[MS-FSCC-Diff]:

File System Control Codes

Intellectual Property Rights Notice for Open Specifications Documentation

* Technical Documentation. Microsoft publishes Open Specifications documentation (“this
documentation”) for protocols, file formats, data portability, computer languages, and standards
support. Additionally, overview documents cover inter-protocol relationships and interactions.

* Copyrights. This documentation is covered by Microsoft copyrights. Regardless of any other
terms that are contained in the terms of use for the Microsoft website that hosts this
documentation, you can make copies of it in order to develop implementations of the technologies
that are described in this documentation and can distribute portions of it in your implementations
that use these technologies or in your documentation as necessary to properly document the
implementation. You can also distribute in your implementation, with or without modification, any
schemas, IDLs, or code samples that are included in the documentation. This permission also
applies to any documents that are referenced in the Open Specifications documentation.

* No Trade Secrets. Microsoft does not claim any trade secret rights in this documentation.

* Patents. Microsoft has patents that might cover your implementations of the technologies
described in the Open Specifications documentation. Neither this notice nor Microsoft's delivery of
this documentation grants any licenses under those patents or any other Microsoft patents.
However, a given Open Specifications document might be covered by the Microsoft Open
Specifications Promise or the Microsoft Community Promise. If you would prefer a written license,
or if the technologies described in this documentation are not covered by the Open Specifications
Promise or Community Promise, as applicable, patent licenses are available by contacting
iplg@microsoft.com.

* License Programs. To see all of the protocols in scope under a specific license program and the
associated patents, visit the Patent Map.

* Trademarks. The names of companies and products contained in this documentation might be
covered by trademarks or similar intellectual property rights. This notice does not grant any
licenses under those rights. For a list of Microsoft trademarks, visit
www.microsoft.com/trademarks.

* Fictitious Names. The example companies, organizations, products, domain names, email
addresses, logos, people, places, and events that are depicted in this documentation are fictitious.
No association with any real company, organization, product, domain name, email address, logo,
person, place, or event is intended or should be inferred.

Reservation of Rights. All other rights are reserved, and this notice does not grant any rights other
than as specifically described above, whether by implication, estoppel, or otherwise.

Tools. The Open Specifications documentation does not require the use of Microsoft programming
tools or programming environments in order for you to develop an implementation. If you have access
to Microsoft programming tools and environments, you are free to take advantage of them. Certain
Open Specifications documents are intended for use in conjunction with publicly available standards
specifications and network programming art and, as such, assume that the reader either is familiar
with the aforementioned material or has immediate access to it.

Support. For questions and support, please contact dochelp@microsoft.com.

1/200

[MS-FSCC-Diff] - v20171201

File System Control Codes

Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

http://go.microsoft.com/fwlink/?LinkId=214445
http://go.microsoft.com/fwlink/?LinkId=214445
http://go.microsoft.com/fwlink/?LinkId=214448
mailto:iplg@microsoft.com
https://msdn.microsoft.com/en-us/openspecifications/dn750984

Revision Summary

Revision Revision
Date History Class Comments
4/3/2007 0.01 New Version 0.01 release
7/3/2007 1.0 Major MLonghorn+90
7/20/2007 2.0 Major Updated and revised the technical content.
8/10/2007 3.0 Major Updated and revised the technical content.
9/28/2007 4.0 Major Updated and revised the technical content.
10/23/2007 | 5.0 Major Updated and revised the technical content.
11/30/2007 | 5.0.1 Editorial Changed language and formatting in the technical content.
1/25/2008 5.0.2 Editorial Changed language and formatting in the technical content.
3/14/2008 5.0.3 Editorial Changed language and formatting in the technical content.
5/16/2008 6.0 Major Updated and revised the technical content.
6/20/2008 7.0 Major Updated and revised the technical content.
7/25/2008 8.0 Major Updated and revised the technical content.
8/29/2008 9.0 Major Updated and revised the technical content.
10/24/2008 | 10.0 Major Updated and revised the technical content.
12/5/2008 11.0 Major Updated and revised the technical content.
1/16/2009 12.0 Major Updated and revised the technical content.
2/27/2009 13.0 Major Updated and revised the technical content.
4/10/2009 14.0 Major Updated and revised the technical content.
5/22/2009 15.0 Major Updated and revised the technical content.
7/2/2009 16.0 Major Updated and revised the technical content.
8/14/2009 17.0 Major Updated and revised the technical content.
9/25/2009 18.0 Major Updated and revised the technical content.
11/6/2009 19.0 Major Updated and revised the technical content.
12/18/2009 | 20.0 Major Updated and revised the technical content.
1/29/2010 21.0 Major Updated and revised the technical content.
3/12/2010 22.0 Major Updated and revised the technical content.
4/23/2010 23.0 Major Updated and revised the technical content.
6/4/2010 24.0 Major Updated and revised the technical content.
7/16/2010 25.0 Major Updated and revised the technical content.
8/27/2010 26.0 Major Updated and revised the technical content.

[MS-FSCC-Diff] - v20171201
File System Control Codes

Copyright © 2017 Microsoft Corporation

Release: December 1, 2017

2/200

Revision Revision
Date History Class Comments
10/8/2010 27.0 Major Updated and revised the technical content.
11/19/2010 | 27.1 Minor Clarified the meaning of the technical content.
1/7/2011 27.1 None Lﬂec;r?:;g?izﬁgem.e meaning, language, or formatting of the
2/11/2011 28.0 Major Updated and revised the technical content.
3/25/2011 29.0 Major Updated and revised the technical content.
5/6/2011 30.0 Major Updated and revised the technical content.
6/17/2011 30.1 Minor Clarified the meaning of the technical content.
9/23/2011 30.2 Minor Clarified the meaning of the technical content.
12/16/2011 | 31.0 Major Updated and revised the technical content.
3/30/2012 32.0 Major Updated and revised the technical content.
7/12/2012 33.0 Major Updated and revised the technical content.
10/25/2012 | 34.0 Major Updated and revised the technical content.
1/31/2013 35.0 Major Updated and revised the technical content.
8/8/2013 36.0 Major Updated and revised the technical content.
11/14/2013 | 36.0 None Lﬂe%;:iacglgiz:?e:f meaning, language, or formatting of the
2/13/2014 37.0 Major Updated and revised the technical content.
5/15/2014 37.0 None It\le%r(]::ia::r;lgiz;ge::a meaning, language, or formatting of the
6/30/2015 38.0 Major Significantly changed the technical content.
10/16/2015 | 39.0 Major Significantly changed the technical content.
7/14/2016 40.0 Major Significantly changed the technical content.
6/1/2017 41.0 Major Significantly changed the technical content.
9/15/2017 42.0 Major Significantly changed the technical content.
12/1/2017 43.0 Major Significantly changed the technical content.

[MS-FSCC-Diff] - v20171201
File System Control Codes

Copyright © 2017 Microsoft Corporation

Release: December 1, 2017

3/200

Table of Contents

1 INtrodUCHioN .iiiciciicieriereriese s s s s ssasassasansasassasansasassasansasansasansasansnsansasansnsnnnns 9
1.1] (01T 9
1.2 ST (=] =] Lol PPN 13

1.2.1 NOrMAtiVe REfEIENCES .ttt et e e ees 13

1.2.2 Informative RefEreNCES .. vt e e 14
1.3 L AT VT 15
1.4 Relationship to Protocols and Other Structures ..o 15
1.5 Applicability StatemENt ... s 15
1.6 Versioning and Localizationoviiiiiii e 15
1.7 Vendor-EXtensible Fields ..o s 15

2 StrUCTUIES uiiiciuiiieiierre s smas s s sra e sra e ssassansaasasaasa s saansansaanamsaanaamsasaansanssnssnssnnsanss 16

2.1 (0] gl n gle g B F=)ut= I NV o == P 16
2.1.1 LT . L= PP 16
2.1.2 Reparse Point Data StrUCtUrES......coviiiiiiiii e 16

2.1.2.1 [T o L= T =TT =T =T P 16
2.1.2.2 REPARSE_DATA_BUFFER ...ttt vttt et et s e it e a s e e e ees 17
2.1.2.3 REPARSE_GUID_DATA _BUFFER ...ttt s e e e e 18
2.1.2.4 Symbolic Link Reparse Data Buffer.........ccoieiiiiiiiiiieiene e e 18
2.1.2.5 Mount Point Reparse Data Bufferccoviiiiiiiiiicir e 20
2.1.2.6 Network File System (NFS) Reparse Data Bufferc.ccoviiiiiiiiiiiiiicnnnn, 21
2.1.3 FILE_OBJECTID_BUFFER StruCtUIre ..iucieiiiiii it e sa e e e e e ees 22
2.1.3.1 FILE_OBJECTID_BUFFER TYPE 1 .iiuiiiiiiiiiiiiiiiiieiiiiie et erae s enesnnesnenenenes 22
2.1.3.2 FILE_OBJECTID_BUFFER TYPE 2 .1uiitiiitiitiiiiei it s e e e e seneenenes 23
2.1.4 Alternate Data StrEamIS c.i ittt e 24
2.1.5 = o oY = 0 0 = 24
2.1.5.1 (Do)l BI1 =Yoo] oV N\ F=T 0 ¢ U= T3 PPN 25
2.1.5.2 [T 1T o = o o = PN 25
2.1.5.2.1 S TG B o1 1=T 0 = o 1= PP 25
2.1.5.3 S g =T=] an] aT=] 0 1 1= PP 26
2.1.5.4 S ALY P e 26
2.1.6) AT 1 I 2 =1 0 2 1 PP 26
2.1.7 FILE_NAME_INFORMATION ..t ttitiiiti ittt ettt e r e e et e e s e e e e e e e e es 26
2.1.8 2 70T 0] =T 1P 27
.2 1] o= L T oY [P 27
3 LS O I S o U o] == PP 27
2.3.1 FSCTL_CREATE_OR_GET_OBJECT_ID REQUESE ...cviiiriiiiiiieiiiiienie e ieeenenee e 29
2.3.2 FSCTL_CREATE_OR_GET_OBJIECT_ID REPIY cutttiiiiiiiiiiiiiii et na e 29
2.3.3 FSCTL_DELETE_OBJECT_ID REQUESTE ..euviuiitieitiietieiesieessenesarassesesnrnnaneneenenes 30
2.3.4 FSCTL_DELETE_OBJIECT_ID REPIY. ittt st a e 30
2.3.5 FSCTL_DELETE_REPARSE_POINT REQUESE ..uiitiiiiiiiitiiiiii v e e e 30
2.3.6 FSCTL_DELETE_REPARSE_POINT ReEPIY vttt e e se e e nan e 30
2.3.7 FSCTL_DUPLICATE_EXTENTS_TO_FILE ReqQUESLtivviiiiiiiiiiiiiii e 31
2.3.8 FSCTL_DUPLICATE_EXTENTS_TO_FILE RePly .oviiirieiiiiiiiiie e ne e 32
2.3.9 FSCTL_FILESYSTEM_GET_STATISTICS REQUESLt...c.iviitiiiiiiiiiiiiiie v eae e 33
2.3.10 FSCTL_FILESYSTEM_GET_STATISTICS REPIY tiviuiitiiiiiiiiiii i eene e 33
2.3.10.1 FILESYSTEM _STATISTICS ..iitiitiiiitiiiitiiiitiie it iee et e e eaaae e 33
2.3.10.2 NTFS ST ATISTICS ittt et et eaaaae e 35
2.3.10.2.1 MW EESUSEILEVEL ... i e e 39
2.3.10.2.2 MFE2WHEESUSEIrLEVEl .. v e 40
2.3.10.2.3 BitmapWritesUserLevelcoouiiiiiiiiii e 40
2.3.10.2.4 MftBitmapWritesUserLevelcooiiiiiiiiiiiii e 41
2.3.10.2.5 AllOCAEE .ttt 41
2.3.10.3 FAT ST ATISTICS ottt ittt ettt e e aaae e 42
2.3.10.4 EXFAT ST ATISTICS e ittt ittt ettt e e aaae e 43

4 /200

[MS-FSCC-Diff] - v20171201

File System Control Codes

Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

2.3.11 FSCTL_FIND_FILES_BY_SID REGUESEvveiveriireeieteeiteeeieieseressitesstessseessaeneans 44
2.3.12 FSCTL_FIND_FILES_BY_SID REPIY...ueieiuerieeeeeerieseieseesseeseessetesseaesseeeseeeaans 45
2.3.13 FSCTL_GET_COMPRESSION REGUESEveeieveriereeietieiteesisessesessisesssessseesssensans 45
2.3.14 FSCTL_GET_COMPRESSION REPIYvvieeeeieeeeeeeeseeeseeeeseeeeseeeeseeeseeeesee e 46
2.3.15 FSCTL_GET_NTFS_VOLUME_DATA REGUESL.......eeeieeeeseeeseeeeeeeeeeseesseeeeseeaans 46
2.3.16 FSCTL_GET_NTFS_VOLUME_DATA REPIY ..euvviireeieiieitiesiiieseteesetessieeseessseeaans 46
2.3.17 FSCTL_GET_REFS_VOLUME_DATA REQUESL.......eeeieeeeseeeseeeeeeeeeeseesseeeeseeaans 49
2.3.18 FSCTL_GET_REFS_VOLUME_DATA REPIY ..ecveiivieieiieitieeieieaeteeeiteesieesseeesnenaans 49
2.3.19 FSCTL_GET_OBJECT_ID REQUESL ...c.evviereeeseeeeeeeeseteeseeeseeeeeeeeeeeseaeeseeeeseeens 51
2.3.20 FSCTL_GET_OBIECT_ID REPIY..cciuieiueieirieitieeiteeieteestiesssessesesssresssessseessseeaans 51
2.3.21 FSCTL_GET_REPARSE_POINT REGUESLeevveieeeeieeeeseeeseeeeeseeeeseesseeeeseee e 52
2.3.22 FSCTL_GET_REPARSE_POINT REPIY .evieveeieeeieeeseeeseeeeeeeeeeeeee e e seeesee e 52
2.3.23 FSCTL_GET_RETRIEVAL_POINTERS REQUESLveeivvieieieeieieeetereiteseiessreeesreeaans 52
2.3.24 FSCTL_GET_RETRIEVAL_POINTERS REPIY....uiiiiueeitieieeeseeeeeeeeeeeseesseeeeseee e 53
2.3.24.1 EXTENTS oiitiiictiiiieeitee sttt e ette et ee e ete e et e e te s eat e e etee e saeseebeeseteessteesaeeesreeeans 54
2.3.25 FSCTL_IS_PATHNAME_VALID REQUESL......cc.veiieeeseeeeseeeseeeeeeeeeeseesseeeeseeeans 54
2.3.26 FSCTL_IS_PATHNAME_VALID REPIY ...eeeiveriririeeeietieiseesisiesisessisessiessseesssenaans 55
2.3.27 FSCTL_LMR_SET_LINK_TRACKING_INFORMATION REQUESLcvvrrevrrrrereeennn. 55
2.3.27.1 FSCTL_LMR_SET_LINK_TRACKING_INFORMATION Request for SMB............ 55
2.3.27.2 FSCTL_LMR_SET_LINK_TRACKING_INFORMATION Request for SMB2.......... 56
2.3.27.3 TARGET_LINK_TRACKING_INFORMATION_BUFFEr......cvreeeeeeeeeeseeeseenernnnn. 56
2.3.27.3.1 TARGET_LINK_TRACKING_INFORMATION_BUffer_1......ccccvrrerrrrrrnrrnnn. 56
2.3.27.3.2 TARGET_LINK_TRACKING_INFORMATION_BUFfer_2......ccccoevrevuerenerenn. 57
2.3.28 FSCTL_LMR_SET_LINK_TRACKING_INFORMATION REPIY.....ccvrrirrrirrrirrrereennnns 57
2.3.29 FSCTL_PIPE_PEEK FEQUESEvieieeeeiteeeiteesitesstessetesssessssessesessssessssessseesssensans 58
2.3.30 FSCTL_PIPE_PEEK REPIY .. uueiiueeeoeeeeeeeeeeeeeeeeeeeeee e e e seee e s e e e eeeeeee e e e s eeeeseee e, 58
2.3.31 FSCTL_PIPE_WAIT REGUESE ... eeeiutieiteieiteestessteessteesseesssessesesssresssessreeesseeeans 59
2.3.32 FSCTL_PIPE_WAIT REPIY ..ueeiieeeeeeeeeeeeeee e eee e e ee e e e e e eee e e s e eee e, 60
2.3.33 FSCTL_PIPE_TRANSCEIVE REQUESLeeuvveieriiiirieieteeieeeeseiesetessetesstessseeesseeeans 61
2.3.34 FSCTL_PIPE_TRANSCEIVE REPIY...eeeueieieeeeeeeeeeeeeeeeeeeeeeeeeeeeeee e e seeeeneee e 61
2.3.35 FSCTL_QUERY_ALLOCATED_RANGES REQUESL........vreivereeieeerireireesiessieeeseenaans 61
2.3.36 FSCTL_QUERY_ALLOCATED_RANGES REPIY ...ecuveeierieirireieieseteesieesseiesseesssenaans 62
2.3.37 FSCTL_QUERY_FAT_BPB REQUESLveeeeeeeeeseeeseeeseeeeseeeeeeeeeeeeeeeseeeeseeee e 63
2.3.38 FSCTL_QUERY_FAT_BPB REPIYvvieiveieieieirieseeeseteeseesseeesesessseessenesseesseeneans 63
2.3.39 FSCTL_QUERY_FILE_REGIONS REGUESL ... vveeeeeseeeeseeeseeeeeeeeeeeeseeeseeeeseeeens 63
2.3.40 FSCTL_QUERY_FILE_REGIONS REPIY ...cuvviiviiireeietieieieeseeeseteseeeesseaesseesseeeeans 64
2.3.40.1 FILE_REGION_INFOoeiieieeeieeeeeeeeeeeee e e e e e e e e eee e e e e e e eee e, 65
2.3.41 FSCTL_QUERY_ON_DISK_VOLUME_INFO REQUESLc.eveereeeeeeeeeeeseeeseeeerennn. 66
2.3.42 FSCTL_QUERY_ON_DISK_VOLUME_INFO REPIY ...c.evrereereeiieerireireesieeseeeseeeeas 66
2.3.43 FSCTL_QUERY_SPARING_INFO REGUESE ...c.eveeeeeeseeeeseeeeeeeeeeeeeeeeeeeeseeeeseeee e 68
2.3.44 FSCTL_QUERY_SPARING_INFO REPIY ...ccveiiereiireeietieitieeieeeeeieseeeeesaesseeeseeeeans 68
2.3.45 FSCTL_READ_FILE_USN_DATA REGUESE. ... veeeeeeseeeseeeeeeeeeeeeeeeeseeeseeeeseeeees 69
2.3.46 FSCTL_READ_FILE_USN_DATA REPIY ..cuvviiviiireeieteeeeeeeseeeeeeseeteeseaeeseeeseee e 69
2.3.46.1 USN_RECORD_COMMON_HEADERccutiiueeeeueeseeeseeeeeeeeeeeseeeesee e, 70
2.3.46.2 USN_RECORD_V2 ...ouieeieee et e e eeee et e e e e e e e 70
2.3.46.3 USN_RECORD_V3 ..oecuvieieeieieeesetieeeteesetesseteeseteesaeeesaesaetasseteesteesaeeeseen e 74
2.3.47 FSCTL_RECALL_FILE REGUESE ... uveeeeeeeeeeeeeeeeeeeeeeeeseeeeeee e e e e eee e e seeeeeeee e, 75
2.3.48 FSCTL_RECALL_FILE REPIY ..euvieiuiieieiieieieseeeeseeeesteeseeeeseeesetesseressaessreeesaeee e 75
2.3.49 FSCTL_SET_COMPRESSION REGUESLvveeeeeeeeeeseeeseeeeseeeeeeeeeeeeeseeeseeeeseeee e 76
2.3.50 FSCTL_SET_COMPRESSION REPIY.....eviiiuerieeisieeeseeeseeeseeseesseeesseaesseeeseeeans 76
2.3.51 FSCTL_GET_INTEGRITY_INFORMATION_REQUESL......ccerereeeeeereeeeseeesenesennene, 77
2.3.52 FSCTL_GET_INTEGRITY_INFORMATION_REPIY ..veeevreserereeeeeeeeeeeseeeseeneseeeens 77
2.3.53 FSCTL_SET_DEFECT_MANAGEMENT REQUESL ...veeevieieeeeieeeeeeeeeeeeeseeeseeeseeeeans 79
2.3.54 FSCTL_SET_DEFECT_MANAGEMENT REPIY c.uvvreeeeeeeeseeeseeeeeeeeeeeeeeeeseeeseeee e 79
2.3.55 FSCTL_SET_ENCRYPTION REGUESLeeverieesseeeseteeseesseeeseeseeeesseeesseeeseeeeans 79
2.3.56 FSCTL_SET_ENCRYPTION REPIY ..eveeeeeeieeeeeeeeeeeseeeseeeeeeeeeeeeeee e e seeeeseee e, 80
2.3.56.1 DECRYPTION_STATUS_BUFFERccuviiiuiiieeeieteeseessesseeesseeeeseeesseeeseene e 81
2.3.57 FSCTL_SET_INTEGRITY_INFORMATION REQUESL.......cevurereereeeereieiesieesineeseens 81
5/ 200

[MS-FSCC-Diff] - v20171201

File System Control Codes

Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

2.3.58 FSCTL_SET_INTEGRITY_INFORMATION ReEPIY «iutiiiitiiiiiiii i e e 82
2.3.59 FSCTL_SET_OBJECT_ID REQUESE ...uvititinititeitiiitieneienssenessnssnenseennanennenenes 83
2.3.60 FSCTL_SET_OBJECT_ID REPIY citiiiiitiitiiii it seeee e et e st s neeanen e nneans 83
2.3.61 FSCTL_SET_OBJECT_ID_EXTENDED REQUESL «.vuviititiiiiiiiieieiiiienieneeeneneneenenes 84
2.3.62 FSCTL_SET_OBJECT_ID_EXTENDED RePIY ..ottt ne e 84
2.3.63 FSCTL_SET_REPARSE_POINT REQUESE...cciitiiiiiiiiii it e e 84
2.3.64 FSCTL_SET_REPARSE_POINT REPIY tititiuitiiitiiiiiiei e st e e e ene e ees 85
2.3.65 FSCTL_SET_SPARSE REQUEST ...ttt et e e raeaas 85
2.3.66 FSCTL_SET _SPARSE REPIY .ttt a e e e e eenes 86
2.3.67 FSCTL_SET_ZERO_DATA REQUEST ...ttt e e et s ae e eneas 86
2.3.68 FSCTL_SET_ZERO_DATA REPIY ittt e e e ees 86
2.3.69 FSCTL_SET_ZERO_ON_DEALLOCATION REQUESL ...iviiiiiiiiieiiiiiiiieieeieneeeeaeees 87
2.3.70 FSCTL_SET_ZERO_ON_DEALLOCATION REPIY «crtiiiitiiiiiii it naen e enens 87
2.3.71 FSCTL_SIS_COPYFILE REQUESE ..tuuititiitiiit ittt et e et e e e e s e e e ees 87
2.3.72 FSCTL_SIS COPYFILE REPIY. ettt e s e et ar e ne e e eneaas 88
2.3.73 FSCTL_WRITE_USN_CLOSE_RECORD REQUESE ...ivitiiiiiiiiiiiiiiiiiiiieieiieneneneeaenes 89
2.3.74 FSCTL_WRITE_USN_CLOSE_RECORD RePIY «iuiiiiiiiiiiiiiiiii it e e 89
2.3.75 FSCTL_FILE_LEVEL_TRIM REQUEST ...ttt es ettt e neeaae e nneas 90
2.3.75.1 FILE_LEVEL_TRIM _RANGE .. ittt et sr s saae e raeans 90
2.3.76 FSCTL_FILE_LEVEL_TRIM ReEPIY. ittt it aeaas 91
2.3.77 FSCTL_OFFLOAD_READ REGQUESE....utitiititiitiiit ittt e e e e aees 91
2.3.78 FSCTL_OFFLOAD_READ REPIY .ttt et st e e 92
2.3.79 STORAGE_OFFLOAD_TOKEN ...uuttutittiteiteate it eerteaeeaaeasenteraeeneraesaseasenneanerneens 94
2.3.80 FSCTL_OFFLOAD_WRITE REQUESE ...ttt i et r e raeas 95
2.3.81 FSCTL_OFFLOAD _WRITE REPIY ..ttt it reaas 96
2.4 File INfOrmMation Clas S cuuu ittt ittt ii ittt et atstia s saae e iaserasesaseeassesnarsnnrens 98
2.4.1 FileACCESSIN OrMatioN 1uiiriiiii i e e e e e rn e raaeranes 100
2.4.2 SISy AN 1N A a] o] g 0 =11 o) o IR 101
2.4.3 FileAlIgnmentInformation.ve i e 102
2.4.4 FileAllocatioNINfOrmMation .o i e e e nes 103
2.4.5 FileAlternateNameInformationvviii i i e e e nes 104
2.4.6 FileAttributeTagInformationo.oieiiii e 104
2.4.7 (S 1SY ST Lol 1 0} Yo 1 1= 1 o o PP 105
2.4.8 FileBothDirectoryInformationccoiiiiiiiii e 106
2.4.9 FileCompressionInformationc.ooiiiii i e 109
2.4.10 FileDirectoryInformationciiiiiiii i e 110
2.4.11 FileDispositionINformationooiiuiiiieiii s 112
2.4.12 L1 =1 == 1] 0 o . =) o X T 112
2.4.13 FileENd OfFil@INformation . ..ot i ee e e e raaeraneenes 113
2.4.14 FileFullDirectoryInformationcoiuiiiiiiii 114
2.4.15 FileFUIEQINfOrmMation .uviieei it i et e e e ea e a s ane e rneraneranes 116
2.4.15.1 FILE_GET_EA INFORMATION L.uiiiitiiitiiitiiitiiii it iiieeiiseiaseiassassssnssennsenns 117
2.4.16 FileHardLinkINformation ..uuuoi oo i e e e e e e e enneeaneeas 118
2.4.16.1 FILE_LINK_ENTRY_INFORMATION ..iitttittiiitiiitiiittiiieeiiteiireiansassssnnrenneenns 119
2.4.17 FileIdBothDirectoryInformation........coooiuiiiiiii s 119
2.4.18 FileIdFullDirectoryInformationccoiiiiiiiii i e 122
2.4.19 FileldGlobalTxDirectoryInformationcovieieiiiiiiii e 124
2.4.20 FileInternalInformation . occuv i i e e e e ernes 127
2.4.21 L1 L= T a8 X g o =1 o Y 128
2.4.21.1 FileLinkInformation for the SMB Protocol......cccvviiiiiiiiiiiiiiii e 128
2.4.21.2 FileLinkInformation for the SMB2 Protocolvviiiiiiiiiiiiiiiiii i 129
2.4.22 FileMailslotQueryInformationcoouiiieiiiiii e 130
2.4.23 FileMailslotSetINformation. . ouii i e e e eens 131
2.4.24 (=1 1117 oo 1= Ka 0] g 0 2 = 1 o] o PSS 132
2.4.25 FilleNamMEIN OrmMatioN ..ot i i e et a e e e e e ra e eane e rnneraeranes 133
2.4.26 (S EE A F= T L5130 1 1= 1 o) o 133
2.4.27 FileNetworkOpenInformationcooviiiiieieiiiii e e 134
2.4.28 FileObjectIdINformation e 136
6 /200

[MS-FSCC-Diff] - v20171201

File System Control Codes

Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

2.4.28.1 FILE_OBIJECTID_INFORMATION_TYPE_1ciiiiiiiiiiiiiiiininnaaas 136

2.4.28.2 FILE_OBJECTID_INFORMATION_TYPE_2 ...tiitiiiiiie i iie et eie e eeeaee s 138
2.4.29 FilePipelnformation ... e 138
2.4.30 FilePipeLocalInformationo et e e 139
2.4.31 FilePipeRemoteINformationccoviiiiiii i e ee e e 142
2.4.32 FilePosSitionINformation . o i e 142
2.4.33 FileQuUotalnformationiuiiieii i 143

2.4.33.1 FILE_GET_QUOTA_INFORMATION ...citiiiiitiiiiiiie et ate e s e seeeeneanes 145
2.4.34 FileReNaMEIN OrMatioN ciuuiiiiiiii i i i it a e re e e e e s e aaraaneanas 145

2.4.34.1 FileRenameInformation for SMBciviiiiiiii i v aes 146

2.4.34.2 FileRenameInformation for SMB2iiiiiiiiiiiiiii i aaeees 147
2.4.35 FileReparsePointINformation.o e 147
2.4.36 FileSfioRESErvVeINfOrmMatioN tovviiii i i i e e e e as 148
2.4.37 FileShortNameINformation . oo i i i i i e e e saseeaneaas 149
2.4.38 FileStandardInformationuiiiiii i i i e 150
2.4.39 FileStandardLinkINformation ...v.uiieiiiiiiii i i it raeraeens 151
2.4.40 FileStreamInformation. .. v e e e 152
2.4.41 FileValidDataLengthInformation......ccoiiiiiiiiiii e 153

2.5 File System INformation ClaSSEScvieieieieieiiiiiiie e e e e aenenens 154
2.5.1 FileFsAttributeINformMation . viiiei i et e e nes 154
2.5.2 FileFSCoNtrolINfOrmMation . .ottt it e e e s e aaneerneranernes 156
2.5.3 FileFsDriverPathInformationoviiiiiii i e e e aes 159
2.5.4 FileFsSFUllSIZEINTOrMAtioN .ottt i et re st e e sseranerns 159
2.5.5 FileFsLabelINformation .o e e e e r e e e e aaernes 160
2.5.6 FileFsObjectIdINformationcciiiiii i e 161
2.5.7 FileFsSectorSizelnformation v it r e aaeens 162
2.5.8 FileFSSizZeINformation cuuu i i e r e 163
2.5.9 FileFsVolumelnformation .o i e e erneraaernes 164
2.5.10 FileFsSDeViceINfOormMation ..uuiiei it i i e i e r e e e e raaeraneenes 165

2.6 LT L AN o 1 0 1 o 167

2.7 Directory Change NotifiCationsocviuiiiiiii i e 168
2.7.1 FILE_NOTIFY _INFORMATION. .. ttiittiiiiit ittt it e it ritesaneesnssennserneernneranernnes 168

2.8 Cluster Shared Volume File System IOCTLS ...couiiieiiiiiiiiiirr e enaeaens 170
2.8.1 IOCTL_STORAGE_QUERY_PROPERTY ReEQUESE ...ciiviiiiiiiiiiiiiceii e e aa 170
2.8.2 IOCTL_STORAGE_QUERY_PROPERTY REPIY .euuiitiiiiiiiiiiiiiiiiiiiiien i e ienaa 170
2.8.3 IOCTL_VOLUME_GET_GPT_ATTRIBUTES ReqUESL ...ciiiiiiiiiiiiiiiiii e 171
2.8.4 IOCTL_VOLUME_GET_GPT_ATTRIBUTES RePIY c.iviiiiiiiiiiiiiiiii e eenaa 171

3 Structure EXamplesccveeireriermimsiesa s sassa s s s s s s s s s s sassnsansnsassnsansnss 173
<Y oL T 174
4.1 Security Considerations for Implementerso 174
4.2 Index of SeCUrity Parameters ..ot e e 174
5 Appendix A: NTFS Alternate Streams........ccvcrvrrirmrrssirsra s s s s s nnss 175

5.1 A I ST o = 1T 175

5.2 N TS At DULE Ty PO . ettt et e e e 175

5.3 NTFS RESEIVEA File NamMES ouiiiiiiiiiiiei ittt it i e seiaessranasersanseesranarerennssesranes 176

5.4 VI RIS o == [TR N =T 1= 177

5.5 N SISt g =T= [T N7 o= P 177

5.6 Known Alternate Stream NamES. .o i i it erir e reearaeenaeas 178
5.6.1 Zone. Identifier Stream NamE ..oviiiii i i i i s e eaaraeeras 178
5.6.2 Outlook Express Properties Stream Nameoviiiiiiiiiii e 178
5.6.3 Document Properties Stream Namecoovviiiiiiiiii e 178
5.6.4 Encryptable Thumbnails Stream Name ..o 179
5.6.5 Internet Explorer Favicon Stream Namecooiiiiiiiiiii e 179
5.6.6 Macintosh Supported Stream Namescciiiiiii e 179
5.6.7 XPRESS Stream NaM . ittt ittt ittt st aiaee s s aatteeraaseseranarsrannseeernnnreres 179

6 Appendix B: Product Behaviorccvreiimimimie s smsssasmssmssssassassasssssasssnssnssnssnssnnnas 180
7/ 200

[MS-FSCC-Diff] - v20171201

File System Control Codes

Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

7 Change TracKiNg...iiciverrrrammanmsnmsarsassassasssnsasssnssnssassassassansasssnssnssnssnssassansansansansnnsnns 199
2 T 1 3 e 1= T 196

8/ 200

[MS-FSCC-Diff] - v20171201

File System Control Codes

Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

1 Introduction

This specification defines the network format of native Windows structures that can be used within
other protocols. It also describes the structure of common Windows native file system control codes,
file information levels, and file system information levels that are issued in client/server and
server/server communications. These structures do not result in a protocol, but their structure is
common across multiple protocols. As such, they are placed in this document as a reference that can
be used by other protocols to ensure consistency and accuracy.

Sections 1.7 and 2 of this specification are normative. All other sections and examples in this
specification are informative.

1.1 Glossary
This document uses the following terms:

8.3 name: A file name string restricted in length to 12 characters that includes a base name of up
to eight characters, one character for a period, and up to three characters for a file name
extension. For more information on 8.3 file names, see [MS-CIFS] section 2.2.1.1.1.

access control list (ACL): A list of access control entries (ACEs) that collectively describe the
security rules for authorizing access to some resource; for example, an object or set of objects.

alternate name: An 8.3 name that can optionally be generated when a file is created. A file will
not have an alternate name if the user wants to optimize performance, or if the name of the file
already uses the 8.3 format.

binary large object (BLOB): A collection of binary data stored as a single entity in a database.

chunk: The amount of data that the operating system's implementation of the Lempel-Ziv
compression algorithm tries to compress at one time. The compression unit size used by the file
system is always a multiple of the underlying compression algorithm's chunk size. For more
information on the Lempel-Ziv compression algorithm, see [UASDC].

cluster: The smallest allocation unit on a volume.

compression unit: The amount of data that NTFS tries to compress at one time. Compression of
large files is accomplished as a series of compressions of data blocks, each at the most
compression unit bytes in size.

compression unit shift: The number of bits by which to left-shift a 1 bit to arrive at the
compression unit size.

content indexing service: A service that extracts content from files and constructs an indexed
catalog to facilitate efficient and rapid searching.

disk quota: Maximum amount of data a user can store on a disk volume.

Distributed Link Tracking (DLT): A protocol that enables client applications to track sources that
have been sent to remote locations using remote procedure call (RPC) interfaces, and to
maintain links to files. It exposes methods that belong to two interfaces, one of which exists on
the server (trksvr) and the other on a workstation (trkwks).

dot directory name: In a pathname, a directory name component of "." or "..". For more details,
see section 2.1.5.1.

FAT file system: A file system used to organize and manage files. The file allocation table (FAT) is
a data structure that the operating system creates when a volume is formatted by using FAT or

9/ 200

[MS-FSCC-Diff] - v20171201

File System Control Codes

Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

FAT32 file systems. The operating system stores information about each file in the FAT so that it
can retrieve the file later.

Fid: A 16-bit value that the Server Message Block (SMB) server uses to represent an opened file,
named pipe, printer, or device. A Fid is returned by an SMB server in response to a client
request to open or create a file, named pipe, printer, or device. The SMB server guarantees that
the Fid value returned is unique for a given SMB connection until the SMB connection is closed,
at which time the Fid value can be reused. The Fid is used by the SMB client in subsequent SMB
commands to identify the opened file, named pipe, printer, or device.

file allocation table (FAT): A data structure that the operating system creates when a volume is
formatted by using FAT or FAT32 file systems. The operating system stores information about
each file in the FAT so that it can retrieve the file later.

file name component: The portion of a file name between path separator characters (or
backslashes).

file record segment: A record in the master file table that contains attributes for a specific file on
an NTFS volume. The file record segment is always 1,024 bytes (1 kilobyte) in size.

file stream: See main stream and named stream.

file system control (FSCTL): A command issued to a file system to alter or query the behavior of
the file system and/or set or query metadata that is associated with a particular file or with the
file system itself.

filter: Type of driver that is layered between the kernel and a base file system (such as FAT or
NTFS) that receives I/0O request packets on their way to and from the base file system. The term
filter can refer to legacy filters or minifilters.

filter manager: A file system filter driver that simplifies the development of other file system filter
drivers. Although it is possible to write a filter driver that manages other filters, for the purposes
of this document, the phrase filter manager refers only to the file system filter manager, which
is an operating system component. A filter driver developed to the filter manager model is called
a minifilter.

globally unique identifier (GUID): A term used interchangeably with universally unique
identifier (UUID) in Microsoft protocol technical documents (TDs). Interchanging the usage of
these terms does not imply or require a specific algorithm or mechanism to generate the value.
Specifically, the use of this term does not imply or require that the algorithms described in
[RFC4122] or [C706] must be used for generating the GUID. See also universally unique
identifier (UUID).

GUIDString: A GUID in the form of an ASCII or Unicode string, consisting of one group of 8
hexadecimal digits, followed by three groups of 4 hexadecimal digits each, followed by one
group of 12 hexadecimal digits. It is the standard representation of a GUID, as described in
[RFC4122] section 3. For example, "6B29FC40-CA47-1067-B31D-00DD010662DA". Unlike a
curly braced GUID string, a GUIDString is not enclosed in braces.

I/0 control (IOCTL): A command that is issued to a target file system or target device in order
to query or alter the behavior of the target; or to query or alter the data and attributes that are
associated with the target or the objects that are exposed by the target.

independent software vendor (ISV): A company or organization that develops software
solutions that can utilize this specification.

logical cluster number (LCN): The cluster number relative to the beginning of the volume. The
first cluster on a volume is zero (0).

10/ 200

[MS-FSCC-Diff] - v20171201

File System Control Codes

Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

master file table (MFT): On an NTFS volume, the MFT is a relational database that consists of
rows of file records and columns of file attributes. It contains at least one entry for every file on
an NTFS volume, including the MFT itself. The MFT stores the information required to retrieve
files from the NTFS partition.

master file table mirror (MFT2/MFTMirr): On an NTFS volume, the MFT2 is a redundant copy
of the first four (4) records of the MFT.

named stream: A place within a file in addition to the main stream where data is stored, or the
data stored therein. File systems support a mode in which it is possible to open either the main
stream of a file and/or to open a named stream. Named streams have different data than the
main stream (and than each other) and can be read and written independently. Not all file
systems support named streams. See also main stream.

NetBIOS name: A 16-byte address that is used to identify a NetBIOS resource on the network.
For more information, see [RFC1001] and [RFC1002].

NT file system (NTFS): A proprietary Microsoft file system. For more information, see [MSFT-
NTFS].

Object ID: See ObjectID.

object identifier (OID): In the context of an object server, a 64-bit number that uniquely
identifies an object.

object-oriented file system: In the context of file system control codes, a file system that allows
the assignment of object IDs to files.

Offload Read: A variant to a normal read operation where a target device generates and returns a
Token instead of a buffer containing the data to be read. The Token is maintained by the target
device until it invalidates the Token for any vendor-specific reason. The data logically
represented by the Token cannot change, and the target device is required to maintain this
representation. An example of a target device is a SAN Storage Array with support for the
associated low-level storage commands. For more information on Offload Read, see [INCITS-
T10/11-059].

Offload Write: A variant to a normal write operation where the host provides a Token instead of a
buffer containing the data to be written. Upon receipt of the Offload Write, the target device
parses the Token and determines whether the data movement (the Write) can be completed to
the requested location. An example of a target device is a SAN Storage Array with support for
the associated low-level storage commands. For more information on Offload Write, see
[INCITS-T10/11-059].

reparse point: An attribute that can be added to a file to store a collection of user-defined data
that is opaque to NTFS or ReFS. If a file that has a reparse point is opened, the open will
normally fail with STATUS_REPARSE, so that the relevant file system filter driver can detect the
open of a file associated with (owned by) this reparse point. At that point, each installed filter
driver can check to see if it is the owner of the reparse point, and, if so, perform any special
processing required for a file with that reparse point. The format of this data is understood by
the application that stores the data and the file system filter that interprets the data and
processes the file. For example, an encryption filter that is marked as the owner of a file's
reparse point could look up the encryption key for that file. A file can have (at most) 1 reparse
point associated with it. For more information, see [MS-FSCC].

reparse point tag: A unique identifier for a file system filter driver stored within a file's optional
reparse point data that indicates the file system filter driver that performs additional filter-
defined processing on a file during I/O operations. An implementer can request more than one
reparse point for use with a file system, a file system filter driver, or a minifilter driver. To
request a reparse point tag, use the reparse point tag request form. For more information, see
[WHDC-RPTR].

11 /200

[MS-FSCC-Diff] - v20171201

File System Control Codes

Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

replica set: In File Replication Service (FRS), the replication of files and directories according to a
predefined topology and schedule on a specific folder. The topology and schedule are collectively
called a replica set. A replica set contains a set of replicas, one for each machine that
participates in replication.

sector: The smallest addressable unit of a disk.

security identifier (SID): An identifier for security principals that is used to identify an account
or a group. Conceptually, the SID is composed of an account authority portion (typically a
domain) and a smaller integer representing an identity relative to the account authority, termed
the relative identifier (RID). The SID format is specified in [MS-DTYP] section 2.4.2; a string
representation of SIDs is specified in [MS-DTYP] section 2.4.2 and [MS-AZOD] section 1.1.1.2.

short name: This has the same definition as alternate name.

single-instance storage (SIS): An NTFS feature that implements links with the semantics of
copies for files stored on an NTFS volume. SIS uses copy-on-close to implement the copy
semantics of its links.

sparse file: A file containing large sections of data composed only of zeros. This file is marked as a
sparse file in the file system, which saves disk space by only allocating as many ranges on disk
as are required to completely reconstruct the non-zero data. When an attempt is made to read
in the nonallocated portions of the file (also known as holes), the file system automatically
returns zeros to the caller.

stream: A sequence of bytes written to a file on the target file system. Every file stored on a
volume that uses the file system contains at least one stream, which is normally used to store
the primary contents of the file. Additional streams within the file can be used to store file
attributes, application parameters, or other information specific to that file. Every file has a
default data stream, which is unnamed by default. That data stream, and any other data stream
associated with a file, can optionally be nhamed.

sub-read and sub-write: An I/O operation sent by the file system to the storage stack that is
part of a larger file I/O operation. Sometimes large file reads and writes are broken down by the
file system into smaller reads and writes, which are then sent to the storage stack.

symbolic link: A symbolic link is a reparse point that points to another file system object. The
object being pointed to is called the target. Symbolic links are transparent to users; the links
appear as normal files or directories, and can be acted upon by the user or application in exactly
the same manner. Symbolic links can be created using the FSCTL_SET_REPARSE_POINT request
as specified in [MS-FSCC] section 2.3.61. They can be deleted using the
FSCTL_DELETE_REPARSE_POINT request as specified in [MS-FSCC] section 2.3.5. Implementing
symbolic links is optional for a file system.

tag: Another name for a reparse point. For instance, the file system filter manager FltTagFile
routine sets a reparse point on a file. Tag is also used to refer to the field in a reparse point that
identifies what software component put the reparse point there.

token: A 512-byte length opaque string that is generated and maintained by a supported target
device. A Token functions logically as an immutable point-in-time representation for a set of
data specified by a host and can be conceptualized as a compressed representation of the data
that only a certain class of storage subsystems can interpret. A Token can also be constructed
from a set of well-known Tokens to enable the client to describe a homogeneous attribute for a
set of data (for example, all zeros) or to enable a server to apply a homogeneous attribute to a
set of data (for example, a set of all zeros). For more information on Tokens, see [INCITS-
T10/11-059].

Unicode character: Unless otherwise specified, a 16-bit UTF-16 code unit.

12 /200

[MS-FSCC-Diff] - v20171201

File System Control Codes

Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Uniform Resource Locator (URL): A string of characters in a standardized format that identifies
a document or resource on the World Wide Web. The format is as specified in [RFC1738].

Universal Disk Format (UDF): A type of file system for storing files on optical media.

update sequence number (USN): The offset from the beginning of the change journal stream
that uniquely identifies a change journal record.

virtual cluster number (VCN): The cluster number relative to the beginning of the file, directory,
or stream within a file. The cluster describing byte 0 in a file is VCN 0.

volume: A group of one or more partitions that forms a logical region of storage and the basis for
a file system. A volume is an area on a storage device that is managed by the file system as a
discrete logical storage unit. A partition contains at least one volume, and a volume can exist on
one or more partitions.

MAY, SHOULD, MUST, SHOULD NOT, MUST NOT: These terms (in all caps) are used as defined
in [RFC2119]. All statements of optional behavior use either MAY, SHOULD, or SHOULD NOT.
1.2 References

Links to a document in the Microsoft Open Specifications library point to the correct section in the
most recently published version of the referenced document. However, because individual documents
in the library are not updated at the same time, the section numbers in the documents may not
match. You can confirm the correct section numbering by checking the Errata.

1.2.1 Normative References

We conduct frequent surveys of the normative references to assure their continued availability. If you
have any issue with finding a normative reference, please contact dochelp@microsoft.com. We will
assist you in finding the relevant information.

[MS-DTYP] Microsoft Corporation, "Windows Data Types".

[MS-ERREF] Microsoft Corporation, "Windows Error Codes".

[MS-FSA] Microsoft Corporation, "File System Algorithms".

[MS-LSAD] Microsoft Corporation, "Local Security Authority (Domain Policy) Remote Protocol".

[MS-RDPBCGR] Microsoft Corporation, "Remote Desktop Protocol: Basic Connectivity and Graphics
Remoting".

[MS-SMB2] Microsoft Corporation, "Server Message Block (SMB) Protocol Versions 2 and 3".
[MS-SMB] Microsoft Corporation, "Server Message Block (SMB) Protocol".
[MS-SQLRS] Microsoft Corporation, "SQL Server Remote Storage Profile".

[RFC1094] Sun Microsystems, Inc., "NFS: Network File System Protocol Specification", RFC 1094,
March 1989, http://www.ietf.org/rfc/rfc1094.txt

[RFC1813] Callaghan, B., Pawlowski, B., and Staubach, P., "NFS Version 3 Protocol Specification", RFC
1813, June 1995, http://www.ietf.org/rfc/rfc1813.txt

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC
2119, March 1997, http://www.rfc-editor.org/rfc/rfc2119.txt

13/ 200

[MS-FSCC-Diff] - v20171201

File System Control Codes

Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

1.2.2 Informative References

[FSBO] Microsoft Corporation, "File System Behavior in the Microsoft Windows Environment", June
2008, http://download.microsoft.com/download/4/3/8/43889780-8d45-4b2e-9d3a-
€c696a890309f/File%20System%20Behavior%200verview.pdf

[INCITS-T10/11-059] INCITS, "T10 specification 11-059", http://www.t10.0org/cgi-
bin/ac.pl?t=d&f=11-059r9.pdf

[MS-CIFS] Microsoft Corporation, "Common Internet File System (CIFS) Protocol".
[MS-DFSC] Microsoft Corporation, "Distributed File System (DFS): Referral Protocol".
[MS-DLTW] Microsoft Corporation, "Distributed Link Tracking: Workstation Protocol".
[MS-EFSR] Microsoft Corporation, "Encrypting File System Remote (EFSRPC) Protocol".

[MS-WDVME] Microsoft Corporation, "Web Distributed Authoring and Versioning (WebDAV) Protocol:
Microsoft Extensions".

[MSDFS] Microsoft Corporation, "How DFS Works", March 2003, http://technet.microsoft.com/en-
us/library/cc782417%28WS.10%29.aspx

[MSDN-CJ] Microsoft Corporation, "Change Journals", http://msdn.microsoft.com/en-
us/library/aa363798.aspx

[MSDN-SECZONES] Microsoft Corporation, "About URL Security Zones",
http://msdn.microsoft.com/en-us/library/ms537183.aspx

[MSFT-NTFSWorks] Microsoft Corporation, "How NTFS Works", March 2003,
http://technet.microsoft.com/en-us/library/cc781134(WS.10).aspx

[MSFT-NTFS] Microsoft Corporation, "NTFS Technical Reference", March 2003,
http://technet2.microsoft.com/WindowsServer/en/Library/81cc8a8a-bd32-4786-a849-
03245d68d8e41033.mspx

[PIPE] Microsoft Corporation, "Named Pipes", http://msdn.microsoft.com/en-us/library/aa365590.aspx

[REPARSE] Microsoft Corporation, "Reparse Points", http://msdn.microsoft.com/en-
us/library/aa365503.aspx

[SIS] Microsoft Corporation, "Single Instance Storage in Microsoft Windows Storage Server 2003 R2",
May 2006, http://download.microsoft.com/download/8/a/e/8ae7f07d-b888-4b17-84c3-
e5a1976f406c/SinglelnstanceStorage.doc

[SPARSE] Microsoft Corporation, "Sparse Files", http://msdn.microsoft.com/en-
us/library/aa365564.aspx

[UASDC] Ziv, J. and Lempel, A., "A Universal Algorithm for Sequential Data Compression"”, May 1977,
http://www.cs.duke.edu/courses/spring03/cps296.5/papers/ziv_lempel_1977_universal_algorithm.pdf

[UDF] Optical Storage Technology Association, "UDF Specification, Revision 2.60", March 2005,
http://www.osta.org/specs/pdf/udf260.pdf

[WHDC-RPTR] Microsoft Corporation, "Reparse Point Tag Request", August 2002,
http://www.microsoft.com/whdc/devtools/ifskit/reparse.mspx

[WININTERNALS] Russinovich, M., and Solomon, D., "Microsoft Windows Internals, Fourth Edition",
Microsoft Press, 2005, ISBN: 0735619174.

14 / 200

[MS-FSCC-Diff] - v20171201

File System Control Codes

Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

1.3 Overview

This document describes the structure of common file system control (FSCTL) codes, file information
levels, and file system information levels that are issued in client/server and server/server
communications. These structures do not result in a protocol, but their structure is common across
multiple protocols. As such, they are placed in this document as a reference that can be used by other
protocols to ensure consistency and accuracy.

File system control codes are parameters to the device I/O control interface between applications and
the operating system. These device I/O control functions, like other I/0 functions, accept a file handle
as a parameter, indicating the resource on which the requested operation is performed. When the
operating system detects that a handle corresponds to a file on a remote file server, the request can
be redirected over the network to the server where the file is stored.

The following topics are addressed in this specification:

= Common file system control operations, including the control code itself and the input/output
parameters.

= File information classes and their corresponding structures.

= File system information classes and their corresponding structures.

= File attribute definitions and NTSTATUS code definitions referenced by the file system control
code, file information level, and file system information-level documentation.

1.4 Relationship to Protocols and Other Structures

Versions 1 and 2 of the Server Message Block (SMB) Protocol, as specified in [MS-SMB] and [MS-
SMB2], rely on the structures and definitions in this document to interpret certain fields that can be
sent or received as part of its processing.

1.5 Applicability Statement

The structures and classes defined in this document are useful for any lower-level protocol that
serializes and exchanges file information levels, file system information levels, and file system control
operations without needing to remap this information into a protocol-specific representation.

1.6 Versioning and Localization

None.

1.7 Vendor-Extensible Fields

File system control codes that are used to set reparse point data specify a ReparseTag field value
that identifies the file system filter that understands the application-specific reparse point data format.
A vendor developing an application protocol that sets reparse point data MUST request a unique
reparse tag for that application from Microsoft by following the instructions described in [WHDC-
RPTR]. For more information about reparse points, see [REPARSE].

This protocol uses NTSTATUS values, as specified in [MS-ERREF]. Vendors are free to choose their
own values for this field as long as the C bit (0x20000000) is set, indicating it is a customer code.

15/ 200

[MS-FSCC-Diff] - v20171201

File System Control Codes

Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

2 Structures

The structures specified in this document have no transport requirements of their own. Instead, they
are packaged and transported in accordance with the protocol that makes use of them, such as the
Server Message Block (SMB) Protocol, as specified in [MS-SMB]. A server receiving one of these
structures passes the structure to an implementation-defined function that performs the indicated
operation on a file, a file system, or a volume.

The following sections specify how File System Control Codes messages are encapsulated on the wire
and common File System Control Codes data types.

This document references commonly used data types as defined in [MS-DTYP].

Unless otherwise qualified, instances of GUID in this section refer to [MS-DTYP] section 2.3.4.
2.1 Common Data Types

2.1.1 Time

Unless otherwise noted, Time fields are 64-bit signed integers representing the number of 100-
nanosecond intervals that have elapsed since January 1, 1601, Coordinated Universal Time (UTC).

See FILETIME ([MS-DTYP] section 2.3.3) for related information.

For information regarding the semantics of the file timestamps of the CreationTime,
LastAccessTime, LastWriteTime, and ChangeTime fields, see [FSBO] section 6.
2.1.2 Reparse Point Data Structures

For conceptual information about reparse points, see [REPARSE].

2.1.2.1 Reparse Tags

Each reparse point has a reparse tag. The reparse tag uniquely identifies the owner of that reparse
point. The owner is the implementer of the file system filter driver associated with a reparse tag.

Reparse tags are exposed to clients for third-party applications. Those applications can set, get, and
process reparse tags as needed. Third parties MUST request a reserved reparse tag value to ensure
that conflicting tag values do not occur. [WHDC-RPTR] <1>

The following reparse tags, with the exception of I0O_REPARSE_TAG_SYMLINK, are processed on the
server and are not processed by a client after transmission over the wire. Clients SHOULD treat
associated reparse data as opaque data.<2>

Value Meaning

I0_REPARSE_TAG_RESERVED_ZERO Reserved reparse tag value.

0x00000000

I0_REPARSE_TAG_RESERVED_ONE Reserved reparse tag value.

0x00000001

I0_REPARSE_TAG_MOUNT_POINT Used for mount point support, specified in section 2.1.2.5.
0xA0000003

I0_REPARSE_TAG_HSM Obsolete. Used by legacy Hierarchical Storage Manager Product.

16 / 200

[MS-FSCC-Diff] - v20171201

File System Control Codes

Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Value

Meaning

0xC0000004

I0_REPARSE_TAG_DRIVER_EXTENDER
0x80000005

Home server drive extender.<3>

IO_REPARSE_TAG_HSM2
0x80000006

Obsolete. Used by legacy Hierarchical Storage Manager Product.

IO_REPARSE_TAG_SIS
0x80000007

Used by single-instance storage (SIS) filter driver. Server-side
interpretation only, not meaningful over the wire.

IO_REPARSE_TAG_DFS
0x8000000A

Used by the DFS filter. The DFS is described in the Distributed File
System (DFS): Referral Protocol Specification [MS-DFSC]. Server-side
interpretation only, not meaningful over the wire.

IO_REPARSE_TAG_FILTER_MANAGER
0x8000000B

Used by filter manager test harness.<4>

IO_REPARSE_TAG_SYMLINK
0xA000000C

Used for symbolic link support. See section 2.1.2.4.

IO_REPARSE_TAG_DFSR
0x80000012

Used by the DFS filter. The DFS is described in [MS-DFSC]. Server-side
interpretation only, not meaningful over the wire.

IO_REPARSE_TAG_NFS
0x80000014

Used by the Network File System (NFS) component. Server-side
interpretation only, not meaningful over the wire.

2.1.2.2 REPARSE_DATA_BUFFER

The REPARSE_DATA_BUFFER data element stores data for a reparse point. This reparse data buffer
MUST be used only with reparse tag values whose high bit is set to 1.

This data element has two subtypes: Symbolic Link Reparse Data Buffer (section 2.1.2.4) and Mount
Point Reparse Data Buffer (section 2.1.2.5).

e

3/4|5(6(7|8|9(0|1]|2(3|4|5[6|7|8|9|0]|1

ReparseTag

ReparseDatalength

Reserved

DataBuffer (variable)

ReparseTag (4 bytes): A 32-bit unsigned integer value containing the reparse point tag that
uniquely identifies the owner of the reparse point.

ReparseDatalLength (2 bytes): A 16-bit unsigned integer value containing the size, in bytes, of the
reparse data in the DataBuffer member.

[MS-FSCC-Diff] - v20171201

File System Control Codes

Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

17/ 200

Reserved (2 bytes): A 16-bit field. This field is reserved. This field SHOULD be set to 0, and MUST
be ignored.

DataBuffer (variable): A variable-length array of 8-bit unsigned integer values containing reparse-
specific data for the reparse point. The format of this data is defined by the owner (that is, the
implementer of the filter driver associated with the specified ReparseTag) of the reparse point.

2.1.2.3 REPARSE_GUID_DATA_BUFFER

The REPARSE_GUID_DATA_BUFFER data element stores data for a reparse point and associates a
GUID with the reparse tag. This reparse data buffer MUST be used only with reparse tag values whose
high bit is set to 0.

Reparse point GUIDs are assigned by the independent software vendor (ISV). An ISV MUST link one
GUID to each assigned reparse point tag, and MUST always use that GUID with that tag.

0({1(2|3|4|5|6|7|8|9(0(1(2[3|4|5|/6|7|8|9|0|1|2|3|4|5|6(7(8|9|0]|1

ReparseTag

ReparseDatalength Reserved

ReparseGuid (16 bytes)

DataBuffer (variable)

ReparseTag (4 bytes): A 32-bit unsigned integer value containing the reparse point tag that
uniquely identifies the owner of the reparse point.

ReparseDatalLength (2 bytes): A 16-bit unsigned integer value containing the size, in bytes, of the
reparse data in the DataBuffer member.

Reserved (2 bytes): A 16-bit field. This field SHOULD be set to 0 by the client, and MUST be ignored
by the server.

ReparseGuid (16 bytes): A 16-byte GUID that uniquely identifies the owner of the reparse point.
Reparse point GUIDs are not assigned by Microsoft. A reparse point implementer MUST select one
GUID to be used with their assigned reparse point tag to uniquely identify that reparse point. For
more information, see [REPARSE].

DataBuffer (variable): The content of this buffer is opaque to the file system. On receipt, its content
MUST be preserved and properly returned to the caller.
2.1.2.4 Symbolic Link Reparse Data Buffer

The Symbolic Link Reparse Data Buffer data element is a subtype of REPARSE_DATA_BUFFER, which
contains information on symbolic link reparse points. This reparse data buffer MUST be used only with
reparse tag values whose high bit is set to 1.

18/ 200

[MS-FSCC-Diff] - v20171201

File System Control Codes

Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

A symbolic link has a substitute name and a print name associated with it. The substitute name is a
pathname (section 2.1.5) identifying the target of the symbolic link. The print name SHOULD be an
informative pathname, suitable for display to a user, that also identifies the target of the symbolic
link. Either pathname can contain dot directory names as specified in section 2.1.5.1.

0123456789(1)123456789312345678931
ReparseTag
ReparseDatalength Reserved
SubstituteNameOffset SubstituteNamelLength
PrintNameOffset PrintNameLength
Flags

PathBuffer (variable)

ReparseTag (4 bytes): A 32-bit unsigned integer value containing the reparse point tag that
uniquely identifies the owner (that is, the implementer of the filter driver associated with this
ReparseTag) of the reparse point. This value MUST be 0xA000000C.

ReparseDatalLength (2 bytes): A 16-bit unsigned integer value containing the size, in bytes, of the
reparse data that follows the common portion of the REPARSE_DATA_BUFFER element. This value
is the length of the data starting at the SubstituteNameOffset field (or the size of the
PathBuffer field, in bytes, plus 12).

Reserved (2 bytes): A 16-bit field. This field is not used. It SHOULD be set to 0 and MUST be
ignored.

SubstituteNameOffset (2 bytes): A 16-bit unsigned integer that contains the offset, in bytes, of the
substitute name string in the PathBuffer array, computed as an offset from byte 0 of
PathBuffer. Note that this offset is divided by 2 to get the array index.

SubstituteNameLength (2 bytes): A 16-bit unsigned integer that contains the length, in bytes, of
the substitute name string. If this string is null-terminated, SubstituteNameLength does not
include the Unicode null character.

PrintNameOffset (2 bytes): A 16-bit unsigned integer that contains the offset, in bytes, of the print
name string in the PathBuffer array, computed as an offset from byte 0 of PathBuffer. Note that
this offset is divided by 2 to get the array index.

PrintNameLength (2 bytes): A 16-bit unsigned integer that contains the length, in bytes, of the
print name string. If this string is null-terminated, PrintNameLength does not include the
Unicode null character.

Flags (4 bytes): A 32-bit field that specifies whether the substitute name is a full path name or a
path name relative to the directory containing the symbolic link.

This field contains one of the values in the following table.

19/ 200

[MS-FSCC-Diff] - v20171201

File System Control Codes

Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Value Meaning

0x00000000 The substitute name is a full path name.

SYMLINK_FLAG_RELATIVE | The substitute name is a path name relative to the directory containing the symbolic
0x00000001 link.

PathBuffer (variable): Unicode character array that contains the substitute name string and print
name string. The substitute name and print name strings can appear in any order in the
PathBuffer. To locate the substitute name and print name strings in the PathBuffer, use the
SubstituteNameOffset, SubstituteNamelLength, PrintNameOffset, and PrintNameLength
members.

2.1.2.5 Mount Point Reparse Data Buffer

The Mount Point Reparse Data Buffer data element is a subtype of REPARSE_DATA_BUFFER, which
contains information about mount point reparse points. This reparse data buffer MUST be used only
with reparse tag values whose high bit is set to 1.

A mount point has a substitute name and a print nhame associated with it. The substitute name is a
pathname (section 2.1.5) identifying the target of the mount point. The print name SHOULD be an
informative pathname (section 2.1.5), suitable for display to a user, that also identifies the target of
the mount point. Neither of these pathnames can contain dot directory names.

012345678931234567893123456789(3)1
ReparseTag
ReparseDatalength Reserved
SubstituteNameOffset SubstituteNamelLength
PrintNameOffset PrintNameLength

PathBuffer (variable)

ReparseTag (4 bytes): A 32-bit unsigned integer value containing the reparse point tag that
uniquely identifies the owner (that is, the implementer of the filter driver associated with this
ReparseTag) of the reparse point. This value MUST be 0xA0000003.

ReparseDatalLength (2 bytes): A 16-bit unsigned integer value containing the size, in bytes, of the
reparse data that follows the common portion of the REPARSE_DATA_BUFFER element. This value
is the length of the data starting at the SubstituteNameOffset field (or the size of the
PathBuffer field, in bytes, plus 8).

Reserved (2 bytes): A 16-bit field. This field is not used. It SHOULD be set to 0, and MUST be
ignored.

SubstituteNameOffset (2 bytes): A 16-bit unsigned integer that contains the offset, in bytes, of the
substitute name string in the PathBuffer array, computed as an offset from byte 0 of
PathBuffer. Note that this offset is divided by 2 to get the array index.

20/ 200

[MS-FSCC-Diff] - v20171201

File System Control Codes

Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

SubstituteNameLength (2 bytes): A 16-bit unsigned integer that contains the length, in bytes, of
the substitute name string. If this string is null-terminated, SubstituteNameLength does not
include the Unicode null character.

PrintNameOffset (2 bytes): A 16-bit unsigned integer that contains the offset, in bytes, of the print
name string in the PathBuffer array, computed as an offset from byte 0 of PathBuffer. Note that
this offset is divided by 2 to get the array index.

PrintNameLength (2 bytes): A 16-bit unsigned integer that contains the length, in bytes, of the
print name string. If this string is null-terminated, PrintNameLength does not include the
Unicode null character.

PathBuffer (variable): Unicode character array that contains the substitute name string and print
name string. The substitute name and print name strings can appear in any order in PathBuffer.
To locate the substitute name and print name strings in the PathBuffer field, use the
SubstituteNameOffset, SubstituteNamelLength, PrintNameOffset, and PrintNameLength
members.

2.1.2.6 Network File System (NFS) Reparse Data Buffer

The Network File System Reparse Data Buffer data element is a subtype of REPARSE_DATA_BUFFER,
which contains information about symbolic files and devices created by the Network File System client.

—
N
w

0({1(2|3|4|5|6|7|8|9|(0(1(2[3|4|5|/6|7|8|9|0|1|2|3|4|5|6[7(8]9|0]|1

ReparseTag

ReparseDatalength Reserved

GenericReparseBuffer (variable)

ReparseTag (4 bytes): A 32-bit unsigned integer value containing the reparse point tag that
uniquely identifies the owner (that is, the implementer of the filter driver associated with this
ReparseTag) of the reparse point. This value MUST be 0x80000014.

ReparseDatalLength (2 bytes): A 16-bit unsigned integer value containing the size, in bytes, of the
reparse data that follows the common portion of the REPARSE_DATA_BUFFER element. This value
is the length of the data starting at the GenericReparseBuffer field.

Reserved (2 bytes): A 16-bit field. This field is not used. It SHOULD be set to 0, and MUST be
ignored.

GenericReparseBuffer (variable): The data in this variable buffer takes the following format.

—
N
w

Type

DataBuffer (variable)

21 /200

[MS-FSCC-Diff] - v20171201

File System Control Codes

Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Type (8 bytes): A 64-bit unsigned integer value describing the type and format of the data stored in

the DataBuffer field. The valid values for this field are:

Value

Meaning

NFS_SPECFILE_LNK
0x00000000014B4E4C

Indicates that the DataBuffer field has a Unicode string containing the symbolic
link data.

NFS_SPECFILE_CHR
0x0000000000524843

Indicates that the DataBuffer field has two 32-bit integers that contain the major
and minor device nhumbers for the character special device created by the Network
File System client.

NFS_SPECFILE_BLK
0x00000000004B4C42

Indicates that the DataBuffer field has two 32-bit integers that contain the major
and minor device numbers for the block special device created by the Network File
System client.

NFS_SPECFILE_FIFO
0x000000004F464946

Indicates that the file containing the NFS reparse point is a named pipe device
created by the Network File System client. The DataBuffer field is empty.

NFS_SPECFILE_SOCK
0x000000004B434F53

Indicates that the file containing the NFS reparse point is a socket device created
by the Network File System client. The DataBuffer field is empty.

DataBuffer (variable): A variable buffer that has the following formats depending upon the Type
field defined earlier.

= NFS_SPECFILE_CHR and NFS_SPECFILE_BLK: The DataBuffer field contains two 32-bit
integers that represent major and minor device numbers.

= NFS_SPECFILE_LNK: The DataBuffer field contains the symbolic link target path specified by
the Network File System client in its NFSPROC_SYMLINK request, [RFC1813] section 3.3.10 and
[RFC1094] section 2.2.14, represented in Unicode format and not NULL-terminated. The upper
limit on the size of the symbolic link data is 2050 bytes.

= NFS_SPECFILE_FIFO and NFS_SPECFILE_SOCK: The DataBuffer field is empty.

2.1.3 FILE_OBJECTID_BUFFER Structure

The FILE_OBJECTID_BUFFER structure contains extended metadata for a file system object, including
its object ID. This data element MUST be in one of the following two formats:

= FILE_OBJECTID_BUFFER Type 1
= FILE_OBIJECTID_BUFFER Type 2

2.1.3.1 FILE_OBJECTID_BUFFER Type 1

The first possible structure for the FILE_OBJECTID_BUFFER data element is as follows.

—
N
w

0(1|2|3(4|5|6|7|8|9|0|1|2|3(4|5|6|7|8|9(0(1|2|3(4|5|6[7|8|9|0(1

Objectld (16 bytes)

22 /200

[MS-FSCC-Diff] - v20171201

File System Control Codes

Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

BirthVolumeld (16 bytes)

BirthObjectld (16 bytes)

Domainld (16 bytes)

Objectld (16 bytes): A 16-byte GUID that uniquely identifies the file or directory within the volume
on which it resides. Specifically, the same object ID can be assigned to another file or directory on
a different volume, but it MUST NOT be assigned to another file or directory on the same volume.

BirthVolumeld (16 bytes): A 16-byte GUID that uniquely identifies the volume on which the object
resided when the object identifier was created, or zero if the volume had no object identifier at
that time. After copy operations, move operations, or other file operations, this value is potentially
different from the object identifier of the volume on which the object presently resides.

BirthObjectId (16 bytes): A 16-byte GUID value containing the object identifier of the object at the
time it was created. Copy operations, move operations, or other file operations MAY change the
value of the ObjectId member. Therefore, the BirthObjectld is potentially different from the
Objectld member at present. Specifically, the same object ID MAY be assigned to another file or
directory on a different volume, but it MUST NOT be assigned to another file or directory on the
same volume. The object ID is assigned at file creation time.<5>

DomainId (16 bytes): A 16-byte GUID value containing the domain identifier. This value is unused;
it SHOULD be zero, and MUST be ignored.<6>

2.1.3.2 FILE_OBJECTID_BUFFER Type 2

The second possible structure for the FILE_OBJECTID_BUFFER data element is as follows.

-
N
w

0(1|2|3(4|5|6|7|8|9|0|1|2|3(4|5|6|7|8|9(0(1|2|3(4|5|6[7|8|9|0(1

Objectld (16 bytes)

23/ 200

[MS-FSCC-Diff] - v20171201

File System Control Codes

Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

ExtendedInfo (48 bytes)

Objectld (16 bytes): A 16-byte GUID that uniquely identifies the file or directory within the volume
on which it resides. Specifically, the same object ID can be assigned to another file or directory on
a different volume, but it MUST NOT be assigned to another file or directory on the same volume.

ExtendedInfo (48 bytes): A 48-byte value containing extended data that was set with the
FSCTL_SET_OBJECT_ID_EXTENDED request. This field contains application-specific data.<7>

2.1.4 Alternate Data Streams

A file system MAY<8> support alternate data streams within a file or a directory. For a general
description of file streams, section 1.1.

Every file has a default stream, which is the stream that is referenced when no stream name
component is specified as part of the pathname. A directory does not have a default data stream;
however, it can have named alternate data streams.

For more information on stream naming, see section 2.1.5; for more information on streams in
general, see section 5.

2.1.5 Pathname
A pathname has the following characteristics:
= A pathname MUST be no more than 32,760 characters in length.

= A pathname is composed of one or more pathname components separated by the "\" backslash
character. All pathname components other than the last pathname component denote directories
or reparse points. The last pathname component denotes a directory, a file, a stream, or a reparse
point.

= Aleading "\" backslash character is optional, and determines whether a pathname is absolute or
relative:

= A pathname that begins with a leading "\" backslash character, for example, "\a\b\c", is an
absolute pathname. An absolute pathname SHOULD be evaluated relative to the root
directory.

= A pathname that omits a leading "\" backslash character, for example, "a\b\c", is a relative
pathname. A relative pathname MAY be evaluated relative to any directory, such as an
application's current working directory.

= Each pathname component has one of the following forms:
= A dot directory name as specified in section 2.1.5.1.

= A filename as specified in section 2.1.5.2, optionally followed by a ":" colon character and a
streamname as specified in section 2.1.5.3, optionally followed by a ":" colon character and a
streamtype as specified in section 2.1.5.4. The streamname, if specified, MAY be zero-length
only if streamtype is also specified; otherwise, it MUST be at least one character. The
streamtype, if specified, MUST be at least one character.

24 /200

[MS-FSCC-Diff] - v20171201

File System Control Codes

Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

= Each pathname component MUST be no more than 255 characters in length.

2.1.5.1 Dot Directory Names

The pathname components of "." (single period) and ".." (two periods) are reserved as dot directory
names.

Except where explicitly permitted, a pathname component that is a dot directory name MUST NOT be
sent over the wire.

When parsing pathname components, a dot directory name of "." refers to the current directory name
component and a dot directory name of ".." refers to the parent directory name of the current
directory name component.

Some examples to illustrate:

= In the pathname "dirA\.\dirB", the "." refers to dirA, so this expression is equivalent to "dirA\dirB".

= In the pathname "dirA\dirB\..\dirC", the ".." refers to dirA, so this expression is equivalent to
"dirA\dirC".
A dot directory name of ".." at the root of a share MUST be treated as equivalent to ".". For example:

\\ServerX\ShareY\..\dirA is equivalent to \\ServerX\ShareY\.\dirA (which is equivalent to
\\ServerX\ShareY\dirA).

2.1.5.2 Filename
= All Unicode characters are legal in a filename except the following:

= The characters

"N/ <> x

= Control characters, ranging from 0x00 through Ox1F.

2.1.5.2.1 8.3 Filename

An 8.3 filename (also referred to as a DOS name, a short name, or an 8.3-compliant filename) is a
filename that conforms to the following restrictions:

= An 8.3 filename MUST only contain characters that can be represented in ASCII, in the range
below 0x80.

= An 8.3 filename MUST NOT contain the " " space character.
= An 8.3 filename MUST NOT contain more than one "." period character.

= The general form of a valid 8.3 filename is a base filename, optionally followed by the "." period
character and a filename extension.

= The base filename MUST be 1-8 characters in length and MUST NOT contain a "." period
character.

= The filename extension, if present, MUST be 1-3 characters in length and MUST NOT contain a
"." period character.

25 /200

[MS-FSCC-Diff] - v20171201

File System Control Codes

Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

2.1.5.3 Streamname

= All Unicode characters are legal in a streamname component except the following:
= The characters \ / :
= Control character 0x00.

*= A zero-length streamname denotes the default stream.

See section 5 for additional information on alternate streams in the NTFS file system.

2.1.5.4 Streamtype
= All Unicode characters are legal in a streamtype component except the following:
= The characters \ / :

= Control character 0x00.

2.1.6 Share name
A share name has the following characteristics:
*» A share name MUST be no more than 80 characters in length.

= The following characters are illegal in a share name:
"N/ LT <>+ =g, 00

= Control characters in range 0x00 through 0x1F, inclusive, are illegal in a share name.

= All other Unicode characters are legal.

2.1.7 FILE_NAME_INFORMATION

The FILE_NAME_INFORMATION data element is as follows.

—
N
w

0(1|/2|3(4|5|6(7|8|9|0(1|2|3(4|5|6[7|8|9(0(1|2|3(4|5|6[7|8|9|0(1

FileNameLength

FileName (variable)

FileNameLength (4 bytes): A 32-bit unsigned integer that specifies the length, in bytes, of the file
name contained within the FileName field.

FileName (variable): A sequence of Unicode characters containing a pathname (section 2.1.5). The
meaning of the pathname depends on the operation. The name string is not null-terminated.
There are scenarios where one or more padding characters can be at the end of the string due to
buffer alignment requirements, but their presence and their values MUST NOT be relied upon.
When working with this field, use FileNameLength to determine the length of the file name
rather than assuming the presence of a trailing null delimiter.

26 /200

[MS-FSCC-Diff] - v20171201

File System Control Codes

Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

2.1.8 Boolean

A Boolean data type is a primitive that has one of two possible values: TRUE and FALSE, which are
defined as follows:

TRUE: A sender MUST use any nonzero value to denote a TRUE. A receiver MUST interpret any
nonzero value as TRUE.<9>

FALSE: A sender MUST use a zero value to denote a FALSE. A receiver MUST interpret a zero value
as FALSE.

2.2 Status Codes

This specification uses NTSTATUS status codes, as specified in [MS-ERREF] section 2.3. The format of
a status code MUST be as specified in [MS-ERREF].

The reply message fereach-FSEH-lists the common error codes that are directly generated by the
function-thatimplements-the-speeifiedFSEFE. Error codes can also be generated by code below the

file system (such as RAID drivers or disk drivers) or above the file system (such as virus scanners).

A server SHOULD return a status of STATUS_INVALID_DEVICE_REQUEST when arFSEFta message is
not supported remotely or is not supported on the file system on which the file or directory handle

specified by-the FSEF-exists.<10><11>

STATUS_BUFFER_OVERFLOW is a warning code and not an error code. This warning means that the
given output buffer is not large enough to contain all of the requested information. Unless otherwise
noted, a given operation SHOULD attempt to return as much data as it reasonably can.

2.3 FSCTL Structures

A process invokes an FSCTL on a handle to perform an action against the file or directory associated
with the handle. When a server receives an FSCTL request, it SHOULD use the information in the
request, which includes a handle and, optionally, an input data buffer, to perform the requested
action. How a server performs the action requested by an FSCTL is implementation-dependent.<12>

The following table specifies the system-defined generic FSCTLs that are permitted to be invoked
across the network. Generic FSCTLs are used by the local file systems or by multiple components
within the system. Any application, service, or driver can define private FSCTLs. Most private FSCTLs
are used locally in the internal driver stacks and do not flow over the wire. However, if a component
allows its private FSCTLs to flow over the wire, that component is responsible for ensuring the FSCTLs
and associated data structures are documented. Examples of such private FSCTLs can be found in
[MS-SMB2] and [MS-DFSC].

FSCTL name FSCTL function number
FSCTL_CREATE_OR_GET_OBJECT_ID 0X900C0
FSCTL_DELETE_OBJECT_ID 0X900A0
FSCTL_DELETE_REPARSE_POINT 0X900AC
FSCTL_DUPLICATE_EXTENTS_TO_FILE 0X98344
FSCTL_FILE_LEVEL_TRIM 0X98208
FSCTL_FILESYSTEM_GET_STATISTICS 0X90060
FSCTL_FIND_FILES_BY_SID 0X9008F

27/ 200

[MS-FSCC-Diff] - v20171201

File System Control Codes

Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

FSCTL name FSCTL function number
FSCTL_GET_COMPRESSION 0X9003C
FSCTL_GET_INTEGRITY_INFORMATION 0X9027C
FSCTL_GET_NTFS_VOLUME_DATA 0X90064
FSCTL_GET_REFS_VOLUME_DATA 0X902D8
FSCTL_GET_OBIJECT_ID 0X9009C
FSCTL_GET_REPARSE_POINT 0X900A8
FSCTL_GET_RETRIEVAL_POINTERS 0X90073
FSCTL_IS_PATHNAME_VALID 0X9002C
FSCTL_LMR_SET_LINK_TRACKING_INFORMATION | 0X1400EC
FSCTL_OFFLOAD_READ 0X94264
FSCTL_OFFLOAD_WRITE 0X98268
FSCTL_PIPE_PEEK 0X11400C
FSCTL_PIPE_TRANSCEIVE 0X11C017
FSCTL_PIPE_WAIT 0X110018
FSCTL_QUERY_ALLOCATED_RANGES 0X940CF
FSCTL_QUERY_FAT_BPB 0X90058
FSCTL_QUERY_FILE_REGIONS 0X90284
FSCTL_QUERY_ON_DISK_VOLUME_INFO 0X9013C
FSCTL_QUERY_SPARING_INFO 0X90138
FSCTL_READ_FILE_USN_DATA 0X900EB
FSCTL_RECALL_FILE 0X90117
FSCTL_SET_COMPRESSION 0X9C040
FSCTL_SET_DEFECT_MANAGEMENT 0X98134
FSCTL_SET_ENCRYPTION 0X900D7
FSCTL_SET_INTEGRITY_INFORMATION 0X9C280
FSCTL_SET_OBJECT_ID 0X90098
FSCTL_SET_OBJECT_ID_EXTENDED 0X900BC
FSCTL_SET_REPARSE_POINT 0X900A4
FSCTL_SET_SPARSE 0X900C4
FSCTL_SET_ZERO_DATA 0X980C8
FSCTL_SET_ZERO_ON_DEALLOCATION 0X90194
FSCTL_SIS_COPYFILE 0X90100

[MS-FSCC-Diff] - v20171201

File System Control Codes

Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

28 /200

FSCTL name FSCTL function number

FSCTL_WRITE_USN_CLOSE_RECORD 0X900EF

2.3.1 FSCTL_CREATE_OR_GET_OBIJECT_ID Request

This message requests that the server return the object identifier for the file or directory associated
with the handle on which this FSCTL was invoked. If no object identifier exists, the server MUST create
one.

This message does not contain any additional data elements.

2.3.2 FSCTL_CREATE_OR_GET_OBJECT_ID Reply

This message returns the results of the FSCTL_CREATE_OR_GET_OBIJECT_ID request in a
FILE_OBJECTID_BUFFER (section 2.1.3).

Fhis-messagealsoreturnsastatuscedeasspecifiedirMS-ERREF-seetienr2-3—The buffer can be
either Type 1 or Type 2 as follows:

= If neither FSCTL_SET_OBJECT_ID_EXTENDED nor FSCTL_SET_OBJECT_ID has been previously
issued on the file, then the buffer is of Type 1 and contains implementation-generated values as
specified in section 2.1.3.1.

= If FSCTL_SET_OBJECT_ID was used to set the object ID, then the buffer is of the type that was
used during that FSCTL_SET_OBJECT_ID call.

= If FSCTL_SET_OBJECT_ID_EXTENDED was issued to change the object ID's extended information,
then the buffer is of Type 2.

There is no way for the issuer of this FSCTL to determine the returned buffer type without knowing
whether the object ID was previously set or modified and by what means
(FSCTL_SET_OBIJECT_ID_EXTENDED or FSCTL_SET_OBJECT_ID).

Fhe-This message also returns a status code as specified in section 2.2. Upon success, the status code
returned direethy-by the function that processes this FSCTL MUSTbeis STATUS_SUCCESS-e+ene—-of.
The most common error codes are listed in the following_table.

Error code Meaning

STATUS_DUPLICATE_NAME The file has no object ID yet, and the file system is unable to generate a
0xCO0000BD unique (to this volume) ID.<13>

STATUS_INVALID_PARAMETER The handle is not to a file or directory, or the output buffer is not large
0xC000000D enough to contain a FILE_OBJECTID_BUFFER structure.

STATUS_MEDIA_WRITE_PROTECTED | The volume is write-protected and changes to it cannot be made. This
0xC0O0000A2 error code is returned even if the file already has an object ID assigned to
it.

STATUS_INVALID_DEVICE_REQUEST | The file system does not support the use of object IDs.
0xC0000010

29/ 200

[MS-FSCC-Diff] - v20171201

File System Control Codes

Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

2.3.3 FSCTL_DELETE_OBJECT_ID Request

This message requests that the server remove the object identifier from the file or directory
associated with the handle on which this FSCTL was invoked. The underlying object MUST NOT be
deleted. If the file or directory has no object identifier, the request MUST be considered successful.

This message does not contain any additional data elements.

2.3.4 FSCTL_DELETE_OBIJECT_ID Reply
This message returns the results of the FSCTL_DELETE_OBJECT_ID request.

The only data item this message returns is a status code, as specified in fMS-ERREF}-section 2.3—Fhe
2. Upon success, the status code returned direethy-by the function that processes this FSCTL MUSF
beis STATUS_SUCCESS-erere-ef. The most common error codes are listed in the following_table.

Error code Meaning
STATUS_ACCESS_DENIED The handle was not opened with write access or write attributes access.
0xC0000022

STATUS_OBJECT_NAME_NOT_FOUND | The file or directory has no object ID. This status is not returned on a
0xC0000034 healthy volume but can be returned if the volume is corrupt.

STATUS_MEDIA_WRITE_PROTECTED | The volume is write-protected and changes to it cannot be made.
0xCO0000A2

STATUS_INVALID_DEVICE_REQUEST | The file system does not support the use of object IDs.
0xC0000010

2.3.5 FSCTL_DELETE_REPARSE_POINT Request

This message requests that the server delete the reparse point from the file or directory associated
with the handle on which this FSCTL was invoked. The underlying file or directory MUST NOT be
deleted.

The message MUST contain a REPARSE_GUID_DATA_BUFFER or a REPARSE_DATA_BUFFER (including
subtypes) data element. Both the REPARSE_GUID_DATA_BUFFER and the REPARSE_DATA_BUFFER
structures begin with a ReparseTag field. The ReparseTag value uniquely identifies the filter driver
that creates/uses the reparse point, and the application's filter driver processes the reparse point data
as either a REPARSE_GUID_DATA_BUFFER or a REPARSE_DATA_BUFFER, depending on the structure
implemented by the filter driver for that type of reparse point.

This message MUST only be sent for a file or directory handle.

2.3.6 FSCTL_DELETE_REPARSE_POINT Reply
This message returns the result of the FSCTL_DELETE_REPARSE_POINT request.

The only data item this message returns is a status code, as specified in fMS-ERREF}-section 2.3—Fhe
2. Upon success, the status code returned direetly-by the function that processes this FSCTL MUSF
beis STATUS_SUCCESS-er-ene-of. The most common error codes are listed in the following_table.

30/ 200

[MS-FSCC-Diff] - v20171201

File System Control Codes

Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Error code

Meaning

STATUS_INVALID_PARAMETER
0xC000000D

A nonzero value was passed for the output buffer's length, or the
handle is not to a file or directory.

STATUS_ACCESS_DENIED
0xC0000022

The handle was not opened to write file data or file attributes.

STATUS_IO_REPARSE_DATA_INVALID
0xC0000278

The input buffer's length is neither the size of a
REPARSE_DATA_BUFFER nor a REPARSE_GUID_DATA_BUFFER; or
the reparse data length is nonzero; or the reparse tag is a third
party reparse tag, and the length is other than the size of
REPARSE_GUID_DATA_BUFFER.

STATUS_IO_REPARSE_TAG_INVALID
0xC0000276

The specified reparse tag with a value of 0 or 1 is reserved for use
by the system and cannot be deleted.

STATUS_NOT_A_REPARSE_POINT
0xC0000275

The file or directory does not have a reparse point.

STATUS_IO_REPARSE_TAG_MISMATCH
0xC0000277

The file or directory has a reparse point but not one with the reparse
tag that was specified in this call.

STATUS_REPARSE_ATTRIBUTE_CONFLICT
0xC00002B2

The file or directory has a third party tag, and the Reparse GUID
provided does not match the one in the reparse point for this file or
directory.

2.3.7 FSCTL_DUPLICATE_EXTENTS_TO_FILE Request

The FSCTL_DUPLICATE_EXTENTS_TO_FILE<14> request message requests that the server copy the

specified portion of one file (that is the

source file) into a specified portion of another file (target file)

on the same volume. The logical sizes of the portions have to be the same. The two files involved in
this operation can refer to the same file, but in that case, the logical portions have to refer to disjoint
regions on the file. The FSCTL is sent on a handle opened to the target file.

The request message contains a DUPLICATE_EXTENTS_DATA data element, as follows:

3(4(5(6|7|8|9|0|1]|2|3|4|5(6(|7(8[9|0]1

SourceFileID

SourceFileOffset

TargetFileOffset

[MS-FSCC-Diff] - v20171201

File System Control Codes

Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

31/200

ByteCount

SourceFileID (16 bytes): An SMB2_FILEID structure, as specified in [MS-SMB2] section 2.2.14.1,
that is an identifier of the open to the source file.

SourceFileOffset (8 bytes): A 64-bit signed integer that contains the file offset, in bytes, of the
start of a range of bytes in a file from which the data is to be copied. The value of this field MUST
be greater than or equal to 0x0000000000000000 and MUST be aligned to a logical cluster

boundary.

TargetFileOffset (8 bytes): A 64-bit signed integer that contains the file offset, in bytes, of the start
of a range of bytes in a file to which the data is to be copied. The value of this field MUST be
greater than or equal to 0x0000000000000000 and MUST be aligned to a logical cluster boundary.

ByteCount (8 bytes): A 64-bit signed integer that contains the number of bytes to copy from source
to target. The value of this field MUST be greater than or equal to 0x0000000000000000 and
MUST be aligned to a logical cluster boundary.

2.3.8 FSCTL_DUPLICATE_EXTENTS_TO_FILE Reply

This message returns the result of the FSCTL_DUPLICATE_EXTENTS_TO_FILE<15> request.

The only data item this message returns is a status code, as specified in fMS-ERREF}-section 2.3—Fhe
2. Upon success, the status code returned direetly-by the function that processes this FSCTL
SHOULD<16> be STATUS_SUCCESS-e+eneof. The most common error codes are listed in the

following_table.

Error Code

Meaning

STATUS_NOT_SUPPORTED
0xC00000BB

= The source and target destination ranges overlap on the same file.
= Source file is sparse, while target is a non-sparse file.

= The source range is beyond the source file's allocation size.

STATUS_INVALID_PARAMETER
0xC000000D

The FileHandle parameter is either invalid or does not represent a handle
to an opened file on the same volume.

STATUS_INSUFFICIENT_RESOURCES
0xCO00009A

There were insufficient resources to complete the operation.

STATUS_DISK_FULL
0xCO00007F

The disk is full.

STATUS_MEDIA_WRITE_PROTECTED
0xCOO0000A2

The volume is read-only.

STATUS_INVALID_DEVICE_REQUEST
0xC0000010

The file system does not support duplicating extents.

[MS-FSCC-Diff] - v20171201
File System Control Codes

Copyright © 2017 Microsoft Corporation

Release: December 1, 2017

32 /200

2.3.9 FSCTL_FILESYSTEM_GET_STATISTICS Request

This message requests that the server return the statistical information of the file system such as
Type, Version, and so on, as specified in FSCTL_FILESYSTEM_GET_STATISTICS reply, for the file or
directory associated with the handle on which this FSCTL was invoked.<17>

This message does not contain any additional data elements.

2.3.10 FSCTL_FILESYSTEM_GET_STATISTICS Reply

This message returns the result of the FSCTL_FILESYSTEM_GET_STATISTICS request message as a
pair of structures: a generic structure, FILESYSTEM_STATISTICS, optionally followed by a file system
type specific structure that can be either NTFS_STATISTICS, FAT_STATISTICS, or EXFAT_STATISTICS,
depending on the underlying file system type. There is one pair of these structures for each
processor.<18>

These statistics contain information about both user and metadata files. User files are available for the
user. Metadata files are system files that contain information that the file system uses for its internal
organization.

The statistics structures contain fields that can overflow during the server's lifetime. This is by design.
When an overflow occurs, the value just wraps. For example, OXFFFFFO00 + 0x2000 will result in
0x1000.

The structures within the output buffer MUST all start on 64-byte boundaries. The final output MUST
be padded to a 64-byte boundary. Any padding bytes MUST be filled with zeros.

This message also returns a status code; as specified in fMS-ERREF}-section 2.3-—Fhe-2. Upon success,
the status code returned direethy-by the function that processes this FSCTL MUSTbeis
STATUS_SUCCESS-erene-ef. The most common error codes are listed in the following_table.

Error code Meaning

STATUS_BUFFER_TOO_SMALL | The output buffer is too small to contain a FILESYSTEM_STATISTICS structure.
0xC0000023

STATUS_BUFFER_OVERFLOW | The output buffer was filled before all the statistics data could be returned.
0x80000005

2.3.10.1 FILESYSTEM_STATISTICS

The FILESYSTEM_STATISTICS data element is returned with a FSCTL_FILESYSTEM_GET_STATISTICS
reply message. It contains the generic information for the message. The FILESYSTEM_STATISTICS
data element is as follows:

1 2 3
0(1|2|3(4|5|6|7|8|9|0|1|2|3(4|5|6|7|8|9(0(1|2|3(4|5|6[7|8|9|0/(1

FileSystemType Version

SizeOfCompleteStructure

UserFileReads

33/ 200

[MS-FSCC-Diff] - v20171201

File System Control Codes

Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

UserFileReadBytes

UserDiskReads

UserFileWrites

UserFileWriteBytes

UserDiskWrites

MetaDataReads

MetaDataReadBytes

MetaDataDiskReads

MetaDataWrites

MetaDataWriteBytes

MetaDataDiskWrites

FileSystemType (2 bytes): A 16-bit unsigned integer value containing the type of file system. This
field MUST contain one of the following values.

Value Meaning

FILESYSTEM_STATISTICS_TYPE_NTFS The file system is an NTFS file system. If this value is set, this
0x0001 structure is followed by an NTFS_STATISTICS structure.

FILESYSTEM_STATISTICS_TYPE_FAT The file system is a FAT file system. If this value is set, this
0x0002 structure is followed by a FAT_STATISTICS structure.

FILESYSTEM_STATISTICS_TYPE_EXFAT | The file system is an exFAT file system. If this value is set, this
0x0003 structure is followed by an EXFAT_STATISTICS structure.

FILESYSTEM_STATISTICS_TYPE_REFS The file system is an ReFS file system. If this value is set, this
0x0004 structure is not followed by a structure specific to file system type.

Version (2 bytes): A 16-bit unsigned integer value containing the version. This field MUST be set to
the value 0x0001.

SizeOfCompleteStructure (4 bytes): A 32-bit unsigned integer value that indicates the size, in
bytes, of this structure plus the size of the file system-specific structure that follows this structure,
each rounded up to a multiple of 64, then the sum is multiplied by the number of processors. For
example, if the size of FILESYSTEM_STATISTICS is 0x38, the size of NTFS_STATISTICS is 0XD4,
and there are two processors, the size of the buffer allocated is 0x280. This is the sum of the sizes
of the NTFS_STATISTICS structure and the FILESYSTEM_STATISTICS structure, both rounded up
to a multiple of 64 (0x40 + 0x100 = 0x140), and multiplied by the number of processors.

UserFileReads (4 bytes): A 32-bit unsigned integer value containing the number of read operations
on user files.

34 /200

[MS-FSCC-Diff] - v20171201

File System Control Codes

Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

UserFileReadBytes (4 bytes): A 32-bit unsigned integer value containing the number of bytes read
from user files.

UserDiskReads (4 bytes): A 32-bit unsigned integer value containing the number of read operations
on user files that went to the disk rather than the cache. This value includes sub-read operations.

UserFileWrites (4 bytes): A 32-bit unsigned integer value containing the number of write operations
on user files.

UserFileWriteBytes (4 bytes): A 32-bit unsigned integer value containing the number of bytes
written to user files.

UserDiskWrites (4 bytes): A 32-bit unsigned integer value containing the number of write
operations on user files that went to disk rather than the cache. This value includes sub-write
operations.

MetaDataReads (4 bytes): A 32-bit unsigned integer value containing the number of read
operations on metadata files.

MetaDataReadBytes (4 bytes): A 32-bit unsigned integer value containing the number of bytes
read from metadata files.

MetaDataDiskReads (4 bytes): A 32-bit unsigned integer value containing the number of read
operations on metadata files. This value includes sub-read operations.

MetaDataWrites (4 bytes): A 32-bit unsigned integer value containing the number of write
operations on metadata files.

MetaDataWriteBytes (4 bytes): A 32-bit unsigned integer value containing the nhumber of bytes
written to metadata files.

MetaDataDiskWrites (4 bytes): A 32-bit unsigned integer value containing the number of write
operations on metadata files. This value includes sub-write operations.

2.3.10.2 NTFS_STATISTICS

The NTFS_STATISTICS data element is returned with a FSCTL_FILESYSTEM_GET_STATISTICS reply
message when NTFS file system statistics are requested. The NTFS_STATISTICS data element is as
follows:

0({1(2|3|4|5|6|7|8|9(0(1|2|3|4|5|/6|7|8|9|0|1|2|3|4|5|6[7(8]9|0]|1

LogFileFullExceptions

OtherExceptions

MftReads

MftReadBytes

MftWrites

MftWriteBytes

MftWritesUserLevel

35/200

[MS-FSCC-Diff] - v20171201

File System Control Codes

Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

MftWritesFlushForLogFileFull MftWritesLazyWriter
MftWritesUserRequest Paddingl
Mft2Writes
Mft2WriteBytes
Mft2WritesUserLevel
Mft2WritesFlushForLogFileFull Mft2WritesLazyWriter
Mft2WritesUserRequest Padding2
RootIndexReads
RootIndexReadBytes
RootIndexWrites
RootIndexWriteBytes
BitmapReads

BitmapReadBytes

BitmapWrites

BitmapWriteBytes

BitmapWritesFlushForLogFileFull

BitmapWritesLazyWriter

BitmapWritesUserRequest

BitmapWritesUserLevel

MftBitmapReads

MftBitmapReadBytes

MftBitmapWrites

MftBitmapWriteBytes

MftBitmapWritesFlushForLogFileFull

MftBitmapWritesLazyWriter

[MS-FSCC-Diff] - v20171201

File System Control Codes

Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

36 /200

MftBitmapWritesUserRequest MftBitmapWritesUserLevel

Padding3

UserIndexReads

UserIndexReadBytes

UserIndexWrites

UserIndexWriteBytes

LogFileReads

LogFileReadBytes

LogFileWrites

LogFileWriteBytes

Allocate (40 bytes)

LogFileFullExceptions (4 bytes): A 32-bit unsigned integer value containing the number of
exceptions generated due to the log file being full.

OtherExceptions (4 bytes): A 32-bit unsigned integer value containing the number of other
exceptions generated.

MftReads (4 bytes): A 32-bit unsigned integer value containing the number of read operations on
the Master File Table (MFT).

MftReadBytes (4 bytes): A 32-bit unsigned integer value containing the number of bytes read from
the MFT.

MftWrites (4 bytes): A 32-bit unsigned integer value containing the number of write operations on
the MFT.

MftWriteBytes (4 bytes): A 32-bit unsigned integer value containing the number of bytes written to
the MFT.

MftWritesUserLevel (8 bytes): An MftWritesUserLevel structure containing statistics about writes
resulting from certain user-level operations.

MftWritesFlushForLogFileFull (2 bytes): A 16-bit unsigned integer containing the number of
flushes of the MFT performed because the log file was full.

MftWritesLazyWriter (2 bytes): A 16-bit unsigned integer containing the number of MFT write
operations performed by the lazy writer thread.

37/ 200

[MS-FSCC-Diff] - v20171201

File System Control Codes

Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

MftWritesUserRequest (2 bytes): A 16-bit unsigned integer that is the sum of the four fields in the
MftWritesUserLevel structure.

Paddingl (2 bytes): Unused. This field SHOULD be set to 0 and MUST be ignored.

Mft2Writes (4 bytes): A 32-bit unsigned integer value containing the number of write operations on
the master file table mirror (MFT2).

Mft2WriteBytes (4 bytes): A 32-bit unsigned integer value containing the number of bytes written
to the MFT2.

Mft2WritesUserLevel (8 bytes): An MftWritesUserLevel structure containing statistics about writes
resulting from certain user-level operations.

Mft2WritesFlushForLogFileFull (2 bytes): A 16-bit unsigned integer containing the number of
flushes of the MFT2 performed because the log file was full.

Mft2WritesLazyWriter (2 bytes): A 16-bit unsigned integer containing the number of MFT2 write
operations performed by the lazy writer thread.

Mft2WritesUserRequest (2 bytes): A 16-bit unsigned integer that contains the sum of the four
fields in the Mft2WritesUserLevel structure.

Padding2 (2 bytes): Unused. This field SHOULD be set to 0 and MUST be ignored.

RootIndexReads (4 bytes): A 32-bit unsigned integer value containing the number of read
operations on the root index.

RootIndexReadBytes (4 bytes): A 32-bit unsigned integer value containing the number of bytes
read from the root index.

RootIndexWrites (4 bytes): A 32-bit unsigned integer value containing the number of write
operations on the root index.

RootIndexWriteBytes (4 bytes): A 32-bit unsigned integer value containing the number of bytes
written to the root index.

BitmapReads (4 bytes): A 32-bit unsigned integer value containing the number of read operations
on the cluster allocation bitmap.

BitmapReadBytes (4 bytes): A 32-bit unsigned integer value containing the number of bytes read
from the cluster allocation bitmap.

BitmapWrites (4 bytes): A 32-bit unsigned integer value containing the number of write operations
on the cluster allocation bitmap. This is the sum of the BitmapWritesFlushForLogFileFull,
BitmapWritesLazyWriter and BitmapWritesUserRequest fields.

BitmapWriteBytes (4 bytes): A 32-bit unsigned integer value containing the number of bytes
written to the cluster allocation bitmap.

BitmapWritesFlushForLogFileFull (2 bytes): A 16-bit unsigned integer containing the number of
flushes of the bitmap performed because the log file was full.

BitmapWritesLazyWriter (2 bytes): A 16-bit unsigned integer containing the number of bitmap
write operations performed by the lazy writer thread.

BitmapWritesUserRequest (2 bytes): A 16-bit unsigned integer that is the sum of the fields in the
BitmapWritesUserLevel structure.

BitmapWritesUserLevel (6 bytes): A BitmapWritesUserLevel structure containing statistics about
bitmap writes resulting from certain user-level operations.

38/ 200

[MS-FSCC-Diff] - v20171201

File System Control Codes

Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

MftBitmapReads (4 bytes): A 32-bit unsigned integer value containing the number of read
operations on the MFT bitmap.

MftBitmapReadBytes (4 bytes): A 32-bit unsigned integer value containing the number of bytes
read from the MFT bitmap.

MftBitmapWrites (4 bytes): A 32-bit unsigned integer value containing the number of write
operations on the MFT bitmap. This value is the sum of the
MftBitmapWritesFlushForLogFileFull, MftBitmapWritesLazyWriter and
MftBitmapWritesUserRequest fields.

MftBitmapWriteBytes (4 bytes): A 32-bit unsigned integer value containing the number of bytes
written to the MFT bitmap.

MftBitmapWritesFlushForLogFileFull (2 bytes): A 16-bit unsigned integer containing the number
of flushes of the MFT bitmap performed because the log file was full.

MftBitmapWritesLazyWriter (2 bytes): A 16-bit unsigned integer value containing the number of
MFT bitmap write operations performed by the lazy writer thread.

MftBitmapWritesUserRequest (2 bytes): A 16-bit unsigned integer that is the sum of all the fields
in the MftBitmapWritesUserLevel structure.

MftBitmapWritesUserLevel (8 bytes): An MftBitmapWritesUserLevel structure containing statistics
about MFT bitmap writes resulting from certain user-level operations.

Padding3 (2 bytes): Unused. This field SHOULD be set to 0 and MUST be ignored.

UserIndexReads (4 bytes): A 32-bit unsigned integer value containing the number of read
operations on the user index.

UserIndexReadBytes (4 bytes): A 32-bit unsigned integer value containing the number of bytes
read from user indices.

UserIndexWrites (4 bytes): A 32-bit unsigned integer value containing the number of write
operations on user indices.

UserIndexWriteBytes (4 bytes): A 32-bit unsigned integer value containing the number of bytes
written to user indices.

LogFileReads (4 bytes): A 32-bit unsigned integer value containing the number of read operations
on the log file.

LogFileReadBytes (4 bytes): A 32-bit unsigned integer value containing the number of bytes read
from the log file.

LogFileWrites (4 bytes): A 32-bit unsigned integer value containing the number of write operations
on the log file.

LogFileWriteBytes (4 bytes): A 32-bit unsigned integer value containing the number of bytes
written to the log file.

Allocate (40 bytes): An Allocate structure describes cluster allocation patterns in NTFS.

2.3.10.2.1 MftWritesUserLevel

The MftWritesUserLevel structure contains statistics about writes resulting from certain user-level
operations.

The MftWritesUserlLevel structure is as follows.

39/ 200

[MS-FSCC-Diff] - v20171201

File System Control Codes

Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

0(1|2|3(4|5|6|7|8|9|0(1|2|3(4|5|6|7|8|9(0(1|2|3(4|5|6[7|8|9|0(1

Write Create

Setlnfo Flush

Write (2 bytes): A 16-bit unsigned integer containing the number of MFT writes due to a write
operation.

Create (2 bytes): A 16-bit unsigned integer containing the number of MFT writes due to a create
operation.

SetInfo (2 bytes): A 16-bit unsigned integer containing the number of MFT writes due to a set file
information operation.

Flush (2 bytes): A 16-bit unsigned integer containing the number of MFT writes due to a flush
operation.

2.3.10.2.2 Mft2WritesUserLevel

The Mft2WritesUserLevel structure contains statistics about writes resulting from certain user-level
operations.

The Mft2WritesUserLevel structure is as follows.

0({1(2|3|4|5|6|7|8|9|0(1(2[3|4|5|/6|7|8|9|0|1|2|3|4|5|6[7(8]9|0]|1

Write Create

Setlnfo Flush

Write (2 bytes): A 16-bit unsigned integer containing the number of MFT2 writes due to a write
operation.

Create (2 bytes): A 16-bit unsigned integer containing the number of MFT2 writes due to a create
operation.

SetInfo (2 bytes): A16-bit unsigned integer containing the number of MFT2 writes due to a set file
information operation.

Flush (2 bytes): A 16-bit unsigned integer containing the number of MFT2 writes due to a flush
operation.

2.3.10.2.3 BitmapWritesUserLevel

The BitmapWritesUserLevel structure contains statistics about bitmap writes resulting from certain
user-level operations.

The BitmapWritesUserLevel structure is as follows.

—
N
w

0(1|2|3(4(5|6(7|8|9|0(1|2|3(4|5|6|7|8|9(0(1]|2|3(4|5|6[|7|8|9|0(1

Write Create

40/ 200

[MS-FSCC-Diff] - v20171201

File System Control Codes

Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Setlnfo

Write (2 bytes): A 16-bit unsigned integer containing the humber of bitmap writes due to a write
operation.

Create (2 bytes): A 16-bit unsigned integer containing the number of bitmap writes due to a create
operation.

SetInfo (2 bytes): A 16-bit unsigned integer containing the number of bitmap writes due to a set file
information operation.

2.3.10.2.4 MftBitmapWritesUserLevel

The MftBitmapWritesUserlLevel structure contains statistics about MFT bitmap write operations
resulting from certain user-level operations.

The MftBitmapWritesUserlLevel structure is as follows.

0({1(2|3|4|5|6|7|8|9|(0(1(2[3|4|5|/6|7|8|9|0|1|2|3|4|5|6[7(8]|9|0]|1

Write Create

Setlnfo Flush

Write (2 bytes): A 16-bit unsigned integer containing the number of MFT bitmap write operations
due to a write operation.

Create (2 bytes): A 16-bit unsigned integer containing the number of MFT bitmap write operations
due to a create operation.

SetInfo (2 bytes): A 16-bit unsigned integer containing the number of MFT bitmap write operations
due to a set file information operation.

Flush (2 bytes): A 16-bit unsigned integer containing the number of MFT bitmap write operations
due to a flush operation.

2.3.10.2.5 Allocate

The Allocate structure describes cluster allocation patterns in NTFS. The cache refers to in-memory
structures that allow quick lookups of free cluster runs either by logical cluster number (LCN) or by
run length.

The Allocate structure is as follows.

01234567893123456789312345678981
Calls
Clusters
Hints
RunsReturned

41 /200

[MS-FSCC-Diff] - v20171201

File System Control Codes

Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

HintsHonored

HintsClusters

Cache

CacheClusters

CacheMiss

CacheMissClusters

Calls (4 bytes): A 32-bit unsigned integer value containing the number of individual calls to allocate
clusters.

Clusters (4 bytes): A 32-bit unsigned integer value containing the number of clusters allocated.

Hints (4 bytes): A 32-bit unsigned integer value containing the number of times a hint was specified
when trying to determine which clusters to allocate.

RunsReturned (4 bytes): A 32-bit unsigned integer value containing the number of runs used to
satisfy all the requests.

HintsHonored (4 bytes): A 32-bit unsigned integer value containing the number of times the
starting LCN hint was used to determine which clusters to allocate.

HintsClusters (4 bytes): A 32-bit unsigned integer value containing the number of clusters allocated
via the starting LCN hint.

Cache (4 bytes): A 32-bit unsigned integer value containing the number of times the run length
cache was useful.

CacheClusters (4 bytes): A 32-bit unsigned integer value containing the number of clusters
allocated via the run length cache.

CacheMiss (4 bytes): A 32-bit unsigned integer value containing the number of times the cache was
not useful and the bitmapped had to be scanned for free clusters.

CacheMissClusters (4 bytes): A 32-bit unsigned integer value containing the number of clusters
allocated by scanning the bitmap.

2.3.10.3 FAT_STATISTICS

The FAT_STATISTICS data element is returned with a FSCTL_FILESYSTEM_GET_STATISTICS reply
message when FAT file system statistics are requested. The FAT_STATISTICS data element is as
follows:

—
N
w

0(1|2|3(4(5|6(7|8|9|0(1|2|3(4|5|6|7|8|9(0(1]|2|3(4|5|6[|7|8|9|0(1

CreateHits

SuccessfulCreates

FailedCreates

42 /200

[MS-FSCC-Diff] - v20171201

File System Control Codes

Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

NonCachedReads

NonCachedReadBytes

NonCachedWrites

NonCachedWriteBytes

NonCachedDiskReads

NonCachedDiskWrites

CreateHits (4 bytes): A 32-bit unsigned integer value containing the humber of create operations.

SuccessfulCreates (4 bytes): A 32-bit unsigned integer value containing the number of successful
create operations.

FailedCreates (4 bytes): A 32-bit unsigned integer value containing the number of failed create
operations.

NonCachedReads (4 bytes): A 32-bit unsigned integer value containing the number of read
operations that were not cached.

NonCachedReadBytes (4 bytes): A 32-bit unsigned integer value containing the number of bytes
read from a file that were not cached.

NonCachedWrites (4 bytes): A 32-bit unsigned integer value containing the number of write
operations that were not cached.

NonCachedWriteBytes (4 bytes): A 32-bit unsigned integer value containing the number of bytes
written to a file that were not cached.

NonCachedDiskReads (4 bytes): A 32-bit unsigned integer value containing the number of read
operations that were not cached. This value includes sub-read operations.

NonCachedDiskWrites (4 bytes): A 32-bit unsigned integer value containing the number of write
operations that were not cached. This value includes sub-write operations.

2.3.10.4 EXFAT_STATISTICS

The EXFAT_STATISTICS data element is returned with a FSCTL_FILESYSTEM_GET_STATISTICS reply
message when exFAT file system statistics are requested. The EXFAT_STATISTICS data element is as
follows:

0(1|/2|3(4|5|6(7|8|9|0(1|2|3(4|5|6[7|8|9(0(1|2|3(4|5|6[7|8|9|0(1

CreateHits

SuccessfulCreates

FailedCreates

NonCachedReads

43 /200

[MS-FSCC-Diff] - v20171201

File System Control Codes

Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

NonCachedReadBytes

NonCachedWrites

NonCachedWriteBytes

NonCachedDiskReads

NonCachedDiskWrites

CreateHits (4 bytes): A 32-bit unsigned integer value containing the number of create operations.

SuccessfulCreates (4 bytes): A 32-bit unsigned integer value containing the number of successful
create operations.

FailedCreates (4 bytes): A 32-bit unsigned integer value containing the number of failed create
operations.

NonCachedReads (4 bytes): A 32-bit unsigned integer value containing the number of read
operations that were not cached.

NonCachedReadBytes (4 bytes): A 32-bit unsigned integer value containing the number of bytes
read from a file that were not cached.

NonCachedWrites (4 bytes): A 32-bit unsigned integer value containing the number of write
operations that were not cached.

NonCachedWriteBytes (4 bytes): A 32-bit unsigned integer value containing the number of bytes
written to a file that were not cached.

NonCachedDiskReads (4 bytes): A 32-bit unsigned integer value containing the number of read
operations that were not cached. This value includes sub-read operations.

NonCachedDiskWrites (4 bytes): A 32-bit unsigned integer value containing the number of write
operations that were not cached. This value includes sub-write operations.
2.3.11 FSCTL_FIND_FILES_BY_SID Request

The FSCTL_FIND_FILES_BY_SID Request message requests that the server return a list of the files
and directories whose owner matches the specified security identifier (SID), in no necessary order.
The search spans the file system subtree descending from the directory associated with the handle on
which this FSCTL was invoked. This message contains a FIND_BY_SID_DATA data element.

The FIND_BY_SID_DATA data element is as follows.

0(1(2|3|4|5|6|7|8|9(0(1|2[3|4|5|/6|7|8|9|0|1|2|3|4|5|6[7(8]9|0]1

Restart

SID (variable)

44 /200

[MS-FSCC-Diff] - v20171201

File System Control Codes

Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Restart (4 bytes): A 32-bit unsigned integer value that indicates to restart the search. This value
MUST be 0x00000001 on the first call so that the search starts from the beginning of the directory
on which the operation is requested. For subsequent calls, this member SHOULD be zero so that
the search resumes at the point where it stopped.

SID (variable): A SID ([MS-DTYP] section 2.4.2.2) data element that specifies the owner.

2.3.12 FSCTL_FIND_FILES_BY_SID Reply

The FSCTL_FIND_FILES_BY_SID Reply message returns the results of the FSCTL_FIND_FILES_BY_SID
Request (section 2.3.11) as an array of FILE_ NAME_INFORMATION (section 2.1.7) data elements
containing relative pathnames (section 2.1.5), one for each matching file or directory that is found, in
no necessary order. All returned file names MUST be relative to the directory on which the
FSCTL_FIND_FILES_BY_SID Request was issued. This returns as many FILE_NAME_INFORMATION
data elements as will fit in the provided output buffer. The beginning of each
FILE_NAME_INFORMATION data element MUST be aligned to an 8-byte boundary, as measured from
the beginning of the buffer. The last FILE_NAME_INFORMATION structure returned MAY<19> contain
trailing padding.

This message also returns a status code; as specified in fMS-ERREF}-section 2.3-—Fhe-2. Upon success,
the status code returned direetly-by the function that processes this FSCTL MUSTbeis
STATUS_SUCCESS-erere-of. The most common error codes are listed in the following_table.

Status code Meaning

STATUS_NO_QUOTAS_FOR_ACCOUNT | Quota tracking is not enabled; therefore, the file system does not keep a
0x0000010D record of file owners. This is considered a success code. The reply MUST
NOT contain any data elements.

STATUS_INVALID_PARAMETER The handle specified is not the handle to a directory.

0xC000000D

STATUS_ACCESS_DENIED Neither the SeManageVolumePrivilege nor the SeBackupPrivilege

0xC0000022 privilege is held.

STATUS_BUFFER_TOO_SMALL The output buffer is not large enough to contain the

0xC0000023 FILE_NAME_INFORMATION structure (including any trailing padding) for
the first matching file or directory.

STATUS_INVALID_USER_BUFFER The input buffer is less than the size of a long integer (4 bytes) plus the

0xCOO000ES length of the SID provided, or the input or output buffer is not aligned to

the native word size of the platform, or the size of the output buffer is
less than the minimum size of a FILE_NAME_INFORMATION structure (8
bytes), or the restart value is greater than 1.

When the status code is STATUS_SUCCESS, the responder MUST retain an implementation-dependent
indication of where the directory processing ended, which is required to support a subsequent
FSCTL_FIND_FILES_BY_SID Request with the Restart field set to 0x00000000. For an example of
FSCTL_FIND_FILES_BY_SID restart handling, see [MS-FSA] section 2.1.5.9.7.

2.3.13 FSCTL_GET_COMPRESSION Request

This message requests that the server return the current compression state of the file or directory
associated with the handle on which this FSCTL was invoked.

This message does not contain any additional data elements.

45 /200

[MS-FSCC-Diff] - v20171201

File System Control Codes

Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

2.3.14 FSCTL_GET_COMPRESSION Reply

The FSCTL_GET_COMPRESSION reply message returns the results of the FSCTL_GET_COMPRESSION
request as a 16-bit unsigned integer value that indicates the current compression state of the file or
directory.

The CompressionState element is as follows.

w

1 2
0(1|2|3(4|5|6|7|8|9|0(1|2|3(4|5|6(7|8|9(0(1|2|3(4|5|6|7|8|9|0(1

CompressionState

CompressionState (2 bytes): One of the following standard values MUST be returned.

Value Meaning

COMPRESSION_FORMAT_NONE | The file or directory is not compressed.

0x0000

COMPRESSION_FORMAT_LZNT1 | The file or directory is compressed by using the LZNT1 compression algorithm.
0x0002 For more information, see [UASDC].

All other values Reserved for future use and MUST NOT be used.

The actual file or directory compression format is implementation-dependent.<20>

If the file system of the volume that contains the specified file or directory does not support per-file or
per-directory compression, the request MUST NOT succeed. The error code that is returned in this
situation MUST be as specified in section 2.2.

This message also returns a status code; as specified in fMS-ERREF}-section 2.3-—Fhe-2. Upon success,
the status code thatis-returned direetly-by the function that processes this FSCTL MUSFbeis
STATUS_SUCCESS-e+renre-of. The most common error codes are listed in the following_table.

Error code Meaning
STATUS_INVALID_PARAMETER The output buffer length is less than 2, or the handle is not to a file or
0xC000000D directory.

STATUS_INVALID_DEVICE_REQUEST | The volume does not support compression.<21>
0xC0000010

2.3.15FSCTL_GET_NTFS_VOLUME_DATA Request

This message requests that the server return information about the NTFS file system volume that
contains the file or directory that is associated with the handle on which this FSCTL was invoked.

This message does not contain any parameters.

2.3.16 FSCTL_GET_NTFS_VOLUME_DATA Reply

The FSCTL_GET_NTFS_VOLUME_DATA reply message returns the results of the
FSCTL_GET_NTFS_VOLUME_DATA request as an NTFS_VOLUME_DATA_BUFFER element.

46 /200

[MS-FSCC-Diff] - v20171201

File System Control Codes

Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

The NTFS_VOLUME_DATA_BUFFER contains information on a volume. For more information about the
NTFS file system, see [MSFT-NTFS].

e

112(3|4|5(6(7|8|9|0

VolumeSerialNumber

NumberSectors

TotalClusters

FreeClusters

TotalReserved

BytesPerSector

BytesPerCluster

BytesPerFileRecordSegment

ClustersPerFileRecordSegment

MftValidDataLength

MftStartLcn

Mft2StartLcn

MftZoneStart

[MS-FSCC-Diff] - v20171201
File System Control Codes

Copyright © 2017 Microsoft Corporation

Release: December 1, 2017

47/ 200

MftZoneEnd

VolumeSerialNumber (8 bytes): A 64-bit signed integer that contains the serial number of the
volume. This is a unique number assigned to the volume media by the operating system when the
volume is formatted.

NumberSectors (8 bytes): A 64-bit signed integer that contains the number of sectors in the
specified volume.

TotalClusters (8 bytes): A 64-bit signed integer that contains the total number of clusters in the
specified volume.

FreeClusters (8 bytes): A 64-bit signed integer that contains the number of free clusters in the
specified volume.

TotalReserved (8 bytes): A 64-bit signed integer that contains the number of reserved clusters in
the specified volume. Reserved clusters are free clusters reserved for when the volume becomes
full. Reserved clusters used to guarantee clusters are available at points when the file system can't
properly report allocation failures.

BytesPerSector (4 bytes): A 32-bit unsigned integer that contains the number of bytes in a sector
on the specified volume.

BytesPerCluster (4 bytes): A 32-bit unsigned integer that contains the number of bytes in a cluster
on the specified volume. This value is also known as the cluster factor.

BytesPerFileRecordSegment (4 bytes): A 32-bit unsigned integer that contains the number of
bytes in a file record segment.

ClustersPerFileRecordSegment (4 bytes): A 32-bit unsigned integer that contains the nhumber of
clusters in a file record segment.

MftValidDatalLength (8 bytes): A 64-bit signed integer that contains the size of the master file table
in bytes.

MftStartLcn (8 bytes): A 64-bit signed integer that contains the starting logical cluster number
(LCN) of the master file table.

Mft2StartLcn (8 bytes): A 64-bit signed integer that contains the starting logical cluster number of
the master file table mirror.

MftZoneStart (8 bytes): A 64-bit signed integer that contains the starting logical cluster number of
the master file table zone.

MftZoneEnd (8 bytes): A 64-bit signed integer that contains the ending logical cluster number of the
master file table zone. The size of the master file table zone is (MftZoneEnd - MftZoneStart)
clusters.

This message also returns a status code; as specified in fMS-ERREF}-section 2.3-—Fhe2. Upon success,
the status code returned directly by the function that processes this FSCTL MUS¥beis
STATUS_SUCCESS-erenre-ef. The most common error codes are listed in the following_table.

Error code Meaning

STATUS_INVALID_PARAMETER The handle specified is not open.
0xC000000D

48 /200

[MS-FSCC-Diff] - v20171201

File System Control Codes

Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Error code Meaning

STATUS_VOLUME_DISMOUNTED | The specified volume is no longer mounted.
0xC000026E

STATUS_BUFFER_TOO_SMALL The output buffer is too small to contain an NTFS_VOLUME_DATA_BUFFER
0xC0000023 structure.

2.3.17 FSCTL_GET_REFS_VOLUME_DATA Request

This message requests that the server return information about the ReFS file system volume that
contains the file or directory that is associated with the handle on which this FSCTL was invoked.

This message does not contain any parameters.

2.3.18 FSCTL_GET_REFS_VOLUME_DATA Reply

The FSCTL_GET_REFS_VOLUME_DATA reply message returns the results of the
FSCTL_GET_REFS_VOLUME_DATA request as an REFS_VOLUME_DATA_BUFFER element.

The REFS_VOLUME_DATA_BUFFER contains information on a volume.

—
N
w

0(1|/2|3(4|5|6(7|8|9|0|1|2|3(4|5|6|7|8|9(0(1|2|3(4|5|6[7|8|9|0(1

ByteCount

MajorVersion

MinorVersion

BytesPerPhysicalSector

VolumeSerialNumber

NumberSectors

TotalClusters

FreeClusters

TotalReserved

49 /200

[MS-FSCC-Diff] - v20171201

File System Control Codes

Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

BytesPerSector

BytesPerCluster

MaximumSizeOfResidentFile

Reserved (80 bytes)

ByteCount (4 bytes): A 32-bit unsigned integer that contains the valid data length for this structure.
ByteCount can be less than the size of this structure. Only the fields that entirely fit within the
valid data length for this structure, as defined by ByteCount, are valid.

MajorVersion (4 bytes): A 32-bit unsigned integer that contains the major version of the ReFS
volume.

MinorVersion (4 bytes): A 32-bit unsigned integer that contains the minor version of the ReFS
volume.

BytesPerPhysicalSector (4 bytes): A 32-bit unsigned integer that defines the number of bytes in a
physical sector on the specified volume.

VolumeSerialNumber (8 bytes): A 64-bit signed integer that contains the serial humber of the
volume. This is a unique number assigned to the volume media by the operating system when the
volume is formatted.

NumberSectors (8 bytes): A 64-bit signed integer that contains the nhumber of sectors in the
specified volume.

TotalClusters (8 bytes): A 64-bit signed integer that contains the total number of clusters in the
specified volume.

FreeClusters (8 bytes): A 64-bit signed integer that contains the number of free clusters in the
specified volume.

TotalReserved (8 bytes): A 64-bit signed integer that contains the number of reserved clusters in
the specified volume. Reserved clusters are used to guarantee clusters are available at points
when the file system can't properly report allocation failures.

BytesPerSector (4 bytes): A 32-bit unsigned integer that contains the humber of bytes in a sector
on the specified volume.

BytesPerCluster (4 bytes): A 32-bit unsigned integer that contains the number of bytes in a cluster
on the specified volume. This value is also known as the cluster factor.

MaximumsSizeOfResidentFile (8 bytes): A 64-bit unsigned integer that defines the maximum
number of bytes a file can contain and be co-located with the file system metadata that describes
the file (commonly known as resident files).

50/ 200

[MS-FSCC-Diff] - v20171201

File System Control Codes

Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Reserved (80 bytes): 80 bytes which, if included, as per the ByteCount field, are reserved, have an
undefined value, and are not interpreted.

This message also returns a status code; as specified in fMS-ERREF}-section 2.3—Fhe2. Upon success,
the status code returned directly by the function that processes this FSCTL MUS¥beis
STATUS_SUCCESS-e+ene-ef. The most common error codes are listed in the following_table.

Error code Meaning

STATUS_INVALID_PARAMETER The handle specified is not open.
0xC000000D

STATUS_VOLUME_DISMOUNTED | The specified volume is no longer mounted.
0xC000026E

STATUS_BUFFER_TOO_SMALL The output buffer is too small to contain a REFS_VOLUME_DATA_BUFFER
0xC0000023 structure.

2.3.19 FSCTL_GET_OBJECT_ID Request

This message requests that the server return the object identifier for the file or directory associated
with the handle on which this FSCTL was invoked.

Object identifiers are 16-byte opaque values that are used to track files and directories, and they are
generated by the server. File and directory object identifiers are invisible to most applications and
SHOULD never be modified by applications.

This message does not contain any additional data elements.

2.3.20 FSCTL_GET_OBJECT_ID Reply

This message returns the results of an FSCTL_GET_OBJECT_ID request in a
FILE_OBJECTID_BUFFER (section 2.1.3).

If the file system of the volume containing the specified file or directory does not support the use of
object IDs, the request will not succeed. The error code returned in this situation is specified in section
2.2.

This message also returns a status code; as specified in fMS-ERREF}-section 2.3-—Fhe-2. Upon success,
the status code returned direethy-by the function that processes this FSCTL MUSTbeis
STATUS_SUCCESS-erere-of. The most common error codes are listed in the following_table.

Error code Meaning

STATUS_INVALID_PARAMETER The output buffer length is less than the size of a

0xC000000D FILE_OBJECTID_BUFFER or the handle is not to a file or directory.
STATUS_OBJECTID_NOT_FOUND The file or directory has no object ID.

0xC00002F0

STATUS_INVALID_DEVICE_REQUEST | The file system does not support the use of object IDs.
0xC0000010

51/200

[MS-FSCC-Diff] - v20171201

File System Control Codes

Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

2.3.21 FSCTL_GET_REPARSE_POINT Request

This message requests that the server return the reparse point data for the file or directory associated
with the handle on which this FSCTL was invoked.

This message MUST only be sent for a file or directory handle.

This message does not contain any additional data elements.

2.3.22 FSCTL_GET_REPARSE_POINT Reply

This message returns the results of the FSCTL_GET_REPARSE_POINT request. The message contains a
REPARSE_GUID_DATA_BUFFER (including subtypes) or a REPARSE_DATA_BUFFER data element.

Both the REPARSE_GUID_DATA_BUFFER and the REPARSE_DATA_BUFFER structures begin with a
ReparseTag field. The ReparseTag value uniquely identifies the filter driver that creates/uses the
reparse point, and the application's filter driver processes the reparse point data as either a
REPARSE_GUID_DATA_BUFFER or a REPARSE_DATA_BUFFER, depending on the structure
implemented by the filter driver for that type of reparse point. A particular filter driver is implemented
with specific support for the type of reparse point data structure it accepts.

If the file system of the volume containing the specified file or directory does not support the use of
reparse points, the request will not succeed. The error code returned in this situation MAY vary,
depending on the file system.<22>

This message also returns a status code; as specified in fMS-ERREF}-section 2.3-—Fhe-2. Upon success,
the status code returned direetly-by the function that processes this FSCTL MUSFbeis
STATUS_SUCCESS-e+rere-of. The most common error codes are listed in the following_table.

Error code Meaning

STATUS_BUFFER_TOO_SMALL The output buffer is too small to contain a

0xC0000023 REPARSE_GUID_DATA_BUFFER.
STATUS_INVALID_PARAMETER The handle is not to a file or directory.

0xC000000D

STATUS_BUFFER_OVERFLOW The output buffer filled before all the reparse point data was returned.
0x80000005

STATUS_NOT_A_REPARSE_POINT The file or directory is not a reparse point.

0xC0000275

STATUS_INVALID_DEVICE_REQUEST | The file system does not support the use of reparse points.
0xC0000010

2.3.23 FSCTL_GET_RETRIEVAL_POINTERS Request

The FSCTL_GET_RETRIEVAL_POINTERS request message requests that the server return a list of
extents for the file or directory associated with the handle on which this FSCTL was invoked. The
extents describe the mapping between virtual cluster numbers (VCNs) and logical cluster numbers
(LCNSs). This request is most commonly used by defragmentation utilities. This message contains a
STARTING_VCN_INPUT_BUFFER data element.

The STARTING_VCN_INPUT_BUFFER data element is as follows.

52 /200

[MS-FSCC-Diff] - v20171201

File System Control Codes

Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

0(1|2|3(4|5|6|7|8|9|0(1|2|3(4|5|6|7|8|9(0(1|2|3(4|5|6[7|8|9|0(1

StartingVcn

StartingVcn (8 bytes): A 64-bit signed integer that contains the virtual cluster number (VCN) at
which to begin retrieving extents in the file. This value MUST be greater than or equal to 0.

2.3.24 FSCTL_GET_RETRIEVAL_POINTERS Reply

The FSCTL_GET_RETRIEVAL_POINTERS reply message returns the results of the
FSCTL_GET_RETRIEVAL_POINTERS request as a variably-sized data element,
RETRIEVAL_POINTERS_BUFFER, that specifies the allocation and location on disk of a specific file.

The FSCTL_GET_RETRIEVAL_POINTERS reply returns the extent locations (that is, locations of
allocated regions of disk space) of nonresident data. A file system MAY allow resident data, which is
data that can be written to disk within the file's directory record. Because resident data requires no
additional disk space allocation, no extent locations are associated with resident data.<23>

The RETRIEVAL_POINTERS_BUFFER data element is as follows.

—
N
w

0({1(2|3|4|5|6|7|8|9(0(1(2[3|4|5|/6|7|8|9|0|1|2|3|4|5|6[7(8]9|0]|1

ExtentCount

Unused

StartingVcn

Extents (variable)

ExtentCount (4 bytes): A 32-bit unsigned integer that contains the nhumber of EXTENTS data
elements in the Extents array. This number can be zero if there are no clusters allocated at (or
beyond) the specified StartingVcn.

Unused (4 bytes): Reserved for alignment. This field can contain any value and MUST be ignored.

StartingVcn (8 bytes): A 64-bit signed integer that contains the starting virtual cluster number
(VCN) returned by the FSCTL_GET_RETRIEVAL_POINTERS reply. This is not necessarily the VCN
requested by the FSCTL_GET_RETRIEVAL_POINTERS request, as the file system driver might
return the starting VCN of the extent containing the requested starting VCN. This value MUST be
greater than or equal to 0.

Extents (variable): An array of zero or more EXTENTS data elements. For the number of EXTENTS
data elements in the array, see ExtentCount.

53 /200

[MS-FSCC-Diff] - v20171201

File System Control Codes

Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

2.3.24.1 EXTENTS
The EXTENTS data element is as follows.

0({1(2|3|4|5|6|7|8|9(0(1(2[3[|4|5|/6|7|8|9|0|1|2|3|4|5(6[7(8]9|0]|1

NextVcn

Lcn

NextVcn (8 bytes): A 64-bit signed integer that contains the VCN at which the next extent begins.
This value minus either StartingVcn (for the first Extents array element) or the NextVcn of the
previous element of the array (for all other Extents array elements) is the length in clusters of
the current extent.

Lcn (8 bytes): A 64-bit signed integer that contains the logical cluster number (LCN) at which the
current extent begins on the volume. A 64-bit value of -1 indicates either a compression unit that
is partially allocated or an unallocated region of a sparse file. For more information about sparse
files, see [SPARSE]. Compression is performed in 16-cluster units. If a given 16-cluster unit
compresses to fit in, for example, 9 clusters, there will be a 7-cluster extent of the file with an LCN
of -1.

This message also returns a status code; as specified in fMS-ERREF}-section 2.3-—Fhe-2. Upon success,
the status code returned direetly-by the function that processes this FSCTL MUSFbeis
STATUS_SUCCESS-erere-of. The most common error codes are listed in the following_table.

Error code Meaning

STATUS_BUFFER_TOO_SMALL | The output buffer is too small to contain a RETRIEVAL_POINTERS_BUFFER
0xC0000023 structure.

STATUS_INVALID_PARAMETER | The input buffer is too small to contain a STARTING_VCN_INPUT_BUFFER, or

0xC000000D the StartingVcn given is negative, or the handle is not to a file or directory.
STATUS_END_OF_FILE The stream is resident in the MFT and has no clusters allocated, or the starting
0xC0000011 VCN is beyond the end of the file.

STATUS_BUFFER_OVERFLOW The output buffer filled before all the extents for this file were returned.
0x80000005

2.3.25FSCTL_IS_PATHNAME_VALID Request

The FSCTL_IS_PATHNAME_VALID request message requests that the server indicate whether the
specified pathname is well-formed (of acceptable length, with no invalid characters, and so on - see
section 2.1.5) with respect to the volume that contains the file or directory associated with the handle
on which this FSCTL was invoked.

The data element is as follows.

54 /200

[MS-FSCC-Diff] - v20171201

File System Control Codes

Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

0(1|2|3(4|5|6|7|8|9|0(1|2|3(4|5|6|7|8|9(0(1|2|3(4|5|6[7|8|9|0(1

PathNamelLength

PathName (variable)

PathNamelLength (4 bytes): An unsigned 32-bit integer that specifies the length, in bytes, of the
PathName data element.

PathName (variable): A variable-length Unicode string that specifies the path name.

2.3.26 FSCTL_IS_PATHNAME_VALID Reply

This message returns the results of the FSCTL_IS_PATHNAME_VALID Request (section 2.3.25).
A STATUS_SUCCESS from this call means that the pathname is valid. An error means that the
pathname is not valid.<24>

2.3.27 FSCTL_LMR_SET_LINK_TRACKING_INFORMATION Request

The FSCTL_LMR_SET_LINK_TRACKING_INFORMATION request message sets Distributed Link Tracking
(DLT) information such as file system type, volume ID, object ID, and destination computer's NetBIOS
name for the file or directory associated with the handle on which this FSCTL was invoked. For more
information about Distributed Link Tracking (DLT), see [MS-DLTW] section 3.1.6.

There are two variations of this request, depending on whether it is embedded within [MS-SMB] or
[MS-SMB2]. The request definitions are as follows.

= FSCTL_LMR_SET_LINK_TRACKING_INFORMATION Request for SMB
= FSCTL_LMR_SET_LINK_TRACKING_INFORMATION Request for SMB2

2.3.27.1 FSCTL_LMR_SET_LINK_TRACKING_INFORMATION Request for SMB

The message contains a REMOTE_LINK_TRACKING_INFORMATION32 data element. The SMB
REMOTE_LINK_TRACKING_INFORMATION32 data element is as follows.

-
N
w

0(1|/2|3(4|5|6|7|8|9|0(1|2|3(4|5|6|7|8|9(0(1|2|3(4|5|6[|7|8|9|0(1

TargetFileObject

TargetLinkTrackingInformationLength

TargetLinkTrackingInformationBuffer (variable)

TargetFileObject (4 bytes): The Fid of the file from which to obtain link tracking information. For
Fid type, see [MS-SMB] section 2.2.7.2.1.

55/200

[MS-FSCC-Diff] - v20171201

File System Control Codes

Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

TargetLinkTrackingInformationLength (4 bytes): The length of the
TargetLinkTrackingInformationBuffer.

TargetLinkTrackingInformationBuffer (variable): This field is as specified in
TARGET_LINK_TRACKING_INFORMATION_Buffer.
2.3.27.2 FSCTL_LMR_SET_LINK_TRACKING_INFORMATION Request for SMB2

The message contains an SMB2_REMOTE_LINK_TRACKING_INFORMATION data element. The
SMB2_REMOTE_LINK_TRACKING_INFORMATION data element is as follows.

-
N
w

0[{1(2|3|4|5|6|7|8|9(0(1(2[3|4|5|/6|7|8|9|0|1|2|3|4|5(6[7(8]9|0]|1

TargetFileObject

TargetLinkTrackingInformationLength

TargetLinkTrackingInformationBuffer (variable)

TargetFileObject (8 bytes): Nonzero values of TargetFileObject are never used in the Server
Message Block (SMB) Version 2 Protocol variant of the request. This field MUST be set to zero.

TargetLinkTrackingInformationLength (4 bytes): The length of the
TargetLinkTrackingInformationBuffer field.

TargetLinkTrackingInformationBuffer (variable): This field is as specified in
TARGET_LINK_TRACKING_INFORMATION_BUFFER.
2.3.27.3 TARGET_LINK_TRACKING_INFORMATION_Buffer

The TARGET_LINK_TRACKING_INFORMATION_Buffer data element MUST take one of the following
forms:

= TARGET_LINK_TRACKING_INFORMATION_Buffer_1 if the
TargetLinkTrackingInformationLength value is less than 36.

= TARGET_LINK_TRACKING_INFORMATION_Buffer_2 if the
TargetLinkTrackingInformationLength value is greater than or equal to 36.

2.3.27.3.1 TARGET_LINK_TRACKING_INFORMATION_Buffer_1

If the TargetLinkTrackingInformationLength value is less than 36, the
TARGET_LINK_TRACKING_INFORMATION_Buffer data element MUST be as follows.

—
N
w

0(1|/2|3(4|5|6|7|8|9|0|1|2|3(4|5|6|7|8|9(0(1|2|3(4|5|6[7|8|9|0(1

NetBIOSName (variable)

56 /200

[MS-FSCC-Diff] - v20171201

File System Control Codes

Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

NetBIOSName (variable): A null-terminated ASCII string containing the NetBIOS name of the
destination computer, if known. For more information, see [MS-DLTW] section 3.1.6. If not
known, this field is zero length and contains nothing.

2.3.27.3.2 TARGET_LINK_TRACKING_INFORMATION_Buffer_2

If the TargetLinkTrackingInformationLength value is greater than or equal to 36, the
TARGET_LINK_TRACKING_INFORMATION_Buffer data element MUST be as follows.

-
N
w

0(1|2|3(4|5|6|7|8|9|0(1|2|3(4|5|6(7|8|9(0(1|2|3(4|5|6[7|8|9|0(1

Type

Volumeld (16 bytes)

Objectld (16 bytes)

NetBIOSName (variable)

Type (4 bytes): An unsigned 32-bit integer that indicates the type of file system on which the file is
hosted on the destination computer. MUST be one of the following.

Value Meaning

0x00000000 | The destination file system is NTFS.

0x00000001 | The destination file system is DFS. For more information, see [MSDFS].

Volumeld (16 bytes): A 16-byte GUID that uniquely identifies the volume for the object, as
obtained from the ObjectId field of FileFsObjectldInformation.

Objectld (16 bytes): A 16-byte GUID that uniquely identifies the destination file or directory within
the volume on which it resides, as indicated by Volumeld.

NetBIOSName (variable): A null-terminated ASCII string containing the NetBIOS name of the
destination computer, if known. For more information, see [MS-DLTW] section 3.1.6. If not
known, this field is zero length and contains nothing.

2.3.28 FSCTL_LMR_SET_LINK_TRACKING_INFORMATION Reply

This message returns the results of the FSCTL_LMR_SET_LINK_TRACKING_INFORMATION request.

57/ 200

[MS-FSCC-Diff] - v20171201

File System Control Codes

Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

The only data item this message returns is a status code, as specified in fMS-ERREF}-section 2.3—Fhe
2. Upon success, the status code returned direethy-by the function that processes this FSCTL MUSF
beis STATUS_SUCCESS-erere-ef. The most common error codes are listed in the following-_table.

Error code Meaning

STATUS_INVALID_PARAMETER | The input buffer length is smaller than the length of the required input data
0xC000000D element.

2.3.29 FSCTL_PIPE_PEEK request

The FSCTL_PIPE_PEEK request requests that the server copy a hamed pipe's data into a buffer for
preview without removing it. The FSCTL_PIPE_PEEK request message is issued to invoke a reply, and
does not have an associated data structure.

2.3.30 FSCTL_PIPE_PEEK Reply

The FSCTL_PIPE_PEEK response returns data from the pipe server's output buffer in the FSCTL
output buffer. The structure of that data is as follows.

—
N
w

0(1|2|3(4|5|6(7|8|9|0|1|2|3(4|5|6|7|8|9(0(1|2|3(4|5|6[7|8|9|0(1

NamedPipeState

ReadDataAvailable

NumberOfMessages

Messagelength

Data (variable)

NamedPipeState (4 bytes): A 32-bit unsigned integer referring to the current state of the pipe. The
allowed values are shown in the following table.

Pipe State Meaning

FILE_PIPE_CONNECTED_STATE | The specified named pipe is in the connected state.

0x00000003

FILE_PIPE_CLOSING_STATE The server end of the specified named pipe has been closed, but data is
0x00000004 still available for the client to read.

ReadDataAvailable (4 bytes): A 32-bit unsigned integer that specifies the size, in bytes, of the data
available to read from the pipe.

58/ 200

[MS-FSCC-Diff] - v20171201

File System Control Codes

Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

NumberOfMessages (4 bytes): A 32-bit unsigned integer that specifies the number of messages
available in the pipe if the pipe has been created as a message-type pipe. Otherwise, this field is

0.

MessagelLength (4 bytes): A 32-bit unsigned integer that specifies the length of the first message
available in the pipe if the pipe has been created as a message-type pipe. Otherwise, this field is

0.

Data (variable): A byte buffer of data from the pipe.

This message returns a status code; as specified in fMS-ERREF}-section 2.3—Fhe-2. Upon success, the
status code returned direethy-by the function that processes this FSCTL MUSTbeis STATUS_SUCCESS
er-one-of. The most common error codes are listed in the following_table.

Error code

Meaning

STATUS_PIPE_DISCONNECTED
0xC00000B0O

The specified named pipe is in the disconnected state.

STATUS_INVALID_PIPE_STATE
0xCO0000AD

The data cannot be read in the current state of the specified pipe.

STATUS_PIPE_BROKEN
0xC000014B

The pipe operation has failed because the other end of the pipe has been
closed.

STATUS_INVALID_USER_BUFFER
0xCO0000ES8

An exception was raised while accessing a user buffer.

STATUS_INSUFFICIENT_RESOURCES
0xCO00009A

There were insufficient resources to complete the operation.

STATUS_INVALID_DEVICE_REQUEST
0xC0000010

The type of the handle is not a pipe.

STATUS_BUFFER_OVERFLOW
0x80000005

The data was too large for the specified buffer. This is a warning, not an
error. Response contains information including available data length and
data that fits into the buffer.

For more information on named pipes, see [PIPE].

2.3.31 FSCTL_PIPE_WAIT Request

The FSCTL_PIPE_WAIT Request requests that the server wait until either a time-out interval elapses
or an instance of the specified named pipe is available for connection.

1 2 3
0({1(2|3|4|5|6|7|8|9|(0(1|2(3[|4|5|/6|7|8|9|0|1|2|3|4|5|6[7(8]|9|0]|1
Timeout
NamelLength

TimeoutSpecified

Padding

Name (variable)

[MS-FSCC-Diff] - v20171201
File System Control Codes

Copyright © 2017 Microsoft Corporation

Release: December 1, 2017

59/ 200

Timeout (8 bytes): A 64-bit signed integer that specifies the maximum amount of time, in units of
100 milliseconds, that the function can wait for an instance of the named pipe to be available.

NameLength (4 bytes): A 32-bit unsigned integer that specifies the size, in bytes, of the named
pipe Name field.

TimeoutSpecified (1 byte): A Boolean (section 2.1.8) value that specifies whether or not the
Timeout parameter will be ignored.

Value | Meaning

FALSE | Indicates that the server MUST wait forever (no timeout) for the named pipe. Any value in Timeout
MUST be ignored.

TRUE Indicates that the server MUST use the value in the Timeout parameter.

Padding (1 byte): The client SHOULD set this field to 0x00, and the server MUST ignore it.

Name (variable): A Unicode string that contains the name of the named pipe. Name MUST not
include the "\pipe\", so if the operation was on \\server\pipe\pipename, the name would be
"pipename".

For more information on named pipes, see [PIPE].

2.3.32FSCTL_PIPE_WAIT Reply
This message returns the results of the FSCTL_PIPE_WAIT request.

The only data item this message returns is a status code, as specified in fMS-ERREF}-section 2.3—Fhe
2. Upon success, the status code returned direethy-by the function that processes this FSCTL MUSTbe
ene-ofis STATUS SUCCESS. The most common error codes are listed in the following_table.

Error code Meaning

STATUS_SUCCESS The specified named pipe is available for connection.

0x00000000

STATUS_OBIJECT_NAME_NOT_FOUND | The specified nhamed pipe does not exist.

0xC0000034 This error code is also returned when the pipe is closed during wait.
STATUS_IO_TIMEOUT Timeout specified in the FSCTL_PIPE_WAIT request expired.
0xC00000B5

STATUS_INSUFFICIENT_RESOURCES | There were insufficient resources to complete the operation.
0xC000009A

STATUS_INVALID_DEVICE_REQUEST | The type of the handle is not a pipe.
0xC0000010

60/ 200

[MS-FSCC-Diff] - v20171201

File System Control Codes

Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

2.3.33 FSCTL_PIPE_TRANSCEIVE Request

The FSCTL_PIPE_TRANSCEIVE request is used to send and receive data from an open pipe. Any bytes
in the FSCTL input buffer are written as a binary large object (BLOB) to the input buffer of the pipe
server.

The FSCTL input buffer does not have an associated structure. The buffer is a BLOB of bytes that are
written into the associated pipe.

2.3.34 FSCTL_PIPE_TRANSCEIVE Reply

The FSCTL_PIPE_TRANSCEIVE response returns data from the pipe server's output buffer in the FSCTL
output buffer.

This message returns a status code; as specified in fMS-ERREF}-section 2.3-—Fhe-2. Upon success, the
status code returned direetly-by the function that processes this FSCTL MUSFbeis STATUS_SUCCESS
er-ene-of. The most common error codes are listed in the following_table.

Error code Meaning

STATUS_PIPE_DISCONNECTED The specified named pipe is in the disconnected state.

0xC00000B0

STATUS_INVALID_PIPE_STATE The named pipe is not in the connected state or not in the full-duplex
0xC00000AD message mode.

STATUS_PIPE_BUSY The named pipe contains unread data.

0xCO0000AE

STATUS_INVALID_USER_BUFFER An exception was raised while accessing a user buffer.

0xC00000ES8

STATUS_INSUFFICIENT_RESOURCES | There were insufficient resources to complete the operation.
0xC000009A

STATUS_INVALID_DEVICE_REQUEST | The type of the handle is not a pipe.
0xC0000010

STATUS_BUFFER_OVERFLOW The data was too large to fit into the specified buffer.
0x80000005

For more information on named pipes, see [PIPE].

2.3.35 FSCTL_QUERY_ALLOCATED_RANGES Request

The FSCTL_QUERY_ALLOCATED_RANGES request message requests that the server scan a file or
alternate stream looking for byte ranges that can contain nonzero data, and then return information
on those ranges. Only sparse files can have zeroed ranges known to the operating system. For other
files, the server will return only a single range that contains the starting point and the length
requested. The request message contains a FILE_ALLOCATED_RANGE_BUFFER data element.

The FILE_ALLOCATED_RANGE_BUFFER data element is as follows.

—
N
w

0(1|2|3(4(5|6(7|8|9|0(1|2|3(4|5|6|7|8|9(0(1]|2|3(4|5|6[|7|8|9|0(1

FileOffset

61 /200

[MS-FSCC-Diff] - v20171201

File System Control Codes

Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Length

FileOffset (8 bytes): A 64-bit signed integer that contains the file offset, in bytes, of the start of a
range of bytes in a file. The value of this field MUST be greater than or equal to 0.

Length (8 bytes): A 64-bit signed integer that contains the size, in bytes, of the range. In a request
message, the value of this field MUST be greater than or equal to 0. In a reply message, it MUST
be greater than 0.

2.3.36 FSCTL_QUERY_ALLOCATED_RANGES Reply

The FSCTL_QUERY_ALLOCATED_RANGES Reply message returns the results of the
FSCTL_QUERY_ALLOCATED_RANGES Request (section 2.3.35).

This message MUST return an array of zero or more FILE_ALLOCATED_RANGE_BUFFER data elements.
The number of FILE_ALLOCATED_RANGE_BUFFER elements returned is computed by dividing the size
of the returned output buffer (from either SMB or SMB2, the lower-layer protocol that carries the
FSCTL) by the size of the FILE_ALLOCATED_RANGE_BUFFER element. Ranges returned MUST intersect
the range specified in the FSCTL_QUERY_ALLOCATED_RANGES Request. Zero
FILE_ALLOCATED_RANGE_BUFFER data elements MUST be returned when the file has no allocated
ranges.<25>

The FILE_ALLOCATED_RANGE_BUFFER data element is as follows.

—
N
w

0({1(2|3|4|5|6|7|8|9(0(1(2[3|4|5|/6|7|8|9|0|1|2|3|4|5|6[7(8]9|0]|1

FileOffset

Length

FileOffset (8 bytes): A 64-bit signed integer that contains the file offset in bytes from the start of
the file; the start of a range of bytes to which storage is allocated. If the file is a sparse file, it can
contain ranges of bytes for which storage is not allocated; these ranges will be excluded from the
list of allocated ranges returned by this FSCTL.<26> Because an application using a sparse file can
choose whether or not to allocate disk space for each sequence of 0x00-valued bytes, the
allocated ranges can contain 0x00-valued bytes. This value MUST be greater than or equal to
0.<27>

Length (8 bytes): A 64-bit signed integer that contains the size, in bytes, of the range. In a request
message, the value of this field MUST be greater than or equal to 0. In a reply message, it MUST
be greater than 0.

This message returns a status code; as specified in fMS-ERREF}-section 2.3—Fhe-2. Upon success, the
status code returned direethy-by the function that processes this FSCTL MUSTbeis STATUS_SUCCESS
er-one-of. The most common error codes are listed in the following_table.

62 /200

[MS-FSCC-Diff] - v20171201

File System Control Codes

Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Error code Meaning

STATUS_INVALID_PARAMETER The handle is not to a file, or the size of the input buffer is less than the size
0xC000000D of a FILE_ALLOCATED_RANGE_BUFFER structure, or the given FileOffset
field value is less than zero, or the given Length field value is less than zero,
or the given FileOffset field value plus the given Length field value is larger
than Ox7FFFFFFFFFFFFFFF.

STATUS_INVALID_USER_BUFFER | The input buffer or output buffer is not aligned to a 4-byte boundary.
0xCO0000E8

STATUS_BUFFER_TOO_SMALL The output buffer is too small to contain a FILE_ALLOCATED_RANGE_BUFFER
0xC0000023 structure.

STATUS_BUFFER_OVERFLOW The output buffer is too small to contain the required number of
0x80000005 FILE_ALLOCATED_RANGE_BUFFER structures.

2.3.37 FSCTL_QUERY_FAT_BPB Request

This message requests that the server return the first 0x24 bytes of sector 0 for the volume that
contains the file or directory associated with the handle on which this FSCTL was invoked. The first
0x24 bytes of sector 0 are known as the FAT BIOS Parameter Block (BPB), which contains hardware-
specific bootstrap information.

This message does not contain any additional data elements.

This FSCTL is valid only for a FAT file system. All other file systems treat this as an invalid FSCTL.

2.3.38 FSCTL_QUERY_FAT_BPB Reply

The reply buffer contains the first 0x24 bytes of sector 0 for the volume associated with the handle on
which this FSCTL was invoked.

This message also returns a status code as specified in fMS-ERREF}-section 2.3-—Fhe-2. Upon success,
the status code returned direetly-by the function that processes this FSCTL MUSTbeis
STATUS_SUCCESS-e+renre-of. The most common error codes are listed in the following_table.

Error Code Meaning

STATUS_INVALID_DEVICE_REQUEST | The specified request is not a valid operation for the target device.
0xC0000010

STATUS_BUFFER_TOO_SMALL The buffer is too small to contain the entry. No information has been
0xC0000023 written to the buffer.

2.3.39 FSCTL_QUERY_FILE_REGIONS Request

The FSCTL_QUERY_FILE_REGIONS request message requests that the server return a list of file
regions, based on a specified usage parameter, for the file associated with the handle on which this
FSCTL was invoked. This message contains an optional FILE_REGION_INPUT data element. If no
FILE_REGION_INPUT parameter is specified, information for the entire size of the file is returned.

A FILE_REGION_INPUT data element is as follows.

63/ 200

[MS-FSCC-Diff] - v20171201

File System Control Codes

Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

0(1|2|3(4|5|6|7|8|9|0[1|2|3|4]|5

6

7

FileOffset

Length

DesiredUsage

FileOffset (8 bytes): A 64-bit signed integer that contains the file offset, in bytes, of the start of a

range of bytes in a file.

Length (8 bytes): A 64-bit signed integer that contains the size, in bytes, of the range.

DesiredUsage (4 bytes): A 32-bit unsigned integer that indicates usage parameters for this
operation. The following table provides the currently defined usage parameters.

Value

Meaning

FILE_REGION_USAGE_VALID_CACHED_DATA
0x00000001

Information about the valid data length for the specified
file and file range in the cache will be returned.

0x00000002

FILE_REGION_USAGE_VALID_NONCACHED_DATA

Information about the valid data length for the specified
file and file range on disk will be returned.

All other values

If a FILE_REGION_INPUT object is specified in
FSCTL_QUERY_FILE_REGION, then any other value will
return STATUS_INVALID_PARAMETER.

2.3.40 FSCTL_QUERY_FILE_REGIONS Reply

The FSCTL_QUERY_FILE_REGIONS reply message returns the results of the
FSCTL_QUERY_FILE_REGION Request as a variably sized data element, FILE_REGION_OUTPUT, which
contains one or more FILE_REGION_INFO elements that contain the ranges computed as a result of

the desired usage.

A FILE_REGION_OUTPUT data element is as follows.

=

0(1(2|3|4|5|6|7|8|9(0(1(2[3|4]|5

6

N
w

Flags

TotalRegionEntryCount

RegionEntryCount

Reserved

[MS-FSCC-Diff] - v20171201

File System Control Codes

Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

64 /200

Region (24 bytes)

Flags (4 bytes): A 32-bit unsigned integer that indicates the flags for this operation. No flags are
currently defined, thus this field SHOULD be set to 0x00000000 and MUST be ignored.

TotalRegionEntryCount (4 bytes): A 32-bit unsigned integer that indicates the total number of
regions that could be returned.

RegionEntryCount (4 bytes): A 32-bit unsigned integer that indicates the number of regions that
were actually returned and which are contained in this structure.

Reserved (4 bytes): A 32-bit unsigned integer that is reserved. This field SHOULD be set to
0x00000000 and MUST be ignored.

Region (24 bytes): One or more FILE_ REGION_INFO structures, as specified in section 2.3.40.1,
that contain information on the desired ranges based on the desired usage indicated by the
DesiredUsage field.

This message returns a status code; as specified in fMS-ERREF}-section 2.3—Fhe-2. Upon success, the
status code returned direethy-by the function that processes this FSCTL MUSTbeis STATUS_SUCCESS
er-ene-of. The most common error codes are listed in the following_table.

Error code Meaning

STATUS_BUFFER_TOO_SMALL | The input buffer is too small to contain a FILE_REGION_INPUT structure, or the
0xC0000023 output buffer is too small to contain a FILE_REGION_OUTPUT structure.

STATUS_BUFFER_OVERFLOW The output buffer was filled before all the desired regions for this file were
0x80000005 returned.

STATUS_INVALID_PARAMETER | A specified file region is invalid, or the specified desired usage flag is invalid, or
0xC000000D the given handle is not for a file (but for a directory or volume instead).

2.3.40.1 FILE_REGION_INFO

The FILE_REGION_INFO structure contains a computed region of a file based on a desired usage. This
structure is used to store region information for the FSCTL_QUERY_FILE_REGIONS reply message,
with the FILE_REGION_OUTPUT structure containing one or more FILE_REGION_INFO structures.

A FILE_REGION_INFO data element is as follows.

—
N
w

0(1|2|3(4|5|6|7|8|9|0|1|2|3(4|5|6|7|8|9(0(1|2|3(4|5|6[7|8|9|0(1

FileOffset

Length

65/ 200

[MS-FSCC-Diff] - v20171201

File System Control Codes

Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

DesiredUsage

Reserved

FileOffset (8 bytes): A 64-bit signed integer that contains the file offset, in bytes, of the region.
Length (8 bytes): A 64-bit signed integer that contains the size, in bytes, of the region.

DesiredUsage (4 bytes): A 32-bit unsigned integer that indicates the usage for the given region of
the file. The valid values are defined in section 2.3.39.

Reserved (4 bytes): A 32-bit unsigned integer field that is reserved. This field SHOULD be set to
0x00000000 and MUST be ignored.
2.3.41 FSCTL_QUERY_ON_DISK_VOLUME_INFO Request

This message requests UDF-specific volume information for the volume that contains the file or
directory associated with the handle on which this FSCTL was invoked.

This message does not contain any additional data elements.

This FSCTL is only valid on UDF file systems. All other File Systems will treat this as an invalid FSCTL.
For information regarding UDF, see [UDF].

2.3.42FSCTL_QUERY_ON_DISK_VOLUME_INFO Reply

This message returns the results of the FSCTL_QUERY_ON_DISK_VOLUME_INFO request (section
2.3.41).

-
N
w

0(1|/2|3(4|5|6|7|8|9|0(1|2|3(4|5|6|7|8|9(0(1|2|3(4|5|6[|7|8|9|0(1

DirectoryCount

FileCount

FsFormatMajVersion FsFormatMinVersion

FsFormatName (24 bytes)

FormatTime

66 /200

[MS-FSCC-Diff] - v20171201

File System Control Codes

Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

LastUpdateTime

CopyrightInfo (68 bytes)

AbstractInfo (68 bytes)

FormattingImplementationInfo (68 bytes)

LastModifyingImplementationInfo (68 bytes)

DirectoryCount (8 bytes): A 64-bit signed integer. The number of directories on the specified
volume. This member is -1 if the number is unknown.

For UDF file systems with a virtual allocation table, this information is available only if the UDF
revision of the volume is greater than 1.50.<28>

FileCount (8 bytes): A 64-bit signed integer. The number of files on the specified volume. Returns -1
if the number is unknown.

For UDF file systems with a virtual allocation table, this information is available only if the UDF
revision of the volume is greater than 1.50.

FsFormatMajVersion (2 bytes): A 16-bit signed integer. The major version number of the file
system. Returns -1 if the number is unknown or not applicable. For example on UDF 1.02 file
systems, 1 is returned.

FsFormatMinVersion (2 bytes): A 16-bit signed integer. The minor version number of the file
system. Returns -1 if the number is unknown or not applicable. For example: on UDF 1.02 file
systems, 2 is returned.

FsFormatName (24 bytes): Always returns "UDF" in Unicode characters followed by nine Unicode
NULL characters.

FormatTime (8 bytes): The time the volume was formatted; see section 2.1.1.

LastUpdateTime (8 bytes): The time the volume was last updated; see section 2.1.1.

67/ 200

[MS-FSCC-Diff] - v20171201

File System Control Codes

Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

CopyrightInfo (68 bytes): A Unicode string containing any copyright notifications associated with
the volume. This information is implementation-specific and will be padded with NULLs.<29>

AbstractInfo (68 bytes): A Unicode string containing any abstract information written on the
volume. This information is implementation-specific and will be padded with NULLs.<30>

FormattingImplementationInfo (68 bytes): A Unicode string containing the operating system
version that the volume was formatted by. This information is implementation-specific and will be
padded with NULLs.<31>

LastModifyingImplementationInfo (68 bytes): A Unicode string containing the operating system
version that the volume was last modified by. This information is implementation-specific and will
be padded with NULLs.<32>

This message returns a status code; as specified in fMS-ERREF}-section 2.3—Fhe-2. Upon success, the
status code returned direetly-by the function that processes this FSCTL MUSFbeis STATUS_SUCCESS
er-one—of. The most common error codes are listed in the following_table.

Error Code Meaning

STATUS_INVALID_USER_BUFFER | An access to a user buffer failed.
0xC00000ES8

STATUS_BUFFER_TOO_SMALL The buffer is too small to contain the entry. No information has been written
0xC0000023 to the buffer.

STATUS_INVALID_PARAMETER An invalid parameter was passed to a service or function.
0xC000000D

2.3.43 FSCTL_QUERY_SPARING_INFO Request

Retrieves the defect management properties of the volume that contains the file or directory
associated with the handle on which this FSCTL was invoked.

This message does not contain any additional data elements.

This FSCTL is only valid on UDF file systems. All other file systems will treat this as an invalid FSCTL.
For information regarding UDF, see [UDF].

2.3.44 FSCTL_QUERY_SPARING_INFO Reply

This message returns the results of the FSCTL_QUERY_SPARING_INFO request (section 2.3.43).

—
N
w

0(1|/2|3(4|5|6(7|8|9|0(1|2|3(4|5|6|7|8|9(0(1|2|3(4|5|6[7|8|9|0(1

SparingUnitBytes

SoftwareSparing Reserved

TotalSpareBlocks

FreeSpareBlocks

68/ 200

[MS-FSCC-Diff] - v20171201

File System Control Codes

Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

SparingUnitBytes (4 bytes): A 32-bit unsigned integer that contains the size, in bytes, of a sparing
packet, which is the same as the underlying error check and correction (ECC) block size of the
media. For more information, see [UDF].

SoftwareSparing (1 byte): A Boolean (section 2.1.8) value. If TRUE, indicates that sparing behavior
is software-based; if FALSE, it is hardware-based.

Reserved (3 bytes): A 24-bit reserved value. This field SHOULD be set to zero, and MUST be
ignored.

TotalSpareBlocks (4 bytes): A 32-bit unsigned integer that contains the total number of blocks
allocated for sparing.

FreeSpareBlocks (4 bytes): A 32-bit unsigned integer that contains the number of blocks available
for sparing.

This message returns a status code; as specified in fMS-ERREF}-section 2.3—Fhe-2. Upon success, the
status code returned direetly-by the function that processes this FSCTL MUSFbeis STATUS_SUCCESS
er. The most common error codes are listed in the following_table.

Error code Meaning

STATUS_INVALID_PARAMETER | An invalid parameter was passed to a service or function, or the buffer is too
0xC000000D small to contain the entry.

2.3.45 FSCTL_READ_FILE_USN_DATA Request

This message requests that the server return the most recent change journal USN for the file or
directory associated with the handle on which this FSCTL was invoked. This message contains an
optional READ_FILE_USN_DATA data element.<33>

The READ_FILE_USN_DATA data element is as follows.

N
w

1
0(1|/2|3(4|5|6|7|8|9|0(1|2|3(4|5|6[7|8|9(0(1|2|3(4|5|6[|7|8|9|0(1

MinMajorVersion MaxMajorVersion

MinMajorVersion (2 bytes): A 16-bit unsigned integer that contains the minimum major version of
records returned in the results of this request.<34>

MaxMajorVersion (2 bytes): A 16-bit unsigned integer that contains the maximum major version of
records returned in the results of this request.<35>

2.3.46 FSCTL_READ_FILE_USN_DATA Reply

The FSCTL_READ_FILE_USN_DATA reply message returns the results of the
FSCTL_READ_FILE_USN_DATA request as a USN_RECORD_V2 or a USN_RECORD_V3. Both forms of
reply message begin with a USN_RECORD_COMMON_HEADER, which can be used to determine the
form of the full reply message.

This message returns a status code; as specified in fMS-ERREF}-section 2.3—Fhe-2. Upon success, the
status code returned direethy-by the function that processes this FSCTL MUSTbeis STATUS_SUCCESS
er-one-of. The most common error codes are listed in the following_table.

69/ 200

[MS-FSCC-Diff] - v20171201

File System Control Codes

Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Error code Meaning

STATUS_INVALID_PARAMETER The handle is not to a file, directory or if invalid MinMajorVersion and
0xC000000D MaxMajorVersion values are specified. .
STATUS_INVALID_USER_BUFFER The output buffer is not aligned to a 4-byte boundary.

0xCO0000E8

STATUS_BUFFER_TOO_SMALL The output buffer is too small to contain a USN_RECORD structure.
0xC0000023

STATUS_INVALID_DEVICE_REQUEST | The file system does not support the use of a USN change journal.
0xC0000010

2.3.46.1 USN_RECORD_COMMON_HEADER
The USN_RECORD_COMMON_HEADER element is as follows.

0(1|/2|3(4|5|6(7|8|9|0|1|2|3(4|5|6(7|8|9(0(1|2|3(4|5|6[7|8|9|0(1

RecordLength

MajorVersion MinorVersion

RecordLength (4 bytes): A 32-bit unsigned integer that contains the total length of the update
sequence number (USN) record, in bytes.

MajorVersion (2 bytes): A 16-bit unsigned integer that contains the major version of the change
journal software for this record. For example, if the change journal software is version 2.0, the
major version number is 2.<36>

MinorVersion (2 bytes): A 16-bit unsigned integer that contains the minor version of the change
journal software for this record. For example, if the change journal software is version 2.0, the
minor version number is 0 (zero).<37>

2.3.46.2 USN_RECORD_V2
The USN_RECORD_V?2 element is as follows.

—
N
w

0(1(2|3|4|5|6|7|8|9(0(1|2[3|4|5|/6|7|8|9|0|1|2|3|4|5|6[7(8]9|0]1

RecordLength

MajorVersion MinorVersion

FileReferenceNumber

ParentFileReferenceNumber

70/ 200

[MS-FSCC-Diff] - v20171201

File System Control Codes

Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Usn

TimeStamp

Reason

Sourcelnfo

SecurityId

FileAttributes

FileNameLength FileNameOffset

FileName (variable)

RecordLength (4 bytes): A 32-bit unsigned integer that contains the total length of the update
sequence number (USN) record, in bytes.

MajorVersion (2 bytes): A 16-bit unsigned integer that contains the major version of the change
journal software for this record. For a USN_RECORD_V2, the major version number is 2.

MinorVersion (2 bytes): A 16-bit unsigned integer that contains the minor version of the change
journal software for this record. For a USN_RECORD_V2, the minor version number is 0 (zero).

FileReferenceNumber (8 bytes): A 64-bit signed integer, opaque to the client, containing the
number (assigned by the file system when the file is created) of the file or directory for which this
record notes changes. The FileReferenceNumber is an arbitrarily assigned value that associates a
journal record with a file. If the value is -1, its meaning is undefined; otherwise this value
SHOULD always be unique within the volume on which the file is stored over the life of the
volume.<38>

ParentFileReferenceNumber (8 bytes): A 64-bit signed integer, opaque to the client, containing
the ordinal number of the directory on which the file or directory that is associated with this record
is located. This is an arbitrarily assigned value that associates a journal record with a parent
directory. If the value is -1, its meaning is undefined; otherwise this value SHOULD always be
unique within the volume on which the file is stored over the life of the volume.

Usn (8 bytes): A 64-bit signed integer, opaque to the client, containing the USN of the record. This
value is unique within the volume on which the file is stored. This value MUST be greater than or
equal to 0. This value MUST be 0 if no USN change journal records have been logged for the file or
directory associated with this record. For more information, see [MSDN-CJ].

TimeStamp (8 bytes): The absolute system time that this change journal event was logged; see
section 2.1.1.

71/ 200

[MS-FSCC-Diff] - v20171201

File System Control Codes

Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Reason (4 bytes): A 32-bit unsigned integer that contains flags that indicate reasons for changes
that have accumulated in this file or directory journal record since the file or directory was
opened. When a file or directory is closed, a final USN record is generated with the
USN_REASON_CLOSE flag set in this field. The next change, occurring after the next open
operation or deletion, starts a new record with a new set of reason flags. A rename or move
operation generates two USN records: one that records the old parent directory for the item and
one that records the new parent in the ParentFileReferenceNumber member. Possible values
for the reason code are as follows (all unused bits are reserved for future use and MUST NOT be

used).

Value

Meaning

USN_REASON_BASIC_INFO_CHANGE
0x00008000

A user has either changed one or more files or directory
attributes (such as read-only, hidden, archive, or sparse) or
one or more time stamps.

USN_REASON_CLOSE
0x80000000

The file or directory is closed.

USN_REASON_COMPRESSION_CHANGE
0x00020000

The compression state of the file or directory is changed from
(or to) compressed.

USN_REASON_DATA_EXTEND
0x00000002

The file or directory is extended (added to).

USN_REASON_DATA_OVERWRITE
0x00000001

The data in the file or directory is overwritten.

USN_REASON_DATA_TRUNCATION
0x00000004

The file or directory is truncated.

USN_REASON_EA_CHANGE
0x00000400

The user made a change to the extended attributes of a file or
directory. These NTFS file system attributes are not accessible
to nonnative applications. This USN reason does not appear
under normal system usage, but can appear if an application or
utility bypasses the Win32 API and uses the native API to
create or modify extended attributes of a file or directory.

USN_REASON_ENCRYPTION_CHANGE
0x00040000

The file or directory is encrypted or decrypted.

USN_REASON_FILE_CREATE
0x00000100

The file or directory is created for the first time.

USN_REASON_FILE_DELETE
0x00000200

The file or directory is deleted.

USN_REASON_HARD_LINK_CHANGE
0x00010000

A hard link is added to (or removed from) the file or directory.

USN_REASON_INDEXABLE_CHANGE
0x00004000

A user changes the FILE_ATTRIBUTE_NOT_CONTEXT_INDEXED
attribute. That is, the user changes the file or directory from
one in which content can be indexed to one in which content
cannot be indexed, or vice versa.

USN_REASON_NAMED_DATA_EXTEND
0x00000020

The one (or more) named data stream for a file is extended
(added to).

USN_REASON_NAMED_DATA_OVERWRITE
0x00000010

The data in one (or more) named data stream for a file is
overwritten.

[MS-FSCC-Diff] - v20171201

File System Control Codes

Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

72 /200

Value

Meaning

USN_REASON_NAMED_DATA_TRUNCATION
0x00000040

One (or more) named data stream for a file is truncated.

USN_REASON_OBIJECT_ID_CHANGE
0x00080000

The object identifier of a file or directory is changed.

USN_REASON_RENAME_NEW_NAME
0x00002000

A file or directory is renamed, and the file name in the
USN_RECORD structure is the new name.

USN_REASON_RENAME_OLD_NAME
0x00001000

The file or directory is renamed, and the file name in the
USN_RECORD structure is the previous name.

USN_REASON_REPARSE_POINT_CHANGE
0x00100000

The reparse point that is contained in a file or directory is
changed, or a reparse point is added to (or deleted from) a file
or directory.

USN_REASON_SECURITY_CHANGE
0x00000800

A change is made in the access rights to a file or directory.

USN_REASON_STREAM_CHANGE
0x00200000

A named stream is added to (or removed from) a file, or a
named stream is renamed.

USN_REASON_INTEGRITY_CHANGE
0x00800000

A change is made in the integrity status of a file or directory.

Sourcelnfo (4 bytes): A 32-bit unsigned integer that provides additional information about the
source of the change. When a thread writes a new USN record, the source information flags in the
prior record continue to be present only if the thread also sets those flags. Therefore, the source
information structure allows applications to filter out USN records that are set only by a known
source, for example, an antivirus filter. This flag MUST contain one of the following values.

Value

Meaning

USN_SOURCE_DATA_MANAGEMENT
0x00000001

The operation provides information about a change to the file
or directory that was made by the operating system. For
example, a change journal record with this Sourcelnfo value is
generated when the Remote Storage system moves data from
external to local storage. This Sourcelnfo value indicates that
the modifications did not change the application data in the
file.

USN_SOURCE_AUXILIARY_DATA
0x00000002

The operation adds a private data stream to a file or directory.
For example, a virus detector might add checksum information.
As the virus detector modifies the item, the system generates
USN records. This Sourcelnfo value indicates that the
modifications did not change the application data in the file.

USN_SOURCE_REPLICATION_MANAGEMENT
0x00000004

The operation modified the file to match the content of the
same file that exists in another member of the replica set for
the File Replication Service (FRS).

Securityld (4 bytes): A 32-bit unsigned integer that contains an index of a unique security identifier
assigned to the file or directory associated with this record. This index is internal to the underlying

object store and MUST be ignored.

FileAttributes (4 bytes): A 32-bit unsigned integer that contains attributes for the file or directory
associated with this record. Attributes of streams associated with the file or directory are
excluded. Valid file attributes are specified in section 2.6.

[MS-FSCC-Diff] - v20171201

File System Control Codes

Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

73/ 200

FileNameLength (2 bytes): A 16-bit unsigned integer that contains the length of the file or directory
name associated with this record, in bytes. The FileName member contains this name. Use this
member to determine file name length rather than depending on a trailing null to delimit the file
name in FileName.

FileNameOffset (2 bytes): A 16-bit unsigned integer that contains the offset, in bytes, of the
FileName member from the beginning of the structure.

FileName (variable): A variable-length field of Unicode characters containing the name of the file or
directory associated with this record in Unicode format. When working with this field, do not
assume that the file name will contain a trailing Unicode null character.

The fields Reason, TimeStamp, SourcelInfo, and SecurityId for a USN RECORD element returned
by this FSCTL MUST all be set to 0.<39>

2.3.46.3 USN_RECORD_V3

The USN_RECORD_V3 element is as follows.

—
N
w

0(1|2|3(4|5|6(7|8|9|0|1|2|3(4|5|6|7|8|9(0(1|2|3(4|5|6[7|8|9|0(1

RecordLength

MajorVersion MinorVersion

FileReferenceNumber (16 bytes)

ParentFileReferenceNumber (16 bytes)

Usn

TimeStamp

Reason

Sourcelnfo

SecurityId

FileAttributes

74 / 200

[MS-FSCC-Diff] - v20171201

File System Control Codes

Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

FileNameLength FileNameOffset

FileName (variable)

RecordLength (4 bytes): A 32-bit unsigned integer that contains the total length of the update
sequence number (USN) record, in bytes.

MajorVersion (2 bytes): A 16-bit unsigned integer that contains the major version of the change
journal software for this record. For a USN_RECORD_V3, the major version number is 3.

MinorVersion (2 bytes): A 16-bit unsigned integer that contains the minor version of the change
journal software for this record. For a USN_RECORD_V3, the minor version number is 0 (zero).

FileReferenceNumber (16 bytes): A 128-bit signed integer, opaque to the client, containing the
number (assigned by the file system when the file is created) of the file or directory for which this
record notes changes. The FileReferenceNumber is an arbitrarily assigned value (unique within
the volume on which the file is stored) that associates a journal record with a file. This value
SHOULD always be unique within the volume on which the file is stored over the life of the
volume.

ParentFileReferenceNumber (16 bytes): A 128-bit signed integer, opaque to the client, containing
the ordinal number of the directory on which the file or directory that is associated with this record
is located. This is an arbitrarily assigned value (unique within the volume on which the file is
stored) that associates a journal record with a parent directory.

The fields Usn, TimeStamp, Reason, Sourcelnfo, Securityld, FileAttributes, FileNameLength,
FileNameOffset, and FileName for a USN RECORD_V3 element are as described for a
USN_RECORD_V2 element; see section 2.3.46.2.

2.3.47 FSCTL_RECALL_FILE Request

This message requests that the server recall the file (associated with the handle on which this FSCTL
was invoked) from storage media that Remote Storage manages. This FSCTL is not valid for
directories.

Typically, files stored on media that is managed by Remote Storage are recalled when an application
attempts to make the first access to data. An application that opens a file without immediately
accessing the data can speed up the first access by using FSCTL_RECALL_FILE immediately after
opening the file. For performance reasons, it is recommended that an application not recall a file
unnecessarily.

This message does not contain any additional data elements.

2.3.48 FSCTL_RECALL_FILE Reply
This message returns the results of the FSCTL_RECALL_FILE request.

The only data item this message returns is a status code, as specified in fMS-ERREF}-section 2.3—Fhe
2. Upon success, the status code returned direetly-by the function that processes this FSCTL MUSF
beis STATUS_SUCCESS-er-ene-of. The most common error codes are listed in the following_table.

Error code Meaning

STATUS_ACCESS_DENIED The file is set to not allow recall.

75/ 200

[MS-FSCC-Diff] - v20171201

File System Control Codes

Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Error code Meaning

0xC0000022

ERROR_INVALID_FUNCTION The Remote Storage option is not installed.
0x00000001

STATUS_NOT_SUPPORTED The request is not supported.

0xC00000BB

STATUS_INVALID_DEVICE_REQUEST | The supplied handle is not that of a file.
0xC0000010

2.3.49 FSCTL_SET_COMPRESSION Request

The FSCTL_SET_COMPRESSION request message requests that the server set the compression state
of the file or directory associated with the handle on which this FSCTL was invoked. The message
contains a 16-bit unsigned integer.

The CompressionState element is as follows.

N
w

1
0({1(2|3|4|5|6|7|8|9(0(1(2[3|4|5|/6|7|8|9|0|1|2|3|4|5|6[7(8]|9|0]|1

CompressionState

CompressionState (2 bytes): MUST be one of the following standard values.

Value Meaning

COMPRESSION_FORMAT_NONE The file or directory is not compressed.

0x0000

COMPRESSION_FORMAT_DEFAULT | The file or directory is compressed by using the default compression
0x0001 algorithm.<40>

COMPRESSION_FORMAT_LZNT1 The file or directory is compressed by using the LZNT1 compression
0x0002 algorithm. For more information, see [UASDC].

All other values Reserved for future use and MUST NOT be used.

The actual file or directory compression performed when a server receives a request for
COMPRESSION_FORMAT_DEFAULT and COMPRESSION_FORMAT_LZNT1 is implementation-
dependent.<41>

If the file system of the volume containing the specified file or directory does not support per-file
or per-directory compression, the request MUST NOT succeed. The error code returned in this
situation is specified in section 2.2.

2.3.50 FSCTL_SET_COMPRESSION Reply

This message returns the results of the FSCTL_SET_COMPRESSION request.

76 /200

[MS-FSCC-Diff] - v20171201

File System Control Codes

Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

The only data item this message returns is a status code, as specified in fMS-ERREF}-section 2.3—Fhe
2. Upon success, the status code returned direethy-by the function that processes this FSCTL MUSF
beis STATUS_SUCCESS-erere-ef. The most common error codes are listed in the following_table.

Error code Meaning
STATUS_INVALID_PARAMETER The input buffer length is less than 2, or the handle is not to a file or
0xC000000D directory, or the requested CompressionState is not one of the values

listed in the table for CompressionState in FSCTL_SET_COMPRESSION
Request (section 2.3.49).

STATUS_INVALID_DEVICE_REQUEST | The volume does not allow compression.
0xC0000010

STATUS_DISK_FULL The disk is full.
0xCOO0007F

2.3.51 FSCTL_GET_INTEGRITY_INFORMATION_Request

The FSCTL_GET_INTEGRITY_INFORMATION_Request message requests that the server return the
current integrity state of the file or directory associated with the handle on which this FSCTL is
invoked.<42>

If the file system of the volume containing the specified file or directory does not support the use of
integrity, the request will not succeed. The error code returned in this situation varies, depending on
the file system.

This message does not contain additional data elements.

2.3.52 FSCTL_GET_INTEGRITY_INFORMATION_Reply

The FSCTL_GET_INTEGRITY_INFORMATION Reply message returns the results of the
FSCTL_GET_INTEGRITY_INFORMATION Request (section 2.3.51) and indicates the current integrity
state of the file or directory.

The FSCTL_GET_INTEGRITY_INFORMATION_BUFFER data element is as follows.

1 2 3
0(1|/2|3(4|5|6|(7|8|9|0(1|2|3(4|5|6|7|8|9(0(1|2|3(4|5|6[7|8|9|0(1

ChecksumAlgorithm Reserved

Flags

ChecksumChunkSizelnBytes

ClusterSizelnBytes

ChecksumAlgorithm (2 bytes): For ReFS v1, the field MUST be set to one of the following standard
values.

Value Meaning

CHECKSUM_TYPE_NONE | The file or directory is not configured to use integrity.

77 /200

[MS-FSCC-Diff] - v20171201

File System Control Codes

Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Value Meaning

0x0000

CHECKSUM_TYPE_CRC64 | The file or directory is configured to use a CRC64 checksum to provide integrity.
0x0002

All other values Reserved for future use and MUST NOT be used.

For ReFS v2, the field MUST be set to one of the following standard values.

Value Meaning

CHECKSUM_TYPE_NONE The file or directory is not configured to use integrity.
0x0000

CHECKSUM_TYPE_CRC32 | The file or directory is configured to use a CRC32 checksum to provide integrity.
0x0001

CHECKSUM_TYPE_CRC64 | The file or directory is configured to use a CRC64 checksum to provide integrity.
0x0002

All other values Reserved for future use and MUST NOT be used.

Reserved (2 bytes): A 16-bit reserved value. This field MUST be set to 0x0000 and MUST be
ignored.

Flags (4 bytes): A 32-bit unsigned integer that contains zero or more of the following flag values.
Flag values not specified in the following table SHOULD be set to 0 and MUST be ignored.

Value Meaning

FSCTL_INTEGRITY_FLAG_CHECKSUM_ENFORCEMENT_OFF | Indicates that checksum enforcement is not

0x00000001 currently enabled on the target file.
All other values Reserved for future use and MUST NOT be
used.

ChecksumChunkSizeInBytes (4 bytes): A 32-bit unsigned integer specifying the size in bytes of
each chunk in a stream that is configured with integrity.

ClusterSizeInBytes (4 bytes): A 32-bit unsigned integer specifying the size of a cluster for this
volume in bytes.

This message also returns a status code, as specified in fMS-ERREF}-section 2.3-—Fhe2. Upon
success, the status code returned-direetly by the function that processes this FSCTL MUST be
STATUS_SUCCESS or one of the following.

Error code Meaning
STATUS_INVALID_PARAMETER The output buffer length is less than the size of the
0xC000000D FSCTL_GET_INTEGRITY_INFORMATION_BUFFER data element, or the

handle is not to a file or directory.

STATUS_INVALID_DEVICE_REQUEST | The volume does not support integrity.
0xC0000010

78/ 200

[MS-FSCC-Diff] - v20171201

File System Control Codes

Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

2.3.53 FSCTL_SET_DEFECT_MANAGEMENT Request

Sets the software defect management state for the specified file associated with the handle on which
this FSCTL was invoked. Used for UDF file systems.

This message contains a FILE_SET_DEFECT_MGMT_BUFFER structure.
FILE_SET_DEFECT_MGMT_BUFFER is defined as follows.

=
N
w

0(1(2|3|4|5|6|7|8|9(0(1(2[3|4|5|/6|7|8|9|0|1|2|3|4|5(6[7(8]9|0]|1

Disable

Disable (1 byte): A Boolean (section 2.1.8) value. If TRUE, indicates that defect management will be
disabled. If FALSE, indicates that defect management will be enabled.

This FSCTL is valid only on UDF file systems. All other file systems will treat this as an invalid
FSCTL. For information regarding UDF, see [UDF].
2.3.54 FSCTL_SET_DEFECT_MANAGEMENT Reply

The only data item this message returns is a status code, as specified in fMS-ERREF}-section 2.3~
Fhe2. Upon success, the status code returned directly by the function that processes this FSCTL MUSF
beis STATUS_SUCCESS-er-ene-of. The most common error codes are listed in the following_table.

Error code Meaning

STATUS_INVALID_PARAMETER An invalid parameter was passed to a service or function or the handle on

0xC000000D which this FSCTL was invoked is that of a directory.

STATUS_INVALID_DEVICE_REQUEST | The specified request is not a valid operation for the target device.

0xC0000010

STATUS_SHARING_VIOLATION A file cannot be opened because the share access flags are incompatible.

0xC0000043

STATUS_VOLUME_DISMOUNTED An operation was attempted to a volume after it was dismounted.

0xC000026E

STATUS_FILE_INVALID The volume for a file has been externally altered such that the opened file

0xC0000098 is no longer valid.

STATUS_WRONG_VOLUME The wrong volume is in the drive.

0xC0000012

STATUS_VERIFY_REQUIRED The media has changed and a verify operation is in progress so no reads

0x80000016 or writes can be performed to the device, except those used in the verify
operation.

There are no additional data elements in this reply.

2.3.55 FSCTL_SET_ENCRYPTION Request

The FSCTL_SET_ENCRYPTION request sets the encryption for the file or directory associated with the
given handle.<43><44>

79/ 200

[MS-FSCC-Diff] - v20171201

File System Control Codes

Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

The message contains an ENCRYPTION_BUFFER structure that indicates whether to encrypt/decrypt a
file or an individual stream.

ENCRYPTION_BUFFER is defined as follows.

=
N
w

0(1|/2|3(4|5|6|(7|8|9|0(1|2|3(4|5|6(7|8|9(0(1|2|3(4|5|6[7|8|9|0(1

EncryptionOperation

Private Padding

EncryptionOperation (4 bytes): A 32-bit unsigned integer value that indicates the operation to be
performed. The valid values are as follows.

Value Meaning

FILE_SET_ENCRYPTION This operation requests encryption of the specified file or directory.<45>
0x00000001

FILE_CLEAR_ENCRYPTION This operation requests removal of encryption from the specified file or
0x00000002 directory. It MUST fail if any streams for the file are marked

encrypted.<46>

STREAM_SET_ENCRYPTION This operation requests encryption of the specified stream.<47>
0x00000003

STREAM_CLEAR_ENCRYPTION | This operation requests the removal of encryption from the specified
0x00000004 stream.<48>

Private (1 byte): An 8-bit unsigned char value.<49>
Padding (3 bytes): These bytes MUST be ignored.

2.3.56 FSCTL_SET_ENCRYPTION Reply

This message returns the results of the FSCTL_SET_ENCRYPTION request. If the file system of the
volume containing the specified file or directory does not support encryption, the request MUST NOT
succeed. The error code returned in this situation varies, depending on the file system.

This message returns a status code, as specified in fMS-ERREF}-section 2.32, as well as a
DECRYPTION_STATUS_BUFFER (section 2.3.56.1) if an output buffer is passed in.

Fhe-Upon success, the status code returned directhy-by the function that processes this FSCTL MUSF
beis STATUS_SUCCESS<50>-serone-of>. The most common error codes are listed in the following
table.

Error code Meaning

STATUS_MEDIA_WRITE_PROTECTED | The disk cannot be written to because it is write-protected.
0xC00000A2

STATUS_INVALID_PARAMETER The EncryptionOperation field value is invalid, the open request is not
0xC000000D for a file or directory or stream encryption has been requested on a
stream that is compressed.

STATUS_BUFFER_TOO_SMALL The size of the input buffer is less than the size of the encryption buffer
0xC0000023 structure defined in section 2.3.55, or an output buffer is present and is
80/ 200

[MS-FSCC-Diff] - v20171201

File System Control Codes

Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Error code Meaning

smaller than a DECRYPTION_STATUS_BUFFER structure.

STATUS_VOLUME_NOT_UPGRADED The version of the file system on the volume does not support
0xC000029C encryption.<51>

STATUS_INVALID_DEVICE_REQUEST | The request was invalid for a system-specific reason.<52>
0xC0000010

STATUS_FILE_CORRUPT_ERROR A required attribute is missing from a directory for which encryption was
0xC0000102 requested.<53>

STATUS_VOLUME_DISMOUNTED The volume is not mounted.

0xC000026E

STATUS_INVALID_USER_BUFFER An exception was raised while accessing a user buffer.

0xCO00000ES8

2.3.56.1 DECRYPTION_STATUS_BUFFER

The DECRYPTION_STATUS_BUFFER is defined as follows.

—
N
w

0[{1(2|3|4|5|6|7|8|9(0(1|2[3|4|5|/6|7|8|9|0|1|2|3|4|5|6[7(8]9|0]|1

NoEncryptedStreams

NoEncryptedStreams (1 byte): A Boolean (section 2.1.8) value. A TRUE value means that the last
encrypted stream of the specified file was just decrypted by an FSCTL_SET_ENCRYPTION
operation; otherwise, a FALSE value is returned.

2.3.57 FSCTL_SET_INTEGRITY_INFORMATION Request

The FSCTL_SET_INTEGRITY_INFORMATION Request message requests that the server set the
integrity state of the file or directory associated with the handle on which this FSCTL was
invoked.<54>

If the file system of the volume containing the specified file or directory does not support integrity, the
request MUST NOT succeed. The error code returned in this situation is specified in section 2.2.

The FSCTL_SET_INTEGRITY_INFORMATION_BUFFER element is as follows.

1 2 3
0(1(2|3|4|5|6|7|8|9(0(1|2[3|4|5|/6|7|8|9|0|1|2|3|4|5|6[7(8]9|0]|1

ChecksumAlgorithm Reserved

Flags

ChecksumAlgorithm (2 bytes): For ReFS v1, the field MUST be set to one of the following standard
values.

81 /200

[MS-FSCC-Diff] - v20171201

File System Control Codes

Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Value Meaning

CHECKSUM_TYPE_NONE The file or directory is set to not use integrity.

0x0000

CHECKSUM_TYPE_CRC64 The file or directory is set to provide integrity using a CRC64 checksum.
0x0002

CHECKSUM_TYPE_UNCHANGED | The integrity status of the file or directory is unchanged.
OXFFFF

All other values Reserved for future use and MUST NOT be used.
0x0003 — OXFFFE

For ReFS v2, the field MUST be set to one of the following standard values.

Value Meaning

CHECKSUM_TYPE_NONE The file or directory is set to not use integrity.

0x0000

CHECKSUM_TYPE_CRC32 The file or directory is set to provide integrity using a CRC32 checksum.
0x0001

CHECKSUM_TYPE_CRC64 The file or directory is set to provide integrity using a CRC64 checksum.
0x0002

CHECKSUM_TYPE_UNCHANGED | The integrity status of the file or directory is unchanged.
OXFFFF

All other values Reserved for future use and MUST NOT be used.
0x0003 — OxFFFE

Note that for ReFS v2 any value except CHECKSUM_TYPE_NONE or
CHECKSUM_TYPE_UNCHANGED will set the integrity value to a file-system-selected integrity
mechanism and is not guaranteed to use the user specified checksum value.

Reserved (2 bytes): A 16-bit reserved value. This field MUST be set to zero and MUST be ignored.

Flags (4 bytes): A 32-bit unsigned integer that contains zero or more of the following flag values.
Flag values that are unspecified in the following table SHOULD be set to 0 and MUST be ignored.

Value Meaning

FSCTL_INTEGRITY_FLAG_CHECKSUM_ENFORCEMENT_OFF | When set, if a checksum does not match, the
0x00000001 associated I/0 operation will not be failed.

2.3.58 FSCTL_SET_INTEGRITY_INFORMATION Reply

This message returns the results of the FSCTL_SET_INTEGRITY_INFORMATION
Request (section 2.3.57).

The only data item hat-this message returns is a status code, as specified in fMS-ERREF}-section 2.3+
Fhe-2. Upon success, the status code returned direetly-by the function that processes this FSCTL MUSF
beis STATUS_SUCCESS-er-ene-of. The most common error codes are listed in the following_table.

82 /200

[MS-FSCC-Diff] - v20171201

File System Control Codes

Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Error code

Meaning

STATUS_INVALID_PARAMETER
0xC000000D

The input buffer length is less than the size, in bytes, of the
FSCTL_SET_INTEGRITY_INFORMATION_BUFFER element; the handle is
not to a file or directory; the file is not empty; or the requested
ChecksumAlgorithm field is not one of the values listed in the table for
the ChecksumAlgorithm field in the
FSCTL_SET_INTEGRITY_INFORMATION Request.

STATUS_INVALID_DEVICE_REQUEST
0xC0000010

The volume does not support integrity.

STATUS_DISK_FULL
0xCO0007F

The disk is full.

2.3.59 FSCTL_SET_OBJECT_ID Request

This message sets the object identifier for the file or directory associated with the handle on which this
FSCTL was invoked. The message contains a FILE_OBJECTID_BUFFER (section 2.1.3) data element.
Either a Type 1 or a Type 2 buffer is valid.<55><56>

2.3.60 FSCTL_SET_OBJECT_ID Reply

This message returns the results of the FSCTL_SET_OBJECT_ID request.

If the file system of the volume containing the specified file or directory does not support the use of
object IDs, the request will not succeed. The error code returned in this situation varies, depending on

the file system.

The only data item this message returns is a status code, as specified in fMS-ERREF}-section 2.3-—Fhe
2. Upon success, the status code returned direethy-by the function that processes this FSCTL MUSF
beis STATUS_SUCCESS-erene-of. The most common error codes are listed in the following_table.

Error code

Meaning

STATUS_INVALID_PARAMETER
0xC000000D

The handle is not to a file or directory, or the input buffer's length is not
equal to the size of a FILE_OBJECTID_BUFFER structure.

STATUS_ACCESS_DENIED
0xC0000022

The handle was not opened with write data or write attribute access as
well as restore access.

STATUS_OBJECT_NAME_COLLISION
0xC0000035

The file or directory already has an object ID.

STATUS_INVALID_DEVICE_REQUEST
0xC0000010

The file system does not support the use of object IDs.

STATUS_MEDIA_WRITE_PROTECTED
0xCOO0000A2

The volume is write-protected and changes to it cannot be made.

[MS-FSCC-Diff] - v20171201
File System Control Codes

Copyright © 2017 Microsoft Corporation

Release: December 1, 2017

83 /200

2.3.61 FSCTL_SET_OBJECT_ID_EXTENDED Request

The FSCTL_SET_OBIJECT_ID_EXTENDED request message requests that the server set the extended
information for the file or directory associated with the handle on which this FSCTL was invoked. The
message contains an EXTENDED_INFO data element.

The EXTENDED_INFO data element is defined as follows.

0(1|2|3(4|5|6|7|8|9|0(1|2|3(4|5|6(7|8|9(0(1|2|3(4|5|6|7|8|9|0(1

ExtendedInfo (48 bytes)

ExtendedInfo (48 bytes): A 48-byte binary large object(BLOB) containing user-defined extended
data that was passed to this FSCTL by an application. In this situation, the user refers to the
implementer who is calling this FSCTL, meaning the extended info is opaque to NTFS; there are no
rules enforced by NTFS as to what these last 48 bytes contain. Contrast this with the first 16 bytes
of an object ID, which can be used to open the file, so NTFS requires that they be unique within a
volume.<57>

2.3.62FSCTL_SET_OBJECT_ID_EXTENDED Reply
This message returns the results of the FSCTL_SET_OBJECT_ID_EXTENDED request.

If the file system of the volume containing the specified file or directory does not support the use of
Objectlds, the request will not succeed. The error code returned in this situation varies, depending on
the file system.

The only data item this message returns is a status code, as specified in fMS-ERREF}-section 2.3—Fhe
2. Upon success, the status code returned direetly-by the function that processes this FSCTL MUSF
beis STATUS_SUCCESS-erene-of. The most common error codes are listed in the following_table.

Error code Meaning

STATUS_INVALID_PARAMETER The handle is not to a file or directory, or the input buffer's length is not
0xC000000D equal to the size of an EXTENDED_INFO structure.
STATUS_ACCESS_DENIED The handle was not opened with write data or write attribute access.
0xC0000022

STATUS_OBJECT_NAME_NOT_FOUND | The file or directory has no object ID.
0xC0000034

STATUS_INVALID_DEVICE_REQUEST | The file system does not support the use of object IDs.
0xC0000010

2.3.63 FSCTL_SET_REPARSE_POINT Request

This message requests that the server set a reparse point on the file or directory associated with the
handle on which this FSCTL was invoked.

84 /200

[MS-FSCC-Diff] - v20171201

File System Control Codes

Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

The message contains a REPARSE_GUID_DATA_BUFFER or a REPARSE_DATA_BUFFER (including
subtypes) data element. Both the REPARSE_GUID_DATA_BUFFER and REPARSE_DATA_BUFFER
structures begin with a ReparseTag field. The ReparseTag value uniquely identifies the filter driver
that creates/uses the reparse point, and the filter driver processes the reparse point data as either a
REPARSE_GUID_DATA_BUFFER or a REPARSE_DATA_BUFFER, depending on the structure
implemented by the filter driver for that type of reparse point.

This message is applicable only to a file or directory handle, not to a volume handle.

2.3.64 FSCTL_SET_REPARSE_POINT Reply
This message returns the results of the FSCTL_SET_REPARSE_POINT request.

If the file system of the volume containing the specified file or directory does not support reparse
points, the request will not succeed. The error code returned in this situation varies, depending on the
file system.

The only data item this message returns is a status code, as specified in fMS-ERREF}-section 2.3—Fhe
2. Upon success, the status code returned direethy-by the function that processes this FSCTL MUSF
beis STATUS_SUCCESS-erone-of. The most common error codes are listed in the following—_table.

Error code Meaning
STATUS_INVALID_PARAMETER The handle is not to a file or directory, or the output buffer's length is
0xC000000D greater than 0.

STATUS_IO_REPARSE_DATA_INVALID | The input buffer length is less than the size of a

0xC0000278 REPARSE_DATA_BUFFER structure, or the input buffer length is greater
than 16,384, or a REPARSE_DATA_BUFFER structure has been specified
for a third party reparse tag, or the GUID specified for a third party
reparse tag does not match the GUID known by the operating system
for this reparse point, or the reparse tag is 0 or 1.

STATUS_INVALID_DEVICE_REQUEST The file system does not support reparse points.
0xC0000010

2.3.65 FSCTL_SET_SPARSE Request

This message requests that the server mark the file that is associated with the handle on which this
FSCTL was invoked as sparse. In a sparse file, large ranges of zeros (0) might not require disk
allocation. Space for nonzero data is allocated as the file is written. The message either has no data
elements at all or it contains a FILE_SET_SPARSE_BUFFER element. If there is no data element, the
sparse flag for the file is set, exactly as if the FILE_SET_SPARSE_BUFFER element was supplied and
had a SetSparse value of TRUE.<58>

The FILE_SET_ SPARSE_BUFFER element is as follows:

—
N
w

0(1|2|3(4(5|6(7|8|9|0(1|2|3(4|5|6|7|8|9(0(1]|2|3(4|5|6[|7|8|9|0(1

SetSparse

SetSparse (1 byte): A Boolean (section 2.1.8) value.

A FALSE value will cause the file system to attempt to "unsparse" the file by allocating clusters for
any regions of the file that are currently sparsed. If the entire file is successfully unsparsed, the

85 /200

[MS-FSCC-Diff] - v20171201

File System Control Codes

Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

sparse flag is cleared for the file. If an error is encountered during unsparsing, any regions of the
file that were unsparsed MAY<59> remain unsparsed.

A TRUE value will cause the sparse flag for the file to set. Currently allocated clusters SHOULD
NOT<60> be deallocated.

2.3.66 FSCTL_SET_SPARSE Reply

This message returns the results of the FSCTL_SET_SPARSE request.

The only data item this message returns is a status code, as specified in fMS-ERREF}-section 2.3—Fhe
2. Upon success, the status code returned direethy-by the function that processes this FSCTL MUSF
beis STATUS_SUCCESS-erere-of. The most common error codes are listed in the following_table.

Error code Meaning

STATUS_INVALID_PARAMETER | The handle is not to a file, or the input buffer length is nonzero and is less than
0xC000000D the size of a FILE_SET_SPARSE_BUFFER structure.

STATUS_ACCESS_DENIED The handle is not open with write data or write attribute access.
0xC0000022

2.3.67 FSCTL_SET_ZERO_DATA Request

The FSCTL_SET_ZERO_DATA request message requests that the server fill the specified range of the
file (associated with the handle on which this FSCTL was invoked) with zeros. The message contains a

FILE_ZERO_DATA_INFORMATION element.
The FILE_ZERO_DATA_INFORMATION element is as follows.

—
N
w

0[{1(2|3|4|5|6|7|8|9(0(1|2[3|4|5|/6|7|8|9|0|1|2|3|4|5|6[7(8]9|0]|1

FileOffset

BeyondFinalZero

FileOffset (8 bytes): A 64-bit signed integer that contains the file offset of the start of the range to
set to zeros, in bytes. The value of this field MUST be greater than or equal to 0.

BeyondFinalZero (8 bytes): A 64-bit signed integer that contains the byte offset of the first byte
beyond the last zeroed byte. The value of this field MUST be greater than or equal to 0.

How an implementation zeros data within a file is implementation-dependent. A file system MAY
choose to deallocate regions of disk space that have been zeroed.<61>

2.3.68 FSCTL_SET_ZERO_DATA Reply

This message returns the results of the FSCTL_SET_ZERO_DATA request.

86 /200

[MS-FSCC-Diff] - v20171201

File System Control Codes

Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

The only data item this message returns is a status code, as specified in fMS-ERREF}-section 2.3—Fhe
2. Upon success, the status code returned direethy-by the function that processes this FSCTL MUSF
beis STATUS_SUCCESS-erere-ef. The most common error codes are listed in the following_table.

Error code Meaning

STATUS_INVALID_PARAMETER | The handle is not to a file, or input buffer length is not equal to the size of a
0xC000000D FILE_ZERO_DATA_INFORMATION structure, or the given FileOffset is less than
zero, or the given BeyondFinalZero is less than zero, or the given FileOffset
is greater than the given BeyondFinalZero.

STATUS_ACCESS_DENIED The handle is not open with write data or write attribute access.
0xC0000022

2.3.69 FSCTL_SET_ZERO_ON_DEALLOCATION Request

This message requests that the server fill the clusters of the target file with zeros when they are
deallocated.<62> This is used to set a file to secure delete mode, which ensures that data will be
zeroed upon file truncation or deletion.

There are several side effects associated with this operation.
= If the file is resident, it is converted to non-resident and the resident portion is zeroed.

= When reallocating ranges of a compressed file, the clusters are both zeroed and then replaced
with a cluster representing compressed zeros before being reallocated.

This message does not contain any additional data elements.

2.3.70 FSCTL_SET_ZERO_ON_DEALLOCATION Reply

This message returns the results of the FSCTL_SET_ZERO_ON_DEALLOCATION request. The only data
item this message returns is a status code, as specified in fMS-ERREF}-section 2.3-—Fhe-2. Upon
success, the status code returned direethy-by the function that processes this FSCTL MUSTbeis
STATUS_SUCCESS-e+. The most common error codes are listed in the following_table.

Error code Meaning

STATUS_ACCESS_DENIED | Zero on deallocation can only be set on a user file opened for write access and
0xC0000022 cannot be set on a directory.

2.3.71FSCTL_SIS_COPYFILE Request

The FSCTL_SIS_COPYFILE request message requests that the server use the single-instance storage
(SIS) filter to copy a file. The message contains an SI_ COPYFILE data element. For more information
about single-instance storage, see [SIS].

If the SIS filter is installed on the server, it will attempt to copy the specified source file to the
specified destination file by creating an SIS link instead of actually copying the file data. If necessary
and allowed, the source file is placed under SIS control before the destination file is created.

This FSCTL can be issued against either a file or directory handle. The source and destination files
MUST reside on the volume associated with the given handle.

87/ 200

[MS-FSCC-Diff] - v20171201

File System Control Codes

Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

The SI_COPYFILE data element is as follows.

-
N
w

0[{1(2|3|4|5|6|7|8|9(0(1(2[3[4|5|/6|7|8|9|0|1|2|3|4|5|(6[7(8]9|0]|1

SourceFileNamelLength

DestinationFileNamelLength

Flags

SourceFileName (variable)

DestinationFileName (variable)

SourceFileNameLength (4 bytes): A 32-bit unsigned integer that contains the size, in bytes, of the
SourceFileName element, including a terminating-Unicode null character.

DestinationFileNameLength (4 bytes): A 32-bit unsigned integer that contains the size, in bytes,
of the DestinationFileName element, including a terminating-Unicode null character.

Flags (4 bytes): A 32-bit unsigned integer that contains zero or more of the following flag values.
Flag values not specified in the following table SHOULD be set to 0, and MUST be ignored.

Value Meaning
COPYFILE_SIS_LINK If this flag is set, only create the destination file if the source file is already under SIS
0x00000001 control. If the source file is not under SIS control, the FSCTL returns

STATUS_OBJECT_TYPE_MISMATCH.

If this flag is not specified, place the source file under SIS control (if it is not already
under SIS control), and create the destination file.

COPYFILE_SIS_REPLACE | If this flag is set, create the destination file if it does not exist; if it does exist,

0x00000002 overwrite it.
If this flag is not specified, create the destination file if it does not exist; if it does
exist, the FSCTL returns STATUS_OBJECT_NAME_COLLISION.

SourceFileName (variable): A null-terminated Unicode string containing the source file name.

DestinationFileName (variable): A null-terminated Unicode string containing the destination file
name.<63>

2.3.72FSCTL_SIS_COPYFILE Reply

This message returns the results of the FSCTL_SIS_COPYFILE request.

The only data item this message returns is a status code, as specified in fMS-ERREF}-section 2.3—Fhe
2. Upon success, the status code returned directhy-by the function that processes this FSCTL MUSF
beis STATUS_SUCCESS-erone-of. The most common error codes are listed in the following_table.

88/ 200

[MS-FSCC-Diff] - v20171201

File System Control Codes

Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Error code

Meaning

STATUS_INVALID_PARAMETER
0xC000000D

The input buffer is NULL, or the input buffer length is less than the size of
the SI_COPYFILE structure, or the given SourceFileNamelLength or
DestinationFileNameLength is less than 2 or greater than the buffer
length, or the given SourceFileNameLength plus
DestinationFileNameLength is greater than the length of the given
SourceFileName plus DestinationFileName in the input buffer, or the
given SourceFileName or DestinationFileName is NULL, or the given
SourceFileName or DestinationFileName is not null-terminated.

STATUS_OBJECT_NAME_NOT_FOUND
0xC0000034

The source file does not exist.

STATUS_OBJECT_NAME_COLLISION
0xC0000035

The COPYFILE_SIS_REPLACE flag was not specified, and the destination
file exists, or the source and destination file are the same.

STATUS_OBJECT_TYPE_MISMATCH
0xC0000024

The COPYFILE_SIS_LINK flag was specified, and the source file is not
under SIS control.

STATUS_NOT_SAME_DEVICE
0xC00000D4

The source and destination file names are not located on the same
volume, or the source and destination file names are located on the same
volume, but it is not the volume associated with the handle on which the
FSCTL was performed.

STATUS_INVALID_DEVICE_REQUEST
0xC0000010

The single-instance storage (SIS) filter is not installed on the server.

STATUS_FILE_IS_A_DIRECTORY
0xCO0000BA

The source or destination file is a directory.

STATUS_ACCESS_DENIED
0xC0000022

The caller is not an administrator.

2.3.73 FSCTL_WRITE_USN_CLOSE_RECORD Request

This message requests that the server generate a record in the server's file system change journal
stream for the file or directory associated with the handle on which this FSCTL was invoked, indicating
that the file or directory was closed. This FSCTL can be called independently of the actual file close
operation to write a USN record and cause a post of any pending USN updates for the indicated file.

No data structure is associated with this request.

2.3.74 FSCTL_WRITE_USN_CLOSE_RECORD Reply

This message returns the results of the FSCTL_WRITE_USN_CLOSE_RECORD request as a single field,
Usn, which is a 64-bit signed integer that contains the server file system's USN for the file or
directory. This value MUST be greater than or equal to 0.

This message returns a status code; as specified in fMS-ERREF}-section 2.3-—Fhe-2. Upon success, the
status code returned direetly-by the function that processes this FSCTL MUSFbeis STATUS_SUCCESS
er-one-of. The most common error codes are listed in the following_table.

Error code

Meaning

STATUS_INVALID_PARAMETER

The handle is not to a file or directory, or the length of the output buffer
is less than the size of a 64-bit integer, or the output buffer does not

[MS-FSCC-Diff] - v20171201
File System Control Codes

Copyright © 2017 Microsoft Corporation

Release: December 1, 2017

89 /200

Error code Meaning

0xC000000D begin on a 4-byte boundary.

STATUS_INVALID_DEVICE_REQUEST | The file system does not support the use of a USN change journal.
0xC0000010

2.3.75 FSCTL_FILE_LEVEL_TRIM Request

The FSCTL_FILE_LEVEL_TRIM operation informs the underlying storage medium that the contents of
the given range of the file no longer needs to be maintained. This message allows the storage medium
to manage its space more efficiently. This operation is required most commonly for Solid State
Devices (SSD), as well as for thinly provisioned storage environments.

The FILE_LEVEL_TRIM data element follows.

0(1|2|3(4|5|6(7|8|9|0|1|2|3(4|5|6|7|8|9(0(1|2|3(4|5|6[7|8|9|0(1

Key

NumRanges

Ranges (variable)

Key (4 bytes): This field is used for byte range locks to uniquely identify different consumers of byte
range locks on the same thread. Typically, this field is used only by remote protocols such as SMB
or SMB2.

NumRanges (4 bytes): A count of how many Offset, Length pairs follow in the data item.

Ranges (variable): An array of zero or more FILE_LEVEL_TRIM_RANGE (section 2.3.75.1) data
elements. The NumRanges field contains the number of FILE_LEVEL_TRIM_RANGE data

elements in the array.

2.3.75.1 FILE_LEVEL_TRIM_RANGE

The FILE_LEVEL_TRIM_RANGE data element follows.

Offset

Length

90/ 200

[MS-FSCC-Diff] - v20171201

File System Control Codes

Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Offset (8 bytes): A 64-bit unsigned integer that contains a byte offset into the given file at which to
start the trim request.

Length (8 bytes): A 64-bit unsigned integer that contains the length, in bytes, of how much of the
file to trim, starting at Offset.

2.3.76 FSCTL_FILE_LEVEL_TRIM Reply

This message returns the results of the FSCTL_FILE_LEVEL_TRIM Request (section 2.3.75).

The FILE_LEVEL_TRIM_OUTPUT data element follows.

=
N
w

0(1|/2|3(4|5|6|7|8|9|0(1|2|3(4|5|6(7|8|9(0(1|2|3(4|5|6[7|8|9|0(1

NumRangesProcessed

NumRangesProcessed (4 bytes): A 32-bit unsigned integer identifying the number of input ranges
that were processed.

This message returns a status code as specified in fMS-ERREF}-section 2.3—Fhe-2. Upon success, the
status code returned direethy-by the function that processes this FSCTL MUSTbeis STATUS_SUCCESS
er-ene-of. The most common error codes are listed in the following_table.

Error code Meaning
STATUS_INVALID_PARAMETER The given file is compressed or encrypted, or the size of the input buffer
0xC000000D is smaller than the size of the FILE_LEVEL_TRIM data element, or no

FILE_LEVEL_TRIM_RANGE (section 2.3.75.1) structures were given, or
the output buffer is smaller than the size of
FILE_LEVEL_TRIM_OUTPUT.

STATUS_INVALID_DEVICE_REQUEST | The file system does not support this operation.
0xC0000010

STATUS_INTEGER_OVERFLOW An operation on a parameter in the FSCTL_FILE_LEVEL_TRIM input
0xC0000095 structure overflowed 64 bits.

STATUS_NO_RANGES_PROCESSED The operation was successful, but no range was processed.
0xC0000460

2.3.77 FSCTL_OFFLOAD_READ Request

The FSCTL_OFFLOAD_READ Request message requests that the server perform an Offload Read
operation to a specified portion of a file on a target volume. On the client side, this request is
received, processed, and sent down to an intelligent storage subsystem that generates and returns a
Token in an FSCTL_OFFLOAD_READ Reply (section 2.3.78) message. This Token logically represents
the data to be read and can be used with an FSCTL_OFFLOAD_WRITE Request (section 2.3.80) and an
FSCTL_OFFLOAD_WRITE Reply (section 2.3.81) pair to complete the data movement.<64>

The request message contains an FSCTL_OFFLOAD_READ_INPUT data element, as follows.

91/ 200

[MS-FSCC-Diff] - v20171201

File System Control Codes

Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

0(1|2|3(4|5|6|7|8|9|0(1|2|3(4|5|6|7|8|9(0(1|2|3(4|5|6[7|8|9|0(1

Size

Flags

TokenTimeTolLive

Reserved

FileOffset

CopyLength

Size (4 bytes): A 32-bit unsigned integer that indicates the size, in bytes, of this data element.

Flags (4 bytes): A 32-bit unsigned integer that indicates the flags to be set for this operation.
Currently, no flags are defined. This field SHOULD be set to 0x00000000 and MUST be ignored.

TokenTimeToLive (4 bytes): A 32-bit unsigned integer that contains the requested Time to Live
(TTL) value in milliseconds for the generated Token. This value MUST be greater than or equal to
0x00000000. A value of 0x00000000 represents a default TTL interval.<65>

Reserved (4 bytes): A 32-bit unsigned integer field that is reserved. This field SHOULD be set to
0x00000000 and MUST be ignored.

FileOffset (8 bytes): A 64-bit unsigned integer that contains the file offset, in bytes, of the start of a
range of bytes in a file from which to generate the Token. The value of this field MUST be greater
than or equal to 0x0000000000000000 and MUST be aligned to a logical sector boundary on the
volume.

CopyLength (8 bytes): A 64-bit unsigned integer that contains the size, in bytes, of the requested
range of the file from which to generate the Token. The value of this field MUST be greater than or
equal to 0x0000000000000000 and MUST be aligned to a logical sector boundary on the
volume.<66>

2.3.78 FSCTL_OFFLOAD_READ Reply

The FSCTL_OFFLOAD_READ Reply message returns the results of the FSCTL_OFFLOAD_READ
Request (section 2.3.77).

The FSCTL_OFFLOAD_READ_OUTPUT data element is as follows.

—
N
w

Size

Flags

92 /200

[MS-FSCC-Diff] - v20171201

File System Control Codes

Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

TransferLength

Token (512 bytes)

Size (4 bytes): A 32-bit unsigned integer that indicates the size, in bytes, of the returned data

element.

Flags (4 bytes): A 32-bit unsigned integer that indicates which flags were returned for this
operation. Possible values for the flags follow. All unused bits are reserved for future use, SHOULD

be set to 0, and MUST be ignored.

Value

Meaning

0x00000001

OFFLOAD_READ_FLAG_ALL_ZERO_BEYOND_CURRENT_RANGE | The data beyond the current range is

logically equivalent to zero.

TransferLength (8 bytes): A 64-bit unsigned integer that contains the amount, in bytes, of data
that the Token logically represents. This value indicates a contiguous region of the file from the
beginning of the requested offset in the FileOffset field in the FSCTL_OFFLOAD_READ_INPUT
data element (section 2.3.77). This value can be smaller than the CopyLength field specified in
the FSCTL_OFFLOAD_READ_INPUT data element, which indicates that less data was logically
represented (logically read) with the Token than was requested. The value of this field MUST be
greater than 0x0000000000000000 and MUST be aligned to a logical sector boundary on the

volume.

Token (512 bytes): A STORAGE_OFFLOAD_TOKEN (section 2.3.79) structure that contains the
generated Token to be used as a representation of the data contained within the portion of the file
specified in the FSCTL_OFFLOAD_READ_INPUT data element at the time of the
FSCTL_OFFLOAD_READ operation. The contents of this field MUST NOT be modified during

subsequent operations.<67>

This message returns a status code; as specified in fMS-ERREF}-section 2.3—Fhe-2. Upon success, the
status code returned direethy-by the function that processes this FSCTL MUSTbeis STATUS_SUCCESS

er-oene-of. The most common error codes are listed in the following_table.

Error code

Meaning

STATUS_INVALID_DEVICE_REQUEST
0xC0000010

The file system does not support offload operations.

STATUS_INVALID_PARAMETER
0xC000000D

At least one of the following assertions is true:

The target file is smaller than the logical sector size.

The FileOffset field is not a multiple of the logical sector
size of the volume.

The CopyLength field is not a multiple of the logical
sector size of the volume.

The Size field is not equivalent to the size of an

[MS-FSCC-Diff] - v20171201

File System Control Codes

Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

93/ 200

Error code

Meaning

FSCTL_OFFLOAD_READ_INPUT data element.

= Adding the FileOffset and CopyLength fields results in
the overflow of a 64-bit value.

STATUS_OFFLOAD_READ_FILE_NOT_SUPPORTED
0xCO00A2A3

Offload operations cannot be performed on:
= Compressed Files

= Sparse Files

] Encrypted Files

] File System Metadata Files

STATUS_NOT_SUPPORTED
0xC00000BB

The file system indicates that the volume does not support
the Offload Read operation.

STATUS_OFFLOAD_READ_FLT_NOT_SUPPORTED
0xCO00A2A1

A file system filter on the server has not opted in for Offload
Read support.

STATUS_FILE_DELETED
0xC0000123

The specified data stream is not valid.

STATUS_FILE_CLOSED
0xC0000128

The specified file handle is closed.

STATUS_END_OF_FILE
0xC0000011

The file read starts beyond the End Of the File (EOF).<68>

STATUS_INSUFFICIENT_RESOURCES
0xCO00009A

There were insufficient resources to complete the operation.

STATUS_BUFFER_TOO_SMALL
0xC0000023

The input buffer is too small to contain an
FSCTL_OFFLOAD_READ_INPUT data element.

or

The output buffer is too small to contain an
FSCTL_OFFLOAD_READ_OUTPUT data element.

STATUS_DEVICE_FEATURE_NOT_SUPPORTED
0xC0000463

The storage device does not support offload read.

2.3.79 STORAGE_OFFLOAD_TOKEN

The STORAGE_OFFLOAD_TOKEN structure contains the Token to be used as a representation of the
data contained within the portion of the file specified in the FSCTL_OFFLOAD_READ_INPUT data
element at the time of the FSCTL_OFFLOAD_READ operation. This Token is used in
FSCTL_OFFLOAD_READ and FSCTL_OFFLOAD_WRITE operations. The format of the data within this
field is either vendor-specific or of a well-known type. The contents of this field MUST NOT be modified

during subsequent operations.<69>

The TokenType and TokenIdLength fields of STORAGE_OFFLOAD_TOKEN structure MUST be
sent in big-endian format. The TokenlId field is a stream of bytes and has no endian property.

[MS-FSCC-Diff] - v20171201

File System Control Codes

Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

94 / 200

The STORAGE_OFFLOAD_TOKEN structure is as follows.

-
N
w

0[{1(2|3|4|5|6|7|8|9(0(1(2[3[4|5|/6|7|8|9|0|1|2|3|4|5|(6[7(8]9|0]|1

TokenType

Reserved TokenIdLength

TokenlId (504 bytes)

TokenType (4 bytes): A 32-bit unsigned integer that defines the type of Token that is contained
within the STORAGE_OFFLOAD_TOKEN structure. This field MUST contain one of the following

values.

Value Meaning

STORAGE_OFFLOAD_TOKEN_TYPE_ZERO_DATA | A well-known Token that indicates that the data logically

OXFFFF0001 represented by the Token is logically equivalent to
zero.<70>

Reserved Reserved for other well-known Tokens currently

OXFFFF0002 — OXFFFFFFFF undefined.

Any other value. A vendor-specific Token format is contained within the
Token field.

Reserved (2 bytes): A 16-bit unsigned integer that is reserved. This field SHOULD be set to 0x0000
and MUST be ignored.

TokenIdLength (2 bytes): A 16-bit unsigned integer that defines the length of the TokenlId field in
bytes.

Tokenld (504 bytes): A 504-byte unsigned integer that contains opaque vendor-specific data.

2.3.80 FSCTL_OFFLOAD_WRITE Request

The FSCTL_OFFLOAD_WRITE Request message requests that the server perform an Offload Write
operation to a specified portion of a file on a target volume, providing a Token to the server that
indicates what data is to be logically written. On the server side, this request is received, processed,
and sent to an intelligent storage subsystem that processes the Token and determines whether it can
perform the data movement to the requested portion of the file. The Token is generated by an
intelligent storage subsystem through an FSCTL_OFFLOAD_READ Request (section 2.3.77) or is
constructed as a well-known Token type (section 2.3.79).<71><72>

The request message contains an FSCTL_OFFLOAD_WRITE_INPUT data element, as follows:

Size

95/ 200

[MS-FSCC-Diff] - v20171201

File System Control Codes

Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Flags

FileOffset

CopyLength

TransferOffset

Token (512 bytes)

Size (4 bytes): A 32-bit unsigned integer that indicates the size, in bytes, of this data element.

Flags (4 bytes): A 32-bit unsigned integer that indicates the flags to be set for this operation.
Currently, no flags are defined. This field SHOULD be set to 0x00000000 and MUST be ignored.

FileOffset (8 bytes): A 64-bit unsigned integer that contains the file offset, in bytes, of the start of a
range of bytes in a file at which to begin writing the data logically represented by the Token. The
value of this field MUST be greater than or equal to 0x0000000000000000 and MUST be aligned to
a logical sector boundary on the volume.

CopyLength (8 bytes): A 64-bit unsigned integer that contains the size, in bytes, of the requested
range of the file to write the data logically represented by the Token. The value of this field MUST
be greater than or equal to 0x0000000000000000 and MUST be aligned to a logical sector
boundary on the volume. This value can be smaller than the size of the data logically represented
by the Token.

TransferOffset (8 bytes): A 64-bit unsigned integer that contains the file offset, in bytes, relative to
the front of a region of data logically represented by the Token at which to start writing. The value
of this field MUST be greater than or equal to 0x0000000000000000 and MUST be aligned to a
logical sector boundary on the volume.

Token (512 bytes): A STORAGE_OFFLOAD_TOKEN (section 2.3.79) structure that contains the
generated (or constructed) Token to be used as a representation of the data to be logically
written. The contents of this field MUST NOT be modified during subsequent operations.

2.3.81 FSCTL_OFFLOAD_WRITE Reply

The FSCTL_OFFLOAD_WRITE Reply message returns the results of the FSCTL_OFFLOAD_WRITE
Request (section 2.3.80).

The FSCTL_OFFLOAD_WRITE_OUTPUT data element is as follows.

96 / 200

[MS-FSCC-Diff] - v20171201

File System Control Codes

Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

[y

0(1|2|3(4|5|6|7|8|9|0[1|2|3|4]|5

6

Size

Flags

LengthWritten

Size (4 bytes): A 32-bit unsigned integer that indicates the size, in bytes, of the returned data

element.

Flags (4 bytes): A 32-bit unsigned integer that indicates which flags were returned for this
operation. Currently, no flags are defined. This field SHOULD be set to 0x00000000 and MUST be

ignored.

LengthWritten (8 bytes): A 64-bit unsigned integer that contains the amount, in bytes, of data that
was written. The value of this field MUST be greater than or equal to zero and MUST be aligned to
a logical sector boundary on the volume. This value can be smaller than the CopyLength field
specified in the FSCTL_OFFLOAD_WRITE_INPUT data element. A smaller value indicates that less
data was logically written with the specified Token than was requested. This field MUST NOT be
greater than the CopyLength field specified in the FSCTL_OFFLOAD_WRITE_INPUT data element,
meaning it is incorrect to copy more than what was requested<73>.

This message returns a status code; as specified in fMS-ERREF}-section 2.3—Fhe-2. Upon success, the
status code returned direethy-by the function that processes this FSCTL MUSTbeis STATUS_SUCCESS
er-ene-of. The most common error codes are listed in the following_table.

Error code

Meaning

STATUS_INVALID_DEVICE_REQUEST
0xC0000010

The file system does not support offload operations.

STATUS_INVALID_PARAMETER
0xC000000D

At least one of the following assertions is true:

The target file is smaller than the logical sector size.

The FileOffset field is not a multiple of the logical
sector size of the volume.

The CopyLength field is not a multiple of the logical
sector size of the volume.

The TransferOffset field is not a multiple of the logical
sector size of the volume.

The FileOffset field is greater than the Valid Data
Length (VDL) for the file.

The Size field is not equivalent to the size of an
FSCTL_OFFLOAD_WRITE_INPUT data element.

Adding the FileOffset and CopyLength fields results
in the overflow of a 64-bit value.

STATUS_OFFLOAD_WRITE_FILE_NOT_SUPPORTED

Offload operations cannot be performed on:

[MS-FSCC-Diff] - v20171201

File System Control Codes

Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

97/ 200

Error code

Meaning

0xCO00A2A4

= Compressed Files
= Sparse Files
] Encrypted Files

] File System Metadata Files

STATUS_NOT_SUPPORTED
0xC00000BB

The file system indicates that the volume does not support
the Offload Write operation.

STATUS_OFFLOAD_WRITE_FLT_NOT_SUPPORTED
0xCO00A2A2

A file system filter on the server has not opted in for Offload
Write support.

STATUS_FILE_DELETED
0xC0000123

The specified data stream was not valid.

STATUS_FILE_CLOSED
0xC0000128

The specified file handle is closed.

STATUS_END_OF_FILE
0xC0000011

The file offset for the write is beyond the End Of the File
(EOF).

STATUS_MEDIA_WRITE_PROTECTED
0xCO0000A2

The volume is read only.

STATUS_INSUFFICIENT_RESOURCES
0xCO00009A

There were insufficient resources to complete the operation.

STATUS_BUFFER_TOO_SMALL
0xC0000023

The input buffer is too small to contain an
FSCTL_OFFLOAD_WRITE_INPUT data element.

or

The output buffer is too small to contain an
FSCTL_OFFLOAD_WRITE_OUTPUT data element.

STATUS_DEVICE_FEATURE_NOT_SUPPORTED
0xC0000463

The storage device does not support Offload Write.

STATUS_DEVICE_UNREACHABLE
0xC0000464

Data cannot be moved by Offload Write because the source
device cannot communicate with the destination device.

STATUS_INVALID_TOKEN
0xC0000465L

The token representing the data is invalid or expired.

2.4 File Information Classes

File information classes are numerical values (specified by the Level column in the following table) that
specify what information for a file is to be queried or set. File information classes can require
additional information to be included in the query or the response. When appropriate, the additional
information is detailed in the file information class description. The table indicates which file
information classes are supported for query and set operations.<74>

[MS-FSCC-Diff] - v20171201

File System Control Codes

Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

98 / 200

File information class Level | Uses
FileAccessInformation 8 Query
FileAlignmentInformation 17 Query
FileAllInformation 18 Query
FileAllocationInformation 19 Set
FileAlternateNameInformation 21 Query
FileAttributeTagInformation 35 Query
FileBasicInformation 4 Query, Set
FileBothDirectoryInformation 3 Query
FileCompressionInformation 28 Query
FileDirectoryInformation 1 Query
FileDispositionInformation 13 Set
FileEaInformation 7 Query
FileEndOfFileInformation 20 Set
FileFullDirectoryInformation 2 Query
FileFullEaInformation 15 Query, Set
FileHardLinkInformation 46 LOCAL<75>
FileIdBothDirectoryInformation 37 Query
FileIdFullDirectoryInformation 38 Query
FileIdGlobalTxDirectoryInformation | 50 LOCAL<76>
FileInternalInformation 6 Query
FileLinkInformation 11 Set
FileMailslotQueryInformation 26 LOCAL<77>
FileMailslotSetInformation 27 LOCAL<78>
FileModelnformation 16 Query, Set<79>
FileMoveClusterInformation 31 <80>
FileNamelInformation 9 LOCAL<81>
FileNamesInformation 12 Query
FileNetworkOpenInformation 34 Query
FileNormalizedNameInformation 48 <82>
FileObjectIdInformation 29 LOCAL<83>
FilePipeInformation 23 Query, Set
FilePipeLocallnformation 24 Query

[MS-FSCC-Diff] - v20171201
File System Control Codes

Copyright © 2017 Microsoft Corporation

Release: December 1, 2017

99/ 200

File information class Level | Uses
FilePipeRemotelnformation 25 Query
FilePositionInformation 14 Query, Set
FileQuotalnformation 32 Query, Set<84>
FileRenamelInformation 10 Set
FileReparsePointInformation 33 LOCAL<85>
FileSfioReservelnformation 44 LOCAL<86>
FileSfioVolumeInformation 45 <87>
FileShortNamelInformation 40 Set
FileStandardInformation 5 Query
FileStandardLinkInformation 54 LOCAL<88>
FileStreamInformation 22 Query
FileTrackingInformation 36 LOCAL<89>
FileValidDataLengthInformation 39 Set

If an information class is specified that does not match the usage in the above table,
STATUS_INVALID_INFO_CLASS MUST be returned. If a file system does not support a specific file
information class, STATUS_INVALID_PARAMETER MUST be returned.

2.4.1 FileAccessInformation

This information class is used to query the access rights of a file that were granted when the file was
opened.

A FILE_ACCESS_INFORMATION data element, defined as follows, is returned by the server.

—
N
w

0[{1(2|3|4|5|6|7|8|9(0(1|2[3|4|5|/6|7|8|9|0|1|2|3|4|5|6[7(8]9|0]|1

AccessFlags

AccessFlags (4 bytes): A 32-bit unsigned integer that MUST contain values specified in [MS-SMB2]
section 2.2.13.1.

This operation returns a status code; as specified in fMS-ERREF}-section 2.3—Fhe-2. Upon success, the
status code returned direethy-by the function that processes this file information class MUSFbeis
STATUS_SUCCESS-erere-of. The most common error codes are listed in the following_table.

Error code Meaning

STATUS_INFO_LENGTH_MISMATCH | The specified information record length does not match the length that is
0xC0000004 required for the specified information class.

100/ 200

[MS-FSCC-Diff] - v20171201

File System Control Codes

Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

2.4.2 FileAllInformation
This information class is used to query a collection of file information structures.

A FILE_ALL_INFORMATION data element, defined as follows, is returned by the server.

-
N
w

0[{1(2|3|4|5|6|7|8|9(0(1(2[3|4|5|/6|7|8|9|0|1|2|3|4|5(6[7(8]9|0]|1

BasicInformation (40 bytes)

StandardInformation (24 bytes)

Internallnformation

Ealnformation

AccessInformation

PositionInformation

Modelnformation

AlignmentInformation

Namelnformation (variable)

BasicInformation (40 bytes): A FILE_ BASIC_INFORMATION structure specified in section 2.4.7.

StandardInformation (24 bytes): A FILE_ STANDARD_INFORMATION structure specified in section
2.4.38.

InternalInformation (8 bytes): A FILE_INTERNAL_INFORMATION structure specified in section
2.4.20.

EaInformation (4 bytes): A FILE_EA_INFORMATION structure specified in section 2.4.12.

AccessInformation (4 bytes): A FILE_ACCESS_INFORMATION structure specified in section 2.4.1.

101/ 200

[MS-FSCC-Diff] - v20171201

File System Control Codes

Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

PositionInformation (8 bytes): A FILE_ POSITION_INFORMATION structure specified in section

2.4.32.

ModelInformation (4 bytes): A FILE_MODE_INFORMATION structure specified in section 2.4.24.

AlignmentInformation (4 bytes): A FILE_ ALIGNMENT_INFORMATION structure specified in section

2.4.3.

NamelInformation (variable): A FILE_ NAME_INFORMATION structure specified in section 2.4.25.

This operation returns a status code; as specified in fMS-ERREF}-section 2.3-—Fhe-2. Upon success, the
status code returned direethy-by the function that processes this file information class MUYS¥beis
STATUS_SUCCESS-er-ene-ef. The most common error codes are listed in the following_table.

Error code

Meaning

0xC0000004

STATUS_INFO_LENGTH_MISMATCH

The specified information record length does not match the length that is
required for the specified information class.

2.4.3 FileAlignmentInformation

This information class is used to query the buffer alignment required by the underlying device.

A FILE_ALIGNMENT_INFORMATION data element, defined as follows, is returned by the server.

=

N
w

112|3|/4|5(6(7(8[9(0(1|2|3|4|5|6|7|8(9|0|1

AlignmentRequirement

AlignmentRequirement (4 bytes): A 32-bit unsigned integer that MUST contain one of the

following values.

Value

Meaning

0x00000000

FILE_BYTE_ALIGNMENT

If this value is specified, there are no alignment requirements for the device.

0x00000001

FILE_WORD_ALIGNMENT

If this value is specified, data MUST be aligned on a 2-byte boundary.

0x00000003

FILE_LONG_ALIGNMENT

If this value is specified, data MUST be aligned on a 4-byte boundary.

0x00000007

FILE_QUAD_ALIGNMENT

If this value is specified, data MUST be aligned on an 8-byte boundary.

0X0000000F

FILE_OCTA_ALIGNMENT

If this value is specified, data MUST be aligned on a 16-byte boundary.

0X0000001F

FILE_32_BYTE_ALIGNMENT

If this value is specified, data MUST be aligned on a 32-byte boundary.

0X0000003F

FILE_64_BYTE_ALIGNMENT

If this value is specified, data MUST be aligned on a 64-byte boundary.

[MS-FSCC-Diff] - v20171201
File System Control Codes

102 / 200

Copyright © 2017 Microsoft Corporation

Release: December 1, 2017

Value Meaning

FILE_128_BYTE_ALIGNMENT | If this value is specified, data MUST be aligned on a 128-byte boundary.
0X0000007F

FILE_256_BYTE_ALIGNMENT | If this value is specified, data MUST be aligned on a 256-byte boundary.
0X000000FF

FILE_512_BYTE_ALIGNMENT | If this value is specified, data MUST be aligned on a 512-byte boundary.
0X000001FF

This operation returns a status code; as specified in fMS-ERREF}-section 2.3-—Fhe-2. Upon success, the
status code returned direethy-by the function that processes this file information class MUYS¥beis
STATUS_SUCCESS-er-ene-ef. The most common error codes are listed in the following_table.

Error code Meaning

STATUS_INFO_LENGTH_MISMATCH | The specified information record length does not match the length that is
0xC0000004 required for the specified information class.

2.4.4 FileAllocationInformation

This information class is used to set but not to query the allocation size for a file. The file system is
passed a 64-bit signed integer containing the file allocation size, in bytes. The file system rounds the
requested allocation size up to an integer multiple of the cluster size for nonresident files, or an
implementation-defined multiple for resident files.<90><91> All unused allocation (beyond EOF) is
freed on the last handle close.

A FILE_ALLOCATION_INFORMATION data element, defined as follows, is provided by the client.

—
N
w

0[{1(2|3|4|5|6|7|8|9(0(1|2[3|4|5|/6|7|8|9|0|1|2|3|4|5|6[7(8]9|0]|1

AllocationSize

AllocationSize (8 bytes): A 64-bit signed integer that contains the desired allocation to be used by
the given file.

This operation returns a status code; as specified in fMS-ERREF}-section 2.3—Fhe-2. Upon success, the
status code returned direethy-by the function that processes this file information class MUSTbeis
STATUS_SUCCESS-erere-of. The most common error codes are listed in the following_table.

Error code Meaning

STATUS_INVALID_PARAMETER The handle is for a directory and not a file, or the allocation is greater than
0xC000000D the maximum file size allowed.

STATUS_ACCESS_DENIED The handle was not opened to write file data or file attributes.
0xC0000022

STATUS_DISK_FULL The disk is full.

0xC000007F

103/ 200

[MS-FSCC-Diff] - v20171201

File System Control Codes

Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Error code Meaning

STATUS_INFO_LENGTH_MISMATCH | The specified information record length does not match the length that is
0xC0000004 required for the specified information class.

2.4.5 FileAlternateNamelInformation

This information class is used to query alternate name information for a file. The alternate name for a
file is its 8.3 format name (eight characters that appear before the "." and three characters that
appear after). A file MAY have an alternate name to achieve compatibility with the 8.3 naming
requirements of legacy applications.<92>

A FILE_ NAME_INFORMATION (section 2.1.7) data element containing an 8.3 file name (section
2.1.5.2.1) is returned by the server.

This operation returns a status code; as specified in fMS-ERREF}-section 2.3-—Fhe-2. Upon success, the
status code returned direetly-by the function that processes this file information class MUSTbeis
STATUS_SUCCESS-e+rere-of. The most common error codes are listed in the following_table.

Error code Meaning

STATUS_INFO_LENGTH_MISMATCH The specified information record length does not match the length that is
0xC0000004 required for the specified information class.

STATUS_OBJECT_NAME_NOT_FOUND | The object name is not found or is empty.
0xC0000034

STATUS_BUFFER_OVERFLOW The output buffer was filled before the complete name could be returned.
0x80000005

2.4.6 FileAttributeTagInformation
This information class is used to query for attribute and reparse tag information for a file.

A FILE_ATTRIBUTE_TAG_INFORMATION data element, defined as follows, is returned by the
server.

—
N
w

0(1|/2|3(4|5|6(7|8|9|0(1|2|3(4|5|6|7|8|9(0(1|2|3(4|5|6[7|8|9|0/(1

FileAttributes

ReparseTag

FileAttributes (4 bytes): A 32-bit unsigned integer that contains the file attributes. Valid file
attributes are as specified in section 2.6.

ReparseTag (4 bytes): A 32-bit unsigned integer that specifies the reparse point tag. If the
FileAttributes member includes the FILE_ATTRIBUTE_REPARSE_POINT attribute flag, this
member specifies the reparse tag. Otherwise, this member SHOULD be set to 0, and MUST be
ignored. Section 2.1.2.1 contains more details on reparse tags.

104 / 200

[MS-FSCC-Diff] - v20171201

File System Control Codes

Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

This operation returns a status code; as specified in fMS-ERREF}-section 2.3-—Fhe-2. Upon success, the
status code returned direetly-by the function that processes this file information class MUJSTbeis
STATUS_SUCCESS-e+enre-ef. The most common error codes are listed in the following_table.

Error code Meaning

STATUS_INFO_LENGTH_MISMATCH | The specified information record length does not match the length that is

0xC0000004 required for the specified information class.
STATUS_ACCESS_DENIED The handle was not opened to read file data or file attributes.
0xC0000022

2.4.7 FileBasicInformation
This information class is used to query or set file information.

A FILE_BASIC_INFORMATION data element, defined as follows, is returned by the server or provided
by the client.

—
N
w

0({1(2|3|4|5|6|7|8|9|(0(1(2[3|4|5|/6|7|8|9|0|1|2|3|4|5|6[7(8]|9|0]|1

CreationTime

LastAccessTime

LastWriteTime

ChangeTime

FileAttributes

Reserved

CreationTime (8 bytes): The time when the file was created; see section 2.1.1. A valid time for this
field is an integer greater than or equal to 0. When setting file attributes, a value of 0 indicates to
the server that it MUST NOT change this attribute. When setting file attributes, a value of -1
indicates to the server that it MUST NOT change this attribute for all subsequent operations on the
same file handle. This field MUST NOT be set to a value less than -1.

LastAccessTime (8 bytes): The last time the file was accessed; see section 2.1.1. A valid time for
this field is an integer greater than or equal to 0. When setting file attributes, a value of 0
indicates to the server that it MUST NOT change this attribute. When setting file attributes, a value

105/ 200

[MS-FSCC-Diff] - v20171201

File System Control Codes

Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

of -1 indicates to the server that it MUST NOT change this attribute for all subsequent operations
on the same file handle. This field MUST NOT be set to a value less than -1.<93>

LastWriteTime (8 bytes): The last time information was written to the file; see section 2.1.1. A
valid time for this field is an integer greater than or equal to 0. When setting file attributes, a
value of 0 indicates to the server that it MUST NOT change this attribute. When setting file
attributes, a value of -1 indicates to the server that it MUST NOT change this attribute for all
subsequent operations on the same file handle. This field MUST NOT be set to a value less than -
1.<94>

ChangeTime (8 bytes): The last time the file was changed; see section 2.1.1. A valid time for this
field is an integer greater than or equal to 0. When setting file attributes, a value of 0 indicates to
the server that it MUST NOT change this attribute. When setting file attributes, a value of -1
indicates to the server that it MUST NOT change this attribute for all subsequent operations on the
same file handle. This field MUST NOT be set to a value less than -1.<95>

FileAttributes (4 bytes): A 32-bit unsigned integer that contains the file attributes. Valid file
attributes are specified in section 2.6.

Reserved (4 bytes): A 32-bit field. This field is reserved. This field can be set to any value, and
MUST be ignored.

This operation returns a status code; as specified in fMS-ERREF}-section 2.3-—Fhe-2. Upon success, the
status code returned direethy-by the function that processes this file information class MJS+beis
STATUS_SUCCESS-erene-ef. The most common error codes are listed in the following_table.

Error code Meaning

STATUS_INFO_LENGTH_MISMATCH | The specified information record length does not match the length that is

0xC0000004 required for the specified information class.
STATUS_ACCESS_DENIED The handle was not opened to read file data or file attributes.
0xC0000022

2.4.8 FileBothDirectoryInformation

This information class is used in directory enumeration to return detailed information about the
contents of a directory.

This information class returns a list that contains a FILE_BOTH_DIR_INFORMATION data element
for each file or directory within the target directory. This list MUST reflect the presence of a
subdirectory named "." (synonymous with the target directory itself) within the target directory and
one named ".." (synonymous with the parent directory of the target directory). For more details, see
section 2.1.5.1.

This information class differs from FileDirectoryInformation (section 2.4.10) in that it includes short
names in the returns list.

When multiple FILE_BOTH_DIR_INFORMATION data elements are present in the buffer, each
MUST be aligned on an 8-byte boundary. Any bytes inserted for alignment SHOULD be set to zero,
and the receiver MUST ignore them. No padding is required following the last data element.

A FILE_BOTH_DIR_INFORMATION data element is as follows.

106 / 200

[MS-FSCC-Diff] - v20171201

File System Control Codes

Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

—
N
w

0(1|2|3(4|5|6|7|8|9|0(1|2|3(4|5|6|7|8|9(0(1|2|3(4|5|6[7|8|9|0(1

NextEntryOffset

FileIndex

CreationTime

LastAccessTime

LastWriteTime

ChangeTime

EndOfFile

AllocationSize

FileAttributes

FileNamelLength

EaSize

ShortNameLength Reserved ShortName (24 bytes)

FileName (variable)

NextEntryOffset (4 bytes): A 32-bit unsigned integer that contains the byte offset from the
beginning of this entry, at which the next FILE_ BOTH_DIR_INFORMATION entry is located, if
multiple entries are present in a buffer. This member is zero if no other entries follow this one. An

107/ 200

[MS-FSCC-Diff] - v20171201

File System Control Codes

Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

implementation MUST use this value to determine the location of the next entry (if multiple entries
are present in a buffer).

FileIndex (4 bytes): A 32-bit unsigned integer that contains the byte offset of the file within the
parent directory. For file systems in which the position of a file within the parent directory is not
fixed and can be changed at any time to maintain sort order, this field SHOULD be set to
0x00000000 and MUST be ignored.<96>

CreationTime (8 bytes): The time when the file was created; see section 2.1.1. This value MUST be
greater than or equal to 0.

LastAccessTime (8 bytes): The last time the file was accessed; see section 2.1.1. This value MUST
be greater than or equal to 0.

LastWriteTime (8 bytes): The last time information was written to the file; see section 2.1.1. This
value MUST be greater than or equal to 0.

ChangeTime (8 bytes): The last time the file was changed; see section 2.1.1. This value MUST be
greater than or equal to 0.

EndOfFile (8 bytes): A 64-bit signed integer that contains the absolute new end-of-file position as a
byte offset from the start of the file. EndOfFile specifies the offset to the byte immediately
following the last valid byte in the file. Because this value is zero-based, it actually refers to the
first free byte in the file. That is, it is the offset from the beginning of the file at which new bytes
appended to the file will be written. The value of this field MUST be greater than or equal to 0.

AllocationSize (8 bytes): A 64-bit signed integer that contains the file allocation size, in bytes. The
value of this field MUST be an integer multiple of the cluster size.

FileAttributes (4 bytes): A 32-bit unsigned integer that contains the file attributes. Valid file
attributes are specified in section 2.6.

FileNameLength (4 bytes): A 32-bit unsigned integer that specifies the length, in bytes, of the file
name contained within the FileName member.

EaSize (4 bytes): A 32-bit unsigned integer that contains the combined length, in bytes, of the
extended attributes (EA) for the file.

ShortNamelLength (1 byte): An 8-bit signed integer that specifies the length, in bytes, of the file
name contained in the ShortName member. This value MUST be greater than or equal to 0.

Reserved (1 byte): Reserved for alignment. This field can contain any value and MUST be ignored.

ShortName (24 bytes): A sequence of Unicode characters containing the short (8.3) file name.
When working with this field, use ShortNameLength to determine the length of the file nhame
rather than assuming the presence of a trailing null delimiter.

FileName (variable): A sequence of Unicode characters containing the file name. When working with
this field, use FileNameLength to determine the length of the file name rather than assuming the
presence of a trailing null delimiter. Dot directory names are valid for this field. For more details,
see section 2.1.5.1.

This operation returns a status code; as specified in fMS-ERREF}-section 2.3-—Fhe-2. Upon success, the
status code returned direethy-by the function that processes this file information class MUS+beis
STATUS_SUCCESS-erenre-ef. The most common error codes are listed in the following_table.

Error code Meaning

STATUS_INFO_LENGTH_MISMATCH | The specified information record length does not match the length that is
0xC0000004 required for the specified information class.

108 / 200

[MS-FSCC-Diff] - v20171201

File System Control Codes

Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

2.4.9 FileCompressionInformation
This information class is used to query compression information for a file.

A FILE_COMPRESSION_INFORMATION data element, defined as follows, is returned by the server.

=
N
w

0(1|/2|3(4|5|6|7|8|9|0(1|2|3(4|5|6|7|8|9(0(1|2|3(4|5|6[7|8|9|0(1

CompressedFileSize

CompressionFormat CompressionUnitShift ChunkShift

ClusterShift Reserved

CompressedFileSize (8 bytes): A 64-bit signed integer that contains the size, in bytes, of the
compressed file. This value MUST be greater than or equal to 0.

CompressionFormat (2 bytes): A 16-bit unsigned integer that contains the compression format.
The actual compression operation associated with each of these compression format values is
implementation-dependent. An implementation can link any local compression algorithm with the
values described in the following table because the compressed data does not travel across the
wire in the context of FSCTL, FileInformation class, or FileSystemInformation class requests or
replies.<97>

Value Meaning

COMPRESSION_FORMAT_NONE | The file or directory is not compressed.

0x0000

COMPRESSION_FORMAT_LZNT1 | The file or directory is compressed by using the LZNT1 compression
0x0002 algorithm.

All other values Reserved for future use.

CompressionUnitShift (1 byte): An 8-bit unsigned integer that contains the compression unit shift,
which is the number of bits by which to left-shift a 1 bit to arrive at the compression unit size. The
compression unit size is the number of bytes in a compression unit, that is, the number of bytes to
be compressed. This value is implementation-defined.<98>

ChunkShift (1 byte): An 8-bit unsigned integer that contains the compression chunk size shift,
which is the number of bits by which to left-shift a 1 bit to arrive at the compression chunk size.
The chunk size is the number of bytes that the operating system's implementation of the Lempel-
Ziv compression algorithm tries to compress at one time. This value is implementation-
defined.<99>

ClusterShift (1 byte): An 8-bit unsigned integer that contains the cluster size shift, which is the
number of bits by which to left-shift a 1 bit to arrive at the cluster size. The cluster size specifies
the amount of space that is saved by compression to successfully compress a compression unit. If
a cluster size amount of space is not saved by compression, the data in that compression unit is
stored uncompressed. Each successfully compressed compression unit MUST occupy at least one
cluster less than the uncompressed compression unit. This value is implementation-defined.<100>

109 / 200

[MS-FSCC-Diff] - v20171201

File System Control Codes

Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Reserved (3 bytes): A 24-bit reserved value. This field SHOULD be set to 0, and MUST be ignored.

This operation returns a status code; as specified in fMS-ERREF}-section 2.3-—Fhe-2. Upon success, the
status code returned direetly-by the function that processes this file information class MUJSFbeis
STATUS_SUCCESS-e+ene-ef. The most common error codes are listed in the following_table.

Error code Meaning

STATUS_INFO_LENGTH_MISMATCH | The specified information record length does not match the length that is

0xC0000004 required for the specified information class.
STATUS_BUFFER_OVERFLOW The data was too large to fit into the specified buffer. No data is returned.
0x80000005

2.4.10FileDirectoryInformation

This information class is used in directory enumeration to return detailed information about the
contents of a directory.

This information class returns a list that contains a FILE_DIRECTORY_INFORMATION data element
for each file or directory within the target directory. This list MUST reflect the presence of a
subdirectory named "." (synonymous with the target directory itself) within the target directory and
one named ".." (synonymous with the parent directory of the target directory). For more details, see
section 2.1.5.1.

When multiple FILE_DIRECTORY_INFORMATION data elements are present in the buffer, each
MUST be aligned on an 8-byte boundary. Any bytes inserted for alignment SHOULD be set to zero,
and the receiver MUST ignore them. No padding is required following the last data element.

A FILE_DIRECTORY_INFORMATION data element is as follows.

-
N
w

0(1|2|3(4|5|6|7|8|9|0(1|2|3(4|5|6|7|8|9(0(1|2|3(4|5|6[|7|8|9|0/(1

NextEntryOffset

FileIndex

CreationTime

LastAccessTime

LastWriteTime

ChangeTime

110/ 200

[MS-FSCC-Diff] - v20171201

File System Control Codes

Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

EndOfFile

AllocationSize

FileAttributes

FileNamelLength

FileName (variable)

NextEntryOffset (4 bytes): A 32-bit unsigned integer that contains the byte offset from the
beginning of this entry, at which the next FILE_DIRECTORY_INFORMATION entry is located, if
multiple entries are present in a buffer. This member MUST be zero if no other entries follow this
one. An implementation MUST use this value to determine the location of the next entry (if
multiple entries are present in a buffer).

FileIndex (4 bytes): A 32-bit unsigned integer that contains the byte offset of the file within the
parent directory. For file systems in which the position of a file within the parent directory is not
fixed and can be changed at any time to maintain sort order, this field SHOULD be set to 0 and
MUST be ignored.<101>

CreationTime (8 bytes): The time when the file was created; see section 2.1.1. This value MUST be
greater than or equal to 0.

LastAccessTime (8 bytes): The last time the file was accessed; see section 2.1.1. This value MUST
be greater than or equal to 0.

LastWriteTime (8 bytes): The last time information was written to the file; see section 2.1.1. This
value MUST be greater than or equal to 0.

ChangeTime (8 bytes): The last time the file was changed; see section 2.1.1. This value MUST be
greater than or equal to 0.

EndOfFile (8 bytes): A 64-bit signed integer that contains the absolute new end-of-file position as a
byte offset from the start of the file. EndOfFile specifies the offset to the byte immediately
following the last valid byte in the file. Because this value is zero-based, it actually refers to the
first free byte in the file. That is, it is the offset from the beginning of the file at which new bytes
appended to the file will be written. The value of this field MUST be greater than or equal to 0.

AllocationSize (8 bytes): A 64-bit signed integer that contains the file allocation size, in bytes. The
value of this field MUST be an integer multiple of the cluster size.

FileAttributes (4 bytes): A 32-bit unsigned integer that contains the file attributes. Valid attributes
are as specified in section 2.6.

FileNameLength (4 bytes): A 32-bit unsigned integer that specifies the length, in bytes, of the file
name contained within the FileName member.

111 /200

[MS-FSCC-Diff] - v20171201

File System Control Codes

Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

FileName (variable): A sequence of Unicode characters containing the file name. When working with
this field, use FileNameLength to determine the length of the file name rather than assuming the
presence of a trailing null delimiter. Dot directory names are valid for this field. For more details,
see section 2.1.5.1.

This operation returns a status code; as specified in fMS-ERREF}-section 2.3-—Fhe-2. Upon success, the
status code returned direetly-by the function that processes this file information class MJSTbeis
STATUS_SUCCESS-e+ene-ef. The most common error codes are listed in the following_table.

Error code Meaning

STATUS_INFO_LENGTH_MISMATCH | The specified information record length does not match the length that is
0xC0000004 required for the specified information class.

2.4.11 F