

1 / 92

[MS-EFSR-Diff] - v20210625
Encrypting File System Remote (EFSRPC) Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

[MS-EFSR-Diff]:

Encrypting File System Remote (EFSRPC) Protocol

Intellectual Property Rights Notice for Open Specifications Documentation

▪ Technical Documentation. Microsoft publishes Open Specifications documentation (“this
documentation”) for protocols, file formats, data portability, computer languages, and standards
support. Additionally, overview documents cover inter-protocol relationships and interactions.

▪ Copyrights. This documentation is covered by Microsoft copyrights. Regardless of any other
terms that are contained in the terms of use for the Microsoft website that hosts this
documentation, you can make copies of it in order to develop implementations of the technologies
that are described in this documentation and can distribute portions of it in your implementations
that use these technologies or in your documentation as necessary to properly document the

implementation. You can also distribute in your implementation, with or without modification, any
schemas, IDLs, or code samples that are included in the documentation. This permission also

applies to any documents that are referenced in the Open Specifications documentation.
▪ No Trade Secrets. Microsoft does not claim any trade secret rights in this documentation.
▪ Patents. Microsoft has patents that might cover your implementations of the technologies

described in the Open Specifications documentation. Neither this notice nor Microsoft's delivery of
this documentation grants any licenses under those patents or any other Microsoft patents.
However, a given Open Specifications document might be covered by the Microsoft Open
Specifications Promise or the Microsoft Community Promise. If you would prefer a written license,

or if the technologies described in this documentation are not covered by the Open Specifications
Promise or Community Promise, as applicable, patent licenses are available by contacting
iplg@microsoft.com.

▪ License Programs. To see all of the protocols in scope under a specific license program and the
associated patents, visit the Patent Map.

▪ Trademarks. The names of companies and products contained in this documentation might be

covered by trademarks or similar intellectual property rights. This notice does not grant any
licenses under those rights. For a list of Microsoft trademarks, visit
www.microsoft.com/trademarks.

▪ Fictitious Names. The example companies, organizations, products, domain names, email
addresses, logos, people, places, and events that are depicted in this documentation are fictitious.
No association with any real company, organization, product, domain name, email address, logo,
person, place, or event is intended or should be inferred.

Reservation of Rights. All other rights are reserved, and this notice does not grant any rights other
than as specifically described above, whether by implication, estoppel, or otherwise.

Tools. The Open Specifications documentation does not require the use of Microsoft programming
tools or programming environments in order for you to develop an implementation. If you have access
to Microsoft programming tools and environments, you are free to take advantage of them. Certain
Open Specifications documents are intended for use in conjunction with publicly available standards
specifications and network programming art and, as such, assume that the reader either is familiar

with the aforementioned material or has immediate access to it.

Support. For questions and support, please contact dochelp@microsoft.com.

https://go.microsoft.com/fwlink/?LinkId=214445
https://go.microsoft.com/fwlink/?LinkId=214445
https://go.microsoft.com/fwlink/?LinkId=214448
mailto:iplg@microsoft.com
https://aka.ms/AA9ufj8
https://www.microsoft.com/trademarks
mailto:dochelp@microsoft.com

2 / 92

[MS-EFSR-Diff] - v20210625
Encrypting File System Remote (EFSRPC) Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

Revision Summary

Date
Revision
History

Revision
Class Comments

3/2/2007 1.0 New Version 1.0 release

4/3/2007 1.1 Minor Version 1.1 release

5/11/2007 1.2 Minor Version 1.2 release

6/1/2007 1.2.1 Editorial Changed language and formatting in the technical content.

7/3/2007 1.3 Minor Clarified the meaning of the technical content.

8/10/2007 2.0 Major Updated and revised the technical content.

9/28/2007 3.0 Major Converted to unified format.

10/23/2007 3.1 Minor Clarified the meaning of the technical content.

1/25/2008 3.1.1 Editorial Changed language and formatting in the technical content.

3/14/2008 3.1.2 Editorial Changed language and formatting in the technical content.

6/20/2008 4.0 Major Updated and revised the technical content.

7/25/2008 4.0.1 Editorial Changed language and formatting in the technical content.

8/29/2008 4.0.2 Editorial Changed language and formatting in the technical content.

10/24/2008 4.0.3 Editorial Changed language and formatting in the technical content.

12/5/2008 5.0 Major Updated and revised the technical content.

1/16/2009 5.0.1 Editorial Changed language and formatting in the technical content.

2/27/2009 5.0.2 Editorial Changed language and formatting in the technical content.

4/10/2009 5.0.3 Editorial Changed language and formatting in the technical content.

5/22/2009 6.0 Major Updated and revised the technical content.

7/2/2009 6.0.1 Editorial Changed language and formatting in the technical content.

8/14/2009 6.0.2 Editorial Changed language and formatting in the technical content.

9/25/2009 7.0 Major Updated and revised the technical content.

11/6/2009 8.0 Major Updated and revised the technical content.

12/18/2009 9.0 Major Updated and revised the technical content.

1/29/2010 10.0 Major Updated and revised the technical content.

3/12/2010 11.0 Major Updated and revised the technical content.

4/23/2010 11.0.1 Editorial Changed language and formatting in the technical content.

6/4/2010 12.0 Major Updated and revised the technical content.

7/16/2010 13.0 Major Updated and revised the technical content.

8/27/2010 14.0 Major Updated and revised the technical content.

3 / 92

[MS-EFSR-Diff] - v20210625
Encrypting File System Remote (EFSRPC) Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

Date
Revision
History

Revision
Class Comments

10/8/2010 15.0 Major Updated and revised the technical content.

11/19/2010 15.0 None
No changes to the meaning, language, or formatting of the
technical content.

1/7/2011 15.0 None
No changes to the meaning, language, or formatting of the
technical content.

2/11/2011 16.0 Major Updated and revised the technical content.

3/25/2011 17.0 Major Updated and revised the technical content.

5/6/2011 17.0 None
No changes to the meaning, language, or formatting of the
technical content.

6/17/2011 17.1 Minor Clarified the meaning of the technical content.

9/23/2011 18.0 Major Updated and revised the technical content.

12/16/2011 19.0 Major Updated and revised the technical content.

3/30/2012 19.0 None
No changes to the meaning, language, or formatting of the
technical content.

7/12/2012 19.0 None
No changes to the meaning, language, or formatting of the
technical content.

10/25/2012 20.0 Major Updated and revised the technical content.

1/31/2013 20.0 None
No changes to the meaning, language, or formatting of the
technical content.

8/8/2013 21.0 Major Updated and revised the technical content.

11/14/2013 21.0 None
No changes to the meaning, language, or formatting of the
technical content.

2/13/2014 21.0 None
No changes to the meaning, language, or formatting of the
technical content.

5/15/2014 21.0 None
No changes to the meaning, language, or formatting of the

technical content.

6/30/2015 22.0 Major Significantly changed the technical content.

10/16/2015 23.0 Major Significantly changed the technical content.

7/14/2016 24.0 Major Significantly changed the technical content.

6/1/2017 24.0 None
No changes to the meaning, language, or formatting of the
technical content.

9/15/2017 25.0 Major Significantly changed the technical content.

12/1/2017 25.0 None
No changes to the meaning, language, or formatting of the
technical content.

9/12/2018 26.0 Major Significantly changed the technical content.

4/7/2021 27.0 Major Significantly changed the technical content.

6/25/2021 28.0 Major Significantly changed the technical content.

4 / 92

[MS-EFSR-Diff] - v20210625
Encrypting File System Remote (EFSRPC) Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

Table of Contents

1 Introduction .. 6
1.1 (Updated Section) Glossary ... 6
1.2 References .. 10

1.2.1 Normative References ... 11
1.2.2 Informative References ... 11

1.3 Overview .. 12
1.4 Relationship to Other Protocols .. 16
1.5 Prerequisites/Preconditions ... 17
1.6 Applicability Statement ... 17
1.7 Versioning and Capability Negotiation ... 17
1.8 Vendor-Extensible Fields ... 18
1.9 Standards Assignments ... 18

2 Messages ... 19
2.1 Transport .. 19
2.2 Common Data Types .. 19

2.2.1 EFSRPC Identifiers .. 19
2.2.2 EFSRPC Metadata ... 19

2.2.2.1 EFSRPC Metadata Version 1 ... 20
2.2.2.1.1 Key List Structure .. 22
2.2.2.1.2 Key List Entry ... 22
2.2.2.1.3 Public Key Information ... 23
2.2.2.1.4 Certificate Data ... 25
2.2.2.1.5 Encrypted FEK .. 26

2.2.2.2 EFSRPC Metadata Version 2 ... 27
2.2.2.2.1 Protector List Structure .. 29
2.2.2.2.2 EFSX Datum ... 29
2.2.2.2.3 Blob Datum .. 31
2.2.2.2.4 Descriptor Datum .. 32
2.2.2.2.5 Protector List Entry .. 32
2.2.2.2.6 Protector Info Datum ... 33
2.2.2.2.7 Key Agreement Datum ... 34
2.2.2.2.8 Fek Info Datum ... 34
2.2.2.2.9 DPAPI-NG Datum .. 35

2.2.2.3 EFSRPC Metadata Version 3 ... 35
2.2.3 EFSRPC Raw Data Format .. 37

2.2.3.1 Marshaled Stream ... 38
2.2.3.2 Stream Data Segment ... 40
2.2.3.3 Data Segment Encryption Header ... 40
2.2.3.4 Extended Header .. 42

2.2.4 PEXIMPORT_CONTEXT_HANDLE ... 42
2.2.5 EFS_EXIM_PIPE .. 42
2.2.6 EFS_CERTIFICATE_BLOB ... 42
2.2.7 EFS_HASH_BLOB .. 43
2.2.8 ENCRYPTION_CERTIFICATE ... 43
2.2.9 ENCRYPTION_CERTIFICATE_LIST ... 43
2.2.10 ENCRYPTION_CERTIFICATE_HASH .. 44
2.2.11 ENCRYPTION_CERTIFICATE_HASH_LIST .. 44
2.2.12 EFS_RPC_BLOB .. 44
2.2.13 ALG_ID ... 45
2.2.14 EFS_KEY_INFO ... 45
2.2.15 EFS_COMPATIBILITY_INFO .. 45
2.2.16 EFS_ENCRYPTION_STATUS_INFO ... 46
2.2.17 EFS_DECRYPTION_STATUS_INFO ... 46
2.2.18 ENCRYPTED_FILE_METADATA_SIGNATURE .. 46

5 / 92

[MS-EFSR-Diff] - v20210625
Encrypting File System Remote (EFSRPC) Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

2.2.19 ENCRYPTION_PROTECTOR ... 47
2.2.20 ENCRYPTION_PROTECTOR_LIST ... 47

3 Protocol Details ... 49
3.1 Server Details .. 49

3.1.1 Abstract Data Model .. 49
3.1.1.1 User-Certificate Binding ... 50
3.1.1.2 EFSRPC Server Control .. 51

3.1.2 Timers .. 51
3.1.3 Initialization ... 51
3.1.4 Message Processing Events and Sequencing Rules .. 51

3.1.4.1 Application Requests for a User-Certificate Binding 51
3.1.4.1.1 EFS Certificate Enrollment Algorithm .. 52

3.1.4.1.1.1 Inputs .. 52
3.1.4.1.1.2 Outputs .. 52
3.1.4.1.1.3 Internal Variables .. 52
3.1.4.1.1.4 Processing Rules .. 52

3.1.4.1.1.4.1 Building a List of CAs that Support a Particular Template 52
3.1.4.1.1.4.2 Creating a Request ... 53

3.1.4.2 EFSRPC Interface .. 53
3.1.4.2.1 Receiving an EfsRpcOpenFileRaw Message (Opnum 0) 57
3.1.4.2.2 Receiving an EfsRpcReadFileRaw Message (Opnum 1) 59
3.1.4.2.3 Receiving an EfsRpcWriteFileRaw Message (Opnum 2) 59
3.1.4.2.4 Receiving an EfsRpcCloseRaw Message (Opnum 3) 60
3.1.4.2.5 Receiving an EfsRpcEncryptFileSrv Message (Opnum 4) 60
3.1.4.2.6 Receiving an EfsRpcDecryptFileSrv Message (Opnum 5) 61
3.1.4.2.7 Receiving an EfsRpcQueryUsersOnFile Message (Opnum 6) 61
3.1.4.2.8 Receiving an EfsRpcQueryRecoveryAgents Message (Opnum 7) 62
3.1.4.2.9 Receiving an EfsRpcRemoveUsersFromFile Message (Opnum 8) 62
3.1.4.2.10 Receiving an EfsRpcAddUsersToFile Message (Opnum 9) 63
3.1.4.2.11 Receiving an EfsRpcNotSupported Message (Opnum 11) 63
3.1.4.2.12 Receiving an EfsRpcFileKeyInfo Message (Opnum 12) 64
3.1.4.2.13 Receiving an EfsRpcDuplicateEncryptionInfoFile Message (Opnum 13) ... 66
3.1.4.2.14 Receiving an EfsRpcAddUsersToFileEx Message (Opnum 15) 67
3.1.4.2.15 Receiving an EfsRpcFileKeyInfoEx Message (Opnum 16) 68
3.1.4.2.16 Receiving an EfsRpcGetEncryptedFileMetadata Message (Opnum 18) 69
3.1.4.2.17 Receiving an EfsRpcSetEncryptedFileMetadata Message (Opnum 19) 69
3.1.4.2.18 Receiving an EfsRpcFlushEfsCache Message (Opnum 20) 70
3.1.4.2.19 Receiving an EfsRpcEncryptFileExSrv Message (Opnum 21) 70
3.1.4.2.20 Receiving an EfsRpcQueryProtectors (Opnum 22) 73

3.1.5 Timer Events .. 73
3.1.6 Other Local Events .. 73

4 Protocol Examples ... 74

5 Security ... 76
5.1 Security Considerations for Implementers ... 76
5.2 Index of Security Parameters .. 76

6 Appendix A: Full IDL .. 77

7 (Updated Section) Appendix B: Product Behavior .. 82

8 Change Tracking .. 89

9 Index ... 90

6 / 92

[MS-EFSR-Diff] - v20210625
Encrypting File System Remote (EFSRPC) Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

1 Introduction

The Encrypting File System Remote (EFSRPC) Protocol is used for performing maintenance and
management operations on encrypted data that is stored remotely and accessed over a network. It is
used in Windows to manage files that reside on remote file servers and are encrypted using the
Encrypting File System (EFS).

Sections 1.5, 1.8, 1.9, 2, and 3 of this specification are normative. All other sections and examples in

this specification are informative.

1.1 (Updated Section) Glossary

This document uses the following terms:

access control list (ACL): A list of access control entries (ACEs) that collectively describe the
security rules for authorizing access to some resource; for example, an object or set of objects.

Active Directory: The Windows implementation of a general-purpose directory service, which uses
LDAP as its primary access protocol. Active Directory stores information about a variety of
objects in the network such as user accounts, computer accounts, groups, and all related
credential information used by Kerberos [MS-KILE]. Active Directory is either deployed as Active
Directory Domain Services (AD DS) or Active Directory Lightweight Directory Services (AD LDS),

which are both described in [MS-ADOD]: Active Directory Protocols Overview.

Advanced Encryption Standard (AES): A block cipher that supersedes the Data Encryption
Standard (DES). AES can be used to protect electronic data. The AES algorithm can be used to
encrypt (encipher) and decrypt (decipher) information. Encryption converts data to an
unintelligible form called ciphertext; decrypting the ciphertext converts the data back into its
original form, called plaintext. AES is used in symmetric-key cryptography, meaning that the
same key is used for the encryption and decryption operations. It is also a block cipher,

meaning that it operates on fixed-size blocks of plaintext and ciphertext, and requires the size of
the plaintext as well as the ciphertext to be an exact multiple of this block size. AES is also

known as the Rijndael symmetric encryption algorithm [FIPS197].

binary large object (BLOB): A collection of binary data stored as a single entity in a database.

binding: The string representation of the protocol sequence, NetworkAddress, and optionally the
endpoint. Also referred to as "string binding". For more information, see [C706] section "String

Bindings".

certificate: A certificate is a collection of attributes and extensions that can be stored persistently.
The set of attributes in a certificate can vary depending on the intended usage of the certificate.
A certificate securely binds a public key to the entity that holds the corresponding private key. A
certificate is commonly used for authentication and secure exchange of information on open
networks, such as the Internet, extranets, and intranets. Certificates are digitally signed by the
issuing certification authority (CA) and can be issued for a user, a computer, or a service. The

most widely accepted format for certificates is defined by the ITU-T X.509 version 3
international standards. For more information about attributes and extensions, see [RFC3280]

and [X509] sections 7 and 8.

certificate template: A list of attributes that define a blueprint for creating an X.509 certificate. It
is often referred to in non-Microsoft documentation as a "certificate profile". A certificate
template is used to define the content and purpose of a digital certificate, including issuance
requirements (certificate policies), implemented X.509 extensions such as application policies,

key usage, or extended key usage as specified in [X509], and enrollment permissions.
Enrollment permissions define the rules by which a certification authority (CA) will issue or deny
certificate requests. In Windows environments, certificate templates are stored as objects in the
Active Directory and used by Microsoft enterprise CAs.

7 / 92

[MS-EFSR-Diff] - v20210625
Encrypting File System Remote (EFSRPC) Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

certification authority (CA): A third party that issues public key certificates. Certificates serve to
bind public keys to a user identity. Each user and certification authority (CA) can decide whether

to trust another user or CA for a specific purpose, and whether this trust should be transitive.
For more information, see [RFC3280].

Data Decryption Field (DDF): The portion of the EFSRPC Metadata that contains information that
enables authorized users to decrypt the file.

data recovery agent (DRA): A logical entity corresponding to an asymmetric key pair, which is
configured as part of Encrypting File System (EFS) administrative policy by an administrator.
Whenever an EFS file is created or modified, it is also automatically configured to give
authorized access to all DRAs in effect at that time.

data recovery field (DRF): The portion of the EFSRPC Metadata that contains information that

enables authorized DRAs to decrypt the file.

domain: A set of users and computers sharing a common namespace and management
infrastructure. At least one computer member of the set must act as a domain controller (DC)

and host a member list that identifies all members of the domain, as well as optionally hosting
the Active Directory service. The domain controller provides authentication of members, creating
a unit of trust for its members. Each domain has an identifier that is shared among its members.

For more information, see [MS-AUTHSOD] section 1.1.1.5 and [MS-ADTS].

domain controller (DC): The service, running on a server, that implements Active Directory, or
the server hosting this service. The service hosts the data store for objects and interoperates
with other DCs to ensure that a local change to an object replicates correctly across all DCs.
When Active Directory is operating as Active Directory Domain Services (AD DS), the DC
contains full NC replicas of the configuration naming context (config NC), schema naming
context (schema NC), and one of the domain NCs in its forest. If the AD DS DC is a global

catalog server (GC server), it contains partial NC replicas of the remaining domain NCs in its
forest. For more information, see [MS-AUTHSOD] section 1.1.1.5.2 and [MS-ADTS]. When
Active Directory is operating as Active Directory Lightweight Directory Services (AD LDS),
several AD LDS DCs can run on one server. When Active Directory is operating as AD DS, only
one AD DS DC can run on one server. However, several AD LDS DCs can coexist with one AD DS

DC on one server. The AD LDS DC contains full NC replicas of the config NC and the schema NC
in its forest. The domain controller is the server side of Authentication Protocol Domain Support

[MS-APDS].

EFSRPC Metadata: The additional data stored with an encrypted file to enable authorized users to
access the data in the file. The format of this metadata is implementation-dependent. The
EFSRPC Metadata general requirements are specified in detail in section 2.2.2 and the Windows
format is specified in associated endnotes in Appendix B of this specification.

EFSRPC Raw Data Format: The data format used by the EFSRPC raw methods to marshal the

contents and metadata of an encrypted file into a single-bit stream. It is specified in section
2.2.3.

Encrypting File System (EFS): The name for the encryption capability of the NTFS file system.
When a file is encrypted using EFS, a symmetric key known as the file encryption key (FEK) is

generated and the contents of the file are encrypted with the FEK. For each user or data
recovery agent (DRA) that is authorized to access the file, a copy of the FEK is encrypted with
that user's or DRA's public key and is stored in the file's metadata. For more information about

EFS, see [MSFT-EFS].

endpoint: A network-specific address of a remote procedure call (RPC) server process for remote
procedure calls. The actual name and type of the endpoint depends on the RPC protocol
sequence that is being used. For example, for RPC over TCP (RPC Protocol Sequence
ncacn_ip_tcp), an endpoint might be TCP port 1025. For RPC over Server Message Block (RPC

8 / 92

[MS-EFSR-Diff] - v20210625
Encrypting File System Remote (EFSRPC) Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

Protocol Sequence ncacn_np), an endpoint might be the name of a named pipe. For more
information, see [C706].

file: A unit of data in the file system. An encrypted file consists of encrypted data along with the
metadata required for a user to decrypt the file. The file and its metadata are protected using

public key cryptography such that an authorized user's private key is required to decrypt the
file.

File Encryption Key (FEK): The symmetric key that is used to encrypt the data in an EFS-
protected file. The FEK is further encrypted and stored in the file metadata such that only
authorized users can access it.

file system: A system that enables applications to store and retrieve files on storage devices. Files
are placed in a hierarchical structure. The file system specifies naming conventions for files and

the format for specifying the path to a file in the tree structure. Each file system consists of one
or more drivers and DLLs that define the data formats and features of the file system. File
systems can exist on the following storage devices: diskettes, hard disks, jukeboxes, removable
optical disks, and tape backup units.

folder: A container for files and other folders. A folder may be encrypted. The semantics of
encrypting a folder are implementation-dependent. In the Windows implementation, encrypting

a folder does not directly cause any data to be encrypted. Encrypting a folder in Windows has
the following consequences of EFSRPC Metadata is created and stored with the folder and an
NTFS attribute is set on the folder to signify that it is encrypted. NTFS checks this attribute when
any new files or folders are created in the folder. NTFS will automatically encrypt any files or
folders created within a folder that has this attribute set.

fully qualified domain name (FQDN): An unambiguous domain name that gives an absolute
location in the Domain Name System's (DNS) hierarchy tree, as defined in [RFC1035] section

3.1 and [RFC2181] section 11.

globally unique identifier (GUID): A term used interchangeably with universally unique
identifier (UUID) in Microsoft protocol technical documents (TDs). Interchanging the usage of
these terms does not imply or require a specific algorithm or mechanism to generate the value.

Specifically, the use of this term does not imply or require that the algorithms described in
[RFC4122] or [C706] must be used for generating the GUID. See also universally unique
identifier (UUID).

Kerberos constrained delegation: A form of authentication delegation in which Kerberos can be
used to impersonate users that send requests for certain services, as opposed to all services.

key: In cryptography, a generic term used to refer to cryptographic data that is used to initialize a
cryptographic algorithm. Keys are also sometimes referred to as keying material.

Lightweight Directory Access Protocol (LDAP): The primary access protocol for Active
Directory. Lightweight Directory Access Protocol (LDAP) is an industry-standard protocol,

established by the Internet Engineering Task Force (IETF), which allows users to query and
update information in a directory service (DS), as described in [MS-ADTS]. The Lightweight
Directory Access Protocol can be either version 2 [RFC1777] or version 3 [RFC3377].

named pipe: A named, one-way, or duplex pipe for communication between a pipe server and one
or more pipe clients.

New Technology File System (NTFS): The native file system of Windows 2000 operating
system, Windows XP operating system, Windows Vista operating system, Windows 7 operating

system, and Windows 8 operating system. Within this document, this term is occasionally used
to refer to the operating system subsystem that implements NTFS support. For more
information, see [MSFT-NTFS].

9 / 92

[MS-EFSR-Diff] - v20210625
Encrypting File System Remote (EFSRPC) Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

NT file system (NTFS): A proprietary Microsoft file system. For more information, see [MSFT-
NTFS].

opnum: An operation number or numeric identifier that is used to identify a specific remote
procedure call (RPC) method or a method in an interface. For more information, see [C706]

section 12.5.2.12 or [MS-RPCE].

plaintext: In cryptography, ordinary readable text before it is encrypted into ciphertext, or after it
has been decrypted.

private key: One of a pair of keys used in public-key cryptography. The private key is kept secret
and is used to decrypt data that has been encrypted with the corresponding public key. For an
introduction to this concept, see [CRYPTO] section 1.8 and [IEEE1363] section 3.1.

public key: One of a pair of keys used in public-key cryptography. The public key is distributed

freely and published as part of a digital certificate. For an introduction to this concept, see
[CRYPTO] section 1.8 and [IEEE1363] section 3.1.

remote procedure call (RPC): A communication protocol used primarily between client and
server. The term has three definitions that are often used interchangeably: a runtime
environment providing for communication facilities between computers (the RPC runtime); a set
of request-and-response message exchanges between computers (the RPC exchange); and the

single message from an RPC exchange (the RPC message). For more information, see [C706].

Rivest-Shamir-Adleman (RSA): A system for public key cryptography. RSA is specified in
[PKCS1] and [RFC3447RFC8017].

RPC protocol sequence: A character string that represents a valid combination of a remote
procedure call (RPC) protocol, a network layer protocol, and a transport layer protocol, as
described in [C706] and [MS-RPCE].

RPC transport: The underlying network services used by the remote procedure call (RPC) runtime

for communications between network nodes. For more information, see [C706] section 2.

security context: An abstract data structure that contains authorization information for a
particular security principal in the form of a Token/Authorization Context (see [MS-DTYP] section
2.5.2). A server uses the authorization information in a security context to check access to
requested resources. A security context also contains a key identifier that associates mutually
established cryptographic keys, along with other information needed to perform secure
communication with another security principal.

security identifier (SID): An identifier for security principals that is used to identify an account
or a group. Conceptually, the SID is composed of an account authority portion (typically a
domain) and a smaller integer representing an identity relative to the account authority, termed
the relative identifier (RID). The SID format is specified in [MS-DTYP] section 2.4.2; a string
representation of SIDs is specified in [MS-DTYP] section 2.4.2 and [MS-AZOD] section 1.1.1.2.

security provider: A pluggable security module that is specified by the protocol layer above the

remote procedure call (RPC) layer, and will cause the RPC layer to use this module to secure
messages in a communication session with the server. The security provider is sometimes

referred to as an authentication service. For more information, see [C706] and [MS-RPCE].

Security Support Provider Interface (SSPI): An API that allows connected applications to call
one of several security providers to establish authenticated connections and to exchange data
securely over those connections. It is equivalent to Generic Security Services (GSS)-API, and
the two are on-the-wire compatible.

server: A computer on which the remote procedure call (RPC) server is executing.

10 / 92

[MS-EFSR-Diff] - v20210625
Encrypting File System Remote (EFSRPC) Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

Server Message Block (SMB): A protocol that is used to request file and print services from
server systems over a network. The SMB protocol extends the CIFS protocol with additional

security, file, and disk management support. For more information, see [CIFS] and [MS-SMB].

sparse file: A file containing large sections of data composed only of zeros. This file is marked as a

sparse file in the file system, which saves disk space by only allocating as many ranges on disk
as are required to completely reconstruct the non-zero data. When an attempt is made to read
in the nonallocated portions of the file (also known as holes), the file system automatically
returns zeros to the caller.

stream: A sequence of bytes written to a file on the target file system. Every file stored on a
volume that uses the file system contains at least one stream, which is normally used to store
the primary contents of the file. Additional streams within the file can be used to store file

attributes, application parameters, or other information specific to that file. Every file has a
default data stream, which is unnamed by default. That data stream, and any other data stream
associated with a file, can optionally be named.

UncPath: The location of a file in a network of computers, as specified in Universal Naming

Convention (UNC) syntax.

Unicode: A character encoding standard developed by the Unicode Consortium that represents

almost all of the written languages of the world. The Unicode standard [UNICODE5.0.0/2007]
provides three forms (UTF-8, UTF-16, and UTF-32) and seven schemes (UTF-8, UTF-16, UTF-16
BE, UTF-16 LE, UTF-32, UTF-32 LE, and UTF-32 BE).

universally unique identifier (UUID): A 128-bit value. UUIDs can be used for multiple
purposes, from tagging objects with an extremely short lifetime, to reliably identifying very
persistent objects in cross-process communication such as client and server interfaces, manager
entry-point vectors, and RPC objects. UUIDs are highly likely to be unique. UUIDs are also

known as globally unique identifiers (GUIDs) and these terms are used interchangeably in the
Microsoft protocol technical documents (TDs). Interchanging the usage of these terms does not
imply or require a specific algorithm or mechanism to generate the UUID. Specifically, the use of
this term does not imply or require that the algorithms described in [RFC4122] or [C706] must
be used for generating the UUID.

valid data length (VDL): In NTFS, there are two important concepts of file length: the end-of-file
(EOF) marker and the valid data length (VDL). The EOF indicates the actual length of the file.

The VDL identifies the length of valid data on disk. Any reads between VDL and EOF
automatically return zeros.

well-known endpoint: A preassigned, network-specific, stable address for a particular
client/server instance. For more information, see [C706].

X.509: An ITU-T standard for public key infrastructure subsequently adapted by the IETF, as
specified in [RFC3280].

MAY, SHOULD, MUST, SHOULD NOT, MUST NOT: These terms (in all caps) are used as defined
in [RFC2119]. All statements of optional behavior use either MAY, SHOULD, or SHOULD NOT.

1.2 References

Links to a document in the Microsoft Open Specifications library point to the correct section in the

most recently published version of the referenced document. However, because individual documents
in the library are not updated at the same time, the section numbers in the documents may not
match. You can confirm the correct section numbering by checking the Errata.

11 / 92

[MS-EFSR-Diff] - v20210625
Encrypting File System Remote (EFSRPC) Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

1.2.1 Normative References

We conduct frequent surveys of the normative references to assure their continued availability. If you
have any issue with finding a normative reference, please contact dochelp@microsoft.com. We will

assist you in finding the relevant information.

[C706] The Open Group, "DCE 1.1: Remote Procedure Call", C706, August 1997,
https://publications.opengroup.org/c706

Note Registration is required to download the document.

[MS-ADTS] Microsoft Corporation, "Active Directory Technical Specification".

[MS-CRTD] Microsoft Corporation, "Certificate Templates Structure".

[MS-DTYP] Microsoft Corporation, "Windows Data Types".

[MS-ERREF] Microsoft Corporation, "Windows Error Codes".

[MS-RMPR] Microsoft Corporation, "Rights Management Services (RMS): Client-to-Server Protocol".

[MS-RPCE] Microsoft Corporation, "Remote Procedure Call Protocol Extensions".

[MS-SMB2] Microsoft Corporation, "Server Message Block (SMB) Protocol Versions 2 and 3".

[MS-SMB] Microsoft Corporation, "Server Message Block (SMB) Protocol".

[MS-WCCE] Microsoft Corporation, "Windows Client Certificate Enrollment Protocol".

[RFC1035] Mockapetris, P., "Domain Names - Implementation and Specification", STD 13, RFC 1035,
November 1987, http://www.ietf.org/rfc/rfc1035.txt

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC

2119, March 1997, http://www.rfc-editor.org/rfc/rfc2119.txt

[RFC2251] Wahl, M., Howes, T., and Kille, S., "Lightweight Directory Access Protocol (v3)", RFC 2251,
December 1997, http://www.ietf.org/rfc/rfc2251.txt

[RFC3394] Schaad, J., Housley, R., "Advanced Encryption Standard (AES) Key Wrap Algorithm", RFC
3394, September 2002, http://www.ietf.org/rfc/rfc3394.txt

[RFC5280] Cooper, D., Santesson, S., Farrell, S., et al., "Internet X.509 Public Key Infrastructure

Certificate and Certificate Revocation List (CRL) Profile", RFC 5280, May 2008,
http://www.ietf.org/rfc/rfc5280.txt

1.2.2 Informative References

[FIPS180-4] FIPS PUBS, "Secure Hash Standards (SHS)", March 2012,

http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf

[MS-ADOD] Microsoft Corporation, "Active Directory Protocols Overview".

[MS-SFU] Microsoft Corporation, "Kerberos Protocol Extensions: Service for User and Constrained
Delegation Protocol".

[MS-WDV] Microsoft Corporation, "Web Distributed Authoring and Versioning (WebDAV) Protocol:
Client Extensions".

12 / 92

[MS-EFSR-Diff] - v20210625
Encrypting File System Remote (EFSRPC) Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

[MSDN-CRYPTO] Microsoft Corporation, "Cryptography Reference", http://msdn.microsoft.com/en-
us/library/aa380256.aspx

[MSFT-EFS] Microsoft Corporation, "The Encrypting File System", https://technet.microsoft.com/en-
us/library/cc700811.aspx

[MSFT-NTFS] Microsoft Corporation, "NTFS Technical Reference", March 2003,
http://technet2.microsoft.com/WindowsServer/en/Library/81cc8a8a-bd32-4786-a849-

03245d68d8e41033.mspx

[MSFT-XPUEFS] Microsoft Corporation, "Windows XP Professional Resource Kit: Using Encrypting File
System", November 2005, http://technet.microsoft.com/en-us/library/bb457116.aspx

[TDEA] National Institute of Standards and Technology, "Recommendation for the Triple Data
Encryption Algorithm (TDEA) Block Cipher", Special Publication 800-67, May 2004,
http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-67ver1.pdf

[X509] ITU-T, "Information Technology - Open Systems Interconnection - The Directory: Public-Key

and Attribute Certificate Frameworks", Recommendation X.509, August 2005,
http://www.itu.int/rec/T-REC-X.509/en

[X690] ITU-T, "Information Technology - ASN.1 Encoding Rules: Specification of Basic Encoding Rules
(BER), Canonical Encoding Rules (CER) and Distinguished Encoding Rules (DER)", Recommendation

X.690, July 2002, http://www.itu.int/rec/T-REC-X.690/en

1.3 Overview

The Encrypting File System Remote Protocol (hereafter referred to as EFSRPC) is a Remote Procedure
Call (RPC) interface that is used to manage data objects stored in an encrypted form. The objective of

encrypting data in this fashion is to enforce access control policies and to provide confidentiality from
unauthorized users.

EFSRPC is implemented in Windows to provide remote management for files encrypted by the

Encrypting File System (EFS). EFS is the ability of the New Technology File System (NTFS) file system
to encrypt files on disk in a manner that is transparent to the user. For more information on EFS, see
[MSFT-EFS]. For more information about NTFS, see [MSFT-NTFS].

EFSRPC does not address how data is encrypted, how the encrypted data is stored, or how it is
accessed for routine operations such as reading, writing, creating, and deleting. All these actions are
specific to the server implementation. On Windows, NTFS provides the storage mechanism (the file is
the unit of storage) and the Server Message Block (SMB) Protocol provides remote access to such
files. For more information about SMB, see [MS-SMB] and [MS-SMB2].

EFSRPC models the underlying data encryption architecture using two basic constructs:

▪ A set of data objects, each of which is encrypted independently and can be managed

independently.

▪ A set of access control subjects, each of which is represented by a key pair generated by a public

key cryptographic algorithm. The public key of this key pair is embedded in a certificate and can
be widely distributed in that form. The corresponding private key is held solely by the user or
users who represent that subject. Thus, a given access control subject can correspond to one or
more users, and a given user can possess the private keys for zero or more access control
subjects. Access control subjects are further divided into two types:

▪ Unprivileged user subjects, which are used for routine data access by ordinary users of the
system. For convenience, this specification refers to such subjects as user certificate.

13 / 92

[MS-EFSR-Diff] - v20210625
Encrypting File System Remote (EFSRPC) Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

▪ Data Recovery Agents (DRAs), which are controlled by system administrators. The storage
system ensures that all active DRAs for the system are automatically authorized to access all

encrypted objects on the system. If an unprivileged user loses the private key, an
administrator can use a DRA's private key to recover the contents of encrypted objects.

EFSRPC also assumes that each encrypted object is associated with some security-related metadata,
which contains information required for authorized users and DRAs to access the plaintext of the
object. This specification refers to this security-related metadata as the EFSRPC Metadata.

EFSRPC does not specify how data is encrypted, stored, or accessed. It is possible to build a compliant
EFSRPC implementation that uses a mechanism, such as access control lists (ACLs), instead of
encryption to control access to data objects. For the purposes of this specification, the term encrypted
is used to indicate that a data object and its metadata can be successfully manipulated through the

EFSRPC methods, with the exception of the EfsRpcEncryptFileSrv method, which converts data objects
from an unencrypted state to an encrypted state.

Within the preceding model, EFSRPC provides various categories of management routines. The syntax
of the individual methods and rules for how these methods are processed on the server are specified

in section 3.1.4.2. The categories of management routines that EFSRPC provides are as follows:

▪ Requesting the server to convert objects from encrypted state to unencrypted state and vice

versa.

▪ EfsRpcEncryptFileSrv (section 3.1.4.2.5)

▪ EfsRpcDecryptFileSrv (section 3.1.4.2.6)

▪ Creating, querying, and manipulating the EFSRPC Metadata. Clients use the following methods to
query and change which user certificates can be used to decrypt an encrypted object. The set of
user certificates with access to an object needs to be changed when the set of users with access to
the object changes or when a user with access to the object changes the user certificate. The

following methods can also be used to copy the access rights from one object to another; the
EfsRpcDuplicateEncryptionInfoFile method is particularly well-suited for this purpose. Methods:

▪ EfsRpcQueryUsersOnFile (section 3.1.4.2.7)

▪ EfsRpcQueryRecoveryAgents (section 3.1.4.2.8)

▪ EfsRpcRemoveUsersFromFile (section 3.1.4.2.9)

▪ EfsRpcAddUsersToFile (section 3.1.4.2.10)

▪ EfsRpcFileKeyInfo (section 3.1.4.2.12)

▪ EfsRpcDuplicateEncryptionInfoFile (section 3.1.4.2.13)

▪ EfsRpcAddUsersToFileEx (section 3.1.4.2.14)

▪ EfsRpcFileKeyInfoEx (section 3.1.4.2.15)

▪ EfsRpcGetEncryptedFileMetadata (section 3.1.4.2.16)

▪ EfsRpcSetEncryptedFileMetadata (section 3.1.4.2.17)

▪ Performing backup of encrypted objects in ciphertext form along with their EFSRPC Metadata, and

restoring encrypted objects from such backups. Depending on the implementation of these
methods, the backups that are created can expose the implementation-specific EFSRPC Metadata
format to the client. The Windows implementation of these methods exposes the Windows EFSRPC
Metadata format; however, Windows applications do not manipulate this information. The
following methods are suitable for secure content archival or transferring encrypted data securely

14 / 92

[MS-EFSR-Diff] - v20210625
Encrypting File System Remote (EFSRPC) Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

between servers of the same implementation because they do not require decrypting the data.
Methods:

▪ EfsRpcOpenFileRaw (section 3.1.4.2.1)

▪ EfsRpcReadFileRaw (section 3.1.4.2.2)

▪ EfsRpcWriteFileRaw (section 3.1.4.2.3)

▪ EfsRpcCloseRaw (section 3.1.4.2.4)

▪ Controlling the server's encryption subsystem. Methods:

▪ EfsRpcFlushEfsCache (section 3.1.4.2.18)

Most of the EFSRPC routines are stateless and can be called in any order. When one of these routines
is called, the message exchange is as follows.

Figure 1: Message exchange for stateless routines

There are two routines in EFSRPC that are an exception to the stateless nature of the protocol. Several
methods, collectively known as the EFSRPC raw methods, are an exception and need to be called in a
specific order. This includes the EfsRpcOpenFileRaw, EfsRpcReadFileRaw, EfsRpcWriteFileRaw, and
EfsRpcCloseRaw methods. The following two sequences are permissible.

15 / 92

[MS-EFSR-Diff] - v20210625
Encrypting File System Remote (EFSRPC) Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

Figure 2: Message sequence for opening a file

16 / 92

[MS-EFSR-Diff] - v20210625
Encrypting File System Remote (EFSRPC) Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

Figure 3: Message sequence for importing a file

1.4 Relationship to Other Protocols

The Encrypting File System Remote Protocol is built on the Microsoft Remote Procedure Call (RPC)
interface (as specified in [C706] and [MS-RPCE]). EFSRPC uses the Server Message Block (SMB)
Protocol [MS-SMB] [MS-SMB2] as its RPC transport. Specifically, it uses named pipes over SMB (that
is, RPC protocol sequence ncacn_np) as its transport mechanism. Either version 1 or version 2 of SMB
can be used. The client has to connect to the server over SMB and negotiate a version of SMB before

it can access the named pipe that is the RPC endpoint on the server.

Windows also supports the storage of encrypted files via WebDAV [MS-WDV]. However, this feature
does not use EFSRPC. This feature does not alter the WebDAV Protocol. Windows clients store
encrypted files on WebDAV servers in the EFSRPC Raw Data Format, but the Windows WebDAV client
performs all encryption and decryption operations locally. It also performs the local operations
necessary to transform the file to and from the EFSRPC Raw Data Format during upload and download
respectively. For more information, see [MSFT-XPUEFS].

This specification provides an interface (see section 3.1.4.1) for applications to request a user
certificate. This interface uses methods outlined in [MS-WCCE] to enroll for a certificate and key.

17 / 92

[MS-EFSR-Diff] - v20210625
Encrypting File System Remote (EFSRPC) Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

Figure 4: Protocol relationships

1.5 Prerequisites/Preconditions

To use EFSRPC with a remote server, the client is required to possess valid credentials recognized by
the server and be able to pass authentication and authorization checks for access to the encrypted
data on the server. If secure operation is desired, the server is required to register an appropriate
server principal name/authentication service pair that supports a protection level that provides packet
integrity. Additionally, the client needs to be configured to associate the appropriate server principal
name and authentication, and authorization and protection level with its binding, when connecting to
the server.<1>

The User-Certificate Binding interface described in section 3.1.1.1 stores user keys protected to the
user credentials and requires that the EFSRPC server be joined to the domain and configured for
Kerberos delegation.<2> Alternatively, the server can be configured for Kerberos constrained
delegation (as specified in [MS-SFU]) for only the services used for user key storage.

1.6 Applicability Statement

This protocol is appropriate for remotely managing encrypted data objects on a server. It is used by

Windows clients to manage EFSRPC-protected files on remote file servers using either version 1 or
version 2 of the SMB Protocol. It does not specify any particular data protection mechanism.

1.7 Versioning and Capability Negotiation

This document covers versioning issues in the following areas.

Supported Transports: This protocol uses RPC for communication. It uses named pipes as the
transport mechanism, as specified in section 2.1.

18 / 92

[MS-EFSR-Diff] - v20210625
Encrypting File System Remote (EFSRPC) Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

Protocol Versions: The RPC runtime negotiates the version of the EFSRPC interface, as specified in
[C706]. The only supported version of this protocol is 1.0, as specified in section 3.1.4.2.

Security and Authentication Methods: EFSRPC does not specify any methods for authenticating
access to the objects it operates on. The underlying data encryption and storage system can

implement any authentication mechanism. In Windows, such authentication is provided by SMB,
as specified in [MS-SMB] and [MS-SMB2]. An EFSRPC server can register a server principal
name/authentication service pair to enable secure RPC communications, and a client can choose to
associate this security service with its binding when connecting to the server, as specified in
section 3.

Capability Negotiation: Implicit negotiation of RPC security mechanisms can be performed through
the security-related APIs specified in [C706] Chapter 13. The security mechanisms negotiated by

Windows clients and servers are as specified in section 2.1.

1.8 Vendor-Extensible Fields

EFSRPC does not include any vendor-extensible fields.

This protocol uses Win32 error codes. These values are taken from the Windows error number space
as specified in [MS-ERREF] section 2.2. Vendors SHOULD reuse those values with their indicated
meaning. Using any other value runs the risk of a collision in the future.

1.9 Standards Assignments

 Parameter Value

RPC Well-Known Endpoint \pipe\lsarpc

RPC Interface UUID {c681d488-d850-11d0-8c52-00c04fd90f7e}

RPC Well-Known Endpoint \pipe\efsrpc

RPC Interface UUID {df1941c5-fe89-4e79-bf10-463657acf44d}

19 / 92

[MS-EFSR-Diff] - v20210625
Encrypting File System Remote (EFSRPC) Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

2 Messages

2.1 Transport

The client and server MUST communicate over RPC, using named pipes over the Server Message Block

(SMB) Protocol. The SMB version, capabilities, and authentication used for this connection are
negotiated between the client and server when the connection is established, as specified in [MS-SMB]
and [MS-SMB2].

EFSRPC messages to remote servers SHOULD be sent using the well-known endpoint \pipe\efsrpc.
Remote servers MAY respond to EFSRPC messages sent using the well-known endpoint \pipe\lsarpc.
When connecting to \pipe\efsrpc, the server interface is identified by UUID [df1941c5-fe89-4e79-bf10-

463657acf44d], version 1.0. When connecting to \pipe\lsarpc, the server interface is identified by
UUID [c681d488-d850-11d0-8c52-00c04fd90f7e], version 1.0.<3>

The EFSRPC client MUST use explicit binding to create the RPC binding handle used to connect to the

server, unless otherwise specified in section 3.1.4.2.

A server SHOULD<4> register one or more server principal name/authentication service pairs that
provide a protection level that includes packet integrity. A client SHOULD attempt to associate suitable
security information with its binding for the EFSRPC methods. For EfsRpcOpenFileRaw, clients SHOULD

set the security options explicitly as noted in section 3. For all other EFSRPC methods, clients SHOULD
use default values for the binding security information as specified in [MS-RPCE] section 3.3.2.3.1.

2.2 Common Data Types

This section specifies the syntax of EFSRPC data types. In addition to the RPC base types and

definitions specified in [C706] and [MS-DTYP], the additional data types described in the following
sections are defined in the Microsoft Interface Definition Language (MIDL) specification for this RPC
interface. This protocol MUST indicate to the RPC runtime that it is to support the NDR20 transfer
syntax only, as specified in [C706] Part 4.

This specification uses GUID structures as specified in [MS-DTYP] section 2.3.4.2.

2.2.1 EFSRPC Identifiers

An EFSRPC identifier is used to uniquely refer to an encrypted data object on a remote server. The
format of the identifier used is implementation-specific. It MUST be represented as a null-terminated
Unicode string in UTF-16 encoding. EFSRPC servers SHOULD use UncPaths for EFSRPC identifiers. The
server MUST return an error if it is passed an identifier that violates the syntactic rules imposed by its

implementation.<5>

2.2.2 EFSRPC Metadata

The EFSRPC Metadata is attached to an encrypted object and contains information required to decrypt

it. The EFSRPC Metadata is used implicitly by the EFSRPC raw methods, because it forms part of the

EFSRPC Raw Data Format.

The structure of the EFSRPC Metadata is implementation dependent. An EFSRPC server SHOULD
return an error if EFSRPC Metadata is passed to it in an unsupported format. An EFSRPC client
SHOULD NOT parse the EFSRPC Metadata, and SHOULD NOT rely on it being in any particular format.

The EFSRPC Metadata SHOULD be represented on the server as follows.

20 / 92

[MS-EFSR-Diff] - v20210625
Encrypting File System Remote (EFSRPC) Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

2.2.2.1 EFSRPC Metadata Version 1

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Length

Reserved1

EFS_Version

Reserved2

EFS_ID (16 bytes)

...

...

...

EFS_Hash (16 bytes)

...

...

...

Reserved3 (16 bytes)

...

...

...

DDF_Offset

DRF_Offset

Reserved4

...

...

Data_Fields (variable)

...

21 / 92

[MS-EFSR-Diff] - v20210625
Encrypting File System Remote (EFSRPC) Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

Length (4 bytes): This field MUST contain a 32-bit unsigned integer equal to the length, in bytes, of
the EFSRPC Metadata.<6>

Reserved1 (4 bytes): MUST be set to zero and ignored upon receipt.

EFS_Version (4 bytes): This field represents the highest EFS version supported by the

implementation that created this metadata. It MUST be a 32-bit unsigned integer in little-endian
format. It MUST be set to one of the following values.

Value Meaning

Version_1

0x00000001

The file encryption key (FEK) will be a DESX key, and encrypted with RSA only. The Flags
field in all key list entries will be zero.

Version_2

0x00000002

The FEK will use DESX, 3DES, or AES-256. The FEK will be encrypted with RSA only. The
Flags field in all key list entries will be zero.

Version_3

0x00000003

The FEK will use DESX, 3DES, or AES-256. The FEK will be encrypted with either RSA or AES-
256.

A server that supports a given version number MUST also support all lower numbered versions. A
server SHOULD support all versions listed.<7>

Reserved2 (4 bytes): MUST be set to zero and ignored upon receipt.

EFS_ID (16 bytes): A 16-byte GUID value that MUST be unique for the computer that created this
metadata.

EFS_Hash (16 bytes): This field SHOULD be set to zero and ignored by the server.<8>

Reserved3 (16 bytes): MUST be set to zero and ignored upon receipt.

DDF_Offset (4 bytes): This field MUST contain the offset, in bytes, of the data decryption field
(DDF) key list from the start of the EFSRPC Metadata. It MUST be a 32-bit unsigned integer in

little-endian format. The DDF key list lies completely within the Data Fields and does not overlap
the data recovery field (DRF) key list (if present).

DRF_Offset (4 bytes): This field MUST contain the offset, in bytes, of the DRF key list from the start
of the EFSRPC Metadata. It MUST be a 32-bit unsigned integer in little-endian format. A zero value
in this field indicates that the DRF key list is absent and no DRAs have been applied to the file. If

present, the DRF key list MUST lie completely within Data Fields and MUST NOT overlap the DDF
key list.

Reserved4 (12 bytes): MUST be set to zero and ignored upon receipt.

Data_Fields (variable): This field MUST contain the following two items in any order at the
locations indicated by the respective Offset fields previously listed. Both items MUST conform to
the key list format specified in section 2.2.2.1.1. The DDF key list MUST NOT overlap with the DRF

key list (if present). There MUST NOT be any unused areas within this field spanning more than 8
contiguous bytes. Any unused areas within this field MUST be set to zero bytes and ignored by the

server.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

DDF_key_list (variable)

...

22 / 92

[MS-EFSR-Diff] - v20210625
Encrypting File System Remote (EFSRPC) Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

DRF_key_list (variable)

...

DDF_key_list (variable): This field MUST contain one or more entries. Each entry consists of
the file's FEK, encrypted with the public key of a user authorized to access the file.

DRF_key_list (variable): This MUST contain one or more entries. Each entry consists of the

file’s FEK, encrypted with the public key of a DRA authorized to access the file. This MUST only
be present if the value in the DRF offset field is nonzero.

2.2.2.1.1 Key List Structure

The DDF and Key List structure in the EFSRPC Metadata MUST be formatted as follows.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Length

Key_List_1 (variable)

...

Key_List_n (variable)

...

Length (4 bytes): The number of entries in this key list. It MUST be a 32-bit unsigned integer in
little-endian format.

Key List entries 1 ... n: A number of entries equal to the value in the length of key list field. The
individual entries MUST be formatted as specified in section 2.2.2.1.2.

2.2.2.1.2 Key List Entry

Each individual Key List Entry MUST be formatted as follows.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Length

Offset to Public Key Information

Encrypted FEK Length

Offset to Encrypted FEK

Flags

Data Fields (variable)

23 / 92

[MS-EFSR-Diff] - v20210625
Encrypting File System Remote (EFSRPC) Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

...

Length (4 bytes): MUST be equal to the length of this key list entry in bytes. It MUST be a 32-bit
unsigned integer in little-endian format.

Offset to Public Key Information (4 bytes): MUST contain the offset to the Public Key

Information field in bytes from the start of this entry. It MUST be a 32-bit unsigned integer in
little-endian format. The Public Key Information field MUST be completely contained inside the
Data Fields.

Encrypted FEK Length (4 bytes): MUST be set to the length of the data in the Encrypted FEK
field, in bytes. It MUST be a 32-bit unsigned integer in little-endian format.

Offset to Encrypted FEK (4 bytes): MUST contain the offset to the Encrypted FEK field, in bytes

from the start of this entry. It MUST be a 32-bit unsigned integer in little-endian format. The
Encrypted FEK MUST be completely contained inside the Data fields.

Flags (4 bytes): This field MUST indicate the algorithm used to encrypt the FEK in this key list entry.
It MUST be a 32-bit unsigned integer in little-endian format. EFSRPC servers SHOULD support all
the values listed below, and MUST ignore any unsupported values.

Value Meaning

0x00000000 The Encrypted FEK field is encrypted using RSA, with a public key belonging to a user or DRA.

0x00000001 The Encrypted FEK field is encrypted using AES-256, with a key that is obtained by signing the
non-terminated Unicode string "MICROSOFTE" (20 bytes long) with the user's RSA and computing
the SHA-256 hash of the result.

This value is used when a user's private key is stored on a smart card to improve performance by
minimizing the number of smart card accesses.<9>

Data Fields (variable): This field MUST contain the following items, in any order, at the locations

indicated by the respective Offset fields previously listed. These items MUST be completely
contained inside this field and MUST NOT overlap each other. There MUST NOT be unused areas
within this field spanning more than 8 contiguous bytes.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Public Key Information (variable)

...

Encrypted FEK (variable)

...

Public Key Information (variable): This field MUST contain information about the X.509
certificate that contains the RSA public key, which is used to encrypt the Encrypted FEK field.

It MUST be formatted as specified in section 2.2.2.1.3.

Encrypted FEK (variable): This field MUST contain information about the FEK, encrypted as
indicated by the contents of the Flags field. It MUST be formatted as specified in section
2.2.2.1.5.

2.2.2.1.3 Public Key Information

24 / 92

[MS-EFSR-Diff] - v20210625
Encrypting File System Remote (EFSRPC) Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

 The Public Key Information structure MUST be formatted as follows.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Length

Offset to Owner Hint

0x03 0x00 0x00 0x00

Length of Certificate Data

Offset to Certificate Data

Reserved

...

Data Fields (variable)

...

Length (4 bytes): This MUST be set to the length, in bytes, of this structure. It MUST be a 32-bit
unsigned integer in little-endian format.

Offset to Owner Hint (4 bytes): If the Owner Hint field is present, this field MUST be set to the
offset of the Owner Hint from the beginning of this structure, measured in bytes. If this field is
zero, then the Owner Hint field MUST NOT be present. This field MUST be a 32-bit unsigned
integer in little-endian format.

Length of Certificate Data (4 bytes): The size, in bytes, of the Certificate Data field. It MUST be
a 32-bit unsigned integer in little-endian format.

Offset to Certificate Data (4 bytes): The offset, in bytes, of the Certificate Data field from the
start of this structure. It MUST be a 32-bit unsigned integer in little-endian format.

Reserved (8 bytes): MUST be set to zero and ignored upon receipt.

Data Fields (variable): This field MUST contain the following items, in any order, and at the
locations indicated by the respective Offset fields above. These items MUST be completely
contained inside this field and MUST NOT overlap each other. There MUST NOT be any unused
areas within this field that span more than eight contiguous bytes.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Owner Hint (variable)

...

Certificate Data (variable)

...

25 / 92

[MS-EFSR-Diff] - v20210625
Encrypting File System Remote (EFSRPC) Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

Owner Hint (variable): A security identifier (SID) in RPC marshaling format that is intended to
be used as a hint regarding the identity of the key owner. This item MUST be present only if

the Offset to Owner Hint field is nonzero. The structure of an RPC SID is specified in [MS-
DTYP] section 2.4.2.3.

Certificate Data (variable): This field MUST contain information about the X.509 certificate
associated with the public key that is used to encrypt the FEK data in this key list entry. It
MUST be formatted as specified in section 2.2.2.1.4.

2.2.2.1.4 Certificate Data

 The Certificate Data structure MUST be formatted as follows.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Offset to Certificate Thumbprint

Length of Certificate Thumbprint

Offset of Container Name

Offset of Provider Name

Offset of Display Name

Data Fields (variable)

...

Offset to Certificate Thumbprint (4 bytes): Offset of the Certificate Thumbprint field from the
start of this structure. It MUST be a 32-bit unsigned integer in little-endian format.

Length of Certificate Thumbprint (4 bytes): The length of the Certificate Thumbprint field. It
MUST be a 32-bit unsigned integer in little-endian format.

Offset of Container Name (4 bytes): Offset of the Container Name field (in bytes) from the start
of this structure. It MUST be a 32-bit unsigned integer in little-endian format. If this field is set to

zero, then the Container Name field MUST be absent.

Offset of Provider Name (4 bytes): Offset of the Provider Name field (in bytes) from the start of
this structure. It MUST be a 32-bit unsigned integer in little-endian format. If this field is set to
zero, the Provider Name field MUST be absent. If a Provider Name field is present, a
Container Name field MUST also be present.

Offset of Display Name (4 bytes): Offset of the Display Name field, (in bytes) from the start of
this structure. It MUST be a 32-bit unsigned integer in little-endian format. If this field is set to

zero, then the Display Name field MUST be absent.

Data Fields (variable): This field MUST contain the following items, in any order, and at the
locations indicated by the respective Offset fields previously listed. These items MUST be
completely contained inside this field and MUST NOT overlap each other. There MUST NOT be any
unused areas within this field that span more than 8 contiguous bytes.

26 / 92

[MS-EFSR-Diff] - v20210625
Encrypting File System Remote (EFSRPC) Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Certificate Thumbprint (variable)

...

Container Name (variable)

...

Provider Name (variable)

...

Display Name (variable)

...

Certificate Thumbprint (variable): The SHA-1 hash of the DER-encoded form of the certificate.
For more information on SHA-1, see [FIPS180-4]. For more information on DER encoding, see
[X690].

Container Name (variable): A null-terminated Unicode string in UTF-16 encoding that provides
a hint as to the public key container in which the key is stored. This field MUST always be
present if the Provider Name is present. When the Container Name field is present, the
Offset of Container Name field MUST be nonzero; otherwise, this field is ignored by the
server and does not affect protocol behavior.

Provider Name (variable): A null-terminated Unicode string in UTF-16 encoding. This field

MUST always be present if the Container Name is present. It MUST be omitted if the Offset
of Provider Name field is 0; otherwise, this field is ignored by the server and does not affect
protocol behavior.

Display Name (variable): A null-terminated Unicode string in UTF-16 encoding that provides a
hint as to the friendly name that can be used to identify this certificate for display purposes.
This field MUST be omitted if the Offset of Display Name field is 0.

2.2.2.1.5 Encrypted FEK

 The Encrypted FEK field in the DDF and DRF key list entries MUST consist of the following structure,
encrypted as specified in the description of the Flags field for the key list entry.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Key Length

Entropy

Algorithm

Reserved

27 / 92

[MS-EFSR-Diff] - v20210625
Encrypting File System Remote (EFSRPC) Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

Key (variable)

...

Key Length (4 bytes): The length, in bytes, of the Key field. It MUST be a 32-bit unsigned integer in
little-endian format. Possible values depend on the algorithm ID (ALG_ID) as specified in section
2.2.13.<10>

Entropy (4 bytes): The number of bits of true randomness in the key contained in this structure. It
MUST be a 32-bit unsigned integer in little-endian format. Possible values depend on the
Algorithm as specified in section 2.2.13.

Algorithm (4 bytes): The symmetric cryptographic algorithm associated with this key. It MUST be a
32-bit unsigned integer in little-endian format. Possible values are specified in section 2.2.13. The
possible values for this field are constrained by the value of the EFS version field in the EFSRPC

Metadata.

Reserved (4 bytes): MUST be set to zero and ignored.

Key (variable): The FEK for the file.

2.2.2.2 EFSRPC Metadata Version 2

This metadata format is specified by an EFS Version of 4 or 5 in the EFSRPC metadata header<11>.
This new metadata format is referred to as "Version 2" of the EFSRPC metadata, but do not confuse
this with the EFS Version field specified within the metadata header. The format used for Version 2
EFSRPC metadata is significantly different from Version 1 described in section 2.2.2.1. Servers
SHOULD support Version 2 of the EFSRPC Metadata.<12> A server that supports Version 2 of the
EFSRPC Metadata MUST also fully support EFSRPC Metadata Version 1.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Length

Reserved1

EFS_Version

Reserved2

EFS_ID (16 bytes)

...

...

...

DDF_Offset

DRF_Offset

28 / 92

[MS-EFSR-Diff] - v20210625
Encrypting File System Remote (EFSRPC) Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

FekInfo_Datum

...

...

Data_Fields (variable)

...

Length (4 bytes): This field MUST contain a 32-bit unsigned integer equal to the length, in bytes, of
the EFSRPC Metadata.<13>

Reserved1 (4 bytes): MUST be set to zero and ignored upon receipt.

EFS_Version (4 bytes): This field represents the highest EFS version supported by the
implementation that created this metadata. It MUST be a 32-bit unsigned integer in little-endian
format. It MUST be set to 0x00000004 for EFS Version 4 or 0x00000005 for EFS Version 5.

Reserved2 (4 bytes): MUST be set to zero and ignored upon receipt.

EFS_ID (16 bytes): A 16-byte GUID value that MUST be unique for the computer that created this
metadata.

DDF_Offset (4 bytes): This field MUST contain the offset, in bytes, of the DDF protector list from
the start of the EFSRPC Metadata. It MUST be a 32-bit unsigned integer in little-endian format.
The DDF protector list lies completely within the Data Fields and does not overlap the DRF
protector list (if present).

DRF_Offset (4 bytes): This field MUST contain the offset, in bytes, of the DRF protector list from the
start of the EFSRPC Metadata. It MUST be a 32-bit unsigned integer in little-endian format. A zero

value in this field indicates that the DRF protector list is absent and no DRAs have been applied to

the file. If present, the DRF protector list MUST lie completely within Data Fields and MUST NOT
overlap the DDF protector list.

FekInfo_Datum (12 bytes): This field contains the encrypted Fek and the File IV. It also contains
the ALG_ID for the Fek. The FekInfo Datum MUST conform to the format described in section
2.2.2.2.8.

Data_Fields (variable): This field MUST contain the following two items in any order at the locations
indicated by the respective Offset fields previously listed. Both items MUST conform to the

protector list format specified in section 2.2.2.2.1. The DDF key list MUST NOT overlap with the
DRF key list (if present).

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

DDF_protector_list (variable)

...

DRF_protector_list (variable)

...

29 / 92

[MS-EFSR-Diff] - v20210625
Encrypting File System Remote (EFSRPC) Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

DDF_protector_list (variable): This field MUST contain one or more entries, each of which
consists of a key protector as specified in section 2.2.2.2.5. Each key protector in this list is

protected with a user public key.

DRF_protector_list (variable): This MUST contain one or more entries, each of which consists

of a key protector as specified in section 2.2.2.2.5. Each key protector in this list is protected
with the public key of a DRA authorized to access the file. This MUST only be present if the
value in the DRF offset field is nonzero.

2.2.2.2.1 Protector List Structure

 The DDF and DRF Protector List structure in the Version 4 EFSRPC Metadata MUST be formatted as
follows.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

StructureSize

ProtectorsCount Protector_List_Entry 1 (variable)

...

Protector_List_Entries (variable)

...

Protector_List_Entry ProtectorsCount (variable)

...

StructureSize (4 bytes): The size in bytes of the protector list. It MUST be a 32-bit unsigned integer
in little-endian format.

ProtectorsCount (2 bytes): This represents the number of protectors in the protector list. It MUST
be a 16-bit unsigned integer in little-endian format.

Protector_List_Entries (variable): A number of entries equal to the value in the ProtectorsCount

field. The individual entries MUST be formatted as specified in section 2.2.2.2.5.

2.2.2.2.2 EFSX Datum

The EFSX Datum represents the base type for every datum within the Version 4 and Version 5 EFSRPC
Metadata and MUST be formatted as follows.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

StructureSize Role

Type Flags

30 / 92

[MS-EFSR-Diff] - v20210625
Encrypting File System Remote (EFSRPC) Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

StructureSize (2 bytes): The size in bytes of the EFSX Datum. It MUST be a 16-bit unsigned integer
in little-endian format.

Role (2 bytes): Specifies the EFSX Datum role. It MUST be a 16-bit unsigned integer in little-endian
format.

Value Meaning

0x0000 The EFSX Datum has no defined role.

0x0001 The EFSX Datum contains a reference to a user's certificate store. This reference could be, for
example, a certificate hash or the public key from a certificate.

0x0002 The EFSX Datum contains data specific to a protector type. See section 2.2.2.2.5 for valid
protector types and their associated protector data format.

0x0003 The EFSX Datum contains information that is suitable for user display. For example, this could be
the user name associated with a protector.

0x0004 The EFSX Datum contains information that identifies a private key container.

0x0005 The EFSX Datum contains information that identifies the provider name of a CSP or KSP.

0x0006 The EFSX Datum contains a user SID.

0x0007 The EFSX Datum contains the encrypted File Master Key (FMK).

0x0008 The EFSX Datum contains a user's public key.

0x0009 The EFSX Datum contains an ephemeral public key.

0x000a The EFSX Datum contains the encrypted File Encryption Key (FEK).

0x000b The EFSX Datum contains the file Initialization Vector (IV).

0x000c The EFSX Datum contains a protector descriptor string.<14> This datum role MUST only be used
when EFS_VERSION is 5.

Type (2 bytes): Specifies the EFSX Datum type. It MUST be a 16-bit unsigned integer in little-endian
format.

Value Meaning

Reserved

0x0000

Reserved. Local use only.

EFSX_TYPE_BLOB

0x0001

The EFSX Datum MUST be formatted as specified in section 2.2.2.2.3.

EFSX_TYPE_DESCRIPTOR

0x0002

The EFSX Datum MUST be formatted as specified in section 2.2.2.2.4.

EFSX_TYPE_KEY_PROTECTOR

0x0003

The EFSX Datum MUST be formatted as specified in section 2.2.2.2.5.

EFSX_TYPE_PROTECTOR_INFO

0x0004

The EFSX Datum MUST be formatted as specified in section 2.2.2.2.6.

EFSX_TYPE_KEY_AGMT_DATA

0x0005

The EFSX Datum MUST be formatted as specified in section 2.2.2.2.7.

31 / 92

[MS-EFSR-Diff] - v20210625
Encrypting File System Remote (EFSRPC) Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

Value Meaning

EFSX_TYPE_FEK_INFO

0x0006

The EFSX Datum MUST be formatted as specified in section 2.2.2.2.8.

EFSX_TYPE_DPAPI_NG_DATA
0x0007

The EFSX Datum MUST be formatted as specified in section 2.2.2.2.9. This type
MUST only be used when EFS_VERSION is 5.<15>

Flags (2 bytes): Specifies datum flags. It MUST be a 16-bit unsigned integer in little-endian format.
The value of this field MUST be zero (0x0000) or a union of one or more of the following values.

Value Meaning

0x0001 The EFSX Datum is nested inside a parent structure.

0x0002 The EFSX Datum is a complex datum containing nested datum structures.

2.2.2.2.3 Blob Datum

The Blob Datum encapsulates an opaque binary object. It MUST be formatted as below.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

EFSX_Datum

...

BlobType BlobFlags

Blob_Data (variable)

...

EFSX_Datum (8 bytes): MUST be formatted as specified in section 2.2.2.2.2. The datum Type MUST
be EFSX_TYPE_BLOB (0x0001). The datum Flags MUST NOT include 0x0002.

BlobType (2 bytes): The type of the blob, which provides a hint to the format of the Blob Data. It
MUST be a 16-bit unsigned integer in little-endian format.

Value Meaning

0x0000 The blob has no special formatting.

0x0001 The blob contains a public key formatted as a BCRYPT_PUBLIC_KEY_BLOB.

0x0002 The blob contains a SHA-1 hash of a DER-encoded form of a certificate.

0x0003 The blob contains the encrypted form of an Encrypted FEK structure, as defined in section
2.2.2.1.5. The contents of the key can be either the FEK or the FMK (see section 2.2.2.2.5).

0x0004 The blob contains key material wrapped with an AES-256 key wrapping key, as defined by
[RFC3394].

32 / 92

[MS-EFSR-Diff] - v20210625
Encrypting File System Remote (EFSRPC) Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

Value Meaning

0x0005 The blob contains key material encrypted by a DPAPI-NG provider on the endpoint. This BlobType
MUST only be used when EFS_VERSION is 5.<16>

BlobFlags (2 bytes): Reserved, MUST be 0x0000.

Blob_Data (variable): Contains opaque, variable-length data. The Blob Data MUST be entirely
contained within the Blob Datum.

2.2.2.2.4 Descriptor Datum

 The Descriptor Datum encapsulates a Unicode string in UTF-16 encoding. It MUST be formatted as
below.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

EFSX_Datum

...

Descriptor_Text (variable)

...

EFSX_Datum (8 bytes): MUST be formatted as specified in section 2.2.2.2.2. The datum Type
MUST be EFSX_TYPE_DESCRIPTOR (0x0002). The datum Flags MUST NOT include 0x0002.

Descriptor_Text (variable): Contains a null-terminated, variable-sized Unicode string in UTF-16

encoding. The Descriptor Text MUST be entirely contained within the Descriptor Datum. The

length of the Descriptor Text MUST be at least 2 bytes to include the null terminator (0x0000).

2.2.2.2.5 Protector List Entry

Each individual Protector List Entry MUST be formatted as follows.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

EFSX_Datum

...

ProtectorType ProtectorFlags

Data_Fields (variable)

...

EFSX_Datum (8 bytes): MUST be formatted as specified in section 2.2.2.2.2. The datum Type
MUST be EFSX_TYPE_KEY_PROTECTOR (0x0003) and SHOULD have a Role of

33 / 92

[MS-EFSR-Diff] - v20210625
Encrypting File System Remote (EFSRPC) Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

EFSX_ROLE_IGNORE (0x0000). The datum Flags SHOULD include 0x0002 indicating a complex
datum.

ProtectorType (2 bytes): The type of the protector. It MUST be a 16-bit unsigned integer in little-
endian format. Possible values are specified below.

Value Meaning

0x0001 The protector was derived from a public/private key pair using a key agreement. The Data Fields
SHOULD include an EFSX_Datum of Type EFSX_TYPE_KEY_AGMT_DATA (0x0005) and Role
0x0002.

0x0002 The protector was derived from a public/private key pair capable of performing asymmetric
encryption. The Data Fields SHOULD include an EFSX_Datum of Type EFSX_TYPE_BLOB
(0x0001) and Role 0x0002.

0x0003 The protector was derived using a DPAPI-NG encryption provider on the endpoint. The Data
Fields SHOULD include an EFSX_Datum of Type EFSX_TYPE_DPAPI_NG_DATA (0x0007) and Role
0x0002.

ProtectorFlags (2 bytes): The flags for the protector. It MUST be a 16-bit unsigned integer in little-
endian format. The value MUST be 0x0000 or a union of one or more of the following values.

Value Meaning

0x0001 The protector is a legacy protector, and stores the Encrypted FEK as specified in section 2.2.2.1.5.

0x0002 If this is a legacy protector (flag 0x0001 is also set), the Encrypted FEK is encrypted using AES 256,
with a key that is obtained by signing the non-terminated Unicode string "MICROSOFTE" (20 bytes
long) with the user's RSA and computing the SHA-256 hash of the result.

0x0004 If this bit is set, bit 0x0001 MUST also be set to indicate a legacy protector. This bit indicates that
the legacy protector stores the File Master Key (FMK) encrypted in the Encrypted FEK structure
instead of the File Encryption Key (FEK).

Data_Fields (variable): This field contains any number of nested EFSX_Datum structures. The
nested datum structures MUST NOT overlap and MUST be entirely contained within the protector

list entry. This field SHOULD contain a datum with a Role of 0x0002 (protector data) and a datum
with a Type of EFSX_TYPE_PROTECTOR_INFO (0x0004).

2.2.2.2.6 Protector Info Datum

 The Protector Info Datum encapsulates information describing the origin of a protector. It MUST be
formatted as below.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

EFSX_Datum

...

Data_Fields (variable)

...

34 / 92

[MS-EFSR-Diff] - v20210625
Encrypting File System Remote (EFSRPC) Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

EFSX_Datum (8 bytes): MUST be formatted as specified in section 2.2.2.2.2. The datum Type
MUST be EFSX_TYPE_PROTECTOR_INFO (0x0004). The datum Flags SHOULD include 0x0002

indicating a complex datum.

Data_Fields (variable): This field contains any number of nested EFSX_Datum structures. The

nested datum structures MUST NOT overlap, and MUST be entirely contained within the protector
info datum.

2.2.2.2.7 Key Agreement Datum

 The Key Agreement datum encapsulates the parameters necessary to decrypt a key agreement
protector (ProtectorType of 0x0001).

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

EFSX_Datum

...

KeyAgmtFlags Data_Fields (variable)

...

EFSX_Datum (8 bytes): MUST be formatted as specified in section 2.2.2.2.2. The datum Type
MUST be EFSX_TYPE_KEY_AGMT_DATA (0x0005). The datum Flags SHOULD include 0x0002,
indicating a complex datum.

KeyAgmtFlags (2 bytes): This field is reserved and SHOULD be set to 0x0000.

Data_Fields (variable): This field contains any number of nested EFSX_Datum structures. The
nested datum structures MUST NOT overlap, and MUST be entirely contained within the Key

Agreement datum. This field SHOULD contain three datum structures of type EFSX_TYPE_BLOB
(0x0001) and Roles of 0x0007, 0x0008, and 0x0009. The public keys referenced by Roles
0x0008 and 0x0009 MUST have BlobType set to 0x0001.

2.2.2.2.8 Fek Info Datum

 The Fek Info datum encapsulates the algorithm ID (ALG_ID) used for the FEK, the encrypted FEK,
and the File IV. The FEK and File IV are both protected using advanced encryption standard (AES)

keywrap, with the FMK as the wrapping key.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

EFSX_Datum

...

AlgorithmID

Data_Fields (variable)

...

35 / 92

[MS-EFSR-Diff] - v20210625
Encrypting File System Remote (EFSRPC) Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

EFSX_Datum (8 bytes): MUST be formatted as specified in section 2.2.2.2.2. The datum Type
MUST be EFSX_TYPE_FEK_INFO (0x0006). The datum Flags SHOULD include 0x0002, indicating a

complex datum.

AlgorithmID (4 bytes): The symmetric cryptographic algorithm associated with this key. It MUST be

a 32-bit unsigned integer in little-endian format. Possible values are specified in section 2.2.13.

Data_Fields (variable): This field contains any number of nested EFSX_Datum structures. The
nested datum structures MUST NOT overlap, and MUST be entirely contained within the Fek Info
datum. This field MUST contain at least two datum structures of type EFSX_TYPE_BLOB (0x0001).
These blobs MUST have Role fields set to 0x000a (for the encrypted FEK) and 0x000b (for the
encrypted File IV), respectively. The BlobType for these blobs MUST be 0x0004, indicating that
the blob data contains a key wrapped with an AES 256 key encryption key, as defined in

[RFC3394].

2.2.2.2.9 DPAPI-NG Datum

The DPAPI-NG datum encapsulates the parameters necessary to decrypt a DPAPI-NG protector
(ProtectorType of 0x0003).

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

EFSX_Datum

...

DpapiNgFlags Data_Fields (variable)

...

EFSX_Datum (8 bytes): This field MUST be formatted as specified in section 2.2.2.2.2. The datum
Type MUST be EFSX_TYPE_DPAPI_NG_DATA (0x0007). The datum Flags SHOULD include
0x0002, indicating a complex datum.

DpapiNgFlags (2 bytes): This field is reserved and SHOULD be set to 0x0000.

Data_Fields (variable): This field contains any number of nested EFSX_Datum structures. The
nested datum structures MUST NOT overlap and MUST be entirely contained within the DPAPI-NG

datum. This field SHOULD contain at least one datum structure, each of which MUST be of type
EFSX_TYPE_BLOB (0x0001), MUST have a Role of 0x0007, and MUST have BlobType of 0x0005.

2.2.2.3 EFSRPC Metadata Version 3

This metadata format is specified by EFS Version 6 in the EFSRPC Metadata header<17>. This new

metadata format is referred to as "Version 3" of the EFSRPC Metadata, but do not confuse this with
the EFS Version field specified within the metadata header. The format used for Version 3 EFSRPC
metadata is significantly different from Version 1 described in section 2.2.2.1, or Version 2 described
in section 2.2.2.2. Servers SHOULD support Version 3 of the EFSRPC Metadata.<18> A server that
supports Version 3 of the EFSRPC Metadata MUST also fully support EFSRPC Metadata Version 1 and
EFSRPC Metadata Version 2.

36 / 92

[MS-EFSR-Diff] - v20210625
Encrypting File System Remote (EFSRPC) Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Preamble

... MajorVersion

... MinorVersion

... ClearTextRedirectionLength

... ClearTextRedirectionString (variable)

...

TotalHeaderLength

OriginalFileExtensionOffset

OriginalFileExtensionLength

PLOffset

EncryptedDataOffset

OriginalFileSize

...

MetaDataOffset

MetaDataLength

OriginalFileExtensionData (variable)

...

PLData (variable)

...

MetaData (variable)

...

EncryptedData (variable)

...

37 / 92

[MS-EFSR-Diff] - v20210625
Encrypting File System Remote (EFSRPC) Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

Preamble (6 bytes): This field is used to identify the EFSRPC Metadata Version 3. This field MUST be
set to 0x2E, 0x70, 0x66, 0x69, 0x6C, 0x65. This will appear as the string ".pfile" in ASCII.

MajorVersion (4 bytes): This field is used to identify the major version of the EFSRPC Metadata
Version 3. This field MUST be set to 2.

MinorVersion (4 bytes): This field is used to identify the minor version of the EFSRPC Metadata
Version 3. This field MUST be set to 1.

ClearTextRedirectionLength (4 bytes): The length, in bytes, of the ClearTextRedirectionString
field.

ClearTextRedirectionString (variable): An optional string in UTF-8 format.

TotalHeaderLength (4 bytes): The length, in bytes, of the OriginalFileExtensionOffset,
OriginalFileExtensionLength, PLOffset, EncryptedDataOffset, OriginalFileSize,

MetaDataOffset, MetaDataLength, OriginalFileExtensionData, PLData, and MetaData
fields.

OriginalFileExtensionOffset (4 bytes): The offset, in bytes, from the beginning of the Preamble
field to the OriginalFileExtensionData field.

OriginalFileExtensionLength (4 bytes): The length, in bytes, of the OriginalFileExtensionData
field.

PLOffset (4 bytes): The offset, in bytes, from the beginning the Preamble field to the PLData field.

EncryptedDataOffset (4 bytes): The offset, in bytes, from the beginning of the Preamble field to
the EncryptedData field.

OriginalFileSize (8 bytes): The length, in bytes, of the plaintext of the file prior to encryption,
formatted as a ULONGLONG (unsigned 64-bit integer as described in section [MS-DTYP] section
2.2.55).

MetaDataOffset (4 bytes): The offset, in bytes, from the beginning of the Preamble field to the

MetaData field, formatted as a ULONGLONG (unsigned 64-bit integer as described in section [MS-
DTYP] section 2.2.55).

MetaDataLength (4 bytes): The length, in bytes, of the MetaData field.

OriginalFileExtensionData (variable): A UNICODE string storing the original file extension,
including the leading period of the file defined in the EncryptedData field.

PLData (variable): This is a Rights Management Services Publishing License, as defined in [MS-
RMPR] section 2.2.9.7.

MetaData (variable): This field contains application-specific metadata information of the file defined
in the EncryptedData field.

EncryptedData (variable): The encrypted data representing the file. This field's size MUST be a
multiple of the encryption algorithm block size.

2.2.3 EFSRPC Raw Data Format

The EFSRPC raw data format is used by the EFSRPC raw methods. The output of the
EfsRpcReadFileRaw method MUST conform to this format. The input to the EfsRpcWriteFileRaw method
MUST conform to the EFSRPC Raw Data Format. The details of this format are implementation
dependent. An EFSRPC client SHOULD NOT parse this format and SHOULD NOT rely on it having any
particular structure. An EFSRPC server MUST validate input data passed to it by the

38 / 92

[MS-EFSR-Diff] - v20210625
Encrypting File System Remote (EFSRPC) Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

EfsRpcWriteFileRaw method, and SHOULD abort the EfsRpcWriteFileRaw operation with an RPC
exception if this data is in an unsupported format.

The EFSRPC Raw Data Format SHOULD be formatted as follows.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

0x00 0x01 0x00 0x00

0x52 0x00 0x4f 0x00

0x42 0x00 0x53 0x00

Reserved

...

EFSRPC Metadata Stream (variable)

...

Additional Stream 1 (variable)

...

Additional Stream n (variable)

...

Reserved (8 bytes): MUST be set to zero and ignored.

EFSRPC Metadata Stream (variable): This field MUST be formatted as specified in section 2.2.3.1.
This field MUST contain the EFSRPC Metadata for the file, along with a header. The structure of the
EFSRPC Metadata is specified in section 2.2.2.

Additional Stream 1 ... n: These MUST correspond to marshaled versions of all the streams (except
for EFSRPC Metadata) in the given file. They are optional and might not exist (for example, for

folders with no alternate streams). For more information on NTFS file streams, see [MSFT-NTFS].
These fields MUST be formatted as specified in section 2.2.3.1.

2.2.3.1 Marshaled Stream

 A Marshaled Stream (including the EFSRPC Metadata stream) MUST be formatted as follows.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Length

0x4e 0x00 0x54 0x00

0x46 0x00 0x53 0x00

39 / 92

[MS-EFSR-Diff] - v20210625
Encrypting File System Remote (EFSRPC) Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

Flag

Reserved

...

Name Length

Stream Name (variable)

...

Stream Data Segment 1 (variable)

...

Stream Data Segment n (variable)

...

Length (4 bytes): The length, in bytes, of this stream header from the start of this field to the end of
the Stream Name field. It MUST be a 32-bit unsigned integer in little-endian format.

Flag (4 bytes): This MUST be a 32-bit unsigned integer in little-endian format. It MUST be set to

0x00000000 if the stream data is encrypted with the FEK. Otherwise, it MUST be set to
0x00000001. It MUST always be set to zero in the case of the EFSRPC Metadata stream, and
ignored by the server in that case.

Value Meaning

0x00000000 FEK encryption present

0x00000001 FEK encryption not present

Reserved (8 bytes): This field MUST be set to zero and ignored.

Name Length (4 bytes): The length, in bytes, of the Stream Name field. It MUST be a 32-bit

unsigned integer in little-endian format. This field MUST be set to 0x00000002 for the EFSRPC
Metadata stream.

Stream Name (variable): The name of the stream. This is set to either a null-terminated Unicode
string in UTF-16 encoding, or an integer value stored in binary form. For the EFSRPC Metadata
stream, this is always set to 0x1910.

Value Meaning

0x1910 EFSRPC Metadata stream

Stream Data Segment 1 ... n: These segments MUST contain the contents of the stream as well as
some metadata for reassembling the segments. For encrypted streams, these segments MUST

also contain some metadata to aid in decryption. They MUST be formatted as specified in section
2.2.3.2.

40 / 92

[MS-EFSR-Diff] - v20210625
Encrypting File System Remote (EFSRPC) Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

2.2.3.2 Stream Data Segment

 Each stream data segment MUST be formatted as follows.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Length

0x47 0x00 0x55 0x00

0x52 0x00 0x45 0x00

Reserved

Data Segment Encryption Header (variable)

...

Stream Data (variable)

...

Length (4 bytes): The length, in bytes, of this segment. It MUST be a 32-bit unsigned integer in
little-endian format. The length MUST be measured from the start of this field to the end of the
Stream Data field.

Reserved (4 bytes): This field is set to zero and is ignored by the server.

Data Segment Encryption Header (variable): This header MUST be present only if the stream is

encrypted (that is, if the Flag field in the stream header is set to zero and this is not the EFSRPC
Metadata stream). It MUST be formatted as specified in section 2.2.3.3.

Stream Data (variable): This field MUST contain part or all of the stream data. If the Data
Segment Encryption Header field is present, Stream Data MUST be consistent with it. Stream
Data MUST consist of contiguous bytes taken from the stream except for zero bytes that are
omitted in accordance with the Data Segment Encryption Header. If the stream is encrypted, its
data MUST be encrypted with the FEK, using the algorithm indicated by the Algorithm field in the
EFSRPC Metadata (specified in section 2.2.2) in the Cipher Block Chaining (CBC) mode.

2.2.3.3 Data Segment Encryption Header

 The Data Segment Encryption Header MUST be formatted as follows.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Starting File Offset

...

Length

Bytes Within Stream Size

41 / 92

[MS-EFSR-Diff] - v20210625
Encrypting File System Remote (EFSRPC) Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

Bytes Within VDL

0x0000 Data Unit Shift Chunk Shift

Cluster Shift 0x01 Number of Data Blocks

Data Block Sizes (variable)

...

Extended Header (16 bytes, optional)

...

...

...

Starting File Offset (8 bytes): This field MUST contain an unsigned 64-bit integer in little-endian
format denoting the offset, in bytes, into the stream being serialized of the first data byte
contained in this data segment.

Length (4 bytes): The length of this header, in bytes, measured from the beginning of the Starting
File Offset field to the end of the Data Segment Encryption Header. It MUST be a 32-bit
unsigned integer in little-endian format. Any unused bytes within this structure MUST be set to
zero and ignored by the server.

Bytes Within Stream Size (4 bytes): The number of bytes contained within this stream data
segment that fall within the stream size. It MUST be a 32-bit unsigned integer in little-endian

format. This can be less than the number of bytes actually present due to padding required by the
encryption algorithm.

Bytes Within VDL (4 bytes): The number of bytes contained within this stream data segment that
fall within the valid data length (VDL). It MUST be a 32-bit unsigned integer in little-endian
format. This can be less than the number of bytes actually present due to padding required by the
encryption algorithm. Bytes beyond the VDL MUST be set to zero after decryption.

Data Unit Shift (1 byte): The base-2 logarithm of the data unit size. It MUST be an 8-bit unsigned

integer. For files that are not sparse files, the data unit size MUST be set to the size of the data in
this segment. For sparse files, it MUST be equal to the size of a compression unit, which is the
smallest unit that all holes MUST be a multiple of.

Chunk Shift (1 byte): The base-2 logarithm of the chunk size. It MUST be an 8-bit unsigned integer.
The chunk size MUST be equal to the data unit size.

Cluster Shift (1 byte): The base-2 logarithm of the cluster size in bytes. It MUST be an 8-bit

unsigned integer. It MUST be equal to the smallest unit of allocation in the underlying file system.

Number of Data Blocks (2 bytes): This field MUST contain the number of data blocks specified in
this segment. It MUST be a 16-bit unsigned integer in little-endian format. It MUST be equal to
the number of entries in the Data Block Sizes field specified next.

Data Block Sizes (variable): This field MUST consist of a sequence of unsigned 32-bit values in
little-endian format, denoting the sizes of the successive data blocks in the Stream Data field
that follows this header. Each value in the sequence MUST be less than or equal to the data unit

size, unless it spans the VDL or a hole in the case of a sparse file.

42 / 92

[MS-EFSR-Diff] - v20210625
Encrypting File System Remote (EFSRPC) Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

Extended Header (16 bytes): This field is optional, and its presence is indicated by the four-byte
signature located at the start of this field. If this field is present, the server SHOULD interpret it as

defined in section 2.2.3.4. The server MAY ignore this field.<19>

2.2.3.4 Extended Header

The Extended Header is an optional field within the Data Segment Encryption
Header (section 2.2.3.3). If present, it MUST be formatted as follows.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

0x45 0x58 0x54 0x44

0x10 0x00 0x00 0x00

Flags

Reserved

Flags (4 bytes): This MUST be a 32-bit unsigned integer in little-endian format. It MUST be either
zero or the following value.

Value Meaning

0x00000001 Used to indicate that the stream is contained within a sparse file.

Reserved (4 bytes): This field MUST be set to zero and ignored by the server.

2.2.4 PEXIMPORT_CONTEXT_HANDLE

The PEXIMPORT_CONTEXT_HANDLE data type is used to represent a pointer to a context handle. It

MUST be treated as opaque by the client and used by the server, as specified in [C706].

This type is declared as follows:

 typedef [context_handle] void* PEXIMPORT_CONTEXT_HANDLE;

2.2.5 EFS_EXIM_PIPE

The EFS_EXIM_PIPE type is used to represent a pipe for the EFSRPC raw methods. It consists of a set
of callback routines for sending and receiving data, as specified in [C706].

This type is declared as follows:

 typedef pipe unsigned char EFS_EXIM_PIPE;

2.2.6 EFS_CERTIFICATE_BLOB

The EFS_CERTIFICATE_BLOB type is used to represent the encoded contents of an X.509 certificate.

 typedef struct _CERTIFICATE_BLOB {
 DWORD dwCertEncodingType;

43 / 92

[MS-EFSR-Diff] - v20210625
Encrypting File System Remote (EFSRPC) Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

 [range(0,32768)] DWORD cbData;
 [size_is(cbData)] unsigned char* bData;
 } EFS_CERTIFICATE_BLOB;

dwCertEncodingType: The certificate encoding type. This MUST be set to one of the following
values. If set to any other value, the certificate is considered invalid and behavior is undefined.

Value Meaning

0x00000001 Certificate uses X.509 ASN.1 encoding.

0x00000002 Certificate uses X.509 NDR encoding.

cbData: The number of bytes in the bData buffer.

bData: An encoded X.509 certificate. Its format is specified by the dwCertEncodingType member.
For more information on ASN encoding, see [X690]. NDR encoding is specified in [C706].<20>

2.2.7 EFS_HASH_BLOB

The EFS_HASH_BLOB type is used to represent an X.509 certificate hash.

 typedef struct _EFS_HASH_BLOB {
 [range(0, 100)] DWORD cbData;
 [size_is(cbData)] unsigned char* bData;
 } EFS_HASH_BLOB;

cbData: The number of bytes in the bData buffer.

bData: The SHA-1 hash of an X.509 certificate. For more information on SHA-1, see [FIPS180-
4].<21>

2.2.8 ENCRYPTION_CERTIFICATE

The ENCRYPTION_CERTIFICATE type is used to represent a single X.509 certificate.

 typedef struct _ENCRYPTION_CERTIFICATE {
 DWORD cbTotalLength;
 RPC_SID* UserSid;
 EFS_CERTIFICATE_BLOB* CertBlob;
 } ENCRYPTION_CERTIFICATE;

cbTotalLength: The length, in bytes, of the structure.

UserSid: The SID of the user who owns the certificate. This is intended as a hint only. It MAY be set
to zero if no such hint is available. The structure of an RPC SID is as specified in [MS-DTYP]

section 2.4.2.3.

CertBlob: A pointer to an EFS_CERTIFICATE_BLOB (2.2.6) structure.

2.2.9 ENCRYPTION_CERTIFICATE_LIST

The ENCRYPTION_CERTIFICATE_LIST type is used to represent a set of X.509 certificates. For more
information on certificates, see [X509].

 typedef struct _ENCRYPTION_CERTIFICATE_LIST {

44 / 92

[MS-EFSR-Diff] - v20210625
Encrypting File System Remote (EFSRPC) Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

 [range(0,500)] DWORD nUsers;
 [size_is(nUsers,)] ENCRYPTION_CERTIFICATE** Users;
 } ENCRYPTION_CERTIFICATE_LIST;

nUsers: The number of certificates in the list.

Users: A pointer to an array of pointers to ENCRYPTION_CERTIFICATE (2.2.8) structures. This array

is of size nUsers.<22>

2.2.10 ENCRYPTION_CERTIFICATE_HASH

The ENCRYPTION_CERTIFICATE_HASH type is used to represent a single certificate hash. For more
information on certificates, see [X509].

 typedef struct _ENCRYPTION_CERTIFICATE_HASH {
 DWORD cbTotalLength;
 RPC_SID* UserSid;
 EFS_HASH_BLOB* Hash;
 [string] wchar_t* lpDisplayInformation;
 } ENCRYPTION_CERTIFICATE_HASH;

cbTotalLength: The length, in bytes, of the structure.

UserSid: The SID of the user who owns the certificate. This is intended only as a hint. It MAY be set
to zero if no such hint is available. The structure of an RPC SID is specified in [MS-DTYP], section
2.4.2.3.

Hash: A pointer to an EFS_HASH_BLOB (2.2.7) structure.

lpDisplayInformation: A string that contains the subject or principal name of the account the

certification is assigned to. The subject name and the principal name can be the same. This is only
intended as a hint for display purposes, and is implementation-dependent. This field MAY be set to

NULL if no such information is available.

2.2.11 ENCRYPTION_CERTIFICATE_HASH_LIST

The ENCRYPTION_CERTIFICATE_HASH_LIST type is used to represent a set of certificate hashes.

 typedef struct _ENCRYPTION_CERTIFICATE_HASH_LIST {
 [range(0,500)] DWORD nCert_Hash;
 [size_is(nCert_Hash,)] ENCRYPTION_CERTIFICATE_HASH** Users;
 } ENCRYPTION_CERTIFICATE_HASH_LIST;

nCert_Hash: The number of certificate hashes in the list.

Users: A pointer to an array of pointers to ENCRYPTION_CERTIFICATE_HASH (2.2.10) structures.
This array is of size nCert_Hash.<23>

2.2.12 EFS_RPC_BLOB

The EFS_RPC_BLOB type is used to represent a generic binary large object (BLOB) (that is, an opaque
data type).

 typedef struct _EFS_RPC_BLOB {
 [range(0,266240)] DWORD cbData;
 [size_is(cbData)] unsigned char* bData;

45 / 92

[MS-EFSR-Diff] - v20210625
Encrypting File System Remote (EFSRPC) Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

 } EFS_RPC_BLOB,
 *PEFS_RPC_BLOB;

cbData: The length, in bytes, of the data object in the bData field.

bData: The contents of the data object.<24>

2.2.13 ALG_ID

The ALG_ID type is used to denote an algorithm type for cryptographic keys. An implementation
SHOULD<25> support all of the values shown in the following table. Implementations MAY<26>
choose to support other algorithms and values not shown here; if they do, they SHOULD reuse the
values specified in [MSDN-CRYPTO] in order to avoid collisions. Implementations MAY<27> restrict
the set of supported algorithms based on administrative policy.

 Algorithm used Value for ALG_ID Entropy Key length

CALG_AES_256 0x6610 256 32

CALG_3DES 0x6603 168 24

 In this table, Entropy represents the number of bits of true randomness in the algorithm's key
material, while Key length represents the total size of the key in bytes. For CALG_3DES, the difference
between entropy and key length is due to the parity bits included in the key. For more information,
see [TDEA].

This type is declared as follows:

 typedef unsigned int ALG_ID;

2.2.14 EFS_KEY_INFO

The EFS_KEY_INFO type is used to represent information about a key of a symmetric cryptosystem.

 typedef struct {
 DWORD dwVersion;
 unsigned long Entropy;
 ALG_ID Algorithm;
 unsigned long KeyLength;
 } EFS_KEY_INFO;

dwVersion: The version of this data structure. It MUST be equal to 0x00000001.

Entropy: The actual number of bits of entropy or true randomness in the key. This value, divided by
8, MUST be less than or equal to the value of the KeyLength member.

Algorithm: The cryptographic algorithm with which the key is intended to be used.

KeyLength: The total length, in bytes, of the key. This value, multiplied by 8, MUST be greater than

or equal to the value of the Entropy member. Valid combinations of Entropy, Algorithm, and
KeyLength are specified in section 2.2.13.

2.2.15 EFS_COMPATIBILITY_INFO

46 / 92

[MS-EFSR-Diff] - v20210625
Encrypting File System Remote (EFSRPC) Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

The EFS_COMPATIBILITY_INFO type is used to represent information about the compatibility
restrictions of an encrypted file.

 typedef struct {
 DWORD EfsVersion;
 } EFS_COMPATIBILITY_INFO;

EfsVersion: The EfsVersion associated with the EFSRPC Metadata. Valid values for the EfsVersion
field are described in sections 2.2.2.1, 2.2.2.2, and 2.2.2.3.<28>

2.2.16 EFS_ENCRYPTION_STATUS_INFO

The EFS_ENCRYPTION_STATUS_INFO structure is used to represent the predicted outcome if an
attempt were made to convert an unencrypted object to an encrypted state.

 typedef struct {
 BOOL bHasCurrentKey;
 DWORD dwEncryptionError;
 } EFS_ENCRYPTION_STATUS_INFO;

bHasCurrentKey: A Boolean value signifying whether an appropriate key was found that could be
used for encryption.

dwEncryptionError: The error code returned if encryption were attempted. If the operation were to

succeed, this value MUST be zero. Otherwise, it MUST be set to a nonzero value.

2.2.17 EFS_DECRYPTION_STATUS_INFO

The EFS_DECRYPTION_STATUS_INFO type is used to represent the predicted outcome if an attempt

were made to read the plaintext of an encrypted object.

 typedef struct {
 DWORD dwDecryptionError;
 DWORD dwHashOffset;
 DWORD cbHash;
 } EFS_DECRYPTION_STATUS_INFO;

dwDecryptionError: The error code returned if decryption were attempted. If the operation were to
succeed, this value MUST be zero. Otherwise it MUST be set to a nonzero value.

dwHashOffset: The offset of the appended certificate hash in bytes from the start of this structure.

cbHash: The length in bytes of the appended certificate hash.

If dwDecryptionError is nonzero, the preceding fields are followed by the hash of a certificate whose
corresponding private key is required for the decryption to succeed.

2.2.18 ENCRYPTED_FILE_METADATA_SIGNATURE

The ENCRYPTED_FILE_METADATA_SIGNATURE structure is used by the client to prove to the server
that it possesses a private key that is authorized to decrypt a given object.

 typedef struct _ENCRYPTED_FILE_METADATA_SIGNATURE {
 DWORD dwEfsAccessType;
 ENCRYPTION_CERTIFICATE_HASH_LIST* CertificatesAdded;
 ENCRYPTION_CERTIFICATE* EncryptionCertificate;

47 / 92

[MS-EFSR-Diff] - v20210625
Encrypting File System Remote (EFSRPC) Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

 EFS_RPC_BLOB* EfsStreamSignature;
 } ENCRYPTED_FILE_METADATA_SIGNATURE;

dwEfsAccessType: The operation being performed. It MUST be set to one of the following values.

Value Meaning

EFS_METADATA_ADD_USER

0x00000001

One or more additional user certificates are being granted access to the
object.

EFS_METADATA_REMOVE_USER

0x00000002

One or more user certificates are having their access to the object
revoked.

EFS_METADATA_REPLACE_USER

0x00000004

One or more user certificates with access to the object are being
replaced.

EFS_METADATA_GENERAL_OP

0x00000008

A change is being made to the metadata that is not fully described by
exactly one of the previous options.

CertificatesAdded: The X.509 certificates whose corresponding private keys are to be granted or
denied the ability to decrypt the object.

EncryptionCertificate: The X.509 certificates whose corresponding private key the caller claims to
possess.

EfsStreamSignature: The signature obtained by signing the SHA-1 hash of the new EFSRPC

Metadata with the private RSA key corresponding to EncryptionCertificate.

2.2.19 ENCRYPTION_PROTECTOR

The ENCRYPTION_PROTECTOR type is used to represent a single DPAPI-NG protector<29>, as

specified in sections 2.2.2.2.5 and 2.2.2.2.9, or a Rights Management Services-based protector as

specified in section 2.2.2.3.

 typedef struct _ENCRYPTION_PROTECTOR {
 DWORD cbTotalLength;
 RPC_SID* UserSid;
 [string] wchar_t* lpProtectorDescriptor;
 } ENCRYPTION_PROTECTOR, * PENCRYPTION_PROTECTOR;

cbTotalLength: The length, in bytes, of the structure.

UserSid: The SID of the user who owns the key. This is intended as a hint only. It MAY be set to zero
if no such hint is available. The structure of an RPC SID is as specified in [MS-DTYP] section
2.4.2.3.

lpProtectorDescriptor: A string that contains a protector rule associated with the key. It MUST be

non-NULL, non-empty, and otherwise follow the format rules for the ProtectorDescriptor field
specified in section 3.1.4.2.19.

2.2.20 ENCRYPTION_PROTECTOR_LIST

The ENCRYPTION_PROTECTOR_LIST<30> type is used to represent a set of
ENCRYPTION_PROTECTOR protectors as specified in section 2.2.19.

 typedef struct _ENCRYPTION_PROTECTOR_LIST {
 DWORD nProtectors;

48 / 92

[MS-EFSR-Diff] - v20210625
Encrypting File System Remote (EFSRPC) Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

 [size_is(nProtectors)] PENCRYPTION_PROTECTOR* pProtectors;
 } ENCRYPTION_PROTECTOR_LIST, *PENCRYPTION_PROTECTOR_LIST

nProtectors: The number of DPAPI-NG protectors or RMS protectors in the pProtectors member. If
DPAPI-NG protectors are present, RMS protectors MUST NOT be present, and vice versa.

pProtectors: A pointer to an array of pointers to ENCRYPTION_PROTECTOR (section 2.2.19)
structures. This array is of size nProtectors.

49 / 92

[MS-EFSR-Diff] - v20210625
Encrypting File System Remote (EFSRPC) Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

3 Protocol Details

This section specifies the behavior of the EFSRPC server in more detail. The client side of this protocol
is simply a pass-through. There are no additional timers or other state requirements on the client side
of this protocol. Calls made by the higher-layer protocol or application are passed directly to the
transport, and the results returned by the transport are passed directly back to the higher-layer
protocol or application. The client SHOULD<31> attempt to associate the use of suitable RPC security

mechanisms with its binding when making the EfsRpcOpenFileRaw call, so that the data transfer is
protected from man-in-the-middle attacks.

3.1 Server Details

3.1.1 Abstract Data Model

This section describes a conceptual model of possible data organization that an implementation
maintains to participate in this protocol. The described organization is provided to explain how the

protocol behaves. This document does not mandate that implementations adhere to this model as long

as their external behavior is consistent with that described in this document.

EFSRPC assumes the existence of an underlying storage encryption system on the server that defines
the following conceptual entities:

▪ A set of data objects, each of which is encrypted independently and can be managed
independently.

▪ A set of access control subjects, each of which is represented by a key pair generated by a public
key cryptographic algorithm. The public key of this key pair is embedded in a certificate and can

be widely distributed in that form. The private key is known only to the user or users who
represent that access control subject. Access control subjects are of two types:

▪ Unprivileged user subjects are used by ordinary users to perform routine operations, including
managing files with the EFSRPC methods. For convenience, this specification refers to such

subjects as user certificates.

▪ Data Recovery Agents (DRAs) are used by system administrators to perform data recovery

tasks. The storage system ensures that all active DRAs for the system are automatically
authorized to access all encrypted objects on the system. If a user loses his or her private key,
an administrator can use the DRA private key to recover the contents of their encrypted
objects.

▪ As an alternative to user certificates, access control subjects can be represented by DPAPI-NG
descriptors or RMS.

The storage encryption system is also assumed to provide certain primitive operations:

▪ Methods for reading, writing, creating, and destroying encrypted objects. The methods for reading
and writing objects must ensure that only a user who possesses the private key corresponding to
an authorized user certificate or DRA for that object can perform these operations.

▪ An operation to convert an existing unencrypted object to encrypted form. This causes the original
object to be replaced by its ciphertext, along with some metadata that is essential for decrypting
the ciphertext.

▪ An operation to convert an existing encrypted object to unencrypted form. This replaces the

ciphertext of the object with the plaintext, and destroys the encryption-related metadata.

▪ An operation to extract the EFSRPC Metadata of an existing encrypted object without modifying
the object itself in any other way.

50 / 92

[MS-EFSR-Diff] - v20210625
Encrypting File System Remote (EFSRPC) Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

▪ Operations to parse and manipulate the metadata obtained in this way, and in particular to add or
remove access to specific user certificates for users who pass certain authorization checks.

▪ An operation to replace the EFSRPC Metadata of an existing encrypted object without modifying
the object in any way, which ensures that a user cannot modify the set of DRAs having access to

the object.

▪ An operation to read the ciphertext and metadata of an encrypted object without decrypting it.

▪ An operation to create an encrypted object directly by writing its ciphertext and metadata to the
store.

In addition, the following are assumed to be accessible to the server:

▪ A logical credential store for each user of the system. Each user's credential store contains the
private keys to which that user has access. The credential store also provides a method of locating

the private key associated with a given certificate, RMS template GUID, or DPAPI-NG protection
rule.<32> The server is assumed to have some implementation-specific method of maintaining

this credential store.

▪ A logical store that contains certificates belonging to various users of the system and provides a
means of retrieving individual certificates from this set.

▪ A logical cache for each user that contains all the sensitive information associated with that user

necessary for performing EFSRPC operations on behalf of the user.

▪ A method of ascertaining the DRAs desired by an appropriate administrator at any time.

3.1.1.1 User-Certificate Binding

Applications requesting a user-certificate binding (section 3.1.4.1) must supply a security context for

the user. The security context is used in two ways: to maintain per-user state based on the unique
principal security identifier (SID), and to authenticate the user during certificate enrollment.

The server maintains a persistent per-user collection of zero or more certificates, and corresponding
private keys. The format of the certificates within this collection MUST conform to that specified in
[RFC5280]. In addition, this collection MUST contain only certificates and private keys that are valid
for use by the EFS subsystem on the client. This collection is referred to as EFS User Certificates,

and is used by higher-layer protocols to perform encryption and decryption of EFS objects.

The EFS User Certificates collection on the client contains at most one certificate that is marked as
the EFS Current Key for the user. The EFS User Certificates collection and the EFS Current Key
can be populated by various implementation-specific methods.

The server defines a number of parameters for the certificate enrollment request. These parameters
are persistent across reboot, with no intermediate or volatile form. The parameters can be updated by
external entities (that is, other products). The parameters are as follows:

RequireV3Template (Public): A Boolean indicating whether to restrict the list of allowed certificate
templates to version 3 and higher. The server MUST initialize this to the default value of False.

DisallowV3Template (Public): A Boolean indicating whether to restrict the list of allowed
certificate templates to version 2 and lower. The server MUST initialize this to the default value of
False.

RequireSmartCard (Public): A Boolean indicating whether to require that the resultant private key
from the enrollment operation be stored on a smart card device. The server MUST initialize this to

the default value of False.

51 / 92

[MS-EFSR-Diff] - v20210625
Encrypting File System Remote (EFSRPC) Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

TemplateName (Public): A variable length, null-terminated Unicode string indicating the name of
the certificate template to use in the enrollment operation. The server MUST initialize this to the

default value of "EFS".

Note The abstract interface notation "(Public)" indicates that the Abstract Data Model element can be

directly accessed from outside of this protocol.

3.1.1.2 EFSRPC Server Control

The server has a parameter that indicates whether it is disabled. This parameter is kept in memory

and not persisted across reboots. The parameter can be updated by external entities (that is, other
products). The parameter is as follows:

EfsDisabled (Public): A Boolean indicating whether the EFSRPC interface is to reject incoming
requests and return an error. The server MUST initialize this to the default value of false.

Note The abstract interface notation "(Public)" indicates that the Abstract Data Model element can

be directly accessed from outside this protocol.

3.1.2 Timers

This protocol does not specify any timers.

3.1.3 Initialization

After the server is initialized, the well-known endpoint \pipe\lsarpc or \pipe\efsrpc MUST be available
to remote callers, and the EFSRPC server MUST be available to service requests. The file system and
transport underlying this named pipe MUST be fully initialized.

When the server is initialized, it SHOULD<33> register one or more server principal
name/authentication service pairs to enable clients to connect over secure RPC.

3.1.4 Message Processing Events and Sequencing Rules

3.1.4.1 Application Requests for a User-Certificate Binding

An application (including implementations of the EFSRPC protocol) can request a binding between a
user and an EFS certificate. The application MUST provide a security context for the user. Using this
security context, the EFS Group Policy client performs the following processes to establish a binding
between the user and a certificate.

1. If the EfsDisabled field equals true, return ERROR_NOT_SUPPORTED (specified in [MS-ERREF])

and do no further processing.

2. Using the principal SID from the security context as a key, retrieve a reference to the EFS User
Certificates for the user. Also, retrieve the EFS Current Key from the EFS User Certificates, if
one exists.

3. If an EFS Current Key does not exist, attempt to enroll for a new certificate using the algorithm
outlined in section 3.1.4.1.1.

4. If the enrollment request is successful, add the new certificate and private key to the EFS User

Certificates collection, and mark the new certificate as the EFS Current Key within the
collection.

5. If an EFS Current Key now exists, return it as the bound certificate.

52 / 92

[MS-EFSR-Diff] - v20210625
Encrypting File System Remote (EFSRPC) Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

6. Otherwise, return an error.

3.1.4.1.1 EFS Certificate Enrollment Algorithm

This algorithm describes the process used to enroll for an EFS certificate, and is triggered by the

higher-layer event described in section 3.1.4.1. In order for an EFS server to enroll for a certificate,
the server MUST be a member of some Active Directory domain. The Lightweight Directory Access
Protocol (LDAP) search and modify operations used by this algorithm are specified in sections 4.5 and
4.6 of [RFC2251]. Section 3.1.1.3 of [MS-ADTS] describes the profile of LDAP as implemented by the
Active Directory domain controller (DC). All LDAP operations used in this algorithm are assumed to be
performed against a DC located as described in [MS-ADOD] section 2.7.7.3.1.

3.1.4.1.1.1 Inputs

The following values (specified in section 3.1.1.1) control the behavior of this algorithm.

▪ RequireV3Template

▪ DisallowV3Template

▪ RequireSmartCard

▪ TemplateName

3.1.4.1.1.2 Outputs

On success, the output of this algorithm is a certificate and a private key.

3.1.4.1.1.3 Internal Variables

CAList: List of value pairs that contain the sanitized name and fully qualified domain name (FQDN) of
the CA that supports a given template.

Request: This certificate request is created based on an implementation-specific certificate template.

3.1.4.1.1.4 Processing Rules

The following rules outline the steps necessary to initialize the algorithm state and to process an EFS
certificate enrollment.

1. Initialize the CAList variable as specified in section 3.1.4.1.1.4.1.

2. Create Request as specified in section 3.1.4.1.1.4.2.

3. For each item in the CAList, attempt to submit the certificate request created in step 2.

▪ Use the FQDN value to target a specific WCCE server [MS-WCCE].

▪ Use the CA name as the pwszAuthority parameter of the ICertRequestD2::Request2() method.

Continue to process the items in the list until the request is successful or there are no more
items in the list.

3.1.4.1.1.4.1 Building a List of CAs that Support a Particular Template

The client performs the following steps to build a list of certificate authorities (CAs) supporting the
template specified by the TemplateName input:

▪ Perform an LDAP search for the CA information (pKIEnrollmentService) objects (specified in
[MS-WCCE] section 2.2.2.11.2) under the following container:

53 / 92

[MS-EFSR-Diff] - v20210625
Encrypting File System Remote (EFSRPC) Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

 "CN=Enrollment Services,CN=Public Key Services,CN=Services,CN=Configuration,DC=…"

where "CN=Configuration,DC=…" is replaced with the value of the configurationNamingContext
attribute (specified in [MS-ADTS] section 3.1.1.3.2.1) of the rootDSE object.

▪ For each object in the search result:

▪ If the ntSecurityDescriptor attribute of the object does not have Enroll permission, or has
Enroll permission denied (specified in [MS-CRTD] section 2.5) for the user's security context,
continue with the next object.

▪ If the cACertificate attribute contains a value equal to the TemplateName field, add a value

pair to the CAList where the name is set to the value of the cn attribute, and FQDN is set to
the value of the dNSHostName attribute.

3.1.4.1.1.4.2 Creating a Request

The client creates an EFS certificate enrollment request using the procedure outlined below, restricting
the set of templates in the request according to the TemplateName, RequireV3Template,
DisallowV3Template, and RequireSmartCard inputs specified in section 3.1.4.1.1.1.

1. Perform an LDAP search for certificate template (pKICertificateTemplate) objects (specified in
[MS-CRTD]) under the following container:

 "CN=Certificate Templates,CN-Public Key Services, CN=Services, CN=Configuration,DC=…"

where "CN=Configuration,DC=…" is replaced with the value of the

configurationNamingContext attribute (specified in [MS-ADTS] section 3.1.1.3.2.1) of the
rootDSE object. Restrict the search to objects that have cn attribute equal to the
TemplateName field.

2. If the RequireV3Template field equals True and the msPKI-Template-Schema-Version
attribute value is less than 3, return an error.

3. If the DisallowV3Template field equals True and the msPKI-Template-Schema-Version
attribute value is greater than 2, return an error.

4. Create a certificate request as specified in section 3.1.2 of [MS-WCCE], setting the WCCE ADM by
using the method in [MS-WCCE] section 3.1.2.6.1 with the following parameters:

▪ The Parameters.Certificate.Template.* parameters are initialized by the corresponding
values from the objects retrieved in the first step above.

▪ The Parameters.IsRenewalRequest parameter is set to False.

▪ The Parameters.CertificateToBeRenewed parameter is set to nothing.

▪ The Parameters.RACertificates list parameter is empty.

5. If the Parameters.RequireSmartCard parameter is True, the private key for the request created
in the previous step MUST be stored on a smart card.

3.1.4.2 EFSRPC Interface

 This protocol MUST instruct the RPC runtime to perform a strict NDR data consistency check at target
level 6.0, as specified in [MS-RPCE] section 3.

54 / 92

[MS-EFSR-Diff] - v20210625
Encrypting File System Remote (EFSRPC) Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

This protocol MUST indicate to the RPC runtime that it is to support both NDR and NDR64 transfer
syntaxes, in addition to the negotiation mechanism that determines which transfer syntax will be

used, as described in [MS-RPCE] section 3.

This protocol MUST instruct the RPC runtime to reject a NULL unique or full pointer with a nonzero-

conforming value, as defined in [MS-RPCE] section 3.

The server SHOULD use the RPC protocol to retrieve the identity of the caller, as described in [MS-
RPCE] section 3.3.3.4.3, and to enforce appropriate security measures to ensure that the caller has
required permissions to execute the following routines. If the caller does not have the required
permissions to execute a specific method, the server SHOULD fail the method call with
ERROR_ACCESS_DENIED (specified in [MS-ERREF]).

This subsection specifies the syntax of the methods specified by the EFSRPC protocol and how to

receive each one. These calls are received at the well-known endpoint of the named pipe \pipe\lsarpc
or \pipe\efsrpc. The server interface for \pipe\lsarpc MUST be identified by UUID [c681d488-d850-
11d0-8c52-00c04fd90f7e], version 1.0. The server interface for \pipe\efsrpc MUST be identified by
UUID [df1941c5-fe89-4e79-bf10-463657acf44d], version 1.0.

The following table specifies the opnum associated with each RPC method in this protocol. An EFSRPC
server SHOULD support all of the methods specified in this table.<34>

Methods in RPC Opnum Order

Method Description

EfsRpcOpenFileRaw Used to open an encrypted object on the server for backup or restore.

Opnum: 0

EfsRpcReadFileRaw Used by a client to obtain marshaled data for an encrypted object
from the server.

Opnum: 1

EfsRpcWriteFileRaw Used to create an encrypted object on the server, from marshaled
data provided by the client.

Opnum: 2

EfsRpcCloseRaw Called to release any resources allocated by the EfsRpcOpenFileRaw
method, or by subsequent calls to the EfsRpcReadFileRaw or

EfsRpcWriteFileRaw methods.

Opnum: 3

EfsRpcEncryptFileSrv Used to convert a given object on the server to an encrypted state in
the server's data store.

Opnum: 4

EfsRpcDecryptFileSrv Used to convert an existing encrypted object to the plaintext state in
the server's data store.

Opnum: 5

EfsRpcQueryUsersOnFile Used by the client to query the metadata of an encrypted object for
the X.509 certificates whose associated private keys can be used to
decrypt the object.

Opnum: 6

EfsRpcQueryRecoveryAgents Used to query the object's metadata for the X.509 certificates of the
data recovery agents whose associated private keys can be used to
decrypt it.

Opnum: 7

55 / 92

[MS-EFSR-Diff] - v20210625
Encrypting File System Remote (EFSRPC) Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

Method Description

EfsRpcRemoveUsersFromFile Used to revoke a user's access to an encrypted object. This method
revokes the ability of the private key corresponding to a given X.509
certificate to decrypt the object.

Opnum: 8

EfsRpcAddUsersToFile Used to grant users the ability to decrypt the object with their X.509
certificates.

Opnum: 9

Opnum10NotUsedOnWire Reserved for local use.

Opnum: 10

EfsRpcNotSupported Deprecated. Used to act in an identical manner to
EfsRpcDuplicateEncryptionInfoFile (3.1.4.2.13).

Opnum: 11

EfsRpcFileKeyInfo Used to query and modify information about the keys used to encrypt
a given object.

Opnum: 12

EfsRpcDuplicateEncryptionInfoFile Used to duplicate the EFSRPC Metadata of one object and attach it to
another object.

Opnum: 13

Opnum14NotUsedOnWire Reserved for local use.

Opnum: 14

EfsRpcAddUsersToFileEx Used to grant users the ability to decrypt an object using an X.509
certificate.

Opnum: 15

EfsRpcFileKeyInfoEx Deprecated. Used to act similarly to EfsRpcFileKeyInfo, except for the
dwFileKeyInfoFlags and Reserved parameters.

Opnum: 16

Opnum17NotUsedOnWire Reserved for local use.

Opnum: 17

EfsRpcGetEncryptedFileMetadata Deprecated. Used to retrieve the EFSRPC Metadata associated with an
object.

Opnum: 18

EfsRpcSetEncryptedFileMetadata Deprecated. Used to set the EFSRPC Metadata on an object.

Opnum: 19

EfsRpcFlushEfsCache Causes EFS to flush the logical cache that holds all the sensitive
information required to perform EFSRPC operations for the calling
user.

Opnum: 20

EfsRpcEncryptFileExSrv Used to convert a given object on the server to an encrypted state in
the server's data store. Allows use of DPAPI-NG and EFSRPC Metadata
Version 3.

Opnum: 21

EfsRpcQueryProtectors Used by the client to query the metadata of an encrypted object for
the DPAPI-NG protectors or RMS templates whose associated private
keys can be used to decrypt the object.

56 / 92

[MS-EFSR-Diff] - v20210625
Encrypting File System Remote (EFSRPC) Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

Method Description

Opnum: 22

Opnum23NotUsedOnWire Reserved for local use.

Opnum: 23

Opnum24NotUsedOnWire Reserved for local use.

Opnum: 24

Opnum25NotUsedOnWire Reserved for local use.

Opnum: 25

Opnum26NotUsedOnWire Reserved for local use.

Opnum: 26

Opnum27NotUsedOnWire Reserved for local use.

Opnum: 27

Opnum28NotUsedOnWire Reserved for local use.

Opnum: 28

Opnum29NotUsedOnWire Reserved for local use.

Opnum: 29

Opnum30NotUsedOnWire Reserved for local use.

Opnum: 30

Opnum31NotUsedOnWire Reserved for local use.

Opnum: 31

Opnum32NotUsedOnWire Reserved for local use.

Opnum: 32

Opnum33NotUsedOnWire Reserved for local use.

Opnum: 33

Opnum34NotUsedOnWire Reserved for local use.

Opnum: 34

Opnum35NotUsedOnWire Reserved for local use.

Opnum: 35

Opnum36NotUsedOnWire Reserved for local use.

Opnum: 36

Opnum37NotUsedOnWire Reserved for local use.

Opnum: 37

Opnum38NotUsedOnWire Reserved for local use.

Opnum: 38

Opnum39NotUsedOnWire Reserved for local use.

Opnum: 39

Opnum40NotUsedOnWire Reserved for local use.

Opnum: 40

Opnum41NotUsedOnWire Reserved for local use.

57 / 92

[MS-EFSR-Diff] - v20210625
Encrypting File System Remote (EFSRPC) Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

Method Description

Opnum: 41

Opnum42NotUsedOnWire Reserved for local use.

Opnum: 42

Opnum43NotUsedOnWire Reserved for local use.

Opnum: 43

Opnum44NotUsedOnWire Reserved for local use.

Opnum: 44

In the previous table, the term "Reserved for local use" means that the client MUST NOT send the
opnum, and the server behavior is undefined<35> because it does not affect interoperability. When a
method marked as "Deprecated" is received, the server SHOULD ignore the parameters of the method
and return a nonzero value.<36>

All methods in this protocol MUST return 0 on success, and a nonzero value on failure. Servers
SHOULD use the values specified in [MS-ERREF] for all nonzero error codes. The client MUST treat all
nonzero return values identically.

When the server receives a message from an EFSRPC client, it SHOULD first check the value of the
EfsDisabled field. If it is True, the server SHOULD<37> return ERROR_EFS_DISABLED (specified in
[MS-ERREF]) and perform no further processing. Otherwise, it SHOULD perform any necessary steps

to read its configuration, validate its input parameters (such as any EFSRPC identifiers that refer to
local data objects), authenticate the client, and perform any access checks prescribed by the
implementation.

This protocol MUST indicate to the RPC runtime by way of the strict_context_handle attribute that it
is to reject use of context handles created by a method of an RPC interface other than this one, as
specified in [MS-RPCE] section 3.

Exceptions Thrown: No exceptions are thrown beyond those thrown by the underlying RPC protocol,

as specified in [MS-RPCE].

3.1.4.2.1 Receiving an EfsRpcOpenFileRaw Message (Opnum 0)

The EfsRpcOpenFileRaw method is used to open an encrypted object on the server for backup or
restore. It allocates resources that MUST be released by calling the EfsRpcCloseRaw method.

 long EfsRpcOpenFileRaw(
 [in] handle_t binding_h,
 [out] PEXIMPORT_CONTEXT_HANDLE* hContext,
 [in, string] wchar_t* FileName,
 [in] long Flags
);

binding_h: An explicit binding handle created by the client. This is an RPC binding handle parameter,
as specified in [C706] and [MS-RPCE] section 2.

hContext: An implementation-specific context handle that is used in subsequent calls by the client to
the EfsRpcReadFileRaw method, EfsRpcWriteFileRaw method, or EfsRpcCloseRaw method.

FileName: An EFSRPC identifier, as specified in section 2.2.1.

58 / 92

[MS-EFSR-Diff] - v20210625
Encrypting File System Remote (EFSRPC) Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

Flags: This MUST be set to some combination of the following values. All servers and clients MUST
support the CREATE_FOR_IMPORT flag. Servers that implement a hierarchical encrypted store,

such as the NTFS file system, SHOULD also support the CREATE_FOR_DIR flag. Servers SHOULD
support the OVERWRITE_HIDDEN flag, and MAY interpret it in implementation-specific ways. A

client MUST ensure that all the flags it does not support are set to zero. A server MUST ignore all
flags it does not support. Flag values are specified in the following table.

Value Meaning

CREATE_FOR_IMPORT

0x00000001

Open the object for writing (that is, restore). If this flag is not set, open
the object for reading (that is, backup).

CREATE_FOR_DIR

0x00000002

This flag is only intended for use in conjunction with the
CREATE_FOR_IMPORT flag. It indicates that the object being restored
is a container for other objects.<38>

OVERWRITE_HIDDEN

0x00000004

This flag is only intended for use in conjunction with the
CREATE_FOR_IMPORT flag. This flag indicates a request from the
client for the server to overwrite an existing object even if the existing
object is "hidden". The meaning of "hidden" is specific to the
implementation of the data store, and this meaning does not affect
protocol behavior.

EFS_DROP_ALTERNATE_STREAMS

0x00000010

This flag indicates that content from any alternate data streams, if
present and implemented by the storage system, will be ignored.

Return Values: The server MUST return 0 if it successfully processes the message received from the
client. The server MUST return a nonzero value if processing fails.

First, the server SHOULD perform any additional access checks prescribed by the implementation. If
any of these checks fail, it MUST return a nonzero value.

EFSRPC servers SHOULD return an error unless at least one of the following conditions is true:

▪ The calling user has a private key that grants the user authorized access to the file.

▪ The CREATE_FOR_IMPORT flag is set, and the user has restore rights on the server.

▪ The CREATE_FOR_IMPORT flag is not set, and the user has backup rights on the server.

If the CREATE_FOR_IMPORT flag is set, the server MUST attempt to create an object with the given
name and prepare it for writing data received in future EfsRpcWriteFileRaw calls. The server MUST

return a nonzero value if this fails.

If the CREATE_FOR_IMPORT flag is not set, the server MUST attempt to locate the object requested
and prepare it for reading data to be sent through future EfsRpcReadFileRaw calls. The server MUST
return a nonzero value if it fails.

If the server supports the CREATE_FOR_DIR flag, and this flag is set:

▪ If the CREATE_FOR_IMPORT flag is not set:

▪ If the data object referred to by FileName exists on the server and is not a container for other

objects, the server SHOULD return a nonzero value.

▪ Otherwise, the server SHOULD ignore the CREATE_FOR_DIR flag.

▪ If the CREATE_FOR_IMPORT flag is set, the server MUST attempt to create a container with the
given name and prepare it for writing data received in future EfsRpcWriteFileRaw calls. The server
MUST return a nonzero value if this fails.

59 / 92

[MS-EFSR-Diff] - v20210625
Encrypting File System Remote (EFSRPC) Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

If the server supports the OVERWRITE_HIDDEN flag, and this flag is set:

▪ If the CREATE_FOR_IMPORT flag is not set, the server SHOULD ignore this flag.

▪ If the CREATE_FOR_IMPORT flag is set, the server SHOULD overwrite an existing object even if
the object is "hidden". The meaning of "hidden" is specific to the implementation of the data store,

and this meaning does not affect protocol behavior.

The server MUST ignore any flags that it does not support.

On success, the server MUST create an appropriate context handle and return it to the client.

3.1.4.2.2 Receiving an EfsRpcReadFileRaw Message (Opnum 1)

The method EfsRpcReadFileRaw is used by a client to obtain marshaled data for an encrypted object
from the server.

 long EfsRpcReadFileRaw(
 [in] PEXIMPORT_CONTEXT_HANDLE hContext,
 [out] EFS_EXIM_PIPE* EfsOutPipe
);

hContext: A context handle returned by the EfsRpcOpenFileRaw method, which MUST have been
called without the CREATE_FOR_IMPORT flag.

EfsOutPipe: A pipe structure. The push procedure of this pipe will be called with the marshaled data.
The structure of this marshaled data is specified in section 2.2.3.

Return Values: The server MUST return 0 if it successfully processes the message received from the
client.

If called with a context handle that has not been obtained by calling the EfsRpcOpenFileRaw method
without the CREATE_FOR_IMPORT flag set, the server SHOULD throw an RPC exception.

The server MUST read data from the object and write it to the pipe in EFSRPC Raw Data Format until
all the data in the object has been written. When all the data in the object has been written, the
server MUST flush the pipe by performing a 0-byte write to the pipe, and return 0 to the user to
indicate success.

If an error is encountered during the read, the server MUST flush the pipe and SHOULD throw an RPC
exception. The pipe MUST be flushed by performing a 0-byte write to the pipe.

3.1.4.2.3 Receiving an EfsRpcWriteFileRaw Message (Opnum 2)

The method EfsRpcWriteFileRaw is used to create an encrypted object on the server from the
marshaled data provided by the client.

 long EfsRpcWriteFileRaw(
 [in] PEXIMPORT_CONTEXT_HANDLE hContext,
 [in] EFS_EXIM_PIPE* EfsInPipe
);

hContext: A context handle returned by the EfsRpcOpenFileRaw method, which MUST have been

called with the CREATE_FOR_IMPORT flag.

EfsInPipe: A pipe structure. The pull procedure of this pipe is expected to provide the marshaled
data. The structure of this marshaled data is specified in section 2.2.3.

60 / 92

[MS-EFSR-Diff] - v20210625
Encrypting File System Remote (EFSRPC) Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

Return Values: The server MUST return 0 if it successfully processes the message received from the
client.

If called with a context handle that has not been obtained by calling EfsRpcOpenFileRaw with the
CREATE_FOR_IMPORT flag set, the server MUST abort the operation. In this case, it SHOULD throw an

RPC exception.

The server MUST read data from the pipe and write it to the object indicated by the context handle. If
an error is encountered during the write, the server SHOULD throw an RPC exception.

3.1.4.2.4 Receiving an EfsRpcCloseRaw Message (Opnum 3)

The EfsRpcCloseRaw method is called to release any resources allocated by the EfsRpcOpenFileRaw
method, or by subsequent calls to the EfsRpcReadFileRaw or EfsRpcWriteFileRaw methods.

 void EfsRpcCloseRaw(
 [in, out] PEXIMPORT_CONTEXT_HANDLE* hContext
);

Return Values: This method has no return values.

3.1.4.2.5 Receiving an EfsRpcEncryptFileSrv Message (Opnum 4)

The EfsRpcEncryptFileSrv method is used to convert a given object on the server to an encrypted state
in the server's data store.

 long EfsRpcEncryptFileSrv(
 [in] handle_t binding_h,
 [in, string] wchar_t* FileName
);

binding_h: This is an RPC binding handle parameter, as specified in [C706] and [MS-RPCE] section 2.

FileName: An EFSRPC identifier as specified in section 2.2.1.

Return Values: The server MUST return 0 if it successfully processes the message received from the
client. The server MUST return a nonzero value if processing fails.

If no object exists on the server with the specified name, the server MUST return a nonzero value.
If the object exists and is already encrypted:

▪ If the object is a container for other objects, the server SHOULD return 0 to indicate success.

▪ If the object is not a container object, the server SHOULD check to confirm that the calling user
has access to a private key that can decrypt the file and, if so, return 0 to indicate success. If the
calling user does not have access to a private key that can decrypt the file, the server SHOULD
return a nonzero value.

If the object exists and is not encrypted, the server SHOULD use the algorithm specified in section
3.1.4.1 to locate a user certificate for the calling user, specifying the client identity associated with the
RPC call ([MS-RPCE] section 3.3.3.4.3) as input for the security context. If an error is returned by the
algorithm specified in section 3.1.4.1, the server MUST return a nonzero value.

The server then performs the following actions to convert the object to an encrypted state in its data
store:

▪ If the data object referred to by FileName exists on the server and is a container for other objects,
the server MUST set an attribute on the container that instructs the data store to encrypt any new

61 / 92

[MS-EFSR-Diff] - v20210625
Encrypting File System Remote (EFSRPC) Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

objects created in that container. The server MAY encrypt unencrypted objects that were already
in the container before this message was received.

▪ Otherwise, the server SHOULD:

▪ Randomly generate a File Encryption Key (FEK) for the object and use it to encrypt the object.

▪ Create EFSRPC Metadata for the object, formatted as specified in section 2.2.2. The Data
Decryption Field SHOULD contain a single entry corresponding to the user certificate
mentioned above.

▪ Return 0 to indicate success.

Upon completion of this request, the converted object MUST be accessible to the calling user for read
and write methods of the storage encryption system.

3.1.4.2.6 Receiving an EfsRpcDecryptFileSrv Message (Opnum 5)

The EfsRpcDecryptFileSrv method is used to convert an existing encrypted object to the unencrypted
state in the server's data store.

 long EfsRpcDecryptFileSrv(
 [in] handle_t binding_h,
 [in, string] wchar_t* FileName,
 [in] unsigned long OpenFlag
);

binding_h: This is an RPC binding handle parameter, as specified in [C706] and [MS-RPCE] section 2.

FileName: An EFSRPC identifier as specified in section 2.2.1.

OpenFlag: This parameter is unused and MUST be ignored by the server. It MUST be set to zero by
the client.

Return Values: The server MUST return zero if it successfully processes the message received from
the client. The server MUST return a nonzero value if processing fails.

If no object exists on the server with the specified name, the server MUST return a nonzero value. If
the object exists and is not encrypted, the server MUST return success.

Otherwise, the server performs the following actions to convert the object in its data store to an
unencrypted state:

▪ If the data object referred to by FileName is a container for other objects, the server MUST clear
the attribute on the container that instructs the data store to encrypt any new objects created in
that container. The server MAY decrypt encrypted objects that were already in the container

before this message was received.

▪ Otherwise, the server SHOULD:

▪ Check that the calling user has access to a private key that will decrypt the file; if the user
does not have access, return a nonzero value.

▪ Decrypt the object and discard its EFSRPC Metadata.

▪ Return 0 to indicate success.

3.1.4.2.7 Receiving an EfsRpcQueryUsersOnFile Message (Opnum 6)

62 / 92

[MS-EFSR-Diff] - v20210625
Encrypting File System Remote (EFSRPC) Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

The EfsRpcQueryUsersOnFile method is used by the client to query the metadata of an encrypted
object for the X.509 certificates whose associated private keys can be used to decrypt the object.

 DWORD EfsRpcQueryUsersOnFile(
 [in] handle_t binding_h,
 [in, string] wchar_t* FileName,
 [out] ENCRYPTION_CERTIFICATE_HASH_LIST** Users
);

binding_h: This is an RPC binding handle parameter, as specified in [C706] and [MS-RPCE] section 2.

FileName: An EFSRPC identifier, as specified in section 2.2.1.

Users: A list of certificate hashes, represented by an ENCRYPTION_CERTIFICATE_HASH_LIST
structure.

Return Values: The server MUST return 0 if it successfully processes the message received from the

client. The server MUST return a nonzero value if processing fails.

If no object exists on the server with the specified name, or if the object exists and is not
encrypted, the server MUST return a nonzero value. Otherwise, the server MUST read the object's
EFSRPC Metadata and return a list of the hashes of all the certificates that have been given access
to the object by implicit or explicit user action in the Users parameter. It MUST NOT include DRA
certificates in this list.

3.1.4.2.8 Receiving an EfsRpcQueryRecoveryAgents Message (Opnum 7)

The EfsRpcQueryRecoveryAgents method is used to query the EFSRPC Metadata of an encrypted
object for the X.509 certificates of the data recovery agents whose private keys can be used to
decrypt the object.

 DWORD EfsRpcQueryRecoveryAgents(
 [in] handle_t binding_h,
 [in, string] wchar_t* FileName,
 [out] ENCRYPTION_CERTIFICATE_HASH_LIST** RecoveryAgents
);

binding_h: This is an RPC binding handle parameter, as specified in [C706] and [MS-RPCE] section
2.

FileName: An EFSRPC identifier as specified in section 2.2.1.

RecoveryAgents: A list of certificate hashes, represented by an
ENCRYPTION_CERTIFICATE_HASH_LIST structure.

Return Values: The server MUST return 0 if it successfully processes the message received from the
client. The server MUST return a nonzero value if processing fails.

If no object exists on the server with the specified name, or if the object exists and is not

encrypted, the server MUST return a nonzero value. Otherwise, the server MUST read the object's
EFSRPC Metadata and return a list of the hashes of all the DRA certificates that have access to the
object in the RecoveryAgents parameter. The server MUST NOT include any certificates that were

not added by virtue of being defined as DRAs in administrative policy. If no DRAs are defined on
the object, the call MUST return success and this list MUST be empty.

3.1.4.2.9 Receiving an EfsRpcRemoveUsersFromFile Message (Opnum 8)

63 / 92

[MS-EFSR-Diff] - v20210625
Encrypting File System Remote (EFSRPC) Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

The EfsRpcRemoveUsersFromFile method is used to revoke a user's access to an encrypted object.
This method revokes the ability of the private key corresponding to a given X.509 certificate to

decrypt the object.

 DWORD EfsRpcRemoveUsersFromFile(
 [in] handle_t binding_h,
 [in, string] wchar_t* FileName,
 [in] ENCRYPTION_CERTIFICATE_HASH_LIST* Users
);

binding_h: This is an RPC binding handle parameter, as specified in [C706] and [MS-RPCE] section 2.

FileName: An EFSRPC identifier as specified in section 2.2.1.

Users: A list of certificate hashes, represented by an ENCRYPTION_CERTIFICATE_HASH_LIST

structure, whose access is to be removed.

Return Values: The server MUST return 0 if it successfully processes the message received from the
client. The server MUST return a nonzero value if processing fails.

If no object exists on the server with the specified name, or if the object exists and is not
encrypted, the server MUST return a nonzero value. The server SHOULD verify that the calling
user is authorized to access the object, SHOULD verify that the calling user possesses a private
key corresponding to a user certificate present in the EFSRPC Metadata for the object, and MUST

return a nonzero value if this verification fails. If the calling user is authorized to access the object
and the set of user certificates on the object contains only one entry, the server MUST return a
nonzero value.

If none of the preceding errors occur, the server MUST remove the parts of the object's EFSRPC
Metadata that refer to the user certificates listed in the Users structure.

3.1.4.2.10 Receiving an EfsRpcAddUsersToFile Message (Opnum 9)

The EfsRpcAddUsersToFile method is used to grant the possessors of the private keys corresponding
to certain X.509 certificates the ability to decrypt the object.

 DWORD EfsRpcAddUsersToFile(
 [in] handle_t binding_h,
 [in, string] wchar_t* FileName,
 [in] ENCRYPTION_CERTIFICATE_LIST* EncryptionCertificates
);

binding_h: This is an RPC binding handle parameter, as specified in [C706] and [MS-RPCE] section 2.

FileName: An EFSRPC nonzero name, as specified in section 2.2.1.

EncryptionCertificates: A list of certificates, represented by an ENCRYPTION_CERTIFICATE_LIST
structure, which are to be given access to the object.

Return Values: The server MUST return 0 if it successfully processes the message received from the
client. The server MUST return a nonzero value if processing fails.

If no object exists on the server with the specified name, or if the object exists and is not encrypted,

the server MUST return a nonzero value. Otherwise, the server MUST modify the object's EFSRPC
Metadata such that all the user certificates listed in the Users structure have the ability to decrypt the
object.

3.1.4.2.11 Receiving an EfsRpcNotSupported Message (Opnum 11)

64 / 92

[MS-EFSR-Diff] - v20210625
Encrypting File System Remote (EFSRPC) Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

On receiving the EfsRpcNotSupported method call, an EFSRPC server SHOULD implement the
EfsRpcNotSupported method as specified in this section and return a nonzero value. However, a server

MAY<39> choose to interpret and respond to the arguments as specified in section 3.1.4.2.13.

 DWORD EfsRpcNotSupported(
 [in] handle_t binding_h,
 [in, string] wchar_t* Reserved1,
 [in, string] wchar_t* Reserved2,
 [in] DWORD dwReserved1,
 [in] DWORD dwReserved2,
 [in, unique] EFS_RPC_BLOB* Reserved,
 [in] BOOL bReserved
);

binding_h: This is an RPC binding handle parameter, as specified, in [C706] and in [MS-RPCE]
section 2.

Reserved1: This parameter is not used. It MUST be set to an empty string by the client and ignored

by the server.

Reserved2: This parameter is not used. It MUST be set to an empty string by the client and ignored
by the server.

dwReserved1: This parameter is not used. It MUST be set to zero by the client and ignored by the
server.

dwReserved2: This parameter is not used. It MUST be set to zero by the client and ignored by the
server.

Reserved: This parameter is not used. It MUST be set to NULL by the client and ignored by the
server.

bReserved: This parameter is not used. It MUST be set to FALSE by the client and ignored by the
server.

Return Values: The EFSRPC server SHOULD return a nonzero value. However, the server MAY<40>
process this as described in section 3.1.4.2.13.

3.1.4.2.12 Receiving an EfsRpcFileKeyInfo Message (Opnum 12)

The EfsRpcFileKeyInfo method is used to query and modify information about the keys used to encrypt
a given object.

 DWORD EfsRpcFileKeyInfo(
 [in] handle_t binding_h,
 [in, string] wchar_t* FileName,
 [in] DWORD InfoClass,
 [out] EFS_RPC_BLOB** KeyInfo
);

binding_h: This is an RPC binding handle parameter, as specified in [C706] and [MS-RPCE] section 2.

FileName: An EFSRPC identifier, as specified in section 2.2.1.

InfoClass: One of the values in the following table. With the exception of UPDATE_KEY_USED
(0x00000100), a server SHOULD support all of these values. A server MAY choose to support
UPDATE_KEY_USED.<41>

65 / 92

[MS-EFSR-Diff] - v20210625
Encrypting File System Remote (EFSRPC) Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

Value Meaning

BASIC_KEY_INFO

0x00000001

Request information about the keys used to encrypt the object's contents.
On success, the server will return the information in an EFS_KEY_INFO
(2.2.14)structure in the KeyInfo parameter.

CHECK_COMPATIBILITY_INFO

0x00000002

Requests the EfsVersion for the encrypted file. On success, the server will
return the information in an EFS_COMPATIBILITY_INFO structure in the
KeyInfo parameter.

UPDATE_KEY_USED

0x00000100

Update the user certificates used to give a specific user access to an object.
The server will populate the KeyInfo parameter with a zero-terminated,
wide character Unicode string that contains a newline-separated list of
names of objects successfully updated.

CHECK_DECRYPTION_STATUS

0x00000200

Request a hint from the server as to whether the given object could be
successfully decrypted without further user intervention or higher-level
events. The server will return this information in an
EFS_DECRYPTION_STATUS_INFO structure in the KeyInfo parameter.

CHECK_ENCRYPTION_STATUS

0x00000400

Request a hint from the server as to whether the given object could be
successfully encrypted without further user intervention or higher-level
events. The server will return this information in an
EFS_ENCRYPTION_STATUS_INFO structure in the KeyInfo parameter.

KeyInfo: Returned by the server, as previously specified.

Return Values: The server MUST return 0 if it successfully processes the message received from the
client. The server MUST return a nonzero value if processing fails.

If no object exists on the server with the specified name the server MUST return a nonzero value.

If the InfoClass parameter is not equal to CHECK_ENCRYPTION_STATUS and the object with the
specified name is not encrypted, the server MUST return a nonzero value.

If the value in the InfoClass parameter is unsupported by the server, the server MUST return a

nonzero value.

If the value in the InfoClass parameter is equal to BASIC_KEY_INFO, the server SHOULD read the
EFSRPC Metadata of the object referred to by the FileName argument and return information
about its FEK in an EFS_KEY_INFO structure within the KeyInfo argument.

If the value in the InfoClass parameter is equal to UPDATE_KEY_USED, the implementation
supports this value, and the FileName parameter does not satisfy the implementation-specific

requirements for this operation<42>, the server MUST return a nonzero value.

If the value in the InfoClass parameter is equal to UPDATE_KEY_USED, the implementation
supports this value, and the FileName parameter does satisfy all implementation-specific
requirements, the server MUST update the EFSRPC Metadata of all the data objects referred by
FileName in an implementation-specific way<43>, and return a newline-separated list of EFSRPC
Identifiers thus updated in the KeyInfo parameter.

If the value in the InfoClass parameter is equal to CHECK_ENCRYPTION_STATUS, the server MUST

return an EFS_ENCRYPTION_STATUS_INFO structure in the KeyInfo parameter, which provides a
hint to the client what error code would be returned if encryption was attempted on this object
without any further user interaction or higher-level events.

If the value in the InfoClass parameter is equal to CHECK_DECRYPTION_STATUS, the server
SHOULD return ERROR_REQUIRES_INTERACTIVE_WINDOWSTATION ([MS-ERREF] section 2.2).
The server MAY, instead, return an EFS_DECRYPTION_STATUS_INFO structure in the KeyInfo

66 / 92

[MS-EFSR-Diff] - v20210625
Encrypting File System Remote (EFSRPC) Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

parameter, which provides a hint to the client what error code would be returned if decryption
were attempted on this object without any further user interaction or higher-level events.

If the value of the InfoClass parameter is equal to CHECK_COMPATIBILITY_INFO, the server MUST
return an EFS_COMPATIBILITY_INFO structure in the KeyInfo parameter, which provides the

EFSVersion of the EFSRPC metadata associated with the file.

3.1.4.2.13 Receiving an EfsRpcDuplicateEncryptionInfoFile Message (Opnum 13)

The EfsRpcDuplicateEncryptionInfoFile method is used to duplicate the EFSRPC Metadata of one
encrypted object and attach it to another encrypted object. This is typically done when copying objects
to maintain the same set of keys and users for the copy as for the original.

 DWORD EfsRpcDuplicateEncryptionInfoFile(
 [in] handle_t binding_h,
 [in, string] wchar_t* SrcFileName,
 [in, string] wchar_t* DestFileName,
 [in] DWORD dwCreationDisposition,
 [in] DWORD dwAttributes,
 [in, unique] EFS_RPC_BLOB* RelativeSD,
 [in] BOOL bInheritHandle
);

binding_h: This is an RPC binding handle parameter, as specified in [C706] and [MS-RPCE] section 2.

SrcFileName: An EFSRPC identifier, as specified in section 2.2.1.

DestFileName: An EFSRPC identifier, as specified in section 2.2.1.

dwCreationDisposition: This parameter specifies what action the server is advised to take if the
object referred to by DestFileName does not already exist. It MUST be one of the following values.

Value Meaning

CREATE_NEW

0x00000001

Do not overwrite the data object referred to by DestFileName if it already exists.

CREATE_ALWAYS

0x00000002

Overwrite the data object referred to by DestFileName if it already exists.

dwAttributes: Desired attributes for the target object. Clients SHOULD set this parameter to the
bitwise OR of zero or more of the following values. Servers SHOULD support all of these values.
These values can be interpreted by the underlying server data store, and they do not affect

protocol behavior.

Value Meaning

FILE_ATTRIBUTE_HIDDEN

0x00000002

The file is hidden (not displayed in normal folder listings).

FILE_ATTRIBUTE_ARCHIVE

0x00000020

This attribute is used by applications to mark files for backup
or removal.

FILE_ATTRIBUTE_TEMPORARY

0x00000100

The file is being used for temporary storage.

FILE_ATTRIBUTE_NOT_CONTENT_INDEXED

0x00002000

The file's contents are not to be indexed by the content
indexing service.

67 / 92

[MS-EFSR-Diff] - v20210625
Encrypting File System Remote (EFSRPC) Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

Value Meaning

FILE_ATTRIBUTE_NORMAL

0x00000080

No other attributes are to be set.

RelativeSD: Relative security descriptor for the target object. The format of this is implementation-
dependent.<44>

bInheritHandle: This parameter SHOULD be set to FALSE by the client and SHOULD be ignored by
the server.

Return Values: The server MUST return 0 if it successfully processes the message received from the

client. The server MUST return a nonzero value if processing fails.<45>

If no object exists on the server with the name specified in the SrcFileName parameter, or if it
exists and is not encrypted, the server MUST return a nonzero value.

If an encrypted object exists with the name specified in the SrcFileName and
dwCreationDisposition parameters is equal to CREATE_NEW, then:

▪ If an object exists with the name specified in the DestFileName parameter, the server MUST return

a nonzero value.

▪ If no object exists with the name specified in the DestFileName parameter, the server MUST
create a new object with this name and duplicate the EFSRPC Metadata from the SrcFileName
parameter into it. If the object specified in SrcFileName is a container for other objects, the server
MUST create the object as a container for objects, and it MUST encrypt any objects that are
subsequently placed in the container after this message has been processed. Otherwise, the
server MUST create the object as a non-container encrypted data object.

If an encrypted object exists with the name specified in the SrcFileName and
dwCreationDisposition parameters is not equal to CREATE_NEW, then:

▪ If an object already exists with the name specified in the DestFileName parameter, the server

MUST check whether the object referred to by SrcFileName is of the same type (either simple
object or container for other objects); if the object is not of the same type, the server MUST
return a nonzero value. In addition, if the object referred to by DestFileName is a container for
other objects, and it is not already encrypted, the server MUST return a nonzero value. Otherwise,

the server SHOULD overwrite the object, clear its existing attributes, create a new object in its
place with the attributes specified, and duplicate the EFSRPC Metadata from the SrcFileName
parameter into it.

▪ If no object exists with the name specified in the DestFileName parameter, the server MUST
create a new object with this name and duplicate the EFSRPC Metadata from the SrcFileName
parameter into it. If the object specified in SrcFileName is a container for other objects, the server

MUST create the object as a container for objects, and it MUST encrypt any objects that are
subsequently placed in the container after this message has been processed. Otherwise, the
server MUST create the object as a non-container encrypted data object.

In duplicating the EFSRPC Metadata from the SrcFileName parameter to the DestFileName parameter,
the server MAY<46> change the metadata. However, upon successful completion, the set of users and
DRAs with access to the DestFileName parameter MUST be the same set of users who had access to
the SrcFileName parameter at the outset.

3.1.4.2.14 Receiving an EfsRpcAddUsersToFileEx Message (Opnum 15)

The EfsRpcAddUsersToFileEx method is used to grant the possessors of the private keys corresponding
to certain X.509 certificates the ability to decrypt the object.

68 / 92

[MS-EFSR-Diff] - v20210625
Encrypting File System Remote (EFSRPC) Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

 DWORD EfsRpcAddUsersToFileEx(
 [in] handle_t binding_h,
 [in] DWORD dwFlags,
 [in, unique] EFS_RPC_BLOB* Reserved,
 [in, string] wchar_t* FileName,
 [in] ENCRYPTION_CERTIFICATE_LIST* EncryptionCertificates
);

binding_h: This is an RPC binding handle parameter, as specified in [C706] and [MS-RPCE] section 2.

dwFlags: This MUST be set to a bitwise OR of 0 or more of the following flags. The descriptions of the
flags are specified in the following table. If the EFSRPC_ADDUSERFLAG_REPLACE_DDF flag is
used, then the EncryptionCertificates parameter MUST contain exactly one certificate.

Name Value

EFSRPC_ADDUSERFLAG_ADD_POLICY_KEYTYPE 0x00000002

EFSRPC_ADDUSERFLAG_REPLACE_DDF 0x00000004

Reserved: This parameter is not used. It MUST be set to NULL by the client and ignored by the

server.

FileName: An EFSRPC identifier, as specified in section 2.2.1.

EncryptionCertificates: A list of certificates, represented by an ENCRYPTION_CERTIFICATE_LIST
structure, which are to be given access to the object.

Return Values: The server MUST return 0 if it successfully processes the message received from the
client. The server MUST return a nonzero value if processing fails.

If no object exists on the server with the specified name, or if it exists and is not encrypted, the
server MUST return a nonzero value.

If the EFSRPC_ADDUSERFLAG_REPLACE_DDF flag is set in the dwFlags parameter, and the
EncryptionCertificates parameter contains more than one certificate, the server MUST return a
nonzero value.

If the EFSRPC_ADDUSERFLAG_REPLACE_DDF flag is set in the dwFlags parameter, and the calling
user does not have the ability to decrypt the object, the server MUST return a nonzero value.

If the EFSRPC_ADDUSERFLAG_REPLACE_DDF flag is set in the dwFlags parameter, and the user
certificate in the EncryptionCertificates parameter already has access to the object, then the
server MUST return a zero value.

If the EFSRPC_ADDUSERFLAG_ADD_POLICY_KEYTYPE flag is specified in the dwFlags parameter, then
for each certificate specified in the EncryptionCertificates parameter, the server MUST check whether
the private key for the certificate is stored on a smart card. If the key is stored, the server MUST
return a nonzero value; otherwise, the server MUST ignore this flag.

If the EFSRPC_ADDUSERFLAG_REPLACE_DDF flag is set in the dwFlags parameter, and the calling
user has the ability to decrypt the object, then the certificate in the EncryptionCertificates parameter
is to be given access to the object, replacing one of the calling user's user certificates through which
he currently has access.

3.1.4.2.15 Receiving an EfsRpcFileKeyInfoEx Message (Opnum 16)

69 / 92

[MS-EFSR-Diff] - v20210625
Encrypting File System Remote (EFSRPC) Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

On receiving the EfsRpcFileKeyInfoEx method call, an EFSRPC server SHOULD ignore the input
parameters and return a nonzero value. The server MAY act on this method in an implementation-

specific manner.<47>

 DWORD EfsRpcFileKeyInfoEx(
 [in] handle_t binding_h,
 [in] DWORD dwFileKeyInfoFlags,
 [in, unique] EFS_RPC_BLOB* Reserved,
 [in, string] wchar_t* FileName,
 [in] DWORD InfoClass,
 [out] EFS_RPC_BLOB** KeyInfo
);

binding_h: This is an RPC binding handle parameter, as specified in [C706] and [MS-RPCE] section 2.

dwFileKeyInfoFlags: This parameter is reserved. It MUST be set to zero by the client and ignored by
the server.

Reserved: This parameter is reserved. It MUST be set to NULL by the client and ignored by the
server.

FileName: An EFSRPC identifier, as specified in section 2.2.1.

InfoClass: One of the values specified for the InfoClass parameter of the EfsRpcFileKeyInfo method.

KeyInfo: The server SHOULD ignore this parameter.<48>

Return Values: The server SHOULD return a nonzero value.<49>

3.1.4.2.16 Receiving an EfsRpcGetEncryptedFileMetadata Message (Opnum 18)

On receiving the EfsRpcGetEncryptedFileMetadata method call, an EFSRPC server SHOULD ignore the
input parameters and return a nonzero value. The server MAY choose to act on this method in an

implementation-specific manner.<50>

 DWORD EfsRpcGetEncryptedFileMetadata(
 [in] handle_t binding_h,
 [in, string, ref] wchar_t* FileName,
 [out, ref] EFS_RPC_BLOB** EfsStreamBlob
);

binding_h: This is an RPC binding handle parameter, as specified in [C706] and [MS-RPCE] section 2.

FileName: An EFSRPC identifier, as specified in section 2.2.1.

EfsStreamBlob: The server SHOULD ignore this parameter.<51>

Return Values: The server SHOULD return a nonzero value.<52>

3.1.4.2.17 Receiving an EfsRpcSetEncryptedFileMetadata Message (Opnum 19)

On receiving the EfsRpcSetEncryptedFileMetadata method call, an EFSRPC server SHOULD ignore the
input parameters and return a nonzero value. The server MAY choose to act on this method in an
implementation-specific manner.<53>

 DWORD EfsRpcSetEncryptedFileMetadata(
 [in] handle_t binding_h,
 [in, string, ref] wchar_t* FileName,
 [in, unique] EFS_RPC_BLOB* OldEfsStreamBlob,

70 / 92

[MS-EFSR-Diff] - v20210625
Encrypting File System Remote (EFSRPC) Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

 [in, ref] EFS_RPC_BLOB* NewEfsStreamBlob,
 [in, unique] ENCRYPTED_FILE_METADATA_SIGNATURE* NewEfsSignature
);

binding_h: This is an RPC binding handle parameter, as specified in [C706] and [MS-RPCE] section 2.

FileName: An EFSRPC identifier as specified in section 2.2.1.

OldEfsStreamBlob: This parameter SHOULD be set to NULL by the client and ignored by the
server.<54>

NewEfsStreamBlob: This parameter SHOULD be set to a zero-length EFS_RPC_BLOB by the client
and ignored by the server.<55>

NewEfsSignature: This parameter SHOULD be set to NULL by the client and ignored by the
server.<56>

Return Values: The server SHOULD return a nonzero value.<57>

3.1.4.2.18 Receiving an EfsRpcFlushEfsCache Message (Opnum 20)

The EfsRpcFlushEfsCache method causes EFS to flush the logical cache that holds all the sensitive
information required to perform EFSRPC operations for the calling user.

 DWORD EfsRpcFlushEfsCache(
 [in] handle_t binding_h
);

binding_h: This is an RPC binding handle parameter, as specified in [C706] and [MS-RPCE] section 2.

Return Values: The server MUST return 0 if it successfully processes the message received from the
client. The server MUST return a nonzero value if processing fails.

The server MUST completely discard the logical cache being maintained on behalf of the calling user.
The logical cache is as specified in section 3.1.1.

3.1.4.2.19 Receiving an EfsRpcEncryptFileExSrv Message (Opnum 21)

The EfsRpcEncryptFileExSrv method is used to convert a given object on the server to an encrypted
state in the server's data store.<58>

 long EfsRpcEncryptFileExSrv(
 [in] handle_t binding_h,
 [in, string] wchar_t* FileName,
 [in, string, unique] wchar_t* ProtectorDescriptor,
 [in] unsigned long Flags
);

binding_h: This is an RPC binding handle parameter, as specified in [C706] and [MS-RPCE] section 2.

FileName: An EFSRPC identifier as specified in section 2.2.1.

ProtectorDescriptor: This parameter can be NULL. When it is non-NULL, it MUST contain either an

RMS descriptor, which is the literal value of "EFSRMSDESC=" followed by an EnterpriseID
(described below), followed by a "|" (pipe character), optionally followed by a GUID in curly braces
format which, when present, is to be used as a lookup for an RMS template for the creation of a
file in EFSRPC Metadata Version 3, as specified in section 2.2.2.3, or a DPAPI-NG descriptor string

71 / 92

[MS-EFSR-Diff] - v20210625
Encrypting File System Remote (EFSRPC) Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

as described later in this section. This parameter MUST NOT contain both an RMS descriptor and a
DPAPI-NG descriptor in the string.

A DPAPI-NG descriptor string is a Cryptography Next Generation DPAPI protection-descriptor rule
string that contains a sequential list of one or more protectors. There MUST be at least one

protector. If there is more than one, the protectors MUST be separated in the string by "AND" or
"OR" string literals that MUST be capitalized. The following syntax shows the string format of a
protection descriptor.

 Descriptor = [Protector-or
 *(OR-separator Protector-or)]

 Protector-or = Protector-and
 *(AND-separator Protector-and)

 OR-separator = "OR"
 AND-separator = "AND"

 Protector-and = providerName EQUALS providerAttributes

 providerName = descr

 providerAttribute = string | hexstring

 ; The following characters are to be escaped when they appear
 ; in the value to be encoded: ESC, one of <escaped>, leading
 ; SHARP or SPACE, trailing SPACE, and NULL.
 string = [(leadchar / pair) [*(stringchar / pair)
 (trailchar / pair)]]

 leadchar = LUTF1 / UTFMB
 LUTF1 = %x01-1F / %x21 / %x24-2A / %x2D-3A / %x3D / %x3F-5B / %x5D-7F

 trailchar = TUTF1 / UTFMB
 TUTF1 = %x01-1F / %x21 / %x23-2A / %x2D-3A / %x3D / %x3F-5B / %x5D-7F

 stringchar = SUTF1 / UTFMB
 SUTF1 = %x01-21 / %x23-2A / %x2D-3A / %x3D / %x3F-5B / %x5D-7F

 pair = ESC (ESC / special / hexpair)
 special = escaped / SPACE / SHARP / EQUALS
 escaped = DQUOTE / PLUS / COMMA / SEMI / LANGLE / RANGLE
 hexstring = SHARP 1*hexpair
 hexpair = HEX HEX

 descr = leadkeychar *keychar
 leadkeychar = ALPHA
 keychar = ALPHA / DIGIT / HYPHEN
 number = DIGIT / (LDIGIT 1*DIGIT)

 ALPHA = %x41-5A / %x61-7A ; "A"-"Z" / "a"-"z"
 DIGIT = %x30 / LDIGIT ; "0"-"9"
 LDIGIT = %x31-39 ; "1"-"9"
 HEX = DIGIT / %x41-46 / %x61-66 ; "0"-"9" / "A"-"F" / "a"-"f"

 NULL = %x00 ; null (0)
 SPACE = %x20 ; space (" ")
 DQUOTE = %x22 ; quote (""")
 SHARP = %x23 ; octothorpe (or sharp sign) ("#")
 DOLLAR = %x24 ; dollar sign ("$")
 SQUOTE = %x27 ; single quote ("'")
 LPAREN = %x28 ; left paren ("(")
 RPAREN = %x29 ; right paren (")")
 PLUS = %x2B ; plus sign ("+")
 COMMA = %x2C ; comma (",")
 HYPHEN = %x2D ; hyphen ("-")
 DOT = %x2E ; period (".")
 SEMI = %x3B ; semicolon (";")

72 / 92

[MS-EFSR-Diff] - v20210625
Encrypting File System Remote (EFSRPC) Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

 LANGLE = %x3C ; left angle bracket ("<")
 EQUALS = %x3D ; equals sign ("=")
 RANGLE = %x3E ; right angle bracket (">")
 ESC = %x5C ; backslash ("\")
 USCORE = %x5F ; underscore ("_")
 LCURLY = %x7B ; left curly brace "{"
 RCURLY = %x7D ; right curly brace "}"

 ; Any UTF-8 [RFC3629] encoded Unicode [Unicode] character
 UTF8 = UTF1 / UTFMB
 UTFMB = UTF2 / UTF3 / UTF4
 UTF0 = %x80-BF
 UTF1 = %x00-7F
 UTF2 = %xC2-DF UTF0
 UTF3 = %xE0 %xA0-BF UTF0 / %xE1-EC 2(UTF0) /
 %xED %x80-9F UTF0 / %xEE-EF 2(UTF0)
 UTF4 = %xF0 %x90-BF 2(UTF0) / %xF1-F3 3(UTF0) /
 %xF4 %x80-8F 2(UTF0)

 OCTET = %x00-FF ; Any octet (8-bit data unit)

A DPAPI-NG descriptor SHOULD have a providerName of "LOCKEDCREDENTIALS" or
"VAULTCREDENTIALS", and providerAttributes SHOULD BE formatted as follows:

 providerAttributes = MS-ENTID:[CallerIDString] "|" SessionIDString
["|"UserSidString],EnterpriseID

When providerAttributes is specified as above, if CallerIDString is present, it MUST be a string

defined by the endpoint for key lookup; it MUST work only on that endpoint and only when used in
conjunction with the matching UserSidString; SessionIDString MUST be a GUID, and when
UserSidString is present, it MUST be the SID (as specified in [MS-DTYP] section 2.4.2.3) of the
user who owns the key. EnterpriseID MUST be an Internet domain name that is not a top-level
domain, as described in [RFC1035].

Flags: This parameter is unused and MUST be ignored by the server. It MUST be set to zero by the

client.

Return Values: The server MUST return 0 if it successfully processes the message received from the
client. The server MUST return a nonzero value if processing fails.

If ProtectorDescriptor is NULL, follow the processing rules for EfsRpcEncryptFileSrv, using the values of
binding_h and FileName.

Otherwise, if no object exists on the server with the specified name, the server MUST return a nonzero
value. If the object exists and is already encrypted:

▪ If the object is a container for other objects, the server SHOULD return 0 to indicate success.

▪ If the object is not a container object, the server SHOULD check to confirm that the calling user
has access to a private key that can decrypt the file and, if so, return 0 to indicate success. If the
calling user does not have access to a private key that can decrypt the file, the server SHOULD

return a nonzero value.

If the object exists and is not encrypted, the server SHOULD use the RMS template to create a user
Rights Management Services (RMS) Publishing License (PL) for the user, as specified in [MS-RMPR]

section 2.2.9.7, certificate for the calling user, specifying the client identity associated with the RPC
call ([MS-RPCE] section 3.3.3.4.3) as input for the security context. If an error is returned when
looking up the template or creating a PL, the server MUST return a nonzero value.

The server then performs the following actions to convert the object to an encrypted state in its data
store:

73 / 92

[MS-EFSR-Diff] - v20210625
Encrypting File System Remote (EFSRPC) Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

▪ If the data object referred to by FileName exists on the server and is a container for other objects,
the server MUST set an attribute on the container that instructs the data store to encrypt any new

objects created in that container using a key associated with the ProtectorDescriptor. The server
MAY encrypt unencrypted objects that were already in the container before this message was

received.

▪ Otherwise, the server SHOULD:

▪ Randomly generate a File Encryption Key (FEK) for the object and use it to encrypt the object.

▪ If the ProtectorDescriptor is a DPAPI-NG protector, create EFSRPC Metadata Version 2 for the
object, formatted as specified in section 2.2.2.2. The Data Decryption Field SHOULD contain
a single entry corresponding to a DPAPI-NG protector as mentioned previously.

▪ If the ProtectorDescriptor is an RMS protector, create EFSRPC Metadata Version 3 for the

object, formatted as specified in section 2.2.2.3.

▪ Return 0 to indicate success.

Upon completion of this request, the converted object MUST be accessible to the calling user for read
and write methods of the storage encryption system.

3.1.4.2.20 Receiving an EfsRpcQueryProtectors (Opnum 22)

The EfsRpcQueryProtectors method is used by the client to query the metadata of an encrypted
object for protectors that are either RMS or DPAPI-NG and whose associated private keys can be used
to decrypt the object.<59>

 DWORD EfsRpcQueryProtectors(
 [in] handle_t binding_h,
 [in, string] wchar_t* FileName,
 [out] PENCRYPTION_PROTECTOR_LIST **ppProtectorList
);

binding_h: This is an RPC binding handle parameter, as specified in [C706] and [MS-RPCE] section 2.

FileName: An EFSRPC identifier, as specified in section 2.2.1.

ppProtectorList: A pointer to a list of ENCRYPTION_PROTECTOR structures as specified in section
2.2.19.

Return Values: The server MUST return a nonzero value.

3.1.5 Timer Events

This protocol does not specify any timers or timer events.

3.1.6 Other Local Events

If an RPC connection between the client and the server is broken while transferring data using the
EFSRPC raw methods, the server SHOULD take steps to de-allocate all resources allocated to that
connection. If an error is encountered while processing any of the EFSRPC raw methods, the server
SHOULD promptly tear down the connection to the client and reallocate all resources the connection
was using.

74 / 92

[MS-EFSR-Diff] - v20210625
Encrypting File System Remote (EFSRPC) Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

4 Protocol Examples

This section contains a complete example of how EFSRPC is used. In the following example, a user
(User) uses a Windows XP client to encrypt a file on a Windows SMB file server (Server1). The User
then gives a colleague (Colleague) authorized access to this file, and requests one of the employees
(Employee) to place the file on a second Windows SMB file server (Server2) so that the Colleague can
access it.

Before starting this process, the User has obtained the Colleague's user certificate through some
implementation-specific method. The User has also imported that certificate into the certificate stores
on both the client computer and Server1. No explicit action from the User or Colleague is required for
this step if User and Colleague are members of the same Active Directory domain and the domain has
been configured to automatically publish users' EFS user certificates to the Active Directory.

First, the User creates a file with the information he wants to share and places it on Server1. He then

accesses the file's properties through the Windows Explorer user interface and marks the file as
encrypted. This causes Windows Explorer to send an EfsRpcEncryptFileSrv message to Server1, and as

a result the EFSRPC server encrypts the file located on Server1's disk to allow access to the file by the
User alone. The User has now created an encrypted file on Server1 using EFSRPC.

To give the Colleague authorized access to this newly encrypted file, the User accesses the file's
properties once more through Windows Explorer, and examines the list of user certificates that are
authorized to decrypt the file. This causes Windows Explorer to send an EfsRpcQueryUsersOnFile

message to the server to retrieve the list of authorized user certificates. After this call succeeds,
Windows Explorer retrieves the list of authorized DRAs for the file by sending an
EfsRpcQueryRecoveryAgents message to the server. The authorized user certificates and DRAs are
then displayed in the user interface. The User can now see that he or she is currently the only user
authorized to access the file.

The User then accesses the user interface to select the Colleague's user certificate, and chooses to
authorize this user certificate to access the file. The Windows Explorer user interface sends an

EfsRpcAddUsersToFile message to the server, which processes the request successfully. The Windows
Explorer user interface once again sends an EfsRpcQueryUsersOnFile message and an

EfsRpcQueryRecoveryAgents message to the server. The results are displayed to the User. The User
can now see that both the Colleague and the User are authorized to access the file.

The User then leaves instructions with the Employee to transfer the file to another server, so that the
Colleague can more easily obtain it. (The Employee has backup permissions on Server1 and restore

permissions on Server2, but does not have a user or DRA private key that would allow authorized
access to the encrypted file.) The Employee runs the ntbackup.exe utility to create a backup of the file
from Server1 on the client machine. The ntbackup.exe utility sends an EfsRpcOpenFileRaw message to
Server1. When Server1 responds successfully, the ntbackup.exe utility sends an EfsRpcReadFileRaw
message to Server1 and writes the data returned over the associated pipe to a file on the Employee's
client computer. When Server1 indicates that the end of the file has been reached, the ntbackup.exe
utility sends an EfsRpcCloseRaw message to the Server1. At this point, the Employee has a file on the

client computer that contains the encrypted file from Server1 in the EFSRPC Raw Data Format.

To complete the transfer of the encrypted file from Server1 to Server2, the Employee runs the

ntbackup.exe utility again. This time, ntbackup.exe is invoked to restore the file on to Server2 from
the backup file on the Employee's client computer. The ntbackup.exe utility sends an
EfsRpcOpenFileRaw message to Server2. After receiving a successful response from Server2, the
ntbackup.exe utility sends an EfsRpcWriteFileRaw message to Server2. The ntbackup.exe utility reads
the data from the EFSRPC Raw Data Format file and sends that data over the pipe associated with the

EfsRpcWriteFileRaw message. When the end of the EFSRPC Raw Data Format file has been reached,
the ntbackup.exe utility flushes the pipe by performing a 0-byte write, and sends an EfsRpcCloseRaw
message to Server2.

75 / 92

[MS-EFSR-Diff] - v20210625
Encrypting File System Remote (EFSRPC) Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

Now, the encrypted file has been recreated on Server2. The Colleague can access this file using SMB
and work with it as needed. The User has successfully utilized EFSRPC to allow the Colleague access to

a critical file, using only secure EFSRPC methods.

76 / 92

[MS-EFSR-Diff] - v20210625
Encrypting File System Remote (EFSRPC) Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

5 Security

5.1 Security Considerations for Implementers

It is recommended that encrypted data be stored so as to minimize the risk of information disclosure

in case of offline attack. In particular, the plaintext of encrypted objects and all keying material are to
be treated as highly sensitive information. It is also important to protect against attackers substituting
user's certificates and private keys with those of their choosing.

The EFSRPC raw methods are used for backup and restoration of encrypted data. Because this data
typically has high value, it is recommended that these methods be implemented so as to avoid
exposing any plaintext to the caller or to an eavesdropper Implementing some form of integrity

protection is advised to avoid man-in-the-middle attacks, where a malicious adversary can modify the
contents of the marshaled data in transit. Windows Vista operating system and Windows Server 2008
operating system use packet privacy to achieve this, as described in section 2.1.

Carefully choosing an encryption algorithm and a key length that are appropriate for the use scenario
is recommended. For example, in version 1 of the protocol, it is recommended that the export version
of CALG_DESX described in this document be avoided. It is no longer considered secure against brute
force attacks. The use of CALG_3DES is also deprecated at present. The use of CALG_AES_256 is

strongly recommended. When using RSA for asymmetric cryptography, it is currently recommended
that the keys used be at least 2,048 bits long.

5.2 Index of Security Parameters

 Security Parameter Section

Transport security on EFSRPC calls 2.1

Use of RPC security 2.1

Encryption algorithms 2.2.14

77 / 92

[MS-EFSR-Diff] - v20210625
Encrypting File System Remote (EFSRPC) Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

6 Appendix A: Full IDL

 For ease of implementation, the full Interface Definition Language (IDL) is provided here, where "ms-
dtyp.idl" is the IDL found in [MS-DTYP] Appendix A.

This IDL does not include a pointer_default declaration. As noted in [MS-RPCE], this declaration is not
required in MIDL, and, in this case, pointer_default(unique) is assumed.

 import "ms-dtyp.idl";

 [
 uuid(c681d488-d850-11d0-8c52-00c04fd90f7e),
 version(1.0),
]
 interface efsrpc
 {

 typedef [context_handle] void * PEXIMPORT_CONTEXT_HANDLE;

 typedef pipe unsigned char EFS_EXIM_PIPE;

 typedef struct _EFS_RPC_BLOB {
 [range(0,266240)] DWORD cbData;
 [size_is(cbData)] unsigned char * bData;
 } EFS_RPC_BLOB,
 *PEFS_RPC_BLOB;

 typedef struct {
 DWORD EfsVersion;
 } EFS_COMPATIBILITY_INFO;

 typedef unsigned int ALG_ID;

 typedef struct _EFS_HASH_BLOB {
 [range(0,100)] DWORD cbData;
 [size_is(cbData)] unsigned char * bData;
 } EFS_HASH_BLOB;

 typedef struct _ENCRYPTION_CERTIFICATE_HASH {
 DWORD cbTotalLength;
 RPC_SID * UserSid;
 EFS_HASH_BLOB * Hash;
 [string] wchar_t * lpDisplayInformation;
 } ENCRYPTION_CERTIFICATE_HASH;

 typedef struct _ENCRYPTION_CERTIFICATE_HASH_LIST {
 [range(0,500)] DWORD nCert_Hash;
 [size_is(nCert_Hash ,)] ENCRYPTION_CERTIFICATE_HASH ** Users;
 } ENCRYPTION_CERTIFICATE_HASH_LIST;

 typedef struct _CERTIFICATE_BLOB {
 DWORD dwCertEncodingType;
 [range(0,32768)] DWORD cbData;
 [size_is(cbData)] unsigned char * bData;
 } EFS_CERTIFICATE_BLOB;

 typedef struct _ENCRYPTION_CERTIFICATE {
 DWORD cbTotalLength;
 RPC_SID * UserSid;
 EFS_CERTIFICATE_BLOB * CertBlob;
 } ENCRYPTION_CERTIFICATE;

78 / 92

[MS-EFSR-Diff] - v20210625
Encrypting File System Remote (EFSRPC) Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

 typedef struct _ENCRYPTION_CERTIFICATE_LIST {
 [range(0,500)] DWORD nUsers;
 [size_is(nUsers ,)] ENCRYPTION_CERTIFICATE ** Users;
 } ENCRYPTION_CERTIFICATE_LIST;

 typedef struct _ENCRYPTED_FILE_METADATA_SIGNATURE {
 DWORD dwEfsAccessType;
 ENCRYPTION_CERTIFICATE_HASH_LIST * CertificatesAdded;
 ENCRYPTION_CERTIFICATE * EncryptionCertificate;
 EFS_RPC_BLOB * EfsStreamSignature;
 } ENCRYPTED_FILE_METADATA_SIGNATURE;

 typedef struct {
 DWORD dwVersion;
 unsigned long Entropy;
 ALG_ID Algorithm;
 unsigned long KeyLength;
 } EFS_KEY_INFO;

 typedef struct {
 DWORD dwDecryptionError;
 DWORD dwHashOffset;
 DWORD cbHash;
 } EFS_DECRYPTION_STATUS_INFO;

 typedef struct {
 BOOL bHasCurrentKey;
 DWORD dwEncryptionError;
 } EFS_ENCRYPTION_STATUS_INFO;

 typedef struct _ENCRYPTION_PROTECTOR {
 DWORD cbTotalLength;
 RPC_SID* UserSid;
 [string] wchar_t* lpProtectorDescriptor;
 } ENCRYPTION_PROTECTOR, * PENCRYPTION_PROTECTOR;

 typedef struct _ENCRYPTION_PROTECTOR_LIST {
 DWORD nProtectors;
 [size_is(nProtectors)] PENCRYPTION_PROTECTOR* pProtectors;
} ENCRYPTION_PROTECTOR_LIST, *PENCRYPTION_PROTECTOR_LIST;

 long EfsRpcOpenFileRaw(
 [in] handle_t binding_h,
 [out] PEXIMPORT_CONTEXT_HANDLE * hContext,
 [in, string] wchar_t * FileName,
 [in] long Flags
);

 long EfsRpcReadFileRaw(
 [in] PEXIMPORT_CONTEXT_HANDLE hContext,
 [out] EFS_EXIM_PIPE * EfsOutPipe
);

 long EfsRpcWriteFileRaw(
 [in] PEXIMPORT_CONTEXT_HANDLE hContext,
 [in] EFS_EXIM_PIPE * EfsInPipe
);

 void EfsRpcCloseRaw(
 [in, out] PEXIMPORT_CONTEXT_HANDLE * hContext
);

 long EfsRpcEncryptFileSrv(
 [in] handle_t binding_h,
 [in, string] wchar_t * FileName
);

79 / 92

[MS-EFSR-Diff] - v20210625
Encrypting File System Remote (EFSRPC) Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

 long EfsRpcDecryptFileSrv(
 [in] handle_t binding_h,
 [in, string] wchar_t * FileName,
 [in] unsigned long OpenFlag
);

 DWORD EfsRpcQueryUsersOnFile(
 [in] handle_t binding_h,
 [in, string] wchar_t * FileName,
 [out] ENCRYPTION_CERTIFICATE_HASH_LIST ** Users
);

 DWORD EfsRpcQueryRecoveryAgents(
 [in] handle_t binding_h,
 [in, string] wchar_t * FileName,
 [out] ENCRYPTION_CERTIFICATE_HASH_LIST ** RecoveryAgents
);

 DWORD EfsRpcRemoveUsersFromFile(
 [in] handle_t binding_h,
 [in, string] wchar_t * FileName,
 [in] ENCRYPTION_CERTIFICATE_HASH_LIST * Users
);

 DWORD EfsRpcAddUsersToFile(
 [in] handle_t binding_h,
 [in, string] wchar_t * FileName,
 [in] ENCRYPTION_CERTIFICATE_LIST * EncryptionCertificates
);

 //local only method
 void Opnum10NotUsedOnWire(void);

 DWORD EfsRpcNotSupported(
 [in] handle_t binding_h,
 [in, string] wchar_t * Reserved1,
 [in, string] wchar_t * Reserved2,
 [in] DWORD dwReserved1,
 [in] DWORD dwReserved2,
 [in, unique] EFS_RPC_BLOB * Reserved,
 [in] BOOL bReserved
);

 DWORD EfsRpcFileKeyInfo(
 [in] handle_t binding_h,
 [in, string] wchar_t * FileName,
 [in] DWORD InfoClass,
 [out] EFS_RPC_BLOB ** KeyInfo
);

 DWORD EfsRpcDuplicateEncryptionInfoFile(
 [in] handle_t binding_h,
 [in, string] wchar_t * SrcFileName,
 [in, string] wchar_t * DestFileName,
 [in] DWORD dwCreationDisposition,
 [in] DWORD dwAttributes,
 [in, unique] EFS_RPC_BLOB * RelativeSD,
 [in] BOOL bInheritHandle
);

 //local only method
 void Opnum14NotUsedOnWire(void);

 DWORD EfsRpcAddUsersToFileEx(
 [in] handle_t binding_h,
 [in] DWORD dwFlags,
 [in, unique] EFS_RPC_BLOB * Reserved,
 [in, string] wchar_t * FileName,
 [in] ENCRYPTION_CERTIFICATE_LIST * EncryptionCertificates

80 / 92

[MS-EFSR-Diff] - v20210625
Encrypting File System Remote (EFSRPC) Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

);

 DWORD EfsRpcFileKeyInfoEx(
 [in] handle_t binding_h,
 [in] DWORD dwFileKeyInfoFlags,
 [in, unique] EFS_RPC_BLOB * Reserved,
 [in, string] wchar_t * FileName,
 [in] DWORD InfoClass,
 [out] EFS_RPC_BLOB ** KeyInfo
);

 //local only method
 void Opnum17NotUsedOnWire(void);

 DWORD EfsRpcGetEncryptedFileMetadata(
 [in] handle_t binding_h,
 [in, string, ref] wchar_t * FileName,
 [out, ref] EFS_RPC_BLOB ** EfsStreamBlob
);

 DWORD EfsRpcSetEncryptedFileMetadata(
 [in] handle_t binding_h,
 [in, string, ref] wchar_t * FileName,
 [in, unique] EFS_RPC_BLOB * OldEfsStreamBlob,
 [in, ref] EFS_RPC_BLOB * NewEfsStreamBlob,
 [in, unique] ENCRYPTED_FILE_METADATA_SIGNATURE * NewEfsSignature
);

 DWORD EfsRpcFlushEfsCache(
 [in] handle_t binding_h
);

 long EfsRpcEncryptFileExSrv(
 [in] handle_t binding_h,
 [in, string] wchar_t* FileName,
 [in, string, unique] wchar_t* ProtectorDescriptor,
 [in] unsigned long Flags
);

 DWORD EfsRpcQueryProtectors(
 [in] handle_t binding_h,
 [in, string] wchar_t* FileName,
 [out] PENCRYPTION_PROTECTOR_LIST **ppProtectorList
);

 //local only method
 void Opnum23NotUsedOnWire(void);

 //local only method
 void Opnum24NotUsedOnWire(void);

 //local only method
 void Opnum25NotUsedOnWire(void);

 //local only method
 void Opnum26NotUsedOnWire(void);

 //local only method
 void Opnum27NotUsedOnWire(void);

 //local only method
 void Opnum28NotUsedOnWire(void);

 //local only method
 void Opnum29NotUsedOnWire(void);

 //local only method
 void Opnum30NotUsedOnWire(void);

 //local only method

81 / 92

[MS-EFSR-Diff] - v20210625
Encrypting File System Remote (EFSRPC) Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

 void Opnum31NotUsedOnWire(void);

 //local only method
 void Opnum32NotUsedOnWire(void);

 //local only method
 void Opnum33NotUsedOnWire(void);

 //local only method
 void Opnum34NotUsedOnWire(void);

 //local only method
 void Opnum35NotUsedOnWire(void);

 //local only method
 void Opnum36NotUsedOnWire(void);

 //local only method
 void Opnum37NotUsedOnWire(void);

 //local only method
 void Opnum38NotUsedOnWire(void);

 //local only method
 void Opnum39NotUsedOnWire(void);

 //local only method
 void Opnum40NotUsedOnWire(void);

 //local only method
 void Opnum41NotUsedOnWire(void);

 //local only method
 void Opnum42NotUsedOnWire(void);

 //local only method
 void Opnum43NotUsedOnWire(void);

 //local only method
 void Opnum44NotUsedOnWire(void);
 }

82 / 92

[MS-EFSR-Diff] - v20210625
Encrypting File System Remote (EFSRPC) Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

7 (Updated Section) Appendix B: Product Behavior

The information in this specification is applicable to the following Microsoft products or supplemental
software. References to product versions include updates to those products.

▪ Windows 2000 operating system

▪ Windows XP operating system

▪ Windows Server 2003 operating system

▪ Windows Vista operating system

▪ Windows Server 2008 operating system

▪ Windows 7 operating system

▪ Windows Server 2008 R2 operating system

▪ Windows 8 operating system

▪ Windows Server 2012 operating system

▪ Windows 8.1 operating system

▪ Windows Server 2012 R2 operating system

▪ Windows 10 operating system

▪ Windows Server 2016 operating system

▪ Windows Server operating system

▪ Windows Server 2019 operating system

▪ Windows Server 2022 operating system

▪ Windows 11 operating system

Exceptions, if any, are noted in this section. If an update version, service pack or Knowledge Base
(KB) number appears with a product name, the behavior changed in that update. The new behavior
also applies to subsequent updates unless otherwise specified. If a product edition appears with the
product version, behavior is different in that product edition.

Unless otherwise specified, any statement of optional behavior in this specification that is prescribed
using the terms "SHOULD" or "SHOULD NOT" implies product behavior in accordance with the

SHOULD or SHOULD NOT prescription. Unless otherwise specified, the term "MAY" implies that the
product does not follow the prescription.

<1> Section 1.5: EFSRPC calls to a Windows-based EFSRPC server will fail, returning an error, if the
server is running an edition of the operating system that does not include EFS. Specifically, Windows

XP Home Edition operating system and Windows XP Starter Edition operating system editions of
Windows do not include EFS functionality and do not support EFSRPC.

Windows 2000, Windows XP, and Windows Server 2003 do not use SSPI to secure the EFSRPC raw
methods; otherwise, Windows does use SSPI to secure the EFSRPC raw methods. For more details,
see the product behavior notes in Appendix B regarding section 2.1.

<2> Section 1.5: The Windows 2000 implementation supports EFSRPC in workgroup settings and on
domain-joined computers that are not configured for Kerberos delegation.

83 / 92

[MS-EFSR-Diff] - v20210625
Encrypting File System Remote (EFSRPC) Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

<3> Section 2.1: Windows 2000, Windows XP, Windows Server 2003, Windows Vista, and Windows
Server 2008 servers listen for EFSRPC messages only on the well-known endpoint \pipe\lsarpc.

Otherwise, Windows based servers listen for EFSRPC messages on both \pipe\lsarpc and \pipe\efsrpc.

<4> Section 2.1: Windows EFSRPC servers register the RPC_C_AUTHN_LEVEL_PKT_PRIVACY security

provider.

Windows clients attempt to negotiate the use of this provider for the EFSRPC raw methods with
RPC_C_AUTHN_GSS_NEGOTIATE, and can be configured to require its use.

Windows 2000, Windows XP, and Windows Server 2003 neither register this provider on the server
nor attempt to use it on the client.

:<5> Section 2.2.1: Windows implementations restrict file and folder names to 5,120 Unicode
characters, not including the null terminator. An error is returned if this limit is exceeded.

<6> Section 2.2.2.1: Windows implementations place an upper limit of 262,144 bytes on the length of

the EFSRPC Metadata. Windows servers will return an error when passed EFSRPC Metadata that
exceeds this limit, or when an EFSRPC call would require Windows servers to create or extend a file’s
EFSRPC Metadata beyond this limit.

<7> Section 2.2.2.1: Windows 2000 supports only version 1. Windows XP and Windows Server 2003
support only versions 1 and 2.

<8> Section 2.2.2.1: The Windows 2000 implementation sets this field to the MD5 hash of the
complete EFSRPC Metadata, computed with the EFS hash field set to zero. The Windows 2000
implementation will also verify the checksum whenever EFSRPC Metadata is passed to it, and will
return an error in case of a mismatch.

<9> Section 2.2.2.1.2: This value is unsupported on Windows 2000, Windows XP, and Windows
Server 2003. These versions of Windows set this field to zero when creating the EFSRPC Metadata,
ignore its value when processing the metadata, and expect the FEK to be encrypted using RSA.

<10> Section 2.2.2.1.5: A Windows EFSRPC server will return an error if the total length of this
structure exceeds 1,086 bytes.

<11> Section 2.2.2.2: Windows 2000, Windows XP, Windows Server 2003, Windows Vista, Windows
Server 2008, Windows 7, Windows Server 2008 R2 operating system, Windows 8, Windows Server
2012 operating system, Windows 8.1, and Windows Server 2012 R2 do not support EFS Version 5.

<12> Section 2.2.2.2:

Windows 2000, Windows XP, Windows Server 2003, Windows Vista, and Windows Server 2008 do not

support Version 2 of the EFSRPC Metadata.

Windows servers only generate Version 2 metadata for encrypted files when an ECDH protector is
added to an encrypted file. This could happen through any of the below procedures:

▪ Calling EfsRpcAddUsers* with at least one ECDH certificate. If the existing file has version 1
metadata, it is updated to version 2 before adding the new certificate.

▪ A file is encrypted and the user's current key is an ECDH certificate.

▪ DRA policy specifies at least one ECDH certificate.

<13> Section 2.2.2.2: Windows implementations place an upper limit of 262,144 bytes on the length
of the EFSRPC Metadata. Windows servers will return an error when passed EFSRPC Metadata that
exceeds this limit, or when an EFSRPC call would require Windows servers to create or extend a file’s
EFSRPC Metadata beyond this limit.

84 / 92

[MS-EFSR-Diff] - v20210625
Encrypting File System Remote (EFSRPC) Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

<14> Section 2.2.2.2.2: Windows 2000, Windows XP, Windows Server 2003, Windows Vista,
Windows Server 2008, Windows 7, Windows Server 2008 R2, Windows 8, Windows Server 2012,

Windows 8.1, and Windows Server 2012 R2 do not support the protection descriptor string.

<15> Section 2.2.2.2.2: Windows 2000, Windows XP, Windows Server 2003, Windows Vista,

Windows Server 2008, Windows 7, Windows Server 2008 R2, Windows 8, Windows Server 2012,
Windows 8.1, and Windows Server 2012 R2 do not support EFSX_TYPE_DPAPI_NG_DATA.

<16> Section 2.2.2.2.3: Windows 2000, Windows XP, Windows Server 2003, Windows Vista,
Windows Server 2008, Windows 7, Windows Server 2008 R2, Windows 8, Windows Server 2012,
Windows 8.1, and Windows Server 2012 R2 do not support this value.

<17> Section 2.2.2.3: Windows 2000, Windows XP, Windows Server 2003, Windows Vista, Windows
Server 2008, Windows 7, Windows Server 2008 R2, Windows 8, Windows Server 2012, Windows 8.1,

and Windows Server 2012 R2 do not support EFS Version 6.

<18> Section 2.2.2.3: Windows 2000, Windows XP, Windows Server 2003, Windows Vista, Windows
Server 2008, Windows 7, Windows Server 2008 R2, Windows 8, Windows Server 2012, Windows 8.1,

and Windows Server 2012 R2 do not support Version 3 of the EFSRPC Metadata. Otherwise, servers
only generate Version 3 metadata for encrypted files when an RMS protector is added to an encrypted
file.

<19> Section 2.2.3.3: Windows 2000, Windows XP, Windows Server 2003, Windows Vista, and
Windows Server 2008 ignore this field.

<20> Section 2.2.6: The Windows implementation of the EFSRPC server returns an error if the size of
this encoded certificate exceeds 32 kilobytes. This restriction is represented in the range attribute of
cbData.

<21> Section 2.2.7: As a defensive measure against overflow attacks, the Windows implementation
of the EFSRPC server restricts the size of the bData field to 100 bytes, and returns an error if this size

is exceeded. This restriction is represented by the range attribute of cbData.

<22> Section 2.2.9: As a defensive measure against overflow attacks, the Windows implementation

of the EFSRPC server restricts the number of entries in this array to 500, and returns an error if this
size is exceeded. This restriction is represented in the range attribute of nUsers.

<23> Section 2.2.11: As a defensive measure against overflow attacks, the Windows implementation
of the EFSRPC server restricts the number of entries in this array to 500, and returns an error if this
size is exceeded. This restriction is represented in the range attribute of nCert_Hash.

<24> Section 2.2.12: As a defensive measure against overflow attacks, the Windows implementation
of the EFSRPC server restricts the size of this object to 260 kilobytes, and returns an error if this size
is exceeded. This restriction is represented in the range attribute of cbData.

<25> Section 2.2.13: Windows 2000 does not support either of these algorithms. Windows XP only
supports CALG_3DES.

<26> Section 2.2.13: Windows 2000 supports only the following algorithms.

Algorithm used Value for ALG_ID Entropy Key length

CALG_DESX (domestic) 0x6604 128 16

CALG_DESX (export) 0x6604 56 16

In the preceding table, the difference between entropy and key length for CALG_DESX (export) exists
only because the first 56 bits are random and the rest are set to zero.

85 / 92

[MS-EFSR-Diff] - v20210625
Encrypting File System Remote (EFSRPC) Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

Otherwise, when accessing existing encrypted objects Windows support the two CALG_DESX
algorithms.

When creating new encrypted objects, Windows XP, Windows Server 2003, Windows Vista, and
Windows Server 2008 support the two CALG_DESX algorithms only if allowed by the prevailing policy.

<27> Section 2.2.13: When accessing existing encrypted objects, Windows implementations do not
restrict the set of supported algorithms according to policy.

When creating new encrypted objects, Windows implementations restrict the algorithm according to
the FIPSAlgorithmPolicy setting defined in the following registry locations.

Operatin
g system Registry key Registry value Type

Windows
XP/Windo
ws Server
2003

HKLM\System\CurrentControlSet\Control\Lsa FIPSAlgorithmPo
licy

REG_DWO
RD

Windows
Vista/
Windows
Server
2008

Windows
7/Window
s Server
2008 R2

Windows
8/Window
s Server

2012

HKLM\System\CurrentControlSet\Control\Lsa\FIPSAlgo
rithmPolicy

Enabled REG_DWO
RD

On Windows XP and Windows Server 2003, if the value is nonzero (enabled), newly created encrypted
objects are restricted to using the CALG_3DES algorithm.

Otherwise, on Windows if the value is not zero (enabled), newly created encrypted objects are
restricted to using the CALG_AES_256 algorithm.

<28> Section 2.2.15: Windows compatibility with EFSRPC Metadata versions is summarized by the

following table.

EfsVersion Minimum operating system

1 Windows 2000

2 Windows XP / Windows Server 2003

3 Windows Vista / Windows Server 2008

4 Windows 7 / Windows Server 2008 R2

5 Windows 8.1 / Windows Server 2012 R2

6 Windows 10 / Windows Server 2016 / Windows Server operating system / Windows Server 2019 /
Windows Server 2022 / Windows 11

86 / 92

[MS-EFSR-Diff] - v20210625
Encrypting File System Remote (EFSRPC) Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

<29> Section 2.2.19: The ENCRYPTION_PROTECTOR structure is available on Windows 2000,
Windows XP, Windows Server 2003, Windows Vista, Windows Server 2008, Windows 7, Windows

Server 2008 R2, Windows 8, Windows Server 2012, Windows 8.1, and Windows Server 2012 R2.

<30> Section 2.2.20: The ENCRYPTION_PROTECTOR_LIST structure is not available on Windows

2000, Windows XP, Windows Server 2003, Windows Vista, Windows Server 2008, Windows 7,
Windows Server 2008 R2, Windows 8, Windows Server 2012, Windows 8.1, and Windows Server 2012
R2.

<31> Section 3: Windows EFSRPC client implementations attempt to negotiate the
RPC_C_AUTHN_LEVEL_PKT_PRIVACY option with RPC_C_AUTHN_GSS_NEGOTIATE. If an error is
encountered and the client is not configured to require security, the client falls back to connecting over
an unsecured RPC connection.

Windows 2000, Windows XP, and Windows Server 2003 do not support this option; they neither
register any SSPI providers on the server side nor request any on the client side.

<32> Section 3.1.1: RMS template GUID and DPAPI-NG protection rule are not supported on

Windows 2000, Windows XP, Windows Server 2003, Windows Vista, Windows Server 2008, Windows
7, Windows Server 2008 R2, Windows 8, Windows Server 2012, Windows 8.1, and Windows Server
2012 R2.

<33> Section 3.1.3: Windows will register an SSPI provider to support
RPC_C_AUTHN_LEVEL_PKT_PRIVACY.

Windows 2000, Windows XP, and Windows Server 2003 do not support this option.

<34> Section 3.1.4.2: Windows 2000 supports methods with opnums 0 through 11. For opnum 11, it
behaves as the EfsRpcDuplicateEncryptionInfoFile method. Windows XP and Windows Server 2003
support opnum 0 through opnum 13, with opnum 11 being implemented as the EfsRpcNotSupported
method.

The EfsRpcEncryptFileExSrv and EfsRpcQueryProtectors methods are not supported on Windows
2000, Windows XP, Windows Server 2003, Windows Vista, Windows Server 2008, Windows 7,

Windows Server 2008 R2, Windows 8, Windows Server 2012, Windows 8.1, and Windows Server 2012
R2.

<35> Section 3.1.4.2: Gaps in the opnum numbering sequence apply to Windows as follows.

Opnum Description

10 Only used locally by Windows, never remotely.

14 Only used locally by Windows, never remotely.

17 Only used locally by Windows, never remotely.

23-44 Only used locally by Windows, never remotely.

<36> Section 3.1.4.2: Implementations of nonstandard behavior for deprecated methods in Windows

are summarized below. See the behavior notes for each corresponding method section for details of
nonstandard behavior on each Windows implementation.

Method Opnum Operating System

EfsRpcNotSupported 11 Windows 2000

EfsRpcFileKeyInfoEx 16 Windows Vista, Windows Server 2008

87 / 92

[MS-EFSR-Diff] - v20210625
Encrypting File System Remote (EFSRPC) Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

Method Opnum Operating System

EfsRpcGetEncryptedFileMetadata 18 Windows Vista, Windows Server 2008

EfsRpcSetEncryptedFileMetadata 19 Windows Vista, Windows Server 2008

<37> Section 3.1.4.2: Windows 2000 returns ERROR_NO_RECOVERY_POLICY (specified in [MS-

ERREF]).

<38> Section 3.1.4.2.1: If the CREATE_FOR_DIR flag is set, and the CREATE_FOR_IMPORT flag
is also set, Windows will attempt to create a folder with the specified name instead of a file.

<39> Section 3.1.4.2.11: Windows 2000 responds to this opnum as described in section 3.1.4.2.13.

<40> Section 3.1.4.2.11: Windows 2000 performs the processing specified in section 3.1.4.2.13.

<41> Section 3.1.4.2.12: UPDATE_KEY_USED is only supported on Windows Server 2003.
CHECK_DECRYPTION_STATUS and CHECK_ENCRYPTION_STATUS are not supported on Windows XP

or Windows Server 2003. CHECK_COMPATIBILITY_INFO is not supported on Windows XP, Windows
Server 2003, Windows Vista, or Windows Server 2008.

<42> Section 3.1.4.2.12: Windows Server 2003 requires that UPDATE_KEY_USED only be used with a
folder name. If not, an error is returned.

<43> Section 3.1.4.2.12: Windows Server 2003 updates the EFSRPC Metadata of all the encrypted
files and folders accessible by the calling user in the FileName parameter or one of its subfolders to
use a single user certificate for that user.

<44> Section 3.1.4.2.13: The data portion of the EFS_RPC_BLOB structure is expected to contain a
security descriptor. This is an opaque data type in Windows that is best manipulated only indirectly
through the APIs provided for this purpose, as specified in [MS-DTYP] sections 2.4.6 and 2.5.

<45> Section 3.1.4.2.13: The EfsRpcDuplicateEncryptionInfoFile method was associated with opnum
11 in Windows 2000; therefore, it cannot be used between a Windows 2000 client and a server
running a different version of Windows, or vice versa.

<46> Section 3.1.4.2.13: For files using version 1 of the EFSRPC Metadata, Windows based servers
will generate a new FEK for the DestFileName parameter if only one user has access to the
SrcFileName parameter. This is to ensure that users who get access to one of the two files at a later
date do not automatically get the ability to decrypt the other file. Windows 2000 does not do this.

For files using version 2 of the EFSRPC Metadata, Windows 7, Windows Server 2008 R2, Windows 8,
Windows Server 2012, Windows 8.1, Windows Server 2012 R2, Windows 10, Windows Server 2016,
Windows Server operating system, Windows Server 2019, Windows Server 2022, and Windows Server

202211 servers will always generate a new file IV for the DestFileName parameter, and will generate a
new FEK/FMK for the DestFileName parameter if no legacy RSA user protectors exist on the
SrcFileName parameter. Windows 2000, Windows XP, Windows Server 2003, Windows Vista, and
Windows Server 2008 do not do this.

<47> Section 3.1.4.2.15: Windows Vista and Windows Server 2008 implement this method identically
to the implementation of EfsRpcFileKeyInfo, ignoring the dwFileKeyInfoFlags and Reserved
parameters.

<48> Section 3.1.4.2.15: Windows Vista and Windows Server 2008 use this parameter in the manner
identical to how it is used in the implementation of EfsRpcFileKeyInfo.

<49> Section 3.1.4.2.15: Windows Vista and Windows Server 2008 return "0" if all conditions listed in
the description for EfsRpcFileKeyInfo are met.

88 / 92

[MS-EFSR-Diff] - v20210625
Encrypting File System Remote (EFSRPC) Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

<50> Section 3.1.4.2.16: Windows Vista and Windows Server 2008 implement this method in the
following way:

If no object exists with the name specified in the FileName parameter, or if it exists and is not
encrypted, the server returns a nonzero value. Otherwise, the server returns the EFSRPC Metadata of

the object in the EfsStreamBlob parameter, and returns 0 for the method.

<51> Section 3.1.4.2.16: Windows Vista and Windows Server 2008 use this parameter to return the
EFSRPC Metadata associated with the object referred to by FileName.

<52> Section 3.1.4.2.16: Windows Vista and Windows Server 2008 return "0" if all conditions listed in
the first Product Behavior note for this section are met.

<53> Section 3.1.4.2.17: Windows Vista and Windows Server 2008 implement this method in the
following way:

If no object exists on the server with the name specified in the FileName parameter, or if it exists and
is not encrypted, the server returns a nonzero value.

If an encrypted object exists with the name specified in the FileName parameter, and its metadata
does not match exactly with the contents of the OldEfsStreamBlob parameter, the server returns a
nonzero value.

If the NewEfsSignature field is non-NULL and the certificate thumbprint in that field does not

correspond to a certificate whose corresponding private key is capable of decrypting the object, the
server returns a nonzero value.

If the NewEfsSignature field is NULL and the calling user does not have access to any private key
that can decrypt the object, the server returns a nonzero value.

If the NewEfsStreamBlob parameter does not satisfy the Windows Vista and Windows Server 2008
requirements for the syntax of EFSRPC Metadata, the server returns a nonzero value.

If none of the preceding conditions are true, then the server replaces the object's EFSRPC Metadata

with the contents of the NewEfsStreamBlob and returns a 0 value.

<54> Section 3.1.4.2.17: Windows Vista and Windows Server 2008 expect this parameter to be the
existing EFSRPC Metadata on the object referred to by FileName. If this parameter is not NULL,
Windows Vista and Windows Server 2008 will return an error if the metadata does not match the
existing EFSRPC Metadata on the object.

<55> Section 3.1.4.2.17: Windows Vista and Windows Server 2008 expect this parameter to be the
new EFSRPC Metadata (as specified in section 2.2.2) intended for the object, and will return an error if

this is not so.

<56> Section 3.1.4.2.17: Windows Vista and Windows Server 2008 expect that if this parameter is
not NULL, it contains an X.509 certificate whose corresponding private key already has the ability to
decrypt the object and the signature over the new EFSRPC Metadata with this key, and will return an
error if this is not so.

<57> Section 3.1.4.2.17: Windows Vista and Windows Server 2008 return 0 if all conditions listed in

the first Product Behavior note for this section are met and the new EFSRPC Metadata on the file or
folder is successfully modified.

<58> Section 3.1.4.2.19: The EfsRpcEncryptFileExSrv method is not available on Windows 2000,
Windows XP, Windows Server 2003, Windows Vista, Windows Server 2008, Windows 7, Windows
Server 2008 R2, Windows 8, Windows Server 2012, Windows 8.1, and Windows Server 2012 R2.

<59> Section 3.1.4.2.20: The EfsRpcQueryProtectors method is not available on Windows 2000,
Windows XP, Windows Server 2003, Windows Vista, Windows Server 2008, Windows 7, Windows

Server 2008 R2, Windows 8, Windows Server 2012, Windows 8.1, and Windows Server 2012 R2.

89 / 92

[MS-EFSR-Diff] - v20210625
Encrypting File System Remote (EFSRPC) Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

8 Change Tracking

This section identifies changes that were made to this document since the last release. Changes are
classified as Major, Minor, or None.

The revision class Major means that the technical content in the document was significantly revised.
Major changes affect protocol interoperability or implementation. Examples of major changes are:

▪ A document revision that incorporates changes to interoperability requirements.

▪ A document revision that captures changes to protocol functionality.

The revision class Minor means that the meaning of the technical content was clarified. Minor changes
do not affect protocol interoperability or implementation. Examples of minor changes are updates to
clarify ambiguity at the sentence, paragraph, or table level.

The revision class None means that no new technical changes were introduced. Minor editorial and
formatting changes may have been made, but the relevant technical content is identical to the last

released version.

The changes made to this document are listed in the following table. For more information, please
contact dochelp@microsoft.com.

Section Description Revision class

7 Appendix B: Product Behavior Updated for this version of Windows Client. Major

90 / 92

[MS-EFSR-Diff] - v20210625
Encrypting File System Remote (EFSRPC) Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

9 Index
A

Abstract data model 49
 server 49
Applicability 17
Application Requests for a User-Certificate Binding method 51

B

Blob_Datum packet 31

C

Capability negotiation 17
CERTIFICATE_DATA packet 25
Change tracking 89
Common data types 19

D

Data model - abstract 49
 server 49
Data types 19
 common - overview 19
DATA_SEGMENT_ENCRYPTION_HEADER packet 40
Descriptor_Datum packet 32

E

EFS_CERTIFICATE_BLOB structure 42
EFS_COMPATIBILITY_INFO structure 45
EFS_DECRYPTION_STATUS_INFO structure 46
EFS_ENCRYPTION_STATUS_INFO structure 46
EFS_HASH_BLOB structure 43
EFS_KEY_INFO structure 45
EFS_RPC_BLOB structure 44
EFSRPC Interface method 53
EFSRPC_METADATA_V1 packet 20
EfsRpcAddUsersToFile method 63
EfsRpcAddUsersToFileEx method 67
EfsRpcCloseRaw method 60
EfsRpcDecryptFileSrv method 61
EfsRpcDuplicateEncryptionInfoFile method 66
EfsRpcEncryptFileSrv method (section 3.1.4.2.5 60, section 3.1.4.2.19 70)
EfsRpcFileKeyInfo method 64

EfsRpcFileKeyInfoEx method 68
EfsRpcFlushEfsCache method 70
EfsRpcGetEncryptedFileMetadata method 69
EfsRpcNotSupported method 63
EfsRpcOpenFileRaw method 57
EfsRpcQueryRecoveryAgents method 62
EfsRpcQueryUsersOnFile method (section 3.1.4.2.7 61, section 3.1.4.2.20 73, section 7 82)
EfsRpcReadFileRaw method 59
EfsRpcRemoveUsersFromFile method 62
EfsRpcSetEncryptedFileMetadata method 69
EfsRpcWriteFileRaw method 59
EFSX_Datum packet 29
ENCRYPTED_FILE_METADATA_SIGNATURE structure 46
ENCRYPTION_CERTIFICATE structure (section 2.2.8 43, section 2.2.19 47)
ENCRYPTION_CERTIFICATE_HASH structure 44
ENCRYPTION_CERTIFICATE_HASH_LIST structure 44

91 / 92

[MS-EFSR-Diff] - v20210625
Encrypting File System Remote (EFSRPC) Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

ENCRYPTION_CERTIFICATE_LIST structure (section 2.2.9 43, section 2.2.20 47)
Events
 local - server 73
 timer - server 73
Examples 74
 overview 74
Extended Header packet 42

F

FEK packet 26
Fek_Info packet 34
Fields - vendor-extensible 18
Full IDL 77

G

Glossary 6

I

Identifiers 19
IDL 77
Implementer - security considerations 76
Implementer considerations - security 76
Index of security parameters (section 5.2 76, section 6 77)
Informative references 11
Initialization 51
 server 51
Introduction 6

K

KEY_LIST packet 22
KEY_LIST_ENTRY packet 22

L

Local events 73

 server 73

M

MARSHALED_STREAM packet 38
Message processing 53
Messages
 common data types 19
 transport 19
Methods
 Application Requests for a User-Certificate Binding 51
 EFSRPC Interface 53

N

Normative references 11

O

Overview (synopsis) 12

P

Parameters - security index 76
Parameters index - security 77

92 / 92

[MS-EFSR-Diff] - v20210625
Encrypting File System Remote (EFSRPC) Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

PEFS_RPC_BLOB 44
Preconditions 17
Prerequisites 17
Product behavior 82
Protector_Info_Datum packet 33
Protector_List packet 29
Protector_List_Entry packet 32
Protocol Details
 overview 49
Public_Key_Information packet 23

R

Raw data format 37
RAW_DATA packet 37
References 10
 informative 11

 normative 11
Relationship to other protocols 16

S

Security
 implementer considerations 76
 parameter index 76
 parameters index 77
Sequencing rules 53
Server
 abstract data model 49
 Application Requests for a User-Certificate Binding method 51
 EFSRPC Interface method 53
 initialization 51
 local events 73
 timer events 73
 timers 51
Standards assignments 18
STREAM_DATA_SEGMENT packet 40

T

Timer events 73
 server 73
Timers 51
 server 51
Tracking changes 89
Transport 19
TS_COMPDESK_REDIRSURF_ASSOC_LSURFACE packet (section 2.2.2.2.7 34, section 2.2.2.2.9 35)

V

Vendor-extensible fields 18
Versioning 17

	1 Introduction
	1.1 (Updated Section) Glossary
	1.2 References
	1.2.1 Normative References
	1.2.2 Informative References

	1.3 Overview
	1.4 Relationship to Other Protocols
	1.5 Prerequisites/Preconditions
	1.6 Applicability Statement
	1.7 Versioning and Capability Negotiation
	1.8 Vendor-Extensible Fields
	1.9 Standards Assignments

	2 Messages
	2.1 Transport
	2.2 Common Data Types
	2.2.1 EFSRPC Identifiers
	2.2.2 EFSRPC Metadata
	2.2.2.1 EFSRPC Metadata Version 1
	2.2.2.1.1 Key List Structure
	2.2.2.1.2 Key List Entry
	2.2.2.1.3 Public Key Information
	2.2.2.1.4 Certificate Data
	2.2.2.1.5 Encrypted FEK

	2.2.2.2 EFSRPC Metadata Version 2
	2.2.2.2.1 Protector List Structure
	2.2.2.2.2 EFSX Datum
	2.2.2.2.3 Blob Datum
	2.2.2.2.4 Descriptor Datum
	2.2.2.2.5 Protector List Entry
	2.2.2.2.6 Protector Info Datum
	2.2.2.2.7 Key Agreement Datum
	2.2.2.2.8 Fek Info Datum
	2.2.2.2.9 DPAPI-NG Datum

	2.2.2.3 EFSRPC Metadata Version 3

	2.2.3 EFSRPC Raw Data Format
	2.2.3.1 Marshaled Stream
	2.2.3.2 Stream Data Segment
	2.2.3.3 Data Segment Encryption Header
	2.2.3.4 Extended Header

	2.2.4 PEXIMPORT_CONTEXT_HANDLE
	2.2.5 EFS_EXIM_PIPE
	2.2.6 EFS_CERTIFICATE_BLOB
	2.2.7 EFS_HASH_BLOB
	2.2.8 ENCRYPTION_CERTIFICATE
	2.2.9 ENCRYPTION_CERTIFICATE_LIST
	2.2.10 ENCRYPTION_CERTIFICATE_HASH
	2.2.11 ENCRYPTION_CERTIFICATE_HASH_LIST
	2.2.12 EFS_RPC_BLOB
	2.2.13 ALG_ID
	2.2.14 EFS_KEY_INFO
	2.2.15 EFS_COMPATIBILITY_INFO
	2.2.16 EFS_ENCRYPTION_STATUS_INFO
	2.2.17 EFS_DECRYPTION_STATUS_INFO
	2.2.18 ENCRYPTED_FILE_METADATA_SIGNATURE
	2.2.19 ENCRYPTION_PROTECTOR
	2.2.20 ENCRYPTION_PROTECTOR_LIST

	3 Protocol Details
	3.1 Server Details
	3.1.1 Abstract Data Model
	3.1.1.1 User-Certificate Binding
	3.1.1.2 EFSRPC Server Control

	3.1.2 Timers
	3.1.3 Initialization
	3.1.4 Message Processing Events and Sequencing Rules
	3.1.4.1 Application Requests for a User-Certificate Binding
	3.1.4.1.1 EFS Certificate Enrollment Algorithm
	3.1.4.1.1.1 Inputs
	3.1.4.1.1.2 Outputs
	3.1.4.1.1.3 Internal Variables
	3.1.4.1.1.4 Processing Rules
	3.1.4.1.1.4.1 Building a List of CAs that Support a Particular Template
	3.1.4.1.1.4.2 Creating a Request

	3.1.4.2 EFSRPC Interface
	3.1.4.2.1 Receiving an EfsRpcOpenFileRaw Message (Opnum 0)
	3.1.4.2.2 Receiving an EfsRpcReadFileRaw Message (Opnum 1)
	3.1.4.2.3 Receiving an EfsRpcWriteFileRaw Message (Opnum 2)
	3.1.4.2.4 Receiving an EfsRpcCloseRaw Message (Opnum 3)
	3.1.4.2.5 Receiving an EfsRpcEncryptFileSrv Message (Opnum 4)
	3.1.4.2.6 Receiving an EfsRpcDecryptFileSrv Message (Opnum 5)
	3.1.4.2.7 Receiving an EfsRpcQueryUsersOnFile Message (Opnum 6)
	3.1.4.2.8 Receiving an EfsRpcQueryRecoveryAgents Message (Opnum 7)
	3.1.4.2.9 Receiving an EfsRpcRemoveUsersFromFile Message (Opnum 8)
	3.1.4.2.10 Receiving an EfsRpcAddUsersToFile Message (Opnum 9)
	3.1.4.2.11 Receiving an EfsRpcNotSupported Message (Opnum 11)
	3.1.4.2.12 Receiving an EfsRpcFileKeyInfo Message (Opnum 12)
	3.1.4.2.13 Receiving an EfsRpcDuplicateEncryptionInfoFile Message (Opnum 13)
	3.1.4.2.14 Receiving an EfsRpcAddUsersToFileEx Message (Opnum 15)
	3.1.4.2.15 Receiving an EfsRpcFileKeyInfoEx Message (Opnum 16)
	3.1.4.2.16 Receiving an EfsRpcGetEncryptedFileMetadata Message (Opnum 18)
	3.1.4.2.17 Receiving an EfsRpcSetEncryptedFileMetadata Message (Opnum 19)
	3.1.4.2.18 Receiving an EfsRpcFlushEfsCache Message (Opnum 20)
	3.1.4.2.19 Receiving an EfsRpcEncryptFileExSrv Message (Opnum 21)
	3.1.4.2.20 Receiving an EfsRpcQueryProtectors (Opnum 22)

	3.1.5 Timer Events
	3.1.6 Other Local Events

	4 Protocol Examples
	5 Security
	5.1 Security Considerations for Implementers
	5.2 Index of Security Parameters

	6 Appendix A: Full IDL
	7 (Updated Section) Appendix B: Product Behavior
	8 Change Tracking
	9 Index

