as specified in section 2.2. Upon success, the status code returned by the function that processes this file information class is STATUS_SUCCESS. The most common error codes are listed in the following table.
	Error code
	Meaning

	STATUS_INFO_LENGTH_MISMATCH
0xC0000004
	The specified information record length does not match the length that is required for the specified information class.

	STATUS_INVALID_PARAMETER
0xC000000D
	An invalid parameter was passed to a service or function. When setting the FilePipeInformation information level, STATUS_INVALID_PARAMETER will be returned:
· If the ReadMode field is set to FILE_PIPE_BYTE_STREAM_MODE and a subsequent set operation attempts to set the ReadMode field to any value other than FILE_PIPE_BYTE_STREAM_MODE.
· If the value of the ReadMode field is not equal to FILE_PIPE_MESSAGE_MODE or FILE_PIPE_BYTE_STREAM_MODE.
· If the value of the CompletionMode field is not equal to FILE_PIPE_QUEUE_OPERATION or FILE_PIPE_COMPLETE_OPERATION.

For more information on named pipes, please see [PIPE].
[bookmark: section_de9abdc7b9744ec3a4dc42853777f412][bookmark: _Toc178847616]FilePipeLocalInformation
This information class is used to query information on a named pipe that is associated with the end of the pipe that is being queried.
A FILE_PIPE_LOCAL_INFORMATION data element, defined as follows, is returned by the server.
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	NamedPipeType

	NamedPipeConfiguration

	MaximumInstances

	CurrentInstances

	InboundQuota

	ReadDataAvailable

	OutboundQuota

	WriteQuotaAvailable

	NamedPipeState

	NamedPipeEnd

NamedPipeType (4 bytes): A 32-bit unsigned integer that contains the named pipe type. MUST be one of the following.
	Value
	Meaning

	FILE_PIPE_BYTE_STREAM_TYPE
0x00000000
	If this value is specified, data MUST be read from the pipe as a stream of bytes.

	FILE_PIPE_MESSAGE_TYPE
0x00000001
	If this flag is specified, data MUST be read from the pipe as a stream of messages.

NamedPipeConfiguration (4 bytes): A 32-bit unsigned integer that contains the named pipe configuration. MUST be one of the following.
	Value
	Meaning

	FILE_PIPE_INBOUND
0x00000000
	If this value is specified, the flow of data in the pipe goes from client to server only.

	FILE_PIPE_OUTBOUND
0x00000001
	If this value is specified, the flow of data in the pipe goes from server to client only.

	FILE_PIPE_FULL_DUPLEX
0x00000002
	If this value is specified, the pipe is bi-directional; both server and client processes can read from and write to the pipe.

MaximumInstances (4 bytes): A 32-bit unsigned integer that contains the maximum number of instances that can be created for this pipe.
CurrentInstances (4 bytes): A 32-bit unsigned integer that contains the number of current named pipe instances.
InboundQuota (4 bytes): A 32-bit unsigned integer that contains the inbound quota, in bytes, for the named pipe. The inbound quota is the size of the buffer reserved for inbound transfer of data on the pipe.
ReadDataAvailable (4 bytes): A 32-bit unsigned integer that contains the bytes of data available to be read from the named pipe.
OutboundQuota (4 bytes): A 32-bit unsigned integer that contains the outbound quota, in bytes, for the named pipe. The outbound quota is the size of the buffer reserved for outbound transfer of data on the pipe.
WriteQuotaAvailable (4 bytes): A 32-bit unsigned integer that contains the write quota, in bytes, for the named pipe. If the NamedPipeEnd field is set to FILE_PIPE_CLIENT_END, the WriteQuotaAvailable field is the remaining InboundQuota field available. If the NamedPipeEnd field is set to FILE_PIPE_SERVER_END, the WriteQuotaAvailable field is the remaining OutboundQuota field available.
NamedPipeState (4 bytes): A 32-bit unsigned integer that contains the named pipe state that specifies the connection status for the named pipe. MUST be one of the following.
	Value
	Meaning

	FILE_PIPE_DISCONNECTED_STATE
0x00000001
	Named pipe is disconnected.

	FILE_PIPE_LISTENING_STATE
0x00000002
	Named pipe is waiting to establish a connection.

	FILE_PIPE_CONNECTED_STATE
0x00000003
	Named pipe is connected.

	FILE_PIPE_CLOSING_STATE
0x00000004
	Named pipe is in the process of being closed.

NamedPipeEnd (4 bytes): A 32-bit unsigned integer that contains the type of the named pipe end, which specifies whether this is the client or the server side of a named pipe. MUST be one of the following.
	Value
	Meaning

	FILE_PIPE_CLIENT_END
0x00000000
	This is the client end of a named pipe.

	FILE_PIPE_SERVER_END
0x00000001
	This is the server end of a named pipe.

This operation returns a status code as specified in section 2.2. Upon success, the status code returned by the function that processes this file information class is STATUS_SUCCESS. The most common error codes are listed in the following table.
	Error code
	Meaning

	STATUS_INFO_LENGTH_MISMATCH
0xC0000004
	The specified information record length does not match the length that is required for the specified information class.

For more information on named pipes, please see [PIPE].
[bookmark: section_4319b1354472482fa0a36cc3a856c6b6][bookmark: _Toc178847617]FilePipeRemoteInformation
This information class is used to query information on a named pipe that is associated with the client end of the pipe that is being queried. Remote information is not available for local pipes or for the server end of a remote pipe. Therefore, this information class is usable only by the client to retrieve information associated with its end of the pipe.
A FILE_PIPE_REMOTE_INFORMATION data element, defined as follows, is returned by the server.
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	CollectDataTime

	...

	MaximumCollectionCount

CollectDataTime (8 bytes): A 64-bit signed integer that MUST contain the maximum amount of time counted in 100-nanosecond intervals that will elapse before transmission of data from the client machine to the server.
MaximumCollectionCount (4 bytes): A 32-bit unsigned integer that MUST contain the maximum size, in bytes, of data that will be collected on the client machine before transmission to the server.
This operation returns a status code as specified in section 2.2. Upon success, the status code returned by the function that processes this file information class is STATUS_SUCCESS. The most common error codes are listed in the following table.
	Error code
	Meaning

	STATUS_INFO_LENGTH_MISMATCH
0xC0000004
	The specified information record length does not match the length that is required for the specified information class.

For more information on named pipes, please see [PIPE].
[bookmark: section_e3ce4a39327e495c99b66b61606b6f16][bookmark: _Toc178847618]FilePositionInformation
[bookmark: Appendix_A_Target_141]This information class is used to query or set the position of the file pointer within a file.<141>
A FILE_POSITION_INFORMATION data element, defined as follows, is returned by the server or provided by the client.
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	CurrentByteOffset

	...

[bookmark: Appendix_A_Target_142]CurrentByteOffset (8 bytes): A 64-bit signed integer that MUST contain the offset, in bytes, of the file pointer from the beginning of the file. A unique offset value is maintained for each open of a file. When setting the position, only values greater than or equal to zero are valid. If the given file was opened using the FILE_NO_INTERMEDIATE_BUFFERING flag, the offset that is being set SHOULD be aligned to a sector boundary. This value SHOULD<142> be updated by read and write operations if the given file was opened using the FILE_SYNCHRONOUS_IO_ALERT or FILE_SYNCHRONOUS_IO_NONALERT flags.
This operation returns a status code as specified in section 2.2. Upon success, the status code returned by the function that processes this file information class is STATUS_SUCCESS. The most common error codes are listed in the following table.
	Error code
	Meaning

	STATUS_INFO_LENGTH_MISMATCH
0xC0000004
	The specified information record length does not match the length that is required for the specified information class.

	STATUS_INVALID_PARAMETER
0xC000000D
	Returned when setting the offset if the CurrentByteOffset is negative or the file was opened using the FILE_NO_INTERMEDIATE_BUFFERING flag and CurrentByteOffset is not aligned to a sector boundary.

[bookmark: section_acdc0738ba3c47a1b11a72e22d831c57][bookmark: _Toc178847619]FileQuotaInformation
[bookmark: Appendix_A_Target_143]This information class is used to query or to set file quota information for a volume. For queries, an optional buffer of FILE_GET_QUOTA_INFORMATION (section 2.4.40.1) data elements is provided by the client to specify the SIDs for which quota information is requested. If the FILE_GET_QUOTA_INFORMATION buffer is not specified, information for all quotas is returned. A buffer of FILE_QUOTA_INFORMATION data elements is returned by the server. For sets, FILE_QUOTA_INFORMATION data elements are populated and sent by the client, as specified in [MS-SMB] section 2.2.7.6.1 and [MS-SMB2] section 3.2.4.15.<143>
When multiple FILE_QUOTA_INFORMATION data elements are present in the buffer, each MUST be aligned on an 8-byte boundary. Any bytes inserted for alignment SHOULD be set to zero, and the receiver MUST ignore them. No padding is required following the last data element.
A FILE_QUOTA_INFORMATION data element is as follows.
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	NextEntryOffset

	SidLength

	ChangeTime

	...

	QuotaUsed

	...

	QuotaThreshold

	...

	QuotaLimit

	...

	Sid (variable)

	...

NextEntryOffset (4 bytes): A 32-bit unsigned integer that contains the byte offset from the beginning of this entry, at which the next FILE_QUOTA_INFORMATION entry is located, if multiple entries are present in a buffer. This member MUST be zero if no other entries follow this one. An implementation MUST use this value to determine the location of the next entry (if multiple entries are present in a buffer).
SidLength (4 bytes): A 32-bit unsigned integer that contains the length, in bytes, of the Sid data element.
ChangeTime (8 bytes): The last time that the quota was changed; see section 2.1.1. This value MUST be greater than or equal to 0x0000000000000000. When setting quota information, the server MUST ignore the value of this field.
QuotaUsed (8 bytes): A 64-bit signed integer that contains the amount of quota used by this user, in bytes. This value MUST be greater than or equal to 0x0000000000000000. When setting quota information, the server MUST ignore the value of this field.
QuotaThreshold (8 bytes): A 64-bit signed integer that contains the disk quota warning threshold, in bytes, on this volume for this user. This field MUST be set to a 64-bit integer value greater than or equal to 0 to set a quota warning threshold for this user on this volume. If this field is set to -1 there is no quota warning threshold for this user.
QuotaLimit (8 bytes): A 64-bit signed integer that contains the disk quota limit, in bytes, on this volume for this user. This field MUST be set to a 64-bit integer value greater than or equal to zero to set a disk quota limit for this user on this volume, to -1 to specify that no quota limit is set for this user, or to -2 to delete the quota entry for the user.
Sid (variable): Security identifier (SID) for this user.
This operation returns a status code as specified in section 2.2. Upon success, the status code returned by the function that processes this file information class is STATUS_SUCCESS. The most common error codes are listed in the following table.
	Error code
	Meaning

	STATUS_INVALID_DEVICE_REQUEST
0xC0000010
	The target file system does not implement this functionality.

	STATUS_INVALID_INFO_CLASS
0xC0000003
	The specified information class is not a valid information class for the specified object.

	STATUS_INFO_LENGTH_MISMATCH
0xC0000004
	The specified information record length does not match the length that is required for the specified information class.

	STATUS_INVALID_PARAMETER
0xC000000D
	The SID or SID Length specified is not a valid parameter.

	STATUS_NO_SUCH_FILE
0xC000000F
	For query operations, indicates that no FILE_QUOTA_INFORMATION data elements were returned that matched the input criteria.

	STATUS_BUFFER_TOO_SMALL
0xC0000023
	The buffer is too small to contain the entry. No information has been written to the buffer.

[bookmark: section_56adae21add4443497ece40e87739d52][bookmark: _Toc178847620]FILE_GET_QUOTA_INFORMATION
This structure is used to provide the list of SIDs for which quota query information is requested.
When multiple FILE_GET_QUOTA_INFORMATION data elements are present in the buffer, each MUST be aligned on a 4-byte boundary. Any bytes inserted for alignment SHOULD be set to zero, and the receiver MUST ignore them. No padding is required following the last data element.
A FILE_GET_QUOTA_INFORMATION data element is as follows.
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	NextEntryOffset

	SidLength

	Sid (variable)

	...

NextEntryOffset (4 bytes): A 32-bit unsigned integer that contains the byte offset from the beginning of this entry, at which the next FILE_GET_QUOTA_INFORMATION entry is located, if multiple entries are present in a buffer. This member MUST be zero if no other entries follow this one. An implementation MUST use this value to determine the location of the next entry (if multiple entries are present in a buffer).
SidLength (4 bytes): A 32-bit unsigned integer that contains the length, in bytes, of the Sid data element.
Sid (variable): SID for this user. SIDs are sent in little-endian format and require no padding. The format of a SID is as specified in [MS-DTYP] section 2.4.2.2.
[bookmark: section_1d2673a88fb94868920a775ccaa30cf8][bookmark: _Toc178847621]FileRenameInformation
This information class is used to rename a file. The data element provided by the client takes one of two forms, depending on whether it is embedded within SMB or SMB2. The structure definitions are as follows:
· FILE_RENAME_INFORMATION_TYPE_1 for the SMB protocol (section 2.4.41.1).
· FILE_RENAME_INFORMATION_TYPE_2 for the SMB2 protocol (section 2.4.41.2).
This operation returns a status code as specified in section 2.2. Upon success, the status code returned by the function that processes this file information class is STATUS_SUCCESS. The most common error codes are listed in the following table.
	Error code
	Meaning

	STATUS_INVALID_PARAMETER
0xC000000D
	An invalid parameter was passed for FileName or FileNameLength, or the RootDirectory field value was nonzero for a network operation.

	STATUS_ACCESS_DENIED
0xC0000022
	The handle was not opened with delete access, or the target file was open and ReplaceIfExists is nonzero.

	STATUS_NOT_SAME_DEVICE
0xC00000D4
	The destination file of a rename request is located on a different device than the source of the rename request.

	STATUS_OBJECT_NAME_INVALID
0xC0000033
	The object name is invalid for the target file system.

	STATUS_OBJECT_NAME_COLLISION
0xC0000035
	The specified name already exists and ReplaceIfExists is zero.

	STATUS_INFO_LENGTH_MISMATCH
0xC0000004
	The specified information record length does not match the length that is required for the specified information class.

[bookmark: section_3668ae461df54656b481763877428bcb][bookmark: _Toc178847622]FileRenameInformation for SMB
This information class is used to rename a file from within the SMB Protocol, as specified in [MS-SMB].
A FILE_RENAME_INFORMATION_TYPE_1 data element, defined as follows, is provided by the client.
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	ReplaceIfExists
	Reserved

	RootDirectory

	FileNameLength

	FileName (variable)

	...

ReplaceIfExists (1 byte): A Boolean (section 2.1.8) value. Set to TRUE to indicate that if a file with the given name already exists, it SHOULD be replaced with the given file. Set to FALSE to indicate that the rename operation MUST fail if a file with the given name already exists.
Reserved (3 bytes): Reserved area for alignment. This field can contain any value and MUST be ignored.
RootDirectory (4 bytes): A 32-bit unsigned integer that contains the file handle for the directory to which the new name of the file is relative. For network operations, this value MUST be zero.
FileNameLength (4 bytes): A 32-bit unsigned integer that specifies the length, in bytes, of the file name contained within the FileName field.
FileName (variable): A sequence of Unicode characters containing the new file name of type Filename (section 2.1.5.2). When working with this field, use FileNameLength to determine the length of the file name rather than assuming the presence of a trailing null delimiter.
[bookmark: section_52aa0b7080944971862d79793f41e6a8][bookmark: _Toc178847623]FileRenameInformation for SMB2
This information class is used to rename a file from within the SMB2 Protocol [MS-SMB2].
A FILE_RENAME_INFORMATION_TYPE_2 data element, defined as follows, is provided by the client.
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	ReplaceIfExists
	Reserved

	...

	RootDirectory

	...

	FileNameLength

	FileName (variable)

	...

	Padding (variable)

ReplaceIfExists (1 byte): A Boolean (section 2.1.8) value. Set to TRUE to indicate that if a file with the given name already exists, it SHOULD be replaced with the given file. Set to FALSE to indicate that the rename operation MUST fail if a file with the given name already exists.
Reserved (7 bytes): Reserved area for alignment. This field can contain any value and MUST be ignored.
RootDirectory (8 bytes): A 64-bit unsigned integer that contains the file handle for the directory to which the new name of the file is relative. For network operations, this value MUST always be zero.
FileNameLength (4 bytes): A 32-bit unsigned integer that specifies the length, in bytes, of the file name contained within the FileName field.
FileName (variable): A sequence of Unicode characters containing the new name of the file. When working with this field, use FileNameLength to determine the length of the file name rather than assuming the presence of a trailing null delimiter.
Padding (variable): Length of this field MUST be the number of bytes required to make the size of this structure at least 24. This field MAY be set to 0 and MUST be ignored on receipt.
[bookmark: section_852688a6925d46e8ab0a79286175c8c0][bookmark: _Toc178847624]FileReparsePointInformation
This information class is used locally to query for information on a reparse point.
A FILE_REPARSE_POINT_INFORMATION data element, defined as follows, is returned to the caller.
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	FileReferenceNumber

	...

	Tag

FileReferenceNumber (8 bytes): The 64-bit file ID, as specified in section 2.1.9, for the file.
Tag (4 bytes): A 32-bit unsigned integer value containing the reparse point tag that uniquely identifies the owner of the reparse point. Section 2.1.2.1 contains more details on reparse tags.
This operation returns a status code as specified in section 2.2. Upon success, the status code returned by the function that processes this file information class is STATUS_SUCCESS. The most common error codes are listed in the following table.
	Error code
	Meaning

	STATUS_INFO_LENGTH_MISMATCH
0xC0000004
	The specified information record length does not match the length that is required for the specified information class.

	STATUS_INVALID_DEVICE_REQUEST
0xC0000010
	The target file system does not implement this functionality.

	STATUS_INVALID_INFO_CLASS
0xC0000003
	The specified information class is not a valid information class for the specified object.

	STATUS_NO_SUCH_FILE
0xC000000F
	No reparse points exist for the given file.

	STATUS_BUFFER_OVERFLOW
0x80000005
	The output buffer was filled before all of the FILE_REPARSE_POINT_INFORMATION structures could be returned; a partial structure might be returned.

[bookmark: section_57af15b2470f44aa83d97f3765368a5d][bookmark: _Toc178847625]FileSfioReserveInformation
This information class is used locally to query or set reserved bandwidth for a file handle. Conceptually reserving bandwidth is effectively specifying the bytes per second to allocate to file IO.
A FILE_SFIO_RESERVE_INFORMATION data element, defined as follows, is returned to the caller.
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	RequestsPerPeriod

	Period

	RetryFailures
	Discardable
	Reserved

	RequestSize

	NumOutstandingRequests

RequestsPerPeriod (4 bytes): A 32-bit unsigned integer indicating the number of I/O requests that complete per period of time, as specified in the Period field. When setting bandwidth reservation, a value of 0 indicates to the file system that it MUST free any existing reserved bandwidth.
Period (4 bytes): A 32-bit unsigned integer that contains the period for reservation, which is the time from which I/O is issued to the kernel until the time the I/O is completed, specified in milliseconds.
RetryFailures (1 byte): A Boolean (section 2.1.8) value.
Discardable (1 byte): A Boolean (section 2.1.8) value.
Reserved (2 bytes): Reserved for alignment. This field can contain any value and MUST be ignored.
RequestSize (4 bytes): A 32-bit unsigned integer that indicates the minimum size of any individual I/O request that can be issued by an application using bandwidth reservation. When setting reservations, this field MUST be ignored by servers and SHOULD be set to 0 by clients.
NumOutstandingRequests (4 bytes): A 32-bit unsigned integer that indicates the number of RequestSize I/O requests allowed to be outstanding at any time. When setting reservations, this field MUST be ignored by servers and SHOULD be set to 0 by clients.
This operation returns a status code as specified in section 2.2. Upon success, the status code returned by the function that processes this file information class is STATUS_SUCCESS. The most common error codes are listed in the following table.
	Error code
	Meaning

	STATUS_NOT_SUPPORTED
0xC00000BB
	The request is not supported.

	STATUS_INFO_LENGTH_MISMATCH
0xC0000004
	The specified information record length does not match the length that is required for the specified information class.

[bookmark: section_80cecad891724c42af90f890a84f2abc][bookmark: _Toc178847626]FileShortNameInformation
[bookmark: Appendix_A_Target_144]This information class is used to change a file's short name. If the supplied name is of zero length, the file's existing short name, if any, SHOULD<144> be deleted. Otherwise, the supplied name MUST be a valid short name as specified in section 2.1.5.2.1 and be unique among all file names and short names in the same directory as the file being operated on. A caller changing the file's short name MUST have SeRestorePrivilege, as specified in [MS-LSAD] section 3.1.1.2.1.
A FILE_NAME_INFORMATION (section 2.1.7) data element containing an 8.3 file name (section 2.1.5.2.1) is provided by the client.
This operation returns a status code as specified in section 2.2. Upon success, the status code returned by the function that processes this file information class is STATUS_SUCCESS. The most common error codes are listed in the following table.
	Error code
	Meaning

	STATUS_MEDIA_WRITE_PROTECTED
0xC00000A2
	The target cannot be written to because it is write-protected.

	STATUS_INVALID_PARAMETER
0xC000000D
	The file name is not a valid parameter.

	STATUS_ACCESS_DENIED
0xC0000022
	The handle was not opened to write file data or file attributes, or the file has been deleted.

	STATUS_PRIVILEGE_NOT_HELD
0xC0000061
	The SeRestorePrivilege privilege is not held.

	STATUS_SHORT_NAMES_NOT_ENABLED_ON_VOLUME
0xC000019F
	Short names are not enabled on this volume.

	STATUS_OBJECT_NAME_COLLISION
0xC0000035
	The specified name already exists.

	STATUS_INFO_LENGTH_MISMATCH
0xC0000004
	The specified information record length does not match the length that is required for the specified information class.

[bookmark: section_5afa7f66619c48f3955f68c4ece704ae][bookmark: _Toc178847627]FileStandardInformation
This information class is used to query file information.
A FILE_STANDARD_INFORMATION data element, defined as follows, is returned by the server.
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	AllocationSize

	...

	EndOfFile

	...

	NumberOfLinks

	DeletePending
	Directory
	Reserved

AllocationSize (8 bytes): A 64-bit signed integer that contains the file allocation size, in bytes. The value of this field MUST be an integer multiple of the cluster size.
EndOfFile (8 bytes): A 64-bit signed integer that contains the absolute end-of-file position as a byte offset from the start of the file. EndOfFile specifies the offset to the byte immediately following the last valid byte in the file. Because this value is zero-based, it actually refers to the first free byte in the file. That is, it is the offset from the beginning of the file at which new bytes appended to the file will be written. The value of this field MUST be greater than or equal to 0.
NumberOfLinks (4 bytes): A 32-bit unsigned integer that contains the number of non-deleted links to this file.
DeletePending (1 byte): A Boolean (section 2.1.8) value. Set to TRUE to indicate that a file deletion has been requested; set to FALSE otherwise.
Directory (1 byte): A Boolean (section 2.1.8) value. Set to TRUE to indicate that the file is a directory; set to FALSE otherwise.
Reserved (2 bytes): A 16-bit field. This field is reserved. This field can be set to any value, and MUST be ignored.
This operation returns a status code as specified in section 2.2. Upon success, the status code returned by the function that processes this file information class is STATUS_SUCCESS. The most common error codes are listed in the following table.
	Error code
	Meaning

	STATUS_INFO_LENGTH_MISMATCH
0xC0000004
	The specified information record length does not match the length that is required for the specified information class.

[bookmark: section_a459c580db654e49bbb5562268ae271a][bookmark: _Toc178847628]FileStandardLinkInformation
[bookmark: Appendix_A_Target_145]This information class is used locally to query file link information.<145>
A FILE_STANDARD_LINK_INFORMATION data element, defined as follows, is returned to the caller.
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	NumberOfAccessibleLinks

	TotalNumberOfLinks

	DeletePending
	Directory
	Reserved

NumberOfAccessibleLinks (4 bytes): A 32-bit unsigned integer that contains the number of non-deleted links to this file.
TotalNumberOfLinks (4 bytes): A 32-bit unsigned integer that contains the total number of links to this file, including links marked for delete.
DeletePending (1 byte): A Boolean (section 2.1.8) value that MUST be set to TRUE to indicate that a file deletion has been requested; otherwise, FALSE.
Directory (1 byte): An 8-bit field that MUST be set to 1 to indicate that the file is a directory; otherwise, 0.
Reserved (2 bytes): A 16-bit field. This field is reserved. This field can be set to any value and MUST be ignored.
This operation returns a status code as specified in section 2.2. Upon success, the status code returned by the function that processes this file information class is STATUS_SUCCESS. The most common error codes are listed in the following table.
	Error code
	Meaning

	STATUS_STATUS_NOT_SUPPORTED
0xC00000BB
	The request is not supported.

	STATUS_INFO_LENGTH_MISMATCH
0xC0000004
	The specified information record length does not match the length that is required for the specified information class.

[bookmark: section_f8762be63ab9411ea7d65cc68f70c78d][bookmark: _Toc178847629]FileStreamInformation
This information class is used to enumerate the data streams of a file or a directory. A buffer of FILE_STREAM_INFORMATION data elements is returned by the server.
When multiple FILE_STREAM_INFORMATION data elements are present in the buffer, each MUST be aligned on an 8-byte boundary; any bytes inserted for alignment SHOULD be set to zero and the receiver MUST ignore them. No padding is required following the last data element.
A FILE_STREAM_INFORMATION data element is as follows.
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	NextEntryOffset

	StreamNameLength

	StreamSize

	...

	StreamAllocationSize

	...

	StreamName (variable)

	...

NextEntryOffset (4 bytes): A 32-bit unsigned integer that contains the byte offset from the beginning of this entry, at which the next FILE_STREAM_INFORMATION entry is located, if multiple entries are present in a buffer. This member is zero if no other entries follow this one. An implementation MUST use this value to determine the location of the next entry (if multiple entries are present in a buffer).
StreamNameLength (4 bytes): A 32-bit unsigned integer that contains the length, in bytes, of the stream name string.
StreamSize (8 bytes): A 64-bit signed integer that contains the size, in bytes, of the stream. The value of this field MUST be greater than or equal to 0x0000000000000000.
StreamAllocationSize (8 bytes): A 64-bit signed integer that contains the file stream allocation size, in bytes. The value of this field MUST be an integer multiple of the cluster size.
StreamName (variable): A sequence of Unicode characters containing the name of the stream using the form ":streamname:$DATA", or "::$DATA" for the default data stream, as specified in section 2.1.4. This field is not null-terminated and MUST be handled as a sequence of StreamNameLength bytes.
This operation returns a status code as specified in section 2.2. Upon success, the status code returned by the function that processes this file information class is STATUS_SUCCESS. The most common error codes are listed in the following table.
	Error code
	Meaning

	STATUS_BUFFER_OVERFLOW
0x80000005
	The output buffer was filled before all of the stream information could be returned. Only complete FILE_STREAM_INFORMATION structures are returned.

	STATUS_INFO_LENGTH_MISMATCH
0xC0000004
	The specified information record length does not match the length that is required for the specified information class.

[bookmark: section_5c9f9d50f0e040b19b840b78f59158b1][bookmark: _Toc178847630]FileValidDataLengthInformation
[bookmark: Appendix_A_Target_146]This information class is used to set the valid data length information for a file. A file's valid data length is the length, in bytes, of the data that has been written to the file. This valid data extends from the beginning of the file to the last byte in the file that has not been zeroed or left uninitialized.<146>
A FILE_VALID_DATA_LENGTH_INFORMATION data element, defined as follows, is provided by the client.
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	ValidDataLength

	...

ValidDataLength (8 bytes): A 64-bit signed integer that contains the new valid data length for the file. This parameter MUST be a positive value that is greater than the current valid data length, but less than or equal to the current file size.
This operation returns a status code as specified in section 2.2. Upon success, the status code returned by the function that processes this file information class is STATUS_SUCCESS. The most common error codes are listed in the following table.
	Error code
	Meaning

	STATUS_MEDIA_WRITE_PROTECTED
0xC00000A2
	The target cannot be written to because it is write-protected.

	STATUS_INVALID_PARAMETER
0xC000000D
	The ValidDataLength specified is not a valid parameter or the given handle is to a sparse or compressed file.

	STATUS_PRIVILEGE_NOT_HELD
0xC0000061
	The manage volume privilege is not held.

	STATUS_INFO_LENGTH_MISMATCH
0xC0000004
	The specified information record length does not match the length that is required for the specified information class.

[bookmark: section_ee12042a935246e39f67c094b75fe6c3][bookmark: _Toc178847631]File System Information Classes
[bookmark: Appendix_A_Target_147]File system information classes are numerical values (specified by the Level column in the following table) that specify what information on a particular instance of a file system on a volume is to be queried. File system information classes can retrieve information such as the file system type, volume label, size of the file system, and name of the driver used to access the file system. The table indicates which file system information classes are supported for query and set operations.<147>
	File system information class
	Level
	Uses

	FileFsVolumeInformation
	1
	Query

	FileFsLabelInformation
	2
	[bookmark: Appendix_A_Target_148]LOCAL<148>

	FileFsSizeInformation
	3
	Query

	FileFsDeviceInformation
	4
	Query

	FileFsAttributeInformation
	5
	Query

	FileFsControlInformation
	6
	 Query, Set

	FileFsFullSizeInformation
	7
	Query

	FileFsObjectIdInformation
	8
	Query, Set

	FileFsDriverPathInformation
	9
	[bookmark: Appendix_A_Target_149]LOCAL<149>

	FileFsVolumeFlagsInformation
	10
	[bookmark: Appendix_A_Target_150]LOCAL<150>

	FileFsSectorSizeInformation
	11
	Query

If an Information Class is specified that does not match the usage in the above table, STATUS_INVALID_INFO_CLASS MUST be returned. If a file system does not implement one of the above defined uses of an Information Class, STATUS_INVALID_PARAMETER MUST be returned.
[bookmark: section_ebc7e6e546504e54b17ccf60f6fbeeaa][bookmark: _Toc178847632]FileFsAttributeInformation
This information class is used to query attribute information for a file system.
A FILE_FS_ATTRIBUTE_INFORMATION data element, defined as follows, is returned by the server.
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	FileSystemAttributes

	MaximumComponentNameLength

	FileSystemNameLength

	FileSystemName (variable)

	...

[bookmark: Appendix_A_Target_151]FileSystemAttributes (4 bytes): A 32-bit unsigned integer that contains a bitmask of flags that specify attributes of the specified file system as a combination of the following flags. The value of this field MUST be a bitwise OR of zero or more of the following with the exception that FILE_FILE_COMPRESSION and FILE_VOLUME_IS_COMPRESSED cannot both be set. Any flag values not explicitly mentioned here can be set to any value, and MUST be ignored.<151>
	Value
	Meaning

	FILE_SUPPORTS_USN_JOURNAL
0x02000000
	The file system implements a USN change journal.

	FILE_SUPPORTS_OPEN_BY_FILE_ID
0x01000000
	The file system supports opening a file by FileID or ObjectID.

	FILE_SUPPORTS_EXTENDED_ATTRIBUTES
0x00800000
	The file system persistently stores Extended Attribute information per file.

	FILE_SUPPORTS_HARD_LINKS
0x00400000
	The file system supports hard linking files.

	FILE_SUPPORTS_TRANSACTIONS
0x00200000
	[bookmark: Appendix_A_Target_152]The volume supports transactions.<152>

	FILE_SEQUENTIAL_WRITE_ONCE
0x00100000
	The underlying volume is write once.

	FILE_READ_ONLY_VOLUME
0x00080000
	If set, the volume has been mounted in read-only mode.

	FILE_NAMED_STREAMS
0x00040000
	The file system supports named streams.

	FILE_SUPPORTS_ENCRYPTION
0x00020000
	[bookmark: Appendix_A_Target_153]The file system supports the Encrypted File System (EFS).<153>

	FILE_SUPPORTS_OBJECT_IDS
0x00010000
	The file system supports object identifiers.

	FILE_VOLUME_IS_COMPRESSED
0x00008000
	The specified volume is a compressed volume. This flag is incompatible with the FILE_FILE_COMPRESSION flag.

	FILE_SUPPORTS_REMOTE_STORAGE
0x00000100
	[bookmark: Appendix_A_Target_154]The file system supports remote storage.<154>

	FILE_SUPPORTS_REPARSE_POINTS
0x00000080
	The file system supports reparse points.

	FILE_SUPPORTS_SPARSE_FILES
0x00000040
	The file system supports sparse files.

	FILE_VOLUME_QUOTAS
0x00000020
	The file system supports per-user quotas.

	FILE_FILE_COMPRESSION
0x00000010
	The file volume supports file-based compression. This flag is incompatible with the FILE_VOLUME_IS_COMPRESSED flag.

	FILE_PERSISTENT_ACLS
0x00000008
	The file system preserves and enforces access control lists (ACLs).

	FILE_UNICODE_ON_DISK
0x00000004
	The file system supports Unicode in file and directory names. This flag applies only to file and directory names; the file system neither restricts nor interprets the bytes of data within a file.

	FILE_CASE_PRESERVED_NAMES
0x00000002
	The file system preserves the case of file names when it places a name on disk.

	FILE_CASE_SENSITIVE_SEARCH
0x00000001
	The file system supports case-sensitive file names when looking up (searching for) file names in a directory.

	FILE_SUPPORT_INTEGRITY_STREAMS
0x04000000
	The file system supports integrity streams.

	FILE_SUPPORTS_BLOCK_REFCOUNTING
0x08000000
	The file system supports sharing logical clusters between files on the same volume. The file system reallocates on writes to shared clusters. Indicates that FSCTL_DUPLICATE_EXTENTS_TO_FILE is a supported operation.

	FILE_SUPPORTS_SPARSE_VDL
0x10000000
	The file system tracks whether each cluster of a file contains valid data (either from explicit file writes or automatic zeros) or invalid data (has not yet been written to or zeroed).
File systems that use Sparse VDL do not store a valid data length (section 2.4.48) and do not require that valid data be contiguous within a file.

[bookmark: Appendix_A_Target_155]MaximumComponentNameLength (4 bytes): A 32-bit signed integer that contains the maximum file name component length, in bytes, supported by the specified file system. The value of this field MUST be greater than zero and MUST be no more than 510.<155>
FileSystemNameLength (4 bytes): A 32-bit unsigned integer that contains the length, in bytes, of the file system name in the FileSystemName field. The value of this field MUST be greater than 0.
[bookmark: Appendix_A_Target_156]FileSystemName (variable): A variable-length Unicode field containing the name of the file system. This field is not null-terminated and MUST be handled as a sequence of FileSystemNameLength bytes. This field is intended to be informative only. A client SHOULD NOT infer file system type specific behavior from this field.<156>
This operation returns a status code as specified in section 2.2. Upon success, the status code returned by the function that processes this file system information class is STATUS_SUCCESS. The most common error codes are listed in the following table.
	Error code
	Meaning

	STATUS_INFO_LENGTH_MISMATCH
0xC0000004
	The specified information record length does not match the length that is required for the specified information class.

	STATUS_BUFFER_OVERFLOW
0x80000005
	The output buffer was filled before all of the file system information could be returned; only a portion of the FileSystemName field is returned.

[bookmark: section_e5a707387ee446d9a5f76644daa49a51][bookmark: _Toc178847633]FileFsControlInformation
This information class is used to query or set quota and content indexing control information for a file system volume.
[bookmark: Appendix_A_Target_157]Setting quota information requires the caller to have permission to open a volume handle or a handle to the quota index file<157> for write access.
A FILE_FS_CONTROL_INFORMATION data element, defined as follows, is returned by the server or provided by the client.
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	FreeSpaceStartFiltering

	...

	FreeSpaceThreshold

	...

	FreeSpaceStopFiltering

	...

	DefaultQuotaThreshold

	...

	DefaultQuotaLimit

	...

	FileSystemControlFlags

	Padding

FreeSpaceStartFiltering (8 bytes): A 64-bit signed integer that contains the minimum amount of free disk space, in bytes, that is required for the operating system's content indexing service to begin document filtering. This value SHOULD be set to 0 and MUST be ignored.
FreeSpaceThreshold (8 bytes): A 64-bit signed integer that contains the minimum amount of free disk space, in bytes, that is required for the indexing service to continue to filter documents and merge word lists. This value SHOULD be set to 0 and MUST be ignored.
FreeSpaceStopFiltering (8 bytes): A 64-bit signed integer that contains the minimum amount of free disk space, in bytes, that is required for the content indexing service to continue filtering. This value SHOULD be set to 0, and MUST be ignored.
DefaultQuotaThreshold (8 bytes): A 64-bit unsigned integer that contains the default per-user disk quota warning threshold, in bytes, for the volume. A value of 0xFFFFFFFFFFFFFFFF specifies that no default quota warning threshold per user is set.
DefaultQuotaLimit (8 bytes): A 64-bit unsigned integer that contains the default per-user disk quota limit, in bytes, for the volume. A value of 0xFFFFFFFFFFFFFFFF specifies that no default quota limit per user is set.
[bookmark: Appendix_A_Target_158]FileSystemControlFlags (4 bytes): A 32-bit unsigned integer that contains a bitmask of flags that control quota enforcement and logging of user-related quota events on the volume. The following bit flags are valid in any combination. Bits not defined in the following table SHOULD be set to 0, and MUST be ignored.<158>
	Value
	Meaning

	FILE_VC_CONTENT_INDEX_DISABLED
0x00000008
	Content indexing is disabled.

	FILE_VC_LOG_QUOTA_LIMIT
0x00000020
	An event log entry will be created when the user exceeds the assigned disk quota limit.

	FILE_VC_LOG_QUOTA_THRESHOLD
0x00000010
	An event log entry will be created when the user exceeds his or her assigned quota warning threshold.

	FILE_VC_LOG_VOLUME_LIMIT
0x00000080
	An event log entry will be created when the volume's free space limit is exceeded.

	FILE_VC_LOG_VOLUME_THRESHOLD
0x00000040
	An event log entry will be created when the volume's free space threshold is exceeded.

	FILE_VC_QUOTA_ENFORCE
0x00000002
	Quotas are tracked and enforced on the volume.
Note: FILE_VC_QUOTA_TRACK takes precedence over this flag. In other words, if both FILE_VC_QUOTA_TRACK and FILE_VC_QUOTA_ENFORCE are set, the FILE_VC_QUOTA_ENFORCE flag is ignored. This flag will be ignored if a client attempts to set it.

	FILE_VC_QUOTA_TRACK
0x00000001
	Quotas are tracked on the volume, but they are not enforced. Tracked quotas enable reporting on the file system space used by system users. If both this flag and FILE_VC_QUOTA_ENFORCE are specified, FILE_VC_QUOTA_ENFORCE is ignored.
Note: This flag takes precedence over FILE_VC_QUOTA_ENFORCE. In other words, if both FILE_VC_QUOTA_TRACK and FILE_VC_QUOTA_ENFORCE are set, the FILE_VC_QUOTA_ENFORCE flag is ignored. This flag will be ignored if a client attempts to set it.

	FILE_VC_QUOTAS_INCOMPLETE
0x00000100
	The quota information for the volume is incomplete because it is corrupt, or the system is in the process of rebuilding the quota information.
Note: This does not necessarily imply that FILE_VC_QUOTAS_REBUILDING is set. This flag will be ignored if a client attempts to set it.

	FILE_VC_QUOTAS_REBUILDING
0x00000200
	The file system is rebuilding the quota information for the volume.
Note: This does not necessarily imply that FILE_VC_QUOTAS_INCOMPLETE is set. This flag will be ignored if a client attempts to set it.

Padding (4 bytes): This field SHOULD be set to 0x00000000 and MUST be ignored.
This operation returns a status code as specified in section 2.2. Upon success, the status code returned by the function that processes this file system information class is STATUS_SUCCESS. The most common error codes are listed in the following table.
	Error code
	Meaning

	STATUS_INFO_LENGTH_MISMATCH
0xC0000004
	The specified information record length does not match the length that is required for the specified information class.

	STATUS_VOLUME_NOT_UPGRADED
0xC000029C
	The file system on the volume does not support quotas.

[bookmark: section_c530e7694b8744f4a188b9af8305eee0][bookmark: _Toc178847634]FileFsDriverPathInformation
This information class is used locally to query if a given driver is in the I/O path for a file system volume.
A FILE_FS_DRIVER_PATH_INFORMATION data element, defined as follows, is returned to the caller.
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	DriverInPath
	Reserved

	DriverNameLength

	DriverName (variable)

	...

DriverInPath (1 byte): A Boolean (section 2.1.8) value. Set to TRUE if the driver is in the I/O path for the file system volume; set to FALSE otherwise.
Reserved (3 bytes): Reserved for alignment. This field can contain any value and MUST be ignored.
DriverNameLength (4 bytes): A 32-bit unsigned integer that contains the length of the DriverName string.
DriverName (variable): A variable-length Unicode field containing the name of the driver for which to query. This sequence of Unicode characters MUST NOT be null-terminated.
This operation returns a status code as specified in section 2.2. Upon success, the status code returned by the function that processes this file system information class is STATUS_SUCCESS. The most common error codes are listed in the following table.
	Error code
	Meaning

	STATUS_INFO_LENGTH_MISMATCH
0xC0000004
	The specified information record length does not match the length that is required for the specified information class.

[bookmark: section_63768db7901242098cca00781e7322f5][bookmark: _Toc178847635]FileFsFullSizeInformation
This information class is used to query sector size information for a file system volume.
A FILE_FS_FULL_SIZE_INFORMATION data element, defined as follows, is returned by the server.
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	TotalAllocationUnits

	...

	CallerAvailableAllocationUnits

	...

	ActualAvailableAllocationUnits

	...

	SectorsPerAllocationUnit

	BytesPerSector

[bookmark: Appendix_A_Target_159]TotalAllocationUnits (8 bytes): A 64-bit signed integer that contains the total number of allocation units on the volume that are available to the user associated with the calling thread. The value of this field MUST be greater than or equal to 0.<159>
[bookmark: Appendix_A_Target_160]CallerAvailableAllocationUnits (8 bytes): A 64-bit signed integer that contains the total number of free allocation units on the volume that are available to the user associated with the calling thread. The value of this field MUST be greater than or equal to 0.<160>
ActualAvailableAllocationUnits (8 bytes): A 64-bit signed integer that contains the total number of free allocation units on the volume. The value of this field MUST be greater than or equal to 0.
SectorsPerAllocationUnit (4 bytes): A 32-bit unsigned integer that contains the number of sectors in each allocation unit.
BytesPerSector (4 bytes): A 32-bit unsigned integer that contains the number of bytes in each sector.
This operation returns a status code as specified in section 2.2. Upon success, the status code returned by the function that processes this file system information class is STATUS_SUCCESS. The most common error codes are listed in the following table.
	Error code
	Meaning

	STATUS_INFO_LENGTH_MISMATCH
0xC0000004
	The specified information record length does not match the length that is required for the specified information class.

[bookmark: section_d5ab2652a7fd46559b35ea02bd05c0d8][bookmark: _Toc178847636]FileFsLabelInformation
This information class is used locally to set the label for a file system volume.
A FILE_FS_LABEL_INFORMATION data element, defined as follows, is provided by the caller.
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	VolumeLabelLength

	VolumeLabel (variable)

	...

[bookmark: Appendix_A_Target_161]VolumeLabelLength (4 bytes): A 32-bit unsigned integer that contains the length, in bytes, including the trailing null, if present, of the name for the volume.<161>
VolumeLabel (variable): A variable-length Unicode field containing the name of the volume. The content of this field can be a null-terminated string, or it can be a string padded with the space character to be VolumeLabelLength bytes long.
This operation returns a status code as specified in section 2.2. Upon success, the status code returned by the function that processes this file system information class is STATUS_SUCCESS. The most common error codes are listed in the following table.
	Error code
	Meaning

	STATUS_INFO_LENGTH_MISMATCH
0xC0000004
	The specified information record length does not match the length that is required for the specified information class.

[bookmark: section_dbf535ae315a45088bc584276ea106d4][bookmark: _Toc178847637]FileFsObjectIdInformation
[bookmark: Appendix_A_Target_162]This information class is used to query or set the object ID for a file system data element. The operation MUST fail if the file system does not support object IDs.<162>
A FILE_FS_OBJECTID_INFORMATION data element, defined as follows, is returned by the server or provided by the client.
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	ObjectId (16 bytes)

	...

	...

	ExtendedInfo (48 bytes)

	...

	...

ObjectId (16 bytes): A 16-byte GUID that identifies the file system volume on the disk. This value is not required to be unique on the system.
[bookmark: Appendix_A_Target_163]ExtendedInfo (48 bytes): A 48-byte value containing extended information on the file system volume. If no extended information has been written for this file system volume, the server MUST return 48 bytes of 0x00 in this field.<163>
This operation returns a status code as specified in section 2.2. Upon success, the status code returned by the function that processes this file system information class is STATUS_SUCCESS. The most common error codes are listed in the following table.
	Error code
	Meaning

	STATUS_INFO_LENGTH_MISMATCH
0xC0000004
	The specified information record length does not match the length that is required for the specified information class.

	STATUS_VOLUME_NOT_UPGRADED
0xC000029C
	The file system on the volume does not support object IDs.

	STATUS_INVALID_PARAMETER
0xC000000D
	The file system does not implement object IDs.

[bookmark: section_3e75d97f1d0b4e47b43573c513837a57][bookmark: _Toc178847638]FileFsSectorSizeInformation
[bookmark: Appendix_A_Target_164]This information class is used to query for the extended sector size and alignment information for a volume. The message contains a FILE_FS_SECTOR_SIZE_INFORMATION data element.<164>
A FILE_FS_SECTOR_SIZE_INFORMATION data element, defined as follows, is returned to the caller.
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	LogicalBytesPerSector

	PhysicalBytesPerSectorForAtomicity

	PhysicalBytesPerSectorForPerformance

	FileSystemEffectivePhysicalBytesPerSectorForAtomicity

	Flags

	ByteOffsetForSectorAlignment

	ByteOffsetForPartitionAlignment

LogicalBytesPerSector (4 bytes): A 32-bit unsigned integer that contains the number of bytes in a logical sector for the device backing the volume. This field is the unit of logical addressing for the device and is not the unit of atomic write. Applications SHOULD NOT utilize this value for operations requiring physical sector alignment.
[bookmark: Appendix_A_Target_165]PhysicalBytesPerSectorForAtomicity (4 bytes): A 32-bit unsigned integer that contains the number of bytes in a physical sector for the device backing the volume. Note that this is the reported physical sector size of the device and is the unit of atomic write. Applications SHOULD<165> utilize this value for operations requiring sector alignment.
[bookmark: Appendix_A_Target_166]PhysicalBytesPerSectorForPerformance (4 bytes): A 32-bit unsigned integer that contains the number of bytes in a physical sector for the device backing the volume. This is the reported physical sector size of the device and is the unit of performance. Applications SHOULD<166> utilize this value for operations requiring sector alignment.
[bookmark: Appendix_A_Target_167]FileSystemEffectivePhysicalBytesPerSectorForAtomicity (4 bytes): A 32-bit unsigned integer containing the unit, in bytes, that the file system on the volume will use for internal operations that require alignment and atomicity.<167>
Flags (4 bytes): A 32-bit unsigned integer that indicates the flags for this operation. Currently defined flags are:
	Value
	Meaning

	SSINFO_FLAGS_ALIGNED_DEVICE
0x00000001
	When set, this flag indicates that the first physical sector of the device is aligned with the first logical sector. When not set, the first physical sector of the device is misaligned with the first logical sector.

	SSINFO_FLAGS_PARTITION_ALIGNED_ON_DEVICE
0x00000002
	When set, this flag indicates that the partition is aligned to physical sector boundaries on the storage device.

	SSINFO_FLAGS_NO_SEEK_PENALTY
0x00000004
	When set, the device reports that it does not incur a seek penalty (this typically indicates that the device does not have rotating media, such as flash-based disks).

	SSINFO_FLAGS_TRIM_ENABLED
0x00000008
	When set, the device supports TRIM operations, either T13 (ATA) TRIM or T10 (SCSI/SAS) UNMAP.

[bookmark: Appendix_A_Target_168]ByteOffsetForSectorAlignment (4 bytes): A 32-bit unsigned integer that contains the logical sector offset within the first physical sector where the first logical sector is placed, in bytes. If this value is set to SSINFO_OFFSET_UNKNOWN (0XFFFFFFFF), there was insufficient information to compute this field.<168>
ByteOffsetForPartitionAlignment (4 bytes): A 32-bit unsigned integer that contains the byte offset from the first physical sector where the first partition is placed. If this value is set to SSINFO_OFFSET_UNKNOWN (0XFFFFFFFF), there was either insufficient information or an error was encountered in computing this field.
This operation returns a status code as specified in section 2.2. Upon success, the status code returned by the function that processes this file system information class is STATUS_SUCCESS. The most common error codes are listed in the following table.
	Error Code
	Meaning

	STATUS_INFO_LENGTH_MISMATCH
0xC0000004
	The specified information record length does not match the length that is required for the specified information class.

[bookmark: section_e13e068ce3a74dd494fd3892b492e6e7][bookmark: _Toc178847639]FileFsSizeInformation
This information class is used to query sector size information for a file system volume.
A FILE_FS_SIZE_INFORMATION data element, defined as follows, is returned by the server.
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	TotalAllocationUnits

	...

	AvailableAllocationUnits

	...

	SectorsPerAllocationUnit

	BytesPerSector

[bookmark: Appendix_A_Target_169]TotalAllocationUnits (8 bytes): A 64-bit signed integer that contains the total number of allocation units on the volume that are available to the user associated with the calling thread. This value MUST be greater than or equal to 0.<169>
[bookmark: Appendix_A_Target_170]AvailableAllocationUnits (8 bytes): A 64-bit signed integer that contains the total number of free allocation units on the volume that are available to the user associated with the calling thread. This value MUST be greater than or equal to 0.<170>
SectorsPerAllocationUnit (4 bytes): A 32-bit unsigned integer that contains the number of sectors in each allocation unit.
BytesPerSector (4 bytes): A 32-bit unsigned integer that contains the number of bytes in each sector.
This operation returns a status code as specified in section 2.2. Upon success, the status code returned by the function that processes this file system information class is STATUS_SUCCESS. The most common error codes are listed in the following table.
	Error code
	Meaning

	STATUS_INFO_LENGTH_MISMATCH
0xC0000004
	The specified information record length does not match the length that is required for the specified information class.

[bookmark: section_bf691378c34e4a13976e404ea1a87738][bookmark: _Toc178847640]FileFsVolumeInformation
This information class is used to query information on a volume on which a file system is mounted.
A FILE_FS_VOLUME_INFORMATION data element, defined as follows, is returned by the server.
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	VolumeCreationTime

	...

	VolumeSerialNumber

	VolumeLabelLength

	SupportsObjects
	Reserved
	VolumeLabel (variable)

	...

VolumeCreationTime (8 bytes): The time when the volume was created; see section 2.1.1. The value of this field MUST be greater than or equal to 0.
VolumeSerialNumber (4 bytes): A 32-bit unsigned integer that contains the serial number of the volume. The serial number is an opaque value generated by the file system at format time, and is not necessarily related to any hardware serial number for the device on which the file system is located. No specific format or content of this field is required for protocol interoperation. This value is not required to be unique.
[bookmark: Appendix_A_Target_171]VolumeLabelLength (4 bytes): A 32-bit unsigned integer that contains the length, in bytes, including the trailing null, if present, of the name of the volume.<171>
[bookmark: Appendix_A_Target_172]SupportsObjects (1 byte): A Boolean (section 2.1.8) value. Set to TRUE if the file system supports object-oriented file system objects; set to FALSE otherwise.<172>
Reserved (1 byte): An 8-bit field. This field is reserved. This field MUST be set to zero and MUST be ignored.
VolumeLabel (variable): A variable-length Unicode field containing the name of the volume. The content of this field can be a null-terminated string or can be a string padded with the space character to be VolumeLabelLength bytes long.
This operation returns a status code as specified in section 2.2. Upon success, the status code returned by the function that processes this file system information class is STATUS_SUCCESS. The most common error codes are listed in the following table.
If the volume label is greater than 32 characters, return the first 32 characters of the label and STATUS_SUCCESS.
	Error code
	Meaning

	STATUS_INFO_LENGTH_MISMATCH
0xC0000004
	The specified information record length does not match the length that is required for the specified information class.

	STATUS_BUFFER_OVERFLOW
0x80000005
	The output buffer was filled before all of the volume information could be returned; only a portion of the VolumeLabel field is returned.

[bookmark: section_616b66d5b3354e1c8f87b4a55e8d3e4a][bookmark: _Toc178847641]FileFsDeviceInformation
This information class is used to query device information associated with a file system volume.
A FILE_FS_DEVICE_INFORMATION data element, defined as follows, is returned by the server.
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	DeviceType

	Characteristics

DeviceType (4 bytes): This identifies the type of given volume. It MUST be one of the following.
	Value
	Meaning

	FILE_DEVICE_CD_ROM
0x00000002
	Volume resides on a CD ROM.

	FILE_DEVICE_DISK
0x00000007
	Volume resides on a disk.

Characteristics (4 bytes): A bit field which identifies various characteristics about a given volume. The following are valid bit values.
	Value
	Meaning

	FILE_REMOVABLE_MEDIA	
0x00000001
	Indicates that the storage device supports removable media. Notice that this characteristic indicates removable media, not a removable device. For example, drivers for JAZ drive devices specify this characteristic, but drivers for PCMCIA flash disks do not.

	FILE_READ_ONLY_DEVICE
0x00000002
	Indicates that the device cannot be written to.

	FILE_FLOPPY_DISKETTE
0x00000004
	Indicates that the device is a floppy disk device.

	FILE_WRITE_ONCE_MEDIA
0x00000008
	Indicates that the device supports write-once media.

	FILE_REMOTE_DEVICE
0x00000010
	Indicates that the volume is for a remote file system like SMB or CIFS.

	FILE_DEVICE_IS_MOUNTED
0x00000020
	Indicates that a file system is mounted on the device.

	FILE_VIRTUAL_VOLUME
0x00000040
	Indicates that the volume does not directly reside on storage media but resides on some other type of media (memory for example).

	FILE_DEVICE_SECURE_OPEN
0x00000100
	By default, volumes do not check the ACL associated with the volume, but instead use the ACLs associated with individual files on the volume. When this flag is set the volume ACL is also checked.

	FILE_CHARACTERISTIC_TS_DEVICE
0x00001000
	Indicates that the device object is part of a Terminal Services device stack. See [MS-RDPBCGR] for more information.

	FILE_CHARACTERISTIC_WEBDAV_DEVICE
0x00002000
	Indicates that a web-based Distributed Authoring and Versioning (WebDAV) file system is mounted on the device. See [MS-WDVME] for more information.

	FILE_DEVICE_ALLOW_APPCONTAINER_TRAVERSAL
0x00020000
	[bookmark: Appendix_A_Target_173]The IO Manager normally performs a full security check for traverse access on every file open when the client is an appcontainer. Setting of this flag bypasses this enforced traverse access check if the client token already has traverse privileges.<173>

	FILE_PORTABLE_DEVICE
0x0004000
	Indicates that the given device resides on a portable bus like USB or Firewire and that the entire device (not just the media) can be removed from the system.

This operation returns a status code as specified in section 2.2. Upon success, the status code returned by the function that processes this file system information class is STATUS_SUCCESS. The most common error codes are listed in the following table.
	Error code
	Meaning

	STATUS_INFO_LENGTH_MISMATCH
0xC0000004
	The specified information record length does not match the length that is required for the specified information class.

[bookmark: section_ca28ec38f155476881d64bfeb8586fc9][bookmark: _Toc178847642]File Attributes
The following attributes are defined for files and directories. They can be used in any combination unless noted in the description of the attribute's meaning. There is no file attribute with the value 0x00000000 because a value of 0x00000000 in the FileAttributes field means that the file attributes for this file MUST NOT be changed when setting basic information for the file.
Note: File systems silently ignore any attribute that is not supported by that file system. Unsupported attributes MUST NOT be persisted on the media. It is recommended that unsupported attributes be masked off when encountered.
	Value
	Meaning

	FILE_ATTRIBUTE_READONLY
0x00000001
	A file or directory that is read-only. For a file, applications can read the file but cannot write to it or delete it. For a directory, applications cannot delete it, but applications can create and delete files from that directory.

	FILE_ATTRIBUTE_HIDDEN
0x00000002
	A file or directory that is hidden. Files and directories marked with this attribute do not appear in an ordinary directory listing.

	FILE_ATTRIBUTE_SYSTEM
0x00000004
	A file or directory that the operating system uses a part of or uses exclusively.

	FILE_ATTRIBUTE_DIRECTORY
0x00000010
	This item is a directory.

	FILE_ATTRIBUTE_ARCHIVE
0x00000020
	A file or directory that requires to be archived. Applications use this attribute to mark files for backup or removal.

	FILE_ATTRIBUTE_NORMAL
0x00000080
	A file that does not have other attributes set. This flag is used to clear all other flags by specifying it with no other flags set.
[bookmark: Appendix_A_Target_174]This flag MUST be ignored if other flags are set.<174>

	FILE_ATTRIBUTE_TEMPORARY
0x00000100
	A file that is being used for temporary storage. The operating system can choose to store this file's data in memory rather than on mass storage, writing the data to mass storage only if data remains in the file when the file is closed.

	FILE_ATTRIBUTE_SPARSE_FILE
0x00000200
	A file that is a sparse file.

	FILE_ATTRIBUTE_REPARSE_POINT
0x00000400
	A file or directory that has an associated reparse point.

	FILE_ATTRIBUTE_COMPRESSED
0x00000800
	A file or directory that is compressed. For a file, all of the data in the file is compressed. For a directory, compression is the default for newly created files and subdirectories.

	FILE_ATTRIBUTE_OFFLINE
0x00001000
	The data in this file is not available immediately. This attribute indicates that the file data is physically moved to offline storage. This attribute is used by Remote Storage, which is hierarchical storage management software.

	FILE_ATTRIBUTE_NOT_CONTENT_INDEXED
0x00002000
	A file or directory that is not indexed by the content indexing service.

	FILE_ATTRIBUTE_ENCRYPTED
0x00004000
	A file or directory that is encrypted. For a file, all data streams in the file are encrypted. For a directory, encryption is the default for newly created files and subdirectories.

	FILE_ATTRIBUTE_INTEGRITY_STREAM
0x00008000
	[bookmark: Appendix_A_Target_175]A file or directory that is configured with integrity support. For a file, all data streams in the file have integrity support. For a directory, integrity support is the default for newly created files and subdirectories, unless the caller specifies otherwise.<175>

	FILE_ATTRIBUTE_NO_SCRUB_DATA
0x00020000
	[bookmark: Appendix_A_Target_176]A file or directory that is configured to be excluded from the data integrity scan. For a directory configured with FILE_ATTRIBUTE_NO_SCRUB_DATA, the default for newly created files and subdirectories is to inherit the FILE_ATTRIBUTE_NO_SCRUB_DATA attribute.<176>

	FILE_ATTRIBUTE_RECALL_ON_OPEN
0x00040000
	[bookmark: Appendix_A_Target_177]This attribute appears only in directory enumeration classes (FILE_DIRECTORY_INFORMATION, FILE_BOTH_DIR_INFORMATION, etc.). When this attribute is set, it means that the file or directory has no physical representation on the local system; the item is virtual. Opening the item will be more expensive than usual because it will cause at least some of the file or directory content to be fetched from a remote store. This attribute can only be set by kernel-mode components. This attribute is for use with hierarchical storage management software.<177>

	FILE_ATTRIBUTE_PINNED
0x00080000
	[bookmark: Appendix_A_Target_178]This attribute indicates user intent that the file or directory should be kept fully present locally even when not being actively accessed. This attribute is for use with hierarchical storage management software.<178>

	FILE_ATTRIBUTE_UNPINNED
0x00100000
	[bookmark: Appendix_A_Target_179]This attribute indicates that the file or directory should not be kept fully present locally except when being actively accessed. This attribute is for use with hierarchical storage management software.<179>

	FILE_ATTRIBUTE_RECALL_ON_DATA_ACCESS
0x00400000
	[bookmark: Appendix_A_Target_180]When this attribute is set, it means that the file or directory is not fully present locally. For a file this means that not all of its data is on local storage (for example, it may be sparse with some data still in remote storage). For a directory it means that some of the directory contents are being virtualized from another location. Reading the file or enumerating the directory will be more expensive than usual because it will cause at least some of the file or directory content to be fetched from a remote store. Only kernel-mode callers can set this attribute. This attribute is for use with hierarchical storage management software.<180>

[bookmark: section_8e8b7296fb5642d7bfec3fc1f59d5fa0][bookmark: _Toc178847643]Directory Change Notifications
The following definitions are part of the Directory Change Notification algorithm defined in [MS-FSA] section 2.1.5.11.
[bookmark: section_634043d77b3947e99e26bda64685e4c9][bookmark: _Toc178847644]FILE_NOTIFY_INFORMATION
The FILE_NOTIFY_INFORMATION structure contains the changes for which the client is being notified. The structure consists of the following.
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	NextEntryOffset

	Action

	FileNameLength

	FileName (variable)

NextEntryOffset (4 bytes): The offset, in bytes, from the beginning of this structure to the subsequent FILE_NOTIFY_INFORMATION structure. If there are no subsequent structures, the NextEntryOffset field MUST be 0. NextEntryOffset MUST always be an integral multiple of 4. The FileName array MUST be padded to the next 4-byte boundary counted from the beginning of the structure.
[bookmark: Appendix_A_Target_181]Action (4 bytes): The changes that occurred on the file. This field MUST contain one of the following values.<181>
	Value
	Meaning

	FILE_ACTION_ADDED
0x00000001
	The file was renamed, and FileName contains the new name. This notification is only sent when the rename operation changes the directory the file resides in. The client will also receive a FILE_ACTION_REMOVED notification. This notification will not be received if the file is renamed within a directory.

	FILE_ACTION_REMOVED
0x00000002
	The file was renamed, and FileName contains the old name. This notification is only sent when the rename operation changes the directory the file resides in. The client will also receive a FILE_ACTION_ADDED notification. This notification will not be received if the file is renamed within a directory.

	FILE_ACTION_MODIFIED
0x00000003
	The file was modified. This can be a change to the data or attributes of the file.

	FILE_ACTION_RENAMED_OLD_NAME
0x00000004
	The file was renamed, and FileName contains the old name. This notification is only sent when the rename operation does not change the directory the file resides in. The client will also receive a FILE_ACTION_RENAMED_NEW_NAME notification. This notification will not be received if the file is renamed to a different directory.

	FILE_ACTION_RENAMED_NEW_NAME
0x00000005
	The file was renamed, and FileName contains the new name. This notification is only sent when the rename operation does not change the directory the file resides in. The client will also receive a FILE_ACTION_RENAMED_OLD_NAME notification. This notification will not be received if the file is renamed to a different directory.

	FILE_ACTION_ADDED_STREAM
0x00000006
	The file was added to a named stream.

	FILE_ACTION_REMOVED_STREAM
0x00000007
	The file was removed from the named stream.

	FILE_ACTION_MODIFIED_STREAM
0x00000008
	The file was modified. This can be a change to the data or attributes of the file.

	FILE_ACTION_REMOVED_BY_DELETE
0x00000009
	An object ID was removed because the file the object ID referred to was deleted.

This notification is only sent when the directory being monitored is the special directory "\$Extend\$ObjId:$O:$INDEX_ALLOCATION".

	FILE_ACTION_ID_NOT_TUNNELLED
0x0000000A
	An attempt to tunnel object ID information to a file being created or renamed failed because the object ID is in use by another file on the same volume.

This notification is only sent when the directory being monitored is the special directory "\$Extend\$ObjId:$O:$INDEX_ALLOCATION".

	FILE_ACTION_TUNNELLED_ID_COLLISION
0x0000000B
	An attempt to tunnel object ID information to a file being renamed failed because the file already has an object ID.

This notification is only sent when the directory being monitored is the special directory "\$Extend\$ObjId:$O:$INDEX_ALLOCATION".

If two or more files have been renamed, the corresponding FILE_NOTIFY_INFORMATION entries for each file rename MUST be consecutive in this response for the client to make the correct correspondence between old and new names.
FileNameLength (4 bytes): The length, in bytes, of the file name in the FileName field.
FileName (variable): A Unicode string with the name of the file that changed.
[bookmark: section_1757778b667448968cd78022dadf570d][bookmark: _Toc178847645]Cluster Shared Volume File System IOCTLs
SQL Server Remote Storage Profile [MS-SQLRS] relies on the I/O control (IOCTL) code structures, and definitions in this section, to interpret certain fields that can be sent or received as part of its processing. See section 2.3 for more information about processing.
[bookmark: section_02c896910a2e4e6c8d1e32c781406397][bookmark: _Toc178847646]IOCTL_STORAGE_QUERY_PROPERTY Request
The IOCTL_STORAGE_QUERY_PROPERTY Request message requests that the server return the properties of a storage device or verify that the request is supported.
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	PropertyId

	QueryType

PropertyId (4 bytes): This field MUST be set to 0x00000006.
QueryType (4 bytes): Contains flags indicating the type of query to be performed.
	Value
	Meaning

	0x00000000
PropertyStandardQuery
	Query to return the IOCTL_STORAGE_QUERY_PROPERTY Reply message.

	0x00000001
PropertyExistsQuery
	Query to see whether PropertyId is supported.

[bookmark: section_6222d156ff1a4ce9953e7a5db6ad9821][bookmark: _Toc178847647]IOCTL_STORAGE_QUERY_PROPERTY Reply
The IOCTL_STORAGE_QUERY_PROPERTY Reply message contains the storage alignment information.
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	Version

	Size

	BytesPerCacheLine

	BytesOffsetForCacheAlignment

	BytesPerLogicalSector

	BytesPerPhysicalSector

	BytesOffsetForSectorAlignment

Version (4 bytes): Contains the size of this structure, in bytes.
Size (4 bytes): Specifies the total size of the data returned, in bytes.
BytesPerCacheLine (4 bytes): The number of bytes in a cache line of the device.
BytesOffsetForCacheAlignment (4 bytes): The address offset necessary for proper cache access alignment, in bytes.
BytesPerLogicalSector (4 bytes): The number of bytes in a logical sector of the device.
BytesPerPhysicalSector (4 bytes): The number of bytes in a physical sector of the device.
BytesOffsetForSectorAlignment (4 bytes): The logical sector offset within the first physical sector where the first logical sector is placed, in bytes.
[bookmark: section_2f2349bfa99e427aa0cd30ed616873b5][bookmark: _Toc178847648]IOCTL_VOLUME_GET_GPT_ATTRIBUTES Request
The IOCTL_VOLUME_GET_GPT_ATTRIBUTES Request message retrieves the attributes for a volume.
This message does not contain any additional data elements.
[bookmark: section_781577d0bd5441cdaa3aacb46992f7af][bookmark: _Toc178847649]IOCTL_VOLUME_GET_GPT_ATTRIBUTES Reply
The IOCTL_VOLUME_GET_GPT_ATTRIBUTES Reply message returns the attributes of the volume.
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	1
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	2
0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	3
0
	1

	GptAttributes

	…

GptAttributes (4 bytes): Specifies all of the attributes associated with a volume.
	Value
	Meaning

	GPT_BASIC_DATA_ATTRIBUTE_READ_ONLY
0x1000000000000000
	The volume is read-only.

	GPT_BASIC_DATA_ATTRIBUTE_SHADOW_COPY
0x2000000000000000
	The volume is a shadow copy of another volume.

	GPT_BASIC_DATA_ATTRIBUTE_HIDDEN
0x4000000000000000
	The volume is hidden.

	GPT_BASIC_DATA_ATTRIBUTE_NO_DRIVE_LETTER
0x8000000000000000
	The volume is not assigned a default drive letter.

[bookmark: section_74a256e177ee4fc7b86d357eacafe54a][bookmark: _Toc178847650]Structure Examples
For structure examples, see the individual protocols (such as the Distributed Link Tracking: Workstation Protocol; for more information, see [MS-DLTW] section 3.1.6) that use the structures and constants defined in this document.
[bookmark: section_d9fd904f68944427b532fde0c86fd772][bookmark: _Toc178847651]Security
[bookmark: section_e0838356351b47178d7a732a3320ac3d][bookmark: _Toc178847652]Security Considerations for Implementers
Allowing the use of native information levels and file system controls by a protocol could unintentionally grant access to a wider range of functionality than the protocol author intended. Developers who choose to take advantage of these common structures in a generic format can protect their applications appropriately by blocking both the levels that they do not want to support and the levels that they do not expect.
For example, the protocol could verify that the provided level is within the range of levels that existed at the time of protocol design and development before the protocol performs any further processing. The latter is significant if the underlying file system might be upgraded to support new functionality that was not there when the protocol was initially implemented.
[bookmark: section_adcb3cd86ccb4a2b881a3e5116a342a2][bookmark: _Toc178847653]Index of Security Parameters
None.
[bookmark: section_b134f29a62784f3f904f5e58a713d2c5][bookmark: _Toc178847654]Appendix A: NTFS Alternate Streams
[bookmark: section_c54dec2615514d3aa0ea4fa40f848eb3][bookmark: _Toc178847655]NTFS Streams
All files on an NTFS volume consist of at least one stream - the main stream – this is the normal, viewable file in which data is stored. The full name of a stream is of the form below.
<filename>:<stream name>:<stream type>
The default data stream has no name. That is, the fully qualified name for the default stream for a file called "sample.txt" is "sample.txt::$DATA" since "sample.txt" is the name of the file and "$DATA" is the stream type.
A user can create a named stream in a file and "$DATA" as a legal name. That means that for this stream, the full name is sample.txt:$DATA:$DATA. If the user had created a named stream of name "bar", its full name would be sample.txt:bar:$DATA. Any legal characters for a file name are legal for the stream name (including spaces). For more information about the naming format for streams, see [MS-FSCC]. For more information about the attributes of a stream, see [MS-FSA].
In the case of directories, there is no default data stream, but there is a default directory stream. Directories are the stream type $INDEX_ALLOCATION. The default stream name for the type $INDEX_ALLOCATION (a directory stream) is $I30. (This contrasts with the default stream name for a $DATA stream, which has an empty stream name.) The following are equivalent:
Dir C:\Users
Dir C:\Users:$I30:$INDEX_ALLOCATION
Dir C:\Users::$INDEX_ALLOCATION
Although directories do not have a default data stream, they can have named data streams. These alternate data streams are not normally visible, but can be observed from a command line using the /R option of the DIR command.
[bookmark: section_a82e910524054e37b2c328c773902d85][bookmark: _Toc178847656]NTFS Attribute Types
On a NTFS volume, each unit of information associated with a file including its name, its owner, its timestamp, its contents, and so on, is implemented as a file attribute. A file's data is an attribute; the "Data Attribute" known as $DATA. A number of attributes exist on a NTFS volume. The attribute names used by NTFS are listed in the table below.
	Attribute Name
	Description

	$ATTRIBUTE_LIST
	Lists the location of all attribute records that do not fit in the MFT record

	$BITMAP
	Attribute for Bitmaps

	$DATA
	Contains the default file data

	$EA
	Extended the attribute index

	$EA_INFORMATION
	Extended attribute information

	$FILE_NAME
	File name

	$INDEX_ALLOCATION
	The type name for a Directory Stream. A string for the attribute code for index allocation

	$INDEX_ROOT
	Used to support folders and other indexes

	$LOGGED_UTILITY_STREAM
	Use by the encrypting file system

	$OBJECT_ID
	Unique GUID for every MFT record

	$PROPERTY_SET
	Obsolete

	$REPARSE_POINT
	Used for volume mount points

	$SECURITY_DESCRIPTOR
	Security descriptor stores ACL and SIDs

	$STANDARD_INFORMATION
	Standard information, such as file times and quota data

	$SYMBOLIC_LINK
	Obsolete

	$TXF_DATA
	Transactional NTFS data

	$VOLUME_INFORMATION
	Version and state of the volume

	$VOLUME_NAME
	Name of the volume

	$VOLUME_VERSION
	Obsolete. Volume version

A comprehensive discussion and explanation about attributes is available in [WININTERNALS] Chapter 12 and [MSFT-NTFSWorks].
[bookmark: section_b04c3bd079dc4e58b8ed74f19fc2ea0a][bookmark: _Toc178847657]NTFS Reserved File Names
NTFS uses a number of names as part of the file system internals. The names used by NTFS within the root directory are listed in the following table:
	Filename
	Description

	\$Mft
	Master File Table (MFT) - an index of every file

	\$MftMirr
	A backup copy of the first 4 records of the MFT

	\$LogFile
	Transactional logging file

	\$Volume
	Serial number, creation time, dirty flag

	\$AttrDef
	Attribute definitions

	\$Bitmap
	Contains the volume's cluster map (in-use vs. free)

	\$Boot
	Boot record of the volume

	\$BadClus
	Lists bad clusters on the volume

	\$Secure
	Security descriptors used by the volume

	\$UpCase
	Table of uppercase characters used for collating

	\$Extend
	A directory

An additional set of names are found in the system directory as follows:
	Filename
	Description

	\$Extend\$Config
	Use for NTFS repair activity

	\$Extend\$Delete
	Delete file name

	\$Extend\$ObjId
	Unique Ids given to every file

	\$Extend\$Quota
	Quota information

	\$Extend\$Repair
	Repair name

	\$Extend\$Repair.log
	Repair log name

	\$Extend\$Reparse
	Reparse point information

	\$Extend\$RmMetadata
	Transactional NTFS resource manager metadata name

	\$Extend\$Tops
	Transactional NTFS Old Page Stream, used to store data that has been overwritten inside a currently active transaction

	\$Extend\$Txf
	Transactional NTFS

	\$Extend\$TxfLog
	Transactional NTFS log

[bookmark: section_6b5e7e75c2ad4769ad9637077ee69702][bookmark: _Toc178847658]NTFS Stream Names
NTFS by convention uses names starting with '$' for internal metadata files and streams on those internal metadata files. There is no mechanism to stop applications from using names of this form; therefore, it is recommended that names of this form not be used internally by an object store for a server environment except when emulating NTFS metadata streams such as "\$Extend\$Quota:$Q:$INDEX_ALLOCATION" or "\$Extend\$Reparse:$R:$INDEX_ALLOCATION".
Stream Names currently used by NTFS are as follows:
	NTFS Internal Stream Names
	Example

	$I30
	Default name for directory streams C:\Users:$I30:$INDEX_ALLOCATION

	$O
	\$Extend\$ObjId:$O:$INDEX_ALLOCATION

	$Q
	\$Extend\$Quota:$Q:$INDEX_ALLOCATION

	$R
	\$Extend\$Reparse:$R:$INDEX_ALLOCATION

	$J
	\$Extend\$UsnJrnl:$J:$DATA

	$MAX
	\$Extend\$UsnJrnl:$MAX:$DATA

	$SDH
	\$Secure:$SDH:$INDEX_ALLOCATION

	$SII
	\$Secure:$SII:$INDEX_ALLOCATION

[bookmark: section_127e14ced8f941219206e2be8c95b63b][bookmark: _Toc178847659]NTFS Stream Types
Names currently used are as follows:
	NTFS Stream Types

	$DATA

	$INDEX_ALLOCATION

	$BITMAP

[bookmark: section_4f3837c42f9640d7b0bf80dd1d0b0da0][bookmark: _Toc178847660]Known Alternate Stream Names
Selection of an alternate stream name, is in principle, identical to selection of a filename. An application might need to check whether a name is in use prior to attempting to use a name. When an application has successfully avoided a file name conflict, it has complete control over any stream names that it might wish to use. It is advisable to use textual GUID (GUIDString) as stream names in order to avoid conflicts. Injection of streams into files that an application does not completely own has the potential to cause unpredictable behavior and can be flagged by virus scanning software.
[bookmark: section_6e3f7352d11c4d768c392516a9df36e8][bookmark: _Toc178847661]Zone.Identifier Stream Name
Windows Internet Explorer uses the stream name Zone.Identifier for storage of URL security zones.
The fully qualified form is sample.txt: Zone.Identifier:$DATA
The stream is a simple text stream of the form:
[ZoneTransfer]
ZoneId=3
[MSDN-SECZONES] gives an explanation of security zones.
[bookmark: section_f1adfb03a5ca49e59f0ec01b7c56c2e3][bookmark: _Toc178847662]Outlook Express Properties Stream Name
Outlook Express uses the stream name OECustomProperty for storage of custom properties related to email files.
The fully qualified form is sample.eml:OECustomProperty:$DATA
[bookmark: section_704968621dc44ecdaf257f479c170dd9][bookmark: _Toc178847663]Document Properties Stream Name
Property sets, when applied to files, use a number of different stream names. The initial character is Unicode U+2663, known as (BLACK CLUB).
The names "♣BnhqlkugBim0elg1M1pt2tjdZe", "♣SummaryInformation" and the GUID {4c8cc155-6c1e-11d1-8e41-00c04fb9386d} are used.
The fully qualified names would be as follows:
sample.doc:♣BnhqlkugBim0elg1M1pt2tjdZe:$DATA
sample.doc:♣SummaryInformation:$DATA
sample.gif:{4c8cc155-6c1e-11d1-8e41-00c04fb9386d}:$DATA
[bookmark: section_9cbacccbdfa0482eae194ca63fb666c5][bookmark: _Toc178847664]Encryptable Thumbnails Stream Name
Windows Shell uses the stream name "encryptable" to store attributes relating to thumbnails in the thumbnails database.
The fully qualified name would be as follows:
Thumbs.db:encryptable:$DATA
[bookmark: section_a17d1ee836e04b8ca03f69de5fc47368][bookmark: _Toc178847665]Internet Explorer Favicon Stream Name
Internet Explorer uses the stream name "favicon" for storing favorite ICONs for web pages.
The fully qualified name would be as follows:
Pages.url:favicon:$DATA
[bookmark: section_77a73da6a70e45f8b4bb51dcd85c8ed1][bookmark: _Toc178847666]Macintosh Supported Stream Names
Two stream names exist for compatibility with Macintosh operating system property lists. These names are "AFP_AfpInfo" and "AFP_Resource".
The fully qualified name would be as follows:
Sample.txt:AFP_AfpInfo:$DATA
Sample.txt:AFP_Resource:$DATA
[bookmark: section_bf10bd1f06d04ab29542b262c239baf1][bookmark: _Toc178847667]XPRESS Stream Name
The stream name "{59828bbb-3f72-4c1b-a420-b51ad66eb5d3}.XPRESS" is used during remote differential compression.
The fully qualified name would be as follows:
Sample.bin: {59828bbb-3f72-4c1b-a420-b51ad66eb5d3}.XPRESS:$DATA
[bookmark: section_d4bc551b7aaf4b4fba0e3a75e7c528f0][bookmark: _Toc178847668]Appendix B: Product Behavior
The information in this specification is applicable to the following Microsoft products or supplemental software. References to product versions include updates to those products.
The terms "earlier" and "later", when used with a product version, refer to either all preceding versions or all subsequent versions, respectively. The term "through" refers to the inclusive range of versions. Applicable Microsoft products are listed chronologically in this section.
· Windows NT 4.0 operating system
· Windows 98 operating system
· Windows 98 operating system Second Edition
· Windows 2000 operating system
· Windows XP operating system
· Windows Server 2003 operating system
· Windows Vista operating system
· Windows Server 2008 operating system
· Windows 7 operating system
· Windows Server 2008 R2 operating system
· Windows 8 operating system
· Windows Server 2012 operating system
· Windows 8.1 operating system
· Windows Server 2012 R2 operating system
· Windows 10 operating system
· Windows Server 2016 operating system
· Windows Server 2019 operating system
· Windows Server 2022 operating system
· Windows 11 operating system
· Windows Server 2025 operating system
Exceptions, if any, are noted in this section. If an update version, service pack or Knowledge Base (KB) number appears with a product name, the behavior changed in that update. The new behavior also applies to subsequent updates unless otherwise specified. If a product edition appears with the product version, behavior is different in that product edition.
Unless otherwise specified, any statement of optional behavior in this specification that is prescribed using the terms "SHOULD" or "SHOULD NOT" implies product behavior in accordance with the SHOULD or SHOULD NOT prescription. Unless otherwise specified, the term "MAY" implies that the product does not follow the prescription.
<1> Section 2.1.2.1: All reparse tags defined by Microsoft components MUST have the high bit set to 1. Non-Microsoft reparse tags MUST have the high bit set to 0.
<2> Section 2.1.2.1: These are Microsoft reparse tags. Except where explicitly allowed, clients MUST NOT process the Microsoft reparse tag data buffers.
<3> Section 2.1.2.1: The Windows Home Server Drive Extender is part of the Windows Home Server product.
<4> Section 2.1.2.1: The filter manager test harness is not shipped with Windows.
<5> Section 2.1.3.1: When a file is moved or copied from one volume to another, the ObjectId member value changes to a random unique value to avoid the potential for ObjectId collisions because the object ID is not guaranteed to be unique across volumes.
<6> Section 2.1.3.1: The NTFS file system places no constraints on the format of the 48 bytes of information following the ObjectId in this structure. This format of the FILE_OBJECTID_BUFFER is used on Windows by the Microsoft Distributed Link Tracking Service (see [MS-DLTW] section 3.1.6).
<7> Section 2.1.3.2: Windows places Distributed Link Tracking (DLT) information into the ExtendedInfo field for use by the Distributed Link Tracking (DLT) protocols (see [MS-DLTW] section 3.1.6).
<8> Section 2.1.4: The following Windows file systems provide alternate data stream functionality: NTFS, ReFS and Universal Disk Format (UDF). ReFS supports alternate data streams of up to 128 KB in length in Windows 8.1 and later. ReFS does not support renaming of alternate data streams.
<9> Section 2.1.8: Windows defines a TRUE as "1"; however, it will interpret any nonzero value as TRUE.
<10> Section 2.1.9: The following table lists the file systems that support the 64-bit file ID:

	64 bit file ID
	Generate
	Stable
	Unique

	FAT
	Yes
	No
	No

	EXFAT
	Yes
	No
	No

	FAT32
	Yes
	No
	No

	Cdfs
	No
	n/a
	n/a

	UDFS
	Yes
	Yes
	Yes

	NTFS
	Yes
	Yes
	Yes

	ReFS
	Yes
	 Yes
	Yes

NTFS computes the 64-bit file ID as follows: the low 48 bits are the index of the file's primary record in the master file table (MFT); the remaining 16 bits are a sequence number. Therefore, it is possible, though rare, that a different file can have the same 64-bit file ID as a file on that volume had in the past.
ReFS maps a subset of the possible 128-bit file ID values to a 64-bit value using a reversible algorithm; for values outside of this subset, ReFS sets the 64-bit file ID to -1.
<11> Section 2.1.10: The following table lists the file systems that support the 128-bit file ID:

	128 bit file ID
	Generate
	Stable
	Unique

	FAT
	No
	n/a
	n/a

	EXFAT
	No
	n/a
	n/a

	FAT32
	No
	n/a
	n/a

	Cdfs
	No
	n/a
	n/a

	UDFS
	No
	n/a
	n/a

	NTFS
	Yes
	 Yes
	Yes

	ReFS
	Yes
	 Yes
	Yes

NTFS computes the 128-bit file ID as follows: the low 48 bits are the index of the file's primary record in the master file table (MFT), the next 16 bits are a sequence number, and the high 64 bits MUST be zero. Therefore, it is possible, though rare, that a different file can have the same 128-bit file ID as a file on that volume had in the past.
ReFS computes the 128-bit file ID as follows: the low 64 bits consists of an index uniquely identifying the file's parent directory on the volume. The high 64-bits consists of an index uniquely identifying the file within that directory.
<12> Section 2.1.11: The Token is defined in [INCITS-T10/11-059].
<13> Section 2.1.11: When provided by a client to a server for an FSCTL_OFFLOAD_WRITE operation, this Token value requests that the server logically write zeros.
<14> Section 2.2: NTFS supports reparse points, object IDs, and the update sequence number (USN) change journal; ReFS supports reparse points and the USN change journal. The Microsoft FAT, EXFAT, CDFS, and UDFS file systems do not support these attributes. Therefore, FSCTLs involving these technologies will return STATUS_INVALID_DEVICE_REQUEST when the specified file or directory is located on a volume formatted with the FAT file system. Windows also returns STATUS_INVALID_DEVICE_REQUEST when a required file system filter is supported by the file system but is not installed (see section 2.3.90).
<15> Section 2.2: The following table lists FSCTLs that are not supported remotely and that, if received by the object store, will respond with a status code other than STATUS_INVALID_DEVICE_REQUEST, as specified in section 2.2.
	FSCTL name
	FSCTL function number
	Status Code

	FSCTL_GET_BOOT_AREA_INFO
	0x90230
	STATUS_INVALID_PARAMETER

	FSCTL_GET_RETRIEVAL_POINTER_BASE
	0x90234
	STATUS_INVALID_PARAMETER

	FSCTL_IS_VOLUME_DIRTY
	0x90078
	STATUS_INVALID_PARAMETER

	FSCTL_ALLOW_EXTENDED_DASD_IO
	0x90083
	STATUS_ACCESS_DENIED

	FSCTL_LOOKUP_STREAM_FROM_CLUSTER
	0x901FC
	STATUS_INVALID_PARAMETER

	FSCTL_EXTEND_VOLUME
	0x900F0
	STATUS_INVALID_PARAMETER

	FSCTL_SHRINK_VOLUME
	0x901B0
	STATUS_INVALID_PARAMETER

	FSCTL_FILE_PREFETCH
	0x90120
	STATUS_INVALID_PARAMETER

	FSCTL_SET_PERSISTENT_VOLUME_STATE
	0x90238
	STATUS_INVALID_PARAMETER

	FSCTL_QUERY_PERSISTENT_VOLUME_STATE
	0x9023C
	STATUS_INVALID_PARAMETER

	FSCTL_SD_GLOBAL_CHANGE
	0x901F4
	STATUS_INVALID_PARAMETER

<16> Section 2.3: The NtFsControlFile function is used to invoke an FSCTL on a file handle. The definition of this function, including its content and the function signature, is implementation-dependent, and is not part of the protocol specification.
<17> Section 2.3.2: Windows will try 16 times to generate a unique ID, and will fail with this status if 16 attempts have been unsuccessful.
<18> Section 2.3.7: FSCTL_DUPLICATE_EXTENTS_TO_FILE is only supported by the ReFS file system in Windows Server 2016 and later.
<19> Section 2.3.8: FSCTL_DUPLICATE_EXTENTS_TO_FILE is only supported by the ReFS file system in Windows Server 2016 and later.
<20> Section 2.3.8: Applicable Windows Server releases return STATUS_INVALID_HANDLE if the source file handle is closed, and STATUS_FILE_CLOSED if the target file handle is closed.
<21> Section 2.3.9: FSCTL_DUPLICATE_EXTENTS_TO_FILE_EX request is only supported by the ReFS file system in Windows 10 v1803 operating system and Windows Server v1803 operating system.
<22> Section 2.3.10: FSCTL_DUPLICATE_EXTENTS_TO_FILE_EX reply is only supported by the ReFS file system in Windows 10 v1803 and Windows Server v1803.
<23> Section 2.3.11: This FSCTL is implemented on ReFS, NTFS, FAT, and exFAT file systems. Other file systems return STATUS_INVALID_DEVICE_REQUEST.
<24> Section 2.3.12: This FSCTL is implemented on ReFS, NTFS, FAT, and exFAT file systems. Other file systems return STATUS_INVALID_DEVICE_REQUEST.
<25> Section 2.3.16: NTFS always returns at least 2 bytes and up to 8 bytes of trailing padding after each entry in the reply, including the last entry.
<26> Section 2.3.18: The LZNT1 is the only compression algorithm implemented on Windows 2000, Windows XP, Windows Server 2003, Windows Vista, Windows Server 2008, Windows 7, and Windows Server 2008 R2.
<27> Section 2.3.18: Windows 2000, Windows XP, Windows Server 2003, Windows Vista, Windows Server 2008, Windows 7, and Windows Server 2008 R2 support file compression on volumes that are formatted with the NTFS file system and have a cluster size less than or equal to 4 kilobytes.
<28> Section 2.3.19: The FSCTL_GET_INTEGRITY_INFORMATION_Request (section 2.3.19) message is supported only by the ReFS file system.
<29> Section 2.3.28:
· Windows NT 4.0 returns STATUS_INVALID_DEVICE_REQUEST for a file on an NTFS, FAT, or CDFS file system.
· Windows 2000 returns STATUS_INVALID_DEVICE_REQUEST for a file on a FAT or CDFS file system.
· Windows XP returns STATUS_INVALID_DEVICE_REQUEST for a file on a FAT or CDFS file system.
· Windows Server 2003 returns STATUS_INVALID_DEVICE_REQUEST for a file on a FAT or CDFS file system.
· Windows Vista returns STATUS_INVALID_DEVICE_REQUEST for a file on a FAT or CDFS file system.
· Windows Server 2008 returns STATUS_INVALID_DEVICE_REQUEST for a file on a FAT or CDFS file system.
· Windows 7 returns STATUS_INVALID_DEVICE_REQUEST for a file on a FAT or CDFS file system.
· Windows Server 2008 R2 returns STATUS_INVALID_DEVICE_REQUEST for a file on a FAT or CDFS file system.
<30> Section 2.3.30: On an NTFS volume, very short data streams (typically several hundred bytes) can be written to disk without having any clusters allocated. These short streams are sometimes called resident because the data resides in the file's master file table (MFT) record. A resident data stream has no retrieval pointers to return.
<31> Section 2.3.32: On an NTFS volume, very short data streams (typically several hundred bytes) can be written to disk without having any clusters allocated. These short streams are sometimes called resident because the data resides in the file's master file table (MFT) record. A resident data stream has no retrieval pointers to return.
<32> Section 2.3.33: The FSCTL_GET_RETRIEVAL_POINTERS_AND_REFCOUNT request is supported only on ReFS and Windows 10 v1703 operating system and later and Windows Server 2019 and later.
<33> Section 2.3.34: On an ReFS volume, all alternate data streams are resident and all default data streams are non-resident. A resident data stream has no retrieval pointers to return.
<34> Section 2.3.36: Windows NT operating system, Windows 2000, Windows XP, Windows Server 2003, Windows Vista, Windows Server 2008, Windows 7, and Windows Server 2008 R2 operating system support the FSCTL_IS_PATHNAME_VALID Request (section 2.3.35) and return STATUS_SUCCESS whenever this request is invoked.
<35> Section 2.3.39: This operation is supported only by the NTFS and ReFS file systems.
<36> Section 2.3.41: Offload Read operations are supported only by the NTFS file system running on Windows 8 and later.
<37> Section 2.3.41: Clients and servers cannot depend on the TokenTimeToLive field as a true timer, because vendors can choose to ignore the requested TTL value or can implement the TTL counter in a vendor-specific manner. The TokenTimeToLive field can be interpreted as a hint.
<38> Section 2.3.41: The generated Token can represent less data than the requested amount; this information is contained in the TransferLength field in the FSCTL_OFFLOAD_READ_OUTPUT data element; for more information, see section 2.3.42.
<39> Section 2.3.42: In the following two cases, a well-known token, STORAGE_OFFLOAD_TOKEN_TYPE_ZERO_DATA, is returned, even if the target volume does not support Offload Read:
· If FSCTL_OFFLOAD_READ_INPUT.FileOffset is greater than or equal to the Valid Data Length (VDL) of the file.
· Or, if FSCTL_OFFLOAD_READ_INPUT.CopyLength is 0.
<40> Section 2.3.42: File reads can start beyond the Valid Data Length (VDL), but not beyond EOF.
<41> Section 2.3.43: Offload Write operations are supported only by the NTFS file system running on Windows 8 and later.
<42> Section 2.3.43: The FSCTL_OFFLOAD_READ and FSCTL_OFFLOAD_WRITE is used by Windows to copy large files.
When copying files, Windows avoids using offload operations on volumes that do not support offload. However, it is possible that the source volume and the destination volume both support offload, yet offload cannot occur from the source volume to the destination volume because of SAN topology or storage array compatibility issues. When this happens, Windows avoids repeated offload attempts between these two volumes.
There is currently no reliable way to detect unreachable volume pairs because there is no unique status code for this scenario. STATUS_INVALID_TOKEN can be returned for a variety of reasons including unreachable volume pairs or a token expiration due to time-out.
In a best effort to detect unreachable volume pairs, Windows assumes a pair of volumes is not reachable if all the following are true:
· This is the first token write on the file stream.
· The FSCTL_OFFLOAD_WRITE request returns with a status code of STATUS_INVALID_TOKEN.
· The Offload Write operation is made at offset 0 in the destination file.
Windows chunks data for Offload Write operations into segments of 256 MB, a size that is subject to change.
<43> Section 2.3.44: While it is valid to issue a single Offload Write operation for the full contents of a file, the Win32 CopyFileEx API does not perform this. Instead, CopyFileEx issues Offload Write operations in 256-MB chunks so that components like Explorer can show proper progress of file copy operations.
<44> Section 2.3.52: Each entry in the output array contains an offset and a length that indicates a range in the file that can contain nonzero data. The actual nonzero data, if any, is somewhere within this range, and the calling application scans further within the range to locate it and determines if it really is valid data. Multiple instances of valid data can exist within the range.
<45> Section 2.3.52: Sparse files are supported by Windows 2000, Windows XP, Windows Server 2003, Windows Vista, Windows Server 2008, Windows 7, and Windows Server 2008 R2. The NTFS file system rounds down the input file offset to a 65,536-byte (64-kilobyte) boundary, rounds up the length to a convenient boundary, and then begins to walk through the file.
<46> Section 2.3.52: Windows does not track every piece of zero (0) or nonzero data. Because zero (0) is often perfectly legal data, it would be misleading. Instead, the system tracks ranges in which disk space is allocated. Where no disk space is allocated, all data bytes within that range for Length bytes from FileOffset are assumed to be zero (0) (when data is read, NTFS returns a zero for every byte in a sparse region). Allocated storage can contain zero (0) or nonzero data. So all that this operation does is return information on parts of the file where nonzero data might be located. It is up to the application to scan these parts of the file in accordance with the application's data conventions.
<47> Section 2.3.55: This region usage flag can only be specified for volumes using the NTFS file system.
<48> Section 2.3.55: This region usage flag can only be specified for volumes using the ReFS file system.
<49> Section 2.3.56.1: The NTFS file system is the only file system that returns this region usage value.
<50> Section 2.3.56.1: The ReFS file system is the only file system that returns this region usage value.
<51> Section 2.3.58: The following is the Windows UDF File System Support table. It lists the UDF revisions and "builds" (VAT/Spared/Write) that are supported by each covered version of Windows.
	Windows
	UDF V1.02
	UDF V1.5
	UDF V2.01
	UDF V2.5
	UDF 2.6

	95 / 95OSR2
	-
	-
	-
	-
	-

	Windows 98
	Read
	-
	-
	-
	-

	Windows NT
	-
	-
	-
	-
	-

	Windows 2000
	Read
	Read
	-
	-
	-

	Windows XP
	Read
	Read
	Read
	-
	-

	Windows Server 2003
	Read
	Read
	Read
	-
	-

	Windows Vista
	Read/Write
	Read/Write
	Read/Write
	Read/Write
	-

	Windows 7 and later and Windows Server 2008 and later
	Read/Write
	Read/Write
	Read/Write
	Read/Write
	Read/Write

Note If Read of a given UDF version is supported, then reading of all UDF variants of that version are supported (VAT, Sparing and Simple). If Read/Write of a given UDF version is supported, then reading/writing of all UDF variants of that version are supported (VAT, Sparing and Simple).
<52> Section 2.3.58: The Windows UDF implementation pads the entire CopyrightInfo field with NULLs.
<53> Section 2.3.58: The Windows UDF implementation pads the entire AbstractInfo field with NULLs.
<54> Section 2.3.58: When the volume is formatted on Windows, this value is set to "*Microsoft Windows" followed by Unicode NULLs.
<55> Section 2.3.58: When the volume is written to on a Windows system, this value is set to "*Microsoft Windows" followed by Unicode NULLs.
<56> Section 2.3.61: This operation is supported by both the NTFS and ReFS file systems.
<57> Section 2.3.61: Currently supported values are 2 or 3. The MinMajorVersion is <= MaxMajorVersion.
<58> Section 2.3.61: Currently supported values are 2 or 3. The MinMajorVersion is <= MaxMajorVersion.
<59> Section 2.3.62.1: The major version number is 2 for file systems created on Windows 2000, Windows XP, Windows Server 2003, Windows Vista, Windows Server 2008, Windows 7, and Windows Server 2008 R2.
<60> Section 2.3.62.1: The minor version number is 0 for file systems created on Windows 2000, Windows XP, Windows Server 2003, Windows Vista, Windows Server 2008, Windows 7, and Windows Server 2008 R2.
<61> Section 2.3.62.2: The contents of a USN_RECORD_V2 or USN_RECORD_V3 element returned by this FSCTL is a partially populated record compared to the fully populated records returned by a local-only FSCTL FSCTL_READ_USN_JOURNAL.
<62> Section 2.3.67: Equivalent to COMPRESSION_FORMAT_LZNT1.
<63> Section 2.3.67: The LZNT1 is the only compression algorithm implemented on Windows 2000, Windows XP, Windows Server 2003, Windows Vista, Windows Server 2008, Windows 7, and Windows Server 2008 R2. Therefore, requests for COMPRESSION_FORMAT_DEFAULT and COMPRESSION_FORMAT_LZNT1 are equivalent from the server's perspective.
<64> Section 2.3.71: This message is implemented only on NTFS, and it is only for private use by the Encrypted File System (EFS). EFS issues this message locally on the machine that physically contains the file, notifying NTFS of a change in the file/stream attributes and causing NTFS to invoke the EFS callback that does the actual work of encrypting/decrypting streams.
This message is not used by any other component other than local EFS on Windows. It is not sent by the SMB1 and SMB2 client redirectors, nor is it accepted by an SMB2 server. In order to manipulate the encryption state of files and streams, clients use EFS and the EFSRPC protocol specified in [MS-EFSR].
<65> Section 2.3.71: The SMB1 server does not currently fail the FSCTL_SET_ENCRYPTION Request (section 2.3.71) if received. A QFE is planned to address this issue for the SMB1 server.
<66> Section 2.3.71: Windows sets the FILE_ATTRIBUTE_ENCRYPTED flag in the duplicate information file attributes field, and invokes the EFS callback which then creates the $EFS attribute.
<67> Section 2.3.71: Windows takes the following actions to clear encryption:
· Clears the FILE_ATTRIBUTE_ENCRYPTED flag in the duplicate information file attributes field.
· Invokes the EFS callback, which removes the $EFS attribute.
<68> Section 2.3.71: Windows takes the following actions to set encryption on a stream:
· If the stream is a resident user data stream, converts it to non-resident.
· Sets ATTRIBUTE_FLAG_ENCRYPTED in the attribute header.
· Invokes the EFS callback to generate an encryption context for this stream.
Note that if this is called during the creation of a named data attribute on a file with an empty unnamed data attribute, then the unnamed data attribute will be converted to non-resident and its attribute header flag will be set to encrypted.
Also note that this will set the FILE_ATTRIBUTE_ENCRYPTED flag if it is the first stream on the file that is encrypted.
<69> Section 2.3.71: Windows clears the ATTRIBUTE_FLAG_ENCRYPTED flag from the attribute header and invokes the EFS callback to free the encryption context for the stream.
<70> Section 2.3.71: The Private field is a placeholder marking the beginning of the private portion of the encryption buffer structure. This portion of the structure is meaningful only to EFS, because all the information necessary to fill (making a well-formed request) is private to EFS. Windows uses the EFSRPC protocol as specified in [MS-EFSR] to manipulate file encryption state.
<71> Section 2.3.72: An FSCTL_SET_ENCRYPTION operation never succeeds unless it is requested by the Encrypted File System (EFS), because the information necessary to make a well-formed request is visible only to EFS, as FSCTL_SET_ENCRYPTION is only for private use by EFS. Windows uses the EFSRPC protocol as specified in [MS-EFSR] to manipulate file encryption state.
<72> Section 2.3.72: On Windows, encryption requires NTFS major version 2 or greater.
<73> Section 2.3.72: Windows returns this error code if the NTFS encryption driver is not loaded or the FILE_CLEAR_ENCRYPTION operation was requested on a file containing a stream that is still marked as encrypted.
<74> Section 2.3.72: Windows returns this error code if the $INDEX_ROOT attribute of the directory that was trying to be encrypted, could not be found.
<75> Section 2.3.73: The FSCTL_SET_INTEGRITY_INFORMATION Request (section 2.3.73) message is supported only by the ReFS file system.
<76> Section 2.3.75: The FSCTL_SET_INTEGRITY_INFORMATION_EX Request message is supported only by Windows Server 2022 and later, and Windows 11, version 22H2 operating system and later. FSCTL_SET_INTEGRITY_INFORMATION_EX is processed as described on systems updated with [MSKB-5014019], [MSKB-5014021], [MSKB-5014022], [MSKB-5014023], or [MSKB-5014702].
<77> Section 2.3.77: Windows expects that the file whose object identifier is set with this FSCTL has been opened for write and that backup/restore operations were specified at file open. In Windows, this is accomplished by specifying the flag, FILE_FLAG_BACKUP_SEMANTICS (whose value is 0x02000000), along with other attributes such as FILE_ATTRIBUTE_NORMAL when opening the file.
<78> Section 2.3.77: All Windows versions: This request is never sent to a remote server.
<79> Section 2.3.79: The Microsoft Distributed Link Tracking Service uses the last 48 bytes of the ExtendedInfo BLOB to store information that helps it locate files that are moved to different volumes or computers within a domain. For more information, see [MS-DLTW] section 3.1.6.
<80> Section 2.3.83: This operation is supported by both the NTFS and ReFS file systems. ReFS supports this operation for conventional streams, but not for integrity streams, in Windows 8 and Windows Server 2012. ReFS supports this operation for both conventional and integrity streams in Windows 8.1 and later.
<81> Section 2.3.83: NTFS does not attempt to recover a failed unsparse operation by "resparsing".
<82> Section 2.3.83: Neither NFTS or ReFS deallocate existing clusters.
<83> Section 2.3.85: This operation is supported by both the NTFS and ReFS file systems.
Upon receipt of this message, NTFS might deallocate disk space in the file if the file is stored on an NTFS volume and the file is sparse or compressed. It will free any allocated space in chunks of 64 kilobytes that begin at an offset that is a multiple of 64 kilobytes. Other bytes in the file (prior to the first freed 64-kilobyte chunk and after the last freed 64-kilobyte chunk) will be zeroed but not deallocated. This FSCTL sets the range of bytes to zeros (0) without extending the file size.
ReFS supports FSCTL_SET_ ZERO_DATA for conventional file streams, but not for integrity file streams, in Windows 8 and Windows Server 2012. ReFS supports FSCTL_SET_ ZERO_DATA for both conventional and integrity file streams in Windows 8.1 and later and Windows Server 2012 R2 operating system and later.
Upon receipt of this message, ReFS might deallocate disk space in the file if the file is stored on a ReFS volume and the file is sparse. It will free any allocated space in chunks of 64 kilobytes that begin at an offset that is a multiple of 64 kilobytes. Other bytes in the file (prior to the first freed 64-kilobyte chunk and after the last freed 64-kilobyte chunk) will be zeroed but not deallocated. This FSCTL sets the range of bytes to zeros (0) without extending the file size.
<84> Section 2.3.87: This message is implemented only by NTFS, which is supported on Windows NT, Windows XP, Windows 2000, Windows Server 2003, Windows Vista, Windows Server 2008, Windows 7, and Windows Server 2008 R2.
<85> Section 2.3.89: Both the source and destination file names represent paths on the same volume, and the file names are the full paths to the files, including the share or drive letter at which each file is located.
<86> Section 2.3.91: All Windows Server versions return STATUS_NOT_IMPLEMENTED.
<87> Section 2.4: The FileHardLinkInformation, FileIdGlobalTxDirectoryInformation, FileMailslotQueryInformation, FileMailslotSetInformation, FileNameInformation, FileObjectIdInformation, FileReparsePointInformation, FileSfioReserveInformation, FileStandardLinkInformation, and FileTrackingInformation file information classes are intended for local use only; the server will fail them with STATUS_NOT_SUPPORTED.
<88> Section 2.4: Windows uses the NtQueryInformationFile function to process the specified query for file information and NtSetInformationFile to process the specified request to set file information. The definition of the function used to process any file information request, including its content and the function signature, is implementation-dependent and is not part of the protocol specification.
<89> Section 2.4: FileId64ExtdBothDirectoryInformation information class is supported in the NTFS and ReFS file systems in Windows 11, version 23H2 operating system and later and Windows Server 2022, 23H2 operating system and later.
<90> Section 2.4: FileId64ExtdDirectoryInformation information class is supported in the NTFS and ReFS file systems in Windows 11, version 23H2 and later and Windows Server 2022, 23H2 and later.
<91> Section 2.4: FileIdAllExtdBothDirectoryInformation information class is supported in the NTFS and ReFS file systems in Windows 11, version 23H2 and later and Windows Server 2022, 23H2 and later.
<92> Section 2.4: FileIdAllExtdDirectoryInformation information class is supported in the NTFS and ReFS file systems in Windows 11, version 23H2 and later and Windows Server 2022, 23H2 and later.
<93> Section 2.4: The FileIdInformation information class is supported in the NTFS and ReFS file systems in Windows 8 and later and Windows Server 2012 and later.
<94> Section 2.4: This information class is not sent across the wire. In Windows, it is handled by the IOManager on the client. If this operation is sent to an SMB server, both SMB and SMB2 send the request to the IOManager on the server and perform normal processing of the operation.
<95> Section 2.4: Windows file systems do not implement this file information class; the server will fail it with STATUS_NOT_SUPPORTED.
<96> Section 2.4: Windows 10 v1803 and later and Windows Server v1803 and later allow remote FileNormalizedNameInformation query; other servers return STATUS_NOT_SUPPORTED.
<97> Section 2.4: The CIFS, SMB, and SMB2 protocols do not directly call this information class but use the structures associated with it.
<98> Section 2.4: Windows file systems do not implement this file information class; the server will fail it with STATUS_NOT_SUPPORTED.
<99> Section 2.4.4: A file's allocation size and end-of-file position are independent of each other with the following exception: The end-of-file position is always less than or equal to the allocation size. If the allocation size is set to a value that is less than the end-of-file position, the end-of-file position is automatically adjusted to match the allocation size. Because the end-of-file position can be less than the file's allocation size, the last sector (or cluster) of a file can have unused bytes between the last byte of the file and the last byte of the sector (or cluster).
<100> Section 2.4.4: NTFS rounds allocation size for resident files to a multiple of 8 bytes. When shrinking a resident file's allocation size using the FileAllocationInformation info class, the file remains resident with an allocation size rounded up to a multiple of 8 bytes. When extending a resident file's allocation size using the FileAllocationInformation info class, the file is converted to nonresident with an allocation size rounded up to a multiple of the cluster size.
<101> Section 2.4.5: NTFS assigns an alternate name to a file whose full name is not compliant with restrictions for file names under MS-DOS and 16-bit Windows unless the system has been configured through a registry entry to not generate these names to improve performance.
<102> Section 2.4.7: The file system updates the values of the LastAccessTime, LastWriteTime, and ChangeTime members as appropriate after an I/O operation is performed on a file. However, a driver or application can request that the file system not update one or more of these members for I/O operations that are performed on the caller's file handle by setting the appropriate members to -1. A driver or application can subsequently request that the file system resume updating one or more of these members for I/O operations that are performed on the caller's file handle by setting the appropriate members to -2. The caller can set one, all, or any other combination of these three members to -1 and/or -2. Only the members that are set to -1 will be unaffected by I/O operations on the file handle; the other members will be updated as appropriate. This behavior is consistent across all file system types. Note that even though -1 and -2 can be used with the CreationTime field, they have no effect because file creation time is never updated in response to file system calls such as read and write.
	File system
	Support value of -2

	FAT
	No

	EXFAT
	No

	FAT32
	No

	Cdfs
	No

	UDFS
	No

	NTFS
	Windows 8.1 and later, and Windows Server 2012 R2 and later

	ReFS
	Windows 10 v1507 operating system and later, and Windows Server 2016 and later

<103> Section 2.4.7: The file system updates the value of the LastAccessTime member as appropriate after an I/O operation is performed on a file. However, a driver or application can request that the file system not update one or more of these members for I/O operations that are performed on the caller's file handle by setting the appropriate members to -1. A driver or application can subsequently request that the file system resume updating one or more of these members for I/O operations that are performed on the caller's file handle by setting the appropriate members to -2. The caller can set one, all, or any other combination of these three members to -1 and/or -2. Only the members that are set to -1 will be unaffected by I/O operations on the file handle; the other members will be updated as appropriate. This behavior is consistent across all file system types. Note that even though -1 and -2 can be used with the CreationTime field, they have no effect because file creation time is never updated in response to file system calls such as read and write.
	File system
	Support value of -2

	FAT
	No

	EXFAT
	No

	FAT32
	No

	Cdfs
	No

	UDFS
	No

	NTFS
	Windows 8.1 and later, and Windows Server 2012 R2 and later

	ReFS
	Windows 10 v1507 and later, and Windows Server 2016 and later

<104> Section 2.4.7: The file system updates the value of the LastWriteTime member as appropriate after an I/O operation is performed on a file. However, a driver or application can request that the file system not update one or more of these members for I/O operations that are performed on the caller's file handle by setting the appropriate members to -1. A driver or application can subsequently request that the file system resume updating one or more of these members for I/O operations that are performed on the caller's file handle by setting the appropriate members to -2. The caller can set one, all, or any other combination of these three members to -1 and/or -2. Only the members that are set to -1 will be unaffected by I/O operations on the file handle; the other members will be updated as appropriate. This behavior is consistent across all file system types. Note that even though -1 and -2 can be used with the CreationTime field, they have no effect because file creation time is never updated in response to file system calls such as read and write.
	File system
	Support value of -2

	FAT
	No

	EXFAT
	No

	FAT32
	No

	Cdfs
	No

	UDFS
	No

	NTFS
	Windows 8.1 and later, and Windows Server 2012 R2 and later

	ReFS
	Windows 10 v1507 and later, and Windows Server 2016 and later

<105> Section 2.4.7: The file system updates the value of the ChangeTime member as appropriate after an I/O operation is performed on a file. However, a driver or application can request that the file system not update one or more of these members for I/O operations that are performed on the caller's file handle by setting the appropriate members to -1. A driver or application can subsequently request that the file system resume updating one or more of these members for I/O operations that are performed on the caller's file handle by setting the appropriate members to -2. The caller can set one, all, or any other combination of these three members to -1 and/or -2. Only the members that are set to -1 will be unaffected by I/O operations on the file handle; the other members will be updated as appropriate. This behavior is consistent across all file system types. Note that even though -1 and -2 can be used with the CreationTime field, they have no effect because file creation time is never updated in response to file system calls such as read and write.
	File system
	Support value of -2

	FAT
	No

	EXFAT
	No

	FAT32
	No

	Cdfs
	No

	UDFS
	No

	NTFS
	Windows 8.1 and later, and Windows Server 2012 R2 and later

	ReFS
	Windows 10 v1507 and later, and Windows Server 2016 and later

<106> Section 2.4.8: When using ReFS or NTFS, the position of a file within the parent directory is not fixed and can be changed at any time. Windows sets this value to zero for files on ReFS and NTFS file systems.
<107> Section 2.4.9: Windows 2000, Windows XP, Windows Server 2003, Windows Vista, Windows Server 2008, Windows 7, and Windows Server 2008 R2 implement only one compression algorithm, LZNT1. For more information, see [UASDC].
<108> Section 2.4.9: NTFS uses a value of 16 calculated as (4 + ClusterShift) for the CompressionUnitShift by default. The ultimate size of data to be compressed depends on the cluster size set for the file system at initialization. NTFS defaults to a 4-kilobyte cluster size, resulting in a ClusterShift value of 12, but NTFS file systems can be initialized with a different cluster size, so the value can vary. The default compression unit size based on this calculation is 64 kilobytes.
<109> Section 2.4.9: NTFS uses a value of 12 for the ChunkShift so that compression chunks are 4 kilobytes in size.
<110> Section 2.4.9: The value of this field depends on the cluster size set for the file system at initialization. NTFS uses a value of 12 by default because the default NTFS cluster size is 4 kilobytes. If an NTFS file system is initialized with a different cluster size, the value of ClusterShift would be log 2 of the cluster size for that file system.
<111> Section 2.4.10: When using ReFS or NTFS, the position of a file within the parent directory is not fixed and can be changed at any time. Windows sets this value to zero for files on ReFS and NTFS file systems.
<112> Section 2.4.11: A file marked for deletion is not actually deleted until all open handles for the file object have been closed, and the link count for the file is zero.
<113> Section 2.4.14: When using ReFS or NTFS, the position of a file within the parent directory is not fixed and can be changed at any time. Windows sets this value to zero for files on ReFS and NTFS file systems.
<114> Section 2.4.16: In Windows, both the NTFS and UDFS file systems support hard links. UDFS support of hard links was added in Windows Vista and Windows Server 2008.
<115> Section 2.4.17: When using ReFS or NTFS, the position of a file within the parent directory is not fixed and can be changed at any time. Windows sets this value to zero for files on ReFS and NTFS file systems.
<116> Section 2.4.17: The NTFS, ReFS, FAT, and exFAT file systems return a FileId value of 0 for the entry named ".." in directory query operations.
<117> Section 2.4.18: When using ReFS or NTFS, the position of a file within the parent directory is not fixed and can be changed at any time. Windows sets this value to zero for files on ReFS and NTFS file systems.
<118> Section 2.4.18: The NTFS, ReFS, FAT, and exFAT file systems return a FileId value of 0 for the entry named ".." in directory query operations.
<119> Section 2.4.19: When using ReFS or NTFS, the position of a file within the parent directory is not fixed and can be changed at any time. Windows sets this value to zero for files on ReFS and NTFS file systems.
<120> Section 2.4.19: The NTFS, ReFS, FAT, and exFAT file systems return a FileId value of 0 for the entry named ".." in directory query operations.
<121> Section 2.4.20: When using ReFS or NTFS, the position of a file within the parent directory is not fixed and can be changed at any time. Windows sets this value to zero for files on ReFS and NTFS file systems.
<122> Section 2.4.20: The NTFS, ReFS, FAT, and exFAT file systems return a FileId value of 0 for the entry named ".." in directory query operations.
<123> Section 2.4.21: When using ReFS or NTFS, the position of a file within the parent directory is not fixed and can be changed at any time. Windows sets this value to zero for files on ReFS and NTFS file systems.
<124> Section 2.4.21: The NTFS, ReFS, FAT, and exFAT file systems return a FileId value of 0 for the entry named ".." in directory query operations.
<125> Section 2.4.22: When using ReFS or NTFS, the position of a file within the parent directory is not fixed and can be changed at any time. Windows sets this value to zero for files on ReFS and NTFS file systems.
<126> Section 2.4.23: Windows-based SMB Version 1 servers set the NextEntryOffset field to the size of the current FileIdFullDirectoryInformation entry in bytes, if no other entries follow this one.
<127> Section 2.4.23: When using ReFS or NTFS, the position of a file within the parent directory is not fixed and can be changed at any time. Windows sets this value to zero for files on ReFS and NTFS file systems.
<128> Section 2.4.23: The NTFS, ReFS, FAT, and exFAT file systems return a FileId value of 0 for the entry named ".." in directory query operations.
<129> Section 2.4.24: When using ReFS or NTFS, the position of a file within the parent directory is not fixed and can be changed at any time. Windows sets this value to zero for files on ReFS and NTFS file systems.
<130> Section 2.4.24: The NTFS, ReFS, FAT, and exFAT file systems return a FileId value of 0 for the entry named ".." in directory query operations.
<131> Section 2.4.26: The NTFS, ReFS, FAT, and exFAT file systems return a FileId value of 0 for the entry named ".." in directory query operations.
<132> Section 2.4.27: In Windows, both the NTFS and UDFS file systems support hard links. UDFS support of hard links was added in Windows Vista and Windows Server 2008.
<133> Section 2.4.30: The FileModeInformation information class is not sent across the wire. In Windows, it is handled by the IOManager on the client. If this operation is sent to an SMB server, both SMB and SMB2 send the request to the IOManager on the server and perform normal processing of the operation.
<134> Section 2.4.30: This flag is cleared by the respective server application while processing the set operation in the following situations:
· SMB server on all supported versions of Windows if the file is not opened with a DesiredAccess field value that has the FILE_WRITE_DATA or FILE_APPEND_DATA bit set (see [MS-CIFS] section 2.2.4.64.1).
· SMB2 server on Windows Vista and Windows Server 2008 always.
· SMB2 server on Windows 7 and Windows Server 2008 R2 if the file is opened with a CreateOptions field value that has the FILE_NO_INTERMEDIATE_BUFFERING bit set (see [MS-SMB2] section 2.2.13).
<135> Section 2.4.32: When using ReFS or NTFS, the position of a file within the parent directory is not fixed and can be changed at any time. Windows sets this value to zero for files on ReFS and NTFS file systems.
<136> Section 2.4.33: This operation works on both remote and local handles.
<137> Section 2.4.34: This information class is implemented on ReFS and NTFS file systems. Other file systems return STATUS_INVALID_DEVICE_REQUEST.
<138> Section 2.4.35: The Microsoft ReFS, FAT, EXFAT, UDFS, and CDFS file systems do not support the use of ObjectIds and return a status code of STATUS_INVALID_DEVICE_REQUEST.
<139> Section 2.4.35: The Microsoft Distributed Link Tracking protocols (see [MS-DLTW] section 3.1.6) use the first type of object ID structure for link tracking.
<140> Section 2.4.35.1: When a file is moved or copied from one volume to another, the ObjectId member's value changes to a random unique value to avoid the potential for ObjectId collisions because the object ID is not guaranteed to be unique across volumes.
<141> Section 2.4.39: Both the query and set FilePositionInformation operations are processed on the local client; therefore, these operations are not transmitted across the wire. The fact that these operations are processed on the client instead of the server is intended to be transparent to the client's usage of these operations.
If a server receives a request to set FilePositionInformation, the specified file position will be set on the remote handle, but its value will be ignored by future read/write operations. If a server receives a request to query FilePositionInformation, an undetermined value will be returned. For more information on how the CurrentByteOffset field is updated, see the [MS-FSA] sections for read and write operations.
<142> Section 2.4.39: Each read and write operation via the Server Message Block (SMB) Protocol [MS-SMB] and Server Message Block (SMB) Version 2 [MS-SMB2] protocols always provides an explicit starting offset, and thus is unaffected by the file position. Windows does not update the file position when read and write operations are performed via these protocols.
<143> Section 2.4.40: Query and set operations are supported only by the NTFS file system and are valid only on handles opened to the NTFS metadata file "\$Extend\$Quota:$Q:$INDEX_ALLOCATION".
<144> Section 2.4.44: In Windows 7 and Windows Server 2008 R2, the existing short name is deleted if the FileNameLength field in FILE_NAME_INFORMATION is zero. Previous Windows implementations return STATUS_INVALID_PARAMETER when the FileNameLength field is zero.
<145> Section 2.4.46: This information class is supported on Windows 7 and later and Windows Server 2008 R2 and later.
<146> Section 2.4.48: Windows supports the FileValidDataLengthInformation (section 2.4.48) information class in the ReFS, NTFS, FAT, FAT32, and EXFAT file systems.
<147> Section 2.5: Windows uses the NtQueryVolumeInformationFile function to process the specified query for file system information and the NtSetVolumeInformationFile function to set the specified file system information. The definition of the function used to process any file system information request, including its content and the function signature, is implementation-dependent and is not part of the protocol specification.
<148> Section 2.5: This file system information class is intended for local use only; the server will fail it with status STATUS_NOT_SUPPORTED.
<149> Section 2.5: This file system information class is intended for local use only; the server will fail it with status STATUS_NOT_SUPPORTED. Furthermore, this file information class is not implemented by any Windows file systems.
<150> Section 2.5: This file system information class is intended for local use only; the server will fail a "query" with STATUS_ACCESS_NOT_SUPPORTED, and the server will fail a "set" with STATUS_ACCESS_DENIED. Furthermore, this file information class is not implemented by any Windows file systems.
<151> Section 2.5.1: The FILE_SUPPORTS_USN_JOURNAL, FILE_SUPPORTS_OPEN_BY_FILE_ID, FILE_SUPPORTS_EXTENDED_ATTRIBUTES, and FILE_SUPPORTS_HARD_LINKS attributes are only available on Windows 7 and Windows Server 2008 R2.
The FILE_READ_ONLY_VOLUME attribute is only available on Windows XP, Windows Server 2003, Windows Vista, Windows Server 2008, Windows 7, and Windows Server 2008 R2.
The FILE_SUPPORT_INTEGRITY_STREAMS attribute is available only on ReFS/Windows 8.
<152> Section 2.5.1: Windows Vista, Windows Server 2008, Windows 7, and Windows Server 2008 R2 set this flag if the volume is formatted for NTFS 3.0 or higher.
<153> Section 2.5.1: Windows support for a volume formatted to NTFS version 3.0 or 3.1 is required for EFS use. NTFS versions 3.0 and 3.1 are supported on Windows 2000 and later. Support for FAT and EXFAT was added in Windows 10 v1607 operating system and Windows Server 2016 and later.
<154> Section 2.5.1: Remote storage is provided by the Remote Storage service to create virtual disk storage from a tape or other storage media.
<155> Section 2.5.1: For the Microsoft ReFS, NTFS, FAT, and EXFAT file systems, this value is 510. For the Microsoft UDFS file system, this value is 508. For the Microsoft CDFS file system, this value is 220 for Joliet format and 442 otherwise.
<156> Section 2.5.1: Valid values for this field depend on the version of Windows that the server is running.
	Windows version
	FAT
	FAT16
	FAT32
	exFAT
	NTFS
	CDFS
	UDF
	CSVFS

	Windows 8 and later and Windows Server 2012 operating system and later
	X
	X
	X
	X
	X
	X
	X
	X

	Windows 7, Windows Server 2008 R2
	X
	X
	X
	X
	X
	X
	X
	

	Windows Vista operating system with Service Pack 1 (SP1), Windows Server 2008, Windows Server 2008 R2
	X
	X
	X
	X
	X
	X
	X
	

	Windows Vista RTM
	X
	X
	X
	
	X
	X
	X
	

	Windows XP
	X
	X
	X
	
	X
	X
	
	

<157> Section 2.5.2: Query and set operations are supported only by the NTFS file system, and the quota index information is saved in the NTFS metadata file "\$Extend\$Quota:$Q:$INDEX_ALLOCATION".
<158> Section 2.5.2: Logging makes an entry in the Windows application event log.
<159> Section 2.5.4: In Windows 2000, Windows XP, Windows Server 2003, Windows Vista, Windows Server 2008, Windows 7, and Windows Server 2008 R2, if per-user quotas are in use, this value can be less than the total number of allocation units on the disk. Non-Microsoft quota management software might display the same behavior as these versions of Windows if that software was implemented as a file system filter driver, and the driver implementer opted to set the FileFsFullSizeInformation in the same manner as Windows 2000.
<160> Section 2.5.4: In Windows 2000, Windows XP, Windows Server 2003, Windows Vista, Windows Server 2008, Windows 7, and Windows Server 2008 R2, if per-user quotas are in use, this value can be less than the total number of free allocation units on the disk.
<161> Section 2.5.5: A maximum length of 32 characters is imposed for any Windows file system, though some file systems can impose a stricter limit. The Microsoft FAT file system supports volume labels that are 0 to 11 characters in length. ReFS and NTFS support volume labels that are 0 to 32 characters in length. All Unicode characters are permitted in a volume label with the exception of the NULL character, which is reserved for use as a string terminator.
<162> Section 2.5.6: The Microsoft ReFS, FAT, EXFAT, UDFS, and CDFS file systems do not support the use of object IDs and return a status code of STATUS_INVALID_PARAMETER.
<163> Section 2.5.6: Windows does not write information into the ExtendedInfo field for file systems.
<164> Section 2.5.7: This information class is only available in the following:
· Windows 8 and later
· Microsoft-implemented file systems including NTFS, ReFS, FAT, ExFAT, UDFS, and CDFS
<165> Section 2.5.7: This is also the reported physical sector size of the device for atomicity. Note that NTFS does basic sanitation to ensure this value does not cause unexpected application behavior. NTFS performs the following basic sanitization:
· Ensures that the reported physical sector size is greater than or equal to the logical sector size. If it is not, the value of this field is set to the logical sector size.
· Ensures that the reported physical sector size is a power of two. If it is not, the value of this field is set to the logical sector size.
<166> Section 2.5.7: This is the reported physical sector size of the device for performance. Note that NTFS does basic sanitation to ensure that this value does not cause unexpected application behavior. NTFS performs the following basic sanitization:
· Ensures that the reported physical sector size is greater than or equal to the logical sector size. If it is not, the value of this field is set to the logical sector size.
· Ensures that the reported physical sector size is a power of two. If it is not, the value of this field is set to the logical sector size.
<167> Section 2.5.7: A client can interpret this field as the unit for which NTFS guarantees an atomic operation. NTFS calculates the value of this field as follows:
· Retrieve the physical sector size the device reports for atomicity, and store in x.
· Validate that the value x is greater than or equal to the logical sector size. If it is not, set x to the logical sector size.
· Validate that the value x is a power of two. If it is not, set x to the logical sector size.
· Validate that the value x is less than or equal to the system page size defined in [MS-FSA] section 2.1.1.1. If it is not, set x to the system page size defined in [MS-FSA] section 2.1.1.1.
<168> Section 2.5.7: In this example, a storage device has a logical sector of 512 bytes, a physical sector of 4 KB (with eight logical sectors in a physical sector), and an offset of three logical sectors. The ByteOffsetForSectorAlignment field is therefore calculated as 3 * LogicalBytesPerSector = 1536 bytes.
	LBA
	#
	#
	#
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	1
	2
	3
	4
	5
	6
	7
	8
	9
	20

	Physical Sector
	0
	1
	2

<169> Section 2.5.8: In Windows 2000, Windows XP, Windows Server 2003, Windows Vista, Windows Server 2008, Windows 7, and Windows Server 2008 R2, if per-user quotas are in use, this value can be less than the total number of allocation units on the disk. Non-Microsoft quota management software might display the same behavior as Windows 2000 if that software was implemented as a file system filter driver, and the driver implementer opted to set the FileFsSizeInformation in the same manner as Windows 2000.
<170> Section 2.5.8: In Windows 2000, Windows XP, Windows Server 2003, Windows Vista, Windows Server 2008, Windows 7, and Windows Server 2008 R2, if per-user quotas are in use, this value can be less than the total number of free allocation units on the disk.
<171> Section 2.5.9: A maximum length of 32 characters is imposed for any Windows file system, though some file systems can impose a stricter limit. The Microsoft FAT file system supports volume labels that are 0 to 11 characters in length. NTFS supports volume labels that are 0 to 32 characters in length. All Unicode characters are permitted in a volume label with the exception of the NULL character, which is reserved for use as a string terminator.
<172> Section 2.5.9: This value is TRUE for NTFS and FALSE for other file systems implemented by Windows.
<173> Section 2.5.10: A driver can skip the full check for appcontainers by setting this characteristic on its device object.
<174> Section 2.6: The Windows file system does not persist the FILE_ATTRIBUTE_NORMAL flag. When getting attributes via the FileAttributeTagInformation (section 2.4.6) information class, a client will receive the FILE_ATTRIBUTE_NORMAL flag only if no other attributes were set. Some examples: If a client sets the attributes as [FILE_ATTRIBUTE_HIDDEN | FILE_ATTRIBUTE_NORMAL], the client will see just [FILE_ATTRIBUTE_HIDDEN] when it gets the attributes. If the client sets the attributes as [FILE_ATTRIBUTE_NORMAL], the client will see [FILE_ATTRIBUTE_NORMAL] when it gets the attributes.
<175> Section 2.6: Only ReFS supports this attribute.
<176> Section 2.6: Only NTFS and ReFS support this attribute.
<177> Section 2.6: Only NTFS and ReFS support this attribute.
<178> Section 2.6: Only NTFS and ReFS support this attribute.
<179> Section 2.6: Only NTFS and ReFS support this attribute.
<180> Section 2.6: Only NTFS and ReFS support this attribute.
<181> Section 2.7.1: For FILE_ACTION_REMOVED_BY_DELETE, FILE_ACTION_ID_NOT_TUNNELLED, and FILE_ACTION_TUNNELLED_ID_COLLISION only NTFS supports the special directory "\$Extend\$ObjId:$O:$INDEX_ALLOCATION".
[bookmark: section_f1f88b2215c64081a899788511ae2ed9][bookmark: _Toc178847669]Change Tracking
This section identifies changes that were made to this document since the last release. Changes are classified as Major, Minor, or None.
The revision class Major means that the technical content in the document was significantly revised. Major changes affect protocol interoperability or implementation. Examples of major changes are:
· A document revision that incorporates changes to interoperability requirements.
· A document revision that captures changes to protocol functionality.
The revision class Minor means that the meaning of the technical content was clarified. Minor changes do not affect protocol interoperability or implementation. Examples of minor changes are updates to clarify ambiguity at the sentence, paragraph, or table level.
The revision class None means that no new technical changes were introduced. Minor editorial and formatting changes may have been made, but the relevant technical content is identical to the last released version.
The changes made to this document are listed in the following table. For more information, please contact dochelp@microsoft.com.
	Section
	Description
	Revision class

	2.1.2.1 Reparse Tags
	Added a new reparse tag for Azure File Sync (AFS) filter.
	Major

[bookmark: section_3c7b37c1a3294878a9271bf156f0ecec][bookmark: _Toc178847670]Index
236 / 238
[MS-FSCC] - v20241007
File System Control Codes
Copyright © 2024 Microsoft Corporation
Release: October 7, 2024
A

Allocate packet 51
Alternate data streams 28
Applicability 16

B

BitmapWritesUserLevel packet 51
Boolean data type 31

C

Change tracking 235
ChecksumAlgorithm packet 58
Cluster Shared Volume File System IOCTLs 206
Codes - status 33
Common data types and fields 18

D

Data elements
 FILE_NAME_INFORMATION 31
 FILE_OBJECTID_BUFFER 27
Data streams - alternate 28
Data structures - reparse point 18
Data type - Boolean 31
Data types and fields - common 18
DECRYPTION_STATUS_BUFFER packet 110
Details
 common data types and fields 18

E

Examples 209
EXFAT_STATISTICS packet 54
EXTENTS packet 68

F

FAT_STATISTICS packet 53
Fields
 time 18
 vendor-extensible 17
Fields - vendor-extensible 17
File attributes 203
File information classes 120
File system information classes 189
FILE_ACCESS_INFORMATION packet 122
FILE_ALIGNMENT_INFORMATION packet 124
FILE_ALLOCATION_INFORMATION packet 125
FILE_GET_EA_INFORMATION packet 139
FILE_GET_QUOTA_INFORMATION packet 180
FILE_LEVEL_TRIM packet 55
FILE_LEVEL_TRIM_OUTPUT packet 55
FILE_LEVEL_TRIM_RANGE packet 55
FILE_LINK_ENTRY_INFORMATION packet 141
FILE_MODE_INFORMATION packet 167
FILE_NAME_INFORMATION data element 31
FILE_NAME_INFORMATION packet 31
FILE_NOTIFY_INFORMATION packet 205
FILE_OBJECTID_BUFFER data element 27
FILE_OBJECTID_BUFFER_Type_1 packet 27
FILE_OBJECTID_BUFFER_Type_2 packet 28
FILE_OBJECTID_INFORMATION_TYPE_1 packet 172
FILE_OBJECTID_INFORMATION_TYPE_2 packet 173
FILE_POSITION_INFORMATION packet 178
FILE_QUOTA_INFORMATION packet 179
FILE_REGION_INFO packet 90
FILE_RENAME_INFORMATION_TYPE_1 packet 182
FILE_RENAME_INFORMATION_TYPE_2 packet 182
FILE_SET_DEFECT_MGMT_BUFFER packet 107
FileAllInformation packet 122
FileAllocationInformation 125
FileAlternateNameInformation information class 125
FileAttributeTagInformation packet 126
FileBasicInformation packet 127
FileBothDirectoryInformation packet 128
FileCompressionInformation packet 130
FileDirectoryInformation packet 132
FileDispositionInformation packet 134
FileEaInformation packet 134
FileEndOfFileInformation packet 135
FileFsAttributeInformation packet 190
FileFsControlInformation packet 192
FileFsDeviceInformation packet 201
FileFsDriverPathInformation packet 195
FileFsFullSizeInformation packet 195
FileFsLabelInformation packet 196
FileFsObjectIdInformation packet 197
FileFsSectorSizeInformation packet 198
FileFsSizeInformation packet 199
FileFsVolumeInformation packet 200
FileFullDirectoryInformation packet 135
FileFullEaInformation packet 138
FileHardLinkInformation packet 140
FileIdBothDirectoryInformation packet 152
FileIdFullDirectoryInformation packet 157
FileIdGlobalTxDirectoryInformation packet 159
FileInternalInformation packet 163
FileLinkInformation packet (section 2.4.27 163, section 2.4.27.1 164, section 2.4.27.2 165)
FileMailslotQueryInformation packet 166
FileMailslotSetInformation packet 166
FileNameInformation information class 168
FileNamesInformation packet 169
FileNetworkOpenInformation packet 170
FileObjectIdInformation information class 172
FilePipeInformation packet 174
FilePipeLocalInformation packet 175
FilePipeRemoteInformation packet 177
FileRenameInformation information class 181
FileReparsePointInformation packet 183
FileSfioReserveInformation packet 184
FileShortNameInformation information class 185
FileStandardInformation packet 186
FileStandardLinkInformation packet 187
FileStreamInformation packet 187
FILESYSTEM_STATISTICS packet 43
FileValidDataLengthInformation packet 189
FSCTL structures 33
FSCTL_CREATE_OR_GET_OBJECT_ID reply 35
FSCTL_CREATE_OR_GET_OBJECT_ID request 35
FSCTL_DELETE_OBJECT_ID reply 36
FSCTL_DELETE_OBJECT_ID request 36
FSCTL_DELETE_REPARSE_POINT reply 36
FSCTL_DELETE_REPARSE_POINT request 36
FSCTL_DUPLICATE_EXTENTS_TO_FILE_Request packet 37
FSCTL_FILESYSTEM_GET_STATISTICS reply 43
FSCTL_FILESYSTEM_GET_STATISTICS request 43
FSCTL_FIND_FILES_BY_SID_Reply packet 57
FSCTL_FIND_FILES_BY_SID_Request packet 56
FSCTL_GET_COMPRESSION request 57
FSCTL_GET_COMPRESSION_Reply packet 57
FSCTL_GET_NTFS_VOLUME_DATA reply 60
FSCTL_GET_NTFS_VOLUME_DATA request 60
FSCTL_GET_OBJECT_ID reply 65
FSCTL_GET_OBJECT_ID request 64
FSCTL_GET_REFS_VOLUME_DATA reply 62
FSCTL_GET_REFS_VOLUME_DATA request 62
FSCTL_GET_REFS_VOLUME_DATA_Reply packet 62
FSCTL_GET_REPARSE_POINT reply 65
FSCTL_GET_REPARSE_POINT request 65
FSCTL_GET_RETRIEVAL_POINTERS_Reply packet 67
FSCTL_GET_RETRIEVAL_POINTERS_Request packet 67
FSCTL_IS_PATHNAME_VALID reply 72
FSCTL_IS_PATHNAME_VALID_Request packet 71
FSCTL_LMR_SET_LINK_TRACKING_INFORMATION reply 74
FSCTL_LMR_SET_LINK_TRACKING_INFORMATION request 72
FSCTL_OFFLOAD_READ_INPUT packet 76
FSCTL_OFFLOAD_READ_OUTPUT packet 77
FSCTL_OFFLOAD_WRITE_INPUT packet 79
FSCTL_OFFLOAD_WRITE_OUTPUT packet 80
FSCTL_PIPE_PEEK packet 82
FSCTL_PIPE_PEEK reply 82
FSCTL_PIPE_PEEK request 82
FSCTL_PIPE_TRANSCEIVE reply 84
FSCTL_PIPE_TRANSCEIVE request 84
FSCTL_PIPE_WAIT reply 85
FSCTL_PIPE_WAIT_Request packet 84
FSCTL_QUERY_ALLOCATED_RANGES_Reply packet 86
FSCTL_QUERY_ALLOCATED_RANGES_Request packet 86
FSCTL_QUERY_FAT_BPB reply 87
FSCTL_QUERY_FAT_BPB request 87
FSCTL_QUERY_FILE_REGIONS Reply packet 89
FSCTL_QUERY_FILE_REGIONS Request packet 88
FSCTL_QUERY_ON_DISK_VOLUME_INFO request 90
FSCTL_QUERY_ON_DISK_VOLUME_INFO_Reply packet 91
FSCTL_QUERY_SPARING_INFO request 93
FSCTL_QUERY_SPARING_INFO_Reply packet 93
FSCTL_READ_FILE_USN_DATA request 94
FSCTL_READ_FILE_USN_DATA_Request packet 94
FSCTL_RECALL_FILE reply 100
FSCTL_RECALL_FILE request 100
FSCTL_SET_COMPRESSION reply 107
FSCTL_SET_COMPRESSION_Request packet 106
FSCTL_SET_DEFECT_MANAGEMENT reply 108
FSCTL_SET_DEFECT_MANAGEMENT request 107
FSCTL_SET_ENCRYPTION reply 109
FSCTL_SET_ENCRYPTION_Request packet 108
FSCTL_SET_INTEGRITY_INFORMATION reply 111
FSCTL_SET_INTEGRITY_INFORMATION_BUFFER packet 110
FSCTL_SET_OBJECT_ID reply 113
FSCTL_SET_OBJECT_ID request 113
FSCTL_SET_OBJECT_ID_EXTENDED reply 114
FSCTL_SET_OBJECT_ID_EXTENDED_Request packet 114
FSCTL_SET_REPARSE_POINT reply 115
FSCTL_SET_REPARSE_POINT request 115
FSCTL_SET_SPARSE reply 116
FSCTL_SET_SPARSE request 115
FSCTL_SET_SPARSE_BUFFER packet 115
FSCTL_SET_ZERO_DATA reply 117
FSCTL_SET_ZERO_DATA_Request packet 116
FSCTL_SET_ZERO_ON_DEALLOCATION reply 117
FSCTL_SET_ZERO_ON_DEALLOCATION request 117
FSCTL_SIS_COPYFILE reply 119
FSCTL_SIS_COPYFILE_Request packet 118
FSCTL_WRITE_USN_CLOSE_RECORD reply 120
FSCTL_WRITE_USN_CLOSE_RECORD request 119

G

Glossary 10

I

Implementer - security considerations 210
Index of security parameters 210
Information classes
 file 120
 file system 189
Informative references 15
Introduction 10
IOCTL_STORAGE_QUERY_PROPERTY Reply 207
IOCTL_STORAGE_QUERY_PROPERTY Request 206
IOCTL_VOLUME_GET_GPT_ATTRIBUTES Reply 208
IOCTL_VOLUME_GET_GPT_ATTRIBUTES Request 207

L

Localization 17

M

Mft2WritesUserLevel packet 50
MftBitmapWritesUserLevel packet 51
MftWritesUserLevel packet 50
Mount_Point_Reparse_Data_Buffer packet 24

N

Names
 pathnames 29
 share names 30
Normative references 14
NSF_ REPARSE_DATA_BUFFER packet 25
NTFS_STATISTICS packet 45
NTFS_VOLUME_DATA_BUFFER_Reply packet 60

O

Overview 16
Overview (synopsis) 16

P

Parameter index - security 210
Parameters - security index 210
Pathnames 29
Product behavior 216

R

References 14
 informative 15
 normative 14
Relationship to protocols and other structures 16
Reparse point data structures 18
Reparse tags 18
REPARSE_DATA_BUFFER packet 22
REPARSE_GUID_DATA_BUFFER packet 22

S

Security
 implementer considerations 210
 parameter index 210
Share names 30
SMB REMOTE_LINK_TRACKING_INFORMATION32 packet 72
SMB2_REMOTE_LINK_TRACKING_INFORMATION packet 72
Status codes 33
STORAGE_OFFLOAD_TOKEN packet 32
Structures
 FSCTL 33
 overview 18
Symbolic_Link_Reparse_Data_Buffer packet 23

T

Tags - reparse 18
TARGET_LINK_TRACKING_INFORMATION_Buffer_1 packet 73
TARGET_LINK_TRACKING_INFORMATION_Buffer_2 packet 73
Time fields 18
Tracking changes 235

U

USN_RECORD_COMMON_HEADER packet 94
USN_RECORD_V2 packet 95
USN_RECORD_V3 packet 98

V

Vendor-extensible fields 17
Versioning 17
[bookmark: EndOfDocument_ST]
238 / 238
[MS-FSCC] - v20241007
File System Control Codes
Copyright © 2024 Microsoft Corporation
Release: October 7, 2024
