

[MS-FSCC]: File System Control Codes

This topic lists the Errata found in the MS-FSCC document since it was last
published. Since this topic is updated frequently, we recommend that you
subscribe to these RSS or Atom feeds to receive update notifications.

Errata are subject to the same terms as the Open Specifications documentation
referenced.

RSS

Atom

Errata below are for Protocol Document Version V39.0 – 2015/10/16.

Errata
Published
* Description

2016/03/2
1

In Section 2.3.40.1, FILE_REGION_INFO, and Section 2.3.79 STORAGE_OFFLOAD_TOKEN,
corrected two field names – DesiredUsage and TokenId.

In Section 2.3.40.1, FILE_REGION_INFO, changed from:

Usage (4 bytes): A 32-bit unsigned integer that indicates the usage for the given region of the
file. The valid values are defined in section 2.3.39.

Changed to:

DesiredUsage (4 bytes): A 32-bit unsigned integer that indicates the usage for the given region
of the file. The valid values are defined in section 2.3.39.

Also, corrected the field name in the bit table.

In Section 2.3.79 STORAGE_OFFLOAD_TOKEN, changed from:

The TokenType and TokenIdLength fields of STORAGE_OFFLOAD_TOKEN structure MUST be sent
in big-endian format. The TokenID field is a stream of bytes and has no endian property.

Changed to:

The TokenType and TokenIdLength fields of STORAGE_OFFLOAD_TOKEN structure MUST be sent
in big-endian format. The TokenId field is a stream of bytes and has no endian property.

2015/11/2
3

In various sections, changed the normative language.

In Section 1.7, Vendor-Extensible Fields, "should" has been changed to "MUST" in the first
paragraph.

Changed from:

File system control codes that are used to set reparse point data specify a ReparseTag field
value that identifies the file system filter that understands the application-specific reparse point
data format. A vendor developing an application protocol that sets reparse point data should
request a unique reparse tag for that application from Microsoft by following the instructions
described in [WHDC-RPTR]. For more information about reparse points, see [REPARSE].

Changed to:

File system control codes that are used to set reparse point data specify a ReparseTag field
value that identifies the file system filter that understands the application-specific reparse point
data format. A vendor developing an application protocol that sets reparse point data MUST

http://blogs.msdn.com/b/protocol_content_errata/rss.aspx
http://blogs.msdn.com/b/protocol_content_errata/atom.aspx
http://go.microsoft.com/fwlink/?LinkId=517120

Errata
Published
* Description

request a unique reparse tag for that application from Microsoft by following the instructions
described in [WHDC-RPTR]. For more information about reparse points, see [REPARSE].

In Section 2.1.2.1, Reparse Tags, "should" has been changed to "SHOULD" in the third
paragraph.

Changed from:

The following reparse tags, with the exception of IO_REPARSE_TAG_SYMLINK, are processed on
the server and are not processed by a client after transmission over the wire. Clients should
treat associated reparse data as opaque data.<2>

Changed to:

The following reparse tags, with the exception of IO_REPARSE_TAG_SYMLINK, are processed on
the server and are not processed by a client after transmission over the wire. Clients SHOULD
treat associated reparse data as opaque data.<2>

In Section 2.1.7, FILE_NAME_INFORMATION, "should not" has been changed to "MUST NOT" in
the description of FileName.

Changed from:

FileName (variable): A sequence of Unicode characters containing a pathname (section 2.1.5).
The meaning of the pathname depends on the operation. The name string is not null-
terminated. There are scenarios where one or more padding characters may be at the end of the
string due to buffer alignment requirements, but their presence and their values should not be
relied upon. When working with this field, use FileNameLength to determine the length of the file
name rather than assuming the presence of a trailing null delimiter.

Changed to:

FileName (variable): A sequence of Unicode characters containing a pathname (section 2.1.5).
The meaning of the pathname depends on the operation. The name string is not null-
terminated. There are scenarios where one or more padding characters may be at the end of the
string due to buffer alignment requirements, but their presence and their values MUST NOT be
relied upon. When working with this field, use FileNameLength to determine the length of the file
name rather than assuming the presence of a trailing null delimiter.

In Section 2.3.19, FSCTL_GET_OBJECT_ID Request, "should" has been changed to "SHOULD" in
the second paragraph.

Changed from:

Object identifiers are 16-byte opaque values that are used to track files and directories, and
they are generated by the server. File and directory object identifiers are invisible to most
applications and should never be modified by applications.

Changed to:

Object identifiers are 16-byte opaque values that are used to track files and directories, and
they are generated by the server. File and directory object identifiers are invisible to most
applications and SHOULD never be modified by applications.

2015/11/2
3

In Section 2.4.42, FileNotifyInformation, added two missing values for the Action field.

Changed from:

Errata
Published
* Description

Action (4 bytes): The changes that occurred on the file. This field MUST contain one of the
following values.

Values Meaning

… …

FILE_ACTION_REMOVED_BY_DELET
E

0x00000009

An object ID was removed because the file the
object ID referred to was deleted.

This notification is only sent when the directory
being monitored is the special directory
"\$Extend\$ObjId:$O:$INDEX_ALLOCATION".<125
>

 Changed to:

Action (4 bytes): The changes that occurred on the file. This field MUST contain one of the
following values.

Values Meaning

… …

FILE_ACTION_REMOVED_BY_DELETE

0x00000009

An object ID was removed because the file the
object ID referred to was deleted.

This notification is only sent when the directory
being monitored is the special directory
"\$Extend\$ObjId:$O:$INDEX_ALLOCATION".<1
25>

FILE_ACTION_ID_NOT_TUNNELLED

0x0000000A

An attempt to tunnel object ID information to a
file being created or renamed failed because the
object ID is in use by another file on the same
volume.

This notification is only sent when the directory
being monitored is the special directory
"\$Extend\$ObjId:$O:$INDEX_ALLOCATION".<1
26>

FILE_ACTION_TUNNELLED_ID_COLLISI
ON

0x0000000B

An attempt to tunnel object ID information to a
file being renamed failed because the file already
has an object ID.

This notification is only sent when the directory
being monitored is the special directory
"\$Extend\$ObjId:$O:$INDEX_ALLOCATION".<1
27>

<126> Only NTFS supports this special directory.

<127> Only NTFS supports this special directory

2015/10/2
6

In Section 2.1.2.6, Network File System (NFS) Reparse Data Buffer, the composition of the
DataBuffer field in the descriptions of NFS_SPECFILE_CHR and NFS_SPECFILE_BLK has been
corrected.

Errata
Published
* Description

Changed from:

Type (8 bytes): A 64-bit unsigned integer value describing the type and format of
the data stored in the DataBuffer field. The valid values for this field are:

Value Meaning

… …

NFS_SPECFILE_CHR

0x0000000000524843

Indicates that the DataBuffer field has
two 16–bit integers that contain the
major and minor numbers for the
character special device created by the
Network File System client.

NFS_SPECFILE_BLK

0x00000000004b4c42

Indicates that the DataBuffer field has
two 16–bit integers that contain the
major and minor numbers for the block

special created by the Network File
System client.

… …

…

DataBuffer (variable): A variable buffer that has the following formats depending
upon the Type field defined earlier.

▪ NFS_SPECFILE_CHR and NFS_SPECFILE_BLK: The DataBuffer field contains two

16-bit integers that represent major and minor device numbers.

Changed to:

Type (8 bytes): A 64-bit unsigned integer value describing the type and format of
the data stored in the DataBuffer field. The valid values for this field are:

Value Meaning

… …

NFS_SPECFILE_CHR

0x0000000000524843

Indicates that the DataBuffer field has
two 32–bit integers that contain the
major and minor device numbers for the
character special device created by the
Network File System client.

NFS_SPECFILE_BLK

0x00000000004b4c42

Indicates that the DataBuffer field has
two 32–bit integers that contain the
major and minor device numbers for the
character special device created by the
Network File System client.

Errata
Published
* Description

… …

…

DataBuffer (variable): A variable buffer that has the following formats depending
upon the Type field defined earlier.

▪ NFS_SPECFILE_CHR and NFS_SPECFILE_BLK: The DataBuffer field contains two

32-bit integers that represent major and minor device numbers.

*Date format: YYYY/MM/DD

