

1 / 270

[MS-EMFPLUS-Diff] - v20160714
Enhanced Metafile Format Plus Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

[MS-EMFPLUS-Diff]:

Enhanced Metafile Format Plus Extensions

Intellectual Property Rights Notice for Open Specifications Documentation

 Technical Documentation. Microsoft publishes Open Specifications documentation (“this
documentation”) for protocols, file formats, data portability, computer languages, and standards
as well as overviews of the interaction among each of these technologiessupport. Additionally,

overview documents cover inter-protocol relationships and interactions.

 Copyrights. This documentation is covered by Microsoft copyrights. Regardless of any other
terms that are contained in the terms of use for the Microsoft website that hosts this
documentation, you maycan make copies of it in order to develop implementations of the

technologies that are described in the Open Specifications this documentation and maycan
distribute portions of it in your implementations usingthat use these technologies or in your
documentation as necessary to properly document the implementation. You maycan also distribute

in your implementation, with or without modification, any schema, IDL'sschemas, IDLs, or code
samples that are included in the documentation. This permission also applies to any documents
that are referenced in the Open Specifications. documentation.

 No Trade Secrets. Microsoft does not claim any trade secret rights in this documentation.

 Patents. Microsoft has patents that maymight cover your implementations of the technologies
described in the Open Specifications. documentation. Neither this notice nor Microsoft's delivery of
thethis documentation grants any licenses under those patents or any other Microsoft patents.
However, a given Open Specification maySpecifications document might be covered by the
Microsoft Open Specifications Promise or the Microsoft Community Promise. If you would prefer a

written license, or if the technologies described in the Open Specificationsthis documentation are
not covered by the Open Specifications Promise or Community Promise, as applicable, patent

licenses are available by contacting iplg@microsoft.com.

 Trademarks. The names of companies and products contained in this documentation maymight
be covered by trademarks or similar intellectual property rights. This notice does not grant any
licenses under those rights. For a list of Microsoft trademarks, visit
www.microsoft.com/trademarks.

 Fictitious Names. The example companies, organizations, products, domain names, e-mailemail
addresses, logos, people, places, and events that are depicted in this documentation are fictitious.
No association with any real company, organization, product, domain name, email address, logo,
person, place, or event is intended or should be inferred.

Reservation of Rights. All other rights are reserved, and this notice does not grant any rights other
than as specifically described above, whether by implication, estoppel, or otherwise.

Tools. The Open Specifications dodocumentation does not require the use of Microsoft programming

tools or programming environments in order for you to develop an implementation. If you have access

to Microsoft programming tools and environments, you are free to take advantage of them. Certain
Open Specifications documents are intended for use in conjunction with publicly available
standardstandards specifications and network programming art, and assumes, as such, assume that
the reader either is familiar with the aforementioned material or has immediate access to it.

http://go.microsoft.com/fwlink/?LinkId=214445
http://go.microsoft.com/fwlink/?LinkId=214448
mailto:iplg@microsoft.com
http://www.microsoft.com/trademarks

2 / 270

[MS-EMFPLUS-Diff] - v20160714
Enhanced Metafile Format Plus Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Revision Summary

Date
Revision
History

Revision
Class Comments

2/22/2007 0.01 New Version 0.01 release

6/1/2007 1.0 Major Updated and revised the technical content.

7/3/2007 1.1 Minor
Editorial changes to make consistent references and use of
acronyms; and some glossary terms were added.

7/20/2007 1.2 Minor Clarified the meaning of the technical content.

8/10/2007 1.3 Minor Clarified the meaning of the technical content.

9/28/2007 1.4 Minor Clarified the meaning of the technical content.

10/23/2007 2.0 Major
Updated and revised the technical content; restructured for
easier navigation.

11/30/2007 3.0 Major
Restructured EMF+ constants, objects, other revisions, and
standardized art

1/25/2008 3.1 Minor Clarified the meaning of the technical content.

3/14/2008 4.0 Major Abstract data model added.

5/16/2008 4.0.1 Editorial Changed language and formatting in the technical content.

6/20/2008 4.1 Minor Clarified the meaning of the technical content.

7/25/2008 4.1.1 Editorial Changed language and formatting in the technical content.

8/29/2008 4.1.2 Editorial Changed language and formatting in the technical content.

10/24/2008 4.2 Minor Clarified the meaning of the technical content.

12/5/2008 4.3 Minor Clarified the meaning of the technical content.

1/16/2009 5.0 Major Updated and revised the technical content.

2/27/2009 5.1 Minor Clarified the meaning of the technical content.

4/10/2009 6.0 Major Updated and revised the technical content.

5/22/2009 7.0 Major Updated and revised the technical content.

7/2/2009 7.1 Minor Clarified the meaning of the technical content.

8/14/2009 7.1.1 Editorial Changed language and formatting in the technical content.

9/25/2009 7.2 Minor Clarified the meaning of the technical content.

11/6/2009 7.3 Minor Clarified the meaning of the technical content.

12/18/2009 7.3.1 Editorial Changed language and formatting in the technical content.

1/29/2010 7.4 Minor Clarified the meaning of the technical content.

3/12/2010 7.5 Minor Clarified the meaning of the technical content.

4/23/2010 7.5.1 Editorial Changed language and formatting in the technical content.

3 / 270

[MS-EMFPLUS-Diff] - v20160714
Enhanced Metafile Format Plus Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Date
Revision
History

Revision
Class Comments

6/4/2010 7.6 Minor Clarified the meaning of the technical content.

7/16/2010 8.0 Major Updated and revised the technical content.

8/27/2010 8.0 None
No changes to the meaning, language, or formatting of the
technical content.

10/8/2010 8.1 Minor Clarified the meaning of the technical content.

11/19/2010 8.2 Minor Clarified the meaning of the technical content.

1/7/2011 8.2 None
No changes to the meaning, language, or formatting of the
technical content.

2/11/2011 8.2 None
No changes to the meaning, language, or formatting of the
technical content.

3/25/2011 8.2 None
No changes to the meaning, language, or formatting of the
technical content.

5/6/2011 8.2 None
No changes to the meaning, language, or formatting of the
technical content.

6/17/2011 8.3 Minor Clarified the meaning of the technical content.

9/23/2011 9.0 Major Updated and revised the technical content.

12/16/2011 10.0 Major Updated and revised the technical content.

3/30/2012 10.0 None
No changes to the meaning, language, or formatting of the
technical content.

7/12/2012 10.0 None
No changes to the meaning, language, or formatting of the
technical content.

10/25/2012 10.0 None
No changes to the meaning, language, or formatting of the
technical content.

1/31/2013 10.0 None
No changes to the meaning, language, or formatting of the
technical content.

8/8/2013 11.0 Major Updated and revised the technical content.

11/14/2013 12.0 Major Updated and revised the technical content.

2/13/2014 12.0 None
No changes to the meaning, language, or formatting of the
technical content.

5/15/2014 13.0 Major Updated and revised the technical content.

6/30/2015 14.0 Major Significantly changed the technical content.

10/16/2015 14.0
No
ChangeNone

No changes to the meaning, language, or formatting of the
technical content.

4 / 270

[MS-EMFPLUS-Diff] - v20160714
Enhanced Metafile Format Plus Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Table of Contents

1 Introduction .. 10
1.1 Glossary ... 10
1.2 References .. 17

1.2.1 Normative References ... 17
1.2.2 Informative References ... 18

1.3 Overview .. 18
1.3.1 Metafile Structure ... 18
1.3.2 Byte Ordering .. 20

1.4 Relationship to Protocols and Other Structures .. 21
1.5 Applicability Statement ... 21
1.6 Versioning and Localization ... 22
1.7 Vendor-Extensible Fields ... 22

2 Structures ... 23
2.1 EMF+ Constants ... 23

2.1.1 Enumeration Constant Types .. 23
2.1.1.1 RecordType Enumeration ... 25
2.1.1.2 BitmapDataType Enumeration .. 28
2.1.1.3 BrushType Enumeration ... 29
2.1.1.4 CombineMode Enumeration .. 29
2.1.1.5 CompositingMode Enumeration ... 30
2.1.1.6 CompositingQuality Enumeration .. 30
2.1.1.7 CurveAdjustments Enumeration .. 31
2.1.1.8 CurveChannel Enumeration .. 32
2.1.1.9 CustomLineCapDataType Enumeration... 32
2.1.1.10 DashedLineCapType Enumeration ... 33
2.1.1.11 FilterType Enumeration .. 33
2.1.1.12 GraphicsVersion Enumeration ... 34
2.1.1.13 HatchStyle Enumeration .. 34
2.1.1.14 HotkeyPrefix Enumeration .. 37
2.1.1.15 ImageDataType Enumeration ... 38
2.1.1.16 InterpolationMode Enumeration .. 38
2.1.1.17 LanguageIdentifier Enumeration ... 39
2.1.1.18 LineCapType Enumeration .. 50
2.1.1.19 LineJoinType Enumeration .. 51
2.1.1.20 LineStyle Enumeration ... 51
2.1.1.21 MetafileDataType Enumeration ... 52
2.1.1.22 ObjectType Enumeration .. 52
2.1.1.23 PathPointType Enumeration .. 53
2.1.1.24 PenAlignment Enumeration .. 53
2.1.1.25 PixelFormat Enumeration ... 54
2.1.1.26 PixelOffsetMode Enumeration ... 55
2.1.1.27 RegionNodeDataType Enumeration .. 56
2.1.1.28 SmoothingMode Enumeration ... 57
2.1.1.29 StringAlignment Enumeration ... 57
2.1.1.30 StringDigitSubstitution Enumeration .. 58
2.1.1.31 StringTrimming Enumeration .. 58
2.1.1.32 TextRenderingHint Enumeration .. 59
2.1.1.33 UnitType Enumeration ... 59
2.1.1.34 WrapMode Enumeration ... 60

2.1.2 Bit Flag Constant Types ... 60
2.1.2.1 BrushData Flags ... 61
2.1.2.2 CustomLineCapData Flags .. 62
2.1.2.3 DriverStringOptions Flags .. 62
2.1.2.4 FontStyle Flags ... 62

5 / 270

[MS-EMFPLUS-Diff] - v20160714
Enhanced Metafile Format Plus Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

2.1.2.5 PaletteStyle Flags ... 63
2.1.2.6 PathPointType Flags .. 63
2.1.2.7 PenData Flags .. 64
2.1.2.8 StringFormat Flags .. 64

2.1.3 Standard Identifier Constant Types ... 65
2.1.3.1 ImageEffects Identifiers ... 66

2.2 EMF+ Objects .. 66
2.2.1 Graphics Object Types ... 67

2.2.1.1 EmfPlusBrush Object ... 67
2.2.1.2 EmfPlusCustomLineCap Object ... 68
2.2.1.3 EmfPlusFont Object ... 69
2.2.1.4 EmfPlusImage Object .. 70
2.2.1.5 EmfPlusImageAttributes Object... 70
2.2.1.6 EmfPlusPath Object ... 71
2.2.1.7 EmfPlusPen Object .. 72
2.2.1.8 EmfPlusRegion Object .. 73
2.2.1.9 EmfPlusStringFormat Object ... 73

2.2.2 Structure Object Types .. 75
2.2.2.1 EmfPlusARGB Object ... 77
2.2.2.2 EmfPlusBitmap Object ... 78
2.2.2.3 EmfPlusBitmapData Object ... 79
2.2.2.4 EmfPlusBlendColors Object ... 80
2.2.2.5 EmfPlusBlendFactors Object ... 81
2.2.2.6 EmfPlusBoundaryPathData Object ... 81
2.2.2.7 EmfPlusBoundaryPointData Object .. 82
2.2.2.8 EmfPlusCharacterRange Object ... 82
2.2.2.9 EmfPlusCompoundLineData Object .. 83
2.2.2.10 EmfPlusCompressedImage Object ... 83
2.2.2.11 EmfPlusCustomEndCapData Object ... 84
2.2.2.12 EmfPlusCustomLineCapArrowData Object ... 84
2.2.2.13 EmfPlusCustomLineCapData Object ... 86
2.2.2.14 EmfPlusCustomLineCapOptionalData Object ... 87
2.2.2.15 EmfPlusCustomStartCapData Object .. 88
2.2.2.16 EmfPlusDashedLineData Object .. 88
2.2.2.17 EmfPlusFillPath Object ... 89
2.2.2.18 EmfPlusFocusScaleData Object ... 89
2.2.2.19 EmfPlusGraphicsVersion Object ... 90
2.2.2.20 EmfPlusHatchBrushData Object .. 90
2.2.2.21 EmfPlusInteger7 Object ... 91
2.2.2.22 EmfPlusInteger15 Object ... 91
2.2.2.23 EmfPlusLanguageIdentifier Object ... 91
2.2.2.24 EmfPlusLinearGradientBrushData Object .. 92
2.2.2.25 EmfPlusLinearGradientBrushOptionalData Object 93
2.2.2.26 EmfPlusLinePath Object ... 94
2.2.2.27 EmfPlusMetafile Object .. 94
2.2.2.28 EmfPlusPalette Object .. 95
2.2.2.29 EmfPlusPathGradientBrushData Object .. 96
2.2.2.30 EmfPlusPathGradientBrushOptionalData Object ... 97
2.2.2.31 EmfPlusPathPointType Object ... 98
2.2.2.32 EmfPlusPathPointTypeRLE Object .. 99
2.2.2.33 EmfPlusPenData Object.. 99
2.2.2.34 EmfPlusPenOptionalData Object ... 100
2.2.2.35 EmfPlusPoint Object ... 102
2.2.2.36 EmfPlusPointF Object .. 102
2.2.2.37 EmfPlusPointR Object ... 103
2.2.2.38 EmfPlusRect Object .. 103
2.2.2.39 EmfPlusRectF Object .. 103
2.2.2.40 EmfPlusRegionNode Object ... 104

6 / 270

[MS-EMFPLUS-Diff] - v20160714
Enhanced Metafile Format Plus Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

2.2.2.41 EmfPlusRegionNodeChildNodes Object .. 105
2.2.2.42 EmfPlusRegionNodePath Object ... 105
2.2.2.43 EmfPlusSolidBrushData Object ... 105
2.2.2.44 EmfPlusStringFormatData Object ... 106
2.2.2.45 EmfPlusTextureBrushData Object ... 106
2.2.2.46 EmfPlusTextureBrushOptionalData Object ... 107
2.2.2.47 EmfPlusTransformMatrix Object ... 108

2.2.3 Image Effects Object Types .. 109
2.2.3.1 BlurEffect Object .. 109
2.2.3.2 BrightnessContrastEffect Object ... 110
2.2.3.3 ColorBalanceEffect Object ... 111
2.2.3.4 ColorCurveEffect Object .. 112
2.2.3.5 ColorLookupTableEffect Object... 113
2.2.3.6 ColorMatrixEffect Object ... 114
2.2.3.7 HueSaturationLightnessEffect Object .. 117
2.2.3.8 LevelsEffect Object ... 118
2.2.3.9 RedEyeCorrectionEffect Object ... 119
2.2.3.10 SharpenEffect Object .. 119
2.2.3.11 TintEffect Object .. 120

2.3 EMF+ Records .. 121
2.3.1 Clipping Record Types .. 121

2.3.1.1 EmfPlusOffsetClip Record .. 122
2.3.1.2 EmfPlusResetClip Record ... 123
2.3.1.3 EmfPlusSetClipPath Record .. 123
2.3.1.4 EmfPlusSetClipRect Record .. 124
2.3.1.5 EmfPlusSetClipRegion Record .. 125

2.3.2 Comment Record Types .. 126
2.3.2.1 EmfPlusComment Record .. 126

2.3.3 Control Record Types ... 127
2.3.3.1 EmfPlusEndOfFile Record .. 128
2.3.3.2 EmfPlusGetDC Record ... 128
2.3.3.3 EmfPlusHeader Record .. 129

2.3.4 Drawing Record Types .. 130
2.3.4.1 EmfPlusClear Record .. 132
2.3.4.2 EmfPlusDrawArc Record .. 133
2.3.4.3 EmfPlusDrawBeziers Record .. 134
2.3.4.4 EmfPlusDrawClosedCurve Record ... 136
2.3.4.5 EmfPlusDrawCurve Record .. 139
2.3.4.6 EmfPlusDrawDriverString Record ... 140
2.3.4.7 EmfPlusDrawEllipse Record ... 143
2.3.4.8 EmfPlusDrawImage Record ... 144
2.3.4.9 EmfPlusDrawImagePoints Record ... 145
2.3.4.10 EmfPlusDrawLines Record ... 148
2.3.4.11 EmfPlusDrawPath Record .. 150
2.3.4.12 EmfPlusDrawPie Record .. 150
2.3.4.13 EmfPlusDrawRects Record ... 152
2.3.4.14 EmfPlusDrawString Record .. 153
2.3.4.15 EmfPlusFillClosedCurve Record .. 155
2.3.4.16 EmfPlusFillEllipse Record ... 158
2.3.4.17 EmfPlusFillPath Record.. 159
2.3.4.18 EmfPlusFillPie Record .. 160
2.3.4.19 EmfPlusFillPolygon Record ... 161
2.3.4.20 EmfPlusFillRects Record .. 164
2.3.4.21 EmfPlusFillRegion Record .. 165

2.3.5 Object Record Types .. 166
2.3.5.1 EmfPlusObject Record... 167
2.3.5.2 EmfPlusSerializableObject Record ... 168

2.3.6 Property Record Types ... 169

7 / 270

[MS-EMFPLUS-Diff] - v20160714
Enhanced Metafile Format Plus Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

2.3.6.1 EmfPlusSetAntiAliasMode Record ... 171
2.3.6.2 EmfPlusSetCompositingMode Record .. 171
2.3.6.3 EmfPlusSetCompositingQuality Record .. 172
2.3.6.4 EmfPlusSetInterpolationMode Record.. 173
2.3.6.5 EmfPlusSetPixelOffsetMode Record ... 173
2.3.6.6 EmfPlusSetRenderingOrigin Record .. 174
2.3.6.7 EmfPlusSetTextContrast Record ... 175
2.3.6.8 EmfPlusSetTextRenderingHint Record ... 176

2.3.7 State Record Types .. 176
2.3.7.1 EmfPlusBeginContainer Record .. 177
2.3.7.2 EmfPlusBeginContainerNoParams Record .. 179
2.3.7.3 EmfPlusEndContainer Record ... 179
2.3.7.4 EmfPlusRestore Record ... 180
2.3.7.5 EmfPlusSave Record ... 181

2.3.8 Terminal Server Record Types ... 181
2.3.8.1 EmfPlusSetTSClip Record .. 182
2.3.8.2 EmfPlusSetTSGraphics Record ... 184

2.3.9 Transform Record Types ... 185
2.3.9.1 EmfPlusMultiplyWorldTransform Record .. 187
2.3.9.2 EmfPlusResetWorldTransform Record ... 187
2.3.9.3 EmfPlusRotateWorldTransform Record .. 188
2.3.9.4 EmfPlusScaleWorldTransform Record .. 189
2.3.9.5 EmfPlusSetPageTransform Record .. 190
2.3.9.6 EmfPlusSetWorldTransform Record... 191
2.3.9.7 EmfPlusTranslateWorldTransform Record .. 191

3 Structure Examples ... 193
3.1 Metafile Design ... 193

3.1.1 Byte Ordering Example ... 193
3.1.2 Managing Graphics Objects ... 193

3.2 EMF+ Metafile Example .. 194
3.2.1 EMR_HEADER Example ... 197
3.2.2 EMR_COMMENT_EMFPLUS Example 1 ... 199

3.2.2.1 EmfPlusHeader Example ... 200
3.2.3 EMR_SAVEDC Example 1 .. 200
3.2.4 EMR_SETICMMODE Example 1 .. 201
3.2.5 EMR_SAVEDC Example 2 .. 201
3.2.6 EMR_SETICMMODE Example 2 .. 202
3.2.7 EMR_SAVEDC Example 3 .. 202
3.2.8 EMR_SETLAYOUT Example 1 ... 202
3.2.9 EMR_SETMETARGN Example 1 .. 203
3.2.10 EMR_SELECTOBJECT Example 1 .. 203
3.2.11 EMR_SELECTOBJECT Example 2 .. 204
3.2.12 EMR_SELECTOBJECT Example 3 .. 204
3.2.13 EMR_SELECTPALETTE Example 1 ... 204
3.2.14 EMR_SETBKCOLOR Example 1 ... 205
3.2.15 EMR_SETTEXTCOLOR Example 1 ... 205
3.2.16 EMR_SETBKMODE Example 1 .. 206
3.2.17 EMR_SETPOLYFILLMODE Example 1 ... 206
3.2.18 EMR_SETROP2 Example 1 ... 207
3.2.19 EMR_SETSTRETCHBLTMODE Example 1 .. 207
3.2.20 EMR_SETTEXTALIGN Example 1 .. 207
3.2.21 EMR_SETBRUSHORGEX Example 1 .. 208
3.2.22 EMR_SETMITERLIMIT Example 1 ... 208
3.2.23 EMR_MOVETOEX Example 1 .. 209
3.2.24 EMR_SETWORLDTRANSFORM Example 1 .. 209
3.2.25 EMR_MODIFYWORLDTRANSFORM Example 1 .. 210
3.2.26 EMR_SETLAYOUT Example 2 ... 211

8 / 270

[MS-EMFPLUS-Diff] - v20160714
Enhanced Metafile Format Plus Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

3.2.27 EMR_SETBRUSHORGEX Example 2 .. 211
3.2.28 EMR_EXTCREATEFONTINDIRECTW Example .. 212
3.2.29 EMR_SELECTOBJECT Example 4 .. 214
3.2.30 EMR_SELECTOBJECT Example 5 .. 215
3.2.31 EMR_DELETEOBJECT Example ... 215
3.2.32 EMR_COMMENT_EMFPLUS Example 2 ... 215

3.2.32.1 EmfPlusSetAntiAliasMode Example 1 .. 216
3.2.32.2 EmfPlusSetCompositingQuality Example 1 ... 216
3.2.32.3 EmfPlusSetInterpolationMode Example 1 .. 217
3.2.32.4 EmfPlusSetPixelOffsetMode Example 1 .. 217
3.2.32.5 EmfPlusSetTextRenderingHint Example 1 .. 218
3.2.32.6 EmfPlusMultiplyWorldTransform Example 1 ... 218
3.2.32.7 EmfPlusSave Example .. 219
3.2.32.8 EmfPlusMultiplyWorldTransform Example 2 ... 220
3.2.32.9 EmfPlusSetWorldTransform Example 1.. 220
3.2.32.10 EmfPlusBeginContainerNoParams Example .. 221
3.2.32.11 EmfPlusSetAntiAliasMode Example 2 .. 222
3.2.32.12 EmfPlusSetCompositingQuality Example 2 ... 222
3.2.32.13 EmfPlusSetInterpolationMode Example 2 .. 223
3.2.32.14 EmfPlusSetPixelOffsetMode Example 2 .. 223
3.2.32.15 EmfPlusSetTextRenderingHint Example 2 .. 223
3.2.32.16 EmfPlusSetPageTransform Example .. 224
3.2.32.17 EmfPlusSetWorldTransform Example 2.. 224
3.2.32.18 EmfPlusSetWorldTransform Example 3.. 225
3.2.32.19 EmfPlusSetWorldTransform Example 4.. 226
3.2.32.20 EmfPlusSetWorldTransform Example 5.. 227
3.2.32.21 EmfPlusObject Example .. 227
3.2.32.22 EmfPlusFillPath Example ... 229

3.2.33 EMR_COMMENT_EMFPLUS Example 3 ... 229
3.2.33.1 EmfPlusObject Example .. 230
3.2.33.2 EmfPlusDrawPath Example .. 232

3.2.34 EMR_RESTOREDC Example 1 .. 232
3.2.35 EMR_RESTOREDC Example 2 .. 233
3.2.36 EMR_SELECTOBJECT Example 6 .. 233
3.2.37 EMR_RESTOREDC Example 3 .. 233
3.2.38 EMR_SAVEDC Example 4 .. 234
3.2.39 EMR_SETLAYOUT Example 3 ... 234
3.2.40 EMR_SETMETARGN Example 2 .. 235
3.2.41 EMR_SELECTOBJECT Example 7 .. 235
3.2.42 EMR_SELECTOBJECT Example 8 .. 235
3.2.43 EMR_SELECTOBJECT Example 9 .. 236
3.2.44 EMR_SELECTPALETTE Example 2 ... 236
3.2.45 EMR_SETBKCOLOR Example 2 ... 237
3.2.46 EMR_SETTEXTCOLOR Example 2 ... 237
3.2.47 EMR_SETBKMODE Example 2 .. 237
3.2.48 EMR_SETPOLYFILLMODE Example 2 ... 238
3.2.49 EMR_SETROP2 Example 2 ... 238
3.2.50 EMR_SETSTRETCHBLTMODE Example 2 .. 239
3.2.51 EMR_SETTEXTALIGN Example 2 .. 239
3.2.52 EMR_SETBRUSHORGEX Example 3 .. 240
3.2.53 EMR_SETMITERLIMIT Example 2 ... 240
3.2.54 EMR_MOVETOEX Example 2 .. 241
3.2.55 EMR_SETWORLDTRANSFORM Example 2 .. 241
3.2.56 EMR_MODIFYWORLDTRANSFORM Example 2 .. 242
3.2.57 EMR_SETLAYOUT Example 4 ... 242
3.2.58 EMR_COMMENT_BEGINGROUP Example ... 243
3.2.59 EMR_SETWORLDTRANSFORM Example 3 .. 244
3.2.60 EMR_MODIFYWORLDTRANSFORM Example 3 .. 244

9 / 270

[MS-EMFPLUS-Diff] - v20160714
Enhanced Metafile Format Plus Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

3.2.61 EMR_MODIFYWORLDTRANSFORM Example 4 .. 245
3.2.62 EMR_MODIFYWORLDTRANSFORM Example 5 .. 246
3.2.63 EMR_SELECTOBJECT Example 10 .. 246
3.2.64 EMR_ROUNDRECT Example ... 247
3.2.65 EMR_COMMENT_ENDGROUP Example .. 247
3.2.66 EMR_RESTOREDC Example 4 .. 248
3.2.67 EMR_COMMENT_EMFPLUS Example 4 ... 248

3.2.67.1 EmfPlusEndContainer Example ... 249
3.2.67.2 EmfPlusRestore Example ... 249
3.2.67.3 EmfPlusSetWorldTransform Example .. 250

3.2.68 EMR_BITBLT Example .. 251
3.2.69 EMR_RESTOREDC Example 5 .. 252
3.2.70 EMR_COMMENT_EMFPLUS Example 5 ... 253

3.2.70.1 EmfPlusEndOfFile Example .. 253
3.2.71 EMR_EOF Example ... 254

3.3 EMF+ String Drawing Example .. 254

4 Security ... 256

5 Appendix A: Product Behavior ... 257

6 Change Tracking .. 260

7 Index ... 262

10 / 270

[MS-EMFPLUS-Diff] - v20160714
Enhanced Metafile Format Plus Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

1 Introduction

This is a specification of the Enhanced Metafile Format Plus Extensions (EMF+) structure. The EMF+
structure specifies a metafile format that can store a picture in device-independent form. The stored
picture can be rendered by parsing and processing the metafile.

An EMF+ metafile is a series of variable-length records, called EMF+ records, which contain graphics
drawing commands, object definitions, and properties. The metafile begins with a header record,

which includes the metafile version, its size, the resolution of the device on which the picture was
created, and the dimensions of the picture. An EMF+ metafile is "played back" when its records are
converted to a format understood by a specific graphics device. An image defined in an EMF+
structure maintains its dimensions, shape, and proportions on any output device, including printers,
plotters, and desktops, or in the client areas of applications.

Sections 1.7 and 2 of this specification are normative and can contain the terms MAY, SHOULD, MUST,

MUST NOT, and SHOULD NOT as defined in [RFC2119].. All other sections and examples in this
specification are informative.

1.1 Glossary

TheThis document uses the following terms are specific to this document:

affine transform: A matrix operation that consists of a linear transform followed by a
translation. An affine transform can be used to correct perspective distortions by transforming
the measurements from world space to device space coordinates.

alpha blending: In computer graphics, the process of combining an image with a background to
create the appearance of partial transparency. The extent of blending is determined by the value
of the alpha component of the color being rendered.

alpha transparency: An alpha value is a transparency value represented by a number between

zero and one. Each pixel has an alpha value that represents its level of transparency, which is
multiplied by the color values to get the final value. Each pixel has an alpha value that

represents its level of transparency.

American National Standards Institute (ANSI) character set: A character set (1) defined by
a code page approved by the American National Standards Institute (ANSI). The term "ANSI" as
used to signify Windows code pages is a historical reference and a misnomer that persists in the

Windows community. The source of this misnomer stems from the fact that the Windows code
page 1252 was originally based on an ANSI draft, which became International Organization for
Standardization (ISO) Standard 8859-1 [ISO/IEC-8859-1]. In Windows, the ANSI character set
can be any of the following code pages: 1252, 1250, 1251, 1253, 1254, 1255, 1256, 1257,
1258, 874, 932, 936, 949, or 950. For example, "ANSI application" is usually a reference to a
non-Unicode or code-page-based application. Therefore, "ANSI character set" is often misused
to refer to one of the character sets defined by a Windows code page that can be used as an

active system code page; for example, character sets defined by code page 1252 or character
sets defined by code page 950. Windows is now based on Unicode, so the use of ANSI
character sets is strongly discouraged unless they are used to interoperate with legacy

applications or legacy data.

anti-aliasing: The smoothing of the jagged appearance of font characters and lines, which is an
artifact of the limited resolution on an output device. The pixels that surround the edges of the
character glyph or line are changed to varying shades of color in order to blend the sharp edge

into the background.

ASCII: The American Standard Code for Information Interchange (ASCII) is an 8-bit character-
encoding scheme based on the English alphabet. ASCII codes represent text in computers,
communications equipment, and other devices that work with text. ASCII refers to a single 8-bit

11 / 270

[MS-EMFPLUS-Diff] - v20160714
Enhanced Metafile Format Plus Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

ASCII character or an array of 8-bit ASCII characters with the high bit of each character set to
zero.

baseline: The imaginary line to which the bottom of the lowercase "x" character in a font
typeface is aligned.

Bezier curve: A type of curve, defined by a mathematical formula and a number of points greater
than or equal to two, which is used in computer graphics and in the mathematical field of
numeric analysis. A cubic Bezier curve is defined by four points: two endpoints and two control
points. The curve does not pass through the control points, but the control points act like
magnets, pulling the curve in certain directions and influencing the way the curve bends. With
multiple Bezier curves, the endpoint of one is the starting point of the next.

big-endian: Multiple-byte values that are byte-ordered with the most significant byte stored in the

memory location with the lowest address.

bitmap: A collection of structures that contain a representation of a graphical image, a logical
palette, dimensions and other information.

black saturation: The low end of the range of saturation for a color channel.

blur effect: An image effect that is used to remove detail, resulting in an image that appears as
if viewed through a translucent lens. A Gaussian blur uses a Gaussian distribution to calculate

changes to individual pixels in the image. A Gaussian distribution is a statistical probability
distribution that produces a "bell curve".

box filter: An anti-aliasing algorithm that averages the pixels in a rectangular area to compute a
new value for the pixels. It is useful only for reducing the size of images.

brightness: The relative lightness or darkness of an image, or of a particular color in an image.

brightness contrast effect: An image effect that is used to change the intensity of an image
by expanding or contracting the lightest and darkest areas of an image.

cardinal spline: A spline with curves that pass smoothly through each of its control points. The

degree of curvature is defined by a tension parameter. The curve has no sharp corners or abrupt
changes. A complete derivation of the cubic polynomials for the canonical spline can be found in
[SPLINE77]. See also [PETZOLD] for more information.

cell height: A vertical measure of font size, which is the sum of the font height and internal
leading. It might not be the same as the distance between two lines of text.

ClearType: A font technology developed by Microsoft that can display fractions of pixels of

character glyphs and which improves the readability of text on liquid crystal displays (LCDs) and
flat-panel monitors.

closed cardinal spline: A cardinal spline with a curve that passes through the last defined point
and connects with the first.

color balance effect: An image effect that produces optimal color display by adjusting the
relative amounts of red, green, and blue in the image.

color channel: A component color from which all colors in an image are rendered. In an RGB color
space, there are color channels for red, green, and blue. In a grayscale color space, the color
channels are black and white. Color channel values typically range from 0 to 255.

color curve: A graphical mechanism for displaying and adjusting color measurements of an image.
The points on a color curve correspond to the pure colors in a color space (1).

12 / 270

[MS-EMFPLUS-Diff] - v20160714
Enhanced Metafile Format Plus Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

color curve effect: An image effect that is used to apply one of eight adjustments to the color
curve of an image: exposure, density, contrast, highlight, shadow, midtone, white

saturation, and black saturation.

color lookup table effect: An image effect that is used to make custom color adjustments to

images. A lookup table is defined for four individual color channels: alpha (transparency), red,
green, and blue. Each lookup table is an array of 256 bytes that can be set to specific values.

color mapping: The process of associating integer color indices with color channel values.

color matrix: A matrix of floating-point values from zero to one, inclusive, that can be multiplied
with a color vector to effect a color transform. A 4x4 matrix can be used to perform linear
transforms, and a 5x5 matrix can be used to perform nonlinear transforms.

color matrix effect: An image effect that uses a 5x5 color matrix to perform an affine

transform to the color vectors of an image.

color vector: An RGB plus alpha value that represents a specific color and transparency. Each
value is in the range of zero to one, inclusive; for red, green and blue, zero means no intensity

of the color and one means maximum intensity.

color wheel: An organization of color hues around a circle, showing relationships between colors
considered to be primary, secondary, and complementary. In an RGB color space, red, green,

and blue primary colors are arranged at equally spaced points around the circle. Magenta,
yellow, and cyan secondary colors and tertiary mixtures are located at intermediate points on
the circle. The center is white or gray.

compositing: The process that takes place during image rendering, which combines color data
from multiple graphics region.

contrast: The relative difference between lightness and darkness in an area of an image.

coordinate space: A space based on Cartesian coordinates, which provides a means of specifying

the location of each point in the space. A two-dimensional coordinate space requires two axes
that are perpendicular and equal in length. Three two-dimensional coordinate spaces are

generally used to describe an output surface: world, page, and device. To scale device-
independent output for a particular physical device, a rectangular area in the world or page
coordinate space is mapped into the device coordinate space using a transform

density: A measure of image opacity; that is, the amount of light that passes through
photographic film at a particular location.

device context: A collection of properties and objects that defines a dynamic environment for
processes on a device. For graphics output, properties include brush style, line style, text layout,
foreground and background colors, and mapping mode; and objects include a brush, pen, font,
palette, region, and transform matrix. Multiple device contexts can exist simultaneously, but a
single device context specifies the environment for graphics output at a particular point in time.

device driver: The software that the system uses to communicate with a device such as a display,

printer, mouse, or communications adapter. An abstraction layer that restricts access of

applications to various hardware devices on a given computer system. It is often referred to
simply as a "driver".

device space: The output space for graphics transforms. It usually refers to the client area of an
application window; however, it can also include the entire desktop, a complete window, or a
page of printer or plotter paper. Physical device space dimensions vary according to the
dimensions set by the display, printer, or plotter technology.

13 / 270

[MS-EMFPLUS-Diff] - v20160714
Enhanced Metafile Format Plus Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

device-independent bitmap (DIB): A container for bitmapped graphics, which specifies
characteristics of the bitmap such that it can be created using one application and loaded and

displayed in another application, while retaining an identical appearance.

dithering: A form of digital halftoning.

em size: A measure of font size, which is the cell height minus the internal leading. An "em" is a
term that has been used historically as a unit of typeset size.

enhanced metafile format (EMF): A file format that supports the device-independent definitions
of images.

enhanced metafile format plus extensions (EMF+): A file format that supports the device-
independent definitions of images.

enhanced metafile spool format (EMFSPOOL): A format that specifies a structure of enhanced

metafile format (EMF) records used for defining application and device-independent printer
spool files.

Exchangeable Image File Format (EXIF): A de facto standard format for storing files containing
digital photographic images and audio files. EXIF uses existing formats for data compression,
including JPEG and TIFF; but it is not supported by older versions of JPEG, PNG, or GIF. EXIF
specifies metadata tags for storing information about a photographic image, including camera

make and model, shutter speed, exposure compensation, F-stop, the metering system, whether
a flash was used, the date and time the photograph was taken, auxiliary lenses that were used,
the resolution, and a thumbnail image for previewing the photograph. EXIF is specified in
[EXIF].

exposure: A measure of the amount of light in which a photographic image is recorded.
Overexposed images are lighter than normal; underexposed images are darker than normal.

font axis: A property of font design that can assume a linear range of values. In general, a font

has multiple axes. For example, a font may define an axis for weight, along which range the
possible values for that property.

font family: A set of fonts that all have common stroke width and serif characteristics. For
example, Times Roman and Times Roman Italic are members of the same font family.

gamma: A value that describes the way brightness is distributed across the intensity spectrum by
a graphics device. Depending on the device, the gamma can have a significant effect on the way
colors are perceived. Technically, gamma is an expression of the relationship between input

voltage and resulting output intensity. A perfect linear device would have a gamma of 1.0; a
monitor or printer typically has a gamma in the range of 1.8 to 2.6, which affects midrange
tones. Gamma values are used to implement gamma correction. Typically, separate gamma
values are used for each component of a color space.

gamma correction: In digital imaging, the process of changing the brightness, contrast, or color
balance of an image by assigning new values (different colors) to gray or color tones.

globally unique identifier (GUID): A term used interchangeably with universally unique

identifier (UUID) in Microsoft protocol technical documents (TDs). Interchanging the usage of
these terms does not imply or require a specific algorithm or mechanism to generate the value.
Specifically, the use of this term does not imply or require that the algorithms described in
[RFC4122] or [C706] must be used for generating the GUID. See also universally unique
identifier (UUID).

gradient line: The line in a color space along which color variation is greatest.

14 / 270

[MS-EMFPLUS-Diff] - v20160714
Enhanced Metafile Format Plus Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Graphics Device Interface (GDI): A Windows API, supported on 16-bit and 32-bit versions of
the operating system, that supports graphics operations and image manipulation on logical

graphics objects.

Graphics Device Interface, Extended (GDI+): A Windows API, supported on 32-bit and 64-bit

versions of the operating system, that extends GDI to include support for Bezier curves,
gradient brushes, image effects, and EMF+ metafiles.

Graphics Interchange Format (GIF): A compression format that supports device-independent
transmission and interchange of bitmapped image data. The format uses a palette of up to 256
distinct colors from the 24-bit RGB color space. It also supports animation and a separate
palette of 256 colors for each frame. The color limitation makes the GIF format unsuitable for
reproducing color photographs and other images with gradients of color, but it is well-suited for

simpler images such as graphics with solid areas of color.

grayscale: A continuum of shades of gray that are used to represent an image. Continuous-tone
images, such as black-and-white photographs, use an almost unlimited number of shades of
gray. Conventional computer hardware and software, however, can represent only a limited

number of gray shades, typically 16 or 256. Grayscaling is the process of converting a
continuous-tone image to an image that a computer can manipulate. Note that grayscaling is

different from dithering. Dithering simulates shades of gray by altering the density and
pattern of black and white dots. In grayscaling, each individual dot can have a different shade of
gray.

halftoning: The process of converting grayscale, or continuous-tone graphics or images, to a
representation with a discrete number of gray (or tone) levels.

highlight: The lightest tones in an image.

hotkey prefix: In a graphical user interface, the underlined letter in a word that can be pressed in

combination with another key, such as the Alt key, to activate the functionality that the word
represents.

hue: A color as defined by its name, such as blue. More precisely, hue is defined as the coordinates

of a color in a color space, which specify the relative magnitudes along its axes.

hue saturation lightness effect: An image effect that is used to identify the basic color
properties of an image, including hue, saturation, and lightness.

Image Color Management (ICM): Technology that ensures that a color image, graphic, or text

object is rendered as closely as possible to its original intent on any device despite differences in
imaging technologies and color capabilities between devices.

image effect: A graphics process for changing the appearance of an image to produce a specific
effect, including applying a transform, improving the quality of rendering, emphasizing or
hiding a feature, creating a style, accounting for device limitations, and changing colors. The
image effects specified in EMF+ metafiles include blur, brightness contrast, color balance,

color curve, color lookup table, color matrix, hue saturation lightness, levels, red-eye
correction, sharpen, and tint.

intensity: The magnitude of a component color in the color space (1).

Joint Photographic Experts Group (JPEG): A raster graphics file format for displaying high-
resolution color graphics. JPEG graphics apply a user-specified compression scheme that can
significantly reduce the file sizes of photo-realistic color graphics. A higher level of compression
results in lower quality, whereas a lower level of compression results in higher quality. JPEG-

format files have a .jpg or .jpeg file name extension.

levels effect: An image effect that is used to apply highlight, midtone, or shadow
adjustments to an image. Highlights are the light parts of an image, shadows are the dark

15 / 270

[MS-EMFPLUS-Diff] - v20160714
Enhanced Metafile Format Plus Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

parts, and midtones are the colors that occupy the middle of the tonal range between the
highlights and the shadows.

lightness: The brightness or intensity of a color, from dark to light; or more precisely, the
magnitude of the coordinates of a point in a color space.

line cap: The shape that is used at the end of a line drawn by a graphics pen.

little-endian: Multiple-byte values that are byte-ordered with the least significant byte stored in
the memory location with the lowest address.

metafile: A sequence of record structures that store an image in an application-independent
format. Metafile records contain drawing commands, object definitions, and configuration
settings. When a metafile is processed, the stored image can be rendered on a display, output
to a printer or plotter, stored in memory, or saved to a file or stream.

midtone: The tones in an image between highlight and shadow.

miter length: At the intersection of two lines, the distance from the intersection of the line walls

on the inside of the line join to the intersection of the line walls on the outside of the line join.
The miter length can be large when the angle between two lines is small. If the miter length of
the join of an intersection exceeds a specified limit, the join can be beveled to keep it within the
limit of the join of the intersection.

page space: A logical coordinate system used for graphics operations. It is determined by the
mapping mode. Page space is defined with device-independent units, such as pixels.

palette: An array of values, each element of which contains the definition of a color. The color
elements in a palette are often indexed so that clients can refer to the colors, each of which can
occupy 24 bits or more, by a number that requires less storage space.

path: A graphics object that is a container for a series of line and curve segments, and regions in
an image.

playback device context: The device context that defines the current graphics state during

playback of the metafile. Although the data in a metafile can be device-independent, playback
is always associated with an output device with specific properties, such as resolution, color
support, and so on.

Portable Network Graphics (PNG): A bitmap graphics file format that uses lossless data
compression and supports variable transparency of images (alpha channels) and control of
image brightness on different computers (gamma correction). PNG-format files have a .png file

name extension.

raster operation: The process of combining the bits in a source bitmap with the bits in a
destination bitmap and in a specified pattern, to achieve a particular graphical output.

red-eye correction effect: An image effect that is used to correct the red eyes that sometimes
occur in flash photographs as a result of the reflection of light from the flash.

red-green-blue (RGB): A color model that describes color information in terms of the red (R),

green (G), and blue (B) intensities in a color.

reflection transform: A transform that is used to create a mirror image of an object with
respect to either the horizontal or vertical axis.

region: A graphics object that is nonrectilinear in shape and is defined by an array of scanlines.

rotation: A transform that is used to rotate an object. When rotation occurs, the points that make
up the object are rotated with respect to the coordinate space origin.

16 / 270

[MS-EMFPLUS-Diff] - v20160714
Enhanced Metafile Format Plus Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

run-length encoding (RLE) compression: A form of data compression in which repeated values
are represented by a count and a single instance of the value. RLE compression can significantly

reduce disk and memory space requirements.

saturation: The "purity" of a hue; or, more precisely, the intensity of one color channel relative

to the intensity of the other color channels. Maximum saturation occurs when the intensity
of a particular color channel is maximum and the intensities of the other color channels are
minimum. Minimum saturation occurs when the intensities of all color channels are the same.

scaling transform: A transform that is used to stretch or compress an object horizontally or
vertically.

shadow: The darkest tones in an image.

sharpen effect: An image effect that is used to adjust the sharpness of an image. Sharpening

increases image contrast by enhancing the definition of the image edges.

shear transform: A transform that is used to shear or cut an object. There are two components
of a shear transform: The first alters the vertical lines in an object, and the second alters the

horizontal lines.

spline: A sequence of individual curves joined to form a larger curve. A spline is specified by an
array of points and a tension parameter.

Tag Image File Format (TIFF): A format for bitmapped image data that comes from scanners,
frame grabbers, and photo-retouching applications. It supports the exchange of image data
between applications, taking advantage of the varying capabilities of imaging devices. TIFF
supports a number of compression schemes that allow the choice of the best space or time
tradeoff for applications. For more information see [RFC3302] and [TIFF].

tent filter: A filtering algorithm in which pixels around a target pixel are weighted linearly based
on their distance from the center of the target pixel.

terminal server: The computer on which nearly all computing resources reside that are used in a
terminal services networking environment. The terminal server receives and processes

keystrokes and mouse movements that take place on the client computer. The terminal server
displays the desktop and running applications within a window on the client computer.

text hinting: A mathematical process for adjusting the display of a font so that it lines up with a
grid of pixels. At small screen sizes, hinting produces clearer text.

tint: The amount of a neutral color, such as black or white, that is mixed with another color.

Changing the tint increases or decreases the lightness and saturation, and leaves the hue
unchanged.

tint effect: An image effect that is used to apply a tint to an image. A tint is created by adding
white to a color.

transform: An algorithm that transforms the size, orientation, and shape of objects that are
copied from one coordinate space into another. Although a transform affects an object as a

whole, it is applied to each point, or to each line, in the object.

translation transform: A transform that is used to shift each point in an object vertically,
horizontally, or both, by a specified amount.

TrueType: A scalable font technology that renders fonts for both the printer and the screen.
Originally developed by Apple, it was enhanced jointly by Apple and Microsoft. Each TrueType
font contains its own algorithms for converting printer outlines into screen bitmaps, which
means both the outline and bitmap information is rasterized from the same font data. The

17 / 270

[MS-EMFPLUS-Diff] - v20160714
Enhanced Metafile Format Plus Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

lower-level language embedded within the TrueType font allows great flexibility in its design.
Both TrueType and Type 1 font technologies are part of the OpenType format.

typeface: The primary design of a set of printed characters such as Courier, Helvetica, and Times
Roman. The terms typeface and font are sometimes used interchangeably. A font is the

particular implementation and variation of the typeface such as normal, bold, or italics. The
distinguishing characteristic of a typeface is often the presence or absence of serifs.

Unicode: A character encoding standard developed by the Unicode Consortium that represents
almost all of the written languages of the world. The Unicode standard [UNICODE5.0.0/2007]
provides three forms (UTF-8, UTF-16, and UTF-32) and seven schemes (UTF-8, UTF-16, UTF-16
BE, UTF-16 LE, UTF-32, UTF-32 LE, and UTF-32 BE).

weight: The property of a font that specifies the degree of emphasis or boldness of the characters.

white saturation: The high end of the range of saturation for a color channel.

Windows metafile format (WMF): A file format used by Windows that supports the definition of
images, including a format for clip art in word-processing documents.

world space: The most abstract logical coordinate space for graphics transforms. It allows
scaling, translation, rotation, shearing, and reflection.

MAY, SHOULD, MUST, SHOULD NOT, MUST NOT: These terms (in all caps) are used as defined

in [RFC2119]. All statements of optional behavior use either MAY, SHOULD, or SHOULD NOT.

1.2 References

Links to a document in the Microsoft Open Specifications library point to the correct section in the
most recently published version of the referenced document. However, because individual documents

in the library are not updated at the same time, the section numbers in the documents may not
match. You can confirm the correct section numbering by checking the Errata.

1.2.1 Normative References

We conduct frequent surveys of the normative references to assure their continued availability. If you
have any issue with finding a normative reference, please contact dochelp@microsoft.com. We will
assist you in finding the relevant information.

[EXIF] Standard of Japan Electronics and Information Technology Industries Association (JEITA),
"Exchangeable image File Format for Digital Still Cameras (EXIF)", Version 2.2, April, 2002,
http://www.exif.org/Exif2-2.PDF

[GIF] Compuserve, Inc., "Graphics Interchange Format", 1989,
http://www.piclist.com/techref/fileext/gif/gif89a.htm

[IEC-RGB] International Electrotechnical Commission, "Colour Measurement and Management in

Multimedia Systems and Equipment - Part 2-1: Default RGB Colour Space - sRGB", May 1998,
http://webstore.iec.ch/webstore/webstore.nsf/artnum/025408

[ISO/IEC-8859-1] International Organization for Standardization, "Information Technology -- 8-Bit
Single-Byte Coded Graphic Character Sets -- Part 1: Latin Alphabet No. 1", ISO/IEC 8859-1, 1998,
http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=28245

Note There is a charge to download the specification.

[JFIF] Hamilton, E., "JPEG File Interchange Format, Version 1.02", September 1992,
http://www.w3.org/Graphics/JPEG/jfif.txt

18 / 270

[MS-EMFPLUS-Diff] - v20160714
Enhanced Metafile Format Plus Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

[MS-DTYP] Microsoft Corporation, "Windows Data Types".

[MS-EMF] Microsoft Corporation, "Enhanced Metafile Format".

[MS-WMF] Microsoft Corporation, "Windows Metafile Format".

[RFC2083] Boutell, T., et al., "PNG (Portable Network Graphics) Specification Version 1.0", RFC 2083,

March 1997, http://www.ietf.org/rfc/rfc2083.txt

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC
2119, March 1997, http://www.rfc-editor.org/rfc/rfc2119.txt

[RFC3302] Parsons, G., and Rafferty, J., "Tag Image File Format (TIFF) - image/tiff MIME Sub-Type
Registration", RFC 3302, September 2002, http://www.ietf.org/rfc/rfc3302.txt

[TIFF] Adobe Developers Association, "TIFF 6.0 Specification", June 1992,
http://partners.adobe.com/public/developer/en/tiff/TIFF6.pdf

[W3C-PNG] World Wide Web Consortium, "Portable Network Graphics (PNG) Specification, Second
Edition", November 2003, http://www.w3.org/TR/PNG

1.2.2 Informative References

[MS-EMFSPOOL] Microsoft Corporation, "Enhanced Metafile Spool Format".

[MS-LCID] Microsoft Corporation, "Windows Language Code Identifier (LCID) Reference".

[MSDN-DrawBeziers] Microsoft Corporation, "Graphics.DrawBeziers(const Pen*, const PointF*, INT)
method", http://msdn.microsoft.com/en-us/library/windows/desktop/ms536147(v=vs.85).aspx

[MSDN-GDI+] Microsoft Corporation, "GDI+", http://msdn.microsoft.com/en-

us/library/ms533798.aspx

[OPENGL] Segal, M. and Akeley, K., "The OpenGL Graphics System: A Specification, Version 2.1",

December 2006, http://www.opengl.org/registry/doc/glspec21.20061201.pdf

[PETZOLD] Petzold, C., "Programming Windows, Fifth Edition", Microsoft Press, 1998, ISBN:
157231995X.

[SPLINE77] Smith, A., "Spline Tutorial Notes - Technical Memo No. 77", SIGGRAPH '83 Tutorial Notes:

Introduction to Computer Animation, pp. 64-75, July, 1983.

1.3 Overview

1.3.1 Metafile Structure

EMF+ defines a set of graphical images and text using commands, objects, and properties similar to
Windows GDI+ [MSDN-GDI+]. EMF+ metafiles are portable, device-independent containers for

graphical images, and they are used for sending commands and objects to output devices, such as
displays and printers, which support the drawing of images and text. The device or media that

receives such a metafile can be located on a network, or it can be connected directly to the computer
running the operating system on which the metafile is created.

EMF+ metafiles are actually a form of EMF metafile in which EMF+ records are embedded in EMF
records ([MS-EMF] section 2.3). Embedding EMF+ records in EMF metafiles is possible because of the
EMF capability to embed arbitrary private data in certain types of records. This is illustrated by the
figure that follows. Note that multiple EMF+ records can be embedded in a single EMF record.

19 / 270

[MS-EMFPLUS-Diff] - v20160714
Enhanced Metafile Format Plus Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

The EMF record in which arbitrary private data can be embedded is called an EMF "Comment" record.
The form of EMF comment record that contains embedded EMF+ records is called

EMR_COMMENT_EMFPLUS.

As shown in the following figure, the first EMF+ record in the metafile, the EMF+ Header record

(section 2.3.3.3), is embedded within the first EMF record following the EMF Header record ([MS-
EMF] section 2.3.4.2); and the last EMF+ record, the EMF+ End -of -File record, (section 2.3.3.1), is
embedded within the EMF record immediately preceding the EMF End -of -File record.

Figure 1: EMF+ metafiles

20 / 270

[MS-EMFPLUS-Diff] - v20160714
Enhanced Metafile Format Plus Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

In the EMF metafile in this figure, Case I shows a group of EMF+ records, followed by some EMF
records, followed by another group of EMF+ records; and Case II shows a group of EMF+ records

terminated by a Get Device Context record (section 2.3.3.2), followed by some EMF records,
followed by another group of EMF+ records. The presence or absence of the Get Device Context record

can determine how the metafile is processed.

The structure of an EMF+ metafile is such that EMF+ records are embedded in EMF records, meaning
that some outer EMF records are always present, namely EMF control records, and EMF records that
contain EMF+ records:

 EMR_HEADER - required for all types of metafiles

 EMR_COMMENT – required to contain EMF+ records

 EMR_EOF - required to terminate all types of metafiles

The EMF+ Header record contains flags that distinguish between two different types of EMF+
metafile.<1>

 Metafiles identified as "EMF+ Only" can contain both EMF+ records and EMF records. All EMF+
records are used to render the image. The EMF records that are part of the drawing are those
preceded by ana Get Device Context record—case II in the figure above. EMF record processing
stops when the next EMF+ record of any type is encountered.

If a system that cannot play back EMF+ records attempts to play the metafile by using only EMF
records, the drawing maymight be incomplete. If a system performs EMF+ playback mode as
expected, then no EMF drawing records should beare processed unless they are preceded by a Get
Device Context record. For example, in case I, an "EMF+ Only" playback mode would process the
EMF control records and none of the EMF drawing records. As a result, EMF records alone do not
suffice to render the drawing that was recorded in an "EMF+ Only" metafile.

 Metafiles identified as "EMF+ Dual" can also contain both EMF+ records and EMF records. The

"EMF+ Dual" flag indicates that the metafile contains a complete set of EMF records sufficient to
correctly render the entire drawing on a system that cannot playback EMF+ records. This feature

makes it possible to render an image with different levels of graphics support in the operating
system. However, only one or the other type of records is processed. All records are enumerated
sequentially. For EMF playback, the metafile player only uses EMF records and ignores EMF+
records. For EMF+ playback, the metafile is played as if it is "EMF+ Only"..

For either type of EMF+ metafile, the EMF records that follow an EmfPlusGetDC record SHOULD beare

played, until the next EMF+ record, EMF_HEADER, or EMF_EOF (), irrespectiveregardless of whether
the "EMF+ Dual" flag is set or notsetting.

Note: EMF+ shouldis not be considered an extension to the EMF feature set; that is, EMF+ does not
define new EMF records. EMF+ is semantically a completely separate, independent format. EMF+
records define graphical images and text using commands, objects, and properties of GDI+.

1.3.2 Byte Ordering

Data in the EMF+ metafile records are stored in little-endian format.

Some computer architectures number bytes in a binary word from left to right, which is referred to as
big-endian. The byte numbering used for bitfields in this specification is big-endian. Other
architectures number the bytes in a binary word from right to left, which is referred to as little-endian.

The byte numbering used for enumerations, objects, and records in this specification is little-endian.

Using the big-endian and little-endian methods, the number 0x12345678 would be stored as shown in
the following table.

21 / 270

[MS-EMFPLUS-Diff] - v20160714
Enhanced Metafile Format Plus Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Byte order Byte 0 Byte 1 Byte 2 Byte 3

Big-endian 0x12 0x34 0x56 0x78

Little-endian 0x78 0x56 0x34 0x12

1.4 Relationship to Protocols and Other Structures

The following formats define metafile structures that are directly or indirectly related to the EMF+
metafile structure:

 Enhanced metafile format (EMF) [MS-EMF] is the predecessor to EMF+. EMF metafiles can contain
EMF+ metafiles.

 Enhanced metafile spool format (EMFSPOOL) [MS-EMFSPOOL] metafiles can contain EMF
metafiles.

 Windows metafile format (WMF) [MS-WMF] is the 16-bit predecessor to EMF. WMF metafiles
can be embedded in EMF+ metafiles.

This is illustrated by the following figure:

Figure 2: Metafile nesting

1.5 Applicability Statement

Structures that are compliant with the EMF+ can be used as portable, system-independent containers
for images. The graphics supported in EMF+ metafiles are applicable to document content
representation, including printing and plotting.

22 / 270

[MS-EMFPLUS-Diff] - v20160714
Enhanced Metafile Format Plus Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

1.6 Versioning and Localization

This specification covers versioning issues in the following areas:

Structure Versions: Multiple versions of the EMF+ metafiles exist. For more information, see the

GraphicsVersion enumeration.

Localization: EMF+ structures define the following locale-specific data:

 Language identifiers that correspond to natural languages in locales, including countries,
geographical regions, and administrative districts. For more information, see the
LanguageIdentifier enumeration. For information concerning Windows version support for
language identifiers, see [MS-LCID].

 String digit substitution values specify how to substitute digits in a string according to a locale or

language. For more information, see the StringDigitSubstitute enumeration.

1.7 Vendor-Extensible Fields

The EMF+ metafile format includes the following vendor-extensible fields:

 Arbitrary private data in an EmfPlusComment record

 The graphics version in an EmfPlusGraphicsVersion object

 The language identifier in an EmfPlusLanguageIdentifier object

 Digit substitution in an EmfPlusStringFormat object

23 / 270

[MS-EMFPLUS-Diff] - v20160714
Enhanced Metafile Format Plus Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

2 Structures

This section specifies the EMF+ structures and how they are serialized in a metafile. EMF+ structures
are grouped into the following categories:

Name Section Description

EMF+
Constants

2.1 Specify enumerations, bit flags, and standard identifiers.

EMF+ Objects 2.2 Specify graphics objects, structure objects, and image effects objects.

EMF+ Records 2.3 Specify the format of metafile records, which define graphics operations and manage
the playback device context.

This protocol references commonly used data types as defined in [MS-DTYP].

2.1 EMF+ Constants

This section specifies the EMF+ Constants, which are grouped into the following categories:

Name Section Description

Enumeration constant
types

2.1.1 Specify numeric constants used in EMF+ objects and records.

Bit Flag constant types 2.1.2 Specify properties and options for EMF+ objects and records. In general, bit
flags can be combined with Boolean OR operations.

Standard Identifier
constant types

2.1.3 Specify globally unique identifiers (GUIDs) for EMF+ objects and
records.

2.1.1 Enumeration Constant Types

The EMF+ Enumeration Constants specify numeric constants that are used in EMF+ objects and
records.

The following types of enumerations are defined:

Name Section Description

RecordType 2.1.1.1 Defines record types used in EMF+ metafiles.

BitmapDataType 2.1.1.2 Defines types of bitmap data formats.

BrushType 2.1.1.3 Defines types of graphics brushes, which are used to fill graphics regions.

CombineMode 2.1.1.4 Defines modes for combining two graphics regions.

CompositingMode 2.1.1.5 Defines modes for combining source colors with background colors. The
compositing mode represents the enable state of alpha blending.

CompositingQuality 2.1.1.6 Defines levels of quality for creating composite images.

CurveAdjustments 2.1.1.7 Defines color curve effects that can be applied to an image.

CurveChannel 2.1.1.8 Defines color channels that can be affected by a color curve effect

24 / 270

[MS-EMFPLUS-Diff] - v20160714
Enhanced Metafile Format Plus Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Name Section Description

adjustment to an image.

CustomLineCapDataType 2.1.1.9 Defines types of custom line cap data, which specify styles and shapes for
the ends of graphics lines.

DashedLineCapType 2.1.1.10 Defines types of line caps to use at the ends of dashed lines that are
drawn with graphics pens.

FilterType 2.1.1.11 Defines types of filtering algorithms that can be used for text and graphics
quality enhancement and image rendering.

GraphicsVersion 2.1.1.12 Defines versions of operating system graphics that are used to create
EMF+ metafiles.

HatchStyle 2.1.1.13 Defines hatch patterns used by graphics brushes. A hatch pattern consists
of a solid background color and lines drawn over the background.

HotkeyPrefix 2.1.1.14 Defines output options for hotkey prefixes in graphics text.

ImageDataType 2.1.1.15 Defines types of image data formats.

InterpolationMode 2.1.1.16 Defines ways to perform scaling, including stretching and shrinking.

LanguageIdentifier 2.1.1.17 Defines identifiers for natural languages in locales, including countries,
geographical regions, and administrative districts.

LineCapType 2.1.1.18 Defines types of line caps to use at the ends of lines that are drawn with
graphics pens.

LineJoinType 2.1.1.19 Defines ways to join two lines that are drawn by the same graphics pen
and whose ends meet.

LineStyle 2.1.1.20 Defines styles of lines that are drawn with graphics pens.

MetafileDataType 2.1.1.21 Defines types of metafiles data that can be embedded in an EMF+
metafile.

ObjectType 2.1.1.22 Defines types of graphics objects that can be created and used in graphics
operations.

PathPointType 2.1.1.23 Defines types of points on a graphics path.

PenAlignment 2.1.1.24 Defines the distribution of the width of the pen with respect to the line
being drawn.

PixelFormat 2.1.1.25 Defines pixel formats that are supported in EMF+ bitmaps.

PixelOffsetMode 2.1.1.26 Defines how pixels are offset, which specifies the trade-off between
rendering speed and quality.

RegionNodeDataType 2.1.1.27 Defines types of region node data.

SmoothingMode 2.1.1.28 Defines types of smoothing to apply to lines, curves and the edges of filled
areas to make them appear more continuous or sharply defined.

StringAlignment 2.1.1.29 Defines ways to align strings with respect to a text layout rectangle.

StringDigitSubstitution 2.1.1.30 Defines ways to substitute digits in a string according to a user's locale or
language.

StringTrimming 2.1.1.31 Defines how to trim characters from a string that is too large for the text
layout rectangle.

25 / 270

[MS-EMFPLUS-Diff] - v20160714
Enhanced Metafile Format Plus Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Name Section Description

TextRenderingHint 2.1.1.32 Defines types of text hinting and anti-aliasing, which affects the quality
of text rendering.

UnitType 2.1.1.33 Defines units of measurement in different coordinate systems.

2.1.1.1 RecordType Enumeration

The RecordType enumeration defines record types used in EMF+ metafiles.

 typedef enum
 {
 EmfPlusHeader = 0x4001,
 EmfPlusEndOfFile = 0x4002,
 EmfPlusComment = 0x4003,
 EmfPlusGetDC = 0x4004,
 EmfPlusMultiFormatStart = 0x4005,
 EmfPlusMultiFormatSection = 0x4006,
 EmfPlusMultiFormatEnd = 0x4007,
 EmfPlusObject = 0x4008,
 EmfPlusClear = 0x4009,
 EmfPlusFillRects = 0x400A,
 EmfPlusDrawRects = 0x400B,
 EmfPlusFillPolygon = 0x400C,
 EmfPlusDrawLines = 0x400D,
 EmfPlusFillEllipse = 0x400E,
 EmfPlusDrawEllipse = 0x400F,
 EmfPlusFillPie = 0x4010,
 EmfPlusDrawPie = 0x4011,
 EmfPlusDrawArc = 0x4012,
 EmfPlusFillRegion = 0x4013,
 EmfPlusFillPath = 0x4014,
 EmfPlusDrawPath = 0x4015,
 EmfPlusFillClosedCurve = 0x4016,
 EmfPlusDrawClosedCurve = 0x4017,
 EmfPlusDrawCurve = 0x4018,
 EmfPlusDrawBeziers = 0x4019,
 EmfPlusDrawImage = 0x401A,
 EmfPlusDrawImagePoints = 0x401B,
 EmfPlusDrawString = 0x401C,
 EmfPlusSetRenderingOrigin = 0x401D,
 EmfPlusSetAntiAliasMode = 0x401E,
 EmfPlusSetTextRenderingHint = 0x401F,
 EmfPlusSetTextContrast = 0x4020,
 EmfPlusSetInterpolationMode = 0x4021,
 EmfPlusSetPixelOffsetMode = 0x4022,
 EmfPlusSetCompositingMode = 0x4023,
 EmfPlusSetCompositingQuality = 0x4024,
 EmfPlusSave = 0x4025,
 EmfPlusRestore = 0x4026,
 EmfPlusBeginContainer = 0x4027,
 EmfPlusBeginContainerNoParams = 0x4028,
 EmfPlusEndContainer = 0x4029,
 EmfPlusSetWorldTransform = 0x402A,
 EmfPlusResetWorldTransform = 0x402B,
 EmfPlusMultiplyWorldTransform = 0x402C,
 EmfPlusTranslateWorldTransform = 0x402D,
 EmfPlusScaleWorldTransform = 0x402E,
 EmfPlusRotateWorldTransform = 0x402F,
 EmfPlusSetPageTransform = 0x4030,
 EmfPlusResetClip = 0x4031,
 EmfPlusSetClipRect = 0x4032,
 EmfPlusSetClipPath = 0x4033,

26 / 270

[MS-EMFPLUS-Diff] - v20160714
Enhanced Metafile Format Plus Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 EmfPlusSetClipRegion = 0x4034,
 EmfPlusOffsetClip = 0x4035,
 EmfPlusDrawDriverstring = 0x4036,
 EmfPlusStrokeFillPath = 0x4037,
 EmfPlusSerializableObject = 0x4038,
 EmfPlusSetTSGraphics = 0x4039,
 EmfPlusSetTSClip = 0x403A
 } RecordType;

EmfPlusHeader: This record specifies the start of EMF+ data in the metafile. It MUST be embedded
in the first EMF record after the EMF Header record.

EmfPlusEndOfFile: This record specifies the end of EMF+ data in the metafile.

EmfPlusComment: This record specifies arbitrary private data.

EmfPlusGetDC: This record specifies that subsequent EMF records ([MS-EMF] section 2.3)

encountered in the metafile SHOULD be processed. EMF records cease being processed when the
next EMF+ record is encountered.

EmfPlusMultiFormatStart: This record is reserved and MUST NOT be used.

EmfPlusMultiFormatSection: This record is reserved and MUST NOT be used.

EmfPlusMultiFormatEnd: This record is reserved and MUST NOT be used.

EmfPlusObject: This record specifies an object for use in graphics operations.

EmfPlusClear: This record clears the output coordinate space and initializes it with a specified

background color and transparency.

EmfPlusFillRects: This record defines how to fill the interiors of a series of rectangles, using a
specified brush.

EmfPlusDrawRects: This record defines the pen strokes for drawing a series of rectangles.

EmfPlusFillPolygon: This record defines the data to fill the interior of a polygon, using a specified
brush.

EmfPlusDrawLines: This record defines the pen strokes for drawing a series of connected lines.

EmfPlusFillEllipse: This record defines how to fill the interiors of an ellipse, using a specified brush.

EmfPlusDrawEllipse: This record defines the pen strokes for drawing an ellipse.

EmfPlusFillPie: This record defines how to fill a section of an interior section of an ellipse using a
specified brush.

EmfPlusDrawPie: This record defines pen strokes for drawing a section of an ellipse.

EmfPlusDrawArc: The record defines pen strokes for drawing an arc of an ellipse.

EmfPlusFillRegion: This record defines how to fill the interior of a region using a specified brush.

EmfPlusFillPath: The record defines how to fill the interiors of the figures defined in a graphics path
with a specified brush. A path is an object that defines an arbitrary sequence of lines, curves, and
shapes.

EmfPlusDrawPath: The record defines the pen strokes to draw the figures in a graphics path. A
path is an object that defines an arbitrary sequence of lines, curves, and shapes.

27 / 270

[MS-EMFPLUS-Diff] - v20160714
Enhanced Metafile Format Plus Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

EmfPlusFillClosedCurve: This record defines how to fill the interior of a closed cardinal spline
using a specified brush.

EmfPlusDrawClosedCurve: This record defines the pen and strokes for drawing a closed cardinal
spline.

EmfPlusDrawCurve: This record defines the pen strokes for drawing a cardinal spline.

EmfPlusDrawBeziers: This record defines the pen strokes for drawing a Bezier spline.

EmfPlusDrawImage: This record defines a scaled EmfPlusImage object. An image can consist of
either bitmap or metafile data.

EmfPlusDrawImagePoints: This record defines a scaled EmfPlusImage object inside a
parallelogram. An image can consist of either bitmap or metafile data.

EmfPlusDrawString: This record defines a text string based on a font, a layout rectangle, and a

format.

EmfPlusSetRenderingOrigin: This record defines the origin of rendering to the specified horizontal
and vertical coordinates. This applies to hatch brushes and to 8 and 16 bits per pixel dither
patterns.

EmfPlusSetAntiAliasMode: This record defines whether to enable or disable text anti-aliasing. Text
anti-aliasing is a method of making lines and edges of character glyphs appear smoother when

drawn on an output surface.

EmfPlusSetTextRenderingHint: This record defines the process used for rendering text.

EmfPlusSetTextContrast: This record sets text contrast according to the specified text gamma
value.

EmfPlusSetInterpolationMode: This record defines the interpolation mode of an object according
to the specified type of image filtering. The interpolation mode influences how scaling (stretching
and shrinking) is performed.

EmfPlusSetPixelOffsetMode: This record defines the pixel offset mode according to the specified
pixel centering value.

EmfPlusSetCompositingMode: This record defines the compositing mode according to the state of
alpha blending, which specifies how source colors are combined with background colors.

EmfPlusSetCompositingQuality: This record defines the compositing quality, which describes the
desired level of quality for creating composite images from multiple objects.

EmfPlusSave: This record saves the graphics state, identified by a specified index, on a stack of

saved graphics states. Each stack index is associated with a particular saved state, and the index
is used by an EmfPlusRestore record to restore the state.

EmfPlusRestore: This record restores the graphics state, identified by a specified index, from a
stack of saved graphics states. Each stack index is associated with a particular saved state, and

the index is defined by an EmfPlusSave record to save the state.

EmfPlusBeginContainer: This record opens a new graphics state container and specifies a

transform for it. Graphics containers are used to retain elements of the graphics state.

EmfPlusBeginContainerNoParams: This record opens a new graphics state container.

EmfPlusEndContainer: This record closes a graphics state container that was previously opened by
a begin container operation.

28 / 270

[MS-EMFPLUS-Diff] - v20160714
Enhanced Metafile Format Plus Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

EmfPlusSetWorldTransform: This record defines the current world space transform in the
playback device context, according to a specified transform matrix.

EmfPlusResetWorldTransform: This record resets the current world space transform to the identify
matrix.

EmfPlusMultiplyWorldTransform: This record multiplies the current world space by a specified
transform matrix.

EmfPlusTranslateWorldTransform: This record applies a translation transform to the current
world space by specified horizontal and vertical distances.

EmfPlusScaleWorldTransform: This record applies a scaling transform to the current world space
by specified horizontal and vertical scale factors.

EmfPlusRotateWorldTransform: This record rotates the current world space by a specified angle.

EmfPlusSetPageTransform: This record specifies extra scaling factors for the current world space
transform.

EmfPlusResetClip: This record resets the current clipping region for the world space to infinity.

EmfPlusSetClipRect: This record combines the current clipping region with a rectangle.

EmfPlusSetClipPath: This record combines the current clipping region with a graphics path.

EmfPlusSetClipRegion: This record combines the current clipping region with another graphics

region.

EmfPlusOffsetClip: This record applies a translation transform on the current clipping region of the
world space.

EmfPlusDrawDriverstring: This record specifies text output with character positions.

EmfPlusStrokeFillPath: This record closes any open figures in a path, strokes the outline of the

path by using the current pen, and fills its interior by using the current brush.

EmfPlusSerializableObject: This record defines an image effects parameter block that has been

serialized into a data buffer.

EmfPlusSetTSGraphics: This record specifies the state of a graphics device context for a terminal
server.

EmfPlusSetTSClip: This record specifies clipping areas in the graphics device context for a terminal
server.

See section 2.1.1 for the specification of additional enumerations.

2.1.1.2 BitmapDataType Enumeration

The BitmapDataType enumeration defines types of bitmap data formats.

 typedef enum
 {
 BitmapDataTypePixel = 0x00000000,
 BitmapDataTypeCompressed = 0x00000001
 } BitmapDataType;

BitmapDataTypePixel: Specifies a bitmap image with pixel data.

29 / 270

[MS-EMFPLUS-Diff] - v20160714
Enhanced Metafile Format Plus Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

BitmapDataTypeCompressed: Specifies an image with compressed data.

Bitmap data is specified by EmfPlusBitmap objects.

See section 2.1.1 for the specification of additional enumerations.

2.1.1.3 BrushType Enumeration

The BrushType enumeration defines types of graphics brushes, which are used to fill graphics regions.

 typedef enum
 {
 BrushTypeSolidColor = 0x00000000,
 BrushTypeHatchFill = 0x00000001,
 BrushTypeTextureFill = 0x00000002,
 BrushTypePathGradient = 0x00000003,
 BrushTypeLinearGradient = 0x00000004
 } BrushType;

BrushTypeSolidColor: Specifies a solid-color brush, which is characterized by an EmfPlusARGB

value.

BrushTypeHatchFill: Specifies a hatch brush, which is characterized by a predefined pattern.

BrushTypeTextureFill: Specifies a texture brush, which is characterized by an image.

BrushTypePathGradient: Specifies a path gradient brush, which is characterized by a color gradient
path gradient brush data.

BrushTypeLinearGradient: BrushData contains linear gradient brush data.

Graphics brushes are specified by EmfPlusBrush objects.

See section 2.1.1 for the specification of additional enumerations.

2.1.1.4 CombineMode Enumeration

The CombineMode enumeration defines modes for combining two graphics regions. In the following
descriptions, the regions to be combined are referred to as the "existing" and "new" regions.

 typedef enum
 {
 CombineModeReplace = 0x00000000,
 CombineModeIntersect = 0x00000001,
 CombineModeUnion = 0x00000002,
 CombineModeXOR = 0x00000003,
 CombineModeExclude = 0x00000004,
 CombineModeComplement = 0x00000005
 } CombineMode;

CombineModeReplace: Replaces the existing region with the new region.

CombineModeIntersect: Replaces the existing region with the intersection of the existing region

and the new region.

CombineModeUnion: Replaces the existing region with the union of the existing and new regions.

CombineModeXOR: Replaces the existing region with the XOR of the existing and new regions.

30 / 270

[MS-EMFPLUS-Diff] - v20160714
Enhanced Metafile Format Plus Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

CombineModeExclude: Replaces the existing region with the part of itself that is not in the new
region.

CombineModeComplement: Replaces the existing region with the part of the new region that is not
in the existing region.

Graphics regions are specified by EmfPlusRegion objects.

See section 2.1.1 for the specification of additional enumerations.

2.1.1.5 CompositingMode Enumeration

The CompositingMode enumeration defines modes for combining source colors with background
colors. The compositing mode represents the enable state of alpha blending.

 typedef enum
 {
 CompositingModeSourceOver = 0x00,
 CompositingModeSourceCopy = 0x01
 } CompositingMode;

CompositingModeSourceOver: Enables alpha blending, which specifies that when a color is

rendered, it is blended with the background color. The extent of blending is determined by the
value of the alpha component of the color being rendered.

CompositingModeSourceCopy: Disables alpha blending, which means that when a source color is
rendered, it overwrites the background color.

Graphics colors are specified by EmfPlusARGB objects.

See section 2.1.1 for the specification of additional enumerations.

2.1.1.6 CompositingQuality Enumeration

The CompositingQuality enumeration defines levels of quality for creating composite images.<2>

 typedef enum
 {
 CompositingQualityDefault = 0x01,
 CompositingQualityHighSpeed = 0x02,
 CompositingQualityHighQuality = 0x03,
 CompositingQualityGammaCorrected = 0x04,
 CompositingQualityAssumeLinear = 0x05
 } CompositingQuality;

CompositingQualityDefault: No gamma correction is performed. Gamma correction controls the

overall brightness and contrast of an image. Without gamma correction, composited images can
appear too light or too dark.

CompositingQualityHighSpeed: No gamma correction is performed. Compositing speed is favored
at the expense of quality. In terms of the result, there is no difference between this value and
CompositingQualityDefault.

CompositingQualityHighQuality: Gamma correction is performed. Compositing quality is favored
at the expense of speed.

31 / 270

[MS-EMFPLUS-Diff] - v20160714
Enhanced Metafile Format Plus Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

CompositingQualityGammaCorrected: Enable gamma correction for higher-quality compositing
with lower speed. In terms of the result, there is no difference between this value and

CompositingQualityHighQuality.

CompositingQualityAssumeLinear: No gamma correction is performed; however, using linear

values results in better quality than the default at a slightly lower speed.

Graphics colors are specified by EmfPlusARGB objects.

Compositing is done during rendering when source pixels are combined with destination pixels. The
compositing quality directly relates to the visual quality of the output and is inversely proportional to
the time required for rendering. The higher the quality, the more surrounding pixels need to be taken
into account during the compositing operation; hence, the slower the render time.

See section 2.1.1 for the specification of additional enumerations.

2.1.1.7 CurveAdjustments Enumeration

The CurveAdjustments enumeration defines adjustments that can be applied to the color curve of an
image.

 typedef enum
 {
 AdjustExposure = 0x00000000,
 AdjustDensity = 0x00000001,
 AdjustContrast = 0x00000002,
 AdjustHighlight = 0x00000003,
 AdjustShadow = 0x00000004,
 AdjustMidtone = 0x00000005,
 AdjustWhiteSaturation = 0x00000006,
 AdjustBlackSaturation = 0x00000007
 } CurveAdjustments;

AdjustExposure: Specifies the simulation of increasing or decreasing the exposure of an image.

AdjustDensity: Specifies the simulation of increasing or decreasing the density of an image.

AdjustContrast: Specifies an increase or decrease of the contrast of an image.

AdjustHighlight: Specifies an increase or decrease of the value of a color channel of an image, if
that channel already has a value that is above half intensity. This adjustment can be used to
increase definition in the light areas of an image without affecting the dark areas.

AdjustShadow: Specifies an increase or decrease of the value of a color channel of an image, if that
channel already has a value that is below half intensity. This adjustment can be used to increase
definition in the dark areas of an image without affecting the light areas.

AdjustMidtone: Specifies an adjustment that lightens or darkens an image. Color channel values in
the middle of the intensity range are altered more than color channel values near the minimum or
maximum extremes of intensity. This adjustment can be used to lighten or darken an image

without losing the contrast between the darkest and lightest parts of the image.

AdjustWhiteSaturation: Specifies an adjustment to the white saturation of an image, defined as
the maximum value in the range of intensities for a given color channel, whose range is typically 0

to 255.

For example, a white saturation adjustment value of 240 specifies that color channel values in the
range 0 to 240 are adjusted so that they spread out over the range 0 to 255, with color channel
values greater than 240 set to 255.

32 / 270

[MS-EMFPLUS-Diff] - v20160714
Enhanced Metafile Format Plus Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

AdjustBlackSaturation: Specifies an adjustment to the black saturation of an image, which is the
minimum value in the range of intensities for a given color channel, which is typically 0 to 255.

For example, a black saturation adjustment value of 15 specifies that color channel values in the
range 15 to 255 are adjusted so that they spread out over the range 0 to 255, with color channel

values less than 15 set to 0.

Bitmap images are specified by EmfPlusBitmap objects.

See section 2.1.1 for the specification of additional enumerations.

2.1.1.8 CurveChannel Enumeration

The CurveChannel enumeration defines color channels that can be affected by a color curve effect
adjustment to an image.

 typedef enum
 {
 CurveChannelAll = 0x00000000,
 CurveChannelRed = 0x00000001,
 CurveChannelGreen = 0x00000002,
 CurveChannelBlue = 0x00000003
 } CurveChannel;

CurveChannelAll: Specifies that a color curve adjustment applies to all color channels.

CurveChannelRed: Specifies that a color curve adjustment applies only to the red color channel.

CurveChannelGreen: Specifies that a color curve adjustment applies only to the green color
channel.

CurveChannelBlue: Specifies that a color curve adjustment applies only to the blue color channel.

Bitmap images are specified by EmfPlusBitmap objects.

See section 2.1.1 for the specification of additional enumerations.

2.1.1.9 CustomLineCapDataType Enumeration

The CustomLineCapDataType enumeration defines types of custom line cap data, which specify styles
and shapes for the ends of graphics lines.

 typedef enum
 {
 CustomLineCapDataTypeDefault = 0x00000000,
 CustomLineCapDataTypeAdjustableArrow = 0x00000001
 } CustomLineCapDataType;

CustomLineCapDataTypeDefault: Specifies a default custom line cap.

CustomLineCapDataTypeAdjustableArrow: Specifies an adjustable arrow custom line cap.

Custom line cap data is specified by EmfPlusCustomLineCap objects.

See section 2.1.1 for the specification of additional enumerations.

33 / 270

[MS-EMFPLUS-Diff] - v20160714
Enhanced Metafile Format Plus Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

2.1.1.10 DashedLineCapType Enumeration

The DashedLineCapType enumeration defines types of line caps to use at the ends of dashed lines that
are drawn with graphics pens.

 typedef enum
 {
 DashedLineCapTypeFlat = 0x00000000,
 DashedLineCapTypeRound = 0x00000002,
 DashedLineCapTypeTriangle = 0x00000003
 } DashedLineCapType;

DashedLineCapTypeFlat: Specifies a flat dashed line cap.

DashedLineCapTypeRound: Specifies a round dashed line cap.

DashedLineCapTypeTriangle: Specifies a triangular dashed line cap.

Dashed lines are specified by EmfPlusDashedLineData objects.

See section 2.1.1 for the specification of additional enumerations.

2.1.1.11 FilterType Enumeration

The FilterType enumeration defines types of filtering algorithms that can be used for text and graphics
quality enhancement and image rendering.

 typedef enum
 {
 FilterTypeNone = 0x00,
 FilterTypePoint = 0x01,
 FilterTypeLinear = 0x02,
 FilterTypeTriangle = 0x03,
 FilterTypeBox = 0x04,
 FilterTypePyramidalQuad = 0x06,
 FilterTypeGaussianQuad = 0x07
 } FilterType;

FilterTypeNone: Specifies that filtering is not performed.

FilterTypePoint: Specifies that each destination pixel is computed by sampling the nearest pixel
from the source image.

FilterTypeLinear: Specifies that linear interpolation is performed using the weighted average of a
2x2 area of pixels surrounding the source pixel.

FilterTypeTriangle: Specifies that each pixel in the source image contributes equally to the
destination image. This is the slowest of filtering algorithms.

FilterTypeBox: Specifies a box filter algorithm, in which each destination pixel is computed by

averaging a rectangle of source pixels. This algorithm is useful only when reducing the size of an
image.

FilterTypePyramidalQuad: Specifies that a 4-sample tent filter is used.

FilterTypeGaussianQuad: Specifies that a 4-sample Gaussian filter is used, which creates a blur
effect on an image.

See section 2.1.1 for the specification of additional enumerations.

34 / 270

[MS-EMFPLUS-Diff] - v20160714
Enhanced Metafile Format Plus Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

2.1.1.12 GraphicsVersion Enumeration

The GraphicsVersion enumeration defines versions of operating system graphics that are used to
create EMF+ metafiles.

 typedef enum
 {
 GraphicsVersion1 = 0x0001,
 GraphicsVersion1_1 = 0x0002
 } GraphicsVersion;

GraphicsVersion1: Specifies GDI+ version 1.0.

GraphicsVersion1_1: Specifies GDI+ version 1.1.<3>

Graphics versions are specified in EmfPlusGraphicsVersion objects.

See section 2.1.1 for the specification of additional enumerations.

2.1.1.13 HatchStyle Enumeration

The HatchStyle enumeration defines hatch patterns used by graphics brushes. A hatch pattern

consists of a solid background color and lines drawn over the background.

 typedef enum
 {
 HatchStyleHorizontal = 0x00000000,
 HatchStyleVertical = 0x00000001,
 HatchStyleForwardDiagonal = 0x00000002,
 HatchStyleBackwardDiagonal = 0x00000003,
 HatchStyleLargeGrid = 0x00000004,
 HatchStyleDiagonalCross = 0x00000005,
 HatchStyle05Percent = 0x00000006,
 HatchStyle10Percent = 0x00000007,
 HatchStyle20Percent = 0x00000008,
 HatchStyle25Percent = 0x00000009,
 HatchStyle30Percent = 0x0000000A,
 HatchStyle40Percent = 0x0000000B,
 HatchStyle50Percent = 0x0000000C,
 HatchStyle60Percent = 0x0000000D,
 HatchStyle70Percent = 0x0000000E,
 HatchStyle75Percent = 0x0000000F,
 HatchStyle80Percent = 0x00000010,
 HatchStyle90Percent = 0x00000011,
 HatchStyleLightDownwardDiagonal = 0x00000012,
 HatchStyleLightUpwardDiagonal = 0x00000013,
 HatchStyleDarkDownwardDiagonal = 0x00000014,
 HatchStyleDarkUpwardDiagonal = 0x00000015,
 HatchStyleWideDownwardDiagonal = 0x00000016,
 HatchStyleWideUpwardDiagonal = 0x00000017,
 HatchStyleLightVertical = 0x00000018,
 HatchStyleLightHorizontal = 0x00000019,
 HatchStyleNarrowVertical = 0x0000001A,
 HatchStyleNarrowHorizontal = 0x0000001B,
 HatchStyleDarkVertical = 0x0000001C,
 HatchStyleDarkHorizontal = 0x0000001D,
 HatchStyleDashedDownwardDiagonal = 0x0000001E,
 HatchStyleDashedUpwardDiagonal = 0x0000001F,
 HatchStyleDashedHorizontal = 0x00000020,
 HatchStyleDashedVertical = 0x00000021,
 HatchStyleSmallConfetti = 0x00000022,
 HatchStyleLargeConfetti = 0x00000023,
 HatchStyleZigZag = 0x00000024,
 HatchStyleWave = 0x00000025,

35 / 270

[MS-EMFPLUS-Diff] - v20160714
Enhanced Metafile Format Plus Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 HatchStyleDiagonalBrick = 0x00000026,
 HatchStyleHorizontalBrick = 0x00000027,
 HatchStyleWeave = 0x00000028,
 HatchStylePlaid = 0x00000029,
 HatchStyleDivot = 0x0000002A,
 HatchStyleDottedGrid = 0x0000002B,
 HatchStyleDottedDiamond = 0x0000002C,
 HatchStyleShingle = 0x0000002D,
 HatchStyleTrellis = 0x0000002E,
 HatchStyleSphere = 0x0000002F,
 HatchStyleSmallGrid = 0x00000030,
 HatchStyleSmallCheckerBoard = 0x00000031,
 HatchStyleLargeCheckerBoard = 0x00000032,
 HatchStyleOutlinedDiamond = 0x00000033,
 HatchStyleSolidDiamond = 0x00000034
 } HatchStyle;

HatchStyleHorizontal: Specifies equally spaced horizontal lines.

HatchStyleVertical: Specifies equally spaced vertical lines.

HatchStyleForwardDiagonal: Specifies lines on a diagonal from upper left to lower right.

HatchStyleBackwardDiagonal: Specifies lines on a diagonal from upper right to lower left.

HatchStyleLargeGrid: Specifies crossing horizontal and vertical lines.

HatchStyleDiagonalCross: Specifies crossing forward diagonal and backward diagonal lines with
anti-aliasing.

HatchStyle05Percent: Specifies a 5-percent hatch, which is the ratio of foreground color to
background color equal to 5:100.

HatchStyle10Percent: Specifies a 10-percent hatch, which is the ratio of foreground color to
background color equal to 10:100.

HatchStyle20Percent: Specifies a 20-percent hatch, which is the ratio of foreground color to
background color equal to 20:100.

HatchStyle25Percent: Specifies a 25-percent hatch, which is the ratio of foreground color to
background color equal to 25:100.

HatchStyle30Percent: Specifies a 30-percent hatch, which is the ratio of foreground color to
background color equal to 30:100.

HatchStyle40Percent: Specifies a 40-percent hatch, which is the ratio of foreground color to
background color equal to 40:100.

HatchStyle50Percent: Specifies a 50-percent hatch, which is the ratio of foreground color to
background color equal to 50:100.

HatchStyle60Percent: Specifies a 60-percent hatch, which is the ratio of foreground color to
background color equal to 60:100.

HatchStyle70Percent: Specifies a 70-percent hatch, which is the ratio of foreground color to

background color equal to 70:100.

HatchStyle75Percent: Specifies a 75-percent hatch, which is the ratio of foreground color to
background color equal to 75:100.

HatchStyle80Percent: Specifies an 80-percent hatch, which is the ratio of foreground color to
background color equal to 80:100.

36 / 270

[MS-EMFPLUS-Diff] - v20160714
Enhanced Metafile Format Plus Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

HatchStyle90Percent: Specifies a 90-percent hatch, which is the ratio of foreground color to
background color equal to 90:100.

HatchStyleLightDownwardDiagonal: Specifies diagonal lines that slant to the right from top to
bottom points with no anti-aliasing. They are spaced 50 percent further apart than lines in the

HatchStyleForwardDiagonal pattern

HatchStyleLightUpwardDiagonal: Specifies diagonal lines that slant to the left from top to bottom
points with no anti-aliasing. They are spaced 50 percent further apart than lines in the
HatchStyleBackwardDiagonal pattern.

HatchStyleDarkDownwardDiagonal: Specifies diagonal lines that slant to the right from top to
bottom points with no anti-aliasing. They are spaced 50 percent closer and are twice the width of
lines in the HatchStyleForwardDiagonal pattern.

HatchStyleDarkUpwardDiagonal: Specifies diagonal lines that slant to the left from top to bottom
points with no anti-aliasing. They are spaced 50 percent closer and are twice the width of lines in
the HatchStyleBackwardDiagonal pattern.

HatchStyleWideDownwardDiagonal: Specifies diagonal lines that slant to the right from top to
bottom points with no anti-aliasing. They have the same spacing between lines in
HatchStyleWideDownwardDiagonal pattern and HatchStyleForwardDiagonal pattern, but

HatchStyleWideDownwardDiagonal has the triple line width of HatchStyleForwardDiagonal.

HatchStyleWideUpwardDiagonal: Specifies diagonal lines that slant to the left from top to bottom
points with no anti-aliasing. They have the same spacing between lines in
HatchStyleWideUpwardDiagonal pattern and HatchStyleBackwardDiagonal pattern, but
HatchStyleWideUpwardDiagonal has the triple line width of HatchStyleWideUpwardDiagonal.

HatchStyleLightVertical: Specifies vertical lines that are spaced 50 percent closer together than
lines in the HatchStyleVertical pattern.

HatchStyleLightHorizontal: Specifies horizontal lines that are spaced 50 percent closer than lines
in the HatchStyleHorizontal pattern.

HatchStyleNarrowVertical: Specifies vertical lines that are spaced 75 percent closer than lines in
the HatchStyleVertical pattern; or 25 percent closer than lines in the HatchStyleLightVertical
pattern.

HatchStyleNarrowHorizontal: Specifies horizontal lines that are spaced 75 percent closer than
lines in the HatchStyleHorizontal pattern; or 25 percent closer than lines in the

HatchStyleLightHorizontal pattern.

HatchStyleDarkVertical: Specifies lines that are spaced 50 percent closer than lines in the
HatchStyleVertical pattern.

HatchStyleDarkHorizontal: Specifies lines that are spaced 50 percent closer than lines in the
HatchStyleHorizontal pattern.

HatchStyleDashedDownwardDiagonal: Specifies dashed diagonal lines that slant to the right from

top to bottom points.

HatchStyleDashedUpwardDiagonal: Specifies dashed diagonal lines that slant to the left from top
to bottom points.

HatchStyleDashedHorizontal: Specifies dashed horizontal lines.

HatchStyleDashedVertical: Specifies dashed vertical lines.

HatchStyleSmallConfetti: Specifies a pattern of lines that has the appearance of confetti.

37 / 270

[MS-EMFPLUS-Diff] - v20160714
Enhanced Metafile Format Plus Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

HatchStyleLargeConfetti: Specifies a pattern of lines that has the appearance of confetti, and is
composed of larger pieces than the HatchStyleSmallConfetti pattern.

HatchStyleZigZag: Specifies horizontal lines that are composed of zigzags.

HatchStyleWave: Specifies horizontal lines that are composed of tildes.

HatchStyleDiagonalBrick: Specifies a pattern of lines that has the appearance of layered bricks
that slant to the left from top to bottom points.

HatchStyleHorizontalBrick: Specifies a pattern of lines that has the appearance of horizontally
layered bricks.

HatchStyleWeave: Specifies a pattern of lines that has the appearance of a woven material.

HatchStylePlaid: Specifies a pattern of lines that has the appearance of a plaid material.

HatchStyleDivot: Specifies a pattern of lines that has the appearance of divots.

HatchStyleDottedGrid: Specifies crossing horizontal and vertical lines, each of which is composed of
dots.

HatchStyleDottedDiamond: Specifies crossing forward and backward diagonal lines, each of which
is composed of dots.

HatchStyleShingle: Specifies a pattern of lines that has the appearance of diagonally layered
shingles that slant to the right from top to bottom points.

HatchStyleTrellis: Specifies a pattern of lines that has the appearance of a trellis.

HatchStyleSphere: Specifies a pattern of lines that has the appearance of spheres laid adjacent to
each other.

HatchStyleSmallGrid: Specifies crossing horizontal and vertical lines that are spaced 50 percent
closer together than HatchStyleLargeGrid.

HatchStyleSmallCheckerBoard: Specifies a pattern of lines that has the appearance of a
checkerboard.

HatchStyleLargeCheckerBoard: Specifies a pattern of lines that has the appearance of a
checkerboard, with squares that are twice the size of the squares in the
HatchStyleSmallCheckerBoard pattern.

HatchStyleOutlinedDiamond: Specifies crossing forward and backward diagonal lines; the lines are
not anti-aliased.

HatchStyleSolidDiamond: Specifies a pattern of lines that has the appearance of a checkerboard
placed diagonally.

Graphics brushes are specified by EmfPlusBrush objects.

See section 2.1.1 for the specification of additional enumerations.

2.1.1.14 HotkeyPrefix Enumeration

The HotkeyPrefix enumeration defines output options for hotkey prefixes in graphics text.

 typedef enum
 {
 HotkeyPrefixNone = 0x00000000,
 HotkeyPrefixShow = 0x00000001,

38 / 270

[MS-EMFPLUS-Diff] - v20160714
Enhanced Metafile Format Plus Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 HotkeyPrefixHide = 0x00000002
 } HotkeyPrefix;

HotkeyPrefixNone: Specifies that the hotkey prefix SHOULD NOT be displayed.

HotkeyPrefixShow: Specifies that no hotkey prefix is defined.

HotkeyPrefixHide: Specifies that the hotkey prefix SHOULD be displayed.

Graphics text is specified by EmfPlusStringFormat objects.

See section 2.1.1 for the specification of additional enumerations.

2.1.1.15 ImageDataType Enumeration

The ImageDataType enumeration defines types of image data formats.

 typedef enum
 {
 ImageDataTypeUnknown = 0x00000000,
 ImageDataTypeBitmap = 0x00000001,
 ImageDataTypeMetafile = 0x00000002
 } ImageDataType;

ImageDataTypeUnknown: The type of image is not known.

ImageDataTypeBitmap: Specifies a bitmap image.

ImageDataTypeMetafile: Specifies a metafile image.

Graphics images are specified by EmfPlusImage objects.

See section 2.1.1 for the specification of additional enumerations.

2.1.1.16 InterpolationMode Enumeration

The InterpolationMode enumeration defines ways to perform scaling, including stretching and
shrinking.

 typedef enum
 {
 InterpolationModeDefault = 0x00,
 InterpolationModeLowQuality = 0x01,
 InterpolationModeHighQuality = 0x02,
 InterpolationModeBilinear = 0x03,
 InterpolationModeBicubic = 0x04,
 InterpolationModeNearestNeighbor = 0x05,
 InterpolationModeHighQualityBilinear = 0x06,
 InterpolationModeHighQualityBicubic = 0x07
 } InterpolationMode;

InterpolationModeDefault: Specifies the default interpolation mode, which is defined as
InterpolationModeBilinear.

InterpolationModeLowQuality: Specifies a low-quality interpolation mode, which is defined as
InterpolationModeNearestNeighbor.

InterpolationModeHighQuality: Specifies a high-quality interpolation mode, which is defined as
InterpolationModeHighQualityBicubic.

39 / 270

[MS-EMFPLUS-Diff] - v20160714
Enhanced Metafile Format Plus Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

InterpolationModeBilinear: Specifies bilinear interpolation, which uses the closest 2x2
neighborhood of known pixels surrounding the interpolated pixel. The weighted average of these 4

known pixel values determines the value to assign to the interpolated pixel. The result is smoother
looking than InterpolationModeNearestNeighbor.

InterpolationModeBicubic: Specifies bicubic interpolation, which uses the closest 4x4 neighborhood
of known pixels surrounding the interpolated pixel. The weighted average of these 16 known pixel
values determines the value to assign to the interpolated pixel. Because the known pixels are
likely to be at varying distances from the interpolated pixel, closer pixels are given a higher weight
in the calculation. The result is smoother looking than InterpolationModeBilinear.

InterpolationModeNearestNeighbor: Specifies nearest-neighbor interpolation, which uses only the
value of the pixel that is closest to the interpolated pixel. This mode simply duplicates or removes

pixels, producing the lowest-quality result among these options.

InterpolationModeHighQualityBilinear: Specifies bilinear interpolation with prefiltering.

InterpolationModeHighQualityBicubic: Specifies bicubic interpolation with prefiltering, which

produces the highest-quality result among these options.

To stretch an image, each pixel in the original image SHOULD be mapped to a group of pixels in the
larger image. To shrink an image, groups of pixels in the original image SHOULD be mapped to single

pixels in the smaller image. The effectiveness of the algorithm that performs these mappings
determines the quality of a scaled image. Higher-quality interpolation generally uses more data points
and requires more processing time than lower-quality interpolation.

See section 2.1.1 for the specification of additional enumerations.

2.1.1.17 LanguageIdentifier Enumeration

The LanguageIdentifier enumeration defines identifiers for natural languages in locales, including
countries, geographical regions, and administrative districts.

 typedef enum
 {
 LANG_NEUTRAL = 0x0000,
 zh-CHS = 0x0004,
 LANG_INVARIANT = 0x007F,
 LANG_NEUTRAL_USER_DEFAULT = 0x0400,
 ar-SA = 0x0401,
 bg-BG = 0x0402,
 ca-ES = 0x0403,
 zh-CHT = 0x0404,
 cs-CZ = 0x0405,
 da-DK = 0x0406,
 de-DE = 0x0407,
 el-GR = 0x0408,
 en-US = 0x0409,
 es-Tradnl-ES = 0x040A,
 fi-FI = 0x040B,
 fr-FR = 0x040C,
 he-IL = 0x040D,
 hu-HU = 0x040E,
 is-IS = 0x040F,
 it-IT = 0x0410,
 ja-JA = 0x0411,
 ko-KR = 0x0412,
 nl-NL = 0x0413,
 nb-NO = 0x0414,
 pl-PL = 0x0415,
 pt-BR = 0x0416,
 rm-CH = 0x0417,
 ro-RO = 0x0418,

40 / 270

[MS-EMFPLUS-Diff] - v20160714
Enhanced Metafile Format Plus Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 ru-RU = 0x0419,
 hr-HR = 0x041A,
 sk-SK = 0x041B,
 sq-AL = 0x041C,
 sv-SE = 0x041D,
 th-TH = 0x041E,
 tr-TR = 0x041F,
 ur-PK = 0x0420,
 id-ID = 0x0421,
 uk-UA = 0x0422,
 be-BY = 0x0423,
 sl-SI = 0x0424,
 et-EE = 0x0425,
 lv-LV = 0x0426,
 lt-LT = 0x0427,
 tg-TJ = 0x0428,
 fa-IR = 0x0429,
 vi-VN = 0x042A,
 hy-AM = 0x042B,
 az-Latn-AZ = 0x042C,
 eu-ES = 0x042D,
 wen-DE = 0x042E,
 mk-MK = 0x042F,
 st-ZA = 0x0430,
 tn-ZA = 0x0432,
 xh-ZA = 0x0434,
 zu-ZA = 0x0435,
 af-ZA = 0x0436,
 ka-GE = 0x0437,
 fa-FA = 0x0438,
 hi-IN = 0x0439,
 mt-MT = 0x043A,
 se-NO = 0x043B,
 ga-GB = 0x043C,
 ms-MY = 0x043E,
 kk-KZ = 0x043F,
 ky-KG = 0x0440,
 sw-KE = 0x0441,
 tk-TM = 0x0442,
 uz-Latn-UZ = 0x0443,
 tt-Ru = 0x0444,
 bn-IN = 0x0445,
 pa-IN = 0x0446,
 gu-IN = 0x0447,
 or-IN = 0x0448,
 ta-IN = 0x0449,
 te-IN = 0x044A,
 kn-IN = 0x044B,
 ml-IN = 0x044C,
 as-IN = 0x044D,
 mr-IN = 0x044E,
 sa-IN = 0x044F,
 mn-MN = 0x0450,
 bo-CN = 0x0451,
 cy-GB = 0x0452,
 km-KH = 0x0453,
 lo-LA = 0x0454,
 gl-ES = 0x0456,
 kok-IN = 0x0457,
 sd-IN = 0x0459,
 syr-SY = 0x045A,
 si-LK = 0x045B,
 iu-Cans-CA = 0x045D,
 am-ET = 0x045E,
 ne-NP = 0x0461,
 fy-NL = 0x0462,
 ps-AF = 0x0463,
 fil-PH = 0x0464,
 div-MV = 0x0465,
 ha-Latn-NG = 0x0468,

41 / 270

[MS-EMFPLUS-Diff] - v20160714
Enhanced Metafile Format Plus Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 yo-NG = 0x046A,
 quz-BO = 0x046B,
 nzo-ZA = 0x046C,
 ba-RU = 0x046D,
 lb-LU = 0x046E,
 kl-GL = 0x046F,
 ig-NG = 0x0470,
 so-SO = 0x0477,
 ii-CN = 0x0478,
 arn-CL = 0x047A,
 moh-CA = 0x047C,
 br-FR = 0x047E,
 ug-CN = 0x0480,
 mi-NZ = 0x0481,
 oc-FR = 0x0482,
 co-FR = 0x0483,
 gsw-FR = 0x0484,
 sah-RU = 0x0485,
 qut-GT = 0x0486,
 rw-RW = 0x0487,
 wo-SN = 0x0488,
 gbz-AF = 0x048C,
 LANG_NEUTRAL_SYS_DEFAULT = 0x0800,
 ar-IQ = 0x0801,
 zh-CN = 0x0804,
 de-CH = 0x0807,
 en-GB = 0x0809,
 es-MX = 0x080A,
 fr-BE = 0x080C,
 it-CH = 0x0810,
 ko-Johab-KR = 0x0812,
 nl-BE = 0x0813,
 nn-NO = 0x0814,
 pt-PT = 0x0816,
 sr-Latn-SP = 0x081A,
 sv-FI = 0x081D,
 ur-IN = 0x0820,
 lt-C-LT = 0x0827,
 az-Cyrl-AZ = 0x082C,
 wee-DE = 0x082E,
 se-SE = 0x083B,
 ga-IE = 0x083C,
 ms-BN = 0x083E,
 uz-Cyrl-UZ = 0x0843,
 bn-BD = 0x0845,
 mn-Mong-CN = 0x0850,
 sd-PK = 0x0859,
 iu-Latn-CA = 0x085D,
 tzm-Latn-DZ = 0x085F,
 quz-EC = 0x086B,
 LANG_NEUTRAL_CUSTOM_DEFAULT = 0x0C00,
 ar-EG = 0x0C01,
 zh-HK = 0x0C04,
 de-AT = 0x0C07,
 en-AU = 0x0C09,
 es-ES = 0x0C0A,
 fr-CA = 0x0C0C,
 sr-Cyrl-CS = 0x0C1A,
 se-FI = 0x0C3B,
 quz-PE = 0x0C6B,
 LANG_NEUTRAL_CUSTOM = 0x1000,
 ar-LY = 0x1001,
 zh-SG = 0x1004,
 de-LU = 0x1007,
 en-CA = 0x1009,
 es-GT = 0x100A,
 fr-CH = 0x100C,
 hr-BA = 0x101A,
 smj-NO = 0x103B,
 LANG_NEUTRAL_CUSTOM_DEFAULT_MUI = 0x1400,

42 / 270

[MS-EMFPLUS-Diff] - v20160714
Enhanced Metafile Format Plus Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 ar-DZ = 0x1401,
 zh-MO = 0x1404,
 de-LI = 0x1407,
 en-NZ = 0x1409,
 es-CR = 0x140A,
 fr-LU = 0x140C,
 bs-Latn-BA = 0x141A,
 smj-SE = 0x143B,
 ar-MA = 0x1801,
 en-IE = 0x1809,
 es-PA = 0x180A,
 ar-MC = 0x180C,
 sr-Latn-BA = 0x181A,
 sma-NO = 0x183B,
 ar-TN = 0x1C01,
 en-ZA = 0x1C09,
 es-DO = 0x1C0A,
 sr-Cyrl-BA = 0x1C1A,
 sma-SE = 0x1C3B,
 ar-OM = 0x2001,
 el-2-GR = 0x2008,
 en-JM = 0x2009,
 es-VE = 0x200A,
 bs-Cyrl-BA = 0x201A,
 sms-FI = 0x203B,
 ar-YE = 0x2401,
 ar-029 = 0x2409,
 es-CO = 0x240A,
 smn-FI = 0x243B,
 ar-SY = 0x2801,
 en-BZ = 0x2809,
 es-PE = 0x280A,
 ar-JO = 0x2C01,
 en-TT = 0x2C09,
 es-AR = 0x2C0A,
 ar-LB = 0x3001,
 en-ZW = 0x3009,
 es-EC = 0x300A,
 ar-KW = 0x3401,
 en-PH = 0x3409,
 es-CL = 0x340A,
 ar-AE = 0x3801,
 es-UY = 0x380A,
 ar-BH = 0x3C01,
 es-PY = 0x3C0A,
 ar-QA = 0x4001,
 en-IN = 0x4009,
 es-BO = 0x400A,
 en-MY = 0x4409,
 es-SV = 0x440A,
 en-SG = 0x4809,
 es-HN = 0x480A,
 es-NI = 0x4C0A,
 es-PR = 0x500A,
 es-US = 0x540A,
 zh-Hant = 0x7C04
 } LanguageIdentifiers;

LANG_NEUTRAL: Neutral locale language.

zh-CHS: Chinese, Simplified (China).

LANG_INVARIANT: Invariant language.

LANG_NEUTRAL_USER_DEFAULT: User default locale language.

ar-SA: Arabic (Saudi Arabia).

43 / 270

[MS-EMFPLUS-Diff] - v20160714
Enhanced Metafile Format Plus Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

bg-BG: Bulgarian (Bulgaria).

ca-ES: Catalan (Spain).

zh-CHT: Chinese, Traditional (Taiwan).

cs-CZ: Czech (Czech Republic).

da-DK: Danish (Denmark).

de-DE: German (Germany).

el-GR: Greek (Greece).

en-US: English (United States).

es-Tradnl-ES: Spanish, Traditional (Spain).

fi-FI: Finnish (Finland).

fr-FR: French (France).

he-IL: Hebrew (Israel).

hu-HU: Hungarian (Hungary).

is-IS: Icelandic (Iceland).

it-IT: Italian (Italy).

ja-JA: Japanese (Japan).

ko-KR: Korean (Korea).

nl-NL: Dutch (Netherlands).

nb-NO: Bokmal (Norway).

pl-PL: Polish (Poland).

pt-BR: Portuguese (Brazil).

rm-CH: Romansh (Switzerland).

ro-RO: Romanian (Romania).

ru-RU: Russian (Russia).

hr-HR: Croatian (Croatia).

sk-SK: Slovak (Slovakia).

sq-AL: Albanian (Albania).

sv-SE: Swedish (Sweden).

th-TH: Thai (Thailand).

tr-TR: Turkish (Turkey).

ur-PK: Urdu (Pakistan).

id-ID: Indonesian (Indonesia).

44 / 270

[MS-EMFPLUS-Diff] - v20160714
Enhanced Metafile Format Plus Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

uk-UA: Ukranian (Ukraine).

be-BY: Belarusian (Belarus).

sl-SI: Slovenian (Slovenia).

et-EE: Estonian (Estonia).

lv-LV: Latvian (Latvia).

lt-LT: Lithuanian (Lithuania).

tg-TJ: Tajik (Tajikistan).

fa-IR: Persian (Iran).

vi-VN: Vietnamese (Vietnam).

hy-AM: Armenian (Armenia).

az-Latn-AZ: Azeri, Latin alphabet (Azerbaijan).

eu-ES: Basque (Spain).

wen-DE: Sorbian, Upper (Germany).

mk-MK: Macedonian (Macedonia).

st-ZA: Sutu (South Africa).

tn-ZA: Setswana (Botswana).

xh-ZA: isiXhosa (South Africa).

zu-ZA: isiZulu (South Africa).

af-ZA: Afrikaans (South Africa).

ka-GE: Georgian (Georgia).

fa-FA: Faeroese (Faroe Islands).

hi-IN: Hindi (India).

mt-MT: Maltese (Malta).

se-NO: Sami, Northern (Norway).

ga-GB: Gaelic (United Kingdom).

ms-MY: Malay (Malaysia).

kk-KZ: Kazakh (Kazakhstan).

ky-KG: Kyrgyz (Kyrgyzstan).

sw-KE: Kiswahili (Kenya, Tanzania, and other Eastern African nations; and it is the official language
of the African Union).

tk-TM: Turkmen (Turkmenistan).

uz-Latn-UZ: Uzbek, Latin alphabet (Uzbekistan).

45 / 270

[MS-EMFPLUS-Diff] - v20160714
Enhanced Metafile Format Plus Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

tt-Ru: Tatar (Belarus, Russia, Ukraine, and other eastern European nations; and Kazakhstan, and
Uzbekistan in central Asia).

bn-IN: Bengali, Bengali script (India).

pa-IN: Punjabi (India).

gu-IN: Gujarati (India).

or-IN: Oriya (India).

ta-IN: Tamil (India, Sri Lanka).

te-IN: Telugu (India).

kn-IN: Kannada (India).

ml-IN: Malayalam (India).

as-IN: Assamese (India).

mr-IN: Marathi (India).

sa-IN: Sanskrit (India).

mn-MN: Mongolian, Cyrillic alphabet (Mongolia).

bo-CN: Tibetan (China).

cy-GB: Welsh (United Kingdom).

km-KH: Khmer (Cambodia).

lo-LA: Lao (Laos).

gl-ES: Galician (Spain).

kok-IN: Konkani (India).

sd-IN: Sindhi (India).

syr-SY: Syriac (Syria).

si-LK: Sinhalese (Sri Lanka).

iu-Cans-CA: Inuktitut, Syllabics (Canada).

am-ET: Amharic (Ethiopia).

ne-NP: Nepali (Nepal).

fy-NL: Frisian (Netherlands).

ps-AF: Pashto (Afghanistan, Pakistan).

fil-PH: Filipino (Philippines).

div-MV: Divehi (Maldives, India).

ha-Latn-NG: Hausa, Latin alphabet (Benin, Nigeria, Togo, and other western African nations).

yo-NG: Yoruba (Benin, Ghana, Nigeria, Togo, and other western African nations).

46 / 270

[MS-EMFPLUS-Diff] - v20160714
Enhanced Metafile Format Plus Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

quz-BO: Quechua (Bolivia).

nzo-ZA: Sesotho sa Leboa (South Africa).

ba-RU: Bashkir (Russia).

lb-LU: Luxembourgish (Luxembourg).

kl-GL: Greenlandic (Greenland).

ig-NG: Igbo (Nigeria).

so-SO: Somali (Somalia).

ii-CN: Yi (China).

arn-CL: Mapudungun (Chile).

moh-CA: Mohawk (Canada).

br-FR: Breton (France).

ug-CN: Uighur (China).

mi-NZ: Maori (New Zealand).

oc-FR: Occitan (France).

co-FR: Corsican (France).

gsw-FR: Alsatian (France).

sah-RU: Yakut (Russia).

qut-GT: K'iche (Guatemala).

rw-RW: Kinyarwanda (Rwanda).

wo-SN: Wolof (Gambia, Mauritania, Senegal, and other western African nations).

gbz-AF: Dari (Afghanistan).

LANG_NEUTRAL_SYS_DEFAULT: System default locale language.

ar-IQ: Arabic (Iraq).

zh-CN: Chinese (China).

de-CH: German (Switzerland).

en-GB: English (United Kingdom).

es-MX: Spanish (Mexico).

fr-BE: French (Belgium).

it-CH: Italian (Switzerland).

ko-Johab-KR: Korean, Johab (Korea).

nl-BE: Dutch (Belgium).

nn-NO: Nyorsk (Norway).

47 / 270

[MS-EMFPLUS-Diff] - v20160714
Enhanced Metafile Format Plus Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

pt-PT: Portuguese (Portugal).

sr-Latn-SP: Serbian, Latin alphabet (Serbia).

sv-FI: Swedish (Finland).

ur-IN: Urdu (India).

lt-C-LT: Lithuanian, Classic (Lithuania).

az-Cyrl-AZ: Azeri, Cyrillic alphabet (Azerbaijan).

wee-DE: Sorbian, Lower (Germany).

se-SE: Sami, Northern (Sweden).

ga-IE: Irish (Ireland).

ms-BN: Malay (Brunei).

uz-Cyrl-UZ: Uzbek, Cyrillic alphabet (Uzbekistan).

bn-BD: Bengali (Bangladesh).

mn-Mong-CN: Mongolian, Traditional (China).

sd-PK: Sindhi (Pakistan).

iu-Latn-CA: Inuktitut, Latin alphabet (Canada).

tzm-Latn-DZ: Tamazight, Latin alphabet (Algeria).

quz-EC: Quechua (Ecuador).

LANG_NEUTRAL_CUSTOM_DEFAULT: Default custom locale language.

ar-EG: Arabic (Egypt).

zh-HK: Chinese (Hong Kong Special Administrative Region, China).

de-AT: German (Austria).

en-AU: English (Australia).

es-ES: Spanish, Modern (Spain).

fr-CA: French (Canada).

sr-Cyrl-CS: Serbian, Cyrillic alphabet (Serbia).

se-FI: Sami, Northern (Finland).

quz-PE: Quechua (Peru).

LANG_NEUTRAL_CUSTOM: Unspecified custom locale language.

ar-LY: Arabic (Libya).

zh-SG: Chinese (Singapore).

de-LU: German (Luxembourg).

en-CA: English (Canada).

48 / 270

[MS-EMFPLUS-Diff] - v20160714
Enhanced Metafile Format Plus Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

es-GT: Spanish (Guatemala).

fr-CH: French (Switzerland).

hr-BA: Croatian (Bosnia and Herzegovina).

smj-NO: Sami, Luli (Norway).

LANG_NEUTRAL_CUSTOM_DEFAULT_MUI: Default custom multi-user interface locale language.

ar-DZ: Arabic (Algeria).

zh-MO: Chinese (Macao Special Administrative Region, China).

de-LI: German (Liechtenstein).

en-NZ: English (New Zealand).

es-CR: Spanish (Costa Rica).

fr-LU: French (Luxembourg).

bs-Latn-BA: Bosnian, Latin alphabet (Bosnia and Herzegovina).

smj-SE: Sami, Lule (Sweden).

ar-MA: Arabic (Morocco).

en-IE: English (Ireland).

es-PA: Spanish (Panama).

ar-MC: French (Monaco).

sr-Latn-BA: Serbian, Latin alphabet (Bosnia and Herzegovina).

sma-NO: Sami, Southern (Norway).

ar-TN: Arabic (Tunisia).

en-ZA: English (South Africa).

es-DO: Spanish (Dominican Republic).

sr-Cyrl-BA: Serbian, Cyrillic alphabet (Bosnia and Herzegovina).

sma-SE: Sami, Southern (Sweden).

ar-OM: Arabic (Oman).

el-2-GR: Greek 2 (Greece).

en-JM: English (Jamaica).

es-VE: Spanish (Venezuela).

bs-Cyrl-BA: Bosnian, Cyrillic alphabet (Bosnia and Herzegovina).

sms-FI: Sami, Skolt (Finland).

ar-YE: Arabic (Yemen).

ar-029: English (Nations of the Caribbean).

49 / 270

[MS-EMFPLUS-Diff] - v20160714
Enhanced Metafile Format Plus Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

es-CO: Spanish (Colombia).

smn-FI: Sami, Inari (Finland).

ar-SY: Arabic (Syria).

en-BZ: English (Belize).

es-PE: Spanish (Peru).

ar-JO: Arabic (Jordan).

en-TT: English (Trinidad and Tobago).

es-AR: Spanish (Argentina).

ar-LB: Arabic (Lebanon).

en-ZW: English (Zimbabwe).

es-EC: Spanish (Ecuador).

ar-KW: Arabic (Kuwait).

en-PH: English (Phillippines).

es-CL: Spanish (Chile).

ar-AE: Arabic (United Arab Emirates).

es-UY: Spanish (Uruguay).

ar-BH: Arabic (Bahrain).

es-PY: Spanish (Paraguay).

ar-QA: Arabic (Qatar).

en-IN: English (India).

es-BO: Spanish (Bolivia).

en-MY: English (Malaysia).

es-SV: Spanish (El Salvador).

en-SG: English (Singapore).

es-HN: Spanish (Honduras).

es-NI: Spanish (Nicaragua).

es-PR: Spanish (Puerto Rico).

es-US: Spanish (United States).

zh-Hant: Chinese, Traditional (China).

Language identifiers are specified by EmfPlusLanguageIdentifier objects. Each value is an encoding of
a primary language identifier and a sublanguage identifier.

See [MS-LCID] for additional information concerning language identifiers, including Windows version
support.

50 / 270

[MS-EMFPLUS-Diff] - v20160714
Enhanced Metafile Format Plus Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

See section 2.1.1 for the specification of additional enumerations.

2.1.1.18 LineCapType Enumeration

The LineCapType enumeration defines types of line caps to use at the ends of lines that are drawn
with graphics pens.

 typedef enum
 {
 LineCapTypeFlat = 0x00000000,
 LineCapTypeSquare = 0x00000001,
 LineCapTypeRound = 0x00000002,
 LineCapTypeTriangle = 0x00000003,
 LineCapTypeNoAnchor = 0x00000010,
 LineCapTypeSquareAnchor = 0x00000011,
 LineCapTypeRoundAnchor = 0x00000012,
 LineCapTypeDiamondAnchor = 0x00000013,
 LineCapTypeArrowAnchor = 0x00000014,
 LineCapTypeAnchorMask = 0x000000F0,
 LineCapTypeCustom = 0x000000FF
 } LineCapType;

LineCapTypeFlat: Specifies a squared-off line cap. The end of the line MUST be the last point in the

line.

LineCapTypeSquare: Specifies a square line cap. The center of the square MUST be located at the
last point in the line. The width of the square is the line width.

LineCapTypeRound: Specifies a circular line cap. The center of the circle MUST be located at the
last point in the line. The diameter of the circle is the line width.

LineCapTypeTriangle: Specifies a triangular line cap. The base of the triangle MUST be located at
the last point in the line. The base of the triangle is the line width.

LineCapTypeNoAnchor: Specifies that the line end is not anchored.

LineCapTypeSquareAnchor: Specifies that the line end is anchored with a square line cap. The
center of the square MUST be located at the last point in the line. The height and width of the
square are the line width.

LineCapTypeRoundAnchor: Specifies that the line end is anchored with a circular line cap. The
center of the circle MUST be located at the last point in the line. The circle SHOULD be wider than
the line.

LineCapTypeDiamondAnchor: Specifies that the line end is anchored with a diamond-shaped line
cap, which is a square turned at 45 degrees. The center of the diamond MUST be located at the
last point in the line. The diamond SHOULD be wider than the line.

LineCapTypeArrowAnchor: Specifies that the line end is anchored with an arrowhead shape. The
arrowhead point MUST be located at the last point in the line. The arrowhead SHOULD be wider

than the line.

LineCapTypeAnchorMask: Mask used to check whether a line cap is an anchor cap.

LineCapTypeCustom: Specifies a custom line cap.

Graphics line caps are specified by EmfPlusPen objects.

See section 2.1.1 for the specification of additional enumerations.

51 / 270

[MS-EMFPLUS-Diff] - v20160714
Enhanced Metafile Format Plus Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

2.1.1.19 LineJoinType Enumeration

The LineJoinType enumeration defines ways to join two lines that are drawn by the same graphics pen
and whose ends meet.

 typedef enum
 {
 LineJoinTypeMiter = 0x00000000,
 LineJoinTypeBevel = 0x00000001,
 LineJoinTypeRound = 0x00000002,
 LineJoinTypeMiterClipped = 0x00000003
 } LineJoinType;

LineJoinTypeMiter: Specifies a mitered line join.

LineJoinTypeBevel: Specifies a beveled line join.

LineJoinTypeRound: Specifies a rounded line join.

LineJoinTypeMiterClipped: Specifies a clipped mitered line join.

Graphics lines are specified by EmfPlusPen objects. A line join makes the intersection of the two line
ends look more continuous.

See section 2.1.1 for the specification of additional enumerations.

2.1.1.20 LineStyle Enumeration

The LineStyle enumeration defines styles of lines that are drawn with graphics pens.

 typedef enum
 {
 LineStyleSolid = 0x00000000,
 LineStyleDash = 0x00000001,
 LineStyleDot = 0x00000002,
 LineStyleDashDot = 0x00000003,
 LineStyleDashDotDot = 0x00000004,
 LineStyleCustom = 0x00000005
 } LineStyle;

LineStyleSolid: Specifies a solid line.

LineStyleDash: Specifies a dashed line.

LineStyleDot: Specifies a dotted line.

LineStyleDashDot: Specifies an alternating dash-dot line.

LineStyleDashDotDot: Specifies an alternating dash-dot-dot line.

LineStyleCustom: Specifies a user-defined, custom dashed line.

Graphics lines are specified by EmfPlusPen objects.

See section 2.1.1 for the specification of additional enumerations.

52 / 270

[MS-EMFPLUS-Diff] - v20160714
Enhanced Metafile Format Plus Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

2.1.1.21 MetafileDataType Enumeration

The MetafileDataType enumeration defines types of metafiles data that can be embedded in an EMF+
metafile.

 typedef enum
 {
 MetafileDataTypeWmf = 0x00000001,
 MetafileDataTypeWmfPlaceable = 0x00000002,
 MetafileDataTypeEmf = 0x00000003,
 MetafileDataTypeEmfPlusOnly = 0x00000004,
 MetafileDataTypeEmfPlusDual = 0x00000005
 } MetafileDataType;

MetafileDataTypeWmf: Specifies that the metafile is a WMF metafile [MS-WMF] that specifies
graphics operations with WMF records.

MetafileDataTypeWmfPlaceable: Specifies that the metafile is a WMF metafile that specifies

graphics operations with WMF records, and which contains additional header information that
makes the WMF metafile device-independent.

MetafileDataTypeEmf: Specifies that the metafile is an EMF metafile that specifies graphics

operations with EMF records ([MS-EMF] section 2.3).

MetafileDataTypeEmfPlusOnly: Specifies that the metafile is an EMF+ metafile that specifies
graphics operations with EMF+ records only.

MetafileDataTypeEmfPlusDual: Specifies that the metafile is an EMF+ metafile that specifies
graphics operations with both EMF and EMF+ records.

Embedded metafile data is specified by EmfPlusMetafileData objects.

See section 2.1.1 for the specification of additional enumerations.

2.1.1.22 ObjectType Enumeration

The ObjectType enumeration defines types of graphics objects that can be created and used in
graphics operations.

 typedef enum
 {
 ObjectTypeInvalid = 0x00000000,
 ObjectTypeBrush = 0x00000001,
 ObjectTypePen = 0x00000002,
 ObjectTypePath = 0x00000003,
 ObjectTypeRegion = 0x00000004,
 ObjectTypeImage = 0x00000005,
 ObjectTypeFont = 0x00000006,
 ObjectTypeStringFormat = 0x00000007,
 ObjectTypeImageAttributes = 0x00000008,
 ObjectTypeCustomLineCap = 0x00000009
 } ObjectType;

ObjectTypeInvalid: The object is not a valid object.

ObjectTypeBrush: Specifies an EmfPlusBrush object. Brush objects fill graphics regions.

ObjectTypePen: Specifies an EmfPlusPen object. Pen objects draw graphics lines.

53 / 270

[MS-EMFPLUS-Diff] - v20160714
Enhanced Metafile Format Plus Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

ObjectTypePath: Specifies an EmfPlusPath object. Path objects specify sequences of lines, curves,
and shapes.

ObjectTypeRegion: Specifies an EmfPlusRegion object. Region objects specify areas of the output
surface.

ObjectTypeImage: Specifies an EmfPlusImage object. Image objects encapsulate bitmaps and
metafiles.

ObjectTypeFont: Specifies an EmfPlusFont object. Font objects specify font properties, including
typeface style, em size, and font family.

ObjectTypeStringFormat: Specifies an EmfPlusStringFormat object. String format objects specify
text layout, including alignment, orientation, tab stops, clipping, and digit substitution for
languages that do not use Western European digits.

ObjectTypeImageAttributes: Specifies an EmfPlusImageAttributes object. Image attribute objects
specify operations on pixels during image rendering, including color adjustment, grayscale
adjustment, gamma correction, and color mapping.

ObjectTypeCustomLineCap: Specifies an EmfPlusCustomLineCap object. Custom line cap objects
specify shapes to draw at the ends of a graphics line, including squares, circles, and diamonds.

Graphics objects are specified by EmfPlusObject records.

See section 2.1.1 for the specification of additional enumerations.

2.1.1.23 PathPointType Enumeration

The PathPointType enumeration defines types of points on a graphics path.

 typedef enum
 {
 PathPointTypeStart = 0x00,
 PathPointTypeLine = 0x01,
 PathPointTypeBezier = 0x03
 } PathPointType;

PathPointTypeStart: Specifies that the point is the starting point of a path.

PathPointTypeLine: Specifies that the point is one of the two endpoints of a line.

PathPointTypeBezier: Specifies that the point is an endpoint or control point of a cubic Bezier
curve.

Graphics path point types are specified by EmfPlusPathPointType objects.

See section 2.1.1 for the specification of additional enumerations.

2.1.1.24 PenAlignment Enumeration

The PenAlignment enumeration defines the distribution of the width of the pen with respect to the line
being drawn.

 typedef enum
 {
 PenAlignmentCenter = 0x00000000,
 PenAlignmentInset = 0x00000001,
 PenAlignmentLeft = 0x00000002,

54 / 270

[MS-EMFPLUS-Diff] - v20160714
Enhanced Metafile Format Plus Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 PenAlignmentOutset = 0x00000003,
 PenAlignmentRight = 0x00000004
 } PenAlignment;

PenAlignmentCenter: Specifies that the EmfPlusPen object is centered over the theoretical line.

PenAlignmentInset: Specifies that the pen is positioned on the inside of the theoretical line.

PenAlignmentLeft: Specifies that the pen is positioned to the left of the theoretical line.

PenAlignmentOutset: Specifies that the pen is positioned on the outside of the theoretical line.

PenAlignmentRight: Specifies that the pen is positioned to the right of the theoretical line.

Graphics pens are specified by EmfPlusPen objects. Pen alignment can be visualized by considering a
theoretical one-dimensional line drawn between two specified points. The pen alignment determines
the proportion of pen width that is orthogonal to the theoretical line.

See section 2.1.1 for the specification of additional enumerations.

2.1.1.25 PixelFormat Enumeration

The PixelFormat enumeration defines pixel formats that are supported in EMF+ bitmaps.

 typedef enum
 {
 PixelFormatUndefined = 0x00000000,
 PixelFormat1bppIndexed = 0x00030101,
 PixelFormat4bppIndexed = 0x00030402,
 PixelFormat8bppIndexed = 0x00030803,
 PixelFormat16bppGrayScale = 0x00101004,
 PixelFormat16bppRGB555 = 0x00021005,
 PixelFormat16bppRGB565 = 0x00021006,
 PixelFormat16bppARGB1555 = 0x00061007,
 PixelFormat24bppRGB = 0x00021808,
 PixelFormat32bppRGB = 0x00022009,
 PixelFormat32bppARGB = 0x0026200A,
 PixelFormat32bppPARGB = 0x000E200B,
 PixelFormat48bppRGB = 0x0010300C,
 PixelFormat64bppARGB = 0x0034400D,
 PixelFormat64bppPARGB = 0x001A400E
 } PixelFormat;

PixelFormatUndefined: The format is not specified.

PixelFormat1bppIndexed: The format is monochrome, and a color palette lookup table is used.

PixelFormat4bppIndexed: The format is 16-color, and a color palette lookup table is used.

PixelFormat8bppIndexed: The format is 256-color, and a color palette lookup table is used.

PixelFormat16bppGrayScale: The format is 16 bits per pixel, grayscale.

PixelFormat16bppRGB555: The format is 16 bits per pixel; 5 bits each are used for the red, green,

and blue components. The remaining bit is not used.

PixelFormat16bppRGB565: The format is 16 bits per pixel; 5 bits are used for the red component,
6 bits for the green component, and 5 bits for the blue component.

PixelFormat16bppARGB1555: The format is 16 bits per pixel; 1 bit is used for the alpha
component, and 5 bits each are used for the red, green, and blue components.

55 / 270

[MS-EMFPLUS-Diff] - v20160714
Enhanced Metafile Format Plus Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

PixelFormat24bppRGB: The format is 24 bits per pixel; 8 bits each are used for the red, green, and
blue components.

PixelFormat32bppRGB: The format is 32 bits per pixel; 8 bits each are used for the red, green, and
blue components. The remaining 8 bits are not used.

PixelFormat32bppARGB: The format is 32 bits per pixel; 8 bits each are used for the alpha, red,
green, and blue components.

PixelFormat32bppPARGB: The format is 32 bits per pixel; 8 bits each are used for the alpha, red,
green, and blue components. The red, green, and blue components are premultiplied according to
the alpha component.

PixelFormat48bppRGB: The format is 48 bits per pixel; 16 bits each are used for the red, green,
and blue components.

PixelFormat64bppARGB: The format is 64 bits per pixel; 16 bits each are used for the alpha, red,
green, and blue components.

PixelFormat64bppPARGB: The format is 64 bits per pixel; 16 bits each are used for the alpha, red,
green, and blue components. The red, green, and blue components are premultiplied according to
the alpha component.

Pixel formats are specified by EmfPlusBitmap objects. They are encoded as follows:

 Bits 0-7: Enumeration of the pixel format constants, starting at zero.

 Bits 8-15: The total number of bits per pixel.

 Bit 16: If set, the color value is indexed into a palette.

 Bit 17: If set, the color value is in a GDI-supported format.

 Bit 18: If set, the color value has an alpha component.

 Bit 19: If set, the color value has a premultiplied alpha component.

 Bit 20: If set, extended colors, 16-bits per channel, are supported.

 Bits 21-31: Reserved.

See section 2.1.1 for the specification of additional enumerations.

2.1.1.26 PixelOffsetMode Enumeration

The PixelOffsetMode enumeration defines how pixels are offset, which specifies the trade-off between
rendering speed and quality.

 typedef enum
 {
 PixelOffsetModeDefault = 0x00,
 PixelOffsetModeHighSpeed = 0x01,
 PixelOffsetModeHighQuality = 0x02,
 PixelOffsetModeNone = 0x03,
 PixelOffsetModeHalf = 0x04
 } PixelOffsetMode;

PixelOffsetModeDefault: Pixels are centered on integer coordinates, specifying speed over quality.

56 / 270

[MS-EMFPLUS-Diff] - v20160714
Enhanced Metafile Format Plus Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

PixelOffsetModeHighSpeed: Pixels are centered on integer coordinates, as with
PixelOffsetModeNone. Higher speed at the expense of quality is specified.

PixelOffsetModeHighQuality: Pixels are centered on half-integer coordinates, as with
PixelOffsetModeHalf. Higher quality at the expense of speed is specified.

PixelOffsetModeNone: Pixels are centered on the origin, which means that the pixel covers the area
from -0.5 to 0.5 on both the x and y axes and its center is at (0,0).

PixelOffsetModeHalf: Pixels are centered on half-integer coordinates, which means that the pixel
covers the area from 0 to 1 on both the x and y axes and its center is at (0.5,0.5). By offsetting
pixels during rendering, the render quality can be improved at the cost of render speed.

See section 2.1.1 for the specification of additional enumerations.

2.1.1.27 RegionNodeDataType Enumeration

The RegionNodeDataType enumeration defines types of region node data.

 typedef enum
 {
 RegionNodeDataTypeAnd = 0x00000001,
 RegionNodeDataTypeOr = 0x00000002,
 RegionNodeDataTypeXor = 0x00000003,
 RegionNodeDataTypeExclude = 0x00000004,
 RegionNodeDataTypeComplement = 0x00000005,
 RegionNodeDataTypeRect = 0x10000000,
 RegionNodeDataTypePath = 0x10000001,
 RegionNodeDataTypeEmpty = 0x10000002,
 RegionNodeDataTypeInfinite = 0x10000003
 } RegionNodeDataType;

RegionNodeDataTypeAnd: Specifies a region node with child nodes. A Boolean AND operation
SHOULD be applied to the left and right child nodes specified by an EmfPlusRegionNodeChildNodes

object.

RegionNodeDataTypeOr: Specifies a region node with child nodes. A Boolean OR operation
SHOULD be applied to the left and right child nodes specified by an EmfPlusRegionNodeChildNodes
object.

RegionNodeDataTypeXor: Specifies a region node with child nodes. A Boolean XOR operation

SHOULD be applied to the left and right child nodes specified by an EmfPlusRegionNodeChildNodes
object.

RegionNodeDataTypeExclude: Specifies a region node with child nodes. A Boolean operation,
defined as "the part of region 1 that is excluded from region 2", SHOULD be applied to the left and
right child nodes specified by an EmfPlusRegionNodeChildNodes object.

RegionNodeDataTypeComplement: Specifies a region node with child nodes. A Boolean operation,
defined as "the part of region 2 that is excluded from region 1", SHOULD be applied to the left and

right child nodes specified by an EmfPlusRegionNodeChildNodes object.

RegionNodeDataTypeRect: Specifies a region node with no child nodes. The RegionNodeData
field SHOULD specify a boundary with an EmfPlusRectF object.

RegionNodeDataTypePath: Specifies a region node with no child nodes. The RegionNodeData
field SHOULD specify a boundary with an EmfPlusRegionNodePath object.

RegionNodeDataTypeEmpty: Specifies a region node with no child nodes. The RegionNodeData

field SHOULD NOT be present.

57 / 270

[MS-EMFPLUS-Diff] - v20160714
Enhanced Metafile Format Plus Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

RegionNodeDataTypeInfinite: Specifies a region node with no child nodes, and its bounds are not
defined.

Region node data is specified by EmfPlusRegionNode objects.

See section 2.1.1 for the specification of additional enumerations.

2.1.1.28 SmoothingMode Enumeration

The SmoothingMode enumeration defines smoothing modes to apply to lines, curves, and the edges of
filled areas to make them appear more continuous or sharply defined.

 typedef enum
 {
 SmoothingModeDefault = 0x00,
 SmoothingModeHighSpeed = 0x01,
 SmoothingModeHighQuality = 0x02,
 SmoothingModeNone = 0x03,
 SmoothingModeAntiAlias8x4 = 0x04,
 SmoothingModeAntiAlias8x8 = 0x05
 } SmoothingMode;

SmoothingModeDefault: Default curve smoothing with no anti-aliasing.

SmoothingModeHighSpeed: Best performance with no anti-aliasing.

SmoothingModeHighQuality: Best quality with anti-aliasing.

SmoothingModeNone: No curve smoothing and no anti-aliasing.

SmoothingModeAntiAlias8x4: Anti-aliasing using an 8x4 box filter.<4>

SmoothingModeAntiAlias8x8: Anti-aliasing using an 8x8 box filter.<5>

See section 2.1.1 for the specification of additional enumerations.

2.1.1.29 StringAlignment Enumeration

The StringAlignment enumeration defines ways to align strings with respect to a text layout rectangle.

 typedef enum
 {
 StringAlignmentNear = 0x00000000,
 StringAlignmentCenter = 0x00000001,
 StringAlignmentFar = 0x00000002
 } StringAlignment;

StringAlignmentNear: Specifies that string alignment is toward the origin of the layout rectangle.
This can be used to align characters along a line or to align text within a rectangle. For a right-to-

left layout rectangle, the origin SHOULD be at the upper right.

StringAlignmentCenter: Specifies that alignment is centered between the origin and extent of the
layout rectangle.

StringAlignmentFar: Specifies that alignment is to the right side of the layout rectangle.

See section 2.1.1 for the specification of additional enumerations.

58 / 270

[MS-EMFPLUS-Diff] - v20160714
Enhanced Metafile Format Plus Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

2.1.1.30 StringDigitSubstitution Enumeration

The StringDigitSubstitution enumeration defines ways to substitute digits in a string according to a
user's locale or language.

 typedef enum
 {
 StringDigitSubstitutionUser = 0x00000000,
 StringDigitSubstitutionNone = 0x00000001,
 StringDigitSubstitutionNational = 0x00000002,
 StringDigitSubstitutionTraditional = 0x00000003
 } StringDigitSubstitution;

StringDigitSubstitutionUser: Specifies an implementation-defined substitution scheme.

StringDigitSubstitutionNone: Specifies to disable substitutions.

StringDigitSubstitutionNational: Specifies substitution digits that correspond with the official

national language of the user's locale.

StringDigitSubstitutionTraditional: Specifies substitution digits that correspond to the user's
native script or language, which can be different from the official national language of the user's
locale.

See section 2.1.1 for the specification of additional enumerations.

2.1.1.31 StringTrimming Enumeration

The StringTrimming enumeration defines how to trim characters from a string that is too large for the
text layout rectangle.

 typedef enum
 {
 StringTrimmingNone = 0x00000000,
 StringTrimmingCharacter = 0x00000001,
 StringTrimmingWord = 0x00000002,
 StringTrimmingEllipsisCharacter = 0x00000003,
 StringTrimmingEllipsisWord = 0x00000004,
 StringTrimmingEllipsisPath = 0x00000005
 } StringTrimming;

StringTrimmingNone: Specifies that no trimming is done.

StringTrimmingCharacter: Specifies that the string is broken at the boundary of the last character
that is inside the layout rectangle. This is the default.

StringTrimmingWord: Specifies that the string is broken at the boundary of the last word that is

inside the layout rectangle.

StringTrimmingEllipsisCharacter: Specifies that the string is broken at the boundary of the last
character that is inside the layout rectangle, and an ellipsis (...) is inserted after the character.

StringTrimmingEllipsisWord: Specifies that the string is broken at the boundary of the last word
that is inside the layout rectangle, and an ellipsis (...) is inserted after the word.

StringTrimmingEllipsisPath: Specifies that the center is removed from the string and replaced by

an ellipsis. The algorithm keeps as much of the last portion of the string as possible.

See section 2.1.1 for the specification of additional enumerations.

59 / 270

[MS-EMFPLUS-Diff] - v20160714
Enhanced Metafile Format Plus Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

2.1.1.32 TextRenderingHint Enumeration

The TextRenderingHint enumeration defines types of text hinting and anti-aliasing, which affects the
quality of text rendering.

 typedef enum
 {
 TextRenderingHintSystemDefault = 0x00,
 TextRenderingHintSingleBitPerPixelGridFit = 0x01,
 TextRenderingHintSingleBitPerPixel = 0x02,
 TextRenderingHintAntialiasGridFit = 0x03,
 TextRenderingHintAntialias = 0x04,
 TextRenderingHintClearTypeGridFit = 0x05
 } TextRenderingHint;

TextRenderingHintSystemDefault: Specifies that each text character SHOULD be drawn using
whatever font-smoothing settings have been configured on the operating system.

TextRenderingHintSingleBitPerPixelGridFit: Specifies that each text character SHOULD be drawn
using its glyph bitmap. Smoothing MAY be used to improve the appearance of character glyph
stems and curvature.

TextRenderingHintSingleBitPerPixel: Specifies that each text character SHOULD be drawn using
its glyph bitmap. Smoothing is not used.

TextRenderingHintAntialiasGridFit: Specifies that each text character SHOULD be drawn using its
anti-aliased glyph bitmap with smoothing. The rendering is high quality because of anti-aliasing,

but at a higher performance cost.

TextRenderingHintAntialias: Specifies that each text character is drawn using its anti-aliased glyph
bitmap without hinting. Better quality results from anti-aliasing, but stem width differences MAY
be noticeable because hinting is turned off.

TextRenderingHintClearTypeGridFit: Specifies that each text character SHOULD be drawn using

its ClearType glyph bitmap with smoothing. This is the highest-quality text hinting setting, which

is used to take advantage of ClearType font features.

See section 2.1.1 for the specification of additional enumerations.

2.1.1.33 UnitType Enumeration

The UnitType enumeration defines units of measurement in different coordinate systems.

 typedef enum
 {
 UnitTypeWorld = 0x00,
 UnitTypeDisplay = 0x01,
 UnitTypePixel = 0x02,
 UnitTypePoint = 0x03,
 UnitTypeInch = 0x04,
 UnitTypeDocument = 0x05,
 UnitTypeMillimeter = 0x06
 } UnitType;

UnitTypeWorld: Specifies a unit of logical distance within the world space.

UnitTypeDisplay: Specifies a unit of distance based on the characteristics of the physical display.

UnitTypePixel: Specifies a unit of 1 pixel.

60 / 270

[MS-EMFPLUS-Diff] - v20160714
Enhanced Metafile Format Plus Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

UnitTypePoint: Specifies a unit of 1 printer's point, or 1/72 inch.

UnitTypeInch: Specifies a unit of 1 inch.

UnitTypeDocument: Specifies a unit of 1/300 inch.

UnitTypeMillimeter: Specifies a unit of 1 millimeter.

See section 2.1.1 for the specification of additional enumerations.

2.1.1.34 WrapMode Enumeration

The WrapMode enumeration defines how the pattern from a texture or gradient brush is tiled across a

shape or at shape boundaries, when it is smaller than the area being filled.

 typedef enum
 {
 WrapModeTile = 0x00000000,
 WrapModeTileFlipX = 0x00000001,
 WrapModeTileFlipY = 0x00000002,
 WrapModeTileFlipXY = 0x00000003,
 WrapModeClamp = 0x00000004
 } WrapMode;

WrapModeTile: Tiles the gradient or texture.

WrapModeTileFlipX: Reverses the texture or gradient horizontally, and then tiles the texture or
gradient.

WrapModeTileFlipY: Reverses the texture or gradient vertically, and then tiles the texture or
gradient.

WrapModeTileFlipXY: Reverses the texture or gradient horizontally and vertically, and then tiles the
texture or gradient.

WrapModeClamp: Fixes the texture or gradient to the object boundary.

See section 2.1.1 for the specification of additional enumerations.

2.1.2 Bit Flag Constant Types

The Bit Flag Constants specify properties and options for EMF+ objects and records. In general, bit
flags can be combined with Boolean OR operations.

The following types of bit flags are defined:

Name Section Description

BrushData 2.1.2.1 Specifies properties of graphics brushes.

CustomLineCapData 2.1.2.2 Specifies data for custom line caps.

DriverStringOptions 2.1.2.3 Specifies properties of graphics text positioning and rendering.

FontStyle 2.1.2.4 Specifies styles of graphics font typefaces.

PaletteStyle 2.1.2.5 Specifies properties of graphics palettes.

PenData 2.1.2.7 Specifies properties of graphics pens.

61 / 270

[MS-EMFPLUS-Diff] - v20160714
Enhanced Metafile Format Plus Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Name Section Description

StringFormat 2.1.2.8 Specifies options for graphics text layout.

2.1.2.1 BrushData Flags

The BrushData flags specify properties of graphics brushes, including the presence of optional data
fields. These flags can be combined to specify multiple options.

Constant/value Description

BrushDataPath

0x00000001

This flag is meaningful in EmfPlusPathGradientBrushData objects.

If set, an EmfPlusBoundaryPathData object MUST be specified in the
BoundaryData field of the brush data object.

If clear, an EmfPlusBoundaryPointData object MUST be specified in the
BoundaryData field of the brush data object.

BrushDataTransform

0x00000002

This flag is meaningful in EmfPlusLinearGradientBrushData objects,
EmfPlusPathGradientBrushData objects, and EmfPlusTextureBrushData objects.

If set, a 2x3 world space to device space transform matrix MUST be specified in
the OptionalData field of the brush data object.

BrushDataPresetColors

0x00000004

This flag is meaningful in EmfPlusLinearGradientBrushData and
EmfPlusPathGradientBrushData objects.

If set, an EmfPlusBlendColors object MUST be specified in the OptionalData field
of the brush data object.

BrushDataBlendFactorsH

0x00000008

This flag is meaningful in EmfPlusLinearGradientBrushData and
EmfPlusPathGradientBrushData objects.

If set, an EmfPlusBlendFactors object that specifies a blend pattern along a
horizontal gradient MUST be specified in the OptionalData field of the brush
data object.

BrushDataBlendFactorsV

0x00000010

This flag is meaningful in EmfPlusLinearGradientBrushData objects.

If set, an EmfPlusBlendFactors object that specifies a blend pattern along a
vertical gradient MUST be specified in the OptionalData field of the brush data
object.<6>

BrushDataFocusScales

0x00000040

This flag is meaningful in EmfPlusPathGradientBrushData objects.

If set, an EmfPlusFocusScaleData object MUST be specified in the OptionalData
field of the brush data object.

BrushDataIsGammaCorrected

0x00000080

This flag is meaningful in EmfPlusLinearGradientBrushData,
EmfPlusPathGradientBrushData, and EmfPlusTextureBrushData objects.

If set, the brush MUST already be gamma corrected; that is, output brightness
and intensity have been corrected to match the input image.

BrushDataDoNotTransform

0x00000100

This flag is meaningful in EmfPlusTextureBrushData objects.

If set, a world space to device space transform SHOULD NOT be applied to the
texture brush.

Graphics brushes are specified by EmfPlusBrush objects.

See section 2.1.2 for the specification of additional bit flags.

62 / 270

[MS-EMFPLUS-Diff] - v20160714
Enhanced Metafile Format Plus Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

2.1.2.2 CustomLineCapData Flags

The CustomLineCapData flags specify data for custom line caps. These flags can be combined to
specify multiple options.

Constant/value Description

CustomLineCapDataFillPath

0x00000001

If set, an EmfPlusFillPath object MUST be specified in the OptionalData field of
the EmfPlusCustomLineCapData object for filling the custom line cap.

CustomLineCapDataLinePath

0x00000002

If set, an EmfPlusLinePath object MUST be specified in the OptionalData field of
the EmfPlusCustomLineCapData object for outlining the custom line cap.

Custom graphics line caps are specified by EmfPlusCustomLineCap objects.

See section 2.1.2 for the specification of additional bit flags.

2.1.2.3 DriverStringOptions Flags

The DriverStringOptions flags specify properties of graphics text positioning and rendering. These flags
can be combined to specify multiple options.

Constant/value Description

DriverStringOptionsCmapLookup

0x00000001

If set, the positions of character glyphs SHOULD be specified in a
character map lookup table.

If clear, the glyph positions SHOULD be obtained from an array of
coordinates.

DriverStringOptionsVertical

0x00000002

If set, the string SHOULD be rendered vertically.

If clear, the string SHOULD be rendered horizontally.

DriverStringOptionsRealizedAdvance

0x00000004

If set, character glyph positions SHOULD be calculated relative to the
position of the first glyph.<7>

If clear, the glyph positions SHOULD be obtained from an array of
coordinates.

DriverStringOptionsLimitSubpixel

0x00000008

If set, less memory SHOULD be used to cache anti-aliased glyphs, which
produces lower quality text rendering.

If clear, more memory SHOULD be used, which produces higher quality
text rendering.

Graphics text output is specified in EmfPlusDrawDriverString records.

See section 2.1.2 for the specification of additional bit flags.

2.1.2.4 FontStyle Flags

The FontStyle flags specify styles of graphics font typefaces. These flags can be combined to specify
multiple options.

Constant/value Description

FontStyleBold

0x00000001

If set, the font typeface MUST be rendered with a heavier weight or thickness.

If clear, the font typeface MUST be rendered with a normal thickness.

FontStyleItalic If set, the font typeface MUST be rendered with the vertical stems of the characters at an
increased angle or slant relative to the baseline.

63 / 270

[MS-EMFPLUS-Diff] - v20160714
Enhanced Metafile Format Plus Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Constant/value Description

0x00000002 If clear, the font typeface MUST be rendered with the vertical stems of the characters at a
normal angle.

FontStyleUnderline

0x00000004

If set, the font typeface MUST be rendered with a line underneath the baseline of the
characters.

If clear, the font typeface MUST be rendered without a line underneath the baseline.

FontStyleStrikeout

0x00000008

If set, the font typeface MUST be rendered with a line parallel to the baseline drawn through
the middle of the characters.

If clear, the font typeface MUST be rendered without a line through the characters.

Graphics font typefaces are specified by EmfPlusFont objects.

See section 2.1.2 for the specification of additional bit flags.

2.1.2.5 PaletteStyle Flags

The PaletteStyle flags specify properties of graphics palettes. These flags can be combined to specify
multiple options.

Constant/value Description

PaletteStyleHasAlpha

0x00000001

If set, one or more of the palette entries MUST contain alpha transparency information.

PaletteStyleGrayScale

0x00000002

If set, the palette MUST contain only grayscale entries.

PaletteStyleHalftone

0x00000004

If set, the palette MUST contain discrete color values that can be used for halftoning.

Graphics palettes are specified by EmfPlusPalette objects.

See section 2.1.2 for the specification of additional bit flags.

2.1.2.6 PathPointType Flags

The PathPointType flags specify type properties of points on graphics paths. These flags can be

combined to specify multiple options.

Constant/value Description

PathPointTypeDashMode

0x01

Specifies that a line segment that passes through the point is dashed.

PathPointTypePathMarker

0x02

Specifies that the point is a position marker.

PathPointTypeCloseSubpath

0x08

Specifies that the point is the endpoint of a subpath.

Graphics paths are specified by EmfPlusPath objects.

See section 2.1.2 for the specification of additional bit flags.

64 / 270

[MS-EMFPLUS-Diff] - v20160714
Enhanced Metafile Format Plus Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

2.1.2.7 PenData Flags

The PenData flags specify properties of graphics pens, including the presence of optional data fields.
These flags can be combined to specify multiple options.

Constant/value Description

PenDataTransform

0x00000001

If set, a 2x3 transform matrix MUST be specified in the OptionalData field of an
EmfPlusPenData object.

PenDataStartCap

0x00000002

If set, the style of a starting line cap MUST be specified in the OptionalData field of
an EmfPlusPenData object.

PenDataEndCap

0x00000004

Indicates whether the style of an ending line cap MUST be specified in the
OptionalData field of an EmfPlusPenData object.

PenDataJoin

0x00000008

Indicates whether a line join type MUST be specified in the OptionalData field of an
EmfPlusPenData object.

PenDataMiterLimit

0x00000010

Indicates whether a miter limit MUST be specified in the OptionalData field of an
EmfPlusPenData object.

PenDataLineStyle

0x00000020

Indicates whether a line style MUST be specified in the OptionalData field of an
EmfPlusPenData object.

PenDataDashedLineCap

0x00000040

Indicates whether a dashed line cap MUST be specified in the OptionalData field of
an EmfPlusPenData object.

PenDataDashedLineOffset

0x00000080

Indicates whether a dashed line offset MUST be specified in the OptionalData field
of an EmfPlusPenData object.

PenDataDashedLine

0x00000100

Indicates whether an EmfPlusDashedLineData object MUST be specified in the
OptionalData field of an EmfPlusPenData object.

PenDataNonCenter

0x00000200

Indicates whether a pen alignment MUST be specified in the OptionalData field of
an EmfPlusPenData object.

PenDataCompoundLine

0x00000400

Indicates whether the length and content of a EmfPlusCompoundLineData object are
present in the OptionalData field of an EmfPlusPenData object.

PenDataCustomStartCap

0x00000800

Indicates whether an EmfPlusCustomStartCapData object MUST be specified in the
OptionalData field of an EmfPlusPenData object.

PenDataCustomEndCap

0x00001000

Indicates whether an EmfPlusCustomEndCapData object MUST be specified in the
OptionalData field of an EmfPlusPenData object.

Graphics pens are specified by EmfPlusPen objects.

See section 2.1.2 for the specification of additional bit flags.

2.1.2.8 StringFormat Flags

The StringFormat flags specify options for graphics text layout, including direction, clipping and font
handling. These flags can be combined to specify multiple options.

Constant/value Description

StringFormatDirectionRightToLeft If set, the reading order of the string SHOULD be right to left. For

65 / 270

[MS-EMFPLUS-Diff] - v20160714
Enhanced Metafile Format Plus Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Constant/value Description

0x00000001 horizontal text, this means that characters are read from right to left. For
vertical text, this means that columns are read from right to left.

If clear, horizontal or vertical text SHOULD be read from left to right.

StringFormatDirectionVertical

0x00000002

If set, individual lines of text SHOULD be drawn vertically on the display
device.

If clear, individual lines of text SHOULD be drawn horizontally, with each
new line below the previous line.

StringFormatNoFitBlackBox

0x00000004

If set, parts of characters MUST be allowed to overhang the text layout
rectangle.

If clear, characters that overhang the boundaries of the text layout
rectangle MUST be repositioned to avoid overhang.

An italic, "f" is an example of a character that can have overhanging parts.

StringFormatDisplayFormatControl

0x00000020

If set, control characters SHOULD appear in the output as representative
Unicode glyphs.

StringFormatNoFontFallback

0x00000400

If set, an alternate font SHOULD be used for characters that are not
supported in the requested font.

If clear, a character missing from the requested font SHOULD appear as a
"font missing" character, which MAY be an open square.

StringFormatMeasureTrailingSpaces

0x00000800

If set, the space at the end of each line MUST be included in measurements
of string length.

If clear, the space at the end of each line MUST be excluded from
measurements of string length.

StringFormatNoWrap

0x00001000

If set, a string that extends past the end of the text layout rectangle MUST
NOT be wrapped to the next line.

If clear, a string that extends past the end of the text layout rectangle
MUST be broken at the last word boundary within the bounding rectangle,
and the remainder of the string MUST be wrapped to the next line.

StringFormatLineLimit

0x00002000

If set, whole lines of text SHOULD be output and SHOULD NOT be clipped
by the string's layout rectangle.

If clear, text layout SHOULD continue until all lines are output, or until
additional lines would not be visible as a result of clipping.

This flag can be used either to deny or allow a line of text to be partially
obscured by a layout rectangle that is not a multiple of line height. For all
text to be visible, a layout rectangle at least as tall as the height of one
line.

StringFormatNoClip

0x00004000

If set, text extending outside the string layout rectangle SHOULD be
allowed to show.

If clear, all text that extends outside the layout rectangle SHOULD be
clipped.

StringFormatBypassGDI

0x80000000

This flag MAY be used to specify an implementation-specficspecific process
for rendering text.<8>

Graphics text layout is specified by EmfPlusStringFormat objects.

See section 2.1.2 for the specification of additional bit flags.

2.1.3 Standard Identifier Constant Types

The Standard Identifier Constants specify GUIDs for EMF+ objects and records.

66 / 270

[MS-EMFPLUS-Diff] - v20160714
Enhanced Metafile Format Plus Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

The following types of standard identifiers are defined:

Name Section Description

ImageEffects
Identifiers

2.1.3.1 Specifies GUIDs that identify image effects capabilities supported by graphics
devices.

2.1.3.1 ImageEffects Identifiers

The ImageEffects identifiers define standard GUIDs for specifying graphics image effects. These
identifiers are used by device drivers to publish their levels of support for these effects. The identifier
constants are defined using the GUID curly-braced string representation ([MS-DTYP] section 2.3.4.3).

Constant/value Description

BlurEffectGuid

{633C80A4-1843-482B-9EF2-BE2834C5FDD4}

Specifies the blur effect.

BrightnessContrastEffectGuid

{D3A1DBE1-8EC4-4C17-9F4C-EA97AD1C343D}

Specifies the brightness contrast effect.

ColorBalanceEffectGuid

{537E597D-251E-48DA-9664-29CA496B70F8}

Specifies the color balance effect.

ColorCurveEffectGuid

{DD6A0022-58E4-4A67-9D9B-D48EB881A53D}

Specifies the color curve effect.<9>

ColorLookupTableEffectGuid

{A7CE72A9-0F7F-40D7-B3CC-D0C02D5C3212}

Specifies the color lookup table effect.

ColorMatrixEffectGuid

{718F2615-7933-40E3-A511-5F68FE14DD74}

Specifies the color matrix effect.

HueSaturationLightnessEffectGuid

{8B2DD6C3-EB07-4D87-A5F0-7108E26A9C5F}

Specifies the hue saturation lightness effect.

LevelsEffectGuid

{99C354EC-2A31-4F3A-8C34-17A803B33A25}

Specifies the levels effect.

RedEyeCorrectionEffectGuid

{74D29D05-69A4-4266-9549-3CC52836B632}

Specifies the red-eye correction effect.

SharpenEffectGuid

{63CBF3EE-C526-402C-8F71-62C540BF5142}

Specifies the sharpen effect.

TintEffectGuid

{1077AF00-2848-4441-9489-44AD4C2D7A2C}

Specifies the tint effect.

Image effects identifiers and Image Effects Parameter Blocks are specified by
EmfPlusSerializableObject records for EmfPlusDrawImagePoints records.

2.2 EMF+ Objects

This section specifies EMF+ objects, which are grouped into the following categories:

67 / 270

[MS-EMFPLUS-Diff] - v20160714
Enhanced Metafile Format Plus Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Name Section Description

Graphics
object types

2.2.1 Specify parameters for graphics output. They are part of the playback device context
and are persistent during the playback of an EMF+ metafile.

Structure
object types

2.2.2 Specify containers for data structures that are embedded in EMF+ objects and
records. Structure objects, unlike graphics objects, are not explicitly created; they
are components that make up more complex structures.

Image Effects
object types

2.2.3 Specify parameters for graphics image effects, which can be applied to bitmap
images.

2.2.1 Graphics Object Types

The Graphics Objects specify parameters for graphics output. They are part of the playback device

context and are persistent during the playback of an EMF+ metafile.

The following types of graphics objects are defined:

Name Section Description

EmfPlusBrush 2.2.1.1 Specifies a graphics brush for the filling of figures.

EmfPlusCustomLineCap 2.2.1.2 Specifies the shape to use at the ends of a line drawn by a graphics pen.

EmfPlusFont 2.2.1.3 Specifies properties that determine the appearance of text, including
typeface, size, and style.

EmfPlusImage 2.2.1.4 Specifies a graphics image in the form of a bitmap or metafile.

EmfPlusImageAttributes 2.2.1.5 Specifies how bitmap and metafile image colors are manipulated during
rendering.

EmfPlusPath 2.2.1.6 Specifies a series of line and curve segments.

EmfPlusPen 2.2.1.7 Specifies a graphics pen for the drawing of lines.

EmfPlusRegion 2.2.1.8 Specifies line and curve segments that define a nonrectilinear shape.

EmfPlusStringFormat 2.2.1.9 Specifies text layout, display manipulations, and language identification.

Graphics objects are explicitly created by EmfPlusObject records, and they can be used in any number
of graphics operations. An implementation is responsible for keeping track of graphics objects during
playback of the metafile. A conceptual model for managing EMF+ graphics objects is described in
Managing Graphics Objects.

2.2.1.1 EmfPlusBrush Object

The EmfPlusBrush object specifies a graphics brush for filling regions.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Version

Type

68 / 270

[MS-EMFPLUS-Diff] - v20160714
Enhanced Metafile Format Plus Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

BrushData (variable)

...

Version (4 bytes): An EmfPlusGraphicsVersion object that specifies the version of operating system
graphics that was used to create this object.

Type (4 bytes): A 32-bit unsigned integer that specifies the type of brush, which determines the

contents of the BrushData field. This value MUST be defined in the BrushType enumeration.

BrushData (variable): Variable-length data that defines the brush object specified in the Type field.
The content and format of the data can be different for every brush type.

This object is generic and is used to specify different types of brush data, including the following
objects:

 EmfPlusHatchBrushData object

 EmfPlusLinearGradientBrushData object

 EmfPlusPathGradientBrushData object

 EmfPlusSolidBrushData object

 EmfPlusTextureBrushData object

See section 2.2.1 for the specification of additional graphics objects.

2.2.1.2 EmfPlusCustomLineCap Object

The EmfPlusCustomLineCap object specifies the shape to use at the ends of a line drawn by a graphics
pen.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Version

Type

CustomLineCapData (variable)

...

Version (4 bytes): An EmfPlusGraphicsVersion object that specifies the version of operating system
graphics that was used to create this object.

Type (4 bytes): A 32-bit signed integer that specifies the type of custom line cap object, which
determines the contents of the CustomLineCapData field. This value MUST be defined in the
CustomLineCapDataType enumeration.

CustomLineCapData (variable): Variable-length data that defines the custom line cap data object
specified in the Type field. The content and format of the data can be different for every custom
line cap type.

This object is generic and is used to specify different types of custom line cap data, including:

69 / 270

[MS-EMFPLUS-Diff] - v20160714
Enhanced Metafile Format Plus Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 An EmfPlusCustomLineCapArrowData object; and

 An EmfPlusCustomLineCapData object.

See section 2.2.1 for the specification of additional graphics objects.

2.2.1.3 EmfPlusFont Object

The EmfPlusFont object specifies properties that determine the appearance of text, including typeface,
size, and style.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Version

EmSize

SizeUnit

FontStyleFlags

Reserved

Length

FamilyName (variable)

...

Version (4 bytes): An EmfPlusGraphicsVersion object that specifies the version of operating system
graphics that was used to create this object.

EmSize (4 bytes): A 32-bit floating-point value that specifies the em size of the font in units
specified by the SizeUnit field.

SizeUnit (4 bytes): A 32-bit unsigned integer that specifies the units used for the EmSize field.
These are typically the units that were employed when designing the font. The value MUST be in
the UnitType enumeration.<10>

FontStyleFlags (4 bytes): A 32-bit signed integer that specifies attributes of the character glyphs
that affect the appearance of the font, such as bold and italic. This value MUST be composed of
FontStyle flags.

Reserved (4 bytes): A 32-bit unsigned integer that is reserved and MUST be ignored.

Length (4 bytes): A 32-bit unsigned integer that specifies the number of characters in the
FamilyName field.

FamilyName (variable): A string of Length Unicode characters that contains the name of the font

family.

See section 2.2.1 for the specification of additional graphics objects.

70 / 270

[MS-EMFPLUS-Diff] - v20160714
Enhanced Metafile Format Plus Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

2.2.1.4 EmfPlusImage Object

The EmfPlusImage object specifies a graphics image in the form of a bitmap or metafile.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Version

Type

ImageData (variable)

...

Version (4 bytes): An EmfPlusGraphicsVersion object that specifies the version of operating system

graphics that was used to create this object.

Type (4 bytes): A 32-bit unsigned integer that specifies the type of data in the ImageData field.
This value MUST be defined in the ImageDataType enumeration.

ImageData (variable): Variable-length data that defines the image data specified in the Type field.
The content and format of the data can be different for every image type.

This object is generic and is used to specify different types of image data, including:

 An EmfPlusBitmap object; and

 An EmfPlusMetafile object.

See section 2.2.1 for the specification of additional graphics objects.

2.2.1.5 EmfPlusImageAttributes Object

The EmfPlusImageAttributes object specifies how bitmap image colors are manipulated during
rendering.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Version

Reserved1

WrapMode

ClampColor

ObjectClamp

Reserved2

Version (4 bytes): An EmfPlusGraphicsVersion object that specifies the version of operating system
graphics that was used to create this object.

71 / 270

[MS-EMFPLUS-Diff] - v20160714
Enhanced Metafile Format Plus Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Reserved1 (4 bytes): A 32-bit field that is not used and MUST be ignored.

WrapMode (4 bytes): A 32-bit unsigned integer that specifies how to handle edge conditions with a

value from the WrapMode enumeration.

ClampColor (4 bytes): An EmfPlusARGB object that specifies the edge color to use when the

WrapMode value is WrapModeClamp. This color is visible when the source rectangle processed
by an EmfPlusDrawImage record is larger than the image itself.

ObjectClamp (4 bytes): A 32-bit signed integer that specifies the object clamping behavior. It is not
used until this object is applied to an image being drawn. This value MUST be one of the values
defined in the following table.

Value Meaning

RectClamp

0x00000000

The object is clamped to a rectangle.

BitmapClamp

0x00000001

The object is clamped to a bitmap.

Reserved2 (4 bytes): A value that SHOULD be set to zero and MUST be ignored upon receipt.

See section 2.2.1 for the specification of additional graphics objects.

2.2.1.6 EmfPlusPath Object

The EmfPlusPath object specifies a series of line and curve segments that form a graphics path. The
order for Bezier data points is the start point, control point 1, control point 2, and end point. For more
information see [MSDN-DrawBeziers].

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Version

PathPointCount

PathPointFlags

PathPoints (variable)

...

PathPointTypes (variable)

...

AlignmentPadding (variable)

...

Version (4 bytes): An EmfPlusGraphicsVersion object that specifies the version of operating system
graphics that was used to create this object.

72 / 270

[MS-EMFPLUS-Diff] - v20160714
Enhanced Metafile Format Plus Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

PathPointCount (4 bytes): A 32-bit unsigned integer that specifies the number of points and
associated point types that are defined by this object.

PathPointFlags (4 bytes): A 32-bit unsigned integer that specifies how to interpret the points and
associated point types that are defined by this object.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

0 0 0 0 0 0 0 0 0 0 0 R 0 0 C 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

R (1 bit): If this flag is set, the C flag is undefined and MUST be ignored. The R flag specifies
whether the PathPoints are relative or absolute locations in the coordinate space, and
whether the PathPointTypes are run-length encoded. See PathPoints and PathPointTypes
for details.

C (1 bit): If the R flag is clear, this flag specifies the type of objects in the PathPoints array. See

PathPoints and PathPointTypes for details.

PathPoints (variable): An array of PathPointCount points that specify the path. The type of
objects in this array is specified by the PathPointFlags field, as follows:

 If the R flag is set, the points are relative locations specified by EmfPlusPointR objects.

 If the R flag is clear and the C flag is set, the points are absolute locations specified by
EmfPlusPoint objects.

 If the R flag is clear and the C flag is clear, the points are absolute locations specified by

EmfPlusPointF objects.

PathPointTypes (variable): An array of PathPointCount objects that specifies how the points in
the PathPoints field are used to draw the path. The type of objects in this array is specified by
the PathPointFlags field, as follows:

 If the R flag is set, the point types are specified by EmfPlusPathPointTypeRLE objects, which
use run-length encoding (RLE) compression ([MS-WMF] section 3.1.6).

 If the R flag is clear, the point types are specified by EmfPlusPathPointType objects.

AlignmentPadding (variable): An optional array of up to 3 bytes that pads the record so that its
total size is a multiple of 4 bytes. This field MUST be ignored.

See section 2.2.1 for the specification of additional graphics objects.

2.2.1.7 EmfPlusPen Object

The EmfPlusPen object specifies a graphics pen for the drawing of lines.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Version

Type

PenData (variable)

73 / 270

[MS-EMFPLUS-Diff] - v20160714
Enhanced Metafile Format Plus Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

...

BrushObject (variable)

...

Version (4 bytes): An EmfPlusGraphicsVersion object that specifies the version of operating system
graphics that was used to create this object.

Type (4 bytes): This field MUST be set to zero.

PenData (variable): An EmfPlusPenData object that specifies properties of the graphics pen.

BrushObject (variable): An EmfPlusBrush object that specifies a graphics brush associated with the
pen.

See section 2.2.1 for the specification of additional graphics objects.

2.2.1.8 EmfPlusRegion Object

The EmfPlusRegion object specifies line and curve segments that define a nonrectilinear shape.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Version

RegionNodeCount

RegionNode (variable)

...

Version (4 bytes): An EmfPlusGraphicsVersion object that specifies the version of operating system
graphics that was used to create this object.

RegionNodeCount (4 bytes): A 32-bit unsigned integer that specifies the number of child nodes in

the RegionNode field.

RegionNode (variable): An array of RegionNodeCount+1 EmfPlusRegionNode objects. Regions are
specified as a binary tree of region nodes, and each node MUST either be a terminal node or
specify one or two child nodes. RegionNode MUST contain at least one element.

See section 2.2.1 for the specification of additional graphics objects.

2.2.1.9 EmfPlusStringFormat Object

The EmfPlusStringFormat object specifies text layout, display manipulations, and language
identification.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Version

74 / 270

[MS-EMFPLUS-Diff] - v20160714
Enhanced Metafile Format Plus Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

StringFormatFlags

Language

StringAlignment

LineAlign

DigitSubstitution

DigitLanguage

FirstTabOffset

HotkeyPrefix

LeadingMargin

TrailingMargin

Tracking

Trimming

TabStopCount

RangeCount

StringFormatData (variable)

...

Version (4 bytes): An EmfPlusGraphicsVersion object that specifies the version of operating system
graphics that was used to create this object.

StringFormatFlags (4 bytes): A 32-bit unsigned integer that specifies text layout options for

formatting, clipping and font handling. This value MUST be composed of StringFormat flags.

Language (4 bytes): An EmfPlusLanguageIdentifier object that specifies the language to use for the
string.

StringAlignment (4 bytes): A 32-bit unsigned integer that specifies how to align the string
horizontally in the layout rectangle. This value MUST be defined in the StringAlignment

enumeration.

LineAlign (4 bytes): A 32-bit unsigned integer that specifies how to align the string vertically in the
layout rectangle. This value MUST be defined in the StringAlignment enumeration.

DigitSubstitution (4 bytes): A 32-bit unsigned integer that specifies how to substitute numeric
digits in the string according to a locale or language. This value MUST be defined in the
StringDigitSubstitution enumeration.

75 / 270

[MS-EMFPLUS-Diff] - v20160714
Enhanced Metafile Format Plus Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

DigitLanguage (4 bytes): An EmfPlusLanguageIdentifier object that specifies the language to use
for numeric digits in the string. For example, if this string contains Arabic digits, this field MUST

contain a language identifier that specifies an Arabic language.

FirstTabOffset (4 bytes): A 32-bit floating-point value that specifies the number of spaces between

the beginning of a text line and the first tab stop.

HotkeyPrefix (4 bytes): A 32-bit signed integer that specifies the type of processing that is
performed on a string when a keyboard shortcut prefix (that is, an ampersand) is encountered.
Basically, this field specifies whether to display keyboard shortcut prefixes that relate to text. The
value MUST be defined in the HotkeyPrefix enumeration.

LeadingMargin (4 bytes): A 32-bit floating-point value that specifies the length of the space to add
to the starting position of a string. The default is 1/6 inch; for typographic fonts, the default value

is 0.

TrailingMargin (4 bytes): A 32-bit floating-point value that specifies the length of the space to leave
following a string. The default is 1/6 inch; for typographic fonts, the default value is 0.

Tracking (4 bytes): A 32-bit floating-point value that specifies the ratio of the horizontal space
allotted to each character in a specified string to the font-defined width of the character. Large
values for this property specify ample space between characters; values less than 1 can produce

character overlap. The default is 1.03; for typographic fonts, the default value is 1.00.

Trimming (4 bytes): Specifies how to trim characters from a string that is too large to fit into a
layout rectangle. This value MUST be defined in the StringTrimming enumeration.

TabStopCount (4 bytes): A 32-bit signed integer that specifies the number of tab stops defined in
the StringFormatData field.

RangeCount (4 bytes): A 32-bit signed integer that specifies the number of EmfPlusCharacterRange
object defined in the StringFormatData field.

StringFormatData (variable): An EmfPlusStringFormatData object that specifies optional text layout
data.

See section 2.2.1 for the specification of additional graphics objects.

2.2.2 Structure Object Types

The Structure Objects specify containers for data structures that are embedded in EMF+ metafile
records. Structure objects, unlike graphics objects, are not explicitly created; they are components
that make up more complex structures.

The following types of structure objects are defined.

Name Section Description

EmfPlusARGB 2.2.2.1 Specifies a color as a combination of RGB and alpha.

EmfPlusBitmap 2.2.2.2 Specifies a bitmap image.

EmfPlusBitmapData 2.2.2.3 Specifies a bitmap image with pixel data.

EmfPlusBlendColors 2.2.2.4 Specifies positions and colors for the blend pattern of a
gradient brush.

EmfPlusBlendFactors 2.2.2.5 Specifies positions and factors for the blend pattern of a
gradient brush.

76 / 270

[MS-EMFPLUS-Diff] - v20160714
Enhanced Metafile Format Plus Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Name Section Description

EmfPlusBoundaryPathData 2.2.2.6 Specifies a path boundary for a gradient brush.

EmfPlusBoundaryPointData 2.2.2.7 Specifies a closed cardinal spline boundary for a gradient
brush.

EmfPlusCharacterRange 2.2.2.8 Specifies a range of character positions for a text string.

EmfPlusCompressedImage 2.2.2.10 Specifies an image with compressed data.

EmfPlusCompoundLineData 2.2.2.9 Specifies line and space data for a compound line.

EmfPlusCustomEndCapData 2.2.2.11 Specifies a custom line cap for the end of a line.

EmfPlusCustomLineCapArrowData 2.2.2.12 Specifies adjustable arrow data for a custom line cap.

EmfPlusCustomLineCapData 2.2.2.13 Specifies default data for a custom line cap.

EmfPlusCustomLineCapOptionalData 2.2.2.14 Specifies optional fill and outline data for a custom line
cap.

EmfPlusCustomStartCapData 2.2.2.15 Specifies a custom line cap for the start of a line.

EmfPlusDashedLineData 2.2.2.16 Specifies properties of a dashed line for a graphics pen.

EmfPlusFillPath 2.2.2.17 Specifies a graphics path for filling a custom line cap.

EmfPlusFocusScaleData 2.2.2.18 Specifies focus scales for the blend pattern of a path
gradient brush.

EmfPlusGraphicsVersion 2.2.2.19 Specifies the version of operating system graphics that is
used to create an EMF+ metafile.

EmfPlusHatchBrushData 2.2.2.20 Specifies a hatch pattern for a graphics brush.

EmfPlusInteger7 2.2.2.21 Specifies a 7-bit signed integer in an 8-bit field.

EmfPlusInteger15 2.2.2.22 Specifies a 15-bit signed integer in a 16-bit field.

EmfPlusLanguageIdentifier 2.2.2.23 Specifies language identifiers that correspond to natural
languages in a locale.

EmfPlusLinearGradientBrushData 2.2.2.24 Specifies a linear gradient for a graphics brush.

EmfPlusLinearGradientBrushOptionalData 2.2.2.25 Specifies optional data for a linear gradient brush.

EmfPlusLinePath 2.2.2.26 Specifies a graphics path for outlining a custom line cap.

EmfPlusMetafile 2.2.2.27 Specifies a metafile that contains a graphics image.

EmfPlusPalette 2.2.2.28 Specifies the colors that make up a palette.

EmfPlusPathGradientBrushData 2.2.2.29 Specifies a path gradient for a graphics brush.

EmfPlusPathGradientBrushOptionalData 2.2.2.30 Specifies optional data for a path gradient brush.

EmfPlusPathPointType 2.2.2.31 Specifies a type value associated with a point on a
graphics path.

EmfPlusPathPointTypeRLE 2.2.2.32 Specifies type values associated with points on a graphics
path using RLE compression ([MS-WMF] section 3.1.6).

EmfPlusPenData 2.2.2.33 Specifies properties of a graphics pen.

77 / 270

[MS-EMFPLUS-Diff] - v20160714
Enhanced Metafile Format Plus Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Name Section Description

EmfPlusPenOptionalData 2.2.2.34 Specifies optional data for a graphics pen.

EmfPlusPoint 2.2.2.35 Specifies an ordered pair of integer (X,Y) values that
defines an absolute location in a coordinate space.

EmfPlusPointF 2.2.2.36 Specifies an ordered pair of floating-point (X,Y) values
that defines an absolute location in a coordinate space.

EmfPlusPointR 2.2.2.37 Specifies an ordered pair of integer (X,Y) values that
defines a relative location in a coordinate space.

EmfPlusRect 2.2.2.38 Specifies a rectangle origin, height, and width as 16-bit
signed integers.

EmfPlusRectF 2.2.2.39 Specifies a rectangle origin, height, and width as 32-bit
floating-point values.

EmfPlusRegionNode 2.2.2.40 Specifies a node of a graphics region.

EmfPlusRegionNodeChildNodes 2.2.2.41 Specifies the child nodes of a graphics region.

EmfPlusRegionNodePath 2.2.2.42 Specifies a graphics path for drawing the boundary of a
region node.

EmfPlusSolidBrushData 2.2.2.43 Specifies a solid color for a graphics brush.

EmfPlusStringFormatData 2.2.2.44 Specifies tab stops and character positions for a graphics
string.

EmfPlusTextureBrushData 2.2.2.45 Specifies a texture image for a graphics brush.

EmfPlusTextureBrushOptionalData 2.2.2.46 Specifies optional data for a texture brush.

EmfPlusTransformMatrix 2.2.2.47 Specifies a world space to device space transform.

2.2.2.1 EmfPlusARGB Object

The EmfPlusARGB object specifies a color as a combination of red, green, blue. and alpha.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Blue Green Red Alpha

Blue (1 byte): An 8-bit unsigned integer that specifies the relative intensity of blue.

Green (1 byte): An 8-bit unsigned integer that specifies the relative intensity of green.

Red (1 byte): An 8-bit unsigned integer that specifies the relative intensity of red.

Alpha (1 byte): An 8-bit unsigned integer that specifies the transparency of the background, ranging
from 0 for completely transparent to 0xFF for completely opaque.

See section 2.2.2 for the specification of additional structure objects.

78 / 270

[MS-EMFPLUS-Diff] - v20160714
Enhanced Metafile Format Plus Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

2.2.2.2 EmfPlusBitmap Object

The EmfPlusBitmap object specifies a bitmap that contains a graphics image.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Width

Height

Stride

PixelFormat

Type

BitmapData (variable)

...

Width (4 bytes): A 32-bit signed integer that specifies the width in pixels of the area occupied by the
bitmap.

If the image is compressed, according to the Type field, this value is undefined and MUST be
ignored.

Height (4 bytes): A 32-bit signed integer that specifies the height in pixels of the area occupied by
the bitmap.

If the image is compressed, according to the Type field, this value is undefined and MUST be

ignored.

Stride (4 bytes): A 32-bit signed integer that specifies the byte offset between the beginning of one
scan-line and the next. This value is the number of bytes per pixel, which is specified in the
PixelFormat field, multiplied by the width in pixels, which is specified in the Width field. The
value of this field MUST be a multiple of four.

If the image is compressed, according to the Type field, this value is undefined and MUST be

ignored.

PixelFormat (4 bytes): A 32-bit unsigned integer that specifies the format of the pixels that make
up the bitmap image. The supported pixel formats are specified in the PixelFormat enumeration.

If the image is compressed, according to the Type field, this value is undefined and MUST be
ignored.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

X X X X X X X X X X N E P A G I BitsPerPixel Index

X (1 bit): Reserved and MUST be ignored.

N (1 bit): If set, the pixel format is "canonical", which means that 32 bits per pixel are supported,
with 24-bits for color components and an 8-bit alpha channel.

79 / 270

[MS-EMFPLUS-Diff] - v20160714
Enhanced Metafile Format Plus Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

If clear, the pixel format is not canonical.

E (1 bit): If set, the pixel format supports extended colors in 16-bits per channel.

If clear, extended colors are not supported.

P (1 bit): If set, each color component in the pixel has been premultiplied by the pixel's alpha

transparency value.

If clear, each color component is multiplied by the pixel's alpha transparency value when the
source pixel is blended with the destination pixel.

A (1 bit): If set, the pixel format includes an alpha transparency component.

If clear, the pixel format does not include a component that specifies transparency.

G (1 bit): If set, the pixel format is supported in Windows GDI.

If clear, the pixel format is not supported in Windows GDI.

I (1 bit): If set, the pixel values are indexes into a palette.

If clear, the pixel values are actual colors.

BitsPerPixel (1 byte): The total number of bits per pixel.

Index (1 byte): The pixel format enumeration index.

Type (4 bytes): A 32-bit unsigned integer that specifies the type of data in the BitmapData field.
This value MUST be defined in the BitmapDataType enumeration.

BitmapData (variable): Variable-length data that defines the bitmap data object specified in the
Type field. The content and format of the data can be different for every bitmap type.

Graphics images are specified by EmfPlusImage objects. An EmfPlusBitmap object MUST be present in
the ImageData field of an EmfPlusImage object if ImageTypeBitmap is specified in its Type field.

This object is generic and is used to specify different types of bitmap data, including:

 An EmfPlusBitmapData object.

 An EmfPlusCompressedImage object; and

See section 2.2.2 for the specification of additional structure objects.

2.2.2.3 EmfPlusBitmapData Object

The EmfPlusBitmapData object specifies a bitmap image with pixel data.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Colors (variable)

...

PixelData (variable)

...

80 / 270

[MS-EMFPLUS-Diff] - v20160714
Enhanced Metafile Format Plus Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Colors (variable): An optional EmfPlusPalette object, which specifies the palette of colors used in the
pixel data. This field MUST be present if the I flag is set in the PixelFormat field of the

EmfPlusBitmap object.

PixelData (variable): An array of bytes that specify the pixel data. The size and format of this data

can be computed from fields in the EmfPlusBitmap object, including the pixel format from the
PixelFormat enumeration.

Bitmaps are specified by EmfPlusBitmap objects. An EmfPlusBitmapData object MUST be present in
the BitmapData field of an EmfPlusBitmap object if BitmapDataTypePixel is specified in its Type field.

See section 2.2.2 for the specification of additional structure objects.

2.2.2.4 EmfPlusBlendColors Object

The EmfPlusBlendColors object specifies positions and colors for the blend pattern of a gradient brush.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

PositionCount

BlendPositions (variable)

...

BlendColors (variable)

...

PositionCount (4 bytes): A 32-bit unsigned integer that specifies the number of positions in the

BlendPositions field and colors in the BlendColors field.

BlendPositions (variable): An array of PositionCount 32-bit floating-point values that specify
proportions of distance along the gradient line.

Each element MUST be a number between 0.0 and 1.0 inclusive. For a linear gradient brush, 0.0
represents the starting point and 1.0 represents the ending point. For a path gradient brush, 0.0
represents the midpoint and 1.0 represents an endpoint.

BlendColors (variable): An array of PositionCount EmfPlusARGB objects that specify colors at the
positions defined in the BlendPositions field.

Gradient brushes are specified by EmfPlusLinearGradientBrushData objects and
EmfPlusPathGradientBrushData objects. Blend patterns are used to smoothly shade the interiors of
shapes filled by gradient brushes. and can be defined by arrays of positions and colors or positions
and factors. Positions and factors are specified by EmfPlusBlendFactors objects.

An EmfPlusBlendColors object MUST be present in the OptionalData field of an
EmfPlusLinearGradientBrushData object, if the BrushDataPresetColors flag is set in its

BrushDataFlags field.

An EmfPlusBlendColors object MUST be present in the OptionalData field of an
EmfPlusPathGradientBrushData object, if the BrushDataPresetColors flag is set in its
BrushDataFlags field.

See section 2.2.2 for the specification of additional structure objects.

81 / 270

[MS-EMFPLUS-Diff] - v20160714
Enhanced Metafile Format Plus Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

2.2.2.5 EmfPlusBlendFactors Object

The EmfPlusBlendFactors object specifies positions and factors for the blend pattern of a gradient
brush.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

PositionCount

BlendPositions (variable)

...

BlendFactors (variable)

...

PositionCount (4 bytes): A 32-bit unsigned integer that specifies the number of positions in the
BlendPositions field and factors in the BlendFactors field.

BlendPositions (variable): An array of PositionCount 32-bit floating-point values that specify
proportions of distance along the gradient line.

Each value MUST be a number between 0.0 and 1.0 inclusive. There MUST be at least two
positions specified: the first position, which is always 0.0f, and the last position, which is always

1.0f. Each position in BlendPositions is generally greater than the preceding position. For a
linear gradient brush, 0.0 represents the starting point and 1.0 represents the ending point. For a
path gradient brush, 0.0 represents the midpoint and 1.0 represents an endpoint.

BlendFactors (variable): An array of PositionCount 32-bit floating point values that specify
proportions of colors at the positions defined in the BlendPositions field. Each value MUST be a

number between 0.0 and 1.0 inclusive.

For a linear gradient brush, 0.0 represents 0% starting color and 100% ending color, and 1.0
represents 100% starting color and 0% ending color. For a path gradient brush, 0.0 represents 0%
midpoint color and 100% endpoint color, and 1.0 represents 100% midpoint color and 0% endpoint
color.

For example, if a linear gradient brush specifies a position of 0.2 and a factor of 0.3 along a gradient
line that is 100 pixels long, the color that is 20 pixels along that line consists of 30 percent starting
color and 70 percent ending color.

Gradient brushes are specified by EmfPlusLinearGradientBrushData objects and
EmfPlusPathGradientBrushData objects. Blend patterns are used to smoothly shade the interiors of
shapes filled by gradient brushes. and can be defined by arrays of positions and colors or positions
and factors. Positions and colors are specified by EmfPlusBlendColors objects.

An EmfPlusBlendFactors object MUST be present in the OptionalData field of an
EmfPlusLinearGradientBrushData or EmfPlusPathGradientBrushData object if either of the flags
BrushDataBlendFactorsH or BrushDataBlendFactorsV is set in its BrushDataFlags field.

See section 2.2.2 for the specification of additional structure objects.

2.2.2.6 EmfPlusBoundaryPathData Object

The EmfPlusBoundaryPathData object specifies a graphics path boundary for a gradient brush.

82 / 270

[MS-EMFPLUS-Diff] - v20160714
Enhanced Metafile Format Plus Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

BoundaryPathSize

BoundaryPathData (variable)

...

BoundaryPathSize (4 bytes): A 32-bit signed integer that specifies the size in bytes of the
BoundaryPathData field.

BoundaryPathData (variable): An EmfPlusPath object, which specifies the boundary of the brush.

Boundary path data is specified in the BoundaryData field of an EmfPlusPathGradientBrushData
object.

See section 2.2.2 for the specification of additional structure objects.

2.2.2.7 EmfPlusBoundaryPointData Object

The EmfPlusBoundaryPointData object specifies a closed cardinal spline boundary for a gradient brush.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

BoundaryPointCount

BoundaryPointData (variable)

...

BoundaryPointCount (4 bytes): A 32-bit signed integer that specifies the number of points in the
BoundaryPointData field.

BoundaryPointData (variable): An array of BoundaryPointCount EmfPlusPointF objects that
specify the boundary of the brush.

Boundary point data is specified in the BoundaryData field of an EmfPlusPathGradientBrushData
object.

See section 2.2.2 for the specification of additional structure objects.

2.2.2.8 EmfPlusCharacterRange Object

The EmfPlusCharacterRange object specifies a range of character positions for a text string.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

First

Length

First (4 bytes): A 32-bit signed integer that specifies the first position of this range.

83 / 270

[MS-EMFPLUS-Diff] - v20160714
Enhanced Metafile Format Plus Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Length (4 bytes): A 32-bit signed integer that specifies the number of positions in this range.

Graphics strings are specified by EmfPlusStringFormat objects.

See section 2.2.2 for the specification of additional structure objects.

2.2.2.9 EmfPlusCompoundLineData Object

The EmfPlusCompoundLineData object specifies line and space data for a compound line.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

CompoundLineDataSize

CompoundLineData (variable)

...

CompoundLineDataSize (4 bytes): A 32-bit unsigned integer that specifies the number of elements

in the CompoundLineData field.

CompoundLineData (variable): An array of CompoundLineDataSize floating-point values that
specify the compound line of a pen. The elements MUST be in increasing order, and their values
MUST be between 0.0 and 1.0, inclusive.

Graphics pens are specified by EmfPlusPen objects. An EmfPlusCompoundLineData object MUST be
present in the OptionalData field of an EmfPlusPenData object, if the PenDataCompoundLineData
flag is set in its PenDataFlags field.

A compound line is made up of a pattern of alternating parallel lines and spaces of varying widths. The
values in the array specify the starting points of each component of the compound line relative to the

total width. The first value specifies where the first line component begins as a fraction of the distance
across the width of the pen. The second value specifies where the first space component begins as a
fraction of the distance across the width of the pen. The final value in the array specifies where the
last line component ends.

See section 2.2.2 for the specification of additional structure objects.

2.2.2.10 EmfPlusCompressedImage Object

The EmfPlusCompressedImage object specifies an image with compressed data.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

CompressedImageData (variable)

...

CompressedImageData (variable): An array of bytes, which specify the compressed image. The
type of compression MUST be determined from the data itself.

Bitmaps are specified by EmfPlusBitmap objects. An EmfPlusCompressedImage object MUST be
present in the BitmapData field of an EmfPlusBitmap object if BitmapDataTypeCompressed is
specified in its Type field.

84 / 270

[MS-EMFPLUS-Diff] - v20160714
Enhanced Metafile Format Plus Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

This object is generic and is used for different types of compressed data, including:

 Exchangeable Image File Format (EXIF) [EXIF];

 Graphics Interchange Format (GIF) [GIF];

 Joint Photographic Experts Group (JPEG) [JFIF];

 Portable Network Graphics (PNG) [RFC2083] [W3C-PNG]; and

 Tag Image File Format (TIFF) [RFC3302] [TIFF].

See section 2.2.2 for the specification of additional structure objects.

2.2.2.11 EmfPlusCustomEndCapData Object

The EmfPlusCustomEndCapData object specifies a custom line cap for the end of a line.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

CustomEndCapSize

CustomEndCap (variable)

...

CustomEndCapSize (4 bytes): A 32-bit unsigned integer that specifies the size in bytes of the
CustomEndCap field.

CustomEndCap (variable): A custom line cap that defines the shape to draw at the end of a line. It
can be any of various shapes, including a square, circle, or diamond.

Custom line caps are specified by EmfPlusCustomLineCap objects. An EmfPlusCustomEndCapData
object MUST be present in the OptionalData field of an EmfPlusPenData object, if the
PenDataEndCap flag is set in its PenDataFlags field.

See section 2.2.2 for the specification of additional structure objects.

2.2.2.12 EmfPlusCustomLineCapArrowData Object

The EmfPlusCustomLineCapArrowData object specifies adjustable arrow data for a custom line cap.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Width

Height

MiddleInset

FillState

LineStartCap

85 / 270

[MS-EMFPLUS-Diff] - v20160714
Enhanced Metafile Format Plus Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

LineEndCap

LineJoin

LineMiterLimit

WidthScale

FillHotSpot

...

LineHotSpot

...

Width (4 bytes): A 32-bit floating-point value that specifies the width of the arrow cap.

The width of the arrow cap is scaled by the width of the EmfPlusPen object that is used to draw
the line being capped. For example, when drawing a capped line with a pen that has a width of 5

pixels, and the adjustable arrow cap object has a width of 3, the actual arrow cap is drawn 15
pixels wide.

Height (4 bytes): A 32-bit floating-point value that specifies the height of the arrow cap.

The height of the arrow cap is scaled by the width of the EmfPlusPen object that is used to draw
the line being capped. For example, when drawing a capped line with a pen that has a width of 5
pixels, and the adjustable arrow cap object has a height of 3, the actual arrow cap is drawn 15

pixels high.

MiddleInset (4 bytes): A 32-bit floating-point value that specifies the number of pixels between the
outline of the arrow cap and the fill of the arrow cap.

FillState (4 bytes): A 32-bit Boolean value that specifies whether the arrow cap is filled. If the arrow
cap is not filled, only the outline is drawn.

LineStartCap (4 bytes): A 32-bit unsigned integer that specifies the value in the LineCap
enumeration that indicates the line cap to be used at the start of the line to be drawn.

LineEndCap (4 bytes): A 32-bit unsigned integer that specifies the value in the LineCap enumeration
that indicates the line cap to be used at the end of the line to be drawn.

LineJoin (4 bytes): A 32-bit unsigned integer that specifies the value in the LineJoin enumeration
that specifies how to join two lines that are drawn by the same pen and whose ends meet. At the
intersection of the two line ends, a line join makes the connection look more continuous.

LineMiterLimit (4 bytes): A 32-bit floating-point value that specifies the limit of the thickness of the

join on a mitered corner by setting the maximum allowed ratio of miter length to line width.

WidthScale (4 bytes): A 32-bit floating-point value that specifies the amount by which to scale an
EmfPlusCustomLineCap object with respect to the width of the graphics pen that is used to draw
the lines.

FillHotSpot (8 bytes): An EmfPlusPointF object that is not currently used. It MUST be set to {0.0,
0.0}.

86 / 270

[MS-EMFPLUS-Diff] - v20160714
Enhanced Metafile Format Plus Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

LineHotSpot (8 bytes): An EmfPlusPointF object that is not currently used. It MUST be set to {0.0,
0.0}.

Custom line caps are specified by EmfPlusCustomLineCap objects.

See section 2.2.2 for the specification of additional structure objects.

2.2.2.13 EmfPlusCustomLineCapData Object

The EmfPlusCustomLineCapData object specifies default data for a custom line cap.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

CustomLineCapDataFlags

BaseCap

BaseInset

StrokeStartCap

StrokeEndCap

StrokeJoin

StrokeMiterLimit

WidthScale

FillHotSpot

...

StrokeHotSpot

...

OptionalData (variable)

...

CustomLineCapDataFlags (4 bytes): A 32-bit unsigned integer that specifies the data in the
OptionalData field. This value MUST be composed of CustomLineCapData flags.

BaseCap (4 bytes): A 32-bit unsigned integer that specifies the value from the LineCap enumeration
on which the custom line cap is based.

BaseInset (4 bytes): A 32-bit floating-point value that specifies the distance between the beginning
of the line cap and the end of the line.

StrokeStartCap (4 bytes): A 32-bit unsigned integer that specifies the value in the LineCap

enumeration that indicates the line cap used at the start of the line to be drawn.

87 / 270

[MS-EMFPLUS-Diff] - v20160714
Enhanced Metafile Format Plus Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

StrokeEndCap (4 bytes): A 32-bit unsigned integer that specifies the value in the LineCap
enumeration that indicates what line cap is to be used at the end of the line to be drawn.

StrokeJoin (4 bytes): A 32-bit unsigned integer that specifies the value in the LineJoin enumeration,
which specifies how to join two lines that are drawn by the same pen and whose ends meet. At

the intersection of the two line ends, a line join makes the connection look more continuous.

StrokeMiterLimit (4 bytes): A 32-bit floating-point value that contains the limit of the thickness of
the join on a mitered corner by setting the maximum allowed ratio of miter length to line width.

WidthScale (4 bytes): A 32-bit floating-point value that specifies the amount by which to scale the
custom line cap with respect to the width of the EmfPlusPen object that is used to draw the lines.

FillHotSpot (8 bytes): An EmfPlusPointF object that is not currently used. It MUST be set to {0.0,
0.0}.

StrokeHotSpot (8 bytes): An EmfPlusPointF object that is not currently used. It MUST be set to
{0.0, 0.0}.

OptionalData (variable): An optional EmfPlusCustomLineCapOptionalData object that specifies
additional data for the custom graphics line cap. The specific contents of this field are determined
by the value of the CustomLineCapDataFlags field.

Custom line caps are specified by EmfPlusCustomLineCap objects.

See section 2.2.2 for the specification of additional structure objects.

2.2.2.14 EmfPlusCustomLineCapOptionalData Object

The EmfPlusCustomLineCapOptionalData object specifies optional fill and outline data for a custom line
cap.

Note: Each field specified for this object is optional and might not be present in the OptionalData
field of an EmfPlusCustomLineCapData object, depending on the CustomLineCapData flags set in its

CustomLineCapDataFlags field. Although it is not practical to represent every possible combination
of fields present or absent, this section specifies their relative order in the object. The implementer is
responsible for determining which fields are actually present in a given metafile record, and for
unmarshaling the data for individual fields separately and appropriately.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

FillData (variable)

...

OutlineData (variable)

...

FillData (variable): An optional EmfPlusFillPath object that specifies the path for filling a custom
graphics line cap. This field MUST be present if the CustomLineCapDataFillPath flag is set in the
CustomLineCapDataFlags field of the EmfPlusCustomLineCapData object.

OutlineData (variable): An optional EmfPlusLinePath object that specifies the path for outlining a
custom graphics line cap. This field MUST be present if the CustomLineCapDataLinePath flag is
set in the CustomLineCapDataFlags field of the EmfPlusCustomLineCapData object.

88 / 270

[MS-EMFPLUS-Diff] - v20160714
Enhanced Metafile Format Plus Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Custom line caps are specified by EmfPlusCustomLineCap objects.

See section 2.2.2 for the specification of additional structure objects.

2.2.2.15 EmfPlusCustomStartCapData Object

The EmfPlusCustomStartCapData object specifies a custom line cap for the start of a line.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

CustomStartCapSize

CustomStartCap (variable)

...

CustomStartCapSize (4 bytes): A 32-bit unsigned integer that specifies the size in bytes of the
CustomStartCap field.

CustomStartCap (variable): A custom graphics line cap that defines the shape to draw at the start
of a line. It can be any of various shapes, including a square, circle or diamond.

Custom line caps are specified by EmfPlusCustomLineCap objects. If the PenDataStartCap flag is set
in its PenDataFlags field, an EmfPlusCustomStartCapData object MUST be present in the
OptionalData field of an EmfPlusPenData object.

See section 2.2.2 for the specification of additional structure objects.

2.2.2.16 EmfPlusDashedLineData Object

The EmfPlusDashedLineData object specifies properties of a dashed line for a graphics pen.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

DashedLineDataSize

DashedLineData (variable)

...

DashedLineDataSize (4 bytes): A 32-bit unsigned integer that specifies the number of elements in

the DashedLineData field.

DashedLineData (variable): An array of DashedLineDataSize floating-point values that specify

the lengths of the dashes and spaces in a dashed line.

Graphics pens are specified by EmfPlusPen objects. An EmfPlusDashedLineData object MUST be
present in the OptionalData field of an EmfPlusPenData object, if the PenDataDashedLine flag is
set in its PenDataFlags field.

See section 2.2.2 for the specification of additional structure objects.

89 / 270

[MS-EMFPLUS-Diff] - v20160714
Enhanced Metafile Format Plus Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

2.2.2.17 EmfPlusFillPath Object

The EmfPlusFillPath object specifies a graphics path for filling a custom line cap.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

FillPathLength

FillPath (variable)

...

FillPathLength (4 bytes): A 32-bit signed integer that specifies the length in bytes of the FillPath
field.

FillPath (variable): An EmfPlusPath, which specifies the area to fill.

Custom line caps are specified by EmfPlusCustomLineCap objects. An EmfPlusFillPath object MUST be
present if the CustomLineCapDataFillPath flag is set in the CustomLineCapDataFlags field of an
EmfPlusCustomLineCapData object.

See section 2.2.2 for the specification of additional structure objects.

2.2.2.18 EmfPlusFocusScaleData Object

The EmfPlusFocusScaleData object specifies focus scales for the blend pattern of a path gradient
brush.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

FocusScaleCount

FocusScaleX

FocusScaleY

FocusScaleCount (4 bytes): A 32-bit unsigned integer that specifies the number of focus scales.
This value MUST be 2.

FocusScaleX (4 bytes): A floating-point value that defines the horizontal focus scale. The focus scale
MUST be a value between 0.0 and 1.0, exclusive.

FocusScaleY (4 bytes): A floating-point value that defines the vertical focus scale. The focus scale
MUST be a value between 0.0 and 1.0, exclusive.

By default, the center color of a path gradient brush is displayed only at the center point of an area
bounded by a path. Focus scales specify an inner path inside that area, and the center color is
displayed everywhere inside it. The inner path is the boundary path scaled by horizontal and vertical
scale factors.

For example, focus scales of {0.2, 0.3} specifies a path that is the boundary path scaled by a factor of
0.2 horizontally and 0.3 vertically. The area inside the scaled path MUST be filled with the center

color. Between the inner and outer boundaries, the color MUST change gradually from the center color
to the boundary color.

90 / 270

[MS-EMFPLUS-Diff] - v20160714
Enhanced Metafile Format Plus Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

An EmfPlusFocusScaleData object MUST be present in the OptionalData field of an
EmfPlusPathGradientBrushData object, if the BrushDataFocusScales flag is set in its

BrushDataFlags field.

See section 2.2.2 for the specification of additional structure objects.

2.2.2.19 EmfPlusGraphicsVersion Object

The EmfPlusGraphicsVersion object specifies the version of operating system graphics that is used to
create an EMF+ metafile.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

MetafileSignature GraphicsVersion

MetafileSignature (20 bits): A value that identifies the type of metafile. The value for an EMF+

metafile is 0xDBC01.

GraphicsVersion (12 bits): The version of operating system graphics. This value MUST be defined in
the GraphicsVersion enumeration.<11>

Graphics versions are vendor-extensible; however, to ensure inter-operability, any such extension
MUST be implemented in both clients and servers of EMF+ metafiles.

See section 2.2.2 for the specification of additional structure objects.

2.2.2.20 EmfPlusHatchBrushData Object

The EmfPlusHatchBrushData object specifies a hatch pattern for a graphics brush.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

HatchStyle

ForeColor

BackColor

HatchStyle (4 bytes): A 32-bit unsigned integer that specifies the brush hatch style. It MUST be
defined in the HatchStyle enumeration.

ForeColor (4 bytes): A 32-bit EmfPlusARGB object that specifies the color used to draw the lines of
the hatch pattern.

BackColor (4 bytes): A 32-bit EmfPlusARGB object that specifies the color used to paint the

background of the hatch pattern.

Graphics brushes are specified by EmfPlusBrush objects. A hatch brush paints a background and draws
a pattern of lines, dots, dashes, squares, and crosshatch lines over this background. The hatch brush
defines two colors: one for the background and one for the pattern over the background. The color of
the background is called the background color, and the color of the pattern is called the foreground
color.

See section 2.2.2 for the specification of additional structure objects.

91 / 270

[MS-EMFPLUS-Diff] - v20160714
Enhanced Metafile Format Plus Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

2.2.2.21 EmfPlusInteger7 Object

The EmfPlusInteger7 object specifies a 7-bit signed integer in an 8-bit field.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

0 Value

Value (7 bits): A 7-bit signed integer between -64 and 63, inclusive.

EmfPlusInteger7 objects are used to specify point coordinates in EmfPlusPointR object.

See section 2.2.2 for the specification of additional structure objects.

2.2.2.22 EmfPlusInteger15 Object

The EmfPlusInteger15 object specifies a 15-bit signed integer in a 16-bit field.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

1 Value

Value (15 bits): A 15-bit signed integer between -16,384 and 16,383, inclusive.

EmfPlusInteger15 objects are used to specify point coordinates in EmfPlusPointR object.

See section 2.2.2 for the specification of additional structure objects.

2.2.2.23 EmfPlusLanguageIdentifier Object

The EmfPlusLanguageIdentifier object specifies a language identifier that corresponds to the natural
language in a locale, including countries, geographical regions, and administrative districts. Each
language identifier is an encoding of a primary language value and sublanguage value.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

SubLanguageId PrimaryLanguageId

SubLanguageId (6 bits): The country, geographic region or administrative district for the natural
language specified in the PrimaryLanguageId field.

Sublanguage identifiers are vendor-extensible. Vendor-defined sublanguage identifiers MUST be in
the range 0x20 to 0x3F, inclusive.

PrimaryLanguageId (10 bits): The natural language.

Primary language identifiers are vendor-extensible. Vendor-defined primary language identifiers

MUST be in the range 0x0200 to 0x03FF, inclusive.

The 16-bit encoded language identifier value MUST be defined in the LanguageIdentifier enumeration.

See section 2.2.2 for the specification of additional structure objects.

92 / 270

[MS-EMFPLUS-Diff] - v20160714
Enhanced Metafile Format Plus Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

2.2.2.24 EmfPlusLinearGradientBrushData Object

The EmfPlusLinearGradientBrushData object specifies a linear gradient for a graphics brush.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

BrushDataFlags

WrapMode

RectF (16 bytes)

...

...

StartColor

EndColor

Reserved1

Reserved2

OptionalData (variable)

...

BrushDataFlags (4 bytes): A 32-bit unsigned integer that specifies the data in the OptionalData
field. This value MUST be composed of BrushData flags. The following flags are relevant to a linear
gradient brush:

Name Value

BrushDataTransform 0x00000002

BrushDataPresetColors 0x00000004

BrushDataBlendFactorsH 0x00000008

BrushDataBlendFactorsV 0x00000010

BrushDataIsGammaCorrected 0x00000080

WrapMode (4 bytes): A 32-bit signed integer from the WrapMode enumeration that specifies

whether to paint the area outside the boundary of the brush. When painting outside the boundary,

the wrap mode specifies how the color gradient is repeated.

RectF (16 bytes): An EmfPlusRectF object that specifies the starting and ending points of the
gradient line. The upper-left corner of the rectangle is the starting point. The lower-right corner is
the ending point.

StartColor (4 bytes): An EmfPlusARGB object, which specifies the color at the starting boundary
point of the linear gradient brush.

93 / 270

[MS-EMFPLUS-Diff] - v20160714
Enhanced Metafile Format Plus Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

EndColor (4 bytes): An EmfPlusARGB object that specifies the color at the ending boundary point of
the linear gradient brush.

Reserved1 (4 bytes): This field is reserved and SHOULD<12> be ignored.

Reserved2 (4 bytes): This field is reserved and SHOULD<13> be ignored.

OptionalData (variable): An optional EmfPlusLinearGradientBrushOptionalData object that specifies
additional data for the linear gradient brush. The specific contents of this field are determined by
the value of the BrushDataFlags field.

Graphics brushes are specified by EmfPlusBrush objects. A linear gradient brush paints a color
gradient in which the color changes gradually along a gradient line from a starting boundary point to
an ending boundary point, which are specified by the diagonal of a rectangle in the RectF field.

Gamma correction controls the overall brightness and intensity of an image. Uncorrected images can

look either bleached out or too dark. Varying the amount of gamma correction changes not only the
brightness but also the ratios of red to green to blue. The need for gamma correction arises because
an output device might not render colors in the same intensity as the input image.

See section 2.2.2 for the specification of additional structure objects.

2.2.2.25 EmfPlusLinearGradientBrushOptionalData Object

The EmfPlusLinearGradientBrushOptionalData object specifies optional data for a linear gradient brush.

Note: Each field of this object is optional and might not be present in the OptionalData field of an
EmfPlusLinearGradientBrushData object, depending on the BrushData flags set in its BrushDataFlags
field. Although it is not practical to represent every possible combination of fields present or absent,
this section specifies their relative order in the object. The implementer is responsible for determining

which fields are actually present in a given metafile record, and for unmarshaling the data for
individual fields separately and appropriately.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

TransformMatrix (24 bytes, optional)

...

...

BlendPattern (variable)

...

TransformMatrix (24 bytes): An optional EmfPlusTransformMatrix object that specifies a world

space to device space transform for the linear gradient brush. This field MUST be present if the
BrushDataTransform flag is set in the BrushDataFlags field of the

EmfPlusLinearGradientBrushData object.

BlendPattern (variable): An optional blend pattern for the linear gradient brush. If this field is
present, it MUST contain either an EmfPlusBlendColors object, or one or two EmfPlusBlendFactors
objects, but it MUST NOT contain both. The table below shows the valid combinations of
EmfPlusLinearGradientBrushData BrushData flags and the corresponding blend patterns:

94 / 270

[MS-EMFPLUS-Diff] - v20160714
Enhanced Metafile Format Plus Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

PresetColors BlendFactorsH BlendFactorsV Blend Pattern

Clear Clear Clear This field MUST NOT be present in the
EmfPlusLinearGradientBrushOptionalData object.

Set Clear Clear An EmfPlusBlendColors object MUST be present.

Clear Set Clear An EmfPlusBlendFactors object along the horizontal
gradient line MUST be present.

Clear Clear Set An EmfPlusBlendFactors object along the vertical
gradient line MUST be present.<14>

Clear Set Set An EmfPlusBlendFactors object along the vertical
gradient line and an EmfPlusBlendFactors object along
the horizontal gradient line MUST be present.<15>

Graphics brushes are specified by EmfPlusBrush objects.

See section 2.2.2 for the specification of additional structure objects.

2.2.2.26 EmfPlusLinePath Object

The EmfPlusLinePath object specifies a graphics path for outlining a custom line cap.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

LinePathLength

LinePath (variable)

...

LinePathLength (4 bytes): A 32-bit signed integer that defines the length in bytes of the LinePath
field.

LinePath (variable): An EmfPlusPath object that defines the outline.

Custom line caps are specified by EmfPlusCustomLineCap objects. An EmfPlusLinePath object MUST be
present if the CustomLineCapDataLinePath flag is set in the CustomLineCapDataFlags field of an
EmfPlusCustomLineCapData object.

See section 2.2.2 for the specification of additional structure objects.

2.2.2.27 EmfPlusMetafile Object

The EmfPlusMetafileData object specifies a metafile that contains a graphics image.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Type

MetafileDataSize

95 / 270

[MS-EMFPLUS-Diff] - v20160714
Enhanced Metafile Format Plus Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

MetafileData (variable)

...

Type (4 bytes): A 32-bit unsigned integer that specifies the type of metafile that is embedded in the
MetafileData field. This value MUST be defined in the MetafileDataType enumeration.

MetafileDataSize (4 bytes): A 32-bit unsigned integer that specifies the size in bytes of the metafile

data in the MetafileData field.

MetafileData (variable): Variable-length data that specifies the embedded metafile. The content and
format of the data can be different for each metafile type.

Graphics images are specified by EmfPlusImage objects. An EmfPlusMetafile object MUST be present
in the ImageData field of an EmfPlusImage object if ImageTypeMetafile is specified in its Type field.

This object is generic and is used for different types of data, including:

 A WMF metafile [MS-WMF];

 A WMF metafile which can be placed;

 An EMF metafile [MS-EMF];

 An EMF+ metafile that specifies graphics operations with EMF+ records only; and

 An EMF+ metafile that specifies graphics operations with both EMF+ and EMF records ([MS-EMF]
section 2.3).

See section 2.2.2 for the specification of additional structure objects.

2.2.2.28 EmfPlusPalette Object

The EmfPlusPalette object specifies the colors that make up a palette.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

PaletteStyleFlags

PaletteCount

PaletteEntries (variable)

...

PaletteStyleFlags (4 bytes): A 32-bit unsigned integer that specifies the attributes of data in the

palette. This value MUST be composed of PaletteStyle flags.

PaletteCount (4 bytes): A 32-bit unsigned integer that specifies the number of entries in the
PaletteEntries array.

PaletteEntries (variable): An array of PaletteCount EmfPlusARGB objects that specify the data in
the palette.

See section 2.2.2 for the specification of additional graphics objects.

96 / 270

[MS-EMFPLUS-Diff] - v20160714
Enhanced Metafile Format Plus Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

2.2.2.29 EmfPlusPathGradientBrushData Object

The EmfPlusPathGradientBrushData object specifies a path gradient for a graphics brush.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

BrushDataFlags

WrapMode

CenterColor

CenterPointF

...

SurroundingColorCount

SurroundingColor (variable)

...

BoundaryData (variable)

...

OptionalData (variable)

...

BrushDataFlags (4 bytes): A 32-bit unsigned integer that specifies the data in the OptionalData
field. This value MUST be composed of BrushData flags. The following flags are relevant to a path
gradient brush:

Name Value

BrushDataPath 0x00000001

BrushDataTransform 0x00000002

BrushDataPresetColors 0x00000004

BrushDataBlendFactorsH 0x00000008

BrushDataFocusScales 0x00000040

BrushDataIsGammaCorrected 0x00000080

WrapMode (4 bytes): A 32-bit signed integer from the WrapMode enumeration that specifies
whether to paint the area outside the boundary of the brush. When painting outside the boundary,
the wrap mode specifies how the color gradient is repeated.

CenterColor (4 bytes): An EmfPlusARGB object that specifies the center color of the path gradient
brush, which is the color that appears at the center point of the brush. The color of the brush

97 / 270

[MS-EMFPLUS-Diff] - v20160714
Enhanced Metafile Format Plus Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

changes gradually from the boundary color to the center color as it moves from the boundary to
the center point.

CenterPointF (8 bytes): An EmfPlusPointF object that specifies the center point of the path gradient
brush, which can be any location inside or outside the boundary. The color of the brush changes

gradually from the boundary color to the center color as it moves from the boundary to the center
point.

SurroundingColorCount (4 bytes): An unsigned 32-bit integer that specifies the number of colors
specified in the SurroundingColor field. The surrounding colors are colors specified for discrete
points on the boundary of the brush.

SurroundingColor (variable): An array of SurroundingColorCount EmfPlusARGB objects that
specify the colors for discrete points on the boundary of the brush.

BoundaryData (variable): The boundary of the path gradient brush, which is specified by either a
path or a closed cardinal spline. If the BrushDataPath flag is set in the BrushDataFlags field,
this field MUST contain an EmfPlusBoundaryPathData object; otherwise, this field MUST contain an

EmfPlusBoundaryPointData object.

OptionalData (variable): An optional EmfPlusPathGradientBrushOptionalData object that specifies
additional data for the path gradient brush. The specific contents of this field are determined by

the value of the BrushDataFlags field.

Graphics brushes are specified by EmfPlusBrush objects. A path gradient brush paints a color gradient
in which the color changes gradually along a gradient line from the center point outward to the
boundary, which are specified by either a closed cardinal spline or a path in the BoundaryData field.

Gamma correction controls the overall brightness and intensity of an image. Uncorrected images can
look either bleached out or too dark. Varying the amount of gamma correction changes not only the
brightness but also the ratios of red to green to blue. The need for gamma correction arises because

an output device might not render colors in the same intensity as the input image.

See section 2.2.2 for the specification of additional structure objects.

2.2.2.30 EmfPlusPathGradientBrushOptionalData Object

The EmfPlusPathGradientBrushOptionalData object specifies optional data for a path gradient brush.

Note: Each field of this object is optional and might not be present in the OptionalData field of an
EmfPlusPathGradientBrushData object, depending on the BrushData flags set in its BrushDataFlags
field. Although it is not practical to represent every possible combination of fields present or absent,
this section specifies their relative order in the object. The implementer is responsible for determining
which fields are actually present in a given metafile record, and for unmarshaling the data for
individual fields separately and appropriately.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

TransformMatrix (24 bytes, optional)

...

...

BlendPattern (variable)

98 / 270

[MS-EMFPLUS-Diff] - v20160714
Enhanced Metafile Format Plus Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

...

FocusScaleData (optional)

...

...

TransformMatrix (24 bytes): An optional EmfPlusTransformMatrix object that specifies a world
space to device space transform for the path gradient brush. This field MUST be present if the
BrushDataTransform flag is set in the BrushDataFlags field of the

EmfPlusPathGradientBrushData object.

BlendPattern (variable): An optional blend pattern for the path gradient brush. If this field is
present, it MUST contain either an EmfPlusBlendColors object, or an EmfPlusBlendFactors object,
but it MUST NOT contain both. The table below shows the valid combinations of

EmfPlusPathGradientBrushData BrushData flags and the corresponding blend patterns:

PresetColors BlendFactorsH Blend Patterns

Clear Clear This field MUST NOT be present.

Set Clear An EmfPlusBlendColors object MUST be present.

Clear Set An EmfPlusBlendFactors object MUST be present.

FocusScaleData (12 bytes): An optional EmfPlusFocusScaleData object that specifies focus scales
for the path gradient brush. This field MUST be present if the BrushDataFocusScales flag is set
in the BrushDataFlags field of the EmfPlusPathGradientBrushData object.

Graphics brushes are specified by EmfPlusBrush objects.

See section 2.2.2 for the specification of additional structure objects.

2.2.2.31 EmfPlusPathPointType Object

The EmfPlusPathPointType object specifies a type value associated with a point on a graphics path.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Flags Type

Flags (4 bits): A 4-bit flag field that specifies properties of the path point. This value MUST be one or
more of the PathPointType flags.

Type (4 bits): A 4-bit unsigned integer path point type. This value MUST be defined in the
PathPointType enumeration.

Graphics paths are specified by EmfPlusPath objects. Every point on a graphics path MUST have a type
value associated with it.

See section 2.2.2 for the specification of additional structure objects.

99 / 270

[MS-EMFPLUS-Diff] - v20160714
Enhanced Metafile Format Plus Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

2.2.2.32 EmfPlusPathPointTypeRLE Object

The EmfPlusPathPointTypeRLE object specifies type values associated with points on a graphics path
using RLE compression ([MS-WMF] section 3.1.6).

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

B 1 RunCount PointType

B (1 bit): If set, the path points are on a Bezier curve.

If clear, the path points are on a graphics line.

RunCount (6 bits): The run count, which is the number of path points to be associated with the type
in the PointType field.

PointType (1 byte): An EmfPlusPathPointType object that specifies the type to associate with the

path points.

Graphics paths are specified by EmfPlusPath objects. Every point on a graphics path MUST have a type
value associated with it.

RLE compression makes it possible to specify an arbitrary number of identical values without a
proportional increase in storage requirements.

See section 2.2.2 for the specification of additional structure objects.

2.2.2.33 EmfPlusPenData Object

The EmfPlusPenData object specifies properties of a graphics pen.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

PenDataFlags

PenUnit

PenWidth

OptionalData (variable)

...

PenDataFlags (4 bytes): A 32-bit unsigned integer that specifies the data in the OptionalData
field. This value MUST be composed of PenData flags.

PenUnit (4 bytes): A 32-bit unsigned integer that specifies the measuring units for the pen. The
value MUST be from the UnitType enumeration.

PenWidth (4 bytes): A 32-bit floating-point value that specifies the width of the line drawn by the
pen in the units specified by the PenUnit field. If a zero width is specified, a minimum value is
used, which is determined by the units.

100 / 270

[MS-EMFPLUS-Diff] - v20160714
Enhanced Metafile Format Plus Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

OptionalData (variable): An optional EmfPlusPenOptionalData object that specifies additional data
for the pen object. The specific contents of this field are determined by the value of the

PenDataFlags field.

Graphics pens are specified by EmfPlusPen objects.

See section 2.2.2 for the specification of additional structure objects.

2.2.2.34 EmfPlusPenOptionalData Object

The EmfPlusPenOptionalData object specifies optional data for a graphics pen.

Note: Each field of this object is optional and might not be present in the OptionalData field of an
EmfPlusPenData object, depending on the PenData flags set in its PenDataFlags field. Although it is
not practical to represent every possible combination of fields present or absent, this section specifies
their relative order in the object. The implementer is responsible for determining which fields are
actually present in a given metafile record, and for unmarshaling the data for individual fields
separately and appropriately.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

TransformMatrix (24 bytes, optional)

...

...

StartCap (optional)

EndCap (optional)

Join (optional)

MiterLimit (optional)

LineStyle (optional)

DashedLineCapType (optional)

DashOffset (optional)

DashedLineData (variable)

...

PenAlignment (optional)

CompoundLineData (variable)

...

CustomStartCapData (variable)

101 / 270

[MS-EMFPLUS-Diff] - v20160714
Enhanced Metafile Format Plus Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

...

CustomEndCapData (variable)

...

TransformMatrix (24 bytes): An optional EmfPlusTransformMatrix object that specifies a world
space to device space transform for the pen. This field MUST be present if the
PenDataTransform flag is set in the PenDataFlags field of the EmfPlusPenData object.

StartCap (4 bytes): An optional 32-bit signed integer that specifies the shape for the start of a line
in the CustomStartCapData field. This field MUST be present if the PenDataStartCap flag is set
in the PenDataFlags field of the EmfPlusPenData object, and the value MUST be defined in the
LineCapType enumeraiton.

EndCap (4 bytes): An optional 32-bit signed integer that specifies the shape for the end of a line in

the CustomEndCapData field. This field MUST be present if the PenDataEndCap flag is set in

the PenDataFlags field of the EmfPlusPenData object, and the value MUST be defined in the
LineCapType enumeration.

Join (4 bytes): An optional 32-bit signed integer that specifies how to join two lines that are drawn
by the same pen and whose ends meet. This field MUST be present if the PenDataJoin flag is set
in the PenDataFlags field of the EmfPlusPenData object, and the value MUST be defined in the
LineJoinType enumeration.

MiterLimit (4 bytes): An optional 32-bit floating-point value that specifies the miter limit, which is

the maximum allowed ratio of miter length to line width. The miter length is the distance from the
intersection of the line walls on the inside the join to the intersection of the line walls outside the
join. The miter length can be large when the angle between two lines is small. This field MUST be
present if the PenDataMiterLimit flag is set in the PenDataFlags field of the EmfPlusPenData
object.

LineStyle (4 bytes): An optional 32-bit signed integer that specifies the style used for lines drawn
with this pen object. This field MUST be present if the PenDataLineStyle flag is set in the

PenDataFlags field of the EmfPlusPenData object, and the value MUST be defined in the
LineStyle enumeration.

DashedLineCapType (4 bytes): An optional 32-bit signed integer that specifies the shape for both
ends of each dash in a dashed line. This field MUST be present if the PenDataDashedLineCap
flag is set in the PenDataFlags field of the EmfPlusPenData object, and the value MUST be
defined in the DashedLineCapType enumeration.

DashOffset (4 bytes): An optional 32-bit floating-point value that specifies the distance from the
start of a line to the start of the first space in a dashed line pattern. This field MUST be present if
the PenDataDashedLineOffset flag is set in the PenDataFlags field of the EmfPlusPenData
object.

DashedLineData (variable): An optional EmfPlusDashedLineData object that specifies the lengths of

dashes and spaces in a custom dashed line. This field MUST be present if the
PenDataDashedLine flag is set in the PenDataFlags field of the EmfPlusPenData object.

PenAlignment (4 bytes): An optional 32-bit signed integer that specifies the distribution of the pen
width with respect to the coordinates of the line being drawn. This field MUST be present if the
PenDataNonCenter flag is set in the PenDataFlags field of the EmfPlusPenData object, and the
value MUST be defined in the PenAlignment enumeration.

For example, consider the placement of a line. If the starting and ending coordinates of the line
are defined, it is possible to think of a theoretical line between the two points that is zero width.

102 / 270

[MS-EMFPLUS-Diff] - v20160714
Enhanced Metafile Format Plus Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Center alignment means that the pen width is distributed as evenly as possible on either side of
that theoretical line.

CompoundLineData (variable): An optional EmfPlusCompoundLineData object that specifies an
array of floating-point values that define the compound line of a pen, which is made up of parallel

lines and spaces. This field MUST be present if the PenDataCompoundLine flag is set in the
PenDataFlags field of the EmfPlusPenData object.

CustomStartCapData (variable): An optional EmfPlusCustomStartCapData object that defines the
custom start-cap shape, which is the shape to use at the start of a line drawn with this pen. It can
be any of various shapes, such as a square, circle, or diamond. This field MUST be present if the
PenDataCustomStartCap flag is set in the PenDataFlags field of the EmfPlusPenData object.

CustomEndCapData (variable): An optional EmfPlusCustomEndCapData object that defines the

custom end-cap shape, which is the shape to use at the end of a line drawn with this pen. It can
be any of various shapes, such as a square, circle, or diamond. This field MUST be present if the
PenDataCustomEndCap flag is set in the PenDataFlags field of the EmfPlusPenData object.

Graphics pens are specified by EmfPlusPen objects.

See section 2.2.2 for the specification of additional structure objects.

2.2.2.35 EmfPlusPoint Object

The EmfPlusPoint object specifies an ordered pair of integer (X,Y) values that define an absolute
location in a coordinate space.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

X Y

X (2 bytes): A 16-bit signed integer that defines the horizontal coordinate.

Y (2 bytes): A 16-bit signed integer that defines the vertical coordinate.

See section 2.2.2 for the specification of additional structure objects.

2.2.2.36 EmfPlusPointF Object

The EmfPlusPointF object specifies an ordered pair of floating-point (X,Y) values that define an
absolute location in a coordinate space.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

X

Y

X (4 bytes): A 32-bit floating-point value that specifies the horizontal coordinate.

Y (4 bytes): A 32-bit floating-point value that specifies the vertical coordinate.

See section 2.2.2 for the specification of additional structure objects.

103 / 270

[MS-EMFPLUS-Diff] - v20160714
Enhanced Metafile Format Plus Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

2.2.2.37 EmfPlusPointR Object

The EmfPlusPointR object specifies an ordered pair of integer (X,Y) values that define a relative
location in a coordinate space.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

X (variable)

...

Y (variable)

...

X (variable): A signed integer that specifies the horizontal coordinate. This value MUST be specified
by either an EmfPlusInteger7 object or an EmfPlusInteger15 object.

Y (variable): A signed integer that specifies the vertical coordinate. This value MUST be specified by
either an EmfPlusInteger7 object or an EmfPlusInteger15 object.

Note: The object that specifies the horizontal coordinate is not required to be the same type as the
object that specifies the vertical coordinate; that is, one can be 7 bits and the other can be 15 bits.

See section 2.2.2 for the specification of additional structure objects.

2.2.2.38 EmfPlusRect Object

The EmfPlusRect object specifies a rectangle origin, height, and width as 16-bit signed integers.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

X Y

Width Height

X (2 bytes): A 16-bit signed integer that specifies the horizontal coordinate of the upper-left corner
of the rectangle.

Y (2 bytes): A 16-bit signed integer that specifies the vertical coordinate of the upper-left corner of
the rectangle.

Width (2 bytes): A 16-bit signed integer that specifies the width of the rectangle.

Height (2 bytes): A 16-bit signed integer that specifies the height of the rectangle.

See section 2.2.2 for the specification of additional structure objects.

2.2.2.39 EmfPlusRectF Object

The EmfPlusRectF object specifies a rectangle's origin, height, and width as 32-bit floating-point

values.

104 / 270

[MS-EMFPLUS-Diff] - v20160714
Enhanced Metafile Format Plus Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

X

Y

Width

Height

X (4 bytes): A 32-bit floating-point value that specifies the horizontal coordinate of the upper-left
corner of the rectangle.

Y (4 bytes): A 32-bit floating-point value that specifies the vertical coordinate of the upper-left

corner of the rectangle.

Width (4 bytes): A 32-bit floating-point value that specifies the width of the rectangle.

Height (4 bytes): A 32-bit floating-point value that specifies the height of the rectangle.

See section 2.2.2 for the specification of additional structure objects.

2.2.2.40 EmfPlusRegionNode Object

The EmfPlusRegionNode object specifies nodes of a graphics region.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Type

RegionNodeData (variable)

...

Type (4 bytes): A 32-bit unsigned integer that specifies the type of data in the RegionNodeData
field. This value MUST be defined in the RegionNodeDataType enumeration.

RegionNodeData (variable): Optional, variable-length data that defines the region node data object

specified in the Type field. The content and format of the data can be different for every region
node type. This field MUST NOT be present if the node type is RegionNodeDataTypeEmpty or
RegionNodeDataTypeInfinite.

Graphics regions are specified by EmfPlusRegion objects, which define a binary tree of region nodes.
Each node MUST either be a terminal node or specify additional region nodes.

This object is generic and is used to specify different types of region node data, including:

 An EmfPlusRegionNodePath object, for a terminal node;

 An EmfPlusRectF object, for a terminal node; and

 An EmfPlusRegionNodeChildNodes object, for a non-terminal node.

See section 2.2.2 for the specification of additional structure objects.

105 / 270

[MS-EMFPLUS-Diff] - v20160714
Enhanced Metafile Format Plus Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

2.2.2.41 EmfPlusRegionNodeChildNodes Object

The EmfPlusRegionNodeChildNodes object specifies child nodes of a graphics region node.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Left (variable)

...

Right (variable)

...

Left (variable): An EmfPlusRegionNode object that specifies the left child node of this region node.

Right (variable): An EmfPlusRegionNode object that defines the right child node of this region node.

Graphics region nodes are specified with EmfPlusRegionNode objects.

See section 2.2.2 for the specification of additional structure objects.

2.2.2.42 EmfPlusRegionNodePath Object

The EmfPlusRegionNodePath object specifies a graphics path for drawing the boundary of a region
node.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

RegionNodePathLength

RegionNodePath (variable)

...

RegionNodePathLength (4 bytes): A 32-bit signed integer that specifies the length in bytes of the
RegionNodePath field.

RegionNodePath (variable): An EmfPlusPath object that specifies the boundary of the region node.

Region nodes are specified by EmfPlusRegion objects. An EmfPlusRegionNodePath object MUST be
present in the RegionNodeData field of an EmfPlusRegionNode object if its Type field is set to the
RegionNodeDataTypePath value from the RegionNodeDataType enumeration.

See section 2.2.2 for the specification of additional structure objects.

2.2.2.43 EmfPlusSolidBrushData Object

The EmfPlusSolidBrushData object specifies a solid color for a graphics brush.

106 / 270

[MS-EMFPLUS-Diff] - v20160714
Enhanced Metafile Format Plus Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

SolidColor

SolidColor (4 bytes): An EmfPlusARGB object that specifies the color of the brush.

Graphics brushes are specified by EmfPlusBrush objects. A solid color brush paints a background in a
solid color.

See section 2.2.2 for the specification of additional structure objects.

2.2.2.44 EmfPlusStringFormatData Object

The EmfPlusStringFormatData object specifies tab stops and character positions for a graphics string.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

TabStops (variable)

...

CharRange (variable)

...

TabStops (variable): An optional array of floating-point values that specify the optional tab stop
locations for this object. Each tab stop value represents the number of spaces between tab stops
or, for the first tab stop, the number of spaces between the beginning of a line of text and the first
tab stop.

This field MUST be present if the value of the TabStopCount field in the EmfPlusStringFormat
object is greater than 0.

CharRange (variable): An optional array of RangeCount EmfPlusCharacterRange objects that
specify the range of character positions within a string of text. The bounding region is defined by
the area of the display that is occupied by a group of characters specified by the character range.

This field MUST be present if the value of the RangeCount field in the EmfPlusStringFormat object
is greater than 0.

Graphics strings are specified by EmfPlusStringFormat objects.

See section 2.2.2 for the specification of additional structure objects.

2.2.2.45 EmfPlusTextureBrushData Object

The EmfPlusTextureBrushData object specifies a texture image for a graphics brush.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

BrushDataFlags

107 / 270

[MS-EMFPLUS-Diff] - v20160714
Enhanced Metafile Format Plus Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

WrapMode

OptionalData (variable)

...

BrushDataFlags (4 bytes): A 32-bit unsigned integer that specifies the data in the OptionalData
field. This value MUST be composed of BrushData flags. The following flags are relevant to a
texture brush:

Name Value

BrushDataTransform 0x00000002

BrushDataIsGammaCorrected 0x00000080

BrushDataDoNotTransform 0x00000100

WrapMode (4 bytes): A 32-bit signed integer from the WrapMode enumeration that specifies how to
repeat the texture image across a shape, when the image is smaller than the area being filled.

OptionalData (variable): An optional EmfPlusTextureBrushOptionalData object that specifies
additional data for the texture brush. The specific contents of this field are determined by the
value of the BrushDataFlags field.

Graphics brushes are specified by EmfPlusBrush objects. A texture brush paints an image, which in
this context is called a "texture". The texture consists of either a portion of an image or a scaled
version of an image, which is specified by an EmfPlusImage object in the OptionalData field.

Gamma correction controls the overall brightness and intensity of an image. Uncorrected images can

look either bleached out or too dark. Varying the amount of gamma correction changes not only the
brightness but also the ratios of red to green to blue. The need for gamma correction arises because

an output device might not render colors in the same intensity as the input image.

See section 2.2.2 for the specification of additional structure objects.

2.2.2.46 EmfPlusTextureBrushOptionalData Object

The EmfPlusTextureBrushOptionalData object specifies optional data for a texture brush.

Note: Each field of this object is optional and might not be present in the OptionalData field of an
EmfPlusTextureBrushData object, depending on the BrushData flags set in its BrushDataFlags field.
Although it is not practical to represent every possible combination of fields present or absent, this
section specifies their relative order in the object. The implementer is responsible for determining

which fields are actually present in a given metafile record, and for unmarshaling the data for
individual fields separately and appropriately.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

TransformMatrix (24 bytes, optional)

...

...

108 / 270

[MS-EMFPLUS-Diff] - v20160714
Enhanced Metafile Format Plus Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

ImageObject (variable)

...

TransformMatrix (24 bytes): An optional EmfPlusTransformMatrix object that specifies a world
space to device space transform for the texture brush. This field MUST be present if the
BrushDataTransform flag is set in the BrushDataFlags field of the EmfPlusTextureBrushData

object.

ImageObject (variable): An optional EmfPlusImage object that specifies the brush texture. This
field MUST be present if the size of the EmfPlusObject record that defines this texture brush is
large enough to accommodate an EmfPlusImage object in addition to the required fields of the
EmfPlusTextureBrushData object and optionally an EmfPlusTransformMatrix object.

Graphics brushes are specified by EmfPlusBrush objects.

See section 2.2.2 for the specification of additional structure objects.

2.2.2.47 EmfPlusTransformMatrix Object

The EmfPlusTransformMatrix object specifies a world space to device space transform.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

TransformMatrix (24 bytes)

...

...

TransformMatrix (24 bytes): This field specifies an affine transform, which requires a 2x2 matrix
for a linear transformation and a 1x2 matrix for a translation. These values map to the coordinates
of the transform matrix as follows:

 TransformMatrix[0] Corresponds to m11, which is the coordinate of the first row and first
column of the 2x2 matrix.

 TransformMatrix[1] Corresponds to m12, which is the coordinate of the first row and second
column of the 2x2 matrix.

 TransformMatrix[2] Corresponds to m21, which is the coordinate of the second row and first
column of the 2x2 matrix.

 TransformMatrix[3] Corresponds to m22, which is the coordinate of the second row and
second column of the 2x2 matrix.

 TransformMatrix[4] Corresponds to dx, which is the horizontal displacement in the 1x2
matrix.

 TransformMatrix[5] Corresponds to dy, which is the vertical displacement in the 1x2 matrix.

See section 2.2.2 for the specification of additional structure objects.

109 / 270

[MS-EMFPLUS-Diff] - v20160714
Enhanced Metafile Format Plus Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

2.2.3 Image Effects Object Types

The Image Effects Objects specify parameters for graphics image effects, which can be applied to
bitmap images.<16>

Parameters are specified for the following image effects:

Name Section Description

BlurEffect 2.2.3.1 Specifies a decrease in the difference in intensity between pixels in an
image.

BrightnessContrastEffect 2.2.3.2 Specifies an expansion or contraction of the lightest and darkest areas
of an image.

ColorBalanceEffect 2.2.3.3 Specifies adjustments to the relative amounts of red, green, and blue
in an image.

ColorCurveEffect 2.2.3.4 Specifies one of eight adjustments to an image, including exposure,
density, contrast, highlight, shadow, midtone, white saturation, or

black saturation.

ColorLookupTableEffect 2.2.3.5 Specifies adjustments to the colors in an image.

ColorMatrixEffect 2.2.3.6 Specifies an affine transform to be applied to an image.

HueSaturationLightnessEffect 2.2.3.7 Specifies adjustments to the hue, saturation, and lightness of an
image.

LevelsEffect 2.2.3.8 Specifies adjustments to the highlights, midtones, and shadows of an
image.

RedEyeCorrectionEffect 2.2.3.9 Specifies areas of an image to which a red-eye correction effect is
applied.

SharpenEffect 2.2.3.10 Specifies an increase in the difference in intensity between pixels in an
image.

TintEffect 2.2.3.11 Specifies an addition of black or white to a specified hue in an image.

2.2.3.1 BlurEffect Object

The BlurEffect object specifies a decrease in the difference in intensity between pixels in an image.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

BlurRadius

ExpandEdge

BlurRadius (4 bytes): A 32-bit floating-point number that specifies the blur radius in pixels, which

determines the number of pixels involved in calculating the new value of a given pixel. This value
MUST be in the range 0.0 through 255.0.

As this value increases, the number of pixels involved in the calculation increases, and the
resulting bitmap SHOULD become more blurry.

110 / 270

[MS-EMFPLUS-Diff] - v20160714
Enhanced Metafile Format Plus Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

ExpandEdge (4 bytes): A 32-bit Boolean value that specifies whether the bitmap expands by an
amount equal to the value of the BlurRadius to produce soft edges. This value MUST be one of

the following:

Value Meaning

FALSE

0x00000000

The size of the bitmap MUST NOT change, and its soft edges SHOULD be clipped to the size of the
BlurRadius.

TRUE

0x00000001

The size of the bitmap SHOULD expand by an amount equal to the BlurRadius to produce soft
edges.

Bitmap images are specified by EmfPlusBitmap objects.

See section 2.2.3 for the specification of additional image effects parameter objects.

2.2.3.2 BrightnessContrastEffect Object

The BrightnessContrastEffect object specifies an expansion or contraction of the lightest and darkest
areas of an image.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

BrightnessLevel

ContrastLevel

BrightnessLevel (4 bytes): A 32-bit signed integer that specifies the brightness level. This value
MUST be in the range -255 through 255, with effects as follows:

Value Meaning

-255 ≤ value < 0 As the value decreases, the brightness of the image SHOULD decrease.

0 A value of 0 specifies that the brightness MUST NOT change.

0 < value ≤ 255 As the value increases, the brightness of the image SHOULD increase.

ContrastLevel (4 bytes): A 32-bit signed integer that specifies the contrast level. This value MUST
be in the range -100 through 100, with effects as follows:

Value Meaning

-100 ≤ value < 0 As the value decreases, the contrast of the image SHOULD decrease.

0 A value of 0 specifies that the contrast MUST NOT change.

0 < value ≤ 100 As the value increases, the contrast of the image SHOULD increase.

Bitmap images are specified by EmfPlusBitmap objects.

See section 2.2.3 for the specification of additional image effects parameter objects.

111 / 270

[MS-EMFPLUS-Diff] - v20160714
Enhanced Metafile Format Plus Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

2.2.3.3 ColorBalanceEffect Object

The ColorBalanceEffect object specifies adjustments to the relative amounts of red, green, and blue in
an image.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

CyanRed

MagentaGreen

YellowBlue

CyanRed (4 bytes): A 32-bit signed integer that specifies a change in the amount of red in the
image. This value MUST be in the range -100 through 100, with effects as follows:

Value Meaning

-
100 ≤ value < 0

As the value decreases, the amount of red in the image SHOULD decrease and the amount of
cyan SHOULD increase.

0 A value of 0 specifies that the amounts of red and cyan MUST NOT change.

0 < value ≤ 100 As the value increases, the amount of red in the image SHOULD increase and the amount of
cyan SHOULD decrease.

MagentaGreen (4 bytes): A 32-bit signed integer that specifies a change in the amount of green in
the image. This value MUST be in the range -100 through 100, with effects as follows:

Value Meaning

-
100 ≤ value < 0

As the value decreases, the amount of green in the image SHOULD decrease and the amount
of magenta SHOULD increase.

0 A value of 0 specifies that the amounts of green and magenta MUST NOT change.

0 < value ≤ 100 As the value increases, the amount of green in the image SHOULD increase and the amount
of magenta SHOULD decrease.

YellowBlue (4 bytes): A 32-bit signed integer that specifies a change in the amount of blue in the
image. This value MUST be in the range -100 through 100, with effects as follows:

Value Meaning

-
100 ≤ value < 0

As the value decreases, the amount of blue in the image SHOULD decrease and the amount of
yellow SHOULD increase.

0 A value of 0 specifies that the amounts of blue and yellow MUST NOT change.

0 < value ≤ 100 As the value increases, the amount of blue in the image SHOULD increase and the amount of
yellow SHOULD decrease.

Bitmap images are specified by EmfPlusBitmap objects.

See section 2.2.3 for the specification of additional image effects parameter objects.

112 / 270

[MS-EMFPLUS-Diff] - v20160714
Enhanced Metafile Format Plus Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

2.2.3.4 ColorCurveEffect Object

The ColorCurveEffect object specifies one of eight adjustments to the color curve of an image.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

CurveAdjustment

CurveChannel

AdjustmentIntensity

CurveAdjustment (4 bytes): A 32-bit unsigned integer that specifies the curve adjustment to apply
to the colors in bitmap. This value MUST be defined in the CurveAdjustments enumeration.

CurveChannel (4 bytes): A 32-bit unsigned integer that specifies the color channel to which the

curve adjustment applies. This value MUST be defined in the CurveChannel enumeration.

AdjustmentIntensity (4 bytes): A 32-bit signed integer that specifies the intensity of the curve
adjustment to the color channel specified by CurveChannel. The ranges of meaningful values for
this field vary according to the CurveAdjustment value, as follows:

Exposure adjustment range:

Value Meaning

-255 ≤ value < 0 As the value decreases, the exposure of the image SHOULD decrease.

0 A value of 0 specifies that the exposure MUST NOT change.

0 < value ≤ 255 As the value increases, the exposure of the image SHOULD increase.

Density adjustment range:

Value Meaning

-
255 ≤ value < 0

As the value decreases, the density of the image SHOULD decrease, resulting in a darker
image.

0 A value of 0 specifies that the density MUST NOT change.

0 < value ≤ 255 As the value increases, the density of the image SHOULD increase.

Contrast adjustment range:

Value Meaning

-100 ≤ value < 0 As the value decreases, the contrast of the image SHOULD decrease.

0 A value of 0 specifies that the contrast MUST NOT change.

0 < value ≤ 100 As the value increases, the contrast of the image SHOULD increase.

Highlight adjustment range:

113 / 270

[MS-EMFPLUS-Diff] - v20160714
Enhanced Metafile Format Plus Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Value Meaning

-100 ≤ value < 0 As the value decreases, the light areas of the image SHOULD appear darker.

0 A value of 0 specifies that the highlight MUST NOT change.

0 < value ≤ 100 As the value increases, the light areas of the image SHOULD appear lighter.

Shadow adjustment range:

Value Meaning

-100 ≤ value < 0 As the value decreases, the dark areas of the image SHOULD appear darker.

0 A value of 0 specifies that the shadow MUST NOT change.

0 < value ≤ 100 As the value increases, the dark areas of the image SHOULD appear lighter.

White saturation adjustment range:

Value Meaning

0 — 255 As the value increases, the upper limit of the range of color channel intensities increases.

Black saturation adjustment range:

Value Meaning

0 — 255 As the value increases, the lower limit of the range of color channel intensities increases.

Bitmap images are specified by EmfPlusBitmap objects.

See section 2.2.3 for the specification of additional image effects parameter objects.

2.2.3.5 ColorLookupTableEffect Object

The ColorLookupTableEffect object specifies adjustments to the colors in an image.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

BlueLookupTable (256 bytes)

...

...

GreenLookupTable (256 bytes)

...

...

RedLookupTable (256 bytes)

114 / 270

[MS-EMFPLUS-Diff] - v20160714
Enhanced Metafile Format Plus Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

...

...

AlphaLookupTable (256 bytes)

...

...

BlueLookupTable (256 bytes): An array of 256 bytes that specifies the adjustment for the blue
color channel.

GreenLookupTable (256 bytes): An array of 256 bytes that specifies the adjustment for the green

color channel.

RedLookupTable (256 bytes): An array of 256 bytes that specifies the adjustment for the red color
channel.

AlphaLookupTable (256 bytes): An array of 256 bytes that specifies the adjustment for the alpha
color channel.

Bitmap images are specified by EmfPlusBitmap objects.

See section 2.2.3 for the specification of additional image effects parameter objects.

2.2.3.6 ColorMatrixEffect Object

The ColorMatrixEffect object specifies an affine transform to be applied to an image.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Matrix_N_0 (20 bytes)

...

...

Matrix_N_1 (20 bytes)

...

...

Matrix_N_2 (20 bytes)

...

...

Matrix_N_3 (20 bytes)

115 / 270

[MS-EMFPLUS-Diff] - v20160714
Enhanced Metafile Format Plus Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

...

...

Matrix_N_4 (20 bytes)

...

...

Matrix_N_0 (20 bytes): Matrix[N][0] of the 5x5 color matrix. This row is used for transforms.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Matrix_0_0

Matrix_1_0

Matrix_2_0

Matrix_3_0

Matrix_4_0

Matrix_0_0 (4 bytes): Matrix[0][0], which is the factor for the color red.

Matrix_1_0 (4 bytes): Matrix[1][0].

Matrix_2_0 (4 bytes): Matrix[2][0].

Matrix_3_0 (4 bytes): Matrix[3][0].

Matrix_4_0 (4 bytes): Matrix[4][0]. This value MUST be 0.0.

Matrix_N_1 (20 bytes): Matrix[N][1] of the 5x5 color matrix. This row is used for transforms.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Matrix_0_1

Matrix_1_1

Matrix_2_1

Matrix_3_1

Matrix_4_1

Matrix_0_1 (4 bytes): Matrix[0][1].

Matrix_1_1 (4 bytes): Matrix[1][1], which is the factor for the color green.

116 / 270

[MS-EMFPLUS-Diff] - v20160714
Enhanced Metafile Format Plus Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Matrix_2_1 (4 bytes): Matrix[2][1].

Matrix_3_1 (4 bytes): Matrix[3][1].

Matrix_4_1 (4 bytes): Matrix[4][1]. This value MUST be 0.0.

Matrix_N_2 (20 bytes): Matrix[N][2] of the 5x5 color matrix. This row is used for transforms.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Matrix_0_2

Matrix_1_2

Matrix_2_2

Matrix_3_2

Matrix_4_2

Matrix_0_2 (4 bytes): Matrix[0][2].

Matrix_1_2 (4 bytes): Matrix[1][2].

Matrix_2_2 (4 bytes): Matrix[2][2], which is the factor for the color blue.

Matrix_3_2 (4 bytes): Matrix[3][2].

Matrix_4_2 (4 bytes): Matrix[4][2]. This value MUST be 0.0.

Matrix_N_3 (20 bytes): Matrix[N][3] of the 5x5 color matrix. This row is used for transforms.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Matrix_0_3

Matrix_1_3

Matrix_2_3

Matrix_3_3

Matrix_4_3

Matrix_0_3 (4 bytes): Matrix[0][3].

Matrix_1_3 (4 bytes): Matrix[1][3].

Matrix_2_3 (4 bytes): Matrix[2][3].

Matrix_3_3 (4 bytes): Matrix[3][3], which is the factor for the alpha (transparency) value.

Matrix_4_3 (4 bytes): Matrix[4][3]. This value MUST be 0.0.

117 / 270

[MS-EMFPLUS-Diff] - v20160714
Enhanced Metafile Format Plus Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Matrix_N_4 (20 bytes): Matrix[N][4] of the 5x5 color matrix. This row is used for color translations.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Matrix_0_4

Matrix_1_4

Matrix_2_4

Matrix_3_4

Matrix_4_4

Matrix_0_4 (4 bytes): Matrix[0][4].

Matrix_1_4 (4 bytes): Matrix[1][4].

Matrix_2_4 (4 bytes): Matrix[2][4].

Matrix_3_4 (4 bytes): Matrix[3][4].

Matrix_4_4 (4 bytes): Matrix[4][4]. This value SHOULD be 1.0.<17>

Bitmap images are specified by EmfPlusBitmap objects. A color matrix effect is performed by
multiplying a color vector by a ColorMatrixEffect object. A 5x5 color matrix can perform a linear
transform, including reflection, rotation, shearing, or scaling followed by a translation.

See section 2.2.3 for the specification of additional image effects parameter objects.

2.2.3.7 HueSaturationLightnessEffect Object

The HueSaturationLightnessEffect object specifies adjustments to the hue, saturation, and lightness of
an image.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

HueLevel

SaturationLevel

LightnessLevel

HueLevel (4 bytes): Specifies the adjustment to the hue.

Value Meaning

-180 ≤ value < 0 Negative values specify clockwise rotation on the color wheel.

0 A value of 0 specifies that the hue MUST NOT change.

0 < value ≤ 180 Positive values specify counter-clockwise rotation on the color wheel.

SaturationLevel (4 bytes): Specifies the adjustment to the saturation.

118 / 270

[MS-EMFPLUS-Diff] - v20160714
Enhanced Metafile Format Plus Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Value Meaning

-100 ≤ value < 0 Negative values specify decreasing saturation.

0 A value of 0 specifies that the saturation MUST NOT change.

0 < value ≤ 100 Positive values specify increasing saturation.

LightnessLevel (4 bytes): Specifies the adjustment to the lightness.

Value Meaning

-100 ≤ value < 0 Negative values specify decreasing lightness.

0 A value of 0 specifies that the lightness MUST NOT change.

0 < value ≤ 100 Positive values specify increasing lightness.

Bitmap images are specified by EmfPlusBitmap objects.

See section 2.2.3 for the specification of additional image effects parameter objects.

2.2.3.8 LevelsEffect Object

The LevelsEffect object specifies adjustments to the highlights, midtones, and shadows of an image.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Highlight

MidTone

Shadow

Highlight (4 bytes): Specifies how much to lighten the highlights of an image. The color channel
values at the high end of the intensity range are altered more than values near the middle or low
ends, which means an image can be lightened without losing the contrast between the darker
portions of the image.

Value Meaning

0 ≤ value < 100 Specifies that highlights with a percent of intensity above this threshold SHOULD be increased.

100 Specifies that highlights MUST NOT change.

MidTone (4 bytes): Specifies how much to lighten or darken the midtones of an image. Color

channel values in the middle of the intensity range are altered more than values near the high or
low ends, which means an image can be lightened or darkened without losing the contrast
between the darkest and lightest portions of the image.

Value Meaning

-100 ≤ value < 0 Specifies that midtones are made darker.

0 Specifies that midtones MUST NOT change.

119 / 270

[MS-EMFPLUS-Diff] - v20160714
Enhanced Metafile Format Plus Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Value Meaning

0 < value ≤ 100 Specifies that midtones are made lighter.

Shadow (4 bytes): Specifies how much to darken the shadows of an image. Color channel values at
the low end of the intensity range are altered more than values near the middle or high ends,
which means an image can be darkened without losing the contrast between the lighter portions of
the image.

Value Meaning

0 Specifies that shadows MUST NOT change.

0 < value ≤ 100 Specifies that shadows with a percent of intensity below this threshold are made darker.

Bitmap images are specified by EmfPlusBitmap objects.

See section 2.2.3 for the specification of additional image effects parameter objects.

2.2.3.9 RedEyeCorrectionEffect Object

The RedEyeCorrectionEffect object specifies areas of an image to which a red-eye correction is
applied.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

NumberOfAreas

Areas (variable)

...

NumberOfAreas (4 bytes): A 32-bit signed integer that specifies the number of rectangles in the
Areas field.

Areas (variable): An array of NumberOfAreas WMF RectL objects [MS-WMF]. Each rectangle

specifies an area of the bitmap image to which the red-eye correction effect SHOULD be applied.

Bitmap images are specified by EmfPlusBitmap objects.

See section 2.2.3 for the specification of additional image effects parameter objects.

2.2.3.10 SharpenEffect Object

The SharpenEffect object specifies an increase in the difference in intensity between pixels in an
image.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Radius

Amount

120 / 270

[MS-EMFPLUS-Diff] - v20160714
Enhanced Metafile Format Plus Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Radius (4 bytes): A 32-bit floating-point number that specifies the sharpening radius in pixels, which
determines the number of pixels involved in calculating the new value of a given pixel.

As this value increases, the number of pixels involved in the calculation increases, and the
resulting bitmap SHOULD become sharper.

Amount (4 bytes): A 32-bit floating-point number that specifies the difference in intensity between a
given pixel and the surrounding pixels.

Value Meaning

0 Specifies that sharpening MUST NOT be performed.

0 < value ≤ 100 As this value increases, the difference in intensity between pixels SHOULD increase.

Bitmap images are specified by EmfPlusBitmap objects.

See section 2.2.3 for the specification of additional image effects parameter objects.

2.2.3.11 TintEffect Object

The TintEffect object specifies an addition of black or white to a specified hue in an image.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Hue

Amount

Hue (4 bytes): A 32-bit signed integer that specifies the hue to which the tint effect is applied.

Value Meaning

-180 ≤ value < 0 The color at a specified counter-clockwise rotation of the color wheel, starting from blue.

0 A value of 0 specifies the color blue on the color wheel.

0 < value ≤ 180 The color at a specified clockwise rotation of the color wheel, starting from blue.

Amount (4 bytes): A 32-bit signed integer that specifies how much the hue is strengthened or
weakened.

Value Meaning

-
100 ≤ value < 0

Negative values specify how much the hue is weakened, which equates to the addition of
black.

0 A value of 0 specifies that the tint MUST NOT change.

0 < value ≤ 100 Positive values specify how much the hue is strengthened, which equates to the addition of
white.

Bitmap images are specified by EmfPlusBitmap objects.

See section 2.2.3 for the specification of additional image effects parameter objects.

121 / 270

[MS-EMFPLUS-Diff] - v20160714
Enhanced Metafile Format Plus Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

2.3 EMF+ Records

This section specifies the Records, which are grouped into the following categories:

Name Section Description

Clipping record types 2.3.1 Specify clipping regions and operations.

Comment record types 2.3.2 Specify arbitrary private data in the EMF+ metafile.

Control record types 2.3.3 Specify global parameters for EMF+ metafile processing.

Drawing record types 2.3.4 Specify graphics output.

Object record types 2.3.5 Define reusable graphics objects.

Property record types 2.3.6 Specify properties of the playback device context.

State record types 2.3.7 Specify operations on the state of the playback device context.

Terminal Server record types 2.3.8 Specify graphics processing on a terminal server.

Transform record types 2.3.9 Specify properties and transforms on coordinate spaces.

2.3.1 Clipping Record Types

The clipping record types specify clipping regions and operations. The following are EMF+ clipping
record types:

Name Section Description

EmfPlusOffsetClip 2.3.1.1 Applies a translation transform on the current clipping region for the world
space.

EmfPlusResetClip 2.3.1.2 Resets the current clipping region for the world space to infinity.

EmfPlusSetClipPath 2.3.1.3 Combines the current clipping region with a graphics path.

EmfPlusSetClipRect 2.3.1.4 Combines the current clipping region with a rectangle.

EmfPlusSetClipRegion 2.3.1.5 Combines the current clipping region with another graphics region.

The generic structure of EMF+ clipping records is specified as follows:

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Type Flags

Size

DataSize

RecordData (variable)

...

122 / 270

[MS-EMFPLUS-Diff] - v20160714
Enhanced Metafile Format Plus Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Type (2 bytes): A 16-bit unsigned integer that identifies the record type. The clipping record types
are listed below. See the table above for descriptions of these records.

Name Value

EmfPlusResetClip 0x4031

EmfPlusSetClipRect 0x4032

EmfPlusSetClipPath 0x4033

EmfPlusSetClipRegion 0x4034

EmfPlusOffsetClip 0x4035

Flags (2 bytes): A 16-bit unsigned integer that contains information for some records on how the
operation is to be performed and on the structure of the record.

Size (4 bytes): A 32-bit unsigned integer that MUST define the 32-bit–aligned size of the entire

record in bytes, including the 12-byte record header and the record-specific data.

DataSize (4 bytes): A 32-bit unsigned integer that MUST define the 32-bit–aligned number of bytes
of data in the RecordData field that follows. This number does not include the 12-byte record
header.

RecordData (variable): An optional, variable-length array of bytes that, if present, defines the data
specific to individual records. For specifications of the additional information, if any, contained
within this field, see individual record definitions.

2.3.1.1 EmfPlusOffsetClip Record

The EmfPlusOffsetClip record applies a translation transform on the current clipping region for the
world space.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Type Flags

Size

DataSize

dx

dy

Type (2 bytes): A 16-bit unsigned integer that identifies this record type as EmfPlusOffsetClip from
the RecordType enumeration. The value MUST be 0x4035.

Flags (2 bytes): A 16-bit unsigned integer that is reserved and MUST be ignored.

Size (4 bytes): A 32-bit unsigned integer that specifies the 32-bit-aligned size of the entire record in
bytes, including the 12-byte record header and record-specific data. For this record type, the
value MUST be 0x00000014.

123 / 270

[MS-EMFPLUS-Diff] - v20160714
Enhanced Metafile Format Plus Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

DataSize (4 bytes): A 32-bit unsigned integer that specifies the 32-bit-aligned number of bytes of
data in the record-specific data that follows. This number does not include the size of the invariant

part of this record. For this record type, the value MUST be 0x00000008.

dx (4 bytes): A 32-bit floating-point value that specifies the horizontal offset for the translation.

dy (4 bytes): A 32-bit floating-point value that specifies the vertical offset for the translation.

The new current clipping region is set to the result of the translation transform.

See section 2.3.1 for the specification of additional clipping record types.

2.3.1.2 EmfPlusResetClip Record

The EmfPlusResetClip record resets the current clipping region for the world space to infinity.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Type Flags

Size

DataSize

Type (2 bytes): A 16-bit unsigned integer that identifies this record type as EmfPlusResetClip from
the RecordType enumeration. The value MUST be 0x4031.

Flags (2 bytes): A 16-bit unsigned integer that is reserved and MUST be ignored.

Size (4 bytes): A 32-bit unsigned integer that specifies the 32-bit-aligned size of the entire record in

bytes, including the 12-byte record header and record-specific data. For this record type, the

value MUST be 0x0000000C.

DataSize (4 bytes): A 32-bit unsigned integer that specifies the 32-bit-aligned number of bytes of
data in the record-specific data that follows. This number does not include the size of the invariant
part of this record. For this record type, the value MUST be 0x00000000.

See section 2.3.1 for the specification of additional clipping record types.

2.3.1.3 EmfPlusSetClipPath Record

The EmfPlusSetClipPath record combines the current clipping region with a graphics path.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Type Flags

Size

DataSize

Type (2 bytes): A 16-bit unsigned integer that identifies this record type as EmfPlusSetClipPath from

the RecordType enumeration. The value MUST be 0x4033.

124 / 270

[MS-EMFPLUS-Diff] - v20160714
Enhanced Metafile Format Plus Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Flags (2 bytes): A 16-bit unsigned integer that provides information about how the operation is to be
performed, and about the structure of the record.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

X X X X CM ObjectID

X (1 bit): Reserved and MUST be ignored.

CM (4 bits): Specifies the logical operation for combining two regions. See the CombineMode
enumeration for the meanings of the values.

ObjectID (1 byte): The index of an EmfPlusPath object in the EMF+ Object Table (section 3.1.2).
The value MUST be zero to 63, inclusive.

Size (4 bytes): A 32-bit unsigned integer that specifies the 32-bit-aligned size of the entire record in
bytes, including the 12-byte record header and record-specific data. For this record type, the

value MUST be 0x0000000C.

DataSize (4 bytes): A 32-bit unsigned integer that specifies the 32-bit-aligned number of bytes of
data in the record-specific data that follows. This number does not include the size of the invariant
part of this record. For this record type, the value MUST be 0x00000000.

The new current clipping region is set to the result of the CombineMode operation.

See section 2.3.1 for the specification of additional clipping record types.

2.3.1.4 EmfPlusSetClipRect Record

The EmfPlusSetClipRect record combines the current clipping region with a rectangle.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Type Flags

Size

DataSize

ClipRect (16 bytes)

...

...

Type (2 bytes): A 16-bit unsigned integer that identifies this record type as EmfPlusSetClipRect from
the RecordType enumeration. The value MUST be 0x4032.

Flags (2 bytes): A 16-bit unsigned integer that provides information about how the operation is to be
performed, and about the structure of the record.

125 / 270

[MS-EMFPLUS-Diff] - v20160714
Enhanced Metafile Format Plus Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

X X X X CM X X X X X X X X

X (1 bit): Reserved and MUST be ignored.

CM (4 bits): Specifies the logical operation for combining two regions. See the CombineMode
enumeration for the meanings of the values.

Size (4 bytes): A 32-bit unsigned integer that specifies the 32-bit-aligned size of the entire record in
bytes, including the 12-byte record header and record-specific data. For this record type, the
value MUST be 0x0000001C.

DataSize (4 bytes): A 32-bit unsigned integer that specifies the 32-bit-aligned number of bytes of
data in the record-specific data that follows. This number does not include the size of the invariant
part of this record. For this record type, the value MUST be 0x00000010.

ClipRect (16 bytes): An EmfPlusRectF object that defines the rectangle to use in the CombineMode
operation.

The new current clipping region is set to the result of the CombineMode operation.

See section 2.3.1 for the specification of additional clipping record types.

2.3.1.5 EmfPlusSetClipRegion Record

The EmfPlusSetClipRegion record combines the current clipping region with another graphics region.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Type Flags

Size

DataSize

Type (2 bytes): A 16-bit unsigned integer that identifies this record type as EmfPlusSetClipRegion
from the RecordType enumeration. The value MUST be 0x4034.

Flags (2 bytes): A 16-bit unsigned integer that provides information about how the operation is to be
performed, and about the structure of the record.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

X X X X CM ObjectID

X (1 bit): Reserved and MUST be ignored.

CM (4 bits): Specifies the logical operation for combining two regions. See the CombineMode
enumeration for the meanings of the values.

ObjectID (1 byte): The index of an EmfPlusRegion object in the EMF+ Object Table. The value
MUST be zero to 63, inclusive.

126 / 270

[MS-EMFPLUS-Diff] - v20160714
Enhanced Metafile Format Plus Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Size (4 bytes): A 32-bit unsigned integer that specifies the 32-bit-aligned size of the entire record in
bytes, including the 12-byte record header and record-specific data. For this record type, the

value MUST be 0x0000000C.

DataSize (4 bytes): A 32-bit unsigned integer that specifies the 32-bit-aligned number of bytes of

data in the record-specific data that follows. This number does not include the size of the invariant
part of this record. For this record type, the value MUST be 0x00000000.

The new current clipping region is set to the result of performing the CombineMode operation on the
previous current clipping region and the specified EmfPlusRegion object.

See section 2.3.1 for the specification of additional clipping record types.

2.3.2 Comment Record Types

The Comment record type defines a format for specifying arbitrary private data.

Name Section Description

EmfPlusComment 2.3.2.1 Specifies arbitrary private data.

2.3.2.1 EmfPlusComment Record

The EmfPlusComment record specifies arbitrary private data.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Type Flags

Size

DataSize

PrivateData (variable)

...

Type (2 bytes): A 16-bit unsigned integer that identifies this record type as EmfPlusComment from
the RecordType enumeration. The value MUST be 0x4003.

Flags (2 bytes): A 16-bit unsigned integer that is not used. This field SHOULD be set to zero and

MUST be ignored upon receipt.<18>

Size (4 bytes): A 32-bit unsigned integer that specifies the 32-bit–aligned number of bytes in the
entire record, including the 12-byte record header and record-specific data. For this record type, it
MUST be computed as follows:

 Size = DataSize + 0x0000000C

DataSize (4 bytes): A 32-bit unsigned integer that specifies the 32-bit–aligned number of bytes of
record-specific data that follows.

127 / 270

[MS-EMFPLUS-Diff] - v20160714
Enhanced Metafile Format Plus Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

PrivateData (variable): A DataSize-length byte array of private data.

2.3.3 Control Record Types

The control record types specify global parameters for EMF+ metafile processing. The following are
EMF+ control record types:

Name Section Description

EmfPlusEndOfFile 2.3.3.1 Specifies the end of EMF+ data in the metafile.

EmfPlusGetDC 2.3.3.2 Specifies that subsequent EMF records ([MS-EMF] section 2.3) encountered in the
metafile SHOULD be processed.

EmfPlusHeader 2.3.3.3 Specifies the start of EMF+ data in the metafile.

The generic structure of EMF+ control records is specified as follows:

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Type Flags

Size

DataSize

RecordData (variable)

...

Type (2 bytes): A 16-bit unsigned integer that identifies the record type. The control record types
are listed below. See the table above for descriptions of these records.

Name Value

EmfPlusHeader 0x4001

EmfPlusEndOfFile 0x4002

EmfPlusGetDC 0x4004

Flags (2 bytes): A 16-bit unsigned integer that contains information for some records on how the
operation is to be performed and on the structure of the record.

Size (4 bytes): A 32-bit unsigned integer that MUST define the 32-bit–aligned size of the entire
record in bytes, including the 12-byte record header and the record-specific data.

DataSize (4 bytes): A 32-bit unsigned integer that MUST define the 32-bit–aligned number of bytes

of data in the RecordData field that follows. This number does not include the 12-byte record
header.

RecordData (variable): An optional, variable-length array of bytes that, if present, defines the data
specific to individual records. For specifications of the additional information, if any, which is
contained within this field, see individual record definitions.

128 / 270

[MS-EMFPLUS-Diff] - v20160714
Enhanced Metafile Format Plus Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

2.3.3.1 EmfPlusEndOfFile Record

The EmfPlusEndOfFile record specifies the end of EMF+ data in the metafile.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Type Flags

Size

DataSize

Type (2 bytes): A 16-bit unsigned integer that identifies this record type as EmfPlusEndOfFile from
the RecordType enumeration. The value MUST be 0x4002.

Flags (2 bytes): A 16-bit unsigned integer that is not used. This field SHOULD be set to zero and

MUST be ignored upon receipt.

Size (4 bytes): A 32-bit unsigned integer that specifies the 32-bit-aligned number of bytes in the
entire record, including the 12-byte record header and record-specific data. For this record type,
the value MUST be 0x0000000C.

DataSize (4 bytes): A 32-bit unsigned integer that specifies the 32-bit-aligned number of bytes of
data in the record-specific data that follows. For this record type, the value MUST be 0x00000000.

See section 2.3.3 for the specification of additional control record types.

2.3.3.2 EmfPlusGetDC Record

The EmfPlusGetDC record specifies that subsequent EMF records ([MS-EMF] section 2.3) encountered
in the metafile SHOULD be processed.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Type Flags

Size

DataSize

Type (2 bytes): A 16-bit unsigned integer that identifies this record type as EmfPlusGetDC from the
RecordType enumeration. The value MUST be 0x4004.

Flags (2 bytes): A 16-bit unsigned integer that is not used. This field SHOULD be set to zero and

MUST be ignored upon receipt.

Size (4 bytes): A 32-bit unsigned integer that specifies the 32-bit-aligned size of the entire record in
bytes, including the 12-byte record header and the record-specific buffer data. For this record
type, the value is 0x0000000C.

DataSize (4 bytes): A 32-bit unsigned integer that specifies the 32-bit-aligned number of bytes of
data in the record-specific data that follows. This number does not include the size of the invariant

part of this record. For this record type, the value is 0x00000000.

129 / 270

[MS-EMFPLUS-Diff] - v20160714
Enhanced Metafile Format Plus Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

EMF records cease being processed when the next EMF+ record is encountered.

See section 2.3.3 for the specification of additional control record types.

2.3.3.3 EmfPlusHeader Record

The EmfPlusHeader record specifies the start of EMF+ data in the metafile.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Type Flags

Size

DataSize

Version

EmfPlusFlags

LogicalDpiX

LogicalDpiY

Type (2 bytes): A 16-bit unsigned integer that identifies this record type as EmfPlusHeader from the
RecordType enumeration. The value MUST be 0x4001.

Flags (2 bytes): A 16-bit unsigned integer that provides information about the structure of the
metafile.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

X X X X X X X X X X X X X X X D

X (1 bit): Reserved and MUST be ignored.

D (1 bit): If set, this flag indicates that this metafile is "dual-mode",EMF+ Dual, which means
that it contains two sets of records, each of which completely specifies the graphics content. If
clear, the graphics content is specified by EMF+ records, and possibly EMF records ([MS-EMF]

section 2.3) that are preceded by an EmfPlusGetDC record. If this flag is set, EMF records
alone SHOULD suffice to define the graphics content. Note that whether the "dual-
mode"EMF+ Dual flag is set or not, some EMF records are always present, namely EMF
control records and the EMF records that contain EMF+ records.

Size (4 bytes): A 32-bit unsigned integer that specifies the 32-bit-aligned size of the entire record in
bytes, including the 12-byte record header and record-specific data. For this record type, the
value is 0x0000001C.

DataSize (4 bytes): A 32-bit unsigned integer that specifies the 32-bit-aligned number of bytes of
data in the record-specific data that follows. This number does not include the size of the invariant
part of this record. For this record type, the value is 0x00000010.

130 / 270

[MS-EMFPLUS-Diff] - v20160714
Enhanced Metafile Format Plus Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Version (4 bytes): An EmfPlusGraphicsVersion object that specifies the version of operating system
graphics that was used to create this metafile.

EmfPlusFlags (4 bytes): A 32-bit unsigned integer that contains information about how this metafile
was recorded.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

X V

X (1 bit): Reserved and MUST be ignored.

V (1 bit): If set, this flag indicates that the metafile was recorded with a reference device context
for a video display. If clear, the metafile was recorded with a reference device context for a
printer.

LogicalDpiX (4 bytes): A 32-bit unsigned integer that specifies the horizontal resolution for which

the metafile was recorded, in units of pixels per inch.

LogicalDpiY (4 bytes): A 32-bit unsigned integer that specifies the vertical resolution for which the
metafile was recorded, in units of lines per inch.

The EmfPlusHeader record MUST be embedded in an EMF EMR_COMMENT_EMFPLUS record, which
MUST be the record immediately following the EMF header in the metafile.

See section 2.3.3 for the specification of additional control record types.

2.3.4 Drawing Record Types

The drawing record types specify graphics output. The following are EMF+ drawing record types:

Name Section Description

EmfPlusClear 2.3.4.1 Clears the output coordinate space and initializes it with a background
color and transparency.

EmfPlusDrawArc 2.3.4.2 Specifies drawing the arc of an ellipse.

EmfPlusDrawBeziers 2.3.4.3 Specifies drawing a sequence of connected Bezier curves.

EmfPlusDrawClosedCurve 2.3.4.4 Specifies drawing a closed cardinal spline.

EmfPlusDrawCurve 2.3.4.5 Specifies drawing a cardinal spline.

EmfPlusDrawDriverString 2.3.4.6 Specifies text output with character positions.

EmfPlusDrawEllipse 2.3.4.7 Specifies drawing an ellipse.

EmfPlusDrawImage 2.3.4.8 Specifies drawing a scaled image.

EmfPlusDrawImagePoints 2.3.4.9 Specifies drawing a scaled image inside a parallelogram.

EmfPlusDrawLines 2.3.4.10 Specifies drawing a series of connected lines.

EmfPlusDrawPath 2.3.4.11 Specifies drawing a graphics path.

EmfPlusDrawPie 2.3.4.12 Specifies drawing a section of the interior of an ellipse.

EmfPlusDrawRects 2.3.4.13 Specifies drawing a series of rectangles.

131 / 270

[MS-EMFPLUS-Diff] - v20160714
Enhanced Metafile Format Plus Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Name Section Description

EmfPlusDrawString 2.3.4.14 Specifies text output with string formatting.

EmfPlusFillClosedCurve 2.3.4.15 Specifies filling the interior of a closed cardinal spline.

EmfPlusFillEllipse 2.3.4.16 Specifies filling the interior of an ellipse.

EmfPlusFillPath 2.3.4.17 Specifies filling the interior of a graphics path.

EmfPlusFillPie 2.3.4.18 Specifies filling a section of the interior of an ellipse.

EmfPlusFillPolygon 2.3.4.19 Specifies filling the interior of a polygon.

EmfPlusFillRects 2.3.4.20 Specifies filling the interiors of a series of rectangles.

EmfPlusFillRegion 2.3.4.21 Specifies filling the interior of a graphics region.

The generic structure of EMF+ drawing records is specified as follows:

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Type Flags

Size

DataSize

RecordData (variable)

...

Type (2 bytes): A 16-bit unsigned integer that identifies the record type. The drawing record types
are listed below. See the table above for descriptions of these records.

Name Value

EmfPlusClear 0x4009

EmfPlusFillRects 0x400A

EmfPlusDrawRects 0x400B

EmfPlusFillPolygon 0x400C

EmfPlusDrawLines 0x400D

EmfPlusFillEllipse 0x400E

EmfPlusDrawEllipse 0x400F

EmfPlusFillPie 0x4010

EmfPlusDrawPie 0x4011

EmfPlusDrawArc 0x4012

EmfPlusFillRegion 0x4013

132 / 270

[MS-EMFPLUS-Diff] - v20160714
Enhanced Metafile Format Plus Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Name Value

EmfPlusFillPath 0x4014

EmfPlusDrawPath 0x4015

EmfPlusFillClosedCurve 0x4016

EmfPlusDrawClosedCurve 0x4017

EmfPlusDrawCurve 0x4018

EmfPlusDrawBeziers 0x4019

EmfPlusDrawImage 0x401A

EmfPlusDrawImagePoints 0x401B

EmfPlusDrawString 0x401C

EmfPlusDrawDriverString 0x4036

Flags (2 bytes): A 16-bit unsigned integer that contains information for some records on how the
operation is to be performed and on the structure of the record.

Size (4 bytes): A 32-bit unsigned integer that MUST define the 32-bit-aligned size of the entire

record in bytes, including the 12-byte record header and the record-specific data.

DataSize (4 bytes): A 32-bit unsigned integer that MUST define the 32-bit-aligned number of bytes
of data in the RecordData field that follows. This number does not include the 12-byte record
header.

RecordData (variable): An optional, variable-length array of bytes that, if present, MUST define the
data specific to individual records. For specifications of the additional information, if any, which is
contained within this field, see individual record definitions.

2.3.4.1 EmfPlusClear Record

The EmfPlusClear record clears the output coordinate space and initializes it with a background color
and transparency.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Type Flags

Size

DataSize

Color

Type (2 bytes): A 16-bit unsigned integer that identifies this record type as EmfPlusClear from the
RecordType enumeration. The value MUST be 0x4009.

Flags (2 bytes): A 16-bit unsigned integer that is not used. This field SHOULD be set to zero and
MUST be ignored upon receipt.

133 / 270

[MS-EMFPLUS-Diff] - v20160714
Enhanced Metafile Format Plus Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Size (4 bytes): A 32-bit unsigned integer that specifies the 32-bit-aligned number of bytes in the
entire record, including the 12-byte record header and record-specific data. For this record type, it

MUST be 0x00000010.

DataSize (4 bytes): A 32-bit unsigned integer that specifies the 32-bit-aligned number of bytes of

record-specific data that follows. For this record type, it MUST be 0x00000004.

Color (4 bytes): An EmfPlusARGB object that defines the color to paint the screen. All colors are
specified in [IEC-RGB], unless otherwise noted.

See section 2.3.4 for the specification of additional drawing record types.

2.3.4.2 EmfPlusDrawArc Record

The EmfPlusDrawArc record specifies drawing the arc of an ellipse.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Type Flags

Size

DataSize

StartAngle

SweepAngle

RectData (variable)

...

Type (2 bytes): A 16-bit unsigned integer that identifies this record type as EmfPlusDrawArc from
the RecordType enumeration. The value MUST be 0x4012.

Flags (2 bytes): A 16-bit unsigned integer that provides information about how the operation is to be

performed, and about the structure of the record.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

X C X X X X X X ObjectID

X (1 bit): Reserved and MUST be ignored.

C (1 bit): This bit indicates whether the data in the RectData field is compressed.

If set, RectData contains an EmfPlusRect object. If clear, RectData contains an EmfPlusRectF
object.

ObjectID (1 byte): The index of an EmfPlusPen object in the EMF+ Object Table to draw the arc.

The value MUST be zero to 63, inclusive.

134 / 270

[MS-EMFPLUS-Diff] - v20160714
Enhanced Metafile Format Plus Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Size (4 bytes): A 32-bit unsigned integer that specifies the 32-bit-aligned number of bytes in the
entire record, including the 12-byte record header and record-specific data. For this record type,

the value MUST be one of the following:

Value Meaning

0x0000001C If the C bit is set in the Flags field.

0x00000024 If the C bit is clear in the Flags field.

DataSize (4 bytes): A 32-bit unsigned integer that specifies the 32-bit-aligned number of bytes of
record-specific data that follows. For this record type, the value MUST be one of the following:

Value Meaning

0x00000010 If the C bit is set in the Flags field.

0x00000018 If the C bit is clear in the Flags field.

StartAngle (4 bytes): A 32-bit non-negative floating-point value that specifies the angle between
the x-axis and the starting point of the arc. Any value is acceptable, but it MUST be interpreted

modulo 360, with the result that is used being in the range 0.0 inclusive to 360.0 exclusive.

SweepAngle (4 bytes): A 32-bit floating-point value that specifies the extent of the arc to draw, as
an angle in degrees measured from the starting point defined by the StartAngle value. Any value
is acceptable, but it MUST be clamped to -360.0 to 360.0 inclusive. A positive value indicates that
the sweep is defined in a clockwise direction, and a negative value indicates that the sweep is
defined in a counter-clockwise direction.

RectData (variable): Either an EmfPlusRect or EmfPlusRectF object that defines the bounding box of

the ellipse that is collinear with the arc. This rectangle defines the position, size, and shape of the
arc. The type of object in this field is specified by the value of the Flags field.

See section 2.3.4 for the specification of additional drawing record types.

2.3.4.3 EmfPlusDrawBeziers Record

The EmfPlusDrawBeziers record specifies drawing a sequence of connected Bezier curves. The order
for Bezier data points is the start point, control point 1, control point 2 and end point. For more
information see [MSDN-DrawBeziers].

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Type Flags

Size

DataSize

Count

PointData (variable)

...

135 / 270

[MS-EMFPLUS-Diff] - v20160714
Enhanced Metafile Format Plus Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Type (2 bytes): A 16-bit unsigned integer that identifies this record type as EmfPlusDrawBeziers
from the RecordType enumeration. The value MUST be 0x4019.

Flags (2 bytes): A 16-bit unsigned integer that provides information about how the operation is to be
performed, and about the structure of the record.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

X C X X P X X X ObjectID

X (1 bit): Reserved and MUST be ignored.

C (1 bit): This bit indicates whether the PointData field specifies compressed data.

If set, PointData specifies absolute locations in the coordinate space with 16-bit integer
coordinates. If clear, PointData specifies absolute locations in the coordinate space with 32-bit
floating-point coordinates.

Note: If the P flag (below) is set, this flag is undefined and MUST be ignored.

P (1 bit): This bit indicates whether the PointData field specifies relative or absolute locations.

If set, each element in PointData specifies a location in the coordinate space that is relative to
the location specified by the previous element in the array. In the case of the first element in
PointData, a previous location at coordinates (0,0) is assumed. If clear, PointData specifies
absolute locations according to the C flag.

Note: If this flag is set, the C flag (above) is undefined and MUST be ignored.<19>

ObjectID (1 byte): The index of an EmfPlusPen object in the EMF+ Object Table to draw the
Bezier curves. The value MUST be zero to 63, inclusive.

Size (4 bytes): A 32-bit unsigned integer that specifies the 32-bit-aligned number of bytes in the

entire record. At least 4 points MUST be specified.

Value Meaning

0x00000018 ≤ value If the P bit is set in the Flags field, the minimum Size is computed as follows:

 Size = (Count * 0x00000002) + 0x00000010

0x00000020 ≤ value If the P bit is clear and the C bit is set in the Flags field, Size is computed as follows:

 Size = (Count * 0x00000004) + 0x00000010

0x00000030 ≤ value If the P bit is clear and the C bit is clear in the Flags field, Size is computed as follows:

 Size = (Count * 0x00000008) + 0x00000010

DataSize (4 bytes): A 32-bit unsigned integer that specifies the 32-bit-aligned number of bytes in
the entire record. At least 4 points MUST be specified.

136 / 270

[MS-EMFPLUS-Diff] - v20160714
Enhanced Metafile Format Plus Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Value Meaning

0x0000000C ≤ value If the P bit is set in the Flags field, the minimum DataSize is computed as follows:

 DataSize = (Count * 0x00000002) + 0x00000004

0x00000014 ≤ value If the P bit is clear and the C bit is set in the Flags field, DataSize is computed as

follows:

 DataSize = (Count * 0x00000004) + 0x00000004

0x00000024 ≤ value If the P bit is clear and the C bit is clear in the Flags field, DataSize is computed as
follows:

 DataSize = (Count * 0x00000008) + 0x00000004

Count (4 bytes): A 32-bit unsigned integer that specifies the number of points in the PointData
array. At least 4 points MUST be specified.

PointData (variable): An array of Count points that specify the starting, ending, and control points

of the Bezier curves. The ending coordinate of one Bezier curve is the starting coordinate of the
next. The control points are used for producing the Bezier effect.

The type of data in this array is specified by the Flags field, as follows:

Data Type Meaning

EmfPlusPointR object If the P flag is set in the Flags, the points specify relative locations.

EmfPlusPointF object If the P and C bits are clear in the Flags field, the points specify absolute
locations.

EmfPlusPoint object If the P bit is clear and the C bit is set in the Flags field, the points specify
relative locations.

A Bezier curve does not pass through its control points. The control points act as magnets, pulling
the curve in certain directions to influence the way the lines bend.

See section 2.3.4 for the specification of additional drawing record types.

2.3.4.4 EmfPlusDrawClosedCurve Record

The EmfPlusDrawClosedCurve record specifies drawing a closed cardinal spline.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Type Flags

Size

DataSize

137 / 270

[MS-EMFPLUS-Diff] - v20160714
Enhanced Metafile Format Plus Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Tension

Count

PointData (variable)

...

Type (2 bytes): A 16-bit unsigned integer that identifies this record type as
EmfPlusDrawClosedCurve from the RecordType enumeration. The value MUST be 0x4017.

Flags (2 bytes): A 16-bit unsigned integer that provides information about how the operation is to be

performed, and about the structure of the record.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

X C X X P X X X ObjectID

X (1 bit): Reserved and MUST be ignored.

C (1 bit): This bit indicates whether the PointData field specifies compressed data.

If set, PointData specifies locations in the coordinate space with 16-bit integer coordinates. If
clear, PointData specifies locations in the coordinate space with 32-bit floating-point coordinates.

Note: If the P flag (below) is set, this flag is undefined and MUST be ignored.

P (1 bit): This bit indicates whether the PointData field specifies relative or absolute locations.

If set, each element in PointData specifies a location in the coordinate space that is relative to

the location specified by the previous element in the array. In the case of the first element in
PointData, a previous location at coordinates (0,0) is assumed. If clear, PointData specifies
absolute locations according to the C flag.

Note: If this flag is set, the C flag (above) is undefined and MUST be ignored.<20>

ObjectID (1 byte): The index of an EmfPlusPen object in the EMF+ Object Table to draw the
closed curve. The value MUST be zero to 63, inclusive.

Size (4 bytes): A 32-bit unsigned integer that specifies the 32-bit-aligned number of bytes in the
entire record. At least 3 points MUST be specified.

Value Meaning

0x0000001C ≤ value If the P bit is set in the Flags field, the minimum Size is computed as follows:

 Size = ((((Count * 0x00000002) + 0x00000014 + 0x00000003) / 4) * 4)

0x00000020 ≤ value If the P bit is clear and the C bit is set in the Flags field, Size is computed as
follows:

 Size = (Count * 0x00000004) + 0x00000014

138 / 270

[MS-EMFPLUS-Diff] - v20160714
Enhanced Metafile Format Plus Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Value Meaning

0x0000002C ≤ value If the P bit is clear and the C bit is clear in the Flags field, Size is computed as
follows:

 Size = (Count * 0x00000008) + 0x00000014

DataSize (4 bytes): A 32-bit unsigned integer that specifies the 32-bit-aligned number of bytes of

record-specific data in the record. At least 3 points MUST be specified.

Value Meaning

0x00000010 ≤ value If the P bit is set in the Flags field, the minimum DataSize is computed as follows:

 DataSize = ((((Count * 0x00000002) + 0x0000008 + 0x00000003) / 4) *
4)

0x00000014 ≤ value If the P bit is clear and the C bit is set in the Flags field, DataSize is computed as
follows:

 DataSize = (Count * 0x00000004) + 0x00000008

0x00000020 ≤ value If the P bit is clear and the C bit is clear in the Flags field, DataSize is computed as
follows:

 DataSize = (Count * 0x00000008) + 0x00000008

Tension (4 bytes): A 32-bit floating point number that specifies how tightly the spline bends as it

passes through the points. A value of 0 specifies that the spline is a sequence of straight lines. As
the value increases, the curve becomes more rounded. For more information, see [SPLINE77] and
[PETZOLD].

Count (4 bytes): A 32-bit unsigned integer that specifies the number of points in the PointData
field. At least 3 points MUST be specified.

PointData (variable): An array of Count points that specify the endpoints of the lines that define
the spline. In a closed cardinal spline, the curve continues through the last point in the PointData

array and connects with the first point in the array.

The type of data in this array is specified by the Flags field, as follows:

Data Type Meaning

EmfPlusPointR object If the P bit is set in the Flags field, the points specify relative locations.

EmfPlusPoint object If the P bit is clear and the C bit is set in the Flags field, the points specify
absolute locations with 16-bit coordinates.

EmfPlusPointF object If the P and C bits are clear in the Flags field, the points specify absolute
locations with 32-bit coordinates.

See section 2.3.4 for the specification of additional drawing record types.

139 / 270

[MS-EMFPLUS-Diff] - v20160714
Enhanced Metafile Format Plus Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

2.3.4.5 EmfPlusDrawCurve Record

The EmfPlusDrawCurve record specifies drawing a cardinal spline.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Type Flags

Size

DataSize

Tension

Offset

NumSegments

Count

PointData (variable)

...

Type (2 bytes): A 16-bit unsigned integer that identifies this record type as EmfPlusDrawCurve from
the RecordType enumeration. The value MUST be 0x4018.

Flags (2 bytes): A 16-bit unsigned integer that provides information about how the operation is to be
performed, and about the structure of the record.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

X C X X X X X X ObjectID

X (1 bit): Reserved and MUST be ignored.

C (1 bit): This bit indicates whether the data in the PointData field is compressed.

If set, PointData contains an array of EmfPlusPoint objects. If clear, PointData contains an array
of EmfPlusPointF objects.

ObjectID (1 byte): The index of an EmfPlusPen object in the EMF+ Object Table to draw the
curve. The value MUST be zero to 63, inclusive.

Size (4 bytes): A 32-bit unsigned integer that specifies the 32-bit-aligned number of bytes in the
entire record, including the 12-byte record header and record-specific data.

At least 2 PointData elements MUST be specified in this record.

Value Meaning

0x00000024 ≤ value If the C bit is set in the Flags field, Count points with values of 16-bit signed
integers are defined in the PointData field. In this case, Size MUST be computed as

140 / 270

[MS-EMFPLUS-Diff] - v20160714
Enhanced Metafile Format Plus Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Value Meaning

follows:

 Size = (Count * 0x00000004) + 0x0000001C

0x0000002C ≤ value If the C bit is clear in the Flags field, Count points with values of 32-bit floating-

point numbers are defined in the PointData field. In this case, Size MUST be
computed as follows:

 Size = (Count * 0x00000008) + 0x0000001C

DataSize (4 bytes): A 32-bit unsigned integer that specifies the 32-bit-aligned number of bytes of
record-specific data that follows.

At least 2 PointData elements MUST be specified in this record.

Value Meaning

0x00000018 ≤ value If the C bit is set in the Flags field, Count points with values of 16-bit signed
integers are defined in the PointData field. In this case, DataSize MUST be
computed as follows:

 DataSize = (Count * 0x00000004) + 0x00000010

0x00000020 ≤ value If the C bit is clear in the Flags field, Count points with values of 32-bit floating-
point numbers are defined in the PointData field. In this case, DataSize MUST be
computed as follows:

 DataSize = (Count * 0x00000008) + 0x00000010

Tension (4 bytes): A 32-bit floating-point value that specifies how tightly the spline bends as it
passes through the points. A value of 0 specifies that the spline is a sequence of straight lines. As
the value increases, the curve becomes more rounded. For more information, see [SPLINE77] and

[PETZOLD].

Offset (4 bytes): A 32-bit unsigned integer that specifies the element in the PointData array that
defines the starting point of the spline.

NumSegments (4 bytes): A 32-bit unsigned integer that specifies the number of line segments
making up the spline.

Count (4 bytes): A 32-bit unsigned integer that specifies the number of points in the PointData
array. The minimum number of points for drawing a curve is 2—the starting and ending points.

PointData (variable): An array of either 32-bit signed integers or 32-bit floating-point numbers of
Count length that defines coordinate values of the endpoints of the lines to be stroked.

See section 2.3.4 for the specification of additional drawing record types.

2.3.4.6 EmfPlusDrawDriverString Record

The EmfPlusDrawDriverString record specifies text output with character positions.

141 / 270

[MS-EMFPLUS-Diff] - v20160714
Enhanced Metafile Format Plus Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Type Flags

Size

DataSize

BrushId

DriverStringOptionsFlags

MatrixPresent

GlyphCount

Glyphs (variable)

...

GlyphPos (variable)

...

TransformMatrix (24 bytes, optional)

...

...

Type (2 bytes): A 16-bit unsigned integer that identifies this record type as EmfPlusDrawDriverString
from the RecordType enumeration. The value MUST be 0x4036.

Flags (2 bytes): A 16-bit unsigned integer that provides information about how the operation is to be

performed, and about the structure of the record.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

S X X X X X X X ObjectID

S (1 bit): This bit indicates the type of data in the BrushId field.

If set, BrushId specifies the color value in an EmfPlusARGB object. If clear, BrushId contains the
EMF+ Object Table index of an EmfPlusBrush object.

X (1 bit): Reserved and MUST be ignored.

ObjectID (1 byte): The EMF+ Object Table index of an EmfPlusFont object to render the text.
The value MUST be zero to 63, inclusive.

142 / 270

[MS-EMFPLUS-Diff] - v20160714
Enhanced Metafile Format Plus Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Size (4 bytes): A 32-bit unsigned integer that specifies the 32-bit-aligned number of bytes in the
entire record, including the 12-byte record header and record-specific data.

Value Meaning

0x0000001C ≤ value When glyphs are provided, but no transform matrix is specified in the
TransformMatrix field, the size of the record is computed as follows:

 Size = (GlyphCount * 0x0000000A) + 0x0000001C

0x00000034 ≤ value When glyphs are provided, and a transform matrix is specified in the
TransformMatrix field, the size of the record is computed as follows:

 Size = (GlyphCount * 0x0000000A) + 0x00000034

DataSize (4 bytes): A 32-bit unsigned integer that specifies the 32-bit-aligned number of bytes of
record-specific data that follows.

Value Meaning

0x00000010 ≤ value When glyphs are provided, but no transform matrix is specified in the
TransformMatrix field, the size of the data is computed as follows:

 DataSize = (GlyphCount * 0x0000000A) + 0x00000010

0x00000028 ≤ value When glyphs are provided, and a transform matrix is specified in the
TransformMatrix field, the size of the data is computed as follows:

 DataSize = (GlyphCount * 0x0000000A) + 0x00000028

BrushId (4 bytes): A 32-bit unsigned integer that specifies either the foreground color of the text or
a graphics brush, depending on the value of the S flag in the Flags.

DriverStringOptionsFlags (4 bytes): A 32-bit unsigned integer that specifies the spacing,
orientation, and quality of rendering for the string. This value MUST be composed of
DriverStringOptions flags.

MatrixPresent (4 bytes): A 32-bit unsigned integer that specifies whether a transform matrix is
present in the TransformMatrix field.

Value Meaning

0x00000000 The transform matrix is not present in the record.

0x00000001 The transform matrix is present in the record.

GlyphCount (4 bytes): A 32-bit unsigned integer that specifies number of glyphs in the string.

Glyphs (variable): An array of 16-bit values that define the text string to draw.

If the DriverStringOptionsCmapLookup flag in the DriverStringOptionsFlags field is set,
each value in this array specifies a Unicode character. Otherwise, each value specifies an index to
a character glyph in the EmfPlusFont object specified by the ObjectId value in Flags field.

143 / 270

[MS-EMFPLUS-Diff] - v20160714
Enhanced Metafile Format Plus Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

GlyphPos (variable): An array of EmfPlusPointF objects that specify the output position of each
character glyph. There MUST be GlyphCount elements, which have a one-to-one correspondence

with the elements in the Glyphs array.

Glyph positions are calculated from the position of the first glyph if the

DriverStringOptionsRealizedAdvance flag in DriverStringOptions flags is set. In this case,
GlyphPos specifies the position of the first glyph only.

TransformMatrix (24 bytes): An optional EmfPlusTransformMatrix object that specifies the
transformation to apply to each value in the text array. The presence of this data is determined
from the MatrixPresent field.

See section 2.3.4 for the specification of additional drawing record types.

2.3.4.7 EmfPlusDrawEllipse Record

The EmfPlusDrawEllipse record specifies drawing an ellipse.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Type Flags

Size

DataSize

RectData (variable)

...

Type (2 bytes): A 16-bit unsigned integer that identifies this record type as EmfPlusDrawEllipse from

the RecordType enumeration. The value MUST be 0x400F.

Flags (2 bytes): A 16-bit unsigned integer that provides information about how the operation is to be
performed, and about the structure of the record.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

X C X X X X X X ObjectID

X (1 bit): Reserved and MUST be ignored.

C (1 bit): This bit indicates whether the data in the RectData field is compressed.

If set, RectData contains an EmfPlusRect object. If clear, RectData contains an EmfPlusRectF

object.

ObjectID (1 byte): The index of an EmfPlusPen object in the EMF+ Object Table to draw the
ellipse. The value MUST be zero to 63, inclusive.

Size (4 bytes): A 32-bit unsigned integer that specifies the 32-bit-aligned number of bytes in the
entire record, including the 12-byte record header and record-specific data. For this record type,
the value MUST be one of the following:

144 / 270

[MS-EMFPLUS-Diff] - v20160714
Enhanced Metafile Format Plus Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Value Meaning

0x00000014 If the C bit is set in the Flags field.

0x0000001C If the C bit is clear in the Flags field.

DataSize (4 bytes): A 32-bit unsigned integer that specifies the 32-bit-aligned number of bytes of
record-specific data that follows. For this record type, the value MUST be one of the following:

Value Meaning

0x00000008 If the C bit is set in the Flags field.

0x00000010 If the C bit is clear in the Flags field.

RectData (variable): Either an EmfPlusRect or EmfPlusRectF object that defines the bounding box of
the ellipse.

See section 2.3.4 for the specification of additional drawing record types.

2.3.4.8 EmfPlusDrawImage Record

The EmfPlusDrawImage record specifies drawing a scaled image.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Type Flags

Size

DataSize

ImageAttributesID

SrcUnit

SrcRect (16 bytes)

...

...

RectData (variable)

...

Type (2 bytes): A 16-bit unsigned integer that identifies this record type as EmfPlusDrawImage from
the RecordType enumeration. The value MUST be 0x401A.

Flags (2 bytes): A 16-bit unsigned integer that provides information about how the operation is to be

performed, and about the structure of the record.

145 / 270

[MS-EMFPLUS-Diff] - v20160714
Enhanced Metafile Format Plus Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

X C X X X X X X ObjectID

X (1 bit): Reserved and MUST be ignored.

C (1 bit): This bit indicates whether the data in the RectData field is compressed.

If set, RectData contains an EmfPlusRect object. If clear, RectData contains an EmfPlusRectF

object.

ObjectID (1 byte): The index of an EmfPlusImage object in the EMF+ Object Table, which
specifies the image to render. The value MUST be zero to 63, inclusive.

Size (4 bytes): A 32-bit unsigned integer that specifies the 32-bit-aligned number of bytes in the
entire record, including the 12-byte record header and record-specific data. For this record type,
the value MUST be one of the following:

Value Meaning

0x0000002C If the C bit is set in the Flags field.

0x00000034 If the C bit is clear in the Flags field.

DataSize (4 bytes): A 32-bit unsigned integer that specifies the 32-bit-aligned number of bytes of
record-specific data that follows. For this record type, the value MUST be one of the following:

Value Meaning

0x00000020 If the C bit is set in the Flags field.

0x00000028 If the C bit is clear in the Flags field.

ImageAttributesID (4 bytes): A 32-bit unsigned integer that specifies the index of an optional
EmfPlusImageAttributes object in the EMF+ Object Table.

SrcUnit (4 bytes): A 32-bit signed integer that specifies the units of the SrcRect field. It MUST be
the UnitTypePixel member of the UnitType enumeration.

SrcRect (16 bytes): An EmfPlusRectF object that specifies a portion of the image to be rendered.
The portion of the image specified by this rectangle is scaled to fit the destination rectangle
specified by the RectData field.

RectData (variable): Either an EmfPlusRect or EmfPlusRectF object that defines the bounding box of
the image. The portion of the image specified by the SrcRect field is scaled to fit this rectangle.

An EmfPlusImage object can specify either a bitmap or a metafile.

Colors in an image can be manipulated during rendering. They can be corrected, darkened, lightened,
and removed.

See section 2.3.4 for the specification of additional drawing record types.

2.3.4.9 EmfPlusDrawImagePoints Record

The EmfPlusDrawImagePoints record specifies drawing a scaled image inside a parallelogram.

146 / 270

[MS-EMFPLUS-Diff] - v20160714
Enhanced Metafile Format Plus Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Type Flags

Size

DataSize

ImageAttributesID

SrcUnit

SrcRect (16 bytes)

...

...

Count

PointData (variable)

...

Type (2 bytes): A 16-bit unsigned integer that identifies this record type as
EmfPlusDrawImagePoints from the RecordType enumeration. The value MUST be 0x401B.

Flags (2 bytes): A 16-bit unsigned integer that provides information about how the operation is to be

performed, and about the structure of the record.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

X C E X P X X X ObjectID

X (1 bit): Reserved and MUST be ignored.

C (1 bit): This bit indicates whether the PointData field specifies compressed data.

If set, PointData specifies absolute locations in the coordinate space with 16-bit integer
coordinates. If clear, PointData specifies absolute locations in the coordinate space with 32-bit

floating-point coordinates.

Note: If the P flag (below) is set, this flag is undefined and MUST be ignored.

E (1 bit): This bit indicates that the rendering of the image includes applying an effect.

If set, an object of the Effect class MUST have been specified in an earlier
EmfPlusSerializableObject record.

P (1 bit): This bit indicates whether the PointData field specifies relative or absolute locations.

If set, each element in PointData specifies a location in the coordinate space that is relative to

the location specified by the previous element in the array. In the case of the first element in

147 / 270

[MS-EMFPLUS-Diff] - v20160714
Enhanced Metafile Format Plus Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

PointData, a previous location at coordinates (0,0) is assumed. If clear, PointData specifies
absolute locations according to the C flag.

Note: If this flag is set, the C flag (above) is undefined and MUST be ignored.<21>

ObjectID (1 byte): The index of an EmfPlusImage object in the EMF+ Object Table, which

specifies the image to render. The value MUST be zero to 63, inclusive.

Size (4 bytes): A 32-bit unsigned integer that specifies the 32-bit-aligned number of bytes in the
entire record. For this record type, the value MUST be one of the following.

Value Meaning

0x00000030 If the P bit is set in the Flags field.

0x00000034 If the P bit is clear and the C bit is set in the Flags field.

0x00000040 If the P bit is clear and the C bit is clear in the Flags field.

DataSize (4 bytes): A 32-bit unsigned integer that specifies the 32-bit-aligned number of bytes of
record-specific data that follows. For this record type, the value MUST be one of the following.

Value Meaning

0x00000024 If the P bit is set in the Flags field.

0x00000028 If the P bit is clear and the C bit is set in the Flags field.

0x00000034 If the P bit is clear and the C bit is clear in the Flags field.

ImageAttributesID (4 bytes): A 32-bit unsigned integer that contains the index of the optional
EmfPlusImageAttributes object in the EMF+ Object Table.

SrcUnit (4 bytes): A 32-bit signed integer that defines the units of the SrcRect field. It MUST be the

UnitPixel value of the UnitType enumeration.

SrcRect (16 bytes): An EmfPlusRectF object that defines a portion of the image to be rendered.

Count (4 bytes): A 32-bit unsigned integer that specifies the number of points in the PointData
array. Exactly 3 points MUST be specified.

PointData (variable): An array of Count points that specify three points of a parallelogram. The
three points represent the upper-left, upper-right, and lower-left corners of the parallelogram. The
fourth point of the parallelogram is extrapolated from the first three. The portion of the image
specified by the SrcRect field SHOULD have scaling and shearing transforms applied if necessary
to fit inside the parallelogram.

The type of data in this array is specified by the Flags field, as follows.

Data Type Meaning

EmfPlusPointR object If the P flag is set in the Flags, the points specify relative locations.

EmfPlusPoint object If the P bit is clear and the C bit is set in the Flags field, the points specify
absolute locations with integer values.

EmfPlusPointF object If the P bit is clear and the C bit is clear in the Flags field, the points specify
absolute locations with floating-point values.

An EmfPlusImage can specify either a bitmap or metafile.

148 / 270

[MS-EMFPLUS-Diff] - v20160714
Enhanced Metafile Format Plus Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Colors in an image can be manipulated during rendering. They can be corrected, darkened, lightened,
and removed.

See section 2.3.4 for the specification of additional drawing record types.

2.3.4.10 EmfPlusDrawLines Record

The EmfPlusDrawlLines record specifies drawing a series of connected lines.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Type Flags

Size

DataSize

Count

PointData (variable)

...

Type (2 bytes): A 16-bit unsigned integer that identifies this record type as EmfPlusDrawlLines from

the RecordType enumeration. The value MUST be 0x400D.

Flags (2 bytes): A 16-bit unsigned integer that provides information about how the operation is to be
performed, and about the structure of the record.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

X C L X P X X X ObjectID

X (1 bit): Reserved and MUST be ignored.

C (1 bit): This bit indicates whether the PointData field specifies compressed data.

If set, PointData specifies absolute locations in the coordinate space with 16-bit integer

coordinates. If clear, PointData specifies absolute locations in the coordinate space with 32-bit
floating-point coordinates.

Note: If the P flag (below) is set, this flag is undefined and MUST be ignored.

L (1 bit): This bit indicates whether to draw an extra line between the last point and the first

point, to close the shape.

P (1 bit): This bit indicates whether the PointData field specifies relative or absolute locations.

If set, each element in PointData specifies a location in the coordinate space that is relative

to the location specified by the previous element in the array. In the case of the first element
in PointData, a previous location at coordinates (0,0) is assumed. If clear, PointData
specifies absolute locations according to the C flag.

Note: If this flag is set, the C flag (above) is undefined and MUST be ignored.<22>

149 / 270

[MS-EMFPLUS-Diff] - v20160714
Enhanced Metafile Format Plus Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

ObjectID (1 byte): The index of an EmfPlusPen object in the EMF+ Object Table to draw the
lines. The value MUST be zero to 63, inclusive.

Size (4 bytes): A 32-bit unsigned integer that specifies the 32-bit-aligned number of bytes in the
entire record. For this record type, the value MUST be one of the following.

Value Meaning

0x00000014 ≤ value If the P bit is set in the Flags field, the minimum Size is computed as follows:

 Size = (Count * 0x00000002) + 0x00000010

0x00000018 ≤ value If the P bit is clear and the C bit is set in the Flags field, Size is computed as follows:

 Size = (Count * 0x00000004) + 0x00000010

0x00000020 ≤ value If the P bit is clear and the C bit is clear in the Flags field, Size is computed as
follows:

 Size = (Count * 0x00000008) + 0x00000010

DataSize (4 bytes): A 32-bit unsigned integer that specifies the 32-bit-aligned number of bytes of
record-specific data that follows. For this record type, the value MUST be one of the following.

Value Meaning

0x00000008 ≤ value If the P bit is set in the Flags field, the minimum DataSize is computed as follows:

 DataSize = (Count * 0x00000002) + 0x00000004

0x0000000C ≤ value If the P bit is clear and the C bit is set in the Flags field, DataSize is computed as
follows:

 DataSize = (Count * 0x00000004) + 0x00000004

0x00000014 ≤ value If the P bit is clear and the C bit is clear in the Flags field, DataSize is computed as
follows:

 DataSize = (Count * 0x00000008) + 0x00000004

Count (4 bytes): A 32-bit unsigned integer that specifies the number of points in the PointData
array. At least 2 points MUST be specified.

PointData (variable): An array of Count points that specify the starting and ending points of the
lines to be drawn.

The type of data in this array is specified by the Flags field, as follows.

Data Type Meaning

EmfPlusPointR object If the P flag is set in the Flags, the points specify relative locations.

150 / 270

[MS-EMFPLUS-Diff] - v20160714
Enhanced Metafile Format Plus Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Data Type Meaning

EmfPlusPoint object If the P bit is clear and the C bit is set in the Flags field, the points specify
absolute locations with integer values.

EmfPlusPointF object If the P bit is clear and the C bit is clear in the Flags field, the points specify
absolute locations with floating-point values.

See section 2.3.4 for the specification of additional drawing record types.

2.3.4.11 EmfPlusDrawPath Record

The EmfPlusDrawPath record specifies drawing a graphics path.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Type Flags

Size

DataSize

PenId

Type (2 bytes): A 16-bit unsigned integer that identifies this record type as EmfPlusDrawPath from

the RecordType enumeration. The value MUST be 0x4015.

Flags (2 bytes): A 16-bit unsigned integer that provides information about how the operation is to be
performed, and about the structure of the record.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

X X X X X X X X ObjectId

X (1 bit): Reserved and MUST be ignored.

ObjectId (1 byte): The index of the EmfPlusPath object to draw, in the EMF+ Object Table. The
value MUST be zero to 63, inclusive.

Size (4 bytes): A 32-bit unsigned integer that specifies the 32-bit-aligned number of bytes in the
entire record, including the 12-byte record header and record-specific data. For this record type,
the value MUST be 0x00000010.

DataSize (4 bytes): A 32-bit unsigned integer that specifies the 32-bit-aligned number of bytes of
record-specific data that follows. For this record type, the value is 0x00000004.

PenId (4 bytes): A 32-bit unsigned integer that specifies an index in the EMF+ Object Table for an
EmfPlusPen object to use for drawing the EmfPlusPath. The value MUST be zero to 63, inclusive.

See section 2.3.4 for the specification of additional drawing record types.

2.3.4.12 EmfPlusDrawPie Record

The EmfPlusDrawPie record specifies drawing a section of the interior of an ellipse.

151 / 270

[MS-EMFPLUS-Diff] - v20160714
Enhanced Metafile Format Plus Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Type Flags

Size

DataSize

StartAngle

SweepAngle

RectData (variable)

...

Type (2 bytes): A 16-bit unsigned integer that identifies this record type as EmfPlusDrawPie from the
RecordType enumeration. The value MUST be 0x4011.

Flags (2 bytes): A 16-bit unsigned integer that provides information about how the operation is to be

performed, and about the structure of the record.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

X C X X X X X X ObjectID

X (1 bit): Reserved and MUST be ignored.

C (1 bit): This bit indicates whether the data in the RectData field is compressed.

If set, RectData contains an EmfPlusRect object. If clear, RectData contains an EmfPlusRectF
object.

ObjectID (1 byte): The index of an EmfPlusPen object in the EMF+ Object Table to draw the pie.
The value MUST be zero to 63, inclusive.

Size (4 bytes): A 32-bit unsigned integer that specifies the 32-bit-aligned number of bytes in the
entire record, including the 12-byte record header and record-specific data. For this record type,
the value MUST be one of the following:

Value Meaning

0x0000001C If the C bit is set in the Flags field.

0x00000024 If the C bit is clear in the Flags field.

DataSize (4 bytes): A 32-bit unsigned integer that specifies the 32-bit-aligned number of bytes of
record-specific data that follows. For this record type, the value MUST be one of the following:

Value Meaning

0x00000010 If the C bit is set in the Flags field.

152 / 270

[MS-EMFPLUS-Diff] - v20160714
Enhanced Metafile Format Plus Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Value Meaning

0x00000018 If the C bit is clear in the Flags field.

StartAngle (4 bytes): A 32-bit, non-negative floating-point value that specifies the angle between
the x-axis and the starting point of the pie wedge. Any value is acceptable, but it MUST be
interpreted modulo 360, with the result that is used being in the range 0.0 inclusive to 360.0
exclusive.

SweepAngle (4 bytes): A 32-bit floating-point value that specifies the extent of the arc that defines

the pie wedge to draw, as an angle in degrees measured from the starting point defined by the
StartAngle value. Any value is acceptable, but it MUST be clamped to -360.0 to 360.0 inclusive.
A positive value indicates that the sweep is defined in a clockwise direction, and a negative value
indicates that the sweep is defined in a counter-clockwise direction.

RectData (variable): Either an EmfPlusRect or EmfPlusRectF object that defines the bounding box of
the ellipse that contains the pie wedge. This rectangle defines the position, size, and shape of the

pie. The type of object in this field is specified by the value of the Flags field.

See section 2.3.4 for the specification of additional drawing record types.

2.3.4.13 EmfPlusDrawRects Record

The EmfPlusDrawRects record specifies drawing a series of rectangles.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Type Flags

Size

DataSize

Count

RectData (variable)

...

Type (2 bytes): A 16-bit unsigned integer that identifies this record type as EmfPlusDrawRects from
the RecordType enumeration. The value MUST be 0x400B.

Flags (2 bytes): A 16-bit unsigned integer that provides information about how the operation is to be
performed, and about the structure of the record.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

X C X X X X X X ObjectID

X (1 bit): Reserved and MUST be ignored.

C (1 bit): This bit indicates whether the data in the RectData field is compressed.

153 / 270

[MS-EMFPLUS-Diff] - v20160714
Enhanced Metafile Format Plus Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

If set, RectData contains an EmfPlusRect object. If clear, RectData contains an EmfPlusRectF
object.

ObjectID (1 byte): The index of an EmfPlusPen object in the EMF+ Object Table to draw the
rectangles. The value MUST be zero to 63, inclusive.

Size (4 bytes): A 32-bit unsigned integer that specifies the 32-bit-aligned number of bytes in the
entire record, including the 12-byte record header and record-specific data.

At least 1 RectData array element MUST be specified in this record.

Value Meaning

0x00000018 ≤ value If the C bit is set in the Flags field, Size MUST be computed as follows:

 Size = (Count * 0x00000008) + 0x00000010

0x00000020 ≤ value If the C bit is clear in the Flags field, Size MUST be computed as follows:

 Size = (Count * 0x00000010) + 0x00000010

DataSize (4 bytes): A 32-bit unsigned integer that specifies the 32-bit-aligned number of bytes of
record-specific data that follows.

At least 1 RectData array element MUST be specified in this record.

Value Meaning

0x0000000C ≤ value If the C bit is set in the Flags field, DataSize MUST be computed as follows:

 DataSize = (Count * 0x00000008) + 0x00000004

0x00000014 ≤ value If the C bit is clear in the Flags field, DataSize MUST be computed as follows:

 DataSize = (Count * 0x00000010) + 0x00000004

Count (4 bytes): A 32-bit unsigned integer that specifies the number of rectangles in the RectData
member.

RectData (variable): An array of either an EmfPlusRect or EmfPlusRectF objects of Count length
that defines the rectangle data.

See section 2.3.4 for the specification of additional drawing record types.

2.3.4.14 EmfPlusDrawString Record

The EmfPlusDrawString record specifies text output with string formatting.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Type Flags

154 / 270

[MS-EMFPLUS-Diff] - v20160714
Enhanced Metafile Format Plus Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Size

DataSize

BrushId

FormatID

Length

LayoutRect (16 bytes)

...

...

StringData (variable)

...

AlignmentPadding (variable)

...

Type (2 bytes): A 16-bit unsigned integer that identifies this record type as EmfPlusDrawString from
the RecordType enumeration. The value MUST be 0x401C.

Flags (2 bytes): A 16-bit unsigned integer that provides information about how the operation is to be

performed, and about the structure of the record.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

S X X X X X X X ObjectID

S (1 bit): This bit indicates the type of data in the BrushId field.

If set, BrushId specifies a color as an EmfPlusARGB object. If clear, BrushId contains the index
of an EmfPlusBrush object in the EMF+ Object Table.

X (1 bit): Reserved and MUST be ignored.

ObjectID (1 byte): The index of an EmfPlusFont object in the EMF+ Object Table to render the
text. The value MUST be zero to 63, inclusive.

Size (4 bytes): A 32-bit unsigned integer that specifies the 32-bit-aligned number of bytes in the
entire record, including the 12-byte record header, record-specific data, and any extra alignment
padding.

Value Meaning

0x0000002A ≤ value The size of the record is computed as follows:

 Size = (Length * 0x00000002) + 0x00000028 (+ AlignmentPaddingSize

155 / 270

[MS-EMFPLUS-Diff] - v20160714
Enhanced Metafile Format Plus Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Value Meaning

where AlignmentPaddingSize is the number of bytes in

AlignmentPadding)

DataSize (4 bytes): A 32-bit unsigned integer that specifies the 32-bit-aligned number of bytes of
record-specific data and any extra alignment padding that follows.

Value Meaning

0x0000001E ≤ value The size of the data is computed as follows:

 DataSize = (Length * 0x00000002) + 0x0000001C (+
AlignmentPaddingSize where AlignmentPaddingSize is the number of

bytes in AlignmentPadding)

BrushId (4 bytes): A 32-bit unsigned integer that specifies the brush, the content of which is
determined by the S bit in the Flags field. This definition is used to paint the foreground text

color; that is, just the glyphs themselves.

FormatID (4 bytes): A 32-bit unsigned integer that specifies the index of an optional
EmfPlusStringFormat object in the EMF+ Object Table. This object specifies text layout information
and display manipulations to be applied to a string.

Length (4 bytes): 32-bit unsigned integer that specifies the number of characters in the string.

LayoutRect (16 bytes): An EmfPlusRectF object that defines the bounding area of the destination
that will receive the string.

StringData (variable): An array of 16-bit Unicode characters that specifies the string to be drawn.

AlignmentPadding (variable): An optional array of up to 3 bytes that pads the record-specific data
so that DataSize is a multiple of 4 bytes. This field MUST be ignored.

See section 2.3.4 for the specification of additional drawing record types.

2.3.4.15 EmfPlusFillClosedCurve Record

The EmfPlusFillClosedCurve record specifies filling the interior of a closed cardinal spline.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Type Flags

Size

DataSize

BrushId

Tension

Count

156 / 270

[MS-EMFPLUS-Diff] - v20160714
Enhanced Metafile Format Plus Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

PointData (variable)

...

Type (2 bytes): A 16-bit unsigned integer that identifies this record type as EmfPlusFillClosedCurve
from the RecordType enumeration. The value MUST be 0x4016.

Flags (2 bytes): A 16-bit unsigned integer that provides information about how the operation is to be

performed, and about the structure of the record.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

S C W X P X X X X X X X X X X X

S (1 bit): This bit indicates the type of data in the BrushId field.

If set, BrushId specifies a color as an EmfPlusARGB object. If clear, BrushId contains the
index of an EmfPlusBrush object in the EMF+ Object Table.

C (1 bit): This bit indicates whether the PointData field specifies compressed data.

If set, PointData specifies absolute locations in the coordinate space with 16-bit integer
coordinates. If clear, PointData specifies absolute locations in the coordinate space with 32-
bit floating-point coordinates.

Note: If the P flag (below) is set, this flag is undefined and MUST be ignored.

W (1 bit): This bit indicates how to perform the fill operation.

If set, the fill is a "winding" fill. If clear, the fill is an "alternate" fill.

X (1 bit): Reserved and MUST be ignored.

P (1 bit): This bit indicates whether the PointData field specifies relative or absolute locations.

If set, each element in PointData specifies a location in the coordinate space that is relative
to the location specified by the previous element in the array. In the case of the first element
in PointData, a previous location at coordinates (0,0) is assumed. If clear, PointData
specifies absolute locations according to the C flag.

Note: If this flag is set, the C flag (above) is undefined and MUST be ignored.<23>

Size (4 bytes): A 32-bit unsigned integer that specifies the 32-bit-aligned number of bytes in the

entire record. At least 3 points MUST be specified.

Value Meaning

0x00000020 ≤ value If the P bit is set in the Flags field, the minimum Size is computed as follows:

 Size = ((((Count * 0x00000002) + 0x00000018 + 0x00000003) / 4) * 4)

0x00000024 ≤ value If the P bit is clear and the C bit is set in the Flags field, Size is computed as follows:

 Size = (Count * 0x00000004) + 0x00000018

157 / 270

[MS-EMFPLUS-Diff] - v20160714
Enhanced Metafile Format Plus Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Value Meaning

0x00000030 ≤ value If the P bit is clear and the C bit is clear in the Flags field, Size is computed as
follows:

 Size = (Count * 0x00000008) + 0x00000018

DataSize (4 bytes): A 32-bit unsigned integer that specifies the 32-bit-aligned number of bytes in

the entire record. At least 3 points MUST be specified.

Value Meaning

0x00000014 ≤ value If the P bit is set in the Flags field, the minimum DataSize is computed as follows:

 DataSize = ((((Count * 0x00000002) + 0x0000000C + 0x00000003) / 4) *
4)

0x00000018 ≤ value If the P bit is clear and the C bit is set in the Flags field, DataSize is computed as
follows:

 DataSize = (Count * 0x00000004) + 0x0000000C

0x00000024 ≤ value If the P bit is clear and the C bit is clear in the Flags field, DataSize is computed as
follows:

 DataSize = (Count * 0x00000008) + 0x0000000C

BrushId (4 bytes): A 32-bit unsigned integer that specifies the EmfPlusBrush, the content of which

is determined by the S bit in the Flags field. This brush is used to fill the interior of the closed
cardinal spline.

Tension (4 bytes): A 32-bit floating point value that specifies how tightly the spline bends as it
passes through the points. A value of 0.0 specifies that the spline is a sequence of straight lines.
As the value increases, the curve becomes more rounded. For more information, see [SPLINE77]
and [PETZOLD].

Count (4 bytes): A 32-bit unsigned integer that specifies the number of points in the PointData

field. At least 3 points MUST be specified.

PointData (variable): An array of Count points that specify the endpoints of the lines that define
the spline. In a closed cardinal spline, the curve continues through the last point in the PointData
array and connects with the first point in the array.

The type of data in this array is specified by the Flags field, as follows:

Data Type Meaning

EmfPlusPointR object If the P flag is set in the Flags, the points specify relative locations.

EmfPlusPoint object If the P bit is clear and the C bit is set in the Flags field, the points specify
absolute locations with integer values.

EmfPlusPointF object If the P bit is clear and the C bit is clear in the Flags field, the points specify
absolute locations with floating-point values.

158 / 270

[MS-EMFPLUS-Diff] - v20160714
Enhanced Metafile Format Plus Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

A "winding" fill operation fills areas according to the "even-odd parity" rule. According to this rule, a
test point can be determined to be inside or outside a closed curve as follows: Draw a line from the

test point to a point that is distant from the curve. If that line crosses the curve an odd number of
times, the test point is inside the curve; otherwise, the test point is outside the curve.

An "alternate" fill operation fills areas according to the "non-zero" rule. According to this rule, a test
point can be determined to be inside or outside a closed curve as follows: Draw a line from a test
point to a point that is distant from the curve. Count the number of times the curve crosses the test
line from left to right, and count the number of times the curve crosses the test line from right to left.
If those two numbers are the same, the test point is outside the curve; otherwise, the test point is
inside the curve.

See section 2.3.4 for the specification of additional drawing record types.

2.3.4.16 EmfPlusFillEllipse Record

The EmfPlusFillEllipse record specifies filling the interior of an ellipse.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Type Flags

Size

DataSize

BrushId

RectData (variable)

...

Type (2 bytes): A 16-bit unsigned integer that identifies this record type as EmfPlusFillEllipse from
the RecordType enumeration. The value MUST be 0x400E.

Flags (2 bytes): A 16-bit unsigned integer that provides information about how the operation is to be
performed, and about the structure of the record.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

S C X X X X X X X X X X X X X X

S (1 bit): This bit specifies the type of data in the BrushId field.

If set, BrushId specifies a color as an EmfPlusARGB object. If clear, BrushId contains the

index of an EmfPlusBrush object in the EMF+ Object Table.

C (1 bit): This bit indicates whether the data in the RectData field is compressed.

If set, RectData contains an EmfPlusRect object. If clear, RectData contains an EmfPlusRectF
object.

X (1 bit): Reserved and MUST be ignored.

159 / 270

[MS-EMFPLUS-Diff] - v20160714
Enhanced Metafile Format Plus Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Size (4 bytes): A 32-bit unsigned integer that specifies the 32-bit-aligned number of bytes in the
entire record, including the 12-byte record header and record-specific data. For this record type,

the value MUST be one of the following:

Value Meaning

0x00000018 If the C bit is set in the Flags field.

0x00000020 If the C bit is clear in the Flags field.

DataSize (4 bytes): A 32-bit unsigned integer that specifies the 32-bit-aligned number of bytes of
record-specific data that follows. For this record type, the value MUST be one of the following:

Value Meaning

0x0000000C If the C bit is set in the Flags field.

0x00000014 If the C bit is clear in the Flags field.

BrushId (4 bytes): A 32-bit unsigned integer that specifies the brush, the content of which is
determined by the S bit in the Flags field. This definition is used to fill the interior of the ellipse.

RectData (variable): Either an EmfPlusRect or EmfPlusRectF object that defines the bounding box of
the ellipse.

See section 2.3.4 for the specification of additional drawing record types.

2.3.4.17 EmfPlusFillPath Record

The EmfPlusFillPath record specifies filling the interior of a graphics path.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Type Flags

Size

DataSize

BrushId

Type (2 bytes): A 16-bit unsigned integer that identifies this record type as EmfPlusFillPath from the
RecordType enumeration. The value MUST be 0x4014.

Flags (2 bytes): A 16-bit unsigned integer that provides information about how the operation is to be
performed, and about the structure of the record.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

S X X X X X X X ObjectId

S (1 bit): This bit indicates the type of data in the BrushId field.

160 / 270

[MS-EMFPLUS-Diff] - v20160714
Enhanced Metafile Format Plus Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

If set, BrushId specifies a color as an EmfPlusARGB object. If clear, BrushId contains the index
of an EmfPlusBrush object in the EMF+ Object Table.

X (1 bit): Reserved and MUST be ignored.

ObjectId (1 byte): The index of the EmfPlusPath object to fill, in the EMF+ Object Table. The

value MUST be zero to 63, inclusive.

Size (4 bytes): A 32-bit unsigned integer that specifies the 32-bit-aligned number of bytes in the
entire record, including the 12-byte record header and record-specific data. For this record type,
the value MUST be 0x00000010.

DataSize (4 bytes): A 32-bit unsigned integer that specifies the 32-bit-aligned number of bytes of
data of record-specific data that follows. For this record type, the value MUST be 0x00000004.

BrushId (4 bytes): A 32-bit unsigned integer that defines the brush, the content of which is

determined by the S bit in the Flags field.

See section 2.3.4 for the specification of additional drawing record types.

2.3.4.18 EmfPlusFillPie Record

The EmfPlusFillPie record specifies filling a section of the interior of an ellipse.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Type Flags

Size

DataSize

BrushId

StartAngle

SweepAngle

RectData (variable)

...

Type (2 bytes): A 16-bit unsigned integer that identifies this record type as EmfPlusFillPie from the
RecordType enumeration. The value MUST be 0x4010.

Flags (2 bytes): A 16-bit unsigned integer that provides information about how the operation is to be
performed, and about the structure of the record.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

S C X X X X X X X X X X X X X X

S (1 bit): This bit indicates the type of data in the BrushId field.

161 / 270

[MS-EMFPLUS-Diff] - v20160714
Enhanced Metafile Format Plus Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

If set, BrushId specifies a color as an EmfPlusARGB object. If clear, BrushId contains the
index of an EmfPlusBrush object in the EMF+ Object Table.

C (1 bit): This bit indicates whether the data in the RectData field is compressed.

If set, RectData contains an EmfPlusRect object. If clear, RectData contains an EmfPlusRectF

object.

X (1 bit): Reserved and MUST be ignored.

Size (4 bytes): A 32-bit unsigned integer that specifies the 32-bit-aligned number of bytes in the
entire record, including the 12-byte record header and record-specific data. For this record type,
the value MUST be one of the following:

Value Meaning

0x00000020 If the C bit is set in the Flags field.

0x00000028 If the C bit is clear in the Flags field.

DataSize (4 bytes): A 32-bit unsigned integer that specifies the 32-bit-aligned number of bytes of
record-specific data that follows. For this record type, the value MUST be one of the following:

Value Meaning

0x00000014 If the C bit is set in the Flags field.

0x0000001C If the C bit is clear in the Flags field.

BrushId (4 bytes): A 32-bit unsigned integer that defines the brush, the content of which is
determined by the S bit in the Flags field.

StartAngle (4 bytes): A 32-bit, non-negative floating-point value that specifies the angle between

the x-axis and the starting point of the pie wedge. Any value is acceptable, but it MUST be

interpreted modulo 360, with the result that is used being in the range 0.0 inclusive to 360.0
exclusive.

SweepAngle (4 bytes): A 32-bit floating-point value that specifies the extent of the arc that defines
the pie wedge to fill, as an angle in degrees measured from the starting point defined by the
StartAngle value. Any value is acceptable, but it MUST be clamped to -360.0 to 360.0 inclusive.
A positive value indicates that the sweep is defined in a clockwise direction, and a negative value

indicates that the sweep is defined in a counter-clockwise direction.

RectData (variable): Either an EmfPlusRect or EmfPlusRectF object that defines the bounding box of
the ellipse that contains the pie wedge. This rectangle defines the position, size, and shape of the
pie. The type of object in this field is specified by the value of the Flags field.

See section 2.3.4 for the specification of additional drawing record types.

2.3.4.19 EmfPlusFillPolygon Record

The EmfPlusFillPolygon record specifies filling the interior of a polygon.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Type Flags

162 / 270

[MS-EMFPLUS-Diff] - v20160714
Enhanced Metafile Format Plus Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Size

DataSize

BrushId

Count

PointData (variable)

...

Type (2 bytes): A 16-bit unsigned integer that identifies this record type as EmfPlusFillPolygon from
the RecordType enumeration. The value MUST be 0x400C.

Flags (2 bytes): A 16-bit unsigned integer that provides information about how the operation is to be

performed, and about the structure of the record.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

S C X X P X X X X X X X X X X X

S (1 bit): This bit indicates the type of data in the BrushId field.

If set, BrushId specifies a color as an EmfPlusARGB object. If clear, BrushId contains the
index of an EmfPlusBrush object in the EMF+ Object Table.

C (1 bit): This bit indicates whether the PointData field specifies compressed data.

If set, PointData specifies absolute locations in the coordinate space with 16-bit integer
coordinates. If clear, PointData specifies absolute locations in the coordinate space with 32-
bit floating-point coordinates.

Note: If the P flag (below) is set, this flag is undefined and MUST be ignored.

X (1 bit): Reserved and MUST be ignored.

P (1 bit): This bit indicates whether the PointData field specifies relative or absolute locations.

If set, each element in PointData specifies a location in the coordinate space that is relative

to the location specified by the previous element in the array. In the case of the first element
in PointData, a previous location at coordinates (0,0) is assumed. If clear, PointData
specifies absolute locations according to the C flag.

Note: If this flag is set, the C flag (above) is undefined and MUST be ignored.<24>

Size (4 bytes): A 32-bit unsigned integer that specifies the 32-bit-aligned number of bytes in the
entire record. At least 3 points MUST be specified.

Value Meaning

0x0000001C ≤ value If the P bit is set in the Flags field, the minimum Size is computed as follows:

 Size = ((((Count * 0x00000002) + 0x00000014 + 0x00000003) / 4) * 4)

163 / 270

[MS-EMFPLUS-Diff] - v20160714
Enhanced Metafile Format Plus Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Value Meaning

0x00000020 ≤ value If the P bit is clear and the C bit is set in the Flags field, Size is computed as
follows:

 Size = (Count * 0x00000004) + 0x00000014

0x0000002C ≤ value If the P bit is clear and the C bit is clear in the Flags field, Size is computed as
follows:

 Size = (Count * 0x00000008) + 0x00000014

DataSize (4 bytes): A 32-bit unsigned integer that specifies the 32-bit-aligned number of bytes of
record-specific data in the record. At least 3 points MUST be specified.

Value Meaning

0x00000010 ≤ value If the P bit is set in the Flags field, the minimum DataSize is computed as follows:

 DataSize = ((((Count * 0x00000002) + 0x0000008 + 0x00000003) / 4) *
4)

0x00000014 ≤ value If the P bit is clear and the C bit is set in the Flags field, DataSize is computed as
follows:

 DataSize = (Count * 0x00000004) + 0x00000008

0x00000020 ≤ value If the P bit is clear and the C bit is clear in the Flags field, DataSize is computed as
follows:

 DataSize = (Count * 0x00000008) + 0x00000008

BrushId (4 bytes): A 32-bit unsigned integer that defines the brush, the content of which is
determined by the S bit in the Flags field.

Count (4 bytes): A 32-bit unsigned integer that specifies the number of points in the PointData
field. At least 3 points MUST be specified.

PointData (variable): An array of Count points that define the vertices of the polygon. The first two
points in the array specify the first side of the polygon. Each additional point specifies a new side,
the vertices of which include the point and the previous point. If the last point and the first point
do not coincide, they specify the last side of the polygon.

The type of data in this array is specified by the Flags field, as follows:

Data Type Meaning

EmfPlusPointR object If the P flag is set in the Flags, the points specify relative locations.

EmfPlusPoint object If the P bit is clear and the C bit is set in the Flags field, the points specify
absolute locations with integer values.

EmfPlusPointF object If the P bit is clear and the C bit is clear in the Flags field, the points specify

164 / 270

[MS-EMFPLUS-Diff] - v20160714
Enhanced Metafile Format Plus Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Data Type Meaning

absolute locations with floating-point values.

See section 2.3.4 for the specification of additional drawing record types.

2.3.4.20 EmfPlusFillRects Record

The EmfPlusFillRects record specifies filling the interiors of a series of rectangles.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Type Flags

Size

DataSize

BrushId

Count

RectData (variable)

...

Type (2 bytes): A 16-bit unsigned integer that identifies this record type as EmfPlusFillRects from the
RecordType enumeration. The value MUST be set to 0x400A

Flags (2 bytes): A 16-bit unsigned integer that provides information about how the operation is to be
performed, and about the structure of the record.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

S C X X X X X X X X X X X X X X

S (1 bit): This bit specifies the type of data in the BrushId field.

If set, BrushId specifies a color as an EmfPlusARGB object. If clear, BrushId contains the index
of an EmfPlusBrush object in the EMF+ Object Table.

C (1 bit): This bit indicates whether the data in the RectData field is compressed.

If set, RectData contains an EmfPlusRect object. If clear, RectData contains an EmfPlusRectF

object.

X (1 bit): Reserved and MUST be ignored.

Size (4 bytes): A 32-bit unsigned integer that specifies the 32-bit-aligned number of bytes in the
entire record, including the 12-byte record header and record-specific data.

At least 1 RectData array element MUST be specified in this record.

165 / 270

[MS-EMFPLUS-Diff] - v20160714
Enhanced Metafile Format Plus Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Value Meaning

0x0000001C ≤ value If the C bit is set in the Flags field, Size MUST be computed as follows:

Size = (Count * 0x00000008) + 0x00000014

0x00000024 ≤ value If the C bit is clear in the Flags field, Size MUST be computed as follows:

Size = (Count * 0x00000010) + 0x00000014

DataSize (4 bytes): A 32-bit unsigned integer that specifies the 32-bit-aligned number of bytes of
record-specific data that follows.

At least 1 RectData array element MUST be specified in this record.

Value Meaning

0x00000010 ≤ value If the C bit is set in the Flags field, DataSize MUST be computed as follows:

 DataSize = (Count * 0x00000008) + 0x00000008

0x00000018 ≤ value If the C bit is clear in the Flags field, DataSize MUST be computed as follows:

 DataSize = (Count * 0x00000010) + 0x00000008

BrushId (4 bytes): A 32-bit unsigned integer that defines the brush, the content of which is
determined by the S bit in the Flags field.

Count (4 bytes): A 32-bit unsigned integer that specifies the number of rectangles in the RectData
field.

RectData (variable): An array of either an EmfPlusRect or EmfPlusRectF objects of Count length
that defines the rectangle data.

See section 2.3.4 for the specification of additional drawing record types.

2.3.4.21 EmfPlusFillRegion Record

The EmfPlusFillRegion record specifies filling the interior of a graphics region.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Type Flags

Size

DataSize

BrushId

166 / 270

[MS-EMFPLUS-Diff] - v20160714
Enhanced Metafile Format Plus Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Type (2 bytes): A 16-bit unsigned integer that identifies this record type as EmfPlusFillRegion from
the RecordType enumeration. The value MUST be 0x4013

Flags (2 bytes): A 16-bit unsigned integer that provides information about how the operation is to be
performed, and about the structure of the record.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

S X X X X X X X ObjectId

S (1 bit): This bit specifies the type of data in the BrushId field.

If set, BrushId specifies a color as an EmfPlusARGB object. If clear, BrushId contains the index
of an EmfPlusBrush object in the EMF+ Object Table.

X (1 bit): Reserved and MUST be ignored.

ObjectId (1 byte): The index of the EmfPlusRegion object to fill, in the EMF+ Object Table. The

value MUST be zero to 63, inclusive.

Size (4 bytes): A 32-bit unsigned integer that specifies the 32-bit-aligned size of the entire record in
bytes, including the 12-byte record header and record-specific data. For this record type, the
value MUST be 0x00000010.

DataSize (4 bytes): A 32-bit unsigned integer that specifies the 32-bit-aligned number of bytes of
record-specific data that follows. For this record type, the value MUST be 0x00000004.

BrushId (4 bytes): A 32-bit unsigned integer that defines the brush, the content of which is

determined by the S bit in the Flags field.

See section 2.3.4 for the specification of additional drawing record types.

2.3.5 Object Record Types

The Object Record Types define reusable graphics objects. The following are EMF+ object record

types:

Name Section Description

EmfPlusObject 2.3.5.1 Defines an object for use in graphics operations.

EmfPlusSerializableObject 2.3.5.2 Defines an object that has been serialized into a data buffer.

The generic structure of EMF+ object records is specified as follows:

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Type Flags

Size

DataSize

RecordData (variable)

167 / 270

[MS-EMFPLUS-Diff] - v20160714
Enhanced Metafile Format Plus Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

...

Type (2 bytes): A 16-bit unsigned integer that identifies the record type. The object record types are
listed below. See the table above for descriptions of these records.

Name Value

EmfPlusObject 0x4008

EmfPlusSerializableObject 0x4038

Flags (2 bytes): A 16-bit unsigned integer that contains information for some records on how the
operation is to be performed and on the structure of the record.

Size (4 bytes): A 32-bit unsigned integer that MUST define the 32-bit-aligned size of the entire
record in bytes, including the 12-byte record header and the record-specific data.

DataSize (4 bytes): A 32-bit unsigned integer that MUST define the 32-bit-aligned number of bytes
of data in the RecordData field that follows. This number does not include the 12-byte record

header.

RecordData (variable): An optional, variable-length array of bytes that, if present, MUST define the
data specific to individual records. For specifications of the additional information, if any, which is
contained within this field, see individual record definitions.

2.3.5.1 EmfPlusObject Record

The EmfPlusObject record specifies an object for use in graphics operations. The object definition can
span multiple records, which is indicated by the value of the Flags field.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Type Flags

Size

TotalObjectSize (optional)

DataSize

ObjectData (variable)

...

Type (2 bytes): A 16-bit unsigned integer that defines this record type as EmfPlusObject from the
RecordType enumeration. The value MUST be 0x4008.

Flags (2 bytes): A 16-bit unsigned integer that provides information about how the operation is to be
performed, and about the structure of the record.

168 / 270

[MS-EMFPLUS-Diff] - v20160714
Enhanced Metafile Format Plus Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

C ObjectType ObjectID

C (1 bit): Indicates that the object definition continues on in the next EmfPlusObject record. This
flag is never set in the final record that defines the object.

ObjectType (7 bits): Specifies the type of object to be created by this record, from the

ObjectType enumeration.

ObjectID (1 byte): The index in the EMF+ Object Table to associate with the object created by
this record. The value MUST be zero to 63, inclusive.

Size (4 bytes): A 32-bit unsigned integer that specifies the 32-bit-aligned size of the entire record in
bytes, including the 12-byte record header and the record-specific buffer data.

TotalObjectSize (4 bytes): If the record is continuable, when the continue bit is set, this field will be

present. Continuing objects have multiple EMF+ records starting with
EmfPlusContineudObjectRecord. Each EmfPlusContinuedObjectRecord will contain a
TotalObjectSize. Once TotalObjectSize number of bytes has been read, the next EMF+ record
will not be treated as part of the continuing object.

DataSize (4 bytes): A 32-bit unsigned integer that specifies the 32-bit-aligned number of bytes of
data in the record-specific data that follows. This number does not include the size of the invariant
part of this record. For this record type, the value varies based on the size of object.

ObjectData (variable): An array of bytes that contains data for the type of object specified in the
Flags field. The content and format of the data can be different for each object type. See the
individual object definitions in section 2.2.1 for additional information.

The EmfPlusObject record is generic; it is used for all types of objects. Values that are specific to
particular object types are contained in the ObjectData field. A conceptual model for managing

graphics objects is described in Managing Graphics Objects.

See section 2.3.5 for the specification of additional object record types.

2.3.5.2 EmfPlusSerializableObject Record

The EmfPlusSerializableObject record defines an image effects parameter block that has been
serialized into a data buffer.<25>

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Type Flags

Size

DataSize

ObjectGUID (16 bytes)

...

...

169 / 270

[MS-EMFPLUS-Diff] - v20160714
Enhanced Metafile Format Plus Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

BufferSize

Buffer (variable)

...

Type (2 bytes): A 16-bit unsigned integer that identifies this record type as
EmfPlusSerializableObject from the RecordType enumeration. The value MUST be 0x4038.

Flags (2 bytes): A 16-bit unsigned integer that is not used. This field SHOULD be set to zero and

MUST be ignored upon receipt.

Size (4 bytes): A 32-bit unsigned integer that specifies the 32-bit-aligned number of bytes in the
entire record, including the 12-byte record header and record-specific data. For this record type,
the value MUST be computed as follows:

 Size = BufferSize + 0x00000020

DataSize (4 bytes): A 32-bit unsigned integer that specifies the 32-bit-aligned number of bytes of
record-specific data that follows. For this record type, the value MUST be computed as follows:

 DataSize = BufferSize + 0x00000014

ObjectGUID (16 bytes): The GUID packet representation value ([MS-DTYP] section 2.3.4.2) for the
image effect. This MUST correspond to one of the ImageEffects identifiers.

BufferSize (4 bytes): A 32-bit unsigned integer that specifies the size in bytes of the 32-bit-aligned
Buffer field.

Buffer (variable): An array of BufferSize bytes that contain the serialized image effects parameter

block that corresponds to the GUID in the ObjectGUID field. This MUST be one of the Image
Effects objects.

See section 2.3.5 for the specification of additional object record types.

2.3.6 Property Record Types

The Property Record Types specify properties of the playback device context. The following are EMF+

property record types:

Name Section Description

EmfPlusSetAntiAliasMode 2.3.6.1 Specifies the anti-aliasing mode for text output.

EmfPlusSetCompositingMode 2.3.6.2 Specifies how source colors are combined with background colors.

EmfPlusSetCompositingQuality 2.3.6.3 Specifies the desired level of quality for creating composite images
from multiple objects.

EmfPlusSetInterpolationMode 2.3.6.4 Specifies how image scaling, including stretching and shrinking, is
performed.

EmfPlusSetPixelOffsetMode 2.3.6.5 Specifies how pixels are centered with respect to the coordinates of
the drawing surface.

170 / 270

[MS-EMFPLUS-Diff] - v20160714
Enhanced Metafile Format Plus Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Name Section Description

EmfPlusSetRenderingOrigin 2.3.6.6 Specifies the rendering origin for graphics output.

EmfPlusSetTextContrast 2.3.6.7 Specifies text contrast according to the gamma correction value.

EmfPlusSetTextRenderingHint 2.3.6.8 Specifies the quality of text rendering, including the type of anti-
aliasing.

The generic structure of EMF+ property records is specified as follows:

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Type Flags

Size

DataSize

RecordData (variable)

...

Type (2 bytes): A 16-bit unsigned integer that identifies the record type. The property record types
are listed below. See the table above for descriptions of these records.

Name Value

EmfPlusSetRenderingOrigin 0x401D

EmfPlusSetAntiAliasMode 0x401E

EmfPlusSetTextRenderingHint 0x401F

EmfPlusSetTextContrast 0x4020

EmfPlusSetInterpolationMode 0x4021

EmfPlusSetPixelOffsetMode 0x4022

EmfPlusSetCompositingMode 0x4023

EmfPlusSetCompositingQuality 0x4024

Flags (2 bytes): A 16-bit unsigned integer that contains information for some records on how the
operation is to be performed and on the structure of the record.

Size (4 bytes): A 32-bit unsigned integer that MUST define the 32-bit-aligned size of the entire

record in bytes, including the 12-byte record header and the record-specific data.

DataSize (4 bytes): A 32-bit unsigned integer that MUST define the 32-bit-aligned number of bytes
of data in the RecordData field that follows. This number does not include the 12-byte record
header.

RecordData (variable): An optional, variable-length array of bytes that, if present, MUST define the
data specific to individual records. For specifications of the additional information, if any, which is
contained within this field, see individual record definitions.

171 / 270

[MS-EMFPLUS-Diff] - v20160714
Enhanced Metafile Format Plus Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

2.3.6.1 EmfPlusSetAntiAliasMode Record

The EmfPlusSetAntiAliasMode record specifies the anti-aliasing mode for text output.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Type Flags

Size

DataSize

Type (2 bytes): A 16-bit unsigned integer that identifies this record type as EmfPlusSetAntiAliasMode
from the RecordType enumeration. The value MUST be 0x401E.

Flags (2 bytes): A 16-bit unsigned integer that provides information about how the operation is to be

performed, and about the structure of the record.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

X X X X X X X X SmoothingMode A

X (1 bit): Reserved and MUST be ignored.

SmoothingMode (7 bits): The smoothing mode value, from the SmoothingMode
enumeration.<26>

A (1 bit): If set, anti-aliasing SHOULD be performed.

If clear, anti-aliasing SHOULD NOT be performed.

Size (4 bytes): A 32-bit unsigned integer that specifies the 32-bit-aligned size of the entire record in
bytes, including the 12-byte record header and the record-specific buffer data.

DataSize (4 bytes): A 32-bit unsigned integer that specifies the 32-bit-aligned number of bytes of

data in the record-specific data that follows. This number does not include the size of the invariant
part of this record. For this record type, the value MUST be 0x00000000.

See section 2.3.6 for the specification of additional property record types.

2.3.6.2 EmfPlusSetCompositingMode Record

The EmfPlusSetCompositingMode record specifies how source colors are combined with background
colors.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Type Flags

Size

DataSize

172 / 270

[MS-EMFPLUS-Diff] - v20160714
Enhanced Metafile Format Plus Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Type (2 bytes): A 16-bit unsigned integer that identifies this record type as
EmfPlusSetCompositingMode from the RecordType enumeration. The value MUST be 0x4023.

Flags (2 bytes): A 16-bit unsigned integer that provides information about how the operation is to be
performed, and about the structure of the record.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

X X X X X X X X CompositingMode

X (1 bit): Reserved and MUST be ignored.

CompositingMode (1 byte): The compositing mode value, from the CompositingMode
enumeration. Compositing can be expressed as the state of alpha blending, which can either
be on or off.

Size (4 bytes): A 32-bit unsigned integer that specifies the 32-bit-aligned number of bytes in the

entire record, including the 12-byte record header and record-specific data. For this record type,
the value MUST be 0x0000000C.

DataSize (4 bytes): A 32-bit unsigned integer that specifies the 32-bit-aligned number of bytes of
record-specific data that follows. For this record type, the value MUST be 0x00000000.

See section 2.3.6 for the specification of additional property record types.

2.3.6.3 EmfPlusSetCompositingQuality Record

The EmfPlusSetCompositingQuality record specifies the desired level of quality for creating composite
images from multiple objects.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Type Flags

Size

DataSize

Type (2 bytes): A 16-bit unsigned integer that identifies this record type as
EmfPlusSetCompositingQuality from the RecordType enumeration. The value MUST be 0x4024.

Flags (2 bytes): A 16-bit unsigned integer that provides information about how the operation is to be
performed, and about the structure of the record.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

X X X X X X X X CompositingQuality

X (1 bit): Reserved and MUST be ignored.

CompositingQuality (1 byte): The compositing quality value, from the CompositingQuality
enumeration.

173 / 270

[MS-EMFPLUS-Diff] - v20160714
Enhanced Metafile Format Plus Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Size (4 bytes): A 32-bit unsigned integer that specifies the 32-bit-aligned number of bytes in the
entire record, including the 12-byte record header and record-specific data. For this record type,

the value MUST be 0x0000000C.

DataSize (4 bytes): A 32-bit unsigned integer that specifies the 32-bit-aligned number of bytes of

record-specific data that follows. For this record type, the value MUST be 0x00000000.

See section 2.3.6 for the specification of additional property record types.

2.3.6.4 EmfPlusSetInterpolationMode Record

The EmfPlusSetInterpolationMode record specifies how image scaling, including stretching and
shrinking, is performed.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Type Flags

Size

DataSize

Type (2 bytes): A 16-bit unsigned integer that identifies this record type as
EmfPlusSetInterpolationMode from the RecordType enumeration. The value MUST be 0x4021.

Flags (2 bytes): A 16-bit unsigned integer that provides information about how the operation is to be
performed, and about the structure of the record.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

X X X X X X X X InterpolationMode

X (1 bit): Reserved and MUST be ignored.

InterpolationMode (1 byte): The interpolation mode value, from the InterpolationMode
enumeration.

Size (4 bytes): A 32-bit unsigned integer that specifies the 32-bit-aligned number of bytes in the
entire record, including the 12-byte record header and record-specific data. For this record type,
the value MUST be 0x0000000C.

DataSize (4 bytes): A 32-bit unsigned integer that specifies the 32-bit-aligned number of bytes of
record-specific data that follows. For this record type, the value MUST be 0x00000000.

See section 2.3.6 for the specification of additional property record types.

2.3.6.5 EmfPlusSetPixelOffsetMode Record

The EmfPlusSetPixelOffsetMode record specifies how pixels are centered with respect to the
coordinates of the drawing surface.

174 / 270

[MS-EMFPLUS-Diff] - v20160714
Enhanced Metafile Format Plus Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Type Flags

Size

DataSize

Type (2 bytes): A 16-bit unsigned integer that identifies this record type as
EmfPlusSetPixelOffsetMode from the RecordType enumeration. The value MUST be 0x4022.

Flags (2 bytes): A 16-bit unsigned integer that provides information about how the operation is to be

performed, and about the structure of the record.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

X X X X X X X X PixelOffsetMode

X (1 bit): Reserved and MUST be ignored.

PixelOffsetMode (1 byte): The pixel offset mode value, from the PixelOffsetMode enumeration.

Size (4 bytes): A 32-bit unsigned integer that specifies the 32-bit-aligned number of bytes in the
entire record, including the 12-byte record header and record-specific data. For this record type,

the value MUST be 0x0000000C.

DataSize (4 bytes): A 32-bit unsigned integer that specifies the 32-bit-aligned number of bytes of
record-specific data that follows. For this record type, the value MUST be 0x00000000.

See section 2.3.6 for the specification of additional property record types.

2.3.6.6 EmfPlusSetRenderingOrigin Record

The EmfPlusSetRenderingOrigin record specifies the rendering origin for graphics output.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Type Flags

Size

DataSize

x

y

Type (2 bytes): A 16-bit unsigned integer that identifies this record type as
EmfPlusSetRenderingOrigin from the RecordType enumeration. The value MUST be 0x401D.

Flags (2 bytes): A 16-bit unsigned integer that is not used. This field SHOULD be set to zero and

MUST be ignored upon receipt.

175 / 270

[MS-EMFPLUS-Diff] - v20160714
Enhanced Metafile Format Plus Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Size (4 bytes): A 32-bit unsigned integer that specifies the 32-bit-aligned number of bytes in the
entire record, including the 12-byte record header and record-specific data. For this record type,

the value MUST be 0x00000014.

DataSize (4 bytes): A 32-bit unsigned integer that specifies the 32-bit-aligned number of bytes of

record-specific data that follows. For this record type, the value MUST be 0x00000008.

x (4 bytes): A 32-bit unsigned integer that defines the horizontal coordinate value of the rendering
origin.

y (4 bytes): A 32-bit unsigned integer that defines the vertical coordinate value of the rendering
origin.

See section 2.3.6 for the specification of additional property record types.

2.3.6.7 EmfPlusSetTextContrast Record

The EmfPlusSetTextContrast record specifies text contrast according to the gamma correction value.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Type Flags

Size

DataSize

Type (2 bytes): A 16-bit unsigned integer that identifies this record type as EmfPlusSetTextContrast

from the RecordType enumeration. The value MUST be 0x4020.

Flags (2 bytes): A 16-bit unsigned integer that provides information about how the operation is to be

performed, and about the structure of the record.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

X X X X TextContrast

X (1 bit): Reserved and MUST be ignored.

TextContrast (12 bits): The gamma correction value X 1000, which will be applied to
subsequent text rendering operations. The allowable range is 1000 to 2200, representing text

gamma values of 1.0 to 2.2.

Size (4 bytes): A 32-bit unsigned integer that specifies the 32-bit-aligned number of bytes in the
entire record, including the 12-byte record header and record-specific data. For this record type,

the value MUST be 0x0000000C.

DataSize (4 bytes): A 32-bit unsigned integer that specifies the 32-bit-aligned number of bytes of
record-specific data that follows. For this record type, the value MUST be 0x00000000.

See section 2.3.6 for the specification of additional property record types.

176 / 270

[MS-EMFPLUS-Diff] - v20160714
Enhanced Metafile Format Plus Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

2.3.6.8 EmfPlusSetTextRenderingHint Record

The EmfPlusSetTextRenderingHint record specifies the quality of text rendering, including the type of
anti-aliasing.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Type Flags

Size

DataSize

Type (2 bytes): A 16-bit unsigned integer that identifies this record type as
EmfPlusSetTextRenderingHint from the RecordType enumeration. The value MUST be 0x401F.

Flags (2 bytes): A 16-bit unsigned integer that provides information about how the operation is to be
performed, and about the structure of the record.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

X X X X X X X X TextRenderingHint

X (1 bit): Reserved and MUST be ignored.

TextRenderingHint (1 byte): The text rendering hint value, from the TextRenderingHint
enumeration, which specifies the quality to use in subsequent text rendering.

Size (4 bytes): A 32-bit unsigned integer that specifies the 32-bit-aligned number of bytes in the
entire record, including the 12-byte record header and record-specific data. For this record type,

the value MUST be 0x0000000C.

DataSize (4 bytes): A 32-bit unsigned integer that specifies the 32-bit-aligned number of bytes of

record-specific data that follows. For this record type, the value MUST be 0x00000000.

See section 2.3.6 for the specification of additional property record types.

2.3.7 State Record Types

The State Record Types specify operations on the state of the playback device context. The following

are EMF+ state record types:

Name Section Description

EmfPlusBeginContainer 2.3.7.1 Starts a new graphics state container with a transformation.

EmfPlusBeginContainerNoParams 2.3.7.2 Starts a new graphics state container.

EmfPlusEndContainer 2.3.7.3 Closes a graphics state container that was previously opened by a
begin container operation.

EmfPlusRestore 2.3.7.4 Restores a saved graphics state.

EmfPlusSave 2.3.7.5 Saves the current graphics state.

177 / 270

[MS-EMFPLUS-Diff] - v20160714
Enhanced Metafile Format Plus Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

The generic structure of EMF+ state records is specified as follows:

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Type Flags

Size

DataSize

RecordData (variable)

...

Type (2 bytes): A 16-bit unsigned integer that identifies the record type. The state record types are

listed below. See the table above for descriptions of these records.

Name Value

EmfPlusSave 0x4025

EmfPlusRestore 0x4026

EmfPlusBeginContainer 0x4027

EmfPlusBeginContainerNoParams 0x4028

EmfPlusEndContainer 0x4029

Flags (2 bytes): A 16-bit unsigned integer that contains information for some records on how the
operation is to be performed and on the structure of the record.

Size (4 bytes): A 32-bit unsigned integer that MUST define the 32-bit-aligned size of the entire
record in bytes, including the 12-byte record header and the record-specific data.

DataSize (4 bytes): A 32-bit unsigned integer that MUST define the 32-bit-aligned number of bytes
of data in the RecordData field that follows. This number does not include the 12-byte record
header.

RecordData (variable): An optional, variable-length array of bytes that, if present, MUST define the
data specific to individual records. For specifications of the additional information, if any, which is
contained within this field, see individual record definitions.

2.3.7.1 EmfPlusBeginContainer Record

The EmfPlusBeginContainer record opens a new graphics state container and specifies a transform for

it.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Type Flags

Size

178 / 270

[MS-EMFPLUS-Diff] - v20160714
Enhanced Metafile Format Plus Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

DataSize

DestRect (16 bytes)

...

...

SrcRect (16 bytes)

...

...

StackIndex

Type (2 bytes): A 16-bit unsigned integer that identifies this record type as EmfPlusBeginContainer
from the RecordType enumeration. The value MUST be 0x4027.

Flags (2 bytes): A 16-bit unsigned integer that provides information about how the operation is to be

performed, and about the structure of the record.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

PageUnit 0 0 0 0 0 0 0 0

PageUnit (1 byte): The unit of measure for page space coordinates, from the UnitType
enumeration. This value SHOULD NOT be UnitTypeDisplay or UnitTypeWorld.<27>

Size (4 bytes): A 32-bit unsigned integer that specifies the 32-bit-aligned number of bytes in the
entire record, including the 12-byte record header and record-specific data. For this record type,

the value MUST be 0x00000030.

DataSize (4 bytes): A 32-bit unsigned integer that specifies the 32-bit-aligned number of bytes of
record-specific data that follows. For this record type, the value MUST be 0x00000024.

DestRect (16 bytes): An EmfPlusRectF object that, with SrcRect, specifies a transform for the
container. This transformation results in SrcRect when applied to DestRect.

SrcRect (16 bytes): An EmfPlusRectF rectangle that, with DestRect, specifies a transform for the
container. This transformation results in SrcRect when applied to DestRect.

StackIndex (4 bytes): A 32-bit unsigned integer that specifies an index to associate with the
graphics state container. The index MUST be referenced by a subsequent EmfPlusEndContainer to

close the graphics state container.

Each graphics state container MUST be added to an array of saved graphics containers. The graphics
state container is not written to the EMF+ metafile, so its format can be determined by the
implementation.

See section 2.3.7 for the specification of additional state record types.

179 / 270

[MS-EMFPLUS-Diff] - v20160714
Enhanced Metafile Format Plus Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

2.3.7.2 EmfPlusBeginContainerNoParams Record

The EmfPlusBeginContainerNoParams record opens a new graphics state container.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Type Flags

Size

DataSize

StackIndex

Type (2 bytes): A 16-bit unsigned integer that identifies this record type as

EmfPlusBeginContainerNoParams from the RecordType enumeration. The value MUST be 0x4028.

Flags (2 bytes): A 16-bit unsigned integer that is not used. This field SHOULD be set to zero and
MUST be ignored upon receipt.

Size (4 bytes): A 32-bit unsigned integer that specifies the 32-bit-aligned number of bytes in the
entire record, including the 12-byte record header and record-specific data. For this record type,
the value MUST be 0x00000010.

DataSize (4 bytes): A 32-bit unsigned integer that specifies the 32-bit-aligned number of bytes of
record-specific data that follows. For this record type, the value MUST be 0x00000004.

StackIndex (4 bytes): A 32-bit unsigned integer that specifies an index to associate with the
graphics state container. The index MUST be referenced by a subsequent EmfPlusEndContainer
record to close the graphics state container.

Each graphics state container MUST be added to an array of saved graphics containers. The graphics

state container is not written to the EMF+ metafile, so its format can be determined by the
implementation.

See section 2.3.7 for the specification of additional state record types.

2.3.7.3 EmfPlusEndContainer Record

The EmfPlusEndContainer record closes a graphics state container that was previously opened by a
begin container operation.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Type Flags

Size

DataSize

StackIndex

Type (2 bytes): A 16-bit unsigned integer that identifies this record type as EmfPlusEndContainer
from the RecordType enumeration. The value MUST be 0x4029.

180 / 270

[MS-EMFPLUS-Diff] - v20160714
Enhanced Metafile Format Plus Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Flags (2 bytes): A 16-bit unsigned integer that is not used. This field SHOULD be set to zero and
MUST be ignored upon receipt.

Size (4 bytes): A 32-bit unsigned integer that specifies the 32-bit-aligned number of bytes in the
entire record, including the 12-byte record header and record-specific data. For this record type,

this value is 0x00000010.

DataSize (4 bytes): A 32-bit unsigned integer that specifies the 32-bit-aligned number of bytes of
record-specific data that follows. For this record type, this value is 0x00000004.

StackIndex (4 bytes): A 32-bit unsigned integer that specifies the index of a graphics state
container. The index MUST must match the value associated with a graphics state container
opened by a previous EmfPlusBeginContainer or EmfPlusBeginContainerNoParams record.

Each graphics state container MUST be added to an array of saved graphics containers. The graphics

state container is not written to the EMF+ metafile, so its format can be determined by the
implementation.

See section 2.3.7 for the specification of additional state record types.

2.3.7.4 EmfPlusRestore Record

The EmfPlusRestore record restores the graphics state, identified by a specified index, from a stack of
saved graphics states.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Type Flags

Size

DataSize

StackIndex

Type (2 bytes): A 16-bit unsigned integer that identifies this record type as EmfPlusRestore from the
RecordType enumeration. The value MUST be 0x4026.

Flags (2 bytes): A 16-bit unsigned integer that is not used. This field SHOULD be set to zero and

MUST be ignored upon receipt.

Size (4 bytes): A 32-bit unsigned integer that specifies the 32-bit-aligned number of records in the
entire record, including the 12-byte record header and record-specific data. For this record type,
the value MUST be 0x00000010.

DataSize (4 bytes): A 32-bit unsigned integer that specifies the 32-bit-aligned number of bytes of
record-specific data that follows. For this record type, the value MUST be 0x00000004.

StackIndex (4 bytes): A 32-bit unsigned integer that specifies the level associated with a graphics
state. The level value was assigned to the graphics state by a previous EmfPlusSave record.

Each graphics state MUST be popped off a stack of saved graphics states. The graphics state
information is not written to the EMF+ metafile, so its format can be determined by the
implementation.

See section 2.3.7 for the specification of additional state record types.

181 / 270

[MS-EMFPLUS-Diff] - v20160714
Enhanced Metafile Format Plus Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

2.3.7.5 EmfPlusSave Record

The EmfPlusSave record saves the graphics state, identified by a specified index, on a stack of saved
graphics states.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Type Flags

Size

DataSize

StackIndex

Type (2 bytes): A 16-bit unsigned integer that identifies this record type as EmfPlusSave from the
RecordType enumeration. The value MUST be 0x4025.

Flags (2 bytes): A 16-bit unsigned integer that is not used. This field SHOULD be set to zero and
MUST be ignored upon receipt.

Size (4 bytes): A 32-bit unsigned integer that specifies the 32-bit-aligned number of records in the
entire record, including the 12-byte record header and record-specific data. For this record type,

the value MUST be 0x00000010.

DataSize (4 bytes): A 32-bit unsigned integer that specifies the 32-bit-aligned number of bytes of
record-specific data that follows. For this record type, the value MUST be 0x00000004.

StackIndex (4 bytes): A 32-bit unsigned integer that specifies a level to associate with the graphics
state. The level value can be used by a subsequent EmfPlusRestore record to retrieve the graphics
state.

Each saved graphics state MUST be pushed onto a stack of saved graphics states. The graphics state
information is not written to the EMF+ metafile, so its format can be determined by the
implementation.

See section 2.3.7 for the specification of additional state record types.

2.3.8 Terminal Server Record Types

The Terminal Server Record Types specify graphics processing on a terminal server. The following are
EMF+ terminal server record types.

Name Section Description

EmfPlusSetTSClip 2.3.8.1 Specifies clipping areas in the graphics device context for a terminal
server.<28>

EmfPlusSetTSGraphics 2.3.8.2 Specifies the state of a graphics device context for a terminal server.<29>

The generic structure of EMF+ terminal server records is specified as follows.

182 / 270

[MS-EMFPLUS-Diff] - v20160714
Enhanced Metafile Format Plus Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Type Flags

Size

DataSize

RecordData (variable)

...

Type (2 bytes): A 16-bit unsigned integer that identifies the record type. The terminal server types
are listed below. See the table above for descriptions of these records.

Name Value

EmfPlusSetTSGraphics 0x4039

EmfPlusSetTSClip 0x403A

Flags (2 bytes): A 16-bit unsigned integer that contains information for some records on how the
operation is to be performed and on the structure of the record.

Size (4 bytes): A 32-bit unsigned integer that MUST define the 32-bit-aligned size of the entire
record in bytes, including the 12-byte record header and the record-specific data.

DataSize (4 bytes): A 32-bit unsigned integer that MUST define the 32-bit-aligned number of bytes
of data in the RecordData field that follows. This number does not include the 12-byte record

header.

RecordData (variable): An optional, variable-length array of bytes that, if present, MUST define the
data specific to individual records. For specifications of the additional information, if any, which is
contained within this field, see individual record definitions.

2.3.8.1 EmfPlusSetTSClip Record

The EmfPlusSetTSClip record specifies clipping areas in the graphics device context for a terminal
server.<30>

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Type Flags

Size

DataSize

rects (variable)

...

183 / 270

[MS-EMFPLUS-Diff] - v20160714
Enhanced Metafile Format Plus Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Type (2 bytes): A 16-bit unsigned integer that identifies this record type as EmfPlusSetTSClip from
the RecordType enumeration. The value MUST be 0x403A.

Flags (2 bytes): A 16-bit unsigned integer that provides information about how the operation is to be
performed, and about the structure of the record.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

C NumRects

C (1 bit): This bit specifies the format of the rectangle data in the rects field. If set, each
rectangle is defined in 4 bytes. If clear, each rectangle is defined in 8 bytes.

NumRects (15 bits): This field specifies the number of rectangles that are defined in the rect
field.

Size (4 bytes): A 32-bit unsigned integer that specifies the 32-bit-aligned number of bytes in the

entire record, including the 12-byte record header and record-specific data. The computation of
this value is determined by the C bit in the Flags field, as shown in the following table.

C bit
value Meaning

0 NumRects rectangles, consisting of 8 bytes each, are defined in the rects field, and Size is
computed as follows:

 Size = (NumRects * 0x00000008) + 0x0000000C

1 NumRects rectangles, consisting of 4 bytes each, are defined in the rects field, and Size is
computed as follows:

 Size = (NumRects * 0x00000004) + 0x0000000C

DataSize (4 bytes): A 32-bit unsigned integer that specifies the 32-bit-aligned number of bytes of
record-specific data that follows. The computation of this value is determined by the C bit in the
Flags field, as shown in the following table.

C bit
value Meaning

0 NumRects rectangles, consisting of 8 bytes each, are defined in the rects field, and DataSize
is computed as follows:

 DataSize = NumRects * 0x00000008

1 NumRects rectangles, consisting of 4 bytes each, are defined in the rects field, and DataSize
is computed as follows:

 DataSize = NumRects * 0x00000004

rects (variable): An array of NumRects rectangles that define clipping areas. The format of this
data is determined by the C bit in the Flags field.

184 / 270

[MS-EMFPLUS-Diff] - v20160714
Enhanced Metafile Format Plus Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

The compression scheme for data in this record uses the following algorithm. Each point of each
rectangle is encoded in either a single byte or 2 bytes. If the point is encoded in a single byte, the

high bit (0x80) of the byte MUST be set, and the value is a signed number represented by the lower 7
bits. If the high bit is not set, then the value is encoded in 2 bytes, with the high-order byte encoded

in the 7 lower bits of the first byte, and the low-order byte value encoded in the second byte.

Each point is encoded as the difference between the point in the current rect and the point in the
previous rect. The bottom point of the rect is encoded as the difference between the bottom
coordinate and the top coordinate on the current rect.

See section 2.3.8 for the specification of additional terminal server record types.

2.3.8.2 EmfPlusSetTSGraphics Record

The EmfPlusSetTSGraphics record specifies the state of a graphics device context for a terminal
server. <31>

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Type Flags

Size

DataSize

AntiAliasMode TextRenderHint CompositingMode CompositingQuality

RenderOriginX RenderOriginY

TextContrast FilterType PixelOffset

WorldToDevice (24 bytes)

...

...

Palette (variable)

...

Type (2 bytes): A 16-bit unsigned integer that identifies this record type as EmfPlusSetTSGraphics

from the RecordType enumeration. The value MUST be 0x4039.

Flags (2 bytes): A 16-bit unsigned integer that provides information about how the operation is to be
performed, and about the structure of the record.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

X X X X X X X X X X X X X X V T

X (1 bit): Reserved and MUST be ignored.

185 / 270

[MS-EMFPLUS-Diff] - v20160714
Enhanced Metafile Format Plus Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

V (1 bit): If set, the palette contains only the basic VGA colors.

T (1 bit): If set, this record contains an EmfPlusPalette object in the Palette field following the

graphics state data.

Size (4 bytes): A 32-bit unsigned integer that specifies the 32-bit-aligned size of the entire record in

bytes, including the 12-byte record header and record-specific data. This value MUST be
0x00000030 plus the size of the Palette field.

DataSize (4 bytes): A 32-bit unsigned integer that specifies the 32-bit-aligned number of bytes of
record-specific data that follows. This value MUST be 0x00000024 plus the size of the Palette
field.

AntiAliasMode (1 byte): An 8-bit unsigned integer that specifies the quality of line rendering,
including the type of line anti-aliasing. It MUST be defined in the SmoothingMode enumeration.

TextRenderHint (1 byte): An 8-bit unsigned integer that specifies the quality of text rendering,
including the type of text anti-aliasing. It MUST be defined in the TextRenderingHint enumeration.

CompositingMode (1 byte): An 8-bit unsigned integer that specifies how source colors are
combined with background colors. It MUST be a value in the CompositingMode enumeration.

CompositingQuality (1 byte): An 8-bit unsigned integer that specifies the degree of smoothing to
apply to lines, curves and the edges of filled areas to make them appear more continuous or

sharply defined. It MUST be a value in the CompositingQuality enumeration.

RenderOriginX (2 bytes): A 16-bit signed integer, which is the horizontal coordinate of the origin for
rendering halftoning and dithering matrixes.

RenderOriginY (2 bytes): A 16-bit signed integer, which is the vertical coordinate of the origin for
rendering halftoning and dithering matrixes.

TextContrast (2 bytes): A 16-bit unsigned integer that specifies the gamma correction value used
for rendering anti-aliased and ClearType text. This value MUST be in the range 0 to 12, inclusive.

FilterType (1 byte): An 8-bit unsigned integer that specifies how scaling, including stretching and
shrinking, is performed. It MUST be a value in the FilterType enumeration.

PixelOffset (1 byte): An 8-bit unsigned integer that specifies the overall quality of the image and
text-rendering process. It MUST be a value in the PixelOffsetMode enumeration.

WorldToDevice (24 bytes): An 192-bit EmfPlusTransformMatrix object that specifies the world
space to device space transforms.

Palette (variable): An optional EmfPlusPalette object.

See section 2.3.8 for the specification of additional terminal server record types.

2.3.9 Transform Record Types

The Transform Record Types specify properties and transforms on coordinate spaces. The following

are EMF+ transform record types:

Name Section Description

EmfPlusMultiplyWorldTransform 2.3.9.1 Multiplies the current world space transform by a specified
transform matrix.

EmfPlusResetWorldTransform 2.3.9.2 Resets the current world space transform to the identify matrix.

186 / 270

[MS-EMFPLUS-Diff] - v20160714
Enhanced Metafile Format Plus Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Name Section Description

EmfPlusRotateWorldTransform 2.3.9.3 Performs a rotation on the current world space transform.

EmfPlusScaleWorldTransform 2.3.9.4 Performs a scaling on the current world space transform.

EmfPlusSetPageTransform 2.3.9.5 Specifies scaling factors and units for converting page space
coordinates to device space coordinates.

EmfPlusSetWorldTransform 2.3.9.6 Sets the current world space transform according to the values in
a specified transform matrix.

EmfPlusTranslateWorldTransform 2.3.9.7 Performs a translation on the current world space transform.

The generic structure of EMF+ transform records is specified as follows:

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Type Flags

Size

DataSize

RecordData (variable)

...

Type (2 bytes): A 16-bit unsigned integer that identifies the record type. The transform record types
are listed below. See the table above for descriptions of these records.

Name Value

EmfPlusSetWorldTransform 0x402A

EmfPlusResetWorldTransform 0x402B

EmfPlusMultiplyWorldTransform 0x402C

EmfPlusTranslateWorldTransform 0x402D

EmfPlusScaleWorldTransform 0x402E

EmfPlusRotateWorldTransform 0x402F

EmfPlusSetPageTransform 0x4030

Flags (2 bytes): A 16-bit unsigned integer that contains information for some records on how the

operation is to be performed and on the structure of the record.

Size (4 bytes): A 32-bit unsigned integer that MUST define the 32-bit-aligned size of the entire
record in bytes, including the 12-byte record header and the record-specific data.

DataSize (4 bytes): A 32-bit unsigned integer that MUST define the 32-bit-aligned number of bytes
of data in the RecordData field that follows. This number does not include the 12-byte record
header.

187 / 270

[MS-EMFPLUS-Diff] - v20160714
Enhanced Metafile Format Plus Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

RecordData (variable): An optional, variable-length array of bytes that, if present, MUST define the
data specific to individual records. For specifications of the additional information, if any, which is

contained within this field, see individual record definitions.

2.3.9.1 EmfPlusMultiplyWorldTransform Record

The EmfPlusMultiplyWorldTransform record multiplies the current world space transform by a specified
transform matrix.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Type Flags

Size

DataSize

MatrixData (24 bytes)

...

...

Type (2 bytes): A 16-bit unsigned integer that identifies this record type as
EmfPlusMultiplyWorldTransform from the RecordType enumeration. The value MUST be 0x402C.

Flags (2 bytes): A 16-bit unsigned integer that provides information about how the operation is to be
performed, and about the structure of the record.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

X X A X X X X X X X X X X X X X

X (1 bit): Reserved and MUST be ignored.

A (1 bit): If set, the transform matrix should beis post-multipledmultiplied. If clear, it should beis

pre-multiplied.

Size (4 bytes): A 32-bit unsigned integer that specifies the 32-bit-aligned number of bytes in the
entire record, including the 12-byte record header and record-specific data. For this record type,
this value MUST be 0x00000024.

DataSize (4 bytes): A 32-bit unsigned integer that specifies the 32-bit-aligned number of bytes of
record-specific data. For this record type, this value MUST be 0x00000018.

MatrixData (24 bytes): An EmfPlusTransformMatrix object that defines the multiplication matrix.

See section 2.3.9 for the specification of additional transform record types.

2.3.9.2 EmfPlusResetWorldTransform Record

The EmfPlusResetWorldTransform record resets the current world space transform to the identify

matrix.

188 / 270

[MS-EMFPLUS-Diff] - v20160714
Enhanced Metafile Format Plus Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Type Flags

Size

DataSize

Type (2 bytes): A 16-bit unsigned integer that identifies this record type as
EmfPlusResetWorldTransform from the RecordType enumeration. The value MUST be 0x402B.

Flags (2 bytes): A 16-bit unsigned integer that is not used. This field SHOULD be set to zero and

MUST be ignored upon receipt.

Size (4 bytes): A 32-bit unsigned integer that specifies the 32-bit-aligned number of bytes in the
entire record, including the 12-byte record header and record-specific data. For this record type,

the value MUST be 0x0000000C.

DataSize (4 bytes): A 32-bit unsigned integer that specifies the 32-bit-aligned number of bytes of
record-specific data that follows. For this record type, the value MUST be 0x00000000.

See section 2.3.9 for the specification of additional transform record types.

2.3.9.3 EmfPlusRotateWorldTransform Record

The EmfPlusRotateWorldTransform record performs a rotation on the current world space transform.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Type Flags

Size

DataSize

Angle

Type (2 bytes): A 16-bit unsigned integer that identifies this record type as
EmfPlusRotateWorldTransform from the RecordType enumeration. The value MUST be 0x402F.

Flags (2 bytes): A 16-bit unsigned integer that provides information about how the operation is to be
performed, and about the structure of the record.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

X X A X X X X X X X X X X X X X

X (1 bit): Reserved and MUST be ignored.

A (1 bit): If set, the transform matrix should beis post-multiplied. If clear, it should beis pre-
multiplied.

189 / 270

[MS-EMFPLUS-Diff] - v20160714
Enhanced Metafile Format Plus Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Size (4 bytes): A 32-bit unsigned integer that specifies the 32-bit-aligned number of bytes in the
entire record, including the 12-byte record header and record-specific data. For this record type,

the value MUST be 0x00000010.

DataSize (4 bytes): A 32-bit unsigned integer that specifies the 32-bit-aligned number of bytes of

record-specific data that follows. For this record type, the value MUST be 0x00000004.

Angle (4 bytes): A 32-bit floating-point value that specifies the angle of rotation in degrees. The
operation is performed by constructing a new transform matrix from the following diagram.

Figure 3: Rotation Transform Matrix

The current world space transform is multiplied by this matrix, and the result becomes the new
current world space transform. The Flags field determines the order of multiplication.

See section 2.3.9 for the specification of additional transform record types.

2.3.9.4 EmfPlusScaleWorldTransform Record

The EmfPlusScaleWorldTransform record performs a scaling on the current world space transform.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Type Flags

Size

DataSize

Sx

Sy

Type (2 bytes): A 16-bit unsigned integer that identifies this record type as
EmfPlusScaleWorldTransform from the RecordType enumeration. The value MUST be 0x402E.

Flags (2 bytes): A 16-bit unsigned integer that provides information about how the operation is to be

performed, and about the structure of the record.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

X X A X X X X X X X X X X X X X

X (1 bit): Reserved and MUST be ignored.

A (1 bit): If set, the transform matrix should beis post-multipledmultiplied. If clear, it should beis
pre-multiplied.

190 / 270

[MS-EMFPLUS-Diff] - v20160714
Enhanced Metafile Format Plus Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Size (4 bytes): A 32-bit unsigned integer that specifies the 32-bit-aligned number of bytes in the
entire record, including the 12-byte record header and record-specific data. For this record type,

the value MUST be 0x00000014.

DataSize (4 bytes): A 32-bit unsigned integer that specifies the 32-bit-aligned number of bytes of

record-specific data that follows. For this record type, the value MUST be 0x00000008.

Sx (4 bytes): A 32-bit floating-point value that defines the horizontal scale factor. The scaling is
performed by constructing a new transform matrix from the Sx and Sy field values, as shown in
the following table.

Figure 4: Scale Transform Matrix

Sy (4 bytes): A 32-bit floating-point value that defines the vertical scale factor.

See section 2.3.9 for the specification of additional transform record types.

2.3.9.5 EmfPlusSetPageTransform Record

The EmfPlusSetPageTransform record specifies scaling factors and units for converting page space
coordinates to device space coordinates.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Type Flags

Size

DataSize

PageScale

Type (2 bytes): A 16-bit unsigned integer that identifies this record type as
EmfPlusSetPageTransform from the RecordType enumeration. The value MUST be 0x4030.

Flags (2 bytes): A 16-bit unsigned integer that provides information about how the operation is to be
performed, and about the structure of the record.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

0 0 0 0 0 0 0 0 PageUnit

PageUnit (1 byte): The unit of measure for page space coordinates, from the UnitType enumeration.
This value SHOULD NOT be UnitTypeDisplay or UnitTypeWorld.<32>

191 / 270

[MS-EMFPLUS-Diff] - v20160714
Enhanced Metafile Format Plus Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Size (4 bytes): A 32-bit unsigned integer that specifies the 32-bit-aligned number of bytes in the
entire record, including the 12-byte record header and record-specific data. For this record type,

the value MUST be 0x00000010.

DataSize (4 bytes): A 32-bit unsigned integer that specifies the 32-bit-aligned number of bytes of

record-specific data that follows. For this record type, the value MUST be 0x00000004.

PageScale (4 bytes): A 32-bit floating-point value that specifies the scale factor for converting page
space coordinates to device space coordinates.

See section 2.3.9 for the specification of additional transform record types.

2.3.9.6 EmfPlusSetWorldTransform Record

The EmfPlusSetWorldTransform record sets the world transform according to the values in a specified
transform matrix.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Type Flags

Size

DataSize

MatrixData (24 bytes)

...

...

Type (2 bytes): A 16-bit unsigned integer that identifies this record type as
EmfPlusSetWorldTransform from the RecordType enumeration. The value MUST be 0x402A.

Flags (2 bytes): A 16-bit unsigned integer that is not used. This field SHOULD be set to zero and
MUST be ignored upon receipt.

Size (4 bytes): A 32-bit unsigned integer that specifies the 32-bit-aligned number of bytes in the
entire record, including the 12-byte record header and record-specific data. For this record type,
the value MUST be 0x00000024.

DataSize (4 bytes): A 32-bit unsigned integer that specifies the 32-bit-aligned number of bytes of
record-specific data that follows. For this record type, the value MUST be 0x00000018.

MatrixData (24 bytes): An EmfPlusTransformMatrix object that defines the new current world
transform.

See section 2.3.9 for the specification of additional transform record types.

2.3.9.7 EmfPlusTranslateWorldTransform Record

The EmfPlusTranslateWorldTransform record performs a translation on the current world space
transform.

192 / 270

[MS-EMFPLUS-Diff] - v20160714
Enhanced Metafile Format Plus Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Type Flags

Size

DataSize

dx

dy

Type (2 bytes): A 16-bit unsigned integer that identifies this record type as
EmfPlusTranslateWorldTransform from the RecordType enumeration. The value MUST be 0x402D.

Flags (2 bytes): A 16-bit unsigned integer that provides information about how the operation is to be

performed, and about the structure of the record.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

X X A X X X X X X X X X X X X X

X (1 bit): Reserved and MUST be ignored.

A (1 bit): If set, the transform matrix should beis post-multipledmultiplied. If clear, it should beis
pre-multiplied.

Size (4 bytes): A 32-bit unsigned integer that specifies the 32-bit-aligned number of bytes in the

entire record, including the 12-byte record header and record-specific data. For this record type,

the value MUST be 0x00000014.

DataSize (4 bytes): A 32-bit unsigned integer that specifies the 32-bit-aligned number of bytes of
record-specific data that follows. For this record type, the value MUST be 0x00000008.

dx (4 bytes): A 32-bit floating-point value that defines the horizontal distance. The translation is
performed by constructing a new world transform matrix from the dx and dy fields.

dy (4 bytes): A 32-bit floating-point value that defines the vertical distance value.

See section 2.3.9 for the specification of additional transform record types.

193 / 270

[MS-EMFPLUS-Diff] - v20160714
Enhanced Metafile Format Plus Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

3 Structure Examples

The following sections present examples that illustrate the function of EMF+ Extensions structures.

3.1 Metafile Design

3.1.1 Byte Ordering Example

The following code snippet illustrates how the use of the big-endian and little-endian methods can
affect the compatibility of applications.

 #include <unistd.h>
 #include <sys/stat.h>
 #include <fcntl.h>
 int main()
 {
 int buf;
 int in;
 int nread;
 in = open("file.in", O_RDONLY);
 nread = read(in, (int *) &buf, sizeof(buf));
 printf("First Integer in file.in = %x\n", buf);
 exit(0);
 }

In the preceding code, if the first integer word stored in the file.in file on a big-endian computer was
the hexadecimal number 0x12345678, the resulting output on that computer would be as follows:

 % ./test
 First Integer in file.in = 12345678
 %

If the file.in file was read by the same program running on a little-endian computer, the resulting
output would be as follows:

 % ./test

 First Integer in file.in = 78563412
 %

Because of the difference in output, metafile record processing needs to be implemented so that it can
read integers from a file based on the endian method that the output computer uses.

Because metafiles were developed and written with little-endian computers, machines that are big-

endian based will have to perform this necessary compensation.

3.1.2 Managing Graphics Objects

This section describes a conceptual model for Managing Graphics Objects that an EMF+implementation
can maintain during metafile playback. The described organization is provided to facilitate the

explanation of the file format. This specification does not mandate that implementations adhere to this
model as long as their external behavior is consistent with that defined in this specification.

194 / 270

[MS-EMFPLUS-Diff] - v20160714
Enhanced Metafile Format Plus Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

The EMF+ EmfPlusObject record creates graphics objects of the types defined in the
GraphicsObjectType enumeration, and the objects themselves are specified in Graphics Objects. Once

created, graphics objects can be reused any number of times in graphics operations.

 An implementation is responsible for keeping track of graphics objects during metafile playback. A

model for managing graphics objects is described below. This model minimizes the space needed by
the graphics object table during playback.

1. Create a hash table for graphics objects used in metafile playback.

2. Grow the hash table as objects are created by the EmfPlusObject record; each new entry in the
table receives an object and its index.

3. When a metafile record refers to an object, it specifies the object's index. Use this index as a key
into the hash table to retrieve the object.

4. When a new object is created that has the same index as an existing object, replace the hash
table entry of the existing object with one for the new object.

3.2 EMF+ Metafile Example

This section provides an example of a metafile, which when processed renders the following image:

Figure 5: EMF+ Metafile Example

The contents of this metafile example are shown below in hexadecimal bytes. The far-left column is

the byte offset from the start of the metafile; the far-right characters are the interpretation of the byte
values in the Latin-1 ANSI character set [ISO/IEC-8859-1]. The sections that follow describe the
metafile records that convey this series of bytes.

 00000000: 01 00 00 00 6C 00 00 00 FF FF FF FF FF FF FF FF ...l...ÿÿÿÿÿÿÿÿ
 00000010: 64 00 00 00 6B 00 00 00 00 00 00 00 00 00 00 00 d...k...........
 00000020: F0 07 00 00 77 08 00 00 20 45 4D 46 00 00 01 00 ð..w .. EMF.. .
 00000030: 5C 0A 00 00 4C 00 00 00 02 00 00 00 00 00 00 00 \...L...
 00000040: 00 00 00 00 00 00 00 00 40 06 00 00 B0 04 00 00@ ..° ..
 00000050: 40 01 00 00 F0 00 00 00 00 00 00 00 00 00 00 00 @ ..ð...........
 00000060: 00 00 00 00 00 E2 04 00 80 A9 03 00 46 00 00 00â .€© .F...
 00000070: 2C 00 00 00 20 00 00 00 45 4D 46 2B 01 40 01 00 ,... ...EMF+ @ .
 00000080: 1C 00 00 00 10 00 00 00 02 10 C0 DB 01 00 00 00 ÀÛ ...
 00000090: 66 00 00 00 6C 00 00 00 21 00 00 00 08 00 00 00 f...l...!... ...
 000000A0: 62 00 00 00 0C 00 00 00 01 00 00 00 21 00 00 00 b....... ...!...
 000000B0: 08 00 00 00 62 00 00 00 0C 00 00 00 01 00 00 00 ...b....... ...
 000000C0: 21 00 00 00 08 00 00 00 21 00 00 00 08 00 00 00 !... ...!... ...
 000000D0: 73 00 00 00 0C 00 00 00 00 00 00 00 1C 00 00 00 s........... ...
 000000E0: 08 00 00 00 25 00 00 00 0C 00 00 00 00 00 00 80 ...%..........€
 000000F0: 25 00 00 00 0C 00 00 00 07 00 00 80 25 00 00 00 %.........€%...
 00000100: 0C 00 00 00 0E 00 00 80 30 00 00 00 0C 00 00 00€0.......
 00000110: 0F 00 00 80 19 00 00 00 0C 00 00 00 FF FF FF 00 ..€ÿÿÿ.

195 / 270

[MS-EMFPLUS-Diff] - v20160714
Enhanced Metafile Format Plus Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 00000120: 18 00 00 00 0C 00 00 00 00 00 00 00 12 00 00 00
 00000130: 0C 00 00 00 02 00 00 00 13 00 00 00 0C 00 00 00
 00000140: 01 00 00 00 14 00 00 00 0C 00 00 00 0D 00 00 00
 00000150: 15 00 00 00 0C 00 00 00 01 00 00 00 16 00 00 00
 00000160: 0C 00 00 00 00 00 00 00 0D 00 00 00 10 00 00 00
 00000170: 00 00 00 00 00 00 00 00 3A 00 00 00 0C 00 00 00:.......
 00000180: 0A 00 00 00 1B 00 00 00 10 00 00 00 00 00 00 00
 00000190: 00 00 00 00 23 00 00 00 20 00 00 00 87 C3 81 3F#... ...‡Ã•?
 000001A0: 00 00 00 00 00 00 00 00 7A BD 80 3F 00 00 00 80z½€?...€
 000001B0: 00 00 00 80 24 00 00 00 24 00 00 00 87 C3 81 3F ...€$...$...‡Ã•?
 000001C0: 00 00 00 00 00 00 00 00 7A BD 80 3F 00 00 00 80z½€?...€
 000001D0: 00 00 00 80 04 00 00 00 73 00 00 00 0C 00 00 00 ...€ ...s.......
 000001E0: 00 00 00 00 0D 00 00 00 10 00 00 00 00 00 00 00
 000001F0: 00 00 00 00 52 00 00 00 70 01 00 00 01 00 00 00R...p
 00000200: 10 00 00 00 07 00 00 00 00 00 00 00 00 00 00 00
 00000210: BC 02 00 00 00 00 00 00 07 02 02 22 53 00 79 00 ¼ "S.y.
 00000220: 73 00 74 00 65 00 6D 00 00 00 00 00 00 00 00 00 s.t.e.m.........
 00000230: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00000240: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00000250: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00000260: B1 E6 31 7C BC FE 12 00 21 00 00 00 00 00 13 00 ±æ1|¼þ .!..... .
 00000270: 00 00 2E 00 54 E1 12 00 BC FE 12 00 14 E1 12 00Tá .¼þ . á .
 00000280: 00 00 00 00 F4 F4 12 00 34 B8 F9 77 68 26 F4 77ôô .4¸ùwh&ôw
 00000290: FF FF FF FF AD 97 F7 77 7F 99 F7 77 70 E1 12 00 ÿÿÿÿ—÷w™÷wpá .
 000002A0: 21 00 00 00 01 00 00 00 FC 8B CE 02 38 A6 17 00 !... ...ü‹Î 8¦ .
 000002B0: 7F 99 F7 77 B0 DA 4F 00 63 DE 5D 00 3E 08 5A 00 ™÷w°ÚO.cÞ].> Z.
 000002C0: 68 99 5A 00 F5 82 54 00 1A 91 54 00 8F 9B C7 77 h™Z.õ‚T. 'T.�›Çw
 000002D0: BD 93 54 00 6F 9D 54 00 94 E5 54 00 00 00 54 00 ½"T.o•T."åT...T.
 000002E0: AF 58 56 00 6B 50 56 00 B4 3A 55 00 05 39 55 00 ¯XV.kPV.':U. 9U.
 000002F0: 09 35 55 00 64 C4 4F 00 00 82 41 00 FF 44 41 00 .5U.dÄO..‚A.ÿDA.
 00000300: 12 4E 41 00 E1 4B 41 00 1D 1E 31 7C 4B 16 31 7C NA.áKA. 1|K 1|
 00000310: DA EF 30 7C 49 F4 30 7C EA A3 37 7C 00 00 D5 77 Úï0|Iô0|ê£7|..Õw
 00000320: A5 DC D5 77 46 46 D3 77 D7 96 D3 77 97 ED 31 7C ¥ÜÕwFFÓw×–Ów—í1|
 00000330: B1 E6 31 7C 00 00 2E 01 10 E2 12 00 68 8B CE 02 ±æ1|... â .h‹Î
 00000340: 08 ED F8 77 68 8B CE 02 00 00 2E 01 01 00 00 00 íøwh‹Î
 00000350: 00 00 2E 01 C4 04 F9 77 27 05 F9 77 64 76 00 08 ... Ä ùw' ùwdv.
 00000360: 00 00 00 00 25 00 00 00 0C 00 00 00 01 00 00 00%....... ...
 00000370: 25 00 00 00 0C 00 00 00 0E 00 00 80 28 00 00 00 %..........€(...
 00000380: 0C 00 00 00 01 00 00 00 46 00 00 00 88 02 00 00F...ˆ ..
 00000390: 7C 02 00 00 45 4D 46 2B 1E 40 0B 00 0C 00 00 00 | ..EMF+ @......
 000003A0: 00 00 00 00 24 40 02 00 0C 00 00 00 00 00 00 00$@
 000003B0: 21 40 07 00 0C 00 00 00 00 00 00 00 22 40 03 00 !@........."@ .
 000003C0: 0C 00 00 00 00 00 00 00 1F 40 05 00 0C 00 00 00¬@
 000003D0: 00 00 00 00 2C 40 00 00 24 00 00 00 18 00 00 00,@..$... ...
 000003E0: 00 00 80 3F 00 00 00 00 00 00 00 00 00 00 80 3F ..€?..........€?
 000003F0: 00 00 00 80 00 00 00 80 25 40 00 00 10 00 00 00 ...€...€%@.. ...
 00000400: 04 00 00 00 00 00 00 00 2C 40 00 00 24 00 00 00 ,@..$...
 00000410: 18 00 00 00 00 00 80 3F 00 00 00 00 00 00 00 00 €?........
 00000420: 00 00 80 3F 00 00 00 00 00 00 00 00 2A 40 00 00 ..€?........*@..
 00000430: 24 00 00 00 18 00 00 00 00 00 80 3F 00 00 00 00 $...€?....
 00000440: 00 00 00 00 00 00 80 3F 00 00 00 80 00 00 00 80€?...€...€
 00000450: 28 40 00 00 10 00 00 00 04 00 00 00 01 00 00 00 (@..
 00000460: 1E 40 0B 00 0C 00 00 00 00 00 00 00 24 40 02 00 @..........$@ .
 00000470: 0C 00 00 00 00 00 00 00 21 40 07 00 0C 00 00 00!@.....
 00000480: 00 00 00 00 22 40 03 00 0C 00 00 00 00 00 00 00"@
 00000490: 1F 40 05 00 0C 00 00 00 00 00 00 00 30 40 02 00 ¬@0@ .
 000004A0: 10 00 00 00 04 00 00 00 00 00 80 3F 2A 40 00 00 €?*@..
 000004B0: 24 00 00 00 18 00 00 00 00 00 80 3F 00 00 00 00 $...€?....
 000004C0: 00 00 00 00 00 00 80 3F 00 00 00 80 00 00 00 80€?...€...€
 000004D0: 2A 40 00 00 24 00 00 00 18 00 00 00 00 00 80 3F *@..$...€?
 000004E0: 00 00 00 00 00 00 00 00 00 00 80 3F 00 00 00 80€?...€
 000004F0: 00 00 00 80 2A 40 00 00 24 00 00 00 18 00 00 00 ...€*@..$... ...
 00000500: 0D 74 DA 3A 00 00 00 00 00 00 00 00 0D 74 DA 3A .tÚ:.........tÚ:
 00000510: 00 00 00 80 00 00 00 80 2A 40 00 00 24 00 00 00 ...€...€*@..$...
 00000520: 18 00 00 00 92 5F 2C 3E 00 00 00 00 00 00 00 00 ...'_,>........
 00000530: EB 51 38 3E 00 00 00 80 00 00 00 80 08 40 00 03 ëQ8>...€...€ @.
 00000540: C4 00 00 00 B8 00 00 00 02 10 C0 DB 13 00 00 00 Ä...¸... ÀÛ ...
 00000550: 00 00 00 00 FC 7F F5 43 CF FF FF BF 9D 8E 08 44üõCÏÿÿ¿�Ž D
 00000560: 1E 01 00 C0 FE BF 13 44 EB 15 2B 42 FF BF 13 44 .Àþ¿ Dë +Bÿ¿ D
 00000570: FC FF C3 42 FF BF 13 44 FE FF C3 42 FF BF 13 44 üÿÃBÿ¿ DþÿÃBÿ¿ D

196 / 270

[MS-EMFPLUS-Diff] - v20160714
Enhanced Metafile Format Plus Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 00000580: 01 00 C4 42 FF BF 13 44 03 00 C4 42 FF BF 13 44 .ÄBÿ¿ D .ÄBÿ¿ D
 00000590: FF FF F5 43 FF BF 13 44 9F CE 08 44 9F 8E 08 44 ÿÿõCÿ¿ DŸÎ DŸŽ D
 000005A0: FF FF 13 44 00 80 F5 43 FF FF 13 44 05 00 C2 42 ÿÿ D.€õCÿÿ D .ÂB
 000005B0: FF FF 13 44 16 16 27 42 00 00 14 44 72 FF 3F C0 ÿÿ D 'B.. Drÿ?À
 000005C0: 9F CE 08 44 E8 FF 3F C0 01 00 F6 43 10 00 40 C0 ŸÎ Dèÿ?À .öC .@À
 000005D0: 04 00 C4 42 64 00 40 C0 17 16 2B 42 FA 15 27 42 .ÄBd.@À +Bú 'B
 000005E0: E8 FE FF BF F6 FF C1 42 26 00 00 C0 00 03 03 03 èþÿ¿öÿÁB&..À.
 000005F0: 03 03 03 01 03 03 03 01 03 03 03 01 03 03 83 BF ƒ¿
 00000600: 14 40 00 80 10 00 00 00 04 00 00 00 FF FF FF 00 @.€ÿÿÿ.
 00000610: 46 00 00 00 50 00 00 00 44 00 00 00 45 4D 46 2B F...P...D...EMF+
 00000620: 08 40 01 02 30 00 00 00 24 00 00 00 02 10 C0 DB @ 0...$... ÀÛ
 00000630: 00 00 00 00 80 00 00 00 02 00 00 00 00 00 80 3F€...€?
 00000640: 00 00 00 00 02 10 C0 DB 00 00 00 00 00 00 00 FF ÀÛ.......ÿ
 00000650: 15 40 00 00 10 00 00 00 04 00 00 00 01 00 00 00 @..
 00000660: 22 00 00 00 0C 00 00 00 FF FF FF FF 22 00 00 00 ".......ÿÿÿÿ"...
 00000670: 0C 00 00 00 FF FF FF FF 25 00 00 00 0C 00 00 00ÿÿÿÿ%.......
 00000680: 0D 00 00 80 22 00 00 00 0C 00 00 00 FF FF FF FF ...€".......ÿÿÿÿ
 00000690: 21 00 00 00 08 00 00 00 73 00 00 00 0C 00 00 00 !... ...s.......
 000006A0: 00 00 00 00 1C 00 00 00 08 00 00 00 25 00 00 00%...
 000006B0: 0C 00 00 00 00 00 00 80 25 00 00 00 0C 00 00 00€%.......
 000006C0: 07 00 00 80 25 00 00 00 0C 00 00 00 0E 00 00 80 ..€%..........€
 000006D0: 30 00 00 00 0C 00 00 00 0F 00 00 80 19 00 00 00 0....... ..€ ...
 000006E0: 0C 00 00 00 FF FF FF 00 18 00 00 00 0C 00 00 00ÿÿÿ.
 000006F0: 00 00 00 00 12 00 00 00 0C 00 00 00 02 00 00 00
 00000700: 13 00 00 00 0C 00 00 00 01 00 00 00 14 00 00 00
 00000710: 0C 00 00 00 0D 00 00 00 15 00 00 00 0C 00 00 00
 00000720: 01 00 00 00 16 00 00 00 0C 00 00 00 00 00 00 00
 00000730: 0D 00 00 00 10 00 00 00 00 00 00 00 00 00 00 00
 00000740: 3A 00 00 00 0C 00 00 00 0A 00 00 00 1B 00 00 00 :........... ...
 00000750: 10 00 00 00 00 00 00 00 00 00 00 00 23 00 00 00 #...
 00000760: 20 00 00 00 87 C3 81 3F 00 00 00 00 00 00 00 00 ...‡Ã•?........
 00000770: 7A BD 80 3F 00 00 00 80 00 00 00 80 24 00 00 00 z½€?...€...€$...
 00000780: 24 00 00 00 87 C3 81 3F 00 00 00 00 00 00 00 00 $...‡Ã•?........
 00000790: 7A BD 80 3F 00 00 00 80 00 00 00 80 04 00 00 00 z½€?...€...€ ...
 000007A0: 73 00 00 00 0C 00 00 00 00 00 00 00 46 00 00 00 s...........F...
 000007B0: 60 00 00 00 52 00 00 00 47 44 49 43 02 00 00 00 `...R...GDIC ...
 000007C0: 00 00 00 00 00 00 00 00 66 00 00 00 6C 00 00 00f...l...
 000007D0: 1B 00 00 00 41 00 70 00 70 00 4E 00 61 00 6D 00 ...A.p.p.N.a.m.
 000007E0: 65 00 00 00 49 00 6D 00 61 00 67 00 65 00 20 00 e...I.m.a.g.e. .
 000007F0: 44 00 65 00 73 00 63 00 72 00 69 00 70 00 74 00 D.e.s.c.r.i.p.t.
 00000800: 69 00 6F 00 6E 00 00 00 00 00 00 00 23 00 00 00 i.o.n.......#...
 00000810: 20 00 00 00 FF FF 7F 3F 00 00 00 00 00 00 00 00 ...ÿÿ?........
 00000820: FD FF 7F 3F 00 00 00 00 00 00 00 00 24 00 00 00 ýÿ?........$...
 00000830: 24 00 00 00 FF FF 7F 3F 00 00 00 00 00 00 00 00 $...ÿÿ?........
 00000840: FD FF 7F 3F 00 00 00 00 00 00 00 00 04 00 00 00 ýÿ?........ ...
 00000850: 23 00 00 00 20 00 00 00 FF FF 7F 3F 00 00 00 00 #... ...ÿÿ?....
 00000860: 00 00 00 00 FD FF 7F 3F 00 00 00 00 00 00 00 00ýÿ?........
 00000870: 24 00 00 00 24 00 00 00 FF FF 7F 3F 00 00 00 00 $...$...ÿÿ?....
 00000880: 00 00 00 00 FD FF 7F 3F 00 00 00 00 00 00 00 00ýÿ?........
 00000890: 04 00 00 00 23 00 00 00 20 00 00 00 0D 74 DA 3A ...#...tÚ:
 000008A0: 00 00 00 00 00 00 00 00 0C 74 DA 3A 00 00 00 00tÚ:....
 000008B0: 00 00 00 00 24 00 00 00 24 00 00 00 0D 74 DA 3A$...$....tÚ:
 000008C0: 00 00 00 00 00 00 00 00 0C 74 DA 3A 00 00 00 00tÚ:....
 000008D0: 00 00 00 00 04 00 00 00 23 00 00 00 20 00 00 00#... ...
 000008E0: 92 5F 2C 3E 00 00 00 00 00 00 00 00 E9 51 38 3E '_,>........éQ8>
 000008F0: 00 00 00 00 00 00 00 00 24 00 00 00 24 00 00 00$...$...
 00000900: 92 5F 2C 3E 00 00 00 00 00 00 00 00 E9 51 38 3E '_,>........éQ8>
 00000910: 00 00 00 00 00 00 00 00 04 00 00 00 25 00 00 00%...
 00000920: 0C 00 00 00 05 00 00 80 2C 00 00 00 20 00 00 00€,... ...
 00000930: FD FF FF FF FE FF FF FF 4F 02 00 00 50 02 00 00 ýÿÿÿþÿÿÿO ..P ..
 00000940: C8 00 00 00 C8 00 00 00 46 00 00 00 14 00 00 00 È...È...F... ...
 00000950: 08 00 00 00 47 44 49 43 03 00 00 00 22 00 00 00 ...GDIC ..."...
 00000960: 0C 00 00 00 FF FF FF FF 46 00 00 00 54 00 00 00ÿÿÿÿF...T...
 00000970: 48 00 00 00 45 4D 46 2B 29 40 00 00 10 00 00 00 H...EMF+)@.. ...
 00000980: 04 00 00 00 01 00 00 00 26 40 00 00 10 00 00 00 &@.. ...
 00000990: 04 00 00 00 00 00 00 00 2A 40 00 00 24 00 00 00 *@..$...
 000009A0: 18 00 00 00 00 00 80 3F 00 00 00 00 00 00 00 00 €?........
 000009B0: 00 00 80 3F 00 00 00 00 00 00 00 00 4C 00 00 00 ..€?........L...
 000009C0: 64 00 00 00 FF FF FF FF FF FF FF FF 64 00 00 00 d...ÿÿÿÿÿÿÿÿd...
 000009D0: 6B 00 00 00 FF FF FF FF FF FF FF FF 66 00 00 00 k...ÿÿÿÿÿÿÿÿf...

197 / 270

[MS-EMFPLUS-Diff] - v20160714
Enhanced Metafile Format Plus Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 000009E0: 6D 00 00 00 29 00 AA 00 00 00 00 00 00 00 00 00 m...).ª.........
 000009F0: 00 00 80 3F 00 00 00 00 00 00 00 00 00 00 80 3F ..€?..........€?
 00000A00: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00000A10: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00000A20: 22 00 00 00 0C 00 00 00 FF FF FF FF 46 00 00 00 ".......ÿÿÿÿF...
 00000A30: 1C 00 00 00 10 00 00 00 45 4D 46 2B 02 40 00 00 EMF+ @..
 00000A40: 0C 00 00 00 00 00 00 00 0E 00 00 00 14 00 00 00
 00000A50: 00 00 00 00 10 00 00 00 14 00 00 00

The sections that follow provide definitions of the header and records that correspond to this metafile.

These sections describe each record as it appears in the hexadecimal representation of the example,
and the records have been interpreted for the convenience of the reader; however, to reflect the exact
order of records in the metafile, some record types appear more than once, and, in some cases, the
repeated instances can be identical.

3.2.1 EMR_HEADER Example

This section provides an example of the EMF EMR_HEADER record.

 00000000: 01 00 00 00 6C 00 00 00 FF FF FF FF FF FF FF FF
 00000010: 64 00 00 00 6B 00 00 00 00 00 00 00 00 00 00 00
 00000020: F0 07 00 00 77 08 00 00 20 45 4D 46 00 00 01 00
 00000030: 5C 0A 00 00 4C 00 00 00 02 00 00 00 00 00 00 00
 00000040: 00 00 00 00 00 00 00 00 40 06 00 00 B0 04 00 00
 00000050: 40 01 00 00 F0 00 00 00 00 00 00 00 00 00 00 00
 00000060: 00 00 00 00 00 E2 04 00 80 A9 03 00

Figure 6: EMF EMR_HEADER Record Example, Part 1

Type: 0x00000001 identifies the record type as EMR_HEADER.

Size: 0x0000006C specifies the record size in bytes, 108.

Bounds: (0xFFFFFFFF, 0xFFFFFFFF, 0x00000064, 0x0000006B) specifies the rectangular inclusive-
inclusive bounds in device units of the smallest rectangle that can be drawn around the image stored
in the metafile.

198 / 270

[MS-EMFPLUS-Diff] - v20160714
Enhanced Metafile Format Plus Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Frame: (128-bits) (0x00000000, 0x00000000, 0x000007F0, 0x00000877) specifies the rectangular
inclusive-inclusive dimensions, in .01 millimeter units, of a rectangle that surrounds the image stored

in the metafile.

Figure 7: EMF EMR_HEADER Record Example, Part 2

Signature: 0x464D4520 specifies the record signature, which consists of the ASCII string " EMF".

Version: 0x00010000 specifies EMF metafile interoperability.

Bytes: 0x00000A5C specifies the size of the metafile in bytes.

Records: 0x0000004C specifies the number of records in the metafile

Handles: 0x0002 specifies the number of indexes that will need to be defined during the processing
of the metafile. These indexes correspond to graphics objects that are used in drawing commands.
Index zero is reserved for references to the metafile itself.

Reserved: 0x0000 is not used.

nDescription: 0x00000000 specifies the number of characters in the array that contains the
description of the metafile’smetafile's contents. Zero indicates there is no description string.

offDescription: 0x00000000 specifies the offset from the beginning of this record to the array that

contains the description of the metafile’smetafile's contents.

nPalEntries: 0x00000000 specifies the number of entries in the metafile palette. The location of the
palette is specified in the EMF end-of-file record, EMR_EOF.

199 / 270

[MS-EMFPLUS-Diff] - v20160714
Enhanced Metafile Format Plus Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Figure 8: EMF EMR_HEADER Record Example, Part 3

Device: (0x00000640, 0x000004B0) specifies the size of the reference device in pixels.

Millimeters: (0x00000140, 0x000000F0) specifies the size of the reference device in millimeters.

cbPixelFormat: 0x00000000 specifies the size of the EMF PixelFormatDescriptor object. This value
indicates that no pixel format is defined.

offPixelFormat: 0x00000000 specifies the offset to the PixelFormatDescriptor in the metafile. In this
case, no pixel format structure is present.

bOpenGL: 0x00000000 specifies that no EMF OpenGL records [OPENGL] are present in the metafile.

MicrometersX: 0x0004E200 specifies the horizontal size of the reference device in micrometers.

MicrometersY: 0x0003A900 specifies the vertical size of the reference device in micrometers.

3.2.2 EMR_COMMENT_EMFPLUS Example 1

This section provides an example of the EMF EMR_COMMENT_EMFPLUS record.

 00000060: 46 00 00 00
 00000070: 2C 00 00 00 20 00 00 00 45 4D 46 2B

Figure 9: EMF EMR_COMMENT_EMFPLUS Record Example

Type: 0x00000046 identifies this record as an EMF comment record.

Size: 0x0000002C specifies the size of this record in bytes, including embedded EMF+ records.

200 / 270

[MS-EMFPLUS-Diff] - v20160714
Enhanced Metafile Format Plus Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

DataSize: 0x00000020 specifies the size of the EMF+ data in bytes.

EMFPlusSignature: "EMF+" identifies the comment record type as EMR_COMMENT_EMFPLUS.

The embedded EMF+ records are presented in the sections that follow.

3.2.2.1 EmfPlusHeader Example

This section provides an example of the EmfPlusHeader record.

 00000070: 01 40 01 00
 00000080: 1C 00 00 00 10 00 00 00 02 10 C0 DB 01 00 00 00
 00000090: 66 00 00 00 6C 00 00 00

Figure 10: EmfPlusHeader Record Example

Type: 0x4001 identifies this record type as an EmfPlusHeader.

Flags: 0x0001 specifies flags to be processed for this recordthat the metafile is EMF+ Dual.

Size: 0x0000001C specifies the 32-bit-aligned size of the entire record in bytes, including the 12-byte
record header and the record-specific buffer data.

DataSize: 0x00000010 specifies the number of bytes of data in the RecordData member that
follows. This number does not include the size of the invariant part of this record.

Version: 0xDBC01002 specifies the version of operating systems graphics that was used to create the
metafile (EmfPlusGraphicsVersion object).

EmfPlusFlags: 0x00000001 specifies the additional information about how this metafile was
recorded. If the value is set to 0x00000001, the metafile was recorded with a reference playback

device context for a video display.

LogicalDpiX: 0x00000066 specifies the dots per inch (DPI) in the horizontal direction of the drawing

surface for which the metafile was created.

LogicalDpiY: 0x0000006C specifies the dots per inch (DPI) in the vertical direction of the drawing
surface for which the metafile was created.

3.2.3 EMR_SAVEDC Example 1

This section provides an example of the EMR_SAVEDC record.

201 / 270

[MS-EMFPLUS-Diff] - v20160714
Enhanced Metafile Format Plus Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 00000090: 21 00 00 00 08 00 00 00

Figure 11: EMF EMR_SAVEDC Record Example

Type: 0x00000021 identifies this EMF record type as EMR_SAVEDC.

Size: 0x00000008 specifies the size of this record in bytes.

3.2.4 EMR_SETICMMODE Example 1

This section provides an example of the EMF EMR_SETICMMODE record.

 000000A0: 62 00 00 00 0C 00 00 00 01 00 00 00

Figure 12: EMF EMR_SETICMMODE Record Example

Type: 0x00000062 identifies the record type as EMR_SETICMMODE.

Size: 0x0000000C specifies the size of this record in bytes.

ICMMode: 0x00000001 specifies turning off Image Color Management (ICM).This value is defined

in the EMF ICMMode enumeration.

3.2.5 EMR_SAVEDC Example 2

This section provides an example of the EMR_SAVEDC record.

 000000A0: 21 00 00 00
 000000B0: 08 00 00 00

Figure 13: EMF EMR_SAVEDC Record Example

Type: 0x00000021 identifies this EMF record type as EMR_SAVEDC.

202 / 270

[MS-EMFPLUS-Diff] - v20160714
Enhanced Metafile Format Plus Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Size: 0x00000008 specifies the size of this record in bytes.

3.2.6 EMR_SETICMMODE Example 2

This section provides an example of the EMF EMR_SETICMMODE record.

 000000B0: 62 00 00 00 0C 00 00 00 01 00 00 00

Figure 14: EMF EMR_SETICMMODE Record Example

Type: 0x00000062 identifies the record type as EMR_SETICMMODE.

Size: 0x0000000C specifies the size of this record in bytes.

ICMMode: 0x00000001 specifies turning off Image Color Management (ICM). This value is defined in
the EMF ICMMode enumeration.

3.2.7 EMR_SAVEDC Example 3

This section provides an example of the EMR_SAVEDC record.

 000000C0: 21 00 00 00 08 00 00 00

Figure 15: EMF EMR_SAVEDC Record Example

Type: 0x00000021 identifies this EMF record type as EMR_SAVEDC.

Size: 0x00000008 specifies the size of this record in bytes.

3.2.8 EMR_SETLAYOUT Example 1

This section provides an example of the EMF EMR_SETLAYOUT record.

 000000D0: 73 00 00 00 0C 00 00 00 00 00 00 00

203 / 270

[MS-EMFPLUS-Diff] - v20160714
Enhanced Metafile Format Plus Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Figure 16: EMF EMR_SETLAYOUT Record Example

Type: 0x00000073 identifies this record type as EMR_SETLAYOUT.

Size: 0x0000000C specifies the size of this record in bytes.

LayoutMode: 0x00000000 specifies left-to-right horizontal layout.

3.2.9 EMR_SETMETARGN Example 1

This section provides an example of the EMR_SETMETARGN record.

 000000D0: 1C 00 00 00
 000000E0: 08 00 00 00

Figure 17: EMF EMR_SETMETARGN Record Example

Type: 0x0000001C identifies this EMF record type as EMR_SETMETARGN.

Size: 0x00000008 specifies the size of this record.

3.2.10 EMR_SELECTOBJECT Example 1

This section provides an example of the EMR_SELECTOBJECT record.

 000000E0: 25 00 00 00 0C 00 00 00 00 00 00 80

Figure 18: EMF EMR_SELECTOBJECT Record Example

Type: 0x00000025 identifies this EMF record type as EMR_SELECTOBJECT.

Size: 0x0000000C specifies the size of this record in bytes.

204 / 270

[MS-EMFPLUS-Diff] - v20160714
Enhanced Metafile Format Plus Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

ihObject: 0x80000000 specifies the index of an object in the object table.

3.2.11 EMR_SELECTOBJECT Example 2

This section provides an example of the EMR_SELECTOBJECT record.

 000000F0: 25 00 00 00 0C 00 00 00 07 00 00 80

Figure 19: EMF EMR_SELECTOBJECT Record Example

Type: 0x00000025 identifies this EMF record type as EMR_SELECTOBJECT.

Size: 0x0000000C specifies the size of this record in bytes.

ihObject: 0x80000007 specifies the index of an object in the object table.

3.2.12 EMR_SELECTOBJECT Example 3

This section provides an example of the EMR_SELECTOBJECT record.

 000000F0: 25 00 00 00
 00000100: 0C 00 00 00 0E 00 00 80

Figure 20: EMF EMR_SELECTOBJECT Record Example

Type: 0x00000025 identifies this EMF record type as EMR_SELECTOBJECT.

Size: 0x0000000C specifies the size of this record in bytes.

ihObject: 0x8000000E specifies the index of an object in the object table.

3.2.13 EMR_SELECTPALETTE Example 1

This section provides an example of the EMR_SELECTPALETTE record.

 00000100: 30 00 00 00 0C 00 00 00
 00000110: 0F 00 00 80

205 / 270

[MS-EMFPLUS-Diff] - v20160714
Enhanced Metafile Format Plus Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Figure 21: EMF EMR_SELECTPALETTE Record Example

Type: 0x00000030 identifies this EMF record type as EMR_SELECTPALETTE.

Size: 0x0000000C specifies the size of this record in bytes.

ihPal: 0x8000000F specifies the palette index. The palette can be selected in background mode only.

3.2.14 EMR_SETBKCOLOR Example 1

This section provides an example of the EMR_SETBKCOLOR record.

 00000110: 19 00 00 00 0C 00 00 00 FF FF FF 00

Figure 22: EMF EMR_SETBKCOLOR Record Example

Type: 0x00000019 identifies this EMF record type as EMR_SETBKCOLOR.

Size: 0x0000000C specifies the size of this record in bytes.

Color: 0x00FFFFFF specifies the background color value with the WMF ColorRef object [MS-WMF].

3.2.15 EMR_SETTEXTCOLOR Example 1

This section provides an example of the EMR_SETTEXTCOLOR record.

 00000120: 18 00 00 00 0C 00 00 00 00 00 00 00

Figure 23: EMF EMR_SETTEXTCOLOR Record Example

Type: 0x00000018 identifies this EMF record type as EMR_SETTEXTCOLOR.

206 / 270

[MS-EMFPLUS-Diff] - v20160714
Enhanced Metafile Format Plus Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Size: 0x0000000C specifies the size of this record in bytes.

Color: 0x00000000 specifies the text color value in the form specified using the WMF ColorRef object

[MS-WMF].

3.2.16 EMR_SETBKMODE Example 1

This section provides an example of the EMF EMR_SETBKMODE record.

 00000120: 12 00 00 00
 00000130: 0C 00 00 00 02 00 00 00

Figure 24: EMF EMR_SETBKMODE Record Example

Type: 0x00000012 identifies the record type as EMR_SETBKMODE.

Size: 0x0000000C specifies the size of this record in bytes.

BackgroundMode: 0x00000002 specifies OPAQUE background mode. This value is defined in the
EMF BackgroundMode enumeration.

3.2.17 EMR_SETPOLYFILLMODE Example 1

This section provides an example of the EMF EMR_SETPOLYFILLMODE record.

 00000130: 13 00 00 00 0C 00 00 00
 00000140: 01 00 00 00

Figure 25: EMF EMR_SETPOLYFILLMODE Record Example

Type: 0x00000013 identifies the record type as EMR_SETPOLYFILLMODE.

Size: 0x0000000C specifies the size of this record in bytes.

PolygonFillMode: 0x00000001 specifies ALTERNATE polygon fill mode. This value is defined in the
EMF PolygonFillMode enumeration.

207 / 270

[MS-EMFPLUS-Diff] - v20160714
Enhanced Metafile Format Plus Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

3.2.18 EMR_SETROP2 Example 1

This section provides an example of the EMF EMR_SETROP2 record.

 00000140: 14 00 00 00 0C 00 00 00 0D 00 00 00

Figure 26: EMF EMR_SETROP2 Record Example

Type: 0x00000014 identifies the record type as EMR_SETROP2.

Size: 0x0000000C specifies the size of this record in bytes.

ROP2Mode: 0x0000000D specifies the R2_COPYPEN raster operation mode. This value is defined in
the WMF Binary Raster Operation enumeration [MS-WMF].

3.2.19 EMR_SETSTRETCHBLTMODE Example 1

This section provides an example of the EMF EMR_SETSTRETCHBLTMODE record.

 00000150: 15 00 00 00 0C 00 00 00 01 00 00 00

Figure 27: EMF EMR_SETSTRETCHBLTMODE Record Example

Type: 0x00000015 identifies the record type as EMR_SETSTRETCHBLTMODE.

Size: 0x0000000C specifies the size of this record in bytes.

StretchMode: 0x00000001 specifies a Boolean AND operation using the color values for the
eliminated and existing pixels, from the EMF StretchMode enumeration.

3.2.20 EMR_SETTEXTALIGN Example 1

This section provides an example of the EMR_SETTEXTALIGN record.

 00000150: 16 00 00 00
 00000160: 0C 00 00 00 00 00 00 00

208 / 270

[MS-EMFPLUS-Diff] - v20160714
Enhanced Metafile Format Plus Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Figure 28: EMF EMR_SETTEXTALIGN Record Example

Type: 0x00000016 identifies this EMF record type as EMR_SETTEXTALIGN.

Size: 0x0000000C specifies the size of this record in bytes.

TextAlignmentMode: 0x00000000 specifies text alignment using a mask of WMF
TextAlignmentMode flags or VerticalTextAlignmentMode flags [MS-WMF]. Only one flag can be chosen

from those that affect horizontal and vertical alignment. In addition, only one of the two flags that
alter the current position can be chosen.

3.2.21 EMR_SETBRUSHORGEX Example 1

This section provides an example of the EMR_SETBRUSHORGEX record.

 00000160: 0D 00 00 00 10 00 00 00
 00000170: 00 00 00 00 00 00 00 00

Figure 29: EMF EMR_SETBRUSHORGEX Record Example

Type: 0x0000000D identifies this EMF record type as EMR_SETBRUSHORGEX.

Size: 0x00000010 specifies the size of this record in bytes.

Origin: (0x00000000, 0x00000000) specifies the brush horizontal and vertical origin in device units.

3.2.22 EMR_SETMITERLIMIT Example 1

This section provides an example of the EMF EMR_SETMITERLIMIT record.

 00000170: 3A 00 00 00 0C 00 00 00
 00000180: 0A 00 00 00

209 / 270

[MS-EMFPLUS-Diff] - v20160714
Enhanced Metafile Format Plus Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Figure 30: EMF EMR_SETMITERLIMIT Record Example

Type: 0x0000003A identifies the record type as EMR_SETMITERLIMIT.

Size: 0x0000000C specifies the size of this record in bytes.

MiterLimit: 0x0000000A specifies a miter length limit of 10 logical units.

3.2.23 EMR_MOVETOEX Example 1

This section provides an example of the EMR_MOVETOEX record.

 00000180: 1B 00 00 00 10 00 00 00 00 00 00 00
 00000190: 00 00 00 00

Figure 31: EMF EMR_MOVETOEX Record Example

Type: 0x0000001B identifies this EMF record type as EMR_MOVETOEX.

Size: 0x00000010 specifies the size of this record in bytes.

Offset: (0x00000000, 0x00000000) specifies coordinates of the new current position in logical units.

3.2.24 EMR_SETWORLDTRANSFORM Example 1

This section provides an example of the EMF EMR_SETWORLDTRANSFORM record.

 00000190: 23 00 00 00 20 00 00 00 87 C3 81 3F
 000001A0: 00 00 00 00 00 00 00 00 7A BD 80 3F 00 00 00 80
 000001B0: 00 00 00 80

210 / 270

[MS-EMFPLUS-Diff] - v20160714
Enhanced Metafile Format Plus Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Figure 32: EMF EMR_SETWORLDTRANSFORM Record Example

Type: 0x00000023 identifies the record type as EMR_SETWORLDTRANSFORM.

Size: 0x00000020 specifies the size of this record in bytes.

Xform: (1.005782, 0.000000, 0.000000, 1.013780, 0.000000, 0.000000) an EMF XForm object,
which specifies the world space to page space transformation.

3.2.25 EMR_MODIFYWORLDTRANSFORM Example 1

This section provides an example of the EMF EMR_MODIFYWORLDTRANSFORM record.

 24 00 00 00 24 00 00 00 87 C3 81 3F
 000001C0: 00 00 00 00 00 00 00 00 7A BD 80 3F 00 00 00 80
 000001D0: 00 00 00 80 04 00 00 00

Figure 33: EMF EMR_MODIFYWORLDTRANSFORM Record Example

Type: 0x00000024 identifies the record type as EMR_MODIFYWORLDTRANSFORM.

Size: 0x00000024 specifies the size of this record in bytes.

211 / 270

[MS-EMFPLUS-Diff] - v20160714
Enhanced Metafile Format Plus Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Xform: (1.005782, 0.000000, 0.000000, 1.013780, 0.000000, 0.000000) an EMF XForm object,
which specifies the world space to page space transformation.

ModifyWorldTransformMode: 0x00000004 specifies that this record performs the function of an
EMF EMR_SETWORLDTRANSFORM record. This value is defined in the EMF ModifyWorldTransformMode

enumeration.

3.2.26 EMR_SETLAYOUT Example 2

This section provides an example of the EMF EMR_SETLAYOUT record.

 000001D0: 73 00 00 00 0C 00 00 00
 000001E0: 00 00 00 00

Figure 34: EMF EMR_SETLAYOUT Record Example

Type: 0x00000073 identifies this record type as EMR_SETLAYOUT.

Size: 0x0000000C specifies the size of this record in bytes.

LayoutMode: 0x00000000 specifies left-to-right horizontal layout.

3.2.27 EMR_SETBRUSHORGEX Example 2

This section provides an example of the EMR_SETBRUSHORGEX record.

 000001E0: 0D 00 00 00 10 00 00 00 00 00 00 00
 000001F0: 00 00 00 00

Figure 35: EMF EMR_SETBRUSHORGEX Record Example

Type: 0x0000000D identifies this EMF record type as EMR_SETBRUSHORGEX.

Size: 0x00000010 specifies the size of this record in bytes.

Origin: (0x00000000, 0x00000000) specifies the brush horizontal and vertical origin in device units.

212 / 270

[MS-EMFPLUS-Diff] - v20160714
Enhanced Metafile Format Plus Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

3.2.28 EMR_EXTCREATEFONTINDIRECTW Example

This section provides an example of the EMF EMR_EXTCREATEFONTINDIRECTW record.

 000001F0: 52 00 00 00 70 01 00 00 01 00 00 00
 00000200: 10 00 00 00 07 00 00 00 00 00 00 00 00 00 00 00
 00000210: BC 02 00 00 00 00 00 00 07 02 02 22 53 00 79 00
 00000220: 73 00 74 00 65 00 6D 00 00 00 00 00 00 00 00 00
 00000230: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00000240: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00000250: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00000260: B1 E6 31 7C BC FE 12 00 21 00 00 00 00 00 13 00
 00000270: 00 00 2E 00 54 E1 12 00 BC FE 12 00 14 E1 12 00
 00000280: 00 00 00 00 F4 F4 12 00 34 B8 F9 77 68 26 F4 77
 00000290: FF FF FF FF AD 97 F7 77 7F 99 F7 77 70 E1 12 00
 000002A0: 21 00 00 00 01 00 00 00 FC 8B CE 02 38 A6 17 00
 000002B0: 7F 99 F7 77 B0 DA 4F 00 63 DE 5D 00 3E 08 5A 00
 000002C0: 68 99 5A 00 F5 82 54 00 1A 91 54 00 8F 9B C7 77
 000002D0: BD 93 54 00 6F 9D 54 00 94 E5 54 00 00 00 54 00
 000002E0: AF 58 56 00 6B 50 56 00 B4 3A 55 00 05 39 55 00
 000002F0: 09 35 55 00 64 C4 4F 00 00 82 41 00 FF 44 41 00
 00000300: 12 4E 41 00 E1 4B 41 00 1D 1E 31 7C 4B 16 31 7C
 00000310: DA EF 30 7C 49 F4 30 7C EA A3 37 7C 00 00 D5 77
 00000320: A5 DC D5 77 46 46 D3 77 D7 96 D3 77 97 ED 31 7C
 00000330: B1 E6 31 7C 00 00 2E 01 10 E2 12 00 68 8B CE 02
 00000340: 08 ED F8 77 68 8B CE 02 00 00 2E 01 01 00 00 00
 00000350: 00 00 2E 01 C4 04 F9 77 27 05 F9 77 64 76 00 08
 00000360: 00 00 00 00

Figure 36: EMF EMR_EXTCREATEFONTINDIRECTW Record Example

Type: 0x00000052 identifies the record type as EMR_EXTCREATEFONTINDIRECTW.

Size: 0x00000170 specifies the size of this record in bytes.

ihFonts: 0x00000001 specifies the object index in the EMF Object Table to assign to the font.

elw: the logical font, which is an EMF LogFontExDv object.

213 / 270

[MS-EMFPLUS-Diff] - v20160714
Enhanced Metafile Format Plus Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Figure 37: EMF LogFontExDv Object, Part 1

Height: 0x00000010 specifies the cell height for this font in logical units.

Width: 0x00000007 specifies the average character width for this font in logical units.

Escapement: 0x00000000 specifies an angle of 0 degrees between the baseline of a row of text and
the x-axis of the device.

Orientation: 0x00000000 specifies an angle of 0 degrees between the baseline of each character and
the x-axis of the device.

Weight: 0x0000002BC specifies that the weight of the font is 700, in the range 0 through 1000,
from lightest to darkest, with 400 (0x00000190) considered normal.

Italic: 0x00 specifies that the font is not italic.

Underline: 0x00 specifies that the font is not underlined.

Strikeout: 0x00 specifies that the font characters do not have a strike-out graphic.

CharSet: 0x00 specifies the ANSI_CHARSET, as defined in the WMF CharacterSet enumeration [MS-
WMF].

OutPrecision: 0x07 specifies the output precision, which is how closely the output matches the
requested font properties, from the WMF OutPrecision enumeration. The value 0x07 specifies a
TrueType font.

ClipPrecision: 0x02 specifies the clipping precision, which is how to clip characters that are partially
outside the clipping region, from the WMF ClipPrecision Flags. The value 0x02 is used for vector and

TrueType fonts.

Quality: 0x02 specifies proof output quality, from the WMF FontQuality enumeration.

PitchAndFamily: 0x22 specifies a variable-pitch font with no serifs, from the WMF FamilyFont and
PitchFont enumerations.

Facename: "System" specifies the typeface name of the font in Unicode characters.

214 / 270

[MS-EMFPLUS-Diff] - v20160714
Enhanced Metafile Format Plus Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Figure 38: EMF LogFontExDv Object, Part 2

FullName: An empty string specifies the full name of the font.

Style: An empty string describes the style of the font.

Script: An empty string describes the character set of the font.

Signature: 0x80007664 specifies the signature of an EMF DesignVector object.

NumAxes: 0x00000000 specifies the number of font axes described in the DesignVector object.

3.2.29 EMR_SELECTOBJECT Example 4

This section provides an example of the EMR_SELECTOBJECT record.

 00000360: 25 00 00 00 0C 00 00 00 01 00 00 00

Figure 39: EMF EMR_SELECTOBJECT Record Example

Type: 0x00000025 identifies this EMF record type as EMR_SELECTOBJECT.

Size: 0x0000000C specifies the size of this record in bytes.

ihObject: 0x00000001 specifies the index of an object in the object table.

215 / 270

[MS-EMFPLUS-Diff] - v20160714
Enhanced Metafile Format Plus Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

3.2.30 EMR_SELECTOBJECT Example 5

This section provides an example of the EMR_SELECTOBJECT record.

 00000370: 25 00 00 00 0C 00 00 00 0E 00 00 80

Figure 40: EMF EMR_SELECTOBJECT Record Example

Type: 0x00000025 identifies this EMF record type as EMR_SELECTOBJECT.

Size: 0x0000000C specifies the size of this record in bytes.

ihObject: 0x8000000E specifies the index of an object in the object table.

3.2.31 EMR_DELETEOBJECT Example

This section provides an example of the EMR_DELETEOBJECT record.

 00000370: 28 00 00 00
 00000380: 0C 00 00 00 01 00 00 00

Figure 41: EMF EMR_DELETEOBJECT Record Example

Type: 0x00000028 identifies this EMF record type as EMR_DELETEOBJECT.

Size: 0x0000000C specifies the size of this record in bytes.

ihObject: 0x00000001 specifies the object table to be deleted.

3.2.32 EMR_COMMENT_EMFPLUS Example 2

This section provides an example of the EMF EMR_COMMENT_EMFPLUS record.

 00000380: 46 00 00 00 88 02 00 00
 00000390: 7C 02 00 00 45 4D 46 2B

216 / 270

[MS-EMFPLUS-Diff] - v20160714
Enhanced Metafile Format Plus Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Figure 42: EMF EMR_COMMENT_EMFPLUS Record Example

Type: 0x00000046 identifies this record as an EMF comment record.

Size: 0x00000288 specifies the size of this record in bytes, including embedded EMF+ records.

DataSize: 0x0000027C specifies the size of the EMF+ data in bytes.

EMFPlusSignature: "EMF+" identifies the comment record type as EMR_COMMENT_EMFPLUS.

The embedded EMF+ records are presented in the sections that follow.

3.2.32.1 EmfPlusSetAntiAliasMode Example 1

This section provides an example of the EmfPlusAntiAliasMode record.

 00000390: 1E 40 0B 00 0C 00 00 00
 000003A0: 00 00 00 00

Figure 43: EmfPlusSetAntiAliasMode Record Example

Type: 0x401E identifies this record type as EmfPlusAntiAliasMode.

Flags: 0x000B specifies anti-aliasing with an 8x8 box filter.

Size: 0x0000000C specifies the size in bytes of this record.

DataSize: 0x00000000 specifies the size in bytes of record-specific data in this record, and in this
case there is none.

3.2.32.2 EmfPlusSetCompositingQuality Example 1

This section provides an example of the EmfPlusSetCompositingQuality record.

 000003A0: 24 40 02 00 0C 00 00 00 00 00 00 00

217 / 270

[MS-EMFPLUS-Diff] - v20160714
Enhanced Metafile Format Plus Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Figure 44: EmfPlusSetCompositingQuality Record Example

Type: 0x4024 identifies this record type as EmfPlusSetCompositingQuality.

Flags: 0x0002 specifies CompositingQualityHighSpeed from the CompositingQuality enumeration.

Size: 0x0000000C specifies the size in bytes of this record.

DataSize: 0x00000000 specifies the size in bytes of record-specific data in this record, and in this

case there is none.

3.2.32.3 EmfPlusSetInterpolationMode Example 1

This section provides an example of the EmfPlusSetInterpolationMode record.

 000003B0: 21 40 07 00 0C 00 00 00 00 00 00 00

Figure 45: EmfPlusSetInterpolationMode Record Example

Type: 0x4021 identifies this record type as EmfPlusSetInterpolationMode.

Flags: 0x0007 specifies InterpolationModeHighQualityBicubic from the InterpolationMode
enumeration.

Size: 0x0000000C specifies the size in bytes of this record.

DataSize: 0x00000000 specifies the size in bytes of record-specific data in this record, and in this
case there is none.

3.2.32.4 EmfPlusSetPixelOffsetMode Example 1

This section provides an example of the EmfPlusSetPixelOffsetMode record.

 000003B0: 22 40 03 00
 000003C0: 0C 00 00 00 00 00 00 00

218 / 270

[MS-EMFPLUS-Diff] - v20160714
Enhanced Metafile Format Plus Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Figure 46: EmfPlusSetPixelOffsetMode Record Example

Type: 0x4022 identifies this record type as EmfPlusSetPixelOffsetMode.

Flags: 0x0003 specifies PixelOffsetModeNone from the PixelOffsetMode enumeration.

Size: 0x0000000C specifies the size in bytes of this record.

DataSize: 0x00000000 specifies the size in bytes of record-specific data in this record, and in this

case there is none.

3.2.32.5 EmfPlusSetTextRenderingHint Example 1

This section provides an example of the EmfPlusSetTextRenderingHint record.

 000003C0: 1F 40 05 00 0C 00 00 00
 000003D0: 00 00 00 00

Figure 47: EmfPlusSetTextRenderingHint Record Example

Type: 0x401F identifies this record type as EmfPlusSetTextRenderingHint.

Flags: 0x0005 specifies TextRenderingHintClearTypeGridFit from the TextRenderingHint enumeration.

Size: 0x0000000C specifies the size in bytes of this record.

DataSize: 0x00000000 specifies the size in bytes of record-specific data in this record, and in this
case, there is none.

3.2.32.6 EmfPlusMultiplyWorldTransform Example 1

This section provides an example of the EmfPlusMultiplyWorldTransform record.

 000003D0: 2C 40 00 00 24 00 00 00 18 00 00 00
 000003E0: 00 00 80 3F 00 00 00 00 00 00 00 00 00 00 80 3F
 000003F0: 00 00 00 80 00 00 00 80

219 / 270

[MS-EMFPLUS-Diff] - v20160714
Enhanced Metafile Format Plus Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Figure 48: EmfPlusMultiplyWorldTransform Record Example

Type: 0x402C identifies the record type as EmfPlusMultiplyWorldTransform.

Flags: 0x0000 specifies pre-multiplication of the transform matrix.

Size: 0x00000024 specifies the size in bytes of the entire record.

DataSize: 0x00000018 specifies the size in bytes of the record-specific data that follows.

MatrixData: An EmfPlusTransformMatrix object that contains the multiplication matrix.

3.2.32.7 EmfPlusSave Example

This section provides an example of the EmfPlusSave record.

 000003F0: 25 40 00 00 10 00 00 00
 00000400: 04 00 00 00 00 00 00 00

Figure 49: EmfPlusSave Record Example

Type: 0x4025 identifies this record type as EmfPlusSave.

Flags: 0x0000 This field is undefined for this record type.

Size: 0x00000010 specifies the 32-bit-aligned size of the entire record in bytes, including the 12-byte
record header and the record-specific buffer data.

DataSize: 0x00000004 specifies the 32-bit-aligned number of bytes of data in the PointData

member that follows. This number does not include the size of the invariant part of this record.

220 / 270

[MS-EMFPLUS-Diff] - v20160714
Enhanced Metafile Format Plus Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

StackIndex: 0x00000000 specifies the identifier used by the corresponding EmfPlusRestore operation
to retrieve the graphics state from the correct save level on the graphics state stack.

3.2.32.8 EmfPlusMultiplyWorldTransform Example 2

This section provides an example of the EmfPlusMultiplyWorldTransform record.

 00000400: 2C 40 00 00 24 00 00 00
 00000410: 18 00 00 00 00 00 80 3F 00 00 00 00 00 00 00 00
 00000420: 00 00 80 3F 00 00 00 00 00 00 00 00

Figure 50: EmfPlusMultiplyWorldTransform Record Example

Type: 0x402C identifies the record type as EmfPlusMultiplyWorldTransform.

Flags: 0x0000 specifies pre-multiplication of the transform matrix.

Size: 0x00000024 specifies the size in bytes of the entire record.

DataSize: 0x00000018 specifies the size in bytes of the record-specific data that follows.

MatrixData: An EmfPlusTransformMatrix object that contains the multiplication matrix.

3.2.32.9 EmfPlusSetWorldTransform Example 1

This section provides an example of the EmfPlusSetWorldTransform record.

 00000420: 2A 40 00 00
 00000430: 24 00 00 00 18 00 00 00 00 00 80 3F 00 00 00 00
 00000440: 00 00 00 00 00 00 80 3F 00 00 00 80 00 00 00 80

221 / 270

[MS-EMFPLUS-Diff] - v20160714
Enhanced Metafile Format Plus Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Figure 51: EmfPlusSetWorldTransform Record Example

Type: 0x402A identifies this record type as EmfPlusSetWorldTransform.

Flags: 0x0000 This field is undefined for this record type.

Size: 0x00000024 specifies the size in bytes of this record.

DataSize: 0x00000018 specifies the size in bytes of record-specific data in this record.

MatrixData: An EmfPlusTransformMatrix object, which specifies the world transform.

3.2.32.10 EmfPlusBeginContainerNoParams Example

This section provides an example of the EmfPlusBeginContainerNoParams record.

 00000450: 28 40 00 00 10 00 00 00 04 00 00 00 01 00 00 00

Figure 52: EmfPlusBeginContainerNoParams Record Example

Type: 0x4028 identifies the record type as EmfPlusBeginContainerNoParams.

Flags: 0x0000 is undefined for this record type.

Size: 0x00000010 specifies the size in bytes of the entire record.

DataSize: 0x00000004 specifies the size in bytes of the record-specific data that follows.

222 / 270

[MS-EMFPLUS-Diff] - v20160714
Enhanced Metafile Format Plus Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

StackIndex: 0x00000001 specifies the identifier used to reference the container in future records. It
will match a StackIndex value in a subsequent EmfPlusEndContainer record that will end the

container.

3.2.32.11 EmfPlusSetAntiAliasMode Example 2

This section provides an example of the EmfPlusAntiAliasMode record.

 00000460: 1E 40 0B 00 0C 00 00 00 00 00 00 00

Figure 53: EmfPlusSetAntiAliasMode Record Example

Type: 0x401E identifies this record type as EmfPlusAntiAliasMode.

Flags: 0x000B specifies anti-aliasing with an 8x8 box filter.

Size: 0x0000000C specifies the size in bytes of this record.

DataSize: 0x00000000 specifies the size in bytes of record-specific data in this record, and in this
case there is none.

3.2.32.12 EmfPlusSetCompositingQuality Example 2

This section provides an example of the EmfPlusSetCompositingQuality record.

 00000460: 24 40 02 00
 00000470: 0C 00 00 00 00 00 00 00

Figure 54: EmfPlusSetCompositingQuality Record Example

Type: 0x4024 identifies this record type as EmfPlusSetCompositingQuality.

Flags: 0x0002 specifies CompositingQualityHighSpeed from the CompositingQuality enumeration.

Size: 0x0000000C specifies the size in bytes of this record.

DataSize: 0x00000000 specifies the size in bytes of record-specific data in this record, and in this
case there is none.

223 / 270

[MS-EMFPLUS-Diff] - v20160714
Enhanced Metafile Format Plus Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

3.2.32.13 EmfPlusSetInterpolationMode Example 2

This section provides an example of the EmfPlusSetInterpolationMode record.

 00000470: 21 40 07 00 0C 00 00 00
 00000480: 00 00 00 00

Figure 55: EmfPlusSetInterpolationMode Record Example

Type: 0x4021 identifies this record type as EmfPlusSetInterpolationMode.

Flags: 0x0007 specifies InterpolationModeHighQualityBicubic from the InterpolationMode
enumeration.

Size: 0x0000000C specifies the size in bytes of this record.

DataSize: 0x00000000 specifies the size in bytes of record-specific data in this record, and in this
case there is none.

3.2.32.14 EmfPlusSetPixelOffsetMode Example 2

This section provides an example of the EmfPlusSetPixelOffsetMode record.

 00000480: 22 40 03 00 0C 00 00 00 00 00 00 00

Figure 56: EmfPlusSetPixelOffsetMode Record Example

Type: 0x4022 identifies this record type as EmfPlusSetPixelOffsetMode.

Flags: 0x0003 specifies PixelOffsetModeNone from the PixelOffsetMode enumeration.

Size: 0x0000000C specifies the size in bytes of this record.

DataSize: 0x00000000 specifies the size in bytes of record-specific data in this record, and in this
case there is none.

3.2.32.15 EmfPlusSetTextRenderingHint Example 2

This section provides an example of the EmfPlusSetTextRenderingHint record.

224 / 270

[MS-EMFPLUS-Diff] - v20160714
Enhanced Metafile Format Plus Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 00000490: 1F 40 05 00 0C 00 00 00 00 00 00 00

Figure 57: EmfPlusSetTextRenderingHint Record Example

Type: 0x401F identifies this record type as EmfPlusSetTextRenderingHint.

Flags: 0x0005 specifies TextRenderingHintClearTypeGridFit from the TextRenderingHint enumeration.

Size: 0x0000000C specifies the size in bytes of this record.

DataSize: 0x00000000 specifies the size in bytes of record-specific data in this record, and in this
case, there is none.

3.2.32.16 EmfPlusSetPageTransform Example

This section provides an example of the EmfPlusSetPageTransform record.

 00000490: 30 40 02 00
 000004A0: 10 00 00 00 04 00 00 00 00 00 80 3F

Figure 58: EmfPlusSetPageTransform Record Example

Type: 0x4030 identifies this record type as EmfPlusSetPageTransform.

Flags: 0x0002 specifies UnitPixel from the UnitType enumeration.

Size: 0x00000010 specifies the size in bytes of this record.

DataSize: 0x00000004 specifies the size in bytes of the record-specific data in this record.

PageScale: 0x3F800000 specifies the floating-point scale factor for converting page space
coordinates to device space coordinates.

3.2.32.17 EmfPlusSetWorldTransform Example 2

This section provides an example of the EmfPlusSetWorldTransform record.

225 / 270

[MS-EMFPLUS-Diff] - v20160714
Enhanced Metafile Format Plus Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 000004A0: 2A 40 00 00
 000004B0: 24 00 00 00 18 00 00 00 00 00 80 3F 00 00 00 00
 000004C0: 00 00 00 00 00 00 80 3F 00 00 00 80 00 00 00 80

Figure 59: EmfPlusSetWorldTransform Record Example

Type: 0x402A identifies the record type as EmfPlusSetWorldTransform.

Flags: 0x0000 is undefined for this record type.

Size: 0x00000024 specifies the size in bytes of the entire record.

DataSize: 0x00000018 specifies the size in bytes of the MatrixData field that follows.

MatrixData: An EmfPlusTransformMatrix object, which contains the world-space transform.

3.2.32.18 EmfPlusSetWorldTransform Example 3

This section provides an example of the EmfPlusSetWorldTransform record.

 000004D0: 2A 40 00 00 24 00 00 00 18 00 00 00 00 00 80 3F
 000004E0: 00 00 00 00 00 00 00 00 00 00 80 3F 00 00 00 80
 000004F0: 00 00 00 80

226 / 270

[MS-EMFPLUS-Diff] - v20160714
Enhanced Metafile Format Plus Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Figure 60: EmfPlusSetWorldTransform Record Example

Type: 0x402A identifies the record type as EmfPlusSetWorldTransform.

Flags: 0x0000 is undefined for this record type.

Size: 0x00000024 specifies the size in bytes of the entire record.

DataSize: 0x00000018 specifies the size in bytes of the MatrixData field that follows.

MatrixData: An EmfPlusTransformMatrix object that contains the world-space transform.

3.2.32.19 EmfPlusSetWorldTransform Example 4

This section provides an example of the EmfPlusSetWorldTransform record.

 000004F0: 2A 40 00 00 24 00 00 00 18 00 00 00
 00000500: 0D 74 DA 3A 00 00 00 00 00 00 00 00 0D 74 DA 3A
 00000510: 00 00 00 80 00 00 00 80

Figure 61: EmfPlusSetWorldTransform Record Example

227 / 270

[MS-EMFPLUS-Diff] - v20160714
Enhanced Metafile Format Plus Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Type: 0x402A identifies the record type as EmfPlusSetWorldTransform.

Flags: 0x0000 is undefined for this record type.

Size: 0x00000024 specifies the size in bytes of the entire record.

DataSize: 0x00000018 specifies the size in bytes of the MatrixData field that follows.

MatrixData: An EmfPlusTransformMatrix object, which contains the world-space transform.

3.2.32.20 EmfPlusSetWorldTransform Example 5

This section provides an example of the EmfPlusSetWorldTransform record.

 00000510: 2A 40 00 00 24 00 00 00
 00000520: 18 00 00 00 92 5F 2C 3E 00 00 00 00 00 00 00 00
 00000530: EB 51 38 3E 00 00 00 80 00 00 00 80

Figure 62: EmfPlusSetWorldTransform Record Example

Type: 0x402A identifies the record type as EmfPlusSetWorldTransform.

Flags: 0x0000 is undefined for this record type.

Size: 0x00000024 specifies the size in bytes of the entire record.

DataSize: 0x00000018 specifies the size in bytes of the MatrixData field that follows.

MatrixData: An EmfPlusTransformMatrix object, which contains the world-space transform.

3.2.32.21 EmfPlusObject Example

This section provides an example of the EmfPlusObject record.

 00000530: 08 40 00 03
 00000540: C4 00 00 00 B8 00 00 00 02 10 C0 DB 13 00 00 00
 00000550: 00 00 00 00 FC 7F F5 43 CF FF FF BF 9D 8E 08 44
 00000560: 1E 01 00 C0 FE BF 13 44 EB 15 2B 42 FF BF 13 44
 00000570: FC FF C3 42 FF BF 13 44 FE FF C3 42 FF BF 13 44
 00000580: 01 00 C4 42 FF BF 13 44 03 00 C4 42 FF BF 13 44

228 / 270

[MS-EMFPLUS-Diff] - v20160714
Enhanced Metafile Format Plus Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 00000590: FF FF F5 43 FF BF 13 44 9F CE 08 44 9F 8E 08 44
 000005A0: FF FF 13 44 00 80 F5 43 FF FF 13 44 05 00 C2 42
 000005B0: FF FF 13 44 16 16 27 42 00 00 14 44 72 FF 3F C0
 000005C0: 9F CE 08 44 E8 FF 3F C0 01 00 F6 43 10 00 40 C0
 000005D0: 04 00 C4 42 64 00 40 C0 17 16 2B 42 FA 15 27 42
 000005E0: E8 FE FF BF F6 FF C1 42 26 00 00 C0 00 03 03 03
 000005F0: 03 03 03 01 03 03 03 01 03 03 03 01 03 03 83 BF

Figure 63: EmfPlusObject Record Example

Type: 0x4008 identifies the record type as EmfPlusObject.

Flags: 0x0300 specifies an EmfPlusPath object from the ObjectType enumeration, and index 0x00 for
the graphics object in the EMF+ Object Table.

Size: 0x000000C4 specifies the size in bytes of the entire record.

DataSize: 0x000000B8 specifies the size in bytes of the record-specific data that follows.

ObjectTypePath: An EmfPlusPath object.

Figure 64: EmfPlusPath Object Example

Version: 0xDBC01002 specifies the graphics version that was used to create the EmfPlusPath object
in this record. The value 0xDBC01002 corresponds to GDI+ version 1.1.

229 / 270

[MS-EMFPLUS-Diff] - v20160714
Enhanced Metafile Format Plus Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

PathPointCount: 0x00000013 specifies the number of elements in the PathPoints and
PathPointTypes arrays.

PathPointTypeFlags: 0x00000000 specifies that the path point type values are not compressed.

PathPoints: An array of PathPointCount EmfPlusPointF objects that specify the endpoints and

control points of the lines and Bezier curves that define the path.

PathPointTypes: An array of PathPointCount bytes that specify the point types and flags for the
data points in the path. Point types determine how the points are used to draw the path, and are
values in the PathPointType enumeration.

AlignmentPadding: An extra byte that makes the total size of this record a multiple of 4 bytes. The
value of this field is indeterminate and is ignored.

3.2.32.22 EmfPlusFillPath Example

This section provides an example of the EmfPlusFillPath record.

 00000600: 14 40 00 80 10 00 00 00 04 00 00 00 FF FF FF 00

Figure 65: EmfPlusFillPath Record Example

Type: 0x4014 identifies the record type as EmfPlusFillPath.

Flags: 0x8000 specifies that a solid color is specified in the BrushId field.

Size: 0x00000010 specifies the size in bytes of the entire record.

DataSize: 0x00000004 specifies the size in bytes of the BrushID field that follows.

BrushId: 0x00FFFFFF specifies the fill color, which is white.

3.2.33 EMR_COMMENT_EMFPLUS Example 3

This section provides an example of the EMF EMR_COMMENT_EMFPLUS record.

 00000610: 46 00 00 00 50 00 00 00 44 00 00 00 45 4D 46 2B

230 / 270

[MS-EMFPLUS-Diff] - v20160714
Enhanced Metafile Format Plus Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Figure 66: EMF EMR_COMMENT_EMFPLUS Record Example

Type: 0x00000046 identifies this record as an EMF comment record.

Size: 0x00000050 specifies the size of this record in bytes, including embedded EMF+ records.

DataSize: 0x00000044 specifies the size of the EMF+ data in bytes.

EMFPlusSignature: "EMF+" identifies the comment record type as EMR_COMMENT_EMFPLUS.

The embedded EMF+ records are presented in the sections that follow.

3.2.33.1 EmfPlusObject Example

This section provides an example of the EmfPlusObject record.

 00000620: 08 40 01 02 30 00 00 00 24 00 00 00 02 10 C0 DB
 00000630: 00 00 00 00 80 00 00 00 02 00 00 00 00 00 80 3F
 00000640: 00 00 00 00 02 10 C0 DB 00 00 00 00 00 00 00 FF

Figure 67: EmfPlusObject Record Example

Type: 0x4008 identifies the record type as EmfPlusObject.

Flags: 0x0201 specifies an EmfPlusPen object from the ObjectType enumeration, and index 0x01 for

the graphics object in the EMF+ Object Table.

Size: 0x00000030 specifies the size in bytes of the entire record.

DataSize: 0x00000024 specifies the size in bytes of the record-specific data that follows.

ObjectTypePen: An EmfPlusPen object that specifies the graphics pen defined by this object record.

231 / 270

[MS-EMFPLUS-Diff] - v20160714
Enhanced Metafile Format Plus Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Figure 68: EmfPlusPen Graphics Object Example

Version: 0xDBC01002 specifies the graphics version that was used to create the EmfPlusPen object in
this record. The value 0xDBC01002 corresponds to GDI+ version 1.1.

Type: 0x00000000 is not used.

PenData: An EmfPlusPenData object that specifies the characteristics of the graphics pen, including

both required and optional fields.

Figure 69: EmfPlusPenData Structure Object Example

PenDataFlags: 0x00000080 specifies that a dashed-line offset value is present in the OptionalData
field of this object. This is a value from the PenData bit flag constants.

PenUnit: 0x00000002 specifies a unit of one pixel for the pen, from the UnitType enumeration.

PenWidth: 0x3F800000 specifies a floating-point value that is the width of the stroke drawn by the

pen, in the units specified by the PenUnit field.

OptionalData: 0x00000000 specifies a zero dashed-line offset.

BrushObject: An EmfPlusBrush object that specifies the graphics brush associated with the pen.

Figure 70: EmfPlusBrush Graphics Object Example

Version: 0xDBC01002 specifies the graphics version that was used to create the EmfPlusBrush object
in this record.

Type: 0x00000000 specifies a solid color brush from the BrushType enumeration.

232 / 270

[MS-EMFPLUS-Diff] - v20160714
Enhanced Metafile Format Plus Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

BrushData: 0xFF000000 specifies a blue brush color.

3.2.33.2 EmfPlusDrawPath Example

This section provides an example of the EmfPlusDrawPath record.

 00000650: 15 40 00 00 10 00 00 00 04 00 00 00 01 00 00 00

Figure 71: EmfPlusDrawPath Record Example

Type: 0x4015 identifies this record type as EmfPlusDrawPath.

Flags: 0x0000 specifies the graphics object identifier and object type.

Size: 0x00000010 specifies the 32-bit-aligned size of the entire record in bytes, including the 12-byte
record header and the record-specific buffer data.

DataSize: 0x00000004 specifies the 32-bit-aligned number of bytes of data in the RecordData
member that follows. This number does not include the size of the invariant part of this record.

PenId: 0x00000001 specifies the index into the Object Table for the EmfPlusPen object to use.

3.2.34 EMR_RESTOREDC Example 1

This section provides an example of the EMF EMR_RESTOREDC record.

 00000660: 22 00 00 00 0C 00 00 00 FF FF FF FF

Figure 72: EMF EMR_RESTOREDC Record Example

Type: 0x00000022 identifies the EMF record type as EMR_RESTOREDC.

Size: 0x0000000C specifies the size of this record in bytes.

SavedDC: 0xFFFFFFFF specifies the most recently saved state.

233 / 270

[MS-EMFPLUS-Diff] - v20160714
Enhanced Metafile Format Plus Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

3.2.35 EMR_RESTOREDC Example 2

This section provides an example of the EMF EMR_RESTOREDC record.

 00000660: 22 00 00 00
 00000670: 0C 00 00 00 FF FF FF FF

Figure 73: EMF EMR_RESTOREDC Record Example

Type: 0x00000022 identifies the EMF record type as EMR_RESTOREDC.

Size: 0x0000000C specifies the size of this record in bytes.

SavedDC: 0xFFFFFFFF specifies the most recently saved state.

3.2.36 EMR_SELECTOBJECT Example 6

This section provides an example of the EMR_SELECTOBJECT record.

 00000670: 25 00 00 00 0C 00 00 00
 00000680: 0D 00 00 80

Figure 74: EMF EMR_SELECTOBJECT Record Example

Type: 0x00000025 identifies this EMF record type as EMR_SELECTOBJECT.

Size: 0x0000000C specifies the size of this record in bytes.

ihObject: 0x8000000D specifies the index of an object in the object table.

3.2.37 EMR_RESTOREDC Example 3

This section provides an example of the EMF EMR_RESTOREDC record.

 00000680: 22 00 00 00 0C 00 00 00 FF FF FF FF

234 / 270

[MS-EMFPLUS-Diff] - v20160714
Enhanced Metafile Format Plus Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Figure 75: EMF EMR_RESTOREDC Record Example

Type: 0x00000022 identifies the EMF record type as EMR_RESTOREDC.

Size: 0x0000000C specifies the size of this record in bytes.

SavedDC: 0xFFFFFFFF specifies the most recently saved state.

3.2.38 EMR_SAVEDC Example 4

This section provides an example of the EMR_SAVEDC record.

 00000690: 21 00 00 00 08 00 00 00

Figure 76: EMF EMR_SAVEDC Record Example

Type: 0x00000021 identifies this EMF record type as EMR_SAVEDC.

Size: 0x00000008 specifies the size of this record in bytes.

3.2.39 EMR_SETLAYOUT Example 3

This section provides an example of the EMF EMR_SETLAYOUT record.

 00000690: 73 00 00 00 0C 00 00 00
 000006A0: 00 00 00 00

Figure 77: EMF EMR_SETLAYOUT Record Example

Type: 0x00000073 identifies this record type as EMR_SETLAYOUT.

Size: 0x0000000C specifies the size of this record in bytes.

235 / 270

[MS-EMFPLUS-Diff] - v20160714
Enhanced Metafile Format Plus Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

LayoutMode: 0x00000000 specifies left-to-right horizontal layout.

3.2.40 EMR_SETMETARGN Example 2

This section provides an example of the EMR_SETMETARGN record.

 000006A0: 1C 00 00 00 08 00 00 00

Figure 78: EMF EMR_SETMETARGN Record Example

Type: 0x0000001C identifies this EMF record type as EMR_SETMETARGN.

Size: 0x00000008 specifies the size of this record.

3.2.41 EMR_SELECTOBJECT Example 7

This section provides an example of the EMR_SELECTOBJECT record.

 000006A0: 25 00 00 00
 000006B0: 0C 00 00 00 00 00 00 80

Figure 79: EMF EMR_SELECTOBJECT Record Example

Type: 0x00000025 identifies this EMF record type as EMR_SELECTOBJECT.

Size: 0x0000000C specifies the size of this record in bytes.

ihObject: 0x80000000 specifies the index of an object in the object table.

3.2.42 EMR_SELECTOBJECT Example 8

This section provides an example of the EMR_SELECTOBJECT record.

 000006B0: 25 00 00 00 0C 00 00 00
 000006C0: 07 00 00 80

236 / 270

[MS-EMFPLUS-Diff] - v20160714
Enhanced Metafile Format Plus Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Figure 80: EMF EMR_SELECTOBJECT Record Example

Type: 0x00000025 identifies this EMF record type as EMR_SELECTOBJECT.

Size: 0x0000000C specifies the size of this record in bytes.

ihObject: 0x80000007 specifies the index of an object in the object table.

3.2.43 EMR_SELECTOBJECT Example 9

This section provides an example of the EMR_SELECTOBJECT record.

 000006C0: 25 00 00 00 0C 00 00 00 0E 00 00 80

Figure 81: EMF EMR_SELECTOBJECT Record Example

Type: 0x00000025 identifies this EMF record type as EMR_SELECTOBJECT.

Size: 0x0000000C specifies the size of this record in bytes.

ihObject: 0x8000000E specifies the index of an object in the object table.

3.2.44 EMR_SELECTPALETTE Example 2

This section provides an example of the EMR_SELECTPALETTE record.

 000006D0: 30 00 00 00 0C 00 00 00 0F 00 00 80

Figure 82: EMF EMR_SELECTPALETTE Record Example

Type: 0x00000030 identifies this EMF record type as EMR_SELECTPALETTE.

237 / 270

[MS-EMFPLUS-Diff] - v20160714
Enhanced Metafile Format Plus Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Size: 0x0000000C specifies the size of this record in bytes.

ihPal: 0x8000000F specifies the palette index. The palette can be selected in background mode only.

3.2.45 EMR_SETBKCOLOR Example 2

This section provides an example of the EMR_SETBKCOLOR record.

 000006D0: 19 00 00 00
 000006E0: 0C 00 00 00 FF FF FF 00

Figure 83: EMF EMR_SETBKCOLOR Record Example

Type: 0x00000019 identifies this EMF record type as EMR_SETBKCOLOR.

Size: 0x0000000C specifies the size of this record in bytes.

Color: 0x00FFFFFF specifies the background color value of the WMF ColorRef object [MS-WMF].

3.2.46 EMR_SETTEXTCOLOR Example 2

This section provides an example of the EMR_SETTEXTCOLOR record.

 000006E0: 18 00 00 00 0C 00 00 00
 000006F0: 00 00 00 00

Figure 84: EMF EMR_SETTEXTCOLOR Record Example

Type: 0x00000018 identifies this EMF record type as EMR_SETTEXTCOLOR.

Size: 0x0000000C specifies the size of this record in bytes.

Color: 0x00000000 specifies the text color value.

3.2.47 EMR_SETBKMODE Example 2

This section provides an example of the EMF EMR_SETBKMODE record.

238 / 270

[MS-EMFPLUS-Diff] - v20160714
Enhanced Metafile Format Plus Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 000006F0: 12 00 00 00 0C 00 00 00 02 00 00 00

Figure 85: EMF EMR_SETBKMODE Record Example

Type: 0x00000012 identifies the record type as EMR_SETBKMODE.

Size: 0x0000000C specifies the size of this record in bytes.

BackgroundMode: 0x00000002 specifies OPAQUE background mode. This value is defined in the
EMF BackgroundMode enumeration.

3.2.48 EMR_SETPOLYFILLMODE Example 2

This section provides an example of the EMF EMR_SETPOLYFILLMODE record.

 00000700: 13 00 00 00 0C 00 00 00 01 00 00 00

Figure 86: EMF EMR_SETPOLYFILLMODE Record Example

Type: 0x00000013 identifies the record type as EMR_SETPOLYFILLMODE.

Size: 0x0000000C specifies the size of this record in bytes.

PolygonFillMode: 0x00000001 specifies ALTERNATE polygon fill mode. This value is defined in the
EMF PolygonFillMode enumeration.

3.2.49 EMR_SETROP2 Example 2

This section provides an example of the EMF EMR_SETROP2 record.

 00000700: 14 00 00 00
 00000710: 0C 00 00 00 0D 00 00 00

239 / 270

[MS-EMFPLUS-Diff] - v20160714
Enhanced Metafile Format Plus Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Figure 87: EMF EMR_SETROP2 Record Example

Type: 0x00000014 identifies the record type as EMR_SETROP2.

Size: 0x0000000C specifies the size of this record in bytes.

ROP2Mode: 0x0000000D specifies the R2_COPYPEN raster operation mode. This value is defined in
the WMF Binary Raster Operation enumeration [MS-WMF].

3.2.50 EMR_SETSTRETCHBLTMODE Example 2

This section provides an example of the EMF EMR_SETSTRETCHBLTMODE record.

 00000710: 15 00 00 00 0C 00 00 00
 00000720: 01 00 00 00

Figure 88: EMF EMR_SETSTRETCHBLTMODE Record Example

Type: 0x00000015 identifies the record type as EMR_SETSTRETCHBLTMODE.

Size: 0x0000000C specifies the size of this record in bytes.

StretchMode: 0x00000001 specifies a Boolean AND operation using the color values for the
eliminated and existing pixels, from the EMF StretchMode enumeration.

3.2.51 EMR_SETTEXTALIGN Example 2

This section provides an example of the EMR_SETTEXTALIGN record.

 00000720: 16 00 00 00 0C 00 00 00 00 00 00 00

240 / 270

[MS-EMFPLUS-Diff] - v20160714
Enhanced Metafile Format Plus Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Figure 89: EMF EMR_SETTEXTALIGN Record Example

Type: 0x00000016 identifies this EMF record type as EMR_SETTEXTALIGN.

Size: 0x0000000C specifies the size of this record in bytes.

TextAlignmentMode: 0x00000000 specifies text alignment using a mask of WMF
TextAlignmentMode flags or VerticalTextAlignmentMode flags [MS-WMF]. Only one flag can be chosen
from those that affect horizontal and vertical alignment. In addition, only one of the two flags that
alter the current position can be chosen.

3.2.52 EMR_SETBRUSHORGEX Example 3

This section provides an example of the EMR_SETBRUSHORGEX record.

 00000730: 0D 00 00 00 10 00 00 00 00 00 00 00 00 00 00 00

Figure 90: EMF EMR_SETBRUSHORGEX Record Example

Type: 0x0000000D identifies this EMF record type as EMR_SETBRUSHORGEX.

Size: 0x00000010 specifies the size of this record in bytes.

Origin: (0x00000000, 0x00000000) specifies the brush horizontal and vertical origin in device units.

3.2.53 EMR_SETMITERLIMIT Example 2

This section provides an example of the EMF EMR_SETMITERLIMIT record.

 00000740: 3A 00 00 00 0C 00 00 00 0A 00 00 00

Figure 91: EMF EMR_SETMITERLIMIT Record Example

Type: 0x0000003A identifies the record type as EMR_SETMITERLIMIT.

Size: 0x0000000C specifies the size of this record in bytes.

MiterLimit: 0x0000000A specifies a miter length limit of 10 logical units.

241 / 270

[MS-EMFPLUS-Diff] - v20160714
Enhanced Metafile Format Plus Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

3.2.54 EMR_MOVETOEX Example 2

This section provides an example of the EMR_MOVETOEX record.

 00000740: 1B 00 00 00
 00000750: 10 00 00 00 00 00 00 00 00 00 00 00

Figure 92: EMF EMR_MOVETOEX Record Example

Type: 0x0000001B identifies this EMF record type as EMR_MOVETOEX.

Size: 0x00000010 specifies the size of this record in bytes.

Offset: (0x00000000, 0x00000000) specifies coordinates of the new current position in logical units.

3.2.55 EMR_SETWORLDTRANSFORM Example 2

This section provides an example of the EMF EMR_SETWORLDTRANSFORM.

 00000750: 23 00 00 00
 00000760: 20 00 00 00 87 C3 81 3F 00 00 00 00 00 00 00 00
 00000770: 7A BD 80 3F 00 00 00 80 00 00 00 80

Figure 93: EMF EMR_SETWORLDTRANSFORM Record Example

Type: 0x00000023 identifies the record type as EMR_SETWORLDTRANSFORM.

Size: 0x00000020 specifies the size of this record in bytes.

242 / 270

[MS-EMFPLUS-Diff] - v20160714
Enhanced Metafile Format Plus Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Xform: (1.005782, 0.000000, 0.000000, 1.013780, 0.000000, 0.000000) an EMF XForm object,
which specifies the world space to page space transformation.

3.2.56 EMR_MODIFYWORLDTRANSFORM Example 2

This section provides an example of the EMF EMR_MODIFYWORLDTRANSFORM record.

 00000780: 24 00 00 00 87 C3 81 3F 00 00 00 00 00 00 00 00
 00000790: 7A BD 80 3F 00 00 00 80 00 00 00 80 04 00 00 00

Figure 94: EMF EMR_MODIFYWORLDTRANSFORM Record Example

Type: 0x00000024 identifies the record type as EMR_MODIFYWORLDTRANSFORM.

Size: 0x00000024 specifies the size of this record in bytes.

Xform: (1.005782, 0.000000, 0.000000, 1.013780, 0.000000, 0.000000) an EMF XForm object,
which specifies the world space to page space transformation.

ModifyWorldTransformMode: 0x00000004 specifies that this record performs the function of an
EMF EMR_SETWORLDTRANSFORM. This value is defined in the EMF ModifyWorldTransformMode
enumeration.

3.2.57 EMR_SETLAYOUT Example 4

This section provides an example of the EMF EMR_SETLAYOUT record.

 000007A0: 73 00 00 00 0C 00 00 00 00 00 00 00

243 / 270

[MS-EMFPLUS-Diff] - v20160714
Enhanced Metafile Format Plus Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Figure 95: EMF EMR_SETLAYOUT Record Example

Type: 0x00000073 identifies this record type as EMR_SETLAYOUT.

Size: 0x0000000C specifies the size of this record in bytes.

LayoutMode: 0x00000000 specifies left-to-right horizontal layout.

3.2.58 EMR_COMMENT_BEGINGROUP Example

This section provides an example of the EMF EMR_COMMENT_BEGINGROUP record.

 000007A0: 46 00 00 00
 000007B0: 60 00 00 00 52 00 00 00 47 44 49 43 02 00 00 00
 000007C0: 00 00 00 00 00 00 00 00 66 00 00 00 6C 00 00 00
 000007D0: 1B 00 00 00 41 00 70 00 70 00 4E 00 61 00 6D 00
 000007E0: 65 00 00 00 49 00 6D 00 61 00 67 00 65 00 20 00
 000007F0: 44 00 65 00 73 00 63 00 72 00 69 00 70 00 74 00
 00000800: 69 00 6F 00 6E 00 00 00 00 00 00 00

Figure 96: EMF EMR_COMMENT_BEGINGROUP Record Example

Type: 0x00000046 identifies this record as an EMF comment record.

Size: 0x00000060 specifies the size of this record in bytes.

DataSize: 0x00000052 specifies the size of the following fields and data in bytes.

Identifier: "GDIC" identifies this record as an EMF EMR_COMMENT_PUBLIC record.

CommentType: 0x00000002 identifies the type of EMR_COMMENT_PUBLIC record as
EMR_COMMENT_BEGINGROUP, from the EMF EmrComment enumeration.

244 / 270

[MS-EMFPLUS-Diff] - v20160714
Enhanced Metafile Format Plus Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

OutputRect: (0x00000000, 0x00000000, 0x00000066, 0x0000006C) defines a WMF RectL object
[MS-WMF], which defines the bounding rectangle for output in logical units.

nDescription: 0x0000001B specifies the number of Unicode characters in the description string.

Description: "AppName Image Description".

3.2.59 EMR_SETWORLDTRANSFORM Example 3

This section provides an example of the EMF EMR_SETWORLDTRANSFORM record.

 00000800: 23 00 00 00
 00000810: 20 00 00 00 FF FF 7F 3F 00 00 00 00 00 00 00 00
 00000820: FD FF 7F 3F 00 00 00 00 00 00 00 00

Figure 97: EMF EMR_SETWORLDTRANSFORM Record Example

Type: 0x00000023 identifies the record type as EMR_SETWORLDTRANSFORM.

Size: 0x00000020 specifies the size of this record in bytes.

Xform: (1.000000, 0.000000, 0.000000, 1.000000, 0.000000, 0.000000) an EMF XForm object,

which specifies the world space to page space transformation.

3.2.60 EMR_MODIFYWORLDTRANSFORM Example 3

This section provides an example of the EMF EMR_MODIFYWORLDTRANSFORM record.

 00000820: 24 00 00 00
 00000830: 24 00 00 00 FF FF 7F 3F 00 00 00 00 00 00 00 00
 00000840: FD FF 7F 3F 00 00 00 00 00 00 00 00 04 00 00 00

245 / 270

[MS-EMFPLUS-Diff] - v20160714
Enhanced Metafile Format Plus Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Figure 98: EMF EMR_MODIFYWORLDTRANSFORM Record Example

Type: 0x00000024 identifies the record type as EMR_MODIFYWORLDTRANSFORM.

Size: 0x00000024 specifies the size of this record in bytes.

Xform: (1.000000, 0.000000, 0.000000, 1.000000, 0.000000, 0.000000) an EMF XForm object,
which specifies the world space to page space transformation.

ModifyWorldTransformMode: 0x00000004 specifies that this record performs the function of an
EMF EMR_SETWORLDTRANSFORM record. This value is defined in the EMF ModifyWorldTransformMode
enumeration.

3.2.61 EMR_MODIFYWORLDTRANSFORM Example 4

This section provides an example of the EMF EMR_MODIFYWORLDTRANSFORM record.

 000008B0: 24 00 00 00 24 00 00 00 0D 74 DA 3A
 000008C0: 00 00 00 00 00 00 00 00 0C 74 DA 3A 00 00 00 00
 000008D0: 00 00 00 00 04 00 00 00

246 / 270

[MS-EMFPLUS-Diff] - v20160714
Enhanced Metafile Format Plus Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Figure 99: EMF EMR_MODIFYWORLDTRANSFORM Record Example

Type: 0x00000024 identifies the record type as EMR_MODIFYWORLDTRANSFORM.

Size: 0x00000024 specifies the size of this record in bytes.

Xform: (0.001667, 0.000000, 0.000000, 0.001667, 0.000000, 0.000000,) an EMF XForm object,
which specifies the world space to page space transformation.

ModifyWorldTransformMode: 0x00000004 specifies that this record performs the function of an
EMF EMR_SETWORLDTRANSFORM record. This value is defined in the EMF ModifyWorldTransformMode
enumeration.

3.2.62 EMR_MODIFYWORLDTRANSFORM Example 5

This section provides an example of the EMF EMR_MODIFYWORLDTRANSFORM record.

 000008F0: 24 00 00 00 24 00 00 00
 00000900: 92 5F 2C 3E 00 00 00 00 00 00 00 00 E9 51 38 3E
 00000910: 00 00 00 00 00 00 00 00 04 00 00 00

Figure 100: EMF EMR_MODIFYWORLDTRANSFORM Record Example

Type: 0x00000024 identifies the record type as EMR_MODIFYWORLDTRANSFORM.

Size: 0x00000024 specifies the size of this record in bytes.

Xform: (0.180000, 0.000000, 0.000000, 0.168333, 0.000000, 0.000000) an EMF XForm object,

which specifies the world space to page space transformation.

ModifyWorldTransformMode: 0x00000004 specifies that this record performs the function of an
EMF EMR_SETWORLDTRANSFORM record. This value is defined in the EMF ModifyWorldTransformMode
enumeration.

3.2.63 EMR_SELECTOBJECT Example 10

This section provides an example of the EMR_SELECTOBJECT record.

 00000910: 25 00 00 00

247 / 270

[MS-EMFPLUS-Diff] - v20160714
Enhanced Metafile Format Plus Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 00000920: 0C 00 00 00 05 00 00 80

Figure 101: EMF EMR_SELECTOBJECT Record Example

Type: 0x00000025 identifies this EMF record type as EMR_SELECTOBJECT.

Size: 0x0000000C specifies the size of this record in bytes.

ihObject: 0x80000005 specifies the index of an object in the object table.

3.2.64 EMR_ROUNDRECT Example

This section provides an example of the EMR_ROUNDRECT record.

 00000920: 2C 00 00 00 20 00 00 00
 00000930: FD FF FF FF FE FF FF FF 4F 02 00 00 50 02 00 00
 00000940: C8 00 00 00 C8 00 00 00

Figure 102: EMF EMR_ROUNDRECT Record Example

Type: 0x0000002C identifies this EMF record type as EMR_ROUNDRECT.

Size: 0x00000020 specifies the size of this record in bytes.

Box: (0xFFFFFFFD, 0xFFFFFFFE, 0x0000024F, 0x00000250) defines the inclusive-inclusive bounding
rectangle in logical coordinates.

Corner: (0x000000C8, 0x000000C8) specifies the width and height, in logical coordinates, of the
ellipse used to draw the rounded corners.

3.2.65 EMR_COMMENT_ENDGROUP Example

This section provides an example of the EMF EMR_COMMENT_ENDGROUP record.

 00000940: 46 00 00 00 14 00 00 00
 00000950: 08 00 00 00 47 44 49 43 03 00 00 00

248 / 270

[MS-EMFPLUS-Diff] - v20160714
Enhanced Metafile Format Plus Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Figure 103: EMF EMR_COMMENT_ENDGROUP Record Example

Type: 0x00000046 identifies this record as an EMF comment record.

Size: 0x00000014 specifies the size of this record in bytes.

DataSize: 0x00000008 specifies the size of the following fields and data in bytes.

Identifier: "GDIC" identifies this record as an EMR_COMMENT_PUBLIC record.

CommentType: 0x00000003 identifies the type of EMR_COMMENT_PUBLIC record as
EMR_COMMENT_ENDGROUP, from the EMF EmrComment enumeration.

3.2.66 EMR_RESTOREDC Example 4

This section provides an example of the EMF EMR_RESTOREDC record.

 00000950: 22 00 00 00
 00000960: 0C 00 00 00 FF FF FF FF

Figure 104: EMF EMR_RESTOREDC Record Example

Type: 0x00000022 identifies the EMF record type as EMR_RESTOREDC.

Size: 0x0000000C specifies the size of this record in bytes.

SavedDC: 0xFFFFFFFF specifies the most recently saved state.

3.2.67 EMR_COMMENT_EMFPLUS Example 4

This section provides an example of the EMF EMR_COMMENT_EMFPLUS record.

 00000960: 46 00 00 00 54 00 00 00
 00000970: 48 00 00 00 45 4D 46 2B

249 / 270

[MS-EMFPLUS-Diff] - v20160714
Enhanced Metafile Format Plus Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Figure 105: EMF EMR_COMMENT_EMFPLUS Record Example

Type: 0x00000046 identifies this record as an EMF comment record.

Size: 0x00000054 specifies the size of this record in bytes, including embedded EMF+ records.

DataSize: 0x00000048 specifies the size of the EMF+ data in bytes.

EMFPlusSignature: "EMF+" identifies the comment record type as EMR_COMMENT_EMFPLUS.

The embedded EMF+ records are presented in the sections that follow.

3.2.67.1 EmfPlusEndContainer Example

This section provides an example of the EmfPlusEndContainer record.

 00000970: 40 00 00 10 00 00 00
 00000980: 04 00 00 00 01 00 00 00

Figure 106: EmfPlusEndContainer Record Example

Type: 0x4029 identifies this record type as EmfPlusEndContainer.

Flags: 0x0000 This field is undefined for this record type.

Size: 0x00000010 specifies the 32-bit-aligned size of the entire record in bytes, including the 12-byte
record header and the record-specific buffer data.

DataSize: 0x00000004 specifies the 32-bit-aligned number of bytes of data in the PointData
member that follows. This number does not include the size of the invariant part of this record.

StackIndex: 0x00000001 specifies the identifier used to reference the container in future records.

3.2.67.2 EmfPlusRestore Example

This section provides an example of the EmfPlusRestore record.

250 / 270

[MS-EMFPLUS-Diff] - v20160714
Enhanced Metafile Format Plus Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 00000980: 26 40 00 00 10 00 00 00
 00000990: 04 00 00 00 00 00 00 00

Figure 107: EmfPlusRestore Record Example

Type: 0x4026 identifies this record type as EmfPlusRestore.

Flags: 0x0000 This value is undefined for this record type.

Size: 0x00000010 specifies the 32-bit-aligned size of the entire record in bytes, including the 12-byte
record header and the record-specific buffer data.

DataSize: 0x00000004 specifies the 32-bit-aligned number of bytes of data in the PointData
member that follows. This number does not include the size of the invariant part of this record.

StackIndex: 0x00000000 specifies the identifier used to retrieve the graphics state from the correct
save level on the graphics state stack.

3.2.67.3 EmfPlusSetWorldTransform Example

This section provides an example of the EmfPlusSetWorldTransform record.

 00000990: 2A 40 00 00 24 00 00 00
 000009A0: 18 00 00 00 00 00 80 3F 00 00 00 00 00 00 00 00
 000009B0: 00 00 80 3F 00 00 00 00 00 00 00 00

Figure 108: EmfPlusSetWorldTransform Record Example

251 / 270

[MS-EMFPLUS-Diff] - v20160714
Enhanced Metafile Format Plus Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Type: 0x402A identifies the record type as EmfPlusSetWorldTransform.

Flags: 0x0000 is undefined for this record type.

Size: 0x00000024 specifies the size in bytes of the entire record.

DataSize: 0x00000018 specifies the size in bytes of the MatrixData field that follows.

MatrixData: An EmfPlusTransformMatrix object that contains the world space transform.

3.2.68 EMR_BITBLT Example

This section provides an example of the EMF EMR_BITBLT record.

 000009B0: 4C 00 00 00
 000009C0: 64 00 00 00 FF FF FF FF FF FF FF FF 64 00 00 00
 000009D0: 6B 00 00 00 FF FF FF FF FF FF FF FF 66 00 00 00
 000009E0: 6D 00 00 00 29 00 AA 00 00 00 00 00 00 00 00 00
 000009F0: 00 00 80 3F 00 00 00 00 00 00 00 00 00 00 80 3F
 00000A00: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00000A10: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

Figure 109: EMF EMR_BITBLT Record Example, Part 1

Type: 0x0000004C identifies the record type as EMR_BITBLT.

Size: 0x00000064 specifies the size of this record in bytes.

Bounds: (0xFFFFFFFF, 0xFFFFFFFF, 0x00000064, 0x0000006B) defines the bounding rectangle in
device units.

xDest: 0xFFFFFFFF specifies the logical x-coordinate of the upper-left corner of the destination
rectangle.

yDest: 0xFFFFFFFF specifies the logical y-coordinate of the upper-left corner of the destination
rectangle.

252 / 270

[MS-EMFPLUS-Diff] - v20160714
Enhanced Metafile Format Plus Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

cxDest: 0x00000066 specifies the logical width of the destination rectangle.

cyDest: 0x0000006D specifies the logical height of the destination rectangle.

BitBlitRasterOperation: 0x00AA0029 specifies the raster operation code. These codes define how
the color data of the source rectangle is to be combined with the color data of the destination

rectangle to achieve the final color. This value is defined in the WMF Ternary Raster Operation
enumeration [MS-WMF].

xSrc: 0x00000000 specifies the logical x-coordinate of the upper-left corner of the source rectangle.

ySrc: 0x00000000 specifies the logical y-coordinate of the upper-left corner of the source rectangle.

xformSrc: (0x3F800000, 0x00000000, 0x00000000, 0x3F800000, 0x00000000, 0x00000000)
defines the world space to page space transformation of the source bitmap.

BkColorSrc: 0x00000000 specifies the background color of the source bitmap.

Figure 110: EMF EMR_BITBLT Record Example, Part 2

UsageSrc: 0x00000000 specifies that the color table in the WMF DeviceIndependentBitmap object

[MS-WMF] header contains RGB values. This value is defined in the EMF DIBColors enumeration.

offBmiSrc: 0x00000000 specifies the offset to the source device-independent bitmap (DIB)
object header.

cbBmiSrc: 0x00000000 specifies the size of the source DIB object header.

offBitsSrc: 0x00000000 specifies the offset to the source bitmap bits.

cbBitsSrc: 0x00000000 specifies the size of the source bitmap bits.

3.2.69 EMR_RESTOREDC Example 5

This section provides an example of the EMF EMR_RESTOREDC record.

 00000A20: 22 00 00 00 0C 00 00 00 FF FF FF FF

253 / 270

[MS-EMFPLUS-Diff] - v20160714
Enhanced Metafile Format Plus Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Figure 111: EMF EMR_RESTOREDC Record Example

Type: 0x00000022 identifies the EMF record type as EMR_RESTOREDC.

Size: 0x0000000C specifies the size of this record in bytes.

SavedDC: 0xFFFFFFFF specifies the most recently saved state.

3.2.70 EMR_COMMENT_EMFPLUS Example 5

This section provides an example of the EMF EMR_COMMENT_EMFPLUS record.

 00000A20: 46 00 00 00
 00000A30: 1C 00 00 00 10 00 00 00 45 4D 46 2B

Figure 112: EMF EMR_COMMENT_EMFPLUS Record Example

Type: 0x00000046 identifies this record as an EMF comment record.

Size: 0x0000001C specifies the size of this record in bytes, including embedded EMF+ records.

DataSize: 0x00000010 specifies the size of the EMF+ data in bytes.

EMFPlusSignature: "EMF+" identifies the comment record type as EMR_COMMENT_EMFPLUS.

The embedded EMF+ records are presented in the sections that follow.

3.2.70.1 EmfPlusEndOfFile Example

This section provides an example of the EmfPlusEndOfFile record.

 00000A30: 02 40 00 00
 00000A40: 0C 00 00 00 00 00 00 00

Figure 113: EmfPlusEndOfFile Record Example

254 / 270

[MS-EMFPLUS-Diff] - v20160714
Enhanced Metafile Format Plus Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Type: 0x4002 identifies this record type as EmfPlusEndOfFile.

Flags: 0x0000 is not used by this record type.

Size: 0x0000000C specifies the 32-bit-aligned size of this record in bytes.

DataSize: 0x00000000 specifies that no bytes of data follow.

3.2.71 EMR_EOF Example

This section provides an example of the EMF EMR_EOF record.

 00000A40: 0E 00 00 00 14 00 00 00
 00000A50: 00 00 00 00 10 00 00 00 14 00 00 00

Figure 114: EMF EMR_EOF Record Example

Type: 0x0000000E identifies the record type as EMR_EOF.

Size: 0x00000014 specifies the size of this record in bytes.

nPalEntries: 0x00000000 specifies the number of palette entries.

offPalEntries: 0x00000000 is ignored, as no palette entries are defined.

PaletteEntries: 0x00000010 is ignored, as no palette entries are defined.

SizeLast: 0x00000014 specifies a value that is the same as Size, and is the last field of the metafile.

3.3 EMF+ String Drawing Example

This section provides an example of EMF+ string drawing as generated by GDI+ functions.

The following GDI+ example generates an EmfPlusDrawString record and EmfPlusFont and
EmfPlusStringFormatData objects.

 GdiplusStartupInput gdiplusStartupInput;
 GdiplusStartupOutput gdiplusStartupOutput;
 ULONG_PTR gdiplusToken = 0;

 int CALLBACK WinMain(HINSTANCE, HINSTANCE, LPSTR, int)
 {
 // InitializeGdiPlus

255 / 270

[MS-EMFPLUS-Diff] - v20160714
Enhanced Metafile Format Plus Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 GdiplusStartup(&gdiplusToken, &gdiplusStartupInput, &gdiplusStartupOutput);

 HDC DeviceContext = GetDC(nullptr);

 Metafile File(L"DrawString.emf", DeviceContext, EmfTypeEmfPlusOnly, L"DrawString Demo"
);

 Graphics RenderTarget(&File);
 FontFamily Family(L"Arial");
 Font EffectiveFont(&Family, 40.0f, FontStyle::FontStyleUnderline, UnitPixel);
 RectF LayoutRect(0, 0, 100, 100);

 Gdiplus::StringFormat Format(0, 0);
 Format.SetAlignment(Gdiplus::StringAlignment::StringAlignmentFar);

 Gdiplus::Rect GradientRect(0, 0, 100, 100);

 Gdiplus::LinearGradientBrush
 TestBrush(GradientRect,
 Gdiplus::Color(0xff, 0x00, 0x00),
 Gdiplus::Color(0x00, 0x00, 0xff),
 0.0f);

 const wchar_t HelloWorld[] = L"Hello World 1 2 3 4!";

 RenderTarget.DrawString(HelloWorld,
 ARRAYSIZE(HelloWorld) - 1,
 &EffectiveFont,
 LayoutRect,
 &Format,
 &TestBrush);

 ReleaseDC(nullptr, DeviceContext);

 return 1;
 }

The EMF+ metafile generated by the preceding GDI+ example renders the following image:

Figure 115: EMF+ string drawing example

256 / 270

[MS-EMFPLUS-Diff] - v20160714
Enhanced Metafile Format Plus Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

4 Security

This file format enables third parties to send payloads, such as PostScript, to pass through as
executable code.

257 / 270

[MS-EMFPLUS-Diff] - v20160714
Enhanced Metafile Format Plus Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

5 Appendix A: Product Behavior

The information in this specification is applicable to the following Microsoft products or supplemental
software. References to product versions include released service packs.

 Windows 2000 operating system

 Windows XP operating system

 Windows Server 2003 operating system

 Windows Vista operating system

 Windows Server 2008 operating system

 Windows 7 operating system

 Windows Server 2008 R2 operating system

 Windows 8 operating system

 Windows Server 2012 operating system

 Windows 8.1 operating system

 Windows Server 2012 R2 operating system

 Windows 10 operating system

 Windows Server 2016 Technical Preview operating system

Exceptions, if any, are noted below. If a service pack or Quick Fix Engineering (QFE) number appears
with the product version, behavior changed in that service pack or QFE. The new behavior also applies
to subsequent service packs of the product unless otherwise specified. If a product edition appears

with the product version, behavior is different in that product edition.

Unless otherwise specified, any statement of optional behavior in this specification that is prescribed
using the terms SHOULD or SHOULD NOT implies product behavior in accordance with the SHOULD or
SHOULD NOT prescription. Unless otherwise specified, the term MAY implies that the product does not
follow the prescription.

<1> Section 1.3.1: The following table shows how the two cases of embedded EMF+ records are
processed on different versions of Windows.

Metafile
type Processed by Case I Case II

EMF+
only

Windows NT 3.1 operating system, Windows NT 3.5
operating system, Windows NT 3.51 operating system,
and Windows NT 4.0 operating system

No records are
processed.

No records are
processed.

EMF+
only

Windows 2000, Windows XP, Windows Server 2003,
Windows Vista, Windows Server 2008, Windows 7,
Windows Server 2008 R2 operating system, Windows
8, Windows Server 2012 operating system, Windows
8.1, Windows Server 2012 R2 operating system, and
Windows 10

EMF records 3
through N are
ignored; EMF+
records are
processed.

EMF records 3
through N are
ignored; EMF+
records are
processed.

EMF+
dual

Windows NT 3.1, Windows NT 3.5, Windows NT 3.51,
and Windows NT 4.0

EMF records 3
through N are
processed; EMF+

EMF records 3
through N are
processed; EMF+

258 / 270

[MS-EMFPLUS-Diff] - v20160714
Enhanced Metafile Format Plus Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Metafile
type Processed by Case I Case II

records are ignored. records are ignored.

EMF+
dual

Windows 2000, Windows XP, Windows Server 2003,
Windows Vista, Windows Server 2008, Windows 7,
Windows Server 2008 R2, Windows 8, Windows Server
2012, Windows 8.1, Windows Server 2012 R2, and
Windows 10

EMF records 3
through N are
ignored; EMF+
records are
processed.

EMF records 3
through N are
processed; EMF+
records are
processed.

<2> Section 2.1.1.6: Windows treats any invalid values as CompositingQualityDefault.

<3> Section 2.1.1.12: GDI+ version 1.1 is not supported on Windows 2000.

<4> Section 2.1.1.28: SmoothingModeAntiAlias8x4 is not supported on Windows 2000.

<5> Section 2.1.1.28: SmoothingModeAntiAlias8x8 is not supported on Windows 2000.

<6> Section 2.1.2.1: Windows-based GDI+ ignores blend factors for BrushDataBlendFactorsV.

<7> Section 2.1.2.3: Windows does not write this flag value to EMF+ metafiles.

<8> Section 2.1.2.8: In Windows, this flag is set to specify that GDI+ should beis used to render text

instead of GDI.

<9> Section 2.1.3.1: Windows produces corrupt records when the ColorCurve effect is used.

<10> Section 2.2.1.3: Windows never emits unit type UnitTypeDisplay for this field.

<11> Section 2.2.2.19: If the graphics version number is GraphicsVersion1, the metafile was
created using Windows GDI+ 1.0.

If the graphics version number is GraphicsVersion1_1, the metafile was created using Windows

GDI+ 1.1.

<12> Section 2.2.2.24: When Reserved1 is not the same as StartColor and Reserved2 is not the
same as EndColor, nothing will be rendered.

<13> Section 2.2.2.24: When Reserved1 is not the same as StartColor and Reserved2 is not the
same as EndColor, nothing will be rendered.

<14> Section 2.2.2.25: In Windows-based GDI+, the result of BrushDataBlendFactorsV alone is the
same as if no blend factor was used.

<15> Section 2.2.2.25: In Windows-based GDI+, when both BrushDataBlendFactorsV and

BrushDataBlendFactorsH are set, the result is the same as if BrushDataBlendFactorsH alone is set.

<16> Section 2.2.3: Image Effects Objects are only supported by GDI+ 1.1.

<17> Section 2.2.3.6: The client MUST treattreats this value as 1.0.

<18> Section 2.3.2.1: Windows sets this field to an arbitrary value between 0x0000 and 0x0003,
inclusive.

<19> Section 2.3.4.3: In Windows, if the P flag is set, the C flag is clear.

<20> Section 2.3.4.4: In Windows, if the P flag is set, the C flag is clear.

<21> Section 2.3.4.9: In Windows, if the P flag is set, the C flag is clear.

259 / 270

[MS-EMFPLUS-Diff] - v20160714
Enhanced Metafile Format Plus Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

<22> Section 2.3.4.10: In Windows, if the P flag is set, the C flag is clear.

<23> Section 2.3.4.15: In Windows, if the P flag is set, the C flag is clear.

<24> Section 2.3.4.19: In Windows, if the P flag is set, the C flag is clear.

<25> Section 2.3.5.2: The EmfPlusSerializableObject record type is only supported by GDI+ 1.1.

<26> Section 2.3.6.1: Smoothing with anti-aliasing that uses a box filter algorithm is not supported
on Windows 2000.

<27> Section 2.3.7.1: Windows never writes those values to the PageUnit field, but they are
accepted with undefined results.

<28> Section 2.3.8: Windows does not generate the EmfPlusSetTSClip record.

<29> Section 2.3.8: Windows does not generate the EmfPlusSetTSGraphics record.

<30> Section 2.3.8.1: The EmfPlusSetTSClip record type is only supported by GDI+ 1.1.

<31> Section 2.3.8.2: The EmfPlusSetTSGraphics record type is only supported by GDI+ 1.1.

<32> Section 2.3.9.5: Windows never writes those values to the PageUnit field, but they are
accepted with undefined results.

260 / 270

[MS-EMFPLUS-Diff] - v20160714
Enhanced Metafile Format Plus Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

6 Change Tracking

No table of This section identifies changes is available. Thethat were made to this document is either
new or has had no changes since itsthe last release. Changes are classified as New, Major, Minor,
Editorial, or No change.

The revision class New means that a new document is being released.

The revision class Major means that the technical content in the document was significantly revised.

Major changes affect protocol interoperability or implementation. Examples of major changes are:

 A document revision that incorporates changes to interoperability requirements or functionality.

 The removal of a document from the documentation set.

The revision class Minor means that the meaning of the technical content was clarified. Minor changes
do not affect protocol interoperability or implementation. Examples of minor changes are updates to
clarify ambiguity at the sentence, paragraph, or table level.

The revision class Editorial means that the formatting in the technical content was changed. Editorial
changes apply to grammatical, formatting, and style issues.

The revision class No change means that no new technical changes were introduced. Minor editorial
and formatting changes may have been made, but the technical content of the document is identical
to the last released version.

Major and minor changes can be described further using the following change types:

 New content added.

 Content updated.

 Content removed.

 New product behavior note added.

 Product behavior note updated.

 Product behavior note removed.

 New protocol syntax added.

 Protocol syntax updated.

 Protocol syntax removed.

 New content added due to protocol revision.

 Content updated due to protocol revision.

 Content removed due to protocol revision.

 New protocol syntax added due to protocol revision.

 Protocol syntax updated due to protocol revision.

 Protocol syntax removed due to protocol revision.

 Obsolete document removed.

Editorial changes are always classified with the change type Editorially updated.

261 / 270

[MS-EMFPLUS-Diff] - v20160714
Enhanced Metafile Format Plus Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Some important terms used in the change type descriptions are defined as follows:

 Protocol syntax refers to data elements (such as packets, structures, enumerations, and

methods) as well as interfaces.

 Protocol revision refers to changes made to a protocol that affect the bits that are sent over the

wire.

The changes made to this document are listed in the following table. For more information, please
contact dochelp@microsoft.com.

Section
Tracking number (if
applicable) and description

Major change
(Y or N)

Change
type

2.2.3.6 ColorMatrixEffect Object
Removed "MUST" from product
behavior note.

N
Content
update.

2.3.7.3 EmfPlusEndContainer Record Changed "must" to "MUST". N
Content
update.

2.3.9.1 EmfPlusMultiplyWorldTransform
Record

Changed "should" to "is". N
Content
update.

2.3.9.3 EmfPlusRotateWorldTransform
Record

Changed "should" to "is". N
Content
update.

2.3.9.4 EmfPlusScaleWorldTransform
Record

Changed "should" to "is". N
Content
update.

2.3.9.7
EmfPlusTranslateWorldTransform Record

Changed "should" to "is". N
Content
update.

262 / 270

[MS-EMFPLUS-Diff] - v20160714
Enhanced Metafile Format Plus Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

7 Index

A

Applicability 21

B

Bit flags constant types 60
BitmapDataType enumeration 28
BlurEffect Object 109
BlurEffect packet 109
BlurEffectGuid 66
BrightnessContrastEffect Object 110
BrightnessContrastEffect packet 110
BrightnessContrastEffectGuid 66
BrushDataBlendFactorsH 61
BrushDataBlendFactorsV 61
BrushDataDoNotTransform 61
BrushDataFocusScales 61

BrushDataIsGammaCorrected 61
BrushDataPath 61
BrushDataPresetColors 61
BrushDataTransform 61
BrushType enumeration 29
Byte ordering 20
Byte ordering example 193

C

Change tracking 260
Clipping_Record_Types packet 121
ColorBalanceEffect Object 111
ColorBalanceEffect packet 111
ColorBalanceEffectGuid 66
ColorCurveEffect Object 112
ColorCurveEffect packet 112
ColorCurveEffectGuid 66
ColorLookupTableEffect Object 113
ColorLookupTableEffect packet 113
ColorLookupTableEffectGuid 66
ColorMatrixEffect Object 114
ColorMatrixEffect packet 114
ColorMatrixEffectGuid 66
CombineMode enumeration 29
Common data types and fields 23
CompositingMode enumeration 30
CompositingQuality enumeration 30
Constants 23
Constants - EMF+ 23
Control_Record_Types packet 127
CurveAdjustments enumeration 31
CurveChannel enumeration 32
CustomLineCapDataFillPath 62
CustomLineCapDataLinePath 62
CustomLineCapDataType enumeration 32

D

DashedLineCapType enumeration 33
Data types and fields - common 23
Details
 common data types and fields 23

263 / 270

[MS-EMFPLUS-Diff] - v20160714
Enhanced Metafile Format Plus Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Drawing_Record_Types packet 130
DriverStringOptionsCmapLookup 62
DriverStringOptionsLimitSubpixel 62
DriverStringOptionsRealizedAdvance 62
DriverStringOptionsVertical 62

E

EMF+ Metafile Example example 194
EMF+ metafile examples 194
EMF+ String Drawing Example example 254
EmfPlusARGB Object 77
EmfPlusARGB packet 77
EmfPlusBeginContainer packet 177
EmfPlusBeginContainer Record 177
EmfPlusBeginContainerNoParams example 221
EmfPlusBeginContainerNoParams packet 179

EmfPlusBeginContainerNoParams Record 179
EmfPlusBitmap Object 78
EmfPlusBitmap packet 78
EmfPlusBitmapData Object 79
EmfPlusBitmapData packet 79
EmfPlusBlendColors Object 80
EmfPlusBlendColors packet 80
EmfPlusBlendFactors Object 81
EmfPlusBlendFactors packet 81
EmfPlusBoundaryPathData Object 81
EmfPlusBoundaryPathData packet 81
EmfPlusBoundaryPointData Object 82
EmfPlusBoundaryPointData packet 82
EmfPlusBrush Object 67
EmfPlusBrush packet 67
EmfPlusCharacterRange Object 82
EmfPlusCharacterRange packet 82
EmfPlusClear packet 132
EmfPlusClear Record 132
EmfPlusComment packet 126
EmfPlusComment Record 126
EmfPlusCompoundLineData Object 83
EmfPlusCompoundLineData packet 83
EmfPlusCompressedImage Object 83
EmfPlusCompressedImage packet 83
EmfPlusCustomEndCapData Object 84
EmfPlusCustomEndCapData packet 84
EmfPlusCustomLineCap Object 68
EmfPlusCustomLineCap packet 68
EmfPlusCustomLineCapArrowData Object 84
EmfPlusCustomLineCapArrowData packet 84
EmfPlusCustomLineCapData Object 86
EmfPlusCustomLineCapData packet 86
EmfPlusCustomLineCapOptionalData Object 87
EmfPlusCustomLineCapOptionalData packet 87
EmfPlusCustomStartCapData Object 88
EmfPlusCustomStartCapData packet 88
EmfPlusDashedLineData Object 88
EmfPlusDashedLineData packet 88
EmfPlusDrawArc packet 133
EmfPlusDrawArc Record 133
EmfPlusDrawBeziers packet 134
EmfPlusDrawBeziers Record 134
EmfPlusDrawClosedCurve packet 136
EmfPlusDrawClosedCurve Record 136

EmfPlusDrawCurve packet 139
EmfPlusDrawCurve Record 139
EmfPlusDrawDriverString packet 140

264 / 270

[MS-EMFPLUS-Diff] - v20160714
Enhanced Metafile Format Plus Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

EmfPlusDrawDriverString Record 140
EmfPlusDrawEllipse packet 143
EmfPlusDrawEllipse Record 143
EmfPlusDrawImage packet 144
EmfPlusDrawImage Record 144
EmfPlusDrawImagePoints packet 145
EmfPlusDrawImagePoints Record 145
EmfPlusDrawLines packet 148
EmfPlusDrawLines Record 148
EmfPlusDrawPath example 232
EmfPlusDrawPath packet 150
EmfPlusDrawPath Record 150
EmfPlusDrawPie packet 150
EmfPlusDrawPie Record 150
EmfPlusDrawRects packet 152
EmfPlusDrawRects Record 152
EmfPlusDrawString packet 153
EmfPlusDrawString Record 153
EmfPlusEndContainer example 249
EmfPlusEndContainer packet 179
EmfPlusEndContainer Record 179
EmfPlusEndOfFile packet 128
EmfPlusEndOfFile Record 128

EmfPlusFillClosedCurve packet 155
EmfPlusFillClosedCurve Record 155
EmfPlusFillEllipse packet 158
EmfPlusFillEllipse Record 158
EmfPlusFillPath Object 89
EmfPlusFillPath packet 159
EmfPlusFillPath Record 159
EmfPlusFillPath_Object packet 89
EmfPlusFillPie packet 160
EmfPlusFillPie Record 160
EmfPlusFillPolygon packet 161
EmfPlusFillPolygon Record 161
EmfPlusFillRects packet 164
EmfPlusFillRects Record 164
EmfPlusFillRegion packet 165
EmfPlusFillRegion Record 165
EmfPlusFocusScaleData Object 89
EmfPlusFocusScaleData packet 89
EmfPlusFont Object 69
EmfPlusFont packet 69
EmfPlusGetDC packet 128
EmfPlusGetDC Record 128
EmfPlusGraphicsVersion Object 90
EmfPlusGraphicsVersion packet 90
EmfPlusHatchBrushData Object 90
EmfPlusHatchBrushData packet 90
EmfPlusHeader example 200
EmfPlusHeader packet 129
EmfPlusHeader Record 129
EmfPlusImage Object 70
EmfPlusImage packet 70
EmfPlusImageAttributes Object 70
EmfPlusImageAttributes packet 70
EmfPlusInteger15 Object 91
EmfPlusInteger15 packet 91
EmfPlusInteger7 Object 91
EmfPlusInteger7 packet 91
EmfPlusLanguageIdentifier Object 91
EmfPlusLanguageIdentifier packet 91
EmfPlusLinearGradientBrushData Object 92
EmfPlusLinearGradientBrushData packet 92
EmfPlusLinearGradientBrushOptionalData Object 93

265 / 270

[MS-EMFPLUS-Diff] - v20160714
Enhanced Metafile Format Plus Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

EmfPlusLinearGradientBrushOptionalData packet 93
EmfPlusLinePath Object 94
EmfPlusLinePath packet 94
EmfPlusMetafile Object 94
EmfPlusMetafile packet 94
EmfPlusMultiplyWorldTransform example (section 3.2.32.6 218, section 3.2.32.8 220)
EmfPlusMultiplyWorldTransform packet 187
EmfPlusMultiplyWorldTransform Record 187
EmfPlusObject example (section 3.2.32.21 227, section 3.2.32.22 229, section 3.2.33.1 230)
EmfPlusObject packet 167
EmfPlusObject Record 167
EmfPlusOffsetClip packet 122
EmfPlusOffsetClip Record 122
EmfPlusPalette Object 95
EmfPlusPalette packet 95
EmfPlusPath Object 71
EmfPlusPath packet 71
EmfPlusPathGradientBrushData Object 96
EmfPlusPathGradientBrushData packet 96
EmfPlusPathGradientBrushOptionalData Object 97
EmfPlusPathGradientBrushOptionalData packet 97
EmfPlusPathPointType Object 98
EmfPlusPathPointType packet 98

EmfPlusPathPointTypeRLE Object 99
EmfPlusPathPointTypeRLE packet 99
EmfPlusPen Object 72
EmfPlusPen packet 72
EmfPlusPenData Object 99
EmfPlusPenData packet 99
EmfPlusPenOptionalData Object 100
EmfPlusPenOptionalData packet 100
EmfPlusPoint Object 102
EmfPlusPoint packet 102
EmfPlusPointF Object 102
EmfPlusPointF packet 102
EmfPlusPointR Object 103
EmfPlusPointR packet 103
EmfPlusRect Object 103
EmfPlusRect packet 103
EmfPlusRectF packet 103
EmfPlusRegion Object 73
EmfPlusRegion packet 73
EmfPlusRegionNode Object (section 2.2.2.39 103, section 2.2.2.40 104)
EmfPlusRegionNode packet 104
EmfPlusRegionNodeChildNodes Object 105
EmfPlusRegionNodeChildNodes packet 105
EmfPlusRegionNodePath_Object packet 105
EmfPlusResetClip packet 123
EmfPlusResetClip Record 123
EmfPlusResetWorldTransform packet 187
EmfPlusResetWorldTransform Record 187
EmfPlusRestore example 249
EmfPlusRestore packet 180
EmfPlusRestore Record 180
EmfPlusRotateWorldTransform packet 188
EmfPlusRotateWorldTransform Record 188
EmfPlusSave example 219
EmfPlusSave packet 181
EmfPlusSave Record 181
EmfPlusScaleWorldTransform packet 189
EmfPlusScaleWorldTransform Record 189
EmfPlusSerializableObject packet 168
EmfPlusSerializableObject Record 168
EmfPlusSetAntiAliasMode example (section 3.2.32.1 216, section 3.2.32.11 222)
EmfPlusSetAntiAliasMode packet 171

266 / 270

[MS-EMFPLUS-Diff] - v20160714
Enhanced Metafile Format Plus Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

EmfPlusSetAntiAliasMode Record 171
EmfPlusSetClipPath packet 123
EmfPlusSetClipPath Record 123
EmfPlusSetClipRect packet 124
EmfPlusSetClipRect Record 124
EmfPlusSetClipRegion packet 125
EmfPlusSetClipRegion Record 125
EmfPlusSetCompositingMode packet 171
EmfPlusSetCompositingMode Record 171
EmfPlusSetCompositingQuality example (section 3.2.32.2 216, section 3.2.32.12 222)
EmfPlusSetCompositingQuality packet 172
EmfPlusSetCompositingQuality Record 172
EmfPlusSetInterpolationMode example (section 3.2.32.3 217, section 3.2.32.13 223)
EmfPlusSetInterpolationMode packet 173
EmfPlusSetInterpolationMode Record 173
EmfPlusSetPageTransform example 224
EmfPlusSetPageTransform packet 190
EmfPlusSetPageTransform Record 190
EmfPlusSetPixelOffsetMode example (section 3.2.32.4 217, section 3.2.32.14 223)
EmfPlusSetPixelOffsetMode packet 173
EmfPlusSetPixelOffsetMode Record 173
EmfPlusSetRenderingOrigin packet 174
EmfPlusSetRenderingOrigin Record 174

EmfPlusSetTextContrast packet 175
EmfPlusSetTextContrast Record 175
EmfPlusSetTextRenderingHint example (section 3.2.32.5 218, section 3.2.32.15 223)
EmfPlusSetTextRenderingHint packet 176
EmfPlusSetTextRenderingHint Record 176
EmfPlusSetTSClip packet 182
EmfPlusSetTSClip Record 182
EmfPlusSetTSGraphics packet 184
EmfPlusSetTSGraphics Record 184
EmfPlusSetWorldTransform example (section 3.2.32.9 220, section 3.2.32.17 224, section 3.2.32.18 225, section

3.2.32.19 226, section 3.2.32.20 227, section 3.2.67.3 250)
EmfPlusSetWorldTransform packet 191
EmfPlusSetWorldTransform Record 191
EmfPlusSolidBrushData Object 105
EmfPlusSolidBrushData packet 105
EmfPlusStringFormat Object 73
EmfPlusStringFormat packet 73
EmfPlusStringFormatData Object 106
EmfPlusStringFormatData packet 106
EmfPlusTextureBrushData Object 106
EmfPlusTextureBrushData packet 106
EmfPlusTextureBrushOptionalData Object 107
EmfPlusTextureBrushOptionalData packet 107
EmfPlusTransformMatrix Object 108
EmfPlusTransformMatrix packet 108
EmfPlusTranslateWorldTransform packet 191
EmfPlusTranslateWorldTransform Record 191
EMR_BITBLT example 251
EMR_COMMENT_BEGINGROUP example 243
EMR_COMMENT_EMFPLUS example (section 3.2.2 199, section 3.2.32 215, section 3.2.67 248, section 3.2.70 253)
EMR_COMMENT_ENDGROUP example 247
EMR_DELETEOBJECT example 215
EMR_EOF example 254
EMR_EXTCREATEFONTINDIRECTW example 212
EMR_MODIFYWORLDTRANSFORM example (section 3.2.25 210, section 3.2.56 242, section 3.2.60 244, section

3.2.61 245, section 3.2.62 246)
EMR_MOVETOEX example (section 3.2.23 209, section 3.2.54 241)
EMR_RESTOREDC example (section 3.2.34 232, section 3.2.35 233, section 3.2.37 233, section 3.2.66 248,

section 3.2.69 252)
EMR_ROUNDRECT example 247
EMR_SAVEDC example (section 3.2.3 200, section 3.2.5 201, section 3.2.7 202, section 3.2.38 234)

267 / 270

[MS-EMFPLUS-Diff] - v20160714
Enhanced Metafile Format Plus Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

EMR_SELECTOBJECT example (section 3.2.10 203, section 3.2.11 204, section 3.2.12 204, section 3.2.29 214,
section 3.2.30 215, section 3.2.36 233, section 3.2.41 235, section 3.2.42 235, section 3.2.43 236, section
3.2.63 246)

EMR_SELECTPALETTE example (section 3.2.13 204, section 3.2.44 236)
EMR_SETBKCOLOR example (section 3.2.14 205, section 3.2.45 237)
EMR_SETBKMODE example (section 3.2.16 206, section 3.2.47 237)
EMR_SETBRUSHORGEX example (section 3.2.21 208, section 3.2.27 211, section 3.2.52 240)
EMR_SETICMMODE example (section 3.2.4 201, section 3.2.6 202)
EMR_SETLAYOUT example (section 3.2.8 202, section 3.2.26 211, section 3.2.39 234, section 3.2.57 242)
EMR_SETMETARGN example (section 3.2.9 203, section 3.2.40 235)
EMR_SETMITERLIMIT example (section 3.2.22 208, section 3.2.53 240)
EMR_SETPOLYFILLMODE example (section 3.2.17 206, section 3.2.48 238)
EMR_SETROP2 example (section 3.2.18 207, section 3.2.49 238)
EMR_SETSTRETCHBLTMODE example (section 3.2.19 207, section 3.2.50 239)
EMR_SETTEXTALIGN example (section 3.2.20 207, section 3.2.51 239)
EMR_SETTEXTCOLOR example (section 3.2.15 205, section 3.2.46 237)
EMR_SETWORLDTRANSFORM example (section 3.2.24 209, section 3.2.55 241, section 3.2.59 244)
EMRCOMMENT_EMFPLUS example 229
Enumeration constant types 23
Examples 193
 byte ordering example 193
 EMF+ Metafile Example 194
 EMF+ metafile examples 194

 EMF+ String Drawing Example 254
 EmfPlusBeginContainerNoParams example 221
 EmfPlusDrawPath example 232
 EmfPlusEndContainer example 249
 EmfPlusHeader example 200
 EmfPlusMultiplyWorldTransform example (section 3.2.32.6 218, section 3.2.32.8 220)
 EmfPlusObject example (section 3.2.32.21 227, section 3.2.32.22 229, section 3.2.33.1 230)
 EmfPlusRestore example 249
 EmfPlusSave example 219
 EmfPlusSetAntiAliasMode example (section 3.2.32.1 216, section 3.2.32.11 222)
 EmfPlusSetCompositingQuality example (section 3.2.32.2 216, section 3.2.32.12 222)
 EmfPlusSetInterpolationMode example (section 3.2.32.3 217, section 3.2.32.13 223)
 EmfPlusSetPageTransform example 224
 EmfPlusSetPixelOffsetMode example (section 3.2.32.4 217, section 3.2.32.14 223)
 EmfPlusSetTextRenderingHint example (section 3.2.32.5 218, section 3.2.32.15 223)
 EmfPlusSetWorldTransform example (section 3.2.32.9 220, section 3.2.32.17 224, section 3.2.32.18 225, section

3.2.32.19 226, section 3.2.32.20 227, section 3.2.67.3 250)
 EMR_BITBLT example 251
 EMR_COMMENT_BEGINGROUP example 243
 EMR_COMMENT_EMFPLUS example (section 3.2.2 199, section 3.2.32 215, section 3.2.33 229, section 3.2.67

248, section 3.2.70 253)
 EMR_COMMENT_ENDGROUP example 247
 EMR_DELETEOBJECT example 215
 EMR_EOF example 254
 EMR_EXTCREATEFONTINDIRECTW example 212
 EMR_MODIFYWORLDTRANSFORM example (section 3.2.25 210, section 3.2.56 242, section 3.2.60 244, section

3.2.61 245, section 3.2.62 246)
 EMR_MOVETOEX example (section 3.2.23 209, section 3.2.54 241)
 EMR_RESTOREDC example (section 3.2.34 232, section 3.2.35 233, section 3.2.37 233, section 3.2.66 248,

section 3.2.69 252)
 EMR_ROUNDRECT example 247
 EMR_SAVEDC example (section 3.2.3 200, section 3.2.5 201, section 3.2.7 202, section 3.2.38 234)
 EMR_SELECTOBJECT example (section 3.2.10 203, section 3.2.11 204, section 3.2.12 204, section 3.2.29 214,

section 3.2.30 215, section 3.2.36 233, section 3.2.41 235, section 3.2.42 235, section 3.2.43 236, section
3.2.63 246)

 EMR_SELECTPALETTE example (section 3.2.13 204, section 3.2.44 236)
 EMR_SETBKCOLOR example (section 3.2.14 205, section 3.2.45 237)
 EMR_SETBKMODE example (section 3.2.16 206, section 3.2.47 237)
 EMR_SETBRUSHORGEX example (section 3.2.21 208, section 3.2.27 211, section 3.2.52 240)
 EMR_SETICMMODE example (section 3.2.4 201, section 3.2.6 202)
 EMR_SETLAYOUT example (section 3.2.8 202, section 3.2.26 211, section 3.2.39 234, section 3.2.57 242)
 EMR_SETMETARGN example (section 3.2.9 203, section 3.2.40 235)

268 / 270

[MS-EMFPLUS-Diff] - v20160714
Enhanced Metafile Format Plus Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 EMR_SETMITERLIMIT example (section 3.2.22 208, section 3.2.53 240)
 EMR_SETPOLYFILLMODE example (section 3.2.17 206, section 3.2.48 238)
 EMR_SETROP2 example (section 3.2.18 207, section 3.2.49 238)
 EMR_SETSTRETCHBLTMODE example (section 3.2.19 207, section 3.2.50 239)
 EMR_SETTEXTALIGN example (section 3.2.20 207, section 3.2.51 239)
 EMR_SETTEXTCOLOR example (section 3.2.15 205, section 3.2.46 237)
 EMR_SETWORLDTRANSFORM example (section 3.2.24 209, section 3.2.55 241, section 3.2.59 244)
 managing objects example 193
 metafile design examples 193
 overview 193

F

Fields - vendor-extensible 22
FilterType enumeration 33
FontStyleBold 62
FontStyleItalic 62

FontStyleStrikeout 62
FontStyleUnderline 62

G

Glossary 10
GraphicsVersion enumeration 34

H

HatchStyle enumeration 34
HotkeyPrefix enumeration 37
HueSaturationLightnessEffect Object 117
HueSaturationLightnessEffect packet 117
HueSaturationLightnessEffectGuid 66

I

ImageDataType enumeration 38
Informative references 18
InterpolationMode enumeration 38
Introduction 10

L

LanguageIdentifiers enumeration 39
LevelsEffect Object 118
LevelsEffect packet 118
LevelsEffectGuid 66
LineCapType enumeration 50
LineJoinType enumeration 51
LineStyle enumeration 51
Localization 22

M

Managing objects example 193
Metafile design examples 193
Metafile structure 18
MetafileDataType enumeration 52

N

Normative references 17

O

269 / 270

[MS-EMFPLUS-Diff] - v20160714
Enhanced Metafile Format Plus Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Object_Record_Types packet 166
Objects
 EMF+ 66
 overview 23
ObjectType enumeration 52
Overview (synopsis) 18

P

PaletteStyleGrayScale 63
PaletteStyleHalftone 63
PaletteStyleHasAlpha 63
PathPointType enumeration 53
PathPointTypeCloseSubpath 63
PathPointTypeDashMode 63
PathPointTypePathMarker 63
PenAlignment enumeration 53

PenDataCompoundLine 64
PenDataCustomEndCap 64
PenDataCustomStartCap 64
PenDataDashedLine 64
PenDataDashedLineCap 64
PenDataDashedLineOffset 64
PenDataEndCap 64
PenDataJoin 64
PenDataLineStyle 64
PenDataMiterLimit 64
PenDataNonCenter 64
PenDataStartCap 64
PenDataTransform 64
PixelFormat enumeration 54
PixelOffsetMode enumeration 55
Product behavior 257
Property_Record_Types packet 169

R

Record types 121
Records
 EMF+ 121
 types 121
RecordType enumeration 25
RedEyeCorrectionEffect Object 119
RedEyeCorrectionEffect packet 119
RedEyeCorrectionEffectGuid 66
References 17
 informative 18
 normative 17
RegionNodeDataType enumeration 56
Relationship to other protocols 21
Relationship to protocols and other structures 21

S

Security 256
SharpenEffect Object 119
SharpenEffect packet 119
SharpenEffectGuid 66
SmoothingMode enumeration 57
Standard identifier constant types 65
State_Record_Types packet 176
StringAlignment enumeration 57
StringDigitSubstitution enumeration 58
StringFormatBypassGDI 64
StringFormatDirectionRightToLeft 64

270 / 270

[MS-EMFPLUS-Diff] - v20160714
Enhanced Metafile Format Plus Extensions
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

StringFormatDirectionVertical 64
StringFormatDisplayFormatControl 64
StringFormatLineLimit 64
StringFormatMeasureTrailingSpaces 64
StringFormatNoClip 64
StringFormatNoFitBlackBox 64
StringFormatNoFontFallback 64
StringFormatNoWrap 64
StringTrimming enumeration 58
Structures
 overview 23
Structures - overview 23

T

Terminal_Server_Record_Types packet 181
TextRenderingHint enumeration 59

TintEffect Object 120
TintEffect packet 120
TintEffectGuid 66
Tracking changes 260
Transform_Record_Types packet 185

U

UnitType enumeration 59

V

Vendor-extensible fields 22
Versioning 22

W

WrapMode enumeration 60

