
1 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

[MS-FSA]:

File System Algorithms

Intellectual Property Rights Notice for Open Specifications Documentation

 Technical Documentation. Microsoft publishes Open Specifications documentation (“this
documentation”) for protocols, file formats, data portability, computer languages, and standards
support. Additionally, overview documents cover inter-protocol relationships and interactions.

 Copyrights. This documentation is covered by Microsoft copyrights. Regardless of any other
terms that are contained in the terms of use for the Microsoft website that hosts this
documentation, you can make copies of it in order to develop implementations of the technologies
that are described in this documentation and can distribute portions of it in your implementations

that use these technologies or in your documentation as necessary to properly document the
implementation. You can also distribute in your implementation, with or without modification, any
schemas, IDLs, or code samples that are included in the documentation. This permission also

applies to any documents that are referenced in the Open Specifications documentation.
 No Trade Secrets. Microsoft does not claim any trade secret rights in this documentation.
 Patents. Microsoft has patents that might cover your implementations of the technologies

described in the Open Specifications documentation. Neither this notice nor Microsoft's delivery of
this documentation grants any licenses under those patents or any other Microsoft patents.
However, a given Open Specifications document might be covered by the Microsoft Open
Specifications Promise or the Microsoft Community Promise. If you would prefer a written license,

or if the technologies described in this documentation are not covered by the Open Specifications
Promise or Community Promise, as applicable, patent licenses are available by contacting
iplg@microsoft.com.

 License Programs. To see all of the protocols in scope under a specific license program and the
associated patents, visit the Patent Map.

 Trademarks. The names of companies and products contained in this documentation might be

covered by trademarks or similar intellectual property rights. This notice does not grant any
licenses under those rights. For a list of Microsoft trademarks, visit
www.microsoft.com/trademarks.

 Fictitious Names. The example companies, organizations, products, domain names, email
addresses, logos, people, places, and events that are depicted in this documentation are fictitious.
No association with any real company, organization, product, domain name, email address, logo,
person, place, or event is intended or should be inferred.

Reservation of Rights. All other rights are reserved, and this notice does not grant any rights other
than as specifically described above, whether by implication, estoppel, or otherwise.

Tools. The Open Specifications documentation does not require the use of Microsoft programming
tools or programming environments in order for you to develop an implementation. If you have access
to Microsoft programming tools and environments, you are free to take advantage of them. Certain
Open Specifications documents are intended for use in conjunction with publicly available standards
specifications and network programming art and, as such, assume that the reader either is familiar

with the aforementioned material or has immediate access to it.

Support. For questions and support, please contact dochelp@microsoft.com.

https://go.microsoft.com/fwlink/?LinkId=214445
https://go.microsoft.com/fwlink/?LinkId=214445
https://go.microsoft.com/fwlink/?LinkId=214448
mailto:iplg@microsoft.com
https://aka.ms/AA9ufj8
https://www.microsoft.com/trademarks
mailto:dochelp@microsoft.com

2 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

Revision Summary

Date
Revision
History

Revision
Class Comments

3/12/2010 0.1 Major First Release.

4/23/2010 0.1.1 Editorial Changed language and formatting in the technical content.

6/4/2010 1.0 Major Updated and revised the technical content.

7/16/2010 2.0 Major Updated and revised the technical content.

8/27/2010 3.0 Major Updated and revised the technical content.

10/8/2010 4.0 Major Updated and revised the technical content.

11/19/2010 5.0 Major Updated and revised the technical content.

1/7/2011 6.0 Major Updated and revised the technical content.

2/11/2011 6.0 None
No changes to the meaning, language, or formatting of the
technical content.

3/25/2011 6.0 None
No changes to the meaning, language, or formatting of the
technical content.

5/6/2011 7.0 Major Updated and revised the technical content.

6/17/2011 8.0 Major Updated and revised the technical content.

9/23/2011 9.0 Major Updated and revised the technical content.

12/16/2011 10.0 Major Updated and revised the technical content.

3/30/2012 11.0 Major Updated and revised the technical content.

7/12/2012 12.0 Major Updated and revised the technical content.

10/25/2012 13.0 Major Updated and revised the technical content.

1/31/2013 14.0 Major Updated and revised the technical content.

8/8/2013 15.0 Major Updated and revised the technical content.

11/14/2013 16.0 Major Updated and revised the technical content.

2/13/2014 17.0 Major Updated and revised the technical content.

5/15/2014 18.0 Major Updated and revised the technical content.

6/30/2015 19.0 Major Significantly changed the technical content.

10/16/2015 20.0 Major Significantly changed the technical content.

3/2/2016 21.0 Major Significantly changed the technical content.

7/14/2016 22.0 Major Significantly changed the technical content.

9/26/2016 23.0 Major Significantly changed the technical content.

6/1/2017 24.0 Major Significantly changed the technical content.

9/15/2017 25.0 Major Significantly changed the technical content.

3 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

Date
Revision
History

Revision
Class Comments

12/1/2017 26.0 Major Significantly changed the technical content.

3/16/2018 27.0 Major Significantly changed the technical content.

9/12/2018 28.0 Major Significantly changed the technical content.

5/30/2019 29.0 Major Significantly changed the technical content.

3/4/2020 30.0 Major Significantly changed the technical content.

8/26/2020 31.0 Major Significantly changed the technical content.

4/7/2021 32.0 Major Significantly changed the technical content.

6/2/2021 33.0 Major Significantly changed the technical content.

6/25/2021 34.0 Major Significantly changed the technical content.

10/6/2021 35.0 Major Significantly changed the technical content.

4/29/2022 36.0 Major Significantly changed the technical content.

4/4/2023 37.0 Major Significantly changed the technical content.

9/20/2023 37.0 None
No changes to the meaning, language, or formatting of the
technical content.

4/23/2024 38.0 Major Significantly changed the technical content.

7/8/2024 39.0 Major Significantly changed the technical content.

9/16/2024 39.0 None
No changes to the meaning, language, or formatting of the
technical content.

4 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

Table of Contents

1 Introduction .. 9
1.1 Glossary ... 9
1.2 References .. 10

1.2.1 Normative References ... 10
1.2.2 Informative References ... 11

1.3 Overview .. 11
1.4 Relationship to Other Protocols .. 11
1.5 Applicability Statement ... 12
1.6 Standards Assignments ... 12
1.7 Versioning and Capability Negotiation ... 12
1.8 Vendor-Extensible Fields ... 12

2 Algorithm Details... 13
2.1 Object Store Details ... 13

2.1.1 Abstract Data Model .. 13
2.1.1.1 Per Volume .. 13
2.1.1.2 Per TunnelCacheEntry ... 17
2.1.1.3 Per File .. 17
2.1.1.4 Per Link ... 19
2.1.1.5 Per Stream ... 20
2.1.1.6 Per Open ... 21
2.1.1.7 Per ByteRangeLock ... 23
2.1.1.8 Per ChangeNotifyEntry ... 23
2.1.1.9 Per NotifyEventEntry ... 23
2.1.1.10 Per Oplock ... 23
2.1.1.11 Per RHOpContext .. 25
2.1.1.12 Per CancelableOperations ... 25
2.1.1.13 Per SecurityContext .. 25
2.1.1.14 Constants .. 25

2.1.2 Timers .. 25
2.1.3 Initialization ... 26
2.1.4 Common Algorithms ... 26

2.1.4.1 Algorithm for Reporting a Change Notification for a Directory or View Index . 26
2.1.4.2 Algorithm for Detecting If Open Files Exist Under a Directory...................... 27
2.1.4.3 Algorithm for Determining If a Character Is a Wildcard 28
2.1.4.4 Algorithm for Determining if a FileName Is in an Expression 28
2.1.4.5 BlockAlign -- Macro to Round a Value Up to the Next Nearest Multiple of

Another Value .. 29
2.1.4.6 BlockAlignTruncate -- Macro to Round a Value Down to the Next Nearest

Multiple of Another Value ... 29
2.1.4.7 ClustersFromBytes -- Macro to Determine How Many Clusters a Given Number

of Bytes Occupies ... 30
2.1.4.8 ClustersFromBytesTruncate -- Macro to Determine How Many Whole Clusters a

Given Number of Bytes Occupies .. 30
2.1.4.9 SidLength -- Macro to Provide the Length of a SID 30
2.1.4.10 Algorithm for Determining If a Range Access Conflicts with Byte-Range Locks31
2.1.4.11 Algorithm for Posting a USN Change for a File .. 32
2.1.4.12 Algorithm to Check for an Oplock Break ... 32

2.1.4.12.1 Algorithm for Request Processing After an Oplock Breaks 48
2.1.4.12.2 Algorithm to Compare Oplock Keys .. 48

2.1.4.13 Algorithm to Recompute the State of a Shared Oplock 49
2.1.4.14 AccessCheck -- Algorithm to Perform a General Access Check 50
2.1.4.15 BuildRelativeName -- Algorithm for Building the Relative Path Name for a Link

 .. 51
2.1.4.16 FindAllFiles: Algorithm for Finding All Files Under a Directory 52

5 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

2.1.4.17 Algorithm for Noting That a File Has Been Modified 53
2.1.4.18 Algorithm for Updating Duplicated Information ... 53
2.1.4.19 Algorithm for Noting That a File Has Been Accessed 53

2.1.5 Higher-Layer Triggered Events ... 54
2.1.5.1 Server Requests an Open of a File ... 54

2.1.5.1.1 Creation of a New File .. 60
2.1.5.1.2 Open of an Existing File .. 65

2.1.5.1.2.1 Algorithm to Check Access to an Existing File 73
2.1.5.1.2.2 Algorithm to Check Sharing Access to an Existing Stream or Directory74

2.1.5.2 Server Requests an Open of a Named Pipe ... 75
2.1.5.3 Server Requests a Read ... 78
2.1.5.4 Server Requests a Write .. 80
2.1.5.5 Server Requests Closing an Open .. 83
2.1.5.6 Server Requests Querying a Directory ... 88

2.1.5.6.1 FileObjectIdInformation .. 89
2.1.5.6.2 FileReparsePointInformation ... 90
2.1.5.6.3 Directory Information Queries ... 91

2.1.5.6.3.1 FileBothDirectoryInformation ... 94
2.1.5.6.3.2 FileDirectoryInformation ... 95
2.1.5.6.3.3 FileFullDirectoryInformation .. 96
2.1.5.6.3.4 FileId64ExtdBothDirectoryInformation .. 97
2.1.5.6.3.5 FileId64ExtdDirectoryInformation... 98
2.1.5.6.3.6 FileIdAllExtdBothDirectoryInformation .. 99
2.1.5.6.3.7 FileIdAllExtdDirectoryInformation .. 100
2.1.5.6.3.8 FileIdBothDirectoryInformation ... 102
2.1.5.6.3.9 FileIdExtdDirectoryInformation ... 103
2.1.5.6.3.10 FileIdFullDirectoryInformation .. 104
2.1.5.6.3.11 FileNamesInformation ... 105

2.1.5.7 Server Requests Flushing Cached Data ... 106
2.1.5.8 Server Requests a Byte-Range Lock ... 106
2.1.5.9 Server Requests an Unlock of a Byte-Range .. 108
2.1.5.10 Server Requests an FsControl Request .. 109

2.1.5.10.1 FSCTL_CREATE_OR_GET_OBJECT_ID ... 109
2.1.5.10.2 FSCTL_DELETE_OBJECT_ID ... 110
2.1.5.10.3 FSCTL_DELETE_REPARSE_POINT ... 111
2.1.5.10.4 FSCTL_DUPLICATE_EXTENTS_TO_FILE ... 112
2.1.5.10.5 FSCTL_DUPLICATE_EXTENTS_TO_FILE_EX .. 116
2.1.5.10.6 FSCTL_FILE_LEVEL_TRIM .. 119
2.1.5.10.7 FSCTL_FILESYSTEM_GET_STATISTICS .. 121
2.1.5.10.8 FSCTL_FIND_FILES_BY_SID .. 122
2.1.5.10.9 FSCTL_GET_COMPRESSION ... 124
2.1.5.10.10 FSCTL_GET_INTEGRITY_INFORMATION .. 125
2.1.5.10.11 FSCTL_GET_NTFS_VOLUME_DATA .. 126
2.1.5.10.12 FSCTL_GET_REFS_VOLUME_DATA .. 127
2.1.5.10.13 FSCTL_GET_OBJECT_ID .. 128
2.1.5.10.14 FSCTL_GET_REPARSE_POINT .. 128
2.1.5.10.15 FSCTL_GET_RETRIEVAL_POINTERS .. 129
2.1.5.10.16 FSCTL_GET_RETRIEVAL_POINTERS_AND_REFCOUNT 130
2.1.5.10.17 FSCTL_GET_RETRIEVAL_POINTER_COUNT .. 131
2.1.5.10.18 FSCTL_IS_PATHNAME_VALID ... 132
2.1.5.10.19 FSCTL_MARK_HANDLE .. 132
2.1.5.10.20 FSCTL_OFFLOAD_READ ... 133
2.1.5.10.21 FSCTL_OFFLOAD_WRITE ... 136
2.1.5.10.22 FSCTL_QUERY_ALLOCATED_RANGES .. 139
2.1.5.10.23 FSCTL_QUERY_FAT_BPB ... 142
2.1.5.10.24 FSCTL_QUERY_FILE_REGIONS ... 143
2.1.5.10.25 FSCTL_QUERY_ON_DISK_VOLUME_INFO .. 145
2.1.5.10.26 FSCTL_QUERY_SPARING_INFO .. 146

6 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

2.1.5.10.27 FSCTL_READ_FILE_USN_DATA... 147
2.1.5.10.28 FSCTL_RECALL_FILE ... 150
2.1.5.10.29 FSCTL_REFS_STREAM_SNAPSHOT_MANAGEMENT 150

2.1.5.10.29.1 Algorithm for REFS_STREAM_SNAPSHOT_OPERATION_CREATE 153
2.1.5.10.29.2 Algorithm for REFS_STREAM_SNAPSHOT_OPERATION_LIST 153
2.1.5.10.29.3 Algorithm for REFS_STREAM_SNAPSHOT_OPERATION_QUERY_DELTAS

 .. 154
2.1.5.10.29.4 Algorithm for REFS_STREAM_SNAPSHOT_OPERATION_REVERT 155
2.1.5.10.29.5 Algorithm for

REFS_STREAM_SNAPSHOT_OPERATION_SET_SHADOW_BTREE 155
2.1.5.10.29.6 Algorithm for

REFS_STREAM_SNAPSHOT_OPERATION_CLEAR_SHADOW_BTREE .. 156
2.1.5.10.30 FSCTL_SET_COMPRESSION ... 156
2.1.5.10.31 FSCTL_SET_DEFECT_MANAGEMENT ... 158
2.1.5.10.32 FSCTL_SET_ENCRYPTION .. 158
2.1.5.10.33 FSCTL_SET_INTEGRITY_INFORMATION ... 161
2.1.5.10.34 FSCTL_SET_INTEGRITY_INFORMATION_EX 162
2.1.5.10.35 FSCTL_SET_OBJECT_ID .. 164
2.1.5.10.36 FSCTL_SET_OBJECT_ID_EXTENDED ... 165
2.1.5.10.37 FSCTL_SET_REPARSE_POINT ... 166
2.1.5.10.38 FSCTL_SET_SPARSE ... 167
2.1.5.10.39 FSCTL_SET_ZERO_DATA ... 168

2.1.5.10.39.1 Algorithm to Zero Data Beyond ValidDataLength 172
2.1.5.10.40 FSCTL_SET_ZERO_ON_DEALLOCATION... 174
2.1.5.10.41 FSCTL_SIS_COPYFILE ... 174
2.1.5.10.42 FSCTL_WRITE_USN_CLOSE_RECORD ... 176

2.1.5.11 Server Requests Change Notifications for a Directory 177
2.1.5.11.1 Waiting for Change Notification to be Reported 177

2.1.5.12 Server Requests a Query of File Information.. 178
2.1.5.12.1 FileAccessInformation ... 178
2.1.5.12.2 FileAlignmentInformation .. 179
2.1.5.12.3 FileAllInformation ... 179
2.1.5.12.4 FileAlternateNameInformation .. 180
2.1.5.12.5 FileAttributeTagInformation ... 180
2.1.5.12.6 FileBasicInformation ... 181
2.1.5.12.7 FileBothDirectoryInformation ... 182
2.1.5.12.8 FileCompressionInformation... 182
2.1.5.12.9 FileDirectoryInformation .. 184
2.1.5.12.10 FileEaInformation ... 184
2.1.5.12.11 FileFullDirectoryInformation ... 184
2.1.5.12.12 FileFullEaInformation .. 184
2.1.5.12.13 FileHardLinkInformation .. 185
2.1.5.12.14 FileIdBothDirectoryInformation .. 185
2.1.5.12.15 FileIdFullDirectoryInformation .. 185
2.1.5.12.16 FileIdGlobalTxDirectoryInformation ... 185
2.1.5.12.17 FileInternalInformation ... 185
2.1.5.12.18 FileModeInformation ... 185
2.1.5.12.19 FileNameInformation .. 186
2.1.5.12.20 FileNamesInformation ... 186
2.1.5.12.21 FileNetworkOpenInformation .. 186
2.1.5.12.22 FileObjectIdInformation ... 188
2.1.5.12.23 FilePositionInformation .. 188
2.1.5.12.24 FileQuotaInformation .. 188
2.1.5.12.25 FileReparsePointInformation .. 188
2.1.5.12.26 FileSfioReserveInformation .. 188
2.1.5.12.27 FileStandardInformation .. 188
2.1.5.12.28 FileStandardLinkInformation .. 189
2.1.5.12.29 FileStreamInformation .. 189

7 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

2.1.5.12.30 FileNormalizedNameInformation ... 190
2.1.5.12.31 FileIdInformation .. 191

2.1.5.13 Server Requests a Query of File System Information 191
2.1.5.13.1 FileFsVolumeInformation ... 192
2.1.5.13.2 FileFsLabelInformation .. 192
2.1.5.13.3 FileFsSizeInformation .. 193
2.1.5.13.4 FileFsDeviceInformation .. 194
2.1.5.13.5 FileFsAttributeInformation ... 194
2.1.5.13.6 FileFsControlInformation ... 195
2.1.5.13.7 FileFsFullSizeInformation ... 195
2.1.5.13.8 FileFsObjectIdInformation.. 196
2.1.5.13.9 FileFsDriverPathInformation ... 197
2.1.5.13.10 FileFsSectorSizeInformation ... 197

2.1.5.14 Server Requests a Query of Security Information 199
2.1.5.14.1 Algorithm for Copying Audit or Label ACEs Into a Buffer 203

2.1.5.15 Server Requests Setting of File Information ... 204
2.1.5.15.1 FileAllocationInformation ... 204
2.1.5.15.2 FileBasicInformation ... 206
2.1.5.15.3 FileDispositionInformation ... 209
2.1.5.15.4 FileEndOfFileInformation ... 210
2.1.5.15.5 FileFullEaInformation .. 212
2.1.5.15.6 FileLinkInformation ... 213
2.1.5.15.7 FileModeInformation ... 216
2.1.5.15.8 FileObjectIdInformation ... 217
2.1.5.15.9 FilePositionInformation .. 217
2.1.5.15.10 FileQuotaInformation .. 217
2.1.5.15.11 FileRenameInformation ... 217

2.1.5.15.11.1 Algorithm for Performing Stream Rename 228
2.1.5.15.12 FileSfioReserveInformation .. 230
2.1.5.15.13 FileShortNameInformation ... 230
2.1.5.15.14 FileValidDataLengthInformation .. 232

2.1.5.16 Server Requests Setting of File System Information 233
2.1.5.16.1 FileFsVolumeInformation ... 233
2.1.5.16.2 FileFsLabelInformation .. 233
2.1.5.16.3 FileFsSizeInformation .. 233
2.1.5.16.4 FileFsDeviceInformation .. 233
2.1.5.16.5 FileFsAttributeInformation ... 233
2.1.5.16.6 FileFsControlInformation ... 233
2.1.5.16.7 FileFsFullSizeInformation ... 234
2.1.5.16.8 FileFsObjectIdInformation.. 234
2.1.5.16.9 FileFsDriverPathInformation ... 234
2.1.5.16.10 FileFsSectorSizeInformation ... 234

2.1.5.17 Server Requests Setting of Security Information 235
2.1.5.18 Server Requests an Oplock .. 236

2.1.5.18.1 Algorithm to Request an Exclusive Oplock ... 239
2.1.5.18.2 Algorithm to Request a Shared Oplock .. 243
2.1.5.18.3 Indicating an Oplock Break to the Server ... 247

2.1.5.19 Server Acknowledges an Oplock Break .. 248
2.1.5.20 Server Requests Canceling an Operation ... 255
2.1.5.21 Server Requests Querying Quota Information .. 256
2.1.5.22 Server Requests Setting Quota Information ... 258

3 Algorithm Examples .. 260

4 Security ... 261
4.1 Security Considerations for Implementers .. 261
4.2 Index of Security Parameters ... 261

5 Appendix A: Product Behavior ... 262

8 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

6 Change Tracking .. 283

7 Index ... 284

9 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

1 Introduction

This document defines an abstract model for how an object store can be implemented to support the
Common Internet File System (CIFS) Protocol, the Server Message Block (SMB) Protocol, and the
Server Message Block (SMB) Protocol versions 2 and 3 (described in [MS-CIFS], [MS-SMB] and [MS-
SMB2], respectively).

Sections 1.6 and 2 of this specification are normative. All other sections and examples in this

specification are informative.

1.1 Glossary

This document uses the following terms:

Alternate Data Stream: A named data stream that is part of a file or directory, which can be
opened independently of the default data stream. Many operations on an alternate data

stream affect only that stream and not other streams or the file or directory as a whole.

backup: The process of copying data to another storage location for safe keeping. This data can
then be used to restore lost information in case of an equipment failure or catastrophic event.

cluster: The smallest allocation unit on a volume.

compression unit: A segment of a stream that the object store can compress, encrypt, or make

sparse independently of other segments of the same stream.

Default Data Stream: The unnamed data stream in a non-directory file. Many operations on a
default data stream affect the file as a whole.

globally unique identifier (GUID): A term used interchangeably with universally unique
identifier (UUID) in Microsoft protocol technical documents (TDs). Interchanging the usage of
these terms does not imply or require a specific algorithm or mechanism to generate the value.
Specifically, the use of this term does not imply or require that the algorithms described in

[RFC4122] or [C706] have to be used for generating the GUID. See also universally unique
identifier (UUID).

logical cluster number (LCN): The cluster number relative to the beginning of the volume. The
first cluster on a volume is zero (0).

mount point: See mounted folder.

reparse point: An attribute that can be added to a file to store a collection of user-defined data

that is opaque to NTFS or ReFS. If a file that has a reparse point is opened, the open will
normally fail with STATUS_REPARSE, so that the relevant file system filter driver can detect the
open of a file associated with (owned by) this reparse point. At that point, each installed filter
driver can check to see if it is the owner of the reparse point, and, if so, perform any special
processing required for a file with that reparse point. The format of this data is understood by
the application that stores the data and the file system filter that interprets the data and

processes the file. For example, an encryption filter that is marked as the owner of a file's

reparse point could look up the encryption key for that file. A file can have (at most) 1 reparse
point associated with it. For more information, see [MS-FSCC].

Restore: The act of copying data (usually files) back to its original storage location from some
other storage media after some form of data loss.

security identifier (SID): An identifier for security principals that is used to identify an account
or a group. Conceptually, the SID is composed of an account authority portion (typically a
domain) and a smaller integer representing an identity relative to the account authority, termed

%5bMS-CIFS%5d.pdf#Section_d416ff7cc536406ea9514f04b2fd1d2b
%5bMS-SMB%5d.pdf#Section_f210069c70864dc2885e861d837df688
%5bMS-SMB2%5d.pdf#Section_5606ad475ee0437a817e70c366052962
%5bMS-SMB2%5d.pdf#Section_5606ad475ee0437a817e70c366052962
https://go.microsoft.com/fwlink/?LinkId=90460
https://go.microsoft.com/fwlink/?LinkId=89824
%5bMS-FSCC%5d.pdf#Section_efbfe12773ad41409967ec6500e66d5e

10 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

the relative identifier (RID). The SID format is specified in [MS-DTYP] section 2.4.2; a string
representation of SIDs is specified in [MS-DTYP] section 2.4.2 and [MS-AZOD] section 1.1.1.2.

server: A computer on which the remote procedure call (RPC) server is executing.

Software Defect Management: A mechanism for the object store to manage and remap

defective blocks on removable rewritable media (such as CD-RW, DVD-RW, and DVD+RW). Only
the UDFS file system supports Software Defect Management.

symbolic link: A symbolic link is a reparse point that points to another file system object. The
object being pointed to is called the target. Symbolic links are transparent to users; the links
appear as normal files or directories, and can be acted upon by the user or application in exactly
the same manner. Symbolic links can be created using the FSCTL_SET_REPARSE_POINT
request as specified in [MS-FSCC] section 2.3.81. They can be deleted using the

FSCTL_DELETE_REPARSE_POINT request as specified in [MS-FSCC] section 2.3.5. Implementing
symbolic links is optional for a file system.

Unicode: A character encoding standard developed by the Unicode Consortium that represents

almost all of the written languages of the world. The Unicode standard [UNICODE5.0.0/2007]
provides three forms (UTF-8, UTF-16, and UTF-32) and seven schemes (UTF-8, UTF-16, UTF-16
BE, UTF-16 LE, UTF-32, UTF-32 LE, and UTF-32 BE).

virtual cluster number (VCN): The cluster number relative to the beginning of the file, directory,
or stream within a file. The cluster describing byte 0 in a file is VCN 0.

volume: A group of one or more partitions that forms a logical region of storage and the basis for
a file system. A volume is an area on a storage device that is managed by the file system as a
discrete logical storage unit. A partition contains at least one volume, and a volume can exist
on one or more partitions.

MAY, SHOULD, MUST, SHOULD NOT, MUST NOT: These terms (in all caps) are used as defined

in [RFC2119]. All statements of optional behavior use either MAY, SHOULD, or SHOULD NOT.

1.2 References

Links to a document in the Microsoft Open Specifications library point to the correct section in the

most recently published version of the referenced document. However, because individual documents
in the library are not updated at the same time, the section numbers in the documents may not
match. You can confirm the correct section numbering by checking the Errata.

1.2.1 Normative References

We conduct frequent surveys of the normative references to assure their continued availability. If you
have any issue with finding a normative reference, please contact dochelp@microsoft.com. We will
assist you in finding the relevant information.

[MS-DTYP] Microsoft Corporation, "Windows Data Types".

[MS-EFSR] Microsoft Corporation, "Encrypting File System Remote (EFSRPC) Protocol".

[MS-ERREF] Microsoft Corporation, "Windows Error Codes".

[MS-FSCC] Microsoft Corporation, "File System Control Codes".

[MS-LSAD] Microsoft Corporation, "Local Security Authority (Domain Policy) Remote Protocol".

[MS-SMB2] Microsoft Corporation, "Server Message Block (SMB) Protocol Versions 2 and 3".

%5bMS-DTYP%5d.pdf#Section_cca2742956894a16b2b49325d93e4ba2
%5bMS-AZOD%5d.pdf#Section_5a0a0a3ec7a742e1b5f2cc8d8bd9739e
https://go.microsoft.com/fwlink/?LinkId=154659
https://go.microsoft.com/fwlink/?LinkId=90317
https://go.microsoft.com/fwlink/?linkid=850906
mailto:dochelp@microsoft.com
%5bMS-DTYP%5d.pdf#Section_cca2742956894a16b2b49325d93e4ba2
%5bMS-EFSR%5d.pdf#Section_08796ba801c8487292211000ec2eff31
%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90
%5bMS-FSCC%5d.pdf#Section_efbfe12773ad41409967ec6500e66d5e
%5bMS-LSAD%5d.pdf#Section_1b5471ef4c334a91b079dfcbb82f05cc
%5bMS-SMB2%5d.pdf#Section_5606ad475ee0437a817e70c366052962

11 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC
2119, March 1997, https://www.rfc-editor.org/info/rfc2119

[RFC4122] Leach, P., Mealling, M., and Salz, R., "A Universally Unique Identifier (UUID) URN
Namespace", RFC 4122, July 2005, https://www.rfc-editor.org/info/rfc4122

1.2.2 Informative References

[FSBO] Microsoft Corporation, "File System Behavior in the Microsoft Windows Environment", June
2008, http://download.microsoft.com/download/4/3/8/43889780-8d45-4b2e-9d3a-
c696a890309f/File%20System%20Behavior%20Overview.pdf

[INCITS-T10/11-059] INCITS, "T10 specification 11-059", http://www.t10.org/cgi-
bin/ac.pl?t=d&f=11-059r9.pdf

[MS-AUTHSOD] Microsoft Corporation, "Authentication Services Protocols Overview".

[MS-CIFS] Microsoft Corporation, "Common Internet File System (CIFS) Protocol".

[MS-SMB] Microsoft Corporation, "Server Message Block (SMB) Protocol".

[MSKB-5014019] Microsoft Corporation, "KB5014019 May 2022", KB5014019 May 2022,

https://support.microsoft.com/en-us/topic/may-24-2022-kb5014019-os-build-22000-708-preview-
442dbde4-ce28-4345-aecf-2d4744376418

[MSKB-5014021] Microsoft Corporation, "KB5014021 May 2022", KB5014021 May 2022,
https://support.microsoft.com/en-us/topic/may-24-2022-kb5014021-os-build-20348-740-preview-
2b180bd4-dceb-4c49-b8cf-402b342ebc84

[MSKB-5014022] Microsoft Corporation, "KB5014022 May 2022", KB5014022 May 2022,
https://support.microsoft.com/en-us/topic/may-24-2022-kb5014022-os-build-17763-2989-preview-
08f88943-2fc8-4fdb-a13b-ba89af313d06

[MSKB-5014023] Microsoft Corporation, "KB5014023 June 2022", https://support.microsoft.com/en-
us/topic/june-2-2022-kb5014023-os-builds-19042-1741-19043-1741-and-19044-1741-preview-
65ac6a5d-439a-4e88-b431-a5e2d4e2516a

[MSKB-5014702] Microsoft Corporation, "KB5014702 - June 2022", KB5014702, June 14, 2022,
https://support.microsoft.com/en-us/topic/june-14-2022-kb5014702-os-build-14393-5192-e60ac0e1-
44a4-49f9-871f-7c25eb0e5bb1

[MSKB-5014710] Microsoft Corporation, "KB5014710 - June 2022", KB5014710, June 14, 2022,
https://support.microsoft.com/en-us/topic/june-14-2022-kb5014710-os-build-10240-19325-expired-

4e04a4e1-f560-4131-b676-0238c28f5e5a

[PIPE] Microsoft Corporation, "Named Pipes", http://msdn.microsoft.com/en-us/library/aa365590.aspx

1.3 Overview

None.

1.4 Relationship to Other Protocols

This is an algorithms document describing wire-visible behavior of a backing object store that is
referenced by the following protocol documents:

 The Common Internet File System (CIFS) Protocol Specification [MS-CIFS]

https://go.microsoft.com/fwlink/?LinkId=90317
https://go.microsoft.com/fwlink/?LinkId=90460
https://go.microsoft.com/fwlink/?LinkId=140636
https://go.microsoft.com/fwlink/?LinkId=140636
https://go.microsoft.com/fwlink/?LinkId=239442
https://go.microsoft.com/fwlink/?LinkId=239442
%5bMS-AUTHSOD%5d.pdf#Section_953d700a57cb4cf7b0c3a64f34581cc9
%5bMS-CIFS%5d.pdf#Section_d416ff7cc536406ea9514f04b2fd1d2b
%5bMS-SMB%5d.pdf#Section_f210069c70864dc2885e861d837df688
https://go.microsoft.com/fwlink/?linkid=2194206
https://go.microsoft.com/fwlink/?linkid=2194206
https://go.microsoft.com/fwlink/?linkid=2193970
https://go.microsoft.com/fwlink/?linkid=2193970
https://go.microsoft.com/fwlink/?linkid=2194302
https://go.microsoft.com/fwlink/?linkid=2194302
https://go.microsoft.com/fwlink/?linkid=2194303
https://go.microsoft.com/fwlink/?linkid=2194303
https://go.microsoft.com/fwlink/?linkid=2194303
https://go.microsoft.com/fwlink/?linkid=2195314
https://go.microsoft.com/fwlink/?linkid=2195314
https://go.microsoft.com/fwlink/?linkid=2195315
https://go.microsoft.com/fwlink/?linkid=2195315
https://go.microsoft.com/fwlink/?LinkId=90247
%5bMS-CIFS%5d.pdf#Section_d416ff7cc536406ea9514f04b2fd1d2b

12 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

 The Server Message Block (SMB) Protocol Specification [MS-SMB]

 The Server Message Block (SMB) Versions 2 and 3 Protocol Specification [MS-SMB2]

1.5 Applicability Statement

None.

1.6 Standards Assignments

None.

1.7 Versioning and Capability Negotiation

None.

1.8 Vendor-Extensible Fields

This algorithm uses NTSTATUS values as defined in [MS-ERREF] section 2.3. Vendors are free to
choose their own values for this field, as long as the C bit (0x20000000) is set, indicating it is a
customer code.

%5bMS-SMB%5d.pdf#Section_f210069c70864dc2885e861d837df688
%5bMS-SMB2%5d.pdf#Section_5606ad475ee0437a817e70c366052962
%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90

13 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

2 Algorithm Details

2.1 Object Store Details

2.1.1 Abstract Data Model

This section describes a conceptual model of possible data organization that an implementation
maintains to participate in this algorithm. The described organization is provided to facilitate the
explanation of how the algorithm behaves. This document does not mandate that implementations

adhere to this model as long as their external behavior is consistent with that described in this
document.

The following abstract object types are defined in this document:

Volume

TunnelCacheEntry

File

Link

Stream

Open

ByteRangeLock

ChangeNotifyEntry

NotifyEventEntry

Oplock

RHOpContext

CancelableOperations

SecurityContext

The following shorthand forms are also used:

DataFile: A File object with a FileType of DataFile.

DirectoryFile: A File object with a FileType of DirectoryFile.

ViewIndexFile: A File object with a FileType of ViewIndexFile.

DataStream: A Stream object with a StreamType of DataStream.

DirectoryStream: A Stream object with a StreamType of DirectoryStream.

ViewIndexStream: A Stream object with a StreamType of ViewIndexStream.

Plural forms of all these object types are also used.

2.1.1.1 Per Volume

The object store MUST implement the following persistent attributes:

14 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

 RootDirectory: The DirectoryFile for the root of this volume.

 IsPhysicalRoot: A Boolean that is TRUE if RootDirectory represents the root of the physical
media format.

 TotalSpace: A 64-bit unsigned integer specifying the total size of the volume in bytes. This value

MUST be a multiple of ClusterSize.

 FreeSpace: A 64-bit unsigned integer specifying the unallocated space of the volume in bytes.
This value MUST be a multiple of ClusterSize.

 ReservedSpace: A 64-bit unsigned integer specifying the amount of free space of the volume in
bytes that is reserved for implementation-specific use and not available to callers. This value
MUST be a multiple of ClusterSize and MUST be less than or equal to Volume.FreeSpace.

 IsReadOnly: A Boolean that is TRUE if the volume is read-only and MUST NOT be modified;

otherwise, the volume is both readable and writable.

 IsQuotasSupported: A Boolean that is TRUE if the physical media format for this volume
supports Quotas.

 IsObjectIDsSupported: A Boolean that is TRUE if the physical media format for this volume
supports ObjectIDs.

 IsReparsePointsSupported: A Boolean that is TRUE if the physical media format for this volume

supports ReparsePoints.

 IsHardLinksSupported: A Boolean that is TRUE if the physical media format for this volume
supports HardLinks. <1>

 VolumeLabel: A 16-character Unicode string containing the name of the volume. An empty
value is supported.

 LogicalBytesPerSector: A 32-bit unsigned integer specifying the size of a sector for this volume

in bytes. LogicalBytesPerSector MUST be a power of two and MUST be greater than or equal to

512 and less than or equal to Volume.SystemPageSize.

 ClusterSize: A 32-bit unsigned integer specifying the size of a cluster for this volume in bytes.
ClusterSize MUST be a power of two, and MUST be greater than or equal to
LogicalBytesPerSector and a power-of-two multiple of LogicalBytesPerSector.<2>

 PhysicalBytesPerSector: A 32-bit unsigned integer specifying the size of a physical sector for
this volume in bytes. PhysicalBytesPerSector MUST be a power of two, MUST be greater than or
equal to 512 and less than or equal to Volume.SystemPageSize, and MUST be greater than or

equal to Volume.LogicalBytesPerSector.

 PartitionOffset: A 64-bit unsigned integer specifying the byte offset used to align the partition to
a physical sector boundary.

 SystemPageSize: A 32-bit unsigned integer specifying the size, in bytes, of a page of memory in

the system. This value is architecture dependent.<3>

 VolumeCreationTime: The time the volume was formatted in the FILETIME format specified in

[MS-FSCC] section 2.1.1.

 VolumeSerialNumber: A 32-bit unsigned integer that contains a number, randomly generated at
format time, to uniquely identify the volume.

 VolumeCharacteristics: A bit field identifying various characteristics about the current volume
as specified in [MS-FSCC] section 2.5.10.

%5bMS-FSCC%5d.pdf#Section_efbfe12773ad41409967ec6500e66d5e

15 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

 CompressionUnitSize: A 32-bit unsigned integer specifying the compression unit size in bytes,
which is the granularity used when compressing, encrypting, or sparsifying portions of a stream

independent of other portions of the same stream. Not all file systems support these features, and
implementation of this field is optional. If one or more of these features are supported, the value

of this field is implementation-defined but MUST be a power of two multiple of ClusterSize.<4>

 CompressedChunkSize: A 32-bit unsigned integer specifying the maximum size of each chunk in
a compressed stream. Not all file systems support compression, and implementation of this field is
optional. If compression is supported, the value of this field is implementation-defined but MUST
be a power of two and MUST be less than or equal to CompressionUnitSize.<5>

 ChecksumChunkSize: A 32-bit unsigned integer that specifies the size of each chunk in a stream
that is configured with integrity. Not all file systems support integrity, and implementation of this

field is optional.<6>

 TunnelCacheList: A list of zero or more TunnelCacheEntry structures as defined in section
2.1.1.2 providing metadata about recently deleted or renamed files. The list could be empty if the
object store does not implement tunnel caching or if there are no recently deleted or renamed files

on this volume.

 ChangeNotifyList: A list of zero or more ChangeNotifyEntry structures as defined in section

2.1.1.8 describing outstanding change notify requests for the volume.

 GenerateShortNames: A Boolean that is TRUE if short name creation support is enabled on this
Volume. FALSE if short name creation is not supported on this Volume.

 QuotaInformation: A list of FILE_QUOTA_INFORMATION elements (as specified in [MS-FSCC]
section 2.4.40) that track the total Stream.AllocationSize per SID where the
File.SecurityDescriptor.Owner field is equal to the SID.<7>

 DefaultQuotaThreshold: A 64-bit signed integer that contains the default per-user disk quota

warning threshold in bytes. Not all file systems support this field, and implementation of this field
is optional.

 DefaultQuotaLimit: A 64-bit signed integer that contains the default per-user disk quota limit in
bytes. Not all file systems support this field, and implementation of this field is optional.

 VolumeQuotaState: A bitmask of flags defining the current quota state on the volume as
specified in [MS-FSCC] section 2.5.2 under FileSystemControlFlags. Not all file systems support
this field, and implementation of this field is optional.

 VolumeId: A GUID as specified in [RFC4122]. This value MAY be NULL.

 ExtendedInfo: A 48-byte structure containing extended VolumeId information, as described in
[MS-FSCC] section 2.5.6.<8>

 IsUsnJournalActive: A Boolean that is TRUE if a USN change journal is active on the
volume.<9>

 LastUsn: A 64-bit unsigned integer indicating the positive USN number of the last record written

to the USN change journal on the volume, or 0 if no USN records have been written. If
IsUsnJournalActive is FALSE, LastUsn MUST be 0.

 IsOffloadReadSupported: A Boolean that is TRUE if the volume supports the
FSCTL_OFFLOAD_READ operation. This bit is reset to TRUE at mount time, and is set to FALSE if
an Offload Read operation fails for an implementation- or vendor-specific reason.

 IsOffloadWriteSupported: A Boolean that is TRUE if the volume supports the
FSCTL_OFFLOAD_WRITE operation. This bit is reset to TRUE at mount time, and is set to FALSE if

an Offload Write operation fails for an implementation- or vendor-specific reason.

https://go.microsoft.com/fwlink/?LinkId=90460

16 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

 MaxFileSize: A 64-bit unsigned integer that denotes the maximum file size, in bytes, supported
by the object store.<10>

The following fields are specific to UDF object stores:

 DirectoryCount: A 64-bit signed integer that indicates the count of directories on the volume, or

-1 if not maintained by the object store.

 FileCount: A 64-bit signed integer that indicates the count of files on the volume, or -1 if not
maintained by the object store.

 FsFormatMajVersion: A 16-bit unsigned integer indicating the major version of the file system
format.

 FsFormatMinVersion: A 16-bit unsigned integer indicating the minor version of the file system
format.

 FormatTime: The time the volume was formatted in the FILETIME format specified in [MS-FSCC]

section 2.1.1.

 LastUpdateTime: The time the volume was last updated in the FILETIME format specified in [MS-
FSCC] section 2.1.1.

 CopyrightInfo: A 68-byte buffer containing any copyright info associated with the volume.

 AbstractInfo: A 68-byte buffer containing any abstract info associated with the volume.

 FormattingImplementationInfo: A 68-byte buffer containing implementation-specific
information; this field MAY contain the operating system version that the media was formatted by.

 LastModifyingImplementationInfo: A 68-byte buffer containing information written by the last
implementation that modified the disk. This field is implementation-specific and MAY contain the
operating system version that the media was last modified by.

 SparingUnitBytes: A 32-bit unsigned integer indicating the size in bytes of a sparing unit.

 SoftwareSparing: A Boolean that is TRUE if the volume’s bad block sparing mechanism is

implemented in software, FALSE if bad block sparing is implemented by the underlying hardware
this volume is on.

 TotalSpareBlocks: A 32-bit unsigned integer indicating the total number of spare blocks.

 FreeSpareBlocks: A 32-bit unsigned integer indicating the available number of spare blocks.

 NumberOfDataCopies: A 32-bit unsigned integer indicating the number of copies of redundant
data that are available on this volume. A volume with redundant copies of data MUST set this to 2
or greater. A volume without redundancy MUST have a value of 1. For example, a 2-way mirrored

volume would have 2 copies and a 3-way mirrored volume would have 3 copies. Volumes
configured with RAID should have a value of 2 or larger depending on which raid configuration is
used.

The following fields are specific to the ReFS object store:

 ClusterRefcount: An array of 16-bit unsigned integers. The array is indexed by the LCN (Logical
Cluster Number) of a cluster. The array has one entry for each cluster on the volume. The value of

each entry is the number of EXTENTS entries that point to the cluster in all the
Stream.ExtentLists on the volume. The number of elements in the array is
TotalSpace/ClusterSize If a given cluster's ClusterRefcount entry is zero, it is considered free
and is available for reallocation.

Volatile Fields:

17 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

 OpenFileList: A list of all the File objects opened on Volume.

2.1.1.2 Per TunnelCacheEntry

Implementation of tunnel caching is optional.<11> If case-sensitive file name matching is enabled (for
example, for POSIX compliance), the object store SHOULD NOT implement tunnel caching. If the
object store implements tunnel caching, it MUST implement the following attributes in each
TunnelCacheEntry:

 EntryTime: The time at which this TunnelCacheEntry was created. The object store SHOULD

use this attribute to automatically purge this entry from the tunnel cache once the entry is 15
seconds old.

 ParentFile: The parent DirectoryFile that this TunnelCacheEntry refers to.

 FileName: A Unicode string specifying the long name of the file. This string MUST be greater
than 0 characters and less than 256 characters in length. Valid characters for a file name are

specified in [MS-FSCC] section 2.1.5.

 FileShortName: A Unicode string specifying the short name of the file. If KeyByShortName is

FALSE, this string could be empty. If the string is not empty, it MUST be 8.3-compliant as
described in [MS-FSCC] section 2.1.5.2.1.

 KeyByShortName: A Boolean that is TRUE when FileShortName is used as the key for this
entry. FALSE when FileName is used as the key for this entry.

 FileCreationTime: The time that identifies when the file was created in the FILETIME format
specified in [MS-FSCC] section 2.1.1.

 ObjectIdInfo: A FILE_OBJECTID_INFORMATION structure (as specified in [MS-FSCC] section

2.4.35.1) that specifies the object ID information of the file at the time this TunnelCacheEntry
was created.

2.1.1.3 Per File

The object store MUST implement the following persistent attributes:

 FileType: The type of file. This value MUST be DataFile, DirectoryFile, or ViewIndexFile.<12>

 FileId128: The optional 128-bit file ID, as specified in [MS-FSCC] section 2.1.10, that identifies
the file. If available, this value SHOULD be persistent and SHOULD be unique on a given volume.

 FileId64: The optional 64-bit file ID, as specified in [MS-FSCC] section 2.1.9, that identifies the
file. If available, this value SHOULD be persistent and SHOULD be unique on a given volume.

 FileNumber: A 64-bit unsigned integer. Not all file systems support this field, and implementation

of this field is optional. If implemented, this value MUST be persistent and MUST be unique on a
given volume. This value is unrelated to FileId64.

 LinkList: A list of one or more Links to the file. A DirectoryFile MUST have exactly one element in
LinkList. LinkList MUST have at most one element with a non-empty ShortName.<13>

 SecurityDescriptor: The security descriptor for this file, in the format specified in [MS-DTYP]
section 2.4.6.

 FileAttributes: Attributes of the file in the form specified in [MS-FSCC] section 2.6.

 CreationTime: The time that identifies when the file was created in the FILETIME format specified
in [MS-FSCC] section 2.1.1.<14>

%5bMS-FSCC%5d.pdf#Section_efbfe12773ad41409967ec6500e66d5e
%5bMS-FSCC%5d.pdf#Section_efbfe12773ad41409967ec6500e66d5e
%5bMS-DTYP%5d.pdf#Section_cca2742956894a16b2b49325d93e4ba2

18 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

 LastModificationTime: The time that identifies when the file contents were last modified in the
FILETIME format specified in [MS-FSCC] section 2.1.1.<15>

 LastChangeTime: The time that identifies when the file metadata or contents were last changed
in the FILETIME format specified in [MS-FSCC] section 2.1.1.<16>

 LastAccessTime: The time that identifies when the file was last accessed in the FILETIME format
specified in [MS-FSCC] section 2.1.1. Updating this value when accesses occur is
optional.<17><18>

 ExtendedAttributes: A list of FILE_FULL_EA_INFORMATION structures as defined by [MS-FSCC]
section 2.4.15.<19>

 ExtendedAttributesLength: A 32-bit unsigned integer that contains the combined length of all
the ExtendedAttributes. <20>

 ObjectId: A GUID as specified in [RFC4122]. This value can be NULL. If set to non-NULL, this
value MUST be unique on a given volume.<21>

 BirthVolumeId: A GUID that uniquely identifies the volume on which the object resided when the
object identifier was created, or zero if the volume had no object identifier at that time. After copy
operations, move operations, or other file operations, this value is potentially different from the
VolumeId of the volume on which the object currently resides.

 BirthObjectId: A GUID value containing the object identifier of the object at the time it was
created. After copy operations, move operations, or other file operations, this value is potentially
different from the ObjectId member at present.<22>

 DomainId: A GUID value that MUST be zero if created by the object store, but MUST be
maintained if explicitly set by a client.

 StreamList: A list of zero or more named Streams as defined in section 2.1.1.5. A DataFile
MUST have one and only one unnamed DataStream; any additional streams MUST be named

DataStreams.<23> A DirectoryFile MUST have one and only one unnamed DirectoryStream; any

additional streams MUST be named DataStreams.

 ReparseTag: A 32-bit unsigned integer containing the type of the reparse point, as defined in
[MS-FSCC] section 2.1.2.1. If this member is empty, there is no reparse point associated with this
file.

 ReparseGUID: A GUID indicating the type of the reparse point. This field MUST contain a valid
GUID if ReparseTag contains a non-Microsoft tag as described in [MS-FSCC] section 2.1.2.1.

Otherwise it MUST be empty.

 ReparseData: An array of bytes containing data associated with a reparse point, which is defined
by the type of the reparse point, as described in [MS-FSCC] section 2.1.2. If ReparseTag is empty,
this member MUST be empty. If ReparseTag is not empty, this member could be empty, in which
case there is no reparse data associated with this reparse point.

 DirectoryList: For a DataFile, this list MUST be empty. For a DirectoryFile, this is a list of Links

contained in the directory. For any two distinct elements Link1 and Link2 in DirectoryList,
Link1.Name MUST NOT match Link2.Name or Link2.ShortName.<24>

 Volume: The Volume on which the file resides.

 Usn: A 64-bit unsigned integer indicating the positive USN number of the last USN record written
for this file, or 0 if no USN records have been written for this file.

 IsSymbolicLink: A Boolean that is TRUE if the file is a mount point or a symbolic link to
another file or directory.

https://go.microsoft.com/fwlink/?LinkId=90460

19 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

 UserCertificateList: A list of ENCRYPTION_CERTIFICATE structures as specified in [MS-EFSR]
section 2.2.8, used to determine which users can access the contents of any encrypted streams in

the file.<25>

Volatile Fields:

 OpenList: A list of all Opens to this File.

 PendingNotifications: A 32-bit unsigned integer composed of flags indicating types of changes
to file attributes for which directory change notifications are pending, as specified in [MS-SMB2]
section 2.2.35, CompletionFilter field.

2.1.1.4 Per Link

A Link structure connects a file name to a directory containing the file. Additionally, a Link duplicates
certain information about the file (timestamps, sizes, etc.), that can be used to satisfy directory query
operations (see section 2.1.5.6). Note that for performance reasons an object store MAY delay

updating a Link’s duplicated information following modifications to a file, resulting in directory queries
returning stale information. Some file modifications require an immediate update of the duplicated

information, which will be noted in this document by invoking the algorithm described in section
2.1.4.18.

The object store MUST implement the following persistent attributes:<26>

 Name: A Unicode string specifying the name of the link. This string MUST be greater than 0
characters and less than 256 characters in length. Valid form for a link name is the same as the
pathname specification in [MS-FSCC] section 2.1.5.

 ShortName: A Unicode string specifying the short name of the link.<27> This value could be

empty. If this value is not empty, it MUST be 8.3-compliant as described in [MS-FSCC] section
2.1.5.2.1.

 File: The File that this link refers to.

 ParentFile: The parent DirectoryFile that this link resides in.

 CreationTime: The time that identifies when the file was created in the FILETIME format specified
in [MS-FSCC] section 2.1.1.<28>

 LastModificationTime: The time that identifies when the file contents were last modified in the
FILETIME format specified in [MS-FSCC] section 2.1.1.<29>

 LastChangeTime: The time that identifies when the file metadata or contents were last changed
in the FILETIME format specified in [MS-FSCC] section 2.1.1.<30>

 LastAccessTime: The time that identifies when the file was last accessed in the FILETIME format
specified in [MS-FSCC] section 2.1.1. Updating this value when accesses occur is
optional.<31><32>

 AllocationSize: A 64-bit unsigned integer containing the size, in bytes, of space reserved on the

disk for the file’s unnamed data stream. This value MUST be a multiple of File.Volume.ClusterSize.

 FileSize: A 64-bit unsigned integer containing the size of the file’s unnamed data stream, in
bytes.

 FileAttributes: Attributes of the file in the form specified in [MS-FSCC] section 2.6.

 ExtendedAttributesLength: A 32-bit unsigned integer that contains the combined length of all
the ExtendedAttributes.<33>

%5bMS-EFSR%5d.pdf#Section_08796ba801c8487292211000ec2eff31
%5bMS-SMB2%5d.pdf#Section_5606ad475ee0437a817e70c366052962
%5bMS-FSCC%5d.pdf#Section_efbfe12773ad41409967ec6500e66d5e

20 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

 ReparseTag: A 32-bit unsigned integer containing the type of the reparse point, as defined in
[MS-FSCC] section 2.1.2.1. If this member is empty, there is no reparse point associated with this

file.

Volatile Fields:

 IsDeleted: A Boolean that is TRUE if there is a pending delete operation on the link. New opens
to the associated Stream MUST NOT be allowed.

 PendingNotifications: A 32-bit unsigned integer composed of flags indicating types of changes
to link attributes for which directory change notifications are pending, as specified in [MS-SMB2]
section 2.2.35, CompletionFilter field.

2.1.1.5 Per Stream

The object store MUST implement the following persistent attributes:

 StreamType: The type of stream. This value MUST be DataStream, DirectoryStream, or

ViewIndexStream. <34>

 Name: A Unicode string of less than 256 characters specifying the name of the stream. Valid

characters for a stream name are specified in [MS-FSCC] section 2.1.5.3. If StreamType is
DataStream, Name could be empty; this case indicates the default data stream. If
StreamType is DirectoryStream, Name MUST be empty.

 Size: A 64-bit unsigned integer containing the size of the stream, in bytes.

 AllocationSize: A 64-bit unsigned integer containing the size, in bytes, of space reserved on the
disk. This value MUST be a multiple of File.Volume.ClusterSize.

 ValidDataLength: A 64-bit unsigned integer containing the size, in bytes, of valid data in the

stream. Not all file systems support this field, and implementation of this field is optional. If
implemented, all data beyond this value MUST be returned as zero. For a DataStream, this value
MUST be less than or equal to Size. For a DirectoryStream, this value MUST be equal to Size.

 File: The File in which the stream resides.

 IsCompressed: A Boolean that is TRUE if the contents of the stream are compressed.<35>

 ChecksumAlgorithm: A 16-bit unsigned integer that contains the integrity state of the stream as

defined by [MS-FSCC] section 2.3.20.<36>

 IsChecksumEnforcementOff: A Boolean that is TRUE if the stream is a DataStream and
CHECKSUM_ENFORCEMENT_OFF is specified.<37>

 IsSparse: A Boolean that is TRUE if the object store is storing a sparse representation of the
stream.<38>

 IsTemporary: A Boolean that is TRUE if the object store optimizes its management of the stream
because it is pending deletion.

 IsEncrypted: A Boolean that is TRUE if the contents of the stream are encrypted.<39>

 ExtentList: A list containing zero or more EXTENTS elements as defined by [MS-FSCC] section
2.3.32.1, ordered by NextVcn.

 ExtentAndRefCountList: A list containing zero or more EXTENT_AND_REFCOUNTS elements and
their reference counts as defined by [MS-FSCC] section 2.3.34.1, ordered by NextVcn.

Volatile Fields:

%5bMS-SMB2%5d.pdf#Section_5606ad475ee0437a817e70c366052962
%5bMS-FSCC%5d.pdf#Section_efbfe12773ad41409967ec6500e66d5e

21 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

 Oplock: An Oplock describing the opportunistic lock state of the stream. If Oplock is empty,
there is no opportunistic lock on the stream.

 ByteRangeLockList: A list of zero or more ByteRangeLocks describing the bytes ranges of this
stream that are currently locked.

 IsDeleted: A Boolean that is TRUE if there is a pending delete operation on the Stream. New
opens to Stream MUST NOT be allowed.

 IsDefectManagementDisabled: A Boolean that is TRUE if software defect management is
disabled on this stream. Not all file systems support this field; implementation of this field is
optional.

 PendingNotifications: A 32-bit unsigned integer composed of flags indicating types of changes
to stream attributes for which directory change notifications are pending, as specified in [MS-

SMB2] section 2.2.35, CompletionFilter field.

 ZeroOnDeallocate: A Boolean that is TRUE when the object store MUST write zeroes to any

range of the stream that is to be deallocated, prior to performing the deallocation. This helps to
protect data in the stream from discovery by examining free space on the storage media. Not all
file systems support this field, and implementation of this field is optional.

2.1.1.6 Per Open

The object store MUST implement the following:

 RootOpen: The Open that represents the root of the share.

 FileName: The absolute pathname of the opened file in the format specified in [MS-FSCC] section
2.1.5.

 File: The File that is opened.

 Link: The Link through which File is opened. Link MUST be an element of File.LinkList.

 Stream: The Stream that is opened. Stream MUST be an element of File.StreamList.

 GrantedAccess: The access granted for this open as specified in [MS-SMB2] section 2.2.13.1.

 RemainingDesiredAccess: The access requested for this Open but not yet granted, as specified
in [MS-SMB2] section 2.2.13.1.

 SharingMode: The sharing mode for this Open as specified in [MS-SMB2] section 2.2.13.

 Mode: The mode flags for this Open as specified in [MS-FSCC] section 2.4.30.

 IsCaseInsensitive: A Boolean that is TRUE if this Open is treated as case-insensitive.

 HasBackupAccess: A Boolean that is TRUE if the Open was performed by a user who is allowed
to perform backup operations.

 HasRestoreAccess: A Boolean that is TRUE if the Open was performed by a user who is allowed
to perform restore operations.

 HasCreateSymbolicLinkAccess: A Boolean that is TRUE if the Open was performed by a user
who is allowed to create symbolic links.

 HasManageVolumeAccess: A Boolean that is TRUE if the Open was performed by a user who is
allowed to manage the volume.

%5bMS-SMB2%5d.pdf#Section_5606ad475ee0437a817e70c366052962
%5bMS-SMB2%5d.pdf#Section_5606ad475ee0437a817e70c366052962
%5bMS-FSCC%5d.pdf#Section_efbfe12773ad41409967ec6500e66d5e
%5bMS-SMB2%5d.pdf#Section_5606ad475ee0437a817e70c366052962

22 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

 IsAdministrator: A Boolean that is TRUE if the Open was performed by a user who is a member
of the BUILTIN_ADMINISTRATORS group as specified in [MS-DTYP] section 2.4.2.4.

 QueryPattern: The Unicode string containing the query pattern used to filter directory query.

 QueryLastEntry: The last Link that was returned in a directory query.

 LastQuotaId: The index of the last SID returned during quota enumeration on this Open, or -1 if
there has not been a quota enumeration on this Open.

 CurrentByteOffset: The byte offset immediately following the most recent successful
synchronous read or write operation of one or more bytes, or 0 if there have not been any.

 FindBySidRestartIndex: A 64-bit unsigned integer specifying the starting index for a
FSCTL_FILE_FILES_BY_SID operation.

 UserSetModificationTime: A Boolean that is TRUE if a user has explicitly set

File.LastModificationTime through this Open.

 UserSetChangeTime: A Boolean that is TRUE if a user has explicitly set File.LastChangeTime
through this Open.

 UserSetAccessTime: A Boolean that is TRUE if a user has explicitly set File.LastAccessTime
through this Open.

 ReadCopyNumber: A 32-bit unsigned integer which is initialized to a value of 0XFFFFFFFF.

Identifies which copy of data should be read from a volume with redundant data (where
Volume.NumberOfDataCopies > 1). The CopyNumber is zero based, meaning zero reads the
1st copy, 1 reads the 2nd copy, etc.

 NextEaEntry: Contains a reference to the next FILE_FULL_EA_INFORMATION entry in
File.ExtendedAttributes to be returned the next time FileFullEaInformation is called using this
Open as defined in section 2.1.5.12.12.<40>

 TargetOplockKey: A GUID value that can be used to identify the owner of the Open for the

purpose of determining whether to break an oplock in response to a request delivered on a
particular Open. Requests on an Open whose Open.TargetOplockKey value matches the
Open.TargetOplockKey value associated with an oplock that exists on the Stream do not affect
the oplock state (that is, do not cause the oplock to break). For a given Open, the
TargetOplockKey value could be empty. An empty value MUST NOT be considered equal to
anything other than itself. In other words, given two Open values, Open1 and Open2, such that
Open1.TargetOplockKey and/or Open2.TargetOplockKey are empty, Open1.TargetOplockKey

MUST NOT be considered equal to Open2.TargetOplockKey.

 ParentOplockKey: A GUID value that can be used to identify the owner of an oplock on the
parent directory of the File associated with the current Open for the purpose of determining
whether to break an oplock on the parent in response to a request delivered on a particular Open
to a child of that parent. Requests on an Open whose Open.ParentOplockKey value matches
the Open.TargetOplockKey value associated with an oplock that exists on the parent directory

Stream do not affect the parent's oplock state (that is, do not cause the oplock to break). For a

given Open, the TargetOplockKey value could be empty. An empty value MUST NOT be
considered equal to anything other than itself. In other words, given two Open values,
ParentOpen on a directory and ChildOpen on a child (either file or directory), such that
ParentOpen.TargetOplockKey and/or ChildOpen.ParentOplockKey are empty, ParentOpen.
TargetOplockKey MUST NOT be considered equal to ChildOpen.ParentOplockKey.

%5bMS-DTYP%5d.pdf#Section_cca2742956894a16b2b49325d93e4ba2

23 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

2.1.1.7 Per ByteRangeLock

 LockOffset: A 64-bit unsigned integer specifying the offset, in bytes, from the beginning of a
stream where the locked range begins.

 LockLength: A 64-bit unsigned integer specifying the length, in bytes, of the locked range.

 IsExclusive: A Boolean that is TRUE if this is an exclusive byte range lock, else FALSE if this is a
shared byte range lock.

 OwnerOpen: The Open that owns this ByteRangeLock.

 LockKey: A 32-bit unsigned integer containing an identifier for the lock.

2.1.1.8 Per ChangeNotifyEntry

 OpenedDirectory: The Open of the DirectoryFile or ViewIndexFile to monitor for changes.

 WatchTree: A Boolean value, set to TRUE if changes to subdirectories MUST be notified, FALSE if
not.

 CompletionFilter: A 32-bit unsigned integer composed of flags indicating the types of changes to

monitor as specified in [MS-SMB2] section 2.2.35.

 NotifyEventList: A list of NotifyEventEntry structures as defined in section 2.1.1.9,
representing change events that were not yet reported to the user.

2.1.1.9 Per NotifyEventEntry

 Action: A 32-bit unsigned integer composed of flags indicating the type of change events that
occurred, as specified in the Action member of the FILE_NOTIFY_INFORMATION structure
defined in [MS-FSCC] section 2.7.1.

 FileName: For DirectoryFile notifications, a non-null-terminated Unicode string containing the
relative path and name of the file that changed. For ViewIndexFile notifications, a binary data
structure containing information specific to the ViewIndexFile being monitored.

 FileNameLength: The length, in bytes, of FileName.

2.1.1.10 Per Oplock

 ExclusiveOpen: The Open used to request the opportunistic lock.

 IIOplocks: A list of zero or more Opens used to request a LEVEL_TWO opportunistic lock, as

specified in section 2.1.5.18.1.

 ROplocks: A list of zero or more Opens used to request a
LEVEL_GRANULAR(RequestedOplockLevel: READ_CACHING) opportunistic lock, as specified in
section 2.1.5.18.1.

 RHOplocks: A list of zero or more Opens used to request a
LEVEL_GRANULAR(RequestedOplockLevel: (READ_CACHING|HANDLE_CACHING)) opportunistic
lock, as specified in section 2.1.5.18.1.

 RHBreakQueue: A list of zero or more RHOpContext objects. This queue is used to track
(READ_CACHING|HANDLE_CACHING) oplocks as they are breaking.

 WaitList: A list of zero or more Opens belonging to operations that are waiting for an oplock to
break, as specified in section 2.1.4.12.

%5bMS-SMB2%5d.pdf#Section_5606ad475ee0437a817e70c366052962
%5bMS-FSCC%5d.pdf#Section_efbfe12773ad41409967ec6500e66d5e

24 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

 State: The current state of the oplock, expressed as a combination of one or more flags. Valid
flags are:

 NO_OPLOCK - Indicates that this Oplock does not represent a currently granted or breaking
oplock. This is semantically equivalent to the Oplock object being entirely absent from a

Stream. This flag always appears alone.

 LEVEL_ONE_OPLOCK - Indicates that this Oplock represents a Level 1 (also called Exclusive)
oplock.

 BATCH_OPLOCK - Indicates that this Oplock represents a Batch oplock.

 LEVEL_TWO_OPLOCK - Indicates that this Oplock represents a Level 2 (also called Shared)
oplock.

 EXCLUSIVE - Indicates that this Oplock represents an oplock that can be held by exactly one

client at a time. This flag always appears in combination with other flags that indicate the
actual oplock level. For example, (READ_CACHING|WRITE_CACHING|EXCLUSIVE) represents

a read caching and write caching oplock, which can be held by only one client at a time.

 BREAK_TO_TWO - Indicates that this Oplock represents an oplock that is currently breaking
from either Level 1 or Batch to Level 2; the oplock has broken but the break has not yet been
acknowledged.

 BREAK_TO_NONE - Indicates that this Oplock represents an oplock that is currently breaking
from either Level 1 or Batch to None (that is, no oplock); the oplock has broken but the break
has not yet been acknowledged.

 BREAK_TO_TWO_TO_NONE - Indicates that this Oplock represents an oplock that is currently
breaking from either Level 1 or Batch to None (that is, no oplock), and was previously
breaking from Level 1 or Batch to Level 2; the oplock has broken but the break has not yet
been acknowledged.

 READ_CACHING - Indicates that this Oplock represents an oplock that provides caching of

reads; this provides the SMB 2.1 read caching lease, as described in [MS-SMB2] section
2.2.13.2.8.

 HANDLE_CACHING - Indicates that this Oplock represents an oplock that provides caching of
handles; this provides the SMB 2.1 handle caching lease, as described in [MS-SMB2] section
2.2.13.2.8.

 WRITE_CACHING - Indicates that this Oplock represents an oplock that provides caching of

writes; this provides the SMB 2.1 write caching lease, as described in [MS-SMB2] section
2.2.13.2.8.

 MIXED_R_AND_RH - Always appears together with READ_CACHING and HANDLE_CACHING.
Indicates that this Oplock represents an oplock on which at least one client has been granted
a read caching oplock, and at least one other client has been granted a read caching and
handle caching oplock.

 BREAK_TO_READ_CACHING - Indicates that this Oplock represents an oplock that is currently
breaking to an oplock that provides caching of reads; the oplock has broken but the break has
not yet been acknowledged.

 BREAK_TO_WRITE_CACHING - Indicates that this Oplock represents an oplock that is
currently breaking to an oplock that provides caching of writes; the oplock has broken but the
break has not yet been acknowledged.

%5bMS-SMB2%5d.pdf#Section_5606ad475ee0437a817e70c366052962

25 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

 BREAK_TO_HANDLE_CACHING - Indicates that this Oplock represents an oplock that is
currently breaking to an oplock that provides caching of handles; the oplock has broken but

the break has not yet been acknowledged.

 BREAK_TO_NO_CACHING - Indicates that this Oplock represents an oplock that is currently

breaking to None (that is, no oplock); the oplock has broken but the break has not yet been
acknowledged.

2.1.1.11 Per RHOpContext

 Open: The Open used to request this LEVEL_GRANULAR(RequestedOplockLevel:
(READ_CACHING|HANDLE_CACHING)) opportunistic lock.

 BreakingToRead: A Boolean value that is TRUE if this oplock is breaking to READ_CACHING,
FALSE if it is breaking to None (that is, no oplock; the oplock is being broken completely).

2.1.1.12 Per CancelableOperations

 CancelableOperationList: A global list of cancelable operations currently being processed by the
object store. Items in this list are looked up via their IORequest Identifier as defined in section
2.1.5.20. Operations are inserted into this list when a cancelable operation waits.

2.1.1.13 Per SecurityContext

 SIDs: An array of SID structures, as specified in [MS-DTYP] section 2.4.2, representing the
security identifier of the user performing an operation and the security identifiers of all groups of
which the user is a member.

 OwnerIndex: An index into SIDs indicating the SID of the user.

 PrimaryGroup: An index into SIDs indicating the SID of the user's primary group.

 DefaultDACL: An ACL structure, as specified in [MS-DTYP] section 2.4.5, representing the default
DACL assigned to new files created by the user.

 PrivilegeSet: A set of privilege names, as specified in [MS-LSAD] section 3.1.1.2.1, representing
the privileges held by the user.

2.1.1.14 Constants

The section provides constants used for algorithm processing.

Constant/value Meaning

FILE_ALL_ACCESS

0x001F01FF

All possible access rights for a file.

2.1.2 Timers

The object store has no timers.

%5bMS-DTYP%5d.pdf#Section_cca2742956894a16b2b49325d93e4ba2
%5bMS-LSAD%5d.pdf#Section_1b5471ef4c334a91b079dfcbb82f05cc

26 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

2.1.3 Initialization

On initialization, one or more Volume objects are initialized based on the data stored in the persistent
store. This involves instantiating one or more File objects contained within the volume.

2.1.4 Common Algorithms

This section describes internal algorithms that are common across multiple triggered events.

2.1.4.1 Algorithm for Reporting a Change Notification for a Directory or View Index

The inputs for this algorithm are:

 Volume: The volume this event occurs on.

 Action: A 32-bit unsigned integer describing the action that caused the change events to be
notified, as specified in [MS-FSCC] section 2.7.1.

 FilterMatch: A 32-bit unsigned integer field with flags representing possible change events,
corresponding to a ChangeNotifyEntry.CompletionFilter. It is specified in [MS-SMB2] section
2.2.35.

 FileName: The pathname, relative to Volume.RootDirectory, of the file involved in the change
event.

 NotifyData: A binary data structure containing information specific to the ViewIndexFile being
monitored. This is an optional parameter, specified only for ViewIndexFile notifications.

 NotifyDataLength: The length, in bytes, of NotifyData. This is an optional parameter, specified
only for ViewIndexFile notifications.

Pseudocode for the algorithm is as follows:

 For each ChangeNotifyEntry in Volume.ChangeNotifyList:

 Initialize SendNotification to FALSE.

 If NotifyData is specified: // this is a ViewIndexFile notification

 If ChangeNotifyEntry.OpenedDirectory.File matches the File whose pathname is

FileName, then SendNotification MUST be set to TRUE.

 Else: // this is a DirectoryFile notification

 If ChangeNotifyEntry.OpenedDirectory.File matches the File whose pathname is
FileName or matches the immediate parent of this File and one or more of the flags in
FilterMatch are present in ChangeNotifyEntry.CompletionFilter, then SendNotification
MUST be set to TRUE.

 Else If ChangeNotifyEntry.WatchTree is TRUE and

ChangeNotifyEntry.OpenedDirectory.File matches an ancestor of the File whose
pathname is FileName and one or more of the flags in FilterMatch are present in
ChangeNotifyEntry.CompletionFilter, then SendNotification MUST be set to TRUE.

 EndIf

 If SendNotification is TRUE:

 A NotifyEventEntry object MUST be constructed with:

%5bMS-FSCC%5d.pdf#Section_efbfe12773ad41409967ec6500e66d5e
%5bMS-SMB2%5d.pdf#Section_5606ad475ee0437a817e70c366052962

27 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

 NotifyEventEntry.Action set to Action.

 If NotifyData is specified: // this is a ViewIndexFile notification

 NotifyEventEntry.FileName set to NotifyData.

 NotifyEventEntry.FileNameLength set to NotifyDataLength.

 Else: // this is DirectoryFile notification

 NotifyEventEntry.FileName set to the portion of FileName relative to
ChangeNotifyEntry.OpenedDirectory.FileName.

 NotifyEventEntry.FileNameLength set to the length, in bytes, of
NotifyEventEntry.FileName.

 EndIf

 Insert NotifyEventEntry into ChangeNotifyEntry.NotifyEventList.

 Processing will be performed as described in section 2.1.5.11.1.

 EndIf

 EndFor

2.1.4.2 Algorithm for Detecting If Open Files Exist Under a Directory

The inputs for this algorithm are:

 RootDirectory: The DirectoryFile indicating the top-level directory under which to search for open
files.

 Open: The Open for the request that is calling this algorithm.

 Operation: A code describing the operation being processed, as specified in section 2.1.4.12.

 OpParams: Parameters associated with Operation, passed in from the calling request, as

specified in section 2.1.4.12.

The output is a Boolean. If the return value is TRUE, then no open files exist under the directory; if
FALSE, then at least one open exists even after attempting to break oplocks.

Pseudocode for the algorithm is as follows:

 For each Link in RootDirectory.DirectoryList:

 // Check for oplock breaks in this directory.

 If Link.File.OpenList contains an Open with Open.Link equal to Link:

 For each Stream in Link.File.StreamList:

 If Stream.Oplock is not empty and Stream.Oplock.State contains either
BATCH_OPLOCK or HANDLE_CACHING, the object store MUST check for an oplock
break according to the algorithm in section 2.1.4.12, with input values as follows:

 Open equal to this algorithm's Open.

 Oplock equal to Stream.Oplock.

 Operation equal to this algorithm's Operation.

28 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

 OpParams equal to this algorithm's OpParams.

 EndIf

 EndFor

 EndIf

 // See if all oplock holders have gotten out of the way.

 If Link.File.OpenList contains an Open with Open.Link equal to Link:

 Return FALSE // An open still exists; deny the operation.

 EndIf

 // Recurse into any subdirectories.

 If Link.File.FileType is DirectoryFile, determine whether Link.File contains open files as

specified in section 2.1.4.2, with input values as follows:

 RootDirectory equal to Link.File.

 Open equal to this algorithms's Open.

 Operation equal to this algorithms's Operation.

 OpParams equal to this algorithms's OpParams.

 EndIf

 If Link.File contains open files as determined above:

 Return FALSE. // An open exists deeper in the directory hierarchy.

 EndIf

 EndFor

 Return TRUE // No opens remaining.

2.1.4.3 Algorithm for Determining If a Character Is a Wildcard

The following set of characters MUST be treated as wildcards by the object store:

" * < > ?

2.1.4.4 Algorithm for Determining if a FileName Is in an Expression

The inputs for this algorithm are:

 FileName: A Unicode string containing the file name string that is being matched. Filename
cannot contain any wildcard characters.

 Expression: A Unicode string containing the regular expression that's being matched with
FileName.

 IgnoreCase: A Boolean value indicating whether the match is case insensitive (TRUE) or case

sensitive (FALSE).

This algorithm returns TRUE if FileName matches Expression, and FALSE if it does not.

29 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

Pseudocode for the algorithm is as follows:

 Part 1 -- Handle Special Case Optimizations

 If FileName is empty and Expression is not, the routine returns FALSE.

 If Expression is empty and FileName is not, the routine returns FALSE.

 If both Expression and FileName are empty, the routine returns TRUE.

 If the Expression is the wildcard "*" or "*.*", the FileName matches the Expression and the
routine returns TRUE.

 If the first character in the Expression is wildcard "*" and the rest of the expression does not
contain any wildcard characters (as specified in 2.1.4.3), then the remaining expression is
compared against the tail end of the FileName. If the comparison succeeds then the routine
returns TRUE.

 Part 2 -- Match Expression with FileName

 The FileName is string compared with Expression using the following wildcard rules:

 * (asterisk) Matches zero or more characters.

 ? (question mark) Matches a single character.

 DOS_DOT (" quotation mark) Matches either a period or zero characters beyond the name
string.

 DOS_QM (> greater than) Matches any single character or, upon encountering a period or end
of name string, advances the expression to the end of the set of contiguous DOS_QMs.

 DOS_STAR (< less than) Matches zero or more characters until encountering and matching
the final . in the name.

2.1.4.5 BlockAlign -- Macro to Round a Value Up to the Next Nearest Multiple of

Another Value

The inputs for this algorithm are:

 Value: The value being rounded up.

 Boundary - Value is to be rounded up to a multiple of this value. Boundary MUST be a power of
2.

This algorithm returns the bitwise AND of (Value + (Boundary - 1)) with the 2's complement of
Boundary.

Pseudocode for the algorithm is as follows:

 BlockAlign(Value, Boundary) = (Value + (Boundary - 1)) & -(Boundary)

2.1.4.6 BlockAlignTruncate -- Macro to Round a Value Down to the Next Nearest

Multiple of Another Value

The inputs for this algorithm are:

 Value: The value being rounded down.

30 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

 Boundary - Value is to be rounded down to a multiple of this value.Boundary MUST be a power
of 2.

This algorithm returns the bitwise AND of Value with the 2's complement of Boundary.

Pseudocode for the algorithm is as follows:

 BlockAlignTruncate(Value, Boundary) = Value & -(Boundary)

2.1.4.7 ClustersFromBytes -- Macro to Determine How Many Clusters a Given Number

of Bytes Occupies

The inputs for this algorithm are:

 ThisVolume: A Volume.

 Bytes: The number of bytes.

Pseudocode for the algorithm is as follows:

 ClustersFromBytes(ThisVolume, Bytes) = (Bytes + (ThisVolume.ClusterSize - 1)) /
ThisVolume.ClusterSize.

 The value returned is the total number of clusters required to hold the specified number of bytes
that start at a cluster boundary, including any remainder that does not fill a whole cluster.

2.1.4.8 ClustersFromBytesTruncate -- Macro to Determine How Many Whole Clusters a

Given Number of Bytes Occupies

The inputs for this algorithm are:

 ThisVolume: A Volume.

 Bytes: The number of bytes.

Pseudocode for the algorithm is as follows:

 ClustersFromBytesTruncate(ThisVolume, Bytes) = Bytes / ThisVolume.ClusterSize.

 The value returned is the number of clusters that would be fully occupied by the specified

number of bytes that start at a cluster boundary. Any remainder that does not fill a whole cluster
is discarded.

2.1.4.9 SidLength -- Macro to Provide the Length of a SID

The inputs for this algorithm are:

 SID: A SID, as described in [MS-DTYP] section 2.4.2.

This algorithm returns the size, in bytes, of SID. This is equal to the number of bytes occupied by the
Revision, SubAuthorityCount, and IdentifierAuthorityCount fields of a SID. Added to this is the
size of a SubAuthority field of a SID times SID.SubAuthorityCount.

Pseudocode for the algorithm is as follows:

 SidLength(SID) = (8 + (4 * SID.SubAuthorityCount))

%5bMS-DTYP%5d.pdf#Section_cca2742956894a16b2b49325d93e4ba2

31 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

2.1.4.10 Algorithm for Determining If a Range Access Conflicts with Byte-Range

Locks

The inputs for this algorithm are:

 ByteOffset: A 64-bit unsigned integer specifying the offset of the first byte of the range.

 Length: A 64-bit unsigned integer specifying the number of bytes in the range.

 IsExclusive: TRUE if the access to the range has exclusive intent, FALSE otherwise.

 LockIntent: TRUE if the access to the range has locking intent, FALSE if the intent is performing
I/O (reads or writes).

 Open: The open to the file on which to check for range conflicts.

 Key: A 32-bit unsigned integer containing an identifier for the open by a specific process.

This algorithm outputs a Boolean value:

 TRUE if the range conflicts with byte-range locks.

 FALSE if the range does not conflict.

Pseudocode for the algorithm is as follows:

 If ((ByteOffset == 0) and (Length == 0)):

 The {0, 0} range doesn't conflict with any byte-range lock.

 Return FALSE.

 EndIf

 For each ByteRangeLock in Open.Stream.ByteRangeLockList:

 If ((ByteRangeLock.LockOffset == 0) and (ByteRangeLock.LockLength == 0)):

 The byte-range lock is over the {0, 0} range so there is no overlap by definition.

 Else:

 Initialize LastByteOffset1 = ByteOffset + Length - 1.

 Initialize LastByteOffset2 = ByteRangeLock.LockOffset + ByteRangeLock.LockLength -
1.

 If ((ByteOffset <= LastByteOffset2) and (LastByteOffset1 >=
ByteRangeLock.LockOffset)):

 ByteRangeLock and the passed range overlap.

 If (ByteRangeLock.IsExclusive == TRUE):

 If (ByteRangeLock.OwnerOpen != Open) or (ByteRangeLock.LockKey != Key):

 Exclusive byte-range locks block all access to other Opens.

 Return TRUE.

 Else If ((IsExclusive == TRUE) and (LockIntent == TRUE)):

32 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

 Overlapping exclusive byte-range locks are not allowed even by the same
owner.

 Return TRUE.

 EndIf

 Else If (IsExclusive == TRUE):

 The ByteRangeLock is shared, shared byte-range locks will block all access with
exclusive intent.

 Return TRUE.

 EndIf

 EndIf

 EndIf

 EndFor

 Return FALSE.

2.1.4.11 Algorithm for Posting a USN Change for a File

The inputs for this algorithm are:

 File: The file this change occurs on.

 Reason: A 32-bit unsigned integer describing the change that occurred to the file, as specified in
[MS-FSCC] section 2.3.62.

 FileName: The pathname, relative to Volume.RootDirectory, of the file this change occurs on.

The algorithm MUST return at this point without taking any actions under any of the following
conditions:

 If the object store does not support USN change journals.

 If File.Volume.IsUsnJournalActive is FALSE.

 If Reason is zero.

Pseudocode for the algorithm is as follows:

 Set FileNameLength to the length, in bytes, of FileName.

 Set RecordLength to an implementation-specific<41> value representing the number of bytes

needed to persist the USN change to the store.

 Set File.Volume.LastUsn to File.Volume.LastUsn + RecordLength.

 Set File.Usn to File.Volume.LastUsn.

2.1.4.12 Algorithm to Check for an Oplock Break

The inputs for this algorithm are:

 Open: The Open being used in the request calling this algorithm.

%5bMS-FSCC%5d.pdf#Section_efbfe12773ad41409967ec6500e66d5e

33 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

 Oplock: The Oplock being checked.

 Operation: A code describing the operation being processed.

 OpParams: Parameters associated with the Operation code that are passed in from the calling
request. For example, if Operation is OPEN, as specified in section 2.1.5.1, then OpParams will

have the members DesiredAccess and CreateDisposition. Each of these is a parameter to the
open request as specified in section 2.1.5.1. This parameter could be empty, depending on the
Operation code.

 Flags: An optional parameter. If unspecified it is considered to contain 0. Valid nonzero values
are:

 PARENT_OBJECT

The algorithm uses the following local variables:

 Boolean values (initialized to FALSE): BreakToTwo, BreakToNone, NeedToWait

 BreakCacheState – MAY contain 0 or a combination of one or more of READ_CACHING,
WRITE_CACHING, or HANDLE_CACHING, as specified in section 2.1.1.10. Initialized to 0.

 Note that there are only four legal nonzero combinations of flags for BreakCacheState:

 (READ_CACHING|WRITE_CACHING|HANDLE_CACHING)

 (READ_CACHING|WRITE_CACHING)

 WRITE_CACHING

 HANDLE_CACHING

 OPERATION_MASK – a constant that MUST contain the following value:

 (LEVEL_ONE_OPLOCK|LEVEL_TWO_OPLOCK|BATCH_OPLOCK|READ_CACHING|WRITE_CACHI

NG|HANDLE_CACHING)

Pseudocode for the algorithm is as follows:

If Oplock is not empty and Oplock.State is not NO_OPLOCK:

 If Flags contains PARENT_OBJECT<42>:

 Set BreakCacheState to (READ_CACHING|WRITE_CACHING).

 Else:

 Switch (Operation):

 Case OPEN, as specified in section 2.1.5.1:

 If (((OpParams.DesiredAccess contains no flags other than

FILE_READ_ATTRIBUTES, FILE_WRITE_ATTRIBUTES, READ_CONTROL, or

SYNCHRONIZE) and (Oplock.State anded with OPERATION_MASK) contains no flags
other than READ_CACHING, WRITE_CACHING, or HANDLE_CACHING)) or
((OpParams.DesiredAccess contains no flags other than FILE_READ_ATTRIBUTES,
FILE_WRITE_ATTRIBUTES or SYNCHRONIZE) and (Oplock.State anded with
OPERATION_MASK) contains no flags other than LEVEL_TWO_OPLOCK,
LEVEL_ONE_OPLOCK or BATCH_OPLOCK))), the algorithm returns at this point.

 EndIf

34 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

 If OpParams.CreateDisposition is FILE_SUPERSEDE, FILE_OVERWRITE, or
FILE_OVERWRITE_IF:

 Set BreakToNone to TRUE, set BreakCacheState to
(READ_CACHING|WRITE_CACHING).

 Else

 Set BreakToTwo to TRUE, set BreakCacheState to WRITE_CACHING.

 EndIf

 EndCase

 Case OPEN_BREAK_H, as specified in section 2.1.5.1.2:

 Set BreakCacheState to HANDLE_CACHING.

 EndCase

 Case CLOSE, as specified in section 2.1.5.5:

 If Oplock.IIOplocks is not empty:

 For each Open ThisOpen in Oplock.IIOplocks:

 If ThisOpen == Open:

 Remove ThisOpen from Oplock.IIOplocks.

 Notify the server of an oplock break according to the algorithm in section

2.1.5.18.3, setting the algorithm's parameters as follows:

 BreakingOplockOpen equal to ThisOpen.

 NewOplockLevel equal to LEVEL_NONE.

 AcknowledgeRequired equal to FALSE.

 OplockCompletionStatus equal to STATUS_SUCCESS.

 (The operation does not end at this point; this call to 2.1.5.18.3 completes
some earlier call to 2.1.5.18.2.)

 EndIf

 EndFor

 Recompute Oplock.State according to the algorithm in section 2.1.4.13, passing
Oplock as the ThisOplock parameter.

 EndIf

 If Oplock.ROplocks is not empty:

 For each Open ThisOpen in Oplock.ROplocks:

 If ThisOpen == Open:

 Remove ThisOpen from Oplock.ROplocks.

 Notify the server of an oplock break according to the algorithm in section
2.1.5.18.3, setting the algorithm's parameters as follows:

35 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

 BreakingOplockOpen equal to ThisOpen.

 NewOplockLevel equal to LEVEL_NONE.

 AcknowledgeRequired equal to FALSE.

 OplockCompletionStatus equal to

STATUS_OPLOCK_HANDLE_CLOSED.

 (The operation does not end at this point; this call to 2.1.5.18.3 completes
some earlier call to 2.1.5.18.2.)

 EndIf

 EndFor

 Recompute Oplock.State according to the algorithm in section 2.1.4.13, passing
Oplock as the ThisOplock parameter.

 EndIf

 If Oplock.RHOplocks is not empty:

 For each Open ThisOpen in Oplock.RHOplocks:

 If ThisOpen == Open:

 Remove ThisOpen from Oplock.RHOplocks.

 Notify the server of an oplock break according to the algorithm in section

2.1.5.18.3, setting the algorithm's parameters as follows:

 BreakingOplockOpen equal to ThisOpen.

 NewOplockLevel equal to LEVEL_NONE.

 AcknowledgeRequired equal to FALSE.

 OplockCompletionStatus equal to
STATUS_OPLOCK_HANDLE_CLOSED.

 (The operation does not end at this point; this call to 2.1.5.18.3 completes

some earlier call to 2.1.5.18.2.)

 EndIf

 EndFor

 Recompute Oplock.State according to the algorithm in section 2.1.4.13, passing
Oplock as the ThisOplock parameter.

 EndIf

 If Oplock.RHBreakQueue is not empty:

 For each RHOpContext ThisContext in Oplock.RHBreakQueue:

 If ThisContext.Open == Open:

 Remove ThisContext from Oplock.RHBreakQueue.

 EndIf

36 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

 EndFor

 Recompute Oplock.State according to the algorithm in section 2.1.4.13, passing
Oplock as the ThisOplock parameter.

 For each Open WaitingOpen on Oplock.WaitList:

 If Oplock.RHBreakQueue is empty:

 Indicate that the operation associated with WaitingOpen can continue
according to the algorithm in section 2.1.4.12.1, setting OpenToRelease
equal to WaitingOpen.

 Remove WaitingOpen from Oplock.WaitList.

 Else

 If the value on every RHOpContext.Open.TargetOplockKey on

Oplock.RHBreakQueue is equal to WaitingOpen .TargetOplockKey:

 Indicate that the operation associated with WaitingOpen can continue
according to the algorithm in section 2.1.4.12.1, setting
OpenToRelease equal to WaitingOpen.

 Remove WaitingOpen from Oplock.WaitList.

 EndIf

 EndIf

 EndFor

 EndIf

 If Open equals Oplock.ExclusiveOpen

 If Oplock.State contains none of BREAK_TO_TWO, BREAK_TO_NONE,
BREAK_TO_TWO_TO_NONE, BREAK_TO_READ_CACHING,
BREAK_TO_WRITE_CACHING, BREAK_TO_HANDLE_CACHING, or

BREAK_TO_NO_CACHING:

 Notify the server of an oplock break according to the algorithm in section
2.1.5.18.3, setting the algorithm's parameters as follows:

 BreakingOplockOpen equal to Oplock.ExclusiveOpen.

 NewOplockLevel equal to LEVEL_NONE.

 AcknowledgeRequired equal to FALSE.

 OplockCompletionStatus equal to:

 STATUS_OPLOCK_HANDLE_CLOSED if Oplock.State contains any of
READ_CACHING, WRITE_CACHING, or HANDLE_CACHING.

 STATUS_SUCCESS otherwise.

 (The operation does not end at this point; this call to 2.1.5.18.3 completes
some earlier call to 2.1.5.18.1.)

 EndIf

37 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

 Set Oplock.ExclusiveOpen to NULL.

 Set Oplock.State to NO_OPLOCK.

 For each Open WaitingOpen on Oplock.WaitList:

 Indicate that the operation associated with WaitingOpen can continue

according to the algorithm in section 2.1.4.12.1, setting OpenToRelease
equal to WaitingOpen.

 Remove WaitingOpen from Oplock.WaitList.

 EndFor

 EndIf

 EndCase

 Case READ, as specified in section 2.1.5.3:

 Set BreakToTwo to TRUE

 Set BreakCacheState to WRITE_CACHING.

 EndCase

 Case FLUSH_DATA, as specified in section 2.1.5.7:

 Set BreakToTwo to TRUE

 Set BreakCacheState to WRITE_CACHING.

 EndCase

 Case LOCK_CONTROL, as specified in section 2.1.5.8:

 Case WRITE, as specified in section 2.1.5.4:

 Set BreakToNone to TRUE

 Set BreakCacheState to (READ_CACHING|WRITE_CACHING).

 EndCase

 Case SET_INFORMATION, as specified in section 2.1.5.15:

 Switch (OpParams.FileInformationClass):

 Case FileEndOfFileInformation:

 Case FileAllocationInformation:

 Set BreakToNone to TRUE

 Set BreakCacheState to (READ_CACHING|WRITE_CACHING).

 EndCase

 Case FileRenameInformation:

 Case FileLinkInformation:

 Case FileShortNameInformation:

38 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

 Set BreakCacheState to HANDLE_CACHING.

 If Oplock.State contains BATCH_OPLOCK, set BreakToNone to TRUE.

 EndCase

 Case FileDispositionInformation:

 If OpParams.DeleteFile is TRUE,

 Set BreakCacheState to HANDLE_CACHING.

 EndCase

 EndSwitch // FileInfoClass

 Case FS_CONTROL, as specified in section 2.1.5.10:

 If OpParams.ControlCode is FSCTL_SET_ZERO_DATA:

 Set BreakToNone to TRUE.

 Set BreakCacheState to (READ_CACHING|WRITE_CACHING).

 EndIf

 EndCase

 Case SET_SECURITY, as specified in section 2.1.5.17

 Set BreakCacheState to HANDLE_CACHING

 EndCase

 EndSwitch // Operation

 EndIf

 If BreakToTwo is TRUE:

 If (Oplock.State != LEVEL_TWO_OPLOCK) and

((Oplock.ExclusiveOpen is empty) or

(Oplock.ExclusiveOpen.TargetOplockKey != Open.TargetOplockKey)):

 If (Oplock.State contains EXCLUSIVE) and

(Oplock.State contains none of READ_CACHING, WRITE_CACHING, or HANDLE_CACHING):

 If Oplock.State contains none of BREAK_TO_TWO, BREAK_TO_NONE,
BREAK_TO_TWO_TO_NONE, BREAK_TO_READ_CACHING,

BREAK_TO_WRITE_CACHING, BREAK_TO_HANDLE_CACHING, or
BREAK_TO_NO_CACHING:

 // Oplock.State MUST contain either LEVEL_ONE_OPLOCK or BATCH_OPLOCK.

 Set BREAK_TO_TWO in Oplock.State.

 Notify the server of an oplock break according to the algorithm in section
2.1.5.18.3, setting the algorithm's parameters as follows:

 BreakingOplockOpen equal to Oplock.ExclusiveOpen.

39 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

 NewOplockLevel equal to LEVEL_TWO.

 AcknowledgeRequired equal to TRUE.

 OplockCompletionStatus equal to STATUS_SUCCESS.

 (The operation does not end at this point; this call to 2.1.5.18.3 completes some

earlier call to 2.1.5.18.1.)

 EndIf

 The operation that called this algorithm MUST be made cancelable by inserting it into
CancelableOperations.CancelableOperationList.

 Insert Open into Oplock.WaitList.

 The operation that called this algorithm waits until the oplock break is acknowledged,
as specified in section 2.1.5.19, or the operation is canceled.

 EndIf

 EndIf

 Else If BreakToNone is TRUE:

 If (Oplock.State == LEVEL_TWO_OPLOCK) or

(Oplock.ExclusiveOpen is empty) or

(Oplock.ExclusiveOpen.TargetOplockKey != Open.TargetOplockKey):

 If (Oplock.State != NO_OPLOCK) and

(Oplock.State contains neither WRITE_CACHING nor HANDLE_CACHING):

 If Oplock.State contains none of LEVEL_TWO_OPLOCK, BREAK_TO_TWO,
BREAK_TO_NONE, BREAK_TO_TWO_TO_NONE, BREAK_TO_READ_CACHING,
BREAK_TO_WRITE_CACHING, BREAK_TO_HANDLE_CACHING, or
BREAK_TO_NO_CACHING:

 // There could be a READ_CACHING-only oplock here. Those are broken later on.

 If Oplock.State contains READ_CACHING, go to the LeaveBreakToNone label.

 Set BREAK_TO_NONE in Oplock.State.

 Notify the server of an oplock break according to the algorithm in section
2.1.5.18.3, setting the algorithm's parameters as follows:

 BreakingOplockOpen equal to Oplock.ExclusiveOpen.

 NewOplockLevel equal to LEVEL_NONE.

 AcknowledgeRequired equal to TRUE.

 OplockCompletionStatus equal to STATUS_SUCCESS.

 (The operation does not end at this point; this call to 2.1.5.18.3 completes some
earlier call to 2.1.5.18.1.)

 Else If Oplock.State equals LEVEL_TWO_OPLOCK or
(LEVEL_TWO_OPLOCK|READ_CACHING):

40 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

 For each Open ThisOpen in Oplock.IIOplocks:

 Remove ThisOpen from Oplock.IIOplocks.

 Notify the server of an oplock break according to the algorithm in section
2.1.5.18.3, setting the algorithm's parameters as follows:

 BreakingOplockOpen equal to ThisOpen.

 NewOplockLevel equal to LEVEL_NONE.

 AcknowledgeRequired equal to FALSE.

 OplockCompletionStatus equal to STATUS_SUCCESS.

 (The operation does not end at this point; this call to 2.1.5.18.3 completes
some earlier call to 2.1.5.18.2.)

 EndFor

 If Oplock.State equals (LEVEL_TWO_OPLOCK|READ_CACHING):

 Set Oplock.State equal to READ_CACHING.

 Else

 Set Oplock.State equal to NO_OPLOCK.

 EndIf

 Go to the LeaveBreakToNone label.

 Else If Oplock.State contains BREAK_TO_TWO:

 Clear BREAK_TO_TWO from Oplock.State.

 Set BREAK_TO_TWO_TO_NONE in Oplock.State.

 EndIf

 If Oplock.ExclusiveOpen is not empty, and
Oplock.ExclusiveOpen.TargetOplockKey equals Open.TargetOplockKey, go to
the LeaveBreakToNone label.

 The operation that called this algorithm MUST be made cancelable by inserting it into
CancelableOperations.CancelableOperationList.

 Insert Open into Oplock.WaitList.

 The operation that called this algorithm waits until the oplock break is acknowledged,
as specified in section 2.1.5.19, or the operation is canceled.

 EndIf

 EndIf

 EndIf

LeaveBreakToNone (goto destination label):

 If BreakCacheState is not 0:

 If Oplock.State contains any flags that are in BreakCacheState:

41 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

 If Oplock.ExclusiveOpen is not empty, call the algorithm in section 2.1.4.12.2, passing
Open as the OperationOpen parameter, Oplock.ExclusiveOpen as the OplockOpen

parameter, and Flags as the Flags parameter. If the algorithm returns TRUE:

 The algorithm returns at this point.

 Switch (Oplock.State):

 Case (READ_CACHING|HANDLE_CACHING|MIXED_R_AND_RH):

 Case READ_CACHING:

 Case (LEVEL_TWO_OPLOCK|READ_CACHING):

 If BreakCacheState contains READ_CACHING:

 For each Open ThisOpen in Oplock.ROplocks:

 Call the algorithm in section 2.1.4.12.2, passing Open as the

OperationOpen parameter, ThisOpen as the OplockOpen parameter,
and Flags as the Flags parameter. If the algorithm returns FALSE:

 Remove ThisOpen from Oplock.ROplocks.

 Notify the server of an oplock break according to the algorithm in
section 2.1.5.18.3, setting the algorithm's parameters as follows:

 BreakingOplockOpen equal to ThisOpen.

 NewOplockLevel equal to LEVEL_NONE.

 AcknowledgeRequired equal to FALSE.

 OplockCompletionStatus equal to STATUS_SUCCESS.

 (The operation does not end at this point; this call to 2.1.5.18.3
completes some earlier call to 2.1.5.18.2.)

 EndIf

 EndFor

 EndIf

 If Oplock.State equals (READ_CACHING|HANDLE_CACHING|MIXED_R_AND_RH):

 // Do nothing; FALL THROUGH to next Case statement.

 Else

 Recompute Oplock.State according to the algorithm in section 2.1.4.13,
passing Oplock as the ThisOplock parameter.

 EndCase

 EndIf

 Case (READ_CACHING|HANDLE_CACHING):

 If BreakCacheState equals HANDLE_CACHING:

 For each Open ThisOpen in Oplock.RHOplocks:

42 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

 If ThisOpen.OplockKey does not equal Open.OplockKey:

 Remove ThisOpen from Oplock.RHOplocks.

 Notify the server of an oplock break according to the algorithm in
section 2.1.5.18.3, setting the algorithm's parameters as follows:

 BreakingOplockOpen equal to ThisOpen.

 NewOplockLevel equal to READ_CACHING.

 AcknowledgeRequired equal to TRUE.

 OplockCompletionStatus equal to STATUS_SUCCESS.

 (The operation does not end at this point; this call to 2.1.5.18.3
completes some earlier call to 2.1.5.18.2.)

 Initialize a new RHOpContext object, setting its fields as follows:

 RHOpContext.Open set to ThisOpen.

 RHOpContext.BreakingToRead to TRUE.

 Add the new RHOpContext object to Oplock.RHBreakQueue.

 Set NeedToWait to TRUE.

 EndIf

 EndFor

 Else If BreakCacheState contains both READ_CACHING and WRITE_CACHING:

 For each RHOpContext ThisContext in Oplock.RHBreakQueue:

 Call the algorithm in section 2.1.4.12.2, passing Open as the
OperationOpen parameter, ThisContext.Open as the OplockOpen
parameter, and Flags as the Flags parameter. If the algorithm returns
FALSE:

 Set ThisContext.BreakingToRead to FALSE.

 If BreakCacheState contains HANDLE_CACHING:

 Set NeedToWait to TRUE.

 EndIf

 EndIf

 EndFor

 For each Open ThisOpen in Oplock.RHOplocks:

 Call the algorithm in section 2.1.4.12.2, passing Open as the

OperationOpen parameter, ThisOpen as the OplockOpen parameter,
and Flags as the Flags parameter. If the algorithm returns FALSE:

 Remove ThisOpen from Oplock.RHOplocks.

 Notify the server of an oplock break according to the algorithm in
section 2.1.5.18.3, setting the algorithm's parameters as follows:

43 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

 BreakingOplockOpen equal to ThisOpen.

 NewOplockLevel equal to LEVEL_NONE.

 AcknowledgeRequired equal to TRUE.

 OplockCompletionStatus equal to STATUS_SUCCESS.

 (The operation does not end at this point; this call to 2.1.5.18.3
completes some earlier call to 2.1.5.18.2.)

 Initialize a new RHOpContext object, setting its fields as follows:

 RHOpContext.Open set to ThisOpen.

 RHOpContext.BreakingToRead to FALSE.

 Add the new RHOpContext object to Oplock.RHBreakQueue.

 If BreakCacheState contains HANDLE_CACHING:

 Set NeedToWait to TRUE.

 EndIf

 EndIf

 EndFor

 EndIf

 // If the oplock is explicitly losing HANDLE_CACHING, RHBreakQueue is not

empty,

 // and the algorithm has not yet decided to wait, this operation might have to wait

if

 // there is an oplock on RHBreakQueue with a non-matching key. This is done

 // because even if this operation didn't cause a break of a currently-granted Read-

 // Handle caching oplock, it might have done so had a currently-breaking oplock
still

 // been granted.

 If (NeedToWait is FALSE) and

(Oplock.RHBreakQueue is not empty) and

(BreakCacheState contains HANDLE_CACHING):

 For each RHOpContext ThisContex in Oplock.RHBreakQueue:

 If ThisContext.Open.OplockKey does not equal Open.OplockKey:

 Set NeedToWait to TRUE.

 Break out of the For loop.

 EndIf

 EndFor

44 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

 EndIf

 Recompute Oplock.State according to the algorithm in section 2.1.4.13, passing
Oplock as the ThisOplock parameter.

 EndCase

 Case (READ_CACHING|HANDLE_CACHING|BREAK_TO_READ_CACHING):

 If BreakCacheState contains READ_CACHING:

 For each RHOpContext ThisContext in Oplock.RHBreakQueue:

 Call the algorithm in section 2.1.4.12.2, passing Open as the
OperationOpen parameter, ThisContext.Open as the OplockOpen
parameter, and Flags as the Flags parameter. If the algorithm returns
FALSE:

 Set ThisContext.BreakingToRead to FALSE.

 EndIf

 Recompute Oplock.State according to the algorithm in section 2.1.4.13,
passing Oplock as the ThisOplock parameter.

 EndFor

 EndIf

 If BreakCacheState contains HANDLE_CACHING:

 For each RHOpContext ThisContext in Oplock.RHBreakQueue:

 If ThisContext.Open.OplockKey does not equal Open.OplockKey:

 Set NeedToWait to TRUE.

 Break out of the For loop.

 EndIf

 EndFor

 EndIf

 EndCase

 Case (READ_CACHING|HANDLE_CACHING|BREAK_TO_NO_CACHING):

 If BreakCacheState contains HANDLE_CACHING:

 For each RHOpContext ThisContext in Oplock.RHBreakQueue:

 If ThisContext.Open.OplockKey does not equal Open.OplockKey:

 Set NeedToWait to TRUE.

 Break out of the For loop.

 EndIf

 EndFor

45 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

 EndIf

 EndCase

 Case (READ_CACHING|WRITE_CACHING|EXCLUSIVE):

 If BreakCacheState contains both READ_CACHING and WRITE_CACHING:

 Notify the server of an oplock break according to the algorithm in section
2.1.5.18.3, setting the algorithm's parameters as follows:

 BreakingOplockOpen equal to Oplock.ExclusiveOpen.

 NewOplockLevel equal to LEVEL_NONE.

 AcknowledgeRequired equal to TRUE.

 OplockCompletionStatus equal to STATUS_SUCCESS.

 (The operation does not end at this point; this call to 2.1.5.18.3 completes

some earlier call to 2.1.5.18.1.)

 Set Oplock.State to
(READ_CACHING|WRITE_CACHING|EXCLUSIVE|BREAK_TO_NO_CACHING).

 Set NeedToWait to TRUE.

 Else If BreakCacheState contains WRITE_CACHING:

 Notify the server of an oplock break according to the algorithm in section

2.1.5.18.3, setting the algorithm's parameters as follows:

 BreakingOplockOpen equal to Oplock.ExclusiveOpen.

 NewOplockLevel equal to READ_CACHING.

 AcknowledgeRequired equal to TRUE.

 OplockCompletionStatus equal to STATUS_SUCCESS.

 (The operation does not end at this point; this call to 2.1.5.18.3 completes
some earlier call to 2.1.5.18.1.)

 Set Oplock.State to (READ_CACHING|WRITE_CACHING|
EXCLUSIVE|BREAK_TO_READ_CACHING).

 Set NeedToWait to TRUE.

 EndIf

 EndCase

 Case (READ_CACHING|WRITE_CACHING|HANDLE_CACHING|EXCLUSIVE):

 If BreakCacheState equals WRITE_CACHING:

 Notify the server of an oplock break according to the algorithm in section
2.1.5.18.3, setting the algorithm's parameters as follows:

 BreakingOplockOpen equal to Oplock.ExclusiveOpen.

 NewOplockLevel equal to (READ_CACHING|HANDLE_CACHING).

46 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

 AcknowledgeRequired equal to TRUE.

 OplockCompletionStatus equal to STATUS_SUCCESS.

 (The operation does not end at this point; this call to 2.1.5.18.3 completes
some earlier call to 2.1.5.18.1.)

 Set Oplock.State to
(READ_CACHING|WRITE_CACHING|HANDLE_CACHING|EXCLUSIVE|BREAK_TO
_READ_CACHING|BREAK_TO_HANDLE_CACHING).

 Set NeedToWait to TRUE.

 Else If BreakCacheState equals HANDLE_CACHING:

 Notify the server of an oplock break according to the algorithm in section
2.1.5.18.3, setting the algorithm's parameters as follows:

 BreakingOplockOpen equal to Oplock.ExclusiveOpen.

 NewOplockLevel equal to (READ_CACHING|WRITE_CACHING).

 AcknowledgeRequired equal to TRUE.

 OplockCompletionStatus equal to STATUS_SUCCESS.

 (The operation does not end at this point; this call to 2.1.5.18.3 completes
some earlier call to 2.1.5.18.1.)

 Set Oplock.State to
(READ_CACHING|WRITE_CACHING|HANDLE_CACHING|EXCLUSIVE|BREAK_TO
_READ_CACHING|BREAK_TO_WRITE_CACHING).

 Set NeedToWait to TRUE.

 Else If BreakCacheState contains both READ_CACHING and WRITE_CACHING:

 Notify the server of an oplock break according to the algorithm in section
2.1.5.18.3, setting the algorithm's parameters as follows:

 BreakingOplockOpen equal to Oplock.ExclusiveOpen.

 NewOplockLevel equal to LEVEL_NONE.

 AcknowledgeRequired equal to TRUE.

 OplockCompletionStatus equal to STATUS_SUCCESS.

 (The operation does not end at this point; this call to 2.1.5.18.3 completes
some earlier call to 2.1.5.18.1.)

 Set Oplock.State to

(READ_CACHING|WRITE_CACHING|HANDLE_CACHING|EXCLUSIVE|BREAK_TO
_NO_CACHING).

 Set NeedToWait to TRUE.

 EndIf

 EndCase

 Case (READ_CACHING|WRITE_CACHING|EXCLUSIVE|BREAK_TO_READ_CACHING):

47 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

 If BreakCacheState contains READ_CACHING:

 Set Oplock.State to
(READ_CACHING|WRITE_CACHING|EXCLUSIVE|BREAK_TO_NO_CACHING).

 EndIf

 If BreakCacheState contains either READ_CACHING or WRITE_CACHING:

 Set NeedToWait to TRUE.

 EndIf

 EndCase

 Case (READ_CACHING|WRITE_CACHING|EXCLUSIVE|BREAK_TO_NO_CACHING):

 If BreakCacheState contains either READ_CACHING or WRITE_CACHING:

 Set NeedToWait to TRUE.

 EndIf

 EndCase

 Case
(READ_CACHING|WRITE_CACHING|HANDLE_CACHING|EXCLUSIVE|BREAK_TO_READ_
CACHING|BREAK_TO_WRITE_CACHING):

 If BreakCacheState == WRITE_CACHING:

 Set Oplock.State to
(READ_CACHING|WRITE_CACHING|HANDLE_CACHING|EXCLUSIVE|BREAK_TO
_READ_CACHING).

 Else If BreakCacheState contains both READ_CACHING and WRITE_CACHING:

 Set Oplock.State to
(READ_CACHING|WRITE_CACHING|HANDLE_CACHING|EXCLUSIVE|BREAK_TO
_NO_CACHING).

 EndIf

 Set NeedToWait to TRUE.

 EndCase

 Case
(READ_CACHING|WRITE_CACHING|HANDLE_CACHING|EXCLUSIVE|BREAK_TO_READ_
CACHING|BREAK_TO_HANDLE_CACHING):

 If BreakCacheState == HANDLE_CACHING:

 Set Oplock.State to
(READ_CACHING|WRITE_CACHING|HANDLE_CACHING|EXCLUSIVE|BREAK_TO
_READ_CACHING).

 Else If BreakCacheState contains READ_CACHING:

 Set Oplock.State to
(READ_CACHING|WRITE_CACHING|HANDLE_CACHING|EXCLUSIVE|BREAK_TO

_NO_CACHING).

48 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

 EndIf

 Set NeedToWait to TRUE.

 EndCase

 Case

(READ_CACHING|WRITE_CACHING|HANDLE_CACHING|EXCLUSIVE|BREAK_TO_READ_
CACHING):

 If BreakCacheState contains READ_CACHING, set Oplock.State to
(READ_CACHING|WRITE_CACHING|HANDLE_CACHING|EXCLUSIVE|BREAK_TO_N
O_CACHING).

 Set NeedToWait to TRUE.

 EndCase

 Case
(READ_CACHING|WRITE_CACHING|HANDLE_CACHING|EXCLUSIVE|BREAK_TO_NO_C
ACHING):

 Set NeedToWait to TRUE.

 EndCase

 EndSwitch

 If NeedToWait is TRUE:

 The operation that called this algorithm MUST be made cancelable by inserting it into
CancelableOperations.CancelableOperationList.

 Insert Open into Oplock.WaitList.

 The operation that called this algorithm waits until the oplock break is acknowledged,
as specified in section 2.1.5.19, or the operation is canceled.

 EndIf

 EndIf

 EndIf

EndIf

2.1.4.12.1 Algorithm for Request Processing After an Oplock Breaks

The inputs for this algorithm are:

 OpenToRelease: The Open used in the request that caused the oplock to break

Pseudocode for the algorithm is as follows:

 The request corresponding to OpenToRelease MUST resume from the point where it broke the
oplock (that is, called section 2.1.4.12).

2.1.4.12.2 Algorithm to Compare Oplock Keys

The inputs for this algorithm are:

 OperationOpen: The Open used in the request that can cause an oplock to break.

49 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

 OplockOpen: The Open originally used to request the oplock, as specified in section 2.1.5.17.

 Flags: If unspecified it is considered to contain 0. Valid nonzero values are:

 PARENT_OBJECT

This algorithm returns TRUE if the appropriate oplock key field of OperationOpen equals

OplockOpen.TargetOplockKey, and FALSE otherwise.

Pseudocode for the algorithm is as follows:

 If OperationOpen equals OplockOpen:

 Return TRUE.

 If both OperationOpen.TargetOplockKey and OperationOpen.ParentOplockKey are empty
or both OplockOpen.TargetOplockKey and OplockKey.ParentOplockKey are empty:

 Return FALSE.

 If OplockOpen.TargetOplockKey is empty or

(Flags does not contain PARENT_OBJECT and OperationOpen.TargetOplockKey is empty):

 Return FALSE.

 If Flags contains PARENT_OBJECT and

OperationOpen.ParentOplockKey is empty:

 Return FALSE.

 If Flags contains PARENT_OBJECT:

 If OperationOpen.ParentOplockKey equals OplockOpen.TargetOplockKey:

 Return TRUE.

 Else:

 Return FALSE.

 EndIf

 Else:

 If OperationOpen.TargetOplockKey equals OplockOpen.TargetOplockKey:

 Return TRUE.

 Else:

 Return FALSE.

 EndIf

 EndIf

2.1.4.13 Algorithm to Recompute the State of a Shared Oplock

The inputs for this algorithm are:

50 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

 ThisOplock: The Oplock on whose state is being recomputed.

Pseudocode for the algorithm is as follows:

 If ThisOplock.IIOplocks, ThisOplock.ROplocks, ThisOplock.RHOplocks, and
ThisOplock.RHBreakQueue are all empty:

 Set ThisOplock.State to NO_OPLOCK.

 Else If ThisOplock.ROplocks is not empty and either ThisOplock.RHOplocks or
ThisOplock.RHBreakQueue are not empty:

 Set ThisOplock.State to (READ_CACHING|HANDLE_CACHING|MIXED_R_AND_RH).

 Else If ThisOplock.ROplocks is empty and ThisOplock.RHOplocks is not empty:

 Set ThisOplock.State to (READ_CACHING|HANDLE_CACHING).

 Else If ThisOplock.ROplocks is not empty and ThisOplock.IIOplocks is not empty:

 Set ThisOplock.State to (READ_CACHING|LEVEL_TWO_OPLOCK).

 Else If ThisOplock.ROplocks is not empty and ThisOplock.IIOplocks is empty:

 Set ThisOplock.State to READ_CACHING.

 Else If ThisOplock.ROplocks is empty and ThisOplock.IIOplocks is not empty:

 Set ThisOplock.State to LEVEL_TWO_OPLOCK.

 Else

 // ThisOplock.ROplocks is empty
// ThisOplock.RHOplocks is empty
// ThisOplock.RHBreakQueue MUST be non-empty

 If RHOpContext.BreakingToRead is TRUE for every RHOpContext on
ThisOplock.RHBreakQueue:

 Set ThisOplock.State to
(READ_CACHING|HANDLE_CACHING|BREAK_TO_READ_CACHING).

 Else If RHOpContext.BreakingToRead is FALSE for every RHOpContext on
ThisOplock.RHBreakQueue:

 Set ThisOplock.State to
(READ_CACHING|HANDLE_CACHING|BREAK_TO_NO_CACHING).

 Else:

 Set ThisOplock.State to (READ_CACHING|HANDLE_CACHING).

 EndIf

 EndIf

2.1.4.14 AccessCheck -- Algorithm to Perform a General Access Check

The inputs for this algorithm are:

 SecurityContext: The SecurityContext of the user requesting access.

51 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

 SecurityDescriptor: The security descriptor of the object to which access is requested, in the
format specified in [MS-DTYP] section 2.4.6.

 DesiredAccess: An ACCESS_MASK indicating type of access requested, as specified in [MS-DTYP]
section 2.4.3.

This algorithm returns a Boolean value:

 TRUE if the user has the necessary access to the object.

 FALSE otherwise.

Pseudocode for the algorithm is as follows:

 The object store MUST build a new Token object, in the format specified in [MS-DTYP] section
2.5.2, with fields initialized as follows:

 Sids set to SecurityContext.SIDs.

 OwnerIndex set to SecurityContext.OwnerIndex.

 PrimaryGroup set to SecurityContext.PrimaryGroup.

 DefaultDACL set to SecurityContext.DefaultDACL.

 Privileges set to SecurityContext.PrivilegeSet in locally unique identifier (LUID) form, as
specified in [MS-LSAD] section 3.1.1.2.1.

 The object store MUST use the access check algorithm described in [MS-DTYP] section 2.5.3.2,

with input values as follows:

 SecurityDescriptor set to the SecurityDescriptor above.

 Token set to Token.

 Access Request mask set to DesiredAccess.

 Object Tree set to NULL.

 PrincipalSelfSubst set to NULL.

 If the access check returns success, return TRUE; otherwise return FALSE.

2.1.4.15 BuildRelativeName -- Algorithm for Building the Relative Path Name for a

Link

The inputs for this algorithm are:

 Link: A Link whose relative path name we are building.

 RootDirectory: A DirectoryFile indicating how far to walk up the directory hierarchy when

building the relative path name.

This algorithm returns a Unicode string representing the portion of a Link's path name from
RootDirectory to Link itself, inclusive. The returned string starts with a backslash and uses
backslashes as path separators. If Link is not a descendant of RootDirectory, the algorithm returns

an empty string to indicate this error.

Pseudocode for the algorithm is as follows:

 If Link.File equals RootDirectory:

%5bMS-DTYP%5d.pdf#Section_cca2742956894a16b2b49325d93e4ba2
%5bMS-LSAD%5d.pdf#Section_1b5471ef4c334a91b079dfcbb82f05cc

52 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

 Return "\".

 Else If Link.File equals Link.File.Volume.RootDirectory:

 Return an empty string.

 Else If Link.ParentFile equals RootDirectory:

 Return "\" + Link.Name.

 Else

 Set ParentRelativeName to BuildRelativeName(Link.ParentFile, RootDirectory).

 If ParentRelativeName is empty:

 Return an empty string.

 Else

 Return ParentRelativeName + "\" + Link.Name.

 EndIf

 EndIf

2.1.4.16 FindAllFiles: Algorithm for Finding All Files Under a Directory

The inputs for this algorithm are:

 RootDirectory: A DirectoryFile ADM element indicating the top-level directory for the search.

This algorithm returns a list of files that are descendants of RootDirectory, including RootDirectory
itself.

The algorithm uses the following local variables:

 Lists of Files (initialized to empty): FoundFiles, FilesToMerge

Pseudocode for the algorithm follows:

 Insert RootDirectory into FoundFiles.

 For each Link in RootDirectory.DirectoryList:

 If Link.File.FileType is DirectoryFile:

 Set FilesToMerge to FindAllFiles(Link.File).

 Else:

 Set FilesToMerge to a list containing the single entry Link.File.

 EndIf

 For each File in FilesToMerge:

 If File is not an element of FoundFiles, insert File into FoundFiles.

 EndFor

 EndFor

53 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

 Return FoundFiles.

2.1.4.17 Algorithm for Noting That a File Has Been Modified

The inputs for this algorithm are as follows:

 Open: The Open through which the file was modified.

The pseudocode for the algorithm is as follows:

 The object store SHOULD<43>:

 If Open.UserSetModificationTime is FALSE, set Open.File.LastModificationTime to the

current system time.

 If Open.UserSetChangeTime is FALSE, set Open.File.LastChangeTime to the current
system time.

 If Open.UserSetAccessTime is FALSE, set Open.File.LastAccessTime to the current
system time.

 Set Open.File.FileAttributes.FILE_ATTRIBUTE_ARCHIVE to TRUE.

2.1.4.18 Algorithm for Updating Duplicated Information

The inputs for this algorithm are as follows:

 Link: The Link to be updated.

The pseudocode for the algorithm is as follows:

 Set Link.CreationTime to Link.File.CreationTime.

 Set Link.LastAccessTime to Link.File.LastAccessTime.

 Set Link.LastModificationTime to Link.File.LastModificationTime.

 Set Link.LastChangeTime to Link.File.LastChangeTime.

 If Link.File.FileType is DataFile:

 Set DefaultStream to the entry in Link.File.StreamList where DefaultStream.Name is empty
(locate the default stream for the given file).

 Set Link.AllocationSize to DefaultStream.AllocationSize.

 Set Link.FileSize to DefaultStream.Size.

 EndIf

 Set Link.FileAttributes to Link.File.FileAttributes.

 Set Link.ExtendedAttributesLength to Link.File.ExtendedAttributesLength.

 Set Link.ReparseTag to Link.File.ReparseTag.

2.1.4.19 Algorithm for Noting That a File Has Been Accessed

The inputs for this algorithm are as follows:

54 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

 Open: The Open through which the file was accessed.

The pseudocode for the algorithm is as follows:

 The object store SHOULD<44>:

 If Open.UserSetAccessTime is FALSE, set Open.File.LastAccessTime to the current

system time.

2.1.5 Higher-Layer Triggered Events

This section describes operations the object store performs in response to events triggered by higher-

layer applications. The higher-layer application for this document is generally a server application that
is processing requests for a local or remote client.

In performing these operations, the object store MAY make persistent changes to objects described in
the abstract data model, section 2.1.1. If any operation fails, the object store SHOULD undo any
persistent changes that were made prior to the failure, unless specifically noted otherwise in the

operation.

In addition to the parameters explicitly listed, each operation in this section takes an implementation-

specific parameter (IORequest) that uniquely identifies the in-progress I/O operation. The caller
generates the IORequest value and passes it in as an additional parameter to the event. The
IORequest parameter is used to support operation cancellation, as specified in section 2.1.5.19.

When an operation completes or is canceled the object store MUST remove the associated IORequest
operation from CancelableOperations.CancelableOperationList.

2.1.5.1 Server Requests an Open of a File

The server provides:

 RootOpen: An Open to the root of the share.

 PathName: A Unicode path relative to RootOpen for the file to be opened in the format
specified in [MS-FSCC] section 2.1.5.

 SecurityContext: The SecurityContext of the user performing the open.

 DesiredAccess: A bitmask indicating requested access for the open, as specified in [MS-SMB2]
section 2.2.13.1.

 ShareAccess: A bitmask indicating sharing access for the open, as specified in [MS-SMB2]
section 2.2.13.

 CreateOptions: A bitmask of options for the open, as specified in [MS-SMB2] section 2.2.13.

 CreateDisposition: The requested disposition for the open, as specified in [MS-SMB2] section

2.2.13.

 DesiredFileAttributes: A bitmask of requested file attributes for the open, as specified in [MS-
SMB2] section 2.2.13.

 IsCaseInsensitive: A Boolean value. TRUE indicates that string comparisons performed in the
context of this Open are case-insensitive; otherwise, they are case-sensitive.

 TargetOplockKey: A GUID value. This value could be empty.

 UserCertificate: An ENCRYPTION_CERTIFICATE structure as specified in [MS-EFSR] section 2.2.8

and used when opening an encrypted stream. This value could be empty.

%5bMS-FSCC%5d.pdf#Section_efbfe12773ad41409967ec6500e66d5e
%5bMS-SMB2%5d.pdf#Section_5606ad475ee0437a817e70c366052962
%5bMS-EFSR%5d.pdf#Section_08796ba801c8487292211000ec2eff31

55 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

On completion, the object store MUST return:

 Status: An NTSTATUS code that specifies the result.

On success it MUST also return:

 CreateAction: A code defining the action taken by the open operation, as specified in [MS-SMB2]

section 2.2.14 for the CreateAction field.

 Open: The newly created Open.

On STATUS_REPARSE or STATUS_STOPPED_ON_SYMLINK it MUST also return:

 ReparseData: The reparse point data associated with an existing file, in the format described in
[MS-FSCC] section 2.1.2. The application MAY retry the open operation with a different
PathName parameter constructed using ReparseData.

Pseudocode for the operation is as follows:

 Phase 1 -- Parameter Validation:

 Set ValidDirectoryCreateOptions = (FILE_DIRECTORY_FILE | FILE_SYNCHRONOUS_IO_ALERT |
FILE_SYNCHRONOUS_IO_NONALERT | FILE_WRITE_THROUGH | FILE_OPEN_REMOTE_INSTANCE
| FILE_COMPLETE_IF_OPLOCKED | FILE_OPEN_FOR_BACKUP_INTENT | FILE_DELETE_ON_CLOSE
| FILE_OPEN_FOR_FREE_SPACE_QUERY | FILE_OPEN_BY_FILE_ID | FILE_NO_COMPRESSION |
FILE_OPEN_REPARSE_POINT | FILE_OPEN_REQUIRING_OPLOCK).

 The operation MUST be failed with STATUS_INVALID_PARAMETER under any of the following
conditions:

 If RootOpen.File.FileType is DataFile.

 If ShareAccess, CreateOptions, CreateDisposition, or FileAttributes are not valid values
for a file object as specified in [MS-SMB2] section 2.2.13.

 If (CreateOptions.FILE_SYNCHRONOUS_IO_ALERT ||
Create.FILE_SYNCHRONOUS_IO_NONALERT) && !DesiredAccess.SYNCHRONIZE.

 If CreateOptions.FILE_DELETE_ON_CLOSE && !DesiredAccess.DELETE.

 If CreateOptions.FILE_SYNCHRONOUS_IO_ALERT &&
Create.FILE_SYNCHRONOUS_IO_NONALERT.

 If CreateOptions.FILE_DIRECTORY_FILE is TRUE &&
CreateOptions.FILE_NON_DIRECTORY_FILE is FALSE && ((CreateOptions & ~
ValidDirectoryCreateOptions) || (CreateDisposition != FILE_CREATE && CreateDisposition
!= FILE_OPEN && CreateDisposition != FILE_OPEN_IF)).

 If CreateOptions.FILE_COMPLETE_IF_OPLOCKED &&
CreateOptions.FILE_RESERVE_OPFILTER.

 If CreateOptions.FILE_NO_INTERMEDIATE_BUFFERING &&
DesiredAccess.FILE_APPEND_DATA.

 If DesiredAccess is zero, or if any of the bits in the mask 0x0CE0FE00 are set, the operation
MUST be failed with STATUS_ACCESS_DENIED.

 If CreateOptions.FILE_DIRECTORY_FILE && CreateOptions.FILE_NON_DIRECTORY_FILE,
the operation MUST be failed with STATUS_INVALID_PARAMETER.

56 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

 The operation MUST be failed with STATUS_OBJECT_NAME_INVALID under any of the following
conditions:

 If PathName is not valid as specified in [MS-FSCC] section 2.1.5.

 If PathName contains a trailing backslash and

CreateOptions.FILE_NON_DIRECTORY_FILE is TRUE.

 If DesiredFileAttributes.FILE_ATTRIBUTE_ENCRYPTED is specified, then the object store
MUST set CreateOptions.FILE_NO_COMPRESSION.

 Phase 2 -- Volume State:

 If RootOpen.File.Volume.IsReadOnly && (CreateDisposition == FILE_CREATE ||
CreateDisposition == FILE_SUPERSEDE || CreateDisposition == OVERWRITE ||
CreateDisposition == OVERWRITE_IF) then the operation MUST be failed with

STATUS_MEDIA_WRITE_PROTECTED.

 Phase 3 -- Initialization of Open Object:

 The object store MUST build a new Open object with fields initialized as follows:

 Open.RootOpen set to RootOpen.

 Open.FileName formed by concatenating RootOpen.FileName + "\" + FileName, stripping
any redundant backslashes and trailing backslashes.

 Open.RemainingDesiredAccess set to DesiredAccess.

 Open.SharingMode set to ShareAccess.

 Open.Mode set to (CreateOptions & (FILE_WRITE_THROUGH | FILE_SEQUENTIAL_ONLY |
FILE_NO_INTERMEDIATE_BUFFERING | FILE_SYNCHRONOUS_IO_ALERT |
FILE_SYNCHRONOUS_IO_NONALERT | FILE_DELETE_ON_CLOSE)).

 Open.IsCaseInsensitive set to IsCaseInsensitive.

 Open.HasBackupAccess set to TRUE if SecurityContext.PrivilegeSet contains

"SeBackupPrivilege".

 Open.HasRestoreAccess set to TRUE if SecurityContext.PrivilegeSet contains
"SeRestorePrivilege".

 Open.HasCreateSymbolicLinkAccess set to TRUE if SecurityContext.PrivilegeSet
contains "SeCreateSymbolicLinkPrivilege".

 Open.HasManageVolumeAccess set to TRUE if SecurityContext.PrivilegeSet contains
"SeManageVolumePrivilege".

 Open.IsAdministrator set to TRUE if SecurityContext.SIDs contains the well-known SID
BUILTIN_ADMINISTRATORS as defined in [MS-DTYP] section 2.4.2.4.

 Open.TargetOplockKey set to TargetOplockKey.

 Open.LastQuotaId set to -1.

 All other fields set to zero.

 Phase 4 -- Check for backup/restore intent

 If CreateOptions.FILE_OPEN_FOR_BACKUP_INTENT is set and (CreateDisposition ==
FILE_OPEN || CreateDisposition == FILE_OPEN_IF || CreateDisposition ==

%5bMS-DTYP%5d.pdf#Section_cca2742956894a16b2b49325d93e4ba2

57 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

FILE_OVERWRITE_IF) and Open.HasBackupAccess is TRUE, then the object store SHOULD
grant backup access as shown in the following pseudocode:

 BackupAccess = (READ_CONTROL | ACCESS_SYSTEM_SECURITY | FILE_GENERIC_READ |
FILE_TRAVERSE)

 If Open.RemainingDesiredAccess.MAXIMUM_ALLOWED is set then:

 Open.GrantedAccess |= BackupAccess

 Else:

 Open.GrantedAccess |= (Open.RemainingDesiredAccess & BackupAccess)

 EndIf

 Open.RemainingDesiredAccess &= ~Open.GrantedAccess

 If CreateOptions.FILE_OPEN_FOR_BACKUP_INTENT is set and Open.HasRestoreAccess is

TRUE, then the object store SHOULD grant restore access as shown in the following pseudocode:

 RestoreAccess = (WRITE_DAC | WRITE_OWNER | ACCESS_SYSTEM_SECURITY |
FILE_GENERIC_WRITE | FILE_ADD_FILE | FILE_ADD_SUBDIRECTORY | DELETE)

 If Open.RemainingDesiredAccess.MAXIMUM_ALLOWED is set then:

 Open.GrantedAccess |= RestoreAccess

 Else:

 Open.GrantedAccess |= (Open.RemainingDesiredAccess & RestoreAccess)

 EndIf

 Open.RemainingDesiredAccess &= ~Open.GrantedAccess

 Phase 5 -- Parse pathname:

 The object store MUST split Open.FileName into pathname components PathName1 ...
PathNamen, using the backslash ("\") character as a delimiter. If any PathNamei ends in a
colon(":") character, the operation MUST be failed with STATUS_OBJECT_NAME_INVALID. The

object store MUST further split each PathNamei into a file name component FileNamei, stream
name component StreamNamei, and stream type name component StreamTypeNamei, using the
colon (":") character as a delimiter (FileNamei:StreamNamei:StreamTypeNamei). If StreamNamei
or StreamTypeNamei is not present in the name, the value MUST be set to an empty string.

 Phase 6 -- Location of file:

 The object store MUST search for a filename matching Open.FileName. If IsCaseInsensitive is
TRUE, then the search MUST be case-insensitive; otherwise it MUST be case-sensitive. Pseudocode

for this search is as follows:

 Set ParentFile = RootOpen.File.

 // Examine each prefix pathname component in order.

 For i = 1 to n-1: // n is the number of pathname components, from Phase 5.

 If StreamTypeNamei is non-empty:

 Set ComplexNameSuffix = ":StreamNamei:StreamTypeNamei".

58 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

 Else if StreamNamei is non-empty:

 Set ComplexNameSuffix = ":StreamNamei".

 Else:

 Set ComplexNameSuffix to empty.

 EndIf

 If ComplexNameSuffix is non-empty and ComplexNameSuffix is not equal to one of the
complex name suffixes recognized by the object store<45> (using case-insensitive string
comparisons), the operation MUST be failed with STATUS_OBJECT_NAME_INVALID.

 Search ParentFile.DirectoryList for a Link where Link.Name or Link.ShortName
matches FileNamei. If no such link is found, the operation MUST be failed with
STATUS_OBJECT_PATH_NOT_FOUND.

 If Link.File.FileType is not DirectoryFile, the operation MUST be failed with
STATUS_OBJECT_PATH_NOT_FOUND.

 If Open.GrantedAccess.FILE_TRAVERSE is not set and
AccessCheck(SecurityContext, Link.File.SecurityDescriptor, FILE_TRAVERSE)
returns FALSE, the operation MAY be failed with STATUS_ACCESS_DENIED.

 If Link.IsDeleted, the operation MUST be failed with STATUS_DELETE_PENDING.

 If Link.File.IsSymbolicLink is TRUE, the operation MUST be failed with Status set to
STATUS_STOPPED_ON_SYMLINK and ReparseData set to Link.File.ReparseData.

 Set ParentFile = Link.File.

 EndFor

 // Examine final pathname component.

 Set FileNameToOpen to FileNamen, StreamNameToOpen to StreamNamen, and
StreamTypeNameToOpen to StreamTypeNamen.

 If StreamTypeNameToOpen is non-empty and StreamTypeNameToOpen is not equal to one of
the stream type names recognized by the object store<46> (using case-insensitive string
comparisons), the operation MUST be failed with STATUS_OBJECT_NAME_INVALID.

 Search ParentFile.DirectoryList for a Link where Link.Name or Link.ShortName matches
FileNameToOpen. If such a link is found:

 Set File = Link.File.

 Set Open.File to File.

 Set Open.Link to Link.

 Else:

 If (CreateDisposition == FILE_OPEN || CreateDisposition == FILE_OVERWRITE), the
operation MUST be failed with STATUS_OBJECT_NAME_NOT_FOUND.

 If RootOpen.File.Volume.IsReadOnly then the operation MUST be failed with
STATUS_MEDIA_WRITE_PROTECTED.

 EndIf

59 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

 If StreamTypeNameToOpen is non-empty and has a value other than "$DATA" or
"$INDEX_ALLOCATION", the operation MUST be failed with STATUS_OBJECT_NAME_INVALID.

 Phase 7 -- Type of stream to open:

 The object store MUST use the following algorithm to determine which type of stream is being

opened:

 Set StreamTypeToOpen to empty.

 If RootOpen.File.Volume.IsPhysicalRoot is TRUE, then set StreamTypeToOpen to
ViewIndexStream under any of the following conditions:

 If RootOpen.File.Volume.IsObjectIDsSupported is TRUE,
BuildRelativeName(Open.Link, Open.File.Volume.RootDirectory) is equal to
"\$Extend\$ObjId", StreamNameToOpen is equal to "$O", and StreamTypeNameToOpen is

equal to "$INDEX_ALLOCATION" (using case-insensitive string comparisons).

 If RootOpen.File.Volume.IsQuotasSupported is TRUE, BuildRelativeName(Open.Link,
Open.File.Volume.RootDirectory) is equal to "\$Extend\$Quota", StreamNameToOpen is
equal to "$O" or "$Q", and StreamTypeNameToOpen is equal to "$INDEX_ALLOCATION"
(using case-insensitive string comparisons).

 If RootOpen.File.Volume.IsReparsePointsSupported is TRUE,

BuildRelativeName(Open.Link, Open.File.Volume.RootDirectory) is equal to
"\$Extend\$Reparse", StreamNameToOpen is equal to "$R", and StreamTypeNameToOpen is
equal to "$INDEX_ALLOCATION" (using case-insensitive string comparisons).

 EndIf

 // Note that when StreamTypeToOpen is ViewIndexStream, the file always exists in the object
store and

 // Open.File.FileType is ViewIndexFile.

 If StreamTypeToOpen is empty:

 If StreamTypeNameToOpen is "$INDEX_ALLOCATION":

 If StreamNameToOpen has a value other than an empty string or "$I30", the operation
SHOULD<47> be failed with STATUS_INVALID_PARAMETER.

 Else if StreamTypeNameToOpen is not "$DATA” and not empty:

 If CreateDisposition is one of FILE_SUPERSEDE, FILE_OVERWRITE, or
FILE_OVERWRITE_IF, then the operation MUST be failed with STATUS_ACCESS_DENIED.

 EndIf

 If CreateOptions.FILE_DIRECTORY_FILE is TRUE then StreamTypeToOpen =
DirectoryStream.

 Else if StreamTypeNameToOpen is "$INDEX_ALLOCATION" then StreamTypeToOpen =
DirectoryStream.

 Else if CreateOptions.FILE_NON_DIRECTORY_FILE is FALSE, StreamNameToOpen is

empty, StreamTypeNameToOpen is empty, Open.File is not NULL, and Open.File.FileType is
DirectoryFile then StreamTypeToOpen = DirectoryStream.

 Else StreamTypeToOpen = DataStream.

60 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

 EndIf

 EndIf

 If StreamTypeToOpen is DirectoryStream:

 If StreamTypeNameToOpen is not "$INDEX_ALLOCATION":

 If StreamNameToOpen is not empty or StreamTypeNameToOpen is not empty, then the
operation MUST be failed with STATUS_NOT_A_DIRECTORY.

 EndIf

 If Open.File is not NULL and Open.File.FileType is DataFile:

 If CreateDisposition == FILE_CREATE then the operation MUST be failed with
STATUS_OBJECT_NAME_COLLISION, else the operation MUST be failed with
STATUS_NOT_A_DIRECTORY.

 EndIf

 Else if StreamTypeToOpen is DataStream:

 If StreamNameToOpen is empty and Open.File is not NULL and Open.File.FileType is
DirectoryFile, the operation MUST be failed with STATUS_FILE_IS_A_DIRECTORY.

 EndIf

 If PathName contains a trailing backslash:

 If StreamTypeToOpen is DataStream or CreateOptions.FILE_NON_DIRECTORY_FILE is
TRUE, the operation MUST be failed with STATUS_OBJECT_NAME_INVALID.

 EndIf

 Phase 8 -- Completion of open

 If Open.File is NULL, the object store MUST create a new file as described in section 2.1.5.1.1;
otherwise the object store MUST open the existing file as described in section 2.1.5.1.2.

2.1.5.1.1 Creation of a New File

Pseudocode for the operation is as follows:

 If StreamTypeToOpen is DirectoryStream and
DesiredFileAttributes.FILE_ATTRIBUTE_TEMPORARY is set, the operation MUST be failed
with STATUS_INVALID_PARAMETER.

 If DesiredFileAttributes.FILE_ATTRIBUTE_READONLY and
CreateOptions.FILE_DELETE_ON_CLOSE are both set, the operation MUST be failed with

STATUS_CANNOT_DELETE.

 If Open.RemainingDesiredAccess.ACCESS_SYSTEM_SECURITY is set and
Open.GrantedAccess.ACCESS_SYSTEM_SECURITY is not set and
SecurityContext.PrivilegeSet does not contain "SeSecurityPrivilege", the operation MUST be
failed with STATUS_ACCESS_DENIED.

 If StreamTypeToOpen is DataStream and Open.GrantedAccess.FILE_ADD_FILE is not set and

AccessCheck(SecurityContext, Open.Link.ParentFile.SecurityDescriptor, FILE_ADD_FILE)
returns FALSE and Open.HasRestoreAccess is FALSE, the operation MUST be failed with
STATUS_ACCESS_DENIED.

61 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

 If StreamTypeToOpen is DirectoryStream and
Open.GrantedAccess.FILE_ADD_SUBDIRECTORY is not set and

AccessCheck(SecurityContext, Open.Link.ParentFile.SecurityDescriptor,
FILE_ADD_SUBDIRECTORY) returns FALSE and Open.HasRestoreAccess is FALSE, the operation

MUST be failed with STATUS_ACCESS_DENIED.

 If the object store implements encryption and
DesiredFileAttributes.FILE_ATTRIBUTE_ENCRYPTED is TRUE:

 If UserCertificate is empty, the operation MUST be failed with
STATUS_CS_ENCRYPTION_NEW_ENCRYPTED_FILE.

 EndIf

 Initialize UsnReason to zero.

 Set UsnReason.USN_REASON_FILE_CREATE to TRUE.

 The object store MUST build a new File object with fields initialized as follows:

 File.FileType set to DirectoryFile if StreamTypeToOpen is DirectoryStream, else it is set to
DataFile.

 File.FileId128 assigned a new value. The value chosen is implementation-specific but MUST
be unique among all files present on RootOpen.File.Volume.<48>

 File.FileId64 assigned a new value. The value chosen is implementation-specific<49> but
MUST be either -1 or unique among all files present on RootOpen.File.Volume.

 File.FileNumber assigned a new value. The value chosen is implementation-specific but
MUST be unique among all files present on RootOpen.File.Volume.<50>

 File.FileAttributes set to DesiredFileAttributes.

 File.CreationTime, File.LastModificationTime, File.LastChangeTime, and

File.LastAccessTime all initialized to the current system time.

 File.Volume set to RootOpen.File.Volume.

 All other fields set to zero.

 The object store MUST build a new Link object with fields initialized as follows:

 Link.File set to File.

 Link.ParentFile set to ParentFile.

 All other fields set to zero.

 If File.FileType is DataFile and Open.IsCaseInsensitive is TRUE, and tunnel caching is

implemented, the object store MUST search File.Volume.TunnelCacheList for a

TunnelCacheEntry where TunnelCacheEntry.ParentFile equals Link.ParentFile and either
(TunnelCacheEntry.KeyByShortName is FALSE and TunnelCacheEntry.FileName matches
FileNameToOpen) or (TunnelCacheEntry.KeyByShortName is TRUE and
TunnelCacheEntry.FileShortName matches FileNameToOpen). If such an entry is found, then:

 Set File.CreationTime to TunnelCacheEntry.FileCreationTime.

 If TunnelCacheEntry.ObjectIdInfo.ObjectId is not empty:

 If TunnelCacheEntry.ObjectIdInfo.ObjectId is not unique on File.Volume:

62 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

 The object store MUST construct a FILE_OBJECTID_INFORMATION structure (as
specified in [MS-FSCC] section 2.4.35.1) ObjectIdInfo as follows:

 ObjectIdInfo.FileReference set to File.FileId64.

 ObjectIdInfo.ObjectId set to TunnelCacheEntry.ObjectIdInfo.ObjectId.

 ObjectIdInfo.BirthVolumeId set to
TunnelCacheEntry.ObjectIdInfo.BirthVolumeId.

 ObjectIdInfo.BirthObjectId set to
TunnelCacheEntry.ObjectIdInfo.BirthObjectId.

 ObjectIdInfo.DomainId set to TunnelCacheEntry.ObjectIdInfo.DomainId.

 Send directory change notification as specified in section 2.1.4.1, with Volume
equal to File.Volume, Action equal to FILE_ACTION_ID_NOT_TUNNELLED,

FilterMatch equal to FILE_NOTIFY_CHANGE_FILE_NAME, FileName equal to

"\$Extend\$ObjId", NotifyData equal to ObjectIdInfo, and NotifyDataLength
equal to sizeof(FILE_OBJECTID_INFORMATION).

 Else:

 Set File.ObjectId to TunnelCacheEntry.ObjectIdInfo.ObjectId.

 Set File.BirthVolumeId to TunnelCacheEntry.ObjectIdInfo.BirthVolumeId.

 Set File.BirthObjectId to TunnelCacheEntry.ObjectIdInfo.BirthObjectId.

 Set File.DomainId to TunnelCacheEntry.ObjectIdInfo.DomainId.

 Set UsnReason.USN_REASON_OBJECT_ID_CHANGE to TRUE.

 EndIf

 EndIf

 Set Link.Name to TunnelCacheEntry.FileName.

 Set Link.ShortName to TunnelCacheEntry.FileShortName if that name is not already in use

among all names and short names in Link.ParentFile.DirectoryList.

 Remove TunnelCacheEntry from File.Volume.TunnelCacheList.

 Else:

 Set Link.Name to FileNameToOpen.

 EndIf

 If short names are enabled and Link.ShortName is empty, then the object store MUST create a
short name as follows:

 If Link.Name is 8.3-compliant as described in [MS-FSCC] section 2.1.5.2.1:

 Set Link.ShortName to Link.Name.

 Else:

 Generate a new Link.ShortName that is 8.3-compliant as described in [MS-FSCC] section
2.1.5.2.1. The string chosen is implementation-specific, but MUST be unique among all
names and short names present in Link.ParentFile.DirectoryList.

%5bMS-FSCC%5d.pdf#Section_efbfe12773ad41409967ec6500e66d5e

63 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

 EndIf

 EndIf

 The object store MUST now grant the full requested access, as shown by the following
pseudocode:

 If Open.RemainingDesiredAccess.MAXIMUM_ALLOWED is set:

 Open.GrantedAccess |= FILE_ALL_ACCESS

 Else:

 Open.GrantedAccess |= Open.RemainingDesiredAccess

 EndIf

 Open.RemainingDesiredAccess = 0

 The object store MUST initialize File.SecurityDescriptor.Dacl to

SecurityContext.DefaultDACL. The object store SHOULD append any inheritable security
information from Link.ParentFile.SecurityDescriptor to File.SecurityDescriptor.

 The object store MUST set File.FileAttributes.FILE_ATTRIBUTE_NOT_CONTENT_INDEXED to
the value of Link.ParentFile.FileAttributes.FILE_ATTRIBUTE_NOT_CONTENT_INDEXED.

 The object store MUST clear any attribute flags from File.FileAttributes that cannot be directly
set by applications, as follows:

 ValidSetAttributes = (FILE_ATTRIBUTE_READONLY | FILE_ATTRIBUTE_HIDDEN |
FILE_ATTRIBUTE_SYSTEM | FILE_ATTRIBUTE_ARCHIVE | FILE_ATTRIBUTE_TEMPORARY |
FILE_ATTRIBUTE_OFFLINE | FILE_ATTRIBUTE_NOT_CONTENT_INDEXED)

 File.FileAttributes &= ValidSetAttributes

 If File.FileType is DataFile, then the object store MUST set
File.FileAttributes.FILE_ATTRIBUTE_ARCHIVE.

 If File.FileType is DirectoryFile, then the object store MUST set

File.FileAttributes.FILE_ATTRIBUTE_DIRECTORY.

 If Link.ParentFile.FileAttributes.FILE_ATTRIBUTE_ENCRYPTED or
DesiredFileAttributes.FILE_ATTRIBUTE_ENCRYPTED is set, then the object store MUST set
File.FileAttributes.FILE_ATTRIBUTE_ENCRYPTED.

 If Link.ParentFile.FileAttributes.FILE_ATTRIBUTE_COMPRESSED is set and
CreateOptions.FILE_NO_COMPRESSION is not set, then the object store MUST set
File.FileAttributes.FILE_ATTRIBUTE_COMPRESSED.

 If Link.ParentFile.FileAttributes.FILE_ATTRIBUTE_INTEGRITY_STREAM is set or
DesiredFileAttributes.FILE_ATTRIBUTE_INTEGRITY_STREAM is set, then the object store

MUST set File.FileAttributes.FILE_ATTRIBUTE_INTEGRITY_STREAM.<51>

 If Link.ParentFile.FileAttributes.FILE_ATTRIBUTE_NO_SCRUB_DATA is set or
DesiredFileAttributes.FILE_ATTRIBUTE_NO_SCRUB_DATA is set, then the object store
MUST set File.FileAttributes.FILE_ATTRIBUTE_NO_SCRUB_DATA.<52>

 If the object store implements encryption and
File.FileAttributes.FILE_ATTRIBUTE_ENCRYPTED is TRUE, insert UserCertificate into
File.UserCertificateList.

64 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

 If File.FileType is DataFile and StreamNameToOpen is not empty, then the object store MUST
create a default unnamed stream for the file as follows:<53>

 Build a new Stream object DefaultStream with all fields initially set to zero.

 Set DefaultStream.File to File.

 If the object store implements encryption and
File.FileAttributes.FILE_ATTRIBUTE_ENCRYPTED is TRUE, set
DefaultStream.IsEncrypted to TRUE.

 Add DefaultStream to File.StreamList.

 EndIf

 If StreamTypeToOpen is DataStream, then the object store MUST create a new data stream for
the file as follows:<54>

 Build a new Stream object with all fields initially set to zero.

 Set Stream.StreamType to DataStream.

 Set Stream.Name to StreamNameToOpen.

 Set Stream.File to File.

 Add Stream to File.StreamList.

 Set Open.Stream to Stream.

 If Stream.Name is not empty, set UsnReason.USN_REASON_STREAM_CHANGE to TRUE.

 Else the object store MUST create a new directory stream as follows:

 Build a new Stream object with all fields initially set to zero.

 Set Stream.StreamType to DirectoryStream.

 Set Stream.File to File.

 Add Stream to File.StreamList.

 Set Open.Stream to Stream.

 EndIf

 If the object store implements encryption and
File.FileAttributes.FILE_ATTRIBUTE_ENCRYPTED is TRUE:

 If File.FileType is DataFile, set Stream.IsEncrypted to TRUE.

 EndIf

 The object store MUST update the duplicated information as specified in section 2.1.4.18 with
Link equal to Link.

 The object store MUST set Open.File to File.

 The object store MUST set Open.Link to Link.

 The object store MUST insert Link into File.LinkList.

 The object store MUST insert Link into Link.ParentFile.DirectoryList.

65 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

 The object store MUST post a USN change as specified in section 2.1.4.11 with File equal to File,
Reason equal to UsnReason, and FileName equal to Link.Name.

 The object store MUST update Link.ParentFile.LastModificationTime,
Link.ParentFile.LastChangeTime, and Link.ParentFile.LastAccessTime to the current system

time.

 If the Oplock member of the DirectoryStream in Link.ParentFile.StreamList (hereinafter
referred to as ParentOplock) is not empty, the object store MUST check for an oplock break on the
parent according to the algorithm in section 2.1.4.12, with input values as follows:

 Open equal to this operation's Open

 Oplock equal to ParentOplock

 Operation equal to "OPEN"

 Flags equal to "PARENT_OBJECT"

 The object store MUST insert File into File.Volume.OpenFileList.

 The object store MUST insert Open into File.OpenList.

 If File.FileType is DirectoryFile:

 FilterMatch = FILE_NOTIFY_CHANGE_DIR_NAME

 Else:

 FilterMatch = FILE_NOTIFY_CHANGE_FILE_NAME

 EndIf

 The object store MUST send directory change notification as specified in section 2.1.4.1 with
Volume equal to File.Volume, Action equal to FILE_ACTION_ADDED, FilterMatch equal to

FilterMatch, and FileName equal to Open.FileName.

 If Stream.Name is not empty:

 Send directory change notification as specified in section 2.1.4.1, with Volume equal to

File.Volume, Action equal to FILE_ACTION_ADDED_STREAM, FilterMatch equal to
FILE_NOTIFY_CHANGE_STREAM_NAME, and FileName equal to Open.FileName + ":" +
Stream.Name.

 EndIf

 The object store MUST return:

 Status set to STATUS_SUCCESS.

 CreateAction set to FILE_CREATED.

 The Open object created previously.

2.1.5.1.2 Open of an Existing File

Files that require knowledge of extended attributes cannot be opened by applications that do not
understand extended attributes. If CreateOptions.FILE_NO_EA_KNOWLEDGE is set and
(StreamTypeToOpen is DirectoryStream or (StreamTypeToOpen is DataStream and

StreamNameToOpen is empty)) and File.ExtendedAttributes contains an ExistingEa where

66 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

ExistingEa.Flags.FILE_NEED_EA is set, the operation MUST be failed with
STATUS_ACCESS_DENIED.

Pseudocode for the operation is as follows:

 If CreateOptions.FILE_OPEN_REPARSE_POINT is not set and File.ReparsePointTag is not

empty, then the operation MUST be failed with Status set to STATUS_REPARSE and
ReparsePointData set to File.ReparsePointData.

 If StreamTypeToOpen is DirectoryStream:

 If CreateDisposition is FILE_OPEN or FILE_OPEN_IF then:

 Perform access checks as described in section 2.1.5.1.2.1. If this fails with
STATUS_SHARING_VIOLATION:

 If Open.Stream.Oplock is not empty and Open.Stream.Oplock.State contains

HANDLE_CACHING, the object store MUST check for an oplock break according to the

algorithm in section 2.1.4.12, with input values as follows:

 Open equal to this operation's Open

 Oplock equal to Open.Stream.Oplock

 Operation equal to "OPEN_BREAK_H"

 Perform access checks as described in section 2.1.5.1.2.1. If this fails, the request

MUST be failed with the same status.

 ElseIf this fails with any other status code:

 The request MUST be failed with the same status.

 EndIf

 Perform sharing access checks as described in section 2.1.5.1.2.2. If this fails with
STATUS_SHARING_VIOLATION:

 If Open.Stream.Oplock is not empty and Open.Stream.Oplock.State contains

HANDLE_CACHING, the object store MUST check for an oplock break according to the
algorithm in section 2.1.4.12, with input values as follows:

 Open equal to this operation's Open

 Oplock equal to Open.Stream.Oplock

 Perform sharing access checks as described in section 2.1.5.1.2.2. If this fails, the
request MUST be failed with the same status.

 ElseIf this fails with any other status code:

 The request MUST be failed with the same status.

 EndIf

 If Open.File.OpenList is empty, Open.SharingMode does not contain
FILE_SHARE_READ, and AccessCheck(SecurityContext, File.SecurityDescriptor,
FILE_GENERIC_WRITE) returns FALSE:

 If CreateOptions.FILE_DISALLOW_EXCLUSIVE is TRUE:<55>

 The operation MUST be failed with STATUS_ACCESS_DENIED.

67 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

 Else:

 The object store MUST set Open.SharingMode.FILE_SHARE_READ to TRUE.

 EndIf

 EndIf

 Set CreateAction to FILE_OPENED.

 Else:

 // Existing directories cannot be overwritten/superseded.

 If File == File.Volume.RootDirectory, then the operation MUST be failed with
STATUS_ACCESS_DENIED, else the operation MUST be failed with
STATUS_OBJECT_NAME_COLLISION.

 EndIf

 Else if StreamTypeToOpen is DataStream:

 The object store MUST search File.StreamList for a DataStream with Stream.Name
matching StreamNameToOpen. If IsCaseInsensitive is TRUE, then the search MUST be case-
insensitive; otherwise it MUST be case-sensitive.

 If Stream was found:

 Set Open.Stream to Stream.

 If CreateDisposition is FILE_CREATE, then the operation MUST be failed with
STATUS_OBJECT_NAME_COLLISION.

 If CreateDisposition is FILE_OPEN or FILE_OPEN_IF:

 If Open.Stream.Oplock is not empty and Open.Stream.Oplock.State contains
BATCH_OPLOCK, the object store MUST check for an oplock break according to the
algorithm in section 2.1.4.12, with input values as follows:

 Open equal to this operation's Open

 Oplock equal to Open.Stream.Oplock

 Operation equal to "OPEN"

 OpParams containing two members:

 DesiredAccess equal to this operation's DesiredAccess

 CreateDisposition equal to this operation's CreateDisposition

 Perform access checks as described in section 2.1.5.1.2.1. If this fails with

STATUS_SHARING_VIOLATION:

 If Open.Stream.Oplock is not empty and Open.Stream.Oplock.State contains
HANDLE_CACHING, the object store MUST check for an oplock break according to
the algorithm in section 2.1.4.12, with input values as follows:

 Open equal to this operation's Open

 Oplock equal to Open.Stream.Oplock

68 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

 Operation equal to "OPEN_BREAK_H"

 Perform access checks as described in section 2.1.5.1.2.1. If this fails, the request
MUST be failed with the same status.

 ElseIf this fails with any other status code:

 The request MUST be failed with the same status.

 EndIf

 Perform sharing access checks as described in section 2.1.5.1.2.2. If this fails with
STATUS_SHARING_VIOLATION:

 If Open.Stream.Oplock is not empty and Open.Stream.Oplock.State contains
HANDLE_CACHING, the object store MUST check for an oplock break according to
the algorithm in section 2.1.4.12, with input values as follows:

 Open equal to this operation's Open

 Oplock equal to Open.Stream.Oplock

 Operation equal to "OPEN_BREAK_H"

 Perform sharing access checks as described in section 2.1.5.1.2.2. If this fails, the
request MUST be failed with the same status.

 ElseIf this fails with any other status code:

 The request MUST be failed with the same status.

 EndIf

 Set CreateAction to FILE_OPENED.

 Else:

 If File.Volume.IsReadOnly is TRUE, the operation MUST be failed with
STATUS_MEDIA_WRITE_PROTECTED.

 If Open.Stream.Oplock is not empty and Open.Stream.Oplock.State contains

BATCH_OPLOCK, the object store MUST check for an oplock break according to the
algorithm in section 2.1.4.12, with input values as follows:

 Open equal to this operation's Open

 Oplock equal to Open.Stream.Oplock

 Operation equal to "OPEN"

 OpParams containing two members:

 DesiredAccess equal to this operation's DesiredAccess

 CreateDisposition equal to this operation's CreateDisposition

 If Stream.Name is empty:

 If File.FileAttributes.FILE_ATTRIBUTE_HIDDEN is TRUE and
DesiredFileAttributes.FILE_ATTRIBUTE_HIDDEN is FALSE, then the operation
MUST be failed with STATUS_ACCESS_DENIED.

69 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

 If File.FileAttributes.FILE_ATTRIBUTE_SYSTEM is TRUE and
DesiredFileAttributes.FILE_ATTRIBUTE_SYSTEM is FALSE, then the operation

MUST be failed with STATUS_ACCESS_DENIED.

 Set DesiredFileAttributes.FILE_ATTRIBUTE_ARCHIVE to TRUE.

 Set DesiredFileAttributes.FILE_ATTRIBUTE_NORMAL to FALSE.

 Set DesiredFileAttributes.FILE_ATTRIBUTE_NOT_CONTENT_INDEXED to FALSE.

 If File.FileAttributes.FILE_ATTRIBUTE_ENCRYPTED is TRUE, then set
DesiredFileAttributes.FILE_ATTRIBUTE_ENCRYPTED to TRUE.

 If Open.HasRestoreAccess is TRUE, then the object store MUST set
Open.GrantedAccess.FILE_WRITE_EA to TRUE. Otherwise, the object store
MUST set Open.RemainingDesiredAccess.FILE_WRITE_EA to TRUE.

 If Open.HasRestoreAccess is TRUE, then the object store MUST set

Open.GrantedAccess.FILE_WRITE_ATTRIBUTES to TRUE. Otherwise, the object
store MUST set Open.RemainingDesiredAccess.FILE_WRITE_ATTRIBUTES to
TRUE.

 EndIf

 If CreateDisposition is FILE_SUPERSEDE:

 If Open.HasRestoreAccess is TRUE, then the object store MUST set
Open.GrantedAccess.DELETE to TRUE. Otherwise, the object store MUST set
Open.RemainingDesiredAccess.DELETE to TRUE.

 Else:

 If Open.HasRestoreAccess is TRUE, then the object store MUST set
Open.GrantedAccess.FILE_WRITE_DATA to TRUE. Otherwise, the object store

MUST set Open.RemainingDesiredAccess.FILE_WRITE_DATA to TRUE.

 EndIf

 Open.RemainingDesiredAccess &= ~Open.GrantedAccess

 Perform access checks as described in section 2.1.5.1.2.1. If this fails with
STATUS_SHARING_VIOLATION:

 If Open.Stream.Oplock is not empty and Open.Stream.Oplock.State
contains HANDLE_CACHING, the object store MUST check for an oplock break
according to the algorithm in section 2.1.4.12, with input values as follows:

 Open equal to this operation's Open

 Oplock equal to Open.Stream.Oplock

 Operation equal to "OPEN_BREAK_H"

 Perform access checks as described in section 2.1.5.1.2.1. If this fails, the request
MUST be failed with the same status.

 ElseIf this fails with any other status code:

 The request MUST be failed with the same status.

 EndIf

70 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

 Perform sharing access checks as described in section 2.1.5.1.2.2. If this fails with
STATUS_SHARING_VIOLATION:

 If Open.Stream.Oplock is not empty and Open.Stream.Oplock.State contains
HANDLE_CACHING, the object store MUST check for an oplock break according to

the algorithm in section 2.1.4.12, with input values as follows:

 Open equal to this operation's Open

 Oplock equal to Open.Stream.Oplock

 Operation equal to "OPEN_BREAK_H"

 Perform sharing access checks as described in section 2.1.5.1.2.2. If this fails, the
request MUST be failed with the same status.

 ElseIf this fails with any other status code:

 The request MUST be failed with the same status.

 EndIf

 Note that the file has been modified as specified in section 2.1.4.17 with Open equal
to Open.

 If CreateDisposition is FILE_SUPERSEDE, the object store MUST set CreateAction
to FILE_SUPERSEDED; otherwise, it MUST set CreateAction to FILE_OVERWRITTEN.

 EndIf

 Else: // Stream not found.

 If CreateDisposition is FILE_OPEN or FILE_OVERWRITE, the operation MUST be failed
with STATUS_OBJECT_NAME_NOT_FOUND.

 If Open.GrantedAccess.FILE_WRITE_DATA is not set and
Open.RemainingDesiredAccess.FILE_WRITE_DATA is not set:

 If Open.HasRestoreAccess is TRUE, then the object store MUST set

Open.GrantedAccess.FILE_WRITE_DATA to TRUE; otherwise, the object store MUST
set Open.RemainingDesiredAccess.FILE_WRITE_DATA to TRUE.

 EndIf

 Perform access checks as described in section 2.1.5.1.2.1. If this fails, the request MUST
be failed with the same status.

 If File.Volume.IsReadOnly is TRUE, the operation MUST be failed with
STATUS_MEDIA_WRITE_PROTECTED.

 Update File.LastChangeTime to the current time.

 Set File.FileAttributes.FILE_ATTRIBUTE_ARCHIVE to TRUE.

 Build a new Stream object with all fields initially set to zero.

 Set Stream.StreamType to DataStream.

 Set Stream.Name to StreamNameToOpen.

 Set Stream.File to File.

71 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

 Add Stream to File.StreamList.

 Set Open.Stream to Stream.

 Set CreateAction to FILE_CREATED.

 EndIf.

 Else: // StreamTypeToOpen is ViewIndexStream

 // Note that when StreamTypeToOpen is ViewIndexStream, the stream always exists in the
file

 // Open.Stream.StreamType is ViewIndexStream.

 EndIf

 If the object store implements encryption:

 If (CreateAction is FILE_OVERWRITTEN or FILE_SUPERSEDED) and (Stream.Name is

empty) and (DesiredFileAttributes.FILE_ATTRIBUTE_ENCRYPTED is TRUE) and
(File.FileAttributes.FILE_ATTRIBUTE_ENCRYPTED is FALSE), then:

 If File.OpenList is non-empty, then the operation MUST be failed with
STATUS_SHARING_VIOLATION.

 EndIf

 EndIf

 If CreateAction is one of FILE_OVERWRITTEN or FILE_SUPERSEDED, then:

 If Stream.Name is empty:

 Set File.FileAttributes to DesiredFileAttributes.

 EndIf

 EndIf

 If the object store implements encryption and
File.FileAttributes.FILE_ATTRIBUTE_ENCRYPTED is TRUE:

 If CreateAction is FILE_OPENED:

 If Stream.IsEncrypted is TRUE:

 If UserCertificate is empty, the operation MUST be failed with
STATUS_CS_ENCRYPTION_EXISTING_ENCRYPTED_FILE.

 If UserCertificate is not in File.UserCertificateList, the operation MUST be failed
with STATUS_ACCESS_DENIED.

 EndIf

 Else: // we are creating, overwriting, or superseding a stream

 If UserCertificate is empty, the operation MUST be failed with
STATUS_CS_ENCRYPTION_NEW_ENCRYPTED_FILE.

 If Stream.Name is empty:

72 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

 If File.UserCertificateList is empty, insert UserCertificate into
File.UserCertificateList.

 Else:

 If UserCertificate is not in File.UserCertificateList, the operation MUST be failed

with STATUS_ACCESS_DENIED.

 EndIf

 If File.FileType is DataFile, set Stream.IsEncrypted to TRUE.

 EndIf

 EndIf

 If CreateAction is one of FILE_CREATED, FILE_OVERWRITTEN or FILE_SUPERSEDED, then:

 The object store MUST set FilterMatch to a set of flags capturing modifications to the existing

file's persistent attributes performed during the Open operation.

 Send directory change notification as specified in section 2.1.4.1, with Volume equal to
File.Volume, Action equal to FILE_ACTION_MODIFIED, FilterMatch equal to FilterMatch,
and FileName equal to Open.FileName.

 EndIf

 If CreateAction is FILE_CREATED, then the object store MUST insert Stream into

File.StreamList.

 If File is not in File.Volume.OpenFileList, the object store MUST insert it.

 The object store MUST insert Open into File.OpenList.

 If Stream.Name is not empty:

 If CreateAction is FILE_CREATED:

 Send directory change notification as specified in section 2.1.4.1, with Volume equal to
File.Volume, Action equal to FILE_ACTION_ADDED_STREAM, FilterMatch equal to

FILE_NOTIFY_CHANGE_STREAM_NAME, and FileName equal to Open.FileName + ":" +
Stream.Name.

 If CreateAction is one of FILE_OVERWRITTEN or FILE_SUPERSEDED:

 Send directory change notification as specified in section 2.1.4.1, with Volume equal to
File.Volume, Action equal to FILE_ACTION_MODIFIED_STREAM, FilterMatch equal to
(FILE_NOTIFY_CHANGE_STREAM_SIZE | FILE_NOTIFY_CHANGE_STREAM_WRITE), and
FileName equal to Open.FileName + ":" + Stream.Name.

 EndIf

 EndIf

 The object store SHOULD update the duplicated information as specified in section 2.1.4.18 with
Link equal to Open.Link.

 The object store MUST return:

 Status set to STATUS_SUCCESS.

 CreateAction set to FILE_OPENED.

73 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

 The Open object created previously.

2.1.5.1.2.1 Algorithm to Check Access to an Existing File

The inputs to the algorithm are:

 Open: The Open for an in-progress Open operation to an existing file.

On completion, the algorithm returns:

 Status: An NTSTATUS code that specifies the result of the access check.

This object store MUST perform access checks when opening an existing file, making use of the file's
security descriptor and possibly the parent file's security descriptor.

Pseudocode for these checks is as follows:

 If Open.File.FileType is DataFile and (File.FileAttributes.FILE_ATTRIBUTE_READONLY &&

(DesiredAccess.FILE_WRITE_DATA || DesiredAccess.FILE_APPEND_DATA)), then return
STATUS_ACCESS_DENIED.

 If ((File.FileAttributes.FILE_ATTRIBUTE_READONLY || File.Volume.IsReadOnly) &&
CreateOptions.FILE_DELETE_ON_CLOSE), then return STATUS_CANNOT_DELETE.

 If Open.RemainingDesiredAccess is nonzero:

 If Open.RemainingDesiredAccess.MAXIMUM_ALLOWED is TRUE:

 For each Access Flag in FILE_ALL_ACCESS, the object store MUST set
Open.GrantedAccess.Access if AccessCheck(SecurityContext,
File.SecurityDescriptor, Access) returns TRUE.

 If File.FileAttributes.FILE_ATTRIBUTE_READONLY or File.Volume.IsReadOnly, then
the object store MUST clear (FILE_WRITE_DATA | FILE_APPEND_DATA |

FILE_ADD_SUBDIRECTORY | FILE_DELETE_CHILD) from Open.GrantedAccess.

 Else:

 For each Access Flag in Open.RemainingDesired.Access, the object store MUST set
Open.GrantedAccess.Access if AccessCheck(SecurityContext,
File.SecurityDescriptor, Access) returns TRUE.

 EndIf

 If (Open.RemainingDesiredAccess.MAXIMUM_ALLOWED ||
Open.RemainingDesiredAccess.DELETE), the object store MUST set
Open.GrantedAccess.DELETE if AccessCheck(SecurityContext,

Open.Link.ParentFile.SecurityDescriptor, FILE_DELETE_CHILD) returns TRUE.

 If (Open.RemainingDesiredAccess.MAXIMUM_ALLOWED ||
Open.RemainingDesiredAccess.FILE_READ_ATTRIBUTES), the object store MUST set

Open.GrantedAccess.FILE_READ_ATTRIBUTES if AccessCheck(SecurityContext,
Open.Link.ParentFile.SecurityDescriptor, FILE_LIST_DIRECTORY) returns TRUE.

 Open.RemainingDesiredAccess &= ~(Open.GrantedAccess | MAXIMUM_ALLOWED)

 If Open.RemainingDesiredAccess is nonzero, then return STATUS_ACCESS_DENIED.

 EndIf

74 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

Since deletion of a file's primary stream implies deletion of the entire file, including any alternate
data streams, the object store MUST check for sharing conflicts involving deletion of the primary

stream and the sharing modes of all opens to the file.

Pseudocode for these checks is as follows:

 If Open.SharingMode.FILE_SHARE_DELETE is FALSE and Open.GrantedAccess contains any
one or more of (FILE_EXECUTE | FILE_READ_DATA | FILE_WRITE_DATA | FILE_APPEND_DATA |
DELETE):

 For each ExistingOpen in Open.File.OpenList:

 If ExistingOpen.GrantedAccess.DELETE is TRUE and (ExistingOpen.Stream.StreamType
is DirectoryStream or ExistingOpen.Stream.Name is empty), then return
STATUS_SHARING_VIOLATION.

 EndFor

 EndIf

 If Open.GrantedAccess.DELETE is TRUE and (Open.Stream.StreamType is DirectoryStream or
Open.Stream.Name is empty):

 For each ExistingOpen in Open.File.OpenList:

 If ExistingOpen.SharingMode.FILE_SHARE_DELETE is FALSE and

ExistingOpen.GrantedAccess contains one or more of (FILE_EXECUTE |
FILE_READ_DATA | FILE_WRITE_DATA | FILE_APPEND_DATA | DELETE), then return
STATUS_SHARING_VIOLATION.

 EndFor

 EndIf

 Return STATUS_SUCCESS.

2.1.5.1.2.2 Algorithm to Check Sharing Access to an Existing Stream or Directory

The inputs to the algorithm are:

 Open: The Open for an in-progress Open operation to an existing stream or directory.

On completion, the algorithm returns:

 Status: An NTSTATUS code that specifies the result of the sharing check.

The object store MUST perform sharing checks when opening an existing stream or directory.

Pseudocode for these checks is as follows:

 If AccessCheck(SecurityContext, Open.Link.ParentFile.SecurityDescriptor,

FILE_WRITE_DATA) returns FALSE, the object store MUST set
Open.SharingMode.FILE_SHARE_READ to TRUE.

 If DesiredAccess contains any of (FILE_READ_DATA | FILE_EXECUTE | FILE_WRITE_DATA |
FILE_APPEND_DATA | DELETE):

 For each ExistingOpen in Open.File.OpenList:

 If ExistingOpen.Stream equals Open.Stream and ExistingOpen.GrantedAccess contains
any of (FILE_READ_DATA | FILE_EXECUTE | FILE_WRITE_DATA | FILE_APPEND_DATA |

75 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

DELETE), then return STATUS_SHARING_VIOLATION under any of the following
conditions:

 If ExistingOpen.SharingMode.FILE_SHARE_READ is FALSE and
Open.GrantedAccess contains either FILE_READ_DATA or FILE_EXECUTE

 If ExistingOpen.SharingMode.FILE_SHARE_WRITE is FALSE and
Open.GrantedAccess contains either FILE_WRITE_DATA or FILE_APPEND_DATA

 If ExistingOpen.SharingMode.FILE_SHARE_DELETE is FALSE and
Open.GrantedAccess contains DELETE

 If Open.SharingMode.FILE_SHARE_READ is FALSE and
ExistingOpen.GrantedAccess contains either FILE_READ_DATA or FILE_EXECUTE

 If Open.SharingMode.FILE_SHARE_WRITE is FALSE and

ExistingOpen.GrantedAccess contains either FILE_WRITE_DATA or
FILE_APPEND_DATA

 If Open.SharingMode.FILE_SHARE_DELETE is FALSE and
ExistingOpen.GrantedAccess contains DELETE

 EndIf

 EndFor

 EndIf

 If Open.Stream.Oplock is not empty, the object store MUST check for an oplock break according
to the algorithm in section 2.1.4.12, with input values as follows:

 Open equal to this operation's Open

 Oplock equal to Open.Stream.Oplock

 Operation equal to "OPEN"

 OpParams containing two members:

 DesiredAccess equal to this operation's DesiredAccess

 CreateDisposition equal to this operation's CreateDisposition

 EndIf

 Return STATUS_SUCCESS.

2.1.5.2 Server Requests an Open of a Named Pipe

The server provides:

 RootOpen: An Open to the root of the share.

 PathName: A Unicode path relative to RootOpen for the file to be opened in the format specified
in [MS-FSCC] section 2.1.5 except that all characters are treated as a part of a pipe name.

 SecurityContext: The SecurityContext of the user performing the open.

 DesiredAccess: A bitmask indicating requested access for the open, as specified in [MS-SMB2]
section 2.2.13.1.

%5bMS-FSCC%5d.pdf#Section_efbfe12773ad41409967ec6500e66d5e
%5bMS-SMB2%5d.pdf#Section_5606ad475ee0437a817e70c366052962

76 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

 ShareAccess: A bitmask indicating sharing access for the open; SHOULD be ignored as specified
in [MS-SMB2] section 2.2.13.

 CreateOptions: A bitmask of options for the open; MUST be ignored as specified in [MS-SMB2]
section 2.2.13.

 CreateDisposition: The requested disposition for the open; MUST be ignored as specified in [MS-
SMB2] section 2.2.13.

 DesiredFileAttributes: A bitmask of requested file attributes for the open; MUST be ignored.

 IsCaseInsensitive: A Boolean value. TRUE indicates that string comparisons performed in the
context of this Open are case-insensitive; otherwise, they are case-sensitive.

 On completion, the object store MUST return:

 Status: An NTSTATUS code that specifies the result.

 On success it MUST also return:

 CreateAction: A code defining the action taken by the open operation, as specified in [MS-
SMB2] section 2.2.14 for the CreateAction field.

 Open: The newly created Open.

 On STATUS_REPARSE or STATUS_STOPPED_ON_SYMLINK it MUST also return:

 ReparseData: The reparse point data associated with an existing file, in the format

described in [MS-FSCC] section 2.1.2. The application MAY retry the open operation with a
different PathName parameter constructed using ReparseData.

 Pseudocode for the operation is as follows:

 Phase 1 - Parameter Validation:

 The operation MUST be failed with STATUS_INVALID_PARAMETER under any of the following
conditions:

 If RootOpen.File.FileType is not DirectoryFile.

 If DesiredAccess is zero, or if any of the bits in the mask 0x0CE0FE00 are set, the operation
MUST be failed with STATUS_ACCESS_DENIED.

 Phase 2 - Initialization of Open Object:

 The object store MUST build a new Open object with fields initialized as follows:

 Open.RootOpen set to RootOpen.

 Open.FileName formed by concatenating RootOpen.FileName + "\" + FileName.

 Open.RemainingDesiredAccess set to DesiredAccess.

 Open.IsCaseInsensitive set to IsCaseInsensitive.

 Open.LastQuotaId set to -1.

 All other fields set to zero.

 Phase 3 - Location of file:

77 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

 The object store MUST search for a filename matching Open.FileName. If IsCaseInsensitive is
TRUE, then the search MUST be case-insensitive; otherwise, it MUST be case-sensitive.

Pseudocode for this search is as follows:

 Set ParentFile = RootOpen.File

 Search ParentFile.DirectoryList for a Link where Link.Name matches PathName. If no
such link is found, the operation MUST be failed with
STATUS_OBJECT_NAME_NOT_FOUND.

If such a link is found:

 Set File = Link.File.

 Set Open.File to File.

 The operation MUST be failed with STATUS_OBJECT_NAME_NOT_FOUND under any of the

following conditions:

 If PathName is a substring of an existing object’s name.

 Phase 4 - Completion of open

 The object store MUST open the file.

Pseudocode for the operation is as follows:

 If FileReparsePointTag is not empty, then the operation MUST be failed with Status set to

STATUS_REPARSE and ReparsePointData set to File.ReparsePointData.

 Perform access checks:

 If Open.RemainingDesiredAccess is nonzero:

 If Open.RemainingDesiredAccess.MAXIMUM_ALLOWED is TRUE:

 For each Access Flag in FILE_ALL_ACCESS, the object store MUST set
Open.GrantedAccess.Access if
AccessCheck(SecurityContext.File.SecurityDescriptor.Access) returns TRUE.

 Else:

 For each Access flag in Open.RemainingDesired.Access, the object store MUST
set Open.GrantedAccess.Access if
AccessCheck(SecurityContext.File.SecurityDescriptor.Access) returns TRUE.

 EndIf.

 Open.RemainingDesiredAccess &= ~ (Open.GrantedAccess |
MAXIMUM_ALLOWED)

 If Open.RemainingDesiredAccess is nonzero, then return
STATUS_ACCESS_DENIED.

 EndIf

 The operation MUST be failed with STATUS_ACCESS_DENIED under any of the following
conditions:

 If NamedPipeConfiguration of existing file is FILE_PIPE_INBOUND, and

Open.GrantedAccess contains FILE_READ_DATA.

78 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

 If NamedPipeConfiguration of existing file is FILE_PIPE_OUTBOUND, and
OpenGrantedAccess contains FILE_WRITE_DATA.

 The operation MUST be failed with STATUS_PIPE_NOT_AVAILABLE if existing file has no active
listeners.

 The object store MUST return:

 Status set to STATUS_SUCCESS.

 CreateAction set to FILE_OPENED.

 The Open object created previously.

 For more information on named pipes, see [PIPE].

2.1.5.3 Server Requests a Read

The server provides:

 Open: The Open of the DataFile to read from.

 ByteOffset: The absolute byte offset in the stream from which to read data.

 ByteCount: The requested number of bytes to read.

 Unbuffered: A Boolean value. TRUE indicates that the read is unbuffered (read directly from disk
after writing and removing any cached data for this range); otherwise, the value of
Open.Mode.FILE_NO_INTERMEDIATE_BUFFERING determines whether the read is
unbuffered.

 Key: A 32-bit unsigned integer containing an identifier for the open by a specific process.

On completion, the object store MUST return:

 Status: An NTSTATUS code that specifies the result.

 OutputBuffer: An array of bytes that were read.

 BytesRead: The number of bytes that were read.

This operation uses the following local variables:

 Boolean values (initialized to FALSE): IsUnbuffered

Pseudocode for the operation is as follows:

 If Unbuffered is TRUE or Open.Mode.FILE_NO_INTERMEDIATE_BUFFERING is TRUE, then

set IsUnbuffered to TRUE.

 If IsUnbuffered is TRUE & (ByteOffset >= 0), the operation MUST be failed with

STATUS_INVALID_PARAMETER under any of the following conditions:

 (ByteOffset % Open.File.Volume.LogicalBytesPerSector) is not zero.

 (ByteCount % Open.File.Volume.LogicalBytesPerSector) is not zero.

 If ByteOffset is negative, then the operation MUST be failed with STATUS_INVALID_PARAMETER.

 If (ByteOffset + ByteCount) is larger than MAXLONGLONG (0x7fffffffffffffff), the operation MUST

be failed with STATUS_INVALID_PARAMETER.

https://go.microsoft.com/fwlink/?LinkId=90247

79 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

 If ByteCount is zero, the object store MUST return:

 BytesRead set to zero.

 Status set to STATUS_SUCCESS.

 Set RequestedByteCount to ByteCount.

 If Open.Stream.Oplock is not empty, the object store MUST check for an oplock break according
to the algorithm in section 2.1.4.12, with input values as follows:

 Open equal to this operation's Open

 Oplock equal to Open.Stream.Oplock

 Operation equal to "READ"

 OpParams empty

 Determine if the read is in conflict with an existing byte range lock on Open.Stream using the

algorithm described in section 2.1.4.10 (with ByteOffset set to ByteOffset, Length set to
ByteCount, IsExclusive set to FALSE, LockIntent set to FALSE, server provided Key and Open
set to Open). If the algorithm returns TRUE, the operation MUST be failed with
STATUS_FILE_LOCK_CONFLICT.

 If ByteOffset >= Open.Stream.Size, the operation MUST be failed with STATUS_END_OF_FILE.

 If (ByteOffset + ByteCount) >= Open.Stream.Size, truncate ByteCount to

(Open.Stream.Size - ByteOffset) and then set RequestedByteCount to ByteCount.

 If IsUnbuffered is TRUE:

 The object store MUST write any unwritten cached data for this range of the stream to disk.

 The object store MUST remove from the cache any cached data for this range of the stream.

 If (ByteOffset >= Open.Stream.ValidDataLength):

 If Open.Mode.FILE_SYNCHRONOUS_IO_ALERT is TRUE or
Open.Mode.FILE_SYNCHRONOUS_IO_NONALERT is TRUE, the object store MUST set

Open.CurrentByteOffset to (ByteOffset + ByteCount).

 The object store MUST note that the file has been accessed as specified in section 2.1.4.19
with Open equal to Open.

 The object store MUST return:

 BytesRead set to ByteCount.

 OutputBuffer filled with ByteCount zero(s).

 Status set to STATUS_SUCCESS.

 EndIf

 If ((ByteOffset + ByteCount) >= Open.Stream.ValidDataLength), truncate ByteCount
to (Open.Stream.ValidDataLength - ByteOffset).

 Set BytesToRead to BlockAlign(ByteCount, Open.File.Volume.LogicalBytesPerSector).

 Read BytesToRead bytes from the disk at offset ByteOffset for this stream into
OutputBuffer. If Open. ReadCopyNumber != 0XFFFFFFFF then include this information in

80 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

the read request to the disk to indicate which copy the data should be read from. If the read
from the disk failed, the operation MUST be failed with the same error status.

 If RequestedByteCount > ByteCount, zero out OutputBuffer between ByteCount and
RequestedByteCount.

 If Open.Mode.FILE_SYNCHRONOUS_IO_ALERT is TRUE or
Open.Mode.FILE_SYNCHRONOUS_IO_NONALERT is TRUE, the object store MUST set
Open.CurrentByteOffset to (ByteOffset + RequestedByteCount).

 The object store MUST note that the file has been accessed as specified in section 2.1.4.19
with Open equal to Open.

 Upon successful completion of the operation, the object store MUST return:

 BytesRead set to RequestedByteCount.

 Status set to STATUS_SUCCESS.

 Else

 Read ByteCount bytes at offset ByteOffset from the cache for this stream into
OutputBuffer.

 If Open.Mode.FILE_SYNCHRONOUS_IO_ALERT is TRUE or
Open.Mode.FILE_SYNCHRONOUS_IO_NONALERT is TRUE, the object store MUST set

Open.CurrentByteOffset to (ByteOffset + ByteCount).

 The object store MUST note that the file has been accessed as specified in section 2.1.4.19
with Open equal to Open.

 Upon successful completion of the operation, the object store MUST return:

 BytesRead set to ByteCount.

 Status set to STATUS_SUCCESS.

 EndIf

2.1.5.4 Server Requests a Write

The server provides:

 Open: The Open of the DataFile to write to.

 InputBuffer: An array of bytes to write.

 ByteOffset: The absolute byte offset in the stream where data is written. ByteOffset could be
negative, which means the write occurs at the end of the stream.

 ByteCount: The number of bytes in InputBuffer to write.

 Unbuffered: A Boolean value. TRUE indicates that the write is unbuffered (written directly to disk
after writing and removing any cached data for this range); otherwise, the value of
Open.Mode.FILE_NO_INTERMEDIATE_BUFFERING determines whether the write is

unbuffered.

On completion, the object store MUST return:

 Status: An NTSTATUS code that specifies the result.

81 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

 BytesWritten: The number of bytes written.

This operation uses the following local variables:

Boolean values (initialized to FALSE): DoingIoAtEof, IsUnbuffered

Pseudocode for the operation is as follows:

 If UnBuffered is TRUE or Open.Mode.FILE_NO_INTERMEDIATE_BUFFERING is TRUE, then
set IsUnbuffered to TRUE.

 If IsUnbuffered is TRUE and (ByteOffset >= 0), the operation MUST be failed with
STATUS_INVALID_PARAMETER under any of the following conditions:

 If (ByteOffset % Open.File.Volume.LogicalBytesPerSector) is not zero.

 If (ByteCount % Open.File.Volume.LogicalBytesPerSector) is not zero.

 If ByteOffset equals -2, then set ByteOffset to Open.CurrentByteOffset.

 If Open.File.Volume.IsReadOnly, the operation MUST be failed with
STATUS_MEDIA_WRITE_PROTECTED.

 If ((ByteOffset + ByteCount) > MAXLONGLONG (0x7fffffffffffffff) and (ByteOffset >= 0), the
operation MUST be failed with STATUS_INVALID_PARAMETER.

 If ByteCount is zero, the object store MUST return:

 BytesWritten set to 0.

 Status set to STATUS_SUCCESS.

 If ((ByteOffset < 0) and (Open.Stream.Size + ByteCount)) > MAXLONGLONG
(0x7fffffffffffffff), the operation MUST fail with STATUS_INVALID_PARAMETER.

 If (ByteOffset < 0), set ByteOffset to Open.Stream.Size.

 If (ByteOffset + ByteCount) > MAXFILESIZE (0xfffffff0000), the operation MUST be failed with
STATUS_INVALID_PARAMETER.

 Initialize UsnReason to zero.

 If (ByteOffset + ByteCount) > Open.Stream.Size, set
UsnReason.USN_REASON_DATA_EXTEND to TRUE.

 If ByteOffset < Open.Stream.Size, set UsnReason.USN_REASON_DATA_OVERWRITE to TRUE.

 If Open.Stream.Oplock is not empty, the object store MUST check for an oplock break according
to the algorithm in section 2.1.4.12, with input values as follows:

 Open equal to this operation's Open

 Oplock equal to Open.Stream.Oplock

 Operation equal to "WRITE"

 OpParams empty

 Determine if the write is in conflict with an existing byte range lock on Open.Stream using the
algorithm described in section 2.1.4.10 (with ByteOffset set to ByteOffset, Length set to
ByteCount, IsExclusive set to TRUE, LockIntent set to FALSE and Open set to Open). If the
algorithm returns TRUE, the operation MUST be failed with STATUS_FILE_LOCK_CONFLICT.

82 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

 The object store MUST post a USN change as specified in section 2.1.4.11 with File equal to File,
Reason equal to UsnReason, and FileName equal to Open.Link.Name.

 If ((ByteOffset + ByteCount) > Open.Stream.ValidDataLength), then set DoingIoAtEof to
TRUE.

 If ((ByteOffset + ByteCount) > Open.Stream.AllocationSize), the object store MUST increase
Open.Stream.AllocationSize to BlockAlign(ByteOffset + ByteCount,
Open.File.Volume.ClusterSize). If there is not enough disk space, the operation MUST be failed
with STATUS_DISK_FULL.

 If IsUnbuffered is TRUE:

 The object store MUST write any unwritten cached data for this range of the stream to disk.

 The object store MUST remove from the cache any cached data for this range of the stream.

 If the object store supports Open.Volume.ClusterRefcount, it MUST check the reference

count of each cluster that is being updated by this operation. If any cluster being updated has
a reference count other than 1, the object store MUST do the following:

 The object store MUST remove the EXTENTS containing the cluster and decrement the
reference count of the cluster in Open.Volume.ClusterRefcount.

 The Object store MUST allocate free clusters on the volume and insert new EXTENTS in the

Open.Stream.ExtentList pointing to the newly allocated cluster.

 The object store MUST increment the reference count of the newly allocated cluster in
Open.Volume.ClusterRefcount.

 If DoingIoAtEof is TRUE, and (Open.Stream.ValidDataLength < ByteOffset) , write zeroes
to the location on disk corresponding to the range between Open.Stream.ValidDataLength
and ByteOffset in the stream, and then write the first ByteCount bytes of InputBuffer to
the location on disk corresponding to the range starting at offset ByteOffset in the stream. If

either write to the disk failed, the operation MUST be failed with the corresponding error
status.

 EndIf

 If IsUnbuffered is FALSE, DoingIoAtEof is TRUE, and (Open.Stream.ValidDataLength <
ByteOffset), zero out the range between Open.Stream.ValidDataLength and ByteOffset in
the cache for this stream and then write the first ByteCount bytes of InputBuffer into the cache
for this stream at offset ByteOffset. If there would not be enough disk space to flush the cache,

the operation MUST be failed with STATUS_DISK_FULL. If Open.Mode.FILE_WRITE_THROUGH
is TRUE, the cache write will also trigger a flush of the cache for that range to the disk.

 If Open.Mode.FILE_SYNCHRONOUS_IO_ALERT is TRUE or
Open.Mode.FILE_SYNCHRONOUS_IO_NONALERT is TRUE, the object store MUST set
Open.CurrentByteOffset to (ByteOffset + ByteCount).

 The object store MUST note that the file has been modified as specified in section 2.1.4.17 with

Open equal to Open.

 Upon successful completion of the operation, the object store MUST set:

 Open.Stream.Size to the maximum of Open.Stream.Size or (ByteOffset + ByteCount).

 Open.Stream.ValidDataLength to the maximum of Open.Stream.ValidDataLength or
(ByteOffset + ByteCount).

 BytesWritten to ByteCount.

83 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

 Status to STATUS_SUCCESS.

2.1.5.5 Server Requests Closing an Open

The server provides:

 Open: The Open that the application is to close.

On completion, the object store MUST return:

 Status: An NTSTATUS code that specifies the result.

This operation uses the following local variables:

 Boolean values (initialized to FALSE): LinkDeleted, StreamDeleted, FileDeleted, PostUsnClose

The Open provided by the application MUST be removed from Open.File.OpenList.

Pseudocode for the operation is as follows:

 Phase 1 - Delete on Close:

 If Open.Mode.FILE_DELETE_ON_CLOSE is TRUE:

 If Open.Stream.Name is empty:

 If (Open.Stream.StreamType is DataStream or Open.File.DirectoryList is empty),

then Open.Link.IsDeleted MUST be set to TRUE.

 Else:

 Open.Stream.IsDeleted MUST be set to TRUE.

 EndIf

 EndIf

 Phase 2 -Stream Deletion:

 If Open.Stream.IsDeleted is TRUE and Open.File.OpenList does not contain any Opens on

Open.Stream (this is a close of the last Open to a stream that has been marked deleted), then:

 Open.Stream MUST be removed from Open.File.StreamList.

 If Open.Stream.IsSparse is TRUE, and there does not exist an ExistingStream in
Open.File.StreamList such that ExistingStream.IsSparse is TRUE:

 The object store MUST set Open.File.FileAttributes.FILE_ATTRIBUTE_SPARSE_FILE to
FALSE, indicating that no streams of the file are sparse.

 The object store MUST post a USN change as specified in section 2.1.4.11 with File equal

to File, Reason equal to USN_REASON_STREAM_CHANGE |
USN_REASON_BASIC_INFO_CHANGE, and FileName equal to Open.Link.Name.

 Else:

 The object store MUST post a USN change as specified in section 2.1.4.11 with File equal
to File, Reason equal to USN_REASON_STREAM_CHANGE, and FileName equal to
Open.Link.Name.

 EndIf

84 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

 StreamDeleted MUST be set to TRUE.

 PostUsnClose MUST be set to TRUE.

 EndIf

 Phase 3 - File Deletion:

 If Open.Link.IsDeleted is TRUE and there does not exist an ExistingOpen in
Open.File.OpenList that has ExistingOpen.Link equal to Open.Link:

 Remove Open.Link from Open.File.LinkList.

 Remove Open.Link from Open.Link.ParentFile.DirectoryList.

 Set LinkDeleted to TRUE.

 If Open.File.LinkList is empty:

 Set FileDeleted to TRUE.

 EndIf

 EndIf

 If LinkDeleted is FALSE:

 The object store MUST update the duplicated information as specified in section 2.1.4.18 with
Link equal to Link.

 EndIf

 Phase 4 - Truncate on Close:

 Set AllocationClusters to ClustersFromBytes(Open.File.Volume,

Open.Stream.AllocationSize).

 Set FileClusters to ClustersFromBytes(Open.File.Volume, Open.Stream.FileSize).

 If AllocationClusters > FileClusters:

 This file has excess allocation. The object store SHOULD free (AllocationClusters - FileClusters)
clusters of allocation from the end of the stream, and set Open.Stream.AllocationSize to

FileClusters * Open.File.Volume.ClusterSize.

 If the object store supports Open.File.Volume.ClusterRefcount, the object store MUST
decrement the reference count of each cluster that is pointed to by the EXTENTS in the
Open.Stream.ExtentList that were freed by the previous step. If the corresponding cluster's
reference count goes to zero, the cluster MUST be freed.

 EndIf

 Phase 5 -- Directory Change Notification:

 When a directory Open with outstanding directory change notification requests is closed, these
requests are completed using the algorithm below.

 If Open.Stream.StreamType is DirectoryStream:

 For each ChangeNotifyEntry in Volume.ChangeNotifyList where
ChangeNotifyEntry.OpenedDirectory is equal to Open then the following actions MUST be
taken:

85 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

 Remove ChangeNotifyEntry from Volume.ChangeNotifyList.

 Complete the ChangeNotify operation with status STATUS_NOTIFY_CLEANUP.

 EndFor

 EndIf

 If Open.Link is deleted, a directory change notification on Open.Link.ParentFile MUST be
issued. Pseudocode for these notifications is as follows:

 If LinkDeleted is TRUE:

 Set Action to FILE_ACTION_REMOVED.

 If Open.Stream.StreamType is DirectoryStream:

 Set FilterMatch to FILE_NOTIFY_CHANGE_DIR_NAME.

 Else:

 Set FilterMatch to FILE_NOTIFY_CHANGE_FILE_NAME.

 EndIf

 Send directory change notification as specified in section 2.1.4.1 with Volume equal to
Open.File.Volume, Action equal to Action, FilterMatch equal to FilterMatch, and
FileName equal to Open.FileName.

 EndIf

 If Open.Stream was deleted, then the stream deletion change notification MUST be issued.
Pseudocode for this notification is as follows:

 If StreamDeleted is TRUE:

 Set Action to FILE_ACTION_REMOVED_STREAM.

 Set FilterMatch to FILE_NOTIFY_CHANGE_STREAM_NAME.

 Send directory change notification as specified in section 2.1.4.1 with Volume equal to
Open.File.Volume, Action equal to Action, FilterMatch equal to FilterMatch and

FileName equal to Open.FileName + ":" + Stream.Name.

 EndIf

 If Open.File has had other changes that were not notified, a directory change notification
reflecting those changes MUST be issued. Pseudocode for this notification is as follows:

 Set FilterMatch to Open.File.PendingNotifications.

 If FilterMatch is nonzero:

 Set Action to FILE_ACTION_MODIFIED.

 Send directory change notification as specified in section 2.1.4.1 with Volume equal to
Open.File.Volume, Action equal to Action, FilterMatch equal to FilterMatch and
FileName equal to Open.FileName.

 Set Open.File.PendingNotifications to zero.

 EndIf

86 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

 If this is an Open to a named data Stream (Open.Stream.StreamType is DataStream and
Open.Stream.Name is not empty) and there have been changes to it that weren't previously

notified, a directory change notification reflecting those changes MUST be issued. Pseudocode for
this notification is as follows:

 Set FilterMatch to Open.Stream.PendingNotifications.

 If FilterMatch is nonzero:

 Set Action to FILE_ACTION_MODIFIED_STREAM.

 Send directory change notification as specified in section 2.1.4.1 with Volume equal to
Open.File.Volume, Action equal to Action, FilterMatch equal to FilterMatch and
FileName equal to Open.FileName+ ":" + Stream.Name.

 Set Open.Stream.PendingNotifications to zero.

 EndIf

 If LinkDeleted is TRUE:

 If FileDeleted is FALSE:

 Post a USN change as specified in section 2.1.4.11 with File equal to File, Reason
equal to USN_REASON_HARD_LINK_CHANGE, and FileName equal to
Open.Link.Name.

 Set PostUsnClose to TRUE.

 Else:

 Post a USN change as specified in section 2.1.4.11 with File equal to File, Reason
equal to USN_REASON_FILE_DELETE | USN_REASON_CLOSE, and FileName equal to
Open.Link.Name.

 EndIf

 EndIf

 If FileDeleted is TRUE and Open.File.ObjectId is not empty:

 The object store MUST construct a FILE_OBJECTID_INFORMATION structure (as specified in
[MS-FSCC] section 2.4.35.1) ObjectIdInfo as follows:

 ObjectIdInfo.FileReference set to zero.

 ObjectIdInfo.ObjectId set to Open.File.ObjectId.

 ObjectIdInfo.BirthVolumeId set to Open.File.BirthVolumeId.

 ObjectIdInfo.BirthObjectId set to Open.File.BirthObjectId.

 ObjectIdInfo.DomainId set to Open.File.DomainId.

 Send directory change notification as specified in section 2.1.4.1, with Volume equal to
Open.File.Volume, Action equal to FILE_ACTION_REMOVED_BY_DELETE, FilterMatch equal
to FILE_NOTIFY_CHANGE_FILE_NAME, FileName equal to "\$Extend\$ObjId", NotifyData
equal to ObjectIdInfo, and NotifyDataLength equal to
sizeof(FILE_OBJECTID_INFORMATION).

 EndIf

%5bMS-FSCC%5d.pdf#Section_efbfe12773ad41409967ec6500e66d5e

87 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

 Phase 6 -- USN Journal:

 If PostUsnClose is TRUE:

 Post a USN change as specified in section 2.1.4.11 with File equal to File, Reason equal to
USN_REASON_CLOSE, and FileName equal to Open.Link.Name.

 EndIf

 Phase 7 -- Tunnel Cache:

 If LinkDeleted is TRUE, then a new TunnelCacheEntry object TunnelCacheEntry MUST be
constructed and added to the Open.File.Volume.TunnelCacheList as follows:

 TunnelCacheEntry.EntryTime MUST be set to the current time.

 TunnelCacheEntry.ParentFile MUST be set to Open.Link.ParentFile.

 TunnelCacheEntry.FileName MUST be set to Open.Link.Name.

 TunnelCacheEntry.FileShortName MUST be set to Open.Link.ShortName.

 If Open.FileName matches Open.Link.ShortName then
TunnelCacheEntry.KeyByShortName MUST be set to TRUE, else
TunnelCacheEntry.KeyByShortName MUST be set to FALSE.

 TunnelCacheEntry.FileCreationTime MUST be set to Open.File.CreationTime.

 TunnelCacheEntry. ObjectIdInfo MUST be set to Open.File.ObjectId.

 TunnelCacheEntry.ObjectIdInfo.BirthVolumeId MUST be set to Open.File.BirthVolumeId.

 TunnelCacheEntry.ObjectIdInfo.BirthObjectId MUST be set to Open.File.BirthObjectId.

 TunnelCacheEntry.ObjectIdInfo.DomainId MUST be set to Open.File.DomainId.

 EndIf

 If Open.File.FileType is DirectoryFile and LinkDeleted is TRUE, then Open.File MUST have every
TunnelCacheEntry associated with it invalidated:

 For every ExistingTunnelCacheEntry in Open.File.Volume.TunnelCacheList:

 If ExistingTunnelCacheEntry.ParentFile matches Open.File, then
ExistingTunnelCacheEntry MUST be removed from Open.File.Volume.TunnelCacheList.

 EndFor

 EndIf

 Phase 8 -- Oplock Cleanup:

 If Open.Stream.Oplock is not empty, the object store MUST check for an oplock break according
to the algorithm in section 2.1.4.12, with input values as follows:

 Open equal to this operation's Open

 Oplock equal to Open.Stream.Oplock

 Operation equal to "CLOSE"

 OpParams empty

88 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

 If LinkDeleted is TRUE or FileDeleted is TRUE:

 If the Oplock member of the DirectoryStream in Open.Link.ParentFile.StreamList
(hereinafter referred to as ParentOplock) is not empty, the object store MUST check for an
oplock break on the parent according to the algorithm in section 2.1.4.12, with input values as

follows:

 Open equal to this operation's Open

 Oplock equal to ParentOplock

 Operation equal to "CLOSE"

 Flags equal to "PARENT_OBJECT"

 EndIf

 Phase 9 -- Byte Range Locks:

 All elements from Open.Stream.ByteRangeLockList where ByteRangeLock.OwnerOpen ==
Open MUST be removed.

 Phase 10 - Update Timestamps

 If LinkDeleted is TRUE and FileDeleted is FALSE:

 If Open.UserSetChangeTime is FALSE, update Open.File.LastChangeTime to the current
time.

 Set Open.File.FileAttributes.FILE_ATTRIBUTE_ARCHIVE to TRUE.

 EndIf

 If Open.GrantedAccess.FILE_EXECUTE is TRUE and Open.UserSetAccessTime is FALSE:

 Update Open.File.LastAccessTime to the current time.

 EndIf

 Upon successful completion of this operation, the object store MUST return:

 Status set to STATUS_SUCCESS.

2.1.5.6 Server Requests Querying a Directory

The server provides:

 Open: An Open of a DirectoryStream.

 FileInformationClass: The type of information being queried, as specified in [MS-FSCC] section
2.4.

 OutputBufferSize: The maximum number of bytes to return in OutputBuffer.

 RestartScan: A Boolean value which, if TRUE, indicates that enumeration is restarted from the
beginning of the directory. If FALSE, enumeration continues from the last position.

 ReturnSingleEntry: A Boolean value which, if TRUE, indicates that at most one entry MUST be
returned. If FALSE, a variable count of entries could be returned, not to exceed

OutputBufferSize bytes.

%5bMS-FSCC%5d.pdf#Section_efbfe12773ad41409967ec6500e66d5e

89 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

 FileIndex: An index number from which to resume the enumeration if the object store supports it
(optional).

 FileNamePattern: A Unicode string containing the file name pattern to match. The object store
MUST treat any asterisk ("*") and question mark ("?") characters in FileNamePattern as

wildcards. FileNamePattern could be empty. The object store MUST treat an empty value as
equivalent to the pattern "*".

On completion, the object store MUST return:

 Status: An NTSTATUS code that specifies the result.

 OutputBuffer: An array of bytes containing the query results. The structure of these bytes is
dependent on the FileInformationClass, as noted in the relevant subsection.

 ByteCount: The number of bytes stored in OutputBuffer.

2.1.5.6.1 FileObjectIdInformation

The following local variable is used:

 Boolean value (initialized to FALSE): EmptyPattern

Support for this operation is optional. If the object store does not implement this functionality, the
operation MUST be failed with STATUS_INVALID_DEVICE_REQUEST.<56>

OutputBuffer is an array of one or more FILE_OBJECTID_INFORMATION structures as specified in
[MS-FSCC] section 2.4.35.

This Information class can only be sent to a specific directory that maintains a list of all ObjectIDs on
the volume. The name of this directory is: "\$Extend\$ObjId:$O:$INDEX_ALLOCATION". If it is sent
to any other file or directory on the volume, the operation MUST be failed with
STATUS_INVALID_INFO_CLASS.<57>

Pseudocode for the operation is as follows:

 If FileNamePattern is not empty and FileNamePattern.Length (0 is a valid length) is not a
multiple of 4, the operation MUST be failed with STATUS_INVALID_PARAMETER.

 If FileNamePattern is empty, the object store MUST set EmptyPattern to TRUE; otherwise it
MUST set EmptyPattern to FALSE.

 If FileNamePattern.Length is less than the size of an ObjectId (16 bytes),
FileNamePattern.Buffer will be zero filled up to the size of ObjectId.

 The object store MUST search the volume for Files having File.ObjectId matching

FileNamePattern. To determine if there is a match, FileNamePattern.Buffer is compared to
ObjectId in chunks of ULONG (4 bytes). Any comparison where the ObjectId chunk is greater
than or equal to the FileNamePattern.Buffer chunk is considered a match. If
FileNamePattern.Length is longer than the size of ObjectId and the first 16 bytes (size of

ObjectId) of FileNamePattern.Buffer is identical to ObjectId, FileNamePatter.Buffer is
considered as greater than ObjectId.<58>

 If RestartScan is FALSE and EmptyPattern is TRUE and there is no match, the operation MUST be
failed with STATUS_NO_MORE_FILES.

 The operation MUST fail with STATUS_NO_SUCH_FILE under any of the following conditions:

 EmptyPattern is FALSE and there is no match.

 EmptyPattern is TRUE and RestartScan is TRUE and there is no match.

%5bMS-FSCC%5d.pdf#Section_efbfe12773ad41409967ec6500e66d5e

90 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

 The operation MUST fail with STATUS_BUFFER_OVERFLOW if OutputBufferSize <
sizeof(FILE_OBJECTID_INFORMATION).

 If there is at least one match, the operation is considered successful. The object store MUST
return:

 Status set to STATUS_SUCCESS.

 OutputBuffer containing an array of as many FILE_OBJECTID_INFORMATION structures that
match the query as will fit in OutputBuffer unless ReturnSingleEntry is TRUE, in which case
only a single entry will be stored in OutputBuffer. To continue the query, FileNamePattern
MUST be empty and RestartScan MUST be FALSE.

 ByteCount set to the number of bytes filled in OutputBuffer.

2.1.5.6.2 FileReparsePointInformation

The following local variable is used:

 Boolean value (initialized to FALSE): EmptyPattern

Support for this operation is optional. If the object store does not implement this functionality, the
operation MUST be failed with STATUS_INVALID_DEVICE_REQUEST.<59>

OutputBuffer is an array of one or more FILE_REPARSE_POINT_INFORMATION structures as

specified in [MS-FSCC] section 2.4.42.

This Information class can only be sent to a specific directory that maintains a list of all Reparse
Points on Open.File.Volume. The name of this directory is:
"\$Extend\$Reparse:$R:$INDEX_ALLOCATION". If it is sent to any other file or directory on
Open.File.Volume, the operation MUST be failed with STATUS_INVALID_INFO_CLASS.<60>

Pseudocode for the operation is as follows:

 If FileNamePattern is not empty and FileNamePattern.Length (0 is a valid length) is not a

multiple of 4, the operation MUST be failed with STATUS_INVALID_PARAMETER.

 If FileNamePattern is empty, the object store MUST set EmptyPattern to TRUE; otherwise it
MUST set EmptyPattern to FALSE.

 If FileNamePattern.Length is less than the size of a ReparseTag (4 bytes),
FileNamePattern.Buffer will be zero filled up to the size of ReparseTag.

 If EmptyPattern is FALSE:

 The object store MUST search Open.File.Volume for Files having File ReparseTag matching

FileNamePattern.

 Else

 The object store MUST match all reparse tags on the volume.

 EndIf

 If RestartScan is FALSE and EmptyPattern is TRUE and there is no match, the operation MUST be
failed with STATUS_NO_MORE_FILES.

 The operation MUST fail with STATUS_NO_SUCH_FILE under any of the following conditions:

 EmptyPattern is FALSE and there is no match.

%5bMS-FSCC%5d.pdf#Section_efbfe12773ad41409967ec6500e66d5e

91 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

 EmptyPattern is TRUE and RestartScan is TRUE and there is no match.

 The operation MUST fail with STATUS_BUFFER_OVERFLOW if OutputBuffer is not large enough to
hold the first matching entry.

 If there is at least one match, the operation is considered successful. The object store MUST

return:

 Status set to STATUS_SUCCESS.

 OutputBuffer containing an array of as many FILE_REPARSE_POINT_INFORMATION
structures that match the query as will fit in OutputBuffer unless ReturnSingleEntry is
TRUE, in which case only a single entry will be stored in OutputBuffer. To continue the query,
FileNamePattern MUST be empty and RestartScan MUST be FALSE.

 ByteCount set to the number of bytes filled in OutputBuffer.

2.1.5.6.3 Directory Information Queries

Directory queries return requested information about files contained in the directory, based on the
Link structures in Open.DirectoryList. Note that for performance reasons an object store MAY delay
updating a Link’s duplicated information following modifications to a file, resulting in directory queries
returning stale information. Some file modifications require an immediate update of the duplicated

information, which will be noted in this document by invoking the algorithm described in section
2.1.4.18.

This section describes how the object store processes directory queries for the following
FileInformationClass values:

 FileBothDirectoryInformation

 FileDirectoryInformation

 FileFullDirectoryInformation

 FileId64ExtdBothDirectoryInformation

 FileId64ExtdDirectoryInformation

 FileIdAllExtdBothDirectoryInformation

 FileIdAllExtdDirectoryInformation

 FileIdBothDirectoryInformation

 FileIdExtdDirectoryInformation

 FileIdFullDirectoryInformation

 FileNamesInformation

This algorithm uses the following local variables:

 Boolean value (initialized to FALSE): FirstQuery

 Link: Link

 32-bit Unsigned integers: FileNameBytesToCopy, BaseLength, FoundNameLength

 Pointer to given FileInformationClass Structure: Entry, LastEntry

 Status (initialized to STATUS_SUCCESS): StatusToReturn

92 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

Pseudocode for the algorithm is as follows:

 If OutputBufferSize is less than the size needed to return a single entry, the operation MUST be
failed with STATUS_INFO_LENGTH_MISMATCH. The following subsections describe the initial size
checks for OutputBufferSize to determine whether any entries can be returned.

 If Open.File is not a DirectoryFile, the operation MUST be failed with
STATUS_INVALID_PARAMETER.

 If Open.QueryPattern is empty:

 FirstQuery = TRUE

 Else:

 FirstQuery = FALSE

 EndIf

 If FirstQuery is TRUE or (FileNamePattern is not empty and RestartScan is TRUE)<61>

 If FileNamePattern is empty:

 Set FileNamePattern to "*".

 Else:

 If FileNamePattern is not a valid filename component as described in [MS-FSCC] section
2.1.5, with the exceptions that wildcard characters described in section 2.1.4.3 are

permitted and the strings "." and ".." are permitted, the operation MUST be failed with
STATUS_OBJECT_NAME_INVALID.

 EndIf

 Set Open.QueryPattern to FileNamePattern for use in subsequent queries.

 Else:

 Set FileNamePattern to Open.QueryPattern.

 EndIf

 If RestartScan is TRUE or Open.QueryLastEntry is empty:

 Set Open.QueryLastEntry to the first Link in Open.File.DirectoryList, thus enumerating
the directory from its beginning.

 EndIf

 Set Entry and LastEntry to point to the front of OutputBuffer.

 Set ByteCount to zero.

 Set BaseLength to FieldOffset(FileInformationClass.FileName). In other words save the size

of the fixed length portion of the given Information Class.

 For each Link in Open.File.DirectoryList starting at Open.QueryLastEntry:

 If ReturnSingleEntry is TRUE and Entry != OutputBuffer, then break.

 If FirstQuery is TRUE or RestartScan is TRUE, the object store MUST set the "." and ".." file
names as the first two records returned, unless one of the following is TRUE:

%5bMS-FSCC%5d.pdf#Section_efbfe12773ad41409967ec6500e66d5e

93 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

 Open.File == File.Volume.RootDirectory

 FileNamePattern == "."

 FileNamePattern contains wildcard characters as described in section 2.1.4.3 and the
Unicode string "." matches FileNamePattern according to the algorithm in section

2.1.4.4.

 EndIf

 If Link.Name or Link.ShortName matches FileNamePattern as described in section 2.1.4.4
using the following parameters: FileName set to Link.Name then Link.ShortName if not
empty, Expression set to FileNamePattern and Ignorecase set to
Open.IsCaseInsensitive, then:

 Set FoundNameLength to the length, in bytes, of Link.Name.

 If Entry != OutputBuffer(one or more structures have already been copied into

OutputBuffer) and (ByteCount + BaseLength + FoundNameLength) >
OutputBufferSize then break.

 The object store MUST copy the fixed portion of the given FileInformationClass
structure to Entry as described in the subsections below. This does not include copying the
FileName field.

 If (ByteCount + BaseLength + FoundNameLength) > OutputBufferSize then:

 Set FileNameBytesToCopy to OutputBufferSize - ByteCount - BaseLength.

 Set StatusToReturn to STATUS_BUFFER_OVERFLOW.

 The scenario where a partial filename is returned only occurs on the first record being
returned. The earlier checks guarantee that there will be room for the fixed portion of
the given FileInformationClass structure.

 EndIf

 Copy FileNameBytesToCopy bytes from Link.Name into FileInformationClass.Filename
field.

 Set LastEntry.NextEntryOffset to Entry - OutputBuffer.

 Set ByteCount to BlockAlign(ByteCount, 8) + BaseLength + FileNameBytesToCopy.

 If StatusToReturn != STATUS_SUCCESS, then break.

 Set LastEntry to Entry.

 Set Entry to OutputBuffer + ByteCount, which points to the beginning of the next

record to be returned (if any).

 EndIfSet Open.QueryLastEntry to Link.

 EndFor

 If no records are being returned:

 If FirstQuery is TRUE:

 Set StatusToReturn to STATUS_NO_SUCH_FILE, which means no files were found in this

directory that match the given wildcard pattern.

94 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

 Else:

 Set StatusToReturn to STATUS_NO_MORE_FILES, which means no more files were found
in this directory that match the given wildcard pattern.

 EndIf

 The object store MUST note that the file has been accessed as specified in section 2.1.4.19 with
Open equal to Open.

 The object store MUST return:

 Status set to StatusToReturn.

 OutputBuffer containing an array of as many entries that match the query as will fit in
OutputBufferSize.

 BytesReturned containing the number of bytes filled in OutputBuffer.

2.1.5.6.3.1 FileBothDirectoryInformation

OutputBuffer is an array of one or more FILE_BOTH_DIR_INFORMATION structures as described in
[MS-FSCC] section 2.4.8. Entry is a parameter to this routine that points to the current
FILE_BOTH_DIR_INFORMATION structure to fill out. Note that the FileName field is not set in this
section.

Pseudocode for the operation is as follows:

 If OutputBufferSize is smaller than FieldOffset(FILE_BOTH_DIR_INFORMATION.FileName), the
operation MUST be failed with STATUS_INFO_LENGTH_MISMATCH.

 The object store MUST process this query using the algorithm described in section 2.1.5.6.3.

 Entry MUST be constructed as follows:

 Entry.NextEntryOffset set to zero

 Entry.FileIndex set to zero

 Entry.CreationTime set to Link.CreationTime

 Entry.LastAccessTime set to Link.LastAccessTime

 Entry.LastWriteTime set to Link.LastModificationTime

 Entry.ChangeTime set to Link.LastChangeTime

 Entry.EndOfFile set to Link.FileSize

 Entry.AllocationSize set to Link.AllocationSize

 Entry.FileAttributes set to Link.FileAttributes

 If Link.File.FileType is DirectoryFile or ViewIndexFile:

 Entry.FileAttributes.FILE_ATTRIBUTE_DIRECTORY is set

 EndIf

 If Entry.FileAttributes has no attributes set:

 Entry.FileAttributes.FILE_ATTRIBUTE_NORMAL is set

%5bMS-FSCC%5d.pdf#Section_efbfe12773ad41409967ec6500e66d5e

95 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

 EndIf

 If Link.FileAttributes.FILE_ATTRIBUTE_REPARSE_POINT is set:

 Entry.EaSize set to Link.ReparseTag

 Else:

 Entry.EaSize set to Link.ExtendedAttributesLength<62>

 EndIf

 If Link.ShortName is not empty:

 Entry.ShortNameLength set to the length, in bytes, of Link.ShortName

 Entry.ShortName set to Link.ShortName padding with zeroes as necessary

 Else:

 Entry.ShortNameLength set to zero

 Entry.ShortName is filled with zeroes

 EndIf

 Entry.FileNameLength set to the length, in bytes, of Link.Name

2.1.5.6.3.2 FileDirectoryInformation

OutputBuffer is an array of one or more FILE_DIRECTORY_INFORMATION structures as described in

[MS-FSCC] section 2.4.10. Entry is a parameter to this routine that points to the current
FILE_DIRECTORY_INFORMATION structure to fill out. Note that the FileName field is not set in this
section.

Pseudocode for the operation is as follows:

 If OutputBufferSize is smaller than FieldOffset(FILE_DIRECTORY_INFORMATION.FileName),
the operation MUST be failed with STATUS_INFO_LENGTH_MISMATCH.

 The object store MUST process this query using the algorithm described in section 2.1.5.6.3.

 Entry MUST be constructed as follows:

 Entry.NextEntryOffset set to zero

 Entry.FileIndex set to zero

 Entry.CreationTime set to Link.CreationTime

 Entry.LastAccessTime set to Link.LastAccessTime

 Entry.LastWriteTime set to Link.LastModificationTime

 Entry.ChangeTime set to Link.LastChangeTime

 Entry.EndOfFile set to Link.FileSize

 Entry.AllocationSize set to Link.AllocationSize

 Entry.FileAttributes set to Link.FileAttributes

 If Link.File.FileType is DirectoryFile or ViewIndexFile:

%5bMS-FSCC%5d.pdf#Section_efbfe12773ad41409967ec6500e66d5e

96 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

 Entry.FileAttributes.FILE_ATTRIBUTE_DIRECTORY is set

 EndIf

 If Entry.FileAttributes has no attributes set:

 Entry.FileAttributes.FILE_ATTRIBUTE_NORMAL is set

 EndIf

 Entry.FileNameLength set to the length, in bytes, of Link.Name

2.1.5.6.3.3 FileFullDirectoryInformation

OutputBuffer is an array of one or more FILE_FULL_DIR_INFORMATION structures as described in
[MS-FSCC] section 2.4.14. Entry is a parameter to this routine that points to the current
FILE_FULL_DIR_INFORMATION structure to fill out. Note that the FileName field is not set in this

section.

Pseudocode for the operation is as follows:

 If OutputBufferSize is smaller than FieldOffset(FILE_FULL_DIR_INFORMATION.FileName), the
operation MUST be failed with STATUS_INFO_LENGTH_MISMATCH.

 The object store MUST process this query using the algorithm described in section 2.1.5.6.3.

 Entry MUST be constructed as follows:

 Entry.NextEntryOffset set to zero

 Entry.FileIndex set to zero

 Entry.CreationTime set to Link.CreationTime

 Entry.LastAccessTime set to Link.LastAccessTime

 Entry.LastWriteTime set to Link.LastModificationTime

 Entry.ChangeTime set to Link.LastChangeTime

 Entry.EndOfFile set to Link.FileSize

 Entry.AllocationSize set to Link.AllocationSize

 Entry.FileAttributes set to Link.FileAttributes

 If Link.File.FileType is DirectoryFile or ViewIndexFile:

 Entry.FileAttributes.FILE_ATTRIBUTE_DIRECTORY is set

 EndIf

 If Entry.FileAttributes has no attributes set:

 Entry.FileAttributes.FILE_ATTRIBUTE_NORMAL is set

 EndIf

 If Link.FileAttributes.FILE_ATTRIBUTE_REPARSE_POINT is SET:

 Entry.EaSize set to Link.ReparseTag

 Else:

%5bMS-FSCC%5d.pdf#Section_efbfe12773ad41409967ec6500e66d5e

97 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

 Entry.EaSize set to Link.ExtendedAttributesLength<63>

 EndIf

 Entry.FileNameLength set to the length, in bytes, of Link.Name

2.1.5.6.3.4 FileId64ExtdBothDirectoryInformation

OutputBuffer is an array of one or more FILE_ID_64_EXTD_BOTH_DIR_INFORMATION structures as
described in [MS-FSCC] section 2.4.17. Entry is a parameter to this routine that points to the current
FILE_ID_64_EXTD_BOTH_DIR_INFORMATION structure to fill out. Note that the FileName field is not
set in this section.

Pseudocode for the operation is as follows:

 If OutputBufferSize is smaller than

FieldOffset(FILE_ID_64_EXTD_BOTH_DIR_INFORMATION.FileName), the operation MUST be
failed with STATUS_INFO_LENGTH_MISMATCH.

 The object store MUST process this query using the algorithm described in section 2.1.5.6.3.

 Entry MUST be constructed as follows:

 Entry.NextEntryOffset set to zero

 Entry.FileIndex set to zero

 Entry.CreationTime set to Link.CreationTime

 Entry.LastAccessTime set to Link.LastAccessTime

 Entry.LastWriteTime set to Link.LastModificationTime

 Entry.ChangeTime set to Link.LastChangeTime

 Entry.EndOfFile set to Link.FileSize

 Entry.AllocationSize set to Link.AllocationSize

 Entry.FileAttributes set to Link.FileAttributes

 If Link.File.FileType is DirectoryFile or ViewFileIndex:

 Entry.FileAttributes.FILE_ATTRIBUTE_DIRECTORY is set

 EndIf

 If Entry.FileAttributes has no attributes set:

 Entry.FileAttributes.FILE_ATTRIBUTE_NORMAL is set

 EndIf

 Entry.EaSize set to Link.ExtendedAttributesLength<64>

 Entry.ReparsePointTag set to Link.ReparseTag

 If Link.Name == "." (entry for the directory being queried):

 Entry.FileID set to Open.File.FileId64

 Else if Link.Name == ".." (entry for the parent of the directory being queried):

%5bMS-FSCC%5d.pdf#Section_efbfe12773ad41409967ec6500e66d5e

98 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

 Entry.FileID SHOULD<65> be set to Open.Link.ParentFile.FileId64, otherwise MUST be
set to zero

 Else:

 Entry.FileID set to Link.File.FileId64

 EndIf

 If Link.ShortName is not empty:

 Entry.ShortNameLength set to the length, in bytes, of Link.ShortName

 Entry.ShortName set to Link.ShortName padding with zeroes as necessary

 Else:

 Entry.ShortNameLength set to zero

 Entry.ShortName is filled with zeroes

 EndIf

 Entry.FileNameLength set to the length, in bytes, of Link.Name

2.1.5.6.3.5 FileId64ExtdDirectoryInformation

OutputBuffer is an array of one or more FILE_ID_64_EXTD_DIR_INFORMATION structures as
described in [MS-FSCC] section 2.4.18. Entry is a parameter to this routine that points to the current

FILE_ID_64_EXTD_DIR_INFORMATION structure to fill out. Note that the FileName field is not set in
this section.

Pseudocode for the operation is as follows:

 If OutputBufferSize is smaller than

FieldOffset(FILE_ID_64_EXTD_DIR_INFORMATION.FileName), the operation MUST be failed with
STATUS_INFO_LENGTH_MISMATCH.

 The object store MUST process this query using the algorithm described in section 2.1.5.6.3.

 Entry MUST be constructed as follows:

 Entry.NextEntryOffset set to zero

 Entry.FileIndex set to zero

 Entry.CreationTime set to Link.CreationTime

 Entry.LastAccessTime set to Link.LastAccessTime

 Entry.LastWriteTime set to Link.LastModificationTime

 Entry.ChangeTime set to Link.LastChangeTime

 Entry.EndOfFile set to Link.FileSize

 Entry.AllocationSize set to Link.AllocationSize

 Entry.FileAttributes set to Link.FileAttributes

 If Link.File.FileType is DirectoryFile or ViewFileIndex:

%5bMS-FSCC%5d.pdf#Section_efbfe12773ad41409967ec6500e66d5e

99 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

 Entry.FileAttributes.FILE_ATTRIBUTE_DIRECTORY is set

 EndIf

 If Entry.FileAttributes has no attributes set:

 Entry.FileAttributes.FILE_ATTRIBUTE_NORMAL is set

 EndIf

 Entry.EaSize set to Link.ExtendedAttributesLength<66>

 Entry.ReparsePointTag set to Link.ReparseTag

 If Link.Name == "." (entry for the directory being queried):

 Entry.FileID set to Open.File.FileId64

 Else if Link.Name == ".." (entry for the parent of the directory being queried):

 Entry.FileID SHOULD<67> be set to Open.Link.ParentFile.FileId64, otherwise MUST be

set to zero

 Else:

 Entry.FileID set to Link.File.FileId64

 EndIf

 Entry.FileNameLength set to the length, in bytes, of Link.Name

2.1.5.6.3.6 FileIdAllExtdBothDirectoryInformation

OutputBuffer is an array of one or more FILE_ID_ALL_EXTD_BOTH_DIR_INFORMATION structures as
described in [MS-FSCC] section 2.4.19. Entry is a parameter to this routine that points to the current

FILE_ID_ALL_EXTD_BOTH_DIR_INFORMATION structure to fill out. Note that the FileName field is not
set in this section.

Pseudocode for the operation is as follows:

 If OutputBufferSize is smaller than

FieldOffset(FILE_ID_ALL_EXTD_BOTH_DIR_INFORMATION.FileName), the operation MUST be
failed with STATUS_INFO_LENGTH_MISMATCH.

 The object store MUST process this query using the algorithm described in section 2.1.5.6.3.

 Entry MUST be constructed as follows:

 Entry.NextEntryOffset set to zero

 Entry.FileIndex set to zero

 Entry.CreationTime set to Link.CreationTime

 Entry.LastAccessTime set to Link.LastAccessTime

 Entry.LastWriteTime set to Link.LastModificationTime

 Entry.ChangeTime set to Link.LastChangeTime

 Entry.EndOfFile set to Link.FileSize

%5bMS-FSCC%5d.pdf#Section_efbfe12773ad41409967ec6500e66d5e

100 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

 Entry.AllocationSize set to Link.AllocationSize

 Entry.FileAttributes set to Link.FileAttributes

 If Link.File.FileType is DirectoryFile or ViewFileIndex:

 Entry.FileAttributes.FILE_ATTRIBUTE_DIRECTORY is set

 EndIf

 If Entry.FileAttributes has no attributes set:

 Entry.FileAttributes.FILE_ATTRIBUTE_NORMAL is set

 EndIf

 Entry.EaSize set to Link.ExtendedAttributesLength<68>

 Entry.ReparsePointTag set to Link.ReparseTag

 If Link.Name == "." (entry for the directory being queried):

 Entry.FileID set to Open.File.FileId64

 Entry.FileID128 set to Open.File.FileId128

 Else if Link.Name == ".." (entry for the parent of the directory being queried):

 Entry.FileID SHOULD<69> be set to Open.Link.ParentFile.FileId64, otherwise MUST be
set to zero

 Entry.FileID128 SHOULD<70> be set to Open.Link.ParentFile.FileId128, otherwise

MUST be set to zero

 Else:

 Entry.FileID set to Link.File.FileId64

 Entry.FileID128 set to Link.File.FileId128

 EndIf

 If Link.ShortName is not empty:

 Entry.ShortNameLength set to the length, in bytes, of Link.ShortName

 Entry.ShortName set to Link.ShortName padding with zeroes as necessary

 Else:

 Entry.ShortNameLength set to zero

 Entry.ShortName is filled with zeroes

 EndIf

 Entry.FileNameLength set to the length, in bytes, of Link.Name

2.1.5.6.3.7 FileIdAllExtdDirectoryInformation

OutputBuffer is an array of one or more FILE_ID_ALL_EXTD_DIR_INFORMATION structures as
described in [MS-FSCC] section 2.4.20. Entry is a parameter to this routine that points to the current

%5bMS-FSCC%5d.pdf#Section_efbfe12773ad41409967ec6500e66d5e

101 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

FILE_ID_ALL_EXTD_DIR_INFORMATION structure to fill out. Note that the FileName field is not set in
this section.

Pseudocode for the operation is as follows:

 If OutputBufferSize is smaller than

FieldOffset(FILE_ID_ALL_EXTD_DIR_INFORMATION.FileName), the operation MUST be failed
with STATUS_INFO_LENGTH_MISMATCH.

 The object store MUST process this query using the algorithm described in section 2.1.5.6.3.

 Entry MUST be constructed as follows:

 Entry.NextEntryOffset set to zero

 Entry.FileIndex set to zero

 Entry.CreationTime set to Link.CreationTime

 Entry.LastAccessTime set to Link.LastAccessTime

 Entry.LastWriteTime set to Link.LastModificationTime

 Entry.ChangeTime set to Link.LastChangeTime

 Entry.EndOfFile set to Link.FileSize

 Entry.AllocationSize set to Link.AllocationSize

 Entry.FileAttributes set to Link.FileAttributes

 If Link.File.FileType is DirectoryFile or ViewFileIndex:

 Entry.FileAttributes.FILE_ATTRIBUTE_DIRECTORY is set

 EndIf

 If Entry.FileAttributes has no attributes set:

 Entry.FileAttributes.FILE_ATTRIBUTE_NORMAL is set

 EndIf

 Entry.EaSize set to Link.ExtendedAttributesLength<71>

 Entry.ReparsePointTag set to Link.ReparseTag

 If Link.Name == "." (entry for the directory being queried):

 Entry.FileID set to Open.File.FileId64

 Entry.FileID128 set to Open.File.FileId128

 Else if Link.Name == ".." (entry for the parent of the directory being queried):

 Entry.FileID SHOULD<72> be set to Open.Link.ParentFile.FileId64, otherwise MUST be
set to zero

 Entry.FileID128 SHOULD<73> be set to Open.Link.ParentFile.FileId128, otherwise
MUST be set to zero

 Else:

102 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

 Entry.FileID set to Link.File.FileId64

 Entry.FileID128 set to Link.File.FileId128

 EndIf

 Entry.FileNameLength set to the length, in bytes, of Link.Name

2.1.5.6.3.8 FileIdBothDirectoryInformation

OutputBuffer is an array of one or more FILE_ID_BOTH_DIR_INFORMATION structures as described
in [MS-FSCC] section 2.4.21. Entry is a parameter to this routine that points to the current
FILE_ID_BOTH_DIR_INFORMATION structure to fill out. Note that the FileName field is not set in this
section.

Pseudocode for the operation is as follows:

 If OutputBufferSize is smaller than FieldOffset(FILE_ID_BOTH_DIR_INFORMATION.FileName),

the operation MUST be failed with STATUS_INFO_LENGTH_MISMATCH.

 The object store MUST process this query using the algorithm described in section 2.1.5.6.3.

 Entry MUST be constructed as follows:

 Entry.NextEntryOffset set to zero

 Entry.FileIndex set to zero

 Entry.CreationTime set to Link.CreationTime

 Entry.LastAccessTime set to Link.LastAccessTime

 Entry.LastWriteTime set to Link.LastModificationTime

 Entry.ChangeTime set to Link.LastChangeTime

 Entry.EndOfFile set to Link.FileSize

 Entry.AllocationSize set to Link.AllocationSize

 Entry.FileAttributes set to Link.FileAttributes

 If Link.File.FileType is DirectoryFile or ViewIndexFile:

 Entry.FileAttributes.FILE_ATTRIBUTE_DIRECTORY is set

 EndIf

 If Entry.FileAttributes has no attributes set:

 Entry.FileAttributes.FILE_ATTRIBUTE_NORMAL is set

 EndIf

 If Link.FileAttributes.FILE_ATTRIBUTE_REPARSE_POINT is SET:

 Entry.EaSize set to Link.ReparseTag

 Else:

 Entry.EaSize set to Link.ExtendedAttributesLength<74>

 EndIf

%5bMS-FSCC%5d.pdf#Section_efbfe12773ad41409967ec6500e66d5e

103 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

 If Link.ShortName is not empty:

 Entry.ShortNameLength set to the length, in bytes, of Link.ShortName

 Entry.ShortName set to Link.ShortName padding with zeroes as necessary

 Else:

 Entry.ShortNameLength set to zero

 Entry.ShortName filled with zeroes

 EndIf

 If Link.Name == "." (entry for the directory being queried):

 Entry.FileID set to Open.File.FileId64

 Else if Link.Name == ".." (entry for the parent of the directory being queried):

 Entry.FileID SHOULD<75> be set to Open.Link.ParentFile.FileId64, otherwise MUST be

set to zero

 Else:

 Entry.FileID set to Link.File.FileId64

 EndIf

 Entry.FileNameLength set to the length, in bytes, of Link.Name

2.1.5.6.3.9 FileIdExtdDirectoryInformation

OutputBuffer is an array of one or more FILE_ID_EXTD_DIR_INFORMATION structures as described in
[MS-FSCC] section 2.4.22. Entry is a parameter to this routine that points to the current

FILE_ID_EXTD_DIR_INFORMATION structure to fill out. Note that the FileName field is not set in this
section.

Pseudocode for the operation is as follows:

 If OutputBufferSize is smaller than FieldOffset(FILE_ID_EXTD_DIR_INFORMATION.FileName),

the operation MUST be failed with STATUS_INFO_LENGTH_MISMATCH.

 The object store MUST process this query using the algorithm described in section 2.1.5.6.3.

 Entry MUST be constructed as follows:

 Entry.NextEntryOffset set to zero

 Entry.FileIndex set to zero

 Entry.CreationTime set to Link.CreationTime

 Entry.LastAccessTime set to Link.LastAccessTime

 Entry.LastWriteTime set to Link.LastModificationTime

 Entry.ChangeTime set to Link.LastChangeTime

 Entry.EndOfFile set to Link.FileSize

 Entry.AllocationSize set to Link.AllocationSize

%5bMS-FSCC%5d.pdf#Section_efbfe12773ad41409967ec6500e66d5e

104 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

 Entry.FileAttributes set to Link.FileAttributes

 If Link.File.FileType is DirectoryFile or ViewIndexFile:

 Entry.FileAttributes.FILE_ATTRIBUTE_DIRECTORY is set

 EndIf

 If Entry.FileAttributes has no attributes set:

 Entry.FileAttributes.FILE_ATTRIBUTE_NORMAL is set

 EndIf

 Entry.EaSize set to Link.ExtendedAttributesLength<76>

 Entry.ReparsePointTag set to Link.ReparseTag

 If Link.Name == "." (entry for the directory being queried):

 Entry.FileID set to Open.File.FileId128

 Else if Link.Name == ".." (entry for the parent of the directory being queried):

 Entry.FileID SHOULD<77> be set to Open.Link.ParentFile.FileId128, otherwise MUST be
set to zero

 Else:

 Entry.FileID set to Link.File.FileId128

 EndIf

 Entry.FileNameLength set to the length, in bytes, of Link.Name

2.1.5.6.3.10 FileIdFullDirectoryInformation

OutputBuffer is an array of one or more FILE_ID_FULL_DIR_INFORMATION structures as described
in [MS-FSCC] section 2.4.23. Entry is a parameter to this routine that points to the current
FILE_ID_FULL_DIR_INFORMATION structure to fill out. Note that the FileName field is not set in this
section.

Pseudocode for the operation is as follows:

 If OutputBufferSize is smaller than FieldOffset(FILE_ID_FULL_DIR_INFORMATION.FileName),
the operation MUST be failed with STATUS_INFO_LENGTH_MISMATCH.

 The object store MUST process this query using the algorithm described in section 2.1.5.6.3.

 Entry MUST be constructed as follows:

 Entry.NextEntryOffset set to zero

 Entry.FileIndex set to zero

 Entry.CreationTime set to Link.CreationTime

 Entry.LastAccessTime set to Link.LastAccessTime

 Entry.LastWriteTime set to Link.LastModificationTime

 Entry.ChangeTime set to Link.LastChangeTime

%5bMS-FSCC%5d.pdf#Section_efbfe12773ad41409967ec6500e66d5e

105 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

 Entry.EndOfFile set to Link.FileSize

 Entry.AllocationSize set to Link.AllocationSize

 Entry.FileAttributes set to Link.FileAttributes

 If Link.File.FileType is DirectoryFile or ViewFileIndex:

 Entry.FileAttributes.FILE_ATTRIBUTE_DIRECTORY is set

 EndIf

 If Entry.FileAttributes has no attributes set:

 Entry.FileAttributes.FILE_ATTRIBUTE_NORMAL is set

 EndIf

 If Link.FileAttributes.FILE_ATTRIBUTE_REPARSE_POINT is SET:

 Entry.EaSize set to Link.ReparseTag

 Else:

 Entry.EaSize set to Link.ExtendedAttributesLength<78>

 EndIf

 If Link.Name == "." (entry for the directory being queried):

 Entry.FileID set to Open.File.FileId64

 Else if Link.Name == ".." (entry for the parent of the directory being queried):

 Entry.FileID SHOULD<79> be set to Open.Link.ParentFile.FileId64, otherwise MUST be
set to zero

 Else:

 Entry.FileID set to Link.File.FileId64

 EndIf

 Entry.FileNameLength set to the length, in bytes, of Link.Name

2.1.5.6.3.11 FileNamesInformation

OutputBuffer is an array of one or more FILE_NAMES_INFORMATION structures as described in [MS-
FSCC] section 2.4.32. Entry is a parameter to this routine that points to the current
FILE_NAMES_INFORMATION structure to fill out. Note that the FileName field is not set in this section.

Pseudocode for the operation is as follows:

 If OutputBufferSize is smaller than FieldOffset(FILE_NAMES_INFORMATION.FileName), the
operation MUST be failed with STATUS_INFO_LENGTH_MISMATCH.

 The object store MUST process this query using the algorithm described in section 2.1.5.6.3.

 Entry MUST be constructed as follows:

 Entry.NextEntryOffset set to zero

 Entry.FileIndex set to zero

%5bMS-FSCC%5d.pdf#Section_efbfe12773ad41409967ec6500e66d5e
%5bMS-FSCC%5d.pdf#Section_efbfe12773ad41409967ec6500e66d5e

106 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

 Entry.FileNameLength set to the length, in bytes, of Link.Name

2.1.5.7 Server Requests Flushing Cached Data

The server provides:

 Open: An Open of a DataFile or DirectoryFile for which it is to flush cached data.

On completion, the object store MUST return:

 Status: An NTSTATUS code that specifies the result.

The object store MUST flush all persistent attributes for Open.File to stable storage. In addition:

 If Open.File.Volume.IsReadOnly is TRUE, the operation MUST be failed with
STATUS_MEDIA_WRITE_PROTECTED.

 The operation MUST be failed with the status code returned from the underlying physical storage.

The operation flushes all eligible objects; however, only the first failure encountered is returned.

 The operation ensures that the directory structure is persisted to stable storage.<80>

Pseudocode for the operation is as follows:

 If Open.Stream.StreamType is DataStream:

 Flush cached data of Open.File

 Flush file system metadata associated with Open.File.

 Else if Open.Stream.StreamType is DirectoryStream:

 Flush file system metadata associated with Open.File

 Else if Open.File is equal to Open.File.Volume.RootDirectory:

 For each OpenFile in Open.File.Volume.OpenFileList:

 Flush OpenFile

 Flush file system metadata associated with OpenFile

 EndFor

 EndIf

 Flush the underlying physical storage.

2.1.5.8 Server Requests a Byte-Range Lock

The server provides:

 Open: An Open of a DataStream.

 FileOffset: A 64-bit unsigned integer containing the starting offset, in bytes.

 Length: A 64-bit unsigned integer containing the length, in bytes. This value MAY be zero.

 ExclusiveLock: A Boolean indicating whether the range is to be locked exclusively (TRUE) or

shared (FALSE).

107 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

 FailImmediately: A Boolean indicating whether the lock request is to fail (TRUE) if the range is
locked by another open or if it is to wait until the lock can be acquired (FALSE).

 LockKey: A 32-bit unsigned integer containing an identifier for the lock being obtained by a
specific process.

On completion, the object store MUST return:

 Status: An NTSTATUS code that specifies the result

Pseudocode for the operation is as follows:

 [Validation]

 If Open.Stream.StreamType is DirectoryStream, return STATUS_INVALID_PARAMETER, as byte
range locks are not permitted on directories.

 If (((FileOffset + Length - 1) < FileOffset) && Length != 0)

 This means that the requested range contains one or more bytes with offsets beyond the
maximum 64-bit unsigned integer. The operation MUST be failed with
STATUS_INVALID_LOCK_RANGE.

 EndIf

 [Processing]

 If (FileOffset < Open.Stream.AllocationSize)<81> and Open.Stream.Oplock is not empty,

the object store MUST check for an oplock break according to the algorithm in section 2.1.4.12,
with input values as follows:

 Open equal to this operation's Open

 Oplock equal to Open.Stream.Oplock

 Operation equal to "LOCK_CONTROL"

 OpParams empty

 The object store MUST check for byte range lock conflicts by using the algorithm described in

section 2.1.4.10, with ByteOffset set to FileOffset, Length set to Length, IsExclusive set to
ExclusiveLock, LockIntent set to TRUE, and Open set to Open. If a conflict is detected, then:

 If FailImmediately is TRUE, the operation MUST be failed with
STATUS_LOCK_NOT_GRANTED.

 Else

 Insert operation into CancelableOperations.CancelableOperationList.

 Wait until there are no overlapping ByteRangeLocks or until the operation is canceled as

specified in section 2.1.5.20. Overlapping ByteRangeLocks can be removed from
ByteRangeLockList in different ways:

 The ByteRangeLock can be explicitly unlocked as described in section 2.1.5.9.

 The ByteRangeLock.OwnerOpen can be closed as described in section 2.1.5.5.

 EndIf

 EndIf

108 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

 Initialize a new ByteRangeLock:

 ByteRangeLock.LockOffset MUST be initialized to FileOffset.

 ByteRangeLock.LockLength MUST be initialized to Length.

 ByteRangeLock.IsExclusive MUST be initialized to ExclusiveLock.

 ByteRangeLock.OwnerOpen MUST be initialized to Open.

 ByteRangeLock.LockKey MUST be set to the server provided LockKey, if provided.

 Insert ByteRangeLock into Open.Stream.ByteRangeLockList.

 Complete this operation with STATUS_SUCCESS.

2.1.5.9 Server Requests an Unlock of a Byte-Range

The server provides:

 Open: An Open of a DataStream.

 FileOffset: A 64-bit unsigned integer containing the starting offset, in bytes.

 Length: A 64-bit unsigned integer containing the length, in bytes.

 LockKey: A 32-bit unsigned integer containing an identifier for the lock being obtained by a

specific process.

On completion, the object store MUST return:

 Status: An NTSTATUS code that specifies the result.

Pseudocode for the operation is as follows:

 [Validation]

 If Open.Stream.StreamType is DirectoryStream, return STATUS_INVALID_PARAMETER, as byte
range locks are not permitted on directories.

 If (((FileOffset + Length - 1) < FileOffset) && Length != 0)

 This means that the requested range contains one or more bytes with offsets beyond the
maximum 64-bit unsigned integer. The operation MUST be failed with
STATUS_INVALID_LOCK_RANGE.

 EndIf

 [Processing]

 Initialize LockToRemove to NULL.

 For each ByteRangeLock in Open.Stream.ByteRangeLockList:

 If ((ByteRangeLock.LockOffset == FileOffset) and (ByteRangeLock.LockLength ==
Length) and (ByteRangeLock.OwnerOpen == Open) and (ByteRangeLock.LockKey ==
LockKey)) then:

 Set LockToRemove to ByteRangeLock.

 If (LockToRemove.ExclusiveLock == TRUE) then break.

109 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

 EndIf

 EndFor

 If LockToRemove is not NULL:

 Remove LockToRemove from Open.Stream.ByteRangeLockList.

 Complete this operation with STATUS_SUCCESS.

 Else:

 Complete this operation with STATUS_RANGE_NOT_LOCKED.

 EndIf

2.1.5.10 Server Requests an FsControl Request

The following section describes various File System Control (FSCTLs) operations that are implemented
by the Object Store. Not all of these operations are implemented by all file systems.

2.1.5.10.1 FSCTL_CREATE_OR_GET_OBJECT_ID

The server provides:

 Open: An Open of a DataFile or DirectoryFile.

 OutputBufferSize: The maximum number of bytes to return in OutputBuffer.

On completion, the object store MUST return:

 Status: An NTSTATUS code that specifies the result.

 OutputBuffer: An array of bytes that will return a FILE_OBJECTID_BUFFER structure as specified

in [MS-FSCC] section 2.1.3.

 BytesReturned: The number of bytes returned in OutputBuffer.

Support for this operation is optional. If the object store does not implement this functionality, the
operation MUST be failed with STATUS_INVALID_DEVICE_REQUEST.<82>

Pseudocode for the operation is as follows:

 If Open.File.Volume.IsObjectIDsSupported is FALSE, the operation MUST be failed with
STATUS_VOLUME_NOT_UPGRADED.

 If OutputBufferSize is less than sizeof(FILE_OBJECTID_BUFFER), the operation MUST be failed
with STATUS_INVALID_PARAMETER.

 If Open.File.ObjectId is empty:

 If Open.File.Volume.IsReadOnly, the operation MUST be failed with
STATUS_MEDIA_WRITE_PROTECTED.

 The object store MUST set Open.File.ObjectId to a newly generated ObjectId GUID that is
unique on Open.File.Volume.<83>

 EndIf

 If a new Open.File.ObjectId was generated above or if Open.File.BirthVolumeId and
Open.File.BirthObjectId are both empty:

%5bMS-FSCC%5d.pdf#Section_efbfe12773ad41409967ec6500e66d5e

110 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

 If Open.File.Volume.IsReadOnly, the operation MUST be failed with
STATUS_MEDIA_WRITE_PROTECTED.

 If Open.File.BirthVolumeId is empty, the object store MUST set Open.File.BirthVolumeId
to Open.File.Volume.VolumeId.

 If Open.File.BirthObjectId is empty, the object store MUST set Open.File.BirthObjectId to
Open.File.ObjectId.

 The object store MUST set Open.File.DomainId to empty.

 The object store MUST post a USN change as specified in section 2.1.4.11 with File equal to
File, Reason equal to USN_REASON_OBJECT_ID_CHANGE, and FileName equal to
Open.Link.Name.

 The object store MUST construct a FILE_OBJECTID_INFORMATION structure (as specified in

[MS-FSCC] section 2.4.35.1) ObjectIdInfo as follows:

 ObjectIdInfo.FileReference set to zero.

 ObjectIdInfo.ObjectId set to Open.File.ObjectId.

 ObjectIdInfo.BirthVolumeId set to Open.File.BirthVolumeId.

 ObjectIdInfo.BirthObjectId set to Open.File.BirthObjectId.

 ObjectIdInfo.DomainId set to Open.File.DomainId.

 Send directory change notification as specified in section 2.1.4.1, with Volume equal to
Open.File.Volume, Action equal to FILE_ACTION_ADDED, FilterMatch equal to
FILE_NOTIFY_CHANGE_FILE_NAME, FileName equal to "\$Extend\$ObjId", NotifyData equal
to ObjectIdInfo, and NotifyDataLength equal to sizeof(FILE_OBJECTID_INFORMATION).

 EndIf

If a new Open.File.ObjectId was generated above, the object store MUST update
Open.File.LastChangeTime.<84>

The object store MUST populate the fields of OutputBuffer as follows:

 OutputBuffer.ObjectId set to Open.File.ObjectId.

 OutputBuffer.BirthVolumeId set to Open.File.BirthVolumeId.

 OutputBuffer.BirthObjectId set to Open.File.BirthObjectId.

 OutputBuffer.DomainId set to Open.File.DomainId.

Upon successful completion of the operation, the object store MUST return:

 BytesReturned set to sizeof(FILE_OBJECTID_BUFFER).

 Status set to STATUS_SUCCESS.

2.1.5.10.2 FSCTL_DELETE_OBJECT_ID

The server provides:

 Open: An Open of a DataFile or DirectoryFile.

On completion, the object store MUST return:

111 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

 Status: An NTSTATUS code that specifies the result.

Support for this operation is optional. If the object store does not implement this functionality, the
operation MUST be failed with STATUS_INVALID_DEVICE_REQUEST.<85>

Pseudocode for the operation is as follows:

 If Open.File.Volume.IsObjectIDsSupported is FALSE, the operation MUST be failed with
STATUS_VOLUME_NOT_UPGRADED.

 If Volume.IsReadOnly is TRUE, the operation MUST be failed with
STATUS_MEDIA_WRITE_PROTECTED.

 If Open.File.ObjectId is empty, the operation MUST be completed with STATUS_SUCCESS.

 Update Open.File.LastChangeTime to the current time.<86>

 Post a USN change as specified in section 2.1.4.11 with File equal to File, Reason equal to

USN_REASON_OBJECT_ID_CHANGE, and FileName equal to Open.Link.Name.

 The object store MUST construct a FILE_OBJECTID_INFORMATION structure (as specified in
[MS-FSCC] section 2.4.35.1) ObjectIdInfo as follows:

 ObjectIdInfo.FileReference set to zero.

 ObjectIdInfo.ObjectId set to Open.File.ObjectId.

 ObjectIdInfo.BirthVolumeId set to Open.File.BirthVolumeId.

 ObjectIdInfo.BirthObjectId set to Open.File.BirthObjectId.

 ObjectIdInfo.DomainId set to Open.File.DomainId.

 Send directory change notification as specified in section 2.1.4.1, with Volume equal to
Open.File.Volume, Action equal to FILE_ACTION_REMOVED, FilterMatch equal to

FILE_NOTIFY_CHANGE_FILE_NAME, FileName equal to "\$Extend\$ObjId", NotifyData equal to
ObjectIdInfo, and NotifyDataLength equal to sizeof(FILE_OBJECTID_INFORMATION).

 Set Open.File.ObjectId to empty.

 Upon successful completion of the operation, the object store MUST return:

 Status set to STATUS_SUCCESS.

2.1.5.10.3 FSCTL_DELETE_REPARSE_POINT

The server provides:

 Open: An Open of a DataFile or DirectoryFile.

 ReparseTag: An identifier indicating the type of the reparse point to delete, as defined in [MS-

FSCC] section 2.1.2.1.

 ReparseGUID: A GUID indicating the type of the reparse point to delete.

On completion, the object store MUST return:

 Status: An NTSTATUS code that specifies the result.

Support for this operation is optional. If the object store does not implement this functionality, the
operation MUST be failed with STATUS_INVALID_DEVICE_REQUEST.<87>

%5bMS-FSCC%5d.pdf#Section_efbfe12773ad41409967ec6500e66d5e
%5bMS-FSCC%5d.pdf#Section_efbfe12773ad41409967ec6500e66d5e
%5bMS-FSCC%5d.pdf#Section_efbfe12773ad41409967ec6500e66d5e

112 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

Pseudocode for the operation is as follows:

 Phase 1 -- Verify the parameters.

 If (Open.GrantedAccess & (FILE_WRITE_DATA | FILE_WRITE_ATTRIBUTES)) == 0, the
operation MUST be failed with STATUS_ACCESS_DENIED.

 If Open.File.Volume.IsReadOnly is TRUE, the operation MUST be failed with
STATUS_MEDIA_WRITE_PROTECTED.

 If Open.File.Volume.IsReparsePointsSupported is FALSE, the operation MUST be failed with
STATUS_VOLUME_NOT_UPGRADED.

 If the ReparseTag is either IO_REPARSE_TAG_RESERVED_ZERO or
IO_REPARSE_TAG_RESERVED_ONE, the operation MUST be failed with
STATUS_IO_REPARSE_TAG_INVALID. The reserved reparse tags are defined in [MS-FSCC] section

2.1.2.1.

 If ReparseTag is a non-Microsoft Reparse Tag, then the ReparseGUID MUST be a valid GUID;
otherwise the operation MUST be failed with STATUS_IO_REPARSE_DATA_INVALID.

 Phase 2 -- Validate that the requested tag deletion type matches with the stored tag type.

 If (ReparseTag != Open.File.ReparseTag), the operation MUST be failed with
STATUS_IO_REPARSE_TAG_MISMATCH.

 If (ReparseTag is a non-Microsoft Reparse Tag && Open.File.ReparseGUID != ReparseGUID),
the operation MUST be failed with STATUS_REPARSE_ATTRIBUTE_CONFLICT.

 Phase 3 -- Remove the reparse point from the File.

 Set Open.File.ReparseData, Open.File.ReparseGUID, and Open.File.ReparseTag to empty.

 Update Open.File.LastChangeTime to the current system time.<88>

 If Open.File.FileType == DataFile, set Open.File.FileAttributes.FILE_ATTRIBUTE_ARCHIVE to
TRUE.

 Set Open.File.PendingNotifications.FILE_NOTIFY_CHANGE_LAST_ACCESS to TRUE.

 Upon successful completion of the operation, the object store MUST return:

 Status set to STATUS_SUCCESS.

2.1.5.10.4 FSCTL_DUPLICATE_EXTENTS_TO_FILE

The server provides:

 Open: An Open of a DataStream.

 InputBuffer: An array of bytes containing a single SMB2_DUPLICATE_EXTENTS_DATA structure

indicating the source stream, and source and target regions to copy, as specified in [MS-FSCC]
section 2.3.7.2.

 InputBufferSize: The number of bytes in InputBuffer.

On completion, the object store MUST return:

 Status: An NTSTATUS code that specifies the result.

This routine uses the following local variables:

%5bMS-FSCC%5d.pdf#Section_efbfe12773ad41409967ec6500e66d5e

113 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

 Open: SourceOpen

 Stream: Source

 64-bit signed integers: ClusterCount, ClusterNum, SourceVcn, TargetVcn, SourceLcn, TargetLcn

 EXTENTS: NewPreviousExtent, NewNextExtent

The purpose of this operation is to make it look like a copy of a region from the source stream to the
target stream has occurred when in reality no data is actually copied. This operation modifies the
target stream's extent list such that, the same clusters are pointed to by both the source and target
streams' extent lists for the region being copied.

Support for FSCTL_DUPLICATE_EXTENTS_TO_FILE is optional. If the object store does not implement
this functionality, the operation MUST be failed with STATUS_INVALID_DEVICE_REQUEST.<89>

Pseudocode for the operation is as follows:

 If InputBufferSizes is less than sizeof(DUPLICATE_EXTENTS_DATA), the operation MUST be
failed with STATUS_BUFFER_TOO_SMALL

 If Open.File.Volume.IsReadOnly is TRUE, the operation MUST be failed with
STATUS_MEDIA_WRITE_PROTECTED.

 If InputBuffer.SourceFileOffset is not a multiple of Open.File.Volume.ClusterSize, the
operation MUST be failed with STATUS_INVALID_PARAMETER.

 If InputBuffer.TargetFileOffset is not a multiple of Open.File.Volume.ClusterSize, the
operation MUST be failed with STATUS_INVALID_PARAMETER.

 If InputBuffer.ByteCount is not a multiple of Open.File.Volume.ClusterSize, the operation
MUST be failed with STATUS_INVALID_PARAMETER.

 If InputBuffer.ByteCount is equal to 0, the operation SHOULD return immediately with
STATUS_SUCCESS.

 If Open.Stream.StreamType != DataStream, the operation MUST be failed with

STATUS_NOT_SUPPORTED.

 Set SourceOpen to the Open object returned from a successful open of the file identified by
InputBuffer.SourceFileID. If the open of the InputBuffer.SourceFileID fails, return the status
of the operation.

 Set Source to SourceOpen.Stream.

 If SourceOpen does not represent an open Handle to a DataStream with FILE_READ_DATA |
FILE_READ_ATTRIBUTES level access, the operation SHOULD<90> fail with

STATUS_INVALID_PARAMETER.

 If Source.Size is less than InputBuffer.SourceFileOffset + InputBuffer.ByteCount the
operation MUST be failed with STATUS_NOT_SUPPORTED.

 If Source.Volume != Open.File.Volume the operation MUST be failed with
STATUS_INVALID_PARAMETER.

 If Source.IsSparse != Open.Stream.IsSparse and Source.IsSparse is TRUE, the operation MUST

be failed with STATUS_NOT_SUPPORTED.

 The object store SHOULD<91> check for byte range lock conflicts on Open.Stream using the
algorithm described in section 2.1.4.10 with ByteOffset set to InputBuffer.TargetFileOffset,
Length set to InputBuffer.ByteCount, IsExclusive set to TRUE, LockIntent set to FALSE, and

114 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

Open set to Open. If a conflict is detected, the operation MUST be failed with
STATUS_FILE_LOCK_CONFLICT.

 The object store SHOULD<92> check for byte range lock conflicts on Source using the algorithm
described in section 2.1.4.10 with ByteOffset set to InputBuffer.SourceFileOffset, Length set

to InputBuffer.ByteCount, IsExclusive set to FALSE, LockIntent set to FALSE, and Open set
to SourceOpen. If a conflict is detected, the operation MUST be failed with
STATUS_FILE_LOCK_CONFLICT.

 The object store MUST modify Open.Stream.ExtentList so that all LCNs in the applicable VCN
range match the LCNs in Source.ExtentList in the same VCN range, taking care to adjust the
Open.File.Volume.ClusterRefcount array accordingly. Pseudo-code for this is as follows:

 ClusterCount = InputBuffer.ByteCount / Open.File.Volume.ClusterSize

 For each ClusterNum from 0 to (ClusterCount – 1):

 SourceVcn = (InputBuffer.SourceFileOffset / Open.File.Volume.ClusterSize) +

ClusterNum

 TargetVcn = (InputBuffer.TargetFileOffset / Open.File.Volume.ClusterSize) +
ClusterNum

 Find the index SourceIndex of the element in Source. ExtentList such that (Source.

ExtentList[SourceIndex].NextVcn > SourceVcn) and (SourceIndex == 0 or Source.
ExtentList[SourceIndex-1].NextVcn <= SourceVcn).

 Find the index TargetIndex of the element in Open.Stream.ExtentList such that
(Open.Stream.ExtentList[TargetIndex].NextVcn > TargetVcn) and (TargetIndex == 0
or Open.Stream.ExtentList[TargetIndex-1].NextVcn <= TargetVcn).

 // The purpose of this next section is to determine the SourceLcn based on Source.
ExtentList[SourceIndex] and SourceVcn.

 If Source.ExtentList[SourceIndex].Lcn == 0xffffffffffffffff (indicating an unallocated
extent as specified in [MS-FSCC] section 2.3.32.1):

 SourceLcn = 0xffffffffffffffff

 Else if SourceIndex == 0:

 SourceLcn = Source.ExtentList[SourceIndex].Lcn + SourceVcn

 Else

 SourceLcn = Source. ExtentList[SourceIndex].Lcn + (SourceVcn - Source.

ExtentList[SourceIndex-1].NextVcn)

 EndIf

 // The purpose of this next section is to determine the TargetLcn based on

Open.Stream.ExtentList[TargetIndex] and TargetVcn.

 If Open.Stream.ExtentList[TargetIndex].Lcn == 0xffffffffffffffff:

 TargetLcn = 0xffffffffffffffff

 Else if TargetIndex == 0:

 TargetLcn = Open.Stream.ExtentList[TargetIndex].Lcn + TargetVcn

 Else

115 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

 TargetLcn = Open.Stream.ExtentList[TargetIndex].Lcn + (TargetVcn -
Open.Stream.ExtentList[TargetIndex-1].NextVcn)

 EndIf

 If TargetLcn != SourceLcn:

 If SourceLcn != 0xffffffffffffffff, the object store MUST increment
Open.File.Volume.ClusterRefcount[SourceLcn].

 If TargetLcn != 0xffffffffffffffff, the object store MUST decrement
Open.File.Volume.ClusterRefcount[TargetLcn]. If
Open.File.Volume.ClusterRefcount[TargetLcn] goes to zero the cluster MUST be
freed.

 // The purpose of this next section is to determine what new EXTENTS structures need

to be added to the streams ExtentList.

 If (TargetIndex == 0 and TargetVcn != 0) or (TargetIndex != 0 and TargetVcn !=
Open.Stream.ExtentList[TargetIndex-1].NextVcn), the object store MUST initialize
a new EXTENTS element NewPreviousExtent as follows:

 NewPreviousExtent.NextVcn set to TargetVcn

 NewPreviousExtent.Lcn set to Open.Stream.ExtentList[TargetIndex].Lcn

 Else

 Set NewPreviousExtent to NULL

 EndIf

 If (TargetVcn != Open.Stream.ExtentList[TargetIndex].NextVcn - 1), the object
store MUST initialize a new EXTENTS element NewNextExtent as follows:

 NewNextExtent. NextVcn set to
Open.Stream.ExtentList[TargetIndex].NextVcn

 NewNextExtent. Lcn set to TargetLcn + 1 if TargetLcn != 0xffffffffffffffff, otherwise
set to 0xffffffffffffffff

 Else

 Set NewNextExtent to NULL

 EndIf

 The object store MUST modify Open.Stream.ExtentList[TargetIndex] as follows:

 Set Open.Stream.ExtentList[TargetIndex].NextVcn to TargetVcn + 1

 Set Open.Stream.ExtentList[TargetIndex].Lcn to SourceLcn

 If NewPreviousExtent != NULL, the object store MUST insert NewPreviousExtent into
Open.Stream.ExtentList, coalescing with any adjacent EXTENTS elements that are
contiguous with respect to LCN.

 If NewNextExtent != NULL, the object store MUST insert NewNextExtent into
Open.Stream.ExtentList, coalescing with any adjacent EXTENTS elements that are

contiguous with respect to LCN.

 EndIf

116 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

 EndFor

 Upon successful completion of the operation, the object store MUST return:

 Status set to STATUS_SUCCESS.

2.1.5.10.5 FSCTL_DUPLICATE_EXTENTS_TO_FILE_EX

The server provides:

 Open: An Open of a DataStream.

 InputBuffer: An array of bytes containing a single SMB2_DUPLICATE_EXTENTS_DATA_EX
structure indicating the source stream, and source and target regions to copy, as specified in [MS-
FSCC] section 2.3.9.2.

 InputBufferSize: The number of bytes in InputBuffer.

On completion, the object store MUST return:

 Status: An NTSTATUS code that specifies the result.

This routine uses the following local variables:

 Open: SourceOpen

 Stream: Source

 64-bit signed integers: ClusterCount, ClusterNum, SourceVcn, TargetVcn, SourceLcn, TargetLcn

 EXTENTS: NewPreviousExtent, NewNextExtent

The purpose of this operation is to make it look like a copy of a region from the source stream to the
target stream has occurred when in reality no data is actually copied. This operation modifies the
target stream's extent list such that, the same clusters are pointed to by both the source and target

streams' extent lists for the region being copied.

When the DUPLICATE_EXTENTS_DATA_EX_SOURCE_ATOMIC flag in the
SMB2_DUPLICATE_EXTENTS_DATA_EX structure isn’t set, the behavior of operation is identical to

FSCTL_DUPLICATE_EXTENTS_TO_FILE. When the flag is set, the operation is source stream atomic.
The source stream duplication fully succeeds or it fails without any side effects (when only part of
source stream file region is duplicated).

Support for FSCTL_DUPLICATE_EXTENTS_TO_FILE_EX is optional. If the object store does not
implement this functionality, the operation MUST be failed with
STATUS_INVALID_DEVICE_REQUEST.<93>

Pseudocode for the operation is as follows:

 If InputBufferSize is less than 0x30, the operation MUST be failed with
STATUS_BUFFER_TOO_SMALL

 If InputBuffer.StructureSize is not equal to 0x30, the operation MUST be failed with
STATUS_NOT_SUPPORTED.

 If Open.File.Volume.IsReadOnly is TRUE, the operation MUST be failed with
STATUS_MEDIA_WRITE_PROTECTED.

 If InputBuffer.SourceFileOffset is not a multiple of Open.File.Volume.ClusterSize, the
operation MUST be failed with STATUS_INVALID_PARAMETER.

%5bMS-FSCC%5d.pdf#Section_efbfe12773ad41409967ec6500e66d5e
%5bMS-FSCC%5d.pdf#Section_efbfe12773ad41409967ec6500e66d5e

117 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

 If InputBuffer.TargetFileOffset is not a multiple of Open.File.Volume.ClusterSize, the
operation MUST be failed with STATUS_INVALID_PARAMETER.

 If InputBuffer.ByteCount is not a multiple of Open.File.Volume.ClusterSize, the operation
MUST be failed with STATUS_INVALID_PARAMETER.

 If InputBuffer.ByteCount is equal to 0, the operation SHOULD return immediately with
STATUS_SUCCESS.

 If Open.Stream.StreamType != DataStream, the operation MUST be failed with
STATUS_NOT_SUPPORTED.

 Set SourceOpen to the Open object returned from a successful open of the file identified by
InputBuffer.SourceFileID. If the open of the InputBuffer.SourceFileID fails, return the status
of the operation.

 Set Source to SourceOpen.Stream

 If SourceOpen does not represent an open Handle to a DataStream with FILE_READ_DATA |
FILE_READ_ATTRIBUTES level access, the operation SHOULD<94> fail with
STATUS_INVALID_PARAMETER.

 If Source.Size is less than InputBuffer.SourceFileOffset + InputBuffer.ByteCount, the
operation MUST be failed with STATUS_NOT_SUPPORTED.

 If Source.Volume != Open.File.Volume, the operation MUST be failed with
STATUS_INVALID_PARAMETER.

 If Source.IsSparse != Open.Stream.IsSparse and Source.IsSparse is TRUE, the operation MUST
be failed with STATUS_NOT_SUPPORTED.

 The object store SHOULD<95> check for byte range lock conflicts on Open.Stream using the
algorithm described in section 2.1.4.10 with ByteOffset set to InputBuffer.TargetFileOffset,
Length set to InputBuffer.ByteCount, IsExclusive set to TRUE, LockIntent set to FALSE, and

Open set to SourceOpen. If a conflict is detected, the operation MUST be failed with
STATUS_FILE_LOCK_CONFLICT.

 The object store SHOULD<96> check for byte range lock conflicts on Source using the algorithm
described in section 2.1.4.10 with ByteOffset set to InputBuffer.SourceFileOffset, Length set
to InputBuffer.ByteCount, IsExclusive set to FALSE, LockIntent set to FALSE, and Open set
to SourceOpen. If a conflict is detected, the operation MUST be failed with
STATUS_FILE_LOCK_CONFLICT.

 The object store MUST modify Open.Stream.ExtentList so that all LCNs in the applicable VCN
range match the LCNs in Source.ExtentList in the same VCN range, taking care to adjust the
Open.File.Volume.ClusterRefcount array accordingly. Pseudo-code for this is as follows:

 ClusterCount = InputBuffer.ByteCount / Open.File.Volume.ClusterSize

 For each ClusterNum from 0 to (ClusterCount – 1):

 SourceVcn = (InputBuffer.SourceFileOffset / Open.File.Volume.ClusterSize) +

ClusterNum

 TargetVcn = (InputBuffer.TargetFileOffset / Open.File.Volume.ClusterSize) +
ClusterNum

 Find the index SourceIndex of the element in Source.ExtentList such that
(Source.ExtentList[SourceIndex].NextVcn > SourceVcn) and (SourceIndex == 0 or
Source. ExtentList[SourceIndex-1].NextVcn <= SourceVcn).

118 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

 Find the index TargetIndex of the element in Open.Stream.ExtentList such that
(Open.Stream.ExtentList[TargetIndex].NextVcn > TargetVcn) and (TargetIndex == 0

or Open.Stream.ExtentList[TargetIndex-1].NextVcn <= TargetVcn).

 // The purpose of this next section is to determine the SourceLcn based on Source.

ExtentList[SourceIndex] and SourceVcn.

 If Source.ExtentList[SourceIndex].Lcn == 0xffffffffffffffff (indicating an unallocated
extent as specified in [MS-FSCC] section 2.3.32.1):

 SourceLcn = 0xffffffffffffffff

 Else if SourceIndex == 0:

 SourceLcn = Source.ExtentList[SourceIndex].Lcn + SourceVcn

 Else

 SourceLcn = Source.ExtentList[SourceIndex].Lcn + (SourceVcn - Source.
ExtentList[SourceIndex-1].NextVcn)

 EndIf

 // The purpose of this next section is to determine the TargetLcn based on
Open.Stream.ExtentList[TargetIndex] and TargetVcn.

 If Open.Stream.ExtentList[TargetIndex].Lcn == 0xffffffffffffffff:

 TargetLcn = 0xffffffffffffffff

 Else if TargetIndex == 0:

 TargetLcn = Open.Stream.ExtentList[TargetIndex].Lcn + TargetVcn

 Else

 TargetLcn = Open.Stream.ExtentList[TargetIndex].Lcn + (TargetVcn -
Open.Stream.ExtentList[TargetIndex-1].NextVcn)

 EndIf

 If TargetLcn != SourceLcn:

 If SourceLcn != 0xffffffffffffffff, the object store MUST increment
Open.File.Volume.ClusterRefcount[SourceLcn].

 If TargetLcn != 0xffffffffffffffff, the object store MUST decrement
Open.File.Volume.ClusterRefcount[TargetLcn]. If
Open.File.Volume.ClusterRefcount[TargetLcn] goes to zero the cluster MUST be
freed.

 // The purpose of this next section is to determine what new EXTENTS structures need
to be added to the streams ExtentList.

 If (TargetIndex == 0 and TargetVcn != 0) or (TargetIndex != 0 and TargetVcn !=
Open.Stream.ExtentList[TargetIndex-1].NextVcn), the object store MUST initialize
a new EXTENTS element NewPreviousExtent as follows:

 NewPreviousExtent.NextVcn set to TargetVcn

 NewPreviousExtent.Lcn set to Open.Stream.ExtentList[TargetIndex].Lcn

119 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

 Else

 Set NewPreviousExtent to NULL

 EndIf

 If (TargetVcn != Open.Stream.ExtentList[TargetIndex].NextVcn - 1), the object

store MUST initialize a new EXTENTS element NewNextExtent as follows:

 NewNextExtent.NextVcn set to Open.Stream.ExtentList[TargetIndex].NextVcn

 NewNextExtent.Lcn set to TargetLcn + 1 if TargetLcn != 0xffffffffffffffff, otherwise
set to 0xffffffffffffffff

 Else

 Set NewNextExtent to NULL

 EndIf

 The object store MUST modify Open.Stream.ExtentList[TargetIndex] as follows:

 Set Open.Stream.ExtentList[TargetIndex].NextVcn to TargetVcn + 1

 Set Open.Stream.ExtentList[TargetIndex].Lcn to SourceLcn

 If NewPreviousExtent != NULL, the object store MUST insert NewPreviousExtent into
Open.Stream.ExtentList, coalescing with any adjacent EXTENTS elements that are
contiguous with respect to LCN.

 If NewNextExtent != NULL, the object store MUST insert NewNextExtent into
Open.Stream.ExtentList, coalescing with any adjacent EXTENTS elements that are
contiguous with respect to LCN.

 EndIf

 When any operation failed and DUPLICATE_EXTENTS_DATA_EX_SOURCE_ATOMIC is set
then undo all operations on Target and set ClusterNum to 0.

 EndFor

 Upon successful completion of the operation, the object store MUST return:

 Status set to STATUS_SUCCESS.

2.1.5.10.6 FSCTL_FILE_LEVEL_TRIM

The server provides:

 Open: An Open of a DataFile.

 InputBuffer: An array of bytes containing a single FILE_LEVEL_TRIM structure, followed by

zero or more FILE_LEVEL_TRIM_RANGE structures, as specified in [MS-FSCC] section 2.3.13.1.

 InputBufferSize: The number of bytes in InputBuffer.

 OutputBufferSize: The maximum number of bytes to return in OutputBuffer.

On completion, the object store MUST return:

 Status: An NTSTATUS code that specifies the result.

%5bMS-FSCC%5d.pdf#Section_efbfe12773ad41409967ec6500e66d5e

120 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

 OutputBuffer: An optional array of bytes that contains a single FILE_LEVEL_TRIM_OUTPUT
structure, as specified in ([MS-FSCC] section 2.3.14).

 BytesReturned: The number of bytes written to OutputBuffer.

This operation also uses the following local variables:

 64-bit unsigned integers (initialized to zero): AlignmentAdjust, TempOffLen, TrimRange,
TrimOffset.

 An NTSTATUS code: TrimStatus.

Support for this operation is optional. If the object store does not implement this functionality, the
operation MUST be failed with STATUS_INVALID_DEVICE_REQUEST.<97>

Pseudocode for the operation is as follows:

 If Open.Stream.IsEncrypted is TRUE OR Open.Stream.IsCompressed is TRUE, the operation

MUST be failed with STATUS_INVALID_PARAMETER.

 If InputBuffer.Size is < sizeof(FILE_LEVEL_TRIM), the operation MUST be failed with
STATUS_INVALID_PARAMETER.

 If InputBuffer.NumRanges is <= 0, the operation MUST be failed with
STATUS_INVALID_PARAMETER.

 If InputBuffer.NumRanges * sizeof(FILE_LEVEL_TRIM_RANGE) overflows 32-bits, the

operation MUST be failed with STATUS_INVALID_PARAMETER.

 If InputBuffer.NumRanges * sizeof(FILE_LEVEL_TRIM_RANGE) + sizeof(FILE_LEVEL_TRIM)
overflows 32-bits, the operation MUST be failed with STATUS_INVALID_PARAMETER.

 If OutputBufferSize != 0 AND OutputBufferSize is < sizeof(FILE_LEVEL_TRIM_OUTPUT), the
operation MUST be failed with STATUS_INVALID_PARAMETER.

 If Open.File.Volume.IsUsnJournalActive is TRUE, the object store MUST post a USN change as
specified in section 2.1.4.11 with File equal to Open.File, Reason equal to

USN_REASON_DATA_OVERWRITE, and FileName equal to Open.File.Name.

 Set OutputBuffer.NumRangesProcessed = 0.

 For each TrimRange in InputBuffer.Ranges:

 Set TrimOffset = TrimRange.Offset

 Set TrimLength = TrimRange.Length

 If ((TrimOffset % Open.File.Volume.SystemPageSize) != 0):

 AlignmentAdjust = TrimOffset % Open.File.Volume.SystemPageSize

 If (TrimOffset + Open.File.Volume.SystemPageSize – AlignmentAdjust) overflows 64-
bits, the operation fails with STATUS_INTEGER_OVERFLOW.

 If (TrimLength >= (Open.File.Volume.SystemPageSize – AlignmentAdjust):

 Decrement TrimLength by (Open.File.Volume.SystemPageSize – AlignmentAdjust)

 Else:

 Set TrimLength to 0

121 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

 EndIf

 If (TrimOffset < Open.Stream.AllocationSize):

 Set TempOffLen to TrimOffset + TrimLength

 If TempOffLen overflows 64-bits, the operation MUST be failed with

STATUS_INTEGER_OVERFLOW.

 If TempOffLen > Open.Stream.AllocationSize:

 TrimLength = Open.Stream.AllocationSize – TrimOffset

 EndIf

 EndIf

 Decrement TrimLength by (TrimLength % Open.File.Volume.SystemPageSize)

 If TrimLength == 0, skip further processing on this range and continue to the next range.

 The object store MUST check for byte range lock conflicts using the algorithm described in
section 2.1.4.10 with ByteOffset set to TrimOffset, Length set to TrimLength,
IsExclusive set to TRUE, LockIntent set to FALSE, and Open set to Open. If a conflict
is detected, the operation MUST be failed with STATUS_FILE_LOCK_CONFLICT.

Construct a list of the LBAs that the object store denotes as the range of the file specified
with TrimOffset and TrimLength. Send a TRIM command to the underlying storage device

with the constructed list of LBAs. For ATA devices, this command is the T13 defined
"TRIM". For SCSI/SAS devices, this command is the T10 defined "UNMAP". Store the
status from the operation in TrimStatus.

 If the command was successful:

 Increment OutputBuffer.NumRanges by 1

 Else,

 The operation MUST return immediately with status set to TrimStatus.

 EndIf

 EndFor

 Upon successful completion of the operation, the object store MUST return:

 BytesReturned set to 0 If OutputBufferSize == 0, sizeof(FILE_LEVEL_TRIM_OUTPUT)
otherwise

 Status set to STATUS_SUCCESS.

2.1.5.10.7 FSCTL_FILESYSTEM_GET_STATISTICS

The server provides:

 Open: An Open of a DataFile or DirectoryFile.

 OutputBufferSize: The maximum number of bytes to return in OutputBuffer.

On completion, the object store MUST return:

 Status: An NTSTATUS code that specifies the result.

122 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

 OutputBuffer: An array of bytes that will return an array of statistical data, one entry per (logical
or physical) host processor.

 BytesReturned: The number of bytes returned in OutputBuffer.

This operation also uses the following local variables:

 An array of bytes (initially empty): FileSystemStatistics.

Support for this operation is optional. If the object store does not implement this functionality, the
operation MUST be failed with STATUS_INVALID_DEVICE_REQUEST.<98>

Pseudocode for the operation is as follows:

 If OutputBufferSize is less than sizeof(FILESYSTEM_STATISTICS), the operation is failed with
STATUS_BUFFER_TOO_SMALL.

 If OutputBufferSize is less than the total size of statistics information, then only

OutputBufferSize bytes will be returned, and the operation MUST succeed but return with
STATUS_BUFFER_OVERFLOW.

 For each host processor, add one entry to FileSystemStatistics as follows:

 FILESYSTEM_STATISTICS structure as specified in [MS-FSCC] section 2.3.12.1.

 An optional file system-specific structure as specified in [MS-FSCC] section 2.3.12.2.<99>

 Padding bytes of zeros to bring total size of each entry to be a multiple of 64 bytes.

 EndFor

 If OutputBufferSize is less than the total size of FileSystemStatistics, the object store MUST:

 Copy OutputBufferSize bytes from FileSystemStatistics to OutputBuffer.

 Set BytesReturned to the number of bytes copied to OutputBuffer.

 Return Status set to STATUS_BUFFER_OVERFLOW.

 EndIf

Upon successful completion of the operation, the object store MUST return:

 Copy FileSystemStatistics to OutputBuffer.

 Set BytesReturned to the number of bytes copied to OutputBuffer.

 Return Status set to STATUS_SUCCESS.

2.1.5.10.8 FSCTL_FIND_FILES_BY_SID

The server provides:

 Open: An Open of a DirectoryStream.

 FindBySidData: An array of bytes containing a FIND_BY_SID_DATA structure as described in
[MS-FSCC] section 2.3.15.

 OutputBufferSize: The maximum number of bytes to return in OutputBuffer.

On completion, the object store MUST return:

%5bMS-FSCC%5d.pdf#Section_efbfe12773ad41409967ec6500e66d5e
%5bMS-FSCC%5d.pdf#Section_efbfe12773ad41409967ec6500e66d5e

123 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

 Status: An NTSTATUS code that specifies the result.

 OutputBuffer: An array of bytes that contains an 8-byte aligned array of
FILE_NAME_INFORMATION ([MS-FSCC] section 2.1.7) structures. For more information, see
[MS-FSCC] section 2.3.16.

 BytesReturned: The number of bytes written to OutputBuffer.

This operation also uses the following local variables:

 A list of Links (initialized to empty): MatchingLinks.

 Unicode string: RelativeName.

 32-bit unsigned integers (initialized to zero): OutputBufferOffset, NameLength.

Support for this operation is optional. If the object store does not implement this functionality, the
operation MUST be failed with STATUS_INVALID_DEVICE_REQUEST.<100>

Pseudocode for the operation is as follows:

 If Open.Stream.StreamType is DataStream, the operation MUST be failed with
STATUS_INVALID_PARAMETER.

 If Open.HasManageVolumeAccess is FALSE and Open.HasBackupAccess is FALSE, the
operation MUST be failed with STATUS_ACCESS_DENIED.

 If Open.File.Volume.QuotaInformation is empty, the operation MUST succeed with

BytesReturned set to zero and Status set to STATUS_NO_QUOTAS_FOR_ACCOUNT.

 If OutputBufferSize is less than 8, the minimum size required to return a
FILE_NAME_INFORMATION structure with trailing padding, the operation MUST be failed with
STATUS_INVALID_USER_BUFFER.

 If FindBySidData.Restart is TRUE, Open.FindBySidRestartIndex MUST be set to zero.

 For each File in FindAllFiles(Open.File.Volume.RootDirectory):<101>

 If File.SecurityDescriptor.OwnerSid matches FindBySidData.SID and File.FileNumber is

greater than or equal to Open.FindBySidRestartIndex, insert the first element of
File.LinkList into MatchingLinks.

 EndFor

 Sort MatchingLinks in ascending order by File.FileNumber.

 For each Link in MatchingLinks:

 Set RelativeName to BuildRelativeName(Link.File, Open.File).

 If RelativeName is not empty (which means that Link represents Open.File or a descendant of

it):

 Strip off the leading backslash ("\") character from RelativeName.

 Set NameLength to the length of RelativeName, in bytes.

 If (OutputBufferLength - OutputBufferOffset) is less than BlockAlign(NameLength + 6,
8):

 BytesReturned is set to OutputBufferOffset.

124 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

 If OutputBufferOffset is not zero:

 The operation returns with STATUS_SUCCESS.

 Else:

 The operation MUST be failed with STATUS_BUFFER_TOO_SMALL.

 EndIf

 EndIf

 Construct a FILE_NAME_INFORMATION structure starting at
OutputBuffer[OutputBufferOffset], with the first 4 bytes (the FileNameLength) set to
NameLength, and the next NameLength bytes (the FileName) set to RelativeName.

 OutputBufferOffset = OutputBufferOffset + BlockAlign(NameLength + 6, 8).

 EndIf

 Set Open.FindBySidRestartIndex to Link.File.FileNumber + 1.

 EndFor

 Upon successful completion of the operation, the object store MUST return:

 BytesReturned set to OutputBufferOffset.

 Status set to STATUS_SUCCESS.

2.1.5.10.9 FSCTL_GET_COMPRESSION

The server provides:

 Open: An Open of a DataStream or DirectoryStream.

 OutputBufferSize: The maximum number of bytes to return in OutputBuffer.

On completion, the object store MUST return:

 Status: An NTSTATUS code that specifies the result.

 OutputBuffer: An array of bytes that will return a USHORT value representing the compression

state of the stream, as specified in [MS-FSCC] section 2.3.18.

 BytesReturned: The number of bytes returned in OutputBuffer.

Support for this operation is optional. If the object store does not implement this functionality, the
operation MUST be failed with STATUS_INVALID_DEVICE_REQUEST.<102>

Pseudocode for the operation is as follows:

 If OutputBufferSize is less than sizeof(USHORT) (2 bytes), the operation MUST be failed with
STATUS_INVALID_PARAMETER.

 If Open.Stream.StreamType is DirectoryStream:

 If Open.File.FileAttributes.FILE_ATTRIBUTE_COMPRESSED is TRUE:

 The object store MUST set OutputBuffer.CompressionState to
COMPRESSION_FORMAT_LZNT1.

%5bMS-FSCC%5d.pdf#Section_efbfe12773ad41409967ec6500e66d5e

125 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

 Else:

 The object store MUST set OutputBuffer.CompressionState to
COMPRESSION_FORMAT_NONE.

 EndIf

 Else:

 If Open.Stream.IsCompressed is TRUE:

 The object store MUST set OutputBuffer.CompressionState to
COMPRESSION_FORMAT_LZNT1.

 Else:

 The object store MUST set OutputBuffer.CompressionState to
COMPRESSION_FORMAT_NONE.

 EndIf

 EndIf

 Upon successful completion of the operation, the object store MUST return:

 BytesReturned set to sizeof(USHORT) (2 bytes).

 Status set to STATUS_SUCCESS.

2.1.5.10.10 FSCTL_GET_INTEGRITY_INFORMATION

The server provides:

 Open: An Open of a DataStream or DirectoryStream.

 OutputBufferSize: The maximum number of bytes to return in OutputBuffer.

Upon completion, the object store MUST return:

 Status: An NTSTATUS code that specifies the result.

 OutputBuffer: An array of bytes that will return an

FSCTL_GET_INTEGRITY_INFORMATION_BUFFER structure, as specified in [MS-FSCC] section
2.3.20.

 BytesReturned: The number of bytes returned in OutputBuffer.

Support for this operation is optional. If the object store does not implement this functionality, the
operation MUST be failed with STATUS_INVALID_DEVICE_REQUEST.<103>

The operation MUST be failed with STATUS_INVALID_PARAMETER under any of the following

conditions:

 OutputBufferSize is less than sizeof(FSCTL_GET_INTEGRITY_INFORMATION_BUFFER).

 Open.Stream.StreamType is not DirectoryStream or DataStream.

Pseudocode for the operation is as follows:

 The object store MUST initialize all fields in OutputBuffer to zero.

%5bMS-FSCC%5d.pdf#Section_efbfe12773ad41409967ec6500e66d5e

126 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

 The object store MUST set OutputBuffer.CheckSumAlgorithm to
Open.Stream.ChecksumAlgorithm.

 The object store MUST set OutputBuffer.ChecksumChunkSizeInBytes to
Open.File.Volume.ChecksumChunkSize.

 The object store MUST set OutputBuffer.ClusterSizeInBytes to
Open.File.Volume.ClusterSize.

 If Open.Stream.StreamType is DataStream and Open.Stream.ChecksumEnforcementOff is
TRUE, then the object store MUST set OutputBuffer.Flags to
FSCTL_INTEGRITY_FLAG_CHECKSUM_ENFORCEMENT_OFF.

 Upon successful completion of the operation, the object store MUST return:

 ByteCount set to sizeof(FSCTL_GET_INTEGRITY_INFORMATION_BUFFER).

 Status set to STATUS_SUCCESS.

2.1.5.10.11 FSCTL_GET_NTFS_VOLUME_DATA

The server provides:

 Open: An Open of a DataFile or DirectoryFile.

 OutputBufferSize: The maximum number of bytes to return in OutputBuffer.

On completion, the object store MUST return:

 Status: An NTSTATUS code that specifies the result.

 OutputBuffer: An array of bytes that will return a NTFS_VOLUME_DATA_BUFFER structure as
specified in [MS-FSCC] section 2.3.22.

 BytesReturned: The number of bytes returned in OutputBuffer.

Support for this operation is optional. If the object store does not implement this functionality, the
operation MUST be failed with STATUS_INVALID_DEVICE_REQUEST.<104>

Pseudocode for the operation is as follows:

 If OutputBufferSize is less than sizeof(NTFS_VOLUME_DATA_BUFFER), the operation MUST be
failed with STATUS_BUFFER_TOO_SMALL.

 The object store MUST populate the fields of OutputBuffer as follows:<105>

 OutputBuffer.VolumeSerialNumber set to Open.File.Volume.VolumeSerialNumber.

 OutputBuffer.NumberSectors set to Open.File.Volume.TotalSpace /
Open.File.Volume.LogicalBytesPerSector.

 OutputBuffer.TotalClusters set to Open.File.Volume.TotalSpace /
Open.File.Volume.ClusterSize.

 OutputBuffer.FreeClusters set to Open.File.Volume.FreeSpace /
Open.File.Volume.ClusterSize.

 OutputBuffer.TotalReserved set to Open.File.Volume.ReservedSpace /
Open.File.Volume.ClusterSize.

 OutputBuffer.BytesPerSector set to Open.File.Volume.LogicalBytesPerSector.

%5bMS-FSCC%5d.pdf#Section_efbfe12773ad41409967ec6500e66d5e

127 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

 OutputBuffer.BytesPerCluster set to Open.File.Volume.ClusterSize.

 OutputBuffer.BytesPerFileRecordSegment set to an implementation-specific value.

 OutputBuffer.ClustersPerFileRecordSegment set to an implementation-specific value.

 OutputBuffer.MftValidDataLength set to an implementation-specific value.

 OutputBuffer.MftStartLcn set to an implementation-specific value.

 OutputBuffer.Mft2StartLcn set to an implementation-specific value.

 OutputBuffer.MftZoneStart set to an implementation-specific value.

 OutputBuffer.MftZoneEnd set to an implementation-specific value.

 Upon successful completion of the operation, the object store MUST return:

 BytesReturned set to sizeof(NTFS_VOLUME_DATA_BUFFER).

 Status set to STATUS_SUCCESS.

2.1.5.10.12 FSCTL_GET_REFS_VOLUME_DATA

The server provides:

 Open: An Open of a DataFile or DirectoryFile.

 OutputBufferSize: The maximum number of bytes to return in OutputBuffer.

On completion, the object store MUST return:

 Status: An NTSTATUS code that specifies the result.

 OutputBuffer: An array of bytes that will return a REFS_VOLUME_DATA_BUFFER structure as

specified in [MS-FSCC] section 2.3.24.

 BytesReturned: The number of bytes returned in OutputBuffer.

Support for this operation is optional. If the object store does not implement this functionality, the
operation MUST be failed with STATUS_INVALID_DEVICE_REQUEST.

Pseudocode for the operation is as follows:

 If OutputBufferSize is less than sizeof(REFS_VOLUME_DATA_BUFFER), the operation MUST be
failed with STATUS_BUFFER_TOO_SMALL.

 The object store MUST populate the fields of OutputBuffer as follows:

 OutputBuffer.VolumeSerialNumber set to Open.File.Volume.VolumeSerialNumber.

 OutputBuffer.NumberSectors set to Open.File.Volume.TotalSpace /

Open.File.Volume.LogicalBytesPerSector.

 OutputBuffer.TotalClusters set to Open.File.Volume.TotalSpace /

Open.File.Volume.ClusterSize.

 OutputBuffer.FreeClusters set to Open.File.Volume.FreeSpace /
Open.File.Volume.ClusterSize.

 OutputBuffer.TotalReserved set Open.File.Volume.ReservedSpace /
Open.File.Volume.ClusterSize.

%5bMS-FSCC%5d.pdf#Section_efbfe12773ad41409967ec6500e66d5e

128 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

 OutputBuffer.BytesPerSector set to Open.File.Volume.LogicalBytesPerSector.

 OutputBuffer.BytesPerCluster set to Open.File.Volume.ClusterSize.

 Upon successful completion of the operation, the object store MUST return:

 BytesReturned set to sizeof(REFS_VOLUME_DATA_BUFFER).

 Status set to STATUS_SUCCESS.

2.1.5.10.13 FSCTL_GET_OBJECT_ID

The server provides:

 Open: An Open of a DataFile or DirectoryFile.

 OutputBufferSize: The maximum number of bytes to return in OutputBuffer.

On completion, the object store MUST return:

 Status: An NTSTATUS code that specifies the result.

 OutputBuffer: An array of bytes that will return a FILE_OBJECTID_BUFFER structure as specified
in [MS-FSCC] section 2.1.3.

 BytesReturned: The number of bytes returned in OutputBuffer.

Support for this operation is optional. If the object store does not implement this functionality, the
operation MUST be failed with STATUS_INVALID_DEVICE_REQUEST.<106>

Pseudocode for the operation is as follows:

 If Open.File.Volume.IsObjectIDsSupported is FALSE, the operation MUST be failed with
STATUS_VOLUME_NOT_UPGRADED.

 If OutputBufferSize is less than sizeof(FILE_OBJECTID_BUFFER), the operation MUST be failed
with STATUS_INVALID_PARAMETER.

 If Open.File.ObjectId is empty, the operation MUST be failed with
STATUS_OBJECTID_NOT_FOUND.

 The object store MUST populate the fields of OutputBuffer as follows:

 OutputBuffer.ObjectId set to Open.File.ObjectId.

 OutputBuffer.BirthVolumeId set to Open.File.BirthVolumeId.

 OutputBuffer.BirthObjectId set to Open.File.BirthObjectId.

 OutputBuffer.DomainId set to Open.File.DomainId.

 Upon successful completion of the operation, the object store MUST return:

 BytesReturned set to sizeof (FILE_OBJECTID_BUFFER).

 Status set to STATUS_SUCCESS.

2.1.5.10.14 FSCTL_GET_REPARSE_POINT

The server provides:

 Open: An Open of a DataFile or DirectoryFile.

%5bMS-FSCC%5d.pdf#Section_efbfe12773ad41409967ec6500e66d5e

129 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

 OutputBufferSize: The maximum number of bytes to return in OutputBuffer.

On completion, the object store MUST return:

 OutputBuffer: An array of bytes containing a REPARSE_DATA_BUFFER or
REPARSE_GUID_DATA_BUFFER structure as defined in [MS-FSCC] sections 2.1.2.2 and 2.1.2.3,

respectively.

 BytesReturned: The number of bytes returned to the caller.

 Status: An NTSTATUS code that specifies the result.

Support for this operation is optional. If the object store does not implement this functionality, the
operation MUST be failed with STATUS_INVALID_DEVICE_REQUEST.<107>

Pseudocode for the operation is as follows:

 If Open.File.Volume.IsReparsePointsSupported is FALSE, the operation MUST be failed with

STATUS_VOLUME_NOT_UPGRADED.

 Phase 1 -- Check whether there is a reparse point on the File

 If Open.File.ReparseTag is empty, the operation MUST be failed with
STATUS_NOT_A_REPARSE_POINT.

 Phase 2 -- Verify that OutputBufferSize is large enough to contain the reparse point data
header.

 If Open.File.ReparseTag is a Microsoft reparse tag as defined in [MS-FSCC] section 2.1.2.1,
then OutputBufferSize MUST be >= sizeof(REPARSE_DATA_BUFFER). If not, the operation
MUST be failed with STATUS_BUFFER_TOO_SMALL.

 If Open.File.ReparseTag is a non-Microsoft reparse tag, then OutputBufferSize MUST be >=
sizeof(REPARSE_GUID_DATA_BUFFER). If it is not, the operation MUST be failed with
STATUS_BUFFER TOO_SMALL.

 Phase 3 -- Return the reparse data

 Set OutputBuffer.ReparseTag to Open.File.ReparseTag.

 Set OutputBuffer.ReparseDataLength to the size of Open.File.ReparseData, in bytes.

 Set OutputBuffer.Reserved to zero.

 Copy as much of Open.File.ReparseData as can fit into the remainder of OutputBuffer starting
at OutputBuffer.DataBuffer.

 If Open.File.ReparseTag is a non-Microsoft reparse tag, set OutputBuffer.ReparseGUID to
Open.File.ReparseGUID.

 Upon successful completion of the operation, the object store MUST return:

 BytesReturned set to the number of bytes written to OutputBuffer.

 Status set to STATUS_SUCCESS.

2.1.5.10.15 FSCTL_GET_RETRIEVAL_POINTERS

The server provides:

 Open: An Open of a DataStream or DirectoryStream.

%5bMS-FSCC%5d.pdf#Section_efbfe12773ad41409967ec6500e66d5e

130 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

 StartingVcnBuffer: An array of bytes containing a STARTING_VCN_INPUT_BUFFER as described
in [MS-FSCC] section 2.3.31.

 OutputBufferSize: The maximum number of bytes to return in OutputBuffer.

On completion, the object store MUST return:

 OutputBuffer: An array of bytes that will return a RETRIEVAL_POINTERS_BUFFER as defined in
[MS-FSCC] section 2.3.32.

 BytesReturned: The number of bytes returned to the caller.

 Status: An NTSTATUS code that specifies the result.

Pseudocode for the operation is as follows:

 Phase 1 -- Verify Parameters

 If the size of StartingVcnBuffer is less than sizeof (STARTING_VCN_INPUT_BUFFER), the

operation MUST be failed with STATUS_INVALID_PARAMETER.

 If OutputBufferSize is smaller than sizeof(RETRIEVAL_POINTERS_BUFFER), the operation MUST
be failed with STATUS_BUFFER_TOO_SMALL.

 If StartingVcnBuffer.StartingVcn is negative, the operation MUST be failed with
STATUS_INVALID_PARAMETER.

 If StartingVcnBuffer.StartingVcn is greater than or equal to Open.Stream.AllocationSize

divided by Open.File.Volume.ClusterSize, the operation MUST be failed with
STATUS_END_OF_FILE.

 Phase 2 -- Locate and copy the extents into OutputBuffer.

 Find the first Extent in Open.Stream.ExtentList where Extent.NextVcn is greater than
StartingVcnBuffer.StartingVcn.

 Set OutputBuffer.StartingVcn to the previous element's NextVcn. If the element is the first
one in Open.Stream.ExtentList, set OutputBuffer.StartVcn to zero.

 Copy as many EXTENTS elements from Open.Stream.ExtentList starting with Extent as will fit
into the remaining space in OutputBuffer, at offset OutputBuffer.Extents.

 Set OutputBuffer.ExtentCount to the number of EXTENTS elements copied.

 Upon successful completion of the operation, the object store MUST return:

 BytesReturned set to the number of bytes written to OutputBuffer.

 Status set to STATUS_SUCCESS if all of the elements in Open.Stream.ExtentList were
copied into OutputBuffer.Extents, else STATUS_BUFFER_OVERFLOW.

2.1.5.10.16 FSCTL_GET_RETRIEVAL_POINTERS_AND_REFCOUNT

The server provides: <108>

 Open: An Open of a DataStream or DirectoryStream.

 StartingVcnBuffer: An array of bytes containing a STARTING_VCN_INPUT_BUFFER as specified
in [MS-FSCC] section 2.3.33.

 OutputBufferSize: The maximum number of bytes to return in OutputBuffer.

%5bMS-FSCC%5d.pdf#Section_efbfe12773ad41409967ec6500e66d5e
%5bMS-FSCC%5d.pdf#Section_efbfe12773ad41409967ec6500e66d5e

131 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

On completion, the object store MUST return:

 OutputBuffer: An array of bytes that will return a
RETRIEVAL_POINTERS_AND_REFCOUNT_BUFFER as defined in [MS-FSCC] section 2.3.34.

 BytesReturned: The number of bytes returned to the caller.

 Status: An NTSTATUS code that specifies the result.

Pseudocode for the operation is as follows:

 Phase 1 -- Verify Parameters

 If the size of StartingVcnBuffer is less than sizeof(STARTING_VCN_INPUT_BUFFER), the
operation MUST be failed with STATUS_INVALID_PARAMETER.

 If OutputBufferSize is smaller than sizeof(RETRIEVAL_POINTERS_AND_REFCOUNT_BUFFER),
the operation MUST be failed with STATUS_BUFFER_TOO_SMALL.

 If StartingVcnBuffer.StartingVcn is negative, the operation MUST be failed with
STATUS_INVALID_PARAMETER.

 If StartingVcnBuffer.StartingVcn is greater than or equal to Open.Stream.AllocationSize
divided by Open.File.Volume.ClusterSize, the operation MUST be failed with
STATUS_END_OF_FILE.

 Phase 2 -- Locate and copy the extents into OutputBuffer.

 Find the first ExtentAndRefCount in Open.Stream.ExtentAndRefCountList where
Extent.NextVcn is greater than StartingVcnBuffer.StartingVcn.

 Set OutputBuffer.StartingVcn to the previous element's NextVcn. If the element is the first
one in Open.Stream.ExtentAndRefCountList, set OutputBuffer.StartVcn to zero.

 Copy as many EXTENT_AND_REFCOUNTS elements from Open.Stream.ExtentAndRefCountList

starting with ExtentAndRefCount as will fit into the remaining space in OutputBuffer, at offset
OutputBuffer.Extents.

 Set OutputBuffer.ExtentCount to the number of EXTENT_AND_REFCOUNTS elements copied.

 Upon successful completion of the operation, the object store MUST return:

 BytesReturned set to the number of bytes written to OutputBuffer.

 Status set to STATUS_SUCCESS if all of the elements in Open.Stream.ExtentList were
copied into OutputBuffer.Extents, else STATUS_BUFFER_OVERFLOW.

2.1.5.10.17 FSCTL_GET_RETRIEVAL_POINTER_COUNT

The server provides:

 Open: An Open of a DataStream or DirectoryStream.

 StartingVcnBuffer: An array of bytes containing a STARTING_VCN_INPUT_BUFFER as described
in [MS-FSCC] section 2.3.29.

 OutputBufferSize: The maximum number of bytes to return in OutputBuffer.

On completion, the object store MUST return:

 OutputBuffer: An array of bytes that will return a RETRIEVAL_POINTER_COUNT as defined in
[MS-FSCC] section 2.3.30.

%5bMS-FSCC%5d.pdf#Section_efbfe12773ad41409967ec6500e66d5e

132 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

 BytesReturned: The number of bytes returned to the caller.

 Status: An NTSTATUS code that specifies the result.

Pseudocode for the operation is as follows:

 Phase 1 -- Verify Parameters

 If the size of StartingVcnBuffer is less than sizeof(STARTING_VCN_INPUT_BUFFER), the
operation MUST be failed with STATUS_INVALID_PARAMETER.

 If OutputBufferSize is smaller than sizeof(RETRIEVAL_POINTER_COUNT), the operation MUST
be failed with STATUS_BUFFER_TOO_SMALL.

 If StartingVcnBuffer.StartingVcn is negative, the operation MUST be failed with
STATUS_INVALID_PARAMETER.

 If StartingVcnBuffer.StartingVcn is greater than or equal to Open.Stream.AllocationSize

divided by Open.File.Volume.ClusterSize, the operation MUST be failed with
STATUS_END_OF_FILE.

 Phase 2 -- Locate and count the extents.

 Find the first Extent in Open.Stream.ExtentList where Extent.NextVcn is greater than
StartingVcnBuffer.StartingVcn.

 Increment OutputBuffer.ExtentCount by 1. If the element is the first one in

Open.Stream.ExtentList, set OutputBuffer.ExtentCount to 1 instead.

 Repeat till the end of Open.Stream.ExtentList.

 Upon successful completion of the operation, the object store MUST return:

 BytesReturned set to sizeof(RETRIEVAL_POINTER_COUNT).

 Status set to STATUS_SUCCESS.

2.1.5.10.18 FSCTL_IS_PATHNAME_VALID

The FSCTL_IS_PATHNAME_VALID structure is defined in [MS-FSCC] section 2.3.35.

This operation always returns STATUS_SUCCESS.

2.1.5.10.19 FSCTL_MARK_HANDLE

The server provides:

 Open: An Open of a DataFile.

 InputBufferSize: The byte count of the InputBuffer.

 InputBuffer: A buffer of type MARK_HANDLE_INFO as defined in [MS-FSCC] section 2.3.39.

Upon completion, the object store MUST return:

 Status: An NTSTATUS code that specifies the result.

Support for this operation is optional. If the object store does not implement this functionality, the
operation MUST be failed with STATUS_INVALID_DEVICE_REQUEST. If the object store supports
FSCTL_MARK_HANDLE but does not support MARK_HANDLE_READ_COPY or

MARK_HANDLE_NOT_READ_COPY, then STATUS_INVALID_PARAMETER MUST be returned. <109>

%5bMS-FSCC%5d.pdf#Section_efbfe12773ad41409967ec6500e66d5e
%5bMS-FSCC%5d.pdf#Section_efbfe12773ad41409967ec6500e66d5e

133 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

Pseudocode for the operation is as follows:

 If InputBufferSize is less than the size of the MARK_HANDLE_INFO structure, the operation
MUST be failed with STATUS_BUFFER_TOO_SMALL.

 If Open.Stream.StreamType == DirectoryStream, the operation MUST be failed with

STATUS_DIRECTORY_NOT_SUPPORTED.<110>

 STATUS_INVALID_PARAMETER is returned if:

 InputBuffer.HandleInfo contains any flag other than one and only one of either
MARK_HANDLE_READ_COPY or MARK_HANDLE_NOT_READ_COPY.

 Open.Mode.FILE_NO_INTERMEDIATE_BUFFERING was not specified at open time,
meaning the file was opened for cached IO operations.

 If InputBuffer.CopyNumber > (Open.File.Volume.NumberOfDataCopies – 1).

 If Open.Stream.StreamType != DataStream.

 If InputBuffer.HandleInfo has MARK_HANDLE_READ_COPY set:

 If Open.File.Volume.NumberOfDataCopies < 2, the operation MUST be failed with
STATUS_NOT_REDUNDANT_STORAGE.

 If Open.Stream.IsCompressed is TRUE, the operation MUST be failed with
STATUS_COMPRESSED_FILE_NOT_SUPPORTED.

 If a file is resident the operation MUST be failed with
STATUS_RESIDENT_FILE_NOT_SUPPORTED.<111>

 Set Open.ReadCopyNumber = InputBuffer.CopyNumber.

 Else If InputBuffer.HandleInfo has MARK_HANDLE_NOT_READ_COPY set:

 For ReFS File System, if Open.File.Volume.NumberOfDataCopies < 2, the operation MUST
be failed with STATUS_NOT_REDUNDANT_STORAGE.

 Set Open.ReadCopyNumber = 0xffffffff.

 EndIf

Upon successful completion of the operation, the object store MUST return:

 Status set to STATUS_SUCCESS.

2.1.5.10.20 FSCTL_OFFLOAD_READ

The server provides:

 Open: An Open of a DataFile.

 InputBuffer: An array of bytes containing a single FSCTL_OFFLOAD_READ_INPUT structure, as
specified in [MS-FSCC] section 2.3.41, indicating the Token that indicates the range of the file to
offload read, as specified in [MS-FSCC] section 2.1.11.

 InputBufferSize: The number of bytes in InputBuffer.

 OutputBufferSize: The number of bytes in OutputBuffer.

Upon completion, the object store MUST return:

%5bMS-FSCC%5d.pdf#Section_efbfe12773ad41409967ec6500e66d5e

134 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

 Status: An NTSTATUS code that specifies the result.

 OutputBuffer: An array of bytes that contains a single FSCTL_OFFLOAD_READ_OUTPUT
structure, as specified in [MS-FSCC] section 2.3.42, which contains the Token for the read data,
as specified in [MS-FSCC] section 2.1.11.

 BytesReturned: The number of bytes written to OutputBuffer.

This operation also uses the following local variables:

 Boolean (initialized to FALSE): VdlSameAsEof

 32-bit unsigned integers (initialized to zero): OutputBufferLength

 64-bit unsigned integers (initialized to zero): StartingCluster, ValidDataLength, FileSize,
LastClusterInFile, VdlTrimmedCopyLength, and StorageOffloadBytesRead

 A list of EXTENTS (initialized to empty): OffloadLCNList

 An NTSTATUS code: StorageOffloadReadStatus

 A STORAGE_OFFLOAD_TOKEN structure, as specified in [MS-FSCC] section 2.1.11:
StorageOffloadReadToken

Support for this read operation is optional. If the object store does not implement this functionality,
the operation MUST be failed with STATUS_INVALID_DEVICE_REQUEST.<112>

Pseudocode for the operation is as follows:

 If Open.File.Volume.IsOffloadReadSupported is FALSE, the operation MUST be failed with
STATUS_NOT_SUPPORTED.

 If InputBufferSize is less than the size of the FSCTL_OFFLOAD_READ_INPUT structure size, the
operation MUST be failed with STATUS_BUFFER_TOO_SMALL.

 If OutputBufferSize is less than the size of the FSCTL_OFFLOAD_READ_OUTPUT structure size,
the operation MUST be failed with STATUS_BUFFER_TOO_SMALL.

 If InputBuffer.FileOffset is not a multiple of Open.File.Volume. LogicalBytesPerSector, the

operation MUST be failed with STATUS_INVALID_PARAMETER.

 If InputBuffer.CopyLength is not a multiple of Open.File.Volume.LogicalBytesPerSector,
the operation MUST be failed with STATUS_INVALID_PARAMETER.

 If InputBuffer.Size is not equal to the size of the FSCTL_OFFLOAD_READ_INPUT structure size,
the operation MUST be failed with STATUS_INVALID_PARAMETER.

 If the sum of InputBuffer.FileOffset and InputBuffer.CopyLength overflows 64 bits, the
operation MUST be failed with STATUS_INVALID_PARAMETER.

 If InputBuffer.CopyLength is equal to 0, the operation SHOULD return immediately with

STATUS_SUCCESS.

 If Open.Stream.StreamType != DataStream, the operation MUST be failed with
STATUS_OFFLOAD_READ_FILE_NOT_SUPPORTED.

 If Open.Stream.IsSparse is TRUE, the operation MUST be failed with
STATUS_OFFLOAD_READ_FILE_NOT_SUPPORTED.

 If Open.Stream.IsEncrypted is TRUE, the operation MUST be failed with
STATUS_OFFLOAD_READ_FILE_NOT_SUPPORTED.

135 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

 If Open.Stream.IsCompressed is TRUE, the operation MUST be failed with
STATUS_OFFLOAD_READ_FILE_NOT_SUPPORTED.

 If Open.Stream.IsDeleted is TRUE, the operation MUST be failed with STATUS_FILE_DELETED.

 If InputBuffer.FileOffset / Open.File.Volume.BytesPerCluster is less than 0, the operation

MUST be failed with STATUS_INVALID_PARAMETER.

 The object store MUST check for byte range lock conflicts using the algorithm described in section
2.1.4.10 with ByteOffset set to InputBuffer.FileOffset, Length set to
InputBuffer.CopyLength, IsExclusive set to FALSE, LockIntent set to FALSE, and Open set
to Open. If a conflict is detected, the operation MUST be failed with
STATUS_FILE_LOCK_CONFLICT.

 Set ValidDataLength to Open.Stream.ValidDataLength.

 Set FileSize to Open.Stream.Size.

 If ValidDataLength is not equal to FileSize, set VdlSameAsEof to FALSE.

 Set StartingCluster to InputBuffer.FileOffset / Open.File.Volume.BytesPerCluster.

 Set LastClusterInFile to ClustersFromBytesTruncate(Open.File.Volume, FileSize).

 If StartingCluster is greater than LastClusterInFile:

 The operation MUST be failed with STATUS_END_OF_FILE.

 Else If StartingCluster is less than 0:

 The operation MUST be failed with STATUS_INVALID_PARAMETER.

 EndIf

 If InputBuffer.FileOffset is greater than or equal to FileSize, the operation MUST be failed with

STATUS_END_OF_FILE.

 If InputBuffer.FileOffset is greater than or equal to ValidDataLength:

 Set OutputBuffer.Token to the Zero token as defined in [MS-FSCC] section 2.1.11.

 The operation MUST return STATUS_SUCCESS, with BytesReturned set to
OutputBufferLength, and OutputBuffer.Flags set to
OFFLOAD_READ_FLAG_ALL_ZERO_BEYOND_CURRENT_RANGE.

 EndIf

 If the sum of InputBuffer.FileOffset and InputBuffer.CopyLength is greater than
ValidDataLength:

 Set InputBuffer.CopyLength to ValidDataLength – InputBuffer.FileOffset.

 If VdlSameAsEof is TRUE:

 Set InputBuffer.CopyLength to BlockAlign(InputBuffer.CopyLength,
Open.File.Volume.LogicalBytesPerSector).

 Set VdlTrimmedCopyLength to InputBuffer.CopyLength.

 Set OutputBuffer.Flags to
OFFLOAD_READ_FLAG_ALL_ZERO_BEYOND_CURRENT_RANGE.

136 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

 EndIf

 EndIf

 For Each Extent in Open.Stream.ExtentList spanned by the range defined by Input.FileOffset
and Input.CopyLength:

 Append the partial or full Extent to OffloadLCNList.

 EndFor

 Construct the offload read command with the OffloadLCNList as the ranges, and Token length
specified in InputBuffer.CopyLength as described in [INCITS-T10/11-059] and send it to the
underlying storage subsystem, storing the status from the operation in StorageOffloadReadStatus,
the number of bytes represented by the token in StorageOffloadBytesRead, and the Token in
StorageOffloadToken.

 If the call was successful:

 Set OutputBuffer.Token to StorageOffloadToken.

 Set OutputBuffer.TransferLength to StorageOffloadBytesRead.

 If OutputBuffer.Flag has the bit
OFFLOAD_READ_FLAG_ALL_ZERO_BEYOND_CURRENT_RANGE set:

 If OutputBuffer.TransferLength is less than VdlTrimmedCopyLength, clear the

OFFLOAD_READ_FLAG_ALL_ZERO_BEYOND_CURRENT_RANGE bit in
OutputBuffer.Flags.

 EndIf

 Else:

 If StorageOffloadReadStatus is equal to STATUS_NOT_SUPPORTED or if

StorageOffloadReadStatus is equal to STATUS_DEVICE_FEATURE_NOT_SUPPORTED, then set
Open.File.Volume.IsOffloadReadSupported to FALSE.

 EndIf

 Upon successful completion of the operation, the object store MUST return:

 BytesReturned set to OutputBufferLength.

 Status set to STATUS_SUCCESS.

2.1.5.10.21 FSCTL_OFFLOAD_WRITE

The server provides:

 Open: An Open of a DataFile.

 InputBuffer: An array of bytes containing a single FSCTL_OFFLOAD_WRITE_INPUT structure, as
specified in [MS-FSCC] section 2.3.43, indicating the Token to use as the source, and the range of
the file to be offload written to, as specified in [MS-FSCC] section 2.1.11.

 InputBufferSize: The number of bytes in InputBuffer.

 OutputBufferSize: The number of bytes in OutputBuffer.

Upon completion, the object store MUST return:

https://go.microsoft.com/fwlink/?LinkId=239442
%5bMS-FSCC%5d.pdf#Section_efbfe12773ad41409967ec6500e66d5e

137 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

 Status: An NTSTATUS code that specifies the result.

 OutputBuffer: An array of bytes that contains a single FSCTL_OFFLOAD_WRITE_OUTPUT
structure, as specified in [MS-FSCC] section 2.3.44.

 BytesReturned: The number of bytes written to OutputBuffer.

This operation also uses the following local variables:

 32-bit unsigned integers (initialized to zero): OutputBufferLength

 64-bit unsigned integers (initialized to zero): NewValidDataLength, ValidDataLength, FileSize, and
StorageOffloadBytesWritten.

 A list of EXTENTS (initialized to empty): OffloadLCNList

 An NTSTATUS code: StorageOffloadWriteStatus

Support for this write operation is optional. If the object store does not implement this functionality,

the operation MUST be failed with STATUS_INVALID_DEVICE_REQUEST.<113>

Pseudocode for the operation is as follows:

 If Open.File.Volume.IsReadOnly is TRUE, the operation MUST be failed with
STATUS_MEDIA_WRITE_PROTECTED.

 If Open.File.Volume.IsOffloadWriteSupported is FALSE, the operation MUST be failed with
STATUS_NOT_SUPPORTED.

 If InputBufferSize is less than the size of the FSCTL_OFFLOAD_WRITE_INPUT structure size,
the operation MUST be failed with STATUS_BUFFER_TOO_SMALL.

 If OutputBufferSize is less than the size of the FSCTL_OFFLOAD_WRITE_OUTPUT structure
size, the operation MUST be failed with STATUS_BUFFER_TOO_SMALL.

 If InputBuffer.FileOffset is NOT a multiple of Open.File.Volume. LogicalBytesPerSector, the
operation MUST be failed with STATUS_INVALID_PARAMETER.

 If InputBuffer.CopyLength is NOT a multiple of Open.File.Volume. LogicalBytesPerSector,

the operation MUST be failed with STATUS_INVALID_PARAMETER.

 If InputBuffer.TransferOffset is NOT a multiple of
Open.File.Volume.LogicalBytesPerSector, the operation MUST be failed with
STATUS_INVALID_PARAMETER.

 If InputBuffer.Size is not equal to the size of the FSCTL_OFFLOAD_WRITE_INPUT structure
size, the operation MUST be failed with STATUS_INVALID_PARAMETER.

 If the sum of InputBuffer.FileOffset and InputBuffer.CopyLength overflows 64 bits, the

operation MUST be failed with STATUS_INVALID_PARAMETER.

 If InputBuffer.CopyLength is equal to 0, the operation SHOULD return immediately with
STATUS_SUCCESS.

 If Open.Stream.StreamType != DataStream, the operation MUST be failed with
STATUS_OFFLOAD_WRITE_FILE_NOT_SUPPORTED.

 If Open.Stream.IsSparse is TRUE, the operation MUST be failed with

STATUS_OFFLOAD_WRITE_FILE_NOT_SUPPORTED.

 If Open.Stream.IsEncrypted is TRUE, the operation MUST be failed with
STATUS_OFFLOAD_WRITE_FILE_NOT_SUPPORTED.

138 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

 If Open.Stream.IsCompressed is TRUE, the operation MUST be failed with
STATUS_OFFLOAD_WRITE_FILE_NOT_SUPPORTED.

 If Open.Stream.IsDeleted is TRUE, the operation MUST be failed with STATUS_FILE_DELETED.

 If InputBuffer.FileOffset / Open.File.Volume.BytesPerCluster is less than 0, the operation

MUST be failed with STATUS_INVALID_PARAMETER.

 If (InputBuffer.FileOffset + InputBuffer.CopyLength) is greater than
Open.File.Volume.MaxFileSize, the operation MUST be failed with
STATUS_INVALID_PARAMETER.

 The object store MUST check for byte range lock conflicts using the algorithm described in section
2.1.4.10 with ByteOffset set to InputBuffer.FileOffset, Length set to
InputBuffer.CopyLength, IsExclusive set to TRUE, LockIntent set to FALSE, and Open set to

Open. If a conflict is detected, the operation MUST be failed with STATUS_FILE_LOCK_CONFLICT.

 If Open.File.Volume.IsUsnJournalActive is TRUE, the object store MUST post a USN change as

specified in section 2.1.4.11 with File equal to File, Reason equal to
USN_REASON_DATA_OVERWRITE, and FileName equal to Open.File.Name.

 Set FileSize to Open.Stream.Size.

 Set ValidDataLength to Open.Stream.ValidDataLength.

 If InputBuffer.FileOffset is greater than or equal to Open.Stream.FileSize, the operation
MUST be failed with STATUS_END_OF_FILE.

 If InputBuffer.FileOffset is greater than ValidDataLength, the operation MUST be failed with
STATUS_BEYOND_VDL.

 For Each Extent in Open.Stream.ExtentList spanned by the range defined by
InputBuffer.FileOffset and InputBuffer.CopyLength:

 Append the partial or full Extent to OffloadLCNList.

 EndFor

 Construct the offload write command with the OffloadLCNList as the ranges, Token from
InputBuffer.Token, token offset from InputBuffer.TransferOffset, and write length from
InputBuffer.CopyLength as defined in [INCITS-T10/11-059] and send it to the underlying
storage subsystem. Store the status from the operation in StorageOffloadWriteStatus, and the
number of bytes written in StorageOffloadBytesWritten.

 If the operation was successful:

 Set NewValidDataLength to InputBuffer.FileOffset + StorageOffloadBytesWritten.

 If NewValidDataLength is greater than ValidDataLength:

 Set Open.Stream.VDL to NewValidDataLength.

 EndIf

 Set OutputBuffer.LengthWritten to StorageOffloadBytesWritten.

 Set OutputBuffer.Size to the size of the FSCTL_OFFLOAD_WRITE_OUTPUT structure.

 Set OutputBuffer.Flags to 0.

 Else:

https://go.microsoft.com/fwlink/?LinkId=239442

139 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

 If StorageOffloadWriteStatus is equal to STATUS_NOT_SUPPORTED or if
StorageOffloadWriteStatus is equal to STATUS_DEVICE_FEATURE_NOT_SUPPORTED, then set

Open.File.Volume.IsOffloadWriteSupported to FALSE.

 EndIf

 Upon successful completion of the operation, the object store MUST return:

 BytesReturned set to OutputBufferLength.

 Status set to STATUS_SUCCESS.

2.1.5.10.22 FSCTL_QUERY_ALLOCATED_RANGES

The server provides:

 Open: An Open of a DataFile.

 InputBuffer: An array of bytes containing a single FILE_ALLOCATED_RANGE_BUFFER structure
indicating the range to query for allocation, as specified in [MS-FSCC] section 2.3.52.

 InputBufferSize: The number of bytes in InputBuffer.

 OutputBufferSize: The maximum number of bytes to return in OutputBuffer.

On completion, the object store MUST return:

 Status: An NTSTATUS code that specifies the result.

 OutputBuffer: An array of bytes that will return an array of zero or more
FILE_ALLOCATED_RANGE_BUFFER structures as specified in [MS-FSCC] section 2.3.52.

 BytesReturned: The number of bytes returned in OutputBuffer.

This operation uses the following local variables:

 32-bit unsigned integer indicating the index of the next FILE_ALLOCATED_RANGE_BUFFER to fill in
OutputBuffer (initialized to 0): OutputBufferIndex.

 64-bit unsigned integer QueryStart: Is initialized to

ClustersFromBytesTruncate(Open.File.Volume, InputBuffer.FileOffset). This is the cluster
containing the first byte of the queried range.

 64-bit unsigned integer QueryNext: Is initialized to
ClustersFromBytesTruncate(Open.File.Volume, (InputBuffer.FileOffset +
InputBuffer.Length - 1)) + 1. This is the cluster following the last cluster of the range.

 64-bit unsigned integers (initialized to 0): ExtentFirstVcn, ExtentNextVcn, RangeFirstVcn,
RangeNextVcn

 Boolean values (initialized to FALSE): FoundRangeStart, FoundRangeEnd

 Pointer to an EXTENTS element (initialized to NULL): Extent

 FILE_ALLOCATED_RANGE_BUFFER (initialized to zeros): Range

Support for this operation is optional. If the object store does not implement this functionality, the
operation MUST be failed with STATUS_INVALID_DEVICE_REQUEST.<114>

Pseudocode for the operation is as follows:

%5bMS-FSCC%5d.pdf#Section_efbfe12773ad41409967ec6500e66d5e

140 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

 If Open.Stream.StreamType is DirectoryStream, the operation MUST be failed with
STATUS_INVALID_PARAMETER.

 If InputBufferSize is less than sizeof(FILE_ALLOCATED_RANGE_BUFFER), the operation MUST
be failed with STATUS_INVALID_PARAMETER.

 If (InputBuffer.FileOffset < 0) or (InputBuffer.Length < 0) or (InputBuffer.Length >
MAXLONGLONG - InputBuffer.FileOffset), the operation MUST be failed with
STATUS_INVALID_PARAMETER. If InputBuffer.Length is 0:

 Set BytesReturned to 0.

 Return STATUS_SUCCESS.

 EndIf

 If OutputBufferSize < sizeof(FILE_ALLOCATED_RANGE_BUFFER), the operation MUST be failed

with STATUS_BUFFER_TOO_SMALL.

 If Open.Stream.IsSparse is FALSE:

 Set OutputBuffer.FileOffset to InputBuffer.FileOffset.

 Set OutputBuffer.Length to InputBuffer.Length.

 Set BytesReturned to sizeof(FILE_ALLOCATED_RANGE_BUFFER).

 Return STATUS_SUCCESS.

 Else:

 For sparse files, return a list of contiguous allocated ranges within the requested range.
Contiguous allocated ranges in a sparse file might be fragmented on disk, therefore it is
necessary to loop through the EXTENTS on this stream, coalescing the adjacent allocated
EXTENTS into a single FILE_ALLOCATED_RANGE_BUFFER entry.

 Set Status to STATUS_SUCCESS.

 Set BytesReturned to 0.

 For each Extent in Open.Stream.ExtentList:

 Set ExtentFirstVcn to ExtentNextVcn.

 Set ExtentNextVcn to Extent.NextVcn.

 If Extent.Lcn != 0xffffffffffffffff, meaning Extent is allocated (not a sparse hole):

 If FoundRangeStart is FALSE:

 If QueryStart < ExtentFirstVcn:

 Set FoundRangeStart to TRUE.

 Set RangeFirstVcn to ExtentFirstVcn.

 Else If ExtentFirstVcn <= QueryStart and QueryStart < ExtentNextVcn:

 Set FoundRangeStart to TRUE.

 Set RangeFirstVcn to QueryStart.

 EndIf

141 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

 EndIf

 If FoundRangeStart is TRUE:

 If QueryNext <= ExtentFirstVcn:

 Break out of the For loop.

 Else If ExtentFirstVcn < QueryNext and QueryNext <= ExtentNextVcn:

 Set FoundRangeEnd to TRUE.

 Set RangeNextVcn to QueryNext.

 Else (ExtentNextVcn < QueryNext):

 Set FoundRangeEnd to FALSE.

 Set RangeNextVcn to ExtentNextVcn.

 EndIf

 EndIf

 Else If FoundRangeStart is TRUE:

 Set FoundRangeEnd to TRUE.

 EndIf

 If FoundRangeEnd is TRUE:

 Set FoundRangeStart to FALSE and FoundRangeEnd to FALSE.

 Add Range to OutputBuffer as follows:

 Set Range.FileOffset to RangeFirstVcn * Open.File.Volume.ClusterSize.

 Set Range.Length to (RangeNextVcn - RangeFirstVcn) *
Open.File.Volume.ClusterSize.

 If OutputBufferSize < ((OutputBufferIndex + 1) *
sizeof(FILE_ALLOCATED_RANGE_BUFFER)) then:

 Set RangeFirstVcn to 0 and RangeNextVcn to 0.

 Set Status to STATUS_BUFFER_OVERFLOW.

 Break out of the For loop.

 EndIf

 Copy Range to OutputBuffer[OutputBufferIndex].

 Increment OutputBufferIndex by 1.

 Set RangeFirstVcn to 0 and RangeNextVcn to 0.

 EndIf

 EndFor

 If RangeNextVcn is not 0:

142 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

 If OutputBufferSize < ((OutputBufferIndex + 1) *
sizeof(FILE_ALLOCATED_RANGE_BUFFER)) then:

 Set Status to STATUS_BUFFER_OVERFLOW.

 Else add Range to OutputBuffer as follows:

 Set Range.FileOffset to RangeFirstVcn * Open.File.Volume.ClusterSize.

 Set Range.Length to (RangeNextVcn - RangeFirstVcn) *
Open.File.Volume.ClusterSize.

 Copy Range to OutputBuffer[OutputBufferIndex].

 Increment OutputBufferIndex by 1.

 EndIf

 EndIf

 Bias the first and the last returned ranges so that they match the offset/length passed in,
using the following algorithm:

 If OutputBufferIndex > 0:

 If OutputBuffer[0].FileOffset < InputBuffer.FileOffset:

 Set OutputBuffer[0].Length to OutputBuffer[0].Length -
(InputBuffer.FileOffset -OutputBuffer[0].FileOffset).

 Set OutputBuffer[0].FileOffset to InputBuffer.FileOffset.

 EndIf

 If (OutputBuffer[OutputBufferIndex - 1].FileOffset + OutputBuffer[OutputBufferIndex

- 1].Length) > (InputBuffer.FileOffset + InputBuffer.Length):

 Set OutputBuffer[OutputBufferIndex - 1].Length to InputBuffer.FileOffset +
InputBuffer.Length - OutputBuffer[OutputBufferIndex - 1].FileOffset.

 EndIf

 EndIf

 Endif

 Upon successful completion of the operation, the object store MUST return:

 BytesReturned set to OutputBufferIndex * sizeof(FILE_ALLOCATED_RANGE_BUFFER).

 Status set to STATUS_SUCCESS.

2.1.5.10.23 FSCTL_QUERY_FAT_BPB

Support for this operation is optional. If the object store does not implement this functionality, this
operation MUST be failed with STATUS_INVALID_DEVICE_REQUEST.<115>

The server provides:

 Open: An Open of a DataFile or DirectoryFile.

 OutputBufferSize: The maximum number of bytes to return in OutputBuffer.

143 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

On completion, the object store MUST return:

 Status: An NTSTATUS code that specifies the result.

 OutputBuffer: An array of bytes that will return the first 0x24 bytes of sector zero, on a FAT
volume.

 BytesReturned: The number of bytes returned in OutputBuffer.

Pseudocode for the operation is as follows:

 If OutputBufferSize is less than 0x24, the operation MUST be failed with
STATUS_BUFFER_TOO_SMALL.

 The operation will now copy the first 0x24 bytes of sector 0 of the storage device associated with
Open.File.Volume into OutputBuffer.

 Upon successful completion of the operation, the object store MUST return:

 BytesReturned set to 0x24.

 Status set to STATUS_SUCCESS.

2.1.5.10.24 FSCTL_QUERY_FILE_REGIONS

Support for this operation is optional. If the object store does not implement this functionality, this
operation MUST be failed with STATUS_INVALID_DEVICE_REQUEST.<116>

The server provides:

 Open: An Open of DataFile.

 InputBuffer: An array of bytes containing a single FILE_REGION_INPUT structure indicating the
range of the DataFile to return data about, as specified in [MS-FSCC] section 2.3.55. This input
structure is optional.

 InputBufferSize: The number of bytes in InputBuffer.

 OutputBufferSize: The maximum number of bytes to return in OutputBuffer.

Upon completion, this object store MUST return:

 Status: An NTSTATUS code that specifies the result.

 OutputBuffer: An array of bytes that will return a FILE_REGION_OUTPUT structure as specified in
[MS-FSCC] section 2.3.56.

 BytesReturned: The number of bytes returned in OutputBuffer.

This operation uses the following local variables:

 A FILE_REGION_INPUT structure as specified in [MS-FSCC] section 2.3.55: InputRegion

 32-bit unsigned integers (initialized to zero): OutputBufferIndex, Length

 64-bit unsigned integers (initialized to zero): Vdl, Eof

Pseudocode for this operation is as follows:

 If InputBufferSize == 0:

 Set InputRegion.FileOffset = 0

%5bMS-FSCC%5d.pdf#Section_efbfe12773ad41409967ec6500e66d5e

144 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

 Set InputRegion.Length = MAXLONGLONG

 Set InputRegion.DesiredUsage = FILE_REGION_USAGE_VALID_CACHED_DATA for NTFS or
Set InputRegion.DesiredUsage = FILE_REGION_USAGE_VALID_NONCACHED_DATA for
ReFS<117>

 ElseIf InputBufferSize < Sizeof(FILE_REGION_INPUT)

 The operation MUST be failed with STATUS_BUFFER_TOO_SMALL.

 Else:

 Set InputRegion = InputBuffer

 EndIf

 If InputRegion.Length <= 0, the operation MUST be failed with STATUS_INVALID_PARAMETER.

 If (InputRegion.FileOffset + InputRegion.Length) exceeds 63 bits, the operation MUST be failed

with STATUS_INVALID_PARAMETER

 If InputRegion.DesiredUsage does NOT have flag FILE_REGION_USAGE_VALID_CACHED_DATA
(for NTFS) or flag FILE_REGION_USAGE_VALID_NONCACHED_DATA (for ReFS) set, the operation
MUST be failed with STATUS_INVALID_PARAMETER

 If OutputBuffer.Length < sizeof(FILE_REGION_OUTPUT), the operation MUST be failed with
STATUS_BUFFER_TOO_SMALL

 Set Vdl = Open.File.ValidDataLength

 Set Eof = Open.File.Eof

 Set Length = FieldOffset(OutputBuffer.Region[0])

 If (InputRegion.FileOffset > Eof) OR ((InputRegion.FileOffset == Eof) AND (Eof > 0)), the

operation MUST return STATUS_SUCCESS, with BytesReturned set to 0.

 If (InputRegion.FileOffset >= Vdl)

 Set OutputBuffer.Region[OutputBufferIndex].FileOffset = InputRegion.FileOffset

 Set OutputBuffer.Region[OutputBufferIndex].Length = min(InputRegion.Length, Eof -
InputRegion.FileOffset)

 Set OutputBuffer.Region[OutputBufferIndex].Usage = 0

 Set OutputBuffer.Region[OutputBufferIndex].Reserved = 0

 Set Length = Length + sizeof(FILE_REGION_INFO)

 Set OutputBufferIndex = OutputBufferIndex + 1

 Set OutputBuffer.TotalRegionEntryCount = OutputBuffer.TotalRegionEntryCount + 1

 Else

 Set OutputBuffer.Region[OutputBufferIndex].FileOffset = InputRegion.FileOffset

 Set OutputBuffer.Region[OutputBufferIndex].Length = min((Vdl –
InputRegion.FileOffset), InputRegion.Length)

 Set OutputBuffer.Region[OutputBufferIndex].Usage = InputRegion.DesiredUsage

145 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

 Set OutputBuffer.Region[OutputBufferIndex].Reserved = 0

 Set Length = Length + sizeof(FILE_REGION_INFO)

 Set OutputBufferIndex = OutputBufferIndex + 1

 Set OutputBuffer.TotalRegionEntryCount = OutputBuffer.TotalRegionEntryCount + 1

 If (Vdl < Eof) AND (OutputBuffer.Region[OutputBufferIndex - 1]. Length
<InputRegion.Length),

 If (Length + sizeof(FILE_REGION_INFO)) > OutputBufferSize)

 Set OutputBuffer.TotalRegionEntryCount = OutputBuffer.TotalRegionEntryCount
+ 1

 The operation MUST be failed with STATUS_BUFFER_OVERFLOW.

 Set OutputBuffer.Region[OutputBufferIndex].FileOffset = Vdl

 Set OutputBuffer.Region[OutputBufferIndex].Length = min(InputRegion.Length –
OutputBuffer.Region[OutputBufferIndex - 1].Length, Eof –Vdl)

 Set OutputBuffer.Region[OutputBufferIndex].Usage = 0

 Set OutputBuffer.Region[OutputBufferIndex].Reserved = 0;

 Set Length = Length + sizeof(FILE_REGION_INFO)

 Set OutputBufferIndex = OutputBufferIndex + 1

 Set OutputBuffer.TotalRegionEntryCount = OutputBuffer.TotalRegionEntryCount + 1

 EndIf

 EndIf

 Upon successful completion of the operation, the object store MUST return:

 OutputBuffer.RegionEntryCount set to OutputBufferIndex

 BytesReturned set to Length

 Status set to STATUS_SUCCESS

2.1.5.10.25 FSCTL_QUERY_ON_DISK_VOLUME_INFO

The server provides:

 Open: An Open of a DataFile.

 OutputBufferSize: The maximum number of bytes to return in OutputBuffer.

On completion, the object store MUST return:

 Status: An NTSTATUS code that specifies the result.

 OutputBuffer: An array of bytes that will return a FILE_QUERY_ON_DISK_VOL_INFO_BUFFER
structure as defined in [MS-FSCC] section 2.3.58.

 BytesReturned: The number of bytes returned in OutputBuffer.

%5bMS-FSCC%5d.pdf#Section_efbfe12773ad41409967ec6500e66d5e

146 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

Support for this operation is optional. If the object store does not implement this functionality, the
operation MUST be failed with STATUS_INVALID_DEVICE_REQUEST.<118>

Pseudocode for the operation is as follows:

 If OutputBufferSize is less than sizeof(FILE_QUERY_ON_DISK_VOL_INFO_BUFFER), the

operation MUST be failed with STATUS_BUFFER_TOO_SMALL.

 The object store MUST populate the fields of OutputBuffer as follows:

 OutputBuffer.DirectoryCount set to Open.File.Volume.DirectoryCount.

 OutputBuffer.FileCount set to Open.File.Volume.FileCount.

 OutputBuffer.FsFormatMajVersion set to Open.File.Volume.FsFormatMajVersion.

 OutputBuffer.FsFormatMinVersion set to Open.File.Volume.FsFormatMinVersion.

 OutputBuffer.FsFormatName set to the Unicode string "UDF".

 OutputBuffer.FormatTime set to Open.File.Volume.FormatTime.

 OutputBuffer.LastUpdateTime set to Open.File.Volume.LastUpdateTime.

 OutputBuffer.CopyrightInfo set to Open.File.Volume.CopyrightInfo.

 OutputBuffer.AbstractInfo set to Open.File.Volume.AbstractInfo.

 OutputBuffer.FormattingImplementationInfo set to
Open.File.Volume.FormattingImplementationInfo.

 OutputBuffer.LastModifyingImplementationInfo set to
Open.File.Volume.LastModifyingImplementationInfo.

 Upon successful completion of the operation, the object store MUST return:

 BytesReturned set to sizeof(FILE_QUERY_ON_DISK_VOL_INFO_BUFFER).

 Status set to STATUS_SUCCESS.

2.1.5.10.26 FSCTL_QUERY_SPARING_INFO

The server provides:

 Open: An Open of a DataFile.

 OutputBufferSize: The maximum number of bytes to return in OutputBuffer.

On completion, the object store MUST return:

 Status: An NTSTATUS code that specifies the result.

 OutputBuffer: An array of bytes that will return a FILE_QUERY_SPARING_BUFFER structure as
defined in [MS-FSCC] section 2.3.60.

 BytesReturned: The number of bytes returned in OutputBuffer.

Support for this operation is optional. If the object store does not implement this functionality, the
operation MUST be failed with STATUS_INVALID_DEVICE_REQUEST.<119>

Pseudocode for the operation is as follows:

%5bMS-FSCC%5d.pdf#Section_efbfe12773ad41409967ec6500e66d5e

147 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

 If OutputBufferSize is less than sizeof(FILE_QUERY_SPARING_BUFFER), the operation MUST be
failed with STATUS_INVALID_PARAMETER.

 The object store MUST populate the fields of OutputBuffer as follows:

 OutputBuffer.SparingUnitBytes set to Open.File.Volume.SparingUnitBytes.

 OutputBuffer.SoftwareSparing set to Open.File.Volume.SoftwareSparing.

 OutputBuffer.TotalSpareBlocks set to Open.File.Volume.TotalSpareBlocks.

 OutputBuffer.FreeSpareBlocks set to Open.File.Volume.FreeSpareBlocks.

 Upon successful completion of the operation, the object store MUST return:

 BytesReturned set to sizeof(: FILE_QUERY_SPARING_BUFFER).

 Status set to STATUS_SUCCESS.

2.1.5.10.27 FSCTL_READ_FILE_USN_DATA

The server provides:

 Open: An Open of a DataFile or DirectoryFile.

 InputBuffer: An optional array of bytes containing a READ_FILE_USN_DATA structure, as
specified in [MS-FSCC] section 2.3.61.

 InputBufferSize: The number of bytes in the InputBuffer.

 OutputBufferSize: The maximum number of bytes to return in OutputBuffer.

On completion, the object store MUST return:

 Status: An NTSTATUS code that specifies the result.

 OutputBuffer: An array of bytes that will return a USN_RECORD_V2 or USN_RECORD_V3 as
defined in [MS-FSCC] section 2.3.62.

 BytesReturned: The number of bytes returned in OutputBuffer.

Support for this operation is optional. If the object store does not implement this functionality, the

operation MUST be failed with STATUS_INVALID_DEVICE_REQUEST.<120>

This operation uses the following local variables:

 16-bit unsigned integers: MinMajorVersionSupported, MaxMajorVersionSupported,
MajorVersionToUse

 Unicode string: LinkNameToUse

 32-bit unsigned integers: LinkNameLength, RecordLength

Pseudocode for the operation is as follows:

Set MinMajorVersionSupported to 2.

Set MaxMajorVersionSupported to 3.<121>

Set MajorVersionToUse to 2.

If InputBufferSize >= sizeof(READ_FILE_USN_DATA):<122>

%5bMS-FSCC%5d.pdf#Section_efbfe12773ad41409967ec6500e66d5e

148 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

 If InputBuffer.MinMajorVersion > InputBuffer.MaxMajorVersion, the operation MUST be
failed with STATUS_INVALID_PARAMETER.

 If InputBuffer.MinMajorVersion > MaxMajorVersionSupported or
InputBuffer.MaxMajorVersion < MinMajorVersionSupported, the operation MUST be failed with

STATUS_INVALID_PARAMETER.<123>

 If InputBuffer.MaxMajorVersion >= 3, set MajorVersionToUse to 3.

EndIf

If MajorVersionToUse == 3:

 If OutputBufferSize is less than sizeof(USN_RECORD_V3), the operation MUST be failed with
STATUS_BUFFER_TOO_SMALL.

Else:

 If OutputBufferSize is less than sizeof(USN_RECORD_V2), the operation MUST be failed with
STATUS_BUFFER_TOO_SMALL.

EndIf

The object store MUST choose a link name to use in constructing the reply, as shown in the following
pseudocode:

 Set LinkNameToUse to empty.

 For each Link in Open.File.LinkList:

 If Link.ShortName is not empty:

 Set LinkNameToUse to Link.Name.

 Break out of the For loop.

 ElseIf LinkNameToUse is empty:

 Set LinkNameToUse to Link.Name.

 EndIf

 EndFor

Set LinkNameLength to the length, in bytes, of LinkNameToUse.

If MajorVersionToUse == 3:

 Set RecordLength to BlockAlign(FieldOffset(USN_RECORD_V3.FileName) + LinkNameLength,
8).

Else:

 Set RecordLength to BlockAlign(FieldOffset(USN_RECORD_V2.FileName) + LinkNameLength,

8).

EndIf

If OutputBufferSize is less than RecordLength, the operation MUST be failed with
STATUS_BUFFER_TOO_SMALL.

149 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

If MajorVersionToUse == 3, the object store MUST fill OutputBuffer with a USN_RECORD_V3
structure as follows:

 OutputBuffer.RecordLength set to RecordLength.

 OutputBuffer.MajorVersion set to 3.

 OutputBuffer.MinorVersion set to 0.

 OutputBuffer.FileReferenceNumber set to Open.File.FileId128.

 OutputBuffer.ParentFileReferenceNumber set to Open.Link.ParentFile.FileId128.

 OutputBuffer.Usn set to Open.File.Usn.

 OutputBuffer.TimeStamp set to 0.

 OutputBuffer.Reason set to 0.

 OutputBuffer.SourceInfo set to 0.

 OutputBuffer.SecurityId set to 0.

 OutputBuffer.FileAttributes set to Open.File.FileAttributes, or to FILE_ATTRIBUTE_NORMAL
if Open.File.FileAttributes is 0.

 OutputBuffer.FileNameLength set to LinkNameLength.

 OutputBuffer.FileName set to LinkNameToUse.

Else the object store MUST fill OutputBuffer with a USN_RECORD_V2 structure as follows:

 OutputBuffer.RecordLength set to RecordLength.

 OutputBuffer.MajorVersion set to 2.

 OutputBuffer.MinorVersion set to 0.

 OutputBuffer.FileReferenceNumber set to Open.File.FileId64.

 OutputBuffer.ParentFileReferenceNumber set to Open.Link.ParentFile.FileId64.

 OutputBuffer.Usn set to Open.File.Usn.

 OutputBuffer.TimeStamp set to 0.

 OutputBuffer.Reason set to 0.

 OutputBuffer.SourceInfo set to 0.

 OutputBuffer.SecurityId set to 0.

 OutputBuffer.FileAttributes set to Open.File.FileAttributes, or to FILE_ATTRIBUTE_NORMAL
if Open.File.FileAttributes is 0.

 OutputBuffer.FileNameLength set to LinkNameLength .

 OutputBuffer.FileName set to LinkNameToUse.

EndIf

The object store MUST pad OutputBuffer with trailing bytes of zeroes to bring the total number of
bytes written into OutputBuffer up to RecordLength.

150 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

Upon successful completion of the operation, the object store MUST return:

 BytesReturned set to RecordLength.

 Status set to STATUS_SUCCESS.

2.1.5.10.28 FSCTL_RECALL_FILE

The server provides:

 Open: An Open of a DataFile.

On completion, the object store MUST return:

 Status: An NTSTATUS code that specifies the result.

Support for this operation is optional. If the object store does not implement this functionality, the
operation MUST be failed with STATUS_INVALID_DEVICE_REQUEST.<124>

Pseudocode for the operation is as follows:

 If Open.File.FileType is DirectoryFile, the operation MUST be failed with
STATUS_INVALID_HANDLE.

 If Open.File.FileAttributes.FILE_ATTRIBUTE_OFFLINE is not set:

 // The file has already been recalled.

 Else

 Recall Open.File from remote storage.

 Clear Open.File.FileAttributes.FILE_ATTRIBUTE_OFFLINE

 EndIf

 Upon successful completion of the operation, the object store MUST return:

 Status set to STATUS_SUCCESS.

2.1.5.10.29 FSCTL_REFS_STREAM_SNAPSHOT_MANAGEMENT

The server provides:

 Open: An Open of a DataStream.

 InputBuffer: An array of bytes containing a single
REFS_STREAM_SNAPSHOT_MANAGEMENT_INPUT_BUFFER structure indicating the management
operation to be performed, as well as a Unicode name to perform the operation with. The input
buffer may further contain control structures specific to each operation, as follows:

 When InputBuffer.Operation is REFS_STREAM_SNAPSHOT_OPERATION_CREATE, section

2.1.5.10.29.1, there shall be no additional control structure.

 When InputBuffer.Operation is REFS_STREAM_SNAPSHOT_OPERATION_LIST, section
2.1.5.10.29.2, there shall be no additional control structure.

 When InputBuffer.Operation is REFS_STREAM_SNAPSHOT_OPERATION_QUERY_DELTAS,
section 2.1.5.10.29.3, there shall be an additional control structure of type
REFS_STREAM_SNAPSHOT_ QUERY_DELTAS_INPUT_BUFFER.

151 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

 When InputBuffer.Operation is REFS_STREAM_SNAPSHOT_OPERATION_REVERT, section
2.1.5.10.29.4, there shall be no additional control structure.

 When InputBuffer.Operation is
REFS_STREAM_SNAPSHOT_OPERATION_SET_SHADOW_BTREE, section 2.1.5.10.29.5, there

shall be no additional control structure.

 When InputBuffer.Operation is
REFS_STREAM_SNAPSHOT_OPERATION_CLEAR_SHADOW_BTREE, section 2.1.5.10.29.6,
there shall be no additional control structure aligned to the next 8-byte boundary.

 InputBuffer.SnapshotNameLength: The length, in bytes, of the Unicode name provided by the
input buffer.

 InputBuffer.OperationInputBufferLength: For operations requiring an additional control

structure, this field indicates the length in bytes of the additional control structure.

 InputBuffer.NameAndInputBuffer: An array of bytes containing a Unicode name and,

depending on the management operation, an additional control structure.

On completion, the object store MUST return:

 Status: An NTSTATUS code that specifies the result.

 Depending on the NTSTATUS code returned, the object store MUST return the following structure,

which is dependent on the management operation performed:

 When the operation is REFS_STREAM_SNAPSHOT_OPERATION_LIST, the server shall return a
structure of type REFS_STREAM_SNAPSHOT_LIST_OUTPUT_BUFFER. This structure shall
contain:

 OutputBuffer.EntryCount: The number of entries returned by the list query.

 OutputBuffer.BufferSizeRequiredForQuery: The number of total bytes required to

fully satisfy the list query.

 OutputBuffer.Reserved: An array of 8 bytes set to zero.

 OutputBuffer.Entries: An array of structures of type
REFS_STREAM_SNAPSHOT_LIST_OUTPUT_BUFFER_ENTRY containing
OutputBuffer.EntryCount entries. This array structure contains the following information
for each entry it contains:

 OutputBuffer.Entry[i].NextEntryOffset: The offset, in bytes, to the next entry in
the array, relative to the start of the previous entry. When this value is 0, no more

entries are present.

 OutputBuffer.Entry[i].SnapshotNameLength: The length, in bytes, of the
UNICODE name present in this entry.

 OutputBuffer.Entry[i].SnapshotCreationTime: The creation time of the snapshot,

represented by a FILETIME structure stored as a 64-bit ULONGLONG.

 OutputBuffer.Entry[i].StreamSize: The size, in bytes, of the stream represented by

this entry.

 OutputBuffer.Entry[i].StreamAllocationSize: The size, in bytes, representing the
on-disk space usage of the snapshot represented by this entry.

 OutputBuffer.Entry[i].Reserved: An array of 8 bytes set to zero.

152 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

 OutputBuffer.Entry[i].SnapshotName: An array of
OutputBuffer.Entry[i].SnapshotNameLength bytes representing the Unicode name

of the snapshot represented by this entry.

 When the operation is REFS_STREAM_SNAPSHOT_OPERATION_QUERY_DELTAS, the server

shall return a structure of type REFS_STREAM_SNAPSHOT_QUERY_DELTAS_OUTPUT_BUFFER.
This structure shall contain:

 OutputBuffer.ExtentCount: The number of extents returned by the query.

 OutputBuffer.Reserved: An array of 8 bytes set to zero.

 An array of OutputBuffer.ExtentCount structures of type REFS_STREAM_EXTENT. This
structure contains the following information for each entry:

 OutputBuffer.Entry[i].Vcn: The VCN representing the start of the current extent.

 OutputBuffer.Entry[i].Lcn: The LCN mapping to OutputBuffer.Entry[i].Vcn for the

current extent.

 OutputBuffer.Entry[i].Length: The length, in clusters, of the current extent.

 OutputBuffer.Entry[i].Properties: An enum of type
REFS_STREAM_EXTENT_PROPERTIES, as specified in [MS-FSCC] section 2.3.66.2.1,
representing the on-disk properties of the current extent.

 No other operation returns an output buffer.

The purpose of this FSCTL is to serve as a stream snapshot management routine for any given
DataStream snapshot on any given file. The management routines handle each operation individually,
and this is determined by an Operation code specified in the input buffer.

Support for FSCTL_REFS_STREAM_SNAPSHOT_MANAGEMENT is optional. If the object store does not
implement this functionality, the operation MUST be failed with STATUS_INVALID_DEVICE_REQUEST.

The server MUST validate the input and output buffer to satisfy the following requirements:

 If the length of the input buffer is less than
sizeof(REFS_STREAM_SNAPSHOT_MANAGEMENT_INPUT_BUFFER), then the operation MUST be
failed with STATUS_BUFFER_TOO_SMALL.

 If InputBuffer.OperationInputBufferLength != 0 and the length of the input buffer is less than
(sizeof(REFS_STREAM_SNAPSHOT_MANAGEMENT_INPUT_BUFFER) +
QuadAlign(InputBuffer.SnapshotNameLength) +
InputBuffer.OperationInputBufferLength), then the operation MUST be failed with

STATUS_BUFFER_TOO_SMALL.

 If InputBuffer.OperationInputBufferLength == 0 and the length of the input buffer is less
than (sizeof(REFS_STREAM_SNAPSHOT_MANAGEMENT_INPUT_BUFFER) +
InputBuffer.SnapshotNameLength + InputBuffer.OperationInputBufferLength), then the

operation MUST be failed with STATUS_BUFFER_TOO_SMALL.

 If InputBuffer.Operation is less than REFS_STREAM_SNAPSHOT_OPERATION_CREATE or is

greater than REFS_STREAM_SNAPSHOT_OPERATION_MAX, then the operation MUST be failed
with STATUS_INVALID_PARAMETER.

 The following fields in the InputBuffer MUST be aligned. If they are not aligned, then the
operation MUST be failed with STATUS_INVALID_PARAMETER.

 InputBuffer.SnapshotNameLength MUST be 2 bytes aligned.

%5bMS-FSCC%5d.pdf#Section_efbfe12773ad41409967ec6500e66d5e

153 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

 InputBuffer.OperationInputBufferLength MUST be 2 bytes aligned.

 If the operation is either (REFS_STREAM_SNAPSHOT_OPERATION_CREATE or
REFS_STREAM_SNAPSHOT_OPERATION_LIST or
REFS_STREAM_SNAPSHOT_OPERATION_QUERY_DELTAS) and

InputBuffer.SnapshotNameLength == 0, then the operation MUST be failed with
STATUS_INVALID_PARAMETER.

 If the operation is REFS_STREAM_SNAPSHOT_OPERATION_CREATE and either
(InputBuffer.OperationInputBufferLength != 0 or OutputBufferLength != 0), then the
operation MUST be failed with STATUS_INVALID_PARAMETER.

 If the operation is REFS_STREAM_SNAPSHOT_OPERATION_LIST and either
(InputBuffer.SnapshotNameLength == 0 or InputBuffer.OperationInputBufferLength !=

0 or OutputBufferLength < sizeof(REFS_STREAM_SNAPSHOT_LIST_OUTPUT_BUFFER)), then
the operation MUST be failed with STATUS_INVALID_PARAMETER.

 If the operation is REFS_STREAM_SNAPSHOT_OPERATION_QUERY_DELTAS and either

(InputBuffer.SnapshotNameLength == 0 or InputBuffer.OperationInputBufferLength !=
sizeof(REFS_STREAM_SNAPSHOT_QUERY_DELTAS_INPUT_BUFFER) or OutputBufferLength <
sizeof(REFS_STREAM_SNAPSHOT_QUERY_DELTAS_OUTPUT_BUFFER)), then the operation MUST

be failed with STATUS_INVALID_PARAMETER.

 If the operation is either REFS_STREAM_SNAPSHOT_OPERATION_LIST or
REFS_STREAM_SNAPSHOT_OPERATION_QUERY_DELTAS and the Open lacks
FILE_READ_ATTRIBUTES access, then the operation MUST be failed with
STATUS_ACCESS_DENIED.

 If the operation is either REFS_STREAM_SNAPSHOT_OPERATION_CREATE or
REFS_STREAM_SNAPSHOT_OPERATION_SET_SHADOW_BTREE or

REFS_STREAM_SNAPSHOT_OPERATION_CLEAR_SHADOW_BTREE and the Open lacks
FILE_WRITE_ATTRIBUTES access, then the operation MUST be failed with
STATUS_ACCESS_DENIED.

 If the operation is REFS_STREAM_SNAPSHOT_OPERATION_REVERT and the Open lacks
(FILE_WRITE_ATTRIBUTES | FILE_WRITE_DATA) access, then the operation MUST be failed with
STATUS_ACCESS_DENIED.

2.1.5.10.29.1 Algorithm for REFS_STREAM_SNAPSHOT_OPERATION_CREATE

A given DataStream (A) is backed by some underlying backing store then:

 All IO to the file hosting the Open DataStream is blocked.

 A new DataStream (B) is created, with its own new backing store. This new DataStream (B) is
inserted into the file table and starts out empty.

 A new named attribute is inserted into the file table. This attribute uses the name specified by

InputBuffer.SnapshotName. This attribute contains a reference to DataStream (A).

 DataStream (A) is marked as immutable.

 IO is released and the operation is completed.

 All new modifying IO is then inserted into DataStream (B). When a given metadata extent is
queried, DataStream (B) is checked. If the extent is found, it is returned. If it is not found,
DataStream (A) is checked.

2.1.5.10.29.2 Algorithm for REFS_STREAM_SNAPSHOT_OPERATION_LIST

154 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

Given a set of an arbitrary number (N) of DataStreams (S), as well as (N) named attributes where
each named attribute references one DataStream, then:

 Let Q be the query string, as represented by InputBuffer.SnapshotName.

 A search for Q is performed within the File containing S. This will match all named attributes

within the file whose names match the query string Q.<125>

 Let X be a pointer to an array of bytes, initialized to point to the first entry in the output buffer.

 Let Y be the total amount of bytes currently written to the output buffer. Y = 0.

 Let Z be the number of entries currently written to the output buffer. Z = 0.

 For every matching attribute M_i,

 Copy the M_i name into X.SnapshotName.

 Copy the M_i name length into X.SnapshotNameLength.

 Copy the M_i creation time into X.SnapshotCreationTime.

 Copy the M_i stream size into X.StreamSize.

 Copy the M_i stream allocation size into X.StreamAllocationSize.

 Set X.Reserved to zero.

 Set X.NextEntryOffset to
QuadAlign(FIELD_OFFSET(REFS_STREAM_SNAPSHOT_LIST_OUTPUT_BUFFER_ENTRY,

SnapshotName) + X.SnapshotNameLength).

 Advance the pointer X by X.NextEntryOffset bytes.

 Z = Z + 1.

 Y = Y + X.

 If Y > OutputBufferLength, then no more entries are written to the output buffer. The rest
of the entries are enumerated only incrementing Y.

 Set OutputBuffer.Reserved to zero.

 Set OutputBuffer.EntryCount to Z.

 Set OutputBuffer.BufferSizeRequiredForQuery to Y.

 If Y > OutputBufferLength, then return STATUS_BUFFER_OVERFLOW. Otherwise return
STATUS_SUCCESS.

2.1.5.10.29.3 Algorithm for REFS_STREAM_SNAPSHOT_OPERATION_QUERY_DELTAS

Given a DataStream (A) and InputBuffer.SnapshotName representing the name of a file attribute

referencing a DataStream (B), then:

 If no such B exists, the request must be failed with STATUS_OBJECT_NAME_NOT_FOUND.

 If the creation time of B is greater than the creation time of A, then the request must be failed
with STATUS_INVALID_PARAMETER.

 Let X be the current number of VCNs returned in the output buffer. X = 0.

155 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

 Set OutputBuffer.Reserved to zeros.

 For every VCN within the range of InputBuffer.StartingVcn and infinity:

 Let V be the currently processed VCN.

 Locate the first VCN starting at V and progressing until infinity representing a metadata

change, via a search beginning at B and progressively searching in every DataStream C sorted
by creation time such that A≥C>B. Let such a VCN be called W, where if none is found W
shall represent infinity.

 Copy the LCN mapping to W to OutputBuffer.Extents[X].Lcn.

 Copy the Length of the W extent to OutputBuffer.Extents[X].Length.

 Copy the W properties to OutputBuffer.Extents[X].Properties.

 Increase OutputBuffer.ExtentCount by 1.

 Increase X by 1.

 If Add2Ptr(OutputBuffer +
FIELD_OFFSET(REFS_STREAM_SNAPSHOT_QUERY_DELTAS_OUTPUT_BUFFER, Extents[X]))
> Add2Ptr(OutputBuffer, OutputBufferLength), then return STATUS_BUFFER_OVERFLOW.

 V = (W + OutputBuffer.Extents[X].Length).

 The operation is completed with STATUS_SUCCESS.

2.1.5.10.29.4 Algorithm for REFS_STREAM_SNAPSHOT_OPERATION_REVERT

Given a DataStream (A) and InputBuffer.SnapshotName representing the name of a file attribute
referencing a DataStream (B), then:

 If no such B exists, the request must be failed with STATUS_OBJECT_NAME_NOT_FOUND.

 If the creation time of B is greater than the creation time of A, then the request must be failed
with STATUS_INVALID_PARAMETER.

 All IO to the File containing DataStreams A and B must be halted.

 Every DataStream C such that A>C>B must be deleted.

 Every named file attribute representing a DataStream C such that A>C≥B must be deleted.

 The named file attribute representing A is updated to instead reference B.

 IO to the file is resumed.

 The operation is completed with STATUS_SUCCESS.<126>

2.1.5.10.29.5 Algorithm for

REFS_STREAM_SNAPSHOT_OPERATION_SET_SHADOW_BTREE

Given a DataStream (A), then:

 If A is not the mutable entry in the list of all DataStreams within the file containing A, then the
request must be failed with STATUS_NOT_SUPPORTED.

 If A is already itself a shadow DataStream, then the request must be failed with

STATUS_INVALID_PARAMETER.

156 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

 A new DataStream is created, following the algorithm by
REFS_STREAM_SNAPSHOT_OPERATION_CREATE with the exception that no such named attribute

will exist for it. Let this DataStream be denoted as (B).

 B is marked immutable, with A retaining its mutability.

 A is marked as a shadow DataStream.

 The operation is completed with STATUS_SUCCESS.<127>

2.1.5.10.29.6 Algorithm for

REFS_STREAM_SNAPSHOT_OPERATION_CLEAR_SHADOW_BTREE

Given a DataStream (A), then:

 If A is not a shadow DataStream, then the request must be failed with
STATUS_INVALID_PARAMETER.

 Let B denote the DataStream whose creation time immediately follows that of A, in ascending
order.

 B is deleted.

 A is marked as not being a shadow DataStream.

 The operation is completed with STATUS_SUCCESS.<128>

2.1.5.10.30 FSCTL_SET_COMPRESSION

The server provides:

 Open: An Open of a DataFile or DirectoryFile.

 InputBuffer: An array of bytes containing a USHORT value indicating the requested compression

state of the stream, as specified in [MS-FSCC] section 2.3.67.

 InputBufferSize: The number of bytes in InputBuffer.

On completion, the object store MUST return:

 Status: An NTSTATUS code that specifies the result.

Support for this operation is optional. If the object store does not implement this functionality, the
operation MUST be failed with STATUS_INVALID_DEVICE_REQUEST.<129><130>

The operation MUST be failed with STATUS_INVALID_PARAMETER under any of the following
conditions:

 InputBufferSize is less than sizeof(USHORT) (2 bytes).

 InputBuffer.CompressionState is not one of the predefined values in [MS-FSCC] section

2.3.69.

Pseudocode for the operation is as follows:

 If InputBuffer.CompressionState != COMPRESSION_FORMAT_NONE:

 If compression support is disabled in the object store,<131> the operation MUST be failed
with STATUS_COMPRESSION_DISABLED.

%5bMS-FSCC%5d.pdf#Section_efbfe12773ad41409967ec6500e66d5e

157 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

 If Open.File.Volume.ClusterSize is greater than 4,096, the operation MUST be failed with
STATUS_INVALID_DEVICE_REQUEST, because compression is not supported on volumes with

a cluster size greater than 4 KB.

 EndIf

 If Open.File.Volume.IsReadOnly is TRUE, the operation MUST be failed with
STATUS_MEDIA_WRITE_PROTECTED.

 If Open.Stream.IsEncrypted is TRUE, the operation MUST be failed with
STATUS_INVALID_DEVICE_REQUEST.

 If (InputBuffer.CompressionState == COMPRESSION_FORMAT_NONE and
Open.Stream.IsCompressed is FALSE) or (InputBuffer.CompressionState !=
COMPRESSION_FORMAT_NONE and Open.Stream.IsCompressed is TRUE), the operation MUST

return STATUS_SUCCESS at this point.

 The object store MUST initialize ChangedAllocation to FALSE.

 The object store MUST post a USN change as specified in section 2.1.4.11 with File equal to File,
Reason equal to USN_REASON_COMPRESSION_CHANGE, and FileName equal to
Open.Link.Name.

 If InputBuffer.CompressionState != COMPRESSION_FORMAT_NONE:

 If Open.Stream.AllocationSize is less than BlockAlign(Open.Stream.AllocationSize,
Open.File.Volume.CompressionUnitSize), the object store MUST increase
Open.Stream.AllocationSize to BlockAlign(Open.Stream.AllocationSize,
Open.File.Volume.CompressionUnitSize). If there is not enough disk space, the operation
MUST be failed with STATUS_DISK_FULL; otherwise the object store MUST set
ChangedAllocation to TRUE.

 EndIf

 If InputBuffer.CompressionState == COMPRESSION_FORMAT_NONE, the object store MUST
set Open.Stream.IsCompressed to FALSE; otherwise it MUST be set to TRUE.

 If Open.Stream.StreamType is DirectoryStream or Open.Stream.Name is empty, the object
store MUST propagate the compression state to Open.File:

 If Open.Stream.IsCompressed is TRUE, the object store MUST set
Open.File.FileAttributes.FILE_ATTRIBUTE_COMPRESSED to TRUE; otherwise it MUST be set
to FALSE.

 EndIf

 Send directory change notification as specified in section 2.1.4.1, with Volume equal to
Open.File.Volume, Action equal to FILE_ACTION_MODIFIED, FilterMatch equal to
FILE_NOTIFY_CHANGE_ATTRIBUTES, and FileName equal to Open.FileName.

 If Open.Stream.StreamType is DirectoryStream, the operation MUST return STATUS_SUCCESS
at this point.

 If Open.Stream.IsCompressed is FALSE and Open.Stream.AllocationSize is greater than
BlockAlign(Open.Stream.Size, Open.File.Volume.ClusterSize), the object store SHOULD free
excess allocation by setting Open.Stream.AllocationSize to BlockAlign(Open.Stream.Size,
Open.File.Volume.ClusterSize). If any allocation is freed in this way, the object store MUST set
ChangedAllocation to TRUE.

158 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

 If Open.Stream.IsSparse is TRUE, the object store SHOULD free any allocated compression
unit-aligned extents beyond Open.Stream.ValidDataLength. If any allocation is freed in this

way, the object store MUST set ChangedAllocation to TRUE.

 If ChangedAllocation is TRUE and Open.Stream.Name is empty, the object store MUST set

Open.File.PendingNotifications.FILE_NOTIFY_CHANGE_SIZE to TRUE.

 Upon successful completion of the operation, the object store MUST return:

 Status set to STATUS_SUCCESS.

2.1.5.10.31 FSCTL_SET_DEFECT_MANAGEMENT

The server provides:

 Open: An Open of a DataStream.

 InputBuffer: An array of bytes containing a Boolean as specified in [MS-FSCC] section 2.3.71.

 InputBufferSize: The number of bytes in InputBuffer.

On completion, the object store MUST return:

 Status: An NTSTATUS code that specifies the result.

Support for this operation is optional. If the object store does not implement this functionality or the
target media is not a software defect-managed media, the operation MUST be failed with

STATUS_INVALID_DEVICE_REQUEST.<132>

Pseudocode for the operation is as follows:

 If Open.Stream.StreamType is DirectoryStream, the operation MUST be failed with
STATUS_INVALID_PARAMETER.

 If InputBufferSize is less than sizeof(Boolean) (1 byte), the operation MUST be failed with

STATUS_INVALID_PARAMETER.

 If Open.File.OpenList contains more than one Open on this stream, this operation MUST be

failed with STATUS_SHARING_VIOLATION.

 The object store MUST set Open.File.DisableDefectManagement to InputBuffer.Disable.

 Upon successful completion of the operation, the object store MUST return:

 Status set to STATUS_SUCCESS.

2.1.5.10.32 FSCTL_SET_ENCRYPTION

The server provides:

 Open: An Open of a DataFile or DirectoryFile.

 InputBuffer: An array of bytes containing an ENCRYPTION_BUFFER structure indicating the
requested encryption state of the stream or file, as specified in [MS-FSCC] section 2.3.71.

 InputBufferSize: The number of bytes in InputBuffer.

On completion, the object store MUST return:

 Status: An NTSTATUS code that specifies the result.

This operation uses the following local variables:

%5bMS-FSCC%5d.pdf#Section_efbfe12773ad41409967ec6500e66d5e
%5bMS-FSCC%5d.pdf#Section_efbfe12773ad41409967ec6500e66d5e

159 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

 Boolean value (initialized to FALSE): ChangedFileEncryption

Support for this operation is optional. If the object store does not implement this functionality, the
operation MUST be failed with STATUS_INVALID_DEVICE_REQUEST.<133>

Pseudocode for the operation is as follows:

 If Open.File.Volume.IsReadOnly is TRUE, the operation MUST be failed with
STATUS_MEDIA_WRITE_PROTECTED.

 If InputBufferSize is smaller than BlockAlign(sizeof(ENCRYPTION_BUFFER), 4), the operation
MUST be failed with STATUS_BUFFER_TOO_SMALL.

 The operation MUST be failed with STATUS_INVALID_PARAMETER under any of the following
conditions:

 If InputBuffer.EncryptionOperation is not one of the predefined values in [MS-FSCC]

section 2.3.71.

 If InputBuffer.EncryptionOperation == STREAM_SET_ENCRYPTION and
Open.Stream.IsCompressed is TRUE.

 If InputBuffer.EncryptionOperation == FILE_SET_ENCRYPTION:

 If Open.File.Attributes.FILE_ATTRIBUTE_ENCRYPTED is FALSE:

 The object store MUST set Open.File.FileAttributes.FILE_ATTRIBUTE_ENCRYPTED to

TRUE.

 The object store MUST set
Open.File.PendingNotifications.FILE_NOTIFY_CHANGE_ATTRIBUTES to TRUE.

 The object store MUST set ChangedFileEncryption to TRUE.

 EndIf

 ElseIf InputBuffer.EncryptionOperation == FILE_CLEAR_ENCRYPTION:

 If Open.File.Attributes.FILE_ATTRIBUTE_ENCRYPTED is TRUE:

 If there exists an ExistingStream in Open.File.StreamList such that
ExistingStream.IsEncrypted is TRUE, the operation MUST be failed with
STATUS_INVALID_DEVICE_REQUEST.

 The object store MUST set Open.File.FileAttributes.FILE_ATTRIBUTE_ENCRYPTED to
FALSE.

 The object store MUST set
Open.File.PendingNotifications.FILE_NOTIFY_CHANGE_ATTRIBUTES to TRUE.

 The object store MUST set ChangedFileEncryption to TRUE.

 EndIf

 ElseIf InputBuffer.EncryptionOperation == STREAM_SET_ENCRYPTION:

 If Open.Stream.IsEncrypted is FALSE:

 The object store MUST set Open.Stream.IsEncrypted to TRUE.

 If Open.File.Attributes.FILE_ATTRIBUTE_ENCRYPTED is FALSE:

160 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

 The object store MUST set Open.File.FileAttributes.FILE_ATTRIBUTE_ENCRYPTED to
TRUE.

 The object store MUST set
Open.File.PendingNotifications.FILE_NOTIFY_CHANGE_ATTRIBUTES to TRUE.

 EndIf

 EndIf

 Else: // InputBuffer.EncryptionOperation == STREAM_CLEAR_ENCRYPTION

 If Open.Stream.IsEncrypted is TRUE:

 The object store MUST set Open.Stream.IsEncrypted to FALSE.

 If there does not exist an ExistingStream in Open.File.StreamList such that
ExistingStream.IsEncrypted is TRUE:

 The object store MUST set Open.File.FileAttributes.FILE_ATTRIBUTE_ENCRYPTED to
FALSE.

 The object store MUST set
Open.File.PendingNotifications.FILE_NOTIFY_CHANGE_ATTRIBUTES to TRUE.

 EndIf

 EndIf

 EndIf

 The object store MUST update the duplicated information as specified in section 2.1.4.18 with
Link equal to Open.Link.

 If Open.File.PendingNotifications is nonzero:

 Set FilterMatch = (Open.File.PendingNotifications | Open.Link.PendingNotifications).

 Send directory change notification as specified in section 2.1.4.1, with Volume equal to
Open.File.Volume, Action equal to FILE_ACTION_MODIFIED, FilterMatch equal to

FilterMatch, and FileName equal to Open.FileName.

 For each ExistingLink in Open.Link.ParentFile.DirectoryList:

 If ExistingLink is not equal to Open.Link:

 ExistingLink.PendingNotifications |= Open.File.PendingNotifications

 EndIf

 EndFor

 Set Open.Link.PendingNotifications to zero.

 Set Open.File.PendingNotifications to zero.

 EndIf

 If the Oplock member of the DirectoryStream in Open.Link.ParentFile.StreamList
(hereinafter referred to as ParentOplock) is not empty, the object store MUST check for an oplock
break on the parent according to the algorithm in section 2.1.4.12, with input values as follows:

161 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

 Open equal to this operation's Open

 Oplock equal to ParentOplock

 Operation equal to "FS_CONTROL"

 OpParams containing a member ControlCode containing "FSCTL_SET_ENCRYPTION"

 Flags equal to "PARENT_OBJECT"

 The object store MUST post a USN change as specified in section 2.1.4.11 with File equal to File,
Reason equal to USN_REASON_ENCRYPTION_CHANGE, and FileName equal to
Open.Link.Name.

 If ChangedFileEncryption is TRUE:

 If Open.UserSetChangeTime is FALSE, update Open.File.LastChangeTime to the current
time.

 Set Open.File.FileAttributes.FILE_ATTRIBUTE_ARCHIVE to TRUE.

 EndIf

 Upon successful completion of this operation, the object store MUST return:

 Status set to STATUS_SUCCESS.

2.1.5.10.33 FSCTL_SET_INTEGRITY_INFORMATION

The server provides:<134>

 Open: An Open of a DataFile or DirectoryFile.

 InputBuffer: An array of bytes containing an FSCTL_SET_INTEGRITY_INFORMATION_BUFFER
structure indicating the requested integrity state of the directory or file, as specified in [MS-FSCC]

section 2.3.73.

 InputBufferSize: The number of bytes in InputBuffer.

On completion, the object store MUST return:

 Status: An NTSTATUS code that specifies the result.

Support for this operation is optional. If the object store does not implement this functionality, the
operation MUST be failed with STATUS_INVALID_DEVICE_REQUEST.<135><136>

The operation MUST be failed with STATUS_INVALID_PARAMETER under any of the following
conditions:

 InputBufferSize is less than sizeof(FSCTL_SET_INTEGRITY_INFORMATION_BUFFER).

 InputBuffer.ChecksumAlgorithm is not one of the predefined values in [MS-FSCC] section

2.3.73.

 InputBuffer.Flags is non-zero and
InputBuffer.Flags.FSCTL_INTEGRITY_FLAG_CHECKSUM_ENFORCEMENT_OFF is FALSE.

 InputBuffer.ChecksumAlgorithm == CHECKSUM_TYPE_NONE and InputBuffer.Flags.
FSCTL_INTEGRITY_FLAG_CHECKSUM_ENFORCEMENT_OFF is TRUE.

%5bMS-FSCC%5d.pdf#Section_efbfe12773ad41409967ec6500e66d5e

162 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

 InputBuffer.ChecksumAlgorithm == CHECKSUM_TYPE_UNCHANGED,
Open.Stream.CheckSumAlgorithm == CHECKSUM_TYPE_NONE, and InputBuffer.Flags.

FSCTL_INTEGRITY_FLAG_CHECKSUM_ENFORCEMENT_OFF is TRUE.

Pseudocode for the operation is as follows:

 If Open.File.Volume.IsReadOnly is TRUE, the operation MUST be failed with
STATUS_MEDIA_WRITE_PROTECTED.

 If Open.Stream.StreamType is DirectoryStream:

 The object store MUST post a USN change as specified in section 2.1.4.11 with File equal to
Directory, Reason equal to USN_REASON_INTEGRITY_CHANGE, and FileName equal to
Open.Link.Name.

 If InputBuffer.ChecksumAlgorithm != CHECKSUM_TYPE_UNCHANGED, the object store

MUST set Open.Stream.CheckSumAlgorithm to CRC32 if the ReFS cluster size is 4KB or
CRC64 if the cluster size is 64K.

 EndIf

 If Open.Stream.StreamType is DataStream:

 The object store MUST post a USN change as specified in section 2.1.4.11 with File equal to
File, Reason equal to USN_REASON_INTEGRITY_CHANGE, and FileName equal to

Open.Link.Name.

 If InputBuffer.ChecksumAlgorithm != CHECKSUM_TYPE_UNCHANGED, the object store
MUST set Open.Stream.CheckSumAlgorithm to InputBuffer.ChecksumAlgorithm.

 If (InputBuffer.Flags & FSCTL_INTEGRITY_FLAG_CHECKSUM_ENFORCEMENT_OFF) != 0,

 The object store MUST set Open.Stream.StreamChecksumEnforcementOff to TRUE.

 Else:

 The object store MUST set Open.Stream.StreamChecksumEnforcementOff to FALSE.

 EndIf

 EndIf

 Upon successful completion of the operation, the object store MUST return:

 Status set to STATUS_SUCCESS.

2.1.5.10.34 FSCTL_SET_INTEGRITY_INFORMATION_EX

The server provides:<137>

 Open: An Open of a DataFile or DirectoryFile.

 InputBuffer: An array of bytes containing an FSCTL_SET_INTEGRITY_INFORMATION_BUFFER_EX
structure indicating the requested integrity state of the directory or file, as specified in [MS-FSCC]
section 2.3.75.

 InputBufferSize: The number of bytes in InputBuffer.

On completion, the object store MUST return:

 Status: An NTSTATUS code that specifies the result.

%5bMS-FSCC%5d.pdf#Section_efbfe12773ad41409967ec6500e66d5e

163 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

Support for this operation is optional. If the object store does not implement this functionality, the
operation MUST be failed with STATUS_INVALID_DEVICE_REQUEST.<138><139>

The operation MUST be failed with STATUS_INVALID_PARAMETER under any of the following
conditions:

 InputBufferSize is less than sizeof(FSCTL_SET_INTEGRITY_INFORMATION_BUFFER_EX).

 InputBuffer.Version != 1.

 InputBuffer.Flags is non-zero and
InputBuffer.Flags.FSCTL_INTEGRITY_FLAG_CHECKSUM_ENFORCEMENT_OFF is FALSE.

 InputBuffer.EnableIntegrity == 0, InputBuffer.KeepIntegrityStateUnchanged == 0, and
InputBuffer.Flags.FSCTL_INTEGRITY_FLAG_CHECKSUM_ENFORCEMENT_OFF is TRUE.

 InputBuffer.KeepIntegrityStateUnchanged != 0, Open.Stream.CheckSumAlgorithm ==

CHECKSUM_TYPE_NONE, and

InputBuffer.Flags.FSCTL_INTEGRITY_FLAG_CHECKSUM_ENFORCEMENT_OFF is TRUE.

Pseudocode for the operation is as follows:

 If Open.File.Volume.IsReadOnly is TRUE, the operation MUST be failed with
STATUS_MEDIA_WRITE_PROTECTED.

 If Open.Stream.StreamType is DirectoryStream:

 The object store MUST post a USN change as specified in section 2.1.4.11 with File equal to
Directory, Reason equal to USN_REASON_INTEGRITY_CHANGE, and FileName equal to
Open.Link.Name.

 If InputBuffer.KeepIntegrityStateUnchanged == 0, the object store MUST:

 If InputBuffer.EnableIntegrity != 0 set Open.Stream.CheckSumAlgorithm to one of
the supported checksum types defined [MS-FSCC] section 2.3.75.<140>

 Else set Open.Stream.CheckSumAlgorithm to CHECKSUM_TYPE_NONE as defined in

[MS-FSCC] section 2.3.75.

 EndIf

 Endif

 If Open.Stream.StreamType is DataStream:

 The object store MUST post a USN change as specified in section 2.1.4.11 with File equal to
File, Reason equal to USN_REASON_INTEGRITY_CHANGE, and FileName equal to
Open.Link.Name.

 If InputBuffer. KeepIntegrityStateUnchanged == 0, the object store MUST:

 If InputBuffer.EnableIntegrity != 0 set Open.Stream.CheckSumAlgorithm to one of
the supported checksum types defined in [MS-FSCC] section 2.3.75.<141>

 Else set Open.Stream.CheckSumAlgorithm to CHECKSUM_TYPE_NONE as defined in
[MS-FSCC] section 2.3.75.

 EndIf

 Endif

 If (InputBuffer.Flags & FSCTL_INTEGRITY_FLAG_CHECKSUM_ENFORCEMENT_OFF) != 0,

164 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

 The object store MUST set Open.Stream.StreamChecksumEnforcementOff to TRUE.

 Else:

 The object store MUST set Open.Stream.StreamChecksumEnforcementOff to FALSE.

 EndIf

 EndIf

 Upon successful completion of the operation, the object store MUST return:

 Status set to STATUS_SUCCESS.

2.1.5.10.35 FSCTL_SET_OBJECT_ID

The server provides:

 Open: An Open of a DataFile or DirectoryFile.

 InputBuffer: An array of bytes containing a FILE_OBJECTID_BUFFER structure as specified in
[MS-FSCC] section 2.1.3.

 InputBufferSize: The number of bytes in InputBuffer.

On completion, the object store MUST return:

 Status: An NTSTATUS code that specifies the result.

Support for this operation is optional. If the object store does not implement this functionality, the

operation MUST be failed with STATUS_INVALID_DEVICE_REQUEST.<142>

Pseudocode for the operation is as follows:

 If InputBufferSize is not equal to sizeof(FILE_OBJECTID_BUFFER), the operation MUST be

failed with STATUS_INVALID_PARAMETER.

 If Volume.IsReadOnly is TRUE, the operation MUST be failed with
STATUS_MEDIA_WRITE_PROTECTED.

 If Open.File.Volume.IsObjectIDsSupported is FALSE, the operation MUST be failed with

STATUS_VOLUME_NOT_UPGRADED.

 If Open.HasRestoreAccess is FALSE, the operation MUST be failed with
STATUS_ACCESS_DENIED.

 If Open.File.ObjectId is not empty, the operation MUST be failed with
STATUS_OBJECT_NAME_COLLISION.

 If InputBuffer.ObjectId is not unique on Open.File.Volume, the operation MUST be failed with
STATUS_DUPLICATE_NAME.

 Before completing the operation successfully, the object store MUST set:

 Open.File.LastChangeTime to the current time.<143>

 Post a USN change as specified in section 2.1.4.11 with File equal to File, Reason equal to
USN_REASON_OBJECT_ID_CHANGE, and FileName equal to Open.Link.Name.

 Open.File.ObjectId to InputBuffer.ObjectId.

 Open.File.BirthVolumeId to InputBuffer.BirthVolumeId.

%5bMS-FSCC%5d.pdf#Section_efbfe12773ad41409967ec6500e66d5e

165 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

 Open.File.BirthObjectId to InputBuffer.BirthObjectId.

 Open.File.DomainId to InputBuffer.DomainId.

 The object store MUST construct a FILE_OBJECTID_INFORMATION structure (as specified in
[MS-FSCC] section 2.4.35.1) ObjectIdInfo as follows:

 ObjectIdInfo.FileReference set to zero.

 ObjectIdInfo.ObjectId set to Open.File.ObjectId.

 ObjectIdInfo.BirthVolumeId set to Open.File.BirthVolumeId.

 ObjectIdInfo.BirthObjectId set to Open.File.BirthObjectId.

 ObjectIdInfo.DomainId set to Open.File.DomainId.

 Send directory change notification as specified in section 2.1.4.1, with Volume equal to
Open.File.Volume, Action equal to FILE_ACTION_ADDED, FilterMatch equal to

FILE_NOTIFY_CHANGE_FILE_NAME, FileName equal to "\$Extend\$ObjId", NotifyData equal
to ObjectIdInfo, and NotifyDataLength equal to sizeof(FILE_OBJECTID_INFORMATION).

Upon successful completion of the operation, the object store MUST return:

 Status set to STATUS_SUCCESS.

2.1.5.10.36 FSCTL_SET_OBJECT_ID_EXTENDED

The server provides:

 Open: An Open of a DataFile or DirectoryFile.

 InputBuffer: An array of bytes containing a FILE_OBJECTID_BUFFER structure as specified in
[MS-FSCC] section 2.1.3.1.

 InputBufferSize: The number of bytes in InputBuffer.

On completion, the object store MUST return:

 Status: An NTSTATUS code that specifies the result.

Support for this operation is optional. If the object store does not implement this functionality, the
operation MUST be failed with STATUS_INVALID_DEVICE_REQUEST.<144>

Pseudocode for the operation is as follows:

 If InputBufferSize is not equal to sizeof(ObjectId.ExtendedInfo) (48 bytes), the operation
MUST be failed with STATUS_INVALID_PARAMETER.

 If Volume.IsReadOnly is TRUE, the operation MUST be failed with
STATUS_MEDIA_WRITE_PROTECTED.

 If Open.File.Volume.IsObjectIDsSupported is FALSE, the operation MUST be failed with
STATUS_VOLUME_NOT_UPGRADED.

 If Open.GrantedAccess contains neither FILE_WRITE_DATA nor FILE_WRITE_ATTRIBUTES, the
operation MUST be failed with STATUS_ACCESS_DENIED.

 If Open.File.ObjectId is empty, the operation MUST be failed with
STATUS_OBJECTID_NOT_FOUND.

Before completing the operation successfully, the object store MUST set:

%5bMS-FSCC%5d.pdf#Section_efbfe12773ad41409967ec6500e66d5e

166 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

 Open.File.LastChangeTime to the current time.<145>

 Post a USN change as specified in section 2.1.4.11 with File equal to File, Reason equal to
USN_REASON_OBJECT_ID_CHANGE, and FileName equal to Open.Link.Name.

 Open.File.BirthVolumeId to InputBuffer.BirthVolumeId.

 Open.File.BirthObjectId to InputBuffer.BirthObjectId.

 Open.File.DomainId to InputBuffer.DomainId.

Upon successful completion of this operation, the object store MUST return:

 Status set to STATUS_SUCCESS.

2.1.5.10.37 FSCTL_SET_REPARSE_POINT

The server provides:

 Open: An Open of a DataFile or DirectoryFile.

 InputBufferSize: The byte count of the InputBuffer.

 InputBuffer: An array of bytes containing a REPARSE_DATA_BUFFER or
REPARSE_GUID_DATA_BUFFER structure as defined in [MS-FSCC] sections 2.1.2.2 and 2.1.2.3,
respectively.

On completion, the object store MUST return:

 Status: An NTSTATUS code that specifies the result.

Support for this operation is optional. If the object store does not implement this functionality, the
operation MUST be failed with STATUS_INVALID_DEVICE_REQUEST.<146>

Pseudocode for the operation is as follows:

 Phase 1 -- Verify the parameters

 If (Open.GrantedAccess & (FILE_WRITE_DATA | FILE_WRITE_ATTRIBUTES)) == 0, the
operation MUST be failed with STATUS_ACCESS_DENIED.

 If Open.File.Volume.IsReadOnly is TRUE, the operation MUST be failed with
STATUS_MEDIA_WRITE_PROTECTED.

 If Open.File.Volume.IsReparsePointsSupported is FALSE, the operation MUST be failed with
STATUS_VOLUME_NOT_UPGRADED.

 If InputBufferSize is smaller than 8 bytes, the operation MUST be failed with
STATUS_IO_REPARSE_DATA_INVALID.

 If InputBufferSize is larger than 16384 bytes, the operation MUST be failed with

STATUS_IO_REPARSE_DATA_INVALID.

 If (InputBufferSize != InputBuffer.ReparseDataLength + 8) && (InputBufferSize !=
InputBuffer.ReparseDataLength + 24), the operation MUST be failed with
STATUS_IO_REPARSE_DATA_INVALID.

 If InputBuffer.ReparseTag == IO_REPARSE_TAG_MOUNT_POINT and Open.File.FileType !=
DirectoryFile, the operation MUST be failed with STATUS_NOT_A_DIRECTORY.

%5bMS-FSCC%5d.pdf#Section_efbfe12773ad41409967ec6500e66d5e

167 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

 If InputBuffer.ReparseTag == IO_REPARSE_TAG_SYMLINK and
Open.HasCreateSymbolicLinkAccess is FALSE, the operation MUST be failed with

STATUS_ACCESS_DENIED.

 If Open.File.FileType == DirectoryFile and Open.File.DirectoryList is not empty, the operation

MUST be failed with STATUS_DIRECTORY_NOT_EMPTY.

 If Open.File.FileType == DataFile and InputBuffer.ReparseTag ==
IO_REPARSE_TAG_SYMLINK and Open.Stream.Size is nonzero, the operation MUST be failed
with STATUS_IO_REPARSE_DATA_INVALID.

 If Open.File.FileAttributes.FILE_ATTRIBUTE_REPARSE_POINT is not set and
Open.File.ExtendedAttributesLength is nonzero, the operation MUST be failed with
STATUS_EAS_NOT_SUPPORTED.

 Phase 2 -- Update the File

 If Open.File.ReparseTag is not empty (indicating that a reparse point is already assigned):

 If Open.File.ReparseTag != InputBuffer.ReparseTag, the operation MUST be failed with
STATUS_IO_REPARSE_TAG_MISMATCH.

 If Open.File.ReparseTag is a non-Microsoft tag and Open.File.ReparseGUID is not equal
to InputBuffer.ReparseGUID, the operation MUST be failed with

STATUS_REPARSE_ATTRIBUTE_CONFLICT.

 Copy InputBuffer.DataBuffer to Open.File.ReparseData.

 Else

 Set Open.File.ReparseTag to InputBuffer.ReparseTag.

 If InputBuffer.ReparseTag is a non-Microsoft Tag, then set Open.File.ReparseGUID to
InputBuffer.ReparseGUID.

 Set Open.File.ReparseData to InputBuffer.ReparseData.

 Set Open.File.FileAttributes.FILE_ATTRIBUTE_REPARSE_POINT to TRUE.

 EndIf

 If Open.File.FileType == DataFile, set Open.File.FileAttributes.FILE_ATTRIBUTE_ARCHIVE to
TRUE.

 Update Open.File.LastChangeTime to the current system time.<147>

Upon successful completion of the operation, the object store MUST return:

 Status set to STATUS_SUCCESS.

2.1.5.10.38 FSCTL_SET_SPARSE

The server provides:

 Open: An Open of a DataStream.

 InputBufferSize: The byte count of the InputBuffer.

 InputBuffer: A buffer of type FILE_SET_SPARSE_BUFFER as defined in [MS-FSCC] section

2.3.83.

On completion, the object store MUST return:

%5bMS-FSCC%5d.pdf#Section_efbfe12773ad41409967ec6500e66d5e

168 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

 Status: An NTSTATUS code that specifies the result.

Support for this operation is optional. If the object store does not implement this functionality, the
operation MUST be failed with STATUS_INVALID_DEVICE_REQUEST.<148><149>

Pseudocode for the operation is as follows:

 If Open.Stream.StreamType != DataStream, the object store MUST fail the operation and
return STATUS_INVALID_PARAMETER.

 If Open.File.Volume.IsReadOnly is TRUE, the object store MUST return
STATUS_MEDIA_WRITE_PROTECTED.

 If Open.GrantedAccess.FILE_WRITE_DATA is FALSE and
Open.GrantedAccess.FILE_WRITE_ATTRIBUTES is FALSE, the operation MUST be failed with
STATUS_ACCESS_DENIED.

 The object store MUST post a USN change as specified in section 2.1.4.11 with File equal to File,

Reason equal to USN_REASON_BASIC_INFO_CHANGE, and FileName equal to
Open.Link.Name. If InputBuffer.SetSparse is TRUE:

 The object store MUST set Open.Stream.IsSparse to TRUE.

 The object store MUST set Open.File.FileAttributes.FILE_ATTRIBUTE_SPARSE_FILE to TRUE,
indicating that at least one stream of the file is sparse.

 Else

 For each Extent in Open.Stream.ExtentList:

 If Extent.LCN is un-allocated as specified in [MS-FSCC] 2.3.32.1:

 The object store MUST fully allocate the Extent. If the space cannot be allocated, then
the operation MUST be failed with STATUS_DISK_FULL. The object store is not
required to revert any allocations performed during the operation.

 EndIf

 EndFor

 The object store MUST set Open.Stream.IsSparse to FALSE.

 If there does not exist an ExistingStream in Open.File.StreamList such that
ExistingStream.IsSparse is TRUE:

 The object store MUST set Open.File.FileAttributes.FILE_ATTRIBUTE_SPARSE_FILE to
FALSE, indicating that no streams of the file are sparse.

 EndIf

 EndIf

 Set Open.File.PendingNotifications.FILE_NOTIFY_CHANGE_ATTRIBUTES to TRUE.

 Upon successful completion of this operation, the object store MUST return:

 Status set to STATUS_SUCCESS.

2.1.5.10.39 FSCTL_SET_ZERO_DATA

The server provides:

169 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

 Open: An Open of a DataStream.

 InputBufferSize: The byte count of the InputBuffer.

 InputBuffer: An array of bytes containing a FILE_ZERO_DATA_INFORMATION structure as
defined in [MS-FSCC] section 2.3.89.

On completion, the object store MUST return:

 Status: An NTSTATUS code that specifies the result.

This algorithm uses the following local variables:

 64-bit signed integers: StartingOffset, CurrentBytes, CurrentOffset, CurrentFinalByte, NextVcn,
CurrentVcn, ClusterCount

 64-bit signed integer initialized to -1: LastOffset

Support for this operation is optional. If the object store does not implement this functionality, the

operation MUST be failed with STATUS_INVALID_DEVICE_REQUEST.<150><151>

The operation MUST be failed with STATUS_INVALID_PARAMETER under any of the following
conditions:

 InputBufferSize is less than sizeof(FILE_ZERO_DATA_INFORMATION).

 InputBuffer.FileOffset is less than 0.

 InputBuffer.BeyondFinalZero is less than 0.

 InputBuffer.FileOffset is greater than InputBuffer.BeyondFinalZero.

 Open.Stream.StreamType is not DataStream.

Pseudocode for the operation is as follows:

 If Open.File.Volume.IsReadOnly is TRUE, the operation MUST be failed with
STATUS_MEDIA_WRITE_PROTECTED.

 Set StartingOffset equal to InputBuffer.FileOffset.

 While TRUE:

 If Open.Stream.IsDeleted is TRUE, the operation MUST be failed with
STATUS_FILE_DELETED.

 If StartingOffset is greater than or equal to Open.Stream.Size, or if StartingOffset is greater
than or equal to InputBuffer.BeyondFinalZero, break out of the while loop.

 Set CurrentBytes to InputBuffer.BeyondFinalZero - StartingOffset.

 If InputBuffer.BeyondFinalZero is greater than Open.Stream.Size, set CurrentBytes to

Open.Stream.Size - StartingOffset.

 If CurrentBytes is greater than 0x40000000 (1 gigabyte), set CurrentBytes to 0x40000000.

 If Open.Stream.Oplock is not empty, the object store MUST check for an oplock break
according to the algorithm in section 2.1.4.12, with input values as follows:

 Open equal to this operation's Open

 Oplock equal to Open.Stream.Oplock

%5bMS-FSCC%5d.pdf#Section_efbfe12773ad41409967ec6500e66d5e

170 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

 Operation equal to "FS_CONTROL"

 OpParams containing a member ControlCode containing "FSCTL_SET_ZERO_DATA"

 The object store MUST check for byte range lock conflicts using the algorithm described in
section 2.1.4.10 with ByteOffset set to StartingOffset, Length set to CurrentBytes,

IsExclusive set to TRUE, LockIntent set to FALSE and Open set to Open. If a conflict is
detected, the operation MUST be failed with STATUS_FILE_LOCK_CONFLICT.

 The object store MUST post a USN change as specified in section 2.1.4.11 with File equal to
File, Reason equal to USN_REASON_DATA_OVERWRITE, and FileName equal to
Open.Link.Name.

 The object store MUST note that the file has been modified as specified in section 2.1.4.17
with Open equal to Open.

 If LastOffset is -1 and StartingOffset is greater than Open.Stream.ValidDataLength:

 Zero the data in the file according to the algorithm in section 2.1.5.10.39.1, setting the
algorithm's parameters as follows:

 Pass in the current Open.

 StartingZero equal to Open.Stream.ValidDataLength.

 ByteCount equal to StartingOffset -Open.Stream.ValidDataLength.

 EndIf

 If Open.Stream.IsCompressed is TRUE, or if Open.Stream.IsSparse is TRUE:

 Set CurrentOffset to StartingOffset & ~(Open.File.Volume.CompressionUnitSize - 1).
This aligns the starting point to a compression unit boundary, since when setting zero
ranges on a sparse or compressed file, allocation is deleted in compression unit-aligned
chunks.

 Set CurrentFinalByte to InputBuffer.BeyondFinalZero.

 If CurrentFinalByte is greater than or equal to Open.Stream.Size, set CurrentFinalByte to
BlockAlign(Open.Stream.Size, Open.File.Volume.CompressionUnitSize).

 Set NextVcn and CurrentVcn equal to ClustersFromBytesTruncate(Open.File.Volume,
CurrentOffset).

 While an unallocated range of the file exists starting at NextVcn:

 NextVcn += The size of the unallocated range in clusters.

 If (NextVcn * Open.File.Volume.ClusterSize) is greater than or equal to

CurrentFinalByte:

 NextVcn = ClustersFromBytesTruncate(Open.File.Volume, CurrentFinalByte).

 Break out of the While loop.

 EndIf

 EndWhile

 NextVcn = BlockAlignTruncate(NextVcn, ClustersFromBytes(Open.File.Volume,

Open.File.Volume.CompressionUnitSize)). This aligns NextVcn to a compression unit
boundary.

171 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

 If NextVcn != CurrentVcn:

 ClusterCount = NextVcn - CurrentVcn

 CurrentVcn += ClusterCount

 EndIf

 CurrentOffset = (CurrentVcn * Open.File.Volume.ClusterSize)

 If CurrentOffset >= CurrentFinalByte, break out of the while loop.

 If CurrentOffset < StartingOffset:

 If there are not enough free clusters on the storage media to accommodate a write of
Open.File.Volume.CompressionUnitSize bytes, the operation MUST be failed with
STATUS_DISK_FULL. The object store is not required to undo any file zeroing or range
deallocation that has been performed during the operation.

 CurrentBytes = Open.File.Volume.CompressionUnitSize - (StartingOffset -
CurrentOffset)

 If (CurrentOffset + Open.File.Volume.CompressionUnitSize) > CurrentFinalByte:

 CurrentBytes = CurrentFinalByte - StartingOffset

 EndIf

 The object store MUST write CurrentBytes zeroes into the stream beginning at

CurrentOffset + (StartingOffset & (Open.File.Volume.CompressionUnitSize - 1)).

 CurrentOffset += (StartingOffset & (Open.File.Volume.CompressionUnitSize - 1))

 ElseIf CurrentOffset + Open.File.Volume.CompressionUnitSize > CurrentFinalByte:

 If there are not enough free clusters on the storage media to accommodate a write of
Open.File.Volume.CompressionUnitSize bytes, the operation MUST be failed with
STATUS_DISK_FULL. The object store is not required to undo any file zeroing or range
deallocation that has been performed during the operation.

 CurrentBytes = CurrentFinalByte & (Open.File.Volume.CompressionUnitSize - 1)

 The object store MUST write CurrentBytes zeroes into the stream beginning at
CurrentOffset.

 Else

 CurrentBytes = CurrentFinalByte - CurrentOffset

 If CurrentBytes is greater than 0x40000000, set CurrentBytes to 0x40000000.

 CurrentBytes = BlockAlignTruncate(CurrentBytes,

Open.File.Volume.CompressionUnitSize)

 If (CurrentBytes != 0) and (NextVcn <= (CurrentVcn
+ClustersFromBytesTruncate(Open.File.Volume, CurrentBytes) - 1)):

 The object store MUST delete CurrentVcn +
ClustersFromBytesTruncate(Open.File.Volume, CurrentBytes) - 1 clusters of
allocation from the stream starting with the cluster at NextVcn.

 EndIf

172 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

 EndIf

 Else

 CurrentOffset = StartingOffset

 CurrentFinalByte = ((CurrentOffset + 0x40000) & -(0x40000))

 If CurrentFinalByte is greater than or equal to Open.Stream.Size, set CurrentFinalByte to
Open.Stream.Size.

 If CurrentFinalByte is greater than InputBuffer.BeyondFinalZero, set CurrentFinalByte
to InputBuffer.BeyondFinalZero.

 CurrentBytes = CurrentFinalByte - CurrentOffset

 If CurrentBytes != 0 and CurrentOffset is less than Open.Stream.ValidDataLength:

 The object store MUST write CurrentBytes zeroes into the stream beginning at

CurrentOffset.

 EndIf

 EndIf

 If CurrentOffset + CurrentBytes is greater than Open.Stream.ValidDataLength and
StartingOffset is less than Open.Stream.ValidDataLength:

 The object store MUST set Open.Stream.ValidDataLength equal to CurrentOffset +

CurrentBytes.

 EndIf

 LastOffset = StartingOffset

 If CurrentBytes != 0, set StartingOffset equal to CurrentOffset + CurrentBytes.

 EndWhile

 If Open.Mode contains either FILE_NO_INTERMEDIATE_BUFFERING or FILE_WRITE_THROUGH,
the object store MUST flush all changes to the stream made during this operation, including any

file size changes, to stable storage, and MUST fail the operation if the underlying physical storage
reports an error flushing the data.

 Upon successful completion of the operation, the object store MUST return:

 Status set to STATUS_SUCCESS.

2.1.5.10.39.1 Algorithm to Zero Data Beyond ValidDataLength

This algorithm returns no value.

The inputs for the algorithm are:

 ThisOpen: The Open for the stream being zeroed.

 StartingZero: A 64-bit signed integer. The offset into the stream to begin zeroing.

 ByteCount: The number of bytes to zero.

The algorithm uses the following local variables:

173 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

 64-bit signed integers: ZeroStart, BeyondZeroEnd, LastCompressionUnit, ClustersToDeallocate

Pseudocode for the algorithm is as follows:

 Set ZeroStart to BlockAlign(StartingZero, ThisOpen.File.Volume.LogicalBytesPerSector).

 Set BeyondZeroEnd to BlockAlign(StartingZero + ByteCount,

ThisOpen.File.Volume.LogicalBytesPerSector).

 If (ThisOpen.Stream.IsCompressed is FALSE) and (ThisOpen.Stream.IsSparse is FALSE)
and (ZeroStart != StartingZero):

 The object store MUST write zeroes into the stream from StartingZero to ZeroStart.

 EndIf

 If ((ThisOpen.Stream.IsCompressed is TRUE) or

(ThisOpen.Stream.IsSparse is TRUE)) and

(ByteCount > ThisOpen.File.Volume.CompressionUnitSize * 2):

 If BlockAlign(ZeroStart, ThisOpen.File.Volume.CompressionUnitSize) != ZeroStart:

 The object store MUST write zeroes into the stream from ZeroStart to
BlockAlign(ZeroStart, ThisOpen.File.Volume.CompressionUnitSize).

 The object store MUST set ThisOpen.Stream.ValidDataLength to
BlockAlign(ZeroStart, ThisOpen.File.Volume.CompressionUnitSize).

 Set ZeroStart equal to BlockAlign(ZeroStart,
ThisOpen.File.Volume.CompressionUnitSize).

 EndIf

 Set LastCompressionUnit equal to BlockAlignTruncate(BeyondZeroEnd,
ThisOpen.File.Volume.CompressionUnitSize).

 Set ClustersToDeallocate equal to ClustersFromBytes(ThisOpen.File.Volume,
LastCompressionUnit - ZeroStart).

 The object store MUST delete ClusterToDeallocate clusters of allocation from the stream
starting with the cluster at ClustersFromBytes(ThisOpen.File.Volume, ZeroStart).

 If LastCompressionUnit != BeyondZeroEnd:

 The object store MUST write zeroes into the stream from LastCompressionUnit to
BeyondZeroEnd.

 The object store MUST set ThisOpen.Stream.ValidDataLength equal to StartingZero +
ByteCount.

 EndIf

 The algorithm returns at this point.

 EndIf

 If ZeroStart = BeyondZeroEnd

 The algorithm returns at this point.

174 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

 EndIf

 The object store MUST write zeroes into the stream from ZeroStart to BeyondZeroEnd.

 The object store MUST set ThisOpen.Stream.ValidDataLength equal to StartingZero +
ByteCount.

2.1.5.10.40 FSCTL_SET_ZERO_ON_DEALLOCATION

The server provides:

 Open: An Open of a DataStream.

On completion the object store MUST return:

 Status: An NTSTATUS code that specifies the result.

Support for this operation is optional. If the object store does not implement this functionality, the

operation MUST be failed with STATUS_INVALID_DEVICE_REQUEST.<152>

The operation MUST be failed with STATUS_ACCESS_DENIED under either of the following conditions:

 Open.Stream.StreamType is not DataStream.

 Open.GrantedAccess contains neither FILE_WRITE_DATA nor FILE_APPEND_DATA.

Pseudocode for the operation is as follows:

 The object store MUST set Open.Stream.ZeroOnDeallocate to TRUE.

 Upon successful completion of the operation, the object store MUST return:

 Status set to STATUS_SUCCESS.

2.1.5.10.41 FSCTL_SIS_COPYFILE

The server provides:

 Open: An Open of a DataStream or DirectoryStream.

 InputBuffer: An array of bytes containing a single SI_COPYFILE structure indicating the source

and destination files to copy, as specified in [MS-FSCC] section 2.3.89.

 InputBufferSize: The number of bytes in InputBuffer.

On completion, the object store MUST return:

 Status: An NTSTATUS code that specifies the result.

This routine uses the following local variables:

 Opens: SourceOpen, DestinationOpen

The purpose of this operation is to make it look like a copy from the source file to the destination file

has occurred when in reality no data is actually copied. This operation modifies the source file in such
a way that the clusters associated with it can be shared across multiple files. The destination file is
created and modified to point at the same shared clusters that the source file points to.<153>

Support for Single Instance Storage is optional. If the object store does not implement this
functionality, the operation MUST be failed with STATUS_INVALID_DEVICE_REQUEST.<154>

Pseudocode for the operation is as follows:

%5bMS-FSCC%5d.pdf#Section_efbfe12773ad41409967ec6500e66d5e

175 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

 If Open.IsAdministrator is FALSE, the operation MUST be failed with STATUS_ACCESS_DENIED.

 If InputBufferSizes is less than sizeof(SI_COPYFILE), the operation MUST be failed with
STATUS_INVALID_PARAMETER_1.

 If InputBuffer.Flags contains any flags besides COPYFILE_SIS_LINK and

COPYFILE_SIS_REPLACE, the operation MUST be failed with STATUS_INVALID_PARAMETER_2.

 If InputBuffer.SourceFileNameLength or InputBuffer.DestinationFileNameLength is <=
zero, the operation MUST be failed with STATUS_INVALID_PARAMETER_3.

 If InputBuffer.SourceFileNameLength or InputBuffer.DestinationFileNameLength is >
MAXUSHORT (0xffff), the operation MUST be failed with STATUS_INVALID_PARAMETER.

 If FieldOffset(InputBuffer.SourceFileName) + InputBuffer.SourceFileNameLength +
InputBuffer.DestinationFileNameLength is > InputBufferSize, the operation MUST be failed

with STATUS_INVALID_PARAMETER_4.

 SourceOpen set to the Open returned from a successful call to open a file as defined in section
2.1.5.1, setting the algorithm's parameters as follows:

 RootOpen: Set to Open.RootOpen.

 PathName: Set to InputBuffer.SourceFileName.

 SecurityContext: Set to empty.<155>

 DesiredAccess: Set to GENERIC_READ.

 ShareAccess: If the source file is already controlled by SIS (meaning the source file already
has a reparse point of type IO_REPARSE_TAG_SIS), then set to FILE_SHARE_READ, else set
to zero.

 CreateOptions: Set To FILE_NON_DIRECTORY_FILE | FILE_NO_INTERMEDIATE_BUFFERING.

 CreateDisposition: Set to FILE_OPEN.

 DesiredFileAttributes: Set to FILE_ATTRIBUTE_NORMAL.

 IsCaseInsensitive: Set to TRUE.

 TargetOplockKey: Set to Empty.

 If the request fails, this operation MUST be failed with the returned STATUS.

 The operation MUST be failed with STATUS_OBJECT_TYPE_MISMATCH under any of the following
conditions:

 If SourceOpen.File.LinkList contains more than one entry (meaning this file has hardlinks).

 If SourceOpen.Stream.IsEncrypted is TRUE.

 If SourceOpen.File.ReparseTag is empty or is not IO_REPARSE_TAG_SIS (as defined in [MS-
FSCC] section 2.1.2.1) and InputBuffer.Flags.COPYFILE_SIS_LINK is TRUE.

 If SourceOpen.File.ReparseTag is not empty and is not IO_REPARSE_TAG_SIS, the operation
MUST be failed with STATUS_INVALID_PARAMETER.

 DestinationOpen set to the Open returned from a successful call to create a file as defined in
section 2.1.5.1, setting the algorithm's parameters as follows:

 RootOpen: Set to Open.RootOpen.

176 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

 PathName: Set to InputBuffer.DestinationFileName.

 SecurityContext: Set to empty.<156>

 DesiredAccess: Set to GENERIC_READ | GENERIC_WRITE | DELETE.

 ShareAccess: Set to zero.

 CreateOptions: Set to FILE_NON_DIRECTORY_FILE.

 CreateDisposition: If InputBuffer.Flags.COPYFILE_SIS_REPLACE is TRUE, set to
FILE_OVERWRITE_IF, else set to FILE_CREATE.

 DesiredFileAttributes: Set to FILE_ATTRIBUTE_NORMAL.

 IsCaseInsensitive: Set to TRUE.

 TargetOplockKey: Set to Empty.

 If the request fails, this operation MUST be failed with the returned STATUS.

 If SourceOpen.File.Volume is not equal to DestinationOpen.File.Volume is not equal to
Open.File.Volume, the operation MUST be failed with STATUS_NOT_SAME_DEVICE.

 Share the clusters between the source and destination file.<157>

 DestinationOpen.ReparseTag set to IO_REPARSE_TAG_SIS.

 Upon successful completion of the operation, the object store MUST return:

 Status set to STATUS_SUCCESS.

2.1.5.10.42 FSCTL_WRITE_USN_CLOSE_RECORD

The server provides:

 Open: An Open of a DataStream or DirectoryStream.

 OutputBufferSize: The maximum number of bytes to return in OutputBuffer.

On completion, the object store MUST return:

 Status: An NTSTATUS code that specifies the result.

 OutputBuffer: An array of bytes that will return a Usn structure representing the current USN of
the file, as specified in [MS-FSCC] section 2.3.93.

 BytesReturned: The number of bytes returned in OutputBuffer.

Support for this operation is optional. If the object store does not implement this functionality, the
operation MUST be failed with STATUS_INVALID_DEVICE_REQUEST.<158>

Pseudocode for the operation is as follows:

 If Open.File.Volume.IsReadOnly is TRUE, the operation MUST be failed with

STATUS_MEDIA_WRITE_PROTECTED.

 If OutputBufferSize is less than sizeof(Usn), the operation MUST be failed with
STATUS_INVALID_PARAMETER.

 If Open.File.Volume.IsUsnJournalActive is FALSE, the operation MUST be failed with
STATUS_JOURNAL_NOT_ACTIVE.

%5bMS-FSCC%5d.pdf#Section_efbfe12773ad41409967ec6500e66d5e

177 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

 The object store MUST post a USN change as specified in section 2.1.4.11 with File equal to File,
Reason equal to USN_REASON_CLOSE, and FileName equal to Open.Link.Name.

 The object store MUST populate the fields of OutputBuffer as follows:

 OutputBuffer.Usn set to Open.File.Usn.

 Upon successful completion of the operation, the object store MUST return:

 BytesReturned set to sizeof(Usn).

 Status set to STATUS_SUCCESS.

2.1.5.11 Server Requests Change Notifications for a Directory

The server provides:

 Open: An Open of a DirectoryStream or ViewIndexStream.

 OutputBufferSize: The maximum number of bytes to return in OutputBuffer.

 WatchTree: A Boolean indicating whether the directory is monitored recursively.

 CompletionFilter: A 32-bit unsigned integer composed of flags indicating the types of changes to
monitor as specified in [MS-SMB2] section 2.2.35.

On completion, the object store MUST return:

 Status: An NTSTATUS code that specifies the result.

 OutputBuffer: An array of bytes containing the notification data.

 ByteCount: The count of the bytes in the array.

Pseudocode for the operation is as follows:

 The Open.File.Volume.ChangeNotifyList MUST be searched for a ChangeNotifyEntry where
ChangeNotifyEntry.OpenedDirectory matches Open.

 If there were no matching ChangeNotifyEntries, one MUST be constructed so that:

 ChangeNotifyEntry.OpenedDirectory points to Open.

 ChangeNotifyEntry.WatchTree is set to WatchTree.

 ChangeNotifyEntry.CompletionFilter is set to CompletionFilter.

 ChangeNotifyEntry.NotifyEventList is initialized to an empty list.

 Insert ChangeNotifyEntry at the end of Open.File.Volume.ChangeNotifyList.

 EndIf

 Insert operation into CancelableOperations.CancelableOperationList.

 Wait for a Change Notify as specified in section 2.1.5.11.1

2.1.5.11.1 Waiting for Change Notification to be Reported

Wait until the following conditions are satisfied:

 There are one or more elements in ChangeNotifyEntry.NotifyEventList.

%5bMS-SMB2%5d.pdf#Section_5606ad475ee0437a817e70c366052962

178 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

 This change notification request is the oldest outstanding request on this Open. This means
multiple change notification requests on the same Open are completed sequentially and in first-in-

first-out (FIFO) order.

 The operation is canceled as specified in section 2.1.5.20.

Pseudocode for the operation is as follows:

 When a ChangeNotifyEntry.NotifyEventList element is available:

 If all entries from ChangeNotifyEntry.NotifyEventList fit in OutputBufferSize bytes:

 Remove all NotifyEventEntries from ChangeNotifyEntry.NotifyEventList.

 Copy NotifyEventEntries to OutputBuffer.

 Set Status to STATUS_SUCCESS.

 Set ByteCount to the size of OutputBuffer, in bytes.

 Else:

 Set Status to STATUS_NOTIFY_ENUM_DIR.

 Set ByteCount to zero.

 EndIf

 EndIf

2.1.5.12 Server Requests a Query of File Information

The server provides:

 Open: An Open of a DataStream or DirectoryStream.

 OutputBufferSize: The maximum number of bytes to be returned in OutputBuffer.

 FileInformationClass: The type of information being queried, as specified in [MS-FSCC] section

2.4.

On completion, the object store MUST return:

 Status: An NTSTATUS code that specifies the result.

 OutputBuffer: An array of bytes containing the file information. The structure of these bytes is
dependent on FileInformationClass, as noted in the relevant subsection.

 ByteCount: The number of bytes stored in OutputBuffer.

If FileInformationClass is not defined in [MS-FSCC] section 2.4, the operation MUST be failed with

STATUS_INVALID_INFO_CLASS.

2.1.5.12.1 FileAccessInformation

OutputBuffer is of type FILE_ACCESS_INFORMATION as described in [MS-FSCC] 2.4.1.

Pseudocode for the operation is as follows:

 If OutputBufferSize is smaller than sizeof(FILE_ACCESS_INFORMATION), the operation MUST

be failed with STATUS_INFO_LENGTH_MISMATCH.

%5bMS-FSCC%5d.pdf#Section_efbfe12773ad41409967ec6500e66d5e
%5bMS-FSCC%5d.pdf#Section_efbfe12773ad41409967ec6500e66d5e

179 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

 OutputBuffer MUST be constructed as follows:

 OutputBuffer.AccessFlags set to Open.GrantedAccess.

 Upon successful completion of the operation, the object store MUST return:

 ByteCount set to sizeof(FILE_ACCESS_INFORMATION)

 Status set to STATUS_SUCCESS.

2.1.5.12.2 FileAlignmentInformation

OutputBuffer is of type FILE_ALIGNMENT_INFORMATION as described in [MS-FSCC] section 2.4.3.

Pseudocode for the operation is as follows:

 If OutputBufferSize is smaller than sizeof(FILE_ALIGNMENT_INFORMATION), the operation
MUST be failed with Status STATUS_INFO_LENGTH_MISMATCH.

 OutputBuffer MUST be constructed as follows:

 OutputBuffer.AlignmentRequirement set to one of the alignment requirement values
specified in [MS-FSCC] section 2.4.3 based on the characteristics of the device on which the
File is stored.

 Upon successful completion of the operation, the object store MUST return:

 ByteCount set to sizeof(FILE_ALIGNMENT_INFORMATION).

 Status set to STATUS_SUCCESS.

2.1.5.12.3 FileAllInformation

OutputBuffer is of type FILE_ALL_INFORMATION as described in [MS-FSCC] 2.4.2.

Pseudocode for the operation is as follows:

 If OutputBufferSize is smaller than
BlockAlign(FieldOffset(FILE_ALL_INFORMATION.NameInformation.FileName) + 2, 8), the

operation MUST be failed with STATUS_INFO_LENGTH_MISMATCH.

 The object store MUST populate the fields of OutputBuffer as follows:

 OutputBuffer.BasicInformation MUST be filled using the algorithm described in section
2.1.5.12.6.

 OutputBuffer.StandardInformation MUST be filled using the operation described in section
2.1.5.12.27.

 OutputBuffer.InternalInformation MUST be filled using the operation described in section

2.1.5.12.17.

 OutputBuffer.EaInformation MUST be filled using the operation described in section
2.1.5.12.10.

 OutputBuffer.AccessInformation MUST be filled using the operation described in section
2.1.5.12.1.

 OutputBuffer.PositionInformation MUST be filled using the operation described in section

2.1.5.12.23.

%5bMS-FSCC%5d.pdf#Section_efbfe12773ad41409967ec6500e66d5e
%5bMS-FSCC%5d.pdf#Section_efbfe12773ad41409967ec6500e66d5e

180 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

 OutputBuffer.ModeInformation MUST be filled using the operation described in section
2.1.5.12.18.

 OutputBuffer.AlignmentInformation MUST be filled using the operation described in
section 2.1.5.12.2.

 OutputBuffer.NameInformation MUST be filled using the operation described in section
2.1.5.12.19, saving the returned ByteCount in NameInformationLength and the returned
Status in NameInformationStatus.

 Upon successful completion of the operation, the object store MUST return:

 ByteCount set to FieldOffset(FILE_ALL_INFORMATION.NameInformation) +
NameInformationLength.

 Status set to NameInformationStatus.

2.1.5.12.4 FileAlternateNameInformation

OutputBuffer is of type FILE_NAME_INFORMATION as described in [MS-FSCC] 2.4.5.

Pseudocode for the operation is as follows:

 If OutputBufferSize is smaller than
BlockAlign(FieldOffset(FILE_NAME_INFORMATION.FileName) + 2, 4), the operation MUST be

failed with STATUS_INFO_LENGTH_MISMATCH.

 If Open.Link.ShortName is empty, the operation MUST be failed with
STATUS_OBJECT_NAME_NOT_FOUND.

 OutputBuffer MUST be constructed as follows:

 OutputBuffer.FileNameLength set to the length, in bytes, of Open.Link.ShortName.

 OutputBuffer.FileName set to Open.Link.ShortName.

 Upon successful completion of the operation, the object store MUST return:

 ByteCount set to FieldOffset(FILE_NAME_INFORMATION.FileName) +
OutputBuffer.FileNameLength.

 Status set to STATUS_SUCCESS.

2.1.5.12.5 FileAttributeTagInformation

OutputBuffer is of type FILE_ATTRIBUTE_TAG_INFORMATION as defined in [MS-FSCC] section 2.4.6.

Pseudocode for the operation is as follows:

 If OutputBufferSize is smaller than sizeof(FILE_ATTRIBUTE_TAG_INFORMATION), the operation
MUST be failed with STATUS_INFO_LENGTH_MISMATCH.

 If Open.GrantedAccess does not contain FILE_READ_ATTRIBUTES, the operation MUST be failed
with STATUS_ACCESS_DENIED.

 If Open.Stream.StreamType is DirectoryStream:

 The object store MUST set OutputBuffer.FileAttributes equal to the value of

Open.File.FileAttributes.

 The object store MUST set FILE_ATTRIBUTE_DIRECTORY in OutputBuffer.FileAttributes.

%5bMS-FSCC%5d.pdf#Section_efbfe12773ad41409967ec6500e66d5e
%5bMS-FSCC%5d.pdf#Section_efbfe12773ad41409967ec6500e66d5e

181 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

 Else:

 This is a DataStream. The object store MUST set OutputBuffer.FileAttributes equal to the
value of Open.File.FileAttributes. The following attribute values, if they are set in
Open.File.FileAttributes, MUST NOT be copied to OutputBuffer.FileAttributes (attribute

flags are defined in [MS-FSCC] section 2.6):

 FILE_ATTRIBUTE_COMPRESSED

 FILE_ATTRIBUTE_TEMPORARY

 FILE_ATTRIBUTE_SPARSE_FILE

 FILE_ATTRIBUTE_ENCRYPTED

 FILE_ATTRIBUTE_INTEGRITY_STREAM<159>

 If Open.Stream.IsSparse is TRUE, the object store MUST set

FILE_ATTRIBUTE_SPARSE_FILE in OutputBuffer.FileAttributes.

 If Open.Stream.IsEncrypted is TRUE, the object store MUST set
FILE_ATTRIBUTE_ENCRYPTED in OuputBuffer.FileAttributes.

 If Open.Stream.IsTemporary is TRUE, the object store MUST set
FILE_ATTRIBUTE_TEMPORARY in OutputBuffer.FileAttributes.

 If Open.Stream.IsCompressed is TRUE, the object store MUST set

FILE_ATTRIBUTE_COMPRESSED in OutputBuffer.FileAttributes.

 If Open.Stream.ChecksumAlgorithm != CHECKSUM_TYPE_NONE, the object store MUST
set FILE_ATTRIBUTE_INTEGRITY_STREAM in OutputBuffer.FileAttributes.<160>

 EndIf

 If OutputBuffer.FileAttributes is 0, the object store MUST set FILE_ATTRIBUTE_NORMAL in

OutputBuffer.FileAttributes.

 OutputBuffer.ReparseTag MUST be set to Open.File.ReparseTag.

 Upon successful completion of the operation, the object store MUST return:

 ByteCount set to sizeof(FILE_ATTRIBUTE_TAG_INFORMATION).

 Status set to STATUS_SUCCESS.

2.1.5.12.6 FileBasicInformation

OutputBuffer is of type FILE_BASIC_INFORMATION as defined in [MS-FSCC] section 2.4.7.

Pseudocode for the operation is as follows:

 If OutputBufferSize is smaller than BlockAlign(sizeof(FILE_BASIC_INFORMATION), 8), the
operation MUST be failed with STATUS_INFO_LENGTH_MISMATCH.

 If Open.GrantedAccess does not contain FILE_READ_ATTRIBUTES, the operation MUST be failed
with STATUS_ACCESS_DENIED.

 The object store MUST set OutputBuffer.CreationTime equal to Open.File.CreationTime.

 The object store MUST set OutputBuffer.LastWriteTime equal to

Open.File.LastModificationTime.

%5bMS-FSCC%5d.pdf#Section_efbfe12773ad41409967ec6500e66d5e

182 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

 The object store MUST set OutputBuffer.ChangeTime equal to Open.File.LastChangeTime.

 The object store MUST set OutputBuffer.LastAccessTime equal to Open.File.LastAccessTime.

 If Open.Stream.StreamType is DirectoryStream:

 The object store MUST set OutputBuffer.FileAttributes equal to the value of

Open.File.FileAttributes.

 The object store MUST set FILE_ATTRIBUTE_DIRECTORY in OutputBuffer.FileAttributes.

 Else:

 This is a DataStream. The object store MUST set OutputBuffer.FileAttributes equal to the
value of Open.File.FileAttributes. The following attribute values, if they are set in
Open.File.FileAttributes, MUST NOT be copied to OutputBuffer.FileAttributes (attribute
flags are defined in [MS-FSCC] section 2.6):

 FILE_ATTRIBUTE_COMPRESSED

 FILE_ATTRIBUTE_TEMPORARY

 FILE_ATTRIBUTE_SPARSE_FILE

 FILE_ATTRIBUTE_ENCRYPTED

 FILE_ATTRIBUTE_INTEGRITY_STREAM<161>

 If Open.Stream.IsSparse is TRUE, the object store MUST set

FILE_ATTRIBUTE_SPARSE_FILE in OutputBuffer.FileAttributes.

 If Open.Stream.IsEncrypted is TRUE, the object store MUST set
FILE_ATTRIBUTE_ENCRYPTED in OuputBuffer.FileAttributes.

 If Open.Stream.IsTemporary is TRUE, the object store MUST set

FILE_ATTRIBUTE_TEMPORARY in OutputBuffer.FileAttributes.

 If Open.Stream.IsCompressed is TRUE, the object store MUST set
FILE_ATTRIBUTE_COMPRESSED in OutputBuffer.FileAttributes.

 If Open.Stream.ChecksumAlgorithm != CHECKSUM_TYPE_NONE, the object store MUST
set FILE_ATTRIBUTE_INTEGRITY_STREAM in OutputBuffer.FileAttributes.<162>

 EndIf

 If OutputBuffer.FileAttributes is 0, the object store MUST set FILE_ATTRIBUTE_NORMAL in
OutputBuffer.FileAttributes.

 Upon successful completion of the operation, the object store MUST return:

 ByteCount set to sizeof(FILE_BASIC_INFORMATION).

 Status set to STATUS_SUCCESS.

2.1.5.12.7 FileBothDirectoryInformation

This operation is not supported and MUST be failed with STATUS_ INVALID_INFO_CLASS.

2.1.5.12.8 FileCompressionInformation

183 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

OutputBuffer is of type FILE_COMPRESSION_INFORMATION as defined in [MS-FSCC] section
2.4.9.<163>

Pseudocode for the operation is as follows:

 If OutputBufferSize is smaller than sizeof(FILE_COMPRESSION_INFORMATION), the operation

MUST be failed with STATUS_INFO_LENGTH_MISMATCH.

 The object store MUST initialize all fields in OutputBuffer to zero.

 If Open.Stream.StreamType is DirectoryStream:

 If Open.File.FileAttributes.FILE_ATTRIBUTE_COMPRESSED is TRUE:

 The object store MUST set OutputBuffer.CompressionState to
COMPRESSION_FORMAT_LZNT1.

 Else:

 The object store MUST set OutputBuffer.CompressionState to
COMPRESSION_FORMAT_NONE.

 EndIf

 Else:

 The object store MUST set OutputBuffer.CompressedFileSize to the number of bytes
actually allocated on the underlying physical storage for storing the compressed data. This

value MUST be a multiple of Open.File.Volume.ClusterSize and MUST be less than or equal
to Open.Stream.AllocationSize.

 If Open.Stream.IsCompressed is TRUE:

 The object store MUST set OutputBuffer.CompressionState to
COMPRESSION_FORMAT_LZNT1.

 Else:

 The object store MUST set OutputBuffer.CompressionState to

COMPRESSION_FORMAT_NONE.

 EndIf

 EndIf

 If OutputBuffer.CompressionState is not equal to COMPRESSION_FORMAT_NONE, the object
store MUST set:

 OutputBuffer.CompressedUnitShift to the base-2 logarithm of
Open.File.Volume.CompressionUnitSize.

 OutputBuffer.ChunkShift to the base-2 logarithm of
Open.File.Volume.CompressedChunkSize.

 OutputBuffer.ClusterShift to the base-2 logarithm of Open.File.Volume.ClusterSize.

 EndIf

 Upon successful completion of the operation, the object store MUST return:

 ByteCount set to sizeof(FILE_COMPRESSION_INFORMATION).

%5bMS-FSCC%5d.pdf#Section_efbfe12773ad41409967ec6500e66d5e

184 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

 Status set to STATUS_SUCCESS.

2.1.5.12.9 FileDirectoryInformation

This operation is not supported and MUST be failed with STATUS_ INVALID_INFO_CLASS.

2.1.5.12.10 FileEaInformation

OutputBuffer is of type FILE_EA_INFORMATION as described in [MS-FSCC] 2.4.12.<164>

Pseudocode for the operation is as follows:

 If OutputBufferSize is smaller than sizeof(FILE_EA_INFORMATION), the operation MUST be
failed with STATUS_INFO_LENGTH_MISMATCH.

 The object store MUST set:

 OutputBuffer.EaSize set to Open.File.ExtendedAttributesLength. If

Open.File.ExtendedAttributesLength is a nonzero value, OutputBuffer.EaSize is
incremented by 4 to account for the header.

 Upon successful completion of the operation, the object store MUST return:

 ByteCount set to sizeof(FILE_EA_INFORMATION).

 Status set to STATUS_SUCCESS.

2.1.5.12.11 FileFullDirectoryInformation

This operation is not supported and MUST be failed with STATUS_ INVALID_INFO_CLASS.

2.1.5.12.12 FileFullEaInformation

OutputBuffer is of type FILE_FULL_EA_INFORMATION as described in [MS-FSCC] 2.4.15.<165>

Pseudocode for the operation is as follows:

 The object store MUST initialize OutputBuffer to zero.

 If Open.GrantedAccess does not contain FILE_READ_EA, the operation MUST be failed with
STATUS_ACCESS_DENIED.

 If Open.File.ExtendedAttributes is not empty:

 OutputBuffer is filled with as many complete FILE_FULL_EA_INFORMATION entries from
Open.File.ExtendedAttributes, starting with Open.NextEaEntry, as can be contained in
OutputBufferSize bytes.

 Open.NextEaEntry is set to point to the entry after the last entry returned, if any.

 Endif

 Upon successful completion of the operation, the object store MUST return:

 ByteCount set to the size, in bytes, of all FILE_FULL_EA_INFORMATION entries returned.

 Status set to:

 STATUS_NO_EAS_ON_FILE if there were no entries to return in
Open.File.ExtendedAttributes.

%5bMS-FSCC%5d.pdf#Section_efbfe12773ad41409967ec6500e66d5e
%5bMS-FSCC%5d.pdf#Section_efbfe12773ad41409967ec6500e66d5e

185 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

 STATUS_BUFFER_TOO_SMALL if OutputBufferSize is too small to hold
Open.NextEaEntry. No entries are returned.

 STATUS_BUFFER_OVERFLOW if at least one entry was returned in OutputBuffer but
there are still additional entries to return.

 STATUS_SUCCESS when one or more entries were returned from
Open.File.ExtendedAttributes and there are no more entries to return.

2.1.5.12.13 FileHardLinkInformation

This operation is not supported and MUST be failed with STATUS_NOT_SUPPORTED.

2.1.5.12.14 FileIdBothDirectoryInformation

This operation is not supported and MUST be failed with STATUS_ INVALID_INFO_CLASS.

2.1.5.12.15 FileIdFullDirectoryInformation

This operation is not supported and MUST be failed with STATUS_ INVALID_INFO_CLASS.

2.1.5.12.16 FileIdGlobalTxDirectoryInformation

This operation is not supported and MUST be failed with STATUS_ INVALID_INFO_CLASS.

2.1.5.12.17 FileInternalInformation

OutputBuffer is of type FILE_INTERNAL_INFORMATION as described in [MS-FSCC] 2.4.26.

Pseudocode for the operation is as follows:

 If OutputBufferSize is smaller than sizeof(FILE_INTERNAL_INFORMATION), the operation MUST
be failed with STATUS_INFO_LENGTH_MISMATCH.

 OutputBuffer MUST be constructed as follows:

 OutputBuffer.IndexNumber set to Open.File.FileId64.

 Upon successful completion of the operation, the object store MUST return:

 ByteCount set to sizeof(FILE_INTERNAL_INFORMATION).

 Status set to STATUS_SUCCESS.

2.1.5.12.18 FileModeInformation

OutputBuffer is of type FILE_MODE_INFORMATION as described in [MS-FSCC] 2.4.30.

Pseudocode for the operation is as follows:

 If OutputBufferSize is smaller than sizeof(FILE_MODE_INFORMATION), the operation MUST be
failed with STATUS_INFO_LENGTH_MISMATCH.

 OutputBuffer MUST be constructed as follows:

 OutputBuffer.Mode MUST be set to Open.Mode.

 Upon successful completion of the operation, the object store MUST return:

 ByteCount set to sizeof(FILE_MODE_INFORMATION).

%5bMS-FSCC%5d.pdf#Section_efbfe12773ad41409967ec6500e66d5e
%5bMS-FSCC%5d.pdf#Section_efbfe12773ad41409967ec6500e66d5e

186 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

 Status set to STATUS_SUCCESS.

2.1.5.12.19 FileNameInformation

This operation is not supported from a remote client, it is only supported from a local client or as part

of processing a query for the FileAllInformation operation as specified in section 2.1.5.12.3. If used to
query from a remote client, this operation MUST be failed with a status code of
STATUS_NOT_SUPPORTED.

OutputBuffer is of type FILE_NAME_INFORMATION as described in [MS-FSCC] section 2.4.5.

This routine uses the following local variables:

 Unicode string: FileName

 32-bit unsigned integers: FileNameLength, AvailableNameLength

Pseudocode for the operation is as follows:

 If OutputBufferSize is smaller than
BlockAlign(FieldOffset(FILE_NAME_INFORMATION.FileName) + 2, 4), the operation MUST be
failed with a status code of STATUS_INFO_LENGTH_MISMATCH.

 Set FileName to BuildRelativeName(Open.Link, Open.File.Volume.RootDirectory).

 Set FileNameLength to the length, in bytes, of FileName.

 Set OutputBuffer.FileNameLength to FileNameLength.

 Set AvailableNameLength to BlockAlignTruncate((OutputBufferSize -
FieldOffset(FILE_NAME_INFORMATION.FileName)), 2).

 If AvailableNameLength < FileNameLength, the object store MUST fail the operation with:

 AvailableNameLength bytes copied from FileName to OutputBuffer.FileName.

 ByteCount set to FieldOffset(FILE_NAME_INFORMATION.FileName) +
AvailableNameLength.

 Status set to STATUS_BUFFER_OVERFLOW.

 EndIf

 Upon successful completion of the operation, the object store MUST return:

 FileNameLength bytes copied from FileName to OutputBuffer.FileName.

 ByteCount set to FieldOffset(FILE_NAME_INFORMATION.FileName) + FileNameLength.

 Status set to STATUS_SUCCESS.

2.1.5.12.20 FileNamesInformation

This operation is not supported as a file information class, it is only supported as a directory
information class, as specified in section 2.1.5.5.3.6. If used to query file information STATUS_
INVALID_INFO_CLASS MUST be returned.

2.1.5.12.21 FileNetworkOpenInformation

OutputBuffer is of type FILE_NETWORK_OPEN_INFORMATION as defined in [MS-FSCC] section

2.4.33.

%5bMS-FSCC%5d.pdf#Section_efbfe12773ad41409967ec6500e66d5e
%5bMS-FSCC%5d.pdf#Section_efbfe12773ad41409967ec6500e66d5e

187 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

Pseudocode for the operation is as follows:

 If OutputBufferSize is smaller than sizeof(FILE_NETWORK_OPEN_INFORMATION), the
operation MUST be failed with STATUS_INFO_LENGTH_MISMATCH.

 If Open.GrantedAccess does not contain FILE_READ_ATTRIBUTES, the operation MUST be failed

with STATUS_ACCESS_DENIED.

 OutputBuffer MUST be constructed as follows:

 OutputBuffer.CreationTime set to Open.File.CreationTime.

 OutputBuffer.LastWriteTime set to Open.File.LastModificationTime.

 OutputBuffer.ChangeTime set to Open.File.LastChangeTime.

 OutputBuffer.LastAccessTime set to Open.File.LastAccessTime.

 OutputBuffer.FileAttributes set to Open.File.FileAttributes.

 If Open.Stream.StreamType is DirectoryStream:

 FILE_ATTRIBUTE_DIRECTORY, as specified in [MS-FSCC] section 2.6, MUST always be set
in OutputBuffer.FileAttributes.

 Else:

 For a DataStream, the following attribute values, as specified in [MS-FSCC] section 2.6,
MUST NOT be copied to OutputBuffer.FileAttributes:

 FILE_ATTRIBUTE_COMPRESSED

 FILE_ATTRIBUTE_TEMPORARY

 FILE_ATTRIBUTE_SPARSE_FILE

 FILE_ATTRIBUTE_ENCRYPTED

 FILE_ATTRIBUTE_INTEGRITY_STREAM<166>

 If Open.Stream.IsSparse is TRUE, the object store MUST set
FILE_ATTRIBUTE_SPARSE_FILE in OutputBuffer.FileAttributes.

 If Open.Stream.IsEncrypted is TRUE, set FILE_ATTRIBUTE_ENCRYPTED in
OuputBuffer.FileAttributes.

 If Open.Stream.IsTemporary is TRUE, set FILE_ATTRIBUTE_TEMPORARY in
OutputBuffer.FileAttributes.

 If Open.Stream.IsCompressed is TRUE, set FILE_ATTRIBUTE_COMPRESSED in
OutputBuffer.FileAttributes.

 If Open.Stream.ChecksumAlgorithm != CHECKSUM_TYPE_NONE, the object store

MUST set FILE_ATTRIBUTE_INTEGRITY_STREAM<167> in OutputBuffer.FileAttributes.

 OutputBuffer.AllocationSize set to Open.Stream.AllocationSize.

 OutputBuffer.EndOfFile set to Open.Stream.Size.

 EndIf

188 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

 If OutputBuffer.FileAttributes is 0, set FILE_ATTRIBUTE_NORMAL in
OutputBuffer.FileAttributes.

 Upon successful completion of the operation, the object store MUST return:

 ByteCount set to sizeof(FILE_NETWORK_OPEN_INFORMATION).

 Status set to STATUS_SUCCESS.

2.1.5.12.22 FileObjectIdInformation

This operation is not supported and MUST be failed with STATUS_NOT_SUPPORTED.

2.1.5.12.23 FilePositionInformation

OutputBuffer is of type FILE_POSITION_INFORMATION, as specified in [MS-FSCC] section 2.4.39.

Pseudocode for the operation is as follows:

 If OutputBufferSize is less than the size, in bytes, of the FILE_POSITION_INFORMATION
structure, the operation MUST be failed with STATUS_INFO_LENGTH_MISMATCH.

 The objects store MUST set OutputBuffer.CurrentByteOffset equal to
Open.CurrentByteOffset.

 The operation returns STATUS_SUCCESS.<168>

2.1.5.12.24 FileQuotaInformation

This operation is not supported as a file information class; it is supported only as a server request, as
specified in section 2.1.5.21. If used to query file information, STATUS_INVALID_PARAMETER MUST
be returned.

2.1.5.12.25 FileReparsePointInformation

This operation is not supported as a file information class; it is only supported as a directory
enumeration class, as specified in section 2.1.5.6.2. If used to query file information
STATUS_NOT_SUPPORTED MUST be returned.

2.1.5.12.26 FileSfioReserveInformation

This operation is not supported and MUST be failed with STATUS_NOT_SUPPORTED.

2.1.5.12.27 FileStandardInformation

OutputBuffer is of type FILE_STANDARD_INFORMATION, as described in [MS-FSCC] section 2.4.45.

Pseudocode for the operation is as follows:

 If OutputBufferSize is smaller than sizeof(FILE_STANDARD_INFORMATION), the operation
MUST be failed with STATUS_INFO_LENGTH_MISMATCH.

 OutputBuffer MUST be constructed as follows:

 If Open.Stream.StreamType is DirectoryStream, set OutputBuffer.Directory to 1 else 0.

 If Open.Stream.StreamType is DirectoryStream or Open.Stream.Name is empty:

 If Open.Link.IsDeleted is TRUE, set OutputBuffer.DeletePending to 1 else 0.

%5bMS-FSCC%5d.pdf#Section_efbfe12773ad41409967ec6500e66d5e
%5bMS-FSCC%5d.pdf#Section_efbfe12773ad41409967ec6500e66d5e

189 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

 Else:

 If Open.Stream.IsDeleted is TRUE, set OutputBuffer.DeletePending to 1 else 0.

 EndIf

 OutputBuffer.NumberOfLinks set to the number of Link elements in

Open.File.LinkList, except if Link.IsDeleted field is TRUE (that is, the number of not-
deleted links to the file).<169>

 If OutputBuffer.NumberOfLinks is 0, set OutputBuffer.DeletePending to 1.

 OutputBuffer.AllocationSize set to Open.Stream.AllocationSize.

 OutputBuffer.EndOfFile set to Open.Stream.Size.

 Upon successful completion of the operation, the object store MUST return:

 ByteCount set to sizeof(FILE_STANDARD_INFORMATION).

 Status set to STATUS_SUCCESS.

2.1.5.12.28 FileStandardLinkInformation

This operation is not supported and MUST be failed with STATUS_NOT_SUPPORTED.

2.1.5.12.29 FileStreamInformation

OutputBuffer is of type FILE_STREAM_INFORMATION, as described in [MS-FSCC] section 2.4.47.
Object stores that do not support alternate data streams SHOULD<170> return
STATUS_INVALID_INFO_CLASS.

This routine uses the following local variables:

 32-bit unsigned integer: StreamNameLength, RemainingLength, ThisElementSize,
PreviousElementPadding

 Stream: ThisStream

 Pointer to a buffer of type FILE_STREAM_INFORMATION: CurrentPosition, LastPosition

Pseudocode for the operation is as follows:

 If OutputBufferSize is smaller than sizeof(FILE_STREAM_INFORMATION), the operation MUST
be failed with STATUS_INFO_LENGTH_MISMATCH.

 Initialize PreviousElementPadding to 0.

 Initialize CurrentPosition to point to the 0th byte of OutputBuffer.

 Initialize RemainingLength to be equal to OutputBufferSize.

 For each Stream ThisStream of Open.File:

 Set StreamNameLength equal to the length, in bytes, of ThisStream.Name plus the length, in
bytes, of the Unicode string "$DATA" plus the length, in bytes, of two Unicode characters.
This accommodates the length of the full stream name in the form
:<ThisStream.Name>:$DATA.

 Set ThisElementSize equal to the byte offset of CurrentPosition.StreamName plus

StreamNameLength.

%5bMS-FSCC%5d.pdf#Section_efbfe12773ad41409967ec6500e66d5e

190 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

 If ThisElementSize plus PreviousElementPadding is greater than RemainingLength, the
operation MUST be failed with STATUS_BUFFER_OVERFLOW.

 The object store MUST set CurrentPosition.StreamSize equal to ThisStream.Size.

 The object store MUST set CurrentPosition.AllocationSize equal to

ThisStream.AllocationSize.

 The object store MUST set CurrentPosition.StreamNameLength equal to
StreamNameLength.

 The object store MUST set CurrentPosition.StreamName to the Unicode character ":", then
append ThisStream.Name, then append the Unicode character ":", then append the Unicode
string "$DATA".

 Set PreviousElementPadding equal to BlockAlign(ThisElementSize, 8) minus ThisElementSize.

The value PreviousElementPadding is used to align each FILE_STREAM_INFORMATION element
in OutputBuffer on an 8-byte boundary.

 The object store MUST set CurrentPosition.NextEntryOffset equal to ThisElementSize plus
PreviousElementPadding.

 Set RemainingLength equal to RemainingLength minus (ThisElementSize plus
PreviousElementPadding).

 Set LastPosition equal to CurrentPosition.

 Advance CurrentPosition by a number of bytes equal to ThisElementSize plus
PreviousElementPadding.

 EndFor

 The object store MUST set LastPosition.NextEntryOffset equal to 0.

 The operation returns STATUS_SUCCESS.

2.1.5.12.30 FileNormalizedNameInformation

OutputBuffer is of type FILE_NAME_INFORMATION as specified in [MS-FSCC] section 2.1.7.

This routine uses the following local variables:

 Unicode string: FileName

 32-bit unsigned integers: FileNameLength, AvailableNameLength

Pseudocode for the operation is as follows:

 If the Open was created with FILE_OPEN_BY_FILE_ID in CreateOptions and

Open.GrantedAccess.FILE_TRAVERSE is not set, the operation MUST be failed with a status
code of STATUS_ACCESS_DENIED.

 If Link.ParentFile is NULL and the Open was created without FILE_OPEN_BY_FILE_ID in
CreateOptions, the operation MUST be failed with a status code of STATUS_INVALID_PARAMETER.

 If OutputBufferSize is smaller than
BlockAlign(FieldOffset(FILE_NAME_INFORMATION.FileName) + 2, 4), the operation MUST be

failed with a status code of STATUS_INFO_LENGTH_MISMATCH.

 Set FileName to BuildRelativeName(Open.Link, Open.File.Volume.RootDirectory).

%5bMS-FSCC%5d.pdf#Section_efbfe12773ad41409967ec6500e66d5e

191 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

 Set FileNameLength to the length, in bytes, of FileName.

 Set OutputBuffer.FileNameLength to FileNameLength.

 Set AvailableNameLength to BlockAlignTruncate((OutputBufferSize -
FieldOffset(FILE_NAME_INFORMATION.FileName)), 2).

 If AvailableNameLength < FileNameLength, the object store MUST fail the operation with:

 AvailableNameLength bytes copied from FileName to OutputBuffer.FileName.

 ByteCount set to FieldOffset(FILE_NAME_INFORMATION.FileName) + AvailableNameLength.

 Status set to STATUS_BUFFER_OVERFLOW.

 EndIf

 Upon successful completion of the operation, the object store MUST return:

 FileNameLength bytes copied from FileName to OutputBuffer.FileName.

 ByteCount set to FieldOffset(FILE_NAME_INFORMATION.FileName) + FileNameLength.

 Status set to STATUS_SUCCESS.

2.1.5.12.31 FileIdInformation

OutputBuffer is of type FILE_ID_INFORMATION as specified in [MS-FSCC] section 2.4.25.

Pseudocode for the operation is as follows:

 If OutputBufferSize is smaller than sizeof(FILE_ID_INFORMATION), the operation MUST be
failed with STATUS_INFO_LENGTH_MISMATCH.

 OutputBuffer MUST be constructed as follows:

 OutputBuffer.VolumeSerialNumber set to Open.File.Volume.VolumeSerialNumber.

 OutBuffer.FileId set to Open.File.FileId128.

 Upon successful completion of the operation, the object store MUST return:

 ByteCount set to sizeof(FILE_ID_INFORMATION)

 Status set to STATUS_SUCCESS.

2.1.5.13 Server Requests a Query of File System Information

The server provides:

 Open: An Open of a DataFile or DirectoryFile.

 OutputBufferSize: The maximum number of bytes to be returned in OutputBuffer.

 FsInformationClass: The type of information being queried, as specified in [MS-FSCC] section
2.5.

On completion, the object store MUST return:

 Status: An NTSTATUS code that specifies the result.

%5bMS-FSCC%5d.pdf#Section_efbfe12773ad41409967ec6500e66d5e
%5bMS-FSCC%5d.pdf#Section_efbfe12773ad41409967ec6500e66d5e

192 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

 OutputBuffer: An array of bytes containing the file system information. The structure of these
bytes is dependent on FsInformationClass, as noted in the relevant subsection.

 ByteCount: The number of bytes stored in OutputBuffer.

Pseudocode for the operation is as follows:

 If FsInformationClass is not defined in [MS-FSCC] section 2.5, the operation MUST be failed
with STATUS_INVALID_PARAMETER.

2.1.5.13.1 FileFsVolumeInformation

OutputBuffer is of type FILE_FS_VOLUME_INFORMATION, as described in [MS-FSCC] section 2.5.9.

This routine uses the following local variables:

 32-bit unsigned integers: RemainingLength, BytesToCopy

Pseudocode for the operation is as follows:

 If OutputBufferSize is smaller than
BlockAlign(FieldOffset(FILE_FS_VOLUME_INFORMATION.VolumeLabel), 8), the operation MUST
be failed with STATUS_INFO_LENGTH_MISMATCH.

 OutputBuffer MUST be constructed as follows:

 OutputBuffer.VolumeCreationTime set to Open.File.Volume.VolumeCreationTime.

 OutputBuffer.VolumeSerialNumber set to Open.File.Volume.VolumeSerialNumber.

 OutputBuffer.VolumeLabelLength set to the length, in bytes, of the
Open.File.Volume.VolumeLabel string. This value can be zero.

 OutputBuffer.SupportsObjects set to TRUE.

 Set RemainingLength to OutputBufferSize -
FieldOffset(FILE_FS_VOLUME_INFORMATION.VolumeLabel).

 If RemainingLength < OutputBuffer.VolumeLabelLength:

 Set BytesToCopy to RemainingLength.

 Else:

 Set BytesToCopy to OutputBuffer.VolumeLabelLength.

 EndIf

 Copy BytesToCopy bytes from Volume.VolumeLable to OutputBuffer.VolumeLabel.

 Upon successful completion of the operation, the object store MUST return:

 ByteCount set to FieldOffset(FILE_FS_VOLUME_INFORMATION.VolumeLabel) +

BytesToCopy.

 Status set to STATUS_BUFFER_OVERFLOW if BytesToCopy <
OutputBuffer.VolumeLabelLength else STATUS_SUCCESS.

2.1.5.13.2 FileFsLabelInformation

This operation is not supported and MUST be failed with STATUS_NOT_SUPPORTED.

%5bMS-FSCC%5d.pdf#Section_efbfe12773ad41409967ec6500e66d5e

193 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

2.1.5.13.3 FileFsSizeInformation

OutputBuffer is of type FILE_FS_SIZE_INFORMATION as described in [MS-FSCC] section 2.5.8.

This routine uses the following local variables:

 64-bit unsigned integer: RemainingQuota

 FILE_QUOTA_INFORMATION element: QuotaEntry

Pseudocode for the operation is as follows:

 If OutputBufferSize is smaller than sizeof(FILE_FS_SIZE_INFORMATION), the operation MUST
be failed with STATUS_INFO_LENGTH_MISMATCH.

 OutputBuffer MUST be constructed as follows:

 OutputBuffer.TotalAllocationUnits set to Open.File.Volume.TotalSpace /

Open.File.Volume.ClusterSize.

 OutputBuffer.AvailableAllocationUnits set to (Open.File.Volume.FreeSpace -
Open.File.Volume.ReservedSpace) / Open.File.Volume.ClusterSize.

 OutputBuffer.SectorsPerAllocationUnit set to Open.File.Volume.ClusterSize /
Open.File.Volume.LogicalBytesPerSector.

 OutputBuffer.BytesPerSector set to Open.File.Volume.LogicalBytesPerSector.

 If Open.File.Volume.QuotaInformation contains an entry QuotaEntry that matches the SID of
the current Open, the object store MUST modify the returned information based on QuotaEntry as
follows:

 If QuotaEntry.QuotaLimit < Open.File.Volume.TotalSpace:

 OutputBuffer.TotalAllocationUnits MUST be set to QuotaEntry.QuotaLimit /

Open.File.Volume.ClusterSize.

 EndIf

 If QuotaEntry.QuotaLimit <= QuotaEntry.QuotaUsed:

 RemainingQuota MUST be set to 0.

 Else

 RemainingQuota MUST be set to QuotaEntry.QuotaLimit - QuotaEntry.QuotaUsed.

 EndIf

 If RemainingQuota < (Open.File.Volume.FreeSpace -
Open.File.Volume.ReservedSpace):

 OutputBuffer.AvailableAllocationUnits MUST be set to RemainingQuota /
Open.File.Volume.ClusterSize.

 EndIf

 EndIf

 Upon successful completion of the operation, the object store MUST return:

 ByteCount MUST be set to sizeof(FILE_FS_SIZE_INFORMATION).

%5bMS-FSCC%5d.pdf#Section_efbfe12773ad41409967ec6500e66d5e

194 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

 Status set to STATUS_SUCCESS.

2.1.5.13.4 FileFsDeviceInformation

OutputBuffer is of type FILE_FS_DEVICE_INFORMATION, as described in [MS-FSCC] section 2.5.10.

Pseudocode for the operation is as follows:

 If OutputBufferSize is smaller than sizeof(FILE_FS_DEVICE_INFORMATION), the operation
MUST be failed with STATUS_INFO_LENGTH_MISMATCH .

 OutputBuffer MUST be constructed as follows:

 OutputBuffer.DeviceType set to FILE_DEVICE_DISK or FILE_DEVICE_CD_ROM, as defined
in [MS-FSCC] section 2.5.10, depending on the type of media that Open.File.Volume is
mounted on.

 OutputBuffer.Characteristics set to Open.File.Volume.VolumeCharacteristics.

 Upon successful completion of the operation, the object store MUST return:

 ByteCount set to sizeof(FILE_FS_DEVICE_INFORMATION).

 Status set to STATUS_SUCCESS.

2.1.5.13.5 FileFsAttributeInformation

OutputBuffer is of type FILE_FS_ATTRIBUTE_INFORMATION, as described in [MS-FSCC] section
2.5.1.

This routine uses the following local variables:

 32-bit unsigned integer: RemainingLength, BytesToCopy

Pseudocode for the operation is as follows:

 If OutputBufferSize is smaller than
BlockAlign(FieldOffset(FILE_FS_ATTRIBUTE_INFORMATION.FileSystemName), 4), the

operation MUST be failed with STATUS_INFO_LENGTH_MISMATCH.

 OutputBuffer MUST be constructed as follows:

 OutputBuffer.FileSystemAttributes set to appropriate values, as specified in [MS-FSCC]
section 2.5.1, based on the implementation of the given file system.<171>

 OutputBuffer.MaximumComponentNameLength set to different values depending on the
file system.<172>

 OutputBuffer.FileSystemNameLength set to the length, in bytes, of the name of the file

system on Open.File.Volume.

 Set RemainingLength to OutputBufferSize -
FieldOffset(FILE_FS_ATTRIBUTE_INFORMATION.FileSystemName).

 If RemainingLength < OutputBuffer.FileSystemNameLength.

 Set BytesToCopy to RemainingLength.

 Else

 Set BytesToCopy to OutputBuffer.FileSystemNameLength.

%5bMS-FSCC%5d.pdf#Section_efbfe12773ad41409967ec6500e66d5e
%5bMS-FSCC%5d.pdf#Section_efbfe12773ad41409967ec6500e66d5e

195 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

 EndIf

 Copy BytesToCopy bytes from the file system name string to OutputBuffer.FileSystemName.

 Upon successful completion of the operation, the object store MUST return:

 ByteCount set to FieldOffset(FILE_FS_ATTRIBUTE_INFORMATION.FileSystemName)+

BytesToCopy.

 Status set to STATUS_BUFFER_OVERFLOW if BytesToCopy <
OutputBuffer.FileSystemNameLength else STATUS_SUCCESS.

2.1.5.13.6 FileFsControlInformation

OutputBuffer is of type FILE_FS_CONTROL_INFORMATION, as described in [MS-FSCC] section 2.5.2.

Pseudocode for the operation is as follows:

 If OutputBufferSize is smaller than BlockAlign(sizeof(FILE_FS_CONTROL_INFORMATION), 8)
the operation MUST be failed with STATUS_INFO_LENGTH_MISMATCH.

 Support for this operation is optional. If the object store does not implement this functionality, the
operation MUST be failed with STATUS_INVALID_PARAMETER.<173>

 If Open.File.Volume.IsQuotasSupported is FALSE, the operation MUST be failed with
STATUS_VOLUME_NOT_UPGRADED.

 The object store MUST initialize all fields in OutputBuffer to zero.

 If Quotas are supported on Open.File.Volume, the object store MUST set fields in OutputBuffer
as follows:

 OutputBuffer.DefaultQuotaThreshold set to
Open.File.Volume.DefaultQuotaThreshold.

 OutputBuffer.DefaultQuotaLimit set to Open.File.Volume.DefaultQuotaLimit.

 OutputBuffer.FileSystemControlFlags set to Open.File.Volume.VolumeQuotaState.

 EndIf

 Upon successful completion of the operation, the object store MUST return:

 ByteCount set to sizeof(FILE_FS_CONTROL_INFORMATION).

 Status set to STATUS_SUCCESS.

2.1.5.13.7 FileFsFullSizeInformation

OutputBuffer is of type FILE_FS_FULL_SIZE_INFORMATION, as described in [MS-FSCC] section

2.5.4.

This routine uses the following local variables:

 64-bit unsigned integer: RemainingQuota

 FILE_QUOTA_INFORMATION element: QuotaEntry

Pseudocode for the operation is as follows:

 If OutputBufferSize is smaller than sizeof(FILE_FS_FULL_SIZE_INFORMATION), the operation

MUST be failed with STATUS_INFO_LENGTH_MISMATCH.

%5bMS-FSCC%5d.pdf#Section_efbfe12773ad41409967ec6500e66d5e
%5bMS-FSCC%5d.pdf#Section_efbfe12773ad41409967ec6500e66d5e

196 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

 OutputBuffer MUST be constructed as follows:

 OutputBuffer.TotalAllocationUnits set to Open.File.Volume.TotalSpace /
Open.File.Volume.ClusterSize.

 OutputBuffer.CallerAvailableAllocationUnits set to (Open.File.Volume.FreeSpace -

Open.File.Volume.ReservedSpace) / Open.File.Volume.ClusterSize.

 OutputBuffer.ActualAvailableAllocationUnits set to (Open.File.Volume.FreeSpace -
Open.File.Volume.ReservedSpace) / Open.File.Volume.ClusterSize.

 OutputBuffer.SectorsPerAllocationUnit set to Volume.ClusterSize / Open.File.Volume.
LogicalBytesPerSector.

 OutputBuffer.BytesPerSector set to Open.File.Volume. LogicalBytesPerSector.

 If Open.File.Volume.QuotaInformation contains an entry QuotaEntry that matches the SID of

the current Open, the object store MUST modify the returned information based on QuotaEntry as

follows:

 If QuotaEntry.QuotaLimit < Open.File.Volume.TotalSpace:

 OutputBuffer.TotalAllocationUnits MUST be set to QuotaEntry.QuotaLimit /
Open.File.Volume.ClusterSize.

 EndIf

 If QuotaEntry.QuotaLimit <= QuotaEntry.QuotaUsed:

 RemainingQuota MUST be set to 0.

 Else

 RemainingQuota MUST be set to QuotaEntry.QuotaLimit - QuotaEntry.QuotaUsed.

 EndIf

 If RemainingQuota < (Open.File.Volume.FreeSpace -
Open.File.Volume.ReservedSpace):

 OutputBuffer.CallerAvailableAllocationUnits MUST be set to RemainingQuota /
Open.File.Volume.ClusterSize.

 EndIf

 EndIf

 Upon successful completion of the operation, the object store MUST return:

 ByteCount set to sizeof(FILE_FS_FULL_SIZE_INFORMATION).

 Status set to STATUS_SUCCESS.

2.1.5.13.8 FileFsObjectIdInformation

OutputBuffer is a FILE_FS_OBJECTID_INFORMATION structure as described in [MS-FSCC] section
2.5.6.<174>

Pseudocode for the operation is as follows:

 If OutputBufferSize is less than sizeof(FILE_FS_OBJECTID_INFORMATION), the operation MUST

be failed with STATUS_INFO_LENGTH_MISMATCH.

%5bMS-FSCC%5d.pdf#Section_efbfe12773ad41409967ec6500e66d5e

197 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

 Support for ObjectIDs is optional. If the object store does not implement this functionality, the
operation MUST be failed with STATUS_INVALID_PARAMETER.<175>

 If Open.File.Volume.IsObjectIDsSupported is FALSE, the operation MUST be failed with
STATUS_VOLUME_NOT_UPGRADED.

 If Open.File.Volume.VolumeId is empty, the operation MUST be failed with
STATUS_OBJECT_NAME_NOT_FOUND.

 OutputBuffer MUST be constructed as follows:

 OutputBuffer.ObjectId set to Open.File.Volume.VolumeId.

 OutputBuffer.ExtendedInfo set to Open.File.Volume.ExtendedInfo.

 Upon successful completion of the operation, the object store MUST return:

 ByteCount set to sizeof(FILE_FS_OBJECTID_INFORMATION).

 Status set to STATUS_SUCCESS.

2.1.5.13.9 FileFsDriverPathInformation

This operation is not supported and MUST be failed with STATUS_NOT_SUPPORTED.

2.1.5.13.10 FileFsSectorSizeInformation

OutputBuffer is of type FILE_FS_SECTOR_SIZE_INFORMATION as defined in [MS-FSCC] section
2.5.7.

Pseudocode for the operation is as follows:

 If OutputBufferSize is smaller than sizeof(FILE_FS_SECTOR_SIZE_INFORMATION), the
operation MUST be failed with STATUS_INFO_LENGTH_MISMATCH.

 OutputBuffer MUST be constructed as follows:

 OutputBuffer.LogicalBytesPerSector set to Open.File.Volume.LogicalBytesPerSector.

 OutputBuffer.PhysicalBytesPerSectorForAtomicity is computed as follows:

 Set OutputBuffer.PhysicalBytesPerSectorForAtomicity to the physical sector size
reported from the storage device underlying the object store.

 If there was an issue with retrieving the physical sector size information:

 Set OutputBuffer.PhysicalBytesPerSectorForAtomicity to
Open.File.Volume.LogicalBytesPerSector.

 ElseIf OutputBuffer.PhysicalBytesPerSectorForAtomicity is NOT a power of two, OR

OutputBuffer.PhysicalBytesPerSectorForAtomicity is less than
Open.File.Volume.LogicalBytesPerSector, OR

OutputBuffer.PhysicalBytesPerSectorForAtomicity is not a multiple of
Open.File.Volume.LogicalBytesPerSector:

 Set OutputBuffer.PhysicalBytesPerSectorForAtomicity to
Open.File.Volume.LogicalBytesPerSector.

 EndIf

%5bMS-FSCC%5d.pdf#Section_efbfe12773ad41409967ec6500e66d5e

198 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

 OutputBuffer.PhysicalBytesPerSectorForPerformance is set to
OutputBuffer.PhysicalBytesPerSectorForAtomicity.

 OutputBuffer.FileSystemEffectivePhysicalBytesPerSectorForAtomicity is computed as
follows:

 If OutputBuffer.PhysicalBytesPerSectorForAtomicity is greater than
Open.File.Volume.SystemPageSize:

 Set OutputBuffer.FileSystemEffectivePhysicalBytesPerSectorForAtomicity to
Open.File.Volume.SystemPageSize.

 Else:

 Set OutputBuffer.FileSystemEffectivePhysicalBytesPerSectorForAtomicity to
OutputBuffer.PhysicalBytesPerSectorForAtomicity.

 EndIf

 OutputBuffer.ByteOffsetForSectorAlignment is computed as follows:

 Set OutputBuffer.ByteOffsetForSectorAlignment to the physical offset alignment
reported by the storage device.

 If there was an issue with retrieving the physical offset alignment:

 Set OutputBuffer.ByteOffsetForSectorAlignment to SSINFO_OFFSET_UNKNOWN.

 EndIf

 OutputBuffer.ByteOffsetForPartitionAlignment is computed as follows:

 Set OutputBuffer.ByteOffsetForPartitionAlignment to
(Open.File.Volume.PartitionOffset %
OutputBuffer.PhysicalBytesPerSectorForAtomicity).

 OutputBuffer.Flags is set as follows:

 Set SSINFO_FLAGS_ALIGNED_DEVICE,

SSINFO_FLAGS_PARTITION_ALIGNED_ON_DEVICE flags in OutputBuffer.Flags.

 If OutputBuffer.ByteOffsetForSectorAlignment is not zero:

 Clear SSINFO_FLAGS_ALIGNED_DEVICE flag in OutputBuffer.Flags.

 EndIf

 If OutputBuffer.ByteOffsetForSectorAlignment is not equal to
((OutputBuffer.PhysicalBytesPerSectorForAtomicity –
OutputBuffer.ByteOffsetForPartitionAlignment) %

OutputBuffer.PhysicalBytesPerSectorForAtomicity :

 Clear SSINFO_FLAGS_PARTITION_ALIGNED_ON_DEVICE flag in OutputBuffer.Flags

 EndIf

 Query the storage device underlying the object store to determine if there is a seek
penalty. If there is not a seek penalty, set SSINFO_FLAGS_NO_SEEK_PENALTY flag in
OutputBuffer.Flags.

199 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

 Query the storage device underlying the object store to determine if either the TRIM (T13-
ATA) or UNMAP (T10-SCSI/SAS) commands are supported. If either command is

supported, set SSINFO_FLAGS_TRIM_ENABLED flag in OutputBuffer.Flags.

 Upon successful completion of the operation, the object store MUST return:

 ByteCount set to the size of the FILE_FS_SECTOR_SIZE_INFORMATION structure

 Status set to STATUS_SUCCESS.

2.1.5.14 Server Requests a Query of Security Information

If the object store does not implement security, the operation MUST be failed with
STATUS_INVALID_DEVICE_REQUEST.<176>

The server provides:

 Open: The Open on which security information is being queried.

 OutputBufferSize: The maximum number of bytes to return in OutputBuffer.

 SecurityInformation: A SECURITY_INFORMATION data type, as defined in [MS-DTYP] section
2.4.7.

On completion, the object store MUST return:

 Status: An NTSTATUS code that specifies the result.

 OutputBuffer: An array of OutputBufferSize bytes formatted as a SECURITY_DESCRIPTOR
structure in self-relative format, as described in [MS-DTYP] section 2.4.6.

 ByteCount: If the operation returns STATUS_SUCCESS, this will be set to the count of bytes filled
into OutputBuffer. If the operation returns STATUS_BUFFER_OVERFLOW, this will be set to the
required size, in bytes, of OutputBuffer so that the security descriptor will fit.

This routine uses the following local variables:

 A 32-bit unsigned integer used as a byte index into OutputBuffer: NextFree

 32-bit unsigned integers: SaclLength, MaclLength

Pseudocode for the operation is as follows:

 Let sizeof(SECURITY_DESCRIPTOR_RELATIVE) equal the number of bytes occupied by the
Revision, Sbz1, Control, OffsetOwner, OffsetGroup, OffsetSacl, and OffsetDacl fields of

OutputBuffer (that is, the total size of those fields in a SECURITY_DESCRIPTOR in self-relative
format, as described in [MS-DTYP] section 2.4.6).

 The operation MUST be failed with STATUS_ACCESS_DENIED under either of the following
conditions:

 SecurityInformation contains any of OWNER_SECURITY_INFORMATION,
GROUP_SECURITY_INFORMATION, LABEL_SECURITY_INFORMATION, or
DACL_SECURITY_INFORMATION, and Open.GrantedAccess does not contain

READ_CONTROL.

 SecurityInformation contains SACL_SECURITY_INFORMATION and Open.GrantedAccess
does not contain ACCESS_SYSTEM_SECURITY.

%5bMS-DTYP%5d.pdf#Section_cca2742956894a16b2b49325d93e4ba2

200 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

 If Open.Stream.StreamType is DataStream and Open.Stream.Name is not empty, the
operation MUST be failed with STATUS_INVALID_PARAMETER; security information can be may

only be queried on a file or directory handle, not on a stream handle.

 If Open.File.SecurityDescriptor is empty:

 If OutputBufferSize is smaller than sizeof(SECURITY_DESCRIPTOR_RELATIVE), the object
store MUST set ByteCount equal to sizeof(SECURITY_DESCRIPTOR_RELATIVE), and the
operation MUST be failed with STATUS_BUFFER_OVERFLOW.

 The object store MUST set OutputBuffer.Revision equal to 1; all other fields of
OutputBuffer MUST be filled with NULL characters.

 The object store MUST set the Self Relative (SR) bit in OutputBuffer.Control.

 The operation returns STATUS_SUCCESS at this point.

 EndIf

 Set ByteCount equal to sizeof(SECURITY_DESCRIPTOR_RELATIVE).

 If SecurityInformation contains OWNER_SECURITY_INFORMATION and
Open.File.SecurityDescriptor.Owner is not NULL:

 ByteCount += BlockAlign(SidLength(Open.File.SecurityDescriptor.Owner), 4)

 EndIf

 If SecurityInformation contains GROUP_SECURITY_INFORMATION and
Open.File.SecurityDescriptor.Group is not NULL:

 ByteCount += BlockAlign(SidLength (Open.File.SecurityDescriptor.Group), 4)

 EndIf

 If SecurityInformation contains DACL_SECURITY_INFORMATION and the DACL Present (DP) bit
is set in Open.File.SecurityDescriptor.Control and Open.File.SecurityDescriptor.Dacl is not
NULL:

 ByteCount += BlockAlign(SidLength(Open.File.SecurityDescriptor.Dacl.AclSize), 4)

 EndIf

 If SecurityInformation contains
SACL_SECURITY_INFORMATION|LABEL_SECURITY_INFORMATION and the SACL Present (SP) bit
is set in Open.File.SecurityDescriptor.Control and

 Open.File.SecurityDescriptor.Sacl is not NULL:

 SaclLength = BlockAlign(SidLength(Open.File.SecurityDescriptor.Sacl.AclSize), 4)

 ByteCount += SaclLength

 Else

 If SecurityInformation contains SACL_SECURITY_INFORMATION and the SACL Present (SP)
bit is set in Open.File.SecurityDescriptor.Control and Open.File.SecurityDescriptor.Sacl
is not NULL:

 SaclLength = BlockAlign(SidLength(Open.File.SecurityDescriptor.Sacl.AclSize), 4)

201 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

 For each access control entry (ACE) (as defined in [MS-DTYP] section 2.4.4) in
Open.File.SecurityDescriptor.Sacl whose AceType field is

SYSTEM_MANDATORY_LABEL_ACE_TYPE:

 SaclLength -= this ACE's AceSize field

 EndFor

 ByteCount += SaclLength

 EndIf

 If SecurityInformation contains LABEL_SECURITY_INFORMATION and the SACL Present
(SP) bit is set in Open.File.SecurityDescriptor.Control and
Open.File.SecurityDescriptor.Sacl is not NULL:

 MaclLength = BlockAlign((size of ACL as defined in [MS-DTYP] section 2.4.5), 4)

 For each ACE (as defined in [MS-DTYP] section 2.4.4) in
Open.File.SecurityDescriptor.Sacl whose AceType field is
SYSTEM_MANDATORY_LABEL_ACE_TYPE:

 MaclLength += this ACE's AceSize field

 EndFor

 ByteCount += MaclLength

 EndIf

 EndIf

 If ByteCount is greater than OutputBufferSize, the operation MUST be failed with
STATUS_BUFFER_OVERFLOW.

 The object store MUST set OutputBuffer.Revision equal to 1; all other fields of OutputBuffer
MUST be filled with NULL characters.

 The object store MUST set the Self Relative (SR) bit in OutputBuffer.Control.

 Set NextFree to sizeof(SECURITY_DESCRIPTOR_RELATIVE) (that is, to the offset of
OutputBuffer.OwnerSid).

 If SecurityInformation contains OWNER_SECURITY_INFORMATION and
Open.File.SecurityDescriptor.Owner is not NULL:

 The object store MUST copy SidLength(Open.File.SecurityDescriptor.Owner) bytes from
Open.File.SecurityDescriptor.Owner to OutputBuffer at the position of NextFree.

 The object store MUST set OutputBuffer.OffsetOwner equal to NextFree.

 The object store MUST set the state of the Owner Defaulted (OD) bit of
OutputBuffer.Control equal to the state of the same bit in
Open.File.SecurityDescriptor.Control.

 NextFree += BlockAlign(SidLength(Open.File.SecurityDescriptor.Owner), 4).

 EndIf

 If SecurityInformation contains GROUP_SECURITY_INFORMATION and

Open.File.SecurityDescriptor.Group is not NULL:

202 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

 The object store MUST copy SidLength(Open.File.SecurityDescriptor.Group) bytes from
Open.File.SecurityDescriptor.Group to OutputBuffer at the position of NextFree.

 The object store MUST set OutputBuffer.OffsetGroup equal to NextFree.

 The object store MUST set the state of the Group Defaulted (GD) bit of OutputBuffer.Control

equal to the state of the same bit in Open.File.SecurityDescriptor.Control.

 NextFree += BlockAlign(SidLength(Open.File.SecurityDescriptor.Group), 4).

 EndIf

 If SecurityInformation contains DACL_SECURITY_INFORMATION:

 The object store MUST set the state of the DACL Present (DP), DACL Defaulted (DD), DACL
Protected (PD), and DACL Auto-Inherited (DI) bits of OutputBuffer.Control equal to the
state of the same bits in Open.File.SecurityDescriptor.Control.

 If the DACL Present (DP) bit is set in Open.File.SecurityDescriptor.Control and
Open.File.SecurityDescriptor.Dacl is not NULL:

 The object store MUST copy Open.File.SecurityDescriptor.Dacl.AclSize bytes from
Open.File.SecurityDescriptor.Dacl to OutputBuffer at the position of NextFree.

 The object store MUST set OutputBuffer.OffsetDacl equal to NextFree.

 NextFree += BlockAlign(Open.File.SecurityDescriptor.Dacl.AclSize, 4).

 EndIf

 EndIf

 If SecurityInformation contains
SACL_SECURITY_INFORMATION|LABEL_SECURITY_INFORMATION:

 The object store MUST set the state of the SACL Present (SP), SACL Defaulted (SD), SACL
Protected (PS), and SACL Auto-Inherited (SI) bits of OutputBuffer.Control equal to the state
of the same bits in Open.File.SecurityDescriptor.Control.

 If the SACL Present (SP) bit is set in Open.File.SecurityDescriptor.Control and
Open.File.SecurityDescriptor.Sacl is not NULL:

 The object store MUST copy Open.File.SecurityDescriptor.Sacl.AclSize bytes from
Open.File.SecurityDescriptor.Sacl to OutputBuffer at the position of NextFree.

 The object store MUST set OutputBuffer.OffsetSacl equal to NextFree.

 NextFree += SaclLength.

 EndIf

 Else

 If SecurityInformation contains SACL_SECURITY_INFORMATION:

 The object store MUST set the state of the SACL Present (SP), SACL Defaulted (SD), SACL
Protected (PS), and SACL Auto-Inherited (SI) bits of OutputBuffer.Control equal to the
state of the same bits in Open.File.SecurityDescriptor.Control.

 If the SACL Present (SP) bit is set in Open.File.SecurityDescriptor.Control and

Open.File.SecurityDescriptor.Sacl is not NULL:

203 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

 Perform an ACE copy according to the algorithm in section 2.1.5.14.1, setting the ACE
copy algorithm's parameters as follows:

 DestSacl equal to the position in OutputBuffer of NextFree.

 SrcSacl equal to Open.File.SecurityDescriptor.Sacl.

 CopyAudit set to TRUE.

 The object store MUST set OutputBuffer.OffsetSacl equal to NextFree.

 NextFree += SaclLength.

 EndIf

 Else If SecurityInformation contains LABEL_SECURITY_INFORMATION:

 The object store MUST set the state of the SACL Present (SP), SACL Defaulted (SD), SACL
Protected (PS), and SACL Auto-Inherited (SI) bits of OutputBuffer.Control equal to the

state of the same bits in Open.File.SecurityDescriptor.Control.

 If the SACL Present (SP) bit is set in Open.File.SecurityDescriptor.Control and
Open.File.SecurityDescriptor.Sacl is not NULL:

 Perform an ACE copy according to the algorithm in section 2.1.5.14.1, setting the ACE
copy algorithm's parameters as follows:

 DestSacl equal to the position in OutputBuffer of NextFree.

 SrcSacl equal to Open.File.SecurityDescriptor.Sacl.

 CopyAudit set to FALSE.

 The object store MUST set OutputBuffer.OffsetSacl equal to NextFree.

 NextFree += MaclLength.

 EndIf

 EndIf

 EndIf

 The operation returns STATUS_SUCCESS.

2.1.5.14.1 Algorithm for Copying Audit or Label ACEs Into a Buffer

The inputs for an ACE copy are:

 DestSacl: A destination buffer formatted as an access control list (ACL), as defined in [MS-DTYP]
section 2.4.5.

 SrcSacl: A source buffer formatted as an ACL, as defined in [MS-DTYP] section 2.4.5.

 CopyAudit: A Boolean value. If TRUE, this algorithm copies only ACEs whose AceType field is not
SYSTEM_MANDATORY_LABEL_ACE_TYPE. If FALSE, this algorithm copies only ACEs whose
AceType field is SYSTEM_MANDATORY_LABEL_ACE_TYPE.

The ACE copy algorithm uses the following local variables:

 ACE (as defined in [MS-DTYP] section 2.4.4): ThisAce

%5bMS-DTYP%5d.pdf#Section_cca2742956894a16b2b49325d93e4ba2

204 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

 Byte pointer: NextFree

Pseudocode for the algorithm is as follows:

 Copy (size of ACL as defined in [MS-DTYP] section 2.4.5) bytes from SrcSacl to DestSacl.

 Set DestSacl.AceCount to 0.

 Set DestSacl.AclSize to (size of ACL as defined in [MS-DTYP] section 2.4.5).

 Set NextFree to (size of ACL as defined in [MS-DTYP] section 2.4.5) bytes from the beginning of
DestSacl.

 For each ACE ThisAce in SrcSacl:

 If ((CopyAudit is TRUE and ThisAce.AceType is not
SYSTEM_MANDATORY_LABEL_ACE_TYPE) or (CopyAudit is FALSE and ThisAce.AceType is
SYSTEM_MANDATORY_LABEL_ACE_TYPE)):

 Copy ThisAce.AceSize bytes from ThisAce to NextFree.

 DestSacl.AceCount += 1

 DestSacl.AclSize = DestSacl.AclSize + ThisAce.AceSize

 Advance NextFree by ThisAce.AceSize bytes.

 EndIf

 EndFor

2.1.5.15 Server Requests Setting of File Information

The server provides:

 Open: An Open of a DataFile or DirectoryFile.

 FileInformationClass: The type of information being applied, as specified in [MS-FSCC] section

2.4.

 InputBuffer: A buffer that contains the information to be applied to the object.

 InputBufferSize: The size of the buffer provided.

The object store MUST return:

 Status: An NTSTATUS code indicating the result of the operation.

Pseudocode for the operation is as follows:

 If Open.File.Volume.IsReadOnly is TRUE, the operation MUST be failed with

STATUS_MEDIA_WRITE_PROTECTED.

2.1.5.15.1 FileAllocationInformation

InputBuffer is of type FILE_ALLOCATION_INFORMATION as described in [MS-FSCC] section 2.4.4.

This operation MUST be failed with STATUS_INVALID_PARAMETER under any of the following
conditions:

 If Open.Stream.StreamType is DirectoryStream.

%5bMS-FSCC%5d.pdf#Section_efbfe12773ad41409967ec6500e66d5e
%5bMS-FSCC%5d.pdf#Section_efbfe12773ad41409967ec6500e66d5e

205 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

 If InputBuffer.AllocationSize is greater than the maximum file size allowed by the object
store.<177>

Pseudocode for the operation is as follows:

 If InputBufferSize is less than the size, in bytes, of the FILE_ALLOCATION_INFORMATION

structure, the operation MUST be failed with STATUS_INFO_LENGTH_MISMATCH.

 If Open.GrantedAccess does not contain FILE_WRITE_DATA, the operation MUST be failed with
STATUS_ACCESS_DENIED.

 If Open.Stream.Oplock is not empty, the object store MUST check for an oplock break according
to the algorithm in section 2.1.4.12, with input values as follows:

 Open equal to this operation's Open

 Oplock equal to Open.Stream.Oplock

 Operation equal to "SET_INFORMATION"

 OpParams containing a member FileInformationClass containing
FileAllocationInformation

 If the Oplock member of the DirectoryStream in Open.Link.ParentFile.StreamList
(hereinafter referred to as ParentOplock) is not empty, the object store MUST check for an oplock
break on the parent according to the algorithm in section 2.1.4.12, with input values as follows:

 Open equal to this operation's Open

 Oplock equal to ParentOplock

 Operation equal to "SET_INFORMATION"

 OpParams containing a member FileInformationClass containing
FileAllocationInformation

 Flags equal to "PARENT_OBJECT"

 If Open.Stream.IsDeleted is TRUE, the operation SHOULD return STATUS_SUCCESS.

 Set NewAllocationSize to
BlockAlign(InputBuffer.AllocationSize,Open.File.Volume.ClusterSize) as described in
section 2.1.4.5.

 If Open.Stream.AllocationSize is equal to NewAllocationSize, the operation MUST return
STATUS_SUCCESS.

 If the space for NewAllocationSize cannot be reserved in the storage media, then the operation
MUST be failed with STATUS_DISK_FULL.

 Open.Stream.AllocationSize MUST be set to NewAllocationSize.

 If InputBuffer.AllocationSize is less than Open.Stream.Size:

 Set NewFileSize to min(Open.Stream.Size, NewAllocationSize<178>).

 If NewFileSize is less than Open.Stream.Size:

 The object store MUST set Open.Stream.Size to NewFileSize, truncating the stream.

206 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

 The object store MUST post a USN change as specified in section 2.1.4.11 with File equal
to File, Reason equal to USN_REASON_DATA_TRUNCATION, and FileName equal to

Open.Link.Name.

 If the object store supports Open.File.Volume.ClusterRefcount, for each EXTENTS that

is removed from Open.Stream.ExtentList as a result of truncation, for each cluster that
is being referred to by the EXTENTS being removed, its entry in
Open.File.Volume.ClusterRefcount MUST be decremented. If the corresponding
cluster's reference count goes to zero, then that cluster MUST also be freed.

 EndIf

 EndIf

 If Open.Stream.ValidDataLength is greater than Open.Stream.Size, then the object store

MUST set Open.Stream.ValidDataLength to Open.Stream.Size.

 The object store MUST note that the file has been modified as specified in section 2.1.4.17 with

Open equal to Open.

 The object store MUST update the duplicated information as specified in section 2.1.4.18 with
Link equal to Open.Link.

 The operation returns STATUS_SUCCESS.

2.1.5.15.2 FileBasicInformation

InputBuffer is of type FILE_BASIC_INFORMATION as described in [MS-FSCC] section 2.4.7.

Pseudocode for the operation is as follows:

 If InputBufferSize is less than sizeof(FILE_BASIC_INFORMATION), the operation MUST be
failed with STATUS_INFO_LENGTH_MISMATCH.

 The operation MUST be failed with STATUS_INVALID_PARAMETER under any of the following

conditions:

 If InputBuffer.CreationTime is less than -2.

 If InputBuffer.LastAccessTime is less than -2.

 If InputBuffer.LastWriteTime is less than -2.

 If InputBuffer.ChangeTime is less than -2.<179>

 If InputBuffer.FileAttributes.FILE_ATTRIBUTE_DIRECTORY is TRUE and
Open.Stream.StreamType is DataStream.

 If InputBuffer.FileAttributes.FILE_ATTRIBUTE_TEMPORARY is TRUE and
Open.File.FileType is DirectoryFile.

 The object store MUST initialize local variables as follows:

 CurrentTime to the current system time.

 OriginalFileAttributes to Open.File.FileAttributes.

 Initialize UsnReason to zero.

%5bMS-FSCC%5d.pdf#Section_efbfe12773ad41409967ec6500e66d5e

207 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

 ValidSetAttributes to (FILE_ATTRIBUTE_READONLY | FILE_ATTRIBUTE_HIDDEN |
FILE_ATTRIBUTE_SYSTEM | FILE_ATTRIBUTE_ARCHIVE | FILE_ATTRIBUTE_TEMPORARY |

FILE_ATTRIBUTE_OFFLINE | FILE_ATTRIBUTE_NOT_CONTENT_INDEXED)

 BreakParentOplock to FALSE.

 If InputBuffer.FileAttributes != 0:

 If Open.File is equal to Open.File.Volume.RootDirectory, the object store MUST NOT allow
the application to change the hidden or system attributes:

 ValidSetAttributes &= ~(FILE_ATTRIBUTE_HIDDEN | FILE_ATTRIBUTE_SYSTEM)

 EndIf

 Open.File.FileAttributes &= ~ValidSetAttributes

 Open.File.FileAttributes |= (InputBuffer.FileAttributes & ValidSetAttributes)

 If Open.File.FileAttributes is not equal to OriginalFileAttributes:

 Set BreakParentOplock to TRUE.

 The object store MUST set
Open.File.PendingNotifications.FILE_NOTIFY_CHANGE_ATTRIBUTES to TRUE.

 If InputBuffer.FileAttributes.FILE_ATTRIBUTE_TEMPORARY is TRUE, the object store
MUST set Open.Stream.IsTemporary to TRUE; otherwise it MUST be set to FALSE.

 If Open.UserSetChangeTime is FALSE and InputBuffer.ChangeTime != -1, the object
store MUST set Open.File.LastChangeTime to CurrentTime.

 If Open.File.FileAttributes is not equal to OriginalFileAttributes, the object store MUST
set UsnReason.USN_REASON_BASIC_INFO_CHANGE to TRUE.

 If Open.File.FileAttributes. FILE_ATTRIBUTE_NOT_CONTENT_INDEXED is not equal to
OriginalFileAttributes.FILE_ATTRIBUTE_NOT_CONTENT_INDEXED, the object store MUST
set UsnReason.USN_REASON_INDEXABLE_CHANGE to TRUE.

 The object store MUST update the duplicated information as specified in section 2.1.4.18
with Link equal to Open.Link.

 EndIf

 EndIf

 If InputBuffer.ChangeTime != 0:

 If InputBuffer.ChangeTime != -2:

 The object store MUST set Open.UserSetChangeTime to TRUE.

 If InputBuffer.ChangeTime != -1:

 Set BreakParentOplock to TRUE.

 If InputBuffer.ChangeTime !=Open.File.LastChangeTime, the object store
MUST set UsnReason.USN_REASON_BASIC_INFO_CHANGE to TRUE.

 The object store MUST set Open.File.LastChangeTime to
InputBuffer.ChangeTime.

208 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

 EndIf

 Else

 The object store MUST set Open.UserSetChangeTime to FALSE.

 EndIf

 EndIf

 If InputBuffer.CreationTime != 0 and InputBuffer.CreationTime != -1 and
InputBuffer.CreationTime != -2:

 Set BreakParentOplock to TRUE.

 If InputBuffer.CreationTime != Open.File.CreationTime, the object store MUST set
UsnReason.USN_REASON_BASIC_INFO_CHANGE to TRUE.

 The object store MUST set Open.File.CreationTime to InputBuffer.CreationTime.

 The object store MUST set
Open.File.PendingNotifications.FILE_NOTIFY_CHANGE_CREATION to TRUE.

 If Open.UserSetChangeTime is FALSE and InputBuffer.ChangeTime != -1, the object
store MUST set Open.File.LastChangeTime to CurrentTime.

 EndIf

 If InputBuffer.LastAccessTime != 0:

 If InputBuffer.LastAccessTime != -2:

 The object store MUST set Open.UserSetAccessTime to TRUE.

 If InputBuffer.LastAccessTime != -1:

 Set BreakParentOplock to TRUE.

 If InputBuffer. LastAccessTime != Open.File.LastAccessTime, the object store
MUST set UsnReason.USN_REASON_BASIC_INFO_CHANGE to TRUE.

 The object store MUST set Open.File.LastAccessTime to InputBuffer.

LastAccessTime.

 The object store MUST set
Open.File.PendingNotifications.FILE_NOTIFY_CHANGE_LAST_ACCESS to TRUE.

 If Open.UserSetChangeTime is FALSE and InputBuffer.ChangeTime != -1, the
object store MUST set Open.File.LastChangeTime to CurrentTime.

 EndIf

 Else:

 The object store MUST set Open.UserSetAccessTime to FALSE.

 EndIf

 EndIf

 If InputBuffer.LastWriteTime != 0:

 If InputBuffer.LastWriteTime != -2:

209 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

 The object store MUST set Open.UserSetModificationTime to TRUE.

 If InputBuffer.LastWriteTime != -1:

 Set BreakParentOplock to TRUE.

 If InputBuffer. LastWriteTime != Open.File.LastModificationTime, the object

store MUST set UsnReason.USN_REASON_BASIC_INFO_CHANGE to TRUE.

 The object store MUST set Open.File.LastModificationTime to InputBuffer.
LastWriteTime.

 The object store MUST set
Open.File.PendingNotifications.FILE_NOTIFY_CHANGE_LAST_WRITE to TRUE.

 If Open.UserSetChangeTime is FALSE and InputBuffer.ChangeTime != -1, the
object store MUST set Open.File.LastChangeTime to CurrentTime.

 EndIf

 Else:

 The object store MUST set Open.UserSetModificationTime to FALSE.

 EndIf

 EndIf

 If BreakParentOplock is TRUE:

 If the Oplock member of the DirectoryStream in Open.Link.ParentFile.StreamList
(hereinafter referred to as ParentOplock) is not empty, the object store MUST check for an
oplock break on the parent according to the algorithm in section 2.1.4.12, with input values as
follows:

 Open equal to this operation's Open.

 Oplock equal to ParentOplock.

 Operation equal to "SET_INFORMATION"

 OpParams containing a member FileInformationClass containing
FileBasicInformation

 Flags equal to "PARENT_OBJECT"

 EndIf

 The object store MUST post a USN change as specified in section 2.1.4.11 with File equal to File,
Reason equal to UsnReason, and FileName equal to Open.Link.Name.

 The operation returns STATUS_SUCCESS.

2.1.5.15.3 FileDispositionInformation

InputBuffer is of type FILE_DISPOSITION_INFORMATION as described in [MS-FSCC] section 2.4.11.

Pseudocode for the operation is as follows:

 If InputBufferSize is less than the size, in bytes, of the FILE_DISPOSITION_INFORMATION
structure, the operation MUST be failed with STATUS_INFO_LENGTH_MISMATCH.

%5bMS-FSCC%5d.pdf#Section_efbfe12773ad41409967ec6500e66d5e

210 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

 If Open.GrantedAccess does not contain DELETE, the operation MUST be failed with
STATUS_ACCESS_DENIED.

 If InputBuffer.DeletePending is TRUE:

 If File.FileAttributes.FILE_ATTRIBUTE_READONLY is TRUE, the operation MUST be failed

with STATUS_CANNOT_DELETE.

 If Open.Stream.Name is empty:

 If Open.Stream.StreamType is DirectoryStream and Open.File.DirectoryList is not
empty, the operation MUST be failed with STATUS_DIRECTORY_NOT_EMPTY.

 Set Open.Link.IsDeleted to TRUE.

 If Open.Stream.StreamType is DirectoryStream:

 For each ChangeNotifyEntry in Volume.ChangeNotifyList where ChangeNotifyEntry

.OpenedDirectory.File is equal to Open.File then the following actions MUST be
taken:

 Remove ChangeNotifyEntry from Volume.ChangeNotifyList.

 Complete the ChangeNotify operation with status STATUS_DELETE_PENDING.

 EndFor

 EndIf

 Else:

 Set Open.Stream.IsDeleted to TRUE.

 EndIf

 Else:

 If Open.Stream.Name is empty:

 Set Open.Link.IsDeleted to FALSE.

 Else:

 Set Open.Stream.IsDeleted to FALSE.

 EndIf

 EndIf

 The operation returns STATUS_SUCCESS.

2.1.5.15.4 FileEndOfFileInformation

InputBuffer is of type FILE_END_OF_FILE_INFORMATION as described in [MS-FSCC] section

2.4.13.<180>

Pseudocode for the operation is as follows:

 If InputBufferSize is less than the size, in bytes, of the FILE_END_OF_FILE_INFORMATION
structure, the operation MUST be failed with STATUS_INFO_LENGTH_MISMATCH.

%5bMS-FSCC%5d.pdf#Section_efbfe12773ad41409967ec6500e66d5e

211 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

 The operation MUST be failed with STATUS_INVALID_PARAMETER under any of the following
conditions:

 If Open.Stream.StreamType is DirectoryStream.

 If InputBuffer.EndOfFile is greater than the maximum file size allowed by the object

store.<181>

 If Open.GrantedAccess does not contain FILE_WRITE_DATA, the operation MUST be failed
with STATUS_ACCESS_DENIED.

 If Open.Stream.Oplock is not empty, the object store MUST check for an oplock break according
to the algorithm in section 2.1.4.12, with input values as follows:

 Open equal to this operation's Open

 Oplock equal to Open.Stream.Oplock

 Operation equal to "SET_INFORMATION"

 OpParams containing a member FileInformationClass containing
FileEndOfFileInformation

 If the Oplock member of the DirectoryStream in Open.Link.ParentFile.StreamList
(hereinafter referred to as ParentOplock) is not empty, the object store MUST check for an oplock
break on the parent according to the algorithm in section 2.1.4.12, with input values as follows:

 Open equal to this operation's Open

 Oplock equal to ParentOplock

 Operation equal to "SET_INFORMATION"

 OpParams containing a member FileInformationClass containing
FileEndOfFileInformation

 Flags equal to "PARENT_OBJECT"

 If Open.Stream.IsDeleted is TRUE, the operation SHOULD return STATUS_SUCCESS.

 If Open.Stream.Size is equal to InputBuffer.EndOfFile, the operation MUST return
STATUS_SUCCESS at this point.

 If InputBuffer.EndOfFile is greater than Open.Stream.Size:

 The object store MUST post a USN change as specified in section 2.1.4.11 with File equal to
File, Reason equal to USN_REASON_DATA_EXTEND, and FileName equal to
Open.Link.Name.

 Else:

 The object store MUST post a USN change as specified in section 2.1.4.11 with File equal to
File, Reason equal to USN_REASON_DATA_TRUNCATION, and FileName equal to
Open.Link.Name.

 EndIf

 If InputBuffer.EndOfFile is greater than Open.Stream.AllocationSize, the object store MUST
set Open.Stream.AllocationSize to BlockAlign(InputBuffer.EndOfFile,

Open.File.Volume.ClusterSize). If the space cannot be reserved, then the operation MUST be
failed with STATUS_DISK_FULL.

212 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

 If the previous condition is true and the object Store supports
Open.File.Volume.ClusterRefcount, for each cluster that has been reserved by the previous

operation, the corresponding entry for that cluster's LCN in Open.File.Volume.ClusterRefcount
MUST be incremented.

 If InputBuffer.EndOfFile is less than (BlockAlign(Open.Stream.Size,
Open.File.Volume.ClusterSize) -Open.File.Volume.ClusterSize), the object store SHOULD set
Open.Stream.AllocationSize to BlockAlign (InputBuffer.EndOfFile,
Open.File.Volume.ClusterSize).

 If Open.Stream.ValidDataLength is greater than InputBuffer.EndOfFile, the object store
MUST set Open.Stream.ValidDataLength to InputBuffer.EndOfFile.

 The object store MUST set Open.Stream.Size to InputBuffer.EndOfFile.

 The object store MUST note that the file has been modified as specified in section 2.1.4.17 with
Open equal to Open.

 The object store MUST update the duplicated information as specified in section 2.1.4.18 with
Link equal to Open.Link.

 The operation returns STATUS_SUCCESS.

2.1.5.15.5 FileFullEaInformation

Support for this operation is optional. If the object store does not implement this functionality, the
operation MUST be failed with STATUS_INVALID_DEVICE_REQUEST.<182>

InputBuffer is of type FILE_FULL_EA_INFORMATION, as described in [MS-FSCC] section 2.4.15.

Pseudocode for the operation is as follows:

 If Open.File.FileAttributes.FILE_ATTRIBUTE_REPARSE_POINT is TRUE, the object store
MUST fail the operation with STATUS_EAS_NOT_SUPPORTED.

 For each Ea in InputBuffer:

 If Ea.EaName is not well-formed as specified in [MS-FSCC] 2.4.15, the operation MUST be
failed with STATUS_INVALID_EA_NAME.

 If Ea.Flags does not contain a valid set of flags as specified in [MS-FSCC] 2.4.15, the
operation MUST be failed with STATUS_INVALID_EA_NAME.

 If Ea.EaName exists in the Open.File.ExtendedAttributes, remove that entry from
Open.File.ExtendedAttributes, updating Open.File.ExtendedAttributesLength to reflect

the new list size.

 If Ea.EaValueLength is NOT zero, add Ea to Open.File.ExtendedAttributes, updating
Open.File.ExtendedAttributesLength to reflect the new list size

 If Open.File.ExtendedAttributesLength becomes greater than 64 KB - 5 bytes, the object
store MUST fail the operation with STATUS_EA_TOO_LARGE and undo any changes made as
part of this operation.

 EndFor

 If Open.UserSetChangeTime is FALSE, the object store MUST update
Open.File.LastChangeTime to the current time.

 The object store MUST set Open.File.FileAttributes.FILE_ATTRIBUTE_ARCHIVE to TRUE.

%5bMS-FSCC%5d.pdf#Section_efbfe12773ad41409967ec6500e66d5e

213 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

 The object store MUST post a USN change as specified in section 2.1.4.11 with File equal to File,
Reason equal to USN_REASON_EA_CHANGE, and FileName equal to Open.Link.Name.

 Set Open.File.PendingNotifications.FILE_NOTIFY_CHANGE_EA to TRUE and
Open.File.PendingNotifications.FILE_NOTIFY_CHANGE_ATTRIBUTES to TRUE.

2.1.5.15.6 FileLinkInformation

InputBuffer is of type FILE_LINK_INFORMATION_TYPE_1, as described in [MS-FSCC] section
2.4.27.1, for 32-bit local clients; or of type FILE_LINK_INFORMATION_TYPE_2, as described in [MS-
FSCC] section 2.4.27.2, for remote clients or 64-bit local clients. Open represents the pre-existing file
to which a new link named in InputBuffer.FileName will be created.

Pseudocode for the operation is as follows:

 If InputBufferSize is less than the size, in bytes, of the FILE_LINK_INFORMATION_TYPE_1
structure (for 32-bit local clients) or the FILE_LINK_INFORMATION_TYPE_2 structure (for remote
clients or 64-bit local clients), the operation MUST be failed with

STATUS_INFO_LENGTH_MISMATCH.

 If Open.Stream.StreamType is DataStream and Open.Stream.Name is not empty, the
operation MUST be failed with STATUS_INVALID_PARAMETER.

 If Open.File.FileType is DirectoryFile, the operation MUST be failed with
STATUS_FILE_IS_A_DIRECTORY.

 If Open.File.Volume.IsHardLinksSupported is FALSE, the operation MUST be failed with
STATUS_NOT_SUPPORTED.

 If Open.Link.IsDeleted is TRUE, the operation MUST be failed with STATUS_ACCESS_DENIED.

 If InputBuffer.FileName is not valid as specified in [MS-FSCC] section 2.1.5, the operation
MUST be failed with STATUS_OBJECT_NAME_INVALID.

 If Open.File.LinkList has 1024 or more entries, the operation SHOULD be failed with
STATUS_TOO_MANY_LINKS.

 Split InputBuffer.FileName into PathName and FileName, as specified in section 2.1.5.1.

 If the first character of InputBuffer.FileName is '\' or InputBuffer.RootDirectory is nonzero or
this operation is from a remote client:

 Open DestinationDirectory as specified in section 2.1.5.1, setting the open file operation's
parameters as follows:

 PathName equal to PathName.

 DesiredAccess equal to FILE_ADD_FILE|SYNCHRONIZE.

 ShareAccess equal to

FILE_SHARE_READ|FILE_SHARE_WRITE|FILE_SHARE_DELETE.<183>

 CreateOptions equal to FILE_OPEN_FOR_BACKUP_INTENT.

 CreateDisposition equal to FILE_OPEN.

 If open of DestinationDirectory fails:

 The operation MUST fail with the error returned by the open of DestinationDirectory.

 Else if DestinationDirectory.Volume is not equal to Open.File.Volume:

%5bMS-FSCC%5d.pdf#Section_efbfe12773ad41409967ec6500e66d5e

214 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

 The operation MUST be failed with STATUS_NOT_SAME_DEVICE.

 EndIf

 Else

 If InputBuffer.FileName contains the character '\', the object store MUST fail the operation

with STATUS_OBJECT_NAME_INVALID.

 Set DestinationDirectory equal to Open.Link.ParentFile.

 EndIf

 Search DestinationDirectory.File.DirectoryList for an ExistingLink where ExistingLink.Name
or ExistingLink.ShortName matches FileName using case-sensitivity according to
Open.IsCaseInsensitive. If such a link is found:

 If InputBuffer.ReplaceIfExists is TRUE:

 Set ReplacedLinkName = DestinationDirectory.FileName + FileName.

 Remove ExistingLink from ExistingLink.File.LinkList.

 Remove ExistingLink from DestinationDirectory.File.DirectoryList.

 Set DeletedLink to TRUE.

 Else:

 The operation MUST be failed with STATUS_OBJECT_NAME_COLLISION.

 EndIf

 EndIf

 The object store MUST build a new Link object NewLink with fields initialized as follows:

 NewLink.Name set to FileName.

 NewLink.File set to Open.File.

 NewLink.ParentFile set to DestinationDirectory.File.

 All other fields set to zero.

 The object store MUST update the duplicated information as specified in section 2.1.4.18 with
Link equal to NewLink.

 The object store MUST insert NewLink into Open.File.LinkList

 The object store MUST insert NewLink into DestinationDirectory.File.DirectoryList.

 The object store MUST update DestinationDirectory.File.LastModificationTime,
DestinationDirectory.File.LastAccessTime, and
DestinationDirectory.File.LastChangeTime.

 If the Oplock member of the DirectoryStream in DestinationDirectory.File.StreamList
(hereinafter referred to as ParentOplock) is not empty, the object store MUST check for an oplock
break on the parent according to the algorithm in section 2.1.4.12, with input values as follows:

 Open equal to this operation's Open

 Oplock equal to ParentOplock

215 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

 Operation equal to "SET_INFORMATION"

 OpParams containing a member FileInformationClass containing FileLinkInformation

 Flags equal to "PARENT_OBJECT"

 If Open.UserSetChangeTime is FALSE, the object store MUST update

Open.File.LastChangeTime to the current time.

 The object store MUST set Open.File.FileAttributes.FILE_ATTRIBUTE_ARCHIVE.

 If DeletedLink is TRUE:

 If ReplacedLinkName equals InputBuffer.FileName in a case-sensitive comparison:

 // In this case, the link name has not changed, but the file it refers to has changed.

 Action = FILE_ACTION_MODIFIED

 FilterMatch = FILE_NOTIFY_CHANGE_ATTRIBUTES | FILE_NOTIFY_CHANGE_SIZE |

FILE_NOTIFY_CHANGE_LAST_WRITE | FILE_NOTIFY_CHANGE_LAST_ACCESS |
FILE_NOTIFY_CHANGE_CREATION | FILE_NOTIFY_CHANGE_SECURITY |
FILE_NOTIFY_CHANGE_EA

 Send directory change notification as specified in section 2.1.4.1, with Volume equal to
File.Volume, Action equal to Action, FilterMatch equal to FilterMatch, and FileName
equal to InputBuffer.FileName.

 Else

 // In this case, the implementer replaced a link, but the new link created differs only in
case.

 Action = FILE_ACTION_REMOVED

 FilterMatch = FILE_NOTIFY_CHANGE_FILE_NAME

 Send directory change notification as specified in section 2.1.4.1, with Volume equal to
File.Volume, Action equal to Action, FilterMatch equal to FilterMatch, and FileName

equal to InputBuffer.FileName.

 Action = FILE_ACTION_ADDED

 FilterMatch = FILE_NOTIFY_CHANGE_FILE_NAME

 Send directory change notification as specified in section 2.1.4.1, with Volume equal to
File.Volume, Action equal to Action, FilterMatch equal to FilterMatch, and FileName
equal to InputBuffer.FileName.

 EndIf

 Else

 // If the implementer did not delete a link, all that needs to be done is to notify that a new link
was created.

 Action = FILE_ACTION_ADDED

 FilterMatch = FILE_NOTIFY_CHANGE_FILE_NAME

216 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

 Send directory change notification as specified in section 2.1.4.1, with Volume equal to
File.Volume, Action equal to Action, FilterMatch equal to FilterMatch, and FileName equal

to InputBuffer.FileName.

 EndIf

 The operation returns STATUS_SUCCESS.

2.1.5.15.7 FileModeInformation

InputBuffer is of type FILE_MODE_INFORMATION, as described in [MS-FSCC] section 2.4.30.

Pseudocode for the operation is as follows:

 If InputBufferSize is less than the size, in bytes, of the FILE_MODE_INFORMATION structure,
the operation MUST be failed with STATUS_INFO_LENGTH_MISMATCH.

 The operation MUST be failed with STATUS_INVALID_PARAMETER under any of the following

conditions:

 InputBuffer.Mode contains any flag, as defined in [MS-FSCC] section 2.4.30, other than the
following:

 FILE_WRITE_THROUGH

 FILE_SEQUENTIAL_ONLY

 FILE_SYNCHRONOUS_IO_ALERT

 FILE_SYNCHRONOUS_IO_NONALERT

 InputBuffer.Mode contains either FILE_SYNCHRONOUS_IO_ALERT or
FILE_SYNCHRONOUS_IO_NONALERT, but Open.Mode contains neither
FILE_SYNCHRONOUS_IO_ALERT nor FILE_SYNCHRONOUS_IO_NONALERT.

 Open.Mode contains either FILE_SYNCHRONOUS_IO_ALERT or
FILE_SYNCHRONOUS_IO_NONALERT, but InputBuffer.Mode contains neither the

FILE_SYNCHRONOUS_IO_ALERT nor FILE_SYNCHRONOUS_IO_NONALERT flags.

 InputBuffer.Mode contains both FILE_SYNCHRONOUS_IO_ALERT and
FILE_SYNCHRONOUS_IO_NONALERT.

 If Open.Mode does not contain FILE_NO_INTERMEDIATE_BUFFERING:

 If InputBuffer.Mode contains FILE_WRITE_THROUGH, set
Open.Mode.FILE_WRITE_THROUGH to TRUE; otherwise set it to FALSE.

 EndIf

 If InputBuffer.Mode contains FILE_SEQUENTIAL_ONLY, set
Open.Mode.FILE_SEQUENTIAL_ONLY to TRUE; otherwise set it to FALSE.

 If Open.Mode contains either FILE_SYNCHRONOUS_IO_ALERT or
FILE_SYNCHRONOUS_IO_NONALERT:

 If InputBuffer.Mode contains FILE_SYNCHRONOUS_IO_ALERT, set
Open.Mode.FILE_SYNCHRONOUS_IO_ALERT to TRUE; otherwise set it to FALSE.

 If InputBuffer.Mode contains FILE_SYNCHRONOUS_IO_NONALERT, set
Open.Mode.FILE_SYNCHRONOUS_IO_NONALERT to TRUE; otherwise set it to FALSE.

%5bMS-FSCC%5d.pdf#Section_efbfe12773ad41409967ec6500e66d5e

217 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

 EndIf

 The operation returns STATUS_SUCCESS.

2.1.5.15.8 FileObjectIdInformation

This operation is not supported and MUST be failed with STATUS_NOT_SUPPORTED.

2.1.5.15.9 FilePositionInformation

InputBuffer is of type FILE_POSITION_INFORMATION, as described in [MS-FSCC] section 2.4.39.

Pseudocode for the operation is as follows:

 If InputBufferSize is less than the size, in bytes, of the FILE_POSITION_INFORMATION
structure, the operation MUST be failed with STATUS_INFO_LENGTH_MISMATCH.

 The operation MUST be failed with STATUS_INVALID_PARAMETER under either of the following

conditions:

 InputBuffer.CurrentByteOffset is less than 0.

 Open.Mode contains FILE_NO_INTERMEDIATE_BUFFERING and
InputBuffer.CurrentByteOffset is not an integer multiple of
Open.File.Volume.LogicalBytesPerSector.

 The object store MUST set Open.CurrentByteOffset equal to InputBuffer.CurrentByteOffset.

 The operation returns STATUS_SUCCESS.<184>

2.1.5.15.10 FileQuotaInformation

This operation is not supported and MUST be failed with STATUS_NOT_SUPPORTED

2.1.5.15.11 FileRenameInformation

InputBuffer is of type FILE_RENAME_INFORMATION_TYPE_1, as described in [MS-FSCC] section
2.4.41.1, for 32-bit local clients; or of type FILE_RENAME_INFORMATION_TYPE_2, as described in
[MS-FSCC] section 2.4.41.2, for remote clients or 64-bit local clients. Open.FileName is the pre-
existing file name that will be changed by this operation.

This routine uses the following local variables:

 Unicode strings: PathName, RootPathName, NewLinkName, PrevFullLinkName,
SourceFullLinkName, DestFullLinkName

 Files: SourceDirectory, DestinationDirectory

 Links: TargetLink, NewLink

 Boolean values (initialized to FALSE): TargetExistsSameFile, ExactCaseMatch, MoveToNewDir,
OverwriteSourceLink, RemoveTargetLink, FoundLink, MatchedShortName

 Boolean values (initialized to TRUE): ActivelyRemoveSourceLink, RemoveSourceLink,
AddTargetLink

 32-bit unsigned integers: FilterMatch, Action

Pseudocode for the operation is as follows:

%5bMS-FSCC%5d.pdf#Section_efbfe12773ad41409967ec6500e66d5e
%5bMS-FSCC%5d.pdf#Section_efbfe12773ad41409967ec6500e66d5e

218 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

 If InputBufferSize is less than the size, in bytes, of the FILE_RENAME_INFORMATION_TYPE_1
structure (for 32-bit local clients) or the FILE_RENAME_INFORMATION_TYPE_2 structure (for

remote clients or 64-bit local clients), the operation MUST be failed with
STATUS_INFO_LENGTH_MISMATCH.

 If Open.GrantedAccess does not contain DELETE, as defined in [MS-SMB2] section 2.2.13.1, the
operation MUST be failed with STATUS_ACCESS_DENIED.

 The operation MUST be failed with STATUS_INVALID_PARAMETER under any of the following
conditions:

 If InputBuffer.FileNameLength is equal to zero.

 If InputBuffer.FileNameLength is an odd number.

 If InputBuffer.FileNameLength is greater than InputBufferLength minus the byte offset

into the FILE_RENAME_INFORMATION InputBuffer of the InputBuffer.FileName field (that
is, the total length of InputBuffer as given in InputBufferLength is insufficient to contain

the fixed-size fields of InputBuffer plus the length of InputBuffer.FileName).

 If this operation is from a remote client, and either InputBuffer.RootDirectory is nonzero or
the first character of InputBuffer.FileName is '\'.

 If InputBuffer.RootDirectory is nonzero and the first character of InputBuffer.FileName

is '\'.

 If InputBuffer.RootDirectory is nonzero:

 The object store MUST set RootPathName to the full pathname from
Open.File.Volume.RootDirectory to the file represented by InputBuffer.RootDirectory, in
an implementation-specific manner.

 The object store MUST set DestFullLinkName to RootPathName + '\' +
InputBuffer.FileName.

 Else:

 The object store MUST set DestFullLinkName to InputBuffer.FileName.

 EndIf

 Split DestFullLinkName into PathName and NewLinkName as specified in section 2.1.5.1.

 If the first character of InputBuffer.FileName is '\' or InputBuffer.RootDirectory is nonzero or
this operation is from a remote client:

 Open DestinationDirectory as specified in section 2.1.5.1, setting the open file operation's

parameters as follows:

 PathName equal to PathName.

 DesiredAccess equal to FILE_ADD_FILE|SYNCHRONIZE (if Open.File.FileType is
DataFile) or FILE_ADD_SUBDIRECTORY (if Open.File.FileType is DirectoryFile).

 ShareAccess equal to
FILE_SHARE_READ|FILE_SHARE_WRITE|FILE_SHARE_DELETE.<185>

 CreateOptions equal to FILE_OPEN_FOR_BACKUP_INTENT.

 CreateDisposition equal to FILE_OPEN.

 If open of DestinationDirectory fails:

%5bMS-SMB2%5d.pdf#Section_5606ad475ee0437a817e70c366052962

219 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

 The operation MUST fail with the error returned by the open of DestinationDirectory.

 Else if DestinationDirectory.Volume is not equal to Open.File.Volume:

 The operation MUST be failed with STATUS_NOT_SAME_DEVICE.

 EndIf

 Else

 If InputBuffer.FileName contains the character '\', the object store MUST fail the operation
with STATUS_OBJECT_NAME_INVALID.

 Set DestinationDirectory equal to Open.Link.ParentFile.

 EndIf

 If Open.Stream.Oplock is not empty, the object store MUST check for an oplock break according
to the algorithm in section 2.1.4.12, with input values as follows:

 Open equal to this operation's Open.

 Oplock equal to Open.Stream.Oplock.

 Operation equal to "SET_INFORMATION".

 OpParams containing a member FileInformationClass containing
FileRenameInformation.

 If the first character of InputBuffer.FileName is ':':

 Perform a stream rename according to the algorithm in section 2.1.5.15.11.1, setting the
stream rename algorithm's parameters as follows:

 Pass in the current Open.

 ReplaceIfExists equal to InputBuffer.ReplaceIfExists.

 NewStreamName equal to InputBuffer.FileName.

 If the stream rename algorithm fails, the operation MUST fail with the same status code.

 The operation returns STATUS_SUCCESS at this point.

 EndIf

 If Open.Link.IsDeleted is TRUE, the operation MUST be failed with STATUS_ACCESS_DENIED.

 If Open.File.FileType is DirectoryFile, determine whether Open.File contains open files as
specified in section 2.1.4.2, with input values as follows:

 File equal to Open.File.

 Open equal to this operation's Open.

 Operation equal to "SET_INFORMATION".

 OpParams containing a member FileInformationClass containing FileRenameInformation.

 If Open.File contains open files as specified in section 2.1.4.2, the operation MUST be failed with
STATUS_ACCESS_DENIED.<186>

220 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

 If InputBuffer.FileName is not valid as specified in [MS-FSCC] section 2.1.5, the operation
MUST be failed with STATUS_OBJECT_NAME_INVALID.

 If DestinationDirectory is the same as Open.Link.ParentFile:

 If NewLinkName is a case-sensitive exact match with Open.Link.Name, the operation MUST

return STATUS_SUCCESS at this point.

 Else

 Set MoveToNewDir to TRUE.

 EndIf

 If NewLinkName matches the Name or ShortName of any Link in
DestinationDirectory.DirectoryList using case-sensitivity according to
Open.IsCaseInsensitive:

 Set FoundLink to TRUE.

 Set TargetLink to the existing Link found in DestinationDirectory.DirectoryList. Because
the name could have been found using a case-insensitive search (if Open.IsCaseInsensitive
is TRUE), this preserves the case of the found name.

 If NewLinkName matched TargetLink.ShortName, set MatchedShortName to TRUE.

 Set RemoveTargetLink to TRUE.

 If TargetLink.File.FileId128 equals Open.File.FileId128, set TargetExistsSameFile to
TRUE. This detects a rename to another existing link to the same file.

 If (TargetLink.Name is a case-sensitive exact match with NewLinkName) or

(MatchedShortName is TRUE and

 TargetLink.ShortName is a case-sensitive exact match with NewLinkName):

 Set ExactCaseMatch to TRUE.

 EndIf

 If TargetExistsSameFile is TRUE:

 If MoveToNewDir is FALSE:

 If Open.Link.ShortName is not empty and TargetLink.ShortName is not empty
(this is the case where both the source link and the (existing) requested target are
part of the primary link to the same file; this case occurs, for example, in a rename
that only changes the case of the name):

 Set ActivelyRemoveSourceLink to FALSE.

 Set OverwriteSourceLink to TRUE.

 If ExactCaseMatch is TRUE, set RemoveSourceLink to FALSE (because this
algorithm earlier succeeded upon detecting an exact match between the name by
which the file was opened and the new requested name, this case only occurs
when the file was opened by one half of its primary link, and the requested
rename target is the other half; for example, opening a file by its short name and

renaming it to its long name).

 Else If (Open.Link.Name is a case-sensitive exact match with TargetLink.Name) or

221 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

(MatchedShortName is TRUE and

 Open.Link.Name is a case-sensitive exact match with TargetLink.ShortName) (this detects
the case where the implementer is just changing the case of a single link; for example, given a
file with links "primary", "link1", "link2", all in the same directory, the implementer is doing "ren

link1 LINK1", and not "ren link1 link2"):

 Set ActivelyRemoveSourceLink to FALSE.

 Set OverwriteSourceLink to TRUE.

 EndIf

 EndIf

 If ExactCaseMatch is TRUE and

(OverwriteSourceLink is FALSE or

 Open.IsCaseInsensitive is TRUE or

 Open.Link.ShortName is empty)

 Set RemoveTargetLink and AddTargetLink to FALSE.

 EndIf

 EndIf

 If RemoveTargetLink is TRUE:

 If TargetExistsSameFile is FALSE and InputBuffer.ReplaceIfExists is FALSE, the
operation MUST be failed with STATUS_OBJECT_NAME_COLLISION.

 Set PrevFullLinkName to the full pathname from Open.File.Volume.RootDirectory to

TargetLink.

 If TargetExistsSameFile is FALSE:

 The operation MUST be failed with STATUS_ACCESS_DENIED under any of the
following conditions:

 If TargetLink.File.FileType is DirectoryFile.

 If TargetLink.File.FileAttributes.FILE_ATTRIBUTE_READONLY is TRUE.

 If TargetLink.IsDeleted is TRUE, the operation MUST be failed with
STATUS_DELETE_PENDING.

 If the caller does not have DELETE access to TargetLink.File:

 If the caller does not have FILE_DELETE_CHILD access to DestinationDirectory:

 The operation MUST be failed with STATUS_ACCESS_DENIED.

 EndIf

 EndIf

 For each Stream on TargetLink.File:

 If TargetLink.File.OpenList contains an Open with a Stream matching the
current Stream, and that Stream's Oplock is not empty, the object store MUST

222 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

check for an oplock break according to the algorithm in section 2.1.4.12, with
input values as follows:

 Open equal to this operation's Open.

 Oplock equal to the found Stream's Oplock.

 Operation equal to SET_INFORMATION.

 OpParams containing a member FileInformationClass containing
FileEndOfFileInformation.

 If there was not an oplock to be broken and TargetLink.File.OpenList contains
an Open with a Stream matching the current Stream, the operation MUST be
failed with STATUS_ACCESS_DENIED.

 EndFor

 If TargetLink.File.LinkList contains exactly one element:

 The object store MUST delete TargetLink.File as specified in section 2.1.5.5; if this
fails, the operation MUST be failed with the same status.

 Else

 The object store MUST delete TargetLink as specified in section 2.1.5.5; if this
fails, the operation MUST be failed with the same status.

 The object store MUST post a USN change as specified in section 2.1.4.11 with
File equal to File, Reason equal to (USN_REASON_HARD_LINK_CHANGE |
USN_REASON_CLOSE), and FileName equal to TargetLink.Name.

 EndIf

 Else

 The object store MUST post a USN change as specified in section 2.1.4.11 with File
equal to File, Reason equal to USN_REASON_RENAME_OLD_NAME, and FileName

equal to TargetLink.Name.

 The object store MUST delete TargetLink as specified in section 2.1.5.5; if this fails,
the operation MUST be failed with the same status.

 EndIf

 EndIf

 EndIf

 The object store MUST post a USN change as specified in section 2.1.4.11 with File equal to File,

Reason equal to USN_REASON_RENAME_OLD_NAME, and FileName equal to Open.Link.Name.

 If RemoveSourceLink is TRUE:

 Set SourceDirectory to Open.Link.ParentFile.

 If ActivelyRemoveSourceLink is TRUE:

 Remove Open.Link from Open.File.LinkList.

 Remove Open.Link from Open.Link.ParentFile.DirectoryList.

223 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

 A new TunnelCacheEntry object TunnelCacheEntry MUST be constructed and added to
the Open.File.Volume.TunnelCacheList as follows:

 TunnelCacheEntry.EntryTime MUST be set to the current time.

 TunnelCacheEntry.ParentFile MUST be set to Open.Link.ParentFile.

 TunnelCacheEntry.FileName MUST be set to Open.Link.Name.

 TunnelCacheEntry.FileShortName MUST be set to Open.Link.ShortName.

 If Open.FileName matches Open.Link.ShortName, then
TunnelCacheEntry.KeyByShortName MUST be set to TRUE, else
TunnelCacheEntry.KeyByShortName MUST be set to FALSE.

 TunnelCacheEntry.FileCreationTime MUST be set to Open.File.CreationTime.

 TunnelCacheEntry.ObjectIdInfo.ObjectId MUST be set to Open.File.ObjectId.

 TunnelCacheEntry.ObjectIdInfo.BirthVolumeId MUST be set to
Open.File.BirthVolumeId.

 TunnelCacheEntry.ObjectIdInfo.BirthObjectId MUST be set to
Open.File.BirthObjectId.

 TunnelCacheEntry.ObjectIdInfo.DomainId MUST be set to Open.File.DomainId.

 EndIf

 If Open.File.FileType is DirectoryFile, then Open.File MUST have every
TunnelCacheEntry associated with it invalidated:

 For every ExistingTunnelCacheEntry in Open.File.Volume.TunnelCacheList:

 If ExistingTunnelCacheEntry.ParentFile matches Open.File, then

ExistingTunnelCacheEntry MUST be removed from
Open.File.Volume.TunnelCacheList.

 EndFor

 EndIf

 EndIf

 Set SourceFullLinkName to Open.FileName.

 EndIf

 If AddTargetLink is TRUE:

 The operation MUST be failed with STATUS_ACCESS_DENIED if either of the following
conditions are true:

 Open.File.FileType is DirectoryFile and the caller does not have
FILE_ADD_SUBDIRECTORY access on DestinationDirectory.

 Open.File.FileType is DataFile and the caller does not have FILE_ADD_FILE access on
DestinationDirectory.

 The object store MUST create a new Link object NewLink, initialized as follows:

 NewLink.File equal to Open.File.

224 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

 NewLink.ParentFile equal to DestinationDirectory.

 All other fields set to zero.

 If Open.File.FileType is DataFile and Open.IsCaseInsensitive is TRUE, and tunnel caching
is implemented, the object store MUST search Open.File.Volume.TunnelCacheList for a

TunnelCacheEntry where TunnelCacheEntry.ParentFile equals DestinationDirectory and
either (TunnelCacheEntry.KeyByShortName is FALSE and TunnelCacheEntry.FileName
matches NewLinkName) or (TunnelCacheEntry.KeyByShortName is TRUE and
TunnelCacheEntry.FileShortName matches NewLinkName). If such an entry is found:

 Set NewLink.File.CreationTime to TunnelCacheEntry.FileCreationTime.

 Set NewLink.File.PendingNotifications. FILE_NOTIFY_CHANGE_CREATION to TRUE.

 If TunnelCacheEntry.ObjectIdInfo.ObjectId is not empty:

 If Open.File.ObjectId is not empty:

 The object store MUST construct a FILE_OBJECTID_INFORMATION structure (as
specified in [MS-FSCC] section 2.4.35.1) ObjectIdInfo as follows:

 ObjectIdInfo.FileReference set to Open.File.FileId64.

 ObjectIdInfo.ObjectId set to TunnelCacheEntry.ObjectIdInfo.ObjectId.

 ObjectIdInfo.BirthVolumeId set to

TunnelCacheEntry.ObjectIdInfo.BirthVolumeId.

 ObjectIdInfo.BirthObjectId set to
TunnelCacheEntry.ObjectIdInfo.BirthObjectId.

 ObjectIdInfo.DomainId set to
TunnelCacheEntry.ObjectIdInfo.DomainId.

 Send directory change notification as specified in section 2.1.4.1, with Volume
equal to Open.File.Volume, Action equal to

FILE_ACTION_TUNNELLED_ID_COLLISION, FilterMatch equal to
FILE_NOTIFY_CHANGE_FILE_NAME, FileName equal to "\$Extend\$ObjId",
NotifyData equal to ObjectIdInfo, and NotifyDataLength equal to
sizeof(FILE_OBJECTID_INFORMATION).

 Else if TunnelCacheEntry.ObjectIdInfo.ObjectId is not unique on
Open.File.Volume:

 The object store MUST construct a FILE_OBJECTID_INFORMATION structure (as

specified in [MS-FSCC] section 2.4.35.1) ObjectIdInfo as follows:

 ObjectIdInfo.FileReference set to Open.File.FileId64.

 ObjectIdInfo.ObjectId set to TunnelCacheEntry.ObjectIdInfo.ObjectId.

 ObjectIdInfo.BirthVolumeId set to
TunnelCacheEntry.ObjectIdInfo.BirthVolumeId.

 ObjectIdInfo.BirthObjectId set to

TunnelCacheEntry.ObjectIdInfo.BirthObjectId.

 ObjectIdInfo.DomainId set to
TunnelCacheEntry.ObjectIdInfo.DomainId.

225 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

 Send directory change notification as specified in section 2.1.4.1, with Volume
equal to Open.File.Volume, Action equal to FILE_ACTION_ID_NOT_TUNNELLED,

FilterMatch equal to FILE_NOTIFY_CHANGE_FILE_NAME, FileName equal to
"\$Extend\$ObjId", NotifyData equal to ObjectIdInfo, and NotifyDataLength

equal to sizeof(FILE_OBJECTID_INFORMATION).

 Else:

 Set NewLink.File.ObjectId to TunnelCacheEntry.ObjectIdInfo.ObjectId.

 Set NewLink.File.BirthVolumeId to
TunnelCacheEntry.ObjectIdInfo.BirthVolumeId.

 Set NewLink.File.BirthObjectId to
TunnelCacheEntry.ObjectIdInfo.BirthObjectId.

 Set NewLink.File.DomainId to TunnelCacheEntry.ObjectIdInfo.DomainId.

 EndIf

 EndIf

 Set NewLink.Name to TunnelCacheEntry.FileName.

 Set NewLink.ShortName to TunnelCacheEntry.FileShortName if that name is not
already in use among all names and short names in NewLink.ParentFile.DirectoryList.

 Remove TunnelCacheEntry from NewLink.File.Volume.TunnelCacheList.

 Else:

 Set NewLink.Name to NewLinkName.

 EndIf

 If Open.Link.ShortName is not empty and Open.IsCaseInsensitive is TRUE and
NewLink.ShortName is empty, then if short names are enabled, the object store MUST
create a short name as follows:

 If NewLink.Name is 8.3-compliant as described in [MS-FSCC] section 2.1.5.2.1:

 Set NewLink.ShortName to NewLink.Name.

 Else:

 Generate a NewLink.ShortName that is 8.3-compliant as described in [MS-FSCC]
section 2.1.5.2.1. The string chosen is implementation-specific, but MUST be unique
among all names and short names present in DestinationDirectory.DirectoryList.

 EndIf

 EndIf

 The object store MUST update the duplicated information as specified in section 2.1.4.18 with
Link equal to NewLink.

 The object store MUST add NewLink to DestinationDirectory.DirectoryList.

 The object store MUST replace Open.Link with NewLink.

 If MoveToNewDir is TRUE:

226 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

 DestinationDirectory.LastModificationTime MUST be updated.

 DestinationDirectory.LastAccessTime MUST be updated.

 DestinationDirectory.LastChangeTime MUST be updated.

 EndIf

 EndIf

 The object store MUST change the compname component (as specified in [MS-FSCC] section
2.1.5) of Open.FileName to NewLinkName.

 If RemoveSourceLink is TRUE:

 SourceDirectory.LastModificationTime MUST be updated.

 SourceDirectory.LastAccessTime MUST be updated.

 SourceDirectory.LastChangeTime MUST be updated.

 EndIf

 The object store MUST update Open.File.LastChangeTime.<187>

 If Open.File.FileType is DataFile, the object store MUST set
Open.File.FileAttributes.FILE_ATTRIBUTE_ARCHIVE.

 FilterMatch = 0

 If RemoveTargetLink is TRUE and OverwriteSourceLink is FALSE and ExactCaseMatch is FALSE:

 If TargetLink.File.FileType is DirectoryFile

 FilterMatch = FILE_NOTIFY_CHANGE_DIR_NAME

 Else

 FilterMatch = FILE_NOTIFY_CHANGE_FILE_NAME

 EndIf

 The object store MUST report a directory change notification as specified in section 2.1.4.1
with Volume equal to Open.File.Volume, Action equal to FILE_ACTION_REMOVED, and

FileName set to PrevFullLinkName with a FilterMatch of FilterMatch.

 EndIf

 If RemoveSourceLink is TRUE:

 If Open.File.FileType is DirectoryFile

 FilterMatch = FILE_NOTIFY_CHANGE_DIR_NAME

 Else

 FilterMatch = FILE_NOTIFY_CHANGE_FILE_NAME

 EndIf

 If MoveToNewDir is TRUE or AddTargetLink is FALSE or RemoveTargetLink and
ExactCaseMatch are TRUE: Action = FILE_ACTION_REMOVED

227 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

 Else

 Action = FILE_ACTION_RENAMED_OLD_NAME

 EndIf

 The object store MUST report a directory change notification as specified in section 2.1.4.1

with Volume equal to Open.File.Volume, Action equal to Action, and FileName set to
SourceFullLinkName with a FilterMatch of FilterMatch.

 EndIf

 If FoundLink is FALSE or (OverwriteSourceLink is TRUE and ExactCaseMatch is FALSE) or
(RemoveTargetLink is TRUE and ExactCaseMatch is FALSE):

 If MoveToNewDir is TRUE, set Action to FILE_ACTION_ADDED; otherwise set Action to
FILE_ACTION_RENAMED_NEW_NAME.

 Else If RemoveTargetLink is TRUE and TargetExistsSameFile is FALSE:

 FilterMatch = FILE_NOTIFY_CHANGE_ATTRIBUTES | FILE_NOTIFY_CHANGE_SIZE |
FILE_NOTIFY_CHANGE_LAST_WRITE | FILE_NOTIFY_CHANGE_LAST_ACCESS |
FILE_NOTIFY_CHANGE_CREATION | FILE_NOTIFY_CHANGE_SECURITY |
FILE_NOTIFY_CHANGE_EA

 Action = FILE_ACTION_MODIFIED

 EndIf

 If FilterMatch != 0:

 The object store MUST report a directory change notification as specified in section 2.1.4.1
with Volume equal to Open.File.Volume, Action equal to Action, and FileName set to
Open.FileName with a FilterMatch of FilterMatch.

 EndIf

 If MoveToNewDir is TRUE:

 If the Oplock member of the DirectoryStream in DestinationDirectory.StreamList
(hereinafter referred to as DestinationParentOplock) is not empty, the object store MUST
check for an oplock break on the parent according to the algorithm in section 2.1.4.12, with
input values as follows:

 Open equal to this operation's Open

 Oplock equal to DestinationParentOplock

 Operation equal to "SET_INFORMATION"

 OpParams containing a member FileInformationClass containing

FileRenameInformation

 Flags equal to "PARENT_OBJECT"

 EndIf

 If the Oplock member of the DirectoryStream in Open.Link.ParentFile.StreamList
(hereinafter referred to as SourceParentOplock) is not empty, the object store MUST check for an

oplock break on the parent according to the algorithm in section 2.1.4.12, with input values as
follows:

228 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

 Open equal to this operation's Open

 Oplock equal to SourceParentOplock

 Operation equal to "SET_INFORMATION"

 OpParams containing a member FileInformationClass containing

FileRenameInformation

 Flags equal to "PARENT_OBJECT"

 The operation returns STATUS_SUCCESS.

2.1.5.15.11.1 Algorithm for Performing Stream Rename

The inputs for a stream rename are:

 Open: an Open for the stream being renamed.

 ReplaceIfExists: A Boolean value. If TRUE and the target stream exists and the operation is
successful, the target stream MUST be replaced. If FALSE and the target stream exists, the
operation MUST fail.

 NewStreamName: A Unicode string indicating the new name for the stream. This string MUST
begin with the Unicode character ":".

The stream rename algorithm uses the following local variables:

 Unicode strings: StreamName, StreamTypeName

 Streams: TargetStream, NewDefaultStream

Pseudocode for the algorithm is as follows:

 Split NewStreamName into a stream name component StreamName and attribute type

component StreamTypeName, using the character ":" as a delimiter.

 The operation MUST be failed with STATUS_INVALID_PARAMETER under any of the following
conditions:

 The last character of NewStreamName is ":".

 The character ":" occurs more than three times in NewStreamName.

 If StreamName contains any characters invalid for a streamname as specified in [MS-FSCC]
section 2.1.5.3.

 If StreamTypeName contains any characters invalid for a streamtype as specified in [MS-
FSCC] section 2.1.5.4.

 Both StreamName and StreamTypeName are zero-length.

 StreamName is more than 255 Unicode characters in length.

 If StreamName is zero-length and Open.File.FileType is DirectoryFile, because a
DirectoryFile cannot have an unnamed data stream.

 The operation MUST be failed with STATUS_OBJECT_TYPE_MISMATCH if either of the following
conditions are true:

 Open.Stream.StreamType is DataStream and StreamTypeName is not the Unicode string

"$DATA".

%5bMS-FSCC%5d.pdf#Section_efbfe12773ad41409967ec6500e66d5e

229 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

 Open.Stream.StreamType is DirectoryStream and StreamTypeName is not the Unicode
string "$INDEX_ALLOCATION".

 If Open.Stream.StreamType is DirectoryStream, the operation MUST be failed with
STATUS_INVALID_PARAMETER.

 If StreamName is a case-insensitive match with Open.Stream.Name, the operation MUST return
STATUS_SUCCESS at this point.

 If the length of StreamName is not 0, the object store MUST search Open.File.StreamList for a
Stream with Stream.Name matching StreamName, ignoring case, setting TargetStream to the
result.

 If TargetStream is found:

 If ReplaceIfExists is FALSE, the operation MUST be failed with

STATUS_OBJECT_NAME_COLLISION.

 If TargetStream.File.OpenList contains any Opens to TargetStream, the operation MUST be
failed with STATUS_INVALID_PARAMETER.

 If TargetStream.Size is not 0, the operation MUST be failed with
STATUS_INVALID_PARAMETER.

 If TargetStream.AllocationSize is not 0, the object store SHOULD release any associated

allocation and MUST set TargetStream.AllocationSize to 0.

 Else // TargetStream is not found:

 The object store MUST build a new Stream object TargetStream with all fields initially set to
zero.

 Set TargetStream.File to Open.File.

 Add TargetStream to Open.File.StreamList.

 EndIf

 Set TargetStream.Name to StreamName.

 Set TargetStream.Size to Open.Stream.Size.

 If Open.Stream.IsSparse is TRUE, set TargetStream.IsSparse to TRUE.

 Move Open.Stream.ExtentList to TargetStream.

 Set TargetStream.AllocationSize to Open.Stream.AllocationSize.

 If Open.Stream.Name is empty, the object store MUST create a new default unnamed stream for
the file as follows:

 The object store MUST build a new Stream object NewDefaultStream with all fields initially set
to zero.

 Set NewDefaultStream.File to Open.File.

 Add NewDefaultStream to Open.File.StreamList.

 EndIf

 Remove Open.Stream from Open.File.StreamList.

230 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

 Set Open.Stream to TargetStream.

 The object store MUST post a USN change as specified in section 2.1.4.11 with File equal to
Open.File, Reason equal to USN_REASON_STREAM_CHANGE, and FileName equal to
Open.Link.Name.

 The object store MUST note that the file has been modified as specified in section 2.1.4.17 with
Open equal to Open.

 Return STATUS_SUCCESS.

2.1.5.15.12 FileSfioReserveInformation

This operation is not supported and MUST be failed with STATUS_NOT_SUPPORTED.

2.1.5.15.13 FileShortNameInformation

InputBuffer is of type FILE_NAME_INFORMATION, as described in [MS-FSCC] section 2.4.44.<188>

Pseudocode for the algorithm is as follows:

 If InputBufferSize is less than the size, in bytes, of the FILE_NAME_INFORMATION structure, the
operation MUST be failed with STATUS_INFO_LENGTH_MISMATCH.

 If Open.File.Volume.IsReadOnly is TRUE, the operation MUST be failed with

STATUS_MEDIA_WRITE_PROTECTED.

 The operation MUST be failed with STATUS_INVALID_PARAMETER under any of the following
conditions:

 If InputBuffer.FileName starts with '\'.

 If Open.File is equal to Open.File.Volume.RootDirectory.

 If Open.Stream.StreamType is DataStream and Open.Stream.Name is not empty.

 If InputBuffer.FileName is not a valid 8.3 name as described in [MS-FSCC] section

2.1.5.2.1.

 If Open.IsCaseInsensitive is FALSE.

 The operation MUST be failed with STATUS_ACCESS_DENIED under any of the following
conditions:

 If Open.GrantedAccess contains neither FILE_WRITE_DATA nor FILE_WRITE_ATTRIBUTES
as defined in [MS-SMB2] section 2.2.13.1.

 If Open.Link.IsDeleted is TRUE.

 If Open.Mode.FILE_DELETE_ON_CLOSE is TRUE.

 If Open.HasRestoreAccess is FALSE, the operation MUST be failed with
STATUS_PRIVILEGE_NOT_HELD.

 If Open.File.Volume.GenerateShortNames is FALSE, the operation MUST be failed with
STATUS_SHORT_NAMES_NOT_ENABLED_ON_VOLUME.

 If Open.File.FileType is DirectoryFile, determine whether Open.File contains open files as

specified in section 2.1.4.2, with input values as follows:

 File equal to Open.File.

%5bMS-FSCC%5d.pdf#Section_efbfe12773ad41409967ec6500e66d5e
%5bMS-SMB2%5d.pdf#Section_5606ad475ee0437a817e70c366052962

231 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

 Open equal to this operation's Open.

 Operation equal to "SET_INFORMATION".

 OpParams containing a member FileInformationClass containing
FileShortNameInformation.

 If Open.File contains open files as specified in section 2.1.4.2, the operation MUST be failed with
STATUS_ACCESS_DENIED.

 If Open.File.FileType is DirectoryFile:

 FilterMatch = FILE_NOTIFY_CHANGE_DIR_NAME

 Else

 FilterMatch =FILE_NOTIFY_CHANGE_FILE_NAME

 EndIf

 If InputBuffer.FileName is empty:

 If Open.Link.ShortName is not empty:

 OldShortName = Open.Link.ShortName.

 Set Open.Link.ShortName to empty.

 Send directory change notification as specified in section 2.1.4.1, with Volume equal to
Open.File.Volume, Action equal to FILE_ACTION_REMOVED, and FileName set to

OldShortName with a FilterMatch of FilterMatch.

 EndIf

 Return STATUS_SUCCESS.

 EndIf

 If InputBuffer.FileName equals Open.Link.ShortName, return STATUS_SUCCESS.

 For each Link in Open.File.LinkList:

 If Link is not equal to Open.Link and Link.ShortName is not empty, the operation MUST fail

with STATUS_OBJECT_NAME_COLLISION.

 EndFor

 For each Link in Open.Link.ParentFile.DirectoryList:

 If Link is not equal to Open.Link and InputBuffer.FileName matches Link.Name or
Link.ShortName, the operation MUST be failed with STATUS_OBJECT_NAME_COLLISION.

 EndFor

 If Open.Link.ShortName is not empty:

 Send directory change notification as specified in section 2.1.4.1, with Volume equal to
Open.File.Volume, Action equal to FILE_ACTION_RENAMED_OLD_NAME, and FileName set
to Open.Link.ShortName with a FilterMatch of FilterMatch.

 EndIf

232 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

 If the Oplock member of the DirectoryStream in Open.Link.ParentFile.StreamList
(hereinafter referred to as ParentOplock) is not empty, the object store MUST check for an oplock

break on the parent according to the algorithm in section 2.1.4.12, with input values as follows:

 Open equal to this operation's Open

 Oplock equal to ParentOplock

 Operation equal to "SET_INFORMATION"

 OpParams containing a member FileInformationClass containing
FileShortNameInformation

 Flags equal to "PARENT_OBJECT"

 Send directory change notification as specified in section 2.1.4.1, with Volume equal to
Open.File.Volume, Action equal to FILE_ACTION_RENAMED_NEW_NAME, and FileName set to

InputBuffer.FileName with a FilterMatch of FilterMatch.

 Set Open.Link.ShortName to InputBuffer.FileName.

 The object store MUST update Open.Link.ParentFile.LastModificationTime,
Open.Link.ParentFile.LastAccessTime, and Open.Link.ParentFile.LastChangeTime to the
current time.

 If Open.UserSetChangeTime is FALSE, the object store MUST update

Open.File.LastChangeTime to the current time.

 If Open.File.FileType is DataFile, the object store MUST set
Open.File.FileAttributes.FILE_ATTRIBUTE_ARCHIVE.

 Return STATUS_SUCCESS.

2.1.5.15.14 FileValidDataLengthInformation

InputBuffer is of type FILE_VALID_DATA_LENGTH_INFORMATION as described in [MS-FSCC] section

2.4.48.<189>

Pseudocode for the operation is as follows:

 If InputBufferSize is less than the size, in bytes, of the
FILE_VALID_DATA_LENGTH_INFORMATION structure, the operation MUST be failed with
STATUS_INFO_LENGTH_MISMATCH.

 If Open.File.Volume.IsReadOnly is TRUE, the operation MUST be failed with
STATUS_MEDIA_WRITE_PROTECTED.

 If Open.HasManageVolumeAccess is FALSE, the operation MUST be failed with
STATUS_PRIVILEGE_NOT_HELD.

 The operation MUST be failed with STATUS_INVALID_PARAMETER under any of the following

conditions:

 If Open.Stream.ValidDataLength is greater than InputBuffer.ValidDataLength.

 If Open.Stream.IsCompressed is TRUE.

 If Open.Stream.IsSparse is TRUE.

 If Open.File.FileType is DirectoryFile.

%5bMS-FSCC%5d.pdf#Section_efbfe12773ad41409967ec6500e66d5e

233 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

 If Open.Stream.Oplock is not empty, the object store MUST check for an oplock break according
to the algorithm in section 2.1.4.12, with input values as follows:

 Open equal to this operation's Open.

 Oplock equal to Open.Stream.Oplock.

 Operation equal to "SET_INFORMATION".

 OpParams containing a member FileInformationClass containing
FileValidDataLengthInformation.

 Open.Stream.ValidDataLength MUST be set to InputBuffer.ValidDataLength.

 Return STATUS_SUCCESS.

2.1.5.16 Server Requests Setting of File System Information

This operation is also referred to as SET_INFORMATION when it is used in switch statements.

The server provides:

 Open: The Open on which volume information is being applied.

 FsInformationClass: The type of information being applied, as specified in [MS-FSCC] section

2.5.

 InputBuffer: A buffer that contains the volume information to be applied to the object.

 InputBufferSize: The size of the buffer provided.

The object store MUST return:

 Status: An NTSTATUS code indicating the result of the operation.

2.1.5.16.1 FileFsVolumeInformation

This operation is not supported and MUST be failed with STATUS_INVALID_INFO_CLASS.

2.1.5.16.2 FileFsLabelInformation

This operation is not supported and MUST be failed with STATUS_INVALID_INFO_CLASS.

2.1.5.16.3 FileFsSizeInformation

This operation is not supported and MUST be failed with STATUS_INVALID_INFO_CLASS.

2.1.5.16.4 FileFsDeviceInformation

This operation is not supported and MUST be failed with STATUS_INVALID_INFO_CLASS.

2.1.5.16.5 FileFsAttributeInformation

This operation is not supported and MUST be failed with STATUS_INVALID_INFO_CLASS.

2.1.5.16.6 FileFsControlInformation

InputBuffer is of type FILE_FS_CONTROL_INFORMATION, as described in [MS-FSCC] section 2.5.2.

Pseudocode for the operation is as follows:

%5bMS-FSCC%5d.pdf#Section_efbfe12773ad41409967ec6500e66d5e
%5bMS-FSCC%5d.pdf#Section_efbfe12773ad41409967ec6500e66d5e

234 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

 If InputBufferSize is smaller than BlockAlign(sizeof(FILE_FS_CONTROL_INFORMATION), 8)
the operation MUST be failed with STATUS_ INFO_LENGTH_MISMATCH.

 Support for this operation is optional. If the object store does not implement this functionality, the
operation MUST be failed with STATUS_INVALID_PARAMETER.<190>

 If Open.File.Volume.IsQuotasSupported is FALSE, the operation MUST be failed with
STATUS_VOLUME_NOT_UPGRADED.

 Open.File.Volume MUST be updated as follows:

 Open.File.Volume.DefaultQuotaThreshold set to InputBuffer.DefaultQuotaThreshold.

 Open.File.Volume.DefaultQuotaLimit set to InputBuffer.DefaultQuotaLimit.

 Open.File.Volume.VolumeQuotaState set to InputBuffer.FileSystemControlFlags. The
FILE_VC_QUOTAS_INCOMPLETE and FILE_VC_QUOTAS_REBUILDING flags as well as any

undefined flags are cleared from InputBuffer.FileSystemControlFlags before being saved.

 Upon successful completion of the operation, the object store MUST return:

 Status set to STATUS_SUCCESS.

2.1.5.16.7 FileFsFullSizeInformation

This operation is not supported and MUST be failed with STATUS_ INVALID_INFO_CLASS.

2.1.5.16.8 FileFsObjectIdInformation

InputBuffer is a FILE_FS_OBJECTID_INFORMATION structure, as described in [MS-FSCC] section
2.5.6.<191>

Pseudocode for the operation is as follows:

 If InputBufferSize is less than sizeof(FILE_FS_OBJECTID_INFORMATION), the operation MUST
be failed with STATUS_INVALID_INFO_CLASS.

 Support for ObjectIDs is optional. If the object store does not implement this functionality, the
operation MUST be failed with STATUS_INVALID_PARAMETER.<192>

 If Open.File.Volume.IsObjectIDsSupported is FALSE, the operation MUST be failed with
STATUS_VOLUME_NOT_UPGRADED.

 Open.File.Volume MUST be updated as follows:

 Open.File.Volume.VolumeId set to InputBuffer.ObjectId.

 Open.File.Volume.ExtendedInfo set to InputBuffer.ExtendedInfo.

 Upon successful completion of the operation, the object store MUST return:

 Status set to STATUS_SUCCESS.

2.1.5.16.9 FileFsDriverPathInformation

This operation is not supported and MUST be failed with STATUS_ INVALID_INFO_CLASS.

2.1.5.16.10 FileFsSectorSizeInformation

This operation is not supported and MUST be failed with STATUS_ INVALID_INFO_CLASS.

%5bMS-FSCC%5d.pdf#Section_efbfe12773ad41409967ec6500e66d5e

235 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

2.1.5.17 Server Requests Setting of Security Information

This operation is also referred to as SET_SECURITY when it is used in switch statements.

If the object store does not implement security, the operation MUST be failed with

STATUS_INVALID_DEVICE_REQUEST.<193>

The server provides:

 Open - The Open on which security information is being applied.

 SecurityInformation - A SECURITY_INFORMATION data type as defined in [MS-DTYP] section
2.4.7.

 InputBuffer - A buffer that contains the security descriptor to be applied to the object. The
security descriptor is a SECURITY_DESCRIPTOR structure in self-relative format, as described in

[MS-DTYP] section 2.4.6.

 InputBufferSize - The size of the buffer provided.

On completion, the object store MUST return:

 Status - An NTSTATUS code indicating the result of the operation.

This routine uses the following local variables:

 Boolean values (initialized to FALSE): DisableOwnerAces, ServerObject, DaclUntrusted

The operation MUST be failed with STATUS_ACCESS_DENIED under any of the following conditions:

 SecurityInformation contains any of OWNER_SECURITY_INFORMATION,
GROUP_SECURITY_INFORMATION, or LABEL_SECURITY_INFORMATION, and
Open.GrantedAccess does not contain WRITE_OWNER.

 SecurityInformation contains DACL_SECURITY_INFORMATION and Open.GrantedAccess does

not contain WRITE_DAC.

 SecurityInformation contains SACL_SECURITY_INFORMATION and Open.GrantedAccess does

not contain ACCESS_SYSTEM_SECURITY.

Pseudocode for the operation is as follows:

 If Open.Stream.StreamType is DataStream and Open.Stream.Name is not zero-length, the
operation MUST be failed with STATUS_INVALID_PARAMETER; security information can be set on
a file or directory handle, not on a stream handle.

 If Open.Stream.Oplock is not empty, the object store MUST check for an oplock break according
to the algorithm in section 2.1.4.12, with input values as follows:

 Open equal to this operation's Open

 Oplock equal to Open.Stream.Oplock

 Operation equal to "SET_SECURITY"

 OpParams empty

 The object store MUST post a USN change as specified in section 2.1.4.11 with File equal to File,
Reason equal to USN_REASON_SECURITY_CHANGE, and FileName equal to Open.Link.Name.

 If the Server Security (SS) bit is set in InputBuffer.Control, set ServerObject to TRUE, otherwise
set it to FALSE.

%5bMS-DTYP%5d.pdf#Section_cca2742956894a16b2b49325d93e4ba2

236 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

 If the DACL Trusted (DT) bit is set in InputBuffer.Control, set DaclUntrusted to FALSE,
otherwise set it to TRUE.

 If SecurityInformation contains OWNER_SECURITY_INFORMATION:

 If SecurityInformation contains DACL_SECURITY_INFORMATION, set DisableOwnerAces to

FALSE, otherwise set it to TRUE.

 If InputBuffer.OwnerSid is not present, the operation MUST be failed with
STATUS_INVALID_OWNER.

 If InputBuffer.OwnerSid is not a valid owner SID for a file in the object store, as
determined in an implementation-specific manner, the object store MUST return
STATUS_INVALID_OWNER.

 Else

 If Open.File.SecurityDescriptor.Owner is NULL, the operation MUST be failed with

STATUS_INVALID_OWNER.

 EndIf

 The object store MUST set Open.File.SecurityDescriptor to InputBuffer. See [MS-DTYP]
section 2.4.6 for additional details.

 If Open.File.FileType is not DirectoryFile:

 The object store MUST set Open.File.FileAttributes.FILE_ATTRIBUTE_ARCHIVE.

 The object store MUST update Open.File.LastChangeTime.<194>

 EndIf

 The operation returns STATUS_SUCCESS.

2.1.5.18 Server Requests an Oplock

The server provides:

 Open - The Open on which the oplock is being requested.

 Type - The type of oplock being requested. Valid values are as follows:

 LEVEL_TWO (Corresponds to SMB2_OPLOCK_LEVEL_II as described in [MS-SMB2] section
2.2.13.)

 LEVEL_ONE (Corresponds to SMB2_OPLOCK_LEVEL_EXCLUSIVE as described in [MS-SMB2]
section 2.2.13.)

 LEVEL_BATCH (Corresponds to SMB2_OPLOCK_LEVEL_BATCH as described in [MS-SMB2]
section 2.2.13.)

 LEVEL_GRANULAR (Corresponds to SMB2_OPLOCK_LEVEL_LEASE as described in [MS-SMB2]
section 2.2.13.) If this oplock type is specified, the server MUST additionally provide the
RequestedOplockLevel parameter.

 RequestedOplockLevel - A combination of zero or more of the following flags, which are only
given for LEVEL_GRANULAR Type Oplocks:

 READ_CACHING

%5bMS-SMB2%5d.pdf#Section_5606ad475ee0437a817e70c366052962

237 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

 HANDLE_CACHING

 WRITE_CACHING

Following is a list of legal nonzero combinations of RequestedOplockLevel:

 READ_CACHING

 READ_CACHING | WRITE_CACHING

 READ_CACHING | HANDLE_CACHING

 READ_CACHING | WRITE_CACHING | HANDLE_CACHING

Notes for the operation follow:

 If the oplock is not granted, the request completes at this point.

 If the oplock is granted, the request does not complete until the oplock is broken; the operation

waits for this to happen. Processing of an oplock break is described in section 2.1.5.18.3. Whether

the oplock is granted or not, the object store MUST return:

 Status - An NTSTATUS code indicating the result of the operation.

 If the oplock is granted, then when the oplock breaks and the request finally completes, the object
store MUST additionally return:

 NewOplockLevel: The type of oplock the requested oplock has been broken to. Valid values
are as follows:

 LEVEL_NONE (that is, no oplock)

 LEVEL_TWO

 A combination of one or more of the following flags:

 READ_CACHING

 HANDLE_CACHING

 WRITE_CACHING

 AcknowledgeRequired: A Boolean value; TRUE if the server MUST acknowledge the oplock

break, FALSE if not, as specified in section 2.1.5.18.2.

Pseudocode for the operation is as follows:

 If Open.Stream.StreamType is DirectoryStream:

 The operation MUST be failed with STATUS_INVALID_PARAMETER under either of the following
conditions:

 Type is not LEVEL_GRANULAR.

 Type is LEVEL_GRANULAR but RequestedOplockLevel is neither READ_CACHING nor

(READ_CACHING|HANDLE_CACHING).

 If Type is LEVEL_ONE or LEVEL_BATCH:

 The operation MUST be failed with STATUS_OPLOCK_NOT_GRANTED under either of the
following conditions:

238 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

 Open.File.OpenList contains more than one Open whose Stream is the same as
Open.Stream.

 Open.Mode contains either FILE_SYNCHRONOUS_IO_ALERT or
FILE_SYNCHRONOUS_IO_NONALERT.

 Request an exclusive oplock according to the algorithm in section 2.1.5.18.1, setting the
algorithm's parameters as follows:

 Pass in the current Open.

 RequestedOplock equal to Type.

 The operation MUST at this point return any status code returned by the exclusive oplock
request algorithm.

 Else If Type is LEVEL_TWO:

 The operation MUST be failed with STATUS_OPLOCK_NOT_GRANTED under either of the
following conditions:

 Open.Stream.ByteRangeLockList is not empty and Open.Stream.AllocationSize is
greater than any ByteRangeLock.LockOffset in
Open.Stream.ByteRangeLockList.<195>

 Open.Mode contains either FILE_SYNCHRONOUS_IO_ALERT or

FILE_SYNCHRONOUS_IO_NONALERT.

 Request a shared oplock according to the algorithm in section 2.1.5.18.2, setting the
algorithm's parameters as follows:

 Pass in the current Open.

 RequestedOplock equal to Type.

 GrantingInAck equal to FALSE.

 The operation MUST at this point return any status code returned by the shared oplock

request algorithm.

 Else If Type is LEVEL_GRANULAR:

 If RequestedOplockLevel is READ_CACHING or (READ_CACHING|HANDLE_CACHING):

 The operation MUST be failed with STATUS_OPLOCK_NOT_GRANTED under either of the
following conditions:

 Open.Stream.ByteRangeLockList is not empty and Open.Stream.AllocationSize
is greater than any ByteRangeLock.LockOffset in

Open.Stream.ByteRangeLockList.<196>

 Open.Mode contains either FILE_SYNCHRONOUS_IO_ALERT or
FILE_SYNCHRONOUS_IO_NONALERT.

 Request a shared oplock according to the algorithm in section 2.1.5.18.2, setting the
algorithm's parameters as follows:

 Pass in the current Open.

 RequestedOplock equal to RequestedOplockLevel.

 GrantingInAck equal to FALSE.

239 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

 The operation MUST at this point return any status code returned by the shared oplock
request algorithm.

 Else If RequestedOplockLevel is (READ_CACHING|WRITE_CACHING) or
(READ_CACHING|WRITE_CACHING|HANDLE_CACHING):

 If Open.Mode contains either FILE_SYNCHRONOUS_IO_ALERT or
FILE_SYNCHRONOUS_IO_NONALERT, the operation MUST be failed with
STATUS_OPLOCK_NOT_GRANTED.

 Request an exclusive oplock according to the algorithm in section 2.1.5.18.1, setting the
algorithm's parameters as follows:

 Pass in the current Open.

 RequestedOplock equal to RequestedOplockLevel.

 The operation MUST at this point return any status code returned by the exclusive oplock

request algorithm.

 Else if RequestedOplockLevel is 0 (that is, no flags):

 The operation MUST return STATUS_SUCCESS at this point.

 Else

 The operation MUST be failed with STATUS_INVALID_PARAMETER.

 EndIf

 EndIf

2.1.5.18.1 Algorithm to Request an Exclusive Oplock

The inputs for requesting an exclusive oplock are:

 Open: The Open on which the oplock is being requested.

 RequestedOplock: The oplock type being requested.

On completion, the object store MUST return:

 Status: An NTSTATUS code that specifies the result.

 NewOplockLevel: The type of oplock that the requested oplock has been broken to. If a failure
status is returned in Status, the value of this field is undefined. Valid values are as follows:

 LEVEL_NONE (that is, no oplock)

 LEVEL_TWO

 A combination of one or more of the following flags:

 READ_CACHING

 HANDLE_CACHING

 WRITE_CACHING

 AcknowledgeRequired: A Boolean value: TRUE if the server MUST acknowledge the oplock
break; FALSE if not, as specified in section 2.1.5.19. If a failure status is returned in Status, the
value of this field is undefined.

240 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

The exclusive oplock request algorithm uses the following local variables:

 Boolean value (initialized to FALSE): GrantExclusiveOplock

Pseudocode for the algorithm is as follows:

 If Open.Stream.Oplock is empty:

 Build a new Oplock object with fields initialized as follows:

 Oplock.State set to NO_OPLOCK.

 All other fields set to 0/empty.

 Store the new Oplock object in Open.Stream.Oplock.

 EndIf

 If Open.Stream.Oplock.State contains LEVEL_TWO_OPLOCK or NO_OPLOCK:

 If Open.Stream.Oplock.State contains LEVEL_TWO_OPLOCK and RequestedOplock

contains one or more of READ_CACHING, HANDLE_CACHING, or WRITE_CACHING, the
operation MUST be failed with Status set to STATUS_OPLOCK_NOT_GRANTED.

 If Open.Stream.Oplock.State is equal to LEVEL_TWO_OPLOCK:

 Remove the first Open ThisOpen from Open.Stream.Oplock.IIOplocks (there is
supposed to be exactly one present), and notify the server of an oplock break according to
the algorithm in section 2.1.5.18.3, setting the algorithm's parameters as follows:

 BreakingOplockOpen equal to ThisOpen.

 NewOplockLevel equal to LEVEL_NONE.

 AcknowledgeRequired equal to FALSE.

 OplockCompletionStatus equal to STATUS_SUCCESS.

 (The operation does not end at this point; this call to 2.1.5.18.3 completes some earlier
call to 2.1.5.18.2.)

 EndIf

 If Open.File.OpenList contains more than one Open whose Stream is the same as
Open.Stream, and NO_OPLOCK is present in Open.Stream.Oplock.State:

 The operation MUST be failed with Status set to STATUS_OPLOCK_NOT_GRANTED.

 EndIf

 If Open.Stream.IsDeleted is TRUE and RequestedOplock contains HANDLE_CACHING:

 The operation MUST be failed with Status set to STATUS_OPLOCK_NOT_GRANTED.

 EndIf

 Set GrantExclusiveOplock to TRUE.

 Else If (Open.Stream.Oplock.State contains one or more of READ_CACHING, WRITE_CACHING,
or HANDLE_CACHING) and (Open.Stream.Oplock.State contains none of BREAK_TO_TWO,
BREAK_TO_NONE, BREAK_TO_TWO_TO_NONE, BREAK_TO_READ_CACHING,

241 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

BREAK_TO_WRITE_CACHING, BREAK_TO_HANDLE_CACHING, or BREAK_TO_NO_CACHING) and
(Open.Stream.Oplock.RHBreakQueue is empty):

 // This is a granular oplock and it is not breaking.

 If RequestedOplock contains none of READ_CACHING, WRITE_CACHING, or

HANDLE_CACHING, the operation MUST be failed with Status set to
STATUS_OPLOCK_NOT_GRANTED.

 If Open.Stream.IsDeleted is TRUE and RequestedOplock contains HANDLE_CACHING, the
operation MUST be failed with Status set to STATUS_OPLOCK_NOT_GRANTED.

 Switch (Open.Stream.Oplock.State):

 Case READ_CACHING:

 If RequestedOplock is neither (READ_CACHING|WRITE_CACHING) nor

(READ_CACHING|WRITE_CACHING|HANDLE_CACHING), the operation MUST be failed

with Status set to STATUS_OPLOCK_NOT_GRANTED.

 For each Open ThisOpen in Open.Stream.Oplock.ROplocks:

 If ThisOpen.TargetOplockKey != Open.TargetOplockKey, the operation MUST
be failed with Status set to STATUS_OPLOCK_NOT_GRANTED.

 EndFor

 For each Open ThisOpen in Open.Stream.Oplock.ROplocks:

 Remove ThisOpen from Open.Stream.Oplock.ROplocks.

 Notify the server of an oplock break according to the algorithm in section
2.1.5.18.3, setting the algorithm's parameters as follows:

 BreakingOplockOpen equal to ThisOpen.

 NewOplockLevel equal to RequestedOplock.

 AcknowledgeRequired equal to FALSE.

 OplockCompletionStatus equal to
STATUS_OPLOCK_SWITCHED_TO_NEW_HANDLE.

 (The operation does not end at this point; this call to 2.1.5.18.3 completes some
earlier call to 2.1.5.18.2.)

 EndFor

 Set GrantExclusiveOplock to TRUE.

 EndCase

 Case (READ_CACHING|HANDLE_CACHING):

 If RequestedOplock is not (READ_CACHING|WRITE_CACHING|HANDLE_CACHING)
or Open.Stream.Oplock.RHBreakQueue is not empty, the operation MUST be failed
with Status set to STATUS_OPLOCK_NOT_GRANTED.

 For each Open ThisOpen in Open.Stream.Oplock.RHOplocks:

 If ThisOpen.TargetOplockKey != Open.TargetOplockKey, the operation MUST

be failed with Status set to STATUS_OPLOCK_NOT_GRANTED.

242 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

 EndFor

 For each Open ThisOpen in Open.Stream.Oplock.RHOplocks:

 Remove ThisOpen from Open.Stream.Oplock.RHOplocks.

 Notify the server of an oplock break according to the algorithm in section

2.1.5.18.3, setting the algorithm's parameters as follows:

 BreakingOplockOpen equal to ThisOpen.

 NewOplockLevel equal to RequestedOplock.

 AcknowledgeRequired equal to FALSE.

 OplockCompletionStatus equal to
STATUS_OPLOCK_SWITCHED_TO_NEW_HANDLE.

 (The operation does not end at this point; this call to 2.1.5.18.3 completes some

earlier call to 2.1.5.18.2.)

 EndFor

 Set GrantExclusiveOplock to TRUE.

 EndCase

 Case (READ_CACHING|WRITE_CACHING|HANDLE_CACHING|EXCLUSIVE):

 If RequestedOplock is not (READ_CACHING|WRITE_CACHING|HANDLE_CACHING),

the operation MUST be failed with Status set to STATUS_OPLOCK_NOT_GRANTED.

 // Deliberate FALL-THROUGH to next Case statement.

 Case (READ_CACHING|WRITE_CACHING|EXCLUSIVE):

 If RequestedOplock is neither
(READ_CACHING|WRITE_CACHING|HANDLE_CACHING) nor
(READ_CACHING|WRITE_CACHING), the operation MUST be failed with Status set to
STATUS_OPLOCK_NOT_GRANTED.

 If Open.TargetOplockKey !=
Open.Stream.Oplock.ExclusiveOpen.TargetOplockKey, the operation MUST be
failed with Status set to STATUS_OPLOCK_NOT_GRANTED.

 Notify the server of an oplock break according to the algorithm in section 2.1.5.18.3,
setting the algorithm's parameters as follows:

 BreakingOplockOpen equal to Open.Stream.Oplock.ExclusiveOpen.

 NewOplockLevel equal to RequestedOplock.

 AcknowledgeRequired equal to FALSE.

 OplockCompletionStatus equal to
STATUS_OPLOCK_SWITCHED_TO_NEW_HANDLE.

 (The operation does not end at this point; this call to 2.1.5.18.3 completes some
earlier call to 2.1.5.18.1.)

 Set Open.Stream.Oplock.ExclusiveOpen to NULL.

243 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

 Set GrantExclusiveOplock to TRUE.

 EndCase

 DefaultCase:

 The operation MUST be failed with Status set to STATUS_OPLOCK_NOT_GRANTED.

 EndSwitch

 Else

 The operation MUST be failed with Status set to STATUS_OPLOCK_NOT_GRANTED.

 EndIf

 If GrantExclusiveOplock is TRUE:

 Set Open.Stream.Oplock.ExclusiveOpen equal to Open.

 Set Open.Stream.Oplock.State equal to (RequestedOplock|EXCLUSIVE).

 This operation MUST be made cancelable by inserting it into
CancelableOperations.CancelableOperationList.

 This operation waits until the oplock is broken or canceled, as specified in section 2.1.5.18.3.
When the operation specified in section 2.1.5.18.3 is called, its following input parameters are
transferred to this routine and then returned by it:

 Status is set to OplockCompletionStatus from the operation specified in section

2.1.5.18.3.

 NewOplockLevel is set to NewOplockLevel from the operation specified in section
2.1.5.18.3.

 AcknowledgeRequired is set to AcknowledgeRequired from the operation specified in
section 2.1.5.18.3.

 EndIf

2.1.5.18.2 Algorithm to Request a Shared Oplock

The inputs for requesting a shared oplock are:

 Open: The Open on which the oplock is being requested.

 RequestedOplock: The oplock type being requested.

 GrantingInAck: A Boolean value, TRUE if this oplock is being requested as part of an oplock
break acknowledgement, FALSE if not.

On completion, the object store MUST return:

 Status: An NTSTATUS code that specifies the result.

 NewOplockLevel: The type of oplock that the requested oplock has been broken to. If a failure
status is returned in Status, the value of this field is undefined. Valid values are as follows:

 LEVEL_NONE (that is, no oplock)

 LEVEL_TWO

244 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

 A combination of one or more of the following flags:

 READ_CACHING

 HANDLE_CACHING

 WRITE_CACHING

 AcknowledgeRequired: A Boolean value: TRUE if the server MUST acknowledge the oplock
break; FALSE if not, as specified in section 2.1.5.19. If a failure status is returned in Status, the
value of this field is undefined.

The shared oplock request algorithm uses the following local variables:

 Boolean value (initialized to FALSE): OplockGranted

Pseudocode for the algorithm is as follows:

 If Open.Stream.Oplock is empty:

 Build a new Oplock object with fields initialized as follows:

 Oplock.State set to NO_OPLOCK.

 All other fields set to 0/empty.

 Store the new Oplock object in Open.Stream.Oplock.

 EndIf

 If (GrantingInAck is FALSE) and

(Open.Stream.Oplock.State contains one or more of BREAK_TO_TWO, BREAK_TO_NONE,
BREAK_TO_TWO_TO_NONE, BREAK_TO_READ_CACHING, BREAK_TO_WRITE_CACHING,
BREAK_TO_HANDLE_CACHING, BREAK_TO_NO_CACHING, or EXCLUSIVE), then:

 The operation MUST be failed with Status set to STATUS_OPLOCK_NOT_GRANTED.

 EndIf

 Switch (RequestedOplock):

 Case LEVEL_TWO:

 The operation MUST be failed with Status set to STATUS_OPLOCK_NOT_GRANTED if
Open.Stream.Oplock.State is anything other than the following:

 NO_OPLOCK

 LEVEL_TWO_OPLOCK

 READ_CACHING

 (LEVEL_TWO_OPLOCK|READ_CACHING)

 // Deliberate FALL-THROUGH to next Case statement.

 Case READ_CACHING:

 The operation MUST be failed with Status set to STATUS_OPLOCK_NOT_GRANTED if
GrantingInAck is FALSE and Open.Stream.Oplock.State is anything other than the
following:

245 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

 NO_OPLOCK

 LEVEL_TWO_OPLOCK

 READ_CACHING

 (LEVEL_TWO_OPLOCK|READ_CACHING)

 (READ_CACHING|HANDLE_CACHING)

 (READ_CACHING|HANDLE_CACHING|MIXED_R_AND_RH)

 (READ_CACHING|HANDLE_CACHING|BREAK_TO_READ_CACHING)

 (READ_CACHING|HANDLE_CACHING|BREAK_TO_NO_CACHING)

 If GrantingInAck is FALSE:

 If there is an Open on Open.Stream.Oplock.RHOplocks whose TargetOplockKey

is equal to Open.TargetOplockKey, the operation MUST be failed with Status set to

STATUS_OPLOCK_NOT_GRANTED.

 If there is an Open on Open.Stream.Oplock.RHBreakQueue whose
TargetOplockKey is equal to Open.TargetOplockKey, the operation MUST be failed
with Status set to STATUS_OPLOCK_NOT_GRANTED.

 If there is an Open ThisOpen on Open.Stream.Oplock.ROplocks whose
TargetOplockKey is equal to Open.TargetOplockKey (there is supposed to be at

most one present):

 Remove ThisOpen from Open.Stream.Oplock.ROplocks.

 Notify the server of an oplock break according to the algorithm in section
2.1.5.18.3, setting the algorithm's parameters as follows:

 BreakingOplockOpen equal to ThisOpen.

 NewOplockLevel equal to READ_CACHING.

 AcknowledgeRequired equal to FALSE.

 OplockCompletionStatus equal to
STATUS_OPLOCK_SWITCHED_TO_NEW_HANDLE.

 (The operation does not end at this point; this call to 2.1.5.18.3 completes some
earlier call to 2.1.5.18.2.)

 EndIf

 EndIf

 If RequestedOplock equals LEVEL_TWO:

 Add Open to Open.Stream.Oplock.IIOplocks.

 Else // RequestedOplock equals READ_CACHING:

 Add Open to Open.Stream.Oplock.ROplocks.

 EndIf

246 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

 Recompute Open.Stream.Oplock.State according to the algorithm in section 2.1.4.13,
passing Open.Stream.Oplock as the ThisOplock parameter.

 Set OplockGranted to TRUE.

 EndCase

 Case (READ_CACHING|HANDLE_CACHING):

 The operation MUST be failed with Status set to STATUS_OPLOCK_NOT_GRANTED if
GrantingInAck is FALSE and Open.Stream.Oplock.State is anything other than the
following:

 NO_OPLOCK

 READ_CACHING

 (READ_CACHING|HANDLE_CACHING)

 (READ_CACHING|HANDLE_CACHING|MIXED_R_AND_RH)

 (READ_CACHING|HANDLE_CACHING|BREAK_TO_READ_CACHING)

 (READ_CACHING|HANDLE_CACHING|BREAK_TO_NO_CACHING)

 If Open.Stream.IsDeleted is TRUE, the operation MUST be failed with Status set to
STATUS_OPLOCK_NOT_GRANTED.

 If GrantingInAck is FALSE:

 If there is an Open ThisOpen on Open.Stream.Oplock.ROplocks whose
TargetOplockKey is equal to Open.TargetOplockKey (there is supposed to be at
most one present):

 Remove ThisOpen from Open.Stream.Oplocks.ROplocks.

Notify the server of an oplock break according to the algorithm in section 2.1.5.18.3, setting the
algorithm's parameters as follows:

 BreakingOplockOpen equal to ThisOpen.

 NewOplockLevel equal to (READ_CACHING|HANDLE_CACHING).

 AcknowledgeRequired equal to FALSE.

 OplockCompletionStatus equal to
STATUS_OPLOCK_SWITCHED_TO_NEW_HANDLE.

 (The operation does not end at this point; this call to 2.1.5.18.3 completes some
earlier call to 2.1.5.18.2.)

 EndIf

 If there is an Open ThisOpen on Open.Stream.Oplock.RHOplocks whose
TargetOplockKey is equal to Open.TargetOplockKey (there is supposed to be at
most one present):

 Remove ThisOpen from Open.Stream.Oplocks.RHOplocks.

 Notify the server of an oplock break according to the algorithm in section
2.1.5.18.3, setting the algorithm's parameters as follows:

247 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

 BreakingOplockOpen equal to ThisOpen.

 NewOplockLevel equal to (READ_CACHING|HANDLE_CACHING).

 AcknowledgeRequired equal to FALSE.

 OplockCompletionStatus equal to

STATUS_OPLOCK_SWITCHED_TO_NEW_HANDLE.

 (The operation does not end at this point; this call to 2.1.5.18.3 completes some
earlier call to 2.1.5.18.2.)

 EndIf

 EndIf

 Add Open to Open.Stream.Oplock.RHOplocks.

 Recompute Open.Stream.Oplock.State according to the algorithm in section 2.1.4.13,

passing Open.Stream.Oplock as the ThisOplock parameter.

 Set OplockGranted to TRUE.

 EndCase

 // No other value of RequestedOplock is possible.

 EndSwitch

 If OplockGranted is TRUE:

 This operation MUST be made cancelable by inserting it into
CancelableOperations.CancelableOperationList.

 The operation waits until the oplock is broken or canceled, as specified in section 2.1.5.18.3.

When the operation specified in section 2.1.5.18.3 is called, its following input parameters are
transferred to this routine and returned by it:

 Status is set to OplockCompletionStatus from the operation specified in section
2.1.5.18.3.

 NewOplockLevel is set to NewOplockLevel from the operation specified in section
2.1.5.18.3.

 AcknowledgeRequired is set to AcknowledgeRequired from the operation specified in
section 2.1.5.18.3.

 EndIf

2.1.5.18.3 Indicating an Oplock Break to the Server

The inputs for indicating an oplock break to the server are:

 BreakingOplockOpen: The Open used to request the oplock that is now breaking.

 NewOplockLevel: The type of oplock the requested oplock has been broken to. Valid values are
as follows:

 LEVEL_NONE (that is, no oplock)

 LEVEL_TWO

248 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

 A combination of one or more of the following flags:

 READ_CACHING

 HANDLE_CACHING

 WRITE_CACHING

 AcknowledgeRequired: A Boolean value; TRUE if the server MUST acknowledge the oplock
break, FALSE if not, as specified in section 2.1.5.19.

 OplockCompletionStatus: The NTSTATUS code to return to the server.

This algorithm simply represents the completion of an oplock request, as specified in section
2.1.5.18.1 or section 2.1.5.18.2. The server is expected to associate the return status from this
algorithm with BreakingOplockOpen, which is the Open passed in when it requested the oplock that
is now breaking.

It is important to note that because several oplocks can be outstanding in parallel, although this
algorithm represents the completion of an oplock request, it might not result in the completion of the
algorithm that called it. In particular, calling this algorithm will result in completion of the caller only if
BreakingOplockOpen is the same as the Open with which the calling algorithm was itself called. To
mitigate confusion, each algorithm that refers to this section will specify whether that algorithm's
operation terminates at that point or not.

The object store MUST return OplockCompletionStatus, AcknowledgeRequired, and
NewOplockLevel to the server (the algorithm is as specified in section 2.1.5.18.1 and section
2.1.5.18.2).

2.1.5.19 Server Acknowledges an Oplock Break

The server provides:

 Open - The Open associated with the oplock that has broken.

 Type - As part of the acknowledgement, the server indicates a new oplock it would like in place of
the one that has broken. Valid values are as follows:

 LEVEL_NONE

 LEVEL_TWO

 LEVEL_GRANULAR - If this oplock type is specified, the server additionally provides:

 RequestedOplockLevel - A combination of zero or more of the following flags:

 READ_CACHING

 HANDLE_CACHING

 WRITE_CACHING

If the server requests a new oplock and it is granted, the request does not complete until the oplock is
broken; the operation waits for this to happen. Processing of an oplock break is described in section

2.1.5.18.3. Whether the new oplock is granted or not, the object store MUST return:

 Status - An NTSTATUS code indicating the result of the operation.

If the server requests a new oplock and it is granted, then when the oplock breaks and the request
finally completes, the object store MUST additionally return:

249 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

 NewOplockLevel: The type of oplock the requested oplock has been broken to. Valid values are
as follows:

 LEVEL_NONE (that is, no oplock)

 LEVEL_TWO

 A combination of one or more of the following flags:

 READ_CACHING

 HANDLE_CACHING

 WRITE_CACHING

 AcknowledgeRequired: A Boolean value; TRUE if the server MUST acknowledge the oplock
break, FALSE if not, as specified in section 2.1.5.18.2.

This routine uses the following local variables:

 Boolean values (initialized to FALSE): NewOplockGranted, ReturnBreakToNone,
FoundMatchingRHOplock

Pseudocode for the operation is as follows:

 If Open.Stream.Oplock is empty, the operation MUST be failed with Status set to
STATUS_INVALID_OPLOCK_PROTOCOL.

 If Type is LEVEL_NONE or LEVEL_TWO:

 If Open.Stream.Oplock.ExclusiveOpen is not equal to Open, the operation MUST be failed
with Status set to STATUS_INVALID_OPLOCK_PROTOCOL.

 If Type is LEVEL_TWO and Open.Stream.Oplock.State contains BREAK_TO_TWO:

 Set Open.Stream.Oplock.State to LEVEL_TWO_OPLOCK.

 Set NewOplockGranted to TRUE.

 Else If Open.Stream.Oplock.State contains BREAK_TO_TWO or BREAK_TO_NONE:

 Set Open.Stream.Oplock.State to NO_OPLOCK.

 Else If Open.Stream.Oplock.State contains BREAK_TO_TWO_TO_NONE:

 Set Open.Stream.Oplock.State to NO_OPLOCK.

 Set ReturnBreakToNone to TRUE.

 Else

 The operation MUST be failed with Status set to STATUS_INVALID_OPLOCK_PROTOCOL.

 EndIf

 For each Open WaitingOpen on Open.Stream.Oplock.WaitList:

 Indicate that the operation associated with WaitingOpen can continue according to the
algorithm in section 2.1.4.12.1, setting OpenToRelease equal to WaitingOpen.

 Remove WaitingOpen from Open.Stream.Oplock.WaitList.

 EndFor

250 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

 Set Open.Stream.Oplock.ExclusiveOpen to NULL.

 If NewOplockGranted is TRUE:

 The operation waits until the newly-granted Level 2 oplock is broken, as specified in
section 2.1.5.18.3.

 Else If ReturnBreakToNone is TRUE:

 In this case the server was expecting the oplock to break to Level 2, but because the
oplock is actually breaking to None (that is, no oplock), the object store MUST indicate an
oplock break to the server according to the algorithm in section 2.1.5.18.3, setting the
algorithm's parameters as follows:

 BreakingOplockOpen equal to Open.

 NewOplockLevel equal to LEVEL_NONE.

 AcknowledgeRequired equal to FALSE.

 OplockCompletionStatus equal to STATUS_SUCCESS.

 (Because BreakingOplockOpen is equal to the passed-in Open, the operation ends at
this point.)

 Else

 The operation MUST return Status set to STATUS_SUCCESS at this point.

 EndIf

 Else If Type is LEVEL_GRANULAR:

 Let BREAK_LEVEL_MASK = (BREAK_TO_READ_CACHING | BREAK_TO_WRITE_CACHING |
BREAK_TO_HANDLE_CACHING | BREAK_TO_NO_CACHING)

 Let R_AND_RH_GRANTED = (READ_CACHING|HANDLE_CACHING|MIXED_R_AND_RH)

 Let RH_GRANTED = (READ_CACHING|HANDLE_CACHING)

 // If there are no BREAK_LEVEL_MASK flags set, this is invalid, unless the

 // state is R_AND_RH_GRANTED or RH_GRANTED, in which case we'll need to see if

 // the RHBreakQueue is empty.

 If (Open.Stream.Oplock.State does not contain any flag in BREAK_LEVEL_MASK and

(Open.Stream.Oplock.State != R_AND_RH_GRANTED) and

(Open.Stream.Oplock.State != RH_GRANTED)) or

(((Open.Stream.Oplock.State == R_AND_RH_GRANTED) or

(Open.Stream.Oplock.State == RH_GRANTED)) and

 Open.Stream.Oplock.RHBreakQueue is empty):

 The request MUST be failed with Status set to STATUS_INVALID_OPLOCK_PROTOCOL.

 EndIf

 Switch Open.Stream.Oplock.State

251 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

 Case (READ_CACHING|HANDLE_CACHING|MIXED_R_AND_RH):

 Case (READ_CACHING|HANDLE_CACHING):

 Case (READ_CACHING|HANDLE_CACHING|BREAK_TO_READ_CACHING):

 Case (READ_CACHING|HANDLE_CACHING|BREAK_TO_NO_CACHING):

 For each RHOpContext ThisContext in Open.Stream.Oplock.RHBreakQueue:

 If ThisContext.Open equals Open:

 Set FoundMatchingRHOplock to TRUE.

 If ThisContext.BreakingToRead is FALSE:

 If RequestedOplockLevel is not 0 and Open.Stream.Oplock.WaitList
is not empty:

 The object store MUST indicate an oplock break to the server

according to the algorithm in section 2.1.5.18.3, setting the
algorithm's parameters as follows:

 BreakingOplockOpen equal to Open.

 NewOplockLevel equal to LEVEL_NONE.

 AcknowledgeRequired equal to TRUE.

 OplockCompletionStatus equal to

STATUS_CANNOT_GRANT_REQUESTED_OPLOCK.

 (Because BreakingOplockOpen is equal to the passed-in Open, the
operation ends at this point.)

 EndIf

 Else // ThisContext.BreakingToRead is TRUE.

 If Open.Stream.Oplock.WaitList is not empty and
(RequestedOplockLevel is (READ_CACHING|WRITE_CACHING) or

(READ_CACHING|WRITE_CACHING|HANDLE_CACHING)):

 The object store MUST indicate an oplock break to the server
according to the algorithm in section 2.1.5.18.3, setting the
algorithm's parameters as follows:

 BreakingOplockOpen equal to Open.

 NewOplockLevel equal to READ_CACHING.

 AcknowledgeRequired equal to TRUE.

 OplockCompletionStatus equal to
STATUS_CANNOT_GRANT_REQUESTED_OPLOCK.

 (Because BreakingOplockOpen is equal to the passed-in Open, the
operation ends at this point.)

 EndIf

 EndIf

252 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

 Remove ThisContext from Open.Stream.Oplock.RHBreakQueue.

 For each Open WaitingOpen on Open.Stream.Oplock.WaitList:

 // The operation waiting for the Read-Handle oplock to break can continue
if

 // there are no more Read-Handle oplocks outstanding, or if all the
remaining

 // Read-Handle oplocks have the same oplock key as the waiting
operation.

 If (Open.Stream.Oplock.RHBreakQueue is empty) or (all
RHOpContext.Open.TargetOplockKey values on
Open.Stream.Oplock.RHBreakQueue are equal to

WaitingOpen.TargetOplockKey):

 Indicate that the operation associated with WaitingOpen can continue
according to the algorithm in section 2.1.4.12.1, setting
OpenToRelease equal to WaitingOpen.

 Remove WaitingOpen from Open.Stream.Oplock.WaitList.

 EndIf

 EndFor

 If RequestedOplockLevel is 0 (that is, no flags):

 Recompute Open.Stream.Oplock.State according to the algorithm in
section 2.1.4.13, passing Open.Stream.Oplock as the ThisOplock
parameter.

 The algorithm MUST return Status set to STATUS_SUCCESS at this point.

 Else If RequestedOplockLevel does not contain WRITE_CACHING:

 The object store MUST request a shared oplock according to the algorithm
in section 2.1.5.18.2, setting the algorithm's parameters as follows:

 Pass in the current Open.

 RequestedOplock equal to RequestedOplockLevel.

 GrantingInAck equal to TRUE.

 The operation MUST at this point return any status code returned by the
shared oplock request algorithm.

 Else

 Set Open.Stream.Oplock.ExclusiveOpen to ThisContext.Open.

 Set Open.Stream.Oplock.State to
(RequestedOplockLevel|EXCLUSIVE).

 This operation MUST be made cancelable by inserting it into
CancelableOperations.CancelableOperationList.

 This operation waits until the oplock is broken or canceled, as specified in
section 2.1.5.18.3.

253 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

 EndIf

 Break out of the For loop.

 EndIf

 EndFor

 If FoundMatchingRHOplock is FALSE:

 The operation MUST be failed with Status set to
STATUS_INVALID_OPLOCK_PROTOCOL.

 EndIf

 The operation returns Status set to STATUS_SUCCESS at this point.

 EndCase

 Case (READ_CACHING|WRITE_CACHING|EXCLUSIVE|BREAK_TO_READ_CACHING):

 Case (READ_CACHING|WRITE_CACHING|EXCLUSIVE|BREAK_TO_NO_CACHING):

 Case
(READ_CACHING|WRITE_CACHING|HANDLE_CACHING|EXCLUSIVE|BREAK_TO_READ_CA
CHING|BREAK_TO_WRITE_CACHING):

 Case
(READ_CACHING|WRITE_CACHING|HANDLE_CACHING|EXCLUSIVE|BREAK_TO_READ_CA

CHING|BREAK_TO_HANDLE_CACHING):

 Case
(READ_CACHING|WRITE_CACHING|HANDLE_CACHING|EXCLUSIVE|BREAK_TO_READ_CA
CHING):

 Case
(READ_CACHING|WRITE_CACHING|HANDLE_CACHING|EXCLUSIVE|BREAK_TO_NO_CACHI
NG):

 If Open.Stream.Oplock.ExclusiveOpen != Open:

 The operation MUST be failed with Status set to
STATUS_INVALID_OPLOCK_PROTOCOL.

 EndIf

 If Open.Stream.Oplock.WaitList is not empty and Open.Stream.Oplock.State does
not contain HANDLE_CACHING and RequestedOplockLevel is
(READ_CACHING|WRITE_CACHING|HANDLE_CACHING):

 The object store MUST indicate an oplock break to the server according to the

algorithm in section 2.1.5.18.3, setting the algorithm's parameters as follows:

 BreakingOplockOpen equal to Open.

 NewOplockLevel equal to:

 (READ_CACHING|WRITE_CACHING) if Open.Stream.Oplock.State
contains each of BREAK_TO_READ_CACHING and

BREAK_TO_WRITE_CACHING and not BREAK_TO_HANDLE_CACHING.

254 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

 (READ_CACHING|HANDLE_CACHING) if Open.Stream.Oplock.State
contains each of BREAK_TO_READ_CACHING and

BREAK_TO_HANDLE_CACHING and not BREAK_TO_WRITE_CACHING.

 READ_CACHING if Open.Stream.Oplock.State contains

BREAK_TO_READ_CACHING and neither BREAK_TO_WRITE_CACHING nor
BREAK_TO_HANDLE_CACHING.

 LEVEL_NONE if Open.Stream.Oplock.State contains
BREAK_TO_NO_CACHING.

 AcknowledgeRequired equal to TRUE.

 OplockCompletionStatus equal to
STATUS_CANNOT_GRANT_REQUESTED_OPLOCK.

 (Because BreakingOplockOpen is equal to the passed-in Open, the operation
ends at this point.)

 Else

 If Open.Stream.IsDeleted is TRUE and RequestedOplockLevel contains
HANDLE_CACHING:

 The object store MUST indicate an oplock break to the server according to the

algorithm in section 2.1.5.18.3, setting the algorithm's parameters as follows:

 BreakingOplockOpen equal to Open.

 NewOplockLevel equal to RequestedOplockLevel without
HANDLE_CACHING (for example if RequestedOplockLevel is
(READ_CACHING|HANDLE_CACHING), then NewOplockLevel would be
just READ_CACHING).

 AcknowledgeRequired equal to TRUE.

 OplockCompletionStatus equal to
STATUS_CANNOT_GRANT_REQUESTED_OPLOCK.

 (Because BreakingOplockOpen is equal to the passed-in Open, the
operation ends at this point.)

 EndIf

 For each Open WaitingOpen on Open.Stream.Oplock.WaitList:

 Indicate that the operation associated with WaitingOpen can continue

according to the algorithm in section 2.1.4.12.1, setting OpenToRelease
equal to WaitingOpen.

 Remove WaitingOpen from Open.Stream.Oplock.WaitList.

 EndFor

 If RequestedOplockLevel does not contain WRITE_CACHING:

 Set Open.Stream.Oplock.ExclusiveOpen to NULL.

 EndIf

 If RequestedOplockLevel is 0 (that is, no flags):

255 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

 Set Open.Stream.Oplock.State to NO_OPLOCK.

 The operation returns Status set to STATUS_SUCCESS at this point.

 Else If RequestedOplockLevel does not contain WRITE_CACHING:

 The object store MUST request a shared oplock according to the algorithm in

section 2.1.5.18.2, setting the algorithm's parameters as follows:

 Pass in the current Open.

 RequestedOplock equal to RequestedOplockLevel.

 GrantingInAck equal to TRUE.

 The operation MUST at this point return any status code returned by the
shared oplock request algorithm.

 Else

// Note that because this oplock is being set up as part of an
acknowledgement of an exclusive oplock break,
Open.Stream.Oplock.ExclusiveOpen was set at the time of the original
oplock request; it contains Open.

 Set Open.Stream.Oplock.State to (RequestedOplockLevel|EXCLUSIVE).

 This operation MUST be made cancelable by inserting it into

CancelableOperations.CancelableOperationList.

 This operation waits until the oplock is broken or canceled, as specified in
section 2.1.5.18.3.

 Endif

 EndIf

 EndCase

 DefaultCase:

 The operation MUST be failed with Status set to
STATUS_INVALID_OPLOCK_PROTOCOL.

 EndSwitch

 EndIf

2.1.5.20 Server Requests Canceling an Operation

The server provides:

 IORequest: An implementation-specific identifier that is unique for each outstanding IO
operation, as described in [MS-CIFS] section 3.3.5.52.

No information is returned.

Cancellation provides the ability for operations that block for extended periods of time to be

terminated, thus providing better end-user responsiveness. How operation cancellation is implemented
is object store specific.

%5bMS-CIFS%5d.pdf#Section_d416ff7cc536406ea9514f04b2fd1d2b

256 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

The Object Store MUST maintain a list of waiting operations that can be canceled by adding them to
the CancelableOperations.CancelableOperationList as defined in section 2.1.1.12.

Each operation receives an implementation-specific identifier (IORequest) that uniquely identifies an
in-progress I/O operation, as specified in section 2.1.5.

When a cancellation request is received, scan CancelableOperations.CancelableOperationList
looking for an operation CanceledOperation that matches IORequest. If found, CanceledOperation
MUST be removed from CancelableOperations.CancelableOperationList and CanceledOperation
MUST be failed with STATUS_CANCELED returned for the status of the canceled operation. If not
found, the cancel request returns performing no action.<197>

2.1.5.21 Server Requests Querying Quota Information

The server provides:

 Open: An Open of a Quota Stream<198>.

 OutputBufferSize: The maximum number of bytes to return in OutputBuffer.

 ReturnSingleEntry: A Boolean that, if TRUE, indicates at most one entry MUST be returned. If

FALSE, one or more entries MAY be returned, up to what will fit in OutputBufferSize bytes.

 SidList: An optional array of one or more FILE_GET_QUOTA_INFORMATION structures as
specified in [MS-FSCC] section 2.4.40.1. This identifies the SIDs whose quota information is to be
returned.

 SidListLength: The length, in bytes, of the SidList array. If no SidList array is provided, this
MUST be set to zero.

 StartSid: An optional SID identifying the entry at which to begin scanning quota information. This

parameter is ignored if the SidList parameter is specified. If no StartSid SID is provided, this
field is empty.

 RestartScan: A Boolean that, if TRUE, indicates that enumeration is restarted from the beginning
of the quota list. If FALSE, enumeration continues from the last position.

On completion, the object store MUST return:

 Status: An NTSTATUS code that specifies the result.

 OutputBuffer: An array of one or more FILE_QUOTA_INFORMATION structures as specified in
[MS-FSCC] section 2.4.40.

 ByteCount: The number of bytes stored in OutputBuffer.

Support for this operation is optional. If the object store does not implement this functionality, the
operation MUST be failed with STATUS_INVALID_DEVICE_REQUEST.<199>

Pseudocode for the operation is as follows:

 If SidList is not empty and SidListLength is not a multiple of 4, the operation MUST be failed

with STATUS_INVALID_PARAMETER.

 If SidListLength is not zero but less than sizeof(FILE_GET_QUOTA_INFORMATION), SidList will
be zero filled up to sizeof(FILE_GET_QUOTA_INFORMATION).

 If SidList is not empty:

%5bMS-FSCC%5d.pdf#Section_efbfe12773ad41409967ec6500e66d5e

257 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

 For each entry in SidList, the object store MUST return a FILE_QUOTA_INFORMATION
structure as specified in [MS-FSCC] section 2.4.40, where the data returned is from the

Open.File.Volume.QuotaInformation entry with the same SID.

 If SidList includes a SID that does not map to an existing SID in the

Open.File.Volume.QuotaInformation list, the object store MUST return a
FILE_QUOTA_INFORMATION structure (as specified in [MS-FSCC] section 2.4.40) that is filled
with zeros.

 If ReturnSingleEntry is TRUE, the object store MUST return information only on the first SID
in SidList. No other SidList entries other than the first are processed by the object store.

 RestartScan and StartSid are ignored.

 Else: // SidList is empty

 If OutputBufferSize is less than sizeof(FILE_QUOTA_INFORMATION), the operation MUST be
failed with STATUS_BUFFER_TOO_SMALL.

 If StartSid is not empty:

 If StartSid is not found in Open.File.Volume.QuotaInformation then the operation
MUST be failed with STATUS_INVALID_PARAMETER.

 Set Open.LastQuotaId to the index of the entry in

Open.File.Volume.QuotaInformation that matches StartSid.

 RestartScan is ignored.

 Else:

 If RestartScan is TRUE or Open.LastQuotaId is -1:

 Set Open.LastQuotaId to the index of the first entry in the
Open.File.Volume.QuotaInformation list.

 Else:

 Set Open.LastQuotaId to the index of the entry after the current value of
Open.LastQuotaId of Open.File.Volume.QuotaInformation list.

 EndIf

 EndIf

 The object store MUST return a FILE_QUOTA_INFORMATION structure (as specified in [MS-
FSCC] section 2.4.40) that corresponds to the entry in
Open.File.Volume.QuotaInformationList that has the index specified by

Open.LastQuotaId.

 If ReturnSingleEntry is TRUE, the object store MUST return information on only a single

quota entry.

 If ReturnSingleEntry is FALSE and Open.LastQuotaId is not at the end of the
Open.File.Volume.QuotaInformation list and more FILE_QUOTA_INFORMATION structures
will fit in the remaining ByteCount, then more FILE_QUOTA_INFORMATION structures

SHOULD be returned until either Open.LastQuotaId is at the end of
Open.File.Volume.QuotaInformation list or no more FILE_QUOTA_INFORMATION
structures will fit in OutputBuffer.

 The operation MUST fail with STATUS_NO_MORE_ENTRIES when no entries are returned.

258 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

 Open.LastQuotaId MUST be set to point to the entry in
Open.File.Volume.QuotaInformation that represents the last returned

FILE_QUOTA_INFORMATION structure in OutputBuffer.

 EndIf

 Upon successful completion, the object store MUST return:

 Status set to STATUS_SUCCESS.

 ByteCount set to the count, in bytes, of how much data was filled into OutputBuffer.

2.1.5.22 Server Requests Setting Quota Information

The server provides:

 Open: An Open of a Quota Stream<200>.

 InputBuffer: A buffer that contains one or more aligned FILE_QUOTA_INFORMATION structures
as defined in [MS-FSCC] section 2.4.40.

 InputBufferSize: The size, in bytes, of InputBuffer.

On completion, the object store MUST return:

 Status: An NTSTATUS code that specifies the result.

Support for this operation is optional. If the object store does not implement this functionality, the
operation MUST be failed with STATUS_INVALID_DEVICE_REQUEST.<201>

Pseudocode for the operation is as follows:

 If InputBufferSize is zero, the operation MUST be failed with STATUS_INVALID_PARAMETER.

 For each FILE_QUOTA_INFORMATION structure quota in InputBuffer:

 Scan Open.File.Volume.QuotaInformation for an entry that matches quota.Sid and if

found, save a pointer in matchedQuota; else set matchedQuota to empty.

 If quota.Sid == BUILTIN_ADMINISTRATORS (as defined in [MS-DTYP] section 2.4.2.4) and
quota.QuotaLimit != -1, the operation MUST be failed with STATUS_ACCESS_DENIED. A
quota limit cannot be specified on the administrators account.

 If quota.QuotaLimit == -2 //The quota is being deleted

 If matchedQuota is not empty:

 Remove matchedQuota from Open.File.Volume.QuotaInformation and delete it.

 Set matchedQuota to empty.

 Else

 The operation MUST be failed with STATUS_NO_MATCH

 Endif

 Else if matchedQuota is not empty:

 Set matchedQuota.QuotaThreshold to quota.QuotaThreshold.

 Set matchedQuota.QuotaLimit to quota.QuotaLimit.

%5bMS-FSCC%5d.pdf#Section_efbfe12773ad41409967ec6500e66d5e
%5bMS-DTYP%5d.pdf#Section_cca2742956894a16b2b49325d93e4ba2

259 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

 Set matchedQuota.ChangeTime to the current time.

 Else: //matchedQuota is empty:

 Set matchedQuota to a newly allocated FILE_QUOTA_INFORMATION structure.

 Set matchedQuota.Sid to quota.Sid.

 Set matchedQuota.SidLength to the length of quota.Sid.

 Set matchedQuota.QuotaThreshold to quota.QuotaThreshold.

 Set matchedQuota.QuotaLimit to quota.QuotaLimit.

 Set matchedQuota.ChangeTime to the current time.

 Insert matchedQuota into Volume.QuotaInformation.

 matchedQuota.QuotaUsed is updated in the background by scanning all files in

Open.File.Volume where File.SecurityDescriptor.Owner == matchedQuota.Sid.

 EndIf

 Upon successful completion, the object store MUST return:

 Status set to STATUS_SUCCESS.

260 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

3 Algorithm Examples

None.

261 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

4 Security

4.1 Security Considerations for Implementers

Security is opaque to file systems. Some file systems store security descriptors as opaque blobs and

then call security support routines to perform the necessary security checks. Other file systems do not
implement security. Security considerations are called out in the sections where they are used. Please
refer to [MS-AUTHSOD] for a security overview.

4.2 Index of Security Parameters

Security parameter Section

SecurityContext 2.1.4.14

SecurityDescriptor 2.1.4.14

SecurityContext 2.1.5.1

SecurityInformation 2.1.5.14

SecurityInformation 2.1.5.17

%5bMS-AUTHSOD%5d.pdf#Section_953d700a57cb4cf7b0c3a64f34581cc9

262 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

5 Appendix A: Product Behavior

The information in this specification is applicable to the following Microsoft products or supplemental
software. References to product versions include updates to those products.

The terms "earlier" and "later", when used with a product version, refer to either all preceding
versions or all subsequent versions, respectively. The term "through" refers to the inclusive range of
versions. Applicable Microsoft products are listed chronologically in this section.

Windows Client

 Windows 2000 Professional operating system

 Windows XP operating system

 Windows Vista operating system

 Windows 7 operating system

 Windows 8 operating system

 Windows 8.1 operating system

 Windows 10 operating system

 Windows 11 operating system

Windows Server

 Windows 2000 Server operating system

 Windows Server 2003 operating system

 Windows Server 2008 operating system

 Windows Server 2008 R2 operating system

 Windows Server 2012 operating system

 Windows Server 2012 R2 operating system

 Windows Server 2016 operating system

 Windows Server 2019 operating system

 Windows Server 2022 operating system

 Windows Server 2025 operating system

Exceptions, if any, are noted in this section. If an update version, service pack or Knowledge Base
(KB) number appears with a product name, the behavior changed in that update. The new behavior

also applies to subsequent updates unless otherwise specified. If a product edition appears with the
product version, behavior is different in that product edition.

Unless otherwise specified, any statement of optional behavior in this specification that is prescribed
using the terms "SHOULD" or "SHOULD NOT" implies product behavior in accordance with the

SHOULD or SHOULD NOT prescription. Unless otherwise specified, the term "MAY" implies that the
product does not follow the prescription.

<1> Section 2.1.1.1: Hard links are supported on NTFS volumes, UDFS volumes, and ReFS volumes
formatted version 3.5 or later (Windows Server 2022 and later).

263 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

<2> Section 2.1.1.1: NTFS uses a default cluster size of 4 KB, a maximum cluster size of 64 KB on
Windows 10 v1703 operating system and earlier and Windows Server 2016 and earlier, and 2 MB on

Windows 10 v1709 operating system and later and Windows Server 2019 and later, and a minimum
cluster size of 512 bytes. ReFS in Windows 8, Windows 8.1, Windows Server 2012 operating system

and Windows Server 2012 R2 use a fixed cluster size of 64 KB. ReFS in Windows 10 and later and
Windows Server 2016 and later use a default cluster size of 4 KB. ReFS also supports a 64-KB cluster
size.

<3> Section 2.1.1.1: For AMD64, x86, and ARM systems, this value is 4 KB. For ia64 systems, this
value is 8 KB.

<4> Section 2.1.1.1: In NTFS, the CompressionUnitSize is 64 KB for encrypted files, 64 KB for sparse
files, and the lesser of 64 KB or (16 * ClusterSize) for compressed files. Other file systems do not

implement this field.

<5> Section 2.1.1.1: In NTFS, the CompressedChunkSize is 4 KB. Other Windows file systems do not
implement this field.

<6> Section 2.1.1.1: Only ReFS supports integrity.

<7> Section 2.1.1.1: Only NTFS supports quotas.

<8> Section 2.1.1.1: This field is present for compatibility with the file level FileObjectIdInformation

structure ([MS-FSCC] section 2.4.35). These fields are not currently used by Windows and always
contain zeroes.

<9> Section 2.1.1.1: The USN journal is supported on ReFS all versions and NTFS version 3.0
volumes or greater. The USN journal is active by default on Windows Vista and later. The USN journal
is not active by default on Windows-based servers.

<10> Section 2.1.1.1: For Windows 2000 operating system, Windows XP, Windows Server 2003,
Windows Vista, Windows Server 2008, Windows 7, and Windows Server 2008 R2, the maximum file

size of a file on an NTFS volume is the smaller of (232 – 1) * cluster size, and 16 terabytes (TB). For
Windows 8 and Windows Server 2012, the maximum file size of a file on an NTFS volume is (232 – 1)

* cluster size. For Windows 8.1 and later the maximum file size of a file on an NTFS volume is (((232 *
cluster size) – 64K). For example, if the cluster size is 512 bytes, the maximum file size is 2 TB.

<11> Section 2.1.1.2: ReFS does not implement the TunnelCache.

<12> Section 2.1.1.3: Only NTFS supports view index files.

<13> Section 2.1.1.3: ReFS and exFAT do not implement ShortNames.

<14> Section 2.1.1.3: The following table defines the support of file time stamps across various
Windows file systems. More information can be found in section 6 of the File System Behavior
Overview document [FSBO].

Timestamp ReFS NTFS FAT EXFAT UDFS

CreationTime Stored in UTC

100 nanosecond
granularity

Stored in UTC

100 nanosecond
granularity

Stored in
local time

10
millisecond
granularity

Stored in UTC if
available, else in
local time

10 millisecond
granularity

Stored in UTC if
available, else in
local time

1 microsecond
granularity

LastAccessTime Stored in UTC

100 nanosecond
granularity

Updated at 60
minute

Stored in UTC

100 nanosecond
granularity

Updated at 60
minute

Stored in
local time

1 day
granularity

Stored in UTC if
available, else in
local time

2 second
granularity

Stored in UTC if
available, else in
local time

1 microsecond
granularity

%5bMS-FSCC%5d.pdf#Section_efbfe12773ad41409967ec6500e66d5e
https://go.microsoft.com/fwlink/?LinkId=140636

264 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

Timestamp ReFS NTFS FAT EXFAT UDFS

granularity

granularity

ChangeTime Stored in UTC

100 nanosecond
granularity

Stored in UTC

100 nanosecond
granularity

Not
Supported

Not Supported Stored in UTC if
available, else in
local time

1 microsecond
granularity

LastWriteTime Stored in UTC

100 nanosecond
granularity

Stored in UTC

100 nanosecond
granularity

Stored in
local time

2 second
granularity

Stored in UTC if
available, else in
local time

10 millisecond

granularity

Stored in UTC if
available, else in
local time

1 microsecond

granularity

<15> Section 2.1.1.3: The following table defines the support of file time stamps across various
Windows file systems. More information can be found in section 6 of the File System Behavior
Overview document [FSBO].

Timestamp ReFS NTFS FAT EXFAT UDFS

CreationTime Stored in UTC

100 nanosecond
granularity

Stored in UTC

100 nanosecond
granularity

Stored in
local time

10
millisecond
granularity

Stored in UTC if
available, else in
local time

10 millisecond
granularity

Stored in UTC if
available, else in
local time

1 microsecond
granularity

LastAccessTime Stored in UTC

100 nanosecond
granularity

Updated at 60

minute
granularity

Stored in UTC

100 nanosecond
granularity

Updated at 60

minute
granularity

Stored in
local time

1 day
granularity

Stored in UTC if
available, else in
local time

2 second

granularity

Stored in UTC if
available, else in
local time

1 microsecond

granularity

ChangeTime Stored in UTC

100 nanosecond
granularity

Stored in UTC

100 nanosecond
granularity

Not
Supported

Not Supported Stored in UTC if
available, else in
local time

1 microsecond
granularity

LastWriteTime Stored in UTC

100 nanosecond
granularity

Stored in UTC

100 nanosecond
granularity

Stored in
local time

2 second
granularity

Stored in UTC if
available, else in
local time

10 millisecond
granularity

Stored in UTC if
available, else in
local time

1 microsecond
granularity

<16> Section 2.1.1.3: The following table defines the support of file time stamps across various
Windows file systems. More information can be found in section 6 of the File System Behavior
Overview document [FSBO].

265 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

Timestamp ReFS NTFS FAT EXFAT UDFS

CreationTime Stored in UTC

100 nanosecond
granularity

Stored in UTC

100 nanosecond
granularity

Stored in
local time

10
millisecond
granularity

Stored in UTC if
available, else in
local time

10 millisecond
granularity

Stored in UTC if
available, else in
local time

1 microsecond
granularity

LastAccessTime Stored in UTC

100 nanosecond
granularity

Updated at 60
minute
granularity

Stored in UTC

100 nanosecond
granularity

Updated at 60
minute
granularity

Stored in
local time

1 day
granularity

Stored in UTC if
available, else in
local time

2 second
granularity

Stored in UTC if
available, else in
local time

1 microsecond
granularity

ChangeTime Stored in UTC

100 nanosecond
granularity

Stored in UTC

100 nanosecond
granularity

Not
Supported

Not Supported Stored in UTC if
available, else in
local time

1 microsecond
granularity

LastWriteTime Stored in UTC

100 nanosecond
granularity

Stored in UTC

100 nanosecond
granularity

Stored in
local time

2 second
granularity

Stored in UTC if
available, else in
local time

10 millisecond
granularity

Stored in UTC if
available, else in
local time

1 microsecond
granularity

<17> Section 2.1.1.3: In Windows Vista and later, LastAccessTime updates are disabled by default in

the ReFS and NTFS file systems. It is only updated when the file is closed. This behavior is controlled
by the following registry values (respectively):

HKLM\System\CurrentControlSet\Control\FileSystem\RefsDisableLastAccessUpdate, and
HKLM\System\CurrentControlSet\Control\FileSystem\NtfsDisableLastAccessUpdate. A value of 1
means LastAccessTime updates are disabled. Any other value (or undefined) means they are enabled.

In Windows 10 v1803 operating system and later, NTFS has two registry values controlling

LastAccessTime updates:
HKLM\System\CurrentControlSet\Control\FileSystem\NtfsDisableLastAccessUpdate and
HKLM\System\CurrentControlSet\Control\FileSystem\
NtfsLastAccessUpdatePolicyVolumeSizeThreshold. The NtfsDisableLastAccessUpdate value is now
treated as a bitfield as follows:

Value Meaning

0x00000001 Disable LastAccessTime updates.

0x00000002 System managed. Indicates that NTFS uses its own policy for updating LastAccessTime
as follows:

On client systems, LastAccessTime updates are enabled if any of the following
conditions are true:

 NtfsLastAccessUpdatePolicyVolumeSizeThreshold is 0.

 The size of the boot volume is <=
NtfsLastAccessUpdatePolicyVolumeSizeThreshold in GB.

 NtfsLastAccessUpdatePolicyVolumeSizeThreshold is undefined and
(earlier than Windows 10 v2004 operating system) the size of the

266 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

Value Meaning

boot volume is <= 128GB.

On server systems, or client systems where the above conditions do not apply,
LastAccessTime updates are always disabled.

At system startup, after evaluating the above policy, NTFS will set/clear flag
0x00000001 accordingly to reflect that LastAccessTime updates are disabled/enabled.

0x80000000 Flags initialized. Indicates NTFS recognizes flags other than 0x00000001. At system
startup, if flag 0x80000000 is not set, the system will automatically set flag 0x80000000
and will additionally set flag 0x00000002 (becoming system managed) if flag
0x00000001 was set.

If the value of NtfsDisableLastAccessUpdate is controlled by group policy, then only flag 0x00000001

is recognized.

<18> Section 2.1.1.3: The following table defines the support of file time stamps across various

Windows file systems. More information can be found in section 6 of the File System Behavior
Overview document [FSBO].

Timestamp ReFS NTFS FAT EXFAT UDFS

CreationTime Stored in UTC

100 nanosecond
granularity

Stored in UTC

100 nanosecond
granularity

Stored in
local time

10
millisecond
granularity

Stored in UTC if
available, else in
local time

10 millisecond
granularity

Stored in UTC if
available, else in
local time

1 microsecond
granularity

LastAccessTime Stored in UTC

100 nanosecond
granularity

Updated at 60
minute
granularity

Stored in UTC

100 nanosecond
granularity

Updated at 60
minute
granularity

Stored in
local time

1 day
granularity

Stored in UTC if
available, else in
local time

2 second
granularity

Stored in UTC if
available, else in
local time

1 microsecond
granularity

ChangeTime Stored in UTC

100 nanosecond
granularity

Stored in UTC

100 nanosecond
granularity

Not
Supported

Not Supported Stored in UTC if
available, else in
local time

1 microsecond
granularity

LastWriteTime Stored in UTC

100 nanosecond
granularity

Stored in UTC

100 nanosecond
granularity

Stored in
local time

2 second
granularity

Stored in UTC if
available, else in
local time

10 millisecond
granularity

Stored in UTC if
available, else in
local time

1 microsecond
granularity

<19> Section 2.1.1.3: Only NTFS implements EAs.

<20> Section 2.1.1.3: Only NTFS implements EAs.

<21> Section 2.1.1.3: Only NTFS implements object IDs.

<22> Section 2.1.1.3: Only NTFS implements object IDs.

<23> Section 2.1.1.3: Only NTFS, UDFS, and ReFS implement named streams.

267 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

<24> Section 2.1.1.3: ReFS and exFAT do not implement ShortNames.

<25> Section 2.1.1.3: Only NTFS implements encryption.

<26> Section 2.1.1.4: For ReFS, there will always be exactly one link per file or directory.

<27> Section 2.1.1.4: On ReFS or exFAT, this field MUST be empty.

<28> Section 2.1.1.4: The following table defines the support of file time stamps across various
Windows file systems. More information can be found in section 6 of the File System Behavior
Overview document [FSBO].

Timestamp ReFS NTFS FAT EXFAT UDFS

CreationTime Stored in UTC

100 nanosecond
granularity

Stored in UTC

100 nanosecond
granularity

Stored in
local time

10
millisecond
granularity

Stored in UTC if
available, else in
local time

10 millisecond
granularity

Stored in UTC if
available, else in
local time

1 microsecond
granularity

LastAccessTime Stored in UTC

100 nanosecond
granularity

Updated at 60
minute
granularity

Stored in UTC

100 nanosecond
granularity

Updated at 60
minute
granularity

Stored in
local time

1 day
granularity

Stored in UTC if
available, else in
local time

2 second
granularity

Stored in UTC if
available, else in
local time

1 microsecond
granularity

ChangeTime Stored in UTC

100 nanosecond
granularity

Stored in UTC

100 nanosecond
granularity

Not
Supported

Not Supported Stored in UTC if
available, else in
local time

1 microsecond
granularity

LastWriteTime Stored in UTC

100 nanosecond
granularity

Stored in UTC

100 nanosecond
granularity

Stored in
local time

2 second
granularity

Stored in UTC if
available, else in
local time

10 millisecond
granularity

Stored in UTC if
available, else in
local time

1 microsecond
granularity

<29> Section 2.1.1.4: The following table defines the support of file time stamps across various
Windows file systems. More information can be found in section 6 of the File System Behavior
Overview document [FSBO].

Timestamp ReFS NTFS FAT EXFAT UDFS

CreationTime Stored in UTC

100 nanosecond
granularity

Stored in UTC

100 nanosecond
granularity

Stored in
local time

10
millisecond
granularity

Stored in UTC if
available, else in
local time

10 millisecond
granularity

Stored in UTC if
available, else in
local time

1 microsecond
granularity

LastAccessTime Stored in UTC

100 nanosecond
granularity

Updated at 60

Stored in UTC

100 nanosecond
granularity

Updated at 60

Stored in
local time

1 day
granularity

Stored in UTC if
available, else in
local time

2 second

Stored in UTC if
available, else in
local time

1 microsecond

268 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

Timestamp ReFS NTFS FAT EXFAT UDFS

minute
granularity

minute
granularity

granularity granularity

ChangeTime Stored in UTC

100 nanosecond
granularity

Stored in UTC

100 nanosecond
granularity

Not
Supported

Not Supported Stored in UTC if
available, else in
local time

1 microsecond
granularity

LastWriteTime Stored in UTC

100 nanosecond
granularity

Stored in UTC

100 nanosecond
granularity

Stored in
local time

2 second

granularity

Stored in UTC if
available, else in
local time

10 millisecond
granularity

Stored in UTC if
available, else in
local time

1 microsecond
granularity

<30> Section 2.1.1.4: The following table defines the support of file time stamps across various
Windows file systems. More information can be found in section 6 of the File System Behavior
Overview document [FSBO].

Timestamp ReFS NTFS FAT EXFAT UDFS

CreationTime Stored in UTC

100 nanosecond
granularity

Stored in UTC

100 nanosecond
granularity

Stored in
local time

10
millisecond
granularity

Stored in UTC if
available, else in
local time

10 millisecond
granularity

Stored in UTC if
available, else in
local time

1 microsecond
granularity

LastAccessTime Stored in UTC

100 nanosecond
granularity

Updated at 60
minute
granularity

Stored in UTC

100 nanosecond
granularity

Updated at 60
minute
granularity

Stored in
local time

1 day

granularity

Stored in UTC if
available, else in
local time

2 second
granularity

Stored in UTC if
available, else in
local time

1 microsecond
granularity

ChangeTime Stored in UTC

100 nanosecond
granularity

Stored in UTC

100 nanosecond
granularity

Not
Supported

Not Supported Stored in UTC if
available, else in
local time

1 microsecond
granularity

LastWriteTime Stored in UTC

100 nanosecond
granularity

Stored in UTC

100 nanosecond
granularity

Stored in
local time

2 second
granularity

Stored in UTC if
available, else in
local time

10 millisecond
granularity

Stored in UTC if
available, else in
local time

1 microsecond
granularity

<31> Section 2.1.1.4: In Windows Vista and later, LastAccessTime updates are disabled by default in
the ReFS and NTFS file systems. It is updated only when the file is closed. This behavior is controlled
by the following registry values (respectively):
HKLM\System\CurrentControlSet\Control\FileSystem\RefsDisableLastAccessUpdate, and
HKLM\System\CurrentControlSet\Control\FileSystem\NtfsDisableLastAccessUpdate. A value of 1

means LastAccessTime updates are disabled. Any other value (or undefined) means they are enabled.

269 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

In Windows 10 v1803 and later, NTFS has two registry values controlling LastAccessTime updates:
HKLM\System\CurrentControlSet\Control\FileSystem\NtfsDisableLastAccessUpdate and

HKLM\System\CurrentControlSet\Control\FileSystem\
NtfsLastAccessUpdatePolicyVolumeSizeThreshold. The NtfsDisableLastAccessUpdate value is now

treated as a bitfield as follows:

Value Meaning

0x00000001 Disable LastAccessTime updates.

0x00000002 System managed. Indicates that NTFS uses its own policy for updating LastAccessTime
as follows:

On client systems, LastAccessTime updates are enabled if any of the following
conditions are true:

 NtfsLastAccessUpdatePolicyVolumeSizeThreshold is 0.

 The size of the boot volume is less than or equal to
NtfsLastAccessUpdatePolicyVolumeSizeThreshold in GB.

 NtfsLastAccessUpdatePolicyVolumeSizeThreshold is undefined and
(earlier than Windows 10 v2004) the size of the boot volume is
<= 128GB.

On server systems, or client systems where the above conditions do not apply,
LastAccessTime updates are always disabled.

At system startup, after evaluating the above policy, NTFS will set/clear flag
0x00000001 accordingly to reflect that LastAccessTime updates are disabled/enabled.

0x80000000 Flags initialized. Indicates NTFS recognizes flags other than 0x00000001. At system
startup, if flag 0x80000000 is not set, the system will automatically set flag 0x80000000
and will additionally set flag 0x00000002 (becoming system managed) if flag
0x00000001 was set.

If the value of NtfsDisableLastAccessUpdate is controlled by group policy, then only flag 0x00000001
is recognized.

<32> Section 2.1.1.4: The following table defines the support of file time stamps across various
Windows file systems. More information can be found in section 6 of the File System Behavior
Overview document [FSBO].

Timestamp ReFS NTFS FAT EXFAT UDFS

CreationTime Stored in UTC

100 nanosecond
granularity

Stored in UTC

100 nanosecond
granularity

Stored in
local time

10
millisecond
granularity

Stored in UTC if
available, else in
local time

10 millisecond
granularity

Stored in UTC if
available, else in
local time

1 microsecond
granularity

LastAccessTime Stored in UTC

100 nanosecond
granularity

Updated at 60
minute
granularity

Stored in UTC

100 nanosecond
granularity

Updated at 60
minute
granularity

Stored in
local time

1 day
granularity

Stored in UTC if
available, else in
local time

2 second
granularity

Stored in UTC if
available, else in
local time

1 microsecond
granularity

ChangeTime Stored in UTC

100 nanosecond

Stored in UTC

100 nanosecond

Not
Supported

Not Supported Stored in UTC if
available, else in

270 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

Timestamp ReFS NTFS FAT EXFAT UDFS

granularity

granularity local time

1 microsecond
granularity

LastWriteTime Stored in UTC

100 nanosecond
granularity

Stored in UTC

100 nanosecond
granularity

Stored in
local time

2 second
granularity

Stored in UTC if
available, else in
local time

10 millisecond
granularity

Stored in UTC if
available, else in
local time

1 microsecond
granularity

<33> Section 2.1.1.4: Only NTFS implements EAs.

<34> Section 2.1.1.5: Only NTFS supports view index streams.

<35> Section 2.1.1.5: Only NTFS supports compression.

<36> Section 2.1.1.5: Only ReFS supports integrity.

<37> Section 2.1.1.5: Only ReFS supports integrity.

<38> Section 2.1.1.5: Only NTFS, ReFS, and UDFS support sparse files.

<39> Section 2.1.1.5: Only NTFS supports encryption.

<40> Section 2.1.1.6: Only NTFS implements EAs.

<41> Section 2.1.4.11: NTFS sets RecordLength to
BlockAlign(FieldOffset(USN_RECORD_V2.FileName) + FileNameLength, 8). ReFS sets RecordLength to
BlockAlign(FieldOffset(USN_RECORD_V3.FileName) + FileNameLength, 8).

<42> Section 2.1.4.12: Windows 2000 through Windows Server 2008 R2 do not perform any of the

following checks because PARENT_OBJECT is never set in the Flags field so you will always take the
ELSE statement to the SWITCH statement.

Windows 8 and Windows Server 2012 will perform the following checks before the Switch(Operation)
statement:

 If Flags contains PARENT_OBJECT:

 If Operation is OPEN, as specified in section 2.1.5.1, or

Operation is FLUSH_DATA, as specified in section 2.1.5.6, or

Operation is CLOSE, as specified in section 2.1.5.4, or

Operation is FS_CONTROL, as specified in section 2.1.5.9, and OpParams.ControlCode is
FSCTL_SET_ENCRYPTION, or

Operation is SET_INFORMATION, as specified in section 2.1.5.14, and
OpParams.FileInformationClass is one of FileBasicInformation or FileAllocationInformation
or FileEndOfFileInformation or FileRenameInformation or FileLinkInformation or
FileShortNameInformation or FileValidDataLengthInformation.

 Set BreakCacheState to (READ_CACHING|WRITE_CACHING).

 Else:

 Switch (Operation):

271 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

<43> Section 2.1.4.17: File systems may choose to defer processing for a file that has been modified
to a later time, favoring performance over accuracy. The NTFS file system on versions earlier than

Windows 10 v1809 operating system and non-NTFS file systems on all versions of Windows, defer this
processing until the Open gets closed.

<44> Section 2.1.4.19: File systems may choose to defer processing for a file that has been accessed
to a later time, favoring performance over accuracy. The NTFS file system on versions earlier than
Windows 10 v1809 and non-NTFS file systems on all versions of Windows, defer this processing until
the Open gets closed.

<45> Section 2.1.5.1: NTFS and ReFS recognize the following complex name suffixes:

 ":$I30"

 "::$INDEX_ALLOCATION"

 ":$I30:$INDEX_ALLOCATION"

 "::$BITMAP"

 ":$I30:$BITMAP"

 "::$ATTRIBUTE_LIST"

 "::$REPARSE_POINT"

Other Windows file systems do not recognize any complex name suffixes.

<46> Section 2.1.5.1: NTFS and ReFS recognize the following stream type names:

 "$STANDARD_INFORMATION"

 "$ATTRIBUTE_LIST"

 "$FILE_NAME"

 "$OBJECT_ID"

 "$SECURITY_DESCRIPTOR"

 "$VOLUME_NAME"

 "$VOLUME_INFORMATION"

 "$DATA"

 "$INDEX_ROOT"

 "$INDEX_ALLOCATION"

 "$BITMAP"

 "$REPARSE_POINT"

 "$EA_INFORMATION"

 "$EA"

 "$LOGGED_UTILITY_STREAM"

Other Windows file systems do not recognize any stream type names.

272 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

<47> Section 2.1.5.1: Only the NTFS and ReFS file systems support complex name suffixes and
StreamTypeNames. File systems that do not support this return STATUS_OBJECT_NAME_INVALID.

<48> Section 2.1.5.1.1: For the NTFS file system, the FileId128 consists of a 48-bit index into the
MFT (the low 48 bits) and a 16-bit sequence number (the next higher 16 bits), with the high 64 bits

unused and always equal to 0. For the ReFS file system, the FileId128 consists of a 64-bit index
uniquely identifying the file's parent directory on the volume (the low 64 bits) and a 64-bit index
uniquely identifying the file within that directory (the high 64 bits).

<49> Section 2.1.5.1.1: For the NTFS file system this is the index and sequence number portions (low
64 bits) of the FileId128. The ReFS file system maps a subset of the possible FileId128 values to
FileId64 values using a reversible compression algorithm; for values outside of this subset, ReFS sets
the FileId64 to -1.

<50> Section 2.1.5.1.1: For the NTFS file system, this is the index portion (low 48 bits) of the
FileId128. The ReFS file system does not implement this field.

<51> Section 2.1.5.1.1: Only ReFS supports FILE_ATTRIBUTE_INTEGRITY_STREAM.

<52> Section 2.1.5.1.1: Only NTFS and ReFS support FILE_ATTRIBUTE_NO_SCRUB_DATA.

<53> Section 2.1.5.1.1: Only NTFS and UDFS implement named streams.

<54> Section 2.1.5.1.1: The ReFS filesystem limits a named stream size to 128KB. If the Create

operation for a new named stream specifies a larger size, ReFS fails the Create operation with
STATUS_FILE_SYSTEM_LIMITATION.

<55> Section 2.1.5.1.2: Windows 2000, Windows XP, Windows Server 2003, and Windows Vista,
treat the FILE_DISALLOW_EXCLUSIVE option as always being FALSE.

<56> Section 2.1.5.6.1: This is implemented only by the NTFS file system.

<57> Section 2.1.5.6.1: This directory is only available on NTFS volumes formatted to NTFS version
3.0 or late.

<58> Section 2.1.5.6.1: "*" is treated as 0x0000002A during the search, and it gives the practical
behavior of a wildcard since an ObjectId starts with a much larger value. Similarly, "?" is treated as
0x0000003F and so practically it behaves like "*".

<59> Section 2.1.5.6.2: This is implemented only by the NTFS file system. This is not implemented
on the FAT32 file system and STATUS_INVALID_PARAMETER will be returned.

<60> Section 2.1.5.6.2: This directory is only available on NTFS volumes formatted to NTFS version
3.x.

<61> Section 2.1.5.6.3: Windows Vista operating system with Service Pack 1 (SP1), Windows Server
2008, Windows 7, and Windows Server 2008 R2 execute this portion only when FirstQuery is TRUE;
the remaining conditions are ignored. This means the query pattern for a given Open cannot be
changed once it is set.

<62> Section 2.1.5.6.3.1: For file systems that don’t support Extended Attributes, this value MUST be
zero.

<63> Section 2.1.5.6.3.3: For file systems that don’t support Extended Attributes, this value MUST be
zero.

<64> Section 2.1.5.6.3.4: For file systems that don’t support Extended Attributes, this value MUST
be zero.

273 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

<65> Section 2.1.5.6.3.4: The NTFS file system on versions earlier than Windows 11 and earlier than
Windows Server 2022, and non-NTFS file systems on all versions of Windows, always set the FileID

field to zero in the ".." entry.

<66> Section 2.1.5.6.3.5: For file systems that don’t support Extended Attributes, this value MUST

be zero.

<67> Section 2.1.5.6.3.5: The NTFS file system on versions earlier than Windows 11 and earlier than
Windows Server 2022, and non-NTFS file systems on all versions of Windows, always set the FileID
field to zero in the ".." entry.

<68> Section 2.1.5.6.3.6: For file systems that don’t support Extended Attributes, this value MUST
be zero.

<69> Section 2.1.5.6.3.6: The NTFS file system on versions earlier than Windows 11 and earlier than

Windows Server 2022, and non-NTFS file systems on all versions of Windows, always set the FileID
field to zero in the ".." entry.

<70> Section 2.1.5.6.3.6: The NTFS file system on versions earlier than Windows 11 and earlier than
Windows Server 2022, and non-NTFS file systems on all versions of Windows, always set the FileID
field to zero in the ".." entry.

<71> Section 2.1.5.6.3.7: For file systems that don’t support Extended Attributes, this value MUST

be zero.

<72> Section 2.1.5.6.3.7: The NTFS file system on versions earlier than Windows 11 and earlier than
Windows Server 2022, and non-NTFS file systems on all versions of Windows, always set the FileID
field to zero in the ".." entry.

<73> Section 2.1.5.6.3.7: The NTFS file system on versions earlier than Windows 11 and earlier than
Windows Server 2022, and non-NTFS file systems on all versions of Windows, always set the FileID
field to zero in the ".." entry.

<74> Section 2.1.5.6.3.8: For file systems that don’t support Extended Attributes, this value MUST be

zero.

<75> Section 2.1.5.6.3.8: The NTFS file system on versions earlier than Windows 11 and earlier than
Windows Server 2022, and non-NTFS file systems on all versions of Windows, always set the FileID
field to zero in the ".." entry.

<76> Section 2.1.5.6.3.9: For file systems that don’t support Extended Attributes, this value MUST be
zero.

<77> Section 2.1.5.6.3.9: The NTFS file system on versions earlier than Windows 11 and earlier than
Windows Server 2022, and non-NTFS file systems on all versions of Windows, always set the FileID
field to zero in the ".." entry.

<78> Section 2.1.5.6.3.10: For file systems that don’t support Extended Attributes, this value MUST
be zero.

<79> Section 2.1.5.6.3.10: The NTFS file system on versions earlier than Windows 11 and earlier

than Windows Server 2022, and non-NTFS file systems on all versions of Windows, always set the
FileID field to zero in the ".." entry.

<80> Section 2.1.5.7: This is only implemented by the NTFS file system. Other file systems return
STATUS_SUCCESS and perform no other action.

<81> Section 2.1.5.8: In Windows 2000, Windows XP, Windows Server 2003, Windows Vista,
Windows Server 2008, Windows 7, and Windows Server 2008 R2, NTFS checks for an oplock break
even when (FileOffset >= Open.Stream.AllocationSize).

274 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

<82> Section 2.1.5.10.1: This is only implemented by the NTFS file system.

<83> Section 2.1.5.10.1: If the generated ObjectId collides with existing ObjectIds on the volume,
Windows retries up to 16 times before failing the operation with STATUS_DUPLICATE_NAME.

<84> Section 2.1.5.10.1: The file system only updates LastChangeTime if no user has explicitly set

LastChangeTime. The NTFS and ReFS file systems defer setting LastChangeTime until the handle is
closed.

<85> Section 2.1.5.10.2: This is only implemented by the NTFS file system.

<86> Section 2.1.5.10.2: The file system only updates LastChangeTime if no user has explicitly set
LastChangeTime. The NTFS and ReFS file systems defer setting LastChangeTime until the handle is
closed.

<87> Section 2.1.5.10.3: This is only implemented by the NTFS file system.

<88> Section 2.1.5.10.3: The file system only updates LastChangeTime if no user has explicitly set

LastChangeTime. The NTFS and ReFS file systems defer setting LastChangeTime until the handle is
closed.

<89> Section 2.1.5.10.4: FSCTL_DUPLICATE_EXTENTS_TO_FILE is only supported by the ReFS file
system in Windows 10 and later, Windows Server 2016 and later.

<90> Section 2.1.5.10.4: Windows returns STATUS_INVALID_HANDLE if the source file handle is

closed.

<91> Section 2.1.5.10.4: The ReFS file system in Windows Server 2016 and later does not check for
byte range lock conflicts on Open.Stream.

<92> Section 2.1.5.10.4: The ReFS file system in Windows Server 2016 and later does not check for
byte range lock conflicts on Source.

<93> Section 2.1.5.10.5: FSCTL_DUPLICATE_EXTENTS_TO_FILE_EX is only supported by the ReFS

file system in Windows 10 v1803 and later, Windows Server v1803 operating system and later and

Windows Server 2019 and later.

<94> Section 2.1.5.10.5: Windows returns STATUS_INVALID_HANDLE if the source file handle is
closed.

<95> Section 2.1.5.10.5: The ReFS file system in Windows 10 v1803 and Windows Server v1803
does not check for byte range lock conflicts on Open.Stream.

<96> Section 2.1.5.10.5: The ReFS file system in Windows 10 v1803 and Windows Server v1803
does not check for byte range lock conflicts on Source.

<97> Section 2.1.5.10.6: If the Open is a directory on a Cluster Shared Volume File System (CSVFS),
the operation MUST be failed with STATUS_NOT_IMPLEMENTED.

<98> Section 2.1.5.10.7: This is only implemented by the ReFS, NTFS, FAT, FAT32, and exFAT file
systems.

<99> Section 2.1.5.10.7: The NTFS file system sets an NTFS_STATISTICS structure as specified in
[MS-FSCC] section 2.3.12.2. The FAT file system sets a FAT_STATISTICS structure as specified in

[MS-FSCC] section 2.3.12.3. The EXFAT file system sets a EXFAT_STATISTICS structure as specified in
[MS-FSCC] section 2.3.12.4.

<100> Section 2.1.5.10.8: This is only implemented by the NTFS file system.

<101> Section 2.1.5.10.8: Some file systems have more efficient mechanisms to obtain a list of files.
For instance, NTFS iterates through all base file records of the MFT.

275 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

<102> Section 2.1.5.10.9: This is only implemented by the NTFS and ReFS file systems.

<103> Section 2.1.5.10.10: This operation is only implemented by the ReFS file system.

<104> Section 2.1.5.10.11: This is only implemented by the NTFS file system.

<105> Section 2.1.5.10.11: Several of the fields being set in this section are specific to how the NTFS

file system is implemented and are not defined in the Object Stores Abstract Data Model.

<106> Section 2.1.5.10.13: This is only implemented by the NTFS file system.

<107> Section 2.1.5.10.14: This is only implemented by the ReFS and NTFS file systems.

<108> Section 2.1.5.10.16: Only ReFS supports this FSCTL.

<109> Section 2.1.5.10.19: This operation is only supported on the NTFS and ReFS file systems. This
feature is supported in Windows Server 2019 and later.

<110> Section 2.1.5.10.19: The ReFS file system returns STATUS_INVALID_PARAMETER for directory

files.

<111> Section 2.1.5.10.19: Only the NTFS file system supports the concept of resident files, and it is
an implementation-specific concept to a given file system.

<112> Section 2.1.5.10.20: This is implemented only by the NTFS file system.

<113> Section 2.1.5.10.21: This is implemented only by the NTFS file system.

<114> Section 2.1.5.10.22: This is only implemented by the ReFS and NTFS file systems.

<115> Section 2.1.5.10.23: Support for this FSCTL is only implemented in the FAT file system. The
data returned by this FSCTL is incomplete and incorrect on FAT32, and it is unsupported on all other
file systems, as specified in [MS-FSCC] section 2.3.57.

<116> Section 2.1.5.10.24: This operation is only supported by the NTFS and ReFS file systems.

<117> Section 2.1.5.10.24: In Windows Server 2012 R2, InputRegion.DesiredUsage is set to
FILE_REGION_USAGE_VALID_CACHED_DATA for ReFS.

<118> Section 2.1.5.10.25: This is only implemented by the UDFS file system.

<119> Section 2.1.5.10.26: This is only implemented by the UDFS file system.

<120> Section 2.1.5.10.27: This is only implemented by the ReFS and NTFS file systems.

<121> Section 2.1.5.10.27: In Windows 2000, Windows XP, Windows Server 2003, Windows Vista,
Windows Server 2008, Windows 7, Windows Server 2008 R2, Windows 8, and Windows Server 2012,
NTFS uses a MaxMajorVersionSupported value of 2.

<122> Section 2.1.5.10.27: In Windows 2000, Windows XP, Windows Server 2003, Windows Vista,
Windows Server 2008, Windows 7 and Windows Server 2008 R2, NTFS ignores the input buffer

completely; all requests are treated as having an InputBufferSize of 0.

<123> Section 2.1.5.10.27: In Windows 8 and Windows Server 2012, the operation MUST be failed
with STATUS_NOT_IMPLEMENTED.

<124> Section 2.1.5.10.28: This file system request is handled by the optional hierarchical storage
management (HSM) file system filter. This filter has been deprecated as of Windows Server 2008 and
is a server-only feature.

<125> Section 2.1.5.10.29.2: On Microsoft Windows the query can include asterisks to match spans
of zero or more characters. No other special matching characters are supported.

276 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

<126> Section 2.1.5.10.29.4: REFS_STREAM_SNAPSHOT_OPERATION_REVERT is not supported
on Windows and returns STATUS_NOT_IMPLEMENTED.

<127> Section 2.1.5.10.29.5: REFS_STREAM_SNAPSHOT_OPERATION_SET_SHADOW_BTREE
is not supported on Windows and returns STATUS_NOT_IMPLEMENTED.

<128> Section 2.1.5.10.29.6:
REFS_STREAM_SNAPSHOT_OPERATION_CLEAR_SHADOW_BTREE is not supported on Windows
and returns STATUS_NOT_IMPLEMENTED.

<129> Section 2.1.5.10.30: If the Open is a directory on a Cluster Shared Volume File System
(CSVFS), the operation MUST be failed with STATUS_NOT_IMPLEMENTED.

<130> Section 2.1.5.10.30: This method is fully supported with NTFS, but for ReFS, it is only
supported and returns STATUS_SUCCESS when CompressionState is set to

COMPRESSION_FORMAT_NONE. The method fails with STATUS_NOT_SUPPORTED for any other value
of CompressionState.

<131> Section 2.1.5.10.30: NTFS File Compression can be disabled globally on a system by setting
the registry key HKLM\SYSTEM\CurrentControlSet\Control\FileSystem\NtfsDisableCompression to 1
and then rebooting the system to have the change take effect. Compression can be re-enabled by
setting this key to zero and rebooting the system.

<132> Section 2.1.5.10.31: This is only implemented by the UDFS file system on media types that
require software defect management.

<133> Section 2.1.5.10.32: This is implemented by the NTFS file system and the FAT32 file systems
on Windows 10 v1511 operating system and later and Windows Server 2016 and later.

<134> Section 2.1.5.10.33: Only ReFS supports integrity.

<135> Section 2.1.5.10.33: If the Open is a directory on a Cluster Shared Volume File System
(CSVFS), the operation MUST be failed with STATUS_NOT_IMPLEMENTED.

<136> Section 2.1.5.10.33: This is implemented only by the ReFS file system.

<137> Section 2.1.5.10.34: The FSCTL_SET_INTEGRITY_INFORMATION_EX operation is only
supported by the ReFS file system v3.2 or higher (Windows 10 v1507 operating system or later).
FSCTL_SET_INTEGRITY_INFORMATION_EX is handled following the process in this section on systems
updated with [MSKB-5014019], [MSKB-5014021], [MSKB-5014022], [MSKB-5014023], [MSKB-
5014702], or [MSKB-5014710].

<138> Section 2.1.5.10.34: If the Open is a directory on a Cluster Shared Volume File System

(CSVFS), the operation MUST be failed with STATUS_NOT_IMPLEMENTED.

<139> Section 2.1.5.10.34: This is implemented only by the ReFS file system.

<140> Section 2.1.5.10.34: If the ReFS cluster size is 4KB the checksum used is CRC32 otherwise if
the cluster size is 64K the CRC64 checksum is used.

<141> Section 2.1.5.10.34: If the ReFS cluster size is 4KB the checksum used is CRC32 otherwise if
the cluster size is 64K the CRC64 checksum is used.

<142> Section 2.1.5.10.35: This is only implemented by the NTFS file system.

<143> Section 2.1.5.10.35: The file system only updates LastChangeTime if no user has explicitly
set LastChangeTime. The NTFS and ReFS file systems defer setting LastChangeTime until the
handle is closed.

<144> Section 2.1.5.10.36: This is only implemented by the NTFS file system.

https://go.microsoft.com/fwlink/?linkid=2194206
https://go.microsoft.com/fwlink/?linkid=2193970
https://go.microsoft.com/fwlink/?linkid=2194302
https://go.microsoft.com/fwlink/?linkid=2194303
https://go.microsoft.com/fwlink/?linkid=2195314
https://go.microsoft.com/fwlink/?linkid=2195314
https://go.microsoft.com/fwlink/?linkid=2195315

277 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

<145> Section 2.1.5.10.36: The file system only updates LastChangeTime if no user has explicitly set
LastChangeTime. The NTFS and ReFS file systems defer setting the LastChangeTime until the handle

is closed.

<146> Section 2.1.5.10.37: This is only implemented by the ReFS and NTFS file systems. The FAT32

file system will return STATUS_IO_REPARSE_DATA_INVALID.

<147> Section 2.1.5.10.37: The file system only updates LastChangeTime if no user has explicitly set
LastChangeTime. The NTFS and ReFS file systems defer setting the LastChangeTime until the handle
is closed.

<148> Section 2.1.5.10.38: If the Open is a directory on a Cluster Shared Volume File System
(CSVFS), the operation MUST be failed with STATUS_NOT_IMPLEMENTED.

<149> Section 2.1.5.10.38: This is only implemented by the NTFS file system and by the ReFS file

system on non-integrity streams. In Windows 8.1 and later, ReFS supports this for both conventional
and integrity streams.

<150> Section 2.1.5.10.39: If the Open is a directory on a Cluster Shared Volume File System
(CSVFS), the operation MUST be failed with STATUS_NOT_IMPLEMENTED.

<151> Section 2.1.5.10.39: This is only implemented by the NTFS file system and by the ReFS file
system on non-integrity streams. In Windows 8.1 and later, ReFS supports this for both conventional

and integrity streams.

<152> Section 2.1.5.10.40: This is only implemented by the NTFS file system and FAT32 file system
on Windows 10 v1511 and later and Windows Server 2016 and later.

<153> Section 2.1.5.10.41: Single Instance Storage is an optional feature available in the following
versions of Windows Server: Windows Storage Server 2003 R2 operating system, Standard Edition,
Windows Storage Server 2008, and Windows Storage Server 2008 R2. Single Instance Storage is not
supported directly by any of the Windows file systems but is implemented as a file system filter.

<154> Section 2.1.5.10.41: This is implemented only by the NTFS file system. The FAT32 file system

will return STATUS_NOT_SUPPORTED.

<155> Section 2.1.5.10.41: In the Windows environment file system are implemented in kernel
mode. If a NULL security context is specified and the originator of the operation is running in kernel
mode, a built-in SYSTEM security context is used that grants all access.

<156> Section 2.1.5.10.41: In the Windows environment file system are implemented in kernel
mode. If a NULL security context is specified and the originator of the operation is running in kernel

mode, a built-in SYSTEM security context is used that grants all access.

<157> Section 2.1.5.10.41: In the Windows environment this is done by creating a new file in what is
known as the "SIS Common Store". Reparse points are attached to any file controlled by Single
Instance Storage that contains information on how to access the Common Store file that contains the
data for this file.

<158> Section 2.1.5.10.42: This is only implemented by the NTFS file system.

<159> Section 2.1.5.12.5: Only ReFS supports integrity.

<160> Section 2.1.5.12.5: Only ReFS supports integrity.

<161> Section 2.1.5.12.6: Only ReFS supports integrity.

<162> Section 2.1.5.12.6: Only ReFS supports integrity.

<163> Section 2.1.5.12.8: The FAT32 file system doesn’t support
FILE_COMPRESSION_INFORMATION and will return STATUS_INVALID_PARAMETER.

278 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

<164> Section 2.1.5.12.10: Only the NTFS file system implements EAs.

<165> Section 2.1.5.12.12: This operation is only supported by the NTFS file system.

<166> Section 2.1.5.12.21: Available only in ReFS.

<167> Section 2.1.5.12.21: Available only in ReFS.

<168> Section 2.1.5.12.23: If Open.Mode contains neither FILE_SYNCHRONOUS_IO_ALERT nor
FILE_SYNCHRONOUS_IO_NONALERT, this operation does not return meaningful information in
OutputBuffer.CurrentByteOffset, because Open.CurrentByteOffset is not maintained for any
Open that does not have either of those flags set.

<169> Section 2.1.5.12.27: This algorithm is only implemented by NTFS and ReFS. The FAT, EXFAT,
CDFS, and UDFS file systems always return 1.

<170> Section 2.1.5.12.29: The FAT32 file system doesn’t support FILE_STREAM_INFORMATION and

will return STATUS_INVALID_PARAMETER.

<171> Section 2.1.5.13.5: The following table defines what FileSystemAttributes flags, as defined in
[MS-FSCC] section 2.5.1, are set by various Windows file systems and why they are set:

 ReFS NTFS FAT EXFAT UDFS CDFS

FILE_SUPPORTS_USN_JOURNAL

0x02000000

Always
Set

Set if 3.0
format or
higher
volume

FILE_SUPPORTS_OPEN_BY_FILE_ID

0x01000000

Always
Set

Always
Set

 Set if
volume
mounted
read-
only

Always
Set

FILE_SUPPORTS_EXTENDED_ATTRIBUTES

0x00800000

 Always
Set

FILE_SUPPORTS_HARD_LINKS

0x00400000

Set if 3.5
format or
higher
volume
(formatted
using
Windows
Server
2022 or
later)

Always
Set

 Always
Set

FILE_SUPPORTS_TRANSACTIONS

0x00200000

 Set if 3.0

format or
higher
volume

FILE_SEQUENTIAL_WRITE_ONCE

0x00100000

 Set if
volume
not
mounted
read-
only

FILE_READ_ONLY_VOLUME Set if
volume

Set if
volume

Set if
volume

Set if
volume

Set if
volume

Always
Set

279 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

 ReFS NTFS FAT EXFAT UDFS CDFS

0x00080000 mounted
read-only

mounted
read-only

mounted
read-
only

mounted
read-
only

mounted
read-
only

FILE_NAMED_STREAMS

0x00040000

 Always
Set

 Set if
2.0
format
or
higher

FILE_SUPPORTS_ENCRYPTION

0x00020000

 Set if 3.0
format or
higher

volume
and
encryption
is enabled
on the
system

FILE_SUPPORTS_OBJECT_IDS

0x00010000

 Set if 3.0
format or
higher
volume

FILE_VOLUME_IS_COMPRESSED

0x00008000

FILE_SUPPORTS_REMOTE_STORAGE

0x00000100

FILE_SUPPORTS_REPARSE_POINTS

0x00000080

Always
Set

Set if 3.0
format or
higher
volume

FILE_SUPPORTS_SPARSE_FILES

0x00000040

 Set if 3.0
format or
higher
volume

FILE_VOLUME_QUOTAS

0x00000020

 Set if 3.0
format or
higher
volume

FILE_FILE_COMPRESSION

0x00000010

 Set if
volume
cluster
size is 4K

or less

FILE_PERSISTENT_ACLS

0x00000008

Always
Set

Always
Set

FILE_UNICODE_ON_DISK

0x00000004

Always
Set

Always
Set

Always
Set

Always
Set

Always
Set

Set if
Joliet
Format

FILE_CASE_PRESERVED_NAMES

0x00000002

Always
Set

Always
Set

Always
Set

Always
Set

Always
Set

280 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

 ReFS NTFS FAT EXFAT UDFS CDFS

FILE_CASE_SENSITIVE_SEARCH

0x00000001

Always
Set

Always
Set

 Always
Set

Always
Set

<172> Section 2.1.5.13.5: The following table defines the MaximumComponentNameLength, as
defined in [MS-FSCC] section 2.5.1, that is set by each file system:

 ReFS NTFS FAT EXFAT UDFS CDFS

MaximumComponentNameLength Value 255 255 255 255 254 110 if Joliet Format

221 otherwise

<173> Section 2.1.5.13.6: This is implemented only by the NTFS file system.

<174> Section 2.1.5.13.8: ReFS does not implement object IDs.

<175> Section 2.1.5.13.8: This is implemented only by the NTFS file system.

<176> Section 2.1.5.14: The FAT32 file system will return ACCESS_DENIED.

<177> Section 2.1.5.15.1: The following table describes the maximum file size supported by various
Windows File Systems.

 ReFS NTFS FAT EXFAT UDFS CDFS

MaximumFileSize ((2^32)-1) *
ClusterSize

16 TB for Windows 2000, Windows XP,
Windows Server 2003, Windows Vista,
Windows Server 2008, Windows 7, and
Windows Server 2008 R2

(((2^32)-1) * ClusterSize) for Windows
8 and Windows Server 2012

(((2^32) * ClusterSize) - 64K) for
Windows 8.1 and later and Windows
Server 2012 R2 and later

The physical format will support 16
exabytes.

4
GB

16
exabytes

8 TB 8 TB

<178> Section 2.1.5.15.1: The FAT, FAT32, exFAT, and UDFS file systems instead set NewFileSize to
min(Open.Stream.Size, InputBuffer.AllocationSize).

<179> Section 2.1.5.15.2: The FAT32 file system doesn’t process the ChangeTime field.

<180> Section 2.1.5.15.4: The FAT32 file system will return STATUS_DISK_FULL if the object size is
greater than 2^32 – 1 bytes.

<181> Section 2.1.5.15.4: The following table describes the maximum file size supported by various
Windows File Systems.

 ReFS NTFS FAT EXFAT UDFS CDFS

MaximumFileSize ((2^32)-1) * 16 TB for Windows 2000, Windows XP,
Windows Server 2003, Windows Vista,

4 16 8 TB 8 TB

281 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

 ReFS NTFS FAT EXFAT UDFS CDFS

ClusterSize Windows Server 2008, Windows 7, and
Windows Server 2008 R2

(((2^32)-1) * ClusterSize) for Windows
8 and Windows Server 2012

(((2^32) * ClusterSize) - 64K) for
Windows 8.1 and later and Windows
Server 2012 R2 and later

The physical format will support 16
exabytes.

GB exabytes

<182> Section 2.1.5.15.5: Only NTFS implements EAs.

<183> Section 2.1.5.15.6: In Windows 11 version 1 and earlier and Windows Server 2022 and earlier,

the destination directory of a FileLinkInformation operation is opened with ShareAccess equal to

FILE_SHARE_READ|FILE_SHARE_WRITE. If there is a pre-existing handle with FILE_SHARE_DELETE
access on the destination directory, this will result in the operation failing with
STATUS_SHARING_VIOLATION.

<184> Section 2.1.5.15.9: If Open.Mode contains neither FILE_SYNCHRONOUS_IO_ALERT nor
FILE_SYNCHRONOUS_IO_NONALERT, this operation does not have any meaningful effect, because
Open.CurrentByteOffset is not used for any Open that does not have either of those flags set.

<185> Section 2.1.5.15.11: In Windows 11 version 1 and earlier and Windows Server 2022 and
earlier, the destination directory of a FileRenameInformation operation is opened with ShareAccess
equal to FILE_SHARE_READ|FILE_SHARE_WRITE. If there is a pre-existing handle with
FILE_SHARE_DELETE access on the destination directory this will result in the operation failing with
STATUS_SHARING_VIOLATION.

<186> Section 2.1.5.15.11: On Windows NTFS, NTFS checks for open files beneath the directory

being renamed (performs section 2.1.4.2), it records the count of open files. If there is a lease to

break, NTFS requests the break and then goes back to the start of performing 2.1.5.15.11. NTFS waits
for the lease break acknowledgment and restarts the rename operation. When NTFS performs section
2.1.4.2 again, it again records how many open files there are beneath the directory and compares that
to the previous count. If the current count is greater than or equal to the previous count, NTFS fails
the rename and prevents a possible race condition.

<187> Section 2.1.5.15.11: The file system only updates LastChangeTime if no user has explicitly

set LastChangeTime. The NTFS and ReFS file systems defer setting LastChangeTime until the
handle is closed.

<188> Section 2.1.5.15.13: ReFS does not implement short names.

<189> Section 2.1.5.15.14: ValidDataLength is an internal implementation detail of the NTFS, FAT,
FAT32, ExFAT, and the ReFS file system. It is not a notion that exists in other Windows file systems.
ValidDataLength refers to a high-watermark in the file that is considered to be initialized data by a

user writing in the region or by the file system writing zeros. Any reads within that value are required

to return data from the persistent store. Any reads beyond that value are required to return zeros. On
the NTFS and ReFS file systems, when committing the file to media the value for ValidataLength is
retained. The FAT, FAT32, and ExFAT file systems do not retain the value of ValidDataLength.
FSCTL_QUERY_FILE_REGIONS, as specified in section 2.1.5.10.24, can be used to retrieve the value
of ValidDataLength from the media but this FSCTL is only supported on NTFS and ReFS.

<190> Section 2.1.5.16.6: This is implemented only by the NTFS file system.

<191> Section 2.1.5.16.8: Only NTFS implements object IDs.

282 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

<192> Section 2.1.5.16.8: This is only implemented by the NTFS file system.

<193> Section 2.1.5.17: The FAT32 file system will return ACCESS_DENIED.

<194> Section 2.1.5.17: The file system only updates LastChangeTime if no user has explicitly set
LastChangeTime. The NTFS and ReFS file systems defer setting LastChangeTime until the handle is

closed.

<195> Section 2.1.5.18: In Windows 2000, Windows XP, Windows Server 2003, Windows Vista,
Windows Server 2008, Windows 7, and Windows Server 2008 R2, NTFS does not grant the oplock
even when Open.Stream.AllocationSize is greater than any ByteRangeLock.LockOffset in
Open.Stream.ByteRangeLockList.

<196> Section 2.1.5.18: In Windows 2000, Windows XP, Windows Server 2003, Windows Vista,
Windows Server 2008, Windows 7, and Windows Server 2008 R2, NTFS does not grant the oplock

even when Open.Stream.AllocationSize is greater than any ByteRangeLock.LockOffset in
Open.Stream.ByteRangeLockList.

<197> Section 2.1.5.20: In Windows file systems, operations are only cancelable if they are blocked
and put on a wait queue of some kind. Operations that are actively being processed are not
cancelable.

<198> Section 2.1.5.21: The name of the quota file in the Windows environment is:

$Extend\$Quota:$Q:$INDEX_ALLOCATION

Opening the quota stream is only supported when the share is defined at the root of the volume.

<199> Section 2.1.5.21: This operation is implemented only by the NTFS file system.

<200> Section 2.1.5.22: The name of the quota file in the Windows environment is:

$Extend\$Quota:$Q:$INDEX_ALLOCATION

<201> Section 2.1.5.22: This operation is only implemented by the NTFS file system.

283 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

6 Change Tracking

No table of changes is available. The document is either new or has had no changes since its last
release.

284 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

7 Index

A

Abstract data model
 ByteRangeLock 23
 CancelableOperations 25
 ChangeNotifyEntry 23
 file 17
 link 19
 NotifyEventEntry 23
 open 21
 Oplock 23
 overview 13
 RHOpContext 25
 SecurityContext 25
 stream 20
 TunnelCacheEntry 17
 volume 13
Algorithms - common
 AccessCheck 50
 BlockAlign 29
 BlockAlignTruncate 29
 BuildRelativeName 51
 ClustersFromBytes 30

 ClustersFromBytesTruncate 30
 directory change report 26
 FileName in an expression - determining 28
 FindAllFiles 52
 open files - detecting 27
 Oplock break - checking 32
 overview 26
 range access conflict with byte-range locks -

determining 31
 shared Oplock - recomputing state 49
 SidLength 30
 USN change for a file - posting 32
 wildcard - determining 28
Applicability 12

C

Capability negotiation 12
Change tracking 283
Common algorithms
 AccessCheck 50
 BlockAlign 29
 BlockAlignTruncate 29
 BuildRelativeName 51
 ClustersFromBytes 30
 ClustersFromBytesTruncate 30
 directory change report 26
 FileName in an expression - determining 28
 FindAllFiles 52
 open files - detecting 27
 Oplock break - checking 32
 overview 26
 range access conflict with byte-range locks -

determining 31
 shared Oplock - recomputing state 49
 SidLength 30
 USN change for a file - posting 32
 wildcard - determining 28

D

Data model - abstract
 ByteRangeLock 23
 CancelableOperations 25
 ChangeNotifyEntry 23
 file 17
 link 19
 NotifyEventEntry 23
 open 21
 Oplock 23
 overview 13
 RHOpContext 25
 SecurityContext 25
 stream 20
 TunnelCacheEntry 17
 volume 13

E

Examples
 overview 260
Examples - overview 260

F

Fields - vendor-extensible 12

G

Glossary 9

H

Higher-layer triggered events
 byte-range
 lock 106
 unlock 108
 cached data - flushing 106
 closing an open 83
 directory
 change notifications 177
 querying 88
 file
 information

 query 178
 setting 204
 open 54
 system information
 query 191
 setting 233
 FsControl request 109
 operation - canceling 255
 Oplock 236
 Oplock break 248
 overview 54
 quota information
 querying 256
 setting 258
 read 78
 security information
 query 199

285 / 285

[MS-FSA] - v20240916
File System Algorithms
Copyright © 2024 Microsoft Corporation
Release: September 16, 2024

 setting 235
 write 80

I

Implementer - security considerations 261
Index of security parameters 261
Informative references 11
Initialization 26
Introduction 9

N

Normative references 10

O

Overview (synopsis) 11

P

Parameters - security index 261
Product behavior 262

R

References
 informative 11
 normative 10
Relationship to other protocols 11

S

Security

 implementer considerations 261
 parameter index 261
Standards assignments 12

T

Timers 25
Tracking changes 283
Triggered events
 byte-range
 lock 106
 unlock 108
 cached data - flushing 106
 closing an open 83
 directory
 change notifications 177
 querying 88
 file
 information
 query 178
 setting 204
 open 54
 system information
 query 191
 setting 233
 FsControl request 109
 operation - canceling 255
 Oplock 236
 Oplock break 248
 overview 54

 quota information
 querying 256
 setting 258
 read 78
 security information
 query 199
 setting 235
 write 80

V

Vendor-extensible fields 12
Versioning 12

	1 Introduction
	1.1 Glossary
	1.2 References
	1.2.1 Normative References
	1.2.2 Informative References

	1.3 Overview
	1.4 Relationship to Other Protocols
	1.5 Applicability Statement
	1.6 Standards Assignments
	1.7 Versioning and Capability Negotiation
	1.8 Vendor-Extensible Fields

	2 Algorithm Details
	2.1 Object Store Details
	2.1.1 Abstract Data Model
	2.1.1.1 Per Volume
	2.1.1.2 Per TunnelCacheEntry
	2.1.1.3 Per File
	2.1.1.4 Per Link
	2.1.1.5 Per Stream
	2.1.1.6 Per Open
	2.1.1.7 Per ByteRangeLock
	2.1.1.8 Per ChangeNotifyEntry
	2.1.1.9 Per NotifyEventEntry
	2.1.1.10 Per Oplock
	2.1.1.11 Per RHOpContext
	2.1.1.12 Per CancelableOperations
	2.1.1.13 Per SecurityContext
	2.1.1.14 Constants

	2.1.2 Timers
	2.1.3 Initialization
	2.1.4 Common Algorithms
	2.1.4.1 Algorithm for Reporting a Change Notification for a Directory or View Index
	2.1.4.2 Algorithm for Detecting If Open Files Exist Under a Directory
	2.1.4.3 Algorithm for Determining If a Character Is a Wildcard
	2.1.4.4 Algorithm for Determining if a FileName Is in an Expression
	2.1.4.5 BlockAlign -- Macro to Round a Value Up to the Next Nearest Multiple of Another Value
	2.1.4.6 BlockAlignTruncate -- Macro to Round a Value Down to the Next Nearest Multiple of Another Value
	2.1.4.7 ClustersFromBytes -- Macro to Determine How Many Clusters a Given Number of Bytes Occupies
	2.1.4.8 ClustersFromBytesTruncate -- Macro to Determine How Many Whole Clusters a Given Number of Bytes Occupies
	2.1.4.9 SidLength -- Macro to Provide the Length of a SID
	2.1.4.10 Algorithm for Determining If a Range Access Conflicts with Byte-Range Locks
	2.1.4.11 Algorithm for Posting a USN Change for a File
	2.1.4.12 Algorithm to Check for an Oplock Break
	2.1.4.12.1 Algorithm for Request Processing After an Oplock Breaks
	2.1.4.12.2 Algorithm to Compare Oplock Keys

	2.1.4.13 Algorithm to Recompute the State of a Shared Oplock
	2.1.4.14 AccessCheck -- Algorithm to Perform a General Access Check
	2.1.4.15 BuildRelativeName -- Algorithm for Building the Relative Path Name for a Link
	2.1.4.16 FindAllFiles: Algorithm for Finding All Files Under a Directory
	2.1.4.17 Algorithm for Noting That a File Has Been Modified
	2.1.4.18 Algorithm for Updating Duplicated Information
	2.1.4.19 Algorithm for Noting That a File Has Been Accessed

	2.1.5 Higher-Layer Triggered Events
	2.1.5.1 Server Requests an Open of a File
	2.1.5.1.1 Creation of a New File
	2.1.5.1.2 Open of an Existing File
	2.1.5.1.2.1 Algorithm to Check Access to an Existing File
	2.1.5.1.2.2 Algorithm to Check Sharing Access to an Existing Stream or Directory

	2.1.5.2 Server Requests an Open of a Named Pipe
	2.1.5.3 Server Requests a Read
	2.1.5.4 Server Requests a Write
	2.1.5.5 Server Requests Closing an Open
	2.1.5.6 Server Requests Querying a Directory
	2.1.5.6.1 FileObjectIdInformation
	2.1.5.6.2 FileReparsePointInformation
	2.1.5.6.3 Directory Information Queries
	2.1.5.6.3.1 FileBothDirectoryInformation
	2.1.5.6.3.2 FileDirectoryInformation
	2.1.5.6.3.3 FileFullDirectoryInformation
	2.1.5.6.3.4 FileId64ExtdBothDirectoryInformation
	2.1.5.6.3.5 FileId64ExtdDirectoryInformation
	2.1.5.6.3.6 FileIdAllExtdBothDirectoryInformation
	2.1.5.6.3.7 FileIdAllExtdDirectoryInformation
	2.1.5.6.3.8 FileIdBothDirectoryInformation
	2.1.5.6.3.9 FileIdExtdDirectoryInformation
	2.1.5.6.3.10 FileIdFullDirectoryInformation
	2.1.5.6.3.11 FileNamesInformation

	2.1.5.7 Server Requests Flushing Cached Data
	2.1.5.8 Server Requests a Byte-Range Lock
	2.1.5.9 Server Requests an Unlock of a Byte-Range
	2.1.5.10 Server Requests an FsControl Request
	2.1.5.10.1 FSCTL_CREATE_OR_GET_OBJECT_ID
	2.1.5.10.2 FSCTL_DELETE_OBJECT_ID
	2.1.5.10.3 FSCTL_DELETE_REPARSE_POINT
	2.1.5.10.4 FSCTL_DUPLICATE_EXTENTS_TO_FILE
	2.1.5.10.5 FSCTL_DUPLICATE_EXTENTS_TO_FILE_EX
	2.1.5.10.6 FSCTL_FILE_LEVEL_TRIM
	2.1.5.10.7 FSCTL_FILESYSTEM_GET_STATISTICS
	2.1.5.10.8 FSCTL_FIND_FILES_BY_SID
	2.1.5.10.9 FSCTL_GET_COMPRESSION
	2.1.5.10.10 FSCTL_GET_INTEGRITY_INFORMATION
	2.1.5.10.11 FSCTL_GET_NTFS_VOLUME_DATA
	2.1.5.10.12 FSCTL_GET_REFS_VOLUME_DATA
	2.1.5.10.13 FSCTL_GET_OBJECT_ID
	2.1.5.10.14 FSCTL_GET_REPARSE_POINT
	2.1.5.10.15 FSCTL_GET_RETRIEVAL_POINTERS
	2.1.5.10.16 FSCTL_GET_RETRIEVAL_POINTERS_AND_REFCOUNT
	2.1.5.10.17 FSCTL_GET_RETRIEVAL_POINTER_COUNT
	2.1.5.10.18 FSCTL_IS_PATHNAME_VALID
	2.1.5.10.19 FSCTL_MARK_HANDLE
	2.1.5.10.20 FSCTL_OFFLOAD_READ
	2.1.5.10.21 FSCTL_OFFLOAD_WRITE
	2.1.5.10.22 FSCTL_QUERY_ALLOCATED_RANGES
	2.1.5.10.23 FSCTL_QUERY_FAT_BPB
	2.1.5.10.24 FSCTL_QUERY_FILE_REGIONS
	2.1.5.10.25 FSCTL_QUERY_ON_DISK_VOLUME_INFO
	2.1.5.10.26 FSCTL_QUERY_SPARING_INFO
	2.1.5.10.27 FSCTL_READ_FILE_USN_DATA
	2.1.5.10.28 FSCTL_RECALL_FILE
	2.1.5.10.29 FSCTL_REFS_STREAM_SNAPSHOT_MANAGEMENT
	2.1.5.10.29.1 Algorithm for REFS_STREAM_SNAPSHOT_OPERATION_CREATE
	2.1.5.10.29.2 Algorithm for REFS_STREAM_SNAPSHOT_OPERATION_LIST
	2.1.5.10.29.3 Algorithm for REFS_STREAM_SNAPSHOT_OPERATION_QUERY_DELTAS
	2.1.5.10.29.4 Algorithm for REFS_STREAM_SNAPSHOT_OPERATION_REVERT
	2.1.5.10.29.5 Algorithm for REFS_STREAM_SNAPSHOT_OPERATION_SET_SHADOW_BTREE
	2.1.5.10.29.6 Algorithm for REFS_STREAM_SNAPSHOT_OPERATION_CLEAR_SHADOW_BTREE

	2.1.5.10.30 FSCTL_SET_COMPRESSION
	2.1.5.10.31 FSCTL_SET_DEFECT_MANAGEMENT
	2.1.5.10.32 FSCTL_SET_ENCRYPTION
	2.1.5.10.33 FSCTL_SET_INTEGRITY_INFORMATION
	2.1.5.10.34 FSCTL_SET_INTEGRITY_INFORMATION_EX
	2.1.5.10.35 FSCTL_SET_OBJECT_ID
	2.1.5.10.36 FSCTL_SET_OBJECT_ID_EXTENDED
	2.1.5.10.37 FSCTL_SET_REPARSE_POINT
	2.1.5.10.38 FSCTL_SET_SPARSE
	2.1.5.10.39 FSCTL_SET_ZERO_DATA
	2.1.5.10.39.1 Algorithm to Zero Data Beyond ValidDataLength

	2.1.5.10.40 FSCTL_SET_ZERO_ON_DEALLOCATION
	2.1.5.10.41 FSCTL_SIS_COPYFILE
	2.1.5.10.42 FSCTL_WRITE_USN_CLOSE_RECORD

	2.1.5.11 Server Requests Change Notifications for a Directory
	2.1.5.11.1 Waiting for Change Notification to be Reported

	2.1.5.12 Server Requests a Query of File Information
	2.1.5.12.1 FileAccessInformation
	2.1.5.12.2 FileAlignmentInformation
	2.1.5.12.3 FileAllInformation
	2.1.5.12.4 FileAlternateNameInformation
	2.1.5.12.5 FileAttributeTagInformation
	2.1.5.12.6 FileBasicInformation
	2.1.5.12.7 FileBothDirectoryInformation
	2.1.5.12.8 FileCompressionInformation
	2.1.5.12.9 FileDirectoryInformation
	2.1.5.12.10 FileEaInformation
	2.1.5.12.11 FileFullDirectoryInformation
	2.1.5.12.12 FileFullEaInformation
	2.1.5.12.13 FileHardLinkInformation
	2.1.5.12.14 FileIdBothDirectoryInformation
	2.1.5.12.15 FileIdFullDirectoryInformation
	2.1.5.12.16 FileIdGlobalTxDirectoryInformation
	2.1.5.12.17 FileInternalInformation
	2.1.5.12.18 FileModeInformation
	2.1.5.12.19 FileNameInformation
	2.1.5.12.20 FileNamesInformation
	2.1.5.12.21 FileNetworkOpenInformation
	2.1.5.12.22 FileObjectIdInformation
	2.1.5.12.23 FilePositionInformation
	2.1.5.12.24 FileQuotaInformation
	2.1.5.12.25 FileReparsePointInformation
	2.1.5.12.26 FileSfioReserveInformation
	2.1.5.12.27 FileStandardInformation
	2.1.5.12.28 FileStandardLinkInformation
	2.1.5.12.29 FileStreamInformation
	2.1.5.12.30 FileNormalizedNameInformation
	2.1.5.12.31 FileIdInformation

	2.1.5.13 Server Requests a Query of File System Information
	2.1.5.13.1 FileFsVolumeInformation
	2.1.5.13.2 FileFsLabelInformation
	2.1.5.13.3 FileFsSizeInformation
	2.1.5.13.4 FileFsDeviceInformation
	2.1.5.13.5 FileFsAttributeInformation
	2.1.5.13.6 FileFsControlInformation
	2.1.5.13.7 FileFsFullSizeInformation
	2.1.5.13.8 FileFsObjectIdInformation
	2.1.5.13.9 FileFsDriverPathInformation
	2.1.5.13.10 FileFsSectorSizeInformation

	2.1.5.14 Server Requests a Query of Security Information
	2.1.5.14.1 Algorithm for Copying Audit or Label ACEs Into a Buffer

	2.1.5.15 Server Requests Setting of File Information
	2.1.5.15.1 FileAllocationInformation
	2.1.5.15.2 FileBasicInformation
	2.1.5.15.3 FileDispositionInformation
	2.1.5.15.4 FileEndOfFileInformation
	2.1.5.15.5 FileFullEaInformation
	2.1.5.15.6 FileLinkInformation
	2.1.5.15.7 FileModeInformation
	2.1.5.15.8 FileObjectIdInformation
	2.1.5.15.9 FilePositionInformation
	2.1.5.15.10 FileQuotaInformation
	2.1.5.15.11 FileRenameInformation
	2.1.5.15.11.1 Algorithm for Performing Stream Rename

	2.1.5.15.12 FileSfioReserveInformation
	2.1.5.15.13 FileShortNameInformation
	2.1.5.15.14 FileValidDataLengthInformation

	2.1.5.16 Server Requests Setting of File System Information
	2.1.5.16.1 FileFsVolumeInformation
	2.1.5.16.2 FileFsLabelInformation
	2.1.5.16.3 FileFsSizeInformation
	2.1.5.16.4 FileFsDeviceInformation
	2.1.5.16.5 FileFsAttributeInformation
	2.1.5.16.6 FileFsControlInformation
	2.1.5.16.7 FileFsFullSizeInformation
	2.1.5.16.8 FileFsObjectIdInformation
	2.1.5.16.9 FileFsDriverPathInformation
	2.1.5.16.10 FileFsSectorSizeInformation

	2.1.5.17 Server Requests Setting of Security Information
	2.1.5.18 Server Requests an Oplock
	2.1.5.18.1 Algorithm to Request an Exclusive Oplock
	2.1.5.18.2 Algorithm to Request a Shared Oplock
	2.1.5.18.3 Indicating an Oplock Break to the Server

	2.1.5.19 Server Acknowledges an Oplock Break
	2.1.5.20 Server Requests Canceling an Operation
	2.1.5.21 Server Requests Querying Quota Information
	2.1.5.22 Server Requests Setting Quota Information

	3 Algorithm Examples
	4 Security
	4.1 Security Considerations for Implementers
	4.2 Index of Security Parameters

	5 Appendix A: Product Behavior
	6 Change Tracking
	7 Index

