[MS-FASP-Diff]:

Firewall and Advanced Security Protocol

Intellectual Property Rights Notice for Open Specifications Documentation

* Technical Documentation. Microsoft publishes Open Specifications documentation (“this
documentation”) for protocols, file formats, data portability, computer languages, and standards
support. Additionally, overview documents cover inter-protocol relationships and interactions.

* Copyrights. This documentation is covered by Microsoft copyrights. Regardless of any other
terms that are contained in the terms of use for the Microsoft website that hosts this
documentation, you can make copies of it in order to develop implementations of the technologies
that are described in this documentation and can distribute portions of it in your implementations
that use these technologies or in your documentation as necessary to properly document the
implementation. You can also distribute in your implementation, with or without modification, any
schemas, IDLs, or code samples that are included in the documentation. This permission also
applies to any documents that are referenced in the Open Specifications documentation.

* No Trade Secrets. Microsoft does not claim any trade secret rights in this documentation.

* Patents. Microsoft has patents that might cover your implementations of the technologies
described in the Open Specifications documentation. Neither this notice nor Microsoft's delivery of
this documentation grants any licenses under those patents or any other Microsoft patents.
However, a given Open Specifications document might be covered by the Microsoft Open
Specifications Promise or the Microsoft Community Promise. If you would prefer a written license,
or if the technologies described in this documentation are not covered by the Open Specifications
Promise or Community Promise, as applicable, patent licenses are available by contacting
iplg@microsoft.com.

* License Programs. To see all of the protocols in scope under a specific license program and the
associated patents, visit the Patent Map.

* Trademarks. The names of companies and products contained in this documentation might be
covered by trademarks or similar intellectual property rights. This notice does not grant any
licenses under those rights. For a list of Microsoft trademarks, visit
www.microsoft.com/trademarks.

* Fictitious Names. The example companies, organizations, products, domain names, email
addresses, logos, people, places, and events that are depicted in this documentation are fictitious.
No association with any real company, organization, product, domain name, email address, logo,
person, place, or event is intended or should be inferred.

Reservation of Rights. All other rights are reserved, and this notice does not grant any rights other
than as specifically described above, whether by implication, estoppel, or otherwise.

Tools. The Open Specifications documentation does not require the use of Microsoft programming
tools or programming environments in order for you to develop an implementation. If you have access
to Microsoft programming tools and environments, you are free to take advantage of them. Certain
Open Specifications documents are intended for use in conjunction with publicly available standards
specifications and network programming art and, as such, assume that the reader either is familiar
with the aforementioned material or has immediate access to it.

Support. For questions and support, please contact dochelp@microsoft.com.

1/ 306

[MS-FASP-DIff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

http://go.microsoft.com/fwlink/?LinkId=214445
http://go.microsoft.com/fwlink/?LinkId=214445
http://go.microsoft.com/fwlink/?LinkId=214448
mailto:iplg@microsoft.com
https://msdn.microsoft.com/en-us/openspecifications/dn750984

Revision Summary

Revision Revision
Date History Class Comments
4/3/2007 0.01 New Version 0.01 release
7/3/2007 1.0 Major MLonghorn+90
7/20/2007 1.0.1 Editorial Changed language and formatting in the technical content.
8/10/2007 1.0.2 Editorial Changed language and formatting in the technical content.
9/28/2007 1.0.3 Editorial Changed language and formatting in the technical content.
10/23/2007 | 1.0.4 Editorial Changed language and formatting in the technical content.
11/30/2007 | 1.1 Minor Clarified the meaning of the technical content.
1/25/2008 1.1.1 Editorial Changed language and formatting in the technical content.
3/14/2008 1.2 Minor Clarified the meaning of the technical content.
5/16/2008 2.0 Major Updated and revised the technical content.
6/20/2008 2.1 Minor Clarified the meaning of the technical content.
7/25/2008 3.0 Major Updated and revised the technical content.
8/29/2008 4.0 Major Updated and revised the technical content.
10/24/2008 | 4.0.1 Editorial Changed language and formatting in the technical content.
12/5/2008 5.0 Major Updated and revised the technical content.
1/16/2009 6.0 Major Updated and revised the technical content.
2/27/2009 7.0 Major Updated and revised the technical content.
4/10/2009 7.0.1 Editorial Changed language and formatting in the technical content.
5/22/2009 8.0 Major Updated and revised the technical content.
7/2/2009 8.0.1 Editorial Changed language and formatting in the technical content.
8/14/2009 8.1 Minor Clarified the meaning of the technical content.
9/25/2009 8.2 Minor Clarified the meaning of the technical content.
11/6/2009 9.0 Major Updated and revised the technical content.
12/18/2009 | 9.0.1 Editorial Changed language and formatting in the technical content.
1/29/2010 9.1 Minor Clarified the meaning of the technical content.
3/12/2010 9.2 Minor Clarified the meaning of the technical content.
4/23/2010 10.0 Major Updated and revised the technical content.
6/4/2010 11.0 Major Updated and revised the technical content.
7/16/2010 11.0 None No changes to the meaning, language, or formatting of the

technical content.

[MS-FASP-DIff] - v20171201

Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation

Release: December 1, 2017

2/ 306

Revision Revision
Date History Class Comments
8/27/2010 11.0 None Lﬂec;r?:;g?izﬁgem.e meaning, language, or formatting of the
10/8/2010 11.1 Minor Clarified the meaning of the technical content.
11/19/2010 | 11.2 Minor Clarified the meaning of the technical content.
1/7/2011 11.3 Minor Clarified the meaning of the technical content.
2/11/2011 12.0 Major Updated and revised the technical content.
3/25/2011 13.0 Major Updated and revised the technical content.
5/6/2011 14.0 Major Updated and revised the technical content.
6/17/2011 14.1 Minor Clarified the meaning of the technical content.
9/23/2011 15.0 Major Updated and revised the technical content.
12/16/2011 | 16.0 Major Updated and revised the technical content.
3/30/2012 17.0 Major Updated and revised the technical content.
7/12/2012 18.0 Major Updated and revised the technical content.
10/25/2012 | 18.0 None It\le?:ﬁ:s:g?izrfgem? meaning, language, or formatting of the
1/31/2013 18.0 None It\le?:ﬁ:;r;?izrfgemfe meaning, language, or formatting of the
8/8/2013 19.0 Major Updated and revised the technical content.
11/14/2013 | 19.0 None It\le?:ﬁ:;r;?iz;gem? meaning, language, or formatting of the
2/13/2014 20.0 Major Updated and revised the technical content.
5/15/2014 21.0 Major Updated and revised the technical content.
6/30/2015 22.0 Major Significantly changed the technical content.
10/16/2015 | 22.1 Minor Clarified the meaning of the technical content.
7/14/2016 23.0 Major Significantly changed the technical content.
6/1/2017 24.0 Major Significantly changed the technical content.
9/15/2017 25.0 Major Significantly changed the technical content.
12/1/2017 25.0 None tNeod?:iacglqif):ge:Ea meaning, language, or formatting of the

[MS-FASP-DIff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

3/ 306

Table of Contents

1 INtrodUCHioN .iiiciciicieriereriese s s s s ssasassasansasassasansasassasansasansasansasansnsansasansnsnnnns 9
1.1] (01T 9
1.2 ST (=] =] Lol PPN 12

1.2.1 NOrMAtiVe REfEIENCES .ttt et e e ees 12

1.2.2 Informative RefEreNCES .. vt e e 13
1.3 L@ YT Y O 13
1.4 Relationship to Other ProtoCoISo.civiiiiii s 15
1.5 Prerequisites/Preconditionsccoiiiiiii i e 16
1.6 Applicability Statemento e 16
1.7 Versioning and Capability Negotiationccooiiiiiiiiiiiiii e 16
1.8 Vendor-EXtensible Fields ... e e 17
1.9 Standards ASSIGNMENES. ..t 17

7 =TT T« = 18
2.1 =01 1 o 18
2.2 (0] paTn gle] gl B F=) = I V7 o 1= PP 18

2.2.1 R O 2 = 1 1 o = PP 18
2.2.2 A o @] o I I 4 PP 19
2.2.3 FW_POLICY _ACCESS _RIGHT ...ttt vttt et s e e s e e aeees 20
2.2.4 FW _IPV A SUBNET ..itiiitiiiitii ittt et s et s e e et s e s e s r s e r e e e n e e e e nenes 21
2.2.5 FW_IPVA SUBNET _LIST ettt e et e e s e s e e s e a s e s e s e naneaaeenes 21
2.2.6 FW TPV SUBNET ..ottt ittt et e e et e e e et e et et e e r e e e e e e e aenes 21
2.2.7 FW_IPV6 _SUBNET _LIST eiiiitiiitiiiiii ittt et s e e s e as e s e s s s s e ne s e nanenaenenes 21
2.2.8 FW_IPV4_ADDRESS_RANGE ..ottt ettt et a e aeees 22
2.2.9 A Y S AN A] i I) PP 22
2.2.10 FW_IPV6_ADDRESS_RANGE ...ttt sttt st e e ees 22
2.2.11 FW _IPVE _RANGE LIS T ettt ittt se e e e s e s e e e e e e a e rananeneeneaes 23
2.2.12 FW_PORT _RANGE ...ttt e e e e e e e e eeaes 23
2.2.13 FW_PORT _ RANGE LIS T ittt ettt e e e e e aeaes 23
2.2.14 FW_PORT_KEYWORD ...ttt sessssnasesassassnessssansnennssansnennensnes 24
2.2.15 PV P ORI TS ottt 25
2.2.16 FW_ICMP_TYPE _CODE ...ttt st ettt e e s e e s e e s e e e e e e e e enenes 25
2.2.17 FW_ICMP _TYPE _CODE LIS titiititiitiiit ittt ettt et e e e e e e e aenes 25
2.2.18 FW_INTERFACE_LUIDS ..ottt et sttt e e e s e e s e a e e e e ene e neneenenes 26
2.2.19 FW_DIRECTION 1ttt ittt e e et s et et e e e e et e e e e s e e e e n e e e eneneenenes 26
2.2.20 FW _INTERFACE _TYPE L.ttt et ettt st s e e e e e e aenes 26
2.2.21 FW_ADDRESS_KEYWORD ...ttt eiatsensssassnensssnesnensensasaneneenenes 27
2.2.22 FW _ AD D RES SES. .. ittt 28
2.2.23 FW RULE ST ATUS ettt ittt ettt e e e e e et s e e e e e e e e e e e neneenenes 29
2.2.24 FW_ RULE _STATUS CLAS S . ittt ittt a e e ees 42
2.2.25 FW_OBIJECT _CTRL_FLAG ..ttt ettt e e e e e 43
2.2.26 FW_ENFORCEMENT _ ST ATE 1.ttt et et s e e e e e e e e e e e eenes 43
2.2.27 FW _OBIECT _MET AD AT A ittt ittt ettt e e e e ees 45
2.2.28 FW_OS_PLATFORM_OP ..ttt ettt e et e a e e e e e e e e nenes 45
2.2.29 FW_OS_PLATFORM ..ttt et ettt ettt e s e e e e aeaes 46
2.2.30 FW_OS_PLATFORM _LIST 1uititiitiiitient ettt e e s e e e e e e a e e e e e e eenes 47
2.2.31 FW_RULE_ORIGIN T Y PE. ..\ ititiitiiititiit it rt ittt a e a e e e e e ees 47
2.2.32 FW_ENUM_RULES FLAGS ... ittt et a e ees 48
2.2.33 FW_RULE_ACTION 1ttt ittt ittt ettt et e e et e e e e e e s e e e e e e e n e e e e e e e e e enenes 49
2.2.34 FW _ RULE _FLAGS .. ittt ittt ettt e e 49
2.2.35 FW _ RULEZ 0 cttiitiiititiit et ettt et et e e et et e e e e et e e e e et e e e 51
2.2.36 FW _ RULE .. ittt e 52
2.2.37 FW_PROFILE_CONFIG ..utiuiitittitiiit ittt et taa s e s s e e s e e s s n s e e e rananennenenes 57
2.2.38 FW_GLOBAL_CONFIG_IPSEC_EXEMPT_VALUES......cciiiiiiiiiiiiiiininina e 59
2.2.39 FW_GLOBAL_CONFIG_PRESHARED_KEY_ENCODING_VALUES...........cvvvvvinnnnn. 60
4 / 306

[MS-FASP-DIff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

2.2.40 FW_GLOBAL_CONFIG_IPSEC_THROUGH_NAT_VALUEScociiiiiiiiiiinn, 60
2.2.41 FW_GLOBAL_CONFIG .. .ottt e 61
2.2.42 FW_CONFIG_FLAGSciiiiiiiiiii 64
2.2.43 FW_NETWORKeiiii e 64
2.2.44 FW_ADAPTER .t 64
2.2.45 FW_DIAG_APP .. 64
2.2.46 FW_RULE_CATEGORY ...ttt 65
2.2.47 FW_PRODUCT et 65
2.2.48 FW_IP_VERSION ..ottt et 66
2.2.49 FW_IPSEC_PHASE ...t 66
2.2.50 FW_CS_RULE_FLAGS .. .ttt 67
2.2.51 FW_CS_RULE_ACTION ...ttt e e e a s 68
2.2.52 FW_CS_RULEZ_10 .. ittt 68
2.2.53 FW_CS_RULE2_0.uiuiiiiiiiiiiiiiiiii et 69
2.2.54 FW_CS_RULEiiiiiii 70
2.2.55 FW_CERT_CRITERIA_TYPE. ..ot 74
2.2.56 FW_CERT_CRITERIA_NAME_TYPE.....ccciiiiiiiiiiiiiiiiii 74
2.2.57 FW_CERT_CRITERIA_FLAGSiiiiiiiiiiiii 75
2.2.58 FW_CERT_CRITERIA ..itiiitiiiiiiiiii e 75
2.2.59 FW_AUTH_METHOD ...coviiiiiiiiiii 76
2.2.60 FW_AUTH_SUITE_FLAGS ...ttt 77
2.2.61 FW_AUTH_SUITE2_10. .ttt 78
2.2.62 FW_AUTH_SUITE .. ittt e e a s 79
2.2.63 FW_AUTH_SET2_ 10 ...ciiiiiiiiiiiiiiiiiiiii e 80
2.2.64 FW_AUTH_SET ..t 83
2.2.65 FW_CRYPTO_KEY_EXCHANGE_TYPE.....iitiiiiiiiiiiiiin e 86
2.2.66 FW_CRYPTO_ENCRYPTION_TYPEccciiiiiiiiiiiiii e, 87
2.2.67 FW_CRYPTO_HASH_TYPE ..ttt 88
2.2.68 FW_CRYPTO_PROTOCOL_TYPE ..ottt 89
2.2.69 FW_PHASEL_CRYPTO_SUITE... ..ottt 89
2.2.70 FW_PHASE2_CRYPTO_SUITE.....ciciiiiiiiiiiiiiiiiii 90
2.2.71 FW_PHASEL_CRYPTO_FLAGS ..ottt 91
2.2.72 FW_PHASE2_CRYPTO_PFS ...ttt 91
2.2.73 FW_CRYPTO _SET . ittt 92
2.2.74 FW_BYTE_BLOB ..cuiiiiiiiiiiiii i 95
2.2.75 FW_COOKIE_PAIR ...t 96
2.2.76 FW_PHASE1_KEY_MODULE_TYPE ...iuiiiiiiiiiiiiiiiiii e 96
2.2.77 FW_CERT_INFO ...ttt 96
2.2.78 FW_AUTH_INFO ..ot 97
2.2.79 FW_ENDPOINTS ..ttt s s a e e 97
2.2.80 FW_PHASEL_SA DETAILS ...ttt 98
2.2.81 FW_PHASE2_TRAFFIC_TYPE. ...ttt 99
2.2.82 FW_PHASE2_SA _DETAILS ...ttt 99
2.2.83 FW_PROFILE_CONFIG_VALUE ...ttt 100
2.2.84 FW_MM_RULE ...t 101
2.2.85 FW_CONN_HANDLE ...ttt 103
2.2.86 FW_MATCH_KEY ..ttt a e 103
2.2.87 FW_DATA _TYPE.. i 104
2.2.88 FW_MATCH_VALUE ...ttt 105
2.2.89 FW_MATCH_TYPE ..ottt 105
2.2.90 FW_QUERY_CONDITION ...tuuiuiuiuiuiiinintisititsisssssi e sa s sasasssns s esasasans 106
2.2.91 FW_QUERY_CONDITIONS ...ttt ra s s s asanas 107
2.2.92 FW_QUERY ..iiiiiiiii e 107
2.2.93 FW_POLICY_STORE_HANDLEiuiiiiiiiiiiiiiiiii s 108
2.2.94 FW_PRODUCT_HANDLE ...ttt 108
2.2.95 FW_KEY_MODULE.....ctititititiiiiiiiiin e e a 108
2.2.96 FW_TRUST_TUPLE_KEYWORDiciiiiiiiiiiiiiiiiiiiiiii e 109
2.2.97 FW_RULE2_10.. .ttt e e e 110
5/ 306

[MS-FASP-DIff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

2.2.98 FW_AUTH_SET_FLAGS ...ttt 110

2.2.99 FW_CRYPTO _SET _FLAGS . ..ttt et a e et e e e s e e a s s e s e e e e e aananans 111
2.2.100 FW_NETWORK _NAMES ...ttt e as 111
2.2.101 FW_RULEZ2 20 . uiuiiiieie e ee ettt e e et et et e e e e e e e e r e e e ea e n e e e e e eeeannnanns 112
2.2.102 FW_RULE_FLAGS?2 ...ttt ittt e e e e e et e e e e e e a et e e e e e e e nannns 113
2.2.103 FW_RULE2_24. ... ittt a e 113
2.2.104 FW_RULEZ 25, ittt e ettt e e e et e e e e e e e a et e e e e e e eanananns 114
2.2.105 FW_RULE2_26...cuiuiiiiiitieininiiiiiii st sttt s st a e e s s s st s e ranas 115
C N 4 o 1 oo T ole] I 0 1= - | S 117
3.1 1T V=Tl D= = 1 PP 117
3.1.1 Abstract Data MOdel.......coiiiiiiiii e e 117
3.1.2 L1 1= P 120
3.1.3 | TR T 1 4= o o o I PP 120
3.1.4 Message Processing Events and Sequencing Rulescocoviiiiiiiiiiiiiiiiiinens 121
3.14.1 RRPC_FWOpenPolicyStore (OpnumM 0) ...oiviieiiieiiiiiiiiiieieneeeeeneaaeeens 129
3.1.4.2 RRPC_FWClosePolicyStore (OpnuUM 1) .ouiiiiiiiiiiiieiiiinie e ee e 130
3.1.4.3 RRPC_FWRestoreDefaults (OpnuUM 2) ..ouiiiiiiie i e e aneeeas 130
3.1.4.4 RRPC_FWGetGlobalConfig (OpnuUM 3) ..uiiiiiiii i e ee e 131
3.1.4.5 RRPC_FWSetGlobalConfig (OpNUM 4) ...uiuiiiiiiieie e rere e e e nene s 132
3.1.4.6 RRPC_FWAddFirewallRule (Opnum 5) ..oiiiiiii i e e ea 133
3.1.4.7 RRPC_FWSetFirewallRule (Opnum 6)cuiiieiiiiiiiiiiineie e e 135
3.1.4.8 RRPC_FWDeleteFirewallRule (OpNUM 7).iciiiiiiiiiiiiiicne e e e 136
3.1.4.9 RRPC_FWDeleteAllFirewallRules (Opnum 8)ccvviiiiiiiiiiiiiiiiieiieeeeeen 136
3.1.4.10 RRPC_FWEnumFirewallRules (Opnum 9)ciiiiiiiiiiiiiiiiiii i 137
3.1.4.11 RRPC_FWGetConfig (OpNUM 10) .iiuiuiieiiiitiiiiiiieeniiereeneenenernsneerennrnsneananees 138
3.1.4.12 RRPC_FWSetConfig (OpnuUM 11) .o e e rere e e e eee e eneeens 140
3.1.4.13 RRPC_FWAddConnectionSecurityRule (Opnum 12)cciiiiiiiiiiiiiiiiiiieiean, 141
3.1.4.14 RRPC_FWSetConnectionSecurityRule (Opnum 13)....cccciiiiiiiiiiiiiiiieienen, 142
3.1.4.15 RRPC_FWDeleteConnectionSecurityRule (Opnum 14).....c.cciviviiiiiiiiiiinnnnnnn. 143
3.1.4.16 RRPC_FWDeleteAllConnectionSecurityRules (Opnum 15)........coeviviiiiininenn. 144
3.1.4.17 RRPC_FWEnumConnectionSecurityRules (Opnum 16)ccoviviiiiiiiieinnnnnnn. 145
3.1.4.18 RRPC_FWAddAuthenticationSet (Opnum 17) ..ccviiiiiiiiiiiiiiiiiiiici e 146
3.1.4.19 RRPC_FWSetAuthenticationSet (Opnum 18)coiiiiiiiiiiiiiiieee, 147
3.1.4.20 RRPC_FWDeleteAuthenticationSet (Opnum 19)....ccceiiiiiiiiiiiiiiiiic e 148
3.1.4.21 RRPC_FWDeleteAllAuthenticationSets (Opnum 20)cccviviniiiiiiiiiiieinenene, 149
3.1.4.22 RRPC_FWEnumAuthenticationSets (Opnum 21) ...cociiiiiiiiiiiiiiici e 150
3.1.4.23 RRPC_FWAddCryptoSet (Opnum 22) ...iiiuiiiiiiiiiiiiieieee et rae e eaeees 151
3.1.4.24 RRPC_FWSetCryptoSet (OpnuUM 23) ..uiiiiiiiiiiiii e e e 152
3.1.4.25 RRPC_FWDeleteCryptoSet (OpnumM 24) ...iiuiiiiiiii i e aea s 153
3.1.4.26 RRPC_FWDeleteAllCryptoSets (Opnum 25) ...coiiiiiiiiiiiii e 155
3.1.4.27 RRPC_FWENuUmMCryptoSets (OpnuUM 26) ..icuiiiiiiiiiiiiiiii i cee e 156
3.1.4.28 RRPC_FWENUMPhaselSAS (OPNUM 27) .ottt e e neraeeeaeees 157
3.1.4.29 RRPC_FWENUmMPhase2SAS (OpNUM 28) ...cuiiiiiiiiieiiiiiiiiiiiiiieinenieineeieeneaas 158
3.1.4.30 RRPC_FWDeletePhaselSAs (OpnumM 29)cciiiiiiiiiiiiiiiiieiere e e 159
3.1.4.31 RRPC_FWDeletePhase2SAs (Opnum 30) ...cceieiiiiiiiiiiiiiiiiiieiere e ees 160
3.1.4.32 RRPC_FWENuUmMProducts (OpnumM 31)..ciciiiiiiiiiiiiiii i nene e eee e 161
3.1.4.33 RRPC_FWAddMainModeRule (Opnum 32)ciiiiiiiiiiiiiiiiieeee e eae e 161
3.1.4.34 RRPC_FWSetMainModeRule (OpnuUM 33) .iiiiiiiiiiiiiiii i e aee s 162
3.1.4.35 RRPC_FWDeleteMainModeRule (Opnum 34).....ccoiiiiiiiiiiiiiiiiieieieneeeenen 163
3.1.4.36 RRPC_FWDeleteAllMainModeRules (Opnum 35)....cccoiviiiiiiiiiiiiiiiiieeeaens 164
3.1.4.37 RRPC_FWEnumMainModeRules (Opnum 36)ccvviiiiniiiiiiiiiiieieieieneenenenes 165
3.1.4.38 RRPC_FWQueryFirewallRules (OpnumM 37) ...cciiiiiiiiiiiiiii e ees 166
3.1.4.39 RRPC_FWQueryConnectionSecurityRules (Opnum 38).......cccviviiiiiiiiiinennnnns 167
3.1.4.40 RRPC_FWQueryMainModeRules (Opnum 39)....ccoiiiiiiiiiiiiiiiiieiieieeeene 168
3.1.4.41 RRPC_FWQueryAuthenticationSets (Opnum 40)cocoeieiniiiiiiiiiiiieeaans 169
3.1.4.42 RRPC_FWQueryCryptoSets (Opnum 41)cccciiiiiiiiiiiiiiiiieieee e eneees 170
3.1.4.43 RRPC_FWENUMNEetWOrks (OPNUM 42).....iuiuieiiiiiieieienereeneeeeeeneaenaans 171
6/ 306

[MS-FASP-DIff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

3.1.4.44 RRPC_FWEnumAdapters (Opnum 43) ..occiiiiiiiiiiiiinie e reneseneraenesneees 171
3.1.4.45 RRPC_FWGetGlobalConfig2_10 (OpnUM 44)ccciiiiiieinieinieiaiaeieeaeneaaans 172
3.1.4.46 RRPC_FWGetConfig2_10 (OpnUM 45) .. it e 174
3.1.4.47 RRPC_FWAddFirewallRule2_10 (OpnuUmM 46)cceieiiieinininininaeeieaeaeneaenaans 175
3.1.4.48 RRPC_FWSetFirewallRule2_10 (OpnuUM 47) ..ocviiiiiiiiiiiiiiiiiree e 176
3.1.4.49 RRPC_FWEnumFirewallRules2_10 (Opnum 48)ccceiiiiiiiiiiiiiiiiieiieiinnnnnss 177
3.1.4.50 RRPC_FWAddConnectionSecurityRule2_10 (Opnum 49)cccvvviiiniiennnnnnn. 178
3.1.4.51 RRPC_FWSetConnectionSecurityRule2_10 (Opnum 50).....ccciviiiiiiiiinnnnnnn. 179
3.1.4.52 RRPC_FWEnumConnectionSecurityRules2_10 (Opnum 51)cccocvvviiinnenn. 180
3.1.4.53 RRPC_FWAddAuthenticationSet2_10 (Opnum 52)cccoiiiiiiiiiiiiiiiiiiieeasn 182
3.1.4.54 RRPC_FWSetAuthenticationSet2_10 (Opnum 53) ...cocviiiiiiiiiiiiiiiiieen, 183
3.1.4.55 RRPC_FWEnumAuthenticationSets2_10 (Opnum 54)ccccviviiiiiiiiniienninenn. 184
3.1.4.56 RRPC_FWAddCryptoSet2_10 (Opnum 55) ioviiiiiiiiiiiiiieieene e 185
3.1.4.57 RRPC_FWSetCryptoSet2_10 (Opnum 56)civiiiiiiiiiiiiiiiiiiri e 186
3.1.4.58 RRPC_FWEnumCryptoSets2_10 (Opnum 57) cioiiiiiiiiiiiiiiiiiici e 187
3.1.4.59 RRPC_FWAddConnectionSecurityRule2_20 (Opnum 58)cccevvviiinininnnnenn. 188
3.1.4.60 RRPC_FWSetConnectionSecurityRule2_20 (Opnum 59) ...c.cciviiiiiiiiiiiinnnnnns. 189
3.1.4.61 RRPC_FWEnumConnectionSecurityRules2_20 (Opnum 60)cccevvvnvinnnnn. 190
3.1.4.62 RRPC_FWQueryConnectionSecurityRules2_20 (Opnum 61).........ccvuvnernnnene. 191
3.1.4.63 RRPC_FWAddAuthenticationSet2_20 (Opnum 62)ccvveviiiiiiiniiieiieininens. 192
3.1.4.64 RRPC_FWSetAuthenticationSet2_20 (Opnum 63)cecviviiiiniiiiiiiiiineen, 193
3.1.4.65 RRPC_FWEnumAuthenticationSets2_20 (Opnum 64)c.ccvviviiiiiiiiiiinnnnnnn. 194
3.1.4.66 RRPC_FWQueryAuthenticationSets2_20 (Opnum 65)......cccvviiiiiiiiniienninene. 195
3.1.4.67 RRPC_FWAddFirewallRule2_20 (OpnumM 66)cccoeiiiiiiiiiiiiiiiiiiieiienieennaas 196
3.1.4.68 RRPC_FWSetFirewallRule2_20 (OpnuUM 67) .cuiiiiiiiiiiiiiiiiiieinie e e 197
3.1.4.69 RRPC_FWEnumFirewallRules2_20 (Opnum 68)ccceieiriiiiniiiiiiiniiieinenenns 198
3.1.4.70 RRPC_FWQueryFirewallRules2_20 (Opnum 69)cciiiiiiiiiiiiiiiiie e 199
3.1.4.71 RRPC_FWAddFirewallRule2_24 (OpnumM 70) ...coiieieieieieieieieieieaeneenenenaens 200
3.1.4.72 RRPC_FWSetFirewallRule2_24 (Opnum 71) cciiiiiiiiiiiiiiiiiciicie e e 201
3.1.4.73 RRPC_FWEnumFirewallRules2_24 (OpnumM 72)c.cciiiiiiiiiiiiiiiiieneaenennn 202
3.1.4.74 RRPC_FWQueryFirewallRules2_24 (OpnumM 73) .iciiiiiiiiiiiiiiiiiiiiiieneeieeneans 203
3.1.4.75 RRPC_FWAddFirewallRule2_25 (OpnumM 74) ...cciiiiiiiiiiiiiiiiiici i aea s 204
3.1.4.76 RRPC_FWSetFirewallRule2_25 (Opnum 75) ...coiiiiiiiiiiiiiiii e 205
3.1.4.77 RRPC_FWEnumFirewallRules2_25 (OpnumM 76)ccciiiiiiiiiiiiiiiiie i iiaenenns 206
3.1.4.78 RRPC_FWQueryFirewallRules2_25 (Opnum 77) cccuiieiiiiiiiiiiinieieiee e 207
3.1.4.79 RRPC_FWAddFirewallRule2_26 (Opnum 78) ...cciiiiiiiiiiiiiiiiiiiiiiie i siee e 208
3.1.4.80 RRPC_FWSetFirewallRule2_26 (Opnum 79)coeiriiiiiiiiiiiiiiceie e e 210
3.1.4.81 RRPC_FWEnumFirewallRules2_26 (Opnum 80)cocvieiiiiiiniiiiiiiiiieeenens, 211
3.1.4.82 RRPC_FWQueryFirewallRules2_26 (Opnum 81).....cccciiiiiiiiiiiiiiiiiiiiieeieans 212
3.1.4.83 RRPC_FWAddFirewallRule2_27 (OpnumM 82)icvueiieieieieieieeeaeaenenenenanns 213
3.1.4.84 RRPC_FWSetFirewallRule2_27 (Opnum 83) ...iiiiiiiiiiiiiiiiiiiiie e e 214
3.1.4.85 RRPC_FWEnumFirewallRules2_27 (Opnum 84)cocviiiiiiiiiiiiiiiiieieeeen, 215
3.1.4.86 RRPC_FWQueryFirewallRules2_27 (Opnum 85)cccoiiiiiiiiiiiiiiiiiciiecea, 216
3.1.5 LT = 2]) o= 217
3.1.6 Other LoCal EVENES ..t e e e s 217
3.1.6.1 PN [a 10Tt £ o 10 =Y PR 217
3.1.6.2 (D1 [W= o T o 1 U == PP 217
3.1.6.3 AddDefaultFirewallRule ..o 217
3.1.6.4 SetGroUupPOlICYRSOPSEONE ...viiiiiiiiii e 218
3.1.6.5 IsComputerInCommonCriteriaMOdeooviiiiieiii e 218
3.1.6.6 SetEffectiveFirewallPOlIiCyoviriiii e 218
3.1.6.7 PN [I I T ol 10 o] = O 219
3.1.6.8 DeleteTrUSETUPI. e et e 219
3.2 (O 1< o Lo D 1<) = 1 PR 219
3.2.1 AbSEract Data Model.....ovieiiiii i 219
3.2.2 B I =T PP 219
3.2.3 A= 1 4=] o o PP 219
3.2.4 Message Processing Events and Sequencing Rulesc.coiiiiiiiiiiiiiiinenene, 219
7/ 306

[MS-FASP-DIff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

3.2.5 LI L= == 113 220

3.2.6 (0 T=T ol W Yo=Yl V=T o | PP 220

4 Protocol EXamples ...cuiciiiiiimimimi i rs s sse s ssassasssasssssassansassansanssnssnsnnnnnnsa 221
4.1 Opening @ PoliCy STOre.....iuiii i 221
4.2 Adding @ Firewall RUIE ... e e e e e r e e e ananeas 221
4.3 Enumerating the Firewall RUIESocuiiiiii i e e 223
4.4 Closing a Policy Store Handle........couviiiiiiiiii e 223
L - T oL ¥ | o 225
5.1 Security Considerations for IMplemMENterscouieiiiiiiiii e 225
5.2 Index of SeCUrity Parameters ..oviiiiiiii i 225

6 AppendixX A: FUll IDL......cciciiiimirssm s s s s s s s s s s s s s s s s samsanansnsnnsunnnss 226
7 Appendix B: Product Behavior.......cccivirsirsirssiss s sss s s ssms s s snmsansnss 284
8 Change TracKiNg . iiciioioiemrammamse i smas s s ssanrassasmsssasssssssssssssnsasssnsanssnssnssnnsnns 294
12 T 13 e 1= T 297

8/ 306

[MS-FASP-DIff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

1 Introduction

The Firewall and Advanced Security Protocol describes managing security policies on remote
computers. The specific policies that this protocol manages are those of the firewall and advanced
security components. The protocol allows the same functionality that is available locally; it can add,
modify, delete, and enumerate policies. It can also enumerate security associations that can be
generated between hosts after this policy is enforced.

Sections 1.5, 1.8, 1.9, 2, and 3 of this specification are normative. All other sections and examples in
this specification are informative.

1.1 Glossary
This document uses the following terms:

access control entry (ACE): An entry in an access control list (ACL) that contains a set of user
rights and a security identifier (SID) that identifies a principal for whom the rights are allowed,
denied, or audited.

access control list (ACL): A list of access control entries (ACEs) that collectively describe the
security rules for authorizing access to some resource; for example, an object or set of objects.

Authenticated IP (AuthIP): An Internet Key Exchange (IKE) protocol extension, as specified in
[MS-AIPS].

authentication header (AH): An Internet Protocol Security (IPsec) encapsulation mode that
provides authentication and message integrity. For more information, see [RFC4302] section 1.

certificate revocation list (CRL): A list of certificates that have been revoked by the certification
authority (CA) that issued them (that have not yet expired of their own accord). The list must be
cryptographically signed by the CA that issues it. Typically, the certificates are identified by
serial number. In addition to the serial number for the revoked certificates, the CRL contains the
revocation reason for each certificate and the time the certificate was revoked. As described in
[RFC3280], two types of CRLs commonly exist in the industry. Base CRLs keep a complete list of
revoked certificates, while delta CRLs maintain only those certificates that have been revoked
since the last issuance of a base CRL. For more information, see [X509] section 7.3, [MSFT-
CRL], and [RFC3280] section 5.

certification authority (CA): A third party that issues public key certificates. Certificates serve to
bind public keys to a user identity. Each user and certification authority (CA) can decide whether
to trust another user or CA for a specific purpose, and whether this trust should be transitive.
For more information, see [RFC3280].

common criteria mode: A computer system is said to be operating in common criteria mode
when it conforms to all the security functional requirements specified in [CCITSE3.1-3], Part 2.

dynamic endpoint: A network-specific server address that is requested and assigned at run time.
For more information, see [C706].

edge firewall: A firewall that's connected to two networks: an internal network and an external
network, usually the Internet.

Encapsulating Security Payload (ESP): An Internet Protocol security (IPsec) encapsulation
mode that provides authentication, data confidentiality, and message integrity. For more
information, see [RFC4303] section 1.

endpoint: A network-specific address of a remote procedure call (RPC) server process for remote
procedure calls. The actual name and type of the endpoint depends on the RPC protocol
sequence that is being used. For example, for RPC over TCP (RPC Protocol Sequence

9/ 306

[MS-FASP-DIff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

ncacn_ip_tcp), an endpoint might be TCP port 1025. For RPC over Server Message Block (RPC
Protocol Sequence ncacn_np), an endpoint might be the name of a named pipe. For more
information, see [C706].

enhanced key usage (EKU): An extension that is a collection of object identifiers (OIDs) that
indicate the applications that use the key.

fully qualified binary name (FQBN): A string constructed by the operating system that takes
the format "Company\Product Suite\Product, Version" for a signed Windows binary file and that
can be derived from the publishing information for such a file.

fully qualified domain name (FQDN): An unambiguous domain name that gives an absolute
location in the Domain Name System's (DNS) hierarchy tree, as defined in [RFC1035] section
3.1 and [RFC2181] section 11.

globally unique identifier (GUID): A term used interchangeably with universally unique
identifier (UUID) in Microsoft protocol technical documents (TDs). Interchanging the usage of
these terms does not imply or require a specific algorithm or mechanism to generate the value.
Specifically, the use of this term does not imply or require that the algorithms described in
[RFC4122] or [C706] must be used for generating the GUID. See also universally unique
identifier (UUID).

Group Policy: A mechanism that allows the implementer to specify managed configurations for
users and computers in an Active Directory service environment.

Group Policy Object (GPO): A collection of administrator-defined specifications of the policy
settings that can be applied to groups of computers in a domain. Each GPO includes two
elements: an object that resides in the Active Directory for the domain, and a corresponding file
system subdirectory that resides on the sysvol DFS share of the Group Policy server for the
domain.

Interface Definition Language (IDL): The International Standards Organization (ISO) standard
language for specifying the interface for remote procedure calls. For more information, see
[C706] section 4.

Internet Key Exchange (IKE): The protocol that is used to negotiate and provide authenticated
keying material for security associations (SAs) in a protected manner. For more information, see
[RFC2409].

Internet Key Exchange (IKEv2): The protocol that is used to negotiate and provide
authenticated keying material for security associations (SA) in a protected manner. For more
information, see [RFC4306].

Internet Protocol security (IPsec): A framework of open standards for ensuring private, secure
communications over Internet Protocol (IP) networks through the use of cryptographic security
services. IPsec supports network-level peer authentication, data origin authentication, data

mtegrlty, data conﬁdentlallty (encryptlon), and replay protectlon —'Fhe—M+eFese#t—+m|94eﬂ=reﬂ€a%reH

Kerberos: An authentication system that enables two parties to exchange private information
across an otherwise open network by assigning a unique key (called a ticket) to each user that
logs on to the network and then embedding these tickets into messages sent by the users. For
more information, see [MS-KILE].

Key Distribution Center (KDC): The Kerberos service that implements the authentication and
ticket granting services specified in the Kerberos protocol. The service runs on computers
selected by the administrator of the realm or domain; it is not present on every machine on the
network. It must have access to an account database for the realm that it serves. KDCs are

10/ 306

[MS-FASP-DIff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

integrated into the domain controller role. It is a network service that supplies tickets to clients
for use in authenticating to services.

locally unique identifier (LUID): A 64-bit value guaranteed to be unique within the scope of a
single machine.

Network Data Representation (NDR): A specification that defines a mapping from Interface
Definition Language (IDL) data types onto octet streams. NDR also refers to the runtime
environment that implements the mapping facilities (for example, data provided to NDR). For
more information, see [MS-RPCE] and [C706] section 14.

perfect forward secrecy (PFS): A property of key exchange protocols, which holds when session
keys from previous communications are not compromised by the disclosure of longer-term
keying material. In the context of Internet Protocol security (IPsec), PFS requires a Diffie-
Hellman exchange to generate the keys for each quick mode security association (SA).

remote procedure call (RPC): A econtext-dependent-communication protocol used primarily
between client and server. The term eemmonly-overloaded-withhas three meanings-
Netedefinitions that much-efthe-industry-titerature-concerning RPCtechnologiesuses-this
termare often used interchangeably-ferany-ofthe-three-meanings—Followingarethethree
definitions+{(*)The-: a runtime environment providing remete-precedure—califor communication

facilities—The-preferred-usage-for-this-meaning-is— _between computers (the RPC runtime~—*}
ZFhe—eattan), a set of request and- response message exchanqes between computers (the RPC

exchange-b

" =), and the smgle message from an RPC exchange as—deﬁneé
a-(the weweus—deﬁﬂtieﬁ—'ﬂae—pfefeFFed—usage—Fer;Hﬂs—teFmﬂsiRPC message*-—Fermore
infermationaboeut). The RPC;—see_specification is [C706].

Rivest-Shamir-Adleman (RSA): A system for public key cryptography. RSA is specified in
[PKCS1] and [RFC3447].

RPC protocol sequence: A character string that represents a valid combination of a remote
procedure call (RPC) protocol, a network layer protocol, and a transport layer protocol, as
described in [C706] and [MS-RPCE].

RPC transport: The underlying network services used by the remote procedure call (RPC) runtime
for communications between network nodes. For more information, see [C706] section 2.

security association (SA): A simplex "connection" that provides security services to the traffic
carried by it. See [RFC4301] for more information.

security identifier (SID): An identifier for security principals that is used to identify an account
or a group. Conceptually, the SID is composed of an account authority portion (typically a
domain) and a smaller integer representing an identity relative to the account authority, termed
the relative identifier (RID). The SID format is specified in [MS-DTYP] section 2.4.2; a string
representation of SIDs is specified in [MS-DTYP] section 2.4.2 and [MS-AZOD] section 1.1.1.2.

Security Support Provider Interface (SSPI): A Windows-speeific APl-implementation that
provides the means for connected applications to call one of several security providers to
establish authenticated connections and to exchange data securely over those connections.
Fhislt is the-Windows-equivalent efto Generic Security Services (GSS)-API, and the two-families
of APIs are on-the-wire compatible.

stealth mode: A firewall is said to be operating in stealth mode when it prevents the host
computer from responding to unsolicited network traffic.

Transmission Control Protocol (TCP): A protocol used with the Internet Protocol (IP) to send
data in the form of message units between computers over the Internet. TCP handles keeping
track of the individual units of data (called packets) that a message is divided into for efficient
routing through the Internet.

11/ 306

[MS-FASP-DIff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Unicode: A character encoding standard developed by the Unicode Consortium that represents
almost all of the written languages of the world. The Unicode standard [UNICODE5.0.0/2007]
provides three forms (UTF-8, UTF-16, and UTF-32) and seven schemes (UTF-8, UTF-16, UTF-16
BE, UTF-16 LE, UTF-32, UTF-32 LE, and UTF-32 BE).

universally unique identifier (UUID): A 128-bit value. UUIDs can be used for multiple
purposes, from tagging objects with an extremely short lifetime, to reliably identifying very
persistent objects in cross-process communication such as client and server interfaces, manager
entry-point vectors, and RPC objects. UUIDs are highly likely to be unique. UUIDs are also
known as globally unique identifiers (GUIDs) and these terms are used interchangeably in the
Microsoft protocol technical documents (TDs). Interchanging the usage of these terms does not
imply or require a specific algorithm or mechanism to generate the UUID. Specifically, the use of
this term does not imply or require that the algorithms described in [RFC4122] or [C706] must
be used for generating the UUID.

MAY, SHOULD, MUST, SHOULD NOT, MUST NOT: These terms (in all caps) are used as defined
in [RFC2119]. All statements of optional behavior use either MAY, SHOULD, or SHOULD NOT.
1.2 References

Links to a document in the Microsoft Open Specifications library point to the correct section in the
most recently published version of the referenced document. However, because individual documents
in the library are not updated at the same time, the section numbers in the documents may not
match. You can confirm the correct section numbering by checking the Errata.

1.2.1 Normative References

We conduct frequent surveys of the normative references to assure their continued availability. If you
have any issue with finding a normative reference, please contact dochelp@microsoft.com. We will
assist you in finding the relevant information.

[C706] The Open Group, "DCE 1.1: Remote Procedure Call", C706, August 1997,
https://www2.opengroup.org/ogsys/catalog/c706

[CCITSE3.1-3] CCRA, "Common Criteria for Information Technology Security Evaluation", version 3.1-
3, July 2009, http://www.commoncriteriaportal.org/cc/

[MS-AIPS] Microsoft Corporation, "Authenticated Internet Protocol".

[MS-DTYP] Microsoft Corporation, "Windows Data Types".

[MS-ERREF] Microsoft Corporation, "Windows Error Codes".

[MS-GPFAS] Microsoft Corporation, "Group Policy: Firewall and Advanced Security Data Structure".
[MS-IKEE] Microsoft Corporation, "Internet Key Exchange Protocol Extensions".

[MS-KILE] Microsoft Corporation, "Kerberos Protocol Extensions".

[MS-NLMP] Microsoft Corporation, "NT LAN Manager (NTLM) Authentication Protocol".

[MS-RPCE] Microsoft Corporation, "Remote Procedure Call Protocol Extensions".

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC
2119, March 1997, http://www.rfc-editor.org/rfc/rfc2119.txt

[RFC4306] Kaufman, C., "Internet Key Exchange (IKEv2) Protocol", RFC 4306, December 2005,
http://www.ietf.org/rfc/rfc4306.txt

12 / 306

[MS-FASP-DIff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

[X501] ITU-T, "Information Technology - Open Systems Interconnection - The Directory: The Models",
Recommendation X.501, August 2005, http://www.itu.int/rec/T-REC-X.501-200508-S/en

1.2.2 Informative References

[IANA-PROTO-NUM] IANA, "Protocol Numbers", February 2007,
http://www.iana.org/assignments/protocol-numbers

[MS-DLNHND] Microsoft Corporation, "Digital Living Network Alliance (DLNA) Networked Device
Interoperability Guidelines: Microsoft Extensions".

[MS-GPOL] Microsoft Corporation, "Group Policy: Core Protocol".
[MS-GPREG] Microsoft Corporation, "Group Policy: Registry Extension Encoding".

[MSDN-BCryptGetFipsAlgorithmMode] Microsoft Corporation, "BCryptGetFipsAlgorithmMode function”,
http://msdn.microsoft.com/en-us/library/aa375460(VS.85).aspx

[MSDN-ExpandEnvironmentStrings] Microsoft Corporation, "ExpandEnvironmentStrings function”,
http://msdn.microsoft.com/en-us/library/ms724265(VS.85).aspx

[MSDN-FQBN] Microsoft Corporation, "CLAIM_SECURITY_ATTRIBUTE_FQBN_VALUE structure",
https://msdn.microsoft.com/en-
us/library/system.security.claims.claimvaluetypes.fgbn(v=vs.110).aspx

[MSDN-OSVERSIONINFOEX] Microsoft Corporation, "OSVERSIONINFOEX structure", Structure,
http://msdn.microsoft.com/en-us/library/ms724833.aspx

[MSDN-SHLoadIndirectString] Microsoft Corporation, "SHLoadIndirectString function”,
http://msdn.microsoft.com/en-us/library/bb759919(VS.85).aspx

[MSKB-935807] Microsoft Corporation, "Security Update for Windows Vista (KB935807)", August
2007, http://www.microsoft.com/downloads/details.aspx?Familyld=e9b64746-6afa-4a30-833d-
e058e000c821&displaylang=en

[MSWFPSDK] Microsoft Corporation, "Windows Filtering Platform", http://msdn.microsoft.com/en-
us/library/aa366510.aspx

[RFC2409] Harkins, D. and Carrel, D., "The Internet Key Exchange (IKE)", RFC 2409, November 1998,
http://www.ietf.org/rfc/rfc2409.txt

[RFC4301] Kent, S. and Seo, K., "Security Architecture for the Internet Protocol", RFC 4301,
December 2005, http://www.ietf.org/rfc/rfc4301.txt

1.3 Overview

A host firewall is a software component that runs on host computers. It provides a layer of defense
that can add depth to the collection of security measures when combined with other security
measures, such as edge firewalls. Any threats that manage to get through the edge firewall, or those
that are launched from within a corporate network, can still be defended against when host firewalls
are used. Host firewalls are also useful in consumer scenarios in which there is, typically, no edge
firewall to protect the home network.

Internet Protocol Security (IPsec) is a host-based, policy-driven security solution for protecting the
host from all network access. IPsec focuses on connection security, which includes authentication,
integrity protection, and confidentiality (encryption) of communication.

13/ 306

[MS-FASP-DIff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Because both IPsec and firewalls are host-based policy security technologies that operate in the
network stack, they are managed together to avoid conflicts. Furthermore, firewall and connection
security (IPsec) can interact, providing deeper and more effective filtering capabilities based on
identities that are negotiated by IPsec as well as other IPsec state information. This document refers
to this combined security solution as the firewall and advanced security components.

Firewall and advanced security components can be governed by policy that is received from local users
or from network-wide policy that is distributed by an administrator, or both. There is a need in
managed environments for a network administrator to be able to monitor the policies in effect on
hosts, assuming that hosts might have received policies from both sources.

Network-wide policies are usually distributed by using Group Policy Objects (GPOs) that live on active
directories of domains. However, some workgroups or networks might not have a domain
infrastructure. Even in non-domain joined environments, the network administrator needs to be able
to remotely manage the advanced firewall and IPsec policy of a host.

Lastly, the network administrator might also be required to diagnose problems on the remote hosts. A
common technique is to create temporary changes and then see if the changes fix the problem. This is
the third scenario that warrants the capability to remotely administer host policies.

The Firewall and Advanced Security Protocol is designed and used to address the three needs
previously mentioned. That is, its purpose is to monitor and manage remote host policies. It can
manage all the policies that an administrator can manage locally. It can also monitor the specific
policies coming from the different sources or monitor them aggregated, that is, all together, to
understand and predict expected behavior. Lastly, it can make temporary modifications on the remote
host policy to test online fixes and see whether they are effective.

The Firewall and Advanced Security Protocol is a client/server, RPC-based protocol. It consists of data
types and methods. The data types are used to represent the different types of policy components
that compose policy objects and policy configuration options. The methods are operations that are
used to read and manage the different available policies. Therefore, the user can make method calls
that pass new policy objects to be added to the policy, delete from the policy, or modify an existing
object within the policy. The user can also call methods to retrieve all the policy objects of interest.
The following illustration shows read and write operations and their message sequences.

14 / 306

[MS-FASP-DIff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Client Server

. F .
nurma ratE-C]bJEEt,_; I:' :I
) -_-_-_'_'_'—-—-.-

——

_return Object List, Return Code

—_—
—_— e —
— o —

—
—_——
——
—

n Code-——=——"""3

— e — =
— e —

Remurn Code- ——

Figure 1: Read and write operations and their message sequences

The server role is represented by the host firewall, which contains the policy and enforces it. The client
role is represented by the management console (or other user management tool), which sends,
retrieves, and modifies the policies on the remote host firewall.

1.4 Relationship to Other Protocols

This protocol is implemented on RPC, as specified in [MS-RPCE], which uses the Transmission Control
Protocol (TCP) as a transport. Aside from managing the policy for the firewall itself, this protocol is
used to remotely manage the security policy database of the Security Architecture for the Internet
Protocol [RFC4301], which describes how Internet Protocol Security (IPsec) should be enforced and
what options the Internet Key Exchange (IKE) [RFC2409], Authenticated IP (AuthIP) [MS-AIPS], and
Internet Key Exchange (IKEv2) [RFC4306] have available to negotiate. This protocol also exposes an
abstract interface to configure firewall and advanced security policy for use by other mechanisms such
as Group Policy [MS-GPFAS].

15/ 306

[MS-FASP-DIff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

1.5 Prerequisites/Preconditions

This protocol assumes that the firewall and advanced security components have been initialized, are
running, and have registered the corresponding RPC interface that is defined in section 2.1. This
protocol also assumes that the policy in the host firewall and advanced security components, which
resides on the server side, already allows the inbound traffic that the client computer, which is running
the management tool, sends to the server during exercise of this protocol.

This protocol requires Security Support Provider Interface (SSPI) security by using packet privacy
protection level (RPC_C_PROTECT_LEVEL_PKT_PRIVACY) and GSS negotiate authentication
(RPC_C_AUTHN_GSS_NEGOTIATE), which negotiates between Kerberos Protocol Extensions [MS-
KILE] and NT LAN Manager (NTLM) Authentication Protocol [MS-NLMP] authentication.

1.6 Applicability Statement

This protocol is used to address the needs defined in section 1.3.

1.7 Versioning and Capability Negotiation
This document covers versioning and capability negotiation issues in the following areas:

= Supported Transports: This protocol uses a single RPC protocol sequence, as specified in section
2.1.

= Protocol Versions: This protocol has only one interface version. There are also several policy
versions, which can be tied to policies and specific policy objects, as defined in section 2.2. The
policy versions are 0x0200, 0x0201, 0x020A, 0x0214, 0x0216, 0x0218, 0x0219, 0x021A, and
0x021B.<1> Protocol Versions are used as Binary Versions and Schema Versions (also called
policy versions).

The policy versions listed above can be translated into binary versions by considering the two-byte
values to consist of a "high byte" and a "low byte". Convert each byte to decimal and separate
them with a period (".") to obtain the binary version. For example, the policy version 0x0214 is
mapped to binary version 2.20. Schema versions are similar to binary versions but with an
underscore ("_") instead of a period.

= Security and Authentication Methods: This protocol supports both Kerberos Protocol Extensions
[MS-KILE] and NT LAN Manager (NTLM) Authentication Protocol [MS-NLMP] authentication
methods, section 2.1.

» Localization: This protocol passes text strings without considering localization. However, some
strings can be formatted in such a way that the firewall component knows where to look for
localized versions of these strings, as defined in section 2.2. These strings can also be resolved
with specific flags and method calls, as defined in section 3.1.4.

= Capability Negotiation: A configuration option defined in section 2.2.41 contains the maximum
policy version and the binary supported by the server. With this option, a client can understand
what can and cannot be expressed in this protocol and the methods that are supported to do so.
The data types in section 2.2 and the existence and behavior of methods in section 3.1.4 are
defined in terms of these policy versions when appropriate. No other negotiation capabilities,
version-specific or otherwise, are present in this protocol.

= Byte order: All values defined in this specification are independent of whether the platform uses
big-endian or little-endian byte order. For instance, protocol version 0x0200 = 512 decimal, and
will be value 512 (0x0200) on both little-endian and big-endian platforms. Marshaling any values
defined within this specification is handled by RPC (see [MS-RPCE]).

16 / 306

[MS-FASP-DIff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

1.8 Vendor-Extensible Fields

This protocol uses Win32 error codes. These values are taken from the Windows error number space
that is specified in [MS-ERREF]. Vendors SHOULD reuse those values with their indicated meaning.
Choosing any other value runs the risk of a collision in the future.

This protocol uses NTSTATUS values, as specified in [MS-ERREF]. Vendors can choose their own
values for this field provided that the C bit (0x20000000) is set, indicating that it is a customer code.

Currently, vendors are not expected to extend this protocol. Therefore, the protocol does not consider
provisions for extensions by parties other than Microsoft.

1.9 Standards Assignments

Parameter Value Reference
RPC interface UUID for the Firewall and Advanced Security 6b5bdd1e-528c-422c-af8c- Section
Protocol a4079be4fe48 2.1

No standards assignments have been received for this protocol. All values used in these extensions
are in private ranges specified in section 2.1. This protocol uses RPC dynamic endpoints, as specified

in [C706] chapters 6, 7, 8, 9, 10, 11, 12, 13, and 14.

[MS-FASP-DIff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

17/ 306

2 Messages

2.1 Transport

This protocol uses the Remote Procedure Call (RPC) over TCP. It also uses RPC dynamic endpoints, as
specified in [C706] chapters 6, 7, 8,9, 10, 11, 12, 13, and 14.

This RPC protocol MUST use Security Support Provider Interface (SSPI) security by using packet
privacy protection level (RPC_C_PROTECT_LEVEL_PKT_PRIVACY) and GSS negotiate authentication
(RPC_C_AUTHN_GSS_NEGOTIATE), which negotiates between Kerberos Protocol Extensions, as
specified in [MS-KILE], and NT LAN Manager (NTLM) Authentication Protocol, as specified in [MS-
NLMP] authentication.

This protocol MUST use the following interface identifier as specified in [C706] section 3.1.9:

uuid: 6b5bdd1e-528c-422c-af8c-a4079bedfe48

vers_major: | 1

vers_minor: | 0

The server MUST register this interface identifier with the RPC run-time during server initialization as
specified in section 3.1.3. The client MUST use this interface identifier when binding to the RPC server
as specified in section 3.2.3.

2.2 Common Data Types

In addition to RPC base types and definitions specified in [C706] and [MS-DTYP], additional data types
are defined in the sections that follow.

2.2.1 FW_STORE_TYPE

This data type defines enumerations used to identify store types.

typedef enum _tag FW_STORE_TYPE

{
FW_STORE TYPE INVALID,
FW_STORE_TYPE GP_RSOP,
FW_STORE_TYPE LOCAL,
FW_STORE TYPE NOT USED VALUE 3,
FW_STORE _TYPE NOT USED VALUE 4,
FW_STORE TYPE DYNAMIC,
FW_STORE_TYPE GPO,
FW_STORE_TYPE DEFAULTS,
FW_STORE _TYPE NOT USED VALUE 8,
FW_STORE _TYPE NOT USED VALUE 9,
FW_STORE_TYPE NOT_USED VALUE 10,
FW_STORE_TYPE NOT_USED VALUE 11,
FWW_STORE TYPE MAX

} FW_STORE TYPE;

FW_STORE_TYPE_INVALID: This value is invalid and MUST NOT be used. It is defined for
simplicity in writing IDL definitions and code. This symbolic constant has a value of zero.

FW_STORE_TYPE_GP_RSOP: This value identifies the store that contains all the policies from the
different Group Policy Objects (GPOs) that contain the networkwide policy. This store is persisted
in the registry. It is downloaded by the Group Policy component (for more information, see [MS-

18/ 306

[MS-FASP-DIff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

GPREG]) and read by the firewall and advanced security components; therefore, it is a read-only
store. This symbolic constant has a value of 1.

FW_STORE_TYPE_LOCAL: This value identifies the store that contains the local host policy. This
store is persisted in the registry by the firewall and advanced security components; therefore, it is
a read/write store. This symbolic constant has a value of 2.

FW_STORE_TYPE_NOT_USED_VALUE_3: This store is currently not used over the wire. This
symbolic constant has a value of 3.

FW_STORE_TYPE_NOT_USED_VALUE_4: This store is currently not used over the wire. This
symbolic constant has a value of 4.

FW_STORE_TYPE_DYNAMIC: This value identifies the store that contains the effective policy, that
is, the aggregated and merged policy from all policy sources. Policy objects can be added and
modified on this store, but they are not persisted and will be lost the next time the firewall and
advanced security components initialize. Policy objects on this store can be modified only if they
were originally added to this store. This symbolic constant has a value of 5.

FW_STORE_TYPE_GPO: This value is not used on the wire. This symbolic constant has a value of 6.

FW_STORE_TYPE_DEFAULTS: This value identifies the store that contains the defaults that the
host operating system had out-of-box. This store is persisted in the registry. It is written by the
host operating system setup. It is read by the firewall and advanced security components when it
is instructed to go back to the default out-of-box configuration; hence it is a read-only store. This
symbolic constant has a value of 7.

FW_STORE_TYPE_NOT_USED_VALUE_8: This store is currently not used over the wire. This
symbolic constant has a value of 8.

FW_STORE_TYPE_NOT_USED_VALUE_9: This store is currently not used over the wire. This
symbolic constant has a value of 9.

FW_STORE_TYPE_NOT_USED_VALUE_10: This store is currently not used over the wire. This
symbolic constant has a value of 10.

FW_STORE_TYPE_NOT_USED_VALUE_11: This store is currently not used over the wire. This
symbolic constant has a value of 11.

FW_STORE_TYPE_MAX: This value and values that exceed this value are not valid and MUST NOT
be used. This symbolic constant is defined for simplicity in writing IDL definitions and code. It has
a value of 8.

2.2.2 FW_PROFILE_TYPE

This data type defines the enumerations that are used to identify profile types. The enumeration
values are bitmasks. Implementations MUST support using a single bitmask value and MUST support a
combination of bitmask values. Valid combinations of bitmask values are all possible combinations
using FW_PROFILE_TYPE_DOMAIN, FW_PROFILE_TYPE_PRIVATE, FW_PROFILE_TYPE_PUBLIC, and
FW_PROFILE_TYPE_ALL. A profile is a set of networks to which a firewall policy might apply.

typedef [vl enum] enum tag FW PROFILE TYPE
{
FW_PROFILE TYPE INVALID = 0x000,
FW_PROFILE TYPE DOMAIN = 0x001,
FW PROFILE TYPE STANDARD = 0x002,
FW_PROFILE TYPE PRIVATE = 0x002,
FW_PROFILE TYPE PUBLIC = 0x004,
FW_PROFILE TYPE ALL = Ox7FFFFFFF,
FWW_PROFILE TYPE CURRENT = 0x80000000,
FWW_PROFILE TYPE NONE = 0x80000001

19/ 306

[MS-FASP-DIff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

} FW_PROFILE TYPE;

FW_PROFILE_TYPE_INVALID: This value is invalid and MUST NOT be used. It is defined for
simplicity in writing IDL definitions and code.

FW_PROFILE_TYPE_DOMAIN: This value represents the profile for networks that are connected to
domains.

FW_PROFILE_TYPE_STANDARD: This value represents the standard profile for networks. These
networks are classified as private by the administrators in the server host. The classification
happens the first time the host connects to the network. Usually these networks are behind
Network Address Translation (NAT) devices, routers, and other edge devices, and they are in a
private location, such as a home or an office.

FW_PROFILE_TYPE_PRIVATE: This value represents the profile for private networks, which is
represented by the same value as that used for FW_PROFILE_TYPE_STANDARD.

FW_PROFILE_TYPE_PUBLIC: This value represents the profile for public networks. These networks
are classified as public by the administrators in the server host. The classification happens the first
time the host connects to the network. Usually these networks are those at airports, coffee shops,
and other public places where the peers in the network or the network administrator are not
trusted.

FW_PROFILE_TYPE_ALL: This value represents all these network sets and any future network sets.

FW_PROFILE_TYPE_CURRENT: This value represents the current profiles to which the firewall and
advanced security components determine the host is connected at the moment of the call. This
value can be specified only in method calls, and it cannot be combined with other flags.

FW_PROFILE_TYPE_NONE: This value represents no profile and is invalid. It is defined for
simplicity in writing IDL definitions and code. This and greater values MUST NOT be used.

2.2.3 FW_POLICY_ACCESS_RIGHT

This enumeration defines access rights for the policy elements that can be accessed using the Firewall
and Advanced Security Protocol. The values are not bitmasks and SHOULD NOT be used in bitwise OR
operations.

typedef enum _tag FW_POLICY ACCESS_RIGHT

{
Fil_POLICY ACCESS RIGHT INVALID,

FW_POLICY ACCESS_RIGHT READ,
FW_POLICY ACCESS RIGHT READ WRITE,
FW_POLICY ACCESS RIGHT MAX

} FW_POLICY ACCESS RIGHT;

FW_POLICY_ACCESS_RIGHT_INVALID: This value is invalid and MUST NOT be used. It is defined
for simplicity in writing IDL definitions and code. This symbolic constant has a value of zero.

FW_POLICY_ACCESS_RIGHT_READ: This value represents a read-only access right. This symbolic
constant has a value of 1.

FW_POLICY_ACCESS_RIGHT_READ_WRITE: This value represents a read and write access right.
This symbolic constant has a value of 2.

FW_POLICY_ACCESS_RIGHT_MAX: This value and values that exceed this value are not valid and
MUST NOT be used. This symbolic constant is defined for simplicity in writing IDL definitions and
code. It has a value of 3.

20/ 306

[MS-FASP-DIff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

2.2.4 FW_IPV4_SUBNET

This structure defines IPv4 subnets. It is used in policy rules.

typedef struct _tag FW IPV4 SUBNET ({
unsigned long dwAddress;
unsigned long dwSubNetMask;

} FW_IPV4 SUBNET,

*PFW_IPV4 SUBNET;

dwAddress: This field represents the IPv4 address.

dwSubNetMask: This field contains the subnet mask in host network order. If it contains ones, they
MUST be contiguous and shifted to the most significant bits.

A dwSubNetMask of 0x00000000 is invalid. A subnet mask of OxXFFFFFFFF means that the subnet
mask represents a single address.
2.2.5 FW_IPV4_SUBNET_LIST

This structure is used to contain a number of FW_IPV4_SUBNET elements.

typedef struct _tag FW_IPV4 SUBNET LIST {
[range (0, 1000)] unsigned long dwNumEntries;
[size is(dwNumEntries)] PFW_IPV4 SUBNET pSubNets;
} FW_IPV4 SUBNET LIST,
*PFW_IPV4 SUBNET LIST;

dwNumEntries: This field specifies the number of subnets that the structure contains.
pSubNets: A pointer to an array of FW_IPV4_SUBNET elements. The number of elements is given
by dwNumEntries.

2.2.6 FW_IPV6_SUBNET

This structure represents an IPv6 subnet.

typedef struct tag FW IPV6 SUBNET ({
unsigned char Address[16];
[range (0, 128)] unsigned long dwNumPrefixBits;
} FW_IPV6_ SUBNET,
*PFW_IPV6_SUBNET;

Address: This field contains a 16-octet IPv6 address.

dwNumPrefixBits: This field contains the number of more-significant bits that represent the IPv6
subnet.

The dwNumPrefixBits MUST NOT be greater than 128 and not less than 1. The address SHOULD
NOT be an unspecified address (an address composed of all zeros),<2> and it MUST not be a
loopback address.

2.2.7 FW_IPV6_SUBNET_LIST

This structure is used to contain a number of FW_IPV6_SUBNET elements.

21/ 306

[MS-FASP-DIff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

typedef struct _tag FW IPV6_SUBNET LIST ({
[range (0, 1000)] unsigned long dwNumEntries;
[size is(dwNumEntries)] PFW_IPV6 SUBNET pSubNets;
} FW _IPV6 SUBNET LIST,
*PFW_IPV6 SUBNET LIST;

dwNumEntries: This field specifies the number of subnets that the structure contains.

pSubNets: A pointer to an array of FW_IPV6_SUBNET elements. The number of elements is given by
dwNumEntries.

2.2.8 FW_IPV4_ADDRESS_RANGE

This structure represents a range of IPv4 addresses within the IPv4 address space.

typedef struct tag FW IPV4 ADDRESS RANGE {
unsigned long dwBegin;
unsigned long dwEnd;

} FW_IPV4 ADDRESS RANGE,

*PFW_IPV4 ADDRESS RANGE;

dwBegin: The first IPv4 address of the range in the IPv4 address space defined by this structure.
The address is included in the range.

dwEnd: The last IPv4 address of the range in the IPv4 address space defined by this structure. The
address is included in the range.

Valid FW_IPV4_ADDRESS_RANGE structures MUST have a dwBegin value less than or equal to the
dwEnd value. Structures with dwBegin equal to dwEnd represent a single IPv4 address.

2.2.9 FW_IPV4_RANGE_LIST

This structure is used to contain a number of FW_IPV4_ADDRESS_RANGE elements.

typedef struct _tag FW_IPV4 RANGE LIST {
[range (0, 1000)] unsigned long dwNumEntries;
[size is(dwNumEntries)] PFW_IPV4 ADDRESS RANGE pRanges;
} FW_IPV4 RANGE LIST,
*PFW_IPV4 RANGE LIST;

dwNumEntries: This field specifies the nhumber of IPv4 address ranges that the structure contains.
pRanges: A pointer to an array of FW_IPV4_ADDRESS_RANGE elements. The number of elements is
given by dwNumEntries.

2.2.10 FW_IPV6_ADDRESS_RANGE

This structure represents a range of IPv6 addresses within the IPv6 address space.

typedef struct tag FW IPV6 ADDRESS RANGE {
unsigned char Begin[16];
unsigned char End[16];

} FW_IPV6 ADDRESS RANGE,

*PFW_IPV6 ADDRESS RANGE;

22 / 306

[MS-FASP-DIff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Begin: A 16-octet array containing the first IPv6 address of the range in the IPv6 address range
defined by this structure.

End: A 16-octet array containing the last IPv6 address of the range in the IPv6 address range defined
by this structure.

Valid FW_IPV6_ADDRESS_RANGE structures MUST have a Begin value less than or equal to the End
value. Structures with Begin equal to End represent a single IPv6 address. Begin and End MUST
NOT contain either an unspecified or a loopback address.

Begin and End are in network order.

2.2.11 FW_IPV6_RANGE_LIST

This structure is used to contain a number of FW_IPV6_ADDRESS_ RANGE elements.

typedef struct _tag FW IPV6_ RANGE LIST ({
[range (0, 1000)] unsigned long dwNumEntries;
[size is(dwNumEntries)] PFW _IPV6 ADDRESS RANGE pRanges;
} FW_IPV6 RANGE LIST,
*PFW_IPV6 RANGE LIST;

dwNumEntries: This field specifies the number of IPv6 address ranges that the structure contains.
pRanges: A pointer to an array of FW_IPV6_ADDRESS_RANGE elements. The number of elements is
given by dwNumEntries.

2.2.12 FW_PORT_RANGE

This structure represents a range of ports. Ports are 16-bit unsigned values used in TCP and UDP
protocols.

typedef struct _tag FW_PORT_ RANGE {
unsigned short wBegin;
unsigned short wEnd;

} FW_PORT_ RANGE,

*PFW_PORT_RANGE;

wBegin: This field specifies the first port included in the range defined.

wEnd: This field specifies the last port included in the range defined.

Valid FW_PORT_RANGE structures MUST have a wBegin value less than or equal to the wEnd value.
In this protocol, wBegin is equal to wEnd.

2.2.13 FW_PORT_RANGE_LIST

This structure is used to contain a number of FW_PORT_RANGE elements.

typedef struct tag FW PORT RANGE LIST ({
[range (0, 1000)] unsigned long dwNumEntries;
[size is(dwNumEntries)] PFW_PORT RANGE pPorts;
} FW_PORT RANGE LIST,
*PFW_PORT RANGE LIST;

dwNumEntries: This field specifies the number of port ranges that the structure contains.

23/ 306

[MS-FASP-DIff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

pPorts: A pointer to an array of FW_PORT_RANGE elements. The number of elements is given as
dwNumEntries.

2.2.14 FW_PORT_KEYWORD

This enumeration identifies (with bitmask flags) the ports used by specific well-known protocols. The
ports corresponding to these keywords change dynamically and are tracked by the PortsInUse object
(see section 3.1.1). All the flags supported by a given schema version can be combined, except for the
restrictions placed on the wPortKeywords field as stated in FW_RULE (section 2.2.36) and
FW_CS_RULE (section 2.2.54).

typedef enum tag FW_PORT KEYWORD

{
FW_PORT KEYWORD NONE = 0x00,
FW_PORT_KEYWORD DYNAMIC_RPC_PORTS = 0x01,
FW_PORT_KEYWORD RPC_EP = 0x02,
FW_PORT KEYWORD TEREDO PORT = 0x04,
FW _PORT KEYWORD IP TLS IN = 0x08,
FW_PORT KEYWORD IP TLS OUT = 0x10,
FW_PORT KEYWORD DHCP = 0x20,
FW_PORT KEYWORD PLAYTO DISCOVERY = 0x40,
FW PORT KEYWORD MAX = 0x80,
FW_PORT KEYWORD MAX V2 1 = 0x08,
FW_PORT KEYWORD MAX V2 10 = 0x20

} FW_PORT KEYWORD;

FW_PORT_KEYWORD_NONE: Specifies that no port keywords are used.

FW_PORT_KEYWORD_DYNAMIC_RPC_PORTS: Represents all ports in the PortsInUse collection
where IsDynamicRPC is true.

FW_PORT_KEYWORD_RPC_EP: Represents all ports in the PortsInUse collection where
IsRPCEndpointMapper is true.

FW_PORT_KEYWORD_TEREDO_PORT: Represents all ports in the PortsInUse collection where
IsTeredo is true.

FW_PORT_KEYWORD_IP_TLS_IN: Represents all ports in the PortsInUse collection where
ISIPTLSIn is true. For schema versions 0x0200 and 0x0201, this value is invalid and MUST NOT
be used. This symbolic constant has a value of 0x08.

FW_PORT_KEYWORD_IP_TLS_OUT: Represents all ports in the PortsInUse collection where
ISIPTLSOut is true. For schema versions 0x0200 and 0x0201, this value is invalid and MUST NOT
be used. This symbolic constant has a value of 0x10.

FW_PORT_KEYWORD_DHCP: Represents all ports in the PortsInUse collection where IsDHCPClient
is true. For schema versions 0x0200, 0x0201, and 0x020A, this value is invalid and MUST NOT be
used. This symbolic constant has a value of 0x20.

FW_PORT_KEYWORD_PLAYTO_DISCOVERY: Represents all ports in the PortsInUse collection
where IsPlayToDiscovery is true. For schema versions 0x0200, 0x0201, and 0x020A, this value is
invalid and MUST NOT be used. This symbolic constant has a value of 0x40.

FW_PORT_KEYWORD_MAX: This value and values that exceed this value are not valid and MUST
NOT be used. It is defined for simplicity in writing IDL definitions and code. This symbolic constant
has a value of 0x80.

FW_PORT_KEYWORD_MAX_V2_1: This value and values that exceed this value are not valid and
MUST NOT be used by servers and clients with schema version 0x0201 and earlier. It is defined
for simplicity in writing IDL definitions and code. This symbolic constant has a value of 0x08.

24 / 306

[MS-FASP-DIff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

FW_PORT_KEYWORD_MAX_V2_10: This value and values that exceed this value are not valid and
MUST NOT be used by servers and clients with schema version 0x020A and earlier. It is defined
for simplicity in writing IDL definitions and code. This symbolic constant has a value of 0x20.

2.2.15FW_PORTS

This structure contains the ports represented statically through FW_PORT_RANGE structures or
symbolically through FW_PORT_KEYWORD enumeration values.

typedef struct _tag FW PORTS ({
unsigned short wPortKeywords;
FW_PORT RANGE LIST Ports;

} FW_PORTS,

*PFW_PORTS;

wPortKeywords: This field is a combination of FW_PORT_KEYWORDS.

Ports: This field is a list of specifically defined ports.

2.2.16 FW_ICMP_TYPE_CODE

This data type defines ICMP (internet control message protocol with protocol numbers assigned in
[IANA-PROTO-NUM]) message types and codes. It specifies an ICMP type and either its specific code
or all codes for that type.

typedef struct tag FW ICMP TYPE CODE ({
unsigned char bType;
[range (0, 256)] unsigned short wCode;
} FW_ICMP TYPE CODE,
*PFW_ICMP_TYPE CODE;

bType: This field specifies the ICMP type.
wCode: This field specifies the ICMP code.

The wCode field MUST contain values between 0x0000 and 0x0100. When wCode contains 0x100, it
expresses any ICMP code belonging to the corresponding ICMP type. When wCode contains values in
the range 0 to Ox0O0FF, it expresses a specific ICMP code.

All valid ICMP type and code combinations are valid, even those not currently assigned for a specific
use.

2.2.17 FW_ICMP_TYPE_CODE_LIST

This structure is used to contain a number of FW_ICMP_TYPE_CODE elements.

typedef struct _tag FW_ICMP_TYPE CODE_ LIST {
[range (0, 1000)] unsigned long dwNumEntries;
[size is(dwNumEntries)] PFW ICMP TYPE CODE pEntries;
} FW_ICMP_TYPE CODE LIST,
*PFW_ICMP_TYPE CODE LIST;

dwNumEntries: This field specifies the number of FW_ICMP_TYPE_CODE elements that the structure
contains.

25/ 306

[MS-FASP-DIff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

pEntries: A pointer to an array of FW_ICMP_TYPE_CODE elements. The number of elements is given
by dwNumEntries.

2.2.18 FW_INTERFACE_LUIDS

This structure is used to contain locally unique identifier (LUID) values that uniquely represent single
network adapters (NICs) within a specific computer.

typedef struct tag FW_INTERFACE LUIDS {
[range (0, 1000)] unsigned long dwNumLUIDs;
[size is(dwNumLUIDs)] GUID* pLUIDs;
} FW_INTERFACE LUIDS,
*PFW_ INTERFACE LUIDS;

dwNumLUIDs: This field specifies the number of interface LUIDs that the structure contains.

pLUIDs: A pointer to an array of GUID elements. The number of elements is given by
dwNumLUIDs. The GUID data type is specified in [MS-DTYP].

2.2.19 FW_DIRECTION

This enumeration represents the direction of network traffic flow.

typedef enum _tag FW _DIRECTION
{

FW_DIR_INVALID = O,

FW DIR IN,

FW DIR OUT,

FW_DIR MAX
} FW_DIRECTION;

FW_DIR_INVALID: This is an invalid value, and it MUST NOT be used. It is defined for simplicity in
writing IDL definitions and code. This symbolic constant has a value of zero.

FW_DIR_IN: Specifies an inbound network traffic flow. These are flows that are initiated by a
remote machine toward the local machine. This symbolic constant has a value of 1.

FW_DIR_OUT: Specifies an outbound network traffic flow. These are flows that are initiated by the
local machine toward a remote machine. This symbolic constant has a value of 2.

FW_DIR_MAX: This value and values that exceed this value are not valid and MUST NOT be used.
This symbolic constant is defined for simplicity in writing IDL definitions and code. It has a value of
3.

2.2.20 FW_INTERFACE_TYPE

This enumeration is used to represent types of network adapters (NICs) in a specific machine. Each
type might have one or more network adapters.

typedef enum _tag FW_INTERFACE TYPE

{
FW_INTERFACE TYPE ALL = 0x0000,
FW_INTERFACE TYPE LAN = 0x0001,
FW_INTERFACE TYPE WIRELESS = 0x0002,
FWW_INTERFACE TYPE REMOTE ACCESS = 0x0004,
FWW_INTERFACE TYPE MAX = 0x0008

} FW_INTERFACE TYPE;

26 / 306

[MS-FASP-DIff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

FW_INTERFACE_TYPE_ALL: Represents all types of network adapters (NICs). The following types
fall into this type.

FW_INTERFACE_TYPE_LAN: Represents network adapters (NICs) that use wired network physical
layers such as Ethernet.

FW_INTERFACE_TYPE_WIRELESS: Represents network adapters that use the wireless 802
network physical layer.

FW_INTERFACE_TYPE_REMOTE_ACCESS: Represents network adapters that use VPN
connections.

FW_INTERFACE_TYPE_MAX: This value and values that exceed this value are not valid and MUST
NOT be used. It is defined for simplicity in writing IDL definitions and code. This symbolic constant
has a value of 0x0008.

2.2.21 FW_ADDRESS_KEYWORD

This enumeration is used to represent specific address types. As specified in the following descriptions,
these address types can change dynamically.

typedef enum tag FW ADDRESS KEYWORD

{
FW_ ADDRESS KEYWORD NONE = 0x0000,
FW ADDRESS KEYWORD LOCAL SUBNET = 0x0001,
FW_ADDRESS KEYWORD DNS = 0x0002,
FW_ADDRESS KEYWORD DHCP = 0x0004,
FW_ADDRESS KEYWORD WINS = 0x0008,
FW ADDRESS KEYWORD DEFAULT GATEWAY = 0x0010,
FW ADDRESS KEYWORD INTRANET = 0x0020,
FW_ADDRESS KEYWORD INTERNET = 0x0040,
FW_ADDRESS KEYWORD PLAYTO RENDERERS = 0x0080,
FW ADDRESS KEYWORD REMOTE INTRANET = 0x0100,
FW _ADDRESS KEYWORD MAX = 0x0200,
FWW_ADDRESS KEYWORD MAX V2 10 = 0x0020

} FW_ADDRESS KEYWORD;

FW_ADDRESS_KEYWORD_NONE: Specifies that no specific keyword is used.

FW_ADDRESS_KEYWORD_LOCAL_SUBNET: Represents the collection of addresses that are
currently within the local subnet of the computer.

FW_ADDRESS_KEYWORD_DNS: Represents the collection of addresses of the current DNS
servers.

FW_ADDRESS_KEYWORD_DHCP: Represents the collection of addresses of the current DHCP
servers.

FW_ADDRESS_KEYWORD_WINS: Represents the collection of addresses of the current WINS
servers.

FW_ADDRESS_KEYWORD_DEFAULT_GATEWAY: Represents the collection of addresses of the
current gateway servers.

FW_ADDRESS_KEYWORD_INTRANET: Represents the collection of addresses that are currently
within the local intranet of the computer. For schema versions 0x0200, 0x0201, and 0x020A, this
value is invalid and MUST NOT be used.

FW_ADDRESS_KEYWORD_INTERNET: Represents the collection of addresses that are currently
not within the local intranet or remote intranet of the computer. For schema versions 0x0200,
0x0201, and 0x020A, this value is invalid and MUST NOT be used.

27/ 306

[MS-FASP-DIff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

FW_ADDRESS_KEYWORD_PLAYTO_RENDERERS: Represents the collection of addresses of the
current Digital Media Renderer devices as defined in [MS-DLNHND] section 3.3. For schema
versions 0x0200, 0x0201, and 0x020A, this value is invalid and MUST NOT be used.

FW_ADDRESS_KEYWORD_REMOTE_INTRANET: Represents the collection of addresses that are
currently within the remote intranet of the computer. For schema versions 0x0200, 0x0201, and
0x020A, this value is invalid and MUST NOT be used.

FW_ADDRESS_KEYWORD_MAX: This value and values that exceed this value are not valid and
MUST NOT be used. It is defined for simplicity in writing IDL definitions and code. This symbolic
constant has a value of 0x0200.

FW_ADDRESS_KEYWORD_MAX_V2_10: This value and values that exceed this value are not valid
and MUST NOT be used by servers and clients with schema version 0x020A and earlier. It is
defined for simplicity in writing IDL definitions and code. This symbolic constant has a value of
0x0020.

2.2.22 FW_ADDRESSES

This structure contains a list of address structures. Static and symbolic representations are supported,
but a structure can contain only one representation type. The address structure representations
follow:

Static Representation

= FW_IPV4_SUBNET_LIST

= FW_IPV4_RANGE_LIST

= FW_IPV6_SUBNET_LIST

= FW_IPV6_RANGE_LIST

Symbolic Representation

= FW_ADDRESS_KEYWORD enumeration values

The FW_ADDRESSES definition follows:

typedef struct tag FW ADDRESSES {
unsigned long dwV4AddressKeywords;
unsigned long dwV6AddressKeywords;
FW_IPV4 SUBNET_LIST V4SubNets;
FW_IPV4 RANGE LIST V4Ranges;
FW_IPV6 SUBNET LIST V6SubNets;
FW_IPV6 RANGE LIST V6Ranges;

} FW_ADDRESSES,

*PFW_ADDRESSES;

dwV4AddressKeywords: A combination of FW_ADDRESS_KEYWORD flags. Addresses in this field
are specified from the IPv4 address space.

dwV6AddressKeywords: A combination of FW_ADDRESS_KEYWORD flags. Addresses in this field
are specified from the IPv6 address space.

V4SubNets: A list of specifically defined IPv4 address subnets.
V4Ranges: A list of specifically defined IPv4 address ranges.

V6SubNets: A list of specifically defined IPv6 address subnets.

28 / 306

[MS-FASP-DIff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

V6Ranges: A list of specifically defined IPv6 address ranges.

2.2.23 FW_RULE_STATUS

This enumeration represents status codes that identify the error states of a policy object, including
successful states. If an object is in an erroneous state, the enumeration value represents a reason for

the error.

typedef [vl_enum] enum _tag FW _RULE STATUS

{
FW RULE STATUS OK = 0x00010000,
FW RULE STATUS PARTIALLY IGNORED = 0x00020000,
FW_RULE_STATUS_IGNORED = 0x00040000,
FW_RULE_STATUS_PARSING_ERROR = 0x00080000,
FW RULE STATUS PARSING ERROR NAME = 0x00080001,
FW RULE STATUS PARSING ERROR DESC = 0x00080002,
FW_RULE_STATUS_PARSING_ERROR _APP = 0x00080003,
FW_RULE_STATUS_PARSING_ ERROR_SVC 0x00080004,
FW RULE STATUS PARSING ERROR RMA = 0x00080005,
FW RULE STATUS PARSING ERROR RUA = 0x00080006,
FW_RULE_STATUS PARSING ERROR EMBD = 0x00080007,
FW_RULE_STATUS_ PARSING ERROR RULE ID = 0x00080008,
FW RULE STATUS PARSING ERROR PHASEl AUTH = 0x00080009,
FW RULE STATUS PARSING ERROR PHASE2 CRYPTO = 0x00080003,
FW_RULE_STATUS_ PARSING ERROR PHASE2 AUTH = 0x0008000B,
FW_RULE_STATUS_PARSING ERROR RESOLVE APP = 0x0008000C,
FW RULE STATUS PARSING ERROR MAINMODE ID = 0x0008000D,
FW RULE STATUS PARSING ERROR PHASEl CRYPTO = 0x0008000E,
FW_RULE_STATUS PARSING ERROR REMOTE ENDPOINTS = 0x0008000F,
FW_RULE_STATUS PARSING ERROR REMOTE ENDPOINT FQDN = 0x00080010,
FW_RULE_STATUS PARSING ERROR KEY MODULE = 0x00080011,
FW RULE STATUS PARSING ERROR LUA = 0x00080012,
FW RULE STATUS PARSING ERROR FWD LIFETIME = 0x00080013,

Fil_RULE STATUS PARSING ERROR TRANSPORT MACHINE AUTHZ SDDL = 0x00080014,
Fil_RULE STATUS PARSING ERROR TRANSPORT USER AUTHZ SDDL = 0x00080015,

FW_RULE STATUS PARSING ERROR NETNAMES STRING = 0x00080016,

FW_RULE STATUS PARSING ERROR SECURITY REALM ID STRING = 0x00080017,

FW_RULE_STATUS_PARSING ERROR FOBN_STRING = 0x00080018,
FW_RULE_STATUS_SEMANTIC ERROR = 0x00100000,

FWl_RULE STATUS SEMANTIC ERROR RULE ID = 0x00100010,

FWl_RULE STATUS SEMANTIC ERROR PORTS = 0x00100020,
FW_RULE_STATUS_SEMANTIC ERROR PORT KEYW = 0x00100021,
FW_RULE_STATUS_SEMANTIC_ ERROR PORT RANGE = 0x00100022,
FW_RULE STATUS SEMANTIC ERROR PORTRANGE RESTRICTION = 0x00100023,
FWl_RULE STATUS SEMANTIC ERROR ADDR V4 SUBNETS = 0x00100040,
FW_RULE_STATUS_SEMANTIC ERROR ADDR V6 SUBNETS = 0x00100041,
FW_RULE_STATUS_SEMANTIC ERROR ADDR V4 RANGES = 0x00100042,
FW_RULE STATUS SEMANTIC ERROR ADDR V6 RANGES = 0x00100043,
Fil_RULE STATUS SEMANTIC ERROR ADDR RANGE = 0x00100044,
FW_RULE_STATUS_SEMANTIC ERROR ADDR MASK = 0x00100045,
FW_RULE_STATUS_SEMANTIC ERROR ADDR PREFIX = 0x00100046,
FWl_RULE STATUS SEMANTIC ERROR ADDR KEYW = 0x00100047,

FWl_RULE STATUS SEMANTIC ERROR LADDR PROP = 0x00100048,
FWl_RULE STATUS SEMANTIC ERROR RADDR PROP = 0x00100049,
FW_RULE_STATUS_SEMANTIC ERROR ADDR V6 = 0x0010004A,
FW_RULE_STATUS_SEMANTIC_ ERROR LADDR INTF = 0x0010004B,
Fil_RULE STATUS SEMANTIC ERROR ADDR V4 = 0x0010004C,

Fil_RULE STATUS SEMANTIC ERROR TUNNEL ENDPOINT ADDR = 0x0010004D,
FW_RULE_STATUS_SEMANTIC ERROR DTE VER = 0x0010004E,
FW_RULE_STATUS_SEMANTIC ERROR DTE MISMATCH ADDR = 0x0010004F,
FWl_RULE STATUS SEMANTIC ERROR PROFILE = 0x00100050,

Fil_RULE STATUS SEMANTIC ERROR ICMP = 0x00100060,
FW_RULE_STATUS_SEMANTIC ERROR ICMP CODE = 0x00100061,
FW_RULE_STATUS_SEMANTIC ERROR IF ID = 0x00100070,

FWl_RULE STATUS SEMANTIC ERROR IF TYPE = 0x00100071,

FWl_RULE STATUS SEMANTIC ERROR ACTION = 0x00100080,
FW_RULE_STATUS_SEMANTIC ERROR ALLOW BYPASS = 0x00100081,

[MS-FASP-DIff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

29 / 306

FW_RULE STATUS SEMANTIC ERROR DO NOT SECURE = 0x00100082,
Fil_RULE STATUS SEMANTIC ERROR ACTION BLOCK IS ENCRYPTED SECURE = 0x00100083,

FW_RULE_STATUS_SEMANTIC_ ERROR INCOMPATIBLE FLAG OR . ACTION WITH SECURITY REALM

FW_RULE_STATUS SEMANTIC ERROR DIR = 0x00100090,
FW_RULE_STATUS_SEMANTIC ERROR PROT = 0x001000A0,

FW RULE STATUS SEMANTIC ERROR PROT PROP = 0x001000Al,

FW RULE STATUS SEMANTIC ERROR DEFER EDGE PROP = 0x001000A2,
FW_RULE_STATUS SEMANTIC ERROR ALLOW BYPASS OUTBOUND = 0x001000A3,
Fi_RULE STATUS SEMANTIC ERROR DEFER USER INVALID RULE = 0x00100024,
FW RULE STATUS SEMANTIC ERROR FLAGS = 0x001000BO,

FW RULE STATUS SEMANTIC ERROR FLAGS AUTO AUTH = 0x001000BI,

FW_RULE STATUS SEMANTIC ERROR FLAGS AUTO BLOCK = 0x001000B2,
FW_RULE STATUS SEMANTIC ERROR FLAGS AUTO DYN RPC = 0x001000B3,

FW RULE STATUS SEMANTIC ERROR FLAGS AUTHENTICATE ENCRYPT = 0x001000B4,

FW RULE STATUS SEMANTIC ERROR FLAGS AUTH WITH ENC NEGOTIATE VER = 0x001000B5,

FW_RULE STATUS SEMANTIC ERROR FLAGS AUTH WITH ENC NEGOTIATE = 0x001000B6,
FW_RULE STATUS SEMANTIC ERROR FLAGS ESP NO ENCAP VER = 0x001000B7,

Fil_RULE STATUS SEMANTIC ERROR FLAGS ESP NO ENCAP = 0x001000BS,

Fii_RULE STATUS SEMANTIC ERROR FLAGS TUNNEL AUTH MODES VER = 0x001000B9,
FW_RULE STATUS SEMANTIC ERROR FLAGS TUNNEL AUTH MODES = 0x001000BA,
FW_RULE STATUS SEMANTIC ERROR FLAGS IP TLS VER = 0x001000BB,

Fil_RULE STATUS SEMANTIC ERROR FLAGS PORTRANGE VER = 0x001000BC,

Fil_RULE STATUS SEMANTIC ERROR FLAGS ADDRS TRAVERSE DEFER VER = 0x001000BD,

Fil_RULE STATUS SEMANTIC ERROR FLAGS AUTH WITH ENC NEGOTIATE OUTBOUND = 0x001000BE,

FW_RULE STATUS SEMANTIC ERROR FLAGS AUTHENTICATE WITH OUTBOUND BYPASS VER =
Fil_RULE STATUS SEMANTIC ERROR REMOTE AUTH LIST = 0x001000CO,

Fil_RULE STATUS SEMANTIC ERROR REMOTE USER LIST = 0x001000C1,

Fil_RULE STATUS SEMANTIC ERROR LOCAL USER LIST = 0x001000C2,

FW_RULE STATUS SEMANTIC ERROR LUA VER = 0x001000C3,

FWl_RULE STATUS SEMANTIC ERROR LOCAL USER OWNER = 0x001000C4,

Fil_RULE STATUS SEMANTIC ERROR LOCAL USER OWNER VER = 0x001000C5,

Fil_RULE STATUS SEMANTIC ERROR LUA CONDITIONAL VER = 0x001000C6,

FW_RULE STATUS SEMANTIC ERROR FLAGS SYSTEMOS GAMEOS = 0x001000C7,
FW_RULE STATUS SEMANTIC ERROR FLAGS CORTANA VER = 0x001000CS8,

Fil_RULE STATUS SEMANTIC ERROR FLAGS REMOTENAME = 0x001000C9

Fil_RULE STATUS SEMANTIC ERROR FLAGS ALLOW PROFILE CROSSING VER = 0x001000DO,
FW_RULE STATUS SEMANTIC ERROR LOCAL ONLY MAPPED VER = 0x001000D1,
FW_RULE STATUS SEMANTIC ERROR PLATFORM = 0x001000EO,

Fil_RULE STATUS SEMANTIC ERROR PLATFORM OP VER = 0x001000E1,

Fil_RULE STATUS SEMANTIC ERROR PLATFORM OP = 0x001000E2,

FW_RULE STATUS SEMANTIC ERROR DTE NOANY ADDR = 0x001000FO,

FW_RULE STATUS SEMANTIC TUNNEL EXEMPT WITH GATEWAY = 0x001000F1,

Fil_RULE STATUS SEMANTIC TUNNEL EXEMPT VER = 0x001000F2,

Fil_RULE STATUS SEMANTIC ERROR ADDR KEYWORD VER = 0x001000F3,

FW_RULE STATUS SEMANTIC ERROR KEY MODULE VER = 0x001000F4,
FW_RULE_STATUS_ SEMANTIC ERROR APP_CONTAINER PACKAGE ID = 0x00100100,

FW RULE STATUS SEMANTIC ERROR APP CONTAINER PACKAGE ID VER = 0x00100101,
FW RULE STATUS SEMANTIC ERROR TRUST TUPLE KEYWORD INCOMPATIBLE = 0x00100200,
Fii_RULE STATUS SEMANTIC ERROR TRUST TUPLE KEYWORD INVALID = 0x00100201,
FW_RULE STATUS SEMANTIC ERROR TRUST TUPLE KEYWORD VER = 0x00100202,
FW_RULE_STATUS_ SEMANTIC ERROR INTERFACE TYPES VER = 0x00100301,

FW RULE STATUS SEMANTIC ERROR NETNAMES VER = 0x00100401,

FW RULE STATUS SEMANTIC ERROR SECURITY REALM ID VER = 0x00100402,
FWl_RULE STATUS SEMANTIC ERROR SYSTEMOS GAMEOS VER = 0x00100403,

FW_RULE STATUS SEMANTIC ERROR DEVMODE VER = 0x00100404,

Fil_RULE STATUS SEMANTIC ERROR REMOTE SERVERNAME VER = 0x00100405,
Fil_RULE STATUS SEMANTIC ERROR FQBN VER = 0x00100406,

FW_RULE STATUS SEMANTIC ERROR COMPARTMENT ID VER = 0x00100407,

Fil_RULE STATUS SEMANTIC ERROR CALLOUT AND AUDIT VER = 0x00100408,
Fii_RULE STATUS SEMANTIC ERROR PHASEl AUTH SET ID = 0x00100500,

Fil_RULE STATUS SEMANTIC ERROR PHASE2 CRYPTO SET ID = 0x00100510,

FW_RULE STATUS_ SEMANTIC ERROR PHASEl CRYPTO SET ID = 0x00100511,

FW_RULE STATUS_ SEMANTIC ERROR FLAGS KEY MANAGER DICTATE VER = 0x00100512,
Fil_RULE STATUS SEMANTIC ERROR FLAGS KEY MANAGER NOTIFY VER = 0x00100513,
Fii_RULE STATUS SEMANTIC ERROR TRANSPORT MACHINE AUTHZ VER = 0x00100514,
FWl_RULE STATUS SEMANTIC ERROR TRANSPORT USER AUTHZ VER = 0x00100515,

FW RULE_STATUS_SEMANTIC_ERROR TRANSPORT MACHINE AUTHZ _ON_TUNNEL = 0x00100516,

FW _RULE_STATUS SEMANTIC ERROR TRANSPORT USER AUTHZ ON TUNNEL = 0x00100517,
Fil_RULE STATUS SEMANTIC ERROR PER RULE AND GLOBAL AUTHZ = 0x00100518,
FW_RULE STATUS SEMANTIC ERROR FLAGS SECURITY REALM = 0x00100519,

0x00100084,

0x001000BF,

[MS-FASP-DIff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

30/ 306

Fil_RULE_STATUS SEMANTIC ERROR SET ID = 0x00101000
Fil_RULE STATUS SEMANTIC ERROR IPSEC PHASE = 0x001
Fil_RULE STATUS SEMANTIC ERROR EMPTY SUITES = 0x00
FW_RULE STATUS SEMANTIC ERROR PHASEl AUTH METHOD

FW_RULE STATUS SEMANTIC ERROR PHASE2 AUTH METHOD

Fil_RULE STATUS SEMANTIC ERROR AUTH METHOD ANONYMO
Fil_RULE STATUS SEMANTIC ERROR AUTH METHOD DUPLICA
FW_RULE STATUS SEMANTIC ERROR AUTH METHOD VER = 0
FW_RULE STATUS SEMANTIC ERROR AUTH SUITE FLAGS
Fil_RULE STATUS SEMANTIC ERROR HEALTH CERT = 0x001
Fil_RULE STATUS SEMANTIC ERROR AUTH SIGNCERT VER
FW_RULE STATUS SEMANTIC ERROR AUTH INTERMEDIATE C
FW_RULE STATUS SEMANTIC ERROR MACHINE SHKEY = 0x0
Fil_RULE STATUS SEMANTIC ERROR CA NAME = 0x0010106
Fil_RULE STATUS SEMANTIC ERROR MIXED CERTS = 0x001
FW_RULE_STATUS SEMANTIC ERROR NON CONTIGUOUS CERT
FW_RULE_STATUS SEMANTIC ERROR MIXED CA TYPE IN BL
Fil_RULE STATUS SEMANTIC ERROR MACHINE USER AUTH
Fil_RULE STATUS SEMANTIC ERROR AUTH CERT CRITERIA
FW_RULE STATUS SEMANTIC ERROR AUTH CERT CRITERIA
FW_RULE STATUS SEMANTIC ERROR AUTH CERT CRITERIA .
Fil_RULE STATUS SEMANTIC ERROR AUTH CERT CRITERIA
Fil_RULE STATUS SEMANTIC ERROR AUTH CERT CRITERIA
Fil_RULE STATUS SEMANTIC ERROR AUTH CERT CRITERIA
FW_RULE_STATUS SEMANTIC ERROR AUTH CERT CRITERIA
FW_RULE_STATUS SEMANTIC ERROR AUTH CERT CRITERIA
Fil_RULE STATUS SEMANTIC ERROR AUTH CERT CRITERIA |
Fil_RULE STATUS SEMANTIC ERROR PROXY SERVER = 0x00
FW_RULE_STATUS SEMANTIC ERROR AUTH PROXY SERVER V
FW_RULE_STATUS SEMANTIC ERROR PHASEl CRYPTO NON D
Fil_RULE STATUS SEMANTIC ERROR PHASEl CRYPTO FLAGS
Fil_RULE STATUS SEMANTIC ERROR PHASEl CRYPTO TIMEO
FW_RULE_STATUS SEMANTIC ERROR PHASEl CRYPTO TIMEO
FW_RULE_STATUS SEMANTIC ERROR PHASEl CRYPTO KEY E
Fil_RULE STATUS SEMANTIC ERROR PHASEl CRYPTO ENCRY
Fil_RULE STATUS SEMANTIC ERROR PHASEl CRYPTO HASH

FW_RULE_STATUS SEMANTIC ERROR PHASEl CRYPTO ENCRY
FW_RULE_STATUS SEMANTIC ERROR PHASEl CRYPTO HASH -
Fil_RULE STATUS SEMANTIC ERROR PHASEl CRYPTO KEY E
Fil_RULE STATUS SEMANTIC ERROR PHASE2 CRYPTO PFS
FW_RULE_STATUS SEMANTIC ERROR PHASE2 CRYPTO PROTO
FW_RULE_STATUS SEMANTIC ERROR PHASE2 CRYPTO ENCRY
Fil_RULE STATUS SEMANTIC ERROR PHASE2 CRYPTO HASH

Fil_RULE STATUS SEMANTIC ERROR PHASE2 CRYPTO TIMEO
FW_RULE_STATUS SEMANTIC ERROR PHASE2 CRYPTO TIMEO
FW_RULE_STATUS SEMANTIC ERROR PHASE2 CRYPTO ENCRY
Fil_RULE STATUS SEMANTIC ERROR PHASE2 CRYPTO HASH -
Fil_RULE STATUS SEMANTIC ERROR PHASE2 CRYPTO PFS V
Fil_RULE STATUS SEMANTIC ERROR CRYPTO ENCR HASH
FW_RULE_STATUS SEMANTIC ERROR CRYPTO ENCR HASH CO
FW_RULE_STATUS SEMANTIC ERROR SCHEMA VERSION = Ox
Fil_RULE STATUS SEMANTIC ERROR QUERY OR AND CONDIT
Fil_RULE STATUS SEMANTIC ERROR QUERY AND CONDITION
FW_RULE_STATUS SEMANTIC ERROR QUERY CONDITION KEY
FW_RULE_STATUS SEMANTIC ERROR QUERY CONDITION MAT
Fil_RULE STATUS SEMANTIC ERROR QUERY CONDITION DAT
Fil_RULE STATUS SEMANTIC ERROR QUERY CONDITION KEY
FW_RULE_STATUS SEMANTIC ERROR QUERY KEYS PROTOCOL
FW_RULE_STATUS SEMANTIC ERROR QUERY KEY PROFILE
Fii_RULE STATUS SEMANTIC ERROR QUERY KEY STATUS

Fil_RULE STATUS SEMANTIC ERROR QUERY KEY FILTERID

FW_RULE_STATUS SEMANTIC ERROR QUERY KEY APP PATH

FW_RULE_STATUS SEMANTIC ERROR QUERY KEY PROTOCOL

Fil_RULE STATUS SEMANTIC ERROR QUERY KEY LOCAL POR
Fil_RULE STATUS SEMANTIC ERROR QUERY KEY REMOTE PO
FW_RULE_STATUS SEMANTIC ERROR QUERY KEY SVC_NAME

FW_RULE_STATUS SEMANTIC ERROR REQUIRE_ IN CLEAR OU
Fii_RULE STATUS SEMANTIC ERROR TUNNEL BYPASS TUNNE
Fil_RULE STATUS SEMANTIC ERROR AUTH NOENCAP ON TUN
FW_RULE_STATUS SEMANTIC ERROR AUTH NOENCAP ON PSK

’

01010,
101020,
0x00101030,
0x00101031,
US = 0x00101032,
TE = 0x00101033,
x00101034,
0x00101040,
01041,
0x00101042,
A VER = 0x00101043,
0101050,
0,
01061,
S = 0x00101062,
OCK = 0x00101063,
0x00101070,
VER = 0x00101071,
0x00101072,
0x00101073,
0x00101074,

VER MISMATCH
RENEWAL HASH
INVALID HASH
INVALID EKU = 0x00101075,
INVALID NAME TYPE = 0x00101076,
INVALID NAME = 0x00101077,

INVALID CRITERIA TYPE = 0x00101078,
MISSING CRITERIA = 0x00101079,
101080,
ER = 0x00101081,
EFAULT ID = 0x00105000,
0x00105001,
UT MINUTES = 0x00105002,
UT SESSIONS = 0x00105003,
XCHANGE = 0x00105004,

PTION = 0x00105005,
0x00105006,

PTION VER = 0x00105007,
VER 0x00105008,

XCH _VER = 0x00105009,

0x00105020,

COL 0x00105021,

PTION 0x00105022,
0x00105023,
UT MINUTES = 0x00105024,

UT_KBYTES = 0x00105025,

PTION VER = 0x00105026,
VER = 0x00105027,

ER = 0x00105028,

0x00105040,
MPAT = 0x00105041,

00105050,

IONS = 0x00106000,

S = 0x00106001,

= 0x00106002,

CH_TYPE 0x00106003,
A TYPE = 0x00106004,
_AND DATA TYPE = 0x00106005,
_PORT 0x00106006,

0x00106007,

0x00106008,
0x00106009,
0x00106010,
0x00106011,
0x00106012,

0x00106013,
0x00106015,
T ON_TRANSPORT
L IF SECURE ON TRANSPORT
NEL = 0x00107002,

= 0x00107003,

T
RT

0x00107000,
0x00107001,

[MS-FASP-DIff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

31/ 306

FiW_RULE_STATUS RUNTIME ERROR = 0x00200000,
FW RULE STATUS RUNTIME ERROR PHASEl AUTH NOT FOUND = 0x00200001,
FW RULE STATUS RUNTIME ERROR PHASE2 AUTH NOT FOUND = 0x00200002,
FW_RULE STATUS RUNTIME ERROR PHASE2 CRYPTO NOT FOUND = 0x00200003,
FW_RULE_STATUS RUNTIME ERROR AUTH MCHN SHKEY MISMATCH = 0x00200004,
FW RULE STATUS RUNTIME ERROR PHASEL CRYPTO NOT FOUND = 0x00200005,
FW RULE STATUS RUNTIME ERROR AUTH NOENCAP ON TUNNEL = 0x00200006,
FW_RULE STATUS RUNTIME ERROR AUTH NOENCAP ON PSK = 0x00200007,
Fi_RULE STATUS RUNTIME ERROR KEY MODULE AUTH MISMATCH = 0x00200008,
FW RULE STATUS ERROR = FW RULE STATUS PARSING ERROR | FW RULE STATUS SEMANTIC ERROR |
FW RULE STATUS RUNTIME ERROR,
FW_RULE_STATUS ALL = OxFFFF0000
} FW_RULE_STATUS;

FW_RULE_STATUS_OK: The rule was parsed successfully from the store, is correctly constructed,
and has no issue.

FW_RULE_STATUS_PARTIALLY_IGNORED: The rule has fields that the service can successfully
ignore. The ignored fields can be present only if the policy (such as the Group Policy) was written
by future firewall and advanced security components that support a higher schema version.
Therefore, this error occurs only if the version of the rule is higher; specifically, a higher minor
version means that part of the rule might not be understandable. Because the host firewall
component does not understand these new fields, it cannot meaningfully specify what was ignored
in the rule.

FW_RULE_STATUS_IGNORED: The rule has a higher major version that the service MUST ignore.
Higher major schema versions specify that nothing in the rule is understandable to lower major
version components.

FW_RULE_STATUS_PARSING_ERROR_NAME: The name contains characters that are not valid or
the length is not valid.

FW_RULE_STATUS_PARSING_ERROR_DESC: The description contains characters that are not
valid or the length is not valid.

FW_RULE_STATUS_PARSING_ERROR_APP: The application contains characters that are not valid
or the length is not valid.

FW_RULE_STATUS_PARSING_ERROR_SVC: The service contains characters that are not valid or
the length is not valid.

FW_RULE_STATUS_PARSING_ERROR_RMA: The remote machine authentication contains
characters that are not valid or the length is not valid.

FW_RULE_STATUS_PARSING_ERROR_RUA: The remote user authentication contains characters
that are not valid or the length is not valid.

FW_RULE_STATUS_PARSING_ERROR_EMBD: The embedded context contains characters that
are not valid or the length is not valid.

FW_RULE_STATUS_PARSING_ERROR_RULE_ID: The rule ID contains characters that are not
valid or the length is not valid.

FW_RULE_STATUS_PARSING_ERROR_PHASE1_AUTH: The Phasel authentication set ID
contains characters that are not valid or the length is not valid.

FW_RULE_STATUS_PARSING_ERROR_PHASE2_CRYPTO: The Phase2 cryptographic set ID
contains characters that are not valid or the length is not valid.

FW_RULE_STATUS_PARSING_ERROR_PHASE2_AUTH: The Phase2 authentication set ID
contains characters that are not valid or the length is not valid.

32/ 306

[MS-FASP-DIff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

FW_RULE_STATUS_PARSING_ERROR_RESOLVE_APP: The application name cannot be resolved.

FW_RULE_STATUS_PARSING_ERROR_MAINMODE_ID: This error is unused and not returned by
the system.

FW_RULE_STATUS_PARSING_ERROR_PHASE1_CRYPTO: The Phasel cryptographic set ID
contains characters that are not valid or the length is not valid.

FW_RULE_STATUS_PARSING_ERROR_REMOTE_ENDPOINTS: The remote tunnel endpoints
contain characters that are not valid, or the length is not valid.

FW_RULE_STATUS_PARSING_ERROR_REMOTE_ENDPOINT_FQDN: The remote tunnel
endpoint fully qualified domain name (FQDN) contains characters that are not valid, or the length
is not valid.

FW_RULE_STATUS_PARSING_ERROR_KEY_MODULE: The keying modules contain characters
that are not valid, or the length is not valid.

FW_RULE_STATUS_PARSING_ERROR_LUA: The local user authorization list contains characters
that are not valid or the length is not valid.

FW_RULE_STATUS_PARSING_ERROR_FWD_LIFETIME: The forward path security association
(SA) lifetime contains characters that are not valid or the length is not valid.

FW_RULE_STATUS_PARSING_ERROR_TRANSPORT_MACHINE_AUTHZ_SDDL: The IPsec
transport mode machine authorization SDDL string contains characters that are not valid, or the
length is not valid.

FW_RULE_STATUS_PARSING_ERROR_TRANSPORT_USER_AUTHZ_SDDL: The IPsec transport
mode user authorization SDDL string contains characters that are not valid, or the length is not
valid.

FW_RULE_STATUS_PARSING_ERROR_NETNAMES_STRING: A string for the network name
structure is invalid.

FW_RULE_STATUS_PARSING_ERROR_SECURITY_REALM_ID_STRING: A string for the security
realm ID is invalid.

FW_RULE_STATUS_PARSING_ERROR_FQBN_STRING: A string for the fully qualified binary
name (FQBN) is invalid; also see [MSDN-FQBN].

FW_RULE_STATUS_PARSING_ERROR: The rule did not parse correctly.
FW_RULE_STATUS_SEMANTIC_ERROR_RULE_ID: Semantic error: The rule ID is not specified.

FW_RULE_STATUS_SEMANTIC_ERROR_PORTS: Semantic error: Mismatch in the number of
ports and port buffers.

FW_RULE_STATUS_SEMANTIC_ERROR_PORT_KEYW: Semantic error: The port keyword is not
valid.

FW_RULE_STATUS_SEMANTIC_ERROR_PORT_RANGE: Semantic error: End != Begin or port =
0.

FW_RULE_STATUS_SEMANTIC_ERROR_PORTRANGE_RESTRICTION: Semantic error: A port
range has been specified for a connection security rule, but the action is not Do Not Secure.

FW_RULE_STATUS_SEMANTIC_ERROR_ADDR_V4_SUBNETS: Semantic error: Mismatch in the
number of v4 subnets and subnet buffers.

33/ 306

[MS-FASP-DIff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

FW_RULE_STATUS_SEMANTIC_ERROR_ADDR_V6_SUBNETS: Semantic error: Mismatch in the
number of v6 subnets and subnet buffers.

FW_RULE_STATUS_SEMANTIC_ERROR_ADDR_V4_RANGES: Semantic error: Mismatch in the
number of v4 ranges and range buffers.

FW_RULE_STATUS_SEMANTIC_ERROR_ADDR_V6_RANGES: Semantic error: Mismatch in the
number of v6 ranges and range buffers.

FW_RULE_STATUS_SEMANTIC_ERROR_ADDR_RANGE: Semantic error: End < Begin.

FW_RULE_STATUS_SEMANTIC_ERROR_ADDR_MASK: Semantic error: The mask specified on a
v4 subnet is not valid.

FW_RULE_STATUS_SEMANTIC_ERROR_ADDR_PREFIX: Semantic error: The prefix specified on
a v6 subnet is not valid.

FW_RULE_STATUS_SEMANTIC_ERROR_ADDR_KEYW: Semantic error: The specified keyword is
not valid.

FW_RULE_STATUS_SEMANTIC_ERROR_LADDR_PROP: Semantic error: A property on local
addresses does not belong to the LocalAddress.

FW_RULE_STATUS_SEMANTIC_ERROR_RADDR_PROP: Semantic error: A property on remote
addresses does not belong to the RemoteAddress.

FW_RULE_STATUS_SEMANTIC_ERROR_ADDR_V6: Semantic error: An unspecified or loopback
IPv6 address was specified.

FW_RULE_STATUS_SEMANTIC_ERROR_LADDR_INTF: Semantic error: A local address cannot be
used together with either an interface or an interface type.

FW_RULE_STATUS_SEMANTIC_ERROR_ADDR_V4: Semantic error: An unspecified or loopback
IPv4 address was specified.

FW_RULE_STATUS_SEMANTIC_ERROR_TUNNEL_ENDPOINT_ADDR: Semantic error: An
endpoint "any" cannot be specified for a tunnel mode rule.

FW_RULE_STATUS_SEMANTIC_ERROR_DTE_VER: Semantic error: An incorrect schema version
was specified for using dynamic tunnel endpoints.

FW_RULE_STATUS_SEMANTIC_ERROR_DTE_MISMATCH_ADDR: Semantic error: The v4 and
v6 tunnel endpoints are neither local nor remote endpoints.

FW_RULE_STATUS_SEMANTIC_ERROR_PROFILE: Semantic error: The profile type is not valid.

FW_RULE_STATUS_SEMANTIC_ERROR_ICMP: Semantic error: Mismatch in the number of ICMPs
and ICMP buffers.

FW_RULE_STATUS_SEMANTIC_ERROR_ICMP_CODE: Semantic error: The specified ICMP code is
not valid.

FW_RULE_STATUS_SEMANTIC_ERROR_IF_ID: Semantic error: Mismatch in the number of
interfaces and interface buffers.

FW_RULE_STATUS_SEMANTIC_ERROR_IF_TYPE: Semantic error: The specified interface type is
not valid.

FW_RULE_STATUS_SEMANTIC_ERROR_ACTION: Semantic error: The specified action is not
valid.

34 / 306

[MS-FASP-DIff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

FW_RULE_STATUS_SEMANTIC_ERROR_ALLOW_BYPASS: Semantic error: An allow-bypass
action is specified, but the rule does not meet allow-bypass criteria (such as, the direction is
inbound, authenticate/encrypt flags are set, or remote machine authentication is set).

FW_RULE_STATUS_SEMANTIC_ERROR_DO_NOT_SECURE: Semantic error: A DO_NOT_SECURE
action is specified together with authentication or cryptographic sets.

FW_RULE_STATUS_SEMANTIC_ERROR_ACTION_BLOCK_IS_ENCRYPTED_SECURE: Semantic
error: A block action was specified together with a require security or a require encryption action.

FW_RULE_STATUS_SEMANTIC_ERROR_DIR: Semantic error: The specified direction is not valid.

FW_RULE_STATUS_SEMANTIC_ERROR_PROT: Semantic error: The specified protocol is not
valid.

FW_RULE_STATUS_SEMANTIC_ERROR_PROT_PROP: Semantic error: The protocol and
protocol-dependent fields do not match.

FW_RULE_STATUS_SEMANTIC_ERROR_DEFER_EDGE_PROP: Semantic error: A Dynamic edge
flag (either defer to app or defer to user) is set without having an edge flag set.

FW_RULE_STATUS_SEMANTIC_ERROR_ALLOW_BYPASS_OUTBOUND: Semantic error: An
outbound allow-bypass action is specified, but the rule does not meet allow-bypass criteria
(authenticate/encrypt flags set).

FW_RULE_STATUS_SEMANTIC_ERROR_DEFER_USER_INVALID_RULE: The rule does not allow
the defer user property to be set.

FW_RULE_STATUS_SEMANTIC_ERROR_FLAGS: Semantic error: The specified flags are not valid.

FW_RULE_STATUS_SEMANTIC_ERROR_FLAGS_AUTO_AUTH: Semantic error: The autogenerate
flag is set, but no authentication flags are set.

FW_RULE_STATUS_SEMANTIC_ERROR_FLAGS_AUTO_BLOCK: Semantic error: The
autogenerate flag is set, but the action is block.

FW_RULE_STATUS_SEMANTIC_ERROR_FLAGS_AUTO_DYN_RPC: Semantic error: The
autogenerate flag is set together with the dynamic RPC flag.

FW_RULE_STATUS_SEMANTIC_ERROR_FLAGS_AUTHENTICATE_ENCRYPT: Semantic error:
The authenticate and authenticate-encrypt flags are both specified.

FW_RULE_STATUS_SEMANTIC_ERROR_FLAGS_AUTH_WITH_ENC_NEGOTIATE_VER:
Semantic error: The schema version is not compliant with the Authenticate with Encryption flag.

FW_RULE_STATUS_SEMANTIC_ERROR_FLAGS_AUTH_WITH_ENC_NEGOTIATE: Semantic
error: The Authenticate with Encryption Negotiate flag is specified but the basic Authenticate with
Encryption flag is not set.

FW_RULE_STATUS_SEMANTIC_ERROR_FLAGS_ESP_NO_ENCAP_VER: Semantic error: The
schema version is not compliant with the Authenticate with No Encapsulation flag.

FW_RULE_STATUS_SEMANTIC_ERROR_FLAGS_ESP_NO_ENCAP: Semantic error: The
Authenticate with No Encapsulation flag is specified but the basic Authenticate flag is not set.

FW_RULE_STATUS_SEMANTIC_ERROR_FLAGS_TUNNEL_AUTH_MODES_VER: Semantic error:
The schema version is not compliant with the tunnel authentication modes.

FW_RULE_STATUS_SEMANTIC_ERROR_FLAGS_TUNNEL_AUTH_MODES: Semantic error: The
tunnel authentication modes are specified by a lower-version client.

35/ 306

[MS-FASP-DIff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

FW_RULE_STATUS_SEMANTIC_ERROR_FLAGS_IP_TLS_VER: Semantic error: The schema
version is not compliant with the IP_TLS flag.

FW_RULE_STATUS_SEMANTIC_ERROR_FLAGS_PORTRANGE_VER: Semantic error: The
schema version is not compliant with port range support.

FW_RULE_STATUS_SEMANTIC_ERROR_FLAGS_ADDRS_TRAVERSE_DEFER_VER: Semantic
error: The schema version is not compliant with the
FW_RULE_FLAGS_ROUTEABLE_ADDRS_TRAVERSE_DEFER_APP flag. For more information, see
2.2.34.

FW_RULE_STATUS_SEMANTIC_ERROR_FLAGS_AUTH_WITH_ENC_NEGOTIATE_OUTBOUND:
Semantic error: The Authenticate with Encryption Negotiate flag is set for the outbound rule.

FW_RULE_STATUS_SEMANTIC_ERROR_FLAGS_AUTHENTICATE_WITH_OUTBOUND_BYPASS
_VER: Semantic error: The Outbound Authenticated bypass is not supported on this version.

FW_RULE_STATUS_SEMANTIC_ERROR_REMOTE_AUTH_LIST: Semantic error: An authorized
remote machine or user list is specified, but the authenticate/encryption flags were not set.

FW_RULE_STATUS_SEMANTIC_ERROR_REMOTE_USER_LIST: Semantic error: An authorized
remote user list is specified on an outbound direction.

FW_RULE_STATUS_SEMANTIC_ERROR_LOCAL_USER_LIST: Semantic error: The authorized
local user list is specified, but a local service has also been specified.

FW_RULE_STATUS_SEMANTIC_ERROR_LUA_VER: Semantic error: The schema version is not
compliant with the authorized local user list.

FW_RULE_STATUS_SEMANTIC_ERROR_LOCAL_USER_OWNER: Semantic error: The local user
owner is specified, but a local service has also been specified.

FW_RULE_STATUS_SEMANTIC_ERROR_LOCAL_USER_OWNER_VER: Semantic error: The
schema version is not compliant with the local user owner.

FW_RULE_STATUS_SEMANTIC_ERROR_FLAGS_ALLOW_PROFILE_CROSSING_VER: Semantic
error: The schema version is not compliant with profile crossing.

FW_RULE_STATUS_SEMANTIC_ERROR_LOCAL_ONLY_MAPPED_VER: Semantic error: The
schema version is not compliant with local-only mappings.

FW_RULE_STATUS_SEMANTIC_ERROR_PLATFORM: Semantic error: The number of valid
operating system platforms and the list of valid operating system platforms do not match.

FW_RULE_STATUS_SEMANTIC_ERROR_PLATFORM_OP_VER: Semantic error: Schema version
not compliant with the platform operator used.

FW_RULE_STATUS_SEMANTIC_ERROR_PLATFORM_OP: Semantic error: Invalid platform
operator used.

FW_RULE_STATUS_SEMANTIC_ERROR_DTE_NOANY_ADDR: Semantic error: DTE is specified
but all tunnel endpoints are specified.

FW_RULE_STATUS_SEMANTIC_TUNNEL_EXEMPT_WITH_GATEWAY: Semantic error: DTM
tunnel exemption specified with tunnel endpoint (gateways) address.

FW_RULE_STATUS_SEMANTIC_TUNNEL_EXEMPT_VER: Semantic error: Schema version not
compliant with tunnel mode exemptions.

FW_RULE_STATUS_SEMANTIC_ERROR_ADDR_KEYWORD_VER: Semantic error: The schema
version is not compliant with one or more address keywords.

36 / 306

[MS-FASP-DIff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

FW_RULE_STATUS_SEMANTIC_ERROR_KEY_MODULE_VER: Semantic error: The schema
version is not compliant with the keying modules.

FW_RULE_STATUS_SEMANTIC_ERROR_APP_CONTAINER_PACKAGE_ID: Semantic error: The
application container package ID is not a valid security identifier (SID).

FW_RULE_STATUS_SEMANTIC_ERROR_APP_CONTAINER_PACKAGE_ID_VER: Semantic
error: The schema version is not compliant with application containers.

FW_RULE_STATUS_SEMANTIC_ERROR_TRUST_TUPLE_KEYWORD_INCOMPATIBLE:
Semantic error: Trust tuple keywords are specified, but specific addresses or ports have also been
specified.

FW_RULE_STATUS_SEMANTIC_ERROR_TRUST_TUPLE_KEYWORD_INVALID: Semantic error:
One or more trust tuple keywords is invalid.

FW_RULE_STATUS_SEMANTIC_ERROR_TRUST_TUPLE_KEYWORD_VER: Semantic error: The
schema version is not compliant with the trust tuple keywords.

FW_RULE_STATUS_SEMANTIC_ERROR_PHASE1_AUTH_SET_ID: Semantic error: Phasel
authentication set ID is not specified.

FW_RULE_STATUS_SEMANTIC_ERROR_PHASE2_CRYPTO_SET_ID: Semantic error: Phase2
cryptographic set ID is not specified.

FW_RULE_STATUS_SEMANTIC_ERROR_PHASE1_CRYPTO_SET_ID: Semantic error: Phasel
cryptographic set ID is not specified.

FW_RULE_STATUS_SEMANTIC_ERROR_FLAGS_KEY_MANAGER_DICTATE_VER: Semantic
error: The schema version is not compliant with the Key Manager Dictation flag.

FW_RULE_STATUS_SEMANTIC_ERROR_FLAGS_KEY_MANAGER_NOTIFY_VER: Semantic
error: The schema version is not compliant with the Key Manager Notification flag.

FW_RULE_STATUS_SEMANTIC_ERROR_TRANSPORT_MACHINE_AUTHZ_VER: Semantic error:
The schema version is not compliant with IPsec transport mode machine authorization lists.

FW_RULE_STATUS_SEMANTIC_ERROR_TRANSPORT_USER_AUTHZ_VER: Semantic error: The
schema version is not compliant with IPsec transport mode user authorization lists.

FW_RULE_STATUS_SEMANTIC_ERROR_TRANSPORT_MACHINE_AUTHZ_ON_TUNNEL:
Semantic error: An IPsec transport mode machine authorization list is specified on a tunnel mode
rule.

FW_RULE_STATUS_SEMANTIC_ERROR_TRANSPORT_USER_AUTHZ_ON_TUNNEL: Semantic
error: An IPsec transport mode user authorization list is specified on a tunnel mode rule.

FW_RULE_STATUS_SEMANTIC_ERROR_PER_RULE_AND_GLOBAL_AUTHZ: Semantic error:
The Apply Global Authorization flag is set, but a per-rule authorization list is also specified.

FW_RULE_STATUS_SEMANTIC_ERROR_SET_ID: Semantic error: The set ID is not specified.

FW_RULE_STATUS_SEMANTIC_ERROR_IPSEC_PHASE: Semantic error: The specified phase is
not valid.

FW_RULE_STATUS_SEMANTIC_ERROR_EMPTY_SUITES: Semantic error: No suites are specified
in the set.

FW_RULE_STATUS_SEMANTIC_ERROR_PHASE1_AUTH_METHOD: Semantic error: The Phasel
authentication method is not valid.

37/ 306

[MS-FASP-DIff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

FW_RULE_STATUS_SEMANTIC_ERROR_PHASE2_AUTH_METHOD: Semantic error: The Phase2
authentication method is not valid.

FW_RULE_STATUS_SEMANTIC_ERROR_AUTH_METHOD_ANONYMOUS: Semantic error:
Anonymous authentication is specified as the only authentication proposal (or authentication
proposal suite).

FW_RULE_STATUS_SEMANTIC_ERROR_AUTH_METHOD_DUPLICATE: Semantic error:
Duplicate authentication methods are specified but not supported.

FW_RULE_STATUS_SEMANTIC_ERROR_AUTH_METHOD_VER: Semantic error: Suite specifies
authentication method that is not compliant with its schema version.

FW_RULE_STATUS_SEMANTIC_ERROR_AUTH_SUITE_FLAGS: Semantic error: The specified
authentication suite flags are not valid.

FW_RULE_STATUS_SEMANTIC_ERROR_HEALTH_CERT: Semantic error: The machine certificate
MUST be a health certificate for Phase2 authentication.

FW_RULE_STATUS_SEMANTIC_ERROR_AUTH_SIGNCERT_VER: Semantic error: The suite
specifies signing that is not compliant with its schema version.

FW_RULE_STATUS_SEMANTIC_ERROR_AUTH_INTERMEDIATE_CA_VER: Semantic error:
Specifies an intermediate certificate authority (CA) that is not compliant with its schema version.

FW_RULE_STATUS_SEMANTIC_ERROR_MACHINE_SHKEY: Semantic error: The machine shared
key is either missing or not valid.

FW_RULE_STATUS_SEMANTIC_ERROR_CA_NAME: Semantic error: The CA name is either
missing or not valid.

FW_RULE_STATUS_SEMANTIC_ERROR_MIXED_CERTS: Semantic error: Health certificates
(CERTS) cannot be specified together with regular certificates.

FW_RULE_STATUS_SEMANTIC_ERROR_NON_CONTIGUOUS_CERTS: Semantic error:
Certificates that have a specific signing algorithm are not contiguous.

FW_RULE_STATUS_SEMANTIC_ERROR_MIXED_CA_TYPE_IN_BLOCK: Semantic error: Both
root and intermediate CA types cannot be present in the same signing algorithm block.

FW_RULE_STATUS_SEMANTIC_ERROR_MACHINE_USER_AUTH: Semantic error: Both machine
and user authentications are specified.

FW_RULE_STATUS_SEMANTIC_ERROR_AUTH_CERT_CRITERIA_VER: The suite specifies
certificate criteria but the schema version does not allow certificate criteria to be present.
Certificate criteria are supported only in schemas with version number 2.20 and greater.

FW_RULE_STATUS_SEMANTIC_ERROR_AUTH_CERT_CRITERIA_VER_MISMATCH: The
version specified for the criteria structure is different from the auth set version.

FW_RULE_STATUS_SEMANTIC_ERROR_AUTH_CERT_CRITERIA_RENEWAL_HASH: Cert
criteria were specified for a non-cert authentication method.

FW_RULE_STATUS_SEMANTIC_ERROR_AUTH_CERT_CRITERIA_INVALID_HASH: An invalid
hash was specified in the criteria. A valid hash is a string of hex characters (40 characters in
length).

FW_RULE_STATUS_SEMANTIC_ERROR_AUTH_CERT_CRITERIA_INVALID_EKU: An invalid
EKU was specified. Validity checking of an EKU involves checking that the EKU is composed of
characters representing 0 to 9 and ".".

38/ 306

[MS-FASP-DIff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

FW_RULE_STATUS_SEMANTIC_ERROR_AUTH_CERT_CRITERIA_INVALID_NAME_TYPE: A
name type greater than FW_CERT_CRITERIA_NAME_MAX was specified.

FW_RULE_STATUS_SEMANTIC_ERROR_AUTH_CERT_CRITERIA_INVALID_NAME: A name
type was specified but either a NULL name is also specified, or the number of characters in the
name is greater than FW_MAX_RULE_STRING_LEN(10000), or the name string contains the "|"
character.

FW_RULE_STATUS_SEMANTIC_ERROR_AUTH_CERT_CRITERIA_INVALID_CRITERIA_TYPE:
The criteria type specified is greater than FW_CERT_CRITERIA_TYPE_MAX.

FW_RULE_STATUS_SEMANTIC_ERROR_AUTH_CERT_CRITERIA_MISSING_CRITERIA: The
specified suites are missing either selection or validation criteria.

FW_RULE_STATUS_SEMANTIC_ERROR_PROXY_SERVER: Semantic error: The Kerberos proxy
server name is not a valid fully qualified domain name (FQDN).

FW_RULE_STATUS_SEMANTIC_ERROR_AUTH_PROXY_SERVER_VER: Semantic error: The
schema version is not compliant with Kerberos proxy servers.

FW_RULE_STATUS_SEMANTIC_ERROR_PHASE1_CRYPTO_NON_DEFAULT_ID: Semantic
error: The ID for the Phasel cryptographic set is not the default.

FW_RULE_STATUS_SEMANTIC_ERROR_PHASE1_CRYPTO_FLAGS: Semantic error: The Phasel
cryptographic set flags are not valid.

FW_RULE_STATUS_SEMANTIC_ERROR_PHASE1_CRYPTO_TIMEOUT_MINUTES: Semantic
error: The Phasel cryptographic set time-out minutes are not valid.

FW_RULE_STATUS_SEMANTIC_ERROR_PHASE1_CRYPTO_TIMEOUT_SESSIONS: Semantic
error: The time-out sessions for the Phasel cryptographic set are not valid.

FW_RULE_STATUS_SEMANTIC_ERROR_PHASE1_CRYPTO_KEY_EXCHANGE: Semantic error:
The key exchange for the Phasel cryptographic set is not valid.

FW_RULE_STATUS_SEMANTIC_ERROR_PHASE1_CRYPTO_ENCRYPTION: Semantic error: The
Phasel cryptographic set encryption is not valid.

FW_RULE_STATUS_SEMANTIC_ERROR_PHASE1_CRYPTO_HASH: Semantic error: The Phasel
cryptographic set hash is not valid.

FW_RULE_STATUS_SEMANTIC_ERROR_PHASE1_CRYPTO_ENCRYPTION_VER: Semantic
error: The Phasel cryptographic set encryption is not schema-version compliant.

FW_RULE_STATUS_SEMANTIC_ERROR_PHASE1_CRYPTO_HASH_VER: Semantic error: The
Phasel cryptographic set hash is not schema version compliant.

FW_RULE_STATUS_SEMANTIC_ERROR_PHASE1_CRYPTO_KEY_EXCH_VER: Semantic error:
The schema version is not compliant with one or more of the specified main mode key exchange
algorithms.

FW_RULE_STATUS_SEMANTIC_ERROR_PHASE2_CRYPTO_PFS: Semantic error: The Phase2
cryptographic set perfect forward secrecy (PFS) is not valid.

FW_RULE_STATUS_SEMANTIC_ERROR_PHASE2_CRYPTO_PROTOCOL: Semantic error: The
Phase2 cryptographic set protocol is not valid.

FW_RULE_STATUS_SEMANTIC_ERROR_PHASE2_CRYPTO_ENCRYPTION: Semantic error: The
Phase2 cryptographic set encryption is not valid.

39/ 306

[MS-FASP-DIff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

FW_RULE_STATUS_SEMANTIC_ERROR_PHASE2_CRYPTO_HASH: Semantic error: The Phase2
cryptographic set hash is not valid.

FW_RULE_STATUS_SEMANTIC_ERROR_PHASE2_CRYPTO_TIMEOUT_MINUTES: Semantic
error: The Phase2 cryptographic set time-out minutes are not valid.

FW_RULE_STATUS_SEMANTIC_ERROR_PHASE2_CRYPTO_TIMEOUT_KBYTES: Semantic
error: The Phase2 cryptographic set time-out kilobytes are not valid.

FW_RULE_STATUS_SEMANTIC_ERROR_PHASE2_CRYPTO_ENCRYPTION_VER: Semantic
error: The Phase2 cryptographic set encryption is not schema-version compliant.

FW_RULE_STATUS_SEMANTIC_ERROR_PHASE2_CRYPTO_HASH_VER: The Phase2
cryptographic set hash is not schema-version compliant.

FW_RULE_STATUS_SEMANTIC_ERROR_PHASE2_CRYPTO_PFS_VER: Semantic error: The
schema version is not compliant with the specified Phase2 perfect forward secrecy (PFS) option.

FW_RULE_STATUS_SEMANTIC_ERROR_CRYPTO_ENCR_HASH: Semantic error: Neither the
encryption nor the hash is specified.

FW_RULE_STATUS_SEMANTIC_ERROR_CRYPTO_ENCR_HASH_COMPAT: Semantic error: The
encryption and hash use incompatible algorithms.

FW_RULE_STATUS_SEMANTIC_ERROR_SCHEMA_VERSION: Semantic error: The specified
schema version is lower than the lowest supported version.

FW_RULE_STATUS_SEMANTIC_ERROR_QUERY_OR_AND_CONDITIONS: Semantic error: A
mismatch exists in the number of OR'd terms and term arrays.

FW_RULE_STATUS_SEMANTIC_ERROR_QUERY_AND_CONDITIONS: Semantic error: A
mismatch exists in the number of AND'd conditions and condition arrays.

FW_RULE_STATUS_SEMANTIC_ERROR_QUERY_CONDITION_KEY: Semantic error: The
condition match key is not valid.

FW_RULE_STATUS_SEMANTIC_ERROR_QUERY_CONDITION_MATCH_TYPE: Semantic error:
The condition match type is not valid.

FW_RULE_STATUS_SEMANTIC_ERROR_QUERY_CONDITION_DATA_TYPE: Semantic error:
The condition data type is not valid.

FW_RULE_STATUS_SEMANTIC_ERROR_QUERY_CONDITION_KEY_AND_DATA_TYPE:
Semantic error: The key and data type combination is not valid.

FW_RULE_STATUS_SEMANTIC_ERROR_QUERY_KEYS_PROTOCOL_PORT: Semantic error: A
port condition is present without a protocol condition.

FW_RULE_STATUS_SEMANTIC_ERROR_QUERY_KEY_PROFILE: Semantic error: The profile key
is unavailable for the queried object type.

FW_RULE_STATUS_SEMANTIC_ERROR_QUERY_KEY_STATUS: Semantic error: The status key
is unavailable for the queried object type.

FW_RULE_STATUS_SEMANTIC_ERROR_QUERY_KEY_FILTERID: Semantic error: The FilterID
key is unavailable for the queried object type.

FW_RULE_STATUS_SEMANTIC_ERROR_QUERY_KEY_APP_PATH: Semantic error: The
application key is unavailable for the queried object type.

40 / 306

[MS-FASP-DIff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

FW_RULE_STATUS_SEMANTIC_ERROR_QUERY_KEY_PROTOCOL: Semantic error: The protocol
key is unavailable for the queried object type.

FW_RULE_STATUS_SEMANTIC_ERROR_QUERY_KEY_LOCAL_PORT: Semantic error: The local
port key is unavailable for the queried object type.

FW_RULE_STATUS_SEMANTIC_ERROR_QUERY_KEY_REMOTE_PORT: Semantic error: The
remote port key is unavailable for the queried object type.

FW_RULE_STATUS_SEMANTIC_ERROR_QUERY_KEY_SVC_NAME: Semantic error: The service
name key is unavailable for the queried object type.

FW_RULE_STATUS_SEMANTIC_ERROR_REQUIRE_IN_CLEAR_OUT_ON_TRANSPORT:
Semantic error: "Require in clear out" tunnel authentication mode cannot be set on transport
mode rules.

FW_RULE_STATUS_SEMANTIC_ERROR_TUNNEL_BYPASS_TUNNEL_IF_SECURE_ON_TRANSP
ORT: Semantic error: Cannot set flag to exempt IPsec transport traffic from a tunnel mode, on a
transport rule.

FW_RULE_STATUS_SEMANTIC_ERROR_AUTH_NOENCAP_ON_TUNNEL: Semantic error:
Cannot set FW_CRYPTO_PROTOCOL_AUTH_NO_ENCAP (see section 2.2.68) on a tunnel mode
rule.

FW_RULE_STATUS_SEMANTIC_ERROR_AUTH_NOENCAP_ON_PSK: Semantic error: Cannot
mix FW_CRYPTO_PROTOCOL_AUTH_NO_ENCAP (see section 2.2.68) protocol with Preshared key
authentication methods.

FW_RULE_STATUS_SEMANTIC_ERROR_CRYPTO_ENCR_HASH: Semantic error: Both the
encryption and hash are not specified.

FW_RULE_STATUS_SEMANTIC_ERROR_CRYPTO_ENCR_HASH_COMPAT: Semantic error: The
encryption and hash use incompatible algorithms.

FW_RULE_STATUS_SEMANTIC_ERROR_SCHEMA_VERSION: Semantic error: The specified
schema version is earlier than the supported versions.

FW_RULE_STATUS_SEMANTIC_ERROR: There is a semantic error when considering the fields of
the rule in conjunction with other policy objects.

FW_RULE_STATUS_RUNTIME_ERROR_PHASE1_AUTH_NOT_FOUND: A Phasel authentication
set is not found.

FW_RULE_STATUS_RUNTIME_ERROR_PHASE2_AUTH_NOT_FOUND: A Phase2 authentication
set is not found.

FW_RULE_STATUS_RUNTIME_ERROR_PHASE2_CRYPTO_NOT_FOUND: A Phase2
cryptographic set is not found.

FW_RULE_STATUS_RUNTIME_ERROR_AUTH_MCHN_SHKEY_MISMATCH: A Phase2
authentication set cannot be specified when the Phasel authentication set contains a pre-shared
key as an authentication method.

FW_RULE_STATUS_RUNTIME_ERROR_PHASE1_CRYPTO_NOT_FOUND: A Phasel
cryptographic set is not found.

FW_RULE_STATUS_RUNTIME_ERROR_AUTH_NOENCAP_ON_TUNNEL: Semantic error: Cannot
set FW_CRYPTO_PROTOCOL_AUTH_NO_ENCAP (see section 2.2.68) on a tunnel mode rule.

41 / 306

[MS-FASP-DIff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

FW_RULE_STATUS_RUNTIME_ERROR_AUTH_NOENCAP_ON_PSK: Semantic error: Cannot mix
FW_CRYPTO_PROTOCOL_AUTH_NO_ENCAP (see section 2.2.68) protocol with Preshared key
authentication methods.

FW_RULE_STATUS_RUNTIME_ERROR_KEY_MODULE_AUTH_MISMATCH: Semantic error: The
key module in the rule is incompatible with the authentication methods specified in the associated
authentication sets.

FW_RULE_STATUS_RUNTIME_ERROR: There is a runtime error when the object is considered
with other policy objects.

FW_RULE_STATUS_ERROR: An error of any kind occurred. This symbolic constant has a value of
0x00380000.

FW_RULE_STATUS_ALL: The status of all (it is used to enumerate all the rules, regardless of the
status).

2.2.24 FW_RULE_STATUS_CLASS

This enumeration defines classes of status codes.

typedef enum tag FW RULE STATUS CLASS

{
FW RULE STATUS CLASS OK = FW RULE STATUS OK,
FW RULE STATUS CLASS PARTIALLY IGNORED = FW RULE STATUS PARTIALLY IGNORED,
FW_RULE_STATUS CLASS IGNORED = FW _RULE_STATUS IGNORED,
FW_RULE_STATUS CLASS PARSING ERROR = FW_RULE_ STATUS PARSING ERROR,
FW_RULE_STATUS_CLASS SEMANTIC ERROR = FW _RULE STATUS SEMANTIC ERROR,
FW RULE STATUS CLASS RUNTIME ERROR = FW RULE STATUS RUNTIME ERROR,
FW RULE STATUS CLASS ERROR = FW RULE STATUS ERROR,
FW_RULE_STATUS CLASS ALL = FW_RULE_STATUS ALL

} FW_RULE_STATUS_CLASS;

FW_RULE_STATUS_CLASS_OK: The rule is correctly constructed and has no issue. This symbolic
constant has a value of 0x00010000.

FW_RULE_STATUS_CLASS_PARTIALLY_IGNORED: The rule has fields that the service can
successfully ignore. This symbolic constant has a value of 0x00020000.

FW_RULE_STATUS_CLASS_IGNORED: The rule has a higher version that the service MUST
ignore. This symbolic constant has a value of 0x00040000.

FW_RULE_STATUS_CLASS_PARSING_ERROR: The rule failed to be parsed correctly. This
symbolic constant has a value of 0x00080000.

FW_RULE_STATUS_CLASS_SEMANTIC_ERROR: There is a semantic error when considering the
fields of the rule in conjunction. This symbolic constant has a value of 0x00100000.

FW_RULE_STATUS_CLASS_RUNTIME_ERROR: There is a runtime error when the object is
considered in conjunction with other policy objects. This symbolic constant has a value of
0x00200000.

FW_RULE_STATUS_CLASS_ERROR: An error occurred. This symbolic constant has a value of
0x00380000.

FW_RULE_STATUS_CLASS_ALL: The status of all (used to enumerate ALL the rules, regardless of
the status). This symbolic constant has a value of OxFFFF0000.

42 / 306

[MS-FASP-DIff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

2.2.25FW_OBJECT_CTRL_FLAG

This enumeration is used to indicate the RPC protocol when elements in structures are included.

typedef enum tag FW OBJECT CTRL FLAG
{

FW_OBJECT CTRL FLAG_INCLUDE METADATA = 0x0001
} FW_OBJECT CTRL_FLAG;

FW_OBJECT_CTRL_FLAG_INCLUDE_METADATA: This flag indicates that the structure where this
flag is specified contains metadata information.

2.2.26 FW_ENFORCEMENT_STATE

This enumeration is part of the metadata information. It provides information about whether or not
the policy expressed by an object is currently being enforced by the server.

typedef enum tag FW _ENFORCEMENT STA

{
FW_ENFORCEMENT STATE INVALID = O,
FW_ENFORCEMENT STATE FULL = 1,
FWW_ENFORCEMENT STATE WF OFF IN PROFILE = 2,
FW_ENFORCEMENT STATE CATEGORY OFF = 3,
FW _ENFORCEMENT STATE DISABLED OBJECT = 4,
FW_ENFORCEMENT STATE INACTIVE PROFILE = 5,
FWW_ENFORCEMENT STATE LOCAL ADDRESS RESOLUTION EMPTY = 6,
FW ENFORCEMENT STATE REMOTE ADDRESS RESOLUTION EMPTY = 7,
FW_ENFORCEMENT STATE LOCAL PORT RESOLUTION EMPTY = 8,
FWW_ENFORCEMENT STATE REMOTE PORT RESOLUTION EMPTY = 9,
FW_ENFORCEMENT STATE INTERFACE RESOLUTION EMPTY = 10,
FW_ENFORCEMENT STATE APPLICATION RESOLUTION EMPTY = 12,
FW_ENFORCEMENT STATE REMOTE MACHINE EMPTY = 12,
FWW_ENFORCEMENT STATE REMOTE USER _EMPTY = 13,
FWW_ENFORCEMENT STATE LOCAL GLOBAL OPEN PORTS DISALLOWED = 14,
FW ENFORCEMENT STATE LOCAL AUTHORIZED APPLICATIONS DISALLOWED = 15,
FW_ENFORCEMENT STATE LOCAL FIREWALL RULES DISALLOWED = 16,
FW_ENFORCEMENT STATE LOCAL CONSEC RULES DISALLOWED = 17,
FW_ENFORCEMENT STATE MISMATCHED PLATFORM = 18,
FWW_ENFORCEMENT STATE OPTIMIZED OUT = 19,
FW_ENFORCEMENT STATE LOCAL USER_EMPTY = 20,
FW_ENFORCEMENT STATE TRANSPORT MACHINE SD EMPTY = 21,
FWW_ENFORCEMENT STATE TRANSPORT USER SD EMPTY = 22,
FW_ENFORCEMENT STATE TUPLE RESOLUTION EMPTY = 23,
FW_ENFORCEMENT STATE MAX = 24

} FW_ENFORCEMENT_ STATE;

FW_ENFORCEMENT_STATE_INVALID: This value is invalid and MUST NOT be used by the server.
It is defined for simplicity in writing IDL definitions and code. This symbolic constant has a value of
0.

FW_ENFORCEMENT_STATE_FULL: The object is being enforced. This symbolic constant has a
value of 1.

FW_ENFORCEMENT_STATE_WF_OFF_IN_PROFILE: The object is not being enforced because the
firewall and advanced security component is not active in a profile where the object is meant to be
applied. This symbolic constant has a value of 2.

FW_ENFORCEMENT_STATE_CATEGORY_OFF: The object is not being enforced because a third-
party software component registered with the firewall and advanced security component to own
the functionality that the object is meant to perform. This symbolic constant has a value of 3.

43/ 306

[MS-FASP-DIff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

FW_ENFORCEMENT_STATE_DISABLED_OBJECT: The object is not being enforced because the
object is disabled. This symbolic constant has a value of 4.

FW_ENFORCEMENT_STATE_INACTIVE_PROFILE: The object is not being enforced because at
least one of the profiles that the object is meant to be applied to is not currently active. This
symbolic constant has a value of 5.

FW_ENFORCEMENT_STATE_LOCAL_ADDRESS_RESOLUTION_EMPTY: The object is not being
enforced because the local address condition of the object contains a keyword that resolves to an
empty set. This symbolic constant has a value of 6.

FW_ENFORCEMENT_STATE_REMOTE_ADDRESS_RESOLUTION_EMPTY: The object is not being
enforced because the remote address condition of the object contains a keyword that resolves to
an empty set. This symbolic constant has a value of 7.

FW_ENFORCEMENT_STATE_LOCAL_PORT_RESOLUTION_EMPTY: The object is not being
enforced because the local port condition of the object contains a keyword that resolves to an
empty set. This symbolic constant has a value of 8.

FW_ENFORCEMENT_STATE_REMOTE_PORT_RESOLUTION_EMPTY: The object is not being
enforced because the remote port condition of the object contains a keyword that resolves to an
empty set. This symbolic constant has a value of 9.

FW_ENFORCEMENT_STATE_INTERFACE_RESOLUTION_EMPTY: The object is not being
enforced because the interface condition of the object contains a keyword that resolves to an
empty set. This symbolic constant has a value of 10.

FW_ENFORCEMENT_STATE_APPLICATION_RESOLUTION_EMPTY: The object is not being
enforced because the application condition of the object contains a path that could not resolve to a
valid file system path. This symbolic constant has a value of 11.

FW_ENFORCEMENT_STATE_REMOTE_MACHINE_EMPTY: The object is not being enforced
because the remote machine condition of the object contains an SDDL with a security identifier
(SID) that is not currently available on the host. This symbolic constant has a value of 12.

FW_ENFORCEMENT_STATE_REMOTE_USER_EMPTY: The object is not being enforced because
the remote user condition of the object contains an SDDL with a SID that is not currently available
on the host. This symbolic constant has a value of 13.

FW_ENFORCEMENT_STATE_LOCAL_GLOBAL_OPEN_PORTS_DISALLOWED: The object is not
being enforced because the FW_PROFILE_CONFIG_AUTH_APPS_ALLOW_USER_PREF_MERGE
configuration option (see section 2.2.37 for more details) from a profile that the object applied to,
disallowed its use. This symbolic constant has a value of 14.

FW_ENFORCEMENT_STATE_LOCAL_AUTHORIZED_APPLICATIONS_DISALLOWED: The object
is not being enforced because the
FW_PROFILE_CONFIG_GLOBAL_PORTS_ALLOW_USER_PREF_MERGE configuration option (see
section 2.2.37 for more details) from a profile that the object applied to, disallowed its use. This
symbolic constant has a value of 15.

FW_ENFORCEMENT_STATE_LOCAL_FIREWALL_RULES_DISALLOWED: The object is not being
enforced because the FW_PROFILE_CONFIG_ALLOW_LOCAL_POLICY_MERGE configuration option
(see section 2.2.37 for more details) from a profile that the object applied to, disallowed its use.
This symbolic constant has a value of 16.

FW_ENFORCEMENT_STATE_LOCAL_CONSEC_RULES_DISALLOWED: The object is not being
enforced because the FW_PROFILE_CONFIG_ALLOW_LOCAL_IPSEC_POLICY_MERGE configuration
option (see section 2.2.37 for more details) from a profile that the object applied to, disallowed its
use. This symbolic constant has a value of 17.

44 / 306

[MS-FASP-DIff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

FW_ENFORCEMENT_STATE_MISMATCHED_PLATFORM: The object is not being enforced
because the platform validity condition does not match the current platform of the host. This
symbolic constant has a value of 18.

FW_ENFORCEMENT_STATE_OPTIMIZED_OUT: The object is not being enforced because the
firewall and advanced security component determined that the object-implemented functionality is
irrelevant (would not change or affect what traffic is allowed or permitted) at the current time.
Therefore, the component optimized out the irrelevant functionality and ignored it. This is a pure
optimization. This symbolic constant has a value of 19.

FW_ENFORCEMENT_STATE_LOCAL_USER_EMPTY: The object is not being enforced, because the
local user condition of the object contains an SDDL with a SID that is not currently available on
the host. For schema versions 0x0200, 0x0201, and 0x020A, this value is invalid and MUST NOT
be used. This symbolic constant has a value of 20.

FW_ENFORCEMENT_STATE_TRANSPORT_MACHINE_SD_EMPTY: The object is not being
enforced because the IPsec transport mode machine authorization list contains an SDDL with a
SID that is not currently available on the host. For schema versions 0x0200, 0x0201, and 0x020A,
this value is invalid and MUST NOT be used. This symbolic constant has a value of 21.

FW_ENFORCEMENT_STATE_TRANSPORT_USER_SD_EMPTY: The object is not being enforced,
because the IPsec transport mode user authorization list contains an SDDL with a SID that is not
currently available on the host. For schema versions 0x0200, 0x0201, and 0x020A, this value is
invalid and MUST NOT be used. This symbolic constant has a value of 22.

FW_ENFORCEMENT_STATE_TUPLE_RESOLUTION_EMPTY: The object is not being enforced,
because the trust tuple keywords resolve to an empty set. For schema versions 0x0200, 0x0201,
and 0x020A, this value is invalid and MUST NOT be used. This symbolic constant has a value of
23.

FW_ENFORCEMENT_STATE_MAX: This value and values that exceed this value are not valid and
MUST NOT be used. It is defined for simplicity in writing IDL definitions and code. This symbolic
constant has a value of 24.

2.2.27 FW_OBJECT_METADATA

This structure contains the metadata that is associated with a specific policy object.

typedef struct tag FW OBJECT METADATA ({
unsigned _ int64 qwFilterContextID;
[range (0, 100)] DWORD dwNumEntries;
[size is(dwNumEntries)] FW_ENFORCEMENT STATE* pEnforcementStates;
} FW_OBJECT METADATA,
* PFW_OBJECT METADATA;

qwFilterContextID: This field is not used across the wires.

dwNumEntries: A field that specifies the number of metadata hints (FW_ENFORCEMENT_STATES)
that the structure contains.

pEnforcementStates: A pointer to an array of FW_ENFORCEMENT_STATE elements. The number of
elements is given by dwNumEntries.
2.2.28 FW_OS_PLATFORM_OP

This enumeration describes the operations used in the FW_OS_PLATFORM structure to determine if an
object should be applied to a specified operating system platform.

45/ 306

[MS-FASP-DIff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

typedef enum

{
FW_OS_PLATFORM OP EQ =
FW_OS PLATFORM OP GTEQ
FW OS PLATFORM OP MAX = 2

} FW_OS_PLATFORM OP;

0,
=1,

FW_OS_PLATFORM_OP_EQ: The operating system platform MUST be the same as the one
specified. This is satisfied when the following occurs:

If (((bPlatform & 0x7) == platform type) && (bMajorVersion == major version) &&
(bMinorVersion == minor version)).

Otherwise, the operating system is not equal to the one specified. This symbolic constant has a
value of 0.

FW_OS_PLATFORM_OP_GTEQ: The operating system MUST be greater than or equal to the one
specified. This is satisfied when any of the following occur:

If (bPlatform & 0x7) > platform type
If (((bPlatform & 0x7) == platform type) && (bMajorVersion > major version))

If (((bPlatform & 0x7) == platform type) && (bMajorVersion == major version) && (bMinorVersion
>= minor version))

Otherwise, the operation system is not greater than or equal to the one specified. This symbolic
constant has a value of 1.

FW_OS_PLATFORM_OP_MAX: This value and values that exceed this value are not valid and MUST
NOT be used. It is defined for simplicity in writing IDL definitions and code. This symbolic constant
has a value of 2.

2.2.29 FW_OS_PLATFORM

This structure describes a set of operating system platforms. The fields in this data type correspond to
the fields of the OSVERSIONINFOEX data type (for more information, see [MSDN-
OSVERSIONINFOEX]). There are no constraints on the values allowed for the platform type, major
version, or minor version. The set can include values that do not correspond to any existing operating
system platform.

typedef struct _tag FW_OS_PLATFORM {
unsigned char bPlatform;
unsigned char bMajorVersion;
unsigned char bMinorVersion;
unsigned char Reserved;

} FW_OS_PLATFORM,

*PFW_OS_PLATFORM;

bPlatform: The three least significant bits identify the platform type. This corresponds to the
dwPlatformId field in MSDN. The five most significant bits contain a value from the
FW_OS_PLATFORM_OP enumeration.

bMajorVersion: Specifies the major version number for the OS. This corresponds to the
dwMajorVersion field in MSDN.

bMinorVersion: Specifies the minor version number for the OS. This corresponds to the
dwMinorVersion field in MSDN.

46 / 306

[MS-FASP-DIff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Reserved: Not used. Reserved for future use.

2.2.30 FW_OS_PLATFORM_LIST

This structure contains an array of FW_OS_PLATFORM elements. The structure describes a set of
operating system platforms. This set is the union of the sets identified by each FW_OS_PLATFORM
element.

typedef struct tag FW OS PLATFORM LIST ({

[range (0, 1000)] unsigned long dwNumEntries;

[size is(dwNumEntries)] PFW OS PLATFORM pPlatforms;
} FW_OS PLATFORM LIST,
*PFW_OS_PLATFORM LIST;

dwNumEntries: This field specifies the number of OS platforms that the structure contains.

pPlatforms: A pointer to an array of dwNumEntries contiguous FW_QOS_PLATFORM elements.

2.2.31 FW_RULE_ORIGIN_TYPE

This enumeration represents where the policy object is stored and from where it originates.

typedef enum tag FW RULE ORIGIN TYPE
{
FW RULE ORIGIN INVALID = O,
FW_RULE ORIGIN LOCAL = 1,
FW_RULE ORIGIN GP = 2,
FW RULE ORIGIN DYNAMIC
FW RULE ORIGIN AUTOGEN
FW_RULE_ORIGIN HARDCODED
FWW_RULE ORIGIN MAX = 6
} FW_RULE ORIGIN TYPE;

3,
4,

5,

FW_RULE_ORIGIN_INVALID: On enumeration, this value is invalid, and MUST NOT be used by the
server. It is defined for simplicity in writing IDL definitions and code. However, the server ignores
the fields of this data type on input, and hence it is valid for filling rules. This symbolic constant
has a value of 0.

FW_RULE_ORIGIN_LOCAL: Specifies that the policy object originates from the local store. This
symbolic constant has a value of 1.

FW_RULE_ORIGIN_GP: Specifies that the policy object originates from the GP store. This symbolic
constant has a value of 2.

FW_RULE_ORIGIN_DYNAMIC: Specifies that the policy object originates from the dynamic store.
This symbolic constant has a value of 3.

FW_RULE_ORIGIN_AUTOGEN: Not used. This symbolic constant has a value of 4.

FW_RULE_ORIGIN_HARDCODED: Specifies that the policy object originates from the firewall and
advanced security component hard-coded values and is used due to lack of user settings. These
values are not configurable and are not addressed in this protocol specification. Specific
implementations of firewall and advanced security components can choose what hard-coded
values to use when no other user settings are available. The only policy objects in this protocol
specification that can have this FW_RULE_ORIGIN_HARDCODED value assigned are authentication
sets and cryptographic sets, which are defined in sections 2.2.64 and 2.2.73, respectively.<3>
This symbolic constant has a value of 5.

47/ 306

[MS-FASP-DIff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

FW_RULE_ORIGIN_MAX: This value and values that exceed this value are not valid and MUST NOT
be used. It is defined for simplicity in writing IDL definitions and code. This symbolic constant has
a value of 6.

2.2.32 FW_ENUM_RULES_FLAGS

This enumeration defines flag values that can be used in the enumeration methods that are defined in
RRPC_FWEnumFirewallRules, RRPC_FWEnumConnectionSecurityRules,
RRPC_FWEnumAuthenticationSets, and RRPC_FWEnumCryptoSets.

typedef enum tag FW_ENUM RULES FLAGS

{
FW_ENUM RULES FLAG NONE = 0x0000,
FW_ENUM RULES FLAG RESOLVE NAME = 0x0001,
FW_ENUM RULES_FLAG_RESOLVE_DESCRIPTION = 0x0002,
FW_ENUM RULES_FLAG_RESOLVE_APPLICATION = 0x0004,
FW_ENUM RULES FLAG RESOLVE KEYWORD = 0x0008,
FW_ENUM RULES FLAG RESOLVE GPO NAME = 0x0010,
FW_ENUM RULES FLAG EFFECTIVE = 0x0020,
FW_ENUM RULES FLAG INCLUDE METADATA = 0x0040,
FW_ENUM RULES FLAG MAX = 0x0080

} FW_ENUM RULES FLAGS;

FW_ENUM_RULES_FLAG_NONE: This value signifies that no specific flag is used. It is defined for
IDL definitions and code to add readability, instead of using the number 0. This symbolic constant
has a value 0x0000.

FW_ENUM_RULES_FLAG_RESOLVE_NAME: Resolves rule description strings to user-friendly,
localizable strings if they are in the following format: @file.dll,-<resID>. resID refers to the
resource ID in the indirect string. Please see [MSDN-SHLoadIndirectString] for further
documentation on the string format. This symbolic constant has a value 0x0001.

FW_ENUM_RULES_FLAG_RESOLVE_DESCRIPTION: Resolves rule description strings to user-
friendly, localizable strings if they are in the following format: @file.dll,-<resID>. resID refers to
the resource ID in the indirect string. Please see [MSDN-SHLoadIndirectString] for further
documentation on the string format. This symbolic constant has a value 0x0002.

FW_ENUM_RULES_FLAG_RESOLVE_APPLICATION: If this flag is set, the server MUST inspect
the wszLocalApplication field of each FW_RULE structure and replace all environment variables
in the string with their corresponding values. See [MSDN-ExpandEnvironmentStrings] for more
details about environment-variable strings. This symbolic constant has a value 0x0004.

FW_ENUM_RULES_FLAG_RESOLVE_KEYWORD: Resolves keywords in addresses and ports to the
actual addresses and ports (dynamic store only). This symbolic constant has a value 0x0008.

FW_ENUM_RULES_FLAG_RESOLVE_GPO_NAME: Resolves the GPO name for the GP_RSOP rules.
This symbolic constant has a value 0x0010.

FW_ENUM_RULES_FLAG_EFFECTIVE: If this flag is set, the server MUST only return objects
where at least one FW_ENFORCEMENT_STATE entry in the object's metadata is equal to
FW_ENFORCEMENT_STATE_FULL. This flag is available for the dynamic store only. This symbolic
constant has a value 0x0020.

FW_ENUM_RULES_FLAG_INCLUDE_METADATA: Includes the metadata object information,
represented by the FW_OBJECT_METADATA structure, in the enumerated objects. This symbolic
constant has a value 0x0040.

FW_ENUM_RULES_FLAG_MAX: This value and values that exceed this value are not valid and
MUST NOT be used. It is defined for simplicity in writing IDL definitions and code. This symbolic
constant has a value 0x0080.

48 / 306

[MS-FASP-DIff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

2.2.33 FW_RULE_ACTION

This enumeration describes the possible actions on firewall rules.

typedef enum _tag FW RULE_ACTION
{
FW_RULE_ACTION_ INVALID = O,
FW_RULE_ACTION ALLOW BYPASS = 1,
FW RULE ACTION BLOCK = 2,
FW RULE ACTION ALLOW = 3,
FW_RULE_ACTION MAX = 4
} FW_RULE_ACTION;

FW_RULE_ACTION_INVALID: This value is invalid and MUST NOT be used. It is defined for
simplicity in writing IDL definitions and code. This symbolic constant has a value of 0.

FW_RULE_ACTION_ALLOW_BYPASS: Rules with this action allow traffic but are applicable only to
rules that at least specify the FW_RULE_FLAGS_AUTHENTICATE flag. This symbolic constant
has a value of 1.

FW_RULE_ACTION_BLOCK: Rules with this action block traffic. This symbolic constant has a value
of 2.

FW_RULE_ACTION_ALLOW: Rules with this action allow traffic. This symbolic constant has a value
of 3.

FW_RULE_ACTION_MAX: This value and values that exceed this value are not valid and MUST NOT
be used. It is defined for simplicity in writing IDL definitions and code. This symbolic constant has
a value of 4.

If conflicting rules match the same network traffic, the actions determine the order of precedence.
Allow-bypass rules take precedence over block rules, and block rules take precedence over allow rules.

2.2.34 FW_RULE_FLAGS

This enumeration represents flags that can be specified in firewall rules of section 2.2.36.

typedef enum _tag FW_RULE_FLAGS

{
FW_RULE_FLAGS NONE = 0x0000,
FW_RULE FLAGS ACTIVE = 0x0001,
FW_RULE_FLAGS AUTHENTICATE = 0x0002,
FW_RULE_FLAGS AUTHENTICATE WITH ENCRYPTION = 0x0004,
FW_RULE FLAGS ROUTEABLE ADDRS TRAVERSE = 0x0008,
FWW_RULE_FLAGS LOOSE_SOURCE_MAPPED = 0x0010,
FW_RULE FLAGS MAX V2 1 = 0x0020,
FW_RULE FLAGS AUTH WITH NO_ENCAPSULATION = 0x0020,
FW_RULE FLAGS MAX V2 9 = 0x0040,
FW_RULE FLAGS AUTH WITH ENC_NEGOTIATE = 0x0040,
FW_RULE _FLAGS ROUTEABLE ADDRS TRAVERSE DEFER APP = 0x0080,
FW_RULE FLAGS ROUTEABLE ADDRS TRAVERSE DEFER_USER = 0x0100,
FW_RULE FLAGS AUTHENTICATE BYPASS OUTBOUND = 0x0200,
FW RULE FLAGS MAX V2 10 = 0x0400,
FW RULE FLAGS ALLOW PROFILE CROSSING = 0x0400,
FW_RULE FLAGS LOCAL ONLY MAPPED = 0x0800,
FW_RULE FLAGS MAX V2 20 = 0x1000,
FW RULE FLAGS LUA CONDITIONAL ACE = 0x1000,
FW RULE FLAGS BIND TO INTERFACE = 0x2000,
FW_RULE FLAGS MAX = 0x4000,

} FW_RULE_FLAGS;

49 / 306

[MS-FASP-DIff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

FW_RULE_FLAGS_NONE: This value means that none of the following flags are set. It is defined for
simplicity in writing IDL definitions and code.

FW_RULE_FLAGS_ACTIVE: The rule is enabled if this flag is set; otherwise, it is disabled.

FW_RULE_FLAGS_AUTHENTICATE: This flag MUST be set only on rules that have the allow
actions. If set, traffic that matches the rule is allowed only if it has been authenticated by IPsec;
otherwise, traffic is blocked.

FW_RULE_FLAGS_AUTHENTICATE_WITH_ENCRYPTION: This flag is similar to the
FW_RULE_FLAGS_AUTHENTICATE flag; however, traffic MUST also be encrypted.

FW_RULE_FLAGS_ROUTEABLE_ADDRS_TRAVERSE: This flag MUST be set only on inbound rules.
This flag allows the matching traffic to traverse a NAT edge device and be allowed in the host
computer.

FW_RULE_FLAGS_LOOSE_SOURCE_MAPPED: This flag allows responses from a remote IP
address that is different from the one to which the outbound matched traffic originally went.

FW_RULE_FLAGS_AUTH_WITH_NO_ENCAPSULATION: This flag MUST be set only on rules that
have the FW_RULE_FLAGS_AUTHENTICATE flag set. If set, traffic that matches the rule is allowed
if IKE or AuthIP authentication was successful; however, this flag does not necessarily require that
traffic be protected by IPsec encapsulations. For schema versions 0x0200 and 0x0201, this value
is invalid and MUST NOT be used.

FW_RULE_FLAGS_AUTH_WITH_ENC_NEGOTIATE: This flag MUST be set only on inbound rules
that have the FW_RULE_FLAGS_AUTHENTICATE_WITH_ENCRYPTION flag set. If set and if the first
packet that arrives is unencrypted but authenticated by IPsec, the packet is allowed, and an IKE
or AuthIP negotiation is started to negotiate encryption settings and encrypt subsequent packets.
[MS-AIPS] section 3.2.4 specifies negotiation initiation behavior for hosts that support both IKE
and AuthIP negotiation. If the negotiation fails, the connection is dropped. For schema versions
0x0200 and 0x0201, this value is invalid and MUST NOT be used.

FW_RULE_FLAGS_ROUTEABLE_ADDRS_TRAVERSE_DEFER_APP: This flag MUST be set only on
inbound rules. This flag allows the matching traffic to traverse a NAT edge device and be allowed
in the host computer, if and only if a matching PortInUse object is found in the PortsInUse
collection with NATTraversalRequested set to true (see section 3.1.1). For schema versions
0x0200 and 0x0201, this value is invalid and MUST NOT be used.

FW_RULE_FLAGS_ROUTEABLE_ADDRS_TRAVERSE_DEFER_USER: This flag MUST be set only
on inbound rules. Whenever an application tries to listen for traffic that matches this rule, the
operating system asks the administrator of the host whether it should allow this traffic to traverse
the NAT. For schema versions 0x0200 and 0x0201, this value is invalid and MUST NOT be used.

FW_RULE_FLAGS_AUTHENTICATE_BYPASS_OUTBOUND: This flag MUST be set only on
outbound rules that have an allow action with either the FW_RULE_FLAGS_AUTHENTICATE or the
FW_RULE_FLAGS_AUTHENTICATE_WITH_ENCRYPTION flag set. If set, this rule is evaluated before
block rules, making it equivalent to a rule with an FW_RULE_ACTION_ALLOW_BYPASS, but for
outbound. For schema versions 0x0200 and 0x0201, this value is invalid and MUST NOT be used.

FW_RULE_FLAGS_ALLOW_PROFILE_CROSSING: This flag allows responses from a network with
a different profile type than the network to which the outbound traffic was originally sent. This flag
MUST be ignored on rules with an action of FW_RULE_ACTION_BLOCK. For schema versions
0x0200, 0x0201, and 0x020A, this value is invalid and MUST NOT be used.

FW_RULE_FLAGS_LOCAL_ONLY_MAPPED: If this flag is set on a rule, the remote address and
remote port conditions are ignored when determining whether a network traffic flow matches the
rule. This flag MUST be ignored on rules with an action of FW_RULE_ACTION_BLOCK. For schema
versions 0x0200, 0x0201, and 0x020A, this value is invalid and MUST NOT be used.

50/ 306

[MS-FASP-DIff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

FW_RULE_FLAGS_MAX: This value and values that exceed this value are not valid and MUST NOT

be used. It is defined for simplicity in writing IDL definitions and code. This symbolic constant has
a value of 0x4000.

FW_RULE_FLAGS_MAX_V2_1: This value and values that exceed this value are not valid and
MUST NOT be used by servers and clients with schema version 0x0201 and earlier. It is defined
for simplicity in writing IDL definitions and code. This symbolic constant has a value of 0x0020.

FW_RULE_FLAGS_MAX_V2_9: This value and values that exceed this value are not valid and
MUST NOT be used by servers and clients with schema version 0x0209 and earlier. It is defined
for simplicity in writing IDL definitions and code. This symbolic constant has a value of 0x0040.

FW_RULE_FLAGS_MAX_V2_10: This value and values that exceed this value are not valid and
MUST NOT be used by servers and clients with schema version 0x020A and earlier. It is defined
for simplicity in writing IDL definitions and code. This symbolic constant has a value of 0x0400.

FW_RULE_FLAGS_MAX_V2_20: This value and values that exceed this value are not valid and
MUST NOT be used by servers and clients with schema version 0x0214 and earlier. It is defined
for simplicity in writing IDL definitions and code. This symbolic constant has a value of 0x1000.

FW_RULE_FLAGS_LUA_CONDITIONAL_ACE: This flag MUST be set if and only if the
wszLocalUserAuthorizationList field of the FW_RULE2_24 structure (section 2.2.103) is to
include conditional ACEs. For schema versions 0x0200, 0x0201, 0x020A, 0x0214, and 0x0216,
this value is invalid and MUST NOT be used.

FW_RULE_FLAGS_BIND_TO_INTERFACE: This flag is not used.

2.2.35FW_RULE2_0

This structure represents a firewall rule that is used by the 2.0 binary version servers and clients (see
sections 1.7 and 2.2.41). The fields of this structure are identical to the FW_RULE structure and its
meanings are covered in section 2.2.36.

typedef struct tag FW RULE2 0 {
struct _tag FW RULE2 0* pNext;
unsigned short wSchemaVersion;
[string, range(l, 10001), ref] wchar t* wszRuleId;
[string, range(l, 10001)] wchar t* wszName;
[string, range(l, 10001)] wchar t* wszDescription;
unsigned long dwProfiles;
[range (FW_DIR_INVALID, FW_DIR OUT)]
FW_DIRECTION Direction;

[range (0, 256)] unsigned short wIpProtocol;
[switch type (unsigned short), switch is(wIpProtocol)]
union {
[case(6,17)]
struct {

FW_PORTS LocalPorts;
FW_PORTS RemotePorts;
}i
[case (1)]

FW_ICMP_TYPE CODE_LIST V4TypeCodeList;

[case (58)]

FW_ICMP TYPE CODE LIST V6TypeCodeList;

[default] ;
}i
FW_ADDRESSES LocalAddresses;
FW_ADDRESSES RemoteAddresses;
FW_INTERFACE_LUIDS Locallnterfacelds;
unsigned long dwLocallnterfaceTypes;
[string, range(l, 10001)] wchar t* wszLocalApplication;
[string, range(l, 10001)] wchar t* wszLocalService;
[range (FW_RULE _ACTION INVALID, FW RULE ACTION MAX)]

51/ 306
[MS-FASP-DIff] - v20171201
Firewall and Advanced Security Protocol

Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

FW RULE ACTION Action;
unsigned short wFlags;

[string, range(l, 10001)] wchar t* wszRemoteMachineAuthorizationList;

[string, range(l, 10001)] wchar t* wszRemoteUserAuthorizationList;

[string, range(l, 10001)] wchar t* wszEmbeddedContext;
FW_OS PLATFORM LIST PlatformValidityList;
FW_RULE_STATUS Status;
[range (FW RULE ORIGIN INVALID, FW RULE ORIGIN MAX)]
FW RULE ORIGIN TYPE Originj;

[string, range(l, 10001)] wchar t* wszGPOName;
unsigned long Reserved;

} FW RULE2 O,

*PFW _RULE2 0;

2.2.36 FW_RULE

This structure is used to represent a firewall rule.

typedef struct tag FW RULE {
struct tag FW RULE* pNext;
unsigned short wSchemaVersion;
[string, range(l, 512), ref] wchar t* wszRuleId;
[string, range(l, 10001)] wchar t* wszName;
[string, range(l, 10001)] wchar t* wszDescription;
unsigned long dwProfiles;
[range (FW_DIR INVALID, FW_DIR_OUT)]
FW DIRECTION Direction;
[range (0, 256)] unsigned short wIpProtocol;
[switch type (unsigned short), switch is(wIpProtocol)]
union {
[case(6,17)]
struct {
FW_PORTS LocalPorts;
FW_PORTS RemotePorts;
}i
[case (1)]
FW_ICMP TYPE CODE LIST V4TypeCodelist;
[case (58)]
FW_ICMP_TYPE CODE_LIST V6TypeCodeList;
[default] ;
}i
FW_ADDRESSES LocalAddresses;
FW_ADDRESSES RemoteAddresses;
FW_INTERFACE LUIDS LocalInterfacelds;
unsigned long dwLocallInterfaceTypes;
[string, range(l, 10001)] wchar t* wszLocalApplication;
[string, range(l, 10001)] wchar t* wszLocalService;
[range (FW_RULE ACTION INVALID, FW_RULE ACTION MAX)]
FW_RULE_ACTION Action;
unsigned short wFlags;
[string, range(l, 10001)]
[string, range(l, 10001)]
[string, range(l, 10001)] wchar t* wszEmbeddedContext;
FW_OS_PLATFORM LIST PlatformvalidityList;
FW_RULE_STATUS Status;
[range (FW_RULE ORIGIN INVALID, FW_RULE ORIGIN MAX)]
FW_RULE ORIGIN TYPE Origin;
[string, range(l, 10001)] wchar t* wszGPOName;
unsigned long Reserved;
[Size_is((Reserved & FW_OBJECT_CTRL_FLAG_INCLUDE_METADATA) 21
PFW_OBJECT_METADATA pMetaData;
[string, range(l, 10001)] WCHAR* wszLocalUserAuthorizationList;
[string, range(l, 10001)] WCHAR* wszPackageId;
[string, range(l, 10001)] WCHAR* wszLocalUserOwner;
unsigned long dwTrustTupleKeywords;
FW_NETWORK_NAMES OnNetworkNames;
[string, range(l, 10001)] WCHAR* wszSecurityRealmId;

wchar t* wszRemoteMachineAuthorizationList;
wchar t* wszRemoteUserAuthorizationList;

[MS-FASP-DIff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

52 / 306

unsigned short wFlags2;
FW_NETWORK_NAMES RemoteOutServerNames;
[string, range(l,10001)] WCHAR* wszFgbn;
unsigned long compartmentId;

} FW _RULE,

*PFW_RULE;

pNext: A pointer to the next FW_RULE in the list.

wSchemaVersion: Specifies the version of the rule.

wszRuleld: A pointer to a Unicode string that uniquely identifies the rule.

wszName: A pointer to a Unicode string that provides a friendly name for the rule.
wszDescription: A pointer to a Unicode string that provides a friendly description for the rule.

dwProfiles: A bitmask of the FW_PROFILE_TYPE flags. It is a condition that matches traffic on the
specified profiles.

Direction: Specifies the direction of the traffic that the rule matches.

wIpProtocol: A condition that specifies the protocol of the traffic that the rule matches. If the value
is within the range 0 to 255, the value describes a protocol in IETF IANA numbers (for more
information, see [IANA-PROTO-NUM]). If the value is 256, the rule matches any protocol.

LocalPorts: A condition that specifies the local host ports of the TCP or UDP traffic that the rule
matches.

RemotePorts: A condition that specifies the remote host ports of the TCP or UDP traffic that the rule
matches.

V4TypeCodelist: A condition that specifies the list of ICMP types of the traffic that the rule matches.
This field applies only when wIpProtocol specifies ICMP v4.

V6TypeCodelist: A condition that specifies the list of ICMP types of the traffic that the rule matches.
This field applies only when wIpProtocol specifies ICMP v6.

LocalAddresses: A condition that specifies the addresses of the local host of the traffic that the rule
matches. An empty LocalAddresses structure means that this condition is not applied.

RemoteAddresses: A condition that specifies the addresses of the remote host of the traffic that the
rule matches. An empty RemoteAddresses structure means that this condition is not applied.

LocalInterfacelds: A condition that specifies the list of specific network interfaces used by the
traffic that the rule matches. A LocalInterfacelds field with no interface GUID specified means
that the rule applies to all interfaces; that is, the condition is not applied.

dwlLocalInterfaceTypes: A bitmask of FW_INTERFACE_TYPE. It is a condition that restricts the
interface types that are used by the traffic that the rule matches. 0x00000000 means that the
condition matches all interface types.

wszLocalApplication: A pointer to a Unicode string. It is a condition that specifies a file path name
to the executable that uses the traffic that the rule matches. A null in this field means that the rule
applies to all processes in the host.

wszLocalService: A pointer to a Unicode string. It is a condition that specifies the service name of
the service that uses the traffic that the rule matches. An L"*" string in this field means that the
rule applies to all services in the system. A null in this field means that the rule applies to all
processes.

53/ 306

[MS-FASP-DIff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Action: The action that the rule will take for the traffic matches.
wFlags: Bit flags from FW_RULE_FLAGS.

wszRemoteMachineAuthorizationList: A pointer to a Unicode string. A condition that specifies the
remote machines sending or receiving the traffic that the rule matches. The string is in SDDL
format ([MS-DTYP] section 2.5.1).

wszRemoteUserAuthorizationList: A pointer to a Unicode string. A condition that specifies the
remote users accepting or receiving the traffic that the rule matches. The string is in SDDL format
([MS-DTYP] section 2.5.1).

wszEmbeddedContext: A pointer to a Unicode string. It specifies a group name for this rule. Other
components in the system use this string to enable or disable groups of rules by verifying that
they all have the same group name.

PlatformValidityList: A condition in a rule that determines whether or not the rule is enforced by
the local computer based on the local computer's platform information. The rule is enforced only if
the local computer's operating system platform is an element of the set described by
PlatformValidityList.<4>

Status: The status code of the rule, as specified by the FW_RULE_STATUS enumeration. This field is
filled out when the structure is returned as output. On input, this field MUST be set to
FW_RULE_STATUS_OK.

Origin: The rule origin, as specified in the FW_RULE_ORIGIN_TYPE enumeration. It MUST be filled on
enumerated rules and ignored on input.

wszGPOName: A pointer to a Unicode string containing the displayName of the GPO containing this
object. When adding a new object, this field is not used. The client SHOULD set the value to NULL,
and the server MUST ignore the value. When enumerating an existing object, if the client does not
set the FW_ENUM_RULES_FLAG_RESOLVE_GPO_NAME flag, the server MUST set the value to
NULL. Otherwise, the server MUST set the value to the displayName of the GPO containing the
object or NULL if the object is not contained within a GPO. For details about how the server
initializes an object from a GPO, see section 3.1.3. For details about how the displayName of a
GPO is stored, see [MS-GPOL] section 2.3.

Reserved: Not used other than to instruct RPC, using the
FW_OBJECT_CTRL_FLAG_INCLUDE_METADATA flag, that a pointer to an FW_OBJECT_METADATA
structure is present. It has no semantic meaning to the object itself.

pMetaData: A pointer to an FW_OBJECT_METADATA structure that contains specific metadata about
the current state of the firewall rule.

wszlLocalUserAuthorizationList: A pointer to a Unicode string in SDDL format ([MS-DTYP] section
2.5.1). It is a condition that specifies the local users accepting or receiving the traffic that the rule
matches.

wszPackagelId: A pointer to a Unicode string in SID string format ([MS-DTYP] section 2.4.2.1). It is
a condition that specifies the application SID of the process that uses the traffic that the rule
matches. A null in this field means that the rule applies to all processes in the host.

wszLocalUserOwner: A pointer to a Unicode string in SID string format. The SID specifies the
security principal that owns the rule.

dwTrustTupleKeywords: A bitmask of the FW_TRUST_TUPLE_KEYWORD flags. It is a condition that
matches traffic associated with the specified trust tuples.

OnNetworkNames: Specifies the networks, identified by name, in which the rule must be enforced.

54 / 306

[MS-FASP-DIff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

wszSecurityRealmId: A pointer to a Unicode string in SID string format. The SID specifies the

Security Realm ID, which identifies a security realm that this firewall rule is associated with. Any
application that matches this rule will be subject to the IPsec polices for this security realm.

wFlags2: Bit flags from FW_RULE_FLAGS2 (section 2.2.102).

RemoteOutServerNames: This value is not used over the wire.

wszFgbn: A string that is formatted as an FQBN; also see [MSDN-FQBN].

compartmentld: The ID of the compartment or Windows Server Container.

The following are semantic checks that firewall rules MUST pass:

The wSchemaVersion field MUST NOT be less than 0x000100.
The wSchemaVersion field SHOULD NOT be less than 0x000200.<5>

The wszRuleld field MUST NOT contain the pipe (|) character, MUST NOT be NULL, MUST be a
string of at least 1 character, and MUST NOT be greater or equal to 512 characters.<6>

The wszName field string MUST meet the following criteria:
= MUST contain 1 or more characters.

= MUST contain fewer than 10,000 characters.

= MUST NOT be NULL.

= MUST NOT contain the pipe (|) character.

= MUST NOT equal the case-insensitive string "ALL".

If the wszDescription field string is not NULL, it MUST contain at least 1 character, MUST NOT be
greater than or equal to 10,000 characters, and MUST NOT contain the pipe (|) character.

If the wszLocalApplication field string is not NULL, it MUST be at least 1 character, MUST NOT
be greater than or equal to MAX_PATH (260) characters, and MUST NOT contain the following
characters: /,*,?,",<,>,|.

If the wszLocalService field string is not NULL, it MUST contain at least 1 character, MUST NOT
be greater than or equal to MAX_PATH characters, and MUST NOT contain the following
characters: /,\,|.

If the wszEmbeddedContext field string is not NULL, it MUST contain at least 1 character, MUST
NOT be greater than or equal to 10,000 characters, and MUST NOT contain the pipe (|) character.

The Direction field MUST NOT contain invalid FW_DIRECTION values.

The dwProfiles field MUST NOT contain invalid values and, if it is not equal to the
FW_PROFILE_TYPE_ALL profile type, it MUST NOT contain unknown profiles.

The wIpProtocol field MUST NOT be greater than 256.

If the wPortKeywords field of LocalPorts is FW_PORT_KEYWORD_DYNAMIC_RPC_PORTS or
FW_PORT_KEYWORD_RPC_EP, the wlpProtocol field MUST be 6, and Direction MUST be
FW_DIRECTION_IN.

If the wPortKeywords field of LocalPorts is FW_PORT_KEYWORD_TEREDO_PORT, the
wIpProtocol field MUST be 17, and Direction MUST be FW_DIRECTION_IN.

The wPortKeywords field of LocalPorts MUST be 0 if the Direction is FW_DIRECTION_OUT.

55/ 306

[MS-FASP-DIff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

If the wIpProtocol field is 6 or 17, the wPortKeywords field of RemotePorts MUST be 0.

If the wIpProtocol field is not 1, 6, 17, or 58, the LocalPorts, RemotePorts, V4TypeCodelist,
and V6TypeCodelList field MUST be empty.

The dwV4AddressKeywords and dwV6AddressKeywords fields of LocalAddresses MUST be
0.

dwlLocalInterfaceTypes MUST NOT be greater than or equal to FW_INTERFACE_TYPE_MAX.
Action MUST be a valid action from the FW_RULE_ACTION enumeration.
wFlags MUST NOT be greater than FW_RULE_FLAGS_MAX.

If Direction is FW_DIR_OUT, wFlags MUST NOT contain a
FW_RULE_FLAGS_ROUTEABLE_ADDRS_TRAVERSE.

If Direction is FW_DIR_IN or wIpProtocol is 6 or wFlags contains
FW_RULE_FLAGS_AUTHENTICATE or FW_RULE_FLAGS_AUTHENTICATE_WITH_ENCRYPTION,
wFlags MUST NOT contain FW_RULE_FLAGS_LOOSE_SOURCE_MAPPED.

The wFlags field MUST NOT contain both FW_RULE_FLAGS_AUTHENTICATE and
FW_RULE_FLAGS_AUTHENTICATE_WITH_ENCRYPTION.

If wFlags contains either FW_RULE_FLAGS_AUTHENTICATE or
FW_RULE_FLAGS_AUTHENTICATE_WITH_ENCRYPTION, Action MUST NOT be
FW_RULE_ACTION_BLOCK.

If Action is FW_RULE_ACTION_ALLOW_BYPASS, Direction MUST be FW_DIR_IN, wFlags MUST
contain either FW_RULE_FLAGS_AUTHENTICATE or
FW_RULE_FLAGS_AUTHENTICATE_WITH_ENCRYPTION, and
wszRemoteMachineAuthorizationList MUST NOT be NULL.

If wszRemoteMachineAuthorizationList is not NULL, it MUST be at least 1 character, MUST
NOT be greater than or equal to 10,000 characters, MUST NOT contain the pipe (|) character,
MUST NOT be an empty string (""), MUST be a valid security descriptor ([MS-DTYP] section 2.4.6),
MUST have a non-Null ACL, MUST have only either Allow or Deny ACEs, and each ACE MUST have
a Filter match access right.

If wszRemoteUserAuthorizationList is not NULL, it MUST be at least 1 character, MUST NOT be
greater than or equal to 10,000 characters, MUST NOT contain the pipe (|) character, MUST NOT
be an empty string (""), MUST be a valid security descriptor ([MS-DTYP] section 2.4.6), MUST
have a non-NULL ACL, MUST only have either Allow or Deny ACEs, and each ACE MUST have a
Filter match access right.

If wszRemoteMachineAuthorizationList is not NULL or wszRemoteUserAuthorizationList is
not NULL, either the FW_RULE_FLAGS_AUTHENTICATE flag or the
FW_RULE_FLAGS_AUTHENTICATE_WITH_ENCRYPT flag MUST be set on the wFlags field.

If the Direction field is FW_DIR_OUT, the wszRemoteMachineAuthorizationList field MUST be
NULL.

If wszLocalUserAuthorizationList is not NULL, it MUST be at least 1 character, MUST NOT be
greater than or equal to 10,000 characters, MUST NOT contain the pipe ("|") character unless it
contains a conditional ACE and the wFlags field has the
FW_RULE_FLAGS_LUA_CONDITIONAL_ACE set (section 2.2.34), MUST NOT be an empty string
(""), MUST be a valid security descriptor ([MS-DTYP] section 2.4.6), MUST have a non-NULL ACL,
MUST only have either Allow or Deny ACEs if the FW_RULE_FLAGS_LUA_CONDITIONAL_ACE is not
set, or can include conditional ACEs if FW_RULE_FLAGS_LUA_CONDITIONAL_ACE is set, and each
ACE MUST have a Filter match access right.

56 / 306

[MS-FASP-DIff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

2.2.37 FW_PROFILE_CONFIG

This enumeration identifies each of the per-profile configuration options supported by this protocol.
Each configuration option has a merge law that is used to determine how to merge the values of these
options across stores.

typedef enum tag FW _PROFILE CONFIG

{
FW PROFILE CONFIG INVALID = 0,
FW_PROFILE_CONFIG_ENABLE_FW = 1,
FW_PROFILE_CONFIG_DISABLE_STEALTH MODE = 2,
FW PROFILE CONFIG SHIELDED = 3,
FW PROFILE CONFIG DISABLE UNICAST RESPONSES TO MULTICAST BROADCAST = 4,
FW_PROFILE_CONFIG_LOG_DROPPED PACKETS = 5,
FW_PROFILE_CONFIG_LOG_SUCCESS_CONNECTIONS = 6,
FW PROFILE CONFIG LOG IGNORED RULES = 7,
FW PROFILE CONFIG LOG MAX FILE SIZE = 8,
FW_PROFILE_CONFIG_LOG_FILE_PATH = 9,
FW_PROFILE_CONFIG_DISABLE_INBOUND NOTIFICATIONS = 10,
FW PROFILE CONFIG AUTH APPS ALLOW USER PREF MERGE = 11,
FW PROFILE CONFIG GLOBAL PORTS ALLOW USER PREF MERGE = 12,
FW_PROFILE CONFIG ALLOW LOCAL POLICY MERGE = 13,
FW_PROFILE CONFIG ALLOW LOCAL IPSEC POLICY MERGE = 14,
FW PROFILE CONFIG DISABLED INTERFACES = 15,
FW PROFILE CONFIG DEFAULT OUTBOUND ACTION = 16,
FW_PROFILE CONFIG DEFAULT INBOUND ACTION = 17,
FW_PROFILE CONFIG DISABLE STEALTH MODE IPSEC_ SECURED PACKET EXEMPTION = 18,
FWW_PROFILE CONFIG MAX = 19

} FW_PROFILE CONFIG;

FW_PROFILE_CONFIG_INVALID: This value is invalid and MUST NOT be used. It is defined for
simplicity in writing IDL definitions and code. This symbolic constant has a value of 0.

FW_PROFILE_CONFIG_ENABLE_FW: This value is an on/off switch for the firewall and advanced
security enforcement. It is a DWORD type value; 0x00000000 is off; 0x00000001 is on. If this
value is off, the server MUST NOT block any network traffic, regardless of other policy settings.
The merge law for this option is to let the value of the GroupPolicyRSoPStore win if it is
configured; otherwise, the local store value is used. This symbolic constant has a value of 1.

FW_PROFILE_CONFIG_DISABLE_STEALTH_MODE: This value is a DWORD used as an on/off
switch. When this option is off, the server operates in stealth mode. The firewall rules used to
enforce stealth mode are implementation-specific.<7> The merge law for this option is to let the
value of the GroupPolicyRSoPStore win if it is configured; otherwise, the local store value is
used. This symbolic constant has a value of 2.

FW_PROFILE_CONFIG_SHIELDED: This value is a DWORD used as an on/off switch. If this value
is on and FW_PROFILE_CONFIG_ENABLE_FW is on, the server MUST block all incoming traffic
regardless of other policy settings. The merge law for this option is to let "on" values win. This
symbolic constant has a value of 3.

FW_PROFILE_CONFIG_DISABLE_UNICAST_RESPONSES_TO_MULTICAST_BROADCAST: This
value is a DWORD used as an on/off switch. If it is on, unicast responses to multicast broadcast
traffic is blocked. The merge law for this option is to let the value of the GroupPolicyRSoPStore
win if it is configured; otherwise, the local store value is used. This symbolic constant has a value
of 4.

FW_PROFILE_CONFIG_LOG_DROPPED_PACKETS: This value is a DWORD used as an on/off
switch. If this value is on, the firewall logs all the dropped packets. The merge law for this option
is to let "on" values win. This symbolic constant has a value of 5.

57/ 306

[MS-FASP-DIff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

FW_PROFILE_CONFIG_LOG_SUCCESS_CONNECTIONS: This value is a DWORD used as an
on/off switch. If this value is on, the firewall logs all successful inbound connections. The merge
law for this option is to let "on" values win. This symbolic constant has a value of 6.

FW_PROFILE_CONFIG_LOG_IGNORED_RULES: This value is a DWORD used as an on/off switch.
The server MAY use this value in an implementation-specific way to control logging of events if a
rule is not enforced for any reason. The merge law for this option is to let "on" values win. This
symbolic constant has a value of 7.<8>

FW_PROFILE_CONFIG_LOG_MAX_FILE_SIZE: This value is a DWORD and specifies the size, in
kilobytes, of the log where dropped packets and successful connections are logged. The merge law
for this option is to let the value of the GroupPolicyRSoPStore win if it is configured; otherwise,
the local store value is used. This symbolic constant has a value of 8.

FW_PROFILE_CONFIG_LOG_FILE_PATH: This configuration value is a string that represents a file
path to the log for when the firewall logs dropped packets and successful connections. The merge
law for this option is to let the value of the GroupPolicyRSoPStore win if it is configured;
otherwise, the local store value is used. This symbolic constant has a value of 9.

FW_PROFILE_CONFIG_DISABLE_INBOUND_NOTIFICATIONS: This value is a DWORD used as
an on/off switch. If this value is off, the firewall MAY display a notification to the user when an
application is blocked from listening on a port.<9> If this value is on, the firewall MUST NOT
display such a notification. The merge law for this option is to let the value of the
GroupPolicyRSoPStore win if it is configured; otherwise, the local store value is used. This
symbolic constant has a value of 10.

FW_PROFILE_CONFIG_AUTH_APPS_ALLOW_USER_PREF_MERGE: This value is a DWORD
used as an on/off switch. If this value is off, authorized application firewall rules in the local store
are ignored and not enforced. The merge law for this option is to let the value of the
GroupPolicyRSoPStore win if it is configured; otherwise, the local store value is used. This
symbolic constant has a value of 11.

The authorized application firewall rules consist of the FW_RULE objects where all of the following
are true:

wszlLocalApplication is not NULL

wszLocalService == NULL

(wIpProtocol == 6) || (wIpProtocol == 17)
LocalPorts.Ports.dwNumEntries ==
LocalPorts.wPortKeywords == FW_PORT_KEYWORD_NONE

Note that for the wIpProtocol condition, the numbers 6 and 17 are the assigned Internet
protocol numbers for TCP and UDP respectively (for more information, see [IANA-PROTO-NUM]).

FW_PROFILE_CONFIG_GLOBAL_PORTS_ALLOW_USER_PREF_MERGE: This value is a DWORD
used as an on/off switch. If this value is off, global port firewall rules in the local store are ignored
and not enforced. The setting only has meaning if it is set or enumerated in the Group Policy store
or if it is enumerated from the GroupPolicyRSoPStore. The merge law for this option is to let the
value GroupPolicyRSoPStore win if it is configured; otherwise, the local store value is used. This
symbolic constant has a value of 12.

The global port firewall rules consist of the FW_RULE objects where all of the following are true:
wszlLocalApplication == NULL

wszlocalService == NULL

58 / 306

[MS-FASP-DIff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

(wIpProtocol == 6) || (wIpProtocol == 17)
LocalPorts.Ports.dwNumEntries ==
LocalPorts.wPortKeywords == FW_PORT_KEYWORD_NONE

Note that for the wIpProtocol condition, the numbers 6 and 17 are the assigned Internet
protocol numbers for TCP and UDP respectively (for more information, see [IANA-PROTO-NUM]).

FW_PROFILE_CONFIG_ALLOW_LOCAL_POLICY_MERGE: This value is a DWORD used as an
on/off switch. If this value is off, firewall rules from the local store are ignored and not enforced.
The merge law for this option is to always use the value of the GroupPolicyRSoPStore. This
value is valid for all schema versions. This symbolic constant has a value of 13.

FW_PROFILE_CONFIG_ALLOW_LOCAL_IPSEC_POLICY_MERGE: This value is a DWORD; it is
an on/off switch. If this value is off, connection security rules from the local store are ignored and
not enforced, regardless of the schema version and connection security rule version. The merge
law for this option is to always use the value of the GroupPolicyRSoPStore. This symbolic
constant has a value of 14.

FW_PROFILE_CONFIG_DISABLED_INTERFACES: This value is an FW_INTERFACE_LUIDS
structure that represents the network adapters where the firewall (only the firewall rules and
actions) is off. The merge law for this option is to let the value of the GroupPolicyRSoPStore win
if it is configured; otherwise, the local store value is used. This symbolic constant has a value of
15.

FW_PROFILE_CONFIG_DEFAULT_OUTBOUND_ACTION: This value is the action that the firewall
does by default (and evaluates at the very end) on outbound connections. The allow action is
represented by 0x00000000; 0x00000001 represents a block action. The merge law for this option
is to let the value of the GroupPolicyRSoPStore win if it is configured; otherwise, the local store
value is used. This symbolic constant has a value of 16.

FW_PROFILE_CONFIG_DEFAULT_INBOUND_ACTION: This value is the action that the firewall
does by default (and evaluates at the very end) on inbound connections. The allow action is
represented by 0x00000000; 0x00000001 represents a block action. The merge law for this option
is to let the value of the GroupPolicyRSoPStore.win if it is configured; otherwise, the local store
value is used. This symbolic constant has a value of 17.

FW_PROFILE_CONFIG_DISABLE_STEALTH_MODE_IPSEC_SECURED_PACKET_EXEMPTION:
This value is a DWORD used as an on/off switch. This option is ignored if
FW_PROFILE_CONFIG_DISABLE_STEALTH_MODE is on. Otherwise, when this option is on,
the firewall's stealth mode rules MUST NOT prevent the host computer from responding to
unsolicited network traffic if that traffic is secured by IPsec. The merge law for this option is to let
the value of the GroupPolicyRSoPStore win if it is configured; otherwise, the local store value is
used. For schema versions 0x0200, 0x0201, and 0x020A, this value is invalid and MUST NOT be
used. This symbolic constant has a value of 18.

FW_PROFILE_CONFIG_MAX: This value and values that exceed this value are not valid and MUST
NOT be used. It is defined for simplicity in writing IDL definitions and code. This symbolic constant
has a value of 19.

2.2.38 FW_GLOBAL_CONFIG_IPSEC_EXEMPT_VALUES

This enumeration identifies specific traffic to be exempted from performing IPsec.

typedef enum FW GLOBAL CONFIG_IPSEC EXEMPT VALUES

{
Fil_GLOBAL CONFIG IPSEC EXEMPT NONE = 0x0000,
FW_GLOBAL CONFIG IPSEC_EXEMPT NEIGHBOR DISC = 0x0001,
FW_GLOBAL CONFIG IPSEC_EXEMPT ICMP = 0x0002,

59/ 306

[MS-FASP-DIff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Fil_GLOBAL CONFIG IPSEC EXEMPT ROUTER DISC = 0x0004,
Fil_GLOBAL CONFIG IPSEC EXEMPT DHCP = 0x0008,
FWl_GLOBAL CONFIG IPSEC EXEMPT MAX = 0x0010,
FW_GLOBAL CONFIG IPSEC EXEMPT MAX V2 0 = 0x0004

} FW_GLOBAL CONFIG IPSEC EXEMPT VALUES;

FW_GLOBAL_CONFIG_IPSEC_EXEMPT_NONE: No IPsec exemptions.

FW_GLOBAL_CONFIG_IPSEC_EXEMPT_NEIGHBOR_DISC: Exempt neighbor discover IPv6 ICMP
type-codes from IPsec.

FW_GLOBAL_CONFIG_IPSEC_EXEMPT_ICMP: Exempt ICMP from IPsec.

FW_GLOBAL_CONFIG_IPSEC_EXEMPT_ROUTER_DISC: Exempt router discover IPv6 ICMP type-
codes from IPsec.

FW_GLOBAL_CONFIG_IPSEC_EXEMPT_DHCP: Exempt both IPv4 and IPv6 DHCP traffic from
IPsec.

FW_GLOBAL_CONFIG_IPSEC_EXEMPT_MAX: This value and values that exceed this value are
not valid and MUST NOT be used. It is defined for simplicity in writing IDL definitions and code.
This symbolic constant has a value of 0x0010.

FW_GLOBAL_CONFIG_IPSEC_EXEMPT_MAX_V2_0: This value and values that exceed this value
are not valid and MUST NOT be used by servers and clients with schema version 0x0200 and
earlier. It is defined for simplicity in writing IDL definitions and code. This symbolic constant has a
value of 0x0004.

2.2.39 FW_GLOBAL_CONFIG_PRESHARED_KEY_ENCODING_VALUES

This enumeration is used to describe how preshared keys are encoded before being used.

typedef enum FW GLOBAL CONFIG PRESHARED KEY ENCODING VALUES

{
Fil_GLOBAL CONFIG PRESHARED KEY ENCODING NONE = O,
FWl_GLOBAL CONFIG PRESHARED KEY ENCODING UTF 8 = 1,
Fii_GLOBAL CONFIG PRESHARED KEY ENCODING MAX = 2

} FW GLOBAL CONFIG PRESHARED KEY ENCODING VALUES;

FW_GLOBAL_CONFIG_PRESHARED_KEY_ENCODING_NONE: Preshared key is not encoded.
Instead, it is kept in its wide-character format. This symbolic constant has a value of 0.

FW_GLOBAL_CONFIG_PRESHARED_KEY_ENCODING_UTF_8: Encode the preshared key using
UTF-8. This symbolic constant has a value of 1.

FW_GLOBAL_CONFIG_PRESHARED_KEY_ENCODING_MAX: This value and values that exceed
this value are not valid and MUST NOT be used. It is defined for simplicity in writing IDL definitions
and code. This symbolic constant has a value of 2.

2.2.40 FW_GLOBAL_CONFIG_IPSEC_THROUGH_NAT_VALUES

This enumeration is used to describe when IPsec security associations can be established across NAT
devices.

typedef enum FW GLOBAL CONFIG IPSEC THROUGH NAT VALUES
{

Fil_GLOBAL CONFIG IPSEC THROUGH NAT NEVER = 0,

Fil_GLOBAL CONFIG IPSEC THROUGH NAT SERVER BEHIND NAT = 1,

FW_GLOBAL CONFIG IPSEC THROUGH NAT SERVER AND CLIENT BEHIND NAT = 2,

60 / 306

[MS-FASP-DIff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

FW_GLOBAL CONFIG IPSEC THROUGH NAT MAX = 3
} FW GLOBAL CONFIG IPSEC THROUGH NAT VALUES;

FW_GLOBAL_CONFIG_IPSEC_THROUGH_NAT_NEVER: IPsec does not cross NAT boundaries.
This symbolic constant has a value of 0.

FW_GLOBAL_CONFIG_IPSEC_THROUGH_NAT_SERVER_BEHIND_NAT: IPsec security
associations can be established when the server is across NAT boundaries. This symbolic constant
has a value of 1.

FW_GLOBAL_CONFIG_IPSEC_THROUGH_NAT_SERVER_AND_CLIENT_BEHIND_NAT: IPsec
security associations can be established when the server and client are across NAT boundaries.
This symbolic constant has a value of 2.

FW_GLOBAL_CONFIG_IPSEC_THROUGH_NAT_MAX: This value and values that exceed this
value are not valid and MUST NOT be used. It is defined for simplicity in writing IDL definitions
and code. This symbolic constant has a value of 3.

2.2.41 FW_GLOBAL_CONFIG

This enumeration identifies the global policy configuration options. Each configuration option has a
merge law that is used to determine how to merge the values of these options across stores.

typedef enum tag FW GLOBAL CONFIG

{
FW_GLOBAL_ CONFIG_ INVALID = O,
FW_GLOBAL CONFIG_POLICY VERSION SUPPORTED = 1,
FW GLOBAL CONFIG CURRENT PROFILE = 2,
FW_GLOBAL CONFIG DISABLE STATEFUL FTP = 3,
FWW_GLOBAL CONFIG DISABLE STATEFUL PPTP = 4,
FW_GLOBAL CONFIG SA IDLE TIME = 5,
FW GLOBAL CONFIG PRESHARED KEY ENCODING = 6,
FW GLOBAL CONFIG IPSEC EXEMPT = 7,
FW_GLOBAL CONFIG CRL CHECK = 8,
FW_GLOBAL CONFIG IPSEC_THROUGH NAT = 9,
FW_GLOBAL CONFIG POLICY VERSION = 10,
FW_GLOBAL_CONFIG BINARY VERSION SUPPORTED = 11,
FW_GLOBAL CONFIG IPSEC_TUNNEL REMOTE MACHINE AUTHORIZATION LIST = 12,
FWW_GLOBAL CONFIG IPSEC_TUNNEL REMOTE USER AUTHORIZATION LIST = 13,
FW_GLOBAL CONFIG_OPPORTUNISTICALLY MATCH AUTH SET PER KM = 14,
FW_GLOBAL_CONFIG_ IPSEC_TRANSPORT REMOTE MACHINE AUTHORIZATION LIST = 15,
FWW_GLOBAL CONFIG IPSEC_TRANSPORT REMOTE USER AUTHORIZATION LIST = 16,
FW_GLOBAL CONFIG ENABLE PACKET QUEUE = 17,
FWW_GLOBAL CONFIG MAX = 18

} FW_GLOBAL_ CONFIG;

FW_GLOBAL_CONFIG_INVALID: This value MUST NOT be used. It is defined for simplicity in
writing IDL definitions and code. This symbolic constant has a value of 0.

FW_GLOBAL_CONFIG_POLICY_VERSION_SUPPORTED: This value is a DWORD containing the
maximum policy version that the server host can accept. The version number is two octets in size.
The lowest-order octet is the minor version; the second-to-lowest octet is the major version. This
value is not merged and is always a fixed value for a particular firewall and advanced security
components software build. This symbolic constant has a value of 1.

FW_GLOBAL_CONFIG_CURRENT_PROFILE: This value is a DWORD and contains a bitmask of the
current enforced profiles that are maintained by the server firewall host. See
FW_PROFILE_TYPE (section 2.2.2) for the bitmasks that are used to identify profile types. This
value is available only in the dynamic store; therefore, it is not merged and has no merge law.
This symbolic constant has a value of 2.

61/ 306

[MS-FASP-DIff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

FW_GLOBAL_CONFIG_DISABLE_STATEFUL_FTP: This value is an on/off switch. If off, the
firewall performs stateful File Transfer Protocol (FTP) filtering to allow secondary connections. The
value is a DWORD; 0x00000000 means off; 0x00000001 means on. The merge law for this option
is to let "on" values win. This symbolic constant has a value of 3.

FW_GLOBAL_CONFIG_DISABLE_STATEFUL_PPTP: This value is an on/off switch. If off, the
firewall performs stateful Point-to-Point Tunneling Protocol (PPTP) analysis. The value is a
DWORD; 0x00000000 means off; 0x00000001 means on. The merge law for this option is to let
"on" values win. This symbolic constant has a value of 4.

FW_GLOBAL_CONFIG_SA_IDLE_TIME: This value configures the security association idle time, in
seconds. Security associations are deleted after network traffic is not seen for this specified period
of time. The value is a DWORD and MUST be a value in the range of 300 to 3,600 inclusive. The
merge law for this option is to let the value of the GroupPolicyRSoPStore win if it is configured;
otherwise, use the local store value. This symbolic constant has a value of 5.

FW_GLOBAL_CONFIG_PRESHARED_KEY_ENCODING: This configuration value specifies the
preshared key encoding that is used. The value is a DWORD and MUST be a valid value from the
FW_GLOBAL_CONFIG_PRESHARED_KEY_ENCODING_VALUES enumeration. The merge law for this
option is to let the value of the GroupPolicyRSoPStore win if it is configured; otherwise, use the
local store value. This symbolic constant has a value of 6.

FW_GLOBAL_CONFIG_IPSEC_EXEMPT: This configuration value configures IPsec exceptions. The
value is a DWORD and MUST be a combination of the valid flags that are defined in
FW_GLOBAL_CONFIG_IPSEC_EXEMPT_VALUES; therefore, the maximum value MUST always be
FW_GLOBAL_CONFIG_IPSEC_EXEMPT_MAX-1 for servers supporting a schema version of 0x0201
and FW_GLOBAL_CONFIG_IPSEC_EXEMPT_MAX_V2_0-1 for servers supporting a schema version
of 0x0200. If the maximum value is exceeded when the method RRPC_FWSetGlobalConfig
(Opnum 4) is called, the method returns ERROR_INVALID_PARAMETER. This error code is
returned if no other preceding error is discovered. The merge law for this option is to let the value
of the GroupPolicyRSoPStore win if it is configured; otherwise, use the local store value. This
symbolic constant has a value of 7.

FW_GLOBAL_CONFIG_CRL_CHECK: This value specifies how certificate revocation list (CRL)
verification is enforced. The value is a DWORD and MUST be 0, 1, or 2. A value of 0 disables CRL
checking. A value of 1 specifies that CRL checking is attempted and that certificate validation fails
only if the certificate is revoked. Other failures that are encountered during CRL checking (such as
the revocation URL being unreachable) do not cause certificate validation to fail. A value of 2
means that checking is required and that certificate validation fails if any error is encountered
during CRL processing. The merge law for this option is to let the value of the
GroupPolicyRSoPStore win if it is configured; otherwise, use the local store value. This symbolic
constant has a value of 8.

FW_GLOBAL_CONFIG_IPSEC_THROUGH_NAT: This value is configured when an IPsec security
association can be established with a computer across NAT devices. The value is of type
FW_GLOBAL_CONFIG_IPSEC_THROUGH_NAT_VALUES and MUST contain valid values of the same
enumeration type. The merge law for this option is to let the value of the GroupPolicyRSoPStore
win if it is configured; otherwise, use the local store value. This symbolic constant has a value of
9.

FW_GLOBAL_CONFIG_POLICY_VERSION: This value contains the policy version of the policy
store being managed. This value is not merged and therefore, has no merge law. This symbolic
constant has a value of 10.

FW_GLOBAL_CONFIG_BINARY_VERSION_SUPPORTED: This value contains the binary version
of the structures and data types that are supported by the server. This value is not merged. In
addition, this value is always a fixed value for a specific firewall and advanced security
component's software build. This symbolic constant has a value of 11. This value identifies a policy
configuration option that is supported only on servers that have a schema version of 0x0201.

62/ 306

[MS-FASP-DIff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

FW_GLOBAL_CONFIG_IPSEC_TUNNEL_REMOTE_MACHINE_AUTHORIZATION_LIST: This
value represents a list of remote machines that are allowed to send and receive traffic through the
tunnels which request this access check. Machines in the list are allowed through the tunnels.
Machines not in the list are denied through the tunnels. The list is specified as a security descriptor
which specifies which SIDs ([MS-DTYP] section 2.4.2.1) of the remote machines. The value is a
Unicode string in Security Descriptor Definition Language (SDDL) format ([MS-DTYP] section
2.5.1). This symbolic constant has a value of 12.

FW_GLOBAL_CONFIG_IPSEC_TUNNEL_REMOTE_USER_AUTHORIZATION_LIST: This value
represents a list of remote users who are allowed to send and receive traffic through the tunnels
which request this access check. Users in the list are allowed through the tunnels. Users not in the
list are denied through the tunnels. The list is specified as a security descriptor which specifies
which SIDs ([MS-DTYP] section 2.4.2.1) of the remote users. The value is a Unicode string in
SDDL format ([MS-DTYP] section 2.5.1). This symbolic constant has a value of 13.

FW_GLOBAL_CONFIG_OPPORTUNISTICALLY_MATCH_AUTH_SET_PER_KM: This value is a
DWORD used as an on/off switch. When this option is off, keying modules MUST ignore the entire
authentication set if they do not support all of the authentication suites specified in the set. When
this option is on, keying modules MUST ignore only the authentication suites that they don't
support. For schema versions 0x0200, 0x0201, and 0x020A, this value is invalid and MUST NOT
be used. This symbolic constant has a value of 14.

FW_GLOBAL_CONFIG_IPSEC_TRANSPORT_REMOTE_MACHINE_AUTHORIZATION_LIST: This
value is a Unicode string in Security Descriptor Definition Language (SDDL) format ([MS-DTYP]
section 2.5.1). The security descriptor describes which remote machines are allowed to send and
receive traffic secured by transport mode connection security rules which request this access
check. Machines granted access by the security descriptor are allowed to send and receive traffic.
Machines denied access by the security descriptor are blocked from sending and receiving traffic.
For schema versions 0x0200, 0x0201, and 0x020A, this value is invalid and MUST NOT be used.
This symbolic constant has a value of 15.

FW_GLOBAL_CONFIG_IPSEC_TRANSPORT_REMOTE_USER_AUTHORIZATION_LIST: This
value is a Unicode string in Security Descriptor Definition Language (SDDL) format. The security
descriptor describes which remote users are allowed to send and receive traffic secured by
transport mode connection security rules which request this access check. Users granted access
by the security descriptor are allowed to send and receive traffic. Users denied access by the
security descriptor are blocked from sending and receiving traffic. For schema versions 0x0200,
0x0201, and 0x020A, this value is invalid and MUST NOT be used. This symbolic constant has a
value of 16.

FW_GLOBAL_CONFIG_ENABLE_PACKET_QUEUE: This value specifies how scaling for the
software on the receive side is enabled for both the encrypted receive and clear text forward path
for the IPsec tunnel gateway scenario (as configured by FW_CS_RULE (section 2.2.54)). Use of
this option also ensures that the packet order is preserved. The data type for this option value is a
DWORD and is a combination of flags. A value of 0x00 indicates that all queuing is to be disabled.
A value of 0x01 specifies that inbound encrypted packets are to be queued. A value of 0x02
specifies that packets are to be queued after decryption is performed for forwarding. This symbolic
constant has a value of 17.

FW_GLOBAL_CONFIG_MAX: This value and values that exceed this value are not valid and MUST
NOT be used. This symbolic constant is defined for simplicity in writing IDL definitions and code. It
has a value of 18.

Note The value of FW_GLOBAL_CONFIG_MAX depends of the number of members in this
enumeration, which, in turn, depends on the schema version. See the descriptions of the previous
enumeration members to determine what this value is for each schema version.

63/ 306

[MS-FASP-DIff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

2.2.42 FW_CONFIG_FLAGS

This enumeration identifies flags that can be set on the RRPC_FWGetConfig (Opnum 10) and
RRPC_FWGetGlobalConfig (Opnum 3) methods.

typedef enum FW CONFIG_FLAGS

{
FW_CONFIG FLAG RETURN DEFAULT IF NOT FOUND = 0x0001
} FW CONFIG FLAGS;

FW_CONFIG_FLAG_RETURN_DEFAULT_IF_NOT_FOUND: If this flag is specified, and if the
RRPC_FWGetConfig (Opnum 10) method or the RRPC_FWGetGlobalConfig (Opnum 3) method fails
to find the configuration value in the policy store, then the call will succeed and return the default
value used by the firewall service. If this flag is not specified, these methods will fail with
ERROR_FILE_NOT_FOUND. The default set of values returned by these two calls is a firewall and
advanced security component implementation-specific<10> decision, and is outside the scope of
this protocol specification.

2.2.43 FW_NETWORK

This structure represents a network that is associated with a firewall profile. It is used for display
purposes in user interfaces.

typedef struct tag FW NETWORK {
[string, unique] wchar t* pszName;
FW_PROFILE TYPE ProfileType;
} FW_NETWORK,
*PFW_NETWORK;

pszName: A pointer to a Unicode string that represents the name of the network.
ProfileType: The profile type that is associated with the network. The type MUST be one of the
FW_PROFILE_TYPE flags, except FW_PROFILE_TYPE_ALL.

2.2.44 FW_ADAPTER

This structure represents a network interface in the host. It is used for display purposes in the user
interface when configuring the FW_PROFILE_CONFIG_DISABLED_INTERFACES (section 2.2.37)
configuration option.

typedef struct tag FW ADAPTER {
[string, unique] wchar t* pszFriendlyName;
GUID Guid;
} FW_ADAPTER,
*PFW_ADAPTER;

pszFriendlyName: A pointer to a Unicode string that presents the friendly name that is associated
with the network interface.

Guid: A GUID that uniquely identifies the interface in the host system.

2.2.45 FW_DIAG_APP

This structure is not used on the wire.

64 / 306

[MS-FASP-DIff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

2.2.46 FW_RULE_CATEGORY

This enumeration represents the classes of functionality that a third-party software component can
register for, take ownership of, and commit to implement. The implementation of such functionality by
the firewall and advanced security component, or by the third-party software component, are
implementation-specific decisions. This enumeration is only used to present the state of the
registrations.

typedef [vl_enum] enum _tag FW RULE CATEGORY

{
FW RULE CATEGORY BOOT = 0,
FW_RULE_CATEGORY_STEALTH =
FW_RULE_CATEGORY_FIREWALL =
FW RULE CATEGORY CONSEC = 3,
FW RULE CATEGORY MAX = 4

} FW_RULE CATEGORY,

*PFW_RULE CATEGORY;

1,
2,

FW_RULE_CATEGORY_BOOT: This category of functionality represents the policy that is used while
the system is starting up and the firewall and advance security component is not yet running. This
symbolic constant has a value of 0.

FW_RULE_CATEGORY_STEALTH: This category of functionality represents the policy that is used
to make the system appear invisible when it is connected to a network. For example, this
functionality helps prevent attackers from discovering the host and the ports that open to the
host. This symbolic constant has a value of 1.

FW_RULE_CATEGORY_FIREWALL: This category of functionality represents functions that are
performed by firewall objects while they are present on the FW_STORE_TYPE_LOCAL,
FW_STORE_TYPE_DYNAMIC, and FW_STORE_TYPE_GP_RSOP policy stores (see section 2.2.1).
This symbolic constant has a value of 2.

FW_RULE_CATEGORY_CONSEC: This category of functionality represents functions that are
performed by the connection security objects. This symbolic constant has a value of 3.

FW_RULE_CATEGORY_MAX: This value and values that exceed this value are not valid and MUST
NOT be used. It is defined for simplicity in writing IDL definitions and code. This symbolic constant
has a value of 4.

2.2.47 FW_PRODUCT

This structure represents a third-party software component that registers with the firewall and
advanced security component to implement some of the categories.

typedef struct tag FW PRODUCT ({

DWORD dwFlags;

DWORD dwNumRuleCategories;

[size is(dwNumRuleCategories), unique]

FW_RULE CATEGORY* pRuleCategories;

[string, ref] wchar t* pszDisplayName;

[string, unique] wchar t* pszPathToSignedProductExe;
} FW_PRODUCT,
*PFW_PRODUCT;

dwFlags: This field is not used.

dwNumRuleCategories: The number of rule categories with which the third-party software
component registered.

65/ 306

[MS-FASP-DIff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

pRuleCategories: A pointer to an array of dwNumRuleCategories that are contiguous
FW_RULE_CATEGORY elements.

pszDisplayName: A pointer to a Unicode string. The string represents the name of the third-party
software component.

pszPathToSignedProductExe: A pointer to a Unicode string. The string represents the file path to
the binary executable of the third-party software component.

2.2.48 FW_IP_VERSION

This enumeration is used to represent the two current IP protocol versions in use: IP version 4 and IP
version 6.

typedef enum _tag FW_IP_VERSION
{
FW_IP VERSION INVALID = O,
FW _IP VERSION V4,
FW _IP VERSION V6 = 2,
FW_IP_VERSION MAX = 3
} FW_IP VERSION;

FW_IP_VERSION_INVALID: This value MUST NOT be used. It is defined for simplicity in writing
IDL definitions and code. This symbolic constant has a value of 0.

FW_IP_VERSION_V4: This value represents IPv4. This symbolic constant has a value of 1.
FW_IP_VERSION_V6: This value represents the IPv6. This symbolic constant has a value of 2.

FW_IP_VERSION_MAX: This value and values that exceed this value are not valid and MUST NOT
be used. It is defined for simplicity in writing IDL definitions and code. This symbolic constant has
a value of 3.

2.2.49 FW_IPSEC_PHASE

This enumeration is used to identify the IPsec phase of negotiations.

typedef enum _tag FW_TIPSEC_PHASE
{
FW_IPSEC_PHASE INVALID = O,
FW_IPSEC_PHASE 1 = 1,
FW_IPSEC_PHASE 2 = 2,
FW_IPSEC_PHASE MAX =
} FW_IPSEC_PHASE;

3

FW_IPSEC_PHASE_INVALID: This value MUST NOT be used. It is defined for simplicity in writing
IDL definitions and code. This symbolic constant has a value of 0.

FW_IPSEC_PHASE_1: This value represents the IPsec first phase of negotiations, also called main
mode. This symbolic constant has a value of 1.

FW_IPSEC_PHASE_2: This value represents the IPsec second phase of negotiations. A phase 2
authentication is the second authentication and can mean extended mode or quick mode. On auth
sets, phase 2 authentication refers to extended mode (specified in [MS-AIPS] sections 3.6 and
3.7); and on crypto sets, phase 2 refers to quick mode (specified in [MS-AIPS] sections 3.4 and
3.5). This symbolic constant has a value of 2.

66 / 306

[MS-FASP-DIff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

FW_IPSEC_PHASE_MAX: This value and values that exceed this value are not valid and MUST NOT
be used. It is defined for simplicity in writing IDL definitions and code. This symbolic constant has
a value of 3.

2.2.50 FW_CS_RULE_FLAGS

This enumeration describes flag values for connection security rules.

typedef enum tag FW _CS RULE FLAGS

{
FW CS RULE FLAGS NONE = 0x00,
FW CS RULE FLAGS ACTIVE = 0x01,
FW_CS_RULE_FLAGS_DTM = 0x02,
FW_CS_RULE_TUNNEL_BYPASS IF ENCRYPTED = 0x08,
FW CS RULE OUTBOUND CLEAR = 0x10,
FW CS RULE FLAGS APPLY AUTHZ = 0x20,
FW_CS_RULE_FLAGS_KEY MANAGER ALLOW_DICTATE_KEY = 0x40,
FW_CS_RULE_FLAGS_KEY MANAGER ALLOW_NOTIFY KEY = 0x80,
FW CS RULE FLAGS SECURITY REALM = 0x100,
FW CS RULE FLAGS MAX = 0x200,
FW_CS RULE FLAGS MAX2 1 = 0x02,
FW_CS_RULE_FLAGS MAX V2 10 = 0x40,
FW CS RULE FLAGS MAX V2 20 = 0x100

} FW_CS RULE FLAGS;

FW_CS_RULE_FLAGS_NONE: This value means that none of the following flags are set. This value
is defined for simplicity in writing IDL definitions and code.

FW_CS_RULE_FLAGS_ACTIVE: If this flag is set, the rule is enabled; otherwise, the rule is
disabled.

FW_CS_RULE_FLAGS_DTM: If this flag is set, the rule is a dynamic tunnel mode rule.

FW_CS_RULE_TUNNEL_BYPASS_IF_ENCRYPTED: This flag MUST only be set on tunnel mode
rules. If this flag is set and traffic is already arriving encrypted, it is exempted from the tunnel.

FW_CS_RULE_OUTBOUND_CLEAR: This flag MUST only be set on tunnel mode rules. If set, when
outbound traffic matches the rule, it leaves unprotected, but inbound traffic MUST arrive through
the tunnel.

FW_CS_RULE_FLAGS_APPLY_AUTHZ: This flag MUST only be set on tunnel mode rules. If this
flag is set, the authenticated peers of the traffic MUST match the SDDLs that are specified in
FW_GLOBAL_CONFIG_IPSEC_TUNNEL_REMOTE_MACHINE_AUTHORIZATION_LIST and
FW_GLOBAL_CONFIG_IPSEC_TUNNEL_REMOTE_USER_AUTHORIZATION_LIST.

FW_CS_RULE_FLAGS_KEY_MANAGER_ALLOW_DICTATE_KEY: If this flag is set, external key
managers are permitted to dictate the cryptographic keys used. For schema versions 0x0200,
0x0201, and 0x020A, this value is invalid and MUST NOT be used.

FW_CS_RULE_FLAGS_KEY_MANAGER_ALLOW_NOTIFY_KEY: If this flag is set, external key
managers are notified of the cryptographic keys used. For schema versions 0x0200, 0x0201, and
0x020A, this value is invalid and MUST NOT be used.

FW_CS_RULE_FLAGS_SECURITY_REALM: If this flag is set, the connection security rule is
associated with a security realm. The wszRuleld of the connection security rule is the same as
the IPsec Security Realm ID that it is associated with. For schema versions 0x0200, 0x0201,
0x20A, and 0x0214, this value is invalid and MUST NOT be used.

67/ 306

[MS-FASP-DIff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

FW_CS_RULE_FLAGS_MAX: This value and values that exceed this value are not valid for all
schema versions and MUST NOT be used. It is only defined for simplicity in writing IDL definitions
and code. This symbolic constant has a value of 0x200.

FW_CS_RULE_FLAGS_MAX2_1: This value and values that exceed this value are not valid and
MUST NOT be used by servers and clients with schema version 0x0201 and earlier. It is defined
for simplicity in writing IDL definitions and code. This symbolic constant has a value of 0x02.

FW_CS_RULE_FLAGS_MAX_V2_10: This value and values that exceed this value are not valid and
MUST NOT be used by servers and clients with schema version 0x020A and earlier. It is defined
for simplicity in writing IDL definitions and code. This symbolic constant has a value of 0x40.

FW_CS_RULE_FLAGS_MAX_V2_20: This value and values that exceed this value are not valid and
MUST NOT be used by servers and clients with schema version 0x0214 and earlier. It is defined
for simplicity in writing IDL definitions and code. This symbolic constant has a value of 0x100.

2.2.51 FW_CS_RULE_ACTION

This enumeration identifies the possible actions a connection security rule (section 2.2.54) can have.

typedef enum _tag FW_CS_RULE_ACTION

{
FW_CS_RULE_ACTION INVALID = O,
FW_CS_RULE ACTION SECURE_ SERVER = 1,
FW CS RULE ACTION BOUNDARY = 2,
FW CS RULE ACTION SECURE = 3,
FW CS RULE ACTION DO NOT SECURE
FW_CS_RULE ACTION MAX = 5

} FW_CS_RULE ACTION;

4,

FW_CS_RULE_ACTION_INVALID: This value MUST NOT be used. It is defined for simplicity in
writing IDL definitions and code. This symbolic constant has a value of 0.

FW_CS_RULE_ACTION_SECURE_SERVER: This action requires inbound traffic to be IPsec traffic
and attempts to secure outbound traffic with IPsec. This symbolic constant has a value of 1.

FW_CS_RULE_ACTION_BOUNDARY: This action attempts to secure inbound and outbound traffic
with IPsec. If the action fails to secure the traffic, the traffic still flows on the clear. This symbolic
constant has a value of 2.

FW_CS_RULE_ACTION_SECURE: This action requires inbound and outbound traffic to be secured
by IPsec. This symbolic constant has a value of 3.

FW_CS_RULE_ACTION_DO_NOT_SECURE: This action exempts the traffic from being secured by
IPsec. This symbolic constant has a value of 4.

FW_CS_RULE_ACTION_MAX: This value and values that exceed this value are not valid and MUST
NOT be used. It is defined for simplicity in writing IDL definitions and code. This symbolic constant
has a value of 5.

2.2.52FW_CS_RULE2_10

This structure describes a connection security rule that is used by the 2.10 binary version for servers
and clients (see sections 1.7 and 2.2.37). The fields of this structure are identical to the FW_CS_RULE
structure, and their meanings are covered in section 2.2.54.

typedef struct tag FW CS RULE2 10 {
struct tag FW CS RULE2 10* pNext;
unsigned short wSchemaVersion;

68/ 306

[MS-FASP-DIff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

[string, range(1,10001), ref] wchar t* wszRuleld;

[string, range(1,10001)] wchar t* wszName;

[string, range(1,10001)] wchar t* wszDescription;

unsigned long dwProfiles;

FW ADDRESSES Endpointl;

FW_ADDRESSES Endpoint2;

FW_INTERFACE LUIDS LocalInterfacelds;

unsigned long dwLocalInterfaceTypes;

unsigned long dwLocalTunnelEndpointV4;

unsigned char LocalTunnelEndpointVé6[16];

unsigned long dwRemoteTunnelEndpointVi4;

unsigned char RemoteTunnelEndpointVe[16];

FW_PORTS EndpointlPorts;

FW_PORTS Endpoint2Ports;

[range (0,256)] unsigned short wIpProtocol;

[string, range(1,10001)] wchar t* wszPhaselAuthSet;

[string, range(1,10001)] wchar t* wszPhase2CryptoSet;

[string, range(1,10001)] wchar t* wszPhase2AuthSet;

[range (FW_CS_RULE_ACTION SECURE SERVER, FW_CS RULE_ACTION MAX)]
FW CS RULE ACTION Action;

unsigned short wFlags;

[string, range(1,10001)] wchar t* wszEmbeddedContext;

FW_OS PLATFORM LIST PlatformValidityList;

[range (FW_RULE_ORIGIN INVALID, FW_RULE ORIGIN MAX-1)]
FW RULE ORIGIN TYPE Originj;

[string, range(1,10001)] wchar t* wszGPOName;

FW_RULE_STATUS Status;

[string, range(1l,512)] wchar t* wszMMParentRuleId;

unsigned long Reserved;

[Sizeiis((Reserved & FW _OBJECT CTRL FLAG INCLUDE METADATA) ? 1
PFW_OBJECT METADATA pMetaData;

} FW_CS_RULE2_ 10,
*PFW_CS_RULE2 10;

2.2.53FW_CS_RULE2_0

This structure describes a connection security rule that is used by the 2.0 binary version for servers
and clients (see sections 1.7 and 2.2.37). The fields of this structure are identical to the FW_CS_RULE

structure and their meanings are covered in section 2.2.54.

typedef struct tag FW CS RULE2 0 {
struct _tag FW _CS RULE2 0* pNext;
unsigned short wSchemaVersion;
[string, range(1,10001), ref] wchar t* wszRuleld;
[string, range(1,10001)] wchar t* wszName;
[string, range(1,10001)] wchar_ t* wszDescription;
unsigned long dwProfiles;
FW_ADDRESSES Endpointl;
FW_ADDRESSES Endpoint2;
FW_INTERFACE LUIDS LocalInterfacelds;
unsigned long dwLocallInterfaceTypes;
unsigned long dwLocalTunnelEndpointV4;
unsigned char LocalTunnelEndpointVé6[16];
unsigned long dwRemoteTunnelEndpointV4;
unsigned char RemoteTunnelEndpointV6([16];
FW_PORTS EndpointlPorts;
FW_PORTS Endpoint2Ports;
[range (0,256)] unsigned short wIpProtocol;
[string, range(1,10001)] wchar t* wszPhaselAuthSet;
[string, range(1,10001)] wchar t* wszPhase2CryptoSet;
[string, range(1,10001)] wchar t* wszPhase2AuthSet;
[

range (FW_CS RULE ACTION SECURE SERVER, FW CS RULE ACTION MAX - 1)]

FW_CS_RULE_ACTION Action;
unsigned short wFlags;
[string, range(1,10001)] wchar t* wszEmbeddedContext;
FW_OS_PLATFORM LIST PlatformValidityList;

[MS-FASP-DIff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

69 / 306

}

[range (FW_RULE ORIGIN INVALID, FW RULE ORIGIN MAX-1)]
FW_RULE ORIGIN TYPE Origin;

[string, range(1,10001)] wchar t* wszGPOName;

FW_RULE STATUS Status;

FW _CS RULE2 O,

*PFW_CS RULE2 0;

2.2.54 FW_CS_RULE

This structure describes a connection security rule.

typedef struct tag FW CS RULE ({

}

struct tag FW _CS RULE* pNext;
unsigned short wSchemaVersion;
[string, range(1,10001), ref] wchar t* wszRuleld;
[string, range(1,10001)] wchar t* wszName;
[string, range(1,10001)] wchar t* wszDescription;
unsigned long dwProfiles;
FW ADDRESSES Endpointl;
FW ADDRESSES Endpoint2;
FW_INTERFACE LUIDS LocalInterfacelds;
unsigned long dwLocallnterfaceTypes;
unsigned long dwLocalTunnelEndpointV4;
unsigned char LocalTunnelEndpointVé[16];
unsigned long dwRemoteTunnelEndpointVi4;
unsigned char RemoteTunnelEndpointVe[16];
FW_PORTS EndpointlPorts;
FW_PORTS Endpoint2Ports;
[range (0,256)] unsigned short wIpProtocol;
[string, range(1,10001)] wchar t* wszPhaselAuthSet;
[string, range(1,10001)] wchar t* wszPhase2CryptoSet;
[string, range(1,10001)] wchar t* wszPhase2AuthSet;
[range (FW_CS_RULE_ACTION SECURE SERVER, FW_CS RULE ACTION MAX - 1)]
FW_CS_RULE ACTION Action;
unsigned short wFlags;
[string, range(1,10001)] wchar t* wszEmbeddedContext;
FW_OS PLATFORM LIST PlatformValidityList;
[range (FW_RULE_ORIGIN INVALID, FW_RULE ORIGIN MAX-1)]
FW_RULE_ORIGIN_TYPE Origin;
[string, range(1,10001)] wchar_ t* wszGPOName;
FW_RULE_STATUS Status;
[string, range(l,512)] WCHAR* wszMMParentRuleId;
DWORD Reserved;
[Size_is((Reserved & FW_OBJECT_CTRL_FLAG_INCLUDE_METADATA) 21 :0)]
PFW_OBJECT_METADATA pMetaData;
[string, range(l,512)] WCHAR* wszRemoteTunnelEndpointFqgdn;
FW_ADDRESSES RemoteTunnelEndpoints;
DWORD dwKeyModules;
DWORD FwdPathSALifetime;
[string, range(1l,10001)] LPWSTR* wszTransportMachineAuthzSDDL;
[string, range(1l,10001)] LPWSTR* wszTransportUserAuthzSDDL;
FW_CS_RULE,
*PFW_CS_RULE;

pNext: A pointer to the next FW_CS_RULE in the list.

wSchemaVersion: Specifies the version of the rule.

wszRuleld: A pointer to a Unicode string that uniquely identifies the rule.

wszName: A pointer to a Unicode string that provides a friendly name for the rule.

wszDescription: A pointer to a Unicode string that provides a friendly description for the rule.

[MS-FASP-DIff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

70/ 306

dwProfiles: A bitmask of the FW_PROFILE_TYPE flags. It is a condition that matches traffic on the
specified profiles.

Endpointl: A condition that specifies the addresses of the first host of the traffic that the rule
matches. An empty EndPointl structure means that this condition is not applied (any match).

Endpoint2: A condition that specifies the addresses of the second host of the traffic that the rule
matches. An empty EndPoint2 structure means that this condition is not applied (any match).

LocalInterfacelds: A condition that specifies the list of specific network interfaces that are used by
the traffic that the rule matches. If the LocalInterfacelds field does not specify an interface
GUID, the rule applies to all interfaces; that is, the condition is not applied.

dwLocalInterfaceTypes: A bitmask of FW_INTERFACE_TYPE. It is a condition that restricts the
interface types used by the traffic that the rule matches. A value of 0x00000000 means the
condition matches all interface types.

dwlLocalTunnelEndpointV4: This field specifies the IPv4 address of the endpoint that the host
machines use as their local endpoint when IPsec operates in tunnel mode.

LocalTunnelEndpointV6: This field specifies the IPv6 address of the endpoint that the host
machines use as their local endpoint when IPsec operates in tunnel mode.

dwRemoteTunnelEndpointV4: This field specifies the IPv4 address of the endpoint that the host
machines use as their remote endpoint when IPsec operates in tunnel mode.

RemoteTunnelEndpointV6: This field specifies the IPv6 address of the endpoint that the host
machines use as their remote endpoint when IPsec operates in tunnel mode.

EndpointlPorts: A condition that specifies the first host's ports of the TCP or UDP traffic that the
rule matches.

Endpoint2Ports: A condition that specifies the second host's ports of the TCP or UDP traffic that the
rule matches.

wIpProtocol: A condition that specifies the protocol of the traffic that the rule matches. If the value
is in the range of 0 to 255, the value describes a protocol as in IETF IANA numbers (for more
information, see [IANA-PROTO-NUM]). If the value is 256, the rule matches any protocol.

wszPhaselAuthSet: A Unicode string that represents the set identifier for the Phasel authentication
policy objects.

wszPhase2CryptoSet: A Unicode string that represents the set identifier for the Phase2
cryptographic policy objects.

wszPhase2AuthSet: A Unicode string that represents the set identifier of the Phase2 authentication
policy objects. If this field is NULL, no second authentication is performed.

Action: The connection security action that the rule takes for the traffic matches. This field MUST
contain a valid value from the FW_CS_RULE_ACTION enumeration.

wFlags: A bit flag or flags from FW_CS_RULE_FLAGS.

wszEmbeddedContext: A pointer to a Unicode string. It specifies a group name for this rule. Other
components in the system use this string to enable or disable a group of rules by verifying that all
rules have the same group name.

PlatformValidityList: A condition in a rule that determines whether or not the rule is enforced by
the local computer based on the local computer's platform information. The rule is enforced only if
the local computer's operating system platform is an element of the set described by
PlatformValidityList.<11>

71/ 306

[MS-FASP-DIff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Origin: This field is the rule origin, as specified in the FW_RULE_ORIGIN_TYPE enumeration. It MUST
be filled on enumerated rules and ignored on input.

wszGPOName: A pointer to a Unicode string containing the displayName of the GPO containing this
object. When adding a new object, this field is not used. The client SHOULD set the value to NULL,
and the server MUST ignore the value. When enumerating an existing object, if the client does not
set the FW_ENUM_RULES_FLAG_RESOLVE_GPO_NAME flag, the server MUST set the value to
NULL. Otherwise, the server MUST set the value to the displayName of the GPO containing the
object or NULL if the object is not contained within a GPO. For details about how the server
initializes an object from a GPO, see section 3.1.3. For details about how the displayName of a
GPO is stored, see [MS-GPOL] section 2.3.

Status: The status code of the rule, as specified by the FW_RULE_STATUS enumeration. This field is
filled out when the structure is returned as output. On input, this field MUST be set to
FW_RULE_STATUS_OK.

wszMMParentRuleld: This field is not used.

Reserved: Not used other than to instruct RPC by using the
FW_OBJECT_CTRL_FLAG_INCLUDE_METADATA flag that a pointer to a FW_OBIJECT_METADATA
structure is present. It has no semantic meaning to the object itself

pMetaData: A pointer to an FW_OBJECT_METADATA structure that contains specific metadata about
the current state of the connection security rule.

wszRemoteTunnelEndpointFqdn: A pointer to a Unicode string containing the fully qualified
domain name (FQDN) of the endpoints that the host machines use as their remote endpoint when
IPsec operates in tunnel mode.

RemoteTunnelEndpoints: This field specifies the IPv4 and IPv6 addresses of the endpoints that the
host machines use as their remote endpoint when IPsec operates in tunnel mode.

dwKeyModules: A bitmask of the FW_KEY_MODULE flags. It specifies the key modules used to
establish the cryptographic keys used by IPsec.

FwdPathSALifetime: This value is the lifetime in seconds before a Phase2 established key is
renegotiated if the key is used to secure traffic forwarded from one interface to another on the
same host machine.

wszTransportMachineAuthzSDDL: A pointer to a Unicode string in Security Descriptor Definition
Language (SDDL) format ([MS-DTYP] section 2.2.36). The security descriptor describes which
remote machines are allowed to send and receive traffic. Machines granted access by the security
descriptor are allowed to send and receive traffic. Machines denied access by the security
descriptor are blocked from sending and receiving traffic. This field MUST be null for tunnel mode
rules.

wszTransportUserAuthzSDDL: A pointer to a Unicode string in Security Descriptor Definition
Language (SDDL) format ([MS-DTYP] section 2.2.36). The security descriptor describes which
remote users are allowed to send and receive traffic. Users granted access by the security
descriptor are allowed to send and receive traffic. Users denied access by the security descriptor
are blocked from sending and receiving traffic. This field MUST be null for tunnel mode rules.

The following are semantic checks that connection security rules MUST pass:
» The wSchemaVersion field MUST NOT be less than 0x000200.

= The wszRuleld field MUST NOT contain the pipe '|' character, MUST NOT be NULL, MUST be a
string of at least 1 character, and MUST NOT be greater than or equal to 512 characters.<12>

» The wszName field string MUST meet the following criteria:

72 / 306

[MS-FASP-DIff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

= MUST contain at least one character.

= MUST contain less than 10,000 characters.

= MUST NOT be NULL.

= MUST NOT contain the pipe '|' character.

= MUST NOT equal the string "ALL" (case-insensitive).

= If the wszDescription field string is not NULL, it MUST be at least 1 character, MUST NOT be
greater than or equal to 10,000 characters, and MUST NOT contain the pipe '|' character.

= If the wszEmbeddedContext field string is not NULL, it MUST be at least 1 character, MUST NOT
be greater than or equal to 10,000 characters, and MUST NOT contain the pipe '|' character.

= The dwProfiles field MUST NOT contain invalid values, and if it is not equal to the ALL profile
type, it MUST NOT contain unknown profiles.

= The wIpProtocol field MUST NOT be greater than 256.
= If wIpProtocol is 6 or 17, the wPortKeywords field of Endpoint1Ports MUST be 0.
= If wIpProtocol is 6 or 17, the wPortKeywords field of Endpoint2Ports MUST be 0.

= If wIpProtocol is neither 6 nor 17, the Endpointl1Ports and Endpoint2Ports fields MUST be
empty.

= If the Endpoint1 field is not empty, LocalInterfacelds MUST be empty and
dwLocalInterfaceTypes MUST be 0. If the Endpoint1 field is empty, LocalInterfacelds MUST
NOT be empty and dwLocalInterfaceTypes MUST NOT be 0.

» The Endpointl and Endpoint2 address keywords MUST contain valid address keywords.

» The Endpointl and Endpoint2 structures MUST NOT contain multicast v4 or v6 addresses.

= The dwlLocalInterfaceTypes MUST NOT be greater than or equal to FW_INTERFACE_TYPE_MAX.
= The Action field MUST be a valid action from the FW_CS_RULE_ACTION enumeration.

= The wFlags field MUST NOT be greater than or equal to FW_CS_RULE_FLAGS_MAX.

= If the Action field is FW_CS_RULE_ACTION_DO_NOT_SECURE, wszPhaselAuthSet,
wszPhase2AuthSet, and wszPhase2CryptoSet MUST all be NULL; otherwise,
wszPhaselAuthSet, wszPhase2AuthSet, and wszPhase2CryptoSet MUST all be at least 1
character long, MUST NOT be greater than or equal to 1,000 characters,<13> and MUST NOT
contain the pipe '|' character.

However, the wszPhase2AuthSet member can always be NULL. When wszPhase2AuthSet is
not NULL, it SHOULD pass all of the string checks performed by the wszPhaselAuthSet member
and the wszPhase2CryptoSet member.

= A tunnel rule has the dwRemoteTunnelEndpointV4 (or V6) field as an address or the
dwLocalTunnelEndpointV4 (or V6) as an address. If the rule is a tunnel rule, the Endpoint1l
and Endpoint2 addresses MUST NOT be empty; the Action field MUST be
FW_CS_RULE_ACTION_SECURE; wipProtocol MUST be ANY (256); Endpointl1Ports and
Endpoint2Ports MUST be empty; and dwRemoteTunnelEndpointV4 and
dwLocalTunnelEndpointV4 MUST either both be ANY or both be specified. The same applies to
v6 tunnel endpoint fields.

73/ 306

[MS-FASP-DIff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

= If the rule's wFlags field contains the FW_CS_RULE_FLAGS_DTM flag, then the rule is also a
tunnel rule and the following requirements are relaxed: Either dwRemoteTunnelEndpointV4 or
dwLocalTunnelEndpointV4, or both, can now be empty. The same applies to the v6 tunnel
endpoint fields. Endpointl or Endpoint2 or both can now be empty. The action can now also be
FW_CS_RULE_ACTION_DO_NOT_SECURE.

= Tunnel endpoint addresses MUST NOT be the loopback addresses.

= If the wFlags field has the FW_CS_RULE_FLAGS_OUTBOUND_CLEAR flag set or the
FW_CS_RULE_FLAGS_TUNNEL_BYPASS_IF_ENCRYPTED flag set, the rule MUST be a tunnel mode
rule.

2.2.55 FW_CERT_CRITERIA_TYPE

The FW_CERT_CRITERIA_TYPE enumeration defines whether the criteria are to be used for selection,
validation, or both.

typedef enum

{
FW CERT CRITERIA TYPE BOTH,
FW CERT CRITERIA TYPE SELECTION,
FW_CERT CRITERIA TYPE VALIDATION,
FWW_CERT CRITERIA TYPE MAX

} FW_CERT CRITERIA TYPE;

FW_CERT_CRITERIA_TYPE_BOTH: Indicates that the criteria are to be used for both certificate
selection and validation.

FW_CERT_CRITERIA_TYPE_SELECTION: Indicates that the criteria are meant for local certificate
selection.

FW_CERT_CRITERIA_TYPE_VALIDATION: Indicates that the criteria are meant for validation of a
peer certificate.

FW_CERT_CRITERIA_TYPE_MAX: To be valid, a value of this type MUST be less than this
constant.

2.2.56 FW_CERT_CRITERIA_NAME_TYPE

This enumeration defines the type of name to match in the certificate for a given criterion.

typedef enum

{
FW_CERT CRITERIA NAME NONE,
FW_CERT CRITERIA NAME DNS,
FW_CERT CRITERIA NAME UPN,
FW_CERT CRITERIA NAME RFC822,
FW_CERT CRITERIA NAME CN,
FW_CERT CRITERIA NAME OU,
FWW_CERT CRITERIA NAME O,
FW_CERT CRITERIA NAME DC,
FW_CERT CRITERIA NAME MAX

} FW_CERT_CRITERIA NAME TYPE;

FW_CERT_CRITERIA_NAME_NONE: Do not perform any name matching.

FW_CERT_CRITERIA_NAME_DNS: Match the DNS name in the Subject Alternative Name of the
certificate.

74 / 306

[MS-FASP-DIff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

FW_CERT_CRITERIA_NAME_UPN: Match the UPN name in the Subject Alternative Name of the
certificate.

FW_CERT_CRITERIA_NAME_RFC822: Match the RFC822 name in the Subject Alternative Name of
the certificate.

FW_CERT_CRITERIA_NAME_CN: Match the CN relative distinguished names (RDNs) in the Subject
DN of the certificate.

FW_CERT_CRITERIA_NAME_OU: Match the OU RDNs in the Subject DN of the certificate.
FW_CERT_CRITERIA_NAME_O: Match the O RDNs in the Subject DN of the certificate.
FW_CERT_CRITERIA_NAME_DC: Match the DC RDNs in the Subject DN of the certificate.

FW_CERT_CRITERIA_NAME_MAX: To be valid, a value of this type MUST be less than this
constant.

2.2.57 FW_CERT_CRITERIA_FLAGS

This enumeration describes bitmask flags that can be set on a criteria structure.

typedef enum

{
FW_AUTH CERT CRITERIA FLAGS NONE = 0x0000,
FW_AUTH CERT CRITERIA FLAGS FOLLOW RENEWAL = 0x0001,
FW AUTH CERT CRITERIA FLAGS MAX = 0x0002

} FW_CERT CRITERIA FLAGS;

FW_AUTH_CERT_CRITERIA_FLAGS_NONE: No flags are set.

FW_AUTH_CERT_CRITERIA_FLAGS_FOLLOW_RENEWAL: The renewal links in a certificate are
to be followed, if they are found within a certificate.

FW_AUTH_CERT_CRITERIA_FLAGS_MAX: To be valid, a flag value of this type MUST be less than
this constant.

2.2.58 FW_CERT_CRITERIA

This structure contains fields that are used when selecting a local certificate and validating a remote
peer's certificate during certificate authentication.

typedef struct FW _CERT CRITERIA ({
WORD wSchemaVersion;
WORD wFlags;
FW_CERT_CRITERIA TYPE CertCriteriaType;
FW_CERT CRITERIA NAME TYPE NameType;
LPWSTR wszName;
DWORD dwNumEku;
LPSTR ppEku;
LPWSTR wszHash;
} FW_CERT CRITERIA,
*PFW_CERT CRITERIA;

wSchemaVersion: Specifies the version of the criteria structure.

wFlags: A WORD containing bit flags, whose value is defined in FW_CERT_CRITERIA_FLAGS. The flag
FW_AUTH_CERT_CRITERIA_FLAGS_FOLLOW_RENEWAL MUST NOT be set if the field wszHash is

75/ 306

[MS-FASP-DIff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

null. If specified, the flag FW_AUTH_CERT_CRITERIA_FLAGS_FOLLOW_RENEWAL MUST NOT be
used if CertCriteriaType is equal to FW_CERT_CRITERIA_TYPE_VALIDATION.

CertCriteriaType: Specifies the type of criteria used, as among those specified in the
FW_CERT_CRITERIA_TYPE enumeration. This value MUST be less than
FW_CERT_CRITERIA_TYPE_MAX.

NameType: Specifies the type of name, as among those specified in the
FW_CERT_CRITERIA_NAME_TYPE enumeration. This value MUST be less than
FW_CERT_CRITERIA_NAME_MAX. If the value is not equal to FW_CERT_CRITERIA_NAME_NONE,
then the value for wszName MUST be specified.

wszName: A Unicode string that specifies a name corresponding to the NameType specified. The
length of this Unicode string MUST be less than 10,000 characters. The name MUST not contain
the pipe "|" character.

dwNumEku: Specifies the number of EKU element entries in the ppEku array.

ppEku: Pointer to an array of pointers to null-terminated strings. Each string in the array MUST
contain only characters in the range "0" to "9" or the "." character. The number of elements in the
array MUST be equal to the value of the dwNumEku field.

wszHash: A Unicode string that specifies the hash of the certificate. The number of characters in the
string MUST be equal to 40. Each character in the string MUST be in one of the following ranges:
|I0|I to ll9ll, llall to llfll’ Or IIAII to |IFll.

2.2.59 FW_AUTH_METHOD

This enumeration defines the different authentication methods that are used for authentication. The
IpSecPhase field of the FW_AUTH_SET containing the FW_AUTH_SUITE determines which
authentication methods are valid for a particular authentication suite.

typedef enum _tag FW_AUTH METHOD
{

FW_AUTH METHOD INVALID = O,

FW_AUTH METHOD ANONYMOUS = 1

FW_AUTH METHOD MACHINE KERB = 2,

FW_AUTH METHOD MACHINE SHKEY = 3,

4

r

Fil_AUTH METHOD MACHINE NTLM = 4
FW_AUTH METHOD MACHINE CERT = 5
FW_AUTH METHOD USER KERB
Fil_AUTH METHOD USER CERT = 7,
Fii_AUTH METHOD USER NTLM = 8,
FW_AUTH METHOD MACHINE RESERVED = 9,
FW_AUTH METHOD USER RESERVED = 10,
FW_AUTH METHOD MAX 2 10 = 9,
Fil_AUTH METHOD MAX = 11

} FW_AUTH METHOD;

6,

FW_AUTH_METHOD_INVALID: This value MUST NOT be used. It is defined for simplicity in writing
IDL definitions and code. This symbolic constant has a value of 0.

FW_AUTH_METHOD_ANONYMOUS: This method does not require identity to authenticate. It is
equal to no authentication. This method can be used for both FW_IPSEC_PHASE_1 or
FW_IPSEC_PHASE_2. This symbolic constant has a value of 1.

FW_AUTH_METHOD_MACHINE_KERB: This method authenticates the identity of machines by
using Kerberos Protocol Extensions as specified in [MS-KILE]. This method MUST be used only on
FW_IPSEC_PHASE_1. This symbolic constant has a value of 2.

76 / 306

[MS-FASP-DIff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

FW_AUTH_METHOD_MACHINE_SHKEY: This method uses a previous manually shared key to
authenticate machine identities. This method MUST be used only on FW_IPSEC_PHASE_1. This
symbolic constant has a value of 3.

FW_AUTH_METHOD_MACHINE_NTLM: This method authenticates the identity of machines by
using the NTLM Authentication Protocol as specified in [MS-NLMP]. This method MUST be used
only on FW_IPSEC_PHASE_1. This symbolic constant has a value of 4.

FW_AUTH_METHOD_MACHINE_CERT: This method authenticates the identity of a machine by
using machine certificates. This method can be used for both FW_IPSEC_PHASE_1 or
FW_IPSEC_PHASE_2. This symbolic constant has a value of 5.

FW_AUTH_METHOD_USER_KERB: This method authenticates user identities by using the Kerberos
Protocol Extensions. This method MUST be used only on FW_IPSEC_PHASE_2. This symbolic
constant has a value of 6.

FW_AUTH_METHOD_USER_CERT: This method authenticates user identities by using user
certificates. This method MUST be used only on FW_IPSEC_PHASE_2. This symbolic constant has
a value of 7.

FW_AUTH_METHOD_USER_NTLM: This method authenticates user identities by using the NTLM
Authentication Protocol. This method MUST be used only on FW_IPSEC_PHASE_2. This symbolic
constant has a value of 8.

FW_AUTH_METHOD_MACHINE_RESERVED: This value is invalid and MUST NOT be used. This
symbolic constant has a value of 9.

FW_AUTH_METHOD_USER_RESERVED: This value is invalid and MUST NOT be used. This
symbolic constant has a value of 10.

FW_AUTH_METHOD_MAX_2_10: This value and values that exceed this value are not valid and
MUST NOT be used by servers and clients with schema version 0x020A and earlier. It is defined
for simplicity in writing IDL definitions and code. This symbolic constant has a value of 9.

FW_AUTH_METHOD_MAX: This value and values that exceed this value are not valid and MUST
NOT be used. It is defined for simplicity in writing IDL definitions and code. This symbolic constant
has a value of 11.

2.2.60 FW_AUTH_SVUITE_FLAGS

This enumeration describes bitmask flags that can be set on authentication proposals.

typedef enum tag FW AUTH SUITE FLAGS

{
FW_AUTH SUITE FLAGS NONE = 0x0000,
FW_AUTH SUITE FLAGS CERT EXCLUDE CA NAME = 0x0001,
FW_AUTH SUITE FLAGS HEALTH CERT = 0x0002,
FW_AUTH SUITE FLAGS PERFORM CERT_ ACCOUNT MAPPING = 0x0004,
FW_AUTH SUITE FLAGS CERT_ SIGNING_ECDSA256 = 0x0008,
FW_AUTH SUITE FLAGS CERT SIGNING ECDSA384 = 0x0010,
FW_AUTH SUITE FLAGS_ INTERMEDIATE CA = 0x0020,
W_AUTH_SUITE FLAGS ALLOW_PROXY = 0x0040,
FW_AUTH SUITE FLAGS MAX = 0x0080,
FW_AUTH SUITE FLAGS MAX V2 1 = 0x0020

} FW_AUTH_SUITE_ FLAGS;

FW_AUTH_SUITE_FLAGS_NONE: This value means that none of the following flags are set. This
value is defined for simplicity in writing IDL definitions and code.

77/ 306

[MS-FASP-DIff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

FW_AUTH_SUITE_FLAGS_CERT_EXCLUDE_CA_NAME: If this flag is set, certificate authority
(CA) names are excluded. This flag MUST be set only on first authentications.

FW_AUTH_SUITE_FLAGS_HEALTH_CERT: This flag specifies that the certificate in use is a health
certificate. On second authentications, if the authentication method is using a machine certificate,
this flag MUST be specified. Also on second authentications, if the authentication method is using
a user certificate, this flag MUST NOT be specified.

FW_AUTH_SUITE_FLAGS_PERFORM_CERT_ACCOUNT_MAPPING: This flag specifies that the
certificate that is used maps to an account.

FW_AUTH_SUITE_FLAGS_CERT_SIGNING_ECDSA256: This flag specifies that the default
certificate signing algorithm of RSA MUST be replaced by the Elliptic Curve Digital Signature
Algorithm (ECDSA) using curves with a 256-bit prime moduli.

FW_AUTH_SUITE_FLAGS_CERT_SIGNING_ECDSA384: This flag specifies that the default
certificate signing algorithm of RSA MUST be replaced by the Elliptic Curve Digital Signature
Algorithm using curves with a 384-bit prime moduli.

FW_AUTH_SUITE_FLAGS_INTERMEDIATE_CA: This flag specifies that the certificate used is not
from a root certificate authority but from an intermediate authority in the chain.

W_AUTH_SUITE_FLAGS_ALLOW_PROXY: This flag specifies that the host machine MUST use a
proxy server to communicate with the Key Distribution Center (KDC) when performing Kerberos
authentication. For schema versions 0x0200, 0x0201, and 0x020A, this value is invalid and MUST
NOT be used.

FW_AUTH_SUITE_FLAGS_MAX: This value and values that exceed this value are not valid and
MUST NOT be used. It is defined for simplicity in writing IDL definitions and code. This symbolic
constant has a value of 0x0080.

FW_AUTH_SUITE_FLAGS_MAX_V2_1: This value and values that exceed this value are not valid
and MUST NOT be used by servers and clients with schema version 0x0201 and earlier. It is
defined for simplicity in writing IDL definitions and code. This symbolic constant has a value of
0x0020.

2.2.61 FW_AUTH_SUITE2_10

This structure describes an IPsec authentication suite. An authentication suite is a proposal of a set of
algorithms and parameters that specify the authentication method to be used. It also includes some
modifiers and parameters for the authentication method.

typedef struct tag FW AUTH SUITE2 10 {
[range (FW_AUTH METHOD INVALID+1, FW AUTH METHOD MAX)]
FW_AUTH _METHOD Method;
unsigned short wFlags;
[switch type (FW AUTH METHOD), switch is(Method)]
union {
[case (FW_AUTH_METHOD_MACHINE_CERT, FW_AUTH_METHOD_USER_CERT)]
struct {
[ref, string] wchar t* wszCAName;
}i
[case (FW_AUTH METHOD MACHINE SHKEY)]
struct {

[ref, string] wchar t* wszSHKey;
}i
[default] ;

}i
} FW_AUTH SUITE2 10,

*PFW_AUTH SUITE2 10;

78 / 306

[MS-FASP-DIff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Method: This field is of type FW_AUTH_METHOD. It specifies the authentication method that is
suggested by this proposal suite.

wFlags: This flag is a combination of flags from FW_AUTH_SUITE_FLAGS.

wszCAName: A pointer to a Unicode string. This string represents the name of the certificate
authority to be used to authenticate when using machine or user certificate methods.

wszSHKey: A pointer to a Unicode string. This string is the previous, manually shared secret that is
used to authenticate when using preshared key methods.

If the method is machine certificate or user certificate, the wszCAName string MUST NOT be NULL,
MUST be at least 1 character long, MUST NOT be greater than or equal to 10,000 characters, MUST
NOT contain the pipe(|) character, and MUST be a CERT_X500_NAME_STR string type name encoded
with X509_ASN_ENCODING. If the method is SHKEY, the wszSHKey string MUST NOT be NULL,
MUST be at least 1 character long, MUST NOT be greater than or equal to 10,000 characters, and
MUST NOT contain the pipe (|) character.

2.2.62 FW_AUTH_SVITE

This structure specifies an IPsec authentication suite and includes certification selection criteria. An
authentication suite is a proposal of a set of algorithms and parameters that specify the authentication
method to be used.

typedef struct tag FW AUTH SUITE ({
[range (FW_AUTH METHOD INVALID+1, FW AUTH METHOD MAX)]
FW AUTH METHOD Method;
unsigned short wFlags;
[switch type (FW_AUTH METHOD), switch is(Method)]
union {
[case (FW AUTH METHOD MACHINE CERT,FW AUTH METHOD USER CERT)]
struct {
[ref, string] wchar t* wszCAName;
[unique] PFW_CERT CRITERIA pCertCriteria;
bi
[case (FW_AUTH_METHOD_MACHINE_SHKEY)]

struct {
[ref, string] wchar t* wszSHKey;

} pCertCriteria;

[case (FW_AUTH METHOD MACHINE KERB, FW_AUTH METHOD USER_KERB)]
struct {

[unique, string] WCHAR* wszProxyServer;

bi
[default] ;
}i
} FW_AUTH SUITE,
*PFW_AUTH SUITE;

Method: This field is of type FW_AUTH_METHOD. It specifies the authentication method that is
suggested by this proposal suite.

wFlags: This flag is a combination of flags from FW_AUTH_SUITE_FLAGS.

wszCAName: A pointer to a Unicode string. This string represents the name of the certificate
authority to be used to authenticate when using machine or user certificate methods.

pCertCriteria: A pointer to a structure of type PFW_CERT_CRITERIA. This field MUST NOT be present
unless the Method field has the value FW_AUTH_METHOD_MACHINE_CERT or
FW_AUTH_METHOD_USER_CERT.

79/ 306

[MS-FASP-DIff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

It contains fields which are used when selecting a local certificate and validating a remote peer's
certificate during certificate authentication.

wszSHKey: A pointer to a Unicode string. This string is the previous, manually shared secret that is
used to authenticate when using preshared key methods.

wszProxyServer: A pointer to a Unicode string specifying the fully qualified domain name (FQDN) of
the Kerberos proxy server. This field MUST be set if and only if the
FW_AUTH_SUITE_FLAGS_ALLOW_PROXY flag is set.

If the method is machine certificate or user certificate, the wszCAName string MUST NOT be NULL,
MUST be at least 1 character long, MUST NOT be greater than or equal to 10,000 characters, MUST
NOT contain the pipe(]) character, and MUST be a valid Name as defined in [X501] section 9.2. If the
method is SHKEY, the wszSHKey string MUST NOT be NULL, MUST be at least 1 character long,
MUST NOT be greater than or equal to 10,000 characters, and MUST NOT contain the pipe (|)
character.

If the Method is not FW_AUTH_METHOD_MACHINE_CERT or FW_AUTH_METHOD_USER_CERT then
the pCertCriteria field MUST be NULL.

2.2.63 FW_AUTH_SET2_10

This structure contains a list of FW_AUTH_SUITE2_10 elements that are ordered from highest to
lowest preference and are negotiated with remote peers to establish authentication algorithms.

typedef struct _tag FW AUTH SET2 10 {
struct tag FW AUTH SET2 10* pNext;
unsigned short wSchemaVersion;
[range (FW_IPSEC_PHASE INVALID+1, FW_IPSEC PHASE MAX-1)]
FW IPSEC PHASE IpSecPhase;
string, range(l 255), ref] wchar t* wszSetId;

string, range(1,10001)] wchar t* wszName;
string, range(1,10001)] wchar t* wszDescription;
range (0,1000)] unsigned long dwNumSuites;

size is(dwNumSuites)] PFW AUTH SUITE pSuites;
range (FW_RULE_ORIGIN INVALID,FW RULE ORIGIN MAX-1)]
FW_RULE_ORIGIN_TYPE Origin;
[string, range(1,10001)] wchar_ t* wszGPOName;
FW_RULE_STATUS Status;
unsigned long dwAuthSetFlags;
} FW_AUTH SET2_ 10,
*PFW_AUTH_SET2_ 10;

[

[

[_

[string, range(1,10001)] wchar t* wszEmbeddedContext;
[

[

[

pNext: A pointer to the next FW_AUTH_SET2_10 in the list.
wSchemaVersion: Specifies the version of the set.

IpSecPhase: This field is of type FW_IPSEC_PHASE, and it specifies if this authentication set applies
for first or second authentications.

wszSetlId: A pointer to a Unicode string that uniquely identifies the set. The default set for this policy
object is identified with the "{E5A5D32A-4BCE-4e4d-B07F-4AB1BA7E5FE3}" string for Phasel and
the "{E5A5D32A-4BCE-4e4d-B07F-4AB1BA7E5FE4}" string for Phase2. Default sets are merged
across policy stores, and only one is enforced according to predefined merge logic rules.

wszName: A pointer to a Unicode string that provides a friendly name for the set.

wszDescription: A pointer to a Unicode string that provides a friendly description for the set.

80 / 306

[MS-FASP-DIff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

wszEmbeddedContext: A pointer to a Unicode string that provides a way for applications to store
relevant application-specific context that is related to the set.

dwNumSuites: Specifies the number of authentication suites that the structure contains.

pSuites: A pointer to an array of FW_AUTH_SUITE elements. The number of elements is given by
dwNumSuites.

Origin: This field is the set origin, as specified in the FW_RULE_ORIGIN_TYPE enumeration. It MUST
be filled on enumerated rules and ignored on input.

wszGPOName: A Unicode string that represents the name of the originating GPO. It MUST be set if
the origin is Group Policy; otherwise, it MUST be NULL.

Status: A status code of the set, as specified by the FW_RULE_STATUS enumeration. This field is
filled out when the structure is returned as output. On input, this field MUST be set to
FW_RULE_STATUS_OK.

dwAuthSetFlags: A reserved value and not currently used. It MUST be set to 0.
The following are semantic checks that authentication sets MUST pass:
= The wSchemaVersion field MUST NOT be less than 0x000200.

= The wszSetld field MUST NOT contain the pipe (|) character, MUST NOT be NULL, MUST be a
string of at least 1 character long, and MUST NOT be greater than or equal to 255 characters.

= If the wszName field string is not NULL, it MUST be at least 1 character long, MUST NOT be
greater than or equal to 10,000 characters, and MUST NOT contain the pipe (|) character.

= If the wszDescription field string is not NULL, it MUST be at least 1 character long, MUST NOT be
greater than or equal to 10,000 characters, and MUST NOT contain the pipe (|) character.

= If the wszEmbeddedContext field string is not NULL, it MUST be at least 1 character long, MUST
NOT be greater than or equal to 10,000 characters, and MUST NOT contain the pipe (|) character.

= The IpSecPhase field MUST have valid FW_IPSEC_PHASE values.

= If IpSecPhase is FW_IPSEC_PHASE_1:
= The wszSetld field MUST NOT have the default phase 1 authentication set ID as a prefix.
* The authentication set MUST have at least one authentication suite.
» The dwNumSuites field MUST agree with the pSuites field.

= The authentication suites methods MUST only be FW_AUTH_METHOD_ANONYMOUS,
FW_AUTH_METHOD_MACHINE_KERB, FW_AUTH_METHOD_MACHINE_NTLM,
FW_AUTH_METHOD_MACHINE_CERT, or FW_AUTH_METHOD_MACHINE_SHKEY.

= Authentication suites that have a method other than machine certificate MUST have the
wFlags field of the same suite set to 0.

= If the set schema policy version is 0x200, the wFlags field MUST NOT contain the
FW_AUTH_SUITE_FLAGS_CERT_SIGNING_ECDSA256 or the
FW_AUTH_SUITE_FLAGS_CERT_SIGNING_ECDSA384 flags.

= The wFlags field MUST NOT contain both the
FW_AUTH_SUITE_FLAGS_CERT_SIGNING_ECDSA256 and the
FW_AUTH_SUITE_FLAGS_CERT_SIGNING_ECDSA384 flags.

81 / 306

[MS-FASP-DIff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

All suites that have the FW_AUTH_METHOD_MACHINE_CERT method and a wFlags field with
the FW_AUTH_SUITE_FLAGS_CERT_SIGNING_ECDSA256 flag set, MUST be contiguous. The
same applies for those suites that have the
FW_AUTH_SUITE_FLAGS_CERT_SIGNING_ECDSA384 flag set, and those suites that have
neither flag set (they default to RSA signing).

All such contiguous suites that have a specific signing flag (either none, ECDSA256, or
ECDSA384) MUST have the same value for the FW_AUTH_SUITE_FLAG_HEALTH_CERT flag. It
MUST be set either in all or in none.

The set MUST NOT have more than one suite that has the anonymous method
(FW_AUTH_METHOD_ANONYMOUS), or that has the machine kerb method
(FW_AUTH_METHOD_MACHINE_KERB), or that has the machine ntim method
(FW_AUTH_METHOD_MACHINE_NTLM), or that has the machine shkey method
(FW_AUTH_METHOD_MACHINE_SHKEY), as defined in section 2.2.59.<14>

The set MUST NOT have a suite that has an NTLM Authentication Protocol method (as specified
in [MS-NLMP]) and a suite SHKey method.

If the set has a machine certificate suite that has a wFlag that contains the flag
FW_AUTH_SUITE_FLAGS_HEALTH_CERT, all machine certificate method suites in the set
MUST also have this flag.

If the set schema policy version is less than 0x214, the set MUST NOT have suites that contain
the FW_AUTH_METHOD_MACHINE_NEGOEX authentication method.

= If the IpSecPhase is FW_IPSEC_PHASE_2:

The wszSetId MUST NOT have the default phase 2 authentication set ID as a prefix.
The dwNumSuites field MUST agree with the pSuites field.

The authentication suites methods MUST only beFWbe FW_AUTH_METHOD_ANONYMOUS,
FW_AUTH_METHOD_USER_KERB, FW_AUTH_METHOD_USER_NTLM,
FW_AUTH_METHOD_USER_CERT, or FW_AUTH_METHOD_MACHINE_CERT.

The set MUST NOT have a suite that has the anonymous method as the only suite.
Suites in the set MUST NOT contain FW_AUTH_SUITE_FLAGS_CERT_EXCLUDE_CA_NAME.

Suites that have user certificate methods MUST NOT contain the
FW_AUTH_SUITE_FLAGS_HEALTH_CERT flag; however, suites that have machine certificate
methods MUST contain it.

Authentication suites that have a method other than machine certificate or user certificate
MUST have the wFlags field of the same suite set to 0.

If the set schema policy version is 0x200, the wFlags field MUST NOT contain the
FW_AUTH_SUITE_FLAGS_CERT_SIGNING_ECDSA256 or the
FW_AUTH_SUITE_FLAGS_CERT_SIGNING_ECDSA384 flags.

The wFlags field MUST NOT contain both the
FW_AUTH_SUITE_FLAGS_CERT_SIGNING_ECDSA256 and the
FW_AUTH_SUITE_FLAGS_CERT_SIGNING_ECDSA384 flags.

All suites that have a FW_AUTH_METHOD_MACHINE_CERT method and a wFlags field with
the FW_AUTH_SUITE_FLAGS_CERT_SIGNING_ECDSA256 flag set, MUST be contiguous. The
same applies to those suites that have the
FW_AUTH_SUITE_FLAGS_CERT_SIGNING_ECDSA384 flag set and those suites that have
neither flag set (they default to RSA signing).

82 / 306

[MS-FASP-DIff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

= The set MUST NOT have more than one suite that has the anonymous method
(FW_AUTH_METHOD_ANONYMOUS), or that has the user kerb method
(FW_AUTH_METHOD_USER_KERB), or that has the user ntim method
(FW_AUTH_METHOD_USER_NTLM), as defined in section 2.2.59.<15>

= A set that contains a suite that has the machine certificate method MUST NOT contain suites
that have the user certificate method.

= A set that contains a suite that has the machine certificate method MUST only contain more
suites that have machine certificate or anonymous methods.

= If the set schema policy version is less than 0x214, the set MUST NOT have suites that contain
the FW_AUTH_METHOD_USER_NEGOEX authentication method.

2.2.64 FW_AUTH_SET

This structure contains a list of FW_AUTH_SUITE elements that are ordered from highest to lowest
preference and are negotiated with remote peers to establish authentication algorithms.

typedef struct tag FW AUTH SET {
struct tag FW AUTH SET* pNext;
unsigned short wSchemaVersion;
[range (FW_IPSEC PHASE INVALID+1, FW IPSEC PHASE MAX-1)]
FW_IPSEC_PHASE IpSecPhase;
[strlng, range(1,255), ref] wchar t* wszSetId;
[string, range(1,10001)] wchar t* wszName;
[string, range(1,10001)] wchar t* wszDescription;
[string, range(1,10001)] wchar t* wszEmbeddedContext;
[range (0,1000)] unsigned long dwNumSuites;
[size is(dwNumSuites)] PFW AUTH SUITE pSuites;
[range (FW_RULE ORIGIN INVALID,FW RULE ORIGIN MAX-1)]
FW_RULE ORIGIN TYPE Origin;
[string, range(1,10001)] wchar t* wszGPOName;
FW_RULE_STATUS Status;
unsigned long dwAuthSetFlags;
} FW AUTH SET,
*PFW_AUTH_SET;

pNext: A pointer to the next FW_AUTH_SET in the list.

wSchemaVersion: Specifies the version of the set.

IpSecPhase: This field is of type FW_IPSEC_PHASE, and it specifies if this authentication set applies
for first or second authentications.

wszSetlId: A pointer to a Unicode string that uniquely identifies the set. The primary set for this
policy object is identified with the "{E5A5D32A-4BCE-4e4d-B07F-4AB1BA7E5FE3}" string for
Phasel and the "{E5A5D32A-4BCE-4e4d-B07F-4AB1BA7E5FE4}" string for Phase2.

wszName: A pointer to a Unicode string that provides a friendly name for the set.
wszDescription: A pointer to a Unicode string that provides a friendly description for the set.

wszEmbeddedContext: A pointer to a Unicode string that provides a way for applications to store
relevant application-specific context that is related to the set.

dwNumSuites: Specifies the number of authentication suites that the structure contains.

pSuites: A pointer to an array of FW_AUTH_SUITE elements. The nhumber of elements is given by
dwNumSuites.

83/ 306

[MS-FASP-DIff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Origin: This field is the set origin, as specified in the FW_RULE_ORIGIN_TYPE enumeration. It MUST

be filled on enumerated rules and ignored on input.

wszGPOName: A pointer to a Unicode string containing the displayName of the GPO containing this

object. When adding a new object, this field is not used. The client SHOULD set the value to NULL,
and the server MUST ignore the value. When enumerating an existing object, if the client does not
set the FW_ENUM_RULES_FLAG_RESOLVE_GPO_NAME flag, the server MUST set the value to
NULL. Otherwise, the server MUST set the value to the displayName of the GPO containing the
object or NULL if the object is not contained within a GPO. For details about how the server
initializes an object from a GPO, see section 3.1.3. For details about how the displayName of a
GPO is stored, see [MS-GPOL] section 2.3.

Status: The status code of the set which MUST be one of the values defined in the FW_RULE_STATUS

enumeration. This field's value is assigned when the structure is returned as output. When first
sent, this field MUST be set to FW_RULE_STATUS_OK.

dwAuthSetFlags: Bit flags from FW_AUTH_SET_FLAGS.

The following are semantic checks that authentication sets MUST pass:

The wSchemaVersion field MUST NOT be less than 0x000200.

The wszSetlId field MUST NOT contain the pipe (|) character, MUST NOT be NULL, MUST be a
string of at least 1 character long, and MUST NOT be greater than or equal to 255 characters.

If the wszName field string is not NULL, it MUST be at least 1 character long, MUST NOT be
greater than or equal to 10,000 characters, and MUST NOT contain the pipe (|) character.

If the wszDescription field string is not NULL, it MUST be at least 1 character long, MUST NOT be
greater than or equal to 10,000 characters, and MUST NOT contain the pipe (|) character.

If the wszEmbeddedContext field string is not NULL, it MUST be at least 1 character long, its
length MUST NOT be greater than or equal to 10,000 characters, and MUST NOT contain the pipe
(]) character.

If the method of a suite is machine certificate or user certificate, and its pCertCriteria field is not
NULL, then the wSchemaVersion of the pCertCriteria field MUST be equal to the schema
version specified in the wSchemaVersion field of the auth set containing the suite.

The IpSecPhase field MUST have valid FW_IPSEC_PHASE values.

If IpSecPhase is FW_IPSEC_PHASE_1:

= The wszSetld field MUST NOT have the primary phase 1 authentication set ID as a prefix.
* The authentication set MUST have at least one authentication suite.

» The dwNumSuites field MUST agree with the pSuites field.

= The authentication suites methods MUST each be either FW_AUTH_METHOD_ANONYMOUS,
FW_AUTH_METHOD_MACHINE_KERB, FW_AUTH_METHOD_MACHINE_NTLM,
FW_AUTH_METHOD_MACHINE_CERT, or FW_AUTH_METHOD_MACHINE_SHKEY.

= Authentication suites that have a method other than machine certificate MUST have the
wFlags field of the same suite set to 0.

= If the set schema policy version is 0x200, the wFlags field MUST NOT contain the
FW_AUTH_SUITE_FLAGS_CERT_SIGNING_ECDSA256 or the
FW_AUTH_SUITE_FLAGS_CERT_SIGNING_ECDSA384 flags.

84 / 306

[MS-FASP-DIff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

The wFlags field MUST NOT contain both the
FW_AUTH_SUITE_FLAGS_CERT_SIGNING_ECDSA256 and the
FW_AUTH_SUITE_FLAGS_CERT_SIGNING_ECDSA384 flags.

All suites that have the FW_AUTH_METHOD_MACHINE_CERT method and a wFlags field with
the FW_AUTH_SUITE_FLAGS_CERT_SIGNING_ECDSA256 flag set, MUST be contiguous. The
same applies for those suites that have the
FW_AUTH_SUITE_FLAGS_CERT_SIGNING_ECDSA384 flag set, and those suites that have
neither flag set (they default to RSA signing).

All such contiguous suites that have a specific signing flag (either none, ECDSA256, or
ECDSA384) MUST have the same value for the FW_AUTH_SUITE_FLAG_HEALTH_CERT flag.

The set MUST NOT have more than one suite that has the anonymous method
(FW_AUTH_METHOD_ANONYMOUS), or that has the machine kerb method
(FW_AUTH_METHOD_MACHINE_KERB), or that has the machine ntim method
(FW_AUTH_METHOD_MACHINE_NTLM), or that has the machine shkey method
(FW_AUTH_METHOD_MACHINE_SHKEY), as defined in section 2.2.59.<16>

The set MUST NOT have a suite that has an NTLM Authentication Protocol method (as specified
in [MS-NLMP]) and a suite SHKey method.

If the set has a machine certificate suite that has a wFlag that contains the flag
FW_AUTH_SUITE_FLAGS_HEALTH_CERT, all machine certificate method suites in the set
MUST also have this flag.

If the set schema policy version is less than 0x214, the set MUST NOT have suites that contain
the FW_AUTH_METHOD_MACHINE_NEGOEX authentication method.

= If the IpSecPhase is FW_IPSEC_PHASE_2:

The wszSetId MUST NOT have the primary phase 2 authentication set ID as a prefix.
The dwNumSuites field MUST agree with the pSuites field.

The authentication suites methods MUST each be one of FW_AUTH_METHOD_ANONYMOUS,
FW_AUTH_METHOD_USER_KERB, FW_AUTH_METHOD_USER_NTLM,
FW_AUTH_METHOD_USER_CERT, or FW_AUTH_METHOD_MACHINE_CERT.

The set MUST NOT have a suite that has the anonymous method as the only suite.
Suites in the set MUST NOT contain FW_AUTH_SUITE_FLAGS_CERT_EXCLUDE_CA_NAME.

Suites that have user certificate methods MUST NOT contain the
FW_AUTH_SUITE_FLAGS_HEALTH_CERT flag; however, suites that have machine certificate
methods MUST contain it.

Authentication suites that have a method other than machine certificate or user certificate
MUST have the wFlags field of the same suite set to 0.

If the set schema policy version is 0x200, the wFlags field MUST NOT contain the
FW_AUTH_SUITE_FLAGS_CERT_SIGNING_ECDSA256 or the
FW_AUTH_SUITE_FLAGS_CERT_SIGNING_ECDSA384 flags.

The wFlags field MUST NOT contain both the
FW_AUTH_SUITE_FLAGS_CERT_SIGNING_ECDSA256 and the
FW_AUTH_SUITE_FLAGS_CERT_SIGNING_ECDSA384 flags.

All suites that have a FW_AUTH_METHOD_MACHINE_CERT method and a wFlags field with
the FW_AUTH_SUITE_FLAGS_CERT_SIGNING_ECDSA256 flag set, MUST be contiguous. The
same applies to those suites that have the

85/ 306

[MS-FASP-DIff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

FW_AUTH_SUITE_FLAGS_CERT_SIGNING_ECDSA384 flag set and those suites that have
neither flag set (they default to RSA signing).

= The set MUST NOT have more than one suite that has the anonymous method
(FW_AUTH_METHOD_ANONYMOUS), or that has the user kerb method
(FW_AUTH_METHOD_USER_KERB), or that has the user ntim method
(FW_AUTH_METHOD_USER_NTLM), as defined in section 2.2.59.<17>

= A set that contains a suite that has the machine certificate method MUST NOT contain suites
that have the user certificate method.

= A set that contains a suite that has the machine certificate method MUST only contain suites
that have machine certificate or anonymous methods.

2.2.65 FW_CRYPTO_KEY_EXCHANGE_TYPE

This enumeration is used to identify supported key exchange algorithms.

typedef enum tag FW CRYPTO KEY EXCHANGE TYPE

{
Fil_CRYPTO KEY EXCHANGE NONE = 0,
Fil_CRYPTO KEY EXCHANGE DH1 = 1,
FW_CRYPTO KEY EXCHANGE DH2 = 2,
FW_CRYPTO KEY EXCHANGE ECDH256
Fil_CRYPTO KEY EXCHANGE ECDH384
Fil_CRYPTO KEY EXCHANGE DH14
FW_CRYPTO KEY EXCHANGE DH14 = FW CRYPTO KEY EXCHANGE DH2048 = 5,
FW_CRYPTO KEY EXCHANGE DH24 = 6,
Fil_CRYPTO KEY EXCHANGE MAX V2 10 = FW CRYPTO KEY EXCHANGE DH24 = 6,
Fil_CRYPTO KEY EXCHANGE MAX = 7

} FW _CRYPTO KEY EXCHANGE TYPE;

3,
4,

5,

FW_CRYPTO_KEY_EXCHANGE_NONE: This value means that there are no key exchange
algorithms defined. When enumerating SAs, this value MAY be returned. It MUST NOT be used for
other cases. This symbolic constant has a value of 0.

FW_CRYPTO_KEY_EXCHANGE_DH1: Do key exchange with Diffie-Hellman group 1. This symbolic
constant has a value of 1.

FW_CRYPTO_KEY_EXCHANGE_DH2: Do key exchange with Diffie-Hellman group 2. This symbolic
constant has a value of 2.

FW_CRYPTO_KEY_EXCHANGE_ECDH256: Do key exchange with elliptic curve Diffie-Hellman 256.
This symbolic constant has a value of 3.

FW_CRYPTO_KEY_EXCHANGE_ECDH384: Do key exchange with elliptic curve Diffie-Hellman 384.
This symbolic constant has a value of 4.

FW_CRYPTO_KEY_EXCHANGE_DH14: Do key exchange with Diffie-Hellman group 14. This
symbolic constant has a value of 5.

FW_CRYPTO_KEY_EXCHANGE_DH14 = FW_CRYPTO_KEY_EXCHANGE_DH2048: Do key
exchange with Diffie-Hellman group 14. This group was called Diffie-Hellman group 2048 when it
was introduced. The name has been changed to match standard terminology. This symbolic
constant has a value of 5.

FW_CRYPTO_KEY_EXCHANGE_DH24: Do key exchange with Diffie-Hellman group 24. For schema
versions 0x0200, 0x0201, and 0x020A, this value is invalid and MUST NOT be used. This symbolic
constant has a value of 6.

86 / 306

[MS-FASP-DIff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

FW_CRYPTO_KEY_EXCHANGE_MAX_V2_10 = FW_CRYPTO_KEY_EXCHANGE_DH24: This
value and values that exceed this value are not valid and MUST NOT be used by servers and
clients with schema version 0x020A and earlier. It is defined for simplicity in writing IDL
definitions and code. This symbolic constant has a value of 6.

FW_CRYPTO_KEY_EXCHANGE_MAX: This value and values that exceed this value are not valid
and MUST NOT be used. It is defined for simplicity in writing IDL definitions and code. This
symbolic constant has a value of 7.

2.2.66 FW_CRYPTO_ENCRYPTION_TYPE

This enumeration is used to identify supported encryption algorithms.

typedef enum _tag FW CRYPTO ENCRYPTION TYPE

{
FW CRYPTO ENCRYPTION NONE = 0,
FW_CRYPTO_ENCRYPTION DES = 1,
FW_CRYPTO_ENCRYPTION_3DES = 2,
FW CRYPTO ENCRYPTION AES128 =
FW _CRYPTO ENCRYPTION AES192 = 4,
FW_CRYPTO ENCRYPTION AES256 = 5,
FW_CRYPTO ENCRYPTION AES GCM128
FW _CRYPTO ENCRYPTION AES GCM192
FW _CRYPTO ENCRYPTION AES GCM256
FW_CRYPTO ENCRYPTION MAX = 9,
FW_CRYPTO ENCRYPTION MAX V2 0 = FW_CRYPTO ENCRYPTION AES GCM128

} FW_CRYPTO ENCRYPTION TYPE;

3,

||
~J
~

FW_CRYPTO_ENCRYPTION_NONE: This value MUST be used only when no encryption is to be
performed. This is a valid value. This symbolic constant has a value of 0.

FW_CRYPTO_ENCRYPTION_DES: Uses the DES algorithm for encryption. This symbolic constant
has a value of 1.

FW_CRYPTO_ENCRYPTION_3DES: Uses the 3DES algorithm for encryption. This symbolic constant
has a value of 2.

FW_CRYPTO_ENCRYPTION_AES128: Uses the AES algorithm with a 128-bit key size for
encryption. This symbolic constant has a value of 3.

FW_CRYPTO_ENCRYPTION_AES192: Uses the AES algorithm with a 192-bit key size for
encryption. This symbolic constant has a value of 4.

FW_CRYPTO_ENCRYPTION_AES256: Uses the AES algorithm with a 256-bit key size for
encryption. This symbolic constant has a value of 5.

FW_CRYPTO_ENCRYPTION_AES_GCM128: Uses the AESGCM algorithm with a 128-bit key size
for encryption. This symbolic constant has a value of 6.

FW_CRYPTO_ENCRYPTION_AES_GCM192: Uses the AESGCM algorithm with a 192-bit key size
for encryption. This symbolic constant has a value of 7.

FW_CRYPTO_ENCRYPTION_AES_GCM256: Uses the AESGCM algorithm with a 256-bit key size
for encryption. This symbolic constant has a value of 8.

FW_CRYPTO_ENCRYPTION_MAX: This value and values that exceed this value are not valid and
MUST NOT be used. It is defined for simplicity in writing IDL definitions and code. This symbolic
constant has a value of 9.

87/ 306

[MS-FASP-DIff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

FW_CRYPTO_ENCRYPTION_MAX_V2_0: For schema version 0x0200, this value and values that
exceed this value are not valid and MUST NOT be used by servers and clients with schema version
0x0200 and earlier. It is defined for simplicity in writing IDL definitions and describing semantic
checks against policy schema versions of 0x0200. This symbolic constant has a value of 6.

2.2.67 FW_CRYPTO_HASH_TYPE

This enumeration is used to identify the different hashing (integrity protection) algorithms supported.

typedef enum tag FW CRYPTO HASH TYPE

{
Fil_CRYPTO HASH NONE = 0
FW_CRYPTO HASH MD5 = 1,
FW_CRYPTO HASH SHAL = 2,
FW_CRYPTO HASH SHA256 = 3,
Fil_CRYPTO HASH SHA384 = 4,
FWl_CRYPTO HASH AES GMAC128
FW_CRYPTO HASH AES GMAC192
FW_CRYPTO HASH AES GMAC256
Fil_CRYPTO HASH MAX = 8,
Fil_CRYPTO HASH MAX V2 0 = FW CRYPTO HASH SHA256

} FW _CRYPTO HASH TYPE;

’

Sy
6,
7,

FW_CRYPTO_HASH_NONE: This value MUST be used only when no hashing is to be performed.
This is a valid value. This symbolic constant has a value of 0.

FW_CRYPTO_HASH_MDS5: Use the MD5 algorithm for hashing (integrity protection). This symbolic
constant has a value of 1.

FW_CRYPTO_HASH_SHA1: Use the SHA1 algorithm for hashing (integrity protection). This
symbolic constant has a value of 2.

FW_CRYPTO_HASH_SHA256: Use the SHA256 algorithm for hashing (integrity protection). This
symbolic constant has a value of 3.

FW_CRYPTO_HASH_SHA384: Use the SHA384 algorithm for hashing (integrity protection). This
symbolic constant has a value of 4.

FW_CRYPTO_HASH_AES_GMAC128: Use the AESGMAC128 algorithm for hashing (integrity
protection). This symbolic constant has a value of 5.

FW_CRYPTO_HASH_AES_GMAC192: Use the AESGMAC192 algorithm for hashing (integrity
protection). This symbolic constant has a value of 6.

FW_CRYPTO_HASH_AES_GMAC256: Use the AESGMAC256 algorithm for hashing (integrity
protection). This symbolic constant has a value of 7.

FW_CRYPTO_HASH_MAX: This value and values that exceed this value are not valid and MUST
NOT be used. It is defined for simplicity in writing IDL definitions and code. This symbolic constant
has a value of 8.

FW_CRYPTO_HASH_MAX_V2_0: This value and values that exceed this value are not valid and
MUST NOT be used by servers and clients with schema version 0x0200 and earlier. It is defined
for simplicity in writing IDL definitions and describing semantic checks against policy schema
versions of 0x0200. This symbolic constant has a value of 3.

88/ 306

[MS-FASP-DIff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

2.2.68 FW_CRYPTO_PROTOCOL_TYPE

This enumeration is used to identify the different combinations of supported IPsec enforcement
protocols.

typedef enum _tag FW _CRYPTO PROTOCOL_TYPE

{

FW_CRYPTO PROTOCOL INVALID = O,

FW_CRYPTO PROTOCOL AH = 1,

FW_CRYPTO PROTOCOL ESP = 2,

Fil_CRYPTO PROTOCOL BOTH = 3,

Fil_CRYPTO PROTOCOL AUTH NO ENCAP = 4,

FW_CRYPTO PROTOCOL MAX = 5,

FW_CRYPTO PROTOCOL MAX 2 1 = (FW_CRYPTO PROTOCOL BOTH + 1)
} FW_CRYPTO PROTOCOL TYPE;

FW_CRYPTO_PROTOCOL_INVALID: This value MUST NOT be used. It is defined for simplicity in
writing IDL definitions and code. This symbolic constant has a value of 0.

FW_CRYPTO_PROTOCOL_AH: Uses the authentication header (AH) to enforce IPsec. This symbolic
constant has a value of 1.

FW_CRYPTO_PROTOCOL_ESP: Uses the ESP protocol header. This symbolic constant has a value
of 2.

FW_CRYPTO_PROTOCOL_BOTH: Uses both the AH and ESP protocol headers. This symbolic
constant has a value of 3.

FW_CRYPTO_PROTOCOL_AUTH_NO_ENCAP: Uses no encapsulation. This sends the first packet
twice: once by using an ESP header and again without any header; subsequent packets have no
additional headers. This symbolic constant has a value of 4.

FW_CRYPTO_PROTOCOL_MAX: This value and values that exceed this value are not valid and
MUST NOT be used. It is defined for simplicity in writing IDL definitions and code. This symbolic
constant has a value of 5.

FW_CRYPTO_PROTOCOL_MAX_2_1: This value and values that exceed this value are not valid
and MUST NOT be used by servers and clients with schema version 0x0201 and earlier. It is
defined for simplicity in writing IDL definitions and code. This symbolic constant has a value of 4.

2.2.69 FW_PHASE1_CRYPTO_SUITE

This structure describes an IPsec Phase 1 (or main mode) cryptographic suite. A cryptographic suite is
a proposal of a set of algorithms and parameters that specify how different types of enforcement and
protection are suggested to be performed.

typedef struct tag FW PHASEl CRYPTO SUITE ({
[range (FW_CRYPTO KEY EXCHANGE NONE, FW_CRYPTO KEY EXCHANGE MAX-1)]
FW_CRYPTO_KEY EXCHANGE TYPE KeyExchange;
[range (FW_CRYPTO_ ENCRYPTION NONE+1, FW_CRYPTO ENCRYPTION MAX-1)]
FW _CRYPTO ENCRYPTION TYPE Encryption;
[range (FW_CRYPTO HASH NONE+1, FW_CRYPTO HASH MAX-1)]
FW_CRYPTO_HASH_TYPE Hash;
unsigned long dwPlCryptoSuiteFlags;
} FW_PHASEl CRYPTO SUITE,
*PFW_PHASE1 CRYPTO SUITE;

KeyExchange: This field is of type FW_CRYPTO_KEY_EXCHANGE_TYPE. It specifies the key
exchange algorithm for this suite proposal.

89 / 306

[MS-FASP-DIff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Encryption: This field is of type FW_CRYPTO_ENCRYPTION_TYPE. It specifies the encryption
algorithm for this suite proposal.

Hash: This field is of type FW_CRYPTO_HASH_TYPE. It specifies the hash (integrity protection)
algorithm for this suite proposal.

dwP1CryptoSuiteFlags: This is a reserved value and is not used. It MUST be set to 0x00000000.

2.2.70 FW_PHASE2_CRYPTO_SUITE

This structure describes an IPsec Phase 2 (or quick mode) cryptographic suite. A cryptographic suite is
a proposal of a set of algorithms and parameters that specify how different types of enforcement and
protection are suggested to be performed. It also suggests timeouts for which a key is valid and at
which re-keying operations should be performed.

typedef struct tag FW PHASEZ CRYPTO SUITE ({

[range (FW_CRYPTO PROTOCOL_INVALID+1,FW CRYPTO PROTOCOL MAX-1)]
FW_CRYPTO PROTOCOL TYPE Protocol;

FW_CRYPTO HASH TYPE AhHash;
FW_CRYPTO HASH TYPE EspHash;
FW _CRYPTO ENCRYPTION TYPE Encryption;
unsigned long dwTimeoutMinutes;
unsigned long dwTimeoutKBytes;
unsigned long dwP2CryptoSuiteFlags;

} FW_PHASE2 CRYPTO SUITE,
*PFW_PHASE2 CRYPTO SUITE;

Protocol: This field is of type FW_CRYPTO_PROTOCOL_TYPE, and it specifies the IPsec enforcement
protocol combination suggested for this suite.

AhHash: This field is of type FW_CRYPTO_HASH_TYPE. It specifies the hash (integrity protection)
algorithm for this suite proposal when using the authentication header protocol.

EspHash: This field is of type FW_CRYPTO_HASH_TYPE. It specifies the hash (integrity protection)
algorithm for this suite proposal when using the ESP protocol.

Encryption: This field is of type FW_CRYPTO_ENCRYPTION_TYPE. It specifies the encryption
algorithm for this suite proposal.

dwTimeoutMinutes: This is the timeout or lifetime of the key used in this proposal defined in
minutes.

dwTimeoutKBytes: This is the timeout or lifetime of the key used in this proposal defined in
kilobytes processed with this configuration.

dwP2CryptoSuiteFlags: This field is reserved and is not used. It MUST be set to 0x00000000.
The following are semantic validation checks that Phase 2 cryptographic suites MUST pass:

= The dwTimeoutMinutes field MUST be greater than or equal to 5 and less than or equal to
2,879.

» The dwTimeoutKBytes field MUST be greater than or equal to 20,480 and less than or equal to
2,147,483,647.

= If the Protocol field is FW_CRYPTO_PROTOCOL_AH or FW_CRYPTO_PROTOCOL_BOTH, the
AhHash field MUST NOT be equal to FW_CRYPTO_HASH_NONE.

= If the Protocol field is FW_CRYPTO_PROTOCOL_BOTH, the AhHash field MUST be equal to the
EspHash field.

90 / 306

[MS-FASP-DIff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

= If the Protocol field is FW_CRYPTO_PROTOCOL_BOTH or FW_CRYPTO_PROTOCOL_ESP, EspHash
MUST NOT be set to FW_CRYPTO_HASH_NONE or Encryption MUST NOT be set to
FW_CRYPTO_ENCRYPTION_NONE, but not both.

2.2.71 FW_PHASE1_CRYPTO_FLAGS

This enumeration is used to identify the different cryptographic flags that are supported.

typedef enum _tag FW_PHASE1 CRYPTO FLAGS

{
FW_PHASEl CRYPTO FLAGS NONE = 0x00,
FW PHASEl CRYPTO FLAGS DO NOT SKIP DH = 0x01,
FW_PHASEl CRYPTO FLAGS_MAX = 0x02

} FW_PHASE1l CRYPTO_ FLAGS;

FW_PHASE1_CRYPTO_FLAGS_NONE: This value represents no flag. It is used when none of the
behaviors that are represented by the defined flags in the enumeration are intended. This
symbolic constant has a value of 0x00.

FW_PHASE1_CRYPTO_FLAGS_DO_NOT_SKIP_DH: This flag ensures that Authenticated IP
(AuthIP), as specified in [MS-AIPS], always performs a DH key exchange. (AuthIP can avoid this
exchange because the protocol already contains enough key material information to protect the
negotiation. Hence, by skipping DH, round trips and the computational cost of DH are avoided.)
This symbolic constant has a value of 0x01.

FW_PHASE1_CRYPTO_FLAGS_MAX: This value and values that exceed this value are not valid and
MUST NOT be used. It is defined for simplicity in writing IDL definitions and code. This symbolic
constant has a value of 0x02.

2.2.72 FW_PHASE2_CRYPTO_PFS

This enumeration is used to identify the different perfect forward secrecy (PFS) options supported.

typedef enum _tag FW PHASE2 CRYPTO_ PFS

{
FW_PHASE2 CRYPTO PFS_INVALID
FW_PHASE2_CRYPTO PFS_DISABLE
FW_PHASE2 CRYPTO PFS_PHASEl = 2,
FW_PHASE2 CRYPTO PFS DH1 = 3,
FW_PHASE2 CRYPTO PFS DH2 = 4,
FW_PHASE2 CRYPTO PFS_DH2048 =
FW_PHASE2 CRYPTO PFS_ECDH256
FW_PHASE2 CRYPTO PFS ECDH384
FW_PHASE2 CRYPTO PFS DH24 = 8,
FW_PHASE2 CRYPTO PFS MAX V2 10 = FW_PHASE2 CRYPTO PFS DH24 = FW_PHASE2 CRYPTO_ PFS_DH24,
FW_PHASE2 CRYPTO PFS MAX = 9

} FW_PHASE2 CRYPTO_PFS;

[l
=

I
o

FW_PHASE2_CRYPTO_PFS_INVALID: This value MUST NOT be used. It is defined for simplicity in
writing IDL definitions and code. This symbolic constant has a value of 0.

FW_PHASE2_CRYPTO_PFS_DISABLE: Do not renegotiate; instead, reuse the keying material
negotiated in Phase 1 (main mode). This symbolic constant has a value of 1.

FW_PHASE2_CRYPTO_PFS_PHASE1: Use Phase 1 key exchange to negotiate a Phase 2 (quick
mode) key for every Phase 2 negotiation. This symbolic constant has a value of 2.

FW_PHASE2_CRYPTO_PFS_DH1: Use DH1 key exchange to negotiate a Phase 2 (quick mode) key
for every Phase 2 negotiation. This symbolic constant has a value of 3.

91/ 306

[MS-FASP-DIff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

FW_PHASE2_CRYPTO_PFS_DH2: Use DH2 key exchange to negotiate a Phase 2 (quick mode) key
for every Phase 2 negotiation. This symbolic constant has a value of 4.

FW_PHASE2_CRYPTO_PFS_DH2048: Use DH2048 key exchange to negotiate a Phase 2 (quick
mode) key for every Phase 2 negotiation. This symbolic constant has a value of 5.

FW_PHASE2_CRYPTO_PFS_ECDH256: Use ECDH256 key exchange to negotiate a Phase 2 (quick
mode) key for every Phase 2 negotiation. This symbolic constant has a value of 6.

FW_PHASE2_CRYPTO_PFS_ECDH384: Use ECDH384 key exchange to negotiate a Phase 2 (quick
mode) key for every Phase 2 negotiation. This symbolic constant has a value of 7.

FW_PHASE2_CRYPTO_PFS_DH24: Use DH24 key exchange to negotiate a Phase 2 (quick mode)
key for every Phase 2 negotiation. For schema versions 0x0200, 0x0201, and 0x020A, this value
is invalid and MUST NOT be used. This symbolic constant has a value of 8.

FW_PHASE2_CRYPTO_PFS_MAX_V2_10 = FW_PHASE2_CRYPTO_PFS_DH24: This value and
values that exceed this value are not valid and MUST NOT be used by servers and clients with
schema version 0x020A and earlier. It is defined for simplicity in writing IDL definitions and code.
This symbolic constant has a value of 8.

FW_PHASE2_CRYPTO_PFS_MAX: This value and values that exceed this value are not valid and
MUST NOT be used. It is defined for simplicity in writing IDL definitions and code. This symbolic
constant has a value of 9.

2.2.73 FW_CRYPTO_SET

This structure contains a list of cryptographic suite elements that are ordered from highest to lowest
preference and are negotiated with remote peers to establish cryptographic protection algorithms.

typedef struct tag FW CRYPTO SET ({
struct tag FW CRYPTO_SET* pNext;
unsigned short wSchemaVersion;
[range (FW_IPSEC PHASE INVALID+1, FW IPSEC PHASE MAX-1)]
FW_TIPSEC_PHASE IpSecPhase;
[string, range(1,255), ref] wchar t* wszSetId;
[string, range(1,10001)] wchar t* wszName;
[string, range(1,10001)] wchar_ t* wszDescription;
[string, range(1,10001)] wchar t* wszEmbeddedContext;
[switch type (FW_IPSEC PHASE), switch is(IpSecPhase)]
union {
[case (FW_IPSEC_PHASE 1)]
struct {
unsigned short wFlags;
[range (0,1000)] unsigned long dwNumPhaselSuites;
[size_ is(dwNumPhaselSuites)] PFW_PHASEl CRYPTO SUITE pPhaselSuites;
unsigned long dwTimeoutMinutes;
unsigned long dwTimeoutSessions;
}i
[case (FW_IPSEC PHASE 2)]
struct {
FW_PHASE2 CRYPTO PFS Pfs;
[range (0,1000)] unsigned long dwNumPhase2Suites;
[size is(dwNumPhase2Suites)] PFW_PHASE2 CRYPTO SUITE pPhase2Suites;
}i
}i
[range (FW_RULE ORIGIN INVALID,FW RULE ORIGIN MAX-1)]
FW_RULE ORIGIN TYPE Origin;
[string, range(1,10001)] wchar t* wszGPOName;
FW_RULE_STATUS Status;
unsigned long dwCryptoSetFlags;
} FW_CRYPTO SET,
*PFW_CRYPTO_SET;

92 / 306

[MS-FASP-DIff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

pNext: A pointer to the next FW_CRYPTO_SET in the list.
wSchemaVersion: Specifies the version of the set.

IpSecPhase: This field is of type FW_IPSEC_PHASE, and it specifies if this cryptographic set applies
for Phasel (main mode) or Phase2 (quick mode).

wszSetld: A pointer to a Unicode string that uniquely identifies the set. The primary set for this
policy object is identified with the "{E5A5D32A-4BCE-4e4d-B07F-4AB1BA7E5FE1}" string for
Phasel and with the "{E5A5D32A-4BCE-4e4d-B07F-4AB1BA7E5FE2}" string for Phase2.

wszName: A pointer to a Unicode string that provides a friendly name for the set.
wszDescription: A pointer to a Unicode string that provides a friendly description for the set.

wszEmbeddedContext: A pointer to a Unicode string. A client implementation MAY use this field to
store implementation-specific client context. The server MUST NOT interpret the value of this
string. The server MUST preserve the value of this string unmodified.

wFlags: This field is a combination of the FW_PHASE1_CRYPTO_FLAGS enumeration bit flags.
dwNumPhaselSuites: Specifies the number of Phasel suites that the structure contains.

pPhaselSuites: A pointer to an array of dwNumPhaselSuites contiguous
FW_PHASE1_CRYPTO_SUITE elements.

dwTimeoutMinutes: This value is a lifetime in minutes before a Phasel established key is
renegotiated.

dwTimeoutSessions: This value is the number of sessions before a Phasel established key is
renegotiated.

Pfs: This field MUST contain a valid value of those in the FW_PHASE2_CRYPTO_PFS enumeration. It
describes the perfect forward secrecy used for quick mode cryptographic operations.

dwNumPhase2Suites: Specifies the number of Phase2 suites that the structure contains.

pPhase2Suites: A pointer to an array of FW_PHASE2_CRYPTO_SUITE elements. The number of
elements is given by dwNumPhase2Suites.

Origin: This field is the set origin, as specified in the FW_RULE_ORIGIN_TYPE enumeration. It MUST
be filled on enumerated rules and ignored on input.

wszGPOName: A pointer to a Unicode string containing the displayName of the GPO containing this
object. When adding a new object, this field is not used. The client SHOULD set the value to NULL,
and the server MUST ignore the value. When enumerating an existing object, if the client does not
set the FW_ENUM_RULES_FLAG_RESOLVE_GPO_NAME flag, the server MUST set the value to
NULL. Otherwise, the server MUST set the value to the displayName of the GPO containing the
object or NULL if the object is not contained within a GPO. For details about how the server
initializes an object from a GPO, see section 3.1.3. For details about how the displayName of a
GPO is stored, see [MS-GPOL] section 2.3.

Status: The status code of the set, as specified by the FW_RULE_STATUS enumeration. This field is
filled out when the structure is returned as output. On input, this field MUST be set to
FW_RULE_STATUS_OK.

dwCryptoSetFlags: Bit flags from FW_CRYPTO_SET_FLAGS.
The following are semantic checks that cryptographic sets MUST pass:

= The wSchemaVersion field MUST NOT be less than 0x000200.

93/ 306

[MS-FASP-DIff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

= The wszSetld field MUST NOT contain the pipe (]) character, MUST NOT be NULL, MUST be a
string at least 1 character long, and MUST NOT be greater than or equal to 255 characters.

= If the wszName field string is not NULL, it MUST be at least 1 character long, MUST NOT be
greater than or equal to 10,000 characters, and MUST NOT contain the pipe (|) character.

= If the wszDescription field string is not NULL, it MUST be at least 1 character long, MUST NOT be
greater than or equal to 10,000 characters, and MUST NOT contain the pipe (|) character.

= If the wszEmbeddedContext field string is not NULL, it MUST be at least 1 character long, MUST
NOT be greater than or equal to 10,000 characters, and MUST NOT contain the pipe (|) character.

= The IpSecPhase field MUST have valid FW_IPSEC_PHASE values.
= If the IpSecPhase field is FW_IPSEC_PHASE_1:

= The wszSetld field MUST be equal to the primary Phasel cryptographic set ID. (There is only
one Phasel cryptographic set allowed per store.)

= The wFlags field of the set MUST NOT be greater than or equal to
FW_PHASE1_CRYPTO_FLAGS_MAX.

= The dwTimeoutMinutes field of the set MUST be greater than or equal to 1, and MUST be
less than or equal to 2,879.

= The dwTimeoutSessions field of the set MUST be less than or equal to 2,147,483,647.
= The cryptographic set MUST have at least one Phasel cryptographic suite.
= The pPhaselSuites array MUST contain exactly dwNumPhasel1Suites entries.

= All cryptographic suites within the set MUST have the same value in the KeyExchange field
and MUST have valid values.

= All Phasel suites MUST NOT have a KeyExchange field with the
FW_CRYPTO_ENCRYPTION_INVALID value and MUST have valid values.

= If the set has a schema policy version of 0x0200, all Phasel suites MUST NOT have an
Encryption field with values greater than or equal to FW_CRYPTO_ENCRYPTION_MAX_V2_0.

= All Phasel suites MUST NOT have an Encryption field with the
FW_CRYPTO_ENCRYPTION_NONE value and MUST have valid values less than
FW_CRYPTO_ENCRYPTION_MAX_V2_0.

= If the set has a schema policy version of 0x0200, all Phasel suites MUST NOT have a Hash
field that has values greater than or equal to FW_CRYPTO_HASH_MAX_V2_0.

= All Phasel suites MUST NOT have a Hash field that has the FW_CRYPTO_HASH_NONE value
and MUST have either MD5 (FW_CRYPTO_HASH_MD5) or SHA (FW_CRYPTO_HASH_SHA1,
FW_CRYPTO _HASH_SHA256, FW_CRYPTO_HASH_SHA384) valid values.

= If the IpSecPhase field is FW_IPSEC_PHASE_2:
* The wszSetld field MUST NOT have the primary Phase2 cryptographic set ID as a prefix.
= The cryptographic set MUST have at least one Phase2 cryptographic suite.
* The pPhase2Suites array MUST contain exactly dwNumPhase2Suites entries.

= The Pfs field MUST NOT be FW_PHASE2_CRYPTO_PFS_INVALID and MUST have valid values.

94 / 306

[MS-FASP-DIff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

= If the set has a schema policy version of 0x0200, all Phase2 cryptographic suites MUST NOT
have an AhHash field or EspHash field with values greater than or equal to
FW_CRYPTO_HASH_MAX_V2_0.

= If the set has a schema policy version of 0x0200, all Phase2 suites MUST NOT have an
Encryption field with values greater than or equal to FW_CRYPTO_ENCRYPTION_MAX_V2_0.

= All Phase2 suites within the set MUST NOT have a dwTimeoutMinutes field less than
FW_MIN_CRYPTO_PHASE2_TIMEOUT_MINUTES (5) or greater than
FW_MAX_CRYPTO_PHASE2_TIMEOUT_MINUTES (48 * 60 -1).

= All Phase2 suites within the set MUST NOT have a dwTimeoutKBytes field of less than
FW_MIN_CRYPTO_PHASE2_TIMEOUT_KBYTES (20480) or greater than
FW_MAX_CRYPTO_PHASE2_TIMEOUT_KBYTES (2147483647).

= All the Phase?2 suites within the set MUST NOT have a Protocol field with
FW_CRYPTO_PROTOCOL_INVALID and MUST have valid values.

= For all suites that have the Protocol field equal to FW_CRYPTO_PROTOCOL_AH or to
FW_CRYPTO_PROTOCOL_BOTH:

= All suites MUST NOT have an AhHash field with the FW_CRYPTO_HASH_NONE value, and
MUST have valid values not equal to FW_CRYPTO_HASH_SHA384.

= For all suites that have the Protocol field equal to FW_CRYPTO_PROTOCOL_BOTH:
= All suites MUST have the AhHash field equal to the EspHash field.
= For all suites that have the Protocol field equal to FW_CRYPTO_PROTOCOL_ESP:

= All suites MUST have an EspHash field with valid values, including
FW_CRYPTO_HASH_NONE. The EspHash field MUST NOT equal
FW_CRYPTO_HASH_SHA384.

= All suites MUST have an Encryption field with valid values, including
FW_CRYPTO_ENCRYPTION_NONE.

= All suites MUST not have both the EspHash field equal to FW_CRYPTO_HASH_NONE and
the Encryption field equal to FW_CRYPTO_ENCRYPTION_NONE.

= All suites that have the Encryption field equal to
FW_CRYPTO_ENCRYPTION_AES_GCM128, 192, or 256 MUST also have a corresponding
FW_CRYPTO_HASH_AES_GMAC128, 192, or 256 value on the EspHash field. An AES GCM
encryption algorithm corresponds to an AES GMAC hash algorithm if both use the same bit
Size.

2.2.74 FW_BYTE_BLOB

This structure contains a memory section. The format of the memory is defined by the context where
it is used; for example, see the SubjectName field of the FW_CERT_INFO structure.

typedef struct _tag FW BYTE BLOB ({
[range (0,10000)] unsigned long dwSize;
[size is(dwSize)] unsigned char* Blob;

} FW_BYTE BLOB,

*PFW_BYTE BLOB;

dwSize: This field specifies the size in octets of the Blob field.

95/ 306

[MS-FASP-DIff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Blob: A pointer to an array of dwSize octets.

2.2.75 FW_COOKIE_PAIR

This structure holds random numbers generated out of IPsec negotiations.

typedef struct tag FW COOKIE PAIR ({
unsigned int64 Initiator;
unsigned int64 Responder;

} FW_COOKIE_ PAIR,

*PFW_COOKIE PAIR;

Initiator: A random number that maps to the negotiated state that is a security association of the
machine that initiated communication and, hence, initiated IKE/AuthIP (for more information, see
[RFC2409]) as specified in [MS-IKEE] and [MS-AIPS] traffic.

Responder: A random number that maps to the negotiated state that is a security association of the
machine that responded to the communication and, hence, responded to the IKE/AuthlIP traffic.

2.2.76 FW_PHASE1_KEY_MODULE_TYPE

This enumeration identifies the different IPsec Key Exchange negotiation protocols that can be used.

typedef enum _tag FW_PHASE1 KEY MODULE_ TYPE
{
FW_PHASEl KEY MODULE INVALID = O,
FW PHASEl KEY MODULE IKE = 1,
FW PHASEl KEY MODULE AUTH IP = 2,
FW_PHASEl KEY MODULE MAX = 3
} FW_PHASEl KEY MODULE TYPE;

FW_PHASE1_KEY_MODULE_INVALID: The FW_PHASE1_KEY_MODULE_INVALID constant MUST
NOT be used. It is defined for simplicity in writing IDL definitions and code. This symbolic constant
has a value of 0.

FW_PHASE1_KEY_MODULE_IKE: The keying protocol was IKE. This symbolic constant has a value
of 1.

FW_PHASE1_KEY_MODULE_AUTH_IP: The keying protocol was AuthIP. This symbolic constant
has a value of 2.

FW_PHASE1_KEY_MODULE_MAX: This value and values that exceed this value are not valid and
MUST NOT be used. It is defined for simplicity in writing IDL definitions and code. This symbolic
constant has a value of 3.

2.2.77 FW_CERT_INFO

This structure represents information on the certificate used in the certificate-based authentication
mechanisms.

typedef struct tag FW CERT INFO ({
FW BYTE BLOB SubjectName;
[range (FW_AUTH SUITE FLAGS_NONE, FW_AUTH SUITE FLAGS MAX-1)]
unsigned long dwCertFlags;
} FW_CERT INFO,
*PFW_CERT_INFO;

96 / 306

[MS-FASP-DIff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

SubjectName: The subject name of the certificate represented as a FW_BYTE_BLOB type. This BLOB
is an ASN.1-encoded sequence of RDN attributes.

dwCertFlags: This field can be a combination of bit flags from FW_AUTH_SUITE_FLAGS. This field
MUST use only health certificate or certificate to account mapping flags, which represent certificate
characteristics.

2.2.78 FW_AUTH_INFO

This structure contains information on the local and remote hosts that resulted from the authentication
methods performed between them.

typedef struct _tag FW AUTH INFO {
[range (FW_AUTH METHOD INVALID + 1, FW_AUTH METHOD MAX)]
FW_AUTH METHOD AuthMethod;
[switch_ type (FW_AUTH METHOD), switch_ is(AuthMethod)]
union {
[case (FW_AUTH METHOD MACHINE CERT,FW AUTH METHOD USER CERT)]
struct {
FW_CERT INFO MyCert;
FW_CERT_INFO PeerCert;
i
[case (FW_AUTH METHOD MACHINE KERB,FW AUTH METHOD USER KERB,
FW_AUTH METHOD MACHINE NEGOEX,FW AUTH METHOD USER NEGOEX)]

struct {
[string, range(1,10001)] wchar t* wszMyId;
[string, range(1,10001)] wchar t* wszPeerId;
bi
[default] ;

bi
unsigned long dwAuthInfoFlags;
} FW_AUTH INFO,

*PFW_AUTH INFO;

AuthMethod: This field contains the authentication method used to establish the identities of the
endpoints and is stored in the security association. The field can take valid values from the
FW_AUTH_METHOD enumeration.

MyCert: This field contains the subject name and certification flags (health, account mapping,
exclude CA) from the certificate of the local host that was used in the authentication process when
a certificate-based authentication method is used.

PeerCert: This field contains the subject name and certification flags (health, account mapping,
exclude CA) from the certificate of the remote host that was used in the authentication process
when a certificate-based authentication method is used.

wszMylId: A pointer to a Unicode string representing the identity of the local host when a Kerberos-
based authentication method, as specified in [MS-KILE], is used.

wszPeerId: A pointer to a Unicode string representing the identity of the remote host when a
Kerberos-based authentication method, as specified in [MS-KILE], is used.

dwAuthInfoFlags: Reserved value and not currently used. It MUST be set to 0.

2.2.79 FW_ENDPOINTS

This structure represents the two endpoints, source and destination, that participate in IP
communication.

typedef struct _tag FW_ENDPOINTS {

97/ 306

[MS-FASP-DIff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

[range (FW_IP_VERSION INVALID+1,FW IP_VERSION MAX-1)]
FW_IP_VERSION IpVersion;
unsigned long dwSourceV4Address;
unsigned long dwDestinationV4Address;
unsigned char SourceV6Address[16];
unsigned char DestinationVe6Address[16];
} FW_ENDPOINTS,
*PFW_ENDPOINTS;

IpVersion: This field specifies the Internet Protocol version used. This field MUST contain a valid
value from the FW_IP_VERSION enumeration.

dwSourceV4Address: This field is the IPv4 address of the source endpoint.
dwDestinationV4Address: This field is the IPv4 address of the destination endpoint.

SourceV6Address: This field is a 16-octet array that represents the IPv6 address of the source
endpoint.

DestinationV6Address: This field is a 16-octet array that represents the IPv6 address of the
destination endpoint.

The v4 versions or the v6 versions of the fields are used depending on the IpVersion field value.

2.2.80 FW_PHASE1_SA_DETAILS

This structure represents a security association that is established after the main mode negotiations
take place; it contains the selected algorithms to enforce IPsec and the methods and results of the
authentication process.

typedef struct _tag FW_PHASEl SA DETAILS {
unsigned int64 SaId;
[range (FW_PHASEl KEY MODULE_ INVALID+1,FW PHASEl KEY MODULE MAX-1)]

FW_PHASE1 KEY MODULE TYPE KeyModuleType;

FW_ENDPOINTS Endpoints;
FW_PHASE1 CRYPTO SUITE SelectedProposal;
unsigned long dwProposallLifetimeKBytes;
unsigned long dwProposallLifetimeMinutes;
unsigned long dwProposalMaxNumPhase2;
FW_COOKIE PAIR CookiePair;
PFW _AUTH INFO pFirstAuth;
PFW _AUTH INFO pSecondAuth;
unsigned long dwPlSaFlags;

} FW_PHASE1l SA DETAILS,
*PFW_PHASEl SA DETAILS;

Sald: A 64-bit integer that uniquely identifies the security association.

KeyModuleType: The keying protocol used, IKE or AuthIP. The field MUST contain only a value from
the FW_PHASE1_KEY_MODULE_TYPE enumeration.

Endpoints: This field contains IP address information of the two endpoints that established this
security association. An address of zero means the security association applies to any endpoint.

SelectedProposal: This is the Phasel cryptographic suite that was selected by the negotiation of the
keying protocol.

dwProposalLifetimeKBytes: Currently not supported.

dwProposalLifetimeMinutes: This field specifies the lifetime in minutes of this security association
before a rekey MUST happen.

98 / 306

[MS-FASP-DIff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

dwProposalMaxNumPhase2: This field specifies the number of Phase2 (quick mode) negotiations
(rekeys) that can happen before this security association MUST be renegotiated.

CookiePair: This value is used for diagnostics.

pFirstAuth: A pointer to an FW_AUTH_INFO structure that contains the information that resulted
from the method negotiated and used for first authentication. This pointer MUST NOT be null.

pSecondAuth: A pointer to an FW_AUTH_INFO structure that contains the information that resulted
from the method negotiated and used for second authentication. If the field is NULL, the second
authentication was not performed.

dwP1SaFlags: Reserved value and not currently used. It MUST be set to O.

2.2.81 FW_PHASE2_TRAFFIC_TYPE

This enumeration identifies the two types of traffic enforcement modes that IPsec supports. It is
defined in the IDL for future use.

typedef enum tag FW PHASE2 TRAFFIC TYPE

{
FW_PHASE2 TRAFFIC TYPE INVALID = O,
FW PHASE2 TRAFFIC TYPE TRANSPORT =
FW_PHASE2 TRAFFIC TYPE TUNNEL = 2,
FW_PHASE2 TRAFFIC TYPE MAX = 3

} FW_PHASE2 TRAFFIC TYPE;

1’

FW_PHASE2_TRAFFIC_TYPE_INVALID: This value MUST NOT be used. It is defined for simplicity
in writing IDL definitions and code. This symbolic constant has a value of 0.

FW_PHASE2_TRAFFIC_TYPE_TRANSPORT: This value represents IPsec transport mode, which
happens directly between two endpoints. This symbolic constant has a value of 1.

FW_PHASE2_TRAFFIC_TYPE_TUNNEL: This value represents IPsec tunnel mode, which uses two
other endpoints to tunnel through them when the original endpoints communicate. This symbolic
constant has a value of 2.

FW_PHASE2_TRAFFIC_TYPE_MAX: This value and values that exceed this value are not valid and
MUST NOT be used. It is defined for simplicity in writing IDL definitions and code. This symbolic
constant has a value of 3.

2.2.82 FW_PHASE2_SA_DETAILS

This structure represents a security association that is established after the quick mode negotiations
take place; it contains the selected algorithms to enforce IPsec.

typedef struct _tag FW PHASE2 SA DETAILS ({
unsigned _ int64 Sald;
[range (FW_DIR INVALID+1,FW DIR MAX-1)]
FW DIRECTION Direction;
FW_ENDPOINTS Endpoints;
unsigned short wLocalPort;
unsigned short wRemotePort;
unsigned short wIpProtocol;
FW_PHASE2 CRYPTO SUITE SelectedProposal;
FW_PHASE2_ CRYPTO PFS Pfs;
GUID TransportFilterId;
unsigned long dwP2SaFlags;
} FW_PHASE2 SA DETAILS,

99 / 306

[MS-FASP-DIff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

*PFW_PHASE2 SA DETAILS;

Sald: A 64-bit integer number that uniquely identifies the security association.
Direction: This field specifies the direction of the traffic this security association is securing.

Endpoints: This field contains IP address information of the two endpoints that established this
security association. An address of zero means the security association applies to any endpoint.

wLocalPort: This field specifies the port of the local endpoint that is used in the traffic secured by
this security association. A value of 0 specifies any port.

wRemotePort: This field specifies the port of the remote endpoint that is used in the traffic secured
by this security association. A value of 0 specifies any port.

wIpProtocol: This field specifies the protocol of the traffic secured by this security association. If the
value is within the range 0 to 255, the value describes a protocol as in IETF IANA numbers (for
more information, see [IANA-PROTO-NUM]). If the value is 256, the rule matches ANY protocol.

SelectedProposal: This field contains the Phase2 cryptographic suite selected by the negotiation
that is used by this security association to enforce IPsec.

Pfs: This field specifies the perfect forward secrecy used by this security association.

TransportFilterId: This GUID MAY contain additional implementation-specific<18> information
about the security association. The client MUST ignore this value.

dwP2SaFlags: Reserved value and not currently used. It MUST be set to 0.

2.2.83 FW_PROFILE_CONFIG_VALUE

This union defines the value stored by each of the different policy configuration values identified by
the enumeration FW_PROFILE_CONFIG. This data type is used to pass different types of values across
the same structure on function calls.

typedef
[switch_type (FW_PROFILE_ CONFIG)]
union FW_PROFILE CONFIG VALUE ({
[case (FW_PROFILE CONFIG LOG_FILE PATH)]
[string, range(1,10001)] wchar t* wszStr;
[case (FW_PROFILE CONFIG DISABLED INTERFACES)]
PFW_INTERFACE LUIDS pDisabledInterfaces;
[case (FW_PROFILE CONFIG ENABLE FW, FW_PROFILE CONFIG DISABLE STEALTH MODE,
FW_PROFILE CONFIG_SHIELDED,
FW_PROFILE CONFIG DISABLE UNICAST RESPONSES TO MULTICAST BROADCAST,
FW_PROFILE_ CONFIG_LOG_DROPPED PACKETS,
FW_PROFILE CONFIG_LOG_SUCCESS_CONNECTIONS,
FW_PROFILE CONFIG_LOG_IGNORED RULES,
FW_PROFILE CONFIG_LOG MAX FILE SIZE,
FW_PROFILE CONFIG _DISABLE INBOUND NOTIFICATIONS,
FW_PROFILE CONFIG_AUTH APPS ALLOW USER PREF MERGE,
FW_PROFILE CONFIG GLOBAL PORTS ALLOW USER PREF MERGE,
FWW_PROFILE CONFIG ALLOW LOCAL POLICY MERGE,
FW_PROFILE CONFIG ALLOW_LOCAL IPSEC_POLICY_ MERGE,
FW_PROFILE CONFIG DEFAULT OUTBOUND_ ACTION,
FWW_PROFILE CONFIG DEFAULT INBOUND ACTION,
FW_PROFILE CONFIG DISABLE STEALTH MODE IPSEC SECURED PACKET EXEMPTION)]
unsigned long* pdwVal;
} FW_PROFILE CONFIG_VALUE,
*PFW_PROFILE_CONFIG_VALUE;

100 / 306

[MS-FASP-DIff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

wszStr: This field contains a pointer to a Unicode string. It is used when the data type of the
configuration value is a string.

pDisabledInterfaces: This field contains a pointer to an FW_INTERFACE_LUIDS data type, which
holds a list of GUIDs. This field is custom marshaled, so it is passed as a plain buffer. The
following diagrams show how the structures are marshaled.

On 32-bit servers:

=
N
w

0[{1(2|3|4|5|6|7|8|9(0(1({2|3|4|5|6|7|8|9|0(1(2(3(4|5(6|7|8]|9|0]|1

dwNumLUIDs

pLUIDs

GUID1 (16 bytes)

On 64-bit servers:

—
N
w

0[{1(2|3|4|5|6|7|8|(9(0(1({2|3|4|5|6|7|8|9|0|1(2(3(4|5(6|7|8]|9|0]|1

dwNumLUIDs

pLUIDs

GUID1 (16 bytes)

pdwVal: This field contains a pointer to an unsigned long. It is used when the data type of the
configuration value is an unsigned long.

2.2.84 FW_MM_RULE

This structure is used to represent a main mode rule.

typedef struct _tag FW MM RULE {
struct _tag FW MM RULE* pNext;
unsigned SHORT wSchemaVersion;
[string, range(1,512), ref] wchar t* wszRuleId;
[string, range(1,10001)] wchar t* wszName;
[string, range(1,10001)] wchar t* wszDescription;

101 / 306
[MS-FASP-DIff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

unsigned LONG dwProfiles;
FW_ADDRESSES Endpointl;
FW_ADDRESSES Endpoint2;
[string, range(1,255)] wchar t* wszPhaselAuthSet;
[string, range(1,255)] wchar t* wszPhaselCryptoSet;
unsigned SHORT wFlags;
[string, range(1,10001)] wchar t wszEmbeddedContext;
FW OS PLATFORM LIST PlatformvValidityList;
[range (FW RULE ORIGIN INVALID, FW RULE ORIGIN MAX-1)]
FW_RULE ORIGIN TYPE Origin;
[string, range(1,10001)] wchar t wszGPOName;
FW RULE STATUS Status;
signed LONG Reserved;
[size is((Reserved & FW_OBJECT CTRL_FLAG_INCLUDE METADATA) ? 1 : 0)]
FW_OBJECT_ METADATA pMetaData;
} FW_MM RULE,
*PFW MM RULE;

pNext: A pointer to the next FW_MM_RULE in the list.

wSchemaVersion: Specifies the version of the rule.

wszRuleld: A pointer to a Unicode string that uniquely identifies the rule.

wszName: A pointer to a Unicode string that provides a friendly name for the rule.
wszDescription: A pointer to a Unicode string that provides a friendly description for the rule.

dwProfiles: A bitmask of the FW_PROFILE_TYPE flags. It is a condition that matches traffic on the
specified profiles.

Endpointl: A condition that specifies the addresses of the first host of the traffic that the rule
matches. An empty EndPointl structure means this condition is not applied (no match).

Endpoint2: A condition that specifies the addresses of the second host of the traffic that the rule
matches. An empty EndPoint2 structure means this condition is not applied (no match).

wszPhaselAuthSet: A Unicode string that represents the set identifier of a Phasel authentication
sets policy objects.

wFlags: Bit flags from FW_CS_RULE_FLAGS.

wszEmbeddedContext: A pointer to a Unicode string that specifies a group name for this rule.
Other components in the system use this string to enable or disable a group of rules by verifying
that all rules have the same group name.

PlatformValidityList: A condition in a rule that determines whether or not the rule is enforced by
the local computer based on the local computer's platform information. The rule is enforced only if
the local computer's operating system platform is an element of the set described by
PlatformValidityList.<19>

Origin: This field is the rule origin, as specified in the FW_RULE_ORIGIN_TYPE enumeration. It MUST
be filled on enumerated rules and ignored on input.

wszGPOName: A pointer to a Unicode string containing the displayName of the GPO containing this
object. When adding a new object, this field is not used. The client SHOULD set the value to NULL,
and the server MUST ignore the value. When enumerating an existing object, if the client does not
set the FW_ENUM_RULES_FLAG_RESOLVE_GPO_NAME flag, the server MUST set the value to
NULL. Otherwise, the server MUST set the value to the displayName of the GPO containing the
object or NULL if the object is not contained within a GPO. For details about how the server
initializes an object from a GPO, see section 3.1.3. For details about how the displayName of a
GPO is stored, see [MS-GPOL] section 2.3.

102 / 306

[MS-FASP-DIff] - v20171201
Firewall and Advanced Security Protocol
Copyright © 2017 Microsoft Corporation
Release: December 1, 2017

Status: The status code of the rule, as specified by the FW_RULE_STATUS enumeration. This field is
filled out when the structure is returned as output. On input, this field MUST be set to
FW_RULE_STATUS_OK.

Reserved: This member is not used, other than to instruct RPC, by using the
FW_OBJECT_CTRL_FLAG_INCLUDE_METADATA flag, that a pointer to an FW_OBJECT_METADATA
structure is present. It has no semantic meaning to the object itself.

pMetaData: A pointer to an FW_OBJECT_METADATA structure that contains specific metadata about
the current state of the connection security rule.

2.2.85 FW_CONN_HANDLE

This type contains an RPC binding handle, as specified in [C706] section 2, to an RPC interface that
implements the Firewall and Advanced Security Protocol. For information on handle_t, see [MS-DTYP]
section 2.1.3.

This type is declared as follows:

typedef handle t FW_CONN_HANDLE;

2.2.86 FW_MATCH_KEY

This enumeration describes the keys that a query is allowed to match.

typedef enum _tag FW_MATCH_KEY

{
FW_MATCH KEY PROFILE = O,
FW MATCH KEY STATUS = 1,
FW MATCH KEY OBJECTID
FW_MATCH KEY FILTERID
FW_MATCH KEY APP PATH
FW MATCH KEY PROTOCOL
FW_MATCH_KEY LOCAL PORT = 6,
FW_MATCH KEY REMOTE PORT = 7,
FW_MATCH KEY GROUP = 8,
FW_MATCH_KEY SVC_N