[MS-FSCC-Diff]:

File System Control Codes

Intellectual Property Rights Notice for Open Specifications Documentation

* Technical Documentation. Microsoft publishes Open Specifications documentation (“this
documentation”) for protocols, file formats, data portability, computer languages, and standards
support. Additionally, overview documents cover inter-protocol relationships and interactions.

* Copyrights. This documentation is covered by Microsoft copyrights. Regardless of any other
terms that are contained in the terms of use for the Microsoft website that hosts this
documentation, you can make copies of it in order to develop implementations of the technologies
that are described in this documentation and can distribute portions of it in your implementations
that use these technologies or in your documentation as necessary to properly document the
implementation. You can also distribute in your implementation, with or without modification, any
schemas, IDLs, or code samples that are included in the documentation. This permission also
applies to any documents that are referenced in the Open Specifications documentation.

* No Trade Secrets. Microsoft does not claim any trade secret rights in this documentation.

* Patents. Microsoft has patents that might cover your implementations of the technologies
described in the Open Specifications documentation. Neither this notice nor Microsoft's delivery of
this documentation grants any licenses under those patents or any other Microsoft patents.
However, a given Open Specifications document might be covered by the Microsoft Open
Specifications Promise or the Microsoft Community Promise. If you would prefer a written license,
or if the technologies described in this documentation are not covered by the Open Specifications
Promise or Community Promise, as applicable, patent licenses are available by contacting
iplg@microsoft.com.

* License Programs. To see all of the protocols in scope under a specific license program and the
associated patents, visit the Patent Map.

* Trademarks. The names of companies and products contained in this documentation might be
covered by trademarks or similar intellectual property rights. This notice does not grant any
licenses under those rights. For a list of Microsoft trademarks, visit
www.microsoft.com/trademarks.

* Fictitious Names. The example companies, organizations, products, domain names, email
addresses, logos, people, places, and events that are depicted in this documentation are fictitious.
No association with any real company, organization, product, domain name, email address, logo,
person, place, or event is intended or should be inferred.

Reservation of Rights. All other rights are reserved, and this notice does not grant any rights other
than as specifically described above, whether by implication, estoppel, or otherwise.

Tools. The Open Specifications documentation does not require the use of Microsoft programming
tools or programming environments in order for you to develop an implementation. If you have access
to Microsoft programming tools and environments, you are free to take advantage of them. Certain
Open Specifications documents are intended for use in conjunction with publicly available standards
specifications and network programming art and, as such, assume that the reader either is familiar
with the aforementioned material or has immediate access to it.

Support. For questions and support, please contact dochelp@microsoft.com.

1/228

[MS-FSCC-Diff] - v20200826

File System Control Codes

Copyright © 2020 Microsoft Corporation
Release: August 26, 2020


https://go.microsoft.com/fwlink/?LinkId=214445
https://go.microsoft.com/fwlink/?LinkId=214445
https://go.microsoft.com/fwlink/?LinkId=214448
mailto:iplg@microsoft.com
https://msdn.microsoft.com/en-us/openspecifications/dn750984
https://www.microsoft.com/trademarks
mailto:dochelp@microsoft.com

Revision Summary

Revision Revision
Date History Class Comments
4/3/2007 0.01 New Version 0.01 release
7/3/2007 1.0 Major MLonghorn+90
7/20/2007 2.0 Major Updated and revised the technical content.
8/10/2007 3.0 Major Updated and revised the technical content.
9/28/2007 4.0 Major Updated and revised the technical content.
10/23/2007 | 5.0 Major Updated and revised the technical content.
11/30/2007 | 5.0.1 Editorial Changed language and formatting in the technical content.
1/25/2008 5.0.2 Editorial Changed language and formatting in the technical content.
3/14/2008 5.0.3 Editorial Changed language and formatting in the technical content.
5/16/2008 6.0 Major Updated and revised the technical content.
6/20/2008 7.0 Major Updated and revised the technical content.
7/25/2008 8.0 Major Updated and revised the technical content.
8/29/2008 9.0 Major Updated and revised the technical content.
10/24/2008 | 10.0 Major Updated and revised the technical content.
12/5/2008 11.0 Major Updated and revised the technical content.
1/16/2009 12.0 Major Updated and revised the technical content.
2/27/2009 13.0 Major Updated and revised the technical content.
4/10/2009 14.0 Major Updated and revised the technical content.
5/22/2009 15.0 Major Updated and revised the technical content.
7/2/2009 16.0 Major Updated and revised the technical content.
8/14/2009 17.0 Major Updated and revised the technical content.
9/25/2009 18.0 Major Updated and revised the technical content.
11/6/2009 19.0 Major Updated and revised the technical content.
12/18/2009 | 20.0 Major Updated and revised the technical content.
1/29/2010 21.0 Major Updated and revised the technical content.
3/12/2010 22.0 Major Updated and revised the technical content.
4/23/2010 23.0 Major Updated and revised the technical content.
6/4/2010 24.0 Major Updated and revised the technical content.
7/16/2010 25.0 Major Updated and revised the technical content.
8/27/2010 26.0 Major Updated and revised the technical content.

[MS-FSCC-Diff] - v20200826
File System Control Codes

Copyright © 2020 Microsoft Corporation

Release: August 26, 2020

2/228




Revision Revision
Date History Class Comments
10/8/2010 27.0 Major Updated and revised the technical content.
11/19/2010 | 27.1 Minor Clarified the meaning of the technical content.
1/7/2011 27.1 None Lﬂec;rfgszg?iz:gem.e meaning, language, or formatting of the
2/11/2011 28.0 Major Updated and revised the technical content.
3/25/2011 29.0 Major Updated and revised the technical content.
5/6/2011 30.0 Major Updated and revised the technical content.
6/17/2011 30.1 Minor Clarified the meaning of the technical content.
9/23/2011 30.2 Minor Clarified the meaning of the technical content.
12/16/2011 | 31.0 Major Updated and revised the technical content.
3/30/2012 32.0 Major Updated and revised the technical content.
7/12/2012 33.0 Major Updated and revised the technical content.
10/25/2012 | 34.0 Major Updated and revised the technical content.
1/31/2013 35.0 Major Updated and revised the technical content.
8/8/2013 36.0 Major Updated and revised the technical content.
11/14/2013 | 36.0 None Lﬂe%;:iacglgtzzsgemfe meaning, language, or formatting of the
2/13/2014 37.0 Major Updated and revised the technical content.
5/15/2014 37.0 None It\le?:r(]::izzr;lg(e:z;geg:a meaning, language, or formatting of the
6/30/2015 38.0 Major Significantly changed the technical content.
10/16/2015 | 39.0 Major Significantly changed the technical content.
7/14/2016 40.0 Major Significantly changed the technical content.
6/1/2017 41.0 Major Significantly changed the technical content.
9/15/2017 42.0 Major Significantly changed the technical content.
12/1/2017 43.0 Major Significantly changed the technical content.
3/16/2018 44.0 Major Significantly changed the technical content.
9/12/2018 45.0 Major Significantly changed the technical content.
9/23/2019 46.0 Major Significantly changed the technical content.
3/4/2020 47.0 Major Significantly changed the technical content.
8/26/2020) [Major [Significantly changed the technical content.

3/228

[MS-FSCC-Diff] - v20200826

File System Control Codes

Copyright © 2020 Microsoft Corporation
Release: August 26, 2020



Table of Contents

1 INtrodUCtioN .iiiciciicieriereriese s s ssasassasassasansasassasansasansasansnsansassnsasansnsansasansnsnnnnrs 9
1.1 ] (01T 9
1.2 ST (=] =] Lol PPN 13

1.2.1 NOrMAtiVe REfEIMENCES .ottt et ees 13

1.2.2 INfOrmative RefErenCES .o e 14
1.3 L@ YT Y O 15
1.4 Relationship to Protocols and Other Structures .........ccviviiiiiiiii i 15
1.5 Applicability StatemeNnt ... s 15
1.6 Versioning and LOCalization .......oooiiiiiiiii e 15
1.7 Vendor-EXtensible Fields ..o s 15

2 StrUCTUIES uiiiciuiiieiierre s smas s s sra e sra e ssassansaasasaasa s saansansaanamsaanaamsasaansanssnssnssnnsanss 16

2.1 (o] aln gle gD F=) = T IV o 1= P 16
2.1.1 LT . L= PP 16
2.1.2 Reparse Point Data StrUCtUIES ... .o e 16

2.1.2.1 [T o L= T =TT =T =S PP 16
2.1.2.2 REPARSE_DATA_BUFFER ...ttt vttt et et s e it e a s e e e ees 20
2.1.2.3 REPARSE_GUID_DATA _BUFFER ...t s e e e 20
2.1.2.4 Symbolic Link Reparse Data Buffer.........ccoieiiiiiiiiiiine e 21
2.1.2.5 Mount Point Reparse Data Buffer .....coviiiiiiiiiccc e 22
2.1.2.6 Network File System (NFS) Reparse Data Buffer ........cocooiiiiiiiiiiiiiiiicnnnn, 23
2.1.3 FILE_OBJECTID_BUFFER StruCtUIe .uciviiiiiie it iiisie vttt s e e e e e enees 25
2.1.3.1 FILE_OBJECTID_BUFFER TYPE 1 .iiuiiiiiiiiiiiiiiiiieie it ennennesnen e e 25
2.1.3.2 FILE_OBJECTID_BUFFER TYPE 2 11iuiitiiitiitiiii ettt se e eeneseneenees 26
2.1.4 Alternate Data StrEamIS ..ottt e 26
2.1.5 [ Yl = U= PP 26
2.1.5.1 (Do)l BI1 =Yoo ] oV N\ F=T 0 ¢ U= T3 PPN 27
2.1.5.2 [T 1T g =0 o = PN 27
2.1.5.2.1 S TG B o1 =T o = o 1= PP 27
2.1.5.3 S g =T=] an] aT=] o 4 = PP 28
2.1.5.4 S ALY P e 28
2.1.6 1 1= 1 ST = 1. 1= 28
2.1.7 FILE_NAME_INFORMATION .1ttt vt ettt st et a e e e s e e e e e rae e es 28
2.1.8 2 70T 0] LT 1P 29
2.1.9 L o T 1 L 1 PP 29
2.1.10  128-Dit fillE ID tiriieiiiiiii i e 29
.2 1] 7= L 0 T [P 30
3 (Updated Section) FSCTL SErUCTUMES .. uviiiieiii ittt e e e aea e e e nneanens 30
2.3.1 FSCTL_CREATE_OR_GET_OBJECT_ID REQUESE ...eviiitiiiiiiieieiiienieneeieeenenenenes 32
2.3.2 FSCTL_CREATE_OR_GET_OBJIECT_ID REPIY cutitiiiiiiiiiiiiii i a e 32
2.3.3 FSCTL_DELETE_OBJECT_ID REQUESLE ..eutiuiitititiiiitiieieiienteenaeeetsesae e aaaenenenes 32
2.3.4 FSCTL_DELETE_OBJIECT_ID RePIY. ittt r e e e e 33
2.3.5 FSCTL_DELETE_REPARSE_POINT REQUESE .utitiiiiiiiieiiiiiivie et iena e nae e 33
2.3.6 FSCTL_DELETE_REPARSE_POINT REPIY .iuitiiitiiiiiiieiiiieeienes et ne e e nee e 33
2.3.7 FSCTL_DUPLICATE_EXTENTS_TO_FILE ReqQUESE ....iviviiiiiiiiiiiiii e 34
2.3.7.1 DUPLICATE _EXTENT S DA T A ottt et eaes 34
2.3.7.2 SMB2_DUPLICATE _EXTENTS DA A .ttt 35
2.3.8 FSCTL_DUPLICATE_EXTENTS_TO_FILE RePIY vttt 36
2.3.9 FSCTL_DUPLICATE_EXTENTS_TO_FILE_EX ReQUESt.....ctvviiiiiiiiiiieieiiiinienanennn 36
2.3.9.1 DUPLICATE _EXTENTS _DATA EX ittt et 37
2.3.9.2 SMB2_DUPLICATE_EXTENTS_DATA _EX 1ottt 38
2.3.10 FSCTL_DUPLICATE_EXTENTS_TO_FILE_EX REPIY tiviviiiiiiiiiiiiiiiieineeeeae e 39
2.3.11  FSCTL_FILESYSTEM_GET_STATISTICS REQUESE....cciviiriiiiiiiiiiiiiieneeieneaenaeenes 40
2.3.12  FSCTL_FILESYSTEM_GET_STATISTICS REPIY tviviiiiiiiiiiiiii i 40
2.3.12.1  FILESYSTEM _STATISTICS ..iitiitiiitiiiitiiiitiie ittt e et a s e e e e aae e 40

4 /228

[MS-FSCC-Diff] - v20200826

File System Control Codes

Copyright © 2020 Microsoft Corporation
Release: August 26, 2020



2.3.12.2  NTFS _STATISTICS .ottt e e e e e e s e s s e e eneaneaannes 42
2.3.12.2.1  MAAWHEESUSEILEVEl . e vttt 46
2.3.12.2.2  MfE2WritesSUSErLeVEl ...c.viiiiiii i e 47
2.3.12.2.3  BitmapWritesUserLevel .......cccoviiiiiiiii 47
2.3.12.2.4  MftBitmapWriteSUSErLevel ........ou i 48
2.3.12.2.5 AllOCAE .t e 48
2.3.12.3 FAT ST ATISTICS ettt ittt s e et a e e e e et e e e e aae e 49
2.3.12.4  EXFAT ST ATISTICS ittt ittt e e et e e e e e e e e e e e aanaes 50
2.3.13 (Added Section) FSCTL_FILE_LEVEL_TRIM REQUESE .....covivreinininiiiiiiieeneaaanennnn 51

2.3.13.1 (Added Section) FILE_LEVEL_TRIM_RANGE .......cccoiiiiiiiiiiiiiiiiiinne e, 52
2.3.14 (Added Section) FSCTL_FILE_LEVEL_TRIM REPIY ttiviiiiiiiiiiiiiiiiiieieiiineaenaeene 52
2.3.15  FSCTL_FIND_FILES_BY_SID REQUESE ..utitititiitiiitieitiiiieseneeenesenaeenesneneenenes 53
2.3.16  FSCTL_FIND_FILES_BY_SID ReEPIY..iutititititiiiiiiiiiiiiiiienaneeeeienrasnen e eeaeanaes 53
2.3.17 FSCTL_GET_COMPRESSION REQUEST ..cutitiitiiiitiiitiiei st e e neneneenees 54
2.3.18 FSCTL_GET_COMPRESSION REPIY tutuiutitiiiiiiiiiiiieieieneieieianssssseesnsnsnenenenennannns 54
2.3.19 (Added Section) FSCTL_GET_INTEGRITY_INFORMATION_Request..........ccvvvuene. 55
2.3.20 (Added Section) FSCTL_GET_INTEGRITY_INFORMATION_ReEPIY...cccvvivriererennnnnn. 55
2.3.21 FSCTL_GET_NTFS_VOLUME_DATA REQUEST....uivitiiiiiiieitieisieeieiinrieneneneeananaes 57
2.3.22  FSCTL_GET_NTFS_VOLUME_DATA REPIY ittt enae e 57
2.3.23 FSCTL_GET_REFS_VOLUME_DATA REQUESE....uiuitiiiiiiiiiiieiiiieieieieienen e enaeaeaes 59
2.3.24  FSCTL_GET_REFS_VOLUME_DATA REPIY ittt et ena e 59
2.3.25 FSCTL_GET_OBJIECT_ID REQUESE ..iuiuiiiititiiiiiiitiiieiiere vt et e e e e e e e e enaeaaaes 61
2.3.26  FSCTL_GET_OBJECT _ID REPIY.tutiuiititiitiiiiiei et eier et a e s eaeeenes 61
2.3.27 FSCTL_GET_REPARSE_POINT REQUESE ..vvitiiiiiiiiiiieiie vt ee e e e enen e e aes 62
2.3.28 FSCTL_GET_REPARSE_POINT REPIY tuiuiiiitiiiiiiiiiiieirv st ae e a e 62
2.3.29 (Added Section) FSCTL_GET_RETRIEVAL_POINTER_COUNT Request................. 63
2.3.30 (Added Section) FSCTL_GET_RETRIEVAL_POINTER_COUNT Reply .....ccvevevennnnnn. 63
2.3.31 FSCTL_GET_RETRIEVAL_POINTERS REQUESL ...vivitiiiiiiiiiiieieiiineseneeeneeneneeaenes 64
2.3.32 FSCTL_GET_RETRIEVAL_POINTERS REPIY...itititiiiiiiiiiiiiiiaiieeieie st ae e 64

2.3.32.1  EXTENT S ottt ettt e 65
2.3.33 (Added Section) FSCTL_GET_RETRIEVAL_POINTERS_AND_REFCOUNT Request.. 66
2.3.34  (Added Section) FSCTL_GET_RETRIEVAL_POINTERS_AND_REFCOUNT Reply ..... 66

2.3.34.1 (Added Section) EXTENT_AND_REFCOUNTS .....cciiiiiiiiiiiiiiiiiinievieieeaaeeaas 67
2.3.35 FSCTL_IS_PATHNAME_VALID REQUESE....ctititititiiiiiiie it e 68
2.3.36  FSCTL_IS_PATHNAME_VALID REPIY t ittt et en e ees 68
2.3.37 FSCTL_LMR_SET_LINK_TRACKING_INFORMATION Request ........ccceveviienerernnnnn. 69

2.3.37.1  FSCTL_LMR_SET_LINK_TRACKING_INFORMATION Request for SMB............ 69

2.3.37.2 FSCTL_LMR_SET_LINK_TRACKING_INFORMATION Request for SMB2.......... 69

2.3.37.3 TARGET_LINK_TRACKING_INFORMATION_BUffer.......cocviiiiiiiiiiiiiinnanannnn, 70
2.3.37.3.1 TARGET_LINK_TRACKING_INFORMATION_Buffer_1.........ccoevivvninennnnns. 70
2.3.37.3.2 TARGET_LINK_TRACKING_INFORMATION_BuUffer_2......cccocoeviviiiininnnnn. 70

2.3.38 FSCTL_LMR_SET_LINK_TRACKING_INFORMATION RepIy...ccvtiiiiiiiniiiiiniinnnnns, 71
2.3.39 (Added Section) FSCTL_MARK_HANDLE ReqUESE ....cviiviiiiiiiiiiiiiiiii e eieieaaans 71
2.3.40 (Added Section) FSCTL_MARK_HANDLE RePIY ...uiviiiiiiiiiiiiiiiiene e 72
2.3.41 (Added Section) FSCTL_OFFLOAD_READ ReqUESt ......cviviiieiiiiiiieiieiineinenennens 73
2.3.42 (Added Section) FSCTL_OFFLOAD_READ RePpIY....cuiiiiiiiiiiieiiiiiiiieneiineneneeenes 74
2.3.43 (Added Section) FSCTL_OFFLOAD_WRITE ReqUESL ...ccvviiviiiiiiiiiiieiiiiiieiienaeen 76
2.3.44 (Added Section) FSCTL_OFFLOAD_WRITE Reply ..ccvviiiiiiiiiiiiiiiiiiiineee e 77
2.3.45 (Updated Section) FSCTL_PIPE_PEEK REQUESLt.....cciiiiiiiiiiiiii i nena e 79
2.3.46  FSCTL_PIPE_PEEK REPIY .ttt ittt ettt e e e e e e e e s e e eenes 79
2.3.47 (Added Section) FSCTL_PIPE_TRANSCEIVE ReqUESE.....ccctvviiiiiiiiiiiiiiiiiiiienanennn 81
2.3.48 (Added Section) FSCTL_PIPE_TRANSCEIVE REPIY ctiviiiiiiiiiiiiiiiiiiii e 81
2.3.49  FSCTL_PIPE_WAIT REQUESE ...ttt ittt ittt e e e e e e e e e e eeenes 81
2.3.50  FSCTL_PIPE_WAIT REPIY 1ttt e e e 82
2.3.51 FSCTL_QUERY_ALLOCATED_RANGES ReqUESE.....ccviiiiiiiiiieiiiiiiiiniiineneneeenes 83
2.3.52 FSCTL_QUERY_ALLOCATED_RANGES RePIY .uiitiuiiiiiiiiiiiiiiiicien e e 84
2.3.53  FSCTL_QUERY_FAT_BPB REQUESL ...vitititititeitiiititeneitneseneesnnsnennensnnsnennenenes 85
2.3.54  FSCTL_QUERY _FAT_BPB REPIY c.tiuiititiitiiiiii it e e e e e e ees 85
5/228

[MS-FSCC-Diff] - v20200826

File System Control Codes

Copyright © 2020 Microsoft Corporation
Release: August 26, 2020



2.3.55 FSCTL_QUERY_FILE_REGIONS REQUEST ... .civiieiiiiiiiiiiiie et rirnereneenrnesneneenenes 85
2.3.56  FSCTL_QUERY_FILE_REGIONS REPIY ttutiuititiitiiitieitiiinesieieeieneseneeenesneneenenes 86
2.3.56.1  FILE_REGION_INFO ..uiitiiitiiitiiiatiieie st sesasassesesasssserasnnansnesssneananeanns 87
2.3.57 FSCTL_QUERY_ON_DISK_VOLUME_INFO REQUESL ...cvviuiiriiiiiiiiiiieiniiiieaeneeaen 88
2.3.58 FSCTL_QUERY_ON_DISK_VOLUME_INFO REPIY ..tvtiriitiiiiiiiiiiiiiiieneiieneaenaeees 88
2.3.59 FSCTL_QUERY_SPARING_INFO REQUESTE ....vivieiiiiinintiiiieieieeirnesenesnnnesnenesnenes 90
2.3.60 FSCTL_QUERY_SPARING_INFO REPIY tutiuititiitiiitieiiiiine e eiinesieneeenesnennenenes 91
2.3.61  FSCTL_READ_FILE_USN_DATA REQUESTE....titiitiiitieitiiiitienesirnesenesnrnnsneneanenes 91
2.3.62  FSCTL_READ_FILE_USN_DATA REPIY 1ttt ittt en e e 92
2.3.62.1 USN_RECORD_COMMON_HEADER ...ttt e neean e e 92
2.3.62.2  USN_RECORD_V2 ...ttt et e e st e et a e e s et a e r e e et s e e e e aane e 93
2.3.62.3  USN_RECORD _V 3 Lttt ettt ettt s et a e e e e e e e e e aane e 96
2.3.63  FSCTL_RECALL_FILE REQUEST ...ttt e e s e e s e e s e e e enes 97
2.3.64  FSCTL_RECALL_FILE REPIY tutitiitiiitiiit ittt et et e s e e e e e e e e ees 98
2.3.65 FSCTL_SET_COMPRESSION REQUEST ...uviviititiieiiieieit i senesrnesnenesnnaesnenesnenes 98
2.3.66  FSCTL_SET_COMPRESSION REPIY . .utitiitiuiitiiitiiitiieitiieaeseneeenesenaeenesneneenenes 99
2.3.67 FSCTL_SET_DEFECT_MANAGEMENT ReqUESE ....ciiviiiiiiiiiii i eae e e 101
2.3.68 FSCTL_SET_DEFECT_MANAGEMENT RePIY cuiuiiiiiiiiiiiiiiiiie i anen e naaaens 101
2.3.69 (Updated Section) FSCTL_SET_ENCRYPTION RequEest ......cccvivviriinnininneiiennnnnss 102
2.3.70  FSCTL_SET_ENCRYPTION REPIY tiuitiuiitiiiitiientiiiitiienaastasneissneansnesssnnansnssnanens 102
2.3.70.1 DECRYPTION_STATUS_BUFFER .....iutitiiiitiiiiiiiii i neaenae e enee e 103
2.3.71  FSCTL_SET_INTEGRITY_INFORMATION REQUESE.....civiiiiriiiiniiiiiiieieeneenanennanens 103
2.3.72  FSCTL_SET_INTEGRITY_INFORMATION REPIY ttiuiiriiiiiiiiiii i veieeeievaeens 105
2.3.73 (Updated Section) FSCTL_SET_OBJECT_ID Request.......ccceviiiiiiiiiiiiiiiieiinnnnns 105
2.3.74  FSCTL_SET_OBJECT_ID REPIY ctutiuiitiiitiiiiiiiitiiiasieiesite e nasneessesasnnansenaanens 105
2.3.75 FSCTL_SET_OBJECT_ID_EXTENDED REQUESL «..cuiitiiiiiiiiii i ieeae e e 106
2.3.76  FSCTL_SET_OBJECT_ID_EXTENDED RePIY ...ucitiiiiiiiiiiiiiiiii i eeee e naaens 106
2.3.77 FSCTL_SET_REPARSE_POINT REQUESE.....iititiitiiiitiiiiiiesi vt ee e eae e naaaens 107
2.3.78  FSCTL_SET_REPARSE_POINT RePIY +iuiitiiiiiiiiiiiiiiiii it ns e e e naa e 107
2.3.79  FSCTL_SET_SPARSE REQUESE ..eutiiiitiiitiiiitiirt it vt e e et e e e s e naaens 107
2.3.80  FSCTL_SET _SPARSE REPIY . iutitiitiiiiiiiiitiiietii it sasseasesasaeassesasasananersanens 108
2.3.81 FSCTL_SET_ZERO_DATA REQUESE ...ttt iees e nae e e s e nasaeanaenaanens 108
2.3.82  FSCTL_SET_ZERO_DATA REPIY ittt e e e e e 109
2.3.83 FSCTL_SET_ZERO_ON_DEALLOCATION ReqUESE ...ieiviiiiiiieiiiiiiiieieieeanenaenens 109
2.3.84 FSCTL_SET_ZERO_ON_DEALLOCATION RePIY ttiuiitiiiiiiiiiii i veieneie e 109
2.3.85 FSCTL_SIS_COPYFILE ReQUESE ...uiitiiitiiietiieite ettt e e e e e naaens 110
2.3.86  FSCTL_SIS_COPYFILE REPIY ..ttt e e aa e 111
2.3.87 FSCTL_WRITE_USN_CLOSE_RECORD REQUESL ...ccviviiiiiiiiiii i ieieeaievaeaens 111
2.3.88 FSCTL_WRITE_USN_CLOSE_RECORD REPIY 1uttiiitiieiiiiiiniieieieeniereeneenanenannens 112
2.3.89 STORAGE_OFFLOAD_TOKEN ...ttt sttt ste e s s e e ease s e e e aaeraaens 117
2.4 File INfOrmMation ClasS@S ..uuuiuiit ittt et e e e e nenees 121
2.4.1 FileACCeSSINfOrMAtioN ..vviiee i e e e e e anaeas 122
2.4.2 (T =Y 21NN a] o] o =]« (o] o I PP PP 123
2.4.3 FileAlignmentInformation. ... ..o e 124
2.4.4 (Updated Section) FileAllocationInformation..........c.ciiiiiiiiiiiiiiii e 125
2.4.5 FileAlternateNamelnformation .......oviiiiiii e ae e 126
2.4.6 FileAttributeTagInformation ... 126
2.4.7 FileBasiCINformation. .. ..o e 127
2.4.8 FileBothDirectoryInformation ........c.cvoeiiiiiiii e 129
2.4.9 FileCompressionInformation ........o.veieiiiiiii e 131
2.4.10  FileDirectoryInformation .......ocieiiiiiiii i 132
2.4.11  FileDispositionINformation ... ..o 134
2.4.12  FileEaINformation ..o 135
2.4.13  FileEndOfFilelnformation . ...ccie it e ea 135
2.4.14  FileFullDirectoryINformation ........cooviiiiieiiiii e 136
2.4.15  FileFUllEQINfOrmation ....iioeieiiii e e e e e ea 138
2.4.15.1  FILE_GET_EA_INFORMATION . tiuiitiiitiiiitiiieeie e et ete e raenestenenneneenenees 140
2.4.16  FileHardLinkINformation ....couie i e e eraaeas 140
6/228

[MS-FSCC-Diff] - v20200826

File System Control Codes

Copyright © 2020 Microsoft Corporation
Release: August 26, 2020



2.4.16.1  FILE_LINK_ENTRY_INFORMATION.....cociiiiiiiiiiiiiiiiinnn s 141

2.4.17  FileIdBothDirectoryInformation........ccoeve e e 142
2.4.18  FileIdFullDirectoryInformation .. ....cicciiiiiiiiiii i e e ea 145
2.4.19  FileIdGlobalTxDirectoryInformation ..........ouveieiiiiiii e eea e 147
2.4.20 FileInternalInformation ..o i i i err e raaeeanes 150
2.4.21 1Y I 01 1 g} o ' =1 o o 150
2.4.21.1 FileLinkInformation for the SMB Protocol......cccvviiiiiiiiiiiiiiiii i 151
2.4.21.2  FileLinkInformation for the SMB2 ProtocCol......ccviiiiiiiiiiiiiic i e 152
2.4.22  FileMailslotQUeryInformation ........cocieiiie e e e aas 152
2.4.23 FileMailslotSetINformation. . ouii i i s e e anes 153
2.4.24  FileModeInformation (oo e as 154
2.4.25 SIS N T T (Y o) g 0 8= To Lo 155
2.4.26  FileNamesSINformation cuuiieiiii i i it e v e e et a e ene e ena e eaneeas 156
2.4.27  FileNetworkOpenInformation .......ccociciereieiiiiii e e e e e e e e aeans 157
2.4.28 FileObjectIdINformation . ..ccciiiiiii i e 158
2.4.28.1  FILE_OBJECTID_INFORMATION_TYPE_1 .itiiiiiiii i e e e e 159
2.4.28.2 FILE_OBIJECTID_INFORMATION _TYPE_2 .iiiitiiiiiiiiiiie it i iieeniseenneanneenns 160
2.4.29  FilePipeInformation ..uuu i e 161
2.4.30  FilePipeLocalInformation ... ...uuiiiiiie e e e e e e r e aaas 162
2.4.31  FilePipeRemotelnformation .. ...cciiiiiiii i e 164
2.4.32 FilePoSitioNINfOrmMation .ot e e 165
2.4.33  FileQuotalnformation .. ..o e 165
2.4.33.1  FILE_GET_QUOTA_INFORMATION ...cittiutitiiteieeite it et rieraaenaerneanerneenernnenes 167
2.4.34  FileReNamelnformation .iouiiiiii i i i e 168
2.4.34.1 FileRenameInformation for SMB .....civiiiiiiii i i e aes 168
2.4.34.2 (Updated Section) FileRenameInformation for SMB2.........cccviiiiiiiinininennnnns 169
2.4.35  FileReparsePointInformation......cooiiiiiiiiii i e 170
2.4.36  FileSfioRESErVEINTOIrMAtiON tiuuiiii it i i e e e a e aseearaaneasas 171
2.4.37  FileShortNameINformation . oouuiiiiiii i i i e e e e e eaneeas 172
2.4.38  FileStandardInformation .ouuuiii i i as 172
2.4.39 FileStandardLinkINformation ...o.evieiiiiii i i i i e rre e e nes 173
2.4.40 FileStreamIn ormation. ..o i i e e e 174
2.4.41  FileValidDataLengthInformation ........coveieiiiiiiiiirr e e 175
2.4.42 FileNormalizedNameInformation .....ooiviiiiii i i i iae e aes 176
2.4.43 L1 =3 X 10X .0 =1 1o o 1 176
2.5 File System INformation ClasSes ....c.iiiiiiiiiiiiii i e e e e 177
2.5.1 FileFsAttribUuteINfOrmMation .ovviii i e r e 178
2.5.2 (=1 L= Y @] o e 1 1 g} 0] g 1 1= 1o [0 o 1 180
2.5.3 FileFsDriverPathInformation ....ieiiiii i e e aes 182
2.5.4 FileFSFUllSiZEIN OrmMation uueuii it i e i e e e s rara s e raiaeeeranaees 183
2.5.5 FileFsLabelINformation oo e e e e aernes 184
2.5.6 FileFsObjectIdINformation ... ...co.vii i e 185
2.5.7 FileFsSectorSizelnformation v i e nes 186
2.5.8 FileFSSiZeIN OrmMation «uuu it i e e e i e et e s raa e s annne e e ranaees 187
2.5.9 FileFsSVolumeEINformation ..uuuiiiii i i i i e e e s s e e e s anneeeranaees 188
2.5.10 FileFsSDeVIiceINformation ..uuie i i i i e e e e ane e raneraneeanes 189
2.6 LT L ANt o 1 0 LU o= 191
2.7 Directory Change NotifiCations ......vuviuiiiiiii e 192
2.7.1 (Updated Section) FILE_NOTIFY_INFORMATION .....iiiiiiiiiiiiiiiii e cenaeaes 192
2.8 Cluster Shared Volume File System IOCTLS ...c.viviviiiiiiiiiiiiieie e eee e e 194
2.8.1 IOCTL_STORAGE_QUERY_PROPERTY ReQUESE ...cviitiiiiiiiiiiiiiii i eaa 194
2.8.2 IOCTL_STORAGE_QUERY_PROPERTY ReEPIY .euiitiiiiiiiiiiiiiiiiiiin i e ienaa e 194
2.8.3 IOCTL_VOLUME_GET_GPT_ATTRIBUTES RequUEeSE ......cvviiiiiiiiiieiiiiiiiieneeieneaaen 195
2.8.4 IOCTL_VOLUME_GET_GPT_ATTRIBUTES RePIY c.viiviiiiiiiiiiiiiiiinniene e eaa 195
3  Structure EXamples ....iiicicieimiirer st na s 197
I T ol ) Y 198
4.1 Security Considerations for IMplementers ........coiiiiiiii e 198
7 /228

[MS-FSCC-Diff] - v20200826

File System Control Codes

Copyright © 2020 Microsoft Corporation
Release: August 26, 2020



4.2 Index of SeCUrity Paramelers ..oviiiiii i e 198

5 Appendix A: NTFS Alternate Streams........ccccciciiiririiiiirra s s s na s 199
5.1 A I ST o == 0 1= 199
5.2 NTFS At DULE Ty PSS .ttt e e e e 199
5.3 NTFS Reserved File NamES ..ot r e e e e e e e e e e anenens 200
5.4 NTFS Stream NamMES ..uoiiiiiiiiii e e e e e e e 201
5.5 N I SIS g =T= 0 IRV o= 201
5.6 Known Alternate Stream NamesS. ..ovi i e e e e 202

5.6.1 Zone.Identifier Stream NamE ..o 202
5.6.2 Outlook Express Properties Stream Name ...oiviiiiiiiiiic i 202
5.6.3 Document Properties Stream Name ......c.ccoiiiiiiiiii s 202
5.6.4 Encryptable Thumbnails Stream Name ... 203
5.6.5 Internet Explorer Favicon Stream Name ....c.ooiiiiiiiiiii i e e 203
5.6.6 Macintosh Supported Stream Names ... ..ccviiiiiiiiiii s 203
5.6.7 XPRESS Stream Namie. ..o e s s e s n e 203

6 (Updated Section) Appendix B: Product Behavior........cccccvvrrarrnnnmimimsmsasesasasasass 204

7 Change TracCKiNg..ccicueiraesemammaransamassassnsasassassnsassssassnsasassassnsasansassnsasassassnsasassassnsans 223

2 N 2 T = G 224

8/228

[MS-FSCC-Diff] - v20200826

File System Control Codes

Copyright © 2020 Microsoft Corporation
Release: August 26, 2020



1 Introduction

This specification defines the network format of native Windows structures that can be used within
other protocols. It also describes the structure of common Windows native file system control codes,
file information levels, and file system information levels that are issued in client/server and
server/server communications. These structures do not result in a protocol, but their structure is
common across multiple protocols. As such, they are placed in this document as a reference that can
be used by other protocols to ensure consistency and accuracy.

Sections 1.7 and 2 of this specification are normative. All other sections and examples in this
specification are informative.

1.1 Glossary
This document uses the following terms:

8.3 name: A file name string restricted in length to 12 characters that includes a base name of up
to eight characters, one character for a period, and up to three characters for a file name
extension. For more information on 8.3 file names, see [MS-CIFS] section 2.2.1.1.1.

access control list (ACL): A list of access control entries (ACEs) that collectively describe the
security rules for authorizing access to some resource; for example, an object or set of objects.

alternate name: An 8.3 name that can optionally be generated when a file is created. A file will
not have an alternate name if the user wants to optimize performance, or if the name of the file
already uses the 8.3 format.

binary large object (BLOB): A collection of binary data stored as a single entity in a database.

chunk: The amount of data that the operating system's implementation of the Lempel-Ziv
compression algorithm tries to compress at one time. The compression unit size used by the file
system is always a multiple of the underlying compression algorithm's chunk size. For more
information on the Lempel-Ziv compression algorithm, see [UASDC].

cluster: The smallest allocation unit on a volume.

compression unit: The amount of data that NTFS tries to compress at one time. Compression of
large files is accomplished as a series of compressions of data blocks, each at the most
compression unit bytes in size.

compression unit shift: The number of bits by which to left-shift a 1 bit to arrive at the
compression unit size.

content indexing service: A service that extracts content from files and constructs an indexed
catalog to facilitate efficient and rapid searching.

disk quota: Maximum amount of data a user can store on a disk volume.

Distributed Link Tracking (DLT): A protocol that enables client applications to track sources that
have been sent to remote locations using remote procedure call (RPC) interfaces, and to
maintain links to files. It exposes methods that belong to two interfaces, one of which exists on
the server (trksvr) and the other on a workstation (trkwks).

dot directory name: In a pathname, a directory name component of "." or "..". For more details,
see section 2.1.5.1.

FAT file system: A file system used to organize and manage files. The file allocation table (FAT) is
a data structure that the operating system creates when a volume is formatted by using FAT or

9/228

[MS-FSCC-Diff] - v20200826

File System Control Codes

Copyright © 2020 Microsoft Corporation
Release: August 26, 2020



FAT32 file systems. The operating system stores information about each file in the FAT so that it
can retrieve the file later.

Fid: A 16-bit value that the Server Message Block (SMB) server uses to represent an opened file,
named pipe, printer, or device. A Fid is returned by an SMB server in response to a client
request to open or create a file, named pipe, printer, or device. The SMB server guarantees that
the Fid value returned is unique for a given SMB connection until the SMB connection is closed,
at which time the Fid value can be reused. The Fid is used by the SMB client in subsequent SMB
commands to identify the opened file, named pipe, printer, or device.

file allocation table (FAT): A data structure that the operating system creates when a volume is
formatted by using FAT or FAT32 file systems. The operating system stores information about
each file in the FAT so that it can retrieve the file later.

file name component: The portion of a file name between path separator characters (or
backslashes).

file record segment: A record in the master file table that contains attributes for a specific file on
an NTFS volume. The file record segment is always 1,024 bytes (1 kilobyte) in size.

file stream: See main stream and named stream.

file system control (FSCTL): A command issued to a file system to alter or query the behavior of
the file system and/or set or query metadata that is associated with a particular file or with the
file system itself.

filter: Type of driver that is layered between the kernel and a base file system (such as FAT or
NTFS) that receives I/0O request packets on their way to and from the base file system. The term
filter can refer to legacy filters or minifilters.

filter manager: A file system filter driver that simplifies the development of other file system filter
drivers. Although it is possible to write a filter driver that manages other filters, for the purposes
of this document, the phrase filter manager refers only to the file system filter manager, which
is an operating system component. A filter driver developed to the filter manager model is called
a minifilter.

globally unique identifier (GUID): A term used interchangeably with universally unique
identifier (UUID) in Microsoft protocol technical documents (TDs). Interchanging the usage of
these terms does not imply or require a specific algorithm or mechanism to generate the value.
Specifically, the use of this term does not imply or require that the algorithms described in
[RFC4122] or [C706] must be used for generating the GUID. See also universally unique
identifier (UUID).

GUIDString: A GUID in the form of an ASCII or Unicode string, consisting of one group of 8
hexadecimal digits, followed by three groups of 4 hexadecimal digits each, followed by one
group of 12 hexadecimal digits. It is the standard representation of a GUID, as described in
[RFC4122] section 3. For example, "6B29FC40-CA47-1067-B31D-00DD010662DA". Unlike a
curly braced GUID string, a GUIDString is not enclosed in braces.

I/0 control (IOCTL): A command that is issued to a target file system or target device in order
to query or alter the behavior of the target; or to query or alter the data and attributes that are
associated with the target or the objects that are exposed by the target.

independent software vendor (ISV): A company or organization that develops software
solutions that can utilize this specification.

logical cluster number (LCN): The cluster number relative to the beginning of the volume. The
first cluster on a volume is zero (0).

10/ 228

[MS-FSCC-Diff] - v20200826

File System Control Codes

Copyright © 2020 Microsoft Corporation
Release: August 26, 2020



master file table (MFT): On an NTFS volume, the MFT is a relational database that consists of
rows of file records and columns of file attributes. It contains at least one entry for every file on
an NTFS volume, including the MFT itself. The MFT stores the information required to retrieve
files from the NTFS partition.

master file table mirror (MFT2/MFTMirr): On an NTFS volume, the MFT2 is a redundant copy
of the first four (4) records of the MFT.

named stream: A place within a file in addition to the main stream where data is stored, or the
data stored therein. File systems support a mode in which it is possible to open either the main
stream of a file and/or to open a named stream. Named streams have different data than the
main stream (and than each other) and can be read and written independently. Not all file
systems support named streams. See also main stream.

NetBIOS name: A 16-byte address that is used to identify a NetBIOS resource on the network.
For more information, see [RFC1001] and [RFC1002].

NT file system (NTFS): A proprietary Microsoft file system. For more information, see [MSFT-
NTFS].

Object ID: See ObjectID.

object identifier (OID): In the context of an object server, a 64-bit number that uniquely
identifies an object.

object-oriented file system: In the context of file system control codes, a file system that allows
the assignment of object IDs to files.

Offload Read: A variant to a normal read operation where a target device generates and returns a
Token instead of a buffer containing the data to be read. The Token is maintained by the target
device until it invalidates the Token for any vendor-specific reason. The data logically
represented by the Token cannot change, and the target device is required to maintain this
representation. An example of a target device is a SAN Storage Array with support for the
associated low-level storage commands. For more information on Offload Read, see [INCITS-
T10/11-059].

Offload Write: A variant to a normal write operation where the host provides a Token instead of a
buffer containing the data to be written. Upon receipt of the Offload Write, the target device
parses the Token and determines whether the data movement (the Write) can be completed to
the requested location. An example of a target device is a SAN Storage Array with support for
the associated low-level storage commands. For more information on Offload Write, see
[INCITS-T10/11-059].

reparse point: An attribute that can be added to a file to store a collection of user-defined data
that is opaque to NTFS or ReFS. If a file that has a reparse point is opened, the open will
normally fail with STATUS_REPARSE, so that the relevant file system filter driver can detect the
open of a file associated with (owned by) this reparse point. At that point, each installed filter
driver can check to see if it is the owner of the reparse point, and, if so, perform any special
processing required for a file with that reparse point. The format of this data is understood by
the application that stores the data and the file system filter that interprets the data and
processes the file. For example, an encryption filter that is marked as the owner of a file's
reparse point could look up the encryption key for that file. A file can have (at most) 1 reparse
point associated with it. For more information, see [MS-FSCC].

reparse point tag: A unique identifier for a file system filter driver stored within a file's optional
reparse point data that indicates the file system filter driver that performs additional filter-
defined processing on a file during I/O operations. An implementer can request more than one
reparse point for use with a file system, a file system filter driver, or a minifilter driver. To
request a reparse point tag, use the reparse point tag request form. For more information, see
[WHDC-RPTR].

11/ 228

[MS-FSCC-Diff] - v20200826

File System Control Codes

Copyright © 2020 Microsoft Corporation
Release: August 26, 2020



replica set: In File Replication Service (FRS), the replication of files and directories according to a
predefined topology and schedule on a specific folder. The topology and schedule are collectively
called a replica set. A replica set contains a set of replicas, one for each machine that
participates in replication.

sector: The smallest addressable unit of a disk.

security identifier (SID): An identifier for security principals that is used to identify an account
or a group. Conceptually, the SID is composed of an account authority portion (typically a
domain) and a smaller integer representing an identity relative to the account authority, termed
the relative identifier (RID). The SID format is specified in [MS-DTYP] section 2.4.2; a string
representation of SIDs is specified in [MS-DTYP] section 2.4.2 and [MS-AZOD] section 1.1.1.2.

short name: This has the same definition as alternate name.

single-instance storage (SIS): An NTFS feature that implements links with the semantics of
copies for files stored on an NTFS volume. SIS uses copy-on-close to implement the copy
semantics of its links.

sparse file: A file containing large sections of data composed only of zeros. This file is marked as a
sparse file in the file system, which saves disk space by only allocating as many ranges on disk
as are required to completely reconstruct the non-zero data. When an attempt is made to read
in the nonallocated portions of the file (also known as holes), the file system automatically
returns zeros to the caller.

stream: A sequence of bytes written to a file on the target file system. Every file stored on a
volume that uses the file system contains at least one stream, which is normally used to store
the primary contents of the file. Additional streams within the file can be used to store file
attributes, application parameters, or other information specific to that file. Every file has a
default data stream, which is unnamed by default. That data stream, and any other data stream
associated with a file, can optionally be named.

sub-read and sub-write: An I/O operation sent by the file system to the storage stack that is
part of a larger file I/O operation. Sometimes large file reads and writes are broken down by the
file system into smaller reads and writes, which are then sent to the storage stack.

symbolic link: A symbolic link is a reparse point that points to another file system object. The
object being pointed to is called the target. Symbolic links are transparent to users; the links
appear as normal files or directories, and can be acted upon by the user or application in exactly
the same manner. Symbolic links can be created using the FSCTL_SET_REPARSE_POINT request
as specified in [MS-FSCC] section 2.3.61. They can be deleted using the
FSCTL_DELETE_REPARSE_POINT request as specified in [MS-FSCC] section 2.3.5. Implementing
symbolic links is optional for a file system.

tag: Another name for a reparse point. For instance, the file system filter manager FltTagFile
routine sets a reparse point on a file. Tag is also used to refer to the field in a reparse point that
identifies what software component put the reparse point there.

token: A 512-byte length opaque string that is generated and maintained by a supported target
device. A Token functions logically as an immutable point-in-time representation for a set of
data specified by a host and can be conceptualized as a compressed representation of the data
that only a certain class of storage subsystems can interpret. A Token can also be constructed
from a set of well-known Tokens to enable the client to describe a homogeneous attribute for a
set of data (for example, all zeros) or to enable a server to apply a homogeneous attribute to a
set of data (for example, a set of all zeros). For more information on Tokens, see [INCITS-
T10/11-059].

Unicode character: Unless otherwise specified, a 16-bit UTF-16 code unit.

12 /228

[MS-FSCC-Diff] - v20200826

File System Control Codes

Copyright © 2020 Microsoft Corporation
Release: August 26, 2020



Uniform Resource Locator (URL): A string of characters in a standardized format that identifies
a document or resource on the World Wide Web. The format is as specified in [RFC1738].

Universal Disk Format (UDF): A type of file system for storing files on optical media.

update sequence number (USN): The offset from the beginning of the change journal stream
that uniquely identifies a change journal record.

virtual cluster number (VCN): The cluster number relative to the beginning of the file, directory,
or stream within a file. The cluster describing byte 0 in a file is VCN 0.

volume: A group of one or more partitions that forms a logical region of storage and the basis for
a file system. A volume is an area on a storage device that is managed by the file system as a
discrete logical storage unit. A partition contains at least one volume, and a volume can exist on
one or more partitions.

MAY, SHOULD, MUST, SHOULD NOT, MUST NOT: These terms (in all caps) are used as defined
in [RFC2119]. All statements of optional behavior use either MAY, SHOULD, or SHOULD NOT.
1.2 References

Links to a document in the Microsoft Open Specifications library point to the correct section in the
most recently published version of the referenced document. However, because individual documents
in the library are not updated at the same time, the section numbers in the documents may not
match. You can confirm the correct section numbering by checking the Errata.

1.2.1 Normative References

We conduct frequent surveys of the normative references to assure their continued availability. If you
have any issue with finding a normative reference, please contact dochelp@microsoft.com. We will
assist you in finding the relevant information.

[MS-DTYP] Microsoft Corporation, "Windows Data Types".

[MS-ERREF] Microsoft Corporation, "Windows Error Codes".

[MS-FSA] Microsoft Corporation, "File System Algorithms".

[MS-LSAD] Microsoft Corporation, "Local Security Authority (Domain Policy) Remote Protocol".

[MS-RDPBCGR] Microsoft Corporation, "Remote Desktop Protocol: Basic Connectivity and Graphics
Remoting".

[MS-SMB2] Microsoft Corporation, "Server Message Block (SMB) Protocol Versions 2 and 3".
[MS-SMB] Microsoft Corporation, "Server Message Block (SMB) Protocol".
[MS-SQLRS] Microsoft Corporation, "SQL Server Remote Storage Profile".

[RFC1094] Sun Microsystems, Inc., "NFS: Network File System Protocol Specification", RFC 1094,
March 1989, http://www.ietf.org/rfc/rfc1094.txt

[RFC1813] Callaghan, B., Pawlowski, B., and Staubach, P., "NFS Version 3 Protocol Specification", RFC
1813, June 1995, http://www.ietf.org/rfc/rfc1813.txt

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC
2119, March 1997, http://www.rfc-editor.org/rfc/rfc2119.txt

13 /228

[MS-FSCC-Diff] - v20200826

File System Control Codes

Copyright © 2020 Microsoft Corporation
Release: August 26, 2020



1.2.2 Informative References

[FSBO] Microsoft Corporation, "File System Behavior in the Microsoft Windows Environment", June
2008, http://download.microsoft.com/download/4/3/8/43889780-8d45-4b2e-9d3a-
€c696a890309f/File%20System%20Behavior%200verview.pdf

[INCITS-T10/11-059] INCITS, "T10 specification 11-059", http://www.t10.0org/cgi-
bin/ac.pl?t=d&f=11-059r9.pdf

[MS-CIFS] Microsoft Corporation, "Common Internet File System (CIFS) Protocol".
[MS-DFSC] Microsoft Corporation, "Distributed File System (DFS): Referral Protocol".
[MS-DLTW] Microsoft Corporation, "Distributed Link Tracking: Workstation Protocol".
[MS-EFSR] Microsoft Corporation, "Encrypting File System Remote (EFSRPC) Protocol".

[MS-WDVME] Microsoft Corporation, "Web Distributed Authoring and Versioning (WebDAV) Protocol:
Microsoft Extensions".

[MSDFS] Microsoft Corporation, "How DFS Works", March 2003, http://technet.microsoft.com/en-
us/library/cc782417%28WS.10%29.aspx

[MSDN-CJ] Microsoft Corporation, "Change Journals", http://msdn.microsoft.com/en-
us/library/aa363798.aspx

[MSDN-SECZONES] Microsoft Corporation, "About URL Security Zones",
http://msdn.microsoft.com/en-us/library/ms537183.aspx

[MSFT-NTFSWorks] Microsoft Corporation, "How NTFS Works", March 2003,
http://technet.microsoft.com/en-us/library/cc781134(WS.10).aspx

[MSFT-NTFS] Microsoft Corporation, "NTFS Technical Reference", March 2003,
http://technet2.microsoft.com/WindowsServer/en/Library/81cc8a8a-bd32-4786-a849-
03245d68d8e41033.mspx

[PIPE] Microsoft Corporation, "Named Pipes", http://msdn.microsoft.com/en-us/library/aa365590.aspx

[REPARSE] Microsoft Corporation, "Reparse Points", http://msdn.microsoft.com/en-
us/library/aa365503.aspx

[SPARSE] Microsoft Corporation, "Sparse Files", http://msdn.microsoft.com/en-
us/library/aa365564.aspx

[UASDC] Ziv, J. and Lempel, A., "A Universal Algorithm for Sequential Data Compression", May 1977,
http://www.cs.duke.edu/courses/spring03/cps296.5/papers/ziv_lempel_1977_universal_algorithm.pdf

[UDF] Optical Storage Technology Association, "UDF Specification, Revision 2.60", March 2005,
http://www.osta.org/specs/pdf/udf260.pdf

[WHDC-RPTR] Microsoft Corporation, "Reparse Point Tag Request", https://docs.microsoft.com/en-
us/windows-hardware/drivers/ifs/reparse-point-tag-request

[WININTERNALS] Russinovich, M., and Solomon, D., "Microsoft Windows Internals, Fourth Edition",
Microsoft Press, 2005, ISBN: 0735619174.

14 /228

[MS-FSCC-Diff] - v20200826

File System Control Codes

Copyright © 2020 Microsoft Corporation
Release: August 26, 2020



1.3 Overview

This document describes the structure of common file system control (FSCTL) codes, file information
levels, and file system information levels that are issued in client/server and server/server
communications. These structures do not result in a protocol, but their structure is common across
multiple protocols. As such, they are placed in this document as a reference that can be used by other
protocols to ensure consistency and accuracy.

File system control codes are parameters to the device I/0 control interface between applications and
the operating system. These device I/0O control functions, like other I/0 functions, accept a file handle
as a parameter, indicating the resource on which the requested operation is performed. When the
operating system detects that a handle corresponds to a file on a remote file server, the request can
be redirected over the network to the server where the file is stored.

The following topics are addressed in this specification:

= Common file system control operations, including the control code itself and the input/output
parameters.

= File information classes and their corresponding structures.

=  File system information classes and their corresponding structures.

= File attribute definitions and NTSTATUS code definitions referenced by the file system control
code, file information level, and file system information-level documentation.

1.4 Relationship to Protocols and Other Structures

Versions 1 and 2 of the Server Message Block (SMB) Protocol, as specified in [MS-SMB] and [MS-
SMB2], rely on the structures and definitions in this document to interpret certain fields that can be
sent or received as part of its processing.

1.5 Applicability Statement

The structures and classes defined in this document are useful for any lower-level protocol that
serializes and exchanges file information levels, file system information levels, and file system control
operations without needing to remap this information into a protocol-specific representation.

1.6 Versioning and Localization

None.

1.7 Vendor-Extensible Fields

File system control codes that are used to set reparse point data specify a ReparseTag field value
that identifies the file system filter that understands the application-specific reparse point data format.
A vendor developing an application protocol that sets reparse point data MUST request a unique
reparse tag for that application from Microsoft by following the instructions described in [WHDC-
RPTR]. For more information about reparse points, see [REPARSE].

This protocol uses NTSTATUS values, as specified in [MS-ERREF]. Vendors are free to choose their
own values for this field as long as the C bit (0x20000000) is set, indicating it is a customer code.

15/ 228

[MS-FSCC-Diff] - v20200826

File System Control Codes

Copyright © 2020 Microsoft Corporation
Release: August 26, 2020



2 Structures

The structures specified in this document have no transport requirements of their own. Instead, they
are packaged and transported in accordance with the protocol that makes use of them, such as the
Server Message Block (SMB) Protocol, as specified in [MS-SMB]. A server receiving one of these
structures passes the structure to an implementation-defined function that performs the indicated
operation on a file, a file system, or a volume.

The following sections specify how File System Control Codes messages are encapsulated on the wire
and common File System Control Codes data types.

This document references commonly used data types as defined in [MS-DTYP].

Unless otherwise qualified, instances of GUID in this section refer to [MS-DTYP] section 2.3.4.
2.1 Common Data Types

2.1.1 Time

Unless otherwise noted, Time fields are 64-bit signed integers representing the number of 100-
nanosecond intervals that have elapsed since January 1, 1601, Coordinated Universal Time (UTC).

See FILETIME ([MS-DTYP] section 2.3.3) for related information.

For information regarding the semantics of the file timestamps of the CreationTime,
LastAccessTime, LastWriteTime, and ChangeTime fields, see [FSBO] section 6.
2.1.2 Reparse Point Data Structures

For conceptual information about reparse points, see [REPARSE].

2.1.2.1 Reparse Tags

Each reparse point has a reparse tag. The reparse tag uniquely identifies the owner of that reparse
point. The owner is the implementer of the file system filter driver associated with a reparse tag.

Reparse tags are exposed to clients for third-party applications. Those applications can set, get, and
process reparse tags as needed. Third parties MUST request a reserved reparse tag value to ensure
that conflicting tag values do not occur. [WHDC-RPTR] <1>

The following reparse tags, with the exception of I0_REPARSE_TAG_SYMLINK, are processed on the
server and are not processed by a client after transmission over the wire. Clients SHOULD treat
associated reparse data as opaque data.<2>

Value Meaning

I0_REPARSE_TAG_RESERVED_ZERO Reserved reparse tag value.

0x00000000

I0_REPARSE_TAG_RESERVED_ONE Reserved reparse tag value.

0x00000001

I0_REPARSE_TAG_RESERVED_TWO Reserved reparse tag value.

0x00000002

IO_REPARSE_TAG_MOUNT_POINT Used for mount point support, specified in section 2.1.2.5.

16 / 228

[MS-FSCC-Diff] - v20200826

File System Control Codes

Copyright © 2020 Microsoft Corporation
Release: August 26, 2020



Value

Meaning

0xA0000003

IO_REPARSE_TAG_HSM
0xC0000004

Obsolete. Used by legacy Hierarchical Storage Manager Product.

IO_REPARSE_TAG_DRIVE_EXTENDER
0x80000005

Home server drive extender.<3>

IO_REPARSE_TAG_HSM2
0x80000006

Obsolete. Used by legacy Hierarchical Storage Manager Product.

IO0_REPARSE_TAG_SIS
0x80000007

Used by single-instance storage (SIS) filter driver. Server-side
interpretation only, not meaningful over the wire.

IO_REPARSE_TAG_WIM
0x80000008

Used by the WIM Mount filter. Server-side interpretation only, not
meaningful over the wire.

IO_REPARSE_TAG_CSV
0x80000009

Obsolete. Used by Clustered Shared Volumes (CSV) version 1 in
Windows Server 2008 R2 operating system. Server-side interpretation
only, not meaningful over the wire.

I0_REPARSE_TAG_DFS
0x8000000A

Used by the DFS filter. The DFS is described in the Distributed File
System (DFS): Referral Protocol Specification [MS-DFSC]. Server-side
interpretation only, not meaningful over the wire.

I0_REPARSE_TAG_FILTER_MANAGER
0x8000000B

Used by filter manager test harness.<4>

IO_REPARSE_TAG_SYMLINK
0xA000000C

Used for symbolic link support. See section 2.1.2.4.

I0_REPARSE_TAG_IIS_CACHE
0xA0000010

Used by Microsoft Internet Information Services (IIS) caching. Server-
side interpretation only, not meaningful over the wire.

I0_REPARSE_TAG_DFSR
0x80000012

Used by the DFS filter. The DFS is described in [MS-DFSC]. Server-
side interpretation only, not meaningful over the wire.

IO_REPARSE_TAG_DEDUP
0x80000013

Used by the Data Deduplication (Dedup) filter. Server-side
interpretation only, not meaningful over the wire.

IO_REPARSE_TAG_APPXSTRM
0xC0000014

Not used.

I0_REPARSE_TAG_NFS
0x80000014

Used by the Network File System (NFS) component. Server-side
interpretation only, not meaningful over the wire.

IO_REPARSE_TAG_FILE_PLACEHOLDER
0x80000015

Obsolete. Used by Windows Shell for legacy placeholder files in
Windows 8.1. Server-side interpretation only, not meaningful over the
wire.

IO_REPARSE_TAG_DFM
0x80000016

Used by the Dynamic File filter. Server-side interpretation only, not
meaningful over the wire.

IO0_REPARSE_TAG_WOF
0x80000017

Used by the Windows Overlay filter, for either WIMBoot or single-file
compression. Server-side interpretation only, not meaningful over the
wire.

IO_REPARSE_TAG_WCI
0x80000018

Used by the Windows Container Isolation filter. Server-side
interpretation only, not meaningful over the wire.

[MS-FSCC-Diff] - v20200826

File System Control Codes

Copyright © 2020 Microsoft Corporation
Release: August 26, 2020

17/ 228




Value

Meaning

IO_REPARSE_TAG_WCI_1
0x90001018

Used by the Windows Container Isolation filter. Server-side
interpretation only, not meaningful over the wire.

IO_REPARSE_TAG_GLOBAL_REPARSE

0xA0000019

Used by NPFS to indicate a named pipe symbolic link from a server
silo into the host silo. Server-side interpretation only, not meaningful
over the wire.

IO0_REPARSE_TAG_CLOUD
0x9000001A

Used by the Cloud Files filter, for files managed by a sync engine such
as Microsoft OneDrive. Server-side interpretation only, not meaningful
over the wire.

IO_REPARSE_TAG_CLOUD_1
0x9000101A

Used by the Cloud Files filter, for files managed by a sync engine such
as OneDrive. Server-side interpretation only, not meaningful over the
wire.

IO_REPARSE_TAG_CLOUD_2
0x9000201A

Used by the Cloud Files filter, for files managed by a sync engine such
as OneDrive. Server-side interpretation only, not meaningful over the
wire.

IO_REPARSE_TAG_CLOUD_3
0x9000301A

Used by the Cloud Files filter, for files managed by a sync engine such
as OneDrive. Server-side interpretation only, not meaningful over the
wire.

I0_REPARSE_TAG_CLOUD_4
0x9000401A

Used by the Cloud Files filter, for files managed by a sync engine such
as OneDrive. Server-side interpretation only, not meaningful over the
wire.

IO_REPARSE_TAG_CLOUD_5
0x9000501A

Used by the Cloud Files filter, for files managed by a sync engine such
as OneDrive. Server-side interpretation only, not meaningful over the
wire.

IO_REPARSE_TAG_CLOUD_6
0x9000601A

Used by the Cloud Files filter, for files managed by a sync engine such
as OneDrive. Server-side interpretation only, not meaningful over the
wire.

I0_REPARSE_TAG_CLOUD_7
0x9000701A

Used by the Cloud Files filter, for files managed by a sync engine such
as OneDrive. Server-side interpretation only, not meaningful over the
wire.

I0_REPARSE_TAG_CLOUD_8
0x9000801A

Used by the Cloud Files filter, for files managed by a sync engine such
as OneDrive. Server-side interpretation only, not meaningful over the
wire.

IO_REPARSE_TAG_CLOUD_9
0x9000901A

Used by the Cloud Files filter, for files managed by a sync engine such
as OneDrive. Server-side interpretation only, not meaningful over the
wire.

I0_REPARSE_TAG_CLOUD_A
0x9000A01A

Used by the Cloud Files filter, for files managed by a sync engine such
as OneDrive. Server-side interpretation only, not meaningful over the
wire.

I0_REPARSE_TAG_CLOUD_B
0x9000B0O1A

Used by the Cloud Files filter, for files managed by a sync engine such
as OneDrive. Server-side interpretation only, not meaningful over the
wire.

IO_REPARSE_TAG_CLOUD_C
0x9000C01A

Used by the Cloud Files filter, for files managed by a sync engine such
as OneDrive. Server-side interpretation only, not meaningful over the
wire.

IO_REPARSE_TAG_CLOUD_D
0x9000D01A

Used by the Cloud Files filter, for files managed by a sync engine such
as OneDrive. Server-side interpretation only, not meaningful over the
wire.

[MS-FSCC-Diff] - v20200826
File System Control Codes

Copyright © 2020 Microsoft Corporation

Release: August 26, 2020

18/ 228




Value

Meaning

IO_REPARSE_TAG_CLOUD_E
0x9000E01A

Used by the Cloud Files filter, for files managed by a sync engine such
as OneDrive. Server-side interpretation only, not meaningful over the
wire.

IO_REPARSE_TAG_CLOUD_F
0x9000F01A

Used by the Cloud Files filter, for files managed by a sync engine such
as OneDrive. Server-side interpretation only, not meaningful over the
wire.

I0_REPARSE_TAG_APPEXECLINK
0x8000001B

Used by Universal Windows Platform (UWP) packages to encode
information that allows the application to be launched by
CreateProcess. Server-side interpretation only, not meaningful over
the wire.

IO_REPARSE_TAG_PROJFS
0x9000001C

Used by the Windows Projected File System filter, for files managed
by a user mode provider such as VFS for Git. Server-side
interpretation only, not meaningful over the wire.

IO_REPARSE_TAG_LX_SYMLINK
0xA000001D

Used by the Windows Subsystem for Linux (WSL) to represent a UNIX
symbolic link. Server-side interpretation only, not meaningful over the
wire.

I0_REPARSE_TAG_STORAGE_SYNC
0x8000001E

Used by the Azure File Sync (AFS) filter. Server-side interpretation
only, not meaningful over the wire.

IO_REPARSE_TAG_WCI_TOMBSTONE
0xAO00001F

Used by the Windows Container Isolation filter. Server-side
interpretation only, not meaningful over the wire.

I0_REPARSE_TAG_UNHANDLED
0x80000020

Used by the Windows Container Isolation filter. Server-side
interpretation only, not meaningful over the wire.

I0_REPARSE_TAG_ONEDRIVE
0x80000021

Not used.

IO_REPARSE_TAG_PROJFS_TOMBSTONE
0xA0000022

Used by the Windows Projected File System filter, for files managed
by a user mode provider such as VFS for Git. Server-side
interpretation only, not meaningful over the wire.

IO_REPARSE_TAG_AF_UNIX
0x80000023

Used by the Windows Subsystem for Linux (WSL) to represent a UNIX
domain socket. Server-side interpretation only, not meaningful over
the wire.

IO0_REPARSE_TAG_LX_FIFO
0x80000024

Used by the Windows Subsystem for Linux (WSL) to represent a UNIX
FIFO (named pipe). Server-side interpretation only, not meaningful
over the wire.

IO_REPARSE_TAG_LX_CHR
0x80000025

Used by the Windows Subsystem for Linux (WSL) to represent a UNIX
character special file. Server-side interpretation only, not meaningful
over the wire.

IO_REPARSE_TAG_LX_BLK
0x80000026

Used by the Windows Subsystem for Linux (WSL) to represent a UNIX
block special file. Server-side interpretation only, not meaningful over
the wire.

IO0_REPARSE_TAG_WCI_LINK
0xA0000027

Used by the Windows Container Isolation filter. Server-side
interpretation only, not meaningful over the wire.

IO_REPARSE_TAG_WCI_LINK_1
0xA0001027

Used by the Windows Container Isolation filter. Server-side
interpretation only, not meaningful over the wire.

[MS-FSCC-Diff] - v20200826

File System Control Codes

Copyright © 2020 Microsoft Corporation
Release: August 26, 2020

19/ 228




2.1.2.2 REPARSE_DATA_BUFFER

The REPARSE_DATA_BUFFER data element stores data for a reparse point. This reparse data buffer
MUST be used only with reparse tag values whose high bit is set to 1.

This data element has two subtypes: Symbolic Link Reparse Data Buffer (section 2.1.2.4) and Mount
Point Reparse Data Buffer (section 2.1.2.5).

0(1|2|3(4|5|6|7|8|9|0(1|2|3(4|5|6(7|8|9(0(1|2|3(4|5|6|7|8|9|0(1

ReparseTag

ReparseDatalength Reserved

DataBuffer (variable)

ReparseTag (4 bytes): A 32-bit unsigned integer value containing the reparse point tag that
uniquely identifies the owner of the reparse point.

ReparseDatalLength (2 bytes): A 16-bit unsigned integer value containing the size, in bytes, of the
reparse data in the DataBuffer member.

Reserved (2 bytes): A 16-bit field. This field is reserved. This field SHOULD be set to 0, and MUST
be ignored.

DataBuffer (variable): A variable-length array of 8-bit unsigned integer values containing reparse-
specific data for the reparse point. The format of this data is defined by the owner (that is, the
implementer of the filter driver associated with the specified ReparseTag) of the reparse point.

2.1.2.3 REPARSE_GUID_DATA_BUFFER

The REPARSE_GUID_DATA_BUFFER data element stores data for a reparse point and associates a
GUID with the reparse tag. This reparse data buffer MUST be used only with reparse tag values whose
high bit is set to 0.

Reparse point GUIDs are assigned by the independent software vendor (ISV). An ISV MUST link one
GUID to each assigned reparse point tag, and MUST always use that GUID with that tag.

-
N
w

0(1(2|3|4|5|6|7|8|9(0(1|2[3|4|5|/6|7|8|9|0|1|2|3|4|5|6[7(8]9|0]1

ReparseTag

ReparseDatalength Reserved

ReparseGuid (16 bytes)

DataBuffer (variable)

20/ 228

[MS-FSCC-Diff] - v20200826

File System Control Codes

Copyright © 2020 Microsoft Corporation
Release: August 26, 2020



ReparseTag (4 bytes): A 32-bit unsigned integer value containing the reparse point tag that
uniquely identifies the owner of the reparse point.

ReparseDatalength (2 bytes): A 16-bit unsigned integer value containing the size, in bytes, of the
reparse data in the DataBuffer member.

Reserved (2 bytes): A 16-bit field. This field SHOULD be set to 0 by the client, and MUST be ignored
by the server.

ReparseGuid (16 bytes): A 16-byte GUID that uniquely identifies the owner of the reparse point.
Reparse point GUIDs are not assigned by Microsoft. A reparse point implementer MUST select one
GUID to be used with their assigned reparse point tag to uniquely identify that reparse point. For
more information, see [REPARSE].

DataBuffer (variable): The content of this buffer is opaque to the file system. On receipt, its content
MUST be preserved and properly returned to the caller.

2.1.2.4 Symbolic Link Reparse Data Buffer

The Symbolic Link Reparse Data Buffer data element is a subtype of REPARSE_DATA_BUFFER, which
contains information on symbolic link reparse points. This reparse data buffer MUST be used only with
reparse tag values whose high bit is set to 1.

A symbolic link has a substitute name and a print name associated with it. The substitute name is a
pathname (section 2.1.5) identifying the target of the symbolic link. The print name SHOULD be an
informative pathname, suitable for display to a user, that also identifies the target of the symbolic
link. Either pathname can contain dot directory names as specified in section 2.1.5.1.

012345678931234567893123456789(3)1
ReparseTag
ReparseDatalength Reserved
SubstituteNameOffset SubstituteNamelLength
PrintNameOffset PrintNameLength
Flags

PathBuffer (variable)

ReparseTag (4 bytes): A 32-bit unsigned integer value containing the reparse point tag that
uniquely identifies the owner (that is, the implementer of the filter driver associated with this
ReparseTag) of the reparse point. This value MUST be 0xA000000C.

ReparseDatalLength (2 bytes): A 16-bit unsigned integer value containing the size, in bytes, of the
reparse data that follows the common portion of the REPARSE_DATA_BUFFER element. This value
is the length of the data starting at the SubstituteNameOffset field (or the size of the
PathBuffer field, in bytes, plus 12).

21 /228

[MS-FSCC-Diff] - v20200826

File System Control Codes

Copyright © 2020 Microsoft Corporation
Release: August 26, 2020



Reserved (2 bytes): A 16-bit field. This field is not used. It SHOULD be set to 0 and MUST be
ignored.

SubstituteNameOffset (2 bytes): A 16-bit unsigned integer that contains the offset, in bytes, of the
substitute name string in the PathBuffer array, computed as an offset from byte 0 of
PathBuffer. Note that this offset is divided by 2 to get the array index.

SubstituteNameLength (2 bytes): A 16-bit unsigned integer that contains the length, in bytes, of
the substitute name string. If this string is null-terminated, SubstituteNameLength does not
include the Unicode null character.

PrintNameOffset (2 bytes): A 16-bit unsigned integer that contains the offset, in bytes, of the print
name string in the PathBuffer array, computed as an offset from byte 0 of PathBuffer. Note that
this offset is divided by 2 to get the array index.

PrintNameLength (2 bytes): A 16-bit unsigned integer that contains the length, in bytes, of the
print name string. If this string is null-terminated, PrintNameLength does not include the
Unicode null character.

Flags (4 bytes): A 32-bit field that specifies whether the substitute name is a full path name or a
path name relative to the directory containing the symbolic link.

This field contains one of the values in the following table.

Value Meaning

0x00000000 The substitute name is a full path name.

SYMLINK_FLAG_RELATIVE | The substitute name is a path name relative to the directory containing the symbolic
0x00000001 link.

PathBuffer (variable): Unicode character array that contains the substitute name string and print
name string. The substitute name and print name strings can appear in any order in the
PathBuffer. To locate the substitute name and print name strings in the PathBuffer, use the
SubstituteNameOffset, SubstituteNameLength, PrintNameOffset, and PrintNameLength
members.

2.1.2.5 Mount Point Reparse Data Buffer

The Mount Point Reparse Data Buffer data element is a subtype of REPARSE_DATA_BUFFER, which
contains information about mount point reparse points. This reparse data buffer MUST be used only
with reparse tag values whose high bit is set to 1.

A mount point has a substitute name and a print name associated with it. The substitute name is a
pathname (section 2.1.5) identifying the target of the mount point. The print name SHOULD be an
informative pathname (section 2.1.5), suitable for display to a user, that also identifies the target of
the mount point. Neither of these pathnames can contain dot directory names.

-
N
w

0(1|2|3(4|5|6|7|8|9|0|1|2|3(4|5|6|7|8|9(0(1|2|3(4|5|6|7|8|9|0(1

ReparseTag

ReparseDatalength Reserved

SubstituteNameOffset SubstituteNamelLength

22 /228

[MS-FSCC-Diff] - v20200826

File System Control Codes

Copyright © 2020 Microsoft Corporation
Release: August 26, 2020



PrintNameOffset PrintNameLength

PathBuffer (variable)

ReparseTag (4 bytes): A 32-bit unsigned integer value containing the reparse point tag that
uniquely identifies the owner (that is, the implementer of the filter driver associated with this
ReparseTag) of the reparse point. This value MUST be 0xA0000003.

ReparseDatalength (2 bytes): A 16-bit unsigned integer value containing the size, in bytes, of the
reparse data that follows the common portion of the REPARSE_DATA_BUFFER element. This value
is the length of the data starting at the SubstituteNameOffset field (or the size of the
PathBuffer field, in bytes, plus 8).

Reserved (2 bytes): A 16-bit field. This field is not used. It SHOULD be set to 0, and MUST be
ignored.

SubstituteNameOffset (2 bytes): A 16-bit unsigned integer that contains the offset, in bytes, of the
substitute name string in the PathBuffer array, computed as an offset from byte 0 of
PathBuffer. Note that this offset is divided by 2 to get the array index.

SubstituteNameLength (2 bytes): A 16-bit unsigned integer that contains the length, in bytes, of
the substitute name string. If this string is null-terminated, SubstituteNameLength does not
include the Unicode null character.

PrintNameOffset (2 bytes): A 16-bit unsigned integer that contains the offset, in bytes, of the print
name string in the PathBuffer array, computed as an offset from byte 0 of PathBuffer. Note that
this offset is divided by 2 to get the array index.

PrintNameLength (2 bytes): A 16-bit unsigned integer that contains the length, in bytes, of the
print name string. If this string is null-terminated, PrintNameLength does not include the
Unicode null character.

PathBuffer (variable): Unicode character array that contains the substitute name string and print
name string. The substitute name and print name strings can appear in any order in PathBuffer.
To locate the substitute name and print name strings in the PathBuffer field, use the
SubstituteNameOffset, SubstituteNamelLength, PrintNameOffset, and PrintNameLength
members.

2.1.2.6 Network File System (NFS) Reparse Data Buffer

The Network File System Reparse Data Buffer data element is a subtype of REPARSE_DATA_BUFFER,
which contains information about symbolic files and devices created by the Network File System client.

0(1|/2|3(4|5|6(7|8|9|0(1|2|3(4|5|6|7|8|9(0(1|2|3(4|5|6[7|8|9|0/(1

ReparseTag

ReparseDatalength Reserved

GenericReparseBuffer (variable)

23/ 228

[MS-FSCC-Diff] - v20200826

File System Control Codes

Copyright © 2020 Microsoft Corporation
Release: August 26, 2020



ReparseTag (4 bytes): A 32-bit unsigned integer value containing the reparse point tag that
uniquely identifies the owner (that is, the implementer of the filter driver associated with this
ReparseTag) of the reparse point. This value MUST be 0x80000014.

ReparseDatalength (2 bytes): A 16-bit unsigned integer value containing the size, in bytes, of the
reparse data that follows the common portion of the REPARSE_DATA_BUFFER element. This value
is the length of the data starting at the GenericReparseBuffer field.

Reserved (2 bytes): A 16-bit field. This field is not used. It SHOULD be set to 0, and MUST be
ignored.

GenericReparseBuffer (variable): The data in this variable buffer takes the following format.

-
N
w

Type

DataBuffer (variable)

Type (8 bytes): A 64-bit unsigned integer value describing the type and format of the data stored in
the DataBuffer field. The valid values for this field are:

Value Meaning

NFS_SPECFILE_LNK Indicates that the DataBuffer field has a Unicode string containing the symbolic
0x00000000014B4E4C | link data.

NFS_SPECFILE_CHR Indicates that the DataBuffer field has two 32-bit integers that contain the major
0x0000000000524843 | @nd minor device numbers for the character special device created by the Network
File System client.

NFS_SPECFILE_BLK Indicates that the DataBuffer field has two 32-bit integers that contain the major
0x00000000004B4C42 | and minor device numbers for the block special device created by the Network File
System client.

NFS_SPECFILE_FIFO Indicates that the file containing the NFS reparse point is a hamed pipe device
0x000000004F464946 | created by the Network File System client. The DataBuffer field is empty.

NFS_SPECFILE_SOCK Indicates that the file containing the NFS reparse point is a socket device created
0x000000004B434F53 by the Network File System client. The DataBuffer field is empty.

DataBuffer (variable): A variable buffer that has the following formats depending upon the Type
field defined earlier.

= NFS_SPECFILE_CHR and NFS_SPECFILE_BLK: The DataBuffer field contains two 32-bit
integers that represent major and minor device numbers.

* NFS_SPECFILE_LNK: The DataBuffer field contains the symbolic link target path specified by
the Network File System client in its NFSPROC_SYMLINK request, [RFC1813] section 3.3.10 and
[RFC1094] section 2.2.14, represented in Unicode format and not NULL-terminated. The upper
limit on the size of the symbolic link data is 2050 bytes.

* NFS_SPECFILE_FIFO and NFS_SPECFILE_SOCK: The DataBuffer field is empty.

24 /228

[MS-FSCC-Diff] - v20200826

File System Control Codes

Copyright © 2020 Microsoft Corporation
Release: August 26, 2020



2.1.3 FILE_OBJECTID_BUFFER Structure

The FILE_OBJECTID_BUFFER structure contains extended metadata for a file system object, including
its object ID. This data element MUST be in one of the following two formats:

= FILE_OBJECTID_BUFFER Type 1
= FILE_OBIJECTID_BUFFER Type 2

2.1.3.1 FILE_OBJECTID_BUFFER Type 1
The first possible structure for the FILE_OBJECTID_BUFFER data element is as follows.

-
N
w

0[{1(2|3|4|5|6|7|8|9|0(1(2[3|4|5|/6|7|8|9|0|1|2|3|4|5(6[7(8]9|0]|1

Objectld (16 bytes)

BirthVolumeld (16 bytes)

BirthObjectld (16 bytes)

Domainld (16 bytes)

Objectld (16 bytes): A 16-byte GUID that uniquely identifies the file or directory within the volume
on which it resides. Specifically, the same object ID can be assigned to another file or directory on
a different volume, but it MUST NOT be assigned to another file or directory on the same volume.

BirthVolumeld (16 bytes): A 16-byte GUID that uniquely identifies the volume on which the object
resided when the object identifier was created, or zero if the volume had no object identifier at
that time. After copy operations, move operations, or other file operations, this value is potentially
different from the object identifier of the volume on which the object presently resides.

BirthObjectId (16 bytes): A 16-byte GUID value containing the object identifier of the object at the
time it was created. Copy operations, move operations, or other file operations MAY change the
value of the Objectld member. Therefore, the BirthObjectld is potentially different from the
Objectld member at present. Specifically, the same object ID MAY be assigned to another file or

25/ 228

[MS-FSCC-Diff] - v20200826

File System Control Codes

Copyright © 2020 Microsoft Corporation
Release: August 26, 2020



directory on a different volume, but it MUST NOT be assigned to another file or directory on the
same volume. The object ID is assigned at file creation time.<5>

Domainld (16 bytes): A 16-byte GUID value containing the domain identifier. This value is unused;
it SHOULD be zero, and MUST be ignored.<6>

2.1.3.2 FILE_OBJECTID_BUFFER Type 2

The second possible structure for the FILE_OBJECTID_BUFFER data element is as follows.

=
N
w

0(1|2|3(4|5|6|7|8|9|0(1|2|3(4|5|6(7|8|9(0(1|2|3(4|5|6[|7|8|9|0(1

Objectld (16 bytes)

ExtendedInfo (48 bytes)

Objectld (16 bytes): A 16-byte GUID that uniquely identifies the file or directory within the volume
on which it resides. Specifically, the same object ID can be assigned to another file or directory on
a different volume, but it MUST NOT be assigned to another file or directory on the same volume.

ExtendedInfo (48 bytes): A 48-byte value containing extended data that was set with the
FSCTL_SET_OBJECT_ID_EXTENDED request. This field contains application-specific data.<7>
2.1.4 Alternate Data Streams

A file system MAY<8> support alternate data streams within a file or a directory. For a general
description of file streams, section 1.1.

Every file has a default stream, which is the stream that is referenced when no stream name
component is specified as part of the pathname. A directory does not have a default data stream;
however, it can have named alternate data streams.

For more information on stream naming, see section 2.1.5; for more information on streams in
general, see section 5.

2.1.5 Pathname

A pathname has the following characteristics:

= A pathname MUST be no more than 32,760 characters in length.

= A pathname is composed of one or more pathname components separated by the "\" backslash
character. All pathname components other than the last pathname component denote directories
or reparse points. The last pathname component denotes a directory, a file, a stream, or a reparse
point.

26 /228

[MS-FSCC-Diff] - v20200826

File System Control Codes

Copyright © 2020 Microsoft Corporation
Release: August 26, 2020



= Aleading "\" backslash character is optional, and determines whether a pathname is absolute or
relative:

= A pathname that begins with a leading "\" backslash character, for example, "\a\b\c", is an
absolute pathname. An absolute pathname SHOULD be evaluated relative to the root
directory.

= A pathname that omits a leading "\" backslash character, for example, "a\b\c", is a relative
pathname. A relative pathname MAY be evaluated relative to any directory, such as an
application's current working directory.

= Each pathname component has one of the following forms:
= A dot directory name as specified in section 2.1.5.1.

= A filename as specified in section 2.1.5.2, optionally followed by a ":" colon character and a
streamname as specified in section 2.1.5.3, optionally followed by a ":" colon character and a
streamtype as specified in section 2.1.5.4. The streamname, if specified, MAY be zero-length
only if streamtype is also specified; otherwise, it MUST be at least one character. The
streamtype, if specified, MUST be at least one character.

2.1.5.1 Dot Directory Names

The pathname components of "." (single period) and ".." (two periods) are reserved as dot directory
names.

Except where explicitly permitted, a pathname component that is a dot directory name MUST NOT be
sent over the wire.

When parsing pathname components, a dot directory name of "." refers to the current directory name
component and a dot directory name of ".." refers to the parent directory name of the current
directory name component.

Some examples to illustrate:
= In the pathname "dirA\.\dirB", the "." refers to dirA, so this expression is equivalent to "dirA\dirB".

= In the pathname "dirA\dirB\..\dirC", the ".." refers to dirA, so this expression is equivalent to
"dirA\dirC".

A dot directory name of ".." at the root of a share MUST be treated as equivalent to ".". For example:

\\ServerX\ShareY\..\dirA is equivalent to \\ServerX\ShareY\.\dirA (which is equivalent to
\\ServerX\ShareY\dirA).

2.1.5.2 Filename
= All Unicode characters are legal in a filename except the following:

= The characters
"N <>
= Control characters, ranging from 0x00 through Ox1F.

= A filename MUST be at least one character but no more than 255 characters in length.

2.1.5.2.1 8.3 Filename

27/ 228

[MS-FSCC-Diff] - v20200826

File System Control Codes

Copyright © 2020 Microsoft Corporation
Release: August 26, 2020



An 8.3 filename (also referred to as a DOS name, a short name, or an 8.3-compliant filename) is a
filename that conforms to the following restrictions:

= An 8.3 filename MUST only contain characters that can be represented in ASCII, in the range
below 0x80.

= An 8.3 filename MUST NOT contain the " " space character.

= An 8.3 filename MUST NOT contain more than one "." period character.

= The general form of a valid 8.3 filename is a base filename, optionally followed by the "." period
character and a filename extension.

= The base filename MUST be 1-8 characters in length and MUST NOT contain a "." period
character.

= The filename extension, if present, MUST be 1-3 characters in length and MUST NOT contain a

." period character.

2.1.5.3 Streamname

= All Unicode characters are legal in a streamname component except the following:
= The characters \ / :
= Control character 0x00.
= A streamname MUST be no more than 255 characters in length.

= A zero-length streamname denotes the default stream.

See section 5 for additional information on alternate streams in the NTFS file system.

2.1.5.4 Streamtype
= All Unicode characters are legal in a streamtype component except the following:
= The characters \ / :

=  Control character 0x00.

2.1.6 Share name
A share name has the following characteristics:
= A share name MUST be no more than 80 characters in length.

= The following characters are illegal in a share name:
"N/ LT <>+ =5 0, 00

= Control characters in range 0x00 through 0x1F, inclusive, are illegal in a share name.

= All other Unicode characters are legal.

2.1.7 FILE_NAME_INFORMATION

The FILE_NAME_INFORMATION data element is as follows.

28 /228

[MS-FSCC-Diff] - v20200826

File System Control Codes

Copyright © 2020 Microsoft Corporation
Release: August 26, 2020



0(1|2|3(4|5|6|7|8|9|0(1|2|3(4|5|6|7|8|9(0(1|2|3(4|5|6[7|8|9|0(1

FileNamelLength

FileName (variable)

FileNameLength (4 bytes): A 32-bit unsigned integer that specifies the length, in bytes, of the file
name contained within the FileName field.

FileName (variable): A sequence of Unicode characters containing a pathname (section 2.1.5). The
meaning of the pathname depends on the operation. The name string is not null-terminated.
There are scenarios where one or more padding characters can be at the end of the string due to
buffer alignment requirements, but their presence and their values MUST NOT be relied upon.
When working with this field, use FileNameLength to determine the length of the file name
rather than assuming the presence of a trailing null delimiter.

2.1.8 Boolean

A Boolean data type is a primitive that has one of two possible values: TRUE and FALSE, which are
defined as follows:

TRUE: A sender MUST use any nonzero value to denote a TRUE. A receiver MUST interpret any
nonzero value as TRUE.<9>

FALSE: A sender MUST use a zero value to denote a FALSE. A receiver MUST interpret a zero value
as FALSE.
2.1.9 64-bitfileID

A 64-bit value that uniquely identifies a file within a given volume. This identifier is generated and
stored by the file system. The identifier SHOULD<10> be unique to the volume and stable until the
file is deleted.

For file systems that do not support a 64-bit file ID, this field MUST be set to 0, and MUST be ignored.
For files for which a unique 64-bit file ID cannot be established, this field MUST be set to
OxfFffffffffffff, and MUST be ignored.

2.1.10128-bit file ID

A 128-bit value that uniquely identifies a file within a given volume. This identifier is generated and
stored by the file system. The identifier SHOULD<11> be unique to the volume and stable until the
file is deleted.

For file systems that do not support a 128-bit file ID, this field MUST be set to 0, and MUST be
ignored.

For files for which a unique 128-bit file ID cannot be established, this field MUST be set to
OxfFFFfFfFffefFrFferererererff, and MUST be ignored.

29 /228

[MS-FSCC-Diff] - v20200826

File System Control Codes

Copyright © 2020 Microsoft Corporation
Release: August 26, 2020



2.2 Status Codes

This specification uses NTSTATUS status codes, as specified in [MS-ERREF] section 2.3. The format of
a status code MUST be as specified in [MS-ERREF].

The reply message lists the common error codes that are directly generated by the function. Error
codes can also be generated by code below the file system (such as RAID drivers or disk drivers) or
above the file system (such as virus scanners).

A server SHOULD return a status of STATUS_INVALID_DEVICE_REQUEST when a message is not
supported remotely or is not supported on the file system on which the file or directory handle
specified exists.<12><13>

STATUS_BUFFER_OVERFLOW is a warning code and not an error code. This warning means that the
given output buffer is not large enough to contain all of the requested information. Unless otherwise
noted, a given operation SHOULD attempt to return as much data as it reasonably can.

2.3 (Updated Section) FSCTL Structures

A process invokes an FSCTL on a handle to perform an action against the file or directory associated
with the handle. When a server receives an FSCTL request, it SHOULD use the information in the
request, which includes a handle and, optionally, an input data buffer, to perform the requested
action. How a server performs the action requested by an FSCTL is implementation-dependent.<14>

The following table specifies the system-defined generic FSCTLs that are permitted to be invoked
across the network. Generic FSCTLs are used by the local file systems or by multiple components
within the system. Any application, service, or driver can define private FSCTLs. Most private FSCTLs
are used locally in the internal driver stacks and do not flow over the wire. However, if a component
allows its private FSCTLs to flow over the wire, that component is responsible for ensuring the FSCTLs
and associated data structures are documented. Examples of such private FSCTLs can be found in
[MS-SMB2] and [MS-DFSC].

FSCTL name FSCTL function number
FSCTL_CREATE_OR_GET_OBJECT_ID 0X900C0
FSCTL_DELETE_OBJECT_ID 0X900A0
FSCTL_DELETE_REPARSE_POINT 0X900AC
FSCTL_DUPLICATE_EXTENTS_TO_FILE 0X98344
FSCTL_DUPLICATE_EXTENTS_TO_FILE_EX 0x983E8
FSCTL_FILESYSTEM_GET_STATISTICS 0X90060
0X98208
FSCTL_FIND_FILES_BY_SID 0X9008F
FSCTL_GET_COMPRESSION 0X9003C
FSCTL_GET_INTEGRITY_INFORMATION 0X9027C
FSCTL_GET_NTFS_VOLUME_DATA 0X90064
FSCTL_GET_REFS_VOLUME_DATA 0X902D8
FSCTL_GET_OBIJECT_ID 0X9009C

30/ 228

[MS-FSCC-Diff] - v20200826

File System Control Codes

Copyright © 2020 Microsoft Corporation
Release: August 26, 2020



FSCTL name FSCTL function number
FSCTL_GET_REPARSE_POINT 0X900A8
0x9042b
FSCTL_GET_RETRIEVAL_POINTERS 0X90073
FSCTL_IS_PATHNAME_VALID 0X9002C
FSCTL_LMR_SET_LINK_TRACKING_INFORMATION 0X1400EC
FSCTL_OFFLOAD_READ 0X94264
FSCTL_OFFLOAD_WRITE 0X98268
FSCTL_PIPE_PEEK 0X11400C
FSCTL_PIPE_TRANSCEIVE 0X11C017
FSCTL_PIPE_WAIT 0X110018
FSCTL_QUERY_ALLOCATED_RANGES 0X940CF
FSCTL_QUERY_FAT_BPB 0X90058
FSCTL_QUERY_FILE_REGIONS 0X90284
FSCTL_QUERY_ON_DISK_VOLUME_INFO 0X9013C
FSCTL_QUERY_SPARING_INFO 0X90138
FSCTL_READ_FILE_USN_DATA 0X900EB
FSCTL_RECALL_FILE 0X90117
FSCTL_SET_COMPRESSION 0X9C040
FSCTL_SET_DEFECT_MANAGEMENT 0X98134
FSCTL_SET_ENCRYPTION 0X900D7
FSCTL_SET_INTEGRITY_INFORMATION 0X9C280
FSCTL_SET_OBJECT_ID 0X90098
FSCTL_SET_OBJECT_ID_EXTENDED 0X900BC
FSCTL_SET_REPARSE_POINT 0X900A4
FSCTL_SET_SPARSE 0X900C4
FSCTL_SET_ZERO_DATA 0X980C8
FSCTL_SET_ZERO_ON_DEALLOCATION 0X90194
FSCTL_SIS_COPYFILE 0X90100
FSCTL_WRITE_USN_CLOSE_RECORD 0X900EF

[MS-FSCC-Diff] - v20200826

File System Control Codes

Copyright © 2020 Microsoft Corporation
Release: August 26, 2020

31/228



2.3.1 FSCTL_CREATE_OR_GET_OBIJECT_ID Request

This message requests that the server return the object identifier for the file or directory associated
with the handle on which this FSCTL was invoked. If no object identifier exists, the server MUST create
one.

This message does not contain any additional data elements.

2.3.2 FSCTL_CREATE_OR_GET_OBJECT_ID Reply

This message returns the results of the FSCTL_CREATE_OR_GET_OBJECT_ID request in a
FILE_OBJECTID_BUFFER (section 2.1.3).

The buffer can be either Type 1 or Type 2 as follows:

= If neither FSCTL_SET_OBJECT_ID_EXTENDED nor FSCTL_SET_OBJECT_ID has been previously
issued on the file, then the buffer is of Type 1 and contains implementation-generated values as
specified in section 2.1.3.1.

= If FSCTL_SET_OBJECT_ID was used to set the object ID, then the buffer is of the type that was
used during that FSCTL_SET_OBJECT_ID call.

= If FSCTL_SET_OBJECT_ID_EXTENDED was issued to change the object ID's extended information,
then the buffer is of Type 2.

There is no way for the issuer of this FSCTL to determine the returned buffer type without knowing
whether the object ID was previously set or modified and by what means
(FSCTL_SET_OBJECT_ID_EXTENDED or FSCTL_SET_OBJECT_ID).

This message also returns a status code as specified in section 2.2. Upon success, the status code
returned by the function that processes this FSCTL is STATUS_SUCCESS. The most common error
codes are listed in the following table.

Error code Meaning

STATUS_DUPLICATE_NAME The file has no object ID yet, and the file system is unable to generate a
0xC00000BD unique (to this volume) ID.<15>

STATUS_INVALID_PARAMETER The handle is not to a file or directory, or the output buffer is not large
0xC000000D enough to contain a FILE_OBJECTID_BUFFER structure.

STATUS_MEDIA_WRITE_PROTECTED | The volume is write-protected and changes to it cannot be made. This
0xC00000A2 error code is returned even if the file already has an object ID assigned to
it.

STATUS_INVALID_DEVICE_REQUEST | The file system does not support the use of object IDs.
0xC0000010

2.3.3 FSCTL_DELETE_OBIJECT_ID Request

This message requests that the server remove the object identifier from the file or directory
associated with the handle on which this FSCTL was invoked. The underlying object MUST NOT be
deleted. If the file or directory has no object identifier, the request MUST be considered successful.

This message does not contain any additional data elements.

32 /228

[MS-FSCC-Diff] - v20200826

File System Control Codes

Copyright © 2020 Microsoft Corporation
Release: August 26, 2020



2.3.4 FSCTL_DELETE_OBIJECT_ID Reply
This message returns the results of the FSCTL_DELETE_OBJECT_ID request.

The only data item this message returns is a status code, as specified in section 2.2. Upon success,
the status code returned by the function that processes this FSCTL is STATUS_SUCCESS. The most
common error codes are listed in the following table.

Error code Meaning
STATUS_ACCESS_DENIED The handle was not opened with write access or write attributes access.
0xC0000022

STATUS_OBJECT_NAME_NOT_FOUND | The file or directory has no object ID. This status is not returned on a
0xC0000034 healthy volume but can be returned if the volume is corrupt.

STATUS_MEDIA_WRITE_PROTECTED The volume is write-protected and changes to it cannot be made.
0xC00000A2

STATUS_INVALID_DEVICE_REQUEST | The file system does not support the use of object IDs.
0xC0000010

2.3.5 FSCTL_DELETE_REPARSE_POINT Request

This message requests that the server delete the reparse point from the file or directory associated
with the handle on which this FSCTL was invoked. The underlying file or directory MUST NOT be
deleted.

The message MUST contain a REPARSE_GUID_DATA_BUFFER or a REPARSE_DATA_BUFFER (including
subtypes) data element. Both the REPARSE_GUID_DATA_BUFFER and the REPARSE_DATA_BUFFER
structures begin with a ReparseTag field. The ReparseTag value uniquely identifies the filter driver
that creates/uses the reparse point, and the application's filter driver processes the reparse point data
as either a REPARSE_GUID_DATA_BUFFER or a REPARSE_DATA_BUFFER, depending on the structure
implemented by the filter driver for that type of reparse point.

This message MUST only be sent for a file or directory handle.

2.3.6 FSCTL_DELETE_REPARSE_POINT Reply
This message returns the result of the FSCTL_DELETE_REPARSE_POINT request.

The only data item this message returns is a status code, as specified in section 2.2. Upon success,
the status code returned by the function that processes this FSCTL is STATUS_SUCCESS. The most
common error codes are listed in the following table.

Error code Meaning

STATUS_INVALID_PARAMETER A nonzero value was passed for the output buffer's length, or the

0xC000000D handle is not to a file or directory.

STATUS_ACCESS_DENIED The handle was not opened to write file data or file attributes.

0xC0000022

STATUS_IO_REPARSE_DATA_INVALID The input buffer's length is neither the size of a

0xC0000278 REPARSE_DATA_BUFFER nor a REPARSE_GUID_DATA_BUFFER; or
the reparse data length is nonzero; or the reparse tag is a third

33/228

[MS-FSCC-Diff] - v20200826

File System Control Codes

Copyright © 2020 Microsoft Corporation
Release: August 26, 2020



Error code Meaning

party reparse tag, and the length is other than the size of
REPARSE_GUID_DATA_BUFFER.

STATUS_IO_REPARSE_TAG_INVALID The specified reparse tag with a value of 0 or 1 is reserved for use

0xC0000276 by the system and cannot be deleted.

STATUS_NOT_A_REPARSE_POINT The file or directory does not have a reparse point.

0xC0000275

STATUS_IO_REPARSE_TAG_MISMATCH The file or directory has a reparse point but not one with the reparse

0xC0000277 tag that was specified in this call.

STATUS_REPARSE_ATTRIBUTE_CONFLICT | The file or directory has a third party tag, and the Reparse GUID

0xC00002B2 provided does not match the one in the reparse point for this file or
directory.

2.3.7 FSCTL_DUPLICATE_EXTENTS_TO_FILE Request

The FSCTL_DUPLICATE_EXTENTS_TO_FILE<16> request message requests that the server copy the
specified portion of one file (that is the source file) into a specified portion of another file (target file)
on the same volume. The logical sizes of the portions have to be the same. The two files involved in
this operation can refer to the same file, but in that case, the logical portions have to refer to disjoint
regions on the file. The FSCTL is sent on a handle opened to the target file.

When used locally, the request message takes the form of DUPLICATE_EXTENTS_DATA as specified in
section 2.3.7.1. When used remotely with [MS-SMB2], the request message takes the form of
SMB2_DUPLICATE_EXTENTS_DATA as specified in section 2.3.7.2.

2.3.7.1 DUPLICATE_EXTENTS_DATA
A DUPLICATE_EXTENTS_DATA data element is defined as follows:

0(1(2|3|4|5|6|7|8|9(0(1(2|3|4|5|/6|7|8|9|0|1|2|3|4|5|6[7(8]9|0]|1

FileHandle

SourceFileOffset

TargetFileOffset

ByteCount

34 /228

[MS-FSCC-Diff] - v20200826

File System Control Codes

Copyright © 2020 Microsoft Corporation
Release: August 26, 2020



FileHandle (8 bytes): A HANDLE ([MS-DTYP] section 2.2.16) data type that is an identifier of the
open to the source file.

SourceFileOffset (8 bytes): A 64-bit signed integer that contains the file offset, in bytes, of the
start of a range of bytes in a source file from which the data is to be copied. The value of this field
MUST be greater than or equal to 0x0000000000000000 and MUST be aligned to a logical cluster
boundary.

TargetFileOffset (8 bytes): A 64-bit signed integer that contains the file offset, in bytes, of the start
of a range of bytes in a target file to which the data is to be copied. The value of this field MUST
be greater than or equal to 0x0000000000000000 and MUST be aligned to a logical cluster
boundary.

ByteCount (8 bytes): A 64-bit signed integer that contains the number of bytes to copy from source
to target. The value of this field MUST be greater than or equal to 0x0000000000000000 and
MUST be aligned to a logical cluster boundary.

2.3.7.2 SMB2_DUPLICATE_EXTENTS_DATA
A SMB2_DUPLICATE_EXTENTS_DATA data element is defined as follows:

—
N
w

0({1(2|3|4|5|6|7|8|9(0(1(2[3|4|5|/6|7|8|9|0|1|2|3|4|5|6[7(8]9|0]|1

SourceFileID

SourceFileOffset

TargetFileOffset

ByteCount

SourceFileID (16 bytes): An SMB2_FILEID structure, as specified in [MS-SMB2] section 2.2.14.1,
that is an identifier of the open to the source file.

SourceFileOffset (8 bytes): A 64-bit signed integer that contains the file offset, in bytes, of the
start of a range of bytes in a source file from which the data is to be copied. The value of this field
MUST be greater than or equal to 0x0000000000000000 and MUST be aligned to a logical cluster
boundary.

TargetFileOffset (8 bytes): A 64-bit signed integer that contains the file offset, in bytes, of the start
of a range of bytes in a target file to which the data is to be copied. The value of this field MUST

35/228

[MS-FSCC-Diff] - v20200826

File System Control Codes

Copyright © 2020 Microsoft Corporation
Release: August 26, 2020



be greater than or equal to 0x0000000000000000 and MUST be aligned to a logical cluster
boundary.

ByteCount (8 bytes): A 64-bit signed integer that contains the number of bytes to copy from source
to target. The value of this field MUST be greater than or equal to 0x0000000000000000 and
MUST be aligned to a logical cluster boundary.

2.3.8 FSCTL_DUPLICATE_EXTENTS_TO_FILE Reply
This message returns the result of the FSCTL_DUPLICATE_EXTENTS_TO_FILE<17> request.

The only data item this message returns is a status code, as specified in section 2.2. Upon success,
the status code returned by the function that processes this FSCTL SHOULD<18> be
STATUS_SUCCESS. The most common error codes are listed in the following table.

Error Code Meaning

STATUS_NOT_SUPPORTED N )
= The source and target destination ranges overlap on the same file.

0xC00000BB

= Source file is sparse, while target is a non-sparse file.

= The source range is beyond the source file's allocation size.
STATUS_INVALID_PARAMETER The FileHandle parameter is either invalid or does not represent a handle
0xC000000D to an opened file on the same volume.

STATUS_INSUFFICIENT_RESOURCES | There were insufficient resources to complete the operation.
0xC000009A

STATUS_DISK_FULL The disk is full.
0xCO00007F

STATUS_MEDIA_WRITE_PROTECTED | The volume is read-only.
0xC0O0000A2

STATUS_INVALID_DEVICE_REQUEST | The file system does not support duplicating extents.
0xC0000010

2.3.9 FSCTL_DUPLICATE_EXTENTS_TO_FILE_EX Request

The FSCTL_DUPLICATE_EXTENTS_TO_FILE_EX<19> request message requests that the server copy
the specified portion of the source file into a specified portion of the target file on the same volume.
The logical sizes of the portions MUST be the same. The two files involved in this operation can refer
to the same file but the logical portions have to refer to disjoint regions on the file. The FSCTL is sent
on a handle opened to the target file. When the DUPLICATE_EXTENTS_DATA_EX_SOURCE_ATOMIC
flag isn’t set, the behavior is identical to FSCTL_DUPLICATE_EXTENTS_TO_FILE. When the flag is set,
duplication is atomic from the source's point of view. It means duplication fully succeeds or fails
without side effect (when only part of source file region is duplicated).

When used locally, the request message takes the form of DUPLICATE_EXTENTS_DATA_EX as
specified in section 2.3.9.1. When used remotely with [MS-SMB2], the request message takes the
form of SMB2_DUPLICATE_EXTENTS_DATA_EX as specified in section 2.3.9.2.

36 /228

[MS-FSCC-Diff] - v20200826

File System Control Codes

Copyright © 2020 Microsoft Corporation
Release: August 26, 2020



2.3.9.1 DUPLICATE_EXTENTS_DATA_EX
A DUPLICATE_EXTENTS_DATA_EX data element is defined as follows:

0({1(2|3|4|5|6|7|8|9(0(1(2[3[|4|5|/6|7|8|9|0|1|2|3|4|5(6[7(8]9|0]|1

StructureSize

FileHandle

SourceFileOffset

TargetFileOffset

ByteCount

Flags

StructureSize (8 bytes): A SIZE_T [MS-DTYP] section 2.2.43) data type that specifies the size of
the structure, in bytes.

FileHandle (8 bytes): A HANDLE ([MS-DTYP] section 2.2.16) data type that is an identifier of the
open to the source file.

SourceFileOffset (8 bytes): A 64-bit signed integer that contains the file offset, in bytes, of the
start of a range of bytes in a source file from which the data is to be copied. The value of this field
MUST be greater than or equal to 0x0000000000000000 and MUST be aligned to a logical cluster
boundary.

TargetFileOffset (8 bytes): A 64-bit signed integer that contains the file offset, in bytes, of the start
of a range of bytes in a target file to which the data is to be copied. The value of this field MUST
be greater than or equal to 0x0000000000000000 and MUST be aligned to a logical cluster
boundary.

ByteCount (8 bytes): A 64-bit signed integer that contains the number of bytes to copy from source
to target. The value of this field MUST be greater than or equal to 0x0000000000000000 and
MUST be aligned to a logical cluster boundary.

Flags (4 bytes): A 32-bit unsigned integer that contains zero or more of the following flag values.
Flag values not specified in the following table SHOULD be set to 0 and MUST be ignored.

37/ 228

[MS-FSCC-Diff] - v20200826

File System Control Codes

Copyright © 2020 Microsoft Corporation
Release: August 26, 2020



Value Meaning

DUPLICATE_EXTENTS_DATA_EX_SOURCE_ATOMIC Indicates that duplication is atomic from source
point of view.
0x00000001

2.3.9.2 SMB2_DUPLICATE_EXTENTS_DATA_EX

A SMB2_DUPLICATE_EXTENTS_DATA_EX data element is defined as follows:

0(1|2|3(4|5|6|7|8|9|0(1|2|3(4|5|6(7|8|9(0(1|2|3(4|5|6[7|8|9|0(1

StructureSize

SourceFileID

SourceFileOffset

TargetFileOffset

ByteCount

Flags

Reserved

StructureSize (8 bytes): A 64-bit unsigned integer value that specifies the size of the structure, in
bytes. This field MUST be set to 0x30.

SourceFileID (16 bytes): An SMB2_FILEID structure, as specified in [MS-SMB2] section 2.2.14.1,
that is an identifier of the open to the source file.

SourceFileOffset (8 bytes): A 64-bit signed integer that contains the file offset, in bytes, of the
start of a range of bytes in a source file from which the data is to be copied. The value of this field

38/ 228

[MS-FSCC-Diff] - v20200826

File System Control Codes

Copyright © 2020 Microsoft Corporation
Release: August 26, 2020



MUST be greater than or equal to 0x0000000000000000 and MUST be aligned to a logical cluster

boundary.

TargetFileOffset (8 bytes): A 64-bit signed integer that contains the file offset, in bytes, of the start
of a range of bytes in a target file to which the data is to be copied. The value of this field MUST
be greater than or equal to 0x0000000000000000 and MUST be aligned to a logical cluster

boundary.

ByteCount (8 bytes): A 64-bit signed integer that contains the number of bytes to copy from source
to target. The value of this field MUST be greater than or equal to 0x0000000000000000 and

MUST be aligned to a logical cluster boundary.

Flags (4 bytes): A 32-bit unsigned integer that contains zero or more of the following flag values.
Flag values not specified in the following table SHOULD be set to 0 and MUST be ignored.

Value

Meaning

DUPLICATE_EXTENTS_DATA_EX_SOURCE_ATOMIC
0x00000001

Indicates that duplication is atomic from source
point of view.

Reserved (4 bytes): This field SHOULD be set to zero and MUST be ignored.

2.3.10 FSCTL_DUPLICATE_EXTENTS_TO_FILE_EX Reply

This message returns the result of the FSCTL_DUPLICATE_EXTENTS_TO_FILE_EX request<20>.

The only data item this message returns is a status code, as specified in section 2.2. Upon success,
the status code returned by the function that processes this FSCTL SHOULD be STATUS_SUCCESS.
The most common error codes are listed in the following table.

Error Code

Meaning

STATUS_NOT_SUPPORTED
0xC00000BB

=  The source and target destination ranges overlap
on the same file.

=  Source file is sparse, while target is a non-sparse
file.

= The source range is beyond the source file's
allocation size.

STATUS_INVALID_PARAMETER
0xC000000D

The FileHandle parameter is either invalid or does not
represent a handle to an opened file on the same
volume.

STATUS_INSUFFICIENT_RESOURCES
0xCO00009A

There were insufficient resources to complete the
operation.

STATUS_DISK_FULL
0xCO00007F

The disk is full.

STATUS_MEDIA_WRITE_PROTECTED
0xCOO0000A2

The volume is read-only.

STATUS_INVALID_DEVICE_REQUEST
0xC0000010

The file system does not support duplicating extents.

[MS-FSCC-Diff] - v20200826

File System Control Codes

Copyright © 2020 Microsoft Corporation
Release: August 26, 2020

39/ 228




2.3.11 FSCTL_FILESYSTEM_GET_STATISTICS Request

This message requests that the server return the statistical information of the file system such as
Type, Version, and so on, as specified in FSCTL_FILESYSTEM_GET_STATISTICS reply, for the file or
directory associated with the handle on which this FSCTL was invoked.<21>

This message does not contain any additional data elements.

2.3.12 FSCTL_FILESYSTEM_GET_STATISTICS Reply

This message returns the result of the FSCTL_FILESYSTEM_GET_STATISTICS request message as a
pair of structures: a generic structure, FILESYSTEM_STATISTICS, optionally followed by a file system
type specific structure that can be either NTFS_STATISTICS, FAT_STATISTICS, or EXFAT_STATISTICS,
depending on the underlying file system type. There is one pair of these structures for each
processor.<22>

These statistics contain information about both user and metadata files. User files are available for the
user. Metadata files are system files that contain information that the file system uses for its internal
organization.

The statistics structures contain fields that can overflow during the server's lifetime. This is by design.
When an overflow occurs, the value just wraps. For example, OXFFFFFO00 + 0x2000 will result in
0x1000.

The structures within the output buffer MUST all start on 64-byte boundaries. The final output MUST
be padded to a 64-byte boundary. Any padding bytes MUST be filled with zeros.

This message also returns a status code as specified in section 2.2. Upon success, the status code
returned by the function that processes this FSCTL is STATUS_SUCCESS. The most common error
codes are listed in the following table.

Error code Meaning

STATUS_BUFFER_TOO_SMALL | The output buffer is too small to contain a FILESYSTEM_STATISTICS structure.
0xC0000023

STATUS_BUFFER_OVERFLOW | The output buffer was filled before all the statistics data could be returned.
0x80000005

2.3.12.1 FILESYSTEM_STATISTICS

The FILESYSTEM_STATISTICS data element is returned with a FSCTL_FILESYSTEM_GET_STATISTICS
reply message. It contains the generic information for the message. The FILESYSTEM_STATISTICS
data element is as follows:

1 2 3
0(1|2|3(4|5|6|7|8|9|0|1|2|3(4|5|6|7|8|9(0(1|2|3(4|5|6[7|8|9|0/(1

FileSystemType Version

SizeOfCompleteStructure

UserFileReads

40/ 228

[MS-FSCC-Diff] - v20200826

File System Control Codes

Copyright © 2020 Microsoft Corporation
Release: August 26, 2020



UserFileReadBytes

UserDiskReads

UserFileWrites

UserFileWriteBytes

UserDiskWrites

MetaDataReads

MetaDataReadBytes

MetaDataDiskReads

MetaDataWrites

MetaDataWriteBytes

MetaDataDiskWrites

FileSystemType (2 bytes): A 16-bit unsigned integer value containing the type of file system. This
field MUST contain one of the following values.

Value Meaning

FILESYSTEM_STATISTICS_TYPE_NTFS The file system is an NTFS file system. If this value is set, this
0x0001 structure is followed by an NTFS_STATISTICS structure.

FILESYSTEM_STATISTICS_TYPE_FAT The file system is a FAT file system. If this value is set, this
0x0002 structure is followed by a FAT_STATISTICS structure.

FILESYSTEM_STATISTICS_TYPE_EXFAT | The file system is an exFAT file system. If this value is set, this
0x0003 structure is followed by an EXFAT_STATISTICS structure.

FILESYSTEM_STATISTICS_TYPE_REFS The file system is an ReFS file system. If this value is set, this
0x0004 structure is not followed by a structure specific to file system type.

Version (2 bytes): A 16-bit unsigned integer value containing the version. This field MUST be set to
the value 0x0001.

SizeOfCompleteStructure (4 bytes): A 32-bit unsigned integer value that indicates the size, in
bytes, of this structure plus the size of the file system-specific structure that follows this structure,
each rounded up to a multiple of 64, then the sum is multiplied by the number of processors. For
example, if the size of FILESYSTEM_STATISTICS is 0x38, the size of NTFS_STATISTICS is 0XD4,
and there are two processors, the size of the buffer allocated is 0x280. This is the sum of the sizes
of the NTFS_STATISTICS structure and the FILESYSTEM_STATISTICS structure, both rounded up
to a multiple of 64 (0x40 + 0x100 = 0x140), and multiplied by the number of processors.

UserFileReads (4 bytes): A 32-bit unsigned integer value containing the number of read operations
on user files.

41 /228

[MS-FSCC-Diff] - v20200826

File System Control Codes

Copyright © 2020 Microsoft Corporation
Release: August 26, 2020



UserFileReadBytes (4 bytes): A 32-bit unsigned integer value containing the number of bytes read
from user files.

UserDiskReads (4 bytes): A 32-bit unsigned integer value containing the number of read operations
on user files that went to the disk rather than the cache. This value includes sub-read operations.

UserFileWrites (4 bytes): A 32-bit unsigned integer value containing the number of write operations
on user files.

UserFileWriteBytes (4 bytes): A 32-bit unsigned integer value containing the number of bytes
written to user files.

UserDiskWrites (4 bytes): A 32-bit unsigned integer value containing the number of write
operations on user files that went to disk rather than the cache. This value includes sub-write
operations.

MetaDataReads (4 bytes): A 32-bit unsigned integer value containing the number of read
operations on metadata files.

MetaDataReadBytes (4 bytes): A 32-bit unsigned integer value containing the number of bytes
read from metadata files.

MetaDataDiskReads (4 bytes): A 32-bit unsigned integer value containing the number of read
operations on metadata files. This value includes sub-read operations.

MetaDataWrites (4 bytes): A 32-bit unsigned integer value containing the number of write
operations on metadata files.

MetaDataWriteBytes (4 bytes): A 32-bit unsigned integer value containing the number of bytes
written to metadata files.

MetaDataDiskWrites (4 bytes): A 32-bit unsigned integer value containing the number of write
operations on metadata files. This value includes sub-write operations.

2.3.12.2 NTFS_STATISTICS

The NTFS_STATISTICS data element is returned with a FSCTL_FILESYSTEM_GET_STATISTICS reply
message when NTFS file system statistics are requested. The NTFS_STATISTICS data element is as
follows:

0({1(2|3|4|5|6|7|8|9(0(1|2|3|4|5|/6|7|8|9|0|1|2|3|4|5|6[7(8]9|0]|1

LogFileFullExceptions

OtherExceptions

MftReads

MftReadBytes

MftWrites

MftWriteBytes

MftWritesUserLevel

42 /228

[MS-FSCC-Diff] - v20200826

File System Control Codes

Copyright © 2020 Microsoft Corporation
Release: August 26, 2020



MftWritesFlushForLogFileFull MftWritesLazyWriter
MftWritesUserRequest Paddingl
Mft2Writes
Mft2WriteBytes
Mft2WritesUserLevel
Mft2WritesFlushForLogFileFull Mft2WritesLazyWriter
Mft2WritesUserRequest Padding2
RootIndexReads
RootIndexReadBytes
RootIndexWrites
RootIndexWriteBytes
BitmapReads

BitmapReadBytes

BitmapWrites

BitmapWriteBytes

BitmapWritesFlushForLogFileFull

BitmapWritesLazyWriter

BitmapWritesUserRequest

BitmapWritesUserLevel

MftBitmapReads

MftBitmapReadBytes

MftBitmapWrites

MftBitmapWriteBytes

MftBitmapWritesFlushForLogFileFull

MftBitmapWritesLazyWriter

[MS-FSCC-Diff] - v20200826

File System Control Codes

Copyright © 2020 Microsoft Corporation
Release: August 26, 2020

43/ 228



MftBitmapWritesUserRequest MftBitmapWritesUserLevel

Padding3

UserIndexReads

UserIndexReadBytes

UserIndexWrites

UserIndexWriteBytes

LogFileReads

LogFileReadBytes

LogFileWrites

LogFileWriteBytes

Allocate (40 bytes)

LogFileFullExceptions (4 bytes): A 32-bit unsigned integer value containing the number of
exceptions generated due to the log file being full.

OtherExceptions (4 bytes): A 32-bit unsigned integer value containing the number of other
exceptions generated.

MftReads (4 bytes): A 32-bit unsigned integer value containing the number of read operations on
the Master File Table (MFT).

MftReadBytes (4 bytes): A 32-bit unsigned integer value containing the number of bytes read from
the MFT.

MftWrites (4 bytes): A 32-bit unsigned integer value containing the number of write operations on
the MFT.

MftWriteBytes (4 bytes): A 32-bit unsigned integer value containing the number of bytes written to
the MFT.

MftWritesUserLevel (8 bytes): An MftWritesUserLevel structure containing statistics about writes
resulting from certain user-level operations.

MftWritesFlushForLogFileFull (2 bytes): A 16-bit unsigned integer containing the nhumber of
flushes of the MFT performed because the log file was full.

MftWritesLazyWriter (2 bytes): A 16-bit unsigned integer containing the number of MFT write
operations performed by the lazy writer thread.

44 /228

[MS-FSCC-Diff] - v20200826

File System Control Codes

Copyright © 2020 Microsoft Corporation
Release: August 26, 2020



MftWritesUserRequest (2 bytes): A 16-bit unsigned integer that is the sum of the four fields in the
MftWritesUserLevel structure.

Paddingl (2 bytes): Unused. This field SHOULD be set to 0 and MUST be ignored.

Mft2Writes (4 bytes): A 32-bit unsigned integer value containing the number of write operations on
the master file table mirror (MFT2).

Mft2WriteBytes (4 bytes): A 32-bit unsigned integer value containing the number of bytes written
to the MFT2.

Mft2WritesUserLevel (8 bytes): An MftWritesUserLevel structure containing statistics about writes
resulting from certain user-level operations.

Mft2WritesFlushForLogFileFull (2 bytes): A 16-bit unsigned integer containing the number of
flushes of the MFT2 performed because the log file was full.

Mft2WritesLazyWriter (2 bytes): A 16-bit unsigned integer containing the number of MFT2 write
operations performed by the lazy writer thread.

Mft2WritesUserRequest (2 bytes): A 16-bit unsigned integer that contains the sum of the four
fields in the Mft2WritesUserLevel structure.

Padding2 (2 bytes): Unused. This field SHOULD be set to 0 and MUST be ignored.

RootIndexReads (4 bytes): A 32-bit unsigned integer value containing the number of read