

1 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

[MS-FASP-Diff]:

Firewall and Advanced Security Protocol

Intellectual Property Rights Notice for Open Specifications Documentation

▪ Technical Documentation. Microsoft publishes Open Specifications documentation (“this
documentation”) for protocols, file formats, data portability, computer languages, and standards
support. Additionally, overview documents cover inter-protocol relationships and interactions.

▪ Copyrights. This documentation is covered by Microsoft copyrights. Regardless of any other
terms that are contained in the terms of use for the Microsoft website that hosts this
documentation, you can make copies of it in order to develop implementations of the technologies

that are described in this documentation and can distribute portions of it in your implementations
that use these technologies or in your documentation as necessary to properly document the

implementation. You can also distribute in your implementation, with or without modification, any
schemas, IDLs, or code samples that are included in the documentation. This permission also
applies to any documents that are referenced in the Open Specifications documentation.

▪ No Trade Secrets. Microsoft does not claim any trade secret rights in this documentation.
▪ Patents. Microsoft has patents that might cover your implementations of the technologies

described in the Open Specifications documentation. Neither this notice nor Microsoft's delivery of
this documentation grants any licenses under those patents or any other Microsoft patents.
However, a given Open Specifications document might be covered by the Microsoft Open
Specifications Promise or the Microsoft Community Promise. If you would prefer a written license,
or if the technologies described in this documentation are not covered by the Open Specifications
Promise or Community Promise, as applicable, patent licenses are available by contacting
iplg@microsoft.com.

▪ License Programs. To see all of the protocols in scope under a specific license program and the
associated patents, visit the Patent Map.

▪ Trademarks. The names of companies and products contained in this documentation might be

covered by trademarks or similar intellectual property rights. This notice does not grant any
licenses under those rights. For a list of Microsoft trademarks, visit
www.microsoft.com/trademarks.

▪ Fictitious Names. The example companies, organizations, products, domain names, email
addresses, logos, people, places, and events that are depicted in this documentation are fictitious.
No association with any real company, organization, product, domain name, email address, logo,
person, place, or event is intended or should be inferred.

Reservation of Rights. All other rights are reserved, and this notice does not grant any rights other
than as specifically described above, whether by implication, estoppel, or otherwise.

Tools. The Open Specifications documentation does not require the use of Microsoft programming

tools or programming environments in order for you to develop an implementation. If you have access
to Microsoft programming tools and environments, you are free to take advantage of them. Certain
Open Specifications documents are intended for use in conjunction with publicly available standards
specifications and network programming art and, as such, assume that the reader either is familiar

with the aforementioned material or has immediate access to it.

Support. For questions and support, please contact dochelp@microsoft.com.

http://go.microsoft.com/fwlink/?LinkId=214445
http://go.microsoft.com/fwlink/?LinkId=214445
http://go.microsoft.com/fwlink/?LinkId=214448
mailto:iplg@microsoft.com
https://msdn.microsoft.com/en-us/openspecifications/dn750984

2 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Revision Summary

Date
Revision
History

Revision
Class Comments

4/3/2007 0.01 New Version 0.01 release

7/3/2007 1.0 Major MLonghorn+90

7/20/2007 1.0.1 Editorial Changed language and formatting in the technical content.

8/10/2007 1.0.2 Editorial Changed language and formatting in the technical content.

9/28/2007 1.0.3 Editorial Changed language and formatting in the technical content.

10/23/2007 1.0.4 Editorial Changed language and formatting in the technical content.

11/30/2007 1.1 Minor Clarified the meaning of the technical content.

1/25/2008 1.1.1 Editorial Changed language and formatting in the technical content.

3/14/2008 1.2 Minor Clarified the meaning of the technical content.

5/16/2008 2.0 Major Updated and revised the technical content.

6/20/2008 2.1 Minor Clarified the meaning of the technical content.

7/25/2008 3.0 Major Updated and revised the technical content.

8/29/2008 4.0 Major Updated and revised the technical content.

10/24/2008 4.0.1 Editorial Changed language and formatting in the technical content.

12/5/2008 5.0 Major Updated and revised the technical content.

1/16/2009 6.0 Major Updated and revised the technical content.

2/27/2009 7.0 Major Updated and revised the technical content.

4/10/2009 7.0.1 Editorial Changed language and formatting in the technical content.

5/22/2009 8.0 Major Updated and revised the technical content.

7/2/2009 8.0.1 Editorial Changed language and formatting in the technical content.

8/14/2009 8.1 Minor Clarified the meaning of the technical content.

9/25/2009 8.2 Minor Clarified the meaning of the technical content.

11/6/2009 9.0 Major Updated and revised the technical content.

12/18/2009 9.0.1 Editorial Changed language and formatting in the technical content.

1/29/2010 9.1 Minor Clarified the meaning of the technical content.

3/12/2010 9.2 Minor Clarified the meaning of the technical content.

4/23/2010 10.0 Major Updated and revised the technical content.

6/4/2010 11.0 Major Updated and revised the technical content.

7/16/2010 11.0 None
No changes to the meaning, language, or formatting of the
technical content.

3 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Date
Revision
History

Revision
Class Comments

8/27/2010 11.0 None
No changes to the meaning, language, or formatting of the
technical content.

10/8/2010 11.1 Minor Clarified the meaning of the technical content.

11/19/2010 11.2 Minor Clarified the meaning of the technical content.

1/7/2011 11.3 Minor Clarified the meaning of the technical content.

2/11/2011 12.0 Major Updated and revised the technical content.

3/25/2011 13.0 Major Updated and revised the technical content.

5/6/2011 14.0 Major Updated and revised the technical content.

6/17/2011 14.1 Minor Clarified the meaning of the technical content.

9/23/2011 15.0 Major Updated and revised the technical content.

12/16/2011 16.0 Major Updated and revised the technical content.

3/30/2012 17.0 Major Updated and revised the technical content.

7/12/2012 18.0 Major Updated and revised the technical content.

10/25/2012 18.0 None
No changes to the meaning, language, or formatting of the
technical content.

1/31/2013 18.0 None
No changes to the meaning, language, or formatting of the
technical content.

8/8/2013 19.0 Major Updated and revised the technical content.

11/14/2013 19.0 None
No changes to the meaning, language, or formatting of the
technical content.

2/13/2014 20.0 Major Updated and revised the technical content.

5/15/2014 21.0 Major Updated and revised the technical content.

6/30/2015 22.0 Major Significantly changed the technical content.

10/16/2015 22.1 Minor Clarified the meaning of the technical content.

7/14/2016 23.0 Major Significantly changed the technical content.

6/1/2017 24.0 Major Significantly changed the technical content.

9/15/2017 25.0 Major Significantly changed the technical content.

12/1/2017 25.0 None
No changes to the meaning, language, or formatting of the
technical content.

4 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Table of Contents

1 Introduction .. 9
1.1 Glossary ... 9
1.2 References .. 12

1.2.1 Normative References ... 12
1.2.2 Informative References ... 13

1.3 Overview .. 13
1.4 Relationship to Other Protocols .. 15
1.5 Prerequisites/Preconditions ... 16
1.6 Applicability Statement ... 16
1.7 Versioning and Capability Negotiation ... 16
1.8 Vendor-Extensible Fields ... 17
1.9 Standards Assignments ... 17

2 Messages ... 18
2.1 Transport .. 18
2.2 Common Data Types .. 18

2.2.1 FW_STORE_TYPE .. 18
2.2.2 FW_PROFILE_TYPE ... 19
2.2.3 FW_POLICY_ACCESS_RIGHT .. 20
2.2.4 FW_IPV4_SUBNET .. 21
2.2.5 FW_IPV4_SUBNET_LIST .. 21
2.2.6 FW_IPV6_SUBNET .. 21
2.2.7 FW_IPV6_SUBNET_LIST .. 21
2.2.8 FW_IPV4_ADDRESS_RANGE .. 22
2.2.9 FW_IPV4_RANGE_LIST .. 22
2.2.10 FW_IPV6_ADDRESS_RANGE .. 22
2.2.11 FW_IPV6_RANGE_LIST .. 23
2.2.12 FW_PORT_RANGE ... 23
2.2.13 FW_PORT_RANGE_LIST ... 23
2.2.14 FW_PORT_KEYWORD .. 24
2.2.15 FW_PORTS .. 25
2.2.16 FW_ICMP_TYPE_CODE .. 25
2.2.17 FW_ICMP_TYPE_CODE_LIST .. 25
2.2.18 FW_INTERFACE_LUIDS ... 26
2.2.19 FW_DIRECTION .. 26
2.2.20 FW_INTERFACE_TYPE ... 26
2.2.21 FW_ADDRESS_KEYWORD .. 27
2.2.22 FW_ADDRESSES... 28
2.2.23 FW_RULE_STATUS .. 29
2.2.24 FW_RULE_STATUS_CLASS ... 42
2.2.25 FW_OBJECT_CTRL_FLAG ... 43
2.2.26 FW_ENFORCEMENT_STATE .. 43
2.2.27 FW_OBJECT_METADATA .. 45
2.2.28 FW_OS_PLATFORM_OP ... 45
2.2.29 FW_OS_PLATFORM ... 46
2.2.30 FW_OS_PLATFORM_LIST ... 47
2.2.31 FW_RULE_ORIGIN_TYPE.. 47
2.2.32 FW_ENUM_RULES_FLAGS .. 48
2.2.33 FW_RULE_ACTION .. 49
2.2.34 FW_RULE_FLAGS .. 49
2.2.35 FW_RULE2_0 ... 51
2.2.36 FW_RULE ... 52
2.2.37 FW_PROFILE_CONFIG ... 57
2.2.38 FW_GLOBAL_CONFIG_IPSEC_EXEMPT_VALUES .. 59
2.2.39 FW_GLOBAL_CONFIG_PRESHARED_KEY_ENCODING_VALUES 60

5 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

2.2.40 FW_GLOBAL_CONFIG_IPSEC_THROUGH_NAT_VALUES 60
2.2.41 FW_GLOBAL_CONFIG .. 61
2.2.42 FW_CONFIG_FLAGS .. 64
2.2.43 FW_NETWORK.. 64
2.2.44 FW_ADAPTER ... 64
2.2.45 FW_DIAG_APP ... 64
2.2.46 FW_RULE_CATEGORY.. 65
2.2.47 FW_PRODUCT .. 65
2.2.48 FW_IP_VERSION .. 66
2.2.49 FW_IPSEC_PHASE .. 66
2.2.50 FW_CS_RULE_FLAGS .. 67
2.2.51 FW_CS_RULE_ACTION .. 68
2.2.52 FW_CS_RULE2_10 .. 68
2.2.53 FW_CS_RULE2_0 .. 69
2.2.54 FW_CS_RULE ... 70
2.2.55 FW_CERT_CRITERIA_TYPE ... 74
2.2.56 FW_CERT_CRITERIA_NAME_TYPE ... 74
2.2.57 FW_CERT_CRITERIA_FLAGS .. 75
2.2.58 FW_CERT_CRITERIA ... 75
2.2.59 FW_AUTH_METHOD .. 76
2.2.60 FW_AUTH_SUITE_FLAGS ... 77
2.2.61 FW_AUTH_SUITE2_10 ... 78
2.2.62 FW_AUTH_SUITE .. 79
2.2.63 FW_AUTH_SET2_10 .. 80
2.2.64 FW_AUTH_SET ... 83
2.2.65 FW_CRYPTO_KEY_EXCHANGE_TYPE .. 86
2.2.66 FW_CRYPTO_ENCRYPTION_TYPE .. 87
2.2.67 FW_CRYPTO_HASH_TYPE .. 88
2.2.68 FW_CRYPTO_PROTOCOL_TYPE ... 89
2.2.69 FW_PHASE1_CRYPTO_SUITE.. 89
2.2.70 FW_PHASE2_CRYPTO_SUITE.. 90
2.2.71 FW_PHASE1_CRYPTO_FLAGS ... 91
2.2.72 FW_PHASE2_CRYPTO_PFS ... 91
2.2.73 FW_CRYPTO_SET .. 92
2.2.74 FW_BYTE_BLOB ... 95
2.2.75 FW_COOKIE_PAIR .. 96
2.2.76 FW_PHASE1_KEY_MODULE_TYPE ... 96
2.2.77 FW_CERT_INFO .. 96
2.2.78 FW_AUTH_INFO ... 97
2.2.79 FW_ENDPOINTS ... 97
2.2.80 FW_PHASE1_SA_DETAILS ... 98
2.2.81 FW_PHASE2_TRAFFIC_TYPE ... 99
2.2.82 FW_PHASE2_SA_DETAILS ... 99
2.2.83 FW_PROFILE_CONFIG_VALUE ... 100
2.2.84 FW_MM_RULE ... 101
2.2.85 FW_CONN_HANDLE ... 103
2.2.86 FW_MATCH_KEY .. 103
2.2.87 FW_DATA_TYPE ... 104
2.2.88 FW_MATCH_VALUE .. 105
2.2.89 FW_MATCH_TYPE .. 105
2.2.90 FW_QUERY_CONDITION ... 106
2.2.91 FW_QUERY_CONDITIONS ... 107
2.2.92 FW_QUERY ... 107
2.2.93 FW_POLICY_STORE_HANDLE .. 108
2.2.94 FW_PRODUCT_HANDLE .. 108
2.2.95 FW_KEY_MODULE .. 108
2.2.96 FW_TRUST_TUPLE_KEYWORD ... 109
2.2.97 FW_RULE2_10... 110

6 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

2.2.98 FW_AUTH_SET_FLAGS ... 110
2.2.99 FW_CRYPTO_SET_FLAGS .. 111
2.2.100 FW_NETWORK_NAMES ... 111
2.2.101 FW_RULE2_20... 112
2.2.102 FW_RULE_FLAGS2 ... 113
2.2.103 FW_RULE2_24... 113
2.2.104 FW_RULE2_25... 114
2.2.105 FW_RULE2_26... 115

3 Protocol Details ... 117
3.1 Server Details ... 117

3.1.1 Abstract Data Model ... 117
3.1.2 Timers ... 120
3.1.3 Initialization .. 120
3.1.4 Message Processing Events and Sequencing Rules ... 121

3.1.4.1 RRPC_FWOpenPolicyStore (Opnum 0) .. 129
3.1.4.2 RRPC_FWClosePolicyStore (Opnum 1) .. 130
3.1.4.3 RRPC_FWRestoreDefaults (Opnum 2) ... 130
3.1.4.4 RRPC_FWGetGlobalConfig (Opnum 3) ... 131
3.1.4.5 RRPC_FWSetGlobalConfig (Opnum 4) ... 132
3.1.4.6 RRPC_FWAddFirewallRule (Opnum 5) ... 133
3.1.4.7 RRPC_FWSetFirewallRule (Opnum 6) .. 135
3.1.4.8 RRPC_FWDeleteFirewallRule (Opnum 7) .. 136
3.1.4.9 RRPC_FWDeleteAllFirewallRules (Opnum 8) ... 136
3.1.4.10 RRPC_FWEnumFirewallRules (Opnum 9) ... 137
3.1.4.11 RRPC_FWGetConfig (Opnum 10) .. 138
3.1.4.12 RRPC_FWSetConfig (Opnum 11) .. 140
3.1.4.13 RRPC_FWAddConnectionSecurityRule (Opnum 12) 141
3.1.4.14 RRPC_FWSetConnectionSecurityRule (Opnum 13) 142
3.1.4.15 RRPC_FWDeleteConnectionSecurityRule (Opnum 14)................................ 143
3.1.4.16 RRPC_FWDeleteAllConnectionSecurityRules (Opnum 15) 144
3.1.4.17 RRPC_FWEnumConnectionSecurityRules (Opnum 16) 145
3.1.4.18 RRPC_FWAddAuthenticationSet (Opnum 17) ... 146
3.1.4.19 RRPC_FWSetAuthenticationSet (Opnum 18) .. 147
3.1.4.20 RRPC_FWDeleteAuthenticationSet (Opnum 19) .. 148
3.1.4.21 RRPC_FWDeleteAllAuthenticationSets (Opnum 20) 149
3.1.4.22 RRPC_FWEnumAuthenticationSets (Opnum 21) 150
3.1.4.23 RRPC_FWAddCryptoSet (Opnum 22) .. 151
3.1.4.24 RRPC_FWSetCryptoSet (Opnum 23) ... 152
3.1.4.25 RRPC_FWDeleteCryptoSet (Opnum 24) ... 153
3.1.4.26 RRPC_FWDeleteAllCryptoSets (Opnum 25) .. 155
3.1.4.27 RRPC_FWEnumCryptoSets (Opnum 26) .. 156
3.1.4.28 RRPC_FWEnumPhase1SAs (Opnum 27) .. 157
3.1.4.29 RRPC_FWEnumPhase2SAs (Opnum 28) .. 158
3.1.4.30 RRPC_FWDeletePhase1SAs (Opnum 29) ... 159
3.1.4.31 RRPC_FWDeletePhase2SAs (Opnum 30) ... 160
3.1.4.32 RRPC_FWEnumProducts (Opnum 31) .. 161
3.1.4.33 RRPC_FWAddMainModeRule (Opnum 32) .. 161
3.1.4.34 RRPC_FWSetMainModeRule (Opnum 33) ... 162
3.1.4.35 RRPC_FWDeleteMainModeRule (Opnum 34) ... 163
3.1.4.36 RRPC_FWDeleteAllMainModeRules (Opnum 35) .. 164
3.1.4.37 RRPC_FWEnumMainModeRules (Opnum 36) .. 165
3.1.4.38 RRPC_FWQueryFirewallRules (Opnum 37) ... 166
3.1.4.39 RRPC_FWQueryConnectionSecurityRules (Opnum 38) 167
3.1.4.40 RRPC_FWQueryMainModeRules (Opnum 39) .. 168
3.1.4.41 RRPC_FWQueryAuthenticationSets (Opnum 40) 169
3.1.4.42 RRPC_FWQueryCryptoSets (Opnum 41) .. 170
3.1.4.43 RRPC_FWEnumNetworks (Opnum 42) ... 171

7 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

3.1.4.44 RRPC_FWEnumAdapters (Opnum 43) ... 171
3.1.4.45 RRPC_FWGetGlobalConfig2_10 (Opnum 44) .. 172
3.1.4.46 RRPC_FWGetConfig2_10 (Opnum 45) ... 174
3.1.4.47 RRPC_FWAddFirewallRule2_10 (Opnum 46) .. 175
3.1.4.48 RRPC_FWSetFirewallRule2_10 (Opnum 47) ... 176
3.1.4.49 RRPC_FWEnumFirewallRules2_10 (Opnum 48) .. 177
3.1.4.50 RRPC_FWAddConnectionSecurityRule2_10 (Opnum 49) 178
3.1.4.51 RRPC_FWSetConnectionSecurityRule2_10 (Opnum 50) 179
3.1.4.52 RRPC_FWEnumConnectionSecurityRules2_10 (Opnum 51) 180
3.1.4.53 RRPC_FWAddAuthenticationSet2_10 (Opnum 52) 182
3.1.4.54 RRPC_FWSetAuthenticationSet2_10 (Opnum 53) 183
3.1.4.55 RRPC_FWEnumAuthenticationSets2_10 (Opnum 54) 184
3.1.4.56 RRPC_FWAddCryptoSet2_10 (Opnum 55) ... 185
3.1.4.57 RRPC_FWSetCryptoSet2_10 (Opnum 56) .. 186
3.1.4.58 RRPC_FWEnumCryptoSets2_10 (Opnum 57) ... 187
3.1.4.59 RRPC_FWAddConnectionSecurityRule2_20 (Opnum 58) 188
3.1.4.60 RRPC_FWSetConnectionSecurityRule2_20 (Opnum 59) 189
3.1.4.61 RRPC_FWEnumConnectionSecurityRules2_20 (Opnum 60) 190
3.1.4.62 RRPC_FWQueryConnectionSecurityRules2_20 (Opnum 61)........................ 191
3.1.4.63 RRPC_FWAddAuthenticationSet2_20 (Opnum 62) 192
3.1.4.64 RRPC_FWSetAuthenticationSet2_20 (Opnum 63) 193
3.1.4.65 RRPC_FWEnumAuthenticationSets2_20 (Opnum 64) 194
3.1.4.66 RRPC_FWQueryAuthenticationSets2_20 (Opnum 65) 195
3.1.4.67 RRPC_FWAddFirewallRule2_20 (Opnum 66) .. 196
3.1.4.68 RRPC_FWSetFirewallRule2_20 (Opnum 67) ... 197
3.1.4.69 RRPC_FWEnumFirewallRules2_20 (Opnum 68) .. 198
3.1.4.70 RRPC_FWQueryFirewallRules2_20 (Opnum 69) .. 199
3.1.4.71 RRPC_FWAddFirewallRule2_24 (Opnum 70) .. 200
3.1.4.72 RRPC_FWSetFirewallRule2_24 (Opnum 71) ... 201
3.1.4.73 RRPC_FWEnumFirewallRules2_24 (Opnum 72) .. 202
3.1.4.74 RRPC_FWQueryFirewallRules2_24 (Opnum 73) .. 203
3.1.4.75 RRPC_FWAddFirewallRule2_25 (Opnum 74) .. 204
3.1.4.76 RRPC_FWSetFirewallRule2_25 (Opnum 75) ... 205
3.1.4.77 RRPC_FWEnumFirewallRules2_25 (Opnum 76) .. 206
3.1.4.78 RRPC_FWQueryFirewallRules2_25 (Opnum 77) .. 207
3.1.4.79 RRPC_FWAddFirewallRule2_26 (Opnum 78) .. 208
3.1.4.80 RRPC_FWSetFirewallRule2_26 (Opnum 79) ... 210
3.1.4.81 RRPC_FWEnumFirewallRules2_26 (Opnum 80) .. 211
3.1.4.82 RRPC_FWQueryFirewallRules2_26 (Opnum 81) .. 212
3.1.4.83 RRPC_FWAddFirewallRule2_27 (Opnum 82) .. 213
3.1.4.84 RRPC_FWSetFirewallRule2_27 (Opnum 83) ... 214
3.1.4.85 RRPC_FWEnumFirewallRules2_27 (Opnum 84) .. 215
3.1.4.86 RRPC_FWQueryFirewallRules2_27 (Opnum 85) .. 216

3.1.5 Timer Events ... 217
3.1.6 Other Local Events ... 217

3.1.6.1 AddPortInUse .. 217
3.1.6.2 DeletePortInUse ... 217
3.1.6.3 AddDefaultFirewallRule ... 217
3.1.6.4 SetGroupPolicyRSoPStore ... 218
3.1.6.5 IsComputerInCommonCriteriaMode .. 218
3.1.6.6 SetEffectiveFirewallPolicy .. 218
3.1.6.7 AddTrustTuple ... 219
3.1.6.8 DeleteTrustTuple.. 219

3.2 Client Details .. 219
3.2.1 Abstract Data Model ... 219
3.2.2 Timers ... 219
3.2.3 Initialization .. 219
3.2.4 Message Processing Events and Sequencing Rules ... 219

8 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

3.2.5 Timer Events ... 220
3.2.6 Other Local Events ... 220

4 Protocol Examples ... 221
4.1 Opening a Policy Store ... 221
4.2 Adding a Firewall Rule ... 221
4.3 Enumerating the Firewall Rules ... 223
4.4 Closing a Policy Store Handle .. 223

5 Security ... 225
5.1 Security Considerations for Implementers .. 225
5.2 Index of Security Parameters ... 225

6 Appendix A: Full IDL .. 226

7 Appendix B: Product Behavior ... 284

8 Change Tracking .. 294

9 Index ... 297

9 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

1 Introduction

The Firewall and Advanced Security Protocol describes managing security policies on remote
computers. The specific policies that this protocol manages are those of the firewall and advanced
security components. The protocol allows the same functionality that is available locally; it can add,
modify, delete, and enumerate policies. It can also enumerate security associations that can be
generated between hosts after this policy is enforced.

Sections 1.5, 1.8, 1.9, 2, and 3 of this specification are normative. All other sections and examples in
this specification are informative.

1.1 Glossary

This document uses the following terms:

access control entry (ACE): An entry in an access control list (ACL) that contains a set of user
rights and a security identifier (SID) that identifies a principal for whom the rights are allowed,

denied, or audited.

access control list (ACL): A list of access control entries (ACEs) that collectively describe the
security rules for authorizing access to some resource; for example, an object or set of objects.

Authenticated IP (AuthIP): An Internet Key Exchange (IKE) protocol extension, as specified in

[MS-AIPS].

authentication header (AH): An Internet Protocol Security (IPsec) encapsulation mode that
provides authentication and message integrity. For more information, see [RFC4302] section 1.

certificate revocation list (CRL): A list of certificates that have been revoked by the certification
authority (CA) that issued them (that have not yet expired of their own accord). The list must be
cryptographically signed by the CA that issues it. Typically, the certificates are identified by
serial number. In addition to the serial number for the revoked certificates, the CRL contains the

revocation reason for each certificate and the time the certificate was revoked. As described in

[RFC3280], two types of CRLs commonly exist in the industry. Base CRLs keep a complete list of
revoked certificates, while delta CRLs maintain only those certificates that have been revoked
since the last issuance of a base CRL. For more information, see [X509] section 7.3, [MSFT-
CRL], and [RFC3280] section 5.

certification authority (CA): A third party that issues public key certificates. Certificates serve to

bind public keys to a user identity. Each user and certification authority (CA) can decide whether
to trust another user or CA for a specific purpose, and whether this trust should be transitive.
For more information, see [RFC3280].

common criteria mode: A computer system is said to be operating in common criteria mode
when it conforms to all the security functional requirements specified in [CCITSE3.1-3], Part 2.

dynamic endpoint: A network-specific server address that is requested and assigned at run time.
For more information, see [C706].

edge firewall: A firewall that's connected to two networks: an internal network and an external
network, usually the Internet.

Encapsulating Security Payload (ESP): An Internet Protocol security (IPsec) encapsulation
mode that provides authentication, data confidentiality, and message integrity. For more
information, see [RFC4303] section 1.

endpoint: A network-specific address of a remote procedure call (RPC) server process for remote
procedure calls. The actual name and type of the endpoint depends on the RPC protocol

sequence that is being used. For example, for RPC over TCP (RPC Protocol Sequence

10 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

ncacn_ip_tcp), an endpoint might be TCP port 1025. For RPC over Server Message Block (RPC
Protocol Sequence ncacn_np), an endpoint might be the name of a named pipe. For more

information, see [C706].

enhanced key usage (EKU): An extension that is a collection of object identifiers (OIDs) that

indicate the applications that use the key.

fully qualified binary name (FQBN): A string constructed by the operating system that takes
the format "Company\Product Suite\Product, Version" for a signed Windows binary file and that
can be derived from the publishing information for such a file.

fully qualified domain name (FQDN): An unambiguous domain name that gives an absolute
location in the Domain Name System's (DNS) hierarchy tree, as defined in [RFC1035] section
3.1 and [RFC2181] section 11.

globally unique identifier (GUID): A term used interchangeably with universally unique
identifier (UUID) in Microsoft protocol technical documents (TDs). Interchanging the usage of
these terms does not imply or require a specific algorithm or mechanism to generate the value.

Specifically, the use of this term does not imply or require that the algorithms described in
[RFC4122] or [C706] must be used for generating the GUID. See also universally unique
identifier (UUID).

Group Policy: A mechanism that allows the implementer to specify managed configurations for
users and computers in an Active Directory service environment.

Group Policy Object (GPO): A collection of administrator-defined specifications of the policy
settings that can be applied to groups of computers in a domain. Each GPO includes two
elements: an object that resides in the Active Directory for the domain, and a corresponding file
system subdirectory that resides on the sysvol DFS share of the Group Policy server for the
domain.

Interface Definition Language (IDL): The International Standards Organization (ISO) standard
language for specifying the interface for remote procedure calls. For more information, see
[C706] section 4.

Internet Key Exchange (IKE): The protocol that is used to negotiate and provide authenticated
keying material for security associations (SAs) in a protected manner. For more information, see
[RFC2409].

Internet Key Exchange (IKEv2): The protocol that is used to negotiate and provide

authenticated keying material for security associations (SA) in a protected manner. For more
information, see [RFC4306].

Internet Protocol security (IPsec): A framework of open standards for ensuring private, secure
communications over Internet Protocol (IP) networks through the use of cryptographic security
services. IPsec supports network-level peer authentication, data origin authentication, data
integrity, data confidentiality (encryption), and replay protection. The Microsoft implementation

of IPsec is based on standards developed by the Internet Engineering Task Force (IETF) IPsec
working group.

Kerberos: An authentication system that enables two parties to exchange private information
across an otherwise open network by assigning a unique key (called a ticket) to each user that
logs on to the network and then embedding these tickets into messages sent by the users. For
more information, see [MS-KILE].

Key Distribution Center (KDC): The Kerberos service that implements the authentication and

ticket granting services specified in the Kerberos protocol. The service runs on computers
selected by the administrator of the realm or domain; it is not present on every machine on the
network. It must have access to an account database for the realm that it serves. KDCs are

11 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

integrated into the domain controller role. It is a network service that supplies tickets to clients
for use in authenticating to services.

locally unique identifier (LUID): A 64-bit value guaranteed to be unique within the scope of a
single machine.

Network Data Representation (NDR): A specification that defines a mapping from Interface
Definition Language (IDL) data types onto octet streams. NDR also refers to the runtime
environment that implements the mapping facilities (for example, data provided to NDR). For
more information, see [MS-RPCE] and [C706] section 14.

perfect forward secrecy (PFS): A property of key exchange protocols, which holds when session
keys from previous communications are not compromised by the disclosure of longer-term
keying material. In the context of Internet Protocol security (IPsec), PFS requires a Diffie-

Hellman exchange to generate the keys for each quick mode security association (SA).

remote procedure call (RPC): A context-dependent communication protocol used primarily
between client and server. The term commonly overloaded withhas three meanings.

Notedefinitions that much of the industry literature concerning RPC technologies uses this
termare often used interchangeably for any of the three meanings. Following are the three
definitions: (*) The : a runtime environment providing remote procedure callfor communication

facilities. The preferred usage for this meaning is " between computers (the RPC runtime". (*)
The pattern); a set of request-and-response message exchanges between computers (the RPC
exchange between two parties (typically, a client and a server). The preferred usage for this
meaning is "RPC exchange". (*) A); and the single message from an RPC exchange as defined
in (the previous definition. The preferred usage for this term is "RPC message". For more
information about). The RPC, see specification is [C706].

Rivest-Shamir-Adleman (RSA): A system for public key cryptography. RSA is specified in

[PKCS1] and [RFC3447].

RPC protocol sequence: A character string that represents a valid combination of a remote
procedure call (RPC) protocol, a network layer protocol, and a transport layer protocol, as
described in [C706] and [MS-RPCE].

RPC transport: The underlying network services used by the remote procedure call (RPC) runtime
for communications between network nodes. For more information, see [C706] section 2.

security association (SA): A simplex "connection" that provides security services to the traffic

carried by it. See [RFC4301] for more information.

security identifier (SID): An identifier for security principals that is used to identify an account
or a group. Conceptually, the SID is composed of an account authority portion (typically a
domain) and a smaller integer representing an identity relative to the account authority, termed
the relative identifier (RID). The SID format is specified in [MS-DTYP] section 2.4.2; a string
representation of SIDs is specified in [MS-DTYP] section 2.4.2 and [MS-AZOD] section 1.1.1.2.

Security Support Provider Interface (SSPI): A Windows-specific API implementation that
provides the means for connected applications to call one of several security providers to
establish authenticated connections and to exchange data securely over those connections.

ThisIt is the Windows equivalent ofto Generic Security Services (GSS)-API, and the two families
of APIs are on-the-wire compatible.

stealth mode: A firewall is said to be operating in stealth mode when it prevents the host
computer from responding to unsolicited network traffic.

Transmission Control Protocol (TCP): A protocol used with the Internet Protocol (IP) to send
data in the form of message units between computers over the Internet. TCP handles keeping
track of the individual units of data (called packets) that a message is divided into for efficient
routing through the Internet.

12 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Unicode: A character encoding standard developed by the Unicode Consortium that represents
almost all of the written languages of the world. The Unicode standard [UNICODE5.0.0/2007]

provides three forms (UTF-8, UTF-16, and UTF-32) and seven schemes (UTF-8, UTF-16, UTF-16
BE, UTF-16 LE, UTF-32, UTF-32 LE, and UTF-32 BE).

universally unique identifier (UUID): A 128-bit value. UUIDs can be used for multiple
purposes, from tagging objects with an extremely short lifetime, to reliably identifying very
persistent objects in cross-process communication such as client and server interfaces, manager
entry-point vectors, and RPC objects. UUIDs are highly likely to be unique. UUIDs are also
known as globally unique identifiers (GUIDs) and these terms are used interchangeably in the
Microsoft protocol technical documents (TDs). Interchanging the usage of these terms does not
imply or require a specific algorithm or mechanism to generate the UUID. Specifically, the use of

this term does not imply or require that the algorithms described in [RFC4122] or [C706] must
be used for generating the UUID.

MAY, SHOULD, MUST, SHOULD NOT, MUST NOT: These terms (in all caps) are used as defined
in [RFC2119]. All statements of optional behavior use either MAY, SHOULD, or SHOULD NOT.

1.2 References

Links to a document in the Microsoft Open Specifications library point to the correct section in the
most recently published version of the referenced document. However, because individual documents
in the library are not updated at the same time, the section numbers in the documents may not
match. You can confirm the correct section numbering by checking the Errata.

1.2.1 Normative References

We conduct frequent surveys of the normative references to assure their continued availability. If you
have any issue with finding a normative reference, please contact dochelp@microsoft.com. We will
assist you in finding the relevant information.

[C706] The Open Group, "DCE 1.1: Remote Procedure Call", C706, August 1997,
https://www2.opengroup.org/ogsys/catalog/c706

[CCITSE3.1-3] CCRA, "Common Criteria for Information Technology Security Evaluation", version 3.1-
3, July 2009, http://www.commoncriteriaportal.org/cc/

[MS-AIPS] Microsoft Corporation, "Authenticated Internet Protocol".

[MS-DTYP] Microsoft Corporation, "Windows Data Types".

[MS-ERREF] Microsoft Corporation, "Windows Error Codes".

[MS-GPFAS] Microsoft Corporation, "Group Policy: Firewall and Advanced Security Data Structure".

[MS-IKEE] Microsoft Corporation, "Internet Key Exchange Protocol Extensions".

[MS-KILE] Microsoft Corporation, "Kerberos Protocol Extensions".

[MS-NLMP] Microsoft Corporation, "NT LAN Manager (NTLM) Authentication Protocol".

[MS-RPCE] Microsoft Corporation, "Remote Procedure Call Protocol Extensions".

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC
2119, March 1997, http://www.rfc-editor.org/rfc/rfc2119.txt

[RFC4306] Kaufman, C., "Internet Key Exchange (IKEv2) Protocol", RFC 4306, December 2005,
http://www.ietf.org/rfc/rfc4306.txt

13 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

[X501] ITU-T, "Information Technology - Open Systems Interconnection - The Directory: The Models",
Recommendation X.501, August 2005, http://www.itu.int/rec/T-REC-X.501-200508-S/en

1.2.2 Informative References

[IANA-PROTO-NUM] IANA, "Protocol Numbers", February 2007,
http://www.iana.org/assignments/protocol-numbers

[MS-DLNHND] Microsoft Corporation, "Digital Living Network Alliance (DLNA) Networked Device
Interoperability Guidelines: Microsoft Extensions".

[MS-GPOL] Microsoft Corporation, "Group Policy: Core Protocol".

[MS-GPREG] Microsoft Corporation, "Group Policy: Registry Extension Encoding".

[MSDN-BCryptGetFipsAlgorithmMode] Microsoft Corporation, "BCryptGetFipsAlgorithmMode function",
http://msdn.microsoft.com/en-us/library/aa375460(VS.85).aspx

[MSDN-ExpandEnvironmentStrings] Microsoft Corporation, "ExpandEnvironmentStrings function",
http://msdn.microsoft.com/en-us/library/ms724265(VS.85).aspx

[MSDN-FQBN] Microsoft Corporation, "CLAIM_SECURITY_ATTRIBUTE_FQBN_VALUE structure",

https://msdn.microsoft.com/en-
us/library/system.security.claims.claimvaluetypes.fqbn(v=vs.110).aspx

[MSDN-OSVERSIONINFOEX] Microsoft Corporation, "OSVERSIONINFOEX structure", Structure,
http://msdn.microsoft.com/en-us/library/ms724833.aspx

[MSDN-SHLoadIndirectString] Microsoft Corporation, "SHLoadIndirectString function",
http://msdn.microsoft.com/en-us/library/bb759919(VS.85).aspx

[MSKB-935807] Microsoft Corporation, "Security Update for Windows Vista (KB935807)", August

2007, http://www.microsoft.com/downloads/details.aspx?FamilyId=e9b64746-6afa-4a30-833d-

e058e000c821&displaylang=en

[MSWFPSDK] Microsoft Corporation, "Windows Filtering Platform", http://msdn.microsoft.com/en-
us/library/aa366510.aspx

[RFC2409] Harkins, D. and Carrel, D., "The Internet Key Exchange (IKE)", RFC 2409, November 1998,
http://www.ietf.org/rfc/rfc2409.txt

[RFC4301] Kent, S. and Seo, K., "Security Architecture for the Internet Protocol", RFC 4301,
December 2005, http://www.ietf.org/rfc/rfc4301.txt

1.3 Overview

A host firewall is a software component that runs on host computers. It provides a layer of defense

that can add depth to the collection of security measures when combined with other security
measures, such as edge firewalls. Any threats that manage to get through the edge firewall, or those

that are launched from within a corporate network, can still be defended against when host firewalls
are used. Host firewalls are also useful in consumer scenarios in which there is, typically, no edge
firewall to protect the home network.

Internet Protocol Security (IPsec) is a host-based, policy-driven security solution for protecting the
host from all network access. IPsec focuses on connection security, which includes authentication,

integrity protection, and confidentiality (encryption) of communication.

14 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Because both IPsec and firewalls are host-based policy security technologies that operate in the
network stack, they are managed together to avoid conflicts. Furthermore, firewall and connection

security (IPsec) can interact, providing deeper and more effective filtering capabilities based on
identities that are negotiated by IPsec as well as other IPsec state information. This document refers

to this combined security solution as the firewall and advanced security components.

Firewall and advanced security components can be governed by policy that is received from local users
or from network-wide policy that is distributed by an administrator, or both. There is a need in
managed environments for a network administrator to be able to monitor the policies in effect on
hosts, assuming that hosts might have received policies from both sources.

Network-wide policies are usually distributed by using Group Policy Objects (GPOs) that live on active
directories of domains. However, some workgroups or networks might not have a domain

infrastructure. Even in non-domain joined environments, the network administrator needs to be able
to remotely manage the advanced firewall and IPsec policy of a host.

Lastly, the network administrator might also be required to diagnose problems on the remote hosts. A
common technique is to create temporary changes and then see if the changes fix the problem. This is

the third scenario that warrants the capability to remotely administer host policies.

The Firewall and Advanced Security Protocol is designed and used to address the three needs

previously mentioned. That is, its purpose is to monitor and manage remote host policies. It can
manage all the policies that an administrator can manage locally. It can also monitor the specific
policies coming from the different sources or monitor them aggregated, that is, all together, to
understand and predict expected behavior. Lastly, it can make temporary modifications on the remote
host policy to test online fixes and see whether they are effective.

The Firewall and Advanced Security Protocol is a client/server, RPC-based protocol. It consists of data
types and methods. The data types are used to represent the different types of policy components

that compose policy objects and policy configuration options. The methods are operations that are
used to read and manage the different available policies. Therefore, the user can make method calls
that pass new policy objects to be added to the policy, delete from the policy, or modify an existing
object within the policy. The user can also call methods to retrieve all the policy objects of interest.
The following illustration shows read and write operations and their message sequences.

15 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Figure 1: Read and write operations and their message sequences

The server role is represented by the host firewall, which contains the policy and enforces it. The client
role is represented by the management console (or other user management tool), which sends,
retrieves, and modifies the policies on the remote host firewall.

1.4 Relationship to Other Protocols

This protocol is implemented on RPC, as specified in [MS-RPCE], which uses the Transmission Control

Protocol (TCP) as a transport. Aside from managing the policy for the firewall itself, this protocol is
used to remotely manage the security policy database of the Security Architecture for the Internet
Protocol [RFC4301], which describes how Internet Protocol Security (IPsec) should be enforced and
what options the Internet Key Exchange (IKE) [RFC2409], Authenticated IP (AuthIP) [MS-AIPS], and

Internet Key Exchange (IKEv2) [RFC4306] have available to negotiate. This protocol also exposes an
abstract interface to configure firewall and advanced security policy for use by other mechanisms such
as Group Policy [MS-GPFAS].

16 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

1.5 Prerequisites/Preconditions

This protocol assumes that the firewall and advanced security components have been initialized, are
running, and have registered the corresponding RPC interface that is defined in section 2.1. This

protocol also assumes that the policy in the host firewall and advanced security components, which
resides on the server side, already allows the inbound traffic that the client computer, which is running
the management tool, sends to the server during exercise of this protocol.

This protocol requires Security Support Provider Interface (SSPI) security by using packet privacy
protection level (RPC_C_PROTECT_LEVEL_PKT_PRIVACY) and GSS negotiate authentication
(RPC_C_AUTHN_GSS_NEGOTIATE), which negotiates between Kerberos Protocol Extensions [MS-
KILE] and NT LAN Manager (NTLM) Authentication Protocol [MS-NLMP] authentication.

1.6 Applicability Statement

This protocol is used to address the needs defined in section 1.3.

1.7 Versioning and Capability Negotiation

This document covers versioning and capability negotiation issues in the following areas:

▪ Supported Transports: This protocol uses a single RPC protocol sequence, as specified in section
2.1.

▪ Protocol Versions: This protocol has only one interface version. There are also several policy

versions, which can be tied to policies and specific policy objects, as defined in section 2.2. The
policy versions are 0x0200, 0x0201, 0x020A, 0x0214, 0x0216, 0x0218, 0x0219, 0x021A, and
0x021B.<1> Protocol Versions are used as Binary Versions and Schema Versions (also called
policy versions).

The policy versions listed above can be translated into binary versions by considering the two-byte
values to consist of a "high byte" and a "low byte". Convert each byte to decimal and separate
them with a period (".") to obtain the binary version. For example, the policy version 0x0214 is

mapped to binary version 2.20. Schema versions are similar to binary versions but with an
underscore ("_") instead of a period.

▪ Security and Authentication Methods: This protocol supports both Kerberos Protocol Extensions
[MS-KILE] and NT LAN Manager (NTLM) Authentication Protocol [MS-NLMP] authentication
methods, section 2.1.

▪ Localization: This protocol passes text strings without considering localization. However, some

strings can be formatted in such a way that the firewall component knows where to look for
localized versions of these strings, as defined in section 2.2. These strings can also be resolved
with specific flags and method calls, as defined in section 3.1.4.

▪ Capability Negotiation: A configuration option defined in section 2.2.41 contains the maximum
policy version and the binary supported by the server. With this option, a client can understand
what can and cannot be expressed in this protocol and the methods that are supported to do so.
The data types in section 2.2 and the existence and behavior of methods in section 3.1.4 are

defined in terms of these policy versions when appropriate. No other negotiation capabilities,
version-specific or otherwise, are present in this protocol.

▪ Byte order: All values defined in this specification are independent of whether the platform uses
big-endian or little-endian byte order. For instance, protocol version 0x0200 = 512 decimal, and
will be value 512 (0x0200) on both little-endian and big-endian platforms. Marshaling any values
defined within this specification is handled by RPC (see [MS-RPCE]).

17 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

1.8 Vendor-Extensible Fields

This protocol uses Win32 error codes. These values are taken from the Windows error number space
that is specified in [MS-ERREF]. Vendors SHOULD reuse those values with their indicated meaning.

Choosing any other value runs the risk of a collision in the future.

This protocol uses NTSTATUS values, as specified in [MS-ERREF]. Vendors can choose their own
values for this field provided that the C bit (0x20000000) is set, indicating that it is a customer code.

Currently, vendors are not expected to extend this protocol. Therefore, the protocol does not consider
provisions for extensions by parties other than Microsoft.

1.9 Standards Assignments

Parameter Value Reference

RPC interface UUID for the Firewall and Advanced Security
Protocol

6b5bdd1e-528c-422c-af8c-
a4079be4fe48

Section
2.1

No standards assignments have been received for this protocol. All values used in these extensions
are in private ranges specified in section 2.1. This protocol uses RPC dynamic endpoints, as specified
in [C706] chapters 6, 7, 8, 9, 10, 11, 12, 13, and 14.

18 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

2 Messages

2.1 Transport

This protocol uses the Remote Procedure Call (RPC) over TCP. It also uses RPC dynamic endpoints, as

specified in [C706] chapters 6, 7, 8, 9, 10, 11, 12, 13, and 14.

This RPC protocol MUST use Security Support Provider Interface (SSPI) security by using packet
privacy protection level (RPC_C_PROTECT_LEVEL_PKT_PRIVACY) and GSS negotiate authentication
(RPC_C_AUTHN_GSS_NEGOTIATE), which negotiates between Kerberos Protocol Extensions, as
specified in [MS-KILE], and NT LAN Manager (NTLM) Authentication Protocol, as specified in [MS-
NLMP] authentication.

This protocol MUST use the following interface identifier as specified in [C706] section 3.1.9:

uuid: 6b5bdd1e-528c-422c-af8c-a4079be4fe48

vers_major: 1

vers_minor: 0

The server MUST register this interface identifier with the RPC run-time during server initialization as
specified in section 3.1.3. The client MUST use this interface identifier when binding to the RPC server
as specified in section 3.2.3.

2.2 Common Data Types

In addition to RPC base types and definitions specified in [C706] and [MS-DTYP], additional data types
are defined in the sections that follow.

2.2.1 FW_STORE_TYPE

This data type defines enumerations used to identify store types.

 typedef enum _tag_FW_STORE_TYPE
 {
 FW_STORE_TYPE_INVALID,
 FW_STORE_TYPE_GP_RSOP,
 FW_STORE_TYPE_LOCAL,
 FW_STORE_TYPE_NOT_USED_VALUE_3,
 FW_STORE_TYPE_NOT_USED_VALUE_4,
 FW_STORE_TYPE_DYNAMIC,
 FW_STORE_TYPE_GPO,
 FW_STORE_TYPE_DEFAULTS,
 FW_STORE_TYPE_NOT_USED_VALUE_8,
 FW_STORE_TYPE_NOT_USED_VALUE_9,
 FW_STORE_TYPE_NOT_USED_VALUE_10,
 FW_STORE_TYPE_NOT_USED_VALUE_11,
 FW_STORE_TYPE_MAX
 } FW_STORE_TYPE;

FW_STORE_TYPE_INVALID: This value is invalid and MUST NOT be used. It is defined for

simplicity in writing IDL definitions and code. This symbolic constant has a value of zero.

FW_STORE_TYPE_GP_RSOP: This value identifies the store that contains all the policies from the
different Group Policy Objects (GPOs) that contain the networkwide policy. This store is persisted
in the registry. It is downloaded by the Group Policy component (for more information, see [MS-

19 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

GPREG]) and read by the firewall and advanced security components; therefore, it is a read-only
store. This symbolic constant has a value of 1.

FW_STORE_TYPE_LOCAL: This value identifies the store that contains the local host policy. This
store is persisted in the registry by the firewall and advanced security components; therefore, it is

a read/write store. This symbolic constant has a value of 2.

FW_STORE_TYPE_NOT_USED_VALUE_3: This store is currently not used over the wire. This
symbolic constant has a value of 3.

FW_STORE_TYPE_NOT_USED_VALUE_4: This store is currently not used over the wire. This
symbolic constant has a value of 4.

FW_STORE_TYPE_DYNAMIC: This value identifies the store that contains the effective policy, that
is, the aggregated and merged policy from all policy sources. Policy objects can be added and

modified on this store, but they are not persisted and will be lost the next time the firewall and
advanced security components initialize. Policy objects on this store can be modified only if they
were originally added to this store. This symbolic constant has a value of 5.

FW_STORE_TYPE_GPO: This value is not used on the wire. This symbolic constant has a value of 6.

FW_STORE_TYPE_DEFAULTS: This value identifies the store that contains the defaults that the
host operating system had out-of-box. This store is persisted in the registry. It is written by the

host operating system setup. It is read by the firewall and advanced security components when it
is instructed to go back to the default out-of-box configuration; hence it is a read-only store. This
symbolic constant has a value of 7.

FW_STORE_TYPE_NOT_USED_VALUE_8: This store is currently not used over the wire. This
symbolic constant has a value of 8.

FW_STORE_TYPE_NOT_USED_VALUE_9: This store is currently not used over the wire. This
symbolic constant has a value of 9.

FW_STORE_TYPE_NOT_USED_VALUE_10: This store is currently not used over the wire. This
symbolic constant has a value of 10.

FW_STORE_TYPE_NOT_USED_VALUE_11: This store is currently not used over the wire. This
symbolic constant has a value of 11.

FW_STORE_TYPE_MAX: This value and values that exceed this value are not valid and MUST NOT
be used. This symbolic constant is defined for simplicity in writing IDL definitions and code. It has
a value of 8.

2.2.2 FW_PROFILE_TYPE

This data type defines the enumerations that are used to identify profile types. The enumeration
values are bitmasks. Implementations MUST support using a single bitmask value and MUST support a

combination of bitmask values. Valid combinations of bitmask values are all possible combinations
using FW_PROFILE_TYPE_DOMAIN, FW_PROFILE_TYPE_PRIVATE, FW_PROFILE_TYPE_PUBLIC, and
FW_PROFILE_TYPE_ALL. A profile is a set of networks to which a firewall policy might apply.

 typedef [v1_enum] enum _tag_FW_PROFILE_TYPE
 {
 FW_PROFILE_TYPE_INVALID = 0x000,
 FW_PROFILE_TYPE_DOMAIN = 0x001,
 FW_PROFILE_TYPE_STANDARD = 0x002,
 FW_PROFILE_TYPE_PRIVATE = 0x002,
 FW_PROFILE_TYPE_PUBLIC = 0x004,
 FW_PROFILE_TYPE_ALL = 0x7FFFFFFF,
 FW_PROFILE_TYPE_CURRENT = 0x80000000,
 FW_PROFILE_TYPE_NONE = 0x80000001

20 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

 } FW_PROFILE_TYPE;

FW_PROFILE_TYPE_INVALID: This value is invalid and MUST NOT be used. It is defined for
simplicity in writing IDL definitions and code.

FW_PROFILE_TYPE_DOMAIN: This value represents the profile for networks that are connected to

domains.

FW_PROFILE_TYPE_STANDARD: This value represents the standard profile for networks. These
networks are classified as private by the administrators in the server host. The classification
happens the first time the host connects to the network. Usually these networks are behind
Network Address Translation (NAT) devices, routers, and other edge devices, and they are in a
private location, such as a home or an office.

FW_PROFILE_TYPE_PRIVATE: This value represents the profile for private networks, which is
represented by the same value as that used for FW_PROFILE_TYPE_STANDARD.

FW_PROFILE_TYPE_PUBLIC: This value represents the profile for public networks. These networks

are classified as public by the administrators in the server host. The classification happens the first
time the host connects to the network. Usually these networks are those at airports, coffee shops,
and other public places where the peers in the network or the network administrator are not
trusted.

FW_PROFILE_TYPE_ALL: This value represents all these network sets and any future network sets.

FW_PROFILE_TYPE_CURRENT: This value represents the current profiles to which the firewall and
advanced security components determine the host is connected at the moment of the call. This
value can be specified only in method calls, and it cannot be combined with other flags.

FW_PROFILE_TYPE_NONE: This value represents no profile and is invalid. It is defined for
simplicity in writing IDL definitions and code. This and greater values MUST NOT be used.

2.2.3 FW_POLICY_ACCESS_RIGHT

This enumeration defines access rights for the policy elements that can be accessed using the Firewall
and Advanced Security Protocol. The values are not bitmasks and SHOULD NOT be used in bitwise OR
operations.

 typedef enum _tag_FW_POLICY_ACCESS_RIGHT
 {
 FW_POLICY_ACCESS_RIGHT_INVALID,
 FW_POLICY_ACCESS_RIGHT_READ,
 FW_POLICY_ACCESS_RIGHT_READ_WRITE,
 FW_POLICY_ACCESS_RIGHT_MAX
 } FW_POLICY_ACCESS_RIGHT;

FW_POLICY_ACCESS_RIGHT_INVALID: This value is invalid and MUST NOT be used. It is defined
for simplicity in writing IDL definitions and code. This symbolic constant has a value of zero.

FW_POLICY_ACCESS_RIGHT_READ: This value represents a read-only access right. This symbolic

constant has a value of 1.

FW_POLICY_ACCESS_RIGHT_READ_WRITE: This value represents a read and write access right.
This symbolic constant has a value of 2.

FW_POLICY_ACCESS_RIGHT_MAX: This value and values that exceed this value are not valid and
MUST NOT be used. This symbolic constant is defined for simplicity in writing IDL definitions and
code. It has a value of 3.

21 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

2.2.4 FW_IPV4_SUBNET

This structure defines IPv4 subnets. It is used in policy rules.

 typedef struct _tag_FW_IPV4_SUBNET {
 unsigned long dwAddress;
 unsigned long dwSubNetMask;
 } FW_IPV4_SUBNET,
 *PFW_IPV4_SUBNET;

dwAddress: This field represents the IPv4 address.

dwSubNetMask: This field contains the subnet mask in host network order. If it contains ones, they
MUST be contiguous and shifted to the most significant bits.

A dwSubNetMask of 0x00000000 is invalid. A subnet mask of 0xFFFFFFFF means that the subnet

mask represents a single address.

2.2.5 FW_IPV4_SUBNET_LIST

This structure is used to contain a number of FW_IPV4_SUBNET elements.

 typedef struct _tag_FW_IPV4_SUBNET_LIST {
 [range(0, 1000)] unsigned long dwNumEntries;
 [size_is(dwNumEntries)] PFW_IPV4_SUBNET pSubNets;
 } FW_IPV4_SUBNET_LIST,
 *PFW_IPV4_SUBNET_LIST;

dwNumEntries: This field specifies the number of subnets that the structure contains.

pSubNets: A pointer to an array of FW_IPV4_SUBNET elements. The number of elements is given
by dwNumEntries.

2.2.6 FW_IPV6_SUBNET

This structure represents an IPv6 subnet.

 typedef struct _tag_FW_IPV6_SUBNET {
 unsigned char Address[16];
 [range(0, 128)] unsigned long dwNumPrefixBits;
 } FW_IPV6_SUBNET,
 *PFW_IPV6_SUBNET;

Address: This field contains a 16-octet IPv6 address.

dwNumPrefixBits: This field contains the number of more-significant bits that represent the IPv6
subnet.

The dwNumPrefixBits MUST NOT be greater than 128 and not less than 1. The address SHOULD

NOT be an unspecified address (an address composed of all zeros),<2> and it MUST not be a
loopback address.

2.2.7 FW_IPV6_SUBNET_LIST

This structure is used to contain a number of FW_IPV6_SUBNET elements.

22 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

 typedef struct _tag_FW_IPV6_SUBNET_LIST {
 [range(0, 1000)] unsigned long dwNumEntries;
 [size_is(dwNumEntries)] PFW_IPV6_SUBNET pSubNets;
 } FW_IPV6_SUBNET_LIST,
 *PFW_IPV6_SUBNET_LIST;

dwNumEntries: This field specifies the number of subnets that the structure contains.

pSubNets: A pointer to an array of FW_IPV6_SUBNET elements. The number of elements is given by
dwNumEntries.

2.2.8 FW_IPV4_ADDRESS_RANGE

This structure represents a range of IPv4 addresses within the IPv4 address space.

 typedef struct _tag_FW_IPV4_ADDRESS_RANGE {
 unsigned long dwBegin;
 unsigned long dwEnd;
 } FW_IPV4_ADDRESS_RANGE,
 *PFW_IPV4_ADDRESS_RANGE;

dwBegin: The first IPv4 address of the range in the IPv4 address space defined by this structure.

The address is included in the range.

dwEnd: The last IPv4 address of the range in the IPv4 address space defined by this structure. The
address is included in the range.

Valid FW_IPV4_ADDRESS_RANGE structures MUST have a dwBegin value less than or equal to the
dwEnd value. Structures with dwBegin equal to dwEnd represent a single IPv4 address.

2.2.9 FW_IPV4_RANGE_LIST

This structure is used to contain a number of FW_IPV4_ADDRESS_RANGE elements.

 typedef struct _tag_FW_IPV4_RANGE_LIST {
 [range(0, 1000)] unsigned long dwNumEntries;
 [size_is(dwNumEntries)] PFW_IPV4_ADDRESS_RANGE pRanges;
 } FW_IPV4_RANGE_LIST,
 *PFW_IPV4_RANGE_LIST;

dwNumEntries: This field specifies the number of IPv4 address ranges that the structure contains.

pRanges: A pointer to an array of FW_IPV4_ADDRESS_RANGE elements. The number of elements is
given by dwNumEntries.

2.2.10 FW_IPV6_ADDRESS_RANGE

This structure represents a range of IPv6 addresses within the IPv6 address space.

 typedef struct _tag_FW_IPV6_ADDRESS_RANGE {
 unsigned char Begin[16];
 unsigned char End[16];
 } FW_IPV6_ADDRESS_RANGE,
 *PFW_IPV6_ADDRESS_RANGE;

23 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Begin: A 16-octet array containing the first IPv6 address of the range in the IPv6 address range
defined by this structure.

End: A 16-octet array containing the last IPv6 address of the range in the IPv6 address range defined
by this structure.

Valid FW_IPV6_ADDRESS_RANGE structures MUST have a Begin value less than or equal to the End
value. Structures with Begin equal to End represent a single IPv6 address. Begin and End MUST
NOT contain either an unspecified or a loopback address.

Begin and End are in network order.

2.2.11 FW_IPV6_RANGE_LIST

This structure is used to contain a number of FW_IPV6_ADDRESS_RANGE elements.

 typedef struct _tag_FW_IPV6_RANGE_LIST {
 [range(0, 1000)] unsigned long dwNumEntries;
 [size_is(dwNumEntries)] PFW_IPV6_ADDRESS_RANGE pRanges;
 } FW_IPV6_RANGE_LIST,
 *PFW_IPV6_RANGE_LIST;

dwNumEntries: This field specifies the number of IPv6 address ranges that the structure contains.

pRanges: A pointer to an array of FW_IPV6_ADDRESS_RANGE elements. The number of elements is
given by dwNumEntries.

2.2.12 FW_PORT_RANGE

This structure represents a range of ports. Ports are 16-bit unsigned values used in TCP and UDP
protocols.

 typedef struct _tag_FW_PORT_RANGE {
 unsigned short wBegin;
 unsigned short wEnd;
 } FW_PORT_RANGE,
 *PFW_PORT_RANGE;

wBegin: This field specifies the first port included in the range defined.

wEnd: This field specifies the last port included in the range defined.

Valid FW_PORT_RANGE structures MUST have a wBegin value less than or equal to the wEnd value.
In this protocol, wBegin is equal to wEnd.

2.2.13 FW_PORT_RANGE_LIST

This structure is used to contain a number of FW_PORT_RANGE elements.

 typedef struct _tag_FW_PORT_RANGE_LIST {
 [range(0, 1000)] unsigned long dwNumEntries;
 [size_is(dwNumEntries)] PFW_PORT_RANGE pPorts;
 } FW_PORT_RANGE_LIST,
 *PFW_PORT_RANGE_LIST;

dwNumEntries: This field specifies the number of port ranges that the structure contains.

24 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

pPorts: A pointer to an array of FW_PORT_RANGE elements. The number of elements is given as
dwNumEntries.

2.2.14 FW_PORT_KEYWORD

This enumeration identifies (with bitmask flags) the ports used by specific well-known protocols. The
ports corresponding to these keywords change dynamically and are tracked by the PortsInUse object
(see section 3.1.1). All the flags supported by a given schema version can be combined, except for the
restrictions placed on the wPortKeywords field as stated in FW_RULE (section 2.2.36) and

FW_CS_RULE (section 2.2.54).

 typedef enum _tag_FW_PORT_KEYWORD
 {
 FW_PORT_KEYWORD_NONE = 0x00,
 FW_PORT_KEYWORD_DYNAMIC_RPC_PORTS = 0x01,
 FW_PORT_KEYWORD_RPC_EP = 0x02,
 FW_PORT_KEYWORD_TEREDO_PORT = 0x04,
 FW_PORT_KEYWORD_IP_TLS_IN = 0x08,
 FW_PORT_KEYWORD_IP_TLS_OUT = 0x10,
 FW_PORT_KEYWORD_DHCP = 0x20,
 FW_PORT_KEYWORD_PLAYTO_DISCOVERY = 0x40,
 FW_PORT_KEYWORD_MAX = 0x80,
 FW_PORT_KEYWORD_MAX_V2_1 = 0x08,
 FW_PORT_KEYWORD_MAX_V2_10 = 0x20
 } FW_PORT_KEYWORD;

FW_PORT_KEYWORD_NONE: Specifies that no port keywords are used.

FW_PORT_KEYWORD_DYNAMIC_RPC_PORTS: Represents all ports in the PortsInUse collection
where IsDynamicRPC is true.

FW_PORT_KEYWORD_RPC_EP: Represents all ports in the PortsInUse collection where

IsRPCEndpointMapper is true.

FW_PORT_KEYWORD_TEREDO_PORT: Represents all ports in the PortsInUse collection where
IsTeredo is true.

FW_PORT_KEYWORD_IP_TLS_IN: Represents all ports in the PortsInUse collection where
IsIPTLSIn is true. For schema versions 0x0200 and 0x0201, this value is invalid and MUST NOT
be used. This symbolic constant has a value of 0x08.

FW_PORT_KEYWORD_IP_TLS_OUT: Represents all ports in the PortsInUse collection where

IsIPTLSOut is true. For schema versions 0x0200 and 0x0201, this value is invalid and MUST NOT
be used. This symbolic constant has a value of 0x10.

FW_PORT_KEYWORD_DHCP: Represents all ports in the PortsInUse collection where IsDHCPClient
is true. For schema versions 0x0200, 0x0201, and 0x020A, this value is invalid and MUST NOT be
used. This symbolic constant has a value of 0x20.

FW_PORT_KEYWORD_PLAYTO_DISCOVERY: Represents all ports in the PortsInUse collection

where IsPlayToDiscovery is true. For schema versions 0x0200, 0x0201, and 0x020A, this value is
invalid and MUST NOT be used. This symbolic constant has a value of 0x40.

FW_PORT_KEYWORD_MAX: This value and values that exceed this value are not valid and MUST
NOT be used. It is defined for simplicity in writing IDL definitions and code. This symbolic constant
has a value of 0x80.

FW_PORT_KEYWORD_MAX_V2_1: This value and values that exceed this value are not valid and
MUST NOT be used by servers and clients with schema version 0x0201 and earlier. It is defined

for simplicity in writing IDL definitions and code. This symbolic constant has a value of 0x08.

25 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

FW_PORT_KEYWORD_MAX_V2_10: This value and values that exceed this value are not valid and
MUST NOT be used by servers and clients with schema version 0x020A and earlier. It is defined

for simplicity in writing IDL definitions and code. This symbolic constant has a value of 0x20.

2.2.15 FW_PORTS

This structure contains the ports represented statically through FW_PORT_RANGE structures or
symbolically through FW_PORT_KEYWORD enumeration values.

 typedef struct _tag_FW_PORTS {
 unsigned short wPortKeywords;
 FW_PORT_RANGE_LIST Ports;
 } FW_PORTS,
 *PFW_PORTS;

wPortKeywords: This field is a combination of FW_PORT_KEYWORDS.

Ports: This field is a list of specifically defined ports.

2.2.16 FW_ICMP_TYPE_CODE

This data type defines ICMP (internet control message protocol with protocol numbers assigned in
[IANA-PROTO-NUM]) message types and codes. It specifies an ICMP type and either its specific code
or all codes for that type.

 typedef struct _tag_FW_ICMP_TYPE_CODE {
 unsigned char bType;
 [range(0, 256)] unsigned short wCode;
 } FW_ICMP_TYPE_CODE,
 *PFW_ICMP_TYPE_CODE;

bType: This field specifies the ICMP type.

wCode: This field specifies the ICMP code.

The wCode field MUST contain values between 0x0000 and 0x0100. When wCode contains 0x100, it
expresses any ICMP code belonging to the corresponding ICMP type. When wCode contains values in

the range 0 to 0x00FF, it expresses a specific ICMP code.

All valid ICMP type and code combinations are valid, even those not currently assigned for a specific
use.

2.2.17 FW_ICMP_TYPE_CODE_LIST

This structure is used to contain a number of FW_ICMP_TYPE_CODE elements.

 typedef struct _tag_FW_ICMP_TYPE_CODE_LIST {
 [range(0, 1000)] unsigned long dwNumEntries;
 [size_is(dwNumEntries)] PFW_ICMP_TYPE_CODE pEntries;
 } FW_ICMP_TYPE_CODE_LIST,
 *PFW_ICMP_TYPE_CODE_LIST;

dwNumEntries: This field specifies the number of FW_ICMP_TYPE_CODE elements that the structure
contains.

26 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

pEntries: A pointer to an array of FW_ICMP_TYPE_CODE elements. The number of elements is given
by dwNumEntries.

2.2.18 FW_INTERFACE_LUIDS

This structure is used to contain locally unique identifier (LUID) values that uniquely represent single
network adapters (NICs) within a specific computer.

 typedef struct _tag_FW_INTERFACE_LUIDS {
 [range(0, 1000)] unsigned long dwNumLUIDs;
 [size_is(dwNumLUIDs)] GUID* pLUIDs;
 } FW_INTERFACE_LUIDS,
 *PFW_INTERFACE_LUIDS;

dwNumLUIDs: This field specifies the number of interface LUIDs that the structure contains.

pLUIDs: A pointer to an array of GUID elements. The number of elements is given by

dwNumLUIDs. The GUID data type is specified in [MS-DTYP].

2.2.19 FW_DIRECTION

This enumeration represents the direction of network traffic flow.

 typedef enum _tag_FW_DIRECTION
 {
 FW_DIR_INVALID = 0,
 FW_DIR_IN,
 FW_DIR_OUT,
 FW_DIR_MAX
 } FW_DIRECTION;

FW_DIR_INVALID: This is an invalid value, and it MUST NOT be used. It is defined for simplicity in

writing IDL definitions and code. This symbolic constant has a value of zero.

FW_DIR_IN: Specifies an inbound network traffic flow. These are flows that are initiated by a
remote machine toward the local machine. This symbolic constant has a value of 1.

FW_DIR_OUT: Specifies an outbound network traffic flow. These are flows that are initiated by the
local machine toward a remote machine. This symbolic constant has a value of 2.

FW_DIR_MAX: This value and values that exceed this value are not valid and MUST NOT be used.
This symbolic constant is defined for simplicity in writing IDL definitions and code. It has a value of
3.

2.2.20 FW_INTERFACE_TYPE

This enumeration is used to represent types of network adapters (NICs) in a specific machine. Each

type might have one or more network adapters.

 typedef enum _tag_FW_INTERFACE_TYPE
 {
 FW_INTERFACE_TYPE_ALL = 0x0000,
 FW_INTERFACE_TYPE_LAN = 0x0001,
 FW_INTERFACE_TYPE_WIRELESS = 0x0002,
 FW_INTERFACE_TYPE_REMOTE_ACCESS = 0x0004,
 FW_INTERFACE_TYPE_MAX = 0x0008
 } FW_INTERFACE_TYPE;

27 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

FW_INTERFACE_TYPE_ALL: Represents all types of network adapters (NICs). The following types
fall into this type.

FW_INTERFACE_TYPE_LAN: Represents network adapters (NICs) that use wired network physical
layers such as Ethernet.

FW_INTERFACE_TYPE_WIRELESS: Represents network adapters that use the wireless 802
network physical layer.

FW_INTERFACE_TYPE_REMOTE_ACCESS: Represents network adapters that use VPN
connections.

FW_INTERFACE_TYPE_MAX: This value and values that exceed this value are not valid and MUST
NOT be used. It is defined for simplicity in writing IDL definitions and code. This symbolic constant
has a value of 0x0008.

2.2.21 FW_ADDRESS_KEYWORD

This enumeration is used to represent specific address types. As specified in the following descriptions,
these address types can change dynamically.

 typedef enum _tag_FW_ADDRESS_KEYWORD
 {
 FW_ADDRESS_KEYWORD_NONE = 0x0000,
 FW_ADDRESS_KEYWORD_LOCAL_SUBNET = 0x0001,
 FW_ADDRESS_KEYWORD_DNS = 0x0002,
 FW_ADDRESS_KEYWORD_DHCP = 0x0004,
 FW_ADDRESS_KEYWORD_WINS = 0x0008,
 FW_ADDRESS_KEYWORD_DEFAULT_GATEWAY = 0x0010,
 FW_ADDRESS_KEYWORD_INTRANET = 0x0020,
 FW_ADDRESS_KEYWORD_INTERNET = 0x0040,
 FW_ADDRESS_KEYWORD_PLAYTO_RENDERERS = 0x0080,
 FW_ADDRESS_KEYWORD_REMOTE_INTRANET = 0x0100,
 FW_ADDRESS_KEYWORD_MAX = 0x0200,
 FW_ADDRESS_KEYWORD_MAX_V2_10 = 0x0020
 } FW_ADDRESS_KEYWORD;

FW_ADDRESS_KEYWORD_NONE: Specifies that no specific keyword is used.

FW_ADDRESS_KEYWORD_LOCAL_SUBNET: Represents the collection of addresses that are
currently within the local subnet of the computer.

FW_ADDRESS_KEYWORD_DNS: Represents the collection of addresses of the current DNS
servers.

FW_ADDRESS_KEYWORD_DHCP: Represents the collection of addresses of the current DHCP
servers.

FW_ADDRESS_KEYWORD_WINS: Represents the collection of addresses of the current WINS

servers.

FW_ADDRESS_KEYWORD_DEFAULT_GATEWAY: Represents the collection of addresses of the
current gateway servers.

FW_ADDRESS_KEYWORD_INTRANET: Represents the collection of addresses that are currently
within the local intranet of the computer. For schema versions 0x0200, 0x0201, and 0x020A, this
value is invalid and MUST NOT be used.

FW_ADDRESS_KEYWORD_INTERNET: Represents the collection of addresses that are currently

not within the local intranet or remote intranet of the computer. For schema versions 0x0200,
0x0201, and 0x020A, this value is invalid and MUST NOT be used.

28 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

FW_ADDRESS_KEYWORD_PLAYTO_RENDERERS: Represents the collection of addresses of the
current Digital Media Renderer devices as defined in [MS-DLNHND] section 3.3. For schema

versions 0x0200, 0x0201, and 0x020A, this value is invalid and MUST NOT be used.

FW_ADDRESS_KEYWORD_REMOTE_INTRANET: Represents the collection of addresses that are

currently within the remote intranet of the computer. For schema versions 0x0200, 0x0201, and
0x020A, this value is invalid and MUST NOT be used.

FW_ADDRESS_KEYWORD_MAX: This value and values that exceed this value are not valid and
MUST NOT be used. It is defined for simplicity in writing IDL definitions and code. This symbolic
constant has a value of 0x0200.

FW_ADDRESS_KEYWORD_MAX_V2_10: This value and values that exceed this value are not valid
and MUST NOT be used by servers and clients with schema version 0x020A and earlier. It is

defined for simplicity in writing IDL definitions and code. This symbolic constant has a value of
0x0020.

2.2.22 FW_ADDRESSES

This structure contains a list of address structures. Static and symbolic representations are supported,
but a structure can contain only one representation type. The address structure representations
follow:

Static Representation

▪ FW_IPV4_SUBNET_LIST

▪ FW_IPV4_RANGE_LIST

▪ FW_IPV6_SUBNET_LIST

▪ FW_IPV6_RANGE_LIST

Symbolic Representation

▪ FW_ADDRESS_KEYWORD enumeration values

The FW_ADDRESSES definition follows:

 typedef struct _tag_FW_ADDRESSES {
 unsigned long dwV4AddressKeywords;
 unsigned long dwV6AddressKeywords;
 FW_IPV4_SUBNET_LIST V4SubNets;
 FW_IPV4_RANGE_LIST V4Ranges;
 FW_IPV6_SUBNET_LIST V6SubNets;
 FW_IPV6_RANGE_LIST V6Ranges;
 } FW_ADDRESSES,
 *PFW_ADDRESSES;

dwV4AddressKeywords: A combination of FW_ADDRESS_KEYWORD flags. Addresses in this field

are specified from the IPv4 address space.

dwV6AddressKeywords: A combination of FW_ADDRESS_KEYWORD flags. Addresses in this field
are specified from the IPv6 address space.

V4SubNets: A list of specifically defined IPv4 address subnets.

V4Ranges: A list of specifically defined IPv4 address ranges.

V6SubNets: A list of specifically defined IPv6 address subnets.

29 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

V6Ranges: A list of specifically defined IPv6 address ranges.

2.2.23 FW_RULE_STATUS

This enumeration represents status codes that identify the error states of a policy object, including
successful states. If an object is in an erroneous state, the enumeration value represents a reason for
the error.

 typedef [v1_enum] enum _tag_FW_RULE_STATUS
 {
 FW_RULE_STATUS_OK = 0x00010000,
 FW_RULE_STATUS_PARTIALLY_IGNORED = 0x00020000,
 FW_RULE_STATUS_IGNORED = 0x00040000,
 FW_RULE_STATUS_PARSING_ERROR = 0x00080000,
 FW_RULE_STATUS_PARSING_ERROR_NAME = 0x00080001,
 FW_RULE_STATUS_PARSING_ERROR_DESC = 0x00080002,
 FW_RULE_STATUS_PARSING_ERROR_APP = 0x00080003,
 FW_RULE_STATUS_PARSING_ERROR_SVC = 0x00080004,
 FW_RULE_STATUS_PARSING_ERROR_RMA = 0x00080005,
 FW_RULE_STATUS_PARSING_ERROR_RUA = 0x00080006,
 FW_RULE_STATUS_PARSING_ERROR_EMBD = 0x00080007,
 FW_RULE_STATUS_PARSING_ERROR_RULE_ID = 0x00080008,
 FW_RULE_STATUS_PARSING_ERROR_PHASE1_AUTH = 0x00080009,
 FW_RULE_STATUS_PARSING_ERROR_PHASE2_CRYPTO = 0x0008000A,
 FW_RULE_STATUS_PARSING_ERROR_PHASE2_AUTH = 0x0008000B,
 FW_RULE_STATUS_PARSING_ERROR_RESOLVE_APP = 0x0008000C,
 FW_RULE_STATUS_PARSING_ERROR_MAINMODE_ID = 0x0008000D,
 FW_RULE_STATUS_PARSING_ERROR_PHASE1_CRYPTO = 0x0008000E,
 FW_RULE_STATUS_PARSING_ERROR_REMOTE_ENDPOINTS = 0x0008000F,
 FW_RULE_STATUS_PARSING_ERROR_REMOTE_ENDPOINT_FQDN = 0x00080010,
 FW_RULE_STATUS_PARSING_ERROR_KEY_MODULE = 0x00080011,
 FW_RULE_STATUS_PARSING_ERROR_LUA = 0x00080012,
 FW_RULE_STATUS_PARSING_ERROR_FWD_LIFETIME = 0x00080013,
 FW_RULE_STATUS_PARSING_ERROR_TRANSPORT_MACHINE_AUTHZ_SDDL = 0x00080014,
 FW_RULE_STATUS_PARSING_ERROR_TRANSPORT_USER_AUTHZ_SDDL = 0x00080015,
 FW_RULE_STATUS_PARSING_ERROR_NETNAMES_STRING = 0x00080016,
 FW_RULE_STATUS_PARSING_ERROR_SECURITY_REALM_ID_STRING = 0x00080017,
 FW_RULE_STATUS_PARSING_ERROR_FQBN_STRING = 0x00080018,
 FW_RULE_STATUS_SEMANTIC_ERROR = 0x00100000,
 FW_RULE_STATUS_SEMANTIC_ERROR_RULE_ID = 0x00100010,
 FW_RULE_STATUS_SEMANTIC_ERROR_PORTS = 0x00100020,
 FW_RULE_STATUS_SEMANTIC_ERROR_PORT_KEYW = 0x00100021,
 FW_RULE_STATUS_SEMANTIC_ERROR_PORT_RANGE = 0x00100022,
 FW_RULE_STATUS_SEMANTIC_ERROR_PORTRANGE_RESTRICTION = 0x00100023,
 FW_RULE_STATUS_SEMANTIC_ERROR_ADDR_V4_SUBNETS = 0x00100040,
 FW_RULE_STATUS_SEMANTIC_ERROR_ADDR_V6_SUBNETS = 0x00100041,
 FW_RULE_STATUS_SEMANTIC_ERROR_ADDR_V4_RANGES = 0x00100042,
 FW_RULE_STATUS_SEMANTIC_ERROR_ADDR_V6_RANGES = 0x00100043,
 FW_RULE_STATUS_SEMANTIC_ERROR_ADDR_RANGE = 0x00100044,
 FW_RULE_STATUS_SEMANTIC_ERROR_ADDR_MASK = 0x00100045,
 FW_RULE_STATUS_SEMANTIC_ERROR_ADDR_PREFIX = 0x00100046,
 FW_RULE_STATUS_SEMANTIC_ERROR_ADDR_KEYW = 0x00100047,
 FW_RULE_STATUS_SEMANTIC_ERROR_LADDR_PROP = 0x00100048,
 FW_RULE_STATUS_SEMANTIC_ERROR_RADDR_PROP = 0x00100049,
 FW_RULE_STATUS_SEMANTIC_ERROR_ADDR_V6 = 0x0010004A,
 FW_RULE_STATUS_SEMANTIC_ERROR_LADDR_INTF = 0x0010004B,
 FW_RULE_STATUS_SEMANTIC_ERROR_ADDR_V4 = 0x0010004C,
 FW_RULE_STATUS_SEMANTIC_ERROR_TUNNEL_ENDPOINT_ADDR = 0x0010004D,
 FW_RULE_STATUS_SEMANTIC_ERROR_DTE_VER = 0x0010004E,
 FW_RULE_STATUS_SEMANTIC_ERROR_DTE_MISMATCH_ADDR = 0x0010004F,
 FW_RULE_STATUS_SEMANTIC_ERROR_PROFILE = 0x00100050,
 FW_RULE_STATUS_SEMANTIC_ERROR_ICMP = 0x00100060,
 FW_RULE_STATUS_SEMANTIC_ERROR_ICMP_CODE = 0x00100061,
 FW_RULE_STATUS_SEMANTIC_ERROR_IF_ID = 0x00100070,
 FW_RULE_STATUS_SEMANTIC_ERROR_IF_TYPE = 0x00100071,
 FW_RULE_STATUS_SEMANTIC_ERROR_ACTION = 0x00100080,
 FW_RULE_STATUS_SEMANTIC_ERROR_ALLOW_BYPASS = 0x00100081,

30 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

 FW_RULE_STATUS_SEMANTIC_ERROR_DO_NOT_SECURE = 0x00100082,
 FW_RULE_STATUS_SEMANTIC_ERROR_ACTION_BLOCK_IS_ENCRYPTED_SECURE = 0x00100083,
 FW_RULE_STATUS_SEMANTIC_ERROR_INCOMPATIBLE_FLAG_OR_ACTION_WITH_SECURITY_REALM = 0x00100084,
 FW_RULE_STATUS_SEMANTIC_ERROR_DIR = 0x00100090,
 FW_RULE_STATUS_SEMANTIC_ERROR_PROT = 0x001000A0,
 FW_RULE_STATUS_SEMANTIC_ERROR_PROT_PROP = 0x001000A1,
 FW_RULE_STATUS_SEMANTIC_ERROR_DEFER_EDGE_PROP = 0x001000A2,
 FW_RULE_STATUS_SEMANTIC_ERROR_ALLOW_BYPASS_OUTBOUND = 0x001000A3,
 FW_RULE_STATUS_SEMANTIC_ERROR_DEFER_USER_INVALID_RULE = 0x001000A4,
 FW_RULE_STATUS_SEMANTIC_ERROR_FLAGS = 0x001000B0,
 FW_RULE_STATUS_SEMANTIC_ERROR_FLAGS_AUTO_AUTH = 0x001000B1,
 FW_RULE_STATUS_SEMANTIC_ERROR_FLAGS_AUTO_BLOCK = 0x001000B2,
 FW_RULE_STATUS_SEMANTIC_ERROR_FLAGS_AUTO_DYN_RPC = 0x001000B3,
 FW_RULE_STATUS_SEMANTIC_ERROR_FLAGS_AUTHENTICATE_ENCRYPT = 0x001000B4,
 FW_RULE_STATUS_SEMANTIC_ERROR_FLAGS_AUTH_WITH_ENC_NEGOTIATE_VER = 0x001000B5,
 FW_RULE_STATUS_SEMANTIC_ERROR_FLAGS_AUTH_WITH_ENC_NEGOTIATE = 0x001000B6,
 FW_RULE_STATUS_SEMANTIC_ERROR_FLAGS_ESP_NO_ENCAP_VER = 0x001000B7,
 FW_RULE_STATUS_SEMANTIC_ERROR_FLAGS_ESP_NO_ENCAP = 0x001000B8,
 FW_RULE_STATUS_SEMANTIC_ERROR_FLAGS_TUNNEL_AUTH_MODES_VER = 0x001000B9,
 FW_RULE_STATUS_SEMANTIC_ERROR_FLAGS_TUNNEL_AUTH_MODES = 0x001000BA,
 FW_RULE_STATUS_SEMANTIC_ERROR_FLAGS_IP_TLS_VER = 0x001000BB,
 FW_RULE_STATUS_SEMANTIC_ERROR_FLAGS_PORTRANGE_VER = 0x001000BC,
 FW_RULE_STATUS_SEMANTIC_ERROR_FLAGS_ADDRS_TRAVERSE_DEFER_VER = 0x001000BD,
 FW_RULE_STATUS_SEMANTIC_ERROR_FLAGS_AUTH_WITH_ENC_NEGOTIATE_OUTBOUND = 0x001000BE,
 FW_RULE_STATUS_SEMANTIC_ERROR_FLAGS_AUTHENTICATE_WITH_OUTBOUND_BYPASS_VER = 0x001000BF,
 FW_RULE_STATUS_SEMANTIC_ERROR_REMOTE_AUTH_LIST = 0x001000C0,
 FW_RULE_STATUS_SEMANTIC_ERROR_REMOTE_USER_LIST = 0x001000C1,
 FW_RULE_STATUS_SEMANTIC_ERROR_LOCAL_USER_LIST = 0x001000C2,
 FW_RULE_STATUS_SEMANTIC_ERROR_LUA_VER = 0x001000C3,
 FW_RULE_STATUS_SEMANTIC_ERROR_LOCAL_USER_OWNER = 0x001000C4,
 FW_RULE_STATUS_SEMANTIC_ERROR_LOCAL_USER_OWNER_VER = 0x001000C5,
 FW_RULE_STATUS_SEMANTIC_ERROR_LUA_CONDITIONAL_VER = 0x001000C6,
 FW_RULE_STATUS_SEMANTIC_ERROR_FLAGS_SYSTEMOS_GAMEOS = 0x001000C7,
 FW_RULE_STATUS_SEMANTIC_ERROR_FLAGS_CORTANA_VER = 0x001000C8,
 FW_RULE_STATUS_SEMANTIC_ERROR_FLAGS_REMOTENAME = 0x001000C9
 FW_RULE_STATUS_SEMANTIC_ERROR_FLAGS_ALLOW_PROFILE_CROSSING_VER = 0x001000D0,
 FW_RULE_STATUS_SEMANTIC_ERROR_LOCAL_ONLY_MAPPED_VER = 0x001000D1,
 FW_RULE_STATUS_SEMANTIC_ERROR_PLATFORM = 0x001000E0,
 FW_RULE_STATUS_SEMANTIC_ERROR_PLATFORM_OP_VER = 0x001000E1,
 FW_RULE_STATUS_SEMANTIC_ERROR_PLATFORM_OP = 0x001000E2,
 FW_RULE_STATUS_SEMANTIC_ERROR_DTE_NOANY_ADDR = 0x001000F0,
 FW_RULE_STATUS_SEMANTIC_TUNNEL_EXEMPT_WITH_GATEWAY = 0x001000F1,
 FW_RULE_STATUS_SEMANTIC_TUNNEL_EXEMPT_VER = 0x001000F2,
 FW_RULE_STATUS_SEMANTIC_ERROR_ADDR_KEYWORD_VER = 0x001000F3,
 FW_RULE_STATUS_SEMANTIC_ERROR_KEY_MODULE_VER = 0x001000F4,
 FW_RULE_STATUS_SEMANTIC_ERROR_APP_CONTAINER_PACKAGE_ID = 0x00100100,
 FW_RULE_STATUS_SEMANTIC_ERROR_APP_CONTAINER_PACKAGE_ID_VER = 0x00100101,
 FW_RULE_STATUS_SEMANTIC_ERROR_TRUST_TUPLE_KEYWORD_INCOMPATIBLE = 0x00100200,
 FW_RULE_STATUS_SEMANTIC_ERROR_TRUST_TUPLE_KEYWORD_INVALID = 0x00100201,
 FW_RULE_STATUS_SEMANTIC_ERROR_TRUST_TUPLE_KEYWORD_VER = 0x00100202,
 FW_RULE_STATUS_SEMANTIC_ERROR_INTERFACE_TYPES_VER = 0x00100301,
 FW_RULE_STATUS_SEMANTIC_ERROR_NETNAMES_VER = 0x00100401,
 FW_RULE_STATUS_SEMANTIC_ERROR_SECURITY_REALM_ID_VER = 0x00100402,
 FW_RULE_STATUS_SEMANTIC_ERROR_SYSTEMOS_GAMEOS_VER = 0x00100403,
 FW_RULE_STATUS_SEMANTIC_ERROR_DEVMODE_VER = 0x00100404,
 FW_RULE_STATUS_SEMANTIC_ERROR_REMOTE_SERVERNAME_VER = 0x00100405,
 FW_RULE_STATUS_SEMANTIC_ERROR_FQBN_VER = 0x00100406,
 FW_RULE_STATUS_SEMANTIC_ERROR_COMPARTMENT_ID_VER = 0x00100407,
 FW_RULE_STATUS_SEMANTIC_ERROR_CALLOUT_AND_AUDIT_VER = 0x00100408,
 FW_RULE_STATUS_SEMANTIC_ERROR_PHASE1_AUTH_SET_ID = 0x00100500,
 FW_RULE_STATUS_SEMANTIC_ERROR_PHASE2_CRYPTO_SET_ID = 0x00100510,
 FW_RULE_STATUS_SEMANTIC_ERROR_PHASE1_CRYPTO_SET_ID = 0x00100511,
 FW_RULE_STATUS_SEMANTIC_ERROR_FLAGS_KEY_MANAGER_DICTATE_VER = 0x00100512,
 FW_RULE_STATUS_SEMANTIC_ERROR_FLAGS_KEY_MANAGER_NOTIFY_VER = 0x00100513,
 FW_RULE_STATUS_SEMANTIC_ERROR_TRANSPORT_MACHINE_AUTHZ_VER = 0x00100514,
 FW_RULE_STATUS_SEMANTIC_ERROR_TRANSPORT_USER_AUTHZ_VER = 0x00100515,
 FW_RULE_STATUS_SEMANTIC_ERROR_TRANSPORT_MACHINE_AUTHZ_ON_TUNNEL = 0x00100516,
 FW_RULE_STATUS_SEMANTIC_ERROR_TRANSPORT_USER_AUTHZ_ON_TUNNEL = 0x00100517,
 FW_RULE_STATUS_SEMANTIC_ERROR_PER_RULE_AND_GLOBAL_AUTHZ = 0x00100518,
 FW_RULE_STATUS_SEMANTIC_ERROR_FLAGS_SECURITY_REALM = 0x00100519,

31 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

 FW_RULE_STATUS_SEMANTIC_ERROR_SET_ID = 0x00101000,
 FW_RULE_STATUS_SEMANTIC_ERROR_IPSEC_PHASE = 0x00101010,
 FW_RULE_STATUS_SEMANTIC_ERROR_EMPTY_SUITES = 0x00101020,
 FW_RULE_STATUS_SEMANTIC_ERROR_PHASE1_AUTH_METHOD = 0x00101030,
 FW_RULE_STATUS_SEMANTIC_ERROR_PHASE2_AUTH_METHOD = 0x00101031,
 FW_RULE_STATUS_SEMANTIC_ERROR_AUTH_METHOD_ANONYMOUS = 0x00101032,
 FW_RULE_STATUS_SEMANTIC_ERROR_AUTH_METHOD_DUPLICATE = 0x00101033,
 FW_RULE_STATUS_SEMANTIC_ERROR_AUTH_METHOD_VER = 0x00101034,
 FW_RULE_STATUS_SEMANTIC_ERROR_AUTH_SUITE_FLAGS = 0x00101040,
 FW_RULE_STATUS_SEMANTIC_ERROR_HEALTH_CERT = 0x00101041,
 FW_RULE_STATUS_SEMANTIC_ERROR_AUTH_SIGNCERT_VER = 0x00101042,
 FW_RULE_STATUS_SEMANTIC_ERROR_AUTH_INTERMEDIATE_CA_VER = 0x00101043,
 FW_RULE_STATUS_SEMANTIC_ERROR_MACHINE_SHKEY = 0x00101050,
 FW_RULE_STATUS_SEMANTIC_ERROR_CA_NAME = 0x00101060,
 FW_RULE_STATUS_SEMANTIC_ERROR_MIXED_CERTS = 0x00101061,
 FW_RULE_STATUS_SEMANTIC_ERROR_NON_CONTIGUOUS_CERTS = 0x00101062,
 FW_RULE_STATUS_SEMANTIC_ERROR_MIXED_CA_TYPE_IN_BLOCK = 0x00101063,
 FW_RULE_STATUS_SEMANTIC_ERROR_MACHINE_USER_AUTH = 0x00101070,
 FW_RULE_STATUS_SEMANTIC_ERROR_AUTH_CERT_CRITERIA_VER = 0x00101071,
 FW_RULE_STATUS_SEMANTIC_ERROR_AUTH_CERT_CRITERIA_VER_MISMATCH = 0x00101072,
 FW_RULE_STATUS_SEMANTIC_ERROR_AUTH_CERT_CRITERIA_RENEWAL_HASH = 0x00101073,
 FW_RULE_STATUS_SEMANTIC_ERROR_AUTH_CERT_CRITERIA_INVALID_HASH = 0x00101074,
 FW_RULE_STATUS_SEMANTIC_ERROR_AUTH_CERT_CRITERIA_INVALID_EKU = 0x00101075,
 FW_RULE_STATUS_SEMANTIC_ERROR_AUTH_CERT_CRITERIA_INVALID_NAME_TYPE = 0x00101076,
 FW_RULE_STATUS_SEMANTIC_ERROR_AUTH_CERT_CRITERIA_INVALID_NAME = 0x00101077,
 FW_RULE_STATUS_SEMANTIC_ERROR_AUTH_CERT_CRITERIA_INVALID_CRITERIA_TYPE = 0x00101078,
 FW_RULE_STATUS_SEMANTIC_ERROR_AUTH_CERT_CRITERIA_MISSING_CRITERIA = 0x00101079,
 FW_RULE_STATUS_SEMANTIC_ERROR_PROXY_SERVER = 0x00101080,
 FW_RULE_STATUS_SEMANTIC_ERROR_AUTH_PROXY_SERVER_VER = 0x00101081,
 FW_RULE_STATUS_SEMANTIC_ERROR_PHASE1_CRYPTO_NON_DEFAULT_ID = 0x00105000,
 FW_RULE_STATUS_SEMANTIC_ERROR_PHASE1_CRYPTO_FLAGS = 0x00105001,
 FW_RULE_STATUS_SEMANTIC_ERROR_PHASE1_CRYPTO_TIMEOUT_MINUTES = 0x00105002,
 FW_RULE_STATUS_SEMANTIC_ERROR_PHASE1_CRYPTO_TIMEOUT_SESSIONS = 0x00105003,
 FW_RULE_STATUS_SEMANTIC_ERROR_PHASE1_CRYPTO_KEY_EXCHANGE = 0x00105004,
 FW_RULE_STATUS_SEMANTIC_ERROR_PHASE1_CRYPTO_ENCRYPTION = 0x00105005,
 FW_RULE_STATUS_SEMANTIC_ERROR_PHASE1_CRYPTO_HASH = 0x00105006,
 FW_RULE_STATUS_SEMANTIC_ERROR_PHASE1_CRYPTO_ENCRYPTION_VER = 0x00105007,
 FW_RULE_STATUS_SEMANTIC_ERROR_PHASE1_CRYPTO_HASH_VER = 0x00105008,
 FW_RULE_STATUS_SEMANTIC_ERROR_PHASE1_CRYPTO_KEY_EXCH_VER = 0x00105009,
 FW_RULE_STATUS_SEMANTIC_ERROR_PHASE2_CRYPTO_PFS = 0x00105020,
 FW_RULE_STATUS_SEMANTIC_ERROR_PHASE2_CRYPTO_PROTOCOL = 0x00105021,
 FW_RULE_STATUS_SEMANTIC_ERROR_PHASE2_CRYPTO_ENCRYPTION = 0x00105022,
 FW_RULE_STATUS_SEMANTIC_ERROR_PHASE2_CRYPTO_HASH = 0x00105023,
 FW_RULE_STATUS_SEMANTIC_ERROR_PHASE2_CRYPTO_TIMEOUT_MINUTES = 0x00105024,
 FW_RULE_STATUS_SEMANTIC_ERROR_PHASE2_CRYPTO_TIMEOUT_KBYTES = 0x00105025,
 FW_RULE_STATUS_SEMANTIC_ERROR_PHASE2_CRYPTO_ENCRYPTION_VER = 0x00105026,
 FW_RULE_STATUS_SEMANTIC_ERROR_PHASE2_CRYPTO_HASH_VER = 0x00105027,
 FW_RULE_STATUS_SEMANTIC_ERROR_PHASE2_CRYPTO_PFS_VER = 0x00105028,
 FW_RULE_STATUS_SEMANTIC_ERROR_CRYPTO_ENCR_HASH = 0x00105040,
 FW_RULE_STATUS_SEMANTIC_ERROR_CRYPTO_ENCR_HASH_COMPAT = 0x00105041,
 FW_RULE_STATUS_SEMANTIC_ERROR_SCHEMA_VERSION = 0x00105050,
 FW_RULE_STATUS_SEMANTIC_ERROR_QUERY_OR_AND_CONDITIONS = 0x00106000,
 FW_RULE_STATUS_SEMANTIC_ERROR_QUERY_AND_CONDITIONS = 0x00106001,
 FW_RULE_STATUS_SEMANTIC_ERROR_QUERY_CONDITION_KEY = 0x00106002,
 FW_RULE_STATUS_SEMANTIC_ERROR_QUERY_CONDITION_MATCH_TYPE = 0x00106003,
 FW_RULE_STATUS_SEMANTIC_ERROR_QUERY_CONDITION_DATA_TYPE = 0x00106004,
 FW_RULE_STATUS_SEMANTIC_ERROR_QUERY_CONDITION_KEY_AND_DATA_TYPE = 0x00106005,
 FW_RULE_STATUS_SEMANTIC_ERROR_QUERY_KEYS_PROTOCOL_PORT = 0x00106006,
 FW_RULE_STATUS_SEMANTIC_ERROR_QUERY_KEY_PROFILE = 0x00106007,
 FW_RULE_STATUS_SEMANTIC_ERROR_QUERY_KEY_STATUS = 0x00106008,
 FW_RULE_STATUS_SEMANTIC_ERROR_QUERY_KEY_FILTERID = 0x00106009,
 FW_RULE_STATUS_SEMANTIC_ERROR_QUERY_KEY_APP_PATH = 0x00106010,
 FW_RULE_STATUS_SEMANTIC_ERROR_QUERY_KEY_PROTOCOL = 0x00106011,
 FW_RULE_STATUS_SEMANTIC_ERROR_QUERY_KEY_LOCAL_PORT = 0x00106012,
 FW_RULE_STATUS_SEMANTIC_ERROR_QUERY_KEY_REMOTE_PORT = 0x00106013,
 FW_RULE_STATUS_SEMANTIC_ERROR_QUERY_KEY_SVC_NAME = 0x00106015,
 FW_RULE_STATUS_SEMANTIC_ERROR_REQUIRE_IN_CLEAR_OUT_ON_TRANSPORT = 0x00107000,
 FW_RULE_STATUS_SEMANTIC_ERROR_TUNNEL_BYPASS_TUNNEL_IF_SECURE_ON_TRANSPORT = 0x00107001,
 FW_RULE_STATUS_SEMANTIC_ERROR_AUTH_NOENCAP_ON_TUNNEL = 0x00107002,
 FW_RULE_STATUS_SEMANTIC_ERROR_AUTH_NOENCAP_ON_PSK = 0x00107003,

32 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

 FW_RULE_STATUS_RUNTIME_ERROR = 0x00200000,
 FW_RULE_STATUS_RUNTIME_ERROR_PHASE1_AUTH_NOT_FOUND = 0x00200001,
 FW_RULE_STATUS_RUNTIME_ERROR_PHASE2_AUTH_NOT_FOUND = 0x00200002,
 FW_RULE_STATUS_RUNTIME_ERROR_PHASE2_CRYPTO_NOT_FOUND = 0x00200003,
 FW_RULE_STATUS_RUNTIME_ERROR_AUTH_MCHN_SHKEY_MISMATCH = 0x00200004,
 FW_RULE_STATUS_RUNTIME_ERROR_PHASE1_CRYPTO_NOT_FOUND = 0x00200005,
 FW_RULE_STATUS_RUNTIME_ERROR_AUTH_NOENCAP_ON_TUNNEL = 0x00200006,
 FW_RULE_STATUS_RUNTIME_ERROR_AUTH_NOENCAP_ON_PSK = 0x00200007,
 FW_RULE_STATUS_RUNTIME_ERROR_KEY_MODULE_AUTH_MISMATCH = 0x00200008,
 FW_RULE_STATUS_ERROR = FW_RULE_STATUS_PARSING_ERROR | FW_RULE_STATUS_SEMANTIC_ERROR |
FW_RULE_STATUS_RUNTIME_ERROR,

 FW_RULE_STATUS_ALL = 0xFFFF0000
 } FW_RULE_STATUS;

FW_RULE_STATUS_OK: The rule was parsed successfully from the store, is correctly constructed,

and has no issue.

FW_RULE_STATUS_PARTIALLY_IGNORED: The rule has fields that the service can successfully
ignore. The ignored fields can be present only if the policy (such as the Group Policy) was written

by future firewall and advanced security components that support a higher schema version.
Therefore, this error occurs only if the version of the rule is higher; specifically, a higher minor
version means that part of the rule might not be understandable. Because the host firewall
component does not understand these new fields, it cannot meaningfully specify what was ignored

in the rule.

FW_RULE_STATUS_IGNORED: The rule has a higher major version that the service MUST ignore.
Higher major schema versions specify that nothing in the rule is understandable to lower major
version components.

FW_RULE_STATUS_PARSING_ERROR_NAME: The name contains characters that are not valid or
the length is not valid.

FW_RULE_STATUS_PARSING_ERROR_DESC: The description contains characters that are not
valid or the length is not valid.

FW_RULE_STATUS_PARSING_ERROR_APP: The application contains characters that are not valid
or the length is not valid.

FW_RULE_STATUS_PARSING_ERROR_SVC: The service contains characters that are not valid or
the length is not valid.

FW_RULE_STATUS_PARSING_ERROR_RMA: The remote machine authentication contains

characters that are not valid or the length is not valid.

FW_RULE_STATUS_PARSING_ERROR_RUA: The remote user authentication contains characters
that are not valid or the length is not valid.

FW_RULE_STATUS_PARSING_ERROR_EMBD: The embedded context contains characters that
are not valid or the length is not valid.

FW_RULE_STATUS_PARSING_ERROR_RULE_ID: The rule ID contains characters that are not

valid or the length is not valid.

FW_RULE_STATUS_PARSING_ERROR_PHASE1_AUTH: The Phase1 authentication set ID
contains characters that are not valid or the length is not valid.

FW_RULE_STATUS_PARSING_ERROR_PHASE2_CRYPTO: The Phase2 cryptographic set ID
contains characters that are not valid or the length is not valid.

FW_RULE_STATUS_PARSING_ERROR_PHASE2_AUTH: The Phase2 authentication set ID
contains characters that are not valid or the length is not valid.

33 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

FW_RULE_STATUS_PARSING_ERROR_RESOLVE_APP: The application name cannot be resolved.

FW_RULE_STATUS_PARSING_ERROR_MAINMODE_ID: This error is unused and not returned by

the system.

FW_RULE_STATUS_PARSING_ERROR_PHASE1_CRYPTO: The Phase1 cryptographic set ID

contains characters that are not valid or the length is not valid.

FW_RULE_STATUS_PARSING_ERROR_REMOTE_ENDPOINTS: The remote tunnel endpoints
contain characters that are not valid, or the length is not valid.

FW_RULE_STATUS_PARSING_ERROR_REMOTE_ENDPOINT_FQDN: The remote tunnel
endpoint fully qualified domain name (FQDN) contains characters that are not valid, or the length
is not valid.

FW_RULE_STATUS_PARSING_ERROR_KEY_MODULE: The keying modules contain characters

that are not valid, or the length is not valid.

FW_RULE_STATUS_PARSING_ERROR_LUA: The local user authorization list contains characters

that are not valid or the length is not valid.

FW_RULE_STATUS_PARSING_ERROR_FWD_LIFETIME: The forward path security association
(SA) lifetime contains characters that are not valid or the length is not valid.

FW_RULE_STATUS_PARSING_ERROR_TRANSPORT_MACHINE_AUTHZ_SDDL: The IPsec

transport mode machine authorization SDDL string contains characters that are not valid, or the
length is not valid.

FW_RULE_STATUS_PARSING_ERROR_TRANSPORT_USER_AUTHZ_SDDL: The IPsec transport
mode user authorization SDDL string contains characters that are not valid, or the length is not
valid.

FW_RULE_STATUS_PARSING_ERROR_NETNAMES_STRING: A string for the network name
structure is invalid.

FW_RULE_STATUS_PARSING_ERROR_SECURITY_REALM_ID_STRING: A string for the security
realm ID is invalid.

FW_RULE_STATUS_PARSING_ERROR_FQBN_STRING: A string for the fully qualified binary
name (FQBN) is invalid; also see [MSDN-FQBN].

FW_RULE_STATUS_PARSING_ERROR: The rule did not parse correctly.

FW_RULE_STATUS_SEMANTIC_ERROR_RULE_ID: Semantic error: The rule ID is not specified.

FW_RULE_STATUS_SEMANTIC_ERROR_PORTS: Semantic error: Mismatch in the number of

ports and port buffers.

FW_RULE_STATUS_SEMANTIC_ERROR_PORT_KEYW: Semantic error: The port keyword is not
valid.

FW_RULE_STATUS_SEMANTIC_ERROR_PORT_RANGE: Semantic error: End != Begin or port =
0.

FW_RULE_STATUS_SEMANTIC_ERROR_PORTRANGE_RESTRICTION: Semantic error: A port

range has been specified for a connection security rule, but the action is not Do Not Secure.

FW_RULE_STATUS_SEMANTIC_ERROR_ADDR_V4_SUBNETS: Semantic error: Mismatch in the
number of v4 subnets and subnet buffers.

34 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

FW_RULE_STATUS_SEMANTIC_ERROR_ADDR_V6_SUBNETS: Semantic error: Mismatch in the
number of v6 subnets and subnet buffers.

FW_RULE_STATUS_SEMANTIC_ERROR_ADDR_V4_RANGES: Semantic error: Mismatch in the
number of v4 ranges and range buffers.

FW_RULE_STATUS_SEMANTIC_ERROR_ADDR_V6_RANGES: Semantic error: Mismatch in the
number of v6 ranges and range buffers.

FW_RULE_STATUS_SEMANTIC_ERROR_ADDR_RANGE: Semantic error: End < Begin.

FW_RULE_STATUS_SEMANTIC_ERROR_ADDR_MASK: Semantic error: The mask specified on a
v4 subnet is not valid.

FW_RULE_STATUS_SEMANTIC_ERROR_ADDR_PREFIX: Semantic error: The prefix specified on
a v6 subnet is not valid.

FW_RULE_STATUS_SEMANTIC_ERROR_ADDR_KEYW: Semantic error: The specified keyword is
not valid.

FW_RULE_STATUS_SEMANTIC_ERROR_LADDR_PROP: Semantic error: A property on local
addresses does not belong to the LocalAddress.

FW_RULE_STATUS_SEMANTIC_ERROR_RADDR_PROP: Semantic error: A property on remote
addresses does not belong to the RemoteAddress.

FW_RULE_STATUS_SEMANTIC_ERROR_ADDR_V6: Semantic error: An unspecified or loopback
IPv6 address was specified.

FW_RULE_STATUS_SEMANTIC_ERROR_LADDR_INTF: Semantic error: A local address cannot be
used together with either an interface or an interface type.

FW_RULE_STATUS_SEMANTIC_ERROR_ADDR_V4: Semantic error: An unspecified or loopback
IPv4 address was specified.

FW_RULE_STATUS_SEMANTIC_ERROR_TUNNEL_ENDPOINT_ADDR: Semantic error: An

endpoint "any" cannot be specified for a tunnel mode rule.

FW_RULE_STATUS_SEMANTIC_ERROR_DTE_VER: Semantic error: An incorrect schema version
was specified for using dynamic tunnel endpoints.

FW_RULE_STATUS_SEMANTIC_ERROR_DTE_MISMATCH_ADDR: Semantic error: The v4 and
v6 tunnel endpoints are neither local nor remote endpoints.

FW_RULE_STATUS_SEMANTIC_ERROR_PROFILE: Semantic error: The profile type is not valid.

FW_RULE_STATUS_SEMANTIC_ERROR_ICMP: Semantic error: Mismatch in the number of ICMPs

and ICMP buffers.

FW_RULE_STATUS_SEMANTIC_ERROR_ICMP_CODE: Semantic error: The specified ICMP code is
not valid.

FW_RULE_STATUS_SEMANTIC_ERROR_IF_ID: Semantic error: Mismatch in the number of
interfaces and interface buffers.

FW_RULE_STATUS_SEMANTIC_ERROR_IF_TYPE: Semantic error: The specified interface type is

not valid.

FW_RULE_STATUS_SEMANTIC_ERROR_ACTION: Semantic error: The specified action is not
valid.

35 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

FW_RULE_STATUS_SEMANTIC_ERROR_ALLOW_BYPASS: Semantic error: An allow-bypass
action is specified, but the rule does not meet allow-bypass criteria (such as, the direction is

inbound, authenticate/encrypt flags are set, or remote machine authentication is set).

FW_RULE_STATUS_SEMANTIC_ERROR_DO_NOT_SECURE: Semantic error: A DO_NOT_SECURE

action is specified together with authentication or cryptographic sets.

FW_RULE_STATUS_SEMANTIC_ERROR_ACTION_BLOCK_IS_ENCRYPTED_SECURE: Semantic
error: A block action was specified together with a require security or a require encryption action.

FW_RULE_STATUS_SEMANTIC_ERROR_DIR: Semantic error: The specified direction is not valid.

FW_RULE_STATUS_SEMANTIC_ERROR_PROT: Semantic error: The specified protocol is not
valid.

FW_RULE_STATUS_SEMANTIC_ERROR_PROT_PROP: Semantic error: The protocol and

protocol-dependent fields do not match.

FW_RULE_STATUS_SEMANTIC_ERROR_DEFER_EDGE_PROP: Semantic error: A Dynamic edge

flag (either defer to app or defer to user) is set without having an edge flag set.

FW_RULE_STATUS_SEMANTIC_ERROR_ALLOW_BYPASS_OUTBOUND: Semantic error: An
outbound allow-bypass action is specified, but the rule does not meet allow-bypass criteria
(authenticate/encrypt flags set).

FW_RULE_STATUS_SEMANTIC_ERROR_DEFER_USER_INVALID_RULE: The rule does not allow
the defer user property to be set.

FW_RULE_STATUS_SEMANTIC_ERROR_FLAGS: Semantic error: The specified flags are not valid.

FW_RULE_STATUS_SEMANTIC_ERROR_FLAGS_AUTO_AUTH: Semantic error: The autogenerate
flag is set, but no authentication flags are set.

FW_RULE_STATUS_SEMANTIC_ERROR_FLAGS_AUTO_BLOCK: Semantic error: The
autogenerate flag is set, but the action is block.

FW_RULE_STATUS_SEMANTIC_ERROR_FLAGS_AUTO_DYN_RPC: Semantic error: The
autogenerate flag is set together with the dynamic RPC flag.

FW_RULE_STATUS_SEMANTIC_ERROR_FLAGS_AUTHENTICATE_ENCRYPT: Semantic error:
The authenticate and authenticate-encrypt flags are both specified.

FW_RULE_STATUS_SEMANTIC_ERROR_FLAGS_AUTH_WITH_ENC_NEGOTIATE_VER:
Semantic error: The schema version is not compliant with the Authenticate with Encryption flag.

FW_RULE_STATUS_SEMANTIC_ERROR_FLAGS_AUTH_WITH_ENC_NEGOTIATE: Semantic

error: The Authenticate with Encryption Negotiate flag is specified but the basic Authenticate with
Encryption flag is not set.

FW_RULE_STATUS_SEMANTIC_ERROR_FLAGS_ESP_NO_ENCAP_VER: Semantic error: The
schema version is not compliant with the Authenticate with No Encapsulation flag.

FW_RULE_STATUS_SEMANTIC_ERROR_FLAGS_ESP_NO_ENCAP: Semantic error: The
Authenticate with No Encapsulation flag is specified but the basic Authenticate flag is not set.

FW_RULE_STATUS_SEMANTIC_ERROR_FLAGS_TUNNEL_AUTH_MODES_VER: Semantic error:
The schema version is not compliant with the tunnel authentication modes.

FW_RULE_STATUS_SEMANTIC_ERROR_FLAGS_TUNNEL_AUTH_MODES: Semantic error: The
tunnel authentication modes are specified by a lower-version client.

36 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

FW_RULE_STATUS_SEMANTIC_ERROR_FLAGS_IP_TLS_VER: Semantic error: The schema
version is not compliant with the IP_TLS flag.

FW_RULE_STATUS_SEMANTIC_ERROR_FLAGS_PORTRANGE_VER: Semantic error: The
schema version is not compliant with port range support.

FW_RULE_STATUS_SEMANTIC_ERROR_FLAGS_ADDRS_TRAVERSE_DEFER_VER: Semantic
error: The schema version is not compliant with the
FW_RULE_FLAGS_ROUTEABLE_ADDRS_TRAVERSE_DEFER_APP flag. For more information, see
2.2.34.

FW_RULE_STATUS_SEMANTIC_ERROR_FLAGS_AUTH_WITH_ENC_NEGOTIATE_OUTBOUND:
Semantic error: The Authenticate with Encryption Negotiate flag is set for the outbound rule.

FW_RULE_STATUS_SEMANTIC_ERROR_FLAGS_AUTHENTICATE_WITH_OUTBOUND_BYPASS

_VER: Semantic error: The Outbound Authenticated bypass is not supported on this version.

FW_RULE_STATUS_SEMANTIC_ERROR_REMOTE_AUTH_LIST: Semantic error: An authorized
remote machine or user list is specified, but the authenticate/encryption flags were not set.

FW_RULE_STATUS_SEMANTIC_ERROR_REMOTE_USER_LIST: Semantic error: An authorized
remote user list is specified on an outbound direction.

FW_RULE_STATUS_SEMANTIC_ERROR_LOCAL_USER_LIST: Semantic error: The authorized

local user list is specified, but a local service has also been specified.

FW_RULE_STATUS_SEMANTIC_ERROR_LUA_VER: Semantic error: The schema version is not
compliant with the authorized local user list.

FW_RULE_STATUS_SEMANTIC_ERROR_LOCAL_USER_OWNER: Semantic error: The local user
owner is specified, but a local service has also been specified.

FW_RULE_STATUS_SEMANTIC_ERROR_LOCAL_USER_OWNER_VER: Semantic error: The
schema version is not compliant with the local user owner.

FW_RULE_STATUS_SEMANTIC_ERROR_FLAGS_ALLOW_PROFILE_CROSSING_VER: Semantic
error: The schema version is not compliant with profile crossing.

FW_RULE_STATUS_SEMANTIC_ERROR_LOCAL_ONLY_MAPPED_VER: Semantic error: The
schema version is not compliant with local-only mappings.

FW_RULE_STATUS_SEMANTIC_ERROR_PLATFORM: Semantic error: The number of valid
operating system platforms and the list of valid operating system platforms do not match.

FW_RULE_STATUS_SEMANTIC_ERROR_PLATFORM_OP_VER: Semantic error: Schema version

not compliant with the platform operator used.

FW_RULE_STATUS_SEMANTIC_ERROR_PLATFORM_OP: Semantic error: Invalid platform
operator used.

FW_RULE_STATUS_SEMANTIC_ERROR_DTE_NOANY_ADDR: Semantic error: DTE is specified

but all tunnel endpoints are specified.

FW_RULE_STATUS_SEMANTIC_TUNNEL_EXEMPT_WITH_GATEWAY: Semantic error: DTM

tunnel exemption specified with tunnel endpoint (gateways) address.

FW_RULE_STATUS_SEMANTIC_TUNNEL_EXEMPT_VER: Semantic error: Schema version not
compliant with tunnel mode exemptions.

FW_RULE_STATUS_SEMANTIC_ERROR_ADDR_KEYWORD_VER: Semantic error: The schema
version is not compliant with one or more address keywords.

37 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

FW_RULE_STATUS_SEMANTIC_ERROR_KEY_MODULE_VER: Semantic error: The schema
version is not compliant with the keying modules.

FW_RULE_STATUS_SEMANTIC_ERROR_APP_CONTAINER_PACKAGE_ID: Semantic error: The
application container package ID is not a valid security identifier (SID).

FW_RULE_STATUS_SEMANTIC_ERROR_APP_CONTAINER_PACKAGE_ID_VER: Semantic
error: The schema version is not compliant with application containers.

FW_RULE_STATUS_SEMANTIC_ERROR_TRUST_TUPLE_KEYWORD_INCOMPATIBLE:
Semantic error: Trust tuple keywords are specified, but specific addresses or ports have also been
specified.

FW_RULE_STATUS_SEMANTIC_ERROR_TRUST_TUPLE_KEYWORD_INVALID: Semantic error:
One or more trust tuple keywords is invalid.

FW_RULE_STATUS_SEMANTIC_ERROR_TRUST_TUPLE_KEYWORD_VER: Semantic error: The
schema version is not compliant with the trust tuple keywords.

FW_RULE_STATUS_SEMANTIC_ERROR_PHASE1_AUTH_SET_ID: Semantic error: Phase1
authentication set ID is not specified.

FW_RULE_STATUS_SEMANTIC_ERROR_PHASE2_CRYPTO_SET_ID: Semantic error: Phase2
cryptographic set ID is not specified.

FW_RULE_STATUS_SEMANTIC_ERROR_PHASE1_CRYPTO_SET_ID: Semantic error: Phase1
cryptographic set ID is not specified.

FW_RULE_STATUS_SEMANTIC_ERROR_FLAGS_KEY_MANAGER_DICTATE_VER: Semantic
error: The schema version is not compliant with the Key Manager Dictation flag.

FW_RULE_STATUS_SEMANTIC_ERROR_FLAGS_KEY_MANAGER_NOTIFY_VER: Semantic
error: The schema version is not compliant with the Key Manager Notification flag.

FW_RULE_STATUS_SEMANTIC_ERROR_TRANSPORT_MACHINE_AUTHZ_VER: Semantic error:

The schema version is not compliant with IPsec transport mode machine authorization lists.

FW_RULE_STATUS_SEMANTIC_ERROR_TRANSPORT_USER_AUTHZ_VER: Semantic error: The
schema version is not compliant with IPsec transport mode user authorization lists.

FW_RULE_STATUS_SEMANTIC_ERROR_TRANSPORT_MACHINE_AUTHZ_ON_TUNNEL:
Semantic error: An IPsec transport mode machine authorization list is specified on a tunnel mode
rule.

FW_RULE_STATUS_SEMANTIC_ERROR_TRANSPORT_USER_AUTHZ_ON_TUNNEL: Semantic

error: An IPsec transport mode user authorization list is specified on a tunnel mode rule.

FW_RULE_STATUS_SEMANTIC_ERROR_PER_RULE_AND_GLOBAL_AUTHZ: Semantic error:
The Apply Global Authorization flag is set, but a per-rule authorization list is also specified.

FW_RULE_STATUS_SEMANTIC_ERROR_SET_ID: Semantic error: The set ID is not specified.

FW_RULE_STATUS_SEMANTIC_ERROR_IPSEC_PHASE: Semantic error: The specified phase is
not valid.

FW_RULE_STATUS_SEMANTIC_ERROR_EMPTY_SUITES: Semantic error: No suites are specified
in the set.

FW_RULE_STATUS_SEMANTIC_ERROR_PHASE1_AUTH_METHOD: Semantic error: The Phase1
authentication method is not valid.

38 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

FW_RULE_STATUS_SEMANTIC_ERROR_PHASE2_AUTH_METHOD: Semantic error: The Phase2
authentication method is not valid.

FW_RULE_STATUS_SEMANTIC_ERROR_AUTH_METHOD_ANONYMOUS: Semantic error:
Anonymous authentication is specified as the only authentication proposal (or authentication

proposal suite).

FW_RULE_STATUS_SEMANTIC_ERROR_AUTH_METHOD_DUPLICATE: Semantic error:
Duplicate authentication methods are specified but not supported.

FW_RULE_STATUS_SEMANTIC_ERROR_AUTH_METHOD_VER: Semantic error: Suite specifies
authentication method that is not compliant with its schema version.

FW_RULE_STATUS_SEMANTIC_ERROR_AUTH_SUITE_FLAGS: Semantic error: The specified
authentication suite flags are not valid.

FW_RULE_STATUS_SEMANTIC_ERROR_HEALTH_CERT: Semantic error: The machine certificate
MUST be a health certificate for Phase2 authentication.

FW_RULE_STATUS_SEMANTIC_ERROR_AUTH_SIGNCERT_VER: Semantic error: The suite
specifies signing that is not compliant with its schema version.

FW_RULE_STATUS_SEMANTIC_ERROR_AUTH_INTERMEDIATE_CA_VER: Semantic error:
Specifies an intermediate certificate authority (CA) that is not compliant with its schema version.

FW_RULE_STATUS_SEMANTIC_ERROR_MACHINE_SHKEY: Semantic error: The machine shared
key is either missing or not valid.

FW_RULE_STATUS_SEMANTIC_ERROR_CA_NAME: Semantic error: The CA name is either
missing or not valid.

FW_RULE_STATUS_SEMANTIC_ERROR_MIXED_CERTS: Semantic error: Health certificates
(CERTS) cannot be specified together with regular certificates.

FW_RULE_STATUS_SEMANTIC_ERROR_NON_CONTIGUOUS_CERTS: Semantic error:

Certificates that have a specific signing algorithm are not contiguous.

FW_RULE_STATUS_SEMANTIC_ERROR_MIXED_CA_TYPE_IN_BLOCK: Semantic error: Both
root and intermediate CA types cannot be present in the same signing algorithm block.

FW_RULE_STATUS_SEMANTIC_ERROR_MACHINE_USER_AUTH: Semantic error: Both machine
and user authentications are specified.

FW_RULE_STATUS_SEMANTIC_ERROR_AUTH_CERT_CRITERIA_VER: The suite specifies
certificate criteria but the schema version does not allow certificate criteria to be present.

Certificate criteria are supported only in schemas with version number 2.20 and greater.

FW_RULE_STATUS_SEMANTIC_ERROR_AUTH_CERT_CRITERIA_VER_MISMATCH: The
version specified for the criteria structure is different from the auth set version.

FW_RULE_STATUS_SEMANTIC_ERROR_AUTH_CERT_CRITERIA_RENEWAL_HASH: Cert

criteria were specified for a non-cert authentication method.

FW_RULE_STATUS_SEMANTIC_ERROR_AUTH_CERT_CRITERIA_INVALID_HASH: An invalid

hash was specified in the criteria. A valid hash is a string of hex characters (40 characters in
length).

FW_RULE_STATUS_SEMANTIC_ERROR_AUTH_CERT_CRITERIA_INVALID_EKU: An invalid
EKU was specified. Validity checking of an EKU involves checking that the EKU is composed of
characters representing 0 to 9 and ".".

39 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

FW_RULE_STATUS_SEMANTIC_ERROR_AUTH_CERT_CRITERIA_INVALID_NAME_TYPE: A
name type greater than FW_CERT_CRITERIA_NAME_MAX was specified.

FW_RULE_STATUS_SEMANTIC_ERROR_AUTH_CERT_CRITERIA_INVALID_NAME: A name
type was specified but either a NULL name is also specified, or the number of characters in the

name is greater than FW_MAX_RULE_STRING_LEN(10000), or the name string contains the "|"
character.

FW_RULE_STATUS_SEMANTIC_ERROR_AUTH_CERT_CRITERIA_INVALID_CRITERIA_TYPE:
The criteria type specified is greater than FW_CERT_CRITERIA_TYPE_MAX.

FW_RULE_STATUS_SEMANTIC_ERROR_AUTH_CERT_CRITERIA_MISSING_CRITERIA: The
specified suites are missing either selection or validation criteria.

FW_RULE_STATUS_SEMANTIC_ERROR_PROXY_SERVER: Semantic error: The Kerberos proxy

server name is not a valid fully qualified domain name (FQDN).

FW_RULE_STATUS_SEMANTIC_ERROR_AUTH_PROXY_SERVER_VER: Semantic error: The
schema version is not compliant with Kerberos proxy servers.

FW_RULE_STATUS_SEMANTIC_ERROR_PHASE1_CRYPTO_NON_DEFAULT_ID: Semantic
error: The ID for the Phase1 cryptographic set is not the default.

FW_RULE_STATUS_SEMANTIC_ERROR_PHASE1_CRYPTO_FLAGS: Semantic error: The Phase1

cryptographic set flags are not valid.

FW_RULE_STATUS_SEMANTIC_ERROR_PHASE1_CRYPTO_TIMEOUT_MINUTES: Semantic
error: The Phase1 cryptographic set time-out minutes are not valid.

FW_RULE_STATUS_SEMANTIC_ERROR_PHASE1_CRYPTO_TIMEOUT_SESSIONS: Semantic
error: The time-out sessions for the Phase1 cryptographic set are not valid.

FW_RULE_STATUS_SEMANTIC_ERROR_PHASE1_CRYPTO_KEY_EXCHANGE: Semantic error:
The key exchange for the Phase1 cryptographic set is not valid.

FW_RULE_STATUS_SEMANTIC_ERROR_PHASE1_CRYPTO_ENCRYPTION: Semantic error: The
Phase1 cryptographic set encryption is not valid.

FW_RULE_STATUS_SEMANTIC_ERROR_PHASE1_CRYPTO_HASH: Semantic error: The Phase1
cryptographic set hash is not valid.

FW_RULE_STATUS_SEMANTIC_ERROR_PHASE1_CRYPTO_ENCRYPTION_VER: Semantic
error: The Phase1 cryptographic set encryption is not schema-version compliant.

FW_RULE_STATUS_SEMANTIC_ERROR_PHASE1_CRYPTO_HASH_VER: Semantic error: The

Phase1 cryptographic set hash is not schema version compliant.

FW_RULE_STATUS_SEMANTIC_ERROR_PHASE1_CRYPTO_KEY_EXCH_VER: Semantic error:
The schema version is not compliant with one or more of the specified main mode key exchange
algorithms.

FW_RULE_STATUS_SEMANTIC_ERROR_PHASE2_CRYPTO_PFS: Semantic error: The Phase2
cryptographic set perfect forward secrecy (PFS) is not valid.

FW_RULE_STATUS_SEMANTIC_ERROR_PHASE2_CRYPTO_PROTOCOL: Semantic error: The
Phase2 cryptographic set protocol is not valid.

FW_RULE_STATUS_SEMANTIC_ERROR_PHASE2_CRYPTO_ENCRYPTION: Semantic error: The
Phase2 cryptographic set encryption is not valid.

40 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

FW_RULE_STATUS_SEMANTIC_ERROR_PHASE2_CRYPTO_HASH: Semantic error: The Phase2
cryptographic set hash is not valid.

FW_RULE_STATUS_SEMANTIC_ERROR_PHASE2_CRYPTO_TIMEOUT_MINUTES: Semantic
error: The Phase2 cryptographic set time-out minutes are not valid.

FW_RULE_STATUS_SEMANTIC_ERROR_PHASE2_CRYPTO_TIMEOUT_KBYTES: Semantic
error: The Phase2 cryptographic set time-out kilobytes are not valid.

FW_RULE_STATUS_SEMANTIC_ERROR_PHASE2_CRYPTO_ENCRYPTION_VER: Semantic
error: The Phase2 cryptographic set encryption is not schema-version compliant.

FW_RULE_STATUS_SEMANTIC_ERROR_PHASE2_CRYPTO_HASH_VER: The Phase2
cryptographic set hash is not schema-version compliant.

FW_RULE_STATUS_SEMANTIC_ERROR_PHASE2_CRYPTO_PFS_VER: Semantic error: The

schema version is not compliant with the specified Phase2 perfect forward secrecy (PFS) option.

FW_RULE_STATUS_SEMANTIC_ERROR_CRYPTO_ENCR_HASH: Semantic error: Neither the

encryption nor the hash is specified.

FW_RULE_STATUS_SEMANTIC_ERROR_CRYPTO_ENCR_HASH_COMPAT: Semantic error: The
encryption and hash use incompatible algorithms.

FW_RULE_STATUS_SEMANTIC_ERROR_SCHEMA_VERSION: Semantic error: The specified

schema version is lower than the lowest supported version.

FW_RULE_STATUS_SEMANTIC_ERROR_QUERY_OR_AND_CONDITIONS: Semantic error: A
mismatch exists in the number of OR'd terms and term arrays.

FW_RULE_STATUS_SEMANTIC_ERROR_QUERY_AND_CONDITIONS: Semantic error: A
mismatch exists in the number of AND'd conditions and condition arrays.

FW_RULE_STATUS_SEMANTIC_ERROR_QUERY_CONDITION_KEY: Semantic error: The
condition match key is not valid.

FW_RULE_STATUS_SEMANTIC_ERROR_QUERY_CONDITION_MATCH_TYPE: Semantic error:
The condition match type is not valid.

FW_RULE_STATUS_SEMANTIC_ERROR_QUERY_CONDITION_DATA_TYPE: Semantic error:
The condition data type is not valid.

FW_RULE_STATUS_SEMANTIC_ERROR_QUERY_CONDITION_KEY_AND_DATA_TYPE:
Semantic error: The key and data type combination is not valid.

FW_RULE_STATUS_SEMANTIC_ERROR_QUERY_KEYS_PROTOCOL_PORT: Semantic error: A

port condition is present without a protocol condition.

FW_RULE_STATUS_SEMANTIC_ERROR_QUERY_KEY_PROFILE: Semantic error: The profile key
is unavailable for the queried object type.

FW_RULE_STATUS_SEMANTIC_ERROR_QUERY_KEY_STATUS: Semantic error: The status key
is unavailable for the queried object type.

FW_RULE_STATUS_SEMANTIC_ERROR_QUERY_KEY_FILTERID: Semantic error: The FilterID

key is unavailable for the queried object type.

FW_RULE_STATUS_SEMANTIC_ERROR_QUERY_KEY_APP_PATH: Semantic error: The
application key is unavailable for the queried object type.

41 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

FW_RULE_STATUS_SEMANTIC_ERROR_QUERY_KEY_PROTOCOL: Semantic error: The protocol
key is unavailable for the queried object type.

FW_RULE_STATUS_SEMANTIC_ERROR_QUERY_KEY_LOCAL_PORT: Semantic error: The local
port key is unavailable for the queried object type.

FW_RULE_STATUS_SEMANTIC_ERROR_QUERY_KEY_REMOTE_PORT: Semantic error: The
remote port key is unavailable for the queried object type.

FW_RULE_STATUS_SEMANTIC_ERROR_QUERY_KEY_SVC_NAME: Semantic error: The service
name key is unavailable for the queried object type.

FW_RULE_STATUS_SEMANTIC_ERROR_REQUIRE_IN_CLEAR_OUT_ON_TRANSPORT:
Semantic error: "Require in clear out" tunnel authentication mode cannot be set on transport
mode rules.

FW_RULE_STATUS_SEMANTIC_ERROR_TUNNEL_BYPASS_TUNNEL_IF_SECURE_ON_TRANSP
ORT: Semantic error: Cannot set flag to exempt IPsec transport traffic from a tunnel mode, on a
transport rule.

FW_RULE_STATUS_SEMANTIC_ERROR_AUTH_NOENCAP_ON_TUNNEL: Semantic error:
Cannot set FW_CRYPTO_PROTOCOL_AUTH_NO_ENCAP (see section 2.2.68) on a tunnel mode
rule.

FW_RULE_STATUS_SEMANTIC_ERROR_AUTH_NOENCAP_ON_PSK: Semantic error: Cannot
mix FW_CRYPTO_PROTOCOL_AUTH_NO_ENCAP (see section 2.2.68) protocol with Preshared key
authentication methods.

FW_RULE_STATUS_SEMANTIC_ERROR_CRYPTO_ENCR_HASH: Semantic error: Both the
encryption and hash are not specified.

FW_RULE_STATUS_SEMANTIC_ERROR_CRYPTO_ENCR_HASH_COMPAT: Semantic error: The
encryption and hash use incompatible algorithms.

FW_RULE_STATUS_SEMANTIC_ERROR_SCHEMA_VERSION: Semantic error: The specified

schema version is earlier than the supported versions.

FW_RULE_STATUS_SEMANTIC_ERROR: There is a semantic error when considering the fields of
the rule in conjunction with other policy objects.

FW_RULE_STATUS_RUNTIME_ERROR_PHASE1_AUTH_NOT_FOUND: A Phase1 authentication
set is not found.

FW_RULE_STATUS_RUNTIME_ERROR_PHASE2_AUTH_NOT_FOUND: A Phase2 authentication

set is not found.

FW_RULE_STATUS_RUNTIME_ERROR_PHASE2_CRYPTO_NOT_FOUND: A Phase2
cryptographic set is not found.

FW_RULE_STATUS_RUNTIME_ERROR_AUTH_MCHN_SHKEY_MISMATCH: A Phase2
authentication set cannot be specified when the Phase1 authentication set contains a pre-shared

key as an authentication method.

FW_RULE_STATUS_RUNTIME_ERROR_PHASE1_CRYPTO_NOT_FOUND: A Phase1
cryptographic set is not found.

FW_RULE_STATUS_RUNTIME_ERROR_AUTH_NOENCAP_ON_TUNNEL: Semantic error: Cannot
set FW_CRYPTO_PROTOCOL_AUTH_NO_ENCAP (see section 2.2.68) on a tunnel mode rule.

42 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

FW_RULE_STATUS_RUNTIME_ERROR_AUTH_NOENCAP_ON_PSK: Semantic error: Cannot mix
FW_CRYPTO_PROTOCOL_AUTH_NO_ENCAP (see section 2.2.68) protocol with Preshared key

authentication methods.

FW_RULE_STATUS_RUNTIME_ERROR_KEY_MODULE_AUTH_MISMATCH: Semantic error: The

key module in the rule is incompatible with the authentication methods specified in the associated
authentication sets.

FW_RULE_STATUS_RUNTIME_ERROR: There is a runtime error when the object is considered
with other policy objects.

FW_RULE_STATUS_ERROR: An error of any kind occurred. This symbolic constant has a value of
0x00380000.

FW_RULE_STATUS_ALL: The status of all (it is used to enumerate all the rules, regardless of the

status).

2.2.24 FW_RULE_STATUS_CLASS

This enumeration defines classes of status codes.

 typedef enum _tag_FW_RULE_STATUS_CLASS
 {
 FW_RULE_STATUS_CLASS_OK = FW_RULE_STATUS_OK,
 FW_RULE_STATUS_CLASS_PARTIALLY_IGNORED = FW_RULE_STATUS_PARTIALLY_IGNORED,
 FW_RULE_STATUS_CLASS_IGNORED = FW_RULE_STATUS_IGNORED,
 FW_RULE_STATUS_CLASS_PARSING_ERROR = FW_RULE_STATUS_PARSING_ERROR,
 FW_RULE_STATUS_CLASS_SEMANTIC_ERROR = FW_RULE_STATUS_SEMANTIC_ERROR,
 FW_RULE_STATUS_CLASS_RUNTIME_ERROR = FW_RULE_STATUS_RUNTIME_ERROR,
 FW_RULE_STATUS_CLASS_ERROR = FW_RULE_STATUS_ERROR,
 FW_RULE_STATUS_CLASS_ALL = FW_RULE_STATUS_ALL
 } FW_RULE_STATUS_CLASS;

FW_RULE_STATUS_CLASS_OK: The rule is correctly constructed and has no issue. This symbolic

constant has a value of 0x00010000.

FW_RULE_STATUS_CLASS_PARTIALLY_IGNORED: The rule has fields that the service can
successfully ignore. This symbolic constant has a value of 0x00020000.

FW_RULE_STATUS_CLASS_IGNORED: The rule has a higher version that the service MUST
ignore. This symbolic constant has a value of 0x00040000.

FW_RULE_STATUS_CLASS_PARSING_ERROR: The rule failed to be parsed correctly. This
symbolic constant has a value of 0x00080000.

FW_RULE_STATUS_CLASS_SEMANTIC_ERROR: There is a semantic error when considering the

fields of the rule in conjunction. This symbolic constant has a value of 0x00100000.

FW_RULE_STATUS_CLASS_RUNTIME_ERROR: There is a runtime error when the object is
considered in conjunction with other policy objects. This symbolic constant has a value of

0x00200000.

FW_RULE_STATUS_CLASS_ERROR: An error occurred. This symbolic constant has a value of
0x00380000.

FW_RULE_STATUS_CLASS_ALL: The status of all (used to enumerate ALL the rules, regardless of
the status). This symbolic constant has a value of 0xFFFF0000.

43 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

2.2.25 FW_OBJECT_CTRL_FLAG

This enumeration is used to indicate the RPC protocol when elements in structures are included.

 typedef enum _tag_FW_OBJECT_CTRL_FLAG
 {
 FW_OBJECT_CTRL_FLAG_INCLUDE_METADATA = 0x0001
 } FW_OBJECT_CTRL_FLAG;

FW_OBJECT_CTRL_FLAG_INCLUDE_METADATA: This flag indicates that the structure where this
flag is specified contains metadata information.

2.2.26 FW_ENFORCEMENT_STATE

This enumeration is part of the metadata information. It provides information about whether or not

the policy expressed by an object is currently being enforced by the server.

 typedef enum _tag_FW_ENFORCEMENT_STA
 {
 FW_ENFORCEMENT_STATE_INVALID = 0,
 FW_ENFORCEMENT_STATE_FULL = 1,
 FW_ENFORCEMENT_STATE_WF_OFF_IN_PROFILE = 2,
 FW_ENFORCEMENT_STATE_CATEGORY_OFF = 3,
 FW_ENFORCEMENT_STATE_DISABLED_OBJECT = 4,
 FW_ENFORCEMENT_STATE_INACTIVE_PROFILE = 5,
 FW_ENFORCEMENT_STATE_LOCAL_ADDRESS_RESOLUTION_EMPTY = 6,
 FW_ENFORCEMENT_STATE_REMOTE_ADDRESS_RESOLUTION_EMPTY = 7,
 FW_ENFORCEMENT_STATE_LOCAL_PORT_RESOLUTION_EMPTY = 8,
 FW_ENFORCEMENT_STATE_REMOTE_PORT_RESOLUTION_EMPTY = 9,
 FW_ENFORCEMENT_STATE_INTERFACE_RESOLUTION_EMPTY = 10,
 FW_ENFORCEMENT_STATE_APPLICATION_RESOLUTION_EMPTY = 12,
 FW_ENFORCEMENT_STATE_REMOTE_MACHINE_EMPTY = 12,
 FW_ENFORCEMENT_STATE_REMOTE_USER_EMPTY = 13,
 FW_ENFORCEMENT_STATE_LOCAL_GLOBAL_OPEN_PORTS_DISALLOWED = 14,
 FW_ENFORCEMENT_STATE_LOCAL_AUTHORIZED_APPLICATIONS_DISALLOWED = 15,
 FW_ENFORCEMENT_STATE_LOCAL_FIREWALL_RULES_DISALLOWED = 16,
 FW_ENFORCEMENT_STATE_LOCAL_CONSEC_RULES_DISALLOWED = 17,
 FW_ENFORCEMENT_STATE_MISMATCHED_PLATFORM = 18,
 FW_ENFORCEMENT_STATE_OPTIMIZED_OUT = 19,
 FW_ENFORCEMENT_STATE_LOCAL_USER_EMPTY = 20,
 FW_ENFORCEMENT_STATE_TRANSPORT_MACHINE_SD_EMPTY = 21,
 FW_ENFORCEMENT_STATE_TRANSPORT_USER_SD_EMPTY = 22,
 FW_ENFORCEMENT_STATE_TUPLE_RESOLUTION_EMPTY = 23,
 FW_ENFORCEMENT_STATE_MAX = 24
 } FW_ENFORCEMENT_STATE;

FW_ENFORCEMENT_STATE_INVALID: This value is invalid and MUST NOT be used by the server.
It is defined for simplicity in writing IDL definitions and code. This symbolic constant has a value of

0.

FW_ENFORCEMENT_STATE_FULL: The object is being enforced. This symbolic constant has a

value of 1.

FW_ENFORCEMENT_STATE_WF_OFF_IN_PROFILE: The object is not being enforced because the
firewall and advanced security component is not active in a profile where the object is meant to be
applied. This symbolic constant has a value of 2.

FW_ENFORCEMENT_STATE_CATEGORY_OFF: The object is not being enforced because a third-
party software component registered with the firewall and advanced security component to own
the functionality that the object is meant to perform. This symbolic constant has a value of 3.

44 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

FW_ENFORCEMENT_STATE_DISABLED_OBJECT: The object is not being enforced because the
object is disabled. This symbolic constant has a value of 4.

FW_ENFORCEMENT_STATE_INACTIVE_PROFILE: The object is not being enforced because at
least one of the profiles that the object is meant to be applied to is not currently active. This

symbolic constant has a value of 5.

FW_ENFORCEMENT_STATE_LOCAL_ADDRESS_RESOLUTION_EMPTY: The object is not being
enforced because the local address condition of the object contains a keyword that resolves to an
empty set. This symbolic constant has a value of 6.

FW_ENFORCEMENT_STATE_REMOTE_ADDRESS_RESOLUTION_EMPTY: The object is not being
enforced because the remote address condition of the object contains a keyword that resolves to
an empty set. This symbolic constant has a value of 7.

FW_ENFORCEMENT_STATE_LOCAL_PORT_RESOLUTION_EMPTY: The object is not being
enforced because the local port condition of the object contains a keyword that resolves to an
empty set. This symbolic constant has a value of 8.

FW_ENFORCEMENT_STATE_REMOTE_PORT_RESOLUTION_EMPTY: The object is not being
enforced because the remote port condition of the object contains a keyword that resolves to an
empty set. This symbolic constant has a value of 9.

FW_ENFORCEMENT_STATE_INTERFACE_RESOLUTION_EMPTY: The object is not being
enforced because the interface condition of the object contains a keyword that resolves to an
empty set. This symbolic constant has a value of 10.

FW_ENFORCEMENT_STATE_APPLICATION_RESOLUTION_EMPTY: The object is not being
enforced because the application condition of the object contains a path that could not resolve to a
valid file system path. This symbolic constant has a value of 11.

FW_ENFORCEMENT_STATE_REMOTE_MACHINE_EMPTY: The object is not being enforced

because the remote machine condition of the object contains an SDDL with a security identifier
(SID) that is not currently available on the host. This symbolic constant has a value of 12.

FW_ENFORCEMENT_STATE_REMOTE_USER_EMPTY: The object is not being enforced because
the remote user condition of the object contains an SDDL with a SID that is not currently available
on the host. This symbolic constant has a value of 13.

FW_ENFORCEMENT_STATE_LOCAL_GLOBAL_OPEN_PORTS_DISALLOWED: The object is not
being enforced because the FW_PROFILE_CONFIG_AUTH_APPS_ALLOW_USER_PREF_MERGE

configuration option (see section 2.2.37 for more details) from a profile that the object applied to,
disallowed its use. This symbolic constant has a value of 14.

FW_ENFORCEMENT_STATE_LOCAL_AUTHORIZED_APPLICATIONS_DISALLOWED: The object
is not being enforced because the
FW_PROFILE_CONFIG_GLOBAL_PORTS_ALLOW_USER_PREF_MERGE configuration option (see
section 2.2.37 for more details) from a profile that the object applied to, disallowed its use. This

symbolic constant has a value of 15.

FW_ENFORCEMENT_STATE_LOCAL_FIREWALL_RULES_DISALLOWED: The object is not being
enforced because the FW_PROFILE_CONFIG_ALLOW_LOCAL_POLICY_MERGE configuration option
(see section 2.2.37 for more details) from a profile that the object applied to, disallowed its use.
This symbolic constant has a value of 16.

FW_ENFORCEMENT_STATE_LOCAL_CONSEC_RULES_DISALLOWED: The object is not being
enforced because the FW_PROFILE_CONFIG_ALLOW_LOCAL_IPSEC_POLICY_MERGE configuration

option (see section 2.2.37 for more details) from a profile that the object applied to, disallowed its
use. This symbolic constant has a value of 17.

45 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

FW_ENFORCEMENT_STATE_MISMATCHED_PLATFORM: The object is not being enforced
because the platform validity condition does not match the current platform of the host. This

symbolic constant has a value of 18.

FW_ENFORCEMENT_STATE_OPTIMIZED_OUT: The object is not being enforced because the

firewall and advanced security component determined that the object-implemented functionality is
irrelevant (would not change or affect what traffic is allowed or permitted) at the current time.
Therefore, the component optimized out the irrelevant functionality and ignored it. This is a pure
optimization. This symbolic constant has a value of 19.

FW_ENFORCEMENT_STATE_LOCAL_USER_EMPTY: The object is not being enforced, because the
local user condition of the object contains an SDDL with a SID that is not currently available on
the host. For schema versions 0x0200, 0x0201, and 0x020A, this value is invalid and MUST NOT

be used. This symbolic constant has a value of 20.

FW_ENFORCEMENT_STATE_TRANSPORT_MACHINE_SD_EMPTY: The object is not being
enforced because the IPsec transport mode machine authorization list contains an SDDL with a
SID that is not currently available on the host. For schema versions 0x0200, 0x0201, and 0x020A,

this value is invalid and MUST NOT be used. This symbolic constant has a value of 21.

FW_ENFORCEMENT_STATE_TRANSPORT_USER_SD_EMPTY: The object is not being enforced,

because the IPsec transport mode user authorization list contains an SDDL with a SID that is not
currently available on the host. For schema versions 0x0200, 0x0201, and 0x020A, this value is
invalid and MUST NOT be used. This symbolic constant has a value of 22.

FW_ENFORCEMENT_STATE_TUPLE_RESOLUTION_EMPTY: The object is not being enforced,
because the trust tuple keywords resolve to an empty set. For schema versions 0x0200, 0x0201,
and 0x020A, this value is invalid and MUST NOT be used. This symbolic constant has a value of
23.

FW_ENFORCEMENT_STATE_MAX: This value and values that exceed this value are not valid and
MUST NOT be used. It is defined for simplicity in writing IDL definitions and code. This symbolic
constant has a value of 24.

2.2.27 FW_OBJECT_METADATA

This structure contains the metadata that is associated with a specific policy object.

 typedef struct _tag_FW_OBJECT_METADATA {
 unsigned __int64 qwFilterContextID;
 [range(0, 100)] DWORD dwNumEntries;
 [size_is(dwNumEntries)] FW_ENFORCEMENT_STATE* pEnforcementStates;
 } FW_OBJECT_METADATA,
 *PFW_OBJECT_METADATA;

qwFilterContextID: This field is not used across the wires.

dwNumEntries: A field that specifies the number of metadata hints (FW_ENFORCEMENT_STATEs)
that the structure contains.

pEnforcementStates: A pointer to an array of FW_ENFORCEMENT_STATE elements. The number of

elements is given by dwNumEntries.

2.2.28 FW_OS_PLATFORM_OP

This enumeration describes the operations used in the FW_OS_PLATFORM structure to determine if an
object should be applied to a specified operating system platform.

46 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

 typedef enum
 {
 FW_OS_PLATFORM_OP_EQ = 0,
 FW_OS_PLATFORM_OP_GTEQ = 1,
 FW_OS_PLATFORM_OP_MAX = 2
 } FW_OS_PLATFORM_OP;

FW_OS_PLATFORM_OP_EQ: The operating system platform MUST be the same as the one
specified. This is satisfied when the following occurs:

If (((bPlatform & 0x7) == platform type) && (bMajorVersion == major version) &&

(bMinorVersion == minor version)).

Otherwise, the operating system is not equal to the one specified. This symbolic constant has a
value of 0.

FW_OS_PLATFORM_OP_GTEQ: The operating system MUST be greater than or equal to the one
specified. This is satisfied when any of the following occur:

If (bPlatform & 0x7) > platform type

If (((bPlatform & 0x7) == platform type) && (bMajorVersion > major version))

If (((bPlatform & 0x7) == platform type) && (bMajorVersion == major version) && (bMinorVersion
>= minor version))

Otherwise, the operation system is not greater than or equal to the one specified. This symbolic
constant has a value of 1.

FW_OS_PLATFORM_OP_MAX: This value and values that exceed this value are not valid and MUST
NOT be used. It is defined for simplicity in writing IDL definitions and code. This symbolic constant

has a value of 2.

2.2.29 FW_OS_PLATFORM

This structure describes a set of operating system platforms. The fields in this data type correspond to
the fields of the OSVERSIONINFOEX data type (for more information, see [MSDN-

OSVERSIONINFOEX]). There are no constraints on the values allowed for the platform type, major
version, or minor version. The set can include values that do not correspond to any existing operating
system platform.

 typedef struct _tag_FW_OS_PLATFORM {
 unsigned char bPlatform;
 unsigned char bMajorVersion;
 unsigned char bMinorVersion;
 unsigned char Reserved;
 } FW_OS_PLATFORM,
 *PFW_OS_PLATFORM;

bPlatform: The three least significant bits identify the platform type. This corresponds to the
dwPlatformId field in MSDN. The five most significant bits contain a value from the
FW_OS_PLATFORM_OP enumeration.

bMajorVersion: Specifies the major version number for the OS. This corresponds to the
dwMajorVersion field in MSDN.

bMinorVersion: Specifies the minor version number for the OS. This corresponds to the

dwMinorVersion field in MSDN.

47 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Reserved: Not used. Reserved for future use.

2.2.30 FW_OS_PLATFORM_LIST

This structure contains an array of FW_OS_PLATFORM elements. The structure describes a set of
operating system platforms. This set is the union of the sets identified by each FW_OS_PLATFORM
element.

 typedef struct _tag_FW_OS_PLATFORM_LIST {
 [range(0, 1000)] unsigned long dwNumEntries;
 [size_is(dwNumEntries)] PFW_OS_PLATFORM pPlatforms;
 } FW_OS_PLATFORM_LIST,
 *PFW_OS_PLATFORM_LIST;

dwNumEntries: This field specifies the number of OS platforms that the structure contains.

pPlatforms: A pointer to an array of dwNumEntries contiguous FW_OS_PLATFORM elements.

2.2.31 FW_RULE_ORIGIN_TYPE

This enumeration represents where the policy object is stored and from where it originates.

 typedef enum _tag_FW_RULE_ORIGIN_TYPE
 {
 FW_RULE_ORIGIN_INVALID = 0,
 FW_RULE_ORIGIN_LOCAL = 1,
 FW_RULE_ORIGIN_GP = 2,
 FW_RULE_ORIGIN_DYNAMIC = 3,
 FW_RULE_ORIGIN_AUTOGEN = 4,
 FW_RULE_ORIGIN_HARDCODED = 5,
 FW_RULE_ORIGIN_MAX = 6
 } FW_RULE_ORIGIN_TYPE;

FW_RULE_ORIGIN_INVALID: On enumeration, this value is invalid, and MUST NOT be used by the
server. It is defined for simplicity in writing IDL definitions and code. However, the server ignores
the fields of this data type on input, and hence it is valid for filling rules. This symbolic constant

has a value of 0.

FW_RULE_ORIGIN_LOCAL: Specifies that the policy object originates from the local store. This
symbolic constant has a value of 1.

FW_RULE_ORIGIN_GP: Specifies that the policy object originates from the GP store. This symbolic
constant has a value of 2.

FW_RULE_ORIGIN_DYNAMIC: Specifies that the policy object originates from the dynamic store.
This symbolic constant has a value of 3.

FW_RULE_ORIGIN_AUTOGEN: Not used. This symbolic constant has a value of 4.

FW_RULE_ORIGIN_HARDCODED: Specifies that the policy object originates from the firewall and
advanced security component hard-coded values and is used due to lack of user settings. These
values are not configurable and are not addressed in this protocol specification. Specific
implementations of firewall and advanced security components can choose what hard-coded
values to use when no other user settings are available. The only policy objects in this protocol
specification that can have this FW_RULE_ORIGIN_HARDCODED value assigned are authentication

sets and cryptographic sets, which are defined in sections 2.2.64 and 2.2.73, respectively.<3>
This symbolic constant has a value of 5.

48 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

FW_RULE_ORIGIN_MAX: This value and values that exceed this value are not valid and MUST NOT
be used. It is defined for simplicity in writing IDL definitions and code. This symbolic constant has

a value of 6.

2.2.32 FW_ENUM_RULES_FLAGS

This enumeration defines flag values that can be used in the enumeration methods that are defined in
RRPC_FWEnumFirewallRules, RRPC_FWEnumConnectionSecurityRules,
RRPC_FWEnumAuthenticationSets, and RRPC_FWEnumCryptoSets.

 typedef enum _tag_FW_ENUM_RULES_FLAGS
 {
 FW_ENUM_RULES_FLAG_NONE = 0x0000,
 FW_ENUM_RULES_FLAG_RESOLVE_NAME = 0x0001,
 FW_ENUM_RULES_FLAG_RESOLVE_DESCRIPTION = 0x0002,
 FW_ENUM_RULES_FLAG_RESOLVE_APPLICATION = 0x0004,
 FW_ENUM_RULES_FLAG_RESOLVE_KEYWORD = 0x0008,
 FW_ENUM_RULES_FLAG_RESOLVE_GPO_NAME = 0x0010,
 FW_ENUM_RULES_FLAG_EFFECTIVE = 0x0020,
 FW_ENUM_RULES_FLAG_INCLUDE_METADATA = 0x0040,
 FW_ENUM_RULES_FLAG_MAX = 0x0080
 } FW_ENUM_RULES_FLAGS;

FW_ENUM_RULES_FLAG_NONE: This value signifies that no specific flag is used. It is defined for
IDL definitions and code to add readability, instead of using the number 0. This symbolic constant
has a value 0x0000.

FW_ENUM_RULES_FLAG_RESOLVE_NAME: Resolves rule description strings to user-friendly,
localizable strings if they are in the following format: @file.dll,-<resID>. resID refers to the

resource ID in the indirect string. Please see [MSDN-SHLoadIndirectString] for further
documentation on the string format. This symbolic constant has a value 0x0001.

FW_ENUM_RULES_FLAG_RESOLVE_DESCRIPTION: Resolves rule description strings to user-
friendly, localizable strings if they are in the following format: @file.dll,-<resID>. resID refers to

the resource ID in the indirect string. Please see [MSDN-SHLoadIndirectString] for further
documentation on the string format. This symbolic constant has a value 0x0002.

FW_ENUM_RULES_FLAG_RESOLVE_APPLICATION: If this flag is set, the server MUST inspect

the wszLocalApplication field of each FW_RULE structure and replace all environment variables
in the string with their corresponding values. See [MSDN-ExpandEnvironmentStrings] for more
details about environment-variable strings. This symbolic constant has a value 0x0004.

FW_ENUM_RULES_FLAG_RESOLVE_KEYWORD: Resolves keywords in addresses and ports to the
actual addresses and ports (dynamic store only). This symbolic constant has a value 0x0008.

FW_ENUM_RULES_FLAG_RESOLVE_GPO_NAME: Resolves the GPO name for the GP_RSOP rules.
This symbolic constant has a value 0x0010.

FW_ENUM_RULES_FLAG_EFFECTIVE: If this flag is set, the server MUST only return objects
where at least one FW_ENFORCEMENT_STATE entry in the object's metadata is equal to

FW_ENFORCEMENT_STATE_FULL. This flag is available for the dynamic store only. This symbolic
constant has a value 0x0020.

FW_ENUM_RULES_FLAG_INCLUDE_METADATA: Includes the metadata object information,
represented by the FW_OBJECT_METADATA structure, in the enumerated objects. This symbolic

constant has a value 0x0040.

FW_ENUM_RULES_FLAG_MAX: This value and values that exceed this value are not valid and
MUST NOT be used. It is defined for simplicity in writing IDL definitions and code. This symbolic
constant has a value 0x0080.

49 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

2.2.33 FW_RULE_ACTION

This enumeration describes the possible actions on firewall rules.

 typedef enum _tag_FW_RULE_ACTION
 {
 FW_RULE_ACTION_INVALID = 0,
 FW_RULE_ACTION_ALLOW_BYPASS = 1,
 FW_RULE_ACTION_BLOCK = 2,
 FW_RULE_ACTION_ALLOW = 3,
 FW_RULE_ACTION_MAX = 4
 } FW_RULE_ACTION;

FW_RULE_ACTION_INVALID: This value is invalid and MUST NOT be used. It is defined for
simplicity in writing IDL definitions and code. This symbolic constant has a value of 0.

FW_RULE_ACTION_ALLOW_BYPASS: Rules with this action allow traffic but are applicable only to
rules that at least specify the FW_RULE_FLAGS_AUTHENTICATE flag. This symbolic constant

has a value of 1.

FW_RULE_ACTION_BLOCK: Rules with this action block traffic. This symbolic constant has a value
of 2.

FW_RULE_ACTION_ALLOW: Rules with this action allow traffic. This symbolic constant has a value
of 3.

FW_RULE_ACTION_MAX: This value and values that exceed this value are not valid and MUST NOT
be used. It is defined for simplicity in writing IDL definitions and code. This symbolic constant has
a value of 4.

If conflicting rules match the same network traffic, the actions determine the order of precedence.

Allow-bypass rules take precedence over block rules, and block rules take precedence over allow rules.

2.2.34 FW_RULE_FLAGS

This enumeration represents flags that can be specified in firewall rules of section 2.2.36.

 typedef enum _tag_FW_RULE_FLAGS
 {
 FW_RULE_FLAGS_NONE = 0x0000,
 FW_RULE_FLAGS_ACTIVE = 0x0001,
 FW_RULE_FLAGS_AUTHENTICATE = 0x0002,
 FW_RULE_FLAGS_AUTHENTICATE_WITH_ENCRYPTION = 0x0004,
 FW_RULE_FLAGS_ROUTEABLE_ADDRS_TRAVERSE = 0x0008,
 FW_RULE_FLAGS_LOOSE_SOURCE_MAPPED = 0x0010,
 FW_RULE_FLAGS_MAX_V2_1 = 0x0020,
 FW_RULE_FLAGS_AUTH_WITH_NO_ENCAPSULATION = 0x0020,
 FW_RULE_FLAGS_MAX_V2_9 = 0x0040,
 FW_RULE_FLAGS_AUTH_WITH_ENC_NEGOTIATE = 0x0040,
 FW_RULE_FLAGS_ROUTEABLE_ADDRS_TRAVERSE_DEFER_APP = 0x0080,
 FW_RULE_FLAGS_ROUTEABLE_ADDRS_TRAVERSE_DEFER_USER = 0x0100,
 FW_RULE_FLAGS_AUTHENTICATE_BYPASS_OUTBOUND = 0x0200,
 FW_RULE_FLAGS_MAX_V2_10 = 0x0400,
 FW_RULE_FLAGS_ALLOW_PROFILE_CROSSING = 0x0400,
 FW_RULE_FLAGS_LOCAL_ONLY_MAPPED = 0x0800,
 FW_RULE_FLAGS_MAX_V2_20 = 0x1000,
 FW_RULE_FLAGS_LUA_CONDITIONAL_ACE = 0x1000,
 FW_RULE_FLAGS_BIND_TO_INTERFACE = 0x2000,
 FW_RULE_FLAGS_MAX = 0x4000,
 } FW_RULE_FLAGS;

50 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

FW_RULE_FLAGS_NONE: This value means that none of the following flags are set. It is defined for
simplicity in writing IDL definitions and code.

FW_RULE_FLAGS_ACTIVE: The rule is enabled if this flag is set; otherwise, it is disabled.

FW_RULE_FLAGS_AUTHENTICATE: This flag MUST be set only on rules that have the allow

actions. If set, traffic that matches the rule is allowed only if it has been authenticated by IPsec;
otherwise, traffic is blocked.

FW_RULE_FLAGS_AUTHENTICATE_WITH_ENCRYPTION: This flag is similar to the
FW_RULE_FLAGS_AUTHENTICATE flag; however, traffic MUST also be encrypted.

FW_RULE_FLAGS_ROUTEABLE_ADDRS_TRAVERSE: This flag MUST be set only on inbound rules.
This flag allows the matching traffic to traverse a NAT edge device and be allowed in the host
computer.

FW_RULE_FLAGS_LOOSE_SOURCE_MAPPED: This flag allows responses from a remote IP
address that is different from the one to which the outbound matched traffic originally went.

FW_RULE_FLAGS_AUTH_WITH_NO_ENCAPSULATION: This flag MUST be set only on rules that
have the FW_RULE_FLAGS_AUTHENTICATE flag set. If set, traffic that matches the rule is allowed
if IKE or AuthIP authentication was successful; however, this flag does not necessarily require that
traffic be protected by IPsec encapsulations. For schema versions 0x0200 and 0x0201, this value

is invalid and MUST NOT be used.

FW_RULE_FLAGS_AUTH_WITH_ENC_NEGOTIATE: This flag MUST be set only on inbound rules
that have the FW_RULE_FLAGS_AUTHENTICATE_WITH_ENCRYPTION flag set. If set and if the first
packet that arrives is unencrypted but authenticated by IPsec, the packet is allowed, and an IKE
or AuthIP negotiation is started to negotiate encryption settings and encrypt subsequent packets.
[MS-AIPS] section 3.2.4 specifies negotiation initiation behavior for hosts that support both IKE
and AuthIP negotiation. If the negotiation fails, the connection is dropped. For schema versions

0x0200 and 0x0201, this value is invalid and MUST NOT be used.

FW_RULE_FLAGS_ROUTEABLE_ADDRS_TRAVERSE_DEFER_APP: This flag MUST be set only on

inbound rules. This flag allows the matching traffic to traverse a NAT edge device and be allowed
in the host computer, if and only if a matching PortInUse object is found in the PortsInUse
collection with NATTraversalRequested set to true (see section 3.1.1). For schema versions
0x0200 and 0x0201, this value is invalid and MUST NOT be used.

FW_RULE_FLAGS_ROUTEABLE_ADDRS_TRAVERSE_DEFER_USER: This flag MUST be set only

on inbound rules. Whenever an application tries to listen for traffic that matches this rule, the
operating system asks the administrator of the host whether it should allow this traffic to traverse
the NAT. For schema versions 0x0200 and 0x0201, this value is invalid and MUST NOT be used.

FW_RULE_FLAGS_AUTHENTICATE_BYPASS_OUTBOUND: This flag MUST be set only on
outbound rules that have an allow action with either the FW_RULE_FLAGS_AUTHENTICATE or the
FW_RULE_FLAGS_AUTHENTICATE_WITH_ENCRYPTION flag set. If set, this rule is evaluated before

block rules, making it equivalent to a rule with an FW_RULE_ACTION_ALLOW_BYPASS, but for
outbound. For schema versions 0x0200 and 0x0201, this value is invalid and MUST NOT be used.

FW_RULE_FLAGS_ALLOW_PROFILE_CROSSING: This flag allows responses from a network with
a different profile type than the network to which the outbound traffic was originally sent. This flag
MUST be ignored on rules with an action of FW_RULE_ACTION_BLOCK. For schema versions
0x0200, 0x0201, and 0x020A, this value is invalid and MUST NOT be used.

FW_RULE_FLAGS_LOCAL_ONLY_MAPPED: If this flag is set on a rule, the remote address and

remote port conditions are ignored when determining whether a network traffic flow matches the
rule. This flag MUST be ignored on rules with an action of FW_RULE_ACTION_BLOCK. For schema
versions 0x0200, 0x0201, and 0x020A, this value is invalid and MUST NOT be used.

51 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

FW_RULE_FLAGS_MAX: This value and values that exceed this value are not valid and MUST NOT
be used. It is defined for simplicity in writing IDL definitions and code. This symbolic constant has

a value of 0x4000.

FW_RULE_FLAGS_MAX_V2_1: This value and values that exceed this value are not valid and

MUST NOT be used by servers and clients with schema version 0x0201 and earlier. It is defined
for simplicity in writing IDL definitions and code. This symbolic constant has a value of 0x0020.

FW_RULE_FLAGS_MAX_V2_9: This value and values that exceed this value are not valid and
MUST NOT be used by servers and clients with schema version 0x0209 and earlier. It is defined
for simplicity in writing IDL definitions and code. This symbolic constant has a value of 0x0040.

FW_RULE_FLAGS_MAX_V2_10: This value and values that exceed this value are not valid and
MUST NOT be used by servers and clients with schema version 0x020A and earlier. It is defined

for simplicity in writing IDL definitions and code. This symbolic constant has a value of 0x0400.

FW_RULE_FLAGS_MAX_V2_20: This value and values that exceed this value are not valid and
MUST NOT be used by servers and clients with schema version 0x0214 and earlier. It is defined

for simplicity in writing IDL definitions and code. This symbolic constant has a value of 0x1000.

FW_RULE_FLAGS_LUA_CONDITIONAL_ACE: This flag MUST be set if and only if the
wszLocalUserAuthorizationList field of the FW_RULE2_24 structure (section 2.2.103) is to

include conditional ACEs. For schema versions 0x0200, 0x0201, 0x020A, 0x0214, and 0x0216,
this value is invalid and MUST NOT be used.

FW_RULE_FLAGS_BIND_TO_INTERFACE: This flag is not used.

2.2.35 FW_RULE2_0

This structure represents a firewall rule that is used by the 2.0 binary version servers and clients (see
sections 1.7 and 2.2.41). The fields of this structure are identical to the FW_RULE structure and its
meanings are covered in section 2.2.36.

 typedef struct _tag_FW_RULE2_0 {
 struct _tag_FW_RULE2_0* pNext;
 unsigned short wSchemaVersion;
 [string, range(1, 10001), ref] wchar_t* wszRuleId;
 [string, range(1, 10001)] wchar_t* wszName;
 [string, range(1, 10001)] wchar_t* wszDescription;
 unsigned long dwProfiles;
 [range(FW_DIR_INVALID, FW_DIR_OUT)]
 FW_DIRECTION Direction;
 [range(0, 256)] unsigned short wIpProtocol;
 [switch_type(unsigned short), switch_is(wIpProtocol)]
 union {
 [case(6,17)]
 struct {
 FW_PORTS LocalPorts;
 FW_PORTS RemotePorts;
 };
 [case(1)]
 FW_ICMP_TYPE_CODE_LIST V4TypeCodeList;
 [case(58)]
 FW_ICMP_TYPE_CODE_LIST V6TypeCodeList;
 [default] ;
 };
 FW_ADDRESSES LocalAddresses;
 FW_ADDRESSES RemoteAddresses;
 FW_INTERFACE_LUIDS LocalInterfaceIds;
 unsigned long dwLocalInterfaceTypes;
 [string, range(1, 10001)] wchar_t* wszLocalApplication;
 [string, range(1, 10001)] wchar_t* wszLocalService;
 [range(FW_RULE_ACTION_INVALID, FW_RULE_ACTION_MAX)]

52 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

 FW_RULE_ACTION Action;
 unsigned short wFlags;
 [string, range(1, 10001)] wchar_t* wszRemoteMachineAuthorizationList;
 [string, range(1, 10001)] wchar_t* wszRemoteUserAuthorizationList;
 [string, range(1, 10001)] wchar_t* wszEmbeddedContext;
 FW_OS_PLATFORM_LIST PlatformValidityList;
 FW_RULE_STATUS Status;
 [range(FW_RULE_ORIGIN_INVALID, FW_RULE_ORIGIN_MAX)]
 FW_RULE_ORIGIN_TYPE Origin;
 [string, range(1, 10001)] wchar_t* wszGPOName;
 unsigned long Reserved;
 } FW_RULE2_0,
 *PFW_RULE2_0;

2.2.36 FW_RULE

This structure is used to represent a firewall rule.

 typedef struct _tag_FW_RULE {
 struct _tag_FW_RULE* pNext;
 unsigned short wSchemaVersion;
 [string, range(1, 512), ref] wchar_t* wszRuleId;
 [string, range(1, 10001)] wchar_t* wszName;
 [string, range(1, 10001)] wchar_t* wszDescription;
 unsigned long dwProfiles;
 [range(FW_DIR_INVALID, FW_DIR_OUT)]
 FW_DIRECTION Direction;
 [range(0, 256)] unsigned short wIpProtocol;
 [switch_type(unsigned short), switch_is(wIpProtocol)]
 union {
 [case(6,17)]
 struct {
 FW_PORTS LocalPorts;
 FW_PORTS RemotePorts;
 };
 [case(1)]
 FW_ICMP_TYPE_CODE_LIST V4TypeCodeList;
 [case(58)]
 FW_ICMP_TYPE_CODE_LIST V6TypeCodeList;
 [default] ;
 };
 FW_ADDRESSES LocalAddresses;
 FW_ADDRESSES RemoteAddresses;
 FW_INTERFACE_LUIDS LocalInterfaceIds;
 unsigned long dwLocalInterfaceTypes;
 [string, range(1, 10001)] wchar_t* wszLocalApplication;
 [string, range(1, 10001)] wchar_t* wszLocalService;
 [range(FW_RULE_ACTION_INVALID, FW_RULE_ACTION_MAX)]
 FW_RULE_ACTION Action;
 unsigned short wFlags;
 [string, range(1, 10001)] wchar_t* wszRemoteMachineAuthorizationList;
 [string, range(1, 10001)] wchar_t* wszRemoteUserAuthorizationList;
 [string, range(1, 10001)] wchar_t* wszEmbeddedContext;
 FW_OS_PLATFORM_LIST PlatformValidityList;
 FW_RULE_STATUS Status;
 [range(FW_RULE_ORIGIN_INVALID, FW_RULE_ORIGIN_MAX)]
 FW_RULE_ORIGIN_TYPE Origin;
 [string, range(1, 10001)] wchar_t* wszGPOName;
 unsigned long Reserved;
 [size_is((Reserved & FW_OBJECT_CTRL_FLAG_INCLUDE_METADATA) ? 1 : 0)]
 PFW_OBJECT_METADATA pMetaData;
 [string, range(1, 10001)] WCHAR* wszLocalUserAuthorizationList;
 [string, range(1, 10001)] WCHAR* wszPackageId;
 [string, range(1, 10001)] WCHAR* wszLocalUserOwner;
 unsigned long dwTrustTupleKeywords;
 FW_NETWORK_NAMES OnNetworkNames;
 [string, range(1, 10001)] WCHAR* wszSecurityRealmId;

53 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

 unsigned short wFlags2;
 FW_NETWORK_NAMES RemoteOutServerNames;
 [string, range(1,10001)] WCHAR* wszFqbn;
 unsigned long compartmentId;
 } FW_RULE,
 *PFW_RULE;

pNext: A pointer to the next FW_RULE in the list.

wSchemaVersion: Specifies the version of the rule.

wszRuleId: A pointer to a Unicode string that uniquely identifies the rule.

wszName: A pointer to a Unicode string that provides a friendly name for the rule.

wszDescription: A pointer to a Unicode string that provides a friendly description for the rule.

dwProfiles: A bitmask of the FW_PROFILE_TYPE flags. It is a condition that matches traffic on the
specified profiles.

Direction: Specifies the direction of the traffic that the rule matches.

wIpProtocol: A condition that specifies the protocol of the traffic that the rule matches. If the value
is within the range 0 to 255, the value describes a protocol in IETF IANA numbers (for more
information, see [IANA-PROTO-NUM]). If the value is 256, the rule matches any protocol.

LocalPorts: A condition that specifies the local host ports of the TCP or UDP traffic that the rule

matches.

RemotePorts: A condition that specifies the remote host ports of the TCP or UDP traffic that the rule
matches.

V4TypeCodeList: A condition that specifies the list of ICMP types of the traffic that the rule matches.
This field applies only when wIpProtocol specifies ICMP v4.

V6TypeCodeList: A condition that specifies the list of ICMP types of the traffic that the rule matches.
This field applies only when wIpProtocol specifies ICMP v6.

LocalAddresses: A condition that specifies the addresses of the local host of the traffic that the rule
matches. An empty LocalAddresses structure means that this condition is not applied.

RemoteAddresses: A condition that specifies the addresses of the remote host of the traffic that the
rule matches. An empty RemoteAddresses structure means that this condition is not applied.

LocalInterfaceIds: A condition that specifies the list of specific network interfaces used by the
traffic that the rule matches. A LocalInterfaceIds field with no interface GUID specified means

that the rule applies to all interfaces; that is, the condition is not applied.

dwLocalInterfaceTypes: A bitmask of FW_INTERFACE_TYPE. It is a condition that restricts the
interface types that are used by the traffic that the rule matches. 0x00000000 means that the
condition matches all interface types.

wszLocalApplication: A pointer to a Unicode string. It is a condition that specifies a file path name
to the executable that uses the traffic that the rule matches. A null in this field means that the rule
applies to all processes in the host.

wszLocalService: A pointer to a Unicode string. It is a condition that specifies the service name of
the service that uses the traffic that the rule matches. An L"*" string in this field means that the
rule applies to all services in the system. A null in this field means that the rule applies to all
processes.

54 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Action: The action that the rule will take for the traffic matches.

wFlags: Bit flags from FW_RULE_FLAGS.

wszRemoteMachineAuthorizationList: A pointer to a Unicode string. A condition that specifies the
remote machines sending or receiving the traffic that the rule matches. The string is in SDDL

format ([MS-DTYP] section 2.5.1).

wszRemoteUserAuthorizationList: A pointer to a Unicode string. A condition that specifies the
remote users accepting or receiving the traffic that the rule matches. The string is in SDDL format
([MS-DTYP] section 2.5.1).

wszEmbeddedContext: A pointer to a Unicode string. It specifies a group name for this rule. Other
components in the system use this string to enable or disable groups of rules by verifying that
they all have the same group name.

PlatformValidityList: A condition in a rule that determines whether or not the rule is enforced by
the local computer based on the local computer's platform information. The rule is enforced only if
the local computer's operating system platform is an element of the set described by

PlatformValidityList.<4>

Status: The status code of the rule, as specified by the FW_RULE_STATUS enumeration. This field is
filled out when the structure is returned as output. On input, this field MUST be set to

FW_RULE_STATUS_OK.

Origin: The rule origin, as specified in the FW_RULE_ORIGIN_TYPE enumeration. It MUST be filled on
enumerated rules and ignored on input.

wszGPOName: A pointer to a Unicode string containing the displayName of the GPO containing this
object. When adding a new object, this field is not used. The client SHOULD set the value to NULL,
and the server MUST ignore the value. When enumerating an existing object, if the client does not
set the FW_ENUM_RULES_FLAG_RESOLVE_GPO_NAME flag, the server MUST set the value to

NULL. Otherwise, the server MUST set the value to the displayName of the GPO containing the
object or NULL if the object is not contained within a GPO. For details about how the server

initializes an object from a GPO, see section 3.1.3. For details about how the displayName of a
GPO is stored, see [MS-GPOL] section 2.3.

Reserved: Not used other than to instruct RPC, using the
FW_OBJECT_CTRL_FLAG_INCLUDE_METADATA flag, that a pointer to an FW_OBJECT_METADATA
structure is present. It has no semantic meaning to the object itself.

pMetaData: A pointer to an FW_OBJECT_METADATA structure that contains specific metadata about
the current state of the firewall rule.

wszLocalUserAuthorizationList: A pointer to a Unicode string in SDDL format ([MS-DTYP] section
2.5.1). It is a condition that specifies the local users accepting or receiving the traffic that the rule
matches.

wszPackageId: A pointer to a Unicode string in SID string format ([MS-DTYP] section 2.4.2.1). It is

a condition that specifies the application SID of the process that uses the traffic that the rule

matches. A null in this field means that the rule applies to all processes in the host.

wszLocalUserOwner: A pointer to a Unicode string in SID string format. The SID specifies the
security principal that owns the rule.

dwTrustTupleKeywords: A bitmask of the FW_TRUST_TUPLE_KEYWORD flags. It is a condition that
matches traffic associated with the specified trust tuples.

OnNetworkNames: Specifies the networks, identified by name, in which the rule must be enforced.

55 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

wszSecurityRealmId: A pointer to a Unicode string in SID string format. The SID specifies the
Security Realm ID, which identifies a security realm that this firewall rule is associated with. Any

application that matches this rule will be subject to the IPsec polices for this security realm.

wFlags2: Bit flags from FW_RULE_FLAGS2 (section 2.2.102).

RemoteOutServerNames: This value is not used over the wire.

wszFqbn: A string that is formatted as an FQBN; also see [MSDN-FQBN].

compartmentId: The ID of the compartment or Windows Server Container.

The following are semantic checks that firewall rules MUST pass:

▪ The wSchemaVersion field MUST NOT be less than 0x000100.

▪ The wSchemaVersion field SHOULD NOT be less than 0x000200.<5>

▪ The wszRuleId field MUST NOT contain the pipe (|) character, MUST NOT be NULL, MUST be a

string of at least 1 character, and MUST NOT be greater or equal to 512 characters.<6>

▪ The wszName field string MUST meet the following criteria:

▪ MUST contain 1 or more characters.

▪ MUST contain fewer than 10,000 characters.

▪ MUST NOT be NULL.

▪ MUST NOT contain the pipe (|) character.

▪ MUST NOT equal the case-insensitive string "ALL".

▪ If the wszDescription field string is not NULL, it MUST contain at least 1 character, MUST NOT be
greater than or equal to 10,000 characters, and MUST NOT contain the pipe (|) character.

▪ If the wszLocalApplication field string is not NULL, it MUST be at least 1 character, MUST NOT
be greater than or equal to MAX_PATH (260) characters, and MUST NOT contain the following
characters: /,*,?,",<,>,|.

▪ If the wszLocalService field string is not NULL, it MUST contain at least 1 character, MUST NOT

be greater than or equal to MAX_PATH characters, and MUST NOT contain the following
characters: /,\,|.

▪ If the wszEmbeddedContext field string is not NULL, it MUST contain at least 1 character, MUST
NOT be greater than or equal to 10,000 characters, and MUST NOT contain the pipe (|) character.

▪ The Direction field MUST NOT contain invalid FW_DIRECTION values.

▪ The dwProfiles field MUST NOT contain invalid values and, if it is not equal to the
FW_PROFILE_TYPE_ALL profile type, it MUST NOT contain unknown profiles.

▪ The wIpProtocol field MUST NOT be greater than 256.

▪ If the wPortKeywords field of LocalPorts is FW_PORT_KEYWORD_DYNAMIC_RPC_PORTS or
FW_PORT_KEYWORD_RPC_EP, the wIpProtocol field MUST be 6, and Direction MUST be
FW_DIRECTION_IN.

▪ If the wPortKeywords field of LocalPorts is FW_PORT_KEYWORD_TEREDO_PORT, the
wIpProtocol field MUST be 17, and Direction MUST be FW_DIRECTION_IN.

▪ The wPortKeywords field of LocalPorts MUST be 0 if the Direction is FW_DIRECTION_OUT.

56 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

▪ If the wIpProtocol field is 6 or 17, the wPortKeywords field of RemotePorts MUST be 0.

▪ If the wIpProtocol field is not 1, 6, 17, or 58, the LocalPorts, RemotePorts, V4TypeCodeList,

and V6TypeCodeList field MUST be empty.

▪ The dwV4AddressKeywords and dwV6AddressKeywords fields of LocalAddresses MUST be

0.

▪ dwLocalInterfaceTypes MUST NOT be greater than or equal to FW_INTERFACE_TYPE_MAX.

▪ Action MUST be a valid action from the FW_RULE_ACTION enumeration.

▪ wFlags MUST NOT be greater than FW_RULE_FLAGS_MAX.

▪ If Direction is FW_DIR_OUT, wFlags MUST NOT contain a
FW_RULE_FLAGS_ROUTEABLE_ADDRS_TRAVERSE.

▪ If Direction is FW_DIR_IN or wIpProtocol is 6 or wFlags contains

FW_RULE_FLAGS_AUTHENTICATE or FW_RULE_FLAGS_AUTHENTICATE_WITH_ENCRYPTION,

wFlags MUST NOT contain FW_RULE_FLAGS_LOOSE_SOURCE_MAPPED.

▪ The wFlags field MUST NOT contain both FW_RULE_FLAGS_AUTHENTICATE and
FW_RULE_FLAGS_AUTHENTICATE_WITH_ENCRYPTION.

▪ If wFlags contains either FW_RULE_FLAGS_AUTHENTICATE or
FW_RULE_FLAGS_AUTHENTICATE_WITH_ENCRYPTION, Action MUST NOT be

FW_RULE_ACTION_BLOCK.

▪ If Action is FW_RULE_ACTION_ALLOW_BYPASS, Direction MUST be FW_DIR_IN, wFlags MUST
contain either FW_RULE_FLAGS_AUTHENTICATE or
FW_RULE_FLAGS_AUTHENTICATE_WITH_ENCRYPTION, and
wszRemoteMachineAuthorizationList MUST NOT be NULL.

▪ If wszRemoteMachineAuthorizationList is not NULL, it MUST be at least 1 character, MUST
NOT be greater than or equal to 10,000 characters, MUST NOT contain the pipe (|) character,

MUST NOT be an empty string (""), MUST be a valid security descriptor ([MS-DTYP] section 2.4.6),
MUST have a non-Null ACL, MUST have only either Allow or Deny ACEs, and each ACE MUST have
a Filter match access right.

▪ If wszRemoteUserAuthorizationList is not NULL, it MUST be at least 1 character, MUST NOT be
greater than or equal to 10,000 characters, MUST NOT contain the pipe (|) character, MUST NOT
be an empty string (""), MUST be a valid security descriptor ([MS-DTYP] section 2.4.6), MUST
have a non-NULL ACL, MUST only have either Allow or Deny ACEs, and each ACE MUST have a

Filter match access right.

▪ If wszRemoteMachineAuthorizationList is not NULL or wszRemoteUserAuthorizationList is
not NULL, either the FW_RULE_FLAGS_AUTHENTICATE flag or the
FW_RULE_FLAGS_AUTHENTICATE_WITH_ENCRYPT flag MUST be set on the wFlags field.

▪ If the Direction field is FW_DIR_OUT, the wszRemoteMachineAuthorizationList field MUST be
NULL.

▪ If wszLocalUserAuthorizationList is not NULL, it MUST be at least 1 character, MUST NOT be
greater than or equal to 10,000 characters, MUST NOT contain the pipe ("|") character unless it
contains a conditional ACE and the wFlags field has the
FW_RULE_FLAGS_LUA_CONDITIONAL_ACE set (section 2.2.34), MUST NOT be an empty string
(""), MUST be a valid security descriptor ([MS-DTYP] section 2.4.6), MUST have a non-NULL ACL,
MUST only have either Allow or Deny ACEs if the FW_RULE_FLAGS_LUA_CONDITIONAL_ACE is not
set, or can include conditional ACEs if FW_RULE_FLAGS_LUA_CONDITIONAL_ACE is set, and each

ACE MUST have a Filter match access right.

57 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

2.2.37 FW_PROFILE_CONFIG

This enumeration identifies each of the per-profile configuration options supported by this protocol.
Each configuration option has a merge law that is used to determine how to merge the values of these

options across stores.

 typedef enum _tag_FW_PROFILE_CONFIG
 {
 FW_PROFILE_CONFIG_INVALID = 0,
 FW_PROFILE_CONFIG_ENABLE_FW = 1,
 FW_PROFILE_CONFIG_DISABLE_STEALTH_MODE = 2,
 FW_PROFILE_CONFIG_SHIELDED = 3,
 FW_PROFILE_CONFIG_DISABLE_UNICAST_RESPONSES_TO_MULTICAST_BROADCAST = 4,
 FW_PROFILE_CONFIG_LOG_DROPPED_PACKETS = 5,
 FW_PROFILE_CONFIG_LOG_SUCCESS_CONNECTIONS = 6,
 FW_PROFILE_CONFIG_LOG_IGNORED_RULES = 7,
 FW_PROFILE_CONFIG_LOG_MAX_FILE_SIZE = 8,
 FW_PROFILE_CONFIG_LOG_FILE_PATH = 9,
 FW_PROFILE_CONFIG_DISABLE_INBOUND_NOTIFICATIONS = 10,
 FW_PROFILE_CONFIG_AUTH_APPS_ALLOW_USER_PREF_MERGE = 11,
 FW_PROFILE_CONFIG_GLOBAL_PORTS_ALLOW_USER_PREF_MERGE = 12,
 FW_PROFILE_CONFIG_ALLOW_LOCAL_POLICY_MERGE = 13,
 FW_PROFILE_CONFIG_ALLOW_LOCAL_IPSEC_POLICY_MERGE = 14,
 FW_PROFILE_CONFIG_DISABLED_INTERFACES = 15,
 FW_PROFILE_CONFIG_DEFAULT_OUTBOUND_ACTION = 16,
 FW_PROFILE_CONFIG_DEFAULT_INBOUND_ACTION = 17,
 FW_PROFILE_CONFIG_DISABLE_STEALTH_MODE_IPSEC_SECURED_PACKET_EXEMPTION = 18,
 FW_PROFILE_CONFIG_MAX = 19
 } FW_PROFILE_CONFIG;

FW_PROFILE_CONFIG_INVALID: This value is invalid and MUST NOT be used. It is defined for
simplicity in writing IDL definitions and code. This symbolic constant has a value of 0.

FW_PROFILE_CONFIG_ENABLE_FW: This value is an on/off switch for the firewall and advanced
security enforcement. It is a DWORD type value; 0x00000000 is off; 0x00000001 is on. If this
value is off, the server MUST NOT block any network traffic, regardless of other policy settings.

The merge law for this option is to let the value of the GroupPolicyRSoPStore win if it is

configured; otherwise, the local store value is used. This symbolic constant has a value of 1.

FW_PROFILE_CONFIG_DISABLE_STEALTH_MODE: This value is a DWORD used as an on/off
switch. When this option is off, the server operates in stealth mode. The firewall rules used to
enforce stealth mode are implementation-specific.<7> The merge law for this option is to let the
value of the GroupPolicyRSoPStore win if it is configured; otherwise, the local store value is
used. This symbolic constant has a value of 2.

FW_PROFILE_CONFIG_SHIELDED: This value is a DWORD used as an on/off switch. If this value
is on and FW_PROFILE_CONFIG_ENABLE_FW is on, the server MUST block all incoming traffic
regardless of other policy settings. The merge law for this option is to let "on" values win. This
symbolic constant has a value of 3.

FW_PROFILE_CONFIG_DISABLE_UNICAST_RESPONSES_TO_MULTICAST_BROADCAST: This
value is a DWORD used as an on/off switch. If it is on, unicast responses to multicast broadcast

traffic is blocked. The merge law for this option is to let the value of the GroupPolicyRSoPStore

win if it is configured; otherwise, the local store value is used. This symbolic constant has a value
of 4.

FW_PROFILE_CONFIG_LOG_DROPPED_PACKETS: This value is a DWORD used as an on/off
switch. If this value is on, the firewall logs all the dropped packets. The merge law for this option
is to let "on" values win. This symbolic constant has a value of 5.

58 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

FW_PROFILE_CONFIG_LOG_SUCCESS_CONNECTIONS: This value is a DWORD used as an
on/off switch. If this value is on, the firewall logs all successful inbound connections. The merge

law for this option is to let "on" values win. This symbolic constant has a value of 6.

FW_PROFILE_CONFIG_LOG_IGNORED_RULES: This value is a DWORD used as an on/off switch.

The server MAY use this value in an implementation-specific way to control logging of events if a
rule is not enforced for any reason. The merge law for this option is to let "on" values win. This
symbolic constant has a value of 7.<8>

FW_PROFILE_CONFIG_LOG_MAX_FILE_SIZE: This value is a DWORD and specifies the size, in
kilobytes, of the log where dropped packets and successful connections are logged. The merge law
for this option is to let the value of the GroupPolicyRSoPStore win if it is configured; otherwise,
the local store value is used. This symbolic constant has a value of 8.

FW_PROFILE_CONFIG_LOG_FILE_PATH: This configuration value is a string that represents a file
path to the log for when the firewall logs dropped packets and successful connections. The merge
law for this option is to let the value of the GroupPolicyRSoPStore win if it is configured;
otherwise, the local store value is used. This symbolic constant has a value of 9.

FW_PROFILE_CONFIG_DISABLE_INBOUND_NOTIFICATIONS: This value is a DWORD used as
an on/off switch. If this value is off, the firewall MAY display a notification to the user when an

application is blocked from listening on a port.<9> If this value is on, the firewall MUST NOT
display such a notification. The merge law for this option is to let the value of the
GroupPolicyRSoPStore win if it is configured; otherwise, the local store value is used. This
symbolic constant has a value of 10.

FW_PROFILE_CONFIG_AUTH_APPS_ALLOW_USER_PREF_MERGE: This value is a DWORD
used as an on/off switch. If this value is off, authorized application firewall rules in the local store
are ignored and not enforced. The merge law for this option is to let the value of the

GroupPolicyRSoPStore win if it is configured; otherwise, the local store value is used. This
symbolic constant has a value of 11.

The authorized application firewall rules consist of the FW_RULE objects where all of the following
are true:

wszLocalApplication is not NULL

wszLocalService == NULL

(wIpProtocol == 6) || (wIpProtocol == 17)

LocalPorts.Ports.dwNumEntries == 0

LocalPorts.wPortKeywords == FW_PORT_KEYWORD_NONE

Note that for the wIpProtocol condition, the numbers 6 and 17 are the assigned Internet
protocol numbers for TCP and UDP respectively (for more information, see [IANA-PROTO-NUM]).

FW_PROFILE_CONFIG_GLOBAL_PORTS_ALLOW_USER_PREF_MERGE: This value is a DWORD
used as an on/off switch. If this value is off, global port firewall rules in the local store are ignored

and not enforced. The setting only has meaning if it is set or enumerated in the Group Policy store

or if it is enumerated from the GroupPolicyRSoPStore. The merge law for this option is to let the
value GroupPolicyRSoPStore win if it is configured; otherwise, the local store value is used. This
symbolic constant has a value of 12.

The global port firewall rules consist of the FW_RULE objects where all of the following are true:

wszLocalApplication == NULL

wszLocalService == NULL

59 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

(wIpProtocol == 6) || (wIpProtocol == 17)

LocalPorts.Ports.dwNumEntries == 1

LocalPorts.wPortKeywords == FW_PORT_KEYWORD_NONE

Note that for the wIpProtocol condition, the numbers 6 and 17 are the assigned Internet

protocol numbers for TCP and UDP respectively (for more information, see [IANA-PROTO-NUM]).

FW_PROFILE_CONFIG_ALLOW_LOCAL_POLICY_MERGE: This value is a DWORD used as an
on/off switch. If this value is off, firewall rules from the local store are ignored and not enforced.
The merge law for this option is to always use the value of the GroupPolicyRSoPStore. This
value is valid for all schema versions. This symbolic constant has a value of 13.

FW_PROFILE_CONFIG_ALLOW_LOCAL_IPSEC_POLICY_MERGE: This value is a DWORD; it is
an on/off switch. If this value is off, connection security rules from the local store are ignored and

not enforced, regardless of the schema version and connection security rule version. The merge
law for this option is to always use the value of the GroupPolicyRSoPStore. This symbolic
constant has a value of 14.

FW_PROFILE_CONFIG_DISABLED_INTERFACES: This value is an FW_INTERFACE_LUIDS
structure that represents the network adapters where the firewall (only the firewall rules and
actions) is off. The merge law for this option is to let the value of the GroupPolicyRSoPStore win

if it is configured; otherwise, the local store value is used. This symbolic constant has a value of
15.

FW_PROFILE_CONFIG_DEFAULT_OUTBOUND_ACTION: This value is the action that the firewall
does by default (and evaluates at the very end) on outbound connections. The allow action is
represented by 0x00000000; 0x00000001 represents a block action. The merge law for this option
is to let the value of the GroupPolicyRSoPStore win if it is configured; otherwise, the local store
value is used. This symbolic constant has a value of 16.

FW_PROFILE_CONFIG_DEFAULT_INBOUND_ACTION: This value is the action that the firewall
does by default (and evaluates at the very end) on inbound connections. The allow action is

represented by 0x00000000; 0x00000001 represents a block action. The merge law for this option
is to let the value of the GroupPolicyRSoPStore.win if it is configured; otherwise, the local store
value is used. This symbolic constant has a value of 17.

FW_PROFILE_CONFIG_DISABLE_STEALTH_MODE_IPSEC_SECURED_PACKET_EXEMPTION:
This value is a DWORD used as an on/off switch. This option is ignored if

FW_PROFILE_CONFIG_DISABLE_STEALTH_MODE is on. Otherwise, when this option is on,
the firewall's stealth mode rules MUST NOT prevent the host computer from responding to
unsolicited network traffic if that traffic is secured by IPsec. The merge law for this option is to let
the value of the GroupPolicyRSoPStore win if it is configured; otherwise, the local store value is
used. For schema versions 0x0200, 0x0201, and 0x020A, this value is invalid and MUST NOT be
used. This symbolic constant has a value of 18.

FW_PROFILE_CONFIG_MAX: This value and values that exceed this value are not valid and MUST
NOT be used. It is defined for simplicity in writing IDL definitions and code. This symbolic constant
has a value of 19.

2.2.38 FW_GLOBAL_CONFIG_IPSEC_EXEMPT_VALUES

This enumeration identifies specific traffic to be exempted from performing IPsec.

 typedef enum _FW_GLOBAL_CONFIG_IPSEC_EXEMPT_VALUES
 {
 FW_GLOBAL_CONFIG_IPSEC_EXEMPT_NONE = 0x0000,
 FW_GLOBAL_CONFIG_IPSEC_EXEMPT_NEIGHBOR_DISC = 0x0001,
 FW_GLOBAL_CONFIG_IPSEC_EXEMPT_ICMP = 0x0002,

60 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

 FW_GLOBAL_CONFIG_IPSEC_EXEMPT_ROUTER_DISC = 0x0004,
 FW_GLOBAL_CONFIG_IPSEC_EXEMPT_DHCP = 0x0008,
 FW_GLOBAL_CONFIG_IPSEC_EXEMPT_MAX = 0x0010,
 FW_GLOBAL_CONFIG_IPSEC_EXEMPT_MAX_V2_0 = 0x0004
 } FW_GLOBAL_CONFIG_IPSEC_EXEMPT_VALUES;

FW_GLOBAL_CONFIG_IPSEC_EXEMPT_NONE: No IPsec exemptions.

FW_GLOBAL_CONFIG_IPSEC_EXEMPT_NEIGHBOR_DISC: Exempt neighbor discover IPv6 ICMP

type-codes from IPsec.

FW_GLOBAL_CONFIG_IPSEC_EXEMPT_ICMP: Exempt ICMP from IPsec.

FW_GLOBAL_CONFIG_IPSEC_EXEMPT_ROUTER_DISC: Exempt router discover IPv6 ICMP type-
codes from IPsec.

FW_GLOBAL_CONFIG_IPSEC_EXEMPT_DHCP: Exempt both IPv4 and IPv6 DHCP traffic from
IPsec.

FW_GLOBAL_CONFIG_IPSEC_EXEMPT_MAX: This value and values that exceed this value are

not valid and MUST NOT be used. It is defined for simplicity in writing IDL definitions and code.
This symbolic constant has a value of 0x0010.

FW_GLOBAL_CONFIG_IPSEC_EXEMPT_MAX_V2_0: This value and values that exceed this value
are not valid and MUST NOT be used by servers and clients with schema version 0x0200 and
earlier. It is defined for simplicity in writing IDL definitions and code. This symbolic constant has a
value of 0x0004.

2.2.39 FW_GLOBAL_CONFIG_PRESHARED_KEY_ENCODING_VALUES

This enumeration is used to describe how preshared keys are encoded before being used.

 typedef enum _FW_GLOBAL_CONFIG_PRESHARED_KEY_ENCODING_VALUES
 {
 FW_GLOBAL_CONFIG_PRESHARED_KEY_ENCODING_NONE = 0,
 FW_GLOBAL_CONFIG_PRESHARED_KEY_ENCODING_UTF_8 = 1,
 FW_GLOBAL_CONFIG_PRESHARED_KEY_ENCODING_MAX = 2
 } FW_GLOBAL_CONFIG_PRESHARED_KEY_ENCODING_VALUES;

FW_GLOBAL_CONFIG_PRESHARED_KEY_ENCODING_NONE: Preshared key is not encoded.

Instead, it is kept in its wide-character format. This symbolic constant has a value of 0.

FW_GLOBAL_CONFIG_PRESHARED_KEY_ENCODING_UTF_8: Encode the preshared key using
UTF-8. This symbolic constant has a value of 1.

FW_GLOBAL_CONFIG_PRESHARED_KEY_ENCODING_MAX: This value and values that exceed
this value are not valid and MUST NOT be used. It is defined for simplicity in writing IDL definitions
and code. This symbolic constant has a value of 2.

2.2.40 FW_GLOBAL_CONFIG_IPSEC_THROUGH_NAT_VALUES

This enumeration is used to describe when IPsec security associations can be established across NAT
devices.

 typedef enum _FW_GLOBAL_CONFIG_IPSEC_THROUGH_NAT_VALUES
 {
 FW_GLOBAL_CONFIG_IPSEC_THROUGH_NAT_NEVER = 0,
 FW_GLOBAL_CONFIG_IPSEC_THROUGH_NAT_SERVER_BEHIND_NAT = 1,
 FW_GLOBAL_CONFIG_IPSEC_THROUGH_NAT_SERVER_AND_CLIENT_BEHIND_NAT = 2,

61 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

 FW_GLOBAL_CONFIG_IPSEC_THROUGH_NAT_MAX = 3
 } FW_GLOBAL_CONFIG_IPSEC_THROUGH_NAT_VALUES;

FW_GLOBAL_CONFIG_IPSEC_THROUGH_NAT_NEVER: IPsec does not cross NAT boundaries.
This symbolic constant has a value of 0.

FW_GLOBAL_CONFIG_IPSEC_THROUGH_NAT_SERVER_BEHIND_NAT: IPsec security
associations can be established when the server is across NAT boundaries. This symbolic constant
has a value of 1.

FW_GLOBAL_CONFIG_IPSEC_THROUGH_NAT_SERVER_AND_CLIENT_BEHIND_NAT: IPsec

security associations can be established when the server and client are across NAT boundaries.
This symbolic constant has a value of 2.

FW_GLOBAL_CONFIG_IPSEC_THROUGH_NAT_MAX: This value and values that exceed this
value are not valid and MUST NOT be used. It is defined for simplicity in writing IDL definitions
and code. This symbolic constant has a value of 3.

2.2.41 FW_GLOBAL_CONFIG

This enumeration identifies the global policy configuration options. Each configuration option has a
merge law that is used to determine how to merge the values of these options across stores.

 typedef enum _tag_FW_GLOBAL_CONFIG
 {
 FW_GLOBAL_CONFIG_INVALID = 0,
 FW_GLOBAL_CONFIG_POLICY_VERSION_SUPPORTED = 1,
 FW_GLOBAL_CONFIG_CURRENT_PROFILE = 2,
 FW_GLOBAL_CONFIG_DISABLE_STATEFUL_FTP = 3,
 FW_GLOBAL_CONFIG_DISABLE_STATEFUL_PPTP = 4,
 FW_GLOBAL_CONFIG_SA_IDLE_TIME = 5,
 FW_GLOBAL_CONFIG_PRESHARED_KEY_ENCODING = 6,
 FW_GLOBAL_CONFIG_IPSEC_EXEMPT = 7,
 FW_GLOBAL_CONFIG_CRL_CHECK = 8,
 FW_GLOBAL_CONFIG_IPSEC_THROUGH_NAT = 9,
 FW_GLOBAL_CONFIG_POLICY_VERSION = 10,
 FW_GLOBAL_CONFIG_BINARY_VERSION_SUPPORTED = 11,
 FW_GLOBAL_CONFIG_IPSEC_TUNNEL_REMOTE_MACHINE_AUTHORIZATION_LIST = 12,
 FW_GLOBAL_CONFIG_IPSEC_TUNNEL_REMOTE_USER_AUTHORIZATION_LIST = 13,
 FW_GLOBAL_CONFIG_OPPORTUNISTICALLY_MATCH_AUTH_SET_PER_KM = 14,
 FW_GLOBAL_CONFIG_IPSEC_TRANSPORT_REMOTE_MACHINE_AUTHORIZATION_LIST = 15,
 FW_GLOBAL_CONFIG_IPSEC_TRANSPORT_REMOTE_USER_AUTHORIZATION_LIST = 16,
 FW_GLOBAL_CONFIG_ENABLE_PACKET_QUEUE = 17,
 FW_GLOBAL_CONFIG_MAX = 18
 } FW_GLOBAL_CONFIG;

FW_GLOBAL_CONFIG_INVALID: This value MUST NOT be used. It is defined for simplicity in
writing IDL definitions and code. This symbolic constant has a value of 0.

FW_GLOBAL_CONFIG_POLICY_VERSION_SUPPORTED: This value is a DWORD containing the
maximum policy version that the server host can accept. The version number is two octets in size.

The lowest-order octet is the minor version; the second-to-lowest octet is the major version. This
value is not merged and is always a fixed value for a particular firewall and advanced security

components software build. This symbolic constant has a value of 1.

FW_GLOBAL_CONFIG_CURRENT_PROFILE: This value is a DWORD and contains a bitmask of the
current enforced profiles that are maintained by the server firewall host. See
FW_PROFILE_TYPE (section 2.2.2) for the bitmasks that are used to identify profile types. This
value is available only in the dynamic store; therefore, it is not merged and has no merge law.
This symbolic constant has a value of 2.

62 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

FW_GLOBAL_CONFIG_DISABLE_STATEFUL_FTP: This value is an on/off switch. If off, the
firewall performs stateful File Transfer Protocol (FTP) filtering to allow secondary connections. The

value is a DWORD; 0x00000000 means off; 0x00000001 means on. The merge law for this option
is to let "on" values win. This symbolic constant has a value of 3.

FW_GLOBAL_CONFIG_DISABLE_STATEFUL_PPTP: This value is an on/off switch. If off, the
firewall performs stateful Point-to-Point Tunneling Protocol (PPTP) analysis. The value is a
DWORD; 0x00000000 means off; 0x00000001 means on. The merge law for this option is to let
"on" values win. This symbolic constant has a value of 4.

FW_GLOBAL_CONFIG_SA_IDLE_TIME: This value configures the security association idle time, in
seconds. Security associations are deleted after network traffic is not seen for this specified period
of time. The value is a DWORD and MUST be a value in the range of 300 to 3,600 inclusive. The

merge law for this option is to let the value of the GroupPolicyRSoPStore win if it is configured;
otherwise, use the local store value. This symbolic constant has a value of 5.

FW_GLOBAL_CONFIG_PRESHARED_KEY_ENCODING: This configuration value specifies the
preshared key encoding that is used. The value is a DWORD and MUST be a valid value from the

FW_GLOBAL_CONFIG_PRESHARED_KEY_ENCODING_VALUES enumeration. The merge law for this
option is to let the value of the GroupPolicyRSoPStore win if it is configured; otherwise, use the

local store value. This symbolic constant has a value of 6.

FW_GLOBAL_CONFIG_IPSEC_EXEMPT: This configuration value configures IPsec exceptions. The
value is a DWORD and MUST be a combination of the valid flags that are defined in
FW_GLOBAL_CONFIG_IPSEC_EXEMPT_VALUES; therefore, the maximum value MUST always be
FW_GLOBAL_CONFIG_IPSEC_EXEMPT_MAX-1 for servers supporting a schema version of 0x0201
and FW_GLOBAL_CONFIG_IPSEC_EXEMPT_MAX_V2_0-1 for servers supporting a schema version
of 0x0200. If the maximum value is exceeded when the method RRPC_FWSetGlobalConfig

(Opnum 4) is called, the method returns ERROR_INVALID_PARAMETER. This error code is
returned if no other preceding error is discovered. The merge law for this option is to let the value
of the GroupPolicyRSoPStore win if it is configured; otherwise, use the local store value. This
symbolic constant has a value of 7.

FW_GLOBAL_CONFIG_CRL_CHECK: This value specifies how certificate revocation list (CRL)

verification is enforced. The value is a DWORD and MUST be 0, 1, or 2. A value of 0 disables CRL
checking. A value of 1 specifies that CRL checking is attempted and that certificate validation fails

only if the certificate is revoked. Other failures that are encountered during CRL checking (such as
the revocation URL being unreachable) do not cause certificate validation to fail. A value of 2
means that checking is required and that certificate validation fails if any error is encountered
during CRL processing. The merge law for this option is to let the value of the
GroupPolicyRSoPStore win if it is configured; otherwise, use the local store value. This symbolic
constant has a value of 8.

FW_GLOBAL_CONFIG_IPSEC_THROUGH_NAT: This value is configured when an IPsec security
association can be established with a computer across NAT devices. The value is of type
FW_GLOBAL_CONFIG_IPSEC_THROUGH_NAT_VALUES and MUST contain valid values of the same
enumeration type. The merge law for this option is to let the value of the GroupPolicyRSoPStore
win if it is configured; otherwise, use the local store value. This symbolic constant has a value of
9.

FW_GLOBAL_CONFIG_POLICY_VERSION: This value contains the policy version of the policy

store being managed. This value is not merged and therefore, has no merge law. This symbolic
constant has a value of 10.

FW_GLOBAL_CONFIG_BINARY_VERSION_SUPPORTED: This value contains the binary version
of the structures and data types that are supported by the server. This value is not merged. In
addition, this value is always a fixed value for a specific firewall and advanced security
component's software build. This symbolic constant has a value of 11. This value identifies a policy
configuration option that is supported only on servers that have a schema version of 0x0201.

63 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

FW_GLOBAL_CONFIG_IPSEC_TUNNEL_REMOTE_MACHINE_AUTHORIZATION_LIST: This
value represents a list of remote machines that are allowed to send and receive traffic through the

tunnels which request this access check. Machines in the list are allowed through the tunnels.
Machines not in the list are denied through the tunnels. The list is specified as a security descriptor

which specifies which SIDs ([MS-DTYP] section 2.4.2.1) of the remote machines. The value is a
Unicode string in Security Descriptor Definition Language (SDDL) format ([MS-DTYP] section
2.5.1). This symbolic constant has a value of 12.

FW_GLOBAL_CONFIG_IPSEC_TUNNEL_REMOTE_USER_AUTHORIZATION_LIST: This value
represents a list of remote users who are allowed to send and receive traffic through the tunnels
which request this access check. Users in the list are allowed through the tunnels. Users not in the
list are denied through the tunnels. The list is specified as a security descriptor which specifies

which SIDs ([MS-DTYP] section 2.4.2.1) of the remote users. The value is a Unicode string in
SDDL format ([MS-DTYP] section 2.5.1). This symbolic constant has a value of 13.

FW_GLOBAL_CONFIG_OPPORTUNISTICALLY_MATCH_AUTH_SET_PER_KM: This value is a
DWORD used as an on/off switch. When this option is off, keying modules MUST ignore the entire
authentication set if they do not support all of the authentication suites specified in the set. When

this option is on, keying modules MUST ignore only the authentication suites that they don’t

support. For schema versions 0x0200, 0x0201, and 0x020A, this value is invalid and MUST NOT
be used. This symbolic constant has a value of 14.

FW_GLOBAL_CONFIG_IPSEC_TRANSPORT_REMOTE_MACHINE_AUTHORIZATION_LIST: This
value is a Unicode string in Security Descriptor Definition Language (SDDL) format ([MS-DTYP]
section 2.5.1). The security descriptor describes which remote machines are allowed to send and
receive traffic secured by transport mode connection security rules which request this access
check. Machines granted access by the security descriptor are allowed to send and receive traffic.

Machines denied access by the security descriptor are blocked from sending and receiving traffic.
For schema versions 0x0200, 0x0201, and 0x020A, this value is invalid and MUST NOT be used.
This symbolic constant has a value of 15.

FW_GLOBAL_CONFIG_IPSEC_TRANSPORT_REMOTE_USER_AUTHORIZATION_LIST: This
value is a Unicode string in Security Descriptor Definition Language (SDDL) format. The security
descriptor describes which remote users are allowed to send and receive traffic secured by

transport mode connection security rules which request this access check. Users granted access

by the security descriptor are allowed to send and receive traffic. Users denied access by the
security descriptor are blocked from sending and receiving traffic. For schema versions 0x0200,
0x0201, and 0x020A, this value is invalid and MUST NOT be used. This symbolic constant has a
value of 16.

FW_GLOBAL_CONFIG_ENABLE_PACKET_QUEUE: This value specifies how scaling for the
software on the receive side is enabled for both the encrypted receive and clear text forward path

for the IPsec tunnel gateway scenario (as configured by FW_CS_RULE (section 2.2.54)). Use of
this option also ensures that the packet order is preserved. The data type for this option value is a
DWORD and is a combination of flags. A value of 0x00 indicates that all queuing is to be disabled.
A value of 0x01 specifies that inbound encrypted packets are to be queued. A value of 0x02
specifies that packets are to be queued after decryption is performed for forwarding. This symbolic
constant has a value of 17.

FW_GLOBAL_CONFIG_MAX: This value and values that exceed this value are not valid and MUST

NOT be used. This symbolic constant is defined for simplicity in writing IDL definitions and code. It
has a value of 18.

Note The value of FW_GLOBAL_CONFIG_MAX depends of the number of members in this
enumeration, which, in turn, depends on the schema version. See the descriptions of the previous
enumeration members to determine what this value is for each schema version.

64 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

2.2.42 FW_CONFIG_FLAGS

This enumeration identifies flags that can be set on the RRPC_FWGetConfig (Opnum 10) and
RRPC_FWGetGlobalConfig (Opnum 3) methods.

 typedef enum _FW_CONFIG_FLAGS
 {
 FW_CONFIG_FLAG_RETURN_DEFAULT_IF_NOT_FOUND = 0x0001
 } FW_CONFIG_FLAGS;

FW_CONFIG_FLAG_RETURN_DEFAULT_IF_NOT_FOUND: If this flag is specified, and if the
RRPC_FWGetConfig (Opnum 10) method or the RRPC_FWGetGlobalConfig (Opnum 3) method fails
to find the configuration value in the policy store, then the call will succeed and return the default
value used by the firewall service. If this flag is not specified, these methods will fail with
ERROR_FILE_NOT_FOUND. The default set of values returned by these two calls is a firewall and
advanced security component implementation-specific<10> decision, and is outside the scope of

this protocol specification.

2.2.43 FW_NETWORK

This structure represents a network that is associated with a firewall profile. It is used for display
purposes in user interfaces.

 typedef struct _tag_FW_NETWORK {
 [string, unique] wchar_t* pszName;
 FW_PROFILE_TYPE ProfileType;
 } FW_NETWORK,
 *PFW_NETWORK;

pszName: A pointer to a Unicode string that represents the name of the network.

ProfileType: The profile type that is associated with the network. The type MUST be one of the

FW_PROFILE_TYPE flags, except FW_PROFILE_TYPE_ALL.

2.2.44 FW_ADAPTER

This structure represents a network interface in the host. It is used for display purposes in the user
interface when configuring the FW_PROFILE_CONFIG_DISABLED_INTERFACES (section 2.2.37)

configuration option.

 typedef struct _tag_FW_ADAPTER {
 [string, unique] wchar_t* pszFriendlyName;
 GUID Guid;
 } FW_ADAPTER,
 *PFW_ADAPTER;

pszFriendlyName: A pointer to a Unicode string that presents the friendly name that is associated
with the network interface.

Guid: A GUID that uniquely identifies the interface in the host system.

2.2.45 FW_DIAG_APP

This structure is not used on the wire.

65 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

2.2.46 FW_RULE_CATEGORY

This enumeration represents the classes of functionality that a third-party software component can
register for, take ownership of, and commit to implement. The implementation of such functionality by

the firewall and advanced security component, or by the third-party software component, are
implementation-specific decisions. This enumeration is only used to present the state of the
registrations.

 typedef [v1_enum] enum _tag_FW_RULE_CATEGORY
 {
 FW_RULE_CATEGORY_BOOT = 0,
 FW_RULE_CATEGORY_STEALTH = 1,
 FW_RULE_CATEGORY_FIREWALL = 2,
 FW_RULE_CATEGORY_CONSEC = 3,
 FW_RULE_CATEGORY_MAX = 4
 } FW_RULE_CATEGORY,
 *PFW_RULE_CATEGORY;

FW_RULE_CATEGORY_BOOT: This category of functionality represents the policy that is used while
the system is starting up and the firewall and advance security component is not yet running. This
symbolic constant has a value of 0.

FW_RULE_CATEGORY_STEALTH: This category of functionality represents the policy that is used
to make the system appear invisible when it is connected to a network. For example, this
functionality helps prevent attackers from discovering the host and the ports that open to the

host. This symbolic constant has a value of 1.

FW_RULE_CATEGORY_FIREWALL: This category of functionality represents functions that are
performed by firewall objects while they are present on the FW_STORE_TYPE_LOCAL,
FW_STORE_TYPE_DYNAMIC, and FW_STORE_TYPE_GP_RSOP policy stores (see section 2.2.1).
This symbolic constant has a value of 2.

FW_RULE_CATEGORY_CONSEC: This category of functionality represents functions that are

performed by the connection security objects. This symbolic constant has a value of 3.

FW_RULE_CATEGORY_MAX: This value and values that exceed this value are not valid and MUST
NOT be used. It is defined for simplicity in writing IDL definitions and code. This symbolic constant
has a value of 4.

2.2.47 FW_PRODUCT

This structure represents a third-party software component that registers with the firewall and
advanced security component to implement some of the categories.

 typedef struct _tag_FW_PRODUCT {
 DWORD dwFlags;
 DWORD dwNumRuleCategories;
 [size_is(dwNumRuleCategories), unique]
 FW_RULE_CATEGORY* pRuleCategories;
 [string, ref] wchar_t* pszDisplayName;
 [string, unique] wchar_t* pszPathToSignedProductExe;
 } FW_PRODUCT,
 *PFW_PRODUCT;

dwFlags: This field is not used.

dwNumRuleCategories: The number of rule categories with which the third-party software
component registered.

66 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

pRuleCategories: A pointer to an array of dwNumRuleCategories that are contiguous
FW_RULE_CATEGORY elements.

pszDisplayName: A pointer to a Unicode string. The string represents the name of the third-party
software component.

pszPathToSignedProductExe: A pointer to a Unicode string. The string represents the file path to
the binary executable of the third-party software component.

2.2.48 FW_IP_VERSION

This enumeration is used to represent the two current IP protocol versions in use: IP version 4 and IP
version 6.

 typedef enum _tag_FW_IP_VERSION
 {
 FW_IP_VERSION_INVALID = 0,
 FW_IP_VERSION_V4,
 FW_IP_VERSION_V6 = 2,
 FW_IP_VERSION_MAX = 3
 } FW_IP_VERSION;

FW_IP_VERSION_INVALID: This value MUST NOT be used. It is defined for simplicity in writing

IDL definitions and code. This symbolic constant has a value of 0.

FW_IP_VERSION_V4: This value represents IPv4. This symbolic constant has a value of 1.

FW_IP_VERSION_V6: This value represents the IPv6. This symbolic constant has a value of 2.

FW_IP_VERSION_MAX: This value and values that exceed this value are not valid and MUST NOT
be used. It is defined for simplicity in writing IDL definitions and code. This symbolic constant has
a value of 3.

2.2.49 FW_IPSEC_PHASE

This enumeration is used to identify the IPsec phase of negotiations.

 typedef enum _tag_FW_IPSEC_PHASE
 {
 FW_IPSEC_PHASE_INVALID = 0,
 FW_IPSEC_PHASE_1 = 1,
 FW_IPSEC_PHASE_2 = 2,
 FW_IPSEC_PHASE_MAX = 3
 } FW_IPSEC_PHASE;

FW_IPSEC_PHASE_INVALID: This value MUST NOT be used. It is defined for simplicity in writing
IDL definitions and code. This symbolic constant has a value of 0.

FW_IPSEC_PHASE_1: This value represents the IPsec first phase of negotiations, also called main
mode. This symbolic constant has a value of 1.

FW_IPSEC_PHASE_2: This value represents the IPsec second phase of negotiations. A phase 2
authentication is the second authentication and can mean extended mode or quick mode. On auth
sets, phase 2 authentication refers to extended mode (specified in [MS-AIPS] sections 3.6 and
3.7); and on crypto sets, phase 2 refers to quick mode (specified in [MS-AIPS] sections 3.4 and
3.5). This symbolic constant has a value of 2.

67 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

FW_IPSEC_PHASE_MAX: This value and values that exceed this value are not valid and MUST NOT
be used. It is defined for simplicity in writing IDL definitions and code. This symbolic constant has

a value of 3.

2.2.50 FW_CS_RULE_FLAGS

This enumeration describes flag values for connection security rules.

 typedef enum _tag_FW_CS_RULE_FLAGS
 {
 FW_CS_RULE_FLAGS_NONE = 0x00,
 FW_CS_RULE_FLAGS_ACTIVE = 0x01,
 FW_CS_RULE_FLAGS_DTM = 0x02,
 FW_CS_RULE_TUNNEL_BYPASS_IF_ENCRYPTED = 0x08,
 FW_CS_RULE_OUTBOUND_CLEAR = 0x10,
 FW_CS_RULE_FLAGS_APPLY_AUTHZ = 0x20,
 FW_CS_RULE_FLAGS_KEY_MANAGER_ALLOW_DICTATE_KEY = 0x40,
 FW_CS_RULE_FLAGS_KEY_MANAGER_ALLOW_NOTIFY_KEY = 0x80,
 FW_CS_RULE_FLAGS_SECURITY_REALM = 0x100,
 FW_CS_RULE_FLAGS_MAX = 0x200,
 FW_CS_RULE_FLAGS_MAX2_1 = 0x02,
 FW_CS_RULE_FLAGS_MAX_V2_10 = 0x40,
 FW_CS_RULE_FLAGS_MAX_V2_20 = 0x100
 } FW_CS_RULE_FLAGS;

FW_CS_RULE_FLAGS_NONE: This value means that none of the following flags are set. This value
is defined for simplicity in writing IDL definitions and code.

FW_CS_RULE_FLAGS_ACTIVE: If this flag is set, the rule is enabled; otherwise, the rule is
disabled.

FW_CS_RULE_FLAGS_DTM: If this flag is set, the rule is a dynamic tunnel mode rule.

FW_CS_RULE_TUNNEL_BYPASS_IF_ENCRYPTED: This flag MUST only be set on tunnel mode
rules. If this flag is set and traffic is already arriving encrypted, it is exempted from the tunnel.

FW_CS_RULE_OUTBOUND_CLEAR: This flag MUST only be set on tunnel mode rules. If set, when
outbound traffic matches the rule, it leaves unprotected, but inbound traffic MUST arrive through
the tunnel.

FW_CS_RULE_FLAGS_APPLY_AUTHZ: This flag MUST only be set on tunnel mode rules. If this
flag is set, the authenticated peers of the traffic MUST match the SDDLs that are specified in
FW_GLOBAL_CONFIG_IPSEC_TUNNEL_REMOTE_MACHINE_AUTHORIZATION_LIST and
FW_GLOBAL_CONFIG_IPSEC_TUNNEL_REMOTE_USER_AUTHORIZATION_LIST.

FW_CS_RULE_FLAGS_KEY_MANAGER_ALLOW_DICTATE_KEY: If this flag is set, external key
managers are permitted to dictate the cryptographic keys used. For schema versions 0x0200,
0x0201, and 0x020A, this value is invalid and MUST NOT be used.

FW_CS_RULE_FLAGS_KEY_MANAGER_ALLOW_NOTIFY_KEY: If this flag is set, external key
managers are notified of the cryptographic keys used. For schema versions 0x0200, 0x0201, and

0x020A, this value is invalid and MUST NOT be used.

FW_CS_RULE_FLAGS_SECURITY_REALM: If this flag is set, the connection security rule is
associated with a security realm. The wszRuleId of the connection security rule is the same as
the IPsec Security Realm ID that it is associated with. For schema versions 0x0200, 0x0201,
0x20A, and 0x0214, this value is invalid and MUST NOT be used.

68 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

FW_CS_RULE_FLAGS_MAX: This value and values that exceed this value are not valid for all
schema versions and MUST NOT be used. It is only defined for simplicity in writing IDL definitions

and code. This symbolic constant has a value of 0x200.

FW_CS_RULE_FLAGS_MAX2_1: This value and values that exceed this value are not valid and

MUST NOT be used by servers and clients with schema version 0x0201 and earlier. It is defined
for simplicity in writing IDL definitions and code. This symbolic constant has a value of 0x02.

FW_CS_RULE_FLAGS_MAX_V2_10: This value and values that exceed this value are not valid and
MUST NOT be used by servers and clients with schema version 0x020A and earlier. It is defined
for simplicity in writing IDL definitions and code. This symbolic constant has a value of 0x40.

FW_CS_RULE_FLAGS_MAX_V2_20: This value and values that exceed this value are not valid and
MUST NOT be used by servers and clients with schema version 0x0214 and earlier. It is defined

for simplicity in writing IDL definitions and code. This symbolic constant has a value of 0x100.

2.2.51 FW_CS_RULE_ACTION

This enumeration identifies the possible actions a connection security rule (section 2.2.54) can have.

 typedef enum _tag_FW_CS_RULE_ACTION
 {
 FW_CS_RULE_ACTION_INVALID = 0,
 FW_CS_RULE_ACTION_SECURE_SERVER = 1,
 FW_CS_RULE_ACTION_BOUNDARY = 2,
 FW_CS_RULE_ACTION_SECURE = 3,
 FW_CS_RULE_ACTION_DO_NOT_SECURE = 4,
 FW_CS_RULE_ACTION_MAX = 5
 } FW_CS_RULE_ACTION;

FW_CS_RULE_ACTION_INVALID: This value MUST NOT be used. It is defined for simplicity in
writing IDL definitions and code. This symbolic constant has a value of 0.

FW_CS_RULE_ACTION_SECURE_SERVER: This action requires inbound traffic to be IPsec traffic

and attempts to secure outbound traffic with IPsec. This symbolic constant has a value of 1.

FW_CS_RULE_ACTION_BOUNDARY: This action attempts to secure inbound and outbound traffic
with IPsec. If the action fails to secure the traffic, the traffic still flows on the clear. This symbolic
constant has a value of 2.

FW_CS_RULE_ACTION_SECURE: This action requires inbound and outbound traffic to be secured
by IPsec. This symbolic constant has a value of 3.

FW_CS_RULE_ACTION_DO_NOT_SECURE: This action exempts the traffic from being secured by
IPsec. This symbolic constant has a value of 4.

FW_CS_RULE_ACTION_MAX: This value and values that exceed this value are not valid and MUST
NOT be used. It is defined for simplicity in writing IDL definitions and code. This symbolic constant
has a value of 5.

2.2.52 FW_CS_RULE2_10

This structure describes a connection security rule that is used by the 2.10 binary version for servers
and clients (see sections 1.7 and 2.2.37). The fields of this structure are identical to the FW_CS_RULE
structure, and their meanings are covered in section 2.2.54.

 typedef struct _tag_FW_CS_RULE2_10 {
 struct _tag_FW_CS_RULE2_10* pNext;
 unsigned short wSchemaVersion;

69 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

 [string, range(1,10001), ref] wchar_t* wszRuleId;
 [string, range(1,10001)] wchar_t* wszName;
 [string, range(1,10001)] wchar_t* wszDescription;
 unsigned long dwProfiles;
 FW_ADDRESSES Endpoint1;
 FW_ADDRESSES Endpoint2;
 FW_INTERFACE_LUIDS LocalInterfaceIds;
 unsigned long dwLocalInterfaceTypes;
 unsigned long dwLocalTunnelEndpointV4;
 unsigned char LocalTunnelEndpointV6[16];
 unsigned long dwRemoteTunnelEndpointV4;
 unsigned char RemoteTunnelEndpointV6[16];
 FW_PORTS Endpoint1Ports;
 FW_PORTS Endpoint2Ports;
 [range(0,256)] unsigned short wIpProtocol;
 [string, range(1,10001)] wchar_t* wszPhase1AuthSet;
 [string, range(1,10001)] wchar_t* wszPhase2CryptoSet;
 [string, range(1,10001)] wchar_t* wszPhase2AuthSet;
 [range(FW_CS_RULE_ACTION_SECURE_SERVER, FW_CS_RULE_ACTION_MAX)]
 FW_CS_RULE_ACTION Action;
 unsigned short wFlags;
 [string, range(1,10001)] wchar_t* wszEmbeddedContext;
 FW_OS_PLATFORM_LIST PlatformValidityList;
 [range(FW_RULE_ORIGIN_INVALID, FW_RULE_ORIGIN_MAX-1)]
 FW_RULE_ORIGIN_TYPE Origin;
 [string, range(1,10001)] wchar_t* wszGPOName;
 FW_RULE_STATUS Status;
 [string, range(1,512)] wchar_t* wszMMParentRuleId;
 unsigned long Reserved;
 [size_is((Reserved & FW_OBJECT_CTRL_FLAG_INCLUDE_METADATA) ? 1 : 0)]
 PFW_OBJECT_METADATA pMetaData;
 } FW_CS_RULE2_10,
 *PFW_CS_RULE2_10;

2.2.53 FW_CS_RULE2_0

This structure describes a connection security rule that is used by the 2.0 binary version for servers

and clients (see sections 1.7 and 2.2.37). The fields of this structure are identical to the FW_CS_RULE

structure and their meanings are covered in section 2.2.54.

 typedef struct _tag_FW_CS_RULE2_0 {
 struct _tag_FW_CS_RULE2_0* pNext;
 unsigned short wSchemaVersion;
 [string, range(1,10001), ref] wchar_t* wszRuleId;
 [string, range(1,10001)] wchar_t* wszName;
 [string, range(1,10001)] wchar_t* wszDescription;
 unsigned long dwProfiles;
 FW_ADDRESSES Endpoint1;
 FW_ADDRESSES Endpoint2;
 FW_INTERFACE_LUIDS LocalInterfaceIds;
 unsigned long dwLocalInterfaceTypes;
 unsigned long dwLocalTunnelEndpointV4;
 unsigned char LocalTunnelEndpointV6[16];
 unsigned long dwRemoteTunnelEndpointV4;
 unsigned char RemoteTunnelEndpointV6[16];
 FW_PORTS Endpoint1Ports;
 FW_PORTS Endpoint2Ports;
 [range(0,256)] unsigned short wIpProtocol;
 [string, range(1,10001)] wchar_t* wszPhase1AuthSet;
 [string, range(1,10001)] wchar_t* wszPhase2CryptoSet;
 [string, range(1,10001)] wchar_t* wszPhase2AuthSet;
 [range(FW_CS_RULE_ACTION_SECURE_SERVER, FW_CS_RULE_ACTION_MAX - 1)]
 FW_CS_RULE_ACTION Action;
 unsigned short wFlags;
 [string, range(1,10001)] wchar_t* wszEmbeddedContext;
 FW_OS_PLATFORM_LIST PlatformValidityList;

70 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

 [range(FW_RULE_ORIGIN_INVALID, FW_RULE_ORIGIN_MAX-1)]
 FW_RULE_ORIGIN_TYPE Origin;
 [string, range(1,10001)] wchar_t* wszGPOName;
 FW_RULE_STATUS Status;
 } FW_CS_RULE2_0,
 *PFW_CS_RULE2_0;

2.2.54 FW_CS_RULE

This structure describes a connection security rule.

 typedef struct _tag_FW_CS_RULE {
 struct _tag_FW_CS_RULE* pNext;
 unsigned short wSchemaVersion;
 [string, range(1,10001), ref] wchar_t* wszRuleId;
 [string, range(1,10001)] wchar_t* wszName;
 [string, range(1,10001)] wchar_t* wszDescription;
 unsigned long dwProfiles;
 FW_ADDRESSES Endpoint1;
 FW_ADDRESSES Endpoint2;
 FW_INTERFACE_LUIDS LocalInterfaceIds;
 unsigned long dwLocalInterfaceTypes;
 unsigned long dwLocalTunnelEndpointV4;
 unsigned char LocalTunnelEndpointV6[16];
 unsigned long dwRemoteTunnelEndpointV4;
 unsigned char RemoteTunnelEndpointV6[16];
 FW_PORTS Endpoint1Ports;
 FW_PORTS Endpoint2Ports;
 [range(0,256)] unsigned short wIpProtocol;
 [string, range(1,10001)] wchar_t* wszPhase1AuthSet;
 [string, range(1,10001)] wchar_t* wszPhase2CryptoSet;
 [string, range(1,10001)] wchar_t* wszPhase2AuthSet;
 [range(FW_CS_RULE_ACTION_SECURE_SERVER, FW_CS_RULE_ACTION_MAX - 1)]
 FW_CS_RULE_ACTION Action;
 unsigned short wFlags;
 [string, range(1,10001)] wchar_t* wszEmbeddedContext;
 FW_OS_PLATFORM_LIST PlatformValidityList;
 [range(FW_RULE_ORIGIN_INVALID, FW_RULE_ORIGIN_MAX-1)]
 FW_RULE_ORIGIN_TYPE Origin;
 [string, range(1,10001)] wchar_t* wszGPOName;
 FW_RULE_STATUS Status;
 [string, range(1,512)] WCHAR* wszMMParentRuleId;
 DWORD Reserved;
 [size_is((Reserved & FW_OBJECT_CTRL_FLAG_INCLUDE_METADATA) ? 1 : 0)]
 PFW_OBJECT_METADATA pMetaData;
 [string, range(1,512)] WCHAR* wszRemoteTunnelEndpointFqdn;
 FW_ADDRESSES RemoteTunnelEndpoints;
 DWORD dwKeyModules;
 DWORD FwdPathSALifetime;
 [string, range(1,10001)] LPWSTR* wszTransportMachineAuthzSDDL;
 [string, range(1,10001)] LPWSTR* wszTransportUserAuthzSDDL;
 } FW_CS_RULE,
 *PFW_CS_RULE;

pNext: A pointer to the next FW_CS_RULE in the list.

wSchemaVersion: Specifies the version of the rule.

wszRuleId: A pointer to a Unicode string that uniquely identifies the rule.

wszName: A pointer to a Unicode string that provides a friendly name for the rule.

wszDescription: A pointer to a Unicode string that provides a friendly description for the rule.

71 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

dwProfiles: A bitmask of the FW_PROFILE_TYPE flags. It is a condition that matches traffic on the
specified profiles.

Endpoint1: A condition that specifies the addresses of the first host of the traffic that the rule
matches. An empty EndPoint1 structure means that this condition is not applied (any match).

Endpoint2: A condition that specifies the addresses of the second host of the traffic that the rule
matches. An empty EndPoint2 structure means that this condition is not applied (any match).

LocalInterfaceIds: A condition that specifies the list of specific network interfaces that are used by
the traffic that the rule matches. If the LocalInterfaceIds field does not specify an interface
GUID, the rule applies to all interfaces; that is, the condition is not applied.

dwLocalInterfaceTypes: A bitmask of FW_INTERFACE_TYPE. It is a condition that restricts the
interface types used by the traffic that the rule matches. A value of 0x00000000 means the

condition matches all interface types.

dwLocalTunnelEndpointV4: This field specifies the IPv4 address of the endpoint that the host
machines use as their local endpoint when IPsec operates in tunnel mode.

LocalTunnelEndpointV6: This field specifies the IPv6 address of the endpoint that the host
machines use as their local endpoint when IPsec operates in tunnel mode.

dwRemoteTunnelEndpointV4: This field specifies the IPv4 address of the endpoint that the host

machines use as their remote endpoint when IPsec operates in tunnel mode.

RemoteTunnelEndpointV6: This field specifies the IPv6 address of the endpoint that the host
machines use as their remote endpoint when IPsec operates in tunnel mode.

Endpoint1Ports: A condition that specifies the first host's ports of the TCP or UDP traffic that the
rule matches.

Endpoint2Ports: A condition that specifies the second host's ports of the TCP or UDP traffic that the
rule matches.

wIpProtocol: A condition that specifies the protocol of the traffic that the rule matches. If the value
is in the range of 0 to 255, the value describes a protocol as in IETF IANA numbers (for more
information, see [IANA-PROTO-NUM]). If the value is 256, the rule matches any protocol.

wszPhase1AuthSet: A Unicode string that represents the set identifier for the Phase1 authentication
policy objects.

wszPhase2CryptoSet: A Unicode string that represents the set identifier for the Phase2
cryptographic policy objects.

wszPhase2AuthSet: A Unicode string that represents the set identifier of the Phase2 authentication
policy objects. If this field is NULL, no second authentication is performed.

Action: The connection security action that the rule takes for the traffic matches. This field MUST
contain a valid value from the FW_CS_RULE_ACTION enumeration.

wFlags: A bit flag or flags from FW_CS_RULE_FLAGS.

wszEmbeddedContext: A pointer to a Unicode string. It specifies a group name for this rule. Other

components in the system use this string to enable or disable a group of rules by verifying that all
rules have the same group name.

PlatformValidityList: A condition in a rule that determines whether or not the rule is enforced by
the local computer based on the local computer's platform information. The rule is enforced only if
the local computer's operating system platform is an element of the set described by
PlatformValidityList.<11>

72 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Origin: This field is the rule origin, as specified in the FW_RULE_ORIGIN_TYPE enumeration. It MUST
be filled on enumerated rules and ignored on input.

wszGPOName: A pointer to a Unicode string containing the displayName of the GPO containing this
object. When adding a new object, this field is not used. The client SHOULD set the value to NULL,

and the server MUST ignore the value. When enumerating an existing object, if the client does not
set the FW_ENUM_RULES_FLAG_RESOLVE_GPO_NAME flag, the server MUST set the value to
NULL. Otherwise, the server MUST set the value to the displayName of the GPO containing the
object or NULL if the object is not contained within a GPO. For details about how the server
initializes an object from a GPO, see section 3.1.3. For details about how the displayName of a
GPO is stored, see [MS-GPOL] section 2.3.

Status: The status code of the rule, as specified by the FW_RULE_STATUS enumeration. This field is

filled out when the structure is returned as output. On input, this field MUST be set to
FW_RULE_STATUS_OK.

wszMMParentRuleId: This field is not used.

Reserved: Not used other than to instruct RPC by using the
FW_OBJECT_CTRL_FLAG_INCLUDE_METADATA flag that a pointer to a FW_OBJECT_METADATA
structure is present. It has no semantic meaning to the object itself

pMetaData: A pointer to an FW_OBJECT_METADATA structure that contains specific metadata about
the current state of the connection security rule.

wszRemoteTunnelEndpointFqdn: A pointer to a Unicode string containing the fully qualified
domain name (FQDN) of the endpoints that the host machines use as their remote endpoint when
IPsec operates in tunnel mode.

RemoteTunnelEndpoints: This field specifies the IPv4 and IPv6 addresses of the endpoints that the
host machines use as their remote endpoint when IPsec operates in tunnel mode.

dwKeyModules: A bitmask of the FW_KEY_MODULE flags. It specifies the key modules used to
establish the cryptographic keys used by IPsec.

FwdPathSALifetime: This value is the lifetime in seconds before a Phase2 established key is
renegotiated if the key is used to secure traffic forwarded from one interface to another on the
same host machine.

wszTransportMachineAuthzSDDL: A pointer to a Unicode string in Security Descriptor Definition
Language (SDDL) format ([MS-DTYP] section 2.2.36). The security descriptor describes which

remote machines are allowed to send and receive traffic. Machines granted access by the security
descriptor are allowed to send and receive traffic. Machines denied access by the security
descriptor are blocked from sending and receiving traffic. This field MUST be null for tunnel mode
rules.

wszTransportUserAuthzSDDL: A pointer to a Unicode string in Security Descriptor Definition
Language (SDDL) format ([MS-DTYP] section 2.2.36). The security descriptor describes which

remote users are allowed to send and receive traffic. Users granted access by the security
descriptor are allowed to send and receive traffic. Users denied access by the security descriptor

are blocked from sending and receiving traffic. This field MUST be null for tunnel mode rules.

The following are semantic checks that connection security rules MUST pass:

▪ The wSchemaVersion field MUST NOT be less than 0x000200.

▪ The wszRuleId field MUST NOT contain the pipe '|' character, MUST NOT be NULL, MUST be a
string of at least 1 character, and MUST NOT be greater than or equal to 512 characters.<12>

▪ The wszName field string MUST meet the following criteria:

73 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

▪ MUST contain at least one character.

▪ MUST contain less than 10,000 characters.

▪ MUST NOT be NULL.

▪ MUST NOT contain the pipe '|' character.

▪ MUST NOT equal the string "ALL" (case-insensitive).

▪ If the wszDescription field string is not NULL, it MUST be at least 1 character, MUST NOT be
greater than or equal to 10,000 characters, and MUST NOT contain the pipe '|' character.

▪ If the wszEmbeddedContext field string is not NULL, it MUST be at least 1 character, MUST NOT
be greater than or equal to 10,000 characters, and MUST NOT contain the pipe '|' character.

▪ The dwProfiles field MUST NOT contain invalid values, and if it is not equal to the ALL profile
type, it MUST NOT contain unknown profiles.

▪ The wIpProtocol field MUST NOT be greater than 256.

▪ If wIpProtocol is 6 or 17, the wPortKeywords field of Endpoint1Ports MUST be 0.

▪ If wIpProtocol is 6 or 17, the wPortKeywords field of Endpoint2Ports MUST be 0.

▪ If wIpProtocol is neither 6 nor 17, the Endpoint1Ports and Endpoint2Ports fields MUST be
empty.

▪ If the Endpoint1 field is not empty, LocalInterfaceIds MUST be empty and

dwLocalInterfaceTypes MUST be 0. If the Endpoint1 field is empty, LocalInterfaceIds MUST
NOT be empty and dwLocalInterfaceTypes MUST NOT be 0.

▪ The Endpoint1 and Endpoint2 address keywords MUST contain valid address keywords.

▪ The Endpoint1 and Endpoint2 structures MUST NOT contain multicast v4 or v6 addresses.

▪ The dwLocalInterfaceTypes MUST NOT be greater than or equal to FW_INTERFACE_TYPE_MAX.

▪ The Action field MUST be a valid action from the FW_CS_RULE_ACTION enumeration.

▪ The wFlags field MUST NOT be greater than or equal to FW_CS_RULE_FLAGS_MAX.

▪ If the Action field is FW_CS_RULE_ACTION_DO_NOT_SECURE, wszPhase1AuthSet,
wszPhase2AuthSet, and wszPhase2CryptoSet MUST all be NULL; otherwise,
wszPhase1AuthSet, wszPhase2AuthSet, and wszPhase2CryptoSet MUST all be at least 1
character long, MUST NOT be greater than or equal to 1,000 characters,<13> and MUST NOT
contain the pipe '|' character.

However, the wszPhase2AuthSet member can always be NULL. When wszPhase2AuthSet is
not NULL, it SHOULD pass all of the string checks performed by the wszPhase1AuthSet member

and the wszPhase2CryptoSet member.

▪ A tunnel rule has the dwRemoteTunnelEndpointV4 (or V6) field as an address or the
dwLocalTunnelEndpointV4 (or V6) as an address. If the rule is a tunnel rule, the Endpoint1
and Endpoint2 addresses MUST NOT be empty; the Action field MUST be
FW_CS_RULE_ACTION_SECURE; wIpProtocol MUST be ANY (256); Endpoint1Ports and
Endpoint2Ports MUST be empty; and dwRemoteTunnelEndpointV4 and

dwLocalTunnelEndpointV4 MUST either both be ANY or both be specified. The same applies to
v6 tunnel endpoint fields.

74 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

▪ If the rule's wFlags field contains the FW_CS_RULE_FLAGS_DTM flag, then the rule is also a
tunnel rule and the following requirements are relaxed: Either dwRemoteTunnelEndpointV4 or

dwLocalTunnelEndpointV4, or both, can now be empty. The same applies to the v6 tunnel
endpoint fields. Endpoint1 or Endpoint2 or both can now be empty. The action can now also be

FW_CS_RULE_ACTION_DO_NOT_SECURE.

▪ Tunnel endpoint addresses MUST NOT be the loopback addresses.

▪ If the wFlags field has the FW_CS_RULE_FLAGS_OUTBOUND_CLEAR flag set or the
FW_CS_RULE_FLAGS_TUNNEL_BYPASS_IF_ENCRYPTED flag set, the rule MUST be a tunnel mode
rule.

2.2.55 FW_CERT_CRITERIA_TYPE

The FW_CERT_CRITERIA_TYPE enumeration defines whether the criteria are to be used for selection,
validation, or both.

 typedef enum
 {
 FW_CERT_CRITERIA_TYPE_BOTH,
 FW_CERT_CRITERIA_TYPE_SELECTION,
 FW_CERT_CRITERIA_TYPE_VALIDATION,
 FW_CERT_CRITERIA_TYPE_MAX
 } FW_CERT_CRITERIA_TYPE;

FW_CERT_CRITERIA_TYPE_BOTH: Indicates that the criteria are to be used for both certificate
selection and validation.

FW_CERT_CRITERIA_TYPE_SELECTION: Indicates that the criteria are meant for local certificate
selection.

FW_CERT_CRITERIA_TYPE_VALIDATION: Indicates that the criteria are meant for validation of a
peer certificate.

FW_CERT_CRITERIA_TYPE_MAX: To be valid, a value of this type MUST be less than this
constant.

2.2.56 FW_CERT_CRITERIA_NAME_TYPE

This enumeration defines the type of name to match in the certificate for a given criterion.

 typedef enum
 {
 FW_CERT_CRITERIA_NAME_NONE,
 FW_CERT_CRITERIA_NAME_DNS,
 FW_CERT_CRITERIA_NAME_UPN,
 FW_CERT_CRITERIA_NAME_RFC822,
 FW_CERT_CRITERIA_NAME_CN,
 FW_CERT_CRITERIA_NAME_OU,
 FW_CERT_CRITERIA_NAME_O,
 FW_CERT_CRITERIA_NAME_DC,
 FW_CERT_CRITERIA_NAME_MAX
 } FW_CERT_CRITERIA_NAME_TYPE;

FW_CERT_CRITERIA_NAME_NONE: Do not perform any name matching.

FW_CERT_CRITERIA_NAME_DNS: Match the DNS name in the Subject Alternative Name of the
certificate.

75 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

FW_CERT_CRITERIA_NAME_UPN: Match the UPN name in the Subject Alternative Name of the
certificate.

FW_CERT_CRITERIA_NAME_RFC822: Match the RFC822 name in the Subject Alternative Name of
the certificate.

FW_CERT_CRITERIA_NAME_CN: Match the CN relative distinguished names (RDNs) in the Subject
DN of the certificate.

FW_CERT_CRITERIA_NAME_OU: Match the OU RDNs in the Subject DN of the certificate.

FW_CERT_CRITERIA_NAME_O: Match the O RDNs in the Subject DN of the certificate.

FW_CERT_CRITERIA_NAME_DC: Match the DC RDNs in the Subject DN of the certificate.

FW_CERT_CRITERIA_NAME_MAX: To be valid, a value of this type MUST be less than this
constant.

2.2.57 FW_CERT_CRITERIA_FLAGS

This enumeration describes bitmask flags that can be set on a criteria structure.

 typedef enum
 {
 FW_AUTH_CERT_CRITERIA_FLAGS_NONE = 0x0000,
 FW_AUTH_CERT_CRITERIA_FLAGS_FOLLOW_RENEWAL = 0x0001,
 FW_AUTH_CERT_CRITERIA_FLAGS_MAX = 0x0002
 } FW_CERT_CRITERIA_FLAGS;

FW_AUTH_CERT_CRITERIA_FLAGS_NONE: No flags are set.

FW_AUTH_CERT_CRITERIA_FLAGS_FOLLOW_RENEWAL: The renewal links in a certificate are
to be followed, if they are found within a certificate.

FW_AUTH_CERT_CRITERIA_FLAGS_MAX: To be valid, a flag value of this type MUST be less than
this constant.

2.2.58 FW_CERT_CRITERIA

This structure contains fields that are used when selecting a local certificate and validating a remote
peer's certificate during certificate authentication.

 typedef struct FW_CERT_CRITERIA {
 WORD wSchemaVersion;
 WORD wFlags;
 FW_CERT_CRITERIA_TYPE CertCriteriaType;
 FW_CERT_CRITERIA_NAME_TYPE NameType;
 LPWSTR wszName;
 DWORD dwNumEku;
 LPSTR ppEku;
 LPWSTR wszHash;
 } FW_CERT_CRITERIA,
 *PFW_CERT_CRITERIA;

wSchemaVersion: Specifies the version of the criteria structure.

wFlags: A WORD containing bit flags, whose value is defined in FW_CERT_CRITERIA_FLAGS. The flag
FW_AUTH_CERT_CRITERIA_FLAGS_FOLLOW_RENEWAL MUST NOT be set if the field wszHash is

76 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

null. If specified, the flag FW_AUTH_CERT_CRITERIA_FLAGS_FOLLOW_RENEWAL MUST NOT be
used if CertCriteriaType is equal to FW_CERT_CRITERIA_TYPE_VALIDATION.

CertCriteriaType: Specifies the type of criteria used, as among those specified in the
FW_CERT_CRITERIA_TYPE enumeration. This value MUST be less than

FW_CERT_CRITERIA_TYPE_MAX.

NameType: Specifies the type of name, as among those specified in the
FW_CERT_CRITERIA_NAME_TYPE enumeration. This value MUST be less than
FW_CERT_CRITERIA_NAME_MAX. If the value is not equal to FW_CERT_CRITERIA_NAME_NONE,
then the value for wszName MUST be specified.

wszName: A Unicode string that specifies a name corresponding to the NameType specified. The
length of this Unicode string MUST be less than 10,000 characters. The name MUST not contain

the pipe "|" character.

dwNumEku: Specifies the number of EKU element entries in the ppEku array.

ppEku: Pointer to an array of pointers to null-terminated strings. Each string in the array MUST

contain only characters in the range "0" to "9" or the "." character. The number of elements in the
array MUST be equal to the value of the dwNumEku field.

wszHash: A Unicode string that specifies the hash of the certificate. The number of characters in the

string MUST be equal to 40. Each character in the string MUST be in one of the following ranges:
"0" to "9", "a" to "f", or "A" to "F".

2.2.59 FW_AUTH_METHOD

This enumeration defines the different authentication methods that are used for authentication. The

IpSecPhase field of the FW_AUTH_SET containing the FW_AUTH_SUITE determines which
authentication methods are valid for a particular authentication suite.

 typedef enum _tag_FW_AUTH_METHOD
 {
 FW_AUTH_METHOD_INVALID = 0,
 FW_AUTH_METHOD_ANONYMOUS = 1,
 FW_AUTH_METHOD_MACHINE_KERB = 2,
 FW_AUTH_METHOD_MACHINE_SHKEY = 3,
 FW_AUTH_METHOD_MACHINE_NTLM = 4,
 FW_AUTH_METHOD_MACHINE_CERT = 5,
 FW_AUTH_METHOD_USER_KERB = 6,
 FW_AUTH_METHOD_USER_CERT = 7,
 FW_AUTH_METHOD_USER_NTLM = 8,
 FW_AUTH_METHOD_MACHINE_RESERVED = 9,
 FW_AUTH_METHOD_USER_RESERVED = 10,
 FW_AUTH_METHOD_MAX_2_10 = 9,
 FW_AUTH_METHOD_MAX = 11
 } FW_AUTH_METHOD;

FW_AUTH_METHOD_INVALID: This value MUST NOT be used. It is defined for simplicity in writing

IDL definitions and code. This symbolic constant has a value of 0.

FW_AUTH_METHOD_ANONYMOUS: This method does not require identity to authenticate. It is
equal to no authentication. This method can be used for both FW_IPSEC_PHASE_1 or
FW_IPSEC_PHASE_2. This symbolic constant has a value of 1.

FW_AUTH_METHOD_MACHINE_KERB: This method authenticates the identity of machines by
using Kerberos Protocol Extensions as specified in [MS-KILE]. This method MUST be used only on
FW_IPSEC_PHASE_1. This symbolic constant has a value of 2.

77 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

FW_AUTH_METHOD_MACHINE_SHKEY: This method uses a previous manually shared key to
authenticate machine identities. This method MUST be used only on FW_IPSEC_PHASE_1. This

symbolic constant has a value of 3.

FW_AUTH_METHOD_MACHINE_NTLM: This method authenticates the identity of machines by

using the NTLM Authentication Protocol as specified in [MS-NLMP]. This method MUST be used
only on FW_IPSEC_PHASE_1. This symbolic constant has a value of 4.

FW_AUTH_METHOD_MACHINE_CERT: This method authenticates the identity of a machine by
using machine certificates. This method can be used for both FW_IPSEC_PHASE_1 or
FW_IPSEC_PHASE_2. This symbolic constant has a value of 5.

FW_AUTH_METHOD_USER_KERB: This method authenticates user identities by using the Kerberos
Protocol Extensions. This method MUST be used only on FW_IPSEC_PHASE_2. This symbolic

constant has a value of 6.

FW_AUTH_METHOD_USER_CERT: This method authenticates user identities by using user
certificates. This method MUST be used only on FW_IPSEC_PHASE_2. This symbolic constant has

a value of 7.

FW_AUTH_METHOD_USER_NTLM: This method authenticates user identities by using the NTLM
Authentication Protocol. This method MUST be used only on FW_IPSEC_PHASE_2. This symbolic

constant has a value of 8.

FW_AUTH_METHOD_MACHINE_RESERVED: This value is invalid and MUST NOT be used. This
symbolic constant has a value of 9.

FW_AUTH_METHOD_USER_RESERVED: This value is invalid and MUST NOT be used. This
symbolic constant has a value of 10.

FW_AUTH_METHOD_MAX_2_10: This value and values that exceed this value are not valid and
MUST NOT be used by servers and clients with schema version 0x020A and earlier. It is defined

for simplicity in writing IDL definitions and code. This symbolic constant has a value of 9.

FW_AUTH_METHOD_MAX: This value and values that exceed this value are not valid and MUST

NOT be used. It is defined for simplicity in writing IDL definitions and code. This symbolic constant
has a value of 11.

2.2.60 FW_AUTH_SUITE_FLAGS

This enumeration describes bitmask flags that can be set on authentication proposals.

 typedef enum _tag_FW_AUTH_SUITE_FLAGS
 {
 FW_AUTH_SUITE_FLAGS_NONE = 0x0000,
 FW_AUTH_SUITE_FLAGS_CERT_EXCLUDE_CA_NAME = 0x0001,
 FW_AUTH_SUITE_FLAGS_HEALTH_CERT = 0x0002,
 FW_AUTH_SUITE_FLAGS_PERFORM_CERT_ACCOUNT_MAPPING = 0x0004,
 FW_AUTH_SUITE_FLAGS_CERT_SIGNING_ECDSA256 = 0x0008,
 FW_AUTH_SUITE_FLAGS_CERT_SIGNING_ECDSA384 = 0x0010,
 FW_AUTH_SUITE_FLAGS_INTERMEDIATE_CA = 0x0020,
 W_AUTH_SUITE_FLAGS_ALLOW_PROXY = 0x0040,
 FW_AUTH_SUITE_FLAGS_MAX = 0x0080,
 FW_AUTH_SUITE_FLAGS_MAX_V2_1 = 0x0020
 } FW_AUTH_SUITE_FLAGS;

FW_AUTH_SUITE_FLAGS_NONE: This value means that none of the following flags are set. This
value is defined for simplicity in writing IDL definitions and code.

78 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

FW_AUTH_SUITE_FLAGS_CERT_EXCLUDE_CA_NAME: If this flag is set, certificate authority
(CA) names are excluded. This flag MUST be set only on first authentications.

FW_AUTH_SUITE_FLAGS_HEALTH_CERT: This flag specifies that the certificate in use is a health
certificate. On second authentications, if the authentication method is using a machine certificate,

this flag MUST be specified. Also on second authentications, if the authentication method is using
a user certificate, this flag MUST NOT be specified.

FW_AUTH_SUITE_FLAGS_PERFORM_CERT_ACCOUNT_MAPPING: This flag specifies that the
certificate that is used maps to an account.

FW_AUTH_SUITE_FLAGS_CERT_SIGNING_ECDSA256: This flag specifies that the default
certificate signing algorithm of RSA MUST be replaced by the Elliptic Curve Digital Signature
Algorithm (ECDSA) using curves with a 256-bit prime moduli.

FW_AUTH_SUITE_FLAGS_CERT_SIGNING_ECDSA384: This flag specifies that the default
certificate signing algorithm of RSA MUST be replaced by the Elliptic Curve Digital Signature
Algorithm using curves with a 384-bit prime moduli.

FW_AUTH_SUITE_FLAGS_INTERMEDIATE_CA: This flag specifies that the certificate used is not
from a root certificate authority but from an intermediate authority in the chain.

W_AUTH_SUITE_FLAGS_ALLOW_PROXY: This flag specifies that the host machine MUST use a

proxy server to communicate with the Key Distribution Center (KDC) when performing Kerberos
authentication. For schema versions 0x0200, 0x0201, and 0x020A, this value is invalid and MUST
NOT be used.

FW_AUTH_SUITE_FLAGS_MAX: This value and values that exceed this value are not valid and
MUST NOT be used. It is defined for simplicity in writing IDL definitions and code. This symbolic
constant has a value of 0x0080.

FW_AUTH_SUITE_FLAGS_MAX_V2_1: This value and values that exceed this value are not valid

and MUST NOT be used by servers and clients with schema version 0x0201 and earlier. It is
defined for simplicity in writing IDL definitions and code. This symbolic constant has a value of

0x0020.

2.2.61 FW_AUTH_SUITE2_10

This structure describes an IPsec authentication suite. An authentication suite is a proposal of a set of
algorithms and parameters that specify the authentication method to be used. It also includes some
modifiers and parameters for the authentication method.

 typedef struct _tag_FW_AUTH_SUITE2_10 {
 [range(FW_AUTH_METHOD_INVALID+1, FW_AUTH_METHOD_MAX)]
 FW_AUTH_METHOD Method;
 unsigned short wFlags;
 [switch_type(FW_AUTH_METHOD), switch_is(Method)]
 union {
 [case(FW_AUTH_METHOD_MACHINE_CERT,FW_AUTH_METHOD_USER_CERT)]
 struct {
 [ref, string] wchar_t* wszCAName;
 };
 [case(FW_AUTH_METHOD_MACHINE_SHKEY)]
 struct {
 [ref, string] wchar_t* wszSHKey;
 };
 [default] ;
 };
 } FW_AUTH_SUITE2_10,
 *PFW_AUTH_SUITE2_10;

79 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Method: This field is of type FW_AUTH_METHOD. It specifies the authentication method that is
suggested by this proposal suite.

wFlags: This flag is a combination of flags from FW_AUTH_SUITE_FLAGS.

wszCAName: A pointer to a Unicode string. This string represents the name of the certificate

authority to be used to authenticate when using machine or user certificate methods.

wszSHKey: A pointer to a Unicode string. This string is the previous, manually shared secret that is
used to authenticate when using preshared key methods.

If the method is machine certificate or user certificate, the wszCAName string MUST NOT be NULL,
MUST be at least 1 character long, MUST NOT be greater than or equal to 10,000 characters, MUST
NOT contain the pipe(|) character, and MUST be a CERT_X500_NAME_STR string type name encoded
with X509_ASN_ENCODING. If the method is SHKEY, the wszSHKey string MUST NOT be NULL,

MUST be at least 1 character long, MUST NOT be greater than or equal to 10,000 characters, and
MUST NOT contain the pipe (|) character.

2.2.62 FW_AUTH_SUITE

This structure specifies an IPsec authentication suite and includes certification selection criteria. An
authentication suite is a proposal of a set of algorithms and parameters that specify the authentication
method to be used.

 typedef struct _tag_FW_AUTH_SUITE {
 [range(FW_AUTH_METHOD_INVALID+1, FW_AUTH_METHOD_MAX)]
 FW_AUTH_METHOD Method;
 unsigned short wFlags;
 [switch_type(FW_AUTH_METHOD), switch_is(Method)]
 union {
 [case(FW_AUTH_METHOD_MACHINE_CERT,FW_AUTH_METHOD_USER_CERT)]
 struct {
 [ref, string] wchar_t* wszCAName;
 [unique] PFW_CERT_CRITERIA pCertCriteria;
 };
 [case(FW_AUTH_METHOD_MACHINE_SHKEY)]
 struct {
 [ref, string] wchar_t* wszSHKey;
 } pCertCriteria;
 [case(FW_AUTH_METHOD_MACHINE_KERB, FW_AUTH_METHOD_USER_KERB)]
 struct {
 [unique, string] WCHAR* wszProxyServer;
 };
 [default] ;
 };
 } FW_AUTH_SUITE,
 *PFW_AUTH_SUITE;

Method: This field is of type FW_AUTH_METHOD. It specifies the authentication method that is
suggested by this proposal suite.

wFlags: This flag is a combination of flags from FW_AUTH_SUITE_FLAGS.

wszCAName: A pointer to a Unicode string. This string represents the name of the certificate

authority to be used to authenticate when using machine or user certificate methods.

pCertCriteria: A pointer to a structure of type PFW_CERT_CRITERIA. This field MUST NOT be present
unless the Method field has the value FW_AUTH_METHOD_MACHINE_CERT or
FW_AUTH_METHOD_USER_CERT.

80 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

It contains fields which are used when selecting a local certificate and validating a remote peer's
certificate during certificate authentication.

wszSHKey: A pointer to a Unicode string. This string is the previous, manually shared secret that is
used to authenticate when using preshared key methods.

wszProxyServer: A pointer to a Unicode string specifying the fully qualified domain name (FQDN) of
the Kerberos proxy server. This field MUST be set if and only if the
FW_AUTH_SUITE_FLAGS_ALLOW_PROXY flag is set.

If the method is machine certificate or user certificate, the wszCAName string MUST NOT be NULL,
MUST be at least 1 character long, MUST NOT be greater than or equal to 10,000 characters, MUST
NOT contain the pipe(|) character, and MUST be a valid Name as defined in [X501] section 9.2. If the
method is SHKEY, the wszSHKey string MUST NOT be NULL, MUST be at least 1 character long,

MUST NOT be greater than or equal to 10,000 characters, and MUST NOT contain the pipe (|)
character.

If the Method is not FW_AUTH_METHOD_MACHINE_CERT or FW_AUTH_METHOD_USER_CERT then

the pCertCriteria field MUST be NULL.

2.2.63 FW_AUTH_SET2_10

This structure contains a list of FW_AUTH_SUITE2_10 elements that are ordered from highest to
lowest preference and are negotiated with remote peers to establish authentication algorithms.

 typedef struct _tag_FW_AUTH_SET2_10 {
 struct _tag_FW_AUTH_SET2_10* pNext;
 unsigned short wSchemaVersion;
 [range(FW_IPSEC_PHASE_INVALID+1, FW_IPSEC_PHASE_MAX-1)]
 FW_IPSEC_PHASE IpSecPhase;
 [string, range(1,255), ref] wchar_t* wszSetId;
 [string, range(1,10001)] wchar_t* wszName;
 [string, range(1,10001)] wchar_t* wszDescription;
 [string, range(1,10001)] wchar_t* wszEmbeddedContext;
 [range(0,1000)] unsigned long dwNumSuites;
 [size_is(dwNumSuites)] PFW_AUTH_SUITE pSuites;
 [range(FW_RULE_ORIGIN_INVALID,FW_RULE_ORIGIN_MAX-1)]
 FW_RULE_ORIGIN_TYPE Origin;
 [string, range(1,10001)] wchar_t* wszGPOName;
 FW_RULE_STATUS Status;
 unsigned long dwAuthSetFlags;
 } FW_AUTH_SET2_10,
 *PFW_AUTH_SET2_10;

pNext: A pointer to the next FW_AUTH_SET2_10 in the list.

wSchemaVersion: Specifies the version of the set.

IpSecPhase: This field is of type FW_IPSEC_PHASE, and it specifies if this authentication set applies
for first or second authentications.

wszSetId: A pointer to a Unicode string that uniquely identifies the set. The default set for this policy
object is identified with the "{E5A5D32A-4BCE-4e4d-B07F-4AB1BA7E5FE3}" string for Phase1 and
the "{E5A5D32A-4BCE-4e4d-B07F-4AB1BA7E5FE4}" string for Phase2. Default sets are merged

across policy stores, and only one is enforced according to predefined merge logic rules.

wszName: A pointer to a Unicode string that provides a friendly name for the set.

wszDescription: A pointer to a Unicode string that provides a friendly description for the set.

81 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

wszEmbeddedContext: A pointer to a Unicode string that provides a way for applications to store
relevant application-specific context that is related to the set.

dwNumSuites: Specifies the number of authentication suites that the structure contains.

pSuites: A pointer to an array of FW_AUTH_SUITE elements. The number of elements is given by

dwNumSuites.

Origin: This field is the set origin, as specified in the FW_RULE_ORIGIN_TYPE enumeration. It MUST
be filled on enumerated rules and ignored on input.

wszGPOName: A Unicode string that represents the name of the originating GPO. It MUST be set if
the origin is Group Policy; otherwise, it MUST be NULL.

Status: A status code of the set, as specified by the FW_RULE_STATUS enumeration. This field is
filled out when the structure is returned as output. On input, this field MUST be set to

FW_RULE_STATUS_OK.

dwAuthSetFlags: A reserved value and not currently used. It MUST be set to 0.

The following are semantic checks that authentication sets MUST pass:

▪ The wSchemaVersion field MUST NOT be less than 0x000200.

▪ The wszSetId field MUST NOT contain the pipe (|) character, MUST NOT be NULL, MUST be a
string of at least 1 character long, and MUST NOT be greater than or equal to 255 characters.

▪ If the wszName field string is not NULL, it MUST be at least 1 character long, MUST NOT be
greater than or equal to 10,000 characters, and MUST NOT contain the pipe (|) character.

▪ If the wszDescription field string is not NULL, it MUST be at least 1 character long, MUST NOT be
greater than or equal to 10,000 characters, and MUST NOT contain the pipe (|) character.

▪ If the wszEmbeddedContext field string is not NULL, it MUST be at least 1 character long, MUST
NOT be greater than or equal to 10,000 characters, and MUST NOT contain the pipe (|) character.

▪ The IpSecPhase field MUST have valid FW_IPSEC_PHASE values.

▪ If IpSecPhase is FW_IPSEC_PHASE_1:

▪ The wszSetId field MUST NOT have the default phase 1 authentication set ID as a prefix.

▪ The authentication set MUST have at least one authentication suite.

▪ The dwNumSuites field MUST agree with the pSuites field.

▪ The authentication suites methods MUST only be FW_AUTH_METHOD_ANONYMOUS,
FW_AUTH_METHOD_MACHINE_KERB, FW_AUTH_METHOD_MACHINE_NTLM,
FW_AUTH_METHOD_MACHINE_CERT, or FW_AUTH_METHOD_MACHINE_SHKEY.

▪ Authentication suites that have a method other than machine certificate MUST have the
wFlags field of the same suite set to 0.

▪ If the set schema policy version is 0x200, the wFlags field MUST NOT contain the
FW_AUTH_SUITE_FLAGS_CERT_SIGNING_ECDSA256 or the
FW_AUTH_SUITE_FLAGS_CERT_SIGNING_ECDSA384 flags.

▪ The wFlags field MUST NOT contain both the

FW_AUTH_SUITE_FLAGS_CERT_SIGNING_ECDSA256 and the
FW_AUTH_SUITE_FLAGS_CERT_SIGNING_ECDSA384 flags.

82 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

▪ All suites that have the FW_AUTH_METHOD_MACHINE_CERT method and a wFlags field with
the FW_AUTH_SUITE_FLAGS_CERT_SIGNING_ECDSA256 flag set, MUST be contiguous. The

same applies for those suites that have the
FW_AUTH_SUITE_FLAGS_CERT_SIGNING_ECDSA384 flag set, and those suites that have

neither flag set (they default to RSA signing).

▪ All such contiguous suites that have a specific signing flag (either none, ECDSA256, or
ECDSA384) MUST have the same value for the FW_AUTH_SUITE_FLAG_HEALTH_CERT flag. It
MUST be set either in all or in none.

▪ The set MUST NOT have more than one suite that has the anonymous method
(FW_AUTH_METHOD_ANONYMOUS), or that has the machine kerb method
(FW_AUTH_METHOD_MACHINE_KERB), or that has the machine ntlm method

(FW_AUTH_METHOD_MACHINE_NTLM), or that has the machine shkey method
(FW_AUTH_METHOD_MACHINE_SHKEY), as defined in section 2.2.59.<14>

▪ The set MUST NOT have a suite that has an NTLM Authentication Protocol method (as specified
in [MS-NLMP]) and a suite SHKey method.

▪ If the set has a machine certificate suite that has a wFlag that contains the flag
FW_AUTH_SUITE_FLAGS_HEALTH_CERT, all machine certificate method suites in the set

MUST also have this flag.

▪ If the set schema policy version is less than 0x214, the set MUST NOT have suites that contain
the FW_AUTH_METHOD_MACHINE_NEGOEX authentication method.

▪ If the IpSecPhase is FW_IPSEC_PHASE_2:

▪ The wszSetId MUST NOT have the default phase 2 authentication set ID as a prefix.

▪ The dwNumSuites field MUST agree with the pSuites field.

▪ The authentication suites methods MUST only beFWbe FW_AUTH_METHOD_ANONYMOUS,

FW_AUTH_METHOD_USER_KERB, FW_AUTH_METHOD_USER_NTLM,
FW_AUTH_METHOD_USER_CERT, or FW_AUTH_METHOD_MACHINE_CERT.

▪ The set MUST NOT have a suite that has the anonymous method as the only suite.

▪ Suites in the set MUST NOT contain FW_AUTH_SUITE_FLAGS_CERT_EXCLUDE_CA_NAME.

▪ Suites that have user certificate methods MUST NOT contain the
FW_AUTH_SUITE_FLAGS_HEALTH_CERT flag; however, suites that have machine certificate
methods MUST contain it.

▪ Authentication suites that have a method other than machine certificate or user certificate
MUST have the wFlags field of the same suite set to 0.

▪ If the set schema policy version is 0x200, the wFlags field MUST NOT contain the
FW_AUTH_SUITE_FLAGS_CERT_SIGNING_ECDSA256 or the
FW_AUTH_SUITE_FLAGS_CERT_SIGNING_ECDSA384 flags.

▪ The wFlags field MUST NOT contain both the

FW_AUTH_SUITE_FLAGS_CERT_SIGNING_ECDSA256 and the
FW_AUTH_SUITE_FLAGS_CERT_SIGNING_ECDSA384 flags.

▪ All suites that have a FW_AUTH_METHOD_MACHINE_CERT method and a wFlags field with
the FW_AUTH_SUITE_FLAGS_CERT_SIGNING_ECDSA256 flag set, MUST be contiguous. The
same applies to those suites that have the
FW_AUTH_SUITE_FLAGS_CERT_SIGNING_ECDSA384 flag set and those suites that have
neither flag set (they default to RSA signing).

83 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

▪ The set MUST NOT have more than one suite that has the anonymous method
(FW_AUTH_METHOD_ANONYMOUS), or that has the user kerb method

(FW_AUTH_METHOD_USER_KERB), or that has the user ntlm method
(FW_AUTH_METHOD_USER_NTLM), as defined in section 2.2.59.<15>

▪ A set that contains a suite that has the machine certificate method MUST NOT contain suites
that have the user certificate method.

▪ A set that contains a suite that has the machine certificate method MUST only contain more
suites that have machine certificate or anonymous methods.

▪ If the set schema policy version is less than 0x214, the set MUST NOT have suites that contain
the FW_AUTH_METHOD_USER_NEGOEX authentication method.

2.2.64 FW_AUTH_SET

This structure contains a list of FW_AUTH_SUITE elements that are ordered from highest to lowest
preference and are negotiated with remote peers to establish authentication algorithms.

 typedef struct _tag_FW_AUTH_SET {
 struct _tag_FW_AUTH_SET* pNext;
 unsigned short wSchemaVersion;
 [range(FW_IPSEC_PHASE_INVALID+1, FW_IPSEC_PHASE_MAX-1)]
 FW_IPSEC_PHASE IpSecPhase;
 [string, range(1,255), ref] wchar_t* wszSetId;
 [string, range(1,10001)] wchar_t* wszName;
 [string, range(1,10001)] wchar_t* wszDescription;
 [string, range(1,10001)] wchar_t* wszEmbeddedContext;
 [range(0,1000)] unsigned long dwNumSuites;
 [size_is(dwNumSuites)] PFW_AUTH_SUITE pSuites;
 [range(FW_RULE_ORIGIN_INVALID,FW_RULE_ORIGIN_MAX-1)]
 FW_RULE_ORIGIN_TYPE Origin;
 [string, range(1,10001)] wchar_t* wszGPOName;
 FW_RULE_STATUS Status;
 unsigned long dwAuthSetFlags;
 } FW_AUTH_SET,
 *PFW_AUTH_SET;

pNext: A pointer to the next FW_AUTH_SET in the list.

wSchemaVersion: Specifies the version of the set.

IpSecPhase: This field is of type FW_IPSEC_PHASE, and it specifies if this authentication set applies
for first or second authentications.

wszSetId: A pointer to a Unicode string that uniquely identifies the set. The primary set for this

policy object is identified with the "{E5A5D32A-4BCE-4e4d-B07F-4AB1BA7E5FE3}" string for
Phase1 and the "{E5A5D32A-4BCE-4e4d-B07F-4AB1BA7E5FE4}" string for Phase2.

wszName: A pointer to a Unicode string that provides a friendly name for the set.

wszDescription: A pointer to a Unicode string that provides a friendly description for the set.

wszEmbeddedContext: A pointer to a Unicode string that provides a way for applications to store
relevant application-specific context that is related to the set.

dwNumSuites: Specifies the number of authentication suites that the structure contains.

pSuites: A pointer to an array of FW_AUTH_SUITE elements. The number of elements is given by
dwNumSuites.

84 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Origin: This field is the set origin, as specified in the FW_RULE_ORIGIN_TYPE enumeration. It MUST
be filled on enumerated rules and ignored on input.

wszGPOName: A pointer to a Unicode string containing the displayName of the GPO containing this
object. When adding a new object, this field is not used. The client SHOULD set the value to NULL,

and the server MUST ignore the value. When enumerating an existing object, if the client does not
set the FW_ENUM_RULES_FLAG_RESOLVE_GPO_NAME flag, the server MUST set the value to
NULL. Otherwise, the server MUST set the value to the displayName of the GPO containing the
object or NULL if the object is not contained within a GPO. For details about how the server
initializes an object from a GPO, see section 3.1.3. For details about how the displayName of a
GPO is stored, see [MS-GPOL] section 2.3.

Status: The status code of the set which MUST be one of the values defined in the FW_RULE_STATUS

enumeration. This field's value is assigned when the structure is returned as output. When first
sent, this field MUST be set to FW_RULE_STATUS_OK.

dwAuthSetFlags: Bit flags from FW_AUTH_SET_FLAGS.

The following are semantic checks that authentication sets MUST pass:

▪ The wSchemaVersion field MUST NOT be less than 0x000200.

▪ The wszSetId field MUST NOT contain the pipe (|) character, MUST NOT be NULL, MUST be a

string of at least 1 character long, and MUST NOT be greater than or equal to 255 characters.

▪ If the wszName field string is not NULL, it MUST be at least 1 character long, MUST NOT be
greater than or equal to 10,000 characters, and MUST NOT contain the pipe (|) character.

▪ If the wszDescription field string is not NULL, it MUST be at least 1 character long, MUST NOT be
greater than or equal to 10,000 characters, and MUST NOT contain the pipe (|) character.

▪ If the wszEmbeddedContext field string is not NULL, it MUST be at least 1 character long, its
length MUST NOT be greater than or equal to 10,000 characters, and MUST NOT contain the pipe

(|) character.

If the method of a suite is machine certificate or user certificate, and its pCertCriteria field is not
NULL, then the wSchemaVersion of the pCertCriteria field MUST be equal to the schema
version specified in the wSchemaVersion field of the auth set containing the suite.

▪ The IpSecPhase field MUST have valid FW_IPSEC_PHASE values.

▪ If IpSecPhase is FW_IPSEC_PHASE_1:

▪ The wszSetId field MUST NOT have the primary phase 1 authentication set ID as a prefix.

▪ The authentication set MUST have at least one authentication suite.

▪ The dwNumSuites field MUST agree with the pSuites field.

▪ The authentication suites methods MUST each be either FW_AUTH_METHOD_ANONYMOUS,
FW_AUTH_METHOD_MACHINE_KERB, FW_AUTH_METHOD_MACHINE_NTLM,

FW_AUTH_METHOD_MACHINE_CERT, or FW_AUTH_METHOD_MACHINE_SHKEY.

▪ Authentication suites that have a method other than machine certificate MUST have the

wFlags field of the same suite set to 0.

▪ If the set schema policy version is 0x200, the wFlags field MUST NOT contain the
FW_AUTH_SUITE_FLAGS_CERT_SIGNING_ECDSA256 or the
FW_AUTH_SUITE_FLAGS_CERT_SIGNING_ECDSA384 flags.

85 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

▪ The wFlags field MUST NOT contain both the
FW_AUTH_SUITE_FLAGS_CERT_SIGNING_ECDSA256 and the

FW_AUTH_SUITE_FLAGS_CERT_SIGNING_ECDSA384 flags.

▪ All suites that have the FW_AUTH_METHOD_MACHINE_CERT method and a wFlags field with

the FW_AUTH_SUITE_FLAGS_CERT_SIGNING_ECDSA256 flag set, MUST be contiguous. The
same applies for those suites that have the
FW_AUTH_SUITE_FLAGS_CERT_SIGNING_ECDSA384 flag set, and those suites that have
neither flag set (they default to RSA signing).

▪ All such contiguous suites that have a specific signing flag (either none, ECDSA256, or
ECDSA384) MUST have the same value for the FW_AUTH_SUITE_FLAG_HEALTH_CERT flag.

▪ The set MUST NOT have more than one suite that has the anonymous method

(FW_AUTH_METHOD_ANONYMOUS), or that has the machine kerb method
(FW_AUTH_METHOD_MACHINE_KERB), or that has the machine ntlm method
(FW_AUTH_METHOD_MACHINE_NTLM), or that has the machine shkey method
(FW_AUTH_METHOD_MACHINE_SHKEY), as defined in section 2.2.59.<16>

▪ The set MUST NOT have a suite that has an NTLM Authentication Protocol method (as specified
in [MS-NLMP]) and a suite SHKey method.

▪ If the set has a machine certificate suite that has a wFlag that contains the flag
FW_AUTH_SUITE_FLAGS_HEALTH_CERT, all machine certificate method suites in the set
MUST also have this flag.

▪ If the set schema policy version is less than 0x214, the set MUST NOT have suites that contain
the FW_AUTH_METHOD_MACHINE_NEGOEX authentication method.

▪ If the IpSecPhase is FW_IPSEC_PHASE_2:

▪ The wszSetId MUST NOT have the primary phase 2 authentication set ID as a prefix.

▪ The dwNumSuites field MUST agree with the pSuites field.

▪ The authentication suites methods MUST each be one of FW_AUTH_METHOD_ANONYMOUS,
FW_AUTH_METHOD_USER_KERB, FW_AUTH_METHOD_USER_NTLM,
FW_AUTH_METHOD_USER_CERT, or FW_AUTH_METHOD_MACHINE_CERT.

▪ The set MUST NOT have a suite that has the anonymous method as the only suite.

▪ Suites in the set MUST NOT contain FW_AUTH_SUITE_FLAGS_CERT_EXCLUDE_CA_NAME.

▪ Suites that have user certificate methods MUST NOT contain the

FW_AUTH_SUITE_FLAGS_HEALTH_CERT flag; however, suites that have machine certificate
methods MUST contain it.

▪ Authentication suites that have a method other than machine certificate or user certificate
MUST have the wFlags field of the same suite set to 0.

▪ If the set schema policy version is 0x200, the wFlags field MUST NOT contain the

FW_AUTH_SUITE_FLAGS_CERT_SIGNING_ECDSA256 or the

FW_AUTH_SUITE_FLAGS_CERT_SIGNING_ECDSA384 flags.

▪ The wFlags field MUST NOT contain both the
FW_AUTH_SUITE_FLAGS_CERT_SIGNING_ECDSA256 and the
FW_AUTH_SUITE_FLAGS_CERT_SIGNING_ECDSA384 flags.

▪ All suites that have a FW_AUTH_METHOD_MACHINE_CERT method and a wFlags field with
the FW_AUTH_SUITE_FLAGS_CERT_SIGNING_ECDSA256 flag set, MUST be contiguous. The
same applies to those suites that have the

86 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

FW_AUTH_SUITE_FLAGS_CERT_SIGNING_ECDSA384 flag set and those suites that have
neither flag set (they default to RSA signing).

▪ The set MUST NOT have more than one suite that has the anonymous method
(FW_AUTH_METHOD_ANONYMOUS), or that has the user kerb method

(FW_AUTH_METHOD_USER_KERB), or that has the user ntlm method
(FW_AUTH_METHOD_USER_NTLM), as defined in section 2.2.59.<17>

▪ A set that contains a suite that has the machine certificate method MUST NOT contain suites
that have the user certificate method.

▪ A set that contains a suite that has the machine certificate method MUST only contain suites
that have machine certificate or anonymous methods.

2.2.65 FW_CRYPTO_KEY_EXCHANGE_TYPE

This enumeration is used to identify supported key exchange algorithms.

 typedef enum _tag_FW_CRYPTO_KEY_EXCHANGE_TYPE
 {
 FW_CRYPTO_KEY_EXCHANGE_NONE = 0,
 FW_CRYPTO_KEY_EXCHANGE_DH1 = 1,
 FW_CRYPTO_KEY_EXCHANGE_DH2 = 2,
 FW_CRYPTO_KEY_EXCHANGE_ECDH256 = 3,
 FW_CRYPTO_KEY_EXCHANGE_ECDH384 = 4,
 FW_CRYPTO_KEY_EXCHANGE_DH14 = 5,
 FW_CRYPTO_KEY_EXCHANGE_DH14 = FW_CRYPTO_KEY_EXCHANGE_DH2048 = 5,
 FW_CRYPTO_KEY_EXCHANGE_DH24 = 6,
 FW_CRYPTO_KEY_EXCHANGE_MAX_V2_10 = FW_CRYPTO_KEY_EXCHANGE_DH24 = 6,
 FW_CRYPTO_KEY_EXCHANGE_MAX = 7
 } FW_CRYPTO_KEY_EXCHANGE_TYPE;

FW_CRYPTO_KEY_EXCHANGE_NONE: This value means that there are no key exchange
algorithms defined. When enumerating SAs, this value MAY be returned. It MUST NOT be used for

other cases. This symbolic constant has a value of 0.

FW_CRYPTO_KEY_EXCHANGE_DH1: Do key exchange with Diffie-Hellman group 1. This symbolic

constant has a value of 1.

FW_CRYPTO_KEY_EXCHANGE_DH2: Do key exchange with Diffie-Hellman group 2. This symbolic
constant has a value of 2.

FW_CRYPTO_KEY_EXCHANGE_ECDH256: Do key exchange with elliptic curve Diffie-Hellman 256.
This symbolic constant has a value of 3.

FW_CRYPTO_KEY_EXCHANGE_ECDH384: Do key exchange with elliptic curve Diffie-Hellman 384.

This symbolic constant has a value of 4.

FW_CRYPTO_KEY_EXCHANGE_DH14: Do key exchange with Diffie-Hellman group 14. This
symbolic constant has a value of 5.

FW_CRYPTO_KEY_EXCHANGE_DH14 = FW_CRYPTO_KEY_EXCHANGE_DH2048: Do key
exchange with Diffie-Hellman group 14. This group was called Diffie-Hellman group 2048 when it
was introduced. The name has been changed to match standard terminology. This symbolic
constant has a value of 5.

FW_CRYPTO_KEY_EXCHANGE_DH24: Do key exchange with Diffie-Hellman group 24. For schema
versions 0x0200, 0x0201, and 0x020A, this value is invalid and MUST NOT be used. This symbolic
constant has a value of 6.

87 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

FW_CRYPTO_KEY_EXCHANGE_MAX_V2_10 = FW_CRYPTO_KEY_EXCHANGE_DH24: This
value and values that exceed this value are not valid and MUST NOT be used by servers and

clients with schema version 0x020A and earlier. It is defined for simplicity in writing IDL
definitions and code. This symbolic constant has a value of 6.

FW_CRYPTO_KEY_EXCHANGE_MAX: This value and values that exceed this value are not valid
and MUST NOT be used. It is defined for simplicity in writing IDL definitions and code. This
symbolic constant has a value of 7.

2.2.66 FW_CRYPTO_ENCRYPTION_TYPE

This enumeration is used to identify supported encryption algorithms.

 typedef enum _tag_FW_CRYPTO_ENCRYPTION_TYPE
 {
 FW_CRYPTO_ENCRYPTION_NONE = 0,
 FW_CRYPTO_ENCRYPTION_DES = 1,
 FW_CRYPTO_ENCRYPTION_3DES = 2,
 FW_CRYPTO_ENCRYPTION_AES128 = 3,
 FW_CRYPTO_ENCRYPTION_AES192 = 4,
 FW_CRYPTO_ENCRYPTION_AES256 = 5,
 FW_CRYPTO_ENCRYPTION_AES_GCM128 = 6,
 FW_CRYPTO_ENCRYPTION_AES_GCM192 = 7,
 FW_CRYPTO_ENCRYPTION_AES_GCM256 = 8,
 FW_CRYPTO_ENCRYPTION_MAX = 9,
 FW_CRYPTO_ENCRYPTION_MAX_V2_0 = FW_CRYPTO_ENCRYPTION_AES_GCM128
 } FW_CRYPTO_ENCRYPTION_TYPE;

FW_CRYPTO_ENCRYPTION_NONE: This value MUST be used only when no encryption is to be
performed. This is a valid value. This symbolic constant has a value of 0.

FW_CRYPTO_ENCRYPTION_DES: Uses the DES algorithm for encryption. This symbolic constant

has a value of 1.

FW_CRYPTO_ENCRYPTION_3DES: Uses the 3DES algorithm for encryption. This symbolic constant
has a value of 2.

FW_CRYPTO_ENCRYPTION_AES128: Uses the AES algorithm with a 128-bit key size for
encryption. This symbolic constant has a value of 3.

FW_CRYPTO_ENCRYPTION_AES192: Uses the AES algorithm with a 192-bit key size for
encryption. This symbolic constant has a value of 4.

FW_CRYPTO_ENCRYPTION_AES256: Uses the AES algorithm with a 256-bit key size for
encryption. This symbolic constant has a value of 5.

FW_CRYPTO_ENCRYPTION_AES_GCM128: Uses the AESGCM algorithm with a 128-bit key size
for encryption. This symbolic constant has a value of 6.

FW_CRYPTO_ENCRYPTION_AES_GCM192: Uses the AESGCM algorithm with a 192-bit key size

for encryption. This symbolic constant has a value of 7.

FW_CRYPTO_ENCRYPTION_AES_GCM256: Uses the AESGCM algorithm with a 256-bit key size
for encryption. This symbolic constant has a value of 8.

FW_CRYPTO_ENCRYPTION_MAX: This value and values that exceed this value are not valid and
MUST NOT be used. It is defined for simplicity in writing IDL definitions and code. This symbolic
constant has a value of 9.

88 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

FW_CRYPTO_ENCRYPTION_MAX_V2_0: For schema version 0x0200, this value and values that
exceed this value are not valid and MUST NOT be used by servers and clients with schema version

0x0200 and earlier. It is defined for simplicity in writing IDL definitions and describing semantic
checks against policy schema versions of 0x0200. This symbolic constant has a value of 6.

2.2.67 FW_CRYPTO_HASH_TYPE

This enumeration is used to identify the different hashing (integrity protection) algorithms supported.

 typedef enum _tag_FW_CRYPTO_HASH_TYPE
 {
 FW_CRYPTO_HASH_NONE = 0,
 FW_CRYPTO_HASH_MD5 = 1,
 FW_CRYPTO_HASH_SHA1 = 2,
 FW_CRYPTO_HASH_SHA256 = 3,
 FW_CRYPTO_HASH_SHA384 = 4,
 FW_CRYPTO_HASH_AES_GMAC128 = 5,
 FW_CRYPTO_HASH_AES_GMAC192 = 6,
 FW_CRYPTO_HASH_AES_GMAC256 = 7,
 FW_CRYPTO_HASH_MAX = 8,
 FW_CRYPTO_HASH_MAX_V2_0 = FW_CRYPTO_HASH_SHA256
 } FW_CRYPTO_HASH_TYPE;

FW_CRYPTO_HASH_NONE: This value MUST be used only when no hashing is to be performed.
This is a valid value. This symbolic constant has a value of 0.

FW_CRYPTO_HASH_MD5: Use the MD5 algorithm for hashing (integrity protection). This symbolic

constant has a value of 1.

FW_CRYPTO_HASH_SHA1: Use the SHA1 algorithm for hashing (integrity protection). This
symbolic constant has a value of 2.

FW_CRYPTO_HASH_SHA256: Use the SHA256 algorithm for hashing (integrity protection). This
symbolic constant has a value of 3.

FW_CRYPTO_HASH_SHA384: Use the SHA384 algorithm for hashing (integrity protection). This
symbolic constant has a value of 4.

FW_CRYPTO_HASH_AES_GMAC128: Use the AESGMAC128 algorithm for hashing (integrity
protection). This symbolic constant has a value of 5.

FW_CRYPTO_HASH_AES_GMAC192: Use the AESGMAC192 algorithm for hashing (integrity
protection). This symbolic constant has a value of 6.

FW_CRYPTO_HASH_AES_GMAC256: Use the AESGMAC256 algorithm for hashing (integrity
protection). This symbolic constant has a value of 7.

FW_CRYPTO_HASH_MAX: This value and values that exceed this value are not valid and MUST
NOT be used. It is defined for simplicity in writing IDL definitions and code. This symbolic constant
has a value of 8.

FW_CRYPTO_HASH_MAX_V2_0: This value and values that exceed this value are not valid and
MUST NOT be used by servers and clients with schema version 0x0200 and earlier. It is defined
for simplicity in writing IDL definitions and describing semantic checks against policy schema
versions of 0x0200. This symbolic constant has a value of 3.

89 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

2.2.68 FW_CRYPTO_PROTOCOL_TYPE

This enumeration is used to identify the different combinations of supported IPsec enforcement
protocols.

 typedef enum _tag_FW_CRYPTO_PROTOCOL_TYPE
 {
 FW_CRYPTO_PROTOCOL_INVALID = 0,
 FW_CRYPTO_PROTOCOL_AH = 1,
 FW_CRYPTO_PROTOCOL_ESP = 2,
 FW_CRYPTO_PROTOCOL_BOTH = 3,
 FW_CRYPTO_PROTOCOL_AUTH_NO_ENCAP = 4,
 FW_CRYPTO_PROTOCOL_MAX = 5,
 FW_CRYPTO_PROTOCOL_MAX_2_1 = (FW_CRYPTO_PROTOCOL_BOTH + 1)
 } FW_CRYPTO_PROTOCOL_TYPE;

FW_CRYPTO_PROTOCOL_INVALID: This value MUST NOT be used. It is defined for simplicity in
writing IDL definitions and code. This symbolic constant has a value of 0.

FW_CRYPTO_PROTOCOL_AH: Uses the authentication header (AH) to enforce IPsec. This symbolic
constant has a value of 1.

FW_CRYPTO_PROTOCOL_ESP: Uses the ESP protocol header. This symbolic constant has a value

of 2.

FW_CRYPTO_PROTOCOL_BOTH: Uses both the AH and ESP protocol headers. This symbolic
constant has a value of 3.

FW_CRYPTO_PROTOCOL_AUTH_NO_ENCAP: Uses no encapsulation. This sends the first packet
twice: once by using an ESP header and again without any header; subsequent packets have no
additional headers. This symbolic constant has a value of 4.

FW_CRYPTO_PROTOCOL_MAX: This value and values that exceed this value are not valid and

MUST NOT be used. It is defined for simplicity in writing IDL definitions and code. This symbolic

constant has a value of 5.

FW_CRYPTO_PROTOCOL_MAX_2_1: This value and values that exceed this value are not valid
and MUST NOT be used by servers and clients with schema version 0x0201 and earlier. It is
defined for simplicity in writing IDL definitions and code. This symbolic constant has a value of 4.

2.2.69 FW_PHASE1_CRYPTO_SUITE

This structure describes an IPsec Phase 1 (or main mode) cryptographic suite. A cryptographic suite is
a proposal of a set of algorithms and parameters that specify how different types of enforcement and
protection are suggested to be performed.

 typedef struct _tag_FW_PHASE1_CRYPTO_SUITE {
 [range(FW_CRYPTO_KEY_EXCHANGE_NONE, FW_CRYPTO_KEY_EXCHANGE_MAX-1)]
 FW_CRYPTO_KEY_EXCHANGE_TYPE KeyExchange;
 [range(FW_CRYPTO_ENCRYPTION_NONE+1, FW_CRYPTO_ENCRYPTION_MAX-1)]
 FW_CRYPTO_ENCRYPTION_TYPE Encryption;
 [range(FW_CRYPTO_HASH_NONE+1, FW_CRYPTO_HASH_MAX-1)]
 FW_CRYPTO_HASH_TYPE Hash;
 unsigned long dwP1CryptoSuiteFlags;
 } FW_PHASE1_CRYPTO_SUITE,
 *PFW_PHASE1_CRYPTO_SUITE;

KeyExchange: This field is of type FW_CRYPTO_KEY_EXCHANGE_TYPE. It specifies the key
exchange algorithm for this suite proposal.

90 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Encryption: This field is of type FW_CRYPTO_ENCRYPTION_TYPE. It specifies the encryption
algorithm for this suite proposal.

Hash: This field is of type FW_CRYPTO_HASH_TYPE. It specifies the hash (integrity protection)
algorithm for this suite proposal.

dwP1CryptoSuiteFlags: This is a reserved value and is not used. It MUST be set to 0x00000000.

2.2.70 FW_PHASE2_CRYPTO_SUITE

This structure describes an IPsec Phase 2 (or quick mode) cryptographic suite. A cryptographic suite is

a proposal of a set of algorithms and parameters that specify how different types of enforcement and
protection are suggested to be performed. It also suggests timeouts for which a key is valid and at
which re-keying operations should be performed.

 typedef struct _tag_FW_PHASE2_CRYPTO_SUITE {
 [range(FW_CRYPTO_PROTOCOL_INVALID+1,FW_CRYPTO_PROTOCOL_MAX-1)]
 FW_CRYPTO_PROTOCOL_TYPE Protocol;
 FW_CRYPTO_HASH_TYPE AhHash;
 FW_CRYPTO_HASH_TYPE EspHash;
 FW_CRYPTO_ENCRYPTION_TYPE Encryption;
 unsigned long dwTimeoutMinutes;
 unsigned long dwTimeoutKBytes;
 unsigned long dwP2CryptoSuiteFlags;
 } FW_PHASE2_CRYPTO_SUITE,
 *PFW_PHASE2_CRYPTO_SUITE;

Protocol: This field is of type FW_CRYPTO_PROTOCOL_TYPE, and it specifies the IPsec enforcement
protocol combination suggested for this suite.

AhHash: This field is of type FW_CRYPTO_HASH_TYPE. It specifies the hash (integrity protection)
algorithm for this suite proposal when using the authentication header protocol.

EspHash: This field is of type FW_CRYPTO_HASH_TYPE. It specifies the hash (integrity protection)

algorithm for this suite proposal when using the ESP protocol.

Encryption: This field is of type FW_CRYPTO_ENCRYPTION_TYPE. It specifies the encryption
algorithm for this suite proposal.

dwTimeoutMinutes: This is the timeout or lifetime of the key used in this proposal defined in
minutes.

dwTimeoutKBytes: This is the timeout or lifetime of the key used in this proposal defined in
kilobytes processed with this configuration.

dwP2CryptoSuiteFlags: This field is reserved and is not used. It MUST be set to 0x00000000.

The following are semantic validation checks that Phase 2 cryptographic suites MUST pass:

▪ The dwTimeoutMinutes field MUST be greater than or equal to 5 and less than or equal to

2,879.

▪ The dwTimeoutKBytes field MUST be greater than or equal to 20,480 and less than or equal to
2,147,483,647.

▪ If the Protocol field is FW_CRYPTO_PROTOCOL_AH or FW_CRYPTO_PROTOCOL_BOTH, the

AhHash field MUST NOT be equal to FW_CRYPTO_HASH_NONE.

▪ If the Protocol field is FW_CRYPTO_PROTOCOL_BOTH, the AhHash field MUST be equal to the
EspHash field.

91 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

▪ If the Protocol field is FW_CRYPTO_PROTOCOL_BOTH or FW_CRYPTO_PROTOCOL_ESP, EspHash
MUST NOT be set to FW_CRYPTO_HASH_NONE or Encryption MUST NOT be set to

FW_CRYPTO_ENCRYPTION_NONE, but not both.

2.2.71 FW_PHASE1_CRYPTO_FLAGS

This enumeration is used to identify the different cryptographic flags that are supported.

 typedef enum _tag_FW_PHASE1_CRYPTO_FLAGS
 {
 FW_PHASE1_CRYPTO_FLAGS_NONE = 0x00,
 FW_PHASE1_CRYPTO_FLAGS_DO_NOT_SKIP_DH = 0x01,
 FW_PHASE1_CRYPTO_FLAGS_MAX = 0x02
 } FW_PHASE1_CRYPTO_FLAGS;

FW_PHASE1_CRYPTO_FLAGS_NONE: This value represents no flag. It is used when none of the
behaviors that are represented by the defined flags in the enumeration are intended. This

symbolic constant has a value of 0x00.

FW_PHASE1_CRYPTO_FLAGS_DO_NOT_SKIP_DH: This flag ensures that Authenticated IP
(AuthIP), as specified in [MS-AIPS], always performs a DH key exchange. (AuthIP can avoid this
exchange because the protocol already contains enough key material information to protect the
negotiation. Hence, by skipping DH, round trips and the computational cost of DH are avoided.)
This symbolic constant has a value of 0x01.

FW_PHASE1_CRYPTO_FLAGS_MAX: This value and values that exceed this value are not valid and
MUST NOT be used. It is defined for simplicity in writing IDL definitions and code. This symbolic
constant has a value of 0x02.

2.2.72 FW_PHASE2_CRYPTO_PFS

This enumeration is used to identify the different perfect forward secrecy (PFS) options supported.

 typedef enum _tag_FW_PHASE2_CRYPTO_PFS
 {
 FW_PHASE2_CRYPTO_PFS_INVALID = 0,
 FW_PHASE2_CRYPTO_PFS_DISABLE = 1,
 FW_PHASE2_CRYPTO_PFS_PHASE1 = 2,
 FW_PHASE2_CRYPTO_PFS_DH1 = 3,
 FW_PHASE2_CRYPTO_PFS_DH2 = 4,
 FW_PHASE2_CRYPTO_PFS_DH2048 = 5,
 FW_PHASE2_CRYPTO_PFS_ECDH256 = 6,
 FW_PHASE2_CRYPTO_PFS_ECDH384 = 7,
 FW_PHASE2_CRYPTO_PFS_DH24 = 8,
 FW_PHASE2_CRYPTO_PFS_MAX_V2_10 = FW_PHASE2_CRYPTO_PFS_DH24 = FW_PHASE2_CRYPTO_PFS_DH24,
 FW_PHASE2_CRYPTO_PFS_MAX = 9
 } FW_PHASE2_CRYPTO_PFS;

FW_PHASE2_CRYPTO_PFS_INVALID: This value MUST NOT be used. It is defined for simplicity in

writing IDL definitions and code. This symbolic constant has a value of 0.

FW_PHASE2_CRYPTO_PFS_DISABLE: Do not renegotiate; instead, reuse the keying material
negotiated in Phase 1 (main mode). This symbolic constant has a value of 1.

FW_PHASE2_CRYPTO_PFS_PHASE1: Use Phase 1 key exchange to negotiate a Phase 2 (quick
mode) key for every Phase 2 negotiation. This symbolic constant has a value of 2.

FW_PHASE2_CRYPTO_PFS_DH1: Use DH1 key exchange to negotiate a Phase 2 (quick mode) key
for every Phase 2 negotiation. This symbolic constant has a value of 3.

92 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

FW_PHASE2_CRYPTO_PFS_DH2: Use DH2 key exchange to negotiate a Phase 2 (quick mode) key
for every Phase 2 negotiation. This symbolic constant has a value of 4.

FW_PHASE2_CRYPTO_PFS_DH2048: Use DH2048 key exchange to negotiate a Phase 2 (quick
mode) key for every Phase 2 negotiation. This symbolic constant has a value of 5.

FW_PHASE2_CRYPTO_PFS_ECDH256: Use ECDH256 key exchange to negotiate a Phase 2 (quick
mode) key for every Phase 2 negotiation. This symbolic constant has a value of 6.

FW_PHASE2_CRYPTO_PFS_ECDH384: Use ECDH384 key exchange to negotiate a Phase 2 (quick
mode) key for every Phase 2 negotiation. This symbolic constant has a value of 7.

FW_PHASE2_CRYPTO_PFS_DH24: Use DH24 key exchange to negotiate a Phase 2 (quick mode)
key for every Phase 2 negotiation. For schema versions 0x0200, 0x0201, and 0x020A, this value
is invalid and MUST NOT be used. This symbolic constant has a value of 8.

FW_PHASE2_CRYPTO_PFS_MAX_V2_10 = FW_PHASE2_CRYPTO_PFS_DH24: This value and
values that exceed this value are not valid and MUST NOT be used by servers and clients with
schema version 0x020A and earlier. It is defined for simplicity in writing IDL definitions and code.

This symbolic constant has a value of 8.

FW_PHASE2_CRYPTO_PFS_MAX: This value and values that exceed this value are not valid and
MUST NOT be used. It is defined for simplicity in writing IDL definitions and code. This symbolic

constant has a value of 9.

2.2.73 FW_CRYPTO_SET

This structure contains a list of cryptographic suite elements that are ordered from highest to lowest
preference and are negotiated with remote peers to establish cryptographic protection algorithms.

 typedef struct _tag_FW_CRYPTO_SET {
 struct _tag_FW_CRYPTO_SET* pNext;
 unsigned short wSchemaVersion;
 [range(FW_IPSEC_PHASE_INVALID+1, FW_IPSEC_PHASE_MAX-1)]
 FW_IPSEC_PHASE IpSecPhase;
 [string, range(1,255), ref] wchar_t* wszSetId;
 [string, range(1,10001)] wchar_t* wszName;
 [string, range(1,10001)] wchar_t* wszDescription;
 [string, range(1,10001)] wchar_t* wszEmbeddedContext;
 [switch_type(FW_IPSEC_PHASE), switch_is(IpSecPhase)]
 union {
 [case(FW_IPSEC_PHASE_1)]
 struct {
 unsigned short wFlags;
 [range(0,1000)] unsigned long dwNumPhase1Suites;
 [size_is(dwNumPhase1Suites)] PFW_PHASE1_CRYPTO_SUITE pPhase1Suites;
 unsigned long dwTimeoutMinutes;
 unsigned long dwTimeoutSessions;
 };
 [case(FW_IPSEC_PHASE_2)]
 struct {
 FW_PHASE2_CRYPTO_PFS Pfs;
 [range(0,1000)] unsigned long dwNumPhase2Suites;
 [size_is(dwNumPhase2Suites)] PFW_PHASE2_CRYPTO_SUITE pPhase2Suites;
 };
 };
 [range(FW_RULE_ORIGIN_INVALID,FW_RULE_ORIGIN_MAX-1)]
 FW_RULE_ORIGIN_TYPE Origin;
 [string, range(1,10001)] wchar_t* wszGPOName;
 FW_RULE_STATUS Status;
 unsigned long dwCryptoSetFlags;
 } FW_CRYPTO_SET,
 *PFW_CRYPTO_SET;

93 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

pNext: A pointer to the next FW_CRYPTO_SET in the list.

wSchemaVersion: Specifies the version of the set.

IpSecPhase: This field is of type FW_IPSEC_PHASE, and it specifies if this cryptographic set applies
for Phase1 (main mode) or Phase2 (quick mode).

wszSetId: A pointer to a Unicode string that uniquely identifies the set. The primary set for this
policy object is identified with the "{E5A5D32A-4BCE-4e4d-B07F-4AB1BA7E5FE1}" string for
Phase1 and with the "{E5A5D32A-4BCE-4e4d-B07F-4AB1BA7E5FE2}" string for Phase2.

wszName: A pointer to a Unicode string that provides a friendly name for the set.

wszDescription: A pointer to a Unicode string that provides a friendly description for the set.

wszEmbeddedContext: A pointer to a Unicode string. A client implementation MAY use this field to
store implementation-specific client context. The server MUST NOT interpret the value of this

string. The server MUST preserve the value of this string unmodified.

wFlags: This field is a combination of the FW_PHASE1_CRYPTO_FLAGS enumeration bit flags.

dwNumPhase1Suites: Specifies the number of Phase1 suites that the structure contains.

pPhase1Suites: A pointer to an array of dwNumPhase1Suites contiguous
FW_PHASE1_CRYPTO_SUITE elements.

dwTimeoutMinutes: This value is a lifetime in minutes before a Phase1 established key is

renegotiated.

dwTimeoutSessions: This value is the number of sessions before a Phase1 established key is
renegotiated.

Pfs: This field MUST contain a valid value of those in the FW_PHASE2_CRYPTO_PFS enumeration. It
describes the perfect forward secrecy used for quick mode cryptographic operations.

dwNumPhase2Suites: Specifies the number of Phase2 suites that the structure contains.

pPhase2Suites: A pointer to an array of FW_PHASE2_CRYPTO_SUITE elements. The number of

elements is given by dwNumPhase2Suites.

Origin: This field is the set origin, as specified in the FW_RULE_ORIGIN_TYPE enumeration. It MUST
be filled on enumerated rules and ignored on input.

wszGPOName: A pointer to a Unicode string containing the displayName of the GPO containing this
object. When adding a new object, this field is not used. The client SHOULD set the value to NULL,
and the server MUST ignore the value. When enumerating an existing object, if the client does not
set the FW_ENUM_RULES_FLAG_RESOLVE_GPO_NAME flag, the server MUST set the value to

NULL. Otherwise, the server MUST set the value to the displayName of the GPO containing the
object or NULL if the object is not contained within a GPO. For details about how the server
initializes an object from a GPO, see section 3.1.3. For details about how the displayName of a
GPO is stored, see [MS-GPOL] section 2.3.

Status: The status code of the set, as specified by the FW_RULE_STATUS enumeration. This field is
filled out when the structure is returned as output. On input, this field MUST be set to

FW_RULE_STATUS_OK.

dwCryptoSetFlags: Bit flags from FW_CRYPTO_SET_FLAGS.

The following are semantic checks that cryptographic sets MUST pass:

▪ The wSchemaVersion field MUST NOT be less than 0x000200.

94 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

▪ The wszSetId field MUST NOT contain the pipe (|) character, MUST NOT be NULL, MUST be a
string at least 1 character long, and MUST NOT be greater than or equal to 255 characters.

▪ If the wszName field string is not NULL, it MUST be at least 1 character long, MUST NOT be
greater than or equal to 10,000 characters, and MUST NOT contain the pipe (|) character.

▪ If the wszDescription field string is not NULL, it MUST be at least 1 character long, MUST NOT be
greater than or equal to 10,000 characters, and MUST NOT contain the pipe (|) character.

▪ If the wszEmbeddedContext field string is not NULL, it MUST be at least 1 character long, MUST
NOT be greater than or equal to 10,000 characters, and MUST NOT contain the pipe (|) character.

▪ The IpSecPhase field MUST have valid FW_IPSEC_PHASE values.

▪ If the IpSecPhase field is FW_IPSEC_PHASE_1:

▪ The wszSetId field MUST be equal to the primary Phase1 cryptographic set ID. (There is only

one Phase1 cryptographic set allowed per store.)

▪ The wFlags field of the set MUST NOT be greater than or equal to
FW_PHASE1_CRYPTO_FLAGS_MAX.

▪ The dwTimeoutMinutes field of the set MUST be greater than or equal to 1, and MUST be
less than or equal to 2,879.

▪ The dwTimeoutSessions field of the set MUST be less than or equal to 2,147,483,647.

▪ The cryptographic set MUST have at least one Phase1 cryptographic suite.

▪ The pPhase1Suites array MUST contain exactly dwNumPhase1Suites entries.

▪ All cryptographic suites within the set MUST have the same value in the KeyExchange field
and MUST have valid values.

▪ All Phase1 suites MUST NOT have a KeyExchange field with the

FW_CRYPTO_ENCRYPTION_INVALID value and MUST have valid values.

▪ If the set has a schema policy version of 0x0200, all Phase1 suites MUST NOT have an

Encryption field with values greater than or equal to FW_CRYPTO_ENCRYPTION_MAX_V2_0.

▪ All Phase1 suites MUST NOT have an Encryption field with the
FW_CRYPTO_ENCRYPTION_NONE value and MUST have valid values less than
FW_CRYPTO_ENCRYPTION_MAX_V2_0.

▪ If the set has a schema policy version of 0x0200, all Phase1 suites MUST NOT have a Hash
field that has values greater than or equal to FW_CRYPTO_HASH_MAX_V2_0.

▪ All Phase1 suites MUST NOT have a Hash field that has the FW_CRYPTO_HASH_NONE value

and MUST have either MD5 (FW_CRYPTO_HASH_MD5) or SHA (FW_CRYPTO_HASH_SHA1,
FW_CRYPTO _HASH_SHA256, FW_CRYPTO_HASH_SHA384) valid values.

▪ If the IpSecPhase field is FW_IPSEC_PHASE_2:

▪ The wszSetId field MUST NOT have the primary Phase2 cryptographic set ID as a prefix.

▪ The cryptographic set MUST have at least one Phase2 cryptographic suite.

▪ The pPhase2Suites array MUST contain exactly dwNumPhase2Suites entries.

▪ The Pfs field MUST NOT be FW_PHASE2_CRYPTO_PFS_INVALID and MUST have valid values.

95 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

▪ If the set has a schema policy version of 0x0200, all Phase2 cryptographic suites MUST NOT
have an AhHash field or EspHash field with values greater than or equal to

FW_CRYPTO_HASH_MAX_V2_0.

▪ If the set has a schema policy version of 0x0200, all Phase2 suites MUST NOT have an

Encryption field with values greater than or equal to FW_CRYPTO_ENCRYPTION_MAX_V2_0.

▪ All Phase2 suites within the set MUST NOT have a dwTimeoutMinutes field less than
FW_MIN_CRYPTO_PHASE2_TIMEOUT_MINUTES (5) or greater than
FW_MAX_CRYPTO_PHASE2_TIMEOUT_MINUTES (48 * 60 -1).

▪ All Phase2 suites within the set MUST NOT have a dwTimeoutKBytes field of less than
FW_MIN_CRYPTO_PHASE2_TIMEOUT_KBYTES (20480) or greater than
FW_MAX_CRYPTO_PHASE2_TIMEOUT_KBYTES (2147483647).

▪ All the Phase2 suites within the set MUST NOT have a Protocol field with
FW_CRYPTO_PROTOCOL_INVALID and MUST have valid values.

▪ For all suites that have the Protocol field equal to FW_CRYPTO_PROTOCOL_AH or to

FW_CRYPTO_PROTOCOL_BOTH:

▪ All suites MUST NOT have an AhHash field with the FW_CRYPTO_HASH_NONE value, and
MUST have valid values not equal to FW_CRYPTO_HASH_SHA384.

▪ For all suites that have the Protocol field equal to FW_CRYPTO_PROTOCOL_BOTH:

▪ All suites MUST have the AhHash field equal to the EspHash field.

▪ For all suites that have the Protocol field equal to FW_CRYPTO_PROTOCOL_ESP:

▪ All suites MUST have an EspHash field with valid values, including
FW_CRYPTO_HASH_NONE. The EspHash field MUST NOT equal
FW_CRYPTO_HASH_SHA384.

▪ All suites MUST have an Encryption field with valid values, including

FW_CRYPTO_ENCRYPTION_NONE.

▪ All suites MUST not have both the EspHash field equal to FW_CRYPTO_HASH_NONE and
the Encryption field equal to FW_CRYPTO_ENCRYPTION_NONE.

▪ All suites that have the Encryption field equal to
FW_CRYPTO_ENCRYPTION_AES_GCM128, 192, or 256 MUST also have a corresponding
FW_CRYPTO_HASH_AES_GMAC128, 192, or 256 value on the EspHash field. An AES GCM
encryption algorithm corresponds to an AES GMAC hash algorithm if both use the same bit

size.

2.2.74 FW_BYTE_BLOB

This structure contains a memory section. The format of the memory is defined by the context where

it is used; for example, see the SubjectName field of the FW_CERT_INFO structure.

 typedef struct _tag_FW_BYTE_BLOB {
 [range(0,10000)] unsigned long dwSize;
 [size_is(dwSize)] unsigned char* Blob;
 } FW_BYTE_BLOB,
 *PFW_BYTE_BLOB;

dwSize: This field specifies the size in octets of the Blob field.

96 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Blob: A pointer to an array of dwSize octets.

2.2.75 FW_COOKIE_PAIR

This structure holds random numbers generated out of IPsec negotiations.

 typedef struct _tag_FW_COOKIE_PAIR {
 unsigned __int64 Initiator;
 unsigned __int64 Responder;
 } FW_COOKIE_PAIR,
 *PFW_COOKIE_PAIR;

Initiator: A random number that maps to the negotiated state that is a security association of the
machine that initiated communication and, hence, initiated IKE/AuthIP (for more information, see
[RFC2409]) as specified in [MS-IKEE] and [MS-AIPS] traffic.

Responder: A random number that maps to the negotiated state that is a security association of the

machine that responded to the communication and, hence, responded to the IKE/AuthIP traffic.

2.2.76 FW_PHASE1_KEY_MODULE_TYPE

This enumeration identifies the different IPsec Key Exchange negotiation protocols that can be used.

 typedef enum _tag_FW_PHASE1_KEY_MODULE_TYPE
 {
 FW_PHASE1_KEY_MODULE_INVALID = 0,
 FW_PHASE1_KEY_MODULE_IKE = 1,
 FW_PHASE1_KEY_MODULE_AUTH_IP = 2,
 FW_PHASE1_KEY_MODULE_MAX = 3
 } FW_PHASE1_KEY_MODULE_TYPE;

FW_PHASE1_KEY_MODULE_INVALID: The FW_PHASE1_KEY_MODULE_INVALID constant MUST

NOT be used. It is defined for simplicity in writing IDL definitions and code. This symbolic constant
has a value of 0.

FW_PHASE1_KEY_MODULE_IKE: The keying protocol was IKE. This symbolic constant has a value
of 1.

FW_PHASE1_KEY_MODULE_AUTH_IP: The keying protocol was AuthIP. This symbolic constant

has a value of 2.

FW_PHASE1_KEY_MODULE_MAX: This value and values that exceed this value are not valid and
MUST NOT be used. It is defined for simplicity in writing IDL definitions and code. This symbolic
constant has a value of 3.

2.2.77 FW_CERT_INFO

This structure represents information on the certificate used in the certificate-based authentication
mechanisms.

 typedef struct _tag_FW_CERT_INFO {
 FW_BYTE_BLOB SubjectName;
 [range(FW_AUTH_SUITE_FLAGS_NONE, FW_AUTH_SUITE_FLAGS_MAX-1)]
 unsigned long dwCertFlags;
 } FW_CERT_INFO,
 *PFW_CERT_INFO;

97 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

SubjectName: The subject name of the certificate represented as a FW_BYTE_BLOB type. This BLOB
is an ASN.1-encoded sequence of RDN attributes.

dwCertFlags: This field can be a combination of bit flags from FW_AUTH_SUITE_FLAGS. This field
MUST use only health certificate or certificate to account mapping flags, which represent certificate

characteristics.

2.2.78 FW_AUTH_INFO

This structure contains information on the local and remote hosts that resulted from the authentication

methods performed between them.

 typedef struct _tag_FW_AUTH_INFO {
 [range(FW_AUTH_METHOD_INVALID + 1, FW_AUTH_METHOD_MAX)]
 FW_AUTH_METHOD AuthMethod;
 [switch_type(FW_AUTH_METHOD), switch_is(AuthMethod)]
 union {
 [case(FW_AUTH_METHOD_MACHINE_CERT,FW_AUTH_METHOD_USER_CERT)]
 struct {
 FW_CERT_INFO MyCert;
 FW_CERT_INFO PeerCert;
 };
 [case(FW_AUTH_METHOD_MACHINE_KERB,FW_AUTH_METHOD_USER_KERB,
FW_AUTH_METHOD_MACHINE_NEGOEX,FW_AUTH_METHOD_USER_NEGOEX)]

 struct {
 [string, range(1,10001)] wchar_t* wszMyId;
 [string, range(1,10001)] wchar_t* wszPeerId;
 };
 [default] ;
 };
 unsigned long dwAuthInfoFlags;
 } FW_AUTH_INFO,
 *PFW_AUTH_INFO;

AuthMethod: This field contains the authentication method used to establish the identities of the

endpoints and is stored in the security association. The field can take valid values from the
FW_AUTH_METHOD enumeration.

MyCert: This field contains the subject name and certification flags (health, account mapping,
exclude CA) from the certificate of the local host that was used in the authentication process when
a certificate-based authentication method is used.

PeerCert: This field contains the subject name and certification flags (health, account mapping,

exclude CA) from the certificate of the remote host that was used in the authentication process
when a certificate-based authentication method is used.

wszMyId: A pointer to a Unicode string representing the identity of the local host when a Kerberos-
based authentication method, as specified in [MS-KILE], is used.

wszPeerId: A pointer to a Unicode string representing the identity of the remote host when a
Kerberos-based authentication method, as specified in [MS-KILE], is used.

dwAuthInfoFlags: Reserved value and not currently used. It MUST be set to 0.

2.2.79 FW_ENDPOINTS

This structure represents the two endpoints, source and destination, that participate in IP
communication.

 typedef struct _tag_FW_ENDPOINTS {

98 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

 [range(FW_IP_VERSION_INVALID+1,FW_IP_VERSION_MAX-1)]
 FW_IP_VERSION IpVersion;
 unsigned long dwSourceV4Address;
 unsigned long dwDestinationV4Address;
 unsigned char SourceV6Address[16];
 unsigned char DestinationV6Address[16];
 } FW_ENDPOINTS,
 *PFW_ENDPOINTS;

IpVersion: This field specifies the Internet Protocol version used. This field MUST contain a valid
value from the FW_IP_VERSION enumeration.

dwSourceV4Address: This field is the IPv4 address of the source endpoint.

dwDestinationV4Address: This field is the IPv4 address of the destination endpoint.

SourceV6Address: This field is a 16-octet array that represents the IPv6 address of the source

endpoint.

DestinationV6Address: This field is a 16-octet array that represents the IPv6 address of the
destination endpoint.

The v4 versions or the v6 versions of the fields are used depending on the IpVersion field value.

2.2.80 FW_PHASE1_SA_DETAILS

This structure represents a security association that is established after the main mode negotiations
take place; it contains the selected algorithms to enforce IPsec and the methods and results of the
authentication process.

 typedef struct _tag_FW_PHASE1_SA_DETAILS {
 unsigned __int64 SaId;
 [range(FW_PHASE1_KEY_MODULE_INVALID+1,FW_PHASE1_KEY_MODULE_MAX-1)]
 FW_PHASE1_KEY_MODULE_TYPE KeyModuleType;
 FW_ENDPOINTS Endpoints;
 FW_PHASE1_CRYPTO_SUITE SelectedProposal;
 unsigned long dwProposalLifetimeKBytes;
 unsigned long dwProposalLifetimeMinutes;
 unsigned long dwProposalMaxNumPhase2;
 FW_COOKIE_PAIR CookiePair;
 PFW_AUTH_INFO pFirstAuth;
 PFW_AUTH_INFO pSecondAuth;
 unsigned long dwP1SaFlags;
 } FW_PHASE1_SA_DETAILS,
 *PFW_PHASE1_SA_DETAILS;

SaId: A 64-bit integer that uniquely identifies the security association.

KeyModuleType: The keying protocol used, IKE or AuthIP. The field MUST contain only a value from
the FW_PHASE1_KEY_MODULE_TYPE enumeration.

Endpoints: This field contains IP address information of the two endpoints that established this
security association. An address of zero means the security association applies to any endpoint.

SelectedProposal: This is the Phase1 cryptographic suite that was selected by the negotiation of the
keying protocol.

dwProposalLifetimeKBytes: Currently not supported.

dwProposalLifetimeMinutes: This field specifies the lifetime in minutes of this security association
before a rekey MUST happen.

99 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

dwProposalMaxNumPhase2: This field specifies the number of Phase2 (quick mode) negotiations
(rekeys) that can happen before this security association MUST be renegotiated.

CookiePair: This value is used for diagnostics.

pFirstAuth: A pointer to an FW_AUTH_INFO structure that contains the information that resulted

from the method negotiated and used for first authentication. This pointer MUST NOT be null.

pSecondAuth: A pointer to an FW_AUTH_INFO structure that contains the information that resulted
from the method negotiated and used for second authentication. If the field is NULL, the second
authentication was not performed.

dwP1SaFlags: Reserved value and not currently used. It MUST be set to 0.

2.2.81 FW_PHASE2_TRAFFIC_TYPE

This enumeration identifies the two types of traffic enforcement modes that IPsec supports. It is
defined in the IDL for future use.

 typedef enum _tag_FW_PHASE2_TRAFFIC_TYPE
 {
 FW_PHASE2_TRAFFIC_TYPE_INVALID = 0,
 FW_PHASE2_TRAFFIC_TYPE_TRANSPORT = 1,
 FW_PHASE2_TRAFFIC_TYPE_TUNNEL = 2,
 FW_PHASE2_TRAFFIC_TYPE_MAX = 3
 } FW_PHASE2_TRAFFIC_TYPE;

FW_PHASE2_TRAFFIC_TYPE_INVALID: This value MUST NOT be used. It is defined for simplicity
in writing IDL definitions and code. This symbolic constant has a value of 0.

FW_PHASE2_TRAFFIC_TYPE_TRANSPORT: This value represents IPsec transport mode, which
happens directly between two endpoints. This symbolic constant has a value of 1.

FW_PHASE2_TRAFFIC_TYPE_TUNNEL: This value represents IPsec tunnel mode, which uses two

other endpoints to tunnel through them when the original endpoints communicate. This symbolic
constant has a value of 2.

FW_PHASE2_TRAFFIC_TYPE_MAX: This value and values that exceed this value are not valid and
MUST NOT be used. It is defined for simplicity in writing IDL definitions and code. This symbolic
constant has a value of 3.

2.2.82 FW_PHASE2_SA_DETAILS

This structure represents a security association that is established after the quick mode negotiations
take place; it contains the selected algorithms to enforce IPsec.

 typedef struct _tag_FW_PHASE2_SA_DETAILS {
 unsigned __int64 SaId;
 [range(FW_DIR_INVALID+1,FW_DIR_MAX-1)]
 FW_DIRECTION Direction;
 FW_ENDPOINTS Endpoints;
 unsigned short wLocalPort;
 unsigned short wRemotePort;
 unsigned short wIpProtocol;
 FW_PHASE2_CRYPTO_SUITE SelectedProposal;
 FW_PHASE2_CRYPTO_PFS Pfs;
 GUID TransportFilterId;
 unsigned long dwP2SaFlags;
 } FW_PHASE2_SA_DETAILS,

100 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

 *PFW_PHASE2_SA_DETAILS;

SaId: A 64-bit integer number that uniquely identifies the security association.

Direction: This field specifies the direction of the traffic this security association is securing.

Endpoints: This field contains IP address information of the two endpoints that established this

security association. An address of zero means the security association applies to any endpoint.

wLocalPort: This field specifies the port of the local endpoint that is used in the traffic secured by
this security association. A value of 0 specifies any port.

wRemotePort: This field specifies the port of the remote endpoint that is used in the traffic secured
by this security association. A value of 0 specifies any port.

wIpProtocol: This field specifies the protocol of the traffic secured by this security association. If the

value is within the range 0 to 255, the value describes a protocol as in IETF IANA numbers (for
more information, see [IANA-PROTO-NUM]). If the value is 256, the rule matches ANY protocol.

SelectedProposal: This field contains the Phase2 cryptographic suite selected by the negotiation
that is used by this security association to enforce IPsec.

Pfs: This field specifies the perfect forward secrecy used by this security association.

TransportFilterId: This GUID MAY contain additional implementation-specific<18> information
about the security association. The client MUST ignore this value.

dwP2SaFlags: Reserved value and not currently used. It MUST be set to 0.

2.2.83 FW_PROFILE_CONFIG_VALUE

This union defines the value stored by each of the different policy configuration values identified by
the enumeration FW_PROFILE_CONFIG. This data type is used to pass different types of values across

the same structure on function calls.

 typedef
 [switch_type(FW_PROFILE_CONFIG)]
 union _FW_PROFILE_CONFIG_VALUE {
 [case(FW_PROFILE_CONFIG_LOG_FILE_PATH)]
 [string, range(1,10001)] wchar_t* wszStr;
 [case(FW_PROFILE_CONFIG_DISABLED_INTERFACES)]
 PFW_INTERFACE_LUIDS pDisabledInterfaces;
 [case(FW_PROFILE_CONFIG_ENABLE_FW, FW_PROFILE_CONFIG_DISABLE_STEALTH_MODE,
FW_PROFILE_CONFIG_SHIELDED,

FW_PROFILE_CONFIG_DISABLE_UNICAST_RESPONSES_TO_MULTICAST_BROADCAST,

FW_PROFILE_CONFIG_LOG_DROPPED_PACKETS,

FW_PROFILE_CONFIG_LOG_SUCCESS_CONNECTIONS,

FW_PROFILE_CONFIG_LOG_IGNORED_RULES,

FW_PROFILE_CONFIG_LOG_MAX_FILE_SIZE,

FW_PROFILE_CONFIG_DISABLE_INBOUND_NOTIFICATIONS,

FW_PROFILE_CONFIG_AUTH_APPS_ALLOW_USER_PREF_MERGE,

FW_PROFILE_CONFIG_GLOBAL_PORTS_ALLOW_USER_PREF_MERGE,

FW_PROFILE_CONFIG_ALLOW_LOCAL_POLICY_MERGE,

FW_PROFILE_CONFIG_ALLOW_LOCAL_IPSEC_POLICY_MERGE,

FW_PROFILE_CONFIG_DEFAULT_OUTBOUND_ACTION,

FW_PROFILE_CONFIG_DEFAULT_INBOUND_ACTION,

FW_PROFILE_CONFIG_DISABLE_STEALTH_MODE_IPSEC_SECURED_PACKET_EXEMPTION)]

 unsigned long* pdwVal;
 } FW_PROFILE_CONFIG_VALUE,
 *PFW_PROFILE_CONFIG_VALUE;

101 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

wszStr: This field contains a pointer to a Unicode string. It is used when the data type of the
configuration value is a string.

pDisabledInterfaces: This field contains a pointer to an FW_INTERFACE_LUIDS data type, which
holds a list of GUIDs. This field is custom marshaled, so it is passed as a plain buffer. The

following diagrams show how the structures are marshaled.

On 32-bit servers:

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

dwNumLUIDs

pLUIDs

GUID1 (16 bytes)

...

...

On 64-bit servers:

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

dwNumLUIDs

...

pLUIDs

...

GUID1 (16 bytes)

...

...

pdwVal: This field contains a pointer to an unsigned long. It is used when the data type of the

configuration value is an unsigned long.

2.2.84 FW_MM_RULE

This structure is used to represent a main mode rule.

 typedef struct _tag_FW_MM_RULE {
 struct _tag_FW_MM_RULE* pNext;
 unsigned SHORT wSchemaVersion;
 [string, range(1,512), ref] wchar_t* wszRuleId;
 [string, range(1,10001)] wchar_t* wszName;
 [string, range(1,10001)] wchar_t* wszDescription;

102 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

 unsigned LONG dwProfiles;
 FW_ADDRESSES Endpoint1;
 FW_ADDRESSES Endpoint2;
 [string, range(1,255)] wchar_t* wszPhase1AuthSet;
 [string, range(1,255)] wchar_t* wszPhase1CryptoSet;
 unsigned SHORT wFlags;
 [string, range(1,10001)] wchar_t wszEmbeddedContext;
 FW_OS_PLATFORM_LIST PlatformValidityList;
 [range(FW_RULE_ORIGIN_INVALID, FW_RULE_ORIGIN_MAX-1)]
 FW_RULE_ORIGIN_TYPE Origin;
 [string, range(1,10001)] wchar_t wszGPOName;
 FW_RULE_STATUS Status;
 signed LONG Reserved;
 [size_is((Reserved & FW_OBJECT_CTRL_FLAG_INCLUDE_METADATA) ? 1 : 0)]
 FW_OBJECT_METADATA pMetaData;
 } FW_MM_RULE,
 *PFW_MM_RULE;

pNext: A pointer to the next FW_MM_RULE in the list.

wSchemaVersion: Specifies the version of the rule.

wszRuleId: A pointer to a Unicode string that uniquely identifies the rule.

wszName: A pointer to a Unicode string that provides a friendly name for the rule.

wszDescription: A pointer to a Unicode string that provides a friendly description for the rule.

dwProfiles: A bitmask of the FW_PROFILE_TYPE flags. It is a condition that matches traffic on the
specified profiles.

Endpoint1: A condition that specifies the addresses of the first host of the traffic that the rule
matches. An empty EndPoint1 structure means this condition is not applied (no match).

Endpoint2: A condition that specifies the addresses of the second host of the traffic that the rule
matches. An empty EndPoint2 structure means this condition is not applied (no match).

wszPhase1AuthSet: A Unicode string that represents the set identifier of a Phase1 authentication
sets policy objects.

wFlags: Bit flags from FW_CS_RULE_FLAGS.

wszEmbeddedContext: A pointer to a Unicode string that specifies a group name for this rule.
Other components in the system use this string to enable or disable a group of rules by verifying
that all rules have the same group name.

PlatformValidityList: A condition in a rule that determines whether or not the rule is enforced by
the local computer based on the local computer's platform information. The rule is enforced only if
the local computer's operating system platform is an element of the set described by

PlatformValidityList.<19>

Origin: This field is the rule origin, as specified in the FW_RULE_ORIGIN_TYPE enumeration. It MUST
be filled on enumerated rules and ignored on input.

wszGPOName: A pointer to a Unicode string containing the displayName of the GPO containing this
object. When adding a new object, this field is not used. The client SHOULD set the value to NULL,
and the server MUST ignore the value. When enumerating an existing object, if the client does not
set the FW_ENUM_RULES_FLAG_RESOLVE_GPO_NAME flag, the server MUST set the value to

NULL. Otherwise, the server MUST set the value to the displayName of the GPO containing the
object or NULL if the object is not contained within a GPO. For details about how the server
initializes an object from a GPO, see section 3.1.3. For details about how the displayName of a
GPO is stored, see [MS-GPOL] section 2.3.

103 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Status: The status code of the rule, as specified by the FW_RULE_STATUS enumeration. This field is
filled out when the structure is returned as output. On input, this field MUST be set to

FW_RULE_STATUS_OK.

Reserved: This member is not used, other than to instruct RPC, by using the

FW_OBJECT_CTRL_FLAG_INCLUDE_METADATA flag, that a pointer to an FW_OBJECT_METADATA
structure is present. It has no semantic meaning to the object itself.

pMetaData: A pointer to an FW_OBJECT_METADATA structure that contains specific metadata about
the current state of the connection security rule.

2.2.85 FW_CONN_HANDLE

This type contains an RPC binding handle, as specified in [C706] section 2, to an RPC interface that
implements the Firewall and Advanced Security Protocol. For information on handle_t, see [MS-DTYP]
section 2.1.3.

This type is declared as follows:

 typedef handle_t FW_CONN_HANDLE;

2.2.86 FW_MATCH_KEY

This enumeration describes the keys that a query is allowed to match.

 typedef enum _tag_FW_MATCH_KEY
 {
 FW_MATCH_KEY_PROFILE = 0,
 FW_MATCH_KEY_STATUS = 1,
 FW_MATCH_KEY_OBJECTID = 2,
 FW_MATCH_KEY_FILTERID = 3,
 FW_MATCH_KEY_APP_PATH = 4,
 FW_MATCH_KEY_PROTOCOL = 5,
 FW_MATCH_KEY_LOCAL_PORT = 6,
 FW_MATCH_KEY_REMOTE_PORT = 7,
 FW_MATCH_KEY_GROUP = 8,
 FW_MATCH_KEY_SVC_NAME = 9,
 FW_MATCH_KEY_DIRECTION = 10,
 FW_MATCH_KEY_LOCAL_USER_OWNER = 11,
 FW_MATCH_KEY_PACKAGE_ID = 12,
 FW_MATCH_KEY_FQBN = 13,
 FW_MATCH_KEY_COMPARTMENT_ID = 14,
 FW_MATCH_KEY_MAX = 15
 } FW_MATCH_KEY;

FW_MATCH_KEY_PROFILE: This key matches the profile conditions of the queried object. This
symbolic constant has a value of 0.

FW_MATCH_KEY_STATUS: This key matches the status conditions of the queried object. This

symbolic constant has a value of 1.

FW_MATCH_KEY_OBJECTID: This key matches the object ID (rule ID or set ID) of the queried
object. This symbolic constant has a value of 2.

FW_MATCH_KEY_FILTERID: This value is not used on the wire. This symbolic constant has a value

of 3.

FW_MATCH_KEY_APP_PATH: This key matches the application condition of the queried object.
This symbolic constant has a value of 4.

104 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

FW_MATCH_KEY_PROTOCOL: This key matches the protocol condition of the queried object. This
symbolic constant has a value of 5.

FW_MATCH_KEY_LOCAL_PORT: This key matches the TCP or UDP local port condition of the
queried object. This symbolic constant has a value of 6.

FW_MATCH_KEY_REMOTE_PORT: This key matches the TCP or UDP remote port condition of the
queried object. This symbolic constant has a value of 7.

FW_MATCH_KEY_GROUP: This key matches the group name (the Embedded context field) of the
queried object. This symbolic constant has a value of 8.

FW_MATCH_KEY_SVC_NAME: This key matches the service name condition of the queried object.
This symbolic constant has a value of 9.

FW_MATCH_KEY_DIRECTION: This key matches the direction condition of the queried object. This

symbolic constant has a value of 10.

FW_MATCH_KEY_LOCAL_USER_OWNER: This key matches the local user owner condition of the

queried object. For schema versions 0x0200, 0x0201, and 0x020A, this value is invalid and MUST
NOT be used. This symbolic constant has a value of 11.

FW_MATCH_KEY_PACKAGE_ID: This key matches the package ID condition of the queried object.
For schema versions 0x0200, 0x0201, and 0x020A, this value is invalid and MUST NOT be used.

This symbolic constant has a value of 12.

FW_MATCH_KEY_FQBN: This key matches the fully qualified binary name (FQBN) condition of the
queried object. For schema versions 0x0200 through 0x021A, this value is invalid and MUST NOT
be used. This symbolic constant has a value of 13.

FW_MATCH_KEY_COMPARTMENT_ID: This key matches the compartment ID condition of the
queried object. For schema versions 0x0200 through 0x021A, this value is invalid and MUST NOT
be used. This symbolic constant has a value of 14.

FW_MATCH_KEY_MAX: This value and values that exceed this value are not valid and MUST NOT

be used. It is defined for simplicity in writing IDL definitions and code. This symbolic constant has
a value of 15.

2.2.87 FW_DATA_TYPE

This enumeration describes the data types that this protocol uses in generic structures. It is currently
used only in section 2.2.88.

 typedef enum _tag_FW_DATA_TYPE
 {
 FW_DATA_TYPE_EMPTY,
 FW_DATA_TYPE_UINT8,
 FW_DATA_TYPE_UINT16,
 FW_DATA_TYPE_UINT32,
 FW_DATA_TYPE_UINT64,
 FW_DATA_TYPE_UNICODE_STRING
 } FW_DATA_TYPE;

FW_DATA_TYPE_EMPTY: The value SHOULD be empty and not used. This symbolic constant has a
value of zero.

FW_DATA_TYPE_UINT8: This data type is a UINT8, which is an 8-bit unsigned integer. This
symbolic constant has a value of 1.

105 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

FW_DATA_TYPE_UINT16: This data type is a UINT16, which is a 16-bit unsigned integer. This
symbolic constant has a value of 2.

FW_DATA_TYPE_UINT32: This data type is a UINT32, which is a 32-bit unsigned integer. This
symbolic constant has a value of 3.

FW_DATA_TYPE_UINT64: This data type is a UINT64, which is a 64-bit unsigned integer. This
symbolic constant has a value of 4.

FW_DATA_TYPE_UNICODE_STRING: This data type is a Unicode string. This symbolic constant
has a value of 5.

2.2.88 FW_MATCH_VALUE

This structure is used to generically store different data types.

 typedef struct _tag_FW_MATCH_VALUE {
 FW_DATA_TYPE type;
 [switch_type(FW_DATA_TYPE), switch_is(type)]
 union {
 [case(FW_DATA_TYPE_UINT8)]
 unsigned CHAR uInt8;
 [case(FW_DATA_TYPE_UINT16)]
 unsigned SHORT uInt16;
 [case(FW_DATA_TYPE_UINT32)]
 unsigned LONG uInt32;
 [case(FW_DATA_TYPE_UINT64)]
 unsigned __int64 uInt64;
 [case(FW_DATA_TYPE_UNICODE_STRING)]
 struct {
 [string, range(1,10001)] wchar_t* wszString;
 };
 [case(FW_DATA_TYPE_EMPTY)]
 ;
 };
 } FW_MATCH_VALUE;

type: This field identifies the data type that is stored in the structure.

uInt8: This field contains an 8-bit unsigned integer.

uInt16: This field contains a 16-bit unsigned integer.

uInt32: This field contains a 32-bit unsigned integer.

uInt64: This field contains a 64-bit unsigned integer.

wszString: This field contains a pointer to a Unicode string.

2.2.89 FW_MATCH_TYPE

This enumeration specifies how a match key is matched against an object.

 typedef enum _tag_FW_MATCH_TYPE
 {
 FW_MATCH_TYPE_TRAFFIC_MATCH = 0,
 FW_MATCH_TYPE_EQUAL = 1,
 FW_MATCH_TYPE_MAX = 2
 } FW_MATCH_TYPE;

106 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

FW_MATCH_TYPE_TRAFFIC_MATCH: The match operation evaluates to TRUE for all objects that
match the network traffic that is represented by the value matched against. This symbolic

constant has a value of 0.

FW_MATCH_TYPE_EQUAL: The match operation evaluates to TRUE for all objects that have a value

equal to the one matched against. This symbolic constant has a value of 1.

FW_MATCH_TYPE_MAX: This value and values that exceed this value are not valid and MUST NOT
be used. It is defined for simplicity in writing IDL definitions and code. This symbolic constant has
a value of 2.

2.2.90 FW_QUERY_CONDITION

This structure specifies a condition of a query. A condition can evaluate to TRUE or FALSE. It contains
a match key that identifies what to match, a match value that identifies what to match with, and a
match type that identifies how to match.

 typedef struct _tag_FW_QUERY_CONDITION {
 FW_MATCH_KEY matchKey;
 FW_MATCH_TYPE matchType;
 FW_MATCH_VALUE matchValue;
 } FW_QUERY_CONDITION,
 *PFW_QUERY_CONDITION;

matchKey: This field identifies what information to match.

matchType: This field identifies how to perform the match operation.

matchValue: This field identifies what to match with.

A query condition structure MUST pass the following semantics checks:

▪ The matchKey field MUST have a valid FW_MATCH_KEY value that is less than

FW_MATCH_KEY_MAX, MUST be a string of 1 or more characters, and MUST NOT be greater than
or equal to 255 characters.

▪ The matchType field MUST have a valid FW_MATCH_TYPE value that is less than

FW_MATCH_KEY_MAX.

▪ If the matchType field is equal to FW_MATH_TYPE_EQUAL, the matchKey field MUST be either
FW_MATCH_KEY_GROUP or FW_MATCH_KEY_DIRECTION.

▪ If the matchKey field is equal to FW_MATCH_KEY_PROFILE or FW_MATCH_KEY_STATUS, the
matchValue MUST have its type field equal to FW_DATA_TYPE_UINT32.

▪ If the matchKey field is equal to FW_MATCH_KEY_FILTERID, the matchValue MUST have its
type field equal to FW_DATA_TYPE_UINT64.

▪ If the matchKey field is equal to FW_MATCH_KEY_PROTOCOL, FW_MATCH_KEY_LOCAL_PORT, or
FW_MATCH_KEY_REMOTE_PORT; then the matchValue MUST have its type field equal to

FW_DATA_TYPE_UINT16.

▪ If the matchKey field is equal to FW_MATCH_KEY_OBJECTID, FW_MATCH_KEY_APP_PATH,
FW_MATCH_KEY_GROUP, or FW_MATCH_KEY_SVC_NAME; then the matchValue MUST have its
type field equal to FW_DATA_TYPE_UNICODE_STRING.

107 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

2.2.91 FW_QUERY_CONDITIONS

This structure is used to contain a number of FW_QUERY_CONDITION elements. This structure can
evaluate to either TRUE or FALSE. It evaluates to TRUE if all query condition elements evaluate to

TRUE; otherwise, it evaluates to FALSE.

 typedef struct _tag_FW_QUERY_CONDITIONS {
 unsigned LONG dwNumEntries;
 [size_is(dwNumEntries)] FW_QUERY_CONDITION* pAndedConditions;
 } FW_QUERY_CONDITIONS,
 *PFW_QUERY_CONDITIONS;

dwNumEntries: Specifies the number of query conditions that the structure contains.

pAndedConditions: A pointer to an array of FW_QUERY_CONDITIONS elements, which are all

logically AND'd together. The number of elements is given by dwNumEntries.

A query condition structure MUST pass the following semantic checks:

▪ If the dwNumEntries field is zero, the AndedConditions field MUST be NULL; and if the
dwNumEntries field is not zero, the AndedConditions field MUST NOT be NULL.

▪ If the AndedConditions field array has a FW_QUERY_CONDITION element with the matchKey
field equal to FW_MATCH_KEY_LOCAL_PORT or FW_MATCH_KEY_REMOTE_PORT at position N of

the array, the array MUST have another element whose matchKey field is equal to
FW_MATCH_KEY_PROTOCOL at position M, where M < N.

▪ All elements of the AndedConditions array MUST have valid FW_QUERY_CONDITION structures.

2.2.92 FW_QUERY

This structure is used to query objects from the store. The structure contains a number of
FW_QUERY_CONDITIONS elements. This structure can evaluate to either TRUE or FALSE. It evaluates

to TRUE if at least one of the query conditions containers evaluates to TRUE; otherwise, if all evaluate
to FALSE, it evaluates to FALSE.

 typedef struct _tag_FW_QUERY {
 unsigned SHORT wSchemaVersion;
 unsigned LONG dwNumEntries;
 [size_is(dwNumEntries)] FW_QUERY_CONDITIONS* ORConditions;
 FW_RULE_STATUS Status;
 } FW_QUERY,
 *PFW_QUERY;

wSchemaVersion: The schema version of the query object. The version MUST be at least 0x00020A.

dwNumEntries: This field specifies the number of query conditions containers that the structure
contains.

ORConditions: A pointer to an array of FW_QUERY_CONDITIONS elements, which are all logically
OR'd together. The number of elements is given by dwNumEntries.

Status: The status code of the query, as specified by the FW_RULE_STATUS enumeration. This field
is filled out when the structure is returned as output. On input, this field SHOULD be set to
FW_RULE_STATUS_OK.

The following are semantic checks that query object MUST pass:

▪ The wSchemaVersion MUST NOT be less than 0x00020A.

108 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

▪ If the dwNumEntries field is zero, the ORConditions field MUST be NULL, and if the
dwNumEntries field is not zero, the ORConditions field MUST NOT be NULL.

▪ The ORConditions field MUST have valid FW_QUERY_CONDITIONS elements.

▪ If the query object is used for querying connection security rules, it MUST NOT have any

conditions with matchKey equal to FW_MATCH_KEY_APP_PATH or FW_MATCH_KEY_SVC_NAME.

▪ If the query object is being used for querying main mode rules, it MUST NOT have any conditions
with matchKey equal to FW_MATCH_KEY_PROTOCOL, FW_MATCH_KEY_LOCAL_PORT,
FW_MATCH_KEY_REMOTE_PORT, FW_MATCH_KEY_GROUP, or FW_MATCH_KEY_DIRECTION, or
any of the match keys disallowed by connection security rules.

▪ If the query object is being used for querying authentication or cryptographic sets, it MUST NOT
have any conditions with matchKey equal to FW_MATCH_KEY_PROFILE or

FW_MATCH_KEY_FILTERID, or any of the match keys disallowed by main mode rules.

2.2.93 FW_POLICY_STORE_HANDLE

 typedef [context_handle] void* FW_POLICY_STORE_HANDLE;
 typedef [ref] FW_POLICY_STORE_HANDLE* PFW_POLICY_STORE_HANDLE;

This type is an RPC context handle. It is a handle to a policy store exposed by this protocol. This

handle is used to manage the policy contained in each store. Policy stores are identified by the
FW_STORE_TYPE enumeration.

2.2.94 FW_PRODUCT_HANDLE

This type is declared as follows:

 typedef [context_handle] void* FW_PRODUCT_HANDLE;

This type is an RPC context handle. It is a handle to the third-party software components that are
registered with the firewall and advanced security component which are exposed through this
protocol.

2.2.95 FW_KEY_MODULE

This enumeration defines the possible keying modules that the policy rule applies to.

 typedef enum
 {
 FW_KEY_MODULE_DEFAULT = 0,
 FW_KEY_MODULE_IKEv1 = 1,
 FW_KEY_MODULE_AUTHIP = 2,
 FW_KEY_MODULE_IKEv2 = 3,
 FW_KEY_MODULE_MAX = 4
 } FW_KEY_MODULE;

FW_KEY_MODULE_DEFAULT: This value represents the default keying modules. The default keying
modules are implementation-specific.<20>

FW_KEY_MODULE_IKEv1: This value represents a keying module implementing the Internet Key
Exchange (IKE) protocol as specified in [RFC2409].

109 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

FW_KEY_MODULE_AUTHIP: This value represents a keying module implementing the
Authenticated Internet protocol as specified in [MS-AIPS].

FW_KEY_MODULE_IKEv2: This value represents a keying module implementing the Internet Key
Exchange (IKEv2) protocol as specified in [RFC4306].

FW_KEY_MODULE_MAX: This value and values that exceed this value are not valid and MUST NOT
be used. It is defined to provide for simplicity when writing IDL definitions and code. This symbolic
constant has a value of 4.

2.2.96 FW_TRUST_TUPLE_KEYWORD

This enumeration represents flags that are used to identify trust tuples. The traffic corresponding to
these keywords changes dynamically and is tracked by the TrustTuples object (section 3.1.1). All the
flags supported by a given schema version can be combined.

 typedef enum _tag_FW_TRUST_TUPLE_KEYWORD_NONE
 {
 FW_TRUST_TUPLE_KEYWORD_NONE = 0x0000,
 FW_TRUST_TUPLE_KEYWORD_PROXIMITY = 0x0001,
 FW_TRUST_TUPLE_KEYWORD_PROXIMITY_SHARING = 0x0002,
 FW_TRUST_TUPLE_KEYWORD_WFD_PRINT = 0x0004,
 FW_TRUST_TUPLE_KEYWORD_WFD_DISPLAY = 0x0008,
 FW_TRUST_TUPLE_KEYWORD_WFD_DEVICES = 0x0010,
 FW_TRUST_TUPLE_KEYWORD_WFD_KM_DRIVER = 0x0020,
 FW_TRUST_TUPLE_KEYWORD_UPNP = 0x0040,
 FW_TRUST_TUPLE_KEYWORD_MAX = 0x0080,
 FW_TRUST_TUPLE_KEYWORD_MAX_V2_20 = 0x0004,
 FW_TRUST_TUPLE_KEYWORD_MAX_V2_26 = 0x0020
 } FW_TRUST_TUPLE_KEYWORD_NONE;

FW_TRUST_TUPLE_KEYWORD_NONE: This value means that none of the following flags are set.

It is defined for simplicity in writing IDL definitions and code.

FW_TRUST_TUPLE_KEYWORD_PROXIMITY: Represents all traffic matching a trust tuple in
theTrustTuples collection where IsProximity is true.

FW_TRUST_TUPLE_KEYWORD_PROXIMITY_SHARING: Represents all traffic matching a trust
tuple in the TrustTuples collection where IsProximitySharing is true.

FW_TRUST_TUPLE_KEYWORD_WFD_PRINT: Represents all traffic matching a trust tuple in the
TrustTuples collection where IsWFDPrint is true.

FW_TRUST_TUPLE_KEYWORD_WFD_DISPLAY: Represents all traffic matching a trust tuple in
the TrustTuples collection where IsWFDDevices is true.

FW_TRUST_TUPLE_KEYWORD_WFD_DEVICES: Represents all traffic matching a trust tuple in
the TrustTuples collection where IsWFDDevices is true.

FW_TRUST_TUPLE_KEYWORD_WFD_KM_DRIVER: Represents all traffic matching a trust tuple

in the TrustTuples collection, where IsWFDMaUsbWirelessDocking is true.

FW_TRUST_TUPLE_KEYWORD_UPNP: Represents all traffic that matches the UPnP tuple for
Secure Sockets interaction with Teredo.

FW_TRUST_TUPLE_KEYWORD_MAX: This value and values that exceed this value are not valid
and MUST NOT be used. It is defined for simplicity in writing IDL definitions and code. This
symbolic constant has a value of 80.<21>

110 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

FW_TRUST_TUPLE_KEYWORD_MAX_V2_20: This value and values that exceed this value are not
valid and MUST NOT be used by servers and clients with schema version 0x0214 and earlier. It is

defined for simplicity in writing IDL definitions and code. This symbolic constant has a value of 4.

FW_TRUST_TUPLE_KEYWORD_MAX_V2_26: This value and values that exceed this value are not

valid and MUST NOT be used by servers and clients with schema version 0x021A and earlier. It is
defined for simplicity in writing IDL definitions and code. This symbolic constant has a value of 20.

2.2.97 FW_RULE2_10

This structure represents a firewall rule that is used by the 2.10 binary version servers and clients
(see sections 1.7 and 2.2.41). The fields of this structure are identical to the FW_RULE structure and
its meanings are covered in section 2.2.36.

 typedef struct _tag_FW_RULE2_10 {
 struct _tag_FW_RULE2_10* pNext;
 unsigned short wSchemaVersion;
 [string, range(1, 10001), ref] wchar_t* wszRuleId;
 [string, range(1, 10001)] wchar_t* wszName;
 [string, range(1, 10001)] wchar_t* wszDescription;
 unsigned long dwProfiles;
 [range(FW_DIR_INVALID, FW_DIR_OUT)]
 FW_DIRECTION Direction;
 [range(0, 256)] unsigned short wIpProtocol;
 [switch_type(unsigned short), switch_is(wIpProtocol)]
 union {
 [case(6,17)]
 struct {
 FW_PORTS LocalPorts;
 FW_PORTS RemotePorts;
 };
 [case(1)]
 FW_ICMP_TYPE_CODE_LIST V4TypeCodeList;
 [case(58)]
 FW_ICMP_TYPE_CODE_LIST V6TypeCodeList;
 [default] ;
 };
 FW_ADDRESSES LocalAddresses;
 FW_ADDRESSES RemoteAddresses;
 FW_INTERFACE_LUIDS LocalInterfaceIds;
 unsigned long dwLocalInterfaceTypes;
 [string, range(1, 10001)] wchar_t* wszLocalApplication;
 [string, range(1, 10001)] wchar_t* wszLocalService;
 [range(FW_RULE_ACTION_INVALID, FW_RULE_ACTION_MAX)]
 FW_RULE_ACTION Action;
 unsigned short wFlags;
 [string, range(1, 10001)] wchar_t* wszRemoteMachineAuthorizationList;
 [string, range(1, 10001)] wchar_t* wszRemoteUserAuthorizationList;
 [string, range(1, 10001)] wchar_t* wszEmbeddedContext;
 FW_OS_PLATFORM_LIST PlatformValidityList;
 FW_RULE_STATUS Status;
 [range(FW_RULE_ORIGIN_INVALID, FW_RULE_ORIGIN_MAX)]
 FW_RULE_ORIGIN_TYPE Origin;
 [string, range(1, 10001)] wchar_t* wszGPOName;
 unsigned long Reserved;
 [size_is((Reserved & FW_OBJECT_CTRL_FLAG_INCLUDE_METADATA) ? 1 : 0)]
 PFW_OBJECT_METADATA pMetaData;
 } FW_RULE2_10,
 *PFW_RULE2_10;

2.2.98 FW_AUTH_SET_FLAGS

This enumeration represents flags that can be specified in authentication sets of section 2.2.64.

111 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

 typedef enum _tag_FW_AUTH_SET_FLAGS
 {
 FW_AUTH_SET_FLAGS_NONE = 0x00,
 FW_AUTH_SET_FLAGS_EMPTY = 0x01,
 FW_AUTH_SET_FLAGS_MAX = 0x02,
 FW_AUTH_SET_FLAGS_MAX_2_10 = 0x01
 } FW_AUTH_SET_FLAGS;

FW_AUTH_SET_FLAGS_NONE: This value means that none of the following flags are set. It is
defined for simplicity in writing IDL definitions and code.

FW_AUTH_SET_FLAGS_EMPTY: If this flag is set, the authentication set does not contain any
authentication suites. For schema versions 0x0200, 0x0201, and 0x020A, this value is invalid and
MUST NOT be used.

FW_AUTH_SET_FLAGS_MAX: This value and values that exceed this value are not valid and MUST

NOT be used. It is defined for simplicity in writing IDL definitions and code. This symbolic constant
has a value of 2.

FW_AUTH_SET_FLAGS_MAX_2_10: This value and values that exceed this value are not valid and
MUST NOT be used by servers and clients with schema version 0x020A and earlier. It is defined
for simplicity in writing IDL definitions and code. This symbolic constant has a value of 1.

2.2.99 FW_CRYPTO_SET_FLAGS

This enumeration represents flags that can be specified in crypto sets of section 2.2.73.

 typedef enum _tag_FW_CRYPTO_SET_FLAGS
 {
 FW_CRYPTO_SET_FLAGS_NONE = 0x00,
 FW_CRYPTO_SET_FLAGS_EMPTY = 0x01,
 FW_CRYPTO_SET_FLAGS_MAX = 0x02,
 FW_CRYPTO_SET_FLAGS_MAX_2_10 = 0x01
 } FW_CRYPTO_SET_FLAGS;

FW_CRYPTO_SET_FLAGS_NONE: This value means that none of the following flags are set. It is
defined for simplicity in writing IDL definitions and code.

FW_CRYPTO_SET_FLAGS_EMPTY: If this flag is set, the crypto set does not contain any crypto
suites. For schema versions 0x0200, 0x0201, and 0x020A, this value is invalid and MUST NOT be
used.

FW_CRYPTO_SET_FLAGS_MAX: This value and values that exceed this value are not valid and

MUST NOT be used. It is defined for simplicity in writing IDL definitions and code. This symbolic
constant has a value of 2.

FW_CRYPTO_SET_FLAGS_MAX_2_10: This value and values that exceed this value are not valid
and MUST NOT be used by servers and clients with schema version 0x020A and earlier. It is
defined for simplicity in writing IDL definitions and code. This symbolic constant has a value of 1.

2.2.100 FW_NETWORK_NAMES

The FW_NETWORK_NAMES structure represents a firewall rule that is used by the 2.24 binary version
servers and clients (see sections 1.7 and 2.2.41).

 typedef struct _tag_FW_NETWORK_NAMES {
 DWORD dwNumEntries;
 [string, unique, size_is(dwNumEntries,)]

112 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

 LPWSTR* wszNames;
 } FW_NETWORK_NAMES,
 *PFW_NETWORK_NAMES;

dwNumEntries: Specifies the number of network names in the wszNames array.

wszNames: An array of pointers to null-terminated Unicode strings representing the network DNS

suffix as specified in the network interface DNS suffix. Each pointer string MUST NOT be NULL ,
the string MUST NOT contain the pipe (|) character, MUST be a string at least 1 character long,
and MUST NOT be greater than or equal to 255 characters.

2.2.101 FW_RULE2_20

This structure represents a firewall rule that is used by the 2.20 binary version servers and clients
(see sections 1.7 and 2.2.41). The fields of this structure are identical to the FW_RULE structure and
their meanings are covered in section 2.2.36.

 typedef struct _tag_FW_RULE2_20 {
 struct _tag_FW_RULE* pNext;
 unsigned short wSchemaVersion;
 [string, range(1, 512), ref] wchar_t* wszRuleId;
 [string, range(1, 10001)] wchar_t* wszName;
 [string, range(1, 10001)] wchar_t* wszDescription;
 unsigned long dwProfiles;
 [range(FW_DIR_INVALID, FW_DIR_OUT)]
 FW_DIRECTION Direction;
 [range(0, 256)] unsigned short wIpProtocol;
 [switch_type(unsigned short), switch_is(wIpProtocol)]
 union {
 [case(6,17)]
 struct {
 FW_PORTS LocalPorts;
 FW_PORTS RemotePorts;
 };
 [case(1)]
 FW_ICMP_TYPE_CODE_LIST V4TypeCodeList;
 [case(58)]
 FW_ICMP_TYPE_CODE_LIST V6TypeCodeList;
 [default] ;
 };
 FW_ADDRESSES LocalAddresses;
 FW_ADDRESSES RemoteAddresses;
 FW_INTERFACE_LUIDS LocalInterfaceIds;
 unsigned long dwLocalInterfaceTypes;
 [string, range(1, 10001)] wchar_t* wszLocalApplication;
 [string, range(1, 10001)] wchar_t* wszLocalService;
 [range(FW_RULE_ACTION_INVALID, FW_RULE_ACTION_MAX)]
 FW_RULE_ACTION Action;
 unsigned short wFlags;
 [string, range(1, 10001)] wchar_t* wszRemoteMachineAuthorizationList;
 [string, range(1, 10001)] wchar_t* wszRemoteUserAuthorizationList;
 [string, range(1, 10001)] wchar_t* wszEmbeddedContext;
 FW_OS_PLATFORM_LIST PlatformValidityList;
 FW_RULE_STATUS Status;
 [range(FW_RULE_ORIGIN_INVALID, FW_RULE_ORIGIN_MAX)]
 FW_RULE_ORIGIN_TYPE Origin;
 [string, range(1, 10001)] wchar_t* wszGPOName;
 unsigned long Reserved;
 [size_is((Reserved & FW_OBJECT_CTRL_FLAG_INCLUDE_METADATA) ? 1 : 0)]
 PFW_OBJECT_METADATA pMetaData;
 [string, range(1, 10001)] WCHAR* wszLocalUserAuthorizationList;
 [string, range(1, 10001)] WCHAR* wszPackageId;
 [string, range(1, 10001)] WCHAR* wszLocalUserOwner;
 unsigned long dwTrustTupleKeywords;
 } FW_RULE2_20,

113 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

 *PFW_RULE2_20;

2.2.102 FW_RULE_FLAGS2

This enumeration represents flags that can be specified in firewall rules of section 2.2.36.

 typedef enum _tag_FW_RULE_FLAGS2
 {
 FW_RULE_FLAGS2_NONE = 0x0000,
 FW_RULE_FLAGS2_SYSTEMOS_ONLY = 0x0001,
 FW_RULE_FLAGS2_GAMEOS_ONLY = 0x0002,
 FW_RULE_FLAGS2_DEVMODE = 0x0004,
 FW_RULE_FLAGS_MAX_V2_26 = 0x0008,
 FW_RULE_FLAGS2_NOT_USED_VALUE_8 = 0x0008,
 FW_RULE_FLAGS2_EMPTY_REMOTENAME = 0x0010,
 FW_RULE_FLAGS2_NOT_REMOTENAME = 0x0020,
 FW_RULE_FLAGS2_NOT_USED_VALUE_64 = 0x0040,
 FW_RULE_FLAGS2_CALLOUT_AND_AUDIT = 0x0080,
 FW_RULE_FLAGS2_MAX = 0x0100
 }FW_RULE_FLAGS2;

FW_RULE_FLAGS2_NONE: This value means that none of the following flags are set. It is defined
for simplicity in writing IDL definitions and code.

FW_RULE_FLAGS2_SYSTEMOS_ONLY: This value is not used over the wire.

FW_RULE_FLAGS2_GAMEOS_ONLY: This value is not used over the wire.

FW_RULE_FLAGS2_DEVMODE: This value is not used over the wire.

FW_RULE_FLAGS_MAX_V2_26: This value and values that exceed this value are not valid and
MUST NOT be used by servers and clients with schema version 0x021A and earlier. It is defined
for simplicity in writing IDL definitions and code. This symbolic constant has a value of 0x0008.

FW_RULE_FLAGS2_NOT_USED_VALUE_8: This value is not used over the wire.

FW_RULE_FLAGS2_NOT_USED_VALUE_64: This value is not used.

FW_RULE_FLAGS2_CALLOUT_AND_AUDIT: Rules that specify this value will perform the indicated
action and will then record an audit event to validate that such an action occurred.<22>

FW_RULE_FLAGS2_MAX: This value and values that exceed this value are not valid and MUST NOT
be used. It is defined for simplicity in writing IDL definitions and code. This symbolic constant has
a value of 0x0100.

2.2.103 FW_RULE2_24

This structure represents a firewall rule that is used by the 2.24 binary version servers and clients
(see sections 1.7 and 2.2.41). Except as noted below, the fields of this structure are identical to the

FW_RULE structure and their meanings are covered in section 2.2.36.

 typedef struct _tag_FW_RULE2_24 {
 struct _tag_FW_RULE2_24* pNext;
 unsigned short wSchemaVersion;
 [string, range(1, 512), ref] wchar_t* wszRuleId;
 [string, range(1, 10001)] wchar_t* wszName;
 [string, range(1, 10001)] wchar_t* wszDescription;
 unsigned long dwProfiles;
 [range(FW_DIR_INVALID, FW_DIR_OUT)]
 FW_DIRECTION Direction;

114 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

 [range(0, 256)] unsigned short wIpProtocol;
 [switch_type(unsigned short), switch_is(wIpProtocol)]
 union {
 [case(6,17)]
 struct {
 FW_PORTS LocalPorts;
 FW_PORTS RemotePorts;
 };
 [case(1)]
 FW_ICMP_TYPE_CODE_LIST V4TypeCodeList;
 [case(58)]
 FW_ICMP_TYPE_CODE_LIST V6TypeCodeList;
 [default] ;
 };
 FW_ADDRESSES LocalAddresses;
 FW_ADDRESSES RemoteAddresses;
 FW_INTERFACE_LUIDS LocalInterfaceIds;
 unsigned long dwLocalInterfaceTypes;
 [string, range(1, 10001)] wchar_t* wszLocalApplication;
 [string, range(1, 10001)] wchar_t* wszLocalService;
 [range(FW_RULE_ACTION_INVALID, FW_RULE_ACTION_MAX)]
 FW_RULE_ACTION Action;
 unsigned short wFlags;
 [string, range(1, 10001)] wchar_t* wszRemoteMachineAuthorizationList;
 [string, range(1, 10001)] wchar_t* wszRemoteUserAuthorizationList;
 [string, range(1, 10001)] wchar_t* wszEmbeddedContext;
 FW_OS_PLATFORM_LIST PlatformValidityList;
 FW_RULE_STATUS Status;
 [range(FW_RULE_ORIGIN_INVALID, FW_RULE_ORIGIN_MAX)]
 FW_RULE_ORIGIN_TYPE Origin;
 [string, range(1, 10001)] wchar_t* wszGPOName;
 unsigned long Reserved;
 [size_is((Reserved & FW_OBJECT_CTRL_FLAG_INCLUDE_METADATA) ? 1 : 0)]
 PFW_OBJECT_METADATA pMetaData;
 [string, range(1, 10001)] WCHAR* wszLocalUserAuthorizationList;
 [string, range(1, 10001)] WCHAR* wszPackageId;
 [string, range(1, 10001)] WCHAR* wszLocalUserOwner;
 unsigned long dwTrustTupleKeywords;
 FW_NETWORK_NAMES OnNetworkNames;
 [string, range(1, 10001)] WCHAR* wszSecurityRealmId;
 } FW_RULE2_24,
 *PFW_RULE2_24;

2.2.104 FW_RULE2_25

This structure represents a firewall rule that is used by the 2.25 binary version servers and clients
(see sections 1.7 and 2.2.41). The fields of this structure are identical to the FW_RULE structure and
their meanings are covered in section 2.2.36.

 typedef struct _tag_FW_RULE2_25 {
 struct _tag_FW_RULE* pNext;
 unsigned short wSchemaVersion;
 [string, range(1, 10001), ref] wchar_t* wszRuleId;
 [string, range(1, 10001)] wchar_t* wszName;
 [string, range(1, 10001)] wchar_t* wszDescription;
 unsigned long dwProfiles;
 [range(FW_DIR_INVALID, FW_DIR_OUT)]
 FW_DIRECTION Direction;
 [range(0, 256)] unsigned short wIpProtocol;
 [switch_type(unsigned short), switch_is(wIpProtocol)]
 union {
 [case(6,17)]
 struct {
 FW_PORTS LocalPorts;
 FW_PORTS RemotePorts;
 };

115 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

 [case(1)]
 FW_ICMP_TYPE_CODE_LIST V4TypeCodeList;
 [case(58)]
 FW_ICMP_TYPE_CODE_LIST V6TypeCodeList;
 [default] ;
 };
 FW_ADDRESSES LocalAddresses;
 FW_ADDRESSES RemoteAddresses;
 FW_INTERFACE_LUIDS LocalInterfaceIds;
 unsigned long dwLocalInterfaceTypes;
 [string, range(1, 10001)] wchar_t* wszLocalApplication;
 [string, range(1, 10001)] wchar_t* wszLocalService;
 [range(FW_RULE_ACTION_INVALID, FW_RULE_ACTION_MAX)]
 FW_RULE_ACTION Action;
 unsigned short wFlags;
 [string, range(1, 10001)] wchar_t* wszRemoteMachineAuthorizationList;
 [string, range(1, 10001)] wchar_t* wszRemoteUserAuthorizationList;
 [string, range(1, 10001)] wchar_t* wszEmbeddedContext;
 FW_OS_PLATFORM_LIST PlatformValidityList;
 FW_RULE_STATUS Status;
 [range(FW_RULE_ORIGIN_INVALID, FW_RULE_ORIGIN_MAX)]
 FW_RULE_ORIGIN_TYPE Origin;
 [string, range(1, 10001)] wchar_t* wszGPOName;
 unsigned long Reserved;
 [size_is((Reserved & FW_OBJECT_CTRL_FLAG_INCLUDE_METADATA) ? 1 : 0)]
 PFW_OBJECT_METADATA pMetaData;
 [string, range(1, 10001)] WCHAR* wszLocalUserAuthorizationList;
 [string, range(1, 10001)] WCHAR* wszPackageId;
 [string, range(1, 10001)] WCHAR* wszLocalUserOwner;
 Unsigned long dwTrustTupleKeywords;
 FW_NETWORK_NAMES OnNetworkNames;
 [string, range(1, 10001)] WCHAR* wszSecurityRealmId;
 unsigned short wFlags2;
 } FW_RULE2_25,
 *PFW_RULE2_25;

2.2.105 FW_RULE2_26

This structure represents a firewall rule that is used by 2.26 binary policy version servers and clients
(section 1.7 and section 2.2.41). Definitions for the FW_RULE2_26 structure fields are described in
section 2.2.36.

 typedef struct _tag_FW_RULE2_26 {
 struct _tag_FW_RULE* pNext;
 unsigned short wSchemaVersion;
 [string, range(1, 10001), ref] wchar_t* wszRuleId;
 [string, range(1, 10001)] wchar_t* wszName;
 [string, range(1, 10001)] wchar_t* wszDescription;
 unsigned long dwProfiles;
 [range(FW_DIR_INVALID, FW_DIR_OUT)]
 FW_DIRECTION Direction;
 [range(0, 256)] unsigned short wIpProtocol;
 [switch_type(unsigned short), switch_is(wIpProtocol)]
 union {
 [case(6,17)]
 struct {
 FW_PORTS LocalPorts;
 FW_PORTS RemotePorts;
 };
 [case(1)]
 FW_ICMP_TYPE_CODE_LIST V4TypeCodeList;
 [case(58)]
 FW_ICMP_TYPE_CODE_LIST V6TypeCodeList;
 [default] ;
 };
 FW_ADDRESSES LocalAddresses;

116 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

 FW_ADDRESSES RemoteAddresses;
 FW_INTERFACE_LUIDS LocalInterfaceIds;
 unsigned long dwLocalInterfaceTypes;
 [string, range(1, 10001)] wchar_t* wszLocalApplication;
 [string, range(1, 10001)] wchar_t* wszLocalService;
 [range(FW_RULE_ACTION_INVALID, FW_RULE_ACTION_MAX)]
 FW_RULE_ACTION Action;
 unsigned short wFlags;
 [string, range(1, 10001)] wchar_t* wszRemoteMachineAuthorizationList;
 [string, range(1, 10001)] wchar_t* wszRemoteUserAuthorizationList;
 [string, range(1, 10001)] wchar_t* wszEmbeddedContext;
 FW_OS_PLATFORM_LIST PlatformValidityList;
 FW_RULE_STATUS Status;
 [range(FW_RULE_ORIGIN_INVALID, FW_RULE_ORIGIN_MAX)]
 FW_RULE_ORIGIN_TYPE Origin;
 [string, range(1, 10001)] wchar_t* wszGPOName;
 unsigned long Reserved;
 [size_is((Reserved & FW_OBJECT_CTRL_FLAG_INCLUDE_METADATA) ? 1 : 0)]
 PFW_OBJECT_METADATA pMetaData;
 [string, range(1, 10001)] WCHAR* wszLocalUserAuthorizationList;
 [string, range(1, 10001)] WCHAR* wszPackageId;
 [string, range(1, 10001)] WCHAR* wszLocalUserOwner;
 Unsigned long dwTrustTupleKeywords;
 FW_NETWORK_NAMES OnNetworkNames;
 [string, range(1, 10001)] WCHAR* wszSecurityRealmId;
 unsigned short wFlags2;
 FW_NETWORK_NAMES RemoteOutServerNames;
 } FW_RULE2_26,

*PFW_RULE2_26;

117 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

3 Protocol Details

The client side of this protocol is simply a pass-through. That is, there are no additional timers or
other states required on the client side of this protocol. Calls made by the higher-layer protocol or
application are passed directly to the transport, and the results returned by the transport are passed
directly back to the higher-layer protocol or application.

3.1 Server Details

3.1.1 Abstract Data Model

This section describes a conceptual model of possible data organization that an implementation
maintains to participate in this protocol. The described organization is provided to facilitate the
explanation of how the protocol behaves. This document does not mandate that implementations
adhere to this model as long as their external behavior is consistent with what is described in this
document.

GlobalConfiguration: A table of policy configuration options where each entry contains:

▪ GlobalOptionType: This identifies the global option type. The global option types supported by
this protocol are defined by the data type FW_GLOBAL_CONFIG (section 2.2.41).

▪ GlobalOptionValue: This contains the current value for this global option type. See
FW_GLOBAL_CONFIG (section 2.2.41) for details about the data type used to represent each
global option type.

ProfileConfiguration: A table of policy configuration options that apply to a single profile where each
entry contains:

▪ ProfileOptionType: This identifies the profile option type. The profile option types supported by
this protocol are defined by the data type FW_PROFILE_CONFIG (section 2.2.37).

▪ ProfileOptionValue: This contains the current value for this profile option type. See
FW_PROFILE_CONFIG (section 2.2.37) for details about the data type used to represent each
profile option type.

ProfileConfigurationTable: This is a table of the ProfileConfiguration objects for each profile type,

where each entry contains:

▪ ProfileType: This identifies the profile to which the configuration applies. The profile types
supported by this protocol are defined by the data type FW_PROFILE_TYPE (section 2.2.2). This
table only contains entries for the domain, private, and public profiles.

▪ ProfileConfiguration: This contains the configuration options for that profile.

FirewallRule: This describes a firewall rule, which is defined in this protocol by the data type
FW_RULE (section 2.2.36).

FirewallRules: A set of FirewallRule objects.

AuthenticationSet: This describes an authentication set, which is defined in this protocol by the data
type FW_AUTH_SET (section 2.2.64). This object contains two additional properties:

▪ IsAuthPrimary: A Boolean value indicating that this is a primary set. The Phase 1 and Phase 2
primary authentication sets are identified by well-known set IDs as specified in section 2.2.64.
Note that the value of this property can always be derived from the set ID; it is described
separately solely for convenience.

118 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Primary authentication sets differ from other authentication sets in that they are guaranteed to
exist in the GroupPolicyRSoPStore and the LocalStore. If the administrator does not explicitly

add the primary sets, the server initializes them to default values. See section 3.1.3 for details.

Although this protocol imposes no limitations on how administrators use the primary

authentication sets, the intent is to decouple management of authentication settings from
management of connection security and main mode rules. In this model, most rules do not use
unique authentication sets, but instead reference the primary sets.

▪ IsAuthConfigured: A Boolean value indicating that this set was configured by an administrator
rather than initialized to hard-coded values. This property MUST be ignored if IsAuthPrimary is
false.

AuthenticationSets: A set of AuthenticationSet objects.

CryptoSet: This describes a crypto set, which is defined in this protocol by the data type
FW_CRYPTO_SET (section 2.2.73). This object contains two additional properties:

▪ IsCryptoPrimary: A Boolean value indicating that this is a primary set. The Phase 1 and Phase 2

primary crypto sets are identified by well-known set IDs as specified in section 2.2.73. Note that
the value of this property can always be derived from the set ID; it is described separately solely
for convenience.

Primary crypto sets differ from other crypto sets in that they are guaranteed to exist in the
GroupPolicyRSoPStore and the LocalStore. If the administrator does not explicitly add the
primary sets, the server initializes them to default values. See section 3.1.3 for details.

Although this protocol imposes no limitations on how administrators use the primary crypto sets,
the intent is to decouple management of crypto settings from management of connection security
rules. In this model, most rules do not use unique crypto sets, but instead reference the primary
sets.

▪ IsCryptoConfigured: A Boolean value indicating this set was configured by an administrator
rather than initialized to default values by the server. This property MUST be ignored if

IsCryptoPrimary is false.

CryptoSets: A set of CryptoSet objects.

ConnectionSecurityRule: This describes a connection security rule, which is defined in this protocol
by the data type FW_CS_RULE (section 2.2.54). A ConnectionSecurityRule contains references to
AuthenticationSet and CryptoSet objects in the store.

ConnectionSecurityRules: A set of ConnectionSecurityRule objects.

MainModeRule: A main mode rule, which is defined in this protocol by the data type
FW_MM_RULE (section 2.2.84). A MainModeRule contains a reference to an AuthenticationSet in
the store.

MainModeRules: A set of MainModeRule objects.

PolicyStore: This represents a collection of policy settings. A PolicyStore contains a single instance

of each of the following objects:

▪ GlobalConfiguration

▪ ProfileConfigurationTable

▪ FirewallRules

▪ AuthenticationSets

119 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

▪ CryptoSets

▪ ConnectionSecurityRules

▪ MainModeRules

PolicyStoreConnection: This represents a client connection to a PolicyStore. It maintains the

association between the RPC connection and the PolicyStore being managed. It contains the
following fields:

▪ StoreType: The type of store being managed, which is defined in this protocol by the data type
FW_STORE_TYPE (section 2.2.1). This value MUST be FW_STORE_TYPE_GP_RSOP,
FW_STORE_TYPE_LOCAL, FW_STORE_TYPE_DYNAMIC, or FW_STORE_TYPE_DEFAULTS.

▪ BinaryVersion: An unsigned integer representing the binary version of the RPC interface used by
the client. This value MUST be a valid Protocol Version (see section 1.7).

PortInUse: This represents an Internet Protocol transport layer port that is currently in use by an
endpoint on the local computer. It contains the following fields:

▪ AddressFamily: The address family of the endpoint. This MUST be IPv4 or IPv6.

▪ TransportProtocol: The transport protocol used by the endpoint. This MUST be TCP or UDP.

▪ PortNumber: The port number used by the transport protocol. This MUST be an integer in the
range of 1 to 65535 inclusive.

▪ IsDynamicRPC: A Boolean value indicating that the port is in use by an RPC server, and that the
port was randomly selected at runtime.

▪ IsRPCEndpointMapper: A Boolean value indicating that the port is in use by the RPC endpoint
mapper.

▪ IsTeredo: A Boolean value indicating that the port is in use by Teredo.

▪ IsIPTLSIn: A Boolean value indicating that the port is in use for inbound IP-TLS connections.

▪ IsIPTLSOut: A Boolean value indicating that the port is in use for outbound IP-TLS connections.

▪ NATTraversalRequested: A Boolean value indicating that the application that created the
endpoint is designed to take advantage of IPv6 NAT traversal capabilities (Teredo, for example).

PortsInUse: A set of PortInUse objects. The contents of the PortsInUse collection are determined
solely through the AddPortInUse (section 3.1.6.1) and DeletePortInUse (section 3.1.6.2) abstract
interfaces.

TrustTuple: This describes Internet Protocol transport layer traffic that is currently being sent or
received by an endpoint on the local computer. It contains the following fields:

▪ AddressFamily: The address family of the traffic. This MUST be IPv4 or IPv6.

▪ TransportProtocol: The transport protocol used by the traffic. This MUST be TCP or UDP.

▪ LocalAddress: The local IPv4 or IPv6 address of the traffic.

▪ RemoteAddress: The remote IPv4 or IPv6 address of the traffic.

▪ LocalPortNumber: The local port number used by the transport protocol. This MUST be an
integer in the range of 1 to 65535 inclusive.

▪ RemotePortNumber: The remote port number used by the transport protocol. This MUST be an
integer in the range of 1 to 65535 inclusive.

120 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

▪ IsProximity: A Boolean value indicating that the remote endpoint is located in close physical
proximity to the local computer.

▪ IsProximitySharing: A Boolean value indicating that the traffic is used to share data with a
remote endpoint located in close physical proximity to the local computer.

▪ IsWFDPrint: A Boolean value indicating that the traffic is used to send data to a printer over Wi-
Fi Direct.

▪ IsWFDDisplay: A Boolean value indicating that the traffic is used to mirror or extend the local
computer screen with a display device over Wi-Fi Direct.

▪ IsWFDDevices: A Boolean value indicating that the traffic is used to send data to a device over
Wi-Fi Direct.

▪ IsWFDMaUsbWirelessDocking: A Boolean value indicating that the traffic is used to send data

in Media Agnostic USB for Wireless Docking scenarios.

TrustTuples: A set of TrustTuple objects. The contents of the TrustTuples collection are

determined solely through the AddTrustTuple (section 3.1.6.7) and DeleteTrustTuple (section 3.1.6.8)
abstract interfaces.

MSFASPServer: This represents the state maintained by a server that implements this protocol. It
contains multiple instances of PolicyStore. These instances are identified by the data type

FW_STORE_TYPE (section 2.2.1). The server maintains the following objects:

▪ GroupPolicyRSoPStore: An instance of PolicyStore corresponding to
FW_STORE_TYPE_GP_RSOP. The state of this object MUST be maintained in persistent storage.

▪ LocalStore: An instance of PolicyStore corresponding to FW_STORE_TYPE_LOCAL. The state of
this object MUST be maintained in persistent storage.

▪ DynamicStore: An instance of PolicyStore corresponding to FW_STORE_TYPE_DYNAMIC.

▪ DefaultsStore: An instance of PolicyStore corresponding to FW_STORE_TYPE_DEFAULTS. The

state of this object MUST be maintained in persistent storage. The name DefaultsStore was
chosen to maintain consistent naming between the ADM and the data types and operations
defined in this protocol. However, this element is not used to store default settings in the
traditional sense. Instead, it is used to store a known good configuration for the LocalStore. The
administrator can explicitly revert the LocalStore to these settings by invoking
RRPC_FWRestoreDefaults (section 3.1.4.3). Otherwise, the contents of this store are ignored.

▪ PortsInUse: This represents the set of all PortInUse objects managed by the server. Elements

are added and deleted from this set through the abstract interfaces AddPortInUse and
DeletePortInUse.

▪ TrustTuples: This represents the set of all TrustTuple objects managed by the server. Elements
are added and deleted from this set through the abstract interfaces AddTrustTuple and
DeleteTrustTuple.

3.1.2 Timers

No protocol timer events are required on the server side other than the timers required by the
underlying RPC transport, as specified in [MS-RPCE].

3.1.3 Initialization

The server initializes when the server host machine starts. The server MUST restore the state of the
GroupPolicyRSoPStore, the LocalStore, and the DefaultsStore from persistent storage. The order

121 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

in which the stores are loaded does not matter. The PortsInUse collection and the TrustTuples
collection MUST be initialized to an empty set.

The server MUST ensure that LocalStore and GroupPolicyRSoPStore contain the Phase 1 and
Phase 2 primary AuthenticationSet objects. If either of the primary sets is missing, the server MUST

create a new instance and set the corresponding IsAuthConfigured property to false. The values
used to initialize the new instances are implementation-specific.<23>

The server MUST ensure that LocalStore and GroupPolicyRSoPStore contain the Phase 1 and
Phase 2 primary CryptoSet objects. If either of the primary sets is missing, the server MUST create a
new instance and set the corresponding IsCryptoConfigured property to false. The values used to
initialize the new instances are implementation-specific.<24>

The server MUST merge GroupPolicyRSoPStore and LocalStore and use the result to initialize

DynamicStore. The merge logic is as follows:

▪ For the GlobalConfiguration and ProfileConfiguration options, if an option is configured in only
one store, that value MUST be used. If an option is configured in neither store, the option MUST

be initialized to an implementation-specific<25> default value. If an option is configured in both
stores, the values MUST be merged according to the merge law for that option. The merge laws
for GlobalConfiguration and ProfileConfiguration options are specified in sections 2.2.41 and

2.2.37 respectively.

▪ For FirewallRules, ConnectionSecurityRules, and MainModeRules, all the rules from both
stores MUST be combined and added to DynamicStore.

▪ For AuthenticationSets, if a primary set in GroupPolicyRSoPStore has IsAuthConfigured set
to true, that set MUST be added to DynamicStore and the corresponding set in LocalStore
MUST be ignored. Otherwise, the primary set from LocalStore MUST be used. For all other sets
(that is, the sets where IsAuthPrimary is false), the sets from both stores MUST be combined

and added to DynamicStore.

▪ For CryptoSets, if a primary set in GroupPolicyRSoPStore has IsCryptoConfigured set to
true, that set MUST be added to DynamicStore and the corresponding set in LocalStore MUST

be ignored. Otherwise, the primary set from LocalStore MUST be used. For all other sets (that is,
the sets where IsCryptoPrimary is false), the sets from both stores MUST be combined and
added to DynamicStore.

After the merge is complete, the server MUST invoke the abstract interface

SetEffectiveFirewallPolicy (section 3.1.6.6) with the contents of DynamicStore. It MUST register the
RPC interface and begin listening on the RPC endpoint as specified in section 2.1.

3.1.4 Message Processing Events and Sequencing Rules

This protocol MUST indicate to the RPC runtime that it is to perform a strict Network Data
Representation (NDR) data consistency check at target level 6.0, as specified in [MS-RPCE].

This protocol MUST indicate to the RPC runtime, via the strict_context_handle attribute, that it is to
reject the use of context handles that are created by using a different method of RPC interface than
this one, as specified in [MS-RPCE] section 3.

Because the server makes access control decisions as part of message processing, the client MUST
authenticate to the server as specified in section 2.1. The server MUST verify that the client is

authorized to perform the requested operation. The server MUST retrieve the client's identity token by
invoking the abstract interface GetRpcImpersonationAccessToken() as specified in [MS-RPCE] section
3.3.3.4.3.1. The server implementation maintains a list of authorized clients. The protocol has no
methods for reading or setting that list. If the client invoking the method is not on the authorized list,
the server MUST fail the call and return an error code of ERROR_ACCESS_DENIED (5).<26>

122 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Methods in RPC Opnum Order

Method Description

RRPC_FWOpenPolicyStore This method requests the server to open a specified policy store.

Opnum: 0

RRPC_FWClosePolicyStore This method receives an opened store handle and closes it,
freeing any resources that were allocated by the server-to-server
operations on the opened store.

Opnum: 1

RRPC_FWRestoreDefaults This method erases the local policy store and replaces it with the
default policy that the server host had out of the box after
installation. After the method returns, the local store contains
exactly the same policy as it did after installation.

Opnum: 2

RRPC_FWGetGlobalConfig This method retrieves the value of a global policy configuration
option. The client specifies to the server from what store this
value MUST be retrieved and in what specific configuration option
it is interested.

Opnum: 3

RRPC_FWSetGlobalConfig This method modifies the value of a global policy configuration
option. The client specifies to the server in what store this value
MUST be written and what specific configuration option it is

interested in modifying.

Opnum: 4

RRPC_FWAddFirewallRule This method requests the server to add the specified firewall rule
in the policy contained in the policy store that is referenced by
the specified opened policy store handle.

Opnum: 5

RRPC_FWSetFirewallRule This method requests the server to modify the specified firewall
rule in the policy contained in the policy store that is referenced
by the specified opened policy store handle.

Opnum: 6

RRPC_FWDeleteFirewallRule This method requests the server to delete the specified firewall
rule in the policy contained in the policy store that is referenced
by the specified opened policy store handle.

Opnum: 7

RRPC_FWDeleteAllFirewallRules This method deletes all firewall rules in the firewall linked list of
the memory representation of the store being modified.

Opnum: 8

RRPC_FWEnumFirewallRules This method requests the server to return all the firewall rules
contained in the store that is referenced by the hPolicyStore
handle. The method returns a linked list of all the firewall rule
objects.

Opnum: 9

RRPC_FWGetConfig This method retrieves the value of a profile configuration option.
The client specifies to the server from what store and profile this
value MUST be retrieved and in what specific configuration option
it is interested.

Opnum: 10

123 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Method Description

RRPC_FWSetConfig This method modifies the value of a profile configuration option.
The client specifies to the server in what store and profile this
value MUST be written and what specific configuration option it is
interested in modifying.

Opnum: 11

RRPC_FWAddConnectionSecurityRule This method requests the server to add the connection security
rule in the policy contained in the policy store that is referenced
by the specified opened policy store handle.

Opnum: 12

RRPC_FWSetConnectionSecurityRule This method requests the server to modify the specified
connection security rule in the policy contained in the policy store

that is referenced by the specified opened policy store handle.

Opnum: 13

RRPC_FWDeleteConnectionSecurityRule This method requests the server to delete the specified
connection security rule in the policy contained in the policy store
that is referenced by the specified opened policy store handle.

Opnum: 14

RRPC_FWDeleteAllConnectionSecurityRules This method requests the server to delete all the connection
security rules in the policy contained in the policy store that is
referenced by the specified opened policy store handle.

Opnum: 15

RRPC_FWEnumConnectionSecurityRules This method requests the server to return all the connection
security rules contained in the store that is referenced by the
hPolicyStore handle. The method returns a linked list of all the
connection security rule objects.

Opnum: 16

RRPC_FWAddAuthenticationSet This method requests the server to add the authentication set in
the policy contained in the policy store that is referenced by the
specified opened policy store handle.

Opnum: 17

RRPC_FWSetAuthenticationSet This method requests the server to modify the specified
authentication set in the policy contained in the policy store that
is referenced by the specified opened policy store handle.

Opnum: 18

RRPC_FWDeleteAuthenticationSet This method requests the server to delete the specified
authentication set in the policy contained in the policy store that
is referenced by the specified opened policy store handle.

Opnum: 19

RRPC_FWDeleteAllAuthenticationSets This method requests the server to delete all the authentication
sets of a specific IPsec phase in the policy contained in the policy
store that is referenced by the specified opened policy store

handle.

Opnum: 20

RRPC_FWEnumAuthenticationSets This method requests the server to return all the authentication
sets of the specified IPsec phase contained in the store that is
referenced by the hPolicyStore handle. The method returns a
linked list of these objects.

Opnum: 21

124 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Method Description

RRPC_FWAddCryptoSet This method adds a cryptographic set in the cryptographic linked
list of the memory representation of the store being modified.

Opnum: 22

RRPC_FWSetCryptoSet This method requests the server to modify the specified
cryptographic set in the policy contained in the policy store that is
referenced by the specified opened policy store handle.

Opnum: 23

RRPC_FWDeleteCryptoSet This method requests the server to delete the specified
cryptographic set in the policy contained in the policy store that is
referenced by the specified opened policy store handle.

Opnum: 24

RRPC_FWDeleteAllCryptoSets This method requests the server to delete all the cryptographic
sets of a specific IPsec phase in the policy contained in the policy
store that is referenced by the specified opened policy store
handle.

Opnum: 25

RRPC_FWEnumCryptoSets This method requests the server to return all the cryptographic
sets of the specified IPsec phase contained in the store that is
referenced by the hPolicyStore handle. The method returns a
linked list of all these cryptographic objects.

Opnum: 26

RRPC_FWEnumPhase1SAs This method requests the server to return all the security
associations of the IPsec first-negotiation phase contained in the
store that is referenced by the hPolicyStore handle. The method
returns a linked list of all these security associations.

Opnum: 27

RRPC_FWEnumPhase2SAs This method requests the server to return all the security
associations of the IPsec second-negotiation phase contained in
the store that is referenced by the hPolicyStore handle. The
method returns a linked list of all these security associations.

Opnum: 28

RRPC_FWDeletePhase1SAs This method requests the server to delete all the IPsec first
negotiation phase security associations that match the specified
endpoints.

Opnum: 29

RRPC_FWDeletePhase2SAs This method requests the server to delete all the IPsec second
negotiation phase security associations that match the specified
endpoints.

Opnum: 30

RRPC_FWEnumProducts This method requests the server to return all the registered third-
party software components registered with the firewall and

advanced security component.

Opnum: 31

RRPC_FWAddMainModeRule This method requests the server to add the main mode rule in the
policy contained in the policy store that is referenced by the
specified opened policy store handle.

Opnum: 32

RRPC_FWSetMainModeRule This method requests the server to modify the specified main

125 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Method Description

mode rule in the policy contained in the policy store that is
referenced by the specified opened policy store handle.

Opnum: 33

RRPC_FWDeleteMainModeRule This method requests the server to delete the specified main
mode rule in the policy contained in the policy store that is
referenced by the specified opened policy store handle.

Opnum: 34

RRPC_FWDeleteAllMainModeRules This method requests the server to delete all the main mode rules
in the policy contained in the policy store that is referenced by
the specified opened policy store handle.

Opnum: 35

RRPC_FWEnumMainModeRules This method requests the server to return all the main mode
rules contained in the store that is referenced by the hPolicyStore
handle. The method returns a linked list of all the main mode rule
objects.

Opnum: 36

RRPC_FWQueryFirewallRules This method requests the server to return all the firewall rules
that match the specified query object contained in the store that
is referenced by the hPolicyStore handle. The method returns a
linked list of all the firewall rule objects.

Opnum: 37

RRPC_FWQueryConnectionSecurityRules This method requests the server to return all the connection
security rules that match the specified query object contained in
the store that is referenced by the hPolicyStore handle. The
method returns a linked list of all the connection security rule
objects.

Opnum: 38

RRPC_FWQueryMainModeRules This method requests the server to return all the main mode
rules that match the specified query object contained in the store
that is referenced by the hPolicyStore handle. The method returns
a linked list of all the main mode rule objects.

Opnum: 39

RRPC_FWQueryAuthenticationSets This method requests the server to return all the authentication
sets that match the specified query object contained in the store
that is referenced by the hPolicyStore handle. The method returns
a linked list of all the authentication set objects.

Opnum: 40

RRPC_FWQueryCryptoSets This method requests the server to return all the crypto sets that
match the specified query object contained in the store that is
referenced by the hPolicyStore handle. The method returns a
linked list of all the crypto set objects.

Opnum: 41

RRPC_FWEnumNetworks This method requests the server to return all the networks to
which the host that has the firewall and advanced security
component is connected.

Opnum: 42

RRPC_FWEnumAdapters This method requests the server to return all the network
interfaces that are used by the host that has the firewall and
advanced security component.

126 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Method Description

Opnum: 43

RRPC_FWGetGlobalConfig2_10 This method retrieves the value of a global policy configuration
option. The client specifies to the server from what store this
value MUST be retrieved and in what specific configuration option
it is interested.

Opnum: 44

RRPC_FWGetConfig2_10 This method retrieves the value of a profile configuration option.
The client specifies to the server from what store and profile this
value MUST be retrieved and in what specific configuration option
it is interested.

Opnum: 45

RRPC_FWAddFirewallRule2_10 This method requests the server to add the specified firewall rule
in the policy contained in the policy store that is referenced by
the specified opened policy store handle.

Opnum: 46

RRPC_FWSetFirewallRule2_10 This method requests the server to modify the specified firewall
rule in the policy contained in the policy store that is referenced
by the specified opened policy store handle.

Opnum: 47

RRPC_FWEnumFirewallRules2_10 This method requests the server to return all the firewall rules
contained in the store that is referenced by the hPolicyStore
handle. The method returns a linked list of all the firewall rule
objects.

Opnum: 48

RRPC_FWAddConnectionSecurityRule2_10 This method requests the server to add the connection security
rule in the policy contained in the policy store that is referenced
by the specified opened policy store handle.

Opnum: 49

RRPC_FWSetConnectionSecurityRule2_10 This method requests the server to modify the specified
connection security rule in the policy contained in the policy store
that is referenced by the specified opened policy store handle.

Opnum: 50

RRPC_FWEnumConnectionSecurityRules2_10 This method requests the server to return all the connection
security rules contained in the store that is referenced by the
hPolicyStore handle. The method returns a linked list of all the
connection security rule objects.

Opnum: 51

RRPC_FWAddAuthenticationSet2_10 This method requests the server to add the authentication set in
the policy contained in the policy store that is referenced by the
specified opened policy store handle.

Opnum: 52

RRPC_FWSetAuthenticationSet2_10 This method requests the server to modify the specified
authentication set in the policy contained in the policy store that
is referenced by the specified opened policy store handle.

Opnum: 53

RRPC_FWEnumAuthenticationSets2_10 This method requests the server to return all the authentication
sets of the specified IPsec phase contained in the store that is
referenced by the hPolicyStore handle. The method returns a
linked list of these objects.

127 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Method Description

Opnum: 54

RRPC_FWAddCryptoSet2_10 This method adds a cryptographic set in the cryptographic linked
list of the memory representation of the store being modified.

Opnum: 55

RRPC_FWSetCryptoSet2_10 This method requests the server to modify the specified
cryptographic set in the policy contained in the policy store that is
referenced by the specified opened policy store handle.

Opnum: 56

RRPC_FWEnumCryptoSets2_10 This method requests the server to return all the cryptographic
sets of the specified IPsec phase that is contained in the store
that is referenced by the hPolicyStore handle. The method returns
a linked list of all these cryptographic objects.

Opnum: 57

RRPC_FWAddConnectionSecurityRule2_20 This method requests the server to add the specified connection
security rule in the policy contained in the policy store that is
referenced by the handle specified in the hPolicyStore parameter.

Opnum: 58

RRPC_FWSetConnectionSecurityRule2_20 This method requests the server to modify the specified
connection security rule in the policy contained in the policy store
that is referenced by the handle specified in the hPolicyStore
parameter.

Opnum: 59

RRPC_FWEnumConnectionSecurityRules2_20 This method requests the server to return all the connection
security rules contained in the store that is referenced by the
hPolicyStore handle.

Opnum: 60

RRPC_FWQueryConnectionSecurityRules2_20 This method requests the server to return all the connection
security rules that match the specified query object that are
contained in the store that is referenced by the hPolicy handle.

Opnum: 61

RRPC_FWAddAuthenticationSet2_20 This method requests the server to add the authentication set in
the policy contained in the policy store that is referenced by the
handle specified in the hPolicy parameter.

Opnum: 62

RRPC_FWSetAuthenticationSet2_20 This method requests the server to modify the specified
authentication set in the policy contained in the policy store that
is referenced by the handle specified in the hPolicy parameter.

Opnum: 63

RRPC_FWEnumAuthenticationSets2_20 This method requests the server to return all the authentication
sets of the specified IPsec phase contained in the store that is
referenced in the hPolicy handle. The method returns a linked list
of these objects.

Opnum: 64

RRPC_FWQueryAuthenticationSets2_20 This method requests the server to return all the authentication
sets that match the specified query object that are contained in
the store that is referenced in the hPolicy handle.

Opnum: 65

128 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Method Description

RRPC_FWAddFirewallRule2_20 This method requests the server to add the specified firewall rule
in the policy contained in the policy store referenced by the
handle that is specified in the hPolicyStore parameter.

Opnum: 66

RRPC_FWSetFirewallRule2_20 This method requests the server to modify the specified firewall
rule in the policy contained in the policy store that is referenced
by the handle specified in the hPolicyStore parameter.

Opnum: 67

RRPC_FWEnumFirewallRules2_20 This method requests the server to return all the firewall rules
contained in the store that is referenced by the hPolicyStore
handle. The method returns a linked list of all the firewall rule

objects.

Opnum: 68

RRPC_FWQueryFirewallRules2_20 This method requests the server to return all the firewall rules
matching the specified query object that are contained in the
store referenced by the hPolicy handle.

Opnum: 69

RRPC_FWAddFirewallRule2_24 This method requests the server to add the specified firewall rule
in the policy contained in the policy store that is referenced by
the handle specified in the hPolicyStore parameter.

Opnum: 70

RRPC_FWSetFirewallRule2_24 This method requests the server to modify the specified firewall
rule in the policy contained in the policy store that is referenced
by the handle specified in the hPolicyStore parameter.

Opnum: 71

RRPC_FWEnumFirewallRules2_24 This method requests the server to return all the firewall rules
contained in the store that is referenced by the hPolicyStore
handle. The method returns a linked list of all the firewall rule
objects.

Opnum: 72

RRPC_FWQueryFirewallRules2_24 This method requests the server to return all the firewall rules
matching the specified query object that are contained in the
store that is referenced by the hPolicyStore handle.

Opnum: 73

RRPC_FWAddFirewallRule2_25 This method requests the server to add the specified firewall rule
in the policy contained in the policy store that is referenced by
the handle specified in the hPolicyStore parameter.

Opnum: 74

RRPC_FWSetFirewallRule2_25 This method requests the server to modify the specified firewall
rule in the policy contained in the policy store that is referenced
by the handle specified in the hPolicyStore parameter.

Opnum: 75

RRPC_FWEnumFirewallRules2_25 This method requests the server to return all the firewall rules
contained in the store that is referenced by the hPolicyStore
handle. The method returns a linked list of all the firewall rule
objects.

Opnum: 76

RRPC_FWQueryFirewallRules2_25 This method requests the server to return all the firewall rules

129 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Method Description

matching the specified query object that are contained in the
store that is referenced by the hPolicyStore handle.

Opnum: 77

RRPC_FWAddFirewallRule2_26 This method requests the server to add the specified firewall rule
in the policy contained in the policy store that is referenced by
the handle specified in the hPolicyStore parameter.

Opnum: 78

RRPC_FWSetFirewallRule2_26 This method requests the server to modify the specified firewall
rule in the policy contained in the policy store that is referenced
by the handle specified in the hPolicyStore parameter.

Opnum: 79

RRPC_FWEnumFirewallRules2_26 This method requests the server to return all the firewall rules
contained in the store that is referenced by the hPolicyStore
handle. The method returns a linked list of all the firewall rule
objects.

Opnum: 80

RRPC_FWQueryFirewallRules2_26 This method requests the server to return all the firewall rules
matching the specified query object that are contained in the
store that is referenced by the hPolicyStore handle.

Opnum: 81

3.1.4.1 RRPC_FWOpenPolicyStore (Opnum 0)

The RRPC_FWOpenPolicyStore method requests the server to open a specified policy store. The store

can be opened for reading or for editing the firewall policy. The method also returns a handle to the
opened store with which the client can then perform operations on this policy store. The server

allocates a PolicyStoreConnection object to track the policy store type and the binary version
associated with the handle.

 unsigned long RRPC_FWOpenPolicyStore(
 [in] FW_CONN_HANDLE rpcConnHandle,
 [in] unsigned short BinaryVersion,
 [in, range(FW_STORE_TYPE_INVALID+1, FW_STORE_TYPE_MAX-1)]
 FW_STORE_TYPE StoreType,
 [in, range(FW_POLICY_ACCESS_RIGHT_INVALID+1, FW_POLICY_ACCESS_RIGHT_MAX-1)]
 FW_POLICY_ACCESS_RIGHT AccessRight,
 [in] unsigned long dwFlags,
 [out] PFW_POLICY_STORE_HANDLE phPolicyStore
);

rpcConnHandle: This parameter is an RPC binding handle that connects to the RPC interface of the
Firewall and Advanced Security Protocol.

BinaryVersion: This parameter specifies the RPC interface binary version. This implies versions of the
methods and versions of the structures. This value MUST be a valid Protocol Version (see section
1.7). See section 1.7 for capability negotiation based on the BinaryVersion.

StoreType: This parameter specifies the policy store type that the client wants to open.

AccessRight: This parameter specifies the read or read/write access rights that the client is
requesting on the store.

130 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

dwFlags: This parameter is not used. The server MUST ignore this parameter. The client SHOULD
pass a value of zero.

phPolicyStore: This is an output parameter that provides a pointer to an
FW_POLICY_STORE_HANDLE data type. If successful, this parameter contains a handle to the

opened store.

Return Values: The method returns 0 if successful; if failed, it returns a nonzero error code. The field
can take any specific error code value, as specified in [MS-ERREF].

Exceptions Thrown: No exceptions are thrown beyond those thrown by the underlying RPC protocol,
as specified in [MS-RPCE]. If any lower-layer errors are reported by RPC exception, this exception
is converted to an error code and reported to higher-layer protocols via the return value.

The server MUST validate that the client is authorized to perform the requested operation (as defined

in section 3.1.4) before executing this method.

3.1.4.2 RRPC_FWClosePolicyStore (Opnum 1)

The RRPC_FWClosePolicyStore method receives an opened store handle, closes it, and deallocates the

corresponding PolicyStoreConnection object.

 unsigned long RRPC_FWClosePolicyStore(
 [in] FW_CONN_HANDLE rpcConnHandle,
 [in, out] PFW_POLICY_STORE_HANDLE phPolicyStore
);

rpcConnHandle: This parameter is an RPC binding handle that connects to the RPC interface of the
Firewall and Advanced Security Protocol.

phPolicyStore: This is an input and output parameter that provides a pointer to an
FW_POLICY_STORE_HANDLE data type. The data type MUST contain an opened policy store
handle, successfully opened with the RRPC_FWOpenPolicyStore (Opnum 0) method, which the

client intends to stop using and close.

Return Values: The method returns 0 if successful; if failed, it returns a nonzero error code. The field
can take any specific error code value, as specified in [MS-ERREF].

Exceptions Thrown: No exceptions are thrown beyond those thrown by the underlying RPC protocol,
as specified in [MS-RPCE]. If any lower-layer errors are reported by RPC exception, this exception
is converted to an error code and reported to higher-layer protocols via the return value.

The server MUST validate that the client is authorized to perform the requested operation (as defined

in section 3.1.4) before executing this method.

3.1.4.3 RRPC_FWRestoreDefaults (Opnum 2)

The RRPC_FWRestoreDefaults method replaces the contents of LocalStore with the contents of

DefaultsStore.

 unsigned long RRPC_FWRestoreDefaults(
 [in] FW_CONN_HANDLE rpcConnHandle
);

rpcConnHandle: This parameter is an RPC binding handle that connects to the RPC interface of the
Firewall and Advanced Security Protocol.

131 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Return Values: The method returns 0 if successful; if failed, it returns a nonzero error code. The field
can take any specific error code value, as specified in [MS-ERREF].

Exceptions Thrown: No exceptions are thrown beyond those thrown by the underlying RPC protocol,
as specified in [MS-RPCE]. If any lower-layer errors are reported by RPC exception, this exception

is converted to an error code and reported to higher-layer protocols via the return value.

The server MUST first validate that the client is authorized to perform the requested operation (as
defined in section 3.1.4) before executing this method. Next, the server MUST replace the contents of
LocalStore with the contents of DefaultsStore. The server then MUST merge the new contents of
LocalStore with the existing contents of the GroupPolicyRSoPStore (as described in section 3.1.1)
and store the result in DynamicStore. Finally, the server MUST invoke the abstract interface
SetEffectiveFirewallPolicy (section 3.1.6.6) with the contents of DynamicStore.

3.1.4.4 RRPC_FWGetGlobalConfig (Opnum 3)

The RRPC_FWGetGlobalConfig method retrieves the value of a global policy configuration option. The
client specifies to the server from what store this value MUST be retrieved and in what specific

configuration option it is interested.

 unsigned long RRPC_FWGetGlobalConfig(
 [in] FW_CONN_HANDLE rpcConnHandle,
 [in] unsigned short BinaryVersion,
 [in] FW_STORE_TYPE StoreType,
 [in, range(FW_GLOBAL_CONFIG_INVALID+1, FW_GLOBAL_CONFIG_MAX-1)]
 FW_GLOBAL_CONFIG configID,
 [in] unsigned long dwFlags,
 [in, out, unique, size_is(cbData), length_is(*pcbTransmittedLen)]
 unsigned char* pBuffer,
 [in] unsigned long cbData,
 [in, out] unsigned long* pcbTransmittedLen,
 [out] unsigned long* pcbRequired
);

rpcConnHandle: This parameter is an RPC binding handle that connects to the RPC interface of the

Firewall and Advanced Security Protocol.

BinaryVersion: This parameter specifies the RPC interface binary version. This implies versions of the
methods and versions of the structures.

StoreType: This parameter specifies the policy store from which the client wants to retrieve the
configuration option value.

configID: This parameter specifies the specific global policy configuration option the client is

interested in retrieving.

dwFlags: This parameter is a combination of flags from the FW_CONFIG_FLAGS enumeration, which
modifies the behavior of this method, as specified in the definition of the enumeration.

pBuffer: This is an input/output parameter. This parameter is a pointer to the buffer that the client

provides to contain the value of the profile configuration option being requested.

cbData: This parameter is the size of the buffer that the pBuffer parameter points to.

pcbTransmittedLen: This is a pointer to an input and output parameter that specifies the length of

the transmitted data within the buffer.

pcbRequired: This is a pointer to an output parameter that specifies the required minimum buffer
size in octets in order for the method to be able to return the configuration value. This output

132 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

parameter is nonzero only if the buffer (pointed to by pBuffer and whose size is cbData) was not
big enough to contain the value.

Return Values: The method returns 0 if successful; if failed, it returns a nonzero error code. The field
can take any specific error code value, as specified in [MS-ERREF]. The following return values are

common.

Return value/code Description

0x00000005

ERROR_ACCESS_DENIED

The client does not have the required credentials to call the method.

0x00000002

ERROR_FILE_NOT_FOUND

The specific configuration option is not found within the policy. This means
that it is not configured. If the option is not configured in any other store, the
firewall uses a default value.

0x00000032

ERROR_NOT_SUPPORTED

The store type specified does not support this method.

0x000000EA

ERROR_MORE_DATA

The buffer is not big enough to hold the configuration option value.

0x00000057

ERROR_INVALID_PARAMETER

One of the parameters of this method is incorrect, or is required and not
specified. This error can be returned because:

▪ The specific configuration option is not meant to be available in the
specified store.

▪ The specified configuration option is not defined.

▪ One of the required values is not specified.

▪ The buffer size is not enough to hold the specific value.

Exceptions Thrown: No exceptions are thrown beyond those thrown by the underlying RPC protocol,

as specified in [MS-RPCE]. If any lower-layer errors are reported by RPC exception, this exception

is converted to an error code and reported to higher-layer protocols via the return value.

The server MUST validate that the client is authorized to perform the requested operation (as defined
in section 3.1.4) before executing this method.

3.1.4.5 RRPC_FWSetGlobalConfig (Opnum 4)

The RRPC_FWSetGlobalConfig method modifies the value of a global policy configuration option. The
client specifies to the server in what store this value MUST be written and what specific configuration
option it is interested in modifying.

 unsigned long RRPC_FWSetGlobalConfig(
 [in] FW_CONN_HANDLE rpcConnHandle,
 [in] unsigned short BinaryVersion,
 [in] FW_STORE_TYPE StoreType,
 [in, range(FW_GLOBAL_CONFIG_INVALID+1, FW_GLOBAL_CONFIG_MAX-1)]
 FW_GLOBAL_CONFIG configID,
 [in, unique, size_is(dwBufSize)]
 unsigned char* lpBuffer,
 [in, range(0, 10*1024)] unsigned long dwBufSize
);

rpcConnHandle: This parameter is an RPC binding handle that connects to the RPC interface of the
Firewall and Advanced Security Protocol.

133 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

BinaryVersion: This parameter specifies the RPC interface binary version. This implies versions of the
methods and versions of the structures.

StoreType: This parameter specifies the policy store in which the client wants to modify this
configuration option.

configID: This parameter specifies the specific global policy configuration option the client wants to
modify.

lpBuffer: This is an input parameter. This parameter is a pointer to the buffer that the client provides
containing the value to write on the configuration option specified. If the buffer is NULL, this
method deletes the configuration option.

dwBufSize: This parameter is the size of the buffer to which the lpBuffer parameter points.

Return Values: The method returns 0 if successful; if failed, it returns a nonzero error code. The field

can take any specific error code value, as specified in [MS-ERREF]. The following return values are
common.

Return value/code Description

0x00000005

ERROR_ACCESS_DENIED

The client does not have the required credentials to call the method.

0x00000032

ERROR_NOT_SUPPORTED

The store type specified does not support this method.

0x00000057

ERROR_INVALID_PARAMETER

One of the parameters of this method is incorrect, or is required and not
specified. This error can be returned because:

▪ The specific configuration option is not meant to be available in the
specified store.

▪ The specified configuration option is not defined.

▪ One of the required values is not specified.

▪ The buffer is null but dwBufSize says otherwise.

▪ The buffer size is not enough to hold the specific value.

Exceptions Thrown: No exceptions are thrown beyond those thrown by the underlying RPC protocol,
as specified in [MS-RPCE]. If any lower-layer errors are reported by RPC exception, this exception
is converted to an error code and reported to higher-layer protocols via the return value.

This method performs a merge operation of the resultant configuration values, as defined in section
3.1.3. It then determines what modifications are necessary on the rule objects to make sure the policy
is enforced.

The server MUST validate that the client is authorized to perform the requested operation (as defined
in section 3.1.4) before executing this method.

3.1.4.6 RRPC_FWAddFirewallRule (Opnum 5)

The RRPC_FWAddFirewallRule method requests the server to add the specified firewall rule in the
policy contained in the policy store that is referenced by the handle specified in the hPolicyStore
parameter.

 ULONG RRPC_FWAddFirewallRule(
 [in] FW_CONN_HANDLE rpcConnHandle,

134 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

 [in] FW_POLICY_STORE_HANDLE hPolicyStore,
 [in] PFW_RULE2_0 pRule
);

rpcConnHandle: This parameter is an RPC binding handle that connects to the RPC interface of the
Firewall and Advanced Security Protocol.

hPolicyStore: This input parameter is an FW_POLICY_STORE_HANDLE data type. The data type
MUST contain an opened policy store handle that is successfully opened by using the
RRPC_FWOpenPolicyStore (Opnum 0) method. The handle MUST have read/write access rights.

pRule: This parameter represents the firewall rule that the client wants to add to the store. The rule
MUST be a valid rule, as specified in the definition of the FW_RULE2_0 data type.

Return Values: The method returns 0 if successful; if it fails, it returns a nonzero error code. The
field can take any specific error code value, as specified in [MS-ERREF]. The following return

values are common.

Return value/code Description

0x000000B7

ERROR_ALREADY_EXISTS

The specified rule has a rule ID that already exists in the specified store.

0x00000032

ERROR_NOT_SUPPORTED

The specified store does not support this method; the store might be read-
only.

0x00000005

ERROR_ACCESS_DENIED

The hPolicyStore handle was not opened with read/write access rights. The
error is also returned if the client does not have the required credentials to
call the method.

0x00000057

ERROR_INVALID_PARAMETER

A parameter of this method is incorrect, or is required and not specified. This

error can be returned because:

▪ The pRule object did not pass the firewall rule validations that are
specified in the definition of the FW_RULE data type.

▪ One of the required values is not specified.

▪ A policy store does not support rules with profile conditions other than
ALL profiles.

▪ The wszLocalApplication field of the rule contains a string that was
determined to be an invalid path.<27>

Exceptions Thrown: No exceptions are thrown except those that are thrown by the underlying RPC
protocol, as specified in [MS-RPCE]. If any lower-layer errors are reported by RPC exception, this
exception is converted to an error code and reported to higher-layer protocols via the return
value.

This method adds a firewall rule to the firewall linked list of the memory representation of the store

being modified. It also writes through and saves the rule in disk. If called on an online store, the
firewall rule is also enforced.

The server MUST validate that the client is authorized to perform the requested operation (as defined
in section 3.1.4) before executing this method.

135 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

3.1.4.7 RRPC_FWSetFirewallRule (Opnum 6)

The RRPC_FWSetFirewallRule method requests the server to modify the specified firewall rule in the
policy contained in the policy store that is referenced by the handle specified in the hPolicyStore

parameter.

 ULONG RRPC_FWSetFirewallRule(
 [in] FW_CONN_HANDLE rpcConnHandle,
 [in] FW_POLICY_STORE_HANDLE hPolicyStore,
 [in] PFW_RULE2_0 pRule
);

rpcConnHandle: This parameter is an RPC binding handle that connects to the RPC interface of the
Firewall and Advanced Security Protocol.

hPolicyStore: This input parameter is an FW_POLICY_STORE_HANDLE data type. The data type
MUST contain an opened policy store handle that is successfully opened by using the
RRPC_FWOpenPolicyStore (Opnum 0) method. The handle MUST have read/write access rights.

pRule: This parameter represents the firewall rule that the client wants to modify in the store. The
rule MUST be a valid rule, as specified in the definition of the FW_RULE2_0 data type.

Return Values: The method returns 0 if successful; if it fails, it returns a nonzero error code. The

field can take any specific error code value, as specified in [MS-ERREF]. The following are
common.

Return value/code Description

0x00000032

ERROR_NOT_SUPPORTED

The specified store does not support this method; the store might be
read-only.

0x00000005

ERROR_ACCESS_DENIED

The hPolicyStore handle was not opened with read/write access rights.
The error is also returned if the client does not have the required
credentials to call the method.

0x00000002

ERROR_FILE_NOT_FOUND

The specified rule that is referenced by the wszRuleID member string
of the FW_RULE data type is not found in the policy store.

0x00000057

ERROR_INVALID_PARAMETER

A parameter of this method is incorrect, or is required and not
specified. This error can be returned because:

▪ The pRule object did not pass the firewall rule validations that are
specified in the definition of the FW_RULE data type.

▪ One of the required values is not specified.

▪ A policy store does not support rules that have profile conditions
other than ALL profiles.

▪ The wszLocalApplication field of the rule contains a string that
was determined to be an invalid path.

Exceptions Thrown: No exceptions are thrown except those that are thrown by the underlying RPC
protocol, as specified in [MS-RPCE]. If any lower-layer errors are reported by RPC exception, this
exception is converted to an error code and reported to higher-layer protocols via the return
value.

The server MUST validate that the client is authorized to perform the requested operation (as defined
in section 3.1.4) before executing this method.

136 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

3.1.4.8 RRPC_FWDeleteFirewallRule (Opnum 7)

The RRPC_FWDeleteFirewallRule method requests the server to delete the specified firewall rule in the
policy contained in the policy store referenced by the handle specified in the hPolicyStore parameter.

 unsigned long RRPC_FWDeleteFirewallRule(
 [in] FW_CONN_HANDLE rpcConnHandle,
 [in] FW_POLICY_STORE_HANDLE hPolicyStore,
 [in, string, ref] const wchar_t* wszRuleID
);

rpcConnHandle: This parameter is an RPC binding handle that connects to the RPC interface of the
Firewall and Advanced Security Protocol.

hPolicyStore: This input parameter is an FW_POLICY_STORE_HANDLE data type. The data type

MUST contain an opened policy store handle, successfully opened with the
RRPC_FWOpenPolicyStore (Opnum 0) method. The handle MUST have read/write access rights.

wszRuleID: This parameter is the pointer to a string that is the ID of the firewall rule the client wants
to delete from the specified store.

This ID can be obtained by enumerating firewall rules using RRPC_FWEnumFirewallRules (Opnum
9) where the ID is returned in the FW_RULE2_0 structure.

Return Values: The method returns 0 if successful; if failed, it returns a nonzero error code. The field
can take any specific error code value, as specified in [MS-ERREF]. The following are common.

Return value/code Description

0x00000032

ERROR_NOT_SUPPORTED

The specified store does not support this method; the store might be read-
only.

0x00000005

ERROR_ACCESS_DENIED

The hPolicyStore handle was not opened with read/write access rights. The
error is also returned if the client does not have the required credentials to call
the method.

0x00000002

ERROR_FILE_NOT_FOUND

The specified rule referenced by the wszRuleID member string of the
FW_RULE data type is not found in the policy store.

Exceptions Thrown: No exceptions are thrown beyond those thrown by the underlying RPC protocol,
as specified in [MS-RPCE]. If any lower-layer errors are reported by RPC exception, this exception
is converted to an error code and reported to higher-layer protocols via the return value.

This method deletes a firewall rule already stored in the firewall linked list of the memory
representation of the store being modified. It uses this list to determine if the rule exists or not. It also
writes through and deletes the rule from disk. If called on an online store, the removal of the firewall
rule is also enforced.

The server MUST validate that the client is authorized to perform the requested operation (as defined

in section 3.1.4) before executing this method.

3.1.4.9 RRPC_FWDeleteAllFirewallRules (Opnum 8)

The RRPC_FWDeleteAllFirewallRules method deletes all firewall rules in the firewall linked list of the

memory representation of the store being modified. It also writes through and deletes all rules from
the disk representation. If called on an online store, no firewall rules are enforced after the method
returns.

137 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

 unsigned long RRPC_FWDeleteAllFirewallRules(
 [in] FW_CONN_HANDLE rpcConnHandle,
 [in] FW_POLICY_STORE_HANDLE hPolicyStore
);

rpcConnHandle: This parameter is an RPC binding handle that connects to the RPC interface of the
Firewall and Advanced Security Protocol.

hPolicyStore: This input parameter is an FW_POLICY_STORE_HANDLE data type. The data type

MUST contain an opened policy store handle, successfully opened with the
RRPC_FWOpenPolicyStore (Opnum 0) method. The handle MUST have read/write access rights.

Return Values: The method returns 0 if successful; if failed, it returns a nonzero error code. The field
can take any specific error code value, as specified in [MS-ERREF]. The following are common.

Return value/code Description

0x00000032

ERROR_NOT_SUPPORTED

The specified store does not support this method; the store might be read-only.

0x00000005

ERROR_ACCESS_DENIED

The hPolicyStore handle was not opened with read/write access rights. The error
is also returned if the client does not have the required credentials to call the
method.

Exceptions Thrown: No exceptions are thrown beyond those thrown by the underlying RPC protocol,

as specified in [MS-RPCE]. If any lower-layer errors are reported by RPC exception, this exception
is converted to an error code and reported to higher-layer protocols via the return value.

The server MUST validate that the client is authorized to perform the requested operation (as defined
in section 3.1.4) before executing this method.

3.1.4.10 RRPC_FWEnumFirewallRules (Opnum 9)

The RRPC_FWEnumFirewallRules method requests the server to return all the firewall rules contained
in the store that is referenced by the hPolicyStore handle. The method returns a linked list of all the
firewall rule objects.

 ULONG RRPC_FWEnumFirewallRules(
 [in] FW_CONN_HANDLE rpcConnHandle,
 [in] FW_POLICY_STORE_HANDLE hPolicyStore,
 [in] ULONG dwFilteredByStatus,
 [in] ULONG dwProfileFilter,
 [in] USHORT wFlags,
 [out, ref] ULONG* pdwNumRules,
 [out] PFW_RULE2_0* ppRules
);

rpcConnHandle: This parameter is an RPC binding handle that connects to the RPC interface of the

Firewall and Advanced Security Protocol.

hPolicyStore: This input parameter is an FW_POLICY_STORE_HANDLE data type. The data type
MUST contain an opened policy store handle that is successfully opened by using the

RRPC_FWOpenPolicyStore (Opnum 0) method. The handle MUST have read or read/write access
rights.

dwFilteredByStatus: This parameter is a combination of flags from the FW_RULE_STATUS_CLASS
enumeration. This method uses this bitmask to determine which rules will be returned. Rules that
contain a status code from the class specified by this parameter will be returned in the linked list.

138 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

dwProfileFilter: This parameter is a combination of flags from the FW_PROFILE_TYPE enumeration.
This method also uses this parameter to determine which rules will be returned. Rules that contain

a profile specified by this parameter will be returned in the linked list.

wFlags: This parameter is a combination of flags from the FW_ENUM_RULES_FLAGS enumeration,

which modifies the behavior of the method and performs operations on the rules before returning
them in the linked list.

pdwNumRules: This output parameter, if successful, MUST be equal to the number of rules returned.

ppRules: This output parameter, if successful, contains a linked list of FW_RULE2_0 data types.

Return Values: The method returns 0 if successful; if it fails, it returns a nonzero error code. The
field can take any specific error code value, as specified in [MS-ERREF]. The following are
common.

Return value/code Description

0x00000005

ERROR_ACCESS_DENIED

The hPolicyStore handle was not opened with read/write access rights. The
error is also returned if the client does not have the required credentials to
call the method.

0x00000057

ERROR_INVALID_PARAMETER

The dwProfileFilter parameter contains profiles that are not valid.

Exceptions Thrown: No exceptions are thrown except those that are thrown by the underlying RPC
protocol, as specified in [MS-RPCE]. If any lower-layer errors are reported by RPC exception, this
exception is converted to an error code and reported to higher-layer protocols via the return
value.

The server MUST validate that the client is authorized to perform the requested operation (as defined
in section 3.1.4) before executing this method.

3.1.4.11 RRPC_FWGetConfig (Opnum 10)

The RRPC_FWGetConfig method retrieves the value of a profile configuration option. The client

specifies to the server from what store and profile this value MUST be retrieved and in what specific
configuration option it is interested.

 unsigned long RRPC_FWGetConfig(
 [in] FW_CONN_HANDLE rpcConnHandle,
 [in] FW_POLICY_STORE_HANDLE hPolicyStore,
 [in, range(FW_PROFILE_CONFIG_ENABLE_FW, FW_PROFILE_CONFIG_MAX-1)]
 FW_PROFILE_CONFIG configID,
 [in] FW_PROFILE_TYPE Profile,
 [in] unsigned long dwFlags,
 [in, out, unique, size_is(cbData), length_is(*pcbTransmittedLen)]
 unsigned char* pBuffer,
 [in] unsigned long cbData,
 [in, out] unsigned long* pcbTransmittedLen,
 [out] unsigned long* pcbRequired
);

rpcConnHandle: This parameter is an RPC binding handle that connects to the RPC interface of the
Firewall and Advanced Security Protocol.

hPolicyStore: This input parameter is an FW_POLICY_STORE_HANDLE data type. The data type
MUST contain an opened policy store handle, successfully opened with the
RRPC_FWOpenPolicyStore (Opnum 0) method. The handle MUST have read/write access rights.

139 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

configID: This parameter specifies the specific profile configuration option the client is interested in
retrieving.

Profile: This parameter specifies from which specific profile this value MUST be retrieved.

dwFlags: This parameter is a combination of flags from the FW_CONFIG_FLAGS enumeration, which

modifies the behavior of this method, as specified in the definition of the enumeration.

pBuffer: This is an input/output parameter. This parameter is a pointer to the buffer that the client
provides to contain the value of the profile configuration option being requested.

cbData: This parameter is the size of the buffer that the pBuffer parameter points to.

pcbTransmittedLen: This is a pointer to an input and output parameter that specifies the length of
the transmitted data within the buffer.

pcbRequired: This is a pointer to an output parameter that specifies the required minimum buffer

size in octets for the method to be able to return the configuration value. This output parameter is
nonzero only if the buffer (pointed to by pBuffer and whose size is cbData) was not big enough to

contain the value.

Return Values: The method returns 0 if successful; if failed, it returns a nonzero error code. The field
can take any specific error code value, as specified in [MS-ERREF]. The following are common.

Return value/code Description

0x00000005

ERROR_ACCESS_DENIED

The client does not have the required credentials to call the method.

0x00000002

ERROR_FILE_NOT_FOUND

The specific configuration option is not found within the policy. This means
that it is not configured. If the option is not configured in any other store,
the firewall uses a default value.

0x00000032

ERROR_NOT_SUPPORTED

The method does not support the specified combination of parameters. This
can be because:

▪ The store type specified does not support this method.

▪ The configuration option is not supported in this store.

▪ The Profile parameter contains a combination of profiles (instead of a
single profile) or an unknown profile.

0x000000EA

ERROR_MORE_DATA

The buffer is not big enough to hold the configuration option value.

0x00000057

ERROR_INVALID_PARAMETER

One of the parameters of this method is incorrect, or is required and not
specified. This error can be returned because:

▪ The specified configuration option is not defined.

▪ One of the required values is not specified.

Exceptions Thrown: No exceptions are thrown beyond those thrown by the underlying RPC protocol,
as specified in [MS-RPCE]. If any lower-layer errors are reported by RPC exception, this exception
is converted to an error code and reported to higher-layer protocols via the return value.

The server MUST validate that the client is authorized to perform the requested operation (as defined

in section 3.1.4) before executing this method.

140 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

3.1.4.12 RRPC_FWSetConfig (Opnum 11)

The RRPC_FWSetConfig method modifies the value of a profile configuration option. The client
specifies to the server in what store and profile this value MUST be written and what specific

configuration option it is interested in modifying.

 unsigned long RRPC_FWSetConfig(
 [in] FW_CONN_HANDLE rpcConnHandle,
 [in] FW_POLICY_STORE_HANDLE hPolicyStore,
 [in, range(FW_PROFILE_CONFIG_ENABLE_FW, FW_PROFILE_CONFIG_MAX-1)]
 FW_PROFILE_CONFIG configID,
 [in] FW_PROFILE_TYPE Profile,
 [in, switch_is(configID)] FW_PROFILE_CONFIG_VALUE pConfig,
 [in, range(0, 10*1024)] unsigned long dwBufSize
);

rpcConnHandle: This parameter is an RPC binding handle that connects to the RPC interface of the

Firewall and Advanced Security Protocol.

hPolicyStore: This input parameter is an FW_POLICY_STORE_HANDLE data type. The data type
MUST contain an opened policy store handle, successfully opened with the
RRPC_FWOpenPolicyStore (Opnum 0) method. The handle MUST have read/write access rights.

configID: This parameter specifies the specific profile configuration option the client wants to modify.

Profile: This parameter specifies in which specific profile this value MUST be written.

pConfig: This is an input parameter. This parameter is a pointer to the buffer that the client provides

containing the value to write on the configuration option specified. If the buffer is NULL, this
method deletes the configuration option. The buffer is of type FW_PROFILE_CONFIG_VALUE.

dwBufSize: This parameter is the size of the buffer that the pConfig parameter points to.

Return Values: The method returns 0 if successful; if failed, it returns a nonzero error code. The field

can take any specific error code value, as specified in [MS-ERREF]. The following return values are
common.

Return value/code Description

0x00000032

ERROR_NOT_SUPPORTED

The method does not support the specified combination of parameters. This
can be because:

▪ The store type specified does not support this method.

▪ The Profile parameter contains a combination of profiles (instead of a
single profile) or an unknown profile.

0x00000005

ERROR_ACCESS_DENIED

The hPolicyStore handle was not opened with read/write access rights. The
error is also returned if the client does not have the required credentials to
call the method.

0x00000057

ERROR_INVALID_PARAMETER

One of the parameters of this method is incorrect, or is required and not
specified. This error can be returned because:

▪ The specific configuration option is not meant to be available in the
specified store.

▪ The specified configuration option is not defined.

▪ The size of the buffer does not match the size of the type of the

141 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Return value/code Description

configuration value.

▪ The buffer is null but dwBufSize says otherwise.

▪ The caller wants to set a LOG_MAX_FILE_SIZE that is not within the
valid values [min, max].

▪ The default action configuration value specifies a value that maps to
neither allow nor block.

▪ The LOG_FILE_PATH configuration value contains the following invalid
characters: /,*,?,",<,>,|.

Exceptions Thrown: No exceptions are thrown beyond those thrown by the underlying RPC protocol,
as specified in [MS-RPCE]. If any lower-layer errors are reported by RPC exception, this exception
is converted to an error code and reported to higher-layer protocols via the return value.

This method performs a merge operation of the resultant configuration values, as defined in section

3.1.3. It then determines what modifications are necessary on the rule objects (for example, remove
rule enforcement if firewall is off) to make sure the policy is enforced.

The server MUST validate that the client is authorized to perform the requested operation (as defined
in section 3.1.4) before executing this method.

3.1.4.13 RRPC_FWAddConnectionSecurityRule (Opnum 12)

The RRPC_FWAddConnectionSecurityRule method requests the server to add the connection security
rule in the policy contained in the policy store that is referenced by the specified opened policy store
handle.

 ULONG RRPC_FWAddConnectionSecurityRule(
 [in] FW_CONN_HANDLE rpcConnHandle,
 [in] FW_POLICY_STORE_HANDLE hPolicy,
 [in] PFW_CS_RULE2_0 pRule
);

rpcConnHandle: This parameter is an RPC binding handle that connects to the RPC interface of the
Firewall and Advanced Security Protocol.

hPolicy: This input parameter is an FW_POLICY_STORE_HANDLE data type. The data type MUST
contain an opened policy store handle that is successfully opened by using the
RRPC_FWOpenPolicyStore (Opnum 0) method. The handle MUST have read/write access rights.

pRule: This parameter represents the connection security rule that the client wants to add to the
store. The rule MUST be a valid rule, as specified in the definition of the FW_CS_RULE2_0 data
type.

Return Values: This method returns 0 if successful; if it fails, it returns a nonzero error code. The
field can take any specific error code value, as specified in [MS-ERREF]. The following return
values are common.

Return value/code Description

0x000000B7

ERROR_ALREADY_EXISTS

The specified rule has a rule ID that already exists in the specified store.

142 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Return value/code Description

0x00000032

ERROR_NOT_SUPPORTED

The specified store does not support this method; the store might be read-
only.

0x00000005

ERROR_ACCESS_DENIED

The hPolicy handle was not opened with read/write access rights. The error
is also returned if the client does not have the required credentials to call
the method.

0x00000057

ERROR_INVALID_PARAMETER

A parameter of this method is incorrect, or is required and not specified.
This error can be returned because:

▪ The pRule object did not pass the connection security rule validations
specified in the definition of the FW_CS_RULE data type.

▪ The rule has a phase 2 crypto set that specified
FW_CRYPTO_PRPTOCOL_AUTH_NO_ENCAP (see section 2.2.68), and it

is a tunnel mode rule, or it also has an AuthSet structure that specifies
a preshared key auth method.

▪ A required value is not specified.

Exceptions Thrown: No exceptions are thrown except those that are thrown by the underlying RPC
protocol, as specified in [MS-RPCE]. If any lower-layer errors are reported by RPC exception, this
exception is converted to an error code and reported to higher-layer protocols via the return
value.

This method adds a connection security rule in the connection security link list of the memory

representation of the store being modified. It also writes through and saves the rule to disk. If called
on an online store, the connection security rule is also enforced.

The server MUST validate that the client is authorized to perform the requested operation (as defined
in section 3.1.4) before executing this method.

3.1.4.14 RRPC_FWSetConnectionSecurityRule (Opnum 13)

The RRPC_FWSetConnectionSecurityRule method requests the server to modify the specified
connection security rule in the policy contained in the policy store that is referenced by the handle
specified in the hPolicy parameter.

 ULONG RRPC_FWSetConnectionSecurityRule(
 [in] FW_CONN_HANDLE rpcConnHandle,
 [in] FW_POLICY_STORE_HANDLE hPolicy,
 [in] PFW_CS_RULE2_0 pRule
);

rpcConnHandle: This parameter is an RPC binding handle that connects to the RPC interface of the
Firewall and Advanced Security Protocol.

hPolicy: This input parameter is an FW_POLICY_STORE_HANDLE data type. The data type MUST
contain an opened policy store handle that is successfully opened by using the
RRPC_FWOpenPolicyStore (Opnum 0) method. The handle MUST have read/write access rights.

pRule: This parameter represents the connection security rule that the client wants to modify in the
store. The rule MUST be a valid rule, as specified in the definition of the FW_CS_RULE2_0 data
type.

143 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Return Values: The method returns 0 if successful; if it fails, it returns a nonzero error code. The
field can take any specific error code value, as specified in [MS-ERREF]. The following return

values are common.

Return value/code Description

0x00000032

ERROR_NOT_SUPPORTED

The specified store does not support this method; the store might be read-
only.

0x00000005

ERROR_ACCESS_DENIED

The hPolicy handle was not opened with read/write access rights. This error
is also returned if the client does not have the required credentials to call
the method.

0x00000002

ERROR_FILE_NOT_FOUND

The specified rule that is referenced by the wszRuleID member string of the
FW_CS_RULE data type is not found in the policy store.

0x00000057

ERROR_INVALID_PARAMETER

A parameter of this method is incorrect, or is required and not specified.
This error can be returned because:

▪ The pRule object did not pass the connection security rule validations
that are specified in the definition of the FW_CS_RULE data type.

▪ The rule has a phase 2 crypto set that specified
FW_CRYPTO_PRPTOCOL_AUTH_NO_ENCAP (see section 2.2.68), and
either it is a tunnel mode rule or it has an AuthSet that specifies a
preshared key auth method.

▪ A required value is not specified.

Exceptions Thrown: No exceptions are thrown except those that are thrown by the underlying RPC
protocol, as specified in [MS-RPCE]. If any lower-layer errors are reported by RPC exception, this
exception is converted to an error code and reported to higher-layer protocols via the return
value.

This method modifies a connection security rule already stored in the connection security linked list of

the memory representation of the store being modified. It uses this list to determine whether the rule

exists. It also writes through and saves the rule in disk. If called on an online store, the connection
security rule modifications are also enforced.

The server MUST validate that the client is authorized to perform the requested operation (as defined
in section 3.1.4) before executing this method.

3.1.4.15 RRPC_FWDeleteConnectionSecurityRule (Opnum 14)

The RRPC_FWDeleteConnectionSecurityRule method requests the server to delete the specified
connection security rule in the policy contained in the policy store referenced by the handle specified
in the hPolicy parameter.

 unsigned long RRPC_FWDeleteConnectionSecurityRule(
 [in] FW_CONN_HANDLE rpcConnHandle,
 [in] FW_POLICY_STORE_HANDLE hPolicy,
 [in, string, ref] wchar_t* pRuleId
);

rpcConnHandle: This parameter is an RPC binding handle that connects to the RPC interface of the
Firewall and Advanced Security Protocol.

144 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

hPolicy: This input parameter is an FW_POLICY_STORE_HANDLE data type. The data type MUST
contain an opened policy store handle, successfully opened with the RRPC_FWOpenPolicyStore

(Opnum 0) method. The handle MUST have read/write access rights.

pRuleId: This parameter is the pointer to a string that is the ID of the connection security rule the

client wants to delete from the specified store.

This ID can be obtained by enumerating connection security rules using
RRPC_FWEnumConnectionSecurityRules (Opnum 16) where the ID is returned in the
FW_CS_RULE2_0 structure.

Return Values: The method returns 0 if successful; if failed, it returns a nonzero error code. The field
can take any specific error code value, as specified in [MS-ERREF]. The following return values are
common.

Return value/code Description

0x00000032

ERROR_NOT_SUPPORTED

The specified store does not support this method; the store might be read-only.

0x00000005

ERROR_ACCESS_DENIED

The hPolicy handle was not opened with read/write access rights. The error is
also returned if the client does not have the required credentials to call the
method.

0x00000002

ERROR_FILE_NOT_FOUND

The specified rule referenced by the pRuleID member string is not found in the
policy store.

Exceptions Thrown: No exceptions are thrown beyond those thrown by the underlying RPC protocol,
as specified in [MS-RPCE]. If any lower-layer errors are reported by RPC exception, this exception

is converted to an error code and reported to higher-layer protocols via the return value.

This method deletes a connection security rule already stored in the connection security linked list of
the memory representation of the store being modified. It uses this list to determine if the rule exists
or not. It also writes through and deletes the rule from disk. If called on an online store, the removal

of the connection security rule is also enforced.

The server MUST validate that the client is authorized to perform the requested operation (as defined

in section 3.1.4) before executing this method.

3.1.4.16 RRPC_FWDeleteAllConnectionSecurityRules (Opnum 15)

The RRPC_FWDeleteAllConnectionSecurityRules method requests the server to delete all the
connection security rules in the policy contained in the policy store referenced by the handle specified

in the hPolicy parameter.

 unsigned long RRPC_FWDeleteAllConnectionSecurityRules(
 [in] FW_CONN_HANDLE rpcConnHandle,
 [in] FW_POLICY_STORE_HANDLE hPolicy
);

rpcConnHandle: This parameter is an RPC binding handle that connects to the RPC interface of the
Firewall and Advanced Security Protocol.

hPolicy: This input parameter is an FW_POLICY_STORE_HANDLE data type. The data type MUST
contain an opened policy store handle, successfully opened with the RRPC_FWOpenPolicyStore
(Opnum 0) method. The handle MUST have read/write access rights.

145 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Return Values: The method returns 0 if successful; if failed, it returns a nonzero error code. The field
can take any specific error code value, as specified in [MS-ERREF]. The following return values are

common.

Return value/code Description

0x00000032

ERROR_NOT_SUPPORTED

The specified store does not support this method; the store might be read-only.

0x00000005

ERROR_ACCESS_DENIED

The hPolicy handle was not opened with read/write access rights. The error is
also returned if the client does not have the required credentials to call the
method.

Exceptions Thrown: No exceptions are thrown beyond those thrown by the underlying RPC protocol,
as specified in [MS-RPCE]. If any lower-layer errors are reported by RPC exception, this exception
is converted to an error code and reported to higher-layer protocols via the return value.

This method deletes all connection security rules in the connection security linked list of the memory

representation of the store being modified. It also writes through and deletes all rules from the disk
representation. If called on an online store, no connection security rules are enforced after the method

returns.

The server MUST validate that the client is authorized to perform the requested operation (as defined
in section 3.1.4) before executing this method.

3.1.4.17 RRPC_FWEnumConnectionSecurityRules (Opnum 16)

The RRPC_FWEnumConnectionSecurityRules method requests the server to return all the connection
security rules contained in the store that is referenced by the hPolicy handle. The method returns a
linked list of all the connection security rule objects.

 ULONG RRPC_FWEnumConnectionSecurityRules(
 [in] FW_CONN_HANDLE rpcConnHandle,
 [in] FW_POLICY_STORE_HANDLE hPolicy,
 [in] ULONG dwFilteredByStatus,
 [in] ULONG dwProfileFilter,
 [in] USHORT wFlags,
 [out, ref] ULONG* pdwNumRules,
 [out] PFW_CS_RULE2_0* ppRules
);

rpcConnHandle: This parameter is an RPC binding handle that connects to the RPC interface of the
Firewall and Advanced Security Protocol.

hPolicy: This input parameter is an FW_POLICY_STORE_HANDLE data type. The data type MUST
contain an opened policy store handle that is successfully opened by using the
RRPC_FWOpenPolicyStore (Opnum 0) method. The handle MUST have read or read/write access

rights.

dwFilteredByStatus: This parameter is a combination of flags from the FW_RULE_STATUS_CLASS
enumeration. This method uses this bitmask to determine which rules will be returned. Rules that
contain a status code from the class that is specified by this parameter will be returned in the
linked list.

dwProfileFilter: This parameter is a combination of flags from the FW_PROFILE_TYPE enumeration.
This method also uses this parameter to determine which rules will be returned. Rules that contain

a profile that is specified by this parameter will be returned in the linked list.

146 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

wFlags: This parameter is a combination of flags from the FW_ENUM_RULES_FLAGS enumeration,
which modifies the behavior of the method and performs operations on the rules before returning

them in the linked list.

pdwNumRules: This output parameter, if successful, MUST be equal to the number of rules returned.

ppRules: This output parameter, if successful, contains a linked list of FW_CS_RULE2_0 data types.

Return Values: The method returns 0 if successful; if it fails, it returns a nonzero error code. The
field can take any specific error code value, as specified in [MS-ERREF]. The following return
values are common.

Return value/code Description

0x00000005

ERROR_ACCESS_DENIED

The client does not have the required credentials to call the method.

0x00000057

ERROR_INVALID_PARAMETER

The dwProfileFilter parameter contains invalid profiles.

Exceptions Thrown: No exceptions are thrown except those that are thrown by the underlying RPC

protocol, as specified in [MS-RPCE]. If any lower-layer errors are reported by RPC exception, this
exception is converted to an error code and reported to higher-layer protocols via the return
value.

The server MUST validate that the client is authorized to perform the requested operation (as defined
in section 3.1.4) before executing this method.

3.1.4.18 RRPC_FWAddAuthenticationSet (Opnum 17)

The RRPC_FWAddAuthenticationSet method requests the server to add the authentication set in the
policy contained in the policy store referenced by the handle specified in the hPolicy parameter.

 unsigned long RRPC_FWAddAuthenticationSet(
 [in] FW_CONN_HANDLE rpcConnHandle,
 [in] FW_POLICY_STORE_HANDLE hPolicy,
 [in] PFW_AUTH_SET2_10 pAuth
);

rpcConnHandle: This parameter is an RPC binding handle that connects to the RPC interface of the
Firewall and Advanced Security Protocol.

hPolicy: This input parameter is an FW_POLICY_STORE_HANDLE data type. The data type MUST
contain an opened policy store handle, successfully opened with the RRPC_FWOpenPolicyStore
(Opnum 0) method. The handle MUST have read/write access rights.

pAuth: This parameter represents the authentication set the client wants to add to the store. The set
MUST be valid, as specified in the definition of the FW_AUTH_SET2_10 data type.

Return Values: The method returns 0 if successful; if failed, it returns a nonzero error code. The field
can take any specific error code value, as specified in [MS-ERREF]. The following return values are
common.

Return value/code Description

0x000000B7

ERROR_ALREADY_EXISTS

The specified set has a set ID that already exists in the specified store.

147 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Return value/code Description

0x00000032

ERROR_NOT_SUPPORTED

The specified store does not support this method; the store might be read-
only.

0x00000005

ERROR_ACCESS_DENIED

The hPolicy handle was not opened with read/write access rights. The error
is also returned if the client does not have the required credentials to call
the method.

0x00000057

ERROR_INVALID_PARAMETER

One of the parameters of this method is incorrect, or is required and not
specified. This error can be returned because:

▪ The pAuth object did not pass the authentication set validations
specified in the definition of the FW_AUTH_SET data type.

▪ One of the required values is not specified.

Exceptions Thrown: No exceptions are thrown beyond those thrown by the underlying RPC protocol,

as specified in [MS-RPCE]. If any lower-layer errors are reported by RPC exception, this exception
is converted to an error code and reported to higher-layer protocols via the return value.

This method adds an authentication set in the authentication linked list of the memory representation
of the store being modified. It also writes through and saves the set in disk. If called on an online
store and the set is a primary set, the method enumerates the connection security rule list and

reapplies each rule referencing this primary set to complete the enforcement of the policy.

The server MUST validate that the client is authorized to perform the requested operation (as defined
in section 3.1.4) before executing this method.

3.1.4.19 RRPC_FWSetAuthenticationSet (Opnum 18)

The RRPC_FWSetAuthenticationSet method requests the server to modify the specified authentication
set in the policy contained in the policy store referenced by the handle specified in the hPolicy

parameter.

 unsigned long RRPC_FWSetAuthenticationSet(
 [in] FW_CONN_HANDLE rpcConnHandle,
 [in] FW_POLICY_STORE_HANDLE hPolicy,
 [in] PFW_AUTH_SET2_10 pAuth
);

rpcConnHandle: This parameter is an RPC binding handle that connects to the RPC interface of the
Firewall and Advanced Security Protocol.

hPolicy: This input parameter is an FW_POLICY_STORE_HANDLE data type. The data type MUST
contain an opened policy store handle, successfully opened with the RRPC_FWOpenPolicyStore
(Opnum 0) method. The handle MUST have read/write access rights.

pAuth: This parameter represents the authentication set the client wants to modify in the store. The

set MUST be valid, as specified in the definition of the FW_AUTH_SET2_10 data type.

Return Values: The method returns 0 if successful; if failed, it returns a nonzero error code. The field
can take any specific error code value, as specified in [MS-ERREF]. The following return values are
common.

Return value/code Description

0x00000032 The specified store does not support this method; the store might be read-

148 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Return value/code Description

ERROR_NOT_SUPPORTED only.

0x00000005

ERROR_ACCESS_DENIED

The hPolicy handle was not opened with read/write access rights. The error
is also returned if the client does not have the required credentials to call
the method.

0x00000002

ERROR_FILE_NOT_FOUND

The specified set referenced by the wszSetID member string of the
FW_AUTH_SET data type is not found in the policy store.

0x00000057

ERROR_INVALID_PARAMETER

One of the parameters of this method is incorrect, or is required and not
specified. This error can be returned because:

▪ The pAuth object did not pass the authentication set validations
specified in the definition of the FW_AUTH_SET data type.

▪ One of the required values is not specified.

Exceptions Thrown: No exceptions are thrown beyond those thrown by the underlying RPC protocol,
as specified in [MS-RPCE]. If any lower-layer errors are reported by RPC exception, this exception
is converted to an error code and reported to higher-layer protocols via the return value.

This method modifies an authentication set in the authentication linked list of the memory
representation of the store being modified. It also writes through and saves the set in disk. If called
on an online store, the method enumerates the connection security rules list and reapplies each rule
referencing this primary set to complete the enforcement of the policy.

The server MUST validate that the client is authorized to perform the requested operation (as defined
in section 3.1.4) before executing this method.

3.1.4.20 RRPC_FWDeleteAuthenticationSet (Opnum 19)

The RRPC_FWDeleteAuthenticationSet method requests the server to delete the specified

authentication set in the policy contained in the policy store referenced by the handle specified in the
hPolicy parameter.

 unsigned long RRPC_FWDeleteAuthenticationSet(
 [in] FW_CONN_HANDLE rpcConnHandle,
 [in] FW_POLICY_STORE_HANDLE hPolicy,
 [in, range(FW_IPSEC_PHASE_INVALID+1, FW_IPSEC_PHASE_MAX-1)]
 FW_IPSEC_PHASE IpSecPhase,
 [in, string, ref] const wchar_t* wszSetId
);

rpcConnHandle: This parameter is an RPC binding handle that connects to the RPC interface of the
Firewall and Advanced Security Protocol.

hPolicy: This input parameter is an FW_POLICY_STORE_HANDLE data type. The data type MUST

contain an opened policy store handle, successfully opened with the RRPC_FWOpenPolicyStore
(Opnum 0) method. The handle MUST have read/write access rights.

IpSecPhase: This parameter specifies the IPsec negotiation phase type this set is used in.

wszSetId: This parameter is the pointer to a string that is the ID of the authentication set the client
wants to delete from the specified store.

149 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Return Values: The method returns 0 if successful; if failed, it returns a nonzero error code. The field
can take any specific error code value, as specified in [MS-ERREF]. The following return values are

common.

Return value/code Description

0x00000962

ERROR_ACTIVE_CONNECTIONS

The specified set is still referenced by connection security rules. This
failure happens only when the set is not a primary set. There is always a
primary set to use, either from other stores or a hard-coded one.

0x00000032

ERROR_NOT_SUPPORTED

The specified store does not support this method; the store might be
read-only.

0x00000005

ERROR_ACCESS_DENIED

The hPolicy handle was not opened with read/write access rights. The
error is also returned if the client does not have the required credentials
to call the method.

0x00000002

ERROR_FILE_NOT_FOUND

The specified rule referenced by the wszSetID string is not found in the
policy store.

0x00000057

ERROR_INVALID_PARAMETER

The specified IPsec phase is not a valid one.

Exceptions Thrown: No exceptions are thrown beyond those thrown by the underlying RPC protocol,
as specified in [MS-RPCE]. If any lower-layer errors are reported by RPC exception, this exception
is converted to an error code and reported to higher-layer protocols via the return value.

This method deletes an authentication set in the authentication linked list of the memory
representation of the store being modified. It also writes through and saves the set in disk. If called

on an online store, and the set is not a primary set, the method does not delete the specified set if
any connection rule references this set.

The server MUST validate that the client is authorized to perform the requested operation (as defined
in section 3.1.4) before executing this method.

3.1.4.21 RRPC_FWDeleteAllAuthenticationSets (Opnum 20)

The RRPC_FWDeleteAllAuthenticationSets method requests the server to delete all the authentication
sets of a specific IPsec phase in the policy contained in the policy store referenced by the handle
specified in the hPolicy parameter.

 unsigned long RRPC_FWDeleteAllAuthenticationSets(
 [in] FW_CONN_HANDLE rpcConnHandle,
 [in] FW_POLICY_STORE_HANDLE hPolicy,
 [in, range(FW_IPSEC_PHASE_INVALID+1, FW_IPSEC_PHASE_MAX-1)]
 FW_IPSEC_PHASE IpSecPhase
);

rpcConnHandle: This parameter is an RPC binding handle that connects to the RPC interface of the

Firewall and Advanced Security Protocol.

hPolicy: This input parameter is an FW_POLICY_STORE_HANDLE data type. The data type MUST
contain an opened policy store handle, successfully opened with the RRPC_FWOpenPolicyStore
(Opnum 0) method. The handle MUST have read/write access rights.

IpSecPhase: This parameter specifies the IPsec negotiation phase type in which this set is used.

150 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Return Values: The method returns 0 if successful; if failed, it returns a nonzero error code. The field
can take any specific error code value, as specified in [MS-ERREF]. The following return values are

common.

Return value/code Description

0x00000962

ERROR_ACTIVE_CONNECTIONS

The specified set is still referenced by connection security rules. This
failure happens only when the set is not a primary set. There is always a
primary set to use, either from other stores or a hard-coded one.

0x00000032

ERROR_NOT_SUPPORTED

The specified store does not support this method; the store might be read-
only.

0x00000005

ERROR_ACCESS_DENIED

The hPolicy handle was not opened with read/write access rights. The error
is also returned if the client does not have the required credentials to call
the method.

0x00000002

ERROR_FILE_NOT_FOUND

The specified rule referenced by the wszSetID string is not found in the
policy store.

0x00000057

ERROR_INVALID_PARAMETER

The specified IPsec phase is not a valid one.

Exceptions Thrown: No exceptions are thrown beyond those thrown by the underlying RPC protocol,
as specified in [MS-RPCE]. If any lower-layer errors are reported by RPC exception, this exception
is converted to an error code and reported to higher-layer protocols via the return value.

This method deletes all the authentication sets in the authentication linked list of the memory
representation of the store being modified. It also writes through and deletes the sets from disk. If

called on an online store, the method does not delete the sets if any nonprimary set is referenced by a
connection security rule.

The server MUST validate that the client is authorized to perform the requested operation (as defined
in section 3.1.4) before executing this method.

3.1.4.22 RRPC_FWEnumAuthenticationSets (Opnum 21)

The RRPC_FWEnumAuthenticationSets method requests the server to return all the authentication sets
of the specified IPsec phase contained in the store referenced by the hPolicy handle. The method
returns a linked list of these objects.

 unsigned long RRPC_FWEnumAuthenticationSets(
 [in] FW_CONN_HANDLE rpcConnHandle,
 [in] FW_POLICY_STORE_HANDLE hPolicy,
 [in, range(FW_IPSEC_PHASE_INVALID+1, FW_IPSEC_PHASE_MAX-1)]
 FW_IPSEC_PHASE IpSecPhase,
 [in] unsigned long dwFilteredByStatus,
 [in] unsigned short wFlags,
 [out] unsigned long* pdwNumAuthSets,
 [out] PFW_AUTH_SET2_10* ppAuth
);

rpcConnHandle: This parameter is an RPC binding handle that connects to the RPC interface of the
Firewall and Advanced Security Protocol.

hPolicy: This input parameter is an FW_POLICY_STORE_HANDLE data type. The data type MUST
contain an opened policy store handle, successfully opened with the RRPC_FWOpenPolicyStore
(Opnum 0) method. The handle MUST have read or read/write access rights.

151 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

IpSecPhase: This parameter specifies the specific IPsec negotiation phase to which this set applies.

dwFilteredByStatus: This parameter is a combination of flags from the FW_RULE_STATUS_CLASS

enumeration. This method uses this bitmask to determine which rules will be returned. Sets that
contain a status code of the class specified by this parameter will be returned in the linked list.

wFlags: This parameter is a combination of flags from the FW_ENUM_RULES_FLAGS that modifies the
behavior of the method and performs operations on the sets before returning them in the linked
list.

pdwNumAuthSets: This is an output parameter that on success MUST be equal to the number of
sets returned.

ppAuth: This is an output parameter that on success contains a linked list of FW_AUTH_SET2_10 data
types.

Return Values: The method returns 0 if successful; if failed, it returns a nonzero error code. The field
can take any specific error code value, as specified in [MS-ERREF]. The following return values are
common.

Return value/code Description

0x00000005

ERROR_ACCESS_DENIED

The client does not have the required credentials to call the method.

0x00000057

ERROR_INVALID_PARAMETER

One of the parameters of this method is incorrect, or is required and not
specified. This error can be returned because:

▪ The IpSecPhase parameter specifies an invalid IPsec negotiation phase.

▪ One of the required values is not specified.

Exceptions Thrown: No exceptions are thrown beyond those thrown by the underlying RPC protocol,

as specified in [MS-RPCE]. If any lower-layer errors are reported by RPC exception, this exception

is converted to an error code and reported to higher-layer protocols via the return value.

The server MUST validate that the client is authorized to perform the requested operation (as defined
in section 3.1.4) before executing this method.

When this method is called, the server looks for the binary version of the client, which was associated
with the hPolicy handle when the client sent the RRPC_FWOpenPolicyStore() call. The server compares
this binary version parameter with the schema version it supports. If the server has a schema version

of 0x0201 and the client passed a 0x0200 binary version, then the server removes all values that are
not valid for a FW_AUTH_SET (section 2.2.64) structure that has a 0x0200 schema version. If the
removed value was present on one or more suites of the set, the server removes those suites as a
whole, leaving the remaining suites intact. For each set that had a value removed, the server sets a
FW_RULE_STATUS_PARTIALLY_IGNORED value on the Status field of the set. Then the client receives
authentication sets with values that correspond to the correct schema version, but the client

recognizes that the information it has about the sets is potentially incomplete.

3.1.4.23 RRPC_FWAddCryptoSet (Opnum 22)

The RRPC_FWAddCryptoSet method adds a cryptographic set in the cryptographic linked list of the
memory representation of the store being modified. It also writes through and saves the set to the

disk. If called on an online store, and the set is a primary set, the method enumerates the connection
security rule list and reapplies each rule referencing this primary set to complete the enforcement of
the policy.

152 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

The server MUST determine whether the local computer is operating in common criteria mode by
invoking the abstract interface IsComputerInCommonCriteriaMode (section 3.1.6.5). If the local

computer is operating in common criteria mode, the server MUST fail the operation and return an
error of ERROR_ACCESS_DENIED (5). Otherwise, the server MUST validate that the client is

authorized to perform the requested operation (as defined in section 3.1.4) before executing this
method.

 unsigned long RRPC_FWAddCryptoSet(
 [in] FW_CONN_HANDLE rpcConnHandle,
 [in] FW_POLICY_STORE_HANDLE hPolicy,
 [in] PFW_CRYPTO_SET pCrypto
);

rpcConnHandle: This parameter is an RPC binding handle that connects to the RPC interface of the
Firewall and Advanced Security Protocol.

hPolicy: This input parameter is an FW_POLICY_STORE_HANDLE data type. The data type MUST

contain an opened policy store handle, successfully opened with the RRPC_FWOpenPolicyStore
(Opnum 0) method. The handle MUST have read/write access rights.

pCrypto: This parameter represents the cryptographic set the client wants to add to the store. The
set MUST be valid, as specified in the definition of the FW_CRYPTO_SET data type.

Return Values: The method returns 0 if successful; if failed, it returns a nonzero error code. The field
can take any specific error code value, as specified in [MS-ERREF]. The following return values are
common.

Return value/code Description

0x000000B7

ERROR_ALREADY_EXISTS

The specified rule has a rule ID that already exists in the specified store.

0x00000032

ERROR_NOT_SUPPORTED

The specified store does not support this method; the store might be read-
only.

0x00000005

ERROR_ACCESS_DENIED

The hPolicy handle was not opened with read/write access rights. The error
is also returned if the client does not have the required credentials to call
the method.

0x00000057

ERROR_INVALID_PARAMETER

One of the parameters of this method is incorrect, or is required and not
specified. This error can be returned because:

▪ The pCrypto object did not pass the cryptographic set validations
specified in the definition of the FW_CRYPTO_SET data type.

▪ One of the required values is not specified.

Exceptions Thrown: No exceptions are thrown beyond those thrown by the underlying RPC protocol,
as specified in [MS-RPCE]. If any lower-layer errors are reported by RPC exception, this exception

is converted to an error code and reported to higher-layer protocols via the return value.

3.1.4.24 RRPC_FWSetCryptoSet (Opnum 23)

The RRPC_FWSetCryptoSet method requests the server to modify the specified cryptographic set in
the policy contained in the policy store referenced by the handle specified in the hPolicy parameter.

 unsigned long RRPC_FWSetCryptoSet(
 [in] FW_CONN_HANDLE rpcConnHandle,

153 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

 [in] FW_POLICY_STORE_HANDLE hPolicy,
 [in] PFW_CRYPTO_SET pCrypto
);

rpcConnHandle: This parameter is an RPC binding handle that connects to the RPC interface of the
Firewall and Advanced Security Protocol.

hPolicy: This input parameter is an FW_POLICY_STORE_HANDLE data type. The data type MUST
contain an opened policy store handle, successfully opened with the RRPC_FWOpenPolicyStore
(Opnum 0) method. The handle MUST have read/write access rights.

pCrypto: This parameter represents the cryptographic set the client wants to modify in the store. The
set MUST be valid, as specified in the definition of the FW_CRYPTO_SET data type.

Return Values: The method returns 0 if successful; if failed, it returns a nonzero error code. The field
can take any specific error code value, as specified in [MS-ERREF]. The following return values are

common.

Return value/code Description

0x00000032

ERROR_NOT_SUPPORTED

The specified store does not support this method; the store might be read-
only.

0x00000005

ERROR_ACCESS_DENIED

The hPolicy handle was not opened with read/write access rights. The error
is also returned if the client does not have the required credentials to call
the method.

0x00000002

ERROR_FILE_NOT_FOUND

The specified set referenced by the wszSetID member string of the
FW_CRYPTO_SET data type is not found in the policy store.

0x00000057

ERROR_INVALID_PARAMETER

One of the parameters of this method is incorrect, or is required and not

specified. This error can be returned because:

▪ The pCrypto object did not pass the cryptographic set validations
specified in the definition of the FW_CRYPTO_SET data type.

▪ One of the required values is not specified.

Exceptions Thrown: No exceptions are thrown beyond those thrown by the underlying RPC protocol,
as specified in [MS-RPCE]. If any lower-layer errors are reported by RPC exception, this exception
is converted to an error code and reported to higher-layer protocols via the return value.

This method modifies a cryptographic set in the cryptographic linked list of the memory representation
of the store being modified. It also writes through and saves the set to the disk. If called on an online

store, the method enumerates the connection security rules list and reapplies each rule referencing
this primary set to complete the enforcement of the policy.

The server MUST determine whether the local computer is operating in common criteria mode by
invoking the abstract interface IsComputerInCommonCriteriaMode (section 3.1.6.5). If the local
computer is operating in common criteria mode, the server MUST fail the operation and return an

error of ERROR_ACCESS_DENIED (5). Otherwise, the server MUST validate that the client is
authorized to perform the requested operation (as defined in section 3.1.4) before executing this

method.

3.1.4.25 RRPC_FWDeleteCryptoSet (Opnum 24)

The RRPC_FWDeleteCryptoSet method requests the server to delete the specified cryptographic set in

the policy contained in the policy store that is referenced by the handle specified in the hPolicy
parameter.

154 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

 ULONG RRPC_FWDeleteCryptoSet(
 [in] FW_CONN_HANDLE rpcConnHandle,
 [in] FW_POLICY_STORE_HANDLE hPolicy,
 [in, range(FW_IPSEC_PHASE_INVALID+1, FW_IPSEC_PHASE_MAX-1)]
 FW_IPSEC_PHASE IpSecPhase,
 [in, string, ref] const wchar_t* wszSetId
);

rpcConnHandle: This parameter is an RPC binding handle that connects to the RPC interface of the
Firewall and Advanced Security Protocol.

hPolicy: This input parameter is an FW_POLICY_STORE_HANDLE data type. The data type MUST
contain an opened policy store handle that is successfully opened by using the
RRPC_FWOpenPolicyStore (Opnum 0) method. The handle MUST have read/write access rights.

IpSecPhase: This parameter specifies the IPsec negotiation phase type in which this set is used.

wszSetId: This parameter is the pointer to a string that is the ID of the cryptographic set that the

client wants to delete from the specified store.

This ID can be obtained by enumerating cryptographic sets using the RRPC_FWEnumCryptoSets
(Opnum 26) where the ID is returned in the FW_CRYPTO_SET structure.

Return Values: The method returns 0 if successful; if it fails, it returns a nonzero error code. The
field can take any specific error code value, as specified in [MS-ERREF]. The following return
values are common.

Return value/code Description

0x00000962

ERROR_ACTIVE_CONNECTIONS

The specified set is still referenced by connection security or main mode
rules. This failure happens only when the set is not a primary set. There is
always a primary set to use, either from other stores or a hard-coded one.

0x00000032

ERROR_NOT_SUPPORTED

The specified store does not support this method; the store might be read-
only.

0x00000005

ERROR_ACCESS_DENIED

The hPolicy handle was not opened with read/write access rights. The error
is also returned if the client does not have the required credentials to call
the method.

0x00000002

ERROR_FILE_NOT_FOUND

The specified rule that is referenced by the wszSetID string is not found
in the policy store.

0x00000057

ERROR_INVALID_PARAMETER

The specified IPsec phase is not a valid one.

Exceptions Thrown: No exceptions are thrown except those that are thrown by the underlying RPC
protocol, as specified in [MS-RPCE]. If any lower-layer errors are reported by RPC exception, this
exception is converted to an error code and reported to higher-layer protocols via the return
value.

This method deletes a cryptographic set in the cryptographic linked list of the memory representation
of the store being modified. It also writes through and saves the set to disk. If called on an online
store and the set is not a primary set, the method does not delete the specified set if any connection
rule references this set.

The server MUST determine whether the local computer is operating in common criteria mode by
invoking the abstract interface IsComputerInCommonCriteriaMode (section 3.1.6.5). If the local

computer is operating in common criteria mode, the server MUST fail the operation and return an
error of ERROR_ACCESS_DENIED (5). Otherwise, the server MUST validate that the client is

155 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

authorized to perform the requested operation (as defined in section 3.1.4) before executing this
method.

3.1.4.26 RRPC_FWDeleteAllCryptoSets (Opnum 25)

The RRPC_FWDeleteAllCryptoSets method requests the server to delete all the cryptographic sets of a
specific IPsec phase in the policy contained in the policy store that is referenced by the handle
specified in the hPolicy parameter.

 unsigned long RRPC_FWDeleteAllCryptoSets(
 [in] FW_CONN_HANDLE rpcConnHandle,
 [in] FW_POLICY_STORE_HANDLE hPolicy,
 [in, range(FW_IPSEC_PHASE_INVALID+1, FW_IPSEC_PHASE_MAX-1)]
 FW_IPSEC_PHASE IpSecPhase
);

rpcConnHandle: This parameter is an RPC binding handle that connects to the RPC interface of the

Firewall and Advanced Security Protocol.

hPolicy: This input parameter is an FW_POLICY_STORE_HANDLE data type. The data type MUST
contain an opened policy store handle that is successfully opened by using the
RRPC_FWOpenPolicyStore (Opnum 0) method. The handle MUST have read/write access rights.

IpSecPhase: This parameter specifies the IPsec negotiation phase type in which this set is used.

Return Values: The method returns 0 if successful; if it fails, it returns a nonzero error code. The

field can take any specific error code value, as specified in [MS-ERREF]. The following return
values are common.

Return value/code Description

0x00000962

ERROR_ACTIVE_CONNECTIONS

There are nonprimary sets still being referenced by connection security or
main mode rules. There is always a primary set to use, either from other
stores or a hard-coded one; therefore, this failure never occurs because of

primary sets.

0x00000032

ERROR_NOT_SUPPORTED

The specified store does not support this method; the store might be read-
only.

0x00000005

ERROR_ACCESS_DENIED

The hPolicy handle was not opened with read/write access rights. The error
is also returned if the client does not have the required credentials to call
the method.

0x00000057

ERROR_INVALID_PARAMETER

The specified IPsec phase is not a valid one.

Exceptions Thrown: No exceptions are thrown except those that are thrown by the underlying RPC
protocol, as specified in [MS-RPCE]. If any lower-layer errors are reported by RPC exception, this
exception is converted to an error code and reported to higher-layer protocols via the return

value.

This method deletes all the cryptographic sets in the cryptographic linked list of the memory
representation of the store being modified. It also writes through and deletes the sets from disk. If
called on an online store, the method does not delete the sets if any nonprimary set is referenced by a
connection security rule.

The server MUST determine whether the local computer is operating in common criteria mode by
invoking the abstract interface IsComputerInCommonCriteriaMode (section 3.1.6.5). If the local
computer is operating in common criteria mode, the server MUST fail the operation and return an

156 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

error of ERROR_ACCESS_DENIED (5). Otherwise, the server MUST validate that the client is
authorized to perform the requested operation (as defined in section 3.1.4) before executing this

method.

3.1.4.27 RRPC_FWEnumCryptoSets (Opnum 26)

The RRPC_FWEnumCryptoSets method requests the server to return all the cryptographic sets of the
specified IPsec phase contained in the store referenced by the hPolicy handle. The method returns a
linked list of all these cryptographic objects.

 unsigned long RRPC_FWEnumCryptoSets(
 [in] FW_CONN_HANDLE rpcConnHandle,
 [in] FW_POLICY_STORE_HANDLE hPolicy,
 [in, range(FW_IPSEC_PHASE_INVALID+1, FW_IPSEC_PHASE_MAX-1)]
 FW_IPSEC_PHASE IpSecPhase,
 [in] unsigned long dwFilteredByStatus,
 [in] unsigned short wFlags,
 [out, ref] unsigned long* pdwNumSets,
 [out] PFW_CRYPTO_SET* ppCryptoSets
);

rpcConnHandle: This parameter is an RPC binding handle that connects to the RPC interface of the
Firewall and Advanced Security Protocol.

hPolicy: This input parameter is an FW_POLICY_STORE_HANDLE data type. The data type MUST
contain an opened policy store handle, successfully opened with the RRPC_FWOpenPolicyStore
(Opnum 0) method. The handle MUST have read or read/write access rights.

IpSecPhase: This parameter specifies the specific IPsec negotiation phase to which this set applies.

dwFilteredByStatus: This parameter is a combination of flags from the FW_RULE_STATUS_CLASS
enumeration. This method uses this bitmask to determine which rules will be returned. Sets that
contain a status code of the class specified by matches to this parameter will be returned in the
linked list.

wFlags: This parameter is a combination of flags from the FW_ENUM_RULES_FLAGS that modifies the
behavior of the method and performs operations on the sets before returning them in the linked

list.

pdwNumSets: This is an output parameter that on success MUST be equal to the number of sets
returned.

ppCryptoSets: This is an output parameter that on success contains a linked list of FW_CRYPTO_SET
data types.

Return Values: The method returns 0 if successful; if failed, it returns a nonzero error code. The field
can take any specific error code value, as specified in [MS-ERREF]. The following return values are

common.

Return value/code Description

0x00000005

ERROR_ACCESS_DENIED

The client does not have the required credentials to call the method.

0x00000057

ERROR_INVALID_PARAMETER

One of the parameters of this method is incorrect, or is required and not
specified. This error can be returned because:

▪ The IpSecPhase parameter specifies an invalid IPsec negotiation phase.

157 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Return value/code Description

▪ One of the required values is not specified.

Exceptions Thrown: No exceptions are thrown beyond those thrown by the underlying RPC protocol,
as specified in [MS-RPCE]. If any lower-layer errors are reported by RPC exception, this exception
is converted to an error code and reported to higher-layer protocols via the return value.

The server MUST validate that the client is authorized to perform the requested operation (as defined
in section 3.1.4) before executing this method.

When this method is called, the server looks for the binary version of the client, which was associated
with the hPolicy handle when the client sent the RRPC_FWOpenPolicyStore() call. The server compares
this binary version parameter with the schema version that it supports. If the server has a schema
version of 0x0201 and the client passed a 0x0200 binary version, the server removes all values that
are not valid for a FW_CRYPTO_SET (section 2.2.73) structure that has a 0x0200 schema version. If
the removed value was present on one or more suites of the set, the server removes those suites as a

whole, leaving the remaining suites intact. For each set that had a value removed, the server sets a
FW_RULE_STATUS_PARTIALLY_IGNORED value on the Status field of the set. The client then receives
cryptographic sets with values that correspond to the correct schema version, but the client
recognizes that the information it has about the sets is potentially incomplete.

3.1.4.28 RRPC_FWEnumPhase1SAs (Opnum 27)

The RRPC_FWEnumPhase1SAs method requests the server to return all the security associations of
the IPsec first negotiation phase contained in the store referenced by the hPolicy handle. The method
returns a linked list of all these security associations.

 unsigned long RRPC_FWEnumPhase1SAs(
 [in] FW_CONN_HANDLE rpcConnHandle,
 [in] FW_POLICY_STORE_HANDLE hPolicy,
 [in, unique] PFW_ENDPOINTS pEndpoints,
 [out, ref] unsigned long* pdwNumSAs,
 [out, size_is(, *pdwNumSAs)] PFW_PHASE1_SA_DETAILS* ppSAs
);

rpcConnHandle: This parameter is an RPC binding handle that connects to the RPC interface of the
Firewall and Advanced Security Protocol.

hPolicy: This input parameter is an FW_POLICY_STORE_HANDLE data type. The data type MUST
contain an opened policy store handle, successfully opened with the RRPC_FWOpenPolicyStore
(Opnum 0) method. This handle MUST be of the FW_STORE_TYPE_DYNAMIC store.

pEndpoints: This parameter is a pointer to an FW_ENDPOINTS data type that can hold the addresses
of the destination and source host. These addresses are used to match the security associations
that will be returned. If this parameter is NULL, the method returns all IPsec first-phase security
associations.

pdwNumSAs: This is an output parameter that on success MUST be equal to the number of security
associations returned.

ppSAs: This is an output parameter that on success contains a linked list of FW_PHASE1_SA_DETAILS

data types, each of which represents the first-phase security association.

Return Values: The method returns 0 if successful; if failed, it returns a nonzero error code. The field
can take any specific error code value, as specified in [MS-ERREF]. The following return values are
common.

158 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Return value/code Description

0x00000005

ERROR_ACCESS_DENIED

The client does not have the required credentials to call the method.

0x00000032

ERROR_NOT_SUPPORTED

The store handle is not of the dynamic store.

0x00000057

ERROR_INVALID_PARAMETER

One of the parameters of this method is incorrect, or is required and not
specified.

Exceptions Thrown: No exceptions are thrown beyond those thrown by the underlying RPC protocol,
as specified in [MS-RPCE]. If any lower-layer errors are reported by RPC exception, this exception
is converted to an error code and reported to higher-layer protocols via the return value.

The server MUST validate that the client is authorized to perform the requested operation (as defined
in section 3.1.4) before executing this method.

When this method is called, the server looks for the binary version of the client, which was associated

with the hPolicy handle when the client sent the RRPC_FWOpenPolicyStore call. The server compares
this binary version parameter with the schema version that it supports. If the server’s schema version
is greater than the binary version passed by the client, the server removes all
FW_PHASE1_SA_DETAILS objects that contain values that are not valid for an FW_AUTH_SET (section
2.2.64) structure that has the schema version value passed by the client.

3.1.4.29 RRPC_FWEnumPhase2SAs (Opnum 28)

The RRPC_FWEnumPhase2SAs method requests the server to return all the security associations of
the IPsec second negotiation phase contained in the store referenced by the hPolicy handle. The
method returns a linked list of all these security associations.

 unsigned long RRPC_FWEnumPhase2SAs(
 [in] FW_CONN_HANDLE rpcConnHandle,
 [in] FW_POLICY_STORE_HANDLE hPolicy,
 [in, unique] PFW_ENDPOINTS pEndpoints,
 [out, ref] unsigned long* pdwNumSAs,
 [out, size_is(, *pdwNumSAs)] PFW_PHASE2_SA_DETAILS* ppSAs
);

rpcConnHandle: This parameter is an RPC binding handle that connects to the RPC interface of the
Firewall and Advanced Security Protocol.

hPolicy: This input parameter is an FW_POLICY_STORE_HANDLE data type. The data type MUST
contain an opened policy store handle, successfully opened with the RRPC_FWOpenPolicyStore

(Opnum 0) method. This handle MUST be of the FW_STORE_TYPE_DYNAMIC store.

pEndpoints: This parameter is a pointer to an FW_ENDPOINTS data type that can hold the addresses
of the destination and source host. These addresses are used to match the security associations

that will be returned. If this parameter is NULL, the method will return all IPsec second phase
security associations. If an endpoint is empty (that is, equal to 0), the endpoint matches any
address.

pdwNumSAs: This is an output parameter that on success MUST be equal to the number of security
associations returned.

ppSAs: This is an output parameter that on success contains a linked list of FW_PHASE2_SA_DETAILS
data types, each of which represents a second phase security association.

159 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Return Values: The method returns 0 if successful; if failed, it returns a non-zero error code. The
field can take any specific error code value, as specified in [MS-ERREF]. The following are

common.

Return value/code Description

0x00000005

ERROR_ACCESS_DENIED

The client does not have the required credentials to call the method.

0x00000032

ERROR_NOT_SUPPORTED

The store handle is not of the dynamic store.

0x00000057

ERROR_INVALID_PARAMETER

One of the parameters of this method is incorrect, or is required and not
specified.

Exceptions Thrown: No exceptions are thrown beyond those thrown by the underlying RPC protocol,
as specified in [MS-RPCE]. If any lower-layer errors are reported by RPC exception, this exception
is converted to an error code and reported to higher-layer protocols via the return value.

The server MUST validate that the client is authorized to perform the requested operation (as defined
in section 3.1.4) before executing this method.

3.1.4.30 RRPC_FWDeletePhase1SAs (Opnum 29)

The RRPC_FWDeletePhase1SAs method requests the server to delete all the IPsec first negotiation

phase security associations that match the specified endpoints.

 unsigned long RRPC_FWDeletePhase1SAs(
 [in] FW_CONN_HANDLE rpcConnHandle,
 [in] FW_POLICY_STORE_HANDLE hPolicy,
 [in, unique] PFW_ENDPOINTS pEndpoints
);

rpcConnHandle: This parameter is an RPC binding handle that connects to the RPC interface of the

Firewall and Advanced Security Protocol.

hPolicy: This input parameter is an FW_POLICY_STORE_HANDLE data type. The data type MUST
contain an opened policy store handle, successfully opened with the RRPC_FWOpenPolicyStore
(Opnum 0) method. This handle MUST be of the FW_STORE_TYPE_DYNAMIC store.

pEndpoints: This parameter is a pointer to an FW_ENDPOINTS data type that can hold the addresses
of the destination and source host. These addresses are used to match the security associations
that will be deleted. If this parameter is NULL, the method deletes all IPsec first-phase security

associations. If an endpoint is empty (that is, equal to 0), the endpoint matches any address.

Return Values: The method returns 0 if successful; if failed, it returns a nonzero error code. The field
can take any specific error code value, as specified in [MS-ERREF]. The following return values are
common.

Return value/code Description

0x00000005

ERROR_ACCESS_DENIED

The client does not have the required credentials to call the method.

0x00000032

ERROR_NOT_SUPPORTED

The store handle is not of the dynamic store.

160 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Return value/code Description

0x00000057

ERROR_INVALID_PARAMETER

One of the parameters of this method is incorrect or is required and not
specified.

Exceptions Thrown: No exceptions are thrown beyond those thrown by the underlying RPC protocol,
as specified in [MS-RPCE]. If any lower-layer errors are reported by RPC exception, this exception
is converted to an error code and reported to higher-layer protocols via the return value.

The server MUST validate that the client is authorized to perform the requested operation (as defined
in section 3.1.4) before executing this method.

3.1.4.31 RRPC_FWDeletePhase2SAs (Opnum 30)

The RRPC_FWDeletePhase2SAs (Opnum 30) method requests the server to delete all the IPsec
second-negotiation-phase security associations that match the specified endpoints.

 unsigned long RRPC_FWDeletePhase2SAs(
 [in] FW_CONN_HANDLE rpcConnHandle,
 [in] FW_POLICY_STORE_HANDLE hPolicy,
 [in, unique] PFW_ENDPOINTS pEndpoints
);

rpcConnHandle: This parameter is an RPC binding handle that connects to the RPC interface of the
Firewall and Advanced Security Protocol.

hPolicy: This input parameter is an FW_POLICY_STORE_HANDLE data type. The data type MUST

contain an opened policy store handle, successfully opened with the RRPC_FWOpenPolicyStore
(Opnum 0) method. This handle MUST be of the FW_STORE_TYPE_DYNAMIC store.

pEndpoints: This parameter is a pointer to an FW_ENDPOINTS data type that can hold the addresses
of the destination and source host. These addresses are used to match the security associations

that will be deleted. If this parameter is NULL, the method deletes all IPsec second-phase security
associations. If an endpoint is empty (that is, equal to 0), the endpoint matches any address.

Return Values: The method returns 0 if successful; if failed, it returns a nonzero error code. The field
can take any specific error code value, as specified in [MS-ERREF]. The following return values are
common.

Return value/code Description

0x00000005

ERROR_ACCESS_DENIED

The client does not have the required credentials to call the method.

0x00000032

ERROR_NOT_SUPPORTED

The store handle is not of the dynamic store.

0x00000057

ERROR_INVALID_PARAMETER

One of the parameters of this method is incorrect, or is required and not
specified.

Exceptions Thrown: No exceptions are thrown beyond those thrown by the underlying RPC protocol,
as specified in [MS-RPCE]. If any lower-layer errors are reported by RPC exception, this exception
is converted to an error code and reported to higher-layer protocols via the return value.

The server MUST validate that the client is authorized to perform the requested operation (as defined
in section 3.1.4) before executing this method.

161 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

3.1.4.32 RRPC_FWEnumProducts (Opnum 31)

The RRPC_FWEnumProducts (Opnum 31) method requests the server to return all the registered
third-party software components registered with the firewall and advanced security component. The

only method supported is binary version 0x020A.

 unsigned long RRPC_FWEnumProducts(
 [in] FW_CONN_HANDLE rpcConnHandle,
 [in] FW_POLICY_STORE_HANDLE hPolicy,
 [out] unsigned long* pdwNumProducts,
 [out, size_is(,*pdwNumProducts)]
 PFW_PRODUCT* ppProducts
);

rpcConnHandle: This parameter is an RPC binding handle that connects to the RPC interface of the

Firewall and Advanced Security Protocol.

hPolicy: This input parameter is an FW_POLICY_STORE_HANDLE data type. The data type MUST

contain an opened policy store handle, successfully opened with the RRPC_FWOpenPolicyStore
(Opnum 0) method. This handle MUST be of the FW_STORE_TYPE_DYNAMIC store.

pdwNumProducts: This is an output parameter that on success MUST be equal to the number of
products returned.

ppProducts: An array of FW_PRODUCT data types, representing the registration of third-party

software components.

Return Values: The method returns 0 if successful; if it fails, it returns a nonzero error code. The
field can take any specific error code value, as specified in [MS-ERREF]. The following return
values are common.

Return value/code Description

0x00000005

ERROR_ACCESS_DENIED

The client does not have the required credentials to call the method.

0x00000032

ERROR_NOT_SUPPORTED

The store handle is not of the dynamic store.

0x00000057

ERROR_INVALID_PARAMETER

One of the parameters of this method either is incorrect or is required and
not specified.

Exceptions Thrown: No exceptions are thrown beyond those thrown by the underlying RPC protocol,
as specified in [MS-RPCE]. If any lower-layer errors are reported by RPC exception, this exception
is converted to an error code and reported to higher-layer protocols via the return value.

The server MUST validate that the client is authorized to perform the requested operation (as defined
in section 3.1.4) before executing this method.

3.1.4.33 RRPC_FWAddMainModeRule (Opnum 32)

The RRPC_FWAddMainModeRule (Opnum 32) method requests the server to add the main mode rule
in the policy contained in the policy store referenced by the specified opened policy store handle. The
only method supported is binary version 0x020A.

 unsigned long RRPC_FWAddMainModeRule(
 [in] FW_CONN_HANDLE rpcConnHandle,
 [in] FW_POLICY_STORE_HANDLE hPolicy,

162 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

 [in] PFW_MM_RULE pMMRule,
 [out] FW_RULE_STATUS* pStatus
);

rpcConnHandle: This parameter is an RPC binding handle that connects to the RPC interface of the
Firewall and Advanced Security Protocol.

hPolicy: This input parameter is an FW_POLICY_STORE_HANDLE data type. The data type MUST
contain an opened policy store handle, successfully opened with the RRPC_FWOpenPolicyStore
(Opnum 0) method. This handle MUST be of the FW_STORE_TYPE_DYNAMIC store.

pMMRule: This parameter represents the main mode rule that the client adds in the store. The rule
MUST be valid, as specified in the definition of the FW_MM_RULE data type.

pStatus: This is an output parameter that on return will have the status code of the rule.

Return Values: The method returns 0 if successful; if failed, it returns a nonzero error code. The field

can take any specific error code value, as specified in [MS-ERREF]. The following return values are

common.

Return value/code Description

0x00000005

ERROR_ACCESS_DENIED

The client does not have the required credentials to call the method.

0x000000B7

ERROR_ALREADY_EXISTS

The specified rule has a rule ID that already exists in the specified store.

0x00000057

ERROR_INVALID_PARAMETER

One of the parameters of this method either is incorrect or is required and
not specified.

Exceptions Thrown: No exceptions are thrown beyond those thrown by the underlying RPC protocol,
as specified in [MS-RPCE]. If any lower-layer errors are reported by RPC exception, this exception

is converted to an error code and reported to higher-layer protocols via the return value.

The server MUST validate that the client is authorized to perform the requested operation (as defined
in section 3.1.4) before executing this method.

3.1.4.34 RRPC_FWSetMainModeRule (Opnum 33)

The RRPC_FWSetMainModeRule (Opnum 33) method requests the server to modify the specified main
mode rule in the policy contained in the policy store referenced by the handle specified in the hPolicy
parameter. The only method supported is binary version 0x020A.

 unsigned long RRPC_FWSetMainModeRule(
 [in] FW_CONN_HANDLE rpcConnHandle,
 [in] FW_POLICY_STORE_HANDLE hPolicy,
 [in] PFW_MM_RULE pMMRule,
 [out] FW_RULE_STATUS* pStatus
);

rpcConnHandle: This parameter is an RPC binding handle that connects to the RPC interface of the

Firewall and Advanced Security Protocol.

hPolicy: This input parameter is an FW_POLICY_STORE_HANDLE data type. The data type MUST
contain an opened policy store handle, successfully opened with the RRPC_FWOpenPolicyStore
(Opnum 0) method. This handle MUST be of the FW_STORE_TYPE_DYNAMIC store.

163 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

pMMRule: This parameter represents the main mode rule the client modifies in the store. The rule
MUST be valid, as specified in the definition of the FW_MM_RULE data type.

pStatus: This is an output parameter that on return will have the status code of the rule.

Return Values: The method returns 0 if successful; if it fails, it returns a nonzero error code. The

field can take any specific error code value, as specified in [MS-ERREF]. The following return
values are common.

Return value/code Description

0x00000005

ERROR_ACCESS_DENIED

The client does not have the required credentials to call the method.

0x00000002

ERROR_FILE_NOT_FOUND

The specified set referenced by the wszRuleID member STRING of the
FW_MM_RULE data type is not found in the policy store.

0x00000057

ERROR_INVALID_PARAMETER

One of the parameters of this method either is incorrect or is required and
not specified.

Exceptions Thrown: No exceptions are thrown beyond those thrown by the underlying RPC protocol,
as specified in [MS-RPCE]. If any lower-layer errors are reported by RPC exception, this exception
is converted to an error code and reported to higher-layer protocols via the return value.

The server MUST validate that the client is authorized to perform the requested operation (as defined
in section 3.1.4) before executing this method.

3.1.4.35 RRPC_FWDeleteMainModeRule (Opnum 34)

The RRPC_FWDeleteMainModeRule (Opnum 34) method requests the server to delete the specified
main mode rule in the policy contained in the policy store referenced by the handle specified in the
hPolicy parameter. The only method supported is binary version 0x020A.

 unsigned long RRPC_FWDeleteMainModeRule(
 [in] FW_CONN_HANDLE rpcConnHandle,
 [in] FW_POLICY_STORE_HANDLE hPolicy,
 [in, string, ref] LPCWSTR pRuleId
);

rpcConnHandle: This parameter is an RPC binding handle that connects to the RPC interface of the
Firewall and Advanced Security Protocol.

hPolicy: This input parameter is an FW_POLICY_STORE_HANDLE data type. The data type MUST
contain an opened policy store handle, successfully opened with the RRPC_FWOpenPolicyStore

(Opnum 0) method. This handle MUST be of the FW_STORE_TYPE_DYNAMIC store.

pRuleId: This parameter is the pointer to a STRING that is the ID of the main mode rule the client
deletes from the specified store.

This ID can be obtained by enumerating main mode rules using the
RRPC_FWEnumMainModeRules(Opnum 36) where the ID is returned in the FW_MM_RULE
structure.

Return Values: The method returns 0 if successful; if it fails, it returns a nonzero error code. The

field can take any specific error code value, as specified in [MS-ERREF]. The following return
values are common.

164 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Return value/code Description

0x00000005

ERROR_ACCESS_DENIED

The client does not have the required credentials to call the method.

0x00000002

ERROR_FILE_NOT_FOUND

The specified set referenced by the wszRuleID member string of the
FW_MM_RULE data type is not found in the policy store.

0x00000057

ERROR_INVALID_PARAMETER

One of the parameters of this method either is incorrect or is required and
not specified.

Exceptions Thrown: No exceptions are thrown beyond those thrown by the underlying RPC protocol,
as specified in [MS-RPCE]. If any lower-layer errors are reported by RPC exception, this exception
is converted to an error code and reported to higher-layer protocols via the return value.

The server MUST validate that the client is authorized to perform the requested operation (as defined
in section 3.1.4) before executing this method.

3.1.4.36 RRPC_FWDeleteAllMainModeRules (Opnum 35)

The RRPC_FWDeleteAllMainModeRules (Opnum 35) method requests the server to delete all the main
mode rules in the policy contained in the policy store referenced by the handle specified in the hPolicy
parameter. The only method supported is binary version 0x020A.

 unsigned long RRPC_FWDeleteAllMainModeRules(
 [in] FW_CONN_HANDLE rpcConnHandle,
 [in] FW_POLICY_STORE_HANDLE hPolicy
);

rpcConnHandle: This parameter is an RPC binding handle that connects to the RPC interface of the
Firewall and Advanced Security Protocol.

hPolicy: This input parameter is an FW_POLICY_STORE_HANDLE data type. The data type MUST
contain an opened policy store handle, successfully opened with the RRPC_FWOpenPolicyStore
(Opnum 0) method. This handle MUST be of the FW_STORE_TYPE_DYNAMIC store.

Return Values: The method returns 0 if successful; if it fails, it returns a nonzero error code. The
field can take any specific error code value, as specified in [MS-ERREF]. The following return

values are common.

Return value/code Description

 0x00000032

ERROR_NOT_SUPPORTED

The specified store does not support this method; the store might be read-only.

0x00000005

ERROR_ACCESS_DENIED

The hPolicy handle was not opened with read/write access rights. The error is
also returned if the client does not have the required credentials to call the
method.

Exceptions Thrown: No exceptions are thrown beyond those thrown by the underlying RPC protocol,
as specified in [MS-RPCE]. If any lower-layer errors are reported by RPC exception, this exception
is converted to an error code and reported to higher-layer protocols via the return value.

The server MUST validate that the client is authorized to perform the requested operation (as defined

in 3.1.4) before executing this method.

165 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

3.1.4.37 RRPC_FWEnumMainModeRules (Opnum 36)

The RRPC_FWEnumMainModeRules (Opnum 36) method requests the server to return all the main
mode rules contained in the store referenced by the hPolicy handle. The method returns a linked list of

all the main mode rule objects. The only method supported is binary version 0x020A.

 unsigned long RRPC_FWEnumMainModeRules(
 [in] FW_CONN_HANDLE rpcConnHandle,
 [in] FW_POLICY_STORE_HANDLE hPolicy,
 [in] unsigned long dwFilteredByStatus,
 [in] unsigned long dwProfileFilter,
 [in] unsigned short wFlags,
 [out, ref] unsigned long* pdwNumRules,
 [out] PFW_MM_RULE* ppMMRules
);

rpcConnHandle: This parameter is an RPC binding handle that connects to the RPC interface of the

Firewall and Advanced Security Protocol.

hPolicy: This input parameter is an FW_POLICY_STORE_HANDLE data type. The data type MUST
contain an opened policy store handle, successfully opened with the RRPC_FWOpenPolicyStore
(Opnum 0) method. This handle MUST be of the FW_STORE_TYPE_DYNAMIC store.

dwFilteredByStatus: This parameter is a combination of flags from the FW_RULE_STATUS_CLASS
enumeration. This method uses this bitmask to determine which rules will be returned. Rules that
contain a status code of the class specified by this parameter will be returned in the linked list.

dwProfileFilter: This parameter is a combination of flags from the FW_PROFILE_TYPE enumeration.
This method also uses this parameter to determine which rules will be returned. Rules that contain
a profile specified by this parameter will be returned in the linked list.

wFlags: This parameter is a combination of flags from the FW_ENUM_RULES_FLAGS enumeration,
which modifies the behavior of the method and performs operations on the rules before returning
them in the linked list.

pdwNumRules: This is an output parameter that on success MUST be equal to the number of rules
returned.

ppMMRules: This is an output parameter that on success contains a linked list of FW_MM_RULE data
types.

Return Values: The method returns 0 if successful; if it fails, it returns a nonzero error code. The
field can take any specific error code value, as specified in [MS-ERREF]. The following return
values are common.

Return value/code Description

0x00000005

ERROR_ACCESS_DENIED

The client does not have the required credentials to call the method.

0x00000057

ERROR_INVALID_PARAMETER

The dwProfileFilter parameter contains invalid profiles.

Exceptions Thrown: No exceptions are thrown beyond those thrown by the underlying RPC protocol,
as specified in [MS-RPCE]. If any lower-layer errors are reported by RPC exception, this exception
is converted to an error code and reported to higher-layer protocols via the return value.

The server MUST validate that the client is authorized to perform the requested operation (as defined
in section 3.1.4) before executing this method.

166 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

3.1.4.38 RRPC_FWQueryFirewallRules (Opnum 37)

The RRPC_FWQueryFirewallRules (Opnum 37) method requests the server to return all the firewall
rules that match the specified query object that are contained in the store referenced by the hPolicy

handle. The method returns a linked list of all the firewall rule objects. The only method supported is
binary version 0x020A.

 unsigned long RRPC_FWQueryFirewallRules(
 [in] FW_CONN_HANDLE rpcConnHandle,
 [in] FW_POLICY_STORE_HANDLE hPolicy,
 [in] PFW_QUERY pQuery,
 [in] unsigned short wFlags,
 [out, ref] unsigned long* pdwNumRules,
 [out] PFW_RULE2_10* ppRule
);

rpcConnHandle: This parameter is an RPC binding handle that connects to the RPC interface of the
Firewall and Advanced Security Protocol.

hPolicy: This input parameter is an FW_POLICY_STORE_HANDLE data type. The data type MUST
contain an opened policy store handle, successfully opened with the RRPC_FWOpenPolicyStore

(Opnum 0) method. This handle MUST be of the FW_STORE_TYPE_DYNAMIC store.

pQuery: This parameter represents the query object that the client uses to specify which main mode
rules MUST be retrieved from the store. The query object MUST be valid, as specified in the
definition of the FW_QUERY data type.

wFlags: This parameter is a combination of flags from the FW_ENUM_RULES_FLAGS enumeration,
which modifies the behavior of the method and performs operations on the rules before returning

them in the linked list.

pdwNumRules: This is an output parameter that on success MUST be equal to the number of rules
returned.

ppRule: This is an output parameter that on success contains a linked list of FW_RULE2_10 data
types.

Return Values: The method returns 0 if successful; if it fails, it returns a nonzero error code. The
field can take any specific error code value, as specified in [MS-ERREF]. The following return

values are common.

Return value/code Description

0x00000005

ERROR_ACCESS_DENIED

The client does not have the required credentials to call the method.

0x00000057

ERROR_INVALID_PARAMETER

The pQuery parameter contains invalid profiles.

Exceptions Thrown: No exceptions are thrown beyond those thrown by the underlying RPC protocol,
as specified in [MS-RPCE]. If any lower-layer errors are reported by RPC exception, this exception
is converted to an error code and reported to higher-layer protocols via the return value.

The server MUST validate that the client is authorized to perform the requested operation (as defined

in section 3.1.4) before executing this method.

167 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

3.1.4.39 RRPC_FWQueryConnectionSecurityRules (Opnum 38)

The RRPC_FWQueryConnectionSecurityRules (Opnum 38) method requests the server to return all the
connection security rules that match the specified query object that are contained in the store

referenced by the hPolicy handle. The method returns a linked list of all the connection security rule
objects. The only method supported is binary version 0x020A.

 unsigned long RRPC_FWQueryConnectionSecurityRules(
 [in] FW_CONN_HANDLE rpcConnHandle,
 [in] FW_POLICY_STORE_HANDLE hPolicy,
 [in] PFW_QUERY pQuery,
 [in] unsigned short wFlags,
 [out, ref] unsigned long* pdwNumRules,
 [out] PFW_CS_RULE2_10* ppRules
);

rpcConnHandle: This parameter is an RPC binding handle that connects to the RPC interface of the
Firewall and Advanced Security Protocol.

hPolicy: This input parameter is an FW_POLICY_STORE_HANDLE data type. The data type MUST
contain an opened policy store handle, successfully opened with the RRPC_FWOpenPolicyStore

(Opnum 0) method. This handle MUST be of the FW_STORE_TYPE_DYNAMIC store.

pQuery: This parameter represents the query object that the client uses to specify which main mode
rules MUST be retrieved from the store. The query object MUST be valid, as specified in the
definition of the FW_QUERY data type.

wFlags: This parameter is a combination of flags from the FW_ENUM_RULES_FLAGS, which modifies
the behavior of the method and performs operations on the rules before returning them in the

linked list.

pdwNumRules: This is an output parameter that on success MUST be equal to the number of rules
returned.

ppRules: This is an output parameter that on success contains a linked list of FW_CS_RULE2_10 data
types.

Return Values: The method returns 0 if successful; if failed, it returns a nonzero error code. The field
can take any specific error code value, as specified in [MS-ERREF]. The following return values are

common.

Return value/code Description

0x00000005

ERROR_ACCESS_DENIED

The client does not have the required credentials to call the method.

0x00000057

ERROR_INVALID_PARAMETER

The pQuery parameter contains invalid profiles.

Exceptions Thrown: No exceptions are thrown beyond those thrown by the underlying RPC protocol,
as specified in [MS-RPCE]. If any lower-layer errors are reported by RPC exception, this exception
is converted to an error code and reported to higher-layer protocols via the return value.

The server MUST validate that the client is authorized to perform the requested operation (as defined

in section 3.1.4) before executing this method.

168 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

3.1.4.40 RRPC_FWQueryMainModeRules (Opnum 39)

The RRPC_FWQueryMainModeRules (Opnum 39) method requests the server to return all the main
mode rules that match the specified query object that are contained in the store referenced by the

hPolicy handle. The method returns a linked list of all the main mode rule objects. The only method
supported is binary version 0x020A.

 unsigned long RRPC_FWQueryMainModeRules(
 [in] FW_CONN_HANDLE rpcConnHandle,
 [in] FW_POLICY_STORE_HANDLE hPolicy,
 [in] PFW_QUERY pQuery,
 [in] unsigned short wFlags,
 [out, ref] unsigned long* pdwNumRules,
 [out] PFW_MM_RULE ppMMRules
);

rpcConnHandle: This parameter is an RPC binding handle that connects to the RPC interface of the
Firewall and Advanced Security Protocol.

hPolicy: This input parameter is an FW_POLICY_STORE_HANDLE data type. The data type MUST
contain an opened policy store handle, successfully opened with the RRPC_FWOpenPolicyStore

(Opnum 0) method. This handle MUST be of the FW_STORE_TYPE_DYNAMIC store.

pQuery: This parameter represents the query object that the client uses to specify which main mode
rules MUST be retrieved from the store. The query object MUST be valid, as specified in the
definition of the FW_QUERY data type.

wFlags: This parameter is a combination of flags from the FW_ENUM_RULES_FLAGS enumeration,
which modifies the behavior of the method and performs operations on the rules before returning

them in the linked list.

pdwNumRules: This is an output parameter that on success MUST be equal to the number of rules
returned.

ppMMRules: This is an output parameter that on success contains a linked list of FW_MM_RULE data
types.

Return Values: The method returns 0 if successful; if it fails, it returns a nonzero error code. The
field can take any specific error code value, as specified in [MS-ERREF]. The following return

values are common.

Return value/code Description

0x00000005

ERROR_ACCESS_DENIED

The client does not have the required credentials to call the method.

0x00000057

ERROR_INVALID_PARAMETER

The pQuery parameter contains invalid profiles.

Exceptions Thrown: No exceptions are thrown beyond those thrown by the underlying RPC protocol,
as specified in [MS-RPCE]. If any lower-layer errors are reported by RPC exception, this exception
is converted to an error code and reported to higher-layer protocols via the return value.

The server MUST validate that the client is authorized to perform the requested operation (as defined

in section 3.1.4) before executing this method.

169 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

3.1.4.41 RRPC_FWQueryAuthenticationSets (Opnum 40)

The RRPC_FWQueryAuthenticationSets (Opnum 40) method requests the server to return all the
authentication sets that match the specified query object that are contained in the store referenced by

the hPolicy handle. The method returns a linked list of all the authentication set objects. The only
method supported is binary version 0x020A.

 unsigned long RRPC_FWQueryAuthenticationSets(
 [in] FW_CONN_HANDLE rpcConnHandle,
 [in] FW_POLICY_STORE_HANDLE hPolicy,
 [in, range(FW_IPSEC_PHASE_INVALID+1, FW_IPSEC_PHASE_MAX-1)]
 FW_IPSEC_PHASE IPsecPhase,
 [in] PFW_QUERY pQuery,
 [in] unsigned short wFlags,
 [out, ref] unsigned long* pdwNumSets,
 [out] PFW_AUTH_SET2_10* ppAuthSets
);

rpcConnHandle: This parameter is an RPC binding handle that connects to the RPC interface of the
Firewall and Advanced Security Protocol.

hPolicy: This input parameter is an FW_POLICY_STORE_HANDLE data type. The data type MUST

contain an opened policy store handle, successfully opened with the RRPC_FWOpenPolicyStore
(Opnum 0) method. This handle MUST be of the FW_STORE_TYPE_DYNAMIC store.

IPsecPhase: This parameter specifies the specific IPsec negotiation phase to which this set applies.

pQuery: This parameter represents the query object that the client wants to use to specify which
main mode rules MUST be retrieved from the store. The query object MUST be valid, as specified
in the definition of the FW_QUERY data type.

wFlags: This parameter is a combination of flags from the FW_ENUM_RULES_FLAGS enumeration,

which modifies the behavior of the method and performs operations on the rules before returning
them in the linked list.

pdwNumSets: This is an output parameter that, on success, MUST be equal to the number of sets
returned.

ppAuthSets: This is an output parameter that on success contains a linked list of FW_AUTH_SET2_10
data types.

Return Values: The method returns 0 if successful; if it fails, it returns a nonzero error code. The

field can take any specific error code value, as specified in [MS-ERREF]. The following return
values are common.

Return value/code Description

0x00000005

ERROR_ACCESS_DENIED

The client does not have the required credentials to call the method.

0x00000057

ERROR_INVALID_PARAMETER

The dwProfileFilter parameter contains invalid profiles.

Exceptions Thrown: No exceptions are thrown beyond those thrown by the underlying RPC protocol,
as specified in [MS-RPCE]. If any lower-layer errors are reported by RPC exception, this exception

is converted to an error code and reported to higher-layer protocols via the return value.

The server MUST validate that the client is authorized to perform the requested operation (as defined
in section 3.1.4) before executing this method.

170 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

3.1.4.42 RRPC_FWQueryCryptoSets (Opnum 41)

The RRPC_FWQueryCryptoSets (Opnum 41) method requests the server to return all the crypto sets
that match the specified query object that are contained in the store referenced by the hPolicy handle.

The method returns a linked list of all the crypto set objects. The only method supported is binary
version 0x020A.

 unsigned long RRPC_FWQueryCryptoSets(
 [in] FW_CONN_HANDLE rpcConnHandle,
 [in] FW_POLICY_STORE_HANDLE hPolicy,
 [in, range(FW_IPSEC_PHASE_INVALID+1, FW_IPSEC_PHASE_MAX-1)]
 FW_IPSEC_PHASE IPsecPhase,
 [in] PFW_QUERY pQuery,
 [in] unsigned short wFlags,
 [out, ref] unsigned long* pdwNumSets,
 [out] PFW_CRYPTO_SET* ppCryptoSets
);

rpcConnHandle: This parameter is an RPC binding handle that connects to the RPC interface of the
Firewall and Advanced Security Protocol.

hPolicy: This input parameter is an FW_POLICY_STORE_HANDLE data type. The data type MUST

contain an opened policy store handle, successfully opened with the RRPC_FWOpenPolicyStore
(Opnum 0) method. This handle MUST be of the FW_STORE_TYPE_DYNAMIC store.

IPsecPhase: This parameter specifies the specific IPsec negotiation phase to which this set applies.

pQuery: This parameter represents the query object that the client wants to use to specify which
main mode rules MUST be retrieved from the store. The query object MUST be valid, as specified
in the definition of the FW_QUERY data type.

wFlags: This parameter is a combination of flags from the FW_ENUM_RULES_FLAGS enumeration,

which modifies the behavior of the method and performs operations on the rules before returning
them in the linked list.

pdwNumSets: This is an output parameter that, on success, MUST be equal to the number of sets
returned.

ppCryptoSets: This is an output parameter that, on success, contains a linked list of
FW_CRYPTO_SET data types.

Return Values: The method returns 0 if successful; if it fails, it returns a nonzero error code. The

field can take any specific error code value, as specified in [MS-ERREF]. The following return
values are common.

Return value/code Description

0x00000005

ERROR_ACCESS_DENIED

The client does not have the required credentials to call the method.

0x00000057

ERROR_INVALID_PARAMETER

The pQuery parameter contains invalid profiles.

Exceptions Thrown: No exceptions are thrown beyond those thrown by the underlying RPC protocol,
as specified in [MS-RPCE]. If any lower-layer errors are reported by RPC exception, this exception

is converted to an error code and reported to higher-layer protocols via the return value.

The server MUST validate that the client is authorized to perform the requested operation (as defined
in section 3.1.4) before executing this method.

171 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

3.1.4.43 RRPC_FWEnumNetworks (Opnum 42)

The RRPC_FWEnumNetworks (Opnum 42) method requests the server to return all the networks to
which the host with the firewall and advanced security component is connected. The only method

supported is binary version 0x020A.

 unsigned long RRPC_FWEnumNetworks(
 [in] FW_CONN_HANDLE rpcConnHandle,
 [in] FW_POLICY_STORE_HANDLE hPolicy,
 [out] unsigned long pdwNumNetworks,
 [out, size_is(,*pdwNumNetworks)]
 PFW_NETWORK* ppNetworks
);

rpcConnHandle: This parameter is an RPC binding handle that connects to the RPC interface of the

Firewall and Advanced Security Protocol.

hPolicy: This input parameter is an FW_POLICY_STORE_HANDLE data type. The data type MUST

contain an opened policy store handle, successfully opened with the RRPC_FWOpenPolicyStore
(Opnum 0) method. This handle MUST be of the FW_STORE_TYPE_DYNAMIC store.

pdwNumNetworks: This is an output parameter that, on success, MUST be equal to the number of
networks returned.

ppNetworks: This is an output parameter that, on success, contains an array of FW_NETWORK data

types.

Return Values: The method returns 0 if successful; if it fails, it returns a nonzero error code. The
field can take any specific error code value, as specified in [MS-ERREF]. The following return
values are common.

Return value/code Description

0x00000005

ERROR_ACCESS_DENIED

The client does not have the required credentials to call the method.

0x00000057

ERROR_INVALID_PARAMETER

A parameter contains invalid profiles.

Exceptions Thrown: No exceptions are thrown beyond those thrown by the underlying RPC protocol,

as specified in [MS-RPCE]. If any lower-layer errors are reported by RPC exception, this exception
is converted to an error code and reported to higher-layer protocols via the return value.

The server MUST validate that the client is authorized to perform the requested operation (as defined
in section 3.1.4) before executing this method.

3.1.4.44 RRPC_FWEnumAdapters (Opnum 43)

The RRPC_FWEnumAdapters (Opnum 43) method requests the server to return all the networks

interfaces that the host with the firewall and advanced security component has. The only method
supported is binary version 0x020A.

 unsigned long RRPC_FWEnumAdapters(
 [in] FW_CONN_HANDLE rpcConnHandle,
 [in] FW_POLICY_STORE_HANDLE hPolicy,
 [out] unsigned long pdwNumAdapters,
 [out, size_is(,*pdwNumAdapters)]
 PFW_ADAPTER* ppAdapters

172 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

);

rpcConnHandle: This parameter is an RPC binding handle that connects to the RPC interface of the
Firewall and Advanced Security Protocol.

hPolicy: This input parameter is an FW_POLICY_STORE_HANDLE data type. The data type MUST

contain an opened policy store handle, successfully opened with the RRPC_FWOpenPolicyStore
(Opnum 0) method. This handle MUST be of the FW_STORE_TYPE_DYNAMIC store.

pdwNumAdapters: This is an output parameter that, on success, MUST be equal to the number of
networks returned.

ppAdapters: This is an output parameter that, on success, contains an array of FW_ADAPTER data
types.

Return Values: The method returns 0 if successful; if it fails, it returns a nonzero error code. The
field can take any specific error code value, as specified in [MS-ERREF]. The following return
values are common.

Return value/code Description

0x00000005

ERROR_ACCESS_DENIED

The client does not have the required credentials to call the method.

0x00000057

ERROR_INVALID_PARAMETER

A parameter contains invalid profiles.

Exceptions Thrown: No exceptions are thrown beyond those thrown by the underlying RPC protocol,
as specified in [MS-RPCE]. If any lower-layer errors are reported by RPC exception, this exception

is converted to an error code and reported to higher-layer protocols via the return value.

The server MUST validate that the client is authorized to perform the requested operation (as defined
in section 3.1.4) before executing this method.

3.1.4.45 RRPC_FWGetGlobalConfig2_10 (Opnum 44)

The RRPC_FWGetGlobalConfig2_10 (Opnum 44) method retrieves the value of a global policy
configuration option. The client specifies to the server from which store this value MUST be retrieved
and in which specific configuration option it is interested. The method is only supported for binary
versions 0x020A and 0x0214.

 unsigned long RRPC_FWGetGlobalConfig2_10(
 [in] FW_CONN_HANDLE rpcConnHandle,
 [in] unsigned short BinaryVersion,
 [in] FW_STORE_TYPE StoreType,
 [in, range(FW_GLOBAL_CONFIG_INVALID+1, FW_GLOBAL_CONFIG_MAX-1)]
 FW_GLOBAL_CONFIG configID,
 [in] unsigned long dwFlags,
 [in, out, unique, size_is(cbData), length_is(*pcbTransmittedLen)]
 BYTE* pBuffer,
 [in] unsigned long cbData,
 [in, out] unsigned long* pcbTransmittedLen,
 [out] unsigned long* pcbRequired,
 [out] FW_RULE_ORIGIN_TYPE* pOrigin
);

rpcConnHandle: This parameter is an RPC binding handle that connects to the RPC interface of the
Firewall and Advanced Security Protocol.

173 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

BinaryVersion: This parameter specifies the RPC interface binary version. This implies versions of the
methods and versions of the structures.

StoreType: This parameter specifies the policy store from which the client retrieves the configuration
option value.

configID: This parameter specifies the specific global policy configuration option that the client is
interested in retrieving.

dwFlags: This parameter is a combination of flags from the FW_CONFIG_FLAGS enumeration, which
modifies the behavior of this method, as specified in the definition of the enumeration.

pBuffer: This is an input/output parameter. This parameter is a pointer to the buffer that the client
provides to contain the value of the profile configuration option that is being requested.

cbData: This parameter is the size of the buffer to which the pBuffer parameter points.

pcbTransmittedLen: This is a pointer to an input and output parameter that specifies the length of
the transmitted data within the buffer.

pcbRequired: This is a pointer to an output parameter that specifies the required minimum buffer
size, in octets, for the method to be able to return the configuration value. This output parameter
is nonzero only if the buffer (pointed to by pBuffer and whose size is cbData) was not big enough
to contain the value.

pOrigin: This field is the origin of the configuration option, as specified in the FW_RULE_ORIGIN_TYPE
enumeration. On success, it MUST be filled.

Return Values: The method returns 0 if successful; if it fails, it returns a nonzero error code. The
field can take any specific error code value, as specified in [MS-ERREF]. The following return
values are common.

Return value/code Description

0x00000005

ERROR_ACCESS_DENIED

The client does not have the required credentials to call the method.

0x00000002

ERROR_FILE_NOT_FOUND

The specific configuration option is not found within the policy. This means
that it is not configured. If the option is not configured in any other store,
the firewall uses a default value.

0x00000032

ERROR_NOT_SUPPORTED

The specified store type does not support this method.

0x00000057

ERROR_INVALID_PARAMETER

One of the parameters of this method either is incorrect or is required and
not specified. This error can be returned because:

▪ The specific configuration option is not meant to be available in the
specified store.

▪ The specified configuration option is not defined.

▪ One of the required values is not specified.

▪ The buffer is not big enough to hold the specific value.

Exceptions Thrown: No exceptions are thrown beyond those thrown by the underlying RPC protocol,

as specified in [MS-RPCE]. If any lower-layer errors are reported by RPC exception, this exception
is converted to an error code and reported to higher-layer protocols via the return value.

174 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

The server MUST validate that the client is authorized to perform the requested operation (as defined
in section 3.1.4) before executing this method.

3.1.4.46 RRPC_FWGetConfig2_10 (Opnum 45)

The RRPC_FWGetConfig2_10 (Opnum 45) method retrieves the value of a profile configuration option.
The client specifies to the server from which store and profile this value MUST be retrieved and in
which specific configuration option it is interested. The method is only supported for binary versions
0x020A and 0x0214.

 unsigned long RRPC_FWGetConfig2_10(
 [in] FW_CONN_HANDLE rpcConnHandle,
 [in] FW_POLICY_STORE_HANDLE hPolicyStore,
 [in, range(FW_GLOBAL_CONFIG_INVALID+1, FW_GLOBAL_CONFIG_MAX-1)]
 FW_GLOBAL_CONFIG configID,
 [in] FW_PROFILE_TYPE Profile,
 [in] unsigned long dwFlags,
 [in, out, unique, size_is(cbData), length_is(*pcbTransmittedLen)]
 BYTE* pBuffer,
 [in] unsigned long cbData,
 [in, out] unsigned long* pcbTransmittedLen,
 [out] unsigned long* pcbRequired,
 [out] FW_RULE_ORIGIN_TYPE* pOrigin
);

rpcConnHandle: This parameter is an RPC binding handle that connects to the RPC interface of the
Firewall and Advanced Security Protocol.

hPolicyStore: This input parameter is an FW_POLICY_STORE_HANDLE data type. The data type
MUST contain an opened policy store handle, successfully opened with the
RRPC_FWOpenPolicyStore (Opnum 0) method. The handle MUST have read/write access rights.

configID: This parameter specifies the specific global policy configuration option that the client is
interested in retrieving.

Profile: This parameter specifies from which specific profile this value MUST be retrieved.

dwFlags: This parameter is a combination of flags from the FW_CONFIG_FLAGS enumeration, which
modifies the behavior of this method, as specified in the definition of the enumeration.

pBuffer: This is an input/output parameter. This parameter is a pointer to the buffer that the client
provides to contain the value of the profile configuration option being requested.

cbData: This parameter is the size of the buffer to which the pBuffer parameter points.

pcbTransmittedLen: This is a pointer to an input and output parameter that specifies the length of
the transmitted data within the buffer.

pcbRequired: This is a pointer to an output parameter that specifies the required minimum buffer
size, in octets, for the method to be able to return the configuration value. This output parameter

is nonzero only if the buffer (pointed to by pBuffer and whose size is cbData) was not big enough

to contain the value.

pOrigin: This field is the origin of the configuration option, as specified in the FW_RULE_ORIGIN_TYPE
enumeration. On success, it MUST be filled.

Return Values: The method returns 0 if successful; if it fails, it returns a nonzero error code. The
field can take any specific error code value, as specified in [MS-ERREF]. The following return
values are common.

175 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Return value/code Description

0x00000005

ERROR_ACCESS_DENIED

The client does not have the required credentials to call the method.

0x00000002

ERROR_FILE_NOT_FOUND

The specific configuration option is not found within the policy. This means
that it is not configured. If the option is not configured in any other store,
the firewall uses a default value.

0x00000032

ERROR_NOT_SUPPORTED

The store type specified does not support this method.

0x000000EA

ERROR_MORE_DATA

The buffer is not big enough to hold the configuration option value.

0x00000057

ERROR_INVALID_PARAMETER

One of the parameters of this method either is incorrect or is required and
not specified. This error can be returned because:

▪ The specific configuration option is not meant to be available in the
specified store.

▪ The specified configuration option is not defined.

▪ One of the required values is not specified.

▪ The buffer is not big enough to hold the specific value.

Exceptions Thrown: No exceptions are thrown beyond those thrown by the underlying RPC protocol,
as specified in [MS-RPCE]. If any lower-layer errors are reported by RPC exception, this exception
is converted to an error code and reported to higher-layer protocols via the return value.

The server MUST validate that the client is authorized to perform the requested operation (as defined
in section 3.1.4) before executing this method.

3.1.4.47 RRPC_FWAddFirewallRule2_10 (Opnum 46)

The RRPC_FWAddFirewallRule2_10 (Opnum 46) method requests the server to add the specified
firewall rule in the policy contained in the policy store referenced by the handle specified in the
hPolicyStore parameter. The method is only supported for binary versions 0x020A and 0x0214.

 unsigned long RRPC_FWAddFirewallRule2_10(
 [in] FW_CONN_HANDLE rpcConnHandle,
 [in] FW_POLICY_STORE_HANDLE hPolicyStore,
 [in] PFW_RULE2_10 pRule,
 [out] FW_RULE_STATUS* pStatus
);

rpcConnHandle: This parameter is an RPC binding handle that connects to the RPC interface of the

Firewall and Advanced Security Protocol.

hPolicyStore: This input parameter is an FW_POLICY_STORE_HANDLE data type. The data type
MUST contain an opened policy store handle, successfully opened with the
RRPC_FWOpenPolicyStore (Opnum 0) method. The handle MUST have read/write access rights.

pRule: This parameter represents the firewall rule that the client wants to add to the store. The rule
MUST be a valid rule, as specified in the definition of the FW_RULE2_10 data type.

pStatus: This output parameter is the status code of the rule as specified by the FW_RULE_STATUS
enumeration. This field is filled out on return.

176 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Return Values: The method returns 0 if successful; if it fails, it returns a nonzero error code. The
field can take any specific error code value, as specified in [MS-ERREF]. The following return

values are common.

Return value/code Description

0x000000B7

ERROR_ALREADY_EXISTS

The specified rule has a rule ID that already exists in the specified store.

0x00000032

ERROR_NOT_SUPPORTED

The specified store does not support this method; the store might be read-
only.

0x00000005

ERROR_ACCESS_DENIED

The hPolicyStore handle was not opened with read/write access rights. The
error is also returned if the client does not have the required credentials to
call the method.

0x00000057

ERROR_INVALID_PARAMETER

One of the parameters of this method either is incorrect or is required and
not specified. This error can be returned because:

▪ The pRule object did not pass the firewall rule validations specified in
the definition of the FW_RULE data type.

▪ One of the required values is not specified.

▪ A policy store does not support rules with profile conditions other than
ALL profiles.

▪ The wszLocalApplication parameter contains a string that at
enforcement time does not represent a valid file path.<28>

Exceptions Thrown: No exceptions are thrown beyond those thrown by the underlying RPC protocol,
as specified in [MS-RPCE]. If any lower-layer errors are reported by RPC exception, this exception
is converted to an error code and reported to higher-layer protocols via the return value.

This method adds a firewall rule in the firewall linked list of the memory representation of the store

being modified. It also writes through and saves the rule on disk. If called on an online store, the
firewall rule is also enforced.

The server MUST validate that the client is authorized to perform the requested operation (as defined
in section 3.1.4) before executing this method.

3.1.4.48 RRPC_FWSetFirewallRule2_10 (Opnum 47)

The RRPC_FWSetFirewallRule2_10 (Opnum 47) method requests the server to modify the specified

firewall rule in the policy contained in the policy store referenced by the handle specified in the
hPolicyStore parameter. The method is only supported for binary versions 0x020A and 0x0214.

 unsigned long RRPC_FWSetFirewallRule2_10(
 [in] FW_CONN_HANDLE rpcConnHandle,
 [in] FW_POLICY_STORE_HANDLE hPolicyStore,
 [in] PFW_RULE2_10 pRule,
 [out] FW_RULE_STATUS* pStatus
);

rpcConnHandle: This parameter is an RPC binding handle that connects to the RPC interface of the
Firewall and Advanced Security Protocol.

177 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

hPolicyStore: This input parameter is an FW_POLICY_STORE_HANDLE data type. The data type
MUST contain an opened policy store handle, successfully opened with the

RRPC_FWOpenPolicyStore (Opnum 0) method. The handle MUST have read/write access rights.

pRule: This parameter represents the firewall rule that the client wants to add to the store. The rule

MUST be a valid rule, as specified in the definition of the FW_RULE2_10 data type.

pStatus: This output parameter is the status code of the rule as specified by the FW_RULE_STATUS
enumeration. This field is filled out on return.

Return Values: The method returns 0 if successful; if it fails, it returns a nonzero error code. The
field can take any specific error code value, as specified in [MS-ERREF]. The following return
values are common.

Return value/code Description

0x00000032

ERROR_NOT_SUPPORTED

The specified store does not support this method; the store might be read-
only.

0x00000005

ERROR_ACCESS_DENIED

The hPolicyStore handle was not opened with read/write access rights. The

error is also returned if the client does not have the required credentials to
call the method.

0x00000002

ERROR_FILE_NOT_FOUND

The specified rule referenced by the wszRuleID member string of the
FW_RULE data type is not found in the policy store.

0x00000057

ERROR_INVALID_PARAMETER

One of the parameters of this method either is incorrect or is required and
not specified. This error can be returned because:

▪ The pRule object did not pass the firewall rule validations specified in
the definition of the FW_RULE data type.

▪ One of the required values is not specified.

▪ A policy store does not support rules with profile conditions other than
ALL profiles.

Exceptions Thrown: No exceptions are thrown beyond those thrown by the underlying RPC protocol,
as specified in [MS-RPCE]. If any lower-layer errors are reported by RPC exception, this exception
is converted to an error code and reported to higher-layer protocols via the return value.

The server MUST validate that the client is authorized to perform the requested operation (as defined
in section 3.1.4) before executing this method.

3.1.4.49 RRPC_FWEnumFirewallRules2_10 (Opnum 48)

The RRPC_FWEnumFirewallRules2_10 (Opnum 48) method requests the server to return all the
firewall rules contained in the store referenced by the hPolicyStore handle. The method returns a
linked list of all the firewall rule objects. The method is only supported for binary versions 0x020A and
0x0214.

 unsigned long RRPC_FWEnumFirewallRules2_10(
 [in] FW_CONN_HANDLE rpcConnHandle,
 [in] FW_POLICY_STORE_HANDLE hPolicyStore,
 [in] unsigned long dwFilteredByStatus,
 [in] unsigned long dwProfileFilter,
 [in] unsigned short wFlags,
 [out, ref] unsigned long* pdwNumRules,
 [out] PFW_RULE2_10* ppRules
);

178 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

rpcConnHandle: This parameter is an RPC binding handle that connects to the RPC interface of the
Firewall and Advanced Security Protocol.

hPolicyStore: This input parameter is an FW_POLICY_STORE_HANDLE data type. The data type
MUST contain an opened policy store handle, successfully opened with the

RRPC_FWOpenPolicyStore (Opnum 0) method. The handle MUST have read/write access rights.

dwFilteredByStatus: This parameter is a combination of flags from the FW_RULE_STATUS_CLASS
enumeration. This method uses this bitmask to determine which rules will be returned. Rules that
contain a status code of the specified class that match this parameter will be returned in the linked
list.

dwProfileFilter: This parameter is a combination of flags from the FW_PROFILE_TYPE enumeration.
This method also uses this parameter to determine which rules will be returned. Rules that contain

a profile specified by this parameter will be returned in the linked list.

wFlags: This parameter is a combination of flags from the FW_ENUM_RULES_FLAGS enumeration,
which modifies the behavior of the method and performs operations on the rules before returning

them in the linked list.

pdwNumRules: This is an output parameter that, on success, MUST be equal to the number of rules
returned.

ppRules: This is an output parameter that, on success, contains a linked list of FW_RULE2_10 data
types.

Return Values: The method returns 0 if successful; if it fails, it returns a nonzero error code. The
field can take any specific error code value, as specified in [MS-ERREF]. The following return
values are common.

Return value/code Description

0x00000005

ERROR_ACCESS_DENIED

The hPolicyStore handle was not opened with read/write access rights. The
error is also returned if the client does not have the required credentials to
call the method.

0x00000057

ERROR_INVALID_PARAMETER

The dwProfileFilter parameter contains invalid profiles.

Exceptions Thrown: No exceptions are thrown beyond those thrown by the underlying RPC protocol,
as specified in [MS-RPCE]. If any lower-layer errors are reported by RPC exception, this exception
is converted to an error code and reported to higher-layer protocols via the return value.

The server MUST validate that the client is authorized to perform the requested operation (as defined
in section 3.1.4) before executing this method.

3.1.4.50 RRPC_FWAddConnectionSecurityRule2_10 (Opnum 49)

The RRPC_FWAddConnectionSecurityRule2_10 (Opnum 49) method requests the server to add the

specified connection security rule in the policy contained in the policy store referenced by the handle
specified in the hPolicyStore parameter. The method is only supported for binary versions 0x020A and
0x0214.

 unsigned long RRPC_FWAddConnectionSecurityRule2_10(
 [in] FW_CONN_HANDLE rpcConnHandle,
 [in] FW_POLICY_STORE_HANDLE hPolicyStore,
 [in] PFW_CS_RULE2_10 pRule,
 [out] FW_RULE_STATUS* pStatus
);

179 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

rpcConnHandle: This parameter is an RPC binding handle that connects to the RPC interface of the
Firewall and Advanced Security Protocol.

hPolicyStore: This input parameter is an FW_POLICY_STORE_HANDLE data type. The data type
MUST contain an opened policy store handle, successfully opened with the

RRPC_FWOpenPolicyStore (Opnum 0) method. The handle MUST have read/write access rights.

pRule: This parameter represents the firewall rule that the client adds to the store. The rule MUST be
a valid rule, as specified in the definition of the FW_CS_RULE2_10 data type.

pStatus: This output parameter is the status code of the rule as specified by the FW_RULE_STATUS
enumeration. This field is filled out on return.

Return Values: The method returns 0 if successful; if it fails, it returns a nonzero error code. The
field can take any specific error code value, as specified in [MS-ERREF]. The following return

values are common.

Return value/code Description

0x000000B7

ERROR_ALREADY_EXISTS

The specified rule has a rule ID that already exists in the specified store.

0x00000032

ERROR_NOT_SUPPORTED

The specified store does not support this method; the store might be read-
only.

0x00000005

ERROR_ACCESS_DENIED

The hPolicyStore handle was not opened with read/write access rights. The
error is also returned if the client does not have the required credentials to
call the method.

0x00000057

ERROR_INVALID_PARAMETER

One of the parameters of this method either is incorrect or is required and
not specified. This error can be returned because:

▪ The pRule object did not pass the firewall rule validations specified in
the definition of the FW_CS_RULE data type.

▪ One of the required values is not specified.

▪ A policy store does not support rules with profile conditions other than
ALL profiles.

Exceptions Thrown: No exceptions are thrown beyond those thrown by the underlying RPC protocol,
as specified in [MS-RPCE]. If any lower-layer errors are reported by RPC exception, this exception
is converted to an error code and reported to higher-layer protocols via the return value.

This method adds a firewall rule in the firewall linked list of the memory representation of the store

being modified. It also writes through and saves the rule on disk. If called on an online store, the
firewall rule is also enforced.

The server MUST validate that the client is authorized to perform the requested operation (as defined
in section 3.1.4) before executing this method.

3.1.4.51 RRPC_FWSetConnectionSecurityRule2_10 (Opnum 50)

The RRPC_FWSetConnectionSecurityRule2_10 (Opnum 50) method requests the server to modify the
specified connection security rule in the policy contained in the policy store referenced by the handle
specified in the hPolicyStore parameter. The method is only supported for binary versions 0x020A and
0x0214.

 unsigned long RRPC_FWSetConnectionSecurityRule2_10(

180 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

 [in] FW_CONN_HANDLE rpcConnHandle,
 [in] FW_POLICY_STORE_HANDLE hPolicyStore,
 [in] PFW_CS_RULE2_10 pRule,
 [out] FW_RULE_STATUS* pStatus
);

rpcConnHandle: This parameter is an RPC binding handle that connects to the RPC interface of the
Firewall and Advanced Security Protocol.

hPolicyStore: This input parameter is an FW_POLICY_STORE_HANDLE data type. The data type
MUST contain an opened policy store handle, successfully opened with the
RRPC_FWOpenPolicyStore (Opnum 0) method. The handle MUST have read/write access rights.

pRule: This parameter represents the connection security rule that the client wants to add to the
store. The rule MUST be a valid rule, as specified in the definition of the FW_CS_RULE2_10 data
type.

pStatus: This output parameter is the status code of the rule as specified by the FW_RULE_STATUS

enumeration. This field is filled out on return.

Return Values: The method returns 0 if successful; if it fails, it returns a nonzero error code. The
field can take any specific error code value, as specified in [MS-ERREF]. The following return
values are common.

Return value/code Description

0x00000032

ERROR_NOT_SUPPORTED

The specified store does not support this method; the store might be read-
only.

0x00000005

ERROR_ACCESS_DENIED

The hPolicyStore handle was not opened with read/write access rights. The
error is also returned if the client does not have the required credentials to
call the method.

0x00000002

ERROR_FILE_NOT_FOUND

The specified rule referenced by the wszRuleID member string of the
FW_CS_RULE data type is not found in the policy store.

0x00000057

ERROR_INVALID_PARAMETER

One of the parameters of this method either is incorrect or is required and
not specified. This error can be returned because:

▪ The pRule object did not pass the firewall rule validations specified in
the definition of the FW_CS_RULE data type.

▪ One of the required values is not specified.

▪ A policy store does not support rules with profile conditions other than
ALL profiles.

Exceptions Thrown: No exceptions are thrown beyond those thrown by the underlying RPC protocol,

as specified in [MS-RPCE]. If any lower-layer errors are reported by RPC exception, this exception
is converted to an error code and reported to higher-layer protocols via the return value.

The server MUST validate that the client is authorized to perform the requested operation (as defined
in section 3.1.4) before executing this method.

3.1.4.52 RRPC_FWEnumConnectionSecurityRules2_10 (Opnum 51)

The RRPC_FWEnumConnectionSecurityRules2_10 (Opnum 51) method requests the server to return
all the connection security rules contained in the store referenced by the hPolicyStore handle. The

181 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

method returns a linked list of all the connection security rule objects. The method is only supported
for binary versions 0x020A and 0x0214.

 unsigned long RRPC_FWEnumConnectionSecurityRules2_10(
 [in] FW_CONN_HANDLE rpcConnHandle,
 [in] FW_POLICY_STORE_HANDLE hPolicyStore,
 [in] unsigned long dwFilteredByStatus,
 [in] unsigned long dwProfileFilter,
 [in] unsigned short wFlags,
 [out, ref] unsigned long* pdwNumRules,
 [out] PFW_CS_RULE2_10* ppRules
);

rpcConnHandle: This parameter is an RPC binding handle that connects to the RPC interface of the
Firewall and Advanced Security Protocol.

hPolicyStore: This input parameter is an FW_POLICY_STORE_HANDLE data type. The data type
MUST contain an opened policy store handle, successfully opened with the

RRPC_FWOpenPolicyStore (Opnum 0) method. The handle MUST have read/write access rights.

dwFilteredByStatus: This parameter is a combination of flags from the FW_RULE_STATUS_CLASS
enumeration. This method uses this bitmask to determine which rules will be returned. Rules that
contain a status code of the specified class that match this parameter will be returned in the linked
list.

dwProfileFilter: This parameter is a combination of flags from the FW_PROFILE_TYPE enumeration.
This method also uses this parameter to determine which rules will be returned. Rules that contain

a profile specified by this parameter will be returned in the linked list.

wFlags: This parameter is a combination of flags from the FW_ENUM_RULES_FLAGS enumeration,
which modifies the behavior of the method and performs operations on the rules before returning
them in the linked list.

pdwNumRules: This is an output parameter that on success MUST be equal to the number of rules

returned.

ppRules: This is an output parameter that on success contains a linked list of FW_CS_RULE2_10 data
types.

Return Values: The method returns 0 if successful; if it fails, it returns a nonzero error code. The
field can take any specific error code value, as specified in [MS-ERREF]. The following return
values are common.

Return value/code Description

0x00000005

ERROR_ACCESS_DENIED

The hPolicyStore handle was not opened with read/write access rights. The
error is also returned if the client does not have the required credentials to
call the method.

0x00000057

ERROR_INVALID_PARAMETER

The dwProfileFilter parameter contains invalid profiles.

Exceptions Thrown: No exceptions are thrown beyond those thrown by the underlying RPC protocol,
as specified in [MS-RPCE]. If any lower-layer errors are reported by RPC exception, this exception
is converted to an error code and reported to higher-layer protocols via the return value.

The server MUST validate that the client is authorized to perform the requested operation (as defined
in section 3.1.4) before executing this method.

182 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

3.1.4.53 RRPC_FWAddAuthenticationSet2_10 (Opnum 52)

The RRPC_FWAddAuthenticationSet2_10 (Opnum 52) method requests the server to add the
authentication set in the policy contained in the policy store referenced by the handle specified in the

hPolicy parameter. The method is only supported for binary versions 0x020A and 0x0214.

 unsigned long RRPC_FWAddAuthenticationSet2_10(
 [in] FW_CONN_HANDLE rpcConnHandle,
 [in] FW_POLICY_STORE_HANDLE hPolicy,
 [in] PFW_AUTH_SET2_10 pAuth,
 [out] FW_RULE_STATUS* pStatus
);

rpcConnHandle: This parameter is an RPC binding handle that connects to the RPC interface of the
Firewall and Advanced Security Protocol.

hPolicy: This input parameter is an FW_POLICY_STORE_HANDLE data type. The data type MUST
contain an opened policy store handle, successfully opened with the RRPC_FWOpenPolicyStore

(Opnum 0) method. The handle MUST have read/write access rights.

pAuth: This parameter represents the authentication set that the client wants to add to the store. The
set MUST be valid, as specified in the definition of the FW_AUTH_SET2_10 data type.

pStatus: This output parameter is the status code of the rule as specified by the FW_RULE_STATUS
enumeration. This field is filled out on return.

Return Values: The method returns 0 if successful; if it fails, it returns a nonzero error code. The
field can take any specific error code value, as specified in [MS-ERREF]. The following return

values are common.

Return value/code Description

0x000000B7

ERROR_ALREADY_EXISTS

The specified rule has a rule ID that already exists in the specified store.

0x00000032

ERROR_NOT_SUPPORTED

The specified store does not support this method; the store might be read-
only.

0x00000005

ERROR_ACCESS_DENIED

The hPolicy handle was not opened with read/write access rights. The error
is also returned if the client does not have the required credentials to call
the method.

0x00000057

ERROR_INVALID_PARAMETER

One of the parameters of this method either is incorrect or is required and
not specified. This error can be returned because:

▪ The pAuth object did not pass the firewall rule validations specified in
the definition of the FW_AUTH_SET data type.

▪ One of the required values is not specified.

Exceptions Thrown: No exceptions are thrown beyond those thrown by the underlying RPC protocol,
as specified in [MS-RPCE]. If any lower-layer errors are reported by RPC exception, this exception
is converted to an error code and reported to higher-layer protocols via the return value.

This method adds a firewall rule in the firewall linked list of the memory representation of the store
being modified. It also writes through and saves the rule on disk. If the method is called on an online

store, the firewall rule is also enforced.

183 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

The server MUST validate that the client is authorized to perform the requested operation (as defined
in section 3.1.4) before executing this method.

3.1.4.54 RRPC_FWSetAuthenticationSet2_10 (Opnum 53)

The RRPC_FWSetAuthenticationSet2_10 (Opnum 53) method requests the server to modify the
specified authentication set in the policy contained in the policy store referenced by the handle
specified in the hPolicy parameter. The method is only supported for binary versions 0x020A and
0x0214.

 unsigned long RRPC_FWSetAuthenticationSet2_10(
 [in] FW_CONN_HANDLE rpcConnHandle,
 [in] FW_POLICY_STORE_HANDLE hPolicy,
 [in] PFW_AUTH_SET2_10 pAuth,
 [out] FW_RULE_STATUS* pStatus
);

rpcConnHandle: This parameter is an RPC binding handle that connects to the RPC interface of the
Firewall and Advanced Security Protocol.

hPolicy: This input parameter is an FW_POLICY_STORE_HANDLE data type. The data type MUST
contain an opened policy store handle, successfully opened with the RRPC_FWOpenPolicyStore
(Opnum 0) method. The handle MUST have read/write access rights.

pAuth: This parameter represents the authentication set that the client wants to add to the store. The

set MUST be valid, as specified in the definition of the FW_AUTH_SET2_10 data type.

pStatus: This output parameter is the status code of the rule as specified by the FW_RULE_STATUS
enumeration. This field is filled out on return.

Return Values: The method returns 0 if successful; if it fails, it returns a nonzero error code. The
field can take any specific error code value, as specified in [MS-ERREF]. The following return
values are common.

Return value/code Description

0x00000032

ERROR_NOT_SUPPORTED

The specified store does not support this method; the store might be read-
only.

0x00000005

ERROR_ACCESS_DENIED

The hPolicy handle was not opened with read/write access rights. The error
is also returned if the client does not have the required credentials to call
the method.

0x00000002

ERROR_FILE_NOT_FOUND

The specified rule referenced by the wszSetID member string of the
FW_AUTH_SET data type is not found in the policy store.

0x00000057

ERROR_INVALID_PARAMETER

One of the parameters of this method either is incorrect or is required and
not specified. This error can be returned because:

▪ The pAuth object did not pass the firewall rule validations specified in
the definition of the FW_AUTH_SET data type.

▪ One of the required values is not specified.

Exceptions Thrown: No exceptions are thrown beyond those thrown by the underlying RPC protocol,
as specified in [MS-RPCE]. If any lower-layer errors are reported by RPC exception, this exception
is converted to an error code and reported to higher-layer protocols via the return value.

184 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

The server MUST validate that the client is authorized to perform the requested operation (as defined
in section 3.1.4) before executing this method.

3.1.4.55 RRPC_FWEnumAuthenticationSets2_10 (Opnum 54)

The RRPC_FWEnumAuthenticationSets2_10 (Opnum 54) method requests the server to return all the
authentication sets of the specified IPsec phase contained in the store referenced by the hPolicyStore
handle. The method returns a linked list of these objects. The method is only supported for binary
versions 0x020A and 0x0214.

 unsigned long RRPC_FWEnumAuthenticationSets2_10(
 [in] FW_CONN_HANDLE rpcConnHandle,
 [in] FW_POLICY_STORE_HANDLE hPolicyStore,
 [in, range(FW_IPSEC_PHASE_INVALID+1, FW_IPSEC_PHASE_MAX-1)]
 FW_IPSEC_PHASE IpSecPhase,
 [in] unsigned long dwFilteredByStatus,
 [in] unsigned short wFlags,
 [out, ref] unsigned long* pdwNumAuthSets,
 [out] PFW_AUTH_SET2_10* ppAuth
);

rpcConnHandle: This parameter is an RPC binding handle that connects to the RPC interface of the
Firewall and Advanced Security Protocol.

hPolicyStore: This input parameter is an FW_POLICY_STORE_HANDLE data type. The data type
MUST contain an opened policy store handle, successfully opened with the
RRPC_FWOpenPolicyStore (Opnum 0) method. The handle MUST have read/write access rights.

IpSecPhase: This parameter specifies the specific IPsec negotiation phase to which this set applies.

dwFilteredByStatus: This parameter is a combination of flags from the FW_RULE_STATUS_CLASS
enumeration. This method uses this bitmask to determine which rules will be returned. Rules that
contain a status code of the specified class that match this parameter will be returned in the linked
list.

wFlags: This parameter is a combination of flags from the FW_ENUM_RULES_FLAGS enumeration,
which modifies the behavior of the method and performs operations on the rules before returning

them in the linked list.

pdwNumAuthSets: This is an output parameter that on success MUST be equal to the number of
sets returned.

ppAuth: This is an output parameter that, on success, contains a linked list of FW_AUTH_SET2_10
data types.

Return Values: The method returns 0 if successful; if it fails, it returns a nonzero error code. The
field can take any specific error code value, as specified in [MS-ERREF]. The following return

values are common.

Return value/code Description

0x00000005

ERROR_ACCESS_DENIED

The hPolicyStore handle was not opened with read/write access rights. The
error is also returned if the client does not have the required credentials to
call the method.

0x00000057

ERROR_INVALID_PARAMETER

The dwProfileFilter parameter contains invalid profiles.

185 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Exceptions Thrown: No exceptions are thrown beyond those thrown by the underlying RPC protocol,
as specified in [MS-RPCE]. If any lower-layer errors are reported by RPC exception, this exception

is converted to an error code and reported to higher-layer protocols via the return value.

The server MUST validate that the client is authorized to perform the requested operation (as defined

in section 3.1.4) before executing this method.

3.1.4.56 RRPC_FWAddCryptoSet2_10 (Opnum 55)

The RRPC_FWAddCryptoSet2_10 (Opnum 55) method adds a cryptographic set in the cryptographic

linked list of the memory representation of the store being modified. The method is only supported for
binary versions 0x020A and 0x0214.

 unsigned long RRPC_FWAddCryptoSet2_10(
 [in] FW_CONN_HANDLE rpcConnHandle,
 [in] FW_POLICY_STORE_HANDLE hPolicy,
 [in] PFW_CRYPTO_SET pCrypto,
 [out] FW_RULE_STATUS* pStatus
);

rpcConnHandle: This parameter is an RPC binding handle that connects to the RPC interface of the
Firewall and Advanced Security Protocol.

hPolicy: This input parameter is an FW_POLICY_STORE_HANDLE data type. The data type MUST
contain an opened policy store handle, successfully opened with the RRPC_FWOpenPolicyStore

(Opnum 0) method. The handle MUST have read/write access rights.

pCrypto: This parameter represents the cryptographic set that the client adds to the store. The set
MUST be valid, as specified in the definition of the FW_CRYPTO_SET data type.

pStatus: This output parameter is the status code of the rule as specified by the FW_RULE_STATUS
enumeration. This field is filled out on return.

Return Values: The method returns 0 if successful; if it fails, it returns a nonzero error code. The
field can take any specific error code value, as specified in [MS-ERREF]. The following return

values are common.

Return value/code Description

0x000000B7

ERROR_ALREADY_EXISTS

The specified cryptographic set has a cryptographic set ID that already
exists in the specified store.

0x00000032

ERROR_NOT_SUPPORTED

The specified store does not support this method; the store might be read-
only.

0x00000005

ERROR_ACCESS_DENIED

The hPolicy handle was not opened with read/write access rights. The error
is also returned if the client does not have the required credentials to call
the method.

0x00000057

ERROR_INVALID_PARAMETER

One of the parameters of this method either is incorrect or is required and

not specified. This error can be returned because:

▪ The pCrypto object did not pass the crypto set validations specified in
the definition of the FW_CRYPTO_SET data type.

▪ One of the required values is not specified.

186 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Exceptions Thrown: No exceptions are thrown beyond those thrown by the underlying RPC protocol,
as specified in [MS-RPCE]. If any lower-layer errors are reported by RPC exception, this exception

is converted to an error code and reported to higher-layer protocols via the return value.

This method adds a firewall rule in the firewall linked list of the memory representation of the store

being modified. It also writes through and saves the rule on disk. If called on an online store, the
firewall rule is also enforced.

The server MUST validate that the client is authorized to perform the requested operation (as defined
in section 3.1.4) before executing this method.

3.1.4.57 RRPC_FWSetCryptoSet2_10 (Opnum 56)

The RRPC_FWSetCryptoSet2_10 (Opnum 56) method requests the server to modify the specified
cryptographic set in the policy contained in the policy store referenced by the handle specified in the
hPolicy parameter. The method is only supported for binary versions 0x020A and 0x0214.

 unsigned long RRPC_FWSetCryptoSet2_10(
 [in] FW_CONN_HANDLE rpcConnHandle,
 [in] FW_POLICY_STORE_HANDLE hPolicy,
 [in] PFW_CRYPTO_SET pCrypto,
 [out] FW_RULE_STATUS* pStatus
);

rpcConnHandle: This parameter is an RPC binding handle that connects to the RPC interface of the

Firewall and Advanced Security Protocol.

hPolicy: This input parameter is an FW_POLICY_STORE_HANDLE data type. The data type MUST
contain an opened policy store handle, successfully opened with the RRPC_FWOpenPolicyStore
(Opnum 0) method. The handle MUST have read/write access rights.

pCrypto: This parameter represents the cryptographic set that the client adds to the store. The set
MUST be valid, as specified in the definition of the FW_CRYPTO_SET data type.

pStatus: This output parameter is the status code of the rule as specified by the FW_RULE_STATUS

enumeration. This field is filled out on return.

Return Values: The method returns 0 if successful; if it fails, it returns a nonzero error code. The
field can take any specific error code value, as specified in [MS-ERREF]. The following return
values are common.

Return value/code Description

0x00000032

ERROR_NOT_SUPPORTED

The specified store does not support this method; the store might be read-
only.

0x00000005

ERROR_ACCESS_DENIED

The hPolicy handle was not opened with read/write access rights. The error
is also returned if the client does not have the required credentials to call
the method.

0x00000002

ERROR_FILE_NOT_FOUND

The specified rule referenced by the wszSetID member string of the
FW_CRYPTO_SET data type is not found in the policy store.

0x00000057

ERROR_INVALID_PARAMETER

One of the parameters of this method either is incorrect or is required and
not specified. This error can be returned because:

▪ The pCrypto object did not pass the crypto set validations specified in
the definition of the FW_CRYPTO_SET data type.

187 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Return value/code Description

▪ One of the required values is not specified.

Exceptions Thrown: No exceptions are thrown beyond those thrown by the underlying RPC protocol,
as specified in [MS-RPCE]. If any lower-layer errors are reported by RPC exception, this exception
is converted to an error code and reported to higher-layer protocols via the return value.

The server MUST validate that the client is authorized to perform the requested operation (as defined
in section 3.1.4) before executing this method.

3.1.4.58 RRPC_FWEnumCryptoSets2_10 (Opnum 57)

The RRPC_FWEnumCryptoSets2_10 (Opnum 57) method requests the server to return all the
cryptographic sets of the specified IPsec phase contained in the store referenced by the hPolicyStore

handle. The method returns a linked list of these objects. The method is only supported for binary
versions 0x020A and 0x0214.

 unsigned long RRPC_FWEnumCryptoSets2_10(
 [in] FW_CONN_HANDLE rpcConnHandle,
 [in] FW_POLICY_STORE_HANDLE hPolicyStore,
 [in, range(FW_IPSEC_PHASE_INVALID+1, FW_IPSEC_PHASE_MAX-1)]
 FW_IPSEC_PHASE IpSecPhase,
 [in] unsigned long dwFilteredByStatus,
 [in] unsigned short wFlags,
 [out, ref] unsigned long* pdwNumSets,
 [out] PFW_CRYPTO_SET* ppCryptoSets
);

rpcConnHandle: This parameter is an RPC binding handle that connects to the RPC interface of the
Firewall and Advanced Security Protocol.

hPolicyStore: This input parameter is an FW_POLICY_STORE_HANDLE data type. The data type

MUST contain an opened policy store handle, successfully opened with the

RRPC_FWOpenPolicyStore (Opnum 0) method. The handle MUST have read/write access rights.

IpSecPhase: This parameter specifies the specific IPsec negotiation phase to which this set applies.

dwFilteredByStatus: This parameter is a combination of flags from the FW_RULE_STATUS_CLASS
enumeration. This method uses this bitmask to determine which rules will be returned. Rules that
contain a status code of the class specified that match this parameter will be returned in the linked
list.

wFlags: This parameter is a combination of flags from the FW_ENUM_RULES_FLAGS enumeration,
which modifies the behavior of the method and performs operations on the rules before returning
them in the linked list.

pdwNumSets: This is an output parameter that, on success, MUST be equal to the number of sets
returned.

ppCryptoSets: This is an output parameter that, on success, contains a linked list of
FW_CRYPTO_SET data types.

Return Values: The method returns 0 if successful; if it fails, it returns a nonzero error code. The
field can take any specific error code value, as specified in [MS-ERREF]. The following return
values are common.

188 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Return value/code Description

0x00000005

ERROR_ACCESS_DENIED

The hPolicyStore handle was not opened with read/write access rights. The
error is also returned if the client does not have the required credentials to
call the method.

0x00000057

ERROR_INVALID_PARAMETER

The dwProfileFilter parameter contains invalid profiles.

Exceptions Thrown: No exceptions are thrown beyond those thrown by the underlying RPC protocol,
as specified in [MS-RPCE]. If any lower-layer errors are reported by RPC exception, this exception

is converted to an error code and reported to higher-layer protocols via the return value.

The server MUST validate that the client is authorized to perform the requested operation (as defined
in section 3.1.4) before executing this method.

3.1.4.59 RRPC_FWAddConnectionSecurityRule2_20 (Opnum 58)

The RRPC_FWAddConnectionSecurityRule2_20 method requests the server to add the specified
connection security rule in the policy contained in the policy store referenced by the handle specified
in the hPolicyStore parameter. The method is only supported for binary version 0x0214.

 unsigned unsigned long RRPC_FWAddConnectionSecurityRule2_20(
 [in] FW_CONN_HANDLE rpcConnHandle,
 [in] FW_POLICY_STORE_HANDLE hPolicyStore,
 [in] PFW_CS_RULE pRule,
 [out] FW_RULE_STATUS* pStatus
);

rpcConnHandle: This parameter is an RPC binding handle that connects to the RPC interface of the
Firewall and Advanced Security Protocol.

hPolicyStore: This input parameter is an FW_POLICY_STORE_HANDLE data type. The data type

MUST contain an opened policy store handle, successfully opened with the
RRPC_FWOpenPolicyStore (Opnum 0) method. The handle MUST have read/write access rights.

pRule: This parameter represents the firewall rule that the client adds to the store. The rule MUST be
a valid rule, as specified in the definition of the FW_CS_RULE data type.

pStatus: This output parameter is the status code of the rule as specified by the FW_RULE_STATUS
enumeration. This field is filled out on return.

Return Values: The method returns 0 if successful; if it fails, it returns a nonzero error code. The
field can take any specific error code value, as specified in [MS-ERREF]. The following return
values are common.

Return value/code Description

0x000000B7

ERROR_ALREADY_EXISTS

The specified rule has a rule ID that already exists in the specified store.

0x00000032

ERROR_NOT_SUPPORTED

The specified store does not support this method; the store might be read-
only.

0x00000005

ERROR_ACCESS_DENIED

The hPolicyStore handle was not opened with read/write access rights. The
error is also returned if the client does not have the required credentials to
call the method.

189 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Return value/code Description

0x00000057

ERROR_INVALID_PARAMETER

One of the parameters of this method either is incorrect or is required and
not specified. This error can be returned because:

▪ The pRule object did not pass the firewall rule validations specified in
the definition of the FW_CS_RULE data type.

▪ One of the required values is not specified.

▪ A policy store does not support rules with profile conditions other than
ALL profiles.

Exceptions Thrown: No exceptions are thrown beyond those thrown by the underlying RPC protocol,
as specified in [MS-RPCE]. If any lower-layer errors are reported by RPC exception, this exception
is converted to an error code and reported to higher-layer protocols via the return value.

This method adds a firewall rule in the firewall linked list of the memory representation of the store

being modified. It also writes through and saves the rule on disk. If called on an online store, the
firewall rule is also enforced.

The server MUST validate that the client is authorized to perform the requested operation (as defined
in section 3.1.4) before executing this method.

3.1.4.60 RRPC_FWSetConnectionSecurityRule2_20 (Opnum 59)

The RRPC_FWSetConnectionSecurityRule2_20 method requests the server to modify the specified
connection security rule in the policy contained in the policy store referenced by the handle specified
in the hPolicyStore parameter. The method is only supported for binary version 0x0214.

 unsigned unsigned long RRPC_FWModifyConnectionSecurityRule2_20(
 [in] FW_CONN_HANDLE rpcConnHandle,
 [in] FW_POLICY_STORE_HANDLE hPolicyStore,
 [in] PFW_CS_RULE pRule,
 [out] FW_RULE_STATUS* pStatus
);

rpcConnHandle: This parameter is an RPC binding handle that connects to the RPC interface of the

Firewall and Advanced Security Protocol.

hPolicyStore: This input parameter is an FW_POLICY_STORE_HANDLE data type. The data type
MUST contain an opened policy store handle, successfully opened with the
RRPC_FWOpenPolicyStore (Opnum 0) method. The handle MUST have read/write access rights.

pRule: This parameter represents the firewall rule that the client wants to add to the store. The rule
MUST be a valid rule, as specified in the definition of the FW_CS_RULE data type.

pStatus: This output parameter is the status code of the rule as specified by the FW_RULE_STATUS

enumeration. This field is filled out on return.

Return Values: The method returns 0 if successful; if it fails, it returns a nonzero error code. The
field can take any specific error code value, as specified in [MS-ERREF]. The following return
values are common.

Return value/code Description

0x00000032

ERROR_NOT_SUPPORTED

The specified store does not support this method; the store might be read-
only.

190 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Return value/code Description

0x00000005

ERROR_ACCESS_DENIED

The hPolicyStore handle was not opened with read/write access rights. The
error is also returned if the client does not have the required credentials to
call the method.

0x00000002

ERROR_FILE_NOT_FOUND

The specified rule referenced by the wszRuleID member string of the
FW_CS_RULE data type is not found in the policy store.

0x00000057

ERROR_INVALID_PARAMETER

One of the parameters of this method either is incorrect or is required and
not specified. This error can be returned because:

▪ The pRule object did not pass the firewall rule validations specified in
the definition of the FW_CS_RULE data type.

▪ One of the required values is not specified.

▪ A policy store does not support rules with profile conditions other than

ALL profiles.

Exceptions Thrown: No exceptions are thrown beyond those thrown by the underlying RPC protocol,
as specified in [MS-RPCE]. If any lower-layer errors are reported by RPC exception, this exception
is converted to an error code and reported to higher-layer protocols via the return value.

The server MUST validate that the client is authorized to perform the requested operation (as defined
in section 3.1.4) before executing this method.

3.1.4.61 RRPC_FWEnumConnectionSecurityRules2_20 (Opnum 60)

The RRPC_FWEnumConnectionSecurityRules2_20 (Opnum 60) method requests the server to return
all the connection security rules contained in the store referenced by the hPolicyStore handle. The
method returns a linked list of all the connection security rule objects. The method is only supported

for binary version 0x0214.

 unsigned long RRPC_FWEnumConnectionSecurityRules2_20(
 [in] FW_CONN_HANDLE rpcConnHandle,
 [in] FW_POLICY_STORE_HANDLE hPolicyStore,
 [in] unsigned long dwFilteredByStatus,
 [in] unsigned long dwProfileFilter,
 [in] unsigned short wFlags,
 [out, ref] unsigned long* pdwNumRules,
 [out] PFW_CS_RULE* ppRules
);

rpcConnHandle: This parameter is an RPC binding handle that connects to the RPC interface of the

Firewall and Advanced Security Protocol.

hPolicyStore: This input parameter is an FW_POLICY_STORE_HANDLE data type. The data type
MUST contain an opened policy store handle, successfully opened with the

RRPC_FWOpenPolicyStore (Opnum 0) method. The handle MUST have read/write access rights.

dwFilteredByStatus: This parameter is a combination of flags from the FW_RULE_STATUS_CLASS
enumeration. This method uses this bitmask to determine which rules will be returned. Rules that
contain a status code of the specified class that match this parameter will be returned in the linked

list.

dwProfileFilter: This parameter is a combination of flags from the FW_PROFILE_TYPE enumeration.
This method also uses this parameter to determine which rules will be returned. Rules that contain
a profile specified by this parameter will be returned in the linked list.

191 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

wFlags: This parameter is a combination of flags from the FW_ENUM_RULES_FLAGS enumeration,
which modifies the behavior of the method and performs operations on the rules before returning

them in the linked list.

pdwNumRules: This is an output parameter that on success MUST be equal to the number of rules

returned.

ppRules: This is an output parameter that on success contains a linked list of FW_CS_RULE data
types.

Return Values: The method returns 0 if successful; if it fails, it returns a nonzero error code. The
field can take any specific error code value, as specified in [MS-ERREF]. The following return
values are common.

Return value/code Description

0x00000005

ERROR_ACCESS_DENIED

The hPolicyStore handle was not opened with read/write access rights. The
error is also returned if the client does not have the required credentials to
call the method.

0x00000057

ERROR_INVALID_PARAMETER

The dwProfileFilter parameter contains invalid profiles.

Exceptions Thrown: No exceptions are thrown beyond those thrown by the underlying RPC protocol,
as specified in [MS-RPCE]. If any lower-layer errors are reported by RPC exception, this exception
is converted to an error code and reported to higher-layer protocols via the return value.

The server MUST validate that the client is authorized to perform the requested operation (as defined
in section 3.1.4) before executing this method.

3.1.4.62 RRPC_FWQueryConnectionSecurityRules2_20 (Opnum 61)

The RRPC_FWQueryConnectionSecurityRules2_20 (Opnum 61) method requests the server to return

all the connection security rules that match the specified query object that are contained in the store
referenced by the hPolicy handle. The method returns a linked list of all the connection security rule

objects. The method is only supported for binary version 0x0214.

 unsigned unsigned long RRPC_FWQueryConnectionSecurityRules2_20(
 [in] FW_CONN_HANDLE rpcConnHandle,
 [in] FW_POLICY_STORE_HANDLE hPolicy,
 [in] unsigned PFW_QUERY pQuery,
 [in] unsigned short wFlags,
 [out, ref] unsigned long* pdwNumRules,
 [out] PFW_CS_RULE* ppRules
);

rpcConnHandle: This parameter is an RPC binding handle that connects to the RPC interface of the
Firewall and Advanced Security Protocol.

hPolicy: This input parameter is an FW_POLICY_STORE_HANDLE data type. The data type MUST
contain an opened policy store handle, successfully opened with the RRPC_FWOpenPolicyStore

(Opnum 0) method. The handle MUST be of the FW_STORE_TYPE_DYNAMIC store.

pQuery: This parameter represents the query object that the client uses to specify which main mode
rules MUST be retrieved from the store. The query object MUST be valid, as specified in the
definition of the FW_QUERY data type.

192 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

wFlags: This parameter is a combination of flags from the FW_ENUM_RULES_FLAGS enumeration,
which modifies the behavior of the method and performs operations on the rules before returning

them in the linked list.

pdwNumRules: This is an output parameter that on success MUST be equal to the number of rules

returned.

ppRules: This is an output parameter that on success contains a linked list of FW_CS_RULE data
types.

Return Values: The method returns 0 if successful; if it fails, it returns a nonzero error code. The
field can take any specific error code value, as specified in [MS-ERREF]. The following return
values are common.

Return value/code Description

0x00000005

ERROR_ACCESS_DENIED

The client does not have the required credentials to call the method.

0x00000057

ERROR_INVALID_PARAMETER

The dwProfileFilter parameter contains invalid profiles.

Exceptions Thrown: No exceptions are thrown beyond those thrown by the underlying RPC protocol,
as specified in [MS-RPCE]. If any lower-layer errors are reported by RPC exception, this exception
is converted to an error code and reported to higher-layer protocols via the return value.

The server MUST validate that the client is authorized to perform the requested operation (as defined
in section 3.1.4) before executing this method.

3.1.4.63 RRPC_FWAddAuthenticationSet2_20 (Opnum 62)

The RRPC_FWAddAuthenticationSet2_20 method requests the server to add the authentication set in
the policy contained in the policy store referenced by the handle specified in the hPolicy parameter.

The method is only supported for binary version 0x0214.

 unsigned long RRPC_FWAddAuthenticationSet2_20(
 [in] FW_CONN_HANDLE rpcConnHandle,
 [in] FW_POLICY_STORE_HANDLE hPolicy,
 [in] PFW_AUTH_SET pAuth,
 [out] FW_RULE_STATUS* pStatus
);

rpcConnHandle: This parameter is an RPC binding handle that connects to the RPC interface of the
Firewall and Advanced Security Protocol.

hPolicy: This input parameter is an FW_POLICY_STORE_HANDLE data type. The data type MUST
contain an opened policy store handle, successfully opened with the RRPC_FWOpenPolicyStore
(Opnum 0) method. The handle MUST have read/write access rights.

pAuth: This parameter represents the authentication set the client wants to add to the store. The set

MUST be valid, as specified in the definition of the FW_AUTH_SET data type.

pStatus: This output parameter is the status code of the rule as specified by the FW_RULE_STATUS
enumeration. This field is filled out on return.

Return Values: The method returns 0 if successful; if failed, it returns a nonzero error code. The field
can take any specific error code value, as specified in [MS-ERREF]. The following return values are
common.

193 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Return value/code Description

0x000000B7

ERROR_ALREADY_EXISTS

The specified set has a set ID that already exists in the specified store.

0x00000032

ERROR_NOT_SUPPORTED

The specified store does not support this method; the store might be read-
only.

0x00000005

ERROR_ACCESS_DENIED

The hPolicy handle was not opened with read/write access rights. The error
is also returned if the client does not have the required credentials to call
the method.

0x00000057

ERROR_INVALID_PARAMETER

One of the parameters of this method is incorrect, or is required and not
specified. This error can be returned because:

▪ The pSet object did not pass the firewall rule validations specified in the
definition of the FW_AUTH_SET data type.

▪ One of the required values is not specified.

Exceptions Thrown: No exceptions are thrown beyond those thrown by the underlying RPC protocol,
as specified in [MS-RPCE].

This method adds a firewall rule in the firewall linked list of the memory representation of the store

being modified. It also writes through and saves the rule in disk. If the method is called on an online
store, the firewall rule is also enforced.

The server MUST validate the client credentials to the administrator or network operator before
executing this method.

3.1.4.64 RRPC_FWSetAuthenticationSet2_20 (Opnum 63)

The RRPC_FWSetAuthenticationSet2_20 method requests the server to modify the specified

authentication set in the policy contained in the policy store referenced by the handle specified in the
hPolicy parameter. The method is only supported for binary version 0x0214.

 unsigned long RRPC_FWSetAuthenticationSet2_20(
 [in] FW_CONN_HANDLE rpcConnHandle,
 [in] FW_POLICY_STORE_HANDLE hPolicy,
 [in] PFW_AUTH_SET pAuth,
 [out] FW_RULE_STATUS* pStatus
);

rpcConnHandle: This parameter is an RPC binding handle that connects to the RPC interface of the

Firewall and Advanced Security Protocol.

hPolicy: This input parameter is an FW_POLICY_STORE_HANDLE data type. The data type MUST
contain an opened policy store handle, successfully opened with the RRPC_FWOpenPolicyStore
(Opnum 0) method. The handle MUST have read/write access rights.

pAuth: This parameter represents the authentication set that the client wants to add to the store. The
set MUST be valid, as specified in the definition of the FW_AUTH_SET data type.

pStatus: This output parameter is the status code of the rule as specified by the FW_RULE_STATUS

enumeration. This field is filled out on return.

Return Values: The method returns 0 if successful; if failed, it returns a nonzero error code. The field
can take any specific error code value, as specified in [MS-ERREF]. The following return values are
common.

194 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Return value/code Description

0x00000032

ERROR_NOT_SUPPORTED

The specified store does not support this method; the store might be read-
only.

0x00000005

ERROR_ACCESS_DENIED

The hPolicy handle was not opened with read/write access rights. The error
is also returned if the client does not have the required credentials to call
the method.

0X00000002

ERROR_FILE_NOT_FOUND

The specified rule referenced by the wszSetID member string of the
FW_AUTH_SET data type is not found in the policy store.

0x00000057

ERROR_INVALID_PARAMETER

One of the parameters of this method is incorrect, or is required and not
specified. This error can be returned because:

▪ The pSet object did not pass the firewall rule validations specified in the
definition of the FW_AUTH_SET data type.

▪ One of the required values is not specified.

Exceptions Thrown: No exceptions are thrown beyond those thrown by the underlying RPC protocol,
as specified in [MS-RPCE].

The server MUST validate the client credentials to the administrator or network operator before

executing this method.

3.1.4.65 RRPC_FWEnumAuthenticationSets2_20 (Opnum 64)

The RRPC_FWEnumAuthenticationSets2_20 method requests the server to return all the
authentication sets of the specified IPsec phase contained in the store referenced in the hPolicy

handle. The method returns a linked list of these objects. The method is only supported for binary
version 0x0214.

 unsigned long RRPC_FWEnumAuthenticationSets2_20(
 [in] FW_CONN_HANDLE rpcConnHandle,
 [in] FW_POLICY_STORE_HANDLE hPolicy,
 [in, range(FW_IPSEC_PHASE_INVALID+1, FW_IPSEC_PHASE_MAX-1)]
 FW_IPSEC_PHASE IpSecPhase,
 [in] DWORD dwFilteredByStatus,
 [in] WORD wFlags,
 [out] DWORD* pdwNumAuthSets,
 [out] PFW_AUTH_SET* ppAuth
);

rpcConnHandle: This parameter is an RPC binding handle that connects to the RPC interface of the
Firewall and Advanced Security Protocol.

hPolicy: This input parameter is an FW_POLICY_STORE_HANDLE data type. The data type MUST

contain an opened policy store handle, successfully opened with the RRPC_FWOpenPolicyStore

(Opnum 0) method. The handle MUST have read/write access rights.

IpSecPhase: This parameter specifies the specific IPsec negotiation phase to which this set applies.

dwFilteredByStatus: This parameter is a combination of flags from the FW_RULE_STATUS_CLASS
enumeration. This method uses this bitmask to determine which rules will be returned. Rules that
contain a status code of the specified class that match this parameter will be returned in the linked
list.

195 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

wFlags: This parameter is a combination of flags from the FW_ENUM_RULES_FLAGS enumeration,
which modifies the behavior of the method and performs operations on the rules before returning

them in the linked list.

pdwNumAuthSets: This is an output parameter that, on success, MUST be equal to the number of

sets returned.

ppAuth: This parameter represents the authentication set the client has added to the store. The set
MUST be valid, as specified in the definition of the FW_AUTH_SET data type.

Return Values: The method returns 0 if successful; if it fails, it returns a nonzero error code. The
field can take any specific error code value, as specified in [MS-ERREF]. The following return
values are common.

Return value/code Description

0x00000005

ERROR_ACCESS_DENIED

The hPolicy handle was not opened with read/write access rights. The error
is also returned if the client does not have the required credentials to call
the method.

0x00000057

ERROR_INVALID_PARAMETER

The dwProfileFilter parameter contains invalid profiles.

Exceptions Thrown: No exceptions are thrown beyond those thrown by the underlying RPC protocol,
as specified in [MS-RPCE].

3.1.4.66 RRPC_FWQueryAuthenticationSets2_20 (Opnum 65)

The RRPC_FWQueryAuthenticationSets2_20 method requests the server to return all the
authentication sets that match the specified query object that are contained in the store referenced in
the hPolicy handle. The method returns a linked list of all the authentication set objects. The method
is only supported for binary version 0x0214.

 unsigned long RRPC_FWQueryAuthenticationSets2_20(
 [in] FW_CONN_HANDLE rpcConnHandle,
 [in] FW_POLICY_STORE_HANDLE hPolicy,
 [in, range(FW_IPSEC_PHASE_INVALID+1, FW_IPSEC_PHASE_MAX-1)]
 FW_IPSEC_PHASE IpSecPhase,
 [in] PFW_QUERY pQuery,
 [in] WORD wFlags,
 [out, ref] DWORD* pdwNumSets,
 [out] PFW_AUTH_SET* ppAuthSets
);

rpcConnHandle: This parameter is an RPC binding handle that connects to the RPC interface of the
Firewall and Advanced Security Protocol.

hPolicy: This input parameter is an FW_POLICY_STORE_HANDLE data type. The data type MUST
contain an opened policy store handle, successfully opened with the RRPC_FWOpenPolicyStore

(Opnum 0) method. The handle MUST be of the FW_STORE_TYPE_DYNAMIC store.

IpSecPhase: This parameter specifies the specific IPsec negotiation phase to which this set applies.

pQuery: This parameter represents the query object that the client wants to use to specify which

main mode rules MUST be retrieved from the store. The query object MUST be valid, as specified
in the definition of the FW_QUERY data type.

196 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

wFlags: This parameter is a combination of flags from the FW_ENUM_RULES_FLAGS enumeration,
which modifies the behavior of the method and performs operations on the rules before returning

them in the linked list.

pdwNumSets: This is an output parameter that, on success, MUST be equal to the number of sets

returned.

ppAuthSets: This is an output parameter that, on success, contains a linked list of FW_AUTH_SET
data types.

Return Values: The method returns 0 if successful; if it fails, it returns a nonzero error code. The
field can take any specific error code value, as specified in [MS-ERREF]. The following return
values are common.

Return value/code Description

0x00000005

ERROR_ACCESS_DENIED

The client does not have the required credentials to call the method.

0x00000057

ERROR_INVALID_PARAMETER

The dwProfileFilter parameter contains invalid profiles.

Exceptions Thrown: No exceptions are thrown beyond those thrown by the underlying RPC protocol,
as specified in [MS-RPCE].

The server MUST validate the client credentials to the administrator or network operator before
executing this method.

3.1.4.67 RRPC_FWAddFirewallRule2_20 (Opnum 66)

The RRPC_FWAddFirewallRule2_20 method requests the server to add the specified firewall rule in the
policy contained in the policy store referenced by the handle specified in the hPolicyStore parameter.
The method is only supported for binary version 0x0214.

 unsigned unsigned long RRPC_FWAddFirewallRule2_20(
 [in] FW_CONN_HANDLE rpcConnHandle,
 [in] FW_POLICY_STORE_HANDLE hPolicyStore,
 [in] FW_RULE2_20 pRule,
 [out] FW_RULE_STATUS* pStatus
);

rpcConnHandle: This parameter is an RPC binding handle that connects to the RPC interface of the
Firewall and Advanced Security Protocol.

hPolicyStore: This input parameter is an FW_POLICY_STORE_HANDLE data type. The data type
MUST contain an opened policy store handle, successfully opened with the
RRPC_FWOpenPolicyStore (Opnum 0) method. The handle MUST have read/write access rights.

pRule: This parameter represents the firewall rule that the client adds to the store. The rule MUST be
a valid rule, as specified in the definition of the FW_RULE2_20 data type.

pStatus: This output parameter is the status code of the rule as specified by the FW_RULE_STATUS
enumeration. This field is filled out on return.

Return Values: The method returns 0 if successful; if it fails, it returns a nonzero error code. The
field can take any specific error code value, as specified in [MS-ERREF]. The following return
values are common.

197 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Return value/code Description

0x000000B7

ERROR_ALREADY_EXISTS

The specified rule has a rule ID that already exists in the specified store.

0x00000032

ERROR_NOT_SUPPORTED

The specified store does not support this method; the store might be read-
only.

0x00000005

ERROR_ACCESS_DENIED

The hPolicyStore handle was not opened with read/write access rights. The
error is also returned if the client does not have the required credentials to
call the method.

0x00000057

ERROR_INVALID_PARAMETER

One of the parameters of this method either is incorrect or is required and
not specified. This error can be returned because:

▪ The pRule object did not pass the firewall rule validations specified in
the definition of the FW_RULE data type.

▪ One of the required values is not specified.

▪ A policy store does not support rules with profile conditions other than
ALL profiles.

▪ The wszLocalApplication member contains a string that, at
enforcement time, does not represent a valid file path.

Exceptions Thrown: No exceptions are thrown beyond those thrown by the underlying RPC protocol,
as specified in [MS-RPCE]. If any lower-layer errors are reported by RPC exception, this exception

is converted to an error code and reported to higher-layer protocols via the return value.

This method adds a firewall rule in the firewall linked list of the memory representation of the store
being modified. It also writes through and saves the rule on disk. If called on an online store, the
firewall rule is also enforced.

The server MUST validate that the client is authorized to perform the requested operation (as defined

in section 3.1.4) before executing this method.

3.1.4.68 RRPC_FWSetFirewallRule2_20 (Opnum 67)

The RRPC_FWAddConnectionSecurityRule2_20 method requests the server to modify the specified
connection security rule in the policy contained in the policy store referenced by the handle specified
in the hPolicyStore parameter. The method is only supported for binary version 0x0214.

 unsigned unsigned long RRPC_FWAddConnectionSecurityRule2_20(
 [in] FW_CONN_HANDLE rpcConnHandle,
 [in] FW_POLICY_STORE_HANDLE hPolicyStore,
 [in] PFW_RULE2_20 pRule,
 [out] FW_RULE_STATUS* pStatus
);

rpcConnHandle: This parameter is an RPC binding handle that connects to the RPC interface of the
Firewall and Advanced Security Protocol.

hPolicyStore: This input parameter is an FW_POLICY_STORE_HANDLE data type. The data type
MUST contain an opened policy store handle, successfully opened with the
RRPC_FWOpenPolicyStore (Opnum 0) method. The handle MUST have read/write access rights.

pRule: This parameter represents the firewall rule that the client adds to the store. The rule MUST be
a valid rule, as specified in the definition of the FW_RULE2_20 data type.

198 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

pStatus: This output parameter is the status code of the rule as specified by the FW_RULE_STATUS
enumeration. This field is filled out on return.

Return Values: The method returns 0 if successful; if it fails, it returns a nonzero error code. The
field can take any specific error code value, as specified in [MS-ERREF]. The following return

values are common.

Return value/code Description

0x00000032

ERROR_NOT_SUPPORTED

The specified store does not support this method; the store might be read-
only.

0x00000005

ERROR_ACCESS_DENIED

The hPolicyStore handle was not opened with read/write access rights. The
error is also returned if the client does not have the required credentials to
call the method.

0x00000002

ERROR_FILE_NOT_FOUND

The specified rule referenced by the wszRuleID member string of the
FW_RULE data type is not found in the policy store.

0x00000057

ERROR_INVALID_PARAMETER

One of the parameters of this method either is incorrect or is required and
not specified. This error can be returned because:

▪ The pRule object did not pass the firewall rule validations specified in
the definition of the FW_RULE data type.

▪ One of the required values is not specified.

▪ A policy store does not support rules with profile conditions other than
ALL profiles.

Exceptions Thrown: No exceptions are thrown beyond those thrown by the underlying RPC protocol,
as specified in [MS-RPCE]. If any lower-layer errors are reported by RPC exception, this exception
is converted to an error code and reported to higher-layer protocols via the return value.

The server MUST validate that the client is authorized to perform the requested operation (as defined

in section 3.1.4) before executing this method.

3.1.4.69 RRPC_FWEnumFirewallRules2_20 (Opnum 68)

The RRPC_FWEnumFirewallRules2_20 (Opnum 68) method requests the server to return all the
firewall rules contained in the store referenced by the hPolicyStore handle. The method returns a

linked list of all the firewall rule objects. The method is only supported for binary version 0x0214.

 unsigned unsigned long RRPC_FWEnumFirewallRules2_20(
 [in] FW_CONN_HANDLE rpcConnHandle,
 [in] FW_POLICY_STORE_HANDLE hPolicyStore,
 [in] unsigned long dwFilteredByStatus,
 [in] unsigned long dwProfileFilter,
 [in] unsigned short wFlags,
 [out, ref] unsigned long* pdwNumRules,
 [out] PFW_RULE2_20* ppRules
);

rpcConnHandle: This parameter is an RPC binding handle that connects to the RPC interface of the

Firewall and Advanced Security Protocol.

hPolicyStore: This input parameter is an FW_POLICY_STORE_HANDLE data type. The data type
MUST contain an opened policy store handle, successfully opened with the
RRPC_FWOpenPolicyStore (Opnum 0) method. The handle MUST have read/write access rights.

199 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

dwFilteredByStatus: This parameter is a combination of flags from the FW_RULE_STATUS_CLASS
enumeration. This method uses this bitmask to determine which rules will be returned. Rules that

contain a status code of the specified class that match this parameter will be returned in the linked
list.

dwProfileFilter: This parameter is a combination of flags from the FW_PROFILE_TYPE enumeration.
This method also uses this parameter to determine which rules will be returned. Rules that contain
a profile specified by this parameter will be returned in the linked list.

wFlags: This parameter is a combination of flags from the FW_ENUM_RULES_FLAGS enumeration,
which modifies the behavior of the method and performs operations on the rules before returning
them in the linked list.

pdwNumRules: This is an output parameter that on success MUST be equal to the number of rules

returned.

ppRules: This is an output parameter that on success contains a linked list of FW_RULE2_20 data
types.

Return Values: The method returns 0 if successful; if it fails, it returns a nonzero error code. The
field can take any specific error code value, as specified in [MS-ERREF]. The following return
values are common.

Return value/code Description

0x00000005

ERROR_ACCESS_DENIED

The hPolicyStore handle was not opened with read/write access rights. The
error is also returned if the client does not have the required credentials to
call the method.

0x00000057

ERROR_INVALID_PARAMETER

The dwProfileFilter parameter contains invalid profiles.

Exceptions Thrown: No exceptions are thrown beyond those thrown by the underlying RPC protocol,
as specified in [MS-RPCE]. If any lower-layer errors are reported by RPC exception, this exception

is converted to an error code and reported to higher-layer protocols via the return value.

The server MUST validate that the client is authorized to perform the requested operation (as defined
in section 3.1.4) before executing this method.

3.1.4.70 RRPC_FWQueryFirewallRules2_20 (Opnum 69)

The RRPC_FWQueryFirewallRules2_20 (Opnum 69) method requests the server to return all the
firewall rules that match the specified query object that are contained in the store referenced by the

hPolicy handle. The method returns a linked list of all the connection security rule objects. The method
is only supported for binary version 0x0214.

 unsigned unsigned long RRPC_FWQueryFirewallRules2_20(
 [in] FW_CONN_HANDLE rpcConnHandle,
 [in] FW_POLICY_STORE_HANDLE hPolicy,
 [in] unsigned PFW_QUERY pQuery,
 [in] unsigned short wFlags,
 [out, ref] unsigned long* pdwNumRules,
 [out] PFW_RULE2_20* ppRules
);

rpcConnHandle: This parameter is an RPC binding handle that connects to the RPC interface of the
Firewall and Advanced Security Protocol.

200 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

hPolicy: This input parameter is an FW_POLICY_STORE_HANDLE data type. The data type MUST
contain an opened policy store handle, successfully opened with the RRPC_FWOpenPolicyStore

(Opnum 0) method. The handle MUST be of the FW_STORE_TYPE_DYNAMIC store.

pQuery: This parameter represents the query object that the client uses to specify which main mode

rules MUST be retrieved from the store. The query object MUST be valid, as specified in the
definition of the FW_QUERY data type.

wFlags: This parameter is a combination of flags from the FW_ENUM_RULES_FLAGS enumeration,
which modifies the behavior of the method and performs operations on the rules before returning
them in the linked list.

pdwNumRules: This is an output parameter that on success MUST be equal to the number of rules
returned.

ppRules: This is an output parameter that on success contains a linked list of FW_RULE2_20 data
types.

Return Values: The method returns 0 if successful; if it fails, it returns a nonzero error code. The

field can take any specific error code value, as specified in [MS-ERREF]. The following return
values are common.

Return value/code Description

0x00000005

ERROR_ACCESS_DENIED

The client does not have the required credentials to call the method.

0x00000057

ERROR_INVALID_PARAMETER

The pQuery parameter contains invalid profiles.

Exceptions Thrown: No exceptions are thrown beyond those thrown by the underlying RPC protocol,
as specified in [MS-RPCE]. If any lower-layer errors are reported by RPC exception, this exception
is converted to an error code and reported to higher-layer protocols via the return value.

The server MUST validate that the client is authorized to perform the requested operation (as defined
in section 3.1.4) before executing this method.

3.1.4.71 RRPC_FWAddFirewallRule2_24 (Opnum 70)

The RRPC_FWAddFirewallRule2_24 method requests the server to add the specified firewall rule in the
policy contained in the policy store that is referenced by the handle specified in the hPolicyStore
parameter. The method is only supported for binary version 0x0218.

 DWORD RRPC_FWAddFirewallRule2_24(
 [in] FW_CONN_HANDLE rpcConnHandle,
 [in] FW_POLICY_STORE_HANDLE hPolicyStore,
 [in] PFW_RULE2_24 pRule,
 [out] FW_RULE_STATUS* pStatus
);

rpcConnHandle: An RPC binding handle that connects to the RPC interface of the Firewall and
Advanced Security Protocol.

hPolicyStore: An input parameter that is an FW_POLICY_STORE_HANDLE data type. This parameter
MUST contain an opened policy store handle, successfully opened with the
RRPC_FWOpenPolicyStore (Opnum 0) method (section 3.1.4.1). The handle MUST have read/write
access rights.

201 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

pRule: Represents the firewall rule that the client adds to the store. The rule MUST be a valid rule, as
specified in the definition of the FW_RULE2_24 data type.

pStatus: An output parameter that is the status code of the rule, as specified by the
FW_RULE_STATUS enumeration. This field is filled out on return.

Return Values: The method returns 0 if successful; if it fails, it returns a nonzero error code. The
field can take any specific error code value, as specified in [MS-ERREF]. The following return
values are common.

Return value/code Description

0x000000B7

ERROR_ALREADY_EXISTS

The specified rule has a rule ID that already exists in the specified store.

0x00000032

ERROR_NOT_SUPPORTED

The specified store does not support this method; the store might be read-
only.

0x00000005

ERROR_ACCESS_DENIED

The hPolicyStore handle was not opened with read/write access rights. This
error is also returned if the client does not have the required credentials to
call the method.

0x00000057

ERROR_INVALID_PARAMETER

One of the parameters of this method is incorrect or is required but not
specified. This error can be returned in the following cases:

- The pRule object did not pass the firewall rule validations specified in the
definition of the FW_RULE data type.

- One of the required values is not specified.

- A policy store does not support rules with profile conditions other than
ALL profiles.

- The wszLocalApplication member of the rule contains a string that, at
enforcement time, does not represent a valid file path.

Exceptions Thrown: No exceptions are thrown beyond those thrown by the underlying RPC protocol,
as specified in [MS-RPCE]. If any lower-layer errors are reported by RPC exception, this exception

is converted to an error code and reported to higher-layer protocols via the return value.

This method adds a firewall rule in the firewall linked list of the memory representation of the store
being modified. It also writes through and saves the rule on disk. If called on an online store, the
firewall rule is also enforced.

The server MUST validate that the client is authorized to perform the requested operation (as defined
in section 3.1.4) before executing this method.

3.1.4.72 RRPC_FWSetFirewallRule2_24 (Opnum 71)

The RRPC_FWSetFirewallRule2_24 method requests the server to modify the specified connection
security rule in the policy contained in the policy store that is referenced by the handle specified in the
hPolicyStore parameter. The method is only supported for binary version 0x0218.

 DWORD RRPC_FWSetFirewallRule2_24(
 [in] FW_CONN_HANDLE rpcConnHandle,
 [in] FW_POLICY_STORE_HANDLE hPolicyStore,
 [in] PFW_RULE2_24 pRule,
 [out] FW_RULE_STATUS* pStatus
);

rpcConnHandle: An RPC binding handle that connects to the RPC interface of the Firewall and
Advanced Security Protocol.

202 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

hPolicyStore: An input parameter that is an FW_POLICY_STORE_HANDLE data type. This parameter
MUST contain an opened policy store handle, successfully opened with the

RRPC_FWOpenPolicyStore (Opnum 0) method (section 3.1.4.1). The handle MUST have read/write
access rights.

pRule: Represents the firewall rule that the client modifies in the store. The rule MUST be a valid rule,
as specified in the definition of the FW_RULE2_24 data type.

pStatus: An output parameter that is the status code of the rule, as specified by the
FW_RULE_STATUS enumeration. This field is filled out on return.

Return Values: The method returns 0 if successful; if it fails, it returns a nonzero error code. The
field can take any specific error code value, as specified in [MS-ERREF]. The following return
values are common.

Return value/code Description

0x00000032

ERROR_NOT_SUPPORTED

The specified store does not support this method; the store might be read-
only.

0x00000005

ERROR_ACCESS_DENIED

The hPolicyStore handle was not opened with read/write access rights. This
error is also returned if the client does not have the required credentials to
call the method.

0x00000002

ERROR_FILE_NOT_FOUND

The specified rule referenced by the wszRuleID member string of the
FW_RULE data type is not found in the policy store.

0x00000057

ERROR_INVALID_PARAMETER

One of the parameters of this method is incorrect or is required but not
specified. This error can be returned in the following cases:

- The pRule object did not pass the firewall rule validations specified in the
definition of the FW_RULE data type.

- One of the required values is not specified.

- A policy store does not support rules with profile conditions other than ALL
profiles.

Exceptions Thrown: No exceptions are thrown beyond those thrown by the underlying RPC protocol,
as specified in [MS-RPCE]. If any lower-layer errors are reported by RPC exception, this exception
is converted to an error code and reported to higher-layer protocols via the return value.

The server MUST validate that the client is authorized to perform the requested operation (as defined
in section 3.1.4) before executing this method.

3.1.4.73 RRPC_FWEnumFirewallRules2_24 (Opnum 72)

The RRPC_FWEnumFirewallRules2_24 method requests the server to return all the firewall rules
contained in the store that is referenced by the hPolicyStore handle. The method returns a linked list
of all the firewall rule objects. The method is only supported for binary version 0x0218.

 DWORD RRPC_FWEnumFirewallRules2_24(
 [in] FW_CONN_HANDLE rpcConnHandle,
 [in] FW_POLICY_STORE_HANDLE hPolicyStore,
 [in] DWORD dwFilteredByStatus,
 [in] DWORD dwProfileFilter,
 [in] WORD wFlags,
 [out, ref] DWORD* pdwNumRules,
 [out] PFW_RULE2_24* ppRules
);

203 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

rpcConnHandle: An RPC binding handle that connects to the RPC interface of the Firewall and
Advanced Security Protocol.

hPolicyStore: An input parameter that is an FW_POLICY_STORE_HANDLE data type. This
parameter MUST contain an opened policy store handle, successfully opened with the

RRPC_FWOpenPolicyStore (Opnum 0) method (section 3.1.4.1). The handle MUST have read/write
access rights.

dwFilteredByStatus: A combination of flags from the FW_RULE_STATUS_CLASS enumeration.
This method uses this bitmask to determine which rules will be returned. Rules that contain a
status code of the specified class that match this parameter will be returned in the linked list.

dwProfileFilter: A combination of flags from the FW_PROFILE_TYPE enumeration. This method
also uses this parameter to determine which rules will be returned. Rules that contain a profile

specified by this parameter will be returned in the linked list.

wFlags: A combination of flags from the FW_ENUM_RULES_FLAGS enumeration, which modifies
the behavior of the method and performs operations on the rules before returning them in the

linked list.

pdwNumRules: An output parameter that, on success, MUST be equal to the number of rules
returned.

ppRules: An output parameter that, on success, contains a linked list of FW_RULE2_24 data types.

Return Values: The method returns 0 if successful; if it fails, it returns a nonzero error code. The
field can take any specific error code value, as specified in [MS-ERREF]. The following return
values are common.

Return value/code Description

0x00000005

ERROR_ACCESS_DENIED

The hPolicyStore handle was not opened with read/write access rights. This
error is also returned if the client does not have the required credentials to
call the method.

0x00000057

ERROR_INVALID_PARAMETER

The dwProfileFilter parameter contains invalid profiles.

Exceptions Thrown: No exceptions are thrown beyond those thrown by the underlying RPC protocol,

as specified in [MS-RPCE]. If any lower-layer errors are reported by RPC exception, this exception
is converted to an error code and reported to higher-layer protocols via the return value.

The server MUST validate that the client is authorized to perform the requested operation (as defined
in section 3.1.4) before executing this method.

3.1.4.74 RRPC_FWQueryFirewallRules2_24 (Opnum 73)

The RRPC_FWQueryFirewallRules2_24 method requests the server to return all the firewall rules that
match the specified query object that are contained in the store that is referenced by the hPolicyStore

handle. The method returns a linked list of all the connection security rule objects. The method is only
supported for binary version 0x0218.

 DWORD RRPC_FWQueryFirewallRules2_24(
 [in] FW_CONN_HANDLE rpcConnHandle,
 [in] FW_POLICY_STORE_HANDLE hPolicyStore,
 [in] PFW_QUERY pQuery,
 [in] WORD wFlags,
 [out, ref] DWORD* pdwNumRules,
 [out] PFW_RULE2_24* ppRules

204 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

);

rpcConnHandle: An RPC binding handle that connects to the RPC interface of the Firewall and
Advanced Security Protocol.

hPolicyStore: An input parameter that is an FW_POLICY_STORE_HANDLE data type. The data

type MUST contain an opened policy store handle, successfully opened with the
RRPC_FWOpenPolicyStore (Opnum 0) method (section 3.1.4.1). The handle MUST be of the
FW_STORE_TYPE_DYNAMIC store.

pQuery: Represents the query object that the client uses to specify which main mode rules MUST be
retrieved from the store. The query object MUST be valid, as specified in the definition of the
FW_QUERY data type.

wFlags: A combination of flags from the FW_ENUM_RULES_FLAGS enumeration, which modifies
the behavior of the method and performs operations on the rules before returning them in the
linked list.

pdwNumRules: An output parameter that, on success, MUST be equal to the number of rules
returned.

ppRules: An output parameter that, on success, contains a linked list of FW_RULE2_24_data types.

Return Values: The method returns 0 if successful; if it fails, it returns a nonzero error code. The

field can take any specific error code value, as specified in [MS-ERREF]. The following return
values are common.

Return value/code Description

0x00000005

ERROR_ACCESS_DENIED

The client does not have the required credentials to call the method.

0x00000057

ERROR_INVALID_PARAMETER

The pQuery parameter contains invalid conditions.

Exceptions Thrown: No exceptions are thrown beyond those thrown by the underlying RPC protocol,
as specified in [MS-RPCE]. If any lower-layer errors are reported by RPC exception, this exception
is converted to an error code and reported to higher-layer protocols via the return value.

The server MUST validate that the client is authorized to perform the requested operation (as defined
in section 3.1.4) before executing this method.

3.1.4.75 RRPC_FWAddFirewallRule2_25 (Opnum 74)

The RRPC_FWAddFirewallRule2_25 method requests the server to add the specified firewall rule in the
policy contained in the policy store that is referenced by the handle specified in the hPolicyStore
parameter. The method is only supported for binary version 0x0219.

 DWORD RRPC_FWAddFirewallRule2_25(
 [in] FW_CONN_HANDLE rpcConnHandle,
 [in] FW_POLICY_STORE_HANDLE hPolicyStore,
 [in] PFW_RULE2_25 pRule,
 [out] FW_RULE_STATUS* pStatus
);

rpcConnHandle: An RPC binding handle that connects to the RPC interface of the Firewall and
Advanced Security Protocol.

205 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

hPolicyStore: An input parameter that is an FW_POLICY_STORE_HANDLE data type. This parameter
MUST contain an opened policy store handle, successfully opened with the

RRPC_FWOpenPolicyStore (Opnum 0) method (section 3.1.4.1). The handle MUST have read/write
access rights.

pRule: Represents the firewall rule that the client adds to the store. The rule MUST be a valid rule, as
specified in the definition of the FW_RULE2_25 data type (section 2.2.104).

pStatus: An output parameter that is the status code of the rule, as specified by the
FW_RULE_STATUS enumeration. This field is filled out on return.

Return Values: The method returns 0 if successful; if it fails, it returns a nonzero error code. The
field can take any specific error code value, as specified in [MS-ERREF]. The following return
values are common.

Return value/code Description

0x000000B7

ERROR_ALREADY_EXISTS

The specified rule has a rule ID that already exists in the specified store.

0x00000032

ERROR_NOT_SUPPORTED

The specified store does not support this method; the store might be read-
only.

0x00000005

ERROR_ACCESS_DENIED

The hPolicyStore handle was not opened with read/write access rights. This
error is also returned if the client does not have the required credentials to
call the method.

0x00000057

ERROR_INVALID_PARAMETER

One of the parameters of this method is incorrect or is required but not
specified. This error can be returned in the following cases:

- The pRule object did not pass the firewall rule validations specified in the
definition of the FW_RULE data type.

- One of the required values is not specified.

- A policy store does not support rules with profile conditions other than ALL
profiles.

- The wszLocalApplication member of the rule contains a string that, at
enforcement time, does not represent a valid file path.

Exceptions Thrown: No exceptions are thrown beyond those thrown by the underlying RPC protocol,
as specified in [MS-RPCE]. If any lower-layer errors are reported by RPC exception, this exception
is converted to an error code and reported to higher-layer protocols via the return value.

This method adds a firewall rule in the firewall linked list of the memory representation of the store
being modified. It also writes through and saves the rule on disk. If called on an online store, the

firewall rule is also enforced.

The server MUST validate that the client is authorized to perform the requested operation (as defined
in section 3.1.4) before executing this method.

3.1.4.76 RRPC_FWSetFirewallRule2_25 (Opnum 75)

The RRPC_FWSetFirewallRule2_25 method requests the server to modify the specified connection
security rule in the policy contained in the policy store that is referenced by the handle specified in the
hPolicyStore parameter. The method is only supported for binary version 0x0219.

 DWORD RRPC_FWSetFirewallRule2_25(
 [in] FW_CONN_HANDLE rpcConnHandle,
 [in] FW_POLICY_STORE_HANDLE hPolicyStore,
 [in] PFW_RULE2_25 pRule,
 [out] FW_RULE_STATUS* pStatus

206 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

);

rpcConnHandle: An RPC binding handle that connects to the RPC interface of the Firewall and
Advanced Security Protocol.

hPolicyStore: An input parameter that is an FW_POLICY_STORE_HANDLE data type. This parameter

MUST contain an opened policy store handle, successfully opened with the
RRPC_FWOpenPolicyStore (Opnum 0) method (section 3.1.4.1). The handle MUST have read/write
access rights.

pRule: Represents the firewall rule that the client modifies in the store. The rule MUST be a valid rule,
as specified in the definition of the FW_RULE2_25 data type (section 2.2.104).

pStatus: An output parameter that is the status code of the rule, as specified by the

FW_RULE_STATUS enumeration. This field is filled out on return.

Return Values: The method returns 0 if successful; if it fails, it returns a nonzero error code. The
field can take any specific error code value, as specified in [MS-ERREF]. The following return

values are common.

Return value/code Description

0x00000032

ERROR_NOT_SUPPORTED

The specified store does not support this method; the store might be read-
only.

0x00000005

ERROR_ACCESS_DENIED

The hPolicyStore handle was not opened with read/write access rights. This
error is also returned if the client does not have the required credentials to
call the method.

0x00000002

ERROR_FILE_NOT_FOUND

The specified rule referenced by the wszRuleID member string of the
FW_RULE data type is not found in the policy store.

0x00000057

ERROR_INVALID_PARAMETER

One of the parameters of this method is incorrect or is required but not
specified. This error can be returned in the following cases:

- The pRule object did not pass the firewall rule validations specified in the
definition of the FW_RULE data type.

- One of the required values is not specified.

- A policy store does not support rules with profile conditions other than ALL
profiles.

Exceptions Thrown: No exceptions are thrown beyond those thrown by the underlying RPC protocol,
as specified in [MS-RPCE]. If any lower-layer errors are reported by RPC exception, this exception

is converted to an error code and reported to higher-layer protocols via the return value.

The server MUST validate that the client is authorized to perform the requested operation (as defined
in section 3.1.4) before executing this method.

3.1.4.77 RRPC_FWEnumFirewallRules2_25 (Opnum 76)

The RRPC_FWEnumFirewallRules2_25 method requests the server to return all the firewall rules
contained in the store that is referenced by the hPolicyStore handle. The method returns a linked list
of all the firewall rule objects. The method is only supported for binary version 0x0219.

 DWORD RRPC_FWEnumFirewallRules2_25(
 [in] FW_CONN_HANDLE rpcConnHandle,
 [in] FW_POLICY_STORE_HANDLE hPolicyStore,
 [in] DWORD dwFilteredByStatus,
 [in] DWORD dwProfileFilter,

207 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

 [in] WORD wFlags,
 [out, ref] DWORD* pdwNumRules,
 [out] PFW_RULE2_25* ppRules
);

rpcConnHandle: An RPC binding handle that connects to the RPC interface of the Firewall and
Advanced Security Protocol.

hPolicyStore: An input parameter that is an FW_POLICY_STORE_HANDLE data type. This parameter
MUST contain an opened policy store handle, successfully opened with the
RRPC_FWOpenPolicyStore (Opnum 0) method (section 3.1.4.1). The handle MUST have read/write
access rights.

dwFilteredByStatus: A combination of flags from the FW_RULE_STATUS_CLASS enumeration. This
method uses this bitmask to determine whether rules should be returned. Rules that contain a
status code of the specified class that match this parameter will be returned in the linked list.

dwProfileFilter: A combination of flags from the FW_PROFILE_TYPE enumeration. This method also

uses this parameter to determine whether rules should be returned. Rules that contain a profile
specified by this parameter will be returned in the linked list.

wFlags: A combination of flags from the FW_ENUM_RULES_FLAGS enumeration, which modifies the
behavior of the method and performs operations on the rules before returning them in the linked
list.

pdwNumRules: An output parameter that, on success, MUST be equal to the number of rules
returned.

ppRules: An output parameter that, on success, contains a linked list of FW_RULE2_25 data types
(section 2.2.104).

Return Values: The method returns 0 if successful; if it fails, it returns a nonzero error code. The
field can take any specific error code value, as specified in [MS-ERREF]. The following return
values are common.

Return value/code Description

0x00000005

ERROR_ACCESS_DENIED

The hPolicyStore handle was not opened with read/write access rights. This
error is also returned if the client does not have the required credentials to
call the method.

0x00000057

ERROR_INVALID_PARAMETER

The dwProfileFilter parameter contains invalid profiles.

Exceptions Thrown: No exceptions are thrown beyond those thrown by the underlying RPC protocol,
as specified in [MS-RPCE]. If any lower-layer errors are reported by RPC exception, this exception

is converted to an error code and reported to higher-layer protocols via the return value.

The server MUST validate that the client is authorized to perform the requested operation (as defined
in section 3.1.4) before executing this method.

3.1.4.78 RRPC_FWQueryFirewallRules2_25 (Opnum 77)

The RRPC_FWQueryFirewallRules2_25 method requests the server to return all the firewall rules that
match the specified query object that are contained in the store that is referenced by the hPolicyStore
handle. The method returns a linked list of all the connection security rule objects. The method is only
supported for binary version 0x0219.

208 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

 DWORD RRPC_FWQueryFirewallRules2_25(
 [in] FW_CONN_HANDLE rpcConnHandle,
 [in] FW_POLICY_STORE_HANDLE hPolicyStore,
 [in] PFW_QUERY pQuery,
 [in] WORD wFlags,
 [out, ref] DWORD* pdwNumRules,
 [out] PFW_RULE2_25* ppRules
);

rpcConnHandle: An RPC binding handle that connects to the RPC interface of the Firewall and
Advanced Security Protocol.

hPolicyStore: An input parameter that is an FW_POLICY_STORE_HANDLE data type. This parameter

MUST contain an opened policy store handle, successfully opened with the
RRPC_FWOpenPolicyStore (Opnum 0) method (section 3.1.4.1). The handle MUST be of the
FW_STORE_TYPE_DYNAMIC store (section 2.2.1).

pQuery: Represents the query object that the client uses to specify which main mode rules MUST be

retrieved from the store. The query object MUST be valid, as specified in the definition of the
FW_QUERY data type.

wFlags: A combination of flags from the FW_ENUM_RULES_FLAGS enumeration, which modifies the
behavior of the method and performs operations on the rules before returning them in the linked
list.

pdwNumRules: An output parameter that, on success, MUST be equal to the number of rules
returned.

ppRules: An output parameter that, on success, contains a linked list of FW_RULE2_25 data types
(section 2.2.104).

Return Values: The method returns 0 if successful; if it fails, it returns a nonzero error code. The
field can take any specific error code value, as specified in [MS-ERREF]. The following return
values are common.

Return value/code Description

0x00000005

ERROR_ACCESS_DENIED

The client does not have the required credentials to call the method.

0x00000057

ERROR_INVALID_PARAMETER

The pQuery parameter contains invalid conditions.

Exceptions Thrown: No exceptions are thrown beyond those thrown by the underlying RPC protocol,
as specified in [MS-RPCE]. If any lower-layer errors are reported by RPC exception, this exception

is converted to an error code and reported to higher-layer protocols via the return value.

The server MUST validate that the client is authorized to perform the requested operation (as defined
in section 3.1.4) before executing this method.

3.1.4.79 RRPC_FWAddFirewallRule2_26 (Opnum 78)

The RRPC_FWAddFirewallRule2_26 method requests the server to add the specified firewall rule in the
policy contained in the policy store that is referenced by the handle specified in the hPolicyStore
parameter. The method is only supported for binary version 0x021A.

 DWORD RRPC_FWAddFirewallRule2_26(
 [in] FW_CONN_HANDLE rpcConnHandle,

209 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

 [in] FW_POLICY_STORE_HANDLE hPolicyStore,
 [in] PFW_RULE2_26 pRule,
 [out] FW_RULE_STATUS* pStatus
);

rpcConnHandle: An RPC binding handle that connects to the RPC interface of the Firewall and
Advanced Security Protocol.

hPolicyStore: An input parameter that is an FW_POLICY_STORE_HANDLE data type. This parameter
MUST contain an opened policy store handle, successfully opened with the
RRPC_FWOpenPolicyStore (Opnum 0) method (section 3.1.4.1). The handle MUST have read/write
access rights.

pRule: Represents the firewall rule that the client adds to the store. The rule MUST be a valid rule, as
specified in the definition of the FW_RULE2_26 data type.

pStatus: An output parameter that is the status code of the rule, as specified by the
FW_RULE_STATUS enumeration. This field is filled out on return.

Return Values: The method returns 0 if successful; if it fails, it returns a nonzero error code. The
field can take any specific error code value, as specified in [MS-ERREF]. The following return

values are common.

Return value/code Description

0x000000B7

ERROR_ALREADY_EXISTS

The specified rule has a rule ID that already exists in the specified store.

0x00000032

ERROR_NOT_SUPPORTED

The specified store does not support this method; the store might be read-
only.

0x00000005

ERROR_ACCESS_DENIED

The hPolicyStore handle was not opened with read/write access rights. This
error is also returned if the client does not have the required credentials to
call the method.

0x00000057

ERROR_INVALID_PARAMETER

One of the parameters of this method is incorrect or is required but not
specified. This error can be returned in the following cases:

- The pRule object did not pass the firewall rule validations specified in the

definition of the FW_RULE data type.

- One of the required values is not specified.

- A policy store does not support rules with profile conditions other than ALL
profiles.

- The wszLocalApplication member of the rule contains a string that, at
enforcement time, does not represent a valid file path.

Exceptions Thrown: No exceptions are thrown beyond those thrown by the underlying RPC protocol,
as specified in [MS-RPCE]. If any lower-layer errors are reported by RPC exception, this exception
is converted to an error code and reported to higher-layer protocols via the return value.

This method adds a firewall rule in the firewall linked list of the memory representation of the store

being modified. It also writes through and saves the rule on disk. If called on an online store, the
firewall rule is also enforced.

The server MUST validate that the client is authorized to perform the requested operation (as defined
in section 3.1.4) before executing this method.

210 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

3.1.4.80 RRPC_FWSetFirewallRule2_26 (Opnum 79)

The RRPC_FWSetFirewallRule2_26 method requests the server to modify the specified connection
security rule in the policy contained in the policy store that is referenced by the handle specified in the

hPolicyStore parameter. The method is only supported for binary version 0x021A.

 DWORD RRPC_FWSetFirewallRule2_26(
 [in] FW_CONN_HANDLE rpcConnHandle,
 [in] FW_POLICY_STORE_HANDLE hPolicyStore,
 [in] PFW_RULE2_26 pRule,
 [out] FW_RULE_STATUS* pStatus
);

rpcConnHandle: An RPC binding handle that connects to the RPC interface of the Firewall and
Advanced Security Protocol.

hPolicyStore: An input parameter that is an FW_POLICY_STORE_HANDLE data type. This parameter
MUST contain an opened policy store handle, successfully opened with the

RRPC_FWOpenPolicyStore (Opnum 0) method (section 3.1.4.1). The handle MUST have read/write

access rights.

pRule: Represents the firewall rule that the client modifies in the store. The rule MUST be a valid rule,
as specified in the definition of the FW_RULE2_26 data type.

pStatus: An output parameter that is the status code of the rule, as specified by the
FW_RULE_STATUS enumeration. This field is filled out on return.

Return Values: The method returns 0 if successful; if it fails, it returns a nonzero error code. The

field can take any specific error code value, as specified in [MS-ERREF]. The following return
values are common.

Return value/code Description

0x00000032

ERROR_NOT_SUPPORTED

The specified store does not support this method; the store might be read-
only.

0x00000005

ERROR_ACCESS_DENIED

The hPolicyStore handle was not opened with read/write access rights. This
error is also returned if the client does not have the required credentials to
call the method.

0x00000002

ERROR_FILE_NOT_FOUND

The specified rule referenced by the wszRuleID member string of the
FW_RULE data type is not found in the policy store.

0x00000057

ERROR_INVALID_PARAMETER

One of the parameters of this method is incorrect or is required but not
specified. This error can be returned in the following cases:

- The pRule object did not pass the firewall rule validations specified in the
definition of the FW_RULE data type.

- One of the required values is not specified.

- A policy store does not support rules with profile conditions other than ALL
profiles.

Exceptions Thrown: No exceptions are thrown beyond those thrown by the underlying RPC protocol,
as specified in [MS-RPCE]. If any lower-layer errors are reported by RPC exception, this exception
is converted to an error code and reported to higher-layer protocols via the return value.

The server MUST validate that the client is authorized to perform the requested operation (as defined

in section 3.1.4) before executing this method.

211 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

3.1.4.81 RRPC_FWEnumFirewallRules2_26 (Opnum 80)

The RRPC_FWEnumFirewallRules2_26 method requests the server to return all the firewall rules
contained in the store that is referenced by the hPolicyStore handle. The method returns a linked list

of all the firewall rule objects. The method is only supported for binary version 0x021A.

 DWORD RRPC_FWEnumFirewallRules2_26(
 [in] FW_CONN_HANDLE rpcConnHandle,
 [in] FW_POLICY_STORE_HANDLE hPolicyStore,
 [in] DWORD dwFilteredByStatus,
 [in] DWORD dwProfileFilter,
 [in] WORD wFlags,
 [out, ref] DWORD* pdwNumRules,
 [out] PFW_RULE2_26* ppRules
);

rpcConnHandle: An RPC binding handle that connects to the RPC interface of the Firewall and

Advanced Security Protocol.

hPolicyStore: An input parameter that is an FW_POLICY_STORE_HANDLE data type. This parameter
MUST contain an opened policy store handle, successfully opened with the
RRPC_FWOpenPolicyStore (Opnum 0) method (section 3.1.4.1). The handle MUST have read/write
access rights.

dwFilteredByStatus: A combination of flags from the FW_RULE_STATUS_CLASS enumeration. This
method uses this bitmask to determine whether rules should be returned. Rules that contain a

status code of the specified class that match this parameter will be returned in the linked list.

dwProfileFilter: A combination of flags from the FW_PROFILE_TYPE enumeration. This method also
uses this parameter to determine whether rules should be returned. Rules that contain a profile
specified by this parameter will be returned in the linked list.

wFlags: A combination of flags from the FW_ENUM_RULES_FLAGS enumeration, which modifies the
behavior of the method and performs operations on the rules before returning them in the linked

list.

pdwNumRules: An output parameter that, on success, MUST be equal to the number of rules
returned.

ppRules: An output parameter that, on success, contains a linked list of FW_RULE2_26 data types.

Return Values: The method returns 0 if successful; if it fails, it returns a nonzero error code. The
field can take any specific error code value, as specified in [MS-ERREF]. The following return
values are common.

Return value/code Description

0x00000005

ERROR_ACCESS_DENIED

The hPolicyStore handle was not opened with read/write access rights. This
error is also returned if the client does not have the required credentials to
call the method.

0x00000057

ERROR_INVALID_PARAMETER

The dwProfileFilter parameter contains invalid profiles.

Exceptions Thrown: No exceptions are thrown beyond those thrown by the underlying RPC protocol,
as specified in [MS-RPCE]. If any lower-layer errors are reported by RPC exception, this exception
is converted to an error code and reported to higher-layer protocols via the return value.

The server MUST validate that the client is authorized to perform the requested operation (as defined
in section 3.1.4) before executing this method.

212 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

3.1.4.82 RRPC_FWQueryFirewallRules2_26 (Opnum 81)

The RRPC_FWQueryFirewallRules2_26 method requests the server to return all the firewall rules that
match the specified query object that are contained in the store that is referenced by the hPolicyStore

handle. The method returns a linked list of all the connection security rule objects. The method is only
supported for binary version 0x021A.

 DWORD RRPC_FWQueryFirewallRules2_26(
 [in] FW_CONN_HANDLE rpcConnHandle,
 [in] FW_POLICY_STORE_HANDLE hPolicyStore,
 [in] PFW_QUERY pQuery,
 [in] WORD wFlags,
 [out, ref] DWORD* pdwNumRules,
 [out] PFW_RULE2_26* ppRules
);

rpcConnHandle: An RPC binding handle that connects to the RPC interface of the Firewall and
Advanced Security Protocol.

hPolicyStore: An input parameter that is an FW_POLICY_STORE_HANDLE data type. This parameter
MUST contain an opened policy store handle, successfully opened with the

RRPC_FWOpenPolicyStore (Opnum 0) method (section 3.1.4.1). The handle MUST be of the
FW_STORE_TYPE_DYNAMIC store (section 2.2.1).

pQuery: Represents the query object that the client uses to specify which main mode rules MUST be
retrieved from the store. The query object MUST be valid, as specified in the definition of the
FW_QUERY data type.

wFlags: A combination of flags from the FW_ENUM_RULES_FLAGS enumeration, which modifies the

behavior of the method and performs operations on the rules before returning them in the linked
list.

pdwNumRules: An output parameter that, on success, MUST be equal to the number of rules
returned.

ppRules: An output parameter that, on success, contains a linked list of FW_RULE2_26 data types.

Return Values: The method returns 0 if successful; if it fails, it returns a nonzero error code. The
field can take any specific error code value, as specified in [MS-ERREF]. The following return

values are common.

Return value/code Description

0x00000005

ERROR_ACCESS_DENIED

The client does not have the required credentials to call the method.

0x00000057

ERROR_INVALID_PARAMETER

The pQuery parameter contains invalid conditions.

Exceptions Thrown: No exceptions are thrown beyond those thrown by the underlying RPC protocol,
as specified in [MS-RPCE]. If any lower-layer errors are reported by RPC exception, this exception
is converted to an error code and reported to higher-layer protocols via the return value.

The server MUST validate that the client is authorized to perform the requested operation (as defined

in section 3.1.4) before executing this method.

213 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

3.1.4.83 RRPC_FWAddFirewallRule2_27 (Opnum 82)

The RRPC_FWAddFirewallRule2_27 method requests the server to add the specified firewall rule to the
policy contained in the policy store that is referenced by the handle specified in the hPolicyStore

parameter. The method is only supported for binary version 0x021B.

 DWORD RRPC_FWAddFirewallRule2_27(
 [in] FW_CONN_HANDLE rpcConnHandle,
 [in] FW_POLICY_STORE_HANDLE hPolicyStore,
 [in] PFW_RULE pRule,
 [out] FW_RULE_STATUS* pStatus
);

rpcConnHandle: An RPC binding handle that connects to the RPC interface of the Firewall and
Advanced Security Protocol.

hPolicyStore: An input parameter that is an FW_POLICY_STORE_HANDLE data type (section 2.2.93).
This parameter MUST contain an opened policy store handle, successfully opened with the

RRPC_FWOpenPolicyStore (Opnum 0) method (section 3.1.4.1). The handle MUST have read/write

access rights.

pRule: Represents the firewall rule that the client adds to the store. The rule MUST be a valid rule, as
specified in the definition of the FW_RULE data type (section 2.2.36).

pStatus: An output parameter that is the status code of the rule, as specified by the
FW_RULE_STATUS enumeration (section 2.2.23). This field is filled out on return.

Return Values: The method returns 0 if successful; if it fails, it returns a nonzero error code. The

field can take any specific error code value, as specified in [MS-ERREF]. The following return
values are common.

Return value/code Description

0x000000B7

ERROR_ALREADY_EXISTS

The specified rule has a rule ID that already exists in the specified store.

0x00000032

ERROR_NOT_SUPPORTED

The specified store does not support this method; the store might be read-
only.

0x00000005

ERROR_ACCESS_DENIED

The hPolicyStore handle was not opened with read/write access rights. This
error is also returned if the client does not have the required credentials to
call the method.

0x00000057

ERROR_INVALID_PARAMETER

One of the parameters of this method is incorrect or is required but not
specified. This error can be returned in the following cases:

- The pRule object did not pass the firewall rule validations specified in the
definition of the FW_RULE data type (section 2.2.36).

- One of the required values is not specified.

- A policy store does not support rules with profile conditions other than
ALL profiles.

- The wszLocalApplication member of the rule contains a string that, at
enforcement time, does not represent a valid file path.

Exceptions Thrown: No exceptions are thrown beyond those thrown by the underlying RPC protocol,
as specified in [MS-RPCE]. If any lower-layer errors are reported by RPC exception, this exception
is converted to an error code and reported to higher-layer protocols via the return value.

214 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

This method adds a firewall rule in the firewall linked list of the memory representation of the store
being modified. It also writes through and saves the rule on disk. If called on an online store, the

firewall rule is also enforced.

The server MUST validate that the client is authorized to perform the requested operation (as defined

in section 3.1.4) before executing this method.

3.1.4.84 RRPC_FWSetFirewallRule2_27 (Opnum 83)

The RRPC_FWSetFirewallRule2_27 method requests the server to modify the specified connection

security rule in the policy contained in the policy store that is referenced by the handle specified in the
hPolicyStore parameter. The method is only supported for binary version 0x021B.

 DWORD RRPC_FWSetFirewallRule2_27(
 [in] FW_CONN_HANDLE rpcConnHandle,
 [in] FW_POLICY_STORE_HANDLE hPolicyStore,
 [in] PFW_RULE pRule,
 [out] FW_RULE_STATUS* pStatus
);

rpcConnHandle: An RPC binding handle that connects to the RPC interface of the Firewall and
Advanced Security Protocol.

hPolicyStore: An input parameter that is an FW_POLICY_STORE_HANDLE data type (section 2.2.93).
This parameter MUST contain an opened policy store handle, successfully opened with the

RRPC_FWOpenPolicyStore (Opnum 0) method (section 3.1.4.1). The handle MUST have read/write
access rights.

pRule: Represents the firewall rule that the client modifies in the store. The rule MUST be a valid rule,
as specified in the definition of the FW_RULE data type (section 2.2.36).

pStatus: An output parameter that is the status code of the rule, as specified by the
FW_RULE_STATUS enumeration (section 2.2.23). This field is filled out on return.

Return Values: The method returns 0 if successful; if it fails, it returns a nonzero error code. The

field can take any specific error code value, as specified in [MS-ERREF]. The following return
values are common.

Return value/code Description

0x00000032

ERROR_NOT_SUPPORTED

The specified store does not support this method; the store might be read-

only.

0x00000005

ERROR_ACCESS_DENIED

The hPolicyStore handle was not opened with read/write access rights. This
error is also returned if the client does not have the required credentials to
call the method.

0x00000002

ERROR_FILE_NOT_FOUND

The specified rule referenced by the wszRuleID member string of the
FW_RULE data type (section 2.2.36) is not found in the policy store.

0x00000057

ERROR_INVALID_PARAMETER

One of the parameters of this method is incorrect or is required but not
specified. This error can be returned in the following cases:

- The pRule object did not pass the firewall rule validations specified in the
definition of the FW_RULE data type (section 2.2.36).

- One of the required values is not specified.

- A policy store does not support rules with profile conditions other than
ALL profiles.

215 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Exceptions Thrown: No exceptions are thrown beyond those thrown by the underlying RPC protocol,
as specified in [MS-RPCE]. If any lower-layer errors are reported by RPC exception, this exception

is converted to an error code and reported to higher-layer protocols via the return value.

The server MUST validate that the client is authorized to perform the requested operation (as defined

in section 3.1.4) before executing this method.

3.1.4.85 RRPC_FWEnumFirewallRules2_27 (Opnum 84)

The RRPC_FWEnumFirewallRules2_27 method requests the server to return all the firewall rules

contained in the store that is referenced by the hPolicyStore handle. The method returns a linked list
of all the firewall rule objects. The method is only supported for binary version 0x021B.

 DWORD RRPC_FWEnumFirewallRules2_27(
 [in] FW_CONN_HANDLE rpcConnHandle,
 [in] FW_POLICY_STORE_HANDLE hPolicyStore,
 [in] DWORD dwFilteredByStatus,
 [in] DWORD dwProfileFilter,
 [in] WORD wFlags,
 [out, ref] DWORD* pdwNumRules,
 [out] PFW_RULE* ppRules
);

rpcConnHandle: An RPC binding handle that connects to the RPC interface of the Firewall and

Advanced Security Protocol.

hPolicyStore: An input parameter that is an FW_POLICY_STORE_HANDLE data type (section 2.2.93).
This parameter MUST contain an opened policy store handle, successfully opened with the
RRPC_FWOpenPolicyStore (Opnum 0) method (section 3.1.4.1). The handle MUST have
read/write access rights.

dwFilteredByStatus: A combination of flags from the FW_RULE_STATUS_CLASS enumeration

(section 2.2.24). This method uses this bitmask to determine whether rules should be returned.

Rules that contain a status code of the specified class that match this parameter will be returned
in the linked list.

dwProfileFilter: A combination of flags from the FW_PROFILE_TYPE enumeration (section 2.2.2).
This method also uses this parameter to determine whether rules should be returned. Rules that
contain a profile specified by this parameter will be returned in the linked list.

wFlags: A combination of flags from the FW_ENUM_RULES_FLAGS enumeration (section 2.2.32),

which modifies the behavior of the method and performs operations on the rules before returning
them in the linked list.

pdwNumRules: An output parameter that, on success, MUST be equal to the number of rules
returned.

ppRules: An output parameter that, on success, contains a linked list of FW_RULE data types (section
2.2.36).

Return Values: The method returns 0 if successful; if it fails, it returns a nonzero error code. The

field can take any specific error code value, as specified in [MS-ERREF]. The following return
values are common.

Return value/code Description

0x00000005

ERROR_ACCESS_DENIED

The hPolicyStore handle was not opened with read/write access rights. This
error is also returned if the client does not have the required credentials to
call the method.

216 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Return value/code Description

0x00000057

ERROR_INVALID_PARAMETER

The dwProfileFilter parameter contains invalid profiles.

Exceptions Thrown: No exceptions are thrown beyond those thrown by the underlying RPC protocol,
as specified in [MS-RPCE]. If any lower-layer errors are reported by RPC exception, this exception
is converted to an error code and reported to higher-layer protocols via the return value.

The server MUST validate that the client is authorized to perform the requested operation (as defined
in section 3.1.4) before executing this method.

3.1.4.86 RRPC_FWQueryFirewallRules2_27 (Opnum 85)

The RRPC_FWQueryFirewallRules2_27 method requests the server to return all the firewall rules
that match the specified query object that are contained in the store that is referenced by the

hPolicyStore handle. The method returns a linked list of all the connection security rule objects. The

method is only supported for binary version 0x021B.

 DWORD RRPC_FWQueryFirewallRules2_27(
 [in] FW_CONN_HANDLE rpcConnHandle,
 [in] FW_POLICY_STORE_HANDLE hPolicyStore,
 [in] PFW_QUERY pQuery,
 [in] WORD wFlags,
 [out, ref] DWORD* pdwNumRules,
 [out] PFW_RULE ppRules
);

rpcConnHandle: An RPC binding handle that connects to the RPC interface of the Firewall and
Advanced Security Protocol.

hPolicyStore: An input parameter that is an FW_POLICY_STORE_HANDLE data type (section 2.2.93).
This parameter MUST contain an opened policy store handle, successfully opened with the

RRPC_FWOpenPolicyStore (Opnum 0) method (section 3.1.4.1). The handle MUST be the
FW_STORE_TYPE_DYNAMIC policy store type (section 2.2.1).

pQuery: Represents the query object that the client uses to specify which main mode rules MUST be
retrieved from the store. The query object MUST be valid, as specified in the definition of the
FW_QUERY data type (section 2.2.92).

wFlags: A combination of flags from the FW_ENUM_RULES_FLAGS enumeration (section 2.2.32),

which modifies the behavior of the method and performs operations on the rules before returning
them in the linked list.

pdwNumRules: An output parameter that, on success, MUST be equal to the number of rules
returned.

ppRules: An output parameter that, on success, contains a linked list of FW_RULE data types (section
2.2.36).

Return Values: The method returns 0 if successful; if it fails, it returns a nonzero error code. The

field can take any specific error code value, as specified in [MS-ERREF]. The following return
values are common.

Return value/code Description

0x00000005

ERROR_ACCESS_DENIED

The client does not have the required credentials to call
the method.

217 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Return value/code Description

0x00000057

ERROR_INVALID_PARAMETER

The pQuery parameter contains invalid conditions.

Exceptions Thrown: No exceptions are thrown beyond those thrown by the underlying RPC protocol,
as specified in [MS-RPCE]. If any lower-layer errors are reported by RPC exception, this exception
is converted to an error code and reported to higher-layer protocols via the return value.

The server MUST validate that the client is authorized to perform the requested operation (as defined
in section 3.1.4) before executing this method.

3.1.5 Timer Events

No timer events are required on the server other than the events maintained in the underlying RPC
transport.

3.1.6 Other Local Events

The following sections describe the abstract interfaces available.

3.1.6.1 AddPortInUse

AddPortInUse is an abstract interface called by applications and services on the local computer to add
a PortInUse object to the server's PortsInUse collection. The interface is defined as follows:

 void AddPortInUse([in] PortInUse portToAdd);

Input Parameter: portToAdd: The PortInUse object to be added.

Output Parameter: None.

3.1.6.2 DeletePortInUse

DeletePortInUse is an abstract interface called by applications and services on the local computer to
delete a PortInUse object from the server's PortsInUse collection. The interface is defined as
follows:

 void DeletePortInUse([in] PortInUse portToDelete);

Input Parameter: portToDelete: The PortInUse object to be deleted. If the port is not found in the
server's PortsInUse collection, the method has no effect.

Output Parameter: None.

3.1.6.3 AddDefaultFirewallRule

AddDefaultFirewallRule is an abstract interface called by applications and services on the local
computer to add a new FirewallRule object to the FirewallRules collection in the server's
DefaultsStore. The interface is defined as follows:

 void AddDefaultFirewallRule([in] FirewallRule ruleToAdd);

218 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Input Parameter: ruleToAdd: The FirewallRule object to be added.

Output Parameter: None.

3.1.6.4 SetGroupPolicyRSoPStore

SetGroupPolicyRSoPStore is an abstract interface used to set the state of the GroupPolicyRSoPStore
object. This interface is typically invoked by an implementation of [MS-GPFAS] in order to notify the
server of a policy change. See [MS-GPFAS] section 3.2.5 for details.

The server MUST replace the contents of GroupPolicyRSoPStore with the contents of the

newSettings object. The server then MUST merge the existing contents of LocalStore with the new
contents of GroupPolicyRSoPStore (as described in section 3.1.1) and store the result in
DynamicStore. The server MUST invoke the abstract interface
SetEffectiveFirewallPolicy (section 3.1.6.6) with the contents of DynamicStore. The interface is
defined as follows:

 void SetGroupPolicyRSoPStore(
 [in] PolicyStore newSettings
);

Input Parameter: newSettings: A PolicyStore object containing the new settings for the
GroupPolicyRSoPStore.

Output Parameter: None.

3.1.6.5 IsComputerInCommonCriteriaMode

IsComputerInCommonCriteriaMode is an abstract interface exposed by the host operating system and
invoked by the MS-FASP server to determine whether the local computer is conforming to all the
security functional requirements specified in [CCITSE3.1-3], Part 2. The algorithm for computing the
return value is implementation-specific.<29> The interface is defined as follows:

 bool IsComputerInCommonCriteriaMode();

Input Parameter: None.

Output Parameter: None.

3.1.6.6 SetEffectiveFirewallPolicy

SetEffectiveFirewallPolicy is an abstract interface exposed by the host operating system and invoked
by the MS-FASP server whenever the effective firewall policy changes. The algorithm for processing
the new policy settings is implementation-specific.<30> The interface is defined as follows:

 void SetEffectiveFirewallPolicy(
 [in] PolicyStore newEffectivePolicy
);

Input Parameter: newEffectivePolicy: A PolicyStore object containing the new effective firewall

policy for the local computer.

Output Parameter: None.

219 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

3.1.6.7 AddTrustTuple

AddTrustTuple is an abstract interface called by applications and services on the local computer to add
a TrustTuple object to the server's TrustTuples collection. The interface is defined as follows:

 void AddTrustTuple([in] TrustTuple tupleToAdd);

Input Parameter: tupleToAdd: The TrustTuple object to be added.

Output Parameter: None.

3.1.6.8 DeleteTrustTuple

DeleteTrustTuple is an abstract interface called by applications and services on the local computer to
delete a TrustTuple object from the server's TrustTuples collection. The interface is defined as
follows:

 void DeleteTrustTuple([in] TrustTuple tupleToDelete);

Input Parameter: tupleToDelete: The TrustTuple object to be deleted. If the trust tuple is not found
in the server's TrustTuples collection, the method has no effect.

Output Parameter: None.

3.2 Client Details

3.2.1 Abstract Data Model

None.

3.2.2 Timers

No protocol timers are required other than those internal ones used in the RPC to implement resiliency

to network outages, as specified in [MS-RPCE].

3.2.3 Initialization

The client creates an RPC association (or binding) to the server RPC before an RPC method is called.
The client can create a separate association for each method invocation, or it can reuse an association

for multiple invocations.

3.2.4 Message Processing Events and Sequencing Rules

This protocol MUST indicate to the RPC runtime that it is to perform a strict NDR data consistency

check at target level 6.0, as specified in [MS-RPCE] section 3.

The client SHOULD ignore errors returned from the RPC server and notify the application invoker of
the error received. Otherwise, no special message processing is required on the client beyond the
processing required in the underlying RPC protocol.

220 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

3.2.5 Timer Events

No protocol timer events are required on the client other than those internal ones maintained in the
underlying RPC, as specified in [MS-RPCE].

3.2.6 Other Local Events

No local events are required on the client other than those internal ones maintained in the underlying
RPC, as specified in [MS-RPCE].

221 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

4 Protocol Examples

4.1 Opening a Policy Store

Before a client application can perform most of the operations, it opens a policy store handle. The

protocol sequence that opens a policy store is as follows.

Figure 2: Opening a policy store

To open a policy store, the client first gets an rpcBinding to this interface in the server. Then the client
simply calls the RPC method to open the required store. In this case, the client chooses the local
store.

 FW_POLICY_STORE_HANDLE hStore = NULL;
 DWORD
 RRPC_FWOpenPolicyStore(
 [in] FW_CONN_HANDLE rpcConnHandle = rpcBinding,
 [in] WORD BinaryVersion = 0x0200,
 [in] FW_STORE_TYPE StoreType = FW_STORE_TYPE_LOCAL,
 [in] FW_POLICY_ACCESS_RIGHT AccessRight = FW_POLICY_ACCESS_RIGHT_READ_WRITE,
 [in] DWORD dwFlags = 0,
 [out] PFW_POLICY_STORE_HANDLE phPolicyStore = &hStore
);

4.2 Adding a Firewall Rule

Once the client has a handle to an open policy store, the client can perform operations on the policy
store. The protocol sequence that adds a firewall rule to the policy store is as follows.

222 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Figure 3: Adding a firewall rule

To add a firewall rule, the client application first fills an FW_RULE structure. The following examples fill
this structure to represent a rule to allow inbound traffic to port 80 for the

"c:\servers\MyWebServer.exe" application, which is also a service with the WebServerSVC name. The
example also places this rule in the "HTTPWebServer" rule group.

 FW_PORT_RANGE Port = {80,80};
 FW_RULE HTTPRule =
 {
 struct _tag_FW_RULE *pNext = NULL;
 WORD wSchemaVersion = 0x0200;
 WCHAR* wszRuleId = L"{d439709f-d8ec-4d2e-b615-4cfcd9bacc05}";
 WCHAR* wszName = L"Web server requests";
 WCHAR* wszDescription = L"This rule allows incoming HTTP server requests";
 DWORD dwProfiles = FW_PROFILE_TYPE_ALL;
 FW_DIRECTION Direction = FW_DIR_IN;
 WORD wIpProtocol = 0x0006;
 FW_PORTS LocalPorts = {0x0000, {1, &Port}};
 FW_PORTS RemotePorts = {0};

 FW_ADDRESSES LocalAddresses = {0};
 FW_ADDRESSES RemoteAddresses = {0};
 FW_INTERFACE_LUIDS LocalInterfaceIds = {0};
 DWORD dwLocalInterfaceTypes = 0;
 WCHAR* wszLocalApplication = L"c:\servers\MyWebServer.exe";
 WCHAR* wszLocalService = L"WebServerSVC";
 FW_RULE_ACTION Action = FW_RULE_ACTION_ALLOW;
 WORD wFlags = FW_RULE_FLAGS_ACTIVE;

 WCHAR* wszRemoteMachineAuthorizationList = NULL;
 WCHAR* wszRemoteUserAuthorizationList = NULL;
 WCHAR* wszEmbeddedContext = L"HTTP WebServer";
 FW_OS_PLATFORM_LIST PlatformValidityList = {0};

 FW_RULE_STATUS Status = FW_RULE_STATUS_OK;
 FW_RULE_ORIGIN_TYPE Origin = 0;
 WCHAR* wszGPOName =NULL;
 DWORD Reserved = 0;
 PFW_OBJECT_METADATA pMetaData = NULL;
 };

Once the FW_RULE structure is filled out, the client can simply invoke the RPC
RRPC_FWAddFirewallRule method, passing the required parameters as follows.

223 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

 DWORD
 RRPC_FWAddFirewallRule(
 [in] FW_CONN_HANDLE rpcConnHandle = rpcBinding,
 [in] FW_POLICY_STORE_HANDLE hPolicyStore = hStore,
 [in] PFW_RULE pRule = &HTTPRule
);

If the return code is FW_ERROR_ALREADY_EXISTS, the rule exists in the store. The client can try
using a different Rule ID or bubble up the error.

4.3 Enumerating the Firewall Rules

To enumerate the firewall rules that the server is enforcing in the store, the client calls the
RRPC_FWEnumFirewallRules (Opnum 9) method. The protocol sequence that enumerates firewall rules
from the policy store is as follows:

Figure 4: Enumerating firewall rules

In this case example, the client enumerates rules in the current profile and filters by
FW_RULE_STATUS_CLASS_OK and FW_RULE_STATUS_CLASS_PARTIALLY_IGNORED.

 PFW_RULE pRules = NULL;
 DWORD dwNumRules = 0;

 DWORD
 RRPC_FWEnumFirewallRules(
 [in] FW_CONN_HANDLE rpcConnHandle = rpcBinding ,
 [in] FW_POLICY_STORE_HANDLE hPolicyStore = hStore,
 [in] DWORD dwFilteredByStatus =
 FW_RULE_STATUS_CLASS_OK | FW_RULE_STATUS_CLASS_PARTIALLY_IGNORED,
 [in] DWORD dwProfileFilter = FW_PROFILE_TYPE_CURRENT,
 [in] WORD wFlag = 0
 [out, ref] DWORD *pdwNumRules = &dwNumRules,
 [out] PFW_RULE *ppRules = &pRules
);

4.4 Closing a Policy Store Handle

Once a client application has finished managing the policy, it closes the policy store handle. The

protocol sequence that closes a policy store follows.

224 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Figure 5: Closing a policy store

To close the handle, the client simply passes the handle to the close method.

 DWORD
 RRPC_FWClosePolicyStore(
 [in] FW_CONN_HANDLE rpcConnHandle = rpcBinding,
 [in, out] PFW_POLICY_STORE_HANDLE phPolicyStore = &hStore
);

225 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

5 Security

5.1 Security Considerations for Implementers

The enumeration methods require the server to return the correct number of objects linked in the

returned linked list. For example, the DWORD variable passed in the pdwNumRules parameter of
RRPC_FWEnumFirewallRules (Opnum 9) must be equal to the actual number of rules returned in
ppRules.

However, the client cannot assume that the server is accurate in the actual object count. The client
can allocate a buffer based on the rule count; however, while filling the buffer, the client has to
actively validate that the number of objects in the buffer does not exceed the object count. Failure to

do this validation could result in buffer overruns on the client.

5.2 Index of Security Parameters

 Security Parameter Section

Remote procedure call (RPC) authentication 2.1

The required permissions to call each of the methods of the protocol interface 3.1.4

226 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

6 Appendix A: Full IDL

For ease of implementation, the full IDL is provided below.

 import "ms-dtyp.idl";

 cpp_quote("#ifndef __FIREWALL_H_")
 cpp_quote("#define FW_CURRENT_BINARY_VERSION (FW_VERSION(2,27))")
 cpp_quote("#define FW_CURRENT_SCHEMA_VERSION (FW_VERSION(2,27))")

 /***
 * *
 * Firewall Policy Stores structures *
 * *
 ***/

 typedef enum _tag_FW_STORE_TYPE
 {
 FW_STORE_TYPE_INVALID,
 FW_STORE_TYPE_GP_RSOP, //read-only
 FW_STORE_TYPE_LOCAL,
 FW_STORE_TYPE_NOT_USED_VALUE_3, //read-only
 FW_STORE_TYPE_NOT_USED_VALUE_4,
 FW_STORE_TYPE_DYNAMIC,
 FW_STORE_TYPE_GPO,
 FW_STORE_TYPE_DEFAULTS,
 FW_STORE_TYPE_NOT_USED_VALUE_8,
 FW_STORE_TYPE_NOT_USED_VALUE_9,
 FW_STORE_TYPE_NOT_USED_VALUE_10,
 FW_STORE_TYPE_NOT_USED_VALUE_11,
 FW_STORE_TYPE_MAX,
 } FW_STORE_TYPE;

 typedef enum _tag_FW_TRANSACTIONAL_STATE
 {
 FW_TRANSACTIONAL_STATE_NONE = 0,
 FW_TRANSACTIONAL_STATE_NO_FLUSH,
 FW_TRANSACTIONAL_STATE_MAX
 } FW_TRANSACTIONAL_STATE;

 typedef
 [v1_enum]
 enum _tag_FW_PROFILE_TYPE
 {
 FW_PROFILE_TYPE_INVALID = 0,
 FW_PROFILE_TYPE_DOMAIN = 0x001,
 FW_PROFILE_TYPE_STANDARD = 0x002,
 FW_PROFILE_TYPE_PRIVATE = FW_PROFILE_TYPE_STANDARD,
 FW_PROFILE_TYPE_PUBLIC = 0x004,
 FW_PROFILE_TYPE_ALL = 0x7FFFFFFF,
 FW_PROFILE_TYPE_CURRENT = 0x80000000,
 FW_PROFILE_TYPE_NONE = FW_PROFILE_TYPE_CURRENT + 1
 } FW_PROFILE_TYPE;

 typedef enum _tag_FW_POLICY_ACCESS_RIGHT
 {
 FW_POLICY_ACCESS_RIGHT_INVALID,
 FW_POLICY_ACCESS_RIGHT_READ,
 FW_POLICY_ACCESS_RIGHT_READ_WRITE,
 FW_POLICY_ACCESS_RIGHT_MAX
 }FW_POLICY_ACCESS_RIGHT;

 typedef enum _tag_FW_POLICY_STORE_FLAGS
 {
 FW_POLICY_STORE_FLAGS_NONE = 0x0000,
 FW_POLICY_STORE_FLAGS_DELETE_DYNAMIC_RULES_AFTER_CLOSE = 0x0001,
 FW_POLICY_STORE_FLAGS_OPEN_GP_CACHE = 0x0002,

227 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

 FW_POLICY_STORE_FLAGS_USE_GP_CACHE = 0x0004,
 FW_POLICY_STORE_FLAGS_SAVE_GP_CACHE = 0x0008,
 FW_POLICY_STORE_FLAGS_NOT_USED_VALUE_16 = 0x0010,
 FW_POLICY_STORE_FLAGS_MAX = 0x0020
 }FW_POLICY_STORE_FLAGS;

 /**
 * *
 * Firewall Rules structures *
 * *
 **/
 typedef struct _tag_FW_IPV4_SUBNET
 {
 DWORD dwAddress;
 DWORD dwSubNetMask;
 } FW_IPV4_SUBNET, *PFW_IPV4_SUBNET;

 typedef struct _tag_FW_IPV4_SUBNET_LIST
 {
 [range(0, 10000)]
 DWORD dwNumEntries;
 [size_is(dwNumEntries)]
 PFW_IPV4_SUBNET pSubNets;
 } FW_IPV4_SUBNET_LIST, *PFW_IPV4_SUBNET_LIST;

 typedef struct _tag_FW_IPV6_SUBNET
 {
 BYTE Address[16];
 [range(0, 128)]
 DWORD dwNumPrefixBits;
 } FW_IPV6_SUBNET, *PFW_IPV6_SUBNET;

 typedef struct _tag_FW_IPV6_SUBNET_LIST
 {
 [range(0, 10000)]
 DWORD dwNumEntries;
 [size_is(dwNumEntries)]
 PFW_IPV6_SUBNET pSubNets;
 } FW_IPV6_SUBNET_LIST, *PFW_IPV6_SUBNET_LIST;

 typedef struct _tag_FW_IPV4_ADDRESS_RANGE
 {
 DWORD dwBegin;
 DWORD dwEnd;
 } FW_IPV4_ADDRESS_RANGE, *PFW_IPV4_ADDRESS_RANGE;

 typedef struct _tag_FW_IPV6_ADDRESS_RANGE
 {
 BYTE Begin[16];
 BYTE End[16];
 } FW_IPV6_ADDRESS_RANGE, *PFW_IPV6_ADDRESS_RANGE;

 typedef struct _tag_FW_IPV4_RANGE_LIST
 {
 [range(0, 10000)]
 DWORD dwNumEntries;
 [size_is(dwNumEntries)]
 PFW_IPV4_ADDRESS_RANGE pRanges;
 } FW_IPV4_RANGE_LIST, *PFW_IPV4_RANGE_LIST;

 typedef struct _tag_FW_IPV6_RANGE_LIST
 {
 [range(0, 10000)]
 DWORD dwNumEntries;
 [size_is(dwNumEntries)]
 PFW_IPV6_ADDRESS_RANGE pRanges;
 } FW_IPV6_RANGE_LIST, *PFW_IPV6_RANGE_LIST;

228 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

 typedef struct _tag_FW_PORT_RANGE
 {
 WORD wBegin;
 WORD wEnd;
 } FW_PORT_RANGE, *PFW_PORT_RANGE;

 typedef struct _tag_FW_PORT_RANGE_LIST
 {
 [range(0, 10000)]
 DWORD dwNumEntries;
 [size_is(dwNumEntries)]
 PFW_PORT_RANGE pPorts;
 } FW_PORT_RANGE_LIST, *PFW_PORT_RANGE_LIST;

 typedef enum _tag_FW_PORT_KEYWORD
 {
 FW_PORT_KEYWORD_NONE = 0x00,
 FW_PORT_KEYWORD_DYNAMIC_RPC_PORTS = 0x01,
 FW_PORT_KEYWORD_RPC_EP = 0x02,
 FW_PORT_KEYWORD_TEREDO_PORT = 0x04,
 FW_PORT_KEYWORD_IP_TLS_IN = 0x08,
 FW_PORT_KEYWORD_IP_TLS_OUT = 0x10,
 FW_PORT_KEYWORD_DHCP = 0x20,
 FW_PORT_KEYWORD_PLAYTO_DISCOVERY = 0x40,
 FW_PORT_KEYWORD_MDNS = 0x80,
 FW_PORT_KEYWORD_CORTANA_OUT = 0x100,
 FW_PORT_KEYWORD_MAX = 0x200,
 FW_PORT_KEYWORD_MAX_V2_1 = 0x08,
 FW_PORT_KEYWORD_MAX_V2_10 = 0x20,
 FW_PORT_KEYWORD_MAX_V2_20 = 0x80,
 FW_PORT_KEYWORD_MAX_V2_25 = 0x200
 }FW_PORT_KEYWORD;

 typedef struct _tag_FW_PORTS
 {
 WORD wPortKeywords; // Bit-flags from FW_PORT_KEYWORD
 FW_PORT_RANGE_LIST Ports;
 }FW_PORTS,*PFW_PORTS;

 cpp_quote("#define FW_ICMP_CODE_ANY (256)")
 cpp_quote("#define FW_IP_PROTOCOL_ANY (256)")

 typedef struct _tag_FW_ICMP_TYPE_CODE
 {
 BYTE bType;
 [range(0, 256)]
 WORD wCode;
 } FW_ICMP_TYPE_CODE, *PFW_ICMP_TYPE_CODE;

 typedef struct _tag_FW_ICMP_TYPE_CODE_LIST
 {
 [range(0, 10000)]
 DWORD dwNumEntries;
 [size_is(dwNumEntries)]
 PFW_ICMP_TYPE_CODE pEntries;
 } FW_ICMP_TYPE_CODE_LIST, *PFW_ICMP_TYPE_CODE_LIST;

 typedef struct _tag_FW_INTERFACE_LUIDS
 {
 [range(0, 10000)]
 DWORD dwNumLUIDs;
 [size_is(dwNumLUIDs)]
 GUID* pLUIDs;
 } FW_INTERFACE_LUIDS, *PFW_INTERFACE_LUIDS;

 typedef enum _tag_FW_DIRECTION
 {

229 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

 FW_DIR_INVALID = 0,
 FW_DIR_IN,
 FW_DIR_OUT,
 FW_DIR_MAX
 } FW_DIRECTION;

 // Interface Types bitmap.
 typedef enum _tag_FW_INTERFACE_TYPE
 {
 FW_INTERFACE_TYPE_ALL = 0x0000,
 FW_INTERFACE_TYPE_LAN = 0x0001,
 FW_INTERFACE_TYPE_WIRELESS = 0x0002,
 FW_INTERFACE_TYPE_REMOTE_ACCESS = 0x0004,
 FW_INTERFACE_TYPE_MOBILE_BBAND = 0x0008,
 FW_INTERFACE_TYPE_MAX = 0x0010,
 FW_INTERFACE_TYPE_MAX_V2_23 = 0x0008,
 } FW_INTERFACE_TYPE;

 typedef enum _tag_FW_ADDRESS_KEYWORD
 {
 FW_ADDRESS_KEYWORD_NONE = 0x0000,
 FW_ADDRESS_KEYWORD_LOCAL_SUBNET = 0x0001,
 FW_ADDRESS_KEYWORD_DNS = 0x0002,
 FW_ADDRESS_KEYWORD_DHCP = 0x0004,
 FW_ADDRESS_KEYWORD_WINS = 0x0008,
 FW_ADDRESS_KEYWORD_DEFAULT_GATEWAY = 0x0010,
 FW_ADDRESS_KEYWORD_INTRANET = 0x0020,
 FW_ADDRESS_KEYWORD_INTERNET = 0x0040,
 FW_ADDRESS_KEYWORD_PLAYTO_RENDERERS= 0x0080,
 FW_ADDRESS_KEYWORD_REMOTE_INTRANET = 0x0100,
 FW_ADDRESS_KEYWORD_MAX = 0x0200,
 FW_ADDRESS_KEYWORD_MAX_V2_10 = 0x0020
 }FW_ADDRESS_KEYWORD;

 typedef struct _tag_FW_ADDRESSES
 {
 DWORD dwV4AddressKeywords; // Bit flags from FW_ADDRESS_KEYWORD
 DWORD dwV6AddressKeywords; // Bit flags from FW_ADDRESS_KEYWORD

 FW_IPV4_SUBNET_LIST V4SubNets;
 FW_IPV4_RANGE_LIST V4Ranges;
 FW_IPV6_SUBNET_LIST V6SubNets;
 FW_IPV6_RANGE_LIST V6Ranges;

 }FW_ADDRESSES, *PFW_ADDRESSES;

 typedef enum _tag_FW_TRUST_TUPLE_KEYWORD
 {
 FW_TRUST_TUPLE_KEYWORD_NONE = 0x0000,
 FW_TRUST_TUPLE_KEYWORD_PROXIMITY = 0x0001,
 FW_TRUST_TUPLE_KEYWORD_PROXIMITY_SHARING = 0x0002,
 FW_TRUST_TUPLE_KEYWORD_WFD_PRINT = 0x0004,
 FW_TRUST_TUPLE_KEYWORD_WFD_DISPLAY = 0x0008,
 FW_TRUST_TUPLE_KEYWORD_WFD_DEVICES = 0x0010,
 FW_TRUST_TUPLE_KEYWORD_WFD_KM_DRIVER = 0x0020,
 FW_TRUST_TUPLE_KEYWORD_UPNP = 0x0040,
 FW_TRUST_TUPLE_KEYWORD_MAX = 0x0080,
 FW_TRUST_TUPLE_KEYWORD_MAX_V2_20 = 0x0004,
 FW_TRUST_TUPLE_KEYWORD_MAX_V2_26 = 0x0020,
 }FW_TRUST_TUPLE_KEYWORD;

 typedef
 [v1_enum]
 enum _tag_FW_RULE_STATUS
 {
 FW_RULE_STATUS_OK = 0x00010000,

230 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

 // The rule was parsed successfully from the store.

 FW_RULE_STATUS_PARTIALLY_IGNORED = 0x00020000,
 // The rule is from a later version of the service. Some fields
 // were not understood and have been ignored. This may cause the
 // rule to be less restrictive than on the version where it was
 // created. To mitigate any risk from this fallback behavior,
 // ensure that the original rule is as specific as possible. To
 // avoid this fallback behavior, create version-specific GPO's, or
 // apply a Platform condition to the rule.

 FW_RULE_STATUS_IGNORED = 0x00040000,
 // The rule is from a newer schema version than the service, and
 // the unknown fields could not be ignored. The whole rule was
 // ignored.

 FW_RULE_STATUS_PARSING_ERROR = 0x00080000,
 // The service was unable to parse the rule.

 FW_RULE_STATUS_PARSING_ERROR_NAME = 0x00080001,
 // The name contains invalid characters, or is an invalid length.

 FW_RULE_STATUS_PARSING_ERROR_DESC = 0x00080002,
 // The description contains invalid characters, or is an invalid
 // length.

 FW_RULE_STATUS_PARSING_ERROR_APP = 0x00080003,
 // The application contains invalid characters, or is an invalid
 // length.

 FW_RULE_STATUS_PARSING_ERROR_SVC = 0x00080004,
 // The service contains invalid characters, or is an invalid length.

 FW_RULE_STATUS_PARSING_ERROR_RMA = 0x00080005,
 // The authorized remote machines list contains invalid characters,
 // or is an invalid length.

 FW_RULE_STATUS_PARSING_ERROR_RUA = 0x00080006,
 // The authorized remote users list contains invalid characters, or
 // is an invalid length.

 FW_RULE_STATUS_PARSING_ERROR_EMBD = 0x00080007,
 // The group (sometimes called the embedded context) contains
 // invalid characters, or is an invalid length.

 FW_RULE_STATUS_PARSING_ERROR_RULE_ID = 0x00080008,
 // The rule ID contains invalid characters, or is an invalid length.

 FW_RULE_STATUS_PARSING_ERROR_PHASE1_AUTH = 0x00080009,
 // The phase 1 auth set ID contains invalid characters, or is an
 // invalid length.

 FW_RULE_STATUS_PARSING_ERROR_PHASE2_CRYPTO = 0x0008000A,
 // The quick mode crypto set ID contains invalid characters, or is
 // an invalid length.

 FW_RULE_STATUS_PARSING_ERROR_PHASE2_AUTH = 0x0008000B,
 // The main mode crypto set ID contains invalid characters, or is
 // an invalid length.

 FW_RULE_STATUS_PARSING_ERROR_RESOLVE_APP = 0x0008000C,
 // The application name could not be resolved.

 FW_RULE_STATUS_PARSING_ERROR_MAINMODE_ID = 0x0008000D,
 // This error value is not used.

 FW_RULE_STATUS_PARSING_ERROR_PHASE1_CRYPTO = 0x0008000E,
 // The phase 2 auth set ID contains invalid characters, or is an
 // invalid length.

231 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

 FW_RULE_STATUS_PARSING_ERROR_REMOTE_ENDPOINTS = 0x0008000F,
 // The remote endpoints are invalid.

 FW_RULE_STATUS_PARSING_ERROR_REMOTE_ENDPOINT_FQDN = 0x00080010,
 // The remote endpoint FQDN is invalid.

 FW_RULE_STATUS_PARSING_ERROR_KEY_MODULE = 0x00080011,
 // The choice of key modules is invalid.

 FW_RULE_STATUS_PARSING_ERROR_LUA = 0x00080012,
 // The local user authorization list contains invalid characters,
 // or is an invalid length.

 FW_RULE_STATUS_PARSING_ERROR_FWD_LIFETIME = 0x00080013,
 // The forward path SA lifetime is invalid.

 FW_RULE_STATUS_PARSING_ERROR_TRANSPORT_MACHINE_AUTHZ_SDDL = 0x00080014,
 // The transport rule machine SDDL is not valid.

 FW_RULE_STATUS_PARSING_ERROR_TRANSPORT_USER_AUTHZ_SDDL = 0x00080015,
 // The transport rule user SDDL is not valid.

 FW_RULE_STATUS_PARSING_ERROR_NETNAMES_STRING = 0x00080016,
 // A string of the network name structure is invalid.

 FW_RULE_STATUS_PARSING_ERROR_SECURITY_REALM_ID_STRING = 0x00080017,
 // A string for the security realm Id is invalid.

 FW_RULE_STATUS_PARSING_ERROR_FQBN_STRING = 0x00080018,
 // A string for the FQBN is invalid.

 FW_RULE_STATUS_SEMANTIC_ERROR = 0x00100000,
 // The rule was parsed successfully, but there was an unknown
 // semantic error when processing the rule.

 FW_RULE_STATUS_SEMANTIC_ERROR_RULE_ID = 0x00100010,
 // The Rule ID was not specified.

 FW_RULE_STATUS_SEMANTIC_ERROR_PORTS = 0x00100020,
 // Mismatch in number of ports and ports buffer.

 FW_RULE_STATUS_SEMANTIC_ERROR_PORT_KEYW = 0x00100021,
 // One of the port keywords is invalid.

 FW_RULE_STATUS_SEMANTIC_ERROR_PORT_RANGE = 0x00100022,
 // An invalid port range was specified, or 0 was used as a port
 // number.

 FW_RULE_STATUS_SEMANTIC_ERROR_PORTRANGE_RESTRICTION = 0x00100023,
 // Port ranges are only allowed in connection security rules when
 // the action is Do Not Secure.

 FW_RULE_STATUS_SEMANTIC_ERROR_ADDR_V4_SUBNETS = 0x00100040,
 // Mismatch in number of V4 address subnets and subnets buffer.

 FW_RULE_STATUS_SEMANTIC_ERROR_ADDR_V6_SUBNETS = 0x00100041,
 // Mismatch in number of V6 address subnets and subnets buffer.

 FW_RULE_STATUS_SEMANTIC_ERROR_ADDR_V4_RANGES = 0x00100042,
 // Mismatch in number of V4 address ranges and ranges buffer.

 FW_RULE_STATUS_SEMANTIC_ERROR_ADDR_V6_RANGES = 0x00100043,
 // Mismatch in number of V6 address ranges and ranges buffer.

 FW_RULE_STATUS_SEMANTIC_ERROR_ADDR_RANGE = 0x00100044,
 // The address range is invalid. The end address is less than the
 // beginning address.

 FW_RULE_STATUS_SEMANTIC_ERROR_ADDR_MASK = 0x00100045,
 // One or more of the subnet masks is invalid.

232 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

 FW_RULE_STATUS_SEMANTIC_ERROR_ADDR_PREFIX = 0x00100046,
 // One or more of the address prefixes is invalid.

 FW_RULE_STATUS_SEMANTIC_ERROR_ADDR_KEYW = 0x00100047,
 // One or more of the address keywords are invalid.

 FW_RULE_STATUS_SEMANTIC_ERROR_LADDR_PROP = 0x00100048,
 // Some of the keywords specified on the local address are only
 // valid on the remote address.

 FW_RULE_STATUS_SEMANTIC_ERROR_RADDR_PROP = 0x00100049,
 // Some of the keywords specified on the remote address are only
 // valid on the local address.

 FW_RULE_STATUS_SEMANTIC_ERROR_ADDR_V6 = 0x0010004A,
 // An unspecified, multicast, broadcast, or loopback IPv6 address
 // was specified.

 FW_RULE_STATUS_SEMANTIC_ERROR_LADDR_INTF = 0x0010004B,
 // A local address cannot be used in conjunction with an interface
 // or interface type condition.

 FW_RULE_STATUS_SEMANTIC_ERROR_ADDR_V4 = 0x0010004C,
 // An unspecified, multicast, broadcast, or loopback IPv4 address
 // was specified.

 FW_RULE_STATUS_SEMANTIC_ERROR_TUNNEL_ENDPOINT_ADDR = 0x0010004D,
 // Endpoint 'any' cannot be specified for a tunnel-mode rule.

 FW_RULE_STATUS_SEMANTIC_ERROR_DTE_VER = 0x0010004E,
 // The target schema version does not support dynamic endpoints.

 FW_RULE_STATUS_SEMANTIC_ERROR_DTE_MISMATCH_ADDR = 0x0010004F,
 // When specifying tunnel endpoints in both IPv4 and IPv6, a tunnel
 // endpoint may not be dynamic for one address family and explicit
 // for the other. (A dynamic tunnel endpoint is one set to "Any".)

 FW_RULE_STATUS_SEMANTIC_ERROR_PROFILE = 0x00100050,
 // The profile type is invalid.

 FW_RULE_STATUS_SEMANTIC_ERROR_ICMP = 0x00100060,
 // Mismatch in number of ICMP and ICMP buffer.

 FW_RULE_STATUS_SEMANTIC_ERROR_ICMP_CODE = 0x00100061,
 // Invalid ICMP code specified.

 FW_RULE_STATUS_SEMANTIC_ERROR_IF_ID = 0x00100070,
 // Number of interfaces and interface buffers do not match.

 FW_RULE_STATUS_SEMANTIC_ERROR_IF_TYPE = 0x00100071,
 // The interface type is invalid.

 FW_RULE_STATUS_SEMANTIC_ERROR_ACTION = 0x00100080,
 // The action is invalid.

 FW_RULE_STATUS_SEMANTIC_ERROR_ALLOW_BYPASS = 0x00100081,
 // Allow-Bypass action specified, but the rule does not meet
 // allow-bypass criteria (inbound, authenticate/encrypt flags set,
 // remote machine auth list specified)

 FW_RULE_STATUS_SEMANTIC_ERROR_DO_NOT_SECURE = 0x00100082,
 // If the action is Do Not Secure, the auth and crypto sets must be
 // null.

 FW_RULE_STATUS_SEMANTIC_ERROR_ACTION_BLOCK_IS_ENCRYPTED_SECURE = 0x00100083,
 // Block action was specified in conjunction with require security
 // or require encryption.

233 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

 FW_RULE_STATUS_SEMANTIC_ERROR_INCOMPATIBLE_FLAG_OR_ACTION_WITH_SECURITY_REALM =
0x00100084,

 // Firewall Rules with security realm Id field would require authentication
 // and encryption, and action should be Allow.

 FW_RULE_STATUS_SEMANTIC_ERROR_DIR = 0x00100090,
 // The direction is invalid.

 FW_RULE_STATUS_SEMANTIC_ERROR_PROT = 0x001000A0,
 // The protocol number is invalid.

 FW_RULE_STATUS_SEMANTIC_ERROR_PROT_PROP = 0x001000A1,
 // The protocol-specific options do not match the protocol that was
 // chosen.

 FW_RULE_STATUS_SEMANTIC_ERROR_DEFER_EDGE_PROP = 0x001000A2,
 // The edge traversal flags are inconsistent. Defer To App must be
 // set without Edge Traversal, but Defer To User must be set with
 // Edge Traversal.

 FW_RULE_STATUS_SEMANTIC_ERROR_ALLOW_BYPASS_OUTBOUND = 0x001000A3,
 // Allow-Bypass action specified, but the rule does not meet
 // allow-bypass criteria (authenticate/encrypt flags set)

 FW_RULE_STATUS_SEMANTIC_ERROR_DEFER_USER_INVALID_RULE = 0x001000A4,
 // Defer to user' setting can only be used in a firewall rule where
 // program path and TCP/UDP protocol are specified with no
 // additional conditions.

 FW_RULE_STATUS_SEMANTIC_ERROR_FLAGS = 0x001000B0,
 // Invalid flags specified.

 FW_RULE_STATUS_SEMANTIC_ERROR_FLAGS_AUTO_AUTH = 0x001000B1,
 // Autogenerate flag is set but Authenticate / Authenticate-encrypt
 // flags are not set.

 FW_RULE_STATUS_SEMANTIC_ERROR_FLAGS_AUTO_BLOCK = 0x001000B2,
 // Autogenerate flag is set but the action is block.

 FW_RULE_STATUS_SEMANTIC_ERROR_FLAGS_AUTO_DYN_RPC = 0x001000B3,
 // Autogenerate flag is set along with Dynamic RPC flag.

 FW_RULE_STATUS_SEMANTIC_ERROR_FLAGS_AUTHENTICATE_ENCRYPT = 0x001000B4,
 // The Authentication and Authentication & Encryption flags cannot
 // be used together.

 FW_RULE_STATUS_SEMANTIC_ERROR_FLAGS_AUTH_WITH_ENC_NEGOTIATE_VER = 0x001000B5,
 // The target schema version does not support Authentication
 // (Dynamic Encryption).

 FW_RULE_STATUS_SEMANTIC_ERROR_FLAGS_AUTH_WITH_ENC_NEGOTIATE = 0x001000B6,
 // When the Authentication (Dynamic Encryption) flag is set, the
 // Authentication & Encryption flag must be set as well.

 FW_RULE_STATUS_SEMANTIC_ERROR_FLAGS_ESP_NO_ENCAP_VER = 0x001000B7,
 // The target schema version does not support Authentication (No
 // Encapsulation).

 FW_RULE_STATUS_SEMANTIC_ERROR_FLAGS_ESP_NO_ENCAP = 0x001000B8,
 // When the Authentication (No Encapsulation) flag is set, the
 // Authentication flag must be set as well.

 FW_RULE_STATUS_SEMANTIC_ERROR_FLAGS_TUNNEL_AUTH_MODES_VER = 0x001000B9,
 // The target schema version does not support tunnel authentication
 // modes.

 FW_RULE_STATUS_SEMANTIC_ERROR_FLAGS_TUNNEL_AUTH_MODES = 0x001000BA,
 // The target schema version does not support tunnel authentication
 // modes.

234 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

 FW_RULE_STATUS_SEMANTIC_ERROR_FLAGS_IP_HTTPS_VER = 0x001000BB,
 // The target schema version does not support the IP_HTTPS keyword.

 FW_RULE_STATUS_SEMANTIC_ERROR_FLAGS_IP_TLS_VER = 0x001000BB,
 // The target schema version does not support the IP_TLS keyword.

 FW_RULE_STATUS_SEMANTIC_ERROR_PORTRANGE_VER = 0x001000BC,
 // The target schema version does not support port ranges.

 FW_RULE_STATUS_SEMANTIC_ERROR_FLAGS_ADDRS_TRAVERSE_DEFER_VER = 0x001000BD,
 // The target schema version does not support dynamic edge
 // traversal.

 FW_RULE_STATUS_SEMANTIC_ERROR_FLAGS_AUTH_WITH_ENC_NEGOTIATE_OUTBOUND = 0x001000BE,
 // The Authentication (Dynamic Encryption) flag cannot be used when
 // direction is Outbound.

 FW_RULE_STATUS_SEMANTIC_ERROR_FLAGS_AUTHENTICATE_WITH_OUTBOUND_BYPASS_VER = 0x001000BF,
 // The target schema version does not support outbound Allow-Bypass
 // rules.

 FW_RULE_STATUS_SEMANTIC_ERROR_REMOTE_AUTH_LIST = 0x001000C0,
 // Authorization lists can only be used if authentication is
 // required on the rule.

 FW_RULE_STATUS_SEMANTIC_ERROR_REMOTE_USER_LIST = 0x001000C1,
 // Remote user authorization can only be applied to inbound rules.

 FW_RULE_STATUS_SEMANTIC_ERROR_LOCAL_USER_LIST = 0x001000C2,
 // The authorized local user list may not be used in conjunction
 // with a service SID.

 FW_RULE_STATUS_SEMANTIC_ERROR_LUA_VER = 0x001000C3,
 // The target schema version does not support the authorized local
 // user list.

 FW_RULE_STATUS_SEMANTIC_ERROR_LOCAL_USER_OWNER = 0x001000C4,
 // The local user owner field may not be used in conjunction with a
 // service SID.

 FW_RULE_STATUS_SEMANTIC_ERROR_LOCAL_USER_OWNER_VER = 0x001000C5,
 // The target schema version does not support the local user owner
 // field.

 FW_RULE_STATUS_SEMANTIC_ERROR_LUA_CONDITIONAL_VER = 0x001000C6,
 // The target schema version does not support the authorized local
 // user list containing conditional aces (e.g. aces with claims).

 FW_RULE_STATUS_SEMANTIC_ERROR_FLAGS_SYSTEMOS_GAMEOS = 0x001000C7,
 // The Sytem OS Only and Game OS Only flags cannot
 // be used together.

 FW_RULE_STATUS_SEMANTIC_ERROR_FLAGS_CORTANA_VER = 0x001000C8,
 // The Sytem OS Only and Game OS Only flags cannot
 // be used together.

 FW_RULE_STATUS_SEMANTIC_ERROR_FLAGS_REMOTENAME = 0x001000C9,
 // The Sytem OS Only and Game OS Only flags cannot
 // be used together.

 FW_RULE_STATUS_SEMANTIC_ERROR_FLAGS_ALLOW_PROFILE_CROSSING_VER = 0x001000D0,
 // The target schema version does not support profile crossing.

 FW_RULE_STATUS_SEMANTIC_ERROR_FLAGS_LOCAL_ONLY_MAPPED_VER = 0x001000D1,
 // The target schema version does not support local only mapping.

 FW_RULE_STATUS_SEMANTIC_ERROR_PLATFORM = 0x001000E0,
 // Number of valid OS Platforms and the list of valid OS Platforms
 // do not match

235 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

 FW_RULE_STATUS_SEMANTIC_ERROR_PLATFORM_OP_VER = 0x001000E1,
 // The target schema version does not support the platform operator
 // specified.

 FW_RULE_STATUS_SEMANTIC_ERROR_PLATFORM_OP = 0x001000E2,
 // One of the platform operators is invalid.

 FW_RULE_STATUS_SEMANTIC_ERROR_DTE_NOANY_ADDR = 0x001000F0,
 // The DTM flag requires at least one dynamic endpoint.

 FW_RULE_STATUS_SEMANTIC_ERROR_TUNNEL_EXEMPT_WITH_GATEWAY = 0x001000F1,
 // A dynamic tunnel-mode exemption rule cannot have tunnel
 // endpoints.

 FW_RULE_STATUS_SEMANTIC_ERROR_TUNNEL_EXEMPT_VER = 0x001000F2,
 // The target schema version does not support tunnel-mode
 // exemptions.

 FW_RULE_STATUS_SEMANTIC_ERROR_ADDR_KEYWORD_VER = 0x001000F3,
 // The target schema version does not support one or more of the
 // address keywords given.

 FW_RULE_STATUS_SEMANTIC_ERROR_KEY_MODULE_VER = 0x001000F4,
 // The target schema version does not support custom key module
 // preferences.

 FW_RULE_STATUS_SEMANTIC_ERROR_APP_CONTAINER_PACKAGE_ID = 0x00100100,
 // The application package SID is invalid.

 FW_RULE_STATUS_SEMANTIC_ERROR_APP_CONTAINER_PACKAGE_ID_VER = 0x00100101,
 // The target schema version does not support application package
 // SIDs.

 FW_RULE_STATUS_SEMANTIC_ERROR_TRUST_TUPLE_KEYWORD_INCOMPATIBLE = 0x00100200,
 // Logical endpoints (trust tuples) cannot be combined with
 // specific addresses or ports.

 FW_RULE_STATUS_SEMANTIC_ERROR_TRUST_TUPLE_KEYWORD_INVALID = 0x00100201,
 // One or more of the logical endpoints (trust tuples) are invalid.

 FW_RULE_STATUS_SEMANTIC_ERROR_TRUST_TUPLE_KEYWORD_VER = 0x00100202,
 // The target schema version does not support logical endpoints
 // (trust tuples).

 FW_RULE_STATUS_SEMANTIC_ERROR_INTERFACE_TYPES_VER = 0x00100301,
 // The target schema version does not support the specified
 // local interface type

 FW_RULE_STATUS_SEMANTIC_ERROR_NETNAMES_VER = 0x00100401,
 // The target schema version does not support the specified
 // local interface type

 FW_RULE_STATUS_SEMANTIC_ERROR_SECURITY_REALM_ID_VER = 0x00100402,
 // The target schema version does not support security realm Id

 FW_RULE_STATUS_SEMANTIC_ERROR_SYSTEMOS_GAMEOS_VER = 0x00100403,
 // The target schema version does not support specifying System OS or Game OS flag

 FW_RULE_STATUS_SEMANTIC_ERROR_DEVMODE_VER = 0x00100404,
 // The target schema version does not support specifying Development mode flag

 FW_RULE_STATUS_SEMANTIC_ERROR_REMOTE_SERVERNAME_VER = 0x00100405,
 // The target schema version does not support specifying Remote Server Name
 // attributes.

 FW_RULE_STATUS_SEMANTIC_ERROR_FQBN_VER = 0x00100406,
 // The target schema version does not support specifying fqbn

 FW_RULE_STATUS_SEMANTIC_ERROR_COMPARTMENT_ID_VER = 0x00100407,
 // The target schema version does not support specifying compartment Id

236 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

 FW_RULE_STATUS_SEMANTIC_ERROR_CALLOUT_AND_AUDIT_VER = 0x00100408,
 // The target schema version does not support specifying callout and audit flag

 FW_RULE_STATUS_SEMANTIC_ERROR_PHASE1_AUTH_SET_ID = 0x00100500,
 // The phase 1 auth set ID must be specified.

 FW_RULE_STATUS_SEMANTIC_ERROR_PHASE2_CRYPTO_SET_ID = 0x00100510,
 // The quick mode crypto set ID must be specified.

 FW_RULE_STATUS_SEMANTIC_ERROR_PHASE1_CRYPTO_SET_ID = 0x00100511,
 // The main mode crypto set ID must be specified.

 FW_RULE_STATUS_SEMANTIC_ERROR_FLAGS_KEY_MANAGER_DICTATE_VER = 0x00100512,
 // The target schema version does not support the Key Manager
 // Dictation flag.

 FW_RULE_STATUS_SEMANTIC_ERROR_FLAGS_KEY_MANAGER_NOTIFY_VER = 0x00100513,
 // The target schema version does not support the Key Manager
 // Notification flag.

 FW_RULE_STATUS_SEMANTIC_ERROR_TRANSPORT_MACHINE_AUTHZ_VER = 0x00100514,
 // The target schema version does not support transport rule
 // machine authorization lists.

 FW_RULE_STATUS_SEMANTIC_ERROR_TRANSPORT_USER_AUTHZ_VER = 0x00100515,
 // The target schema version does not support transport rule user
 // authorization lists.

 FW_RULE_STATUS_SEMANTIC_ERROR_TRANSPORT_MACHINE_AUTHZ_ON_TUNNEL = 0x00100516,
 // Transport machine authorization SDDL specified on tunnel-mode
 // rule.

 FW_RULE_STATUS_SEMANTIC_ERROR_TRANSPORT_USER_AUTHZ_ON_TUNNEL = 0x00100517,
 // Transport user authorization SDDL specified on tunnel-mode rule.

 FW_RULE_STATUS_SEMANTIC_ERROR_PER_RULE_AND_GLOBAL_AUTHZ = 0x00100518,
 // The Apply Global Authorization flag cannot be used when a
 // per-rule authorization list is also specified.

 FW_RULE_STATUS_SEMANTIC_ERROR_FLAGS_SECURITY_REALM = 0x00100519,
 // The target schema version does not support security realm flag.

 FW_RULE_STATUS_SEMANTIC_ERROR_SET_ID = 0x00101000,
 // The Set ID was not specified.

 FW_RULE_STATUS_SEMANTIC_ERROR_IPSEC_PHASE = 0x00101010,
 // The IPsec phase is invalid.

 FW_RULE_STATUS_SEMANTIC_ERROR_EMPTY_SUITES = 0x00101020,
 // No suites specified in the set.

 FW_RULE_STATUS_SEMANTIC_ERROR_PHASE1_AUTH_METHOD = 0x00101030,
 // One of the phase 1 auth methods is invalid.

 FW_RULE_STATUS_SEMANTIC_ERROR_PHASE2_AUTH_METHOD = 0x00101031,
 // One of the phase 2 auth methods is invalid.

 FW_RULE_STATUS_SEMANTIC_ERROR_AUTH_METHOD_ANONYMOUS = 0x00101032,
 // Anonymous cannot be the only authentication method.

 FW_RULE_STATUS_SEMANTIC_ERROR_AUTH_METHOD_DUPLICATE = 0x00101033,
 // The same authentication method cannot be used more than once
 // within a set.

 FW_RULE_STATUS_SEMANTIC_ERROR_AUTH_METHOD_VER = 0x00101034,
 // The target schema version does not support one or more of the
 // authentication methods given.

 FW_RULE_STATUS_SEMANTIC_ERROR_AUTH_SUITE_FLAGS = 0x00101040,

237 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

 // Invalid auth suite flags specified.

 FW_RULE_STATUS_SEMANTIC_ERROR_HEALTH_CERT = 0x00101041,
 // Machine certificates can only be used in phase 2 auth if they
 // are machine health certificates.

 FW_RULE_STATUS_SEMANTIC_ERROR_AUTH_SIGNCERT_VER = 0x00101042,
 // The target schema version does not support the requested
 // certificate signing algorithm.

 FW_RULE_STATUS_SEMANTIC_ERROR_AUTH_INTERMEDIATE_CA_VER = 0x00101043,
 // The target schema version does not support targeting
 // Intermediate CA's.

 FW_RULE_STATUS_SEMANTIC_ERROR_MACHINE_SHKEY = 0x00101050,
 // Machine Preshared Key was selected as an authentication type,
 // but no key string was specified.

 FW_RULE_STATUS_SEMANTIC_ERROR_CA_NAME = 0x00101060,
 // The certificate authority name is required, and must be
 // formatted as an X.509 distinguished name.

 FW_RULE_STATUS_SEMANTIC_ERROR_MIXED_CERTS = 0x00101061,
 // Machine health certificates and regular certificates cannot both
 // be proposed within the same authentication set.

 FW_RULE_STATUS_SEMANTIC_ERROR_NON_CONTIGUOUS_CERTS = 0x00101062,
 // When specifying multiple certificate authentication proposals,
 // all the certificate proposals with the same signing method must
 // must be grouped together within the set.

 FW_RULE_STATUS_SEMANTIC_ERROR_MIXED_CA_TYPE_IN_BLOCK = 0x00101063,
 // This error value is not used.

 FW_RULE_STATUS_SEMANTIC_ERROR_MACHINE_USER_AUTH = 0x00101070,
 // Both machine and user auth cannot be proposed within the same
 // authentication set.

 FW_RULE_STATUS_SEMANTIC_ERROR_AUTH_CERT_CRITERIA_VER = 0x00101071,
 // The target schema version does not support certificate criteria.

 FW_RULE_STATUS_SEMANTIC_ERROR_AUTH_CERT_CRITERIA_VER_MISMATCH = 0x00101072,
 // Certificate criteria version does not match schema version.

 FW_RULE_STATUS_SEMANTIC_ERROR_AUTH_CERT_CRITERIA_RENEWAL_HASH = 0x00101073,
 // The certificate criteria are invalid. A thumbprint hash must be
 // specified when FollowRenewal is used.

 FW_RULE_STATUS_SEMANTIC_ERROR_AUTH_CERT_CRITERIA_INVALID_HASH = 0x00101074,
 // The certificate criteria are invalid. The thumbprint hash is
 // invalid.

 FW_RULE_STATUS_SEMANTIC_ERROR_AUTH_CERT_CRITERIA_INVALID_EKU = 0x00101075,
 // The certificate criteria are invalid. One or more of the EKU's
 // are invalid.

 FW_RULE_STATUS_SEMANTIC_ERROR_AUTH_CERT_CRITERIA_INVALID_NAME_TYPE = 0x00101076,
 // The certificate criteria are invalid. The name type is invalid.

 FW_RULE_STATUS_SEMANTIC_ERROR_AUTH_CERT_CRITERIA_INVALID_NAME = 0x00101077,
 // The certificate criteria are invalid. The subject name is not
 // valid.

 FW_RULE_STATUS_SEMANTIC_ERROR_AUTH_CERT_CRITERIA_INVALID_CRITERIA_TYPE = 0x00101078,
 // The certificate criteria are invalid. The criteria type flags
 // are invalid.

 FW_RULE_STATUS_SEMANTIC_ERROR_AUTH_CERT_CRITERIA_MISSING_CRITERIA = 0x00101079,
 // The certificate criteria are invalid. You need to specify at
 // least one set of validation criteria and one set of selection

238 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

 // criteria.

 FW_RULE_STATUS_SEMANTIC_ERROR_PROXY_SERVER = 0x00101080,
 // The Kerberos proxy name must be a fully qualified domain name
 // (FQDN). For example: kerbproxy.contoso.com

 FW_RULE_STATUS_SEMANTIC_ERROR_AUTH_PROXY_SERVER_VER = 0x00101081,
 // The target schema version does not support kerberos proxy
 // servers.

 FW_RULE_STATUS_SEMANTIC_ERROR_PHASE1_CRYPTO_NON_DEFAULT_ID = 0x00105000,
 // The main mode crypto set ID should be the global main mode
 // crypto set ID.

 FW_RULE_STATUS_SEMANTIC_ERROR_PHASE1_CRYPTO_FLAGS = 0x00105001,
 // The phase 1 crypto set flags are invalid.

 FW_RULE_STATUS_SEMANTIC_ERROR_PHASE1_CRYPTO_TIMEOUT_MINUTES = 0x00105002,
 // The main mode lifetime, in minutes, is invalid.

 FW_RULE_STATUS_SEMANTIC_ERROR_PHASE1_CRYPTO_TIMEOUT_SESSIONS = 0x00105003,
 // The main mode lifetime, in sessions, is invalid.

 FW_RULE_STATUS_SEMANTIC_ERROR_PHASE1_CRYPTO_KEY_EXCHANGE = 0x00105004,
 // One of the main mode key exchange algorithms is invalid.

 FW_RULE_STATUS_SEMANTIC_ERROR_PHASE1_CRYPTO_ENCRYPTION = 0x00105005,
 // One of the main mode encryption algorithms is invalid.

 FW_RULE_STATUS_SEMANTIC_ERROR_PHASE1_CRYPTO_HASH = 0x00105006,
 // One of the main mode hash algorithms is invalid.

 FW_RULE_STATUS_SEMANTIC_ERROR_PHASE1_CRYPTO_ENCRYPTION_VER = 0x00105007,
 // The target schema version does not support one of the main mode
 // encryption algorithms chosen.

 FW_RULE_STATUS_SEMANTIC_ERROR_PHASE1_CRYPTO_HASH_VER = 0x00105008,
 // The target schema version does not support one of the main mode
 // hash algorithms chosen.

 FW_RULE_STATUS_SEMANTIC_ERROR_PHASE1_CRYPTO_KEY_EXCH_VER = 0x00105009,
 // The target schema version does not support one of the main mode
 // key exchange algorithms chosen.

 FW_RULE_STATUS_SEMANTIC_ERROR_PHASE2_CRYPTO_PFS = 0x00105020,
 // One of the quick mode key exchange algorithms is invalid.

 FW_RULE_STATUS_SEMANTIC_ERROR_PHASE2_CRYPTO_PROTOCOL = 0x00105021,
 // One of the quick mode encapsulation types is invalid.

 FW_RULE_STATUS_SEMANTIC_ERROR_PHASE2_CRYPTO_ENCRYPTION = 0x00105022,
 // One of the quick mode encryption algorithms is invalid.

 FW_RULE_STATUS_SEMANTIC_ERROR_PHASE2_CRYPTO_HASH = 0x00105023,
 // One of the quick mode hash algorithms is invalid.

 FW_RULE_STATUS_SEMANTIC_ERROR_PHASE2_CRYPTO_TIMEOUT_MINUTES = 0x00105024,
 // The quick mode lifetime, in minutes, is invalid.

 FW_RULE_STATUS_SEMANTIC_ERROR_PHASE2_CRYPTO_TIMEOUT_KBYTES = 0x00105025,
 // The quick mode lifetime, in kilobytes, is invalid.

 FW_RULE_STATUS_SEMANTIC_ERROR_PHASE2_CRYPTO_ENCRYPTION_VER = 0x00105026,
 // The target schema version does not support one of the quick mode
 // encryption algorithms chosen.

 FW_RULE_STATUS_SEMANTIC_ERROR_PHASE2_CRYPTO_HASH_VER = 0x00105027,
 // The target schema version does not support one of the quick mode
 // hash algorithms chosen.

239 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

 FW_RULE_STATUS_SEMANTIC_ERROR_PHASE2_CRYPTO_PFS_VER = 0x00105028,
 // The target schema version does not support one of the quick mode
 // key exchange algorithms chosen.

 FW_RULE_STATUS_SEMANTIC_ERROR_CRYPTO_ENCR_HASH = 0x00105040,
 // Either Encryption or Hash must be specified.

 FW_RULE_STATUS_SEMANTIC_ERROR_CRYPTO_ENCR_HASH_COMPAT = 0x00105041,
 // The encryption and hash algorithms specified are incompatible.

 FW_RULE_STATUS_SEMANTIC_ERROR_SCHEMA_VERSION = 0x00105050,
 // The target schema version specified is not supported.

 FW_RULE_STATUS_SEMANTIC_ERROR_QUERY_OR_AND_CONDITIONS = 0x00106000,
 // Malformed query: Mismatch in the number of ORed terms and the
 // terms array

 FW_RULE_STATUS_SEMANTIC_ERROR_QUERY_AND_CONDITIONS = 0x00106001,
 // Malformed query: Mismatch in the number of ANDed conditions and
 // conditions array

 FW_RULE_STATUS_SEMANTIC_ERROR_QUERY_CONDITION_KEY = 0x00106002,
 // Malformed query: Invalid confition match key

 FW_RULE_STATUS_SEMANTIC_ERROR_QUERY_CONDITION_MATCH_TYPE = 0x00106003,
 // Malformed query: Invalid condition match type

 FW_RULE_STATUS_SEMANTIC_ERROR_QUERY_CONDITION_DATA_TYPE = 0x00106004,
 // Malformed query: Invalid condition data type

 FW_RULE_STATUS_SEMANTIC_ERROR_QUERY_CONDITION_KEY_AND_DATA_TYPE = 0x00106005,
 // Malformed query: Invalid key and data type combination

 FW_RULE_STATUS_SEMANTIC_ERROR_QUERY_KEYS_PROTOCOL_PORT = 0x00106006,
 // Malformed query: Protocol condition present without a protocol
 // condition

 FW_RULE_STATUS_SEMANTIC_ERROR_QUERY_KEY_PROFILE = 0x00106007,
 // Malformed query: Profile Key unavailable for this object type
 // queried

 FW_RULE_STATUS_SEMANTIC_ERROR_QUERY_KEY_STATUS = 0x00106008,
 // Malformed query: Status Key unavailable for this object type
 // queried

 FW_RULE_STATUS_SEMANTIC_ERROR_QUERY_KEY_FILTERID = 0x00106009,
 // Malformed query: FilterID Key unavailable for this object type
 // queried

 FW_RULE_STATUS_SEMANTIC_ERROR_QUERY_KEY_APP_PATH = 0x00106010,
 // Malformed query: Application Key unavailable for this object
 // type queried

 FW_RULE_STATUS_SEMANTIC_ERROR_QUERY_KEY_PROTOCOL = 0x00106011,
 // Malformed query: Protocol Key unavailable for this object type
 // queried

 FW_RULE_STATUS_SEMANTIC_ERROR_QUERY_KEY_LOCAL_PORT = 0x00106012,
 // Malformed query: Local Port Key unavailable for this object type
 // queried

 FW_RULE_STATUS_SEMANTIC_ERROR_QUERY_KEY_REMOTE_PORT = 0x00106013,
 // Malformed query: Remote Port Key unavailable for this object
 // type queried

 FW_RULE_STATUS_SEMANTIC_ERROR_QUERY_KEY_SVC_NAME = 0x00106015,
 // Malformed query: Service Name Key unavailable for this object
 // type queried

 FW_RULE_STATUS_SEMANTIC_ERROR_REQUIRE_IN_CLEAR_OUT_ON_TRANSPORT = 0x00107000,

240 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

 // Authentication mode,"Require inbound and clear outbound" can
 // only be set when using IPsec tunneling.

 FW_RULE_STATUS_SEMANTIC_ERROR_BYPASS_TUNNEL_IF_SECURE_ON_TRANSPORT = 0x00107001,
 // Bypass Tunnel If Secure may not be set on Transport-Mode rules.

 FW_RULE_STATUS_SEMANTIC_ERROR_AUTH_NOENCAP_ON_TUNNEL = 0x00107002,
 // Authentication (No Encapsulation) may not be used on tunnel-mode
 // rules.

 FW_RULE_STATUS_SEMANTIC_ERROR_AUTH_NOENCAP_ON_PSK = 0x00107003,
 // Authentication (No Encapsulation) may not be used on rules that
 // contain preshared keys.

 FW_RULE_STATUS_RUNTIME_ERROR = 0x00200000,
 // A runtime error occurred while trying to enforce the rule.

 FW_RULE_STATUS_RUNTIME_ERROR_PHASE1_AUTH_NOT_FOUND = 0x00200001,
 // The phase 1 authentication set was not found.

 FW_RULE_STATUS_RUNTIME_ERROR_PHASE2_AUTH_NOT_FOUND = 0x00200002,
 // The phase 2 authentication set was not found.

 FW_RULE_STATUS_RUNTIME_ERROR_PHASE2_CRYPTO_NOT_FOUND = 0x00200003,
 // The quick mode cryptographic set was not found.

 FW_RULE_STATUS_RUNTIME_ERROR_AUTH_MCHN_SHKEY_MISMATCH = 0x00200004,
 // A conflict was detected between the phase 1 and phase 2
 // authentication sets. When preshared keys are used in phase 1,
 // there cannot be a phase 2 authentication set.

 FW_RULE_STATUS_RUNTIME_ERROR_PHASE1_CRYPTO_NOT_FOUND = 0x00200005,
 // The main mode cryptographic set was not found.

 FW_RULE_STATUS_RUNTIME_ERROR_AUTH_NOENCAP_ON_TUNNEL = 0x00200006,
 // Authentication (No Encapsulation) cannot be specified on a
 // tunnel-mode rule.

 FW_RULE_STATUS_RUNTIME_ERROR_AUTH_NOENCAP_ON_PSK = 0x00200007,
 // Authentication (No Encapsulation) cannot be specified on a rule
 // that uses a preshared key.

 FW_RULE_STATUS_RUNTIME_ERROR_KEY_MODULE_AUTH_MISMATCH = 0x00200008,
 // The key module in the rule is incompatible with the
 // authentication methods specified in the associated
 // authentication sets.

 FW_RULE_STATUS_ERROR = FW_RULE_STATUS_PARSING_ERROR |FW_RULE_STATUS_SEMANTIC_ERROR
|FW_RULE_STATUS_RUNTIME_ERROR,

 // An error occurred.

 FW_RULE_STATUS_ALL = 0xFFFF0000
 // Enumerate all rules, regardless of status.
 } FW_RULE_STATUS;

 //rule status bitflags
 typedef enum _tag_FW_RULE_STATUS_CLASS
 {
 FW_RULE_STATUS_CLASS_OK = FW_RULE_STATUS_OK, // The rule was
parsed successfully from the store

 FW_RULE_STATUS_CLASS_PARTIALLY_IGNORED = FW_RULE_STATUS_PARTIALLY_IGNORED, //
The rule has fields that the service can successfully ignore

 FW_RULE_STATUS_CLASS_IGNORED = FW_RULE_STATUS_IGNORED, // The rule has
a higher version that the service must ignore

 FW_RULE_STATUS_CLASS_PARSING_ERROR = FW_RULE_STATUS_PARSING_ERROR, // The
rule failed to be parsed correctly

 FW_RULE_STATUS_CLASS_SEMANTIC_ERROR = FW_RULE_STATUS_SEMANTIC_ERROR, //There
is a semantic error when considering the fields of the rule in conjunction

241 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

 FW_RULE_STATUS_CLASS_RUNTIME_ERROR = FW_RULE_STATUS_RUNTIME_ERROR, // There
is a runtime error when the object is considered in conjuntion with other Policy Objects.

 FW_RULE_STATUS_CLASS_ERROR = FW_RULE_STATUS_ERROR, // An Error
occurred

 FW_RULE_STATUS_CLASS_ALL = FW_RULE_STATUS_ALL // All the status.
(Used to enum ALL the rules, regardless the status.)

 } FW_RULE_STATUS_CLASS;

 typedef enum _tag_FW_OBJECT_CTRL_FLAG
 {
 FW_OBJECT_CTRL_FLAG_INCLUDE_METADATA = 0x0001, // Allow RPC to marshall the metadata
pointer in the objects

 } FW_OBJECT_CTRL_FLAG;

 typedef enum _tag_FW_ENFORCEMENT_STATE
 {
 FW_ENFORCEMENT_STATE_INVALID,
 FW_ENFORCEMENT_STATE_FULL,
 FW_ENFORCEMENT_STATE_WF_OFF_IN_PROFILE,
 FW_ENFORCEMENT_STATE_CATEGORY_OFF,
 FW_ENFORCEMENT_STATE_DISABLED_OBJECT,
 FW_ENFORCEMENT_STATE_INACTIVE_PROFILE,
 FW_ENFORCEMENT_STATE_LOCAL_ADDRESS_RESOLUTION_EMPTY,
 FW_ENFORCEMENT_STATE_REMOTE_ADDRESS_RESOLUTION_EMPTY,
 FW_ENFORCEMENT_STATE_LOCAL_PORT_RESOLUTION_EMPTY,
 FW_ENFORCEMENT_STATE_REMOTE_PORT_RESOLUTION_EMPTY,
 FW_ENFORCEMENT_STATE_INTERFACE_RESOLUTION_EMPTY,
 FW_ENFORCEMENT_STATE_APPLICATION_RESOLUTION_EMPTY,
 FW_ENFORCEMENT_STATE_REMOTE_MACHINE_EMPTY,
 FW_ENFORCEMENT_STATE_REMOTE_USER_EMPTY,
 FW_ENFORCEMENT_STATE_LOCAL_GLOBAL_OPEN_PORTS_DISALLOWED,
 FW_ENFORCEMENT_STATE_LOCAL_AUTHORIZED_APPLICATIONS_DISALLOWED,
 FW_ENFORCEMENT_STATE_LOCAL_FIREWALL_RULES_DISALLOWED,
 FW_ENFORCEMENT_STATE_LOCAL_CONSEC_RULES_DISALLOWED,
 FW_ENFORCEMENT_STATE_MISMATCHED_PLATFORM,
 FW_ENFORCEMENT_STATE_OPTIMIZED_OUT,
 FW_ENFORCEMENT_STATE_LOCAL_USER_EMPTY,
 FW_ENFORCEMENT_STATE_TRANSPORT_MACHINE_SD_EMPTY,
 FW_ENFORCEMENT_STATE_TRANSPORT_USER_SD_EMPTY,
 FW_ENFORCEMENT_STATE_TUPLE_RESOLUTION_EMPTY,
 FW_ENFORCEMENT_STATE_NETNAME_RESOLUTION_EMPTY,
 FW_ENFORCEMENT_STATE_MAX
 } FW_ENFORCEMENT_STATE;

 typedef struct _tag_FW_OBJECT_METADATA
 {
 UINT64 qwFilterContextID;

 [range(0, 100)]
 DWORD dwNumEntries;
 [size_is(dwNumEntries)]
 FW_ENFORCEMENT_STATE *pEnforcementStates;
 } FW_OBJECT_METADATA, *PFW_OBJECT_METADATA;

 typedef enum _tag_FW_OS_PLATFORM_OP
 {
 FW_OS_PLATFORM_OP_EQ,
 FW_OS_PLATFORM_OP_GTEQ,
 FW_OS_PLATFORM_OP_MAX,
 FW_OS_PLATFORM_OP_FIELD_SIZE = 5,
 FW_OS_PLATFORM_OP_FIELD_MASK = 0xF8
 } FW_OS_PLATFORM_OP;

242 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

 // Values for platform, major and minor versions correspond to values in the OSVERSIONINFOEX
structure

 typedef struct _tag_FW_OS_PLATFORM
 {
 BYTE bPlatform;
 BYTE bMajorVersion;
 BYTE bMinorVersion;
 BYTE Reserved;
 }FW_OS_PLATFORM, *PFW_OS_PLATFORM;

 typedef struct _tag_FW_OS_PLATFORM_LIST
 {
 [range(0, 10000)]
 DWORD dwNumEntries;
 [size_is(dwNumEntries)]
 PFW_OS_PLATFORM pPlatforms;
 }FW_OS_PLATFORM_LIST, *PFW_OS_PLATFORM_LIST;

 typedef struct _tag_FW_NETWORK_NAMES
 {
 DWORD dwNumEntries;
 [string, unique, size_is(dwNumEntries,)]
 LPWSTR *wszNames;
 } FW_NETWORK_NAMES, *PFW_NETWORK_NAMES;

 typedef enum _tag_FW_RULE_ORIGIN_TYPE
 {
 FW_RULE_ORIGIN_INVALID,
 FW_RULE_ORIGIN_LOCAL,
 FW_RULE_ORIGIN_GP,
 FW_RULE_ORIGIN_DYNAMIC,
 FW_RULE_ORIGIN_AUTOGEN,
 FW_RULE_ORIGIN_HARDCODED,
 FW_RULE_ORIGIN_MAX
 }FW_RULE_ORIGIN_TYPE;

 typedef enum _tag_FW_ENUM_RULES_FLAGS
 {
 FW_ENUM_RULES_FLAG_NONE = 0x0000,
 FW_ENUM_RULES_FLAG_RESOLVE_NAME = 0x0001, // Resolves rule name if in the format
of '@file.dll,-<resID>'

 FW_ENUM_RULES_FLAG_RESOLVE_DESCRIPTION = 0x0002, // Resolves rule descriptions if in the
format of '@file.dll,-<resID>'

 FW_ENUM_RULES_FLAG_RESOLVE_APPLICATION = 0x0004, // Resolves environment variables in
the application string

 FW_ENUM_RULES_FLAG_RESOLVE_KEYWORD = 0x0008, // Resolves Keywords in addresses and
ports to the actual addresses and ports (dynamic store only)

 FW_ENUM_RULES_FLAG_RESOLVE_GPO_NAME = 0x0010, // Resolves GPO name for the GP_RSOP
rules

 FW_ENUM_RULES_FLAG_EFFECTIVE = 0x0020, // Enum Rules only if we attempted to
push them to BFE (dynamic store only)

 FW_ENUM_RULES_FLAG_INCLUDE_METADATA = 0x0040, // Inlude Object MetaData in the
Enumerated Object.

 FW_ENUM_RULES_FLAG_MAX = 0x0080
 }FW_ENUM_RULES_FLAGS;

 //ordered by priority - highest on top
 typedef enum _tag_FW_RULE_ACTION
 {
 FW_RULE_ACTION_INVALID = 0,
 FW_RULE_ACTION_ALLOW_BYPASS,
 FW_RULE_ACTION_BLOCK,
 FW_RULE_ACTION_ALLOW,
 FW_RULE_ACTION_MAX
 } FW_RULE_ACTION;

243 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

 typedef enum _tag_FW_RULE_FLAGS
 {
 FW_RULE_FLAGS_NONE = 0x0000,
 FW_RULE_FLAGS_ACTIVE = 0x0001,
 FW_RULE_FLAGS_AUTHENTICATE = 0x0002,
 FW_RULE_FLAGS_AUTHENTICATE_WITH_ENCRYPTION = 0x0004,
 FW_RULE_FLAGS_ROUTEABLE_ADDRS_TRAVERSE = 0x0008,
 FW_RULE_FLAGS_LOOSE_SOURCE_MAPPED = 0x00010,
 FW_RULE_FLAGS_MAX_V2_1 = 0x0020,
 // This is the new "NoEncapsulation" flag in Windows 7 and Windows Server 2008 R2.
 FW_RULE_FLAGS_AUTH_WITH_NO_ENCAPSULATION = 0x0020,
 FW_RULE_FLAGS_MAX_V2_9 = 0x0040,
 // These are the new flags added for SSP in Windows 7 and Windows Server 2008 R2.
 FW_RULE_FLAGS_AUTH_WITH_ENC_NEGOTIATE = 0x0040,
 FW_RULE_FLAGS_ROUTEABLE_ADDRS_TRAVERSE_DEFER_APP = 0x0080,
 FW_RULE_FLAGS_ROUTEABLE_ADDRS_TRAVERSE_DEFER_USER = 0x0100,
 FW_RULE_FLAGS_AUTHENTICATE_BYPASS_OUTBOUND = 0x0200,
 FW_RULE_FLAGS_MAX_V2_10 = 0x0400,
 // This is the new flag in Windows 8 and Windows Server 2012 to allow profile crossings
 // for clusters.
 FW_RULE_FLAGS_ALLOW_PROFILE_CROSSING = 0x0400,
 // This is the new flag in Windows 8 and Windows Server 2012 to allow LOM on flows.
 FW_RULE_FLAGS_LOCAL_ONLY_MAPPED = 0x0800,
 FW_RULE_FLAGS_MAX_V2_20 = 0x1000,
 FW_RULE_FLAGS_LUA_CONDITIONAL_ACE = 0x1000,
 FW_RULE_FLAGS_BIND_TO_INTERFACE = 0x2000,
 FW_RULE_FLAGS_MAX = 0x4000,
 }FW_RULE_FLAGS;

 typedef enum _tag_FW_RULE_FLAGS2
 {
 FW_RULE_FLAGS2_NONE = 0x0000,
 FW_RULE_FLAGS2_SYSTEMOS_ONLY = 0x0001,
 FW_RULE_FLAGS2_GAMEOS_ONLY = 0x0002,
 FW_RULE_FLAGS2_DEVMODE = 0x0004,
 FW_RULE_FLAGS_MAX_V2_26 = 0x0008,
 FW_RULE_FLAGS2_NOT_USED_VALUE_8 = 0x0008,
 FW_RULE_FLAGS2_EMPTY_REMOTENAME = 0x0010,
 FW_RULE_FLAGS2_NOT_REMOTENAME = 0x0020,
 FW_RULE_FLAGS2_NOT_USED_VALUE_64 = 0x0040,
 FW_RULE_FLAGS2_CALLOUT_AND_AUDIT = 0x0080,
 FW_RULE_FLAGS2_MAX = 0x0100
 }FW_RULE_FLAGS2;

 typedef struct _tag_FW_RULE2_0
 {
 struct _tag_FW_RULE2_0 *pNext;
 WORD wSchemaVersion;
 [string, range(1,10001), ref]
 WCHAR* wszRuleId;
 [string, range(1,10001)]
 WCHAR* wszName;
 [string, range(1,10001)]
 WCHAR* wszDescription;
 DWORD dwProfiles;
 [range(FW_DIR_INVALID, FW_DIR_OUT)]
 FW_DIRECTION Direction;
 [range(0,256)]
 WORD wIpProtocol; //0-255 or FW_IP_PROTOCOL_ANY
 [switch_type(WORD), switch_is(wIpProtocol)]
 union
 {
 // Ports specified if wIpProtocol = 6(TCP) or 17(UDP)
 [case(6,17)]
 struct
 {
 FW_PORTS LocalPorts;
 FW_PORTS RemotePorts;
 };

244 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

 // ICMP types/codes specified if wIpProtocol = 1(ICMPv4) or 58(ICMPv6)
 [case(1)]
 FW_ICMP_TYPE_CODE_LIST V4TypeCodeList;
 [case(58)]
 FW_ICMP_TYPE_CODE_LIST V6TypeCodeList;
 [default]
 ;
 };

 FW_ADDRESSES LocalAddresses;
 FW_ADDRESSES RemoteAddresses;
 FW_INTERFACE_LUIDS LocalInterfaceIds;
 DWORD dwLocalInterfaceTypes; // Bit flags from FW_INTERFACE_TYPE
 [string, range(1,10001)]
 WCHAR* wszLocalApplication;
 [string, range(1,10001)]
 WCHAR* wszLocalService;
 [range(FW_RULE_ACTION_INVALID, FW_RULE_ACTION_MAX)]
 FW_RULE_ACTION Action;
 WORD wFlags; // Bit flags from FW_RULE_FLAGS

 [string, range(1,10001)]
 WCHAR* wszRemoteMachineAuthorizationList; //Authorized remote machines SDDL
 [string, range(1,10001)]
 WCHAR* wszRemoteUserAuthorizationList; //Authorized remote users SDDL

 [string, range(1,10001)]
 WCHAR* wszEmbeddedContext;
 FW_OS_PLATFORM_LIST PlatformValidityList;

 FW_RULE_STATUS Status; //Parsing error if any, filled on return. On input, set
this to FW_RULE_STATUS_OK

 [range(FW_RULE_ORIGIN_INVALID, FW_RULE_ORIGIN_MAX)]
 FW_RULE_ORIGIN_TYPE Origin; //Rule origin, filled on enumerated rules. Ignored on
input

 [string, range(1,10001)]
 WCHAR* wszGPOName; //Name of originating GPO, if rule origin is GP.
 DWORD Reserved;

 } FW_RULE2_0, *PFW_RULE2_0;

 typedef struct _tag_FW_RULE2_10
 {
 struct _tag_FW_RULE2_10 *pNext;
 WORD wSchemaVersion;
 [string, range(1,512), ref]
 LPWSTR wszRuleId;
 [string, range(1,10001)]
 LPWSTR wszName;
 [string, range(1,10001)]
 LPWSTR wszDescription;
 DWORD dwProfiles;
 [range(FW_DIR_INVALID, FW_DIR_OUT)]
 FW_DIRECTION Direction;
 [range(0,256)]
 WORD wIpProtocol; //0-255 or FW_IP_PROTOCOL_ANY
 [switch_type(WORD), switch_is(wIpProtocol)]
 union
 {
 // Ports specified if wIpProtocol = 6(TCP) or 17(UDP)
 [case(6,17)]
 struct
 {
 FW_PORTS LocalPorts;
 FW_PORTS RemotePorts;
 };
 // ICMP types/codes specified if wIpProtocol = 1(ICMPv4) or 58(ICMPv6)
 [case(1)]

245 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

 FW_ICMP_TYPE_CODE_LIST V4TypeCodeList;
 [case(58)]
 FW_ICMP_TYPE_CODE_LIST V6TypeCodeList;
 [default]
 ;
 };

 FW_ADDRESSES LocalAddresses;
 FW_ADDRESSES RemoteAddresses;
 FW_INTERFACE_LUIDS LocalInterfaceIds;
 DWORD dwLocalInterfaceTypes; // Bit flags from FW_INTERFACE_TYPE
 [string, range(1,10001)]
 LPWSTR wszLocalApplication;
 [string, range(1,10001)]
 LPWSTR wszLocalService;
 [range(FW_RULE_ACTION_INVALID, FW_RULE_ACTION_MAX)]
 FW_RULE_ACTION Action;
 WORD wFlags; // Bit flags from FW_RULE_FLAGS

 [string, range(1,10001)]
 LPWSTR wszRemoteMachineAuthorizationList; //Authorized remote machines SDDL
 [string, range(1,10001)]
 LPWSTR wszRemoteUserAuthorizationList; //Authorized remote users SDDL

 [string, range(1,10001)]
 LPWSTR wszEmbeddedContext;
 FW_OS_PLATFORM_LIST PlatformValidityList;

 FW_RULE_STATUS Status; //Parsing error if any, filled on return. On input, set
this to FW_RULE_STATUS_OK

 [range(FW_RULE_ORIGIN_INVALID, FW_RULE_ORIGIN_MAX)]
 FW_RULE_ORIGIN_TYPE Origin; //Rule origin, filled on enumerated rules. Ignored on
input

 [string, range(1,10001)]
 LPWSTR wszGPOName; //Name of originating GPO, if rule origin is GP.
 DWORD Reserved;

 // [switch_type(WORD), switch_is(wBinaryVersion)]
 // union
 // {
 // [case(wBinaryVersion >= 0x0210)]
 // struct
 // {
 [size_is((Reserved & FW_OBJECT_CTRL_FLAG_INCLUDE_METADATA) ? 1 : 0)]
 PFW_OBJECT_METADATA pMetaData;

 // };
 // }; // End union wBinaryVersion

 } FW_RULE2_10, *PFW_RULE2_10;

 typedef struct _tag_FW_RULE2_20
 {
 struct _tag_FW_RULE2_20 *pNext;
 WORD wSchemaVersion;
 [string, range(1,512), ref]
 LPWSTR wszRuleId;
 [string, range(1,10001)]
 LPWSTR wszName;
 [string, range(1,10001)]
 LPWSTR wszDescription;
 DWORD dwProfiles;
 [range(FW_DIR_INVALID, FW_DIR_OUT)]
 FW_DIRECTION Direction;
 [range(0,256)]
 WORD wIpProtocol; //0-255 or FW_IP_PROTOCOL_ANY
 [switch_type(WORD), switch_is(wIpProtocol)]

246 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

 union
 {
 // Ports specified if wIpProtocol = 6(TCP) or 17(UDP)
 [case(6,17)]
 struct
 {
 FW_PORTS LocalPorts;
 FW_PORTS RemotePorts;
 };
 // ICMP types/codes specified if wIpProtocol = 1(ICMPv4) or 58(ICMPv6)
 [case(1)]
 FW_ICMP_TYPE_CODE_LIST V4TypeCodeList;
 [case(58)]
 FW_ICMP_TYPE_CODE_LIST V6TypeCodeList;
 [default]
 ;
 };

 FW_ADDRESSES LocalAddresses;
 FW_ADDRESSES RemoteAddresses;
 FW_INTERFACE_LUIDS LocalInterfaceIds;
 DWORD dwLocalInterfaceTypes; // Bit flags from FW_INTERFACE_TYPE
 [string, range(1,10001)]
 LPWSTR wszLocalApplication;
 [string, range(1,10001)]
 LPWSTR wszLocalService;
 [range(FW_RULE_ACTION_INVALID, FW_RULE_ACTION_MAX)]
 FW_RULE_ACTION Action;
 WORD wFlags; // Bit flags from FW_RULE_FLAGS

 [string, range(1,10001)]
 LPWSTR wszRemoteMachineAuthorizationList; //Authorized remote machines SDDL
 [string, range(1,10001)]
 LPWSTR wszRemoteUserAuthorizationList; //Authorized remote users SDDL

 [string, range(1,10001)]
 LPWSTR wszEmbeddedContext;
 FW_OS_PLATFORM_LIST PlatformValidityList;

 FW_RULE_STATUS Status; //Parsing error if any, filled on return. On input, set
this to FW_RULE_STATUS_OK

 [range(FW_RULE_ORIGIN_INVALID, FW_RULE_ORIGIN_MAX)]
 FW_RULE_ORIGIN_TYPE Origin; //Rule origin, filled on enumerated rules. Ignored on
input

 [string, range(1,10001)]
 LPWSTR wszGPOName; //Name of originating GPO, if rule origin is GP.
 DWORD Reserved;

 // [switch_type(WORD), switch_is(wBinaryVersion)]
 // union
 // {
 // [case(wBinaryVersion >= 0x0210)]
 // struct
 // {
 [size_is((Reserved & FW_OBJECT_CTRL_FLAG_INCLUDE_METADATA) ? 1 : 0)]
 PFW_OBJECT_METADATA pMetaData;

 // };
 // }; // End union wBinaryVersion

 [string, range(1,10001)]
 WCHAR* wszLocalUserAuthorizationList; //Authorized local users SDDL

 [string, range(1,10001)]
 WCHAR * wszPackageId; // Application Container Package Id Sid

 [string, range(1,10001)]
 WCHAR * wszLocalUserOwner; // User Owner of the Rule

247 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

 // Trust Tuple Keywords
 DWORD dwTrustTupleKeywords;

 } FW_RULE2_20, *PFW_RULE2_20;

 typedef struct _tag_FW_RULE2_24
 {
 struct _tag_FW_RULE2_24 *pNext;
 WORD wSchemaVersion;
 [string, range(1,512), ref]
 LPWSTR wszRuleId;
 [string, range(1,10001)]
 LPWSTR wszName;
 [string, range(1,10001)]
 LPWSTR wszDescription;
 DWORD dwProfiles;
 [range(FW_DIR_INVALID, FW_DIR_OUT)]
 FW_DIRECTION Direction;
 [range(0,256)]
 WORD wIpProtocol; //0-255 or FW_IP_PROTOCOL_ANY
 [switch_type(WORD), switch_is(wIpProtocol)]
 union
 {
 // Ports specified if wIpProtocol = 6(TCP) or 17(UDP)
 [case(6,17)]
 struct
 {
 FW_PORTS LocalPorts;
 FW_PORTS RemotePorts;
 };
 // ICMP types/codes specified if wIpProtocol = 1(ICMPv4) or 58(ICMPv6)
 [case(1)]
 FW_ICMP_TYPE_CODE_LIST V4TypeCodeList;
 [case(58)]
 FW_ICMP_TYPE_CODE_LIST V6TypeCodeList;
 [default]
 ;
 };

 FW_ADDRESSES LocalAddresses;
 FW_ADDRESSES RemoteAddresses;
 FW_INTERFACE_LUIDS LocalInterfaceIds;
 DWORD dwLocalInterfaceTypes; // Bit flags from FW_INTERFACE_TYPE
 [string, range(1,10001)]
 LPWSTR wszLocalApplication;
 [string, range(1,10001)]
 LPWSTR wszLocalService;
 [range(FW_RULE_ACTION_INVALID, FW_RULE_ACTION_MAX)]
 FW_RULE_ACTION Action;
 WORD wFlags; // Bit flags from FW_RULE_FLAGS

 [string, range(1,10001)]
 LPWSTR wszRemoteMachineAuthorizationList; //Authorized remote machines SDDL
 [string, range(1,10001)]
 LPWSTR wszRemoteUserAuthorizationList; //Authorized remote users SDDL

 [string, range(1,10001)]
 LPWSTR wszEmbeddedContext;
 FW_OS_PLATFORM_LIST PlatformValidityList;

 FW_RULE_STATUS Status; //Parsing error if any, filled on return. On input, set
this to FW_RULE_STATUS_OK

 [range(FW_RULE_ORIGIN_INVALID, FW_RULE_ORIGIN_MAX)]
 FW_RULE_ORIGIN_TYPE Origin; //Rule origin, filled on enumerated rules. Ignored on
input

 [string, range(1,10001)]
 LPWSTR wszGPOName; //Name of originating GPO, if rule origin is GP.
 DWORD Reserved;

248 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

 // [switch_type(WORD), switch_is(wBinaryVersion)]
 // union
 // {
 // [case(wBinaryVersion >= 0x0210)]
 // struct
 // {
 [size_is((Reserved & FW_OBJECT_CTRL_FLAG_INCLUDE_METADATA) ? 1 : 0)]
 PFW_OBJECT_METADATA pMetaData;

 // };
 // }; // End union wBinaryVersion

 [string, range(1,10001)]
 WCHAR* wszLocalUserAuthorizationList; //Authorized local users SDDL

 [string, range(1,10001)]
 WCHAR * wszPackageId; // Application Container Package Id Sid

 [string, range(1,10001)]
 WCHAR * wszLocalUserOwner; // User Owner of the Rule

 // Trust Tuple Keywords
 DWORD dwTrustTupleKeywords;

 FW_NETWORK_NAMES OnNetworkNames;
 [string, range(1,10001)]
 // security realm Id
 WCHAR* wszSecurityRealmId; // Security Realm Id
 } FW_RULE2_24, *PFW_RULE2_24;

 typedef struct _tag_FW_RULE2_25
 {
 struct _tag_FW_RULE2_25 *pNext;
 WORD wSchemaVersion;
 [string, range(1,512), ref]
 LPWSTR wszRuleId;
 [string, range(1,10001)]
 LPWSTR wszName;
 [string, range(1,10001)]
 LPWSTR wszDescription;
 DWORD dwProfiles;
 [range(FW_DIR_INVALID, FW_DIR_OUT)]
 FW_DIRECTION Direction;
 [range(0,256)]
 WORD wIpProtocol; //0-255 or FW_IP_PROTOCOL_ANY
 [switch_type(WORD), switch_is(wIpProtocol)]
 union
 {
 // Ports specified if wIpProtocol = 6(TCP) or 17(UDP)
 [case(6,17)]
 struct
 {
 FW_PORTS LocalPorts;
 FW_PORTS RemotePorts;
 };
 // ICMP types/codes specified if wIpProtocol = 1(ICMPv4) or 58(ICMPv6)
 [case(1)]
 FW_ICMP_TYPE_CODE_LIST V4TypeCodeList;
 [case(58)]
 FW_ICMP_TYPE_CODE_LIST V6TypeCodeList;
 [default]
 ;
 };

 FW_ADDRESSES LocalAddresses;
 FW_ADDRESSES RemoteAddresses;
 FW_INTERFACE_LUIDS LocalInterfaceIds;
 DWORD dwLocalInterfaceTypes; // Bit flags from FW_INTERFACE_TYPE

249 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

 [string, range(1,10001)]
 LPWSTR wszLocalApplication;
 [string, range(1,10001)]
 LPWSTR wszLocalService;
 [range(FW_RULE_ACTION_INVALID, FW_RULE_ACTION_MAX)]
 FW_RULE_ACTION Action;
 WORD wFlags; // Bit flags from FW_RULE_FLAGS

 [string, range(1,10001)]
 LPWSTR wszRemoteMachineAuthorizationList; //Authorized remote machines SDDL
 [string, range(1,10001)]
 LPWSTR wszRemoteUserAuthorizationList; //Authorized remote users SDDL

 [string, range(1,10001)]
 LPWSTR wszEmbeddedContext;
 FW_OS_PLATFORM_LIST PlatformValidityList;

 FW_RULE_STATUS Status; //Parsing error if any, filled on return. On input, set
this to FW_RULE_STATUS_OK

 [range(FW_RULE_ORIGIN_INVALID, FW_RULE_ORIGIN_MAX)]
 FW_RULE_ORIGIN_TYPE Origin; //Rule origin, filled on enumerated rules. Ignored on
input

 [string, range(1,10001)]
 LPWSTR wszGPOName; //Name of originating GPO, if rule origin is GP.
 DWORD Reserved;

 // [switch_type(WORD), switch_is(wBinaryVersion)]
 // union
 // {
 // [case(wBinaryVersion >= 0x0210)]
 // struct
 // {
 [size_is((Reserved & FW_OBJECT_CTRL_FLAG_INCLUDE_METADATA) ? 1 : 0)]
 PFW_OBJECT_METADATA pMetaData;

 // };
 // }; // End union wBinaryVersion

 [string, range(1,10001)]
 WCHAR* wszLocalUserAuthorizationList; //Authorized local users SDDL

 [string, range(1,10001)]
 WCHAR * wszPackageId; // Application Container Package Id Sid

 [string, range(1,10001)]
 WCHAR * wszLocalUserOwner; // User Owner of the Rule

 // Trust Tuple Keywords
 DWORD dwTrustTupleKeywords;

 FW_NETWORK_NAMES OnNetworkNames;
 [string, range(1,10001)]
 // security realm Id
 WCHAR* wszSecurityRealmId; // Security Realm Id

 WORD wFlags2; // Bit flags from FW_RULE_FLAGS2

 } FW_RULE2_25, *PFW_RULE2_25;

 typedef struct _tag_FW_RULE2_26
 {
 struct _tag_FW_RULE2_26 *pNext;
 WORD wSchemaVersion;
 [string, range(1,512), ref]
 LPWSTR wszRuleId;
 [string, range(1,10001)]
 LPWSTR wszName;
 [string, range(1,10001)]

250 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

 LPWSTR wszDescription;
 DWORD dwProfiles;
 [range(FW_DIR_INVALID, FW_DIR_OUT)]
 FW_DIRECTION Direction;
 [range(0,256)]
 WORD wIpProtocol; //0-255 or FW_IP_PROTOCOL_ANY
 [switch_type(WORD), switch_is(wIpProtocol)]
 union
 {
 // Ports specified if wIpProtocol = 6(TCP) or 17(UDP)
 [case(6,17)]
 struct
 {
 FW_PORTS LocalPorts;
 FW_PORTS RemotePorts;
 };
 // ICMP types/codes specified if wIpProtocol = 1(ICMPv4) or 58(ICMPv6)
 [case(1)]
 FW_ICMP_TYPE_CODE_LIST V4TypeCodeList;
 [case(58)]
 FW_ICMP_TYPE_CODE_LIST V6TypeCodeList;
 [default]
 ;
 };

 FW_ADDRESSES LocalAddresses;
 FW_ADDRESSES RemoteAddresses;
 FW_INTERFACE_LUIDS LocalInterfaceIds;
 DWORD dwLocalInterfaceTypes; // Bit flags from FW_INTERFACE_TYPE
 [string, range(1,10001)]
 LPWSTR wszLocalApplication;
 [string, range(1,10001)]
 LPWSTR wszLocalService;
 [range(FW_RULE_ACTION_INVALID, FW_RULE_ACTION_MAX)]
 FW_RULE_ACTION Action;
 WORD wFlags; // Bit flags from FW_RULE_FLAGS

 [string, range(1,10001)]
 LPWSTR wszRemoteMachineAuthorizationList; //Authorized remote machines SDDL
[string, range(1,10001)]

 LPWSTR wszRemoteUserAuthorizationList; //Authorized remote users SDDL

 [string, range(1,10001)]
 LPWSTR wszEmbeddedContext;
 FW_OS_PLATFORM_LIST PlatformValidityList;

 FW_RULE_STATUS Status; //Parsing error if any, filled on return. On input, set
this to FW_RULE_STATUS_OK

 [range(FW_RULE_ORIGIN_INVALID, FW_RULE_ORIGIN_MAX)]
 FW_RULE_ORIGIN_TYPE Origin; //Rule origin, filled on enumerated rules. Ignored on
input

 [string, range(1,10001)]
 LPWSTR wszGPOName; //Name of originating GPO, if rule origin is GP.
 DWORD Reserved;

 // [switch_type(WORD), switch_is(wBinaryVersion)]
 // union
 // {
 // [case(wBinaryVersion >= 0x0210)]
 // struct
 // {
 [size_is((Reserved & FW_OBJECT_CTRL_FLAG_INCLUDE_METADATA) ? 1 : 0)]
 PFW_OBJECT_METADATA pMetaData;

 // };
 // }; // End union wBinaryVersion

 [string, range(1,10001)]
 WCHAR* wszLocalUserAuthorizationList; //Authorized local users SDDL

251 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

 [string, range(1,10001)]
 WCHAR * wszPackageId; // Application Container Package Id Sid

 [string, range(1,10001)]
 WCHAR * wszLocalUserOwner; // User Owner of the Rule

 // Trust Tuple Keywords
 DWORD dwTrustTupleKeywords;

 FW_NETWORK_NAMES OnNetworkNames;
 [string, range(1,10001)]
 // security realm Id
 WCHAR* wszSecurityRealmId; // Security Realm Id

 WORD wFlags2; // Bit flags from FW_RULE_FLAGS2

 FW_NETWORK_NAMES RemoteOutServerNames;

 } FW_RULE2_26, *PFW_RULE2_26;

 typedef struct _tag_FW_RULE
 {
 struct _tag_FW_RULE *pNext;
 WORD wSchemaVersion;
 [string, range(1,512), ref]
 LPWSTR wszRuleId;
 [string, range(1,10001)]
 LPWSTR wszName;
 [string, range(1,10001)]
 LPWSTR wszDescription;
 DWORD dwProfiles;
 [range(FW_DIR_INVALID, FW_DIR_OUT)]
 FW_DIRECTION Direction;
 [range(0,256)]
 WORD wIpProtocol; //0-255 or FW_IP_PROTOCOL_ANY
 [switch_type(WORD), switch_is(wIpProtocol)]
 union
 {
 // Ports specified if wIpProtocol = 6(TCP) or 17(UDP)
 [case(6,17)]
 struct
 {
 FW_PORTS LocalPorts;
 FW_PORTS RemotePorts;
 };
 // ICMP types/codes specified if wIpProtocol = 1(ICMPv4) or 58(ICMPv6)
 [case(1)]
 FW_ICMP_TYPE_CODE_LIST V4TypeCodeList;
 [case(58)]
 FW_ICMP_TYPE_CODE_LIST V6TypeCodeList;
 [default]
 ;
 };

 FW_ADDRESSES LocalAddresses;
 FW_ADDRESSES RemoteAddresses;
 FW_INTERFACE_LUIDS LocalInterfaceIds;
 DWORD dwLocalInterfaceTypes; // Bit flags from FW_INTERFACE_TYPE
 [string, range(1,10001)]
 LPWSTR wszLocalApplication;
 [string, range(1,10001)]
 LPWSTR wszLocalService;
 [range(FW_RULE_ACTION_INVALID, FW_RULE_ACTION_MAX)]
 FW_RULE_ACTION Action;
 WORD wFlags; // Bit flags from FW_RULE_FLAGS

 [string, range(1,10001)]
 LPWSTR wszRemoteMachineAuthorizationList; //Authorized remote machines SDDL
 [string, range(1,10001)]

252 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

 LPWSTR wszRemoteUserAuthorizationList; //Authorized remote users SDDL

 [string, range(1,10001)]
 LPWSTR wszEmbeddedContext;
 FW_OS_PLATFORM_LIST PlatformValidityList;

 FW_RULE_STATUS Status; //Parsing error if any, filled on return. On input, set
this to FW_RULE_STATUS_OK

 [range(FW_RULE_ORIGIN_INVALID, FW_RULE_ORIGIN_MAX)]
 FW_RULE_ORIGIN_TYPE Origin; //Rule origin, filled on enumerated rules. Ignored on
input

 [string, range(1,10001)]
 LPWSTR wszGPOName; //Name of originating GPO, if rule origin is GP.
 DWORD Reserved;

 // [switch_type(WORD), switch_is(wBinaryVersion)]
 // union
 // {
 // [case(wBinaryVersion >= 0x0210)]
 // struct
 // {
 [size_is((Reserved & FW_OBJECT_CTRL_FLAG_INCLUDE_METADATA) ? 1 : 0)]
 PFW_OBJECT_METADATA pMetaData;

 // };
 // }; // End union wBinaryVersion

 [string, range(1,10001)]
 WCHAR* wszLocalUserAuthorizationList; //Authorized local users SDDL

 [string, range(1,10001)]
 WCHAR * wszPackageId; // Application Container Package Id Sid

 [string, range(1,10001)]
 WCHAR * wszLocalUserOwner; // User Owner of the Rule

 // Trust Tuple Keywords
 DWORD dwTrustTupleKeywords;

 FW_NETWORK_NAMES OnNetworkNames;
 [string, range(1,10001)]
 // security realm Id
 WCHAR* wszSecurityRealmId; // Security Realm Id

 WORD wFlags2; // Bit flags from FW_RULE_FLAGS2

 FW_NETWORK_NAMES RemoteOutServerNames;

 [string, range(1,10001)]
 WCHAR* wszFqbn;

 DWORD compartmentId;

 } FW_RULE, *PFW_RULE;

 /**
 * *
 * Configuration settings structures *
 * *
 **/

 #define FW_PROFILE_CONFIG_LOG_FILE_SIZE_MIN 1
 #define FW_PROFILE_CONFIG_LOG_FILE_SIZE_MAX 32767

 //All config settings are read-only for dynamic store
 typedef enum _tag_FW_PROFILE_CONFIG

253 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

 { // Type
 FW_PROFILE_CONFIG_INVALID,
 FW_PROFILE_CONFIG_ENABLE_FW, // Boolean (as DWORD)
 FW_PROFILE_CONFIG_DISABLE_STEALTH_MODE, // Boolean (as DWORD)
 FW_PROFILE_CONFIG_SHIELDED, // Boolean (as DWORD)
 FW_PROFILE_CONFIG_DISABLE_UNICAST_RESPONSES_TO_MULTICAST_BROADCAST,
 // Boolean (as DWORD)
 FW_PROFILE_CONFIG_LOG_DROPPED_PACKETS, // Boolean (as DWORD)
 FW_PROFILE_CONFIG_LOG_SUCCESS_CONNECTIONS, // Boolean (as DWORD)
 FW_PROFILE_CONFIG_LOG_IGNORED_RULES, // Boolean (as DWORD)
 FW_PROFILE_CONFIG_LOG_MAX_FILE_SIZE, // DWORD (in KBytes)
 FW_PROFILE_CONFIG_LOG_FILE_PATH, // String
 FW_PROFILE_CONFIG_DISABLE_INBOUND_NOTIFICATIONS, // Boolean (as DWORD)
 FW_PROFILE_CONFIG_AUTH_APPS_ALLOW_USER_PREF_MERGE, // Boolean (as DWORD) -
GP_RSOP/GPO store only

 FW_PROFILE_CONFIG_GLOBAL_PORTS_ALLOW_USER_PREF_MERGE, // Boolean (as DWORD) -
GP_RSOP/GPO store only

 FW_PROFILE_CONFIG_ALLOW_LOCAL_POLICY_MERGE, // Boolean (as DWORD) -
GP_RSOP/GPO store only

 FW_PROFILE_CONFIG_ALLOW_LOCAL_IPSEC_POLICY_MERGE, // Boolean (as DWORD) -
GP_RSOP/GPO store only

 FW_PROFILE_CONFIG_DISABLED_INTERFACES, // PFW_INTERFACE_LUIDS - Local
store only

 FW_PROFILE_CONFIG_DEFAULT_OUTBOUND_ACTION, // DWORD(0 = Allow, 1 = block)
 FW_PROFILE_CONFIG_DEFAULT_INBOUND_ACTION, // DWORD(0 = Allow, 1 = block)
 FW_PROFILE_CONFIG_DISABLE_STEALTH_MODE_IPSEC_SECURED_PACKET_EXEMPTION,
 // Boolean (as DWORD)
 FW_PROFILE_CONFIG_MAX
 } FW_PROFILE_CONFIG;

 typedef enum _FW_GLOBAL_CONFIG_IPSEC_EXEMPT_VALUES
 {
 FW_GLOBAL_CONFIG_IPSEC_EXEMPT_NONE = 0x0000,
 FW_GLOBAL_CONFIG_IPSEC_EXEMPT_NEIGHBOR_DISC = 0x0001,
 FW_GLOBAL_CONFIG_IPSEC_EXEMPT_ICMP = 0x0002,
 FW_GLOBAL_CONFIG_IPSEC_EXEMPT_ROUTER_DISC = 0x0004,
 FW_GLOBAL_CONFIG_IPSEC_EXEMPT_NEIGHBOR_DISC_RFC =
 FW_GLOBAL_CONFIG_IPSEC_EXEMPT_NEIGHBOR_DISC |
FW_GLOBAL_CONFIG_IPSEC_EXEMPT_ROUTER_DISC,

 FW_GLOBAL_CONFIG_IPSEC_EXEMPT_DHCP = 0x0008,
 FW_GLOBAL_CONFIG_IPSEC_EXEMPT_MAX = 0x0010
 }FW_GLOBAL_CONFIG_IPSEC_EXEMPT_VALUES;

 typedef enum _FW_GLOBAL_CONFIG_PRESHARED_KEY_ENCODING_VALUES
 {
 FW_GLOBAL_CONFIG_PRESHARED_KEY_ENCODING_NONE = 0, // Preshared key is not encoded.
Kept in its wide-char format.

 FW_GLOBAL_CONFIG_PRESHARED_KEY_ENCODING_UTF_8,
 FW_GLOBAL_CONFIG_PRESHARED_KEY_ENCODING_MAX
 } FW_GLOBAL_CONFIG_PRESHARED_KEY_ENCODING_VALUES;

 typedef enum _FW_GLOBAL_CONFIG_IPSEC_THROUGH_NAT_VALUES
 {
 FW_GLOBAL_CONFIG_IPSEC_THROUGH_NAT_NEVER = 0, // IPsec does not
cross NAT boundaries

 FW_GLOBAL_CONFIG_IPSEC_THROUGH_NAT_SERVER_BEHIND_NAT,
 FW_GLOBAL_CONFIG_IPSEC_THROUGH_NAT_SERVER_AND_CLIENT_BEHIND_NAT,
 FW_GLOBAL_CONFIG_IPSEC_THROUGH_NAT_MAX
 } FW_GLOBAL_CONFIG_IPSEC_THROUGH_NAT_VALUES;

 #define FW_GLOBAL_CONFIG_CRL_CHECK_MAX 2
 #define FW_GLOBAL_CONFIG_SA_IDLE_TIME_MAX 3600
 #define FW_GLOBAL_CONFIG_SA_IDLE_TIME_MIN 300

 typedef enum _FW_GLOBAL_CONFIG_ENABLE_PACKET_QUEUE_FLAGS
 {
 FW_GLOBAL_CONFIG_PACKET_QUEUE_NONE,
 FW_GLOBAL_CONFIG_PACKET_QUEUE_INBOUND,
 FW_GLOBAL_CONFIG_PACKET_QUEUE_FORWARD,

254 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

 FW_GLOBAL_CONFIG_PACKET_QUEUE_MAX
 } FW_GLOBAL_CONFIG_ENABLE_PACKET_QUEUE_FLAGS;

 #define FW_GLOBAL_CONFIG_PACKET_QUEUE_VALIDATION_MASK 0x00000003

 //All config settings are read-only for dynamic store
 typedef enum _tag_FW_GLOBAL_CONFIG
 { // Type
 FW_GLOBAL_CONFIG_INVALID,
 FW_GLOBAL_CONFIG_POLICY_VERSION_SUPPORTED, // Policy version
supported by the Firewall service

 FW_GLOBAL_CONFIG_CURRENT_PROFILE, // FW_PROFILE_TYPE
(dynamic store only)

 FW_GLOBAL_CONFIG_DISABLE_STATEFUL_FTP, // Boolean (as DWORD)
 FW_GLOBAL_CONFIG_DISABLE_STATEFUL_PPTP, // Deprecated,
Boolean as (DWORD)

 FW_GLOBAL_CONFIG_SA_IDLE_TIME, // DWORD (300-3600
seconds)

 FW_GLOBAL_CONFIG_PRESHARED_KEY_ENCODING, // DWORD (a value
from FW_GLOBAL_CONFIG_PRESHARED_KEY_ENCODING_VALUES)

 FW_GLOBAL_CONFIG_IPSEC_EXEMPT, // DWORD (bit-flags
from FW_GLOBAL_CONFIG_IPSEC_EXEMPT_VALUES)

 // Max value:
FW_GLOBAL_CONFIG_IPSEC_EXEMPT_MAX-1

 FW_GLOBAL_CONFIG_CRL_CHECK, // DWORD 0 - disables
CRL checking

 // 1 - CRL checking
is attempted and certificate validation fails only if the

 // certificate is
revoked. Other failures that are encountered during CRL checking

 // (such as the
revocation URL being unreachable) do not cause certificate validation to fail.

 // 2 - checking is
required and that certificate validation fails if any error is encountered

 // during CRL
processing.

 FW_GLOBAL_CONFIG_IPSEC_THROUGH_NAT, //
FW_GLOBAL_CONFIG_IPSEC_THROUGH_NAT_VALUES

 FW_GLOBAL_CONFIG_POLICY_VERSION, // Policy version
 FW_GLOBAL_CONFIG_BINARY_VERSION_SUPPORTED, // Binary version
supported by the Firewall Service (structures)

 FW_GLOBAL_CONFIG_IPSEC_TUNNEL_REMOTE_MACHINE_AUTHORIZATION_LIST, // May be zero-length
to indicate that all machines or users are authorized or may contain

 FW_GLOBAL_CONFIG_IPSEC_TUNNEL_REMOTE_USER_AUTHORIZATION_LIST, // a null-terminated,
Unicode string describing a security descriptor in SDDL.

 FW_GLOBAL_CONFIG_OPPORTUNISTICALLY_MATCH_AUTH_SET_PER_KM, // Boolean (as DWORD)
 FW_GLOBAL_CONFIG_IPSEC_TRANSPORT_REMOTE_MACHINE_AUTHORIZATION_LIST,
 FW_GLOBAL_CONFIG_IPSEC_TRANSPORT_REMOTE_USER_AUTHORIZATION_LIST,
 FW_GLOBAL_CONFIG_ENABLE_PACKET_QUEUE,
 FW_GLOBAL_CONFIG_MAX
 } FW_GLOBAL_CONFIG;

 typedef enum _FW_CONFIG_FLAGS
 {
 FW_CONFIG_FLAG_RETURN_DEFAULT_IF_NOT_FOUND = 0x0001 // If specified, if FWGetConfig or
FWGetGlobalConfig fail to

 // find the configuration value in
the store, the call will succeed and

 // return the default value used by
the firewall service.

 // If not specified, if FWGetConfig
or FWGetGlobalConfig fail to

 // find the configuration value in
the store, the call will fail

 // with ERROR_FILE_NOT_FOUND.
 } FW_CONFIG_FLAGS;

 /**
 * *

255 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

 * Network state structures.
 * *
 **/

 // Based on INetwork (q.v.)
 typedef struct tag_FW_NETWORK
 {
 [string, unique]
 wchar_t* pszName;
 FW_PROFILE_TYPE ProfileType;
 } FW_NETWORK, *PFW_NETWORK;

 // Adapter that can have the firewall enabled/disabled.
 typedef struct tag_FW_ADAPTER
 {
 [string, unique]
 wchar_t* pszFriendlyName;
 GUID Guid;
 } FW_ADAPTER, *PFW_ADAPTER;

 typedef struct tag_FW_DIAG_APP
 {
 [string, unique]
 wchar_t* pszAppPath;
 } FW_DIAG_APP, *PFW_DIAG_APP;

 /**
 * *
 * Third-party firewall products structures.
 * *
 **/

 // Different types of rules that the firewall supports.
 typedef
 [v1_enum]
 enum tag_FW_RULE_CATEGORY
 {
 FW_RULE_CATEGORY_BOOT,
 FW_RULE_CATEGORY_STEALTH,
 FW_RULE_CATEGORY_FIREWALL,
 FW_RULE_CATEGORY_CONSEC,
 // Not a valid rule category -- only used for bounds checking.
 FW_RULE_CATEGORY_MAX
 } FW_RULE_CATEGORY, *PFW_RULE_CATEGORY;

 // Struct representing a third-party firewall product.
 typedef struct tag_FW_PRODUCT
 {
 // Currently, no flags are defined, so this is just a placeholder.
 DWORD dwFlags;
 // Array of rule types implemented by the firewall. May be zero length in
 // which case branding is confirmed but Windows Firewall functionality is
 // not replaced.
 DWORD dwNumRuleCategories;
 [size_is(dwNumRuleCategories), unique]
 FW_RULE_CATEGORY* pRuleCategories;
 [string, ref]
 wchar_t* pszDisplayName;

 // The following field is only used when enumerating the registered
 // products. It must be null when calling FWRegisterProduct.
 [string, unique]
 wchar_t* pszPathToSignedProductExe;
 } FW_PRODUCT, *PFW_PRODUCT;

256 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

 /**
 * *
 * Connection Security Rule structures *
 * *
 **/

 typedef enum _tag_FW_IP_VERSION
 {
 FW_IP_VERSION_INVALID,
 FW_IP_VERSION_V4,
 FW_IP_VERSION_V6,
 FW_IP_VERSION_MAX
 }FW_IP_VERSION;

 typedef enum _tag_FW_IPSEC_PHASE
 {
 FW_IPSEC_PHASE_INVALID,
 FW_IPSEC_PHASE_1,
 FW_IPSEC_PHASE_2,
 FW_IPSEC_PHASE_MAX
 }FW_IPSEC_PHASE;

 typedef enum _tag_FW_CS_RULE_FLAGS
 {
 FW_CS_RULE_FLAGS_NONE = 0x00,
 FW_CS_RULE_FLAGS_ACTIVE = 0x01,
 FW_CS_RULE_FLAGS_DTM = 0x02,
 FW_CS_RULE_FLAGS_TUNNEL_BYPASS_IF_ENCRYPTED = 0x08,
 FW_CS_RULE_FLAGS_OUTBOUND_CLEAR = 0x10,
 FW_CS_RULE_FLAGS_APPLY_AUTHZ = 0x20,
 FW_CS_RULE_FLAGS_KEY_MANAGER_ALLOW_DICTATE_KEY = 0x40,
 FW_CS_RULE_FLAGS_KEY_MANAGER_ALLOW_NOTIFY_KEY = 0x80,
 FW_CS_RULE_FLAGS_SECURITY_REALM = 0x100,
 FW_CS_RULE_FLAGS_MAX = 0x200,
 FW_CS_RULE_FLAGS_MAX_V2_1 = 0x02,
 FW_CS_RULE_FLAGS_MAX_V2_8 = 0x04,
 FW_CS_RULE_FLAGS_MAX_V2_10 = 0x40,
 FW_CS_RULE_FLAGS_MAX_V2_20 = 0x100
 }FW_CS_RULE_FLAGS;

 typedef enum _tag_FW_CS_RULE_ACTION
 {
 FW_CS_RULE_ACTION_INVALID,
 FW_CS_RULE_ACTION_SECURE_SERVER,
 FW_CS_RULE_ACTION_BOUNDARY,
 FW_CS_RULE_ACTION_SECURE,
 FW_CS_RULE_ACTION_DO_NOT_SECURE,
 FW_CS_RULE_ACTION_MAX
 }FW_CS_RULE_ACTION;

 typedef struct _tag_FW_CS_RULE2_0
 {
 struct _tag_FW_CS_RULE2_0 *pNext;
 WORD wSchemaVersion;
 [string, range(1,512), ref]
 WCHAR* wszRuleId;
 [string, range(1,10001)]
 WCHAR* wszName;
 [string, range(1,10001)]
 WCHAR* wszDescription;

 DWORD dwProfiles;

 FW_ADDRESSES Endpoint1;
 FW_ADDRESSES Endpoint2;
 FW_INTERFACE_LUIDS LocalInterfaceIds;
 DWORD dwLocalInterfaceTypes; // Bit flags from FW_INTERFACE_TYPE

257 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

 DWORD dwLocalTunnelEndpointV4;
 BYTE LocalTunnelEndpointV6[16];

 DWORD dwRemoteTunnelEndpointV4;
 BYTE RemoteTunnelEndpointV6[16];

 FW_PORTS Endpoint1Ports;
 FW_PORTS Endpoint2Ports;
 [range(0,256)]
 WORD wIpProtocol;
 [string, range(1,255)]
 WCHAR* wszPhase1AuthSet; // Set this to FW_DEFAULT_PHASE1_AUTH_SET to use
the default

 [string, range(1,255)]
 WCHAR* wszPhase2CryptoSet; // Set this to FW_DEFAULT_PHASE2_CRYPTO_SET to
use the default

 [string, range(1,255)]
 WCHAR* wszPhase2AuthSet; // If NULL, no phase 2 authentication is
performed

 // Set this to FW_DEFAULT_PHASE2_AUTH_SET to use
the default

 // Phase 1 crypto is global; Set Id unnecessary
 [range(FW_CS_RULE_ACTION_SECURE_SERVER, FW_CS_RULE_ACTION_MAX)]
 FW_CS_RULE_ACTION Action;
 WORD wFlags; // Bit flags from FW_CS_RULE_FLAGS
 [string, range(1,10001)]
 WCHAR* wszEmbeddedContext;
 FW_OS_PLATFORM_LIST PlatformValidityList;
 [range(FW_RULE_ORIGIN_INVALID, FW_RULE_ORIGIN_MAX-1)]
 FW_RULE_ORIGIN_TYPE Origin; //Rule origin, filled on enumerated rules. Ignored on
input

 [string, range(1,10001)]
 WCHAR* wszGPOName; //Name of originating GPO, if rule origin is GP.
 FW_RULE_STATUS Status; //Parsing error if any, filled on return. On input, set
this to FW_RULE_STATUS_OK

 }FW_CS_RULE2_0, *PFW_CS_RULE2_0;

 typedef enum _tag_FW_KEY_MODULE_
 {
 FW_KEY_MODULE_DEFAULT = 0x0,
 FW_KEY_MODULE_IKEv1 = 0x1,
 FW_KEY_MODULE_AUTHIP = 0x2,
 FW_KEY_MODULE_IKEv2 = 0x4,
 FW_KEY_MODULE_MAX = 0x8
 } FW_KEY_MODULE;

 typedef struct _tag_FW_CS_RULE2_10
 {
 struct _tag_FW_CS_RULE2_10 *pNext;
 WORD wSchemaVersion;
 [string, range(1,512), ref]
 WCHAR* wszRuleId;
 [string, range(1,10001)]
 WCHAR* wszName;
 [string, range(1,10001)]
 WCHAR* wszDescription;

 DWORD dwProfiles;

 FW_ADDRESSES Endpoint1;
 FW_ADDRESSES Endpoint2;
 FW_INTERFACE_LUIDS LocalInterfaceIds;
 DWORD dwLocalInterfaceTypes; // Bit flags from FW_INTERFACE_TYPE

 DWORD dwLocalTunnelEndpointV4;
 BYTE LocalTunnelEndpointV6[16];

 DWORD dwRemoteTunnelEndpointV4;

258 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

 BYTE RemoteTunnelEndpointV6[16];

 FW_PORTS Endpoint1Ports;
 FW_PORTS Endpoint2Ports;
 [range(0,256)]
 WORD wIpProtocol;
 [string, range(1,255)]
 WCHAR* wszPhase1AuthSet; // Set this to FW_DEFAULT_PHASE1_AUTH_SET to use
the default

 [string, range(1,255)]
 WCHAR* wszPhase2CryptoSet; // Set this to FW_DEFAULT_PHASE2_CRYPTO_SET to
use the default

 [string, range(1,255)]
 WCHAR* wszPhase2AuthSet; // If NULL, no phase 2 authentication is
performed

 // Set this to FW_DEFAULT_PHASE2_AUTH_SET to use
the default

 // Phase 1 crypto is global; Set Id unnecessary
 [range(FW_CS_RULE_ACTION_SECURE_SERVER, FW_CS_RULE_ACTION_MAX)]
 FW_CS_RULE_ACTION Action;
 WORD wFlags; // Bit flags from FW_CS_RULE_FLAGS
 [string, range(1,10001)]
 WCHAR* wszEmbeddedContext;
 FW_OS_PLATFORM_LIST PlatformValidityList;
 [range(FW_RULE_ORIGIN_INVALID, FW_RULE_ORIGIN_MAX-1)]
 FW_RULE_ORIGIN_TYPE Origin; //Rule origin, filled on enumerated rules. Ignored on
input

 [string, range(1,10001)]
 WCHAR* wszGPOName; //Name of originating GPO, if rule origin is GP.
 FW_RULE_STATUS Status; //Parsing error if any, filled on return. On input, set
this to FW_RULE_STATUS_OK

 [string, range(1,512)]
 WCHAR* wszMMParentRuleId;
 DWORD Reserved;

 [size_is((Reserved & FW_OBJECT_CTRL_FLAG_INCLUDE_METADATA) ? 1 : 0)]
 PFW_OBJECT_METADATA pMetaData;

 }FW_CS_RULE2_10, *PFW_CS_RULE2_10;

 typedef struct _tag_FW_CS_RULE
 {
 struct _tag_FW_CS_RULE *pNext;
 WORD wSchemaVersion;
 [string, range(1,512), ref]
 WCHAR* wszRuleId;
 [string, range(1,10001)]
 WCHAR* wszName;
 [string, range(1,10001)]
 WCHAR* wszDescription;

 DWORD dwProfiles;

 FW_ADDRESSES Endpoint1;
 FW_ADDRESSES Endpoint2;
 FW_INTERFACE_LUIDS LocalInterfaceIds;
 DWORD dwLocalInterfaceTypes; // Bit flags from FW_INTERFACE_TYPE

 DWORD dwLocalTunnelEndpointV4;
 BYTE LocalTunnelEndpointV6[16];

 DWORD dwRemoteTunnelEndpointV4;
 BYTE RemoteTunnelEndpointV6[16];

 FW_PORTS Endpoint1Ports;
 FW_PORTS Endpoint2Ports;
 [range(0,256)]
 WORD wIpProtocol;
 [string, range(1,255)]

259 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

 WCHAR* wszPhase1AuthSet; // Set this to FW_DEFAULT_PHASE1_AUTH_SET to use
the default

 [string, range(1,255)]
 WCHAR* wszPhase2CryptoSet; // Set this to FW_DEFAULT_PHASE2_CRYPTO_SET to
use the default

 [string, range(1,255)]
 WCHAR* wszPhase2AuthSet; // If NULL, no phase 2 authentication is
performed

 // Set this to FW_DEFAULT_PHASE2_AUTH_SET to use
the default

 // Phase 1 crypto is global; Set Id unnecessary
 [range(FW_CS_RULE_ACTION_SECURE_SERVER, FW_CS_RULE_ACTION_MAX)]
 FW_CS_RULE_ACTION Action;
 WORD wFlags; // Bit flags from FW_CS_RULE_FLAGS
 [string, range(1,10001)]
 WCHAR* wszEmbeddedContext;
 FW_OS_PLATFORM_LIST PlatformValidityList;
 [range(FW_RULE_ORIGIN_INVALID, FW_RULE_ORIGIN_MAX-1)]
 FW_RULE_ORIGIN_TYPE Origin; //Rule origin, filled on enumerated rules. Ignored on
input

 [string, range(1,10001)]
 WCHAR* wszGPOName; //Name of originating GPO, if rule origin is GP.
 FW_RULE_STATUS Status; //Parsing error if any, filled on return. On input, set
this to FW_RULE_STATUS_OK

 [string, range(1,512)]
 WCHAR* wszMMParentRuleId;
 DWORD Reserved;

 [size_is((Reserved & FW_OBJECT_CTRL_FLAG_INCLUDE_METADATA) ? 1 : 0)]
 PFW_OBJECT_METADATA pMetaData;

 [string, range(1,512)]
 WCHAR* wszRemoteTunnelEndpointFqdn;
 FW_ADDRESSES RemoteTunnelEndpoints;
 DWORD dwKeyModules;
 DWORD FwdPathSALifetime; //in seconds. Lifetime of SAs initiated by FWD
path traffic

 [string, range(1,10001)]
 LPWSTR wszTransportMachineAuthzSDDL; // SDDL describing machine
authorization

 [string, range(1,10001)]
 LPWSTR wszTransportUserAuthzSDDL; // SDDL describing user authorization

 }FW_CS_RULE, *PFW_CS_RULE;

 /***
 * *
 * Ipsec Authentication Sets (Phase 1 and 2) structures *
 * *
 ***/

 typedef enum _tag_FW_AUTH_METHOD
 {
 FW_AUTH_METHOD_INVALID,
 FW_AUTH_METHOD_ANONYMOUS, // Phase 1 and 2
 FW_AUTH_METHOD_MACHINE_KERB, // Phase 1 only
 FW_AUTH_METHOD_MACHINE_SHKEY, // Phase 1 (IKE) only
 FW_AUTH_METHOD_MACHINE_NTLM, // Phase 1 (AuthIp) only
 // If machine cert is specified for Phase2, it MUST be a health cert,
 // and no other authentication suites may be defined other than possibly anonymous.
 FW_AUTH_METHOD_MACHINE_CERT, // Phase 1 and 2
 FW_AUTH_METHOD_USER_KERB, // Phase 2 only
 FW_AUTH_METHOD_USER_CERT, // Phase 2 only
 FW_AUTH_METHOD_USER_NTLM, // Phase 2 only
 FW_AUTH_METHOD_MACHINE_RESERVED, // Phase 1 and 2
 FW_AUTH_METHOD_USER_RESERVED, // Phase 2

260 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

 FW_AUTH_METHOD_MAX,
 FW_AUTH_METHOD_MAX_2_10 = (FW_AUTH_METHOD_USER_NTLM + 1)
 }FW_AUTH_METHOD;

 typedef enum _tag_FW_AUTH_SUITE_FLAGS
 {
 FW_AUTH_SUITE_FLAGS_NONE = 0x0000,
 // For Method = FW_AUTH_METHOD_MACHINE_CERT, Phase 1 only
 FW_AUTH_SUITE_FLAGS_CERT_EXCLUDE_CA_NAME = 0x0001,
 // For Method = FW_AUTH_METHOD_MACHINE_CERT, Phase 1 and 2
 // For phase2, if Method = FW_AUTH_METHOD_MACHINE_CERT, this flag MUST be specified
 FW_AUTH_SUITE_FLAGS_HEALTH_CERT = 0x0002,
 // For Method = FW_AUTH_METHOD_MACHINE_CERT (Phase 1 and 2),FW_AUTH_METHOD_USER_CERT
 FW_AUTH_SUITE_FLAGS_PERFORM_CERT_ACCOUNT_MAPPING = 0x0004,
 FW_AUTH_SUITE_FLAGS_CERT_SIGNING_ECDSA256 = 0x0008,
 FW_AUTH_SUITE_FLAGS_CERT_SIGNING_ECDSA384 = 0x0010,

 FW_AUTH_SUITE_FLAGS_MAX_V2_1 = 0x0020,
 FW_AUTH_SUITE_FLAGS_INTERMEDIATE_CA = 0x0020,
 FW_AUTH_SUITE_FLAGS_MAX_V2_10 = 0x0040,
 FW_AUTH_SUITE_FLAGS_ALLOW_PROXY = 0x0040,
 FW_AUTH_SUITE_FLAGS_MAX = 0x0080

 }FW_AUTH_SUITE_FLAGS;

 typedef struct _tag_FW_AUTH_SUITE2_10
 {
 [range(FW_AUTH_METHOD_INVALID+1, FW_AUTH_METHOD_MAX)]
 FW_AUTH_METHOD Method;
 WORD wFlags; // Bit-flags from FW_AUTH_SUITE_FLAGS

 [switch_type(FW_AUTH_METHOD), switch_is(Method)]
 union
 {
 // For Method = FW_AUTH_METHOD_MACHINE_CERT
 // For Method = FW_AUTH_METHOD_USER_CERT

 [case(FW_AUTH_METHOD_MACHINE_CERT,FW_AUTH_METHOD_USER_CERT)]
 struct
 {
 [ref, string]
 WCHAR* wszCAName;
 };

 // For Method = FW_AUTH_METHOD_MACHINE_SHKEY
 [case(FW_AUTH_METHOD_MACHINE_SHKEY)]
 struct
 {
 [ref, string]
 WCHAR* wszSHKey;
 };
 [default]
 ;
 };
 }FW_AUTH_SUITE2_10, *PFW_AUTH_SUITE2_10;

 typedef enum _tag_FW_CERT_CRITERIA_NAME_TYPE
 {
 FW_CERT_CRITERIA_NAME_NONE,
 FW_CERT_CRITERIA_NAME_DNS,
 FW_CERT_CRITERIA_NAME_UPN,
 FW_CERT_CRITERIA_NAME_RFC822,
 FW_CERT_CRITERIA_NAME_CN,
 FW_CERT_CRITERIA_NAME_OU,
 FW_CERT_CRITERIA_NAME_O,
 FW_CERT_CRITERIA_NAME_DC,
 FW_CERT_CRITERIA_NAME_MAX
 }FW_CERT_CRITERIA_NAME_TYPE;

261 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

 typedef enum _tag_FW_CERT_CRITERIA_TYPE
 {
 FW_CERT_CRITERIA_TYPE_BOTH,
 FW_CERT_CRITERIA_TYPE_SELECTION,
 FW_CERT_CRITERIA_TYPE_VALIDATION,
 FW_CERT_CRITERIA_TYPE_MAX
 }FW_CERT_CRITERIA_TYPE;

 typedef enum _tag_FW_CERT_CRITERIA_FLAGS
 {
 FW_AUTH_CERT_CRITERIA_FLAGS_NONE = 0x0000,
 FW_AUTH_CERT_CRITERIA_FLAGS_FOLLOW_RENEWAL = 0x0001,
 FW_AUTH_CERT_CRITERIA_FLAGS_MAX = 0x0002

 }FW_AUTH_CERT_CRITERIA_FLAGS;

 typedef struct _tag_FW_CERT_CRITERIA
 {
 WORD wSchemaVersion;
 WORD wFlags;
 FW_CERT_CRITERIA_TYPE CertCriteriaType;
 FW_CERT_CRITERIA_NAME_TYPE NameType;
 [string, unique]
 LPWSTR wszName;
 DWORD dwNumEku;
 [size_is(dwNumEku), unique]
 LPSTR* ppEku;
 [string, unique]
 LPWSTR wszHash;
 }FW_CERT_CRITERIA, *PFW_CERT_CRITERIA;

 typedef struct _tag_FW_AUTH_SUITE
 {
 [range(FW_AUTH_METHOD_INVALID+1, FW_AUTH_METHOD_MAX)]
 FW_AUTH_METHOD Method;
 WORD wFlags; // Bit-flags from FW_AUTH_SUITE_FLAGS

 [switch_type(FW_AUTH_METHOD), switch_is(Method)]
 union
 {
 // For Method = FW_AUTH_METHOD_MACHINE_CERT
 // For Method = FW_AUTH_METHOD_USER_CERT

 [case(FW_AUTH_METHOD_MACHINE_CERT,FW_AUTH_METHOD_USER_CERT)]
 struct
 {
 [ref, string]
 WCHAR* wszCAName;
 [unique]
 PFW_CERT_CRITERIA pCertCriteria;
 };

 // For Method = FW_AUTH_METHOD_MACHINE_SHKEY
 [case(FW_AUTH_METHOD_MACHINE_SHKEY)]
 struct
 {
 [ref, string]
 WCHAR* wszSHKey;
 };

 // For Method = FW_AUTH_METHOD_MACHINE_KERB
 // For Method = FW_AUTH_METHOD_USER_KERB
 [case(FW_AUTH_METHOD_MACHINE_KERB, FW_AUTH_METHOD_USER_KERB)]
 struct
 {
 [unique, string]
 WCHAR* wszProxyServer;
 };
 [default]
 ;

262 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

 };
 }FW_AUTH_SUITE, *PFW_AUTH_SUITE;

 typedef enum _tag_FW_AUTH_SET_FLAGS
 {
 FW_AUTH_SET_FLAGS_NONE = 0x00,
 FW_AUTH_SET_FLAGS_MAX = 0x01,
 } FW_AUTH_SET_FLAGS;

 typedef struct _tag_FW_AUTH_SET2_10
 {
 struct _tag_FW_AUTH_SET2_10* pNext;
 WORD wSchemaVersion;

 [range(FW_IPSEC_PHASE_INVALID+1, FW_IPSEC_PHASE_MAX-1)]
 FW_IPSEC_PHASE IpSecPhase;
 [string, range(1,255), ref]
 WCHAR* wszSetId; // To make this the default auth set, set the Id to
FW_DEFAULT_PHASE1_AUTH_SET

 // or FW_DEFAULT_PHASE2_AUTH_SET as appropriate.
 [string, range(1,10001)]
 WCHAR* wszName;
 [string, range(1,10001)]
 WCHAR* wszDescription;
 [string, range(1,10001)]
 WCHAR* wszEmbeddedContext;
 [range(0, 10000)]
 DWORD dwNumSuites;
 [size_is(dwNumSuites)]
 PFW_AUTH_SUITE2_10 pSuites;

 [range(FW_RULE_ORIGIN_INVALID, FW_RULE_ORIGIN_MAX-1)]
 FW_RULE_ORIGIN_TYPE Origin; //Rule origin, filled on enumerated rules. Ignored on
input

 [string, range(1,10001)]
 WCHAR* wszGPOName; //Name of originating GPO, if rule origin is GP.
 FW_RULE_STATUS Status; //Parsing error if any, filled on return. On input, set
this to FW_RULE_STATUS_OK

 DWORD dwAuthSetFlags;
 }FW_AUTH_SET2_10, *PFW_AUTH_SET2_10;

 typedef struct _tag_FW_AUTH_SET
 {
 struct _tag_FW_AUTH_SET* pNext;
 WORD wSchemaVersion;

 [range(FW_IPSEC_PHASE_INVALID+1, FW_IPSEC_PHASE_MAX-1)]
 FW_IPSEC_PHASE IpSecPhase;
 [string, range(1,255), ref]
 WCHAR* wszSetId; // To make this the default auth set, set the Id to
FW_DEFAULT_PHASE1_AUTH_SET

 // or FW_DEFAULT_PHASE2_AUTH_SET as appropriate.
 [string, range(1,10001)]
 WCHAR* wszName;
 [string, range(1,10001)]
 WCHAR* wszDescription;
 [string, range(1,10001)]
 WCHAR* wszEmbeddedContext;
 [range(0, 10000)]
 DWORD dwNumSuites;
 [size_is(dwNumSuites)]
 PFW_AUTH_SUITE pSuites;

 [range(FW_RULE_ORIGIN_INVALID, FW_RULE_ORIGIN_MAX-1)]
 FW_RULE_ORIGIN_TYPE Origin; //Rule origin, filled on enumerated rules. Ignored on
input

 [string, range(1,10001)]
 WCHAR* wszGPOName; //Name of originating GPO, if rule origin is GP.
 FW_RULE_STATUS Status; //Parsing error if any, filled on return. On input, set
this to FW_RULE_STATUS_OK

263 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

 DWORD dwAuthSetFlags; //Flags from FW_AUTH_SET_FLAGS
 }FW_AUTH_SET, *PFW_AUTH_SET;

 /**
 * *
 * Ipsec Crypto Set structures *
 * *
 **/

 typedef enum _tag_FW_CRYPTO_KEY_EXCHANGE_TYPE
 {
 FW_CRYPTO_KEY_EXCHANGE_NONE = 0, //When enumerating SAs, this value may be returned.
Invalid for all other cases

 FW_CRYPTO_KEY_EXCHANGE_DH1,
 FW_CRYPTO_KEY_EXCHANGE_DH2,
 FW_CRYPTO_KEY_EXCHANGE_ECDH256,
 FW_CRYPTO_KEY_EXCHANGE_ECDH384,
 FW_CRYPTO_KEY_EXCHANGE_DH2048,
 FW_CRYPTO_KEY_EXCHANGE_DH24,
 FW_CRYPTO_KEY_EXCHANGE_MAX,
 FW_CRYPTO_KEY_EXCHANGE_DH14 = FW_CRYPTO_KEY_EXCHANGE_DH2048,
 FW_CRYPTO_KEY_EXCHANGE_MAX_V2_10 = FW_CRYPTO_KEY_EXCHANGE_DH24
 }FW_CRYPTO_KEY_EXCHANGE_TYPE;

 typedef enum _tag_FW_CRYPTO_ENCRYPTION_TYPE
 {
 FW_CRYPTO_ENCRYPTION_NONE,
 FW_CRYPTO_ENCRYPTION_DES,
 FW_CRYPTO_ENCRYPTION_3DES,
 FW_CRYPTO_ENCRYPTION_AES128,
 FW_CRYPTO_ENCRYPTION_AES192,
 FW_CRYPTO_ENCRYPTION_AES256,
 FW_CRYPTO_ENCRYPTION_AES_GCM128,
 FW_CRYPTO_ENCRYPTION_AES_GCM192,
 FW_CRYPTO_ENCRYPTION_AES_GCM256,
 FW_CRYPTO_ENCRYPTION_MAX,
 FW_CRYPTO_ENCRYPTION_MAX_V2_0 = FW_CRYPTO_ENCRYPTION_AES_GCM128
 }FW_CRYPTO_ENCRYPTION_TYPE;

 typedef enum _tag_FW_CRYPTO_HASH_TYPE
 {
 FW_CRYPTO_HASH_NONE,
 FW_CRYPTO_HASH_MD5,
 FW_CRYPTO_HASH_SHA1,
 FW_CRYPTO_HASH_SHA256,
 FW_CRYPTO_HASH_SHA384,
 FW_CRYPTO_HASH_AES_GMAC128,
 FW_CRYPTO_HASH_AES_GMAC192,
 FW_CRYPTO_HASH_AES_GMAC256,
 FW_CRYPTO_HASH_MAX,
 FW_CRYPTO_HASH_MAX_V2_0 = FW_CRYPTO_HASH_SHA256
 }FW_CRYPTO_HASH_TYPE;

 typedef enum _tag_FW_CRYPTO_PROTOCOL_TYPE
 {
 FW_CRYPTO_PROTOCOL_INVALID,
 FW_CRYPTO_PROTOCOL_AH,
 FW_CRYPTO_PROTOCOL_ESP,
 FW_CRYPTO_PROTOCOL_BOTH,
 FW_CRYPTO_PROTOCOL_AUTH_NO_ENCAP,
 FW_CRYPTO_PROTOCOL_MAX,
 FW_CRYPTO_PROTOCOL_MAX_2_1 = (FW_CRYPTO_PROTOCOL_BOTH + 1)
 }FW_CRYPTO_PROTOCOL_TYPE;

 typedef enum _tag_FW_CRYPTO_SET_FLAGS

264 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

 {
 FW_CRYPTO_SET_FLAGS_NONE = 0x00,
 FW_CRYPTO_SET_FLAGS_MAX = 0x01,
 } FW_CRYPTO_SET_FLAGS;

 typedef struct _tag_FW_PHASE1_CRYPTO_SUITE
 {
 [range(FW_CRYPTO_KEY_EXCHANGE_NONE, FW_CRYPTO_KEY_EXCHANGE_MAX-1)]
 FW_CRYPTO_KEY_EXCHANGE_TYPE KeyExchange;
 [range(FW_CRYPTO_ENCRYPTION_NONE+1, FW_CRYPTO_ENCRYPTION_MAX-1)]
 FW_CRYPTO_ENCRYPTION_TYPE Encryption;
 [range(FW_CRYPTO_HASH_NONE+1, FW_CRYPTO_HASH_MAX-1)]
 FW_CRYPTO_HASH_TYPE Hash;
 DWORD dwP1CryptoSuiteFlags;
 }FW_PHASE1_CRYPTO_SUITE, *PFW_PHASE1_CRYPTO_SUITE;

 typedef struct _tag_FW_PHASE2_CRYPTO_SUITE
 {
 [range(FW_CRYPTO_PROTOCOL_INVALID+1, FW_CRYPTO_PROTOCOL_MAX-1)]
 FW_CRYPTO_PROTOCOL_TYPE Protocol;
 FW_CRYPTO_HASH_TYPE AhHash;
 FW_CRYPTO_HASH_TYPE EspHash;
 FW_CRYPTO_ENCRYPTION_TYPE Encryption;
 DWORD dwTimeoutMinutes;
 DWORD dwTimeoutKBytes;
 DWORD dwP2CryptoSuiteFlags;
 }FW_PHASE2_CRYPTO_SUITE, *PFW_PHASE2_CRYPTO_SUITE;

 typedef enum _tag_FW_PHASE1_CRYPTO_FLAGS
 {
 FW_PHASE1_CRYPTO_FLAGS_NONE = 0x00,
 FW_PHASE1_CRYPTO_FLAGS_DO_NOT_SKIP_DH = 0x01,
 FW_PHASE1_CRYPTO_FLAGS_MAX = 0x02
 }FW_PHASE1_CRYPTO_FLAGS;

 typedef enum _tag_FW_PHASE2_CRYPTO_PFS
 {
 FW_PHASE2_CRYPTO_PFS_INVALID,
 FW_PHASE2_CRYPTO_PFS_DISABLE,
 FW_PHASE2_CRYPTO_PFS_PHASE1,
 FW_PHASE2_CRYPTO_PFS_DH1,
 FW_PHASE2_CRYPTO_PFS_DH2,
 FW_PHASE2_CRYPTO_PFS_DH2048,
 FW_PHASE2_CRYPTO_PFS_ECDH256,
 FW_PHASE2_CRYPTO_PFS_ECDH384,
 FW_PHASE2_CRYPTO_PFS_DH24,
 FW_PHASE2_CRYPTO_PFS_MAX,
 FW_PHASE2_CRYPTO_PFS_MAX_V2_10 = FW_PHASE2_CRYPTO_PFS_DH24
 }FW_PHASE2_CRYPTO_PFS;

 typedef struct _tag_FW_CRYPTO_SET
 {
 struct _tag_FW_CRYPTO_SET* pNext;
 WORD wSchemaVersion;
 [range(FW_IPSEC_PHASE_INVALID+1, FW_IPSEC_PHASE_MAX-1)]
 FW_IPSEC_PHASE IpSecPhase;
 [string, range(1,255), ref]
 WCHAR* wszSetId; // For phase 1 crypto, this MUST be set to
FW_PHASE1_CRYPTO_SET (there can only be one phase 1 crypto set)

 // For phase 2 crypto, set this to
FW_DEFAULT_PHASE2_CRYPTO_SET to make it the default.

 [string, range(1,10001)]
 WCHAR* wszName;
 [string, range(1,10001)]
 WCHAR* wszDescription;

265 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

 [string, range(1,10001)]
 WCHAR* wszEmbeddedContext;

 [switch_type(FW_IPSEC_PHASE), switch_is(IpSecPhase)]
 union
 {
 [case(FW_IPSEC_PHASE_1)]
 struct
 {
 WORD wFlags; // Bit-flags from FW_PHASE1_CRYPTO_FLAGS
 [range(0, 10000)]
 DWORD dwNumPhase1Suites;
 [size_is(dwNumPhase1Suites)]
 PFW_PHASE1_CRYPTO_SUITE pPhase1Suites;
 DWORD dwTimeOutMinutes;
 DWORD dwTimeOutSessions;
 };
 [case(FW_IPSEC_PHASE_2)]
 struct
 {
 FW_PHASE2_CRYPTO_PFS Pfs;
 [range(0, 10000)]
 DWORD dwNumPhase2Suites;
 [size_is(dwNumPhase2Suites)]
 PFW_PHASE2_CRYPTO_SUITE pPhase2Suites;
 };
 };
 [range(FW_RULE_ORIGIN_INVALID, FW_RULE_ORIGIN_MAX-1)]
 FW_RULE_ORIGIN_TYPE Origin; //Rule origin, filled on enumerated rules. Ignored on
input

 [string, range(1,10001)]
 WCHAR* wszGPOName; //Name of originating GPO, if rule origin is GP.
 FW_RULE_STATUS Status; //Parsing error if any, filled on return. On input, set
this to FW_RULE_STATUS_OK

 DWORD dwCryptoSetFlags; //flags from FW_CRYPTO_SET_FLAGS
 }FW_CRYPTO_SET, *PFW_CRYPTO_SET;

 /**
 * *
 * SA structures (dynamic store only) *
 * *
 **/

 typedef struct _tag_FW_BYTE_BLOB
 {
 [range(0, 10000)]
 DWORD dwSize;
 [size_is(dwSize)]
 BYTE* Blob;
 }FW_BYTE_BLOB, *PFW_BYTE_BLOB;

 typedef struct _tag_FW_COOKIE_PAIR
 {
 UINT64 Initiator;
 UINT64 Responder;
 }FW_COOKIE_PAIR, *PFW_COOKIE_PAIR;

 typedef enum _tag_FW_PHASE1_KEY_MODULE_TYPE
 {
 FW_PHASE1_KEY_MODULE_INVALID,
 FW_PHASE1_KEY_MODULE_IKE,
 FW_PHASE1_KEY_MODULE_AUTH_IP,
 FW_PHASE1_KEY_MODULE_MAX
 }FW_PHASE1_KEY_MODULE_TYPE;

 typedef struct _tag_FW_CERT_INFO
 {
 FW_BYTE_BLOB SubjectName;

266 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

 [range(FW_AUTH_SUITE_FLAGS_NONE, FW_AUTH_SUITE_FLAGS_MAX-1)]
 //only FW_AUTH_SUITE_FLAGS_HEALTH_CERT and/or
FW_AUTH_SUITE_FLAGS_PERFORM_CERT_ACCOUNT_MAPPING will be set

 DWORD dwCertFlags; //bit-flags from FW_AUTH_SUITE_FLAGS
 }FW_CERT_INFO, *PFW_CERT_INFO;

 typedef struct _tag_FW_AUTH_INFO
 {
 [range(FW_AUTH_METHOD_INVALID + 1, FW_AUTH_METHOD_MAX)]
 FW_AUTH_METHOD AuthMethod;
 [switch_type(FW_AUTH_METHOD), switch_is(AuthMethod)]
 union
 {
 [case(FW_AUTH_METHOD_MACHINE_CERT,FW_AUTH_METHOD_USER_CERT)]
 //for auth method = cert
 struct
 {
 FW_CERT_INFO MyCert;
 FW_CERT_INFO PeerCert;
 };
 [case(FW_AUTH_METHOD_MACHINE_KERB,FW_AUTH_METHOD_USER_KERB,
 FW_AUTH_METHOD_MACHINE_RESERVED,FW_AUTH_METHOD_USER_RESERVED)]
 //for auth_method = kerb
 struct
 {
 [string, range(1,10001)]
 WCHAR* wszMyId;
 [string, range(1,10001)]
 WCHAR* wszPeerId;
 };
 [default]
 ;
 };
 DWORD dwAuthInfoFlags;
 }FW_AUTH_INFO, *PFW_AUTH_INFO;

 typedef struct _tag_FW_ENDPOINTS
 {
 [range(FW_IP_VERSION_INVALID+1, FW_IP_VERSION_MAX-1)]
 FW_IP_VERSION IpVersion;
 DWORD dwSourceV4Address;
 DWORD dwDestinationV4Address;
 BYTE SourceV6Address[16];
 BYTE DestinationV6Address[16];
 }FW_ENDPOINTS, *PFW_ENDPOINTS;

 typedef struct _tag_FW_PHASE1_SA_DETAILS
 {
 UINT64 SaId;
 [range(FW_PHASE1_KEY_MODULE_INVALID+1, FW_PHASE1_KEY_MODULE_MAX-1)]
 FW_PHASE1_KEY_MODULE_TYPE KeyModuleType;

 FW_ENDPOINTS Endpoints; //0 = Any

 FW_PHASE1_CRYPTO_SUITE SelectedProposal;
 DWORD dwProposalLifetimeKBytes; //currently not supported
 DWORD dwProposalLifetimeMinutes;
 DWORD dwProposalMaxNumPhase2;

 FW_COOKIE_PAIR CookiePair;

 PFW_AUTH_INFO pFirstAuth; //First authentication - always present
 PFW_AUTH_INFO pSecondAuth; //First authentication - may be NULL

 DWORD dwP1SaFlags; // currently set to 0
 }FW_PHASE1_SA_DETAILS, *PFW_PHASE1_SA_DETAILS;

 typedef enum _tag_FW_PHASE2_TRAFFIC_TYPE
 {

267 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

 FW_PHASE2_TRAFFIC_TYPE_INVALID,
 FW_PHASE2_TRAFFIC_TYPE_TRANSPORT,
 FW_PHASE2_TRAFFIC_TYPE_TUNNEL,
 FW_PHASE2_TRAFFIC_TYPE_MAX
 }FW_PHASE2_TRAFFIC_TYPE;

 typedef struct _tag_FW_PHASE2_SA_DETAILS
 {
 UINT64 SaId;
 [range(FW_DIR_INVALID+1, FW_DIR_MAX-1)]
 FW_DIRECTION Direction;

 FW_ENDPOINTS Endpoints; //0 = Any

 WORD wLocalPort; //0 = Any
 WORD wRemotePort; //0 = Any
 WORD wIpProtocol; //0-255 or FW_IP_PROTOCOL_ANY

 FW_PHASE2_CRYPTO_SUITE SelectedProposal;
 FW_PHASE2_CRYPTO_PFS Pfs;

 GUID TransportFilterId;

 DWORD dwP2SaFlags; // currently set to 0

 }FW_PHASE2_SA_DETAILS, *PFW_PHASE2_SA_DETAILS;

 typedef
 [switch_type(FW_PROFILE_CONFIG)]
 union _FW_PROFILE_CONFIG_VALUE
 {
 [case(FW_PROFILE_CONFIG_LOG_FILE_PATH)]
 [string, range(1,10001)]
 WCHAR* wszStr;
 [case(FW_PROFILE_CONFIG_DISABLED_INTERFACES)]
 PFW_INTERFACE_LUIDS pDisabledInterfaces;

 [case(FW_PROFILE_CONFIG_ENABLE_FW,
 FW_PROFILE_CONFIG_DISABLE_STEALTH_MODE,
 FW_PROFILE_CONFIG_SHIELDED,
 FW_PROFILE_CONFIG_DISABLE_UNICAST_RESPONSES_TO_MULTICAST_BROADCAST,
 FW_PROFILE_CONFIG_LOG_DROPPED_PACKETS,
 FW_PROFILE_CONFIG_LOG_SUCCESS_CONNECTIONS,
 FW_PROFILE_CONFIG_LOG_IGNORED_RULES,
 FW_PROFILE_CONFIG_LOG_MAX_FILE_SIZE,
 FW_PROFILE_CONFIG_DISABLE_INBOUND_NOTIFICATIONS,
 FW_PROFILE_CONFIG_AUTH_APPS_ALLOW_USER_PREF_MERGE,
 FW_PROFILE_CONFIG_GLOBAL_PORTS_ALLOW_USER_PREF_MERGE,
 FW_PROFILE_CONFIG_ALLOW_LOCAL_POLICY_MERGE,
 FW_PROFILE_CONFIG_ALLOW_LOCAL_IPSEC_POLICY_MERGE,
 FW_PROFILE_CONFIG_DEFAULT_OUTBOUND_ACTION,
 FW_PROFILE_CONFIG_DEFAULT_INBOUND_ACTION,
 FW_PROFILE_CONFIG_DISABLE_STEALTH_MODE_IPSEC_SECURED_PACKET_EXEMPTION)]
 DWORD* pdwVal;
 }FW_PROFILE_CONFIG_VALUE, *PFW_PROFILE_CONFIG_VALUE;

 /***
 * *
 * Main Mode Rule Structures *
 * *
 ***/

 typedef struct _tag_FW_MM_RULE
 {
 struct _tag_FW_MM_RULE *pNext;
 WORD wSchemaVersion;

268 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

 [string, range(1,512), ref]
 WCHAR* wszRuleId;
 [string, range(1,10001)]
 WCHAR* wszName;
 [string, range(1,10001)]
 WCHAR* wszDescription;

 DWORD dwProfiles;

 FW_ADDRESSES Endpoint1;
 FW_ADDRESSES Endpoint2;
 [string, range(1,255)]
 WCHAR* wszPhase1AuthSet; // Set this to FW_DEFAULT_PHASE1_AUTH_SET to use
the default

 [string, range(1,255)]
 WCHAR* wszPhase1CryptoSet; // Set this to FW_DEFAULT_PHASE1_CRYPTO_SET to
use the default

 WORD wFlags; // Bit flags from FW_CS_RULE_FLAGS
 [string, range(1,10001)]
 WCHAR* wszEmbeddedContext;
 FW_OS_PLATFORM_LIST PlatformValidityList;
 [range(FW_RULE_ORIGIN_INVALID, FW_RULE_ORIGIN_MAX-1)]
 FW_RULE_ORIGIN_TYPE Origin; //Rule origin, filled on enumerated rules. Ignored on
input

 [string, range(1,10001)]
 WCHAR* wszGPOName; //Name of originating GPO, if rule origin is GP.
 FW_RULE_STATUS Status; //Parsing error if any, filled on return. On input, set
this to FW_RULE_STATUS_OK

 DWORD Reserved;

 [size_is((Reserved & FW_OBJECT_CTRL_FLAG_INCLUDE_METADATA) ? 1 : 0)]
 PFW_OBJECT_METADATA pMetaData;

 }FW_MM_RULE, *PFW_MM_RULE;

 /***
 * *
 * Query Structures *
 * *
 ***/

 typedef enum _tag_FW_MATCH_KEY
 {
 FW_MATCH_KEY_PROFILE,
 FW_MATCH_KEY_STATUS,
 FW_MATCH_KEY_OBJECTID,
 FW_MATCH_KEY_FILTERID,
 FW_MATCH_KEY_APP_PATH, //The APP Path
 FW_MATCH_KEY_PROTOCOL,
 FW_MATCH_KEY_LOCAL_PORT,
 FW_MATCH_KEY_REMOTE_PORT,
 FW_MATCH_KEY_GROUP,
 FW_MATCH_KEY_SVC_NAME,
 FW_MATCH_KEY_DIRECTION,
 FW_MATCH_KEY_LOCAL_USER_OWNER,
 FW_MATCH_KEY_PACKAGE_ID,
 FW_MATCH_KEY_FQBN,
 FW_MATCH_KEY_COMPARTMENT_ID,
 FW_MATCH_KEY_MAX
 }FW_MATCH_KEY;

 typedef enum _tag_FW_DATA_TYPE
 {
 FW_DATA_TYPE_EMPTY,
 FW_DATA_TYPE_UINT8,
 FW_DATA_TYPE_UINT16,
 FW_DATA_TYPE_UINT32,
 FW_DATA_TYPE_UINT64,

269 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

 FW_DATA_TYPE_UNICODE_STRING
 }FW_DATA_TYPE;

 typedef struct _tag_FW_MATCH_VALUE
 {
 FW_DATA_TYPE type;
 [switch_type(FW_DATA_TYPE), switch_is(type)]
 union
 {
 [case(FW_DATA_TYPE_UINT8)]
 UINT8 uInt8;
 [case(FW_DATA_TYPE_UINT16)]
 UINT16 uInt16;
 [case(FW_DATA_TYPE_UINT32)]
 UINT32 uInt32;
 [case(FW_DATA_TYPE_UINT64)]
 UINT64 uInt64;
 [case(FW_DATA_TYPE_UNICODE_STRING)]
 struct
 {
 [string, range(1,10001)]
 LPWSTR wszString;
 };

 [case(FW_DATA_TYPE_EMPTY)]
 ;

 };
 }FW_MATCH_VALUE;

 typedef enum _tag_FW_MATCH_TYPE
 {
 FW_MATCH_TYPE_TRAFFIC_MATCH,
 FW_MATCH_TYPE_EQUAL,
 FW_MATCH_TYPE_MAX
 }FW_MATCH_TYPE;

 typedef struct _tag_FW_QUERY_CONDITION
 {
 FW_MATCH_KEY matchKey;
 FW_MATCH_TYPE matchType;
 FW_MATCH_VALUE matchValue;
 }FW_QUERY_CONDITION, *PFW_QUERY_CONDITION;

 typedef struct _tag_FW_QUERY_CONDITIONS
 {
 DWORD dwNumEntries;
 [size_is(dwNumEntries)]
 FW_QUERY_CONDITION *AndedConditions;
 }FW_QUERY_CONDITIONS, *PFW_QUERY_CONDITIONS;

 typedef struct _tag_FW_QUERY
 {
 WORD wSchemaVersion;
 UINT32 dwNumEntries;
 [size_is(dwNumEntries)]
 FW_QUERY_CONDITIONS *ORConditions;

 FW_RULE_STATUS Status;
 }FW_QUERY, *PFW_QUERY;

 cpp_quote("#endif //__FIREWALL_H_")

 cpp_quote("#define MIDL_user_allocate MIDL_fw_allocate")
 cpp_quote("#define MIDL_user_free MIDL_fw_free")
 cpp_quote("void * __RPC_USER MIDL_fw_allocate(size_t size);")

270 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

 cpp_quote("void __RPC_USER MIDL_fw_free(void *);")

 [
 uuid(6b5bdd1e-528c-422c-af8c-a4079be4fe48),
 version(1.0),
 pointer_default(unique)
]
 interface RemoteFW

 {

 typedef
 handle_t FW_CONN_HANDLE;

 typedef
 [context_handle]
 HANDLE FW_POLICY_STORE_HANDLE;

 typedef
 [ref]
 FW_POLICY_STORE_HANDLE *PFW_POLICY_STORE_HANDLE;

 typedef
 [context_handle]
 void* FW_PRODUCT_HANDLE;

 DWORD
 RRPC_FWOpenPolicyStore(
 [in] FW_CONN_HANDLE rpcConnHandle,
 [in] WORD BinaryVersion,
 [in, range(FW_STORE_TYPE_INVALID+1, FW_STORE_TYPE_MAX-1)] FW_STORE_TYPE
StoreType,

 [in, range(FW_POLICY_ACCESS_RIGHT_INVALID+1, FW_POLICY_ACCESS_RIGHT_MAX-1)]
FW_POLICY_ACCESS_RIGHT AccessRight,

 [in] DWORD dwFlags,
 [out] PFW_POLICY_STORE_HANDLE phPolicyStore
);

 DWORD
 RRPC_FWClosePolicyStore(
 [in] FW_CONN_HANDLE rpcConnHandle,
 [in, out] PFW_POLICY_STORE_HANDLE phPolicyStore
);

 DWORD
 RRPC_FWRestoreDefaults([in] FW_CONN_HANDLE rpcConnHandle);

 DWORD
 RRPC_FWGetGlobalConfig(
 [in] FW_CONN_HANDLE rpcConnHandle,
 [in] WORD BinaryVersion,
 [in] FW_STORE_TYPE StoreType,
 [in, range(FW_GLOBAL_CONFIG_INVALID+1, FW_GLOBAL_CONFIG_MAX-1)]
 FW_GLOBAL_CONFIG configID,
 [in] DWORD dwFlags, // Bit-wise combination of flags
from FW_CONFIG_FLAGS

 [in, out, unique, size_is(cbData), length_is(*pcbTransmittedLen)]
 BYTE* pBuffer,
 [in] DWORD cbData,
 [in,out] LPDWORD pcbTransmittedLen,
 [out] LPDWORD pcbRequired
);

271 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

 DWORD
 RRPC_FWSetGlobalConfig(
 [in] FW_CONN_HANDLE rpcConnHandle,
 [in] WORD BinaryVersion,
 [in] FW_STORE_TYPE StoreType,
 [in, range(FW_GLOBAL_CONFIG_INVALID+1, FW_GLOBAL_CONFIG_MAX-1)] FW_GLOBAL_CONFIG
configID,

 [in, unique, size_is(dwBufSize)]
 BYTE * lpBuffer,
 [in, range(0, 10*1024)] DWORD dwBufSize
);

 DWORD
 RRPC_FWAddFirewallRule(
 [in] FW_CONN_HANDLE rpcConnHandle,
 [in] FW_POLICY_STORE_HANDLE hPolicyStore,
 [in] PFW_RULE2_0 pRule
);

 DWORD
 RRPC_FWSetFirewallRule(
 [in] FW_CONN_HANDLE rpcConnHandle,
 [in] FW_POLICY_STORE_HANDLE hPolicyStore,
 [in] PFW_RULE2_0 pRule
);

 DWORD
 RRPC_FWDeleteFirewallRule(
 [in] FW_CONN_HANDLE rpcConnHandle,
 [in] FW_POLICY_STORE_HANDLE hPolicyStore,
 [in, string, ref] LPCWSTR wszRuleID
);

 DWORD
 RRPC_FWDeleteAllFirewallRules(
 [in] FW_CONN_HANDLE rpcConnHandle,
 [in] FW_POLICY_STORE_HANDLE hPolicyStore
);

 DWORD
 RRPC_FWEnumFirewallRules(
 [in] FW_CONN_HANDLE rpcConnHandle,
 [in] FW_POLICY_STORE_HANDLE hPolicyStore,
 [in] DWORD dwFilteredByStatus,
 [in] DWORD dwProfileFilter, // Bit-flags from FW_PROFILE_TYPE
 [in] WORD wFlags, // Bit-flags from ENUM_RULES_FLAGS
 [out, ref] DWORD *pdwNumRules,
 [out] PFW_RULE2_0 *ppRules
);

 DWORD
 RRPC_FWGetConfig(
 [in] FW_CONN_HANDLE rpcConnHandle,
 [in] FW_POLICY_STORE_HANDLE hPolicyStore,
 [in, range(FW_PROFILE_CONFIG_ENABLE_FW, FW_PROFILE_CONFIG_MAX-1)] FW_PROFILE_CONFIG
configID,

 [in] FW_PROFILE_TYPE Profile,
 [in] DWORD dwFlags, // Bit-wise combination of flags
from FW_CONFIG_FLAGS

 [in, out, unique, size_is(cbData), length_is(*pcbTransmittedLen)]
 BYTE* pBuffer,
 [in] DWORD cbData,

272 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

 [in,out] LPDWORD pcbTransmittedLen,
 [out] LPDWORD pcbRequired
);

 DWORD
 RRPC_FWSetConfig(
 [in] FW_CONN_HANDLE rpcConnHandle,
 [in] FW_POLICY_STORE_HANDLE hPolicyStore,
 [in, range(FW_PROFILE_CONFIG_ENABLE_FW, FW_PROFILE_CONFIG_MAX-1)] FW_PROFILE_CONFIG
configID,

 [in] FW_PROFILE_TYPE Profile,
 [in, switch_is(configID)] FW_PROFILE_CONFIG_VALUE pConfig,
 [in, range(0, 10*1024)] DWORD dwBufSize
);

 DWORD
 RRPC_FWAddConnectionSecurityRule(
 [in] FW_CONN_HANDLE rpcConnHandle,
 [in] FW_POLICY_STORE_HANDLE hPolicyStore,
 [in] PFW_CS_RULE2_0 pRule
);

 DWORD
 RRPC_FWSetConnectionSecurityRule(
 [in] FW_CONN_HANDLE rpcConnHandle,
 [in] FW_POLICY_STORE_HANDLE hPolicyStore,
 [in] PFW_CS_RULE2_0 pRule
);

 DWORD
 RRPC_FWDeleteConnectionSecurityRule(
 [in] FW_CONN_HANDLE rpcConnHandle,
 [in] FW_POLICY_STORE_HANDLE hPolicyStore,
 [in, string, ref] LPWSTR pRuleId
);

 DWORD
 RRPC_FWDeleteAllConnectionSecurityRules(
 [in] FW_CONN_HANDLE rpcConnHandle,
 [in] FW_POLICY_STORE_HANDLE hPolicyStore
);

 DWORD
 RRPC_FWEnumConnectionSecurityRules(
 [in] FW_CONN_HANDLE rpcConnHandle,
 [in] FW_POLICY_STORE_HANDLE hPolicyStore,
 [in] DWORD dwFilteredByStatus,// Bit-flags from
FW_RULE_STATUS_CLASS

 [in] DWORD dwProfileFilter, // Bit-flags from FW_PROFILE_TYPE
 [in] WORD wFlags, // Bit-flags from FW_ENUM_RULES_FLAGS
 [out, ref] DWORD * pdwNumRules,
 [out] PFW_CS_RULE2_0* ppRules
);

 DWORD
 RRPC_FWAddAuthenticationSet(
 [in] FW_CONN_HANDLE rpcConnHandle,
 [in] FW_POLICY_STORE_HANDLE hPolicyStore,
 [in] PFW_AUTH_SET2_10 pAuth
);

 DWORD

273 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

 RRPC_FWSetAuthenticationSet(
 [in] FW_CONN_HANDLE rpcConnHandle,
 [in] FW_POLICY_STORE_HANDLE hPolicyStore,
 [in] PFW_AUTH_SET2_10 pAuth
);

 DWORD
 RRPC_FWDeleteAuthenticationSet(
 [in] FW_CONN_HANDLE rpcConnHandle,
 [in] FW_POLICY_STORE_HANDLE hPolicyStore,
 [in, range(FW_IPSEC_PHASE_INVALID+1, FW_IPSEC_PHASE_MAX-1)] FW_IPSEC_PHASE
IpSecPhase,

 [in, string, ref] LPCWSTR wszSetId
);

 DWORD
 RRPC_FWDeleteAllAuthenticationSets(
 [in] FW_CONN_HANDLE rpcConnHandle,
 [in] FW_POLICY_STORE_HANDLE hPolicyStore,
 [in, range(FW_IPSEC_PHASE_INVALID+1, FW_IPSEC_PHASE_MAX-1)] FW_IPSEC_PHASE
IpSecPhase

);

 DWORD
 RRPC_FWEnumAuthenticationSets(
 [in] FW_CONN_HANDLE rpcConnHandle,
 [in] FW_POLICY_STORE_HANDLE hPolicyStore,
 [in, range(FW_IPSEC_PHASE_INVALID+1, FW_IPSEC_PHASE_MAX-1)] FW_IPSEC_PHASE
IpSecPhase,

 [in] DWORD dwFilteredByStatus,// Bit-flags from
FW_RULE_STATUS_CLASS

 [in] WORD wFlags, // Bit-flags from
FW_ENUM_RULES_FLAGS

 [out] DWORD* pdwNumAuthSets,
 [out] PFW_AUTH_SET2_10* ppAuth
);

 DWORD
 RRPC_FWAddCryptoSet(
 [in] FW_CONN_HANDLE rpcConnHandle,
 [in] FW_POLICY_STORE_HANDLE hPolicyStore,
 [in] PFW_CRYPTO_SET pCrypto
);

 DWORD
 RRPC_FWSetCryptoSet(
 [in] FW_CONN_HANDLE rpcConnHandle,
 [in] FW_POLICY_STORE_HANDLE hPolicyStore,
 [in] PFW_CRYPTO_SET pCrypto
);

 DWORD
 RRPC_FWDeleteCryptoSet(
 [in] FW_CONN_HANDLE rpcConnHandle,
 [in] FW_POLICY_STORE_HANDLE hPolicyStore,
 [in, range(FW_IPSEC_PHASE_INVALID+1, FW_IPSEC_PHASE_MAX-1)] FW_IPSEC_PHASE
IpSecPhase,

 [in, string, ref] LPCWSTR wszSetId
);

 DWORD
 RRPC_FWDeleteAllCryptoSets(
 [in] FW_CONN_HANDLE rpcConnHandle,

274 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

 [in] FW_POLICY_STORE_HANDLE hPolicyStore,
 [in, range(FW_IPSEC_PHASE_INVALID+1, FW_IPSEC_PHASE_MAX-1)] FW_IPSEC_PHASE
IpSecPhase

);

 DWORD
 RRPC_FWEnumCryptoSets(
 [in] FW_CONN_HANDLE rpcConnHandle,
 [in] FW_POLICY_STORE_HANDLE hPolicyStore,
 [in, range(FW_IPSEC_PHASE_INVALID+1, FW_IPSEC_PHASE_MAX-1)] FW_IPSEC_PHASE
IpSecPhase,

 [in] DWORD dwFilteredByStatus,// Bit-flags from
FW_RULE_STATUS_CLASS

 [in] WORD wFlags, // Bit-flags from
FW_ENUM_RULES_FLAGS

 [out, ref] DWORD* pdwNumSets,
 [out] PFW_CRYPTO_SET* ppCryptoSets
);

 DWORD
 RRPC_FWEnumPhase1SAs(
 [in] FW_CONN_HANDLE rpcConnHandle,
 [in] FW_POLICY_STORE_HANDLE hPolicyStore,
 [in,unique] PFW_ENDPOINTS pEndpoints, //NULL or empty implies all
endpoints

 [out,ref] DWORD* pdwNumSAs,
 [out,size_is(, *pdwNumSAs)] PFW_PHASE1_SA_DETAILS* ppSAs
);

 DWORD
 RRPC_FWEnumPhase2SAs(
 [in] FW_CONN_HANDLE rpcConnHandle,
 [in] FW_POLICY_STORE_HANDLE hPolicyStore,
 [in, unique] PFW_ENDPOINTS pEndpoints, //NULL or empty implies all
endpoints

 [out,ref] DWORD* pdwNumSAs,
 [out,size_is(, *pdwNumSAs)] PFW_PHASE2_SA_DETAILS* ppSAs
);

 DWORD
 RRPC_FWDeletePhase1SAs(
 [in] FW_CONN_HANDLE rpcConnHandle,
 [in] FW_POLICY_STORE_HANDLE hPolicyStore,
 [in, unique]PFW_ENDPOINTS pEndpoints //NULL or empty implies all endpoints
);

 DWORD
 RRPC_FWDeletePhase2SAs(
 [in] FW_CONN_HANDLE rpcConnHandle,
 [in] FW_POLICY_STORE_HANDLE hPolicyStore,
 [in, unique]PFW_ENDPOINTS pEndpoints //NULL or empty implies all endpoints
);

 DWORD
 RRPC_FWEnumProducts(
 [in] FW_CONN_HANDLE rpcConnHandle,
 [in] FW_POLICY_STORE_HANDLE hPolicyStore,
 [out] DWORD* pdwNumProducts,
 [out, size_is(,*pdwNumProducts)] PFW_PRODUCT* ppProducts
);

 DWORD
 RRPC_FWAddMainModeRule(

275 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

 [in] FW_CONN_HANDLE rpcConnHandle,
 [in] FW_POLICY_STORE_HANDLE hPolicyStore,
 [in] PFW_MM_RULE pMMRule,
 [out] FW_RULE_STATUS * pStatus
);

 DWORD
 RRPC_FWSetMainModeRule(
 [in] FW_CONN_HANDLE rpcConnHandle,
 [in] FW_POLICY_STORE_HANDLE hPolicyStore,
 [in] PFW_MM_RULE pMMRule,
 [out] FW_RULE_STATUS * pStatus
);

 DWORD
 RRPC_FWDeleteMainModeRule(
 [in] FW_CONN_HANDLE rpcConnHandle,
 [in] FW_POLICY_STORE_HANDLE hPolicyStore,
 [in, string, ref] LPWSTR pRuleId
);

 DWORD
 RRPC_FWDeleteAllMainModeRules(
 [in] FW_CONN_HANDLE rpcConnHandle,
 [in] FW_POLICY_STORE_HANDLE hPolicyStore
);

 DWORD
 RRPC_FWEnumMainModeRules(
 [in] FW_CONN_HANDLE rpcConnHandle,
 [in] FW_POLICY_STORE_HANDLE hPolicyStore,
 [in] DWORD dwFilteredByStatus,// Bit-flags from
FW_RULE_STATUS_CLASS

 [in] DWORD dwProfileFilter, // Bit-flags from FW_PROFILE_TYPE
 [in] WORD wFlags, // Bit-flags from
FW_ENUM_RULES_FLAGS

 [out, ref] DWORD* pdwNumRules,
 [out] PFW_MM_RULE * ppMMRules
);

 DWORD
 RRPC_FWQueryFirewallRules(
 [in] FW_CONN_HANDLE rpcConnHandle,
 [in] FW_POLICY_STORE_HANDLE hPolicyStore,
 [in] PFW_QUERY pQuery, // Query selecting the rules to
return

 [in] WORD wFlags, // Bit-flags from
FW_ENUM_RULES_FLAGS

 [out, ref] DWORD* pdwNumRules,
 [out] PFW_RULE2_10 * ppRules
);

 DWORD
 RRPC_FWQueryConnectionSecurityRules2_10(
 [in] FW_CONN_HANDLE rpcConnHandle,
 [in] FW_POLICY_STORE_HANDLE hPolicyStore,
 [in] PFW_QUERY pQuery, // Query selecting the rules to
return

 [in] WORD wFlags, // Bit-flags from
FW_ENUM_RULES_FLAGS

 [out, ref] DWORD* pdwNumRules,
 [out] PFW_CS_RULE2_10 * ppRules
);

276 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

 DWORD
 RRPC_FWQueryMainModeRules(
 [in] FW_CONN_HANDLE rpcConnHandle,
 [in] FW_POLICY_STORE_HANDLE hPolicyStore,
 [in] PFW_QUERY pQuery, // Query selecting the rules to
return

 [in] WORD wFlags, // Bit-flags from
FW_ENUM_RULES_FLAGS

 [out, ref] DWORD* pdwNumRules,
 [out] PFW_MM_RULE * ppMMRules
);

 DWORD
 RRPC_FWQueryAuthenticationSets(
 [in] FW_CONN_HANDLE rpcConnHandle,
 [in] FW_POLICY_STORE_HANDLE hPolicyStore,
 [in, range(FW_IPSEC_PHASE_INVALID+1, FW_IPSEC_PHASE_MAX-1)] FW_IPSEC_PHASE
IPsecPhase,

 [in] PFW_QUERY pQuery, // Query selecting the rules to
return

 [in] WORD wFlags, // Bit-flags from
FW_ENUM_RULES_FLAGS

 [out, ref] DWORD* pdwNumSets,
 [out] PFW_AUTH_SET2_10 * ppAuthSets
);

 DWORD
 RRPC_FWQueryCryptoSets(
 [in] FW_CONN_HANDLE rpcConnHandle,
 [in] FW_POLICY_STORE_HANDLE hPolicyStore,
 [in, range(FW_IPSEC_PHASE_INVALID+1, FW_IPSEC_PHASE_MAX-1)] FW_IPSEC_PHASE
IPsecPhase,

 [in] PFW_QUERY pQuery, // Query selecting the rules to
return

 [in] WORD wFlags, // Bit-flags from
FW_ENUM_RULES_FLAGS

 [out, ref] DWORD* pdwNumSets,
 [out] PFW_CRYPTO_SET * ppCryptoSets
);

 DWORD
 RRPC_FWEnumNetworks(
 [in] FW_CONN_HANDLE rpcConnHandle,
 [in] FW_POLICY_STORE_HANDLE hPolicyStore,
 [out] DWORD* pdwNumNetworks,
 [out, size_is(,*pdwNumNetworks)] PFW_NETWORK* ppNetworks
);

 DWORD
 RRPC_FWEnumAdapters(
 [in] FW_CONN_HANDLE rpcConnHandle,
 [in] FW_POLICY_STORE_HANDLE hPolicyStore,
 [out] DWORD* pdwNumAdapters,
 [out, size_is(,*pdwNumAdapters)] PFW_ADAPTER* ppAdapters
);

 DWORD
 RRPC_FWGetGlobalConfig2_10(
 [in] FW_CONN_HANDLE rpcConnHandle,
 [in] WORD BinaryVersion,
 [in] FW_STORE_TYPE StoreType,
 [in, range(FW_GLOBAL_CONFIG_INVALID+1, FW_GLOBAL_CONFIG_MAX-1)]
 FW_GLOBAL_CONFIG configID,

277 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

 [in] DWORD dwFlags, // Bit-wise combination of flags
from FW_CONFIG_FLAGS

 [in, out, unique, size_is(cbData), length_is(*pcbTransmittedLen)]
 BYTE* pBuffer,
 [in] DWORD cbData,
 [in,out] LPDWORD pcbTransmittedLen,
 [out] LPDWORD pcbRequired,
 [out] FW_RULE_ORIGIN_TYPE * pOrigin
);

 DWORD
 RRPC_FWGetConfig2_10(
 [in] FW_CONN_HANDLE rpcConnHandle,
 [in] FW_POLICY_STORE_HANDLE hPolicyStore,
 [in, range(FW_PROFILE_CONFIG_ENABLE_FW, FW_PROFILE_CONFIG_MAX-1)] FW_PROFILE_CONFIG
configID,

 [in] FW_PROFILE_TYPE Profile,
 [in] DWORD dwFlags, // Bit-wise combination of flags
from FW_CONFIG_FLAGS

 [in, out, unique, size_is(cbData), length_is(*pcbTransmittedLen)]
 BYTE* pBuffer,
 [in] DWORD cbData,
 [in,out] LPDWORD pcbTransmittedLen,
 [out] LPDWORD pcbRequired,
 [out] FW_RULE_ORIGIN_TYPE * pOrigin
);

 DWORD
 RRPC_FWAddFirewallRule2_10(
 [in] FW_CONN_HANDLE rpcConnHandle,
 [in] FW_POLICY_STORE_HANDLE hPolicyStore,
 [in] PFW_RULE2_10 pRule,
 [out] FW_RULE_STATUS * pStatus
);

 DWORD
 RRPC_FWSetFirewallRule2_10(
 [in] FW_CONN_HANDLE rpcConnHandle,
 [in] FW_POLICY_STORE_HANDLE hPolicyStore,
 [in] PFW_RULE2_10 pRule,
 [out] FW_RULE_STATUS * pStatus
);

 DWORD
 RRPC_FWEnumFirewallRules2_10(
 [in] FW_CONN_HANDLE rpcConnHandle,
 [in] FW_POLICY_STORE_HANDLE hPolicyStore,
 [in] DWORD dwFilteredByStatus,
 [in] DWORD dwProfileFilter, // Bit-flags from FW_PROFILE_TYPE
 [in] WORD wFlags, // Bit-flags from ENUM_RULES_FLAGS
 [out, ref] DWORD *pdwNumRules,
 [out] PFW_RULE2_10 *ppRules
);

 DWORD
 RRPC_FWAddConnectionSecurityRule2_10(
 [in] FW_CONN_HANDLE rpcConnHandle,
 [in] FW_POLICY_STORE_HANDLE hPolicyStore,
 [in] PFW_CS_RULE2_10 pRule,
 [out] FW_RULE_STATUS * pStatus
);

 DWORD
 RRPC_FWSetConnectionSecurityRule2_10(

278 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

 [in] FW_CONN_HANDLE rpcConnHandle,
 [in] FW_POLICY_STORE_HANDLE hPolicyStore,
 [in] PFW_CS_RULE2_10 pRule,
 [out] FW_RULE_STATUS * pStatus
);

 DWORD
 RRPC_FWEnumConnectionSecurityRules2_10(
 [in] FW_CONN_HANDLE rpcConnHandle,
 [in] FW_POLICY_STORE_HANDLE hPolicyStore,
 [in] DWORD dwFilteredByStatus,// Bit-flags from
FW_RULE_STATUS_CLASS

 [in] DWORD dwProfileFilter, // Bit-flags from FW_PROFILE_TYPE
 [in] WORD wFlags, // Bit-flags from FW_ENUM_RULES_FLAGS
 [out, ref] DWORD * pdwNumRules,
 [out] PFW_CS_RULE2_10* ppRules
);

 DWORD
 RRPC_FWAddAuthenticationSet2_10(
 [in] FW_CONN_HANDLE rpcConnHandle,
 [in] FW_POLICY_STORE_HANDLE hPolicyStore,
 [in] PFW_AUTH_SET2_10 pAuth,
 [out] FW_RULE_STATUS * pStatus

);

 DWORD
 RRPC_FWSetAuthenticationSet2_10(
 [in] FW_CONN_HANDLE rpcConnHandle,
 [in] FW_POLICY_STORE_HANDLE hPolicyStore,
 [in] PFW_AUTH_SET2_10 pAuth,
 [out] FW_RULE_STATUS * pStatus
);

 DWORD
 RRPC_FWEnumAuthenticationSets2_10(
 [in] FW_CONN_HANDLE rpcConnHandle,
 [in] FW_POLICY_STORE_HANDLE hPolicyStore,
 [in, range(FW_IPSEC_PHASE_INVALID+1, FW_IPSEC_PHASE_MAX-1)] FW_IPSEC_PHASE
IpSecPhase,

 [in] DWORD dwFilteredByStatus,// Bit-flags from
FW_RULE_STATUS_CLASS

 [in] WORD wFlags, // Bit-flags from
FW_ENUM_RULES_FLAGS

 [out] DWORD* pdwNumAuthSets,
 [out] PFW_AUTH_SET2_10* ppAuth
);

 DWORD
 RRPC_FWAddCryptoSet2_10(
 [in] FW_CONN_HANDLE rpcConnHandle,
 [in] FW_POLICY_STORE_HANDLE hPolicyStore,
 [in] PFW_CRYPTO_SET pCrypto,
 [out] FW_RULE_STATUS * pStatus
);

 DWORD
 RRPC_FWSetCryptoSet2_10(
 [in] FW_CONN_HANDLE rpcConnHandle,
 [in] FW_POLICY_STORE_HANDLE hPolicyStore,
 [in] PFW_CRYPTO_SET pCrypto,
 [out] FW_RULE_STATUS * pStatus
);

279 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

 DWORD
 RRPC_FWEnumCryptoSets2_10(
 [in] FW_CONN_HANDLE rpcConnHandle,
 [in] FW_POLICY_STORE_HANDLE hPolicyStore,
 [in, range(FW_IPSEC_PHASE_INVALID+1, FW_IPSEC_PHASE_MAX-1)] FW_IPSEC_PHASE
IpSecPhase,

 [in] DWORD dwFilteredByStatus,// Bit-flags from
FW_RULE_STATUS_CLASS

 [in] WORD wFlags, // Bit-flags from
FW_ENUM_RULES_FLAGS

 [out, ref] DWORD* pdwNumSets,
 [out] PFW_CRYPTO_SET* ppCryptoSets
);

 DWORD
 RRPC_FWAddConnectionSecurityRule2_20(
 [in] FW_CONN_HANDLE rpcConnHandle,
 [in] FW_POLICY_STORE_HANDLE hPolicyStore,
 [in] PFW_CS_RULE pRule,
 [out] FW_RULE_STATUS * pStatus
);

 DWORD
 RRPC_FWSetConnectionSecurityRule2_20(
 [in] FW_CONN_HANDLE rpcConnHandle,
 [in] FW_POLICY_STORE_HANDLE hPolicyStore,
 [in] PFW_CS_RULE pRule,
 [out] FW_RULE_STATUS * pStatus
);

 DWORD
 RRPC_FWEnumConnectionSecurityRules2_20(
 [in] FW_CONN_HANDLE rpcConnHandle,
 [in] FW_POLICY_STORE_HANDLE hPolicyStore,
 [in] DWORD dwFilteredByStatus,// Bit-flags from
FW_RULE_STATUS_CLASS

 [in] DWORD dwProfileFilter, // Bit-flags from FW_PROFILE_TYPE
 [in] WORD wFlags, // Bit-flags from FW_ENUM_RULES_FLAGS
 [out, ref] DWORD * pdwNumRules,
 [out] PFW_CS_RULE* ppRules
);

 DWORD
 RRPC_FWQueryConnectionSecurityRules2_20(
 [in] FW_CONN_HANDLE rpcConnHandle,
 [in] FW_POLICY_STORE_HANDLE hPolicyStore,
 [in] PFW_QUERY pQuery, // Query selecting the rules to
return

 [in] WORD wFlags, // Bit-flags from
FW_ENUM_RULES_FLAGS

 [out, ref] DWORD* pdwNumRules,
 [out] PFW_CS_RULE * ppRules
);

 DWORD
 RRPC_FWAddAuthenticationSet2_20(
 [in] FW_CONN_HANDLE rpcConnHandle,
 [in] FW_POLICY_STORE_HANDLE hPolicyStore,
 [in] PFW_AUTH_SET pAuth,
 [out] FW_RULE_STATUS * pStatus

);

280 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

 DWORD
 RRPC_FWSetAuthenticationSet2_20(
 [in] FW_CONN_HANDLE rpcConnHandle,
 [in] FW_POLICY_STORE_HANDLE hPolicyStore,
 [in] PFW_AUTH_SET pAuth,
 [out] FW_RULE_STATUS * pStatus
);

 DWORD
 RRPC_FWEnumAuthenticationSets2_20(
 [in] FW_CONN_HANDLE rpcConnHandle,
 [in] FW_POLICY_STORE_HANDLE hPolicyStore,
 [in, range(FW_IPSEC_PHASE_INVALID+1, FW_IPSEC_PHASE_MAX-1)] FW_IPSEC_PHASE
IpSecPhase,

 [in] DWORD dwFilteredByStatus,// Bit-flags from
FW_RULE_STATUS_CLASS

 [in] WORD wFlags, // Bit-flags from
FW_ENUM_RULES_FLAGS

 [out] DWORD* pdwNumAuthSets,
 [out] PFW_AUTH_SET* ppAuth
);

 DWORD
 RRPC_FWQueryAuthenticationSets2_20(
 [in] FW_CONN_HANDLE rpcConnHandle,
 [in] FW_POLICY_STORE_HANDLE hPolicyStore,
 [in, range(FW_IPSEC_PHASE_INVALID+1, FW_IPSEC_PHASE_MAX-1)] FW_IPSEC_PHASE
IPsecPhase,

 [in] PFW_QUERY pQuery, // Query selecting the rules to
return

 [in] WORD wFlags, // Bit-flags from
FW_ENUM_RULES_FLAGS

 [out, ref] DWORD* pdwNumSets,
 [out] PFW_AUTH_SET* ppAuthSets
);

 DWORD
 RRPC_FWAddFirewallRule2_20(
 [in] FW_CONN_HANDLE rpcConnHandle,
 [in] FW_POLICY_STORE_HANDLE hPolicyStore,
 [in] PFW_RULE2_20 pRule,
 [out] FW_RULE_STATUS * pStatus
);

 DWORD
 RRPC_FWSetFirewallRule2_20(
 [in] FW_CONN_HANDLE rpcConnHandle,
 [in] FW_POLICY_STORE_HANDLE hPolicyStore,
 [in] PFW_RULE2_20 pRule,
 [out] FW_RULE_STATUS * pStatus
);

 DWORD
 RRPC_FWEnumFirewallRules2_20(
 [in] FW_CONN_HANDLE rpcConnHandle,
 [in] FW_POLICY_STORE_HANDLE hPolicyStore,
 [in] DWORD dwFilteredByStatus,
 [in] DWORD dwProfileFilter, // Bit-flags from FW_PROFILE_TYPE
 [in] WORD wFlags, // Bit-flags from ENUM_RULES_FLAGS
 [out, ref] DWORD *pdwNumRules,
 [out] PFW_RULE2_20 *ppRules
);

281 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

 DWORD
 RRPC_FWQueryFirewallRules2_20(
 [in] FW_CONN_HANDLE rpcConnHandle,
 [in] FW_POLICY_STORE_HANDLE hPolicyStore,
 [in] PFW_QUERY pQuery, // Query selecting the rules to
return

 [in] WORD wFlags, // Bit-flags from
FW_ENUM_RULES_FLAGS

 [out, ref] DWORD* pdwNumRules,
 [out] PFW_RULE2_20 * ppRules
);

 DWORD
 RRPC_FWAddFirewallRule2_24(
 [in] FW_CONN_HANDLE rpcConnHandle,
 [in] FW_POLICY_STORE_HANDLE hPolicyStore,
 [in] PFW_RULE2_24 pRule,
 [out] FW_RULE_STATUS * pStatus
);

 DWORD
 RRPC_FWSetFirewallRule2_24(
 [in] FW_CONN_HANDLE rpcConnHandle,
 [in] FW_POLICY_STORE_HANDLE hPolicyStore,
 [in] PFW_RULE2_24 pRule,
 [out] FW_RULE_STATUS * pStatus
);

 DWORD
 RRPC_FWEnumFirewallRules2_24(
 [in] FW_CONN_HANDLE rpcConnHandle,
 [in] FW_POLICY_STORE_HANDLE hPolicyStore,
 [in] DWORD dwFilteredByStatus,
 [in] DWORD dwProfileFilter, // Bit-flags from FW_PROFILE_TYPE
 [in] WORD wFlags, // Bit-flags from ENUM_RULES_FLAGS
 [out, ref] DWORD *pdwNumRules,
 [out] PFW_RULE2_24 *ppRules
);

 DWORD
 RRPC_FWQueryFirewallRules2_24(
 [in] FW_CONN_HANDLE rpcConnHandle,
 [in] FW_POLICY_STORE_HANDLE hPolicyStore,
 [in] PFW_QUERY pQuery, // Query selecting the rules to
return

 [in] WORD wFlags, // Bit-flags from
FW_ENUM_RULES_FLAGS

 [out, ref] DWORD* pdwNumRules,
 [out] PFW_RULE2_24 *ppRules
);

 DWORD
 RRPC_FWAddFirewallRule2_25(
 [in] FW_CONN_HANDLE rpcConnHandle,
 [in] FW_POLICY_STORE_HANDLE hPolicyStore,
 [in] PFW_RULE2_25 pRule,
 [out] FW_RULE_STATUS * pStatus
);

 DWORD
 RRPC_FWSetFirewallRule2_25(
 [in] FW_CONN_HANDLE rpcConnHandle,
 [in] FW_POLICY_STORE_HANDLE hPolicyStore,
 [in] PFW_RULE2_25 pRule,

282 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

 [out] FW_RULE_STATUS * pStatus
);

 DWORD
 RRPC_FWEnumFirewallRules2_25(
 [in] FW_CONN_HANDLE rpcConnHandle,
 [in] FW_POLICY_STORE_HANDLE hPolicyStore,
 [in] DWORD dwFilteredByStatus,
 [in] DWORD dwProfileFilter, // Bit-flags from FW_PROFILE_TYPE
 [in] WORD wFlags, // Bit-flags from ENUM_RULES_FLAGS
 [out, ref] DWORD *pdwNumRules,
 [out] PFW_RULE2_25 *ppRules
);

 DWORD
 RRPC_FWQueryFirewallRules2_25(
 [in] FW_CONN_HANDLE rpcConnHandle,
 [in] FW_POLICY_STORE_HANDLE hPolicyStore,
 [in] PFW_QUERY pQuery, // Query selecting the rules to
return

 [in] WORD wFlags, // Bit-flags from
FW_ENUM_RULES_FLAGS

 [out, ref] DWORD* pdwNumRules,
 [out] PFW_RULE2_25 * ppRules
);

 DWORD
 RRPC_FWAddFirewallRule2_26(
 [in] FW_CONN_HANDLE rpcConnHandle,
 [in] FW_POLICY_STORE_HANDLE hPolicyStore,
 [in] PFW_RULE2_26 pRule,
 [out] FW_RULE_STATUS * pStatus
);

 DWORD
 RRPC_FWSetFirewallRule2_26(
 [in] FW_CONN_HANDLE rpcConnHandle,
 [in] FW_POLICY_STORE_HANDLE hPolicyStore,
 [in] PFW_RULE2_26 pRule,
 [out] FW_RULE_STATUS * pStatus
);

 DWORD
 RRPC_FWEnumFirewallRules2_26(
 [in] FW_CONN_HANDLE rpcConnHandle,
 [in] FW_POLICY_STORE_HANDLE hPolicyStore,
 [in] DWORD dwFilteredByStatus,
 [in] DWORD dwProfileFilter, // Bit-flags from FW_PROFILE_TYPE
 [in] WORD wFlags, // Bit-flags from ENUM_RULES_FLAGS
 [out, ref] DWORD *pdwNumRules,
 [out] PFW_RULE2_26 *ppRules
);

 DWORD
 RRPC_FWQueryFirewallRules2_26(
 [in] FW_CONN_HANDLE rpcConnHandle,
 [in] FW_POLICY_STORE_HANDLE hPolicyStore,
 [in] PFW_QUERY pQuery, // Query selecting the rules to return
 [in] WORD wFlags, // Bit-flags from FW_ENUM_RULES_FLAGS
 [out, ref] DWORD* pdwNumRules,
 [out] PFW_RULE2_26 * ppRules
);

283 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

 DWORD
 RRPC_FWAddFirewallRule2_27(
 [in] FW_CONN_HANDLE rpcConnHandle,
 [in] FW_POLICY_STORE_HANDLE hPolicyStore,
 [in] PFW_RULE pRule,
 [out] FW_RULE_STATUS * pStatus
);

 DWORD
 RRPC_FWSetFirewallRule2_27(
 [in] FW_CONN_HANDLE rpcConnHandle,
 [in] FW_POLICY_STORE_HANDLE hPolicyStore,
 [in] PFW_RULE pRule,
 [out] FW_RULE_STATUS * pStatus
);

 DWORD
 RRPC_FWEnumFirewallRules2_27(
 [in] FW_CONN_HANDLE rpcConnHandle,
 [in] FW_POLICY_STORE_HANDLE hPolicyStore,
 [in] DWORD dwFilteredByStatus,
 [in] DWORD dwProfileFilter, // Bit-flags from FW_PROFILE_TYPE
 [in] WORD wFlags, // Bit-flags from ENUM_RULES_FLAGS
 [out, ref] DWORD *pdwNumRules,
 [out] PFW_RULE *ppRules
);

 DWORD
 RRPC_FWQueryFirewallRules2_27(
 [in] FW_CONN_HANDLE rpcConnHandle,
 [in] FW_POLICY_STORE_HANDLE hPolicyStore,
 [in] PFW_QUERY pQuery, // Query selecting the rules to return
 [in] WORD wFlags, // Bit-flags from FW_ENUM_RULES_FLAGS
 [out, ref] DWORD* pdwNumRules,
 [out] PFW_RULE * ppRules
);

 }

284 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

7 Appendix B: Product Behavior

The information in this specification is applicable to the following Microsoft products or supplemental
software. References to product versions include updates to those products.

The following tables show the relationships between Microsoft product versions or supplemental
software and the roles they perform.

Windows Client Releases Server Role Client Role

Windows Vista operating system Yes Yes

Windows 7 operating system Yes Yes

Windows 8 operating system Yes Yes

Windows 8.1 operating system Yes Yes

Windows 10 operating system Yes Yes

Windows Server Releases Server Role Client Role

Windows Server 2008 operating
system

Yes Yes

Windows Server 2008 R2 operating
system

Yes Yes

Windows Server 2012 operating
system

Yes Yes

Windows Server 2012 R2 operating
system

Yes Yes

Windows Server 2016 operating
system

Yes Yes

Windows Server operating system Yes Yes

Exceptions, if any, are noted in this section. If an update version, service pack or Knowledge Base
(KB) number appears with a product name, the behavior changed in that update. The new behavior
also applies to subsequent updates unless otherwise specified. If a product edition appears with the
product version, behavior is different in that product edition.

Unless otherwise specified, any statement of optional behavior in this specification that is prescribed

using the terms "SHOULD" or "SHOULD NOT" implies product behavior in accordance with the
SHOULD or SHOULD NOT prescription. Unless otherwise specified, the term "MAY" implies that the

product does not follow the prescription.

<1> Section 1.7: Policy versions are mapped to Windows releases as follows:

285 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Windows Client Release Windows Server Release Policy Version

Windows Vista

 0x0200

Windows Vista operating
system with Service Pack 1
(SP1)

Windows Server 2008 0x0201

Windows 7 Windows Server 2008 R2

operating system

0x020A

Windows 8 Windows Server 2012 0x0214

Windows 8.1 Windows Server 2012 R2 0x0216

Windows 10 0x0218, 0x0219

Windows 10 v1607 operating
system

Windows Server 2016 0x021A

Windows 10 v1703 operating
system

 0x021B

Windows 10 v1709 operating
system

Windows Server operating
system

Ox021B

<2> Section 2.2.6: For Windows Vista SP1, Windows Server 2008, Windows 7, and Windows Server

2008 R2, unspecified addresses are allowed. Unspecified addresses are also allowed on Windows Vista
if the Security Update for Windows Vista specified in [MSKB-935807] is applied.

<3> Section 2.2.31: During server initialization, Windows uses default values to initialize the Phase 1
and Phase 2 primary AuthenticationSet objects if these objects are not already present in
LocalStore and GroupPolicyRSoPStore. The same defaults are used for both LocalStore and
GroupPolicyRSoPStore. These defaults are as follows:

286 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

 #define FW_DEFAULT_P1_PRIMARY_AUTH_SET_NAME_STR
 L"Default Phase1 Primary AuthSet"
 #define FW_DEFAULT_P2_PRIMARY_AUTH_SET_NAME_STR
 L"Default Phase2 Primary AuthSet"
 #define RTL_NUMBER_OF(A) (sizeof(A)/sizeof((A)[0]))
 FW_AUTH_SUITE g_DefaultPrimaryAuthSuitePhase1[] =
 {
 { FW_AUTH_METHOD_MACHINE_KERB, {0} }
 };
 FW_AUTH_SET g_DefaultPrimaryAuthSetPhase1 =
 {
 NULL,
 0x0200,
 FW_IPSEC_PHASE_1,
 L"{E5A5D32A-4BCE-4e4d-B07F-4AB1BA7E5FE3}",
 FW_DEFAULT_P1_PRIMARY_AUTH_SET_NAME_STR,
 FW_DEFAULT_P1_PRIMARY_AUTH_SET_NAME_STR,
 NULL,
 RTL_NUMBER_OF(g_DefaultPrimaryAuthSuitePhase1),
 g_DefaultPrimaryAuthSuitePhase1,
 FW_RULE_ORIGIN_HARDCODED,
 NULL,
 FW_RULE_STATUS_OK,
 0
 };

 FW_AUTH_SET g_DefaultPrimaryAuthSetPhase2 =
 {
 NULL,
 0x0200,
 FW_IPSEC_PHASE_2,
 L"{E5A5D32A-4BCE-4e4d-B07F-4AB1BA7E5FE4}",
 FW_DEFAULT_P2_PRIMARY_AUTH_SET_NAME_STR,
 FW_DEFAULT_P2_PRIMARY_AUTH_SET_NAME_STR,
 NULL,
 0,
 NULL,
 FW_RULE_ORIGIN_HARDCODED,
 NULL,
 FW_RULE_STATUS_OK,
 0
 };

During server initialization, Windows uses default values to initialize the Phase 1 and Phase 2 primary

CryptoSet objects if these objects are not already present in LocalStore or
GroupPolicyRSoPStore. The same defaults are used for both LocalStore and
GroupPolicyRSoPStore. These defaults are as follows:

 #define FW_DEFAULT_P1_PRIMARY_CRYPTO_SET_NAME_STR
 L"Default Phase1 Primary CryptoSet"
 #define FW_DEFAULT_P2_PRIMARY_CRYPTO_SET_NAME_STR
 L"Default Phase2 Primary CryptoSet"

 FW_PHASE1_CRYPTO_SUITE g_DefaultPrimaryCryptoSuitesPhase1[] =
 {
 {FW_CRYPTO_KEY_EXCHANGE_DH2,
 FW_CRYPTO_ENCRYPTION_AES128,
 FW_CRYPTO_HASH_SHA1},
 {FW_CRYPTO_KEY_EXCHANGE_DH2,
 FW_CRYPTO_ENCRYPTION_3DES,
 FW_CRYPTO_HASH_SHA1}
 };

287 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

 FW_CRYPTO_SET g_DefaultPrimaryCryptoSetPhase1 =
 {
 NULL,
 0x0200,
 FW_IPSEC_PHASE_1,
 L"{E5A5D32A-4BCE-4e4d-B07F-4AB1BA7E5FE1}",
 FW_DEFAULT_P1_PRIMARY_CRYPTO_SET_NAME_STR,
 FW_DEFAULT_P1_PRIMARY_CRYPTO_SET_NAME_STR,
 NULL,
 {
 0, // flags
 0, // RTL_NUMBER_OF(g_DefaultPrimaryCryptoSuitesPhase1),
 0, // g_DefaultPrimaryCryptoSuitesPhase1,
 0, //480,
 0
 },
 FW_RULE_ORIGIN_HARDCODED,
 NULL,
 FW_RULE_STATUS_OK,
 0
 };

 FW_PHASE2_CRYPTO_SUITE g_DefaultPrimaryCryptoSuitesPhase2[] =
 {
 {FW_CRYPTO_PROTOCOL_ESP,
 FW_CRYPTO_HASH_NONE,
 FW_CRYPTO_HASH_SHA1,
 FW_CRYPTO_ENCRYPTION_NONE,
 FW_DEFAULT_CRYPTO_PHASE2_TIMEOUT_MINUTES,
 FW_DEFAULT_CRYPTO_PHASE2_TIMEOUT_KBYTES},
 {FW_CRYPTO_PROTOCOL_ESP,
 FW_CRYPTO_HASH_NONE,
 FW_CRYPTO_HASH_SHA1,
 FW_CRYPTO_ENCRYPTION_AES128,
 FW_DEFAULT_CRYPTO_PHASE2_TIMEOUT_MINUTES,
 FW_DEFAULT_CRYPTO_PHASE2_TIMEOUT_KBYTES},
 {FW_CRYPTO_PROTOCOL_ESP,
 FW_CRYPTO_HASH_NONE,
 FW_CRYPTO_HASH_SHA1,
 FW_CRYPTO_ENCRYPTION_3DES,
 FW_DEFAULT_CRYPTO_PHASE2_TIMEOUT_MINUTES,
 FW_DEFAULT_CRYPTO_PHASE2_TIMEOUT_KBYTES},
 {FW_CRYPTO_PROTOCOL_AH,
 FW_CRYPTO_HASH_SHA1,
 FW_CRYPTO_HASH_NONE,
 FW_CRYPTO_ENCRYPTION_NONE,
 FW_DEFAULT_CRYPTO_PHASE2_TIMEOUT_MINUTES,
 FW_DEFAULT_CRYPTO_PHASE2_TIMEOUT_KBYTES}
 };

 FW_CRYPTO_SET g_DefaultPrimaryCryptoSetPhase2 =
 {
 NULL,
 0x0200,
 FW_IPSEC_PHASE_2,
 L"{E5A5D32A-4BCE-4e4d-B07F-4AB1BA7E5FE2}",
 FW_DEFAULT_P2_PRIMARY_CRYPTO_SET_NAME_STR,
 FW_DEFAULT_P2_PRIMARY_CRYPTO_SET_NAME_STR,
 NULL,
 {
 {
 0, // FW_PHASE2_CRYPTO_PFS_DISABLE,
 0, // RTL_NUMBER_OF(g_DefaultPrimaryCryptoSuitesPhase2),
 0, // g_DefaultPrimaryCryptoSuitesPhase2
 }
 },
 FW_RULE_ORIGIN_HARDCODED,
 NULL,
 FW_RULE_STATUS_OK,

288 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

 0
 };

 void FwDefaultPrimaryCryptoSetsInit()
 {
 // Init Phase 1 Crypto.
 g_DefaultPrimaryCryptoSetPhase1.dwNumPhase1Suites =
 RTL_NUMBER_OF(g_DefaultPrimaryCryptoSuitesPhase1);
 g_DefaultPrimaryCryptoSetPhase1.pPhase1Suites =
 g_DefaultPrimaryCryptoSuitesPhase1;
 g_DefaultPrimaryCryptoSetPhase1.dwTimeOutMinutes = 480;

 //Init Phase 2 Crypto
 g_DefaultPrimaryCryptoSetPhase2.Pfs =
 FW_PHASE2_CRYPTO_PFS_DISABLE;
 g_DefaultPrimaryCryptoSetPhase2.dwNumPhase2Suites =
 RTL_NUMBER_OF(g_DefaultPrimaryCryptoSuitesPhase2);
 g_DefaultPrimaryCryptoSetPhase2.pPhase2Suites =
 g_DefaultPrimaryCryptoSuitesPhase2;
 }

<4> Section 2.2.36: Windows uses the three fields of the FW_OS_PLATFORM data type to identify
Windows platform types. The fields in this data type correspond to the fields of the Windows
OSVERSIONINFOEX data type (for more information, see [MSDN-OSVERSIONINFOEX]). The
bPlatform field in this specification corresponds to the dwPlatformId field in MSDN. The
bMajorVersion field in this specification corresponds to the dwMajorVersion field in MSDN. The
bMinorVersion field in this specification corresponds to the dwMinorVersion field in MSDN. The

Windows firewall and advanced security components extract the OSVERSIONINFOEX values and use
them to enforce PlatformValidityList conditions in FW_RULE (section 2.2.36) and
FW_CS_RULE (section 2.2.54) rules.

<5> Section 2.2.36: Rules with wSchemaVersion less than 0x000200 but greater than or equal to
0x000100 are not allowed to be written to the local store.

<6> Section 2.2.36: On Windows 7 and Windows Server 2008 R2 the wszRuleId size cannot be

greater than or equal to 512 characters. On Windows Vista and Windows Server 2008 it cannot be

greater than or equal to 1000 characters.

<7> Section 2.2.37: When Windows is operating in stealth mode, it blocks the following outbound
packets:

▪ ICMP Destination Unreachable

▪ ICMP Parameter Problem for IPv6 only

▪ TCP Reset (RST) packets sent because no application is listening on the destination port

<8> Section 2.2.37: In Windows Vista, Windows Server 2008, Windows 7, and Windows Server 2008

R2, the FW_PROFILE_CONFIG_LOG_IGNORED_RULES option is ignored.

<9> Section 2.2.37: When an application is blocked from listening on a port and inbound notifications

are not disabled, Windows displays a notification to the user only when there is not an FW_RULE
object in the Group Policy RSoP, local, or dynamic policy stores with a wszLocalApplication field that
matches the application.

<10> Section 2.2.42: Windows selects a default value for the profile configuration options and the

global configurations options. These configurations default values are secure, and it is recommended
to use these values as default values. Profile configuration options default values:

 FW_PROFILE_CONFIG_ENABLE_FW .- TRUE.

289 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

 FW_PROFILE_CONFIG_DISABLE_STEALTH_MODE .- FALSE.
 FW_PROFILE_CONFIG_SHIELDED .- FALSE.
 FW_PROFILE_CONFIG_DISABLE_UNICAST_RESPONSES_TO_MULTICAST_BROADCAST
 .- FALSE.
 FW_PROFILE_CONFIG_LOG_DROPPED_PACKETS .- FALSE.
 FW_PROFILE_CONFIG_LOG_SUCCESS_CONNECTIONS .- FALSE.
 FW_PROFILE_CONFIG_LOG_IGNORED_RULES .- TRUE.
 FW_PROFILE_CONFIG_LOG_MAX_FILE_SIZE .- 1024.
 FW_PROFILE_CONFIG_LOG_FILE_PATH .- L"".
 FW_PROFILE_CONFIG_DISABLE_INBOUND_NOTIFICATIONS .- FALSE.
 FW_PROFILE_CONFIG_AUTH_APPS_ALLOW_USER_PREF_MERGE .- TRUE.
 FW_PROFILE_CONFIG_GLOBAL_PORTS_ALLOW_USER_PREF_MERGE .- TRUE.
 FW_PROFILE_CONFIG_ALLOW_LOCAL_POLICY_MERGE .- TRUE.
 FW_PROFILE_CONFIG_ALLOW_LOCAL_IPSEC_POLICY_MERGE .- TRUE.
 FW_PROFILE_CONFIG_DISABLED_INTERFACES .- {0}.
 FW_PROFILE_CONFIG_DEFAULT_OUTBOUND_ACTION .- 0 (0 is allow).
 FW_PROFILE_CONFIG_DEFAULT_INBOUND_ACTION.- 1 (1 is block).

Global configuration options default values:

 FW_GLOBAL_CONFIG_POLICY_VERSION_SUPPORTED .- 0x0200
 on Windows Vista.
 FW_GLOBAL_CONFIG_POLICY_VERSION_SUPPORTED .- 0x0201
 on Windows Vista SP1 and Windows Server 2008.
 FW_GLOBAL_CONFIG_CURRENT_PROFILE .- FW_PROFILE_TYPE_PUBLIC.
 FW_GLOBAL_CONFIG_DISABLE_STATEFUL_FTP .- FALSE.
 FW_GLOBAL_CONFIG_DISABLE_STATEFUL_PPTP .- FALSE.
 FW_GLOBAL_CONFIG_SA_IDLE_TIME .- 300.
 FW_GLOBAL_CONFIG_PRESHARED_KEY_ENCODING
 .- FW_GLOBAL_CONFIG_PRESHARED_KEY_ENCODING_UTF_8.
 FW_GLOBAL_CONFIG_IPSEC_EXEMPT
 .- FW_GLOBAL_CONFIG_IPSEC_EXEMPT_NEIGHBOR_DISC.
 FW_GLOBAL_CONFIG_CRL_CHECK .- 0.
 FW_GLOBAL_CONFIG_IPSEC_THROUGH_NAT
 .- FW_GLOBAL_CONFIG_IPSEC_THROUGH_NAT_SERVER_BEHIND_NAT.
 FW_GLOBAL_CONFIG_POLICY_VERSION .- 0x0200.
 FW_GLOBAL_CONFIG_BINARY_VERSION_SUPPORTED .- 0x201. This value is
 present only in Windows Vista SP1 and Windows Server 2008.

<11> Section 2.2.54: Windows uses the three fields of the FW_OS_PLATFORM data type to identify
Windows platform types. The fields in this data type correspond to the fields of the Windows
OSVERSIONINFOEX data type (for more information, see [MSDN-OSVERSIONINFOEX]). The
bPlatform field in this specification corresponds to the dwPlatformId field in MSDN. The
bMajorVersion field in this specification corresponds to the dwMajorVersion field in MSDN. The
bMinorVersion field in this specification corresponds to the dwMinorVersion field in MSDN. The

Windows firewall and advanced security components extract the OSVERSIONINFOEX values and use
them to enforce PlatformValidityList conditions in FW_RULE (section 2.2.36) and
FW_CS_RULE (section 2.2.54) rules.

<12> Section 2.2.54: On Windows 7 and Windows Server 2008 R2 the wszRuleId size is less than

512 characters. On Windows Vista and Windows Server 2008 it is less than 1000 characters.

<13> Section 2.2.54: On Windows 7 and Windows Server 2008 R2 the wszPhase1AuthSet,
wszPhase2AuthSet, and wszPhase2CryptoSet sizes are less than 255 characters. On Windows

Vista and Windows Server 2008 they are less than 1000 characters.

<14> Section 2.2.63: On Windows Vista and Windows Server 2008, the only duplicate check
performed is for the anonymous method.

290 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

<15> Section 2.2.63: On Windows Vista and Windows Server 2008, the only duplicate check
performed is for the anonymous method.

<16> Section 2.2.64: On Windows Vista and Windows Server 2008, the only duplicate check
performed is for the anonymous method.

<17> Section 2.2.64: On Windows Vista and Windows Server 2008, the only duplicate check
performed is for the anonymous method.

<18> Section 2.2.82: Windows Vista, Windows Server 2008, Windows 7, and Windows Server 2008
R2 set TransportFilterId to the filter key of the Windows Filtering Platform filter used to enforce the
security association (for more information, see [MSWFPSDK]).

<19> Section 2.2.84: Windows uses the three fields of the FW_OS_PLATFORM data type to identify
Windows platform types. The fields in this data type correspond to the fields of the Windows

OSVERSIONINFOEX data type (for more information, see [MSDN-OSVERSIONINFOEX]). The
bPlatform field in this specification corresponds to the dwPlatformId field in MSDN. The
bMajorVersion field in this specification corresponds to the dwMajorVersion field in MSDN. The

bMinorVersion field in this specification corresponds to the dwMinorVersion field in MSDN. The
Windows firewall and advanced security components extract the OSVERSIONINFOEX values and use
them to enforce PlatformValidityList conditions in FW_RULE (section 2.2.36) and

FW_CS_RULE (section 2.2.54) rules.

<20> Section 2.2.95: By default, Windows uses the IKEv1 and AuthIP keying modules.

<21> Section 2.2.96: In schema version 0x0214, the value for the
FW_TRUST_TUPLE_KEYWORD_MAX flag is 0x0004.

<22> Section 2.2.102: In Windows, audit events that are generated by rules that specify the
FW_RULE_FLAGS2_CALLOUT_AND_AUDIT flag are sent to the audit event log.

<23> Section 3.1.3: During server initialization, Windows uses default values to initialize the Phase 1

and Phase 2 primary AuthenticationSet objects if these objects are not already present in
LocalStore or GroupPolicyRSoPStore. The same defaults are used for both LocalStore and

GroupPolicyRSoPStore. These defaults are as follows:

 #define FW_DEFAULT_P1_PRIMARY_AUTH_SET_NAME_STR
 L"Default Phase1 Primary AuthSet"
 #define FW_DEFAULT_P2_PRIMARY_AUTH_SET_NAME_STR
 L"Default Phase2 Primary AuthSet"
 #define RTL_NUMBER_OF(A) (sizeof(A)/sizeof((A)[0]))
 FW_AUTH_SUITE g_DefaultPrimaryAuthSuitePhase1[] =
 {
 { FW_AUTH_METHOD_MACHINE_KERB, {0} }
 };
 FW_AUTH_SET g_DefaultPrimaryAuthSetPhase1 =
 {
 NULL,
 0x0200,
 FW_IPSEC_PHASE_1,
 L"{E5A5D32A-4BCE-4e4d-B07F-4AB1BA7E5FE3}",
 FW_DEFAULT_P1_PRIMARY_AUTH_SET_NAME_STR,
 FW_DEFAULT_P1_PRIMARY_AUTH_SET_NAME_STR,
 NULL,
 RTL_NUMBER_OF(g_DefaultPrimaryAuthSuitePhase1),
 g_DefaultPrimaryAuthSuitePhase1,
 FW_RULE_ORIGIN_HARDCODED,
 NULL,
 FW_RULE_STATUS_OK,
 0
 };

 FW_AUTH_SET g_DefaultPrimaryAuthSetPhase2 =
 {

291 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

 NULL,
 0x0200,
 FW_IPSEC_PHASE_2,
 L"{E5A5D32A-4BCE-4e4d-B07F-4AB1BA7E5FE4}",
 FW_DEFAULT_P2_PRIMARY_AUTH_SET_NAME_STR,
 FW_DEFAULT_P2_PRIMARY_AUTH_SET_NAME_STR,
 NULL,
 0,
 NULL,
 FW_RULE_ORIGIN_HARDCODED,
 NULL,
 FW_RULE_STATUS_OK,
 0
 };

<24> Section 3.1.3: During server initialization, Windows uses default values to initialize the Phase 1

and Phase 2 primary CryptoSet objects if these objects are not already present in LocalStore or
GroupPolicyRSoPStore. The same defaults are used for both LocalStore and

GroupPolicyRSoPStore. These defaults are as follows:

 #define FW_DEFAULT_P1_PRIMARY_CRYPTO_SET_NAME_STR
 L"Default Phase1 Primary CryptoSet"
 #define FW_DEFAULT_P2_PRIMARY_CRYPTO_SET_NAME_STR
 L"Default Phase2 Primary CryptoSet"

 FW_PHASE1_CRYPTO_SUITE g_DefaultPrimaryCryptoSuitesPhase1[] =
 {
 {FW_CRYPTO_KEY_EXCHANGE_DH2,
 FW_CRYPTO_ENCRYPTION_AES128,
 FW_CRYPTO_HASH_SHA1},
 {FW_CRYPTO_KEY_EXCHANGE_DH2,
 FW_CRYPTO_ENCRYPTION_3DES,
 FW_CRYPTO_HASH_SHA1}
 };

 FW_CRYPTO_SET g_DefaultPrimaryCryptoSetPhase1 =
 {
 NULL,
 0x0200,
 FW_IPSEC_PHASE_1,
 L"{E5A5D32A-4BCE-4e4d-B07F-4AB1BA7E5FE1}",
 FW_DEFAULT_P1_PRIMARY_CRYPTO_SET_NAME_STR,
 FW_DEFAULT_P1_PRIMARY_CRYPTO_SET_NAME_STR,
 NULL,
 {
 0, //flags
 0, //RTL_NUMBER_OF(g_DefaultPrimaryCryptoSuitesPhase1),
 0, //g_DefaultPrimaryCryptoSuitesPhase1,
 0, // 480,
 0
 },
 FW_RULE_ORIGIN_HARDCODED,
 NULL,
 FW_RULE_STATUS_OK,
 0
 };

 FW_PHASE2_CRYPTO_SUITE g_DefaultPrimaryCryptoSuitesPhase2[] =
 {
 {FW_CRYPTO_PROTOCOL_ESP,
 FW_CRYPTO_HASH_NONE,
 FW_CRYPTO_HASH_SHA1,
 FW_CRYPTO_ENCRYPTION_NONE,
 FW_DEFAULT_CRYPTO_PHASE2_TIMEOUT_MINUTES,
 FW_DEFAULT_CRYPTO_PHASE2_TIMEOUT_KBYTES},

292 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

 {FW_CRYPTO_PROTOCOL_ESP,
 FW_CRYPTO_HASH_NONE,
 FW_CRYPTO_HASH_SHA1,
 FW_CRYPTO_ENCRYPTION_AES128,
 FW_DEFAULT_CRYPTO_PHASE2_TIMEOUT_MINUTES,
 FW_DEFAULT_CRYPTO_PHASE2_TIMEOUT_KBYTES},
 {FW_CRYPTO_PROTOCOL_ESP,
 FW_CRYPTO_HASH_NONE,
 FW_CRYPTO_HASH_SHA1,
 FW_CRYPTO_ENCRYPTION_3DES,
 FW_DEFAULT_CRYPTO_PHASE2_TIMEOUT_MINUTES,
 FW_DEFAULT_CRYPTO_PHASE2_TIMEOUT_KBYTES},
 {FW_CRYPTO_PROTOCOL_AH,
 FW_CRYPTO_HASH_SHA1,
 FW_CRYPTO_HASH_NONE,
 FW_CRYPTO_ENCRYPTION_NONE,
 FW_DEFAULT_CRYPTO_PHASE2_TIMEOUT_MINUTES,
 FW_DEFAULT_CRYPTO_PHASE2_TIMEOUT_KBYTES}
 };

 FW_CRYPTO_SET g_DefaultPrimaryCryptoSetPhase2 =
 {
 NULL,
 0x0200,
 FW_IPSEC_PHASE_2,
 L"{E5A5D32A-4BCE-4e4d-B07F-4AB1BA7E5FE2}",
 FW_DEFAULT_P2_PRIMARY_CRYPTO_SET_NAME_STR,
 FW_DEFAULT_P2_PRIMARY_CRYPTO_SET_NAME_STR,
 NULL,
 {
 {
 0, // FW_PHASE2_CRYPTO_PFS_DISABLE,
 0, // RTL_NUMBER_OF(g_DefaultPrimaryCryptoSuitesPhase2),
 0, // g_DefaultPrimaryCryptoSuitesPhase2
 }
 },
 FW_RULE_ORIGIN_HARDCODED,
 NULL,
 FW_RULE_STATUS_OK,
 0
 };

 void FwDefaultPrimaryCryptoSetsInit()
 {
 // Init Phase 1 Crypto.
 g_DefaultPrimaryCryptoSetPhase1.dwNumPhase1Suites =
 RTL_NUMBER_OF(g_DefaultPrimaryCryptoSuitesPhase1);
 g_DefaultPrimaryCryptoSetPhase1.pPhase1Suites =
 g_DefaultPrimaryCryptoSuitesPhase1;
 g_DefaultPrimaryCryptoSetPhase1.dwTimeOutMinutes = 480;

 //Init Phase 2 Crypto
 g_DefaultPrimaryCryptoSetPhase2.Pfs =
 FW_PHASE2_CRYPTO_PFS_DISABLE;
 g_DefaultPrimaryCryptoSetPhase2.dwNumPhase2Suites =
 RTL_NUMBER_OF(g_DefaultPrimaryCryptoSuitesPhase2);
 g_DefaultPrimaryCryptoSetPhase2.pPhase2Suites =
 g_DefaultPrimaryCryptoSuitesPhase2;
 }

<25> Section 3.1.3: Windows selects a default value for the ProfileConfiguration option and the
GlobalConfiguration option. These configuration default values are secure, and it is recommended to
use these values as default values. ProfileConfiguration option default values:

 FW_PROFILE_CONFIG_ENABLE_FW .- TRUE.

293 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

 FW_PROFILE_CONFIG_DISABLE_STEALTH_MODE .- FALSE.
 FW_PROFILE_CONFIG_SHIELDED .- FALSE.
 FW_PROFILE_CONFIG_DISABLE_UNICAST_RESPONSES_TO_MULTICAST_BROADCAST
 .- FALSE.
 FW_PROFILE_CONFIG_LOG_DROPPED_PACKETS .- FALSE.
 FW_PROFILE_CONFIG_LOG_SUCCESS_CONNECTIONS .- FALSE.
 FW_PROFILE_CONFIG_LOG_IGNORED_RULES .- TRUE.
 FW_PROFILE_CONFIG_LOG_MAX_FILE_SIZE .- 1024.
 FW_PROFILE_CONFIG_LOG_FILE_PATH .- L"".
 FW_PROFILE_CONFIG_DISABLE_INBOUND_NOTIFICATIONS .- FALSE.
 FW_PROFILE_CONFIG_AUTH_APPS_ALLOW_USER_PREF_MERGE .- TRUE.
 FW_PROFILE_CONFIG_GLOBAL_PORTS_ALLOW_USER_PREF_MERGE .- TRUE.
 FW_PROFILE_CONFIG_ALLOW_LOCAL_POLICY_MERGE .- TRUE.
 FW_PROFILE_CONFIG_ALLOW_LOCAL_IPSEC_POLICY_MERGE .- TRUE.
 FW_PROFILE_CONFIG_DISABLED_INTERFACES .- {0}.
 FW_PROFILE_CONFIG_DEFAULT_OUTBOUND_ACTION .- 0 (0 is allow).
 FW_PROFILE_CONFIG_DEFAULT_INBOUND_ACTION.- 1 (1 is block).

GlobalConfiguration options default values:

 FW_GLOBAL_CONFIG_POLICY_VERSION_SUPPORTED .- 0x0200
 on Windows Vista.
 FW_GLOBAL_CONFIG_POLICY_VERSION_SUPPORTED .- 0x0201
 on Windows Vista SP1 and Windows Server 2008.
 FW_GLOBAL_CONFIG_CURRENT_PROFILE .- FW_PROFILE_TYPE_PUBLIC.
 FW_GLOBAL_CONFIG_DISABLE_STATEFUL_FTP .- FALSE.
 FW_GLOBAL_CONFIG_DISABLE_STATEFUL_PPTP .- FALSE.
 FW_GLOBAL_CONFIG_SA_IDLE_TIME .- 300.
 FW_GLOBAL_CONFIG_PRESHARED_KEY_ENCODING
 .- FW_GLOBAL_CONFIG_PRESHARED_KEY_ENCODING_UTF_8.
 FW_GLOBAL_CONFIG_IPSEC_EXEMPT
 .- FW_GLOBAL_CONFIG_IPSEC_EXEMPT_NEIGHBOR_DISC.
 FW_GLOBAL_CONFIG_CRL_CHECK .- 0.
 FW_GLOBAL_CONFIG_IPSEC_THROUGH_NAT
 .- FW_GLOBAL_CONFIG_IPSEC_THROUGH_NAT_SERVER_BEHIND_NAT.
 FW_GLOBAL_CONFIG_POLICY_VERSION .- 0x0200.
 FW_GLOBAL_CONFIG_BINARY_VERSION_SUPPORTED .- 0x201. This value is
 present only in Windows Vista SP1 and Windows Server 2008.

<26> Section 3.1.4: In Windows Vista, Windows Server 2008, Windows 7, and Windows Server 2008
R2, security principals are identified by SIDs (see [MS-DTYP] section 2.4.2). The authorized clients are
represented by the S-1-5-32-544 and the S-1-5-32-556 SIDs. If the client's identity token (see [MS-
DTYP] section 2.5.2) does not contain at least one of these SIDs, the server fails the call.

<27> Section 3.1.4.6: Path validations were not performed in Windows Vista and Windows Server
2008 at edit time.

<28> Section 3.1.4.47: Path validations were not performed in Windows Vista and Windows Server
2008 at edit time.

<29> Section 3.1.6.5: Windows determines whether it is operating in common criteria mode by
calling the BCryptGetFipsAlgorithmMode API. For more information, see [MSDN-
BCryptGetFipsAlgorithmMode].

<30> Section 3.1.6.6: Windows enforces the effective firewall policy by converting the settings to
Windows Filtering Platform filters. For more information, see [MSWFPSDK].

294 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

8 Change Tracking

This section identifies No table of changes that were made to this is available. The document is either
new or has had no changes since theits last release. Changes are classified as Major, Minor, or None.

The revision class Major means that the technical content in the document was significantly revised.
Major changes affect protocol interoperability or implementation. Examples of major changes are:

▪ A document revision that incorporates changes to interoperability requirements.

▪ A document revision that captures changes to protocol functionality.

The revision class Minor means that the meaning of the technical content was clarified. Minor changes
do not affect protocol interoperability or implementation. Examples of minor changes are updates to
clarify ambiguity at the sentence, paragraph, or table level.

The revision class None means that no new technical changes were introduced. Minor editorial and
formatting changes may have been made, but the relevant technical content is identical to the last

released version.

The changes made to this document are listed in the following table. For more information, please
contact dochelp@microsoft.com.

Section Description
Revisio
n class

1.2.2 Informative References 7090 : Revised link in reference: MSDN-FQBN Minor

1.7 Versioning and Capability
Negotiation

7090 : Revised third sentence of second bullet point to include
policy version '0x21B'. For behavior note, converted policy list
to a table for better clarity.

Major

2.2.1 FW_STORE_TYPE

7090 : Added enum names and definitions for:
FW_STORE_TYPE_NOT_USED_VALUE_8,
FW_STORE_TYPE_NOT_USED_VALUE_9,
FW_STORE_TYPE_NOT_USED_VALUE_10, and
FW_STORE_TYPE_NOT_USED_VALUE_11.

Major

2.2.23 FW_RULE_STATUS

7090 : Added
FW_RULE_STATUS_PARSING_ERROR_FQBN_STRING =
0x00080018 and
FW_RULE_STATUS_SEMANTIC_ERROR_FQBN_VER =
0x00100406 to the FW_RULE_STATUS enum member
definitions.

Major

2.2.23 FW_RULE_STATUS

7090 : Added
FW_RULE_STATUS_SEMANTIC_ERROR_COMPARTMENT_ID_VER
= 0x00100407 and
FW_RULE_STATUS_SEMANTIC_ERROR_CALLOUT_AND_AUDIT_
VER = 0x00100408 to the FW_RULE_STATUS enum members
definition.

Major

2.2.23 FW_RULE_STATUS

7090 : Added new enum member descriptions for:
FW_RULE_STATUS_PARSING_ERROR_FQBN_STRING,
FW_RULE_STATUS_PARSING_ERROR_NETNAMES_STRING, and
FW_RULE_STATUS_PARSING_ERROR_SECURITY_REALM_ID_ST
RING

Major

2.2.36 FW_RULE
7090 : Added 'wszFqbn' and 'compartmentId' members to
Firewall Rule structure and specified the parameter definitions.

Major

2.2.86 FW_MATCH_KEY 7090 : Specified two new names, values, and definitions, for
the FW_MATCH_KEY enumeration ('FW_MATCH_KEY_FQBN =

Major

295 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Section Description
Revisio
n class

13', 'FW_MATCH_KEY_COMPARTMENT_ID = 14'). Also updated
the 'FW_MATCH_KEY_MAX' enum value to 15.

2.2.96
FW_TRUST_TUPLE_KEYWORD

7090 : Added three new enum flags to the
FW_TRUST_TUPLE_KEYWORD enumeration and specified
definitions: FW_TRUST_TUPLE_KEYWORD_WFD_KM_DRIVER =
0x0020, FW_TRUST_TUPLE_KEYWORD_UPNP = 0x0040, and
FW_TRUST_TUPLE_KEYWORD_MAX_V2_26 = 0x0020. Also
changed constant value of FW_TRUST_TUPLE_KEYWORD_MAX
flag from '20' to '80'.

Major

2.2.102 FW_RULE_FLAGS2

7090 : Added new enum flag value

FW_RULE_FLAGS2_CALLOUT_AND_AUDIT = 0x0080 to the
FW_RULE_FLAGS2 enumeration and specified definition;
updated the value of FW_RULE_FLAGS2_MAX enum flag to
'0x0100'; and specified new product behavior note 22.

Major

2.2.105 FW_RULE2_26
7090 : Created new topic 2.2.105 FW_RULE2_26 and added
definition for new structure _tag_FW_RULE2_26.

Major

3.1.1 Abstract Data Model
7090 : Added 'IsWFDMaUsbWirelessDocking' field for TrustTuple
object in the ADM.

Major

3.1.4.79
RRPC_FWAddFirewallRule2_26
(Opnum 78)

7090 : Modified the pRule parameter data type from
"PFW_RULE" to "PFW_RULE2_26" in the
RRPC_FWAddFirewallRule2_26 (Opnum 78) method definition
and in the pRule parameter description.

Major

3.1.4.80
RRPC_FWSetFirewallRule2_26
(Opnum 79)

7090 : Modified the pRule parameter data type from
"PFW_RULE" to "PFW_RULE2_26" in the
RRPC_FWSetFirewallRule2_26 (Opnum 79) method definition
and in the pRule parameter description.

Major

3.1.4.81
RRPC_FWEnumFirewallRules2_
26 (Opnum 80)

7090 : Modified the ppRules parameter data type from
"PFW_RULE*" to "PFW_RULE2_26*" in the
RRPC_FWEnumFirewallRules2_26 (Opnum 80) method
definition and in the ppRules parameter description.

Major

3.1.4.82
RRPC_FWQueryFirewallRules2_
26 (Opnum 81)

7090 : Modified the ppRules parameter data type from
"PFW_RULE*" to "PFW_RULE2_26*" in the
RRPC_FWQueryFirewallRules2_26 (Opnum 81) method
definition. Changed data types of linked list in the ppRules
parameter description to FW_RULE2_26.

Major

3.1.4.83
RRPC_FWAddFirewallRule2_27
(Opnum 82)

7090 : Created new topic 3.1.4.83 for
RRPC_FWAddFirewallRule2_27 (Opnum 82) method.

Major

3.1.4.84
RRPC_FWSetFirewallRule2_27
(Opnum 83)

7090 : Created new topic 3.1.4.84 for
RRPC_FWSetFirewallRule2_27 (Opnum 83) method

Major

3.1.4.85
RRPC_FWEnumFirewallRules2_
27 (Opnum 84)

7090 : Created new topic 3.1.4.85 for
RRPC_FWEnumFirewallRules2_27 (Opnum 84) method.

Major

3.1.4.86
RRPC_FWQueryFirewallRules2_
27 (Opnum 85)

7090 : Created new topic 3.1.4.86 for
RRPC_FWQueryFirewallRules2_27 (Opnum 85) method.

Major

6 Appendix A: Full IDL
7090 : Updated IDL throughout for corresponding topic
updates.

Major

296 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Section Description
Revisio
n class

7 Appendix B: Product
Behavior

Reformatted former applicability list into separate Windows
Server Releases and Client Releases tables that also specify the
Server and Client Roles of the protocol that each release
supports. Added reference to 'Windows Server' in the Windows
Server Releases table.

Major

297 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

9 Index
A

Abstract data model
 client 219
 server 117
Adding a firewall rule example 221
Adding firewall rule example 221
Applicability 16

C

Capability negotiation 16
Change tracking 294
Client
 abstract data model 219
 initialization 219
 local events 220
 message processing 219

 sequencing rules 219
 timer events 220
 timers 219
Closing a policy store handle example 223
Closing policy store example 223
Common data types 18

D

Data model - abstract
 client 219
 server 117
Data types
 common - overview 18
Data types - common 18

E

Enumerating firewall rules example 223
Enumerating the firewall rules example 223
Events
 local - client 220
 local - server 217
 timer - client 220
 timer - server 217
Examples
 adding a firewall rule 221
 adding firewall rule example 221
 closing a policy store handle 223
 closing policy store example 223
 enumerating firewall rules example 223
 enumerating the firewall rules 223
 opening a policy store 221

 opening policy store example 221

F

Fields - vendor-extensible 17
Full IDL 226
FW_ADAPTER structure 64
FW_ADDRESS_KEYWORD enumeration 27
FW_ADDRESSES structure 28
FW_AUTH_INFO structure 97

298 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

FW_AUTH_METHOD enumeration 76
FW_AUTH_SET structure 83
FW_AUTH_SET_FLAGS enumeration 110
FW_AUTH_SET2_10 structure 80
FW_AUTH_SUITE structure 79
FW_AUTH_SUITE_FLAGS enumeration 77
FW_AUTH_SUITE2_10 structure 78
FW_BYTE_BLOB structure 95
FW_CERT_CRITERIA structure 75
FW_CERT_CRITERIA_FLAGS enumeration 75
FW_CERT_CRITERIA_NAME_TYPE enumeration 74
FW_CERT_CRITERIA_TYPE enumeration 74
FW_CERT_INFO structure 96
FW_CONFIG_FLAGS enumeration 64
FW_COOKIE_PAIR structure 96
FW_CRYPTO_ENCRYPTION_TYPE enumeration 87
FW_CRYPTO_HASH_TYPE enumeration 88
FW_CRYPTO_KEY_EXCHANGE_TYPE enumeration 86
FW_CRYPTO_PROTOCOL_TYPE enumeration 89
FW_CRYPTO_SET structure 92
FW_CRYPTO_SET_FLAGS enumeration 111
FW_CS_RULE structure 70
FW_CS_RULE_ACTION enumeration 68

FW_CS_RULE_FLAGS enumeration 67
FW_CS_RULE2_0 structure 69
FW_CS_RULE2_10 structure 68
FW_DATA_TYPE enumeration 104
FW_DIAG_APP structure 64
FW_DIRECTION enumeration 26
FW_ENDPOINTS structure 97
FW_ENFORCEMENT_STATE enumeration 43
FW_ENUM_RULES_FLAGS enumeration 48
FW_GLOBAL_CONFIG enumeration 61
FW_GLOBAL_CONFIG_IPSEC_EXEMPT_VALUES enumeration 59
FW_GLOBAL_CONFIG_IPSEC_THROUGH_NAT_VALUES enumeration 60
FW_GLOBAL_CONFIG_PRESHARED_KEY_ENCODING_VALUES enumeration 60
FW_ICMP_TYPE_CODE structure 25
FW_ICMP_TYPE_CODE_LIST structure 25
FW_INTERFACE_LUIDS structure 26
FW_INTERFACE_TYPE enumeration 26
FW_IP_VERSION enumeration 66
FW_IPSEC_PHASE enumeration 66
FW_IPV4_ADDRESS_RANGE structure 22
FW_IPV4_RANGE_LIST structure 22
FW_IPV4_SUBNET structure 21
FW_IPV4_SUBNET_LIST structure 21
FW_IPV6_ADDRESS_RANGE structure 22
FW_IPV6_RANGE_LIST structure 23
FW_IPV6_SUBNET structure 21
FW_IPV6_SUBNET_LIST structure 21
FW_KEY_MODULE enumeration 108
FW_MATCH_KEY enumeration 103
FW_MATCH_TYPE enumeration 105
FW_MATCH_VALUE structure 105
FW_MM_RULE structure 101
FW_NETWORK structure 64
FW_NETWORK_NAMES structure 111
FW_OBJECT_CTRL_FLAG enumeration 43
FW_OBJECT_METADATA structure 45
FW_OS_PLATFORM structure 46
FW_OS_PLATFORM_LIST structure 47
FW_OS_PLATFORM_OP enumeration 45
FW_PHASE1_CRYPTO_FLAGS enumeration 91
FW_PHASE1_CRYPTO_SUITE structure 89
FW_PHASE1_KEY_MODULE_TYPE enumeration 96

299 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

FW_PHASE1_SA_DETAILS structure 98
FW_PHASE2_CRYPTO_PFS enumeration 91
FW_PHASE2_CRYPTO_SUITE structure 90
FW_PHASE2_SA_DETAILS structure 99
FW_PHASE2_TRAFFIC_TYPE enumeration 99
FW_POLICY_ACCESS_RIGHT enumeration 20
FW_PORT_KEYWORD enumeration 24
FW_PORT_RANGE structure 23
FW_PORT_RANGE_LIST structure 23
FW_PORTS structure 25
FW_PRODUCT structure 65
FW_PROFILE_CONFIG enumeration 57
FW_PROFILE_TYPE enumeration 19
FW_QUERY structure 107
FW_QUERY_CONDITION structure 106
FW_QUERY_CONDITIONS structure 107
FW_RULE structure 52
FW_RULE_ACTION enumeration 49
FW_RULE_CATEGORY enumeration 65
FW_RULE_FLAGS enumeration 49
FW_RULE_ORIGIN_TYPE enumeration 47
FW_RULE_STATUS enumeration 29
FW_RULE_STATUS_CLASS enumeration 42

FW_RULE2_0 structure 51
FW_STORE_TYPE enumeration 18
FW_TRUST_TUPLE_KEYWORD enumeration 109

G

Glossary 9

I

IDL 226
Implementer - security considerations 225
Index of security parameters 225
Informative references 13
Initialization
 client 219
 server 120
Introduction 9

L

Local events
 client 220
 server 217

M

Message processing
 client 219
 server 121
Messages
 common data types 18
 transport 18
Methods
 RRPC_FWAddAuthenticationSet (Opnum 17) 146
 RRPC_FWAddAuthenticationSet2_10 (Opnum 52) 182
 RRPC_FWAddAuthenticationSet2_20 (Opnum 62) 192
 RRPC_FWAddConnectionSecurityRule (Opnum 12) 141
 RRPC_FWAddConnectionSecurityRule2_10 (Opnum 49) 178
 RRPC_FWAddConnectionSecurityRule2_20 (Opnum 58) 188
 RRPC_FWAddCryptoSet (Opnum 22) 151
 RRPC_FWAddCryptoSet2_10 (Opnum 55) 185

300 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

 RRPC_FWAddFirewallRule (Opnum 5) 133
 RRPC_FWAddFirewallRule2_10 (Opnum 46) 175
 RRPC_FWAddFirewallRule2_20 (Opnum 66) 196
 RRPC_FWAddFirewallRule2_24 (Opnum 70) 200
 RRPC_FWAddFirewallRule2_25 (Opnum 74) 204
 RRPC_FWAddFirewallRule2_26 (Opnum 78) 208
 RRPC_FWAddFirewallRule2_27 (Opnum 82) 213
 RRPC_FWAddMainModeRule (Opnum 32) 161
 RRPC_FWClosePolicyStore (Opnum 1) 130
 RRPC_FWDeleteAllAuthenticationSets (Opnum 20) 149
 RRPC_FWDeleteAllConnectionSecurityRules (Opnum 15) 144
 RRPC_FWDeleteAllCryptoSets (Opnum 25) 155
 RRPC_FWDeleteAllFirewallRules (Opnum 8) 136
 RRPC_FWDeleteAllMainModeRules (Opnum 35) 164
 RRPC_FWDeleteAuthenticationSet (Opnum 19) 148
 RRPC_FWDeleteConnectionSecurityRule (Opnum 14) 143
 RRPC_FWDeleteCryptoSet (Opnum 24) 153
 RRPC_FWDeleteFirewallRule (Opnum 7) 136
 RRPC_FWDeleteMainModeRule (Opnum 34) 163
 RRPC_FWDeletePhase1SAs (Opnum 29) 159
 RRPC_FWDeletePhase2SAs (Opnum 30) 160
 RRPC_FWEnumAdapters (Opnum 43) 171
 RRPC_FWEnumAuthenticationSets (Opnum 21) 150

 RRPC_FWEnumAuthenticationSets2_10 (Opnum 54) 184
 RRPC_FWEnumAuthenticationSets2_20 (Opnum 64) 194
 RRPC_FWEnumConnectionSecurityRules (Opnum 16) 145
 RRPC_FWEnumConnectionSecurityRules2_10 (Opnum 51) 180
 RRPC_FWEnumConnectionSecurityRules2_20 (Opnum 60) 190
 RRPC_FWEnumCryptoSets (Opnum 26) 156
 RRPC_FWEnumCryptoSets2_10 (Opnum 57) 187
 RRPC_FWEnumFirewallRules (Opnum 9) 137
 RRPC_FWEnumFirewallRules2_10 (Opnum 48) 177
 RRPC_FWEnumFirewallRules2_20 (Opnum 68) 198
 RRPC_FWEnumFirewallRules2_24 (Opnum 72) 202
 RRPC_FWEnumFirewallRules2_25 (Opnum 76) 206
 RRPC_FWEnumFirewallRules2_26 (Opnum 80) 211
 RRPC_FWEnumFirewallRules2_27 (Opnum 84) 215
 RRPC_FWEnumMainModeRules (Opnum 36) 165
 RRPC_FWEnumNetworks (Opnum 42) 171
 RRPC_FWEnumPhase1SAs (Opnum 27) 157
 RRPC_FWEnumPhase2SAs (Opnum 28) 158
 RRPC_FWEnumProducts (Opnum 31) 161
 RRPC_FWGetConfig (Opnum 10) 138
 RRPC_FWGetConfig2_10 (Opnum 45) 174
 RRPC_FWGetGlobalConfig (Opnum 3) 131
 RRPC_FWGetGlobalConfig2_10 (Opnum 44) 172
 RRPC_FWOpenPolicyStore (Opnum 0) 129
 RRPC_FWQueryAuthenticationSets (Opnum 40) 169
 RRPC_FWQueryAuthenticationSets2_20 (Opnum 65) 195
 RRPC_FWQueryConnectionSecurityRules (Opnum 38) 167
 RRPC_FWQueryConnectionSecurityRules2_20 (Opnum 61) 191
 RRPC_FWQueryCryptoSets (Opnum 41) 170
 RRPC_FWQueryFirewallRules (Opnum 37) 166
 RRPC_FWQueryFirewallRules2_20 (Opnum 69) 199
 RRPC_FWQueryFirewallRules2_24 (Opnum 73) 203
 RRPC_FWQueryFirewallRules2_25 (Opnum 77) 207
 RRPC_FWQueryFirewallRules2_26 (Opnum 81) 212
 RRPC_FWQueryFirewallRules2_27 (Opnum 85) 216
 RRPC_FWQueryMainModeRules (Opnum 39) 168
 RRPC_FWRestoreDefaults (Opnum 2) 130
 RRPC_FWSetAuthenticationSet (Opnum 18) 147
 RRPC_FWSetAuthenticationSet2_10 (Opnum 53) 183
 RRPC_FWSetAuthenticationSet2_20 (Opnum 63) 193
 RRPC_FWSetConfig (Opnum 11) 140
 RRPC_FWSetConnectionSecurityRule (Opnum 13) 142

301 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

 RRPC_FWSetConnectionSecurityRule2_10 (Opnum 50) 179
 RRPC_FWSetConnectionSecurityRule2_20 (Opnum 59) 189
 RRPC_FWSetCryptoSet (Opnum 23) 152
 RRPC_FWSetCryptoSet2_10 (Opnum 56) 186
 RRPC_FWSetFirewallRule (Opnum 6) 135
 RRPC_FWSetFirewallRule2_10 (Opnum 47) 176
 RRPC_FWSetFirewallRule2_20 (Opnum 67) 197
 RRPC_FWSetFirewallRule2_24 (Opnum 71) 201
 RRPC_FWSetFirewallRule2_25 (Opnum 75) 205
 RRPC_FWSetFirewallRule2_26 (Opnum 79) 210
 RRPC_FWSetFirewallRule2_27 (Opnum 83) 214
 RRPC_FWSetGlobalConfig (Opnum 4) 132
 RRPC_FWSetMainModeRule (Opnum 33) 162

N

Normative references 12

O

Opening a policy store example 221
Opening policy store example 221
Overview 13
Overview (synopsis) 13

P

Parameter index - security 225
Parameters - security index 225
PFW_ADAPTER 64
PFW_ADDRESSES 28
PFW_AUTH_INFO 97
PFW_AUTH_SET 83
PFW_AUTH_SET2_10 80
PFW_AUTH_SUITE 79
PFW_AUTH_SUITE2_10 78
PFW_BYTE_BLOB 95
PFW_CERT_CRITERIA 75
PFW_CERT_INFO 96
PFW_COOKIE_PAIR 96
PFW_CRYPTO_SET 92
PFW_CS_RULE 70
PFW_CS_RULE2_0 69
PFW_CS_RULE2_10 68
PFW_ENDPOINTS 97
PFW_ICMP_TYPE_CODE 25
PFW_ICMP_TYPE_CODE_LIST 25
PFW_INTERFACE_LUIDS 26
PFW_IPV4_ADDRESS_RANGE 22
PFW_IPV4_RANGE_LIST 22
PFW_IPV4_SUBNET 21

PFW_IPV4_SUBNET_LIST 21
PFW_IPV6_ADDRESS_RANGE 22
PFW_IPV6_RANGE_LIST 23
PFW_IPV6_SUBNET 21
PFW_IPV6_SUBNET_LIST 21
PFW_MM_RULE 101
PFW_NETWORK 64
PFW_NETWORK_NAMES 111
PFW_OBJECT_METADATA 45
PFW_OS_PLATFORM 46
PFW_OS_PLATFORM_LIST 47
PFW_PHASE1_CRYPTO_SUITE 89
PFW_PHASE1_SA_DETAILS 98
PFW_PHASE2_CRYPTO_SUITE 90

302 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

PFW_PHASE2_SA_DETAILS 99
PFW_PORT_RANGE 23
PFW_PORT_RANGE_LIST 23
PFW_PORTS 25
PFW_PRODUCT 65
PFW_QUERY 107
PFW_QUERY_CONDITION 106
PFW_QUERY_CONDITIONS 107
PFW_RULE 52
PFW_RULE2_0 51
Preconditions 16
Prerequisites 16
Product behavior 284
Protocol Details
 overview 117

R

References 12
 informative 13
 normative 12
Relationship to other protocols 15
RRPC_FWAddAuthenticationSet (Opnum 17) method 146
RRPC_FWAddAuthenticationSet method 146
RRPC_FWAddAuthenticationSet2_10 (Opnum 52) method 182
RRPC_FWAddAuthenticationSet2_10 method 182
RRPC_FWAddAuthenticationSet2_20 (Opnum 62) method 192
RRPC_FWAddAuthenticationSet2_20 method 192
RRPC_FWAddConnectionSecurityRule (Opnum 12) method 141
RRPC_FWAddConnectionSecurityRule method 141
RRPC_FWAddConnectionSecurityRule2_10 (Opnum 49) method 178
RRPC_FWAddConnectionSecurityRule2_10 method 178
RRPC_FWAddConnectionSecurityRule2_20 (Opnum 58) method 188
RRPC_FWAddConnectionSecurityRule2_20 method (section 3.1.4.59 188, section 3.1.4.68 197)
RRPC_FWAddCryptoSet (Opnum 22) method 151
RRPC_FWAddCryptoSet method 151
RRPC_FWAddCryptoSet2_10 (Opnum 55) method 185
RRPC_FWAddCryptoSet2_10 method 185
RRPC_FWAddFirewallRule (Opnum 5) method 133
RRPC_FWAddFirewallRule method 133
RRPC_FWAddFirewallRule2_10 (Opnum 46) method 175
RRPC_FWAddFirewallRule2_10 method 175
RRPC_FWAddFirewallRule2_20 (Opnum 66) method 196
RRPC_FWAddFirewallRule2_20 method 196
RRPC_FWAddFirewallRule2_24 (Opnum 70) method 200
RRPC_FWAddFirewallRule2_24 method 200
RRPC_FWAddFirewallRule2_25 (Opnum 74) method 204
RRPC_FWAddFirewallRule2_26 (Opnum 78) method 208
RRPC_FWAddFirewallRule2_27 (Opnum 82) method 213
RRPC_FWAddMainModeRule (Opnum 32) method 161
RRPC_FWAddMainModeRule method 161
RRPC_FWClosePolicyStore (Opnum 1) method 130
RRPC_FWClosePolicyStore method 130
RRPC_FWDeleteAllAuthenticationSets (Opnum 20) method 149
RRPC_FWDeleteAllAuthenticationSets method 149
RRPC_FWDeleteAllConnectionSecurityRules (Opnum 15) method 144
RRPC_FWDeleteAllConnectionSecurityRules method 144
RRPC_FWDeleteAllCryptoSets (Opnum 25) method 155
RRPC_FWDeleteAllCryptoSets method 155
RRPC_FWDeleteAllFirewallRules (Opnum 8) method 136
RRPC_FWDeleteAllFirewallRules method 136
RRPC_FWDeleteAllMainModeRules (Opnum 35) method 164

RRPC_FWDeleteAllMainModeRules method 164
RRPC_FWDeleteAuthenticationSet (Opnum 19) method 148
RRPC_FWDeleteAuthenticationSet method 148

303 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

RRPC_FWDeleteConnectionSecurityRule (Opnum 14) method 143
RRPC_FWDeleteConnectionSecurityRule method 143
RRPC_FWDeleteCryptoSet (Opnum 24) method 153
RRPC_FWDeleteCryptoSet method 153
RRPC_FWDeleteFirewallRule (Opnum 7) method 136
RRPC_FWDeleteFirewallRule method 136
RRPC_FWDeleteMainModeRule (Opnum 34) method 163
RRPC_FWDeleteMainModeRule method 163
RRPC_FWDeletePhase1SAs (Opnum 29) method 159
RRPC_FWDeletePhase1SAs method 159
RRPC_FWDeletePhase2SAs (Opnum 30) method 160
RRPC_FWDeletePhase2SAs method 160
RRPC_FWEnumAdapters (Opnum 43) method 171
RRPC_FWEnumAdapters method 171
RRPC_FWEnumAuthenticationSets (Opnum 21) method 150
RRPC_FWEnumAuthenticationSets method 150
RRPC_FWEnumAuthenticationSets2_10 (Opnum 54) method 184
RRPC_FWEnumAuthenticationSets2_10 method 184
RRPC_FWEnumAuthenticationSets2_20 (Opnum 64) method 194
RRPC_FWEnumAuthenticationSets2_20 method 194
RRPC_FWEnumConnectionSecurityRules (Opnum 16) method 145
RRPC_FWEnumConnectionSecurityRules method 145
RRPC_FWEnumConnectionSecurityRules2_10 (Opnum 51) method 180

RRPC_FWEnumConnectionSecurityRules2_10 method 180
RRPC_FWEnumConnectionSecurityRules2_20 (Opnum 60) method 190
RRPC_FWEnumConnectionSecurityRules2_20 method 190
RRPC_FWEnumCryptoSets (Opnum 26) method 156
RRPC_FWEnumCryptoSets method 156
RRPC_FWEnumCryptoSets2_10 (Opnum 57) method 187
RRPC_FWEnumCryptoSets2_10 method 187
RRPC_FWEnumFirewallRules (Opnum 9) method 137
RRPC_FWEnumFirewallRules method 137
RRPC_FWEnumFirewallRules2_10 (Opnum 48) method 177
RRPC_FWEnumFirewallRules2_10 method 177
RRPC_FWEnumFirewallRules2_20 (Opnum 68) method 198
RRPC_FWEnumFirewallRules2_20 method 198
RRPC_FWEnumFirewallRules2_24 (Opnum 72) method 202
RRPC_FWEnumFirewallRules2_24 method 202
RRPC_FWEnumFirewallRules2_25 (Opnum 76) method 206
RRPC_FWEnumFirewallRules2_26 (Opnum 80) method 211
RRPC_FWEnumFirewallRules2_27 (Opnum 84) method 215
RRPC_FWEnumMainModeRules (Opnum 36) method 165
RRPC_FWEnumMainModeRules method 165
RRPC_FWEnumNetworks (Opnum 42) method 171
RRPC_FWEnumNetworks method 171
RRPC_FWEnumPhase1SAs (Opnum 27) method 157
RRPC_FWEnumPhase1SAs method 157
RRPC_FWEnumPhase2SAs (Opnum 28) method 158
RRPC_FWEnumPhase2SAs method 158
RRPC_FWEnumProducts (Opnum 31) method 161
RRPC_FWEnumProducts method 161
RRPC_FWGetConfig (Opnum 10) method 138
RRPC_FWGetConfig method 138
RRPC_FWGetConfig2_10 (Opnum 45) method 174
RRPC_FWGetConfig2_10 method 174
RRPC_FWGetGlobalConfig (Opnum 3) method 131
RRPC_FWGetGlobalConfig method 131
RRPC_FWGetGlobalConfig2_10 (Opnum 44) method 172
RRPC_FWGetGlobalConfig2_10 method 172
RRPC_FWModifyConnectionSecurityRule2_20 method 189
RRPC_FWOpenPolicyStore (Opnum 0) method 129
RRPC_FWOpenPolicyStore method 129
RRPC_FWQueryAuthenticationSets (Opnum 40) method 169
RRPC_FWQueryAuthenticationSets method 169
RRPC_FWQueryAuthenticationSets2_20 (Opnum 65) method 195

304 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

RRPC_FWQueryAuthenticationSets2_20 method 195
RRPC_FWQueryConnectionSecurityRules (Opnum 38) method 167
RRPC_FWQueryConnectionSecurityRules method 167
RRPC_FWQueryConnectionSecurityRules2_20 (Opnum 61) method 191
RRPC_FWQueryConnectionSecurityRules2_20 method 191
RRPC_FWQueryCryptoSets (Opnum 41) method 170
RRPC_FWQueryCryptoSets method 170
RRPC_FWQueryFirewallRules (Opnum 37) method 166
RRPC_FWQueryFirewallRules method 166
RRPC_FWQueryFirewallRules2_20 (Opnum 69) method 199
RRPC_FWQueryFirewallRules2_20 method 199
RRPC_FWQueryFirewallRules2_24 (Opnum 73) method 203
RRPC_FWQueryFirewallRules2_24 method 203
RRPC_FWQueryFirewallRules2_25 (Opnum 77) method 207
RRPC_FWQueryFirewallRules2_26 (Opnum 81) method 212
RRPC_FWQueryFirewallRules2_27 (Opnum 85) method 216
RRPC_FWQueryMainModeRules (Opnum 39) method 168
RRPC_FWQueryMainModeRules method 168
RRPC_FWRestoreDefaults (Opnum 2) method 130
RRPC_FWRestoreDefaults method 130
RRPC_FWSetAuthenticationSet (Opnum 18) method 147
RRPC_FWSetAuthenticationSet method 147
RRPC_FWSetAuthenticationSet2_10 (Opnum 53) method 183

RRPC_FWSetAuthenticationSet2_10 method 183
RRPC_FWSetAuthenticationSet2_20 (Opnum 63) method 193
RRPC_FWSetAuthenticationSet2_20 method 193
RRPC_FWSetConfig (Opnum 11) method 140
RRPC_FWSetConfig method 140
RRPC_FWSetConnectionSecurityRule (Opnum 13) method 142
RRPC_FWSetConnectionSecurityRule method 142
RRPC_FWSetConnectionSecurityRule2_10 (Opnum 50) method 179
RRPC_FWSetConnectionSecurityRule2_10 method 179
RRPC_FWSetConnectionSecurityRule2_20 (Opnum 59) method 189
RRPC_FWSetCryptoSet (Opnum 23) method 152
RRPC_FWSetCryptoSet method 152
RRPC_FWSetCryptoSet2_10 (Opnum 56) method 186
RRPC_FWSetCryptoSet2_10 method 186
RRPC_FWSetFirewallRule (Opnum 6) method 135
RRPC_FWSetFirewallRule method 135
RRPC_FWSetFirewallRule2_10 (Opnum 47) method 176
RRPC_FWSetFirewallRule2_10 method 176
RRPC_FWSetFirewallRule2_20 (Opnum 67) method 197
RRPC_FWSetFirewallRule2_24 (Opnum 71) method 201
RRPC_FWSetFirewallRule2_24 method 201
RRPC_FWSetFirewallRule2_25 (Opnum 75) method 205
RRPC_FWSetFirewallRule2_26 (Opnum 79) method 210
RRPC_FWSetFirewallRule2_27 (Opnum 83) method 214
RRPC_FWSetGlobalConfig (Opnum 4) method 132
RRPC_FWSetGlobalConfig method 132
RRPC_FWSetMainModeRule (Opnum 33) method 162
RRPC_FWSetMainModeRule method 162

S

Security
 implementer considerations 225
 parameter index 225
Sequencing rules
 client 219
 server 121
Server
 abstract data model 117

 initialization 120
 local events 217
 message processing 121

305 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

 RRPC_FWAddAuthenticationSet (Opnum 17) method 146
 RRPC_FWAddAuthenticationSet2_10 (Opnum 52) method 182
 RRPC_FWAddAuthenticationSet2_20 (Opnum 62) method 192
 RRPC_FWAddConnectionSecurityRule (Opnum 12) method 141
 RRPC_FWAddConnectionSecurityRule2_10 (Opnum 49) method 178
 RRPC_FWAddConnectionSecurityRule2_20 (Opnum 58) method 188
 RRPC_FWAddCryptoSet (Opnum 22) method 151
 RRPC_FWAddCryptoSet2_10 (Opnum 55) method 185
 RRPC_FWAddFirewallRule (Opnum 5) method 133
 RRPC_FWAddFirewallRule2_10 (Opnum 46) method 175
 RRPC_FWAddFirewallRule2_20 (Opnum 66) method 196
 RRPC_FWAddFirewallRule2_24 (Opnum 70) method 200
 RRPC_FWAddFirewallRule2_25 (Opnum 74) method 204
 RRPC_FWAddFirewallRule2_26 (Opnum 78) method 208
 RRPC_FWAddFirewallRule2_27 (Opnum 82) method 213
 RRPC_FWAddMainModeRule (Opnum 32) method 161
 RRPC_FWClosePolicyStore (Opnum 1) method 130
 RRPC_FWDeleteAllAuthenticationSets (Opnum 20) method 149
 RRPC_FWDeleteAllConnectionSecurityRules (Opnum 15) method 144
 RRPC_FWDeleteAllCryptoSets (Opnum 25) method 155
 RRPC_FWDeleteAllFirewallRules (Opnum 8) method 136
 RRPC_FWDeleteAllMainModeRules (Opnum 35) method 164
 RRPC_FWDeleteAuthenticationSet (Opnum 19) method 148

 RRPC_FWDeleteConnectionSecurityRule (Opnum 14) method 143
 RRPC_FWDeleteCryptoSet (Opnum 24) method 153
 RRPC_FWDeleteFirewallRule (Opnum 7) method 136
 RRPC_FWDeleteMainModeRule (Opnum 34) method 163
 RRPC_FWDeletePhase1SAs (Opnum 29) method 159
 RRPC_FWDeletePhase2SAs (Opnum 30) method 160
 RRPC_FWEnumAdapters (Opnum 43) method 171
 RRPC_FWEnumAuthenticationSets (Opnum 21) method 150
 RRPC_FWEnumAuthenticationSets2_10 (Opnum 54) method 184
 RRPC_FWEnumAuthenticationSets2_20 (Opnum 64) method 194
 RRPC_FWEnumConnectionSecurityRules (Opnum 16) method 145
 RRPC_FWEnumConnectionSecurityRules2_10 (Opnum 51) method 180
 RRPC_FWEnumConnectionSecurityRules2_20 (Opnum 60) method 190
 RRPC_FWEnumCryptoSets (Opnum 26) method 156
 RRPC_FWEnumCryptoSets2_10 (Opnum 57) method 187
 RRPC_FWEnumFirewallRules (Opnum 9) method 137
 RRPC_FWEnumFirewallRules2_10 (Opnum 48) method 177
 RRPC_FWEnumFirewallRules2_20 (Opnum 68) method 198
 RRPC_FWEnumFirewallRules2_24 (Opnum 72) method 202
 RRPC_FWEnumFirewallRules2_25 (Opnum 76) method 206
 RRPC_FWEnumFirewallRules2_26 (Opnum 80) method 211
 RRPC_FWEnumFirewallRules2_27 (Opnum 84) method 215
 RRPC_FWEnumMainModeRules (Opnum 36) method 165
 RRPC_FWEnumNetworks (Opnum 42) method 171
 RRPC_FWEnumPhase1SAs (Opnum 27) method 157
 RRPC_FWEnumPhase2SAs (Opnum 28) method 158
 RRPC_FWEnumProducts (Opnum 31) method 161
 RRPC_FWGetConfig (Opnum 10) method 138
 RRPC_FWGetConfig2_10 (Opnum 45) method 174
 RRPC_FWGetGlobalConfig (Opnum 3) method 131
 RRPC_FWGetGlobalConfig2_10 (Opnum 44) method 172
 RRPC_FWOpenPolicyStore (Opnum 0) method 129
 RRPC_FWQueryAuthenticationSets (Opnum 40) method 169
 RRPC_FWQueryAuthenticationSets2_20 (Opnum 65) method 195
 RRPC_FWQueryConnectionSecurityRules (Opnum 38) method 167
 RRPC_FWQueryConnectionSecurityRules2_20 (Opnum 61) method 191
 RRPC_FWQueryCryptoSets (Opnum 41) method 170
 RRPC_FWQueryFirewallRules (Opnum 37) method 166
 RRPC_FWQueryFirewallRules2_20 (Opnum 69) method 199
 RRPC_FWQueryFirewallRules2_24 (Opnum 73) method 203
 RRPC_FWQueryFirewallRules2_25 (Opnum 77) method 207
 RRPC_FWQueryFirewallRules2_26 (Opnum 81) method 212

306 / 306

[MS-FASP-Diff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

 RRPC_FWQueryFirewallRules2_27 (Opnum 85) method 216
 RRPC_FWQueryMainModeRules (Opnum 39) method 168
 RRPC_FWRestoreDefaults (Opnum 2) method 130
 RRPC_FWSetAuthenticationSet (Opnum 18) method 147
 RRPC_FWSetAuthenticationSet2_10 (Opnum 53) method 183
 RRPC_FWSetAuthenticationSet2_20 (Opnum 63) method 193
 RRPC_FWSetConfig (Opnum 11) method 140
 RRPC_FWSetConnectionSecurityRule (Opnum 13) method 142
 RRPC_FWSetConnectionSecurityRule2_10 (Opnum 50) method 179
 RRPC_FWSetConnectionSecurityRule2_20 (Opnum 59) method 189
 RRPC_FWSetCryptoSet (Opnum 23) method 152
 RRPC_FWSetCryptoSet2_10 (Opnum 56) method 186
 RRPC_FWSetFirewallRule (Opnum 6) method 135
 RRPC_FWSetFirewallRule2_10 (Opnum 47) method 176
 RRPC_FWSetFirewallRule2_20 (Opnum 67) method 197
 RRPC_FWSetFirewallRule2_24 (Opnum 71) method 201
 RRPC_FWSetFirewallRule2_25 (Opnum 75) method 205
 RRPC_FWSetFirewallRule2_26 (Opnum 79) method 210
 RRPC_FWSetFirewallRule2_27 (Opnum 83) method 214
 RRPC_FWSetGlobalConfig (Opnum 4) method 132
 RRPC_FWSetMainModeRule (Opnum 33) method 162
 sequencing rules 121
 timer events 217

 timers 120
Standards assignments 17

T

Timer events
 client 220
 server 217
Timers
 client 219
 server 120
Tracking changes 294
Transport 18

V

Vendor-extensible fields 17
Versioning 16

	1 Introduction
	1.1 Glossary
	1.2 References
	1.2.1 Normative References
	1.2.2 Informative References

	1.3 Overview
	1.4 Relationship to Other Protocols
	1.5 Prerequisites/Preconditions
	1.6 Applicability Statement
	1.7 Versioning and Capability Negotiation
	1.8 Vendor-Extensible Fields
	1.9 Standards Assignments

	2 Messages
	2.1 Transport
	2.2 Common Data Types
	2.2.1 FW_STORE_TYPE
	2.2.2 FW_PROFILE_TYPE
	2.2.3 FW_POLICY_ACCESS_RIGHT
	2.2.4 FW_IPV4_SUBNET
	2.2.5 FW_IPV4_SUBNET_LIST
	2.2.6 FW_IPV6_SUBNET
	2.2.7 FW_IPV6_SUBNET_LIST
	2.2.8 FW_IPV4_ADDRESS_RANGE
	2.2.9 FW_IPV4_RANGE_LIST
	2.2.10 FW_IPV6_ADDRESS_RANGE
	2.2.11 FW_IPV6_RANGE_LIST
	2.2.12 FW_PORT_RANGE
	2.2.13 FW_PORT_RANGE_LIST
	2.2.14 FW_PORT_KEYWORD
	2.2.15 FW_PORTS
	2.2.16 FW_ICMP_TYPE_CODE
	2.2.17 FW_ICMP_TYPE_CODE_LIST
	2.2.18 FW_INTERFACE_LUIDS
	2.2.19 FW_DIRECTION
	2.2.20 FW_INTERFACE_TYPE
	2.2.21 FW_ADDRESS_KEYWORD
	2.2.22 FW_ADDRESSES
	2.2.23 FW_RULE_STATUS
	2.2.24 FW_RULE_STATUS_CLASS
	2.2.25 FW_OBJECT_CTRL_FLAG
	2.2.26 FW_ENFORCEMENT_STATE
	2.2.27 FW_OBJECT_METADATA
	2.2.28 FW_OS_PLATFORM_OP
	2.2.29 FW_OS_PLATFORM
	2.2.30 FW_OS_PLATFORM_LIST
	2.2.31 FW_RULE_ORIGIN_TYPE
	2.2.32 FW_ENUM_RULES_FLAGS
	2.2.33 FW_RULE_ACTION
	2.2.34 FW_RULE_FLAGS
	2.2.35 FW_RULE2_0
	2.2.36 FW_RULE
	2.2.37 FW_PROFILE_CONFIG
	2.2.38 FW_GLOBAL_CONFIG_IPSEC_EXEMPT_VALUES
	2.2.39 FW_GLOBAL_CONFIG_PRESHARED_KEY_ENCODING_VALUES
	2.2.40 FW_GLOBAL_CONFIG_IPSEC_THROUGH_NAT_VALUES
	2.2.41 FW_GLOBAL_CONFIG
	2.2.42 FW_CONFIG_FLAGS
	2.2.43 FW_NETWORK
	2.2.44 FW_ADAPTER
	2.2.45 FW_DIAG_APP
	2.2.46 FW_RULE_CATEGORY
	2.2.47 FW_PRODUCT
	2.2.48 FW_IP_VERSION
	2.2.49 FW_IPSEC_PHASE
	2.2.50 FW_CS_RULE_FLAGS
	2.2.51 FW_CS_RULE_ACTION
	2.2.52 FW_CS_RULE2_10
	2.2.53 FW_CS_RULE2_0
	2.2.54 FW_CS_RULE
	2.2.55 FW_CERT_CRITERIA_TYPE
	2.2.56 FW_CERT_CRITERIA_NAME_TYPE
	2.2.57 FW_CERT_CRITERIA_FLAGS
	2.2.58 FW_CERT_CRITERIA
	2.2.59 FW_AUTH_METHOD
	2.2.60 FW_AUTH_SUITE_FLAGS
	2.2.61 FW_AUTH_SUITE2_10
	2.2.62 FW_AUTH_SUITE
	2.2.63 FW_AUTH_SET2_10
	2.2.64 FW_AUTH_SET
	2.2.65 FW_CRYPTO_KEY_EXCHANGE_TYPE
	2.2.66 FW_CRYPTO_ENCRYPTION_TYPE
	2.2.67 FW_CRYPTO_HASH_TYPE
	2.2.68 FW_CRYPTO_PROTOCOL_TYPE
	2.2.69 FW_PHASE1_CRYPTO_SUITE
	2.2.70 FW_PHASE2_CRYPTO_SUITE
	2.2.71 FW_PHASE1_CRYPTO_FLAGS
	2.2.72 FW_PHASE2_CRYPTO_PFS
	2.2.73 FW_CRYPTO_SET
	2.2.74 FW_BYTE_BLOB
	2.2.75 FW_COOKIE_PAIR
	2.2.76 FW_PHASE1_KEY_MODULE_TYPE
	2.2.77 FW_CERT_INFO
	2.2.78 FW_AUTH_INFO
	2.2.79 FW_ENDPOINTS
	2.2.80 FW_PHASE1_SA_DETAILS
	2.2.81 FW_PHASE2_TRAFFIC_TYPE
	2.2.82 FW_PHASE2_SA_DETAILS
	2.2.83 FW_PROFILE_CONFIG_VALUE
	2.2.84 FW_MM_RULE
	2.2.85 FW_CONN_HANDLE
	2.2.86 FW_MATCH_KEY
	2.2.87 FW_DATA_TYPE
	2.2.88 FW_MATCH_VALUE
	2.2.89 FW_MATCH_TYPE
	2.2.90 FW_QUERY_CONDITION
	2.2.91 FW_QUERY_CONDITIONS
	2.2.92 FW_QUERY
	2.2.93 FW_POLICY_STORE_HANDLE
	2.2.94 FW_PRODUCT_HANDLE
	2.2.95 FW_KEY_MODULE
	2.2.96 FW_TRUST_TUPLE_KEYWORD
	2.2.97 FW_RULE2_10
	2.2.98 FW_AUTH_SET_FLAGS
	2.2.99 FW_CRYPTO_SET_FLAGS
	2.2.100 FW_NETWORK_NAMES
	2.2.101 FW_RULE2_20
	2.2.102 FW_RULE_FLAGS2
	2.2.103 FW_RULE2_24
	2.2.104 FW_RULE2_25
	2.2.105 FW_RULE2_26

	3 Protocol Details
	3.1 Server Details
	3.1.1 Abstract Data Model
	3.1.2 Timers
	3.1.3 Initialization
	3.1.4 Message Processing Events and Sequencing Rules
	3.1.4.1 RRPC_FWOpenPolicyStore (Opnum 0)
	3.1.4.2 RRPC_FWClosePolicyStore (Opnum 1)
	3.1.4.3 RRPC_FWRestoreDefaults (Opnum 2)
	3.1.4.4 RRPC_FWGetGlobalConfig (Opnum 3)
	3.1.4.5 RRPC_FWSetGlobalConfig (Opnum 4)
	3.1.4.6 RRPC_FWAddFirewallRule (Opnum 5)
	3.1.4.7 RRPC_FWSetFirewallRule (Opnum 6)
	3.1.4.8 RRPC_FWDeleteFirewallRule (Opnum 7)
	3.1.4.9 RRPC_FWDeleteAllFirewallRules (Opnum 8)
	3.1.4.10 RRPC_FWEnumFirewallRules (Opnum 9)
	3.1.4.11 RRPC_FWGetConfig (Opnum 10)
	3.1.4.12 RRPC_FWSetConfig (Opnum 11)
	3.1.4.13 RRPC_FWAddConnectionSecurityRule (Opnum 12)
	3.1.4.14 RRPC_FWSetConnectionSecurityRule (Opnum 13)
	3.1.4.15 RRPC_FWDeleteConnectionSecurityRule (Opnum 14)
	3.1.4.16 RRPC_FWDeleteAllConnectionSecurityRules (Opnum 15)
	3.1.4.17 RRPC_FWEnumConnectionSecurityRules (Opnum 16)
	3.1.4.18 RRPC_FWAddAuthenticationSet (Opnum 17)
	3.1.4.19 RRPC_FWSetAuthenticationSet (Opnum 18)
	3.1.4.20 RRPC_FWDeleteAuthenticationSet (Opnum 19)
	3.1.4.21 RRPC_FWDeleteAllAuthenticationSets (Opnum 20)
	3.1.4.22 RRPC_FWEnumAuthenticationSets (Opnum 21)
	3.1.4.23 RRPC_FWAddCryptoSet (Opnum 22)
	3.1.4.24 RRPC_FWSetCryptoSet (Opnum 23)
	3.1.4.25 RRPC_FWDeleteCryptoSet (Opnum 24)
	3.1.4.26 RRPC_FWDeleteAllCryptoSets (Opnum 25)
	3.1.4.27 RRPC_FWEnumCryptoSets (Opnum 26)
	3.1.4.28 RRPC_FWEnumPhase1SAs (Opnum 27)
	3.1.4.29 RRPC_FWEnumPhase2SAs (Opnum 28)
	3.1.4.30 RRPC_FWDeletePhase1SAs (Opnum 29)
	3.1.4.31 RRPC_FWDeletePhase2SAs (Opnum 30)
	3.1.4.32 RRPC_FWEnumProducts (Opnum 31)
	3.1.4.33 RRPC_FWAddMainModeRule (Opnum 32)
	3.1.4.34 RRPC_FWSetMainModeRule (Opnum 33)
	3.1.4.35 RRPC_FWDeleteMainModeRule (Opnum 34)
	3.1.4.36 RRPC_FWDeleteAllMainModeRules (Opnum 35)
	3.1.4.37 RRPC_FWEnumMainModeRules (Opnum 36)
	3.1.4.38 RRPC_FWQueryFirewallRules (Opnum 37)
	3.1.4.39 RRPC_FWQueryConnectionSecurityRules (Opnum 38)
	3.1.4.40 RRPC_FWQueryMainModeRules (Opnum 39)
	3.1.4.41 RRPC_FWQueryAuthenticationSets (Opnum 40)
	3.1.4.42 RRPC_FWQueryCryptoSets (Opnum 41)
	3.1.4.43 RRPC_FWEnumNetworks (Opnum 42)
	3.1.4.44 RRPC_FWEnumAdapters (Opnum 43)
	3.1.4.45 RRPC_FWGetGlobalConfig2_10 (Opnum 44)
	3.1.4.46 RRPC_FWGetConfig2_10 (Opnum 45)
	3.1.4.47 RRPC_FWAddFirewallRule2_10 (Opnum 46)
	3.1.4.48 RRPC_FWSetFirewallRule2_10 (Opnum 47)
	3.1.4.49 RRPC_FWEnumFirewallRules2_10 (Opnum 48)
	3.1.4.50 RRPC_FWAddConnectionSecurityRule2_10 (Opnum 49)
	3.1.4.51 RRPC_FWSetConnectionSecurityRule2_10 (Opnum 50)
	3.1.4.52 RRPC_FWEnumConnectionSecurityRules2_10 (Opnum 51)
	3.1.4.53 RRPC_FWAddAuthenticationSet2_10 (Opnum 52)
	3.1.4.54 RRPC_FWSetAuthenticationSet2_10 (Opnum 53)
	3.1.4.55 RRPC_FWEnumAuthenticationSets2_10 (Opnum 54)
	3.1.4.56 RRPC_FWAddCryptoSet2_10 (Opnum 55)
	3.1.4.57 RRPC_FWSetCryptoSet2_10 (Opnum 56)
	3.1.4.58 RRPC_FWEnumCryptoSets2_10 (Opnum 57)
	3.1.4.59 RRPC_FWAddConnectionSecurityRule2_20 (Opnum 58)
	3.1.4.60 RRPC_FWSetConnectionSecurityRule2_20 (Opnum 59)
	3.1.4.61 RRPC_FWEnumConnectionSecurityRules2_20 (Opnum 60)
	3.1.4.62 RRPC_FWQueryConnectionSecurityRules2_20 (Opnum 61)
	3.1.4.63 RRPC_FWAddAuthenticationSet2_20 (Opnum 62)
	3.1.4.64 RRPC_FWSetAuthenticationSet2_20 (Opnum 63)
	3.1.4.65 RRPC_FWEnumAuthenticationSets2_20 (Opnum 64)
	3.1.4.66 RRPC_FWQueryAuthenticationSets2_20 (Opnum 65)
	3.1.4.67 RRPC_FWAddFirewallRule2_20 (Opnum 66)
	3.1.4.68 RRPC_FWSetFirewallRule2_20 (Opnum 67)
	3.1.4.69 RRPC_FWEnumFirewallRules2_20 (Opnum 68)
	3.1.4.70 RRPC_FWQueryFirewallRules2_20 (Opnum 69)
	3.1.4.71 RRPC_FWAddFirewallRule2_24 (Opnum 70)
	3.1.4.72 RRPC_FWSetFirewallRule2_24 (Opnum 71)
	3.1.4.73 RRPC_FWEnumFirewallRules2_24 (Opnum 72)
	3.1.4.74 RRPC_FWQueryFirewallRules2_24 (Opnum 73)
	3.1.4.75 RRPC_FWAddFirewallRule2_25 (Opnum 74)
	3.1.4.76 RRPC_FWSetFirewallRule2_25 (Opnum 75)
	3.1.4.77 RRPC_FWEnumFirewallRules2_25 (Opnum 76)
	3.1.4.78 RRPC_FWQueryFirewallRules2_25 (Opnum 77)
	3.1.4.79 RRPC_FWAddFirewallRule2_26 (Opnum 78)
	3.1.4.80 RRPC_FWSetFirewallRule2_26 (Opnum 79)
	3.1.4.81 RRPC_FWEnumFirewallRules2_26 (Opnum 80)
	3.1.4.82 RRPC_FWQueryFirewallRules2_26 (Opnum 81)
	3.1.4.83 RRPC_FWAddFirewallRule2_27 (Opnum 82)
	3.1.4.84 RRPC_FWSetFirewallRule2_27 (Opnum 83)
	3.1.4.85 RRPC_FWEnumFirewallRules2_27 (Opnum 84)
	3.1.4.86 RRPC_FWQueryFirewallRules2_27 (Opnum 85)

	3.1.5 Timer Events
	3.1.6 Other Local Events
	3.1.6.1 AddPortInUse
	3.1.6.2 DeletePortInUse
	3.1.6.3 AddDefaultFirewallRule
	3.1.6.4 SetGroupPolicyRSoPStore
	3.1.6.5 IsComputerInCommonCriteriaMode
	3.1.6.6 SetEffectiveFirewallPolicy
	3.1.6.7 AddTrustTuple
	3.1.6.8 DeleteTrustTuple

	3.2 Client Details
	3.2.1 Abstract Data Model
	3.2.2 Timers
	3.2.3 Initialization
	3.2.4 Message Processing Events and Sequencing Rules
	3.2.5 Timer Events
	3.2.6 Other Local Events

	4 Protocol Examples
	4.1 Opening a Policy Store
	4.2 Adding a Firewall Rule
	4.3 Enumerating the Firewall Rules
	4.4 Closing a Policy Store Handle

	5 Security
	5.1 Security Considerations for Implementers
	5.2 Index of Security Parameters

	6 Appendix A: Full IDL
	7 Appendix B: Product Behavior
	8 Change Tracking
	9 Index

