

1 / 249

[MS-FSA] — v20130722
 File System Algorithms

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

[MS-FSA]:
File System Algorithms

Intellectual Property Rights Notice for Open Specifications Documentation

 Technical Documentation. Microsoft publishes Open Specifications documentation for

protocols, file formats, languages, standards as well as overviews of the interaction among each
of these technologies.

 Copyrights. This documentation is covered by Microsoft copyrights. Regardless of any other
terms that are contained in the terms of use for the Microsoft website that hosts this

documentation, you may make copies of it in order to develop implementations of the
technologies described in the Open Specifications and may distribute portions of it in your
implementations using these technologies or your documentation as necessary to properly

document the implementation. You may also distribute in your implementation, with or without
modification, any schema, IDL’s, or code samples that are included in the documentation. This
permission also applies to any documents that are referenced in the Open Specifications.

 No Trade Secrets. Microsoft does not claim any trade secret rights in this documentation.

 Patents. Microsoft has patents that may cover your implementations of the technologies
described in the Open Specifications. Neither this notice nor Microsoft's delivery of the
documentation grants any licenses under those or any other Microsoft patents. However, a given

Open Specification may be covered by Microsoft Open Specification Promise or the Community
Promise. If you would prefer a written license, or if the technologies described in the Open
Specifications are not covered by the Open Specifications Promise or Community Promise, as

applicable, patent licenses are available by contacting iplg@microsoft.com.

 Trademarks. The names of companies and products contained in this documentation may be
covered by trademarks or similar intellectual property rights. This notice does not grant any

licenses under those rights. For a list of Microsoft trademarks, visit
www.microsoft.com/trademarks.

 Fictitious Names. The example companies, organizations, products, domain names, email
addresses, logos, people, places, and events depicted in this documentation are fictitious. No
association with any real company, organization, product, domain name, email address, logo,
person, place, or event is intended or should be inferred.

Reservation of Rights. All other rights are reserved, and this notice does not grant any rights

other than specifically described above, whether by implication, estoppel, or otherwise.

Tools. The Open Specifications do not require the use of Microsoft programming tools or

programming environments in order for you to develop an implementation. If you have access to
Microsoft programming tools and environments you are free to take advantage of them. Certain
Open Specifications are intended for use in conjunction with publicly available standard
specifications and network programming art, and assumes that the reader either is familiar with the
aforementioned material or has immediate access to it.

http://go.microsoft.com/fwlink/?LinkId=214445
http://go.microsoft.com/fwlink/?LinkId=214448
http://go.microsoft.com/fwlink/?LinkId=214448
mailto:iplg@microsoft.com
http://www.microsoft.com/trademarks

2 / 249

[MS-FSA] — v20130722
 File System Algorithms

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Revision Summary

Date

Revision

History

Revision

Class Comments

03/12/2010 0.1 Major First Release.

04/23/2010 0.1.1 Editorial Revised and edited the technical content.

06/04/2010 1.0 Major Updated and revised the technical content.

07/16/2010 2.0 Major Significantly changed the technical content.

08/27/2010 3.0 Major Significantly changed the technical content.

10/08/2010 4.0 Major Significantly changed the technical content.

11/19/2010 5.0 Major Significantly changed the technical content.

01/07/2011 6.0 Major Significantly changed the technical content.

02/11/2011 6.0 No change No changes to the meaning, language, or formatting of

the technical content.

03/25/2011 6.0 No change No changes to the meaning, language, or formatting of

the technical content.

05/06/2011 7.0 Major Significantly changed the technical content.

06/17/2011 8.0 Major Significantly changed the technical content.

09/23/2011 9.0 Major Significantly changed the technical content.

12/16/2011 10.0 Major Significantly changed the technical content.

03/30/2012 11.0 Major Significantly changed the technical content.

07/12/2012 12.0 Major Significantly changed the technical content.

10/25/2012 13.0 Major Significantly changed the technical content.

01/31/2013 14.0 Major Significantly changed the technical content.

08/08/2013 15.0 Major Significantly changed the technical content.

3 / 249

[MS-FSA] — v20130722
 File System Algorithms

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Contents

1 Introduction ... 8
1.1 Glossary ... 8
1.2 References .. 9

1.2.1 Normative References ... 9
1.2.2 Informative References ... 9

1.3 Overview .. 10
1.4 Relationship to Other Protocols .. 10
1.5 Applicability Statement ... 10
1.6 Standards Assignments .. 10
1.7 Versioning and Capability Negotiation ... 10
1.8 Vendor-Extensible Fields ... 10

2 Algorithm Details ... 11
2.1 Object Store Details ... 11

2.1.1 Abstract Data Model ... 11
2.1.1.1 Per Volume .. 11
2.1.1.2 Per TunnelCacheEntry ... 14
2.1.1.3 Per File .. 15
2.1.1.4 Per Link ... 17
2.1.1.5 Per Stream .. 17
2.1.1.6 Per Open ... 18
2.1.1.7 Per ByteRangeLock ... 20
2.1.1.8 Per ChangeNotifyEntry .. 20
2.1.1.9 Per NotifyEventEntry ... 20
2.1.1.10 Per Oplock ... 20
2.1.1.11 Per RHOpContext .. 22
2.1.1.12 Per CancelableOperations .. 22
2.1.1.13 Per SecurityContext .. 22

2.1.2 Timers .. 22
2.1.3 Initialization .. 23
2.1.4 Common Algorithms ... 23

2.1.4.1 Algorithm for Reporting a Change Notification for a Directory 23
2.1.4.2 Algorithm for Detecting If Open Files Exist Within a Directory 24
2.1.4.3 Algorithm for Determining If a Character Is a Wildcard 25
2.1.4.4 Algorithm for Determining if a FileName Is in an Expression 25
2.1.4.5 BlockAlign -- Macro to Round a Value Up to the Next Nearest Multiple of

Another Value ... 26
2.1.4.6 BlockAlignTruncate -- Macro to Round a Value Down to the Next Nearest

Multiple of Another Value .. 26
2.1.4.7 ClustersFromBytes -- Macro to Determine How Many Clusters a Given

Number of Bytes Occupies .. 26
2.1.4.8 ClustersFromBytesTruncate -- Macro to Determine How Many Whole Clusters

a Given Number of Bytes Occupies .. 26
2.1.4.9 SidLength -- Macro to Provide the Length of a SID .. 27
2.1.4.10 Algorithm for Determining If a Range Access Conflicts with Byte-Range

Locks ... 27
2.1.4.11 Algorithm for Posting a USN Change for a File .. 28
2.1.4.12 Algorithm to Check for an Oplock Break ... 29

2.1.4.12.1 Algorithm for Request Processing After an Oplock Breaks 46
2.1.4.12.2 Algorithm to Compare Oplock Keys .. 46

4 / 249

[MS-FSA] — v20130722
 File System Algorithms

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

2.1.4.13 Algorithm to Recompute the State of a Shared Oplock 47
2.1.4.14 AccessCheck -- Algorithm to Perform a General Access Check 48
2.1.4.15 BuildRelativeName -- Algorithm for Building the Relative Path Name for a

Link ... 49
2.1.4.16 FindAllFiles: Algorithm for Finding All Files Under a Directory 49
2.1.4.17 Algorithm for Noting That a File Has Been Modified 50

2.1.5 Higher-Layer Triggered Events ... 50
2.1.5.1 Server Requests an Open of a File .. 51

2.1.5.1.1 Creation of a New File .. 56
2.1.5.1.2 Open of an Existing File ... 61

2.1.5.1.2.1 Algorithm to Check Access to an Existing File 68
2.1.5.1.2.2 Algorithm to Check Sharing Access to an Existing Stream or Directory . 69

2.1.5.2 Server Requests a Read .. 70
2.1.5.3 Server Requests a Write .. 73
2.1.5.4 Server Requests Closing an Open ... 75
2.1.5.5 Server Requests Querying a Directory ... 80

2.1.5.5.1 FileObjectIdInformation ... 81
2.1.5.5.2 FileReparsePointInformation ... 82
2.1.5.5.3 Directory Information Queries ... 83

2.1.5.5.3.1 FileBothDirectoryInformation .. 86
2.1.5.5.3.2 FileDirectoryInformation ... 87
2.1.5.5.3.3 FileFullDirectoryInformation .. 88
2.1.5.5.3.4 FileIdBothDirectoryInformation ... 89
2.1.5.5.3.5 FileIdFullDirectoryInformation ... 90
2.1.5.5.3.6 FileNamesInformation .. 91

2.1.5.6 Server Requests Flushing Cached Data .. 91
2.1.5.7 Server Requests a Byte-Range Lock .. 92
2.1.5.8 Server Requests an Unlock of a Byte-Range ... 93
2.1.5.9 Server Requests an FsControl Request .. 94

2.1.5.9.1 FSCTL_CREATE_OR_GET_OBJECT_ID .. 94
2.1.5.9.2 FSCTL_DELETE_OBJECT_ID .. 96
2.1.5.9.3 FSCTL_DELETE_REPARSE_POINT .. 96
2.1.5.9.4 FSCTL_FILE_LEVEL_TRIM ... 97
2.1.5.9.5 FSCTL_FILESYSTEM_GET_STATISTICS ... 100
2.1.5.9.6 FSCTL_FIND_FILES_BY_SID .. 101
2.1.5.9.7 FSCTL_GET_COMPRESSION ... 102
2.1.5.9.8 FSCTL_GET_INTEGRITY_INFORMATION .. 103
2.1.5.9.9 FSCTL_GET_NTFS_VOLUME_DATA ... 104
2.1.5.9.10 FSCTL_GET_REFS_VOLUME_DATA .. 105
2.1.5.9.11 FSCTL_GET_OBJECT_ID .. 106
2.1.5.9.12 FSCTL_GET_REPARSE_POINT .. 107
2.1.5.9.13 FSCTL_GET_RETRIEVAL_POINTERS .. 108
2.1.5.9.14 FSCTL_IS_PATHNAME_VALID ... 109
2.1.5.9.15 FSCTL_LMR_GET_LINK_TRACKING_INFORMATION 109
2.1.5.9.16 FSCTL_LMR_SET_LINK_TRACKING_INFORMATION 109
2.1.5.9.17 FSCTL_OFFLOAD_READ ... 109
2.1.5.9.18 FSCTL_OFFLOAD_WRITE ... 112
2.1.5.9.19 FSCTL_QUERY_ALLOCATED_RANGES .. 115
2.1.5.9.20 FSCTL_QUERY_FAT_BPB ... 119
2.1.5.9.21 FSCTL_QUERY_FILE_REGIONS ... 119
2.1.5.9.22 FSCTL_QUERY_ON_DISK_VOLUME_INFO .. 122
2.1.5.9.23 FSCTL_QUERY_SPARING_INFO .. 123
2.1.5.9.24 FSCTL_READ_FILE_USN_DATA... 123

5 / 249

[MS-FSA] — v20130722
 File System Algorithms

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

2.1.5.9.25 FSCTL_RECALL_FILE ... 126
2.1.5.9.26 FSCTL_SET_COMPRESSION ... 127
2.1.5.9.27 FSCTL_SET_DEFECT_MANAGEMENT ... 129
2.1.5.9.28 FSCTL_SET_ENCRYPTION .. 129
2.1.5.9.29 FSCTL_SET_INTEGRITY_INFORMATION ... 132
2.1.5.9.30 FSCTL_SET_OBJECT_ID .. 133
2.1.5.9.31 FSCTL_SET_OBJECT_ID_EXTENDED ... 134
2.1.5.9.32 FSCTL_SET_REPARSE_POINT ... 135
2.1.5.9.33 FSCTL_SET_SHORT_NAME_BEHAVIOR .. 137
2.1.5.9.34 FSCTL_SET_SPARSE ... 137
2.1.5.9.35 FSCTL_SET_ZERO_DATA ... 138

2.1.5.9.35.1 Algorithm to Zero Data Beyond ValidDataLength............................. 142
2.1.5.9.36 FSCTL_SET_ZERO_ON_DEALLOCATION .. 144
2.1.5.9.37 FSCTL_SIS_COPYFILE ... 144
2.1.5.9.38 FSCTL_WRITE_USN_CLOSE_RECORD ... 146

2.1.5.10 Server Requests Change Notifications for a Directory 147
2.1.5.10.1 Waiting for Change Notification to be Reported 148

2.1.5.11 Server Requests a Query of File Information ... 148
2.1.5.11.1 FileAccessInformation ... 149
2.1.5.11.2 FileAlignmentInformation .. 149
2.1.5.11.3 FileAllInformation ... 149
2.1.5.11.4 FileAlternateNameInformation .. 150
2.1.5.11.5 FileAttributeTagInformation ... 151
2.1.5.11.6 FileBasicInformation ... 152
2.1.5.11.7 FileBothDirectoryInformation ... 153
2.1.5.11.8 FileCompressionInformation... 153
2.1.5.11.9 FileDirectoryInformation .. 154
2.1.5.11.10 FileEaInformation ... 154
2.1.5.11.11 FileFullDirectoryInformation ... 155
2.1.5.11.12 FileFullEaInformation .. 155
2.1.5.11.13 FileHardLinkInformation .. 155
2.1.5.11.14 FileIdBothDirectoryInformation ... 155
2.1.5.11.15 FileIdFullDirectoryInformation .. 155
2.1.5.11.16 FileIdGlobalTxDirectoryInformation ... 156
2.1.5.11.17 FileInternalInformation .. 156
2.1.5.11.18 FileModeInformation ... 156
2.1.5.11.19 FileNameInformation ... 156
2.1.5.11.20 FileNamesInformation ... 157
2.1.5.11.21 FileNetworkOpenInformation .. 157
2.1.5.11.22 FileObjectIdInformation ... 158
2.1.5.11.23 FilePositionInformation .. 159
2.1.5.11.24 FileQuotaInformation .. 159
2.1.5.11.25 FileReparsePointInformation .. 159
2.1.5.11.26 FileSfioReserveInformation .. 159
2.1.5.11.27 FileStandardInformation .. 159
2.1.5.11.28 FileStandardLinkInformation .. 160
2.1.5.11.29 FileStreamInformation... 160

2.1.5.12 Server Requests a Query of File System Information 161
2.1.5.12.1 FileFsVolumeInformation ... 161
2.1.5.12.2 FileFsLabelInformation .. 162
2.1.5.12.3 FileFsSizeInformation .. 162
2.1.5.12.4 FileFsDeviceInformation .. 163
2.1.5.12.5 FileFsAttributeInformation ... 164

6 / 249

[MS-FSA] — v20130722
 File System Algorithms

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

2.1.5.12.6 FileFsControlInformation ... 165
2.1.5.12.7 FileFsFullSizeInformation ... 165
2.1.5.12.8 FileFsObjectIdInformation ... 167
2.1.5.12.9 FileFsDriverPathInformation ... 167
2.1.5.12.10 FileFsSectorSizeInformation ... 167

2.1.5.13 Server Requests a Query of Security Information 169
2.1.5.13.1 Algorithm for Copying Audit or Label ACEs Into a Buffer 174

2.1.5.14 Server Requests Setting of File Information .. 174
2.1.5.14.1 FileAllocationInformation ... 175
2.1.5.14.2 FileBasicInformation ... 176
2.1.5.14.3 FileDispositionInformation ... 179
2.1.5.14.4 FileEndOfFileInformation ... 180
2.1.5.14.5 FileFullEaInformation .. 182
2.1.5.14.6 FileLinkInformation ... 183
2.1.5.14.7 FileModeInformation ... 185
2.1.5.14.8 FileObjectIdInformation... 186
2.1.5.14.9 FilePositionInformation .. 186
2.1.5.14.10 FileQuotaInformation .. 186
2.1.5.14.11 FileRenameInformation ... 186

2.1.5.14.11.1 Algorithm for Performing Stream Rename 196
2.1.5.14.12 FileSfioReserveInformation .. 198
2.1.5.14.13 FileShortNameInformation ... 198
2.1.5.14.14 FileValidDataLengthInformation .. 200

2.1.5.15 Server Requests Setting of File System Information 201
2.1.5.15.1 FileFsVolumeInformation ... 201
2.1.5.15.2 FileFsLabelInformation .. 201
2.1.5.15.3 FileFsSizeInformation .. 201
2.1.5.15.4 FileFsDeviceInformation .. 201
2.1.5.15.5 FileFsAttributeInformation ... 202
2.1.5.15.6 FileFsControlInformation ... 202
2.1.5.15.7 FileFsFullSizeInformation ... 202
2.1.5.15.8 FileFsObjectIdInformation ... 202
2.1.5.15.9 FileFsDriverPathInformation ... 203
2.1.5.15.10 FileFsSectorSizeInformation ... 203

2.1.5.16 Server Requests Setting of Security Information .. 203
2.1.5.17 Server Requests an Oplock ... 204

2.1.5.17.1 Algorithm to Request an Exclusive Oplock ... 207
2.1.5.17.2 Algorithm to Request a Shared Oplock .. 212
2.1.5.17.3 Indicating an Oplock Break to the Server ... 216

2.1.5.18 Server Acknowledges an Oplock Break ... 217
2.1.5.19 Server Requests Canceling an Operation ... 224
2.1.5.20 Server Requests Querying Quota Information .. 225
2.1.5.21 Server Requests Setting Quota Information .. 227

3 Protocol Examples .. 229

4 Security .. 230
4.1 Security Considerations for Implementers .. 230
4.2 Index of Security Parameters ... 230

5 Appendix A: Product Behavior .. 231

6 Change Tracking... 244

7 / 249

[MS-FSA] — v20130722
 File System Algorithms

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

7 Index ... 248

8 / 249

[MS-FSA] — v20130722
 File System Algorithms

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

1 Introduction

This document defines an abstract model for how an object store can be implemented to support the
Common Internet File System (CIFS) Protocol, the Server Message Block (SMB) Protocol, and the
Server Message Block (SMB) Protocol versions 2 and 3 (described in [MS-CIFS], [MS-SMB] and [MS-
SMB2], respectively).

Section 2 of this specification is normative and can contain the terms MAY, SHOULD, MUST, MUST
NOT, and SHOULD NOT as defined in RFC 2119. Section 1.6 is also normative but cannot contain
those terms. All other sections and examples in this specification are informative.

1.1 Glossary

The following terms are defined in [MS-FSCC]:

cluster

The following terms are defined in [MS-GLOS]:

volume

globally unique identifier (GUID)
mount point
reparse point
server
SID
symbolic link

Unicode

The following terms are specific to this document:

Alternate Data Stream: A named data stream that is part of a file or directory, which can be

opened independently of the default data stream. Many operations on an alternate data
stream affect only that stream and not other streams or the file or directory as a whole.

Backup: The act of copying data (usually files) to some other storage media in case of
equipment failure or other catastrophic event.

Compression Unit: A segment of a stream that the object store can compress, encrypt, or
make sparse independently of other segments of the same stream.

Default Data Stream: The unnamed data stream in a non-directory file. Many operations on a
default data stream affect the file as a whole.

Restore: The act of copying data (usually files) back to its original storage location from some
other storage media after some form of data loss.

Software Defect Management: A mechanism for the object store to manage and remap

defective blocks on removable rewritable media (such as CD-RW, DVD-RW, and
DVD+RW).<1>

WinPE: Windows Pre-installation Environment.

MAY, SHOULD, MUST, SHOULD NOT, MUST NOT: These terms (in all caps) are used as
described in [RFC2119]. All statements of optional behavior use either MAY, SHOULD, or
SHOULD NOT.

%5bMS-CIFS%5d.pdf
%5bMS-SMB%5d.pdf
%5bMS-SMB2%5d.pdf
%5bMS-SMB2%5d.pdf
%5bMS-FSCC%5d.pdf
%5bMS-GLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90317

9 / 249

[MS-FSA] — v20130722
 File System Algorithms

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

1.2 References

References to Microsoft Open Specifications documentation do not include a publishing year because
links are to the latest version of the documents, which are updated frequently. References to other

documents include a publishing year when one is available.

A reference marked "(Archived)" means that the reference document was either retired and is no
longer being maintained or was replaced with a new document that provides current implementation
details. We archive our documents online [Windows Protocol].

1.2.1 Normative References

We conduct frequent surveys of the normative references to assure their continued availability. If

you have any issue with finding a normative reference, please contact dochelp@microsoft.com. We
will assist you in finding the relevant information. Please check the archive site,
http://msdn2.microsoft.com/en-us/library/E4BD6494-06AD-4aed-9823-445E921C9624, as an
additional source.

[MS-DTYP] Microsoft Corporation, "Windows Data Types".

[MS-EFSR] Microsoft Corporation, "Encrypting File System Remote (EFSRPC) Protocol".

[MS-ERREF] Microsoft Corporation, "Windows Error Codes".

[MS-FSCC] Microsoft Corporation, "File System Control Codes".

[MS-LSAD] Microsoft Corporation, "Local Security Authority (Domain Policy) Remote Protocol".

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC
2119, March 1997, http://www.rfc-editor.org/rfc/rfc2119.txt

[RFC4122] Leach, P., Mealling, M., and Salz, R., "A Universally Unique Identifier (UUID) URN
Namespace", RFC 4122, July 2005, http://www.ietf.org/rfc/rfc4122.txt

1.2.2 Informative References

[FSBO] Microsoft Corporation, "File System Behavior in the Microsoft Windows Environment", June
2008, http://download.microsoft.com/download/4/3/8/43889780-8d45-4b2e-9d3a-
c696a890309f/File%20System%20Behavior%20Overview.pdf

[INCITS-T10/11-059] INCITS, "T10 specification 11-059", http://www.t10.org/cgi-
bin/ac.pl?t=d&f=11-059r9.pdf

[MS-AUTHSOD] Microsoft Corporation, "Authentication Services Protocols Overview".

[MS-CIFS] Microsoft Corporation, "Common Internet File System (CIFS) Protocol".

[MS-GLOS] Microsoft Corporation, "Windows Protocols Master Glossary".

[MS-SMB] Microsoft Corporation, "Server Message Block (SMB) Protocol".

[MS-SMB2] Microsoft Corporation, "Server Message Block (SMB) Protocol Versions 2 and 3".

[SIS] Microsoft Corporation, "Single Instance Storage in Microsoft Windows Storage Server 2003
R2", May 2006, http://www.microsoft.com/technet/itshowcase/content/sistwp.mspx

http://msdn.microsoft.com/en-us/library/jj633107.aspx
mailto:dochelp@microsoft.com
http://msdn2.microsoft.com/en-us/library/E4BD6494-06AD-4aed-9823-445E921C9624
%5bMS-DTYP%5d.pdf
%5bMS-EFSR%5d.pdf
%5bMS-ERREF%5d.pdf
%5bMS-FSCC%5d.pdf
%5bMS-LSAD%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90317
http://go.microsoft.com/fwlink/?LinkId=90460
http://go.microsoft.com/fwlink/?LinkId=140636
http://go.microsoft.com/fwlink/?LinkId=140636
http://go.microsoft.com/fwlink/?LinkId=239442
http://go.microsoft.com/fwlink/?LinkId=239442
%5bMS-AUTHSOD%5d.pdf
%5bMS-CIFS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-SMB%5d.pdf
%5bMS-SMB2%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90517

10 / 249

[MS-FSA] — v20130722
 File System Algorithms

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

1.3 Overview

None.

1.4 Relationship to Other Protocols

This is an algorithms document describing wire-visible behavior of a backing object store that is
referenced by the following protocol documents:

The Common Internet File System (CIFS) Protocol Specification [MS-CIFS]

The Server Message Block (SMB) Protocol Specification [MS-SMB]

The Server Message Block (SMB) Versions 2 and 3 Protocol Specification [MS-SMB2]

1.5 Applicability Statement

None.

1.6 Standards Assignments

None.

1.7 Versioning and Capability Negotiation

None.

1.8 Vendor-Extensible Fields

This algorithm uses NTSTATUS values as defined in [MS-ERREF] section 2.3. Vendors are free to
choose their own values for this field, as long as the C bit (0x20000000) is set, indicating it is a

customer code.

%5bMS-CIFS%5d.pdf
%5bMS-SMB%5d.pdf
%5bMS-SMB2%5d.pdf
%5bMS-ERREF%5d.pdf

11 / 249

[MS-FSA] — v20130722
 File System Algorithms

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

2 Algorithm Details

2.1 Object Store Details

2.1.1 Abstract Data Model

This section describes a conceptual model of possible data organization that an implementation
maintains to participate in this algorithm. The described organization is provided to facilitate the
explanation of how the algorithm behaves. This document does not mandate that implementations

adhere to this model as long as their external behavior is consistent with that described in this
document.

The following abstract object types are defined in this document:

Volume

TunnelCacheEntry

File

Link

Stream

Open

ByteRangeLock

ChangeNotifyEntry

NotifyEventEntry

Oplock

RHOpContext

CancelableOperations

SecurityContext

The following shorthand forms are also used:

DataFile: A File object with a FileType of DataFile.

DirectoryFile: A File object with a FileType of DirectoryFile.

DataStream: A Stream object with a StreamType of DataStream.

DirectoryStream: A Stream object with a StreamType of DirectoryStream.

Plural forms of all these object types are also used.

2.1.1.1 Per Volume

The object store MUST implement the following persistent attributes:

RootDirectory: The DirectoryFile for the root of this volume.

%5bMS-GLOS%5d.pdf

12 / 249

[MS-FSA] — v20130722
 File System Algorithms

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

TotalSpace: A 64-bit unsigned integer specifying the total size of the volume in bytes. This value

MUST be a multiple of ClusterSize.

FreeSpace: A 64-bit unsigned integer specifying the available space of the volume in bytes. This

value MUST be a multiple of ClusterSize.

IsReadOnly: A Boolean that is TRUE if the volume is read-only and MUST NOT be modified;

otherwise, the volume is both readable and writable.

IsQuotasSupported: A Boolean that is TRUE if the physical media format for this volume

supports Quotas.

IsObjectIDsSupported: A Boolean that is TRUE if the physical media format for this volume

supports ObjectIDs.

IsReparsePointsSupported: A Boolean that is TRUE if the physical media format for this

volume supports ReparsePoints.

VolumeLabel: A 16-character Unicode string containing the name of the volume. An empty

value is supported.

LogicalBytesPerSector: A 32-bit unsigned integer specifying the size of a sector for this volume

in bytes. LogicalBytesPerSector MUST be a power of two and MUST be greater than or equal to
512 and less than or equal to Volume.SystemPageSize.

ClusterSize: A 32-bit unsigned integer specifying the size of a cluster for this volume in bytes.

ClusterSize MUST be a power of two, and MUST be greater than or equal to

LogicalBytesPerSector and a power-of-two multiple of LogicalBytesPerSector.<2>

PhysicalBytesPerSector: A 32-bit unsigned integer specifying the size of a physical sector for

this volume in bytes. PhysicalBytesPerSector MUST be a power of two, MUST be greater than
or equal to 512 and less than or equal to Volume.SystemPageSize, and MUST be greater than
or equal to Volume.LogicalBytesPerSector.

PartitionOffset: A 64-bit unsigned integer specifying the byte offset used to align the partition

to a physical sector boundary.

SystemPageSize: A 32-bit unsigned integer specifying the size, in bytes, of a page of memory

in the system. This value is architecture dependent.<3>

VolumeCreationTime: The time the volume was formatted in the FILETIME format specified in

[MS-FSCC] section 2.1.1.

VolumeSerialNumber: A 32-bit unsigned integer that contains a number, randomly generated

at format time, to uniquely identify the volume.

VolumeCharacteristics: A bit field identifying various characteristics about the current volume

as specified in [MS-FSCC] section 2.5.10.

CompressionUnitSize: A 32-bit unsigned integer specifying the compression unit size in

bytes, which is the granularity used when compressing, encrypting, or sparsifying portions of a

stream independent of other portions of the same stream. Not all file systems support these
features, and implementation of this field is optional. If one or more of these features are
supported, the value of this field is implementation-defined but MUST be a power of two multiple
of ClusterSize.<4>

%5bMS-GLOS%5d.pdf
%5bMS-FSCC%5d.pdf
%5bMS-FSCC%5d.pdf
%5bMS-FSCC%5d.pdf

13 / 249

[MS-FSA] — v20130722
 File System Algorithms

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

CompressedChunkSize: A 32-bit unsigned integer specifying the maximum size of each chunk

in a compressed stream. Not all file systems support compression, and implementation of this

field is optional. If compression is supported, the value of this field is implementation-defined but

MUST be a power of two and MUST be less than or equal to CompressionUnitSize.<5>

ChecksumChunkSize: A 32-bit unsigned integer that specifies the size of each chunk in a

stream that is configured with integrity. Not all file systems support integrity, and
implementation of this field is optional.<6>

TunnelCacheList: A list of zero or more TunnelCacheEntries providing metadata about

recently deleted or renamed files. The list could be empty if the object store does not implement

tunnel caching or if there are no recently deleted or renamed files on this volume.

ChangeNotifyList: A list of zero or more ChangeNotifyEntries describing outstanding change

notify requests for the volume.

GenerateShortNames: A Boolean that is TRUE if short name creation support is enabled on this

Volume. FALSE if short name creation is not supported on this Volume.

QuotaInformation: A list of FILE_QUOTA_INFORMATION elements (per [MS-FSCC] section

2.4.33) that track the total Stream.AllocationSize per SID where the
File.SecurityDescriptor.Owner field is equal to the SID.<7>

DefaultQuotaThreshold: A 64-bit signed integer that contains the default per-user disk quota

warning threshold in bytes. Not all file systems support this field, and implementation of this field
is optional.

DefaultQuotaLimit: A 64-bit signed integer that contains the default per-user disk quota limit in

bytes. Not all file systems support this field, and implementation of this field is optional.

VolumeQuotaState: A bitmask of flags defining the current quota state on the volume as

specified in [MS-FSCC] section 2.5.2 under FileSystemControlFlags. Not all file systems support
this field, and implementation of this field is optional.

VolumeId: A GUID as specified in [RFC4122]. This value MAY be NULL.

ExtendedInfo: A 48-byte structure containing extended VolumeId information, as described in

[MS-FSCC] section 2.5.6.<8>

IsUsnJournalActive: A Boolean that is TRUE if a USN change journal is active on the

volume.<9>

LastUsn: A 64-bit unsigned integer indicating the positive USN number of the last record written

to the USN change journal on the volume, or 0 if no USN records have been written. If
IsUsnJournalActive is FALSE, LastUsn MUST be 0.

IsOffloadReadSupported: A Boolean that is TRUE if the volume supports the

FSCTL_OFFLOAD_READ operation. This bit is reset to TRUE at mount time, and is set to FALSE if
an Offload Read operation fails for an implementation- or vendor-specific reason.

IsOffloadWriteSupported: A Boolean that is TRUE if the volume supports the

FSCTL_OFFLOAD_WRITE operation. This bit is reset to TRUE at mount time, and is set to FALSE if
an Offload Write operation fails for an implementation- or vendor-specific reason.

MaxFileSize: A 64-bit unsigned integer that denotes the maximum file size, in bytes, supported

by the object store.<10>

%5bMS-FSCC%5d.pdf
%5bMS-FSCC%5d.pdf
%5bMS-GLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90460
%5bMS-FSCC%5d.pdf

14 / 249

[MS-FSA] — v20130722
 File System Algorithms

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

The following fields are specific to UDF object stores:

DirectoryCount: A 64-bit signed integer that indicates the count of directories on the volume, or

-1 if not maintained by the object store.

FileCount: A 64-bit signed integer that indicates the count of files on the volume, or -1 if not

maintained by the object store.

FsFormatMajVersion: A 16-bit unsigned integer indicating the major version of the file system

format.

FsFormatMinVersion: A 16-bit unsigned integer indicating the minor version of the file system

format.

FormatTime: The time the volume was formatted in the FILETIME format specified in [MS-FSCC]

section 2.1.1.

LastUpdateTime: The time the volume was last updated in the FILETIME format specified in

[MS-FSCC] section 2.1.1.

CopyrightInfo: A 68-byte buffer containing any copyright info associated with the volume.

AbstractInfo: A 68-byte buffer containing any abstract info associated with the volume.

FormattingImplementationInfo: A 68-byte buffer containing implementation-specific

information; this field MAY contain the operating system version that the media was formatted
by.

LastModifyingImplementationInfo: A 68-byte buffer containing information written by the

last implementation that modified the disk. This field is implementation-specific and MAY contain
the operating system version that the media was last modified by.

SparingUnitBytes: A 32-bit unsigned integer indicating the size in bytes of a sparing unit.

SoftwareSparing: A Boolean that is TRUE if the volume’s bad block sparing mechanism is

implemented in software, FALSE if bad block sparing is implemented by the underlying hardware
this volume is on.

TotalSpareBlocks: A 32-bit unsigned integer indicating the total number of spare blocks.

FreeSpareBlocks: A 32-bit unsigned integer indicating the available number of spare blocks.

Volatile Fields:

OpenFileList: A list of all the File objects opened on Volume.

2.1.1.2 Per TunnelCacheEntry

Implementation of tunnel caching is optional.<11> If case-sensitive file name matching is enabled
(for example, for POSIX compliance), the object store SHOULD NOT implement tunnel caching. If
the object store implements tunnel caching, it MUST implement the following attributes in each

TunnelCacheEntry:

EntryTime: The time at which this TunnelCacheEntry was created. The object store SHOULD

use this attribute to automatically purge this entry from the tunnel cache once the entry is 15
seconds old.

ParentFile: The parent DirectoryFile that this TunnelCacheEntry refers to.

%5bMS-FSCC%5d.pdf
%5bMS-FSCC%5d.pdf

15 / 249

[MS-FSA] — v20130722
 File System Algorithms

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

FileName: A Unicode string specifying the long name of the file. This string MUST be greater

than 0 characters and less than 256 characters in length. Valid characters for a file name are

specified in [MS-FSCC] section 2.1.5.

FileShortName: A Unicode string specifying the short name of the file. If KeyByShortName is

FALSE, this string could be empty. If the string is not empty, it MUST be 8.3-compliant as
described in [MS-FSCC] section 2.1.5.2.1.

KeyByShortName: A Boolean that is TRUE when FileShortName is used as the key for this

entry. FALSE when FileName is used as the key for this entry.

FileCreationTime: The time that identifies when the file was created in the FILETIME format

specified in [MS-FSCC] section 2.1.1.

FileObjectId: A GUID as specified in [RFC4122]. This value can be NULL. If non-NULL, this value

MUST be unique on a given volume.

2.1.1.3 Per File

The object store MUST implement the following persistent attributes:

FileType: The type of file. This value MUST be either DataFile or DirectoryFile.

FileId128: A 128-bit signed integer that identifies the file. This value MUST be persistent and

MUST be unique on a given volume.

FileId64: A 64-bit signed integer that identifies the file. If the field has a value of -1, the

meaning of the field is undefined; otherwise this value MUST be persistent and MUST be unique

on a given volume.

FileNumber: A 64-bit unsigned integer. Not all file systems support this field, and

implementation of this field is optional. If implemented, this value MUST be persistent and MUST
be unique on a given volume.

LinkList: A list of one or more Links to the file. A DirectoryFile MUST have exactly one element

in LinkList. LinkList MUST have at most one element with a non-empty ShortName.<12>

SecurityDescriptor: The security descriptor for this file, in the format specified in [MS-DTYP]

section 2.4.6.

FileAttributes: Attributes of the file in the form specified in [MS-FSCC] section 2.6.

CreationTime: The time that identifies when the file was created in the FILETIME format

specified in [MS-FSCC] section 2.1.1.<13>

LastModificationTime: The time that identifies when the file contents were last modified in the

FILETIME format specified in [MS-FSCC] section 2.1.1.<14>

LastChangeTime: The time that identifies when the file metadata or contents were last changed

in the FILETIME format specified in [MS-FSCC] section 2.1.1.<15>

LastAccessTime: The time that identifies when the file was last accessed in the FILETIME

format specified in [MS-FSCC] section 2.1.1. Updating this value when accesses occur is
optional.<16> <17>

ExtendedAttributes: A list of FILE_FULL_EA_INFORMATION structures as defined by MS-FSCC

section 2.4.15.<18>

%5bMS-FSCC%5d.pdf
%5bMS-FSCC%5d.pdf
%5bMS-FSCC%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90460
%5bMS-DTYP%5d.pdf
%5bMS-FSCC%5d.pdf
%5bMS-FSCC%5d.pdf
%5bMS-FSCC%5d.pdf
%5bMS-FSCC%5d.pdf
%5bMS-FSCC%5d.pdf

16 / 249

[MS-FSA] — v20130722
 File System Algorithms

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

ExtendedAttributesLength: A 32-bit unsigned integer that contains the combined length of all

the ExtendedAttributes. <19>

ObjectId: A GUID as specified in [RFC4122]. This value can be NULL. If set to non-NULL, this

value MUST be unique on a given volume.<20>

BirthVolumeId: A GUID that uniquely identifies the volume on which the object resided when

the object identifier was created, or zero if the volume had no object identifier at that time. After
copy operations, move operations, or other file operations, this value is potentially different from
the VolumeId of the volume on which the object currently resides.

BirthObjectId: A GUID value containing the object identifier of the object at the time it was

created. After copy operations, move operations, or other file operations, this value is potentially
different from the ObjectId member at present.<21>

StreamList: A list of zero or more Streams as defined in section 2.1.1.4. A DataFile MUST have

one and only one unnamed DataStream; any additional streams MUST be named
DataStreams.<22> A DirectoryFile MUST have one and only one unnamed DirectoryStream; any

additional streams MUST be named DataStreams. For any two distinct elements Stream1 and

Stream2 in StreamList, if Stream1.StreamType equals Stream2.StreamType then
Stream1.Name MUST NOT match Stream2.Name.

ReparseTag: A 32-bit unsigned integer containing the type of the reparse point, as defined in

[MS-FSCC] section 2.1.2.1. If this member is empty, there is no reparse point associated with
this file.

ReparseGUID: A GUID indicating the type of the reparse point. This field MUST contain a valid

GUID if ReparseTag contains a non-Microsoft tag as described in [MS-FSCC] section 2.1.2.1.
Otherwise it MUST be empty.

ReparseData: An array of bytes containing data associated with a reparse point, which is

defined by the type of the reparse point, as described in [MS-FSCC] sections 2.1.2.1 through
2.1.3.2. If ReparseTag is empty, this member MUST be empty. If ReparseTag is not empty, this
member could be empty, in which case there is no reparse data associated with this reparse

point.

DirectoryList: For a DataFile, this list MUST be empty. For a DirectoryFile, this is a list of Links

contained in the directory. For any two distinct elements Link1 and Link2 in DirectoryList,
Link1.Name MUST NOT match Link2.Name or Link2.ShortName.<23>

Volume: The Volume on which the file resides.

Usn: A 64-bit unsigned integer indicating the positive USN number of the last USN record written

for this file, or 0 if no USN records have been written for this file.

IsSymbolicLink: A Boolean that is TRUE if the file is a mount point or a symbolic link to

another file or directory.

UserCertificateList: A list of ENCRYPTION_CERTIFICATE structures as specified in [MS-

EFSR] section 2.2.8, used to determine which users can access the contents of any encrypted

streams in the file.<24>

Volatile Fields:

OpenList: A list of all Opens to this File.

http://go.microsoft.com/fwlink/?LinkId=90460
%5bMS-GLOS%5d.pdf
%5bMS-FSCC%5d.pdf
%5bMS-FSCC%5d.pdf
%5bMS-FSCC%5d.pdf
%5bMS-FSCC%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-EFSR%5d.pdf
%5bMS-EFSR%5d.pdf

17 / 249

[MS-FSA] — v20130722
 File System Algorithms

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

PendingNotifications: A 32-bit unsigned integer composed of flags indicating types of changes

to file attributes for which directory change notifications are pending, as specified in [MS-SMB2]

section 2.2.35, CompletionFilter field.

2.1.1.4 Per Link

The object store MUST implement the following persistent attributes:<25>

Name: A Unicode string specifying the name of the link. This string MUST be greater than 0

characters and less than 256 characters in length. Valid form for a link name is the same as the
pathname specification in [MS-FSCC] section 2.1.5.

ShortName: A Unicode string specifying the short name of the link.<26> This value could be

empty. If this value is not empty, it MUST be 8.3-compliant as described in [MS-FSCC] section
2.1.5.2.1.

File: The File that this link refers to.

ParentFile: The parent DirectoryFile that this link resides in.

IsDeleted: A Boolean that is TRUE if there is a pending delete operation on the link. New opens

to the associated Stream MUST NOT be allowed.

Volatile Fields:

PendingNotifications: A 32-bit unsigned integer composed of flags indicating types of changes

to link attributes for which directory change notifications are pending, as specified in [MS-SMB2]
section 2.2.35, CompletionFilter field.

2.1.1.5 Per Stream

The object store MUST implement the following persistent attributes:

StreamType: The type of stream. This value MUST be either DataStream or DirectoryStream.

Name: A Unicode string of less than 256 characters specifying the name of the stream. Valid

characters for a stream name are specified in [MS-FSCC] section 2.1.5. If StreamType is

DataStream, Name could be empty; this case indicates the default data stream. If
StreamType is DirectoryStream, Name MUST be empty.

Size: A 64-bit unsigned integer containing the size of the stream, in bytes.

AllocationSize: A 64-bit unsigned integer containing the size, in bytes, of space reserved on the

disk. This value MUST be a multiple of File.Volume.ClusterSize.

ValidDataLength: A 64-bit unsigned integer containing the size, in bytes, of valid data in the

stream. Not all file systems support this field, and implementation of this field is optional. If
implemented, all data beyond this value MUST be returned as zero. For a DataStream, this value
MUST be less than or equal to Size. For a DirectoryStream, this value MUST be equal to Size.

File: The File in which the stream resides.

IsCompressed: A Boolean that is TRUE if the contents of the stream are compressed.<27>

ChecksumAlgorithm: A 16-bit unsigned integer that contains the integrity state of the stream

as defined by [MS-FSCC] section 2.3.50.<28>

%5bMS-SMB2%5d.pdf
%5bMS-FSCC%5d.pdf
%5bMS-FSCC%5d.pdf
%5bMS-SMB2%5d.pdf
%5bMS-FSCC%5d.pdf
%5bMS-FSCC%5d.pdf

18 / 249

[MS-FSA] — v20130722
 File System Algorithms

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

IsChecksumEnforcementOff: A Boolean that is TRUE if the stream is a DataStream and

CHECKSUM_ENFORCEMENT_OFF is specified.<29>

IsSparse: A Boolean that is TRUE if the object store is storing a sparse representation of the

stream.<30>

IsTemporary: A Boolean that is TRUE if the object store optimizes its management of the

stream because it is pending deletion.

IsEncrypted: A Boolean that is TRUE if the contents of the stream are encrypted.<31>

ExtentList: A list containing zero or more EXTENTS elements as defined by [MS-FSCC] section

2.3.22.1, ordered by NextVcn.

Volatile Fields:

Oplock: An Oplock describing the opportunistic lock state of the stream. If Oplock is empty,

there is no opportunistic lock on the stream.

ByteRangeLockList: A list of zero or more ByteRangeLocks describing the bytes ranges of this

stream that are currently locked.

IsDeleted: A Boolean that is TRUE if there is a pending delete operation on the Stream. New

opens to Stream MUST NOT be allowed.

IsDefectManagementDisabled: A Boolean that is TRUE if software defect management is

disabled on this stream. Not all file systems support this field; implementation of this field is
optional.

PendingNotifications: A 32-bit unsigned integer composed of flags indicating types of changes

to stream attributes for which directory change notifications are pending, as specified in [MS-
SMB2] section 2.2.35, CompletionFilter field.

ZeroOnDeallocate: A Boolean that is TRUE when the object store MUST write zeroes to any

range of the stream that is to be deallocated, prior to performing the deallocation. This helps to
protect whatever data may have been in the stream from discovery by examining free space on

the storage media. Not all file systems support this field, and implementation of this field is
optional.

2.1.1.6 Per Open

The object store MUST implement the following:

RootOpen: The Open that represents the root of the share.

FileName: The absolute pathname of the opened file in the format specified in [MS-FSCC]

section 2.1.5.

File: The File that is opened.

Link: The Link through which File is opened. Link MUST be an element of File.LinkList.

Stream: The Stream that is opened. Stream MUST be an element of File.StreamList.

GrantedAccess: The access granted for this open as specified in [MS-SMB2] section 2.2.13.1.

RemainingDesiredAccess: The access requested for this Open but not yet granted, as specified

in [MS-SMB2] section 2.2.13.1.

%5bMS-FSCC%5d.pdf
%5bMS-SMB2%5d.pdf
%5bMS-SMB2%5d.pdf
%5bMS-FSCC%5d.pdf
%5bMS-SMB2%5d.pdf
%5bMS-SMB2%5d.pdf

19 / 249

[MS-FSA] — v20130722
 File System Algorithms

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

SharingMode: The sharing mode for this Open as specified in [MS-SMB2] section 2.2.13.

Mode: The mode flags for this Open as specified in [MS-FSCC] section 2.4.24.

IsCaseInsensitive: A Boolean that is TRUE if this Open should be treated as case-insensitive.

HasBackupAccess: A Boolean that is TRUE if the Open was performed by a user who is allowed

to perform backup operations.

HasRestoreAccess: A Boolean that is TRUE if the Open was performed by a user who is allowed

to perform restore operations.

HasCreateSymbolicLinkAccess: A Boolean that is TRUE if the Open was performed by a user

who is allowed to create symbolic links.

HasManageVolumeAccess: A Boolean that is TRUE if the Open was performed by a user who is

allowed to manage the volume.

IsAdministrator: A Boolean that is TRUE if the Open was performed by a user who is a member

of the BUILTIN_ADMINISTRATORS group as specified in [MS-DTYP] section 2.4.2.4.

QueryPattern: The Unicode string containing the query pattern used to filter directory query.

QueryLastEntry: The last Link that was returned in a directory query.

LastQuotaId: The index of the last SID returned during quota enumeration on this Open, or -1 if

there has not been a quota enumeration on this Open.

CurrentByteOffset: The byte offset immediately following the most recent successful

synchronous read or write operation of one or more bytes, or 0 if there have not been any.

FindBySidRestartIndex: A 64-bit unsigned integer specifying the starting index for a

FSCTL_FILE_FILES_BY_SID operation.

UserSetModificationTime: A Boolean that is TRUE if a user has explicitly set

File.LastModificationTime through this Open.

UserSetChangeTime: A Boolean that is TRUE if a user has explicitly set File.LastChangeTime

through this Open.

UserSetAccessTime: A Boolean that is TRUE if a user has explicitly set File.LastAccessTime

through this Open.

NextEaEntry: Contains a reference to the next FILE_FULL_EA_INFORMATION entry in

File.ExtendedAttributes to be returned the next time FileFullEaInformation is called using this

Open as defined in section 2.1.5.11.12.<32>

TargetOplockKey: A GUID value that may be used to identify the owner of the Open for the

purpose of determining whether to break an oplock in response to a request delivered on a
particular Open. Requests on an Open whose Open.TargetOplockKey value matches the
Open.TargetOplockKey value associated with an oplock that exists on the Stream do not

affect the oplock state (that is, do not cause the oplock to break). For a given Open, the

TargetOplockKey value could be empty. An empty value MUST NOT be considered equal to
anything other than itself. In other words, given two Open values, Open1 and Open2, such that
Open1.TargetOplockKey and/or Open2.TargetOplockKey are empty,
Open1.TargetOplockKey MUST NOT be considered equal to Open2.TargetOplockKey.

%5bMS-SMB2%5d.pdf
%5bMS-FSCC%5d.pdf
%5bMS-DTYP%5d.pdf

20 / 249

[MS-FSA] — v20130722
 File System Algorithms

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

ParentOplockKey: A GUID value that can be used to identify the owner of an oplock on the

parent directory of the File associated with the current Open for the purpose of determining

whether to break an oplock on the parent in response to a request delivered on a particular

Open to a child of that parent. Requests on an Open whose Open.ParentOplockKey value
matches the Open.TargetOplockKey value associated with an oplock that exists on the parent
directory Stream do not affect the parent's oplock state (that is, do not cause the oplock to
break). For a given Open, the TargetOplockKey value could be empty. An empty value MUST
NOT be considered equal to anything other than itself. In other words, given two Open values,
ParentOpen on a directory and ChildOpen on a child (either file or directory), such that
ParentOpen.TargetOplockKey and/or ChildOpen.ParentOplockKey are empty, ParentOpen.

TargetOplockKey MUST NOT be considered equal to ChildOpen.ParentOplockKey.

2.1.1.7 Per ByteRangeLock

LockOffset: A 64-bit unsigned integer specifying the offset, in bytes, from the beginning of a

stream where the locked range begins.

LockLength: A 64-bit unsigned integer specifying the length, in bytes, of the locked range.

IsExclusive: A Boolean that is TRUE if this is an exclusive byte range lock, else FALSE if this is a

shared byte range lock.

OwnerOpen: The Open that owns this ByteRangeLock.

2.1.1.8 Per ChangeNotifyEntry

OpenedDirectory: The Open of the DirectoryFile to monitor for changes.

WatchTree: A Boolean value, set to TRUE if changes to subdirectories MUST be notified, FALSE if

not.

CompletionFilter: A 32-bit unsigned integer composed of flags indicating the types of changes

to monitor as specified in [MS-SMB2] section 2.2.35.

NotifyEventList: A list of NotifyEventEntries, representing change events that were not yet

reported to the user.

2.1.1.9 Per NotifyEventEntry

Action: A 32-bit unsigned integer composed of flags indicating the type of change events that

occurred, as specified in [MS-FSCC] section 2.4.42.

FileName (variable): A non-null-terminated Unicode string containing the relative path and

name of the file that changed.

2.1.1.10 Per Oplock

ExclusiveOpen: The Open used to request the opportunistic lock.

IIOplocks: A list of zero or more Opens used to request a LEVEL_TWO opportunistic lock, as

specified in section 2.1.5.17.1.

ROplocks: A list of zero or more Opens used to request a

LEVEL_GRANULAR(RequestedOplockLevel: READ_CACHING) opportunistic lock, as specified in
section 2.1.5.17.1.

%5bMS-SMB2%5d.pdf
%5bMS-FSCC%5d.pdf

21 / 249

[MS-FSA] — v20130722
 File System Algorithms

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

RHOplocks: A list of zero or more Opens used to request a

LEVEL_GRANULAR(RequestedOplockLevel: (READ_CACHING|HANDLE_CACHING))

opportunistic lock, as specified in section 2.1.5.17.1.

RHBreakQueue: A list of zero or more RHOpContext objects. This queue is used to track

(READ_CACHING|HANDLE_CACHING) oplocks as they are breaking.

WaitList: A list of zero or more Opens belonging to operations that are waiting for an oplock to

break, as specified in section 2.1.4.12.

State: The current state of the oplock, expressed as a combination of one or more flags. Valid

flags are:

NO_OPLOCK - Indicates that this Oplock does not represent a currently granted or breaking

oplock. This is semantically equivalent to the Oplock object being entirely absent from a
Stream. This flag always appears alone.

LEVEL_ONE_OPLOCK - Indicates that this Oplock represents a Level 1 (also called Exclusive)

oplock.

BATCH_OPLOCK - Indicates that this Oplock represents a Batch oplock.

LEVEL_TWO_OPLOCK - Indicates that this Oplock represents a Level 2 (also called Shared)

oplock.

EXCLUSIVE - Indicates that this Oplock represents an oplock that can be held by exactly one

client at a time. This flag always appears in combination with other flags that indicate the

actual oplock level. For example, (READ_CACHING|WRITE_CACHING|EXCLUSIVE) represents
a read caching and write caching oplock, which can be held by only one client at a time.

BREAK_TO_TWO - Indicates that this Oplock represents an oplock that is currently breaking

from either Level 1 or Batch to Level 2; the oplock has broken but the break has not yet been
acknowledged.

BREAK_TO_NONE - Indicates that this Oplock represents an oplock that is currently breaking

from either Level 1 or Batch to None (that is, no oplock); the oplock has broken but the break
has not yet been acknowledged.

BREAK_TO_TWO_TO_NONE - Indicates that this Oplock represents an oplock that is currently

breaking from either Level 1 or Batch to None (that is, no oplock), and was previously
breaking from Level 1 or Batch to Level 2; the oplock has broken but the break has not yet
been acknowledged.

READ_CACHING - Indicates that this Oplock represents an oplock that provides caching of

reads; this provides the SMB 2.1 read caching lease, as described in [MS-SMB2] section
2.2.13.2.8.

HANDLE_CACHING - Indicates that this Oplock represents an oplock that provides caching of

handles; this provides the SMB 2.1 handle caching lease, as described in [MS-SMB2] section
2.2.13.2.8.

WRITE_CACHING - Indicates that this Oplock represents an oplock that provides caching of

writes; this provides the SMB 2.1 write caching lease, as described in [MS-SMB2] section
2.2.13.2.8.

MIXED_R_AND_RH - Always appears together with READ_CACHING and HANDLE_CACHING.

Indicates that this Oplock represents an oplock on which at least one client has been granted

%5bMS-SMB2%5d.pdf
%5bMS-SMB2%5d.pdf
%5bMS-SMB2%5d.pdf

22 / 249

[MS-FSA] — v20130722
 File System Algorithms

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

a read caching oplock, and at least one other client has been granted a read caching and
handle caching oplock.

BREAK_TO_ READ_CACHING - Indicates that this Oplock represents an oplock that is

currently breaking to an oplock that provides caching of reads; the oplock has broken but the
break has not yet been acknowledged.

BREAK_TO_WRITE_CACHING - Indicates that this Oplock represents an oplock that is

currently breaking to an oplock that provides caching of writes; the oplock has broken but the
break has not yet been acknowledged.

BREAK_TO_HANDLE_CACHING - Indicates that this Oplock represents an oplock that is

currently breaking to an oplock that provides caching of handles; the oplock has broken but
the break has not yet been acknowledged.

BREAK_TO_NO_CACHING - Indicates that this Oplock represents an oplock that is currently

breaking to None (that is, no oplock); the oplock has broken but the break has not yet been
acknowledged.

2.1.1.11 Per RHOpContext

Open: The Open used to request this LEVEL_GRANULAR(RequestedOplockLevel:

(READ_CACHING|HANDLE_CACHING)) opportunistic lock.

BreakingToRead: A Boolean value that is TRUE if this oplock is breaking to READ_CACHING,

FALSE if it is breaking to None (that is, no oplock; the oplock is being broken completely).

2.1.1.12 Per CancelableOperations

CancelableOperationList: A global list of cancelable operations currently being processed by

the object store. Items in this list are looked up via their IORequest Identifier as defined in
section 2.1.5.19. Operations are inserted into this list when a cancelable operation waits.

2.1.1.13 Per SecurityContext

SIDs: An array of SID structures, as specified in [MS-DTYP] section 2.4.2, representing the

security identifier of the user performing an operation and the security identifiers of all groups of
which the user is a member.

OwnerIndex: An index into SIDs indicating the SID of the user.

PrimaryGroup: An index into SIDs indicating the SID of the user's primary group.

DefaultDACL: An ACL structure, as specified in [MS-DTYP] section 2.4.5, representing the

default DACL assigned to new files created by the user.

PrivilegeSet: A set of privilege names, as specified in [MS-LSAD] section 3.1.1.2.1, representing

the privileges held by the user.

2.1.2 Timers

The object store has no timers.

%5bMS-DTYP%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-LSAD%5d.pdf

23 / 249

[MS-FSA] — v20130722
 File System Algorithms

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

2.1.3 Initialization

On initialization, one or more Volume objects are initialized based on the data stored in the
persistent store. This involves instantiating one or more File objects contained within the volume.

2.1.4 Common Algorithms

This section describes internal algorithms that are common across multiple triggered events.

2.1.4.1 Algorithm for Reporting a Change Notification for a Directory

The inputs for this algorithm are:

Volume: The volume this event occurs on.

Action: A 32-bit unsigned integer describing the action that caused the change events to be

notified, as specified in [MS-SMB2] section 2.4.42.

FilterMatch: A 32-bit unsigned integer field with flags representing possible change events,

corresponding to a ChangeNotifyEntry.CompletionFilter. It is specified in [MS-SMB2] section
2.2.35.

FileName: The pathname, relative to Volume.RootDirectory, of the file involved in the change

event.

Pseudocode for the algorithm is as follows:

For each ChangeNotifyEntry in Volume.ChangeNotifyList:

Initialize SendNotification to FALSE.

If ChangeNotifyEntry.OpenedDirectory.File matches the File whose pathname is

FileName or matches the immediate parent of this File and one or more of the flags in
FilterMatch are present in ChangeNotifyEntry.CompletionFilter, then SendNotification

MUST be set to TRUE.

Else If ChangeNotifyEntry.WatchTree is TRUE and

ChangeNotifyEntry.OpenedDirectory.File matches an ancestor of the File whose

pathname is FileName and one or more of the flags in FilterMatch are present in
ChangeNotifyEntry.CompletionFilter, then SendNotification MUST be set to TRUE.

EndIf

If SendNotification is TRUE:

A NotifyEventEntry object MUST be constructed with:

NotifyEventEntry.Action set to Action.

NotifyEventEntry.FileName set to the portion of FileName relative to

ChangeNotifyEntry.OpenedDirectory.FileName.

Insert NotifyEventEntry into ChangeNotifyEntry.NotifyEventList.

Processing will be performed as described in section 2.1.5.10.1.

EndIf

%5bMS-SMB2%5d.pdf
%5bMS-SMB2%5d.pdf

24 / 249

[MS-FSA] — v20130722
 File System Algorithms

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

EndFor

2.1.4.2 Algorithm for Detecting If Open Files Exist Within a Directory

The inputs for this algorithm are:

File: The DirectoryFile we inspect for open files.

Open: The Open for the request that is calling this algorithm.

Operation: A code describing the operation being processed, per section 2.1.4.12.

OpParams: Parameters associated with Operation, passed in from the calling request, per

section 2.1.4.12.

The output is a Boolean. If the return value is TRUE, then no open files exist within the directory; if
FALSE, then at least one open exists even after attempting to break oplocks.

Pseudocode for the algorithm is as follows:

For each OpenFile in File.Volume.OpenFileList:

If OpenFile.OpenList contains any elements with Link.ParentFile equal to File:

For each Stream in OpenFile.StreamList:

If Stream.Oplock is not empty and Stream.Oplock.State contains either

BATCH_OPLOCK or HANDLE_CACHING, the object store MUST check for an oplock break
according to the algorithm in section 2.1.4.12, with input values as follows:

Open equal to this algorithm's Open.

Oplock equal to Stream.Oplock.

Operation equal to this algorithm's Operation.

OpParams equal to this algorithm's OpParams.

EndIf

EndFor

EndIf

EndFor

// See if all oplock holders have gotten out of the way.

For each OpenFile in File.Volume.OpenFileList:

If OpenFile.OpenList contains any elements with Link.ParentFile equal to File:

Return FALSE // An open child still exists, deny the operation.

EndIf

EndFor

Return TRUE // No opens remaining.

25 / 249

[MS-FSA] — v20130722
 File System Algorithms

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

2.1.4.3 Algorithm for Determining If a Character Is a Wildcard

The following set of characters MUST be treated as wildcards by the object store:

" * < > ?

2.1.4.4 Algorithm for Determining if a FileName Is in an Expression

The inputs for this algorithm are:

FileName: A Unicode string containing the file name string that is being matched. Filename

may not contain any wildcard characters.

Expression: A Unicode string containing the regular expression that's being matched with

FileName.

IgnoreCase: A Boolean value indicating whether the match is case insensitive (TRUE) or case

sensitive (FALSE).

This algorithm returns TRUE if FileName matches Expression, and FALSE if it does not.

Pseudocode for the algorithm is as follows:

Part 1 -- Handle Special Case Optimizations

If FileName is empty and Expression is not, the routine returns FALSE.

If Expression is empty and FileName is not, the routine returns FALSE.

If both Expression and FileName are empty, the routine returns TRUE.

If the Expression is the wildcard "*" or "*.*", the FileName matches the Expression and the

routine returns TRUE.

If the first character in the Expression is wildcard "*" and the rest of the expression does not

contain any wildcard characters (as per 2.1.4.3), then the remaining expression is compared
against the tail end of the FileName. If the comparison succeeds then the routine returns TRUE.

Part 2 -- Match Expression with FileName

The FileName is string compared with Expression using the following wildcard rules:

* (asterisk) Matches zero or more characters.

? (question mark) Matches a single character.

DOS_DOT (" quotation mark) Matches either a period or zero characters beyond the name

string.

DOS_QM (> greater than) Matches any single character or, upon encountering a period or end

of name string, advances the expression to the end of the set of contiguous DOS_QMs.

DOS_STAR (< less than) Matches zero or more characters until encountering and matching

the final . in the name.

26 / 249

[MS-FSA] — v20130722
 File System Algorithms

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

2.1.4.5 BlockAlign -- Macro to Round a Value Up to the Next Nearest Multiple of

Another Value

The inputs for this algorithm are:

Value: The value being rounded up.

Boundary - Value is to be rounded up to a multiple of this value. Boundary MUST be a power

of 2.

This algorithm returns the bitwise AND of (Value + (Boundary - 1)) with the 2's complement of
Boundary.

Pseudocode for the algorithm is as follows:

BlockAlign(Value, Boundary) = (Value + (Boundary - 1)) & -(Boundary)

2.1.4.6 BlockAlignTruncate -- Macro to Round a Value Down to the Next Nearest

Multiple of Another Value

The inputs for this algorithm are:

Value: The value being rounded down.

Boundary - Value is to be rounded down to a multiple of this value.Boundary MUST be a

power of 2.

This algorithm returns the bitwise AND of Value with the 2's complement of Boundary.

Pseudocode for the algorithm is as follows:

BlockAlignTruncate(Value, Boundary) = Value & -(Boundary)

2.1.4.7 ClustersFromBytes -- Macro to Determine How Many Clusters a Given

Number of Bytes Occupies

The inputs for this algorithm are:

ThisVolume: A Volume.

Bytes: The number of bytes.

Pseudocode for the algorithm is as follows:

ClustersFromBytes(ThisVolume, Bytes) = (Bytes + (ThisVolume.ClusterSize - 1)) /

ThisVolume.ClusterSize.

The value returned is the total number of clusters required to hold the specified number of bytes

that start at a cluster boundary, including any remainder that does not fill a whole cluster.

2.1.4.8 ClustersFromBytesTruncate -- Macro to Determine How Many Whole

Clusters a Given Number of Bytes Occupies

The inputs for this algorithm are:

ThisVolume: A Volume.

27 / 249

[MS-FSA] — v20130722
 File System Algorithms

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Bytes: The number of bytes.

Pseudocode for the algorithm is as follows:

ClustersFromBytesTruncate(ThisVolume, Bytes) = Bytes / ThisVolume.ClusterSize.

The value returned is the number of clusters that would be fully occupied by the specified

number of bytes that start at a cluster boundary. Any remainder that does not fill a whole cluster
is discarded.

2.1.4.9 SidLength -- Macro to Provide the Length of a SID

The inputs for this algorithm are:

SID: A SID, as described in [MS-DTYP] section 2.4.2.

This algorithm returns the size, in bytes, of SID. This is equal to the number of bytes occupied by
the Revision, SubAuthorityCount, and IdentifierAuthorityCount fields of a SID. Added to this

is the size of a SubAuthority field of a SID times SID.SubAuthorityCount.

Pseudocode for the algorithm is as follows:

SidLength(SID) = (8 + (4 * SID.SubAuthorityCount))

2.1.4.10 Algorithm for Determining If a Range Access Conflicts with Byte-Range

Locks

The inputs for this algorithm are:

ByteOffset: A 64-bit unsigned integer specifying the offset of the first byte of the range.

Length: A 64-bit unsigned integer specifying the number of bytes in the range.

IsExclusive: TRUE if the access to the range has exclusive intent, FALSE otherwise.

LockIntent: TRUE if the access to the range has locking intent, FALSE if the intent is performing

I/O (reads or writes).

Open: The open to the file on which to check for range conflicts.

This algorithm outputs a Boolean value:

TRUE if the range conflicts with byte-range locks.

FALSE if the range does not conflict.

Pseudocode for the algorithm is as follows:

If ((ByteOffset == 0) and (Length == 0)):

The {0, 0} range doesn't conflict with any byte-range lock.

Return FALSE.

EndIf

For each ByteRangeLock in Open.Stream.ByteRangeLockList:

%5bMS-DTYP%5d.pdf

28 / 249

[MS-FSA] — v20130722
 File System Algorithms

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

If ((ByteRangeLock.LockOffset == 0) and (ByteRangeLock.LockLength == 0)):

The byte-range lock is over the {0, 0} range so there is no overlap by definition.

Else:

Initialize LastByteOffset1 = ByteOffset + Length - 1.

Initialize LastByteOffset2 = ByteRangeLock.LockOffset + ByteRangeLock.LockLength - 1.

If ((ByteOffset <= LastByteOffset2) and (LastByteOffset1 >=

ByteRangeLock.LockOffset)):

ByteRangeLock and the passed range overlap.

If (ByteRangeLock.IsExclusive == TRUE):

If (ByteRangeLock.OwnerOpen != Open):

Exclusive byte-range locks block all access to other Opens.

Return TRUE.

Else If ((IsExclusive == TRUE) and (LockIntent == TRUE)):

Overlapping exclusive byte-range locks are not allowed even by the same owner.

Return TRUE.

EndIf

Else If (IsExclusive == TRUE):

The ByteRangeLock is shared, shared byte-range locks will block all access with

exclusive intent.

Return TRUE.

EndIf

EndIf

EndIf

EndFor

Return FALSE.

2.1.4.11 Algorithm for Posting a USN Change for a File

The inputs for this algorithm are:

File: The file this change occurs on.

Reason: A 32-bit unsigned integer describing the change that occurred to the file, as specified in

[MS-FSCC] section 2.3.44.

FileName: The pathname, relative to Volume.RootDirectory, of the file this change occurs on.

%5bMS-FSCC%5d.pdf

29 / 249

[MS-FSA] — v20130722
 File System Algorithms

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

The algorithm MUST return at this point without taking any actions under any of the following
conditions:

If the object store does not support USN change journals.

If File.Volume.IsUsnJournalActive is FALSE.

If Reason is zero.

Pseudocode for the algorithm is as follows:

Set FileNameLength to the length, in bytes, of FileName.

Set RecordLength to an implementation-specific<33> value representing the number of bytes

needed to persist the USN change to the store.

Set File.Volume.LastUsn to File.Volume.LastUsn + RecordLength.

Set File.Usn to File.Volume.LastUsn.

2.1.4.12 Algorithm to Check for an Oplock Break

The inputs for this algorithm are:

Open: The Open being used in the request calling this algorithm.

Oplock: The Oplock being checked.

Operation: A code describing the operation being processed.

OpParams: Parameters associated with the Operation code that are passed in from the calling

request. For example, if Operation is OPEN, as specified in section 2.1.5.1, then OpParams will

have the members DesiredAccess and CreateDisposition. Each of these is a parameter to the
open request as specified in section 2.1.5.1. This parameter could be empty, depending on the
Operation code.

Flags: An optional parameter. If unspecified it is considered to contain 0. Valid nonzero values

are:

PARENT_OBJECT

The algorithm uses the following local variables:

Boolean values (initialized to FALSE): BreakToTwo, BreakToNone, NeedToWait

BreakCacheLevel – MAY contain 0 or a combination of one or more of READ_CACHING,

WRITE_CACHING, or HANDLE_CACHING, as specified in section 2.1.1.10. Initialized to 0.

Note that there are only four legal nonzero combinations of flags for BreakCacheLevel:

(READ_CACHING|WRITE_CACHING|HANDLE_CACHING)

(READ_CACHING|WRITE_CACHING)

WRITE_CACHING

HANDLE_CACHING

Pseudocode for the algorithm is as follows:

30 / 249

[MS-FSA] — v20130722
 File System Algorithms

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

If Oplock is not empty and Oplock.State is not NO_OPLOCK:

If Flags contains PARENT_OBJECT:

If Operation is OPEN, as specified in section 2.1.5.1, or

Operation is FLUSH_DATA, as specified in section 2.1.5.6, or

Operation is CLOSE, as specified in section 2.1.5.4, or

Operation is FS_CONTROL, as specified in section 2.1.5.9, and OpParams.ControlCode is
FSCTL_SET_ENCRYPTION, or

Operation is SET_INFORMATION, as specified in section 2.1.5.14, and
OpParams.FileInformationClass is one of FileBasicInformation or FileAllocationInformation
or FileEndOfFileInformation or FileRenameInformation or FileLinkInformation or

FileShortNameInformation or FileValidDataLengthInformation:

Set BreakCacheLevel to (READ_CACHING|WRITE_CACHING).

EndIf

Else:

Switch (Operation):

Case OPEN, as specified in section 2.1.5.1:

If OpParams.DesiredAccess contains no flags other than FILE_READ_ATTRIBUTES,

FILE_WRITE_ATTRIBUTES, or SYNCHRONIZE, the algorithm returns at this point.

EndIf

If OpParams.CreateDisposition is FILE_SUPERSEDE, FILE_OVERWRITE, or

FILE_OVERWRITE_IF:

Set BreakToNone to TRUE, set BreakCacheLevel to

(READ_CACHING|WRITE_CACHING).

Else

Set BreakToTwo to TRUE, set BreakCacheLevel to WRITE_CACHING.

EndIf

EndCase

Case OPEN_BREAK_H, as specified in section 2.1.5.1:

Set BreakCacheLevel to HANDLE_CACHING.

EndCase

Case CLOSE, as specified in section 2.1.5.4:

If Oplock.IIOplocks is not empty:

For each Open ThisOpen in Oplock.IIOplocks:

31 / 249

[MS-FSA] — v20130722
 File System Algorithms

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

If ThisOpen == Open:

Remove ThisOpen from Oplock.IIOplocks.

Notify the server of an oplock break according to the algorithm in section

2.1.5.17.3, setting the algorithm's parameters as follows:

BreakingOplockOpen equal to ThisOpen.

NewOplockLevel equal to LEVEL_NONE.

AcknowledgeRequired equal to FALSE.

OplockCompletionStatus equal to STATUS_SUCCESS.

(The operation does not end at this point; this call to 2.1.5.17.3 completes

some earlier call to 2.1.5.17.2.)

EndIf

EndFor

Recompute Oplock.State according to the algorithm in section 2.1.4.13, passing

Oplock as the ThisOplock parameter.

EndIf

If Oplock.ROplocks is not empty:

For each Open ThisOpen in Oplock.ROplocks:

If ThisOpen == Open:

Remove ThisOpen from Oplock.ROplocks.

Notify the server of an oplock break according to the algorithm in section

2.1.5.17.3, setting the algorithm's parameters as follows:

BreakingOplockOpen equal to ThisOpen.

NewOplockLevel equal to LEVEL_NONE.

AcknowledgeRequired equal to FALSE.

OplockCompletionStatus equal to STATUS_OPLOCK_HANDLE_CLOSED.

(The operation does not end at this point; this call to 2.1.5.17.3 completes

some earlier call to 2.1.5.17.2.)

EndIf

EndFor

Recompute Oplock.State according to the algorithm in section 2.1.4.13, passing

Oplock as the ThisOplock parameter.

EndIf

If Oplock.RHOplocks is not empty:

%5bMS-GLOS%5d.pdf

32 / 249

[MS-FSA] — v20130722
 File System Algorithms

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

For each Open ThisOpen in Oplock.RHOplocks:

If ThisOpen == Open:

Remove ThisOpen from Oplock.RHOplocks.

Notify the server of an oplock break according to the algorithm in section

2.1.5.17.3, setting the algorithm's parameters as follows:

BreakingOplockOpen equal to ThisOpen.

NewOplockLevel equal to LEVEL_NONE.

AcknowledgeRequired equal to FALSE.

OplockCompletionStatus equal to STATUS_OPLOCK_HANDLE_CLOSED.

(The operation does not end at this point; this call to 2.1.5.17.3 completes

some earlier call to 2.1.5.17.2.)

EndIf

EndFor

Recompute Oplock.State according to the algorithm in section 2.1.4.13, passing

Oplock as the ThisOplock parameter.

EndIf

If Oplock.RHBreakQueue is not empty:

For each RHOpContext ThisContext in Oplock.RHBreakQueue:

If ThisContext.Open == Open:

Remove ThisContext from Oplock.RHBreakQueue.

EndIf

EndFor

Recompute Oplock.State according to the algorithm in section 2.1.4.13, passing

Oplock as the ThisOplock parameter.

For each Open WaitingOpen on Oplock.WaitList:

If Oplock.RHBreakQueue is empty:

Indicate that the operation associated with WaitingOpen may continue

according to the algorithm in section 2.1.4.12.1, setting OpenToRelease equal
to WaitingOpen.

Remove WaitingOpen from Oplock.WaitList.

Else

If the value on every RHOpContext.Open.TargetOplockKey on

Oplock.RHBreakQueue is equal to WaitingOpen .TargetOplockKey:

33 / 249

[MS-FSA] — v20130722
 File System Algorithms

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Indicate that the operation associated with WaitingOpen may continue

according to the algorithm in section 2.1.4.12.1, setting OpenToRelease

equal to WaitingOpen.

Remove WaitingOpen from Oplock.WaitList.

EndIf

EndIf

EndFor

EndIf

If Open equals Open.Oplock.ExclusiveOpen

If Oplock.State contains none of BREAK_TO_TWO, BREAK_TO_NONE,

BREAK_TO_TWO_TO_NONE, BREAK_TO_READ_CACHING,

BREAK_TO_WRITE_CACHING, BREAK_TO_HANDLE_CACHING, or
BREAK_TO_NO_CACHING:

Notify the server of an oplock break according to the algorithm in section

2.1.5.17.3, setting the algorithm's parameters as follows:

BreakingOplockOpen equal to Oplock.ExclusiveOpen.

NewOplockLevel equal to LEVEL_NONE.

AcknowledgeRequired equal to FALSE.

OplockCompletionStatus equal to:

STATUS_OPLOCK_HANDLE_CLOSED if Oplock.State contains any of

READ_CACHING, WRITE_CACHING, or HANDLE_CACHING.

STATUS_SUCCESS otherwise.

(The operation does not end at this point; this call to 2.1.5.17.3 completes some

earlier call to 2.1.5.17.1.)

EndIf

Set Oplock.ExclusiveOpen to NULL.

Set Oplock.State to NO_OPLOCK.

For each Open WaitingOpen on Oplock.WaitList:

Indicate that the operation associated with WaitingOpen may continue according

to the algorithm in section 2.1.4.12.1, setting OpenToRelease equal to
WaitingOpen.

Remove WaitingOpen from Oplock.WaitList.

EndFor

EndIf

EndCase

34 / 249

[MS-FSA] — v20130722
 File System Algorithms

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Case READ, as specified in section 2.1.5.2:

Set BreakToTwo to TRUE

Set BreakCacheLevel to WRITE_CACHING.

EndCase

Case FLUSH_DATA, as specified in section 2.1.5.6:

Set BreakToTwo to TRUE

Set BreakCacheLevel to WRITE_CACHING.

EndCase

Case LOCK_CONTROL, as specified in section 2.1.5.7:

Case WRITE, as specified in section 2.1.5.3:

Set BreakToNone to TRUE

Set BreakCacheLevel to (READ_CACHING|WRITE_CACHING).

EndCase

Case SET_INFORMATION, as specified in section 2.1.5.14:

Switch (OpParams.FileInformationClass):

Case FileEndOfFileInformation:

Case FileAllocationInformation:

Set BreakToNone to TRUE

Set BreakCacheLevel to (READ_CACHING|WRITE_CACHING).

EndCase

Case FileRenameInformation:

Case FileLinkInformation:

Case FileShortNameInformation:

Set BreakCacheLevel to HANDLE_CACHING.

If Oplock.State contains BATCH_OPLOCK, set BreakToNone to TRUE.

EndCase

Case FileDispositionInformation:

If OpParams.DeleteFile is TRUE,

Set BreakCacheLevel to HANDLE_CACHING.

EndCase

35 / 249

[MS-FSA] — v20130722
 File System Algorithms

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

EndSwitch // FileInfoClass

Case FS_CONTROL, as specified in section 2.1.5.9:

If OpParams.ControlCode is FSCTL_SET_ZERO_DATA:

Set BreakToNone to TRUE.

Set BreakCacheLevel to (READ_CACHING|WRITE_CACHING).

EndIf

EndCase

EndSwitch // Operation

EndIf

If BreakToTwo is TRUE:

If (Oplock.State != LEVEL_TWO_OPLOCK) and

((Oplock.ExclusiveOpen is empty) or

(Oplock.ExclusiveOpen.TargetOplockKey != Open.TargetOplockKey)):

If (Oplock.State contains EXCLUSIVE) and

(Oplock.State contains none of READ_CACHING, WRITE_CACHING, or
HANDLE_CACHING):

If Oplock.State contains none of BREAK_TO_TWO, BREAK_TO_NONE,

BREAK_TO_TWO_TO_NONE, BREAK_TO_READ_CACHING, BREAK_TO_WRITE_CACHING,
BREAK_TO_HANDLE_CACHING, or BREAK_TO_NO_CACHING:

// Oplock.State MUST contain either LEVEL_ONE_OPLOCK or BATCH_OPLOCK.

Set BREAK_TO_TWO in Oplock.State.

Notify the server of an oplock break according to the algorithm in section 2.1.5.17.3,

setting the algorithm's parameters as follows:

BreakingOplockOpen equal to Oplock.ExclusiveOpen.

NewOplockLevel equal to LEVEL_TWO.

AcknowledgeRequired equal to TRUE.

OplockCompletionStatus equal to STATUS_SUCCESS.

(The operation does not end at this point; this call to 2.1.5.17.3 completes some

earlier call to 2.1.5.17.1.)

EndIf

The operation that called this algorithm MUST be made cancelable by inserting it into

CancelableOperations.CancelableOperationList.

36 / 249

[MS-FSA] — v20130722
 File System Algorithms

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

The operation that called this algorithm waits until the oplock break is acknowledged, as

specified in section 2.1.5.18, or the operation is canceled.

EndIf

EndIf

Else If BreakToNone is TRUE:

If (Oplock.State == LEVEL_TWO_OPLOCK) or

(Oplock.ExclusiveOpen is empty) or

(Oplock.ExclusiveOpen.TargetOplockKey != Open.TargetOplockKey):

If (Oplock.State != NO_OPLOCK) and

(Oplock.State contains neither WRITE_CACHING nor HANDLE_CACHING):

If Oplock.State contains none of LEVEL_TWO_OPLOCK, BREAK_TO_TWO,

BREAK_TO_NONE, BREAK_TO_TWO_TO_NONE, BREAK_TO_READ_CACHING,
BREAK_TO_WRITE_CACHING, BREAK_TO_HANDLE_CACHING, or
BREAK_TO_NO_CACHING:

// There could be a READ_CACHING-only oplock here. Those are broken later on.

If Oplock.State contains READ_CACHING, go to the LeaveBreakToNone label.

Set BREAK_TO_NONE in Oplock.State.

Notify the server of an oplock break according to the algorithm in section 2.1.5.17.3,

setting the algorithm's parameters as follows:

BreakingOplockOpen equal to Oplock.ExclusiveOpen.

NewOplockLevel equal to LEVEL_NONE.

AcknowledgeRequired equal to TRUE.

OplockCompletionStatus equal to STATUS_SUCCESS.

(The operation does not end at this point; this call to 2.1.5.17.3 completes some

earlier call to 2.1.5.17.1.)

Else If Oplock.State equals LEVEL_TWO_OPLOCK or

(LEVEL_TWO_OPLOCK|READ_CACHING):

For each Open ThisOpen in Oplock.IIOplocks:

Remove ThisOpen from Oplock.IIOplocks.

Notify the server of an oplock break according to the algorithm in section

2.1.5.17.3, setting the algorithm's parameters as follows:

BreakingOplockOpen equal to ThisOpen.

NewOplockLevel equal to LEVEL_NONE.

AcknowledgeRequired equal to FALSE.

37 / 249

[MS-FSA] — v20130722
 File System Algorithms

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

OplockCompletionStatus equal to STATUS_SUCCESS.

(The operation does not end at this point; this call to 2.1.5.17.3 completes some

earlier call to 2.1.5.17.2.)

EndFor

If Oplock.State equals (LEVEL_TWO_OPLOCK|READ_CACHING):

Set Oplock.State equal to READ_CACHING.

Else

Set Oplock.State equal to NO_OPLOCK.

EndIf

Go to the LeaveBreakToNone label.

Else If Oplock.State contains BREAK_TO_TWO:

Clear BREAK_TO_TWO from Oplock.State.

Set BREAK_TO_TWO_TO_NONE in Oplock.State.

EndIf

If Oplock.ExclusiveOpen is not empty, and

Oplock.ExclusiveOpen.TargetOplockKey equals Open.TargetOplockKey, go to the
LeaveBreakToNone label.

The operation that called this algorithm MUST be made cancelable by inserting it into

CancelableOperations.CancelableOperationList.

The operation that called this algorithm waits until the oplock break is acknowledged, as

specified in section 2.1.5.18, or the operation is canceled.

EndIf

EndIf

EndIf

LeaveBreakToNone (goto destination label):

If BreakCacheLevel is not 0:

If Oplock.State contains any flags that are in BreakCacheLevel:

If Oplock.ExclusiveOpen is not empty, call the algorithm in section 2.1.4.12.2, passing

Open as the OperationOpen parameter, Oplock.ExclusiveOpen as the OplockOpen
parameter, and Flags as the Flags parameter. If the algorithm returns TRUE:

The algorithm returns at this point.

Switch (Oplock.State):

Case (READ_CACHING|HANDLE_CACHING|MIXED_R_AND_RH):

38 / 249

[MS-FSA] — v20130722
 File System Algorithms

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Case READ_CACHING:

Case (LEVEL_TWO_OPLOCK|READ_CACHING):

If BreakCacheLevel contains READ_CACHING:

For each Open ThisOpen in Oplock.ROplocks:

Call the algorithm in section 2.1.4.12.2, passing Open as the OperationOpen

parameter, ThisOpen as the OplockOpen parameter, and Flags as the Flags
parameter. If the algorithm returns FALSE:

Remove ThisOpen from Oplock.ROplocks.

Notify the server of an oplock break according to the algorithm in section

2.1.5.17.3, setting the algorithm's parameters as follows:

BreakingOplockOpen equal to ThisOpen.

NewOplockLevel equal to LEVEL_NONE.

AcknowledgeRequired equal to FALSE.

OplockCompletionStatus equal to STATUS_SUCCESS.

(The operation does not end at this point; this call to 2.1.5.17.3 completes

some earlier call to 2.1.5.17.2.)

EndIf

EndFor

EndIf

If Oplock.State equals (READ_CACHING|HANDLE_CACHING|MIXED_R_AND_RH):

// Do nothing; FALL THROUGH to next Case statement.

Else

Recompute Oplock.State according to the algorithm in section 2.1.4.13, passing

Oplock as the ThisOplock parameter.

EndCase

EndIf

Case (READ_CACHING|HANDLE_CACHING):

If BreakCacheLevel equals HANDLE_CACHING:

For each Open ThisOpen in Oplock.RHOplocks:

If ThisOpen.OplockKey does not equal Open.OplockKey:

Remove ThisOpen from Oplock.RHOplocks.

Notify the server of an oplock break according to the algorithm in section

2.1.5.17.3, setting the algorithm's parameters as follows:

39 / 249

[MS-FSA] — v20130722
 File System Algorithms

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

BreakingOplockOpen equal to ThisOpen.

NewOplockLevel equal to READ_CACHING.

AcknowledgeRequired equal to TRUE.

OplockCompletionStatus equal to STATUS_SUCCESS.

(The operation does not end at this point; this call to 2.1.5.17.3 completes

some earlier call to 2.1.5.17.2.)

Initialize a new RHOpContext object, setting its fields as follows:

RHOpContext.Open set to ThisOpen.

RHOpContext.BreakingToRead to TRUE.

Add the new RHOpContext object to Oplock.RHBreakQueue.

Set NeedToWait to TRUE.

EndIf

EndFor

Else If BreakCacheLevel contains both READ_CACHING and WRITE_CACHING:

For each RHOpContext ThisContext in Oplock.RHBreakQueue:

Call the algorithm in section 2.1.4.12.2, passing Open as the OperationOpen

parameter, ThisContext.Open as the OplockOpen parameter, and Flags as

the Flags parameter. If the algorithm returns FALSE:

Set ThisContext.BreakingToRead to FALSE.

If BreakCacheLevel contains HANDLE_CACHING:

Set NeedToWait to TRUE.

EndIf

EndIf

EndFor

For each Open ThisOpen in Oplock.RHOplocks:

Call the algorithm in section 2.1.4.12.2, passing Open as the OperationOpen

parameter, ThisOpen as the OplockOpen parameter, and Flags as the Flags
parameter. If the algorithm returns FALSE:

Remove ThisOpen from Oplock.RHOplocks.

Notify the server of an oplock break according to the algorithm in section

2.1.5.17.3, setting the algorithm's parameters as follows:

BreakingOplockOpen equal to ThisOpen.

NewOplockLevel equal to LEVEL_NONE.

40 / 249

[MS-FSA] — v20130722
 File System Algorithms

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

AcknowledgeRequired equal to TRUE.

OplockCompletionStatus equal to STATUS_SUCCESS.

(The operation does not end at this point; this call to 2.1.5.17.3 completes

some earlier call to 2.1.5.17.2.)

Initialize a new RHOpContext object, setting its fields as follows:

RHOpContext.Open set to ThisOpen.

RHOpContext.BreakingToRead to FALSE.

Add the new RHOpContext object to Oplock.RHBreakQueue.

If BreakCacheLevel contains HANDLE_CACHING:

Set NeedToWait to TRUE.

EndIf

EndIf

EndFor

EndIf

// If the oplock is explicitly losing HANDLE_CACHING, RHBreakQueue is not empty,

// and the algorithm has not yet decided to wait, this operation may have to wait if

// there is an oplock on RHBreakQueue with a non-matching key. This is done

// because even if this operation didn't cause a break of a currently-granted Read-

// Handle caching oplock, it may have done so had a currently-breaking oplock still

// been granted.

If (NeedToWait is FALSE) and

(Oplock.RHBreakQueue is empty) and

(BreakCacheLevel contains HANDLE_CACHING):

For each RHOpContext ThisContex in Oplock.RHBreakQueue:

If ThisContext.Open.OplockKey does not equal Open.OplockKey:

Set NeedToWait to TRUE.

Break out of the For loop.

EndIf

EndFor

EndIf

41 / 249

[MS-FSA] — v20130722
 File System Algorithms

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Recompute Oplock.State according to the algorithm in section 2.1.4.13, passing

Oplock as the ThisOplock parameter.

EndCase

Case (READ_CACHING|HANDLE_CACHING|BREAK_TO_READ_CACHING):

If BreakCacheLevel contains READ_CACHING:

For each RHOpContext ThisContext in Oplock.RHBreakQueue:

Call the algorithm in section 2.1.4.12.2, passing Open as the OperationOpen

parameter, ThisContext.Open as the OplockOpen parameter, and Flags as

the Flags parameter. If the algorithm returns FALSE:

Set ThisContext.BreakingToRead to FALSE.

EndIf

Recompute Oplock.State according to the algorithm in section 2.1.4.13,

passing Oplock as the ThisOplock parameter.

EndFor

EndIf

If BreakCacheLevel contains HANDLE_CACHING:

For each RHOpContext ThisContext in Oplock.RHBreakQueue:

If ThisContext.Open.OplockKey does not equal Open.OplockKey:

Set NeedToWait to TRUE.

Break out of the For loop.

EndIf

EndFor

EndIf

EndCase

Case (READ_CACHING|HANDLE_CACHING|BREAK_TO_NO_CACHING):

If BreakCacheLevel contains HANDLE_CACHING:

For each RHOpContext ThisContext in Oplock.RHBreakQueue:

If ThisContext.Open.OplockKey does not equal Open.OplockKey:

Set NeedToWait to TRUE.

Break out of the For loop.

EndIf

EndFor

42 / 249

[MS-FSA] — v20130722
 File System Algorithms

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

EndIf

EndCase

Case (READ_CACHING|WRITE_CACHING|EXCLUSIVE):

If BreakCacheLevel contains both READ_CACHING and WRITE_CACHING:

Notify the server of an oplock break according to the algorithm in section

2.1.5.17.3, setting the algorithm's parameters as follows:

BreakingOplockOpen equal to Oplock.ExclusiveOpen.

NewOplockLevel equal to LEVEL_NONE.

AcknowledgeRequired equal to TRUE.

OplockCompletionStatus equal to STATUS_SUCCESS.

(The operation does not end at this point; this call to 2.1.5.17.3 completes some

earlier call to 2.1.5.17.1.)

Set Oplock.State to

(READ_CACHING|WRITE_CACHING|EXCLUSIVE|BREAK_TO_NO_CACHING).

Set NeedToWait to TRUE.

Else If BreakCacheLevel contains WRITE_CACHING:

Notify the server of an oplock break according to the algorithm in section

2.1.5.17.3, setting the algorithm's parameters as follows:

BreakingOplockOpen equal to Oplock.ExclusiveOpen.

NewOplockLevel equal to READ_CACHING.

AcknowledgeRequired equal to TRUE.

OplockCompletionStatus equal to STATUS_SUCCESS.

(The operation does not end at this point; this call to 2.1.5.17.3 completes some

earlier call to 2.1.5.17.1.)

Set Oplock.State to (READ_CACHING|WRITE_CACHING|

EXCLUSIVE|BREAK_TO_READ_CACHING).

Set NeedToWait to TRUE.

EndIf

EndCase

Case (READ_CACHING|WRITE_CACHING|HANDLE_CACHING|EXCLUSIVE):

If BreakCacheLevel equals WRITE_CACHING:

Notify the server of an oplock break according to the algorithm in section

2.1.5.17.3, setting the algorithm's parameters as follows:

43 / 249

[MS-FSA] — v20130722
 File System Algorithms

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

BreakingOplockOpen equal to Oplock.ExclusiveOpen.

NewOplockLevel equal to (READ_CACHING|HANDLE_CACHING).

AcknowledgeRequired equal to TRUE.

OplockCompletionStatus equal to STATUS_SUCCESS.

(The operation does not end at this point; this call to 2.1.5.17.3 completes some

earlier call to 2.1.5.17.1.)

Set Oplock.State to

(READ_CACHING|WRITE_CACHING|HANDLE_CACHING|EXCLUSIVE|BREAK_TO_RE

AD_CACHING|BREAK_TO_HANDLE_CACHING).

Set NeedToWait to TRUE.

Else If BreakCacheLevel equals HANDLE_CACHING:

Notify the server of an oplock break according to the algorithm in section

2.1.5.17.3, setting the algorithm's parameters as follows:

BreakingOplockOpen equal to Oplock.ExclusiveOpen.

NewOplockLevel equal to (READ_CACHING|WRITE_CACHING).

AcknowledgeRequired equal to TRUE.

OplockCompletionStatus equal to STATUS_SUCCESS.

(The operation does not end at this point; this call to 2.1.5.17.3 completes some

earlier call to 2.1.5.17.1.)

Set Oplock.State to

(READ_CACHING|WRITE_CACHING|HANDLE_CACHING|EXCLUSIVE|BREAK_TO_RE

AD_CACHING|BREAK_TO_WRITE_CACHING).

Set NeedToWait to TRUE.

Else If BreakCacheLevel contains both READ_CACHING and WRITE_CACHING:

Notify the server of an oplock break according to the algorithm in section

2.1.5.17.3, setting the algorithm's parameters as follows:

BreakingOplockOpen equal to Oplock.ExclusiveOpen.

NewOplockLevel equal to LEVEL_NONE.

AcknowledgeRequired equal to TRUE.

OplockCompletionStatus equal to STATUS_SUCCESS.

(The operation does not end at this point; this call to 2.1.5.17.3 completes some

earlier call to 2.1.5.17.1.)

Set Oplock.State to

(READ_CACHING|WRITE_CACHING|HANDLE_CACHING|EXCLUSIVE|BREAK_TO_N
O_CACHING).

44 / 249

[MS-FSA] — v20130722
 File System Algorithms

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Set NeedToWait to TRUE.

EndIf

EndCase

Case (READ_CACHING|WRITE_CACHING|EXCLUSIVE|BREAK_TO_READ_CACHING):

If BreakCacheLevel contains READ_CACHING:

Set Oplock.State to

(READ_CACHING|WRITE_CACHING|EXCLUSIVE|BREAK_TO_NO_CACHING).

EndIf

If BreakCacheLevel contains either READ_CACHING or WRITE_CACHING:

Set NeedToWait to TRUE.

EndIf

EndCase

Case (READ_CACHING|WRITE_CACHING|EXCLUSIVE|BREAK_TO_NO_CACHING):

If BreakCacheLevel contains either READ_CACHING or WRITE_CACHING:

Set NeedToWait to TRUE.

EndIf

EndCase

Case

(READ_CACHING|WRITE_CACHING|HANDLE_CACHING|EXCLUSIVE|BREAK_TO_READ_C

ACHING|BREAK_TO_WRITE_CACHING):

If BreakCacheLevel == WRITE_CACHING:

Set Oplock.State to

(READ_CACHING|WRITE_CACHING|HANDLE_CACHING|EXCLUSIVE|BREAK_TO_RE
AD_CACHING).

Else If BreakCacheLevel contains both READ_CACHING and WRITE_CACHING:

Set Oplock.State to

(READ_CACHING|WRITE_CACHING|HANDLE_CACHING|EXCLUSIVE|BREAK_TO_N

O_CACHING).

EndIf

Set NeedToWait to TRUE.

EndCase

Case

(READ_CACHING|WRITE_CACHING|HANDLE_CACHING|EXCLUSIVE|BREAK_TO_READ_C
ACHING|BREAK_TO_HANDLE_CACHING):

45 / 249

[MS-FSA] — v20130722
 File System Algorithms

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

If BreakCacheLevel == HANDLE_CACHING:

Set Oplock.State to

(READ_CACHING|WRITE_CACHING|HANDLE_CACHING|EXCLUSIVE|BREAK_TO_RE

AD_CACHING).

Else If BreakCacheLevel contains READ_CACHING:

Set Oplock.State to

(READ_CACHING|WRITE_CACHING|HANDLE_CACHING|EXCLUSIVE|BREAK_TO_N
O_CACHING).

EndIf

Set NeedToWait to TRUE.

EndCase

Case

(READ_CACHING|WRITE_CACHING|HANDLE_CACHING|EXCLUSIVE|BREAK_TO_READ_C

ACHING):

If BreakCacheLevel contains READ_CACHING, set Oplock.State to

(READ_CACHING|WRITE_CACHING|HANDLE_CACHING|EXCLUSIVE|BREAK_TO_NO_
CACHING).

Set NeedToWait to TRUE.

EndCase

Case

(READ_CACHING|WRITE_CACHING|HANDLE_CACHING|EXCLUSIVE|BREAK_TO_NO_CAC
HING):

Set NeedToWait to TRUE.

EndCase

EndSwitch

If NeedToWait is TRUE:

The operation that called this algorithm MUST be made cancelable by inserting it into

CancelableOperations.CancelableOperationList.

The operation that called this algorithm waits until the oplock break is acknowledged, as

specified in section 2.1.5.18, or the operation is canceled.

EndIf

EndIf

EndIf

EndIf

46 / 249

[MS-FSA] — v20130722
 File System Algorithms

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

2.1.4.12.1 Algorithm for Request Processing After an Oplock Breaks

The inputs for this algorithm are:

OpenToRelease: The Open used in the request that caused the oplock to break

Pseudocode for the algorithm is as follows:

The request corresponding to OpenToRelease MUST resume from the point where it broke the

oplock (that is, called section 2.1.4.12).

2.1.4.12.2 Algorithm to Compare Oplock Keys

The inputs for this algorithm are:

OperationOpen: The Open used in the request that may cause an oplock to break.

OplockOpen: The Open originally used to request the oplock, per section 2.1.5.17.

Flags: If unspecified it is considered to contain 0. Valid nonzero values are:

PARENT_OBJECT

This algorithm returns TRUE if the appropriate oplock key field of OperationOpen equals

OplockOpen.TargetOplockKey, and FALSE otherwise.

Pseudocode for the algorithm is as follows:

If OperationOpen equals OplockOpen:

Return TRUE.

If both OperationOpen.TargetOplockKey and OperationOpen.ParentOplockKey are empty

or both OplockOpen.TargetOplockKey and OplockKey.ParentOplockKey are empty:

Return FALSE.

If OplockOpen.TargetOplockKey is empty or

(Flags does not contain PARENT_OBJECT and OperationOpen.TargetOplockKey is empty):

Return FALSE.

If Flags contains PARENT_OBJECT and

OperationOpen.ParentOplockKey is empty:

Return FALSE.

If Flags contains PARENT_OBJECT:

If OperationOpen.ParentOplockKey equals OplockOpen.TargetOplockKey:

Return TRUE.

Else:

Return FALSE.

47 / 249

[MS-FSA] — v20130722
 File System Algorithms

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

EndIf

Else:

If OperationOpen.TargetOplockKey equals OplockOpen.TargetOplockKey:

Return TRUE.

Else:

Return FALSE.

EndIf

EndIf

2.1.4.13 Algorithm to Recompute the State of a Shared Oplock

The inputs for this algorithm are:

ThisOplock: The Oplock on whose state is being recomputed.

Pseudocode for the algorithm is as follows:

If ThisOplock.IIOplocks, ThisOplock.ROplocks, ThisOplock.RHOplocks, and

ThisOplock.RHBreakQueue are all empty:

Set ThisOplock.State to NO_OPLOCK.

Else If ThisOplock.ROplocks is not empty and either ThisOplock.RHOplocks or

ThisOplock.RHBreakQueue are not empty:

Set ThisOplock.State to (READ_CACHING|HANDLE_CACHING|MIXED_R_AND_RH).

Else If ThisOplock.ROplocks is empty and ThisOplock.RHOplocks is not empty:

Set ThisOplock.State to (READ_CACHING|HANDLE_CACHING).

Else If ThisOplock.ROplocks is not empty and ThisOplock.IIOplocks is not empty:

Set ThisOplock.State to (READ_CACHING|LEVEL_TWO_OPLOCK).

Else If ThisOplock.ROplocks is not empty and ThisOplock.IIOplocks is empty:

Set ThisOplock.State to READ_CACHING.

Else If ThisOplock.ROplocks is empty and ThisOplock.IIOplocks is not empty:

Set ThisOplock.State to LEVEL_TWO_OPLOCK.

Else

// ThisOplock.RHBreakQueue MUST be non-empty by this point.

If RHOpContext.BreakingToRead is TRUE for every RHOpContext on

ThisOplock.RHBreakQueue:

Set ThisOplock.State to

(READ_CACHING|HANDLE_CACHING|BREAK_TO_READ_CACHING).

48 / 249

[MS-FSA] — v20130722
 File System Algorithms

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Else If RHOpContext.BreakingToRead is FALSE for every RHOpContext on

ThisOplock.RHBreakQueue:

Set ThisOplock.State to (READ_CACHING|HANDLE_CACHING|BREAK_TO_NO_CACHING).

Else:

Set ThisOplock.State to (READ_CACHING|HANDLE_CACHING).

EndIf

EndIf

2.1.4.14 AccessCheck -- Algorithm to Perform a General Access Check

The inputs for this algorithm are:

SecurityContext: The SecurityContext of the user requesting access.

SecurityDescriptor: The security descriptor of the object to which access is requested, in the

format specified in [MS-DTYP] section 2.4.6.

DesiredAccess: An ACCESS_MASK indicating type of access requested, as specified in [MS-

DTYP] section 2.4.3.

This algorithm returns a Boolean value:

TRUE if the user has the necessary access to the object.

FALSE otherwise.

Pseudocode for the algorithm is as follows:

The object store MUST build a new Token object, in the format specified in [MS-DTYP] section

2.5.2, with fields initialized as follows:

SIDs set to SecurityContext.SIDs.

OwnerIndex set to SecurityContext.OwnerIndex.

PrimaryGroup set to SecurityContext.PrimaryGroup.

DefaultDACL set to SecurityContext.DefaultDACL.

SystemACLAccess set to TRUE if SecurityContext.PrivilegeSet contains

"SeSecurityPrivilege", FALSE otherwise.

TakeOwnership set to TRUE if SecurityContext.PrivilegeSet contains

"SeTakeOwnershipPrivilege", FALSE otherwise.

The object store MUST use the access check algorithm described in [MS-DTYP] section 2.5.3.2,

with input values as follows:

SecurityDescriptor set to the SecurityDescriptor above.

Token set to Token.

Access Request mask set to DesiredAccess.

%5bMS-DTYP%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-DTYP%5d.pdf

49 / 249

[MS-FSA] — v20130722
 File System Algorithms

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Object Tree set to NULL.

PrincipalSelfSubst set to NULL.

If the access check returns success, return TRUE; otherwise return FALSE.

2.1.4.15 BuildRelativeName -- Algorithm for Building the Relative Path Name for

a Link

The inputs for this algorithm are:

Link: A Link whose relative path name we are building.

RootDirectory: A DirectoryFile indicating how far to walk up the directory hierarchy when

building the relative path name.

This algorithm returns a Unicode string representing the portion of a Link's path name from
RootDirectory to Link itself, inclusive. The returned string starts with a backslash and uses

backslashes as path separators. If Link is not a descendant of RootDirectory, the algorithm
returns an empty string to indicate this error.

Pseudocode for the algorithm is as follows:

If Link.File equals RootDirectory:

Return "\".

Else If Link.File equals Link.File.Volume.RootDirectory:

Return an empty string.

Else If Link.ParentFile equals RootDirectory:

Return "\" + Link.Name.

Else

Set ParentRelativeName to BuildRelativeName(Link.ParentFile, RootDirectory).

If ParentRelativeName is empty:

Return an empty string.

Else

Return ParentRelativeName + "\" + Link.Name.

EndIf

EndIf

2.1.4.16 FindAllFiles: Algorithm for Finding All Files Under a Directory

The inputs for this algorithm are:

RootDirectory: A DirectoryFile ADM element indicating the top-level directory for the search.

50 / 249

[MS-FSA] — v20130722
 File System Algorithms

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

This algorithm returns a list of files that are descendants of RootDirectory, including
RootDirectory itself.

The algorithm uses the following local variables:

Lists of Files (initialized to empty): FoundFiles, FilesToMerge

Pseudocode for the algorithm follows:

Insert RootDirectory into FoundFiles.

For each Link in RootDirectory.DirectoryList:

If Link.File.FileType is DirectoryFile:

Set FilesToMerge to FindAllFiles(Link.File).

Else:

Set FilesToMerge to a list containing the single entry Link.File.

EndIf

For each File in FilesToMerge:

If File is not an element of FoundFiles, insert File into FoundFiles.

EndFor

EndFor

Return FoundFiles.

2.1.4.17 Algorithm for Noting That a File Has Been Modified

The inputs for this algorithm are as follows:

Open: The Open through which the file was modified.

The pseudocode for the algorithm is as follows:

If Open.UserSetModificationTime is FALSE, set Open.File.LastModificationTime to the

current system time.

If Open.UserSetChangeTime is FALSE, set Open.File.LastChangeTime to the current system

time.

If Open.UserSetAccessTime is FALSE, set Open.File.LastAccessTime to the current system

time.

Set Open.File.FileAttributes.FILE_ATTRIBUTE_ARCHIVE to TRUE.

2.1.5 Higher-Layer Triggered Events

This section describes operations the object store performs in response to events triggered by
higher-layer applications. The higher-layer application for this document is generally a server
application that is processing requests for a local or remote client.

51 / 249

[MS-FSA] — v20130722
 File System Algorithms

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

In performing these operations, the object store MAY make persistent changes to objects described
in the abstract data model, section 2.1.1. If any operation fails, the object store SHOULD undo any

persistent changes that were made prior to the failure, unless specifically noted otherwise in the
operation.

In addition to the parameters explicitly listed, each operation in this section takes an
implementation-specific parameter (IORequest) that uniquely identifies the in-progress I/O
operation. The caller generates the IORequest value and passes it in as an additional parameter to
the event. The IORequest parameter is used to support operation cancellation, as specified in
section 2.1.5.19.

When an operation completes or is canceled the object store MUST remove the associated
IORequest operation from CancelableOperations.CancelableOperationList.

2.1.5.1 Server Requests an Open of a File

The server provides:

RootOpen: An Open to the root of the share.

PathName: A Unicode path relative to RootOpen for the file to be opened in the format

specified in [MS-FSCC] section 2.1.5.

SecurityContext: The SecurityContext of the user performing the open.

DesiredAccess: A bitmask indicating requested access for the open, as specified in [MS-SMB2]

section 2.2.13.1.

ShareAccess: A bitmask indicating sharing access for the open, as specified in [MS-SMB2]

section 2.2.13.

CreateOptions: A bitmask of options for the open, as specified in [MS-SMB2] section 2.2.13.

CreateDisposition: The requested disposition for the open, as specified in [MS-SMB2] section

2.2.13.

DesiredFileAttributes: A bitmask of requested file attributes for the open, as specified in [MS-

SMB2] section 2.2.13.

IsCaseInsensitive: A Boolean value. TRUE indicates that string comparisons performed in the

context of this Open should be case-insensitive, otherwise they should be case-sensitive.

TargetOplockKey: A GUID value. This value could be empty.

UserCertificate: An ENCRYPTION_CERTIFICATE structure as specified in [MS-EFSR] section

2.2.8 and used when opening an encrypted stream. This value could be empty.

On completion, the object store MUST return:

Status: An NTSTATUS code that specifies the result.

On success it MUST also return:

CreateAction: A code defining the action taken by the open operation, as specified in [MS-

SMB2] section 2.2.14 for the CreateAction field.

Open: The newly created Open.

%5bMS-FSCC%5d.pdf
%5bMS-SMB2%5d.pdf
%5bMS-SMB2%5d.pdf
%5bMS-SMB2%5d.pdf
%5bMS-SMB2%5d.pdf
%5bMS-SMB2%5d.pdf
%5bMS-SMB2%5d.pdf
%5bMS-EFSR%5d.pdf
%5bMS-SMB2%5d.pdf
%5bMS-SMB2%5d.pdf

52 / 249

[MS-FSA] — v20130722
 File System Algorithms

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

On STATUS_REPARSE or STATUS_STOPPED_ON_SYMLINK it MUST also return:

ReparseData: The reparse point data associated with an existing file, in the format described in

[MS-FSCC] section 2.1.2. The application MAY retry the open operation with a different

PathName parameter constructed using ReparseData.

Pseudocode for the operation is as follows:

Phase 1 -- Parameter Validation:

The operation MUST be failed with STATUS_INVALID_PARAMETER under any of the following

conditions:

If RootOpen.File.FileType is DataFile.

If ShareAccess, CreateOptions, CreateDisposition, or FileAttributes are not valid values

for a file object as specified in [MS-SMB2] section 2.2.13.

If CreateOptions.FILE_DIRECTORY_FILE &&

CreateOptions.FILE_NON_DIRECTORY_FILE.

If (CreateOptions.FILE_SYNCHRONOUS_IO_ALERT ||

Create.FILE_SYNCHRONOUS_IO_NONALERT) && !DesiredAccess.SYNCHRONIZE.

If CreateOptions.FILE_DELETE_ON_CLOSE && !DesiredAccess.DELETE.

If CreateOptions.FILE_SYNCHRONOUS_IO_ALERT &&

Create.FILE_SYNCHRONOUS_IO_NONALERT.

If CreateOptions.FILE_DIRECTORY_FILE && (CreateDisposition == SUPERSEDE ||

CreateDisposition == OVERWRITE || CreateDisposition == OVERWRITE_IF).

If CreateOptions.COMPLETE_IF_OPLOCKED &&

CreateOptions.FILE_RESERVE_OPFILTER.

If CreateOptions.FILE_NO_INTERMEDIATE_BUFFERING &&

DesiredAccess.FILE_APPEND_DATA.

If DesiredAccess is zero or invalid (as specified in [MS-SMB2] section 2.2.13.1), the operation

MUST be failed with STATUS_ACCESS_DENIED.

The operation MUST be failed with STATUS_OBJECT_NAME_INVALID under any of the following

conditions:

If PathName is not valid as specified in [MS-FSCC] section 2.1.5.

If PathName contains a trailing backslash and

CreateOptions.FILE_NON_DIRECTORY_FILE is TRUE.

If DesiredFileAttributes.FILE_ATTRIBUTE_ENCRYPTED is specified, then the object store

MUST set CreateOptions.FILE_NO_COMPRESSION.

Phase 2 -- Volume State:

If RootOpen.File.Volume.IsReadOnly && (CreateDisposition == FILE_CREATE ||

CreateDisposition == FILE_SUPERSEDE || CreateDisposition == OVERWRITE ||
CreateDisposition == OVERWRITE_IF) then the operation MUST be failed with
STATUS_MEDIA_WRITE_PROTECTED.

%5bMS-FSCC%5d.pdf
%5bMS-SMB2%5d.pdf
%5bMS-SMB2%5d.pdf
%5bMS-FSCC%5d.pdf

53 / 249

[MS-FSA] — v20130722
 File System Algorithms

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Phase 3 -- Initialization of Open Object:

The object store MUST build a new Open object with fields initialized as follows:

Open.RootOpen set to RootOpen.

Open.FileName formed by concatenating RootOpen.FileName + "\" + FileName, stripping

any redundant backslashes and trailing backslashes.

Open.RemainingDesiredAccess set to DesiredAccess.

Open.SharingMode set to ShareAccess.

Open.Mode set to (CreateOptions & (FILE_WRITE_THROUGH | FILE_SEQUENTIAL_ONLY |

FILE_NO_INTERMEDIATE_BUFFERING | FILE_SYNCHRONOUS_IO_ALERT |
FILE_SYNCHRONOUS_IO_NONALERT | FILE_DELETE_ON_CLOSE)).

Open.IsCaseInsensitive set to IsCaseInsensitive.

Open.HasBackupAccess set to TRUE if SecurityContext.PrivilegeSet contains

"SeBackupPrivilege".

Open.HasRestoreAccess set to TRUE if SecurityContext.PrivilegeSet contains

"SeRestorePrivilege".

Open.HasCreateSymbolicLinkAccess set to TRUE if SecurityContext.PrivilegeSet

contains "SeCreateSymbolicLinkPrivilege".

Open.HasManageVolumeAccess set to TRUE if SecurityContext.PrivilegeSet contains

"SeManageVolumePrivilege".

Open.IsAdministrator set to TRUE if SecurityContext.SIDs contains the well-known SID

BUILTIN_ADMINISTRATORS as defined in [MS-DTYP] section 2.4.2.4.

Open.TargetOplockKey set to TargetOplockKey.

Open.LastQuotaId set to -1.

All other fields set to zero.

Phase 4 -- Check for backup/restore intent

If CreateOptions.FILE_OPEN_FOR_BACKUP_INTENT is set and (CreateDisposition ==

FILE_OPEN || CreateDisposition == FILE_OPEN_IF || CreateDisposition ==
FILE_OVERWRITE_IF) and Open.HasBackupAccess is TRUE, then the object store SHOULD

grant backup access as shown in the following pseudocode:

BackupAccess = (READ_CONTROL | ACCESS_SYSTEM_SECURITY | FILE_GENERIC_READ |

FILE_TRAVERSE)

If Open.RemainingDesiredAccess.MAXIMUM_ALLOWED is set then:

Open.GrantedAccess |= BackupAccess

Else:

Open.GrantedAccess |= (Open.RemainingDesiredAccess & BackupAccess)

EndIf

%5bMS-DTYP%5d.pdf

54 / 249

[MS-FSA] — v20130722
 File System Algorithms

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Open.RemainingDesiredAccess &= ~Open.GrantedAccess

If CreateOptions.FILE_OPEN_FOR_BACKUP_INTENT is set and Open.HasRestoreAccess is

TRUE, then the object store SHOULD grant restore access as shown in the following pseudocode:

RestoreAccess = (WRITE_DAC | WRITE_OWNER | ACCESS_SYSTEM_SECURITY |

FILE_GENERIC_WRITE | FILE_ADD_FILE | FILE_ADD_SUBDIRECTORY | DELETE)

If Open.RemainingDesiredAccess.MAXIMUM_ALLOWED is set then:

Open.GrantedAccess |= RestoreAccess

Else:

Open.GrantedAccess |= (Open.RemainingDesiredAccess & RestoreAccess)

EndIf

Open.RemainingDesiredAccess &= ~Open.GrantedAccess

Phase 5 -- Parse pathname:

The object store MUST split Open.FileName into pathname components PathName1 ...

PathNamen, using the backslash ("\") character as a delimiter. The object store MUST further
split each PathNamei into a file name component FileNamei, stream name component
StreamNamei, and stream type name component StreamTypeNamei, using the colon (":")
character as a delimiter (FileNamei:StreamNamei:StreamTypeNamei). If StreamNamei or
StreamTypeNamei is not present in the name, the value MUST be set to an empty string.

If any StreamTypeNamei is "$INDEX_ALLOCATION" and the corresponding StreamNamei has a

value other than an empty string or "$I30", the operation SHOULD be failed with
STATUS_INVALID_PARAMETER.

Phase 6 -- Location of file:

The object store MUST search for a filename matching Open.FileName. If IsCaseInsensitive is

TRUE, then the search MUST be case-insensitive; otherwise it MUST be case-sensitive.

Pseudocode for this search is as follows:

Set ParentFile = RootOpen.File.

// Examine each prefix pathname component in order.

For i = 1 to n-1: // n is the number of pathname components, from Phase 5.

Search ParentFile.DirectoryList for a Link where Link.Name or Link.ShortName

matches FileNamei, If no such link is found, the operation MUST be failed with
STATUS_OBJECT_PATH_NOT_FOUND.

If Link.File.FileType is not DirectoryFile, the operation MUST be failed with

STATUS_NOT_A_DIRECTORY.

If Open.GrantedAccess.FILE_TRAVERSE is not set and

AccessCheck(SecurityContext, Link.File.SecurityDescriptor, FILE_TRAVERSE) returns
FALSE, the operation MAY be failed with STATUS_ACCESS_DENIED.

If Link.IsDeleted, the operation MUST be failed with STATUS_DELETE_PENDING.

55 / 249

[MS-FSA] — v20130722
 File System Algorithms

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

If Link.File.IsSymbolicLink is TRUE, the operation MUST be failed with Status set to

STATUS_STOPPED_ON_SYMLINK and ReparsePointData set to

Link.File.ReparsePointData.

Set ParentFile = Link.File.

EndFor

// Examine final pathname component.

Set FileNameToOpen to FileNamen, StreamNameToOpen to StreamNamen, and

StreamTypeNameToOpen to StreamTypeNamen.

Search ParentFile.DirectoryList for a Link where Link.Name or Link.ShortName matches

FileNameToOpen. If such a link is found:

Set File = Link.File.

Set Open.File to File.

Set Open.Link to Link.

Else:

If (CreateDisposition == FILE_OPEN || CreateDisposition == FILE_OVERWRITE), the

operation MUST be failed with STATUS_OBJECT_NAME_NOT_FOUND.

If RootOpen.File.Volume.IsReadOnly then the operation MUST be failed with

STATUS_MEDIA_WRITE_PROTECTED.

EndIf

Phase 7 -- Type of file to open:

The object store MUST use the following algorithm to determine which type of file is being

opened:

If CreateOptions.FILE_DIRECTORY_FILE is TRUE then FileTypeToOpen = DirectoryFile.

Else if CreateOptions.FILE_NON_DIRECTORY_FILE is TRUE then FileTypeToOpen = DataFile.

Else if StreamTypeNameToOpen is "$INDEX_ALLOCATION" then FileTypeToOpen = DirectoryFile.

Else if StreamTypeNameToOpen is "$DATA" then FileTypeToOpen = DataFile.

Else if Open.File is not NULL and Open.File.FileType is DirectoryFile, then FileTypeToOpen =

DirectoryFile.

Else if PathName contains a trailing backslash then FileTypeToOpen = DirectoryFile.

Else FileTypeToOpen = DataFile.

If FileTypeToOpen is DirectoryFile and Open.File is not NULL and Open.File.FileType is not

DirectoryFile:

If CreateDisposition == FILE_CREATE then the operation MUST be failed with

STATUS_OBJECT_NAME_COLLISION, else the operation MUST be failed with
STATUS_NOT_A_DIRECTORY.

56 / 249

[MS-FSA] — v20130722
 File System Algorithms

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

EndIf

If FileTypeToOpen is DataFile and StreamNameToOpen is empty and Open.File is not NULL and

Open.File.FileType is DirectoryFile, the operation MUST be failed with

STATUS_FILE_IS_A_DIRECTORY.

Phase 8 -- Completion of open

If Open.File is NULL, the object store MUST create a new file as described in section 2.1.5.1.1;

otherwise the object store MUST open the existing file as described in section 2.1.5.1.2.

2.1.5.1.1 Creation of a New File

Pseudocode for the operation is as follows:

If FileTypeToOpen is DirectoryFile and DesiredFileAttributes.FILE_ATTRIBUTE_TEMPORARY

is set, the operation MUST be failed with STATUS_INVALID_PARAMETER.

If DesiredFileAttributes.FILE_ATTRIBUTE_READONLY and

CreateOptions.FILE_DELETE_ON_CLOSE are both set, the operation MUST be failed with

STATUS_CANNOT_DELETE.

If StreamTypeNameToOpen is non-empty and has a value other than "$DATA" or

"$INDEX_ALLOCATION", the operation MUST be failed with STATUS_OBJECT_NAME_INVALID.

If Open.RemainingDesiredAccess.ACCESS_SYSTEM_SECURITY is set and

Open.GrantedAccess.ACCESS_SYSTEM_SECURITY is not set and
SecurityContext.PrivilegeSet does not contain "SeSecurityPrivilege", the operation MUST be

failed with STATUS_ACCESS_DENIED.

If FileTypeToOpen is DataFile and Open.GrantedAccess.FILE_ADD_FILE is not set and

AccessCheck(SecurityContext, Open.Link.ParentFile.SecurityDescriptor, FILE_ADD_FILE)
returns FALSE and Open.HasRestoreAccess is FALSE, the operation MUST be failed with
STATUS_ACCESS_DENIED.

If FileTypeToOpen is DirectoryFile and Open.GrantedAccess.FILE_ADD_SUBDIRECTORY is

not set and AccessCheck(SecurityContext, Open.Link.ParentFile.SecurityDescriptor,
FILE_ADD_SUBDIRECTORY) returns FALSE and Open.HasRestoreAccess is FALSE, the
operation MUST be failed with STATUS_ACCESS_DENIED.

If the object store implements encryption and

DesiredFileAttributes.FILE_ATTRIBUTE_ENCRYPTED is TRUE:

If UserCertificate is empty, the operation MUST be failed with

STATUS_CS_ENCRYPTION_NEW_ENCRYPTED_FILE.

EndIf

The object store MUST build a new File object with fields initialized as follows:

File.FileType set to FileTypeToOpen.

File.FileId128 assigned a new value. The value chosen is implementation-specific but MUST

be unique among all files present on RootOpen.File.Volume.<34>

File.FileId64 assigned a new value. The value chosen is implementation-specific<35> but

MUST be either -1 or unique among all files present on RootOpen.File.Volume.

57 / 249

[MS-FSA] — v20130722
 File System Algorithms

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

File.FileNumber assigned a new value. The value chosen is implementation-specific but

MUST be unique among all files present on RootOpen.File.Volume.<36>

File.FileAttributes set to DesiredFileAttributes.

File.CreationTime, File.LastModificationTime, File.LastChangeTime, and

File.LastAccessTime all initialized to the current system time.

File.Volume set to RootOpen.File.Volume.

All other fields set to zero.

The object store MUST build a new Link object with fields initialized as follows:

Link.File set to File.

Link.ParentFile set to ParentFile.

All other fields set to zero.

If File.FileType is DataFile and Open.IsCaseInsensitive is TRUE, and tunnel caching is

implemented, the object store MUST search File.Volume.TunnelCacheList for a
TunnelCacheEntry where TunnelCacheEntry.ParentFile equals Link.ParentFile and either
(TunnelCacheEntry.KeyByShortName is FALSE and TunnelCacheEntry.FileName matches
FileNameToOpen) or (TunnelCacheEntry.KeyByShortName is TRUE and
TunnelCacheEntry.FileShortName matches FileNameToOpen). If such an entry is found, then:

Set File.CreationTime to TunnelCacheEntry.FileCreationTime.

Set File.ObjectId to TunnelCacheEntry.FileObjectId.

Set Link.Name to TunnelCacheEntry.FileName.

Set Link.ShortName to TunnelCacheEntry.FileShortName if that name is not already in use

among all names and short names in Link.ParentFile.DirectoryList.

Remove TunnelCacheEntry from File.Volume.TunnelCacheList.

Else:

Set Link.Name to FileNameToOpen.

EndIf

If short names are enabled and Link.ShortName is empty, then the object store MUST create a

short name as follows:

If Link.Name is 8.3-compliant as described in [MS-FSCC] section 2.1.5.2.1:

Set Link.ShortName to Link.Name.

Else:

Generate a new Link.ShortName that is 8.3-compliant as described in [MS-FSCC] section

2.1.5.2.1. The string chosen is implementation-specific, but MUST be unique among all

names and short names present in Link.ParentFile.DirectoryList.

EndIf

%5bMS-FSCC%5d.pdf
%5bMS-FSCC%5d.pdf

58 / 249

[MS-FSA] — v20130722
 File System Algorithms

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

EndIf

The object store MUST now grant the full requested access, as shown by the following

pseudocode:

If Open.RemainingDesiredAccess.MAXIMUM_ALLOWED is set:

Open.GrantedAccess |= FILE_ALL_ACCESS

Else:

Open.GrantedAccess |= Open.RemainingDesiredAccess

EndIf

Open.RemainingDesiredAccess = 0

The object store MUST initialize File.SecurityDescriptor.Dacl to

SecurityContext.DefaultDACL. The object store SHOULD append any inheritable security

information from Link.ParentFile.SecurityDescriptor to File.SecurityDescriptor.

The object store MUST set File.FileAttributes.FILE_ATTRIBUTE_NOT_CONTENT_INDEXED

to the value of
Link.ParentFile.FileAttributes.FILE_ATTRIBUTE_NOT_CONTENT_INDEXED.

The object store MUST clear any attribute flags from File.FileAttributes that cannot be directly

set by applications, as follows:

ValidSetAttributes = (FILE_ATTRIBUTE_READONLY | FILE_ATTRIBUTE_HIDDEN |

FILE_ATTRIBUTE_SYSTEM | FILE_ATTRIBUTE_ARCHIVE | FILE_ATTRIBUTE_TEMPORARY |
FILE_ATTRIBUTE_OFFLINE | FILE_ATTRIBUTE_NOT_CONTENT_INDEXED)

File.FileAttributes &= ValidSetAttributes

If File.FileType is DataFile, then the object store MUST set

File.FileAttributes.FILE_ATTRIBUTE_ARCHIVE.

If File.FileType is DirectoryFile, then the object store MUST set

File.FileAttributes.FILE_ATTRIBUTE_DIRECTORY.

If Link.ParentFile.FileAttributes.FILE_ATTRIBUTE_ENCRYPTED or

DesiredFileAttributes.FILE_ATTRIBUTE_ENCRYPTED is set, then the object store MUST set
File.FileAttributes.FILE_ATTRIBUTE_ENCRYPTED.

If Link.ParentFile.FileAttributes.FILE_ATTRIBUTE_COMPRESSED is set and

CreateOptions.FILE_NO_COMPRESSION is not set, then the object store MUST set
File.FileAttributes.FILE_ATTRIBUTE_COMPRESSED.

If Link.ParentFile.FileAttributes.FILE_ATTRIBUTE_INTEGRITY_STREAM is set or

DesiredFileAttributes.FILE_ATTRIBUTE_INTEGRITY_STREAM is set, then the object store
MUST set File.FileAttributes.FILE_ATTRIBUTE_INTEGRITY_STREAM.<37>

If Link.ParentFile.FileAttributes.FILE_ATTRIBUTE_NO_SCRUB_DATA is set or

DesiredFileAttributes.FILE_ATTRIBUTE_NO_SCRUB_DATA is set, then the object store
MUST set File.FileAttributes.FILE_ATTRIBUTE_NO_SCRUB_DATA.<38>

59 / 249

[MS-FSA] — v20130722
 File System Algorithms

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

If the object store implements encryption and

File.FileAttributes.FILE_ATTRIBUTE_ENCRYPTED is TRUE, insert UserCertificate into

File.UserCertificateList.

If File.FileType is DataFile and StreamNameToOpen is not empty, then the object store MUST

create a default unnamed stream for the file as follows:<39>

Build a new Stream object DefaultStream with all fields initially set to zero.

Set DefaultStream.File to File.

If the object store implements encryption and

File.FileAttributes.FILE_ATTRIBUTE_ENCRYPTED is TRUE, set
DefaultStream.IsEncrypted to TRUE.

Add DefaultStream to File.StreamList.

EndIf

If StreamTypeNameToOpen is empty or "$DATA", then the object store MUST create a new data

stream for the file as follows:

Build a new Stream object with all fields initially set to zero.

Set Stream.StreamType to DataStream.

Set Stream.Name to StreamNameToOpen.

Set Stream.File to File.

Add Stream to File.StreamList.

Set Open.Stream to Stream.

Else the object store MUST create a new directory stream as follows:

Build a new Stream object with all fields initially set to zero.

Set Stream.StreamType to DirectoryStream.

Set Stream.File to File.

Add Stream to File.StreamList.

Set Open.Stream to Stream.

EndIf

If the object store implements encryption and

File.FileAttributes.FILE_ATTRIBUTE_ENCRYPTED is TRUE:

If File.FileType is DataFile, set Stream.IsEncrypted to TRUE.

EndIf

The object store MUST set Open.File to File.

The object store MUST set Open.Link to Link.

60 / 249

[MS-FSA] — v20130722
 File System Algorithms

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

The object store MUST insert Link into File.LinkList.

The object store MUST insert Link into Link.ParentFile.DirectoryList.

The object store MUST update Link.ParentFile.LastModificationTime,

Link.ParentFile.LastChangeTime, and Link.ParentFile.LastAccessTime to the current
system time.

If the Oplock member of the DirectoryStream in Link.ParentFile.StreamList (hereinafter

referred to as ParentOplock) is not empty, the object store MUST check for an oplock break on
the parent according to the algorithm in section 2.1.4.12, with input values as follows:

Open equal to this operation's Open

Oplock equal to ParentOplock

Operation equal to "OPEN"

Flags equal to "PARENT_OBJECT"

The object store MUST insert File into File.Volume.OpenFileList.

The object store MUST insert Open into File.OpenList.

If File.FileType is DirectoryFile:

FilterMatch = FILE_NOTIFY_CHANGE_DIR_NAME

Else:

FilterMatch = FILE_NOTIFY_CHANGE_FILE_NAME

EndIf

The object store MUST send directory change notification as per section 2.1.4.1 with Volume

equal to File.Volume, Action equal to FILE_ACTION_ADDED, FilterMatch equal to FilterMatch,
and FileName equal to Open.FileName.

If Stream.Name is not empty:

Send directory change notification as per section 2.1.4.1, with Volume equal to File.Volume,

Action equal to FILE_ACTION_ADDED_STREAM, FilterMatch equal to
FILE_NOTIFY_CHANGED_STREAM_NAME, and FileName equal to Open.FileName + ":" +
Stream.Name.

EndIf

The object store MUST return:

Status set to STATUS_SUCCESS.

CreateAction set to FILE_CREATED.

The Open object created previously.

61 / 249

[MS-FSA] — v20130722
 File System Algorithms

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

2.1.5.1.2 Open of an Existing File

Files that require knowledge of extended attributes cannot be opened by applications that do not
understand extended attributes. If CreateOptions.FILE_NO_EA_KNOWLEDGE is set and

(FileTypeToOpen is DirectoryFile or (FileTypeToOpen is DataFile and StreamNameToOpen is empty))
and File.ExtendedAttributes contains an ExistingEa where ExistingEa.Flags.FILE_NEED_EA is
set, the operation MUST be failed with STATUS_ACCESS_DENIED.

Pseudocode for the operation is as follows:

If CreateOptions.FILE_OPEN_REPARSE_POINT is not set and File.ReparsePointTag is not

empty, then the operation MUST be failed with Status set to STATUS_REPARSE and

ReparsePointData set to File.ReparsePointData.

If FileTypeToOpen is DirectoryFile:

If CreateDisposition is FILE_OPEN or FILE_OPEN_IF then:

Perform access checks as described in section 2.1.5.1.2.1. If this fails with

STATUS_SHARING_VIOLATION:

If Open.Stream.Oplock is not empty and Open.Stream.Oplock.State contains

HANDLE_CACHING, the object store MUST check for an oplock break according to the
algorithm in section 2.1.4.12, with input values as follows:

Open equal to this operation's Open

Oplock equal to Open.Stream.Oplock

Operation equal to "OPEN_BREAK_H"

Perform access checks as described in section 2.1.5.1.2.1. If this fails, the request MUST

be failed with the same status.

EndIf

Perform sharing access checks as described in section 2.1.5.1.2.2. If this fails with

STATUS_SHARING_VIOLATION:

If Open.Stream.Oplock is not empty and Open.Stream.Oplock.State contains

HANDLE_CACHING, the object store MUST check for an oplock break according to the
algorithm in section 2.1.4.12, with input values as follows:

Open equal to this operation's Open

Oplock equal to Open.Stream.Oplock

Perform sharing access checks as described in section 2.1.5.1.2.2. If this fails, the

request MUST be failed with the same status.

EndIf

If Open.File.OpenList is empty, Open.SharingMode does not contain

FILE_SHARE_READ, and AccessCheck(SecurityContext, File.SecurityDescriptor,

FILE_GENERIC_WRITE) returns FALSE:

If CreateOptions.FILE_DISALLOW_EXCLUSIVE is TRUE:<40>

62 / 249

[MS-FSA] — v20130722
 File System Algorithms

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

The operation MUST be failed with STATUS_ACCESS_DENIED.

Else:

The object store MUST set Open.SharingMode.FILE_SHARE_READ to TRUE.

EndIf

EndIf

Set CreateAction to FILE_OPENED.

Else:

// Existing directories cannot be overwritten/superseded.

If File == File.Volume.RootDirectory, then the operation MUST be failed with

STATUS_ACCESS_DENIED, else the operation MUST be failed with
STATUS_OBJECT_NAME_COLLISION.

EndIf

Else if FileTypeToOpen is DataFile:

The object store MUST search File.StreamList for a Stream with Stream.Name matching

StreamNameToOpen. If IsCaseInsensitive is TRUE, then the search MUST be case-
insensitive; otherwise it MUST be case-sensitive.

If Stream was found:

Set Open.Stream to Stream.

If CreateDisposition is FILE_CREATE, then the operation MUST be failed with

STATUS_OBJECT_NAME_COLLISION.

If CreateDisposition is FILE_OPEN or FILE_OPEN_IF:

If Open.Stream.Oplock is not empty and Open.Stream.Oplock.State contains

BATCH_OPLOCK, the object store MUST check for an oplock break according to the
algorithm in section 2.1.4.12, with input values as follows:

Open equal to this operation's Open

Oplock equal to Open.Stream.Oplock

Operation equal to "OPEN"

OpParams containing two members:

DesiredAccess equal to this operation's DesiredAccess

CreateDisposition equal to this operation's CreateDisposition

Perform access checks as described in section 2.1.5.1.2.1. If this fails with

STATUS_SHARING_VIOLATION:

If Open.Stream.Oplock is not empty and Open.Stream.Oplock.State contains

HANDLE_CACHING, the object store MUST check for an oplock break according to the
algorithm in section 2.1.4.12, with input values as follows:

63 / 249

[MS-FSA] — v20130722
 File System Algorithms

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Open equal to this operation's Open

Oplock equal to Open.Stream.Oplock

Operation equal to "OPEN_BREAK_H"

Perform access checks as described in section 2.1.5.1.2.1. If this fails, the request

MUST be failed with the same status.

EndIf

Perform sharing access checks as described in section 2.1.5.1.2.2. If this fails with

STATUS_SHARING_VIOLATION:

If Open.Stream.Oplock is not empty and Open.Stream.Oplock.State contains

HANDLE_CACHING, the object store MUST check for an oplock break according to the
algorithm in section 2.1.4.12, with input values as follows:

Open equal to this operation's Open

Oplock equal to Open.Stream.Oplock

Operation equal to "OPEN_BREAK_H"

Perform sharing access checks as described in section 2.1.5.1.2.2. If this fails, the

request MUST be failed with the same status.

EndIf

Set CreateAction to FILE_OPENED.

Else:

If File.Volume.IsReadOnly is TRUE, the operation MUST be failed with

STATUS_MEDIA_WRITE_PROTECTED.

If Open.Stream.Oplock is not empty and Open.Stream.Oplock.State contains

BATCH_OPLOCK, the object store MUST check for an oplock break according to the

algorithm in section 2.1.4.12, with input values as follows:

Open equal to this operation's Open

Oplock equal to Open.Stream.Oplock

Operation equal to "OPEN"

OpParams containing two members:

DesiredAccess equal to this operation's DesiredAccess

CreateDisposition equal to this operation's CreateDisposition

If Stream.Name is empty:

If File.FileAttributes.FILE_ATTRIBUTE_HIDDEN is TRUE and

DesiredFileAttributes.FILE_ATTRIBUTE_HIDDEN is FALSE, then the operation
MUST be failed with STATUS_ACCESS_DENIED.

64 / 249

[MS-FSA] — v20130722
 File System Algorithms

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

If File.FileAttributes.FILE_ATTRIBUTE_SYSTEM is TRUE and

DesiredFileAttributes.FILE_ATTRIBUTE_SYSTEM is FALSE, then the operation

MUST be failed with STATUS_ACCESS_DENIED.

Set DesiredFileAttributes.FILE_ATTRIBUTE_ARCHIVE to TRUE.

Set DesiredFileAttributes.FILE_ATTRIBUTE_NORMAL to FALSE.

Set DesiredFileAttributes.FILE_ATTRIBUTE_NOT_CONTENT_INDEXED to FALSE.

If File.FileAttributes.FILE_ATTRIBUTE_ENCRYPTED is TRUE, then set

DesiredFileAttributes.FILE_ATTRIBUTE_ENCRYPTED to TRUE.

If Open.HasRestoreAccess is TRUE, then the object store MUST set

Open.GrantedAccess.FILE_WRITE_EA to TRUE. Otherwise, the object store MUST
set Open.RemainingDesiredAccess.FILE_WRITE_EA to TRUE.

If Open.HasRestoreAccess is TRUE, then the object store MUST set

Open.GrantedAccess.FILE_WRITE_ATTRIBUTES to TRUE. Otherwise, the object
store MUST set Open.RemainingDesiredAccess.FILE_WRITE_ATTRIBUTES to

TRUE.

EndIf

If CreateDisposition is FILE_SUPERSEDE:

If Open.HasRestoreAccess is TRUE, then the object store MUST set

Open.GrantedAccess.DELETE to TRUE. Otherwise, the object store MUST set

Open.RemainingDesiredAccess.DELETE to TRUE.

Else:

If Open.HasRestoreAccess is TRUE, then the object store MUST set

Open.GrantedAccess.FILE_WRITE_DATA to TRUE. Otherwise, the object store

MUST set Open.RemainingDesiredAccess.FILE_WRITE_DATA to TRUE.

EndIf

Open.RemainingDesiredAccess &= ~Open.GrantedAccess

Perform access checks as described in section 2.1.5.1.2.1. If this fails with

STATUS_SHARING_VIOLATION:

If Open.Stream.Oplock is not empty and Open.Stream.Oplock.State contains

HANDLE_CACHING, the object store MUST check for an oplock break according to the
algorithm in section 2.1.4.12, with input values as follows:

Open equal to this operation's Open

Oplock equal to Open.Stream.Oplock

Operation equal to "OPEN_BREAK_H"

Perform access checks as described in section 2.1.5.1.2.1. If this fails, the request

MUST be failed with the same status.

EndIf

65 / 249

[MS-FSA] — v20130722
 File System Algorithms

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Perform sharing access checks as described in section 2.1.5.1.2.2. If this fails with

STATUS_SHARING_VIOLATION:

If Open.Stream.Oplock is not empty and Open.Stream.Oplock.State contains

HANDLE_CACHING, the object store MUST check for an oplock break according to the
algorithm in section 2.1.4.12, with input values as follows:

Open equal to this operation's Open

Oplock equal to Open.Stream.Oplock

Operation equal to "OPEN_BREAK_H"

Perform sharing access checks as described in section 2.1.5.1.2.2. If this fails, the

request MUST be failed with the same status.

EndIf

Note that the file has been modified as specified in section 2.1.4.17 with Open equal to

Open.

If CreateDisposition is FILE_SUPERSEDE, the object store MUST set CreateAction to

FILE_SUPERSEDED; otherwise, it MUST set CreateAction to FILE_OVERWRITTEN.

EndIf

Else: // Stream not found.

If CreateDisposition is FILE_OPEN or FILE_OVERWRITE, the operation MUST be failed

with STATUS_OBJECT_NAME_NOT_FOUND.

If Open.GrantedAccess.FILE_WRITE_DATA is not set and

Open.RemainingDesiredAccess.FILE_WRITE_DATA is not set:

If Open.HasRestoreAccess is TRUE, then the object store MUST set

Open.GrantedAccess.FILE_WRITE_DATA to TRUE; otherwise, the object store MUST
set Open.RemainingDesiredAccess.FILE_WRITE_DATA to TRUE.

EndIf

Perform access checks as described in section 2.1.5.1.2.1. If this fails, the request MUST

be failed with the same status.

If File.Volume.IsReadOnly is TRUE, the operation MUST be failed with

STATUS_MEDIA_WRITE_PROTECTED.

Update File.LastChangeTime to the current time.

Set File.FileAttributes.FILE_ATTRIBUTE_ARCHIVE to TRUE.

Build a new Stream object with all fields initially set to zero.

Set Stream.StreamType to DataStream.

Set Stream.Name to StreamNameToOpen.

Set Stream.File to File.

Add Stream to File.StreamList.

66 / 249

[MS-FSA] — v20130722
 File System Algorithms

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Set Open.Stream to Stream.

Set CreateAction to FILE_CREATED.

EndIf.

EndIf

If the object store implements encryption:

If (CreateAction is FILE_OVERWRITTEN or FILE_SUPERSEDED) and (Stream.Name is

empty) and (DesiredFileAttributes.FILE_ATTRIBUTE_ENCRYPTED is TRUE) and
(File.FileAttributes.FILE_ATTRIBUTE_ENCRYPTED is FALSE), then:

If File.OpenList is non-empty, then the operation MUST be failed with

STATUS_SHARING_VIOLATION.

EndIf

EndIf

If CreateAction is one of FILE_OVERWRITTEN or FILE_SUPERSEDED, then:

If Stream.Name is empty:

Set File.FileAttributes to DesiredFileAttributes.

EndIf

EndIf

If the object store implements encryption and

File.FileAttributes.FILE_ATTRIBUTE_ENCRYPTED is TRUE:

If CreateAction is FILE_OPENED:

If Stream.IsEncrypted is TRUE:

If UserCertificate is empty, the operation MUST be failed with

STATUS_CS_ENCRYPTION_EXISTING_ENCRYPTED_FILE.

If UserCertificate is not in File.UserCertificateList, the operation MUST be failed with

STATUS_ACCESS_DENIED.

EndIf

Else: // we are creating, overwriting, or superseding a stream

If UserCertificate is empty, the operation MUST be failed with

STATUS_CS_ENCRYPTION_NEW_ENCRYPTED_FILE.

If Stream.Name is empty:

If File.UserCertificateList is empty, insert UserCertificate into

File.UserCertificateList.

Else:

67 / 249

[MS-FSA] — v20130722
 File System Algorithms

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

If UserCertificate is not in File.UserCertificateList, the operation MUST be failed with

STATUS_ACCESS_DENIED.

EndIf

If File.FileType is DataFile, set Stream.IsEncrypted to TRUE.

EndIf

EndIf

If CreateAction is one of FILE_CREATED, FILE_OVERWRITTEN or FILE_SUPERSEDED, then:

The object store MUST set FilterMatch to a set of flags capturing modifications to the existing

file's persistent attributes performed during the Open operation.

Send directory change notification as per section 2.1.4.1, with Volume equal to File.Volume,

Action equal to FILE_ACTION_MODIFIED, FilterMatch equal to FilterMatch, and FileName

equal to Open.FileName.

EndIf

If CreateAction is FILE_CREATED, then the object store MUST insert Stream into

File.StreamList.

If File is not in File.Volume.OpenFileList, the object store MUST insert it.

The object store MUST insert Open into File.OpenList.

If Stream.Name is not empty:

If CreateAction is FILE_CREATED:

Send directory change notification as per section 2.1.4.1, with Volume equal to

File.Volume, Action equal to FILE_ACTION_ADDED_STREAM, FilterMatch equal to

FILE_NOTIFY_CHANGED_STREAM_NAME, and FileName equal to Open.FileName + ":" +
Stream.Name.

If CreateAction is one of FILE_OVERWRITTEN or FILE_SUPERSEDED:

Send directory change notification as per section 2.1.4.1, with Volume equal to

File.Volume, Action equal to FILE_ACTION_MODIFIED_STREAM, FilterMatch equal to
(FILE_NOTIFY_CHANGE_STREAM_SIZE | FILE_NOTIFY_CHANGE_STREAM_WRITE), and
FileName equal to Open.FileName + ":" + Stream.Name.

EndIf

EndIf

The object store MUST return:

Status set to STATUS_SUCCESS.

CreateAction set to FILE_OPENED.

The Open object created previously.

68 / 249

[MS-FSA] — v20130722
 File System Algorithms

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

2.1.5.1.2.1 Algorithm to Check Access to an Existing File

The inputs to the algorithm are:

Open: The Open for an in-progress Open operation to an existing file.

On completion, the algorithm returns:

Status: An NTSTATUS code that specifies the result of the access check.

This object store MUST perform access checks when opening an existing file, making use of the file's
security descriptor and possibly the parent file's security descriptor.

Pseudocode for these checks is as follows:

If Open.File.FileType is DataFile and (File.FileAttributes.FILE_ATTRIBUTE_READONLY &&

(DesiredAccess.FILE_WRITE_DATA || DesiredAccess.FILE_APPEND_DATA)), then return
STATUS_ACCESS_DENIED.

If ((File.FileAttributes.FILE_ATTRIBUTE_READONLY || File.Volume.IsReadOnly) &&

CreateOptions.FILE_DELETE_ON_CLOSE), then return STATUS_CANNOT_DELETE.

If Open.RemainingDesiredAccess is nonzero:

If Open.RemainingDesiredAccess.MAXIMUM_ALLOWED is TRUE:

For each Access Flag in FILE_ALL_ACCESS, the object store MUST set

Open.GrantedAccess.Access if AccessCheck(SecurityContext,
File.SecurityDescriptor, Access) returns TRUE.

If File.FileAttributes.FILE_ATTRIBUTE_READONLY or File.Volume.IsReadOnly, then the

object store MUST clear (FILE_WRITE_DATA | FILE_APPEND_DATA |
FILE_ADD_SUBDIRECTORY | FILE_DELETE_CHILD) from Open.GrantedAccess.

Else:

For each Access Flag in Open.RemainingDesired.Access, the object store MUST set

Open.GrantedAccess.Access if AccessCheck(SecurityContext,
File.SecurityDescriptor, Access) returns TRUE.

EndIf

If (Open.RemainingDesiredAccess.MAXIMUM_ALLOWED ||

Open.RemainingDesiredAccess.DELETE), the object store MUST set
Open.GrantedAccess.DELETE if AccessCheck(SecurityContext,
Open.Link.ParentFile.SecurityDescriptor, FILE_DELETE_CHILD) returns TRUE.

If (Open.RemainingDesiredAccess.MAXIMUM_ALLOWED ||

Open.RemainingDesiredAccess.FILE_READ_ATTRIBUTES), the object store MUST set
Open.GrantedAccess.FILE_READ_ATTRIBUTES if AccessCheck(SecurityContext,
Open.Link.ParentFile.SecurityDescriptor, FILE_LIST_DIRECTORY) returns TRUE.

Open.RemainingDesiredAccess &= ~(Open.GrantedAccess | MAXIMUM_ALLOWED)

If Open.RemainingDesiredAccess is nonzero, then return STATUS_ACCESS_DENIED.

EndIf

69 / 249

[MS-FSA] — v20130722
 File System Algorithms

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Since deletion of a file's primary stream implies deletion of the entire file, including any alternate
data streams, the object store MUST check for sharing conflicts involving deletion of the primary

stream and the sharing modes of all opens to the file.

Pseudocode for these checks is as follows:

If Open.SharingMode.FILE_SHARE_DELETE is FALSE and Open.GrantedAccess contains any

one or more of (FILE_EXECUTE | FILE_READ_DATA | FILE_WRITE_DATA | FILE_APPEND_DATA):

For each ExistingOpen is Open.File.OpenList:

If ExistingOpen.Mode.FILE_DELETE_ON_CLOSE is TRUE and

(ExistingOpen.Stream.StreamType is DirectoryStream or ExistingOpen.Stream.Name is

empty), then return STATUS_SHARING_VIOLATION.

EndFor

EndIf

If Open.GrantedAccess.DELETE is TRUE and (Open.Stream.StreamType is DirectoryStream

or Open.Stream.Name is empty):

For each ExistingOpen in Open.File.OpenList:

If ExistingOpen.SharingMode.FILE_SHARE_DELETE is FALSE, then return

STATUS_SHARING_VIOLATION.

EndFor

EndIf

Return STATUS_SUCCESS.

2.1.5.1.2.2 Algorithm to Check Sharing Access to an Existing Stream or Directory

The inputs to the algorithm are:

Open: The Open for an in-progress Open operation to an existing stream or directory.

On completion, the algorithm returns:

Status: An NTSTATUS code that specifies the result of the sharing check.

The object store MUST perform sharing checks when opening an existing stream or directory.

Pseudocode for these checks is as follows:

If AccessCheck(SecurityContext, Open.Link.ParentFile.SecurityDescriptor,

FILE_WRITE_DATA) returns FALSE, the object store MUST set

Open.SharingMode.FILE_SHARE_READ to TRUE.

If DesiredAccess contains any of (FILE_READ_DATA | FILE_EXECUTE | FILE_WRITE_DATA |

FILE_APPEND_DATA | DELETE):

For each ExistingOpen in Open.File.OpenList:

70 / 249

[MS-FSA] — v20130722
 File System Algorithms

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

If ExistingOpen.Stream equals Open.Stream and ExistingOpen.GrantedAccess contains

any of (FILE_READ_DATA | FILE_EXECUTE | FILE_WRITE_DATA | FILE_APPEND_DATA |

DELETE), then return STATUS_SHARING_VIOLATION under any of the following conditions:

If ExistingOpen.SharingMode.FILE_SHARE_READ is FALSE and DesiredAccess

contains either FILE_READ_DATA or FILE_EXECUTE

If ExistingOpen.SharingMode.FILE_SHARE_WRITE is FALSE and DesiredAccess

contains either FILE_WRITE_DATA or FILE_APPEND_DATA

If ExistingOpen.SharingMode.FILE_SHARE_DELETE is FALSE and ExistingOpen contains

DELETE

If Open.SharingMode.FILE_SHARE_READ is FALSE and ExistingOpen.GrantedAccess

contains either FILE_READ_DATA or FILE_EXECUTE

If Open.SharingMode.FILE_SHARE_WRITE is FALSE and ExistingOpen.GrantedAccess

contains either FILE_WRITE_DATA or FILE_APPEND_DATA

If Open.SharingMode.FILE_SHARE_READ is FALSE and ExistingOpen.GrantedAccess

contains DELETE

EndIf

EndFor

EndIf

If Open.Stream.Oplock is not empty, the object store MUST check for an oplock break

according to the algorithm in section 2.1.4.12, with input values as follows:

Open equal to this operation's Open

Oplock equal to Open.Stream.Oplock

Operation equal to "OPEN"

OpParams containing two members:

DesiredAccess equal to this operation's DesiredAccess

CreateDisposition equal to this operation's CreateDisposition

EndIf

Return STATUS_SUCCESS.

2.1.5.2 Server Requests a Read

The server provides:

Open: The Open of the DataFile to read from.

ByteOffset: The absolute byte offset in the stream from which to read data.

ByteCount: The requested number of bytes to read.

On completion, the object store MUST return:

71 / 249

[MS-FSA] — v20130722
 File System Algorithms

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Status: An NTSTATUS code that specifies the result.

OutputBuffer: An array of bytes that were read.

BytesRead: The number of bytes that were read.

Pseudocode for the operation is as follows:

If Open.Mode.FILE_NO_INTERMEDIATE_BUFFERING is TRUE & (ByteOffset >= 0), the

operation MUST be failed with STATUS_INVALID_PARAMETER under any of the following
conditions:

(ByteOffset % Open.File.Volume.LogicalBytesPerSector) is not zero.

(ByteCount % Open.File.Volume.LogicalBytesPerSector) is not zero.

If ByteOffset is negative, then the operation MUST be failed with

STATUS_INVALID_PARAMETER.

If (ByteOffset + ByteCount) is larger than MAXLONGLONG (0x7fffffffffffffff), the operation

MUST be failed with STATUS_INVALID_PARAMETER.

If ByteCount is zero, the object store MUST return:

BytesRead set to zero.

Status set to STATUS_SUCCESS.

Set RequestedByteCount to ByteCount.

If Open.Stream.Oplock is not empty, the object store MUST check for an oplock break

according to the algorithm in section 2.1.4.12, with input values as follows:

Open equal to this operation's Open

Oplock equal to Open.Stream.Oplock

Operation equal to "READ"

OpParams empty

Determine if the read is in conflict with an existing byte range lock on Open.Stream using the

algorithm described in section 2.1.4.10 (with ByteOffset set to ByteOffset, Length set to
ByteCount, IsExclusive set to FALSE, LockIntent set to FALSE and Open set to Open). If the
algorithm returns TRUE, the operation MUST be failed with STATUS_FILE_LOCK_CONFLICT.

If ByteOffset >= Open.Stream.Size, the operation MUST be failed with

STATUS_END_OF_FILE.

If (ByteOffset + ByteCount) >= Open.Stream.Size, truncate ByteCount to

(Open.Stream.Size - ByteOffset) and then set RequestedByteCount to ByteCount.

If Open.Mode.FILE_NO_INTERMEDIATE_BUFFERING is TRUE:

The object store MUST write any unwritten cached data for this range of the stream to disk.

The object store MUST remove from the cache any cached data for this range of the stream.

If (ByteOffset >= Open.Stream.ValidDataLength):

72 / 249

[MS-FSA] — v20130722
 File System Algorithms

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

If Open.Mode.FILE_SYNCHRONOUS_IO_ALERT is TRUE or

Open.Mode.FILE_SYNCHRONOUS_IO_NONALERT is TRUE, the object store MUST set

Open.CurrentByteOffset to (ByteOffset + ByteCount).

If Open.File.UserSetAccessTime is FALSE, the object store MUST update

Open.File.LastAccessTime to the current system time.

The object store MUST return:

BytesRead set to ByteCount.

OutputBuffer filled with ByteCount zero(s).

Status set to STATUS_SUCCESS.

EndIf

If ((ByteOffset + ByteCount) >= Open.Stream.ValidDataLength), truncate ByteCount

to (Open.Stream.ValidDataLength - ByteOffset).

Set BytesToRead to BlockAlign(ByteCount, Open.File.Volume.LogicalBytesPerSector).

Read BytesToRead bytes from the disk at offset ByteOffset for this stream into

OutputBuffer. If the read from the disk failed, the operation MUST be failed with the same
error status.

If RequestedByteCount > ByteCount, zero out OutputBuffer between ByteCount and

RequestedByteCount.

If Open.Mode.FILE_SYNCHRONOUS_IO_ALERT is TRUE or

Open.Mode.FILE_SYNCHRONOUS_IO_NONALERT is TRUE, the object store MUST set
Open.CurrentByteOffset to (ByteOffset + RequestedByteCount).

If Open.File.UserSetAccessTime is FALSE, the object store MUST update

Open.File.LastAccessTime to the current system time.

Upon successful completion of the operation, the object store MUST return:

BytesRead set to RequestedByteCount.

Status set to STATUS_SUCCESS.

Else

Read ByteCount bytes at offset ByteOffset from the cache for this stream into

OutputBuffer.

If Open.Mode.FILE_SYNCHRONOUS_IO_ALERT is TRUE or

Open.Mode.FILE_SYNCHRONOUS_IO_NONALERT is TRUE, the object store MUST set
Open.CurrentByteOffset to (ByteOffset + ByteCount).

If Open.File.UserSetAccessTime is FALSE, the object store MUST update

Open.File.LastAccessTime to the current system time.

Upon successful completion of the operation, the object store MUST return:

BytesRead set to ByteCount.

73 / 249

[MS-FSA] — v20130722
 File System Algorithms

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Status set to STATUS_SUCCESS.

EndIf

2.1.5.3 Server Requests a Write

The server provides:

Open: The Open of the DataFile to write to.

InputBuffer: An array of bytes to write.

ByteOffset: The absolute byte offset in the stream where data should be written. ByteOffset

could be negative, which means the write should occur at the end of the stream.

ByteCount: The number of bytes in InputBuffer to write.

On completion, the object store MUST return:

Status: An NTSTATUS code that specifies the result.

BytesWritten: The number of bytes written.

Pseudocode for the operation is as follows:

If Open.Mode.FILE_NO_INTERMEDIATE_BUFFERING is TRUE and (ByteOffset >= 0), the

operation MUST be failed with STATUS_INVALID_PARAMETER under any of the following
conditions:

If (ByteOffset % Open.File.Volume.LogicalBytesPerSector) is not zero.

If (ByteCount % Open.File.Volume.LogicalBytesPerSector) is not zero.

If ByteOffset equals -2, then set ByteOffset to Open.CurrentByteOffset.

If Open.File.Volume.IsReadOnly, the operation MUST be failed with

STATUS_MEDIA_WRITE_PROTECTED.

If ((ByteOffset + ByteCount) > MAXLONGLONG (0x7fffffffffffffff) and (ByteOffset >= 0), the

operation MUST be failed with STATUS_INVALID_PARAMETER.

If ByteCount is zero, the object store MUST return:

BytesWritten set to 0.

Status set to STATUS_SUCCESS.

If ((ByteOffset < 0) and (Open.Stream.Size + ByteCount)) > MAXLONGLONG

(0x7fffffffffffffff), the operation MUST fail with STATUS_INVALID_PARAMETER.

If (ByteOffset < 0), set ByteOffset to Open.Stream.Size.

If (ByteOffset + ByteCount) > MAXFILESIZE (0xfffffff0000), the operation MUST be failed with

STATUS_INVALID_PARAMETER.

Initialize UsnReason to zero.

If (ByteOffset + ByteCount) > Open.Stream.Size, set

UsnReason.USN_REASON_DATA_EXTEND to TRUE.

74 / 249

[MS-FSA] — v20130722
 File System Algorithms

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

If ByteOffset < Open.Stream.Size, set UsnReason.USN_REASON_DATA_OVERWRITE to TRUE.

If Open.Stream.Oplock is not empty, the object store MUST check for an oplock break

according to the algorithm in section 2.1.4.12, with input values as follows:

Open equal to this operation's Open

Oplock equal to Open.Stream.Oplock

Operation equal to "WRITE"

OpParams empty

Determine if the write is in conflict with an existing byte range lock on Open.Stream using the

algorithm described in section 2.1.4.10 (with ByteOffset set to ByteOffset, Length set to
ByteCount, IsExclusive set to TRUE, LockIntent set to FALSE and Open set to Open). If the
algorithm returns TRUE, the operation MUST be failed with STATUS_FILE_LOCK_CONFLICT.

The object store MUST post a USN change as per section 2.1.4.11 with File equal to File,

Reason equal to UsnReason, and FileName equal to Open.Link.Name.

If ((ByteOffset + ByteCount) > Open.Stream.ValidDataLength), then set DoingIoAtEof to

TRUE.

If ((ByteOffset + ByteCount) > Open.Stream.AllocationSize), the object store MUST

increase Open.Stream.AllocationSize to BlockAlign(ByteOffset + ByteCount,
Open.File.Volume.ClusterSize). If there is not enough disk space, the operation MUST be
failed with STATUS_DISK_FULL.

If Open.Mode.FILE_NO_INTERMEDIATE_BUFFERING is TRUE:

The object store MUST write any unwritten cached data for this range of the stream to disk.

The object store MUST remove from the cache any cached data for this range of the stream.

If DoingIoAtEof is TRUE, and (Open.Stream.ValidDataLength < ByteOffset) , write zeroes

to the location on disk corresponding to the range between Open.Stream.ValidDataLength

and ByteOffset in the stream, and then write the first ByteCount bytes of InputBuffer to
the location on disk corresponding to the range starting at offset ByteOffset in the stream. If
either write to the disk failed, the operation MUST be failed with the corresponding error
status.

EndIf

If Open.Mode.FILE_NO_INTERMEDIATE_BUFFERING is FALSE, DoingIoAtEof is TRUE, and

(Open.Stream.ValidDataLength < ByteOffset), zero out the range between
Open.Stream.ValidDataLength and ByteOffset in the cache for this stream and then write the
first ByteCount bytes of InputBuffer into the cache for this stream at offset ByteOffset. If
there would not be enough disk space to flush the cache, the operation MUST be failed with
STATUS_DISK_FULL. If Open.Mode.FILE_WRITE_THROUGH is TRUE, the cache write will also

trigger a flush of the cache for that range to the disk.

If Open.Mode.FILE_SYNCHRONOUS_IO_ALERT is TRUE or

Open.Mode.FILE_SYNCHRONOUS_IO_NONALERT is TRUE, the object store MUST set
Open.CurrentByteOffset to (ByteOffset + ByteCount).

The object store MUST note that the file has been modified as specified in section 2.1.4.17 with

Open equal to Open.

75 / 249

[MS-FSA] — v20130722
 File System Algorithms

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Upon successful completion of the operation, the object store MUST set:

Open.Stream.Size to the maximum of Open.Stream.Size or (ByteOffset + ByteCount).

Open.Stream.ValidDataLength to the maximum of Open.Stream.ValidDataLength or

(ByteOffset + ByteCount).

BytesWritten to ByteCount.

Status to STATUS_SUCCESS.

2.1.5.4 Server Requests Closing an Open

The server provides:

Open: The Open that the application is to close.

On completion, the object store MUST return:

Status: An NTSTATUS code that specifies the result.

This operation uses the following local variables:

Boolean values (initialized to FALSE): LinkDeleted, StreamDeleted, FileDeleted, PostUsnClose

The Open provided by the application MUST be removed from Open.File.OpenList.

Pseudocode for the operation is as follows:

Phase 1 - Delete on Close:

If Open.Mode.FILE_DELETE_ON_CLOSE is TRUE:

If Open.Stream.StreamType is DirectoryStream or Open.Stream.Name is empty:

Open.Link.IsDeleted MUST be set to TRUE.

Else:

Open.Stream.IsDeleted MUST be set to TRUE.

EndIf

EndIf

Phase 2 -Stream Deletion:

If Open.Stream.IsDeleted is TRUE and Open.File.OpenList does not contain any Opens on

Open.Stream (this is a close of the last Open to a stream that has been marked deleted), then:

Open.Stream MUST be removed from Open.File.StreamList.

If Open.Stream.IsSparse is TRUE, and there does not exist an ExistingStream in

Open.File.StreamList such that ExistingStream.IsSparse is TRUE:

The object store MUST set Open.File.FileAttributes.FILE_ATTRIBUTE_SPARSE_FILE to

FALSE, indicating that no streams of the file are sparse.

76 / 249

[MS-FSA] — v20130722
 File System Algorithms

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

The object store MUST post a USN change as per section 2.1.4.11 with File equal to File,

Reason equal to USN_REASON_STREAM_CHANGE | USN_REASON_BASIC_INFO_CHANGE,

and FileName equal to Open.Link.Name.

Else:

The object store MUST post a USN change as per section 2.1.4.11 with File equal to File,

Reason equal to USN_REASON_STREAM_CHANGE, and FileName equal to
Open.Link.Name.

EndIf

StreamDeleted MUST be set to TRUE.

PostUsnClose MUST be set to TRUE.

EndIf

Phase 3 - File Deletion:

If Open.Link.IsDeleted is TRUE and there does not exist an ExistingOpen in

Open.File.OpenList that has ExistingOpen.Link equal to Open.Link:

Remove Open.Link from Open.File.LinkList.

Remove Open.Link from Open.Link.ParentFile.DirectoryList.

Set LinkDeleted to TRUE.

If Open.File.LinkList is empty:

Set FileDeleted to TRUE.

EndIf

EndIf

Phase 4 - Truncate on Close:

Set AllocationClusters to ClustersFromBytes(Open.File.Volume,

Open.Stream.AllocationSize).

Set FileClusters to ClustersFromBytes(Open.File.Volume, Open.Stream.FileSize).

If AllocationClusters > FileClusters:

This file has excess allocation. The object store SHOULD free (AllocationClusters - FileClusters)

clusters of allocation from the end of the stream, and set Open.Stream.AllocationSize to
FileClusters * Open.File.Volume.ClusterSize.

EndIf

Phase 5 -- Directory Change Notification:

When a directory Open with outstanding directory change notification requests is closed, these

requests are completed using the algorithm below.

If Open.Stream.StreamType is DirectoryStream:

77 / 249

[MS-FSA] — v20130722
 File System Algorithms

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

For each ChangeNotifyEntry in Volume.ChangeNotifyList where

ChangeNotifyEntry.OpenedDirectory is equal to Open then the following actions MUST be

taken:

Remove ChangeNotifyEntry from Volume.ChangeNotifyList.

Complete the ChangeNotify operation with status STATUS_NOTIFY_CLEANUP.

EndFor

EndIf

If Open.Link is deleted, a directory change notification on Open.Link.ParentFile MUST be

issued. Pseudocode for these notifications is as follows:

If LinkDeleted is TRUE:

Set Action to FILE_ACTION_REMOVED.

If Open.Stream.StreamType is DirectoryStream:

Set FilterMatch to FILE_NOTIFY_CHANGE_DIR_NAME.

Else:

Set FilterMatch to FILE_NOTIFY_CHANGE_FILE_NAME.

EndIf

Send directory change notification as per section 2.1.4.1 with Volume equal to

Open.File.Volume, Action equal to Action, FilterMatch equal to FilterMatch, and
FileName equal to Open.FileName.

EndIf

If Open.Stream was deleted, then the stream deletion change notification MUST be issued.

Pseudocode for this notification is as follows:

If StreamDeleted is TRUE:

Set Action to FILE_ACTION_REMOVED_STREAM.

Set FilterMatch to FILE_NOTIFY_CHANGE_STREAM_NAME.

Send directory change notification as per section 2.1.4.1 with Volume equal to

Open.File.Volume, Action equal to Action, FilterMatch equal to FilterMatch and

FileName equal to Open.FileName + ":" + Stream.Name.

EndIf

If Open.File has had other changes that were not notified, a directory change notification

reflecting those changes MUST be issued. Pseudocode for this notification is as follows:

Set FilterMatch to Open.File.PendingNotifications.

If FilterMatch is nonzero:

Set Action to FILE_ACTION_MODIFIED.

78 / 249

[MS-FSA] — v20130722
 File System Algorithms

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Send directory change notification as per section 2.1.4.1 with Volume equal to

Open.File.Volume, Action equal to Action, FilterMatch equal to FilterMatch and

FileName equal to Open.FileName.

Set Open.File.PendingNotifications to zero.

EndIf

If this is an Open to a named data Stream (Open.Stream.StreamType is DataStream and

Open.Stream.Name is not empty) and there have been changes to it that weren't previously
notified, a directory change notification reflecting those changes MUST be issued. Pseudocode for
this notification is as follows:

Set FilterMatch to Open.Stream.PendingNotifications.

If FilterMatch is nonzero:

Set Action to FILE_ACTION_MODIFIED_STREAM.

Send directory change notification as per section 2.1.4.1 with Volume equal to

Open.File.Volume, Action equal to Action, FilterMatch equal to FilterMatch and
FileName equal to Open.FileName+ ":" + Stream.Name.

Set Open.Stream.PendingNotifications to zero.

EndIf

If LinkDeleted is TRUE:

If FileDeleted is FALSE:

Post a USN change as per section 2.1.4.11 with File equal to File, Reason equal to

USN_REASON_HARD_LINK_CHANGE, and FileName equal to Open.Link.Name.

Set PostUsnClose to TRUE.

Else:

Post a USN change as per section 2.1.4.11 with File equal to File, Reason equal to

USN_REASON_FILE_DELETE | USN_REASON_CLOSE, and FileName equal to
Open.Link.Name.

EndIf

EndIf

Phase 6 -- USN Journal:

If PostUsnClose is TRUE:

Post a USN change as per section 2.1.4.11 with File equal to File, Reason equal to

USN_REASON_CLOSE, and FileName equal to Open.Link.Name.

EndIf

Phase 7 -- Tunnel Cache:

If LinkDeleted is TRUE, then a new TunnelCacheEntry object TunnelCacheEntry MUST be

constructed and added to the Open.File.Volume.TunnelCacheList as follows:

79 / 249

[MS-FSA] — v20130722
 File System Algorithms

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

TunnelCacheEntry.EntryTime MUST be set to the current time.

TunnelCacheEntry.ParentFile MUST be set to Open.Link.ParentFile.

TunnelCacheEntry.FileName MUST be set to Open.Link.Name.

TunnelCacheEntry.FileShortName MUST be set to Open.Link.ShortName.

If Open.FileName matches Open.Link.ShortName then

TunnelCacheEntry.KeyByShortName MUST be set to TRUE, else
TunnelCacheEntry.KeyByShortName MUST be set to FALSE.

TunnelCacheEntry.FileCreationTime MUST be set to Open.File.CreationTime.

TunnelCacheEntry.FileObjectId MUST be set to Open.File.ObjectId.

EndIf

If Open.File.FileType is DirectoryFile and LinkDeleted is TRUE, then Open.File MUST have

every TunnelCacheEntry associated with it invalidated:

For every ExistingTunnelCacheEntry in Open.File.Volume.TunnelCacheList:

If ExistingTunnelCacheEntry.ParentFile matches Open.File, then

ExistingTunnelCacheEntry MUST be removed from Open.File.Volume.TunnelCacheList.

EndFor

EndIf

Phase 8 -- Oplock Cleanup:

If Open.Stream.Oplock is not empty, the object store MUST check for an oplock break

according to the algorithm in section 2.1.4.12, with input values as follows:

Open equal to this operation's Open

Oplock equal to Open.Stream.Oplock

Operation equal to "CLOSE"

OpParams empty

If LinkDeleted is TRUE or FileDeleted is TRUE:

If the Oplock member of the DirectoryStream in Open.Link.ParentFile.StreamList

(hereinafter referred to as ParentOplock) is not empty, the object store MUST check for an

oplock break on the parent according to the algorithm in section 2.1.4.12, with input values as
follows:

Open equal to this operation's Open

Oplock equal to ParentOplock

Operation equal to "CLOSE"

Flags equal to "PARENT_OBJECT"

EndIf

80 / 249

[MS-FSA] — v20130722
 File System Algorithms

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Phase 9 -- Byte Range Locks:

All elements from Open.Stream.ByteRangeLockList where ByteRangeLock.OwnerOpen ==

Open MUST be removed.

Phase 10 - Update Timestamps

If LinkDeleted is TRUE and FileDeleted is FALSE:

If Open.UserSetChangeTime is FALSE, update Open.File.LastChangeTime to the current

time.

Set Open.File.FileAttributes.FILE_ATTRIBUTE_ARCHIVE to TRUE.

EndIf

If Open.GrantedAccess.FILE_EXECUTE is TRUE and Open.UserSetAccessTime is FALSE:

Update Open.File.LastAccessTime to the current time.

EndIf

Upon successful completion of this operation, the object store MUST return:

Status set to STATUS_SUCCESS.

2.1.5.5 Server Requests Querying a Directory

The server provides:

Open: An Open of a DirectoryStream.

FileInformationClass: The type of information being queried, as specified in [MS-FSCC] section

2.4.

OutputBufferSize: The maximum number of bytes to return in OutputBuffer.

RestartScan: A Boolean value which, if TRUE, indicates that enumeration should be restarted

from the beginning of the directory. If FALSE, enumeration should continue from the last

position.

ReturnSingleEntry: A Boolean value which, if TRUE, indicates that at most one entry MUST be

returned. If FALSE, a variable count of entries could be returned, not to exceed
OutputBufferSize bytes.

FileIndex: An index number from which to resume the enumeration if the object store supports

it (optional).

FileNamePattern: A Unicode string containing the file name pattern to match. The object store

MUST treat any asterisk ("*") and question mark ("?") characters in FileNamePattern as
wildcards. FileNamePattern could be empty. The object store MUST treat an empty value as

equivalent to the pattern "*".

On completion, the object store MUST return:

Status: An NTSTATUS code that specifies the result.

%5bMS-FSCC%5d.pdf

81 / 249

[MS-FSA] — v20130722
 File System Algorithms

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

OutputBuffer: An array of bytes containing the query results. The structure of these bytes is

dependent on the FileInformationClass, as noted in the relevant subsection.

ByteCount: The number of bytes stored in OutputBuffer.

2.1.5.5.1 FileObjectIdInformation

The following local variable is used:

Boolean value (initialized to FALSE): EmptyPattern

Support for this operation is optional. If the object store does not implement this functionality, the
operation MUST be failed with STATUS_INVALID_DEVICE_REQUEST.<41>

OutputBuffer is an array of one or more FILE_OBJECTID_INFORMATION structures as specified in
[MS-FSCC] section 2.4.28.

This Information class can only be sent to a specific directory that maintains a list of all ObjectIDs

on the volume. The name of this directory is: "\$Extend\$ObjId:$O:$INDEX_ALLOCATION". If it is
sent to any other file or directory on the volume, the operation MUST be failed with
STATUS_INVALID_INFO_CLASS.<42>

Pseudocode for the operation is as follows:

If FileNamePattern is not empty and FileNamePattern.Length (0 is a valid length) is not a

multiple of 4, the operation MUST be failed with STATUS_INVALID_PARAMETER.

If FileNamePattern is empty, the object store MUST set EmptyPattern to TRUE; otherwise it

MUST set EmptyPattern to FALSE.

If FileNamePattern.Length is less than the size of an ObjectId (16 bytes),

FileNamePattern.Buffer will be zero filled up to the size of ObjectId.

The object store MUST search the volume for Files having File.ObjectId matching

FileNamePattern. To determine if there is a match, FileNamePattern.Buffer is compared to
ObjectId in chunks of ULONG (4 bytes). Any comparison where the ObjectId chunk is greater
than or equal to the FileNamePattern.Buffer chunk is considered a match. If
FileNamePattern.Length is longer than the size of ObjectId and the first 16 bytes (size of

ObjectId) of FileNamePattern.Buffer is identical to ObjectId, FileNamePatter.Buffer is
considered as greater than ObjectId.<43>

If RestartScan is FALSE and EmptyPattern is TRUE and there is no match, the operation MUST

be failed with STATUS_NO_MORE_FILES.

The operation MUST fail with STATUS_NO_SUCH_FILE under any of the following conditions:

EmptyPattern is FALSE and there is no match.

EmptyPattern is TRUE and RestartScan is TRUE and there is no match.

The operation MUST fail with STATUS_BUFFER_OVERFLOW if OutputBufferSize <

sizeof(FILE_OBJECTID_INFORMATION).

If there is at least one match, the operation is considered successful. The object store MUST

return:

Status set to STATUS_SUCCESS.

%5bMS-FSCC%5d.pdf

82 / 249

[MS-FSA] — v20130722
 File System Algorithms

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

OutputBuffer containing an array of as many FILE_OBJECTID_INFORMATION structures that

match the query as will fit in OutputBuffer unless ReturnSingleEntry is TRUE, in which

case only a single entry will be stored in OutputBuffer. To continue the query,

FileNamePattern MUST be empty and RestartScan MUST be FALSE.

ByteCount set to the number of bytes filled in OutputBuffer.

2.1.5.5.2 FileReparsePointInformation

The following local variable is used:

Boolean value (initialized to FALSE): EmptyPattern

Support for this operation is optional. If the object store does not implement this functionality, the
operation MUST be failed with STATUS_INVALID_DEVICE_REQUEST.<44>

OutputBuffer is an array of one or more FILE_REPARSE_POINT_INFORMATION structures as
specified in [MS-FSCC] section 2.4.35.

This Information class can only be sent to a specific directory that maintains a list of all Reparse
Points on Open.File.Volume. The name of this directory is:
"\$Extend\$Reparse:$R:$INDEX_ALLOCATION". If it is sent to any other file or directory on

Open.File.Volume, the operation MUST be failed with STATUS_INVALID_INFO_CLASS.<45>

Pseudocode for the operation is as follows:

If FileNamePattern is not empty and FileNamePattern.Length (0 is a valid length) is not a

multiple of 4, the operation MUST be failed with STATUS_INVALID_PARAMETER.

If FileNamePattern is empty, the object store MUST set EmptyPattern to TRUE; otherwise it

MUST set EmptyPattern to FALSE.

If FileNamePattern.Length is less than the size of a ReparseTag (4 bytes),

FileNamePattern.Buffer will be zero filled up to the size of ReparseTag.

If EmptyPattern is FALSE:

The object store MUST search Open.File.Volume for Files having File ReparseTag matching

FileNamePattern.

Else

The object store MUST match all reparse tags on the volume.

EndIf

If RestartScan is FALSE and EmptyPattern is TRUE and there is no match, the operation MUST

be failed with STATUS_NO_MORE_FILES.

The operation MUST fail with STATUS_NO_SUCH_FILE under any of the following conditions:

EmptyPattern is FALSE and there is no match.

EmptyPattern is TRUE and RestartScan is TRUE and there is no match.

The operation MUST fail with STATUS_BUFFER_OVERFLOW if OutputBuffer is not large enough

to hold the first matching entry.

%5bMS-FSCC%5d.pdf

83 / 249

[MS-FSA] — v20130722
 File System Algorithms

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

If there is at least one match, the operation is considered successful. The object store MUST

return:

Status set to STATUS_SUCCESS.

OutputBuffer containing an array of as many FILE_REPARSE_POINT_INFORMATION

structures that match the query as will fit in OutputBuffer unless ReturnSingleEntry is
TRUE, in which case only a single entry will be stored in OutputBuffer. To continue the
query, FileNamePattern MUST be empty and RestartScan MUST be FALSE.

ByteCount set to the number of bytes filled in OutputBuffer.

2.1.5.5.3 Directory Information Queries

This section describes how the object store processes directory queries for the following
FileInformationClass values:

FileBothDirectoryInformation

FileDirectoryInformation

FileFullDirectoryInformation

FileIdBothDirectoryInformation

FileIdFullDirectoryInformation

FileNamesInformation

This algorithm uses the following local variables:

Boolean value (initialized to FALSE): FirstQuery

Link: Link

Stream: DefaultStream

32-bit Unsigned integers: FileNameBytesToCopy, BaseLength, FoundNameLength

Pointer to given FileInformationClass Structure: Entry, LastEntry

Status (initialized to STATUS_SUCCESS): StatusToReturn

Pseudocode for the algorithm is as follows:

If OutputBufferSize is less than the size needed to return a single entry, the operation MUST be

failed with STATUS_INFO_LENGTH_MISMATCH. The below subsections describe the initial size
checks for OutputBufferSize to determine whether any entries can be returned.

If Open.File is not a DirectoryFile, the operation MUST be failed with

STATUS_INVALID_PARAMETER.

If Open.QueryPattern is empty:

If FileNamePattern is empty:

Set FileNamePattern to "*".

Else:

84 / 249

[MS-FSA] — v20130722
 File System Algorithms

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

If FileNamePattern is not a valid filename component as described in [MS-FSCC] section

2.1.5, with the exceptions that wildcard characters described in section 2.1.4.3 are

permitted and the strings "." and ".." are permitted, the operation MUST be failed with

STATUS_OBJECT_NAME_INVALID.

EndIf

FirstQuery = TRUE

Set Open.QueryPattern to FileNamePattern for use in subsequent queries.

Else:

FirstQuery = FALSE

EndIf

If RestartScan is TRUE or Open.QueryLastEntry is empty:

Set Open.QueryLastEntry to the first Link in Open.File.DirectoryList, thus enumerating

the directory from its beginning.

EndIf

Set Entry and LastEntry to point to the front of OutputBuffer.

Set ByteCount to zero.

Set BaseLength to FieldOffset(FileInformationClass.FileName). In other words save the size

of the fixed length portion of the given Information Class.

For each Link in Open.File.DirectoryList starting at Open.QueryLastEntry:

If ReturnSingleEntry is TRUE and Entry != OutputBuffer, then break.

If FirstQuery is TRUE, the object store MUST set the "." and ".." file names as the first two

records returned unless one of the following is TRUE:

Open.File == File.Volume.RootDirectory

FileNamePattern == "."

FileNamePattern contains wildcard characters as described in section 2.1.4.3 and the

Unicode string "." matches FileNamePattern according to the algorithm in section 2.1.4.4.

EndIf

If Link.Name or Link.ShortName matches FileNamePattern as described in section 2.1.4.4

using the following parameters: FileName set to Link.Name then Link.ShortName if not
empty, Expression set to FileNamePattern and Ignorecase set to
Open.IsCaseInsensitive, then:

Set FoundNameLength to the length, in bytes, of Link.Name.

If Entry != OutputBuffer(one or more structures have already been copied into

OutputBuffer) and (ByteCount + BaseLength + FoundNameLength) >
OutputBufferSize then break.

%5bMS-FSCC%5d.pdf

85 / 249

[MS-FSA] — v20130722
 File System Algorithms

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Set DefaultStream to the entry in Link.File.StreamList where DefaultStream.Name is

empty (locate the default stream for the given file or directory).

The object store MUST copy the fixed portion of the given FileInformationClass structure

to Entry as described in the subsections below. This does not include copying the
FileName field.

If (ByteCount + BaseLength + FoundNameLength) > OutputBufferSize then:

Set FileNameBytesToCopy to OutputBufferSize - ByteCount - BaseLength.

Set StatusToReturn to STATUS_BUFFER_OVERFLOW.

The scenario where a partial filename is returned only occurs on the first record being

returned. The earlier checks guarantee that there will be room for the fixed portion of
the given FileInformationClass structure.

EndIf

Copy FileNameBytesToCopy bytes from Link.Name into FileInformationClass.Filename

field.

Set LastEntry.NextEntryOffset to Entry - OutputBuffer.

Set ByteCount to BlockAlign(ByteCount, 8) + BaseLength + FileNameBytesToCopy.

If StatusToReturn != STATUS_SUCCESS, then break.

Set LastEntry to Entry.

Set Entry to OutputBuffer + ByteCount, which points to the beginning of the next record

to be returned (if any).

EndIfSet Open.QueryLastEntry to Link.

EndFor

If no records are being returned:

If FirstQuery is TRUE:

Set StatusToReturn to STATUS_NO_SUCH_FILE, which means no files were found in this

directory that match the given wildcard pattern.

Else:

Set StatusToReturn to STATUS_NO_MORE_FILES, which means no more files were found in

this directory that match the given wildcard pattern.

EndIf

If Open.File.UserSetAccessTime is FALSE, the object store MUST update

Open.File.LastAccessTime to the current system time.

The object store MUST return:

Status set to StatusToReturn.

86 / 249

[MS-FSA] — v20130722
 File System Algorithms

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

OutputBuffer containing an array of as many entries that match the query as will fit in

OutputBufferSize.

BytesReturned containing the number of bytes filled in OutputBuffer.

2.1.5.5.3.1 FileBothDirectoryInformation

OutputBuffer is an array of one or more FILE_BOTH_DIR_INFORMATION structures as described in
[MS-FSCC] section 2.4.8. Entry is a parameter to this routine that points to the current
FILE_BOTH_DIR_INFORMATION structure to fill out. Note that the FileName field is not set in this
section.

Pseudocode for the operation is as follows:

If OutputBufferSize is smaller than FieldOffset(FILE_BOTH_DIR_INFORMATION.FileName),

the operation MUST be failed with STATUS_INFO_LENGTH_MISMATCH.

The object store MUST process this query using the algorithm described in section 2.1.5.5.3.

Entry MUST be constructed as follows:

Entry.NextEntryOffset set to zero

Entry.FileIndex set to zero

Entry.CreationTime set to Link.File.CreationTime

Entry.LastAccessTime set to Link.File.LastAccessTime

Entry.LastWriteTime set to Link.File.LastModificationTime

Entry.ChangeTime set to Link.File.LastChangeTime

Entry.EndOfFile set to DefaultStream.Size

Entry.AllocationSize set to DefaultStream.AllocationSize

Entry.FileAttributes set to Link.File.FileAttributes

If Link.File.FileType is DirectoryFile:

Entry.FileAttributes.FILE_ATTRIBUTE_DIRECTORY is set

EndIf

If Entry.FileAttributes has no attributes set:

Entry.FileAttributes.FILE_ATTRIBUTE_NORMAL is set

EndIf

If Link.File.FileAttributes.FILE_ATTRIBUTE_REPARSE_POINT is set:

Entry.EaSize set to Link.File.ReparseTag

Else:

Entry.EaSize set to Link.File.ExtendedAttributesLength<46>

%5bMS-FSCC%5d.pdf

87 / 249

[MS-FSA] — v20130722
 File System Algorithms

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

EndIf

If Link.ShortName is not empty:

Entry.ShortNameLength set to the length, in bytes, of Link.ShortName

Entry.ShortName set to Link.ShortName padding with zeroes as necessary

Else:

Entry.ShortNameLength set to zero

Entry.ShortName is filled with zeroes

EndIf

Entry.FileNameLength set to the length ,in bytes, of Link.Name

2.1.5.5.3.2 FileDirectoryInformation

OutputBuffer is an array of one or more FILE_DIRECTORY_INFORMATION structures as described
in [MS-FSCC] section 2.4.10. Entry is a parameter to this routine that points to the current

FILE_DIRECTORY_INFORMATION structure to fill out. Note that the FileName field is not set in this
section.

Pseudocode for the operation is as follows:

If OutputBufferSize is smaller than FieldOffset(FILE_DIRECTORY_INFORMATION.FileName),

the operation MUST be failed with STATUS_INFO_LENGTH_MISMATCH.

The object store MUST process this query using the algorithm described in section 2.1.5.5.3.

Entry MUST be constructed as follows:

Entry.NextEntryOffset set to zero

Entry.FileIndex set to zero

Entry.CreationTime set to Link.File.CreationTime

Entry.LastAccessTime set to Link.File.LastAccessTime

Entry.LastWriteTime set to Link.File.LastModificationTime

Entry.ChangeTime set to Link.File.LastChangeTime

Entry.EndOfFile set to DefaultStream.Size

Entry.AllocationSize set to DefaultStream.AllocationSize

Entry.FileAttributes set to Link.File.FileAttributes

If Link.File.FileType is DirectoryFile:

Entry.FileAttributes.FILE_ATTRIBUTE_DIRECTORY is set

EndIf

If Entry.FileAttributes has no attributes set:

%5bMS-FSCC%5d.pdf

88 / 249

[MS-FSA] — v20130722
 File System Algorithms

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Entry.FileAttributes.FILE_ATTRIBUTE_NORMAL is set

EndIf

Entry.FileNameLength set to the length ,in bytes, of Link.Name

2.1.5.5.3.3 FileFullDirectoryInformation

OutputBuffer is an array of one or more FILE_FULL_DIR_INFORMATION structures as described in
[MS-FSCC] section 2.4.14. Entry is a parameter to this routine that points to the current
FILE_FULL_DIR_INFORMATION structure to fill out. Note that the FileName field is not set in this
section.

Pseudocode for the operation is as follows:

If OutputBufferSize is smaller than FieldOffset(FILE_FULL_DIR_INFORMATION.FileName), the

operation MUST be failed with STATUS_INFO_LENGTH_MISMATCH.

The object store MUST process this query using the algorithm described in section 2.1.5.5.3.

Entry MUST be constructed as follows:

Entry.NextEntryOffset set to zero

Entry.FileIndex set to zero

Entry.CreationTime set to Link.File.CreationTime

Entry.LastAccessTime set to Link.File.LastAccessTime

Entry.LastWriteTime set to Link.File.LastModificationTime

Entry.ChangeTime set to Link.File.LastChangeTime

Entry.EndOfFile set to DefaultStream.Size

Entry.AllocationSize set to DefaultStream.AllocationSize

Entry.FileAttributes set to Link.File.FileAttributes

If Link.File.FileType is DirectoryFile:

Entry.FileAttributes.FILE_ATTRIBUTE_DIRECTORY is set

EndIf

If Entry.FileAttributes has no attributes set:

Entry.FileAttributes.FILE_ATTRIBUTE_NORMAL is set

EndIf

If Link.File.FileAttributes.FILE_ATTRIBUTE_REPARSE_POINT is SET:

Entry.EaSize set to Link.File.ReparseTag

Else:

Entry.EaSize set to Link.File.ExtendedAttributesLength<47>

%5bMS-FSCC%5d.pdf

89 / 249

[MS-FSA] — v20130722
 File System Algorithms

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

EndIf

Entry.FileNameLength set to the length, in bytes, of Link.Name

2.1.5.5.3.4 FileIdBothDirectoryInformation

OutputBuffer is an array of one or more FILE_ID_BOTH_DIR_INFORMATION structures as
described in [MS-FSCC] section 2.4.17. Entry is a parameter to this routine that points to the
current FILE_ID_BOTH_DIR_INFORMATION structure to fill out. Note that the FileName field is not
set in this section.

Pseudocode for the operation is as follows:

If OutputBufferSize is smaller than

FieldOffset(FILE_ID_BOTH_DIR_INFORMATION.FileName), the operation MUST be failed with
STATUS_INFO_LENGTH_MISMATCH.

The object store MUST process this query using the algorithm described in section 2.1.5.5.3.

Entry MUST be constructed as follows:

Entry.NextEntryOffset set to zero

Entry.FileIndex set to zero

Entry.CreationTime set to Link.File.CreationTime

Entry.LastAccessTime set to Link.File.LastAccessTime

Entry.LastWriteTime set to Link.File.LastModificationTime

Entry.ChangeTime set to Link.File.LastChangeTime

Entry.EndOfFile set to DefaultStream.Size

Entry.AllocationSize set to DefaultStream.AllocationSize

Entry.FileAttributes set to Link.File.FileAttributes

If Link.File.FileType is DirectoryFile:

Entry.FileAttributes.FILE_ATTRIBUTE_DIRECTORY is set

EndIf

If Entry.FileAttributes has no attributes set:

Entry.FileAttributes.FILE_ATTRIBUTE_NORMAL is set

EndIf

If Link.File.FileAttributes.FILE_ATTRIBUTE_REPARSE_POINT is SET:

Entry.EaSize set to Link.File.ReparseTag

Else:

Entry.EaSize set to Link.File.ExtendedAttributesLength<48>

%5bMS-FSCC%5d.pdf

90 / 249

[MS-FSA] — v20130722
 File System Algorithms

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

EndIf

If Link.ShortName is not empty:

Entry.ShortNameLength set to the length, in bytes, of Link.ShortName

Entry.ShortName set to Link.ShortName padding with zeroes as necessary

Else:

Entry.ShortNameLength set to zero

Entry.ShortName filled with zeroes

EndIf

Entry.FileID set to Link.File.FileId64

Entry.FileNameLength set to the length, in bytes, of Link.Name

2.1.5.5.3.5 FileIdFullDirectoryInformation

OutputBuffer is an array of one or more FILE_ID_FULL_DIR_INFORMATION structures as described
in [MS-FSCC] section 2.4.18. Entry is a parameter to this routine that points to the current
FILE_ID_FULL_DIR_INFORMATION structure to fill out. Note that the FileName field is not set in this
section.

Pseudocode for the operation is as follows:

If OutputBufferSize is smaller than FieldOffset(FILE_ID_FULL_DIR_INFORMATION.FileName),

the operation MUST be failed with STATUS_INFO_LENGTH_MISMATCH.

The object store MUST process this query using the algorithm described in section 2.1.5.5.3.

Entry MUST be constructed as follows:

Entry.NextEntryOffset set to zero

Entry.FileIndex set to zero

Entry.CreationTime set to Link.File.CreationTime

Entry.LastAccessTime set to Link.File.LastAccessTime

Entry.LastWriteTime set to Link.File.LastModificationTime

Entry.ChangeTime set to Link.File.LastChangeTime

Entry.EndOfFile set to DefaultStream.Size

Entry.AllocationSize set to DefaultStream.AllocationSize

Entry.FileAttributes set to Link.File.FileAttributes

If Link.File.FileType is DirectoryFile:

Entry.FileAttributes.FILE_ATTRIBUTE_DIRECTORY is set

EndIf

%5bMS-FSCC%5d.pdf

91 / 249

[MS-FSA] — v20130722
 File System Algorithms

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

If Entry.FileAttributes has no attributes set:

Entry.FileAttributes.FILE_ATTRIBUTE_NORMAL is set

EndIf

If Link.File.FileAttributes.FILE_ATTRIBUTE_REPARSE_POINT is SET:

Entry.EaSize set to Link.File.ReparseTag

Else:

Entry.EaSize set to Link.File.ExtendedAttributesLength<49>

EndIf

Entry.FileID set to Link.File.FileId64

Entry.FileNameLength set to the length, in bytes, of Link.Name

2.1.5.5.3.6 FileNamesInformation

OutputBuffer is an array of one or more FILE_NAMES_INFORMATION structures as described in
[MS-FSCC] section 2.4.26. Entry is a parameter to this routine that points to the current
FILE_NAMES_INFORMATION structure to fill out. Note that the FileName field is not set in this
section.

Pseudocode for the operation is as follows:

If OutputBufferSize is smaller than FieldOffset(FILE_NAMES_INFORMATION.FileName), the

operation MUST be failed with STATUS_INFO_LENGTH_MISMATCH.

The object store MUST process this query using the algorithm described in section 2.1.5.5.3.

Entry MUST be constructed as follows:

Entry.NextEntryOffset set to zero

Entry.FileIndex set to zero

Entry.FileNameLength set to the length, in bytes, of Link.Name

2.1.5.6 Server Requests Flushing Cached Data

The server provides:

Open: An Open of a DataFile or DirectoryFile for which it is to flush cached data.

On completion, the object store MUST return:

Status: An NTSTATUS code that specifies the result.

The object store MUST flush all persistent attributes for Open.File to stable storage. In addition:

If Open.File.Volume.IsReadOnly is TRUE, the operation MUST be failed with

STATUS_MEDIA_WRITE_PROTECTED.

%5bMS-FSCC%5d.pdf

92 / 249

[MS-FSA] — v20130722
 File System Algorithms

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

The operation MUST be failed with the status code returned from the underlying physical storage.

The operation flushes all eligible objects; however, only the first failure encountered is returned.

The operation ensures that the directory structure is persisted to stable storage.<50>

Pseudocode for the operation is as follows:

If Open.FileType is DirectoryFile:

CurrentDirectory = Open.DirectoryFile

Flush CurrentDirectory

While CurrentDirectory != CurrentDirectory.Volume.RootDirectory:

Set CurrentLink to the head of CurrentDirectory.LinkList, which should be the only link

because directories cannot have hard links.

CurrentDirectory = CurrentLink.ParentFile

Flush CurrentDirectory

EndWhile

EndIf

Flush all open objects on the volume.

If Open.File is equal to Open.File.Volume.RootDirectory:

For each OpenFile in Open.File.Volume.OpenFileList:

Flush OpenFile

EndFor

EndIf

2.1.5.7 Server Requests a Byte-Range Lock

The server provides:

Open: An Open of a DataStream.

FileOffset: A 64-bit unsigned integer containing the starting offset, in bytes.

Length: A 64-bit unsigned integer containing the length, in bytes. This value MAY be zero.

ExclusiveLock: A Boolean indicating whether the range is to be locked exclusively (TRUE) or

shared (FALSE).

FailImmediately: A Boolean indicating whether the lock request is to fail (TRUE) if the range is

locked by another open or if it is to wait until the lock can be acquired (FALSE).

On completion, the object store MUST return:

Status: An NTSTATUS code that specifies the result

Pseudocode for the operation is as follows:

93 / 249

[MS-FSA] — v20130722
 File System Algorithms

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

[Validation]

If Open.Stream.StreamType is DirectoryStream, return STATUS_INVALID_PARAMETER, as

byte range locks are not permitted on directories.

If (((FileOffset + Length - 1) < FileOffset) && Length != 0)

This means that the requested range contains one or more bytes with offsets beyond the

maximum 64-bit unsigned integer. The operation MUST be failed with
STATUS_INVALID_LOCK_RANGE.

EndIf

[Processing]

The object store MUST check for byte range lock conflicts by using the algorithm described in

section 2.1.4.10, with ByteOffset set to FileOffset, Length set to Length, IsExclusive set to
ExclusiveLock, LockIntent set to TRUE, and Open set to Open. If a conflict is detected, then:

If FailImmediately is TRUE, the operation MUST be failed with

STATUS_LOCK_NOT_GRANTED.

Else

Insert operation into CancelableOperations.CancelableOperationList.

Wait until there are no overlapping ByteRangeLocks or until the operation is canceled per

section 2.1.5.19. Overlapping ByteRangeLocks can be removed from

ByteRangeLockList in different ways:

The ByteRangeLock can be explicitly unlocked as described in section 2.1.5.8.

The ByteRangeLock.OwnerOpen can be closed as described in section 2.1.5.4.

EndIf

EndIf

Initialize a new ByteRangeLock:

ByteRangeLock.LockOffset MUST be initialized to FileOffset.

ByteRangeLock.LockLength MUST be initialized to Length.

ByteRangeLock.IsExclusive MUST be initialized to ExclusiveLock.

ByteRangeLock.OwnerOpen MUST be initialized to Open.

Insert ByteRangeLock into Open.Stream.ByteRangeLockList.

Complete this operation with STATUS_SUCCESS.

2.1.5.8 Server Requests an Unlock of a Byte-Range

The server provides:

Open: An Open of a DataStream.

FileOffset: A 64-bit unsigned integer containing the starting offset, in bytes.

94 / 249

[MS-FSA] — v20130722
 File System Algorithms

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Length: A 64-bit unsigned integer containing the length, in bytes.

On completion, the object store MUST return:

Status: An NTSTATUS code that specifies the result.

Pseudocode for the operation is as follows:

[Validation]

If Open.Stream.StreamType is DirectoryStream, return STATUS_INVALID_PARAMETER, as

byte range locks are not permitted on directories.

If (((FileOffset + Length - 1) < FileOffset) && Length != 0)

This means that the requested range contains one or more bytes with offsets beyond the

maximum 64-bit unsigned integer. The operation MUST be failed with
STATUS_INVALID_LOCK_RANGE.

EndIf

[Processing]

Initialize LockToRemove to NULL.

For each ByteRangeLock in Open.Stream.ByteRangeLockList:

If ((ByteRangeLock.LockOffset == FileOffset) and (ByteRangeLock.LockLength ==

Length) and (ByteRangeLock.OwnerOpen == Open)) then:

Set LockToRemove to ByteRangeLock.

If (LockToRemove.ExclusiveLock == TRUE) then break.

EndIf

EndFor

If LockToRemove is not NULL:

Remove LockToRemove from Open.Stream.ByteRangeLockList.

Complete this operation with STATUS_SUCCESS.

Else:

Complete this operation with STATUS_RANGE_NOT_LOCKED.

EndIf

2.1.5.9 Server Requests an FsControl Request

The following section describes various File System Control (FSCTLs) operations that are
implemented by the Object Store. Not all of these operations are implemented by all file systems.

2.1.5.9.1 FSCTL_CREATE_OR_GET_OBJECT_ID

The server provides:

95 / 249

[MS-FSA] — v20130722
 File System Algorithms

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Open: An Open of a DataFile or DirectoryFile.

OutputBufferSize: The maximum number of bytes to return in OutputBuffer.

On completion, the object store MUST return:

Status: An NTSTATUS code that specifies the result.

OutputBuffer: An array of bytes that will return a FILE_OBJECTID_BUFFER structure as

specified in [MS-FSCC] section 2.1.3.

BytesReturned: The number of bytes returned in OutputBuffer.

Support for this operation is optional. If the object store does not implement this functionality, the

operation MUST be failed with STATUS_INVALID_DEVICE_REQUEST.<51>

Pseudocode for the operation is as follows:

If Open.File.Volume.IsObjectIDsSupported is FALSE, the operation MUST be failed with

STATUS_VOLUME_NOT_UPGRADED.

If OutputBufferSize is less than sizeof(FILE_OBJECTID_BUFFER), the operation MUST be failed

with STATUS_INVALID_PARAMETER.

If Open.File.ObjectId is empty:

If Open.File.Volume.IsReadOnly, the operation MUST be failed with

STATUS_MEDIA_WRITE_PROTECTED.

The object store MUST set Open.File.ObjectId to a newly generated ObjectId GUID that is

unique on Open.File.Volume.<52>

EndIf

If a new Open.File.ObjectId was generated above or if Open.File.BirthVolumeId and

Open.File.BirthObjectId are both empty:

If Open.File.Volume.IsReadOnly, the operation MUST be failed with

STATUS_MEDIA_WRITE_PROTECTED.

If Open.File.BirthVolumeId is empty, the object store MUST set Open.File.BirthVolumeId

to Open.File.Volume.VolumeId.

If Open.File.BirthObjectId is empty, the object store MUST set Open.File.BirthObjectId to

Open.File.ObjectId.

The object store MUST post a USN change as per section 2.1.4.11 with File equal to File,

Reason equal to USN_REASON_OBJECT_ID_CHANGE, and FileName equal to
Open.Link.Name.

EndIf

If a new Open.File.ObjectId was generated above, the object store MUST update
Open.File.LastChangeTime.<53>

The object store MUST populate the fields of OutputBuffer as follows:

OutputBuffer.ObjectId set to Open.File.ObjectId.

%5bMS-FSCC%5d.pdf

96 / 249

[MS-FSA] — v20130722
 File System Algorithms

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

OutputBuffer.BirthVolumeId set to Open.File.BirthVolumeId.

OutputBuffer.BirthObjectId set to Open.File.BirthObjectId.

OutputBuffer.DomainId set to empty.

Upon successful completion of the operation, the object store MUST return:

BytesReturned set to sizeof(FILE_OBJECTID_BUFFER).

Status set to STATUS_SUCCESS.

2.1.5.9.2 FSCTL_DELETE_OBJECT_ID

The server provides:

Open: An Open of a DataFile or DirectoryFile.

On completion, the object store MUST return:

Status: An NTSTATUS code that specifies the result.

Support for this operation is optional. If the object store does not implement this functionality, the
operation MUST be failed with STATUS_INVALID_DEVICE_REQUEST.<54>

Pseudocode for the operation is as follows:

If Open.File.Volume.IsObjectIDsSupported is FALSE, the operation MUST be failed with

STATUS_VOLUME_NOT_UPGRADED.

If Volume.IsReadOnly is TRUE, the operation MUST be failed with

STATUS_MEDIA_WRITE_PROTECTED.

If Open.File.ObjectId is empty, the operation MUST be completed with STATUS_SUCCESS.

Update Open.File.LastChangeTime to the current time.<55>

Post a USN change as per section 2.1.4.11 with File equal to File, Reason equal to

USN_REASON_OBJECT_ID_CHANGE, and FileName equal to Open.Link.Name.

Set Open.File.ObjectId to empty.

Upon successful completion of the operation, the object store MUST return:

Status set to STATUS_SUCCESS.

2.1.5.9.3 FSCTL_DELETE_REPARSE_POINT

The server provides:

Open: An Open of a DataFile or DirectoryFile.

ReparseTag: An identifier indicating the type of the reparse point to delete, as defined in [MS-

FSCC] section 2.1.2.1.

ReparseGUID: A GUID indicating the type of the reparse point to delete.

On completion, the object store MUST return:

%5bMS-FSCC%5d.pdf
%5bMS-FSCC%5d.pdf

97 / 249

[MS-FSA] — v20130722
 File System Algorithms

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Status: An NTSTATUS code that specifies the result.

Support for this operation is optional. If the object store does not implement this functionality, the
operation MUST be failed with STATUS_INVALID_DEVICE_REQUEST.<56>

Pseudocode for the operation is as follows:

Phase 1 -- Verify the parameters.

If (Open.GrantedAccess & (FILE_WRITE_DATA | FILE_WRITE_ATTRIBUTES)) == 0, the

operation MUST be failed with STATUS_ACCESS_DENIED.

If Open.File.Volume.IsReadOnly is TRUE, the operation MUST be failed with

STATUS_MEDIA_WRITE_PROTECTED.

If Open.File.Volume.IsReparsePointsSupported is FALSE, the operation MUST be failed with

STATUS_VOLUME_NOT_UPGRADED.

If the ReparseTag is either IO_REPARSE_TAG_RESERVED_ZERO or

IO_REPARSE_TAG_RESERVED_ONE, the operation MUST be failed with
STATUS_IO_REPARSE_TAG_INVALID. The reserved reparse tags are defined in [MS-FSCC]

section 2.1.2.1.

If ReparseTag is a non-Microsoft Reparse Tag, then the ReparseGUID MUST be a valid GUID;

otherwise the operation MUST be failed with STATUS_IO_REPARSE_DATA_INVALID.

Phase 2 -- Validate that the requested tag deletion type matches with the stored tag type.

If (ReparseTag != Open.File.ReparseTag), the operation MUST be failed with

STATUS_IO_REPARSE_TAG_MISMATCH.

If (ReparseTag is a non-Microsoft Reparse Tag && Open.File.ReparseGUID !=

ReparseGUID), the operation MUST be failed with STATUS_REPARSE_ATTRIBUTE_CONFLICT.

Phase 3 -- Remove the reparse point from the File.

Set Open.File.ReparseData, Open.File.ReparseGUID, and Open.File.ReparseTag to empty.

Update Open.File.LastChangeTime to the current system time.<57>

If Open.File.FileType == DataFile, set Open.File.FileAttributes.FILE_ATTRIBUTE_ARCHIVE to

TRUE.

Set Open.File.PendingNotifications.FILE_NOTIFY_CHANGE_LAST_ACCESS to TRUE.

Upon successful completion of the operation, the object store MUST return:

Status set to STATUS_SUCCESS.

2.1.5.9.4 FSCTL_FILE_LEVEL_TRIM

The server provides:

Open: An Open of a DataFile.

InputBuffer: An array of bytes containing a single FILE_LEVEL_TRIM structure, followed by

zero or more FILE_LEVEL_TRIM_RANGE structures, as specified in [MS-FSCC] section
2.3.73.1.

%5bMS-FSCC%5d.pdf
%5bMS-FSCC%5d.pdf

98 / 249

[MS-FSA] — v20130722
 File System Algorithms

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

InputBufferSize: The number of bytes in InputBuffer.

OutputBufferSize: The maximum number of bytes to return in OutputBuffer.

On completion, the object store MUST return:

Status: An NTSTATUS code that specifies the result.

OutputBuffer: An optional array of bytes that contains a single FILE_LEVEL_TRIM_OUTPUT

structure, as specified in ([MS-FSCC] section 2.3.74).

BytesReturned: The number of bytes written to OutputBuffer.

This operation also uses the following local variables:

64-bit unsigned integers (initialized to zero): AlignmentAdjust, TempOffLen, TrimRange,

TrimOffset.

An NTSTATUS code: TrimStatus.

Support for this operation is optional. If the object store does not implement this functionality, the
operation MUST be failed with STATUS_INVALID_DEVICE_REQUEST.<58>

Pseudocode for the operation is as follows:

If Open.Stream.IsEncrypted is TRUE OR Open. Stream.IsCompressed is TRUE, the

operation MUST be failed with STATUS_INVALID_PARAMETER.

If InputBuffer.Size is < sizeof(FILE_LEVEL_TRIM), the operation MUST be failed with

STATUS_INVALID_PARAMETER.

If InputBuffer.NumRanges is <= 0, the operation MUST be failed with

STATUS_INVALID_PARAMETER.

If InputBuffer.NumRanges * sizeof(FILE_LEVEL_TRIM_RANGE) overflows 32-bits, the

operation MUST be failed with STATUS_INVALID_PARAMETER.

If InputBuffer.NumRanges * sizeof(FILE_LEVEL_TRIM_RANGE) + sizeof(FILE_LEVEL_TRIM)

overflows 32-bits, the operation MUST be failed with STATUS_INVALID_PARAMETER.

If OutputBufferSize != 0 AND OutputBufferSize is < sizeof(FILE_LEVEL_TRIM_OUTPUT), the

operation MUST be failed with STATUS_INVALID_PARAMETER.

If Open.File.Volume.IsUsnJournalActive is TRUE, the object store MUST post a USN change

as per section 2.1.4.11 with File equal to Open.File, Reason equal to
USN_REASON_DATA_OVERWRITE, and FileName equal to Open.File.Name.

Set OutputBuffer.NumRangesProcessed = 0.

For each TrimRange in InputBuffer.Ranges:

Set TrimOffset = TrimRange.Offset

Set TrimLength = TrimRange.Length

If ((TrimOffset % Open.File.Volume.SystemPageSize) != 0):

AlignmentAdjust = TrimOffset % Open.File.Volume.SystemPageSize

%5bMS-FSCC%5d.pdf

99 / 249

[MS-FSA] — v20130722
 File System Algorithms

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

If (TrimOffset + Open.File.Volume.SystemPageSize – AlignmentAdjust) overflows 64-

bits, the operation must be failed with STATUS_INTEGER_OVERFLOW.

If (TrimLength >= (Open.File.Volume.SystemPageSize – AlignmentAdjust):

Decrement TrimLength by (Open.File.Volume.SystemPageSize – AlignmentAdjust)

Else:

Set TrimLength to 0

EndIf

If (TrimOffset < Open.Stream.AllocationSize):

Set TempOffLen to TrimOffset + TrimLength

If TempOffLen overflows 64-bits, the operation MUST be failed with

STATUS_INTEGER_OVERFLOW.

If TempOffLen > Open.Stream.AllocationSize:

TrimLength = Open.Stream.AllocationSize – TrimOffset

EndIf

EndIf

Decrement TrimLength by (TrimLength % Open.File.Volume.SystemPageSize)

If TrimLength == 0, skip further processing on this range and continue to the next range.

Construct a list of the LBAs that the object store denotes as the range of the file specified
with TrimOffset and TrimLength. Send a TRIM command to the underlying storage device
with the constructed list of LBAs. For ATA devices, this command is the T13 defined “TRIM”.

For SCSI/SAS devices, this command is the T10 defined “UNMAP”. Store the status from
the operation in TrimStatus.

If the command was successful:

Increment OutputBuffer.NumRanges by 1

Else,

The operation MUST return immediately with status set to TrimStatus.

EndIf

EndFor

Upon successful completion of the operation, the object store MUST return:

BytesReturned set to 0 If OutputBufferSize == 0, sizeof(FILE_LEVEL_TRIM_OUTPUT)

otherwise

Status set to STATUS_SUCCESS.

100 / 249

[MS-FSA] — v20130722
 File System Algorithms

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

2.1.5.9.5 FSCTL_FILESYSTEM_GET_STATISTICS

The server provides:

Open: An Open of a DataFile or DirectoryFile.

OutputBufferSize: The maximum number of bytes to return in OutputBuffer.

On completion, the object store MUST return:

Status: An NTSTATUS code that specifies the result.

OutputBuffer: An array of bytes that will return an array of statistical data, one entry per host

processor.

BytesReturned: The number of bytes returned in OutputBuffer.

This operation also uses the following local variables:

An array of bytes (initially empty): FileSystemStatistics.

Support for this operation is optional. If the object store does not implement this functionality, the
operation MUST be failed with STATUS_INVALID_DEVICE_REQUEST.<59>

Pseudocode for the operation is as follows:

If OutputBufferSize is less than sizeof(FILESYSTEM_STATISTICS), the operation is failed with

STATUS_BUFFER_TOO_SMALL.

If OutputBufferSize is less than the total size of statistics information, then only

OutputBufferSize bytes will be returned, and the operation MUST succeed but return with
STATUS_BUFFER_OVERFLOW.

For each host processor, add one entry to FileSystemStatistics as follows:

FILESYSTEM_STATISTICS structure as specified in [MS-FSCC] section 2.3.8.1.

An optional file system-specific structure as specified in [MS-FSCC] section 2.3.8.2.<60>

Padding bytes of zeros to bring total size of each entry to be a multiple of 64 bytes.

EndFor

If OutputBufferSize is less than the total size of FileSystemStatistics, the object store MUST:

Copy OutputBufferSize bytes from FileSystemStatistics to OutputBuffer.

Set BytesReturned to the number of bytes copied to OutputBuffer.

Return Status set to STATUS_BUFFER_OVERFLOW.

EndIf

Upon successful completion of the operation, the object store MUST return:

Copy FileSystemStatistics to OutputBuffer.

Set BytesReturned to the number of bytes copied to OutputBuffer.

%5bMS-FSCC%5d.pdf
%5bMS-FSCC%5d.pdf

101 / 249

[MS-FSA] — v20130722
 File System Algorithms

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Return Status set to STATUS_SUCCESS.

2.1.5.9.6 FSCTL_FIND_FILES_BY_SID

The server provides:

Open: An Open of a DirectoryStream.

FindBySidData: An array of bytes containing a FIND_BY_SID_DATA structure as described in

[MS-FSCC] section 2.3.9.

OutputBufferSize: The maximum number of bytes to return in OutputBuffer.

On completion, the object store MUST return:

Status: An NTSTATUS code that specifies the result.

OutputBuffer: An array of bytes that contains an 8-byte aligned array of

FILE_NAME_INFORMATION ([MS-FSCC] section 2.1.7) structures. For more information, see
[MS-FSCC] section 2.3.10.

BytesReturned: The number of bytes written to OutputBuffer.

This operation also uses the following local variables:

A list of Links (initialized to empty): MatchingLinks.

Unicode string: RelativeName.

32-bit unsigned integers (initialized to zero): OutputBufferOffset, NameLength.

Support for this operation is optional. If the object store does not implement this functionality, the

operation MUST be failed with STATUS_INVALID_DEVICE_REQUEST.<61>

Pseudocode for the operation is as follows:

If Open.Stream.StreamType is DataStream, the operation MUST be failed with

STATUS_INVALID_PARAMETER.

If Open.HasManageVolumeAccess is FALSE and Open.HasBackupAccess is FALSE, the

operation MUST be failed with STATUS_ACCESS_DENIED.

If Open.File.Volume.QuotaInformation is empty, the operation MUST succeed with

BytesReturned set to zero and Status set to STATUS_NO_QUOTAS_FOR_ACCOUNT.

If OutputBufferSize is less than 8, the minimum size required to return a

FILE_NAME_INFORMATION structure with trailing padding, the operation MUST be failed with
STATUS_INVALID_USER_BUFFER.

If FindBySidData.Restart is TRUE, Open.FindBySidRestartIndex MUST be set to zero.

For each File in FindAllFiles(Open.File.Volume.RootDirectory)<62>

If File.SecurityDescriptor.OwnerSid matches FindBySidData.SID and File.FileNumber is

greater than or equal to Open.FindBySidRestartIndex, insert the first element of
File.LinkList into MatchingLinks.

EndFor

%5bMS-FSCC%5d.pdf
%5bMS-FSCC%5d.pdf
%5bMS-FSCC%5d.pdf

102 / 249

[MS-FSA] — v20130722
 File System Algorithms

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Sort MatchingLinks in ascending order by File.FileNumber.

For each Link in MatchingLinks:

Set RelativeName to BuildRelativeName(Link.File, Open.File).

If RelativeName is not empty (which means that Link represents Open.File or a descendant

of it):

Strip off the leading backslash ("\") character from RelativeName.

Set NameLength to the length of RelativeName, in bytes.

If (OutputBufferLength - OutputBufferOffset) is less than BlockAlign(NameLength + 6,

8):

BytesReturned is set to OutputBufferOffset.

If OutputBufferOffset is not zero:

The operation returns with STATUS_SUCCESS.

Else:

The operation MUST be failed with STATUS_BUFFER_TOO_SMALL.

EndIf

EndIf

Construct a FILE_NAME_INFORMATION structure starting at

OutputBuffer[OutputBufferOffset], with the first 4 bytes (the FileNameLength) set to
NameLength, and the next NameLength bytes (the FileName) set to RelativeName.

OutputBufferOffset = OutputBufferOffset + BlockAlign(NameLength + 6, 8).

EndIf

Set Open.FindBySidRestartIndex to Link.File.FileNumber + 1.

EndFor

Upon successful completion of the operation, the object store MUST return:

BytesReturned set to OutputBufferOffset.

Status set to STATUS_SUCCESS.

2.1.5.9.7 FSCTL_GET_COMPRESSION

The server provides:

Open: An Open of a DataStream or DirectoryStream.

OutputBufferSize: The maximum number of bytes to return in OutputBuffer.

On completion, the object store MUST return:

Status: An NTSTATUS code that specifies the result.

103 / 249

[MS-FSA] — v20130722
 File System Algorithms

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

OutputBuffer: An array of bytes that will return a USHORT value representing the compression

state of the stream, as specified in [MS-FSCC] section 2.3.12.

BytesReturned: The number of bytes returned in OutputBuffer.

Support for this operation is optional. If the object store does not implement this functionality, the
operation MUST be failed with STATUS_INVALID_DEVICE_REQUEST.<63>

Pseudocode for the operation is as follows:

If OutputBufferSize is less than sizeof(USHORT) (2 bytes), the operation MUST be failed with

STATUS_INVALID_PARAMETER.

If Open.Stream.StreamType is DirectoryStream:

If Open.File.FileAttributes.FILE_ATTRIBUTE_COMPRESSED is TRUE:

The object store MUST set OutputBuffer.CompressionState to

COMPRESSION_FORMAT_LZNT1.

Else:

The object store MUST set OutputBuffer.CompressionState to

COMPRESSION_FORMAT_NONE.

EndIf

Else:

If Open.Stream.IsCompressed is TRUE:

The object store MUST set OutputBuffer.CompressionState to

COMPRESSION_FORMAT_LZNT1.

Else:

The object store MUST set OutputBuffer.CompressionState to

COMPRESSION_FORMAT_NONE.

EndIf

EndIf

Upon successful completion of the operation, the object store MUST return:

BytesReturned set to sizeof(USHORT) (2 bytes).

Status set to STATUS_SUCCESS.

2.1.5.9.8 FSCTL_GET_INTEGRITY_INFORMATION

The server provides:

Open: An Open of a DataStream or DirectoryStream.

OutputBufferSize: The maximum number of bytes to return in OutputBuffer.

Upon completion, the object store MUST return:

%5bMS-FSCC%5d.pdf

104 / 249

[MS-FSA] — v20130722
 File System Algorithms

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Status: An NTSTATUS code that specifies the result.

OutputBuffer: An array of bytes that will return an

FSCTL_GET_INTEGRITY_INFORMATION_BUFFER structure, as specified in [MS-FSCC] section

2.3.50.

BytesReturned: The number of bytes returned in OutputBuffer.

Support for this operation is optional. If the object store does not implement this functionality, the
operation MUST be failed with STATUS_INVALID_DEVICE_REQUEST.<64>

The operation MUST be failed with STATUS_INVALID_PARAMETER under any of the following
conditions:

OutputBufferSize is less than sizeof(FSCTL_GET_INTEGRITY_INFORMATION_BUFFER).

Open.Stream.StreamType is not DirectoryStream or DataStream.

Pseudocode for the operation is as follows:

The object store MUST initialize all fields in OutputBuffer to zero.

The object store MUST set OutputBuffer.CheckSumAlgorithm to

Open.Stream.ChecksumAlgorithm.

The object store MUST set OutputBuffer.ChecksumChunkSizeInBytes to

Open.File.Volume.ChecksumChunkSize.

The object store MUST set OutputBuffer.ClusterSizeInBytes to

Open.File.Volume.ClusterSize.

If Open.Stream.StreamType is DataStream and Open.Stream.ChecksumEnforcementOff is

TRUE, then the object store MUST set OutputBuffer.Flags to
FSCTL_INTEGRITY_FLAG_CHECKSUM_ENFORCEMENT_OFF.

Upon successful completion of the operation, the object store MUST return:

ByteCount set to sizeof(FSCTL_GET_INTEGRITY_INFORMATION_BUFFER).

Status set to STATUS_SUCCESS.

2.1.5.9.9 FSCTL_GET_NTFS_VOLUME_DATA

The server provides:

Open: An Open of a DataFile or DirectoryFile.

OutputBufferSize: The maximum number of bytes to return in OutputBuffer.

On completion, the object store MUST return:

Status: An NTSTATUS code that specifies the result.

OutputBuffer: An array of bytes that will return a NTFS_VOLUME_DATA_BUFFER structure as

specified in [MS-FSCC] section 2.3.14.

BytesReturned: The number of bytes returned in OutputBuffer.

%5bMS-FSCC%5d.pdf
%5bMS-FSCC%5d.pdf

105 / 249

[MS-FSA] — v20130722
 File System Algorithms

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Support for this operation is optional. If the object store does not implement this functionality, the
operation MUST be failed with STATUS_INVALID_DEVICE_REQUEST.<65>

Pseudocode for the operation is as follows:

If OutputBufferSize is less than sizeof(NTFS_VOLUME_DATA_BUFFER), the operation MUST be

failed with STATUS_BUFFER_TOO_SMALL.

The object store MUST populate the fields of OutputBuffer as follows:<66>

OutputBuffer.VolumeSerialNumber set to Open.File.Volume.VolumeSerialNumber.

OutputBuffer.NumberSectors set to Open.File.Volume.TotalSpace /

Open.File.Volume.LogicalBytesPerSector.

OutputBuffer.TotalClusters set to Open.File.Volume.TotalSpace /

Open.File.Volume.ClusterSize.

OutputBuffer.FreeClusters set to Open.File.Volume.FreeSpace /

Open.File.Volume.ClusterSize.

OutputBuffer.TotalReserved set to an implementation-specific value.

OutputBuffer.BytesPerSector set to Open.File.Volume.LogicalBytesPerSector.

OutputBuffer.BytesPerCluster set to Open.File.Volume.ClusterSize.

OutputBuffer.BytesPerFileRecordSegment set to an implementation-specific value.

OutputBuffer.ClustersPerFileRecordSegment set to an implementation-specific value.

OutputBuffer.MftValidDataLength set to an implementation-specific value.

OutputBuffer.MftStartLcn set to an implementation-specific value.

OutputBuffer.Mft2StartLcn set to an implementation-specific value.

OutputBuffer.MftZoneStart set to an implementation-specific value.

OutputBuffer.MftZoneEnd set to an implementation-specific value.

Upon successful completion of the operation, the object store MUST return:

BytesReturned set to sizeof(NTFS_VOLUME_DATA_BUFFER).

Status set to STATUS_SUCCESS.

2.1.5.9.10 FSCTL_GET_REFS_VOLUME_DATA

The server provides:

Open: An Open of a DataFile or DirectoryFile.

OutputBufferSize: The maximum number of bytes to return in OutputBuffer.

On completion, the object store MUST return:

Status: An NTSTATUS code that specifies the result.

106 / 249

[MS-FSA] — v20130722
 File System Algorithms

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

OutputBuffer: An array of bytes that will return a REFS_VOLUME_DATA_BUFFER structure as

specified in [MS-FSCC] section 2.3.16.

BytesReturned: The number of bytes returned in OutputBuffer.

Support for this operation is optional. If the object store does not implement this functionality, the
operation MUST be failed with STATUS_INVALID_DEVICE_REQUEST.

Pseudocode for the operation is as follows:

If OutputBufferSize is less than sizeof(REFS_VOLUME_DATA_BUFFER), the operation MUST be

failed with STATUS_BUFFER_TOO_SMALL.

The object store MUST populate the fields of OutputBuffer as follows:

OutputBuffer.VolumeSerialNumber set to Open.File.Volume.VolumeSerialNumber.

OutputBuffer.NumberSectors set to Open.File.Volume.TotalSpace /

Open.File.Volume.LogicalBytesPerSector.

OutputBuffer.TotalClusters set to Open.File.Volume.TotalSpace /

Open.File.Volume.ClusterSize.

OutputBuffer.FreeClusters set to Open.File.Volume.FreeSpace /

Open.File.Volume.ClusterSize.

OutputBuffer.TotalReserved set to an implementation-specific value.

OutputBuffer.BytesPerSector set to Open.File.Volume.LogicalBytesPerSector.

OutputBuffer.BytesPerCluster set to Open.File.Volume.ClusterSize.

Upon successful completion of the operation, the object store MUST return:

BytesReturned set to sizeof(REFS_VOLUME_DATA_BUFFER).

Status set to STATUS_SUCCESS.

2.1.5.9.11 FSCTL_GET_OBJECT_ID

The server provides:

Open: An Open of a DataFile or DirectoryFile.

OutputBufferSize: The maximum number of bytes to return in OutputBuffer.

On completion, the object store MUST return:

Status: An NTSTATUS code that specifies the result.

OutputBuffer: An array of bytes that will return a FILE_OBJECTID_BUFFER structure as

specified in [MS-FSCC] section 2.1.3.

BytesReturned: The number of bytes returned in OutputBuffer.

Support for this operation is optional. If the object store does not implement this functionality, the
operation MUST be failed with STATUS_INVALID_DEVICE_REQUEST.<67>

Pseudocode for the operation is as follows:

%5bMS-FSCC%5d.pdf
%5bMS-FSCC%5d.pdf

107 / 249

[MS-FSA] — v20130722
 File System Algorithms

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

If Open.File.Volume.IsObjectIDsSupported is FALSE, the operation MUST be failed with

STATUS_VOLUME_NOT_UPGRADED.

If OutputBufferSize is less than sizeof(FILE_OBJECTID_BUFFER), the operation MUST be failed

with STATUS_INVALID_PARAMETER.

If Open.File.ObjectId is empty, the operation MUST be failed with

STATUS_OBJECTID_NOT_FOUND.

The object store MUST populate the fields of OutputBuffer as follows:

OutputBuffer.ObjectId set to Open.File.ObjectId.

OutputBuffer.BirthVolumeId set to Open.File.BirthVolumeId.

OutputBuffer.BirthObjectId set to Open.File.BirthObjectId.

OutputBuffer.DomainId set to empty.

Upon successful completion of the operation, the object store MUST return:

BytesReturned set to sizeof (FILE_OBJECTID_BUFFER).

Status set to STATUS_SUCCESS.

2.1.5.9.12 FSCTL_GET_REPARSE_POINT

The server provides:

Open: An Open of a DataFile or DirectoryFile.

OutputBufferSize: The maximum number of bytes to return in OutputBuffer.

On completion, the object store MUST return:

OutputBuffer: An array of bytes containing a REPARSE_DATA_BUFFER or

REPARSE_GUID_DATA_BUFFER structure as defined in [MS-FSCC] sections 2.1.2.2 and 2.1.2.3,
respectively.

BytesReturned: The number of bytes returned to the caller.

Status: An NTSTATUS code that specifies the result.

Support for this operation is optional. If the object store does not implement this functionality, the
operation MUST be failed with STATUS_INVALID_DEVICE_REQUEST.<68>

Pseudocode for the operation is as follows:

If Open.File.Volume.IsReparsePointsSupported is FALSE, the operation MUST be failed with

STATUS_VOLUME_NOT_UPGRADED.

Phase 1 -- Check whether there is a reparse point on the File

If Open.File.ReparseTag is empty, the operation MUST be failed with

STATUS_NOT_A_REPARSE_POINT.

Phase 2 -- Verify that OutputBufferSize is large enough to contain the reparse point data

header.

%5bMS-FSCC%5d.pdf
%5bMS-FSCC%5d.pdf
%5bMS-FSCC%5d.pdf

108 / 249

[MS-FSA] — v20130722
 File System Algorithms

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

If Open.File.ReparseTag is a Microsoft reparse tag as defined in [MS-FSCC] section 2.1.2.1,

then OutputBufferSize MUST be >= sizeof(REPARSE_DATA_BUFFER). If not, the operation

MUST be failed with STATUS_BUFFER_TOO_SMALL.

If Open.File.ReparseTag is a non-Microsoft reparse tag, then OutputBufferSize MUST be >=

sizeof(REPARSE_GUID_DATA_BUFFER). If it is not, the operation MUST be failed with
STATUS_BUFFER TOO_SMALL.

Phase 3 -- Return the reparse data

Set OutputBuffer.ReparseTag to Open.File.ReparseTag.

Set OutputBuffer.ReparseDataLength to the size of Open.File.ReparseData, in bytes.

Set OutputBuffer.Reserved to zero.

Copy as much of Open.File.ReparseData as can fit into the remainder of OutputBuffer

starting at OutputBuffer.DataBuffer.

If Open.File.ReparseTag is a non-Microsoft reparse tag, set OutputBuffer.ReparseGUID to

Open.File.ReparseGUID.

Upon successful completion of the operation, the object store MUST return:

BytesReturned set to the number of bytes written to OutputBuffer.

Status set to STATUS_SUCCESS.

2.1.5.9.13 FSCTL_GET_RETRIEVAL_POINTERS

The server provides:

Open: An Open of a DataStream or DirectoryStream.

StartingVcnBuffer: An array of bytes containing a STARTING_VCN_INPUT_BUFFER as described

in [MS-FSCC] section 2.3.21.

OutputBufferSize: The maximum number of bytes to return in OutputBuffer.

On completion, the object store MUST return:

OutputBuffer: An array of bytes that will return a RETRIEVAL_POINTERS_BUFFER as defined in

[MS-FSCC] section 2.3.22.

BytesReturned: The number of bytes returned to the caller.

Status: An NTSTATUS code that specifies the result.

Pseudocode for the operation is as follows:

Phase 1 -- Verify Parameters

If the size of StartingVcnBuffer is less than sizeof (STARTING_VCN_INPUT_BUFFER), the

operation MUST be failed with STATUS_INVALID_PARAMETER.

If OutputBufferSize is smaller than sizeof(RETRIEVAL_POINTERS_BUFFER), the operation

MUST be failed with STATUS_BUFFER_TOO_SMALL.

%5bMS-FSCC%5d.pdf
%5bMS-FSCC%5d.pdf
%5bMS-FSCC%5d.pdf

109 / 249

[MS-FSA] — v20130722
 File System Algorithms

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

If StartingVcnBuffer.StartingVcn is negative, the operation MUST be failed with

STATUS_INVALID_PARAMETER.

If StartingVcnBuffer.StartingVcn is greater than or equal to Open.Stream.AllocationSize

divided by Open.File.Volume.ClusterSize, the operation MUST be failed with
STATUS_END_OF_FILE.

Phase 2 -- Locate and copy the extents into OutputBuffer.

Find the first Extent in Open.Stream.ExtentList where Extent.NextVcn is greater than

StartingVcnBuffer.StartingVcn.

Set OutputBuffer.StartingVcn to the previous element's NextVcn. If the element is the first

one in Open.Stream.ExtentList, set OutputBuffer.StartVcn to zero.

Copy as many EXTENTS elements from Open.Stream.ExtentList starting with Extent as will fit

into the remaining space in OutputBuffer, at offset OutputBuffer.Extents.

Set OutputBuffer.ExtentCount to the number of EXTENTS elements copied.

Upon successful completion of the operation, the object store MUST return:

BytesReturned set to the number of bytes written to OutputBuffer.

Status set to STATUS_SUCCESS if all of the elements in Open.Stream.ExtentList were

copied into OutputBuffer.Extents, else STATUS_BUFFER_OVERFLOW.

2.1.5.9.14 FSCTL_IS_PATHNAME_VALID

This operation always returns STATUS_SUCCESS.

2.1.5.9.15 FSCTL_LMR_GET_LINK_TRACKING_INFORMATION

This operation MUST be failed with STATUS_INVALID_DEVICE_REQUEST.

2.1.5.9.16 FSCTL_LMR_SET_LINK_TRACKING_INFORMATION

This operation MUST be failed with STATUS_INVALID_DEVICE_REQUEST.

2.1.5.9.17 FSCTL_OFFLOAD_READ

The server provides:

Open: An Open of a DataFile.

InputBuffer: An array of bytes containing a single FSCTL_OFFLOAD_READ_INPUT structure, as

specified in [MS-FSCC] section 2.3.75, indicating the Token that indicates the range of the file to

offload read, as specified in [MS-FSCC] section 2.3.77.

InputBufferSize: The number of bytes in InputBuffer.

OutputBufferSize: The number of bytes in OutputBuffer.

Upon completion, the object store MUST return:

Status: An NTSTATUS code that specifies the result.

%5bMS-FSCC%5d.pdf
%5bMS-FSCC%5d.pdf
%5bMS-ERREF%5d.pdf

110 / 249

[MS-FSA] — v20130722
 File System Algorithms

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

OutputBuffer: An array of bytes that contains a single FSCTL_OFFLOAD_READ_OUTPUT

structure, as specified in [MS-FSCC] section 2.3.76, which contains the Token for the read data,

as specified in [MS-FSCC] section 2.3.77.

BytesReturned: The number of bytes written to OutputBuffer.

This operation also uses the following local variables:

Boolean (initialized to FALSE): VdlSameAsEof

32-bit unsigned integers (initialized to zero): OutputBufferLength

64-bit unsigned integers (initialized to zero): StartingCluster, ValidDataLength, FileSize,

LastClusterInFile, VdlTrimmedCopyLength, and StorageOffloadBytesRead

A list of EXTENTS (initialized to empty): OffloadLCNList

An NTSTATUS code: StorageOffloadReadStatus

A STORAGE_OFFLOAD_TOKEN structure, as specified in [MS-FSCC] section 2.3.77:

StorageOffloadReadToken

Support for this read operation is optional. If the object store does not implement this functionality,
the operation MUST be failed with STATUS_INVALID_DEVICE_REQUEST.<69>

Pseudocode for the operation is as follows:

If Open.File.Volume.IsOffloadReadSupported is FALSE, the operation MUST be failed with

STATUS_NOT_SUPPORTED.

If InputBufferSize is less than the size of the FSCTL_OFFLOAD_READ_INPUT structure size, the

operation MUST be failed with STATUS_BUFFER_TOO_SMALL.

If OutputBufferSize is less than the size of the FSCTL_OFFLOAD_READ_OUTPUT structure size,

the operation MUST be failed with STATUS_BUFFER_TOO_SMALL.

If InputBuffer.FileOffset is not a multiple of Open.File.Volume. LogicalBytesPerSector, the

operation MUST be failed with STATUS_INVALID_PARAMETER.

If InputBuffer.CopyLength is not a multiple of Open.File.Volume.LogicalBytesPerSector,

the operation MUST be failed with STATUS_INVALID_PARAMETER.

If InputBuffer.Size is not equal to the size of the FSCTL_OFFLOAD_READ_INPUT structure size,

the operation MUST be failed with STATUS_INVALID_PARAMETER.

If the sum of InputBuffer.FileOffset and InputBuffer.CopyLength overflows 64 bits, the

operation MUST be failed with STATUS_INVALID_PARAMETER.

If InputBuffer.CopyLength is equal to 0, the operation SHOULD return immediately with

STATUS_SUCCESS.

If Open.Stream.StreamType != DataStream, the operation MUST be failed with

STATUS_OFFLOAD_READ_FILE_NOT_SUPPORTED.

If Open.Stream.IsSparse is TRUE, the operation MUST be failed with

STATUS_OFFLOAD_READ_FILE_NOT_SUPPORTED.

%5bMS-FSCC%5d.pdf
%5bMS-FSCC%5d.pdf
%5bMS-FSCC%5d.pdf

111 / 249

[MS-FSA] — v20130722
 File System Algorithms

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

If Open.Stream.IsEncrypted is TRUE, the operation MUST be failed with

STATUS_OFFLOAD_READ_FILE_NOT_SUPPORTED.

If Open.Stream.IsCompressed is TRUE, the operation MUST be failed with

STATUS_OFFLOAD_READ_FILE_NOT_SUPPORTED.

If Open.Stream.IsDeleted is TRUE, the operation MUST be failed with STATUS_FILE_DELETED.

If InputBuffer.FileOffset / Open.File.Volume.BytesPerCluster is less than 0, the operation

MUST be failed with STATUS_INVALID_PARAMETER.

Set ValidDataLength to Open.Stream.ValidDataLength.

Set FileSize to Open.Stream.Size.

If ValidDataLength is not equal to FileSize, set VdlSameAsEof to FALSE.

Set StartingCluster to InputBuffer.FileOffset / Open.File.Volume.BytesPerCluster.

Set LastClusterInFile to ClustersFromBytesTruncate(Open.File.Volume, FileSize).

If StartingCluster is greater than LastClusterInFile:

The operation MUST be failed with STATUS_END_OF_FILE.

Else If StartingCluster is less than 0:

The operation MUST be failed with STATUS_INVALID_PARAMETER.

EndIf

If InputBuffer.FileOffset is greater than or equal to FileSize, the operation MUST be failed with

STATUS_END_OF_FILE.

If InputBuffer.FileOffset is greater than or equal to ValidDataLength:

Set OutputBuffer.Token to the Zero token as defined in [MS-FSCC] section 2.3.77.

The operation MUST return STATUS_SUCCESS, with BytesReturned set to

OutputBufferLength, and OutputBuffer.Flags set to
OFFLOAD_READ_FLAG_ALL_ZERO_BEYOND_CURRENT_RANGE.

EndIf

If the sum of InputBuffer.FileOffset and InputBuffer.CopyLength is greater than

ValidDataLength:

Set InputBuffer.CopyLength to ValidDataLength –InputBuffer.FileOffset.

If VdlSameAsEof is TRUE:

Set InputBuffer.CopyLength to BlockAlignTruncate(InputBuffer.CopyLength,

Open.File.Volume.LogicalBytesPerSector).

Set VdlTrimmedCopyLength to InputBuffer.CopyLength.

Set OutputBuffer.Flags to

OFFLOAD_READ_FLAG_ALL_ZERO_BEYOND_CURRENT_RANGE.

%5bMS-FSCC%5d.pdf

112 / 249

[MS-FSA] — v20130722
 File System Algorithms

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

EndIf

EndIf

For Each Extent in Open.Stream.ExtentList spanned by the range defined by Input.FileOffset

and Input.CopyLength:

Append the partial or full Extent to OffloadLCNList.

EndFor

Construct the offload read command with the OffloadLCNList as the ranges, and Token length

specified in InputBuffer.CopyLength as per [INCITS-T10/11-059] and send it to the underlying

storage subsystem, storing the status from the operation in StorageOffloadReadStatus, the
number of bytes represented by the token in StorageOffloadBytesRead, and the Token in
StorageOffloadToken.

If the call was successful:

Set OutputBuffer.Token to StorageOffloadToken.

Set OutputBuffer.TransferLength to StorageOffloadBytesRead.

If OutputBuffer.Flag has the bit

OFFLOAD_READ_FLAG_ALL_ZERO_BEYOND_CURRENT_RANGE set:

If OutputBuffer.TransferLength is less than VdlTrimmedCopyLength, clear the

OFFLOAD_READ_FLAG_ALL_ZERO_BEYOND_CURRENT_RANGE bit in OutputBuffer.Flags.

EndIf

Else:

If StorageOffloadReadStatus is equal to STATUS_NOT_SUPPORTED or if

StorageOffloadReadStatus is equal to STATUS_DEVICE_FEATURE_NOT_SUPPORTED, then set

Open.File.Volume.IsOffloadReadSupported to FALSE.

EndIf

Upon successful completion of the operation, the object store MUST return:

BytesReturned set to OutputBufferLength.

Status set to STATUS_SUCCESS.

2.1.5.9.18 FSCTL_OFFLOAD_WRITE

The server provides:

Open: An Open of a DataFile.

InputBuffer: An array of bytes containing a single FSCTL_OFFLOAD_WRITE_INPUT structure, as

specified in [MS-FSCC] section 2.3.78, indicating the Token to use as the source, and the range
of the file to be offload written to, as specified in [MS-FSCC] section 2.3.77.

InputBufferSize: The number of bytes in InputBuffer.

OutputBufferSize: The number of bytes in OutputBuffer.

http://go.microsoft.com/fwlink/?LinkId=239442
%5bMS-FSCC%5d.pdf
%5bMS-FSCC%5d.pdf

113 / 249

[MS-FSA] — v20130722
 File System Algorithms

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Upon completion, the object store MUST return:

Status: An NTSTATUS code that specifies the result.

OutputBuffer: An array of bytes that contains a single FSCTL_OFFLOAD_WRITE_OUTPUT

structure, as specified in [MS-FSCC] section 2.3.79.

BytesReturned: The number of bytes written to OutputBuffer.

This operation also uses the following local variables:

32-bit unsigned integers (initialized to zero): OutputBufferLength

64-bit unsigned integers (initialized to zero): NewValidDataLength, ValidDataLength, FileSize,

and StorageOffloadBytesWritten.

A list of EXTENTS (initialized to empty): OffloadLCNList

An NTSTATUS code: StorageOffloadWriteStatus

Support for this write operation is optional. If the object store does not implement this functionality,
the operation MUST be failed with STATUS_INVALID_DEVICE_REQUEST.<70>

Pseudocode for the operation is as follows:

If Open.File.Volume.IsReadOnly is TRUE, the operation MUST be failed with

STATUS_MEDIA_WRITE_PROTECTED.

If Open.File.Volume.IsOffloadWriteSupported is FALSE, the operation MUST be failed with

STATUS_NOT_SUPPORTED.

If InputBufferSize is less than the size of the FSCTL_OFFLOAD_WRITE_INPUT structure

size, the operation MUST be failed with STATUS_BUFFER_TOO_SMALL.

If OutputBufferSize is less than the size of the FSCTL_OFFLOAD_WRITE_OUTPUT structure

size, the operation MUST be failed with STATUS_BUFFER_TOO_SMALL.

If InputBuffer.FileOffset is NOT a multiple of Open.File.Volume. LogicalBytesPerSector,

the operation MUST be failed with STATUS_INVALID_PARAMETER.

If InputBuffer.CopyLength is NOT a multiple of Open.File.Volume. LogicalBytesPerSector,

the operation MUST be failed with STATUS_INVALID_PARAMETER.

If InputBuffer.TransferOffset is NOT a multiple of

Open.File.Volume.LogicalBytesPerSector, the operation MUST be failed with
STATUS_INVALID_PARAMETER.

If InputBuffer.Size is not equal to the size of the FSCTL_OFFLOAD_WRITE_INPUT structure

size, the operation MUST be failed with STATUS_INVALID_PARAMETER.

If the sum of InputBuffer.FileOffset and InputBuffer.CopyLength overflows 64 bits, the

operation MUST be failed with STATUS_INVALID_PARAMETER.

If InputBuffer.CopyLength is equal to 0, the operation SHOULD return immediately with

STATUS_SUCCESS.

If Open.Stream.StreamType != DataStream, the operation MUST be failed with

STATUS_OFFLOAD_WRITE_FILE_NOT_SUPPORTED.

%5bMS-ERREF%5d.pdf
%5bMS-FSCC%5d.pdf

114 / 249

[MS-FSA] — v20130722
 File System Algorithms

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

If Open.Stream.IsSparse is TRUE, the operation MUST be failed with

STATUS_OFFLOAD_WRITE_FILE_NOT_SUPPORTED.

If Open.Stream.IsEncrypted is TRUE, the operation MUST be failed with

STATUS_OFFLOAD_WRITE_FILE_NOT_SUPPORTED.

If Open.Stream.IsCompressed is TRUE, the operation MUST be failed with

STATUS_OFFLOAD_WRITE_FILE_NOT_SUPPORTED.

If Open.Stream.IsDeleted is TRUE, the operation MUST be failed with STATUS_FILE_DELETED.

If InputBuffer.FileOffset / Open.File.Volume.BytesPerCluster is less than 0, the operation

MUST be failed with STATUS_INVALID_PARAMETER.

If (InputBuffer.FileOffset + InputBuffer.CopyLength) is greater than

Open.File.Volume.MaxFileSize, the operation MUST be failed with
STATUS_INVALID_PARAMETER.

If Open.File.Volume.IsUsnJournalActive is TRUE, the object store MUST post a USN change

as per section 2.1.4.11 with File equal to File, Reason equal to

USN_REASON_DATA_OVERWRITE, and FileName equal to Open.File.Name.

Set FileSize to Open.Stream.Size.

Set ValidDataLength to Open.Stream.ValidDataLength.

If InputBuffer.FileOffset is greater than or equal to Open.Stream.FileSize, the operation

MUST be failed with STATUS_END_OF_FILE.

If InputBuffer.FileOffset is greater than ValidDataLength, the operation MUST be failed with

STATUS_BEYOND_VDL.

For Each Extent in Open.Stream.ExtentList spanned by the range defined by

InputBuffer.FileOffset and InputBuffer.CopyLength:

Append the partial or full Extent to OffloadLCNList.

EndFor

Construct the offload write command with the OffloadLCNList as the ranges, Token from

InputBuffer.Token, token offset from InputBuffer.TransferOffset, and write length from
InputBuffer.CopyLength as defined in [INCITS-T10/11-059] and send it to the underlying
storage subsystem. Store the status from the operation in StorageOffloadWriteStatus, and the
number of bytes written in StorageOffloadBytesWritten.

If the operation was successful:

Set NewValidDataLength to InputBuffer.FileOffset + StorageOffloadBytesWritten.

If NewValidDataLength is greater than ValidDataLength:

Set Open.Stream.VDL to NewValidDataLength.

EndIf

Set OutputBuffer.LengthWritten to StorageOffloadBytesWritten.

Set OutputBuffer.Size to the size of the FSCTL_OFFLOAD_WRITE_OUTPUT structure.

http://go.microsoft.com/fwlink/?LinkId=239442

115 / 249

[MS-FSA] — v20130722
 File System Algorithms

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Set OutputBuffer.Flags to 0.

Else:

If StorageOffloadWriteStatus is equal to STATUS_NOT_SUPPORTED or if OffloadWriteStatus is

equal to STATUS_DEVICE_FEATURE_NOT_SUPPORTED, then set
Open.File.Volume.IsOffloadWriteSupported to FALSE.

EndIf

Upon successful completion of the operation, the object store MUST return:

BytesReturned set to OutputBufferLength.

Status set to STATUS_SUCCESS.

2.1.5.9.19 FSCTL_QUERY_ALLOCATED_RANGES

The server provides:

Open: An Open of a DataFile.

InputBuffer: An array of bytes containing a single FILE_ALLOCATED_RANGE_BUFFER structure

indicating the range to query for allocation, as specified in [MS-FSCC] section 2.3.34.

InputBufferSize: The number of bytes in InputBuffer.

OutputBufferSize: The maximum number of bytes to return in OutputBuffer.

On completion, the object store MUST return:

Status: An NTSTATUS code that specifies the result.

OutputBuffer: An array of bytes that will return an array of zero or more

FILE_ALLOCATED_RANGE_BUFFER structures as specified in [MS-FSCC] section 2.3.34.

BytesReturned: The number of bytes returned in OutputBuffer.

This operation uses the following local variables:

32-bit unsigned integer indicating the index of the next FILE_ALLOCATED_RANGE_BUFFER to fill

in OutputBuffer (initialized to 0): OutputBufferIndex.

64-bit unsigned integer QueryStart: Is initialized to

ClustersFromBytesTruncate(Open.File.Volume, InputBuffer.FileOffset). This is the cluster
containing the first byte of the queried range.

64-bit unsigned integer QueryNext: Is initialized to

ClustersFromBytesTruncate(Open.File.Volume, (InputBuffer.FileOffset +
InputBuffer.Length - 1)) + 1. This is the cluster following the last cluster of the range.

64-bit unsigned integers (initialized to 0): ExtentFirstVcn, ExtentNextVcn, RangeFirstVcn,

RangeNextVcn

Boolean values (initialized to FALSE): FoundRangeStart, FoundRangeEnd

Pointer to an EXTENTS element (initialized to NULL): Extent

%5bMS-FSCC%5d.pdf
%5bMS-FSCC%5d.pdf

116 / 249

[MS-FSA] — v20130722
 File System Algorithms

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

FILE_ALLOCATED_RANGE_BUFFER (initialized to zeros): Range

Support for this operation is optional. If the object store does not implement this functionality, the
operation MUST be failed with STATUS_INVALID_DEVICE_REQUEST.<71>

Pseudocode for the operation is as follows:

If Open.Stream.StreamType is DirectoryStream, the operation MUST be failed with

STATUS_INVALID_PARAMETER.

If InputBufferSize is less than sizeof(FILE_ALLOCATED_RANGE_BUFFER), the operation MUST

be failed with STATUS_INVALID_PARAMETER.

If (InputBuffer.FileOffset < 0) or (InputBuffer.Length < 0) or (InputBuffer.Length >

MAXLONGLONG - InputBuffer.FileOffset), the operation MUST be failed with
STATUS_INVALID_PARAMETER. If InputBuffer.Length is 0:

Set BytesReturned to 0.

Return STATUS_SUCCESS.

EndIf

If OutputBufferSize < sizeof(FILE_ALLOCATED_RANGE_BUFFER), the operation MUST be

failed with STATUS_BUFFER_TOO_SMALL.

If Open.Stream.IsSparse is FALSE:

Set OutputBuffer.FileOffset to InputBuffer.FileOffset.

Set OutputBuffer.Length to InputBuffer.Length.

Set BytesReturned to sizeof(FILE_ALLOCATED_RANGE_BUFFER).

Return STATUS_SUCCESS.

Else:

For sparse files, return a list of contiguous allocated ranges within the requested range.

Contiguous allocated ranges in a sparse file might be fragmented on disk, therefore it is
necessary to loop through the EXTENTS on this stream, coalescing the adjacent allocated
EXTENTS into a single FILE_ALLOCATED_RANGE_BUFFER entry.

Set Status to STATUS_SUCCESS.

Set BytesReturned to 0.

For each Extent in Open.Stream.ExtentList:

Set ExtentFirstVcn to ExtentNextVcn.

Set ExtentNextVcn to Extent.NextVcn.

If Extent.Lcn != 0xffffffffffffffff, meaning Extent is allocated (not a sparse hole):

If FoundRangeStart is FALSE:

If QueryStart < ExtentFirstVcn:

117 / 249

[MS-FSA] — v20130722
 File System Algorithms

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Set FoundRangeStart to TRUE.

Set RangeFirstVcn to ExtentFirstVcn.

Else If ExtentFirstVcn <= QueryStart and QueryStart < ExtentNextVcn:

Set FoundRangeStart to TRUE.

Set RangeFirstVcn to QueryStart.

EndIf

EndIf

If FoundRangeStart is TRUE:

If QueryNext <= ExtentFirstVcn:

Break out of the For loop.

Else If ExtentFirstVcn < QueryNext and QueryNext <= ExtentNextVcn:

Set FoundRangeEnd to TRUE.

Set RangeNextVcn to QueryNext.

Else (ExtentNextVcn < QueryNext):

Set FoundRangeEnd to FALSE.

Set RangeNextVcn to ExtentNextVcn.

EndIf

EndIf

Else If FoundRangeStart is TRUE:

Set FoundRangeEnd to TRUE.

EndIf

If FoundRangeEnd is TRUE:

Set FoundRangeStart to FALSE and FoundRangeEnd to FALSE.

Add Range to OutputBuffer as follows:

Set Range.FileOffset to RangeFirstVcn * Open.File.Volume.ClusterSize.

Set Range.Length to (RangeNextVcn - RangeFirstVcn) *

Open.File.Volume.ClusterSize.

If OutputBufferSize < ((OutputBufferIndex + 1) *

sizeof(FILE_ALLOCATED_RANGE_BUFFER)) then:

Set RangeFirstVcn to 0 and RangeNextVcn to 0.

Set Status to STATUS_BUFFER_OVERFLOW.

118 / 249

[MS-FSA] — v20130722
 File System Algorithms

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Break out of the For loop.

EndIf

Copy Range to OutputBuffer[OutputBufferIndex].

Increment OutputBufferIndex by 1.

Set RangeFirstVcn to 0 and RangeNextVcn to 0.

EndIf

EndFor

If RangeNextVcn is not 0:

If OutputBufferSize < ((OutputBufferIndex + 1) *

sizeof(FILE_ALLOCATED_RANGE_BUFFER)) then:

Set Status to STATUS_BUFFER_OVERFLOW.

Else add Range to OutputBuffer as follows:

Set Range.FileOffset to RangeFirstVcn * Open.File.Volume.ClusterSize.

Set Range.Length to (RangeNextVcn - RangeFirstVcn) *

Open.File.Volume.ClusterSize.

Copy Range to OutputBuffer[OutputBufferIndex].

Increment OutputBufferIndex by 1.

EndIf

EndIf

Bias the first and the last returned ranges so that they match the offset/length passed in,

using the following algorithm:

If OutputBufferIndex > 0:

If OutputBuffer[0].FileOffset < InputBuffer.FileOffset:

Set OutputBuffer[0].Length to OutputBuffer[0].Length - (InputBuffer.FileOffset -

OutputBuffer[0].FileOffset).

Set OutputBuffer[0].FileOffset to InputBuffer.FileOffset.

EndIf

If (OutputBuffer[OutputBufferIndex - 1].FileOffset + OutputBuffer[OutputBufferIndex -

1].Length) > (InputBuffer.FileOffset + InputBuffer.Length):

Set OutputBuffer[OutputBufferIndex - 1].Length to InputBuffer.FileOffset +

InputBuffer.Length - OutputBuffer[OutputBufferIndex - 1].FileOffset.

EndIf

EndIf

119 / 249

[MS-FSA] — v20130722
 File System Algorithms

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Endif

Upon successful completion of the operation, the object store MUST return:

BytesReturned set to OutputBufferIndex * sizeof(FILE_ALLOCATED_RANGE_BUFFER).

Status set to STATUS_SUCCESS.

2.1.5.9.20 FSCTL_QUERY_FAT_BPB

Support for this operation is optional. If this operation is not supported, this operation MUST be
failed with STATUS_INVALID_DEVICE_REQUEST.<72>

The server provides:

Open: An Open of a DataFile or DirectoryFile.

OutputBufferSize: The maximum number of bytes to return in OutputBuffer.

On completion, the object store MUST return:

Status: An NTSTATUS code that specifies the result.

OutputBuffer: An array of bytes that will return the first 0x24 bytes of sector zero, on a FAT

volume.

BytesReturned: The number of bytes returned in OutputBuffer.

Support for this operation is optional. If the object store does not implement this functionality, the
operation MUST be failed with STATUS_INVALID_DEVICE_REQUEST.<73>

Pseudocode for the operation is as follows:

If OutputBufferSize is less than 0x24, the operation MUST be failed with

STATUS_BUFFER_TOO_SMALL.

The operation will now copy the first 0x24 bytes of sector 0 of the storage device associated with

Open.File.Volume into OutputBuffer.

Upon successful completion of the operation, the object store MUST return:

BytesReturned set to 0x24.

Status set to STATUS_SUCCESS.

2.1.5.9.21 FSCTL_QUERY_FILE_REGIONS

The server provides:

Open: An Open of DataFile.

InputBuffer: An array of bytes containing a single FILE_REGION_INPUT structure indicating the

range of the DataFile to return data about, as specified in [MS-FSCC] section 2.3.37. This input
structure is optional.

InputBufferSize: The number of bytes in InputBuffer.

OutputBufferSize: The maximum number of bytes to return in OutputBuffer.

%5bMS-FSCC%5d.pdf
%5bMS-FSCC%5d.pdf

120 / 249

[MS-FSA] — v20130722
 File System Algorithms

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Upon completion, this object store MUST return:

Status: An NTSTATUS code that specifies the result.

OutputBuffer: An array of bytes that will return a FILE_REGION_OUTPUT structure as specified

in [MS-FSCC] section 2.3.38.

BytesReturned: The number of bytes returned in OutputBuffer.

This operation uses the following local variables:

A FILE_REGION_INPUT structure as specified in [MS-FSCC] section 2.3.37: InputRegion

32-bit unsigned integers (initialized to zero): OutputBufferIndex, Length

64-bit unsigned integers (initialized to zero): Vdl, Eof

Pseudocode for this operation is as follows:

If InputBufferSize == 0:

Set InputRegion.FileOffset = 0

Set InputRegion.Length = MAXLONGLONG

Set InputRegion.DesiredUsage = FILE_REGION_USAGE_VALID_CACHED_DATA

ElseIf InputBufferSize < Sizeof(FILE_REGION_INPUT)

The operation MUST be failed with STATUS_BUFFER_TOO_SMALL.

Else:

Set InputRegion = InputBuffer

EndIf

If InputRegion.Length <= 0, the operation MUST be failed with STATUS_INVALID_PARAMETER.

If (InputRegion.FileOffset + InputRegion.Length) exceeds 63 bits, the operation MUST be failed

with STATUS_INVALID_PARAMETER

If InputRegion.DesiredUsage does NOT have flag FILE_REGION_USAGE_VALID_CACHED_DATA

set, the operation MUST be failed with STATUS_INVALID_PARAMETER

If OutputBuffer.Length < sizeof(FILE_REGION_OUTPUT), the operation MUST be failed with

STATUS_BUFFER_TOO_SMALL

Set Vdl = Open.File.ValidDataLength

Set Eof = Open.File.Eof

Set Length = FieldOffset(OutputBuffer.Region[0])

If (InputRegion.FileOffset > Eof) OR ((InputRegion.FileOffset == Eof) AND (Eof > 0)), the

operation MUST return STATUS_SUCCESS, with BytesReturned set to 0.

If (InputRegion.FileOffset >= Vdl)

%5bMS-FSCC%5d.pdf
%5bMS-FSCC%5d.pdf

121 / 249

[MS-FSA] — v20130722
 File System Algorithms

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Set OutputBuffer.Region[OutputBufferIndex].FileOffset = InputRegion.FileOffset

Set OutputBuffer.Region[OutputBufferIndex].Length = min(InputRegion.Length, Eof -

InputRegion.FileOffset)

Set OutputBuffer.Region[OutputBufferIndex].Usage = 0

Set OutputBuffer.Region[OutputBufferIndex].Reserved = 0

Set Length = Length + sizeof(FILE_REGION_INFO)

Set OutputBufferIndex = OutputBufferIndex + 1

Set OutputBuffer.TotalRegionEntryCount = OutputBuffer.TotalRegionEntryCount + 1

Else

Set OutputBuffer.Region[OutputBufferIndex].FileOffset = InputRegion.FileOffset

Set OutputBuffer.Region[OutputBufferIndex].Length = min((Vdl –

InputRegion.FileOffset), InputRegion.Length)

Set OutputBuffer.Region[OutputBufferIndex].Usage =

FILE_REGION_USAGE_VALID_CACHED_DATA

Set OutputBuffer.Region[OutputBufferIndex].Reserved = 0

Set Length = Length + sizeof(FILE_REGION_INFO)

Set OutputBufferIndex = OutputBufferIndex + 1

Set OutputBuffer.TotalRegionEntryCount = OutputBuffer.TotalRegionEntryCount + 1

If (Vdl < Eof) AND (OutputBuffer.Region[OutputBufferIndex - 1]. Length

<InputRegion.Length),

If (Length + sizeof(FILE_REGION_INFO)) > OutputBufferSize)

Set OutputBuffer.TotalRegionEntryCount = OutputBuffer.TotalRegionEntryCount +

1

The operation MUST be failed with STATUS_BUFFER_OVERFLOW.

Set OutputBuffer.Region[OutputBufferIndex].FileOffset = Vdl

Set OutputBuffer.Region[OutputBufferIndex].Length = min(InputRegion.Length –

OutputBuffer.Region[OutputBufferIndex - 1].Length, Eof –Vdl)

Set OutputBuffer.Region[OutputBufferIndex].Usage = 0

Set OutputBuffer.Region[OutputBufferIndex].Reserved = 0;

Set Length = Length + sizeof(FILE_REGION_INFO)

Set OutputBufferIndex = OutputBufferIndex + 1

Set OutputBuffer.TotalRegionEntryCount = OutputBuffer.TotalRegionEntryCount + 1

EndIf

122 / 249

[MS-FSA] — v20130722
 File System Algorithms

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

EndIf

Upon successful completion of the operation, the object store MUST return:

OutputBuffer.RegionEntryCount set to OutputBufferIndex

BytesReturned set to Length

Status set to STATUS_SUCCESS

2.1.5.9.22 FSCTL_QUERY_ON_DISK_VOLUME_INFO

The server provides:

Open: An Open of a DataFile.

OutputBufferSize: The maximum number of bytes to return in OutputBuffer.

On completion, the object store MUST return:

Status: An NTSTATUS code that specifies the result.

OutputBuffer: An array of bytes that will return a FILE_QUERY_ON_DISK_VOL_INFO_BUFFER

as defined in [MS-FSCC] section 2.3.40.

BytesReturned: The number of bytes returned in OutputBuffer.

Support for this operation is optional. If the object store does not implement this functionality, the
operation MUST be failed with STATUS_INVALID_DEVICE_REQUEST.<74>

Pseudocode for the operation is as follows:

If OutputBufferSize is less than sizeof(FILE_QUERY_ON_DISK_VOL_INFO_BUFFER), the

operation MUST be failed with STATUS_BUFFER_TOO_SMALL.

The object store MUST populate the fields of OutputBuffer as follows:

OutputBuffer.DirectoryCount set to Open.File.Volume.DirectoryCount.

OutputBuffer.FileCount set to Open.File.Volume.FileCount.

OutputBuffer.FsFormatMajVersion set to Open.File.Volume.FsFormatMajVersion.

OutputBuffer.FsFormatMinVersion set to Open.File.Volume.FsFormatMinVersion.

OutputBuffer.FsFormatName set to the Unicode string "UDF".

OutputBuffer.FormatTime set to Open.File.Volume.FormatTime.

OutputBuffer.LastUpdateTime set to Open.File.Volume.LastUpdateTime.

OutputBuffer.CopyrightInfo set to Open.File.Volume.CopyrightInfo.

OutputBuffer.AbstractInfo set to Open.File.Volume.AbstractInfo.

OutputBuffer.FormattingImplementationInfo set to

Open.File.Volume.FormattingImplementationInfo.

%5bMS-FSCC%5d.pdf

123 / 249

[MS-FSA] — v20130722
 File System Algorithms

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

OutputBuffer.LastModifyingImplementationInfo set to

Open.File.Volume.LastModifyingImplementationInfo.

Upon successful completion of the operation, the object store MUST return:

BytesReturned set to sizeof(FILE_QUERY_ON_DISK_VOL_INFO_BUFFER).

Status set to STATUS_SUCCESS.

2.1.5.9.23 FSCTL_QUERY_SPARING_INFO

The server provides:

Open: An Open of a DataFile.

OutputBufferSize: The maximum number of bytes to return in OutputBuffer.

On completion, the object store MUST return:

Status: An NTSTATUS code that specifies the result.

OutputBuffer: An array of bytes that will return a FILE_QUERY_SPARING_BUFFER as defined in

[MS-FSCC] section 2.3.42.

BytesReturned: The number of bytes returned in OutputBuffer.

Support for this operation is optional. If the object store does not implement this functionality, the
operation MUST be failed with STATUS_INVALID_DEVICE_REQUEST.<75>

Pseudocode for the operation is as follows:

If OutputBufferSize is less than sizeof(FILE_QUERY_SPARING_BUFFER), the operation MUST

be failed with STATUS_INVALID_PARAMETER.

The object store MUST populate the fields of OutputBuffer as follows:

OutputBuffer.SparingUnitBytes set to Open.File.Volume.SparingUnitBytes.

OutputBuffer.SoftwareSparing set to Open.File.Volume.SoftwareSparing.

OutputBuffer.TotalSpareBlocks set to Open.File.Volume.TotalSpareBlocks.

OutputBuffer.FreeSpareBlocks set to Open.File.Volume.FreeSpareBlocks.

Upon successful completion of the operation, the object store MUST return:

BytesReturned set to sizeof(: FILE_QUERY_SPARING_BUFFER).

Status set to STATUS_SUCCESS.

2.1.5.9.24 FSCTL_READ_FILE_USN_DATA

The server provides:

Open: An Open of a DataFile or DirectoryFile.

InputBuffer: An optional array of bytes containing a READ_FILE_USN_DATA structure, as

specified in [MS-FSCC] section 2.3.43.

%5bMS-FSCC%5d.pdf
%5bMS-FSCC%5d.pdf

124 / 249

[MS-FSA] — v20130722
 File System Algorithms

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

InputBufferSize: The number of bytes in the InputBuffer.

OutputBufferSize: The maximum number of bytes to return in OutputBuffer.

On completion, the object store MUST return:

Status: An NTSTATUS code that specifies the result.

OutputBuffer: An array of bytes that will return a USN_RECORD_V2 or USN_RECORD_V3 as

defined in [MS-FSCC] section 2.3.44.

BytesReturned: The number of bytes returned in OutputBuffer.

Support for this operation is optional. If the object store does not implement this functionality, the

operation MUST be failed with STATUS_INVALID_DEVICE_REQUEST.<76>

This operation uses the following local variables:

16-bit unsigned integers: MinMajorVersionSupported, MaxMajorVersionSupported,

MajorVersionToUse

Unicode string: LinkNameToUse

32-bit unsigned integers: LinkNameLength, RecordLength

Pseudocode for the operation is as follows:

Set MinMajorVersionSupported to 2.

Set MaxMajorVersionSupported to 3.<77>

Set MajorVersionToUse to 2.

If InputBufferSize >= sizeof(READ_FILE_USN_DATA):<78>

If InputBuffer.MinMajorVersion > InputBuffer.MaxMajorVersion, the operation MUST be

failed with STATUS_INVALID_PARAMETER.

If InputBuffer.MinMajorVersion > MaxMajorVersionSupported or

InputBuffer.MaxMajorVersion < MinMajorVersionSupported, the operation MUST be failed
with STATUS_INVALID_PARAMETER.<79>

If InputBuffer.MaxMajorVersion >= 3, set MajorVersionToUse to 3.

EndIf

If MajorVersionToUse == 3:

If OutputBufferSize is less than sizeof(USN_RECORD_V3), the operation MUST be failed with

STATUS_BUFFER_TOO_SMALL.

Else:

If OutputBufferSize is less than sizeof(USN_RECORD_V2), the operation MUST be failed with

STATUS_BUFFER_TOO_SMALL.

EndIf

%5bMS-FSCC%5d.pdf

125 / 249

[MS-FSA] — v20130722
 File System Algorithms

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

The object store MUST choose a link name to use in constructing the reply, as shown in the
following pseudocode:

Set LinkNameToUse to empty.

For each Link in Open.File.LinkList:

If Link.ShortName is not empty:

Set LinkNameToUse to Link.Name.

Break out of the For loop.

ElseIf LinkNameToUse is empty:

Set LinkNameToUse to Link.Name.

EndIf

EndFor

Set LinkNameLength to the length, in bytes, of LinkNameToUse.

If MajorVersionToUse == 3:

Set RecordLength to BlockAlign(FieldOffset(USN_RECORD_V3.FileName) + LinkNameLength,

8).

Else:

Set RecordLength to BlockAlign(FieldOffset(USN_RECORD_V2.FileName) + LinkNameLength,

8).

EndIf

If OutputBufferSize is less than RecordLength, the operation MUST be failed with
STATUS_BUFFER_TOO_SMALL.

If MajorVersionToUse == 3, the object store MUST fill OutputBuffer with a USN_RECORD_V3
structure as follows:

OutputBuffer.RecordLength set to RecordLength.

OutputBuffer.MajorVersion set to 3.

OutputBuffer.MinorVersion set to 0.

OutputBuffer.FileReferenceNumber set to Open.File.FileId128.

OutputBuffer.ParentFileReferenceNumber set to Open.Link.ParentFile.FileId128.

OutputBuffer.Usn set to Open.File.Usn.

OutputBuffer.TimeStamp set to 0.

OutputBuffer.Reason set to 0.

OutputBuffer.SourceInfo set to 0.

126 / 249

[MS-FSA] — v20130722
 File System Algorithms

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

OutputBuffer.SecurityId set to 0.

OutputBuffer.FileAttributes set to Open.File.FileAttributes, or to FILE_ATTRIBUTE_NORMAL

if Open.File.FileAttributes is 0.

OutputBuffer.FileNameLength set to LinkNameLength.

OutputBuffer.FileName set to LinkNameToUse.

Else the object store MUST fill OutputBuffer with a USN_RECORD_V2 structure as follows:

OutputBuffer.RecordLength set to RecordLength.

OutputBuffer.MajorVersion set to 2.

OutputBuffer.MinorVersion set to 0.

OutputBuffer.FileReferenceNumber set to Open.File.FileId64.

OutputBuffer.ParentFileReferenceNumber set to Open.Link.ParentFile.FileId64.

OutputBuffer.Usn set to Open.File.Usn.

OutputBuffer.TimeStamp set to 0.

OutputBuffer.Reason set to 0.

OutputBuffer.SourceInfo set to 0.

OutputBuffer.SecurityId set to 0.

OutputBuffer.FileAttributes set to Open.File.FileAttributes, or to FILE_ATTRIBUTE_NORMAL

if Open.File.FileAttributes is 0.

OutputBuffer.FileNameLength set to LinkNameLength .

OutputBuffer.FileName set to LinkNameToUse.

EndIf

The object store MUST pad OutputBuffer with trailing bytes of zeroes to bring the total number of

bytes written into OutputBuffer up to RecordLength.

Upon successful completion of the operation, the object store MUST return:

BytesReturned set to RecordLength.

Status set to STATUS_SUCCESS.

2.1.5.9.25 FSCTL_RECALL_FILE

The server provides:

Open: An Open of a DataFile.

On completion, the object store MUST return:

Status: An NTSTATUS code that specifies the result.

127 / 249

[MS-FSA] — v20130722
 File System Algorithms

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Support for this operation is optional. If the object store does not implement this functionality, the
operation MUST be failed with STATUS_INVALID_DEVICE_REQUEST.<80>

Pseudocode for the operation is as follows:

If Open.File.FileType is DirectoryFile, the operation MUST be failed with

STATUS_INVALID_HANDLE.

If Open.File.FileAttributes.FILE_ATTRIBUTE_OFFLINE is not set:

// The file has already been recalled.

Else

Recall Open.File from remote storage.

Clear Open.File.FileAttributes.FILE_ATTRIBUTE_OFFLINE

EndIf

Upon successful completion of the operation, the object store MUST return:

Status set to STATUS_SUCCESS.

2.1.5.9.26 FSCTL_SET_COMPRESSION

The server provides:

Open: An Open of a DataFile or DirectoryFile.

InputBuffer: An array of bytes containing a USHORT value indicating the requested compression

state of the stream, as specified in [MS-FSCC] section 2.3.47.

InputBufferSize: The number of bytes in InputBuffer.

On completion, the object store MUST return:

Status: An NTSTATUS code that specifies the result.

Support for this operation is optional. If the object store does not implement this functionality, the
operation MUST be failed with STATUS_INVALID_DEVICE_REQUEST.<81><82>

The operation MUST be failed with STATUS_INVALID_PARAMETER under any of the following
conditions:

InputBufferSize is less than sizeof(USHORT) (2 bytes).

InputBuffer.CompressionState is not one of the predefined values in [MS-FSCC] section

2.3.51.

Pseudocode for the operation is as follows:

If InputBuffer.CompressionState != COMPRESSION_FORMAT_NONE:

%5bMS-FSCC%5d.pdf
%5bMS-FSCC%5d.pdf

128 / 249

[MS-FSA] — v20130722
 File System Algorithms

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

If compression support is disabled in the object store,<83> the operation MUST be failed with

STATUS_COMPRESSION_DISABLED.

If Open.File.Volume.ClusterSize is greater than 4,096, the operation MUST be failed with

STATUS_INVALID_DEVICE_REQUEST, because compression is not supported on volumes with
a cluster size greater than 4 KB.

EndIf

If Open.File.Volume.IsReadOnly is TRUE, the operation MUST be failed with

STATUS_MEDIA_WRITE_PROTECTED.

If Open.Stream.IsEncrypted is TRUE, the operation MUST be failed with

STATUS_INVALID_DEVICE_REQUEST.

If (InputBuffer.CompressionState == COMPRESSION_FORMAT_NONE and

Open.Stream.IsCompressed is FALSE) or (InputBuffer.CompressionState !=
COMPRESSION_FORMAT_NONE and Open.Stream.IsCompressed is TRUE), the operation

MUST return STATUS_SUCCESS at this point.

The object store MUST initialize ChangedAllocation to FALSE.

The object store MUST post a USN change as per section 2.1.4.11 with File equal to File,

Reason equal to USN_REASON_COMPRESSION_CHANGE, and FileName equal to
Open.Link.Name.

If InputBuffer.CompressionState != COMPRESSION_FORMAT_NONE:

If Open.Stream.AllocationSize is less than BlockAlign(Open.Stream.AllocationSize,

Open.File.Volume.CompressionUnitSize), the object store MUST increase
Open.Stream.AllocationSize to BlockAlign(Open.Stream.AllocationSize,
Open.File.Volume.CompressionUnitSize). If there is not enough disk space, the operation
MUST be failed with STATUS_DISK_FULL; otherwise the object store MUST set
ChangedAllocation to TRUE.

EndIf

If InputBuffer.CompressionState == COMPRESSION_FORMAT_NONE, the object store MUST

set Open.Stream.IsCompressed to FALSE; otherwise it MUST be set to TRUE.

If Open.Stream.StreamType is DirectoryStream or Open.Stream.Name is empty, the object

store MUST propagate the compression state to Open.File:

If Open.Stream.IsCompressed is TRUE, the object store MUST set

Open.File.FileAttributes.FILE_ATTRIBUTE_COMPRESSED to TRUE; otherwise it MUST be set
to FALSE.

EndIf

Send directory change notification as per section 2.1.4.1, with Volume equal to

Open.File.Volume, Action equal to FILE_ACTION_MODIFIED, FilterMatch equal to

FILE_NOTIFY_CHANGE_ATTRIBUTES, and FileName equal to Open.FileName.

If Open.Stream.StreamType is DirectoryStream, the operation MUST return STATUS_SUCCESS

at this point.

If Open.Stream.IsCompressed is FALSE and Open.Stream.AllocationSize is greater than

BlockAlign(Open.Stream.Size, Open.File.Volume.ClusterSize), the object store SHOULD

129 / 249

[MS-FSA] — v20130722
 File System Algorithms

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

free excess allocation by setting Open.Stream.AllocationSize to
BlockAlign(Open.Stream.Size, Open.File.Volume.ClusterSize). If any allocation is freed in

this way, the object store MUST set ChangedAllocation to TRUE.

If Open.Stream.IsSparse is TRUE, the object store SHOULD free any allocated compression

unit-aligned extents beyond Open.Stream.ValidDataLength. If any allocation is freed in this
way, the object store MUST set ChangedAllocation to TRUE.

If ChangedAllocation is TRUE and Open.Stream.Name is empty, the object store MUST set

Open.File.PendingNotifications.FILE_NOTIFY_CHANGE_SIZE to TRUE.

Upon successful completion of the operation, the object store MUST return:

Status set to STATUS_SUCCESS.

2.1.5.9.27 FSCTL_SET_DEFECT_MANAGEMENT

The server provides:

Open: An Open of a DataStream.

InputBuffer: An array of bytes containing a Boolean as specified in [MS-FSCC] section 2.3.53.

InputBufferSize: The number of bytes in InputBuffer.

On completion, the object store MUST return:

Status: An NTSTATUS code that specifies the result.

Support for this operation is optional. If the object store does not implement this functionality or the
target media is not a software defect-managed media, the operation MUST be failed with

STATUS_INVALID_DEVICE_REQUEST.<84>

Pseudocode for the operation is as follows:

If Open.Stream.StreamType is DirectoryStream, the operation MUST be failed with

STATUS_INVALID_PARAMETER.

If InputBufferSize is less than sizeof(Boolean) (1 byte), the operation MUST be failed with

STATUS_INVALID_PARAMETER.

If Open.File.OpenList contains more than one Open on this stream, this operation MUST be

failed with STATUS_SHARING_VIOLATION.

The object store MUST set Open.File.DisableDefectManagement to InputBuffer.Disable.

Upon successful completion of the operation, the object store MUST return:

Status set to STATUS_SUCCESS.

2.1.5.9.28 FSCTL_SET_ENCRYPTION

The server provides:

Open: An Open of a DataFile or DirectoryFile.

InputBuffer: An array of bytes containing an ENCRYPTION_BUFFER structure indicating the

requested encryption state of the stream or file, as specified in [MS-FSCC] section 2.3.53.

%5bMS-FSCC%5d.pdf
%5bMS-FSCC%5d.pdf

130 / 249

[MS-FSA] — v20130722
 File System Algorithms

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

InputBufferSize: The number of bytes in InputBuffer.

On completion, the object store MUST return:

Status: An NTSTATUS code that specifies the result.

This operation uses the following local variables:

Boolean value (initialized to FALSE): ChangedFileEncryption

Support for this operation is optional. If the object store does not implement this functionality, the
operation MUST be failed with STATUS_INVALID_DEVICE_REQUEST.<85>

Pseudocode for the operation is as follows:

If Open.File.Volume.IsReadOnly is TRUE, the operation MUST be failed with

STATUS_MEDIA_WRITE_PROTECTED.

If InputBufferSize is smaller than BlockAlign(sizeof(ENCRYPTION_BUFFER), 4), the

operation MUST be failed with STATUS_BUFFER_TOO_SMALL.

The operation MUST be failed with STATUS_INVALID_PARAMETER under any of the following

conditions:

If InputBuffer.EncryptionOperation is not one of the predefined values in [MS-FSCC]

section 2.3.53.

If InputBuffer.EncryptionOperation == STREAM_SET_ENCRYPTION and

Open.Stream.IsCompressed is TRUE.

If InputBuffer.EncryptionOperation == FILE_SET_ENCRYPTION:

If Open.File.Attributes.FILE_ATTRIBUTE_ENCRYPTED is FALSE:

The object store MUST set Open.File.FileAttributes.FILE_ATTRIBUTE_ENCRYPTED to

TRUE.

The object store MUST set

Open.File.PendingNotifications.FILE_NOTIFY_CHANGE_ATTRIBUTES to TRUE.

The object store MUST set ChangedFileEncryption to TRUE.

EndIf

ElseIf InputBuffer.EncryptionOperation == FILE_CLEAR_ENCRYPTION:

If Open.File.Attributes.FILE_ATTRIBUTE_ENCRYPTED is TRUE:

If there exists an ExistingStream in Open.File.StreamList such that

ExistingStream.IsEncrypted is TRUE, the operation MUST be failed with
STATUS_INVALID_DEVICE_REQUEST.

The object store MUST set Open.File.FileAttributes.FILE_ATTRIBUTE_ENCRYPTED to

FALSE.

The object store MUST set

Open.File.PendingNotifications.FILE_NOTIFY_CHANGE_ATTRIBUTES to TRUE.

The object store MUST set ChangedFileEncryption to TRUE.

%5bMS-FSCC%5d.pdf

131 / 249

[MS-FSA] — v20130722
 File System Algorithms

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

EndIf

ElseIf InputBuffer.EncryptionOperation == STREAM_SET_ENCRYPTION:

If Open.Stream.IsEncrypted is FALSE:

The object store MUST set Open.Stream.IsEncrypted to TRUE.

If Open.File.Attributes.FILE_ATTRIBUTE_ENCRYPTED is FALSE:

The object store MUST set Open.File.FileAttributes.FILE_ATTRIBUTE_ENCRYPTED to

TRUE.

The object store MUST set

Open.File.PendingNotifications.FILE_NOTIFY_CHANGE_ATTRIBUTES to TRUE.

EndIf

EndIf

Else: // InputBuffer.EncryptionOperation == STREAM_CLEAR_ENCRYPTION

If Open.Stream.IsEncrypted is TRUE:

The object store MUST set Open.Stream.IsEncrypted to FALSE.

If there does not exist an ExistingStream in Open.File.StreamList such that

ExistingStream.IsEncrypted is TRUE:

The object store MUST set Open.File.FileAttributes.FILE_ATTRIBUTE_ENCRYPTED to

FALSE.

The object store MUST set

Open.File.PendingNotifications.FILE_NOTIFY_CHANGE_ATTRIBUTES to TRUE.

EndIf

EndIf

EndIf

If Open.File.PendingNotifications is nonzero:

Set FilterMatch = (Open.File.PendingNotifications | Open.Link.PendingNotifications).

Send directory change notification as per section 2.1.4.1, with Volume equal to

Open.File.Volume, Action equal to FILE_ACTION_MODIFIED, FilterMatch equal to

FilterMatch, and FileName equal to Open.FileName.

For each ExistingLink in Open.Link.ParentFile.DirectoryList:

If ExistingLink is not equal to Open.Link:

ExistingLink.PendingNotifications |= Open.File.PendingNotifications

EndIf

EndFor

132 / 249

[MS-FSA] — v20130722
 File System Algorithms

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Set Open.Link.PendingNotifications to zero.

Set Open.File.PendingNotifications to zero.

EndIf

If the Oplock member of the DirectoryStream in Open.Link.ParentFile.StreamList

(hereinafter referred to as ParentOplock) is not empty, the object store MUST check for an oplock
break on the parent according to the algorithm in section 2.1.4.12, with input values as follows:

Open equal to this operation's Open

Oplock equal to ParentOplock

Operation equal to "FS_CONTROL"

OpParams containing a member ControlCode containing "FSCTL_SET_ENCRYPTION"

Flags equal to "PARENT_OBJECT"

The object store MUST post a USN change as per section 2.1.4.11 with File equal to File,

Reason equal to USN_REASON_ENCRYPTION_CHANGE, and FileName equal to
Open.Link.Name.

If ChangedFileEncryption is TRUE:

If Open.UserSetChangeTime is FALSE, update Open.File.LastChangeTime to the current

time.

Set Open.File.FileAttributes.FILE_ATTRIBUTE_ARCHIVE to TRUE.

EndIf

Upon successful completion of this operation, the object store MUST return:

Status set to STATUS_SUCCESS.

2.1.5.9.29 FSCTL_SET_INTEGRITY_INFORMATION

The server provides:<86>

Open: An Open of a DataFile or DirectoryFile.

InputBuffer: An array of bytes containing an FSCTL_SET_INTEGRITY_INFORMATION_BUFFER

structure indicating the requested integrity state of the directory or file, as specified in [MS-
FSCC] section 2.3.55.

InputBufferSize: The number of bytes in InputBuffer.

On completion, the object store MUST return:

Status: An NTSTATUS code that specifies the result.

Support for this operation is optional. If the object store does not implement this functionality, the
operation MUST be failed with STATUS_INVALID_DEVICE_REQUEST.<87><88>

The operation MUST be failed with STATUS_INVALID_PARAMETER under any of the following

conditions:

%5bMS-FSCC%5d.pdf
%5bMS-FSCC%5d.pdf

133 / 249

[MS-FSA] — v20130722
 File System Algorithms

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

InputBufferSize is less than sizeof(FSCTL_SET_INTEGRITY_INFORMATION_BUFFER).

InputBuffer.ChecksumAlgorithm is not one of the predefined values in [MS-FSCC] section

2.3.55.

Pseudocode for the operation is as follows:

If Open.File.Volume.IsReadOnly is TRUE, the operation MUST be failed with

STATUS_MEDIA_WRITE_PROTECTED.

If Open.Stream.StreamType is DirectoryStream:

The object store MUST post a USN change as specified in section 2.1.4.11 with File equal to

Directory, Reason equal to USN_REASON_INTEGRITY_CHANGE, and FileName equal to
Open.Link.Name.

If InputBuffer.ChecksumAlgorithm != CHECKSUM_TYPE_UNCHANGED, the object store

MUST set Open.Stream.CheckSumAlgorithm to InputBuffer.ChecksumAlgorithm.

EndIf

If Open.Stream.StreamType is DataStream:

The object store MUST post a USN change as specified in section 2.1.4.11 with File equal to

File, Reason equal to USN_REASON_INTEGRITY_CHANGE, and FileName equal to
Open.Link.Name.

If InputBuffer.ChecksumAlgorithm != CHECKSUM_TYPE_UNCHANGED, the object store

MUST set Open.Stream.CheckSumAlgorithm to InputBuffer.ChecksumAlgorithm.

If (InputBuffer.Flags & FSCTL_INTEGRITY_FLAG_CHECKSUM_ENFORCEMENT_OFF) != 0,

The object store MUST set Open.Stream.StreamChecksumEnforcementOff to TRUE.

Else:

The object store MUST set Open.Stream.StreamChecksumEnforcementOff to FALSE.

EndIf

EndIf

Upon successful completion of the operation, the object store MUST return:

Status set to STATUS_SUCCESS.

2.1.5.9.30 FSCTL_SET_OBJECT_ID

The server provides:

Open: An Open of a DataFile or DirectoryFile.

InputBuffer: An array of bytes containing a FILE_OBJECTID_BUFFER structure as specified in

[MS-FSCC] section 2.1.3.

InputBufferSize: The number of bytes in InputBuffer.

On completion, the object store MUST return:

%5bMS-FSCC%5d.pdf
%5bMS-FSCC%5d.pdf

134 / 249

[MS-FSA] — v20130722
 File System Algorithms

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Status: An NTSTATUS code that specifies the result.

Support for this operation is optional. If the object store does not implement this functionality, the
operation MUST be failed with STATUS_INVALID_DEVICE_REQUEST.<89>

Pseudocode for the operation is as follows:

If InputBufferSize is not equal to sizeof(FILE_OBJECTID_BUFFER), the operation MUST be

failed with STATUS_INVALID_PARAMETER.

If Volume.IsReadOnly is TRUE, the operation MUST be failed with

STATUS_MEDIA_WRITE_PROTECTED.

If Open.File.Volume.IsObjectIDsSupported is FALSE, the operation MUST be failed with

STATUS_VOLUME_NOT_UPGRADED.

If Open.HasRestoreAccess is FALSE, the operation MUST be failed with

STATUS_ACCESS_DENIED.

If Open.File.ObjectId is not empty, the operation MUST be failed with

STATUS_OBJECT_NAME_COLLISION.

If InputBuffer.ObjectId is not unique on Open.File.Volume, the operation MUST be failed

with STATUS_DUPLICATE_NAME.

Before completing the operation successfully, the object store MUST set:

Open.File.LastChangeTime to the current time.<90>

Post a USN change as per section 2.1.4.11 with File equal to File, Reason equal to

USN_REASON_OBJECT_ID_CHANGE, and FileName equal to Open.Link.Name.

Open.File.ObjectId to InputBuffer.ObjectId.

Open.File.BirthVolumeId to InputBuffer.BirthVolumeId.

Open.File.BirthObjectId to InputBuffer.BirthObjectId.

Open.File.DomainId to InputBuffer.DomainId.

Upon successful completion of the operation, the object store MUST return:

Status set to STATUS_SUCCESS.

2.1.5.9.31 FSCTL_SET_OBJECT_ID_EXTENDED

The server provides:

Open: An Open of a DataFile or DirectoryFile.

InputBuffer: An array of bytes containing a FILE_OBJECTID_BUFFER structure as specified in

[MS-FSCC] section 2.1.3.1.

InputBufferSize: The number of bytes in InputBuffer.

On completion, the object store MUST return:

Status: An NTSTATUS code that specifies the result.

%5bMS-FSCC%5d.pdf

135 / 249

[MS-FSA] — v20130722
 File System Algorithms

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Support for this operation is optional. If the object store does not implement this functionality, the
operation MUST be failed with STATUS_INVALID_DEVICE_REQUEST.<91>

Pseudocode for the operation is as follows:

If InputBufferSize is not equal to sizeof(ObjectId.ExtendedInfo) (48 bytes), the operation

MUST be failed with STATUS_INVALID_PARAMETER.

If Volume.IsReadOnly is TRUE, the operation MUST be failed with

STATUS_MEDIA_WRITE_PROTECTED.

If Open.File.Volume.IsObjectIDsSupported is FALSE, the operation MUST be failed with

STATUS_VOLUME_NOT_UPGRADED.

If Open.GrantedAccess contains neither FILE_WRITE_DATA nor FILE_WRITE_ATTRIBUTES, the

operation MUST be failed with STATUS_ACCESS_DENIED.

If Open.File.ObjectId is empty, the operation MUST be failed with

STATUS_OBJECTID_NOT_FOUND.

Before completing the operation successfully, the object store MUST set:

Open.File.LastChangeTime to the current time.<92>

Post a USN change as per section 2.1.4.11 with File equal to File, Reason equal to

USN_REASON_OBJECT_ID_CHANGE, and FileName equal to Open.Link.Name.

Open.File.BirthVolumeId to InputBuffer.BirthVolumeId.

Open.File.BirthObjectId to InputBuffer.BirthObjectId.

Open.File.DomainId to InputBuffer.DomainId.

Upon successful completion of this operation, the object store MUST return:

Status set to STATUS_SUCCESS.

2.1.5.9.32 FSCTL_SET_REPARSE_POINT

The server provides:

Open: An Open of a DataFile or DirectoryFile.

InputBufferSize: The byte count of the InputBuffer.

InputBuffer: An array of bytes containing a REPARSE_DATA_BUFFER or

REPARSE_GUID_DATA_BUFFER structure as defined in [MS-FSCC] sections 2.1.2.2 and 2.1.2.3,
respectively.

On completion, the object store MUST return:

Status: An NTSTATUS code that specifies the result.

Support for this operation is optional. If the object store does not implement this functionality, the
operation MUST be failed with STATUS_INVALID_DEVICE_REQUEST.<93>

Pseudocode for the operation is as follows:

%5bMS-FSCC%5d.pdf
%5bMS-FSCC%5d.pdf
%5bMS-FSCC%5d.pdf

136 / 249

[MS-FSA] — v20130722
 File System Algorithms

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Phase 1 -- Verify the parameters

If (Open.GrantedAccess & (FILE_WRITE_DATA | FILE_WRITE_ATTRIBUTES)) == 0, the

operation MUST be failed with STATUS_ACCESS_DENIED.

If Open.File.Volume.IsReadOnly is TRUE, the operation MUST be failed with

STATUS_MEDIA_WRITE_PROTECTED.

If Open.File.Volume.IsReparsePointsSupported is FALSE, the operation MUST be failed with

STATUS_VOLUME_NOT_UPGRADED.

If InputBufferSize is smaller than 8 bytes, the operation MUST be failed with

STATUS_IO_REPARSE_DATA_INVALID.

If InputBufferSize is larger than 16384 bytes, the operation MUST be failed with

STATUS_IO_REPARSE_DATA_INVALID.

If (InputBufferSize != InputBuffer.ReparseDataLength + 8) && (InputBufferSize !=

InputBuffer.ReparseDataLength + 24), the operation MUST be failed with
STATUS_IO_REPARSE_DATA_INVALID.

If InputBuffer.ReparseTag == IO_REPARSE_TAG_MOUNT_POINT and Open.File.FileType !=

DirectoryFile, the operation MUST be failed with STATUS_NOT_A_DIRECTORY.

If InputBuffer.ReparseTag == IO_REPARSE_TAG_SYMLINK and

Open.HasCreateSymbolicLinkAccess is FALSE, the operation MUST be failed with
STATUS_ACCESS_DENIED.

If Open.File.FileType == DirectoryFile and Open.File.DirectoryList is not empty, the

operation MUST be failed with STATUS_DIRECTORY_NOT_EMPTY.

If Open.File.FileType == DataFile and InputBuffer.ReparseTag ==

IO_REPARSE_TAG_SYMLINK and Open.Stream.Size is nonzero, the operation MUST be failed
with STATUS_IO_REPARSE_DATA_INVALID.

If Open.File.FileAttributes.FILE_ATTRIBUTE_REPARSE_POINT is not set and

Open.File.ExtendedAttributesLength is nonzero, the operation MUST be failed with
STATUS_EAS_NOT_SUPPORTED.

Phase 2 -- Update the File

If Open.File.ReparseTag is not empty (indicating that a reparse point is already assigned):

If Open.File.ReparseTag != InputBuffer.ReparseTag, the operation MUST be failed with

STATUS_IO_REPARSE_TAG_MISMATCH.

If Open.File.ReparseTag is a non-Microsoft tag and Open.File.ReparseGUID is not equal

to InputBuffer.ReparseGUID, the operation MUST be failed with
STATUS_REPARSE_ATTRIBUTE_CONFLICT.

Copy InputBuffer.DataBuffer to Open.File.ReparseData.

Else

Set Open.File.ReparseTag to InputBuffer.ReparseTag.

If InputBuffer.ReparseTag is a non-Microsoft Tag, then set Open.File.ReparseGUID to

InputBuffer.ReparseGUID.

137 / 249

[MS-FSA] — v20130722
 File System Algorithms

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Set Open.File.ReparseData to InputBuffer.ReparseData.

Set Open.File.FileAttributes.FILE_ATTRIBUTE_REPARSE_POINT to TRUE.

EndIf

If Open.File.FileType == DataFile, set Open.File.FileAttributes.FILE_ATTRIBUTE_ARCHIVE to

TRUE.

Update Open.File.LastChangeTime to the current system time.<94>

Upon successful completion of the operation, the object store MUST return:

Status set to STATUS_SUCCESS.

2.1.5.9.33 FSCTL_SET_SHORT_NAME_BEHAVIOR

This control code is reserved for the WinPE<95>environment; the object store MUST return

STATUS_INVALID_DEVICE_REQUEST.

2.1.5.9.34 FSCTL_SET_SPARSE

The server provides:

Open: An Open of a DataStream.

InputBufferSize: The byte count of the InputBuffer.

InputBuffer: A buffer of type FILE_SET_SPARSE_BUFFER as defined in [MS-FSCC] section

2.3.63.

On completion, the object store MUST return:

Status: An NTSTATUS code that specifies the result.

Support for this operation is optional. If the object store does not implement this functionality, the
operation MUST be failed with STATUS_INVALID_DEVICE_REQUEST.<96><97>

Pseudocode for the operation is as follows:

If Open.Stream.StreamType != DataStream, the object store MUST fail the operation and

return STATUS_INVALID_PARAMETER.

If Open.File.Volume.IsReadOnly is TRUE, the object store MUST return

STATUS_MEDIA_WRITE_PROTECTED.

If Open.GrantedAccess.FILE_WRITE_DATA is FALSE and

Open.GrantedAccess.FILE_WRITE_ATTRIBUTES is FALSE, the operation MUST be failed with
STATUS_ACCESS_DENIED.

The object store MUST post a USN change as per section 2.1.4.11 with File equal to File,

Reason equal to USN_REASON_BASIC_INFO_CHANGE, and FileName equal to
Open.Link.Name. If InputBuffer.SetSparse is TRUE:

The object store MUST set Open.Stream.IsSparse to TRUE.

The object store MUST set Open.File.FileAttributes.FILE_ATTRIBUTE_SPARSE_FILE to

TRUE, indicating that at least one stream of the file is sparse.

%5bMS-FSCC%5d.pdf

138 / 249

[MS-FSA] — v20130722
 File System Algorithms

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Else

For each Extent in Open.Stream.ExtentList:

If Extent.LCN is un-allocated as per [MS-FSCC] 2.3.22.1:

The object store MUST fully allocate the Extent. If the space cannot be allocated, then

the operation MUST be failed with STATUS_DISK_FULL. The object store is not required
to revert any allocations performed during the operation.

EndIf

EndFor

The object store MUST set Open.Stream.IsSparse to FALSE.

If there does not exist an ExistingStream in Open.File.StreamList such that

ExistingStream.IsSparse is TRUE:

The object store MUST set Open.File.FileAttributes.FILE_ATTRIBUTE_SPARSE_FILE to

FALSE, indicating that no streams of the file are sparse.

EndIf

EndIf

Set Open.File.PendingNotifications.FILE_NOTIFY_CHANGE_ATTRIBUTES to TRUE.

Upon successful completion of this operation, the object store MUST return:

Status set to STATUS_SUCCESS.

2.1.5.9.35 FSCTL_SET_ZERO_DATA

The server provides:

Open: An Open of a DataStream.

InputBufferSize: The byte count of the InputBuffer.

InputBuffer: An array of bytes containing a FILE_ZERO_DATA_INFORMATION structure as

defined in [MS-FSCC] section 2.3.69.

On completion, the object store MUST return:

Status: An NTSTATUS code that specifies the result.

This algorithm uses the following local variables:

64-bit signed integers: StartingOffset, CurrentBytes, CurrentOffset, CurrentFinalByte, NextVcn

CurrentVcn, ClusterCount

64-bit signed integer initialized to -1: LastOffset

Support for this operation is optional. If the object store does not implement this functionality, the
operation MUST be failed with STATUS_INVALID_DEVICE_REQUEST.<98><99>

The operation MUST be failed with STATUS_INVALID_PARAMETER under any of the following

conditions:

%5bMS-FSCC%5d.pdf
%5bMS-FSCC%5d.pdf

139 / 249

[MS-FSA] — v20130722
 File System Algorithms

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

InputBufferSize is less than sizeof(FILE_ZERO_DATA_INFORMATION).

InputBuffer.FileOffset is less than 0.

InputBuffer.BeyondFinalZero is less than 0.

InputBuffer.FileOffset is greater than InputBuffer.BeyondFinalZero.

Open.Stream.StreamType is not DataStream.

Pseudocode for the operation is as follows:

If Open.File.Volume.IsReadOnly is TRUE, the operation MUST be failed with

STATUS_MEDIA_WRITE_PROTECTED.

Set StartingOffset equal to InputBuffer.FileOffset.

While TRUE:

If Open.Stream.IsDeleted is TRUE, the operation MUST be failed with

STATUS_FILE_DELETED.

If StartingOffset is greater than or equal to Open.Stream.Size, or if StartingOffset is greater

than or equal to InputBuffer.BeyondFinalZero, break out of the while loop.

Set CurrentBytes to InputBuffer.BeyondFinalZero - StartingOffset.

If InputBuffer.BeyondFinalZero is greater than Open.Stream.Size, set CurrentBytes to

Open.Stream.Size - StartingOffset.

If CurrentBytes is greater than 0x40000000 (1 gigabyte), set CurrentBytes to 0x40000000.

If Open.Stream.Oplock is not empty, the object store MUST check for an oplock break

according to the algorithm in section 2.1.4.12, with input values as follows:

Open equal to this operation's Open

Oplock equal to Open.Stream.Oplock

Operation equal to "FS_CONTROL"

OpParams containing a member ControlCode containing "FSCTL_SET_ZERO_DATA"

The object store MUST check for byte range lock conflicts using the algorithm described in

section 2.1.4.10 with ByteOffset set to StartingOffset, Length set to CurrentBytes,
IsExclusive set to TRUE, LockIntent set to FALSE and Open set to Open. If a conflict is
detected, the operation MUST be failed with STATUS_FILE_LOCK_CONFLICT.

The object store MUST post a USN change as per section 2.1.4.11 with File equal to File,

Reason equal to USN_REASON_DATA_OVERWRITE, and FileName equal to
Open.Link.Name.

The object store MUST note that the file has been modified as per section 2.1.4.17 with Open

equal to Open.

If LastOffset is -1 and StartingOffset is greater than Open.Stream.ValidDataLength:

Zero the data in the file according to the algorithm in section 2.1.5.9.35.1, setting the

algorithm's parameters as follows:

140 / 249

[MS-FSA] — v20130722
 File System Algorithms

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Pass in the current Open.

StartingZero equal to Open.Stream.ValidDataLength.

ByteCount equal to StartingOffset -Open.Stream.ValidDataLength.

EndIf

If Open.Stream.IsCompressed is TRUE, or if Open.Stream.IsSparse is TRUE:

Set CurrentOffset to StartingOffset & ~(Open.File.Volume.CompressionUnitSize - 1).

This aligns the starting point to a compression unit boundary, since when setting zero
ranges on a sparse or compressed file, allocation is deleted in compression unit-aligned

chunks.

Set CurrentFinalByte to InputBuffer.BeyondFinalZero.

If CurrentFinalByte is greater than or equal to Open.Stream.Size, set CurrentFinalByte to

BlockAlign(Open.Stream.Size, Open.File.Volume.CompressionUnitSize).

Set NextVcn and CurrentVcn equal to ClustersFromBytesTruncate(Open.File.Volume,

CurrentOffset).

While an unallocated range of the file exists starting at NextVcn:

NextVcn += The size of the unallocated range in clusters.

If (NextVcn * Open.File.Volume.ClusterSize) is greater than or equal to

CurrentFinalByte:

NextVcn = ClustersFromBytesTruncate(Open.File.Volume, CurrentFinalByte).

Break out of the While loop.

EndIf

EndWhile

NextVcn = BlockAlignTruncate(NextVcn, ClustersFromBytes(Open.File.Volume,

Open.File.Volume.CompressionUnitSize)). This aligns NextVcn to a compression unit
boundary.

If NextVcn != CurrentVcn:

ClusterCount = NextVcn - CurrentVcn

CurrentVcn += ClusterCount

EndIf

CurrentOffset = (CurrentVcn * Open.File.Volume.ClusterSize)

If CurrentOffset >= CurrentFinalByte, break out of the while loop.

If CurrentOffset < StartingOffset:

If there are not enough free clusters on the storage media to accommodate a write of

Open.File.Volume.CompressionUnitSize bytes, the operation MUST be failed with

141 / 249

[MS-FSA] — v20130722
 File System Algorithms

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

STATUS_DISK_FULL. The object store is not required to undo any file zeroing or range
deallocation that has been performed during the operation.

CurrentBytes = Open.File.Volume.CompressionUnitSize - (StartingOffset -

CurrentOffset)

If (CurrentOffset + Open.File.Volume.CompressionUnitSize) > CurrentFinalByte:

CurrentBytes = CurrentFinalByte - StartingOffset

EndIf

The object store MUST write CurrentBytes zeroes into the stream beginning at

CurrentOffset + (StartingOffset & (Open.File.Volume.CompressionUnitSize - 1)).

CurrentOffset += (StartingOffset & (Open.File.Volume.CompressionUnitSize - 1))

ElseIf CurrentOffset + Open.File.Volume.CompressionUnitSize > CurrentFinalByte:

If there are not enough free clusters on the storage media to accommodate a write of

Open.File.Volume.CompressionUnitSize bytes, the operation MUST be failed with

STATUS_DISK_FULL. The object store is not required to undo any file zeroing or range
deallocation that has been performed during the operation.

CurrentBytes = CurrentFinalByte & (Open.File.Volume.CompressionUnitSize - 1)

The object store MUST write CurrentBytes zeroes into the stream beginning at

CurrentOffset.

Else

CurrentBytes = CurrentFinalByte - CurrentOffset

If CurrentBytes is greater than 0x40000000, set CurrentBytes to 0x40000000.

CurrentBytes = BlockAlignTruncate(CurrentBytes,

Open.File.Volume.CompressionUnitSize)

If (CurrentBytes != 0) and (NextVcn <= (CurrentVcn

+ClustersFromBytesTruncate(Open.File.Volume, CurrentBytes) - 1)):

The object store MUST delete CurrentVcn +

ClustersFromBytesTruncate(Open.File.Volume, CurrentBytes) - 1 clusters of
allocation from the stream starting with the cluster at NextVcn.

EndIf

EndIf

Else

CurrentOffset = StartingOffset

CurrentFinalByte = ((CurrentOffset + 0x40000) & -(0x40000))

If CurrentFinalByte is greater than or equal to Open.Stream.Size, set CurrentFinalByte to

Open.Stream.Size.

142 / 249

[MS-FSA] — v20130722
 File System Algorithms

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

If CurrentFinalByte is greater than InputBuffer.BeyondFinalZero, set CurrentFinalByte

to InputBuffer.BeyondFinalZero.

CurrentBytes = CurrentFinalByte - CurrentOffset

If CurrentBytes != 0 and CurrentOffset is less than Open.Stream.ValidDataLength:

The object store MUST write CurrentBytes zeroes into the stream beginning at

CurrentOffset.

EndIf

EndIf

If CurrentOffset + CurrentBytes is greater than Open.Stream.ValidDataLength and

StartingOffset is less than Open.Stream.ValidDataLength:

The object store MUST set Open.Stream.ValidDataLength equal to CurrentOffset +

CurrentBytes.

EndIf

LastOffset = StartingOffset

If CurrentBytes != 0, set StartingOffset equal to CurrentOffset + CurrentBytes.

EndWhile

If Open.Mode contains either FILE_NO_INTERMEDIATE_BUFFERING or FILE_WRITE_THROUGH,

the object store MUST flush all changes to the stream made during this operation, including any
file size changes, to stable storage, and MUST fail the operation if the underlying physical storage
reports an error flushing the data.

Upon successful completion of the operation, the object store MUST return:

Status set to STATUS_SUCCESS.

2.1.5.9.35.1 Algorithm to Zero Data Beyond ValidDataLength

This algorithm returns no value.

The inputs for the algorithm are:

ThisOpen: The Open for the stream being zeroed.

StartingZero: A 64-bit signed integer. The offset into the stream to begin zeroing.

ByteCount: The number of bytes to zero.

The algorithm uses the following local variables:

64-bit signed integers: ZeroStart, BeyondZeroEnd, LastCompressionUnit, ClustersToDeallocate

Pseudocode for the algorithm is as follows:

Set ZeroStart to BlockAlign(StartingZero, ThisOpen.File.Volume.LogicalBytesPerSector).

Set BeyondZeroEnd to BlockAlign(StartingZero + ByteCount,

ThisOpen.File.Volume.LogicalBytesPerSector).

143 / 249

[MS-FSA] — v20130722
 File System Algorithms

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

If (ThisOpen.Stream.IsCompressed is FALSE) and (ThisOpen.Stream.IsSparse is FALSE)

and (ZeroStart != StartingZero):

The object store MUST write zeroes into the stream from StartingZero to ZeroStart.

EndIf

If ((ThisOpen.Stream.IsCompressed is TRUE) or

(ThisOpen.Stream.IsSparse is TRUE)) and

(ByteCount > ThisOpen.File.Volume.CompressionUnitSize * 2):

If BlockAlign(ZeroStart, ThisOpen.File.Volume.CompressionUnitSize) != ZeroStart:

The object store MUST write zeroes into the stream from ZeroStart to

BlockAlign(ZeroStart, ThisOpen.File.Volume.CompressionUnitSize).

The object store MUST set ThisOpen.Stream.ValidDataLength to BlockAlign(ZeroStart,

ThisOpen.File.Volume.CompressionUnitSize).

Set ZeroStart equal to BlockAlign(ZeroStart,

ThisOpen.File.Volume.CompressionUnitSize).

EndIf

Set LastCompressionUnit equal to BlockAlignTruncate(BeyondZeroEnd,

ThisOpen.File.Volume.CompressionUnitSize).

Set ClustersToDeallocate equal to ClustersFromBytes(ThisOpen.File.Volume,

LastCompressionUnit - ZeroStart).

The object store MUST delete ClusterToDeallocate clusters of allocation from the stream

starting with the cluster at ClustersFromBytes(ThisOpen.File.Volume, ZeroStart).

If LastCompressionUnit != BeyondZeroEnd:

The object store MUST write zeroes into the stream from LastCompressionUnit to

BeyondZeroEnd.

The object store MUST set ThisOpen.Stream.ValidDataLength equal to StartingZero +

ByteCount.

EndIf

The algorithm returns at this point.

EndIf

If ZeroStart = BeyondZeroEnd

The algorithm returns at this point.

EndIf

The object store MUST write zeroes into the stream from ZeroStart to BeyondZeroEnd.

The object store MUST set ThisOpen.Stream.ValidDataLength equal to StartingZero +

ByteCount.

144 / 249

[MS-FSA] — v20130722
 File System Algorithms

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

2.1.5.9.36 FSCTL_SET_ZERO_ON_DEALLOCATION

The server provides:

Open: An Open of a DataStream.

On completion the object store MUST return:

Status: An NTSTATUS code that specifies the result.

Support for this operation is optional. If the object store does not implement this functionality, the
operation MUST be failed with STATUS_INVALID_DEVICE_REQUEST.<100>

The operation MUST be failed with STATUS_ACCESS_DENIED under either of the following
conditions:

Open.Stream.StreamType is not DataStream.

Open.GrantedAccess contains neither FILE_WRITE_DATA nor FILE_APPEND_DATA.

Pseudocode for the operation is as follows:

The object store MUST set Open.Stream.ZeroOnDeallocate to TRUE.

Upon successful completion of the operation, the object store MUST return:

Status set to STATUS_SUCCESS.

2.1.5.9.37 FSCTL_SIS_COPYFILE

The server provides:

Open: An Open of a DataStream or DirectoryStream.

InputBuffer: An array of bytes containing a single SI_COPYFILE structure indicating the source

and destination files to copy, as specified in [MS-FSCC] section 2.3.69.

InputBufferSize: The number of bytes in InputBuffer.

On completion, the object store MUST return:

Status: An NTSTATUS code that specifies the result.

This routine uses the following local variables:

Opens: SourceOpen, DestinationOpen

The purpose of this operation is to make it look like a copy from the source file to the destination file
has occurred when in reality no data is actually copied. This operation modifies the source file in
such a way that the clusters associated with it can be shared across multiple files. The destination
file is created and modified to point at the same shared clusters that the source file points to.<101>

Support for [SIS] is optional. If the object store does not implement this functionality, the operation

MUST be failed with STATUS_INVALID_DEVICE_REQUEST.<102>

Pseudocode for the operation is as follows:

If Open.IsAdministrator is FALSE, the operation MUST be failed with

STATUS_ACCESS_DEFINED.

%5bMS-FSCC%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90517

145 / 249

[MS-FSA] — v20130722
 File System Algorithms

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

If InputBufferSizes is less than sizeof(SI_COPYFILE), the operation MUST be failed with

STATUS_INVALID_PARAMETER_1.

If InputBuffer.Flags contains any flags besides COPYFILE_SIS_LINK and

COPYFILE_SIS_REPLACE, the operation MUST be failed with STATUS_INVALID_PARAMETER_2.

If InputBuffer.SourceFileNameLength or InputBuffer.DestinationFileNameLength is <=

zero, the operation MUST be failed with STATUS_INVALID_PARAMETER_3.

If InputBuffer.SourceFileNameLength or InputBuffer.DestinationFileNameLength is >

MAXUSHORT (0xffff), the operation MUST be failed with STATUS_INVALID_PARAMETER.

If FieldOffset(InputBuffer.SourceFileName) + InputBuffer.SourceFileNameLength +

InputBuffer.DestinationFileNameLength is > InputBufferSize, the operation MUST be
failed with STATUS_INVALID_PARAMETER_4.

SourceOpen set to the Open returned from a successful call to open a file as defined in section

2.1.5.1, setting the algorithm's parameters as follows:

RootOpen: Set to Open.RootOpen.

PathName: Set to InputBuffer.SourceFileName.

SecurityContext: Set to empty.<103>

DesiredAccess: Set to GENERIC_READ.

ShareAccess: If the source file is already controlled by SIS (meaning the source file already

has a reparse point of type IO_REPARSE_TAG_SIS), then set to FILE_SHARE_READ, else set
to zero.

CreateOptions: Set To FILE_NON_DIRECTORY_FILE | FILE_NO_INTERMEDIATE_BUFFERING.

CreateDisposition: Set to FILE_OPEN.

DesiredFileAttributes: Set to FILE_ATTRIBUTE_NORMAL.

IsCaseInsensitive: Set to TRUE.

TargetOplockKey: Set to Empty.

If the request fails, this operation MUST be failed with the returned STATUS.

The operation MUST be failed with STATUS_OBJECT_TYPE_MISMATCH under any of the following

conditions:

If SourceOpen.File.LinkList contains more than one entry (meaning this file has hardlinks).

If SourceOpen.Stream.IsEncrypted is TRUE.

If SourceOpen.File.ReparseTag is empty or is not IO_REPARSE_TAG_SIS (as defined in [MS-

FSCC] section 2.1.2.1) and InputBuffer.Flags.COPYFILE_SIS_LINK is TRUE.

If SourceOpen.File.ReparseTag is not empty and is not IO_REPARSE_TAG_SIS, the operation

MUST be failed with STATUS_INVALID_PARAMETER.

DestinationOpen set to the Open returned from a successful call to create a file as defined in

section 2.1.5.1, setting the algorithm's parameters as follows:

%5bMS-FSCC%5d.pdf
%5bMS-FSCC%5d.pdf

146 / 249

[MS-FSA] — v20130722
 File System Algorithms

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

RootOpen: Set to Open.RootOpen.

PathName: Set to InputBuffer.DestinationFileName.

SecurityContext: Set to empty.<104>

DesiredAccess: Set to GENERIC_READ | GENERIC_WRITE | DELETE.

ShareAccess: Set to zero.

CreateOptions: Set to FILE_NON_DIRECTORY_FILE.

CreateDisposition: If InputBuffer.Flags.COPYFILE_SIS_REPLACE is TRUE, set to

FILE_OVERWRITE_IF, else set to FILE_CREATE.

DesiredFileAttributes: Set to FILE_ATTRIBUTE_NORMAL.

IsCaseInsensitive: Set to TRUE.

TargetOplockKey: Set to Empty.

If the request fails, this operation MUST be failed with the returned STATUS.

If SourceOpen.File.Volume is not equal to DestinationOpen.File.Volume is not equal to

Open.File.Volume, the operation MUST be failed with STATUS_NOT_SAME_DEVICE.

Share the clusters between the source and destination file.<105>

DestinationOpen.ReparseTag set to IO_REPARSE_TAG_SIS.

Upon successful completion of the operation, the object store MUST return:

Status set to STATUS_SUCCESS.

2.1.5.9.38 FSCTL_WRITE_USN_CLOSE_RECORD

The server provides:

Open: An Open of a DataStream or DirectoryStream.

OutputBufferSize: The maximum number of bytes to return in OutputBuffer.

On completion, the object store MUST return:

Status: An NTSTATUS code that specifies the result.

OutputBuffer: An array of bytes that will return a Usn structure representing the current USN

of the file, as specified in [MS-FSCC] section 2.3.72.

BytesReturned: The number of bytes returned in OutputBuffer.

Support for this operation is optional. If the object store does not implement this functionality, the

operation MUST be failed with STATUS_INVALID_DEVICE_REQUEST.<106>

Pseudocode for the operation is as follows:

If Open.File.Volume.IsReadOnly is TRUE, the operation MUST be failed with

STATUS_MEDIA_WRITE_PROTECTED.

%5bMS-FSCC%5d.pdf

147 / 249

[MS-FSA] — v20130722
 File System Algorithms

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

If OutputBufferSize is less than sizeof(Usn), the operation MUST be failed with

STATUS_INVALID_PARAMETER.

If Open.File.Volume.IsUsnJournalActive is FALSE, the operation MUST be failed with

STATUS_JOURNAL_NOT_ACTIVE.

The object store MUST post a USN change as per section 2.1.4.11 with File equal to File,

Reason equal to USN_REASON_CLOSE, and FileName equal to Open.Link.Name.

The object store MUST populate the fields of OutputBuffer as follows:

OutputBuffer.Usn set to Open.File.Usn.

Upon successful completion of the operation, the object store MUST return:

BytesReturned set to sizeof(Usn).

Status set to STATUS_SUCCESS.

2.1.5.10 Server Requests Change Notifications for a Directory

The server provides:

Open: An Open of a DirectoryStream.

OutputBufferSize: The maximum number of bytes to return in OutputBuffer.

WatchTree: A Boolean indicating whether the directory should be monitored recursively.

CompletionFilter: A 32-bit unsigned integer composed of flags indicating the types of changes

to monitor as specified in [MS-SMB2] section 2.2.35.

On completion, the object store MUST return:

Status: An NTSTATUS code that specifies the result.

OutputBuffer: An array of bytes containing the notification data.

ByteCount: The count of the bytes in the array.

Pseudocode for the operation is as follows:

The Open.File.Volume.ChangeNotifyList MUST be searched for a ChangeNotifyEntry where

ChangeNotifyEntry.OpenedDirectory matches Open.

If there were no matching ChangeNotifyEntries, one MUST be constructed so that:

ChangeNotifyEntry.OpenedDirectory points to Open.

ChangeNotifyEntry.WatchTree is set to WatchTree.

ChangeNotifyEntry.CompletionFilter is set to CompletionFilter.

ChangeNotifyEntry.NotifyEventList is initialized to an empty list.

Insert ChangeNotifyEntry at the end of Open.File.Volume.ChangeNotifyList.

EndIf

%5bMS-SMB2%5d.pdf

148 / 249

[MS-FSA] — v20130722
 File System Algorithms

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Insert operation into CancelableOperations.CancelableOperationList.

Wait for a Change Notify per section 2.1.5.10.1

2.1.5.10.1 Waiting for Change Notification to be Reported

Wait until the following conditions are satisfied:

There are one or more elements in ChangeNotifyEntry.NotifyEventList.

This change notification request is the oldest outstanding request on this Open. This means

multiple change notification requests on the same Open are completed sequentially and in first-
in-first-out (FIFO) order.

The operation is canceled per section 2.1.5.19.

Pseudocode for the operation is as follows:

When a ChangeNotifyEntry.NotifyEventList element is available:

If all entries from ChangeNotifyEntry.NotifyEventList fit in OutputBufferSize bytes:

Remove all NotifyEventEntries from ChangeNotifyEntry.NotifyEventList.

Copy NotifyEventEntries to OutputBuffer.

Set Status to STATUS_SUCCESS.

Set ByteCount to the size of OutputBuffer, in bytes.

Else:

Set Status to STATUS_NOTIFY_ENUM_DIR.

Set ByteCount to zero.

EndIf

EndIf

2.1.5.11 Server Requests a Query of File Information

The server provides:

Open: An Open of a DataStream or DirectoryStream.

OutputBufferSize: The maximum number of bytes to be returned in OutputBuffer.

FileInformationClass: The type of information being queried, as specified in [MS-FSCC] section

2.4.

On completion, the object store MUST return:

Status: An NTSTATUS code that specifies the result.

OutputBuffer: An array of bytes containing the file information. The structure of these bytes is

dependent on FileInformationClass, as noted in the relevant subsection.

ByteCount: The number of bytes stored in OutputBuffer.

%5bMS-FSCC%5d.pdf

149 / 249

[MS-FSA] — v20130722
 File System Algorithms

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

If FileInformationClass is not defined in [MS-FSCC] section 2.4, the operation MUST be failed with
STATUS_INVALID_INFO_CLASS.

2.1.5.11.1 FileAccessInformation

OutputBuffer is of type FILE_ACCESS_INFORMATION as described in [MS-FSCC] 2.4.1.

Pseudocode for the operation is as follows:

If OutputBufferSize is smaller than sizeof(FILE_ACCESS_INFORMATION), the operation MUST

be failed with STATUS_INFO_LENGTH_MISMATCH.

OutputBuffer MUST be constructed as follows:

OutputBuffer.AccessFlags set to Open.GrantedAccess.

Upon successful completion of the operation, the object store MUST return:

ByteCount set to sizeof(FILE_ACCESS_INFORMATION)

Status set to STATUS_SUCCESS.

2.1.5.11.2 FileAlignmentInformation

OutputBuffer is of type FILE_ALIGNMENT_INFORMATION as described in [MS-FSCC] section 2.4.3.

Pseudocode for the operation is as follows:

If OutputBufferSize is smaller than sizeof(FILE_ALIGNMENT_INFORMATION), the operation

MUST be failed with Status STATUS_INFO_LENGTH_MISMATCH.

OutputBuffer MUST be constructed as follows:

OutputBuffer.AlignmentRequirement set to one of the alignment requirement values

specified in [MS-FSCC] section 2.4.3 based on the characteristics of the device on which the
File is stored.

Upon successful completion of the operation, the object store MUST return:

ByteCount set to sizeof(FILE_ALIGNMENT_INFORMATION).

Status set to STATUS_SUCCESS.

2.1.5.11.3 FileAllInformation

OutputBuffer is of type FILE_ALL_INFORMATION as described in [MS-FSCC] 2.4.2.

Pseudocode for the operation is as follows:

If OutputBufferSize is smaller than

BlockAlign(FieldOffset(FILE_ALL_INFORMATION.NameInformation.FileName) + 2, 8), the

operation MUST be failed with STATUS_INFO_LENGTH_MISMATCH.

The object store MUST populate the fields of OutputBuffer as follows:

OutputBuffer.BasicInformation MUST be filled using the algorithm described in section

2.1.5.11.6.

%5bMS-FSCC%5d.pdf
%5bMS-FSCC%5d.pdf
%5bMS-FSCC%5d.pdf
%5bMS-FSCC%5d.pdf
%5bMS-FSCC%5d.pdf
%5bMS-FSCC%5d.pdf
%5bMS-FSCC%5d.pdf

150 / 249

[MS-FSA] — v20130722
 File System Algorithms

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

OutputBuffer.StandardInformation MUST be filled using the operation described in section

2.1.5.11.27.

OutputBuffer.InternalInformation MUST be filled using the operation described in section

2.1.5.11.17.

OutputBuffer.EaInformation MUST be filled using the operation described in section

2.1.5.11.10.

OutputBuffer.AccessInformation MUST be filled using the operation described in section

2.1.5.11.1.

OutputBuffer.PositionInformation MUST be filled using the operation described in section

2.1.5.11.23.

OutputBuffer.ModeInformation MUST be filled using the operation described in section

2.1.5.11.18.

OutputBuffer.AlignmentInformation MUST be filled using the operation described in

section 2.1.5.11.2.

OutputBuffer.NameInformation MUST be filled using the operation described in section

2.1.5.11.19, saving the returned ByteCount in NameInformationLength and the returned
Status in NameInformationStatus.

Upon successful completion of the operation, the object store MUST return:

ByteCount set to FieldOffset(FILE_ALL_INFORMATION.NameInformation) +

NameInformationLength.

Status set to NameInformationStatus.

2.1.5.11.4 FileAlternateNameInformation

OutputBuffer is of type FILE_NAME_INFORMATION as described in [MS-FSCC] 2.4.5.

Pseudocode for the operation is as follows:

If OutputBufferSize is smaller than

BlockAlign(FieldOffset(FILE_NAME_INFORMATION.FileName) + 2, 4), the operation MUST be
failed with STATUS_INFO_LENGTH_MISMATCH.

If Open.Link.ShortName is empty, the operation MUST be failed with

STATUS_OBJECT_NAME_NOT_FOUND.

OutputBuffer MUST be constructed as follows:

OutputBuffer.FileNameLength set to the length, in bytes, of Open.Link.ShortName.

OutputBuffer.FileName set to Open.Link.ShortName.

Upon successful completion of the operation, the object store MUST return:

ByteCount set to FieldOffset(FILE_NAME_INFORMATION.FileName) +

OutputBuffer.FileNameLength.

Status set to STATUS_SUCCESS.

%5bMS-FSCC%5d.pdf
%5bMS-FSCC%5d.pdf

151 / 249

[MS-FSA] — v20130722
 File System Algorithms

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

2.1.5.11.5 FileAttributeTagInformation

OutputBuffer is of type FILE_ATTRIBUTE_TAG_INFORMATION as defined in [MS-FSCC] section
2.4.6.

Pseudocode for the operation is as follows:

If OutputBufferSize is smaller than sizeof(FILE_ATTRIBUTE_TAG_INFORMATION), the

operation MUST be failed with STATUS_INFO_LENGTH_MISMATCH.

If Open.GrantedAccess does not contain FILE_READ_ATTRIBUTES, the operation MUST be

failed with STATUS_ACCESS_DENIED.

If Open.Stream.StreamType is DirectoryStream:

The object store MUST set OutputBuffer.FileAttributes equal to the value of

Open.File.FileAttributes.

The object store MUST set FILE_ATTRIBUTE_DIRECTORY in OutputBuffer.FileAttributes.

Else:

This is a DataStream. The object store MUST set OutputBuffer.FileAttributes equal to the

value of Open.File.FileAttributes. The following attribute values, if they are set in
Open.File.FileAttributes, MUST NOT be copied to OutputBuffer.FileAttributes (attribute
flags are defined in [MS-FSCC] section 2.6):

FILE_ATTRIBUTE_COMPRESSED

FILE_ATTRIBUTE_TEMPORARY

FILE_ATTRIBUTE_SPARSE_FILE

FILE_ATTRIBUTE_ENCRYPTED

FILE_ATTRIBUTE_INTEGRITY_STREAM<107>

If Open.Stream.IsSparse is TRUE, the object store MUST set

FILE_ATTRIBUTE_SPARSE_FILE in OutputBuffer.FileAttributes.

If Open.Stream.IsEncrypted is TRUE, the object store MUST set

FILE_ATTRIBUTE_ENCRYPTED in OuputBuffer.FileAttributes.

If Open.Stream.IsTemporary is TRUE, the object store MUST set

FILE_ATTRIBUTE_TEMPORARY in OutputBuffer.FileAttributes.

If Open.Stream.IsCompressed is TRUE, the object store MUST set

FILE_ATTRIBUTE_COMPRESSED in OutputBuffer.FileAttributes.

If Open.Stream.ChecksumAlgorithm != CHECKSUM_TYPE_NONE, the object store MUST

set FILE_ATTRIBUTE_INTEGRITY_STREAM in OutputBuffer.FileAttributes.<108>

EndIf

If OutputBuffer.FileAttributes is 0, the object store MUST set FILE_ATTRIBUTE_NORMAL in

OutputBuffer.FileAttributes.

OutputBuffer.ReparseTag MUST be set to Open.File.ReparseTag.

%5bMS-FSCC%5d.pdf
%5bMS-FSCC%5d.pdf

152 / 249

[MS-FSA] — v20130722
 File System Algorithms

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Upon successful completion of the operation, the object store MUST return:

ByteCount set to sizeof(FILE_ATTRIBUTE_TAG_INFORMATION).

Status set to STATUS_SUCCESS.

2.1.5.11.6 FileBasicInformation

OutputBuffer is of type FILE_BASIC_INFORMATION as defined in [MS-FSCC] section 2.4.7.

Pseudocode for the operation is as follows:

If OutputBufferSize is smaller than BlockAlign(sizeof(FILE_BASIC_INFORMATION), 8), the

operation MUST be failed with STATUS_INFO_LENGTH_MISMATCH.

If Open.GrantedAccess does not contain FILE_READ_ATTRIBUTES, the operation MUST be

failed with STATUS_ACCESS_DENIED.

The object store MUST set OutputBuffer.CreationTime equal to Open.File.CreationTime.

The object store MUST set OutputBuffer.LastWriteTime equal to

Open.File.LastModificationTime.

The object store MUST set OutputBuffer.ChangeTime equal to Open.File.LastChangeTime.

The object store MUST set OutputBuffer.LastAccessTime equal to

Open.File.LastAccessTime.

If Open.Stream.StreamType is DirectoryStream:

The object store MUST set OutputBuffer.FileAttributes equal to the value of

Open.File.FileAttributes.

The object store MUST set FILE_ATTRIBUTE_DIRECTORY in OutputBuffer.FileAttributes.

Else:

This is a DataStream. The object store MUST set OutputBuffer.FileAttributes equal to the

value of Open.File.FileAttributes. The following attribute values, if they are set in

Open.File.FileAttributes, MUST NOT be copied to OutputBuffer.FileAttributes (attribute
flags are defined in [MS-FSCC] section 2.6):

FILE_ATTRIBUTE_COMPRESSED

FILE_ATTRIBUTE_TEMPORARY

FILE_ATTRIBUTE_SPARSE_FILE

FILE_ATTRIBUTE_ENCRYPTED

FILE_ATTRIBUTE_INTEGRITY_STREAM<109>

If Open.Stream.IsSparse is TRUE, the object store MUST set

FILE_ATTRIBUTE_SPARSE_FILE in OutputBuffer.FileAttributes.

If Open.Stream.IsEncrypted is TRUE, the object store MUST set

FILE_ATTRIBUTE_ENCRYPTED in OuputBuffer.FileAttributes.

%5bMS-FSCC%5d.pdf
%5bMS-FSCC%5d.pdf

153 / 249

[MS-FSA] — v20130722
 File System Algorithms

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

If Open.Stream.IsTemporary is TRUE, the object store MUST set

FILE_ATTRIBUTE_TEMPORARY in OutputBuffer.FileAttributes.

If Open.Stream.IsCompressed is TRUE, the object store MUST set

FILE_ATTRIBUTE_COMPRESSED in OutputBuffer.FileAttributes.

If Open.Stream.ChecksumAlgorithm != CHECKSUM_TYPE_NONE, the object store MUST

set FILE_ATTRIBUTE_INTEGRITY_STREAM in OutputBuffer.FileAttributes.<110>

EndIf

If OutputBuffer.FileAttributes is 0, the object store MUST set FILE_ATTRIBUTE_NORMAL in

OutputBuffer.FileAttributes.

Upon successful completion of the operation, the object store MUST return:

ByteCount set to sizeof(FILE_BASIC_INFORMATION).

Status set to STATUS_SUCCESS.

2.1.5.11.7 FileBothDirectoryInformation

This operation is not supported and MUST be failed with STATUS_ INVALID_INFO_CLASS.

2.1.5.11.8 FileCompressionInformation

OutputBuffer is of type FILE_COMPRESSION_INFORMATION as defined in [MS-FSCC] section
2.4.9.

Pseudocode for the operation is as follows:

If OutputBufferSize is smaller than sizeof(FILE_COMPRESSION_INFORMATION), the operation

MUST be failed with STATUS_INFO_LENGTH_MISMATCH.

The object store MUST initialize all fields in OutputBuffer to zero.

If Open.Stream.StreamType is DirectoryStream:

If Open.File.FileAttributes.FILE_ATTRIBUTE_COMPRESSED is TRUE:

The object store MUST set OutputBuffer.CompressionState to

COMPRESSION_FORMAT_LZNT1.

Else:

The object store MUST set OutputBuffer.CompressionState to

COMPRESSION_FORMAT_NONE.

EndIf

Else:

The object store MUST set OutputBuffer.CompressedFileSize to the number of bytes

actually allocated on the underlying physical storage for storing the compressed data. This
value MUST be a multiple of Open.File.Volume.ClusterSize and MUST be less than or equal

to Open.Stream.AllocationSize.

If Open.Stream.IsCompressed is TRUE:

%5bMS-FSCC%5d.pdf

154 / 249

[MS-FSA] — v20130722
 File System Algorithms

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

The object store MUST set OutputBuffer.CompressionState to

COMPRESSION_FORMAT_LZNT1.

Else:

The object store MUST set OutputBuffer.CompressionState to

COMPRESSION_FORMAT_NONE.

EndIf

EndIf

If OutputBuffer.CompressionState is not equal to COMPRESSION_FORMAT_NONE, the object

store MUST set:

OutputBuffer.CompressedUnitShift to the base-2 logarithm of

Open.File.Volume.CompressionUnitSize.

OutputBuffer.ChunkShift to the base-2 logarithm of

Open.File.Volume.CompressedChunkSize.

OutputBuffer.ClusterShift to the base-2 logarithm of Open.File.Volume.ClusterSize.

EndIf

Upon successful completion of the operation, the object store MUST return:

ByteCount set to sizeof(FILE_COMPRESSION_INFORMATION).

Status set to STATUS_SUCCESS.

2.1.5.11.9 FileDirectoryInformation

This operation is not supported and MUST be failed with STATUS_ INVALID_INFO_CLASS.

2.1.5.11.10 FileEaInformation

OutputBuffer is of type FILE_EA_INFORMATION as described in [MS-FSCC] 2.4.12.<111>

Pseudocode for the operation is as follows:

If OutputBufferSize is smaller than sizeof(FILE_EA_INFORMATION), the operation MUST be

failed with STATUS_INFO_LENGTH_MISMATCH.

The object store MUST set:

OutputBuffer.EaSize set to Open.File.ExtendedAttributesLength. If

Open.File.ExtendedAttributesLength is a nonzero value, OutputBuffer.EaSize is

incremented by 4 to account for the header.

Upon successful completion of the operation, the object store MUST return:

ByteCount set to sizeof(FILE_EA_INFORMATION).

Status set to STATUS_SUCCESS.

%5bMS-FSCC%5d.pdf
%5bMS-FSCC%5d.pdf

155 / 249

[MS-FSA] — v20130722
 File System Algorithms

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

2.1.5.11.11 FileFullDirectoryInformation

This operation is not supported and MUST be failed with STATUS_ INVALID_INFO_CLASS.

2.1.5.11.12 FileFullEaInformation

OutputBuffer is of type FILE_FULL_EA_INFORMATION as described in [MS-FSCC] 2.4.15.<112>

Pseudocode for the operation is as follows:

The object store MUST initialize OutputBuffer to zero.

If Open.GrantedAccess does not contain FILE_READ_EA, the operation MUST be failed with

STATUS_ACCESS_DENIED.

If Open.File.ExtendedAttributes is not empty:

OutputBuffer is filled with as many complete FILE_FULL_EA_INFORMATION entries from

Open.File.ExtendedAttributes, starting with Open.NextEaEntry, as can be contained in
OutputBufferSize bytes.

Open.NextEaEntry is set to point to the entry after the last entry returned, if any.

Endif

Upon successful completion of the operation, the object store MUST return:

ByteCount set to the size, in bytes, of all FILE_FULL_EA_INFORMATION entries returned.

Status set to:

STATUS_NO_EAS_ON_FILE if there were no entries to return in

Open.File.ExtendedAttributes.

STATUS_BUFFER_TOO_SMALL if OutputBufferSize is too small to hold

Open.NextEaEntry. No entries are returned.

STATUS_BUFFER_OVERFLOW if at least one entry was returned in OutputBuffer but there

are still additional entries to return.

STATUS_SUCCESS when one or more entries were returned from

Open.File.ExtendedAttributes and there are no more entries to return.

2.1.5.11.13 FileHardLinkInformation

This operation is not supported and MUST be failed with STATUS_NOT_SUPPORTED.

2.1.5.11.14 FileIdBothDirectoryInformation

This operation is not supported and MUST be failed with STATUS_ INVALID_INFO_CLASS.

2.1.5.11.15 FileIdFullDirectoryInformation

This operation is not supported and MUST be failed with STATUS_ INVALID_INFO_CLASS.

%5bMS-FSCC%5d.pdf
%5bMS-FSCC%5d.pdf

156 / 249

[MS-FSA] — v20130722
 File System Algorithms

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

2.1.5.11.16 FileIdGlobalTxDirectoryInformation

This operation is not supported and MUST be failed with STATUS_ INVALID_INFO_CLASS.

2.1.5.11.17 FileInternalInformation

OutputBuffer is of type FILE_INTERNAL_INFORMATION as described in [MS-FSCC] 2.4.20.

Pseudocode for the operation is as follows:

If OutputBufferSize is smaller than sizeof(FILE_INTERNAL_INFORMATION), the operation

MUST be failed with STATUS_INFO_LENGTH_MISMATCH.

OutputBuffer MUST be constructed as follows:

OutputBuffer.IndexNumber set to Open.File.FileId64.

Upon successful completion of the operation, the object store MUST return:

ByteCount set to sizeof(FILE_INTERNAL_INFORMATION).

Status set to STATUS_SUCCESS.

2.1.5.11.18 FileModeInformation

OutputBuffer is of type FILE_MODE_INFORMATION as described in [MS-FSCC] 2.4.24.

Pseudocode for the operation is as follows:

If OutputBufferSize is smaller than sizeof(FILE_MODE_INFORMATION), the operation MUST be

failed with STATUS_INFO_LENGTH_MISMATCH.

OutputBuffer MUST be constructed as follows:

OutputBuffer.Mode MUST be set to Open.Mode.

Upon successful completion of the operation, the object store MUST return:

ByteCount set to sizeof(FILE_MODE_INFORMATION).

Status set to STATUS_SUCCESS.

2.1.5.11.19 FileNameInformation

This operation is not supported from a remote client, it is only supported from a local client or as
part of processing a query for the FileAllInformation operation as specified in section 2.1.5.11.3. If
used to query from a remote client, this operation MUST be failed with a status code of
STATUS_NOT_SUPPORTED.

OutputBuffer is of type FILE_NAME_INFORMATION as described in [MS-FSCC] section 2.4.5.

This routine uses the following local variables:

Unicode string: FileName

32-bit unsigned integers: FileNameLength, AvailableNameLength

Pseudocode for the operation is as follows:

%5bMS-FSCC%5d.pdf
%5bMS-FSCC%5d.pdf
%5bMS-FSCC%5d.pdf
%5bMS-FSCC%5d.pdf
%5bMS-FSCC%5d.pdf

157 / 249

[MS-FSA] — v20130722
 File System Algorithms

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

If OutputBufferSize is smaller than

BlockAlign(FieldOffset(FILE_NAME_INFORMATION.FileName) + 2, 4), the operation MUST be

failed with a status code of STATUS_INFO_LENGTH_MISMATCH.

Set FileName to BuildRelativeName(Open.Link, Open.File.Volume.RootDirectory).

Set FileNameLength to the length, in bytes, of FileName.

Set OutputBuffer.FileNameLength to FileNameLength.

Set AvailableNameLength to BlockAlignTruncate((OutputBufferSize -

FieldOffset(FILE_NAME_INFORMATION.FileName)), 2).

If AvailableNameLength < FileNameLength, the object store MUST fail the operation with:

AvailableNameLength bytes copied from FileName to OutputBuffer.FileName.

ByteCount set to FieldOffset(FILE_NAME_INFORMATION.FileName) +

AvailableNameLength.

Status set to STATUS_BUFFER_OVERFLOW.

EndIf

Upon successful completion of the operation, the object store MUST return:

FileNameLength bytes copied from FileName to OutputBuffer.FileName.

ByteCount set to FieldOffset(FILE_NAME_INFORMATION.FileName) + FileNameLength.

Status set to STATUS_SUCCESS.

2.1.5.11.20 FileNamesInformation

This operation is not supported as a file information class, it is only supported as a directory

information class, as specified in section 2.1.5.5.3.6. If used to query file information STATUS_
INVALID_INFO_CLASS MUST be returned.

2.1.5.11.21 FileNetworkOpenInformation

OutputBuffer is of type FILE_NETWORK_OPEN_INFORMATION as defined in [MS-FSCC] section
2.4.27.

Pseudocode for the operation is as follows:

If OutputBufferSize is smaller than sizeof(FILE_NETWORK_OPEN_INFORMATION), the

operation MUST be failed with STATUS_INFO_LENGTH_MISMATCH.

If Open.GrantedAccess does not contain FILE_READ_ATTRIBUTES, the operation MUST be

failed with STATUS_ACCESS_DENIED.

OutputBuffer MUST be constructed as follows:

OutputBuffer.CreationTime set to Open.File.CreationTime.

OutputBuffer.LastWriteTime set to Open.File.LastModificationTime.

OutputBuffer.ChangeTime set to Open.File.LastChangeTime.

%5bMS-FSCC%5d.pdf

158 / 249

[MS-FSA] — v20130722
 File System Algorithms

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

OutputBuffer.LastAccessTime set to Open.File.LastAccessTime.

OutputBuffer.FileAttributes set to Open.File.FileAttributes.

If Open.Stream.StreamType is DirectoryStream:

FILE_ATTRIBUTE_DIRECTORY, as specified in [MS-FSCC] section 2.6, MUST always be set

in OutputBuffer.FileAttributes.

Else:

For a DataStream, the following attribute values, as specified in [MS-FSCC] section 2.6,

MUST NOT be copied to OutputBuffer.FileAttributes:

FILE_ATTRIBUTE_COMPRESSED

FILE_ATTRIBUTE_TEMPORARY

FILE_ATTRIBUTE_SPARSE_FILE

FILE_ATTRIBUTE_ENCRYPTED

FILE_ATTRIBUTE_INTEGRITY_STREAM<113>

If Open.Stream.IsSparse is TRUE, the object store MUST set

FILE_ATTRIBUTE_SPARSE_FILE in OutputBuffer.FileAttributes.

If Open.Stream.IsEncrypted is TRUE, set FILE_ATTRIBUTE_ENCRYPTED in

OuputBuffer.FileAttributes.

If Open.Stream.IsTemporary is TRUE, set FILE_ATTRIBUTE_TEMPORARY in

OutputBuffer.FileAttributes.

If Open.Stream.IsCompressed is TRUE, set FILE_ATTRIBUTE_COMPRESSED in

OutputBuffer.FileAttributes.

If Open.Stream.ChecksumAlgorithm != CHECKSUM_TYPE_NONE, the object store MUST

set FILE_ATTRIBUTE_INTEGRITY_STREAM<114> in OutputBuffer.FileAttributes.

OutputBuffer.AllocationSize set to Open.Stream.AllocationSize.

OutputBuffer.EndOfFile set to Open.Stream.Size.

EndIf

If OutputBuffer.FileAttributes is 0, set FILE_ATTRIBUTE_NORMAL in

OutputBuffer.FileAttributes.

Upon successful completion of the operation, the object store MUST return:

ByteCount set to sizeof(FILE_NETWORK_OPEN_INFORMATION).

Status set to STATUS_SUCCESS.

2.1.5.11.22 FileObjectIdInformation

This operation is not supported and MUST be failed with STATUS_NOT_SUPPORTED.

%5bMS-FSCC%5d.pdf
%5bMS-FSCC%5d.pdf

159 / 249

[MS-FSA] — v20130722
 File System Algorithms

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

2.1.5.11.23 FilePositionInformation

OutputBuffer is of type FILE_POSITION_INFORMATION, as specified in [MS-FSCC] section 2.4.32.

Pseudocode for the operation is as follows:

If OutputBufferSize is less than the size, in bytes, of the FILE_POSITION_INFORMATION

structure, the operation MUST be failed with STATUS_INFO_LENGTH_MISMATCH.

The objects store MUST set OutputBuffer.CurrentByteOffset equal to

Open.CurrentByteOffset.

The operation returns STATUS_SUCCESS.<115>

2.1.5.11.24 FileQuotaInformation

This operation is not supported as a file information class; it is supported only as a server request,
as specified in section 2.1.5.20. If used to query file information, STATUS_INVALID_PARAMETER

MUST be returned.

2.1.5.11.25 FileReparsePointInformation

This operation is not supported as a file information class; it is only supported as a directory
enumeration class, as specified in section 2.1.5.5.2. If used to query file information
STATUS_NOT_SUPPORTED MUST be returned.

2.1.5.11.26 FileSfioReserveInformation

This operation is not supported and MUST be failed with STATUS_NOT_SUPPORTED.

2.1.5.11.27 FileStandardInformation

OutputBuffer is of type FILE_STANDARD_INFORMATION, as described in [MS-FSCC] section

2.4.38.

Pseudocode for the operation is as follows:

If OutputBufferSize is smaller than sizeof(FILE_STANDARD_INFORMATION), the operation

MUST be failed with STATUS_INFO_LENGTH_MISMATCH.

OutputBuffer MUST be constructed as follows:

If Open.Stream.StreamType is DirectoryStream, set OutputBuffer.Directory to 1 else 0.

If Open.Stream.StreamType is DirectoryStream or Open.Stream.Name is empty:

If Open.Link.IsDeleted is TRUE, set OutputBuffer.DeletePending to 1 else 0.

Else:

If Open.Stream.IsDeleted is TRUE, set OutputBuffer.DeletePending to 1 else 0.

EndIf

OutputBuffer.NumberOfLinks set to the number of Link elements in

Open.File.LinkList, except if Link.IsDeleted field is TRUE (that is, the number of not-
deleted links to the file).<116>

%5bMS-FSCC%5d.pdf
%5bMS-FSCC%5d.pdf

160 / 249

[MS-FSA] — v20130722
 File System Algorithms

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

If OutputBuffer.NumberOfLinks is 0, set OutputBuffer.DeletePending to 1.

OutputBuffer.AllocationSize set to Open.Stream.AllocationSize.

OutputBuffer.EndOfFile set to Open.Stream.Size.

Upon successful completion of the operation, the object store MUST return:

ByteCount set to sizeof(FILE_STANDARD_INFORMATION).

Status set to STATUS_SUCCESS.

2.1.5.11.28 FileStandardLinkInformation

This operation is not supported and MUST be failed with STATUS_ INVALID_INFO_CLASS.

2.1.5.11.29 FileStreamInformation

OutputBuffer is of type FILE_STREAM_INFORMATION, as described in [MS-FSCC] section 2.4.40.

This routine uses the following local variables:

32-bit unsigned integer: StreamNameLength, RemainingLength, ThisElementSize,

PreviousElementPadding

Stream: ThisStream

Pointer to a buffer of type FILE_STREAM_INFORMATION: CurrentPosition, LastPosition

Pseudocode for the operation is as follows:

Initialize PreviousElementPadding to 0.

Initialize CurrentPosition to point to the 0th byte of OutputBuffer.

Initialize RemainingLength to be equal to OutputBufferSize.

For each Stream ThisStream of Open.File:

Set StreamNameLength equal to the length, in bytes, of ThisStream.Name plus the length, in

bytes, of the Unicode string "$DATA" plus the length, in bytes, of two Unicode characters. This

accommodates the length of the full stream name in the form :<ThisStream.Name>:$DATA.

Set ThisElementSize equal to the byte offset of CurrentPosition.StreamName plus

StreamNameLength.

If ThisElementSize plus PreviousElementPadding is greater than RemainingLength, the

operation MUST be failed with STATUS_BUFFER_OVERFLOW.

The object store MUST set CurrentPosition.StreamSize equal to ThisStream.Size.

The object store MUST set CurrentPosition.AllocationSize equal to

ThisStream.AllocationSize.

The object store MUST set CurrentPosition.StreamNameLength equal to

StreamNameLength.

%5bMS-FSCC%5d.pdf

161 / 249

[MS-FSA] — v20130722
 File System Algorithms

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

The object store MUST set CurrentPosition.StreamName to the Unicode character ":", then

append ThisStream.Name, then append the Unicode character ":", then append the Unicode

string "$DATA".

Set PreviousElementPadding equal to BlockAlign(ThisElementSize, 8) minus ThisElementSize.

The value PreviousElementPadding is used to align each FILE_STREAM_INFORMATION
element in OutputBuffer on an 8-byte boundary.

The object store MUST set CurrentPosition.NextEntryOffset equal to ThisElementSize plus

PreviousElementPadding.

Set RemainingLength equal to RemainingLength minus (ThisElementSize plus

PreviousElementPadding).

Set LastPosition equal to CurrentPosition.

Advance CurrentPosition by a number of bytes equal to ThisElementSize plus

PreviousElementPadding.

EndFor

The object store MUST set LastPosition.NextEntryOffset equal to 0.

The operation returns STATUS_SUCCESS.

2.1.5.12 Server Requests a Query of File System Information

The server provides:

Open: An Open of a DataFile or DirectoryFile.

OutputBufferSize: The maximum number of bytes to be returned in OutputBuffer.

FsInformationClass: The type of information being queried, as specified in [MS-FSCC] section

2.5.

On completion, the object store MUST return:

Status: An NTSTATUS code that specifies the result.

OutputBuffer: An array of bytes containing the file system information. The structure of these

bytes is dependent on FsInformationClass, as noted in the relevant subsection.

ByteCount: The number of bytes stored in OutputBuffer.

Pseudocode for the operation is as follows:

If FsInformationClass is not defined in [MS-FSCC] section 2.5, the operation MUST be failed with
STATUS_INVALID_PARAMETER.

2.1.5.12.1 FileFsVolumeInformation

OutputBuffer is of type FILE_FS_VOLUME_INFORMATION, as described in [MS-FSCC] section
2.5.9.

This routine uses the following local variables:

%5bMS-FSCC%5d.pdf
%5bMS-FSCC%5d.pdf
%5bMS-FSCC%5d.pdf

162 / 249

[MS-FSA] — v20130722
 File System Algorithms

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

32-bit unsigned integers: RemainingLength, BytesToCopy

Pseudocode for the operation is as follows:

If OutputBufferSize is smaller than

BlockAlign(FieldOffset(FILE_FS_VOLUME_INFORMATION.VolumeLabel), 8), the operation
MUST be failed with STATUS_INFO_LENGTH_MISMATCH.

OutputBuffer MUST be constructed as follows:

OutputBuffer.VolumeCreationTime set to Open.File.Volume.VolumeCreationTime.

OutputBuffer.VolumeSerialNumber set to Open.File.Volume.VolumeSerialNumber.

OutputBuffer.VolumeLabelLength set to the length, in bytes, of the

Open.File.Volume.VolumeLabel string. This value can be zero.

OutputBuffer.SupportsObjects set to TRUE.

Set RemainingLength to OutputBufferSize -

FieldOffset(FILE_FS_VOLUME_INFORMATION.VolumeLabel).

If RemainingLength < OutputBuffer.VolumeLabelLength:

Set BytesToCopy to RemainingLength.

Else:

Set BytesToCopy to OutputBuffer.VolumeLabelLength.

EndIf

Copy BytesToCopy bytes from Volume.VolumeLable to OutputBuffer.VolumeLabel.

Upon successful completion of the operation, the object store MUST return:

ByteCount set to FieldOffset(FILE_FS_VOLUME_INFORMATION.VolumeLabel) +

BytesToCopy.

Status set to STATUS_BUFFER_OVERFLOW if BytesToCopy <

OutputBuffer.VolumeLabelLength else STATUS_SUCCESS.

2.1.5.12.2 FileFsLabelInformation

This operation is not supported and MUST be failed with STATUS_NOT_SUPPORTED.

2.1.5.12.3 FileFsSizeInformation

OutputBuffer is of type FILE_FS_SIZE_INFORMATION as described in [MS-FSCC] section 2.5.8.

This routine uses the following local variables:

64-bit unsigned integer: RemainingQuota

FILE_QUOTA_INFORMATION element: QuotaEntry

Pseudocode for the operation is as follows:

%5bMS-FSCC%5d.pdf

163 / 249

[MS-FSA] — v20130722
 File System Algorithms

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

If OutputBufferSize is smaller than sizeof(FILE_FS_SIZE_INFORMATION), the operation MUST

be failed with STATUS_INFO_LENGTH_MISMATCH.

OutputBuffer MUST be constructed as follows:

OutputBuffer.TotalAllocationUnits set to Open.File.Volume.TotalSpace /

Open.File.Volume.ClusterSize.

OutputBuffer.AvailableAllocationUnits set to Open.File.Volume.FreeSpace /

Open.File.Volume.ClusterSize.

OutputBuffer.SectorsPerAllocationUnit set to Open.File.Volume.ClusterSize /

Open.File.Volume.LogicalBytesPerSector.

OutputBuffer.BytesPerSector set to Open.File.Volume.LogicalBytesPerSector.

If Open.File.Volume.QuotaInformation contains an entry QuotaEntry that matches the SID of

the current Open, the object store MUST modify the returned information based on QuotaEntry

as follows:

If QuotaEntry.QuotaLimit < Open.File.Volume.TotalSpace:

OutputBuffer.TotalAllocationUnits MUST be set to QuotaEntry.QuotaLimit /

Open.File.Volume.ClusterSize.

EndIf

If QuotaEntry.QuotaLimit <= QuotaEntry.QuotaUsed:

RemainingQuota MUST be set to 0.

Else

RemainingQuota MUST be set to QuotaEntry.QuotaLimit - QuotaEntry.QuotaUsed.

EndIf

If RemainingQuota < Open.File.Volume.FreeSpace:

OutputBuffer.AvailableAllocationUnits MUST be set to RemainingQuota /

Open.File.Volume.ClusterSize.

EndIf

EndIf

Upon successful completion of the operation, the object store MUST return:

ByteCount MUST be set to sizeof(FILE_FS_SIZE_INFORMATION).

Status set to STATUS_SUCCESS.

2.1.5.12.4 FileFsDeviceInformation

OutputBuffer is of type FILE_FS_DEVICE_INFORMATION, as described in [MS-FSCC] section

2.5.10.

Pseudocode for the operation is as follows:

%5bMS-FSCC%5d.pdf

164 / 249

[MS-FSA] — v20130722
 File System Algorithms

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

If OutputBufferSize is smaller than sizeof(FILE_FS_DEVICE_INFORMATION), the operation

MUST be failed with STATUS_INFO_LENGTH_MISMATCH .

OutputBuffer MUST be constructed as follows:

OutputBuffer.DeviceType set to FILE_DEVICE_DISK or FILE_DEVICE_CD_ROM, as defined

in [MS-FSCC] section 2.5.10, depending on the type of media that Open.File.Volume is
mounted on.

OutputBuffer.Characteristics set to Open.File.Volume.VolumeCharacteristics.

Upon successful completion of the operation, the object store MUST return:

ByteCount set to sizeof(FILE_FS_DEVICE_INFORMATION).

Status set to STATUS_SUCCESS.

2.1.5.12.5 FileFsAttributeInformation

OutputBuffer is of type FILE_FS_ATTRIBUTE_INFORMATION, as described in [MS-FSCC] section
2.5.1.

This routine uses the following local variables:

32-bit unsigned integer: RemainingLength, BytesToCopy

Pseudocode for the operation is as follows:

If OutputBufferSize is smaller than

BlockAlign(FieldOffset(FILE_FS_ATTRIBUTE_INFORMATION.FileSystemName), 4), the
operation MUST be failed with STATUS_INFO_LENGTH_MISMATCH.

OutputBuffer MUST be constructed as follows:

OutputBuffer.FileSystemAttributes set to appropriate values, as specified in [MS-FSCC]

section 2.5.1, based on the implementation of the given file system.<117>

OutputBuffer.MaximumComponentNameLength set to different values depending on the

file system.<118>

OutputBuffer.FileSystemNameLength set to the length, in bytes, of the name of the file

system on Open.File.Volume.

Set RemainingLength to OutputBufferSize -

FieldOffset(FILE_FS_ATTRIBUTE_INFORMATION.FileSystemName).

If RemainingLength < OutputBuffer.FileSystemNameLength.

Set BytesToCopy to RemainingLength.

Else

Set BytesToCopy to OutputBuffer.FileSystemNameLength.

EndIf

Copy BytesToCopy bytes from the file system name string to OutputBuffer.FileSystemName.

%5bMS-FSCC%5d.pdf
%5bMS-FSCC%5d.pdf
%5bMS-FSCC%5d.pdf

165 / 249

[MS-FSA] — v20130722
 File System Algorithms

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Upon successful completion of the operation, the object store MUST return:

ByteCount set to FieldOffset(FILE_FS_ATTRIBUTE_INFORMATION.FileSystemName)+

BytesToCopy.

Status set to STATUS_BUFFER_OVERFLOW if BytesToCopy <

OutputBuffer.FileSystemNameLength else STATUS_SUCCESS.

2.1.5.12.6 FileFsControlInformation

OutputBuffer is of type FILE_FS_CONTROL_INFORMATION, as described in [MS-FSCC] section
2.5.2.

Pseudocode for the operation is as follows:

If OutputBufferSize is smaller than BlockAlign(sizeof(FILE_FS_CONTROL_INFORMATION), 8)

the operation MUST be failed with STATUS_INFO_LENGTH_MISMATCH.

Support for this operation is optional. If the object store does not implement this functionality,

the operation MUST be failed with STATUS_INVALID_PARAMETER.<119>

If Open.File.Volume.IsQuotasSupported is FALSE, the operation MUST be failed with

STATUS_VOLUME_NOT_UPGRADED.

The object store MUST initialize all fields in OutputBuffer to zero.

If Quotas are supported on Open.File.Volume, the object store MUST set fields in

OutputBuffer as follows:

OutputBuffer.DefaultQuotaThreshold set to

Open.File.Volume.DefaultQuotaThreshold.

OutputBuffer.DefaultQuotaLimit set to Open.File.Volume.DefaultQuotaLimit.

OutputBuffer.FileSystemControlFlags set to Open.File.Volume.VolumeQuotaState.

EndIf

Upon successful completion of the operation, the object store MUST return:

ByteCount set to sizeof(FILE_FS_CONTROL_INFORMATION).

Status set to STATUS_SUCCESS.

2.1.5.12.7 FileFsFullSizeInformation

OutputBuffer is of type FILE_FS_FULL_SIZE_INFORMATION, as described in [MS-FSCC] section

2.5.4.

This routine uses the following local variables:

64-bit unsigned integer: RemainingQuota

FILE_QUOTA_INFORMATION element: QuotaEntry

Pseudocode for the operation is as follows:

%5bMS-FSCC%5d.pdf
%5bMS-FSCC%5d.pdf

166 / 249

[MS-FSA] — v20130722
 File System Algorithms

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

If OutputBufferSize is smaller than sizeof(FILE_FS_FULL_SIZE_INFORMATION), the operation

MUST be failed with STATUS_INFO_LENGTH_MISMATCH.

OutputBuffer MUST be constructed as follows:

OutputBuffer.TotalAllocationUnits set to Open.File.Volume.TotalSpace /

Open.File.Volume.ClusterSize.

OutputBuffer.CallerAvailableAllocationUnits set to Open.File.Volume.FreeSpace /

Open.File.Volume.ClusterSize.

OutputBuffer.ActualAvailableAllocationUnits set to Open.File.Volume.FreeSpace /

Open.File.Volume.ClusterSize.

OutputBuffer.SectorsPerAllocationUnit set to Volume.ClusterSize / Open.File.Volume.

LogicalBytesPerSector.

OutputBuffer.BytesPerSector set to Open.File.Volume. LogicalBytesPerSector.

If Open.File.Volume.QuotaInformation contains an entry QuotaEntry that matches the SID of

the current Open, the object store MUST modify the returned information based on QuotaEntry
as follows:

If QuotaEntry.QuotaLimit < Open.File.Volume.TotalSpace:

OutputBuffer.TotalAllocationUnits MUST be set to QuotaEntry.QuotaLimit /

Open.File.Volume.ClusterSize.

EndIf

If QuotaEntry.QuotaLimit <= QuotaEntry.QuotaUsed:

RemainingQuota MUST be set to 0.

Else

RemainingQuota MUST be set to QuotaEntry.QuotaLimit - QuotaEntry.QuotaUsed.

EndIf

If RemainingQuota < Open.File.Volume.FreeSpace:

OutputBuffer.CallerAvailableAllocationUnits MUST be set to RemainingQuota /

Open.File.Volume.ClusterSize.

EndIf

EndIf

Upon successful completion of the operation, the object store MUST return:

ByteCount set to sizeof(FILE_FS_FULL_SIZE_INFORMATION).

Status set to STATUS_SUCCESS.

167 / 249

[MS-FSA] — v20130722
 File System Algorithms

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

2.1.5.12.8 FileFsObjectIdInformation

OutputBuffer is a FILE_FS_OBJECTID_INFORMATION structure as described in [MS-FSCC] section
2.5.6.<120>

Pseudocode for the operation is as follows:

If OutputBufferSize is less than sizeof(FILE_FS_OBJECTID_INFORMATION), the operation

MUST be failed with STATUS_INFO_LENGTH_MISMATCH.

Support for ObjectIDs is optional. If the object store does not implement this functionality, the

operation MUST be failed with STATUS_INVALID_PARAMETER.<121>

If Open.File.Volume.IsObjectIDsSupported is FALSE, the operation MUST be failed with

STATUS_VOLUME_NOT_UPGRADED.

If Open.File.Volume.VolumeId is empty, the operation MUST be failed with

STATUS_OBJECT_NAME_NOT_FOUND.

OutputBuffer MUST be constructed as follows:

OutputBuffer.ObjectId set to Open.File.Volume.VolumeId.

OutputBuffer.ExtendedInfo set to Open.File.Volume.ExtendedInfo.

Upon successful completion of the operation, the object store MUST return:

ByteCount set to sizeof(FILE_FS_OBJECTID_INFORMATION).

Status set to STATUS_SUCCESS.

2.1.5.12.9 FileFsDriverPathInformation

This operation is not supported and MUST be failed with STATUS_NOT_SUPPORTED.

2.1.5.12.10 FileFsSectorSizeInformation

OutputBuffer is of type FILE_FS_SECTOR_SIZE_INFORMATION as defined in [MS-FSCC] section
2.5.7.

Pseudocode for the operation is as follows:

If OutputBufferSize is smaller than sizeof(FILE_FS_SECTOR_SIZE_INFORMATION), the

operation MUST be failed with STATUS_INFO_LENGTH_MISMATCH.

OutputBuffer MUST be constructed as follows:

OutputBuffer.LogicalBytesPerSector set to Open.File.Volume.LogicalBytesPerSector.

OutputBuffer.PhysicalBytesPerSectorForAtomicity is computed as follows:

Set OutputBuffer.PhysicalBytesPerSectorForAtomicity to the physical sector size

reported from the storage device underlying the object store.

If there was an issue with retrieving the physical sector size information:

Set OutputBuffer.PhysicalBytesPerSectorForAtomicity to

Open.File.Volume.LogicalBytesPerSector.

%5bMS-FSCC%5d.pdf
%5bMS-FSCC%5d.pdf

168 / 249

[MS-FSA] — v20130722
 File System Algorithms

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

ElseIf OutputBuffer.PhysicalBytesPerSectorForAtomicity is NOT a power of two, OR

OutputBuffer.PhysicalBytesPerSectorForAtomicity is less than
Open.File.Volume.LogicalBytesPerSector, OR

OutputBuffer.PhysicalBytesPerSectorForAtomicity is not a multiple of
Open.File.Volume.LogicalBytesPerSector:

Set OutputBuffer.PhysicalBytesPerSectorForAtomicity to

Open.File.Volume.LogicalBytesPerSector.

EndIf

OutputBuffer.PhysicalBytesPerSectorForPerformance is set to

OutputBuffer.PhysicalBytesPerSectorForAtomicity.

OutputBuffer.FileSystemEffectivePhysicalBytesPerSectorForAtomicity is computed as

follows:

If OutputBuffer.PhysicalBytesPerSectorForAtomicity is greater than

Open.File.Volume.SystemPageSize:

Set OutputBuffer.FileSystemEffectivePhysicalBytesPerSectorForAtomicity to

Open.File.Volume.SystemPageSize.

Else:

Set OutputBuffer.FileSystemEffectivePhysicalBytesPerSectorForAtomicity to

OutputBuffer.PhysicalBytesPerSectorForAtomicity.

EndIf

OutputBuffer.ByteOffsetForSectorAlignment is computed as follows:

Set OutputBuffer.ByteOffsetForSectorAlignment to the physical offset alignment

reported by the storage device.

If there was an issue with retrieving the physical offset alignment:

Set OutputBuffer.ByteOffsetForSectorAlignment to SSINFO_OFFSET_UNKNOWN.

EndIf

OutputBuffer.ByteOffsetForPartitionAlignment is computed as follows:

Set OutputBuffer.ByteOffsetForPartitionAlignment to

(Open.File.Volume.PartitionOffset %

OutputBuffer.PhysicalBytesPerSectorForAtomicity).

OutputBuffer.Flags is set as follows:

Set SSINFO_FLAGS_ALIGNED_DEVICE, SSINFO_FLAGS_PARTITION_ALIGNED_ON_DEVICE

flags in OutputBuffer.Flags.

If OutputBuffer.ByteOffsetForSectorAlignment is not zero:

Clear SSINFO_FLAGS_ALIGNED_DEVICE flag in OutputBuffer.Flags.

EndIf

169 / 249

[MS-FSA] — v20130722
 File System Algorithms

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

If OutputBuffer.ByteOffsetForSectorAlignment is not equal to

((OutputBuffer.PhysicalBytesPerSectorForAtomicity –

OutputBuffer.ByteOffsetForPartitionAlignment) %

OutputBuffer.PhysicalBytesPerSectorForAtomicity :

Clear SSINFO_FLAGS_PARTITION_ALIGNED_ON_DEVICE flag in OutputBuffer.Flags

EndIf

Query the storage device underlying the object store to determine if there is a seek

penalty. If there is not a seek penalty, set SSINFO_FLAGS_NO_SEEK_PENALTY flag in
OutputBuffer.Flags.

Query the storage device underlying the object store to determine if either the TRIM (T13-

ATA) or UNMAP (T10-SCSI/SAS) commands are supported. If either command is
supported, set SSINFO_FLAGS_TRIM_ENABLED flag in OutputBuffer.Flags.

Upon successful completion of the operation, the object store MUST return:

ByteCount set to the size of the FILE_FS_SECTOR_SIZE_INFORMATION structure

Status set to STATUS_SUCCESS.

2.1.5.13 Server Requests a Query of Security Information

The server provides:

Open: The Open on which security information is being queried.

OutputBufferSize: The maximum number of bytes to return in OutputBuffer.

SecurityInformation: A SECURITY_INFORMATION data type, as defined in [MS-DTYP] section

2.4.7.

On completion, the object store MUST return:

Status: An NTSTATUS code that specifies the result.

OutputBuffer: An array of OutputBufferSize bytes formatted as a SECURITY_DESCRIPTOR

structure in self-relative format, as described in [MS-DTYP] section 2.4.6.

ByteCount: If the operation returns STATUS_SUCCESS, this will be set to the count of bytes

filled into OutputBuffer. If the operation returns STATUS_BUFFER_OVERFLOW, this will be set
to the required size, in bytes, of OutputBuffer so that the security descriptor will fit.

This routine uses the following local variables:

A 32-bit unsigned integer used as a byte index into OutputBuffer: NextFree

32-bit unsigned integers: SaclLength, MaclLength

Pseudocode for the operation is as follows:

Let sizeof(SECURITY_DESCRIPTOR_RELATIVE) equal the number of bytes occupied by the

Revision, Sbz1, Control, OffsetOwner, OffsetGroup, OffsetSacl, and OffsetDacl fields of
OutputBuffer (that is, the total size of those fields in a SECURITY_DESCRIPTOR in self-relative

format, as described in [MS-DTYP] section 2.4.6).

%5bMS-DTYP%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-DTYP%5d.pdf

170 / 249

[MS-FSA] — v20130722
 File System Algorithms

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

The operation MUST be failed with STATUS_ACCESS_DENIED under either of the following

conditions:

SecurityInformation contains any of OWNER_SECURITY_INFORMATION,

GROUP_SECURITY_INFORMATION, LABEL_SECURITY_INFORMATION, or
DACL_SECURITY_INFORMATION, and Open.GrantedAccess does not contain
READ_CONTROL.

SecurityInformation contains SACL_SECURITY_INFORMATION and Open.GrantedAccess

does not contain ACCESS_SYSTEM_SECURITY.

If Open.Stream.StreamType is DataStream and Open.Stream.Name is not empty, the

operation MUST be failed with STATUS_INVALID_PARAMETER; security information may only be
queried on a file or directory handle, not on a stream handle.

If Open.File.SecurityDescriptor is empty:

If OutputBufferSize is smaller than sizeof(SECURITY_DESCRIPTOR_RELATIVE), the object

store MUST set ByteCount equal to sizeof(SECURITY_DESCRIPTOR_RELATIVE), and the

operation MUST be failed with STATUS_BUFFER_OVERFLOW.

The object store MUST set OutputBuffer.Revision equal to 1; all other fields of

OutputBuffer MUST be filled with NULL characters.

The object store MUST set the Self Relative (SR) bit in OutputBuffer.Control.

The operation returns STATUS_SUCCESS at this point.

EndIf

Set ByteCount equal to sizeof(SECURITY_DESCRIPTOR_RELATIVE).

If SecurityInformation contains OWNER_SECURITY_INFORMATION and

Open.File.SecurityDescriptor.Owner is not NULL:

ByteCount += BlockAlign(SidLength(Open.File.SecurityDescriptor.Owner), 4)

EndIf

If SecurityInformation contains GROUP_SECURITY_INFORMATION and

Open.File.SecurityDescriptor.Group is not NULL:

ByteCount += BlockAlign(SidLength (Open.File.SecurityDescriptor.Group), 4)

EndIf

If SecurityInformation contains DACL_SECURITY_INFORMATION and the DACL Present (DP)

bit is set in Open.File.SecurityDescriptor.Control and Open.File.SecurityDescriptor.Dacl is
not NULL:

ByteCount += BlockAlign(SidLength(Open.File.SecurityDescriptor.Dacl.AclSize), 4)

EndIf

If SecurityInformation contains

SACL_SECURITY_INFORMATION|LABEL_SECURITY_INFORMATION and the SACL Present (SP) bit
is set in Open.File.SecurityDescriptor.Control and

171 / 249

[MS-FSA] — v20130722
 File System Algorithms

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Open.File.SecurityDescriptor.Sacl is not NULL:

SaclLength = BlockAlign(SidLength(Open.File.SecurityDescriptor.Sacl.AclSize), 4)

ByteCount += SaclLength

Else

If SecurityInformation contains SACL_SECURITY_INFORMATION and the SACL Present (SP)

bit is set in Open.File.SecurityDescriptor.Control and Open.File.SecurityDescriptor.Sacl
is not NULL:

SaclLength = BlockAlign(SidLength(Open.File.SecurityDescriptor.Sacl.AclSize), 4)

For each access control entry (ACE) (as defined in [MS-DTYP] section 2.4.4) in

Open.File.SecurityDescriptor.Sacl whose AceType field is
SYSTEM_MANDATORY_LABEL_ACE_TYPE:

SaclLength -= this ACE's AceSize field

EndFor

ByteCount += SaclLength

EndIf

If SecurityInformation contains LABEL_SECURITY_INFORMATION and the SACL Present

(SP) bit is set in Open.File.SecurityDescriptor.Control and
Open.File.SecurityDescriptor.Sacl is not NULL:

MaclLength = BlockAlign((size of ACL as defined in [MS-DTYP] section 2.4.5), 4)

For each ACE (as defined in [MS-DTYP] section 2.4.4) in

Open.File.SecurityDescriptor.Sacl whose AceType field is
SYSTEM_MANDATORY_LABEL_ACE_TYPE:

MaclLength += this ACE's AceSize field

EndFor

ByteCount += MaclLength

EndIf

EndIf

If ByteCount is greater than OutputBufferSize, the operation MUST be failed with

STATUS_BUFFER_OVERFLOW.

The object store MUST set OutputBuffer.Revision equal to 1; all other fields of OutputBuffer

MUST be filled with NULL characters.

The object store MUST set the Self Relative (SR) bit in OutputBuffer.Control.

Set NextFree to sizeof(SECURITY_DESCRIPTOR_RELATIVE) (that is, to the offset of

OutputBuffer.OwnerSid).

If SecurityInformation contains OWNER_SECURITY_INFORMATION and

Open.File.SecurityDescriptor.Owner is not NULL:

%5bMS-DTYP%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-DTYP%5d.pdf

172 / 249

[MS-FSA] — v20130722
 File System Algorithms

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

The object store MUST copy SidLength(Open.File.SecurityDescriptor.Owner) bytes from

Open.File.SecurityDescriptor.Owner to OutputBuffer at the position of NextFree.

The object store MUST set OutputBuffer.OffsetOwner equal to NextFree.

The object store MUST set the state of the Owner Defaulted (OD) bit of

OutputBuffer.Control equal to the state of the same bit in
Open.File.SecurityDescriptor.Control.

NextFree += BlockAlign(SidLength(Open.File.SecurityDescriptor.Owner), 4).

EndIf

If SecurityInformation contains GROUP_SECURITY_INFORMATION and

Open.File.SecurityDescriptor.Group is not NULL:

The object store MUST copy SidLength(Open.File.SecurityDescriptor.Group) bytes from

Open.File.SecurityDescriptor.Group to OutputBuffer at the position of NextFree.

The object store MUST set OutputBuffer.OffsetGroup equal to NextFree.

The object store MUST set the state of the Group Defaulted (GD) bit of

OutputBuffer.Control equal to the state of the same bit in
Open.File.SecurityDescriptor.Control.

NextFree += BlockAlign(SidLength(Open.File.SecurityDescriptor.Group), 4).

EndIf

If SecurityInformation contains DACL_SECURITY_INFORMATION:

The object store MUST set the state of the DACL Present (DP), DACL Defaulted (DD), DACL

Protected (PD), and DACL Auto-Inherited (DI) bits of OutputBuffer.Control equal to the
state of the same bits in Open.File.SecurityDescriptor.Control.

If the DACL Present (DP) bit is set in Open.File.SecurityDescriptor.Control and

Open.File.SecurityDescriptor.Dacl is not NULL:

The object store MUST copy Open.File.SecurityDescriptor.Dacl.AclSize bytes from

Open.File.SecurityDescriptor.Dacl to OutputBuffer at the position of NextFree.

The object store MUST set OutputBuffer.OffsetDacl equal to NextFree.

NextFree += BlockAlign(Open.File.SecurityDescriptor.Dacl.AclSize, 4).

EndIf

EndIf

If SecurityInformation contains

SACL_SECURITY_INFORMATION|LABEL_SECURITY_INFORMATION:

The object store MUST set the state of the SACL Present (SP), SACL Defaulted (SD), SACL

Protected (PS), and SACL Auto-Inherited (SI) bits of OutputBuffer.Control equal to the state

of the same bits in Open.File.SecurityDescriptor.Control.

If the SACL Present (SP) bit is set in Open.File.SecurityDescriptor.Control and

Open.File.SecurityDescriptor.Sacl is not NULL:

173 / 249

[MS-FSA] — v20130722
 File System Algorithms

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

The object store MUST copy Open.File.SecurityDescriptor.Sacl.AclSize bytes from

Open.File.SecurityDescriptor.Sacl to OutputBuffer at the position of NextFree.

The object store MUST set OutputBuffer.OffsetSacl equal to NextFree.

NextFree += SaclLength.

EndIf

Else

If SecurityInformation contains SACL_SECURITY_INFORMATION:

The object store MUST set the state of the SACL Present (SP), SACL Defaulted (SD), SACL

Protected (PS), and SACL Auto-Inherited (SI) bits of OutputBuffer.Control equal to the
state of the same bits in Open.File.SecurityDescriptor.Control.

If the SACL Present (SP) bit is set in Open.File.SecurityDescriptor.Control and

Open.File.SecurityDescriptor.Sacl is not NULL:

Perform an ACE copy according to the algorithm in section 2.1.5.13.1, setting the ACE

copy algorithm's parameters as follows:

DestSacl equal to the position in OutputBuffer of NextFree.

SrcSacl equal to Open.File.SecurityDescriptor.Sacl.

CopyAudit set to TRUE.

The object store MUST set OutputBuffer.OffsetSacl equal to NextFree.

NextFree += SaclLength.

EndIf

Else If SecurityInformation contains LABEL_SECURITY_INFORMATION:

The object store MUST set the state of the SACL Present (SP), SACL Defaulted (SD), SACL

Protected (PS), and SACL Auto-Inherited (SI) bits of OutputBuffer.Control equal to the
state of the same bits in Open.File.SecurityDescriptor.Control.

If the SACL Present (SP) bit is set in Open.File.SecurityDescriptor.Control and

Open.File.SecurityDescriptor.Sacl is not NULL:

Perform an ACE copy according to the algorithm in section 2.1.5.13.1, setting the ACE

copy algorithm's parameters as follows:

DestSacl equal to the position in OutputBuffer of NextFree.

SrcSacl equal to Open.File.SecurityDescriptor.Sacl.

CopyAudit set to FALSE.

The object store MUST set OutputBuffer.OffsetSacl equal to NextFree.

NextFree += MaclLength.

EndIf

174 / 249

[MS-FSA] — v20130722
 File System Algorithms

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

EndIf

EndIf

The operation returns STATUS_SUCCESS.

2.1.5.13.1 Algorithm for Copying Audit or Label ACEs Into a Buffer

The inputs for an ACE copy are:

DestSacl: A destination buffer formatted as an access control list (ACL), as defined in [MS-DTYP]

section 2.4.5.

SrcSacl: A source buffer formatted as an ACL, as defined in [MS-DTYP] section 2.4.5.

CopyAudit: A Boolean value. If TRUE, this algorithm copies only ACEs whose AceType field is

not SYSTEM_MANDATORY_LABEL_ACE_TYPE. If FALSE, this algorithm copies only ACEs whose
AceType field is SYSTEM_MANDATORY_LABEL_ACE_TYPE.

The ACE copy algorithm uses the following local variables:

ACE (as defined in [MS-DTYP] section 2.4.4): ThisAce

Byte pointer: NextFree

Pseudocode for the algorithm is as follows:

Copy (size of ACL as defined in [MS-DTYP] section 2.4.5) bytes from SrcSacl to DestSacl.

Set DestSacl.AceCount to 0.

Set DestSacl.AclSize to (size of ACL as defined in [MS-DTYP] section 2.4.5).

Set NextFree to (size of ACL as defined in [MS-DTYP] section 2.4.5) bytes from the beginning of

DestSacl.

For each ACE ThisAce in SrcSacl:

If ((CopyAudit is TRUE and ThisAce.AceType is not

SYSTEM_MANDATORY_LABEL_ACE_TYPE) or (CopyAudit is FALSE and ThisAce.AceType is

SYSTEM_MANDATORY_LABEL_ACE_TYPE)):

Copy ThisAce.AceSize bytes from ThisAce to NextFree.

DestSacl.AceCount += 1

DestSacl.AclSize = DestSacl.AclSize + ThisAce.AceSize

Advance NextFree by ThisAce.AceSize bytes.

EndIf

EndFor

2.1.5.14 Server Requests Setting of File Information

The server provides:

%5bMS-DTYP%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-DTYP%5d.pdf

175 / 249

[MS-FSA] — v20130722
 File System Algorithms

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Open: An Open of a DataFile or DirectoryFile.

FileInformationClass: The type of information being applied, as specified in [MS-FSCC] section

2.4.

InputBuffer: A buffer that contains the information to be applied to the object.

InputBufferSize: The size of the buffer provided.

The object store MUST return:

Status: An NTSTATUS code indicating the result of the operation.

Pseudocode for the operation is as follows:

If Open.File.Volume.IsReadOnly is TRUE, the operation MUST be failed with

STATUS_MEDIA_WRITE_PROTECTED.

2.1.5.14.1 FileAllocationInformation

InputBuffer is of type FILE_ALLOCATION_INFORMATION as described in [MS-FSCC] section 2.4.4.

This operation MUST be failed with STATUS_INVALID_PARAMETER under any of the following

conditions:

If Open.Stream.StreamType is DirectoryStream.

If InputBuffer.AllocationSize is greater than the maximum file size allowed by the object

store.<122>

Pseudocode for the operation is as follows:

If Open.GrantedAccess does not contain FILE_WRITE_DATA, the operation MUST be failed with

STATUS_ACCESS_DENIED.

If Open.Stream.Oplock is not empty, the object store MUST check for an oplock break

according to the algorithm in section 2.1.4.12, with input values as follows:

Open equal to this operation's Open

Oplock equal to Open.Stream.Oplock

Operation equal to "SET_INFORMATION"

OpParams containing a member FileInformationClass containing

FileAllocationInformation

If the Oplock member of the DirectoryStream in Open.Link.ParentFile.StreamList

(hereinafter referred to as ParentOplock) is not empty, the object store MUST check for an oplock

break on the parent according to the algorithm in section 2.1.4.12, with input values as follows:

Open equal to this operation's Open

Oplock equal to ParentOplock

Operation equal to "SET_INFORMATION"

%5bMS-FSCC%5d.pdf
%5bMS-FSCC%5d.pdf

176 / 249

[MS-FSA] — v20130722
 File System Algorithms

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

OpParams containing a member FileInformationClass containing

FileAllocationInformation

Flags equal to "PARENT_OBJECT"

If Open.Stream.IsDeleted is TRUE, the operation SHOULD return STATUS_SUCCESS.

Set NewAllocationSize to

BlockAlign(InputBuffer.AllocationSize,Open.File.Volume.ClusterSize) as described in
section 2.1.4.5.

If Open.Stream.AllocationSize is equal to NewAllocationSize, the operation MUST return

STATUS_SUCCESS.

If the space for NewAllocationSize cannot be reserved in the storage media, then the operation

MUST be failed with STATUS_DISK_FULL.

Open.Stream.AllocationSize MUST be set to NewAllocationSize.

If NewAllocationSize is less than Open.Stream.Size:

The object store MUST set Open.Stream.Size to NewAllocationSize, truncating the Stream.

The object store MUST post a USN change as per section 2.1.4.11 with File equal to File,

Reason equal to USN_REASON_DATA_TRUNCATION, and FileName equal to
Open.Link.Name.

EndIf

If Open.Stream.ValidDataLength is greater than Open.Stream.Size, then the object store

MUST set Open.Stream.ValidDataLength to Open.Stream.Size.

The object store MUST note that the file has been modified as per section 2.1.4.17 with Open

equal to Open.

The operation returns STATUS_SUCCESS.

2.1.5.14.2 FileBasicInformation

InputBuffer is of type FILE_BASIC_INFORMATION as described in [MS-FSCC] section 2.4.7.

Pseudocode for the operation is as follows:

If InputBufferSize is less than sizeof(FILE_BASIC_INFORMATION), the operation MUST be

failed with STATUS_INFO_LENGTH_MISMATCH.

The operation MUST be failed with STATUS_INVALID_PARAMETER under any of the following

conditions:

If InputBuffer.CreationTime is less than -1.

If InputBuffer.LastAccessTime is less than -1.

If InputBuffer.LastWriteTime is less than -1.

If InputBuffer.ChangeTime is less than -1.

%5bMS-FSCC%5d.pdf

177 / 249

[MS-FSA] — v20130722
 File System Algorithms

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

If InputBuffer.FileAttributes.FILE_ATTRIBUTE_DIRECTORY is TRUE and

Open.Stream.StreamType is DataStream.

If InputBuffer.FileAttributes.FILE_ATTRIBUTE_TEMPORARY is TRUE and

Open.File.FileType is DirectoryFile.

The object store MUST initialize local variables as follows:

CurrentTime to the current system time.

OriginalFileAttributes to Open.File.FileAttributes.

UsnReason to 0.

ValidSetAttributes to (FILE_ATTRIBUTE_READONLY | FILE_ATTRIBUTE_HIDDEN |

FILE_ATTRIBUTE_SYSTEM | FILE_ATTRIBUTE_ARCHIVE | FILE_ATTRIBUTE_TEMPORARY |
FILE_ATTRIBUTE_OFFLINE | FILE_ATTRIBUTE_NOT_CONTENT_INDEXED)

BreakParentOplock to FALSE.

If InputBuffer.FileAttributes != 0:

If Open.File is equal to Open.File.Volume.RootDirectory, the object store MUST NOT allow

the application to change the hidden or system attributes:

ValidSetAttributes &= ~(FILE_ATTRIBUTE_HIDDEN | FILE_ATTRIBUTE_SYSTEM)

EndIf

Open.File.FileAttributes &= ~ValidSetAttributes

Open.File.FileAttributes |= (InputBuffer.FileAttributes & ValidSetAttributes)

If Open.File.FileAttributes is not equal to OriginalFileAttributes:

Set BreakParentOplock to TRUE.

The object store MUST set

Open.File.PendingNotifications.FILE_NOTIFY_CHANGE_ATTRIBUTES to TRUE.

If InputBuffer.FileAttributes.FILE_ATTRIBUTE_TEMPORARY is TRUE, the object store

MUST set Open.Stream.IsTemporary to TRUE; otherwise it MUST be set to FALSE.

If Open.UserSetChangeTime is FALSE and InputBuffer.ChangeTime != -1, the object

store MUST set Open.File.LastChangeTime to CurrentTime.

If Open.File.FileAttributes is not equal to OriginalFileAttributes, the object store MUST

set UsnReason.USN_REASON_BASIC_INFO_CHANGE to TRUE.

If Open.File.FileAttributes. FILE_ATTRIBUTE_NOT_CONTENT_INDEXED is not equal to

OriginalFileAttributes.FILE_ATTRIBUTE_NOT_CONTENT_INDEXED, the object store MUST

set UsnReason.USN_REASON_INDEXABLE_CHANGE to TRUE.

EndIf

EndIf

If InputBuffer.ChangeTime != 0:

178 / 249

[MS-FSA] — v20130722
 File System Algorithms

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

The object store MUST set Open.UserSetChangeTime to TRUE.

If InputBuffer.ChangeTime != -1:

Set BreakParentOplock to TRUE.

If InputBuffer.ChangeTime !=Open.File.LastChangeTime, the object store MUST set

UsnReason.USN_REASON_BASIC_INFO_CHANGE to TRUE.

The object store MUST set Open.File.LastChangeTime to InputBuffer.ChangeTime.

EndIf

EndIf

If InputBuffer.CreationTime != 0 and InputBuffer.CreationTime != -1:

Set BreakParentOplock to TRUE.

If InputBuffer.CreationTime != Open.File.CreationTime, the object store MUST set

UsnReason.USN_REASON_BASIC_INFO_CHANGE to TRUE.

The object store MUST set Open.File.CreationTime to InputBuffer.CreationTime.

The object store MUST set

Open.File.PendingNotifications.FILE_NOTIFY_CHANGE_CREATION to TRUE.

If Open.UserSetChangeTime is FALSE and InputBuffer.ChangeTime != -1, the object

store MUST set Open.File.LastChangeTime to CurrentTime.

EndIf

If InputBuffer.LastAccessTime != 0:

The object store MUST set Open.UserSetAccessTime to TRUE.

If InputBuffer.LastAccessTime != -1:

Set BreakParentOplock to TRUE.

If InputBuffer. LastAccessTime != Open.File.LastAccessTime, the object store MUST

set UsnReason.USN_REASON_BASIC_INFO_CHANGE to TRUE.

The object store MUST set Open.File.LastAccessTime to InputBuffer.

LastAccessTime.

The object store MUST set

Open.File.PendingNotifications.FILE_NOTIFY_CHANGE_LAST_ACCESS to TRUE.

If Open.UserSetChangeTime is FALSE and InputBuffer.ChangeTime != -1, the object

store MUST set Open.File.LastChangeTime to CurrentTime.

EndIf

EndIf

If InputBuffer.LastWriteTime != 0:

The object store MUST set Open.UserSetModificationTime to TRUE.

179 / 249

[MS-FSA] — v20130722
 File System Algorithms

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

If InputBuffer.LastWriteTime != -1:

Set BreakParentOplock to TRUE.

If InputBuffer. LastWriteTime != Open.File.LastModificationTime, the object store

MUST set UsnReason.USN_REASON_BASIC_INFO_CHANGE to TRUE.

The object store MUST set Open.File.LastModificationTime to InputBuffer.

LastWriteTime.

The object store MUST set

Open.File.PendingNotifications.FILE_NOTIFY_CHANGE_LAST_WRITE to TRUE.

If Open.UserSetChangeTime is FALSE and InputBuffer.ChangeTime != -1, the object

store MUST set Open.File.LastChangeTime to CurrentTime.

EndIf

EndIf

If BreakParentOplock is TRUE:

If the Oplock member of the DirectoryStream in Open.Link.ParentFile.StreamList

(hereinafter referred to as ParentOplock) is not empty, the object store MUST check for an
oplock break on the parent according to the algorithm in section 2.1.4.12, with input values as
follows:

Open equal to this operation's Open.

Oplock equal to ParentOplock.

Operation equal to "SET_INFORMATION"

OpParams containing a member FileInformationClass containing

FileBasicInformation

Flags equal to "PARENT_OBJECT"

EndIf

The object store MUST post a USN change as per section 2.1.4.11 with File equal to File,

Reason equal to UsnReason, and FileName equal to Open.Link.Name.

The operation returns STATUS_SUCCESS.

2.1.5.14.3 FileDispositionInformation

InputBuffer is of type FILE_DISPOSITION_INFORMATION as described in [MS-FSCC] section
2.4.11.

Pseudocode for the operation is as follows:

If Open.GrantedAccess does not contain DELETE, the operation MUST be failed with

STATUS_ACCESS_DENIED.

If InputBuffer.DeletePending is TRUE:

%5bMS-FSCC%5d.pdf

180 / 249

[MS-FSA] — v20130722
 File System Algorithms

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

If File.FileAttributes.FILE_ATTRIBUTE_READONLY is TRUE, the operation MUST be failed

with STATUS_CANNOT_DELETE.

If Open.Stream.Name is empty:

If Open.Stream.StreamType is DirectoryStream and Open.File.DirectoryList is not

empty, the operation MUST be failed with STATUS_DIRECTORY_NOT_EMPTY.

Set Open.Link.IsDeleted to TRUE.

If Open.Stream.StreamType is DirectoryStream:

For each ChangeNotifyEntry in Volume.ChangeNotifyList where ChangeNotifyEntry

.OpenedDirectory.File is equal to Open.File then the following actions MUST be
taken:

Remove ChangeNotifyEntry from Volume.ChangeNotifyList.

Complete the ChangeNotify operation with status STATUS_DELETE_PENDING.

EndFor

EndIf

Else:

Set Open.Stream.IsDeleted to TRUE.

EndIf

Else:

If Open.Stream.Name is empty:

Set Open.Link.IsDeleted to FALSE.

Else:

Set Open.Stream.IsDeleted to FALSE.

EndIf

EndIf

The operation returns STATUS_SUCCESS.

2.1.5.14.4 FileEndOfFileInformation

InputBuffer is of type FILE_END_OF_FILE_INFORMATION as described in [MS-FSCC] section
2.4.13.

Pseudocode for the operation is as follows:

The operation MUST be failed with STATUS_INVALID_PARAMETER under any of the following

conditions:

If Open.Stream.StreamType is DirectoryStream.

%5bMS-FSCC%5d.pdf

181 / 249

[MS-FSA] — v20130722
 File System Algorithms

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

If InputBuffer.EndOfFile is greater than the maximum file size allowed by the object

store.<123>

If Open.GrantedAccess does not contain FILE_WRITE_DATA, the operation MUST be failed

with STATUS_ACCESS_DENIED.

If Open.Stream.Oplock is not empty, the object store MUST check for an oplock break

according to the algorithm in section 2.1.4.12, with input values as follows:

Open equal to this operation's Open

Oplock equal to Open.Stream.Oplock

Operation equal to "SET_INFORMATION"

OpParams containing a member FileInformationClass containing

FileEndOfFileInformation

If the Oplock member of the DirectoryStream in Open.Link.ParentFile.StreamList

(hereinafter referred to as ParentOplock) is not empty, the object store MUST check for an oplock

break on the parent according to the algorithm in section 2.1.4.12, with input values as follows:

Open equal to this operation's Open

Oplock equal to ParentOplock

Operation equal to "SET_INFORMATION"

OpParams containing a member FileInformationClass containing

FileEndOfFileInformation

Flags equal to "PARENT_OBJECT"

If Open.Stream.IsDeleted is TRUE, the operation SHOULD return STATUS_SUCCESS.

If Open.Stream.Size is equal to InputBuffer.EndOfFile, the operation MUST return

STATUS_SUCCESS at this point.

If InputBuffer.EndOfFile is greater than Open.Stream.Size:

The object store MUST post a USN change as per section 2.1.4.11 with File equal to File,

Reason equal to USN_REASON_DATA_EXTEND, and FileName equal to Open.Link.Name.

Else:

The object store MUST post a USN change as per section 2.1.4.11 with File equal to File,

Reason equal to USN_REASON_DATA_TRUNCATION, and FileName equal to
Open.Link.Name.

EndIf

If InputBuffer.EndOfFile is greater than Open.Stream.AllocationSize, the object store MUST

set Open.Stream.AllocationSize to BlockAlign(InputBuffer.EndOfFile,
Open.File.Volume.ClusterSize). If the space cannot be reserved, then the operation MUST be

failed with STATUS_DISK_FULL.

If InputBuffer.EndOfFile is less than (BlockAlign(Open.Stream.Size,

Open.File.Volume.ClusterSize) -Open.File.Volume.ClusterSize), the object store SHOULD

182 / 249

[MS-FSA] — v20130722
 File System Algorithms

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

set Open.Stream.AllocationSize to BlockAlign (InputBuffer.EndOfFile,
Open.File.Volume.ClusterSize).

If Open.Stream.ValidDataLength is greater than InputBuffer.EndOfFile, the object store

MUST set Open.Stream.ValidDataLength to InputBuffer.EndOfFile.

The object store MUST set Open.Stream.Size to InputBuffer.EndOfFile.

The object store MUST note that the file has been modified as per section 2.1.4.17 with Open

equal to Open.

The operation returns STATUS_SUCCESS.

2.1.5.14.5 FileFullEaInformation

Support for this operation is optional. If the object store does not implement this functionality, the
operation MUST be failed with STATUS_INVALID_DEVICE_REQUEST.<124>

InputBuffer is of type FILE_FULL_EA_INFORMATION, as described in [MS-FSCC] section 2.4.15.

Pseudocode for the operation is as follows:

If Open.File.FileAttributes.FILE_ATTRIBUTE_REPARSE_POINT is TRUE, the object store

MUST fail the operation with STATUS_EAS_NOT_SUPPORTED.

For each Ea in InputBuffer:

If Ea.EaName is not well-formed as per [MS-FSCC] 2.4.15, the operation MUST be failed with

STATUS_INVALID_EA_NAME.

If Ea.Flags does not contain a valid set of flags as per [MS-FSCC] 2.4.15, the operation MUST

be failed with STATUS_INVALID_EA_NAME.

If Ea.EaName exists in the Open.File.ExtendedAttributes, remove that entry from

Open.File.ExtendedAttributes, updating Open.File.ExtendedAttributesLength to reflect
the new list size.

If Ea.EaValueLength is NOT zero, add Ea to Open.File.ExtendedAttributes, updating

Open.File.ExtendedAttributesLength to reflect the new list size

If Open.File.ExtendedAttributesLength becomes greater than 64 KB - 5 bytes, the object

store MUST fail the operation with STATUS_EA_TOO_LARGE and undo any changes made as
part of this operation.

EndFor

If Open.UserSetChangeTime is FALSE, the object store MUST update

Open.File.LastChangeTime to the current time.

The object store MUST set Open.File.FileAttributes.FILE_ATTRIBUTE_ARCHIVE to TRUE.

The object store MUST post a USN change as per section 2.1.4.11 with File equal to File,

Reason equal to USN_REASON_EA_CHANGE, and FileName equal to Open.Link.Name.

Set Open.File.PendingNotifications.FILE_NOTIFY_CHANGE_EA to TRUE and

Open.File.PendingNotifications.FILE_NOTIFY_CHANGE_ATTRIBUTES to TRUE.

%5bMS-FSCC%5d.pdf
%5bMS-FSCC%5d.pdf
%5bMS-FSCC%5d.pdf

183 / 249

[MS-FSA] — v20130722
 File System Algorithms

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

2.1.5.14.6 FileLinkInformation

InputBuffer is of type FILE_LINK_INFORMATION, as described in [MS-FSCC] section 2.4.21.<125>

Open represents the pre-existing file to which a new link named in InputBuffer.FileName will be

created.

Pseudocode for the operation is as follows:

If Open.Stream.StreamType is DataStream and Open.Stream.Name is not empty, the

operation MUST be failed with STATUS_INVALID_PARAMETER.

If Open.File.FileType is DirectoryFile, the operation MUST be failed with

STATUS_FILE_IS_A_DIRECTORY.

If Open.Link.IsDeleted is TRUE, the operation MUST be failed with STATUS_ACCESS_DENIED.

If InputBuffer.FileName is not valid as specified in [MS-FSCC] section 2.1.5, the operation

MUST be failed with STATUS_OBJECT_NAME_INVALID.

If Open.File.LinkList has 1024 or more entries, the operation SHOULD be failed with

STATUS_TOO_MANY_LINKS.

Split InputBuffer.FileName into PathName and FileName, as per section 2.1.5.1.

Open DestinationDirectory from PathName, as per section 2.1.5.1. If the open fails for any

reason, the object store MUST fail the request with that error. This request requires that the
caller has FILE_ADD_FILE access on the DestinationDirectory -- if not, the store MUST fail with
STATUS_ACCESS_DENIED.

Search DestinationDirectory.File.DirectoryList for an ExistingLink where ExistingLink.Name or

ExistingLink.ShortName matches FileName using case-sensitivity according to
Open.IsCaseInsensitive. If such a link is found:

If InputBuffer.ReplaceIfExists is TRUE:

Set ReplacedLinkName = DestinationDirectory.FileName + FileName.

Remove ExistingLink from ExistingLink.File.LinkList.

Remove ExistingLink from DestinationDirectory.File.DirectoryList.

Set DeletedLink to TRUE.

Else:

The operation MUST be failed with STATUS_OBJECT_NAME_COLLISION.

EndIf

EndIf

The object store MUST build a new Link object NewLink with fields initialized as follows:

NewLink.Name set to FileName.

NewLink.File set to Open.File.

NewLink.ParentFile set to DestinationDirectory.File.

%5bMS-FSCC%5d.pdf
%5bMS-FSCC%5d.pdf

184 / 249

[MS-FSA] — v20130722
 File System Algorithms

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

All other fields set to zero.

The object store MUST insert NewLink into Open.File.LinkList

The object store MUST insert NewLink into DestinationDirectory.File.DirectoryList.

The object store MUST update DestinationDirectory.File.LastModifiedTime,

DestinationDirectory.File.LastAccessedTime, and DestinationDirectory.File.LastChangeTime.

If the Oplock member of the DirectoryStream in DestinationDirectory.File.StreamList

(hereinafter referred to as ParentOplock) is not empty, the object store MUST check for an oplock
break on the parent according to the algorithm in section 2.1.4.12, with input values as follows:

Open equal to this operation's Open

Oplock equal to ParentOplock

Operation equal to "SET_INFORMATION"

OpParams containing a member FileInformationClass containing FileLinkInformation

Flags equal to "PARENT_OBJECT"

If Open.UserSetChangeTime is FALSE, the object store MUST update

Open.File.LastChangeTime to the current time.

The object store MUST set Open.File.FileAttributes.FILE_ATTRIBUTE_ARCHIVE.

If DeletedLink is TRUE:

If ReplacedLinkName equals InputBuffer.FileName in a case-sensitive comparison:

// In this case, the link name has not changed, but the file it refers to has changed.

Action = FILE_ACTION_MODIFIED

FilterMatch = FILE_NOTIFY_CHANGE_ATTRIBUTES | FILE_NOTIFY_CHANGE_SIZE |

FILE_NOTIFY_CHANGE_LAST_WRITE | FILE_NOTIFY_CHANGE_LAST_ACCESS |

FILE_NOTIFY_CHANGE_CREATION | FILE_NOTIFY_CHANGE_SECURITY |
FILE_NOTIFY_CHANGE_EA

Send directory change notification as per section 2.1.4.1, with Volume equal to

File.Volume, Action equal to Action, FilterMatch equal to FilterMatch, and FileName
equal to InputBuffer.FileName.

Else

// In this case, the implementer replaced a link, but the new link created differs only in

case.

Action = FILE_ACTION_REMOVED

FilterMatch = FILE_NOTIFY_CHANGE_FILE_NAME

Send directory change notification as per section 2.1.4.1, with Volume equal to

File.Volume, Action equal to Action, FilterMatch equal to FilterMatch, and FileName
equal to InputBuffer.FileName.

Action = FILE_ACTION_ADDED

185 / 249

[MS-FSA] — v20130722
 File System Algorithms

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

FilterMatch = FILE_NOTIFY_CHANGE_FILE_NAME

Send directory change notification as per section 2.1.4.1, with Volume equal to

File.Volume, Action equal to Action, FilterMatch equal to FilterMatch, and FileName

equal to InputBuffer.FileName.

EndIf

Else

// If the implementer did not delete a link, all that needs to be done is to notify that a new

link was created.

Action = FILE_ACTION_ADDED

FilterMatch = FILE_NOTIFY_CHANGE_FILE_NAME

Send directory change notification as per section 2.1.4.1, with Volume equal to File.Volume,

Action equal to Action, FilterMatch equal to FilterMatch, and FileName equal to
InputBuffer.FileName.

EndIf

The operation returns STATUS_SUCCESS.

2.1.5.14.7 FileModeInformation

InputBuffer is of type FILE_MODE_INFORMATION, as described in [MS-FSCC] section 2.4.24.

Pseudocode for the operation is as follows:

The operation MUST be failed with STATUS_INVALID_PARAMETER under any of the following

conditions:

InputBuffer.Mode contains any flag, as defined in [MS-FSCC] section 2.4.24, other than the

following:

FILE_WRITE_THROUGH

FILE_SEQUENTIAL_ONLY

FILE_SYNCHRONOUS_IO_ALERT

FILE_SYNCHRONOUS_IO_NONALERT

InputBuffer.Mode contains either FILE_SYNCHRONOUS_IO_ALERT or

FILE_SYNCHRONOUS_IO_NONALERT, but Open.Mode contains neither

FILE_SYNCHRONOUS_IO_ALERT nor FILE_SYNCHRONOUS_IO_NONALERT.

Open.Mode contains either FILE_SYNCHRONOUS_IO_ALERT or

FILE_SYNCHRONOUS_IO_NONALERT, but InputBuffer.Mode contains neither the

FILE_SYNCHRONOUS_IO_ALERT nor FILE_SYNCHRONOUS_IO_NONALERT flags.

InputBuffer.Mode contains both FILE_SYNCHRONOUS_IO_ALERT and

FILE_SYNCHRONOUS_IO_NONALERT.

If Open.Mode does not contain FILE_NO_INTERMEDIATE_BUFFERING:

%5bMS-FSCC%5d.pdf
%5bMS-FSCC%5d.pdf

186 / 249

[MS-FSA] — v20130722
 File System Algorithms

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

If InputBuffer.Mode contains FILE_WRITE_THROUGH, set

Open.Mode.FILE_WRITE_THROUGH to TRUE; otherwise set it to FALSE.

EndIf

If InputBuffer.Mode contains FILE_SEQUENTIAL_ONLY, set

Open.Mode.FILE_SEQUENTIAL_ONLY to TRUE; otherwise set it to FALSE.

If Open.Mode contains either FILE_SYNCHRONOUS_IO_ALERT or

FILE_SYNCHRONOUS_IO_NONALERT:

If InputBuffer.Mode contains FILE_SYNCHRONOUS_IO_ALERT, set

Open.Mode.FILE_SYNCHRONOUS_IO_ALERT to TRUE; otherwise set it to FALSE.

If InputBuffer.Mode contains FILE_SYNCHRONOUS_IO_NONALERT, set

Open.Mode.FILE_SYNCHRONOUS_IO_NONALERT to TRUE; otherwise set it to FALSE.

EndIf

The operation returns STATUS_SUCCESS.

2.1.5.14.8 FileObjectIdInformation

This operation is not supported and MUST be failed with STATUS_NOT_SUPPORTED.

2.1.5.14.9 FilePositionInformation

InputBuffer is of type FILE_POSITION_INFORMATION, as described in [MS-FSCC] section 2.4.32.

Pseudocode for the operation is as follows:

If InputBufferSize is less than the size, in bytes, of the FILE_POSITION_INFORMATION

structure, the operation MUST be failed with STATUS_INFO_LENGTH_MISMATCH.

The operation MUST be failed with STATUS_INVALID_PARAMETER under either of the following

conditions:

InputBuffer.CurrentByteOffset is less than 0.

Open.Mode contains FILE_NO_INTERMEDIATE_BUFFERING and

InputBuffer.CurrentByteOffset is not an integer multiple of
Open.File.Volume.LogicalBytesPerSector.

The object store MUST set Open.CurrentByteOffset equal to InputBuffer.CurrentByteOffset.

The operation returns STATUS_SUCCESS.<126>

2.1.5.14.10 FileQuotaInformation

This operation is not supported and MUST be failed with STATUS_NOT_SUPPORTED

2.1.5.14.11 FileRenameInformation

InputBuffer is of type FILE_RENAME_INFORMATION, as described in [MS-FSCC] section
2.4.34.Open.FileName is the pre-existing file name that will be changed by this operation.

This routine uses the following local variables:

%5bMS-FSCC%5d.pdf
%5bMS-FSCC%5d.pdf

187 / 249

[MS-FSA] — v20130722
 File System Algorithms

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Unicode strings: PathName, NewLinkName, PrevFullLinkName, SourceFullLinkName

Files: SourceDirectory, DestinationDirectory

Links: TargetLink, NewLink

Boolean values (initialized to FALSE): TargetExistsSameFile, ExactCaseMatch, MoveToNewDir,

OverwriteSourceLink, RemoveTargetLink, FoundLink, MatchedShortName

Boolean values (initialized to TRUE): ActivelyRemoveSourceLink, RemoveSourceLink,

AddTargetLink

32-bit unsigned integers: FilterMatch, Action

Pseudocode for the operation is as follows:

If Open.GrantedAccess does not contain DELETE, as defined in [MS-SMB2] section 2.2.13.1,

the operation MUST be failed with STATUS_ACCESS_DENIED.

The operation MUST be failed with STATUS_INVALID_PARAMETER under any of the following

conditions:

If InputBuffer.FileNameLength is equal to zero.

If InputBuffer.FileNameLength is an odd number.

If InputBuffer.FileNameLength is greater than InputBufferLength minus the byte offset

into the FILE_RENAME_INFORMATION InputBuffer of the InputBuffer.FileName field (that
is, the total length of InputBuffer as given in InputBufferLength is insufficient to contain

the fixed-size fields of InputBuffer plus the length of InputBuffer.FileName).

Split InputBuffer.FileName into PathName and NewLinkName per section 2.1.5.1.

If the first character of InputBuffer.FileName is '\':

Open DestinationDirectory per section 2.1.5.1, setting the open file operation's parameters as

follows:

PathName equal to PathName.

DesiredAccess equal to FILE_ADD_FILE|SYNCHRONIZE, additionally specifying

FILE_ADD_SUBDIRECTORY if Open.File.FileType is DirectoryFile.

ShareAccess equal to FILE_SHARE_READ|FILE_SHARE_WRITE.

CreateOptions equal to FILE_OPEN_FOR_BACKUP_INTENT.

CreateDisposition equal to FILE_OPEN.

If open of DestinationDirectory fails:

The operation MUST fail with the error returned by the open of DestinationDirectory.

Else if DestinationDirectory.Volume is not equal to Open.File.Volume:

The operation MUST be failed with STATUS_NOT_SAME_DEVICE.

EndIf

%5bMS-SMB2%5d.pdf

188 / 249

[MS-FSA] — v20130722
 File System Algorithms

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Else

Set DestinationDirectory equal to Open.Link.ParentFile.

EndIf

If Open.Stream.Oplock is not empty, the object store MUST check for an oplock break

according to the algorithm in section 2.1.4.12, with input values as follows:

Open equal to this operation's Open.

Oplock equal to Open.Stream.Oplock.

Operation equal to "SET_INFORMATION".

OpParams containing a member FileInformationClass containing FileRenameInformation.

If the first character of InputBuffer.FileName is ':':

Perform a stream rename according to the algorithm in section 2.1.5.14.11.1, setting the

stream rename algorithm's parameters as follows:

Pass in the current Open.

ReplaceIfExists equal to InputBuffer.ReplaceIfExists.

NewStreamName equal to InputBuffer.FileName.

If the stream rename algorithm fails, the operation MUST fail with the same status code.

The operation returns STATUS_SUCCESS at this point.

EndIf

If Open.Link.IsDeleted is TRUE, the operation MUST be failed with STATUS_ACCESS_DENIED.

If Open.File.FileType is DirectoryFile, determine whether Open.File contains open files per

section 2.1.4.2, with input values as follows:

File equal to Open.File.

Open equal to this operation's Open.

Operation equal to "SET_INFORMATION".

OpParams containing a member FileInformationClass containing FileRenameInformation.

If Open.File contains open files, the operation MUST be failed with STATUS_ACCESS_DENIED.

If InputBuffer.FileName is not valid as specified in [MS-FSCC] section 2.1.5, the operation

MUST be failed with STATUS_OBJECT_NAME_INVALID.

If DestinationDirectory is the same as Open.Link.ParentFile:

If NewLinkName is a case-sensitive exact match with Open.Link.Name, the operation MUST

return STATUS_SUCCESS at this point.

Else

%5bMS-FSCC%5d.pdf

189 / 249

[MS-FSA] — v20130722
 File System Algorithms

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Set MoveToNewDir to TRUE.

EndIf

If NewLinkName matches the Name or ShortName of any Link in

DestinationDirectory.DirectoryList using case-sensitivity according to
Open.IsCaseInsensitive:

Set FoundLink to TRUE.

Set TargetLink to the existing Link found in DestinationDirectory.DirectoryList. Because the

name may have been found using a case-insensitive search (if Open.IsCaseInsensitive is

TRUE), this preserves the case of the found name.

If NewLinkName matched TargetLink.ShortName, set MatchedShortName to TRUE.

Set RemoveTargetLink to TRUE.

If TargetLink.File.FileId128 equals Open.File.FileId128, set TargetExistsSameFile to TRUE.

This detects a rename to another existing link to the same file.

If (TargetLink.Name is a case-sensitive exact match with NewLinkName) or

(MatchedShortName is TRUE and

 TargetLink.ShortName is a case-sensitive exact match with NewLinkName):

Set ExactCaseMatch to TRUE.

EndIf

If TargetExistsSameFile is TRUE:

If MoveToNewDir is FALSE:

If Open.Link.ShortName is not empty and TargetLink.ShortName is not empty (this

is the case where both the source link and the (existing) requested target are part of the
primary link to the same file; this case occurs, for example, in a rename that only
changes the case of the name):

Set ActivelyRemoveSourceLink to FALSE.

Set OverwriteSourceLink to TRUE.

If ExactCaseMatch is TRUE, set RemoveSourceLink to FALSE (because this algorithm

earlier succeeded upon detecting an exact match between the name by which the file
was opened and the new requested name, this case only occurs when the file was

opened by one half of its primary link, and the requested rename target is the other
half; for example, opening a file by its short name and renaming it to its long name).

Else If (Open.Link.Name is a case-sensitive exact match with TargetLink.Name) or

(MatchedShortName is TRUE and

 Open.Link.Name is a case-sensitive exact match with TargetLink.ShortName) (this
detects the case where the implementer is just changing the case of a single link; for

example, given a file with links "primary", "link1", "link2", all in the same directory, the
implementer is doing "ren link1 LINK1", and not "ren link1 link2"):

190 / 249

[MS-FSA] — v20130722
 File System Algorithms

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Set ActivelyRemoveSourceLink to FALSE.

Set OverwriteSourceLink to TRUE.

EndIf

EndIf

If ExactCaseMatch is TRUE and

(OverwriteSourceLink is FALSE or

 Open.IsCaseInsensitive is TRUE or

 Open.Link.ShortName is empty)

Set RemoveTargetLink and AddTargetLink to FALSE.

EndIf

EndIf

If RemoveTargetLink is TRUE:

If TargetExistsSameFile is FALSE and InputBuffer.ReplaceIfExists is FALSE, the

operation MUST be failed with STATUS_OBJECT_NAME_COLLISION.

Set PrevFullLinkName to the full pathname from Open.File.Volume.RootDirectory to

TargetLink.

If TargetExistsSameFile is FALSE:

The operation MUST be failed with STATUS_ACCESS_DENIED under any of the following

conditions:

If TargetLink.File.FileType is DirectoryFile.

If TargetLink.File.FileAttributes.FILE_ATTRIBUTE_READONLY is TRUE.

If TargetLink.IsDeleted is TRUE, the operation MUST be failed with

STATUS_DELETE_PENDING.

If the caller does not have DELETE access to TargetLink.File:

If the caller does not have FILE_DELETE_CHILD access to DestinationDirectory:

The operation MUST be failed with STATUS_ACCESS_DENIED.

EndIf

EndIf

For each Stream on TargetLink.File:

If TargetLink.File.OpenList contains an Open with a Stream matching the current

Stream, and that Stream's Oplock is not empty, the object store MUST check for
an oplock break according to the algorithm in section 2.1.4.12, with input values as
follows:

191 / 249

[MS-FSA] — v20130722
 File System Algorithms

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Open equal to this operation's Open.

Oplock equal to the found Stream's Oplock.

Operation equal to SET_INFORMATION.

OpParams containing a member FileInformationClass containing

FileEndOfFileInformation.

If there was not an oplock to be broken and TargetLink.File.OpenList contains an

Open with a Stream matching the current Stream, the operation MUST be failed
with STATUS_ACCESS_DENIED.

EndFor

If TargetLink.File.LinkList contains exactly one element:

The object store MUST delete TargetLink.File per section 2.1.5.4; if this fails, the

operation MUST be failed with the same status.

Else

The object store MUST delete TargetLink per section 2.1.5.4; if this fails, the

operation MUST be failed with the same status.

The object store MUST post a USN change as per section 2.1.4.11 with File equal to

File, Reason equal to (USN_REASON_HARD_LINK_CHANGE |
USN_REASON_CLOSE), and FileName equal to TargetLink.Name.

EndIf

Else

The object store MUST post a USN change as per section 2.1.4.11 with File equal to

File, Reason equal to USN_REASON_RENAME_OLD_NAME, and FileName equal to

TargetLink.Name.

The object store MUST delete TargetLink per section 2.1.5.4; if this fails, the operation

MUST be failed with the same status.

EndIf

EndIf

EndIf

The object store MUST post a USN change as per section 2.1.4.11 with File equal to File,

Reason equal to USN_REASON_RENAME_OLD_NAME, and FileName equal to
Open.Link.Name.

If RemoveSourceLink is TRUE:

Set SourceDirectory to Open.Link.ParentFile.

If ActivelyRemoveSourceLink is TRUE:

Remove Open.Link from Open.File.LinkList.

Remove Open.Link from Open.Link.ParentFile.DirectoryList.

192 / 249

[MS-FSA] — v20130722
 File System Algorithms

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

A new TunnelCacheEntry object TunnelCacheEntry MUST be constructed and added to

the Open.File.Volume.TunnelCacheList as follows:

TunnelCacheEntry.EntryTime MUST be set to the current time.

TunnelCacheEntry.ParentFile MUST be set to Open.Link.ParentFile.

TunnelCacheEntry.FileName MUST be set to Open.Link.Name.

TunnelCacheEntry.FileShortName MUST be set to Open.Link.ShortName.

If Open.FileName matches Open.Link.ShortName, then

TunnelCacheEntry.KeyByShortName MUST be set to TRUE, else

TunnelCacheEntry.KeyByShortName MUST be set to FALSE.

TunnelCacheEntry.FileCreationTime MUST be set to Open.File.CreationTime.

TunnelCacheEntry.FileObjectId MUST be set to Open.File.ObjectId.

EndIf

If Open.File.FileType is DirectoryFile, then Open.File MUST have every

TunnelCacheEntry associated with it invalidated:

For every ExistingTunnelCacheEntry in Open.File.Volume.TunnelCacheList:

If ExistingTunnelCacheEntry.ParentFile matches Open.File, then

ExistingTunnelCacheEntry MUST be removed from
Open.File.Volume.TunnelCacheList.

EndFor

EndIf

EndIf

Set SourceFullLinkName to Open.FileName.

EndIf

If AddTargetLink is TRUE:

The operation MUST be failed with STATUS_ACCESS_DENIED if either of the following

conditions are true:

Open.File.FileType is DirectoryFile and the caller does not have

FILE_ADD_SUBDIRECTORY access on DestinationDirectory.

Open.File.FileType is DataFile and the caller does not have FILE_ADD_FILE access on

DestinationDirectory.

The object store MUST create a new Link object NewLink, initialized as follows:

NewLink.File equal to Open.File.

NewLink.ParentFile equal to DestinationDirectory.

All other fields set to zero.

193 / 249

[MS-FSA] — v20130722
 File System Algorithms

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

If Open.File.FileType is DataFile and Open.IsCaseInsensitive is TRUE, and tunnel caching

is implemented, the object store MUST search Open.File.Volume.TunnelCacheList for a

TunnelCacheEntry where TunnelCacheEntry.ParentFile equals DestinationDirectory and either

(TunnelCacheEntry.KeyByShortName is FALSE and TunnelCacheEntry.FileName matches
NewLinkName) or (TunnelCacheEntry.KeyByShortName is TRUE and
TunnelCacheEntry.FileShortName matches NewLinkName). If such an entry is found:

Set NewLink.File.CreationTime to TunnelCacheEntry.FileCreationTime.

Set NewLink.File.PendingNotifications. FILE_NOTIFY_CHANGE_CREATION to TRUE.

Set NewLink.File.ObjectId to TunnelCacheEntry.FileObjectId.

Set NewLink.Name to TunnelCacheEntry.FileName.

Set NewLink.ShortName to TunnelCacheEntry.FileShortName if that name is not already

in use among all names and short names in NewLink.ParentFile.DirectoryList.

Remove TunnelCacheEntry from NewLink.File.Volume.TunnelCacheList.

Else:

Set NewLink.Name to NewLinkName.

EndIf

If Open.Link.ShortName is not empty and Open.IsCaseInsensitive is TRUE and

NewLink.ShortName is empty, then if short names are enabled, the object store MUST create

a short name as follows:

If NewLink.Name is 8.3-compliant as described in [MS-FSCC] section 2.1.5.2.1:

Set NewLink.ShortName to NewLink.Name.

Else:

Generate a NewLink.ShortName that is 8.3-compliant as described in [MS-FSCC]

section 2.1.5.2.1. The string chosen is implementation-specific, but MUST be unique
among all names and short names present in DestinationDirectory.DirectoryList.

EndIf

EndIf

The object store MUST add NewLink to DestinationDirectory.DirectoryList.

The object store MUST replace Open.Link with NewLink.

If MoveToNewDir is TRUE:

DestinationDirectory.LastModifiedTime MUST be updated.

DestinationDirectory.LastAccessedTime MUST be updated.

DestinationDirectory.LastChangeTime MUST be updated.

EndIf

EndIf

%5bMS-FSCC%5d.pdf
%5bMS-FSCC%5d.pdf

194 / 249

[MS-FSA] — v20130722
 File System Algorithms

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

The object store MUST change the compname component (as specified in [MS-FSCC] section

2.1.5) of Open.FileName to NewLinkName.

If RemoveSourceLink is TRUE:

SourceDirectory.LastModifiedTime MUST be updated.

SourceDirectory.LastAccessedTime MUST be updated.

SourceDirectory.LastChangeTime MUST be updated.

EndIf

The object store MUST update Open.File.LastChangeTime.<127>

If Open.File.FileType is DataFile, the object store MUST set

Open.File.FileAttributes.FILE_ATTRIBUTE_ARCHIVE.

FilterMatch = 0

If RemoveTargetLink is TRUE and OverwriteSourceLink is FALSE and ExactCaseMatch is FALSE:

If TargetLink.File.FileType is DirectoryFile

FilterMatch = FILE_NOTIFY_CHANGE_DIR_NAME

Else

FilterMatch = FILE_NOTIFY_CHANGE_FILE_NAME

EndIf

The object store MUST report a directory change notification per section 2.1.4.1 with Volume

equal to Open.File.Volume, Action equal to FILE_ACTION_REMOVED, and FileName set to
PrevFullLinkName with a FilterMatch of FilterMatch.

EndIf

If RemoveSourceLink is TRUE:

If Open.File.FileType is DirectoryFile

FilterMatch = FILE_NOTIFY_CHANGE_DIR_NAME

Else

FilterMatch = FILE_NOTIFY_CHANGE_FILE_NAME

EndIf

If MoveToNewDir is TRUE or AddTargetLink is FALSE or RemoveTargetLink and

ExactCaseMatch are TRUE: Action = FILE_ACTION_REMOVED

Else

Action = FILE_ACTION_REMOVED_OLD_NAME

EndIf

%5bMS-FSCC%5d.pdf

195 / 249

[MS-FSA] — v20130722
 File System Algorithms

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

The object store MUST report a directory change notification per section 2.1.4.1 with Volume

equal to Open.File.Volume, Action equal to Action, and FileName set to

SourceFullLinkName with a FilterMatch of FilterMatch.

EndIf

If FoundLink is FALSE or (OverwriteSourceLink is TRUE and ExactCaseMatch is FALSE) or

(RemoveTargetLink is TRUE and ExactCaseMatch is FALSE):

If MoveToNewDir is TRUE, set Action to FILE_ACTION_ADDED; otherwise set Action to

FILE_ACTION_RENAMED_NEW_NAME.

Else If RemoveTargetLink is TRUE and TargetExistsSameFile is FALSE:

FilterMatch = FILE_NOTIFY_CHANGE_ATTRIBUTES | FILE_NOTIFY_CHANGE_SIZE |

FILE_NOTIFY_CHANGE_LAST_WRITE | FILE_NOTIFY_CHANGE_LAST_ACCESS |
FILE_NOTIFY_CHANGE_CREATION | FILE_NOTIFY_CHANGE_SECURITY |
FILE_NOTIFY_CHANGE_EA

Action = FILE_ACTION_MODIFIED

EndIf

If FilterMatch != 0:

The object store MUST report a directory change notification per section 2.1.4.1 with Volume

equal to Open.File.Volume, Action equal to Action, and FileName set to Open.FileName
with a FilterMatch of FilterMatch.

EndIf

If MoveToNewDir is TRUE:

If the Oplock member of the DirectoryStream in DestinationDirectory.StreamList

(hereinafter referred to as DestinationParentOplock) is not empty, the object store MUST

check for an oplock break on the parent according to the algorithm in section 2.1.4.12, with

input values as follows:

Open equal to this operation's Open

Oplock equal to DestinationParentOplock

Operation equal to "SET_INFORMATION"

OpParams containing a member FileInformationClass containing

FileRenameInformation

Flags equal to "PARENT_OBJECT"

EndIf

If the Oplock member of the DirectoryStream in Open.Link.ParentFile.StreamList

(hereinafter referred to as SourceParentOplock) is not empty, the object store MUST check for an

oplock break on the parent according to the algorithm in section 2.1.4.12, with input values as
follows:

Open equal to this operation's Open

196 / 249

[MS-FSA] — v20130722
 File System Algorithms

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Oplock equal to SourceParentOplock

Operation equal to "SET_INFORMATION"

OpParams containing a member FileInformationClass containing

FileRenameInformation

Flags equal to "PARENT_OBJECT"

The operation returns STATUS_SUCCESS.

2.1.5.14.11.1 Algorithm for Performing Stream Rename

The inputs for a stream rename are:

Open: an Open for the stream being renamed.

ReplaceIfExists: A Boolean value. If TRUE and the target stream exists and the operation is

successful, the target stream MUST be replaced. If FALSE and the target stream exists, the
operation MUST fail.

NewStreamName: A Unicode string indicating the new name for the stream. This string MUST

begin with the Unicode character ":".

The stream rename algorithm uses the following local variables:

Unicode strings: StreamName, StreamTypeName

Streams: TargetStream, NewDefaultStream

Pseudocode for the algorithm is as follows:

Split NewStreamName into a stream name component StreamName and attribute type

component StreamTypeName, using the character ":" as a delimiter.

The operation MUST be failed with STATUS_INVALID_PARAMETER under any of the following

conditions:

The last character of NewStreamName is ":".

The character ":" occurs more than three times in NewStreamName.

If StreamName contains any characters invalid for a streamname as specified in [MS-FSCC]

section 2.1.5, or any wildcard characters as defined in section 2.1.4.3.

If StreamTypeName contains any characters invalid for a streamname as specified in [MS-

FSCC] section 2.1.5, or any wildcard characters as defined in section 2.1.4.3.

Both StreamName and StreamTypeName are zero-length.

StreamName is more than 255 Unicode characters in length.

If StreamName is zero-length and Open.File.FileType is DirectoryFile, because a

DirectoryFile cannot have an unnamed data stream.

The operation MUST be failed with STATUS_OBJECT_TYPE_MISMATCH if either of the following

conditions are true:

%5bMS-FSCC%5d.pdf
%5bMS-FSCC%5d.pdf
%5bMS-FSCC%5d.pdf

197 / 249

[MS-FSA] — v20130722
 File System Algorithms

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Open.Stream.StreamType is DataStream and StreamTypeName is not the Unicode string

"$DATA".

Open.Stream.StreamType is DirectoryStream and StreamTypeName is not the Unicode

string "$INDEX_ALLOCATION".

If Open.Stream.StreamType is DirectoryStream, the operation MUST be failed with

STATUS_INVALID_PARAMETER.

If StreamName is a case-insensitive match with Open.Stream.Name, the operation MUST

return STATUS_SUCCESS at this point.

If the length of StreamName is not 0, the object store MUST search Open.File.StreamList for a

Stream with Stream.Name matching StreamName, ignoring case, setting TargetStream to the
result.

If TargetStream is found:

If ReplaceIfExists is FALSE, the operation MUST be failed with

STATUS_OBJECT_NAME_COLLISION.

If TargetStream.File.OpenList contains any Opens to TargetStream, the operation MUST be

failed with STATUS_INVALID_PARAMETER.

If TargetStream.Size is not 0, the operation MUST be failed with

STATUS_INVALID_PARAMETER.

If TargetStream.AllocationSize is not 0, the object store SHOULD release any associated

allocation and MUST set TargetStream.AllocationSize to 0.

Else // TargetStream is not found:

The object store MUST build a new Stream object TargetStream with all fields initially set to

zero.

Set TargetStream.File to Open.File.

Add TargetStream to Open.File.StreamList.

EndIf

Set TargetStream.Name to StreamName.

Set TargetStream.Size to Open.Stream.Size.

If Open.Stream.IsSparse is TRUE, set TargetStream.IsSparse to TRUE.

Move Open.Stream.ExtentList to TargetStream.

Set TargetStream.AllocationSize to Open.Stream.AllocationSize.

If Open.Stream.Name is empty, the object store MUST create a new default unnamed stream

for the file as follows:

The object store MUST build a new Stream object NewDefaultStream with all fields initially

set to zero.

Set NewDefaultStream.File to Open.File.

198 / 249

[MS-FSA] — v20130722
 File System Algorithms

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Add NewDefaultStream to Open.File.StreamList.

EndIf

Remove Open.Stream from Open.File.StreamList.

Set Open.Stream to TargetStream.

The object store MUST post a USN change as per section 2.1.4.11 with File equal to Open.File,

Reason equal to USN_REASON_STREAM_CHANGE, and FileName equal to Open.Link.Name.

The object store MUST note that the file has been modified as per section 2.1.4.17 with Open

equal to Open.

Return STATUS_SUCCESS.

2.1.5.14.12 FileSfioReserveInformation

This operation is not supported and MUST be failed with STATUS_NOT_SUPPORTED.

2.1.5.14.13 FileShortNameInformation

InputBuffer is of type FILE_NAME_INFORMATION, as described in [MS-FSCC] section
2.4.37.<128>

Pseudocode for the algorithm is as follows:

If Open.File.Volume.IsReadOnly is TRUE, the operation MUST be failed with

STATUS_MEDIA_WRITE_PROTECTED.

The operation MUST be failed with STATUS_INVALID_PARAMETER under any of the following

conditions:

If InputBuffer.FileName starts with '\'.

If Open.File is equal to Open.File.Volume.RootDirectory.

If Open.Stream.StreamType is DataStream and Open.Stream.Name is not empty.

If InputBuffer.FileName is not a valid 8.3 name as described in [MS-FSCC] section

2.1.5.2.1.

If Open.IsCaseInsensitive is FALSE.

The operation MUST be failed with STATUS_ACCESS_DENIED under any of the following

conditions:

If Open.GrantedAccess contains neither FILE_WRITE_DATA nor FILE_WRITE_ATTRIBUTES

as defined in [MS-SMB2] section 2.2.13.1.

If Open.Link.IsDeleted is TRUE.

If Open.Mode.FILE_DELETE_ON_CLOSE is TRUE.

If Open.HasRestoreAccess is FALSE, the operation MUST be failed with

STATUS_PRIVILEGE_NOT_HELD.

%5bMS-FSCC%5d.pdf
%5bMS-FSCC%5d.pdf
%5bMS-SMB2%5d.pdf

199 / 249

[MS-FSA] — v20130722
 File System Algorithms

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

If Open.File.Volume.GenerateShortNames is FALSE, the operation MUST be failed with

STATUS_SHORT_NAMES_NOT_ENABLED_ON_VOLUME.

Determine whether Open.File contains open files as per section 2.1.4.2, with input values as

follows:

File equal to Open.File.

Open equal to this operation's Open.

Operation equal to "SET_INFORMATION".

OpParams containing a member FileInformationClass containing

FileShortNameInformation.

If Open.File contains open files, the operation MUST be failed with STATUS_ACCESS_DENIED.

If Open.File.FileType is DirectoryFile:

FilterMatch = FILE_NOTIFY_CHANGE_DIR_NAME

Else

FilterMatch =FILE_NOTIFY_CHANGE_FILE_NAME

EndIf

If InputBuffer.FileName is empty:

If Open.Link.ShortName is not empty:

OldShortName = Open.Link.ShortName.

Set Open.Link.ShortName to empty.

Send directory change notification as per section 2.1.4.1, with Volume equal to

Open.File.Volume, Action equal to FILE_ACTION_REMOVED, and FileName set to
OldShortName with a FilterMatch of FilterMatch.

EndIf

Return STATUS_SUCCESS.

EndIf

If InputBuffer.FileName equals Open.Link.ShortName, return STATUS_SUCCESS.

For each Link in Open.File.LinkList:

If Link is not equal to Open.Link and Link.ShortName is not empty, the operation MUST fail

with STATUS_OBJECT_NAME_COLLISION.

EndFor

For each Link in Open.Link.ParentFile.DirectoryList:

If Link is not equal to Open.Link and InputBuffer.FileName matches Link.Name or

Link.ShortName, the operation MUST be failed with STATUS_OBJECT_NAME_COLLISION.

200 / 249

[MS-FSA] — v20130722
 File System Algorithms

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

EndFor

If Open.Link.ShortName is not empty:

Send directory change notification as per section 2.1.4.1, with Volume equal to

Open.File.Volume, Action equal to FILE_ACTION_RENAMED_OLD_NAME, and FileName set
to Open.Link.ShortName with a FilterMatch of FilterMatch.

EndIf

If the Oplock member of the DirectoryStream in Open.Link.ParentFile.StreamList

(hereinafter referred to as ParentOplock) is not empty, the object store MUST check for an oplock

break on the parent according to the algorithm in section 2.1.4.12, with input values as follows:

Open equal to this operation's Open

Oplock equal to ParentOplock

Operation equal to "SET_INFORMATION"

OpParams containing a member FileInformationClass containing

FileShortNameInformation

Flags equal to "PARENT_OBJECT"

Send directory change notification as per section 2.1.4.1, with Volume equal to

Open.File.Volume, Action equal to FILE_ACTION_RENAMED_NEW_NAME, and FileName set to
InputBuffer.FileName with a FilterMatch of FilterMatch.

Set Open.Link.ShortName to InputBuffer.FileName.

The object store MUST update Open.Link.ParentFile.LastModifiedTime,

Open.Link.ParentFile.LastAccessedTime, and Open.Link.ParentFile.LastChangeTime to
the current time.

If Open.UserSetChangeTime is FALSE, the object store MUST update

Open.File.LastChangeTime to the current time.

If Open.File.FileType is DataFile, the object store MUST set

Open.File.FileAttributes.FILE_ATTRIBUTE_ARCHIVE.

Return STATUS_SUCCESS.

2.1.5.14.14 FileValidDataLengthInformation

InputBuffer is of type FILE_VALID_DATA_LENGTH_INFORMATION as described in [MS-FSCC]

section 2.4.41.<129>

Pseudocode for the operation is as follows:

If Open.File.Volume.IsReadOnly is TRUE, the operation MUST be failed with

STATUS_MEDIA_WRITE_PROTECTED.

If Open.HasManageVolumeAccess is FALSE, the operation MUST be failed with

STATUS_PRIVILEGE_NOT_HELD.

The operation MUST be failed with STATUS_INVALID_PARAMETER under any of the following

conditions:

%5bMS-FSCC%5d.pdf

201 / 249

[MS-FSA] — v20130722
 File System Algorithms

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

If Open.Stream.ValidDataLength is greater than InputBuffer.ValidDataLength.

If Open.Stream.IsCompressed is TRUE.

If Open.Stream.IsSparse is TRUE.

If Open.File.FileType is DirectoryFile.

If Open.Stream.Oplock is not empty, the object store MUST check for an oplock break

according to the algorithm in section 2.1.4.12, with input values as follows:

Open equal to this operation's Open.

Oplock equal to Open.Stream.Oplock.

Operation equal to "SET_INFORMATION".

OpParams containing a member FileInformationClass containing

FileValidDataLengthInformation.

Open.Stream.ValidDataLength MUST be set to InputBuffer.ValidDataLength.

Return STATUS_SUCCESS.

2.1.5.15 Server Requests Setting of File System Information

The server provides:

Open: The Open on which volume information is being applied.

FsInformationClass: The type of information being applied, as specified in [MS-FSCC] section

2.5.

InputBuffer: A buffer that contains the volume information to be applied to the object.

InputBufferSize: The size of the buffer provided.

The object store MUST return:

Status: An NTSTATUS code indicating the result of the operation.

2.1.5.15.1 FileFsVolumeInformation

This operation is not supported and MUST be failed with STATUS_ INVALID_INFO_CLASS.

2.1.5.15.2 FileFsLabelInformation

This operation is not supported and MUST be failed with STATUS_ INVALID_INFO_CLASS.

2.1.5.15.3 FileFsSizeInformation

This operation is not supported and MUST be failed with STATUS_ INVALID_INFO_CLASS.

2.1.5.15.4 FileFsDeviceInformation

This operation is not supported and MUST be failed with STATUS_INVALID_INFO_CLASS.

%5bMS-FSCC%5d.pdf

202 / 249

[MS-FSA] — v20130722
 File System Algorithms

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

2.1.5.15.5 FileFsAttributeInformation

This operation is not supported and MUST be failed with STATUS_ INVALID_INFO_CLASS.

2.1.5.15.6 FileFsControlInformation

InputBuffer is of type FILE_FS_CONTROL_INFORMATION, as described in [MS-FSCC] section 2.5.2.

Pseudocode for the operation is as follows:

If InputBufferSize is smaller than BlockAlign(sizeof(FILE_FS_CONTROL_INFORMATION), 8)

the operation MUST be failed with STATUS_INVALID_INFO_CLASS.

Support for this operation is optional. If the object store does not implement this functionality,

the operation MUST be failed with STATUS_INVALID_PARAMETER.<130>

If Open.File.Volume.IsQuotasSupported is FALSE, the operation MUST be failed with

STATUS_VOLUME_NOT_UPGRADED.

Open.File.Volume MUST be updated as follows:

Open.File.Volume.DefaultQuotaThreshold set to InputBuffer.DefaultQuotaThreshold.

Open.File.Volume.DefaultQuotaLimit set to InputBuffer.DefaultQuotaLimit.

Open.File.Volume.VolumeQuotaState set to InputBuffer.FileSystemControlFlags. The

FILE_VC_QUOTAS_INCOMPLETE and FILE_VC_QUOTAS_REBUILDING flags as well as any
undefined flags are cleared from InputBuffer.FileSystemControlFlags before being saved.

Upon successful completion of the operation, the object store MUST return:

Status set to STATUS_SUCCESS.

2.1.5.15.7 FileFsFullSizeInformation

This operation is not supported and MUST be failed with STATUS_ INVALID_INFO_CLASS.

2.1.5.15.8 FileFsObjectIdInformation

InputBuffer is a FILE_FS_OBJECTID_INFORMATION structure, as described in [MS-FSCC] section

2.5.6.<131>

Pseudocode for the operation is as follows:

If InputBufferSize is less than sizeof(FILE_FS_OBJECTID_INFORMATION), the operation MUST

be failed with STATUS_INVALID_INFO_CLASS.

Support for ObjectIDs is optional. If the object store does not implement this functionality, the

operation MUST be failed with STATUS_INVALID_PARAMETER.<132>

If Open.File.Volume.IsObjectIDsSupported is FALSE, the operation MUST be failed with

STATUS_VOLUME_NOT_UPGRADED.

Open.File.Volume MUST be updated as follows:

Open.File.Volume.VolumeId set to InputBuffer.ObjectId.

Open.File.Volume.ExtendedInfo set to InputBuffer.ExtendedInfo.

%5bMS-FSCC%5d.pdf
%5bMS-FSCC%5d.pdf

203 / 249

[MS-FSA] — v20130722
 File System Algorithms

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Upon successful completion of the operation, the object store MUST return:

Status set to STATUS_SUCCESS.

2.1.5.15.9 FileFsDriverPathInformation

This operation is not supported and MUST be failed with STATUS_ INVALID_INFO_CLASS.

2.1.5.15.10 FileFsSectorSizeInformation

This operation is not supported and MUST be failed with STATUS_ INVALID_INFO_CLASS.

2.1.5.16 Server Requests Setting of Security Information

If the object store does not implement security, the operation MUST be failed with
STATUS_INVALID_DEVICE_REQUEST.

The server provides:

Open - The Open on which security information is being applied.

SecurityInformation - A SECURITY_INFORMATION data type as defined in [MS-DTYP] section

2.4.7.

InputBuffer - A buffer that contains the security descriptor to be applied to the object. The

security descriptor is a SECURITY_DESCRIPTOR structure in self-relative format, as described in
[MS-DTYP] section 2.4.6.

InputBufferSize - The size of the buffer provided.

On completion, the object store MUST return:

Status - An NTSTATUS code indicating the result of the operation.

This routine uses the following local variables:

Boolean values (initialized to FALSE): DisableOwnerAces, ServerObject, DaclUntrusted

The operation MUST be failed with STATUS_ACCESS_DENIED under any of the following conditions:

SecurityInformation contains any of OWNER_SECURITY_INFORMATION,

GROUP_SECURITY_INFORMATION, or LABEL_SECURITY_INFORMATION, and

Open.GrantedAccess does not contain WRITE_OWNER.

SecurityInformation contains DACL_SECURITY_INFORMATION and Open.GrantedAccess

does not contain WRITE_DAC.

SecurityInformation contains SACL_SECURITY_INFORMATION and Open.GrantedAccess

does not contain ACCESS_SYSTEM_SECURITY.

Pseudocode for the operation is as follows:

If Open.Stream.StreamType is DataStream and Open.Stream.Name is not zero-length, the

operation MUST be failed with STATUS_INVALID_PARAMETER; security information may only be
set on a file or directory handle, not on a stream handle.

The object store MUST post a USN change as per section 2.1.4.11 with File equal to File,

Reason equal to USN_REASON_SECURITY_CHANGE, and FileName equal to Open.Link.Name.

%5bMS-DTYP%5d.pdf
%5bMS-DTYP%5d.pdf

204 / 249

[MS-FSA] — v20130722
 File System Algorithms

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

If the Server Security (SS) bit is set in InputBuffer.Control, set ServerObject to TRUE,

otherwise set it to FALSE.

If the DACL Trusted (DT) bit is set in InputBuffer.Control, set DaclUntrusted to FALSE,

otherwise set it to TRUE.

If SecurityInformation contains OWNER_SECURITY_INFORMATION:

If SecurityInformation contains DACL_SECURITY_INFORMATION, set DisableOwnerAces to

FALSE, otherwise set it to TRUE.

If InputBuffer.OwnerSid is not present, the operation MUST be failed with

STATUS_INVALID_OWNER.

If InputBuffer.OwnerSid is not a valid owner SID for a file in the object store, as

determined in an implementation-specific manner, the object store MUST return
STATUS_INVALID_OWNER.

Else

If Open.File.SecurityDescriptor.Owner is NULL, the operation MUST be failed with

STATUS_INVALID_OWNER.

EndIf

The object store MUST set Open.File.SecurityDescriptor to InputBuffer.

If Open.File.FileType is not DirectoryFile:

The object store MUST set Open.File.FileAttributes.FILE_ATTRIBUTE_ARCHIVE.

The object store MUST update Open.File.LastChangeTime.<133>

EndIf

The operation returns STATUS_SUCCESS.

2.1.5.17 Server Requests an Oplock

The server provides:

Open - The Open on which the oplock is being requested.

Type - The type of oplock being requested. Valid values are as follows:

LEVEL_TWO (Corresponds to SMB2_OPLOCK_LEVEL_II as described in [MS-SMB2] section

2.2.13.)

LEVEL_ONE (Corresponds to SMB2_OPLOCK_LEVEL_EXCLUSIVE as described in [MS-SMB2]

section 2.2.13.)

LEVEL_BATCH (Corresponds to SMB2_OPLOCK_LEVEL_BATCH as described in [MS-SMB2]

section 2.2.13.)

LEVEL_GRANULAR (Corresponds to SMB2_OPLOCK_LEVEL_LEASE as described in [MS-SMB2]

section 2.2.13.) If this oplock type is specified, the server MUST additionally provide the
RequestedOplockLevel parameter.

%5bMS-SMB2%5d.pdf
%5bMS-SMB2%5d.pdf
%5bMS-SMB2%5d.pdf
%5bMS-SMB2%5d.pdf

205 / 249

[MS-FSA] — v20130722
 File System Algorithms

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

RequestedOplockLevel - A combination of zero or more of the following flags, which are only

given for LEVEL_GRANULAR Type Oplocks:

READ_CACHING

HANDLE_CACHING

WRITE_CACHING

Following is a list of legal nonzero combinations of RequestedOplockLevel:

READ_CACHING

READ_CACHING | WRITE_CACHING

READ_CACHING | HANDLE_CACHING

READ_CACHING | WRITE_CACHING | HANDLE_CACHING

Notes for the operation follow:

If the oplock is not granted, the request completes at this point.

If the oplock is granted, the request does not complete until the oplock is broken; the operation

waits for this to happen. Processing of an oplock break is described in section 2.1.5.17.3.
Whether the oplock is granted or not, the object store MUST return:

Status - An NTSTATUS code indicating the result of the operation.

If the oplock is granted, then when the oplock breaks and the request finally completes, the

object store MUST additionally return:

NewOplockLevel: The type of oplock the requested oplock has been broken to. Valid values

are as follows:

LEVEL_NONE (that is, no oplock)

LEVEL_TWO

A combination of one or more of the following flags:

READ_CACHING

HANDLE_CACHING

WRITE_CACHING

AcknowledgeRequired: A Boolean value; TRUE if the server MUST acknowledge the oplock

break, FALSE if not, as specified in section 2.1.5.17.2.

Pseudocode for the operation is as follows:

If Open.Stream.StreamType is DirectoryStream:

The operation MUST be failed with STATUS_INVALID_PARAMETER under either of the

following conditions:

Type is not LEVEL_GRANULAR.

206 / 249

[MS-FSA] — v20130722
 File System Algorithms

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Type is LEVEL_GRANULAR but RequestedOplockLevel is neither READ_CACHING nor

(READ_CACHING|HANDLE_CACHING).

If Type is LEVEL_EXCLUSIVE or LEVEL_BATCH:

The operation MUST be failed with STATUS_OPLOCK_NOT_GRANTED under either of the

following conditions:

Open.File.OpenList contains more than one Open whose Stream is the same as

Open.Stream.

Open.Mode contains either FILE_SYNCHRONOUS_IO_ALERT or

FILE_SYNCHRONOUS_IO_NONALERT.

Request an exclusive oplock according to the algorithm in section 2.1.5.17.1, setting the

algorithm's parameters as follows:

Pass in the current Open.

RequestedOplock equal to Type.

The operation MUST at this point return any status code returned by the exclusive oplock

request algorithm.

Else If Type is LEVEL_TWO:

The operation MUST be failed with STATUS_OPLOCK_NOT_GRANTED under either of the

following conditions:

Open.Stream.ByteRangeLockList is not empty.

Open.Mode contains either FILE_SYNCHRONOUS_IO_ALERT or

FILE_SYNCHRONOUS_IO_NONALERT.

Request a shared oplock according to the algorithm in section 2.1.5.17.2, setting the

algorithm's parameters as follows:

Pass in the current Open.

RequestedOplock equal to Type.

GrantingInAck equal to FALSE.

The operation MUST at this point return any status code returned by the shared oplock

request algorithm.

Else If Type is LEVEL_GRANULAR:

If RequestedOplockLevel is READ_CACHING or (READ_CACHING|HANDLE_CACHING):

The operation MUST be failed with STATUS_OPLOCK_NOT_GRANTED under either of the

following conditions:

Open.Stream.ByteRangeLockList is not empty.

Open.Mode contains either FILE_SYNCHRONOUS_IO_ALERT or

FILE_SYNCHRONOUS_IO_NONALERT.

207 / 249

[MS-FSA] — v20130722
 File System Algorithms

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Request a shared oplock according to the algorithm in section 2.1.5.17.2, setting the

algorithm's parameters as follows:

Pass in the current Open.

RequestedOplock equal to RequestedOplockLevel.

GrantingInAck equal to FALSE.

The operation MUST at this point return any status code returned by the shared oplock

request algorithm.

Else If RequestedOplockLevel is (READ_CACHING|WRITE_CACHING) or

(READ_CACHING|WRITE_CACHING|HANDLE_CACHING):

If Open.Mode contains either FILE_SYNCHRONOUS_IO_ALERT or

FILE_SYNCHRONOUS_IO_NONALERT, the operation MUST be failed with
STATUS_OPLOCK_NOT_GRANTED.

Request an exclusive oplock according to the algorithm in section 2.1.5.17.1, setting the

algorithm's parameters as follows:

Pass in the current Open.

RequestedOplock equal to RequestedOplockLevel.

The operation MUST at this point return any status code returned by the exclusive oplock

request algorithm.

Else if RequestedOplockLevel is 0 (that is, no flags):

The operation MUST return STATUS_SUCCESS at this point.

Else

The operation MUST be failed with STATUS_INVALID_PARAMETER.

EndIf

EndIf

2.1.5.17.1 Algorithm to Request an Exclusive Oplock

The inputs for requesting an exclusive oplock are:

Open: The Open on which the oplock is being requested.

RequestedOplock: The oplock type being requested.

On completion, the object store MUST return:

Status: An NTSTATUS code that specifies the result.

NewOplockLevel: The type of oplock that the requested oplock has been broken to. If a failure

status is returned in Status, the value of this field is undefined. Valid values are as follows:

LEVEL_NONE (that is, no oplock)

LEVEL_TWO

208 / 249

[MS-FSA] — v20130722
 File System Algorithms

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

A combination of one or more of the following flags:

READ_CACHING

HANDLE_CACHING

WRITE_CACHING

AcknowledgeRequired: A Boolean value: TRUE if the server MUST acknowledge the oplock

break; FALSE if not, as specified in section 2.1.5.18. If a failure status is returned in Status, the
value of this field is undefined.

The exclusive oplock request algorithm uses the following local variables:

Boolean value (initialized to FALSE): GrantExclusiveOplock

Pseudocode for the algorithm is as follows:

If Open.Stream.Oplock is empty:

Build a new Oplock object with fields initialized as follows:

Oplock.State set to NO_OPLOCK.

All other fields set to 0/empty.

Store the new Oplock object in Open.Stream.Oplock.

EndIf

If Open.Stream.Oplock.State contains LEVEL_TWO_OPLOCK or NO_OPLOCK:

If Open.Stream.Oplock.State contains LEVEL_TWO_OPLOCK and RequestedOplock

contains one or more of READ_CACHING, HANDLE_CACHING, or WRITE_CACHING, the
operation MUST be failed with Status set to STATUS_OPLOCK_NOT_GRANTED.

If Open.Stream.Oplock.State is equal to LEVEL_TWO_OPLOCK:

Remove the first Open ThisOpen from Open.Stream.Oplock.IIOplocks (there should be

exactly one present), and notify the server of an oplock break according to the algorithm in

section 2.1.5.17.3, setting the algorithm's parameters as follows:

BreakingOplockOpen equal to ThisOpen.

NewOplockLevel equal to LEVEL_NONE.

AcknowledgeRequired equal to FALSE.

OplockCompletionStatus equal to STATUS_SUCCESS.

(The operation does not end at this point; this call to 2.1.5.17.3 completes some earlier call to

2.1.5.17.2.)

EndIf

If Open.File.OpenList contains more than one Open whose Stream is the same as

Open.Stream, and NO_OPLOCK is present in Open.Stream.Oplock.State, the operation MUST

be failed with Status set to STATUS_OPLOCK_NOT_GRANTED.

209 / 249

[MS-FSA] — v20130722
 File System Algorithms

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

If Open.Stream.IsDeleted is TRUE and RequestedOplock contains HANDLE_CACHING, the

operation MUST be failed with Status set to STATUS_OPLOCK_NOT_GRANTED.

Set GrantExclusiveOplock to TRUE.

Else If (Open.Stream.Oplock.State contains one or more of READ_CACHING,

WRITE_CACHING, or HANDLE_CACHING) and

(Open.Stream.Oplock.State contains none of BREAK_TO_TWO, BREAK_TO_NONE,

BREAK_TO_TWO_TO_NONE, BREAK_TO_READ_CACHING, BREAK_TO_WRITE_CACHING,
BREAK_TO_HANDLE_CACHING, or BREAK_TO_NO_CACHING) and
(Open.Stream.Oplock.State.RHBreakQueue is empty):

// This is a granular oplock and it is not breaking.

If RequestedOplock contains none of READ_CACHING, WRITE_CACHING, or

HANDLE_CACHING, the operation MUST be failed with Status set to
STATUS_OPLOCK_NOT_GRANTED.

If Open.Stream.IsDeleted is TRUE and RequestedOplock contains HANDLE_CACHING, the

operation MUST be failed with Status set to STATUS_OPLOCK_NOT_GRANTED.

Switch (Open.Stream.Oplock.State):

Case READ_CACHING:

If RequestedOplock is neither (READ_CACHING|WRITE_CACHING) nor

(READ_CACHING|WRITE_CACHING|HANDLE_CACHING), the operation MUST be failed

with Status set to STATUS_OPLOCK_NOT_GRANTED.

For each Open ThisOpen in Open.Stream.Oplock.ROplocks:

If ThisOpen.TargetOplockKey != Open.TargetOplockKey, the operation MUST be

failed with Status set to STATUS_OPLOCK_NOT_GRANTED.

EndFor

For each Open ThisOpen in Open.Stream.Oplock.ROplocks:

Remove ThisOpen from Open.Stream.Oplock.ROplocks.

Notify the server of an oplock break according to the algorithm in section 2.1.5.17.3,

setting the algorithm's parameters as follows:

BreakingOplockOpen equal to ThisOpen.

NewOplockLevel equal to RequestedOplock.

AcknowledgeRequired equal to FALSE.

OplockCompletionStatus equal to

STATUS_OPLOCK_SWITCHED_TO_NEW_HANDLE.

(The operation does not end at this point; this call to 2.1.5.17.3 completes some

earlier call to 2.1.5.17.2.)

EndFor

210 / 249

[MS-FSA] — v20130722
 File System Algorithms

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Set GrantExclusiveOplock to TRUE.

EndCase

Case (READ_CACHING|HANDLE_CACHING):

If RequestedOplock is not (READ_CACHING|WRITE_CACHING|HANDLE_CACHING) or

Open.Stream.Oplock.RHBreakQueue is not empty, the operation MUST be failed with
Status set to STATUS_OPLOCK_NOT_GRANTED.

For each Open ThisOpen in Open.Stream.Oplock.RHOplocks:

If ThisOpen.TargetOplockKey != Open.TargetOplockKey, the operation MUST be

failed with Status set to STATUS_OPLOCK_NOT_GRANTED.

EndFor

For each Open ThisOpen in Open.Stream.Oplock.RHOplocks:

Remove ThisOpen from Open.Stream.Oplock.RHOplocks.

Notify the server of an oplock break according to the algorithm in section 2.1.5.17.3,

setting the algorithm's parameters as follows:

BreakingOplockOpen equal to ThisOpen.

NewOplockLevel equal to RequestedOplock.

AcknowledgeRequired equal to FALSE.

OplockCompletionStatus equal to

STATUS_OPLOCK_SWITCHED_TO_NEW_HANDLE.

(The operation does not end at this point; this call to 2.1.5.17.3 completes some

earlier call to 2.1.5.17.2.)

EndFor

Set GrantExclusiveOplock to TRUE.

EndCase

Case (READ_CACHING|WRITE_CACHING|HANDLE_CACHING|EXCLUSIVE):

If RequestedOplock is not (READ_CACHING|WRITE_CACHING|HANDLE_CACHING),

the operation MUST be failed with Status set to STATUS_OPLOCK_NOT_GRANTED.

// Deliberate FALL-THROUGH to next Case statement.

Case (READ_CACHING|WRITE_CACHING|EXCLUSIVE):

If RequestedOplock is neither (READ_CACHING|WRITE_CACHING|HANDLE_CACHING)

nor (READ_CACHING|WRITE_CACHING), the operation MUST be failed with Status set
to STATUS_OPLOCK_NOT_GRANTED.

If Open.TargetOplockKey !=

Open.Stream.Oplock.ExclusiveOpen.TargetOplockKey, the operation MUST be
failed with Status set to STATUS_OPLOCK_NOT_GRANTED.

211 / 249

[MS-FSA] — v20130722
 File System Algorithms

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Notify the server of an oplock break according to the algorithm in section 2.1.5.17.3,

setting the algorithm's parameters as follows:

BreakingOplockOpen equal to Open.Stream.Oplock.ExclusiveOpen.

NewOplockLevel equal to RequestedOplock.

AcknowledgeRequired equal to FALSE.

OplockCompletionStatus equal to

STATUS_OPLOCK_SWITCHED_TO_NEW_HANDLE.

(The operation does not end at this point; this call to 2.1.5.17.3 completes some earlier

call to 2.1.5.17.1.)

Set Open.Stream.Oplock.ExclusiveOpen to NULL.

Set GrantExclusiveOplock to TRUE.

EndCase

DefaultCase:

The operation MUST be failed with Status set to STATUS_OPLOCK_NOT_GRANTED.

EndSwitch

Else

The operation MUST be failed with Status set to STATUS_OPLOCK_NOT_GRANTED.

EndIf

If GrantExclusiveOplock is TRUE:

Set Open.Stream.Oplock.ExclusiveOpen equal to Open.

Set Open.Stream.Oplock.State equal to (RequestedOplock|EXCLUSIVE).

This operation MUST be made cancelable by inserting it into

CancelableOperations.CancelableOperationList.

This operation waits until the oplock is broken or canceled, as specified in section 2.1.5.17.3.

When the operation specified in section 2.1.5.17.3 is called, its following input parameters are
transferred to this routine and then returned by it:

Status is set to OplockCompletionStatus from the operation specified in section

2.1.5.17.3.

NewOplockLevel is set to NewOplockLevel from the operation specified in section

2.1.5.17.3.

AcknowledgeRequired is set to AcknowledgeRequired from the operation specified in

section 2.1.5.17.3.

EndIf

212 / 249

[MS-FSA] — v20130722
 File System Algorithms

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

2.1.5.17.2 Algorithm to Request a Shared Oplock

The inputs for requesting a shared oplock are:

Open: The Open on which the oplock is being requested.

RequestedOplock: The oplock type being requested.

GrantingInAck: A Boolean value, TRUE if this oplock is being requested as part of an oplock

break acknowledgement, FALSE if not.

On completion, the object store MUST return:

Status: An NTSTATUS code that specifies the result.

NewOplockLevel: The type of oplock that the requested oplock has been broken to. If a failure

status is returned in Status, the value of this field is undefined. Valid values are as follows:

LEVEL_NONE (that is, no oplock)

LEVEL_TWO

A combination of one or more of the following flags:

READ_CACHING

HANDLE_CACHING

WRITE_CACHING

AcknowledgeRequired: A Boolean value: TRUE if the server MUST acknowledge the oplock

break; FALSE if not, as specified in section 2.1.5.18. If a failure status is returned in Status, the
value of this field is undefined.

The shared oplock request algorithm uses the following local variables:

Boolean value (initialized to FALSE): OplockGranted

Pseudocode for the algorithm is as follows:

If Open.Stream.Oplock is empty:

Build a new Oplock object with fields initialized as follows:

Oplock.State set to NO_OPLOCK.

All other fields set to 0/empty.

Store the new Oplock object in Open.Stream.Oplock.

EndIf

If (GrantingInAck is FALSE) and

(Open.Stream.Oplock.State contains one or more of BREAK_TO_TWO, BREAK_TO_NONE,
BREAK_TO_TWO_TO_NONE, BREAK_TO_READ_CACHING, BREAK_TO_WRITE_CACHING,
BREAK_TO_HANDLE_CACHING, BREAK_TO_NO_CACHING, or EXCLUSIVE), then:

The operation MUST be failed with Status set to STATUS_OPLOCK_NOT_GRANTED.

213 / 249

[MS-FSA] — v20130722
 File System Algorithms

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

EndIf

Switch (RequestedOplock):

Case LEVEL_TWO:

The operation MUST be failed with Status set to STATUS_OPLOCK_NOT_GRANTED if

Open.Stream.Oplock.State is anything other than the following:

NO_OPLOCK

LEVEL_TWO_OPLOCK

READ_CACHING

(LEVEL_TWO_OPLOCK|READ_CACHING)

// Deliberate FALL-THROUGH to next Case statement.

Case READ_CACHING:

The operation MUST be failed with Status set to STATUS_OPLOCK_NOT_GRANTED if

GrantingInAck is FALSE and Open.Stream.Oplock.State is anything other than the
following:

NO_OPLOCK

LEVEL_TWO_OPLOCK

READ_CACHING

(LEVEL_TWO_OPLOCK|READ_CACHING)

(READ_CACHING|HANDLE_CACHING)

(READ_CACHING|HANDLE_CACHING|MIXED_R_AND_RH)

(READ_CACHING|HANDLE_CACHING|BREAK_TO_READ_CACHING)

(READ_CACHING|HANDLE_CACHING|BREAK_TO_NO_CACHING)

If GrantingInAck is FALSE:

If there is an Open on Open.Stream.Oplock.RHOplocks whose TargetOplockKey is

equal to Open.TargetOplockKey, the operation MUST be failed with Status set to
STATUS_OPLOCK_NOT_GRANTED.

If there is an Open on Open.Stream.Oplock.RHBreakQueue whose

TargetOplockKey is equal to Open.TargetOplockKey, the operation MUST be failed
with Status set to STATUS_OPLOCK_NOT_GRANTED.

If there is an Open ThisOpen on Open.Stream.Oplock.ROplocks whose

TargetOplockKey is equal to Open.TargetOplockKey (there should be at most one
present):

Remove ThisOpen from Open.Stream.Oplock.ROplocks.

Notify the server of an oplock break according to the algorithm in section 2.1.5.17.3,

setting the algorithm's parameters as follows:

214 / 249

[MS-FSA] — v20130722
 File System Algorithms

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

BreakingOplockOpen equal to ThisOpen.

NewOplockLevel equal to READ_CACHING.

AcknowledgeRequired equal to FALSE.

OplockCompletionStatus equal to

STATUS_OPLOCK_SWITCHED_TO_NEW_HANDLE.

(The operation does not end at this point; this call to 2.1.5.17.3 completes some

earlier call to 2.1.5.17.2.)

EndIf

EndIf

If RequestedOplock equals LEVEL_TWO:

Add Open to Open.Stream.Oplock.IIOplocks.

Else // RequestedOplock equals READ_CACHING:

Add Open to Open.Stream.Oplock.ROplocks.

EndIf

Recompute Open.Stream.Oplock.State according to the algorithm in section 2.1.4.13,

passing Open.Stream.Oplock as the ThisOplock parameter.

Set OplockGranted to TRUE.

EndCase

Case (READ_CACHING|HANDLE_CACHING):

The operation MUST be failed with Status set to STATUS_OPLOCK_NOT_GRANTED if

GrantingInAck is FALSE and Open.Stream.Oplock.State is anything other than the
following:

NO_OPLOCK

READ_CACHING

(READ_CACHING|HANDLE_CACHING)

(READ_CACHING|HANDLE_CACHING|MIXED_R_AND_RH)

If Open.Stream.IsDeleted is TRUE, the operation MUST be failed with Status set to

STATUS_OPLOCK_NOT_GRANTED.

If GrantingInAck is FALSE:

If there is an Open ThisOpen on Open.Stream.Oplock.ROplocks whose

TargetOplockKey is equal to Open.TargetOplockKey (there should be at most one
present):

Remove ThisOpen from Open.Stream.Oplocks.ROplocks.

215 / 249

[MS-FSA] — v20130722
 File System Algorithms

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Notify the server of an oplock break according to the algorithm in section
2.1.5.17.3, setting the algorithm's parameters as follows:

BreakingOplockOpen equal to ThisOpen.

NewOplockLevel equal to (READ_CACHING|HANDLE_CACHING).

AcknowledgeRequired equal to FALSE.

OplockCompletionStatus equal to

STATUS_OPLOCK_SWITCHED_TO_NEW_HANDLE.

(The operation does not end at this point; this call to 2.1.5.17.3 completes some

earlier call to 2.1.5.17.2.)

EndIf

If there is an Open ThisOpen on Open.Stream.Oplock.RHOplocks whose

TargetOplockKey is equal to Open.TargetOplockKey (there should be at most one
present):

Notify the server of an oplock break according to the algorithm in section 2.1.5.17.3,

setting the algorithm's parameters as follows:

BreakingOplockOpen equal to ThisOpen.

NewOplockLevel equal to (READ_CACHING|HANDLE_CACHING).

AcknowledgeRequired equal to FALSE.

OplockCompletionStatus equal to

STATUS_OPLOCK_SWITCHED_TO_NEW_HANDLE.

(The operation does not end at this point; this call to 2.1.5.17.3 completes some

earlier call to 2.1.5.17.2.)

EndIf

EndIf

Add Open to Open.Stream.Oplock.RHOplocks.

Recompute Open.Stream.Oplock.State according to the algorithm in section 2.1.4.13,

passing Open.Stream.Oplock as the ThisOplock parameter.

Set OplockGranted to TRUE.

EndCase

// No other value of RequestedOplock is possible.

EndSwitch

If OplockGranted is TRUE:

This operation MUST be made cancelable by inserting it into

CancelableOperations.CancelableOperationList.

216 / 249

[MS-FSA] — v20130722
 File System Algorithms

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

The operation waits until the oplock is broken or canceled, as specified in section 2.1.5.17.3.

When the operation specified in section 2.1.5.17.3 is called, its following input parameters are

transferred to this routine and returned by it:

Status is set to OplockCompletionStatus from the operation specified in section

2.1.5.17.3.

NewOplockLevel is set to NewOplockLevel from the operation specified in section

2.1.5.17.3.

AcknowledgeRequired is set to AcknowledgeRequired from the operation specified in

section 2.1.5.17.3.

EndIf

2.1.5.17.3 Indicating an Oplock Break to the Server

The inputs for indicating an oplock break to the server are:

BreakingOplockOpen: The Open used to request the oplock that is now breaking.

NewOplockLevel: The type of oplock the requested oplock has been broken to. Valid values are

as follows:

LEVEL_NONE (that is, no oplock)

LEVEL_TWO

A combination of one or more of the following flags:

READ_CACHING

HANDLE_CACHING

WRITE_CACHING

AcknowledgeRequired: A Boolean value; TRUE if the server MUST acknowledge the oplock

break, FALSE if not, as specified in section 2.1.5.18.

OplockCompletionStatus: The NTSTATUS code to return to the server.

This algorithm simply represents the completion of an oplock request, as specified in section
2.1.5.17.1 or section 2.1.5.17.2. The server is expected to associate the return status from this
algorithm with BreakingOplockOpen, which is the Open passed in when it requested the oplock
that is now breaking.

It is important to note that because several oplocks may be outstanding in parallel, although this

algorithm represents the completion of an oplock request, it may not result in the completion of the
algorithm that called it. In particular, calling this algorithm will result in completion of the caller only
if BreakingOplockOpen is the same as the Open with which the calling algorithm was itself called.
To mitigate confusion, each algorithm that refers to this section will specify whether that algorithm's

operation terminates at that point or not.

The object store MUST return OplockCompletionStatus, AcknowledgeRequired, and
NewOplockLevel to the server (the algorithm is as specified in section 2.1.5.17.1 and section

2.1.5.17.2).

217 / 249

[MS-FSA] — v20130722
 File System Algorithms

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

2.1.5.18 Server Acknowledges an Oplock Break

The server provides:

Open - The Open associated with the oplock that has broken.

Type - As part of the acknowledgement, the server indicates a new oplock it would like in place

of the one that has broken. Valid values are as follows:

LEVEL_NONE

LEVEL_TWO

LEVEL_GRANULAR - If this oplock type is specified, the server additionally provides:

RequestedOplockLevel - A combination of zero or more of the following flags:

READ_CACHING

HANDLE_CACHING

WRITE_CACHING

If the server requests a new oplock and it is granted, the request does not complete until the oplock
is broken; the operation waits for this to happen. Processing of an oplock break is described in
section 2.1.5.17.3. Whether the new oplock is granted or not, the object store MUST return:

Status - An NTSTATUS code indicating the result of the operation.

If the server requests a new oplock and it is granted, then when the oplock breaks and the request
finally completes, the object store MUST additionally return:

NewOplockLevel: The type of oplock the requested oplock has been broken to. Valid values are

as follows:

LEVEL_NONE (that is, no oplock)

LEVEL_TWO

A combination of one or more of the following flags:

READ_CACHING

HANDLE_CACHING

WRITE_CACHING

AcknowledgeRequired: A Boolean value; TRUE if the server MUST acknowledge the oplock

break, FALSE if not, as specified in section 2.1.5.17.2.

This routine uses the following local variables:

Boolean values (initialized to FALSE): NewOplockGranted, ReturnBreakToNone,

FoundMatchingRHOplock

Pseudocode for the operation is as follows:

If Open.Stream.Oplock is empty, the operation MUST be failed with Status set to

STATUS_INVALID_OPLOCK_PROTOCOL.

218 / 249

[MS-FSA] — v20130722
 File System Algorithms

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

If Type is LEVEL_NONE or LEVEL_TWO:

If Open.Stream.Oplock.ExclusiveOpen is not equal to Open, the operation MUST be failed

with Status set to STATUS_INVALID_OPLOCK_PROTOCOL.

If Type is LEVEL_TWO and Open.Stream.Oplock.State contains BREAK_TO_TWO:

Set Open.Stream.Oplock.State to LEVEL_TWO_OPLOCK.

Set NewOplockGranted to TRUE.

Else If Open.Stream.Oplock.State contains BREAK_TO_TWO or BREAK_TO_NONE:

Set Open.Stream.Oplock.State to NO_OPLOCK.

Else If Open.Stream.Oplock.State contains BREAK_TO_TWO_TO_NONE:

Set Open.Stream.Oplock.State to NO_OPLOCK.

Set ReturnBreakToNone to TRUE.

Else

The operation MUST be failed with Status set to STATUS_INVALID_OPLOCK_PROTOCOL.

EndIf

For each Open WaitingOpen on Open.Stream.Oplock.WaitList:

Indicate that the operation associated with WaitingOpen may continue according to the

algorithm in section 2.1.4.12.1, setting OpenToRelease equal to WaitingOpen.

Remove WaitingOpen from Open.Stream.Oplock.WaitList.

EndFor

Set Open.Stream.Oplock.ExclusiveOpen to NULL.

If NewOplockGranted is TRUE:

The operation waits until the newly-granted Level 2 oplock is broken, as specified in section

2.1.5.17.3.

Else If ReturnBreakToNone is TRUE:

In this case the server was expecting the oplock to break to Level 2, but because the

oplock is actually breaking to None (that is, no oplock), the object store MUST indicate an

oplock break to the server according to the algorithm in section 2.1.5.17.3, setting the
algorithm's parameters as follows:

BreakingOplockOpen equal to Open.

NewOplockLevel equal to LEVEL_NONE.

AcknowledgeRequired equal to FALSE.

OplockCompletionStatus equal to STATUS_SUCCESS.

219 / 249

[MS-FSA] — v20130722
 File System Algorithms

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

(Because BreakingOplockOpen is equal to the passed-in Open, the operation ends at

this point.)

Else

The operation MUST return Status set to STATUS_SUCCESS at this point.

EndIf

Else If Type is LEVEL_GRANULAR:

Let BREAK_LEVEL_MASK = (BREAK_TO_READ_CACHING | BREAK_TO_WRITE_CACHING |

BREAK_TO_HANDLE_CACHING | BREAK_TO_NO_CACHING)

Let R_AND_RH_GRANTED = (READ_CACHING|HANDLE_CACHING|MIXED_R_AND_RH)

Let RH_GRANTED = (READ_CACHING|HANDLE_CACHING)

// If there are no BREAK_LEVEL_MASK flags set, this is invalid, unless the

// state is R_AND_RH_GRANTED or RH_GRANTED, in which case we'll need to see if

// the RHBreakQueue is empty.

If (Open.Stream.Oplock.State does not contain any flag in BREAK_LEVEL_MASK and

(Open.Stream.Oplock.State != R_AND_RH_GRANTED) and

(Open.Stream.Oplock.State != RH_GRANTED)) or

(((Open.Stream.Oplock.State == R_AND_RH_GRANTED) or

(Open.Stream.Oplock.State == RH_GRANTED)) and

 Open.Stream.Oplock.RHBreakQueue is empty):

The request MUST be failed with Status set to STATUS_INVALID_OPLOCK_PROTOCOL.

EndIf

Switch Open.Stream.Oplock.State

Case (READ_CACHING|HANDLE_CACHING|MIXED_R_AND_RH):

Case (READ_CACHING|HANDLE_CACHING):

Case (READ_CACHING|HANDLE_CACHING|BREAK_TO_READ_CACHING):

Case (READ_CACHING|HANDLE_CACHING|BREAK_TO_NO_CACHING):

For each RHOpContext ThisContext in Open.Stream.Oplock.RHBreakQueue:

If ThisContext.Open equals Open:

Set FoundMatchingRHOplock to TRUE.

If ThisContext.BreakingToRead is FALSE:

If RequestedOplockLevel is not 0 and Open.Stream.Oplock.WaitList is not

empty:

220 / 249

[MS-FSA] — v20130722
 File System Algorithms

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

The object store MUST indicate an oplock break to the server according to

the algorithm in section 2.1.5.17.3, setting the algorithm's parameters as

follows:

BreakingOplockOpen equal to Open.

NewOplockLevel equal to LEVEL_NONE.

AcknowledgeRequired equal to TRUE.

OplockCompletionStatus equal to

STATUS_CANNOT_GRANT_REQUESTED_OPLOCK.

(Because BreakingOplockOpen is equal to the passed-in Open, the

operation ends at this point.)

EndIf

Else // ThisContext.BreakingToRead is TRUE.

If Open.Stream.Oplock.WaitList is not empty and (RequestedOplockLevel

is (READ_CACHING|WRITE_CACHING) or
(READ_CACHING|WRITE_CACHING|HANDLE_CACHING)):

The object store MUST indicate an oplock break to the server according to

the algorithm in section 2.1.5.17.3, setting the algorithm's parameters as
follows:

BreakingOplockOpen equal to Open.

NewOplockLevel equal to READ_CACHING.

AcknowledgeRequired equal to TRUE.

OplockCompletionStatus equal to

STATUS_CANNOT_GRANT_REQUESTED_OPLOCK.

(Because BreakingOplockOpen is equal to the passed-in Open, the

operation ends at this point.)

EndIf

EndIf

Remove ThisContext from Open.Stream.Oplock.RHBreakQueue.

For each Open WaitingOpen on Open.Stream.Oplock.WaitList:

// The operation waiting for the Read-Handle oplock to break may continue if

// there are no more Read-Handle oplocks outstanding, or if all the remaining

// Read-Handle oplocks have the same oplock key as the waiting operation.

If (Open.Stream.Oplock.RHBreakQueue is empty) or (all

RHOpContext.Open.TargetOplockKey values on
Open.Stream.Oplock.RHBreakQueue are equal to
WaitingOpen.TargetOplockKey):

221 / 249

[MS-FSA] — v20130722
 File System Algorithms

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Indicate that the operation associated with WaitingOpen may continue

according to the algorithm in section 2.1.4.12.1, setting OpenToRelease

equal to WaitingOpen.

Remove WaitingOpen from Open.Stream.Oplock.WaitList.

EndIf

EndFor

If RequestedOplockLevel is 0 (that is, no flags):

Recompute Open.Stream.Oplock.State according to the algorithm in section

2.1.4.13, passing Open.Stream.Oplock as the ThisOplock parameter.

The algorithm MUST return Status set to STATUS_SUCCESS at this point.

Else If RequestedOplockLevel does not contain WRITE_CACHING:

The object store MUST request a shared oplock according to the algorithm in

section 2.1.5.17.2, setting the algorithm's parameters as follows:

Pass in the current Open.

RequestedOplock equal to RequestedOplockLevel.

GrantingInAck equal to TRUE.

The operation MUST at this point return any status code returned by the shared

oplock request algorithm.

Else

Set Open.Stream.Oplock.ExclusiveOpen to ThisContext.Open.

Set Open.Stream.Oplock.State to (RequestedOplockLevel|EXCLUSIVE).

This operation MUST be made cancelable by inserting it into

CancelableOperations.CancelableOperationList.

This operation waits until the oplock is broken or canceled, as specified in

section 2.1.5.17.3.

EndIf

Break out of the For loop.

EndIf

EndFor

If FoundMatchingRHOplock is FALSE:

The operation MUST be failed with Status set to

STATUS_INVALID_OPLOCK_PROTOCOL.

EndIf

The operation returns Status set to STATUS_SUCCESS at this point.

222 / 249

[MS-FSA] — v20130722
 File System Algorithms

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

EndCase

Case (READ_CACHING|WRITE_CACHING|EXCLUSIVE|BREAK_TO_READ_CACHING):

Case (READ_CACHING|WRITE_CACHING|EXCLUSIVE|BREAK_TO_NO_CACHING):

Case

(READ_CACHING|WRITE_CACHING|HANDLE_CACHING|EXCLUSIVE|BREAK_TO_READ_CAC
HING|BREAK_TO_WRITE_CACHING):

Case

(READ_CACHING|WRITE_CACHING|HANDLE_CACHING|EXCLUSIVE|BREAK_TO_READ_CAC

HING|BREAK_TO_HANDLE_CACHING):

Case

(READ_CACHING|WRITE_CACHING|HANDLE_CACHING|EXCLUSIVE|BREAK_TO_READ_CAC
HING):

Case

(READ_CACHING|WRITE_CACHING|HANDLE_CACHING|EXCLUSIVE|BREAK_TO_NO_CACHI

NG):

If Open.Stream.Oplock.ExclusiveOpen != Open:

The operation MUST be failed with Status set to

STATUS_INVALID_OPLOCK_PROTOCOL.

EndIf

If Open.Stream.Oplock.WaitList is not empty and

 Open.Stream.Oplock.State does not contain HANDLE_CACHING and

 RequestedOplockLevel is (READ_CACHING|WRITE_CACHING|HANDLE_CACHING):

The object store MUST indicate an oplock break to the server according to the

algorithm in section 2.1.5.17.3, setting the algorithm's parameters as follows:

BreakingOplockOpen equal to Open.

NewOplockLevel equal to:

(READ_CACHING|WRITE_CACHING) if Open.Stream.Oplock.State contains

each of BREAK_TO_READ_CACHING and BREAK_TO_WRITE_CACHING and not
BREAK_TO_HANDLE_CACHING.

(READ_CACHING|HANDLE_CACHING) if Open.Stream.Oplock.State contains

each of BREAK_TO_READ_CACHING and BREAK_TO_HANDLE_CACHING and
not BREAK_TO_WRITE_CACHING.

READ_CACHING if Open.Stream.Oplock.State contains

BREAK_TO_READ_CACHING and neither BREAK_TO_WRITE_CACHING nor
BREAK_TO_HANDLE_CACHING.

LEVEL_NONE if Open.Stream.Oplock.State contains

BREAK_TO_NO_CACHING.

AcknowledgeRequired equal to TRUE.

223 / 249

[MS-FSA] — v20130722
 File System Algorithms

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

OplockCompletionStatus equal to

STATUS_CANNOT_GRANT_REQUESTED_OPLOCK.

(Because BreakingOplockOpen is equal to the passed-in Open, the operation ends

at this point.)

Else

If Open.Stream.IsDeleted is TRUE and RequestedOplockLevel contains

HANDLE_CACHING:

The object store MUST indicate an oplock break to the server according to the

algorithm in section 2.1.5.17.3, setting the algorithm's parameters as follows:

BreakingOplockOpen equal to Open.

NewOplockLevel equal to RequestedOplockLevel without

HANDLE_CACHING (for example if RequestedOplockLevel is

(READ_CACHING|HANDLE_CACHING), then NewOplockLevel would be just
READ_CACHING).

AcknowledgeRequired equal to TRUE.

OplockCompletionStatus equal to

STATUS_CANNOT_GRANT_REQUESTED_OPLOCK.

(Because BreakingOplockOpen is equal to the passed-in Open, the operation

ends at this point.)

EndIf

For each Open WaitingOpen on Open.Stream.Oplock.WaitList:

Indicate that the operation associated with WaitingOpen may continue according

to the algorithm in section 2.1.4.12.1, setting OpenToRelease equal to

WaitingOpen.

Remove WaitingOpen from Open.Stream.Oplock.WaitList.

EndFor

If RequestedOplockLevel does not contain WRITE_CACHING:

Set Open.Stream.Oplock.ExclusiveOpen to NULL.

EndIf

If RequestedOplockLevel is 0 (that is, no flags):

Set Open.Stream.Oplock.State to NO_OPLOCK.

The operation returns Status set to STATUS_SUCCESS at this point.

Else If RequestedOplockLevel does not contain WRITE_CACHING:

The object store MUST request a shared oplock according to the algorithm in

section 2.1.5.17.2, setting the algorithm's parameters as follows:

Pass in the current Open.

224 / 249

[MS-FSA] — v20130722
 File System Algorithms

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

RequestedOplock equal to RequestedOplockLevel.

GrantingInAck equal to TRUE.

The operation MUST at this point return any status code returned by the shared

oplock request algorithm.

Else

// Note that because this oplock is being set up as part of an acknowledgement

// of an exclusive oplock break, Open.Stream.Oplock.ExclusiveOpen was set

// at the time of the original oplock request; it contains Open.

Set Open.Stream.Oplock.State to (RequestedOplockLevel|EXCLUSIVE).

This operation MUST be made cancelable by inserting it into

CancelableOperations.CancelableOperationList.

This operation waits until the oplock is broken or canceled, as specified in section

2.1.5.17.3.

EndIf

EndCase

DefaultCase:

The operation MUST be failed with Status set to

STATUS_INVALID_OPLOCK_PROTOCOL.

EndSwitch

EndIf

2.1.5.19 Server Requests Canceling an Operation

The server provides:

IORequest: An implementation-specific identifier that is unique for each outstanding IO

operation, as described in [MS-CIFS] section 3.3.5.52.

No information is returned.

Cancellation provides the ability for operations that block for extended periods of time to be
terminated, thus providing better end-user responsiveness. How operation cancellation is
implemented is object store specific.

The Object Store MUST maintain a list of waiting operations that can be canceled by adding them to
the CancelableOperations.CancelableOperationList as defined in section 2.1.1.12.

Each operation receives an implementation-specific identifier (IORequest) that uniquely identifies
an in-progress I/O operation, as specified in section 2.1.5.

When a cancellation request is received, scan CancelableOperations.CancelableOperationList
looking for an operation CanceledOperation that matches IORequest. If found, CanceledOperation
MUST be removed from CancelableOperations.CancelableOperationList and CanceledOperation

%5bMS-CIFS%5d.pdf

225 / 249

[MS-FSA] — v20130722
 File System Algorithms

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

MUST be failed with STATUS_CANCELED returned for the status of the canceled operation. If not
found, the cancel request returns performing no action.<134>

2.1.5.20 Server Requests Querying Quota Information

The server provides:

Open: An Open of a Quota Stream<135>.

OutputBufferSize: The maximum number of bytes to return in OutputBuffer.

ReturnSingleEntry: A Boolean that, if TRUE, indicates at most one entry MUST be returned. If

FALSE, one or more entries MAY be returned, up to what will fit in OutputBufferSize bytes.

SidList: An optional array of one or more FILE_GET_QUOTA_INFORMATION structures as

specified in [MS-FSCC] section 2.4.33.1. This identifies the SIDs whose quota information is to
be returned.

SidListLength: The length, in bytes, of the SidList array. If no SidList array is provided, this

MUST be set to zero.

StartSid: An optional SID identifying the entry at which to begin scanning quota information.

This parameter is ignored if the SidList parameter is specified. If no StartSid SID is provided,
this field is empty.

RestartScan: A Boolean that, if TRUE, indicates that enumeration should be restarted from the

beginning of the quota list. If FALSE, enumeration should continue from the last position.

On completion, the object store MUST return:

Status: An NTSTATUS code that specifies the result.

OutputBuffer: An array of one or more FILE_QUOTA_INFORMATION structures as specified in

[MS-FSCC] section 2.4.33.

ByteCount: The number of bytes stored in OutputBuffer.

Support for this operation is optional. If the object store does not implement this functionality, the
operation MUST be failed with STATUS_INVALID_DEVICE_REQUEST.<136>

Pseudocode for the operation is as follows:

If SidList is not empty and SidListLength is not a multiple of 4, the operation MUST be failed

with STATUS_INVALID_PARAMETER.

If SidListLength is not zero but less than sizeof(FILE_GET_QUOTA_INFORMATION), SidList will

be zero filled up to sizeof(FILE_GET_QUOTA_INFORMATION).

If SidList is not empty:

For each entry in SidList, the object store MUST return a FILE_QUOTA_INFORMATION

structure as specified in [MS-FSCC] section 2.4.33, where the data returned is from the
Open.File.Volume.QuotaInformation entry with the same SID.

If SidList includes a SID that does not map to an existing SID in the

Open.File.Volume.QuotaInformation list, the object store MUST return a

FILE_QUOTA_INFORMATION structure (as specified in [MS-FSCC] section 2.4.33) that is filled
with zeros.

%5bMS-DTYP%5d.pdf
%5bMS-FSCC%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-FSCC%5d.pdf
%5bMS-FSCC%5d.pdf
%5bMS-FSCC%5d.pdf

226 / 249

[MS-FSA] — v20130722
 File System Algorithms

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

If ReturnSingleEntry is TRUE, the object store MUST return information only on the first SID

in SidList. No other SidList entries other than the first are processed by the object store.

RestartScan and StartSid are ignored.

Else: // SidList is empty

If OutputBufferSize is less than sizeof(FILE_QUOTA_INFORMATION), the operation MUST be

failed with STATUS_BUFFER_TOO_SMALL.

If StartSid is not empty:

If StartSid is not found in Open.File.Volume.QuotaInformation then the operation

MUST be failed with STATUS_INVALID_PARAMETER.

Set Open.LastQuotaId to the index of the entry in

Open.File.Volume.QuotaInformation that matches StartSid.

RestartScan is ignored.

Else:

If RestartScan is TRUE or Open.LastQuotaId is -1:

Set Open.LastQuotaId to the index of the first entry in the

Open.File.Volume.QuotaInformation list.

Else:

Set Open.LastQuotaId to the index of the entry after the current value of

Open.LastQuotaId of Open.File.Volume.QuotaInformation list.

EndIf

EndIf

The object store MUST return a FILE_QUOTA_INFORMATION structure (as specified in [MS-

FSCC] section 2.4.33) that corresponds to the entry in

Open.File.Volume.QuotaInformationList that has the index specified by
Open.LastQuotaId.

If ReturnSingleEntry is TRUE, the object store MUST return information on only a single

quota entry.

If ReturnSingleEntry is FALSE and Open.LastQuotaId is not at the end of the

Open.File.Volume.QuotaInformation list and more FILE_QUOTA_INFORMATION structures
will fit in the remaining ByteCount, then more FILE_QUOTA_INFORMATION structures
SHOULD be returned until either Open.LastQuotaId is at the end of
Open.File.Volume.QuotaInformation list or no more FILE_QUOTA_INFORMATION
structures will fit in OutputBuffer.

The operation MUST fail with STATUS_NO_MORE_ENTRIES when no entries are returned.

Open.LastQuotaId MUST be set to point to the entry in

Open.File.Volume.QuotaInformation that represents the last returned
FILE_QUOTA_INFORMATION structure in OutputBuffer.

EndIf

%5bMS-FSCC%5d.pdf
%5bMS-FSCC%5d.pdf

227 / 249

[MS-FSA] — v20130722
 File System Algorithms

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Upon successful completion, the object store MUST return:

Status set to STATUS_SUCCESS.

ByteCount set to the count, in bytes, of how much data was filled into OutputBuffer.

2.1.5.21 Server Requests Setting Quota Information

The server provides:

Open: An Open of a Quota Stream<137>.

InputBuffer: A buffer that contains one or more aligned FILE_QUOTA_INFORMATION structures

as defined in [MS-FSCC] section 2.4.33.

InputBufferSize: The size, in bytes, of InputBuffer.

On completion, the object store MUST return:

Status: An NTSTATUS code that specifies the result.

Support for this operation is optional. If the object store does not implement this functionality, the
operation MUST be failed with STATUS_INVALID_DEVICE_REQUEST.<138>

Pseudocode for the operation is as follows:

If InputBufferSize is zero, the operation MUST be failed with STATUS_INVALID_PARAMETER.

For each FILE_QUOTA_INFORMATION structure quota in InputBuffer:

Scan Open.File.Volume.QuotaInformation for an entry that matches quota.Sid and if

found, save a pointer in matchedQuota; else set matchedQuota to empty.

If quota.Sid == BUILTIN_ADMINISTRATORS (as defined in [MS-DTYP] section 2.4.2.4) and

quota.QuotaLimit != -1, the operation MUST be failed with STATUS_ACCESS_DENIED. A

quota limit cannot be specified on the administrators account.

If quota.QuotaLimit == -2 //The quota is being deleted

If matchedQuota is not empty:

Remove matchedQuota from Open.File.Volume.QuotaInformation and delete it.

Set matchedQuota to empty.

Else

The operation MUST be failed with STATUS_NO_MATCH

Endif

Else if matchedQuota is not empty:

Set matchedQuota.QuotaThreshold to quota.QuotaThreshold.

Set matchedQuota.QuotaLimit to quota.QuotaLimit.

Set matchedQuota.ChangeTime to the current time.

%5bMS-FSCC%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-DTYP%5d.pdf

228 / 249

[MS-FSA] — v20130722
 File System Algorithms

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Else: //matchedQuota is empty:

Set matchedQuota to a newly allocated FILE_QUOTA_INFORMATION structure.

Set matchedQuota.Sid to quota.Sid.

Set matchedQuota.SidLength to the length of quota.Sid.

Set matchedQuota.QuotaThreshold to quota.QuotaThreshold.

Set matchedQuota.QuotaLimit to quota.QuotaLimit.

Set matchedQuota.ChangeTime to the current time.

Insert matchedQuota into Volume.QuotaInformation.

matchedQuota.QuotaUsed should be updated in the background by scanning all files in

Open.File.Volume where File.SecurityDescriptor.Owner == matchedQuota.Sid.

EndIf

Upon successful completion, the object store MUST return:

Status set to STATUS_SUCCESS.

229 / 249

[MS-FSA] — v20130722
 File System Algorithms

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

3 Protocol Examples

None.

230 / 249

[MS-FSA] — v20130722
 File System Algorithms

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

4 Security

4.1 Security Considerations for Implementers

Security is opaque to file systems. Some file systems store security descriptors as opaque blobs and
then call security support routines to perform the necessary security checks. Other file systems do
not implement security. Security considerations are called out in the sections where they are used.
Please refer to [MS-AUTHSOD] for a security overview.

4.2 Index of Security Parameters

Security parameter Section

SecurityContext 2.1.4.13

SecurityDescriptor 2.1.4.13

SecurityContext 2.1.5.1

SecurityInformation 2.1.5.13

SecurityInformation 2.1.5.16

%5bMS-AUTHSOD%5d.pdf

231 / 249

[MS-FSA] — v20130722
 File System Algorithms

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

5 Appendix A: Product Behavior

The information in this specification is applicable to the following Microsoft products or supplemental
software. References to product versions include released service packs:

Windows 2000 operating system

Windows XP operating system

Windows Server 2003 operating system

Windows Vista operating system

Windows Server 2008 operating system

Windows 7 operating system

Windows Server 2008 R2 operating system

Windows 8 operating system

Windows Server 2012 operating system

Windows 8.1 operating system

Windows Server 2012 R2 operating system

Exceptions, if any, are noted below. If a service pack or Quick Fix Engineering (QFE) number
appears with the product version, behavior changed in that service pack or QFE. The new behavior

also applies to subsequent service packs of the product unless otherwise specified. If a product
edition appears with the product version, behavior is different in that product edition.

Unless otherwise specified, any statement of optional behavior in this specification that is prescribed
using the terms SHOULD or SHOULD NOT implies product behavior in accordance with the SHOULD

or SHOULD NOT prescription. Unless otherwise specified, the term MAY implies that the product
does not follow the prescription.

<1> Section 1.1: Of the standard Windows file systems, only the UDFS file system supports

Software Defect Management.

<2> Section 2.1.1.1: NTFS uses a default cluster size of 4 KB, a maximum cluster size of 64 KB,
and a minimum cluster size of 512 bytes. ReFS uses a default cluster size of 64 KB, a maximum
cluster size of 128k, and a minimum cluster size of 4 KB. ReFS is supported only on Windows 8,
Windows Server 2012, Windows 8.1, and Windows Server 2012 R2.

<3> Section 2.1.1.1: For AMD64, x86, and ARM systems, this value is 4 KB. For ia64 systems, this

value is 8 KB.

<4> Section 2.1.1.1: In NTFS, the CompressionUnitSize is 64 KB for encrypted files, 64 KB for
sparse files, and the lesser of 64 KB or (16 * ClusterSize) for compressed files. Other file systems

do not implement this field.

<5> Section 2.1.1.1: In NTFS, the CompressedChunkSize is 4 KB. Other Windows file systems do
not implement this field.

<6> Section 2.1.1.1: Only ReFS supports integrity.

232 / 249

[MS-FSA] — v20130722
 File System Algorithms

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

<7> Section 2.1.1.1: Only NTFS supports quotas.

<8> Section 2.1.1.1: This field is present for compatibility with the file level FileObjectIdInformation
structure ([MS-FSCC] section 2.4.28). These fields are not currently used by Windows and always
contain zeroes.

<9> Section 2.1.1.1: The USN journal is supported on ReFS all versions and NTFS version 3.0
volumes or greater. The USN journal is active by default on Windows client SKUs starting with
Windows Vista and later. The USN journal is not active by default on Windows Server SKUs.

<10> Section 2.1.1.1: For Windows 2000, Windows XP, Windows Server 2003, Windows Vista,
Windows Server 2008, Windows 7, and Windows Server 2008 R2, the maximum file size of a file on
an NTFS volume is the smaller of (232 – 1) * cluster size, and 16 terabytes (TB). For Windows 8 and
Windows Server 2012, the maximum file size of a file on an NTFS volume is (232 – 1) * cluster size.

For Windows 8.1 and Windows Server 2012 R2, the maximum file size of a file on an NTFS volume is
(((232 * cluster size) – 64K). For example, if the cluster size is 512 bytes, the maximum file size is 2
TB.

<11> Section 2.1.1.2: ReFS does not implement the TunnelCache.

<12> Section 2.1.1.3: ReFS and exFAT do not implement ShortNames.

<13> Section 2.1.1.3: The following table defines the support of file time stamps across various

Windows file systems. More information can be found in section 6 of the File System Behavior
Overview document [FSBO].

Timestamp ReFS NTFS FAT EXFAT UDFS

CreationTime Stored in UTC

100

nanosecond

granularity

Stored in UTC

100

nanosecond

granularity

Stored in

local time

10

millisecond

granularity

Stored in UTC

if available,

else in local

time

10 millisecond

granularity

Stored in UTC if

available, else

in local time

1 microsecond

granularity

LastAccessTime Stored in UTC

100

nanosecond

granularity

Updated at 60

minute

granularity

Stored in UTC

100

nanosecond

granularity

Updated at 60

minute

granularity

Stored in

local time

1 day

granularity

Stored in UTC

if available,

else in local

time

2 second

granularity

Stored in UTC if

available, else

in local time

1 microsecond

granularity

ChangeTime Stored in UTC

100

nanosecond

granularity

Stored in UTC

100

nanosecond

granularity

Not

Supported

Not Supported Stored in UTC if

available, else

in local time

1 microsecond

granularity

LastWriteTime Stored in UTC

100

nanosecond

granularity

Stored in UTC

100

nanosecond

granularity

Stored in

local time

2 second

granularity

Stored in UTC

if available,

else in local

time

10 millisecond

granularity

Stored in UTC if

available, else

in local time

1 microsecond

granularity

%5bMS-FSCC%5d.pdf
http://go.microsoft.com/fwlink/?LinkID=140636

233 / 249

[MS-FSA] — v20130722
 File System Algorithms

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

<14> Section 2.1.1.3: The following table defines the support of file time stamps across various
Windows file systems. More information can be found in section 6 of the File System Behavior

Overview document [FSBO].

Timestamp ReFS NTFS FAT EXFAT UDFS

CreationTime Stored in UTC

100

nanosecond

granularity

Stored in UTC

100

nanosecond

granularity

Stored in

local time

10

millisecond

granularity

Stored in UTC

if available,

else in local

time

10 millisecond

granularity

Stored in UTC if

available, else

in local time

1 microsecond

granularity

LastAccessTime Stored in UTC

100

nanosecond

granularity

Updated at 60

minute

granularity

Stored in UTC

100

nanosecond

granularity

Updated at 60

minute

granularity

Stored in

local time

1 day

granularity

Stored in UTC

if available,

else in local

time

2 second

granularity

Stored in UTC if

available, else

in local time

1 microsecond

granularity

ChangeTime Stored in UTC

100

nanosecond

granularity

Stored in UTC

100

nanosecond

granularity

Not

Supported

Not Supported Stored in UTC if

available, else

in local time

1 microsecond

granularity

LastWriteTime Stored in UTC

100

nanosecond

granularity

Stored in UTC

100

nanosecond

granularity

Stored in

local time

2 second

granularity

Stored in UTC

if available,

else in local

time

10 millisecond

granularity

Stored in UTC if

available, else

in local time

1 microsecond

granularity

<15> Section 2.1.1.3: The following table defines the support of file time stamps across various
Windows file systems. More information can be found in section 6 of the File System Behavior
Overview document [FSBO].

Timestamp ReFS NTFS FAT EXFAT UDFS

CreationTime Stored in UTC

100

nanosecond

granularity

Stored in UTC

100

nanosecond

granularity

Stored in

local time

10

millisecond

granularity

Stored in UTC

if available,

else in local

time

10 millisecond

granularity

Stored in UTC if

available, else

in local time

1 microsecond

granularity

LastAccessTime Stored in UTC

100

nanosecond

granularity

Updated at 60

minute

granularity

Stored in UTC

100

nanosecond

granularity

Updated at 60

minute

granularity

Stored in

local time

1 day

granularity

Stored in UTC

if available,

else in local

time

2 second

granularity

Stored in UTC if

available, else

in local time

1 microsecond

granularity

ChangeTime Stored in UTC Stored in UTC Not Not Supported Stored in UTC if

http://go.microsoft.com/fwlink/?LinkID=140636
http://go.microsoft.com/fwlink/?LinkID=140636

234 / 249

[MS-FSA] — v20130722
 File System Algorithms

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Timestamp ReFS NTFS FAT EXFAT UDFS

100

nanosecond

granularity

100

nanosecond

granularity

Supported available, else

in local time

1 microsecond

granularity

LastWriteTime Stored in UTC

100

nanosecond

granularity

Stored in UTC

100

nanosecond

granularity

Stored in

local time

2 second

granularity

Stored in UTC

if available,

else in local

time

10 millisecond

granularity

Stored in UTC if

available, else

in local time

1 microsecond

granularity

<16> Section 2.1.1.3: In Windows Vista/Windows Server 2008 and later, LastAccessTime updates
are disabled by default in the ReFS and NTFS file systems. It is only updated when the file is closed.
This behavior is controlled by the following registry key:

HKLM\System\CurrentControlSet\Control\FileSystem\NtfsDisableLastAccessUpdate. A nonzero value
means LastAccessTime updates are disabled. A value of zero means they are enabled.

<17> Section 2.1.1.3: The following table defines the support of file time stamps across various
Windows file systems. More information can be found in section 6 of the File System Behavior
Overview document [FSBO].

Timestamp ReFS NTFS FAT EXFAT UDFS

CreationTime Stored in UTC

100

nanosecond

granularity

Stored in UTC

100

nanosecond

granularity

Stored in

local time

10

millisecond

granularity

Stored in UTC

if available,

else in local

time

10 millisecond

granularity

Stored in UTC if

available, else

in local time

1 microsecond

granularity

LastAccessTime Stored in UTC

100

nanosecond

granularity

Updated at 60

minute

granularity

Stored in UTC

100

nanosecond

granularity

Updated at 60

minute

granularity

Stored in

local time

1 day

granularity

Stored in UTC

if available,

else in local

time

2 second

granularity

Stored in UTC if

available, else

in local time

1 microsecond

granularity

ChangeTime Stored in UTC

100

nanosecond

granularity

Stored in UTC

100

nanosecond

granularity

Not

Supported

Not Supported Stored in UTC if

available, else

in local time

1 microsecond

granularity

LastWriteTime Stored in UTC

100

nanosecond

granularity

Stored in UTC

100

nanosecond

granularity

Stored in

local time

2 second

granularity

Stored in UTC

if available,

else in local

time

10 millisecond

granularity

Stored in UTC if

available, else

in local time

1 microsecond

granularity

<18> Section 2.1.1.3: Only NTFS implements EAs.

http://go.microsoft.com/fwlink/?LinkID=140636

235 / 249

[MS-FSA] — v20130722
 File System Algorithms

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

<19> Section 2.1.1.3: Only NTFS implements EAs.

<20> Section 2.1.1.3: Only NTFS implements object IDs.

<21> Section 2.1.1.3: Only NTFS implements object IDs.

<22> Section 2.1.1.3: Only NTFS and UDFS implement named streams.

<23> Section 2.1.1.3: ReFS and exFAT do not implement ShortNames.

<24> Section 2.1.1.3: Only NTFS implements encryption.

<25> Section 2.1.1.4: For ReFS, there will always be exactly one link per file or directory.

<26> Section 2.1.1.4: On ReFS or exFAT, this field MUST be empty.

<27> Section 2.1.1.5: Only NTFS supports compression.

<28> Section 2.1.1.5: Only ReFS supports integrity.

<29> Section 2.1.1.5: Only ReFS supports integrity.

<30> Section 2.1.1.5: Only NTFS and UDFS support sparse files.

<31> Section 2.1.1.5: Only NTFS supports encryption.

<32> Section 2.1.1.6: Only NTFS implements EAs.

<33> Section 2.1.4.11: NTFS sets RecordLength to
BlockAlign(FieldOffset(USN_RECORD_V2.FileName) + FileNameLength, 8). ReFS sets RecordLength
to BlockAlign(FieldOffset(USN_RECORD_V3.FileName) + FileNameLength, 8).

<34> Section 2.1.5.1.1: For the NTFS file system, the FileId128 consists of a 48-bit index into the
MFT (the low 48 bits) and a 16-bit sequence number (the next higher 16 bits), with the high 64 bits
unused and always equal to 0. For the ReFS file system, the FileId128 consists of a 64-bit index

uniquely identifying the file's parent directory on the volume (the low 64 bits) and a 64-bit index
uniquely identifying the file within that directory (the high 64 bits).

<35> Section 2.1.5.1.1: For the NTFS file system this is the index and sequence number portions
(low 64 bits) of the FileId128. The ReFS file system maps a subset of the possible FileId128

values to FileId64 values using a reversible algorithm; for values outside of this subset, ReFS sets
the FileId64 to -1.

<36> Section 2.1.5.1.1: For the NTFS file system, this is the index portion (low 48 bits) of the
FileId128. The ReFS file system does not implement this field.

<37> Section 2.1.5.1.1: Only ReFS supports FILE_ATTRIBUTE_INTEGRITY_STREAM.

<38> Section 2.1.5.1.1: Only NTFS and ReFS support FILE_ATTRIBUTE_NO_SCRUB_DATA.

<39> Section 2.1.5.1.1: Only NTFS and UDFS implement named streams.

<40> Section 2.1.5.1.2: Windows 2000, Windows XP, Windows Server 2003, and Windows Vista,
treat the FILE_DISALLOW_EXCLUSIVE option as always being FALSE.

<41> Section 2.1.5.5.1: This is implemented only by the NTFS file system.

<42> Section 2.1.5.5.1: This directory is only available on NTFS volumes formatted to NTFS version
3.0 or late.

236 / 249

[MS-FSA] — v20130722
 File System Algorithms

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

<43> Section 2.1.5.5.1: "*" is treated as 0x0000002A during the search, and it gives the practical
behavior of a wildcard since an ObjectId starts with a much larger value. Similarly, "?" is treated as

0x0000003F and so practically it behaves like "*".

<44> Section 2.1.5.5.2: This is implemented only by the NTFS file system.

<45> Section 2.1.5.5.2: This directory is only available on NTFS volumes formatted to NTFS version
3.0 or later.

<46> Section 2.1.5.5.3.1: For ReFS, this value MUST be zero.

<47> Section 2.1.5.5.3.3: For ReFS, this value MUST be zero.

<48> Section 2.1.5.5.3.4: For ReFS, this value MUST be zero.

<49> Section 2.1.5.5.3.5: For ReFS, this value MUST be zero.

<50> Section 2.1.5.6: This is only implemented by the NTFS file system. Other file systems return

STATUS_SUCCESS and perform no other action.

<51> Section 2.1.5.9.1: This is only implemented by the NTFS file system.

<52> Section 2.1.5.9.1: If the generated ObjectId collides with existing ObjectIds on the volume,
Windows retries up to 16 times before failing the operation with STATUS_DUPLICATE_NAME.

<53> Section 2.1.5.9.1: The file system only updates LastChangeTime if no user has explicitly set
LastChangeTime. The NTFS and ReFS file systems defer setting LastChangeTime until the handle

is closed.

<54> Section 2.1.5.9.2: This is only implemented by the NTFS file system.

<55> Section 2.1.5.9.2: The file system only updates LastChangeTime if no user has explicitly set
LastChangeTime. The NTFS and ReFS file systems defer setting LastChangeTime until the handle
is closed.

<56> Section 2.1.5.9.3: This is only implemented by the NTFS file system.

<57> Section 2.1.5.9.3: The file system only updates LastChangeTime if no user has explicitly set

LastChangeTime. The NTFS and ReFS file systems defer setting LastChangeTime until the handle
is closed.

<58> Section 2.1.5.9.4: If the Open is a directory on a Cluster Shared Volume File System
(CSVFS), the operation MUST be failed with STATUS_NOT_IMPLEMENTED.

<59> Section 2.1.5.9.5: This is only implemented by the ReFS, NTFS, FAT, and exFAT file systems.

<60> Section 2.1.5.9.5: The NTFS file system sets an NTFS_STATISTICS structure as specified in
[MS-FSCC] section 2.3.8.2. The FAT file system sets a FAT_STATISTICS structure as specified in

[MS-FSCC] section 2.3.8.3. The EXFAT file system sets a EXFAT_STATISTICS structure as specified
in [MS-FSCC] section 2.3.8.4.

<61> Section 2.1.5.9.6: This is only implemented by the NTFS file system.

<62> Section 2.1.5.9.6: Some file systems have more efficient mechanisms to obtain a list of files.
For instance, NTFS iterates through all base file records of the MFT.

<63> Section 2.1.5.9.7: This is only implemented by the NTFS and ReFS file systems.

%5bMS-FSCC%5d.pdf
%5bMS-FSCC%5d.pdf
%5bMS-FSCC%5d.pdf

237 / 249

[MS-FSA] — v20130722
 File System Algorithms

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

<64> Section 2.1.5.9.8: This operation is only implemented by the ReFS file system.

<65> Section 2.1.5.9.9: This is only implemented by the NTFS file system.

<66> Section 2.1.5.9.9: Several of the fields being set in this section are specific to how the NTFS
file system is implemented and are not defined in the Object Stores Abstract Data Model.

<67> Section 2.1.5.9.11: This is only implemented by the NTFS file system.

<68> Section 2.1.5.9.12: This is only implemented by the ReFS and NTFS file systems.

<69> Section 2.1.5.9.17: This is implemented only by the NTFS file system.

<70> Section 2.1.5.9.18: This is implemented only by the NTFS file system.

<71> Section 2.1.5.9.19: This is only implemented by the ReFS and NTFS file systems.

<72> Section 2.1.5.9.20: Support for this FSCTL is only implemented in the FAT file system. The
data returned by this FSCTL is incomplete and incorrect on FAT32, and it is unsupported on all other

file systems, as specified in [MS-FSCC] section 2.3.39.

<73> Section 2.1.5.9.20: This operation is only supported by the FAT file system.

<74> Section 2.1.5.9.22: This is only implemented by the UDFS file system.

<75> Section 2.1.5.9.23: This is only implemented by the UDFS file system.

<76> Section 2.1.5.9.24: This is only implemented by the ReFS and NTFS file systems.

<77> Section 2.1.5.9.24: In Windows 2000, Windows XP, Windows Server 2003, Windows Vista,

Windows Server 2008, Windows 7, Windows Server 2008 R2, Windows 8, and Windows Server
2012, NTFS uses a MaxMajorVersionSupported value of 2.

<78> Section 2.1.5.9.24: In Windows 2000, Windows XP, Windows Server 2003, Windows Vista,
Windows Server 2008, Windows 7 and Windows Server 2008 R2, NTFS ignores the input buffer

completely; all requests are treated as having an InputBufferSize of 0.

<79> Section 2.1.5.9.24: In Windows 8 and Windows Server 2012, the operation MUST be failed
with STATUS_NOT_IMPLEMENTED.

<80> Section 2.1.5.9.25: This file system request is handled by the optional hierarchical storage
management (HSM) file system filter. This filter has been deprecated as of Windows Server 2008
and is a server-only feature.

<81> Section 2.1.5.9.26: If the Open is a directory on a Cluster Shared Volume File System
(CSVFS), the operation MUST be failed with STATUS_NOT_IMPLEMENTED.

<82> Section 2.1.5.9.26: This method is fully supported with NTFS, but for ReFS, it is only
supported and returns STATUS_SUCCESS when CompressionState is set to

COMPRESSION_FORMAT_NONE. The method fails with STATUS_NOT_SUPPORTED for any other
value of CompressionState.

<83> Section 2.1.5.9.26: NTFS File Compression can be disabled globally on a system by setting
the registry key HKLM\SYSTEM\CurrentControlSet\Control\FileSystem\NtfsDisableCompression to 1
and then rebooting the system to have the change take effect. Compression can be re-enabled by
setting this key to zero and rebooting the system.

%5bMS-FSCC%5d.pdf

238 / 249

[MS-FSA] — v20130722
 File System Algorithms

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

<84> Section 2.1.5.9.27: This is only implemented by the UDFS file system on media types that
require software defect management.

<85> Section 2.1.5.9.28: This is only implemented by the NTFS file system.

<86> Section 2.1.5.9.29: Only ReFS supports integrity.

<87> Section 2.1.5.9.29: If the Open is a directory on a Cluster Shared Volume File System
(CSVFS), the operation MUST be failed with STATUS_NOT_IMPLEMENTED.

<88> Section 2.1.5.9.29: This is implemented only by the ReFS file system.

<89> Section 2.1.5.9.30: This is only implemented by the NTFS file system.

<90> Section 2.1.5.9.30: The file system only updates LastChangeTime if no user has explicitly
set LastChangeTime. The NTFS and ReFS file systems defer setting LastChangeTime until the
handle is closed.

<91> Section 2.1.5.9.31: This is only implemented by the NTFS file system.

<92> Section 2.1.5.9.31: The file system only updates LastChangeTime if no user has explicitly set
LastChangeTime. The NTFS and ReFS file systems defer setting the LastChangeTime until the handle
is closed.

<93> Section 2.1.5.9.32: This is only implemented by the ReFS and NTFS file systems.

<94> Section 2.1.5.9.32: The file system only updates LastChangeTime if no user has explicitly set

LastChangeTime. The NTFS and ReFS file systems defer setting the LastChangeTime until the handle
is closed.

<95> Section 2.1.5.9.33: WinPE stands for the Windows Preinstallation Environment. For more
information please see: http://technet.microsoft.com/en-us/library/cc766093(WS.10).aspx

<96> Section 2.1.5.9.34: If the Open is a directory on a Cluster Shared Volume File System
(CSVFS), the operation MUST be failed with STATUS_NOT_IMPLEMENTED.

<97> Section 2.1.5.9.34: This is only implemented by the NTFS file system and by the ReFS file

system on non-integrity streams. In Windows 8.1 and Windows Server 2012 R2, ReFS supports this
for both conventional and integrity streams.

<98> Section 2.1.5.9.35: If the Open is a directory on a Cluster Shared Volume File System
(CSVFS), the operation MUST be failed with STATUS_NOT_IMPLEMENTED.

<99> Section 2.1.5.9.35: This is only implemented by the NTFS file system and by the ReFS file
system on non-integrity streams. In Windows 8.1 and Windows Server 2012 R2, ReFS supports this
for both conventional and integrity streams.

<100> Section 2.1.5.9.36: This is only implemented by the NTFS file system.

<101> Section 2.1.5.9.37: [SIS] (Single Instance Storage) is an optional feature available in the
following versions of Windows Server: Windows Storage Server 2003 R2, Standard Edition, Windows

Storage Server 2008, and Windows Storage Server 2008 R2. [SIS] is not supported directly by any
of the Windows file systems but is implemented as a file system filter. Please refer to the following
article for detailed information about [SIS].

<102> Section 2.1.5.9.37: This is implemented only by the NTFS file system.

http://go.microsoft.com/fwlink/?LinkId=90517
http://go.microsoft.com/fwlink/?LinkId=90517

239 / 249

[MS-FSA] — v20130722
 File System Algorithms

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

<103> Section 2.1.5.9.37: In the Windows environment file system are implemented in kernel
mode. If a NULL security context is specified and the originator of the operation is running in kernel

mode, a built-in SYSTEM security context is used that grants all access.

<104> Section 2.1.5.9.37: In the Windows environment file system are implemented in kernel

mode. If a NULL security context is specified and the originator of the operation is running in kernel
mode, a built-in SYSTEM security context is used that grants all access.

<105> Section 2.1.5.9.37: In the Windows environment this is done by creating a new file in what
is known as the "SIS Common Store". Reparse points are attached to any file controlled by [SIS]
that contains information on how to access the Common Store file that contains the data for this
file. Please see the following article about [SIS] for details on how this is implemented.

<106> Section 2.1.5.9.38: This is only implemented by the NTFS file system.

<107> Section 2.1.5.11.5: Only ReFS supports integrity.

<108> Section 2.1.5.11.5: Only ReFS supports integrity.

<109> Section 2.1.5.11.6: Only ReFS supports integrity.

<110> Section 2.1.5.11.6: Only ReFS supports integrity.

<111> Section 2.1.5.11.10: Only NTFS implements EAs.

<112> Section 2.1.5.11.12: This operation is only supported by the NTFS file system.

<113> Section 2.1.5.11.21: Available only in ReFS.

<114> Section 2.1.5.11.21: Available only in ReFS.

<115> Section 2.1.5.11.23: If Open.Mode contains neither FILE_SYNCHRONOUS_IO_ALERT nor
FILE_SYNCHRONOUS_IO_NONALERT, this operation does not return meaningful information in
OutputBuffer.CurrentByteOffset, because Open.CurrentByteOffset is not maintained for any
Open that does not have either of those flags set.

<116> Section 2.1.5.11.27: This algorithm is only implemented by NTFS and ReFS. The FAT,

EXFAT, CDFS, and UDFS file systems always return 1.

<117> Section 2.1.5.12.5: The following table defines what FileSystemAttributes flags, as defined in
[MS-FSCC] section 2.5.1, are set by various Windows file systems and why they are set:

 ReFS NTFS FAT EXFAT UDFS CDFS

FILE_SUPPORTS_USN_JOURNAL

0x02000000

Always

Set

Set if 3.0

format or

higher

volume

FILE_SUPPORTS_OPEN_BY_FILE_ID

0x01000000

Always

Set

Always

Set

 Set if

volume

mounte

d read-

only

Alway

s Set

FILE_SUPPORTS_EXTENDED_ATTRIBUT

ES

0x00800000

 Always

Set

http://go.microsoft.com/fwlink/?LinkId=90517
http://go.microsoft.com/fwlink/?LinkId=90517
%5bMS-FSCC%5d.pdf

240 / 249

[MS-FSA] — v20130722
 File System Algorithms

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

 ReFS NTFS FAT EXFAT UDFS CDFS

FILE_SUPPORTS_HARD_LINKS

0x00400000

 Always

Set

 Always

Set

FILE_SUPPORTS_TRANSACTIONS

0x00200000

 Set if 3.0

format or

higher

volume

FILE_SEQUENTIAL_WRITE_ONCE

0x00100000

 Set if

volume

not

mounte

d read-

only

FILE_READ_ONLY_VOLUME

0x00080000

Set if

volume

mounte

d read-

only

Set if

volume

mounted

read-only

Set if

volume

mounte

d read-

only

Set if

volume

mounte

d read-

only

Set if

volume

mounte

d read-

only

Alway

s Set

FILE_NAMED_STREAMS

0x00040000

 Always

Set

 Set if

2.0

format

or

higher

FILE_SUPPORTS_ENCRYPTION

0x00020000

 Set if 3.0

format or

higher

volume

and

encryptio

n is

enabled

on the

system

FILE_SUPPORTS_OBJECT_IDS

0x00010000

 Set if 3.0

format or

higher

volume

FILE_VOLUME_IS_COMPRESSED

0x00008000

FILE_SUPPORTS_REMOTE_STORAGE

0x00000100

FILE_SUPPORTS_REPARSE_POINTS

0x00000080

Always

Set

Set if 3.0

format or

higher

volume

FILE_SUPPORTS_SPARSE_FILES

0x00000040

 Set if 3.0

format or

higher

241 / 249

[MS-FSA] — v20130722
 File System Algorithms

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

 ReFS NTFS FAT EXFAT UDFS CDFS

volume

FILE_VOLUME_QUOTAS

0x00000020

 Set if 3.0

format or

higher

volume

FILE_FILE_COMPRESSION

0x00000010

 Set if

volume

cluster

size is 4K

or less

FILE_PERSISTENT_ACLS

0x00000008

Always

Set

Always

Set

FILE_UNICODE_ON_DISK

0x00000004

Always

Set

Always

Set

Always

Set

Always

Set

Always

Set

Set if

Joliet

Forma

t

FILE_CASE_PRESERVED_NAMES

0x00000002

Always

Set

Always

Set

Always

Set

Always

Set

Always

Set

FILE_CASE_SENSITIVE_SEARCH

0x00000001

Always

Set

Always

Set

 Always

Set

Alway

s Set

<118> Section 2.1.5.12.5: The following table defines the MaximumComponentNameLength, as
defined in [MS-FSCC] section 2.5.1, that is set by each file system:

 ReFS NTFS FAT EXFAT UDFS CDFS

MaximumComponentNameLength

Value

255 255 255 255 254 110 if Joliet

Format

221 otherwise

<119> Section 2.1.5.12.6: This is implemented only by the NTFS file system.

<120> Section 2.1.5.12.8: ReFS does not implement object IDs.

<121> Section 2.1.5.12.8: This is implemented only by the NTFS file system.

<122> Section 2.1.5.14.1: The following table describes the maximum file size supported by
various Windows File Systems.

 ReFS NTFS FAT EXFAT UDFS CDFS

MaximumFileSize ((2^32)-1)

* number

of clusters

16 TB for Windows 2000,

Windows XP, Windows

Server 2003, Windows Vista,

Windows Server 2008,

Windows 7, and Windows

Server 2008 R2

(((2^32)-1) * number of

4

GB

16

exabytes

8 TB 8 TB

%5bMS-FSCC%5d.pdf

242 / 249

[MS-FSA] — v20130722
 File System Algorithms

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

 ReFS NTFS FAT EXFAT UDFS CDFS

clusters) for Windows 8 and

Windows Server 2012

(((2^32) * number of clusters)

- 64K) for Windows 8.1 and

Windows Server 2012 R2

The physical format will support

16 exabytes.

<123> Section 2.1.5.14.4: The following table describes the maximum file size supported by

various Windows File Systems.

 ReFS NTFS FAT EXFAT UDFS CDFS

MaximumFileSize ((2^32)-1)

* number

of clusters

16 TB for Windows 2000,

Windows XP, Windows

Server 2003, Windows Vista,

Windows Server 2008,

Windows 7, and Windows

Server 2008 R2

(((2^32)-1) * number of

clusters) for Windows 8 and

Windows Server 2012

(((2^32) * number of clusters)

- 64K) for Windows 8.1 and

Windows Server 2012 R2

The physical format will support

16 exabytes.

4

GB

16

exabytes

8 TB 8 TB

<124> Section 2.1.5.14.5: Only NTFS implements EAs.

<125> Section 2.1.5.14.6: In Windows, both the NTFS and UDFS file systems support hard links.

UDFS support of hard links was added in Windows Vista and Windows Server 2008. ReFS does not
support hard links.

<126> Section 2.1.5.14.9: If Open.Mode contains neither FILE_SYNCHRONOUS_IO_ALERT nor
FILE_SYNCHRONOUS_IO_NONALERT, this operation does not have any meaningful effect, because

Open.CurrentByteOffset is not used for any Open that does not have either of those flags set.

<127> Section 2.1.5.14.11: The file system only updates LastChangeTime if no user has explicitly
set LastChangeTime. The NTFS and ReFS file systems defer setting LastChangeTime until the
handle is closed.

<128> Section 2.1.5.14.13: ReFS does not implement short names.

<129> Section 2.1.5.14.14: ValidDataLength is an internal implementation detail of the NTFS file
system and the ReFS file system. It is not a notion that exists in other Windows file systems.

ValidDataLength, as defined by NTFS and ReFS, refers to a high-watermark in the file that is

considered to be initialized data by a user writing in the region or by the file system writing zeros.
Any reads within that value are required to return data from the persistent store. Any reads beyond
that value are required to return zeros. There is no API to query ValidDataLength, and the API to set
ValidDataLength only allows the value to increase from the existing value.

<130> Section 2.1.5.15.6: This is implemented only by the NTFS file system.

243 / 249

[MS-FSA] — v20130722
 File System Algorithms

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

<131> Section 2.1.5.15.8: Only NTFS implements object IDs.

<132> Section 2.1.5.15.8: This is only implemented by the NTFS file system.

<133> Section 2.1.5.16: The file system only updates LastChangeTime if no user has explicitly set
LastChangeTime. The NTFS and ReFS file systems defer setting LastChangeTime until the handle

is closed.

<134> Section 2.1.5.19: In Windows file systems, operations are only cancelable if they are blocked
and put on a wait queue of some kind. Operations that are actively being processed are not
cancelable.

<135> Section 2.1.5.20: The name of the quota file in the Windows environment is:

$Extend\$Quota:$Q:$INDEX_ALLOCATION

<136> Section 2.1.5.20: This operation is implemented only by the NTFS file system.

<137> Section 2.1.5.21: The name of the quota file in the Windows environment is:

$Extend\$Quota:$Q:$INDEX_ALLOCATION

<138> Section 2.1.5.21: This operation is only implemented by the NTFS file system.

244 / 249

[MS-FSA] — v20130722
 File System Algorithms

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

6 Change Tracking

This section identifies changes that were made to the [MS-FSA] protocol document between the
January 2013 and August 2013 releases. Changes are classified as New, Major, Minor, Editorial, or
No change.

The revision class New means that a new document is being released.

The revision class Major means that the technical content in the document was significantly revised.
Major changes affect protocol interoperability or implementation. Examples of major changes are:

A document revision that incorporates changes to interoperability requirements or functionality.

An extensive rewrite, addition, or deletion of major portions of content.

The removal of a document from the documentation set.

Changes made for template compliance.

The revision class Minor means that the meaning of the technical content was clarified. Minor
changes do not affect protocol interoperability or implementation. Examples of minor changes are

updates to clarify ambiguity at the sentence, paragraph, or table level.

The revision class Editorial means that the language and formatting in the technical content was
changed. Editorial changes apply to grammatical, formatting, and style issues.

The revision class No change means that no new technical or language changes were introduced.
The technical content of the document is identical to the last released version, but minor editorial
and formatting changes, as well as updates to the header and footer information, and to the revision

summary, may have been made.

Major and minor changes can be described further using the following change types:

New content added.

Content updated.

Content removed.

New product behavior note added.

Product behavior note updated.

Product behavior note removed.

New protocol syntax added.

Protocol syntax updated.

Protocol syntax removed.

New content added due to protocol revision.

Content updated due to protocol revision.

Content removed due to protocol revision.

New protocol syntax added due to protocol revision.

245 / 249

[MS-FSA] — v20130722
 File System Algorithms

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Protocol syntax updated due to protocol revision.

Protocol syntax removed due to protocol revision.

New content added for template compliance.

Content updated for template compliance.

Content removed for template compliance.

Obsolete document removed.

Editorial changes are always classified with the change type Editorially updated.

Some important terms used in the change type descriptions are defined as follows:

Protocol syntax refers to data elements (such as packets, structures, enumerations, and

methods) as well as interfaces.

Protocol revision refers to changes made to a protocol that affect the bits that are sent over

the wire.

The changes made to this document are listed in the following table. For more information, please

contact protocol@microsoft.com.

Section

Tracking number (if applicable)

 and description

Major

change

(Y or

N)

Change

type

2.1.1.3

Per File

Added content for Windows 8.1 operating

system and Windows Server 2012 R2

operating system.

Y Content

updated.

2.1.1.5

Per Stream

69155

Replaced the IsIntegrity value with the

ChecksumAlgorithm value in the list of

persistent attributes that the object store

must implement.

Y Content

updated.

2.1.1.9

Per NotifyEventEntry

67695

Updated the description of the FileName

value.

Y Content

updated.

2.1.4.11

Algorithm for Posting a USN Change

for a File

Added content for Windows 8.1 and

Windows Server 2012 R2.

Y Content

updated.

2.1.5.1

Server Requests an Open of a File

67122

Changed Open.Volume to Open.File.Volume

in member names.

Y Content

updated.

2.1.5.1.1

Creation of a New File

67699

Amended pseudocode to include the case of

Stream.Name not being empty.

Y Content

updated.

2.1.5.1.1

Creation of a New File

Added content for Windows 8.1 and

Windows Server 2012 R2.

Y Content

updated.

mailto:protocol@microsoft.com

246 / 249

[MS-FSA] — v20130722
 File System Algorithms

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Section

Tracking number (if applicable)

 and description

Major

change

(Y or

N)

Change

type

2.1.5.1.2

Open of an Existing File

67699

Amended pseudocode to include the case of

Stream.Name not being empty.

Y Content

updated.

2.1.5.1.2

Open of an Existing File

Added processing rules for

CreateOptions.FILE_DISALLOW_EXCLUSIVE

.

Y Content

updated.

2.1.5.4

Server Requests Closing an Open

67699

Amended pseudocode with instructions to

concatenate Open.FileName in cases where

StreamDeleted is TRUE and FilterMatch is

not zero.

Y Content

updated.

2.1.5.5.3.4

FileIdBothDirectoryInformation

Added content for Windows 8.1 and

Windows Server 2012 R2.

Y Content

updated.

2.1.5.5.3.5

FileIdFullDirectoryInformation

Added content for Windows 8.1 and

Windows Server 2012 R2.

Y Content

updated.

2.1.5.9.4

FSCTL_FILE_LEVEL_TRIM

68030

Updated the description of the

OutputBuffer.

N Content

updated.

2.1.5.9.4

FSCTL_FILE_LEVEL_TRIM

67122

Changed Open.Volume to Open.File.Volume

in member names.

Y Content

updated.

2.1.5.9.8

FSCTL_GET_INTEGRITY_INFORMATIO

N

69155

Updated the pseudocode for the operation.

Y Content

updated.

2.1.5.9.10

FSCTL_GET_REFS_VOLUME_DATA

Added section with content for Windows 8.1

and Windows Server 2012 R2

Y New

content

added.

2.1.5.9.17

FSCTL_OFFLOAD_READ

67122

Changed Open.Volume to Open.File.Volume

in member names.

Y Content

updated.

2.1.5.9.17

FSCTL_OFFLOAD_READ

67102

Updated the processing rules for validating

the size of InputBuffer.CopyLength.

Y Content

updated.

2.1.5.9.17

FSCTL_OFFLOAD_READ

67101

Changed the Abstract Data Model element

"BytesPerLogicalSector" to

"LogicalBytesPerSector".

Y Content

updated.

2.1.5.9.18

FSCTL_OFFLOAD_WRITE

67122

Changed Open.Volume to Open.File.Volume

in member names.

Y Content

updated.

2.1.5.9.18

FSCTL_OFFLOAD_WRITE

67101

Changed the Abstract Data Model element

Y Content

updated.

247 / 249

[MS-FSA] — v20130722
 File System Algorithms

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

Section

Tracking number (if applicable)

 and description

Major

change

(Y or

N)

Change

type

"BytesPerLogicalSector" to

"LogicalBytesPerSector".

2.1.5.9.24

FSCTL_READ_FILE_USN_DATA

68010

Updated the error code returned in the

product behavior note.

Y Product

behavior

note

updated.

2.1.5.9.24

FSCTL_READ_FILE_USN_DATA

Added content for Windows 8.1 and

Windows Server 2012 R2.

Y Content

updated.

2.1.5.9.29

FSCTL_SET_INTEGRITY_INFORMATION

69155

Amended the If statement based on the

value of InputBuffer.Flags.

Y Content

updated.

2.1.5.9.37

FSCTL_SIS_COPYFILE

67122

Changed Open.Volume to Open.File.Volume

in member names.

Y Content

updated.

2.1.5.11.5

FileAttributeTagInformation

69155

Modified pseudocode for the operation.

Y Content

updated.

2.1.5.11.6

FileBasicInformation

69155

Modified pseudocode for the operation.

Y Content

updated.

2.1.5.11.17

FileInternalInformation

Added content for Windows 8.1 and

Windows Server 2012 R2.

Y Content

updated.

2.1.5.11.21

FileNetworkOpenInformation

69155

Modified pseudocode for the operation.

Y Content

updated.

2.1.5.12.10

FileFsSectorSizeInformation

67122

Changed Open.Volume to Open.File.Volume

in member names.

Y Content

updated.

2.1.5.14.11

FileRenameInformation

Added content for Windows 8.1 and

Windows Server 2012 R2.

Y Content

updated.

2.1.5.20

Server Requests Querying Quota

Information

67122

Changed Open.Volume to Open.File.Volume

in member names.

Y Content

updated.

5

Appendix A: Product Behavior

Modified this section to include references to

Windows 8.1 and Windows Server 2012 R2.

Y Content

updated.

248 / 249

[MS-FSA] — v20130722
 File System Algorithms

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

7 Index

A

Abstract data model
ByteRangeLock 20
CancelableOperations 22
ChangeNotifyEntry 20
file 15
link 17
NotifyEventEntry 20
open 18
Oplock 20
overview 11
RHOpContext 22
SecurityContext 22
stream 17
TunnelCacheEntry 14
volume 11

Algorithms - common
AccessCheck 48
BlockAlign 26
BlockAlignTruncate 26
BuildRelativeName 49
ClustersFromBytes 26
ClustersFromBytesTruncate 26
directory change report 23
FileName in an expression - determining 25
FindAllFiles 49
open files - detecting 24
Oplock break - checking 29
overview 23
range access conflict with byte-range locks -

determining 27
shared Oplock - recomputing state 47
SidLength 27
USN change for a file - posting 28
wildcard - determining 25

Applicability 10

C

Capability negotiation 10
Change tracking 244
Common algorithms

AccessCheck 48
BlockAlign 26
BlockAlignTruncate 26
BuildRelativeName 49
ClustersFromBytes 26
ClustersFromBytesTruncate 26
directory change report 23
FileName in an expression - determining 25
FindAllFiles 49
open files - detecting 24
Oplock break - checking 29
overview 23
range access conflict with byte-range locks -

determining 27
shared Oplock - recomputing state 47

SidLength 27
USN change for a file - posting 28
wildcard - determining 25

D

Data model - abstract
ByteRangeLock 20
CancelableOperations 22
ChangeNotifyEntry 20
file 15
link 17
NotifyEventEntry 20
open 18
Oplock 20
overview 11
RHOpContext 22
SecurityContext 22
stream 17
TunnelCacheEntry 14
volume 11

E

Examples - overview 229

F

Fields - vendor-extensible 10

G

Glossary 8

H

Higher-layer triggered events
byte-range

lock 92
unlock 93

cached data - flushing 91
closing an open 75
directory

change notifications 147
querying 80

file
information

query 148
setting 174

open 51
system information

query 161
setting 201

FsControl request 94
operation - canceling 224
Oplock 204
Oplock break 217
overview 50

249 / 249

[MS-FSA] — v20130722
 File System Algorithms

 Copyright © 2013 Microsoft Corporation.

 Release: Monday, July 22, 2013

quota information
querying 225
setting 227

read 70
security information

query 169
setting 203

write 73

I

Implementer - security considerations 230
Index of security parameters 230
Informative references 9
Initialization 23
Introduction 8

N

Normative references 9

O

Overview (synopsis) 10

P

Parameters - security index 230
Product behavior 231

R

References
informative 9
normative 9

Relationship to other protocols 10

S

Security
implementer considerations 230
parameter index 230

Standards assignments 10

T

Timers 22
Tracking changes 244
Triggered events

byte-range
lock 92
unlock 93

cached data - flushing 91
closing an open 75
directory

change notifications 147
querying 80

file
information

query 148
setting 174

open 51

system information
query 161
setting 201

FsControl request 94
operation - canceling 224
Oplock 204
Oplock break 217
overview 50
quota information

querying 225
setting 227

read 70
security information

query 169
setting 203

write 73

V

Vendor-extensible fields 10
Versioning 10

	Contents
	1 Introduction
	1.1 Glossary
	1.2 References
	1.2.1 Normative References
	1.2.2 Informative References

	1.3 Overview
	1.4 Relationship to Other Protocols
	1.5 Applicability Statement
	1.6 Standards Assignments
	1.7 Versioning and Capability Negotiation
	1.8 Vendor-Extensible Fields

	2 Algorithm Details
	2.1 Object Store Details
	2.1.1 Abstract Data Model
	2.1.1.1 Per Volume
	2.1.1.2 Per TunnelCacheEntry
	2.1.1.3 Per File
	2.1.1.4 Per Link
	2.1.1.5 Per Stream
	2.1.1.6 Per Open
	2.1.1.7 Per ByteRangeLock
	2.1.1.8 Per ChangeNotifyEntry
	2.1.1.9 Per NotifyEventEntry
	2.1.1.10 Per Oplock
	2.1.1.11 Per RHOpContext
	2.1.1.12 Per CancelableOperations
	2.1.1.13 Per SecurityContext

	2.1.2 Timers
	2.1.3 Initialization
	2.1.4 Common Algorithms
	2.1.4.1 Algorithm for Reporting a Change Notification for a Directory
	2.1.4.2 Algorithm for Detecting If Open Files Exist Within a Directory
	2.1.4.3 Algorithm for Determining If a Character Is a Wildcard
	2.1.4.4 Algorithm for Determining if a FileName Is in an Expression
	2.1.4.5 BlockAlign -- Macro to Round a Value Up to the Next Nearest Multiple of Another Value
	2.1.4.6 BlockAlignTruncate -- Macro to Round a Value Down to the Next Nearest Multiple of Another Value
	2.1.4.7 ClustersFromBytes -- Macro to Determine How Many Clusters a Given Number of Bytes Occupies
	2.1.4.8 ClustersFromBytesTruncate -- Macro to Determine How Many Whole Clusters a Given Number of Bytes Occupies
	2.1.4.9 SidLength -- Macro to Provide the Length of a SID
	2.1.4.10 Algorithm for Determining If a Range Access Conflicts with Byte-Range Locks
	2.1.4.11 Algorithm for Posting a USN Change for a File
	2.1.4.12 Algorithm to Check for an Oplock Break
	2.1.4.12.1 Algorithm for Request Processing After an Oplock Breaks
	2.1.4.12.2 Algorithm to Compare Oplock Keys

	2.1.4.13 Algorithm to Recompute the State of a Shared Oplock
	2.1.4.14 AccessCheck -- Algorithm to Perform a General Access Check
	2.1.4.15 BuildRelativeName -- Algorithm for Building the Relative Path Name for a Link
	2.1.4.16 FindAllFiles: Algorithm for Finding All Files Under a Directory
	2.1.4.17 Algorithm for Noting That a File Has Been Modified

	2.1.5 Higher-Layer Triggered Events
	2.1.5.1 Server Requests an Open of a File
	2.1.5.1.1 Creation of a New File
	2.1.5.1.2 Open of an Existing File
	2.1.5.1.2.1 Algorithm to Check Access to an Existing File
	2.1.5.1.2.2 Algorithm to Check Sharing Access to an Existing Stream or Directory

	2.1.5.2 Server Requests a Read
	2.1.5.3 Server Requests a Write
	2.1.5.4 Server Requests Closing an Open
	2.1.5.5 Server Requests Querying a Directory
	2.1.5.5.1 FileObjectIdInformation
	2.1.5.5.2 FileReparsePointInformation
	2.1.5.5.3 Directory Information Queries
	2.1.5.5.3.1 FileBothDirectoryInformation
	2.1.5.5.3.2 FileDirectoryInformation
	2.1.5.5.3.3 FileFullDirectoryInformation
	2.1.5.5.3.4 FileIdBothDirectoryInformation
	2.1.5.5.3.5 FileIdFullDirectoryInformation
	2.1.5.5.3.6 FileNamesInformation

	2.1.5.6 Server Requests Flushing Cached Data
	2.1.5.7 Server Requests a Byte-Range Lock
	2.1.5.8 Server Requests an Unlock of a Byte-Range
	2.1.5.9 Server Requests an FsControl Request
	2.1.5.9.1 FSCTL_CREATE_OR_GET_OBJECT_ID
	2.1.5.9.2 FSCTL_DELETE_OBJECT_ID
	2.1.5.9.3 FSCTL_DELETE_REPARSE_POINT
	2.1.5.9.4 FSCTL_FILE_LEVEL_TRIM
	2.1.5.9.5 FSCTL_FILESYSTEM_GET_STATISTICS
	2.1.5.9.6 FSCTL_FIND_FILES_BY_SID
	2.1.5.9.7 FSCTL_GET_COMPRESSION
	2.1.5.9.8 FSCTL_GET_INTEGRITY_INFORMATION
	2.1.5.9.9 FSCTL_GET_NTFS_VOLUME_DATA
	2.1.5.9.10 FSCTL_GET_REFS_VOLUME_DATA
	2.1.5.9.11 FSCTL_GET_OBJECT_ID
	2.1.5.9.12 FSCTL_GET_REPARSE_POINT
	2.1.5.9.13 FSCTL_GET_RETRIEVAL_POINTERS
	2.1.5.9.14 FSCTL_IS_PATHNAME_VALID
	2.1.5.9.15 FSCTL_LMR_GET_LINK_TRACKING_INFORMATION
	2.1.5.9.16 FSCTL_LMR_SET_LINK_TRACKING_INFORMATION
	2.1.5.9.17 FSCTL_OFFLOAD_READ
	2.1.5.9.18 FSCTL_OFFLOAD_WRITE
	2.1.5.9.19 FSCTL_QUERY_ALLOCATED_RANGES
	2.1.5.9.20 FSCTL_QUERY_FAT_BPB
	2.1.5.9.21 FSCTL_QUERY_FILE_REGIONS
	2.1.5.9.22 FSCTL_QUERY_ON_DISK_VOLUME_INFO
	2.1.5.9.23 FSCTL_QUERY_SPARING_INFO
	2.1.5.9.24 FSCTL_READ_FILE_USN_DATA
	2.1.5.9.25 FSCTL_RECALL_FILE
	2.1.5.9.26 FSCTL_SET_COMPRESSION
	2.1.5.9.27 FSCTL_SET_DEFECT_MANAGEMENT
	2.1.5.9.28 FSCTL_SET_ENCRYPTION
	2.1.5.9.29 FSCTL_SET_INTEGRITY_INFORMATION
	2.1.5.9.30 FSCTL_SET_OBJECT_ID
	2.1.5.9.31 FSCTL_SET_OBJECT_ID_EXTENDED
	2.1.5.9.32 FSCTL_SET_REPARSE_POINT
	2.1.5.9.33 FSCTL_SET_SHORT_NAME_BEHAVIOR
	2.1.5.9.34 FSCTL_SET_SPARSE
	2.1.5.9.35 FSCTL_SET_ZERO_DATA
	2.1.5.9.35.1 Algorithm to Zero Data Beyond ValidDataLength

	2.1.5.9.36 FSCTL_SET_ZERO_ON_DEALLOCATION
	2.1.5.9.37 FSCTL_SIS_COPYFILE
	2.1.5.9.38 FSCTL_WRITE_USN_CLOSE_RECORD

	2.1.5.10 Server Requests Change Notifications for a Directory
	2.1.5.10.1 Waiting for Change Notification to be Reported

	2.1.5.11 Server Requests a Query of File Information
	2.1.5.11.1 FileAccessInformation
	2.1.5.11.2 FileAlignmentInformation
	2.1.5.11.3 FileAllInformation
	2.1.5.11.4 FileAlternateNameInformation
	2.1.5.11.5 FileAttributeTagInformation
	2.1.5.11.6 FileBasicInformation
	2.1.5.11.7 FileBothDirectoryInformation
	2.1.5.11.8 FileCompressionInformation
	2.1.5.11.9 FileDirectoryInformation
	2.1.5.11.10 FileEaInformation
	2.1.5.11.11 FileFullDirectoryInformation
	2.1.5.11.12 FileFullEaInformation
	2.1.5.11.13 FileHardLinkInformation
	2.1.5.11.14 FileIdBothDirectoryInformation
	2.1.5.11.15 FileIdFullDirectoryInformation
	2.1.5.11.16 FileIdGlobalTxDirectoryInformation
	2.1.5.11.17 FileInternalInformation
	2.1.5.11.18 FileModeInformation
	2.1.5.11.19 FileNameInformation
	2.1.5.11.20 FileNamesInformation
	2.1.5.11.21 FileNetworkOpenInformation
	2.1.5.11.22 FileObjectIdInformation
	2.1.5.11.23 FilePositionInformation
	2.1.5.11.24 FileQuotaInformation
	2.1.5.11.25 FileReparsePointInformation
	2.1.5.11.26 FileSfioReserveInformation
	2.1.5.11.27 FileStandardInformation
	2.1.5.11.28 FileStandardLinkInformation
	2.1.5.11.29 FileStreamInformation

	2.1.5.12 Server Requests a Query of File System Information
	2.1.5.12.1 FileFsVolumeInformation
	2.1.5.12.2 FileFsLabelInformation
	2.1.5.12.3 FileFsSizeInformation
	2.1.5.12.4 FileFsDeviceInformation
	2.1.5.12.5 FileFsAttributeInformation
	2.1.5.12.6 FileFsControlInformation
	2.1.5.12.7 FileFsFullSizeInformation
	2.1.5.12.8 FileFsObjectIdInformation
	2.1.5.12.9 FileFsDriverPathInformation
	2.1.5.12.10 FileFsSectorSizeInformation

	2.1.5.13 Server Requests a Query of Security Information
	2.1.5.13.1 Algorithm for Copying Audit or Label ACEs Into a Buffer

	2.1.5.14 Server Requests Setting of File Information
	2.1.5.14.1 FileAllocationInformation
	2.1.5.14.2 FileBasicInformation
	2.1.5.14.3 FileDispositionInformation
	2.1.5.14.4 FileEndOfFileInformation
	2.1.5.14.5 FileFullEaInformation
	2.1.5.14.6 FileLinkInformation
	2.1.5.14.7 FileModeInformation
	2.1.5.14.8 FileObjectIdInformation
	2.1.5.14.9 FilePositionInformation
	2.1.5.14.10 FileQuotaInformation
	2.1.5.14.11 FileRenameInformation
	2.1.5.14.11.1 Algorithm for Performing Stream Rename

	2.1.5.14.12 FileSfioReserveInformation
	2.1.5.14.13 FileShortNameInformation
	2.1.5.14.14 FileValidDataLengthInformation

	2.1.5.15 Server Requests Setting of File System Information
	2.1.5.15.1 FileFsVolumeInformation
	2.1.5.15.2 FileFsLabelInformation
	2.1.5.15.3 FileFsSizeInformation
	2.1.5.15.4 FileFsDeviceInformation
	2.1.5.15.5 FileFsAttributeInformation
	2.1.5.15.6 FileFsControlInformation
	2.1.5.15.7 FileFsFullSizeInformation
	2.1.5.15.8 FileFsObjectIdInformation
	2.1.5.15.9 FileFsDriverPathInformation
	2.1.5.15.10 FileFsSectorSizeInformation

	2.1.5.16 Server Requests Setting of Security Information
	2.1.5.17 Server Requests an Oplock
	2.1.5.17.1 Algorithm to Request an Exclusive Oplock
	2.1.5.17.2 Algorithm to Request a Shared Oplock
	2.1.5.17.3 Indicating an Oplock Break to the Server

	2.1.5.18 Server Acknowledges an Oplock Break
	2.1.5.19 Server Requests Canceling an Operation
	2.1.5.20 Server Requests Querying Quota Information
	2.1.5.21 Server Requests Setting Quota Information

	3 Protocol Examples
	4 Security
	4.1 Security Considerations for Implementers
	4.2 Index of Security Parameters

	5 Appendix A: Product Behavior
	6 Change Tracking
	7 Index

