[MS-DTCO]:

MSDTC Connection Manager: OleTx Transaction Protocol

Intellectual Property Rights Notice for Open Specifications Documentation

Technical Documentation. Microsoft publishes Open Specifications documentation (“this
documentation”) for protocols, file formats, data portability, computer languages, and standards
support. Additionally, overview documents cover inter-protocol relationships and interactions.
Copyrights. This documentation is covered by Microsoft copyrights. Regardless of any other
terms that are contained in the terms of use for the Microsoft website that hosts this
documentation, you can make copies of it in order to develop implementations of the technologies
that are described in this documentation and can distribute portions of it in your implementations
that use these technologies or in your documentation as necessary to properly document the
implementation. You can also distribute in your implementation, with or without modification, any
schemas, IDLs, or code samples that are included in the documentation. This permission also
applies to any documents that are referenced in the Open Specifications documentation.

No Trade Secrets. Microsoft does not claim any trade secret rights in this documentation.
Patents. Microsoft has patents that might cover your implementations of the technologies
described in the Open Specifications documentation. Neither this notice nor Microsoft's delivery of
this documentation grants any licenses under those patents or any other Microsoft patents.
However, a given Open Specifications document might be covered by the Microsoft Open
Specifications Promise or the Microsoft Community Promise. If you would prefer a written license,
or if the technologies described in this documentation are not covered by the Open Specifications
Promise or Community Promise, as applicable, patent licenses are available by contacting
iplg@microsoft.com.

License Programs. To see all of the protocols in scope under a specific license program and the
associated patents, visit the Patent Map.

Trademarks. The names of companies and products contained in this documentation might be
covered by trademarks or similar intellectual property rights. This notice does not grant any
licenses under those rights. For a list of Microsoft trademarks, visit
www.microsoft.com/trademarks.

Fictitious Names. The example companies, organizations, products, domain names, email
addresses, logos, people, places, and events that are depicted in this documentation are fictitious.
No association with any real company, organization, product, domain name, email address, logo,
person, place, or event is intended or should be inferred.

Reservation of Rights. All other rights are reserved, and this notice does not grant any rights other
than as specifically described above, whether by implication, estoppel, or otherwise.

Tools. The Open Specifications documentation does not require the use of Microsoft programming
tools or programming environments in order for you to develop an implementation. If you have access
to Microsoft programming tools and environments, you are free to take advantage of them. Certain
Open Specifications documents are intended for use in conjunction with publicly available standards
specifications and network programming art and, as such, assume that the reader either is familiar
with the aforementioned material or has immediate access to it.

Support. For questions and support, please contact dochelp@microsoft.com.

1/475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

https://go.microsoft.com/fwlink/?LinkId=214445
https://go.microsoft.com/fwlink/?LinkId=214445
https://go.microsoft.com/fwlink/?LinkId=214448
mailto:iplg@microsoft.com
https://aka.ms/AA9ufj8
https://www.microsoft.com/trademarks
mailto:dochelp@microsoft.com

Revision Summary

Revision Revision
Date History Class Comments
4/3/2007 0.01 New Version 0.01 release
7/3/2007 1.0 Major MLonghorn+90
7/20/2007 1.1 Minor Minor work due to other OleTx protocols shipping.
8/10/2007 1.1.1 Editorial Changed language and formatting in the technical content.
9/28/2007 1.2 Minor Clarified the meaning of the technical content.
10/23/2007 | 2.0 Major Updated and revised the technical content.
11/30/2007 | 2.1 Minor Clarified the meaning of the technical content.
1/25/2008 2.1.1 Editorial Changed language and formatting in the technical content.
3/14/2008 2.1.2 Editorial Changed language and formatting in the technical content.
5/16/2008 2.1.3 Editorial Changed language and formatting in the technical content.
6/20/2008 3.0 Major Updated and revised the technical content.
7/25/2008 3.1 Minor Clarified the meaning of the technical content.
8/29/2008 4.0 Major Updated and revised the technical content.
10/24/2008 | 4.1 Minor Clarified the meaning of the technical content.
12/5/2008 5.0 Major Updated and revised the technical content.
1/16/2009 6.0 Major Updated and revised the technical content.
2/27/2009 6.1 Minor Clarified the meaning of the technical content.
4/10/2009 7.0 Major Updated and revised the technical content.
5/22/2009 8.0 Major Updated and revised the technical content.
7/2/2009 9.0 Major Updated and revised the technical content.
8/14/2009 10.0 Major Updated and revised the technical content.
9/25/2009 11.0 Major Updated and revised the technical content.
11/6/2009 12.0 Major Updated and revised the technical content.
12/18/2009 | 13.0 Major Updated and revised the technical content.
1/29/2010 14.0 Major Updated and revised the technical content.
3/12/2010 15.0 Major Updated and revised the technical content.
4/23/2010 15.1 Minor Clarified the meaning of the technical content.
6/4/2010 16.0 Major Updated and revised the technical content.
7/16/2010 17.0 Major Updated and revised the technical content.
8/27/2010 18.0 Major Updated and revised the technical content.

[MS-DTCO] - v20210625
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

2/475

Revision Revision

Date History Class Comments

10/8/2010 18.0 None No ch_anges to the meaning, language, or formatting of the
technical content.

11/19/2010 | 19.0 Major Updated and revised the technical content.

1/7/2011 20.0 Major Updated and revised the technical content.

2/11/2011 21.0 Major Updated and revised the technical content.

3/25/2011 22.0 Major Updated and revised the technical content.
No changes to the meaning, language, or formatting of the

>/6/2011 22.0 None technical content.

6/17/2011 22.1 Minor Clarified the meaning of the technical content.
No changes to the meaning, language, or formatting of the

9/23/2011 22.1 None technical content.

12/16/2011 | 23.0 Major Updated and revised the technical content.

3/30/2012 23.0 None No ch_anges to the meaning, language, or formatting of the
technical content.

7/12/2012 23.1 Minor Clarified the meaning of the technical content.

10/25/2012 | 23.1 None No ch_anges to the meaning, language, or formatting of the
technical content.
No changes to the meaning, language, or formatting of the

1/31/2013 23.1 None technical content.

8/8/2013 23.2 Minor Clarified the meaning of the technical content.

11/14/2013 | 23.2 None No ch_anges to the meaning, language, or formatting of the
technical content.
No changes to the meaning, language, or formatting of the

2/13/2014 23.2 None technical content.

5/15/2014 23.2 None No chgnges to the meaning, language, or formatting of the
technical content.

6/30/2015 24.0 Major Significantly changed the technical content.
No changes to the meaning, language, or formatting of the

10/16/2015 | 24.0 None technical content.

7/14/2016 24.0 None No chgnges to the meaning, language, or formatting of the
technical content.

6/1/2017 24.0 None No chgnges to the meaning, language, or formatting of the
technical content.

9/15/2017 25.0 Major Significantly changed the technical content.

12/1/2017 26.0 Major Significantly changed the technical content.

9/12/2018 27.0 Major Significantly changed the technical content.

4/7/2021 28.0 Major Significantly changed the technical content.

3/475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

Revision Revision
Date History Class Comments
6/25/2021 29.0 Major Significantly changed the technical content.

[MS-DTCO] - v20210625
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

4/475

Table of Contents

3 1 8 o o [T ot oo T 4 27
1.1 (C [0 T1== 1 PPN 28
1.2 2] L= < Lol 33

1.2.1 Normative ReferEnCEeSvuiiiiiiiii 33
1.2.2 INfOrmative RefErENCES .. .iuieieeii i e e e e e 34
1.3 OV BIVIBW 1ttt 34
1.3.1 Transaction Lifetime. . ..o 35
1.3.1.1 PRAsE ZEI0 ..o 36
1.3.1.2 PRASE ONE.. .. 37
1.3.1.3 PRASE TWO v 39
1.3.2 Additional ConsiderationsS.v.viiiiiiiri 40
1.3.2.1 Unilateral ADOITvei i 41
1.3.2.2 Single-Phase ComMIt .o e e 41
1.3.3 Transaction ROIES ...uiuiuiiii e 42
1.3.3.1 APPlICAtION ROIE ... e 43
1.3.3.2 ResoUrce Manager ROIE.....uviuiii i e ees 44
1.3.3.3 Transaction Manager ROIEouiiiiiiiiii e 44
1.3.3.3.1 Core Transaction Manager Facet.........cooiiiiiiiiiii i 46
1.3.3.3.2 Transaction Manager Communication with an Application Facet............. 46
1.3.3.3.3 Transaction Manager Communication with a Resource Manager Facet 47
1.3.3.3.4 Superior Transaction Manager Facetccoviviiiiiiiiiiiii e 47
1.3.3.3.5 Subordinate Transaction Manager Facetc.ccoiiiiiiiiiciinie e 47
1.3.4 TraNSACHION RECOVEIY Lttt e it s e e et e et e ran e e aaneaanees 47
1.3.4.1 Relationship Between Recovery and Durabilityc.coooviiiiiiiiiiien, 48
1.3.4.2 ReSOUrCe Manager RECOVEIY ..uiiiiitiiiiiiie it ratsaaaa s sts e s sar s s s nesresaeaness 48
1.3.4.3 Transaction Manager RECOVEIY ...iiuiiiiiiiiiiiiiii i 49
1.3.5 Transaction Propagationccveiiiiiiiiii i e 49
1.3.5.1 PUIl Propagationcc i e 50
1.3.5.2 PUSh Propagationoeiiiiiii i 51
1.4 Relationship to Other ProtoCoIS ..ot e 53
1.5 Prerequisites/PreCconditionscoviiiiiiiii e 53
1.6 Applicability Statement . ..o s 53
1.7 Versioning and Capability Negotiation ..o 54
1.7.1 Versioning MEChaNISIMSuuiiii e e e eaes 54
1.7.2 Versioning Negotiation MechaniSmsoviiiiiiiiii e 55
1.7.3 Capability Negotiation MechaniSmsccoiiiiiiiii e 55
1.8 Vendor-EXtensible FIelds ..o 56
1.9 StanNdards ASSIGNMENTS. 56

A =TT T =T 57

2.1 I =1 117 oo] o o Y 57
2.1.1 Messages, Connections, and SESSIONS ...vviriiiitiieiiriiriae i raerareaneanearerneans 57
2.1.2 MS-CMP and MS-CMPO Initialization........ccoviiiiiiiiiiiir e 57

2.1.2.1 Computing @ Security LeVelo 58
2.1.2.2 Computing Protocol Version Valuesccvviiiiiiiiiiiiiiiesi e nae e 58
2.1.2.3 Computing @ Name ObjJeCtouiiiiiii e 58

2.2 MESSAGE SYNMEAX 1 uiutiuiitiiit it e 58

2.2.1 o1 ue ol MY /=T =] To] 1o Ve AP 58
2.2.1.1 Protocol Version Numbers as a Versioning Mechanismccocviviiinennne. 58
2.2.1.1.1 Version-Specific Aspects of Connection Types Relevant to an Application 59

2.2.1.1.2 Version-Specific Aspects of Connection Types Relevant to a Transaction
17 = T T 61

2.2.1.1.3 Version-Specific Aspects of Connection Types Relevant to a Resource
17 = T T 61
2.2.2 Structures with Fields Containing Version Numbers as Versioning Mechanism..... 61
5/475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

2.2.3 Structures with a Format-Specifying Field as Versioning Mechanism.................. 62
2.2.4 COMMON SEFUCEUNES vttt s re 62
2.2.4.1 MES S AGE _ PACKET L.ttt et ettt et et e e e e 62
2.2.4.2 OLETX_TM_ADDR ..ttt ettt e et s e e s e s e e s s s e e s r e s e e e nenes 63
2.2.4.3 OLETX_VARLEN_STRING...citititiititiiiitieiesitatsiesesarasseresrassnesesnransnernsnees 63
2.2.5 Transaction Propagation Structures.........oooiiiiiiiiiii s 64
2.2.5.1 ASSOCIiate_MSG_VErSiON2 ..ottt i e e aanea s 64
2.2.5.2 PAXTYo Yol =L\ FYo TV =T = [0 o 1C P 64
2.2.5.3 NAMEOBIECTBLOB ...ttt st et s e e s e s e e s s e s e e e e aneneeneaes 65
2.2.5.4 Propagation_TOKEN ... 66
2.2.5.5 SDEtCCMENAPOINEINfOV L. e e e 67
2.2.5.6 SDECCMENAPOINEINOV 2. it e 68
2.2.5.7 1@< DT g} o] o ol I o PP 68
2.2.5.8 SExtendedENdpointInfO...co.iiii i 69
2.2.5.9 I LI T 1.4 (1 e o | P 69
2.2.5.10 STXINFO 1ttt e 70
2.2.5.11 SWhErEabOULS ..uuiieiie it e e 71
2.2.6 Transaction ENUMEratioNsS. ..o e e e 72
2.2.6.1 (o] o] aT=Toiu [0 a I I V7 o 1= PP 72
2.2.6.2 TM_PROTOCOL « .ttt ittt et ettt et e e e e et a e s e e e eaae e 74
2.2.6.3 TXUSER_ENLISTMENT_PREPAREREQDONE_RESPONSE.......cccvvvviiiiiiinninennns 74
2.2.6.4 PARTNERTM_PROPAGATE_PREPAREREQDONE_RESPONSEccccvvvvvvnnnnnn. 75
2.2.6.5 TXUSER_VOTER_VOTERREQDONE_RESPONSE......cciiititiiiiiiiiiiiieienieeaeens 75
2.2.6.6 TRUN_TXBEGIN_ERRORS ...ttt sttt s e e e e e e 76
2.2.6.7 TRUN_TXIMPORT_ERRORS ...ttt v a e vt s e ae e aaae e 76
2.2.6.8 OLETX_ISOLATION _FLAGS ... ittt ittt ittt s s as e e s e s e r e s e aane e eees 77
2.2.6.9 OLETX_ISOLATION_LEVEL ..vuuiiiiiiiii ittt na e e e e e 78
2.2.7 Transaction CoNStaNTS ..ot e 78
2.2.7.1 GRI RM Lttt 78
2.2.7.2 DTCADVCONFIG .iutieitiiiitiiiee ettt e e e s e s e s s s e s e e e e s neneenenes 79
2.2.7.3 DTCADVCONFIG_OPTIONS ... ittt et e e e e ees 80
2.2.8 Connection Types Relevant to Applications.......ccocvviiiiiiiii e 82
2.2.8.1 Transaction Initiation and Completion......c.coiviiiiiiiic s 82
2.2.8.1.1 CONNTYPE_TXUSER_BEGINNERcitiiiiiiiiiiiiii et 82
2.2.8.1.1.1 TXUSER_BEGINNER_MTAG_ABORT ..ttt aeenaeeeas 82
2.2.8.1.1.2 TXUSER_BEGINNER_MTAG_BEGIN.....cccitiiiiiiiiiiii i 83
2.2.8.1.1.3 TXUSER_BEGINNER_MTAG_BEGIN_LOG_FULL.....ccvvvviiiiieiniiieiinennnn 83
2.2.8.1.1.4 TXUSER_BEGINNER_MTAG_BEGIN_NO_MEMcccovviiiiiiiiieeeee 84
2.2.8.1.1.5 TXUSER_BEGINNER_MTAG_BEGUNccitiiiiiiiiiiii i 84
2.2.8.1.1.6 TXUSER_BEGINNER_MTAG_COMMIT ..iiiiiiiiiiiiiiie i eeea e 85
2.2.8.1.1.7 TXUSER_BEGINNER_MTAG_COMMIT_INDOUBTcccvviviiiiieciiens 85
2.2.8.1.1.8 TXUSER_BEGINNER_MTAG_COMMIT_TOO_LATE .ceiviviiriieiiiiieiaenns 86
2.2.8.1.1.9 TXUSER_BEGINNER_MTAG_REQUEST_COMPLETED.........ccvveivinenenn 86
2.2.8.1.2 CONNTYPE_TXUSER_BEGINZ ...viuiitiiitiiiisie it enesenannenenenes 86
2.2.8.1.2.1 TXUSER_BEGIN2_MTAG_ABORT ..ttt aenaaeneas 86
2.2.8.1.2.2 TXUSER_BEGIN2_MTAG_BEGIN....c.citiiiiiiiiiiiiiii i ienaa e e 87
2.2.8.1.2.3 TXUSER_BEGIN2_MTAG_COMMIT ...iiiiiiiiie e aeeaa e e 88
2.2.8.1.2.4 TXUSER_BEGIN2_MTAG_SINK_BEGUNcciviiiiiiiiiiiiiii i 88
2.2.8.1.2.5 TXUSER_BEGIN2_MTAG_SINK_ERRORccitiiiiiiiiiiiiiiiiieieeiaeeeas 89
2.2.8.1.2.6 TXUSER_SETTXTIMEOUT_MTAG_REQUEST_COMPLETE.......c.ccevvvene. 89
2.2.8.1.2.7 TXUSER_SETTXTIMEOUT_MTAG_SETTXTIMEOUTocvvviiiiiiiiiianenes 89
2.2.8.1.2.8 TXUSER_SETTXTIMEOUT_MTAG_TOO_LATE ..ttt 90
2.2.8.1.3 CONNTYPE_TXUSER_PROMOTE ...cutiuiiiiiiiiiie it s sa e e nenees 91
2.2.8.1.3.1 TXUSER_BEGINNER_MTAG_PROMOTEcviviiiiiiieiiiiieiieneeieeaaeeens 91
2.2.8.2 Transaction Propagationcoviiiiiiii i 92
2.2.8.2.1 PUll Propagationoeeieiiiii e 92
2.2.8.2.1.1 CONNTYPE_TXUSER_ASSOCIATE ...ttt a e 92
2.2.8.2.1.1.1 TXUSER_ASSOCIATE_MTAG_ASSOCIATE ..oviiiiiiiiiiiiiiiieieeias 92

6/475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

2.2.8.2.1.1.2 TXUSER_ASSOCIATE_MTAG_ASSOCIATED ...cccicviiiiiiiieiiecaeaen 94
2.2.8.2.1.1.3 TXUSER_ASSOCIATE_MTAG_COMM_FAILED ...cccvviviiiiiiieeiieenans 94
2.2.8.2.1.1.4 TXUSER_ASSOCIATE_MTAG_CREATE_BAD_TMADDRcc.v0. 94
2.2.8.2.1.1.5 TXUSER_ASSOCIATE_MTAG_LOG_FULL_LOCAL ...cevvvvvveeiinnnnns 95
2.2.8.2.1.1.6 TXUSER_ASSOCIATE_MTAG_LOG_FULL_REMOTE.........vevvvivennnn 95
2.2.8.2.1.1.7 TXUSER_ASSOCIATE_MTAG_NO_MEM_LOCAL ...cccvvivvineineinennen. 96
2.2.8.2.1.1.8 TXUSER_ASSOCIATE_MTAG_NO_MEM_REMOTE.......covvvievvinnnnns 96
2.2.8.2.1.1.9 TXUSER_ASSOCIATE_MTAG_TOO_LATE ..o e 96
2.2.8.2.1.1.10 TXUSER_ASSOCIATE_MTAG_TOO_MANY_LOCALvcvvvveernnnnns 97
2.2.8.2.1.1.11 TXUSER_ASSOCIATE_MTAG_TOO_MANY_REMOTEccuevutnns 97
2.2.8.2.1.1.12 TXUSER_ASSOCIATE_MTAG_TX_NOT_FOUND......covvivviienrnnnnns 98
2.2.8.2.2 Push Propagationcciiiiii 98
2.2.8.2.2.1 CONNTYPE_TXUSER_EXTENDEDWHEREABOUTSciiiviiiiiiiei e 98
2.2.8.2.2.1.1 TXUSER_EXTENDEDWHEREABOUTS_MTAG_GET ..civvivviieiiieenns 98
2.2.8.2.2.1.2 TXUSER_EXTENDEDWHEREABOUTS_MTAG_GOT ..c.iiiiiiiiinennns 99
2.2.8.2.2.1.3 TXUSER_EXTENDEDWHEREABOUTS_MTAG_NOMEMcovvevae 99
2.2.8.2.2.2 CONNTYPE_TXUSER _EXPORT ...utiiiiiiiiiiiiiiiiieiiseiineiinssssesnssennnenns 100
2.2.8.2.2.2.1 TXUSER_EXPORT_MTAG_CREATE ..ottt e neeas 100
2.2.8.2.2.2.2 TXUSER_EXPORT_MTAG_CREATEZ ..iiiiiii it eieneneeeas 100
2.2.8.2.2.2.3 TXUSER_EXPORT_MTAG_CREATE_BAD_TMADDRccvvvvviininnns 101
2.2.8.2.2.2.4 TXUSER_EXPORT_MTAG_CREATE_NET_TX_DISABLED.............. 101
2.2.8.2.2.2.5 TXUSER_EXPORT_MTAG_CREATED ...cciiiiiiiiiiiiiiii i eneaas 102
2.2.8.2.2.2.6 TXUSER_EXPORT_MTAG_EXPORT ...iiiiiiiiiiiieiiiiie i i enneens 102
2.2.8.2.2.2.7 TXUSER_EXPORT_MTAG_EXPORT_LOG_FULL.....ccovvviiiiiniiinennns 103
2.2.8.2.2.2.8 TXUSER_EXPORT_MTAG_EXPORT_NO_MEM.....cciivviiiiiiiiiiineanns 103
2.2.8.2.2.2.9 TXUSER_EXPORT_MTAG_EXPORT_TOO_LATE ...cvvvvviiiiiiniinnennns 103
2.2.8.2.2.2.10 TXUSER_EXPORT_MTAG_EXPORT_TOO_MANY ..cicvviiiriiiniiinninns 104
2.2.8.2.2.2.11 TXUSER_EXPORT_MTAG_EXPORT_TX_NOT_FOUND..........ccvvnne 104
2.2.8.2.2.2.12 TXUSER_EXPORT_MTAG_EXPORTEDcciiiviiiiiiiiiiiiiiiiniiineenns 105
2.2.8.2.2.3 CONNTYPE_TXUSER _EXPORT2 .tiiitiiitiiiiiiieiinerineriieesieeenarenneens 105
2.2.8.2.2.3.1 TXUSER_EXPORT_MTAG_EXPORT_COMM_FAILEDccvvinennns 106
2.2.8.2.2.4 CONNTYPE_TXUSER _IMPORT .itiiiiiiiiiiiiiiiieiieeiineiinsesnsesnssenneenas 106
2.2.8.2.2.4.1 TXUSER_IMPORT_MTAG_ABORT ..tiiiiiiiiiiii i eieeneeas 106
2.2.8.2.2.4.2 TXUSER_IMPORT_MTAG_ABORT_TOO_LATE....cciiiviiiiiiiniiineanns 107
2.2.8.2.2.4.3 TXUSER_IMPORT_MTAG_IMPORT ...iiiiiiiiiiii it neeeas 107
2.2.8.2.2.4.4 TXUSER_IMPORT_MTAG_IMPORT_TX_NOT_FOUNDccevvvvnnns 107
2.2.8.2.2.4.5 TXUSER_IMPORT_MTAG_IMPORTEDcicviiiiiiiiiiiiiieineneens 108
2.2.8.2.2.4.6 TXUSER_IMPORT_MTAG_REQUEST_COMPLETEDccvcvvuennenn 108
2.2.8.2.2.5 CONNTYPE_TXUSER _IMPORT 2. . uciitiiiiiiiiiiiiie it i iiieesinesnneenneanas 109
2.2.8.2.2.5.1 TXUSER_IMPORT2_MTAG_ABORT ...ttt ittt i e eineannnens 109
2.2.8.2.2.5.2 TXUSER_IMPORT2_MTAG_IMPORT ..iiiiiiiiiiiiiiiii i anneeas 109
2.2.8.2.2.5.3 TXUSER_IMPORT2_MTAG_IMPORT_WITH_SET....ccovviiiviiiinennns 110
2.2.8.2.2.5.4 TXUSER_IMPORT2_MTAG_SINK_ERROR.....ccciiiiiiiiiiiiiiiiineanns 111
2.2.8.2.2.5.5 TXUSER_IMPORT2_MTAG_SINK_IMPORTED.......cccvvvviiiiiniiinennns 111
2.2.8.3 Transaction Administration . .c..viiiii i e 112
2.2.8.3.1 CONNTYPE_TXUSER_GETTXDETAILS ...viiiiiiiiiiii i iiieeiieeenansaneaas 112
2.2.8.3.1.1 TXUSER_GETTXDETAILS _MTAG_GET ..ttt i i e eaeas 112
2.2.8.3.1.2 TXUSER_GETTXDETAILS_MTAG_GOTIT .iiiiiiiiiiiii i iiieeieennaas 112
2.2.8.3.1.3 TXUSER_GETTXDETAILS_MTAG_TX_NOT_FOUNDccvvviiiiiiennnns 114
2.2.8.3.2 CONNTYPE_TXUSER _RESOLVE .. .ciiitiiiiiiiiiiiiiiii i iiieiiieeniseensiinneanns 114
2.2.8.3.2.1 TXUSER_RESOLVE_MTAG_ACCESSDENIED ...c.cvvvviiiiiiiiiiieiiieennnnns 114
2.2.8.3.2.2 TXUSER_RESOLVE_MTAG_CHILD_ABORT ...iiiiiiiiiiiiiiieiiieeiieeenaeas 115
2.2.8.3.2.3 TXUSER_RESOLVE_MTAG_CHILD_COMMIT ..iiiiiiiiiiiiiiieiiieeiieeeaens 115
2.2.8.3.2.4 TXUSER_RESOLVE_MTAG_CHILD_NOT_PREPAREDcvcivvivvennnens 116
2.2.8.3.2.5 TXUSER_RESOLVE_MTAG_FORGET_COMMITTEDccvvvvniieenennens 116
2.2.8.3.2.6 TXUSER_RESOLVE_MTAG_FORGET_TX_NOT_COMMITTED.............. 117
2.2.8.3.2.7 TXUSER_RESOLVE_MTAG_REQUEST_COMPLETE.......ccovvvvviiieininnn, 117
2.2.8.3.2.8 TXUSER_RESOLVE_MTAG_NOT_CHILD cuviiiiiiiiiiii i iiieeeeeeaens 117
7 /475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

2.2.8.3.2.9 TXUSER_RESOLVE_MTAG_TX_NOT_FOUNDccoiviiiiiniiiiiieenene 118
2.2.8.3.3 CONNTYPE_TXUSER_SETTXTIMEOUTciviiiiiiiiiiiiiines e 118
2.2.8.3.3.1 TXUSER_SETTXTIMEOUT_MTAG_TX_NOT_FOUNDcevvivininenenene. 118
2.2.8.3.4 CONNTYPE_TXUSER_SETTXTIMEOUT2 ...cciviviiiiiiiiiiinense e 119
2.2.8.3.5 CONNTYPE_TXUSER _TRACE.....itiiiiiiiiiiiiiin e 119
2.2.8.3.5.1 TXUSER_TRACE_MTAG_DUMP_TRANSACTIONcieeieiiiiieeenene 119
2.2.8.3.5.2 TXUSER_TRACE_MTAG_REQUEST_COMPLETEcccvvvviniiiniiiiinenenen 120
2.2.8.3.5.3 TXUSER_TRACE_MTAG_REQUEST_FAILEDccoiiiiiiiiiiieieeeen 120
2.2.8.3.5.4 TXUSER_TRACE_MTAG_TX_NOT_FOUNDcociiiiininiiniiiiieeens 120
2.2.8.4 Transaction Manager Administration..........ccooviiiiiiiii 121
2.2.8.4.1 CONNTYPE_TXUSER_GETSECURITYFLAGScviviiiiiiiiniiinnn e 121
2.2.8.4.1.1 TXUSER_GETSECURITYFLAGS_MTAG_FETCHED.......cocvvvviiiiiienne 121
2.2.8.4.1.2 TXUSER_GETSECURITYFLAGS_MTAG_GETSECURITYFLAGS............ 122
2.2.9 Connection Types Relevant to Transaction Managers.......cccvevviviiiiiiiiiiiiennnnnnn 122
2.29.1 Transaction Propagation and Coordination........c.cooviiiiiiiiiiiciiee 122
2.2.9.1.1 Push Propagationociiiiiii i e 122
2.29.1.1.1 CONNTYPE_PARTNERTM_PROPAGATE ...ttt 122
2.29.1.1.1.1 PARTNERTM_PROPAGATE_MTAG_PROPAGATE.....ccciivieeenannnns 122
2.29.1.1.1.2 PARTNERTM_PROPAGATE_MTAG_PROPAGATEDcccevineennnnns 123
2.29.1.1.1.3 PARTNERTM_PROPAGATE_MTAG_DUPLICATE.....cccociiiieeenennnns 123
2.29.1.1.1.4 PARTNERTM_PROPAGATE_MTAG_NO_MEMcocvviiiiiiiiininnnns 124
2.2.9.1.1.1.5 PARTNERTM_PROPAGATE_MTAG_LOG_FULLcvviiiieieneennns 124
2.2.9.1.1.1.6 PARTNERTM_PROPAGATE_MTAG_PREPAREREQ..........cccveiernnnns 125
2.2.9.1.1.1.7 PARTNERTM_PROPAGATE_MTAG_PREPAREREQDONE............... 125
2.2.9.1.1.1.8 PARTNERTM_PROPAGATE_MTAG_PROTOCOL_ERROR............... 126
2.2.9.1.1.1.9 PARTNERTM_PROPAGATE_MTAG_COMMITREQ........covviiiinnnnnns 126
2.2.9.1.1.1.10 PARTNERTM_PROPAGATE_MTAG_COMMITREQDONE................ 127
2.2.9.1.1.1.11 PARTNERTM_PROPAGATE_MTAG_ABORTREQc.coviiiiininnnnns 127
2.2.9.1.1.1.12 PARTNERTM_PROPAGATE_MTAG_ABORTREQDONE..........c........ 127
2.2.9.1.1.1.13 PARTNERTM_PROPAGATE_MTAG_ABORTNOTIFYccceveiurnrnns 128
2.2.9.1.1.1.14 PARTNERTM_PROPAGATE_MTAG_PHASEOREGISTER 128
2.2.9.1.1.1.15 PARTNERTM_PROPAGATE_MTAG_PHASEOREGISTERED 128
2.2.9.1.1.1.16 PARTNERTM_PROPAGATE_MTAG_PHASEOREGISTRATIONREJECTED
129
2.2.9.1.1.1.17 PARTNERTM_PROPAGATE_MTAG_PHASEQccecviiiiiiiiiineanns 129
2.2.9.1.1.1.18 PARTNERTM_PROPAGATE_MTAG_PHASEQOCOMPLETE 129
2.2.9.1.2 PUIl Propagationieeieieiiii s 130
2.2.9.1.2.1 CONNTYPE_PARTNERTM_BRANCH ...ttt 130
2.29.1.2.1.1 PARTNERTM_BRANCH_MTAG_BRANCH_LOG_FULLc.cccuevenens 130
2.2.9.1.2.1.2 PARTNERTM_BRANCH_MTAG_BRANCH_NO_MEMcceveennnnns 131
2.2.9.1.2.1.3 PARTNERTM_BRANCH_MTAG_BRANCH_TOO_LATEccccevevnens 131
2.2.9.1.2.1.4 PARTNERTM_BRANCH_MTAG_BRANCH_TOO_MANYcccvevernnnns 132
2.2.9.1.2.1.5 PARTNERTM_BRANCH_MTAG_BRANCH_TX_NOT_FOUND.......... 132
2.2.9.1.2.1.6 PARTNERTM_BRANCH_MTAG_BRANCHEDcccocviiiiiiiiiaanns 132
2.2.9.1.2.1.7 PARTNERTM_BRANCH_MTAG_BRANCHINGcocviiiiiiiineannns 133
2.2.9.2 Transaction RECOVENY ...uiuiiiiiiiiii i e 133
2.2.9.2.1 SUDOrdiNAte-DIriVEN ... 133
2.2.9.2.1.1 CONNTYPE_PARTNERTM_CHECKABORTcititiiiiieieieneie e eeeeeeeenen 133
2.29.2.1.1.1 PARTNERTM_CHECKABORT_MTAG_CHECKcviiiiiiiiiieneaans 133
2.2.9.2.1.1.2 PARTNERTM_CHECKABORT_MTAG_ABORTEDcccviveennnnnnns 134
2.29.2.1.1.3 PARTNERTM_CHECKABORT_MTAG_RETRY ...viviiiiiiiiiiiiieieeaens 134
2.2.9.2.2 SUPEMIOr=DIIVEN ittt 135
2.2.9.2.2.1 CONNTYPE_PARTNERTM_REDELIVERCOMMITcuviieieieneeaeeanenan, 135
2.2.9.2.2.1.1 PARTNERTM_REDELIVERCOMMIT_MTAG_COMMITREQ 135
2.2.9.2.2.1.2 PARTNERTM_REDELIVERCOMMIT_MTAG_COMMITREQDONE..... 135
2.2.9.2.2.1.3 PARTNERTM_REDELIVERCOMMIT_MTAG_RETRYcciviiiannnnns 136
2.2.10 Connection Types Relevant to Resource Managerscoovveieiiiniieiniiiinnieinnnens 136
2.2.10.1 Resource Manager Registration.........cvvviiiiiiiiiiii e 136
8/475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

2.2.10.1.1 CONNTYPE_TXUSER_RESOURCEMANAGERiiiiiiiiiiiii i nnnns 136
2.2.10.1.1.1 TXUSER_RESOURCEMANAGER_MTAG_CREATE ...c.ivvviiiiiiie e 136
2.2.10.1.1.2 TXUSER_RESOURCEMANAGER_MTAG_DUPLICATEccovvviiievninnnnn 137
2.2.10.1.1.3 TXUSER_RESOURCEMANAGER_MTAG_REENLISTMENTCOMPLETE ...137
2.2.10.1.1.4 TXUSER_RESOURCEMANAGER_MTAG_REQUEST_COMPLETE........... 138

2.2.10.1.2 CONNTYPE_TXUSER_RESOURCEMANAGERINTERNAL ...cvvvviiiieriiiennernas 138
2.2.10.1.2.1 TXUSER_RESOURCEMANAGERINTERNAL_MTAG_DUPLICATEDETECTED

.. 139
2.2.10.2 Transaction Coordinationciviiiiiii i i i i i 139

2.2.10.2.1 CONNTYPE_TXUSER _PHASEDiiititiiiitteiiiiteesiiarersinnessrnnnressnnnsssrnnes 139
2.2.10.2.1.1 TXUSER_PHASEO_MTAG_CREATE ...iiiiitiiiiiiii i it viaee e 139
2.2.10.2.1.2 TXUSER_PHASEO_MTAG_CREATE_TOO_LATE ...cciivviiiiiiiiinee e, 140
2.2.10.2.1.3 TXUSER_PHASEO_MTAG_CREATE_TX_NOT_FOUND........sccivvvvrnnnnnn 140
2.2.10.2.1.4 TXUSER_PHASEO_MTAG_CREATED ...ccoviiiiiiiii it i i nnnaees 141
2.2.10.2.1.5 TXUSER_PHASEO_MTAG_PHASEOREQccoiiiiiiiiiiiiiiiiiii i aneeas 141
2.2.10.2.1.6 TXUSER_PHASEO_MTAG_PHASEOREQ_ABORTccciviiiiiiiniiiniiinennns 141
2.2.10.2.1.7 TXUSER_PHASEO_MTAG_PHASEOREQDONEccciiiiiiiiiiiiiiiiieeas 142
2.2.10.2.1.8 TXUSER_PHASEO_MTAG_UNENLIST ..iiiiiiiieiiiieesiiinrernnnnnesrnnaees 142

2.2.10.2.2 CONNTYPE_TXUSER _ENLISTMENT .tttiiii i i r i i e snnnee s rnnas 142
2.2.10.2.2.1 TXUSER_ENLISTMENT_MTAG_ABORTREQcctiiiiiiiiiiiiiieieeas 143
2.2.10.2.2.2 TXUSER_ENLISTMENT_MTAG_ABORTREQDONE......c.ccoviiiiiiniiinennns 143
2.2.10.2.2.3 TXUSER_ENLISTMENT_MTAG_COMMITREQccctiiiiiiiiiiiiiiininnnennns 143
2.2.10.2.2.4 TXUSER_ENLISTMENT_MTAG_COMMITREQDONE..........ccovviniiinennns 144
2.2.10.2.2.5 TXUSER_ENLISTMENT_MTAG_ENLIST ..tiiiiiiiiiiiiineriiiiereriineesrnnnees 144
2.2.10.2.2.6 TXUSER_ENLISTMENT_MTAG_ENLIST _LOG_FULLccvvvvviiiienninnnnn 145
2.2.10.2.2.7 TXUSER_ENLISTMENT_MTAG_ENLIST_TOO_LATE.....ciovvviiineriiinnnn, 145
2.2.10.2.2.8 TXUSER_ENLISTMENT_MTAG_ENLIST_TOO_MANYccovvviiirerriinness 146
2.2.10.2.2.9 TXUSER_ENLISTMENT_MTAG_ENLIST_TX_NOT_FOUND 146
2.2.10.2.2.10 TXUSER_ENLISTMENT_MTAG_ENLISTED ...ccevvviiiiiriiiinreriineeeiinnees 146
2.2.10.2.2.11 TXUSER_ENLISTMENT_MTAG_PREPAREREQccciiiiiiiiiiiiiiiiiinennns 147
2.2.10.2.2.12 TXUSER_ENLISTMENT_MTAG_PREPAREREQDONE.........ccvvivvvinnnnns 147

2.2.10.3 Transaction RECOVEIY ...uiuiiiiuiitiiiiii ittt et st s e s e e ees 148

2.2.10.3.1 CONNTYPE_TXUSER _REENLIST .. .itiiiiii i it ninnee s nnaeesnnnee s rnnes 148
2.2.10.3.1.1 TXUSER_REENLIST_MTAG_REENLIST ..uttiiiiitiiiiiineeriiiererinnneesrinnees 148
2.2.10.3.1.2 TXUSER_REENLIST_MTAG_REENLIST_ABORTED.......ciivvviiiieniinnnn, 149
2.2.10.3.1.3 TXUSER_REENLIST_MTAG_REENLIST_COMMITTED........vvvivvvvrnnnnnn 149
2.2.10.3.1.4 TXUSER_REENLIST_MTAG_REENLIST_TIMEOUTiiiiivviiinenninnnnn 150

2.2.10.4 VOtING tiniiiiiii i e 150

2.2.10.4.1 CONNTYPE_TXUSER_VOTER ..iiiiiiiiiiiiiii i i rninae s s sias e s nnnnne e nnes 150
2.2.10.4.1.1 TXUSER_STATUS_MTAG_ABORTED ...cccttiiiiiiitiiiie it vniinee s vnnaees 150
2.2.10.4.1.2 TXUSER_STATUS_MTAG_COMMITTED ...cviiiiiiiiiiieiiiiieieriinneesrnnaees 151
2.2.10.4.1.3 TXUSER_STATUS_MTAG_INDOUBT ...ccitttiiiiii i it rninnee e rnnaees 151
2.2.10.4.1.4 TXUSER_VOTER_MTAG_CREATE ...iiiiiiiiiiiii i it rinaee s nnnaes 151
2.2.10.4.1.5 TXUSER_VOTER_MTAG_CREATE_TOO_LATE....iiiittviiiiiiiiiinenninnnnnn 152
2.2.10.4.1.6 TXUSER_VOTER_MTAG_CREATE_TX_NOT_FOUNDevvvvivevirnnnnn. 152
2.2.10.4.1.7 TXUSER_VOTER_MTAG_CREATED ...iiiiitiiiiiiieiiiiee it riineessnnaees 153
2.2.10.4.1.8 TXUSER_VOTER_MTAG_VOTEREQ....ciiiiiiiiiii i 153
2.2.10.4.1.9 TXUSER_VOTER_MTAG_VOTEREQDONEcciciitiiiiiniiieiieiiennennns 154

3 Protocol Details . ..c.iicciiiii i i s sr s ra s s s r s n s r s raaanaanan s aannnanaannannnans 155
3.1 (00 1] a L0 T B] =11 155
3.1.1 FY 03] o =Lt ol B 1= or= I 1 o Y = 155
3.1.1.1 Converting a Name Object to an OLETX_TM_ADDR Structureccovvuens 156
3.1.1.2 Converting an OLETX_TM_ADDR Structure to a Name Object 156
3.1.1.3 Converting a Name Object to a NAMEOBJECTBLOB Structure 157
3.1.1.4 Converting a NAMEOBJECTBLOB Structure to a Name Object..................... 157
3.1.2 1. 11T 157
3.1.3 | Yo = 1= 1o o o 157
9/475

[MS-DTCO] - v20210625
MSDTC Connection Manag

er: OleTx Transaction Protocol

Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

3.1.3.1 Enlistment Object Initializationooiiiiiiiii 158
3.1.4 Protocol Versioning DetailS......ocuviiiiiii i e 158
3.1.4.1 Supporting @ Protocol VErSiONcvuiiiiiiiiii e 158
3.1.4.2 Negotiating a Common Protocol Version.......ccovviiiiiiiiiiiiici i e 158
3.1.4.3 Using the Negotiated Protocol Versionccccvieiiiiiiiiiiiiiiicie e 159
3.1.5 Higher-Layer Triggered EVENESciviiiiiiiii e 159
3.1.6 Processing Events and Sequencing RUIEScciiiiiiiiiiii i e 159
3.1.7 LT = 2=] =P 160
3.1.8 (O aT=T ol I Yot= Y I V=T o | P 160
3.1.8.1 Initiate CoNNECION ..o e s 160
3.1.8.2 [D][=Yolo] o] =T ol fl o] o1 [T ot f (o] AN 160
3.1.8.3 Connection DiSCONNECEEAviuiiiiiiiiiie s e e e e aaens 161
3.1.8.4 RECEIVING @ MESSAGE ..uuviutiiiiiiiiiii i 161
3.2 Core Transaction Manager Facet Details......cccoiviiiiiiiiii e 161
3.2.1 Abstract Data MOdel.......coiiiiiiiii e e 161
3.2.1.1 V=1 =1 Lo 1 o IS 164
3.2.1.2 Transaction LOgQGiNg ...vueiueiiiiiiiiiii i 165
3.2.1.3 Transaction SEateSviiiii i e 165
3.2.1.3.1 o] = PP 167
3.2.1.3.2 o o P 167
3.2.1.3.3 PRasE ZEI0 ..ttt e 168
3.2.1.3.4 Phase Zero ComPplete .. .o 168
3.2.1.3.5 LY /o] w1 T [PR 169
3.2.1.3.6 VOtiNG COMIPIEte. ..o e 169
3.2.1.3.7 = 1T O = PP 169
3.2.1.3.8 Phase One Complete. ..o e 170
3.2.1.3.9 Single Phase Commitiiiriiiii e 170
3.2.1.3.10 ComMmMItEiNG. ..o s 170
3.2.1.3.11 ADOMING e e 170
3.2.1.3.12 IN DOUDTE it e 170
3.2.1.3.13 Failed £0 NOtifY ... e e 171
3.2.1.3.14 ENAEd ciiiiiiiiiiii i 171
3.2.1.4 Transaction Manager Facetsooviiiiiiiiiii e 171
3.2.1.5 Protocol Extension ObjJectso.viiiiiiii 171
3.2.2 LI L. =21 172
3.2.2.1 Transaction TimMeEOUL Tim el e e e e neenneens 172
3.2.3 a1 F= 1 4=] o o PP 173
3.2.3.1 Transaction Object Initializationcoovveiiiiii e 174
3.2.3.2 DT> o L= o o 175
3.2.3.3 TranSaCtioN RECOVEIY . .uiiiiiiiii it i e e e ettt a e e aeean 175
3.2.4 Higher-Layer Triggered EVENES ..o e 175
3.2.5 Processing Events and Sequencing RUIESoviiiiiiiiiiiiii e 176
3.2.6 LT = 2]) o= 176
3.2.6.1 Transaction TiMeoUL Timer. ..o e eas 176
3.2.7 (0 T=T ol W Tor= Y I V=T o | PR 176
3.2.7.1 ASSOCIiate TranSaCtioN ..o e 176
3.2.7.2 Begin CommMit. . i e 177
3.2.7.3 Begin IN DOUDL ...ne e 178
3.2.7.4 Begin Phase ONe.... ..o 178
3.2.7.5 BegiN PhaSe ZEI0 ..uuiiiiiiiiii i et 178
3.2.7.6 Begin ROIDACKceeiii e 179
3.2.7.7 Begin VOtiNg . oviiiiiii i 179
3.2.7.8 Branch Transaction Failurecocoiiiiiiiiiii s e e 180
3.2.7.9 Branch TranSaction SUCCESS ...uiviriitiiit ittt rraeeeeas 180
3.2.7.10 Create Phase Zero Enlistment......ccoiiiiiiiiiiie e e e s 180
3.2.7.11 Create Subordinate Enlistmentccoiiiiiiiiiiii e 181
3.2.7.12 Create Superior Enlistment ..o 182
3.2.7.13 Create TransaCtion ..o e 183
10/ 475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

3.2.7.14 Create Voter EnlistmMent.......oiiiiiiiii e 184
3.2.7.15 Enlistment Commit COmMPIELE ..uiiviiriiii i e 184
3.2.7.16 Enlistment Phase One Complete......ccooiiiiiiiiiii e 185
3.2.7.17 Enlistment Phase Zero Complete....ccoiiiiiiiiiiii e 186
3.2.7.18 Enlistment Rollback Complete.....cciiiiiiiiiiiiii e 188
3.2.7.19 Enlistment Unilaterally Aborted..........coooiiiiiiii e 188
3.2.7.20 Enlistment Vote Complete ..o 189
G720/ 40725 R = s To] ol I =1 g 1= Lot o [0 o 190
3.2.7.22 Forget TranSaChion ..iiui it i e s v i 191
3.2.7.23 NOLify ADOITed ... e 191
3.2.7.24 Notify Recovered Transaction Committedcoooiiiiiiiiiiiiiiiiiic e 192
3.2.7.25 Phase One Completed......ciiiiiiiiiiii 192
3.2.7.26 Propagate Transaction Failure.........ccoviiiiiiiii e 193
3.2.7.27 Propagate Transaction SUCCESScvviiiiiiiiiii it i i i i saeeaareanneaaneans 194
3.2.7.28 Register Phase Zero Failurecooiiiiiiii e 194
3.2.7.29 Register Phase ZEero SUCCESS .. uiiiiiiiiiiiii it aea s 194
3.2.7.30 ReSOIVE TranSACLION ...uuiuiiiiiieiiii st e ae e e 195
3.2.7.31 Set Transaction Attributes.......cociiiiiiii 196
3.2.7.32 Set Transaction TimMeOULoiiiiiiii e 197
3.2.7.33 Request Transaction OULCOMEoviiiiiiiiiii e 197
3.2.7.34 Unenlist Phase Zero Enlistment.......ccoiiiiiiiiiii e 197
3.2.7.35 VOtiNG COMPIELE .. uneiii e 198
3.3 APPlCation Details. . .oviiiiii i e 199
3.3.1 Abstract Data Model ... 199
3.3.1.1 CONNTYPE_TXUSER_BEGINNER Initiator States........c.ceeviviiiiieininieiinenennn. 199
3.3.1.1.1 Al e 201
3.3.1.1.2 Awaiting Begin RESPONSE.....iviiiiiiiiiiiii e 201
3.3.1.1.3 Processing TransSaCtionuve i e s a s 202
3.3.1.1.4 Awaiting Commit RESPONSE.....uiuiiiiiiii i 202
3.3.1.1.5 Awaiting AbBOrt RESPONSE ...viiiiiiiiii e 202
3.3.1.1.6 =3 T =T 202
3.3.1.2 CONNTYPE_TXUSER_BEGINZ Initiator States........cvovviiiiiiiieie e, 202
3.3.1.2.1 Al e 203
3.3.1.2.2 Awaiting Begin RESPONSE.....iuiiiiiiiiiiiii e 203
3.3.1.2.3 Processing TranSaCtioNuiue i e ee s 203
3.3.1.2.4 Awaiting Set Timeout RESPONSE.......cciviiiiiiiiii e 204
3.3.1.2.5 Awaiting Commit RESPONSE....c.uiiiiiiiiiii e e 204
3.3.1.2.6 Awaiting AbBOrt RESPONSE ...viiiiiii i e 204
3.3.1.2.7 =3 T =T PP 204
3.3.1.3 CONNTYPE_TXUSER_PROMOTE Initiator States...........cocvvviiiiiiiiien, 204
3.3.1.3.1 o | = 205
3.3.1.3.2 Awaiting Promote RESPONSEviiiiiiiiii i e 205
3.3.1.3.3 Processing TransSacCtioNuvuvviviiiiiii i e 206
3.3.1.3.4 Awaiting Set Timeout RESPONSE.....icviiiiii i e 206
3.3.1.3.5 Awaiting Commit RESPONSE....cuiiiiiiiiiii e e 206
3.3.1.3.6 Awaiting AbBOrt RESPONSE .. uuiii i 206
3.3.1.3.7 ENAEA ..eieei e 206
3.3.1.4 CONNTYPE_TXUSER_ASSOCIATE Initiator Statesccooviiiiiiiiiiiieens 206
3.3.1.4.1 o | = 207
3.3.1.4.2 Awaiting AssocCiate RESPONSEciiiiiiiiiiiiiiiii e 207
3.3.1.4.3 A IV e s 207
3.3.1.4.4 ENAed oo e 207
3.3.1.5 CONNTYPE_TXUSER_EXTENDWHEREABOUTS Initiator States.................... 208
3.3.1.5.1 o | = 208
3.3.1.5.2 AWaiting Get RESPONSE....iiuiiiiiiiii e 209
3.3.1.5.3 ENAEA ..eee e 209
3.3.1.6 CONNTYPE_TXUSER_IMPORT Initiator Statescccooviiiiiiiiiiiiiiiieens 209
3.3.1.6.1 o] =P 210
11 /475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

3.3.1.6.2 Awaiting IMport RESPONSEiiviiiiiiii e 210
3.3.1.6.3 Transaction Import SUCCESSTUl ...iviiiiiiiii e 210
3.3.1.6.4 Awaiting AbOrt RESPONSE ... 211
3.3.1.6.5 ENAEd o.vieiiii 211
3.3.1.7 CONNTYPE_TXUSER_IMPORT2 Initiator States..........covvvviiiiiiiniininn, 211
3.3.1.7.1 o] = 212
3.3.1.7.2 AwWaiting IMpPOrt RESPONSE . uuiiii i i e e e eeaeeas 212
3.3.1.7.3 Transaction Import SUCCESSTUl ... 212
3.3.1.7.4 AwWaiting AbOrt RESPONSE .. vttt e 213
3.3.1.7.5 ENded ..o 213
3.3.1.8 CONNTYPE_TXUSER_EXPORT Initiator Statesccovvvviiiiiiiniiin, 213
3.3.1.8.1 Al 214
3.3.1.8.2 Awaiting Create RESPONSEcoviuiiiiiiiii e 214
3.3.1.8.3 ConNNECtioN ACTIVEiiiii 215
3.3.1.8.4 Awaiting EXPOrt RESPONSE ...vviuiiiiiiiiiii e 215
3.3.1.8.5 ENAEd o.vieieii 215
3.3.1.9 CONNTYPE_TXUSER_EXPORT2 Initiator Statescocviiiiiiiiiiiiieens 215
3.3.1.9.1 o] = 216
3.3.1.9.2 Awaiting Create RESPONSEciiiiiiiiiiii s 216
3.3.1.9.3 ConNNECHION ACTIVEvi e 216
3.3.1.9.4 Awaiting EXPOrt RESPONSE ..ouiiiiiiiiiiii e 217
3.3.1.9.5 =] o =T P 217
3.3.1.10 CONNTYPE_TXUSER_GETTXDETAILS Initiator States............covviiiiinininnnns 217
3.3.1.10.1 LAl e 218
3.3.1.10.2 AWaItiNg RESPONSE. . euuiiiiiiiiie ittt e e e e raeaeas 218
3.3.1.10.3 ENAed cuiuiiiniiiiiiii e 218
3.3.1.11 CONNTYPE_TXUSER_RESOLVE Initiator Statesccooviiiiiiiiiiiieen, 218
3.3.1.11.1 TAlE e 219
3.3.1.11.2 Awaiting ADOIt RESPONSE .. .uiuiiiiiiiiii i e ereeaens 220
3.3.1.11.3 Awaiting FOorget RESPONSE......ciiiiiiiiiii e 220
3.3.1.11.4 Awaiting CommIt RESPONSE....cuviuiiiiiiiiiii e rae s 220
3.3.1.11.5 ENAEd ciuiiiiiiiii i e 220
3.3.1.12 CONNTYPE_TXUSER_SETTXTIMEOUT Initiator Statesccvviviiininennnnns 220
0G0 e 12 N | = PP 221
3.3.1.12.2 Awaiting Set Timeout RESPONSE.....ccviiiiiiiii s 221
3.3.1.12.3 ENAEd cieiiiiiiii e 221
3.3.1.13 CONNTYPE_TXUSER_SETTXTIMEOUT2 Initiator States............ccccvvieiennnnnnns 221
3.3.1.13.1 TAlE e 222
3.3.1.13.2 Awaiting Set Timeout RESPONSE......iuiiiiiiiiii e 222
3.3.1.13.3 ENAed e 222
3.3.1.14 CONNTYPE_TXUSER_TRACE Initiator Statesccoeviiiiiiiiiiiee, 223
3.3.1.14.1 TAlE e 223
3.3.1.14.2 Awaiting Trace RESPONSEiuiiiiiiiiii i e e e e 223
3.3.1.14.3 ENAed cuiniiiiiiiii i e 224
3.3.1.15 CONNTYPE_TXUSER_GETSECURITYFLAGS Initiator States.............ccocvevnnnns 224
3.3.1.15.1 LAl e e 225
3.3.1.15.2 Awaiting Get RESPONSE.. .ot 225
3.3.1.15.3 ENAed c.uiiiiiiiiii e e 225
3.3.2 I =T 225
3.3.3 INitialiZatiON co e e 226
3.3.4 Higher-Layer Triggered EVENES ..ot 226
3.3.4.1 Beginning @ Transaction.....ccoviiiiiiii 226
3.3.4.1.1 Beginning a Transaction Using CONNTYPE_TXUSER_BEGIN2................ 227
3.3.4.1.2 Beginning a Transaction Using CONNTYPE_TXUSER_BEGINNER............ 227
3.3.4.1.3 Beginning a Transaction Using CONNTYPE_TXUSER_PROMOTE............. 227
3.3.4.2 Changing a Transaction TiMeEOULcviiiiiiiiiii e 228
3.3.4.2.1 Changing a Transaction Timeout Using CONNTYPE_TXUSER_SETTXTIMEOUT
.. 228

12 /475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

3.3.4.2.2 Querying Transaction Manager's Support for Modifying a Transaction

Timeout Using CONNTYPE_TXUSER_SETTXTIMEOUT2ccovvvvvieininnnnns 228
3.3.4.3 Obtaining a Propagation Token for a Transaction..........ccveviiiiiiiiiiiiicienens 229
3.3.4.4 Creating an EXport ConNeCtioN. . ..vviiiiii i e raae e nes 230
3.3.4.5 Generating Trace Records for a Transaction Using CONNTYPE_TXUSER_TRACE
... 231
3.3.4.6 IMporting @ TranSaCtioN ..o i e e e e 231
3.3.4.6.1 Importing a Transaction Using CONNTYPE_TXUSER_IMPORT................ 232
3.3.4.6.2 Importing a Transaction Using CONNTYPE_TXUSER_IMPORT2.............. 232
3.3.4.7 Importing a Transaction with Additional Transaction Attributes................... 233
3.3.4.8 Initiating Transaction Commit.....cviiiiiiiiii e e 233
3.3.4.8.1 Commit a Transaction Using CONNTYPE_TXUSER_BEGIN2................... 234
3.3.4.8.2 Commit a Transaction Using CONNTYPE_TXUSER_BEGINNER............... 234
3.3.4.8.3 Commit a Transaction Using CONNTYPE_TXUSER_PROMOTE................ 234
3.3.4.9 Initiating Transaction ROIbackccoiiiiiiiii s 235
3.3.4.9.1 Abort a Transaction Using CONNTYPE_TXUSER_BEGIN2...................... 235
3.3.4.9.2 Abort a Transaction Using CONNTYPE_TXUSER_BEGINNER.................. 235
3.3.4.9.3 Abort a Transaction Using CONNTYPE_TXUSER_IMPORT..........ccvcvvuenn. 236
3.3.494 Abort a Transaction Using CONNTYPE_TXUSER_IMPORT2ccccvvvuene. 236
3.3.4.9.5 Roll Back a Transaction Using CONNTYPE_TXUSER_PROMOTE.............. 236
3.3.4.10 Obtaining Extended Whereabouts Using
CONNTYPE_TXUSER_EXTENDEDWHEREABOUTScciiiiiiiiiiiiiiieieieieeieen, 237
3.3.4.11 Obtaining the Security Configuration of the Transaction Manager Using
CONNTYPE_TXUSER_GETSECURITYFLAGS ...viiiiiiiiiiiiiei e e ee 237
3.3.4.11.1 Obtaining the Details for @ Transaction.......cccovviiiiiiiiiiii e, 237
3.3.4.12 Pulling @ TranSaCtioN ..ui.iiiiiiiiii i e et ae s 237
3.3.4.13 Push a Transaction Using an Existing Export Connectioncocoeevvnene. 238
3.3.4.14 Obtaining a Transaction Cookie Using an Existing Export Connection 239
3.3.4.15 Resolving @ TranSactioni.eieiiiiiii i e e 239
3.3.5 Processing Events and Sequencing RUIESocviiiiiiiiiiiiii i naa e 240
3.3.5.1 Transaction Initiation and Completion ..o 240
3.3.5.1.1 CONNTYPE_TXUSER_BEGINNER as Initiator......cccooeviiiiiiiiiiiiiiiineens 240
3.3.5.1.1.1 Receiving a TXUSER_BEGINNER_MTAG_BEGUN Message............... 240
3.3.5.1.1.2 Receiving a TXUSER_BEGINNER_MTAG_BEGIN_NO_MEM or
TXUSER_BEGINNER_MTAG _BEGIN_LOG_FULL Message................ 240
3.3.5.1.1.3 Receiving a TXUSER_BEGINNER_MTAG_REQUEST_COMPLETED Message
.. 241
3.3.5.1.1.4 Receiving a TXUSER_BEGINNER_MTAG_COMMIT_TOO_LATE Message
.. 241
3.3.5.1.1.5 Receiving a TXUSER_BEGINNER_MTAG_COMMIT_INDOUBT Message241
3.3.5.1.1.6 Connection DisCONNECEEdviiviiiiiiii e e ea s 241
3.3.5.1.2 CONNTYPE_TXUSER_BEGINZ2 as Initiator.....c.cooviiiiiiiiiiiiiiiieineens 242
3.3.5.1.2.1 Receiving a TXUSER_BEGIN2_MTAG_SINK_BEGUN Message 242
3.3.5.1.2.2 Receiving a TXUSER_SETTXTIMEOUT_MTAG_REQUEST_COMPLETE
=TT Y= T = 242
3.3.5.1.2.3 Receiving a TXUSER_SETTXTIMEOUT_MTAG_TOO_LATE Message ...242
3.3.5.1.2.4 Receiving a TXUSER_SETTXTIMEOUT_MTAG_TX_NOT_FOUND Message
.. 243
3.3.5.1.2.5 Receiving a TXUSER_BEGIN2_MTAG_SINK_ERROR Message 243
3.3.5.1.2.6 Connection DiscoNNeCtedvvviiiiiiiii i e 244
3.3.5.1.3 CONNTYPE_TXUSER_PROMOTE as Initiator......ccoovviiiiiiiiiiiiiiieens 244
3.3.5.1.3.1 Receiving a TXUSER_BEGIN2_MTAG_SINK_BEGUN Message 244
3.3.5.1.3.2 Receiving a TXUSER_BEGIN2_MTAG_SINK_ERROR Message 245
3.3.5.2 Transaction Propagationc.ccoviiiiiiiiii 245
3.3.5.2.1 PUll Propagationouieiiiiiiiii e e 245
3.3.5.2.1.1 CONNTYPE_TXUSER_ASSOCIATE as Initiator........ccovvviiiiiiinnnnns 245
3.3.5.2.1.1 Receiving a TXUSER_ASSOCIATE_MTAG_ASSOCIATED Message245
3.3.5.2.1.1 Receiving Other TXUSER_ASSOCIATE_MTAG Messages............ 246
13/ 475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

3.3.5.2.1.1.3 Receiving a TXUSER_IMPORT2_MTAG_SINK_ERROR Message...246
3.3.5.2.1.1.4 Connection Disconnected.....ovviiiiiiiii i 247
3.3.5.2.2 PUsh Propagationcoiiiiiiiiiiii e 247
3.3.5.2.2.1 CONNTYPE_TXUSER_EXTENDEDWHEREABOUTS as Initiator........... 247
3.3.5.2.2.1.1 Receiving a TXUSER_EXTENDEDWHEREABOUTS_MTAG_GOT
MESSAGE .. ittt 247
3.3.5.2.2.1.2 Receiving a TXUSER_EXTENDEDWHEREABOUTS_MTAG_NOMEM
MESSAGE ..ttt 247
3.3.5.2.2.1.3 CONNTYPE_TXUSER_EXTENDEDWHEREABOUTS Connection
Y=Y] L= =Y 247
3.3.5.2.2.2 CONNTYPE_TXUSER_EXPORT as Initiator.....ccovvivviiiiiiiiiiiieiiiineens 248
3.3.5.2.2.2.1 Receiving a TXUSER_EXPORT_MTAG_CREATED Message.......... 248
3.3.5.2.2.2.2 Receiving a TXUSER_EXPORT_MTAG_CREATE_BAD_TMADDR or
TXUSER_EXPORT_MTAG_CREATE_NET_TX_DISABLED Message 248
3.3.5.2.2.2.3 Receiving a TXUSER_EXPORT_MTAG_EXPORTED Message......... 248
3.3.5.2.2.2.4 Receiving a TXUSER_EXPORT_MTAG_EXPORT_LOG_FULL,
TXUSER_EXPORT_MTAG_EXPORT_NO_MEM,
TXUSER_EXPORT_MTAG_EXPORT_TOO_LATE,
TXUSER_EXPORT_MTAG_EXPORT_TOO_MANY, or
TXUSER_EXPORT_MTAG_EXPORT_NOT_FOUND Message 249
3.3.5.2.2.2.5 CONNTYPE_TXUSER_EXPORT Connection Disconnected............ 249
3.3.5.2.2.3 CONNTYPE_TXUSER_EXPORT?2 as Initiator....coeivvviiiiiiiiiiiiiinnenns 249
3.3.5.2.2.3.1 Receiving a TXUSER_EXPORT_MTAG_CREATED Message.......... 249
3.3.5.2.2.3.2 Receiving a TXUSER_EXPORT_MTAG_CREATE_BAD_TMADDR or
TXUSER_EXPORT_MTAG_CREATE_NET_TX_DISABLED Message 249
3.3.5.2.2.3.3 Receiving a TXUSER_EXPORT_MTAG_EXPORTED Message........ 249
3.3.5.2.2.3.4 Receiving a TXUSER_EXPORT_MTAG_EXPORT_LOG_FULL,
TXUSER_EXPORT_MTAG_EXPORT_NO_MEM,
TXUSER_EXPORT_MTAG_EXPORT_TOO_LATE,
TXUSER_EXPORT_MTAG_EXPORT_TOO_MANY,
TXUSER_EXPORT_MTAG_EXPORT_NOT_FOUND, or
TXUSER_EXPORT_MTAG_EXPORT_COMM_FAILED Message 249
3.3.5.2.2.3.5 CONNTYPE_TXUSER_EXPORT2 Connection Disconnected.......... 250
3.3.5.2.2.4 CONNTYPE_TXUSER_IMPORT as Initiator...cccvviivviiiiiiiiiiiiiinnenns 250
3.3.5.2.2.4.1 Receiving a TXUSER_IMPORT_MTAG_IMPORTED Message 250
3.3.5.2.2.4.2 Receiving a TXUSER_IMPORT_MTAG_IMPORT_TX_NOT_FOUND
ST Y= T <SP 250
3.3.5.2.2.4.3 Receiving a TXUSER_IMPORT_MTAG_ABORT_TOO_LATE Message.
250
3.3.5.2.2.4.4 Receiving a TXUSER_IMPORT_MTAG_REQUEST_COMPLETED
MBS SAGE ..ttt 251
3.3.5.2.2.4.5 Connection Disconnected.....cvviiiiiiiiiiiii i 251
3.3.5.2.2.5 CONNTYPE_TXUSER_IMPORT2 as Initiator .c.ovvvivvviiiiiiiiiiieeiinnenns 251
3.3.5.2.2.5.1 Receiving a TXUSER_IMPORT2_MTAG_SINK_IMPORTED Message
251
3.3.5.2.2.5.2 Receiving a TXUSER_IMPORT2_MTAG_SINK_ERROR Message...251
3.3.5.2.2.5.3 CONNTYPE_TXUSER_IMPORT2 Connection Disconnected.......... 252
3.3.5.3 Transaction AdminisStrationviiiiiiiii i i 252
3.3.5.3.1 CONNTYPE_TXUSER_GETTXDETAILS as Initiatorocvvvvvviiiiiiiiinniinns 252
3.3.5.3.1.1 Receiving a TXUSER_GETTXDETAILS_MTAG_GOTIT Message 252
3.3.5.3.1.2 Receiving a TXUSER_GETTXDETAILS_MTAG_TX_NOT_FOUND Message
.. 253
3.3.5.3.1.3 CONNTYPE_TXUSER_GETTXDETAILS Connection Disconnected....... 253
3.3.5.3.2 CONNTYPE_TXUSER_RESOLVE as Initiator...cccvvviiieiiiii i iiieeeinnns 253
3.3.5.3.2.1 Receiving a TXUSER_RESOLVE_MTAG_REQUEST_COMPLETE Message
.. 253
3.3.5.3.2.2 Receiving a TXUSER_RESOLVE_MTAG_ACCESSDENIED or
TXUSER_RESOLVE_MTAG_TX_NOT_FOUND Messageccvvvvunnns 254
14 /475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

3.3.5.3.2.3 Receiving a TXUSER_RESOLVE_MTAG_CHILD_NOT_PREPARED or

TXUSER_RESOLVE_MTAG_NOT_CHILD MeSSagecvvvviiininnnnnns 254
3.3.5.3.2.4 Receiving a TXUSER_RESOLVE_MTAG_FORGET_TX_NOT_COMMITTED
1 FSTY 1= T = PP 254
3.3.5.3.2.5 Connection DiSCONNECEEA .. .iviriiiiiiiiii i e raanens 254
3.3.5.3.3 CONNTYPE_TXUSER_SETTXTIMEOUT as Initiator.........cocvovviiiiiiinnnens 254
3.3.5.3.3.1 Receiving a TXUSER_SETTXTIMEOUT_MTAG_REQUEST_COMPLETE
MESSAGE 1 vttt 255
3.3.5.3.3.2 Receiving a TXUSER_SETTXTIMEOUT_MTAG_TOO_LATE or
TXUSER_SETTXTIMEOUT_MTAG_TX_NOT_FOUND Message 255
3.3.5.3.3.3 Connection DiSCONNECEEA .. .iuviriiiiiiiiiiiei e raaaens 255
3.3.5.3.4 CONNTYPE_TXUSER_SETTXTIMEOUT2 as Initiator.......c.coovivvvviiinininne, 255
3.3.5.3.4.1 Receiving a TXUSER_SETTXTIMEOUT_MTAG_TX_NOT_FOUND Message
.. 255
3.3.5.3.4.2 Connection DiSCONNECLEdviviiiiiiiiiiiii e 256
3.3.5.3.5 CONNTYPE_TXUSER_TRACE as Initiatorccovvviiiiiiiininee 256
3.3.5.3.5.1 Receiving a TXUSER_TRACE_MTAG_REQUEST_COMPLETE Message 256
3.3.5.3.5.2 Receiving a TXUSER_TRACE_MTAG_REQUEST_FAILED or
TXUSER_TRACE_MTAG_TX_NOT_FOUND Messagecccvevenernnnns 256
3.3.5.3.5.3 Connection DIiSCONNECEEdviviiiiiiiii e 256
3.3.5.4 Transaction Manager Administration........cocoviviiiiiiiiic e 257
3.3.5.4.1 CONNTYPE_TXUSER_GETSECURITYFLAGS as Initiator...........ccooveeinnens 257
3.3.5.4.1.1 Receiving a TXUSER_GETSECURITYFLAGS _MTAG_FETCHED Message
.. 257
3.3.5.4.1.2 CONNTYPE_TXUSER_GETSECURITYFLAGS Connection Disconnected257
3.3.6 LI L 8 =2 == L 257
3.3.7 Other LOCal EVENES .. vt ae e s 257
3.4 Transaction Manager Communicating with Application Details...........ccoovvvviiiiinnnnnn. 258
3.4.1 Abstract Data Model ... 258
3.4.1.1 CONNTYPE_TXUSER_BEGINNER Acceptor States.........ccovvviiiiiiiiinnnn, 258
3.4.1.1.1 o | = 259
3.4.1.1.2 Beginning TranSacCtioNvvrvieiiiiiniii e 259
3.4.1.1.3 ACKIVE Lo 260
3.4.1.1.4 AbOrting TranSaCioNc i 260
3.4.1.1.5 Committing TranSaCtioNocviiiiiii e 260
3.4.1.1.6 =3 T =T PP 260
3.4.1.2 CONNTYPE_TXUSER_BEGIN2 Acceptor States.........cooviviiiiiiiiiiiiiieenn, 260
3.4.1.2.1 Al e e 261
3.4.1.2.2 Beginning TranSacCtioNvvuviiiiiiii i e 261
3.4.1.2.3 ACKIVE i 261
3.4.1.2.4 MOodifying TiMEOUL ...t e 262
3.4.1.2.5 AbOrtiNg TranSaCiON . ..ui it 262
3.4.1.2.6 Committing TranSACLION ...coviiieiiii e 262
3.4.1.2.7 ENAEA ..eeeiii e 262
3.4.1.3 CONNTYPE_TXUSER_PROMOTE Acceptor States........coovvviiiiiiiiininiiinieennn, 262
3.4.1.3.1 o | = 263
3.4.1.3.2 Beginning TranSactiono.uiei i e e 263
3.4.1.3.3 ACEIVE et 263
3.4.1.3.4 Modifying TiMEOUL ... e e aas 263
3.4.1.3.5 AbOrting TranSaCiON ...t e 264
3.4.1.3.6 Committing TranSACLIONovviieiiii s 264
3.4.1.3.7 ENAed oo e 264
3.4.1.4 CONNTYPE_TXUSER_ASSOCIATE Acceptor Statesccvvviiiiiiiiiiiiiiinanens 264
3.4.1.4.1 o | = 265
3.4.1.4.2 Processing Associate REqUESTE........cvvvviiiiiiiiiii e 265
3.4.1.4.3 A IV e s 266
3.4.1.4.4 =T =T TP 266
3.4.1.5 CONNTYPE_TXUSER_EXTENDEDWHEREABOUTS Acceptor States 266
15/475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

3.4.1.5.1 o | = 267
3.4.1.5.2 Processing INQUITY c.uiiiii i e e e ane e nes 267
3.4.1.5.3 ENded ..o 267
3.4.1.6 CONNTYPE_TXUSER_IMPORT Acceptor Statescoovvviiiiiiniiiiinian, 267
3.4.1.6.1 Al 268
3.4.1.6.2 Processing Import REQUESEcvviiiiiiiiiii e 268
3.4.1.6.3 ACKIVE Lo 269
3.4.1.6.4 Too Late to ADOrt .. 269
3.4.1.6.5 Processing AbOrt REQUESTviviiiiii i e e 269
3.4.1.6.6 ENded ..o 269
3.4.1.7 CONNTYPE_TXUSER_IMPORT2 Acceptor States........ovvviiiiiiniiiiiinnnn, 269
3.4.1.7.1 Al 270
3.4.1.7.2 Processing Import REQUESEcvviiiiiiiiiii e 270
3.4.1.7.3 ACKIVE Lo 271
3.4.1.7.4 Too Late to ADOrt .o 271
3.4.1.7.5 Processing AbOrt REQUESTviviiiiii i e e 271
3.4.1.7.6 ENded ..o 271
3.4.1.8 CONNTYPE_TXUSER_EXPORT Acceptor Statesccoovviiiiiiiiiiiiiiieens 271
3.4.1.8.1 Al e 272
3.4.1.8.2 Processing Connection Requestocviiiiiiiiiiiii e 272
3.4.1.8.3 ConNNECtioN ACEIVE ...cviiiii 272
3.4.1.8.4 Processing Push Operation Requestccccviiiiiiiiiiiiii e, 272
3.4.1.8.5 3 T =T 273
3.4.1.9 CONNTYPE_TXUSER_EXPORT?2 Acceptor States......ccvvvviiiiiiiiiiiiiiiiienneanns 273
3.4.1.9.1 o | = 274
3.4.1.9.2 Processing Connection REqUESEccviviiiiiiiiiii e 274
3.4.1.9.3 ConNNECHION ACTIVEvi e 274
3.4.1.94 Processing Push Operation Requestccoviiiiiiiiiiiiiii e, 274
3.4.1.9.5 =] o =T P 275
3.4.1.10 CONNTYPE_TXUSER_GETTXDETAILS Acceptor Statescocovvvivininininnnnns 275
3.4.1.10.1 LAl e 276
3.4.1.10.2 ProcCesSiNg INQUINY ..uuuiueiieiiie it s s e s s s e e e e reeraeaens 276
3.4.1.10.3 ENAed ..uiiiiiiiiiiii e 276
3.4.1.11 CONNTYPE_TXUSER_RESOLVE Acceptor Statesccoiviiiiiiiiiiiiieen, 276
3.4.1.11.1 TAlE e 277
3.4.1.11.2 Processing AbOrt REqQUESEcciiiiiiiii 278
3.4.1.11.3 Processing Forget Request.........cccoiiiiiiiiiiiii e 278
3.4.1.11.4 Processing Commit REQUESE.......oiiiiiiiiii e 278
R I T] o T [PP 278
3.4.1.12 CONNTYPE_TXUSER_SETTXTIMEOUT Acceptor States...........cocvviiiiininennnnns 278
3.4.1.12.1 LAl e e 279
3.4.1.12.2 ProcCessing ReQUEST......couiiiiiiiiiiiiii e 279
3.4.1.12.3 ENAEd c.uiiiiiiiiii i 279
3.4.1.13 CONNTYPE_TXUSER_SETTXTIMEOUT2 Acceptor States...........covvvinenenennnnns 280
3.4.1.13.1 TAlE e 281
3.4.1.13.2 Processing REQUESTE.......ciuiiiiiiiii s 281
3.4.1.13.3 ENAed cuiniiiiiii i 282
3.4.1.14 CONNTYPE_TXUSER_TRACE Acceptor Statescevvviiiiiiiiniiiiiiieiienienneanns 282
3.4.1.14.1 TAlE e e 282
3.4.1.14.2 Processing Trace REQUESTEiuviiiiiiiiiiiiiii e s 283
3.4.1.14.3 ENed c.niiiiieie i 283
3.4.1.15 CONNTYPE_TXUSER_GETSECURITYFLAGS Acceptor States...........ocveevninnne. 283
3.4.1.15.1 LAl e e 284
3.4.1.15.2 Processing REQUESE........iiiiiiiiiiiiiii 284
R I T J] o T [o PP 284
3.4.2 I =T 285
3.4.3 INitialiZatiON c o e 285
3.4.4 Higher-Layer Triggered EVENES ..ot e 286
16 /475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

3.4.5 Processing Events and Sequencing RUIESouiuiiiiiiiiiiiiiirr e 286
3.4.5.1 Transaction Initiation and Completion......c.coviiiiiiiiiiii e 286
3.4.5.1.1 CONNTYPE_TXUSER_BEGINNER as AcCCeptor....c.ccvvviiiiiiiiiiiiieiiennennens 286
3.4.5.1.1.1 Receiving a TXUSER_BEGINNER_MTAG_BEGIN Message................ 286
3.4.5.1.1.2 Receiving a TXUSER_BEGINNER_MTAG_COMMIT Message 287
3.4.5.1.1.3 Receiving a TXUSER_BEGINNER_MTAG_ABORT Message 287
3.4.5.1.1.4 Connection DisCONNECEEdvvvviiiiiiii i i i e raeeas 287
3.4.5.1.2 CONNTYPE_TXUSER_BEGIN2 as ACCEPLOr..ccvieiiiiieiieiiiie e e nneanens 288
3.4.5.1.2.1 Receiving a TXUSER_BEGIN2_MTAG_BEGIN Message...........c........ 288
3.4.5.1.2.2 Receiving a TXUSER_SETTXTIMEOUT_MTAG_SETTXTIMEOUT Message
.. 289
3.4.5.1.2.3 Receiving a TXUSER_BEGIN2_MTAG_COMMIT Message 289
3.4.5.1.2.4 Receiving a TXUSER_BEGIN2_MTAG_ABORT Messageccvueune. 289
3.4.5.1.2.5 Connection DiscoNNECtedivvviiiiiiiiii i i i as 289
3.4.5.1.3 CONNTYPE_TXUSER_PROMOTE as ACCEPIOr ...vviiiiiriieiiiiieiinenaenneanens 290
3.4.5.1.3.1 Receiving a TXUSER_BEGINNER_MTAG_PROMOTE Message........... 290
3.4.5.1.3.2 Receiving a TXUSER_SETTXTIMEOUT_MTAG_SETTXTIMEOUT,
TXUSER_BEGIN2_MTAG_COMMIT, or TXUSER_BEGIN2_MTAG_ABORT
[[T 1= T = PP 291
3.4.5.1.3.3 Connection DiSCONNECEEA . ..vvviiiiiii it i i rrnseesrinereras 291
3.4.5.2 Transaction Propagationcciiiiiiiiiii i i e i eea 291
3.4.5.2.1 PUIl Propagationouieiieiiii e e 291
3.4.5.2.1.1 CONNTYPE_TXUSER_ASSOCIATE as AcCeptor......cccvivviiiiiiiiiininnnn. 291
34.5.2.1.1.1 Receiving a TXUSER_ASSOCIATE_MTAG_ASSOCIATE Message .291
3.4.5.2.1.1.2 Connection Disconnected......ccvviiiiiiiiiiiii i i 293
3.4.5.2.2 Push Propagationcciiiiiii i e 293
3.4.5.2.2.1 CONNTYPE_TXUSER_EXTENDEDWHEREABOUTS as Acceptor.......... 293
3.4.5.2.2.1.1 Receiving a TXUSER_EXTENDEDWHEREABOUTS_MTAG_GET
MBS SAGE ..ttt 293
3.4.5.2.2.1.2 Connection Disconnected.....ovviiiiiiiii i e 294
3.4.5.2.2.2 CONNTYPE_TXUSER_EXPORT as ACCEPLOr...cvvvviriiriireininneiienennnnnss 294
3.4.5.2.2.2.1 Receiving a TXUSER_EXPORT_MTAG_CREATE Message............ 294
3.4.5.2.2.2.2 Receiving a TXUSER_EXPORT_MTAG_CREATE2 Message 295
3.4.5.2.2.2.3 Receiving a TXUSER_EXPORT_MTAG_EXPORT Message............ 295
3.4.5.2.2.2.4 Connection Disconnected.....ovviiiiiiiiiii i 296
3.4.5.2.2.3 CONNTYPE_TXUSER_EXPORT2 @s ACCEPLOr ..ovvviviiiiireiiieiienenenss 296
3.4.5.2.2.3.1 Receiving a TXUSER_EXPORT_MTAG_CREATE Message 296
3.4.5.2.2.3.2 Receiving a TXUSER_EXPORT_MTAG_CREATE2 Message 296
3.4.5.2.2.3.3 Receiving a TXUSER_EXPORT_MTAG_EXPORT Message............ 296
3.4.5.2.2.3.4 Connection Disconnected.....ovviiiiiiiiiii i 296
3.4.5.2.2.4 CONNTYPE_TXUSER_IMPORT as ACCEPLOr ..cuvvviiriiiiieiieeiienennanss 297
3.4.5.2.2.4.1 Receiving a TXUSER_IMPORT_MTAG_IMPORT Message 297
3.4.5.2.2.4.2 Receiving a TXUSER_IMPORT_MTAG_ABORT Message.............. 297
3.4.5.2.2.4.3 Connection Disconnected......vvviiiiiiiiiii i 298
3.4.5.2.2.5 CONNTYPE_TXUSER_IMPORT2 as AcCeptor ...ccvvivvviiiiiiiiiiiieiiean, 298
3.4.5.2.2.5.1 Receiving a TXUSER_IMPORT2_MTAG_IMPORT Message 298
3.4.5.2.2.5.2 Receiving a TXUSER_IMPORT2_MTAG_IMPORT_WITH_SET Message
299
3.4.5.2.2.5.3 Receiving a TXUSER_IMPORT2_MTAG_ABORT Message............ 299
3.4.5.2.2.5.4 Connection Disconnected......coiviiiiiiiiiiiii i i e 300
3.4.5.3 Transaction AdminiStration . .c.uviiiii i i i e eaeas 300
3.4.5.3.1 CONNTYPE_TXUSER_GETTXDETAILS as Acceptorcoccvveviiiiiiieiienenens 300
3.4.5.3.1.1 Receiving a TXUSER_GETTXDETAILS_MTAG_GET Message............. 300
3.4.5.3.1.2 Connection DiSCONNECEEA ...oiviiiiiiiiii i i i raeeas 301
3.4.5.3.2 CONNTYPE_TXUSER_RESOLVE as ACCEPIOr....cvviiiiiiiiiiiiiiie i nieaaens 301
3.4.5.3.2.1 Receiving a TXUSER_RESOLVE_MTAG_CHILD_ABORT Message 301
3.4.5.3.2.2 Receiving a TXUSER_RESOLVE_MTAG_CHILD_COMMIT Message302

17/475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

.. 302
3.4.5.3.2.4 Connection DiSCONNECEEAvvviiiiiiiiii i rrnseesrnneeeras 303
3.4.5.3.3 CONNTYPE_TXUSER_SETTXTIMEOUT as Acceptor.....ccvviviiiiiiiieiiiiinnnnn. 303
3.4.5.3.3.1 Receiving a TXUSER_SETTXTIMEOUT_MTAG_SETTXTIMEOUT Message
.. 303
3.4.5.3.3.2 Connection DisCONNECEEdvvvviiiiiiii i i i e raeeas 304
3.4.5.3.4 CONNTYPE_TXUSER_SETTXTIMEOUT2 a@s ACCEPLOr...cvvvvviiiiniiiinieinnnens 304
3.4.5.3.4.1 Receiving a TXUSER_SETTXTIMEOUT_MTAG_SETTXTIMEOUT Message
.. 304
3.4.5.3.4.2 Connection DiscoNNECtedivvviiiiiii i i e as 304
3.4.5.3.5 CONNTYPE_TXUSER_TRACE as ACCEPTOr ..vvvviiriiiiiiiiiiiiiie e e e e 304
3.4.5.3.5.1 Receiving a TXUSER_TRACE_MTAG_DUMP_TRANSACTION Message 304
3.4.5.3.5.2 Connection DiscoNNECtedivvviiiiiiiiii i i i as 305
3.4.5.4 Transaction Manager Administration..........coooviiiiiiii 305
3.4.54.1 CONNTYPE_TXUSER_GETSECURITYFLAGS as Acceptor........ccoeevievnnnnnn. 305
3.4.54.1.1 Receiving a TXUSER_GETSECURITYFLAGS_MTAG_GETSECURITYFLAGS
MESSAGE 1 uiitiii ittt 305
3.4.54.1.2 Connection DisCONNECEEd ...oivviiiiiiiii i i i i as 306
3.4.6 B T TS == 10 0= 307
3.4.7 (01 =T ol 1o Yor= | Y7 307
3.4.7.1 Associate Transaction Failure.....iiiiiiiiii i i s i i rnnaee e rnes 307
3.4.7.2 AsSOCiate TranSaCtioN SUCCESS .iiiiiiiiiiit it i i raee e eanseerranes 308
3.4.7.3 Begin ComMIE. ... e 308
3.4.7.4 Begin IN DOUDL ... 309
3.4.7.5 Begin ROIIDACK .. .t e e 309
3.4.7.6 Begin VotiNg. ..o i 309
3.4.7.7 Create Transaction FailurE....uiiiiii i i i ee e e nes 310
3.4.7.8 Create TranSaCtioN SUCCESS .. uiii ittt iiittetriiarersintreraiasessrnnersranasesernneneres 311
3.4.7.9 Create Voter Enlistment Failureovviiiiiii i e e e 311
3.4.7.10 Create Voter Enlistment SUCCESSciiiiiiiiiiiiii i i i rnae e aaeeas 312
3.4.7.11 Export Transaction Failure........c.cooiiiiiiiii e 312
3.4.7.12 EXPOrt TranSacCtion SUCCESS ..iiiuiiiiiiiiii i it eie e rie e it i s e e e anneaaneaas 313
3.4.7.13 Phase One COmMPIEteuiuiiiiiiiiii et e 314
3.4.7.14 Phase Zero Complete ..o 315
3.4.7.15 RegiSter Phase ZEI0 ...ciuiuiiiiiiiiii e 315
3.4.7.16 Resolve Transaction CoOmMPleteciiiiiiiiiii e 316
3.4.7.17 Resolve Transaction Access DeNIEdovvviiiiiiiiiiiiii it eaneeas 316
3.4.7.18 Rollback Complete ..o 317
3.4.7.19 Set Transaction Attributes Failurecooiiiiiiiiiiiii i i 317
3.4.7.20 Set Transaction Attributes SUCCESSuiiiriiiii i i i i aeeas 318
3.4.7.21 Set Transaction Timeout Failure.....coviiiiiiiii e 318
3.4.7.22 Set Transaction TiMEOUL SUCCESS ..uiiiiiiriiiii it ii i it i e aieeaaaeaaneanas 319
3.4.7.23 Unilaterally Aborted......cciiiiiiiiiii i 319
3.5 Resource Manager Details ..o e 320
3.5.1 Y 0 1 o =L ol 0 = | o= 0 1 o Yo [S 320
3.5.1.1 CONNTYPE_TXUSER_RESOURCEMANAGER Initiator States............ccevvennne. 321
3.5.1.1.1 1] 322
3.5.1.1.2 Awaiting Create RESPONSEcovviiiiiiiiiiii e 322
3.5.1.1.3 RECOVEING vttt e 322
3.5.1.1.4 Awaiting Completion Confirmationc.cocoeiiiiiiiii e, 322
3.5.1.1.5 0 1Y 322
3.5.1.1.6 [T 1= 322
3.5.1.2 CONNTYPE_TXUSER_RESOURCEMANAGERINTERNAL Initiator States.......... 322
3.5.1.2.1 1] 323
3.5.1.2.2 Awaiting Create RESPONSEcoviiiiiiiiiiii e 323
3.5.1.2.3 RECOVEING vttt e 323
3.5.1.2.4 Awaiting Completion Confirmationc.coiiiiiiiiiii e 324
18 /475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

3.5.1.2.5 ATV e e 324
3.5.1.2.6 ENAed oo e 324
3.5.1.3 CONNTYPE_TXUSER_PHASEQ Initiator Statesccooviiiiiiiiiiees 324
3.5.1.3.1 o] = PP 325
3.5.1.3.2 Awaiting Create RESPONSEciiiiiii i e aee 325
3.5.1.3.3 o o P 325
3.5.1.3.4 Processing Phase Zero ReqUESEcviiiiiiiiiiii i e 326
3.5.1.3.5 =g T =T PP 326
3.5.1.4 CONNTYPE_TXUSER_ENLISTMENT Initiator Statescocovviviiiiiiiiiiininens 326
3.5.1.4.1 o | = 327
3.5.1.4.2 Awaiting Enlistment RESPONSE....icviiiiiiiii i e 327
3.5.1.4.3 X o = 328
3.5.1.4.4 Single Phase Committing......ccoviiiiiiiiii s 328
3.5.1.4.5 Preparing for Transaction Commit.......ccoviiiiiiiiiiiiiiiii e 328
3.5.1.4.6 Finalizing Abort Operationsccoviiiiiiiiii 328
3.5.1.4.7 Awaiting Transaction OULCOMEiviiiiiiii e ee 328
3.5.1.4.8 Finalizing Commit Operations.........cccvviiiiiiiiiiii e 328
3.5.1.4.9 =g T =T PP 328
3.5.1.5 CONNTYPE_TXUSER_REENLIST Initiator States.......c.ccoooviiiiiiiiiiiiiiiiieens 328
3.5.1.5.1 o | = 329
3.5.1.5.2 Awaiting Reenlist RESPONSE ...ciuiiiiiiiiiii e 329
3.5.1.5.3 =3 T =T P 329
3.5.1.6 CONNTYPE_TXUSER_VOTER Initiator Statescocvvviiiiiiiiiiiiiiiiieieens 330
3.5.1.6.1 o | = 331
3.5.1.6.2 Awaiting Creation RESPONSEiiviiiiiii i e 331
3.5.1.6.3 ATV it e 332
3.5.1.6.4 Performing Transaction Operationsc.cooviiiiieieieieiiieiirereneeeeeens 332
3.5.1.6.5 ANYZ= [] g Yo IO 10} dole] 5 o =T PP 332
3.5.1.6.6 =3 T =T P 332
3.5.2 LI L0 2121 332
3.5.3 | T = | = [o P 332
3.5.4 Higher-Layer Triggered EVENESciviiiiiiiii i 333
3.54.1 Canceling Enlistment as a Phase Zero Participant on a Specific Transaction .333
3.5.4.2 Enlisting as a Phase Zero Participant on a Specific Transaction 333
3.5.4.3 Enlisting on a Specific Transaction......c.oiiviiiiiiiiii e 333
3.5.4.4 Enlistment Abort Request Completed.......ccoviiiiiiiiiiiiiii e 334
3.5.4.5 Enlistment Commit Request Completedcooviiiiiiiiiiiiiiii e 334
3.5.4.6 Enlistment Prepare Request Completed......ccoiviiiiiiiiiiiiiiiii 335
3.5.4.7 Enlistment Single-Phase Commit Request Completedccccvviiiiiinnnnnnn. 336
3.5.4.8 Phase Zero Request Completedocciiiiiiiiiiiiiiiicc e 337
3.5.4.9 Registering as a Voter on a Specific Transactionc.ccvviviiviieiiiieiieninnnnns 337
3.5.4.10 Registering with Transaction Manager........ccocviiiiiiiiiii i 337

3.5.4.10.1 Registering with Transaction Manager Using
CONNTYPE_TXUSER_RESOURCEMANAGERcciiiiiiiiiiiiiiieiiieie e, 338

3.5.4.10.2 Registering with Transaction Manager Using
CONNTYPE_TXUSER_RESOURCEMANAGERINTERNALccccvvviiiiiieinnene, 338
3.5.4.11 Voter Vote Request Completedccoviiiiiiiiiiiiiic e 338
3.5.5 Processing Events and Sequencing RUIEScoooiiiiiiiiiii e 339
3.5.5.1 Resource Manager Registration........coovveiiiiiiiiiiii e 339
3.5.5.1.1 CONNTYPE_TXUSER_RESOURCEMANAGER as Initiatorcccveevvnnens 339
3.5.5.1.1.1 Receiving a TXUSER_RESOURCEMANAGER_MTAG_DUPLICATE Message
.. 339
3.5.5.1.1.2 Receiving a TXUSER_RESOURCEMANAGER_MTAG_REQUEST_COMPLETE
MESSAGE vttt 339
3.5.5.1.1.3 Connection DiscoNNeCtedvvviiiiiiiii i e 340
3.5.5.1.2 CONNTYPE_TXUSER_RESOURCEMANAGERINTERNAL as Initiator-.......... 340

19/ 475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

3.5.5.1.2.1 Receiving a TXUSER_RESOURCEMANAGER_MTAG_DUPLICATE or
TXUSER_RESOURCEMANAGER_MTAG_REQUEST_COMPLETE Message

.. 340
3.5.5.1.2.2 Receiving a
TXUSER_RESOURCEMANAGERINTERNAL_MTAG_DUPLICATEDETECTED
MESSAGE 1 vttt 340
3.5.5.1.2.3 Connection DisCONNECEEdvvvviiiiiiii i i i e raeeas 340
3.5.5.2 Transaction CoordinNationc.oiiiiiiiiii i i e 341
3.5.5.2.1 CONNTYPE_TXUSER_PHASEOQ as Initiatorccvviiiiiiiiiiicinieiee e 341
3.5.5.2.1.1 Receiving a TXUSER_PHASEQO_MTAG_CREATED Message 341
3.5.5.2.1.2 Receiving a TXUSER_PHASEO_MTAG_CREATE_TX_NOT_FOUND or
TXUSER_PHASEO_MTAG_CREATE_TOO_LATE Message..........ccvuvuns 341
3.5.5.2.1.3 Receiving a TXUSER_PHASEQO_MTAG_PHASEOREQ Message............ 341
3.5.5.2.1.4 Receiving a TXUSER_PHASEO_MTAG_PHASEOREQ_ABORT Message 341
3.5.5.2.1.5 Connection Disconnectedc.viiiiiiiiiiii i 342
3.5.5.2.2 CONNTYPE_TXUSER_ENLISTMENT as Initiator.......ccoeviiiiiiiiiciiiinnnn, 342
3.5.5.2.2.1 Receiving a TXUSER_ENLISTMENT_MTAG_ENLISTED Message........ 342
3.5.5.2.2.2 Receiving a TXUSER_ENLISTMENT_MTAG_ENLIST_TX_NOT_FOUND,
TXUSER_ENLISTMENT_MTAG_ENLIST_TOO_LATE,
TXUSER_ENLISTMENT_MTAG_ENLIST_LOG_FULL, or
TXUSER_ENLISTMENT_MTAG_ENLIST_TOO_MANY Message........... 342
3.5.5.2.2.3 Receiving a TXUSER_ENLISTMENT_MTAG_PREPAREREQ Message ...342
3.5.5.2.2.4 Receiving a TXUSER_ENLISTMENT_MTAG_COMMITREQ Message343
3.5.5.2.2.5 Receiving a TXUSER_ENLISTMENT_MTAG_ABORTREQ Message 343
3.5.5.2.2.6 Connection Disconnectedc.viiiiiiiiiiii i e 343
3.5.5.3 TranSaCtioN RECOVEIY ..iiiiiiiiii it i e e e et e e ra e aeeaneas 344
3.5.5.3.1 CONNTYPE_TXUSER_REENLIST as Initiator.......cccovvviiiiiiiiiiiiiieeens 344
3.5.5.3.1.1 Receiving a TXUSER_REENLIST_MTAG_REENLIST_COMMITTED Message
.. 344
3.5.5.3.1.2 Receiving a TXUSER_REENLIST_MTAG_REENLIST_ABORTED Message
.. 344
3.5.5.3.1.3 Receiving a TXUSER_REENLIST_MTAG_REENLIST_TIMEOUT Message
.. 344
3.5.5.3.1.4 Connection Disconnectedcviiiiiiiiiii i e 344
3.5.5.4 AV /o] 1 T PSR 345
3.5.54.1 CONNTYPE_TXUSER_VOTER as Initiator....cccoevviiiiiiiiciiiiccceeas 345
3.5.54.1.1 Receiving a TXUSER_VOTER_MTAG_CREATED Message................. 345
3.5.5.4.1.2 Receiving a TXUSER_VOTER_MTAG_CREATE_TX_NOT_FOUND or
TXUSER_VOTER_MTAG_CREATE_TOO_LATE Messagecevvevuenns 345
3.5.5.4.1.3 Receiving a TXUSER_VOTER_MTAG_VOTEREQ Message................. 345
3.5.54.1.4 Receiving a TXUSER_STATUS_MTAG_COMMITTED Message 345
3.5.5.4.1.5 Receiving a TXUSER_STATUS_MTAG_ABORTED Message................ 346
3.5.5.4.1.6 Receiving a TXUSER_STATUS_MTAG_INDOUBT Message 346
3.5.5.4.1.7 Connection DisSCONNECEEd ...oiviiiiiiiiii i i i as 346
3.5.6 LI L= == 113 346
3.5.7 (O 1 =T ol I Y= | Y 7= 346
3.5.7.1 [= el 1Y 2= il I =1 1 =T = Tt of o] o 346
3.5.7.2 RECOVEr TranSaClioNS ..uiiiiii i e e e e aaeens 347
3.5.7.3 Reenlistment Completeo 347
3.5.7.4 Transaction Manager DOWN ... e 347
3.5.7.5 Reenlistment TimEOUL....coi i e e e e 348
3.6 Transaction Manager Communicating with Resource Manager Facet Details............ 348
3.6.1 ADSEract Data MOlcieiiiiiii i i e e e 348
3.6.1.1 CONNTYPE_TXUSER_RESOURCEMANAGER Acceptor States.........ccovvvvinnnens 349
3.6.1.1.1 1 | 350
3.6.1.1.2 CratING « vt e 350
3.6.1.1.3 REENIISTING .. uiiiiie i e 350
3.6.1.1.4 ot o Y 350
20/ 475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

3.6.1.1.5 ENAEd oo e 350
3.6.1.2 CONNTYPE_TXUSER_RESOURCEMANAGERINTERNAL Acceptor States......... 350
3.6.1.2.1 o] = PP PTPRIN 351
3.6.1.2.2 (O =T | o T [PP 351
3.6.1.2.3 REENIISTING vt e 351
3.6.1.2.4 ATV it e 351
3.6.1.2.5 =] o [T [PP 352
3.6.1.3 CONNTYPE_TXUSER_PHASEQ Acceptor Statesocovvviiiiiiiiiiiiii i nieenenes 352
3.6.1.3.1 o] = PP 353
3.6.1.3.2 Awaiting Create RESPONSEcviiiiiiiiiiiir e 353
3.6.1.3.3 X o = 354
3.6.1.3.4 Awaiting Phase Zero RESPONSE ...iiviiiiiiii it aea s 354
3.6.1.3.5 ENAEd oo e 354
3.6.1.4 CONNTYPE_TXUSER_ENLISTMENT Acceptor Statescvoviviiiiiiinniieinnnnns 354
3.6.1.4.1 o | = PP PP PRI 356
3.6.1.4.2 Processing Enlistment ReqUESE......cocviiiiiiiii i e 356
3.6.1.4.3 o o P 356
3.6.1.4.4 Awaiting Single-Phase Commit ReSponse.........cvcvviiiiiiiiiiiiiiree, 357
3.6.1.4.5 Awaiting Prepare ReSPONSEcciiiiii i i e i eaeeas 357
3.6.1.4.6 Awaiting Prepare Response Aborted........ccocvviiiiiiiiiiiiiiine e 357
3.6.1.4.7 =T 01 /=T 357
3.6.1.4.8 Awaiting Commit RESPONSE.....uiuiiiiiiii e 357
3.6.1.4.9 Awaiting AbOrt RESPONSE .. vttt e 357
3.6.1.4.10 ENAEA cuiiiiiiiiiiii i e e 357
3.6.1.5 CONNTYPE_TXUSER_REENLIST Acceptor States........covvvviiiiiiiiiieiiiiennenns 357
3.6.1.5.1 o] = PP 358
3.6.1.5.2 Processing Reenlist Request........c.covviiiiiiiiiiii e 358
3.6.1.5.3 ENAed oo e 359
3.6.1.6 CONNTYPE_TXUSER_VOTER Acceptor StatesS......ccvviiiriiiiiiiiiiieiiennennenns 359
3.6.1.6.1 o] = PP 360
3.6.1.6.2 (O ST LY = ol 360
3.6.1.6.3 ATV it e 361
3.6.1.6.4 AWaiting Voter RESPONSE ..ttt e e aaeeas 361
3.6.1.6.5 AWaItING OUECOME et e e e e 361
3.6.1.6.6 ENded oo e 361
3.6.2 LT P 361
3.6.2.1 Reenlist Time-OUt Timer ..o e e e 361
3.6.3 | F= 1 4=] o o PP 361
3.6.4 Higher-Layer Triggered EVENES ..o e 362
3.6.5 Processing Events and Sequencing RUIESoviiiiiiiiiiiiii e 362
3.6.5.1 Resource Manager Registration.........cocvveiiiiiiiiiiii e 362
3.6.5.1.1 CONNTYPE_TXUSER_RESOURCEMANAGER as Acceptorc.ccvvvivinnnnns 362
3.6.5.1.1.1 Receiving a TXUSER_RESOURCEMANAGER_MTAG_CREATE Message362
3.6.5.1.1.2 Receiving a
TXUSER_RESOURCEMANAGER_MTAG_REENLISTMENTCOMPLETE
MBS SAGE 1 vttt it 363
3.6.5.1.1.3 Connection DiSCONNECEEA .. .vuviriiiiiiiii e raaens 363
3.6.5.1.2 CONNTYPE_TXUSER_RESOURCEMANAGERINTERNAL as Acceptor-......... 363
3.6.5.1.2.1 Receiving a TXUSER_RESOURCEMANAGER_MTAG_CREATE Message363
3.6.5.1.2.2 Receiving a
TXUSER_RESOURCEMANAGER_MTAG_REENLISTMENTCOMPLETE
MESSAGE L vttt e 364
3.6.5.1.2.3 Connection DiscoNNeCtedvoviiiiiiiii i e 364
3.6.5.2 Transaction Coordinationveeviiiii e 364
3.6.5.2.1 CONNTYPE_TXUSER_PHASEQ as ACCEPIOr...ccivieiiiiiiiiiiiiiie e e nieaens 364
3.6.5.2.1.1 Receiving a TXUSER_PHASEQ_MTAG_CREATE Message.................. 364
3.6.5.2.1.2 Receiving a TXUSER_PHASEO_MTAG_PHASEOREQDONE Message ...365
3.6.5.2.1.3 Receiving a TXUSER_PHASEO_MTAG_UNENLIST Message 365
21/475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

3.6.5.2.1.4 Connection DiSCONNECEEA .. .iuviriiiiii e e aaens 366
3.6.5.2.2 CONNTYPE_TXUSER_ENLISTMENT as ACCEPLOr.....ccviviiiiriiiiniiiinieinnnens 366
3.6.5.2.2.1 Receiving a TXUSER_ENLISTMENT_MTAG_ENLIST Message 366
3.6.5.2.2.2 Receiving a TXUSER_ENLISTMENT_MTAG_PREPAREREQDONE Message
.. 367

3.6.5.2.2.3 Receiving a TXUSER_ENLISTMENT_MTAG_COMMITREQDONE Message
.. 368

3.6.5.2.2.4 Receiving a TXUSER_ENLISTMENT_MTAG_ABORTREQDONE Message
.. 368
3.6.5.2.2.5 Connection DiSCONNECEEvvviiiiiii e ea s 369
3.6.5.3 TranSaCtioN RECOVEIY ..uiiiiiiiii it it i ae st e e eaeeaneas 369
3.6.5.3.1 CONNTYPE_TXUSER_REENLIST @s ACCEPLOr....cccvriiiiiiiiiiiieienieninieiaenens 369
3.6.5.3.1.1 Receiving a TXUSER_REENLIST_MTAG_REENLIST Message............ 369
3.6.5.3.1.2 Connection Disconnectedccvviiiiiiiii i 371
3.6.5.4 740 o T 371
3.6.5.4.1 CONNTYPE_TXUSER_VOTER @5 ACCEPLOI «.viiiiiiiiiiiiiiiiieiieieeieeanenaenens 371
3.6.5.4.1.1 Receiving a TXUSER_VOTER_MTAG_CREATE Messageccvueu... 371
3.6.5.4.1.2 Receiving a TXUSER_VOTER_MTAG_VOTEREQDONE Message......... 371
3.6.5.4.1.3 Connection Disconnectedccviiiiiiiiii i 372
3.6.6 LI =T ol =7 1 PP 372
3.6.6.1 Reenlist TimeEoUL Tim el v e e e e e 372
3.6.7 (O 1 =T ol I Y= | I Y 7= 373
3.6.7.1 Begin CoOmMit. . i e 373
3.6.7.2 Begin IN DOUDL ... 374
3.6.7.3 Begin Phase ONe. ... et 374
3.6.7.4 BEgiN Phase ZeI0 ittt e 374
3.6.7.5 Begin ROIDACKuiii i e 375
3.6.7.6 Begin VOtiNg. . oo e 376
3.6.7.7 Create Phase Zero Enlistment Failureccooiviiiiiiiiiiiiiii e 376
3.6.7.8 Create Phase Zero Enlistment SUCCESS.....cciviiiiiiiiiiiiiiiciii e 376
3.6.7.9 Create ReSOUICE MaNAgEI ...uiuiiiii i et e e e aeneas 377
3.6.7.10 Create Subordinate Enlistment Failureccoooviiiiiiiiiii e 377
3.6.7.11 Create Subordinate Enlistment SUCCESScciviiiiiiiiiiiiiiii e 378
3.6.7.12 Create Voter Enlistment Failureccoiiiiiiiiiii e 378
3.6.7.13 Create Voter Enlistment SUCCESSciiiiiiiiiiiiiiic e 379
3.6.7.14 Phase Zer0 ADOIEd ... ciiiiiiiiiiiiii e e e 379
3.6.7.15 Reenlist CompPlete ..o 379
3.6.7.16 ResoUurce Manager DOWNuiiuiiiiiiie it s e st e e e e e ae e eanes 380
3.7 Superior Transaction Manager Facet Detailscovviiiiiiiii 380
3.7.1 Abstract Data Model.....c.ciiiiiii e 380
3.7.1.1 CONNTYPE_PARTNERTM_PROPAGATE Initiator States........ccccevvviiviiiinnnens 381
3.7.1.1.1 | o =PTSRS 382
3.7.1.1.2 Awaiting Propagation RESPONSEccviviiiiiiiiiiii e 382
3.7.1.1.3 ATV i e 383
3.7.1.1.4 Awaiting AbBOrt RESPONSE ...viuiiiiii i e 383
3.7.1.1.5 Phase Zero Registrationcocoieiiiiiii i 383
3.7.1.1.6 Requesting Phase Zer0......cuvuiiiiiiiiiii i e et e e e 383
3.7.1.1.7 PRASE Z B0 ottt e 383
3.7.1.1.8 Phase Zero Registration During Phase Zeroc.coovviiiiiiiiiinininennnnns 383
3.7.1.1.9 Phase Zero with Outstanding Registration...........cccooviiiiiiiiiiiiiienenn, 383
3.7.1.1.10 Awaiting Prepare RESPONSEiviiiiiiiiiiiiiiii s 384
3.7.1.1.11 PrePared c.cuceeieiiii e 384
3.7.1.1.12 Awaiting Commit RESPONSE.....iuiiiiiiiiiiiii e 384
3.7.1.1.13 ENAEA .t ittt e 384
3.7.1.2 CONNTYPE_PARTNERTM_BRANCH Acceptor States.......ccvveviiiiiiiiiiiiiinnnens 384
3.7.1.2.1 o | = PP PSPPI 385
3.7.1.2.2 BranChiNG .. i 385
3.7.1.2.3 Nt o = P 385
22 /475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

3.7.1.2.4 AWaiting ADOIt RESPONSE .. civieiiiii e e e 386
3.7.1.2.5 Phase Zero Registrationcocoiiiiiiiiiiiiii e 386
3.7.1.2.6 Requesting Phase Zero......ccouviiiiiiiiiiii i 386
3.7.1.2.7 PRasSE ZEI0 . i e 386
3.7.1.2.8 Phase Zero Registration During Phase Zeroccvveviiiiiiiiiiiiiiiiiinnnns 386
3.7.1.2.9 Phase Zero with Outstanding Registration...........c.coovviiiiiiiiiiiinen, 386
3.7.1.2.10 Awaiting Prepare RESPDONSE ..iiiti ittt it ii et iaesaee it e e e aeeaaneaaneans 387
3.7.1.2.11 Prepared ...oouieiieiiii i 387
3.7.1.2.12 Awaiting Commit RESPONSE.....viiiiiiiiiii i i i aneaas 387
3.7.1.2.13 BN e e 387
3.7.1.3 CONNTYPE_PARTNERTM_REDELIVERCOMMIT Initiator States.................... 387
3.7.1.3.1 Al 388
3.7.1.3.2 Awaiting Confirmation ... 388
3.7.1.3.3 Waiting to Rerequestvviiii e 388
3.7.1.3.4 =g T =T PP 388
3.7.1.4 CONNTYPE_PARTNERTM_CHECKABORT Acceptor Statescocvvvvinininnnnn, 389
3.7.1.4.1 o | = 389
3.7.1.4.2 Processing AbOrt INQUITY ...uiueieiieiiiiii e e 389
3.7.1.4.3 ENAEA o.vieiii e 390
3.7.2 LT 1= P 390
3.7.2.1 Redeliver Commit TimMEr «ouve e r e e e e 390
3.7.3 | T =] = [o P 390
3.7.4 Higher-Layer Triggered EVENES ...iviiiiiiii i aa e 390
3.7.5 Processing Events and Sequencing RUIEScooeiiiiiiiiiii e 391
3.7.5.1 Transaction Propagation and Coordination........c.cooiiiiiiiiiiiciiiee 391
3.7.5.1.1 Push Propagationcciiiiiii i e 391
3.7.5.1.1.1 CONNTYPE_PARTNERTM_PROPAGATE as Initiatorcccvvviennnens 391
3.7.5.1.1.1.1 Receiving a PARTNERTM_PROPAGATE_MTAG_PROPAGATED
MBS SAGE ..ttt 391
3.7.5.1.1.1.2 Receiving a PARTNERTM_PROPAGATE_MTAG_DUPLICATE,
PARTNERTM_PROPAGATE_MTAG_NO_MEM, or
PARTNERTM_PROPAGATE_MTAG_LOG_FULL Message............... 391
3.7.5.1.1.1.3 Receiving a PARTNERTM_PROPAGATE_MTAG_PHASEOREGISTER,
PARTNERTM_PROPAGATE_MTAG_PHASEOCOMPLETE,
PARTNERTM_PROPAGATE_MTAG_PREPAREREQDONE,
PARTNERTM_PROPAGATE_MTAG_COMMITREQDONE,
PARTNERTM_PROPAGATE_MTAG_ABORTREQDONE, or
PARTNERTM_PROPAGATE_MTAG_ABORTNOTIFY Message 392
3.7.5.1.1.1.4 Receiving a PARTNERTM_PROPAGATE_MTAG_PROTOCOL_ERROR
ST Y= T <SP 392
3.7.5.1.1.1.5 Connection Disconnected.........ccoviiiiiiiiiii 392
3.7.5.1.2 PUIl Propagationveeieiieiiii e e 393
3.7.5.1.2.1 CONNTYPE_PARTNERTM_BRANCH as Acceptorcccvevvvviiinieinnnens 393
3.7.5.1.2.1.1 Receiving a PARTNERTM_BRANCH_MTAG_BRANCHING Message393
3.7.5.1.2.1.2 Receiving a PARTNERTM_PROPAGATE_MTAG_PHASEOREGISTER
MBS SAGE ..ttt 394
3.7.5.1.2.1.3 Receiving a PARTNERTM_PROPAGATE_MTAG_PHASEOCOMPLETE
MBS SAGE ..ttt 394
3.7.5.1.2.1.4 Receiving a PARTNERTM_PROPAGATE_MTAG_ABORTNOTIFY
TS T < 394
3.7.5.1.2.1.5 Receiving a PARTNERTM_PROPAGATE_MTAG_ABORTREQDONE
MESSAGE ..ttt 395
3.7.5.1.2.1.6 Receiving a PARTNERTM_PROPAGATE_MTAG_PREPAREREQDONE
MESSAGE ..ttt 395
3.7.5.1.2.1.7 Receiving a PARTNERTM_PROPAGATE_MTAG_COMMITREQDONE
MESSAGE ..ttt 396
3.7.5.1.2.1.8 Receiving a PARTNERTM_PROPAGATE_MTAG_PROTOCOL_ERROR
oY= T < 396
23/ 475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

3.7.5.1.2.1.9 Connection DisconNnNected.....civiiiiiiiiiiiii i e 396

3.7.5.2 TranSaCtioN RECOVEIY ..uiiiiiiiii i i r e e san s ar s ran e raneaaneeannenn 397
3.7.5.2.1 Subordinate-Driven RECOVEIYiiviiiiiiiiiii i 397
3.7.5.2.1.1 CONNTYPE_PARTNERTM_CHECKABORT as Acceptor........cvovuvuvnnnn. 397
3.7.5.2.1.1.1 Receiving a PARTNERTM_CHECKABORT_MTAG_CHECK Message398
3.7.5.2.1.1.2 Connection Disconnected.........ccooviiiiiiiiiiiii 398
3.7.5.2.2 SUPErior-Driven RECOVEIY ...iiiiiii i i e e e aaneaas 398
3.7.5.2.2.1 CONNTYPE_PARTNERTM_REDELIVERCOMMIT as Initiator............... 398
3.7.5.2.2.1.1 Receiving a

PARTNERTM_REDELIVERCOMMIT_MTAG_COMMITREQDONE
[T T = TP 398

3.7.5.2.2.1.2 Receiving a PARTNERTM_REDELIVERCOMMIT_MTAG_RETRY
MESSAGE ..ttt 399
3.7.5.2.2.1.3 Connection Disconnected..........covviveiiiiiiiiiii 399
3.7.6 T EVENTS .ttt e 399
3.7.6.1 Redeliver Commit TimMEr .ouiuieiiiii e 399
3.7.7 Other LOCal EVENES .. vt e 400
3.7.7.1 Begin ComMIE. ... e 400
3.7.7.2 Begin Phase ONE.. ittt e 400
3.7.7.3 Begin PhaS@ ZEI0uiiiiiiiiii it 401
3.7.7.4 Begin ROIDACK .. .t e 401
3.7.7.5 Create Phase Zero Enlistment Failure ..o 402
3.7.7.6 Create Phase Zero Enlistment SUCCESS......ccvviiiiiiiiiiiiiiiii e, 402
3.7.7.7 Create Subordinate Enlistment Failurecooiiiiiiiii e 402
3.7.7.8 Create Subordinate Enlistment SUCCESScoviiiiiiiiiiiiii s 403
3.7.7.9 Phase Zero Aborted........ocviiiiiiiii 403
3.7.7.10 Propagate TranSacCtioncuuieeieiiiiii it et e e 403
3.8 Subordinate Transaction Manager Facet Detailscocvviiiiiiiiiiiiiic s 404
3.8.1 Abstract Data Model ... 404
3.8.1.1 CONNTYPE_PARTNERTM_PROPAGATE Acceptor States........c.cocvviiiinininnnnn, 404
3.8.1.1.1 o | = 406
3.8.1.1.2 Propagating ..o 406
3.8.1.1.3 ACKIVE Lo 406
3.8.1.1.4 A OIEING e 407
3.8.1.1.5 Awaiting Registration RESPONSE......cciiviiiiiiiiiii e 407
3.8.1.1.6 AWAItING Phase ZEeroiuiieiiiiii e 407
3.8.1.1.7 Awaiting Phase Zero OULCOME ... uiuiiiiiii i e ees 407
3.8.1.1.8 Awaiting Registration Response During Phase Zero..........c.ccoevivieinnnnnn. 407
3.8.1.1.9 Awaiting Phase Zero Outcome with Outstanding Registration 407
G 0 O A O o =T = o [[408
3.8.1.1.11 PrePared ...uoeieiieiie i 408
3.8.1.1.12 ComMMItEiNG. . ce e s 408
3.8.1.1.13 ENAEd cuniiiiiiieii i 408
3.8.1.2 CONNTYPE_PARTNERTM_BRANCH Initiator States.........cccvviiiiiiiiiinininnnnn. 408
3.8.1.2.1 Al e 409
3.8.1.2.2 Awaiting Branch ReSPONSEc.iiiiiiiiii e 409
3.8.1.2.3 ACKIVE i 410
3.8.1.2.4 A OIEING e 410
3.8.1.2.5 Awaiting Registration RESPONSE......ccvviiiiiiiiiiiiii e 410
3.8.1.2.6 AWaItIiNG Phase ZEer0viuiiiiiiiii e 410
3.8.1.2.7 Awaiting Phase Zero OULCOME.......iuiiiiiiiii e 410
3.8.1.2.8 Awaiting Registration Response During Phase Zero.........c.cocvvvvinininnnnn. 410
3.8.1.2.9 Awaiting Phase Zero Outcome with Outstanding Registration 411
3.8.1.2.10 PreParing .iuieieeeinitinintiitiens st 411
3.8.1.2.11 PrePared ...uoeieiieiiii i e 411
3.8.1.2.12 COMMIEEING. et s 411
3.8.1.2.13 BN cuiniiiiiiiiiiii e 411
3.8.1.3 CONNTYPE_PARTNERTM_REDELIVERCOMMIT Acceptor States................... 411

24 /475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

3.8.1.3.1 o | = PP P PPN 412
3.8.1.3.2 Processing Commit INQUITY «.veiiniiii i ne e 412
3.8.1.3.3 ENAEd oo e 412
3.8.1.4 CONNTYPE_PARTNERTM_CHECKABORT Initiator Statesccoevvvvvieinnnens 413
3.8.1.4.1 o] = PP 413
3.8.1.4.2 Awaiting Confirmationo 413
3.8.1.4.3 Waiting to REREQUESE.....oiiii i e 414
3.8.1.4.4 ENAEd oo e 414
3.8.2 LI L0 2121 414
3.8.2.1 (01 aT=To! 1Y o o o I 0 1= P 414
3.8.3 | T 1 4= o o o I PP 414
3.8.4 Higher-Layer Triggered EVENTScciiiiiiiiiiii i e s e e 415
3.8.5 Processing Events and Sequencing RUIEScoooiiiiiiiiiiii s 415
3.8.5.1 Transaction Propagation and Coordination.........ccooiiiiiiiiiiiiiii e 415
3.8.5.1.1 PUsSh Propagationcouiiiiiiiiiiii e 415
3.8.5.1.1.1 CONNTYPE_PARTNERTM_PROPAGATE as ACCeptorccvvvvvvrineinnnnns 415
3.8.5.1.1.1.1 Receiving a PARTNERTM_PROPAGATE_MTAG_PROPAGATE Message
415
3.8.5.1.1.1.2 Receiving Other PARTNERTM_PROPAGATE_MTAG Messages...... 416
3.85.1.1.1.3 Receiving a PARTNERTM_PROPAGATE_MTAG_PROTOCOL_ERROR
([T = Yo [TP 416
3.8.5.1.1.1.4 CONTYPE_PARTNERTM_PROPAGATE Connection Disconnected ..416
3.8.5.1.2 PUIl Propagationo.veeiiieiiii i 417
3.8.5.1.2.1 CONNTYPE_PARTNERTM_BRANCH as Initiatorccovvviieiiiieinnnns 417
3.8.5.1.2.1.1 Receiving a PARTNERTM_BRANCH_MTAG_BRANCHED Message .417
3.8.5.1.2.1.2 Receiving a PARTNERTM_BRANCH_MTAG_BRANCH_LOG_FULL,
PARTNERTM_BRANCH_MTAG_BRANCH_NO_MEM,
PARTNERTM_BRANCH_MTAG_BRANCH_TOO_LATE,
PARTNERTM_BRANCH_MTAG_BRANCH_TOO_MANY, or
PARTNERTM_BRANCH_MTAG_BRANCH_TX_NOT_FOUND Message
417
3.8.5.1.2.1.3 Receiving a PARTNERTM_PROPAGATE_MTAG_PHASEOREGISTERED
[T = T [TP 418
3.8.5.1.2.1.4 Receiving a
PARTNERTM_PROPAGATE_MTAG_PHASEOREGISTRATIONREJECTED
MBS SAGE ..ttt 418
3.8.5.1.2.1.5 Receiving a PARTNERTM_PROPAGATE_MTAG_ABORTREQ Message
419
3.8.5.1.2.1.6 Receiving a PARTNERTM_PROPAGATE_MTAG_PHASEQO Message 419
3.8.5.1.2.1.7 Receiving a PARTNERTM_PROPAGATE_MTAG_PREPAREREQ Message
419
3.8.5.1.2.1.8 Receiving a PARTNERTM_PROPAGATE_MTAG_COMMITREQ Message
420
3.8.5.1.2.1.9 Receiving a PARTNERTM_PROPAGATE_MTAG_PROTOCOL_ERROR
ST Y= T <SP 420
3.8.5.1.2.1.10 Connection Disconnected.........ccvviiiiieiiiiiiiiiieierieaneaens 420
3.8.5.2 TranSaCtioON RECOVEIY . .uiiiiiiiii it i e r et ae e aneas 421
3.8.5.2.1 Subordinate-Driven RECOVEIYciuiiiiiiiiii i e 421
3.8.5.2.1.1 CONNTYPE_PARTNERTM_CHECKABORT as Initiator.........ccocvvvvnnens 421
3.8.5.2.1.1.1 Receiving a PARTNERTM_CHECKABORT_MTAG_ABORTED Message
421
3.8.5.2.1.1.2 Receiving a PARTNERTM_CHECKABORT_MTAG_RETRY Message 421
3.8.5.2.1.1.3 CONNTYPE_PARTNERTM_CHECKABORT Connection Disconnected
422
3.8.5.2.2 SUPErior-Driven RECOVENYiiiiiiiiiiiiiins e 422
3.8.5.2.2.1 CONNTYPE_PARTNERTM_REDELIVERCOMMIT as Acceptor.............. 422
3.8.5.2.2.1.1 Receiving a PARTNERTM_REDELIVERCOMMIT_MTAG_COMMITREQ
oY= T < 422

25/ 475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

3.8.5.2.2.1.2 Connection DisconNnNected.....civiiiiiiiiiiiii i e 423

3.8.6 TIMEr EVENES. vt 423
3.8.6.1 Check ADOrt TIMEE .o e 423
3.8.7 Other Local EVENES....uiuiiiiiiiii e 423
3.8.7.1 Branch Transactionc.cviiiiiiiii 424
3.8.7.2 Cancel Check ADOIt e 424
3.8.7.3 ComMMIt CoOMPIEEE c. i 424
3.8.7.4 Create Superior Enlistment SUCCESS ...vvvviiiiiiiiiii i e e 425
3.8.7.5 Create Superior Enlistment Failure ..o 425
3.8.7.6 Phase Zero ComPIeteooviiiiiii e 425
3.8.7.7 Phase One CompPlete ..o e e e 426
3.8.7.8 Recover In Doubt Transaction......cocveveiiiiiiiiiir 427
3.8.7.9 Register Phase ZErocviuiiiiiiiiii e e 427
3.8.7.10 RolIback ComPlete ..ocviiiiiiii i 428
3.8.7.11 Unilaterally ADOrted........coiuiiiiiiiii 428
4 Protocol EXamples ...cuiciiiiiimimimi i rs s sse s ssassasssasssssassansassansanssnssnsnnnnnnsa 429
4.1 Simple TranSaction SCENAMOiuiui i e e e e raeaeas 429
4.1.1 Beginning @ TranSaCtioNcveiiiiiiiiii e 429
4.1.2 Completing @ TranSACHION ..uiiiiiiii i e r e aaees 430
4.1.2.1 Committing the Transactionccoiiiiiiiii e 431
4.2 Transaction Marshaling Scenario (Pull Propagation)cccvviiiiiiiiiiiiiiiiceee, 431
4.2.1 Marshaling the Transactioncoooiiiiii s 432
4.2.2 Unmarshaling the Transactionc.oviiiiiii e 433
4.2.3 Branching the Transactiono.oiiiiiii e 435
4.3 Transaction Marshaling Scenario (Push Propagation)cocoviiiiiiiiiiiiiiieen, 437
4.3.1 Obtaining the Whereabouts of the Receiver's Transaction Manager 437
4.3.2 EXporting the TranSactionciuiiiiii e ae e 438
4.3.3 Propagating the TranSactionviiiiiiiiii e e aeeas 440
4.3.4 Importing the TranSacCtioNooeiiiiiii e 442
4.4 Simple Enlistment SCENAMO ...viiiii i e 443
4.4.1 Registering with the Transaction Manager as a Resource Manager 443
4.4.2 Enlisting in @an EXisting TranSactionccoiiiiiiiiiiii e 444
4.4.3 Responding to Enlistment Notificationsccoviiiiiiiiii e 446
4.4.3.1 Responding to a Prepare Request Message.......cocevviiieiiiiiiiiiiiiiiiieineenn, 446
4.4.3.2 Responding to a Commit Request MeSSage......cvvvvviiieiiiiiiiiiieniiieieneenn 447
4.5 Transaction Manager Two-Phase Commit SCENAMO ...vvvviiireiiiiiiiii e aeeeeeas 447
4.5.1 PRASE DN i 448
451.1 Phase One - Subordinate Resource Managerscccvevveiviiiiieiieneieienenenn, 448
4.5.1.2 Phase One - Subordinate Transaction Manager Facetscccovevieinnenn. 449
4.5.1.3 Phase One - The Root Transaction Manager........ccvveiiiiiiiiiiiiiieniieieneennn 450
4.5.2 PRASE TWO Lt 451
4.52.1 Phase Two - Subordinate Resource Managersccovvvveiiiiiiieiieneieienenenn 451
4.5.2.2 Phase Two - Subordinate Transaction Manager Facetsccovviiieinenenn. 451
4.5.2.3 Phase Two - The Root Transaction Manager........ccoevviiiiiiiiiiiiiieniei e, 452
4.6 Resource Manager RECOVEINY SCENAIMO ..uuiiriitiieiitiitiae ittt saeeaeeare e aeraeaneeens 452
4.6.1 Initializing the RECOVEINY PrOCESS.....viuiiiiiieiii e e 453
4.6.2 Reenlisting in In-Doubt Transactionsccvvvieiiiiii e 453
4.6.3 ComMPIEtiNg RECOVETY ..uuiiiiiiiiii i e et ae e e 455
L -V oL T | o 456
5.1 Security Considerations for Implementerso 456
5.2 Index of Security Parameterso.ieieiiiiiiii et e 457
6 Appendix A: Product Behaviorciciiiiiiiieieiiicrrasasssisisissssse s s s sasasasasass 458
7 Change TracCKing...cicueiaressmsmeransmmassasansesassasansasassassnsasassasansasassnssnsasassasansasassnsannnss 462
2 1 T (= 463
26 /475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

27/ 475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

1 Introduction

The MSDTC Connection Manager: OleTx Transaction Protocol (DTCO) allows multiple participants to
negotiate and commit transactions while maintaining the ACID properties (atomicity, consistency,
isolation, and durability) of those transactions. The protocol specifies comprehensive distributed
transaction processing that is referred to in this document as OleTx.

The MSDTC Connection Manager: OleTx Transaction Protocol is a concrete manifestation of the Two-
Phase Commit protocol for coordinating the work of multiple parties in a distributed system. The
protocol specifies the syntax and semantics but does not attempt to provide a primer on transaction
processing in general.

The Two-Phase Commit protocol ensures that work associated with a transaction is atomic across
multiple participating resources. Each resource is controlled by a resource manager. A resource
manager has the responsibility of interacting with a transaction manager to perform the steps
necessary to implement the Two-Phase Commit protocol.

In the first phase of the Two-Phase Commit protocol, the transaction manager asks each participating
resource manager to "prepare" for transaction commit. Each resource manager then decides if it can
allow the transaction commit to continue or if the transaction will be aborted. Each resource manager
informs the transaction manager of its decision through either a "prepared" notification or a "rollback"
notification. If all participating resource managers respond with "prepared", thus agreeing that the
transaction commit can continue, the transaction manager makes the outcome decision permanent
and moves on to the second phase of the Two-Phase Commit protocol.

In the second phase of the Two-Phase Commit protocol, the transaction manager informs all the
resource managers of the final outcome decision for the transaction. This step is necessary because
when a resource manager provides a "prepared" vote in the first phase, it is in an "in-doubt" state,
pending the outcome of the transaction. The resource manager has promised to commit its work on
the transaction, but because the final outcome of the transaction is unknown, it cannot yet treat the
updates as permanent. The transaction manager informs each resource manager that the transaction
either committed or aborted during this second phase. In the case of a commit decision, the resource
managers are responsible for acknowledging to the transaction manager that they have received the
commit notification. This step is required because the transaction manager has the responsibility of
retaining the committed outcome of the transaction until all resource managers have acknowledged
that they have received the outcome and have confirmed that they will not request them again.

The Two-Phase Commit protocol is also used between two transaction managers when a transaction is
distributed between them. The originating transaction manager is considered the superior while the
receiving transaction manager is considered subordinate. With respect to the Two-Phase Commit
protocol, the superior transaction manager asks the subordinate transaction manager to
"prepare" in the first phase, and the subordinate transaction manager then performs the Two-Phase
Commit protocol with its resource managers and subordinate transaction managers, if any, before
responding "prepared"” back to the superior transaction manager. In the second phase, the outcome of
the transaction is communicated from the superior to the subordinate, and the subordinate
acknowledges its receipt.

This commit coordination ensures that either all the resource managers end up committing their work
on a transaction, or none of them does, thereby guaranteeing atomicity of the data updated by a
single transaction.

Section 1.3.1, covering the transaction lifetime, provides a more complete description of the Two-
Phase Commit protocol. Section 10.4 of [GRAY] also provides an excellent description.

The MSDTC Connection Manager: OleTx Transaction Protocol uses the transports protocol described in
MS-CMPQO], and the multiplexing protocol described in [MS-CMP], as a transport layer. This protocol
provides concrete mechanisms for beginning, propagating, and completing atomic transactions. It also

28/ 475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

%5bMS-CMPO%5d.pdf#Section_d2403ca533fa432997f5825ad0868bf6
%5bMS-CMP%5d.pdf#Section_1970a8a0799d4308b9274e4ea23dc225

provides mechanisms for coordinating agreement on a single atomic outcome for each transaction and
for reliably distributing that outcome to all participants in the transaction.

This protocol is applicable to application scenarios where atomic transaction processing is a
requirement. This protocol is usable in network topologies where the transports protocol, together
with the multiplexing protocol, are a viable network transport for establishing long-lived session
relationships between the participants in an atomic transaction.

Sections 1.5, 1.8, 1.9, 2, and 3 of this specification are normative. All other sections and examples in
this specification are informative.

1.1 Glossary
This document uses the following terms:

abort outcome: A possible outcome of an atomic transaction that indicates that the work
performed during the lifetime of the transaction is discarded after the transaction completes.
An abort outcome is reached when at least one transaction participant does not agree to
commit the transaction.

abort request: An action that a participant performs to force a transaction to reach an abort
outcome.

acceptor: A participant that receives a session or connection request. This role is also known as
the "subordinate".

ACID: A term that refers to the four properties that any database system must achieve in order to
be considered transactional: Atomicity, Consistency, Isolation, and Durability [GRAY].

action: The smallest unit of work in a workflow system. An action can contain one or more tasks
that define work that actors need to do. Actions are deployed and registered in the workflow
system to be activated by protocol client users.

active phase: The time during the lifetime of an atomic transaction before the commit request
when the participants in the transaction (applications and resource managers) perform
all their intended work operations inside the transaction.

application: A participant that is responsible for beginning, propagating, and completing an atomic
transaction. An application communicates with a transaction manager in order to begin and
complete transactions. An application communicates with a transaction manager in order to
marshal transactions to and from other applications. An application also communicates in
application-specific ways with a resource manager in order to submit requests for work on
resources.

atomic transaction: A shared activity that provides mechanisms for achieving the atomicity,
consistency, isolation, and durability (ACID) properties when state changes occur inside
participating resource managers.

begin request: The action that is performed by a root application in order to create a new
atomic transaction.

byte order mark: A Unicode character that is used to indicate that text is encoded in UTF-8, UTF-
16, or UTF-32.

commit outcome: One of the outcomes of an atomic transaction. The commit outcome
indicates that the work performed during the lifetime of the transaction will be retained after
the transaction has completed, as specified by the ACID properties. A commit outcome is
reached when all transaction participants agree to commit the transaction.

29/ 475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

commit request: The action that is performed by a root application to initiate the Two-Phase
Commit Protocol for an atomic transaction.

connection: In OleTx, an ordered set of logically related messages. The relationship between the
messages is defined by the higher-layer protocol, but they are guaranteed to be delivered
exactly one time and in order relative to other messages in the connection.

connection type: A specific set of interactions between participants in an OleTx protocol that
accomplishes a specific set of state changes. A connection type consists of a bidirectional
sequence of messages that are conveyed by using the MSDTC Connection Manager: OleTx
Transports Protocol and the MSDTC Connection Manager: OleTx Multiplexing Protocol transport
protocol, as described in [MS-CMPO] and [MS-CMP]. A specified transaction typically involves
many different connection types during its lifetime.

contact identifier: A universally unique identifier (UUID) that identifies a partner in the MSDTC
Connection Manager: OleTx Transports Protocol. These UUIDs are frequently converted to and
from string representations. This string representation must follow the format specified in
C706] Appendix A. In addition, the UUIDs must be compared, as specified in [C706] Appendix
A.

core transaction manager facet: The facet that acts as the internal coordinator of each
transaction that is inside the transaction manager. The core transaction manager facet
communicates with other facets in its transaction manager to ensure that each transaction is
processed correctly. To accomplish this, the core transaction manager facet maintains critical
transaction state, in both volatile memory and in a durable store, such as in a log file.

distributed transaction: A transaction that updates data on two or more networked computer
systems. Distributed transactions extend the benefits of transactions to applications that
must update distributed data.

durable resource: A resource whose state is expected to be retained beyond the lifetime of a
particular resource manager connection. Durable resources are managed by durable
resource managers.

durable resource manager: A resource manager that manages resources whose states are
expected to be maintained beyond the lifetime of a particular resource manager connection.

endpoint: A network-specific address of a remote procedure call (RPC) server process for remote
procedure calls. The actual name and type of the endpoint depends on the RPC protocol
sequence that is being used. For example, for RPC over TCP (RPC Protocol Sequence
ncacn_ip_tcp), an endpoint might be TCP port 1025. For RPC over Server Message Block (RPC
Protocol Sequence ncacn_np), an endpoint might be the name of a hamed pipe. For more
information, see [C706].

enlistment: The relationship between a participant and a transaction manager in an atomic
transaction. The term typically refers to the relationship between a resource manager and its
transaction manager, or between a subordinate transaction manager facet and its
superior transaction manager facet.

extended whereabouts: The data that is provided by a protocol extension and that indicates
its network endpoint location and other information that is relevant to the protocol
extension.

facet: In OleTx, a subsystem in a transaction manager that maintains its own per-transaction
state and responds to intra-transaction manager events from other facets. A facet can also
be responsible for communicating with other participants of a transaction.

globally unique identifier (GUID): A term used interchangeably with universally unique
identifier (UUID) in Microsoft protocol technical documents (TDs). Interchanging the usage of
these terms does not imply or require a specific algorithm or mechanism to generate the value.

30/475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

%5bMS-CMPO%5d.pdf#Section_d2403ca533fa432997f5825ad0868bf6
%5bMS-CMP%5d.pdf#Section_1970a8a0799d4308b9274e4ea23dc225
https://go.microsoft.com/fwlink/?LinkId=89824

Specifically, the use of this term does not imply or require that the algorithms described in
RFC4122] or [C706] must be used for generating the GUID. See also universally unique
identifier (UUID).

In Doubt outcome: One of the outcomes of an atomic transaction. The In Doubt outcome
indicates that a commit request was issued by the root application but that the transaction
manager cannot ascertain the actual commit or abort decision.

initiator: A participant that originates a session or connection request.

man in the middle (MITM): An attack that deceives a server or client into accepting an
unauthorized upstream host as the actual legitimate host. Instead, the upstream host is an
attacker's host that is manipulating the network so that the attacker's host appears to be the
desired destination. This enables the attacker to decrypt and access all network traffic that
would go to the legitimate host. The attacker is able to read, insert, and modify at-will messages
between two hosts without either party knowing that the link between them is compromised.

marshal: To encode one or more data structures into an octet stream using a specific remote
procedure call (RPC) transfer syntax (for example, marshaling a 32-bit integer).

message tag (MTAG): A message that is sent between participants in the context of connections.

NetBIOS host name: The NetBIOS name of a host (as described in [RFC1001] section 14 and
RFC1002] section 4), with the extensions described in [MS-NBTE].

NULL GUID: A GUID of all zeros.

OleTx: A comprehensive distributed transaction manager processing protocol that uses the
protocols specified in the following document(s): [MS-CMPO], [MS-CMP], [MS-DTCLU], [MS-
DTCM], [MS-DTCQ], [MC-DTCXA], [MS-TIPP], and [MS-CMOM].

outcome: One of the three possible results (Commit, Abort, In Doubt) reachable at the end of a
life cycle for an atomic transaction.

participant: Any of the parties that are involved in an atomic transaction and that have a stake
in the operations that are performed under the transaction or in the outcome of the
transaction ([WSAT10], [WSAT11]).

Phase One: The initial phase of a two-phase commit sequence. During this phase, the participants
in the transaction are requested to prepare to be committed. This phase is also known as the
"Prepare" phase. At the end of Phase One, the outcome of the transaction is known.

Phase One enlistment: An enlistment that indicates that the subordinate participant
participates in Phase One.

Phase One participant: A participant in a Phase One enlistment.

Phase Two enlistment: An enlistment that indicates that the subordinate participant
participates in Phase Two.

Phase Zero: A phase in distributed transaction processing that is composed of one or more Phase
Zero waves. At the beginning of a Phase Zero wave, all Phase Zero participants are notified
that the transaction has entered Phase Zero. While the participants process the Phase Zero
notification, they can continue to marshal the transaction to new participants. Consequently,
participating transaction managers can still accept new enlistments during Phase Zero.

Phase Zero enlistment: An enlistment that indicates that the subordinate participant participates
in Phase Zero.

Phase Zero participant: A participant with a Phase Zero enlistment.

31/475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

https://go.microsoft.com/fwlink/?LinkId=90460
https://go.microsoft.com/fwlink/?LinkId=90260
https://go.microsoft.com/fwlink/?LinkId=90261
%5bMS-NBTE%5d.pdf#Section_3461cfa83d284fa38163131bf1046fa3
%5bMS-DTCLU%5d.pdf#Section_09c6c3c965a74814ad32160d292f8dcb
%5bMS-DTCM%5d.pdf#Section_7dbf234d2c1540b79a20812f5e3964ec
%5bMS-DTCM%5d.pdf#Section_7dbf234d2c1540b79a20812f5e3964ec
%5bMS-DTCO%5d.pdf#Section_c367c57133f344ac85cb4b9ebbb2779d
%5bMC-DTCXA%5d.pdf#Section_e4c50686e0134cf69515a0e821eb5ed9
%5bMS-TIPP%5d.pdf#Section_8a046f2abcc149ebad9c3891ce37d796
%5bMS-CMOM%5d.pdf#Section_e4e4626dcb7a461983150acffe974858
https://go.microsoft.com/fwlink/?LinkId=113066
https://go.microsoft.com/fwlink/?LinkId=113067

Phase Zero wave: A discrete stage inside Phase Zero processing in which Phase Zero notifications
are sent to all known Phase Zero enlistments. New Phase Zero enlistments that appear during a
Phase Zero wave are processed during the next Phase Zero wave. The process is repeated until
a Phase Zero wave is processed without the creation of new Phase Zero enlistments.

presumed abort: An optimization of the Two-Phase Commit Protocol in which a transaction
manager omits persisting transaction abort outcomes from a durable store.

protocol extension: An addition of new integrated behavior to an existing protocol.

pull propagation: An operation that enables the untargeted marshaling of a transaction from
one application or resource manager to another. Pull propagation allows the source
participant to marshal the transaction without the prior knowledge of the contact information
of the transaction manager of the destination participant.

push propagation: An operation that enables the targeted marshaling of a transaction from one
application or resource manager to another. For marshaling the transaction, push
propagation requires the source participant to have prior knowledge about the contact
information of the transaction manager of the destination participant.

recovery: The process of reestablishing connectivity and synchronizing views on the outcome of
transactions between two participants after a transient failure. Recovery occurs either between a
resource manager and a transaction manager, or between a Superior Transaction Manager Facet
and a Subordinate Transaction Manager Facet.

registration: The procedure in which a transmitter is able to uniquely identify a receiver.

resource: A logical entity or unit of data whose state changes in accordance with the outcome of
an atomic transaction. Resources are either durable or volatile.

resource manager (RM): The participant that is responsible for coordinating the state of a
resource with the outcome of atomic transactions. For a specified transaction, a resource
manager enlists with exactly one transaction manager to vote on that transaction outcome and
to obtain the final outcome. A resource manager is either durable or volatile, depending on its
resource.

resource manager identifier: The GUID that uniquely identifies the resource manager.

resource manager session identifier: The GUID that uniquely identifies a particular session
between the resource manager and a transaction manager.

rollback: Synonymous with abort.

root application: The application that is responsible for beginning and completing an atomic
transaction. The root application communicates with a root transaction manager in order
to begin and complete transactions.

root transaction manager: The specific transaction manager that processes both the Begin
Request and the Commit Request for a specified transaction. A specified transaction has
exactly one root transaction manager.

session: In OleTx, a transport-level connection between a Transaction Manager and another
Distributed Transaction participant over which multiplexed logical connections and messages
flow. A session remains active so long as there are logical connections using it.

single-phase commit: An optimization of the Two-Phase Commit Protocol in which a transaction
manager delegates the right to decide the outcome of a transaction to its only subordinate
participant. This optimization can result in an In Doubt outcome.

subordinate participant: A role that is taken by a participant that is responsible for voting on
the outcome of an atomic transaction. For a specified transaction, the set of subordinate

32 /475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

participants is the set of all resource managers and the set of all subordinate transaction
managers.

subordinate transaction manager: A role taken by a transaction manager that is responsible
for voting on the outcome of an atomic transaction. A subordinate transaction manager
coordinates the voting and notification of its subordinate participants on behalf of its superior
transaction manager. When communicating with those subordinate participants, the
subordinate transaction manager acts in the role of superior transaction manager. The
root transaction manager is never a subordinate transaction manager. A subordinate
transaction manager has exactly one superior transaction manager.

superior transaction manager: A role taken by a transaction manager that is responsible for
gathering outcome votes and providing the final transaction outcome. A root transaction
manager can act as a superior transaction manager to a number of subordinate
transaction managers. A transaction manager can act as both a subordinate transaction
manager and a superior transaction manager on the same transaction.

task: A component of an action that defines the work that actors need to do within a workflow
system. An action can have zero or more tasks that are each assigned to different targets. There
is a one-to-one correlation between tasks and targets.

transaction: In OleTx, an atomic transaction.

transaction description: An implementation-specific string that is associated with an atomic
transaction and is often used to provide human-readable information about the transaction.
Description strings are typically provided by the higher-layer software.

transaction identifier: The GUID that uniquely identifies an atomic transaction.

transaction lifetime: The lifetime of an atomic transaction. The transaction lifetime extends
from the time when the root transaction manager processes a begin request to the time
when all participants have forgotten the transaction.

transaction manager: The party that is responsible for managing and distributing the outcome of
atomic transactions. A transaction manager is either a root transaction manager or a
subordinate transaction manager for a specified transaction.

transaction marshaling: The act of serializing and deserializing the information that is needed to
carry out a transaction propagation action on a specified transaction.

transaction propagation: The act of coordinating two transaction managers to work together on
a single atomic transaction. When propagating a transaction to a transaction manager that is
not already a participant in the transaction, that transaction manager plays the role of
subordinate transaction manager to the originating transaction manager, which will play the role
of superior transaction manager. When propagating a transaction to a transaction manager that
is already a participant in the transaction, no new superior or subordinate relationship is
established.

transient failure: Any event that could result in a loss of transport connectivity between
participants, such as a software crash, a software restart, or a temporary problem with
network connections.

two-phase commit: An agreement protocol that is used to resolve the outcome of an atomic
transaction in response to a commit request from the root application. Phase One and Phase
Two are the distinct phases of the Two-Phase Commit Protocol.

Unicode: A character encoding standard developed by the Unicode Consortium that represents
almost all of the written languages of the world. The Unicode standard [UNICODES.0.0/2007]
provides three forms (UTF-8, UTF-16, and UTF-32) and seven schemes (UTF-8, UTF-16, UTF-16
BE, UTF-16 LE, UTF-32, UTF-32 LE, and UTF-32 BE).

33/475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

https://go.microsoft.com/fwlink/?LinkId=154659

volatile resource: A resource whose value is not expected to be retained beyond the lifetime of
a particular resource manager connection.

volatile resource manager: A resource manager that manages volatile resources. A volatile
resource manager does not perform recovery operations.

voter: A participant in an atomic transaction that contributes to the final outcome of the
transaction but does not manage access to durable resources or require recovery services.
A voter votes on the outcome of the transaction, but it is provided with only best-effort
outcome notifications by the transaction manager. A volatile resource manager typically
acts as a voter.

voter enlistment: An enlistment that indicates that the voter participates in Phase One.

whereabouts: Data that indicates the network endpoint location and properties of a transaction
manager.

work: The set of state changes that are applied to resources inside an atomic transaction.
MAY, SHOULD, MUST, SHOULD NOT, MUST NOT: These terms (in all caps) are used as defined
in [REC2119]. All statements of optional behavior use either MAY, SHOULD, or SHOULD NOT.
1.2 References

Links to a document in the Microsoft Open Specifications library point to the correct section in the
most recently published version of the referenced document. However, because individual documents
in the library are not updated at the same time, the section numbers in the documents may not
match. You can confirm the correct section numbering by checking the Errata.

1.2.1 Normative References

We conduct frequent surveys of the normative references to assure their continued availability. If you
have any issue with finding a normative reference, please contact dochelp@microsoft.com. We will
assist you in finding the relevant information.

[C193] The Open Group, "Distributed TP: The XA Specification", February 1992,
https://www2.opengroup.org/ogsys/catalog/c193

[C706] The Open Group, "DCE 1.1: Remote Procedure Call", C706, August 1997,
https://publications.opengroup.org/c706

Note Registration is required to download the document.

[ISO/IEC-8859-1] International Organization for Standardization, "Information Technology -- 8-Bit
Single-Byte Coded Graphic Character Sets -- Part 1: Latin Alphabet No. 1", ISO/IEC 8859-1, 1998,
http://www.iso.org/iso/home/store/catalogue tc/catalogue detail.htm?csnumber=28245

Note There is a charge to download the specification.

[MS-CMOM] Microsoft Corporation, "MSDTC Connection Manager: OleTx Management Protocol".

[MS-CMPQO] Microsoft Corporation, "MSDTC Connection Manager: OleTx Transports Protocol".

[MS-CMP] Microsoft Corporation, "MSDTC Connection Manager: OleTx Multiplexing Protocol".

[MS-CMRP] Microsoft Corporation, "Failover Cluster: Management API (ClusAPI) Protocol".

[MS-DTYP] Microsoft Corporation, "Windows Data Types".

34 /475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

https://go.microsoft.com/fwlink/?LinkId=90317
https://go.microsoft.com/fwlink/?linkid=850906
mailto:dochelp@microsoft.com
https://go.microsoft.com/fwlink/?LinkId=89820
https://go.microsoft.com/fwlink/?LinkId=89824
https://go.microsoft.com/fwlink/?LinkId=90689
%5bMS-CMOM%5d.pdf#Section_e4e4626dcb7a461983150acffe974858
%5bMS-CMPO%5d.pdf#Section_d2403ca533fa432997f5825ad0868bf6
%5bMS-CMP%5d.pdf#Section_1970a8a0799d4308b9274e4ea23dc225
%5bMS-CMRP%5d.pdf#Section_ba4117c0530e4e70a0854b4cf5bbf193
%5bMS-DTYP%5d.pdf#Section_cca2742956894a16b2b49325d93e4ba2

[MS-RRP] Microsoft Corporation, "Windows Remote Registry Protocol".

[MS-TIPP] Microsoft Corporation, "Transaction Internet Protocol (TIP) Extensions".

[MS-WKST] Microsoft Corporation, "Workstation Service Remote Protocol".

[MS-WSRVCAT] Microsoft Corporation, "WS-AtomicTransaction (WS-AT) Version 1.0 Protocol
Extensions".

[NETBEUI] IBM Corporation, "LAN Technical Reference: 802.2 and NetBIOS APIs", 1986,
http://publibz.boulder.ibm.com/cgi-bin/bookmgr O0S390/BOOKS/BK8P7001/CCONTENTS

[RFC1001] Network Working Group, "Protocol Standard for a NetBIOS Service on a TCP/UDP
Transport: Concepts and Methods", RFC 1001, March 1987, http://www.ietf.org/rfc/rfc1001.txt

[RFC1002] Network Working Group, "Protocol Standard for a NetBIOS Service on a TCP/UDP
Transport: Detailed Specifications", STD 19, RFC 1002, March 1987, http://www.rfc-
editor.org/rfc/rfc1002.txt

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC
2119, March 1997, http://www.rfc-editor.org/rfc/rfc2119.txt

[RFC2371] Lyon, J., Evans, K., and Klein, J., "Transaction Internet Protocol Version 3.0", RFC 2371,
July 1998, http://www.ietf.org/rfc/rfc2371.txt

[RFC4122] Leach, P., Mealling, M., and Salz, R., "A Universally Unique Identifier (UUID) URN
Namespace", RFC 4122, July 2005, http://www.rfc-editor.org/rfc/rfc4122.txt

1.2.2 Informative References

[GRAY] Gray, J., and Reuter, A., "Transaction Processing: Concepts and Techniques", The Morgan
Kaufmann Series in Data Management Systems, San Francisco: Morgan Kaufmann Publishers, 1992,
Hardcover ISBN: 9781558601901.

[MC-DTCXA] Microsoft Corporation, "MSDTC Connection Manager: OleTx XA Protocol".

[MS-COM] Microsoft Corporation, "Component Object Model Plus (COM+) Protocol".

[MS-DTCLU] Microsoft Corporation, "MSDTC Connection Manager: OleTx Transaction Protocol Logical
Unit Mainframe Extension".

[MS-DTCM] Microsoft Corporation, "MSDTC Connection Manager: OleTx Transaction Internet Protocol".

[MS-MQMP] Microsoft Corporation, "Message Queuing (MSMQ): Queue Manager Client Protocol".

[MS-MQRR] Microsoft Corporation, "Message Queuing (MSMQ): Queue Manager Remote Read
Protocol".

[MSDN-ANSI] Microsoft Corporation, "Unicode and Character Sets", http://msdn.microsoft.com/en-
us/library/dd374083.aspx

1.3 Overview
This section presents a brief overview of the following topics:
= The life cycle phases of a transaction, including the Two-Phase Commit protocol

= Additional processing cases to consider: unilateral abort and single-phase commit

35/475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

%5bMS-RRP%5d.pdf#Section_0fa3191dbb79490a81bd54c2601b7a78
%5bMS-TIPP%5d.pdf#Section_8a046f2abcc149ebad9c3891ce37d796
%5bMS-WKST%5d.pdf#Section_5bb08058bc364d3cabebb132228281b7
%5bMS-WSRVCAT%5d.pdf#Section_e94b4e6708ee43c6aaa741033f8e11fd
%5bMS-WSRVCAT%5d.pdf#Section_e94b4e6708ee43c6aaa741033f8e11fd
https://go.microsoft.com/fwlink/?LinkId=90224
https://go.microsoft.com/fwlink/?LinkId=90260
https://go.microsoft.com/fwlink/?LinkId=90261
https://go.microsoft.com/fwlink/?LinkId=90261
https://go.microsoft.com/fwlink/?LinkId=90317
https://go.microsoft.com/fwlink/?LinkId=90338
https://go.microsoft.com/fwlink/?LinkId=90460
%5bMC-DTCXA%5d.pdf#Section_e4c50686e0134cf69515a0e821eb5ed9
%5bMS-COM%5d.pdf#Section_a846e48dbbc94b289650601810cf3af0
%5bMS-DTCLU%5d.pdf#Section_09c6c3c965a74814ad32160d292f8dcb
%5bMS-DTCLU%5d.pdf#Section_09c6c3c965a74814ad32160d292f8dcb
%5bMS-DTCM%5d.pdf#Section_7dbf234d2c1540b79a20812f5e3964ec
%5bMS-MQMP%5d.pdf#Section_8e379aa2802d4fccb6a66203e4606fa9
%5bMS-MQRR%5d.pdf#Section_9edbc8fa02ad4c79804f6bb8f430aac1
%5bMS-MQRR%5d.pdf#Section_9edbc8fa02ad4c79804f6bb8f430aac1
https://go.microsoft.com/fwlink/?LinkId=89952
https://go.microsoft.com/fwlink/?LinkId=89952

= The distinct roles that are played by participants in transaction processing
= Transaction recovery details

= Transaction marshaling and propagation details

1.3.1 Transaction Lifetime

At a general level, a transaction consists of a set of operations that an application or a set of
applications treats as an atomic unit. These applications typically use one or more resource
managers to modify and store the state that is affected by the transaction. The applications and
resource managers make use of transaction managers to obtain a set of services. These roles are
described further in section 1.3.3.

The transaction lifetime begins when an application determines that it needs a new transaction.
The application assumes the role of root application and issues a Begin request to the root
transaction manager. When a new transaction is created, either the root application or the root
transaction manager assigns it an identifier that is unique in both time and space.

After the transaction is created, it enters the active phase. In the active phase, applications and
resource managers perform all their intended actions inside the transaction.

Resource managers that perform work inside an atomic transaction contact their transaction
manager to enlist on the transaction. By enlisting in a transaction, the resource manager is
agreeing to participate in the Two-Phase Commit Protocol. For more information see [GRAY] section
10.4.

Applications and resource managers often share a transaction with a participant that is not located in
the same operating system process or execution context. In this case, the application marshals the
transaction to the other participant over an implementation-specific communication mechanism. If
the receiving participant does not share a transaction manager with the sending participant, a
transaction propagation handshake occurs to coordinate the transaction managers at both the
sender and receiver of the transaction. After the transaction is successfully marshaled and (if
needed) propagated, the receiving participant can perform operations on the transaction with its
own transaction manager and also marshal the transaction to further participants.

As transaction enlistment and propagation occurs, the collection of resource managers and
transaction managers relate to each other in a hierarchy known as a transaction tree.

The following figure depicts the transaction tree.

36/475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

Figure 1: Transaction tree

Eventually, the root application that began the transaction determines that no more work is to be
performed under the transaction. When that occurs, the application sends a Commit request to
the root transaction manager to begin the process of completing the transaction.

When the root transaction manager receives the Commit request, it begins the process of
determining the transaction outcome and communicating that outcome to all interested
participants. That process begins with zero or more Phase Zero waves followed by Phase One and
Phase Two of the Two-Phase Commit sequence.

1.3.1.1 Phase Zero

When a Commit request is issued by the root application, the transaction first enters Phase
Zero. If there are no Phase Zero participants, the transaction leaves Phase Zero and proceeds to
Phase One.

Phase Zero is composed of one or more Phase Zero waves. At the beginning of a Phase Zero
wave, all Phase Zero participants are notified that the transaction has entered Phase Zero.
While the participants process the Phase Zero notification, they can continue to marshal the
transaction to new participants. Consequently, participating transaction managers can still accept
new enlistments during Phase Zero.

When a Phase Zero participant completes its Phase Zero processing, it sends a Phase Zero
completion notification back to the transaction manager.

If any of the Phase Zero participants fail or issue an Abort request during the Phase Zero wave,
the current Phase Zero wave is terminated and the transaction immediately moves to the aborting
state, which is discussed in section 1.3.2.1.

37/ 475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

Otherwise, after completion notifications are received from all Phase Zero participants:

= If no new Phase Zero enlistments were created during the current Phase Zero wave, the
transaction proceeds to Phase One.

= If one or more new Phase Zero enlistments were created during the current Phase Zero wave,
the transaction executes another Phase Zero wave with the new Phase Zero participants.

The following figure shows the overall Phase Zero flow.

Root .
Mew . Enlisted
Participant Tﬁ;ﬁ:;ﬂ?“ Participant

Phase Zero Motification——-

_ Enlist .
- -

m -—Phase Zero Notlfy Complete—
Participants

may enlist

anytime before -—Fhase Zero Notification -

all known e

Participants e

have sent their =

Phase Zero —Fhase Zero Notify Complete— | gapaat until all

ca n_'lpleti_c'n Participants have been
notifications == sant their Phase Zero

== notification,

Once all Participants have
sent their Phase Zero
completion notifications,
Phase Zero is complete.

Figure 2: Transaction manager Phase Zero flow

1.3.1.2 Phase One

When Phase One begins, all transaction participants are now presumed to have completed their
work inside the transaction.

During Phase One, each Phase One participant is asked to vote on the outcome of the
transaction. Each participant vote can have one of three possible results:

= Read Only: The participant agrees for the transaction to Commit but does not require an
outcome notification.

= Prepared: The participant agrees for the transaction to Commit and requires an outcome
notification.

= Aborted: The participant requires that the transaction abort.

Before a participant can vote Prepared, it performs whatever actions are necessary to be able to
process an order to Commit or an order to Abort at some point in the future. Note that the request for

38/475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

a vote polls the transaction tree from the root transaction manager down to the leaf
participants. When a subordinate transaction manager receives a request for a vote, it will first
issue that request to all its immediate subordinates and process their votes before voting itself.

When all votes are collected by the root transaction manager, a decision about the transaction
outcome is made. If every vote was either Read Only or Prepared, the root transaction manager
attempts to record a Commit outcome decision. If successful, the Commit outcome decision is
officially made.

Otherwise, if one or more of the votes is Aborted or if a Commit outcome decision cannot be
successfully recorded, the transaction manager makes an Abort outcome decision.

After an outcome decision is made, the root transaction manager proceeds to Phase Two to
distribute outcome notification messages throughout the transaction tree.

The following figure depicts the Phase One flow.

[[
Root)
Transaction Participant Srgbr‘gi’c?'“ff
Manager — pa
Prepare |
Prepare |
- Read-Only_________ Determine
Wote
atf—FTEQEred O E— i
ol Abort
a— Read-Only________ Deterrmine
- 'l.-’qte
-— Prepared I ;
T
- Abort it -
-
"
e
................................ Determining Vote with
Decide Subordinate(s):
s outcome If all votes are Read-Only,
ol - g E then vote Is Read-0nly;
ey IF any vote is Abort,
e then vote is Abort;
Determining Outcome of Phase One: B Otherwise,
If any vote to Abort, vote is Prepared,
then the decision is Abort;
otherwise,

the decision is Commit.

Once Qutcome is determined, the transaction is logged
(If Commit). Phase One is now complete and Phase
Twio commences.

Figure 3: Transaction manager Phase One flow

39/475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

1.3.1.3 Phase Two

When Phase Two begins, the root transaction manager has determined the transaction
outcome.

If the transaction outcome is a Commit outcome, the transaction enters the committing state. Each
participant that voted Prepared is sent an order to commit. The participants perform any necessary
commit processing and respond with a committed notification.

If the transaction outcome is an Abort outcome, the transaction enters the Aborting state. Each
participant that voted Prepared is sent an order to abort. The participants perform any necessary
abort processing and respond with an Aborted notification.

If a Prepared participant loses contact with its transaction manager, it is said to be In Doubt. If it
is a durable resource manager, it attempts to reconnect to the transaction manager and perform
recovery to learn the outcome of the transaction. See section 1.3.4 for recovery details.

In general, participants (including the root application) are sent the outcome decision notification
in parallel.

Phase Two is complete when the root transaction manager sends the outcome decision
notification to all the subordinate participants, the root transaction manager receives the reply
notifications from all the subordinate participants, and the root transaction manager does the
necessary work to forget the transaction.

The following figure shows the Phase Two flow.

40/ 475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

Root
Application Transaction Participant sPuabrLt)i::ci”gitf
Manager p
] Commit Commit:
e O T | i
Do work of
commmitting
—L_ommitted - i
—_ommitted
Do wark of
forgetting
transaction
S i
Root
Application Transaction Participant sPuabr'?i::ci”gitf
Manager p
-——Abort Abort -
Abort -
Do work of
aborting
) ———ADO el e
-t ——Aborted ——
Do work of
forgetting
transaction

Figure 4: Transaction manager Phase Two flow

1.3.2 Additional Considerations

In addition to the two-phase commit processing described in the previous section, there are two
more cases to consider:

= Unilateral abort

= Single-phase commit

41/475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

1.3.2.1 Unilateral Abort

Until a participant votes on the outcome of the transaction, any participant can decide to
unilaterally stop the transaction by issuing an Abort request to its transaction manager. This
ability is known as a Unilateral Abort.

After a transaction manager receives an Abort request from one of its participants, it immediately
transitions the transaction to the Aborting state, which guarantees an Abort outcome. All other
participants will be notified of the Abort outcome, although it is possible that the root application
does not discover the Abort outcome until it attempts to complete the transaction or perform some
other operation involving the transaction manager or another participant.

After a specified transaction manager enters the Aborting state, it does not issue any further Phase
Zero notifications or Phase One requests to vote. For a transaction that spans two or more
transaction managers due to propagation, it is possible for the Abort outcome decision to race with
other Phase Zero or Phase One activity as it is communicated between the transaction managers.

The following figure shows the Unilateral Abort flow.

Transaction Ahaorting

Manager Participant Participant

| i | A Participant may
| Enter Active Phase IA— -— | |send an Abort request
i | anytime before It has
returned the Prepared
message in Phase One

| Enter Phase Zero IA— - = -7
—AbOrt regiest—
| Enter Phase One IA_ —_—] i
-Abort \ -
All but the Aborting o i,
Participant have voted "‘\

»
Abort outcome is
transmitted to all
Participants as soon
as the request comes
in, regardless of
phase.

Figure 5: Unilateral Abort flow

1.3.2.2 Single-Phase Commit

If a transaction manager has exactly one subordinate Phase One enlistment, the transaction
manager attempts to perform the single-phase commit optimization. In this case, the transaction
manager sends the subordinate participant a request to perform a single-phase commit, instead
of the standard Phase One Prepare request. This optimization delegates the right to decide the
transaction outcome to the subordinate.

The subordinate accepts this delegation by making an outcome decision and eventually notifying the
transaction manager; or it rejects the Single-Phase Commit request by responding Prepared. In the
latter case, the transaction manager makes its own outcome decision and then engages in a
standard Phase Two exchange with the participant.

42 /475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

There is a possible disadvantage to this optimization: if the transaction manager loses contact with
the subordinate participant after sending the Single-Phase Commit request but before receiving
an outcome notification, it has no reliable mechanism for recovering the actual outcome of the
transaction. Consequently, the transaction manager sends an In Doubt outcome to any
applications or voters awaiting informational outcome notification.

The single-phase commit optimization can be used by any transaction manager that has exactly
one Phase One subordinate enlistment, not just the root transaction manager. For example, if
transaction manager A has only transaction manager B as a subordinate enlistment, then A can
use the single-phase commit optimization with B. If in the same transaction, B has only
transaction manager C as a subordinate enlistment, it too can use the single-phase commit
optimization with C. This is true regardless of the number of subordinate enlistments that are
registered with C.

Note that a non-root transaction manager performs only the single-phase commit optimization if
its own superior transaction manager has sent it a Single-Phase Commit request.

The following figure shows the Single-Phase Commit flow.

Transaction Subordinate
1 Manager Participant

Single-PhaseCommit——

If Root Transaction Manag

or it accepted Single-Phase .
Commit delegation from its —Committed Subordinate accepts
superior. ~ delegation and votes in
P - b
single phase.
g -Aborted
""'--..__L ""'--.._H
——FPrepared——— . [Subordinate rejects

ri

delegation and
participates in Two Phase
Commit by returning
Prepared.

Figure 6: Single-Phase Commit flow

1.3.3 Transaction Roles

This protocol enables transaction processing to be distributed among two or more distinct
participants. These participants are categorized according to three specialized roles that perform
specific functions inside the transaction:

= Application role

= Resource manager role

= Transaction manager role

Each role is functionally independent of the other two. It is possible to implement the protocol
functions that are required by any of these three roles without implementing the protocol functions

43/ 475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

that are required by the other two. For example, it is possible to implement a transactional resource
manager without building a transaction manager or a transaction-aware application.

The following graphic depicts the transaction roles.

Application-Specific
Communications

Application 1 Application 2 Resource
Manager

! ! !

Transaction Transaction
Manager 1 Manager 2
- — — — — P - - - ———————— -

OLETX Communications

Figure 7: Transaction roles

1.3.3.1 Application Role

The application role is generally performed by user software programs that make use of transaction
processing services to obtain greater reliability or reduce the complexity of error-handling tasks.

The application role is typically responsible for performing the following tasks:

» Determining when to begin a transaction

= Marshaling the transaction to other applications and to resource managers
= Propagating the transaction from one transaction manager to another

= Determining when to complete a transaction

= Performing administrative operations against a specific transaction

»= Performing administrative operations against the transaction manager

In general, the motivations behind these tasks are application-specific. The protocol mechanisms by
which these tasks can be accomplished are discussed in sections 2 and 3.

44 /475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

1.3.3.2 Resource Manager Role

The resource manager role is generally performed by software programs that manage transactional
resources. Databases and queues are the most common examples of such programs.

This protocol supports three types of enlistments: Phase Zero enlistments, Phase One
enlistments, and voter enlistments. These enlistment types correspond to three common
categories of resource managers:

» Caching resource managers appear like a durable resource manager to an application, but
they actually delegate their durable state changes to another resource manager that provides
true durability. Caching resource managers typically use Phase Zero enlistments.

* Durable resource managers manage access to durable resources. They are expected to
support recovery. Durable resource managers typically use Phase One enlistments.

= Volatile resource managers manage access to volatile resources whose state does not persist
beyond the lifetime of the resource manager process. Volatile resource managers typically
use voter enlistments.

The resource manager role is typically responsible for the following tasks:

= Providing applications with access to data in a transactional manner. This function is specific to
the implementation of a resource manager.

= Registering with a transaction manager and performing recovery operations for all In Doubt
transactions.

= Enlisting for various two-phase Commit notifications.

= Voting on transaction outcomes in accord with the implementation-specific policies of the
resource manager.

In general, the motivations behind these tasks are application-specific. The specific protocol
mechanisms by which these tasks are accomplished are discussed in sections 2 and 3.
1.3.3.3 Transaction Manager Role

The Transaction Manager Role is generally performed by specialized middleware software programs
that provide transactional services to applications and resource managers.

The transaction manager role is typically responsible for the following tasks:
= Providing the following services to applications and resource managers:
= Beginning transactions
= Completing transactions
= Coordinating agreement with participants on the outcome of the transaction
= Reaching the decision to commit
= Ensuring the outcome decision is reliably distributed
= Coordinating the process of recovery if failures occur
= Coordinating the outcome of individual transactions by using the Two-Phase Commit protocol.

= Coordinating recovery with other participants after a process or communication failure. See
section 1.3.4 for recovery details.

45/ 475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

A transaction manager is best understood as the aggregation of several cooperating software
modules that work together to provide the services previously mentioned. This protocol calls these
software modules facets, and assumes the presence of the following five facets:

= A facet that acts as a core transaction manager

A facet that communicates with applications

= A facet that communicates with resource managers

A facet that acts as a superior transaction manager
= A facet that acts as a subordinate transaction manager

A transaction manager provides implementation-specific mechanisms to allow the facets to
communicate with one another within the transaction manager itself.

In contrast, the transaction manager facets use the MSDTC Connection Manager: OleTx Transports
Protocol as specified in [MS-CMPO], and the MSDTC Connection Manager: OleTx Multiplexing Protocol
as specified in [MS-CMP], as transports for this protocol when they communicate with other
participants (for example, applications, resource managers, and remote transaction
managers). The subprotocols that are used to provide services to these participants are known as
connection types. The specific connection types that are used in this protocol are specified in detail
in section 3.

These facets are functionally dependent upon each other. A general-purpose transaction manager
is composed of all five of these facets.

The following figure shows the transaction manager facets.

46 /475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

%5bMS-CMPO%5d.pdf#Section_d2403ca533fa432997f5825ad0868bf6
%5bMS-CMP%5d.pdf#Section_1970a8a0799d4308b9274e4ea23dc225

Superior Transaction
Manager

Application

Subordinate
Transaction Manager
Facet

Resouroe
Manager
Facet W

Core Transaction
Manager Facet

&) Application
Facet

Superior Transackion
Manager Facet

Subordinate
Transaction Manager

Internal Events Protocol Communication

Figure 8: Transaction manager facets

1.3.3.3.1 Core Transaction Manager Facet

The Core Transaction Manager Facet is a logical construct in the context of this protocol. It never
establishes network communication with any other transaction participant. It communicates with
the other transaction manager facets through implementation-specific mechanisms.

1.3.3.3.2 Transaction Manager Communication with an Application Facet

When the transaction manager is communicating with an application facet, it provides the
following services to applications:

= Transaction creation.
= Transaction propagation to a remote transaction manager.

= Transaction propagation by providing an existing transaction to the subordinate transaction
manager facet for propagation.

* Transaction completion.
= Administrative operations against a specific transaction. These operations include:

= Setting the time-out on a transaction.

47/ 475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

= Obtaining transaction details, such as information about the superior transaction manager
facet and the list of subordinate participants.

= Manually resolving the outcome of a transaction.

= Requesting that the transaction manager provide details of the transaction in its
implementation-specific trace log.

= Administrative operations against the transaction manager. These operations include the ability
to obtain information about the security configuration of the transaction manager.

1.3.3.3.3 Transaction Manager Communication with a Resource Manager Facet

When the transaction manager is communicating with a resource manager facet, it provides the
following services to resource managers:

= Resource manager registration
= Recovery and outcome notification for In Doubt transactions
= Transaction enlistment for Phase Zero, Phase One, and voter participants

= Phase Zero, Phase One, and Phase Two notifications inside the Two-Phase Commit protocol

1.3.3.3.4 Superior Transaction Manager Facet

The Superior Transaction Manager Facet provides the following services to subordinate transaction
manager facets:

= Acts as Superior Transaction Manager Facet to a number of subordinate transaction
manager facets in the Two-Phase Commit protocol.

= Provides recovery and outcome notification for transactions that are left in the Failed to Notify
state after a failure.

1.3.3.3.5 Subordinate Transaction Manager Facet

The Subordinate Transaction Manager Facet provides the following services to superior
transaction manager facets:

= Acts as a Subordinate Transaction Manager Facet to a Superior Transaction Manager
Facet in the Two-Phase Commit protocol.

* Provides recovery and outcome notification for transactions that are left in the In Doubt state
after a failure.

1.3.4 Transaction Recovery

The atomicity property of a transaction guarantees that all participants in the transaction receive
the same outcome. This guarantee is relaxed in the case of volatile resources such as voters but is
strictly honored for durable resource managers and transaction managers.

To honor this guarantee, transaction managers and durable resource managers have to be
capable of recovering from transient failures that can occur, such as loss of transport connectivity or
a software crash. The process of recovery involves reestablishing connectivity with other transaction
participants and exchanging the protocol messages that are required to synchronize all parties on
the actual outcome of the transaction.

After a transient failure, the transaction manager reestablishes connectivity with the following
parties:

48/ 475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

= The superior transaction manager for each transaction for which the transaction manager
was In Doubt at the time of the failure

= The subordinate transaction managers for which the transaction manager was in the Failed
to Notify state at the time of the failure

After a transient failure, the resource manager reestablishes connectivity with the following parties:

= The superior transaction manager for each transaction for which the resource manager was
In Doubt at the time of the failure

The following sections describe in more detail the recovery process for each participant.

1.3.4.1 Relationship Between Recovery and Durability

Transaction managers and durable resource managers can use any mechanism they choose to
implement the durability guarantees of an atomic transaction.

At minimum:

= Before a durable resource manager or subordinate transaction manager sends a Prepared
notification to its superior transaction manager, it needs to first ensure that it can derive the
information that is needed to contact its superior transaction manager and to inquire about the
outcome of the transaction after a transient failure. This requirement is needed for the
subordinate to perform recovery on In Doubt transactions.

= Before a transaction manager can communicate the transaction outcome to a subordinate
participant or the root application, it has to first ensure that it can derive the transaction
outcome for as long as at least one durable subordinate has not acknowledged receipt of the
transaction outcome. This requirement is needed for the superior to perform recovery on Failed
to Commit transactions.

= Before a durable resource manager or subordinate transaction manager acknowledges a
Commit notification from its superior transaction manager, it has to first ensure that it will not
perform recovery on the transaction after a transient failure. This requirement allows the
superior transaction manager to implement the Presumed Abort optimization.

The information that is needed to be able to contact another participant is identical to the
information that was needed to establish the initial transport session with that participant, as
specified in [MS-CMPQ] section 1.3.3.1.

1.3.4.2 Resource Manager Recovery

Resource manager recovery is unidirectional: the resource manager is always responsible for
initiating recovery with its transaction manager. A resource manager always performs recovery
on startup, even when it has not detected any transactions remaining in the In Doubt state. This is
because the transaction manager cannot determine when it has Failed to Notify the resource
manager of specific transaction outcomes.

The typical sequence for recovery of a resource manager is as follows:

1. The resource manager determines the list of transactions for which it is In Doubt. These are
the transactions for which it previously voted Prepared but has not yet learned the outcome.

2. The resource manager registers with its transaction manager.

3. For each In Doubt transaction, the resource manager attempts to contact the transaction
manager to determine the transaction outcome.

49 /475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

%5bMS-CMPO%5d.pdf#Section_d2403ca533fa432997f5825ad0868bf6

4. When the resource manager receives the outcome from the transaction manager, it performs
any implementation-specific actions that are required to honor the ACID properties. Also, this
process can take some time because the transaction manager can be acting as a subordinate
transaction manager and it too might still be In Doubt about the actual transaction outcome.

5. After the resource manager ensures that there are no transactions for which it is still In
Doubt, it informs the transaction manager that its recovery is complete. This allows the
transaction manager to clean up any pending transactions for which it considered that the
resource manager was in the Failed to Notify state.

1.3.4.3 Transaction Manager Recovery

Transaction Manager recovery is dual-faceted. The recovering transaction manager will attempt
to recover those transactions for which it is acting as a superior transaction manager facet and those
for which it is acting as a subordinate transaction manager facet.

The typical sequence for a superior transaction manager facet to perform recovery is the
following:

1. The superior transaction manager determines the list of transactions for which it is in the
Failed to Notify state. These are the transactions whose outcome has been decided but for
which there exists at least one durable subordinate participant whose receipt of that outcome
cannot be verified.

2. For each of these transactions, the superior transaction manager attempts to perform
recovery by contacting all subordinate transaction managers whose receipt of outcome cannot
be verified to redeliver the transaction outcome.

The typical sequence for a subordinate transaction manager facet to perform recovery is the
following:

1. The subordinate transaction manager determines the list of transactions for which it is in the
In Doubt state.

2. For each of these transactions, the subordinate transaction manager attempts to contact the
superior transaction manager to determine the transaction outcome.

3. For each In Doubt transaction whose transaction outcome is now known, the subordinate
transaction manager proceeds to communicate the outcome to its own subordinate
transaction managers.

1.3.5 Transaction Propagation

A single transaction typically requires work to be performed by one or more resource managers
for one or more applications. Each of these applications and resource managers is typically
associated with exactly one transaction manager.

When two participants share a common transaction manager, all that is needed to share a
transaction is agreement on the transaction's unique identifier. How this unique identifier is
communicated among the applications and resource managers is implementation-specific.

However, when two participants do not share a common transaction manager, this protocol
defines a propagation mechanism that enables the two participants to notify their respective
transaction managers that a specified transaction will span the two transaction managers.
Transaction propagation allows applications and resource managers to freely marshal
transactions across process and host machine boundaries by using whatever communication
mechanisms and formats they chose.

50/ 475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

When a participant (the source) determines that it marshals a transaction to a second participant
(the destination), the participant chooses between two distinct propagation techniques:

= push propagation (section 1.3.5.2)
= pull propagation (section 1.3.5.1)

Push propagation requires the source participant to have a prior knowledge about which
transaction manager the destination participant is associated with. In contrast, pull propagation
allows the source participant to marshal the transaction without any awareness of the transaction
manager of the destination participant.

Independent of the choice of push or pull propagation, after the propagation is complete, the
destination transaction manager will have enlisted with the source transaction manager to
coordinate the outcome of the transaction. In this enlistment, the source transaction manager
plays the role of superior transaction manager, and the destination transaction manager plays
the role of subordinate transaction manager.

1.3.5.1 Pull Propagation

Pull propagation enables the untargeted marshaling of a transaction from one application or
resource manager to another. Contact information for the destination transaction manager is not
required to be known by the source in advance.

The following sequence of events represents a complete pull propagation operation between two
participants:

1. When the source determines that it possesses a transaction that it wants to share with the
destination, it provides the destination with marshaling information about the transaction being
shared in an implementation-specific manner. The marshaling information needs to be sufficient
for the destination to create a Propagation Token structure, as specified in section 2.2.5.4, that
corresponds to the transaction being shared.

2. The destination contacts its own transaction manager and requests that it join the transaction
by using the marshaling information that is provided by the source application.

3. If the destination transaction manager is not already a participant in the transaction, the
destination transaction manager uses the marshaling information to contact the source
transaction manager to enlist in the transaction as a subordinate transaction manager.
This inter-transaction manager handshake is called pull propagation.

4. If the operation is successful, the destination transaction manager reports success to the
destination. The destination performs further operations on the transaction with its associated
transaction manager or marshals the transaction further to other participants.

The following figure shows a typical pull propagation.

51/475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

Application Transaction Application Transaction

1 Manager 1 2 Manager 2
Begin >H
- Begun- .
Propagation_Token (or equivalent) —
Associate——p»|
-t Brar:lch
... Branched---seeemsecescaecee P
== -------Associated----------

Application-Specific Response

Figure 9: Transaction manager pull propagation

1.3.5.2 Push Propagation

Push propagation enables the targeted marshaling of a transaction from one participant to
another. Push propagation is available only when the source knows the contact information for the
destination transaction manager in advance.

Push propagation consists of two distinct logical operations: an export operation and an import
operation.

The following sequence of events represents a complete push propagation operation between two
participants:

1. The source obtains contact information for the destination transaction manager by using
implementation-specific means. The contact information consists of whatever the source needs to
construct an SWhereabouts structure, as specified in section 2.2.5.11. This step need be
performed only one time per destination because the contact information is not specific to a
specified transaction or propagation.

2. When the source determines that it possesses a transaction that it wants to share with the
destination, the source asks its transaction manager to export the transaction to the
destination transaction manager by using the contact information it obtained in the previous
step.

52 /475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

3. The source transaction manager contacts the destination transaction manager by using the
provided contact information and informs it of the existence and details of the transaction. This
inter-transaction manager handshake is the export operation of push propagation.

4. When the source transaction manager receives acknowledgment from the destination
transaction manager, the export operation is complete. If the destination transaction
manager was not already a participant in the transaction, the destination transaction
manager is now enlisted as a subordinate transaction manager at the source transaction
manager, which acts as the superior transaction manager.

5. After the source transaction manager informs the source that the transaction was successfully
exported, the source then uses an implementation-specific mechanism to marshal the exported
transaction to the destination. The marshaled information can take any form that the source and
destination agree on but is sufficient for the source to construct an STxInfo structure as specified
in section 2.2.5.10.

6. The destination uses the marshaled information that is provided by the source to request an
import operation from its transaction manager. The import operation is typically a simple
confirmation that the transaction exists and was correctly exported to the destination.

7. 1If the import operation is successful, the destination transaction manager reports success to the
destination. The destination performs further operations on the transaction with its associated
transaction manager or marshals the transaction further to other participants.

The following figure depicts a typical push propagation.

Application Transaction Application Transaction
1 Manager 1 2 Manager 2
<¢—————SWhereAbouts of TM 2 L
Begin L
] —-Begun-eseseeseeee
Export
Propagate -
I Propar_;';ated
I I Exported--—-------------
STXInfo (or equivalent)——————— |
Import -
<----------Im ported---------------
~—Application-Specific Response———— e

53/475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

Figure 10: Transaction manager push propagation

1.4 Relationship to Other Protocols

The following figure illustrates the relationship between the MSDTC Connection Manager: OleTx
Transaction Protocol [MS-DTCO] and the underlying protocols on which it depends [MS-CMP] and [MS-

CMPOQO].

MSCTC Connection Manager: OleTx Transaction Protocol

MSDTC Connection Manager: Connection Multiplexing Protocol

MSDTC Connection Manager: OleTx Transports Protocol

Figure 11: Protocol relationships
This protocol provides extensibility elements that are used by the following specifications:
. MC-DTCXA
. MS-DTCM
. MS-DTCLU
MS-TIPP
. MS-WSRVCAT

The following protocols perform transaction marshaling by using the structures specified in section
2.2.5 and its subsections of [MS-DTCO]:

) MS-COM
. MS-MQRR
. MS-MQMP

1.5 Prerequisites/Preconditions

This protocol requires that all participating roles possess implementations of MSDTC Connection
Manager: OleTx Multiplexing Protocol as specified in [MS-CMP], and MSDTC Connection Manager:
OleTx Transports Protocol as specified in [MS-CMPO].

1.6 Applicability Statement
This protocol applies to scenarios where distributed atomic transaction processing is required.

Distributed transactions are generally required in scenarios where several applications and
resource managers cooperate to perform a set of related work items that require the ACID
properties of a distributed transaction. These properties are needed to be able to make changes to
persistent state in a deterministic, correct, and highly reliable manner. Although distributed
transactions are one of several mechanisms for accomplishing this goal, they are the most efficient
and understood general-purpose solution.

54 /475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

%5bMS-CMP%5d.pdf#Section_1970a8a0799d4308b9274e4ea23dc225
%5bMS-CMPO%5d.pdf#Section_d2403ca533fa432997f5825ad0868bf6
%5bMS-CMPO%5d.pdf#Section_d2403ca533fa432997f5825ad0868bf6
%5bMC-DTCXA%5d.pdf#Section_e4c50686e0134cf69515a0e821eb5ed9
%5bMS-DTCM%5d.pdf#Section_7dbf234d2c1540b79a20812f5e3964ec
%5bMS-DTCLU%5d.pdf#Section_09c6c3c965a74814ad32160d292f8dcb
%5bMS-TIPP%5d.pdf#Section_8a046f2abcc149ebad9c3891ce37d796
%5bMS-WSRVCAT%5d.pdf#Section_e94b4e6708ee43c6aaa741033f8e11fd
%5bMS-COM%5d.pdf#Section_a846e48dbbc94b289650601810cf3af0
%5bMS-MQRR%5d.pdf#Section_9edbc8fa02ad4c79804f6bb8f430aac1
%5bMS-MQMP%5d.pdf#Section_8e379aa2802d4fccb6a66203e4606fa9
%5bMS-CMP%5d.pdf#Section_1970a8a0799d4308b9274e4ea23dc225
%5bMS-CMPO%5d.pdf#Section_d2403ca533fa432997f5825ad0868bf6

This specific distributed transaction protocol requires network topologies where the MSDTC
Connection Manager: OleTx Transports Protocol as specified in [MS-CMPQO], and the MSDTC
Connection Manager: OleTx Multiplexing Protocol as specified in [MS-CMP], constitute a viable network
transport for establishing long-lived session relationships between different parties supporting many
short-lived connection exchanges that accomplish specific tasks.

1.7 Versioning and Capability Negotiation
This document covers versioning aspects in the following areas:

= Protocol versions

This protocol provides five different versions: 1, 2, 4, 5, and 6 (version 3 is reserved and not
used). More details on the protocol elements supported in each version are provided in Protocol
Versioning (section 2.2.1).

= Capability negotiation

This protocol performs explicit versioning and capability negotiation, as specified in sections
1.7.2 and section 1.7.3.

1.7.1 Versioning Mechanisms
This protocol uses various mechanisms for versioning that are introduced as follows:
» Protocol Version numbers as versioning mechanism:

This protocol provides five different versions. The following are the implications of supporting a
particular protocol version:

= Support for connection types is version-specific and is either required, optional, or not
allowed for a given Protocol Version.

= For a version-specific supported connection type, support for all messages defined for that
connection type is required.

= The layout of data associated with specific messages is version-specific and is determined by
the Protocol Version.

Protocol Version Numbers as a Versioning Mechanism (section 2.2.1.1) specifies details of what it
means to support a certain Protocol Version Number. Protocol Versioning Details (section 3.1.4)
specifies how the Protocol Version numbers are negotiated during communication initiation.

= Structures with fields containing version numbers as versioning mechanism: Certain structures
have fields containing version numbers that specify how to interpret other parts of the structure.
As an example, the Propagation_Token (section 2.2.5.4) structure has the fields
dwVersionMin and dwVersionMax the values of which are used to indicate whether certain
other fields are present or not.

Structures with Fields Containing Version Numbers as Versioning Mechanism (section 2.2.2)
provides a list of the structures that fall in this category and links to information regarding each.

= Structures with complex fields using specific values to indicate the type of the complex field.
Certain structures have a field that specifies how to interpret other parts of the structure. As an
example, the STmToTmProtocol structure (section 2.2.5.9) uses the value of the
tmprotDescribed field to specify how to interpret the rest of the fields in that structure.

Structures with a Format-Specifying Field as Versioning Mechanism (section 2.2.3) provides a
list of the structures that fall in this category and links to information regarding each.

55/475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

%5bMS-CMPO%5d.pdf#Section_d2403ca533fa432997f5825ad0868bf6
%5bMS-CMP%5d.pdf#Section_1970a8a0799d4308b9274e4ea23dc225

1.7.2 Versioning Negotiation Mechanisms

This protocol uses the following versioning negotiation mechanisms for each of the versioning
mechanisms discussed above.

Protocol Version Numbers as versioning mechanism

This protocol makes use of the explicit versioning negotiation mechanism as specified in [MS-
CMPQO], BuildContext Primary, section 3.3.4.2.1. An implementation of this protocol uses this
mechanism to specify which versions of the protocol it supports and to negotiate a mutually
agreeable version with its partners (see Protocol Versioning Details, (section 3.1.4)).

Structures with fields containing version numbers as versioning mechanism

There is no versioning negotiation mechanism for this case. The version numbers are passed in
each structure by the sender, and interpreted by the receiver.

Structures with a field containing a value that identifies the structure format as versioning
mechanism

There is no versioning negotiation mechanism for this case. The values of the field specifying the
format are passed in each structure by the sender, and interpreted by the receiver.

1.7.3 Capability Negotiation Mechanisms

This protocol uses the following capability negotiation mechanisms for each of the versioning
mechanisms discussed previously.

Protocol Version numbers as versioning mechanism

= Support for certain connection types is optional for a specific protocol version. A connection
initiator can determine whether the acceptor supports these connection types by sending
the first message for the connection and determining the acceptor's level of support from the
response. If the acceptor rejects the connection with a MTAG_CONNECTION_REQ_DENIED as
specified in [MS-CMP] section 2.2.5, the connection type is not supported.

= Support for a message type is never optional for a specific connection type, with one
exception: TXUSER_RESOLVE_MTAG_ACCESSDENIED (section 2.2.8.3.2.1). However,
there is no negotiation process to determine support for this message, and the message is
sent by a sender that supports it in all cases.

= Some specific data fields inside certain message types were added in specific protocol versions
as additional data fields that appear after the fields that are defined by previous protocol
versions. The receivers examine the size of the incoming
MESSAGE_PACKET (section 2.2.4.1) structure to determine which additional data fields, if
any, were included in the message by the sender.

Structures with fields containing version numbers as a versioning mechanism

The structures using version numbers as a versioning mechanism do not have any optional
elements for a particular version. Therefore, there are no capability negotiation mechanisms
associated with them.

Structures with a field containing a value that identifies the structure format as a versioning
mechanism

In this case, the format of the structure is completely determined by the respective format-
specifying field. There are no capability negotiation mechanisms associated with these
structures.

56 /475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

%5bMS-CMPO%5d.pdf#Section_d2403ca533fa432997f5825ad0868bf6
%5bMS-CMPO%5d.pdf#Section_d2403ca533fa432997f5825ad0868bf6
%5bMS-CMP%5d.pdf#Section_1970a8a0799d4308b9274e4ea23dc225

1.8 Vendor-Extensible Fields

MSDTC Connection Manager: OleTx Transaction Protocol gives vendors the ability to provide
implementation-specific protocol extensions to the Core Transaction Manager Facet section
1.3.3.3.1. This protocol provides the following vendor-extensible fields and data elements:

= A protocol extension can augment the default set of transaction manager facets that are
implemented inside an implementation of the transaction manager role, as specified in section
3.2.1.4. A protocol extension provides a set of services, as specified in section 3.2.1.5.

= A protocol extension also includes the contribution of extended whereabouts information to the
Core Transaction Manager Facet, as specified in section 3.2.3.

= Each vendor-supplied transaction manager facet has the option to use the local events that are
provided by the Core Transaction Manager Facet that is specified in section 3.2.7.

1.9 Standards Assignments

This protocol has no standards assignments.

57/ 475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

2 Messages

2.1 Transport

This protocol uses implementations of MSDTC Connection Manager: OleTx Transports Protocol as
specified in [MS-CMPQO], and MSDTC Connection Manager: OleTx Multiplexing Protocol as specified in
MS-CMP], as the transport layer for sending and receiving protocol messages.

2.1.1 Messages, Connections, and Sessions

The layout of each message that is defined by this protocol MUST extend the MESSAGE_PACKET
structure, as specified in section 2.2.4.1. The general mechanisms that are used to send and receive
messages are as specified in [MS-CMP] sections 3.1.4.1 and 3.1.7.4.

Each message MUST be sent by using an active [MS-CMP] connection that has been established
between an initiator and an acceptor. The mechanisms that are used to initiate and accept
connections are as specified in [MS-CMP] sections 3.1.4.2 and 3.1.5.5.

Each connection MUST be initiated inside an active [MS-CMP] session that has been established
between two OleTx participants. The mechanisms that are used to establish sessions are as
specified in [MS-CMPO] section 1.3.3. The session creation is handled by MSDTC Connection
Manager: OleTx Multiplexing Protocol, when a new connection is initiated.

When a new connection is initiated the OleTx participant MUST provide the following:

= The Name Object of the partner computed from implementation-specific configuration (section
2.1.2.3).

= The connection type.

= An Incoming Message Notification Interface object ([MS-CMP] section 3.1.1.1) with local
events (section 3.1.8) to receive incoming message notifications from MSDTC Connection
Manager: OleTx Multiplexing Protocol layer [MS-CMP].

2.1.2 MS-CMP and MS-CMPO Initialization

To establish a transports protocol session as specified in [MS-CMPQO] Local Partner
State (section 3.2.1.1), the following values MUST be provided to the lower-layer multiplexing
protocol which initializes the transports protocol with the following values:

= A security-level value that indicates the requested RPC authentication level. The Security Level
field is initialized with the security-level value. Possible values for this element are specified in
[MS-CMPQO] section 3.2.1.1.

= The minimum and maximum protocol version values as computed in section 2.1.2.2. The
Minimum Level 3 Version Number and Maximum Level 3 Version Number fields are
initialized with the computed minimum and maximum protocol version values.

= A local name object that indicates the host name, the contact identifier, and the supported RPC
network protocols of the local partner endpoint. The Local Name Object field is initialized with
the local name object value. Name Objects are specified in [MS-CMPO] section 3.2.1.4.

If the initialization of the underlying MSDTC Connection Manager: OleTx Multiplexing protocol instance
fails as specified in [MS-CMP] section 3.1.3.2, then the implementation-specific failure result MUST be
returned to the higher-layer business logic.

58/ 475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

%5bMS-CMPO%5d.pdf#Section_d2403ca533fa432997f5825ad0868bf6
%5bMS-CMP%5d.pdf#Section_1970a8a0799d4308b9274e4ea23dc225
%5bMS-CMP%5d.pdf#Section_1970a8a0799d4308b9274e4ea23dc225
%5bMS-CMPO%5d.pdf#Section_d2403ca533fa432997f5825ad0868bf6
%5bMS-CMPO%5d.pdf#Section_d2403ca533fa432997f5825ad0868bf6
%5bMS-CMP%5d.pdf#Section_1970a8a0799d4308b9274e4ea23dc225

2.1.2.1 Computing a Security Level

When an application or resource manager initiates a connection to its transaction manager, the
application or resource manager MUST use an implementation-specific way to compute the
Security Level.

2.1.2.2 Computing Protocol Version Values

The process for computing the minimum and maximum protocol version numbers used in initializing
the underlying transport specified in [MS-CMPO] is defined in Protocol Versioning
Details (section 3.1.4).

2.1.2.3 Computing a Name Object

The Name object that is used to initiate a session is obtained in a variety of ways. This section
defines how to obtain the appropriate Name object for several common situations. The specific
transaction processing roles mentioned in these sections (applications, resource managers, and
transaction managers) are defined in section 1.3.3.

When an application or resource manager initiates a connection to its transaction manager, the
application or resource manager MUST use implementation-specific configuration information to
compute a Name object that represents the transaction manager:

1. For pull propagation of transactions, the source application MUST include the Name object
representing its transaction manager in the marshaling information that is sent to the
destination application. The Propagation Token (section 2.2.5.4) structure SHOULD be used for
marshaling this information.

2. For pull propagation of transactions, the subordinate transaction manager (the transaction
manager of the destination) MUST communicate its own Name object to the superior
transaction manager (the source transaction manager) using a
CONNTYPE_PARTNERTM_BRANCH connection (section 2.2.9.1.2.1).

3. For push propagation of transactions, the destination application MUST make the Name
object that represents its transaction manager available to the source application. The
SWhereabouts (section 2.2.5.11) structure SHOULD be used for marshaling this information.
Alternatively, the NAMEOBJECTBLOB (section 2.2.5.3) structure MAY be used for the same
purpose.<1>

4. For push propagation of transactions, the superior transaction manager MUST
communicate its own Name object to the subordinate transaction manager using a
CONNTYPE_PARTNERTM_PROPAGATE (section 2.2.9.1.1.1) connection.

2.2 Message Syntax
2.2.1 Protocol Versioning

2.2.1.1 Protocol Version Numbers as a Versioning Mechanism

This protocol has five versions: 1, 2, 4, 5, and 6 (version 3 is reserved and not used).<2> For each
version, there is a set of protocol elements that MUST be supported (called version-required
elements), a set of optional protocol elements that SHOULD be supported (called version-optional
elements), and a set of protocol elements that MUST NOT be supported. The following sections
provide versioning tables that specify the scope of each protocol version with respect to the three
mentioned sets.

The tables contain the following values.

59/475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

%5bMS-CMPO%5d.pdf#Section_d2403ca533fa432997f5825ad0868bf6

Value Description

Yes The protocol element MUST be supported in the respective protocol version.

No The protocol element MUST NOT be supported in the respective protocol version.

Optional | The protocol element SHOULD be supported in the respective protocol version.

2.2.1.1.1 Version-Specific Aspects of Connection Types Relevant to an Application

The following table shows version-specific aspects for connection types that are relevant to

applications. This table includes connection types and messages that are supported on certain
versions as well as messages whose size is version specific. If a connection type or message that
is relevant to applications is omitted from this table, it is not version specific and MUST be supported

on all versions.

Version-specific aspect

Vi

V2

v4

V5

V6

Version supports connection type
CONNTYPE_TXUSER_BEGIN2 (section 2.2.8.1.2)

No

Yes

Yes

Yes

Yes

Version supports connection type

CONNTYPE_TXUSER_EXTENDEDWHEREABOUTS (section 2.2
.8.2.2.1)<3>

No

No

No

Optional

Optional

Version supports connection type

CONNTYPE_TXUSER_GETSECURITYFLAGS (section 2.2.8.4.1
)

No

No

Yes

Yes

Yes

Version supports connection type
CONNTYPE_TXUSER_IMPORT2 (section 2.2.8.2.2.5)

No

Yes

Yes

Yes

Yes

Version supports connection type
CONNTYPE_TXUSER_PROMOTE (section 2.2.8.1.3)<4>

No

No

No

Optional

Optional

Version supports connection type

CONNTYPE_TXUSER_SETTXTIMEOUT (section 2.2.8.3.3)<5
>

No

Optional

No

No

No

Version supports connection type

CONNTYPE_TXUSER_SETTXTIMEOUT2 (section 2.2.8.3.4)<6
d

No

No

Optional

Optional

Optional

Version supports connection type
CONNTYPE_TXUSER_TRACE (section 2.2.8.3.5)

No

No

Yes

Yes

Yes

Version supports messages
TXUSER_EXPORT_MTAG_CREATEZ2 (section 2.2.8.2.2.2.2)
and

TXUSER_EXPORT_MTAG_CREATE_NET_TX_DISABLED (secti
on 2.2.8.2.2.2.4)

No

No

Yes

Yes

Yes

Version supports message

TXUSER_RESOLVE_MTAG_ACCESSDENIED (section 2.2.8.3.
2.1)<7>

No

No

Optional

Yes

Yes

The SourceTmAddress field is described by the structure

Yes

No

No

No

No

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

60/ 475

Version-specific aspect

Vi

V2

V4

V5

V6

NAMEOBJECTBLOB (section 2.2.5.3) in message

TXUSER_ASSOCIATE_MTAG_ASSOCIATE (section 2.2.8.2.1.
1.1)

The SourceTmAddress field is described by the structure
OLETX_TM_ADDR (section 2.2.4.2) in message

TXUSER_ASSOCIATE_MTAG_ASSOCIATE (section 2.2.8.2.1.
1.1)

No

Yes

Yes

Yes

Yes

The SourceTmAddress field is described by the structure
NAMEOBIJECTBLOB (section 2.2.5.3) in message
TXUSER_EXPORT_MTAG CREATE (section 2.2.8.2.2.2.1)

Yes

No

No

No

No

The SourceTmAddress field is described by the structure
OLETX_TM_ADDR (section 2.2.4.2) in message
TXUSER_EXPORT_MTAG_CREATE (section 2.2.8.2.2.2.1)

No

Yes

Yes

Yes

Yes

The grfNetworkDtcAcess field of the
TXUSER GETSECURITYFLAGS MTAG FETCHED message
supports (uses) the following DTCADVCONFIG bits:

DTCADVCONFIG_NETWORKDTCACCESS_ENABLE
DTCADVCONFIG_NETWORKDTCACCESS_ADMIN
DTCADVCONFIG_NETWORKDTCACCESS_TX
DTCADVCONFIG_NETWORKDTCACCESS_CLIENTS
DTCADVCONFIG_NETWORKDTCACCESS_TIP

No

No

Yes

Yes

Yes

The grfNetworkDtcAcess field of the
TXUSER_GETSECURITYFLAGS_MTAG_FETCHED message
supports (uses) the following DTCADVCONFIG bits:

DTCADVCONFIG_INBOUNDNETWORK_TX
DTCADVCONFIG_OUTBOUNDNETWORK_TX
DTCADVCONFIG_SECURITYLEVEL_NOSECURITY

DTCADVCONFIG_SECURITYLEVEL_AUTHENTICATEDO
NLY

DTCADVCONFIG_SECURITYLEVEL_MUTUALAUTH

No

No

No

Yes

Yes

The grfOptions field of the
TXUSER_GETSECURITYFLAGS_MTAG_FETCHED message

DTCADVCONFIG_OPTIONS_LUTRANSACTIONS_DISAB
LE

supports (uses) the following DTCADVCONFIG OPTIONS bit:

No

No

No

No

Yes

The guidSignature field in the STxInfo structure present in
propagation-related messages uses a reserved GUID with
the binary value representation of {2adb4463-bd41-11d0-
b12e-00c04fc2f3ef}. A GUID in this protocol is a 16-byte
packet structure that is a unique identifier for an object
([MS-DTYP] section 2.3.4.2).

No

Yes

Yes

Yes

Yes

The STxInfo structure supports versioning based on its
guidSignature field.

No

Yes

Yes

Yes

Yes

Version supports connection type
CONNTYPE TXUSER EXPORT2

No

No

No

No

Yes

Version supports message
TXUSER EXPORT MTAG EXPORT COMM FAILED

No

No

No

No

Yes

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

61 /475

%5bMS-DTYP%5d.pdf#Section_cca2742956894a16b2b49325d93e4ba2

2.2.1.1.2 Version-Specific Aspects of Connection Types Relevant to a Transaction
Manager

The following table shows version-specific aspects for connection types that are relevant to
transaction managers. This table includes connection types and messages that are supported on
certain versions as well as messages whose size is version specific. If a connection type or
message that is relevant to transaction managers is omitted from this table, it is not version
specific and MUST be supported on all versions.

Version-specific aspect Vi V2 V4 V5 V6

PARTNERTM PROPAGATE MTAG PHASEOQ, No Yes Yes Yes Yes
PARTNERTM PROPAGATE MTAG PHASEOCOMPLETE,

PARTNERTM PROPAGATE MTAG PHASEOREGISTER,

PARTNERTM PROPAGATE MTAG PHASEOREGISTERED, and
PARTNERTM PROPAGATE MTAG PHASEOREGISTRATIONREJECTED

2.2.1.1.3 Version-Specific Aspects of Connection Types Relevant to a Resource
Manager

The following table shows version-specific aspects for connection types that are relevant to
resource managers. These include connection types and messages that are supported on certain
MSDTC Connection Manager: OleTx Multiplexing Protocol [MS-CMP] versions as well as messages
whose size is version specific. If a connection type or message that is relevant to resource
managers is omitted from this table, then it is not version specific and MUST be supported on all
versions.

Version-specific aspect Vi V2 v4 V5 V6

Version supports connection type No Yes Yes Yes Yes
CONNTYPE TXUSER PHASEOQ

Version supports connection type No No No Optional | Optional
CONNTYPE TXUSER RESOURCEMANAGERINTERNAL<8>

2.2.2 Structures with Fields Containing Version Numbers as Versioning Mechanism

Currently, only one structure has fields that specify the version (and therefore the format) of the
structure.

Structure Fields containing version numbers

Propagation Token | dwVersionMin
dwVersion Max

62 /475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

%5bMS-CMP%5d.pdf#Section_1970a8a0799d4308b9274e4ea23dc225

2.2.3 Structures with a Format-Specifying Field as Versioning Mechanism

The following table contains the structures that have a field whose value indicates the format of the
structure.

Structure Format-specifying field

STmToTmProtocol | tmprotDescribed

STxInfo guidSignature

2.2.4 Common Structures

2.2.4.1 MESSAGE_PACKET

The MESSAGE_PACKET structure defines the initial message fields that are contained by all
message tags (MTAG)s in this protocol, as specified in [MS-CMP] section 2.2.2.

0[{1(2|3|4|5|6|7|8|9(0(1(2[3|4|5|/6|7|8|9|0|1|2|3|4|5|6(|7(8]9|0]|1

MsgTag

fIsMaster

dwConnectionld

dwUserMsgType

dwcbVarLenData

dwReserved1

MsgTag (4 bytes): A 4-byte integer value that describes the OLE transaction message type. For all
uses in this document, this value MUST be 0x00000FFF, which indicates MTAG_USER_MESSAGE
message, as specified in [MS-CMP] section 2.2.8.

fIsMaster (4 bytes): A 4-byte value indicating the direction of the message in the conversation.

This value MUST be one of the following values.

Value Meaning

0x00000000 | The message is sent by the party that accepted the connection.

0x00000001 | The message is sent by the party that initiated the connection.

dwConnectionld (4 bytes): A 4-byte integer value that MUST contain the unique identifier for the
associated connection.

dwUserMsgType (4 bytes): This field contains the message type identifier. Each MTAG that is
defined in this section MUST specify a distinct value for this field for a specified connection type.

63/475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

%5bMS-CMP%5d.pdf#Section_1970a8a0799d4308b9274e4ea23dc225

dwcbVarLenData (4 bytes): An unsigned 4-byte integer value that MUST contain the size, in bytes,
of the message buffer that contains the MESSAGE_PACKET structure, minus the size, in bytes, of
the MESSAGE_PACKET structure itself.

dwReservedl (4 bytes): Reserved. This value MAY be set to any implementation-specific value and
MUST be ignored on receipt.<9>

2.2.4.2 OLETX_TM_ADDR

The OLETX_TM_ADDR structure is used to represent the address of a transaction manager.

=
N
w

0(1|2|3(4|5|6|(7|8|9|0(1|2|3(4|5|6|7|8|9(0(1|2|3(4|5|6[|7|8|9|0(1

guidSignature (16 bytes)

guidEndpoint (16 bytes)

grbComProtsSupported

wszHostName (variable)

guidSignature (16 bytes): This field contains a signature value for this structure. The value MUST
be the binary representation of the GUID {dc85cb48-d8a5-11d2-828b-00805f0df75a}.

guidEndpoint (16 bytes): This field MUST contain a GUID that specifies the contact identifier of
the transaction manager.

grbComProtsSupported (4 bytes): Indicates the RPC transports for which the transaction manager
is listening. The value MUST be the result of the bitwise OR combination of one or more flags as
specified in [MS-CMPQ] section 2.2.4.

wszHostName (variable): This field MUST contain a null-terminated, little-endian UTF-16 encoded
string that specifies the NetBIOS host name of the transaction manager. This field MUST NOT
contain a Unicode byte order mark (BOM) character. The length of this field MUST be 2 to 32
bytes, inclusive. For details about Unicode and character sets, see [MSDN-ANSI].

For specific information on NetBIOS, see [NETBEUI], [RFC1001], and [REC1002].

2.2.4.3 OLETX_VARLEN_STRING

The OLETX_VARLEN_STRING structure is used to represent a byte-counted variable-length string.

64 /475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

%5bMS-CMPO%5d.pdf#Section_d2403ca533fa432997f5825ad0868bf6
https://go.microsoft.com/fwlink/?LinkId=89952
https://go.microsoft.com/fwlink/?LinkId=90224
https://go.microsoft.com/fwlink/?LinkId=90260
https://go.microsoft.com/fwlink/?LinkId=90261

0(1|2|3(4|5|6(7|8|9|0(1|2|3(4|5|6|7|8|9(0(1]|2|3(4|5|6|7|8|9|0(1

cbLength

szString (variable)

cbLength (4 bytes): An unsigned integer that MUST contain the number of bytes in the szString
field.

szString (variable): A Latin-1 string as specified in [ISO/IEC-8859-1] without a final null-
terminating character. This field MUST be cbLength bytes in length. If cbLength is zero, this field
MUST NOT be present.

2.2.5 Transaction Propagation Structures

2.2.5.1 Associate_Msg_Version2

The Associate_Msg_Version2 structure contains the NetBIOS host name of a transaction
manager.

—
N
w

0(1|2|3(4|5|6(7|8|9|0(1|2|3(4|5|6|7|8|9(0(1|2|3(4|5|6|7|8|9|0(1

cbHostNameW

wszHostName (variable)

cbHostNameW (4 bytes): The size, in bytes, of wszHostName, including the null terminator. The
value of this field MUST be in the range 2 to 32 bytes, inclusive.

wszHostName (variable): A null-terminated, little-endian UTF-16 encoded string that contains a

NetBIOS host name. This string MUST have the length that is specified by cboHostNameW and
MUST NOT contain a Unicode byte order mark (BOM) character.

2.2.5.2 Associate_Msg_Version3

The Associate_Msg_Version3 structure contains information about the transaction protocol
support of a transaction manager.<10>

-
N
w

0(1|2|3(4|5|6|7|8|9|0|1|2|3(4|5|6|7|8|9(0(1|2|3(4|5|6[|7|8|9|0(1

fNetworkTxEnabled

fTipEnabled

cbTipTmUrl

65/475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

https://go.microsoft.com/fwlink/?LinkId=90689

szTipTmUrl (variable)

fNetworkTxEnabled (4 bytes): This field indicates if network access is enabled or disabled on the
transaction manager. If network access is disabled, this field MUST be set to zero. If network
access is enabled, this field MUST be set to a nonzero value.

fTipEnabled (4 bytes): This field indicates if the transaction Internet Protocol (TIP) is enabled or
disabled on the transaction manager. If TIP is disabled, this field MUST be set to zero. If TIP is
enabled, this field MUST be set to a nonzero value. For more details about the TIP protocol, see

RFC2371].

cbTipTmUrl (4 bytes): This field MUST contain the size, in bytes, of szTipTmUrl, including the null
terminator. The value of this field MUST be greater than or equal to O.

szTipTmUrl (variable): A null-terminated Latin-1 ANSI string, as specified in [ISO/IEC-8859-1], that
MUST contain the URL of the TIP transaction manager on the node that created this propagation
token. If cbTipTmUrl is zero, this field MUST NOT be present. Otherwise, this field MUST have the
length specified by cbTipTmUrl.

2.2.5.3 NAMEOBJECTBLOB

The NAMEOBIJECTBLOB structure contains information to identify and locate a transaction
manager.

—
N
w

0(1|/2|3(4(5|6|(7|8|9|0(1|2|3(4|5|6|7(8|9(0(1|2|3(4|5|6|7|8|9|0(1

szGuid (40 bytes)

dwcbHostName

dwReservedl

grbComProtsSupported

szHostName (variable)

szGuid (40 bytes): A fixed-size array containing a null-terminated Latin-1 ANSI string, as specified
in [ISO/IEC-8859-1], that contains a GUID that is formatted into a string, as specified in [C706],
Appendix A, UUID. This string MUST identify the contact identifier for the transaction manager
instance that is located at the node that is identified by the host name. Storage after the initial
null MUST be ignored on receipt.

dwcbHostName (4 bytes): This field MUST contain the size, in bytes, of the szHostName field,
including the null terminator. The value of this field MUST be in the range 1 to 16, inclusive.

66 /475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

https://go.microsoft.com/fwlink/?LinkId=90338
https://go.microsoft.com/fwlink/?LinkId=90689
https://go.microsoft.com/fwlink/?LinkId=90689
https://go.microsoft.com/fwlink/?LinkId=89824

dwReservedl (4 bytes): Reserved. This field MUST be set to an implementation-specific value and
MUST be ignored on receipt. The default value of this field is 0XCD64CD64.<11>

grbComProtsSupported (4 bytes): Indicates which RPC transports that the transaction manager
can use to communicate. The value MUST be the result of a bitwise OR operation of one or more
flags, as specified in the COM_PROTOCOL data type in [MS-CMPO] section 2.2.4.

szHostName (variable): A null-terminated Latin-1 ANSI string, as specified in [ISO/IEC-8859-1],
that MUST specify the host name of the transaction manager instance. It MUST have the length
specified by dwcbHostName.

2.2.5.4 Propagation_Token

The Propagation_Token structure is used for performing pull-based transaction propagation. This
structure contains information about a transaction and about a superior transaction manager that
is available for use by participants to enlist on the transaction.

—
N
w

0[{1(2|3|4|5|6|7|8|9(0(1(2(3|4|5|/6|7|8|9|0|1|2|3|4|5|6[7(8]9|0]|1

dwVersionMin

dwVersionMax

guidTx (16 bytes)

isoLevel

isoFlags

cbSourceTmAddr

szDesc (40 bytes)

NameObject (variable)

AssociateMsgVersion2 (variable)

AssociateMsgVersion3 (variable)

67/ 475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

%5bMS-CMPO%5d.pdf#Section_d2403ca533fa432997f5825ad0868bf6

dwVersionMin (4 bytes): The minimum version of the transaction information structure that
accompanies the Propagation_Token. The value MUST be set to 1.

dwVersionMax (4 bytes): The maximum version of the transaction information structure that
accompanies the Propagation_Token. The value MUST be 1, 2, or 3.<12>

guidTx (16 bytes): This field MUST contain a GUID that specifies the transaction identifier.

isoLevel (4 bytes): The isolation level of the transaction. The value MUST be one as specified in the
OLETX_ISOLATION_LEVEL (section 2.2.6.9) enumeration.

isoFlags (4 bytes): The isolation flags for the transaction. This field MUST contain the result of a
bitwise OR operation of zero or more OLETX_ISOLATION_FLAGS (section 2.2.6.8) enumeration
flags.

cbSourceTmAddr (4 bytes): This field MUST contain the total size, in bytes, of the space that is
used by the NameObject, AssociateMsgVersion2, and AssociateMsgVersion3 fields.

szDesc (40 bytes): The description of the transaction, as a fixed-size array of 40 bytes containing a
null-terminated Latin-1 ANSI string, as specified in [ISO/IEC-8859-1]. This field MUST be set to an
implementation-specific value. Any bytes that follow the first null-terminator character SHOULD be
ignored on receipt.

NameObject (variable): This field MUST be a NAMEOBJECTBLOB structure that contains contact
information about the transaction manager that is referenced by the Propagation_Token
structure.

AssociateMsgVersion2 (variable): This field MUST be an Associate_Msg_Version2 structure
(section 2.2.5.1) that contains the NetBIOS host name for the transaction manager that is
referenced by the Propagation_Token structure. If dwVersionMax is 1, then this field MUST
NOT be present; otherwise, it MUST be present. If this field is present, the contents MUST override
the szHostName value in the NameObject field.

AssociateMsgVersion3 (variable): This field MUST be an Associate_Msg_Version3 structure
(section 2.2.5.2) that contains information about the transaction protocol support for the
transaction manager that is referenced by the Propagation_Token structure. If dwVersionMax
is 3, then this field MUST be present; otherwise, it MUST NOT be present.

2.2.5.5 SDtcCmEndpointInfoV1l

The SDtcCmEndpointInfoV1 structure contains data used to connect to a transaction manager
that supports the OleTx protocol.

—
N
w

0[{1(2|3|4|5|6|7|8|9(0(1|2[3|4|5|/6|7|8|9|0|1|2|3|4|5|6[7(8]9|0]|1

comprotSupported

guidEndpointID (16 bytes)

68/ 475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

https://go.microsoft.com/fwlink/?LinkId=90689

szHostname (variable)

comprotSupported (4 bytes): Indicates which RPC transports the transaction manager supports for
communication. The value MUST be the result of the bitwise OR combination of one or more flags
as specified in the COM_PROTOCOL data type in [MS-CMPO] section 2.2.4.

guidEndpointID (16 bytes): This field MUST be a GUID that specifies the contact identifier of the
transaction manager.

szHostname (variable): A null-terminated Latin-1 ANSI character string, as specified in [ISO/IEC-
8859-1], that MUST specify the host name for the transaction manager endpoint. This field MUST
be between 1 and 16 bytes in length, inclusive.

2.2.5.6 SDtcCmEndpointInfov2

The SDtcCmEndpointInfoV2 structure contains extended information that is used, along with the
contents of the SDtcCmEndpointInfoV1 structure (section 2.2.5.5), to connect to a transaction
manager that supports the OleTx protocol.

—
N
w

0(1|/2|3(4|5|6(7|8|9|0(1|2|3(4|5|6|7|8|9(0(1|2|3(4|5|6|7|8|9|0(1

wszHostname (variable)

wszHostname (variable): A null-terminated little-endian UTF-16 character string that specifies the
NetBIOS host name for the transaction manager endpoint. This field MUST be between 2 and 32
bytes in length, inclusive, and MUST NOT contain a Unicode byte order mark (BOM) character.

2.2.5.7 SOleTxInfoForTip

The SOleTxInfoForTip structure contains data that is specific to the Transaction Internet Protocol
(TIP) for an exported transaction.

0[{1(2|3|4|5|6|7|8|9(0(1|2[3|4|5|/6|7|8|9|0|1|2|3|4|5|6[7(8]9|0]|1

szDescription (40 bytes)

isoLevel

isoFlags

szTipTmUrl (variable)

69 /475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

%5bMS-CMPO%5d.pdf#Section_d2403ca533fa432997f5825ad0868bf6
https://go.microsoft.com/fwlink/?LinkId=90689
https://go.microsoft.com/fwlink/?LinkId=90689

szDescription (40 bytes): See the szDesc field in Propagation Token structure (section 2.2.5.4)
for details.

isoLevel (4 bytes): The isolation level of the transaction. The value MUST be one as specified in the
OLETX_ISOLATION_LEVEL enumeration (section 2.2.6.9).

isoFlags (4 bytes): The isolation flags for the transaction. The value MUST be a legal combination
of values from the OLETX_ISOLATION_FLAGS enumeration (section 2.2.6.8).

szTipTmUrl (variable): A null-terminated Latin-1 ANSI string, as specified in [ISO/IEC-8859-1], that
MUST specify the TIP URL of the transaction manager, as specified in [RFC2371].

2.2.5.8 SExtendedEndpointInfo

The SExtendedEndpointInfo structure is a packet that contains data to represent endpoint
information that is available for use to connect to a protocol extension that is hosted by a
transaction manager. This structure does not specify its own length. Therefore, it MUST be used in a
context that specifies the actual length.

—
w

2
0(1|/2|3(4|5|6|7|8|9|0(1|2|3(4|5|6|7|8|9(0(1|2|3(4|5|6[|7|8|9|0(1

guidProtocolExtension (16 bytes)

rgbProtocolExtensionData (variable)

guidProtocolExtension (16 bytes): This field MUST contain a GUID that specifies the protocol
extension that contributed this extended endpoint information.

rgbProtocolExtensionData (variable): This field MUST contain data that is contributed by a
protocol extension that represents protocol extension-specific endpoint information. The format
and size of this data is specific to the respective extension protocol. This data MUST NOT be
interpreted by an application or other transaction participant unless it recognizes the
guidProtocolExtension field.

2.2.5.9 STmToTmProtocol

The STmToTmProtocol structure contains protocol-specific endpoint information for the transaction
manager.

0(1|2|3(4|5|6(7|8|9|0|1|2|3(4|5|6|7|8|9(0(1]|2|3(4|5|6|7|8|9|0(1

tmprotDescribed

cbTmProtocolData

70/ 475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

https://go.microsoft.com/fwlink/?LinkId=90689
https://go.microsoft.com/fwlink/?LinkId=90338

rgbTmProtocolData (variable)

tmprotDescribed (4 bytes): This field specifies the type of transaction manager-to-transaction
manager protocol-specific data for this transaction. This MUST be one of the values specified in
TM_Protocol enumeration (section 2.2.6.2).<13>

cbTmProtocolData (4 bytes): This field MUST specify the length, in bytes, of the
rgbTmProtocolData field.

rgbTmProtocolData (variable): The transaction manager protocol-specific data for this transaction.
If the cbTmProtocolData field is 0x00000000, this field MUST NOT be present. Otherwise, the
format of this field depends on the value of the tmprotDescribed field, which MUST be one of the
following values.

tmprotDescribed

name/value Meaning
TmProtocolMsdtcV1 This field MUST contain an SDtcCmEndpointInfoV1 (section 2.2.5.5) structure that
0x00000002 contains data that is used to connect to an OleTx transaction manager. The

cbTmProtocolData field MUST be at least 21.

TmProtocolMsdtcV2 This field MUST contain an SDtcCmEndpointInfoV2 (section 2.2.5.6) structure that
0x00000003 contains additional data that is used to connect to an OleTx transaction manager.
The cbTmProtocolData field MUST be at least 2.

TmProtocolExtended This field MUST contain an SExtendedEndpointInfo (section 2.2.5.8) structure for
0x00000004 an extension protocol. The cbTmProtocolData field MUST be at least 16.

2.2.5.10 STxInfo

The STxInfo structure represents an exported transaction during push-based transaction
propagation. The information in this structure is passed to a transaction manager to import a
transaction.

-
N
w

0(1|/2|3(4(5|6|7|8|9|0(1|2|3(4|5|6|7|8|9(0(1|2|3(4|5|6|7|8|9|0(1

guidSignature (16 bytes)

uowTx (16 bytes, optional)

tmprotUsed (optional)

71/475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

cbProtocolSpecificTxInfo (optional)

protocolSpecificTxInfo (variable)

guidSignature (16 bytes): This field MUST be a GUID that either specifies the transaction
identifier or specifies a signature value that indicates that the fields following this field are
present in the structure. If the field contains the binary value representation of the GUID
{2adb4463-bd41-11d0-b12e-00c04fc2f3ef}, the fields uowTx, tmprotUsed, and
cbProtocolSpecificTxInfo MUST be present. For all other values, this field MUST specify the
GUID of the transaction to be imported, and all other fields MUST NOT be present. This field MUST
be set based on the protocol version as specified in section 2.2.1.1.1.

uowTx (16 bytes): If present, this field MUST be a GUID that specifies the transaction identifier.

tmprotUsed (4 bytes): If present, this field MUST specify the format of the data in the
protocolSpecificTxInfo field. The value MUST be one that is as specified in TM_PROTOCOL
(section 2.2.6.2).

cbProtocolSpecificTxInfo (4 bytes): If present, this field MUST contain the size of the protocol-
specific data. This value MUST be zero, unless tmprotUsed contains the value TmProtocolTip, in
which case the value MUST be determined by adding the size of the SoleTxInfoForTip structure
(section 2.2.5.7) and the size, in bytes, of the szTipTmUrl field in the SOleTxInfoForTip
structure, including the null terminator.

protocolSpecificTxInfo (variable): If present, this field MUST contain a SOleTxInfoForTip
structure. If the cbProtocolSpecificTxInfo field is present and has a nonzero value, this field
MUST be present. Otherwise, this field MUST not be present.

2.2.5.11 SWhereabouts

The SWhereabouts structure describes the location of a transaction manager and the protocols
that MUST be used to contact it.

—
N
w

0(1|/2|3(4(5|6|7|8|9|0(1|2|3(4|5|6|7|8|9(0(1|2|3(4|5|6[|7|8|9|0(1

guidSignature (16 bytes)

cTmToTmProtocols

rgtmprotUsableList (variable)

guidSignature (16 bytes): This field contains a signature value for this structure. The value MUST
be the binary representation of the GUID {2adb4462-bd41-11d0-b12e-00c04fc2f3ef}.

72 /475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

cTmToTmProtocols (4 bytes): This field MUST contain the number of STmToTmProtocol (section
2.2.5.9) structures present in the rgtmprotUsablelList field. This value MUST be at least 1.

rgtmprotUsablelList (variable): This field MUST contain an unordered list of STmToTmProtocol
structures with protocol-specific connection information for this transaction manager. Each entry
MUST be aligned on a 4-byte boundary by padding with arbitrary values that MUST be ignored on
receipt. A list that contains an STmToTmProtocol structure with a tmprotDescribed value of
TmProtocolMsdtcV2 MUST also contain an STmToTmProtocol structure with a
tmprotDescribed value of TmProtocolMsdtcV1. In this case, the wszHostName value in the
SDtcCmEndpointV2 structure (section 2.2.5.6) MUST be used in place of the szHostName value
in the SDtcCmEnNdpointV1 structure (section 2.2.5.5).

2.2.6 Transaction Enumerations

2.2.6.1 Connection Types

The CONNTYPE enumeration defines the connection types that are used by MSDTC Connection
Manager: OleTx Multiplexing Protocol Specification [MS-CMP].

typedef enum

{
CONNTYPE TXUSER BEGINNER = 0x00000001,
CONNTYPE TXUSER IMPORT = 0x00000002,
CONNTYPE TXUSER_ENLISTMENT = 0x00000003,
CONNTYPE TXUSER EXPORT = 0x00000004,
CONNTYPE TXUSER RESOURCEMANAGER = 0x00000005,
CONNTYPE TXUSER REENLIST = 0x00000006,
CONNTYPE TXUSER RESOLVE = 0x00000007,
CONNTYPE TXUSER_VOTER = 0x00000009,
CONNTYPE TXUSER ASSOCIATE = 0x00000011,
CONNTYPE TXUSER GETTXDETAILS = 0x00000022,
CONNTYPEiTXUSERiPHASEO = 0x00000024,
CONNTYPE_TXUSER_BEGINZ = 0x00000028,
CONNTYPE TXUSER IMPORT2 = 0x00000033,
CONNTYPE TXUSER GETSECURITYFLAGS = 0x00000035,
CONNTYPE TXUSER TRACE = 0x00000036,
CONNTYPE TXUSER_SETTXTIMEOUT = 0x00000037,
CONNTYPEiTXUSERisETTXTIMEOUTZ = 0x00000038,
CONNTYPE TXUSER_PROMOTE = 0x00000039,
CONNTYPE TXUSER EXTENDEDWHEREABOUTS = 0x0000003D,
CONNTYPE TXUSER RESOURCEMANAGERINTERNAL = 0x00000046,
CONNTYPEiTXUSERiEXPORT2 = 0x00000048,
CONNTYPE_PARTNERTM PROPAGATE = 0x00000101,
CONNTYPE PARTNERTM REDELIVERCOMMIT = 0x00000102,
CONNTYPE PARTNERTM CHECKABORT = 0x00000103,
CONNTYPE PARTNERTM BRANCH = 0x00000104

} CONNTYPE;

CONNTYPE_TXUSER_BEGINNER: This connection type is used by applications that begin, commit,
and roll back transactions.

CONNTYPE_TXUSER_IMPORT: This connection type is used by a destination application to
complete a Push Propagation that is initiated by a source application.

CONNTYPE_TXUSER_ENLISTMENT: This connection type is used by a durable resource
manager to establish an enlistment with its transaction manager.

CONNTYPE_TXUSER_EXPORT: This connection type is used by a source application to initiate a
push propagation to a destination application.

73/475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

%5bMS-CMP%5d.pdf#Section_1970a8a0799d4308b9274e4ea23dc225

CONNTYPE_TXUSER_RESOURCEMANAGER: This connection type is used by a durable resource
manager to register with its transaction manager.

CONNTYPE_TXUSER_REENLIST: This connection type is used by a durable resource manager to
determine the outcome of an In Doubt transaction.

CONNTYPE_TXUSER_RESOLVE: This connection type is used by an application either to manually
resolve the outcome of an In Doubt transaction or to cause its transaction manager to forget a
transaction that is in the Failed to Notify state.

CONNTYPE_TXUSER_VOTER: This connection type is used by a volatile resource manager to
establish a voter enlistment with its transaction manager.

CONNTYPE_TXUSER_ASSOCIATE: This connection type is used by a destination application to
complete the pull propagation of a transaction from a source application.

CONNTYPE_TXUSER_GETTXDETAILS: This connection type is used by an application to retrieve
details about a transaction from its transaction manager.

CONNTYPE_TXUSER_PHASEO: This connection type is used by a resource manager to enlist for
Phase Zero notifications from its transaction manager.

CONNTYPE_TXUSER_BEGIN2: This connection type is used by an application to begin, commit, or
roll back a transaction or to change the time-out of a transaction. This connection type supersedes
CONNTYPE TXUSER BEGINNER and CONNTYPE TXUSER SETTXTIMEOUT?2.

CONNTYPE_TXUSER_IMPORT2: This connection type is used by a destination application to
complete a Push Propagation that is initiated by a source application. This connection type
supersedes CONNTYPE TXUSER IMPORT.

CONNTYPE_TXUSER_GETSECURITYFLAGS: This connection type is used by an application to
obtain the security configuration of its transaction manager.

CONNTYPE_TXUSER_TRACE: This connection type is used by an application to ask its transaction
manager to trace the status of a transaction by using an implementation-specific mechanism.

CONNTYPE_TXUSER_SETTXTIMEOUT: This connection type is used by an application to modify
the time-out of a transaction.

CONNTYPE_TXUSER_SETTXTIMEOUT2: This connection type is used by an application to query
the transaction manager's support for modifying the time-out of a transaction.

CONNTYPE_TXUSER_PROMOTE: This connection type is used by an application to:
= Begin a transaction using an application-specified transaction identity
= Commit or rollback a transaction
= Change the time-out of a transaction
This connection type supersedes CONNTYPE_TXUSER_SETTXTIMEOUT2.

CONNTYPE_TXUSER_EXTENDEDWHEREABOUTS: This connection type is used by an application
to obtain Extended Whereabouts from its transaction manager.

CONNTYPE_TXUSER_RESOURCEMANAGERINTERNAL: This connection type is used by a durable
resource manager to register with a transaction manager and to detect duplicate registrations.
This connection type supersedes CONNTYPE TXUSER RESOURCEMANAGER.

74 /475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

CONNTYPE_TXUSER_EXPORT2: This connection type is used by a source application to initiate a
push propagation to a destination application. This connection type supersedes
CONNTYPE TXUSER EXPORT.

CONNTYPE_PARTNERTM_PROPAGATE: This connection type is used by a superior transaction
managder to do a push propagation of a transaction to its subordinate transaction manager
and to execute the Two-Phase Commit Protocol.

CONNTYPE_PARTNERTM_REDELIVERCOMMIT: This connection type is used by a superior
transaction manager to redeliver a Commit notification for a transaction to its subordinate
transaction manager.

CONNTYPE_PARTNERTM_CHECKABORT: This connection type is used by a subordinate
transaction manager to query the outcome of a transaction from its superior transaction manager.

CONNTYPE_PARTNERTM_BRANCH: A subordinate transaction manager uses this connection type
to register a new subordinate enlistment with a superior transaction manager.

2.2.6.2 TM_PROTOCOL

The TM_PROTOCOL enumeration defines types of transaction manager-to-transaction manager
protocols that are available for use.

typedef enum

{
TmProtocolNone = 0,
TmProtocolTip = 1,
TmProtocolMsdtcVl 2,
TmProtocolMsdtcV2 3,
TmProtocolExtended = 4

} TM_PROTOCOL;

TmProtocolNone: No transaction manager-to-transaction manager protocol is available.
TmProtocolTip: The Transaction Internet Protocol (TIP) protocol is available.

TmProtocolMsdtcV1: The OleTx protocol is available with information contained in
SDtcCmEndpointInfoV1 structure (section 2.2.5.5).

TmProtocolMsdtcV2: The OleTx protocol is available with extended information contained in
SDtcCmEndpointInfoV2 structure (section 2.2.5.6)along with SDtcCmEndpointInfoV1 structure.

TmProtocolExtended: An extension protocol is available.

2.2.6.3 TXUSER_ENLISTMENT_PREPAREREQDONE_RESPONSE

The TXUSER_ENLISTMENT_PREPAREREQDONE_RESPONSE enumeration defines the status
values for a prepare request from a subordinate resource manager.

typedef enum
{

TXUSER _ENLISTMENT PREPAREREQDONE OK = 0,

TXUSER ENLISTMENT PREPAREREQDONE ABORT = 1,

TXUSER ENLISTMENT PREPAREREQDONE READONLY = 2,

TXUSER ENLISTMENT PREPAREREQDONE SINGLEPHASE COMMIT = 3
} TXUSER ENLISTMENT PREPAREREQDONE RESPONSE;

75/475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

TXUSER_ENLISTMENT_PREPAREREQDONE_OK: The prepare request was successful, and the
enlistment requires the transaction outcome.

TXUSER_ENLISTMENT_PREPAREREQDONE_ABORT: The prepare request was unsuccessful, and
the transaction MUST be aborted.

TXUSER_ENLISTMENT_PREPAREREQDONE_READONLY: The request to prepare the transaction
for commitment was successful, and no further involvement in the transaction is required.

TXUSER_ENLISTMENT_PREPAREREQDONE_SINGLEPHASE_COMMIT: The sender chose the
single-phase commit option and committed the transaction.

2.2.6.4 PARTNERTM_PROPAGATE_PREPAREREQDONE_RESPONSE

The PARTNERTM_PROPAGATE_PREPAREREQDONE_RESPONSE enumeration defines the status
values for a prepare request from a subordinate transaction manager.

typedef enum
{
PARTNERTM PROPAGATE PREPAREREQDONE OK = 0,
PARTNERTM PROPAGATE PREPAREREQDONE ABORT = 1,
PARTNERTM PROPAGATE PREPAREREQDONE READ ONLY = 2,
PARTNERTM PROPAGATE PREPAREREQDONE SINGLEPHASE COMMIT = 3,
PARTNERTM PROPAGATE PREPAREREQDONE SINGLEPHASE INDOUBT = 4
} PARTNERTM PROPAGATE PREPAREREQDONE RESPONSE;

PARTNERTM_PROPAGATE_PREPAREREQDONE_OK: The prepare request was successful, and the
enlistment requires the transaction outcome.

PARTNERTM_PROPAGATE_PREPAREREQDONE_ABORT: The prepare request was unsuccessful,
and the transaction MUST be aborted.

PARTNERTM_PROPAGATE_PREPAREREQDONE_READ_ONLY: The request to prepare the
transaction for commitment was successful, and no further involvement in the transaction is
required.

PARTNERTM_PROPAGATE_PREPAREREQDONE_SINGLEPHASE_COMMIT: The sender chose the
single-phase commit option and committed the transaction.

PARTNERTM_PROPAGATE_PREPAREREQDONE_SINGLEPHASE_INDOUBT: The prepare request
was unsuccessful, and the transaction outcome is no longer determinable.

2.2.6.5 TXUSER_VOTER_VOTERREQDONE_RESPONSE

The TXUSER_VOTER_VOTERREQDONE_RESPONSE enumeration defines the status values for a
prepare request from a subordinate resource manager.

typedef enum

{
TXUSER VOTER VOTEREQDONE OK = 0,
TXUSER VOTER VOTEREQDONE OK NONOTIFY = 1,
TXUSER VOTER VOTEREQDONE ABORT = 2

} TXUSER VOTER VOTERREQDONE RESPONSE;

TXUSER_VOTER_VOTEREQDONE_OK: The prepare request was successful, and the voter requires
the transaction outcome.

76 /475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

TXUSER_VOTER_VOTEREQDONE_OK_NONOTIFY: The prepare request was successful, and the
voter does not require the transaction outcome.

TXUSER_VOTER_VOTEREQDONE_ABORT: The prepare request was unsuccessful, and the
transaction MUST be aborted.

2.2.6.6 TRUN_TXBEGIN_ERRORS

The TRUN_TXBEGIN_ERRORS enumeration defines the completion status values for requests from
an application to perform the following steps in a transaction: begin, set time-out, commit, or abort a
transaction.

typedef enum

{
TRUN TXBEGIN ERROR NO MEM = 1,
TRUN TXBEGIN ERROR BEGIN LOG FULL = 20,
TRUN_TXBEGIN ERROR NOTIFY ABORTED = 30,
TRUN TXBEGIN ERROR NOTIFY COMMITTED = 31,
TRUN TXBEGIN ERROR NOTIFY INDOUBT 32,
TRUN TXBEGIN ERROR DUPLICATE GUID 33

} TRUN_ TXBEGIN ERRORS;

TRUN_TXBEGIN_ERROR_NO_MEM: There was insufficient memory to allocate the data structures
necessary to create the new transaction.

TRUN_TXBEGIN_ERROR_BEGIN_LOG_FULL: There was insufficient space in the transaction
manager log to accommodate a new transaction.

TRUN_TXBEGIN_ERROR_NOTIFY_ABORTED: The transaction has aborted.
TRUN_TXBEGIN_ERROR_NOTIFY_COMMITTED: The transaction has committed.

TRUN_TXBEGIN_ERROR_NOTIFY_INDOUBT: The transaction has completed, but the outcome is
no longer determinable. This occurs if the transaction manager delegated the commit decision to a
subordinate through the single-phase commit protocol and if the connection to that subordinate
terminated before the result could be reported.

TRUN_TXBEGIN_ERROR_DUPLICATE_GUID: An attempt was made to create or promote a
transaction, but a transaction with the specified transaction identifier already exists.

2.2.6.7 TRUN_TXIMPORT_ERRORS

The TRUN_TXIMPORT_ERRORS enumeration defines the completion status values for requests to
import a transaction or abort a transaction that was previously imported.

typedef enum

{
TRUN_TXIMPORT ERROR_NO_MEM = 1,
TRUN TXIMPORT ERROR IMPORT TX NOT FOUND = 20,
TRUN_TXIMPORT ERROR NOTIFY ABORTED = 30,
TRUN_TXIMPORT ERROR NOTIFY COMMITTED = 31,
TRUN_TXIMPORT ERROR NOTIFY INDOUBT = 32

} TRUN_TXIMPORT ERRORS;

TRUN_TXIMPORT_ERROR_NO_MEM: There was not enough memory to complete the operation.
TRUN_TXIMPORT_ERROR_IMPORT_TX_NOT_FOUND: The specified transaction was not found.

TRUN_TXIMPORT_ERROR_NOTIFY_ABORTED: The transaction aborted.

77 /475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

TRUN_TXIMPORT_ERROR_NOTIFY_COMMITTED: The transaction committed.

TRUN_TXIMPORT_ERROR_NOTIFY_INDOUBT: The transaction completed, but the outcome could
not be determined.

2.2.6.8 OLETX_ISOLATION_FLAGS

The OLETX_ISOLATION_FLAGS bitfield enumeration values specify isolation flags for a transaction.

typedef enum

{
ISOFLAG RETAIN DEFAULT = 0x00000000,
ISOFLAG RETAIN COMMIT DC = 0x00000001,
ISOFLAG RETAIN COMMIT = 0x00000002,
ISOFLAG_RETAIN COMMIT NO = 0x00000003,
ISOFLAG RETAIN ABORT DC = 0x00000004,
ISOFLAG RETAIN ABORT = 0x00000008,
ISOFLAG RETAIN ABORT NO = 0x0000000C,
ISOFLAG_RETAIN DONTCARE = 0x00000005,
ISOFLAG RETAIN BOTH = 0x0000000A,
ISOFLAG RETAIN NONE = 0x0000000F,
ISOFLAG OPTIMISTIC = 0x00000010,
ISOFLAG_READONLY = 0x00000020

} OLETX ISOLATION FLAGS;

ISOFLAG_RETAIN_DEFAULT: Default value if no other value has been set.

ISOFLAG_RETAIN_COMMIT_DC: Retain locks on transaction commit, regardless of the success or
failure of that commit request.

If this value is set, then ISOFLAG_RETAIN_COMMIT and ISOFLAG_RETAIN_COMMIT_NO MUST
NOT be set.

ISOFLAG_RETAIN_COMMIT: Retain locks on a successful transaction commit.

If this value is set, then ISOFLAG_RETAIN_COMMIT_DC and ISOFLAG_RETAIN_COMMIT_NO MUST
NOT be set.

ISOFLAG_RETAIN_COMMIT_NO: Do not retain locks on a transaction commit.

If this value is set, then ISOFLAG_RETAIN_COMMIT_DC and ISOFLAG_RETAIN_COMMIT MUST
NOT be set.

ISOFLAG_RETAIN_ABORT_DC: Retain locks on transaction abort, regardless of the success or
failure of that Abort request.

If this value is set, then ISOFLAG_RETAIN_ABORT and ISOFLAG_RETAIN_ABORT_NO MUST NOT
be set.

ISOFLAG_RETAIN_ABORT: Retain locks on a successful transaction abort.

If this value is set, then ISOFLAG_RETAIN_ABORT_DC and ISOFLAG_RETAIN_ABORT_NO MUST
NOT be set.

ISOFLAG_RETAIN_ABORT_NO: Do not retain locks on a transaction abort.

If this value is set, then ISOFLAG_RETAIN_ABORT and ISOFLAG_RETAIN_ABORT_DC MUST NOT
be set.

ISOFLAG_RETAIN_DONTCARE: Retain locks on all transaction termination requests, regardless of
whether the request was to abort or commit.

78 /475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

This is a synonym for selecting ISOFLAG_RETAIN_COMMIT_DC and ISOFLAG_RETAIN_ABORT_DC.

ISOFLAG_RETAIN_BOTH: Retain locks on all successful transaction termination requests,
regardless of whether or not the request was to abort or commit.

This is a synonym for selecting ISOFLAG_RETAIN_COMMIT and ISOFLAG_RETAIN_ABORT.
ISOFLAG_RETAIN_NONE: Do not retain locks on any transaction termination requests.

This is a synonym for selecting ISOFLAG_RETAIN_COMMIT_NO and ISOFLAG_RETAIN_ABORT_NO.
ISOFLAG_OPTIMISTIC: Optimistic locking is allowed.

ISOFLAG_READONLY: The transaction is not expected to modify data.

2.2.6.9 OLETX_ISOLATION_LEVEL

The OLETX_ISOLATION_LEVEL enumeration values specify the isolation levels of a transaction. The
OLETX_ISOLATION_LEVEL enumeration values are not interpreted by the transaction manager.
They are typically interpreted by resource managers that implement data isolation. These values are
transported by the transaction manager from the root application to the resource managers.

typedef enum

{
ISOLATIONLEVEL UNSPECIFIED = Oxffffffff,
ISOLATIONLEVEL CHAOS = 0x00000010,
ISOLATIONLEVEL READUNCOMMITTED = 0x00000100,
ISOLATIONLEVEL READCOMMITTED = 0x00001000,
ISOLATIONLEVEL REPEATABLEREAD = 0x00010000,
ISOLATIONLEVEL SERIALIZABLE = 0x00100000

} OLETX_ ISOLATION_LEVEL;

ISOLATIONLEVEL_UNSPECIFIED: No isolation level was specified.
ISOLATIONLEVEL_CHAOS: Data is not isolated.

ISOLATIONLEVEL_READUNCOMMITTED: A transaction can read any data, even if it is being
modified by another transaction. Any type of new data can be inserted during a transaction.

ISOLATIONLEVEL_READCOMMITTED: A transaction MUST NOT read data that is being modified
by another transaction that has not committed. Any type of new data can be inserted during a
transaction.

ISOLATIONLEVEL_REPEATABLEREAD: Data read by a current transaction MUST NOT be changed
by another transaction until the current transaction finishes. Any type of new data can be inserted
during a transaction.

ISOLATIONLEVEL_SERIALIZABLE: Data read by a current transaction MUST NOT be changed by
another transaction until the current transaction finishes. New data MUST NOT be inserted by
another transaction that would affect the current transaction.

2.2.7 Transaction Constants

2.2.7.1 GRFRM

This MUST be a 32-bit unsigned integer that contains an implementation-defined value. This value
SHOULD be ignored on receipt.

79/ 475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

2.2.7.2 DTCADVCONFIG

These flags indicate the remote communications security flags that are enabled for a transaction
manager protocol.

-
N
w

3/(4/5/6|7|8|9|0|1|2(3(4(5(6|7|8|9|0]|1|2|3|4|5(6(7[8]9|0]1

DTCADVCONFIG

0(1]2

=
N
w

AlB|C

DIE|F|GIH|I|[X|X[X[X[X[X|X|X[|X|X]|X|X|X|X[X|X[|X[X]|X]X]|X]|X]|X

Marker Bits

Each marker bit corresponds to either a security access flag or a Security Level enumeration value
maintained by the by the Core Transaction Manager Facet (section 1.3.3.3.1), as defined in Core
Transaction Manager Facet Details (section 3.2).

Value

Description

A

DTCADVCONFIG_NETWORKDTCACCESS_ENABLE
This bit corresponds to the Allow Network Access flag.

B DTCADVCONFIG_NETWORKDTCACCESS_ADMIN

This bit corresponds to the Allow Remote Administration flag.
C DTCADVCONFIG_NETWORKDTCACCESS_TX

This bit corresponds to the Allow Network Transactions flag.
D DTCADVCONFIG_NETWORKDTCACCESS_CLIENTS

This bit corresponds to the Allow Remote Clients flag.
E DTCADVCONFIG_NETWORKDTCACCESS_TIP

This bit corresponds to the Allow TIP flag.
F DTCADVCONFIG_OUTBOUNDNETWORK_TX

This bit corresponds to the Allow Outbound Transactions flag.
G DTCADVCONFIG_INBOUNDNETWORK_TX

This bit corresponds to the Allow Inbound Transactions flag.
H DTCADVCONFIG_SECURITYLEVEL_NOSECURITY

This bit MUST be ignored if either DTCADVCONFIG_SECURITYLEVEL_AUTHENTICATEDONLY or
DTCADVCONFIG_SECURITYLEVEL_MUTUALAUTH is set. Otherwise setting this bit corresponds to
the No Security value of the Security Level enumeration.

DTCADVCONFIG_SECURITYLEVEL_AUTHENTICATEDONLY

This bit MUST be ignored if DTCADVCONFIG_SECURITYLEVEL_MUTUALAUTH is set. Otherwise
setting this bit corresponds to the Incoming Authentication value of the Security Level
enumeration.

DTCADVCONFIG_SECURITYLEVEL_MUTUALAUTH
This bit corresponds to the Mutual Authentication value of the Security Level enumeration.

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

80/475

Value | Description

X SHOULD be set to zero and MUST be ignored when read.
X SHOULD be set to zero and MUST be ignored when read.
X SHOULD be set to zero and MUST be ignored when read.
X SHOULD be set to zero and MUST be ignored when read.
X SHOULD be set to zero and MUST be ignored when read.
X SHOULD be set to zero and MUST be ignored when read.
X SHOULD be set to zero and MUST be ignored when read.
X SHOULD be set to zero and MUST be ignored when read.
X SHOULD be set to zero and MUST be ignored when read.
X SHOULD be set to zero and MUST be ignored when read.
X SHOULD be set to zero and MUST be ignored when read.
X SHOULD be set to zero and MUST be ignored when read.
X SHOULD be set to zero and MUST be ignored when read.
X SHOULD be set to zero and MUST be ignored when read.
X SHOULD be set to zero and MUST be ignored when read.
X SHOULD be set to zero and MUST be ignored when read.
X SHOULD be set to zero and MUST be ignored when read.
X SHOULD be set to zero and MUST be ignored when read.
X SHOULD be set to zero and MUST be ignored when read.
X SHOULD be set to zero and MUST be ignored when read.
X SHOULD be set to zero and MUST be ignored when read.
X SHOULD be set to zero and MUST be ignored when read.

2.2.7.3 DTCADVCONFIG_OPTIONS

The DTCADVCONFIG_OPTIONS are flags that indicate the support for various miscellaneous options

supported by the Core Transaction Manager Facet (section 1.3.3.3.1).

3/4|5(6(7|8|9(0(1|2|3|4|5|6/|7|8

90

w

DTCADVCONFIG_OPTI

ONS

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

81 /475

0(1|2

3/4|/5/(6(7|8|9(0(1|2|3(4|5|6/|7|8

AlX|[X

XIX|X[X[X[X[X[X]|X]|X]|X]|X]|X]|X]|X]|X

Marker Bits

Each marker bit corresponds to a security access flag maintained by the by the Core Transaction

Manager Facet (section 1.3.3.3.1), as defined in Core Transaction Manager Facet

Details (section 3.2).

Value

Description

A

DTCADVCONFIG_OPTIONS_LUTRANSACTIONS_DISABLE
This bit corresponds to the Allow LUTransactions flag.

X SHOULD be set to zero and MUST be ignored when read.
X SHOULD be set to zero and MUST be ignored when read.
X SHOULD be set to zero and MUST be ignored when read.
X SHOULD be set to zero and MUST be ignored when read.
X SHOULD be set to zero and MUST be ignored when read.
X SHOULD be set to zero and MUST be ignored when read.
X SHOULD be set to zero and MUST be ignored when read.
X SHOULD be set to zero and MUST be ignored when read.
X SHOULD be set to zero and MUST be ignored when read.
X SHOULD be set to zero and MUST be ignored when read.
X SHOULD be set to zero and MUST be ignored when read.
X SHOULD be set to zero and MUST be ignored when read.
X SHOULD be set to zero and MUST be ignored when read.
X SHOULD be set to zero and MUST be ignored when read.
X SHOULD be set to zero and MUST be ignored when read.
X SHOULD be set to zero and MUST be ignored when read.
X SHOULD be set to zero and MUST be ignored when read.
X SHOULD be set to zero and MUST be ignored when read.
X SHOULD be set to zero and MUST be ignored when read.
X SHOULD be set to zero and MUST be ignored when read.
X SHOULD be set to zero and MUST be ignored when read.
X SHOULD be set to zero and MUST be ignored when read.
X SHOULD be set to zero and MUST be ignhored when read.
X SHOULD be set to zero and MUST be ignored when read.

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

82 /475

Value

Description

X SHOULD be set to zero and MUST be ignored when read.
X SHOULD be set to zero and MUST be ignored when read.
X SHOULD be set to zero and MUST be ignored when read.
X SHOULD be set to zero and MUST be ignored when read.
X SHOULD be set to zero and MUST be ignored when read.
X SHOULD be set to zero and MUST be ignored when read.
X SHOULD be set to zero and MUST be ignored when read.
2.2.8 Connection Types Relevant to Applications

2.2.8.1 Transaction Initiation and Completion

2.2.8.1.1 CONNTYPE_TXUSER_BEGINNER

The CONNTYPE_TXUSER_BEGINNER connection type is used by applications that begin, commit,
and roll back transactions. For more information about CONNTYPE_TXUSER_BEGINNER as an

initiator, see section 3.3.5.1.1, and as an acceptor, see section 3.4.5.1.1.

2.2.8.1.1.1 TXUSER_BEGINNER_MTAG_ABORT

The TXUSER_BEGINNER_MTAG_ABORT message requests an abort attempt to the transaction that
was begun on this connection.

=

3/4(5/6|7|8|9|0|1|2(3(4(5(6|7|8]|9

MsgHeader (24 bytes)

guidReason (16 bytes)

MsgHeader (24 bytes): This field MUST contain a MESSAGE PACKET structure:

The dwUserMsgType field MUST be 0x00001013.

The dwcbVarLenData field MUST be 16.

guidReason (16 bytes): The value MUST be set to an implementation-specific GUID that specifies

the reason for aborting the transaction and SHOULD be ignored on receipt.

[MS-DTCO] - v20210625
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release:

June 25, 2021

83/475

2.2.8.1.1.2 TXUSER_BEGINNER_MTAG_BEGIN

The TXUSER_BEGINNER_MTAG_BEGIN message requests the creation of a transaction.

=
N
w

0(1|2|3(4(5|6(7|8|9|0(1|2|3(4|5|6|7|8|9(0(1|2|3(4|5|6|7|8|9|0(1

MsgHeader (24 bytes)

isoLevel

dwTimeout

szDesc (40 bytes)

isoFlags

MsgHeader (24 bytes): This field MUST contain a MESSAGE PACKET structure:

» The dwUserMsgType field MUST be 0x00001011.
= The dwcbVarLenData field MUST be 52.

isoLevel (4 bytes): The isolation level of the transaction. The value MUST be one as specified in the
OLETX_ISOLATION_LEVEL (section 2.2.6.9) enumeration.

dwTimeout (4 bytes): A 32-bit unsigned integer that MUST contain the time-out value, in
milliseconds, for the transaction. The value zero MUST be interpreted as an infinite time-out. A
transaction SHOULD NOT abort due to time-out before the time-out that is specified by this value
has expired.

szDesc (40 bytes): The description of the transaction, as a fixed-size array of 40 bytes that contains
a null-terminated Latin-1 ANSI string, as specified in [ISO/IEC-8859-1]. See section 2.2.5.4 for
details.

isoFlags (4 bytes): The isolation flags for the transaction. The value MUST be a legal combination of
values from the OLETX_ISOLATION_FLAGS enumeration (section 2.2.6.8).

2.2.8.1.1.3 TXUSER_BEGINNER_MTAG_BEGIN_LOG_FULL

The TXUSER_BEGINNER_MTAG_BEGIN_LOG_FULL message indicates that the transaction was
not created because the transaction recovery log had insufficient space to accommodate the new
transaction.

84 /475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

https://go.microsoft.com/fwlink/?LinkId=90689

0(1|2|3(4|5|6(7|8|9|0(1|2|3(4|5|6|7|8|9(0(1]|2|3(4|5|6|7|8|9|0(1

MsgHeader (24 bytes)

MsgHeader (24 bytes): This field MUST contain a MESSAGE PACKET structure:

* The dwUserMsgType field MUST be 0x00001018.
* The dwcbVarLenData field MUST be 0.

2.2.8.1.1.4 TXUSER_BEGINNER_MTAG_BEGIN_NO_MEM

The TXUSER_BEGINNER_MTAG_BEGIN_NO_MEM message indicates that the transaction was not
created because of insufficient memory.

0[{1(2|3|4|5|6|7|8|9(0(1(2[3|4|5|/6|7|8|9|0|1|2|3|4|5|6[7(8]9|0]|1

MsgHeader (24 bytes)

MsgHeader (24 bytes): This field MUST contain a MESSAGE PACKET structure:
= The dwUserMsgType field MUST be 0x00001019.
= The dwcbVarLenData field MUST be 0.

2.2.8.1.1.5 TXUSER_BEGINNER_MTAG_BEGUN

The TXUSER_BEGINNER_MTAG_BEGUN message indicates that the request to begin a transaction
was successful.

-
N
w

0(1|/2|3(4(5|6|7|8|9|0(1|2|3(4|5|6|7|8|9(0(1|2|3(4|5|6|7|8|9|0(1

MsgHeader (24 bytes)

guidTx (16 bytes)

85/475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

MsgHeader (24 bytes): This field MUST contain a MESSAGE PACKET structure:

* The dwUserMsgType field MUST be 0x00001012.
= The dwcbVarLenData field MUST be 16.

guidTx (16 bytes): This field MUST contain a GUID that specifies the transaction identifier. The
value MUST NOT be set to a NULL GUID.

2.2.8.1.1.6 TXUSER_BEGINNER_MTAG_COMMIT

The TXUSER_BEGINNER_MTAG_COMMIT message requests an attempt to commit the transaction
that was begun on this connection.

=
N
w

0(1|/2|3(4|5|6(7|8|9|0(1|2|3(4|5|6|7|8|9(0(1|2|3(4|5|6|7|8|9|0(1

MsgHeader (24 bytes)

grfRM

fAsyncFull

MsgHeader (24 bytes): This field MUST contain a MESSAGE PACKET structure:

» The dwUserMsgType field MUST be 0x00001014.
= The dwcbVarLenData field MUST be 8.
grfRM (4 bytes): The value of this field MUST be as specified in GRFRM (section 2.2.7.1).

fAsyncFull (4 bytes): Reserved. This value MUST be set to zero and MUST be ignored on receipt.

2.2.8.1.1.7 TXUSER_BEGINNER_MTAG_COMMIT_INDOUBT

The TXUSER_BEGINNER_MTAG_COMMIT_INDOUBT message indicates that the transaction
manager is unable to determine, and will never be able to determine, the outcome of the transaction.

0(1|/2|3(4|5|6|7|8|9|0(1|2|3(4|5|6|7|8|9(0(1|2|3(4|5|6[|7|8|9|0(1

MsgHeader (24 bytes)

MsgHeader (24 bytes): This field MUST contain a MESSAGE PACKET structure:

» The dwUserMsgType field MUST be 0x00001990.

= The dwcbVarLenData field MUST be 0.

86 /475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

2.2.8.1.1.8 TXUSER_BEGINNER_MTAG_COMMIT_TOO_LATE

The TXUSER_BEGINNER_MTAG_COMMIT_TOO_LATE message indicates that the commit
request cannot be completed successfully because it is too late in the lifetime of the transaction to
commit it.

=
N
w

0[(1(2|3|4|5|6|7|8|9|0(1(2[3|4|5|/6|7|8|9|0|1|2|3|4|5|6[7(8]9|0]|1

MsgHeader (24 bytes)

MsgHeader (24 bytes): This field MUST contain a MESSAGE PACKET structure:

» The dwUserMsgType field MUST be 0x00001016.

= The dwcbVarLenData field MUST be 0.

2.2.8.1.1.9 TXUSER_BEGINNER_MTAG_REQUEST_COMPLETED

The TXUSER_BEGINNER_MTAG_REQUEST_COMPLETED message is sent to indicate that the
request to commit or abort the transaction was completed successfully.

—
N
w

0(1|/2|3(4|(5|6|7|8|9|0(1|2|3(4|5|6|7|8|9(0(1|2|3(4|5|6|7|8|9|0(1

MsgHeader (24 bytes)

MsgHeader (24 bytes): This field MUST contain a MESSAGE PACKET structure:

= The dwUserMsgType field MUST be 0x00001015.

= The dwcbVarLenData field MUST be 0.

2.2.8.1.2 CONNTYPE_TXUSER_BEGIN2

The CONNTYPE_TXUSER_BEGIN2 connection type is used by an application to begin, commit, or
rollback a transaction or to change the time-out of a transaction. This connection type supersedes
CONNTYPE TXUSER BEGINNER and CONNTYPE TXUSER SETTXTIMEOUT?2.

For more information about CONNTYPE_TXUSER_BEGIN2 as an initiator, see 3.3.5.1.2, and as an
acceptor, see 3.4.5.1.2.

This connection type also uses the following message:

= TXUSER_SETTXTIMEOUT_MTAG_TX_NOT_FOUND (section 2.2.8.3.3.1)

2.2.8.1.2.1 TXUSER_BEGIN2_MTAG_ABORT

87/ 475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

The TXUSER_BEGIN2_MTAG_ABORT message requests an abort attempt to the transaction that
was begun on this connection.

0[{1(2|3|4|5|6|7|8|9|0(1(2[3|4|5|/6|7|8|9|0|1|2|3|4|5|6(7(8]9|0]|1

MsgHeader (24 bytes)

MsgHeader (24 bytes): This field MUST contain a MESSAGE PACKET structure:

* The dwUserMsgType field MUST be 0x00006001.
* The dwcbVarLenData field MUST be 0.

2.2.8.1.2.2 TXUSER_BEGIN2_MTAG_BEGIN
The TXUSER_BEGIN2_MTAG_BEGIN message is used to request the creation of a transaction.

—
N
w

0[{1(2|3|4|5|6|7|8|9(0(1(2[3|4|5|/6|7|8|9|0|1|2|3|4|5|6[7(8]|9|0]|1

MsgHeader (24 bytes)

isoLevel

dwTimeout

szDesc (40 bytes)

isoFlags

MsgHeader (24 bytes): This field MUST contain a MESSAGE PACKET structure:

= The dwUserMsgType field MUST be 0x00006002.
= The dwcbVarLenData field MUST be 52.

isoLevel (4 bytes): The isolation level of the transaction. The value MUST be one as specified in the
OLETX_ISOLATION_LEVEL enumeration (section 2.2.6.9).

dwTimeout (4 bytes): A 32-bit unsigned integer that MUST contain the time-out value, in
milliseconds, for the transaction. The value zero MUST be interpreted as an infinite time-out. A

88/475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

transaction SHOULD NOT abort due to time-out before the time-out that is specified by this value
has expired.

szDesc (40 bytes): The description of the transaction, as a fixed-size array of 40 bytes that contains
a null-terminated Latin-1 ANSI string, as specified in [ISO/IEC-8859-1]. See section 2.2.5.4 for
details.

isoFlags (4 bytes): The isolation flags for the transaction. The value MUST be a legal combination of
values from the OLETX_ISOLATION_FLAGS (section 2.2.6.8) enumeration.

2.2.8.1.2.3 TXUSER_BEGIN2_MTAG_COMMIT

The TXUSER_BEGIN2_MTAG_COMMIT message requests a commit attempt to the transaction that
was begun on this connection.

-
N
w

0(1(2|3|4|5|6|7|8|9(0(1|(2[3|4|5|/6|7|8|9|0|1|2|3|4|5(6[7(8]9|0]|1

MsgHeader (24 bytes)

grfRM

MsgHeader (24 bytes): This field MUST contain a MESSAGE PACKET structure:

= The dwUserMsgType field MUST be 0x00006003.
= The dwcbVarLenData field MUST be 4.

grfRM (4 bytes): The value of this field MUST be as specified in GRFRM (section 2.2.7.1).

2.2.8.1.2.4 TXUSER_BEGIN2_MTAG_SINK_BEGUN

The TXUSER_BEGIN2_MTAG_SINK_BEGUN message indicates that the request to begin a
transaction was successful.

0[{1(2|3|4|5|6|7|8|9(0(1|2[3|4|5|/6|7|8|9|0|1|2|3|4|5|6[7(8]9|0]|1

MsgHeader (24 bytes)

guidTx (16 bytes)

MsgHeader (24 bytes): This field MUST contain a MESSAGE PACKET structure:

89/475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

https://go.microsoft.com/fwlink/?LinkId=90689

» The dwUserMsgType field MUST be 0x00006006.
= The dwcbVarLenData field MUST be 16.

guidTx (16 bytes): This field MUST contain a GUID that specifies the transaction identifier. This
value MUST NOT be a NULL GUID.

2.2.8.1.2.5 TXUSER_BEGIN2_MTAG_SINK_ERROR

The TXUSER_BEGIN2_MTAG_SINK_ERROR message provides information about the outcome of a
request.

=
N
w

0(1|2|3(4|5|6|(7|8|9|0(1|2|3(4|5|6(|7|8|9(0(1|2|3(4|5|6|7|8|9|0(1

MsgHeader (24 bytes)

Error

MsgHeader (24 bytes): This field MUST contain a MESSAGE PACKET structure:

= The dwUserMsgType field MUST be 0x00006005.
= The dwcbVarLenData field MUST be 4.

Error (4 bytes): This field MUST contain the status for the previous request. The value MUST be a
member of the TRUN_TXBEGIN_ERRORS enumeration (section 2.2.6.6).

2.2.8.1.2.6 TXUSER_SETTXTIMEOUT_MTAG_REQUEST_COMPLETE

The TXUSER_SETTXTIMEOUT_MTAG_REQUEST_COMPLETE message indicates that the
transaction time-out was successfully modified.

This message is also used for CONNTYPE TXUSER SETTXTIMEOUT.

w

1 2
0[{1(2|3|4|5|6|7|8|9(0(1|2[3|4|5|/6|7|8|9|0|1|2|3|4|5|6[7(8|9|0]|1

MsgHeader (24 bytes)

MsgHeader (24 bytes): This field MUST contain a MESSAGE PACKET structure:

» The dwUserMsgType field MUST be 0x0000107C.

= The dwcbVarLenData field MUST be 0.

2.2.8.1.2.7 TXUSER_SETTXTIMEOUT_MTAG_SETTXTIMEOUT

90/ 475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

The TXUSER_SETTXTIMEOUT_MTAG_SETTXTIMEOUT message modifies the transaction time-out
when it is used in CONNTYPE_TXUSER_BEGIN2 (section 2.2.8.1.2) connection type and
CONNTYPE_TXUSER_SETTXTIMEOUT (section 2.2.8.3.3) connection type, or queries if the
transaction manager and supports the capability to do so when used in
CONNTYPE_TXUSER_SETTXTIMEOUT2 (section 2.2.8.3.4).

This message is also used for CONNTYPE_TXUSER_SETTXTIMEOUT (section 2.2.8.3.3) connections
and CONNTYPE_TXUSER_SETTXTIMEOUT?2 (section 2.2.8.3.4) connections.

=
N
w

0(1|/2|3(4|5|6|(7|8|9|0(1|2|3(4|5|6|7|8|9(0(1|2|3(4|5|6|7|8|9|0(1

MsgHeader (24 bytes)

guidTx (16 bytes)

dwTxTimeout

MsgHeader (24 bytes): This field MUST contain a MESSAGE PACKET structure:

= The dwUserMsgType field MUST be 0x0000107B.
= The dwcbVarLenData field MUST be 20.

guidTx (16 bytes): This field MUST contain a GUID that specifies the transaction identifier. When
this message is sent on a CONNTYPE_TXUSER_SETTXTIMEOUT2 connection to query the
capability of the transaction manager, this value SHOULD be set to a NULL GUID and MUST be
ignored on receipt.

dwTxTimeout (4 bytes): A 32-bit unsigned integer that contains the new time-out value, in
milliseconds, for the transaction. When used with a CONNTYPE_TXUSER_BEGIN2 connection, a
transaction MUST NOT abort due to time-out before the humber of milliseconds that is specified by
the value has expired. The value zero MUST be interpreted as an infinite time-out. When used with
a CONNTYPE_TXUSER_SETTXTIMEOUT2 connection, this value SHOULD be set to zero and
MUST be ignored on receipt.

2.2.8.1.2.8 TXUSER_SETTXTIMEOUT_MTAG_TOO_LATE

The TXUSER_SETTXTIMEOUT_MTAG_TOO_LATE message indicates that it is too late to modify the
time-out of the transaction.

This message is also used in the CONNTYPE TXUSER SETTXTIMEOUT connection type.

0(1|2|3(4|5|6(7|8|9|0|1|2|3(4|5|6|7|8|9(0(1]|2|3(4|5|6|7|8|9|0(1

MsgHeader (24 bytes)

91/475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

MsgHeader (24 bytes): This field MUST contain a MESSAGE PACKET structure:

» The dwUserMsgType field MUST be 0x0000107E.

= The dwcbVarLenData field MUST be 0.

2.2.8.1.3 CONNTYPE_TXUSER_PROMOTE

The CONNTYPE_TXUSER_PROMOTE connection type is used by an application to do the following:

= Begin a transaction using an application-specified transaction identity
= Commit or rollback a transaction

= Change the time-out of a transaction

This connection type supersedes CONNTYPE TXUSER SETTXTIMEOUT?2.

For more information about CONNTYPE_TXUSER_PROMOTE as an initiator, see section 3.3.5.1.3,

and as an acceptor, see section 3.4.5.1.3.

This connection type also uses the following messages:

= TXUSER_BEGIN2_MTAG_COMMIT (section 2.2.8.1.2.3)

= TXUSER_BEGIN2_MTAG_ABORT (section 2.2.8.1.2.1)

= TXUSER_BEGIN2_MTAG_SINK_BEGUN (section 2.2.8.1.2.4)

= TXUSER_BEGIN2_MTAG_SINK_ERROR (section 2.2.8.1.2.5)

= TXUSER_SETTXTIMEOUT_MTAG_SETTXTIMEOUT (section 2.2.8.1.2.7)

= TXUSER_SETTXTIMEOUT_MTAG_TOO_LATE (section 2.2.8.1.2.8)

= TXUSER_SETTXTIMEOUT_MTAG_REQUEST_COMPLETE (section 2.2.8.1.2.6)

2.2.8.1.3.1 TXUSER_BEGINNER_MTAG_PROMOTE

The TXUSER_BEGINNER_MTAG_PROMOTE message is used to request the creation of a

transaction that specifies a predetermined transaction identifier.

-
N

0(1{2|3|4|5|/6|7|8|9|0(1(2[{3[4|5|/6|7|8|9|0|1|2|3|4(5|6|7

w

MsgHeader (24 bytes)

isoLevel

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

92 /475

dwTimeout

szDesc (40 bytes)

isoFlags

guidTx (16 bytes)

MsgHeader (24 bytes): This field MUST contain a MESSAGE PACKET structure:

» The dwUserMsgType field MUST be 0x00001010.
= The dwcbVarLenData field MUST be 68.

isoLevel (4 bytes): The isolation level of the transaction. The value MUST be one as specified in the
OLETX_ISOLATION_LEVEL (section 2.2.6.9) enumeration.

dwTimeout (4 bytes): A 32-bit unsigned integer that MUST contain the time-out value, in
milliseconds, for the transaction. The value zero MUST be interpreted as an infinite time-out. A
transaction SHOULD NOT abort due to time-out before the time-out that is specified by this value
has expired.

szDesc (40 bytes): The description of the transaction, as a fixed-size array of 40 bytes that contains
a null-terminated Latin-1 ANSI string, as specified in [ISO/IEC-8859-1]. See section 2.2.5.4 for
details.

isoFlags (4 bytes): The isolation flags for the transaction. The value MUST be a legal combination of
values from the OLETX_ISOLATION_FLAGS (section 2.2.6.8) enumeration.

guidTx (16 bytes): This field MUST contain a GUID that specifies the transaction identifier.

2.2.8.2 Transaction Propagation
2.2.8.2.1 Pull Propagation

2.2.8.2.1.1 CONNTYPE_TXUSER_ASSOCIATE

The CONNTYPE_TXUSER_ASSOCIATE connection type is used by a destination application to
complete the pull propagation of a transaction from a source application.

For more information about CONNTYPE_TXUSER_ASSOCIATE as an initiator, see section
3.3.5.2.1.1, and as an acceptor, see section 3.4.5.2.1.1.

2.2.8.2.1.1.1 TXUSER_ASSOCIATE_MTAG_ASSOCIATE

The TXUSER_ASSOCIATE_MTAG_ASSOCIATE message requests that the transaction manager
perform pull propagation of an existing transaction. This is also known as an associate request.

93/ 475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

https://go.microsoft.com/fwlink/?LinkId=90689

0(1|2|3(4|5|6(7|8|9|0(1|2|3(4|5|6|7|8|9(0(1]|2|3(4|5|6|7|8|9|0(1

MsgHeader (24 bytes)

guidTx (16 bytes)

isoLevel

isoFlags

cbSourceTmAddr

szDesc (40 bytes)

SourceTmAddr (variable)

MsgHeader (24 bytes): This field MUST contain a MESSAGE PACKET structure:

= The dwUserMsgType field MUST be 0x00002031.
= The dwcbVarLenData field MUST be equal to the value of cbSourceTMAddr plus 68.
guidTx (16 bytes): This field MUST contain a GUID that specifies the transaction identifier.

isoLevel (4 bytes): The isolation level of the transaction. The value MUST be one as specified in the
OLETX_ISOLATION_LEVEL (section 2.2.6.9) enumeration.

isoFlags (4 bytes): The isolation flags for the transaction. The value MUST be a legal combination of
values from the OLETX_ISOLATION_FLAGS (section 2.2.6.8) enumeration.

cbSourceTmAddr (4 bytes): A 4-byte integer value that MUST contain the length, in bytes, of the
SourceTmAddr field. The length MUST include the padding bytes used in the SourceTmAddr
field.

szDesc (40 bytes): The description of the transaction, as a fixed-size array of 40 bytes that contains
a null-terminated Latin-1 ANSI string, as specified in [ISO/IEC-8859-1]. See section 2.2.5.4 for
details.

94 /475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

https://go.microsoft.com/fwlink/?LinkId=90689

SourceTmAddr (variable): This field is used for identifying the address of the superior
transaction manager against which the pull propagation operation is requested. This field MUST
contain either a NAMEOBJECTBLOB (section 2.2.5.3) structure or an OLETX_TM_ADDR
(section 2.2.4.2) structure in a version-specific manner as specified in Version-Specific Aspects
of Connection Types Relevant to an Application (section 2.2.1.1.1). The SourceTmAddr field
MUST be aligned on a 4-byte boundary by padding with arbitrary values.

2.2.8.2.1.1.2 TXUSER_ASSOCIATE_MTAG_ASSOCIATED

The TXUSER_ASSOCIATE_MTAG_ASSOCIATED message indicates that the associate request was
successful.

=
N
w

0(1|2|3(4|(5|6|(7|8|9|0(1|2|3(4|5|6|7|8|9(0(1|2|3(4|5|6|7|8|9|0(1

MsgHeader (24 bytes)

MsgHeader (24 bytes): This field MUST contain a MESSAGE PACKET structure:

» The dwUserMsgType field MUST be 0x00002032.
= The dwcbVarLenData field MUST be 0.

2.2.8.2.1.1.3 TXUSER_ASSOCIATE_MTAG_COMM_FAILED

The TXUSER_ASSOCIATE_MTAG_COMM_FAILED message indicates that the associated request
failed because the sender of this message encountered a communication failure with the Superior
Transaction Manager specified in the SourceTmAddr field of the
TXUSER_ASSOCIATE_MTAG_ASSOCIATE (section 2.2.8.2.1.1.1) message.

—
N
w

0(1|/2|3(4(5|6|7|8|9|0(1|2|3(4|5|6|7|8|9(0(1|2|3(4|5|6[|7|8|9|0(1

MsgHeader (24 bytes)

MsgHeader (24 bytes): This field MUST contain a MESSAGE PACKET structure:
= The dwUserMsgType field MUST be 0x00002034.

= The dwcbVarLenData field MUST be 0.

2.2.8.2.1.1.4 TXUSER_ASSOCIATE_MTAG_CREATE_BAD_TMADDR

The TXUSER_ASSOCIATE_MTAG_CREATE_BAD_TMADDR message indicates that the associate
request failed because of failures during interpretation and processing of the SourceTmAddr field in
the TXUSER_ASSOCIATE_MTAG_ASSOCIATE (section 2.2.8.2.1.1.1) message.

95/ 475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

0(1|2|3(4|5|6(7|8|9|0(1|2|3(4|5|6|7|8|9(0(1]|2|3(4|5|6|7|8|9|0(1

MsgHeader (24 bytes)

MsgHeader (24 bytes): This field MUST contain a MESSAGE PACKET structure:

* The dwUserMsgType field MUST be 0x00002044.

= The dwcbVarLenData field MUST be 0.

2.2.8.2.1.1.5 TXUSER_ASSOCIATE_MTAG_LOG_FULL_LOCAL

The TXUSER_ASSOCIATE_MTAG_LOG_FULL_LOCAL message indicates that the associate request
failed because the transaction recovery log was full at the transaction manager sending this

message.

—
N
w

0(1|/2|3(4|5|6(7|8|9|0(1|2|3(4|5|6|7|8|9(0(1|2|3(4|5|6[7|8|9|0(1

MsgHeader (24 bytes)

MsgHeader (24 bytes): This field MUST contain a MESSAGE PACKET structure:
» The dwUserMsgType field MUST be 0x00002035.
= The dwcbVarLenData field MUST be 0.

2.2.8.2.1.1.6 TXUSER_ASSOCIATE_MTAG_LOG_FULL_REMOTE

The TXUSER_ASSOCIATE_MTAG_LOG_FULL_REMOTE message indicates first that the associated
request failed because of a full transaction recovery log at the superior transaction manager

specified in the SourceTmAddr field of the
TXUSER_ASSOCIATE_MTAG_ASSOCIATE (section 2.2.8.2.1.1.1) message.

—
N
w

0(1|/2|3(4(5|6|7|8|9|0(1|2|3(4|5|6|7|8|9(0(1|2|3(4|5|6[|7|8|9|0(1

MsgHeader (24 bytes)

MsgHeader (24 bytes): This field MUST contain a MESSAGE PACKET structure:

= The dwUserMsgType field MUST be 0x00002037.

96 /475

[MS-DTCO] - v20210625
MSDTC Connection Manager: OleTx Transaction Protocol

Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

= The dwcbVarLenData field MUST be 0.

2.2.8.2.1.1.7 TXUSER_ASSOCIATE_MTAG_NO_MEM_LOCAL

The TXUSER_ASSOCIATE_MTAG_NO_MEM_LOCAL message indicates that the associate request
failed because of a failure to allocate dynamic memory by the transaction manager sending this
message while processing the TXUSER_ASSOCIATE_MTAG_ASSOCIATE (section 2.2.8.2.1.1.1)
message.

=
N
w

0[{1(2|3|4|5|6|7|8|9|0(1(2[3|4|5|/6|7|8|9|0|1|2|3|4|5|6(7(8]9|0]|1

MsgHeader (24 bytes)

MsgHeader (24 bytes): This field MUST contain a MESSAGE PACKET structure:

» The dwUserMsgType field MUST be 0x00002036.
= The dwcbVarLenData field MUST be 0.

2.2.8.2.1.1.8 TXUSER_ASSOCIATE_MTAG_NO_MEM_REMOTE

The TXUSER_ASSOCIATE_MTAG_NO_MEM_REMOTE message indicates that the associate request
failed because of a failure to allocate dynamic memory by the Superior Transaction Manager
specified in the SourceTmAddr field of the

TXUSER_ASSOCIATE_MTAG_ASSOCIATE (section 2.2.8.2.1.1.1) message.

0(1|/2|3(4|5|6|7|8|9|0(1|2|3(4|5|6|7|8|9(0(1|2|3(4|5|6[7|8|9|0(1

MsgHeader (24 bytes)

MsgHeader (24 bytes): This field MUST contain a MESSAGE PACKET structure:

* The dwUserMsgType field MUST be 0x00002038.
= The dwcbVarLenData field MUST be 0.

2.2.8.2.1.1.9 TXUSER_ASSOCIATE_MTAG_TOO_LATE

The TXUSER_ASSOCIATE_MTAG_TOO_LATE message is sent in response to a
TXUSER_ASSOCIATE_MTAG_ASSOCIATE (section 2.2.8.2.1.1.1) message. It indicates that the
associate request failed because the transaction specified by the guidTx field in the
TXUSER_ASSOCIATE_MTAG_ASSOCIATE message is neither in the Active, Phase Zero, nor Phase

Zero Complete state.

97 /475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

0(1|2|3(4|5|6(7|8|9|0(1|2|3(4|5|6|7|8|9(0(1]|2|3(4|5|6|7|8|9|0(1

MsgHeader (24 bytes)

MsgHeader (24 bytes): This field MUST contain a MESSAGE PACKET structure:

= The dwUserMsgType field MUST be 0x00002040.

= The dwcbVarLenData field MUST be 0.

2.2.8.2.1.1.10 TXUSER_ASSOCIATE_MTAG_TOO_MANY_LOCAL

The TXUSER_ASSOCIATE_MTAG_TOO_MANY_LOCAL message indicates that the associate
request failed because the number of direct participants for the transaction specified by the guidTx
field in the TXUSER_ASSOCIATE_MTAG_ASSOCIATE (section 2.2.8.2.1.1.1) message exceeded an
implementation-specific limit by the transaction manager sending this message while processing the
TXUSER_ASSOCIATE_MTAG_ASSOCIATE message.<14>

—
N
w

0(1|/2|3(4|5|6|7|8|9|0(1|2|3(4|5|6|7|8|9(0(1|2|3(4|5|6[|7|8|9|0(1

MsgHeader (24 bytes)

MsgHeader (24 bytes): This field MUST contain a MESSAGE PACKET structure:

* The dwUserMsgType field MUST be 0x00002041.

= The dwcbVarLenData field MUST be 0.

2.2.8.2.1.1.11 TXUSER_ASSOCIATE_MTAG_TOO_MANY_REMOTE

The TXUSER_ASSOCIATE_MTAG_TOO_MANY_REMOTE message indicates a failure by the
associate request. The number of direct participants for the transaction that is specified by the guidTx
field in the TXUSER_ASSOCIATE_MTAG_ASSOCIATE (section 2.2.8.2.1.1.1) message exceeded
the limit at the Superior Transaction Manager referenced in the SourceTmAddr field of the
TXUSER_ASSOCIATE_MTAG_ASSOCIATE message.

—
N
w

0(1|2|3(4|5|6(7|8|9|0(1|2|3(4|5|6|7|8|9(0(1]|2|3(4|5|6|7|8|9|0(1

MsgHeader (24 bytes)

98/ 475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

MsgHeader (24 bytes): This field MUST contain a MESSAGE PACKET structure:

* The dwUserMsgType field MUST be 0x00002042.

= The dwcbVarLenData field MUST be 0.

2.2.8.2.1.1.12 TXUSER_ASSOCIATE_MTAG_TX_NOT_FOUND

The TXUSER_ASSOCIATE_MTAG_TX_NOT_FOUND message indicates that the associate request
failed because the transaction) specified by the guidTx field in the
TXUSER_ASSOCIATE_MTAG_ASSOCIATE (section 2.2.8.2.1.1.1) message was not found.

=
N
w

0(1|2|3(4|5|6|(7|8|9|0(1|2|3(4|5|6(|7|8|9(0(1|2|3(4|5|6|7|8|9|0(1

MsgHeader (24 bytes)

MsgHeader (24 bytes): This field MUST contain a MESSAGE PACKET structure:

= The dwUserMsgType field MUST be 0x00002043.

= The dwcbVarLenData field MUST be 0.
2.2.8.2.2 Push Propagation

2.2.8.2.2.1 CONNTYPE_TXUSER_EXTENDEDWHEREABOUTS

The CONNTYPE_TXUSER_EXTENDEDWHEREABOUTS connection type is used by an application to
obtain Extended Whereabouts from its transaction manager.

For more information about CONNTYPE_TXUSER_EXTENDEDWHEREABOUTS as an initiator, see
section 3.3.5.2.2.1, and as an acceptor, see section 3.4.5.2.2.1.

2.2.8.2.2.1.1 TXUSER_EXTENDEDWHEREABOUTS_MTAG_GET

The TXUSER_EXTENDEDWHEREABOUTS_MTAG_GET message is sent by the application to the
transaction manager to obtain the Extended Whereabouts of the transaction manager.

-
N
w

0(1|/2|3(4|5|6|7|8|9|0(1|2|3(4|5|6|7|8|9(0(1|2|3(4|5|6[7|8|9|0(1

MsgHeader (24 bytes)

MsgHeader (24 bytes): This field MUST contain a MESSAGE PACKET structure:
= The dwUserMsgType field MUST be 0x00005A01.

= The dwcbVarLenData field MUST be 0.

99/ 475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

2.2.8.2.2.1.2 TXUSER_EXTENDEDWHEREABOUTS_MTAG_GOT

The TXUSER_EXTENDEDWHEREABOUTS_MTAG_GOT message returns the set of extended
whereabouts elements.

-
N
w

0(1(2|3|4|5|6|7|8|9|0(1(2[3|4|5|/6|7|8|9|0|1|2|3|4|5(6[7(8]9|0]|1

MsgHeader (24 bytes)

dwProtocolCount

rgtmprotUsableList (variable)

MsgHeader (24 bytes): This field MUST contain a MESSAGE PACKET structure:
= The dwUserMsgType field MUST be 0x00005A02.

= The dwcbVarLenData field MUST be the number of bytes used by the rgtmprotUsableList
field plus 4 bytes.

dwProtocolCount (4 bytes): An unsigned 32-bit value that MUST contain the number of elements in
the rgtmprotUsableList array. If this value is zero, the rgtmprotUsableList field MUST be
omitted.

rgtmprotUsablelList (variable): Array of STmToTmProtocol (section 2.2.5.9) elements, each of
which MUST be of type TmProtocolExtended. Each element defines the location information for
an extension protocol. Each element MUST be aligned on a 4-byte boundary.

2.2.8.2.2.1.3 TXUSER_EXTENDEDWHEREABOUTS_MTAG_NOMEM

The TXUSER_EXTENDEDWHEREABOUTS_MTAG_NOMEM message is sent by the transaction

manager to the client in response to a
TXUSER_EXTENDEDWHEREABOUTS_MTAG_GET (section 2.2.8.2.2.1.1) message to indicate that
there is not enough memory to process the request.

0[{1(2|3|4|5|6|7|8|9(0(1|2[3|4|5|/6|7|8|9|0|1|2|3|4|5|6[7(8]|9|0]|1

MsgHeader (24 bytes)

MsgHeader (24 bytes): This field MUST contain a MESSAGE PACKET structure:
* The dwUserMsgType field MUST be 0x00005A03.

= The dwcbVarLenData field MUST be 0.

100/ 475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

2.2.8.2.2.2 CONNTYPE_TXUSER_EXPORT

The CONNTYPE_TXUSER_EXPORT connection type is used by a source application to initiate a push
propagation to a destination application.

For more information about CONNTYPE_TXUSER_EXPORT as an initiator, see section 3.3.5.2.2.2,
and as an acceptor, see section 3.4.5.2.2.2.

2.2.8.2.2.2.1 TXUSER_EXPORT_MTAG_CREATE

The TXUSER_EXPORT_MTAG_CREATE message is used by applications to establish a connection
with the transaction manager to export transactions to a destination transaction manager.

-
N
w

0[(1(2|3|4|5|6|7|8|9|0(1(2[3|4|5|/6|7|8|9|0|1|2|3|4|5|6[7(8]9|0]|1

MsgHeader (24 bytes)

SourceTmAddr (variable)

MsgHeader (24 bytes): This field MUST contain a MESSAGE PACKET structure:

= The dwUserMsgType field MUST be 0x00001041.

= The dwcbVarLenData field MUST be the number of bytes used for the SourceTmAddr field,
and the value MUST be at least 40.

SourceTmAddr (variable): This field specifies the network address and identification information for
the destination transaction manager. This field MUST contain either a NAMEOBJECTBLOB
(section 2.2.5.3) structure or an OLETX_TM_ADDR (section 2.2.4.2) structure in a version-
specific manner as described in Version-Specific Aspects of Connection Types Relevant to
an Application (section 2.2.1.1.1). This transaction manager receives push propagation
operations from the source transaction manager, which is the recipient of this message.
CONNTYPE_PARTNERTM_PROPAGATE (section 2.2.9.1.1.1) defines the protocol that is used
between the two transaction managers as a result of the export operation.

2.2.8.2.2.2.2 TXUSER_EXPORT_MTAG_CREATE2

The TXUSER_EXPORT_MTAG_CREATE2 message is used by applications to establish a connection
with the transaction manager in preparation to export transactions to a destination transaction
manager.

—
N
w

0(1|2|3(4|5|6(7|8|9|0|1|2|3(4|5|6|7|8|9(0(1]|2|3(4|5|6|7|8|9|0(1

MsgHeader (24 bytes)

101/ 475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

SourceTmAddr (variable)

MsgHeader (24 bytes): This field MUST contain a MESSAGE PACKET structure:

» The dwUserMsgType field MUST be 0x00001804.

= The dwcbVarLenData field MUST be the number of bytes used for the SourceTmAddr field,
and the value MUST be at least 40.

SourceTmAddr (variable): This field MUST contain an OLETX TM ADDR structure that specifies
the network address and identification information for the destination transaction manager. This
transaction manager receives push propagation operations from the source transaction manager,
which is the recipient of this message. CONNTYPE_PARTNERTM_PROPAGATE (section 2.2.9.1.1.1)
defines the protocol that is used between the two transaction managers as a result of the export
operation.

2.2.8.2.2.2.3 TXUSER_EXPORT_MTAG_CREATE_BAD_TMADDR

The TXUSER_EXPORT_MTAG_CREATE_BAD_TMADDR message indicates that the create request
failed because of errors encountered during the interpretation and processing of the SourceTmAddr
field in the connection's initial TXUSER_EXPORT_MTAG_CREATE (section 2.2.8.2.2.2.1) or
TXUSER_EXPORT_MTAG_CREATE2 (section 2.2.8.2.2.2.2) message.

0[{1(2|3|4|5|6|7|8|9(0(1(2[3|4|5|/6|7|8|9|0|1|2|3|4|5|6[7(8]9|0]|1

MsgHeader (24 bytes)

MsgHeader (24 bytes): This field MUST contain a MESSAGE PACKET structure:

= The dwUserMsgType field MUST be 0x00001046.

= The dwcbVarLenData field MUST be 0.

2.2.8.2.2.2.4 TXUSER_EXPORT_MTAG_CREATE_NET_TX_DISABLED

The TXUSER_EXPORT_MTAG_CREATE_NET_TX_DISABLED message indicates that the create
request failed because the transaction manager that received the request has disabled the ability to
export transactions to other transaction managers. See the Allow Outbound Transaction flag in
Abstract Data Model (section 3.2.1) for more details.

—
N
w

0(1|2|3(4|5|6(7|8|9|0(1|2|3(4|5|6|7|8|9(0(1]|2|3(4|5|6|7|8|9|0(1

MsgHeader (24 bytes)

102 / 475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

MsgHeader (24 bytes): This field MUST contain a MESSAGE PACKET structure:

» The dwUserMsgType field MUST be 0x00001805.

= The dwcbVarLenData field MUST be 0.

2.2.8.2.2.2.5 TXUSER_EXPORT_MTAG_CREATED

The TXUSER_EXPORT_MTAG_CREATED message indicates that the create request succeeded and
the connection is now ready to process export requests.

=
N
w

0(1|/2|3(4|(5|6|7|8|9|0(1|2|3(4|5|6(7|8|9(0(1]|2|3(4|5|6|7|8|9|0(1

MsgHeader (24 bytes)

MsgHeader (24 bytes): This field MUST contain a MESSAGE PACKET structure:

» The dwUserMsgType field MUST be 0x00001042.

= The dwcbVarLenData field MUST be 0.

2.2.8.2.2.2.6 TXUSER_EXPORT_MTAG_EXPORT

The TXUSER_EXPORT_MTAG_EXPORT message is used to export a transaction to the destination
transaction manager that is identified by SourceTmAddr in the connection's initial
TXUSER_EXPORT_MTAG_CREATE (section 2.2.8.2.2.2.1) or
TXUSER_EXPORT_MTAG_CREATE2 (section 2.2.8.2.2.2.2) message.

0(1(2|3|4|5|6|7|8|9(0(1(2[3|4|5|/6|7|8|9|0|1|2|3|4|5|6[7(8]9|0]|1

MsgHeader (24 bytes)

guidTX (16 bytes)

MsgHeader (24 bytes): This field MUST contain a MESSAGE PACKET structure:

= The dwUserMsgType field MUST be 0x00001043.

103/ 475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

= The dwcbVarLenData field MUST be 16.

guidTX (16 bytes): This field MUST contain a GUID that specifies the transaction identifier.

2.2.8.2.2.2.7 TXUSER_EXPORT_MTAG_EXPORT_LOG_FULL

The TXUSER_EXPORT_MTAG_EXPORT_LOG_FULL message indicates that the export request
failed because the transaction recovery log was full at the source transaction manager.

0(1(2|3|4|5|6|7|8|9|0(1|(2[3|4|5|/6|7|8|9|0|1|2|3|4|5(6[7(8]9|0]|1

MsgHeader (24 bytes)

MsgHeader (24 bytes): This field MUST contain a MESSAGE PACKET structure:

» The dwUserMsgType field MUST be 0x00001050.

= The dwcbVarLenData field MUST be 0.

2.2.8.2.2.2.8 TXUSER_EXPORT_MTAG_EXPORT_NO_MEM

The TXUSER_EXPORT_MTAG_EXPORT_NO_MEM message indicates that the export request failed
because the source transaction manager was unable to allocate sufficient dynamic memory for the
request.

0[{1(2|3|4|5|6|7|8|9(0(1(2[3|4|5|/6|7|8|9|0|1|2|3|4|5|6[7(8]9|0]|1

MsgHeader (24 bytes)

MsgHeader (24 bytes): This field MUST contain a MESSAGE PACKET structure:

= The dwUserMsgType field MUST be 0x00001802.

= The dwcbVarLenData field MUST be 0.

2.2.8.2.2.2.9 TXUSER_EXPORT_MTAG_EXPORT_TOO_LATE

The TXUSER_EXPORT_MTAG_EXPORT_TOO_LATE message indicates that the export request
failed because it was too late to process the export request for the current state of the transaction.
See Export Transaction (section 3.2.7.21) and Export Transaction Failure (section 3.4.7.11) for
more information.

104 / 475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

0(1|2|3(4|5|6(7|8|9|0(1|2|3(4|5|6|7|8|9(0(1]|2|3(4|5|6|7|8|9|0(1

MsgHeader (24 bytes)

MsgHeader (24 bytes): This field MUST contain a MESSAGE PACKET structure:

= The dwUserMsgType field MUST be 0x00001049.
= The dwcbVarLenData field MUST be 0.

2.2.8.2.2.2.10 TXUSER_EXPORT_MTAG_EXPORT_TOO_MANY

The TXUSER_EXPORT_MTAG_EXPORT_TOO_MANY message indicates that the export request
failed because the number of direct participants for the transaction specified by the guidTX field in the
TXUSER_EXPORT_MTAG_EXPORT (section 2.2.8.2.2.2.6) message exceeded the allowed number
of remote transaction manager enlistments. For more information, see Export

Transaction (section 3.2.7.21).

—
N
w

0(1|/2|3(4|5|6|7|8|9|0(1|2|3(4|5|6|7|8|9(0(1|2|3(4|5|6[|7|8|9|0(1

MsgHeader (24 bytes)

MsgHeader (24 bytes): This field MUST contain a MESSAGE PACKET structure:

* The dwUserMsgType field MUST be 0x00001801.

= The dwcbVarLenData field MUST be 0.

2.2.8.2.2.2.11 TXUSER_EXPORT_MTAG_EXPORT_TX_NOT_FOUND

The TXUSER_EXPORT_MTAG_EXPORT_TX_NOT_FOUND message indicates that the export
request failed because the transaction specified by the guidTX field in the
TXUSER_EXPORT_MTAG_EXPORT (section 2.2.8.2.2.2.6) message was not found by the source
transaction manager.

-
N
w

0(1|2|3(4|5|6|7|8|9|0|1|2|3(4|5|6|7|8|9(0(1|2|3(4|5|6[|7|8|9|0(1

MsgHeader (24 bytes)

MsgHeader (24 bytes): This field MUST contain a MESSAGE PACKET structure:

105/ 475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

* The dwUserMsgType field MUST be 0x00001048.

= The dwcbVarLenData field MUST be 0.

2.2.8.2.2.2.12

The TXUSER_EXPORT_MTAG_EXPORTED message indicates that the export request was

successful.

TXUSER_EXPORT_MTAG_EXPORTED

0|1|2]|3

4

5

6

7

8

9

MsgHeader (24 bytes)

MsgHeader (24 bytes): This field MUST contain a MESSAGE PACKET structure:
» The dwUserMsgType field MUST be 0x00001044.
= The dwcbVarLenData field MUST be 0.

2.2.8.2.2.3 CONNTYPE_TXUSER_EXPORT2

The CONNTYPE_TXUSER_EXPORT2 connection type is used by a source application to initiate a

push propagation to a destination application. This connection type supersedes

CONNTYPE TXUSER EXPORT.

For more information about CONNTYPE_TXUSER_EXPORT2 as an initiator, see section 3.3.5.2.2.3,
and as an acceptor, see section 3.4.1.9.

This connection type also uses the following messages:

= TXUSER EXPORT MTAG CREATE

= TXUSER EXPORT MTAG CREATE2

= TXUSER EXPORT MTAG CREATE BAD TMADDR

= TXUSER EXPORT MTAG CREATE NET TX DISABLED
= TXUSER EXPORT MTAG CREATED

= TXUSER EXPORT MTAG EXPORT

= TXUSER EXPORT MTAG EXPORT LOG FULL

= TXUSER EXPORT MTAG EXPORT NO MEM

= TXUSER EXPORT MTAG EXPORT TOO LATE

= TXUSER EXPORT MTAG EXPORT TOO MANY

= TXUSER EXPORT MTAG EXPORT TX NOT FOUND
= TXUSER EXPORT MTAG EXPORTED

[MS-DTCO] - v20210625
MSDTC Connection Manager: OleTx Transaction Protocol

Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

106 / 475

2.2.8.2.2.3.1 TXUSER_EXPORT_MTAG_EXPORT_COMM_FAILED

The TXUSER_EXPORT_MTAG_EXPORT_COMM_FAILED message indicates that the export request
failed because the sender of this message encountered a communication failure with the source
transaction manager.

=
N
w

0[(1(2|3|4|5|6|7|8|9|0(1(2[3|4|5|/6|7|8|9|0|1|2|3|4|5|6[7(8]9|0]|1

MsgHeader (24 bytes)

MsgHeader (24 bytes): This field MUST contain a MESSAGE PACKET structure:

» The dwUserMsgType field MUST be 0x00001806.
= The dwcbVarLenData field MUST be 0x00000000.

2.2.8.2.2.4 CONNTYPE_TXUSER_IMPORT

The CONNTYPE_TXUSER_IMPORT connection type is used by a destination application to complete
a push propagation that is initiated by a source application.

For more information about CONNTYPE_TXUSER_IMPORT as an initiator, see section 3.3.5.2.2.4,
and as an acceptor, see section 3.4.5.2.2.4.

2.2.8.2.2.4.1 TXUSER_IMPORT_MTAG_ABORT

This message is a request for the transaction manager to abort the transaction.

-
N
w

0(1|/2|3(4|5|6|7|8|9|0(1|2|3(4|5|6|7|8|9(0(1|2|3(4|5|6[|7|8|9|0(1

MsgHeader (24 bytes)

guidReason (16 bytes)

MsgHeader (24 bytes): This field MUST contain a MESSAGE PACKET structure:

» The dwUserMsgType field MUST be 0x00001023.
= The dwcbVarLenData field MUST be 16.

guidReason (16 bytes): The value MUST be set to an implementation-specific GUID that specifies
the reason for aborting the transaction and SHOULD be ignored on receipt.

107 / 475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

2.2.8.2.2.4.2 TXUSER_IMPORT_MTAG_ABORT_TOO_LATE

The TXUSER_IMPORT_MTAG_ABORT_TOO_LATE message is sent to the application in the
connection type that was created for the originating
TXUSER_IMPORT_MTAG_IMPORT (section 2.2.8.2.2.4.3) message.

=
N
w

0[(1(2|3|4|5|6|7|8|9|0(1(2[3|4|5|/6|7|8|9|0|1|2|3|4|5|6[7(8]9|0]|1

MsgHeader (24 bytes)

MsgHeader (24 bytes): This field MUST contain a MESSAGE PACKET structure:

» The dwUserMsgType field MUST be 0x00001025.
= The dwcbVarLenData field MUST be 0.

2.2.8.2.2.4.3 TXUSER_IMPORT_MTAG_IMPORT

The TXUSER_IMPORT_MTAG_IMPORT message is used by a destination application to complete a
push propagation operation that is initiated by a source application.

—
N
w

0(1|/2|3(4|(5|6|7|8|9|0(1|2|3(4|5|6|7|8|9(0(1|2|3(4|5|6|7|8|9|0(1

MsgHeader (24 bytes)

guidTx (16 bytes)

MsgHeader (24 bytes): This field MUST contain a MESSAGE PACKET structure:

= The dwUserMsgType field MUST be 0x00001021.
= The dwcbVarLenData field MUST be 16.

guidTx (16 bytes): This field MUST contain a GUID that specifies the transaction identifier.

2.2.8.2.2.4.4 TXUSER_IMPORT_MTAG_IMPORT_TX_NOT_FOUND

The TXUSER_IMPORT_MTAG_IMPORT_TX_NOT_FOUND message is sent if the attempt to import
the transaction is unsuccessful because the transaction that is specified in the
TXUSER_IMPORT_MTAG_IMPORT (section 2.2.8.2.2.4.3) message cannot be found.

108 / 475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

0(1|2|3(4|5|6(7|8|9|0(1|2|3(4|5|6|7|8|9(0(1]|2|3(4|5|6|7|8|9|0(1

MsgHeader (24 bytes)

MsgHeader (24 bytes): This field MUST contain a MESSAGE PACKET structure:

* The dwUserMsgType field MUST be 0x00001026.

= The dwcbVarLenData field MUST be 0.

2.2.8.2.2.4.5 TXUSER_IMPORT_MTAG_IMPORTED

The TXUSER_IMPORT_MTAG_IMPORTED message indicates that the import operation completed
successfully.

0[{1(2|3|4|5|6|7|8|9(0(1(2[3|4|5|/6|7|8|9|0|1|2|3|4|5|6[7(8]9|0]|1

MsgHeader (24 bytes)

isoLevel

isoFlags

MsgHeader (24 bytes): This field MUST contain a MESSAGE PACKET structure:
= The dwUserMsgType field MUST be 0x00001022.
» The dwcbVarLenData field MUST be 8.

isoLevel (4 bytes): The isolation level of the transaction. The value MUST be one as specified in the
OLETX_ISOLATION_LEVEL (section 2.2.6.9) enumeration.

isoFlags (4 bytes): The isolation flags for the transaction. The value MUST be a legal combination of
values from the OLETX_ISOLATION_FLAGS (section 2.2.6.8) enumeration.

2.2.8.2.2.4.6 TXUSER_IMPORT_MTAG_REQUEST_COMPLETED

The TXUSER_IMPORT_MTAG_REQUEST_COMPLETED message indicates that the attempt to abort
the transaction was successful.

—
N
w

0(1|2|3(4|5|6(7|8|9|0|1|2|3(4|5|6|7|8|9(0(1]|2|3(4|5|6|7|8|9|0(1

MsgHeader (24 bytes)

109 / 475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

MsgHeader (24 bytes): This field MUST contain a MESSAGE PACKET structure:

= The dwUserMsgType field MUST be 0x00001024.
= The dwcbVarLenData field MUST be 0.

2.2.8.2.2.5 CONNTYPE_TXUSER_IMPORT2

The CONNTYPE_TXUSER_IMPORT2 connection type is used by a destination application to
complete a push propagation that is initiated by a source application. This connection type supersedes
CONNTYPE TXUSER IMPORT.

For more information about CONNTYPE_TXUSER_IMPORT2 as an initiator, see section 3.3.5.2.2.5,
and as an acceptor, see section 3.4.5.2.2.5.

2.2.8.2.2.5.1 TXUSER_IMPORT2_MTAG_ABORT

The TXUSER_IMPORT2_MTAG_ABORT message is used to abort a transaction that was previously
successfully imported by using either the

TXUSER_IMPORT2_MTAG_IMPORT (section 2.2.8.2.2.5.2) or
TXUSER_IMPORT2_MTAG_IMPORT_WITH_SET (section 2.2.8.2.2.5.3) message.

—
N
w

0[{1(2|3|4|5|6|7|8|9|0(1(2[3|4|5|/6|7|8|9|0|1|2|3|4|5|6[7(8]9|0]|1

MsgHeader (24 bytes)

MsgHeader (24 bytes): This field MUST contain a MESSAGE PACKET structure:

= The dwUserMsgType field MUST be 0x00006101.

= The dwcbVarLenData field MUST be 0.

2.2.8.2.2.5.2 TXUSER_IMPORT2_MTAG_IMPORT

The TXUSER_IMPORT2_MTAG_IMPORT message is used by resource managers or server
processes to establish a transaction connection with their transaction manager. The transaction
identifier for which the connection is wanted is identified by the guidTX member of the message
structure.

0(1|2|3(4|5|6(7|8|9|0|1|2|3(4|5|6|7|8|9(0(1]|2|3(4|5|6|7|8|9|0(1

MsgHeader (24 bytes)

110/ 475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

guidTX (16 bytes)

MsgHeader (24 bytes): This field MUST contain a MESSAGE PACKET structure:

= The dwUserMsgType field MUST be 0x00006102.
= The dwcbVarLenData field MUST be 16.

guidTX (16 bytes): This field MUST be a GUID that specifies the transaction identifier.

2.2.8.2.2.5.3 TXUSER_IMPORT2_MTAG_IMPORT_WITH_SET

The TXUSER_IMPORT2_MTAG_IMPORT_WITH_SET message is used by a destination application
to complete a push propagation operation that is initiated by a source application. It is similar to the
TXUSER_IMPORT2_MTAG_IMPORT (section 2.2.8.2.2.5.2) message, except that it allows the
application to specify the isolation level, isolation flags, and description of the transaction, in addition
to the identifier.

0(1|/2|3(4(5|6|7|8|9|0(1|2|3(4|5|6|7|8|9(0(1|2|3(4|5|6[|7|8|9|0(1

MsgHeader (24 bytes)

guidTX (16 bytes)

isoLevel

isoFlags

szDesc (40 bytes)

MsgHeader (24 bytes): This field MUST contain a MESSAGE PACKET structure:

= The dwUserMsgType field MUST be 0x00006107.

111/ 475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

= The dwcbVarLenData field MUST be 64.
guidTX (16 bytes): This field MUST contain a GUID that specifies the transaction identifier.

isoLevel (4 bytes): The isolation level of the transaction. The value MUST be one as specified in the
OLETX_ISOLATION_LEVEL (section 2.2.6.9) enumeration.

isoFlags (4 bytes): The isolation flags for the transaction. The value MUST be a legal combination of
values from the OLETX_ISOLATION_FLAGS (section 2.2.6.8) enumeration.

szDesc (40 bytes): The description of the transaction, as a fixed-size array of 40 bytes that contains
a null-terminated Latin-1 ANSI string, as specified in [ISO/IEC-8859-1]. See section 2.2.5.4 for
details.

2.2.8.2.2.5.4 TXUSER_IMPORT2_MTAG_SINK_ERROR

The TXUSER_IMPORT2_MTAG_SINK_ERROR message is sent if the attempt to import the
transaction was unsuccessful or to indicate the success or failure of the abort operation.

—
N
w

0(1|/2|3(4(5|6|7|8|9|0(1|2|3(4|5|6|7|8|9(0(1|2|3(4|5|6[|7|8|9|0(1

MsgHeader (24 bytes)

Error

MsgHeader (24 bytes): This field MUST contain a MESSAGE PACKET structure:

= The dwUserMsgType field MUST be 0x00006105.
= The dwcbVarLenData field MUST be 4.

Error (4 bytes): This field MUST contain the status for the previous request. The value MUST be a
member of the TRUN_TXIMPORT_ERRORS enumeration section 2.2.6.7.

2.2.8.2.2.5.5 TXUSER_IMPORT2_MTAG_SINK_IMPORTED

The TXUSER_IMPORT2_MTAG_SINK_IMPORTED message provides the isolation level and
isolation flags for the specified transaction.

-
N
w

0(1|/2|3(4(5|6|(7|8|9|0|1|2|3(4|5|6|7|8|9(0(1|2|3(4|5|6|7|8|9|0(1

MsgHeader (24 bytes)

isoLevel

112 /475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

https://go.microsoft.com/fwlink/?LinkId=90689

isoFlags

MsgHeader (24 bytes): This field MUST contain a MESSAGE PACKET structure:

= The dwUserMsgType field MUST be 0x00006106.
= The dwcbVarLenData field MUST be 8.

isoLevel (4 bytes): The isolation level of the transaction. The value MUST be one as specified in the
OLETX_ISOLATION_LEVEL (section 2.2.6.9) enumeration.

isoFlags (4 bytes): The isolation flags for the transaction. The value MUST be a legal combination of
values from the OLETX_ISOLATION_FLAGS (section 2.2.6.8) enumeration.

2.2.8.3 Transaction Administration

2.2.8.3.1 CONNTYPE_TXUSER_GETTXDETAILS

The CONNTYPE_TXUSER_GETTXDETAILS connection type is used by an application to retrieve
details about a transaction from its transaction manager.

For more information about CONNTYPE_TXUSER_GETTXDETAILS as an initiator, see section
3.3.5.3.1, and as an acceptor, see section 3.4.5.3.1.

2.2.8.3.1.1 TXUSER_GETTXDETAILS_MTAG_GET

This message is used to request details about a transaction from the transaction manager.

—
N
w

0(1|/2|3(4|(5|6|(7|8|9|0(1|2|3(4|5|6|7|8|9(0(1|2|3(4|5|6|7|8|9|0(1

MsgHeader (24 bytes)

guidTx (16 bytes)

MsgHeader (24 bytes): This field MUST contain a MESSAGE PACKET structure:

= The dwUserMsgType field MUST be 0x00004701.
= The dwcbVarLenData field MUST be 16.

guidTx (16 bytes): This field MUST contain a GUID that specifies the transaction identifier.

2.2.8.3.1.2 TXUSER_GETTXDETAILS_MTAG_GOTIT

The TXUSER_GETTXDETAILS_MTAG_GOTIT message provides the client with name and identifier
details for the transaction superior and all enlisted subordinates.

113 /475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

0(1|2|3(4|5|6(7|8|9|0(1|2|3(4|5|6|7|8|9(0(1]|2|3(4|5|6|7|8|9|0(1

MsgHeader (24 bytes)

ISubordinateCount

Reserved

vszSuperiorName (variable)

vszSuperiorID (variable)

rgSubordinates (variable)

MsgHeader (24 bytes): This field MUST contain a MESSAGE PACKET structure:

= The dwUserMsgType field MUST be 0x00004702.
= The dwcbVarLenData field MUST be at least 16 bytes.

ISubordinateCount (4 bytes): This field MUST contain the number of subordinates in the
rgSubordinates array that follows.

Reserved (4 bytes): Reserved. This value MUST be set to zero and MUST be ignored on receipt.

vszSuperiorName (variable): This field MUST contain an OLETX VARLEN STRING structure. The
structure specifies an implementation-specific name for the Name property of the Superior
Enlistment object (see section 3.2.1) that is maintained by the Core Transaction Manager Facet
(section 1.3.3.3.1). The Core Transaction Manager Facet is initialized as specified in
Initialization (section 3.2.3).

If the transaction manager is the root transaction manager for the transaction, the value MUST
be a zero-length OLETX_VARLEN_STRING. If the transaction manager is not acting as the root
transaction manager for the transaction, the value MUST NOT be a zero-length
OLETX_VARLEN_STRING. This field MUST be aligned on a 4-byte boundary by padding with
arbitrary values that MUST be ignored on receipt.

vszSuperiorID (variable): This field contains an OLETX_VARLEN_STRING structure. The structure
MUST contain an implementation-specific identifier that corresponds to the Enlistment
Object.Identifier property of the Superior Enlistment object (section 3.2.1) that is maintained
by the Core Transaction Manager Facet as described for Enlistment objects (section 3.1.1). The
Core Transaction Manager Facet is initialized as specified in Initialization (section 3.2.3). If the
transaction manager is the root transaction manager for the transaction, the value MUST be a

114 /475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

zero-length OLETX_VARLEN_STRING. This field MUST be aligned on a 4-byte boundary by
padding with arbitrary values that MUST be ignored on receipt.

rgSubordinates (variable): An array of OLETX_VARLEN_STRING structure pairs. Each pair MUST
specify an implementation-specific name, followed by an implementation-specific identifier. The
array MUST contain ISubordinateCount pairs of OLETX_VARLEN_STRING structures,
representing the collection of subordinates enlisted on the transaction. If ISubordinateCount
contains zero, this field MUST NOT be present.

This field MUST be aligned on a 4-byte boundary by padding with arbitrary values that MUST be
ignored on receipt. The name and identifier correspond to the Name and Enlistment
Object.Identifier properties (section 3.1.1) respectively, of the Phase One Enlistment list that
is maintained by the core transaction manager facet (section 3.2.1) and initialized as specified in
Enlistment Object Initialization (section 3.1.3.1).

2.2.8.3.1.3 TXUSER_GETTXDETAILS_MTAG_TX_NOT_FOUND

The TXUSER_GETTXDETAILS_MTAG_TX_NOT_FOUND message is sent to indicate that the
transaction details cannot be found.

0[{1(2|3|4|5|6|7|8|9(0(1|2(3|4|5|/6|7|8|9|0|1|2|3|4|5|6[7(8]9|0]|1

MsgHeader (24 bytes)

MsgHeader (24 bytes): This field MUST contain a MESSAGE PACKET structure:

= The dwUserMsgType field MUST be 0x00004703.

= The dwcbVarLenData field MUST be 0.

2.2.8.3.2 CONNTYPE_TXUSER_RESOLVE

The CONNTYPE_TXUSER_RESOLVE connection type is used by an application either to manually
resolve the outcome of an In Doubt transaction or cause its transaction manager to forget a
transaction that is in the Failed to Notify state.

For more information about CONNTYPE_TXUSER_RESOLVE as an initiator, see section 3.3.5.3.2,
and as an acceptor, see section 3.4.5.3.2.

2.2.8.3.2.1 TXUSER_RESOLVE_MTAG_ACCESSDENIED

The TXUSER_RESOLVE_MTAG_ACCESSDENIED message indicates that the principal that sent the
previous TXUSER RESOLVE MTAG CHILD ABORT, TXUSER RESOLVE MTAG CHILD COMMIT, or
TXUSER RESOLVE MTAG FORGET COMMITTED is not authorized to perform the requested
action.<15>

—
N
w

0(1|2|3(4|5|6|7|8|9|0|1|2|3(4|5|6|7|8|9(0(1|2|3(4|5|6[7|8|9|0(1

MsgHeader (24 bytes)

115/ 475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

MsgHeader (24 bytes): This field MUST contain a MESSAGE PACKET structure:

» The dwUserMsgType field MUST be 0x0000107F.
» The dwcbVarLenData field MUST be 0x00000000.

2.2.8.3.2.2 TXUSER_RESOLVE_MTAG_CHILD_ABORT

The TXUSER_RESOLVE_MTAG_CHILD_ABORT message is sent by the application to manually
resolve the outcome of an in-doubt transaction as aborted.

=
N
w

0(1|/2|3(4(5|6|(7|8|9|0(1|2|3(4|5|6|7|8|9(0(1|2|3(4|5|6[|7|8|9|0(1

MsgHeader (24 bytes)

guidTx (16 bytes)

MsgHeader (24 bytes): This field MUST contain a MESSAGE PACKET structure:

* The dwUserMsgType field MUST be 0x00001071.
= The dwcbVarLenData field MUST be 16.

guidTx (16 bytes): This field MUST contain a GUID that specifies the transaction identifier.

2.2.8.3.2.3 TXUSER_RESOLVE_MTAG_CHILD_COMMIT

The TXUSER_RESOLVE_MTAG_CHILD_COMMIT message is sent by an application to manually
resolve an in-doubt transaction as committed.

—
N
w

0({1(2|3|4|5|6|7|8|9(0(1|2[3[4|5|/6|7|8|9|0|1|2|3|4|5|6[7(8]9|0]|1

MsgHeader (24 bytes)

guidTx (16 bytes)

116 / 475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

MsgHeader (24 bytes): This field MUST contain a MESSAGE PACKET structure:

= The dwUserMsgType field MUST be 0x00001072.
= The dwcbVarLenData field MUST be 16.

guidTx (16 bytes): This field MUST contain a GUID that specifies the transaction identifier.

2.2.8.3.2.4 TXUSER_RESOLVE_MTAG_CHILD_NOT_PREPARED

The TXUSER_RESOLVE_MTAG_CHILD_NOT_PREPARED message indicates that the specified
transaction is not in the In Doubt state.

—
N
w

0(1|/2|3(4|5|6|(7|8|9|0(1|2|3(4|5|6|7|8|9(0(1|2|3(4|5|6|7|8|9|0(1

MsgHeader (24 bytes)

MsgHeader (24 bytes): This field MUST contain a MESSAGE PACKET structure:
» The dwUserMsgType field MUST be 0x00001077.
= The dwcbVarLenData field MUST be 0.

2.2.8.3.2.5 TXUSER_RESOLVE_MTAG_FORGET_COMMITTED

The TXUSER_RESOLVE_MTAG_FORGET_COMMITTED message is sent by an application to request
that the transaction manager issue a Forget Transaction event for a transaction that is in the Failed to

Notify state.

-
N
w

0(1|/2|3(4|5|6|7|8|9|0(1|2|3(4|5|6|7|8|9(0(1|2|3(4|5|6[|7|8|9|0(1

MsgHeader (24 bytes)

guidTx (16 bytes)

MsgHeader (24 bytes): This field MUST contain a MESSAGE PACKET structure:

117/ 475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

» The dwUserMsgType field MUST be 0x00001073.
» The dwcbVarLenData field MUST be 16.

guidTx (16 bytes): This field MUST contain a GUID that specifies the transaction identifier.

2.2.8.3.2.6 TXUSER_RESOLVE_MTAG_FORGET_TX_NOT_COMMITTED

The TXUSER_RESOLVE_MTAG_FORGET_TX_NOT_COMMITTED message indicates that the
specified transaction is not in the Failed to Notify state.

=
N
w

0[{1(2|3|4|5|6|7|8|9|0(1(2[3|4|5|/6|7|8|9|0|1|2|3|4|5|6(7(8]9|0]|1

MsgHeader (24 bytes)

MsgHeader (24 bytes): This field MUST contain a MESSAGE PACKET structure:

» The dwUserMsgType field MUST be 0x00001078.
= The dwcbVarLenData field MUST be 0.

2.2.8.3.2.7 TXUSER_RESOLVE_MTAG_REQUEST_COMPLETE

The TXUSER_RESOLVE_MTAG_REQUEST_COMPLETE message is sent by the transaction manager
to indicate that the request completed successfully.

—
N
w

0(1|/2|3(4(5|6|7|8|9|0(1|2|3(4|5|6|7|8|9(0(1|2|3(4|5|6[|7|8|9|0(1

MsgHeader (24 bytes)

MsgHeader (24 bytes): This field MUST contain a MESSAGE PACKET structure:

* The dwUserMsgType field MUST be 0x00001074.
= The dwcbVarLenData field MUST be 0.

2.2.8.3.2.8 TXUSER_RESOLVE_MTAG_NOT_CHILD

The TXUSER_RESOLVE_MTAG_NOT_CHILD message indicates that the transaction manager is not
a subordinate for the specified transaction.<16>

—
N
w

0(1|2|3(4|5|6|7|8|9|0(1|2|3(4|5|6|7|8|9(0(1]|2|3(4|5|6|7|8|9|0(1

MsgHeader (24 bytes)

118 /475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

MsgHeader (24 bytes): This field MUST contain a MESSAGE PACKET structure:

» The dwUserMsgType field MUST be 0x00001076.

= The dwcbVarLenData field MUST be 0.

2.2.8.3.2.9 TXUSER_RESOLVE_MTAG_TX_NOT_FOUND

The TXUSER_RESOLVE_MTAG_TX_NOT_FOUND message is sent by the transaction manager to
indicate that the specified transaction does not exist.

=
N
w

0(1|/2|3(4(5|6|(7|8|9|0(1|2|3(4|5|6|7|8|9(0(1|2|3(4|5|6[|7|8|9|0(1

MsgHeader (24 bytes)

MsgHeader (24 bytes): This field MUST contain a MESSAGE PACKET structure:

» The dwUserMsgType field MUST be 0x00001075.

= The dwcbVarLenData field MUST be 0.

2.2.8.3.3 CONNTYPE_TXUSER_SETTXTIMEOUT

The CONNTYPE_TXUSER_SETTXTIMEOUT connection type is used by an application to modify the
time-out of a transaction that has been initiated on a CONNTYPE TXUSER BEGINNER connection.

For more information about CONNTYPE_TXUSER_SETTXTIMEOUT as an initiator, see section
3.3.5.3.3, and as an acceptor, see section 3.4.5.3.3.

This connection type also uses the TXUSER_SETTXTIMEOUT_MTAG_REQUEST_COMPLETE
(section 2.2.8.1.2.6), TXUSER_SETTXTIMEOUT_MTAG_SETTXTIMEOUT (section 2.2.8.1.2.7), and
TXUSER_SETTXTIMEOUT_MTAG_TOO_LATE (section 2.2.8.1.2.8) messages.

2.2.8.3.3.1 TXUSER_SETTXTIMEOUT_MTAG_TX_NOT_FOUND

The TXUSER_SETTXTIMEOUT_MTAG_TX_NOT_FOUND message is optionally sent by the
transaction manager as part of the CONNTYPE_TXUSER_SETTXTIMEOUT (section 2.2.8.3.3)
connection type to indicate that the specified transaction does not exist. This message is optionally
also sent by the transaction manager as part of the

CONNTYPE_TXUSER_SETTXTIMEOUT2 (section 2.2.8.3.4) connection type to indicate that the
transaction manager supports the capability to modify the time-out of a transaction.

—
N
w

0(1|2|3(4|5|6|7|8|9|0|1|2|3(4|5|6|7|8|9(0(1|2|3(4|5|6[|7|8|9|0(1

MsgHeader (24 bytes)

119/ 475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

MsgHeader (24 bytes): This field MUST contain a MESSAGE PACKET structure:

= The dwUserMsgType field MUST be 0x0000107D.
= The dwcbVarLenData field MUST be 0.

2.2.8.3.4 CONNTYPE_TXUSER_SETTXTIMEOUT2

The CONNTYPE_TXUSER_SETTXTIMEOUT2 connection type is used by an application to query the
transaction manager's support for modifying the time-out of a transaction that has been initiated on a
CONNTYPE TXUSER BEGIN2 or CONNTYPE TXUSER PROMOTE connection.

For more information about CONNTYPE_TXUSER_SETTXTIMEOUT2 as an initiator, see section
3.3.5.3.4, and as an acceptor, see section 3.4.5.3.4.

This connection type also uses the TXUSER_SETTXTIMEOUT_MTAG_SETTXTIMEOUT (section
2.2.8.1.2.7) and TXUSER_SETTXTIMEOUT_MTAG_TX_NOT_FOUND (section 2.2.8.3.3.1)
messages.

2.2.8.3.5 CONNTYPE_TXUSER_TRACE

The CONNTYPE_TXUSER_TRACE connection type is used by an application to ask its transaction
manager to trace the status of a transaction by using an implementation-specific mechanism.

For more information about CONNTYPE_TXUSER_TRACE as an initiator, see section 3.3.5.3.5, and
as an acceptor, see section 3.4.5.3.5.

2.2.8.3.5.1 TXUSER_TRACE_MTAG_DUMP_TRANSACTION

The TXUSER_TRACE_MTAG_DUMP_TRANSACTION message requests that the transaction
manager write the status of a transaction to a local trace file in an implementation-specific manner.

—
N
w

0({1(2|3|4|5|6|7|8|9(0(1|2[3|4|5|/6|7|8|9|0|1|2|3|4|5|6[7(8]9|0]|1

MsgHeader (24 bytes)

guidTx (16 bytes)

MsgHeader (24 bytes): This field MUST contain a MESSAGE PACKET structure:

= The dwUserMsgType field MUST be0x00002100.

120/ 475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

= The dwcbVarLenData field MUST be 16.

guidTx (16 bytes): This field MUST contain a GUID that specifies the transaction identifier.

2.2.8.3.5.2 TXUSER_TRACE_MTAG_REQUEST_COMPLETE

The TXUSER_TRACE_MTAG_REQUEST_COMPLETE message indicates the transaction was
successfully traced.

0(1(2|3|4|5|6|7|8|9|0(1|(2[3|4|5|/6|7|8|9|0|1|2|3|4|5(6[7(8]9|0]|1

MsgHeader (24 bytes)

MsgHeader (24 bytes): This field MUST contain a MESSAGE PACKET structure:

» The dwUserMsgType field MUST be 0x00002101.
= The dwcbVarLenData field MUST be 0.

2.2.8.3.5.3 TXUSER_TRACE_MTAG_REQUEST_FAILED

The TXUSER_TRACE_MTAG_REQUEST_FAILED message indicates that the trace request failed.

—
N
w

0[{1(2|3|4|5|6|7|8|9(0(1(2[3|4|5|/6|7|8|9|0|1|2|3|4|5|6(7(8]9|0]|1

MsgHeader (24 bytes)

MsgHeader (24 bytes): This field MUST contain a MESSAGE PACKET structure:

» The dwUserMsgType field MUST be 0x00002103.
= The dwcbVarLenData field MUST be 0.

2.2.8.3.5.4 TXUSER_TRACE_MTAG_TX_NOT_FOUND

The TXUSER_TRACE_MTAG_TX_NOT_FOUND message is sent by the transaction manager to

indicate that the trace request failed because the transaction does not exist.

—
N
w

0(1|2|3(4|5|6|7|8|9|0|1|2|3(4|5|6|7|8|9(0(1|2|3(4|5|6[|7|8|9|0(1

MsgHeader (24 bytes)

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

121/ 475

MsgHeader (24 bytes): This field MUST contain a MESSAGE PACKET structure:

= The dwUserMsgType field MUST be 0x00002102.
= The dwcbVarLenData field MUST be 0.

2.2.8.4 Transaction Manager Administration

2.2.8.4.1 CONNTYPE_TXUSER_GETSECURITYFLAGS

The CONNTYPE_TXUSER_GETSECURITYFLAGS connection type is used by an application to obtain
the security configuration of its transaction manager.

For more information about CONNTYPE_TXUSER_GETSECURITYFLAGS as an initiator, see section
3.3.5.4.1, and as an acceptor, see section 3.4.5.3.5.

2.2.8.4.1.1 TXUSER_GETSECURITYFLAGS_MTAG_FETCHED

The TXUSER_GETSECURITYFLAGS_MTAG_FETCHED message indicates that the request to obtain
security configuration flags was successful.

—
N
w

0(1|/2|3(4|5|6|7|8|9|0(1|2|3(4|5|6|7|8|9(0(1|2|3(4|5|6[7|8|9|0(1

MsgHeader (24 bytes)

grfNetworkDtcAccess

grfXaTransactions

grfOptions

MsgHeader (24 bytes): This field MUST contain a MESSAGE PACKET structure:

* The dwUserMsgType field MUST be 0x00005502.
= The dwcbVarLenData field MUST be 12.

grfNetworkDtcAccess (4 bytes): This field contains a DTCADVCONFIG bitfield enumeration. See
section 2.2.7.2 for details.

grfXaTransactions (4 bytes): This field indicates whether the transaction manager supports the
local use of the XA standard API in an implementation-specific manner as specified in Receiving a
TXUSER_GETSECURITYFLAGS_MTAG_GETSECURITYFLAGS Message (section 3.4.5.4.1.1).
For more information about XA, see [C193]. The field SHOULD have a value of zero if the use of
the XA standard API is not supported, or it SHOULD have a value of one if the use of the XA
standard API is supported.

122 / 475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

https://go.microsoft.com/fwlink/?LinkId=89820

grfOptions (4 bytes): This field contains a DTCADVCONFIG_OPTIONS bitfield enumeration. See
section 2.2.7.3 for details.

2.2.8.4.1.2 TXUSER_GETSECURITYFLAGS_MTAG_GETSECURITYFLAGS

The TXUSER_GETSECURITYFLAGS_MTAG_GETSECURITYFLAGS message is used by an
application to obtain the configuration flags that are associated with the security settings of a
transaction manager.

=
N
w

0[{1(2|3|4|5|6|7|8|9|0(1(2[3|4|5|/6|7|8|9|0|1|2|3|4|5|6(7(8]9|0]|1

MsgHeader (24 bytes)

MsgHeader (24 bytes): This field MUST contain a MESSAGE PACKET structure:

» The dwUserMsgType field MUST be 0x00005501.
= The dwcbVarLenData field MUST be 0.

2.2.9 Connection Types Relevant to Transaction Managers

2.2.9.1 Transaction Propagation and Coordination
2.2.9.1.1 Push Propagation

2.2.9.1.1.1 CONNTYPE_PARTNERTM_PROPAGATE

The CONNTYPE_PARTNERTM_PROPAGATE connection type is used by a superior transaction
manager to do a push propagation of a transaction to its subordinate transaction manager and to
execute the Two-Phase Commit protocol.

For more information about CONNTYPE_PARTNERTM_PROPAGATE as an initiator, see section
3.7.5.1.1.1, and as an acceptor, see section 3.8.5.1.1.1.

2.2.9.1.1.1.1 PARTNERTM_PROPAGATE_MTAG_PROPAGATE

The PARTNERTM_PROPAGATE_MTAG_PROPAGATE message is used to propagate a transaction to
a subordinate transaction manager.

—
N
w

0(1|/2|3(4|(5|6|7|8|9|0(1|2|3(4|5|6|7|8|9(0(1|2|3(4|5|6[|7|8|9|0(1

MsgHeader (24 bytes)

guidTX (16 bytes)

123 /475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

isoLevel

szDesc (40 bytes)

MsgHeader (24 bytes): This field MUST contain a MESSAGE PACKET structure:

= The dwUserMsgType field MUST be 0x00002001.
= The dwcbVarLenData field MUST be 60.
guidTX (16 bytes): This field MUST contain a GUID that specifies the transaction identifier.

isoLevel (4 bytes): The isolation level of the transaction. The value MUST be one as specified in the
OLETX_ISOLATION_LEVEL (section 2.2.6.9) enumeration.

szDesc (40 bytes): The description of the transaction, as a fixed-size array of 40 bytes that contains
a null-terminated Latin-1 ANSI string, as specified in [ISO/IEC-8859-1]. See section 2.2.5.4 for
details.

2.2.9.1.1.1.2 PARTNERTM_PROPAGATE_MTAG_PROPAGATED

The PARTNERTM_PROPAGATE_MTAG_PROPAGATED message indicates that the transaction was
successfully propagated to the subordinate transaction manager.

-
N
w

0(1|/2|3(4|(5|6|7|8|9|0(1|2|3(4|5|6|7|8|9(0(1|2|3(4|5|6[|7|8|9|0(1

MsgHeader (24 bytes)

MsgHeader (24 bytes): This field MUST contain a MESSAGE PACKET structure:

= The dwUserMsgType field MUST be 0x00002002.

= The dwcbVarLenData field MUST be 0.

2.2.9.1.1.1.3 PARTNERTM_PROPAGATE_MTAG_DUPLICATE

The PARTNERTM_PROPAGATE_MTAG_DUPLICATE message indicates that the transaction was
already propagated to the subordinate transaction manager.

124 / 475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

https://go.microsoft.com/fwlink/?LinkId=90689

0(1|/2|3(4|5|/6(7|8|9|0(1|2|3[4|5|6|7(8|9|0(1|2|3[|4|5|6]|7

w

MsgHeader (24 bytes)

MsgHeader (24 bytes): This field MUST contain a MESSAGE PACKET structure:

* The dwUserMsgType field MUST be 0x00002010.

= The dwcbVarLenData field MUST be 0.

2.2.9.1.1.1.4 PARTNERTM_PROPAGATE_MTAG_NO_MEM

The PARTNERTM_PROPAGATE_MTAG_NO_MEM message indicates that transaction propagation

failed because the subordinate transaction manager was out of memory.

0(1{2|3|4|5|/6|7|8|9|0(1|2[3[4|5|6|7|8|9|0|1|2|3|4(5|6|7

w

MsgHeader (24 bytes)

MsgHeader (24 bytes): This field MUST contain a MESSAGE PACKET structure:

= The dwUserMsgType field MUST be 0x00002901.

= The dwcbVarLenData field MUST be 0.

2.2.9.1.1.1.5 PARTNERTM_PROPAGATE_MTAG_LOG_FULL

The PARTNERTM_PROPAGATE_MTAG_LOG_FULL message indicates that transaction propagation

failed because the transaction recovery log of the subordinate transaction manager is full.

0(1|/2|3(4(5|/6(7|8|9|0(1|2|3[|4|5|6|7(8|9|0(1|2|3[|4|5|6]|7

MsgHeader (24 bytes)

MsgHeader (24 bytes): This field MUST contain a MESSAGE PACKET structure:

* The dwUserMsgType field MUST be 0x00002902.

= The dwcbVarLenData field MUST be 0.

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

125/ 475

2.2.9.1.1.1.6 PARTNERTM_PROPAGATE_MTAG_PREPAREREQ

The PARTNERTM_PROPAGATE_MTAG_PREPAREREQ message is used to request that the
subordinate transaction manager perform the actions that are needed to prepare the transaction to be
committed.

This message is also used for CONNTYPE PARTNERTM BRANCH.

=
N
w

0[{1(2|3|4|5|6|7|8|9(0(1(2[3|4|5|/6|7|8|9|0|1|2|3|4|5(6[7(8]9|0]|1

MsgHeader (24 bytes)

grfRM

fSinglePhase

MsgHeader (24 bytes): This field MUST contain a MESSAGE PACKET structure:

» The dwUserMsgType field MUST be 0x00002003.
= The dwcbVarLenData field MUST be 8.

grfRM (4 bytes): The value of this field MUST be a 32-bit unsigned integer. This value SHOULD be
ignored on receipt.

fSinglePhase (4 bytes): Indicates whether the sending transaction manager will allow the single-
phase commit optimization. If the value is zero, the receiver of the message MUST NOT perform
a single-phase commit for its superior transaction manager. If the value is nonzero, the receiver
SHOULD perform a single-phase commit for its superior transaction manager.

2.2.9.1.1.1.7 PARTNERTM_PROPAGATE_MTAG_PREPAREREQDONE

The PARTNERTM_PROPAGATE_MTAG_PREPAREREQDONE message indicates that the
subordinate transaction manager has processed the Prepare request from the superior transaction
manager.

0(1|/2|3(4|5|6|7|8|9|0(1|2|3(4|5|6|7|8|9(0(1|2|3(4|5|6[|7|8|9|0(1

MsgHeader (24 bytes)

prepareRegDone

guidReason (16 bytes)

126 / 475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

MsgHeader (24 bytes): This field MUST contain a MESSAGE PACKET structure:

= The dwUserMsgType field MUST be 0x00002006.
= The dwcbVarLenData field MUST be 20.

prepareReqDone (4 bytes): Indicates the status of the Prepare request as specified in the
PARTNERTM_PROPAGATE_PREPAREREQDONE_RESPONSE (section 2.2.6.4) enumeration.

guidReason (16 bytes): Reserved. This value SHOULD be set to a NULL GUID and MUST be
ignored on receipt.

2.2.9.1.1.1.8 PARTNERTM_PROPAGATE_MTAG_PROTOCOL_ERROR

The PARTNERTM_PROPAGATE_MTAG_PROTOCOL_ERROR message indicates that the sender
detected a violation of the Two-Phase Commit protocol and is unable to perform the previous
request it received over the connection.

—
N
w

0(1|/2|3(4|5|6|(7|8|9|0(1|2|3(4|5|6|7|8|9(0(1|2|3(4|5|6|7|8|9|0(1

MsgHeader (24 bytes)

MsgHeader (24 bytes): This field MUST contain a MESSAGE PACKET structure:

= The dwUserMsgType field MUST be 0x00002009.

= The dwcbVarLenData field MUST be 0.

2.2.9.1.1.1.9 PARTNERTM_PROPAGATE_MTAG_COMMITREQ

The PARTNERTM_PROPAGATE_MTAG_COMMITREQ message is sent by the superior transaction
manager to request that the transaction be committed.

—
N
w

0[{1(2|3|4|5|6|7|8|9(0(1(2[3|4|5|/6|7|8|9|0|1|2|3|4|5|6[7(8|9|0]|1

MsgHeader (24 bytes)

MsgHeader (24 bytes): This field MUST contain a MESSAGE PACKET structure:

» The dwUserMsgType field MUST be 0x00002005.

= The dwcbVarLenData field MUST be 0.

127 / 475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

2.2.9.1.1.1.10 PARTNERTM_PROPAGATE_MTAG_COMMITREQDONE

The PARTNERTM_PROPAGATE_MTAG_COMMITREQDONE message indicates that the transaction
was successfully committed by the subordinate transaction manager.

-
N
w

0(1(2|3|4|5|6|7|8|9|0(1(2[3|4|5|/6|7|8|9|0|1|2|3|4|5(6[7(8]9|0]|1

MsgHeader (24 bytes)

MsgHeader (24 bytes): This field MUST contain a MESSAGE PACKET structure:
= The dwUserMsgType field MUST be 0x00002008.

= The dwcbVarLenData field MUST be 0.

2.2.9.1.1.1.11 PARTNERTM_PROPAGATE_MTAG_ABORTREQ

The PARTNERTM_PROPAGATE_MTAG_ABORTREQ message is sent by the superior transaction
manager to request that the transaction be aborted.

—
N
w

0[{1(2|3|4|5|6|7|8|9(0(1(2[3|4|5|/6|7|8|9|0|1|2|3|4|5|6[7(8]|9|0]|1

MsgHeader (24 bytes)

MsgHeader (24 bytes): This field MUST contain a MESSAGE PACKET structure:

» The dwUserMsgType field MUST be 0x00002004.
= The dwcbVarLenData field MUST be 0.
2.2.9.1.1.1.12 PARTNERTM_PROPAGATE_MTAG_ABORTREQDONE

The PARTNERTM_PROPAGATE_MTAG_ABORTREQDONE message is sent by the subordinate
transaction manager to indicate that the transaction was successfully aborted.

0(1|/2|3(4|(5|6|7|8|9|0(1|2|3(4|5|6(|7|8|9(0(1|2|3(4|5|6[|7|8|9|0(1

MsgHeader (24 bytes)

MsgHeader (24 bytes): This field MUST contain a MESSAGE PACKET structure:

128 / 475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

» The dwUserMsgType field MUST be 0x00002007.

= The dwcbVarLenData field MUST be 0.

2.2.9.1.1.1.13 PARTNERTM_PROPAGATE_MTAG_ABORTNOTIFY

The PARTNERTM_PROPAGATE_MTAG_ABORTNOTIFY message is sent to abort a transaction
before the PARTNERTM_PROPAGATE_MTAG_PREPAREREQ (section 2.2.9.1.1.1.6) message is
received.

0(1|2|3(4|5|6|(7|8|9|0(1|2|3(4|5|6(7|8|9(0(1|2|3(4|5|6|7|8|9|0(1

MsgHeader (24 bytes)

MsgHeader (24 bytes): This field MUST contain a MESSAGE PACKET structure:
= The dwUserMsgType field MUST be 0x00002903.

= The dwcbVarLenData field MUST be 0.

2.2.9.1.1.1.14 PARTNERTM_PROPAGATE_MTAG_PHASEOREGISTER

The PARTNERTM_PROPAGATE_MTAG_PHASEOREGISTER message is sent by the subordinate
transaction manager to register for a Phase Zero notification.

w

1 2
0[{1(2|3|4|5|6|7|8|9(0(1(2[3|4|5|/6|7|8|9|0|1|2|3|4|5|6[7(8]9|0]|1

MsgHeader (24 bytes)

MsgHeader (24 bytes): This field MUST contain a MESSAGE PACKET structure:

= The dwUserMsgType field MUST be 0x00002906.

= The dwcbVarLenData field MUST be 0.

2.2.9.1.1.1.15 PARTNERTM_PROPAGATE_MTAG_PHASEOREGISTERED

The PARTNERTM_PROPAGATE_MTAG_PHASEOREGISTERED message is sent by the superior
transaction manager to indicate that the subordinate transaction manager was successfully registered
for Phase Zero notifications.

—
N
w

0(1|/2|3(4|5|6(7|8|9|0|1|2|3(4|5|6|7|8|9[(0(1|2|3(4|5|6[7|8|9|0(1

MsgHeader (24 bytes)

129 /475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

MsgHeader (24 bytes): This field MUST contain a MESSAGE PACKET structure:

= The dwUserMsgType field MUST be 0x00002907.
= The dwcbVarLenData field MUST be 0.

2.2.9.1.1.1.16 PARTNERTM_PROPAGATE_MTAG_PHASEOREGISTRATIONREJECTE
D

The PARTNERTM_PROPAGATE_MTAG_PHASEOREGISTRATIONREJECTED message is sent by
the superior transaction manager to indicate that it was unable to register the subordinate transaction
manager for Phase Zero notifications.

—
N
w

0(1|/2|3(4|5|6|7|8|9|0(1|2|3(4|5|6|7|8|9(0(1|2|3(4|5|6[7|8|9|0(1

MsgHeader (24 bytes)

MsgHeader (24 bytes): This field MUST contain a MESSAGE PACKET structure:

» The dwUserMsgType field MUST be 0x00002910.
= The dwcbVarLenData field MUST be 0.

2.2.9.1.1.1.17 PARTNERTM_PROPAGATE_MTAG_PHASEO

The PARTNERTM_PROPAGATE_MTAG_PHASEO message is sent by the superior transaction
manager to request that the subordinate transaction manager begin Phase Zero.

—
N
w

0(1|/2|3(4|5|6|7|8|9|0(1|2|3(4|5|6|7|8|9(0(1|2|3(4|5|6[|7|8|9|0(1

MsgHeader (24 bytes)

MsgHeader (24 bytes): This field MUST contain a MESSAGE PACKET structure:

= The dwUserMsgType field MUST be 0x00002908.

= The dwcbVarLenData field MUST be 0.

2.2.9.1.1.1.18 PARTNERTM_PROPAGATE_MTAG_PHASEOCOMPLETE

130/ 475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

The PARTNERTM_PROPAGATE_MTAG_PHASEOCOMPLETE message indicates that the subordinate
transaction manager successfully completed Phase Zero.

3(4(5(6|7|8[9|0]|1]|2|3|4|5

MsgHeader (24 bytes)

MsgHeader (24 bytes): This field MUST contain a MESSAGE PACKET structure:

2.2.9.1.2 Pull Propagation

= The dwUserMsgType field MUST be 0x00002909.

= The dwcbVarLenData field MUST be 0.

2.2,9.1.2.1

CONNTYPE_PARTNERTM_BRANCH

The CONNTYPE_PARTNERTM_BRANCH connection type is used by a subordinate transaction
manager to register a new subordinate enlistment with a superior transaction manager. The two
transaction managers also use this connection type to execute the Two-Phase Commit protocol. This
connection type is initiated as a result of a TXUSER ASSOCIATE MTAG ASSOCIATE message that is

sent by an application to the subordinate transaction manager to request a pull propagation

operation.

For more information about CONNTYPE_PARTNERTM_BRANCH as an initiator, see section

3.8.5.1.2.1, and as an acceptor, see section 3.7.5.1.2.1.

This connection type also uses the following messages:

PARTNERTM

PROPAGATE

MTAG

PREPAREREQ

PARTNERTM

PROPAGATE

MTAG

PREPAREREQDONE

PARTNERTM

PROPAGATE

MTAG

COMMITREQ

PARTNERTM

PROPAGATE

MTAG

COMMITREQDONE

PARTNERTM

PROPAGATE

MTAG

ABORTREQ

PARTNERTM

PROPAGATE

MTAG

ABORTREQDONE

PARTNERTM

PROPAGATE

MTAG

ABORTNOTIFY

PARTNERTM

PROPAGATE

MTAG

PHASEOREGISTER

PARTNERTM

PROPAGATE

MTAG

PHASEOREGISTERED

PARTNERTM

PROPAGATE

MTAG

PHASEOREGISTRATIONREJECTED

PARTNERTM

PROPAGATE

MTAG

PHASEQ

PARTNERTM

PROPAGATE

MTAG

PHASEOCOMPLETE

2.2.9.1.2.1.1 PARTNERTM_BRANCH_MTAG_BRANCH_LOG_FULL

[MS-DTCO] - v20210625
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

131 /475

The PARTNERTM_BRANCH_MTAG_BRANCH_LOG_FULL message indicates that the branch
request failed because the transaction recovery log of the superior transaction manager is full.

0[{1(2|3|4|5|6|7|8|9|0(1(2[3|4|5|/6|7|8|9|0|1|2|3|4|5|6(7(8]9|0]|1

MsgHeader (24 bytes)

MsgHeader (24 bytes): This field MUST contain a MESSAGE PACKET structure:

= The dwUserMsgType field MUST be 0x00002056.

= The dwcbVarLenData field MUST be 0.

2.2.9.1.2.1.2 PARTNERTM_BRANCH_MTAG_BRANCH_NO_MEM

The PARTNERTM_BRANCH_MTAG_BRANCH_NO_MEM message indicates that the branch request
failed because the superior transaction manager was unable to allocate sufficient memory.

—
N
w

0(1|2|3(4|5|6|(7|8|9|0(1|2|3(4|5|6|7|8|9(0(1|2|3(4|5|6|7|8|9|0(1

MsgHeader (24 bytes)

MsgHeader (24 bytes): This field MUST contain a MESSAGE PACKET structure:

» The dwUserMsgType field MUST be 0x00002057.

= The dwcbVarLenData field MUST be 0.

2.2.9.1.2.1.3 PARTNERTM_BRANCH_MTAG_BRANCH_TOO_LATE

The PARTNERTM_BRANCH_MTAG_BRANCH_TOO_LATE message indicates that the branch
request failed because it was too late in the transaction life cycle. For more information, see Create
Subordinate Enlistment (section 3.2.7.11) and Create Subordinate Enlistment

Failure (section 3.7.7.7).

0(1|2|3(4|5|6|7|8|9|0|1|2|3(4|5|6|7|8|9(0(1|2|3(4|5|6[|7|8|9|0(1

MsgHeader (24 bytes)

MsgHeader (24 bytes): This field MUST contain a MESSAGE PACKET structure:

132 /475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

» The dwUserMsgType field MUST be 0x00002055.

= The dwcbVarLenData field MUST be 0.

2.2.9.1.2.1.4 PARTNERTM_BRANCH_MTAG_BRANCH_TOO_MANY

The PARTNERTM_BRANCH_MTAG_BRANCH_TOO_MANY message indicates that the branch
request failed because the superior transaction manager has reached the maximum number of
subordinates allowed on a transaction.

0(1|2|3(4|5|6|(7|8|9|0(1|2|3(4|5|6(7|8|9(0(1|2|3(4|5|6|7|8|9|0(1

MsgHeader (24 bytes)

MsgHeader (24 bytes): This field MUST contain a MESSAGE PACKET structure:

= The dwUserMsgType field MUST be 0x00002059.

= The dwcbVarLenData field MUST be 0.

2.2.9.1.2.1.5 PARTNERTM_BRANCH_MTAG_BRANCH_TX_NOT_FOUND

The PARTNERTM_BRANCH_MTAG_BRANCH_TX_NOT_FOUND message indicates that the branch
request failed because the superior transaction manager was unaware of the transaction.

0[{1(2|3|4|5|6|7|8|9(0(1(2[3|4|5|/6|7|8|9|0|1|2|3|4|5|6[7(8]9|0]|1

MsgHeader (24 bytes)

MsgHeader (24 bytes): This field MUST contain a MESSAGE PACKET structure:

= The dwUserMsgType field MUST be 0x00002054.

= The dwcbVarLenData field MUST be 0.

2.2.9.1.2.1.6 PARTNERTM_BRANCH_MTAG_BRANCHED

The PARTNERTM_BRANCH_MTAG_BRANCHED message is sent by the superior transaction
manager to indicate that the branch request was successful.

—
N
w

0(1|2|3(4|5|6|7|8|9|0|1|2|3(4|5|6|7|8|9(0(1|2|3(4|5|6[7|8|9|0(1

MsgHeader (24 bytes)

133 /475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

MsgHeader (24 bytes): This field MUST contain a MESSAGE PACKET structure:

= The dwUserMsgType field MUST be 0x00002052.
= The dwcbVarLenData field MUST be 0.

2.2.9.1.2.1.7 PARTNERTM_BRANCH_MTAG_BRANCHING

The PARTNERTM_BRANCH_MTAG_BRANCHING message is sent by a subordinate transaction
manager to register a new subordinate enlistment with a superior transaction manager.

=
N
w

0(1|/2|3(4(5|6|(7|8|9|0(1|2|3(4|5|6|7|8|9(0(1|2|3(4|5|6[|7|8|9|0(1

MsgHeader (24 bytes)

guidTX (16 bytes)

MsgHeader (24 bytes): This field MUST contain a MESSAGE PACKET structure:

» The dwUserMsgType field MUST be 0x00002051.
= The dwcbVarLenData field MUST be 16.

guidTX (16 bytes): This field MUST contain a GUID that specifies the transaction identifier.

2.2.9.2 Transaction Recovery
2.2.9.2.1 Subordinate-Driven

2.2.9.2.1.1 CONNTYPE_PARTNERTM_CHECKABORT

The CONNTYPE_PARTNERTM_CHECKABORT connection type is used by a subordinate transaction
manager to query the outcome of a transaction from its superior transaction manager.

For more information about CONNTYPE_PARTNERTM_CHECKABORT as an initiator, see section
3.8.5.2.1.1, and as an acceptor, see section 3.7.5.2.1.1.

2.2.9.2.1.1.1 PARTNERTM_CHECKABORT_MTAG_CHECK

The PARTNERTM_CHECKABORT_MTAG_CHECK message is used by a subordinate transaction
manager to check if the superior transaction manager aborted a specific transaction.

134 /475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

0(1|2|3(4|5|6(7|8|9|0(1|2|3(4|5|6|7|8|9(0(1]|2|3(4|5|6|7|8|9|0(1

MsgHeader (24 bytes)

guidTX (16 bytes)

MsgHeader (24 bytes): This field MUST contain a MESSAGE PACKET structure:

= The dwUserMsgType field MUST be 0x00002021.
= The dwcbVarLenData field MUST be 16.

guidTX (16 bytes): This field MUST contain a GUID that specifies the transaction identifier.

2.2.9.2.1.1.2 PARTNERTM_CHECKABORT_MTAG_ABORTED

The PARTNERTM_CHECKABORT_MTAG_ABORTED message indicates that the transaction was
successfully aborted.

—
N
w

0[{1(2|3|4|5|6|7|8|9(0(1(2[3|4|5|/6|7|8|9|0|1|2|3|4|5|6[7(8]|9|0]|1

MsgHeader (24 bytes)

MsgHeader (24 bytes): This field MUST contain a MESSAGE PACKET structure:

= The dwUserMsgType field MUST be 0x00002022.

= The dwcbVarLenData field MUST be 0.

2.2.9.2.1.1.3 PARTNERTM_CHECKABORT_MTAG_RETRY

The PARTNERTM_CHECKABORT_MTAG_RETRY message indicates the superior transaction
manager is unable to declare that the transaction aborted, either because the superior transaction
manager has not yet determined the final outcome of the transaction, or because the transaction has
already committed.

0(1|2|3(4|5|6(7|8|9|0|1|2|3(4|5|6|7|8|9(0(1]|2|3(4|5|6|7|8|9|0(1

MsgHeader (24 bytes)

135/ 475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

MsgHeader (24 bytes): This field MUST contain a MESSAGE PACKET structure:

» The dwUserMsgType field MUST be 0x00002023.

= The dwcbVarLenData field MUST be 0.
2.2.9.2.2 Superior-Driven

2.2.9.2.2.1 CONNTYPE_PARTNERTM_REDELIVERCOMMIT

The CONNTYPE_PARTNERTM_REDELIVERCOMMIT connection type is used by a superior
transaction manager to redeliver a Commit notification for a transaction to its subordinate transaction
manager.

For more information about CONNTYPE_PARTNERTM_REDELIVERCOMMIT as an initiator, see
section 3.7.5.2.2.1, and as an acceptor, see section 3.8.5.2.2.1.

2.2.9.2.2.1.1 PARTNERTM_REDELIVERCOMMIT_MTAG_COMMITREQ

The PARTNERTM_REDELIVERCOMMIT_MTAG_COMMITREQ message is sent by the superior
transaction manager to begin Phase Two commit processing.

—
N
w

0(1|2|3(4|5|6|(7|8|9|0(1|2|3(4|5|6|7|8|9(0(1|2|3(4|5|6|7|8|9|0(1

MsgHeader (24 bytes)

guidTx (16 bytes)

MsgHeader (24 bytes): This field MUST contain a MESSAGE PACKET structure:
» The dwUserMsgType field MUST be 0x00002011.
= The dwcbVarLenData field MUST be 16.

guidTx (16 bytes): This field MUST contain a GUID that specifies the transaction identifier.

2.2.9.2.2.1.2 PARTNERTM_REDELIVERCOMMIT_MTAG_COMMITREQDONE

The PARTNERTM_REDELIVERCOMMIT_MTAG_COMMITREQDONE message indicates that the
subordinate transaction manager has successfully committed the transaction.

136 / 475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

0(1|2|3(4|5|6(7|8|9|0(1|2|3(4|5|6|7|8|9(0(1]|2|3(4|5|6|7|8|9|0(1

MsgHeader (24 bytes)

MsgHeader (24 bytes): This field MUST contain a MESSAGE PACKET structure:

= The dwUserMsgType field MUST be 0x00002012.

= The dwcbVarLenData field MUST be 0.

2.2.9.2.2.1.3 PARTNERTM_REDELIVERCOMMIT_MTAG_RETRY

The PARTNERTM_REDELIVERCOMMIT_MTAG_RETRY message is sent by the subordinate
transaction manager to indicate that it is in a state in which it is temporarily unable to process the
commit request.

—
N
w

0(1|/2|3(4|5|6(7|8|9|0(1|2|3(4|5|6|7|8|9(0(1|2|3(4|5|6[7|8|9|0(1

MsgHeader (24 bytes)

MsgHeader (24 bytes): This field MUST contain a MESSAGE PACKET structure:

* The dwUserMsgType field MUST be 0x00002013.
= The dwcbVarLenData field MUST be 0.

2.2.10 Connection Types Relevant to Resource Managers

2.2.10.1 Resource Manager Registration

2.2,.10.1.1 CONNTYPE_TXUSER_RESOURCEMANAGER

The CONNTYPE_TXUSER_RESOURCEMANAGER connection type is used by a durable resource
manager to register with its transaction manager.

For more details about CONNTYPE_TXUSER_RESOURCEMANAGER as an initiator, see section
3.5.5.1.1, and as an acceptor, see section 3.6.5.1.1.

2.2.10.1.1.1 TXUSER_RESOURCEMANAGER_MTAG_CREATE

The TXUSER_RESOURCEMANAGER_MTAG_CREATE message is used by resource managers to
register with a transaction manager.

137/ 475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

0(1|2|3(4|5|6(7|8|9|0(1|2|3(4|5|6|7|8|9(0(1]|2|3(4|5|6|7|8|9|0(1

MsgHeader (24 bytes)

guidRM (16 bytes)

guidSession (16 bytes)

MsgHeader (24 bytes): This field MUST contain a MESSAGE PACKET structure:

= The dwUserMsgType field MUST be 0x00001051.
* The dwcbVarLenData field MUST be 32.
guidRM (16 bytes): This field MUST contain a GUID that specifies the resource manager identifier.

guidSession (16 bytes): This field MUST contain a GUID that specifies the session identifier of the
resource manager.

2.2.10.1.1.2 TXUSER_RESOURCEMANAGER_MTAG_DUPLICATE

The TXUSER_RESOURCEMANAGER_MTAG_DUPLICATE message is sent from the transaction
manager when there is already a resource manager that is registered with the same guidRM value.

-
N
w

0(1|/2|3(4|5|6|7|8|9|0(1|2|3(4|5|6|7|8|9(0(1|2|3(4|5|6[|7|8|9|0(1

MsgHeader (24 bytes)

MsgHeader (24 bytes): This field MUST contain a MESSAGE PACKET structure:

» The dwUserMsgType field MUST be 0x00001054.

= The dwcbVarLenData field MUST be 0.

2.2.10.1.1.3 TXUSER_RESOURCEMANAGER_MTAG_REENLISTMENTCOMPLETE

138 /475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

The TXUSER_RESOURCEMANAGER_MTAG_REENLISTMENTCOMPLETE message is used by
resource managers to inform the transaction manager that it has no outstanding in-doubt transactions
for which the resource manager required an outcome.

This message is used in the following scenarios:

= Recover Transactions (section 3.5.7.2)

= Recover Transaction (section 3.5.7.1)

= Reenlistment Complete (section 3.5.7.3)

= Enlistment Commit Request Completed (section 3.5.4.5)

= Enlistment Abort Request Completed (section 3.5.4.4)

-
N
w

0[{1(2|3|4|5|6|7|8|9|0(1(2[3|4|5|/6|7|8|9|0|1|2|3|4|5(6[7(8]9|0]|1

MsgHeader (24 bytes)

MsgHeader (24 bytes): This field MUST contain a MESSAGE PACKET structure:

= The dwUserMsgType field MUST be 0x00001052.

= The dwcbVarLenData field MUST be 0.

2.2.10.1.1.4 TXUSER_RESOURCEMANAGER_MTAG_REQUEST_COMPLETE

The TXUSER_RESOURCEMANAGER_MTAG_REQUEST_COMPLETE message is used by transaction
managers to indicate that the previous request that was sent by the resource manager on the
connection was successfully completed.

—
N
w

0(1|/2|3(4|5|6|7|8|9|0(1|2|3(4|5|6|7|8|9(0(1|2|3(4|5|6[|7|8|9|0(1

MsgHeader (24 bytes)

MsgHeader (24 bytes): This field MUST contain a MESSAGE PACKET structure:

» The dwUserMsgType field MUST be 0x00001053.

= The dwcbVarLenData field MUST be 0.

2.2,.10.1.2 CONNTYPE_TXUSER_RESOURCEMANAGERINTERNAL

The CONNTYPE_TXUSER_RESOURCEMANAGERINTERNAL connection type is used by a durable
resource manager to register with a transaction manager as well as to detect duplicate registrations.
This connection type supersedes CONNTYPE TXUSER RESOURCEMANAGER.

139/ 475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

This connection type also uses the following messages:

* TXUSER_RESOURCEMANAGER_MTAG_CREATE (section 2.2.10.1.1.1)

= TXUSER_RESOURCEMANAGER_MTAG_DUPLICATE (section 2.2.10.1.1.2)

= TXUSER_RESOURCEMANAGER_MTAG_REENLISTMENTCOMPLETE (section 2.2.10.1.1.3)
= TXUSER_RESOURCEMANAGER_MTAG_REQUEST_COMPLETE (section 2.2.10.1.1.4)

For more information about CONNTYPE_TXUSER_RESOURCEMANAGERINTERNAL as an initiator,
see section 3.5.5.1.2, and as an acceptor, see section 3.6.5.1.2.

2.2.10.1.2.1 TXUSER_RESOURCEMANAGERINTERNAL_MTAG_DUPLICATEDETECTED

The TXUSER_RESOURCEMANAGERINTERNAL_MTAG_DUPLICATEDETECTED message notifies a
resource manager that an attempt was made to register another resource manager instance with the
unique identifier of this resource manager. See the guidRM field in

TXUSER RESOURCEMANAGER MTAG CREATE for more information.

—
N
w

0[{1(2|3|4|5|6|7|8|9(0(1(2[3|4|5|/6|7|8|9|0|1|2|3|4|5|6[7(8]|9|0]|1

MsgHeader (24 bytes)

MsgHeader (24 bytes): This field MUST contain a MESSAGE PACKET structure:

» The dwUserMsgType field MUST be 0x00001055.
= The dwcbVarLenData field MUST be 0.

2.2.10.2 Transaction Coordination

2.2.10.2.1 CONNTYPE_TXUSER_PHASEO

The CONNTYPE_TXUSER_PHASEO connection type is used by a resource manager to enlist for
Phase Zero notifications from its transaction manager.

For more details about CONNTYPE_TXUSER_PHASEO as an initiator, see section 3.5.5.2.1, and as
an acceptor, see section 3.6.5.2.1.

2.2.10.2.1.1 TXUSER_PHASEO_MTAG_CREATE

The TXUSER_PHASEO_MTAG_CREATE message is sent by a resource manager to a transaction
manager to create a new Phase Zero enlistment on a transaction.

—
N
w

0(1|2|3(4|5|6|7|8|9|0|1|2|3(4|5|6(7|8|9(0(1|2|3(4|5|6|7|8|9|0(1

MsgHeader (24 bytes)

140/ 475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

guidTx (16 bytes)

MsgHeader (24 bytes): This field MUST contain a MESSAGE PACKET structure:

= The dwUserMsgType field MUST be 0x00004901.
= The dwcbVarLenData field MUST be 16.

guidTx (16 bytes): This field MUST contain a GUID that specifies the transaction identifier.

2.2.10.2.1.2 TXUSER_PHASEO_MTAG_CREATE_TOO_LATE

The TXUSER_PHASEO_MTAG_CREATE_TOO_LATE message is sent by the transaction manager if
the creation of the Phase Zero failed because the enlistment request was made too late in the
specified transaction lifetime. See Create Phase Zero Enlistment Failure (section 3.6.7.7) and
Register Phase Zero Failure (section 3.2.7.28) for more details.

—
N
w

0(1|/2|3(4|5|6|7|8|9|0(1|2|3(4|5|6|7|8|9(0(1|2|3(4|5|6[|7|8|9|0(1

MsgHeader (24 bytes)

MsgHeader (24 bytes): This field MUST contain a MESSAGE PACKET structure:

* The dwUserMsgType field MUST be 0x00004907.
= The dwcbVarLenData field MUST be 0.

2.2.10.2.1.3 TXUSER_PHASEO_MTAG_CREATE_TX_NOT_FOUND

The TXUSER_PHASEO_MTAG_CREATE_TX_NOT_FOUND message is sent by the transaction
manager if the creation of the Phase Zero enlistment failed because the specified transaction could not
be found.

0[{1(2|3|4|5|6|7|8|9(0(1|2[3|4|5|/6|7|8|9|0|1|2|3|4|5|6[7(8]9|0]|1

MsgHeader (24 bytes)

MsgHeader (24 bytes): This field MUST contain a MESSAGE PACKET structure:

141/ 475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

* The dwUserMsgType field MUST be 0x00004906.
= The dwcbVarLenData field MUST be 0.

2.2.10.2.1.4 TXUSER_PHASEO_MTAG_CREATED

The TXUSER_PHASEO_MTAG_CREATED message is sent by the transaction manager if the creation
of the Phase Zero enlistment was successful.

0(1(2|3|4|5|6|7|8|9|0(1|(2[3|4|5|/6|7|8|9|0|1|2|3|4|5(6[7(8]9|0]|1

MsgHeader (24 bytes)

MsgHeader (24 bytes): This field MUST contain a MESSAGE PACKET structure:

» The dwUserMsgType field MUST be 0x00004902.

= The dwcbVarLenData field MUST be 0.

2.2.10.2.1.5 TXUSER_PHASEO_MTAG_PHASEOREQ

The TXUSER_PHASEO_MTAG_PHASEOREQ message indicates a Phase Zero request from the
transaction manager to the Phase Zero enlistment.

—
N
w

0(1|/2|3(4(5|6|(7|8|9|0(1|2|3(4|5|6|7|8|9(0(1|2|3(4|5|6[|7|8|9|0(1

MsgHeader (24 bytes)

MsgHeader (24 bytes): This field MUST contain a MESSAGE PACKET structure:

= The dwUserMsgType field MUST be 0x00004903.

= The dwcbVarLenData field MUST be 0.

2.2.10.2.1.6 TXUSER_PHASEO_MTAG_PHASEOREQ_ABORT

The TXUSER_PHASEO_MTAG_PHASEOREQ_ABORT message is sent by the transaction manager to
notify the Phase Zero enlistment that the transaction aborted.

—
N
w

0(1|/2|3(4|5|6(7|8|9|0(1|2|3(4|5|6|7|8|9(0(1]|2|3(4|5|6|7|8|9|0(1

MsgHeader (24 bytes)

142 / 475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

MsgHeader (24 bytes): This field MUST contain a MESSAGE PACKET structure:

» The dwUserMsgType field MUST be 0x00004909.

= The dwcbVarLenData field MUST be 0.

2.2.10.2.1.7 TXUSER_PHASEO_MTAG_PHASEOREQDONE

The TXUSER_PHASEO_MTAG_PHASEOREQDONE message is sent by the resource manager to
notify the transaction manager that the Phase Zero enlistment has completed the Phase Zero
processing request.

0(1(2|3|4|5|6|7|8|9|0(1(2[3|4|5|/6|7|8|9|0|1|2|3|4|5|6[7(8]9|0]|1

MsgHeader (24 bytes)

MsgHeader (24 bytes): This field MUST contain a MESSAGE PACKET structure:
= The dwUserMsgType field MUST be 0x00004904.

= The dwcbVarLenData field MUST be 0.

2.2.10.2.1.8 TXUSER_PHASEO_MTAG_UNENLIST

The TXUSER_PHASEO_MTAG_UNENLIST message is sent by the resource manager to notify the
transaction manager that the Phase Zero enlistment is to be removed and is no longer part of the
transaction.

0(1(2|3|4|5|6|7|8|9(0(1(2[3|4|5|/6|7|8|9|0|1|2|3|4|5|6[7(8]9|0]|1

MsgHeader (24 bytes)

MsgHeader (24 bytes): This field MUST contain a MESSAGE PACKET structure:

» The dwUserMsgType field MUST be 0x00004905.

= The dwcbVarLenData field MUST be 0.

2.2,.10.2.2 CONNTYPE_TXUSER_ENLISTMENT

The CONNTYPE_TXUSER_ENLISTMENT connection type is used by a durable resource manager to
establish an enlistment with its transaction manager.

143 / 475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

For more details about CONNTYPE_TXUSER_ENLISTMENT as an initiator, see section 3.5.5.2.2,
and as an acceptor, see section 3.6.5.2.2.

2.2,10.2.2.1 TXUSER_ENLISTMENT_MTAG_ABORTREQ

The TXUSER_ENLISTMENT_MTAG_ABORTREQ message is sent by the transaction manager to the
resource manager to inform the RM that the transaction has aborted.

-
N
w

0(1|/2|3(4|(5|6|(7|8|9|0(1|2|3(4|5|6(|7|8|9(0(1|2|3(4|5|6|7|8|9|0(1

MsgHeader (24 bytes)

MsgHeader (24 bytes): This field MUST contain a MESSAGE PACKET structure:
= The dwUserMsgType field MUST be 0x00001034.

= The dwcbVarLenData field MUST be 0.

2.2.10.2.2.2 TXUSER_ENLISTMENT_MTAG_ABORTREQDONE

The TXUSER_ENLISTMENT_MTAG_ABORTREQDONE message acknowledges that the resource
manager processed the abort and the transaction manager is no longer obligated to retain the
outcome of the transaction.

—
N
w

0(1|/2|3(4|(5|6|(7|8|9|0(1|2|3(4|5|6|7|8|9(0(1|2|3(4|5|6|7|8|9|0(1

MsgHeader (24 bytes)

MsgHeader (24 bytes): This field MUST contain a MESSAGE PACKET structure:

* The dwUserMsgType field MUST be 0x00001037.

= The dwcbVarLenData field MUST be 0.

2.2.10.2.2.3 TXUSER_ENLISTMENT_MTAG_COMMITREQ

The TXUSER_ENLISTMENT_MTAG_COMMITREQ message is sent by the transaction manager to
notify the resource manager that the transaction has committed and that the resource manager MUST
carry out the operations that are necessary to commit the work that is performed under the
transaction.

—
N
w

0(1|2|3(4|5|6|7|8|9|0|1|2|3(4|5|6|7|8|9(0(1|2|3(4|5|6[|7|8|9|0(1

MsgHeader (24 bytes)

144 / 475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

MsgHeader (24 bytes): This field MUST contain a MESSAGE PACKET structure:

» The dwUserMsgType field MUST be 0x00001035.

= The dwcbVarLenData field MUST be 0.

2.2.10.2.2.4 TXUSER_ENLISTMENT_MTAG_COMMITREQDONE

The TXUSER_ENLISTMENT_MTAG_COMMITREQDONE message is sent by the resource manager
to indicate that it has carried out the necessary operations to commit the transaction, and that the
transaction manager is no longer obligated to retain the outcome of the transaction for the resource

manager.

—
N
w

0(1|/2|3(4|5|6(7|8|9|0(1|2|3(4|5|6|7|8|9(0(1|2|3(4|5|6|7|8|9|0(1

MsgHeader (24 bytes)

MsgHeader (24 bytes): This field MUST contain a MESSAGE PACKET structure:

» The dwUserMsgType field MUST be 0x00001038.

= The dwcbVarLenData field MUST be 0.

2.2.10.2.2.5 TXUSER_ENLISTMENT_MTAG_ENLIST

The TXUSER_ENLISTMENT_MTAG_ENLIST message is sent by the resource manager to request
the creation of a new enlistment on a transaction.

0({1(2|3|4|5|6|7|8|9(0(1|2[3|4|5|/6|7|8|9|0|1|2|3|4|5|6[7(8]9|0]|1

MsgHeader (24 bytes)

guidTX (16 bytes)

guidRM (16 bytes)

145/ 475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

guidSession (16 bytes)

MsgHeader (24 bytes): This field MUST contain a MESSAGE PACKET structure:

= The dwUserMsgType field MUST be 0x00001031.
= The dwcbVarLenData field MUST be 48.
guidTX (16 bytes): This field MUST contain a GUID that specifies the transaction identifier.
guidRM (16 bytes): This field MUST contain a GUID that specifies the resource manager identifier.

guidSession (16 bytes): This field MUST contain a GUID that specifies the session identifier of the
resource manager.

2.2.10.2.2.6 TXUSER_ENLISTMENT_MTAG_ENLIST_LOG_FULL

The TXUSER_ENLISTMENT_MTAG_ENLIST_LOG_FULL message is sent by the transaction
manager to indicate that the creation of the new enlistment failed because insufficient space exists in
the recovery log of the transaction manager to be able to account for the new enlistment.

—
N
w

0[{1(2|3|4|5|6|7|8|9(0(1|2[3|4|5|/6|7|8|9|0|1|2|3|4|5|6[7(8]9|0]|1

MsgHeader (24 bytes)

MsgHeader (24 bytes): This field MUST contain a MESSAGE PACKET structure:

* The dwUserMsgType field MUST be 0x00001903.

= The dwcbVarLenData field MUST be 0.

2.2.10.2.2.7 TXUSER_ENLISTMENT_MTAG_ENLIST_TOO_LATE

The TXUSER_ENLISTMENT_MTAG_ENLIST_TOO_LATE message is sent by the transaction
manager to indicate that the creation of that enlistment failed because it is too late in the lifetime of
the specified transaction. See Create Subordinate Enlistment Failure and Create Subordinate
Enlistment for more information.

—
N
w

0(1|2|3(4|5|6|7|8|9|0|1|2|3(4|5|6(|7|8|9(0(1|2|3(4|5|6[7|8|9|0(1

MsgHeader (24 bytes)

146 / 475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

MsgHeader (24 bytes): This field MUST contain a MESSAGE PACKET structure:

» The dwUserMsgType field MUST be 0x00001902.

= The dwcbVarLenData field MUST be 0.

2.2.10.2.2.8 TXUSER_ENLISTMENT_MTAG_ENLIST_TOO_MANY

The TXUSER_ENLISTMENT_MTAG_ENLIST_TOO_MANY message is sent by the transaction
manager to indicate that the creation of the new enlistment failed because the implementation-specific
maximum number of enlistments for the transaction has been reached.<17>

0[{1(2|3|4|5|6|7|8|9(0(1(2(3|4|5|/6|7|8|9|0|1|2|3|4|5|6[|7(8]9|0]|1

MsgHeader (24 bytes)

MsgHeader (24 bytes): This field MUST contain a MESSAGE PACKET structure:
= The dwUserMsgType field MUST be 0x00001905.

= The dwcbVarLenData field MUST be 0.

2.2.10.2.2.9 TXUSER_ENLISTMENT_MTAG_ENLIST_TX_NOT_FOUND

The TXUSER_ENLISTMENT_MTAG_ENLIST_TX_NOT_FOUND message is sent by the transaction
manager to indicate that the creation of the new enlistment failed because the specified transaction
does not exist.

0({1(2|3|4|5|6|7|8|9(0(1|2[3|4|5|/6|7|8|9|0|1|2|3|4|5|6[7(8]9|0]|1

MsgHeader (24 bytes)

MsgHeader (24 bytes): This field MUST contain a MESSAGE PACKET structure:

= The dwUserMsgType field MUST be 0x00001901.

= The dwcbVarLenData field MUST be 0.

2.2.10.2.2.10TXUSER_ENLISTMENT_MTAG_ENLISTED

147 / 475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

The TXUSER_ENLISTMENT_MTAG_ENLISTED message is sent by the transaction manager to
indicate that the creation of the new enlistment was successful.

0[{1(2|3|4|5|6|7|8|9|0(1(2[3|4|5|/6|7|8|9|0|1|2|3|4|5|6(7(8]9|0]|1

MsgHeader (24 bytes)

MsgHeader (24 bytes): This field MUST contain a MESSAGE PACKET structure:

= The dwUserMsgType field MUST be 0x00001032.

= The dwcbVarLenData field MUST be 0.

2.2.10.2.2.11TXUSER_ENLISTMENT_MTAG_PREPAREREQ

The TXUSER_ENLISTMENT_MTAG_PREPAREREQ message is used to request that the resource
manager perform the actions that are needed to prepare the transaction to be committed.

—
N
w

0(1|2|3(4|5|6|(7|8|9|0(1|2|3(4|5|6|7|8|9(0(1|2|3(4|5|6|7|8|9|0(1

MsgHeader (24 bytes)

grfRM

fSinglePhase

MsgHeader (24 bytes): This field MUST contain a MESSAGE PACKET structure:

» The dwUserMsgType field MUST be 0x00001033.
= The dwcbVarLenData field MUST be 8.

grfRM (4 bytes): The value of this field MUST be a 32-bit unsigned integer. This value SHOULD be
ignored on receipt.

fSinglePhase (4 bytes): Indicates whether the sending transaction manager is willing to allow the
single-phase commit optimization. If the value is zero, the resource manager receiving this
message MUST NOT perform a single-phase commit. If the value is nonzero, the resource
manager receiving this message SHOULD perform a single-phase commit.

2.2.10.2.2.12TXUSER_ENLISTMENT_MTAG_PREPAREREQDONE

The TXUSER_ENLISTMENT_MTAG_PREPAREREQDONE message is sent by the resource manager
to indicate either success or failure of the prepare operation, depending on the value of the
prepareReqDone field.

148 / 475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

0(1|2|3(4|5|6(7|8|9|0(1|2|3(4|5|6|7|8|9(0(1]|2|3(4|5|6|7|8|9|0(1

MsgHeader (24 bytes)

prepareRegDone

guidReason (16 bytes)

MsgHeader (24 bytes): This field MUST contain a MESSAGE PACKET structure:

= The dwUserMsgType field MUST be 0x00001036.
= The dwcbVarLenData field MUST be 20.

prepareReqDone (4 bytes): A value indicating the result of the prepare operations that are
performed by the resource manager. The value MUST be one that is as specified by the
TXUSER_ENLISTMENT_PREPAREREQDONE_RESPONSE enumeration (section 2.2.6.3).

guidReason (16 bytes): This field MUST contain a GUID that contains an implementation-specific
value that MUST be ignored on receipt.

2.2.10.3 Transaction Recovery

2.2.10.3.1 CONNTYPE_TXUSER_REENLIST

The CONNTYPE_TXUSER_REENLIST connection type is used by a durable resource manager to
determine the outcome of an In Doubt transaction.

For more information about CONNTYPE_TXUSER_REENLIST as an initiator, see section 3.5.5.3.1,
and as an acceptor, see section 3.6.5.3.1.

2.2,10.3.1.1 TXUSER_REENLIST_MTAG_REENLIST

The TXUSER_REENLIST_MTAG_REENLIST message indicates that the resource manager wants to
obtain the outcome of an In Doubt transaction from the transaction manager.

—
N
w

0(1|2|3(4|5|6|7|8|9|0(1|2|3(4|5|6|7|8|9(0(1]|2|3(4|5|6|7|8|9|0(1

MsgHeader (24 bytes)

149 / 475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

guidTx (16 bytes)

ulTimeout

guidRm (16 bytes)

MsgHeader (24 bytes): This field MUST contain a MESSAGE PACKET structure:

» The dwUserMsgType field MUST be 0x00001061.
= The dwcbVarLenData field MUST be 36.
guidTx (16 bytes): This field MUST contain a GUID that specifies the transaction identifier.

ulTimeout (4 bytes): This field MUST specify the time, in milliseconds, that the resource manager
will wait for a decision. A value of zero MUST represent an infinite timeout. The recipient SHOULD
NOT send a TXUSER REENLIST MTAG REENLIST TIMEOUT message until the time span that is
specified by this value has elapsed.

guidRm (16 bytes): This field MUST be a GUID that specifies the resource manager identifier.

2.2.10.3.1.2 TXUSER_REENLIST_MTAG_REENLIST_ABORTED

The TXUSER_REENLIST_MTAG_REENLIST_ABORTED message indicates that the transaction that
is supplied by the TXUSER REENLIST MTAG REENLIST has aborted.

-
N
w

0(1|/2|3(4|(5|6|7|8|9|0(1|2|3(4|5|6(7|8|9(0(1|2|3(4|5|6[|7|8|9|0(1

MsgHeader (24 bytes)

MsgHeader (24 bytes): This field MUST contain a MESSAGE PACKET structure:

= The dwUserMsgType field MUST be 0x00001062.

= The dwcbVarLenData field MUST be 0.

2.2.10.3.1.3 TXUSER_REENLIST_MTAG_REENLIST_COMMITTED

The TXUSER_REENLIST_MTAG_REENLIST_COMMITTED message indicates that the transaction
that is supplied by the TXUSER REENLIST MTAG REENLIST has committed.

150/ 475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

0(1|2|3(4|5|6(7|8|9|0(1|2|3(4|5|6|7|8|9(0(1]|2|3(4|5|6|7|8|9|0(1

MsgHeader (24 bytes)

MsgHeader (24 bytes): This field MUST contain a MESSAGE PACKET structure:

* The dwUserMsgType field MUST be 0x00001063.

= The dwcbVarLenData field MUST be 0.

2.2.10.3.1.4 TXUSER_REENLIST_MTAG_REENLIST_TIMEOUT

The TXUSER_REENLIST_MTAG_REENLIST_TIMEOUT message indicates that the
TXUSER REENLIST MTAG REENLIST request has exceeded the time span that is specified by its
ulTimeout field and therefore has failed.

—
N
w

0(1|/2|3(4|5|6(7|8|9|0(1|2|3(4|5|6|7|8|9(0(1|2|3(4|5|6[7|8|9|0(1

MsgHeader (24 bytes)

MsgHeader (24 bytes): This field MUST contain a MESSAGE PACKET structure:

* The dwUserMsgType field MUST be 0x00001064.

= The dwcbVarLenData field MUST be 0.

2.2.104 Voting

2.2.10.4.1 CONNTYPE_TXUSER_VOTER

The CONNTYPE_TXUSER_VOTER connection type is used by a volatile resource manager to
establish a voter enlistment with its transaction manager.

For more details on CONNTYPE_TXUSER_VOTER as an initiator, see section 3.5.5.4.1, and as an
acceptor, see section 3.6.5.4.1.

2.2.10.4.1.1 TXUSER_STATUS_MTAG_ABORTED

The TXUSER_STATUS_MTAG_ABORTED message is sent by the transaction manager to notify the
resource manager that the transaction has aborted.

—
N
w

0(1|2|3(4|5|6|7|8|9|0|1|2|3(4|5|6|7|8|9(0(1|2|3(4|5|6[|7|8|9|0(1

MsgHeader (24 bytes)

151/ 475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

MsgHeader (24 bytes): This field MUST contain a MESSAGE PACKET structure:

» The dwUserMsgType field MUST be 0x00001093.

= The dwcbVarLenData field MUST be 0.

2.2.10.4.1.2 TXUSER_STATUS_MTAG_COMMITTED

The TXUSER_STATUS_MTAG_COMMITTED message is sent by the transaction manager to notify
the resource manager that the transaction has committed.

=
N
w

0(1|/2|3(4(5|6|(7|8|9|0(1|2|3(4|5|6|7|8|9(0(1|2|3(4|5|6[|7|8|9|0(1

MsgHeader (24 bytes)

MsgHeader (24 bytes): This field MUST contain a MESSAGE PACKET structure:

» The dwUserMsgType field MUST be 0x00001094.

= The dwcbVarLenData field MUST be 0.

2.2.10.4.1.3 TXUSER_STATUS_MTAG_INDOUBT

The TXUSER_STATUS_MTAG_INDOUBT message is sent by the transaction manager to notify the
resource manager that the outcome of the transaction is In Doubt.

—
N
w

0[{1(2|3|4|5|6|7|8|9(0(1|2[3|4|5|/6|7|8|9|0|1|2|3|4|5|6[7(8|9|0]|1

MsgHeader (24 bytes)

MsgHeader (24 bytes): This field MUST contain a MESSAGE PACKET structure:

» The dwUserMsgType field MUST be 0x00001095.

= The dwcbVarLenData field MUST be 0.

2.2.10.4.1.4 TXUSER_VOTER_MTAG_CREATE

The TXUSER_VOTER_MTAG_CREATE message is sent by the resource manager to create a new
voter enlistment on a transaction.

152 / 475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

0(1|2|3(4|5|6(7|8|9|0(1|2|3(4|5|6|7|8|9(0(1]|2|3(4|5|6|7|8|9|0(1

MsgHeader (24 bytes)

guidTx (16 bytes)

MsgHeader (24 bytes): This field MUST contain a MESSAGE PACKET structure:

= The dwUserMsgType field MUST be 0x00002091.
* The dwcbVarLenData field MUST be 16.

guidTx (16 bytes): This field MUST contain a GUID that specifies the transaction identifier.

2.2,.10.4.1.5 TXUSER_VOTER_MTAG_CREATE_TOO_LATE

The TXUSER_VOTER_MTAG_CREATE_TOO_LATE message is sent by the transaction manager to
indicate that the creation of the new voter enlistment was unsuccessful because it was too late in the
lifetime of the transaction to create new enlistments. See Create Voter Enlistment

Failure (section 3.6.7.12) and Create Voter Enlistment (section 3.2.7.14) for more information.

0(1(2|3|4|5|6|7|8|9(0(1|2[3|4|5|/6|7|8|9|0|1|2|3|4|5|6[7(8]9|0]|1

MsgHeader (24 bytes)

MsgHeader (24 bytes): This field MUST contain a MESSAGE PACKET structure:
= The dwUserMsgType field MUST be 0x00002096.
» The dwcbVarLenData field MUST be 0.

2.2.10.4.1.6 TXUSER_VOTER_MTAG_CREATE_TX_NOT_FOUND

The TXUSER_VOTER_MTAG_CREATE_TX_NOT_FOUND message is sent by the transaction
manager to indicate that creation of the new voter enlistment was unsuccessful because the specified
transaction does not exist.

153 /475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

0(1|2|3(4|5|6(7|8|9|0(1|2|3(4|5|6|7|8|9(0(1]|2|3(4|5|6|7|8|9|0(1

MsgHeader (24 bytes)

MsgHeader (24 bytes): This field MUST contain a MESSAGE PACKET structure:

= The dwUserMsgType field MUST be 0x00002095.

= The dwcbVarLenData field MUST be 0.

2.2,.10.4.1.7 TXUSER_VOTER_MTAG_CREATED

The TXUSER_VOTER_MTAG_CREATED message is sent by the transaction manager to indicate that
creation of the new voter enlistment was successful.

0[{1(2|3|4|5|6|7|8|9(0(1(2[3|4|5|/6|7|8|9|0|1|2|3|4|5|6[7(8]9|0]|1

MsgHeader (24 bytes)

MsgHeader (24 bytes): This field MUST contain a MESSAGE PACKET structure:
= The dwUserMsgType field MUST be 0x00002092.

= The dwcbVarLenData field MUST be 0.

2.2.10.4.1.8 TXUSER_VOTER_MTAG_VOTEREQ

The TXUSER_VOTER_MTAG_VOTEREQ message is sent by the transaction manager to request that
the resource manager perform any operations it needs to during Phase One and to vote on the
outcome of the transaction.

0({1(2|3|4|5|6|7|8|9(0(1|2[3|4|5|/6|7|8|9|0|1|2|3|4|5|6[7(8]9|0]|1

MsgHeader (24 bytes)

MsgHeader (24 bytes): This field MUST contain a MESSAGE PACKET structure:

» The dwUserMsgType field MUST be 0x00002093.

= The dwcbVarLenData field MUST be 0.

154 / 475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

2.2.10.4.1.9 TXUSER_VOTER_MTAG_VOTEREQDONE

The TXUSER_VOTER_MTAG_VOTEREQDONE message is sent by a voter to indicate whether it
agrees to a decision to commit the transaction for which it had previously created a voter enlistment.

=

0({1(2|3|4|5|6|7|8[9(0(1|2]|3

4

5

6

7

8

N

w

MsgHeader (24 bytes)

VoteRegDone

MsgHeader (24 bytes): This field MUST contain a MESSAGE PACKET structure:
= The dwUserMsgType field MUST be 0x00002094.

= The dwcbVarLenData field MUST be 4.

VoteReqDone (4 bytes): The resource manager votes to commit or abort the transaction. The value
MUST be one that is defined by the TXUSER_VOTER_VOTERREQDONE_RESPONSE

enumeration (section 2.2.6.5).

[MS-DTCO]J - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol

Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

155/ 475

3 Protocol Details

3.1 Common Details

This section defines common details for the transaction participants, as specified in sections 3.2
through 3.8. Each participant MUST conform to the details as specified in this section.

3.1.1 Abstract Data Model

This section describes a conceptual model of possible data organization that an implementation
maintains to participate in this protocol. The described organization is provided to facilitate the
explanation of how the protocol behaves. This document does not mandate that implementations
adhere to this model as long as their external behavior is consistent with the behavior that is
described in this document.

Note that the abstract data model can be implemented in a variety of ways. This protocol does not
prescribe or advocate any specific implementation technique.

Participants MUST use the multiplexing protocol connections specified in [MS-CMP] section 3.1.1.1
as a transport protocol for sending messages. The Transport section 2.1 defines the mechanisms by
which this protocol initializes and makes use of the multiplexing protocol.

A participant MUST also maintain the following data elements:
= Transaction table: A table of entries to transaction objects, keyed by transaction identifier.

= Session Table: A table of Session objects, as maintained by the multiplexing protocol specified
in [MS-CMP] section 3.1.1. The MSDTC Connection Manager: OleTx Transaction Protocol reads the
Session table data elements provided by [MS-CMPQO] but does not extend or modify the table.

Each transaction object MUST contain the following data structures:

= Transaction Object.Identifier: This field contains a GUID that specifies the transaction
identifier.

= Connection list: A list of multiplexing protocol connection objects, as specified in [MS-CMP]
section 3.1.1.1, that are associated with the transaction.

A transaction object is extended by various participants. When this extension includes enlistment
details, then each discrete enlistment is represented in this model as an enlistment object. In this
description, the enlistment object represents a set of fields that are always associated with each
enlistment. As a group, these fields are referred to in the processing rules as the enlistment object. In
the processing rules, a set of fields comprising an enlistment object are always added or removed as a
group. Depending on the participant, there can be more than one enlistment object as part of the
transaction object (Core Transaction Manager Facet, as specified in section 3.2.1, is an example of
this).

An Enlistment object MUST contain the following data structures:

= Transaction Manager Facet: A reference to the specific facet in the transaction manager that
created the Enlistment object. A single facet creates zero or more Enlistment objects. Transaction
manager facets are as specified in section 3.2.1.4.

= Transaction: A reference to a transaction object.

= Enlistment Object.Connection: A reference to a connection object.

156 / 475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

%5bMS-CMP%5d.pdf#Section_1970a8a0799d4308b9274e4ea23dc225
%5bMS-CMPO%5d.pdf#Section_d2403ca533fa432997f5825ad0868bf6

= Resource Manager Identifier: A GUID that uniquely identifies the resource manager. Each
transaction manager facet MUST set this field if the transaction manager facet is communicating
with a durable resource manager.

= Recovery Information: An extensibility point that allows transaction manager facets to
contribute information to the durable log that is returned to them when recovery occurs. This
field MUST be interpreted only by the transaction manager facet that created the Enlistment
object.

= Name: A string providing a name for the enlistment. Each transaction manager facet MUST define
the contents of this field for the Enlistment objects that are created by that facet.

= Enlistment Object.Identifier: A string providing an identifier for the enlistment. Each
transaction manager facet MUST provide the contents of this field for Enlistment objects that are
created by that facet.

Furthermore, a participant MUST extend the definition of a connection object to include the following
data elements:

= Transaction: A reference to the transaction object that is associated with the connection.
= State: A state enumeration that represents the current state of the connection.

= Connection-Specific Data: An opaque reference to an object. This field is used during the
execution of a connection to associate connection-specific objects with the connection. Some
connections do not use this field.

A state enumeration MUST contain a set of values that represent specific states in a logical state
machine. For a connection type, these values represent the different states to which the
connection's logical state machine is set during the lifetime of the connection.

When a participant initiates or accepts a connection, the State field of the connection MUST be set
initially to the Idle state. When the connection is disconnected, the connection state MUST be set to
the Ended state.

For a participant initiating a connection, once the connection's state machine enters the Ended state,
the connection that is associated with the state machine MUST be disconnected, if it is not already
disconnected, as specified in section 3.1.8.2.

3.1.1.1 Converting a Name Object to an OLETX_TM_ADDR Structure

A Name object MUST be converted to an OLETX_TM_ADDR (section 2.2.4.2) structure in the following
manner:

= The guidSignature field of OLETX_TM_ADDR MUST be set as specified in section 2.2.4.2.
* The guidEndpoint field of OLETX_TM_ADDR MUST be set to the CID field of the Name object.

= The grbComProtsSupported field of OLETX_TM_ADDR MUST be set to the Protocols field of
the Name object.

= The wszHostName field of OLETX_TM_ADDR MUST be set to the Hostname field of the Name
object.

3.1.1.2 Converting an OLETX_TM_ADDR Structure to a Name Object

An OLETX_TM_ADDR (section 2.2.4.2) structure MUST be converted to a Name object in the following
manner:

= The CID field of the Name object MUST be set to the guidEndpoint field of OLETX_TM_ADDR.

157 /475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

= The Protocols field of the Name object MUST be set to the grbComProtsSupported field of
OLETX_TM_ADDR.

= The Hostname field of the Name object MUST be set to the wszHostName field of
OLETX_TM_ADDR.
3.1.1.3 Converting a Name Object to a NAMEOBJECTBLOB Structure

A Name object MUST be converted to a NAMEOBJECTBLOB (section 2.2.5.3) structure in the following
manner:

= The szGuid field of NAMEOBJECTBLOB MUST be set to the CID field of the Name object and
formatted as a string, as specified in [C706] Appendix A.

* The grbComProtsSupported field of NAMEOBJECTBLOB MUST be set to the Protocols field of
the Name object.

» The szHostName field of NAMEOBJECTBLOB MUST be set to the Hostname field of the Name
object and formatted as a null-terminated Latin-1 ANSI string, as specified in [ISO/IEC-8859-1].

= The dwcbHostName and dwReserved1 fields MUST be set as specified in section 2.2.5.3.

3.1.1.4 Converting a NAMEOBJECTBLOB Structure to a Name Object

A NAMEOBJECTBLOB (section 2.2.5.3) structure MUST be converted to a Name object in the following
manner:

= The CID field of the Name object MUST be set to the szGuid field of NAMEOBJECTBLOB,
converted from a string to a GUID as specified in [C706] Appendix A.

= The Protocols field of the Name object MUST be set to the grbComProtsSupported field of
NAMEOBJECTBLOB.

= The Hostname field of the Name object MUST be set to the szHostName field of
NAMEOBJECTBLOB.
3.1.2 Timers

None.

3.1.3 Initialization

The initialization process of this protocol MUST initialize the underlying instance of the MSDTC
Connection Manager: OleTx Multiplexing ([MS-CMP]) and MSDTC Connection Manager: OleTx
Transports ([MS-CMPQ]) protocols as specified in section 2.1.2.

If initialization fails for the underlying [MS-CMP] protocol as specified in [MS-CMP] section 3.1.3.1, or
for the underlying [MS-CMPO] protocol as specified in [MS-CMPO] section 3.2.3.1, then the
initialization of the [MS-DTCO] protocol MUST also fail, and an implementation-specific failure result
MUST be returned to the higher-layer business logic.

To establish an OleTx connection between an initiator and an acceptor both the initiator and the
acceptor MUST follow the processing steps as specified in [MS-CMP] section 3.1.4.2.

To initiate a connection, a session MUST already be established between the initiator and the
acceptor.

158 / 475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

https://go.microsoft.com/fwlink/?LinkId=89824
https://go.microsoft.com/fwlink/?LinkId=90689
https://go.microsoft.com/fwlink/?LinkId=89824
%5bMS-CMP%5d.pdf#Section_1970a8a0799d4308b9274e4ea23dc225
%5bMS-CMPO%5d.pdf#Section_d2403ca533fa432997f5825ad0868bf6

For the use of MSDTC Connection Manager: OleTx Transports Protocol sessions ([MS-CMPQ] section
3.2.1.2) and MSDTC Connection Manager: OleTx Multiplexing Protocol connections ([MS-CMP] section
3.1.1.1) in this protocol, see section 2.1.

3.1.3.1 Enlistment Object Initialization

A participant MUST initialize each new Enlistment object that is created by the participant with the
following default values:

= The transaction manager facet field MUST default to an empty value.

= The transaction field MUST default to an empty value.

= The Enlistment Object.Connection field MUST default to an empty value.
= The resource manager identifier field MUST default to NULL_GUID.

= The recovery information field MUST default to an empty value.

= The name field MUST default to an empty string.

= The Enlistment Object.Identifier field MUST default to an empty string.
3.1.4 Protocol Versioning Details

3.1.4.1 Supporting a Protocol Version

A protocol role implementation that claims support for a protocol version MUST implement all the
protocol elements required by that version for the respective role, as specified in section 2.2.1.

A protocol role implementation that claims a version as the maximum supported protocol version
MUST support that version, and it MUST NOT implement any protocol elements that are neither
required nor optional for that version (see section 2.2.1).

3.1.4.2 Negotiating a Common Protocol Version

Before exchanging any protocol messages, two participants of the protocol MUST agree on what
protocol version to use for their communication. To negotiate a common protocol version, the two
protocol participants MUST use the version negotiation mechanism provided by the MSDTC Connection
Manager: OleTx Transports Protocol transport (see BuildContext, Primary [MS-CMPO] section
3.3.4.2.1) as follows:

= When a protocol participant (application, resource manager, transaction manager) initializes
its underlying MSDTC Connection Manager: OleTx Transports Protocol transport, it MUST do the
following:

» Set the Minimum Level 3 Version Number data field of the underlying MSDTC Connection
Manager: OleTx Transports Protocol implementation to 0x00000001 (see also [MS-CMPO]
section 3.2.1.1).

Note that the MSDTC Connection Manager: OleTx Transaction Protocol is layered on top of
MSDTC Connection Manager: OleTx Multiplexing Protocol (specified in [MS-CMP]), which is
layered on top of the MSDTC Connection Manager: OleTx Transports Protocol (specified in
[MS-CMPO]). Therefore, it is a level-three protocol for the MSDTC Connection Manager: OleTx
Transports Protocol (as defined in [MS-CMPO] section 2.2.2).

= Set the Maximum Level 3 Version Number data field of the underlying MSDTC Connection
Manager: OleTx Transports Protocol implementation to the value of the maximum supported
MSDTC Connection Manager: OleTx Transaction Protocol version (defined in section 3.1.4.1).

159 /475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

%5bMS-CMPO%5d.pdf#Section_d2403ca533fa432997f5825ad0868bf6
%5bMS-CMP%5d.pdf#Section_1970a8a0799d4308b9274e4ea23dc225

When an MSDTC Connection Manager: OleTx Transports Protocol session is successfully established
between the two protocol participants, the value of the dwLevelThreeAccepted field of the session
object's Version field (see [MS-CMPO] section 3.2.1.2, Session State) indicates the negotiated
protocol version (for example, if the value of the dwLevelThreeAccepted field is 5, the negotiated
protocol version is 5).

3.1.4.3 Using the Negotiated Protocol Version

Once a protocol version is negotiated, the session partners SHOULD use in their communication only
the protocol elements that are either required or optional for that version (see section 2.2.1 for a
definition of version-required and version-optional elements), as follows:

= When a partner makes a connection request, it SHOULD use only a connection type that is either
required or optional for the negotiated protocol version. If the connection type is optional for the
negotiated protocol version, it MUST handle the MTAG_CONNECTION_REQ_DENIED ([MS-CMP
section 2.2.5) response and return the failure result to the higher business layer.<18>

= When a partner receives a connection request, it MUST accept as valid only a connection type that
is either required or optional for the negotiated protocol version. Invalid connections MUST be
rejected, as specified in [MS-CMP] section 2.2.5.

= When a partner sends a message over an established connection, it SHOULD use only message
types and formats that are supported by the negotiated protocol version in the context of the
connection type of the respective connection.<19>

= When a partner receives a message over an established connection, it SHOULD accept as valid
only message types and formats that are supported by the negotiated protocol version in the
context of the connection type of the respective connection. An invalid message MUST be rejected,
as specified in section 3.1.6.

3.1.5 Higher-Layer Triggered Events

None.

3.1.6 Processing Events and Sequencing Rules

When an OleTx connection partner receives an incoming message on a connection, it MUST perform
the following actions to verify the validity of the message:

= Schema validation

= The participant MUST validate the message content in accord with the message schema and
constraints specified in section 2.2 for the specific incoming message type. If a message type
is not determinable, the message MUST be considered invalid.

= State validation

= The participant MUST verify the current state of the connection by using the State field of the
connection as follows:

= If the connection is in the Ended state, the message MUST be considered invalid.

= If the connection type has not defined a specific processing rule in section 3 for the
processing of the specific message in the current connection state, then the message
MUST be considered invalid.

If an incoming message is considered invalid, the participant MUST ignore the contents of the
message. Furthermore, the connection on which the message was received MUST transition to the

160/ 475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

%5bMS-CMP%5d.pdf#Section_1970a8a0799d4308b9274e4ea23dc225

Ended state, and return a failure result to the higher-layer business logic. The participant MAY also
tear down the session with which the connection was established.<20>

If the connection type defines specific actions that MUST be performed when an invalid message is
received, the connection partner MUST also perform those actions. These actions are specified in the
Message Processing Events and Sequencing Rules section that specifies the behavior of the
connection type.

The various failure results returned to the higher-layer business logic are implementation-specific.
Failure results SHOULD include implementation-specific context around valid error messages and
invalid incoming messages.

3.1.7 Timer Events

None.

3.1.8 Other Local Events

An OleTx connection participant MUST be able to handle the following events at any time during
the lifetime of an OleTx connection.

3.1.8.1 Initiate Connection

The Initiate Connection event MUST be signaled with the following parameters:

= Name Object of the partner to create the connection.

= The connection type of the outgoing connection.

On Initiate Connection event signal, an OleTx connection participant MUST perform the following:

= Create a new Incoming Message Notification Interface object with the event fields set to local
events Receiving a Message (section 3.1.8.4) and Connection Disconnected (section 3.1.8.3)
respectively.

= Signal Create Connection event as specified in [MS-CMP] section 3.1.4.2 by passing the
following parameters:

= The Name Object of the partner to create the connection.
= The connection type of the outgoing connection.
= The new Incoming Message Notification Interface object to receive incoming message
notifications from MSDTC Connection Manager: OleTx Multiplexing Protocol layer.
3.1.8.2 Disconnect Connection
The Disconnect Connection event MUST be signaled with the following argument:
= A Connection object, as specified in [MS-CMP] section 3.1.1.1.

When a Disconnect Connection event is signaled, an OleTx connection participant MUST perform
the following:

= Perform all the actions that are required for a valid disconnection as specified in [MS-CMP] section
3.1.4.3.

161 /475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

%5bMS-CMP%5d.pdf#Section_1970a8a0799d4308b9274e4ea23dc225
%5bMS-CMP%5d.pdf#Section_1970a8a0799d4308b9274e4ea23dc225

3.1.8.3 Connection Disconnected
The Connection Disconnected event MUST be signaled with the following argument:
= A Connection object, as specified in [MS-CMP] section 3.1.1.1.

When a Connection Disconnected event is signaled, an OleTx connection participant MUST
perform the following:

= If the connection type defines specific additional actions that MUST be performed when a
connection is disconnected, the OleTx participant MUST also perform those actions. These actions
are specified in the specific Message Processing Events and Sequencing Rules section that defines
the behavior of a specified connection type when receiving incoming messages.

= The connection MUST be removed from the connection list that belongs to the transaction that is
associated with the connection.

= If the connection state is not already Ended, the state MUST be set to Ended.

3.1.8.4 Receiving a Message
The Receiving a Message event MUST be signaled with the following arguments:

= A protocol message extending the MESSAGE PACKET structure

= A Connection object, as specified in [MS-CMP] section 3.1.1.1.

If the Receiving a Message event is signaled, an OleTx connection participant MUST perform the
following actions:

= Verify the validity of the received protocol message as specified in section 3.1.6.

= When a partner receives a connection request, it MUST accept as valid only a connection type
that is either required or optional for the negotiated protocol version. Invalid connections MUST be
rejected by sending an MTAG_CONNECTION_REQ_DENIED message, [MS-CMP] (section 2.2.5)
with the Reason field set to 0x80070057.

= If the incoming message is MTAG_CONNECTION_REQ_DENIED [MS-CMP] (section 2.2.5)
message:

= If the connection state is not already Ended, the state MUST be set to Ended.
= Return the failure reason code from the Reason field to higher-layer business logic.

= If the connection type defines specific additional actions that MUST be performed when a
connection is requested or when a valid user message is processed, the OleTx participant MUST
also perform those actions. These actions are specified in the specific Message Processing Events
and Sequencing Rules section that defines the behavior of a specified connection type and the
user message type when receiving incoming messages.

3.2 Core Transaction Manager Facet Details

3.2.1 Abstract Data Model

This section describes a conceptual model of possible data organization that an implementation
maintains to participate in this protocol. The described organization is provided to facilitate the
explanation of how the protocol behaves. This document does not mandate that implementations
adhere to this model as long as their external behavior is consistent with the behavior that is
described in this document.

162 / 475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

%5bMS-CMP%5d.pdf#Section_1970a8a0799d4308b9274e4ea23dc225
%5bMS-CMP%5d.pdf#Section_1970a8a0799d4308b9274e4ea23dc225

Note that the abstract data model can be implemented in a variety of ways. This protocol does not
prescribe or advocate any specific implementation technique.

The Core Transaction Manager Facet MUST maintain all the data elements specified in section 3.1.1.

The Core Transaction Manager Facet MUST also maintain the following data elements:

Core Transaction Manager Facet.Durable Log: A durable list of transaction objects. The
contents of the log MUST persist across software restarts or transient failures.

Protocol Extension List: A list of protocol extensions, as specified in section 3.2.1.5.

Extended Whereabouts: A memory buffer that represents the extended whereabouts
information of the transaction manager, contributed by protocol extension objects as specified
in section 3.2.1.5.

Extended Whereabouts Size: The size of the extended whereabouts buffer, in bytes.

Extended Whereabouts Protocol Count: The number of protocol extension objects that
contributed to the extended whereabouts information.

Security Level: An enumeration that indicates the security level at which the transaction
manager initializes communication by using the transports protocol as specified in [MS-CMPO

and the multiplexing protocol as specified in [MS-CMP] section 3.2.1.1. This element MUST be set
to one of the following values: <21>

= No Security: This value is set to indicate that the RPC communications MUST NOT require
validation of the identity for an incoming message.

» Incoming Authentication: This value is set to indicate that the RPC communication SHOULD
validate the identity for an incoming message.

= Mutual Authentication: This value is set to indicate that the RPC communication SHOULD
validate that there is a known identity for an incoming connection. The incoming connection
is refused if the identity is not established. The incoming identity MUST match the pattern
"<domain>\<incoming-MSDTC-name>$", where <incoming-MSDTC-name> is the source
hostname for the connection, and <domain> is the name of the domain in which the host is a
member.

The Core Transaction Manager Facet MUST maintain the following security flags and MUST set
each flag to either TRUE or FALSE:

= Allow Network Access: A Boolean flag that indicates whether the transaction manager will
communicate with an OleTx participant that is located on a remote machine. If this flag is
not set, network access MUST NOT be enabled for the OleTx protocol, regardless of the
settings of the other flags.

= Allow Network Transactions: A Boolean flag that indicates whether the transaction
manager will perform a distributed transaction with an OleTx participant that is located on
a remote machine. If the Allow Network Access flag is set to false, this flag MUST be
ignored.

= Allow Inbound Transactions: A Boolean flag that indicates whether the transaction
manager will act as subordinate to a superior transaction manager facet that is located on
a remote machine. If either the Allow Network Access flag or the Allow Network
Transactions flags are set to false, this flag MUST be ignored.

= Allow Outbound Transactions: A Boolean flag that indicates whether the transaction
manager will act as superior to a subordinate transaction manager facet that is located on a
remote machine. If either the Allow Network Access flag or the Allow Network Transactions
flag is set to false, this flag MUST be ignored.

163 /475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

%5bMS-CMPO%5d.pdf#Section_d2403ca533fa432997f5825ad0868bf6
%5bMS-CMP%5d.pdf#Section_1970a8a0799d4308b9274e4ea23dc225

= Allow Remote Administration: A Boolean flag that indicates whether the transaction
manager will be administered by an application that is located on a remote machine. If the
Allow Network Access flag is set to false, this flag MUST be ignored.

= Allow Remote Clients: A Boolean flag that indicates whether the transaction manager will
communicate with an application or a resource manager that is located on a remote
machine. If the Allow Network Access flag is set to false, this flag MUST be ignored.

= Allow TIP: A Boolean flag that indicates whether the transaction manager has enabled the
TIP protocol, as specified in [RFC2371]. For information on the transaction manager's
interaction with [RFC2371], see [MS-DTCM]. If the Allow Network Access flag is set to
false, this flag MUST be ignored.

= Allow XA: A Boolean flag that indicates whether the transaction manager provides support for
the [C193] protocol in an implementation-specific manner.

= Allow LUTransactions: A Boolean flag that indicates whether the transaction manager
provides support for the MSDTC Connection Manager: OleTx Transaction Protocol Logical Unit
Mainframe Extension protocol, as described in [MS-DTCLU]. A value of TRUE indicates the
transaction manager accepts the connection type supported in the MSDTC Connection
Manager: OleTx Transaction Protocol Logical Unit Mainframe Extension protocol. A value of
FALSE indicates the transaction manager will refuse to accept incoming connections for the
connection type supported in the MSDTC Connection Manager: OleTx Transaction Protocol
Logical Unit Mainframe Extension protocol. If either the Allow Network Access flag or the
Allow Remote Clients flag is set to FALSE, the transaction manager MUST ignore this flag
and MUST refuse to accept incoming connections from remote machines for the connection
type supported in the MSDTC Connection Manager: OleTx Transaction Protocol Logical Unit
Mainframe Extension protocol.

The Core Transaction Manager Facet MUST extend the definition of a transaction object to include
the following data elements:

Superior Enlistment: A reference to an Enlistment object that belongs to either the
subordinate transaction manager facet or the transaction manager communicating with an
application facet, as specified in 3.1.1.

Next Phase Zero Wave Enlistment list: A list of Enlistment objects that represent the
enlistment set of Phase Zero that belongs to the next Phase Zero wave of the transaction.

Phase Zero Enlistment list: A list of Enlistment objects that represent the enlistment set of
Phase Zero that belongs to the current Phase Zero wave of the transaction.

Phase One Enlistment list: A list of Enlistment objects that represent the set of Phase One
enlistments currently registered on the transaction.

Phase One Voter Enlistment list: A list of Enlistment objects that represent the set of voter
enlistments currently registered on the transaction.

Phase Two Enlistment list: A list of Enlistment objects that represent the set of Phase One
enlistments who voted Prepared when asked to vote on the outcome of the transaction.

Phase Two Voter Enlistment list: A list of Enlistment objects that represent the set of voter
enlistments who voted Prepared when asked to vote on the outcome of the transaction.

Root: A flag set to TRUE if the Core Transaction Manager Facet is the root of the transaction;
otherwise, false.

Doomed: A flag set to TRUE if the transaction has been aborted; otherwise, false.

164 / 475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

https://go.microsoft.com/fwlink/?LinkId=90338
%5bMS-DTCM%5d.pdf#Section_7dbf234d2c1540b79a20812f5e3964ec
https://go.microsoft.com/fwlink/?LinkId=89820
%5bMS-DTCLU%5d.pdf#Section_09c6c3c965a74814ad32160d292f8dcb

= Attributes Set: A flag set to TRUE when the transaction attributes are updated by using the Set
Transaction Attributes event.

= Phase Zero Registered: A flag set to TRUE if the transaction has successfully registered for the
next Phase Zero wave; otherwise, false.

= Single Phase Commit: A flag set to TRUE if the Core Transaction Manager Facet was requested
to perform a Single Phase Commit on the transaction; otherwise, false.

= State: A State enumeration that represents the current state of the transaction. These states are
as specified in section 3.2.1.3.

= Isolation Level: An Isolation Level value as specified in section 2.2.6.9.
= Isolation Flags: An Isolation Flags value as specified in section 2.2.6.8.

= Description: An implementation-specific description string that is provided to the core transaction
manager when the transaction is created.

= Timeout: A 32-bit unsigned integer that represents the number of milliseconds after which a root
transaction MUST time out if an outcome is not reached. This value MUST be used to initialize the
Transaction Timeout Timer (section 3.2.2.1).

= GRFRM: A 32-bit unsigned integer that contains an implementation-defined value, as defined in
section 2.2.7.1.

The Core Transaction Manager Facet MUST extend the definition of a connection object, as specified
in [MS-CMP] section 3.1.1.1, to include the following data element:

= Enlistment: A reference to the Enlistment object that is associated with the connection. Some
connections do not use this field.
3.2.1.1 Versioning

The core transaction manager MUST maintain the data that pertains to the extended
whereabouts functionality only on versions where the connection type
CONNTYPE_TXUSER_EXTENDEDWHEREABOUTS is supported as specified in section 2.2.1.1.1. The
following data elements, as specified in section 3.2.1, are affected:

= Extended Whereabouts

» Extended Whereabouts Size

» Extended Whereabouts Protocol Count

= Extended Whereabouts data structures that are provided by protocol extension objects:
* Whereabouts
* Whereabouts Size

The core transaction manager MUST maintain the data that pertains to the Phase Zero functionality
only on versions where the connection type CONNTYPE_TXUSER_PHASEQ is supported as specified in
section 2.2.1.1.3. The following data elements, as specified in 3.2.1, are affected:

= Next Phase Zero Wave Enlistment list
= Phase Zero Enlistment list

= Phase Zero Registered

165 /475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

3.2.1.2 Transaction Logging

When a transaction object is stored in the Core Transaction Manager Facet.Durable Log of the
Core Transaction Manager Facet, the Core Transaction Manager Facet MUST record only the
following fields:

= The Transaction Object.Identifier field.

= The State field. When a transaction object is stored in the Core Transaction Manager
Facet.Durable Log, this field MUST be set to one of the following two states:

= In Doubt
= Failed to Notify
= The Phase Two Enlistment list.

= If the State field of the transaction is set to In Doubt, the Superior Enlistment field MUST be
stored.

When an Enlistment object is stored in the Core Transaction Manager Facet.Durable Log of the
Core Transaction Manager Facet, the Core Transaction Manager Facet MUST record all the object
fields.

When a connection object is stored in the Core Transaction Manager Facet.Durable Log of the
Core Transaction Manager Facet, the Core Transaction Manager Facet MUST record all the object
fields.

When a connection object is retrieved from the Core Transaction Manager Facet.Durable Log of
the Core Transaction Manager Facet, its state MUST be set to Ended.

3.2.1.3 Transaction States

The State field of the transaction object MUST represent the set of different states to which the
logical state machine of the transaction MUST be set.

The transaction State MUST support the following states:
= Idle

= Active

= Phase Zero

= Phase Zero Complete

= Voting

= Voting Complete

= Phase One

= Phase One Complete

= Single Phase Commit

= Committing

= Aborting
= In Doubt

166 / 475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

= Failed to Notify
= Ended

The following state machine diagrams reflect the states and the events that directly change them. The
transaction manager and the transaction can receive more events than those shown, but those

events do not affect the state of the transaction.

Create Transaction

Enlistment Phase
Zero Complete
event received

Fhase Zero

Recovery
event received

ext Phase
Zero Wave
Enlistments list
Is empty?

In Doubt
{as below)

Phase Zero
Cormplete

Begin Voting
event received

. event received
Active Create Superior Enlistment ldie
event received
Mo Beqgin Phase Zero
avent received
Initialization

Motify Recovered
Transaction Committed
avent recaived

Vioting

Failed to
Motify
(as below)

Begin Commit

event received

Voting Complete
event received

Committing
[as below)
Voting
Complete

Forget Transaction
event recelved
|

Farget
Transaction
event
received

Figure 12: Transaction manager states and events (Phase Zero)

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

167/ 475

Has one and
only one Phase One
Enlistment and Single

Phase
Two Enlistments

Phase
One Enlistrments

Phase Commit flag list is empty? list is empty?
set to true? v
e5
Phase One .
Yes Single Phase
No Phase One Completed
Commit flag set Mo
event received 10 true?
Single Phase True False
Commit
Y
i Failed t
Enlistment Phase One ailed to
Phase One Completed Moftify
Completed event received
event received
Transaction information
is saved to durable storage
In Doubt, Phase One
Qutcome? or Committed Complete
ar Prepared " Any of:
Begin Commit In Doubt, Active, Phase
event received Zero, Phase Zero Complete,
Vating, Voting Complete
Read Only Phase One, or Phase Dné
Ahorted Y Complete
Committing N ntiﬁr' Abort
event received
Forget Transaction
event received
Aborting
- Ended

Figure 13: Transaction manager states and events (Phase One)

3.2.1.3.1 Idle
This is the initial state. The following events are processed in the Idle state:

= Create Transaction

= Create Superior Enlistment

= Associate Transaction

. Branch Transaction Success

= Branch Transaction Failure

3.2.1.3.2 Active

168/ 475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

The following events are processed in the Active state:

= Create Phase Zero Enlistment

= Create Voter Enlistment

= Create Subordinate Enlistment

= Register Phase Zero Success

= Register Phase Zero Failure

= Export Transaction

= Set Transaction Attributes

= Set Transaction Timeout

= Begin Phase Zero

= Enlistment Unilaterally Aborted

= Notify Aborted

= Unenlist Phase Zero Enlistment

= Transaction Timeout Timer

3.2.1.3.3 Phase Zero
The following events are processed in the Phase Zero state:

= Create Phase Zero Enlistment

= Create Voter Enlistment

= Create Subordinate Enlistment

= Register Phase Zero Success

= Register Phase Zero Failure

= Export Transaction

= Set Transaction Timeout

= Enlistment Phase Zero Complete

= Enlistment Unilaterally Aborted

= Notify Aborted

= Unenlist Phase Zero Enlistment

= Transaction Timeout Timer

3.2.1.3.4 Phase Zero Complete
The following events are processed in the Phase Zero Complete state:

= Create Phase Zero Enlistment

169/ 475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

= Create Voter Enlistment

= Create Subordinate Enlistment

= Register Phase Zero Success

= Register Phase Zero Failure

= Export Transaction

= Set Transaction Timeout

= Begin Phase One

= Begin Voting

= Enlistment Unilaterally Aborted

= Notify Aborted

= Transaction Timeout Timer

3.2.1.3.5 Voting
The following events are processed in the Voting state:

= Set Transaction Timeout

= Enlistment Vote Complete

= Voting Complete

= Enlistment Unilaterally Aborted

= Notify Aborted

= Transaction Timeout Timer

3.2.1.3.6 Voting Complete
The following events are processed in the Voting Complete state:

= Set Transaction Timeout

= Begin Commit

= Enlistment Unilaterally Aborted

= Notify Aborted

= Forget Transaction

= Transaction Timeout Timer

3.2.1.3.7 Phase One
The following events are processed in the Phase One state:

= Set Transaction Timeout

= Enlistment Vote Complete

170/ 475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

= Enlistment Phase One Complete

= Enlistment Unilaterally Aborted

= Notify Aborted

= Phase One Completed

= Transaction Timeout Timer

3.2.1.3.8 Phase One Complete

The following events are processed in the Phase One Complete state:

= Begin Commit
= Begin In Doubt

= Forget Transaction

3.2.1.3.9 Single Phase Commit

The following events are processed in the Single Phase Commit state:

= Enlistment Phase One Complete

= Phase One Completed

3.2.1.3.10 Committing

The following events are processed in the Committing state:

= Begin Commit

= Enlistment Commit Complete

= Forget Transaction

= Request Transaction Outcome

3.2.1.3.11 Aborting

The following events are processed in the Aborting state:

= Begin Rollback

= Enlistment Rollback Complete

= Forget Transaction

= Request Transaction Outcome

3.2.1.3.12 In Doubt

The following events are processed in the In Doubt state:

= Notify Recovered Transaction Committed

= Forget Transaction

= Resolve Transaction

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

171 /475

= Notify Aborted
3.2.1.3.13 Failed to Notify
The following events are processed in the Failed to Notify state:

= Begin Commit

= Notify Recovered Transaction Committed

= Forget Transaction

= Resolve Transaction

= Request Transaction Qutcome

3.2.1.3.14 Ended
This is the final state. The following event is processed in the Ended state:

= Request Transaction OQutcome

3.2.1.4 Transaction Manager Facets
An OleTx transaction manager is subdivided into the following transaction manager facets:

= Core Transaction Manager Facet

= Transaction Manager Communicating with an Application Facet

= Transaction manager Communicating with a Resource Manager Facet

= Superior Transaction Manager Facet

= Subordinate Transaction Manager Facet

These facets MUST communicate with each other by using a set of events. Each facet MUST define the
set of events that the facet supports.

An event MUST consist of the following data elements:
= The name of the event
= The list of arguments with which the event MUST be signaled

This protocol assumes the existence of an implementation-specific communication mechanism used to
signal events between facets inside a transaction manager. This communication mechanism MUST
NOT allow man-in-the-middle or other classes of intermediary attacks.

Each facet MUST provide a definition for the Name and Enlistment Object.Identifier fields of an
Enlistment object, as specified in section 3.1.1.

The conceptual model that is described here requires that one and only one thread of operation be
active inside the facets that make up the transaction manager.

3.2.1.5 Protocol Extension Objects

A protocol extension is an implementation-specific module that represents the ability to perform
transaction processing by using a transaction coordination protocol that is not OleTx.

172 /475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

Protocol extension objects MUST leverage the following vendor extensibility points in the Core
Transaction Manager Facet:

= The ability to augment the list of transaction manager facets, as specified in section 3.2.1.4, to
include additional protocol-specific facets

= The ability to define custom behavior for the Name and Property fields on Enlistment objects
that are created inside these facets

= The ability to contribute whereabouts information to the extended whereabouts field of the
core transaction manager

= The ability to contribute recovery information to Enlistment objects that are stored in the
durable log, as specified in section 3.1.1

A protocol extension object MUST provide the following data structures:
= Identifier: A GUID that uniquely identifies the protocol extension
= Whereabouts: An array of bytes that represents the protocol extension

= Whereabouts Size: The size of the Whereabouts array

3.2.2 Timers

The Core Transaction Manager Facet MUST provide a Transaction Timeout Timer.

3.2.2.1 Transaction Timeout Timer

The Transaction Timeout timer MUST be set when a new transaction is created. It MUST be
canceled when a transaction enters one of the following states:

= Phase One Complete

= Single Phase Commit

= Committing

= Aborting
= Ended

The default value is specified by the Timeout field on the transaction object for which the instance
of the timer is set. The minimum value of the timer MUST be zero, which means that the timer never
generates a timer event.

When the timer is initialized, the initialization MUST provide a transaction object to associate with
the timer. When the timer expires, the same transaction object MUST be a transaction object
provided alongside the timer notification. The Core Transaction Manager Facet MUST provide a distinct
Transaction Timeout Timer instance for each active transaction. If an implementation sets the value of
the timeout timer to zero, the Transaction Timeout Timer event (section 3.2.6.1) is never signaled,
and therefore the transaction never times out. Examples of negative consequences of transactions
that do not time out include resource availability and deadlocks between resources. In the availability
example, if an application starts a transaction and accesses a resource, to provide isolation that
resource typically blocks access to the specific item until the transaction completes. But if the
application has an issue and does not complete the transaction within a reasonable amount of time,
other applications are prevented from accessing the resource item. In the deadlock example, two
resources are accessed by two different applications, but in reverse order. This results in the two
applications blocking each other because each has its own transaction that holds a lock that the other

173 /475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

needs to proceed. When transaction timeout values are implemented, these error scenarios resolve
themselves by forcing the transactions to rollback after the specified timer period.

3.2.3 Initialization

When the Core Transaction Manager Facet is initialized:

The MSDTC Connection Manager: OleTx Management Protocol [MS-CMOM] uses the registry to
persistently store and retrieve the values for the security settings using the Remote Registry
Protocol [MS-RRP] and Failover Cluster: Management API (ClusAPI) Protocol [MS-CMRP]. The
registry is shared with the MSDTC Connection Manager: OleTx Management Protocol [MS-CMOM].

The Security Level field is loaded directly from the registry key defined in [MS-CMOM] section
3.3.1.2.3.<22>

The following Security Access flags are loaded directly from the registry keys defined in [MS-
CMOM] sections 3.3.1.2.1 and 3.3.1.2.2.

= Allow Network Access

= Allow Network Transactions
= Allow Inbound Transactions
= Allow Outbound Transactions
= Allow Remote Administration
= Allow Remote Clients

= Allow TIP

= Allow XA

= Allow LUTransactions

The lower-layer transport protocol, the MSDTC Connection Manager: OleTx Multiplexing Protocol
(section 2.1) MUST be initialized as specified in [MS-CMP] section 3.1.3, by passing the following
parameter values as specified in section 2.1.2. The MSDTC Connection Manager: OleTx
Multiplexing Protocol initialization as specified in [MS-CMP] section 3.1.3, initializes the MSDTC
Connection Manager: OleTx Transports Protocol layer with additional parameters as specified in

MS-CMPOQO] section 3.2.3.

= The Security Level field ([MS-CMPO] Local Partner State (section 3.2.1.1)) is initialized with
the Security Level value in Core Transaction Manager Facet.

= The Minimum Level 3 Version Number and Maximum Level 3 Version Number fields
([MS-CMPO] section 3.2.1.1) are initialized with the computed minimum and maximum
protocol version values, as specified in section 3.1.4.2.

= Compute a Local Name Object by initializing the fields of the Name object (see [MS-CMPO]
section 3.2.1.4) with following values:

* HostName: The HostName field is initialized with the value of the
ComputerName.NetBIOS element of the machine as specified in [MS-WKST] section
3.2.1.2.

= CID: The CID field is initialized as follows:

174 / 475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

%5bMS-CMOM%5d.pdf#Section_e4e4626dcb7a461983150acffe974858
%5bMS-RRP%5d.pdf#Section_0fa3191dbb79490a81bd54c2601b7a78
%5bMS-CMRP%5d.pdf#Section_ba4117c0530e4e70a0854b4cf5bbf193
%5bMS-CMP%5d.pdf#Section_1970a8a0799d4308b9274e4ea23dc225
%5bMS-CMPO%5d.pdf#Section_d2403ca533fa432997f5825ad0868bf6
%5bMS-WKST%5d.pdf#Section_5bb08058bc364d3cabebb132228281b7

»= Read the string value from the <MSDTC_GUID> registry key as specified in [MS-
CMOM] section 2.2.3.5, for the Description\Default value of "MSDTC" as specified in
[MS-CMOM] section 2.2.3.5.1.

= Convert the <MSTDC_GUID> string to GUID as specified in [C706] Appendix A.
= Protocols:
= If the Allow Network Access flag is set to false:

= The Protocols field is initialized to PROT_LRPC flag as described in [MS-CMPO]
(section 2.2.4).

= Otherwise:

= The Protocols field is initialized directly from the "ServiceNetworkProtocols"
registry key as specified in [MS-CMOM] section 2.2.3.4.

= The computed Local Name Object is used to initialize the Local Name Object field ([MS-
CMPOQO] section 3.2.1.1).

= The protocol extension list MUST be populated with instances that are obtained from an
implementation-specific source.

= If the protocol extension list is not empty, the Core Transaction Manager Facet MUST perform
the following actions:

= Query each protocol extension for its extended whereabouts information by using the
Whereabouts and Whereabouts Size fields of the object.

= Create an array of STmToTmProtocol (section 2.2.5.9) structures and assign it to the
Extended Whereabouts field of the Core Transaction Manager Facet:

= The array MUST contain an entry for each protocol extension that contributes extended
whereabouts information.

= The tmprotDescribed field of each entry MUST be set to TmProtocolExtended, as
specified in section 2.2.6.2.

= The rgbTmProtocolData field of each entry MUST contain an
SExtendedEndpointInfo (section 2.2.5.8) structure.

= The cbTmProtocolData field of each entry MUST be set to the length, in bytes, of the
rgbTmProtocolData field.

= Assign the size, in bytes, of the STmToTmProtocol array to the Extended Whereabouts
Size field of the Core Transaction Manager Facet.

= Assign the number of protocol extensions that contribute extended whereabouts
information to the STmToTmProtocol array to the Extended Whereabouts Protocol
Count field of the Core Transaction Manager Facet.

3.2.3.1 Transaction Object Initialization

The Core Transaction Manager Facet MUST initialize each new transaction object that is created by
the facet with the following default values:

= The Root field MUST default to false.

= The Doomed field MUST default to false.

175/ 475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

https://go.microsoft.com/fwlink/?LinkId=89824

= The Attributes Set field MUST default to false.

= The Phase Zero Registered field MUST be set to false.
= The Single Phase Commit field MUST default to false.
= The State field MUST default to Idle.

* The Isolation Level field MUST default to Serializable.
= The Isolation Flags field MUST default to zero.

= The Description field MUST default to an empty string.
* The GRFRM field MUST default to zero.

= The Timeout field value MUST<23> default to a value that is obtained in an implementation-
specific manner.

3.2.3.2 Durable Log

The Core Transaction Manager Facet.Durable Log size is configurable and is stored in the
registry. It is configured in an implementation-specific manner.<24>

3.2.3.3 Transaction Recovery

If the Core Transaction Manager Facet.Durable Log of the Core Transaction Manager Facet is not
empty, it MUST perform the following actions:

= For each transaction object in the Core Transaction Manager Facet.Durable Log of the Core
Transaction Manager Facet:

= Initialize the transaction object fields which are not durably stored with default values, as
specified in Transaction Object Initialization (section 3.2.3.1).

= Copy the transaction object to the transaction table of the Core Transaction Manager
Facet.<25>

= After all transactions in the Core Transaction Manager Facet.Durable Log are copied to the
transaction table, start accepting new connections.

= For each transaction object in the transaction table of the Core Transaction Manager Facet:
= If the transaction state is In Doubt (section 3.2.1.3.12):

= Signal the Recover In Doubt Transaction (section 3.8.7.8) event on the transaction
manager facet that is referenced by the transaction object's Superior Enlistment field
with the value of the transaction object's Superior Enlistment field.

= QOtherwise:

= Signal the Notify Recovered Transaction Committed (section 3.2.7.24) event on the Core
Transaction Manager Facet with the transaction object.

3.2.4 Higher-Layer Triggered Events

None.

176 / 475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

3.2.5 Processing Events and Sequencing Rules
3.2.6 Timer Events

3.2.6.1 Transaction Timeout Timer

When the Transaction Timeout timer expires, the core transaction manager MUST perform the
following actions:

= If the provided transaction object is in one of the following states, the core transaction manager
MUST ignore the timer event:

= Phase One Complete

= Single Phase Commit

= Committing

= Aborting
= In Doubt

= Failed to Notify
= Ended
= Otherwise, the core transaction manager MUST:

= Signal the Unilaterally Aborted event on the transaction's superior enlistment's transaction
manager facet with the Superior Enlistment object of the transaction.

= Signal the Notify Aborted event on the Core Transaction Manager Facet using the provided
transaction object.

3.2.7 Other Local Events

The core transaction manager MUST be prepared to process the local events that are defined in the
following sections.

If the Core Transaction Manager Facet supports the CONNTYPE TXUSER PHASEOQO connection type,
this facet MUST be prepared to process local events that pertain to Phase Zero functionality. The
following local events are affected:

= Create Phase Zero Enlistment

= Register Phase Zero Success

= Register Phase Zero Failure

= Begin Phase Zero

= Enlistment Phase Zero Complete

= Unenlist Phase Zero Enlistment

3.2.7.1 Associate Transaction

The Associate Transaction event MUST be signaled with the following arguments:

177 /475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

= A transaction object
= A Name object representing the remote superior transaction manager

If the Associate Transaction event is signaled, the Core Transaction Manager
Facet (section 1.3.3.3.1) MUST perform the following actions:

= If the Core Transaction Manager Facet.Durable Log is too full (section 3.2.3.2) to accept the
transaction object:

= Signal the Associate Transaction Failure (section 3.4.7.1) event on the Transaction Manager
Communicating with an Application Facet (section 1.3.3.3.2) with the following arguments:

= The transaction object
= The Log Full Local reason code
= Otherwise:

= Signal the Branch Transaction (section 3.8.7.1) event on the Subordinate Transaction Manager
Facet (section 1.3.3.3.5) with the following arguments:

= The transaction object

= The Name object

3.2.7.2 Begin Commit
The Begin Commit event MUST be signaled with the following argument:
= A transaction object

If the Begin Commit event is signaled, the Core Transaction Manager Facet MUST perform the
following actions:

= Set the transaction state to Committing (section 3.2.1.3.10).
= If the Phase Two Voter Enlistment list of the transaction is not empty:
= For each Enlistment object in the Phase Two Voter Enlistment list of transaction:

= Remove the Enlistment object from the Phase Two Voter Enlistment list of the
transaction.

= Signal the Begin Commit event (see sections 3.4.7.3, 3.6.7.1, and 3.7.7.1) on the
enlistment's transaction manager facet field with the Enlistment object.

= If the Phase Two Enlistment list of the transaction is not empty:
= For each Enlistment object in the Phase Two Enlistment list of the transaction:

= Signal the Begin Commit event on the enlistment's transaction manager facet field with
the Enlistment object.

= Otherwise, if the Phase Two Enlistment list of the transaction is empty:

»= Signal the Commit Complete (section 3.8.7.3) event on the transaction's superior enlistment's
transaction manager facet with the transaction's Superior Enlistment object.

= Signal the Forget Transaction (section 3.2.7.22) event on the Core Transaction Manager Facet
with the provided transaction object.

178 /475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

3.2.7.3 Begin In Doubt
The Begin In Doubt event MUST be signaled with the following argument:
= A transaction object

If the Begin In Doubt event is signaled, the Core Transaction Manager Facet MUST perform the
following actions:

= For each Enlistment object in the Phase Two Voter Enlistment list of the transaction:

= Signal the Begin In Doubt event (see sections 3.4.7.4 and 3.6.7.2) on the Enlistment
object's transaction manager facet with the Enlistment object.

= Signal the Forget Transaction (section 3.2.7.22) event on the Core Transaction Manager Facet
with the provided transaction object.

3.2.7.4 Begin Phase One
The Begin Phase One event MUST be signaled with the following arguments:
= A transaction object

= A flag indicating whether the transaction SHOULD or MUST NOT attempt to perform a single-
phase commit

If the Begin Phase One event is signaled, the Core Transaction Manager Facet MUST perform the
following actions:

= Set the Single Phase Commit field of the transaction to the value of the given Single Phase
Commit flag (defined in section 3.2.1).

= Signal the Begin Voting (section 3.2.7.7) event on the Core Transaction Manager Facet with the
following argument:

= The given transaction object

3.2.7.5 Begin Phase Zero
The Begin Phase Zero event MUST be signaled with the following arguments:
= A transaction object

If the Begin Phase Zero event is signaled, the Core Transaction Manager Facet MUST perform the
following actions:

= Set the transaction state to Phase Zero (section 3.2.1.3.3).

= Move each Enlistment object in the Next Phase Zero Wave Enlistment list of the transaction to
the Phase Zero Enlistment list of the transaction.

= Set the Phase Zero Registered flag of the transaction object to FALSE.
= If the Phase Zero Enlistment list of the transaction is not empty:
= For each Enlistment object in the Phase Zero Enlistment list of the transaction:

= Signal the Begin Phase Zero event (see sections 3.6.7.4 and 3.7.7.3) on the Enlistment
object's transaction manager facet with the Enlistment object.

= QOtherwise:

179 /475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

= Set the transaction state to Phase Zero Complete (section 3.2.1.3.4).

»= Signal the Phase Zero Complete event (see sections 3.4.7.14 and 3.8.7.6) on the superior
enlistment's transaction manager facet of the transaction with the following arguments:

= The Superior Enlistment object of the transaction

= The success outcome

3.2.7.6 Begin Rollback
The Begin Rollback event MUST be signaled with the following argument:
= A transaction object

If the Begin Rollback event is signaled, the Core Transaction Manager Facet (section 1.3.3.3.1)
MUST perform the following actions:

= Signal the Rollback Complete event (see sections 3.4.7.18 and 3.8.7.10) on the transaction's
superior enlistment's transaction manager facet with the Superior Enlistment object of the
transaction.

= Signal the Notify Aborted (section 3.2.7.23) event on the Core Transaction Manager Facet with the
following argument:

= The given transaction object

3.2.7.7 Begin Voting
The Begin Voting event MUST be signaled with the following arguments:
= A transaction object

If the Begin Voting event is signaled, the Core Transaction Manager Facet (section 1.3.3.3.1) MUST
perform the following actions:

= Set the transaction state to Voting (section 3.2.1.3.5).
= If the Phase One (section 1.3.1.2) Voter Enlistment list of the transaction is empty:

= Signal the Voting Complete (section 3.2.7.35) event on the Core Transaction Manager Facet
with the provided transaction object.

= Otherwise:
= For each Enlistment object in the Phase One Voter Enlistment list of the transaction:

= Signal the Begin Voting event (see sections 3.4.7.6 and 3.6.7.6) on the enlistment's
transaction manager facet field with the Enlistment object.

= If the Phase One Enlistment list of the transaction contains more than one element, or if it
contains one element and the Single Phase Commit flag (defined in section 3.2.1) of the
transaction is set to FALSE:

= For each Enlistment object in the Phase One Voter Enlistment list of the transaction:

= Signal the Begin Phase One (see section 3.6.7.3 and section 3.7.7.2) event on the
enlistment's transaction manager facet field with the following argument:

= The Enlistment object

180/ 475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

* The Single Phase Commit flag set to false

3.2.7.8 Branch Transaction Failure
The Branch Transaction Failure event MUST be signaled with the following arguments:
= An Enlistment object
= A value indicating the failure reason. The reason MUST be set to one of the following values:
= Log Full Remote
= No Mem Remote
= Too Late
= Too Many Remote
= Tx Not Found
= Comm Failed

If the Branch Transaction Failure event is signaled, the Core Transaction Manager
Facet (section 1.3.3.3.1) MUST perform the following actions:

= Signal the Associate Transaction Failure (section 3.4.7.1) event on the transaction manager
communicating with an application facet with the following arguments:

= The provided transaction object

= The provided reason code

3.2.7.9 Branch Transaction Success
The Branch Transaction Success event MUST be signaled with the following arguments:
= An Enlistment object.

If the Branch Transaction Success event is signaled, the Core Transaction Manager
Facet (section 1.3.3.3.1) MUST perform the following actions:

= Add the transaction object of the enlistment to the transaction table of the Core Transaction
Manager Facet (section 1.3.3.3.1).

= Set the superior enlistment of the transaction to the provided Enlistment object.

= Signal the Associate Transaction Success (section 3.4.7.2) event on the transaction manager
communicating with an application facet with the transaction object of the enlistment.

3.2.7.10 Create Phase Zero Enlistment
The Create Phase Zero Enlistment event MUST be signaled with the following arguments:
= An Enlistment object

If the Create Phase Zero Enlistment event is signaled, the Core Transaction Manager
Facet (section 1.3.3.3.1) MUST perform the following actions:

= If the transaction state of the transaction object referenced by the provided Enlistment object
is Phase Zero (section 3.2.1.3.3):

181/ 475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

= The Core Transaction Manager Facet MUST:

= Signal the Create Phase Zero Enlistment Success (see section 3.6.7.8 and section 3.7.7.6)
event on the Enlistment object's transaction manager facet with the provided
Enlistment object.

= Signal the Begin Phase Zero (section 3.6.7.4 and section 3.7.7.3) event on the provided
Enlistment object's transaction manager facet with the provided Enlistment object.

Otherwise, if the transaction state is Active (section 3.2.1.3.2) or Phase Zero
Complete (section 3.2.1.3.4):

= If the Next Phase Zero Wave Enlistment list of the transaction is empty:

= Signal the Register Phase Zero (section 3.4.7.15) event on the transaction's superior
enlistment's transaction manager facet with the transaction's Superior Enlistment
object.

= Otherwise, if the list is nonempty and the Phase Zero Registered flag of the transaction is
true:

= Signal the Create Phase Zero Enlistment Success (section 3.6.7.8 and section 3.7.7.6)
event on the enlistment object's transaction manager facet with the Enlistment object.

= Add the provided enlistment to the Next Phase Zero Wave Enlistment list of the
transaction.

Otherwise:

» Signal the Create Phase Zero Enlistment Failure (section 3.6.7.7 and section 3.7.7.5)
event on the Enlistment object's transaction manager facet field with the following
arguments:

» The provided Enlistment object

= The Too Late reason code

3.2.7.11 Create Subordinate Enlistment

The Create Subordinate Enlistment event MUST be signaled with the following arguments:

An Enlistment object

If the Create Subordinate Enlistment event is signaled, the Core Transaction Manager Facet MUST
perform the following actions:

If the state of the transaction object referenced by the provided Enlistment object is not
Active (section 3.2.1.3.2) and not Phase Zero (section 3.2.1.3.3) and not Phase Zero
Complete (section 3.2.1.3.4):

= Signal the Create Subordinate Enlistment Failure (see sections 3.6.7.10 and 3.7.7.7) event on
the Enlistment object's transaction manager facet with the following arguments:

= The provided Enlistment object
= The Too Late reason code

Otherwise, if the Core Transaction Manager Facet.Durable Log is too full to accept the
transaction object referenced by the provided Enlistment object:

182 / 475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

»= Signal the Create Subordinate Enlistment Failure (see sections 3.6.7.10 and 3.7.7.7)
event on the Enlistment object's transaction manager facet with the following arguments:

= The provided Enlistment object
= The Log Full reason code

Otherwise, compute the number of Enlistment objects in the Phase One Enlistment list of the
transaction object referenced by the provided Enlistment object whose Transaction Manager
Facet field is set to Superior Transaction Manager Facet (section 3.2.1.4).

If this computed number of Enlistment objects is greater than or equal to an implementation-
specific value that indicates the maximum allowed Transaction Manager Enlistments: <26>

= Signal the Create Subordinate Enlistment Failure (see sections 3.6.7.10 and 3.7.7.7) event on
the Enlistment object's transaction manager facet with the following arguments:

= The provided Enlistment object
= The Too Many reason code
Otherwise:

= Add the provided Enlistment object to the transaction's Phase One Enlistment list.

= Signal the Create Subordinate Enlistment Success (see sections 3.6.7.11 and 3.7.7.8) event
on the Enlistment object's transaction manager facet with the provided Enlistment object.

3.2.7.12 Create Superior Enlistment

The Create Superior Enlistment event MUST be signaled with the following arguments:

An Enlistment object

If the Create Superior Enlistment event is signaled, the Core Transaction Manager MUST perform
the following actions:

If the transaction referenced by the provided Enlistment object already exists in the transaction
table:

= Signal the Create Superior Enlistment Failure (section 3.8.7.5) event on the Transaction
Manager facet referenced by the provided Enlistment object with the following arguments:

= The provided Enlistment object
= The Duplicate reason code

Otherwise, if the Core Transaction Manager Facet.Durable Log is too full (section 3.2.3.2) to
accept the transaction object referenced by the provided Enlistment object:

= Signal the Create Superior Enlistment Failure (section 3.8.7.5) event on the Enlistment
object's transaction manager facet with the following arguments:

= The provided Enlistment object
= The Log Full reason code
Otherwise:

= Add the transaction object referenced by the provided Enlistment object to the transaction
table, using the Transaction Object.Identifier field of the transaction object as the key.

183/ 475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

= Set the transaction's Superior Enlistment field to the provided Enlistment object.
= Set transaction State to Active.
= Set the transaction's Root flag to FALSE.

= Signal the Create Superior Enlistment Success (section 3.8.7.4) event on the transaction
manager facet referenced by the provided Enlistment object with the provided Enlistment
object.
3.2.7.13 Create Transaction
The Create Transaction event MUST be signaled with the following arguments:

= An Enlistment object

If the Create Transaction event is signaled, the Core Transaction Manager MUST perform the
following actions:

= The Core Transaction Manager MUST:

= Look for an existing entry in the transaction table, using the Transaction Object.Identifier
field of the transaction object referenced by the provided Enlistment object as the
key.<27>

= If an entry exists:

= Signal the Create Transaction Failure (section 3.4.7.7) event on the Transaction Manager
facet referenced by the provided Enlistment object with the following arguments:

= The provided transaction object
= The Duplicate reason code
= Cease processing the event

= If the Core Transaction Manager does not have sufficient memory available to process the
Create Transaction event:

= Signal the Create Transaction Failure (section 3.4.7.7) event on the Transaction
Manager facet referenced by the provided Enlistment object with the following
arguments:

= The provided transaction object
= The No Mem reason code
= Cease processing the event.

= If the Core Transaction Manager Facet.Durable Log is too full (section 3.2.3.2) to accept
a new transaction:

»= Signal the Create Transaction Failure (section 3.4.7.7) event on the Transaction
Manager facet referenced by the provided Enlistment object with the following
arguments:

= The provided transaction object
= The Log Full reason code

= Cease processing the event.

184 / 475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

= Add the transaction object referenced by the provided Enlistment object to the transaction
table, by using the Transaction Object.Identifier field of the transaction object as the key.

= Set the transaction's Superior Enlistment to the provided Enlistment object.
= Set the transaction's Root flag to true.
= Set the transaction's State to Active.
= Initialize the transaction Timeout timer with the following arguments:
= The transaction object
= The transaction object's Timeout value

= Signal the Create Transaction Success (section 3.4.7.8) event on the Transaction Manager facet
referenced by the provided enlistment with the transaction object referenced by the provided
Enlistment object.

3.2.7.14 Create Voter Enlistment
The Create Voter Enlistment event MUST be signaled with the following arguments:
= An Enlistment object

If the Create Voter Enlistment event is signaled, the Core Transaction Manager
Facet (section 1.3.3.3.1) MUST perform the following actions:

= If the state of the transaction object referenced by the provided Enlistment object is not
Active (section 3.2.1.3.2) and not Phase Zero (section 3.2.1.3.3) and not Phase Zero
Complete (section 3.2.1.3.4):

= Signal the Create Voter Enlistment Failure (see section 3.4.7.9 and section3.6.7.12) event
on the Enlistment object's Transaction Manager facet with the following arguments:

= The Enlistment object
= The Too Late reason code
= Otherwise:
= Add the provided Enlistment object to the transaction's Phase One Voter Enlistment list.

= Signal the Create Voter Enlistment Success (see section 3.4.7.10 and section 3.6.7.13)
event on the Enlistment object's Transaction Manager facet with the provided Enlistment
object.
3.2.7.15 Enlistment Commit Complete

The Enlistment Commit Complete event MUST be signaled with an Enlistment object.

If the Enlistment Commit Complete event is signaled, the Core Transaction Manager
Facet (section 1.3.3.3.1) MUST perform the following actions:

= Remove the enlistment from the transaction's Phase Two Enlistment list.

= If the Phase Two Enlistment list of the transaction object referenced by the provided
Enlistment object is now empty:

= If the transaction's Single Phase Commit flag (defined in section 3.2.1) is FALSE and the
transaction state is not Failed to Notify (section 3.2.1.3.13):

185/ 475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

= Signal the Commit Complete (section 3.8.7.3) event on the transaction's Superior
Enlistment's Transaction Manager facet with the transaction's Superior Enlistment
object.

= Signal the Forget Transaction (section 3.2.7.22) event on the Core Transaction Manager Facet
with the transaction object of the Enlistment.

3.2.7.16 Enlistment Phase One Complete
The Enlistment Phase One Complete event MUST be signaled with the following arguments:
= An Enlistment object.

= A value indicating the enlistment's outcome for Phase One (section 1.3.1.2). This value MUST be
set to one of the following values:

= Committed

= Aborted
= In Doubt
= Read Only

= Prepared

If the Enlistment Phase One Complete event is signaled, the Core Transaction Manager
Facet (section 1.3.3.3.1) MUST perform the following actions:

= If the transaction’'s Doomed flag is set to TRUE or the transaction state is
Aborting (section 3.2.1.3.11), the Core Transaction Manager Facet (section 1.3.3.3.1) MUST
ignore the signal.

= Otherwise:
= Remove the enlistment from the transaction's Phase One Enlistment list.
= If the transaction state is Single Phase Commit (section 3.2.1.3.9):
= If the enlistment's Phase One outcome is Committed:
= Set the transaction's state to Phase One Complete (section 3.2.1.3.8).

= Signal the Phase One Complete (section 3.4.7.13) event on the transaction's Superior
Enlistment's Transaction Manager facet with the following arguments:

= The transaction's Superior Enlistment object
* The Committed outcome

= Signal the Begin Commit (section 3.2.7.2) event on the Core Transaction Manager
Facet with the provided transaction object.

= Cease processing the event.
= Otherwise, if the Enlistment's Phase One outcome is Read Only:

= Signal the Phase One Complete event on the Transaction Manager Facet of the
transaction's Superior Enlistment with the following arguments:

= The transaction's Superior Enlistment object

186 / 475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

= The Read Only outcome

= Signal the Forget Transaction (section 3.2.7.22) event on the Core Transaction
Manager Facet with the provided transaction object.

= Otherwise, if the enlistment's Phase One outcome is In Doubt (section 3.2.1.3.12):
= Set the transaction's state to Phase One Complete.

= Signal the Phase One Complete event on the transaction's Superior Enlistment's
Transaction Manager facet with the following arguments:

= The transaction's Superior Enlistment object
= The In Doubt outcome

= Signal the Begin In Doubt (section 3.2.7.3) event on the Core Transaction Manager
Facet with the provided transaction object.

= Cease processing the event.
= If the transaction state is Phase One or Single Phase Commit:
= If the enlistment's Phase One outcome is Aborted:
= Set the transaction's Doomed flag to TRUE.

= Signal the Phase One Complete event on the transaction's Superior Enlistment's
Transaction Manager facet with the following arguments:

= The transaction's Superior Enlistment object
= The Aborted outcome

= Signal the Notify Aborted (section 3.2.7.23) event on the Core Transaction Manager
Facet with the provided transaction object.

= Cease processing the event.

= Otherwise, if the Enlistment's Phase One outcome is Prepared:
» Add the Enlistment to the transaction's Phase Two Enlistment list.
= Set the transaction's state to Phase One Complete.

= If both the transaction's Phase One Voter Enlistment list and Phase One Enlistment list
are now empty:

= Signal the Phase One Completed (section 3.2.7.25) event on the Core Transaction
Manager Facet (section 1.3.3.3.1) with the provided transaction object.

3.2.7.17 Enlistment Phase Zero Complete
The Enlistment Phase Zero Complete event MUST be signaled with the following arguments:
= An Enlistment object.

= A value indicating the enlistment's outcome for Phase Zero (section 1.3.1.1). This value MUST be
set to one of the following values:

= Completed

187 /475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

= Aborted

If the Enlistment Phase Zero Complete event is signaled, the Core Transaction Manager
Facet (section 1.3.3.3.1) MUST perform the following actions:

= Remove the enlistment from the transaction's Phase Zero Enlistments list.
= If the enlistment's Phase Zero outcome is Aborted:

= Set the transaction's Doomed flag to TRUE.
= If the transaction's Phase Zero Enlistments list is now empty:

= Set the transaction's state to Phase Zero Complete (section 3.2.1.3.4).

= If the transaction's Doomed flag is set to true:

= Signal the Phase Zero Complete (section 3.8.7.6) event on the transaction's Superior
Enlistment's Transaction Manager facet with the following arguments:

= The transaction's Superior Enlistment object
= The Failure outcome

= Signal the Notify Aborted (section 3.2.7.23) event on the Core Transaction Manager Facet
with the provided transaction object.

= Otherwise:
= If the transaction's Root flag is TRUE:
= If the transaction's Next Phase Zero Wave Enlistment list is not empty:
= Set the transaction's State to Active (section 3.2.1.3.2).

»= Signal the Begin Phase Zero (section 3.2.7.5) event on the Core Transaction
Manager Facet with the provided Enlistment's transaction object.

= Otherwise:

= Signal the Phase Zero Complete event on the transaction's Superior Enlistment's
Transaction Manager facet with the following arguments:

= The transaction's Superior Enlistment object
* The Success outcome
= Otherwise, if the transaction's Root flag is FALSE:
= If the transaction's Next Phase Zero Wave Enlistment list is not empty:
= Set the transaction's state to Active.

= Signal the Phase Zero Complete event on the transaction's Superior Enlistment's
Transaction Manager facet with the following arguments:

* The transaction's Superior Enlistment object

. The Success outcome

188 /475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

3.2.7.18 Enlistment Rollback Complete
The Enlistment Rollback Complete event MUST be signaled with an Enlistment object.

If the Enlistment Rollback Complete event is signaled, the Core Transaction Manager
Facet (section 1.3.3.3.1) MUST perform the following actions:

= Remove the Enlistment from the transaction's Phase Two Enlistment list.
= If the transaction's Phase Two Enlistment list is now empty:

= Signal the Forget Transaction (section 3.2.7.22) event on the Core Transaction Manager
Facet (section 1.3.3.3.1) with the Enlistment's transaction object.

3.2.7.19 Enlistment Unilaterally Aborted
The Enlistment Unilaterally Aborted event MUST be signaled with the following arguments:
= An Enlistment object

If the Enlistment Unilaterally Aborted event is signaled, the Core Transaction Manager
Facet (section 1.3.3.3.1) MUST perform the following actions:

= If the transaction state is Active (section 3.2.1.3.2), Phase Zero (section 3.2.1.3.3), Phase Zero
Complete (section 3.2.1.3.4), Voting (section 3.2.1.3.5), Voting Complete (section 3.2.1.3.6) or
Phase One (section 3.2.1.3.7):

= Remove the provided Enlistment object from any of the following transaction lists in which it
is present:

* Next Phase Zero Wave Enlistment list
* Phase Zero Enlistment list
* Phase One Enlistment list
= Phase One Voter Enlistment list
= If the transaction state is Phase Zero (section 3.2.1.3.3):

= Signal the Phase Zero Complete (see sections 3.4.7.14 and 3.8.7.6) event on the
transaction's Superior Enlistment's Transaction Manager Facet with the following
arguments:

= The transaction's Superior Enlistment object
= The Failure outcome

= Otherwise, if the transaction state is Voting (section 3.2.1.3.5) or Phase
One (section 3.2.1.3.7):

= Signal the Phase One Complete (see sections 3.4.7.13 and 3.8.7.7) event on the
transaction's Superior Enlistment's Transaction Manager facet with the following
arguments:

* The transaction's Superior Enlistment object
= The Aborted outcome

= Otherwise:

189 /475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

= Signal the Unilaterally Aborted (see sections 3.4.7.23 and 3.8.7.11) event on the
transaction's Superior Enlistment's Transaction Manager facet with the transaction's
Superior Enlistment object.

= Signal the Notify Aborted (section 3.2.7.23) event on the Core Transaction Manager
Facet (section 1.3.3.3.1) with the transaction object referenced by the Transaction field of
the provided Enlistment object.

= Otherwise, ignore the event.

3.2.7.20 Enlistment Vote Complete

The Enlistment Vote Complete event MUST be signaled with the following arguments:

= An Enlistment object.

*= A value indicating the Enlistment's vote. This value MUST be set to one of the following values:
= Read Only
= Prepared
= Aborted

If the Enlistment Vote Complete event is signaled, the Core Transaction Manager
Facet (section 1.3.3.3.1) MUST perform the following actions:

= If the transaction’'s Doomed flag is set to TRUE, the Core Transaction Manager Facet MUST
cease processing the event.

= Otherwise:
= If the Enlistment's Vote outcome is Aborted:
= Set the transaction's Doomed flag to TRUE.

= Remove the Enlistment from the transaction's Phase One (section 1.3.1.2) Voter
Enlistment list.

= Signal the Phase One Completed event (section 3.2.7.25) on the transaction's Superior
Enlistment's Transaction Manager facet with the following arguments:

= The transaction's Superior Enlistment object.
= The Aborted outcome.

= Signal the Notify Aborted (section 3.2.7.23) event on the Core Transaction Manager
Facet (section 1.3.3.3.1) with the provided transaction object.

» Otherwise:
= If the enlistment's Vote outcome is Read Only:
= Remove the Enlistment from the transaction's Phase One Voter Enlistment list.
= Otherwise:

= Move the Enlistment from the transaction's Phase One Voter Enlistment list to the
transaction's Phase Two (section 1.3.1.3) Voter Enlistment list.

= If the transaction's Phase One Voter Enlistment list is now empty:

190 / 475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

= If the transaction state is Voting (section 3.2.1.3.5):

= Signal the Voting Complete (section 3.2.7.35) event on the Core Transaction
Manager Facet (section 1.3.3.3.1) with the provided transaction object.

= Otherwise, if the transaction state is Phase One (section 3.2.1.3.7):

= If both the transaction's Phase One Voter Enlistment list and Phase One
Enlistment list are now empty:

= Signal the Phase One Completed (section 3.2.7.25) event on the Core
Transaction Manager Facet (section 1.3.3.3.1) with the provided transaction
object.

3.2,.7.21 Export Transaction

The Export Transaction event MUST be signaled with the following arguments:

A transaction object

A Name object representing the remote subordinate transaction manager

If the Export Transaction event is signaled, the Core Transaction Manager Facet (section 1.3.3.3.1)
MUST perform the following actions:

If the transaction state is not Active (section 3.2.1.3.2), or Phase Zero (section 3.2.1.3.3), or
Phase Zero Complete (section 3.2.1.3.4):

= Signal the Export Transaction Failure (section 3.4.7.11) event on the Transaction Manager
communicating with an Application facet with the following arguments:

= The provided transaction object
= The Too Late reason code

Otherwise, if the Core Transaction Manager Facet.Durable Log is too full (section 3.2.3.2) to
accept the provided transaction object:

» Signal the Export Transaction Failure event on the Transaction Manager Communicating
with an Application facet with the following arguments:

= The provided transaction object
= The Log Full reason code
Otherwise:

= Compute the humber of Enlistment objects in the transaction's Phase One Enlistment list
whose Transaction Manager Facet field is the superior transaction manager.

= If that number is equal to an implementation-specific value that indicates the maximum
allowed Transaction Manager enlistments: <28>

= Signal the Export Transaction Failure event on the Transaction Manager communicating
with an Application facet with the following arguments:

= The provided transaction object
= The Too Many reason code

= QOtherwise:

191/ 475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

= Signal the Propagate Transaction (section 3.7.7.10) event on the Superior Transaction
Manager facet with the following arguments:

= The provided transaction object

= The provided Name object

3.2.7.22 Forget Transaction
The Forget Transaction event MUST be signaled with the following arguments:
= A transaction object

If the Forget Transaction event is signaled, the Core Transaction Manager Facet (section 1.3.3.3.1)
MUST perform the following actions:

= Remove the provided transaction object from the transaction table.

= If the transaction was added to the Core Transaction Manager Facet.Durable Log of the Core
Transaction Manager Facet (section 1.3.3.3.1):

= Remove the transaction from the Core Transaction Manager Facet.Durable Log.

= Set the transaction's state to Ended.

3.2.7.23 Notify Aborted
The Notify Aborted event MUST be signaled with the following arguments:
= A transaction object

If the Notify Aborted event is signaled, the Core Transaction Manager Facet (section 1.3.3.3.1)
MUST perform the following actions:

= Set the transaction's state to Aborting (section 3.2.1.3.11).

= Move each Enlistment object in the transaction's Next Phase Zero Wave Enlistment list to the
transaction's Phase Zero Enlistment list.

= For each Enlistment object in the transaction's Phase Zero Enlistment list:

= Signal the Phase Zero Aborted event (see sections 3.6.7.14 and 3.7.7.9) on the Enlistment's
Transaction Manager facet field with the Enlistment object.

= Move each Enlistment object in the transaction's Phase One (section 1.3.1.2) Voter Enlistment
list to the transaction's Phase Two (section 1.3.1.3) Voter Enlistment list

= For each Enlistment object in the transaction's Phase Two Voter Enlistment list:

= Signal the Begin Rollback event (sections 3.4.7.5, 3.6.7.5 and 3.7.7.4) on the Enlistment's
Transaction Manager facet field with the Enlistment object.

= Move each Enlistment object in the transaction's Phase One Enlistment list to the transaction's
Phase Two Enlistment list.

= If the transaction's Phase Two Enlistment list is not empty:
= For each Enlistment object in the transaction's Phase Two Enlistment list:

= Signal the Begin Rollback event (sections 3.4.7.5, 3.6.7.5 and 3.7.7.4) on the
enlistment's Transaction Manager face field with the Enlistment object.

192 / 475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

= Otherwise, if the transaction's Phase Two Enlistment list is empty:

= Signal the Forget Transaction (section 3.2.7.22) event on the Core Transaction Manager Facet
with the provided transaction object.

3.2.7.24 Notify Recovered Transaction Committed

The Notify Recovered Transaction Committed event MUST be signaled with the following
arguments:

= A transaction object

If the Notify Recovered Transaction Committed event is signaled, the Core Transaction Manager
Facet (section 1.3.3.3.1) MUST perform the following actions:

= Set the transaction's state to Failed to Notify (section 3.2.1.3.13).
= If the Phase Two Enlistment list of the transaction is not empty:
= For each Enlistment object in the Phase Two Enlistment list of the transaction:

= Signal the Begin Commit event (see sections 3.4.7.3, 3.6.7.1, and 3.7.7.1) on the
enlistment's transaction manager facet field with the Enlistment object.

= Otherwise:

= Signal the Forget Transaction (section 3.2.7.22) event on the Core Transaction Manager Facet
with the provided transaction object.

3.2.7.25 Phase One Completed
The Phase One Completed event MUST be signaled by using the following arguments:
= A transaction object

If the Phase One Completed event is signaled, the Core Transaction Manager MUST perform the
following actions:

= Set the state of the transaction to Phase One Complete (section 3.2.1.3.8).

= If both the transaction's Phase Two Enlistment list and the transaction's Phase
Two (section 1.3.1.3) Voter Enlistment list are empty:

= Signal the Phase One Complete (see sections 3.4.7.13 and 3.8.7.7) event on the
transaction's Superior Enlistment's Transaction Manager facet with the following arguments:

= The transaction's Superior Enlistment object
= The Read Only outcome

= Signal the Forget Transaction (section 3.2.7.22) event on the Core Transaction Manager
Facet's (section 1.3.3.3.1) with the provided transaction object.

= If the Single Phase Commit flag (defined in section 3.2.1) of the transaction is set to TRUE:
»= Set the transaction state to Failed to Notify (section 3.2.1.3.13).

= Save the transaction to the Core Transaction Manager Facet.Durable Log of the Core
Transaction Manager.

193 /475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

»= Signal the Phase One Complete event on the Transaction Manager facet of the transaction's
Superior Enlistment using the following arguments:

= The Superior Enlistment object of the transaction.
= The Committed outcome.
= Set the transaction state to Phase One Complete.

= Signal the Begin Commit (section 3.2.7.2) event on the Core Transaction Manager Facet's with
the provided transaction object.

= Otherwise, if the Single Phase Commit flag of the transaction is set to FALSE:
= Set the transaction state to In Doubt (section 3.2.1.3.12).

= Save the transaction to the Core Transaction Manager Facet.Durable Log of the Core
Transaction Manager.

= Set the transaction state to Phase One Complete.

= Signal the Phase One Complete event on the Superior Enlistment of the transaction's
Transaction Manager Facet using the following arguments:

= The Superior Enlistment object of the transaction

= The Prepared outcome

3.2.7.26 Propagate Transaction Failure
The Propagate Transaction Failure event MUST be signaled with the following arguments:
= An Enlistment object.
= A value indicating the failure reason. The reason MUST be set to one of the following values:
= No Mem
= Log Full
= Duplicate
= Comm Failed

If the Propagate Transaction Failure event is signaled, the Core Transaction Manager
Facet (section 1.3.3.3.1) MUST perform the following actions:

= If the provided failure reason code is Duplicate:

= Signal the Export Transaction Success (section 3.4.7.12) event on the transaction manager
communicating with an application facet with the enlistment transaction object.

= Otherwise:

= Signal the Export Transaction Failure (section 3.4.7.11) event on the transaction manager
communicating with an application facet with the following arguments:

= The transaction object referenced by the provided Enlistment object

= The provided reason code

194 / 475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

3.2.7.27 Propagate Transaction Success
The Propagate Transaction Success event MUST be signaled with the following arguments:
= An Enlistment object

If the Propagate Transaction Success event is signaled, the Core Transaction Manager
Facet (section 1.3.3.3.1) MUST perform the following actions:

= If the Enlistment's transaction is not Active (section 3.2.1.3.2), Phase Zero (section 3.2.1.3.3),
or Phase Zero Complete (section 3.2.1.3.4):

= Signal the Export Transaction Failure (section 3.4.7.11) event on the Transaction Manager
communicating with an Application facet with the following arguments:

= The transaction object referenced by the provided Enlistment object
» The Too Late reason code
= Otherwise:
= Add the Enlistment object to the transaction's Phase One Enlistment list.

= Signal the Export Transaction Success (section 3.4.7.12) event on the Transaction Manager
communicating with an Application facet with the Enlistment's transaction object.

3.2.7.28 Register Phase Zero Failure

The Register Phase Zero Failure event MUST be signaled with the following arguments:

= An Enlistment object.

= A value indicating the failure reason. The reason MUST be set to one of the following values:
= Too Late
= Tx Not Found

If the Register Phase Zero Failure event is signaled, the Core Transaction Manager MUST
perform the following actions:

= For each Enlistment object in the transaction's Next Phase Zero Wave Enlistment list:

= Signal the Create Phase Zero Enlistment Failure event (see sections 3.6.7.7 and 3.7.7.5) on
the Enlistment object's Transaction Manager facet with the following arguments:

= The Enlistment object
= The provided reason code

= Remove the Enlistment object from the list.

3.2.7.29 Register Phase Zero Success
The Register Phase Zero Success event MUST be signaled with the following arguments:
= An Enlistment object

If the Register Phase Zero Success event is signaled, the Core Transaction Manager MUST
perform the following actions:

195/ 475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

= For each Enlistment object in the transaction's Next Phase Zero Wave Enlistment list:

» Signal the Create Phase Zero Enlistment Success event (see sections 3.6.7.8 and 3.7.7.6) on
the Enlistment object's Transaction Manager facet with the Enlistment object.

= Set the Phase Zero Registered flag of the transaction object referenced by the Enlistment to
TRUE.

3.2.7.30 Resolve Transaction

The Resolve Transaction event MUST be signaled with the following arguments:

= A transaction object.

= A value indicating the desired Resolve Transaction outcome. This value MUST be set to one of
the following values:

= Committed
= Aborted
= Forgotten

If the Resolve Transaction event is signaled, the Core Transaction Manager Facet (section 1.3.3.3.1)
MUST perform the following actions:

= If the provided Resolve Transaction outcome is Committed or Aborted:
= If the transaction state is not In Doubt (section 3.2.1.3.12):

= Signal the Resolve Transaction Complete (section 3.4.7.16) event on the Transaction
Manager communicating with an Application facet, with the following arguments:

= The provided transaction object
= The Not Prepared result
= Otherwise:
= If the provided Resolve Transaction outcome is Committed:

= Signal the Notify Recovered Transaction Committed (section 3.2.7.24) event on the
Core Transaction Manager Facet (section 1.3.3.3.1) with the provided transaction
object.

= Signal the Resolve Transaction Complete (section 3.4.7.16) event on the
Transaction Manager communicating with an Application facet with the following
arguments:

= The provided transaction object
= The Committed result
= Otherwise, if the provided Resolve Transaction outcome is Aborted:

= Signal the Notify Aborted (section 3.2.7.23) event on the Core Transaction Manager
Facet (section 1.3.3.3.1) with the provided transaction object.

= Signal the Resolve Transaction Complete (section 3.4.7.16) event on the
Transaction Manager communicating with an Application facet with the following
arguments:

196 / 475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

= The provided transaction object
= The Aborted result
= Otherwise:
= If the transaction state is not Failed to Notify (section 3.2.1.3.13):

= Signal the Resolve Transaction Complete (section 3.4.7.16) event on the Transaction
Manager communicating with an Application facet with the following arguments:

= The provided transaction object
= The Not Committed result
= Otherwise:

= Set the state of the connection object referenced by each Enlistment object in the
transaction's Phase Two Enlistment list to Ended.

» Signal the Forget Transaction (section 3.2.7.22) event on the Core Transaction Manager
Facet (section 1.3.3.3.1) with the provided transaction object.

= Signal the Resolve Transaction Complete (section 3.4.7.16) event on the Transaction
Manager communicating with an Application facet, with the following arguments:

= The provided transaction object

= The Forgotten result

3.2.7.31 Set Transaction Attributes
The Set Transaction Attributes event MUST be signaled with the following arguments:
= A transaction object.

= A value indicating the transaction's Isolation Level. The value MUST be one of the isolation level
values specified in section 2.2.6.9.

= A value indicating the transaction's Isolation flags. The value MUST be one of the valid isolation
flag values specified in section 2.2.6.8

- A string indicating an implementation-specific description of the transaction.

If the Set Transaction Attributes event is signaled, the Core Transaction Manager MUST perform
the following actions:

= If the transaction state is not Active:

= Signal the Set Transaction Attributes Failure (section 3.4.7.19) event on the Transaction
Manager communicating with an Application Facet with the transaction object.

= Otherwise
= If the transaction object's Attributes Set flag is set to FALSE:
= Set the transaction object's Isolation Level field with the Isolation Level argument.
= Set the transaction object's Isolation Flags field with the Isolation Flags argument.

= Set the transaction object's Description field with the Description Argument.

197/ 475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

= Set the transaction object's Attributes Set flag to TRUE.

= Signal the Set Transaction Attributes Success (section 3.4.7.20) event on the Transaction
Manager communicating with an Application facet with the transaction object.

3.2.7.32 Set Transaction Timeout

The Set Transaction Timeout event MUST be signaled with the following arguments:
] A transaction object

= Atime span

If the Set Transaction Timeout event is signaled, the Core Transaction Manager
Facet (section 1.3.3.3.1) MUST perform the following actions:

= If the transaction state is not Active:

= Signal the Set Transaction Timeout Failure (section 3.4.7.21) event on the Transaction
Manager communicating with an Application facet with the provided transaction object.

= Otherwise:
= Cancel the Transaction Timeout Timer (section 3.2.2.1).
= Set the transaction Timeout field to the provided value.
= Update the transaction timer's timeout value to the provided timespan value.

= Signal the Set Transaction Timeout Success (section 3.4.7.22) event on the Transaction
Manager communicating with an Application facet with the transaction object.

3.2.7.33 Request Transaction Outcome
Request Transaction Outcome MUST be signaled with the following arguments:
= An Enlistment object

If the Request Transaction Outcome event is signaled, the core transaction manager MUST
perform the following actions:

= If the state of the transaction object referenced by the provided Enlistment object is
Committing (section 3.2.1.3.10) or Failed to Notify (section 3.2.1.3.13):

= Signal the Begin Commit (section 3.6.7.1) event on the provided Enlistment object's
transaction manager facet with the provided Enlistment object.

= Otherwise, if the provided enlistment's transaction state is Aborting (section 3.2.1.3.11) or
Ended (section 3.2.1.3.14):

= Signal the Begin Rollback (section 3.6.7.5) event on the provided Enlistment object's
Transaction Manager facet with the provided Enlistment object.

= Otherwise, ignore the event.

3.2.7.34 Unenlist Phase Zero Enlistment
The Unenlist Phase Zero Enlistment event MUST be signaled with the following arguments:

= An Enlistment object

198 / 475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

If the Unenlist Phase Zero Enlistment event is signaled, the core transaction manager MUST
perform the following actions:

= If the provided Enlistment object is a member of the transaction's next Phase Zero Wave
Enlistment list:

= Remove the Enlistment object from the list.

= Otherwise, if the provided Enlistment object is a member of the transaction's Phase Zero
Enlistment list:

= Remove the Enlistment object from the list.

3.2.7.35 Voting Complete
The Voting Complete event MUST be signaled by using the following arguments:
= A transaction object

If the Voting Complete event is signaled, the Core Transaction Manager Facet (section 1.3.3.3.1)
MUST perform the following actions:

= Set the transaction state to Voting Complete.
= If the Phase One Enlistment list of the transaction is empty:
= If the Phase Two (section 1.3.1.3) Voter Enlistment list of the transaction is empty:

= Signal the Phase One Completed event (section 3.2.7.25) on the transaction's Superior
Enlistment's Transaction Manager facet using the following arguments:

= The Superior Enlistment that is referenced by the provided transaction object
= The Read Only outcome
= Set the transaction State to Ended (section 3.2.1.3.14).
= Otherwise:
= If the transaction's Single Phase Commit flag (defined in section 3.2.1) is set to true:

= Signal the Phase One Complete event on the transaction's Superior Enlistment's
Transaction Manager facet with the following arguments:

= The Superior Enlistment referenced by the provided transaction object
= The Committed outcome

= Set the transaction's State to Phase One Complete.

= Signal the Begin Commit (section 3.2.7.2) event on the Core Transaction Manager
with the provided transaction object.

= Otherwise:
= Set the transaction's state to Phase One Complete.

= Signal the Phase One Complete event on the transaction's Superior Enlistment's
Transaction Manager facet with the following arguments:

= The Superior Enlistment referenced by the provided transaction object

199 /475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

= The Prepared outcome

= Otherwise, if the transaction's Single Phase Commit flag is set to TRUE and the transaction's
Phase One Enlistment list contains one element:

= Set the transaction's state to Single Phase Commit.

= Signal the Begin Phase One event (see the Resource Manager and Superior Transaction
Manager Begin Phase One events in sections 3.6.7.3 and 3.7.7.2, respectively) on the
enlistment's Transaction Manager Facet field with the following arguments:

= The Enlistment object
= The Single Phase Commit flag set to TRUE
= Otherwise:
= Set the transaction's State to Phase One.
= For each Enlistment object in the transaction's Phase One Enlistment list:

= Signal the Begin Phase One event (see the Resource Manager and Superior Transaction
Manager Begin Phase One events in sections 3.6.7.3 and 3.7.7.2, respectively) on the
enlistment's Transaction Manager Facet field with the following arguments:

= The Enlistment object

= The Single Phase Commit flag set to FALSE
3.3 Application Details

3.3.1 Abstract Data Model

This section describes a conceptual model of possible data organization that an implementation
maintains to participate in this protocol. The described organization is provided to facilitate the
explanation of how the protocol behaves. This document does not mandate that implementations
adhere to this model as long as their external behavior is consistent with the behavior that is
described in this document.

An application MUST maintain all the data elements that are specified in section 3.1.1.

An application MUST extend the definition of a transaction object to include the following data
elements:

= Root: A flag set to true if the application is the beginner of the transaction; otherwise, to false.
An application MUST also maintain the following data elements:

= Transaction Manager Name: A Name object that identifies the transaction manager that is
associated with the application.

An application MUST provide the states that are defined in the following sections for its supported
connection types. Section 2.2.1.1.1 defines the connection types that an application MUST provide
for each supported protocol version.

3.3.1.1 CONNTYPE_TXUSER_BEGINNER Initiator States

The application MUST act as an initiator for the CONNTYPE_TXUSER_BEGINNER (section 2.2.8.1.1)
connection type. In this role, the application MUST provide support for the following states:

200/ 475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

= Idle

= Awaiting Begin Response

= Processing Transaction

* Awaiting Commit Response
= Awaiting Abort Response

* Ended

The following figure shows the relationship between the CONNTYPE_TXUSER_BEGINNER initiator
states.

201 /475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

TAUSER_BEGINMNER_MTAG_BEGIN_NCG_MEM or

THUSER_BEGINNER_MTAG_BEGIN LOG_FULL received

Idle

THUSER
BEGIMMER
MTAG_BEGIN
sent

Awaiting
Eegin

TXUSER_BEGIMNMER
MTAG_REQUEST_
COMPLETE
received

Awaiting TXUSER_
Abort

Response

ABORT sent

Connection THUSER_BEGIMNMER._
Failed MTAG COMMIT
Transaction TOD_LATE or
Ahorted TXUSER_BEGIMMER_
MTAG_COMMIT_
INDOUEBT received

Commit
Failed

BEGINNER_MTAG_

Response

THUSER_
BEGINMER_
MTAG_BEGUN
received

Processing
Transaction

TXUSER_BEGINMER._

MTAG_COMMIT
sent

Awaiting
Commit
Response

THUSER_BEGINMER_
MTAG _REQUEST _
COMPLETED received

Ended

®

Figure 14: CONNTYPE_TXUSER_BEGINNER initiator states

3.3.1.1.1 Idle

This is the initial state. The following event is processed in this state:

= Beginning a Transaction Using CONNTYPE_TXUSER_BEGINNER (section 3.3.4.1.2)

3.3.1.1.2 Awaiting Begin Response

The following events are processed in this state:

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol

Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

202 / 475

= Receiving a TXUSER_BEGINNER_MTAG_BEGUN Message (section 3.3.5.1.1.1)

= Receiving a TXUSER_BEGINNER_MTAG_BEGIN_NO_MEM or TXUSER_BEGINNER_MTAG
_BEGIN_LOG_FULL Message (section 3.3.5.1.1.2)

3.3.1.1.3 Processing Transaction
The following events are processed in this state:
= Initiating Transaction Commit (section 3.3.4.8)

= Initiating Transaction Rollback (section 3.3.4.9)

3.3.1.1.4 Awaiting Commit Response

The following events are processed in this state:

= Receiving a TXUSER_BEGINNER_MTAG_REQUEST_COMPLETED Message (section 3.3.5.1.1.3)
= Receiving a TXUSER_BEGINNER_MTAG_COMMIT_TOO_LATE Message (section 3.3.5.1.1.4)

= Receiving a TXUSER_BEGINNER_MTAG_COMMIT_INDOUBT Message (section 3.3.5.1.1.5)

3.3.1.1.5 Awaiting Abort Response
The following event is processed in this state:

= Receiving a TXUSER_BEGINNER_MTAG_REQUEST_COMPLETED Message (section 3.3.5.1.1.3)

3.3.1.1.6 Ended

This is the final state.

3.3.1.2 CONNTYPE_TXUSER_BEGIN2 Initiator States

The application MUST act as an initiator for the CONNTYPE_TXUSER_BEGIN2 (section 2.2.8.1.2)
connection type. In this role, the application MUST provide support for the following states:

= Idle

= Awaiting Begin Response

= Processing Transaction

= Awaiting Set Timeout Response
= Awaiting Commit Response

= Awaiting Abort Response

* Ended

The following figure shows the relationship between the CONNTYPE_TXUSER_BEGIN?2 initiator states.

203/ 475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

TXEUSER_
BEGINZ MTAG
BEGIM sent.

— TXUSER
‘”‘g:'ti'gg BEGINZ_MTAG. Initialization
d SINK_ERROR — failed
response. received.
TXUSER TXUSER_BEGIN2_MTAG_
SETTXTIMEOUT SINK_BEGUN received.
MTAG_SETTXTIMEQUT
sent. TXUSER._
— TXUSER — BEGINZ
Awaiting Set Processing | BEGINZ_ Awaiting MTAG_
I_g's”“:‘;“t transaction MTAG. reAbDIL-tE.E SINK
ponse. ABORT sent. Sponse. ERROR

TRAUSER_SETTATIMEQUT received.

MTAG_TOO_LATE, ar
THUSER_SETTXTIMEQUT
T _MOT _FOUND, or
THUSER SETTXTIMEOUT
MTAG_REQUEST _COMPLETE
received.

THUSER_BEGINZ MTAG SINK_ERROR received.

THUSER
BEGINZ_MTAG_

SINK_ERROR
recgived.

TXUSER_BEGINZ
L MTAG_COMMIT
sentk,

Awaiting
Commit
responss,

Figure 15: CONNTYPE_TXUSER_BEGIN2 initiator states

3.3.1.2.1 Idle
This is the initial state. The following event is processed in this state:

= Beginning a Transaction Using CONNTYPE_TXUSER_BEGINZ2 (section 3.3.4.1.1)

3.3.1.2.2 Awaiting Begin Response

The following events are processed in this state:

= Receiving a TXUSER_BEGIN2_MTAG_SINK_BEGUN Message (section 3.3.5.1.2.1)
= Receiving a TXUSER_BEGIN2_MTAG_SINK_ERROR Message (section 3.3.5.1.2.5)

3.3.1.2.3 Processing Transaction

The following events are processed in this state:

204 / 475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

= Querying Transaction Manager's Support for Modifying a Transaction Timeout Using
CONNTYPE_TXUSER_SETTXTIMEOUT2 (section 3.3.4.2.2)

= Commit a Transaction Using CONNTYPE_TXUSER_BEGINZ2 (section 3.3.4.8.1)
= Abort a Transaction Using CONNTYPE_TXUSER_BEGIN2 (section 3.3.4.9.1)

= Receiving a TXUSER_BEGIN2_MTAG_SINK_ERROR Message (section 3.3.5.1.2.5)

3.3.1.2.4 Awaiting Set Timeout Response

The following events are processed in this state:

= Receiving a TXUSER_SETTXTIMEOUT_MTAG_REQUEST_COMPLETE Message (section 3.3.5.1.2.2)
= Receiving a TXUSER_SETTXTIMEOUT_MTAG_TOO_LATE Message (section 3.3.5.1.2.3)

= Receiving a TXUSER_SETTXTIMEOUT_MTAG_TX_NOT_FOUND Message (section 3.3.5.1.2.4)

3.3.1.2.5 Awaiting Commit Response
The following event is processed in this state:

= Receiving a TXUSER_BEGIN2_MTAG_SINK_ERROR Message (section 3.3.5.1.2.5)

3.3.1.2.6 Awaiting Abort Response
The following event is processed in this state:

= Receiving a TXUSER_BEGIN2_MTAG_SINK_ERROR Message (section 3.3.5.1.2.5)

3.3.1.2.7 Ended

This is the final state.

3.3.1.3 CONNTYPE_TXUSER_PROMOTE Initiator States

The application MUST act as an initiator for the CONNTYPE_TXUSER_PROMOTE (section 2.2.8.1.3)
connection type. In this role, the application MUST provide support for the following states:

= Idle

= Awaiting Promote Response

= Processing Transaction

= Awaiting Set Timeout Response
= Awaiting Commit Response

= Awaiting Abort Response

* Ended

The following figure shows the relationship between the CONNTYPE_TXUSER_PROMOTE initiator
states.

205/ 475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

THUSER_BEGINNER_MTAG

_PROMOTE sent
L THUSER
Awalting BEGINZ_MTAG_
SINK_ERROR
Response received
THUSER, THUSER
SETTXTIMECUT_ BEGINZ_MTAG_
MTAG_SETTXTIMEQUT SINK_BEGUN
sent received
Awaiting Set TXUSER_ Awaiting
Timeout fr;f’rf::gt'i':fn EGINZ_MTAG_ Abort
Response ABORT sent Response
THRUSER_SETTXTIMEQUT_ TXUSER
MTAG_TOO_LATE, BEGINZ MTAG
TXUSER_SETTXTIMEOUT _ SINK ERROR
TX_NOT_FOUND, or — receved
TXUSER_SETTXTIMEOUT TXUSER_BEGINZ_MTAG_
MTAG_REQUEST_ — SINK_ERROR received
COMPLETE received
TXUSER_BEGINZ_ [nitialization
MTAG COMMIT Failed
sent
THLUSER
Awaiting BEGINZ_MTAG_
Commit SIMK_ERROR
Response received
Figure 16: CONNTYPE_TXUSER_PROMOTE initiator states
3.3.1.3.1 Idle
This is the initial state. The following event is processed in this state:
= Beginning a Transaction Using CONNTYPE_TXUSER_PROMOTE (section 3.3.4.1.3)
3.3.1.3.2 Awaiting Promote Response
The following events are processed in this state:
206 / 475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

= Receiving a TXUSER_BEGIN2_MTAG_SINK_BEGUN Message (section 3.3.5.1.3.1)
= Receiving a TXUSER_BEGIN2_MTAG_SINK_ERROR Message (section 3.3.5.1.3.2)

3.3.1.3.3 Processing Transaction

The following events are processed in this state:

» Commit a Transaction Using CONNTYPE_TXUSER_PROMOTE (section 3.3.4.8.3)
= Roll Back a Transaction Using CONNTYPE_TXUSER_PROMOTE (section 3.3.4.9.5)

= Querying Transaction Manager's Support for Modifying a Transaction Timeout Using
CONNTYPE_TXUSER_SETTXTIMEOUT2 (section 3.3.4.2.2)

= Receiving a TXUSER_BEGIN2_MTAG_SINK_ERROR Message (section 3.3.5.1.3.2)

3.3.1.3.4 Awaiting Set Timeout Response

The following events are processed in this state:

= Receiving a TXUSER_SETTXTIMEOUT_MTAG_REQUEST_COMPLETE Message (section 3.3.5.1.2.2)
= Receiving a TXUSER_SETTXTIMEOUT_MTAG_TOO_LATE Message (section 3.3.5.1.2.3)

= Receiving a TXUSER_SETTXTIMEOUT_MTAG_TX_NOT_FOUND Message (section 3.3.5.1.2.4)

3.3.1.3.5 Awaiting Commit Response
The following event is processed in this state:

= Receiving a TXUSER_BEGIN2_MTAG_SINK_ERROR Message (section 3.3.5.1.3.2)

3.3.1.3.6 Awaiting Abort Response
The following event is processed in this state:

= Receiving a TXUSER_BEGIN2_MTAG_SINK_ERROR Message (section 3.3.5.1.3.2)

3.3.1.3.7 Ended

This is the final state.

3.3.1.4 CONNTYPE_TXUSER_ASSOCIATE Initiator States

The application MUST act as an initiator for the
CONNTYPE_TXUSER_ASSOCIATE (section 2.2.8.2.1.1) connection type. In this role, the application
MUST provide support for the following states:

= Idle

= Awaiting Associate Response
= Active

* Ended

The following figure shows the relationship between the CONNTYPE_TXUSER_ASSOCIATE initiator
states.

207 / 475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

e

THUSER_ASSOCIATE
MTAG_ASSOCIATE

sent
Awaiting w Associate
Associate Respnrﬁe) Failed

TRUSER_ASSOCIATE
MTaAG ASSOCIATED
received

+ TXUSER_IMPORTZ
n MTAG SIMK _ERROR
(Active J— with Transaction 4{ Ended j
outcome received

Figure 17: CONNTYPE_TXUSER_ASSOCIATE initiator states

3.3.1.4.1 Idle

This is the initial state. The following event is processed in this state:

= Pulling a Transaction (section 3.3.4.12)

3.3.1.4.2 Awaiting Associate Response

The following events are processed in this state:

= Receiving a TXUSER_ASSOCIATE_MTAG_ASSOCIATED Message (section 3.3.5.2.1.1.1)

= Receiving Other TXUSER_ASSOCIATE_MTAG Messages (section 3.3.5.2.1.1.2)

3.3.1.4.3 Active
The following event is processed in this state:

= Receiving a TXUSER_IMPORT2_MTAG_SINK_ERROR Message (section 3.3.5.2.1.1.3).

3.3.1.4.4 Ended

This is the final state.

208 / 475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

3.3.1.5 CONNTYPE_TXUSER_EXTENDWHEREABOUTS Initiator States

The application MUST act as an initiator for the
CONNTYPE_TXUSER_EXTENDEDWHEREABOUTS (section 2.2.8.2.2.1) connection type. In this role,
the application MUST provide support for the following states:

= Idle

= Awaiting Get Response

* Ended

The following figure shows the relationship between the CONNTYPE_TXUSER_EXTENDWHEREABOUTS

initiator states.

TXUSER EXTENDEDWHEREABOUTS
_MTAG_GET sent

TXUSER_EXTEMDEDWHEREABOUTS TXUSER_EXTEMDEDWHEREABOUTS
MTAG GOT received Awaiting Get MTAG MOMEM received
| Response
Retrieval Retrieval
SUCCess Failure

Figure 18: CONNTYPE_TXUSER_EXTENDEDWHEREABOUTS initiator states

3.3.1.5.1 Idle
This is the initial state. The following event is processed in this state:

= Obtaining Extended Whereabouts Using
CONNTYPE_TXUSER_EXTENDEDWHEREABOUTS (section 3.3.4.10)

209 / 475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

3.3.1.5.2 Awaiting Get Response

The following events are processed in this state:

Receiving a TXUSER_EXTENDEDWHEREABOUTS_MTAG_GOT Message (section 3.3.5.2.2.1.1)

Receiving a TXUSER_EXTENDEDWHEREABOUTS_MTAG_NOMEM Message (section 3.3.5.2.2.1.2)

3.3.1.5.3 Ended

This is the final state.

3.3.1.6 CONNTYPE_TXUSER_IMPORT Initiator States

The application MUST act as an initiator for the CONNTYPE_TXUSER_IMPORT (section 2.2.8.2.2.4)
connection type. In this role, the application MUST provide support for the following states:

Idle

Awaiting Import Response
Transaction Import Successful
Awaiting Abort Response
Ended

The following figure shows the relationship between the CONNTYPE_TXUSER_IMPORT initiator states.

210/ 475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

Idle

THUSER_IMPORT
MTAG_IMPORT
sent

THXUSER_IMPORT _

Transaction MTAG IMPORTED

Awaiting

Import . Import
Successful received Response
TXUSER_IMPORT_
TRUSER_IMPORT _ MTAG_IMPORT _TxX_ _
MTAG ABORT NOT _FOUND received
sent Connection Disconnected

Transaction
Import Fail

Awaiting Abort

Response

Transaction Abort
Failed
THUSER_[MPORT_MTAG_
Transaction &bort ABORT_TOO_LATE received

Succeeded
l TXUSER_IMPORT_MTAG_
REQUEST _COMPLETED received

Figure 19: CONNTYPE_TXUSER_IMPORT initiator states

3.3.1.6.1 Idle
This is the initial state. The following event is processed in this state:

= Importing a Transaction Using CONNTYPE_TXUSER_IMPORT (section 3.3.4.6.1)

3.3.1.6.2 Awaiting Import Response
The following events are processed in this state:
= Receiving a TXUSER_IMPORT_MTAG_IMPORTED Message (section 3.3.5.2.2.4.1)

= Receiving a TXUSER_IMPORT_MTAG_IMPORT_TX_NOT_FOUND Message (section 3.3.5.2.2.4.2)

3.3.1.6.3 Transaction Import Successful

The following event is processed in this state:

211 /475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

= Abort a Transaction Using CONNTYPE_TXUSER_IMPORT (section 3.3.4.9.3)

3.3.1.6.4 Awaiting Abort Response

The following events are processed in this state:

= Receiving a TXUSER_IMPORT_MTAG_ABORT_TOO_LATE Message (section 3.3.5.2.2.4.3)

= Receiving a TXUSER_IMPORT_MTAG_REQUEST_COMPLETED Message (section 3.3.5.2.2.4.4)

3.3.1.6.5 Ended

This is the final state.

3.3.1.7 CONNTYPE_TXUSER_IMPORT2 Initiator States

The application MUST act as an initiator for the CONNTYPE_TXUSER_IMPORT2 (section 2.2.8.2.2.5)
connection type. In this role, the application MUST provide support for the following states:

= Idle

= Awaiting Import Response

= Transaction Import Successful
= Awaiting Abort Response

» Ended

The following figure shows the relationship between the CONNTYPE_TXUSER_IMPORT? initiator states.

212 /475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

Idle

TXUSER_IMPORT2_MTAG_IMPORT or
TXUSER_IMPORT2_MTAG_IMPORT_WITH_SET

TXUSER_IMPORTZ
MTAG_SINK_IMPORTED
received

Transaction

sent

}

Awaiting

Import
Successiul

THUSER_IMPORTZ2_
MTAG_ABORT
sent

THUSER_
IMPORTZ_MTAG_
SINK_ERROR received

Awaiting
Abort

Transaction
Import Failed

Import
Response

[

TXUSER_
IMPORTZ_MTAG_

SINK_ERROR received

TXUSER IMPORT2
MTAG_SINK_ERROR

received

Transaction

Ahort

Response

Failed

Transaction

TAUSER_IMPORTZ_MTAG_SINK_ERROR recelved
[error = TRUN_TXIMPORT_ERROR_NOTIFY_ABORTED]

Abort
Succeaded

Figure 20: CONNTYPE_TXUSER_IMPORT?2 initiator states

3.3.1.7.1Idle

This is the initial state. The following events are processed in this state:

= Importing a Transaction Using CONNTYPE_TXUSER_IMPORT?2 (section 3.3.4.6.2)

= Importing a Transaction with Additional Transaction Attributes (section 3.3.4.7)

3.3.1.7.2 Awaiting Import Response

The following events are processed in this state:

= Receiving a TXUSER_IMPORT2_MTAG_SINK_IMPORTED Message (section 3.3.5.2.2.5.1)
= Receiving a TXUSER_IMPORT2_MTAG_SINK_ERROR Message (section 3.3.5.2.2.5.2)

3.3.1.7.3 Transaction Import Successful

@

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol

Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

213/ 475

The following events are processed in this state:
= Receiving a TXUSER_IMPORT2_MTAG_SINK_ERROR Message (section 3.3.5.2.2.5.2)
= Abort a Transaction Using CONNTYPE_TXUSER_IMPORT2 (section 3.3.4.9.4)

3.3.1.7.4 Awaiting Abort Response
The following event is processed in this state:

= Receiving a TXUSER_IMPORT2_MTAG_SINK_ERROR Message (section 3.3.5.2.2.5.2)

3.3.1.7.5 Ended

This is the final state.

3.3.1.8 CONNTYPE_TXUSER_EXPORT Initiator States

The application MUST act as an initiator for the CONNTYPE_TXUSER_EXPORT (section 2.2.8.2.2.2)
connection type. In this role, the application MUST provide support for the following states:

= Idle

= Awaiting Create Response
= Connection Active

= Awaiting Export Response
» Ended

The following figure shows the relationship between the CONNTYPE_TXUSER_EXPORT Initiator states.

214 /475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

Idle

TXUSER_EXFORT
MTAG_CREATE or
TXUSER_EXPORT _ THXUSER_EXPORT _MTAG CREATE _BAD TMADDR or
MTAG_CREATEZ2 sent THUSER_EXPORT_MTAG_ CREATE_MET_TxX_DISABLED or
received

Connection Disconnected

Awaiting

Create
Response

THUSER_EXPORT_
MTAG_CREATED
received

Connection
Active

THUSER ExXPORT THUSER_EXPORT_ TXUSER EXPORT MTAG EXPORT LOG FULL or
MTAG_EXPORTED MTAG_EXPORT TXUSER _EXPORT MTAG EXPORT MO MEM or
received sent TXUSER_EXPORT_MTAG_EXPORT_TOO_LATE or

THUSER_EXPORT MTAG EXPORT TOO MANY or
TXUSER_EXPORT_MTAG_EXPORT_TX_NOT_FOUND

Awaiting received |
Export O
Response Connection Disconnection——

Figure 21: CONNTYPE_TXUSER_EXPORT initiator states

3.3.1.8.1 Idle
This is the initial state. The following event is processed in this state:

» Creating an Export Connection (section 3.3.4.4)

3.3.1.8.2 Awaiting Create Response
The following events are processed in this state:
= Receiving a TXUSER_EXPORT_MTAG_CREATED Message (section 3.3.5.2.2.2.1)

= Receiving a TXUSER_EXPORT_MTAG_CREATE_BAD_TMADDR or
TXUSER_EXPORT_MTAG_CREATE_NET_TX_DISABLED Message (section 3.3.5.2.2.2.2)

= CONNTYPE_TXUSER_EXPORT Connection Disconnected (section 3.3.5.2.2.2.5)

215/ 475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

3.3.1.8.3 Connection Active

The following event is processed in this state:

3.3.1.8.4 Awaiting Export Response

The following events are processed in this state:

Push a Transaction Using an Existing Export Connection (section 3.3.4.13)

Receiving a TXUSER_EXPORT_MTAG_EXPORTED Message (section 3.3.5.2.2.2.3)
Receiving a TXUSER_EXPORT_MTAG_EXPORT_LOG_FULL,

TXUSER_EXPORT_MTAG_EXPORT_NO_MEM, TXUSER_EXPORT_MTAG_EXPORT_TOO_LATE,
TXUSER_EXPORT_MTAG_EXPORT_TOO_MANY, or TXUSER_EXPORT_MTAG_EXPORT_NOT_FOUND

Message (section 3.3.5.2.2.2.4)

CONNTYPE_TXUSER_EXPORT Connection Disconnected (section 3.3.5.2.2.2.5)

3.3.1.8.5 Ended

This is the final state.

3.3.1.9 CONNTYPE_TXUSER_EXPORT2 Initiator States

The application MUST act as an initiator for the CONNTYPE_TXUSER_EXPORT2 (section 2.2.8.2.2.3)

connection type. In this role, the application MUST provide support for the following states:

Idle

Awaiting Create Response
Connection Active
Awaiting Export Response

Ended

The following figure shows the relationship between the CONNTYPE_TXUSER_EXPORT?2 initiator states.

[MS-DTCO]J - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

216 /475

Idle

TXUSER,_EXPORT
MTAG_CREATE or
THUSER_EXPORT _

MTAG_CREATEZ sent TXUSER EXPORT MTAG CREATE BAD TMADDR or
THXUSER_EXPORT_MTAG_CREATE_MNET _Tx_DISABLED
received
Awaiting Connection Failed

Create

Response

THXUSER_EXPORT_
MTAG _CREATED
received

Client closes connection

Connection
Active

TXUSER_EXPORT_MTAG_EXPORT_LOG_FULL or
TXUSER_EXPORT MTAG_EXPORT NO_MEM or
TAUSER EXPORT TXUSER_EXPORT_ THUSER_EXPORT_MTAG_EXPORT_TOO_LATE or
MTAG_EXPORTED — MTAG_EXPORT THUSER_EXPORT MTAG EXPORT TOO MANY or
received sent TXUSER EXPORT MTAG EXPORT TX NOT FOUND or
TXUSER_EXPORT_MTAG_EXPORT_COMM_FAILED
received

Awaiting
Export
Response

Figure 22: CONNTYPE_TXUSER_EXPORT22 initiator states

3.3.1.9.1 Idle
This is the initial state. The following event is processed in this state:

= Creating an Export Connection (section 3.3.4.4)

3.3.1.9.2 Awaiting Create Response
The following events are processed in this state:
= Receiving a TXUSER_EXPORT_MTAG_CREATED Message (section 3.3.5.2.2.3.1)

= Receiving a TXUSER_EXPORT_MTAG_CREATE_BAD_TMADDR or
TXUSER_EXPORT_MTAG_CREATE_NET_TX_DISABLED Message (section 3.3.5.2.2.3.2)

3.3.1.9.3 Connection Active

217/ 475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

The following event is processed in this state:

= Push a Transaction Using an Existing Export Connection (section 3.3.4.13)

3.3.1.9.4 Awaiting Export Response
The following events are processed in this state:
= Receiving a TXUSER_EXPORT_MTAG_EXPORTED message (section 3.3.5.2.2.3.3)

= Receiving a TXUSER_EXPORT_MTAG_EXPORT_LOG_FULL,
TXUSER_EXPORT_MTAG_EXPORT_NO_MEM, TXUSER_EXPORT_MTAG_EXPORT_TOO_LATE,
TXUSER_EXPORT_MTAG_EXPORT_TOO_MANY, TXUSER_EXPORT_MTAG_EXPORT_NOT_FOUND, or
TXUSER_EXPORT_MTAG_EXPORT_COMM_FAILED Message (section 3.3.5.2.2.3.4)

3.3.1.9.5 Ended

This is the final state.

3.3.1.10 CONNTYPE_TXUSER_GETTXDETAILS Initiator States

The application MUST act as an initiator for the
CONNTYPE_TXUSER_GETTXDETAILS (section 2.2.8.3.1) connection type. In this role, the application
MUST provide support for the following states:

« Idle
= Awaiting Response
» Ended

The following figure shows the relationship between the CONNTYPE_TXUSER_GETTXDETAILS initiator
states.

218/ 475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

TXUSER_GETGETTXDETAILS
MTAG GET sent

THUSER_GETGETTXDETAILS_ THUSER_GETGETTXDETAILS_MTAG_
MTAG GOTIT received A T¥_NOT_FOUND received
walting
| Response
Retrieval Fetrieval
Success Failure
- Ended

®

Figure 23: CONNTYPE_TXUSER_GETTXDETAILS initiator states

3.3.1.10.1 Idle
This is the initial state. The following event is processed in this state:

» Obtaining the Details for a Transaction (section 3.3.4.11.1)

3.3.1.10.2 Awaiting Response

The following events are processed in this state:

= Receiving a TXUSER_GETTXDETAILS_MTAG_GOTIT Message (section 3.3.5.3.1.1)

= Receiving a TXUSER_GETTXDETAILS_MTAG_TX_NOT_FOUND Message (section 3.3.5.3.1.2)

3.3.1.10.3 Ended

This is the final state.

3.3.1.11 CONNTYPE_TXUSER_RESOLVE Initiator States

The application MUST act as an initiator for the CONNTYPE_TXUSER_RESOLVE (section 2.2.8.3.2)
connection type. In this role, the application MUST provide support for the following states:

219/ 475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

= Idle

= Awaiting
= Awaiting
= Awaiting

= Ended

Abort Response
Forget Response

Commit Response

The following figure shows the relationship between the CONNTYPE_TXUSER_RESOLVE initiator states.

TXUSER_RESOLVE_MTAG_
CHILD_ABORT sent

Abort

COMPLETE

CHILD NOT P

THUSER_RESOLVE_MTAG_
NOT_CHILD ar
TXUSER_RESOLVE_MTAG_
TX NOT FOUND received

Awaiting

Response

L Abort Failed

TXUSER_RESOLVE
MTAG_ACCESSDENIED ar
TXUSER RESOLVE MTAG

Idle

—J

TXUSER_RESOLWE

MTAG FORGET
COMMITTED sent

Awaiting
Forget
Response

TXUSER_RESOLVE_
MTAG ACCESSDENIED or
TXUSER_RESOLVE_
MTAG_FORGET_Tx_
NOT_COMMITTED ar
TXUSER_RESOLVE_MTAG_
TX_NOT FOUND received

TXUSER_RESOLVE
MTAG_REQUEST _

received

bort Succeeded

REPARED or

Forget
Failed

TXUSER RESOLVE
MTAG_REQUEST_
COMPLETE received

Forget
Succeeded

Figure 24: CONNTYPE_TXUSER_RESOLVE initiator states

3.3.1.11.1

Idle

aommit Succeeded

ommit Failed

THUSER_RESOLVE_MTAG_
CHILD _COMMIT sent

Awaiting
Commit
Response

THUSER_RESOLVE_
MTAG_REQUEST _
COMPLETE received

TKUSER_RESOLVE
MTAG_ACCESSDEMIED or
THKUSER RESOLVE MTAG
CHILD MOT PREPARED or
THUSER_RESOLVE_MTAG_
NOT_CHILD or
TXUSER_RESOLVE MTAG_
TX NOT FOUMD received

[MS-DTCO] - v20210625
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June

25, 2021

220/ 475

This is the initial state. The following event is processed in this state:

= Resolving a Transaction (section 3.3.4.15)

3.3.1.11.2 Awaiting Abort Response
The following events are processed in this state:
= Receiving a TXUSER_RESOLVE_MTAG_REQUEST_COMPLETE Message (section 3.3.5.3.2.1)

= Receiving a TXUSER_RESOLVE_MTAG_CHILD_NOT_PREPARED or
TXUSER_RESOLVE_MTAG_NOT_CHILD Message (section 3.3.5.3.2.3)

= Receiving a TXUSER_RESOLVE_MTAG_ACCESSDENIED or
TXUSER_RESOLVE_MTAG_TX_NOT_FOUND Message (section 3.3.5.3.2.2)

3.3.1.11.3 Awaiting Forget Response
The following events are processed in this state:
= Receiving a TXUSER_RESOLVE_MTAG_REQUEST_COMPLETE Message (section 3.3.5.3.2.1)

= Receiving a TXUSER_RESOLVE_MTAG_FORGET_TX_NOT_COMMITTED
Message (section 3.3.5.3.2.4)

= Receiving a TXUSER_RESOLVE_MTAG_ACCESSDENIED or
TXUSER_RESOLVE_MTAG_TX_NOT_FOUND Message (section 3.3.5.3.2.2)

3.3.1.11.4 Awaiting Commit Response
The following events are processed in this state:
= Receiving a TXUSER_RESOLVE_MTAG_REQUEST_COMPLETE Message (section 3.3.5.3.2.1)

= Receiving a TXUSER_RESOLVE_MTAG_CHILD_NOT_PREPARED or
TXUSER_RESOLVE_MTAG_NOT_CHILD Message (section 3.3.5.3.2.3)

= Receiving a TXUSER_RESOLVE_MTAG_ACCESSDENIED or
TXUSER_RESOLVE_MTAG_TX_NOT_FOUND Message (section 3.3.5.3.2.2)

3.3.1.11.5 Ended

This is the final state.

3.3.1.12 CONNTYPE_TXUSER_SETTXTIMEOUT Initiator States

The application MUST act as an initiator for the
CONNTYPE_TXUSER_SETTXTIMEOUT (section 2.2.8.3.3) connection type. In this role, the
application MUST provide support for the following states:

= Idle
= Awaiting Set Timeout Response
* Ended

The following figure shows the relationship between the CONNTYPE_TXUSER_SETTXTIMEOUT initiator
states.

221 /475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

Idle

TXUSER_SETTATIMEOUT
MTAG SETTATIMEOUT sent

THUSER_SETTXTIMEQUT _MTAG_TOO LATE or
Awaiting Set THUSER_SETTETIMEQUT _MTAG_TX_MNOT_FOUND received

Timeout
Response
| Set Timeout
TXUSER_SETTXTIMEDUT_ Failed

MTAG _REQUEST
COMPLETE received

Timeolt
Reset

®

Figure 25: CONNTYPE_TXUSER_SETTXTTIMEOUT initiator states

3.3.1.12.1 Idle
This is the initial state. The following event is processed in this state:

= Changing a Transaction Time-out Using CONNTYPE_TXUSER_SETTXTIMEOUT (section 3.3.4.2.1)

3.3.1.12.2 Awaiting Set Timeout Response
The following events are processed in the Awaiting Set Timeout Response state:
» Receiving a TXUSER_SETTXTIMEOUT_MTAG_REQUEST_COMPLETE Message (section 3.3.5.3.3.1)

= Receiving a TXUSER_SETTXTIMEOUT_MTAG_TOO_LATE or
TXUSER_SETTXTIMEOUT_MTAG_TX_NOT_FOUND Message (section 3.3.5.3.3.2)

3.3.1.12.3 Ended

This is the final state.

3.3.1.13 CONNTYPE_TXUSER_SETTXTIMEOUT?2 Initiator States

The application MUST act as an initiator for the
CONNTYPE_TXUSER_SETTXTIMEOUT2 (section 2.2.8.3.4) connection type. In this role, the
application MUST provide support for the following states:

222 / 475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

= Idle
= Awaiting Set Timeout Response
» Ended

The following figure shows the relationship between the CONNTYPE_TXUSER_SETTXTIMEOUT?2 initiator
states.

THKUSER_SETTATIMEQUT _
MTAG_SETTXTIMECOUT sent

TXUSER SETTXTIMECQUT

MTAG_TX_NOT_FOUND MTAG_CONNECTION_

}

Awaiting Set REQ DEMIED received
received Timeout
Response
Setting =etting
Timeout Timeout
Supported Mot Supported

1) I

Figure 26: CONNTYPE_TXUSER_SETTXTTIMEOUT?2 initiator states

3.3.1.13.1 Idle
This is the initial state. The following event is processed in this state:

= Querying Transaction Manager's Support for Modifying a Transaction Timeout Using
CONNTYPE_TXUSER_SETTXTIMEOUT2 (section 3.3.4.2.2)

3.3.1.13.2 Awaiting Set Timeout Response
The following event is processed in this state:
= Receiving a TXUSER_SETTXTIMEOUT_MTAG_TX_NOT_FOUND Message (section 3.3.5.3.4.1)

»= Receiving an MTAG_CONNECTION_REQ_DENIED message ([MS-CMP] section 2.2.5) as described
in section 1.7.3.

3.3.1.13.3 Ended

223 /475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

%5bMS-CMP%5d.pdf#Section_1970a8a0799d4308b9274e4ea23dc225

This is the final state.

3.3.1.14 CONNTYPE_TXUSER_TRACE Initiator States

The application MUST act as an initiator for the CONNTYPE_TXUSER_TRACE (section 2.2.8.3.5)

connection type. In this role, the application MUST provide support for the following states:
= Idle
= Awaiting Trace Response

= Ended

The following figure shows the relationship between the CONNTYPE_TXUSER_TRACE initiator states.

Idle

s

TEUSER TRACE
MTAG DLUMP
TRANSACTION sent
TXUSER TRACE MTAG

REQUEST FAILED or
THUSER_TRACE_MTAG_

TXUSER_TRACE_
MTAG_REQUEST

I

COMPLETE received Awaiting TH_MNOT_FOUND received
Trace
Response
Trace Trace
Successful Failed

Ended

alll

Figure 27: CONNTYPE_TXUSER_TRACE initiator states

3.3.1.14.1 Idle

This is the initial state. The following event is processed in this state:

= Generating Trace Records for a Transaction Using CONNTYPE_TXUSER_TRACE (section 3.3.4.5)

3.3.1.14.2 Awaiting Trace Response

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

224 / 475

The following events are processed in this state:
= Receiving a TXUSER_TRACE_MTAG_REQUEST_COMPLETE Message (section 3.3.5.3.5.1)

= Receiving a TXUSER_TRACE_MTAG_REQUEST_FAILED or TXUSER_TRACE_MTAG_TX_NOT_FOUND
Message (section 3.3.5.3.5.2)

3.3.1.14.3 Ended

This is the final state.

3.3.1.15 CONNTYPE_TXUSER_GETSECURITYFLAGS Initiator States

The application MUST act as an initiator for the
CONNTYPE_TXUSER_GETSECURITYFLAGS (section 2.2.8.4.1) connection type. In this role, the
application MUST provide support for the following states:

= Idle
= Awaiting Get Response
» Ended

The following figure shows the relationship between the CONNTYPE_TXUSER_GETSECURITYFLAGS
initiator states.

225/ 475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

THUSER. GETSECURITYFLAGS
MTAG_GETSECURITYFLAGS sent

Awaiting et

Response

THXUSER_GETSECURITYFLAGS
MTAG FETCHED received

Ended

®

Figure 28: CONNTYPE_TXUSER_GETSECURITYFLAGS initiator states

3.3.1.15.1 Idle
This is the initial state. The following event is processed in this state:

= Obtaining the Security Configuration of the Transaction Manager Using
CONNTYPE_TXUSER_GETSECURITYFLAGS (section 3.3.4.11)

3.3.1.15.2 Awaiting Get Response
The following event is processed in this state:

= Receiving a TXUSER_GETSECURITYFLAGS_MTAG_FETCHED Message (section 3.3.5.4.1.1)
3.3.1.15.3 Ended

This is the final state.

3.3.2 Timers

No timers apply here.

226 / 475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

3.3.3 Initialization
When an application is initialized:

* The Transaction Manager Name field MUST be set to a value that is obtained from an
implementation-specific source.

= The application MUST initialize each new transaction object that is created with the following
default values:

= The Root field MUST default to false.

3.3.4 Higher-Layer Triggered Events

The application MUST be prepared to process a set of higher-layer events described in this section
and in Message Processing Events and Sequencing Rules (section 3.3.5). These events are triggered
by decisions that are made by the higher-layer business logic of the application. The motivations and
details of the higher-layer business logic are specific to the implementation of the application and the
software environment in which it executes.

When the application processes one of the higher-layer events described in this section and section
3.3.5, it MUST communicate one of the following results to the higher-layer business logic:

= Success

* Failure

= Transaction Committed

= Transaction Aborted

= Transaction In Doubt

If the processing of a higher-layer event includes a Message Processing event, the associated Message
Processing event MUST communicate one of the above results to the higher-layer business logic.
3.3.4.1 Beginning a Transaction

If the higher-layer business logic begins a transaction with a predetermined transaction
identifier:<29>

= If the transaction manager of the application supports the
CONNTYPE_TXUSER_PROMOTE (section 2.2.8.1.3) connection type as specified in section
2.2.1.1.1:

= The application MUST attempt to begin a transaction by using the
CONNTYPE_TXUSER_PROMOTE connection type.

= Otherwise:
= The application MUST return a Failure result to the higher-layer business logic.

If the higher-layer business logic decides to begin a transaction without using a predetermined
transaction identifier, the application MUST perform the following actions:

= If the transaction manager supports the CONNTYPE_TXUSER_BEGIN2 (section 2.2.8.1.2)
connection type as specified in section 2.2.1.1.1:

= The application MUST attempt to begin a transaction by using CONNTYPE_TXUSER_BEGINZ2.

227/ 475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

= Otherwise:

= The application MUST attempt to begin a transaction by using
CONNTYPE_TXUSER_BEGINNER (section 2.2.8.1.1).

3.3.4.1.1 Beginning a Transaction Using CONNTYPE_TXUSER_BEGIN2
The application MUST perform the following actions:

= Initiate a new CONNTYPE_TXUSER_BEGINZ2 (section 2.2.8.1.2) connection using the transaction
manager Name field of the application.

» Send a TXUSER_BEGIN2_MTAG_BEGIN (section 2.2.8.1.2.2) message using the connection and
the values that are provided by the higher-layer business logic:

= The isoLevel, dwTimeout, szDesc, and isoFlags fields MUST be set as specified in section
2.2.8.

= Set the connection state to Awaiting Begin Response.

3.3.4.1.2 Beginning a Transaction Using CONNTYPE_TXUSER_BEGINNER
The application MUST perform the following actions:

= Initiate a new CONNTYPE_TXUSER_BEGINNER (section 2.2.8.1.1) connection by using the
transaction manager Name field of the application.

» Send a TXUSER_BEGINNER_MTAG_BEGIN (section 2.2.8.1.1.2) message by using the connection.
The following message fields MUST be set to values that are provided by the higher-layer business
logic:

= The isoLevel field set to the required OLETX ISOLATION LEVEL value.

= The dwTimeout field MUST be set to the required time-out value.
= The szDesc field MUST be set to the required transaction description string.

= The isoFlags field MUST be set to the required OLETX ISOLATION FLAGS value.

= Set the connection state to Awaiting Begin Response.

3.3.4.1.3 Beginning a Transaction Using CONNTYPE_TXUSER_PROMOTE
The application MUST perform the following actions:

= Initiate a new CONNTYPE_TXUSER_PROMOTE (section 2.2.8.1.3) connection using the
transaction manager Name field of the application.

» Send a TXUSER_BEGINNER_MTAG_PROMOTE (section 2.2.8.1.3.1) message using the connection.
The following message fields MUST be set to values that are provided by the higher-layer business
logic:

= The isoLevel field to the wanted isolation-level value.

= The dwTimeout field to the wanted time-out value.

= The szDesc field to the wanted transaction description string.
= The isoFlags field to the wanted isolation flags value.

* The guidTx field to the wanted predetermined transaction identifier.

228 /475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

= Set the connection state to Awaiting Promote Response.

3.3.4.2 Changing a Transaction Timeout

If the higher-layer business logic changes the time-out of an existing transaction, the application
MUST perform the following steps:

= If the Root field of the transaction is false:
= Return a failure result to the higher-layer business logic.
= Otherwise:

= If the root transaction manager supports the
CONNTYPE_TXUSER_SETTXTIMEOUT2 (section 3.3.1.13) connection type, as specified in
section 2.2.1.1.1:

= The application MUST attempt to change the transaction time-out by using
CONNTYPE_TXUSER_SETTXTIMEOUT2 (section 3.3.1.13).

= QOtherwise:

= The application MUST attempt to change the transaction time-out by using
CONNTYPE_TXUSER_SETTXTIMEOUT (section 3.3.1.12).

3.3.4.2.1 Changing a Transaction Timeout Using CONNTYPE_TXUSER_SETTXTIMEOUT
The application MUST perform the following actions:

= Find an instance of a CONNTYPE_TXUSER_BEGINNER (section 2.2.8.1.1) connection in the
connection list of the transaction.

= If a connection is not found, the application MUST return a failure result to the higher-layer
business logic.

= Otherwise, if the connection state is not Processing Transaction (section 3.3.1.1.3):
= The application MUST return a failure result to the higher-layer business logic.
= Otherwise:

= Initiate a new CONNTYPE_TXUSER_SETTXTIMEOUT (section 2.2.8.3.3) connection using the
transaction manager Name field of the application.

= Add the connection to the connection list of the transaction.

» Send a TXUSER_SETTXTIMEOUT_MTAG_SETTXTIMEOUT (section 2.2.8.1.2.7) message using
the CONNTYPE_TXUSER_SETTXTIMEOUT (section 2.2.8.3.3) connection:

= Set the guidTx field to the Transaction Object.Identifier for the transaction

= Set the dwTxTimeout value to the time-out value that is provided by the higher-layer
business logic, expressed as a total number of milliseconds.

= Set the connection state to Awaiting Set Timeout Response (section 3.3.1.12.2).

3.3.4.2.2 Querying Transaction Manager's Support for Modifying a Transaction
Timeout Using CONNTYPE_TXUSER_SETTXTIMEOUT2

The application MUST perform the following steps:

229 / 475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

Find an instance of a CONNTYPE_TXUSER_BEGIN2 (section 2.2.8.1.2) or
CONNTYPE_TXUSER_PROMOTE (section 2.2.8.1.3) connection in the connection list of the
transaction. This connection is referred to as the beginner connection.

If a connection is not found:
= The application MUST return a failure result to the higher-layer business logic.

Otherwise, if the connection state is not Processing Transaction (section 3.3.1.2.3) or Processing
Transaction (section 3.3.1.3.3):

= The application MUST return a failure result to the higher-layer business logic.
Otherwise:

= Initiate a new CONNTYPE_TXUSER_SETTXTIMEOUT?2 (section 2.2.8.3.4) connection using the
Transaction Manager Name field of the application. This connection is referred to as the
new connection.

= Add the new connection to the transaction connection list.
= Assign the transaction object to the Connection-Specific Data field of the new connection.

» Send a TXUSER_SETTXTIMEOUT_MTAG_SETTXTIMEOUT (section 2.2.8.1.2.7) using the new
connection:

= The guidTx field MUST be set to a NULL GUID.
* The dwTxTimeout value MUST be set to zero.
= Set the new connection state to Awaiting Set Timeout Response (section 3.3.1.13.2).

= Set the beginner connection state to Awaiting Set Timeout Response (section 3.3.1.2.4) if the
beginner connection is CONNTYPE_TXUSER_BEGINZ2, or to Awaiting Set Timeout
Response (section 3.3.1.3.4) if the beginner connection is CONNTYPE_TXUSER_PROMOTE.

3.3.4.3 Obtaining a Propagation Token for a Transaction

If the higher-layer business logic decides to obtain a Propagation Token for a transaction, the
application MUST perform the following actions:

Find a CONNTYPE TXUSER PROMOTE, CONNTYPE TXUSER BEGINNER, or
CONNTYPE _TXUSER BEGIN2 connection in the transaction connection list.

If the connection is not found,
= The application MUST return a failure result to the higher-layer business logic.
Otherwise,
= Create a new Propagation Token structure.
* The dwVersionMin field MUST be set to 1.

* The dwVersionMax field MUST be set to the maximum supported protocol version, as
specified in section 3.1.4.1.

* The guidTx field MUST be set to the Transaction Object.Identifier value of the
provided Transaction object.

230/ 475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

= The isoLevel field MUST be set to the Isolation Level value of the provided Transaction
object.

= The isoFlags field MUST be set to the Isolation Flags value of the provided Transaction
object.

= The cbSourceTmAddr field MUST be set as specified in section 2.2.5.4.

= The szDesc field MUST be set to the Description value of the provided Transaction
object.

» The NameObject field MUST be set to the Transaction Manager Name of the
application.

= The AssociateMsgVersion2 field MUST be set as specified in section 2.2.5.4.
= The AssociateMsgVersion3 field MUST be set as specified in section 2.2.5.4.

= Return the new Propagation Token structure and the total size of the new Propagation
Token structure to the higher-layer business logic.

3.3.4.4 Creating an Export Connection

If the higher-layer business logic initiates a push propagation by using a specified SWhereabouts
structure, the application MUST perform the following actions:

If the transaction manager of the application supports the CONNTYPE_TXUSER_EXPORT2
connection type as specified in section 2.2.1.1.1:

= Initiate a new CONNTYPE_TXUSER_EXPORT2 (section 2.2.8.2.2.3) connection by using the
Transaction Manager Name field of the application.

Otherwise:

= Initiate a new CONNTYPE_TXUSER_EXPORT (section 2.2.8.2.2.2) connection by using the
Transaction Manager Name field of the application.

Add the connection to the transaction connection list.

If the negotiated protocol version of the previously initiated CONNTYPE_TXUSER_EXPORT
connection supports the TXUSER_EXPORT_MTAG_CREATE2 (section 2.2.8.2.2.2.2) MTAG, as
specified in 2.2.1.1.1:

= Send a TXUSER_EXPORT_MTAG_CREATE2 message by using the connection.
Otherwise:

» Send a TXUSER_EXPORT_MTAG_CREATE (section 2.2.8.2.2.2.1) message using the
connection:

The SourceTmAddr field of the message MUST be set either to an
OLETX_TM_ADDR (section 2.2.4.2) structure or a NAMEOBJECTBLOB (section 2.2.5.3) structure,
as specified in section 2.2.1.1.1.

= Find the STmToTmProtocol entries in the SWhereabouts structure corresponding to
TmProtocolMsdtcV1 and TmProtocolMsdtcV2. See section 2.2.5.11 for more details.

= If the SourceTmAddr field is an OLETX_TM_ADDR structure, the fields of the
OLETX_TM_ADDR structure MUST be set as follows:

= The guidSignature field MUST be set as specified in section 2.2.4.2.

231 /475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

* The guidEndpoint field MUST be set to the guidEndpointID field of the
SDtcCmEndpointInfoV1 structure.

= The grbComProtsSupported field MUST be set to the comprotSupported field of the

SDtcCmEndpointInfoV1 structure.
= If a TmProtocolMsdtcV2 entry was found:

= The wszHostName field MUST be set to the wszHostName field of the
SDtcCmEndpointInfoV2 structure.

= QOtherwise:

= The wszHostName field MUST be set to the szHostName field of the

SDtcCmEndpointInfoV1 structure and converted to Unicode little-endian UTF-16
encoding. This field MUST NOT contain a Unicode byte order mark (BOM) character.

= Otherwise, if the SourceTmAddr field is a NAMEOBJECTBLOB structure, the fields of the

NAMEOBJECTBLOB structure MUST be set as follows:

= The szGuid field MUST be set to the guidEndpointID field of the

SDtcCmEndpointInfoV1 structure and formatted as a string, as specified in [C706

appendix A.

= The grbComProtsSupported field MUST be set to the comprotSupported field of the

SDtcCmEndpointInfoV1 structure.

= The szHostName field MUST be set to the szHostName field of the
SDtcCmEndpointInfoV1 structure.

= The dwcbHostName and dwReserved1 fields MUST be set as specified in section

2.2.5.3.

Set the connection state to Awaiting Create Response.

3.3.4.5 Generating Trace Records for a Transaction Using CONNTYPE_TXUSER_TRACE

If the higher-layer business logic specifies that transaction trace records are to be generated to the
trace file of the transaction manager for the higher-layer business logic specified transaction object,
the application MUST perform the following steps:

Initiate a new CONNTYPE_TXUSER_TRACE (section 2.2.8.3.5) connection by using the
Transaction Manager Name field of the application.

Send a TXUSER_TRACE_MTAG_DUMP_TRANSACTION (section 2.2.8.3.5.1) message:

= The guidTx field MUST be set to the Transaction Object.Identifier of the provided
transaction.

Set the connection state to Awaiting Trace Response.

3.3.4.6 Importing a Transaction

If the higher-layer business logic specifies that a transaction be imported by using an
StxInfo (section 2.2.5.10) structure, the application MUST perform the following steps:

If the transaction manager of the application supports the CONNTYPE_TXUSER_IMPORT?2

connection type as specified in section 2.2.1.1.1:

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

232 /475

https://go.microsoft.com/fwlink/?LinkId=89824

= The application MUST attempt to import the transaction by using
CONNTYPE_TXUSER_IMPORT?2 (section 2.2.8.2.2.5).

= Otherwise:

= The application MUST attempt to import the transaction by using
CONNTYPE_TXUSER_IMPORT (section 2.2.8.2.2.4).

3.3.4.6.1 Importing a Transaction Using CONNTYPE_TXUSER_IMPORT
The application MUST perform the following actions:

= Initiate a new CONNTYPE_TXUSER_IMPORT (section 2.2.8.2.2.4) connection using the
Transaction Manager Name field of the application.

= Get the transaction identifier from the provided STxInfo (section 2.2.5.10) structure.

= If the guidSignature field of the provided STxInfo structure is set to the binary value
representation of the GUID {2adb4463-bd41-11d0-b12e-00c04fc2f3ef}

= The transaction identifier MUST be set to the uowTx field of the provided STxInfo
structure.

= Otherwise,

= The transaction identifier MUST be set to the guidSignature field of the provided
STxInfo structure.

= Create a new transaction object that uses the transaction identifier obtained from the provided
STxInfo structure.

= Add the connection to the transaction connection list.

= Set the Connection-Specific Data field of the connection to reference the new transaction
object.

= Send a TXUSER_IMPORT_MTAG_IMPORT (section 2.2.8.2.2.4.3) message using the connection:

= The guidTx field MUST be set to the transaction identifier obtained from the provided
STxInfo structure.

= Set the connection state to Awaiting Import Response.

3.3.4.6.2 Importing a Transaction Using CONNTYPE_TXUSER_IMPORT2
The application MUST perform the following actions:

= Initiate a new CONNTYPE_TXUSER_IMPORT?2 (section 2.2.8.2.2.5) connection using the
Transaction Manager Name field of the application.

= Get the transaction identifier from the provided STxInfo (section 2.2.5.10) structure, as
specified in section 3.3.4.6.1.

= Create a new transaction object that uses the transaction identifier obtained from the provided
STxInfo structure.

= Add the connection to the transaction connection list.

= Set the Connection-Specific Data field of the connection to reference the new transaction
object.

233/ 475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

= Send a TXUSER_IMPORT2_MTAG_IMPORT (section 2.2.8.2.2.5.2) message using the connection:

= The guidTx field MUST be set to the transaction identifier obtained from the provided
STxInfo structure.

= Set the connection state to Awaiting Import Response.

3.3.4.7 Importing a Transaction with Additional Transaction Attributes

If the higher-layer business logic specifies that a transaction be imported by using a
StxInfo (section 2.2.5.10) structure and that additional transaction attributes be set, the application
MUST perform the following steps:

= If the transaction manager of the application does not support the
CONNTYPE_TXUSER_IMPORT?2 (section 2.2.8.2.2.5) connection type, as specified in section
2.2.1.1.1.

= Return a failure result to the higher-layer business logic.
= Otherwise:

= Initiate a new CONNTYPE_TXUSER_IMPORT2 connection using the Transaction
Manager Name field of the application.

= Get the transaction identifier from the provided STxInfo structure, as specified in section

= Create a new transaction object that uses the transaction identifier obtained from the provided
STxInfo structure.

= Add the connection to the transaction connection list.

= Set the Connection-Specific Data field of the connection to reference the new transaction
object.

* Send a TXUSER_IMPORT2_MTAG_IMPORT_WITH_SET (section 2.2.8.2.2.5.3) message, using
the connection:

= The guidTx field MUST be set to the transaction identifier obtained from the provided
STxInfo structure.

= The isoLevel field MUST be set to the provided isolation-level value.The isoFlags field
MUST be set to the provided isolation flags value.The szDesc field MUST be set to the
provided description string.

= Set the connection state to Awaiting Import Response (section 3.3.1.7.2).

3.3.4.8 Initiating Transaction Commit

If the higher-layer business logic initiates the commit of an existing transaction, the application
MUST perform the following steps:

= Find a CONNTYPE TXUSER PROMOTE, CONNTYPE TXUSER BEGINNER, or
CONNTYPE TXUSER BEGINZ2 connection in the transaction connection list.

= If a CONNTYPE_TXUSER_PROMOTE is found:

= The application MUST attempt to complete the transaction by using
CONNTYPE_TXUSER_PROMOTE.

234 /475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

= Otherwise, if a CONNTYPE_TXUSER_BEGINNER is found:

= The application MUST attempt to complete the transaction by using
CONNTYPE_TXUSER_BEGINNER.

= Otherwise, if a CONNTYPE_TXUSER_BEGIN?2 is found:

= The application MUST attempt to complete the transaction by using
CONNTYPE_TXUSER_BEGINZ2.

= Otherwise:

= The application MUST return a failure result to the higher-layer business logic.

3.3.4.8.1 Commit a Transaction Using CONNTYPE_TXUSER_BEGIN2
The application MUST perform the following actions:
= If the connection state is not Processing Transaction:
= Return a failure result to the higher-layer business logic.
= Otherwise:

= Send a TXUSER_BEGIN2_MTAG_COMMIT (section 2.2.8.1.2.3) message using the
CONNTYPE_TXUSER_BEGIN2 (section 2.2.8.1.2) connection:

» Set the connection state to Awaiting Commit Response.

3.3.4.8.2 Commit a Transaction Using CONNTYPE_TXUSER_BEGINNER
The application MUST perform the following actions:
= If the state of the connection is not Processing Transaction:
= Return a failure result to the higher-layer business logic.
» Otherwise:

» Send a TXUSER_BEGINNER_MTAG_COMMIT (section 2.2.8.1.1.6) message using the
CONNTYPE_TXUSER_BEGINNER (section 2.2.8.1.1) connection:

= The grfRM field MUST be set to an implementation-defined GRFRM (section 2.2.7.1)
value.

= The fAsyncFull field MUST be set to 0.

= Set the connection state to Awaiting Commit Response.

3.3.4.8.3 Commit a Transaction Using CONNTYPE_TXUSER_PROMOTE
The application MUST perform the following actions:
= If the state of the connection is not Processing Transaction:
= Return a failure result to the higher-layer business logic.
= Otherwise:

» Send a TXUSER_BEGIN2_MTAG_COMMIT (section 2.2.8.1.2.3) message using the
CONNTYPE_TXUSER_PROMOTE (section 2.2.8.1.3) connection:

235/ 475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

= The grfRM field MUST be set to an implementation-defined GRFRM (section 2.2.7.1)
value.

= Set the connection state to Awaiting Commit Response.

3.3.4.9 Initiating Transaction Rollback

If the higher-layer business logic initiates the rollback of an existing transaction, the application
MUST perform the following steps:

- Find a CONNTYPE TXUSER PROMOTE, CONNTYPE TXUSER BEGIN2,
CONNTYPE TXUSER BEGINNER, CONNTYPE TXUSER IMPORT2, or CONNTYPE TXUSER IMPORT
connection in the transaction connection list.

= If a CONNTYPE_TXUSER_PROMOTE is found:

= The application MUST attempt to roll back a transaction by using
CONNTYPE_TXUSER_PROMOTE.

= Otherwise, if a CONNTYPE_TXUSER_BEGIN?Z is found:

= The application MUST attempt to roll back a transaction by using
CONNTYPE_TXUSER_BEGINZ2.

= Otherwise, if a CONNTYPE_TXUSER_BEGINNER is found:

= The application MUST attempt to roll back a transaction by using
CONNTYPE_TXUSER_BEGINNER.

= Otherwise, if a CONNTYPE_TXUSER_IMPORT?2 is found:

= The application MUST attempt to roll back a transaction by using
CONNTYPE_TXUSER_IMPORT?2.

»= Otherwise, if a CONNTYPE_TXUSER_IMPORT is found:

= The application MUST attempt to roll back a transaction by using
CONNTYPE_TXUSER_IMPORT.

= Otherwise, the application MUST return a failure result to the higher-layer business logic.

3.3.4.9.1 Abort a Transaction Using CONNTYPE_TXUSER_BEGIN2
The application MUST perform the following actions:
= If the connection state is not Processing Transaction:
= Return a failure result to the higher-layer business logic.
= Otherwise:

* Send a TXUSER_BEGIN2_MTAG_ABORT (section 2.2.8.1.2.1) message using the
CONNTYPE_TXUSER_BEGIN2 (section 2.2.8.1.2) connection.

= Set the connection state to Awaiting Abort Response.

3.3.4.9.2 Abort a Transaction Using CONNTYPE_TXUSER_BEGINNER
The application MUST perform the following actions:

= If the connection state is not Processing Transaction:

236 / 475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

= Return a failure result to the higher-layer business logic.
= Otherwise:

» Send a TXUSER_BEGINNER_MTAG_ABORT (section 2.2.8.1.1.1) message using the
CONNTYPE_TXUSER_BEGINNER (section 2.2.8.1.1) connection:

= The guidReason field MUST be set to the value that is provided by the higher-layer
business logic, as specified in section 2.2.8.1.1.1.

= Set the connection state to Awaiting Abort Response.

3.3.4.9.3 Abort a Transaction Using CONNTYPE_TXUSER_IMPORT
The application MUST perform the following actions:
= If the connection state is not Transaction Import Successful:
= Return a failure result to the higher-layer business logic.
= Otherwise:

= Send a TXUSER_IMPORT_MTAG_ABORT (section 2.2.8.2.2.4.1) message using the
CONNTYPE_TXUSER_IMPORT (section 2.2.8.2.2.4) connection:

= The guidReason field MUST be set to the value that is provided by the higher-layer
business logic, as specified in section 2.2.8.2.2.4.1.

= Set the connection state to Awaiting Abort Response.

3.3.4.9.4 Abort a Transaction Using CONNTYPE_TXUSER_IMPORT2
The application MUST perform the following actions:
= If the connection state is not Transaction Import Successful:
= Return a failure result to the higher-layer business logic.
= Otherwise:

» Send a TXUSER_IMPORT2_MTAG_ABORT (section 2.2.8.2.2.5.1) message using the
CONNTYPE_TXUSER_IMPORT2 (section 2.2.8.2.2.5) connection:

= Set the connection state to Awaiting Abort Response.

3.3.4.9.5 Roll Back a Transaction Using CONNTYPE_TXUSER_PROMOTE
The application MUST perform the following actions:
= If the connection state is not Processing Transaction:
= Return a failure result to the higher-layer business logic.
= Otherwise:

» Send a TXUSER_BEGIN2_MTAG_ABORT (section 2.2.8.1.2.1) message using the
CONNTYPE_TXUSER_PROMOTE (section 2.2.8.1.3) connection.

= Set the connection state to Awaiting Abort Response.

237/ 475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

3.3.4.10 Obtaining Extended Whereabouts Using
CONNTYPE_TXUSER_EXTENDEDWHEREABOUTS

If the higher-layer business logic wants to obtain extended whereabouts for a transaction
manager, the application MUST perform the following actions:

= Initiate a new CONNTYPE_TXUSER_EXTENDEDWHEREABOUTS (section 2.2.8.2.2.1) connection
using the Transaction Manager Name field of the application.

» Send a TXUSER_EXTENDEDWHEREABOUTS_MTAG_GET (section 2.2.8.2.2.1.1) message using the
connection.

= Set the connection state to Awaiting Get Response.
3.3.4.11 Obtaining the Security Configuration of the Transaction Manager Using
CONNTYPE_TXUSER_GETSECURITYFLAGS

If the higher-layer business logic wants to obtain the security configuration of the transaction
manager, the application MUST perform the following steps:

= Initiate a new CONNTYPE_TXUSER_GETSECURITYFLAGS (section 2.2.8.4.1) connection by using
the Transaction Manager Name field of the application.

. Send a TXUSER_GETSECURITYFLAGS_MTAG_GETSECURITYFLAGS (section 2.2.8.4.1.2) message.

= Set the connection state to Awaiting Get Response.

3.3.4.11.1 Obtaining the Details for a Transaction

If the higher-layer business logic wants to obtain the details for a transaction, the application MUST
perform the following steps:

= Initiate a new CONNTYPE_TXUSER_GETTXDETAILS (section 2.2.8.3.1) connection by using the
Transaction Manager Name field of the application.

» Add the connection to the connection list of the transaction.
» Send a TXUSER_GETTXDETAILS_MTAG_GET (section 2.2.8.3.1.1) message using the connection:
= The guidTx field MUST be set to the provided Transaction Object.Identifier.

= Set the connection state to Awaiting Response.

3.3.4.12 Pulling a Transaction

If the higher-layer business logic wants to perform pull propagation of a transaction by using a
Propagation_Token (section 2.2.5.4) structure, the application MUST perform the following actions:

= Initiate a new CONNTYPE TXUSER ASSOCIATE connection using the Transaction Manager
Name field of the application.

= Create a new transaction object that uses the guidTx field of the Propagation_Token as the
transaction identifier.

* Add the connection to the connection list of the new transaction object.
= Set the Connection-Specific Data field of the connection to the new transaction object.

» Send a TXUSER ASSOCIATE MTAG ASSOCIATE message using the connection:

238/ 475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

* The guidTx field MUST be set to the guidTx field of the Propagation_Token.
= The isoLevel field MUST be set to the isoLevel field of the Propagation_Token.
= The isoFlags field MUST be set to the isoFlags field of the Propagation_Token.
= The szDesc field MUST be set to the szDesc field of the Propagation_Token.

= The SourceTmAddr field in the message MUST be set from either an OLETX_TM_ADDR
structure or a NAMEOBJECTBLOB structure, as specified in section 2.2.1.1.1:

= If the SourceTmAddr field is an OLETX_TM_ADDR structure, the OLETX_TM_ADDR
structure fields MUST be set as follows:

= The guidSignature field MUST be set as specified in section 2.2.4.2.

= The guidEndpoint field MUST be set to the szGuid field of the NameObject field within
the Propagation_Token, converted from a string to a GUID as specified in [C706
appendix A.

= The grbComProtsSupported field MUST be set to the Propagation_Token's
NameObject field's grbComProtsSupported field.

= If the dwVersionMax field of the Propagation_Token is at least 2:

= The wszHostName field MUST be set to the
Propagation_Token.NameObject.szHostName field.

= Otherwise:

= The wszHostName field MUST be set to the
Propagation_Token.NameObject.szHostName field, converted to little-endian
UTF-16 encoding. This field MUST NOT contain a Unicode byte order mark
(BOM) character.

= Otherwise, if the SourceTmAddr field is a NAMEOBJECTBLOB structure, the
NAMEOBJECTBLOB structure fields MUST be set to the same values as the NameObject
field of the Propagation_Token.

= The cbSourceTmAddr field MUST be set as specified in section 2.2.8.2.1.1.1.

= Set the connection state to Awaiting Associate Response.

3.3.4.13 Push a Transaction Using an Existing Export Connection

If the higher-layer business logic decides to export a transaction by using an existing export
connection, the application MUST perform the following actions:

= If the provided connection state is not Connection Active:
= Return a failure result to the higher-layer business logic.
= Otherwise:

= Send a TXUSER_EXPORT_MTAG_EXPORT (section 2.2.8.2.2.2.6) message using the provided
connection:

* The guidTX field MUST be set to the provided Transaction Object.Identifier field of the
transaction object.

= Set the connection state to Awaiting Export Response.

239 /475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

https://go.microsoft.com/fwlink/?LinkId=89824

3.3.4.14 Obtaining a Transaction Cookie Using an Existing Export Connection

If the higher-layer business logic obtains a transaction cookie by using an existing export connection,
the application MUST perform the following actions:

If the provided connection state is not Connection Active:

Return a failure result to the higher-layer business logic.

Otherwise:

If the provided transaction cookie size is equal to the size of STxInfo structure:
= Create a new STxInfo structure.
= The guidSignature field MUST be set as specified in section 2.2.4.2.

= The uowTx field MUST be set to the Transaction Object.Identifier of the provided
Transaction Object.

= The tmprotUsed field MUST be set with the TM_PROTOCOL value specified in the
whereabouts data of the export connection.

= The cbProtocolSpecificTxInfo field MUST be set to zero.

= Return the newly created STxInfo structure, the size of the STxInfo structure, and the
success result to the higher-layer business logic.

Otherwise:

= Return the Transaction Object.Identifier of the provided Transaction object, the size
of GUID, and the success result to the higher-layer business logic.

3.3.4.15 Resolving a Transaction

If the higher-layer business logic determines that it needs to manually resolve the outcome of a
transaction, the application MUST perform the following steps:

If the transaction is not in either the Failed to Notify (section 3.2.1.3.13) or the In
Doubt (section 3.2.1.3.12) state:

Return a failure result to the higher-layer business logic.

Otherwise:

Initiate a new CONNTYPE_TXUSER_RESOLVE (section 2.2.8.3.2) connection using the
Transaction Manager Name field of the application.

If the transaction is in the Failed to Notify (section 3.2.1.3.13) state:

= Send a TXUSER_RESOLVE_MTAG_FORGET_COMMITTED (section 2.2.8.3.2.5) message
using the connection:

= The guidTx field MUST be set to the Transaction Object.Identifier of the provided
transaction.

= Set the connection state to Awaiting Forget Response (section 3.3.1.11.3).

Otherwise, if the transaction is in the In Doubt (section 3.2.1.3.12) state:

240/ 475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

= If the higher-layer business logic wants to manually resolve the transaction outcome as
Commit:

= Send a TXUSER_RESOLVE_MTAG_CHILD_COMMIT (section 2.2.8.3.2.3) message
using the connection:

= The guidTx field MUST be set to the Transaction Object.Identifier of the
provided transaction.

= Set the connection state to Awaiting Commit Response (section 3.3.1.1.4).

= Otherwise, if the higher-layer business logic wants to manually resolve the transaction
outcome as Abort:

= Send a TXUSER_RESOLVE_MTAG_CHILD_ABORT (section 2.2.8.3.2.2) message using
the connection:

= The guidTx field MUST be set to the Transaction Object.Identifier of the
provided transaction.

= Set the connection state to Awaiting Abort Response (section 3.3.1.1.5).
3.3.5 Processing Events and Sequencing Rules

3.3.5.1 Transaction Initiation and Completion

3.3.5.1.1 CONNTYPE_TXUSER_BEGINNER as Initiator

For all messages that are received in this connection type, the application MUST process the
message as specified in section 3.1. The application MUST also follow the processing rules that are
specified in the following sections.

3.3.5.1.1.1 Receiving a TXUSER_BEGINNER_MTAG_BEGUN Message

When the application receives a TXUSER BEGINNER MTAG BEGUN message, the application MUST
perform the following actions:

= If the connection state is Awaiting Begin Response:

= Set the connection state to Processing Transaction.
= Create a transaction object that is initialized as follows:

= Set the transaction Transaction Object.Identifier field to the guidTx field from the
message.

= Set the transaction Root field to true.
= Add the connection to the connection list of the transaction.
= Set the Connection-Specific Data field of the connection to the transaction object.

= Return a success result and a reference to the transaction object to the higher-layer business
logic.

= Otherwise, the message MUST be processed as an invalid message as specified in section 3.1.6.

3.3.5.1.1.2 Receiving a TXUSER_BEGINNER_MTAG_BEGIN_NO_MEM or
TXUSER_BEGINNER_MTAG _BEGIN_LOG_FULL Message

241 /475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

When the application receives either of these messages, the application MUST perform the following
actions:

= If the connection state is Awaiting Begin Response:
= Return a failure result to the higher-layer business logic.
= Set the connection state to Ended.

= Otherwise, the message MUST be processed as an invalid message as specified in section 3.1.6.

3.3.5.1.1.3 Receiving a TXUSER_BEGINNER_MTAG_REQUEST_COMPLETED Message

When the application receives a TXUSER BEGINNER MTAG REQUEST COMPLETED message, the
application MUST perform the following actions:

= If the connection state is Awaiting Commit Response:
= Return a Transaction Committed result to the higher-layer business logic.
= Set the connection state to Ended.
= If the connection state is Awaiting Abort Response:
= Return a Transaction Aborted result to the higher-layer business logic.
= Set the connection state to Ended.

= Otherwise, the message MUST be processed as an invalid message as specified in section 3.1.6.

3.3.5.1.1.4 Receiving a TXUSER_BEGINNER_MTAG_COMMIT_TOO_LATE Message

When the application receives a TXUSER BEGINNER MTAG COMMIT TOO LATE message, the
application MUST perform the following actions:

= If the connection state is Awaiting Commit Response:
= Return a Transaction Aborted result to the higher-layer business logic.
= Set the connection state to Ended.

= Otherwise, the message MUST be processed as an invalid message as specified in section 3.1.6.

3.3.5.1.1.5 Receiving a TXUSER_BEGINNER_MTAG_COMMIT_INDOUBT Message

When the application receives a TXUSER_BEGINNER_MTAG_COMMIT_INDOUBT (section 2.2.8.1.1.7)
message, the application MUST perform the following actions:

= If the connection state is Awaiting Commit Response:
= Return a transaction In Doubt (section 3.2.1.3.12) result to the higher-layer business logic.
Set the connection state to Ended.

= Otherwise, the message MUST be processed as an invalid message as specified in section 3.1.6.

3.3.5.1.1.6 Connection Disconnected

When a CONNTYPE_TXUSER_BEGINNER (section 2.2.8.1.1) connection is disconnected, the application
MUST perform the following actions:

242 / 475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

= If the connection state is Awaiting Begin Response:
= Return a failure result to the higher-layer business logic.
= If the connection state is Awaiting Abort Response:
= Return a transaction aborted result to the higher-layer business logic.
= If the connection state is Awaiting Commit Response:
= Return a transaction In Doubt (section 3.2.1.3.12) result to the higher-layer business logic.

= Otherwise, the event MUST be processed as specified in section 3.1.8.3.

3.3.5.1.2 CONNTYPE_TXUSER_BEGIN2 as Initiator
For all messages that are received in this connection type, the application MUST process the

message as specified in section 3.1. The application MUST also follow the processing rules that are
specified in the following sections.

3.3.5.1.2.1 Receiving a TXUSER_BEGIN2_MTAG_SINK_BEGUN Message

When the application receives a TXUSER BEGIN2 MTAG SINK BEGUN message, the application
MUST perform the following actions:

= If the connection state is Awaiting Begin Response, the application MUST:
= Set the connection state to Processing Transaction.
= Create a transaction object that is initialized as follows:

= Set the transaction Transaction Object.Identifier field to the guidTx field from the
message.

= Set the transaction Root field to TRUE.
= Add the connection to the transaction connection list.
= Set the transaction field of the connection to the transaction.

= Return a success result and a reference to the transaction object to the higher-layer business
logic.

] Otherwise, the message MUST be processed as an invalid message as specified in section 3.1.6.

3.3.5.1.2.2 Receiving a TXUSER_SETTXTIMEOUT_MTAG_REQUEST_COMPLETE
Message

When the application receives a TXUSER SETTXTIMEOUT MTAG REQUEST COMPLETE message, the
application MUST perform the following actions:

= If the connection state is Awaiting Set Timeout Response, the application MUST:
= Set the connection state to Processing Transaction.
»= Return a success result to the higher-layer business logic.

= Otherwise, the message MUST be processed as an invalid message as specified in section 3.1.6.

3.3.5.1.2.3 Receiving a TXUSER_SETTXTIMEOUT_MTAG_TOO_LATE Message

243 /475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

When the application receives a TXUSER SETTXTIMEOUT MTAG TOO LATE message, the application
MUST perform the following actions:

= If the connection state is Awaiting Set Timeout Response, the application MUST:
= Set the connection state to Processing Transaction.
= Return a failure result to the higher-layer business logic.

= Otherwise, the message MUST be processed as an invalid message as specified in section 3.1.6.

3.3.5.1.2.4 Receiving a TXUSER_SETTXTIMEOUT_MTAG_TX_NOT_FOUND Message

When the application receives a
TXUSER_SETTXTIMEOUT_MTAG_TX_NOT_FOUND (section 2.2.8.3.3.1) message, the application MUST
perform the following actions:

= If the connection state is Awaiting Set Timeout Response (section 3.3.1.2.4), the application
MUST:

= Set the connection state to Processing Transaction (section 3.3.1.2.3).
= Return a failure result to the higher-layer business logic.

= Otherwise, the message MUST be processed as an invalid message, as specified in section 3.1.6.

3.3.5.1.2.5 Receiving a TXUSER_BEGIN2_MTAG_SINK_ERROR Message

When the application receives a TXUSER BEGIN2 MTAG SINK ERROR message, the application MUST
perform the following actions:

= If the connection state is Awaiting Begin Response:

= If the Error field in the message is set to TRUN_TXBEGIN_ERROR_NO_MEM or
TRUN_TXBEGIN_ERROR_BEGIN_LOG_FULL or TRUN_TXBEGIN_ERROR_DUPLICATE_GUID:

= Return a failure result to the higher-layer business logic.
= Set the connection state to Ended.

= Otherwise, the message MUST be processed as an invalid message as specified in section
3.1.6.

= If the connection state is Processing Transaction (section 3.3.1.2.3):
= If the Error field of the message is set to TRUN_TXBEGIN_ERROR_NOTIFY_ABORTED:
= Return a transaction aborted result to the higher-layer business logic.
= Set the connection state to Ended.

= Otherwise, the message MUST be processed as an invalid message as specified in section
3.1.6.

= If the connection state is Awaiting Commit Response:

= If the Error field in the message is set to TRUN_TXBEGIN_ERROR_NOTIFY_COMMITTED or
TRUN_TXBEGIN_ERROR_NOTIFY_ABORTED or TRUN_TXBEGIN_ERROR_NOTIFY_INDOUBT:

= Return the corresponding transaction outcome as a result to the higher-layer business
logic.

244 / 475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

= Set the connection state to Ended.

= Otherwise, the message MUST be processed as an invalid message as specified in section
3.1.6.

= If the connection state is Awaiting Abort Response:
= If the Error field of the message is set to TRUN_TXBEGIN_ERROR_NOTIFY_ABORTED:
= Return a transaction aborted result to the higher-layer business logic.
= Set the connection state to Ended.

= Otherwise, the message MUST be processed as an invalid message as specified in section
3.1.6.

= If the Connection state is Awaiting Set Timeout Response:
= If the Error field of the message is set to TRUN_TXBEGIN_ERROR_NOTIFY_ABORTED:
= Return a Transaction Aborted result to the higher-layer business logic.
= Set the connection state to Ended.

= Otherwise, the message MUST be processed as an invalid message as specified in section
3.1.6.

= Otherwise, the message MUST be processed as an invalid message as specified in section 3.1.6.

3.3.5.1.2.6 Connection Disconnected

When a CONNTYPE TXUSER BEGINZ2 connection is disconnected, the application MUST perform the
following actions:

= If the connection state is Awaiting Begin Response:
= Return a failure result to the higher-layer business logic.

= If the connection state is Awaiting Set Timeout Response, Processing Transaction, or Awaiting
Abort Response:

= Return a transaction aborted result to the higher-layer business logic.
= If the connection state is Awaiting Commit Response:
= Return a transaction In Doubt (section 3.2.1.3.12) result to the higher-layer business logic.

= Otherwise, the event MUST be processed as specified in section 3.1.8.3.

3.3.5.1.3 CONNTYPE_TXUSER_PROMOTE as Initiator

Unless stated otherwise in this section, the CONNTYPE_TXUSER_PROMOTE (section 2.2.8.1.3)
connection type that is acting as an initiator MUST follow the same message processing rules as
the CONNTYPE_TXUSER_BEGINZ2 (section 2.2.8.1.2) connection type that is acting as an initiator, as
specified in CONNTYPE_TXUSER_BEGIN2 as Initiator (section 3.3.5.1.2).

3.3.5.1.3.1 Receiving a TXUSER_BEGIN2_MTAG_SINK_BEGUN Message

When the application receives a TXUSER_BEGIN2_MTAG_SINK_BEGUN message, the application
MUST perform the following actions:

245 /475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

= If the connection state is Awaiting Promote Response (section 3.3.1.3.2), the application MUST:
= Set the connection state to Processing Transaction (section 3.3.1.3.3).
= Create a transaction object that is initialized as follows:

= Set the transaction Transaction Object.Identifier field to the guidTx field from the
message. The guidTx MUST be the same value as the guidTx field in
TXUSER_BEGINNER_MTAG_PROMOTE (section 2.2.8.1.3.1) message that was sent to the
transaction manager.

= Set the transaction Root field to true.
= Add the connection to the transaction connection list.
= Set the transaction field of the connection to the transaction.

= Return a success result and a reference to the transaction object to the higher-layer business
logic.

= Otherwise, the message MUST be processed as an invalid message as specified in section 3.1.6.

3.3.5.1.3.2 Receiving a TXUSER_BEGIN2_MTAG_SINK_ERROR Message

When the application receives a TXUSER_BEGIN2_MTAG_SINK_ERROR message, the application MUST
perform the following actions:

= If the connection state is Awaiting Promote Response (section 3.3.1.3.2):

= If the Error field in the message is set to TRUN_TXBEGIN_ERROR_NO_MEM or
TRUN_TXBEGIN_ERROR_BEGIN_LOG_FULL or
TRUN_TXBEGIN_ERROR_DUPLICATE_GUID:

= Return a failure result to the higher-layer business logic.
= Set the connection state to Ended (section 3.3.1.3.7).

= Otherwise, the message MUST be processed as an invalid message as specified in section
3.1.6.

= Otherwise,
= The application MUST follow the same message processing rules as the

CONNTYPE_TXUSER_BEGIN2 connection type acting as an acceptor as specified in Receiving a
TXUSER_BEGIN2_MTAG_SINK_ERROR Message (section 3.3.5.1.2.5).

3.3.5.2 Transaction Propagation
3.3.5.2.1 Pull Propagation

3.3.5.2.1.1 CONNTYPE_TXUSER_ASSOCIATE as Initiator

For all messages that are received in this connection type, the application MUST process the
messages as specified in section 3.1.

The application MUST also follow the processing rules that are specified in the following sections.

3.3.5.2.1.1.1 Receiving a TXUSER_ASSOCIATE_MTAG_ASSOCIATED Message

246 / 475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

When the application receives a TXUSER ASSOCIATE MTAG ASSOCIATED message, the application
MUST perform the following actions:

= If the connection state is Awaiting Associate Response, the application MUST:
= Set the connection state to Active (section 3.3.1.4.3).

= Return a success result and a reference to the transaction object that is referenced by this
connection's Connection-Specific Data field to the higher-layer business logic.

= Otherwise, the message MUST be processed as an invalid message as specified in section 3.1.6.

3.3.5.2.1.1.2 Receiving Other TXUSER_ASSOCIATE_MTAG Messages
When the application receives one of these messages:

= TXUSER ASSOCIATE MTAG TX NOT FOUND

= TXUSER ASSOCIATE MTAG TOO LATE

= TXUSER ASSOCIATE MTAG CREATE BAD TMADDR

= TXUSER ASSOCIATE MTAG LOG FULL LOCAL

= TXUSER ASSOCIATE MTAG NO MEM LOCAL

= TXUSER ASSOCIATE MTAG LOG FULL REMOTE

= TXUSER ASSOCIATE MTAG NO MEM REMOTE

= TXUSER ASSOCIATE MTAG TOO MANY REMOTE

= TXUSER ASSOCIATE MTAG TOO MANY_ LOCAL

the application MUST perform the following actions:
= If the connection state is Awaiting Associate Response:
= Set the connection state to Ended.
= Return a failure result to the higher-layer business logic.

- Otherwise, the message MUST be processed as an invalid message as specified in section 3.1.6.

3.3.5.2.1.1.3 Receiving a TXUSER_IMPORT2_MTAG_SINK_ERROR Message

When the application receives a TXUSER_IMPORT2_MTAG_SINK_ERROR message, the
application MUST perform the following actions:

= If the connection state is Active:

= If the Error field in the message is set to TRUN_TXBEGIN_ERROR_NOTIFY_COMMITTED,
TRUN_TXBEGIN_ERROR_NOTIFY_ABORTED, or TRUN_TXBEGIN_ERROR_NOTIFY_INDOUBT:

* Notify the higher-layer business logic of the outcome of the transaction.
= Set the connection state to Ended.

= Otherwise, the message MUST be processed as an invalid message as specified in section

= Otherwise, the message MUST be processed as an invalid message as specified in section 3.1.6.

247/ 475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

3.3.5.2.1.1.4 Connection Disconnected

When a CONNTYPE_TXUSER_ASSOCIATE (section 2.2.8.2.1.1) connection is disconnected, the
application MUST perform the following actions:

= If the connection state is Awaiting Associate Response:
= Return a failure result to the higher-layer business logic.

= Otherwise, the event MUST be processed as specified in section 3.1.8.3.
3.3.5.2.2 Push Propagation

3.3.5.2.2.1 CONNTYPE_TXUSER_EXTENDEDWHEREABOUTS as Initiator

For all messages that are received in this connection type, the application MUST process the
message as specified in section 3.1. The application MUST also follow the processing rules as specified
in the following sections.

3.3.5.2.2.1.1 Receiving a TXUSER_EXTENDEDWHEREABOUTS_MTAG_GOT Message

When the application receives a TXUSER EXTENDEDWHEREABOUTS MTAG_ GOT message, the
application MUST perform the following actions:

= If the connection state is Awaiting Get Response:
» Create a new SWhereabouts structure.
= Set the guidSignature field to the GUID value {2adb4462-bd41-11d0-b12e-00c04fc2f3ef}.
= Set the cTmToTmProtocols field to the dwProtocolCount field of the message.
= Set the rgtmprotUsablelist field to the rgtmprotUsablelList field of the message.

= Return a success result and the new SWhereabouts structure to the higher-layer business
logic.

= Set the connection state to Ended.

= Otherwise, the message MUST be processed as an invalid message as specified in section 3.1.6.

3.3.5.2.2.1.2 Receiving a TXUSER_EXTENDEDWHEREABOUTS_MTAG_NOMEM Message

When the application receives a TXUSER EXTENDEDWHEREABOUTS MTAG NOMEM message, the
application MUST perform the following actions:

= If the connection state is Awaiting Get Response:
= Return a failure result to the higher-layer business logic.
= Set the connection state to Ended.

= Otherwise, the message MUST be processed as an invalid message as specified in section 3.1.6.

3.3.5.2.2.1.3 CONNTYPE_TXUSER_EXTENDEDWHEREABOUTS Connection
Disconnected

When a CONNTYPE_TXUSER_EXTENDEDWHEREABOUTS (section 2.2.8.2.2.1) connection is
disconnected, the application MUST perform the following actions:

248 /475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

If the connection state is Awaiting Get Response:
= Return a failure result to the higher-layer business logic.

Otherwise, the event MUST be processed as specified in section 3.1.8.3.

3.3.5.2.2.2 CONNTYPE_TXUSER_EXPORT as Initiator

For all messages that are received in this connection type, the application MUST process the
message as specified in section 3.1. The application MUST also follow the processing rules as specified
in the following sections.

3.3.5.2.2.2.1 Receiving a TXUSER_EXPORT_MTAG_CREATED Message

When the application receives a TXUSER EXPORT MTAG CREATED message, the application MUST
perform the following actions:

If the connection state is Awaiting Create Response:
= Set the connection state to Connection Active.
= Return a success result to the higher-layer business logic.

Otherwise, the message MUST be processed as an invalid message as specified in section 3.1.6.

3.3.5.2.2.2.2 Receiving a TXUSER_EXPORT_MTAG_CREATE_BAD_TMADDR or

TXUSER_EXPORT_MTAG_CREATE_NET_TX_DISABLED Message

When the application receives one of these messages, the application MUST perform the following
actions:

If the connection state is Awaiting Create Response:
= Return a failure result to the higher-layer business logic.
= Set the connection state to Ended.

Otherwise, the message MUST be processed as an invalid message as specified in section 3.1.6.

3.3.5.2.2.2.3 Receiving a TXUSER_EXPORT_MTAG_EXPORTED Message

When the application receives a TXUSER_EXPORT_MTAG_EXPORTED message, the application
MUST perform the following actions:

If the connection state is Awaiting Export Response:

= Set the connection state to Connection Active.

= Return a success result to the higher-layer business logic.

= If the application uses OLETX_TM_ADDR (section 2.2.1.1.1) for creating an Export Connection:

= Compute the size of STxInfo structure in bytes and return the size of the STxInfo
structure to the higher-layer business logic.

= QOtherwise:

= Compute the size of GUID in bytes and return the size of the GUID to the higher-layer
business logic.

Otherwise, the message MUST be processed as an invalid message as specified in section 3.1.6.

249 / 475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

3.3.5.2.2.2.4 Receiving a TXUSER_EXPORT_MTAG_EXPORT_LOG_FULL,
TXUSER_EXPORT_MTAG_EXPORT_NO_MEM,
TXUSER_EXPORT_MTAG_EXPORT_TOO_LATE,
TXUSER_EXPORT_MTAG_EXPORT_TOO_MANY, or
TXUSER_EXPORT_MTAG_EXPORT_NOT_FOUND Message

When the application receives one of these messages, the application MUST perform the following
actions:

= If the connection state is Awaiting Export Response, the application MUST:
= Set the connection state to Connection Active.
= Return a failure result to the higher-layer business logic.

= Otherwise, the message MUST be processed as an invalid message as specified in section 3.1.6.

3.3.5.2.2.2.5 CONNTYPE_TXUSER_EXPORT Connection Disconnected

When a CONNTYPE_TXUSER_EXPORT (section 2.2.8.2.2.2) connection is disconnected, the application
MUST perform the following additional actions:

= If the connection state is Awaiting Create Response or Awaiting Export Response:
- Return a failure result to the higher-layer business logic.

= Otherwise, the event MUST be processed as specified in section 3.1.8.3.

3.3.5.2.2.3 CONNTYPE_TXUSER_EXPORT2 as Initiator

For all messages that are received in this connection type, the application MUST process the
message as specified in section 3.1. The application MUST also follow the processing rules as specified
in the following sections.

3.3.5.2.2.3.1 Receiving a TXUSER_EXPORT_MTAG_CREATED Message

When the application receives a TXUSER EXPORT MTAG CREATED message, the application MUST
perform the actions specified in section 3.3.5.2.2.2.1.

3.3.5.2.2.3.2 Receiving a TXUSER_EXPORT_MTAG_CREATE_BAD_TMADDR or
TXUSER_EXPORT_MTAG_CREATE_NET_TX_DISABLED Message

When the application receives one of these messages, the application MUST perform the actions
specified in section 3.3.5.2.2.2.2.

3.3.5.2.2.3.3 Receiving a TXUSER_EXPORT_MTAG_EXPORTED Message

When the application receives one of these messages, the application MUST perform the actions
specified in section 3.3.5.2.2.2.3.

3.3.5.2.2.3.4 Receiving a TXUSER_EXPORT_MTAG_EXPORT_LOG_FULL,
TXUSER_EXPORT_MTAG_EXPORT_NO_MEM,
TXUSER_EXPORT_MTAG_EXPORT_TOO_LATE,
TXUSER_EXPORT_MTAG_EXPORT_TOO_MANY,
TXUSER_EXPORT_MTAG_EXPORT_NOT_FOUND, or
TXUSER_EXPORT_MTAG_EXPORT_COMM_FAILED Message

250/ 475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

When the application receives one of these messages, the application MUST perform the actions
specified in section 3.3.5.2.2.2.4.

3.3.5.2.2.3.5 CONNTYPE_TXUSER_EXPORT2 Connection Disconnected

When a CONNTYPE_TXUSER_EXPORT2 (section 2.2.8.2.2.3) connection is disconnected, the
application MUST perform the following additional actions:

= If the connection state is Awaiting Create Response or Awaiting Export Response:
= Return a failure result to the higher-layer business logic.

= Otherwise, the event MUST be processed as specified in section 3.1.8.3.

3.3.5.2.2.4 CONNTYPE_TXUSER_IMPORT as Initiator

For all messages that are received in this connection type, the application MUST process the
messages as specified in section 3.1. The application MUST also follow the processing rules as
specified in the following sections.

3.3.5.2.2.4.1 Receiving a TXUSER_IMPORT_MTAG_IMPORTED Message

When the application receives a TXUSER IMPORT MTAG IMPORTED message, the application MUST
perform the following actions:

= If the connection state is Awaiting Import Response:
= Set the connection state to Transaction Import Successful.

= Return a success result and a reference to the transaction object to the higher-layer business
logic.

= Otherwise, the message MUST be processed as an invalid message as specified in section 3.1.6.

3.3.5.2.2.4.2 Receiving a TXUSER_IMPORT_MTAG_IMPORT_TX_NOT_FOUND Message

When the application receives a TXUSER IMPORT MTAG IMPORT TX NOT FOUND message, the
application MUST perform the following actions:

= If the connection state is Awaiting Import Response:
= Set the connection state to Ended.
= Return a failure result to the higher-layer business logic.

= Otherwise, the message MUST be processed as an invalid message as specified in section 3.1.6.

3.3.5.2.2.4.3 Receiving a TXUSER_IMPORT_MTAG_ABORT_TOO_LATE Message.

When the application receives a TXUSER IMPORT MTAG IMPORT TOO LATE message, the
application MUST perform the following actions:

= If the connection state is Awaiting Abort Response:
= Set the connection state to Ended.
= Return a failure result to the higher-layer business logic.

= Otherwise, the message MUST be processed as an invalid message as specified in section 3.1.6.

251 /475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

3.3.5.2.2.4.4 Receiving a TXUSER_IMPORT_MTAG_REQUEST_COMPLETED Message

When the application receives a TXUSER IMPORT MTAG REQUEST COMPLETED message, the
application MUST perform the following actions:

= If the connection state is Awaiting Abort Response:
= Set the connection state to Ended.
= Return a success result to the higher-layer business logic.

= Otherwise, the message MUST be processed as an invalid message as specified in section 3.1.6.

3.3.5.2.2.4.5 Connection Disconnected

When a CONNTYPE_TXUSER_IMPORT (section 2.2.8.2.2.4) connection is disconnected, the application
MUST perform the following actions:

= If the connection state is Awaiting Import Response or Awaiting Abort Response:
. Return a failure result to the higher-layer business logic.

= Otherwise, the event MUST be processed as specified in section 3.1.8.3.

3.3.5.2.2.5 CONNTYPE_TXUSER_IMPORT2 as Initiator

For all messages that are received in this connection type, the application MUST process the
messages as specified in section 3.1. The application MUST also follow the processing rules as
specified in the following sections.

3.3.5.2.2.5.1 Receiving a TXUSER_IMPORT2_MTAG_SINK_IMPORTED Message

When the application receives a TXUSER IMPORT2 MTAG SINK IMPORTED message, the application
MUST perform the following actions:

= If the connection state is Awaiting Import Response:
= Set the connection state to Transaction Import Successful.

= Return a success result and a reference to the transaction object to the higher-layer business
logic.

= Otherwise, the message MUST be processed as an invalid message as specified in section 3.1.6.

3.3.5.2.2.5.2 Receiving a TXUSER_IMPORT2_MTAG_SINK_ERROR Message

When the application receives a TXUSER IMPORT2 MTAG SINK ERROR message, the application
MUST perform the following actions:

= If the connection state is Awaiting Import Response:

= If the Error field in the message is set to
TRUN_TXIMPORT_ERROR_IMPORT_TX_NOT_FOUND:

»= Return a failure result to the higher-layer business logic.
= Set the connection state to Ended.

= Otherwise, the message MUST be processed as an invalid message as specified in section
3.1.6.

252 /475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

= If the connection state is Awaiting Abort Response:

= If the Error field in the message is set to
TRUN_TXIMPORT_ERROR_IMPORT_TX_NOT_FOUND:

= Return a failure result to the higher-layer business logic.
= Set the connection state to Ended.

= Otherwise, if the Error field in the message is set to
TRUN_TXBEGIN_ERROR_NOTIFY_ABORTED, TRUN_TXBEGIN_ERROR_NOTIFY_COMMITTED, or
TRUN_TXBEGIN_ERROR_NOTIFY_INDOUBT:

= Return the respective transaction outcome as a result to the higher-layer business logic.
= Set the connection state to Ended.

= Otherwise, the message MUST be processed as an invalid message as specified in section
3.1.6.

= If the connection state is Transaction Import Successful:

= If the Error field in the message is set to TRUN_TXBEGIN_ERROR_NOTIFY_COMMITTED,
TRUN_TXBEGIN_ERROR_NOTIFY_ABORTED, or TRUN_TXBEGIN_ERROR_NOTIFY_INDOUBT:

= Notify the higher-layer business logic of the outcome of the transaction.
= Set the connection state to Ended.

= Otherwise, the message MUST be processed as an invalid message as specified in section
3.1.6.

= Otherwise, the message MUST be processed as an invalid message as specified in section 3.1.6.

3.3.5.2.2.5.3 CONNTYPE_TXUSER_IMPORT2 Connection Disconnected

When a CONNTYPE_TXUSER_IMPORT?2 (section 2.2.8.2.2.5) connection is disconnected, the
application MUST perform the following actions:

= If the connection state is Awaiting Import Response or Awaiting Abort Response:
= Return a failure result to the higher-layer business logic.

= Otherwise, the event MUST be processed as specified in section 3.1.8.3.

3.3.5.3 Transaction Administration

3.3.5.3.1 CONNTYPE_TXUSER_GETTXDETAILS as Initiator

For all messages that are received in this connection type, the application MUST process the
message as specified in section 3.1. The application MUST also follow the processing rules as specified
in the following sections.

3.3.5.3.1.1 Receiving a TXUSER_GETTXDETAILS_MTAG_GOTIT Message

When the application receives a TXUSER GETTXDETAILS MTAG GOTIT message, the application
MUST perform the following actions:

= If the connection state is Awaiting Response:

253 /475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

. Return a success result to the higher-layer business logic, including the details that are
provided in the following message fields:

= The vszSuperiorName field
= The vszSuperiorlD field
= The ISubordinateCount field
= The rgSubordinates field

= Set the state to Ended.

= Otherwise, the message MUST be processed as an invalid message as specified in section 3.1.6.

3.3.5.3.1.2 Receiving a TXUSER_GETTXDETAILS_MTAG_TX_NOT_FOUND Message

When the application receives a TXUSER GETTXDETAILS MTAG TX NOT FOUND message, the
application MUST perform the following actions:

= If the connection state is Awaiting Response:
= Return a failure result to the higher-layer business logic.
= Set the connection state to Ended.

= Otherwise, the message MUST be processed as an invalid message as specified in section 3.1.6.

3.3.5.3.1.3 CONNTYPE_TXUSER_GETTXDETAILS Connection Disconnected

When a CONNTYPE_TXUSER_GETTXDETAILS (section 2.2.8.3.1) connection is disconnected, the
application MUST perform the following actions:

= If the connection state is Awaiting Response:
= Return a failure result to the higher-layer business logic.

= Otherwise, the event MUST be processed as specified in section 3.1.8.3.

3.3.5.3.2 CONNTYPE_TXUSER_RESOLVE as Initiator

For all messages that are received in this connection type, the application MUST process the
message as specified in section 3.1.1. The application MUST also follow the processing rules as
specified in the following sections.

3.3.5.3.2.1 Receiving a TXUSER_RESOLVE_MTAG_REQUEST_COMPLETE Message

When the application receives a TXUSER RESOLVE MTAG REQUEST COMPLETE message, the
application MUST perform the following actions:

= If the connection state is Awaiting Abort Response, Awaiting Commit Response, or Awaiting
Forget Response:

= Return a success result to the higher-layer business logic.
= Set the connection state to Ended.

= Otherwise, the message MUST be processed as an invalid message as specified in section 3.1.6

254 /475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

3.3.5.3.2.2 Receiving a TXUSER_RESOLVE_MTAG_ACCESSDENIED or
TXUSER_RESOLVE_MTAG_TX_NOT_FOUND Message

When the application receives one of these messages, the application MUST perform the following
actions:

= If the connection state is Awaiting Abort Response, Awaiting Commit Response, or Awaiting Forget
Response:

= Return a failure result to the higher-layer business logic.
= Set the connection state to Ended.

= Otherwise, the message MUST be processed as an invalid message as specified in section 3.1.6

3.3.5.3.2.3 Receiving a TXUSER_RESOLVE_MTAG_CHILD_NOT_PREPARED or
TXUSER_RESOLVE_MTAG_NOT_CHILD Message

When the application receives a TXUSER RESOLVE MTAG CHILD NOT PREPARED or
TXUSER RESOLVE MTAG NOT CHILD message, the application MUST perform the following actions:

= If the connection state is Awaiting Abort Response or Awaiting Commit Response:
= Return a failure result to the higher-layer business logic.
= Set the connection state to Ended.

= Otherwise, the message MUST be processed as an invalid message as specified in section 3.1.6.

3.3.5.3.2.4 Receiving a TXUSER_RESOLVE_MTAG_FORGET_TX_NOT_COMMITTED
Message

When the application receives a TXUSER RESOLVE MTAG FORGET TX NOT COMMITTED message,
the application MUST perform the following actions:

= If the connection state is Awaiting Forget Response:
= Return a failure result to the higher-layer business logic.
= Set the connection state to Ended.

= Otherwise, the message MUST be processed as an invalid message as specified in section 3.1.6

3.3.5.3.2.5 Connection Disconnected

When a CONNTYPE TXUSER RESOLVE connection is disconnected, the application MUST perform the
following actions:

= If the connection state is Awaiting Abort Response, Awaiting Commit Response, or Awaiting Forget
Response:

= Return a failure result to the higher-layer business logic.

= Otherwise, the event MUST be processed as specified in section 3.1.8.3.

3.3.5.3.3 CONNTYPE_TXUSER_SETTXTIMEOUT as Initiator

For all messages that are received in this connection type, the application MUST process the
message as specified in section 3.1. The application MUST also follow the processing rules as specified
in the following sections.

255/ 475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

3.3.5.3.3.1 Receiving a TXUSER_SETTXTIMEOUT_MTAG_REQUEST_COMPLETE
Message

When the application receives a TXUSER SETTXTIMEOUT MTAG REQUEST COMPLETE message, the
application MUST perform the following actions:

= If the connection state is Awaiting Set Timeout Response:
= Return a success result to the higher-layer business logic.
= Set the connection state to Ended.

= Otherwise, the message MUST be processed as an invalid message as specified in section 3.1.6.

3.3.5.3.3.2 Receiving a TXUSER_SETTXTIMEOUT_MTAG_TOO_LATE or
TXUSER_SETTXTIMEOUT_MTAG_TX_NOT_FOUND Message

When the application receives a TXUSER SETTXTIMEOUT MTAG TOO LATE or
TXUSER SETTXTIMEOUT MTAG TX NOT FOUND message, the application MUST perform the
following actions:

= If the connection state is Awaiting Set Timeout Response:
= Return a failure result to the higher-layer business logic.
= Set the connection state to Ended.

= Otherwise, the message MUST be processed as an invalid message as specified in section 3.1.6.

3.3.5.3.3.3 Connection Disconnected

When a CONNTYPE TXUSER SETTXTIMEOUT connection is disconnected, the application MUST
perform the following actions:

= If the connection state is Awaiting Set Timeout Response:
= Return a failure result to the higher-layer business logic.

= Otherwise, the event MUST be processed as specified in section 3.1.8.3.

3.3.5.3.4 CONNTYPE_TXUSER_SETTXTIMEOUT2 as Initiator

For all messages that are received in this connection type, the application MUST process the
message as specified in section 3.1. The application MUST also follow the processing rules as specified
in the following sections.

3.3.5.3.4.1 Receiving a TXUSER_SETTXTIMEOUT_MTAG_TX_NOT_FOUND Message

When the application receives a
TXUSER_SETTXTIMEOUT_MTAG_TX_NOT_FOUND (section 2.2.8.3.3.1) message, the application MUST
perform the following actions:

= If the connection state is Awaiting Set Timeout Response:

= Find an instance of a CONNTYPE_TXUSER_BEGIN2 (section 2.2.8.1.2) or
CONNTYPE_TXUSER_PROMOTE (section 2.2.8.1.3) connection in the transaction connection
list. This connection is referred to as the beginner connection.

= If a beginner connection is not found:

256 / 475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

= The application MUST return a failure result to the higher-layer business logic.
= Otherwise, if the beginner connection state is not Awaiting Set Timeout Response:
= The application MUST return a failure result to the higher-layer business logic.
= Otherwise:
= Set the beginner connection state to Processing Transaction.
= The application MUST return a failure result to the higher-layer business logic.
= Set the CONNTYPE_TXUSER_SETTXTIMEOUT?2 (section 2.2.8.3.4) connection state to Ended.

= Otherwise, the message MUST be processed as an invalid message as specified in section 3.1.6.

3.3.5.3.4.2 Connection Disconnected

When a CONNTYPE TXUSER SETTXTIMEOUTZ2 connection is disconnected, the application MUST
perform the following actions:

= If the connection state is Awaiting Set Timeout Response:
= Return a failure result to the higher-layer business logic.

= Otherwise, the event MUST be processed as specified in section 3.1.8.3

3.3.5.3.5 CONNTYPE_TXUSER_TRACE as Initiator

For all messages that are received in this connection type, the application MUST process the
message as specified in section 3.1. The application MUST also follow the processing rules as specified
in the following sections.

3.3.5.3.5.1 Receiving a TXUSER_TRACE_MTAG_REQUEST_COMPLETE Message

When the application receives a TXUSER_TRACE_MTAG_REQUEST_COMPLETE (section 2.2.8.3.5.2)
message, the application MUST perform the following actions:

= If the connection state is Awaiting Trace Response:
= Return a success result to the higher-layer business logic.
= Set the connection state to Ended.

= Otherwise, the message MUST be processed as an invalid message as specified in section 3.1.6.

3.3.5.3.5.2 Receiving a TXUSER_TRACE_MTAG_REQUEST_FAILED or
TXUSER_TRACE_MTAG_TX_NOT_FOUND Message

When the application receives one of these messages, the application MUST perform the following
actions:

= If the connection state is Awaiting Trace Response:
= Return a failure result to the higher-layer business logic.
= Set the connection state to Ended.

= Otherwise, the message MUST be processed as an invalid message as specified in section 3.1.6.

3.3.5.3.5.3 Connection Disconnected

257/ 475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

When a CONNTYPE_TXUSER_TRACE (section 2.2.8.3.5) connection is disconnected, the application
MUST perform the following actions:

= If the connection state is Awaiting Trace Response:
= Return a failure result to the higher-layer business logic.

= Otherwise, the event MUST be processed as specified in section 3.1.8.3.

3.3.5.4 Transaction Manager Administration

3.3.5.4.1 CONNTYPE_TXUSER_GETSECURITYFLAGS as Initiator

For all messages that are received in this connection type, the application MUST process the
message as specified in section 3.1. The transaction manager MUST also follow the processing rules
as specified in the following sections.

3.3.5.4.1.1 Receiving a TXUSER_GETSECURITYFLAGS _MTAG_FETCHED Message

When the application receives a TXUSER_GETSECURITYFLAGS_MTAG_FETCHED (section 2.2.8.4.1.1)
message, the application MUST perform the following actions:

= If the connection state is Awaiting Get Response:

= Return a success result and the following message information to the higher-layer business
logic:

= The grfNetworkDtcAccess field
= The grfXaTransactions field
= Set the connection state to Ended.

= Otherwise, the message MUST be processed as an invalid message as specified in section 3.1.6.

3.3.5.4.1.2 CONNTYPE_TXUSER_GETSECURITYFLAGS Connection Disconnected

When a CONNTYPE_TXUSER_GETSECURITYFLAGS (section 2.2.8.4.1) connection is disconnected, the
application MUST perform the following actions:

= If the connection state is Awaiting Get Response:
= Return a failure result to the higher-layer business logic.

= Otherwise, the event MUST be processed as specified in section 3.1.8.3.

3.3.6 Timer Events

None.

3.3.7 Other Local Events

None.

258 /475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

3.4 Transaction Manager Communicating with Application Details

3.4.1 Abstract Data Model

This section describes a conceptual model of possible data organization that an implementation
maintains to participate in this protocol. The described organization is provided to facilitate the
explanation of how the protocol behaves. This document does not mandate that implementations
adhere to this model as long as their external behavior is consistent with the behavior that is
described in this document.

The transaction manager communicating with an application facet MUST maintain all the data
elements that are specified in section 3.2.1.

The transaction manager communicating with an application facet MUST also maintain the following
data elements:

= Associates Table: A table where each object is a list of connection objects of type
CONNTYPE_TXUSER_ASSOCIATE (section 2.2.8.2.1.1), keyed by the identifier of the transaction
with which the connections are associated. All connection objects in each list reference the same
transaction object, and there is only one list per transaction in the Associates Table.

Enlistment objects that are created by the transaction manager communicating with an application
facet MUST provide the following properties, as specified in section 3.1.1:

= Name: An empty string
= Enlistment Object.Identifier: An empty string

The transaction manager communicating with an application facet MUST provide the states in the
following sections for its supported connection types. The connection types that a transaction
manager communicating with an application facet MUST provide for each supported protocol version
are as specified in section 2.2.1.1.1.

3.4.1.1 CONNTYPE_TXUSER_BEGINNER Acceptor States

The transaction manager communicating with an application MUST act as an acceptor for the
CONNTYPE TXUSER BEGINNER connection type. In this role, the transaction manager
communicating with an application MUST provide support for the following states:

= Idle

= Beginning Transaction

= Active

= Aborting Transaction

= Committing Transaction
* Ended

The following figure shows the relationships between the CONNTYPE_TXUSER_BEGINNER acceptor
states.

259 /475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

TXUUSER_BEGINNER_MTAG_BEGIN_NO_MEM or
TXUSER_BEGINMER_MTAG_BEGIN_LOG_FULL sent

Idle

TEUSER
BEGINMER_
MTAG_BEGIN
received

Beginning

Transaction

THUSER_
BEGIMNMNER_
MTAG BEGUN
TXUSER BEGIMMER zent
MTAG_REQUEST_ THIUSER_
) COMPLETED BEGINMER. _MTAG
C“:gﬁgtd":'” sent ABORT received
Aborting Acti
Transaction Application | Ive

aborts transaction

Transaction
Aborted

TXUSER_BEGINMER_
MTAG_ COMMIT
received

Committing

Commit Failed
THUSER_BEGIMMER_

MTAG COMMIT
TOO_LATE or
THUSER_BEGINMER_
MTAG_COMMIT_
INDOUBT sent

l Transaction

TXUSER_BEGINNER_
MTAG_REQUEST
COMPLETED sent

Commit Succeeded

Figure 29: CONNTYPE_TXUSER_BEGINNER Acceptor States

3.4.1.1.1 Idle

The Idle state is the initial state. The following event is processed in this state:

= Receiving a TXUSER_BEGINNER_MTAG_BEGIN Message (section 3.4.5.1.1.1).

3.4.1.1.2 Beginning Transaction

The following events are processed in this state:

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

260/ 475

= Create Transaction Success (section 3.4.7.8)

= Create Transaction Failure (section 3.4.7.7)

3.4.1.1.3 Active

The following events are processed in this state:

= Receiving a TXUSER_BEGINNER_MTAG_COMMIT Message (section 3.4.5.1.1.2)
= Receiving a TXUSER_BEGINNER_MTAG_ABORT Message (section 3.4.5.1.1.3)

»= Unilaterally Aborted (section 3.4.7.23)

3.4.1.1.4 Aborting Transaction

The following events are processed in this state:

= Rollback Complete (section 3.4.7.18)

= Receiving a TXUSER_BEGINNER_MTAG_COMMIT Message (section 3.4.5.1.1.2)

= Phase One Complete (section 3.4.7.13)

3.4.1.1.5 Committing Transaction
The following event is processed in this state:

= Phase One Complete (section 3.4.7.13)

3.4.1.1.6 Ended

This is the final state.

3.4.1.2 CONNTYPE_TXUSER_BEGIN2 Acceptor States

The transaction manager communicating with an application MUST act as an acceptor for the
CONNTYPE TXUSER BEGIN2 connection type. In this role, the transaction manager communicating
with an application MUST provide support for the following states:

= Idle

= Beginning Transaction

= Active

= Modifying Timeout

= Aborting Transaction

= Committing Transaction
* Ended

The following figure shows the relationships between the CONNTYPE_TXUSER_BEGIN2 acceptor
states.

261 /475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

BEGINZ_MTAG_
BEGIN received THUSER

BEGINZ_MTAG_
SINK_ERROR sent

Beginning Initialization Failed
Transaction

THUSER_ TXUSER_BEGINZ_MTAG_
SETTXTIMEOUT SINK_BEGUN sent
MTAG SETTXTIMEOUT THUSER_
recelved THUSER_ BEGINZ_MTAG_ Y
EEGEE_MTF-G_ SINK_ERROR
Timeout — Transaction
T
TXUSER AA
SETTXTIMEOUT TM aborts transaction
MTAG_REQUEST_
COMPLETE, or
TXUSER_SETTXTIMEOUT TXUSER_BEGINZ_MTAG_SINK_ERROR sent
MTAG_TOO_LATE
sent
THUSER,
TXUSER_BEGINZ_ BEGINZ MTAG

MTAG_COMMIT

- SINK_ERROR
receivad -
.| committing sent
™1 Transaction L

Figure 30: CONNTYPE_TXUSER_BEGIN2 Acceptor States

3.4.1.2.1 Idle
This is the initial state. The following event is processed in this state:

» Receiving a TXUSER_BEGIN2_MTAG_BEGIN Message (section 3.4.5.1.2.1)

3.4.1.2.2 Beginning Transaction
The following events are processed in this state:
» Create Transaction Success (section 3.4.7.8)

» Create Transaction Failure (section 3.4.7.7)

3.4.1.2.3 Active

The following events are processed in this state:

= Receiving a TXUSER_SETTXTIMEOUT_MTAG_SETTXTIMEOUT Message (section 3.4.5.1.2.2)
= Receiving a TXUSER_BEGIN2_MTAG_COMMIT Message (section 3.4.5.1.2.3)

262 / 475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

= Receiving a TXUSER_BEGIN2_MTAG_ABORT Message (section 3.4.5.1.2.4)

= Unilaterally Aborted (section 3.4.7.23)

3.4.1.2.4 Modifying Timeout
The following events are processed in this state:
» Set Transaction Timeout Success (section 3.4.7.22)

= Set Transaction Timeout Failure (section 3.4.7.21)

3.4.1.2.5 Aborting Transaction
The following event is processed in this state:

= Rollback Complete (section 3.4.7.18)

3.4.1.2.6 Committing Transaction
The following event is processed in this state:

= Phase One Complete (section 3.4.7.13)

3.4.1.2.7 Ended

This is the final state.

3.4.1.3 CONNTYPE_TXUSER_PROMOTE Acceptor States

The transaction manager communicating with an application MUST act as an acceptor for the
CONNTYPE TXUSER PROMOTE connection type. In this role, the transaction manager
communicating with an application MUST provide support for the following states:

= Idle

= Beginning Transaction

= Active

= Modifying Timeout

= Aborting Transaction

= Committing Transaction
= Ended

The following figure shows the relationship between the CONNTYPE_TXUSER_PROMOTE acceptor
states.

263/ 475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

THUSER_BEGINMER_MTAG

_PROMOTE received TXUSER
BEGINZ_MTAG_
SINK_ERROR
Beginning sent
Transaction
Eegin
THUSER Failed
BEGINZ_MTAG_
TXUSER SINK_BEGUN
SETTXTIMEQUT _ sent
MTAG SETTXTIMEQLN THUSER_
received THXUSER_ BEGIMNZ MTAG
BEGINZ _MTAG_ SINK_ERROR
ABORT received sent

Mad ifying

Timeout

Y

Active

Aborting
Transaction

THUSER_
SETTXTIMEQUT MTAG
REQUEST_COMPLETE
THUSER_SETTATIMEOUT
MTAG_TOO_LATE

sent TAXUSER TAUSER
BEGINZ _ BEGINZ_MTAG_
MTAG_COMMIT SINK_ERROR
received sent

TXUSER_BEGINZ MTAG SIMNK_ERROR sent

Committing

Transaction

Figure 31: CONNTYPE_TXUSER_PROMOTE Acceptor States

3.4.1.3.1 1dle

This is the initial state. The following event is processed in this state:

= Receiving a TXUSER_BEGINNER_MTAG_PROMOTE Message (section 3.4.5.1.3.1)

3.4.1.3.2 Beginning Transaction
The following events are processed in this state:
= Create Transaction Success (section 3.4.7.8)

= Create Transaction Failure (section 3.4.7.7)

3.4.1.3.3 Active

The following events are processed in this state:

= Receiving a TXUSER_SETTXTIMEOUT_MTAG_SETTXTIMEOUT, TXUSER_BEGIN2_MTAG_COMMIT,

or TXUSER_BEGIN2_MTAG_ABORT Message (section 3.4.5.1.3.2)
= Receiving a TXUSER_BEGINNER_MTAG_PROMOTE Message (section 3.4.5.1.3.1)

= Unilaterally Aborted (section 3.4.7.23)

3.4.1.3.4 Modifying Timeout

The following events are processed in this state:

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

264 / 475

Set Transaction Timeout Success (section 3.4.7.22)

Set Transaction Timeout Failure (section 3.4.7.21)

3.4.1.3.5 Aborting Transaction

The following event is processed in this state:

Rollback Complete (section 3.4.7.18)

3.4.1.3.6 Committing Transaction

The following event is processed in this state:

Phase One Complete (section 3.4.7.13)

3.4.1.3.7 Ended

This is the final state.

3.4.1.4 CONNTYPE_TXUSER_ASSOCIATE Acceptor States

The transaction manager communicating with an application MUST act as an acceptor for the
CONNTYPE TXUSER ASSOCIATE connection type. In this role, the transaction manager

communicating with an application MUST provide support for the following states:

Idle
Processing Associate Request
Active

Ended

The following figure shows the relationship between the CONNTYPE_TXUSER_ASSOCIATE acceptor
states.

265/ 475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

S

I
TXUSER_ASSOCIATE

MTAG_ASSOCIATE))
received Associate Failed

TXUSER_ASSOCIATE MTAG COMM_ FAILED
+ TXUSER_ASSDCIATE MTAG_LOG FULL LOCAL

TXUSER ASSOCIATE MTAG LOG FULL REMOTE
[Processing I THUSER_ASSOCIATE_MTAG_NO_MEM_LOCAL

Associate Request USER_ASSOCIATE_MTAG_CREATE_BAD_TMADDR
TXUSER_ASSOCIATE_MTAG_NCO_MEM_REMOTE
TXUSER_ASSOCIATE _MTAG TOOD LATE

THUSER_ASSOCIATE TXUSER_ASSOCIATE MTAG TOD MANY REMOTE
MTAG_ASSOCIATED THUSER_ASSOCIATE_MTAG_TX_NOT_FOUND
sent

* THUSER IMPORTZ
. MTAG_SINK_ERROR
[Active J— with transaction Ended
outcome sent

Figure 32: CONNTYPE_TXUSER_ASSOCIATE Acceptor States

3.4.1.4.1 1Idle
This is the initial state. The following event is processed in this state:

= Receiving a TXUSER_ASSOCIATE_MTAG_ASSOCIATE Message (section 3.4.5.2.1.1.1)

3.4.1.4.2 Processing Associate Request
The following events are processed in this state:
= Associate Transaction Success (section 3.4.7.2).

= Associate Transaction Failure (section 3.4.7.1). This event applies to these messages:

= TXUSER_ASSOCIATE_MTAG_COMM_FAILED (section 2.2.8.2.1.1.3)

= TXUSER_ASSOCIATE_MTAG_LOG_FULL_LOCAL (section 2.2.8.2.1.1.5)

= TXUSER_ASSOCIATE_MTAG_LOG_FULL_REMOTE (section 2.2.8.2.1.1.6)

= TXUSER_ASSOCIATE_MTAG_NO_MEM_REMOTE (section 2.2.8.2.1.1.8)

= TXUSER_ASSOCIATE_MTAG_TOO_LATE (section 2.2.8.2.1.1.9)

= TXUSER_ASSOCIATE_MTAG_TOO_MANY_REMOTE (section 2.2.8.2.1.1.11)

= TXUSER_ASSOCIATE_MTAG_TX_NOT_FOUND (section 2.2.8.2.1.1.12)

266 / 475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

3.4.1.4.3 Active

The following events are processed in this state:
= Begin Voting (section 3.4.7.6).

= Begin Commit (section 3.4.7.3)

= Begin Rollback (section 3.4.7.5)

= Begin In Doubt (section 3.4.7.4)

3.4.1.4.4 Ended

This is the final state.

3.4.1.5 CONNTYPE_TXUSER_EXTENDEDWHEREABOUTS Acceptor States

The transaction manager communicating with an application MUST act as an acceptor for the
CONNTYPE TXUSER EXTENDEDWHEREABOUTS connection type. In this role, the transaction
manager communicating with an application MUST provide support for the following states:

« Idle
= Processing Inquiry
» Ended

The following figure shows the relationship between the
CONNTYPE_TXUSER_EXTENDEDWHEREABOUTS acceptor states.

267/ 475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

-

TXUSER EXTENDEDWHEREABOUTS
_MTAG_GET received

TXUSER_EXTEMDEDWHEREABOUTS TXUSER_EXTEMDEDWHEREABOUTS
MTAG_GOT sent Processing MTAS MOMEM sent
Inquiry
Inquiry Inguiry
Succassful Failed

Figure 33: CONNTYPE_TXUSER_EXTENDEDWHEREABOUTS Acceptor States

3.4.1.5.1 Idle
This is the initial state. The following event is processed in this state:

= Receiving a TXUSER_EXTENDEDWHEREABOUTS_MTAG_GET Message (section 3.4.5.2.2.1.1)

3.4.1.5.2 Processing Inquiry

This is a transient state that is assumed during the synchronous processing of a request. No events
are processed in this state.

3.4.1.5.3 Ended

This is the final state.

3.4.1.6 CONNTYPE_TXUSER_IMPORT Acceptor States

The transaction manager communicating with an application MUST act as an acceptor for the
CONNTYPE TXUSER IMPORT connection type. In this role, the transaction manager communicating
with an application MUST provide support for the following states:

268 /475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

Idle

Processing Import Request
Active

Too Late to Abort
Processing Abort Request

Ended

The following figure shows the relationship between the CONNTYPE_TXUSER_IMPORT acceptor states.

THXUSER _IMPORT
MTAG_IMPORTED
sent
Active

Idle

TXUSER_IMPORT_

MTAG IMPORT
received
THXUSER _IMPORT
- MTAG_IMPORT_TX_
Processing NOT_FOUND sent
Import
M Transaction
[mport Failed

Voting Success

Mo transaction abort request recelved

Mo transaction abort

Too Late

TXUSER_IMPORT_

MTAG ABORT TXUSER_IMPORT
received MTAG ABORT
raceived

to Abart request received

TXUSER_IMPORT _
MTAG_ABORT

Processing TOOD LATE sent
Ended
Transaction Abort Succeeded
THUSER_IMPORT _MTAG_ O
REQUEST COMPLETED sent

Figure 34: CONNTYPE_TXUSER_IMPORT Acceptor States

3.4.1.6.1 1Idle

This is the initial state. The following event is processed in this state:

Receiving a TXUSER_IMPORT_MTAG_IMPORT Message (section 3.4.5.2.2.4.1)

3.4.1.6.2 Processing Import Request

[MS-DTCO] - v20210625
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

269 / 475

The following events are processed in this state:
= Create Voter Enlistment Success (section 3.4.7.10)

= Create Voter Enlistment Failure (section 3.4.7.9)

3.4.1.6.3 Active

The following events are processed in this state:

= Receiving a TXUSER_IMPORT_MTAG_ABORT Message (section 3.4.5.2.2.4.2)
= Begin Voting (section 3.4.7.6)

= Begin Commit (section 3.4.7.3)

= Begin Rollback (section 3.4.7.5)

= Begin In Doubt (section 3.4.7.4)

3.4.1.6.4 Too Late to Abort

The following events are processed in this state:

» Receiving a TXUSER_IMPORT_MTAG_ABORT Message (section 3.4.5.2.2.4.2)
= Begin Rollback (section 3.4.7.5)

= Begin Commit (section 3.4.7.3)

= Begin In Doubt (section 3.4.7.4)

3.4.1.6.5 Processing Abort Request

This is a transient state that is assumed during the synchronous processing of a request to abort a
transaction. No events are processed in this state.

3.4.1.6.6 Ended

This is the final state.

3.4.1.7 CONNTYPE_TXUSER_IMPORT2 Acceptor States

The transaction manager communicating with an application MUST act as an acceptor for the
CONNTYPE TXUSER IMPORT2 connection type. In this role, the transaction manager communicating
with an application MUST provide support for the following states:

= Idle

= Processing Import Request
= Active

= Too Late to Abort

= Processing Abort Request

= Ended

270/ 475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

The following figure shows the relationship between the CONNTYPE_TXUSER_IMPORT2 acceptor

states.
THUSER IMPORTZ MTAG IMPORT or
TXUSER_IMPORT2_MTAG_IMPORT_WITH_SET
received
TXUSER_IMPORTZ '&I';(rl.;ltS[iF:r;rzORT}! MTAG SINK_ERROR
MIAG 5”“5: HEMPORTED Processing) TRUN_TXIMPORT_ERROR_IMPORT TX_
Active Import NOT_FOUND]
Request Transaction
R THUSER_ Import Failed
IMPORT2_MTAG
SINK_ERROR sent
Transaction

THUSER_IMPORTZ_
MTAG_ABORT
received

‘oting Success

Qutcome Decided

THUSER_IMPORTZ_
MTAG_ABORT
received

Too Late
to Abort Transaction
Qutcome Decided

THUSER_IMPORT_
MTAG ABORT_
TOO LATE sent

TXUSER
[MPORT2_MTAG_
SINK_ERROR sent

Transaction Abort Succeeded

TXUSER IMPORT2 MTAG SINK ERROR sent

[error = TRUN_TXIMPORT_ERROR_NOTIFY_ABORTED]

Figure 35: CONNTYPE_TXUSER_IMPORT2 Acceptor States

3.4.1.7.1 1Idle

This is the initial state. The following events are processed in this state:

= Receiving a TXUSER_IMPORT2_MTAG_IMPORT Message (section 3.4.5.2.2.5.1)

®

= Receiving a TXUSER_IMPORT2_MTAG_IMPORT_WITH_SET Message (section 3.4.5.2.2.5.2)

3.4.1.7.2 Processing Import Request

The following events are processed in this state:

= Set Transaction Attributes Success (section 3.4.7.20)

»= Set Transaction Attributes Failure (section 3.4.7.19)

= Create Voter Enlistment Success (section 3.4.7.10)

= Create Voter Enlistment Failure (section 3.4.7.9)

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol

Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

271/ 475

3.4.1.7.3 Active

The following events are processed in this state:

= Receiving a TXUSER_IMPORT2_MTAG_ABORT message (section 3.4.5.2.2.5.3)
= Begin Voting (section 3.4.7.6)

= Begin Commit (section 3.4.7.3)

= Begin Rollback (section 3.4.7.5)

= Begin In Doubt (section 3.4.7.4)

3.4.1.7.4 Too Late to Abort

The following events are processed in this state:

= Receiving a TXUSER_IMPORT2_MTAG_ABORT message (section 3.4.5.2.2.5.3)
= Begin Commit (section 3.4.7.3)

= Begin Rollback (section 3.4.7.5)

= Begin In Doubt (section 3.4.7.4)

3.4.1.7.5 Processing Abort Request

This is a transient state that is assumed during the synchronous processing of a request to abort a
transaction. No events are processed in this state.

3.4.1.7.6 Ended

This is the final state.

3.4.1.8 CONNTYPE_TXUSER_EXPORT Acceptor States

The transaction manager communicating with an application MUST act as an acceptor for the
CONNTYPE TXUSER EXPORT connection type. In this role, the transaction manager communicating
with an application MUST provide support for the following states:

= Idle

= Processing Connection Request

= Connection Active

= Processing Push Operation Request
* Ended

The following figure shows the relationship between the CONNTYPE_TXUSER_EXPORT acceptor states.

272 / 475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

TXUSER_EXPORT

MTAG_CREATE or

TXUSER_EXPORT _
MTAG_CREATEZ2 received

TXUSER_EXPORT_MTAG_CREATE_BAD_TMADDR or
THUSER_EXPORT_MTAG_CREATE_MNET _TX_DISABLED sent

Processing

Connection
Request

TXUSER_EXPORT_
MTAG_CREATED
sent

Connection onnection disconnected

Active

H#A%R@E;{ggﬁgﬁ TXUSER_EXPORT TXUSER EXPORT MTAG EXPORT LOG FULL or
A MTAG_EXPORT TXUSER_EXPORT MTAG EXPORT NO MEM or
sent received THUSER_EXPORT_MTAG_EXPORT_TOO_LATE or
TXUSER_EXPORT_MTAG_EXPORT_TOO_MANY or
TXUSER_EXPORT MTAG EXPORT TX_NOT FOUND
sent
|

Processing Push
(Operation Reguest

Figure 36: CONNTYPE_TXUSER_EXPORT Acceptor States

3.4.1.8.1 Idle

This is the initial state. The following events are processed in this state:

» Receiving a TXUSER_EXPORT_MTAG_CREATE Message (section 3.4.5.2.2.2.1)
» Receiving a TXUSER_EXPORT_MTAG_CREATE2 Message (section 3.4.5.2.2.2.2)

3.4.1.8.2 Processing Connection Request

This is a transient state that is assumed during the synchronous processing of a create export request.
No events are processed in this state.

3.4.1.8.3 Connection Active
The following events are processed in this state:
= Receiving a TXUSER_EXPORT_MTAG_EXPORT Message (section 3.4.5.2.2.2.3)

= Connection Disconnected (section 3.4.5.2.2.2.4)

3.4.1.8.4 Processing Push Operation Request

273/ 475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

The following events are processed in this state:
= Export Transaction Success (section 3.4.7.12)

= Export Transaction Failure (section 3.4.7.11)

3.4.1.8.5 Ended

This is the final state.

3.4.1.9 CONNTYPE_TXUSER_EXPORT2 Acceptor States

The transaction manager communicating with an application MUST act as an acceptor for the
CONNTYPE TXUSER EXPORTZ2 connection type. In this role, the transaction manager
communicating with an application MUST provide support for the following states:

= Idle

= Processing Connection Request

= Connection Active

= Processing Push Operation Request
» Ended

The following figure shows the relationships between the CONNTYPE_TXUSER_EXPORT2 acceptor
states.

274 /475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

TXUSER_EXPORT

MTAG_CREATE or

THUSER_EXPORT _ THUSER_EXPORT_MTAG_CREATE_BAD_TMADDR ar
MTAG_CREATEZ2 received THXUSER_EXPORT_MTAG_CREATE_MET_TX_DISABLED
sent

- Connection Failed
Processing

Connection
Request

TXUSER_EXPORT_
MTAG_CREATED
sent

Client closes connection

Connection
Active

THUSER_EXPORT_MTAG_EXFORT_LOG_FULL or

ﬁrﬁ%@ﬁﬁﬁ TXUSER_EXPORT TXUSER_EXPORT MTAG EXPORT NO MEM or
-EXe MTAG_EXPORT TXUSER EXPORT MTAG EXPORT TOO LATE or
sen received THUSER_EXPORT_MTAG_EXPORT_TOOD_MANY or

THUSER_EXPORT_MTAG_EXPORT_TX_MNOT_FOUMND or
THUSER_EXPORT_MTAG_EXPORT_COMM_FAILED
sent

Processing Push
(Operation Reguest

Figure 37: CONNTYPE_TXUSER_EXPORT2 Acceptor States

3.4.1.9.1 Idle

This is the initial state. The following events are processed in this state:

= Receiving a TXUSER_EXPORT_MTAG_CREATE Message (section 3.4.5.2.2.3.1)
= Receiving a TXUSER_EXPORT_MTAG_CREATE2 Message (section 3.4.5.2.2.3.2)

3.4.1.9.2 Processing Connection Request

This is a transient state that is assumed during the synchronous processing of a create export request.
No events are processed in this state.

3.4.1.9.3 Connection Active
The following events are processed in this state:
= Receiving a TXUSER_EXPORT_MTAG_EXPORT Message (section 3.4.5.2.2.3.3)

= Connection Disconnected (section 3.4.5.2.2.3.4)

3.4.1.9.4 Processing Push Operation Request

275/ 475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

The following events are processed in this state:
= Export Transaction Success (section 3.4.7.12)

= Export Transaction Failure (section 3.4.7.11)

3.4.1.9.5 Ended

This is the final state.

3.4.1.10 CONNTYPE_TXUSER_GETTXDETAILS Acceptor States

The transaction manager communicating with an application MUST act as an acceptor for the
CONNTYPE TXUSER GETTXDETAILS connection type. In this role, the transaction manager
communicating with an application MUST provide support for the following states:

= Idle
= Processing Inquiry
= Ended

The following figure shows the relationship between the CONNTYPE_TXUSER_GETTXDETAILS acceptor
states.

276 /475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

TXUSER_GETGETTXDETAILS
MTAG GET received

THUSER_GETGETTXDETAILS THXUSER_GETGETTXDETAILS _MTAG
MTAG_GOTIT sent Processing TH_MNOT_FOUND sent
[nquiry
Retrieval Retrieval
Success Failure

®

Figure 38: CONNTYPE_TXUSER_GETTXDETAILS Acceptor States

3.4.1.10.1 Idle
This is the initial state. The following event is processed in this state:

= Receiving a TXUSER_GETTXDETAILS_MTAG_GET Message (section 3.4.5.3.1.1)

3.4.1.10.2 Processing Inquiry

This is a transient state that is assumed during the synchronous processing of a request for the
transaction details. No events are processed in this state.

3.4.1.10.3 Ended

This is the final state.

3.4.1.11 CONNTYPE_TXUSER_RESOLVE Acceptor States

The transaction manager communicating with an application MUST act as an acceptor for the
CONNTYPE TXUSER RESOLVE connection type. In this role, the transaction manager
communicating with an application MUST provide support for the following states:

277 /475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

= Idle

= Processing Abort Request
= Processing Forget Request

= Processing Commit Request

= Ended

The following figure shows the relationship between the CONNTYPE_TXUSER_RESOLVE acceptor

states.

THUSER_RESOLVE_MTAG_
CHILD _ABORT received

Processing
Abort
Request

TXUSER_RESOLVE_
MTAG_REQUEST
COMPLETE sent

——Abort Succeeded

Abort Failed

TXUSER_RESOLVE_
MTAG ACCESSDENIED or
THUSER_RESOLVE_MTAG_
CHILD_NOT_PREPARED or
THUSER_RESOLVE_MTAG_
T¥_MOT _FOUND sent

THUSER_RESOLVE_
MTAG_ACCESSDENIED or
TXUSER_RESOLVE_
MTAG_FORGET TX_
NOT COMMITTED or
THUSER_RESOLVE_MTAG_
TX_MNOT_FOUND sent

Forget
Failed

Idle

-

_J

THXUSER_RESOLVE
_MTAG_FORGET_
COMMITTED received

Processing

Forget
Request

L

TXUSER_RESOLVE
MTAG_REQUEST

COMPLETE sent

Forget
Succeeded

ommit Succeeded

ommit Fai

TXUSER_RESOLVE_MTAG_
CHILD _COMMIT received

Processing
Commit
Request

THUSER_RESOLVE
MTAG_REQUEST
COMPLETE sent

led

THUSER_RESOLVE
MTAG ACCESSDENIED or
TEUSER_RESOLVE_MTAG_
CHILD_NOT_PREPARED or
THUSER_RESOLVE_MTAG_
TX_NOT_FOUMND sent

Figure 39: CONNTYPE_TXUSER_RESOLVE Acceptor States

3.4.1.11.1 Idle

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

278 /475

This is the initial state. The following events are processed in this state:

= Receiving a TXUSER_RESOLVE_MTAG_CHILD_ABORT Message (section 3.4.5.3.2.1)

= Receiving a TXUSER_RESOLVE_MTAG_CHILD_COMMIT Message (section 3.4.5.3.2.2)

= Receiving a TXUSER_RESOLVE_MTAG_FORGET COMMITTED Message (section 3.4.5.3.2.3)

3.4.1.11.2 Processing Abort Request
The following events are processed in this state:
= Resolve Transaction Complete (section 3.4.7.16)

= Resolve Transaction Access Denied (section 3.4.7.17)

3.4.1.11.3 Processing Forget Request
The following events are processed in this state:
» Resolve Transaction Complete (section 3.4.7.16)

= Resolve Transaction Access Denied (section 3.4.7.17)

3.4.1.11.4 Processing Commit Request
The following events are processed in this state:
= Resolve Transaction Complete (section 3.4.7.16)

» Resolve Transaction Access Denied (section 3.4.7.17)

3.4.1.11.5 Ended

This is the final state.

3.4.1.12 CONNTYPE_TXUSER_SETTXTIMEOUT Acceptor States

The transaction manager communicating with an application MUST act as an acceptor for the
CONNTYPE TXUSER SETTXTIMEOUT connection type. In this role, the transaction manager
communicating with an application MUST provide support for the following states:

= Idle
= Processing Request
= Ended

The following figure shows the relationship between the CONNTYPE_TXUSER_SETTXTIMEOUT acceptor
states.

279/ 475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

s

Idle
TXUSER_SETTXTIMEQUT_
MTAG_ SETTXTIMEOUT received
THUSER_SETTXTIMEQUT_
MTAG TX NOT FOUND
TXUSER_SETTXTIMEOUT
MTAG REQUEST COMPLETE MTAG_CONNECTION_
TXUSER SETTXTIMEOUT REQ_DENIED sent
MTAG_TOO_LATE
sent
Frocessing
| Request |
Setting Setting
Timeout Timeout

Figure 40: CONNTYPE_TXUSER_SETTXTTIMEOUT Acceptor States

3.4.1.12.1 Idle
This is the initial state. The following event is processed in this state:

= Receiving a TXUSER_SETTXTIMEOUT_MTAG_SETTXTIMEOUT Message (section 3.4.5.3.3.1)

3.4.1.12.2 Processing Request
The following events are processed in this state:
»= Set Transaction Timeout Success (section 3.4.7.22)

= Set Transaction Timeout Failure (section 3.4.7.21)

3.4.1.12.3 Ended

This is the final state.

280/ 475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

3.4.1.13 CONNTYPE_TXUSER_SETTXTIMEOUT2 Acceptor States

The transaction manager communicating with an application MUST act as an acceptor for the
CONNTYPE TXUSER SETTXTIMEOUT2 connection type. In this role, the transaction manager
communicating with an application MUST provide support for the following states:

= Idle
= Processing Request
= Ended

The following figure shows the relationship between the CONNTYPE_TXUSER_SETTXTIMEOUT?2
acceptor states.

281 /475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

Idle

TXUSER_SETTXTIMEOUT
MTAG_SETTXTIMEOUT received

THUSER_SETTXTIMEOQUT MTaG_CONMECTION_

MTAG TX NOT FOUND sent /__L\ REQ DEMIED sent

Processing
Request

Setting Setting
Timeout Timeout
Supported Mot Supported

®

Figure 41: CONNTYPE_TXUSER_SETTXTTIMEOUT2 Acceptor States

3.4.1.13.1 Idle
This is the initial state. The following events are processed in this state:

= Receiving a TXUSER_SETTXTIMEOUT_MTAG_SETTXTIMEOUT Message (section 3.4.5.3.4.1).

3.4.1.13.2 Processing Request

282 /475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

This is a transient state that is assumed during the synchronous processing of a request to set a
transaction time-out. No events are processed in this state.

3.4.1.13.3 Ended

This is the final state.

3.4.1.14 CONNTYPE_TXUSER_TRACE Acceptor States

The transaction manager communicating with an application MUST act as an acceptor for the
CONNTYPE TXUSER TRACE connection type. In this role, the transaction manager communicating
with an application MUST provide support for the following states:

= Idle
= Processing Trace Request
= Ended

The following figure shows the relationship between the CONNTYPE_TXUSER_TRACE acceptor states.

e

TXUSER_TRACE_
MTAG_DUMP_

TRANSACTION received TXUSER_TRACE MTAG._

REQUEST_FAILED or
TXUSER_TRACE_MTAG_

TXUSER_TRACE_
MTAG_REQUEST_

-

COMPLETE sent Processing TX_NOT_FOUND sent
Trace
Request
Trace Trace
Successful Failed

Ended

all

Figure 42: CONNTYPE_TXUSER_TRACE Acceptor States

3.4.1.14.1 Idle
This is the initial state. The following event is processed in this state:

= Receiving a TXUSER_TRACE_MTAG_DUMP_TRANSACTION Message (section 3.4.5.3.5.1)

283 /475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

3.4.1.14.2 Processing Trace Request

This is a transient state that is assumed during the synchronous processing of a request to set a
transaction time-out. No events are processed in this state.

3.4.1.14.3 Ended

This is the final state.

3.4.1.15 CONNTYPE_TXUSER_GETSECURITYFLAGS Acceptor States

The transaction manager communicating with an application MUST act as an acceptor for the
CONNTYPE TXUSER GETSECURITYFLAGS connection type. In this role, the transaction manager
communicating with an application MUST provide support for the following states:

= Idle
= Processing Request
= Ended

The following figure shows the relationship between the CONNTYPE_TXUSER_GETSECURITYFLAGS
acceptor states.

284 /475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

Idle

TXUSER_GETSECURITYFLAGS
MTAG GETSECURITYFLAGS
receiverd

Processing

Request

THUSER_GETSECURITYFLAGS
MTAG FETCHED sent

v

Ended

®

Figure 43: CONNTYPE_TXUSER_GETSECURITYFLAGS Acceptor States

3.4.1.15.1 Idle
This is the initial state. The following event is processed in this state:

= Receiving a TXUSER_GETSECURITYFLAGS_MTAG_GETSECURITYFLAGS
Message (section 3.4.5.4.1.1)

3.4.1.15.2 Processing Request

This is a transient state that is assumed during the synchronous processing of a request to get the
security flags. No events are processed in this state.

3.4.1.15.3 Ended

285/ 475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

This is the final state.

3.4.2 Timers

No timers apply here.

3.4.3 Initialization

When the transaction manager communicating with an application facet is initialized:

= The transaction manager communicating with an application facet MUST examine the following
security flags on the Core Transaction Manager Facet and perform the following actions:

= If the Allow Network Access flag is set to false:

= For all Connection types listed in 3.4.1, the transaction manager communicating with an
application facet MUST refuse to accept incoming Connections from remote machines as
specified in [MS-CMP] section 3.1.5.5 with the rejection Reason set to 0x80070005.

= QOtherwise:

= If the Allow Remote Clients flag is set to false:

= For the following Connection types, the transaction manager communicating with an
application facet MUST refuse to accept incoming Connection from remote machines as
specified in [MS-CMP] section 3.1.5.5 with the rejection Reason set to 0x80070005.

CONNTYPE

TXUSER

ASSOCIATE

CONNTYPE

TXUSER

BEGINNER

CONNTYPE

TXUSER

BEGINZ2

CONNTYPE

TXUSER

EXPORT

CONNTYPE

TXUSER

EXPORT2

CONNTYPE

TXUSER

IMPORT

CONNTYPE

TXUSER

IMPORT?2

CONNTYPE

TXUSER

PROMOTE

= If Allow Remote Administration flag is set to false:

= For the following connection types, the transaction manager communicating with an
application facet MUST refuse to accept incoming Connections from remote machines
as specified in [MS-CMP] section 3.1.5.5 with the rejection Reason set to
0x80070005.

CONNTYPE TXUSER GETTXDETAILS

CONNTYPE TXUSER RESOLVE

CONNTYPE TXUSER TRACE

All data elements maintained by the transaction manager communicating with an application facet are
initialized to an empty value unless stated otherwise in this section or in the initialization sections of
the facets the transaction manager communicating with an application facet extends, as specified in

section 3.4.1.

[MS-DTCO] - v20210625
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

286 / 475

%5bMS-CMP%5d.pdf#Section_1970a8a0799d4308b9274e4ea23dc225

3.4.4 Higher-Layer Triggered Events

No higher-layer triggered events apply here.

3.4.5 Processing Events and Sequencing Rules

3.4.5.1 Transaction Initiation and Completion

3.4.5.1.1 CONNTYPE_TXUSER_BEGINNER as Acceptor

For all messages that are received in this connection type, the transaction manager
communicating with an application facet MUST process the message as specified in section 3.1. The
transaction manager communicating with an application facet MUST also follow the processing rules
that are specified in the following sections.

3.4.5.1.1.1 Receiving a TXUSER_BEGINNER_MTAG_BEGIN Message

When the transaction manager communicating with an application facet receives a
TXUSER_BEGINNER_MTAG_BEGIN (section 2.2.8.1.1.2) message, the transaction manager
communicating with an application facet MUST perform the following actions:

= If the connection state is Idle:

Set the connection state to Beginning Transaction.

If the transaction manager does not have sufficient memory available to process the message:

Send a TXUSER_BEGINNER_MTAG_BEGIN_NO_MEM (section 2.2.8.1.1.4) message using
the connection.

Set the connection state to Ended.

Otherwise:

Create a transaction object using the transaction settings provided in the message:
= Use the isoLevel field as the Isolation Level value of the transaction.

= Use the dwTimeout field as the Timeout value of the transaction.

= Use the szDesc field as the Description value of the transaction.

= Use the isoFlags field as the Isolation Flags value of the transaction.

Create a new GUID as specified in [RFC4122] and assign it to the Transaction
Object.Identifier field of the transaction object.

Add the connection to the connection list of the transaction.

Set the Transaction field of the connection to the transaction object.
Create a new Enlistment object with the following values:

* The transaction manager communicating with an application facet
* The transaction object

= The connection

Set the Enlistment field of the connection to the new Enlistment object.

287/ 475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

https://go.microsoft.com/fwlink/?LinkId=90460

= Signal the Create Transaction (section 3.2.7.13) event on the Core Transaction Manager
Facet (section 1.3.3.3.1) with the Enlistment object.

= Otherwise, the message MUST be processed as an invalid message, as specified in section 3.1.6.

3.4.5.1.1.2 Receiving a TXUSER_BEGINNER_MTAG_COMMIT Message

When the transaction manager communicating with an application facet receives a
TXUSER BEGINNER MTAG COMMIT message, the transaction manager communicating with an
application facet MUST perform the following actions:

= If the connection state is Active:
= Set the connection state to Committing Transaction.

= Obtain the transaction object referenced by the Enlistment object referenced by this
connection.

= Set the GRFRM field of the transaction object to the grfRM field of the message.

= Signal the Begin Phase Zero (section 3.2.7.5) event on the Core Transaction Manager Facet
with the transaction object.

= If the connection state is Aborting Transaction:

= Send a TXUSER BEGINNER MTAG COMMIT TOO LATE message using the connection.

= Set the connection state to Ended.

] Otherwise, the message MUST be processed as an invalid message as specified in section 3.1.6.

3.4.5.1.1.3 Receiving a TXUSER_BEGINNER_MTAG_ABORT Message

When the transaction manager communicating with an application facet receives a
TXUSER BEGINNER MTAG ABORT message, the transaction manager communicating with an
application facet MUST perform the following actions:

= If the connection state is Active:
= Set the connection state to Aborting Transaction.

= Signal the Begin Rollback (section 3.2.7.6) event on the Core Transaction Manager Facet with
the transaction object referenced by the Enlistment object referenced by this connection.

= If the connection state is Aborting Transaction:

= Send a TXUSER BEGINNER MTAG REQUEST COMPLETED message using the connection.

] Set the connection state to Ended.

= Otherwise, the message MUST be processed as an invalid message as specified in section 3.1.6.

3.4.5.1.1.4 Connection Disconnected

When a CONNTYPE_TXUSER_BEGINNER (section 2.2.8.1.1) connection is disconnected, the
transaction manager communicating with an application facet MUST perform the following actions:

= If the connection state is Active (section 3.4.1.1.3):

288 /475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

Signal the Begin Rollback (section 3.2.7.6) event on the Core Transaction Manager
Facet (section 1.3.3.3.1) with the transaction object referenced by the Enlistment object
referenced by this connection.

= Otherwise, the event MUST be processed as specified in section 3.1.8.3.

3.4.5.1.2 CONNTYPE_TXUSER_BEGIN2 as Acceptor

For all messages received in this connection type, the transaction manager communicating with
an application facet MUST process the message as specified in section 3.1. The transaction manager
communicating with an application facet MUST also follow the processing rules specified in the
following sections.

3.4.5.1.2.1 Receiving a TXUSER_BEGIN2_MTAG_BEGIN Message

When the transaction manager communicating with an application facet receives a
TXUSER_BEGIN2_MTAG_BEGIN (section 2.2.8.1.2.2) message, the transaction manager
communicating with an application facet MUST perform the following actions:

= If the connection state is Idle:

Set the connection state to Beginning Transaction.

If the transaction manager does not have sufficient memory available to process the message,
it MUST:

] Send a TXUSER_BEGIN2_MTAG_SINK_ERROR (section 2.2.8.1.2.5) message using the
connection:

= The Error field MUST be set to TRUN_TXBEGIN_ERROR_NO_MEM.
= Set the connection state to Ended.
Otherwise:
= Create a transaction object using the transaction settings provided in the message:
= Use the isoLevel field as the Isolation Level value of the transaction.
= Use the dwTimeout field as the Timeout value of the transaction.
= Use the szDesc field as the Description value of the transaction.
= Use the isoFlags field as the Isolation Flags value of the transaction.

= Create a new GUID as specified in [RFC4122] and assign it to the Transaction
Object.Identifier field of the transaction object.

»= Add the connection to the connection list of the transaction.

= Create a new enlistment object with the following values:
* The transaction manager communicating with an application facet.
= The transaction object.
= The connection.

= Set the Enlistment field of the connection to the new enlistment object.

289 /475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

https://go.microsoft.com/fwlink/?LinkId=90460

= Signal the Create Transaction (section 3.2.7.13) event on the Core Transaction Manager
Facet with the enlistment object.

= Otherwise, the message MUST be processed as an invalid message as specified in section 3.1.6.

3.4.5.1.2.2 Receiving a TXUSER_SETTXTIMEOUT_MTAG_SETTXTIMEOUT Message

When the transaction manager communicating with an application facet receives a
TXUSER _SETTXTIMEOUT MTAG SETTXTIMEOUT message, the transaction manager communicating
with an application facet MUST perform the following actions:

= If the connection state is Active:
= Set the connection state to Modifying Timeout.

= Signal the Set Transaction Timeout event on the Core Transaction Manager Facet with the
following arguments:

= The transaction object referenced by the Enlistment object referenced by this connection
* The dwTxTimeout field from the message

= Otherwise, the message MUST be processed as an invalid message as specified in section 3.1.6.

3.4.5.1.2.3 Receiving a TXUSER_BEGIN2_MTAG_COMMIT Message

When the transaction manager communicating with an application facet receives a
TXUSER BEGIN2 MTAG COMMIT message, the transaction manager communicating with an
application facet MUST perform the following actions:

= If the connection state is Active:
= Set the connection state to Committing Transaction.

= Obtain the transaction object referenced by the Enlistment object referenced by this
connection.

= Set the GRFRM field of the transaction object to the grfRM field of the message.

= Signal the Begin Phase Zero (section 3.2.7.5) event on the Core Transaction Manager Facet
with the transaction object.

= Otherwise, the message MUST be processed as an invalid message as specified in section 3.1.6.

3.4.5.1.2.4 Receiving a TXUSER_BEGIN2_MTAG_ABORT Message

When the transaction manager communicating with an application facet receives a
TXUSER_BEGIN2_MTAG_ABORT (section 2.2.8.1.2.1) message, the transaction manager
communicating with an application facet MUST perform the following actions:

= If the connection state is Active:
= Set the connection state to Aborting Transaction.

= Signal the Begin Rollback (section 3.2.7.6) event on the Core Transaction Manager Facet with
the transaction object referenced by the Enlistment object referenced by this connection.

= Otherwise, the message MUST be processed as an invalid message as specified in section 3.1.6.

3.4.5.1.2.5 Connection Disconnected

290/ 475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

When a CONNTYPE_TXUSER_BEGIN2 (section 2.2.8.1.2) connection is disconnected, the transaction
manager communicating with an application facet MUST perform the following actions:

= If the connection state is Active (section 3.4.1.2.3):

= Signal the Begin Rollback (section 3.2.7.6) event on the Core Transaction Manager
Facet (section 1.3.3.3.1) with the transaction object referenced by the Enlistment object
referenced by this connection.

= Otherwise, the event MUST be processed as specified in section 3.1.8.3.

3.4.5.1.3 CONNTYPE_TXUSER_PROMOTE as Acceptor

For all messages received in this connection type, the transaction manager communicating with
an application facet MUST process the message as specified in section 3.1. The transaction manager
communicating with an application facet MUST also follow the processing rules specified in the
following sections.

3.4.5.1.3.1 Receiving a TXUSER_BEGINNER_MTAG_PROMOTE Message

When the transaction manager communicating with an application facet receives a
TXUSER BEGINNER MTAG PROMOTE message, the transaction manager communicating with an
application facet MUST perform the following actions:

= If the connection state is Idle:
= Set the connection state to Beginning Transaction.
= If the transaction manager does not have sufficient memory available to process the message:

. Send a TXUSER BEGIN2 MTAG SINK ERROR message using the connection:

= The Error field MUST be set to TRUN_TXBEGIN_ERROR_NO_MEM.
= Set the connection state to Ended.
= Otherwise:
= Create a transaction object using the transaction settings provided in the message:
= Use the isoLevel field as the Isolation Level value of the transaction.
= Use the dwTimeout field as the Timeout value of the transaction.
= Use the szDesc field as the Description value of the transaction.
= Use the isoFlags field as the Isolation Flags value of the transaction.
= Use the guidTX field as the Transaction Object.Identifier value of the transaction.
»= Add the connection to the connection list of the transaction.
= Create a new Enlistment object with the following values:
* The transaction manager communicating with an application facet.
= The transaction object.
* The connection.

= Set the Enlistment field of the connection to the new Enlistment object.

291 /475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

= Signal the Create Transaction (section 3.2.7.13) event on the Core Transaction Manager
Facet with the enlistment object.

= Otherwise, the message MUST be processed as an invalid message as specified in section 3.1.6.

3.4.5.1.3.2 Receiving a TXUSER_SETTXTIMEOUT_MTAG_SETTXTIMEOUT,
TXUSER_BEGIN2_MTAG_COMMIT, or TXUSER_BEGIN2_MTAG_ABORT
Message

When the transaction manager communicating with an application facet receives one of these
messages, it MUST follow the same message-processing rules as the CONNTYPE_TXUSER_BEGIN2
connection type acting as an acceptor, as specified in section 3.4.5.1.2.

3.4.5.1.3.3 Connection Disconnected

When a CONNTYPE_TXUSER_PROMOTE (section 2.2.8.1.3) connection is disconnected, the
transaction manager communicating with an application facet MUST perform the same actions as
the CONNTYPE_TXUSER_BEGINZ2 (section 2.2.8.1.2) connection type acting as an acceptor. See
section 3.4.5.1.2 for more details.

3.4.5.2 Transaction Propagation
3.4.5.2.1 Pull Propagation

3.4.5.2.1.1 CONNTYPE_TXUSER_ASSOCIATE as Acceptor

For all messages received in this connection type, the transaction manager communicating with an
application facet MUST process the message as specified in section 3.1. The transaction manager
MUST also follow the processing rules that are specified in the following sections.

3.4.5.2.1.1.1 Receiving a TXUSER_ASSOCIATE_MTAG_ASSOCIATE Message

When the transaction manager communicating with an application facet receives a
TXUSER ASSOCIATE MTAG ASSOCIATE message, it MUST perform the following actions:

= If the connection state is Idle:
= Set the connection state to Processing Associate Request (section 3.4.1.4.2).

= Override the default schema verification actions for incoming messages as specified in section
3.1.6 in the following manner:

= If the first 16 bytes of the SourceTmAddr field is equal to the binary representation of
the GUID {DC85CB48-D8A5-11d2-828B-00805F0DF75A}, then:

= If the SourceTmAddr field does not conform to the constraints specified in section
2.2.4.2 for a valid OLETX_TM_ADDR structure, then:

= Send a TXUSER ASSOCIATE MTAG CREATE BAD TMADDR message by using the
connection.

= Perform default invalid message processing, as specified in section 3.1.6.
= Stop processing the message.

= Otherwise, if the SourceTmAddr field does not conform to the constraints specified in
section 2.2.5.3 for a valid NAMEOBJECTBLOB structure, then:

292 / 475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

= Send a TXUSER_ASSOCIATE_MTAG_CREATE_BAD_TMADDR message by using the
connection.

= Perform default invalid message processing, as specified in section 3.1.6.
= Stop processing the message.

= If the Allow Network Access flag, the Allow Network Transactions flag, or the Allow Inbound
Transactions flag of the core transaction manager is set to false:

= Send a TXUSER_ASSOCIATE_MTAG_CREATE_BAD_TMADDR message using the
connection.

= Set the connection state to Ended.

= Otherwise, if the transaction manager does not have sufficient memory available to process
the message:

= Send a TXUSER _ASSOCIATE MTAG NO MEM LOCAL message.

= Set the connection state to Ended.
= QOtherwise:

= Find the transaction object in the transaction table of the transaction manager using the
guidTx field from the message as the key:

= If the transaction object is found in the list:

» Send a TXUSER ASSOCIATE MTAG ASSOCIATED message to the application.

= Set the connection state to Active.

= Otherwise, if the transaction object is not found in the list, the transaction manager
MUST:

= Find the list of CONNTYPE TXUSER ASSOCIATE connections in the Associates
Table field of the transaction manager communicating with an application, using
the guidTx field from the message as a key.

= If the list is found:
= Add this connection to the list.
= QOtherwise:

= Create an empty list of CONNTYPE_TXUSER_ASSOCIATE connections and add
this connection to it.

= Add the list to the associates table of the transaction manager communicating
with an application under the following key:

* The guidTx field from the message.

= Create a new transaction object with the information provided in the message:
= Use the guidTx field as the Transaction Object.Identifier value.
= Use the isoLevel field as the Isolation Level value.

= Use the szDesc field as the Description value.

293/ 475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

= If the SourceTmAddr field contains OLETX_TM_ADDR (section 2.2.4.2),
convert the SourceTmAddr field from the message to a new Name object, as
specified in section 3.1.1.2.

= Otherwise, convert the SourceTmAddr field from the message to a new
Name object, as specified in Converting a NAMEOBJECTBLOB Structure to a
Name Object (section 3.1.1.4).

= Signal the Associate Transaction (section 3.2.7.1) event on the Core
Transaction Manager Facet with the following arguments:

= The transaction object.
= The new Name object.

= Otherwise, the message MUST be processed as an invalid message as specified in section 3.1.6.

3.4.5.2.1.1.2 Connection Disconnected

When a CONNTYPE TXUSER ASSOCIATE connection is disconnected, the transaction manager
communicating with an application facet MUST perform the actions as specified in section 3.1.8.3.

3.4.5.2.2 Push Propagation

3.4.5.2.2.1 CONNTYPE_TXUSER_EXTENDEDWHEREABOUTS as Acceptor

For all messages received in this connection type, the transaction manager communicating with
an application facet MUST process the message as specified in section 3.1. The transaction manager
MUST also follow the processing rules specified in the following sections.

3.4.5.2.2.1.1 Receiving a TXUSER_EXTENDEDWHEREABOUTS_MTAG_GET Message

When the transaction manager communicating with an application facet receives a
TXUSER EXTENDEDWHEREABOUTS MTAG GET message, the transaction manager MUST perform the
following actions:

= If the connection state is Idle:
= Set the connection state to Processing Inquiry.

= If the transaction manager does not have enough memory to process the
TXUSER_EXTENDEDWHEREABOUTS_MTAG_GET message:

= Send a TXUSER EXTENDEDWHEREABOUTS MTAG NOMEM message using the connection.

= QOtherwise:

» Send a TXUSER EXTENDEDWHEREABOUTS MTAG GOT message using the connection:

= If the Extended Whereabouts Protocol Count field of the Core Transaction
Manager Facet is zero:

= Set the dwProtocolCount field to zero.
= Set the rgtmprotUsablelList field to empty.
= Otherwise:

= Set the dwProtocolCount field to the Extended Whereabouts Protocol Count
field of the core transaction manager.

294 / 475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

= Set the contents of the rgtmprotUsableList field to the contents of the
Extended Whereabouts field of the core transaction manager. The size of the
rgtmprotUsablelist field in bytes MUST be determined by the Extended
Whereabouts Size field of the core transaction manager.

Set the connection state to Ended.

= Otherwise, the message MUST be processed as an invalid message as specified in section 3.1.6.

3.4.5.2.2.1.2 Connection Disconnected

When a CONNTYPE_TXUSER_EXTENDEDWHEREABOUTS (section 2.2.8.2.2.1) connection is
disconnected, the transaction manager MUST perform the actions as specified in section 3.1.8.3.

3.4.5.2.2.2 CONNTYPE_TXUSER_EXPORT as Acceptor

For all messages received in this connection type, the transaction manager communicating with
an application facet MUST process the message as specified in section 3.1. The transaction manager
MUST also follow the processing rules specified in the following sections.

3.4.5.2.2.2.1 Receiving a TXUSER_EXPORT_MTAG_CREATE Message

When the transaction manager communicating with an application facet receives a
TXUSER EXPORT MTAG CREATE message, the transaction manager MUST perform the following

actions:

= If the connection state is Idle:

Set the connection state to Processing Connection Request.

If the first 16 bytes of SourceTmAddr is equal to the binary representation of the GUID
{dc85cb48-d8a5-11d2-828b-00805f0df75a}, the SourceTmAddr field MUST contain an
OLETX_TM_ADDR (section 2.2.4.2) structure.

Otherwise, the SourceTmAddr field MUST contain a NAMEOBJECTBLOB (section 2.2.5.3)
structure.

Override the default schema verification actions for incoming messages as specified in section
3.1.6 in the following manner:

= If the SourceTmAddr field from the message contains an OLETX_TM_ADDR structure
and violates the constraints specified in section 2.2.4.2 or if the SourceTmAddr field from
the message contains a NAMEOBJECTBLOB structure and violates the constraints specified
in section 2.2.5.3, the transaction manager MUST:

= Send a TXUSER EXPORT MTAG CREATE BAD TMADDR message using the
connection.

= Perform default invalid message processing, as specified in section 3.1.6.
= Cease processing the message.

If the Allow Network Access flag, the Allow Network Transactions flag, or the Allow Outbound
Transactions flag of the Core Transaction Manager Facet is set to false:

= Send a TXUSER_EXPORT_MTAG_CREATE_BAD_TMADDR message using the connection.
= Set the connection state to Ended.

Otherwise:

295 /475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

= If the SourceTmAddr field contains an OLETX_TM_ADDR structure, convert the
SourceTmAddr field from the message to a new Name object, as specified in section
3.1.1.2.

= Otherwise, convert the SourceTmAddr field from the message to a new Name object, as
specified in Converting a NAMEOBJECTBLOB Structure to a Name Object (section 3.1.1.4).

= Store the Name object in the Connection-Specific Data field of the connection object.

» Send a TXUSER EXPORT MTAG CREATED message using the connection.

= Set the connection state to Connection Active.

= Otherwise, the message MUST be processed as an invalid message as specified in section 3.1.6.

3.4.5.2.2.2.2 Receiving a TXUSER_EXPORT_MTAG_CREATE2 Message

When the transaction manager receives a TXUSER_EXPORT_MTAG_CREATE2 (section 2.2.8.2.2.2.2)
message, the transaction manager MUST perform the following actions:

= If the connection state is Idle:

Set the connection state to Processing Connection Request.

Override the default schema verification actions for incoming messages as specified in section
3.1.6 in the following manner:

= If the SourceTmAddr field in the message does not comply with the constraints specified in
section 2.2.4.2:

» Send a TXUSER EXPORT MTAG _ CREATE BAD TMADDR message using the
connection.

= Perform default invalid message processing, as specified in section 3.1.6.
= Cease processing the message.

If the Allow Network Access flag, the Allow Network Transactions flag, or the Allow Outbound
Transactions flag of the Core Transaction Manager Facet is set to false:

= Send a TXUSER EXPORT MTAG CREATE NET TX DISABLED message using the
connection.

= Set the connection state to Ended.
Otherwise:

= Convert the SourceTmAddr field from the message to a new Name object, as specified in
section 3.1.1.2.

= Store the Name object in the Connection-Specific Data field of the connection object.

= Send a TXUSER EXPORT MTAG CREATED message using the connection.

= Set the connection state to Connection Active.

= Otherwise, the message MUST be processed as an invalid message as specified in section 3.1.6.

3.4.5.2.2.2.3 Receiving a TXUSER_EXPORT_MTAG_EXPORT Message

296 / 475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

When the transaction manager receives a TXUSER EXPORT MTAG EXPORT message, the
transaction manager MUST perform the following actions:

= If the connection state is Connection Active:
= Set the connection state to Processing Push Operation Request.

= Find the transaction object in the transaction table of the transaction manager by using the
guidTX field from the message as the key.

= If the transaction object is not found:

= Send a TXUSER EXPORT MTAG EXPORT TX NOT FOUND message using the connection.

= Set the connection state to Connection Active.
= Otherwise:
= Add the connection to the connection list of the transaction.

= Signal the Export Transaction (section 3.2.7.21) event on the Core Transaction Manager
Facet with the following arguments:

= The Name object stored in the Connection-Specific Data field of the connection
= The transaction object

= Otherwise, the message MUST be processed as an invalid message as specified in section 3.1.6.

3.4.5.2.2.2.4 Connection Disconnected

When a CONNTYPE_TXUSER_EXPORT (section 2.2.8.2.2.2) connection is disconnected, the
transaction manager communicating with an application facet MUST perform the actions as
specified in section 3.1.8.3.

3.4.5.2.2.3 CONNTYPE_TXUSER_EXPORT2 as Acceptor

For all messages received in this connection type, the transaction manager communicating with
an application facet MUST process the messages as specified in section 3.1. The transaction manager
MUST also follow the processing rules specified in the following sections.

3.4.5.2.2.3.1 Receiving a TXUSER_EXPORT_MTAG_CREATE Message

When the transaction manager communicating with an application facet receives a
TXUSER_EXPORT_MTAG_CREATE message, the transaction manager MUST perform the actions
specified in section 3.4.5.2.2.2.1.

3.4.5.2.2.3.2 Receiving a TXUSER_EXPORT_MTAG_CREATE2 Message

When the transaction manager receives a TXUSER_EXPORT_MTAG_CREATE2 message, the
transaction manager MUST perform the actions specified in section 3.4.5.2.2.2.2.

3.4.5.2.2.3.3 Receiving a TXUSER_EXPORT_MTAG_EXPORT Message

When the transaction manager receives a TXUSER EXPORT MTAG EXPORT message, the
transaction manager MUST perform the actions specified in section 3.4.5.2.2.2.3.

3.4.5.2.2.3.4 Connection Disconnected

297/ 475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

When a CONNTYPE_TXUSER_EXPORT?2 (section 2.2.8.2.2.3) connection is disconnected, the
transaction manager communicating with an application facet MUST perform the actions as
specified in section 3.1.8.3.

3.4.5.2.2.4 CONNTYPE_TXUSER_IMPORT as Acceptor

For all messages received in this connection type, the transaction manager communicating with
an application facet MUST process the messages as specified in section 3.1. The transaction
manager MUST also follow the processing rules specified in the following sections.

3.4.5.2.2.4.1 Receiving a TXUSER_IMPORT_MTAG_IMPORT Message

When the transaction manager receives a TXUSER IMPORT MTAG IMPORT message, the
transaction manager MUST perform the following actions:

] If the connection state is Idle:
= Set the connection state to Processing Import Request.

= Find the transaction object in the transaction table of the transaction manager by using the
guidTx field from the message as the key.

= If the transaction object is not found or if the transaction state is not Active, Phase Zero, or
Phase Zero Complete:

= Send a TXUSER IMPORT MTAG IMPORT TX NOT FOUND message using the connection.

= Set the connection state to Ended.
» Otherwise:
*= Add the connection to the connection list of the transaction.
= Create a new Enlistment object using the following fields:
= The transaction manager communicating with an application facet
= The transaction object
= The connection object
= Assign the new Enlistment object to the Enlistment field of the connection.

= Signal the Create Voter Enlistment event on the Core Transaction Manager Facet with the
new Enlistment object.

= Otherwise, the message MUST be processed as an invalid message as specified in section 3.1.6.

3.4.5.2.2.4.2 Receiving a TXUSER_IMPORT_MTAG_ABORT Message

When the transaction manager receives a TXUSER IMPORT MTAG _ABORT message, the
transaction manager MUST perform the following actions:

= If the connection state is Too Late to Abort:
= Set the connection state to Processing Abort Request.

= Send a TXUSER IMPORT MTAG ABORT TOO LATE message using the connection.

= Set the connection state to Ended.

298 /475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

= Otherwise, if the connection state is Active:
= Set the connection state to Processing Abort Request.

= Signal the Enlistment Unilaterally Aborted (section 3.2.7.19) event of the Core Transaction
Manager Facet with the Enlistment field of the connection.

= Send a TXUSER IMPORT MTAG REQUEST COMPLETED message.

= Set the connection state to Ended.

= Otherwise, the message MUST be processed as an invalid message as specified in section 3.1.6.

3.4.5.2.2.4.3 Connection Disconnected

When a CONNTYPE_TXUSER_ASSOCIATE (section 2.2.8.2.1.1) connection is disconnected, the
transaction manager MUST perform the actions as specified in section 3.1.8.3.

3.4.5.2.2.5 CONNTYPE_TXUSER_IMPORT2 as Acceptor
For all messages received in this connection type, the transaction manager communicating with

an application facet MUST process the messages as specified in section 3.1. The transaction
manager MUST also follow the processing rules specified in the following sections.

3.4.5.2.2.5.1 Receiving a TXUSER_IMPORT2_MTAG_IMPORT Message

When the transaction manager receives a TXUSER IMPORT2 MTAG IMPORT message, the
transaction manager MUST perform the following actions:

= If the connection state is Idle:
= Set the connection state to Processing Import Request.

= Find the transaction object in the transaction table of the transaction manager by using the
guidTx field from the message as the key.

= If the transaction object is not found or if the transaction state is not Active, Phase Zero or
Phase Zero Complete:

= Send a TXUSER IMPORT2 MTAG SINK ERROR message using the connection:

= The Error field MUST be set to TRUN_TXIMPORT_ERROR_IMPORT_TX_NOT_FOUND.
= Set the connection state to Ended.
= Otherwise:
= Add the connection to the connection list of the transaction.
= Create a new Enlistment object using the following fields:
* The transaction manager communicating with an application facet.
= The transaction object.
= The connection object.
= Assign the new Enlistment object to the Enlistment field of the connection.

= Signal the Create Voter Enlistment event on the Core Transaction Manager Facet with the
new Enlistment object.

299 / 475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

= Otherwise, the message MUST be processed as an invalid message as specified in section 3.1.6.

3.4.5.2.2.5.2 Receiving a TXUSER_IMPORT2_MTAG_IMPORT_WITH_SET Message

When the transaction manager receives a TXUSER IMPORT2 MTAG IMPORT WITH SET message,
the transaction manager MUST perform the following actions:

= If the connection state is Idle:
= Set the connection state to Processing Import Request.

= Find the transaction object in the transaction table of the transaction manager by using the
guidTx field from the message as the key.

= If the transaction object is not found or if the transaction state is not Active, Phase Zero, or
Phase Zero Complete:

» Send a TXUSER IMPORT2 MTAG_SINK ERROR message using the connection:

= The Error field MUST be set to TRUN_TXIMPORT_ERROR_IMPORT_TX_NOT_FOUND.
= Set the connection state to Ended.
» Otherwise:
= Add the connection to the connection list of the transaction.

= Signal the Set Transaction Attributes (section 3.2.7.31) event on the Core Transaction
Manager Facet with the following arguments:

= The transaction object

= The isoLevel field from the message
= The isoFlags field from the message
= The szDesc field from the message

= Otherwise, the message MUST be processed as an invalid message as specified in section 3.1.6.

3.4.5.2.2.5.3 Receiving a TXUSER_IMPORT2_MTAG_ABORT Message

When the transaction manager receives a TXUSER_IMPORT2_MTAG_ABORT (section 2.2.8.2.2.5.1)
message, the transaction manager MUST perform the following actions:

= If the connection state is Too Late to Abort:
= Set the connection state to Processing Abort Request.

= Send a TXUSER_IMPORT2_MTAG_SINK_ERROR (section 2.2.8.2.2.5.4) message using the
connection:

= The Error field MUST be set to TRUN_TXIMPORT_ERROR_NOTIFY_ABORTED.
= Set the connection state to Ended.
= Otherwise, if the connection state is Active:
= Set the connection state to Processing Abort Request.

= Signal the Enlistment Unilaterally Aborted (section 3.2.7.19) event of the Core Transaction
Manager Facet with the Enlistment field of the connection.

300/ 475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

= Send a TXUSER_IMPORT2_MTAG_SINK_ERROR message.
= The Error field MUST be set to TRUN_TXIMPORT_ERROR_NOTIFY_ABORTED.
= Set the connection state to Ended.

= Otherwise, the message MUST be processed as an invalid message as specified in section 3.1.6.

3.4.5.2.2.5.4 Connection Disconnected

When a CONNTYPE_TXUSER_ASSOCIATE (section 2.2.8.2.1.1) connection is disconnected, the
transaction manager MUST perform the actions as specified in section 3.1.8.3.

3.4.5.3 Transaction Administration

3.4.5.3.1 CONNTYPE_TXUSER_GETTXDETAILS as Acceptor
For all messages received in this connection type, the transaction manager MUST process the

message as specified in section 3.1. The transaction manager MUST also follow the processing rules
that are specified in the following sections.

3.4.5.3.1.1 Receiving a TXUSER_GETTXDETAILS_MTAG_GET Message

When the transaction manager receives a TXUSER GETTXDETAILS MTAG GET message, the
transaction manager MUST perform the following actions:

= If the connection state is Idle:
= Set the connection state to Processing Inquiry.

= Find the transaction object in the transaction table of the transaction manager by using the
guidTx field from the message as the key:

= If the transaction object is not found in the list, the transaction manager MUST:

= Send a TXUSER GETTXDETAILS MTAG TX NOT FOUND message using the
connection.

= Otherwise:

» Send a TXUSER GETTXDETAILS MTAG GOTIT message using the connection with the
message fields set as follows:

= The vszSuperiorName field MUST be set to a new OLETX VARLEN STRING
structure that is populated with the transaction object's Superior Enlistment
object's Name property.

= The vszSuperiorlD field MUST be set to a new OLETX_VARLEN_STRING structure
that is populated with the transaction object's Superior Enlistment object's
Enlistment Object.Identifier property.

= The rgSubordinates field MUST be set to an array of OLETX_VARLEN_STRING
structures. Each subordinate entry is represented by two adjacent structures,
whose values are set as follows:

= For each enlistment object in the Phase One enlistment and Phase Two
enlistment lists of the transaction:

» The first subordinate structure MUST be set to the Name property of the
enlistment object.

301 /475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

= The second subordinate structure MUST be set to the Enlistment
Object.Identifier property of the enlistment object.

= The ISubordinateCount field MUST be set to the number of enlistment objects
whose values were added to the rgSubordinates array.

Set the connection state to Ended.

= Otherwise, the message MUST be processed as an invalid message as specified in section 3.1.6.

3.4.5.3.1.2 Connection Disconnected

When a CONNTYPE_TXUSER_GETTXDETAILS (section 2.2.8.3.1) connection is disconnected, the
transaction manager MUST perform the actions as specified in section 3.1.8.3.

3.4.5.3.2 CONNTYPE_TXUSER_RESOLVE as Acceptor

For all messages received in this connection type, the transaction manager communicating with
an application facet MUST process the message as specified in section 3.1. The transaction manager
MUST also follow the processing rules specified in the following sections.

3.4.5.3.2.1 Receiving a TXUSER_RESOLVE_MTAG_CHILD_ABORT Message

When the transaction manager communicating with an application facet receives a
TXUSER RESOLVE MTAG CHILD ABORT message, the transaction manager communicating with an

application facet MUST perform the following actions:

= If the connection state is Idle:

Set the connection state to Processing Abort Request.

Verify if the initiator identity of the connection is authenticated as an administrator, see
section 5.1.<30>

If the initiator identity is not authorized to perform the requested action

= Signal the Resolve Transaction Access Denied (section 3.4.7.17) event on the Transaction
Manager facet communicating with an Application facet with the following arguments:

= The current connection object.

Otherwise, find the transaction object in the transaction table of the transaction manager by
using the guidTx field provided in the message as a key.

If the transaction object is not found:

» Send a TXUSER RESOLVE MTAG TX NOT FOUND message by using the connection.

= Set the connection state to Ended.
Otherwise:
= Add the connection to the transaction connection list.

= Signal the Resolve Transaction (section 3.2.7.30) event on the Core Transaction Manager
Facet with the following arguments:

*= The transaction object

= The Aborted outcome

302 / 475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

= Otherwise, the message MUST be processed as an invalid message as specified in section 3.1.6.

3.4.5.3.2.2 Receiving a TXUSER_RESOLVE_MTAG_CHILD_COMMIT Message

When the transaction manager communicating with an application facet receives a
TXUSER RESOLVE MTAG CHILD COMMIT message, the transaction manager communicating with an
application facet MUST perform the following actions:

= If the connection state is Idle:
= Set the connection state to Processing Commit request.

= Verify if the initiator identity of the connection is authenticated as an administrator, see
section 5.1.<31>

= If the initiator identity is not authorized to perform the requested action

= Signal the Resolve Transaction Access Denied (section 3.4.7.17) event on the Transaction
Manager facet communicating with an Application facet with the following arguments:

= The current connection object.

= Otherwise find the transaction object in the transaction table of the transaction manager by
using the guidTx field provided in the message as a key.

= If the transaction object is not found:

= Send a TXUSER RESOLVE MTAG TX NOT FOUND message by using the connection.
= Set the connection state to Ended.

= Otherwise:
*= Add the connection to the transaction connection list.

= Signal the Resolve Transaction event on the Core Transaction Manager Facet with the
following arguments:

= The transaction object
= The Committed outcome.

= Otherwise, the message MUST be processed as an invalid message as specified in section 3.1.6.

3.4.5.3.2.3 Receiving a TXUSER_RESOLVE_MTAG_FORGET_COMMITTED Message

When the transaction manager communicating with an application facet receives a
TXUSER RESOLVE MTAG FORGET COMMITTED message, the transaction manager communicating
with an application facet MUST perform the following actions:

= If the connection state is Idle:
= Set the connection state to Processing Forget Request.

= Verify if the initiator identity of the connection is authenticated as an administrator, see
section 5.1.<32>

= If the initiator identity is not authorized to perform the requested action

= Signal the Resolve Transaction Access Denied (section 3.4.7.17) event on the Transaction
Manager facet communicating with an Application facet with the following arguments:

303 /475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

= The current connection object.

= Otherwise, find the transaction object in the transaction table of the transaction manager by
using the guidTx field provided in the message as a key.

= If the transaction object is not found:

» Send a TXUSER RESOLVE MTAG TX NOT FOUND message by using the connection.

= Set the connection state to Ended.
= Otherwise:
= Add the connection to the transaction connection list.

= Signal the Resolve Transaction (section 3.2.7.30) event on the Core Transaction Manager
Facet with the following arguments:

= The transaction object
= The Forgotten outcome

= Otherwise, the message MUST be processed as an invalid message as specified in section 3.1.6.

3.4.5.3.2.4 Connection Disconnected

When a CONNTYPE_TXUSER_RESOLVE (section 2.2.8.3.2) connection is disconnected, the transaction
manager MUST perform the actions as specified in section 3.1.8.3.

3.4.5.3.3 CONNTYPE_TXUSER_SETTXTIMEOUT as Acceptor

For all messages received in this connection type, the transaction manager MUST process the
message as specified in section 3.1. The transaction manager MUST also follow the processing rules
specified in the following sections.

3.4.5.3.3.1 Receiving a TXUSER_SETTXTIMEOUT_MTAG_SETTXTIMEOUT Message

When the transaction manager receives a
TXUSER_SETTXTIMEOUT_MTAG_SETTXTIMEOUT (section 2.2.8.1.2.7) message, the transaction
manager MUST perform the following actions:

= If the connection state is Idle:
= Set the connection state to Processing Request.

= Find the transaction object in the transaction table of the transaction manager by using the
guidTx field from the message as the key.

= If the transaction object is not found in the list:

= Send the application a
TXUSER_SETTXTIMEOUT_MTAG_TX_NOT_FOUND (section 2.2.8.3.3.1) message.

= Set the connection state to Ended.
= Otherwise:

= Signal the Set Transaction Timeout (section 3.2.7.32) event on the Core Transaction
Manager Facet with the following arguments:

= The transaction object

304 /475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

= The dwTxTimeout field from the message

= Otherwise, the message MUST be processed as an invalid message as specified in section 3.1.6.

3.4.5.3.3.2 Connection Disconnected

When a CONNTYPE_TXUSER_SETTXTIMEOUT (section 2.2.8.3.3) connection is disconnected, the
transaction manager MUST perform the actions as specified in section 3.1.8.3.

3.4.5.3.4 CONNTYPE_TXUSER_SETTXTIMEOUT2 as Acceptor

For all messages received in this connection type, the transaction manager MUST process the
message as specified in section 3.1. The application MUST also follow the processing rules specified
in the following sections.

3.4.5.3.4.1 Receiving a TXUSER_SETTXTIMEOUT_MTAG_SETTXTIMEOUT Message

When the transaction manager receives a
TXUSER_SETTXTIMEOUT_MTAG_SETTXTIMEOUT (section 2.2.8.1.2.7) message, the transaction
manager MUST perform the following actions:

= If the connection state is Idle:
= Set the connection state to Processing Request.

= If the transaction manager of the application supports the
CONNTYPE_TXUSER_SETTXTIMEOUT2 (section 2.2.8.3.4) connection type as specified in
section 2.2.1.1.1:

= Send a TXUSER_SETTXTIMEOUT_MTAG_TX_NOT_FOUND (section 2.2.8.3.3.1) message.

= Otherwise, send an MTAG_CONNECTION_REQ_DENIED (section 2.2.5) message with the
Reason field set to 0x80070057.

= Set the connection state to Ended.

= Otherwise, the message MUST be processed as specified in section 3.1.6.

3.4.5.3.4.2 Connection Disconnected

When a CONNTYPE_TXUSER_SETTXTIMEOUT (section 2.2.8.3.3) connection is disconnected, the
transaction manager MUST perform the actions as specified in section 3.1.8.3.

3.4.5.3.5 CONNTYPE_TXUSER_TRACE as Acceptor

For all messages received in this connection type, the transaction manager communicating with
an application facet MUST process the message as specified in section 3.1. The transaction manager
communicating with an application facet MUST also follow the processing rules specified in the
following sections.

3.4.5.3.5.1 Receiving a TXUSER_TRACE_MTAG_DUMP_TRANSACTION Message

When the transaction manager communicating with an application facet receives a
TXUSER TRACE MTAG DUMP_TRANSACTION message, the transaction manager communicating with
an application facet MUST perform the following actions:

= If the connection state is Idle:

= Set the connection state to Processing Trace Request.

305 /475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

= Find the transaction object in the transaction table of the transaction manager by using the
guidTx field from the message as the key.

= If the transaction object is not found in the list, the transaction manager MUST:

= Send a TXUSER TRACE MTAG TX NOT FOUND message using the connection.

= QOtherwise:

= Attempt to generate trace records for the transaction in the trace file of the
transaction manager in an implementation-specific manner.

= If the operation fails:

= Send a TXUSER TRACE MTAG REQUEST FAILED message using the connection.

= Otherwise:

= Send a TXUSER TRACE MTAG REQUEST COMPLETE message using the
connection.

= Set the connection state to Ended.

= Otherwise, the message MUST be processed as an invalid message as specified in section 3.1.6.

3.4.5.3.5.2 Connection Disconnected

When a CONNTYPE_TXUSER_TRACE (section 2.2.8.3.5) connection is disconnected, the transaction
manager communicating with an application facet MUST perform the actions as specified in section
3.1.8.3.

3.4.5.4 Transaction Manager Administration

3.4.5.4.1 CONNTYPE_TXUSER_GETSECURITYFLAGS as Acceptor

For all messages received in this connection type, the transaction manager communicating with
an application facet MUST process the message as specified in section 3.1. The transaction manager
communicating with an application facet MUST also follow the processing rules specified in the
following sections.

3.4.5.4.1.1 Receiving a TXUSER_GETSECURITYFLAGS_MTAG_GETSECURITYFLAGS
Message

When the transaction manager communicating with an application facet receives a
TXUSER GETSECURITYFLAGS MTAG GETSECURITYFLAGS message, the transaction manager
communicating with an application facet MUST perform the following actions:

= If the connection state is Idle:
= Set the connection state to Processing Request.

= Send a TXUSER GETSECURITYFLAGS MTAG FETCHED message using the connection:

= If the Allow Network Access flag of the Core Transaction Manager Facet is set to FALSE:

= Set the grfNetworkDtcAccess field to zero.
= Otherwise, set the grfNetworkDtcAccess field as follows:

= Set all bits to zero by default.

306 /475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

Set the DTCADVCONFIG_NETWORKDTCACCESS_ENABLE bit to 1.

If the Allow Remote Administration flag of the Core Transaction Manager Facet is set
to TRUE:

. Set the DTCADVCONFIG_NETWORKDTCACCESS_ADMIN bit to 1.

If the Allow Network Transactions flag of the Core Transaction Manager Facet is set to
TRUE:

= Set the DTCADVCONFIG_NETWORKDTCACCESS_TX bit to 1.

If the Allow Remote Clients flag of the Core Transaction Manager Facet is set to TRUE:
= Set the DTCADVCONFIG_NETWORKDTCACCESS_CLIENTS bit to 1.

If the Allow TIP flag of the Core Transaction Manager Facet is set to TRUE:

= Set the DTCADVCONFIG_NETWORKDTCACCESS_TIP bit to 1.

If the Allow Outbound Transactions flag of the Core Transaction Manager Facet is set
to TRUE:

= Set the DTCADVCONFIG_OUTBOUNDNETWORK_TX bit to 1.

If the Allow Inbound Transactions flag of the Core Transaction Manager Facet is set to
TRUE:

= Set the DTCADVCONFIG_INBOUNDNETWORK_TX bit to 1.

If the Security Level field of the Core Transaction Manager Facet is set to no
security:

= Set the DTCADVCONFIG_SECURITYLEVEL_NOSECURITY bit to 1.

Otherwise, if the Security Level field of the Core Transaction Manager Facet is set to
Incoming Authentication:

= Set the DTCADVCONFIG_SECURITYLEVEL_AUTHENTICATEDONLY bit to 1.

Otherwise, if the Security Level field of the Core Transaction Manager Facet is set to
Mutual Authentication:

= Set the DTCADVCONFIG_SECURITYLEVEL_MUTUALAUTH bit to 1.

If the Allow XA flag of the Core Transaction Manager Facet is set to TRUE, set the
grfXaTransaction field to 1; otherwise, set the flag to zero.

If the Allow LUTransactions flag of the Core Transaction Manager Facet is set to TRUE, set
the DTCADVCONFIG_OPTIONS_LUTRANSACTIONS_DISABLE option bit in the grfOptions
field to 0; otherwise, set the option bit to 1.

Set the connection state to Ended.

= Otherwise, the message MUST be processed as an invalid message as specified in section 3.1.6.

3.4.5.4.1.2 Connection Disconnected

When a CONNTYPE_TXUSER_TRACE (section 2.2.8.3.5) connection is disconnected, the transaction
manager communicating with an application facet MUST perform the actions as specified in section

3.1.8.3.

307/ 475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

3.4.6 Timer Events

No timer events apply here.

3.4.7 Other Local Events

A transaction manager communicating with an application facet MUST be prepared to process the
local events that are defined in the following sections.

The transaction manager communicating with an application facet MUST be prepared to process local
events pertaining to Phase Zero functionality only on versions where the
CONNTYPE_TXUSER_PHASEO connection type is supported. Section 2.2.1.1.3 defines protocol
version support for this connection type. The following local events are affected:

= Register Phase Zero (section 3.4.7.15)

= Phase Zero Complete (section 3.4.7.14)

3.4.7.1 Associate Transaction Failure
The Associate Transaction Failure event MUST be signaled with the following arguments:
= A transaction object
= A value indicating the failure reason. The reason MUST be set to one of the following values:
= Comm Failed
= Log Full Remote
» Log Full Local
= No Mem Remote
= Too Late
= Too Many Remote
= Too Many Local
= Tx Not Found

If the Associate Transaction Failure event is signaled, the transaction manager MUST perform the
following actions:

= Find an instance of a CONNTYPE_TXUSER_ASSOCIATE (section 2.2.8.2.1.1) connection list in the
associates table of the transaction manager communicating with an application facet by using the
Transaction Object.Identifier field of the transaction object as the key.

= For each connection in the list:
= Remove the connection from the list.
= If the connection state is Processing Associate Request:
= Send the matching message for the following reason codes:
= Comm Failed: TXUSER_ASSOCIATE_MTAG_COMM_FAILED (section 2.2.8.2.1.1.3)

= Log Full Remote:
TXUSER_ASSOCIATE_MTAG_LOG_FULL_REMOTE (section 2.2.8.2.1.1.6)

308 /475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

= Log Full Local: TXUSER_ASSOCIATE_MTAG_LOG_FULL_LOCAL (section 2.2.8.2.1.1.5)

. No Mem Remote:
TXUSER_ASSOCIATE_MTAG_NO_MEM_REMOTE (section 2.2.8.2.1.1.8)

*= Too Late:TXUSER_ASSOCIATE_MTAG_TOO_LATE (section 2.2.8.2.1.1.9)

= Too Many Remote:
TXUSER_ASSOCIATE_MTAG_TOO_MANY_REMOTE (section 2.2.8.2.1.1.11)

= Too Many Local:
TXUSER_ASSOCIATE_MTAG_TOO_MANY_LOCAL (section 2.2.8.2.1.1.10)

= Tx Not Found: TXUSER_ASSOCIATE_MTAG_TX_NOT_FOUND (section 2.2.8.2.1.1.12)
= Set the connection state to Ended.
= Remove the list from the associates table of the transaction manager communicating with an
application facet.
3.4.7.2 Associate Transaction Success
The Associate Transaction Success event MUST be signaled with the following arguments:
= A transaction object.

If the Associate Transaction Success event is signaled, the transaction manager MUST perform the
following actions:

= Find the list of CONNTYPE_TXUSER_ASSOCIATE (section 2.2.8.2.1.1) connections in the
associates table of the transaction manager communicating with an application facet by using the
Transaction Object.Identifier field of the transaction object as the key.

» For each connection in the list:
= Remove the connection from the list.
= If the connection state is Processing Associate Request:

= Send a TXUSER_ASSOCIATE_MTAG_ASSOCIATED (section 2.2.8.2.1.1.2) message using
the connection.

= Set the connection state to Active.

= Remove the list from the associates table of the transaction manager communicating with an
application facet.

3.4.7.3 Begin Commit

The Begin Commit event MUST be signaled with the following arguments:

= An Enlistment object

If the Begin Commit event is signaled, the transaction manager MUST perform the following actions:

= If the enlistment connection is of type CONNTYPE_TXUSER_IMPORT (section 2.2.8.2.2.4):

= Set the connection state to Ended.

309 /475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

Otherwise, if the enlistment connection is of type
CONNTYPE_TXUSER_IMPORT? (section 2.2.8.2.2.5) or
CONNTYPE_TXUSER_ASSOCIATE (section 2.2.8.2.1.1):

» Send a TXUSER_IMPORT2_MTAG_SINK_ERROR (section 2.2.8.2.2.5.4) message:
= The Error field MUST be set to TRUN_TXIMPORT_ERROR_NOTIFY_COMMITTED.

= Set the connection state to Ended.

3.4.7.4 Begin In Doubt

The Begin In Doubt event MUST be signaled with the following arguments:

If the Begin In Doubt event is signaled, the transaction manager MUST perform the following actions:

An Enlistment object.

If the enlistment connection is of type CONNTYPE_TXUSER_IMPORT (section 2.2.8.2.2.4):
= Set the connection state to Ended.

Otherwise, if the enlistment connection is of type
CONNTYPE_TXUSER_IMPORT?2 (section 2.2.8.2.2.5) or
CONNTYPE_TXUSER_ASSOCIATE (section 2.2.8.2.1.1):

= Send a TXUSER_IMPORT2_MTAG_SINK_ERROR (section 2.2.8.2.2.5.4) message:
= The Error field MUST be set to TRUN_TXIMPORT_ERROR_NOTIFY_INDOUBT.

= Set the connection state to Ended.

3.4.7.5 Begin Rollback

The Begin Rollback event MUST be signaled with the following arguments:

An Enlistment object.

If the Begin Rollback event is signaled, the transaction manager MUST perform the following
actions:

If the enlistment's connection is of type CONNTYPE_TXUSER_IMPORT (section 2.2.8.2.2.4):
= Set the connection state to Ended.
Otherwise, if the enlistment's connection is of type
CONNTYPE_TXUSER_IMPORT?2 (section 2.2.8.2.2.5) or
CONNTYPE_TXUSER_ASSOCIATE (section 2.2.8.2.1.1):
= If the connection state is Active or Too Late to Abort:

= Send a TXUSER_IMPORT2_MTAG_SINK_ERROR (section 2.2.8.2.2.5.4) message:

= The Error field MUST be set to TRUN_TXIMPORT_ERROR_NOTIFY_ABORTED.

= Set the connection state to Ended.

3.4.7.6 Begin Voting

The Begin Voting event MUST be signaled with the following arguments:

310/ 475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

= An Enlistment object

If the Begin Voting event is signaled, the transaction manager MUST perform the following actions:

= If the enlistment's connection is of type CONNTYPE TXUSER IMPORT,
CONNTYPE TXUSER IMPORT2 or CONNTYPE TXUSER ASSOCIATE:

= Signal the Enlistment Vote Complete event on the Core Transaction Manager Facet with the

following arguments:
= The provided Enlistment object
= The Prepared vote outcome

= If the enlistment's connection type is CONNTYPE_TXUSER_IMPORT or
CONNTYPE_TXUSER_IMPORT?2:

= Set the connection state to Too Late to Abort.

3.4.7.7 Create Transaction Failure
The Create Transaction Failure event MUST be signaled with the following arguments:

= A transaction object.

= A value indicating the failure reason. The reason MUST be set to one of the following values:

= Log Full
= No Mem

» Duplicate

If the Create Transaction Failure event is signaled, the transaction manager MUST perform the

following actions:

= If the transaction's connection list contains a connection of type
CONNTYPE_TXUSER_BEGINNER (section 2.2.8.1.1):

= Send the matching message for the following reason codes:

= Log Full: TXUSER_BEGINNER_MTAG_BEGIN_LOG_FULL (section 2.2.8.1.1.3)
= No Mem: TXUSER_BEGINNER_MTAG_BEGIN_NO_MEM (section 2.2.8.1.1.4)

= Set the connection state to Ended.

= Otherwise, if the transaction's connection list contains a connection of type
CONNTYPE_TXUSER_BEGIN2 (section 2.2.8.1.2) or
CONNTYPE_TXUSER_PROMOTE (section 2.2.8.1.3):

» Send a TXUSER_BEGIN2_MTAG_SINK_ERROR (section 2.2.8.1.2.5) message:

= The Error field MUST be set to the value matching the following reason codes:

* Log Full: TRUN_TXBEGIN_ERROR_BEGIN_LOG_FULL
= No Mem: TRUN_TXBEGIN_ERROR_NO_MEM
» Duplicate: TRUN_TXBEGIN_ERROR_DUPLICATE_GUID

= Set the connection state to Ended.

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

311 /475

3.4.7.8 Create Transaction Success
The Create Transaction Success event MUST be signaled with the following arguments:
= A transaction object

If the Create Transaction Success event is signaled, the transaction manager MUST perform the
following actions:

= If the transaction's connection list contains a connection of type
CONNTYPE_TXUSER_BEGINNER (section 2.2.8.1.1)

= Send a TXUSER_BEGINNER_MTAG_BEGUN (section 2.2.8.1.1.5) message.

= The guidTx field MUST be set to the Transaction Object.Identifier field of the
transaction object.

= Set the connection state to Active.

= Otherwise, if the transaction's connection list contains a connection of type
CONNTYPE_TXUSER_BEGIN2 (section 2.2.8.1.2) or
CONNTYPE_TXUSER_PROMOTE (section 2.2.8.1.3):

= Send a TXUSER_BEGIN2_MTAG_SINK_BEGUN (section 2.2.8.1.2.4) message:

* The guidTx field MUST be set to the Transaction Object.Identifier field of the
transaction object.

= Set the connection state to Active.

3.4.7.9 Create Voter Enlistment Failure
The Create Voter Enlistment Failure event MUST be signaled with the following arguments:
= An Enlistment object.
= A value indicating the failure reason. The reason MUST be set to the following value:
= Too Late

If the Create Voter Enlistment Failure event is signaled, the Transaction Manager MUST perform the
following actions:

= If the provided enlistment's connection is of type
CONNTYPE_TXUSER_IMPORT?2 (section 2.2.8.2.2.5):

= Send a TXUSER_IMPORT2_MTAG_SINK_ERROR (section 2.2.8.2.2.5.4) message using the
provided enlistment's connection:

= The Error field MUST be set to:
= TRUN_TXIMPORT_ERROR_IMPORT_TX_NOT_FOUND.
= Set the connection state to Ended.

= Otherwise, if the provided enlistment's connection is of type
CONNTYPE_TXUSER_IMPORT (section 2.2.8.2.2.4):

= Send a TXUSER_IMPORT_MTAG_IMPORT_TX_NOT_FOUND message using the provided
enlistment's connection.

312 /475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

= Set the connection state to Ended.

3.4.7.10 Create Voter Enlistment Success
The Create Voter Enlistment Success event MUST be signaled with the following arguments:
= An Enlistment object

If the Create Voter Enlistment Success event is signaled, the Transaction Manager MUST perform
the following actions:

= If the provided enlistment's connection is of type
CONNTYPE_TXUSER_IMPORT?2 (section 2.2.8.2.2.5):

» Send the TXUSER_IMPORT2_MTAG_SINK_IMPORTED (section 2.2.8.2.2.5.5) message using
the provided enlistment's connection.

= The isoLevel field MUST be set to the Isolation Level field of the transaction object
referenced by the provided Enlistment object.

= The isoFlags field MUST be set to the Isolation Flags field of the transaction object
referenced by the provided Enlistment object.

= Otherwise, if the provided enlistment's connection is of type
CONNTYPE_TXUSER_IMPORT (section 2.2.8.2.2.4):

= Send the TXUSER_IMPORT_MTAG_IMPORTED (section 2.2.8.2.2.4.5) message using the
provided enlistment's connection:

= The isoLevel field MUST be set to the Isolation Level field of the transaction object
referenced by the provided Enlistment object.

= The isoFlags field MUST be set to the Isolation Flags field of the transaction object
referenced by the provided Enlistment object.

= Set the connection state to Active.

3.4.7.11 Export Transaction Failure
The Export Transaction Failure event MUST be signaled with the following arguments:
= A transaction object.
= A value indicating the failure reason. The reason MUST be set to one of the following values:
= Log Full
= No Mem
= Too Late
= Too Many
= Comm Failed

If the Export Transaction Failure event is signaled, the transaction manager MUST perform the
following actions:

= Find an instance of a CONNTYPE_TXUSER_EXPORT?2 (section 2.2.8.2.2.3) connection in the
provided transaction's connection list.

313/ 475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

= Send the matching message for the following reason codes:

= Log Full: TXUSER_EXPORT_MTAG_EXPORT_LOG_FULL (section 2.2.8.2.2.2.7)

= No Mem: TXUSER_EXPORT_MTAG_EXPORT_NO_MEM (section 2.2.8.2.2.2.8)

. Too Late: TXUSER_EXPORT_MTAG_EXPORT_TOO_LATE (section 2.2.8.2.2.2.9)

= Too Many: TXUSER_EXPORT_MTAG_EXPORT_TOO_MANY (section 2.2.8.2.2.2.10)

= Not Found: TXUSER_EXPORT_MTAG_EXPORT_TX_NOT_FOUND (section 2.2.8.2.2.2.11)

= Comm Failed: TXUSER_EXPORT_MTAG_EXPORT_COMM_FAILED (section 2.2.8.2.2.3.1)
= Set the connection state to Ended.

= Otherwise, find an instance of a CONNTYPE_TXUSER_EXPORT (section 2.2.8.2.2.2) connection in
the provided transaction's connection list.

= Send the matching message for the following reason codes:
= Log Full: TXUSER_EXPORT_MTAG_EXPORT_LOG_FULL (section 2.2.8.2.2.2.7)
= No Mem: TXUSER_EXPORT_MTAG_EXPORT_NO_MEM (section 2.2.8.2.2.2.8)
= Too Late: TXUSER_EXPORT_MTAG_EXPORT_TOO_LATE (section 2.2.8.2.2.2.9)
= Too Many: TXUSER_EXPORT_MTAG_EXPORT_TOO_MANY (section 2.2.8.2.2.2.10)
= Not Found: TXUSER_EXPORT_MTAG_EXPORT_TX_NOT_FOUND (section 2.2.8.2.2.2.11)

= Otherwise, if no such connection exists, the event MUST be ignored.

3.4.7.12 Export Transaction Success
The Export Transaction Success event MUST be signaled with the following arguments:
= A transaction object

If the Export Transaction Success event is signaled, the transaction manager MUST perform the
following actions:

= Find an instance of a CONNTYPE_TXUSER_EXPORT?2 (section 2.2.8.2.2.3) connection in the
provided transaction's connection list.

= Send a TXUSER_EXPORT_MTAG_EXPORTED (section 2.2.8.2.2.2.12) message using the
connection.

= Set the connection state to Connection Active (section 3.4.1.9.3).

= Otherwise, find an instance of a CONNTYPE_TXUSER_EXPORT (section 2.2.8.2.2.2) connection in
the provided transaction's connection list.

= Send a TXUSER_EXPORT_MTAG_EXPORTED (section 2.2.8.2.2.2.12) message using the
connection.

= Set the connection state to Connection Active (section 3.4.1.8.3).

= Otherwise, if no such connection exists, the event MUST be ignored.

314 /475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

3.4.7.13 Phase One Complete
The Phase One Complete event MUST be signaled with the following arguments:
= An Enlistment object.

= A value indicating the outcome of Phase One. The value MUST be set to one of the following
values:

= Read Only
= Committed
= Aborted

= In Doubt

If the Phase One Complete event is signaled, the Transaction Manager Communicating with an
Application Facet MUST perform the following actions:

= If the provided outcome is Read Only or Committed:

= If the transaction's connection list contains a connection of type
CONNTYPE_TXUSER_BEGINNER (section 2.2.8.1.1):

= Send a TXUSER_BEGINNER_MTAG_REQUEST_COMPLETED (section 2.2.8.1.1.9) message.
= Set the connection state to Ended.

= Otherwise, if the transaction's connection list contains a connection of type
CONNTYPE_TXUSER_BEGIN2 (section 2.2.8.1.2) or
CONNTYPE_TXUSER_PROMOTE (section 2.2.8.1.3):

» Send a TXUSER_BEGIN2_MTAG_SINK_ERROR (section 2.2.8.1.2.5) message:
= The Error field MUST be set to TRUN_TXBEGIN_ERROR_NOTIFY_COMMITTED.
= Set the connection state to Ended.
= Otherwise, if the provided outcome is Aborted:

= If the transaction's connection list contains a connection of type
CONNTYPE_TXUSER_BEGINNER (section 2.2.8.1.1):

= If the connection state is Active:
= Set the connection state to Aborting Transaction.
= Otherwise, if the connection state is Aborting Transaction or Committing Transaction:

= Send a TXUSER_BEGINNER_MTAG_REQUEST_COMPLETED (section 2.2.8.1.1.9)
message.

= Set the connection state to Ended.
= Otherwise, ignore the event.

= Otherwise, if the transaction's connection list contains a connection of type
CONNTYPE_TXUSER_BEGIN2 (section 2.2.8.1.2) or
CONNTYPE_TXUSER_PROMOTE (section 2.2.8.1.3):

= Send a TXUSER_BEGIN2_MTAG_SINK_ERROR (section 2.2.8.1.2.5) message:

315/ 475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

= The Error field MUST be set to TRUN_TXBEGIN_ERROR_NOTIFY_ABORTED.
= Set the connection state to Ended.
= Otherwise, if the provided outcome is In Doubt:

= If the transaction's connection list contains a
CONNTYPE_TXUSER_BEGINNER (section 2.2.8.1.1) connection:

» Send a TXUSER_BEGINNER_MTAG_COMMIT_INDOUBT (section 2.2.8.1.1.7) message.
= Set the connection state to Ended.

= Otherwise, if the transaction's connection list contains a
CONNTYPE_TXUSER_BEGIN2 (section 2.2.8.1.2) connection:

= Send a TXUSER_BEGIN2_MTAG_SINK_ERROR (section 2.2.8.1.2.5) message:
= The Error field MUST be set to TRUN_TXBEGIN_ERROR_NOTIFY_INDOUBT.

= Set the connection state to Ended.

3.4.7.14 Phase Zero Complete
The Phase Zero Complete event MUST be signaled with the following arguments:
= An Enlistment object.

= A value indicating the outcome of Phase Zero. The value MUST be set to one of the following

values:
= Success
= Failure

If the Phase Zero Complete event is signaled, the transaction manager MUST perform the following
actions:

= If the provided outcome is Success:

= Signal the Begin Phase One event on the Core Transaction Manager Facet with the following
arguments:

= The transaction referenced by the provided Enlistment object.
= The Single Phase Commit flag set to TRUE.
Otherwise:

= Signal the Phase One Complete event on the Transaction Manager Communicating with an
Application Facet with the following arguments:

= The provided Enlistment object

= The Aborted outcome

3.4.7.15 Register Phase Zero
The Register Phase Zero event MUST be signaled with the following arguments:

= An Enlistment object.

316 /475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

If the Register Phase Zero event is signaled, the transaction manager MUST perform the following
actions:

= Signal the Register Phase Zero Success event on the Core Transaction Manager Facet with the
following arguments:

= The provided Enlistment object

3.4.7.16 Resolve Transaction Complete
The Resolve Transaction Complete event MUST be signaled with the following arguments:
= A transaction object.

= A value indicating the result of the resolve transaction operation. The value MUST be set to one of
the following values:

= Committed

= Aborted

= Forgotten

= Not Prepared

= Not Committed

If the Resolve Transaction Complete event is signaled, the transaction manager MUST perform the
following actions:

= Find a CONNTYPE_TXUSER_RESOLVE (section 2.2.8.3.2) connection in the transaction's
connection list.

= If the connection is not found, ignore the event.
= Otherwise:
= If the resolve outcome is Committed, Aborted, or Forgotten:

= Send a TXUSER_RESOLVE_MTAG_REQUEST_COMPLETE (section 2.2.8.3.2.7) message
using the connection.

= Set the connection state to Ended.
= Otherwise, if the resolve outcome is Not Prepared:

= Send a TXUSER_RESOLVE_MTAG_CHILD_NOT_PREPARED (section 2.2.8.3.2.4) message
using the connection.

= Set the connection state to Ended.
= Otherwise, if the resolve outcome is Not Committed:

= Send a TXUSER_RESOLVE_MTAG_FORGET_TX_NOT_COMMITTED (section 2.2.8.3.2.6)
message using the connection.

= Set the connection state to Ended.

3.4.7.17 Resolve Transaction Access Denied

The Resolve Transaction Access Denied event MUST be signaled with the following arguments:

317/ 475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

= A connection object.

If the Resolve Transaction Access Denied event is signaled, the transaction manager MUST perform
the following actions:

= If the connection object is of CONNTYPE_TXUSER_RESOLVE (section 2.2.8.3.2) connection type:
» Send a TXUSER_RESOLVE_MTAG_ACCESSDENIED (section 2.2.8.3.2.1) message.
= Set the connection state to Ended.

= Otherwise:

= Ignore the signal.

3.4.7.18 Rollback Complete
The Rollback Complete event MUST be signaled with the following arguments:
= An Enlistment object

If the Rollback Complete event is signaled, the transaction manager MUST perform the following
actions:

= If the connection referenced by the enlistment is of type
CONNTYPE_TXUSER_BEGINNER (section 2.2.8.1.1):

= If the connection state is Aborting Transaction:
» Send a TXUSER_BEGINNER_MTAG_REQUEST_COMPLETED (section 2.2.8.1.1.9) message.
= Set the connection state to Ended.

= If the connection referenced by the enlistment is of type
CONNTYPE_TXUSER_BEGIN2 (section 2.2.8.1.2) or
CONNTYPE_TXUSER_PROMOTE (section 2.2.8.1.3):

= If the connection state is Modifying Timeout:
= Send a TXUSER_SETTXTIMEOUT_MTAG_TOO_LATE (section 2.2.8.1.2.8) message.
= Otherwise, if the connection state is Active, Aborting Transaction, or Committing Transaction:
= Send a TXUSER_BEGIN2_MTAG_SINK_ERROR (section 2.2.8.1.2.5) message.
= The Error field MUST be set to TRUN_TXBEGIN_ERROR_NOTIFY_ABORTED.

= Set the connection state to Ended.

3.4.7.19 Set Transaction Attributes Failure
The Set Transaction Attributes Failure event MUST be signaled with the following arguments:
= A transaction object

If the Set Transaction Attributes Failure event is signaled, the transaction manager MUST perform
the following actions:

= Find a CONNTYPE TXUSER IMPORT2 connection instance in the provided transaction's connection
list.

318/ 475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

= If the connection is not found, ignore the event.
= Otherwise:

= Send a TXUSER IMPORT2 MTAG_SINK ERROR message using the connection:

= The Error field MUST be set to TRUN_TXIMPORT_ERROR_IMPORT_TX_NOT_FOUND.

= Set the connection state to Ended.

3.4.7.20 Set Transaction Attributes Success
The Set Transaction Attributes Success event MUST be signaled with the following arguments:
= A transaction object

If the Set Transaction Attributes Success event is signaled, the transaction manager MUST
perform the following actions:

= Find a CONNTYPE_TXUSER_IMPORT2 (section 2.2.8.2.2.5) connection instance in the provided
transaction's connection list.

= If the connection is not found, ignore the signal.
= Otherwise:
= Create a new Enlistment object using the following fields:
= The Transaction Manager Communicating with an Application Facet
= The provided transaction object
= The connection object
= Assign the new Enlistment object to the connection's Enlistment field.
= Signal the Create Voter Enlistment (section 3.2.7.14) event on the Core Transaction Manager
Facet (section 1.3.3.3.1) with the new Enlistment object.
3.4.7.21 Set Transaction Timeout Failure
The Set Transaction Timeout Failure event MUST be signaled with the following arguments:
= A transaction object

If the Set Transaction Timeout Failure event is signaled, the transaction manager MUST perform the
following actions:

= If the transaction's connection list contains a connection of type
CONNTYPE_TXUSER_BEGIN2 (section 2.2.8.1.2) or
CONNTYPE_TXUSER_PROMOTE (section 2.2.8.1.3):

= Send a TXUSER_SETTXTIMEOUT_MTAG_TOO_LATE (section 2.2.8.1.2.8) message using the
connection.

= Set the connection state to Active.

= Otherwise, if the transaction's connection list contains a
CONNTYPE_TXUSER_SETTXTIMEOUT (section 2.2.8.3.3) connection:

319/ 475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

* Send a TXUSER_SETTXTIMEOUT_MTAG_TOO_LATE (section 2.2.8.1.2.8) message using the
connection.

= Set the connection state to Ended.

3.4.7.22 Set Transaction Timeout Success
The Set Transaction Timeout Success event MUST be signaled with the following arguments:
= A transaction object

If the Set Transaction Timeout Success event is signaled, the transaction manager MUST perform the
following actions:

= If the transaction's connection list contains a connection of type
CONNTYPE_TXUSER_BEGIN2 (section 2.2.8.1.2) or
CONNTYPE_TXUSER_PROMOTE (section 2.2.8.1.3):

= Send a TXUSER_SETTXTIMEOUT_MTAG_REQUEST_COMPLETE (section 2.2.8.1.2.6) message
using the connection.

L] Set the connection state to Active.

= Otherwise, if the transaction's connection list contains a
CONNTYPE_TXUSER_SETTXTIMEOUT (section 2.2.8.3.3) connection:

= Send a TXUSER_SETTXTIMEOUT_MTAG_REQUEST_COMPLETE (section 2.2.8.1.2.6) message
using the connection.

= Set the connection state to Ended.

3.4.7.23 Unilaterally Aborted
The Unilaterally Aborted event MUST be signaled with the following arguments:
= An Enlistment object

If the Unilaterally Aborted event is signaled, the transaction manager MUST perform the following
actions:

= If the enlistment's connection is of type CONNTYPE_TXUSER_BEGINNER (section 2.2.8.1.1):
= If the connection state is Active.
= Set the connection state to Aborting Transaction.

= Otherwise, if the enlistment's connection is of type
CONNTYPE_TXUSER_BEGIN2 (section 2.2.8.1.2) or
CONNTYPE_TXUSER_PROMOTE (section 2.2.8.1.3):

= Send a TXUSER_BEGIN2_MTAG_SINK_ERROR (section 2.2.8.1.2.5) message:
= The Error field MUST be set to TRUN_TXBEGIN_ERROR_NOTIFY_ABORTED.

= Set the connection state to Ended.

320/ 475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

3.5 Resource Manager Details

3.5.1 Abstract Data Model

This section describes a conceptual model of possible data organization that an implementation
maintains to participate in this protocol. The described organization is provided to facilitate the
explanation of how the protocol behaves. This document does not mandate that implementations
adhere to this model as long as their external behavior is consistent with the behavior that is
described in this document.

Note that the abstract data model can be implemented in a variety of ways. This protocol does not
prescribe or advocate any specific implementation technique.

A resource manager MUST maintain all the data elements as specified in section 3.1.1.
A resource manager MUST also maintain the following data elements:

= Resource Manager.Identifier: A durable GUID that specifies the resource manager
identifier.

= Session identifier: A volatile GUID that specifies the resource manager session identifier.

= Resource Manager.Durable Log: A durable list of transaction objects. The contents of the log
MUST persist across software restarts and transient failures.

= Reenlistment list: A list of connection objects.
= Transaction manager name: A Name object that identifies the transaction manager.

= Reenlistment timeout: A value that indicates the number of milliseconds the resource manager
will wait for an outcome while reenlisting on a transaction.

= Resource Manager.Connection: A connection object that MUST be of type
CONNTYPE_TXUSER_RESOURCEMANAGERINTERNAL (section 2.2.10.1.2) or
CONNTYPE_TXUSER_RESOURCEMANAGER (section 2.2.10.1.1).

When a transaction object is stored in the Resource Manager.Durable Log of the resource
manager, the resource manager MUST record, at minimum, the following fields:

= The Resource Manager.Identifier field
= The Transaction Object.Identifier field of the transaction object

A resource manager MUST provide the states that are defined in the following sections for its
supported connection types. Section 2.2.1.1.3 defines the connection types that a resource manager
MUST provide for each supported protocol version.

For a resource manager initiating a connection, once the connection's state machine enters the Ended
state, the connection that is associated with the state machine MUST be disconnected, if it is not
already disconnected, as specified in [MS-CMP] section 3.1.5.1. In addition, if both the Outgoing
Connection Table and the Incoming Connection Table of the Session object containing the connection
object referenced by Resource Manager.Connection are empty, the following event on the resource
manager is signaled:

= Transaction Manager Down (section 3.5.7.4)

321 /475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

%5bMS-CMP%5d.pdf#Section_1970a8a0799d4308b9274e4ea23dc225

3.5.1.1 CONNTYPE_TXUSER_RESOURCEMANAGER Initiator States

The resource manager MUST act as an initiator for the
CONNTYPE_TXUSER_RESOURCEMANAGER (section 2.2.10.1.1) connection type. In this role, the
resource manager MUST provide support for the following states:

= Idle

= Awaiting Create Response

= Recovering

= Awaiting Completion Confirmation
= Active

» Ended

The following figure shows the relationship between the
CONNTYPE_TXUSER_RESOURCEMANAGER (section 2.2.10.1.1) initiator states.

THUSER_
RESOURCEMANAGER,_
MTAG_ CREATE sent

Should only be sent once:
TM ignores all TXUSER

RESOURCEMANAGER_MTAG_ Awaiti TXLISER_
REENLISTMENTCOMPLETE Creat';g Rﬁ%“%m%&
Messages after the first Response
- received
Y
. THUSER RESOURCEMAMAGER
\\ MTAG_REQUEST_COMPLETE
5 received
THUSER_
RESOURCEMANAGER MTAG._
REENLISTMENTCOMPLETE
sent
Awaiting
Completion Recovering
Confirmation
TXUSER_
RESOURCEMANAGER_ _
MTAG_REQUEST Active n?f&ﬁﬁgu

COMPLETE received

®

Figure 44: Resource Manager state diagram for CONNTYPE_TXUSER_RESOURCEMANAGER

322 / 475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

3.5.1.1.1 Idle
This is the initial state. The following event is processed in this state:

» Registering with Transaction Manager Using
CONNTYPE_TXUSER_RESOURCEMANAGER (section 3.5.4.10.1)

3.5.1.1.2 Awaiting Create Response
The following events are processed in this state:

= Receiving a TXUSER_RESOURCEMANAGER_MTAG_REQUEST_COMPLETE
Message (section 3.5.5.1.1.2)

= Receiving a TXUSER_RESOURCEMANAGER_MTAG_DUPLICATE Message (section 3.5.5.1.1.1)

3.5.1.1.3 Recovering
The following event is processed in this state:

= Reenlistment Complete (section 3.5.7.3)

3.5.1.1.4 Awaiting Completion Confirmation
The following event is processed in this state:

= Receiving a TXUSER_RESOURCEMANAGER_MTAG_REQUEST_COMPLETE
Message (section 3.5.5.1.1.2)

3.5.1.1.5 Active

No specific events are processed in this state.

3.5.1.1.6 Ended

This is the final state.

3.5.1.2 CONNTYPE_TXUSER_RESOURCEMANAGERINTERNAL Initiator States

The resource manager MUST act as an initiator for the
CONNTYPE_TXUSER_RESOURCEMANAGERINTERNAL (section 2.2.10.1.2) connection type. In this
role, the resource manager MUST provide support for the following states:

= Idle

= Awaiting Create Response

= Recovering

= Awaiting Completion Confirmation
= Active

* Ended

The following figure shows the relationship between the
CONNTYPE_TXUSER_RESOURCEMANAGERINTERNAL initiator states.

323/ 475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

THUSER_
RESOURCEMANAGER_
MTAG_CREATE sent

TXUSER_RESOURCEMANAGER
MTAG_DUPLICATE received

TXUSER_
——RESOURCEMAMAGERINTERMAL
MTAG_DUPLICATEDETECTED
received

Awaiting

Create
Response

TXUSER_RESOURCEMAMNAGER.
MTAG REQUEST COMPLETE
recelved

TXUSER_RESOURCEMAMNAGER.
MTAG REEMLISTMENTCOMPLETE

. sent
Awaiting
Completion Recovering
Confirmation
THUSER._
RESOURCEMAMNAGERINTERMAL
MTAG_DUPLICATEDETECTED
received
TAUSER
RESOURCEMAMNAGER_ | Connection
MTAG_REQUEST _ Disconnected

COMPLETE received

TXUSER
RESOURCEMANAGERINTERMAL_
MTAG _DUPLICATEDETECTED

received

Figure 45: CONNTYPE_TXUSER_RESOURCEMANAGERINTERNAL initiator states

3.5.1.2.1 Idle
This is the initial state. The following event is processed in this state:

= Registering with Transaction Manager Using
CONNTYPE_TXUSER_RESOURCEMANAGERINTERNAL (section 3.5.4.10.2)

3.5.1.2.2 Awaiting Create Response
The following events are processed in this state:

= Receiving a TXUSER_RESOURCEMANAGER_MTAG_DUPLICATE or

TXUSER_RESOURCEMANAGER_MTAG_REQUEST_COMPLETE Message (section 3.5.5.1.2.1)

3.5.1.2.3 Recovering

The following events are processed in this state:

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

324 /475

= Reenlistment Complete (section 3.5.7.3)

= Receiving a TXUSER_RESOURCEMANAGERINTERNAL_MTAG_DUPLICATEDETECTED
Message (section 3.5.5.1.2.2)

3.5.1.2.4 Awaiting Completion Confirmation
The following events are processed in this state:

= Receiving a TXUSER_RESOURCEMANAGER_MTAG_DUPLICATE or
TXUSER_RESOURCEMANAGER_MTAG_REQUEST_COMPLETE Message (section 3.5.5.1.2.1)

3.5.1.2.5 Active
The following event is processed in this state:

= Receiving a TXUSER_RESOURCEMANAGERINTERNAL_MTAG_DUPLICATEDETECTED
Message (section 3.5.5.1.2.2)

3.5.1.2.6 Ended

This is the final state.

3.5.1.3 CONNTYPE_TXUSER_PHASEDO Initiator States

The resource manager MUST act as an initiator for the
CONNTYPE_TXUSER_PHASEQ (section 2.2.10.2.1) connection type. In this role, the resource
manager MUST provide support for the following states:

= Idle

= Awaiting Create Response

= Active

= Processing Phase Zero Request
* Ended

The following figure shows the relationship between the CONNTYPE_TXUSER_PHASEQO initiator states.

325/475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

. :1 Idie

THUSER_PHASED_

MTAG_CREATE sent TXUSER PHASED MTAG

CREATE_TX_MNOT_FOUND or
TXUSER_PHASEQ_MTAG._

Awaiting CREATE TOO LATE received
Create
Response
TKUSER_PHASEQ_ Enlistrment
MTAG CREATED received Failed
TXUSER_PHASEQ_
, MTAG_PHASEDREQ THUSER_PHASED_
Processing recaived MTAG_UNEMLIST sent
Phase Zero Active
Request k zJ
TXUSER_PHASED MTAG
TXUSER_PHASEDQ PHASEOREQ_ABORT
MTAG_ received
PHASEQOREQDONE
sent
Client drops
h Transaction

connection Abarted
Phase 0
Complete

- el
Ended

Y
'

Figure 46: CONNTYPE_TXUSER_PHASEO Initiator States

3.5.1.3.1 Idle
This is the initial state. The following event is processed in this state:

= Enlisting as a Phase Zero Participant on a Specific Transaction (section 3.5.4.2)

3.5.1.3.2 Awaiting Create Response
The following events are processed in this state:
= Receiving a TXUSER_PHASEO_MTAG_CREATED Message (section 3.5.5.2.1.1)

= Receiving a TXUSER_PHASEO_MTAG_CREATE_TX_NOT_FOUND or
TXUSER_PHASEO_MTAG_CREATE_TOO_LATE Message (section 3.5.5.2.1.2)

3.5.1.3.3 Active

326 / 475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

The following events are processed in this state:
= Receiving a TXUSER_PHASEO_MTAG_PHASEOREQ (section 3.5.5.2.1.3) message
= Receiving a TXUSER_PHASEO_MTAG_PHASEOREQ_ABORT (section 3.5.5.2.1.4) message

= Canceling Enlistment as a Phase Zero Participant on a Specific Transaction (section 3.5.4.1)

3.5.1.3.4 Processing Phase Zero Request
The following event is processed in this state:

= Phase Zero Request Completed (section 3.5.4.8)

3.5.1.3.5 Ended

This is the final state.

3.5.1.4 CONNTYPE_TXUSER_ENLISTMENT Initiator States

The resource manager MUST act as an initiator for the
CONNTYPE_TXUSER_ENLISTMENT (section 2.2.10.2.2) connection type. In this role, the resource
manager MUST provide support for the following states:

= Idle

= Awaiting Enlistment Response

= Active

= Single Phase Committing

= Preparing For Transaction Commit
= Finalizing Abort Operations

» Awaiting Transaction Outcome

* Finalizing Commit Operations

* Ended

The following figure shows the relationship between the CONNTYPE_TXUSER_ENLISTMENT initiator
states. In the figure, the parenthetical numbers are the actual enumeration values.

327/ 475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

e

THUSER ENLISTMEMNT
MTAG_EMLIST sent

Arditing
Endistmeent
Arsponse

TELUSER_EHLISTMENT.
MTaGE EMNLISTED received

TXUSER,
ENLISTMENT MTAG
FREFARERED recesvind

FSinglefhase = nonnern

THUSER _ENLISTMENT MTAG
ENLIST_TH_MOT_FOUND ar
THUSER_ENLISTMENT _MTAG_
ENLIST_TOOr LATE ar
THUSER_ENLISTMENT MTAG
EMLIST LOG FULL o
TEUSER_ENLISTMENT MTAG.
EMLIST_TOOr MANY received

Firalizirsg Aot
Dperations
THUSER_ENLISTMENT

TEUSER
MLISTHMENT MTAG
ARDRTRED recerved

TEUSER_EMNLISTHENT
MTAG PREPAREREC received
SinghePhage = ey

Single Phase
Committing

Ji

THUSER_EMLISTMENT
MTAG_PREFAREREQDONE sent.
propaneRegDane =
THUSER_ENLISTMENT
FREPAREREQDONE
AEADCHLY (2)

¢

Preparing Fod
Transnction Commit

THUS

TEUSER_ENLISTMENT.
MTAG_FREFAREREQDONE sont.
preparcieqDone = THUSER_EMLISTMENT.
MTAG PREFAREREGDONE

S
parcReqDone -
TEUGER EMLISTMENT
PREPAREREGDONE
READONLY {2)

TEUSER_EMLISTMENT
PREPAREREQDONE ABORT (1)

THUSER_ENLISTMENT
MTAG_PREFAREREQDONE
sant. prepareReqgDong
THUSER_EMLISTMENT,
PREPARCREQDONE
SINGLEPHASE _COMMIT (3}

R_ENLISTMENT
MTAG_PREPAREREQDOMNE sent,
prepareRagDone =
THUSER_ENLISTMENT
PREFARERECQDOME ABORT (1)

THUSER_ENLISTMENT.
MTAG_COMMITREQDONE

MTAG_PREPAREREQDONE sent
propang Dana
TAUSER_EMLISTMENT
PREPAREREQDONE_OK ()

THUSER,

EMLISTHENT.
MTAG
TXUSER_ENLISTMENT ABORTRED
MTAG_FREPAREREQDONE sent received

preparefeghone =
THUSER_ENLISTMENT
PREPAREREGDONE_OK (0)

Awaiting Trardscdtion
Dt

THUSER
EMLISTMENT
MTAG_COMMITREQ
received

sent

Ended

Finalizing THUSER
Comami ENLISTMENT_MTAG,
Operations ABORTREQDOME sent

.

Figure 47: CONNTYPE_TXUSER_ENLISTMENT Initiator States

3.5.1.4.1 1dle

This is the initial state. The following event is processed in this state:

= Enlisting on a Specific Transaction (section 3.5.4.3)

3.5.1.4.2 Awaiting Enlistment Response

The following events are processed in this state:

= Receiving a TXUSER_ENLISTMENT_MTAG_ENLISTED Message (section 3.5.5.2.2.1)

= Receiving a TXUSER_ENLISTMENT_MTAG_ENLIST_TX_NOT_FOUND,
TXUSER_ENLISTMENT_MTAG_ENLIST_TOO_LATE,
TXUSER_ENLISTMENT_MTAG_ENLIST_LOG_FULL, or
TXUSER_ENLISTMENT_MTAG_ENLIST_TOO_MANY Message (section 3.5.5.2.2.2)

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

3.5.1.4.3 Active

The following events are processed in this state:

= Receiving a TXUSER_ENLISTMENT_MTAG_PREPAREREQ Message (section 3.5.5.2.2.3)
= Receiving a TXUSER_ENLISTMENT_MTAG_ABORTREQ Message (section 3.5.5.2.2.5)

= Connection Disconnected (section 3.5.5.2.2.6)

3.5.1.4.4 Single Phase Committing
The following event is processed in this state:

= Enlistment Single-Phase Commit Request Completed (section 3.5.4.7)

3.5.1.4.5 Preparing for Transaction Commit
The following event is processed in this state:

= Enlistment Prepare Request Completed (section 3.5.4.6)

3.5.1.4.6 Finalizing Abort Operations
The following event is processed in this state:

= Enlistment Abort Request Completed (section 3.5.4.4)

3.5.1.4.7 Awaiting Transaction Outcome

The following events are processed in this state:

= Receiving a TXUSER_ENLISTMENT_MTAG_COMMITREQ Message (section 3.5.5.2.2.4)
= Receiving a TXUSER_ENLISTMENT_MTAG_ABORTREQ Message (section 3.5.5.2.2.5)

3.5.1.4.8 Finalizing Commit Operations
The following event is processed in this state:

= Enlistment Commit Request Completed (section 3.5.4.5)

3.5.1.4.9 Ended

This is the final state.

3.5.1.5 CONNTYPE_TXUSER_REENLIST Initiator States

The resource manager MUST act as an initiator for the
CONNTYPE_TXUSER_REENLIST (section 2.2.10.3.1) connection type. In this role, the resource
manager MUST provide support for the following states:

= Idle
= Awaiting Reenlist Response
» Ended

The following figure depicts the relationship between the CONNTYPE_TXUSER_REENLIST initiator
states.

329 /475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

TXUSER_REENLIST
MTAG_REENLIST sent

TXUSER REEMLIST

MTAG REENLIST COMMITTED ar
THUSER_REEMLIST_

MTAG_REENLIST ABORTED

TREUSER_REEMLIST
MTAG_REEMLIST_TIMEQLUT

received Awaiting received
Reenlist
| Response]
Transaction Transaction
Qutcome Qurcome
Determined Undetermined
l Ended |

@

Figure 48: CONNTYPE_TXUSER_REENLIST Initiator States

3.5.1.5.1 Idle

This is the initial state. The following event is processed in this state:
= Recover Transaction (section 3.5.7.1)

3.5.1.5.2 Awaiting Reenlist Response

The following events are processed in this state:

= Receiving a TXUSER_REENLIST_MTAG_REENLIST_COMMITTED Message (section 3.5.5.3.1.1)

= Receiving a TXUSER_REENLIST_MTAG_REENLIST_ABORTED Message (section 3.5.5.3.1.2)

= Receiving a TXUSER_REENLIST_MTAG_REENLIST_TIMEOUT Message (section 3.5.5.3.1.3)

3.5.1.5.3 Ended

This is the final state.

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

330/ 475

3.5.1.6 CONNTYPE_TXUSER_VOTER Initiator States

The resource manager MUST act as an initiator for the
CONNTYPE_TXUSER_VOTER (section 2.2.10.4.1) connection type. In this role, the resource manager
MUST provide support for the following states:

= Idle

= Awaiting Creation Response

= Active

= Performing Transaction Operations
= Awaiting Outcome

» Ended

Note that the abstract data model can be implemented in a variety of ways. This protocol does not
prescribe or advocate any specific implementation technique.

The following figure shows the relationship between the CONNTYPE_TXUSER_VOTER initiator states.

331 /475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

THUSER_VOTER_
MTAG_CREATE sent

r TXUSER_VOTER_MTAG_CREATE TX_NOT _FOUND or
Awaiting TXUSER_VOTER_MTAG CREATE TOO LATE received

Creation
Response

THUSER_VOTER_
MTAG _CREATED
received

TZUSER_WVOTER_MTAG_ABORTED received
Active

LEr

led

THUSER_VOTER
MTAG_VOTEREQ
received

TXUSER_VOTER_MTAG_VOTEREQDONE sent [VoteRegDone
set to TXUSER_VOTER_VOTEREQDONE OK_MNONOTIFY
or TXUSER_VOTER VOTEREQDONE_ABORT)

Performing
Transaction
Operations

THKUSER_VOTER_
MTAG_WVOTEREQDONE
sent [VoteReqDone
set to TKUSER WOTER
VOTEREQDOMNE_QK]

TXUSER_STATUS_MTAG_ABORTED or

TXUSER_STATUS_MTAG _COMMITTED or
TXUSER _STATUS MTAG INDOUBT received

Awaliting
Outcome é

Figure 49: CONNTYPE_TXUSER_VOTER Initiator States

3.5.1.6.1 Idle
This is the initial state. The following event is processed in this state:

= Registering as a Voter on a Specific Transaction (section 3.5.4.9)

3.5.1.6.2 Awaiting Creation Response
The following events are processed in this state:

= Receiving a TXUSER_VOTER_MTAG_CREATED (section 3.5.5.4.1.1) message

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

332 /475

Receiving a TXUSER_VOTER_MTAG_CREATE_TX_NOT_FOUND or
TXUSER_VOTER_MTAG_CREATE_TOO_LATE message (section 3.5.5.4.1.2)

Receiving a Connection Disconnected (section 3.5.5.4.1.7)

3.5.1.6.3 Active

The following events are processed in this state:

Receiving a TXUSER_VOTER_MTAG_VOTEREQ (section 3.5.5.4.1.3) message
Receiving a TXUSER_STATUS_MTAG_ABORTED (section 3.5.5.4.1.5) message

3.5.1.6.4 Performing Transaction Operations

The following event is processed in this state:

Voter Vote Request Completed (section 3.5.4.11)

3.5.1.6.5 Awaiting Outcome

The following events are processed in this state:

Receiving a TXUSER_STATUS_MTAG_COMMITTED (section 3.5.5.4.1.4) message
Receiving a TXUSER_STATUS_MTAG_ABORTED (section 3.5.5.4.1.5) message
Receiving a TXUSER_STATUS_MTAG_INDOUBT (section 3.5.5.4.1.6) message

Connection Disconnected (section 3.5.5.4.1.7)

3.5.1.6.6 Ended

This is the final state.

3.5.2 Timers

None.

3.5.3 Initialization

When a resource manager is initialized:

The Resource Manager.Identifier field MUST be set to a GUID that is obtained from an
implementation-specific source. This value MUST remain consistent across multiple software
restarts or transient failures. The resource manager SHOULD create the GUID as specified in

RFC4122].

The Transaction Manager Name field MUST be set to a value that is obtained from an
implementation-specific source. This value MUST remain consistent across multiple software
restarts or transient failures.

The Reenlistment Timeout field MUST be set to a value that is obtained from an
implementation-specific source.

The resource manager MUST register with its transaction manager, as specified in section
3.5.4.10.

333/475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

https://go.microsoft.com/fwlink/?LinkId=90460

3.5.4 Higher-Layer Triggered Events

The resource manager operation is driven by a set of higher-layer events. These events are
triggered by decisions that are made by the higher-layer business logic of the resource manager. The
motivations and details of this higher-layer business logic are specific to the implementation of the
resource manager and the software environment in which it executes.

The resource manager MUST be prepared to process the following events.

3.5.4.1 Canceling Enlistment as a Phase Zero Participant on a Specific Transaction
This event MUST be signaled by the higher-layer business logic with the following arguments:
= A connection object

If the higher-layer business logic cancels its enlistment as a Phase Zero participant on a specific
transaction, the resource manager MUST perform the following steps:

= Send a TXUSER_PHASEO_MTAG_UNENLIST (section 2.2.10.2.1.8) message using the connection.

= Set the connection state to Ended.

3.5.4.2 Enlisting as a Phase Zero Participant on a Specific Transaction
This event MUST be signaled by the higher-layer business logic with the following arguments:
= A transaction object

If the higher-layer business logic enlists as a Phase Zero participant on a specific transaction, the
resource manager MUST perform the following steps:

= If the transaction manager of the resource manager supports the CONNTYPE_TXUSER_PHASEO
connection type, as specified in section 2.2.1.1.3:

= Initiate a new CONNTYPE_TXUSER_PHASEO (section 2.2.10.2.1) connection to the transaction
manager, using the Transaction Manager Name field of the resource manager.

= Send a TXUSER_PHASEO_MTAG_CREATE (section 2.2.10.2.1.1) message using the
connection:

= Set the guidTx field to the Transaction Object.Identifier field of the transaction object.
= Set the Transaction field of the connection to the provided transaction object.
= Set the connection state to Awaiting Create Response.

= Otherwise, the resource manager MUST return a Failure to the higher-layer business logic.

3.5.4.3 Enlisting on a Specific Transaction
This event MUST be signaled by the higher-layer business logic with the following arguments:
= A transaction object.

If the higher-layer business logic decides to enlist on a specific transaction, the resource manager
MUST perform the following steps:

= Initiate a new CONNTYPE_TXUSER_ENLISTMENT (section 2.2.10.2.2) connection to the
transaction manager, using the Transaction Manager Name field of the resource manager.

334 /475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

= Assign the transaction object to the connection-specific data of the connection.
= Add the connection to the connection list of the transaction.

» Send a TXUSER_ENLISTMENT_MTAG_ENLIST (section 2.2.10.2.2.5) message using the
connection:

= Set the guidTX field to the Transaction Object.Identifier field of the transaction object.
= Set the guidRM field to the Resource Manager.Identifier field of the resource manager.
= Set the guidSession field to the Session Identifier field of the resource manager.

= Set the connection state to Awaiting Enlistment Response.

3.5.4.4 Enlistment Abort Request Completed
This event MUST be signaled by the higher-layer business logic with the following arguments:
= A connection object.

When the higher-layer business logic completes an enlistment Abort request, as specified in section
3.5.5.2.2.5 and 3.5.5.3.1.2, the resource manager MUST perform the following steps:

= If the connection type of the connection object is
CONNTYPE_TXUSER_ENLISTMENT (section 2.2.10.2.2):

= If the transaction object referenced by the connection object was added to the Resource
Manager.Durable Log:

= Remove the transaction object from the Resource Manager.Durable Log.

= Send a TXUSER_ENLISTMENT_MTAG_ABORTREQDONE (section 2.2.10.2.2.2) message using
the connection.

= Set the connection state to Ended.

= Otherwise, if the connection type of the connection object is
CONNTYPE_TXUSER_REENLIST (section 2.2.10.3.1):

= If the transaction object referenced by the connection object was added to the Resource
Manager.Durable Log:

= Remove the transaction object from the Resource Manager.Durable Log.
= Remove the connection from the reenlistment list of the resource manager.
= If the list is now empty:

- Signal the Reenlistment Complete (section 3.5.7.3) event on the resource manager.
= Set the connection state to Ended.

= Otherwise, ignore the event.

3.5.4.5 Enlistment Commit Request Completed
This event MUST be signaled by the higher-layer business logic with the following arguments:

= A connection object

335/475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

When the higher-layer business logic completes an enlistment Commit request as specified in section
3.5.5.2.2.4 and 3.5.5.3.1.1, the resource manager MUST perform the following steps:

] If the connection type of the connection object is
CONNTYPE_TXUSER_ENLISTMENT (section 2.2.10.2.2):

= Remove the transaction object referenced by the connection object from the Resource
Manager.Durable Log.

» Send a TXUSER_ENLISTMENT_MTAG_COMMITREQDONE (section 2.2.10.2.2.4) message using
the connection.

= Set the connection state to Ended.

= Otherwise, if the connection type of the connection object is
CONNTYPE_TXUSER_REENLIST (section 2.2.10.3.1):

= Remove the transaction object referenced by the connection object from the Resource
Manager.Durable Log.

= Remove the connection from the reenlistment list of the resource manager.
= If the list is now empty:

= Signal the Reenlistment Complete (section 3.5.7.3) event on the resource manager.
= Set the connection state to Ended.

= Otherwise, ignore the event.

3.5.4.6 Enlistment Prepare Request Completed
This event MUST be signaled by the higher-layer business logic with the following arguments:
= A CONNTYPE_TXUSER_ENLISTMENT (section 2.2.10.2.2) connection object.
= An outcome value. This value MUST be one of the following:
= Prepared
= Read Only
= Aborted

When the higher-layer business logic completes a Prepare request, as specified in section 3.5.5.2.2.3,
the resource manager MUST perform the following steps:

= If the request outcome is Prepared:

= Add the transaction object referenced by the connection object to the Resource
Manager.Durable Log.

= Send a TXUSER_ENLISTMENT_MTAG_PREPAREREQDONE (section 2.2.10.2.2.12) message
using the connection:

= Set the prepareReqDone field to TXUSER_ENLISTMENT_PREPAREREQDONE_OK.

= Set the guidReason field to the value provided by the higher-layer business logic, as
specified in section 2.2.10.2.2.12.

= Set the connection state to Awaiting Transaction Outcome.

336 /475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

= Otherwise, if the request outcome is Read Only:
= Send a TXUSER_ENLISTMENT_MTAG_PREPAREREQDONE message using the connection:
= Set the prepareReqDone field to TXUSER_ENLISTMENT_PREPAREREQDONE_READONLY.
= Set the connection state to Ended.
= Otherwise, if the request outcome is Aborted:
= Send a TXUSER_ENLISTMENT_MTAG_PREPAREREQDONE message using the connection:
= Set the prepareReqDone field to TXUSER_ENLISTMENT_PREPAREREQDONE_ABORT.

= Set the connection state to Ended.

3.5.4.7 Enlistment Single-Phase Commit Request Completed
This event MUST be signaled by the higher-layer business logic with the following arguments:
= A CONNTYPE_TXUSER_ENLISTMENT (section 2.2.10.2.2) connection object.
= An outcome value. This value MUST be one of the following:
= Read Only
= Prepared
= Committed
= Aborted

When the higher-layer business logic completes an Enlistment Single-Phase Commit request as
specified in Receiving a TXUSER_ENLISTMENT_MTAG_PREPAREREQ Message (section 3.5.5.2.2.3), the
resource manager MUST perform the following steps:

= If the request outcome is Read Only:

» Send a TXUSER ENLISTMENT MTAG PREPAREREQDONE message using the connection:

= Set the prepareReqDone field to TXUSER_ENLISTMENT_PREPAREREQDONE_READONLY.
= Set the connection state to Ended.
= Otherwise, if the request outcome is Prepared:

= Add the transaction object referenced by the connection object to the Resource
Manager.Durable Log.

= Send a TXUSER_ENLISTMENT_MTAG_PREPAREREQDONE message using the connection:
= Set the prepareReqDone field to TXUSER_ENLISTMENT_PREPAREREQDONE_OK.

= Set the connection state to Awaiting Transaction Outcome.

= Otherwise, if the request outcome is Committed:
= Send a TXUSER_ENLISTMENT_MTAG_PREPAREREQDONE message using the connection:

= Set the prepareReqDone field to
TXUSER_ENLISTMENT_PREPAREREQDONE_SINGLEPHASE_COMMIT.

337/ 475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

= Set the connection state to Ended.
= Otherwise, if the request outcome is Aborted:
= Send a TXUSER_ENLISTMENT_MTAG_PREPAREREQDONE message using the connection:
= Set the prepareReqDone field to TXUSER_ENLISTMENT_PREPAREREQDONE_ABORT.

= Set the connection state to Ended.

3.5.4.8 Phase Zero Request Completed
This event MUST be signaled by the higher-layer business logic with the following arguments:
= A connection object.
= An outcome value. This value MUST be one of the following:
= Read Only
= Aborted

When the higher-layer business logic completes a Phase Zero request, the resource manager MUST
perform the following steps:

= If the Phase Zero outcome is Read Only:

= Send a TXUSER PHASEQO MTAG PHASEOREQDONE message.
= Set the connection state to Ended.
= Otherwise, if the Phase Zero outcome is Aborted:

= Set the connection state to Ended.

3.5.4.9 Registering as a Voter on a Specific Transaction
This event MUST be signaled by the higher-layer business logic with the following arguments:
= A transaction object

If the higher-layer business logic decides to register as a voter on a specific transaction manager,
the resource manager MUST perform the following steps:

= Initiate a new CONNTYPE_TXUSER_VOTER (section 2.2.10.4.1) connection to the transaction
manager using the transaction manager Name field of the resource manager.

= Send a TXUSER_VOTER_MTAG_CREATE (section 2.2.10.4.1.4) message using the connection:
= Set the guidTX field to the Transaction Object.Identifier field of the transaction object.

= Set the connection state to Awaiting Creation Response.

3.5.4.10 Registering with Transaction Manager

If the higher-layer business logic wants to register with the transaction manager, the resource
manager MUST perform the following actions:

338 /475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

= The resource manager SHOULD set the Session Identifier field to a new GUID value as specified
in [REC4122]. Optionally, the resource manager MAY instead set the Session Identifier field to
NULL GUID.

= If the transaction manager's resource manager supports the
CONNTYPE_TXUSER_RESOURCEMANAGERINTERNAL connection type as specified in section
2.2.1.1.3:

= The resource manager MUST attempt to register with the transaction manager using
CONNTYPE TXUSER RESOURCEMANAGERINTERNAL.

= Otherwise:

= The resource manager MUST attempt to register with the transaction manager using
CONNTYPE TXUSER RESOURCEMANAGER.

3.5.4.10.1 Registering with Transaction Manager Using
CONNTYPE_TXUSER_RESOURCEMANAGER

The resource manager MUST perform the following actions:

= Initiate a new CONNTYPE TXUSER RESOURCEMANAGER connection using the Transaction
managder name field of the resource manager.

= Assign the new connection to the Resource Manager.Connection field of the resource manager.

» Send a TXUSER RESOURCEMANAGER MTAG CREATE message using the connection:

= Set the guidRM field to the Resource Manager.Identifier field of the resource manager.
= Set the guidSession field to the Session Identifier field of the resource manager.

= Set the connection state to Awaiting Create Response.

3.5.4.10.2 Registering with Transaction Manager Using
CONNTYPE_TXUSER_RESOURCEMANAGERINTERNAL

The resource manager MUST perform the following actions:

= Initiate a new CONNTYPE TXUSER RESOURCEMANAGERINTERNAL connection using the
transaction manager Name field of the resource manager.

= Assign the new connection to the Resource Manager.Connection field of the resource manager.

* Send a TXUSER RESOURCEMANAGER MTAG CREATE message using the connection:

= Set the guidRM field to the Resource Manager.Identifier field of the resource manager.
= Set the guidSession field to the Session Identifier field of the resource manager.

= Set the connection state to Awaiting Create Response.

3.5.4.11 Voter Vote Request Completed
This event MUST be signaled by the higher-layer business logic with the following arguments:
= A connection object.

= An outcome value. This value MUST be one of the following:

339 /475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

https://go.microsoft.com/fwlink/?LinkId=90460

= Prepared
= Read Only
= Aborted

When the higher-layer business logic completes a Voter Vote request, the resource manager MUST
perform the following steps:

= If the vote outcome is Prepared:

» Send a TXUSER VOTER MTAG VOTEREQDONE message using the connection:

= Set the VoteReqDone field to TXUSER_VOTER_VOTEREQDONE_OK.
= Set the connection state to Awaiting Outcome.
= Otherwise, if the vote outcome is Read Only:
» Send a TXUSER_VOTER_MTAG_VOTEREQDONE message using the connection:
= Set the VoteReqDone field to TXUSER_VOTER_VOTEREQDONE_OK_NONOTIFY.
= Set the connection state to Ended.
= Otherwise, if the vote outcome is Aborted:
= Send a TXUSER_VOTER_MTAG_VOTEREQDONE message using the connection:
= Set the VoteReqDone field to TXUSER_VOTER_VOTEREQDONE_ABORT.

= Set the connection state to Ended.
3.5.5 Processing Events and Sequencing Rules

3.5.5.1 Resource Manager Registration

3.5.5.1.1 CONNTYPE_TXUSER_RESOURCEMANAGER as Initiator

For all messages that are received in this connection type, the resource manager MUST process the
messages as specified in section 3.1. The resource manager MUST additionally follow the processing
rules as specified in the following sections.

3.5.5.1.1.1 Receiving a TXUSER_RESOURCEMANAGER_MTAG_DUPLICATE Message

When the resource manager receives a TXUSER RESOURCEMANAGER MTAG DUPLICATE message,
the resource manager MUST perform the following actions:

= If the connection state is Awaiting Create Response:
= Set the connection state to Ended.

= Return a failure result to the higher-layer business logic.

3.5.5.1.1.2 Receiving a TXUSER_RESOURCEMANAGER_MTAG_REQUEST_COMPLETE
Message

When the resource manager receives a TXUSER RESOURCEMANAGER REQUEST COMPLETE message,
the resource manager MUST perform the following actions:

340/ 475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

= If the connection state is Awaiting Create Response:
= Set the connection state to Recovering.
= Signal the Recover Transactions event on the resource manager.

= Otherwise, if the connection state is Awaiting Completion Confirmation:
= Set the connection state to Active.

= Return a success result to the higher-layer business logic.

3.5.5.1.1.3 Connection Disconnected

When a CONNTYPE_TXUSER_RESOURCEMANAGER (section 2.2.10.1.1) connection is disconnected,
the resource manager MUST perform the following actions:

= If the connection state is Active, Awaiting Create Response, Recovering, or Awaiting Completion
Confirmation:

= Set the connection state to Ended.

= Otherwise, the event MUST be processed as specified in section 3.1.8.3.

3.5.5.1.2 CONNTYPE_TXUSER_RESOURCEMANAGERINTERNAL as Initiator

For all messages received in this connection type, the resource manager MUST process the
messages as specified in section 3.1. The resource manager MUST additionally follow the processing
rules as specified in the following sections.

3.5.5.1.2.1 Receiving a TXUSER_RESOURCEMANAGER_MTAG_DUPLICATE or
TXUSER_RESOURCEMANAGER_MTAG_REQUEST_COMPLETE Message

When the resource manager receives either the TXUSER RESOURCEMANAGER MTAG DUPLICATE or
TXUSER RESOURCEMANAGER MTAG REQUEST COMPLETE message, it MUST follow the same
message-processing rules as the CONNTYPE TXUSER RESOURCEMANAGER connection type when it
acts as the initiator. See section 3.5.5.1.1 for more details.

3.5.5.1.2.2 Receiving a
TXUSER_RESOURCEMANAGERINTERNAL_MTAG_DUPLICATEDETECTED
Message

When the resource manager receives a
TXUSER RESOURCEMANAGERINTERNAL MTAG DUPLICATEDETECTED message, the resource
manager MUST perform the following actions:

= If the connection state is Recovering, Awaiting Completion Confirmation, or Active:

= Inform the higher-layer business logic that the transaction manager has detected a
duplicate resource manager registration.

3.5.5.1.2.3 Connection Disconnected

When a CONNTYPE_TXUSER_RESOURCEMANAGERINTERNAL (section 2.2.10.1.2) connection is
disconnected, the event MUST be processed as specified in section 3.1.8.3.

341 /475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

3.5.5.2 Transaction Coordination

3.5.5.2.1 CONNTYPE_TXUSER_PHASEO as Initiator

For all messages that are received in this connection type, the resource manager MUST process
the message as specified in section 3.1. The resource manager MUST additionally follow the
processing rules as specified in the following sections.

3.5.5.2.1.1 Receiving a TXUSER_PHASEO_MTAG_CREATED Message

When the resource manager receives a TXUSER PHASEO MTAG CREATED message, the resource
manager MUST perform the following actions:

= If the connection state is Awaiting Create Response:
= Set the connection state to Active.
= Return a success result to the higher-layer business logic.

= Add the connection to the connection list of the transaction object referenced by the
connection.

= Otherwise, the message MUST be processed as an invalid message as specified in section 3.1.6.

3.5.5.2.1.2 Receiving a TXUSER_PHASEO_MTAG_CREATE_TX_NOT_FOUND or
TXUSER_PHASEO_MTAG_CREATE_TOO_LATE Message

When the resource manager receives either the TXUSER PHASEO MTAG CREATE TOO LATE or
TXUSER PHASEO MTAG CREATE TX NOT FOUND message, the resource manager MUST perform the
following actions:

= If the connection state is Awaiting Create Response:
= Return a failure result to the higher-layer business logic.
= Set the connection state to Ended.

= Otherwise, the message MUST be processed as an invalid message as specified in section 3.1.6.

3.5.5.2.1.3 Receiving a TXUSER_PHASEO_MTAG_PHASEOREQ Message

When the resource manager receives a TXUSER PHASEO MTAG PHASEOREQ message, the resource
manager MUST perform the following actions:

= If the connection state is Active:
= Set the connection state to Processing Phase Zero Request.

= Send a Phase Zero request to the higher-layer business logic so that the resource manager
can receive the Phase Zero outcome from the higher-layer business logic via the Phase Zero
Request Completed (section 3.5.4.8) event.

= Otherwise, the message MUST be processed as an invalid message as specified in section 3.1.6.

3.5.5.2.1.4 Receiving a TXUSER_PHASEO_MTAG_PHASEOREQ_ABORT Message

When the resource manager receives a TXUSER PHASEO MTAG PHASEOREQ ABORT message, the
resource manager MUST perform the following actions:

= If the connection state is Active:

342 / 475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

= Send a Transaction Aborted notification to the higher-layer business logic.
= Set the connection state to Ended.

= Otherwise, the message MUST be processed as an invalid message as specified in section 3.1.6.

3.5.5.2.1.5 Connection Disconnected

When a CONNTYPE_TXUSER_PHASEO (section 2.2.10.2.1) connection is disconnected, the resource
manager MUST perform the following actions:

= If the connection state is Awaiting Create Response:
= Return a failure result to the higher-layer business logic.

= Otherwise, if the connection state is Active or Processing Phase Zero Request:
] Send a Transaction Aborted notification to the higher-layer business logic.

= Otherwise, the event MUST be processed as specified in section 3.1.8.3.

3.5.5.2.2 CONNTYPE_TXUSER_ENLISTMENT as Initiator

For all messages that are received in this connection type, the resource manager MUST process
the message as specified in section 3.1. The resource manager MUST additionally follow the
processing rules as specified in the following sections.

3.5.5.2.2.1 Receiving a TXUSER_ENLISTMENT_MTAG_ENLISTED Message

When the resource manager receives a TXUSER ENLISTMENT MTAG ENLISTED message, the
resource manager MUST perform the following actions:

= If the connection state is Awaiting Enlistment Response:
= Set the connection state to Active.
= Return a success result to the higher-layer business logic.

= Otherwise, the message MUST be processed as an invalid message as specified in section 3.1.6.

3.5.5.2.2.2 Receiving a TXUSER_ENLISTMENT_MTAG_ENLIST_TX_NOT_FOUND,
TXUSER_ENLISTMENT_MTAG_ENLIST_TOO_LATE,
TXUSER_ENLISTMENT_MTAG_ENLIST_LOG_FULL, or
TXUSER_ENLISTMENT_MTAG_ENLIST_TOO_MANY Message

When the resource manager receives a TXUSER ENLISTMENT MTAG ENLIST TX NOT FOUND,
TXUSER ENLISTMENT MTAG ENLIST TOO LATE, TXUSER ENLISTMENT MTAG ENLIST LOG FULL,
or TXUSER ENLISTMENT MTAG ENLIST TOO MANY message, the resource manager MUST perform
the following actions:

= If the connection state is Awaiting Enlistment Response:
= Return a failure result to the higher-layer business logic.
= Set the connection state to Ended.

= Otherwise, the message MUST be processed as an invalid message as specified in section 3.1.6.

3.5.5.2.2.3 Receiving a TXUSER_ENLISTMENT_MTAG_PREPAREREQ Message

343/ 475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

When the resource manager receives a TXUSER ENLISTMENT MTAG PREPAREREQ message, the
resource manager MUST perform the following actions:

. If the connection state is Active:
= If the fSinglePhase field of the message is nonzero:
= Set the connection state to Single-Phase Committing.
» Send a Single-Phase Commit request to the higher-layer business logic.
= Otherwise:
= Set the connection state to Preparing For Transaction Commit.
= Send a Prepare request to the higher-layer business logic.

= Otherwise, the message MUST be processed as an invalid message as specified in section 3.1.6.

3.5.5.2.2.4 Receiving a TXUSER_ENLISTMENT_MTAG_COMMITREQ Message

When the resource manager receives a TXUSER _ENLISTMENT MTAG COMMITREQ message, the
resource manager MUST perform the following actions:

= If the connection state is Awaiting Transaction Outcome:
= Set the connection state to Finalizing Commit Operations.
= Send a Commit Request to the higher-layer business logic.

= Otherwise, the message MUST be processed as an invalid message as specified in section 3.1.6.

3.5.5.2.2.5 Receiving a TXUSER_ENLISTMENT_MTAG_ABORTREQ Message

When the resource manager receives a TXUSER ENLISTMENT MTAG ABORTREQ message, the
resource manager MUST perform the following actions:

= If the connection state is Active:
= Send an Abort request to the higher-layer business logic.
= Set the connection state to Finalizing Abort Operations.
= Otherwise, if the connection state is Awaiting Transaction Outcome:

= Remove the transaction object referenced by the connection from the Resource
Manager.Durable Log.

= Send an Abort request to the higher-layer business logic.
= Set the connection state to Finalizing Abort Operations.

= Otherwise, the message MUST be processed as an invalid message as specified in section 3.1.6.

3.5.5.2.2.6 Connection Disconnected

When a CONNTYPE_TXUSER_ENLISTMENT (section 2.2.10.2.2) connection is disconnected, the
resource manager MUST perform the following actions:

= If the connection state is either Awaiting Enlistment Response, Active, or Preparing For
Transaction Commit:

344 /475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

= Send an Abort request to the higher-layer business logic.

= Otherwise, the event MUST be processed as specified in section 3.1.8.3.

3.5.5.3 Transaction Recovery

3.5.5.3.1 CONNTYPE_TXUSER_REENLIST as Initiator

For all messages that are received in this connection type, the resource manager MUST process
the message as specified in section 3.1. The resource manager MUST additionally follow the
processing rules as specified in the following sections.

3.5.5.3.1.1 Receiving a TXUSER_REENLIST_MTAG_REENLIST_COMMITTED Message

When the resource manager receives a TXUSER REENLIST MTAG REENLIST COMMITTED message,
the resource manager MUST perform the following actions:

= If the connection state is Awaiting Reenlist Response:

= Send a Commit request to the higher-layer business logic for the transaction object
referenced by the Transaction field of the receiving connection.

= Set the connection state to Ended.

= Otherwise, the message MUST be processed as an invalid message as specified in section 3.1.6.

3.5.5.3.1.2 Receiving a TXUSER_REENLIST_MTAG_REENLIST_ABORTED Message

When the resource manager receives a TXUSER REENLIST MTAG REENLIST ABORTED message, the
resource manager MUST perform the following actions:

= If the connection state is Awaiting Reenlist Response:
= Send an Abort request to the higher-layer business logic.
= Set the connection state to Ended.

= Otherwise, the message MUST be processed as an invalid message as specified in section 3.1.6.

3.5.5.3.1.3 Receiving a TXUSER_REENLIST_MTAG_REENLIST_TIMEOUT Message

When the resource manager receives a TXUSER REENLIST MTAG REENLIST TIMEOUT message, the
resource manager MUST perform the following actions:

= If the connection state is Awaiting Reenlist Response:

= Signal the Reenlistment Timeout event with the transaction object referenced by this
connection.

= Set the connection state to Ended.

= Otherwise, the message MUST be processed as an invalid message as specified in section 3.1.6.

3.5.5.3.1.4 Connection Disconnected

When a CONNTYPE_TXUSER_REENLIST (section 2.2.10.3.1) connection is disconnected, the resource
manager MUST perform the following actions:

= If the connection state is Awaiting Reenlistment Response:

345/ 475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

= Return a failure result to the higher-layer business logic.

= Otherwise, the event MUST be processed as specified in section 3.1.8.3.

3.5.5.4 Voting

3.5.5.4.1 CONNTYPE_TXUSER_VOTER as Initiator

For all messages that are received in this connection type, the resource manager MUST process
the message as specified in section 3.1. The resource manager MUST additionally follow the
processing rules as specified in the following sections.

3.5.5.4.1.1 Receiving a TXUSER_VOTER_MTAG_CREATED Message

When the resource manager receives a TXUSER VOTER MTAG CREATED message, the resource
manager MUST perform the following actions:

= If the connection state is Awaiting Creation Response:
= Return a success result to the higher-layer business logic.
= Set the connection state to Active.

= Otherwise, the message MUST be processed as an invalid message as specified in section 3.1.6.

3.5.5.4.1.2 Receiving a TXUSER_VOTER_MTAG_CREATE_TX_NOT_FOUND or
TXUSER_VOTER_MTAG_CREATE_TOO_LATE Message

When the resource manager receives either a TXUSER VOTER MTAG CREATE TX NOT FOUND or
TXUSER VOTER MTAG CREATE TOO LATE message, the resource manager MUST perform the
following actions:

= If the connection state is Awaiting Creation Response:
= Return a failure result to the higher-layer business logic.
= Set the connection state to Ended.

= Otherwise, the message MUST be processed as an invalid message as specified in section 3.1.6.

3.5.5.4.1.3 Receiving a TXUSER_VOTER_MTAG_VOTEREQ Message

When the resource manager receives a TXUSER VOTER MTAG VOTEREQ message, the resource
manager MUST perform the following actions:

= If the connection state is Active:
= Send a Vote request to the higher-layer business logic.
= Set the connection state to Performing Transaction Operations.

= Otherwise, the message MUST be processed as an invalid message as specified in section 3.1.6.

3.5.5.4.1.4 Receiving a TXUSER_STATUS_MTAG_COMMITTED Message

When the resource manager receives a TXUSER STATUS MTAG COMMITTED message, the resource
manager MUST perform the following actions:

= If the connection state is Awaiting Outcome:

346 / 475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

= Send a Transaction Committed notification to the higher-layer business logic.
= Set the connection state to Ended.

= Otherwise, the message MUST be processed as an invalid message as specified in section 3.1.6.

3.5.5.4.1.5 Receiving a TXUSER_STATUS_MTAG_ABORTED Message

When the resource manager receives a TXUSER STATUS MTAG ABORTED message, the resource
manager MUST perform the following actions:

= If the connection state is Active or Awaiting Outcome:
= Send a Transaction Aborted notification to the higher-layer business logic.
= Set the connection state to Ended.

= Otherwise, the message MUST be processed as an invalid message as specified in section 3.1.6.

3.5.5.4.1.6 Receiving a TXUSER_STATUS_MTAG_INDOUBT Message

When the resource manager receives a TXUSER STATUS MTAG INDOUBT message, the resource
manager MUST perform the following actions:

= If the connection state is Awaiting Outcome:
= Send a Transaction In Doubt notification to the higher-layer business logic.
= Set the connection state to Ended.

= Otherwise, the message MUST be processed as an invalid message as specified in section 3.1.6.

3.5.5.4.1.7 Connection Disconnected

When a CONNTYPE_TXUSER_VOTER (section 2.2.10.4.1) connection is disconnected, the resource
manager MUST perform the following actions:

= If the connection state is Awaiting Creation Response:
= Return a failure result to the higher-layer business logic.
= Otherwise, if the connection state is Awaiting Outcome:
» Send a Transaction In Doubt notification to the higher-layer business logic.

= Otherwise, the event MUST be processed as specified in section 3.1.8.3.

3.5.6 Timer Events

No timer events.

3.5.7 Other Local Events

The resource manager MUST be prepared to process the local events that appear in this section.

3.5.7.1 Recover Transaction

The Recover Transaction event MUST be signaled with the following arguments:

347/ 475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

. A transaction object.
If the Recover Transaction event is signaled, the resource manager MUST perform the following steps:

= Initiate a new CONNTYPE_TXUSER_REENLIST (section 2.2.10.3.1) connection to the
transaction manager, using the Transaction Manager Name field of the resource manager.

= Set the Transaction field of the connection object to the provided transaction object.
*= Add the connection to the reenlistment list of the resource manager.
= Add the connection to the connection list of the transaction object.

» Send a TXUSER_REENLIST_MTAG_REENLIST (section 2.2.10.3.1.1) message using the
connection:

= Set the guidTx field to the Transaction Object.Identifier field of the transaction.
= Set the ulTimeout field to the Reenlistment Timeout field of the resource manager.
= Set the guidRm field to the Resource Manager.Identifier field of the resource manager.

= Set the connection state to Awaiting Reenlist Response.

3.5.7.2 Recover Transactions

If the Recover Transactions event is signaled, the resource manager MUST perform the following
steps:

= If the Resource Manager.Durable Log of the resource manager is empty:
= Signal the Reenlistment Complete (section 3.5.7.3) event on the resource manager.
= Otherwise, for each transaction object in the Resource Manager.Durable Log:

= Signal the Recover Transaction (section 3.5.7.1) event on the resource manager with the
transaction object.

3.5.7.3 Reenlistment Complete

If the Reenlistment Complete event is signaled, the resource manager MUST perform the following
actions:

= Send a TXUSER RESOURCEMANAGER MTAG REENLISTMENTCOMPLETE message using the
connection that is referenced by the Resource Manager.Connection field of the resource
manager.

= Set the connection state to Awaiting Completion Confirmation.

3.5.7.4 Transaction Manager Down

When the Transaction Manager Down event is signaled, the resource manager MUST perform the
following steps:

= Inform the higher-layer business logic that the transaction manager has disconnected.

= The higher-layer business requests that the resource manager reregister with the transaction
manager. The timing of the request is implementation-specific.

348 /475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

3.5.7.5 Reenlistment Timeout
The Reenlistment Timeout event MUST be signaled with the following arguments:
= A transaction object.

When the Reenlistment Timeout event is signaled, the resource manager MUST perform the following
steps:

= Inform the higher-layer business logic that the reenlistment has timed out for the transaction
object.

= The higher-layer business MUST request that the resource manager reregister with the
transaction manager. The timing of the request is implementation-specific.

3.6 Transaction Manager Communicating with Resource Manager Facet Details

3.6.1 Abstract Data Model

This section describes a conceptual model of possible data organization that an implementation
maintains to participate in this protocol. The described organization is provided to facilitate the
explanation of how the protocol behaves. This document does not mandate that implementations
adhere to this model if their external behavior is consistent with the behavior that is described in this
document.

Note that the abstract data model can be implemented in a variety of ways. This protocol does not
prescribe or advocate any specific implementation technique.

The transaction manager communicating with a resource manager facet MUST maintain all the
data elements as specified in sections 3.1.1 and 3.2.1.

The transaction manager communicating with a resource manager facet MUST additionally maintain
the following data elements:

= Active Resource Manager Table: A table of entries to resource manager objects, keyed by
resource manager identifier.

= Failed to Notify List: A list of Enlistment objects representing remote resource managers that
have not yet acknowledged the Commit outcome of a transaction.

A resource manager object MUST contain the following data structures:
= Resource Manager Object.Identifier: Specifies the resource manager identifier.
= Session Identifier: A GUID that specifies the resource manager session identifier.

= Resource Manager Object.Connection: The
CONNTYPE_TXUSER_RESOURCEMANAGERINTERNAL (section 2.2.10.1.2) or
CONNTYPE_TXUSER_RESOURCEMANAGER (section 2.2.10.1.1) connection object that is
associated with the resource manager.

Enlistment objects that are created by the transaction manager communicating with a resource
manager facet MUST provide the following properties as specified in section 3.1.1:

= Name: The resource manager identifier field of the Enlistment object, formatted as a string as
specified in [C706] Appendix A.

= Enlistment Object.Identifier: An empty string.

349 /475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

https://go.microsoft.com/fwlink/?LinkId=89824

The transaction manager communicating with a resource manager MUST provide the states as
specified in the following sections for its supported connection types. Section 2.2.1.1.3 defines the
connection types that a transaction manager communicating with a resource manager MUST provide
for each supported protocol version.

3.6.1.1 CONNTYPE_TXUSER_RESOURCEMANAGER Acceptor States

The transaction manager communicating with a resource manager MUST act as an acceptor for

the CONNTYPE_TXUSER_RESOURCEMANAGER (section 2.2.10.1.1) connection type. In this role, the
transaction manager communicating with a resource manager MUST provide support for the following
states:

= Idle (section 3.6.1.1.1)

= Creating (section 3.6.1.1.2)

= Reenlisting (section 3.6.1.1.3)
= Active (section 3.6.1.1.4)

» Ended (section 3.6.1.1.5)

The following figure shows the relationship between the
CONNTYPE_TXUSER_RESOURCEMANAGER (section 2.2.10.1.1) acceptor states.

THXUSER_
RESOURCEMAMAGER
MTAG_CREATE received
Ignores all TXUSER_ TXUSER_
RESOURCEMANAGER_MTAG_ RESOURCEMANAGER _
REENLISTMENTCOMPLETE MTAG_DUPLICATE
messages after the first sent
Creating
Connection
\ Failed
\\ THUSER RESOURCEMAMNAGER
5 MTAG_REQUEST _COMPLETE
N sent
THUSER_
RESOURCEMAMNAGER MTAG
REEMLISTMENTCOMPLETE
received
= Connection Disconnected
Active Reenlisting
' m
TXUSER_
RESCOURCEMAMAGER,

MTAG_REQUEST_
COMPLETE sent

®

350/ 475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

Figure 50: CONNTYPE_TXUSER_RESOURCEMANAGER acceptor states

3.6.1.1.1 Idle
The Idle state is the initial state. The following event is processed in this state:

= Receiving a TXUSER_RESOURCEMANAGER_MTAG_CREATE Message (section 3.6.5.1.1.1)

3.6.1.1.2 Creating
The following event is processed in the Creating state:

= Create Resource Manager (section 3.6.7.9)

3.6.1.1.3 Reenlisting
The following events are processed in the Reenlisting state:

= Receiving a TXUSER_RESOURCEMANAGER_MTAG_REENLISTMENTCOMPLETE
Message (section 3.6.5.1.1.2)

» Connection Disconnected (section 3.6.5.1.1.3)

3.6.1.1.4 Active
The following event is processed in the Active state:

= Reenlist Complete (section 3.6.7.15)

3.6.1.1.5 Ended

The final state is the Ended state.

3.6.1.2 CONNTYPE_TXUSER_RESOURCEMANAGERINTERNAL Acceptor States

The transaction manager communicating with a resource manager MUST act as an acceptor for
the CONNTYPE_TXUSER_RESOURCEMANAGERINTERNAL (section 2.2.10.1.2) connection type. In
this role, the transaction manager communicating with a resource manager MUST provide support for
the following states:

= Idle (section 3.6.1.2.1)

= Creating (section 3.6.1.2.2)

= Reenlisting (section 3.6.1.2.3)
= Active (section 3.6.1.2.4)

» Ended (section 3.6.1.2.5)

The following figure shows the relationship between the
CONNTYPE_TXUSER_RESOURCEMANAGERINTERNAL (section 2.2.10.1.2) acceptor states.

351 /475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

. Idle

Ignores all TXKUSER TXUSER.
RESOURCEMAMNAGER MTAG RESOURCEMANAGER_
REEMNLISTMENTCOMPLETE MTAG_CREATE received

messages after the first

i

TXUSER I'.I
RESOURCEMAMNAGERINTERMAL \
MTAG_DUPLICATEDETECTED

sent

TXUSER_RESOURCEMANAGER_
MTAG_DUPLICATE sent

Creating

1
\
| [
V' THUSER_RESOURCEMAMAGER_
|\ MTAG_REQUEST COMPLETE Cﬂ?giﬁlm
\ sent

\
THUSER_RESOURCEMAMNAGER
MTAG REENLISTMENTCOMPLETE
received Connection

disconnected
TXUSER_ Reenlisting -
RESOURCEMANAGER
MTAG_REQUEST_ "y |
COMPLETE sent TAUSER

RESOURCEMANAGERINTERMAL_
MTAG_DUPLICATEDETECTED

sent

Figure 51: CONNTYPE_TXUSER_RESOURCEMANAGERINTERNAL acceptor states

3.6.1.2.1 Idle
This is the initial state. The following event is processed in this state:

= Receiving a TXUSER_RESOURCEMANAGER_MTAG_CREATE Message (section 3.6.5.1.2.1)

3.6.1.2.2 Creating
The following event is processed in this state:

= Create Resource Manager (section 3.6.7.9)

3.6.1.2.3 Reenlisting
The following events are processed in this state:

= Receiving a TXUSER_RESOURCEMANAGER_MTAG_REENLISTMENTCOMPLETE
Message (section 3.6.5.1.2.2)

= Create Resource Manager (section 3.6.7.9)

= Connection Disconnected (section 3.6.5.1.2.3)

3.6.1.2.4 Active

The following events are processed in this state:

352 /475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

Reenlist Complete (section 3.6.7.15)

Create Resource Manager (section 3.6.7.9)

3.6.1.2.5 Ended

This is the final state.

3.6.1.3 CONNTYPE_TXUSER_PHASEO Acceptor States

The transaction manager communicating with a resource manager MUST act as an acceptor for
the CONNTYPE_TXUSER_PHASEO (section 2.2.10.2.1) connection type. In this role, the transaction
manager communicating with a resource manager MUST provide support for the following states:

Idle (section 3.6.1.3.1)

Awaiting Create Response (section 3.6.1.3.2)
Active (section 3.6.1.3.3)

Awaiting Phase Zero Response (section 3.6.1.3.4)

Ended (section 3.6.1.3.5)

The following figure shows the relationship between the
CONNTYPE_TXUSER_PHASEOQ (section 2.2.10.2.1) acceptor states.

353 /475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

THUSER_PHASEQ_ TXUSER_PHASEQ_MTAG
MTAG_CREATE received CREATE_TX_NOT_FOUND or
TXUSER_PHASED_MTAG_
CREATE TOO_LATE sent

Awaiting
Create
Response

THUSER PHASED
MTAG_CREATED sent

Enlistrment
Failed
Awaiting THUSER_PHASED
Phase Zero AG_PHASEOREQ Active TAUSER_PHASED_
Response sent MTAG_UMNEMLIST received

THUSER_PHASED MTAG

PHASEOREQ ABORT
Client drops sent
connection
THUSER_PHASEQ_
MTAG_PHASEQREQ
DOMNE
recaived

THUSER_PHASED_
MTAG_UNENLIST

received
Rollback,/Transaction
Aborted
Phase O
Complete
Ended

®

Figure 52: CONNTYPE_TXUSER_PHASEO acceptor states

3.6.1.3.1 Idle
This is the initial state. The following event us processed in this state:

= Receiving a TXUSER_PHASEO_MTAG_CREATE Message (section 3.6.5.2.1.1)

3.6.1.3.2 Awaiting Create Response
The following events are processed in this state:
» Create Phase Zero Enlistment Success (section 3.6.7.8)

= Create Phase Zero Enlistment Failure (section 3.6.7.7)

354 /475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

3.6.1.3.3 Active

The following events are processed in this state:
= Begin Phase Zero (section 3.6.7.4)

= Phase Zero Aborted (section 3.6.7.14)

= Receiving a TXUSER_PHASEO_MTAG_UNENLIST Message (section 3.6.5.2.1.3)

3.6.1.3.4 Awaiting Phase Zero Response

The following events are processed in this state:

= Receiving a TXUSER_PHASEO_MTAG_PHASEOREQDONE Message (section 3.6.5.2.1.2)
= Receiving a TXUSER_PHASEO_MTAG_UNENLIST Message (section 3.6.5.2.1.3)

3.6.1.3.5 Ended

This is the final state.

3.6.1.4 CONNTYPE_TXUSER_ENLISTMENT Acceptor States

The transaction manager communicating with a resource manager MUST act as an acceptor for
the CONNTYPE_TXUSER_ENLISTMENT (section 2.2.10.2.2) connection type. In this role, the
transaction manager communicating with a resource manager MUST provide support for the following
states:

= Idle (section 3.6.1.4.1)

» Processing Enlistment Request (section 3.6.1.4.2)

= Active (section 3.6.1.4.3)

= Awaiting Single Phase Commit Response (section 3.6.1.4.4)
= Awaiting Prepare Response (section 3.6.1.4.5)

= Awaiting Prepare Response Aborted (section 3.6.1.4.6)

= Prepared (section 3.6.1.4.7)

= Awaiting Commit Response (section 3.6.1.4.8)

= Awaiting Abort Response (section 3.6.1.4.9)

= Ended (section 3.6.1.4.10)

The following figure shows the relationship between the
CONNTYPE_TXUSER_ENLISTMENT (section 2.2.10.2.2) acceptor states.

355/475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

Idle

Processing
Enlistment

TXUSER_ENLISTMENT_ Request TXUSER_ENLISTMENT MTAG
MT‘:‘S:EFJLZIST ENLIST T¥ NOT FOUND or
THUSER_ENLISTMENT _MTAG_ v
ENLIST_TOO_LATE or .
TXUSER_ENLISTMENT TXUSER_ENLISTMENT_MTAG_

MTAG_EMLISTED sent

EMLIST LOG_FULL or
THUSER ENLISTMENT MTAG
EMLIST_TOO_MANY sent

THUSER_ENLISTMENT
MTAG PREPAREREQ sent
fSinglePhase = nonzero

Awaiting Single
Phase
Commit Response

THUSER_ENLISTMENT _

received,
prepareReqDone =
THUSER_ENLISTMENT _
PREPAREREQDONE_
READOMLY (2)

THUSER_ENLISTMENT
MTAG_PREPAREREQDOME
received.

prepareReglone =
TXUSER EMLISTMENT
PREPAREREQDONE_OK {0}

Active

—

THUSER_EMLISTMEMNT _
MTAG_PREPAREREQ sent
fsinglePhase = zero

Awaiting

MTAG_PREPAREREQDONE MTAG_PREPAREREQDONE

Prepare
Response

TXUSER_ENLISTMENT

received, Awaiting
prepareReqDone = Prepare

THUSER_EMLISTMENT_ Response
PREFPAREREQDONE_ Aborted

READOMLY (2)

TXUSER_EMLISTMENT

MTAG_PREPAREREQDOME

received.

prepareRegDone =
TXUSER. EMLISTMEMNT

PREPAREREQDONE_OK (0}

Transaction
Aborted

THUSER_
EMLISTMENT _
MTAG ABORTREQ

THUSER_ENLISTMENT MTAG PREPAREREQDOME
received. prepareReqDone = TXUSER_ENLISTMENT _
PREPAREREQDONE_SINGLEPHASE _COMMIT (3)

THUSER ENLISTMENT MTAG PREPAREREQDOME
received. preparefeqDone =TXUSER_EMLISTMENT _

sent

THXUSER_ENLISTMENT
MTAG PREFAREREQDOME
received. prepareReqDone =

THUSER_EMLISTMENT _

PREPAREREQDONE_ABORT (1)

PREPAREREQDOME ABORT (1)

Figure 53: CONNTYPE_TXUSER_ENLISTMENT acceptor states (processing enlistment

request)

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol

Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

356 /475

TXUSER EMLISTMENT
MTAG_PREPAREREQDONE | & |
received. prepareReqDone =

TXUSER_EMLISTMEMT_
PREFAREREQDONE_OK (0)

3
I THUSER_EMLISTMENT_
MTAG PREFAREREQDOME
received. prepareRegDone =
TXUSER_EMLISTMENT _

PREPAREREQDONE OK (0} TXUSER_

EMLISTMENT _MTAG_
ABORTRE(Q sent

TXUSER_ENLISTMENT
MTAG_COMMITREQ sent
THXUSER_ENLISTMENT_ Awaiting
MTAG_PREPAREREQDONE Commit
received. prepareReqDoneg = Response TXUSER ENLISTMENT
T’;‘éﬁﬁiﬁgﬁggﬁf— MTAG._PREPAREREQDONE
received. prepareReqDone =
SINGLEPHASE COMMIT (3) TXUSER ENLISTMENT
1 _ _
. TXUSER_ PREPAREREQDONE_ABORT (1)
EMLISTMEMT MTAG
COMMITREQDONE
THUSER_EMLISTMENT_ received
MTAG_PREPAREREQDONE
received. prepareReqDone =

THXUSER_EMLISTMENT _
PREPAREREQDOME ABORT (1) /_Yﬁ_._:
Ended TXUSER_ENLISTMENT_ Awaiting
TAG ABORTREQDOMNE Abort
\ received Response

Y

Y

THUSER_EMLISTMENT _MTAG_

ENLIST TX_NOT _FOUND
MTAG_PREPAREREQDONE TXU 531 EN I__IS$MTENI;I)'U MTAG “
received. ENLIST TOO LATE or

prepareReqDane = TXUSER_ENLISTMENT_MTAG
TXUISER_ENLTSTMENT_ ENLIST LOG_FULLor

PRE@&%%“;&D{DE’;E TXUSER_ENLISTMENT MTAG
EMLIST_TOO_ MANY sent

THXUSER _EMLISTMEMNT

Figure 54: CONNTYPE_TXUSER_ENLISTMENT acceptor states (active)

3.6.1.4.1 Idle

This is the initial state. The following event is processed in this state:

» Receiving a TXUSER_ENLISTMENT_MTAG_ENLIST Message (section 3.6.5.2.2.1)
= Begin Rollback (section 3.6.7.5)

3.6.1.4.2 Processing Enlistment Request

The following events are processed in this state:

» Create Subordinate Enlistment Success (section 3.6.7.11)

= Create Subordinate Enlistment Failure (section 3.6.7.10)

3.6.1.4.3 Active

357 /475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

The following events are processed in this state:
*= Begin Phase One (section 3.6.7.3)

= Begin Rollback (section 3.6.7.5)

3.6.1.4.4 Awaiting Single-Phase Commit Response
The following event is processed in this state:

= Receiving a TXUSER_ENLISTMENT_MTAG_PREPAREREQDONE Message (section 3.6.5.2.2.2)

3.6.1.4.5 Awaiting Prepare Response
The following events are processed in this state:
= Receiving a TXUSER_ENLISTMENT_MTAG_PREPAREREQDONE Message (section 3.6.5.2.2.2)

= Begin Rollback (section 3.6.7.5)

3.6.1.4.6 Awaiting Prepare Response Aborted
The following event is processed in this state:

= Receiving a TXUSER_ENLISTMENT_MTAG_PREPAREREQDONE Message (section 3.6.5.2.2.2)

3.6.1.4.7 Prepared

The following events are processed in this state:
= Begin Commit (section 3.6.7.1)

= Begin Rollback (section 3.6.7.5)

3.6.1.4.8 Awaiting Commit Response
The following event is processed in this state:

» Receiving a TXUSER_ENLISTMENT_MTAG_COMMITREQDONE Message (section 3.6.5.2.2.3)

3.6.1.4.9 Awaiting Abort Response
The following event is processed in this state:

= Receiving a TXUSER_ENLISTMENT_MTAG_ABORTREQDONE Message (section 3.6.5.2.2.4)

3.6.1.4.10 Ended

This is the final state.

3.6.1.5 CONNTYPE_TXUSER_REENLIST Acceptor States

The transaction manager communicating with a resource manager MUST act as an acceptor for
the CONNTYPE_TXUSER_REENLIST (section 2.2.10.3.1) connection type. In this role, the transaction
manager communicating with a resource manager MUST provide support for the following states:

= Idle (section 3.6.1.5.1)

*= Processing Reenlist Request (section 3.6.1.5.2)

358 /475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

= Ended (section 3.6.1.5.3)

The following figure shows the relationship between the
CONNTYPE_TXUSER_REENLIST (section 2.2.10.3.1) acceptor states.

THXLUSER_REEMLIST _
MTai REEMLIST received

THUSER REEMLIST

MTAG_REENLIST_COMMITTED or
TXUSER_REEMNLIST_

MTAG_REEMLIST_ABORTED

THUSER_REEMLIST _
MTAG_REENLIST_TIMEQUT

sent Frocessing sant
Reenlist
| Request]
Transaction Transaction
Qutcome Cutcome
Determined Undetermined

I |

@

Figure 55: CONNTYPE_TXUSER_REENLIST acceptor states

3.6.1.5.1 Idle
This is the initial state. The following event is processed in this state:

= Receiving a TXUSER_REENLIST_MTAG_REENLIST Message (section 3.6.5.3.1.1)

3.6.1.5.2 Processing Reenlist Request
The following events are processed in this state:
= Begin Commit (section 3.6.7.1)

= Begin Rollback (section 3.6.7.5)

359 /475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

= Reenlist Timeout Timer (section 3.6.6.1)

3.6.1.5.3 Ended

This is the final state.

3.6.1.6 CONNTYPE_TXUSER_VOTER Acceptor States

The transaction manager communicating with a resource manager MUST act as an acceptor for
the CONNTYPE_TXUSER_VOTER (section 2.2.10.4.1) connection type. In this role, the transaction
manager communicating with a resource manager MUST provide support for the following states:

= Idle (section 3.6.1.6.1)

»= Create Voter (section 3.6.1.6.2)

= Active (section 3.6.1.6.3)

= Awaiting Voter Response (section 3.6.1.6.4)
= Awaiting Outcome (section 3.6.1.6.5)

= Ended (section 3.6.1.6.6)

The following figure shows the relationship between the
CONNTYPE_TXUSER_VOTER (section 2.2.10.4.1) acceptor states.

360/ 475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

TXUSER_VOTER_
MTAG CREATE received

TXUSER_VOTER_MTAG_CREATE_TX_NOT_FOUND or
TXUSER_VOTER_MTAG_CREATE_TOO_LATE sent

Create Voter

U

TXUSER_VOTER
MTAG CREATED
sent

TXUSER_VOTER_MTAG_ABORTED =sent

Active er

U

led

TXUSER_WOTER_

MTAG WVOTEREQ
sent

TXUSER_VOTER_MTAG_VOTEREQDONE received [VoteReqDone
set to TXUSER_VOTER_VOTEREQDONE_OK_MNONOTIFY

Awaiting or TKUSER_VOTER VOTEREQDOMNE ABORT)
Voter

Response

TXUSER_WOTER_
MTAG _WOTEREQDOME
Received [VoteReqDone
set to TXUSER VOTER
VOTEREQDONE_DK]

TXUSER_VOTER_MTAG_ABORTED or

TXUSER_VOTER_MTAG_COMMITTED or
TXUSER VOTER MTAG INDOUBT sent

Awalting
Qutcome é

Figure 56: CONNTYPE_TXUSER_VOTER acceptor states

3.6.1.6.1 Idle
This is the initial state. The following event is processed in this state:

»= Receiving a TXUSER_VOTER_MTAG_CREATE Message (section 3.6.5.4.1.1)

3.6.1.6.2 Create Voter
The following events are processed in this state:
= Create Voter Enlistment Success (section 3.6.7.13)

= Create Voter Enlistment Failure (section 3.6.7.12)

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

361 /475

3.6.1.6.3 Active
The following events are processed in this state:
= Begin Voting (section 3.6.7.6)

= Begin Rollback (section 3.6.7.5)

3.6.1.6.4 Awaiting Voter Response
The following event is processed in this state:

= Receiving a TXUSER_VOTER_MTAG_VOTERREQDONE Message (section 3.6.5.4.1.2)

3.6.1.6.5 Awaiting Outcome

The following events are processed in this state:
= Begin Commit (section 3.6.7.1)

= Begin Rollback (section 3.6.7.5)

= Begin In Doubt (section 3.6.7.2)

3.6.1.6.6 Ended

This is the final state.

3.6.2 Timers

The transaction manager communicating with a resource manager facet MUST provide the timer
that is shown in the next section.

3.6.2.1 Reenlist Time-Out Timer

The timer MUST be set when the transaction manager communicating with a resource manager
facet receives a TXUSER_REENLIST_MTAG_REENLIST (section 2.2.10.3.1.1) message on a
CONNTYPE_TXUSER_REENLIST (section 2.2.10.3.1) connection. The timer MUST be canceled when
the CONNTYPE_TXUSER_REENLIST connection is disconnected.

The timer has no default value. The initial value of the timer MUST be provided in the
TXUSER_REENLIST_MTAG_REENLIST message. The minimum value of the timer MUST be zero, which
means that the timer never generates a timer event. In this case, the Reenlist Time-Out Timer

Event (section 3.6.6.1) is never signaled, and the timeout reply message triggered by this event is
never sent.

When the timer is initialized, the transaction manager communicating with a resource manager facet
MUST provide an Enlistment object to associate with the timer. When the timer expires, the same
Enlistment object MUST be provided with the timer notification. The transaction manager
communicating with a resource manager facet MUST provide a distinct Reenlist Timeout timer instance
for each CONNTYPE_TXUSER_REENLIST connection.

3.6.3 Initialization

When the transaction manager communicating with a resource manager facet is initialized:

362 /475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

* The transaction manager communicating with a resource manager facet MUST examine the
following security flags on the Core Transaction Manager Facet (section 1.3.3.3.1) and perform the
following actions:

= If either the Allow Network Access flag or the Allow Remote Clients flag is set to false:

= For the following connection types, the transaction manager communicating with a
resource manager facet MUST refuse to accept incoming connections from remote
machines as specified in [MS-CMP] section 3.1.5.5 with the rejection Reason set to
0x80070005.

= CONNTYPE_TXUSER_ENLISTMENT (section 2.2.10.2.2)

= CONNTYPE_TXUSER_RESOURCEMANAGER (section 2.2.10.1.1)

= CONNTYPE_TXUSER_RESOURCEMANAGERINTERNAL (section 2.2.10.1.2)
= CONNTYPE_TXUSER_REENLIST (section 2.2.10.3.1)

= CONNTYPE_TXUSER_VOTER (section 2.2.10.4.1)

= CONNTYPE_TXUSER_PHASEO (section 2.2.10.2.1)

All data elements maintained by the transaction manager communicating with a resource manager
facet are initialized to an empty value unless stated otherwise in this section or in the initialization
sections of the facets the transaction manager communicating with a resource manager facet extends,
as specified in section 3.6.1.

3.6.4 Higher-Layer Triggered Events

None.
3.6.5 Processing Events and Sequencing Rules

3.6.5.1 Resource Manager Registration

3.6.5.1.1 CONNTYPE_TXUSER_RESOURCEMANAGER as Acceptor

For all messages that are received in this connection type, the transaction manager
communicating with a resource manager facet MUST process the message as specified in section
3.1. The transaction manager communicating with a resource manager facet MUST additionally follow
the processing rules as specified in the following sections.

3.6.5.1.1.1 Receiving a TXUSER_RESOURCEMANAGER_MTAG_CREATE Message

When the transaction manager communicating with a resource manager facet receives a
TXUSER_RESOURCEMANAGER_MTAG_CREATE (section 2.2.10.1.1.1) message, the transaction
manager communicating with a resource manager facet MUST perform the following actions:

= If the connection state is Idle:
= Set the connection state to Creating.
= Create a resource manager object using the following values:
= The guidRM field from the message as the resource manager identifier.

= The guidSession field from the message as the session identifier of the resource
manager.

363 /475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

%5bMS-CMP%5d.pdf#Section_1970a8a0799d4308b9274e4ea23dc225

= The current connection.
= Assign the resource manager object to the Connection-Specific Data field of the connection.

= Signal the Create Resource Manager (section 3.6.7.9) event on the transaction manager
communicating with a resource manager facet with the resource manager object.

= Otherwise, the message MUST be processed as an invalid message as specified in section 3.1.6.

3.6.5.1.1.2 Receiving a
TXUSER_RESOURCEMANAGER_MTAG_REENLISTMENTCOMPLETE Message

When the transaction manager communicating with a resource manager facet receives a
TXUSER_RESOURCEMANAGER_MTAG_REENLISTMENTCOMPLETE (section 2.2.10.1.1.3) message, the
transaction manager communicating with a resource manager MUST perform the following actions:

= If the connection state is Reenlisting:
= Set the connection state to Active.

= Signal the Reenlist Complete (section 3.6.7.15) event on the transaction manager
communicating with a resource manager facet with the resource manager object that is
referenced by the Connection-Specific Data field of the connection.

= Otherwise, the message MUST be processed as an invalid message as specified in section 3.1.6.

3.6.5.1.1.3 Connection Disconnected

When a CONNTYPE_TXUSER_RESOURCEMANAGER (section 2.2.10.1.1) connection is disconnected,
the transaction manager communicating with a resource manager facet MUST:

= Set the connection state to Ended.

= Signal the Resource Manager Down (section 3.6.7.16) event on the transaction manager
communicating with a resource manager facet with the resource manager object referenced by the
Connection-Specific Data field of the connection.

3.6.5.1.2 CONNTYPE_TXUSER_RESOURCEMANAGERINTERNAL as Acceptor

For all messages received in this connection type, the transaction manager communicating with a
resource manager facet MUST process the message as specified in section 3.1. The transaction
manager communicating with a resource manager facet MUST additionally follow the processing rules
as specified in the following sections.

3.6.5.1.2.1 Receiving a TXUSER_RESOURCEMANAGER_MTAG_CREATE Message

When the transaction manager communicating with a resource manager facet receives a
TXUSER RESOURCEMANAGER MTAG CREATE message, the transaction manager communicating with
a resource manager facet MUST perform the following actions:

= If the connection state is Idle:
= Set the connection state to Creating.
= Create a resource manager object using the following values:
= The guidRM field from the message as the resource manager identifier.

= The guidSession field from the message as the session identifier of the resource
manager.

364 /475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

= This connection.
= Assign the resource manager object to the Connection-Specific Data field of the connection.

= Signal the Create Resource Manager (section 3.6.7.9) event on the transaction manager
communicating with a resource manager facet with the resource manager object.

= Otherwise, the message MUST be processed as an invalid message as specified in section 3.1.6.

3.6.5.1.2.2 Receiving a
TXUSER_RESOURCEMANAGER_MTAG_REENLISTMENTCOMPLETE Message

When the transaction manager communicating with a resource manager facet receives a
TXUSER_RESOURCEMANAGER_MTAG_REENLISTMENTCOMPLETE (section 2.2.10.1.1.3) message, the
transaction manager communicating with a resource manager facet MUST perform the following
actions:

= If the connection state is Reenlisting:
= Set the connection state to Active.

= Signal the Reenlist Complete (section 3.6.7.15) event on the transaction manager
communicating with a resource manager facet with the resource manager object that is
referenced by the Connection-Specific Data field of the connection.

= Otherwise, the message MUST be processed as an invalid message as specified in section 3.1.6.

3.6.5.1.2.3 Connection Disconnected

When a CONNTYPE_TXUSER_RESOURCEMANAGERINTERNAL (section 2.2.10.1.2)connection is
disconnected, the transaction manager communicating with a resource manager facet MUST:

= Set the connection state to Ended.

= Signal the Resource Manager Down (section 3.6.7.16) event on the transaction manager
communicating with a resource manager facet with the resource manager object referenced by the
Connection-Specific Data field of the connection.

3.6.5.2 Transaction Coordination

3.6.5.2.1 CONNTYPE_TXUSER_PHASEO as Acceptor

For all messages received in this connection type, the transaction manager communicating with a
resource manager facet MUST process the message as specified in section 3.1. The transaction
manager communicating with a resource manager facet MUST additionally follow the processing rules
as specified in the following sections.

3.6.5.2.1.1 Receiving a TXUSER_PHASEO_MTAG_CREATE Message

When the transaction manager receives a TXUSER PHASEO MTAG CREATE message, the
transaction manager communicating with a resource manager facet MUST perform the following
actions:

= If the connection state is Idle:
= Set the connection state to Awaiting Create Response (section 3.6.1.3.2).

= Find the transaction object in the transaction table of the transaction manager using the
guidTx field from the message.

365 /475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

= If the transaction is not found:

= Send a TXUSER PHASEQO MTAG CREATE TX NOT FOUND message using the connection.

= Set the connection state to Ended.
= Otherwise:
= Create a new Enlistment object with the following values:
= The transaction manager communicating with a resource manager facet
= The transaction object
= The connection
= Set the Resource Manager Identifier field of the Enlistment object to a NULL GUID.
= Assign the new Enlistment object to the enlistment field of the connection.

»= Signal the Create Phase Zero Enlistment event on the Core Transaction Manager Facet
with the Enlistment object.

= Otherwise, the message MUST be processed as an invalid message as specified in section 3.1.6.

3.6.5.2.1.2 Receiving a TXUSER_PHASEO_MTAG_PHASEOREQDONE Message

When the transaction manager receives a TXUSER PHASEO MTAG PHASEOREQDONE message, the
transaction manager MUST perform the following actions:

= If the connection state is Awaiting Phase Zero Response:

= Signal the Enlistment Phase Zero Complete event on the Core Transaction Manager Facet with
the following arguments:

= The Enlistment object that is referenced by this connection.
= The completed outcome value
= Set the connection state to Ended.

= Otherwise, the message MUST be processed as an invalid message as specified in section 3.1.6.

3.6.5.2.1.3 Receiving a TXUSER_PHASEO_MTAG_UNENLIST Message

When the transaction manager receives a
TXUSER_PHASEO_MTAG_UNENLIST (section 2.2.10.2.1.8) message, the transaction manager MUST
perform the following actions:

] If the connection state is Active:

] Signal the Unenlist Phase Zero Enlistment (section 3.2.7.34) event on the Core Transaction
Manager Facet (section 1.3.3.3.1) with the Enlistment object that is referenced by this
connection.

= Set the connection state to Ended.
= If the connection state is Awaiting Phase Zero Response:

= Signal the Enlistment Phase Zero Complete (section 3.2.7.17) event on the Core Transaction
Manager Facet with the following arguments:

366 /475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

= The Enlistment object that is referenced by this connection.
* The completed outcome value.
. Set the connection state to Ended.

= Otherwise, the message MUST be processed as an invalid message as specified in section 3.1.6.

3.6.5.2.1.4 Connection Disconnected

When a CONNTYPE_TXUSER_PHASEO (section 2.2.10.2.1) connection is disconnected, the
transaction manager communicating with a resource manager facet MUST perform the following
actions:

= If the connection state is Awaiting Phase Zero Response:

= Signal the Enlistment Phase Zero Complete (section 3.2.7.17) event on the Core Transaction
Manager Facet (section 1.3.3.3.1) with the following arguments:

= The Enlistment object that is referenced by this connection.
» The aborted outcome value.
= Otherwise, if the connection state is Active (section 3.6.1.3.3):

= Signal the Enlistment Unilaterally Aborted (section 3.2.7.19) event on the Core Transaction
Manager Facet with the Enlistment object that is referenced by this connection.

= Finally, in all cases, the event MUST be processed as specified in section 3.1.8.3.

3.6.5.2.2 CONNTYPE_TXUSER_ENLISTMENT as Acceptor

For all messages that are received in this connection type, the transaction manager MUST process
the message as specified in section 3.1. The transaction manager MUST additionally follow the
processing rules as specified in the following sections.

3.6.5.2.2.1 Receiving a TXUSER_ENLISTMENT_MTAG_ENLIST Message

When the transaction manager receives a TXUSER ENLISTMENT MTAG ENLIST message, the
transaction manager MUST perform the following actions:

= If the connection state is Idle:
= Set the connection state to Processing Enlistment Request.

= Find the transaction object in the transaction table of the transaction manager using the
guidTx field from the message.

= If the transaction is not found:

= Send a TXUSER ENLIST MTAG ENLIST TX NOT FOUND message using the connection.

= Set the connection state to Ended.
= QOtherwise:

= Find the resource manager object in the transaction manager's Active Resource
manager table using the guidRm field from the message.

= If the resource manager is not found:

367/ 475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

Send a TXUSER ENLIST MTAG ENLIST TOO LATE message using the connection.

Set the connection state to Ended.

= QOtherwise:

Create a new Enlistment object with the following values:

= The transaction manager communicating with a resource manager facet
= The transaction object

= The connection

= The Resource Manager.Identifier field of the resource manager object

Signal the Create Subordinate Enlistment event on the Core Transaction Manager
Facet with the new enlistment object.

= Otherwise, the message MUST be processed as an invalid message as specified in section 3.1.6.

3.6.5.2.2.2

Receiving a TXUSER_ENLISTMENT_MTAG_PREPAREREQDONE Message

When the transaction manager receives a
TXUSER_ENLISTMENT_MTAG_PREPAREREQDONE (section 2.2.10.2.2.12) message, the transaction
manager MUST perform the following actions:

= If the connection state is Awaiting Prepare Response Aborted:

= If the prepareReqDone field of the message is
TXUSER_ENLISTMENT_PREPAREREQDONE_OK:

» Send a TXUSER_ENLISTMENT_MTAG_ABORTREQ (section 2.2.10.2.2.1) message using
the connection.

= Set the connection state to Awaiting Abort Response.

= Otherwise, set the connection state to Ended.

= If the connection state is Awaiting Single Phase Commit Response:

= Signal the Enlistment Phase One Complete (section 3.2.7.16) event on the Core Transaction
Manager Facet (section 1.3.3.3.1) with the following arguments:

= The Enlistment object of the connection.

= The Phase One outcome set to:

Committed if the prepareReqDone field from the message is
TXUSER_ENLISTMENT_PREPAREREQDONE_SINGLEPHASE_COMMIT.

Aborted if the prepareReqDone field from the message is
TXUSER_ENLISTMENT_PREPAREREQDONE_ABORT.

Read Only if the prepareReqDone field from the message is
TXUSER_ENLISTMENT_PREPAREREQDONE_READONLY.

Prepared if the prepareReqDone field from the message is
TXUSER_ENLISTMENT_PREPAREREQDONE_OK.

If the prepareReqDone field from the message is set to

TXUSER_ENLISTMENT_PREPAREREQDONE_OK:

368 /475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

= Set the connection state to Prepared.
= Otherwise:
= Set the connection state to Ended.
= If the connection state is Awaiting Prepare Response:

= Signal the Enlistment Phase One Complete (section 3.2.7.16) event on the Core Transaction
Manager Facet with the following arguments:

= The Enlistment object of the connection.
= The Phase One outcome set to:

= Aborted if the prepareReqDone field is
TXUSER_ENLISTMENT_PREPAREREQDONE_ABORT.

= Read Only if the prepareReqDone field is
TXUSER_ENLISTMENT_PREPAREREQDONE_READONLY.

] Prepared if the prepareReqDone field is
TXUSER_ENLISTMENT_PREPAREREQDONE_OK.

= If the prepareReqDone field from the message is set to
TXUSER_ENLISTMENT_PREPAREREQDONE_OK:

= Set the connection state to Prepared.
= Otherwise:
= Set the connection state to Ended.
- If the connection state is Awaiting Abort Response:
= Ignore the message.

= Otherwise, the message MUST be processed as an invalid message as specified in section 3.1.6.

3.6.5.2.2.3 Receiving a TXUSER_ENLISTMENT_MTAG_COMMITREQDONE Message

When the transaction manager receives a
TXUSER_ENLISTMENT_MTAG_COMMITREQDONE (section 2.2.10.2.2.4) message, the transaction
manager MUST perform the following action:

= If the connection state is Awaiting Commit Response:

= Signal the Enlistment Commit Complete (section 3.2.7.15) event on the Core Transaction
Manager Facet (section 1.3.3.3.1) with the Enlistment object of the connection.

= Set the connection state to Ended.

= Otherwise, the message MUST be processed as an invalid message as specified in section 3.1.6.

3.6.5.2.2.4 Receiving a TXUSER_ENLISTMENT_MTAG_ABORTREQDONE Message

When the transaction manager receives a TXUSER ENLISTMENT MTAG ABORTREQDONE message,
the transaction manager MUST perform the following actions:

= If the connection state is Awaiting Abort Response:

369 /475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

= Signal the Enlistment Rollback Complete event on the Core Transaction Manager Facet with
the Enlistment object of the connection.

= Set the connection state to Ended.

Otherwise, the message MUST be processed as an invalid message as specified in section 3.1.6.

3.6.5.2.2.5 Connection Disconnected

When a CONNTYPE_TXUSER_ENLISTMENT (section 2.2.10.2.2) connection is disconnected, the
transaction manager MUST perform the following actions:

If the connection state is either Processing Enlistment Request (section 3.6.1.4.2) or
Active (section 3.6.1.4.3):

= Signal the Enlistment Unilaterally Aborted (section 3.2.7.19) event on the Core Transaction
Manager Facet (section 1.3.3.3.1) with the Enlistment object of the connection.

Otherwise, if the connection state is Awaiting Prepare Response (section 3.6.1.4.5):

= Signal the Enlistment Phase One Complete (section 3.2.7.16) event on the Core Transaction
Manager Facet with the following arguments:

= The Enlistment object of the connection
*» The aborted outcome
Otherwise, if the connection state is Awaiting Single-Phase Commit Response (section 3.6.1.4.4):

= Signal the Enlistment Phase One Complete event on the Core Transaction Manager Facet with
the following arguments:

= The Enlistment object of the connection
= The In Doubt (section 3.2.1.3.12) outcome

Otherwise, if the connection state is Awaiting Commit Response (section 3.6.1.4.8), the
transaction manager MUST perform the following action:

. Add the Enlistment object of the connection to the Failed to Notify List of the transaction
manager (section 3.6.1).

Otherwise, if the connection state is Awaiting Abort Response (section 3.6.1.4.9):

= Signal the Enlistment Rollback Complete (section 3.2.7.18) event on the Core Transaction
Manager Facet with the Enlistment object of the connection.

Finally, in all cases, the event MUST be processed as specified in section 3.1.8.3.

3.6.5.3 Transaction Recovery

3.6.5.3.1 CONNTYPE_TXUSER_REENLIST as Acceptor

For all messages received in this connection type, the transaction manager communicating with a
resource manager facet MUST process the message as specified in section 3.1. The transaction
manager communicating with a resource manager facet MUST additionally follow the processing rules
as specified in the following sections.

3.6.5.3.1.1 Receiving a TXUSER_REENLIST_MTAG_REENLIST Message

370/ 475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

When the transaction manager communicating with a resource manager facet receives a
TXUSER REENLIST MTAG REENLIST message, the transaction manager communicating with a
resource manager facet MUST perform the following actions:

= If the connection state is Idle:

= Set the connection state to Processing Reenlist Request.

= Look up a resource manager object in the Active Resource manager table, using the guidRm
field from the message as the key.

= If the resource manager does not exist:

» Send a TXUSER REENLIST MTAG REENLIST ABORTED message using the connection.

= Set the connection state to Ended.
= Otherwise:

= Look up a transaction object in the transaction table using the guidTx field from the
message as the key.

= If the transaction is not found:

= Send a TXUSER_REENLIST_MTAG_REENLIST_ABORTED message using the
connection.

= Set the connection state to Ended.

* Find an Enlistment object in the transaction object's Phase Two Enlistment list whose
Resource Manager field matches the resource manager object.

= If no Enlistment object is found:

= Send a TXUSER_REENLIST_MTAG_REENLIST_ABORTED message using the
connection.

= Set the connection state to Ended.
= Otherwise:
= Initialize the Reenlist Time-out timer providing the following arguments:
= If the value of the ulTimeout field from the message is less than zero:
= Use a value of zero.
= Otherwise:
= Use the ulTimeout field from the message.
= The Enlistment object that is found in the Phase Two enlistment list.
= Assign the Enlistment object to the enlistment field of the connection.

= Assign the connection object to the Enlistment Object.Connection field of the
enlistment.

= Signal the Request Transaction Outcome event on the Core Transaction Manager Facet
with the new Enlistment object.

= Otherwise, the message MUST be processed as an invalid message as specified in section 3.1.6.

371/ 475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

3.6.5.3.1.2 Connection Disconnected

This event MUST be processed as specified in section 3.1.8.3.

3.6.5.4 Voting

3.6.5.4.1 CONNTYPE_TXUSER_VOTER as Acceptor

For all messages that are received in this connection type, the transaction manager that is
communicating with a resource manager facet MUST process the message as specified in section
3.1. The transaction manager communicating with a resource manager facet MUST additionally follow
the processing rules as specified in the following sections.

3.6.5.4.1.1 Receiving a TXUSER_VOTER_MTAG_CREATE Message

When the transaction manager communicating with a resource manager facet receives a
TXUSER VOTER MTAG CREATE message, it MUST perform the following actions:

= If the connection state is Idle:
= Set the connection state to Creating Voter.

= Find the transaction object in the transaction manager's transaction table using the guidTx
field from the message.

= If the transaction is not found:

= Send a TXUSER VOTER MTAG CREATE TX NOT FOUND message using the connection.

= Set the connection state to Ended.
= Otherwise:
= Create a new Enlistment object with the following values:
= The transaction manager communicating with a resource manager facet
= The transaction object
= The connection
= Set the Resource Manager Identifier field of the Enlistment object to aNULL GUID.
= Assign the new Enlistment object to the enlistment field of the connection.

= Signal the Create Voter Enlistment event on the Core Transaction Manager Facet with the
Enlistment object.

= Otherwise, the message MUST be processed as an invalid message as specified in section 3.1.6.

3.6.5.4.1.2 Receiving a TXUSER_VOTER_MTAG_VOTEREQDONE Message

When the transaction manager communicating with a resource manager facet receives a
TXUSER VOTER MTAG VOTEREQDONE message, the transaction manager communicating with a
resource manager facet MUST perform the following actions:

= If the connection state is Awaiting Voter Response:

= Set the connection state as follows:

372 /475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

= If the VoteReqDone field from the message is TXUSER_VOTER_VOTEREQDONE_ABORT
or TXUSER_VOTER_VOTEREQDONE_OK_NONOTIFY:

= Set the connection state to Ended.

= Otherwise, If the VoteReqDone field from the message is
TXUSER_VOTER_VOTEREQDONE_OK:

= Set the connection state to Awaiting Outcome.

= Otherwise, the message MUST be processed as an invalid message, as specified in section
3.1.6.

= Signal the Enlistment Vote Complete event on the Core Transaction Manager Facet with the
following arguments:

= The Enlistment object that is referenced by this connection.
= The Vote outcome, which MUST be set to:

= Prepared if the VoteReqDone field from the message is
TXUSER_VOTER_VOTEREQDONE_OK.

= Aborted if the VoteReqDone field from the message is
TXUSER_VOTER_VOTEREQDONE_ABORT.

= Read-only if the VoteReqDone field from the message is
TXUSER_VOTER_VOTEREQDONE_OK_NONOTIFY.

= Otherwise, the message MUST be processed as an invalid message as specified in section 3.1.6.

3.6.5.4.1.3 Connection Disconnected

When a CONNTYPE_TXUSER_VOTER (section 2.2.10.4.1) connection is disconnected, the transaction
manager communicating with a resource manager facet MUST perform the following actions:

= If the connection state is either Active (section 3.6.1.6.3) or Awaiting Voter Response:

= Signal the Enlistment Unilaterally Aborted (section 3.2.7.19) event on the Core Transaction
Manager Facet (section 1.3.3.3.1) with the Enlistment object that is referenced by this
connection.

= Finally, in all cases, the event MUST be processed as specified in section 3.1.8.3.
3.6.6 Timer Events

3.6.6.1 Reenlist Timeout Timer

When this timer expires, the transaction manager communicating with a resource manager facet
MUST perform the following actions:

» Send a TXUSER_REENLIST_MTAG_REENLIST_TIMEOUT (section 2.2.10.3.1.4) message using the
connection that is referenced by the provided Enlistment object.

»= Set the transaction state to Ended (section 3.2.1.3.14).

373/ 475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

3.6.7 Other Local Events

A transaction manager communicating with a resource manager facet MUST be prepared to
process the local events that are defined in the following sections.

The transaction manager communicating with a resource manager MUST be prepared to process local
events pertaining to Phase Zero functionality only on versions where the connection type
CONNTYPE TXUSER PHASEQ is supported. Section 2.2.1.1.3 defines protocol version support for this
connection type. The following local events are affected:

= Create Phase Zero Enlistment Success

= Create Phase Zero Enlistment Failure

= Begin Phase Zero

= Phase Zero Aborted

3.6.7.1 Begin Commit
The Begin Commit event MUST be signaled with the following arguments:
= An Enlistment object

If the Begin Commit event is signaled, the transaction manager MUST perform the following
actions:

= If the connection of the provided enlistment is of type
CONNTYPE_TXUSER_VOTER (section 2.2.10.4.1):

= Send a TXUSER_STATUS_MTAG_COMMITTED (section 2.2.10.4.1.2) message using the
connection.

= Set the connection state to Ended.

= Otherwise, if the connection of the provided enlistment is of type
CONNTYPE_TXUSER_ENLISTMENT (section 2.2.10.2.2):

= If the connection state is Ended:

= Add the provided Enlistment object to the Failed to Notify List of the transaction
manager (section 3.6.1).

= Otherwise:

» Send a TXUSER_ENLISTMENT_MTAG_COMMITREQ (section 2.2.10.2.2.3) message using
the connection.

= Set the connection state to Awaiting Commit Response (section 3.6.1.4.8).

= Otherwise, if the connection of the provided enlistment is of type
CONNTYPE_TXUSER_REENLIST (section 2.2.10.3.1):

= If the connection state is Processing Reenlist Request (section 3.6.1.5.2):

= Send a TXUSER_REENLIST_MTAG_REENLIST_COMMITTED (section 2.2.10.3.1.3) message
using the connection.

= Set the connection state to Ended.

= QOtherwise:

374 /475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

= Ignore the signal.

3.6.7.2 Begin In Doubt
The Begin In Doubt event MUST be signaled with the following arguments:
] An Enlistment object

If the Begin In Doubt event is signaled, the transaction manager MUST perform the following
actions:

= Send a TXUSER STATUS MTAG INDOUBT message using the connection of the provided
enlistment.

= Set the connection state to Ended.

3.6.7.3 Begin Phase One
The Begin Phase One event MUST be signaled with the following arguments:
= An Enlistment object

= A Boolean value indicating whether or not the transaction manager communicating with a
resource manager facetattempts to make an Enlistment single-phase commit request.

If the Begin Phase One event is signaled, the transaction manager MUST perform the following
actions:

= If the connection state of the enlistment is Active:
= If the provided Single Phase Commit flag (defined in section 3.2.1) is true:

» Send a TXUSER_ENLISTMENT_MTAG_PREPAREREQ (section 2.2.10.2.2.11) message using
the connection of the provided enlistment.

= The fSinglePhase field MUST be set to a nonzero value.

= Set the grfRM field to the GRFRM field of the transaction object referenced by the
Enlistment object.

= Set the connection state to Awaiting Single Phase Commit Response.
= Otherwise:

= Send a TXUSER_ENLISTMENT_MTAG_PREPAREREQ (section 2.2.10.2.2.11) message using
the connection of the provided enlistment.

» The fSinglePhase field MUST be set to 0.

= Set the grfRM field to the GRFRM field of the transaction object referenced by the
Enlistment object.

= Set the connection state to Awaiting Prepare Response.

= Otherwise, ignore the event.

3.6.7.4 Begin Phase Zero

The Begin Phase Zero event MUST be signaled with the following arguments:

375/ 475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

= An Enlistment object

If the Begin Phase Zero event is signaled, the transaction manager MUST perform the following
actions:

= If the connection state is Active:

= Send a TXUSER PHASEO MTAG PHASEOREQ message using the connection of the provided
enlistment.

= Set the connection state to Awaiting Phase Zero Response.
= Otherwise:

= Ignore the event.

3.6.7.5 Begin Rollback
The Begin Rollback event MUST be signaled with the following arguments:
= An Enlistment object

If the Begin Rollback event is signaled, the transaction manager MUST perform the following
actions:

= If the connection of the provided enlistment is of type CONNTYPE TXUSER VOTER:

» Send a TXUSER STATUS MTAG ABORTED message using the connection.

= Set the connection state to Ended.

= Otherwise, if the connection of the provided enlistment is of type
CONNTYPE TXUSER ENLISTMENT:

= If the connection state is Idle:

= Signal the Enlistment Rollback Complete event on the Core Transaction Manager Facet
with the provided Enlistment object.

= Otherwise:

= If the connection state is Active or Prepared:

= Send a TXUSER ENLISTMENT MTAG ABORTREQ message using the connection.
= Set the connection state to Awaiting Abort Response.

= Otherwise, if the connection state is Awaiting Prepare Response:
= Set the connection state to Awaiting Prepare Response Aborted.

= Otherwise, if the connection of the provided enlistment is of type CONNTYPE TXUSER REENLIST:

= If the connection state is Processing Reenlist Request:

» Send a TXUSER REENLIST MTAG REENLIST ABORTED message using the connection.

= Set the connection state to Ended.

= Otherwise, ignore the signal.

376 /475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

3.6.7.6 Begin Voting

The Begin Voting event MUST be signaled with the following arguments:

= An Enlistment object

If the Begin Voting event is signaled, the transaction manager MUST perform the following actions:
= If the connection state is Active:

= Send a TXUSER VOTER MTAG VOTEREQ message using the connection of the provided
enlistment.

= Set the connection state to Awaiting Voter Response.

= Otherwise, ignore the event.

3.6.7.7 Create Phase Zero Enlistment Failure
The Create Phase Zero Enlistment Failure event MUST be signaled with the following arguments:
= An Enlistment object.
= A value indicating the failure reason. The reason MUST be set to one of the following values:
= Too Late
= Tx Not Found

If the Create Phase Zero Enlistment Failure event is signaled, the transaction manager MUST
perform the following actions:

= If the connection state is Awaiting Create Response (section 3.6.1.3.2):

= Send the matching message for the following reason codes using the connection of the
provided enlistment:

= Too Late: TXUSER_PHASEO_MTAG_CREATE_TOO_LATE (section 2.2.10.2.1.2).
= Tx Not Found: TXUSER_PHASEO_MTAG_CREATE_TX_NOT_FOUND (section 2.2.10.2.1.3)
= Set the connection state to Ended.

= Otherwise, ignore the event.

3.6.7.8 Create Phase Zero Enlistment Success
The Create Phase Zero Enlistment Success event MUST be signaled with the following arguments:
= An Enlistment object

If the Create Phase Zero Enlistment Success event is signaled, the transaction manager MUST
perform the following actions:

= If the connection state is Awaiting Create Response (section 3.6.1.3.2):

= Send a TXUSER PHASEQO MTAG CREATED message using the connection of the provided
enlistment.

= Set the connection state to Active.

377/ 475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

= Otherwise, ignore the event.

3.6.7.9 Create Resource Manager

The Create Resource Manager event MUST be signaled with the following arguments:

= A resource manager object

If the Create Resource Manager event is signaled, the transaction manager communicating with a
resource manager facet MUST perform the following actions:

= Search for a resource manager object in the transaction manager's Active Resource Manager table
with the same resource manager identifier as the provided resource manager object.

= If such a resource manager object is found in the table:

= If the connection object that is referenced by the found resource manager object is of type
CONNTYPE_TXUSER_RESOURCEMANAGERINTERNAL (section 2.2.10.1.2):

If the connection state of the found resource manager object is either Reenlisting or
Active:

* Senda
TXUSER_RESOURCEMANAGERINTERNAL_MTAG_DUPLICATEDETECTED (section 2.2.10
.1.2.1) message using the connection object that is referenced by the found resource
manager object.

Send a TXUSER_RESOURCEMANAGER_MTAG_DUPLICATE (section 2.2.10.1.1.2) message
using the connection object that is referenced by the provided resource manager object.
Set the state of the connection object that referenced the provided resource manager
object to Ended.

Set the state of the connection object that referenced the provided resource manager
object to Ended.

= Otherwise,

Send a TXUSER_RESOURCEMANAGER_MTAG_DUPLICATE (section 2.2.10.1.1.2) message
using the connection object that is referenced by the provided resource manager object.

Set the state of the connection object that referenced the provided resource manager
object to Ended.

= QOtherwise

= If the connection state is Creating:

3.6.7.10

Add the provided resource manager object to the Active Resource Manager table, using
the resource manager identifier field as the key.

Send a TXUSER_RESOURCEMANAGER_MTAG_REQUEST_COMPLETE (section 2.2.10.1.1.4)
message using the connection.

Set the connection state to Reenlisting.

Create Subordinate Enlistment Failure

The Create Subordinate Enlistment Failure event MUST be signaled with the following arguments:

= An Enlistment object.

378 /475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

= A value indicating the failure reason. The reason MUST be set to one of the following values:
= Log Full
= Too Late
= Too Many

If the Create Subordinate Enlistment Failure event is signaled, the transaction manager MUST
perform the following actions:

= If the connection state is Processing Enlistment Request:

= Send the matching message for the following reason codes using the connection of the
provided enlistment:

» Log Full: TXUSER ENLISTMENT MTAG ENLIST LOG FULL

= Too Late: TXUSER ENLISTMENT MTAG ENLIST TOO LATE

= Too Many: TXUSER ENLISTMENT MTAG ENLIST TOO MANY

= Set the connection state to Ended.

= Otherwise, ignore the event.

3.6.7.11 Create Subordinate Enlistment Success
The Create Subordinate Enlistment Success event MUST be signaled with the following arguments:
= An Enlistment object

If the Create Subordinate Enlistment Success event is signaled, the transaction manager MUST
perform the following actions:

= If the connection state is Processing Enlistment Request:

= Send a TXUSER ENLISTMENT MTAG ENLISTED message using the connection of the provided
enlistment.

= Set the connection state to Active.

= Otherwise, ignore the event.

3.6.7.12 Create Voter Enlistment Failure
The Create Voter Enlistment Failure event MUST be signaled with the following arguments:
= An Enlistment object
= A value indicating the failure reason. The reason MUST be set to the following value:
= Too Late

If the Create Voter Enlistment Failure event is signaled, the transaction manager MUST perform the
following actions:

= If the connection state is Creating Voter:

= Send the TXUSER_VOTER_MTAG_CREATE_TOO_LATE (section 2.2.10.4.1.5) message using
the connection of the provided enlistment:

379/ 475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

= Set the connection state to Ended.

= Otherwise, ignore the event.

3.6.7.13 Create Voter Enlistment Success
The Create Voter Enlistment Success event MUST be signaled with the following arguments:
= An Enlistment object

If the Create Voter Enlistment Success event is signaled, the Transaction Manager MUST perform
the following actions:

= If the connection state is Creating Voter:

= Send a TXUSER_VOTER_MTAG_CREATED (section 2.2.10.4.1.7) message using the connection
of the provided enlistment.

= Set the connection state to Active.

= Otherwise, ignore the event.

3.6.7.14 Phase Zero Aborted
The Phase Zero Aborted event MUST be signaled with the following arguments:
= An Enlistment object

If the Phase Zero Aborted event is signaled, the transaction manager MUST perform the following
actions:

= If the connection state is Active:

= Send a TXUSER PHASEO MTAG PHASEOREQ ABORT message using the connection of the
provided enlistment.

= Set the connection state to ended.

= Otherwise, ignore the event.

3.6.7.15 Reenlist Complete
The Reenlist Complete event MUST be signaled with the following arguments:
= A resource manager object

If the Reenlist Complete event is signaled, the transaction manager communicating with a resource
manager facet MUST perform the following actions:

= For each enlistment in the Failed to Notify List of the transaction manager (section 3.6.1):

= If the Resource Manager Identifier field of the Enlistment object matches the provided
Resource Manager Object.Identifier field:

= Signal the Enlistment Commit Complete event on the Core Transaction Manager Facet
providing the Enlistment object.

= Remove the Enlistment object from the Failed to Notify List.

380/ 475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

= Send a TXUSER RESOURCEMANAGER MTAG REQUEST COMPLETE message using the connection
of the provided resource manager.

= Set the connection state to Reenlisting.

3.6.7.16 Resource Manager Down
The Resource Manager Down event MUST be signaled with the following arguments:
= A resource manager object

If the Resource Manager Down event is signaled, the transaction manager communicating with a
resource manager facet MUST perform the following actions:

= For each enlistment in the Failed to Notify List of the transaction manager (section 3.6.1):

= If the Enlistment object's Resource Manager Identifier field matches the provided resource
manager object's Resource Manager Object.Identifier field:

= Set the state of the connection object referenced by the Enlistment object to Ended.

. Search for a resource manager object in the manager's Active Resource Manager Table with
the same resource manager identifier as the provided resource manager object.

= If such a resource manager object is found in the table, remove the resource manager object from
the table.

3.7 Superior Transaction Manager Facet Details

3.7.1 Abstract Data Model

This section describes a conceptual model of possible data organization that an implementation
maintains to participate in this protocol. The described organization is provided to facilitate the
explanation of how the protocol behaves. This document does not mandate that implementations
adhere to this model as long as their external behavior is consistent with that described in this
document.

Note that the abstract data model can be implemented in a variety of ways. This protocol does not
prescribe or advocate any specific implementation technique.

The superior transaction manager facet MUST maintain all the data elements that are specified in
sections 3.1.1 and 3.2.1.

The Superior Transaction Manager facet MUST also maintain the following data elements:

Enlistment objects that are created by the superior transaction manager facet MUST provide the
following properties as specified in 3.1.1:

= Name: The Hostname field in the Enlistment object's connection object
= Enlistment Object.Identifier: An empty string

The superior transaction manager MUST provide the states that are defined in the following sections
for its supported connection types. Version-Specific Aspects of Connection Types Relevant to a
Transaction Manager (section 2.2.1.1.2) defines the connection types that a superior transaction
manager MUST provide for each supported protocol version.

381 /475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

3.7.1.1 CONNTYPE_PARTNERTM_PROPAGATE Initiator States

The superior transaction manager MUST act as an initiator for the
CONNTYPE_PARTNERTM_PROPAGATE (section 2.2.9.1.1.1) connection type. In this role, the
superior transaction manager MUST provide support for the states in this section:

Idle (section 3.7.1.1.1)

Awaiting Propagation Response (section 3.7.1.1.2)

Active (section 3.7.1.1.3)

Awaiting Abort Response (section 3.7.1.1.4)

Phase Zero Registration (section 3.7.1.1.5)

Requesting Phase Zero (section 3.7.1.1.6)

Phase Zero (section 3.7.1.1.7)

Phase Zero Registration During Phase Zero (section 3.7.1.1.8)
Phase Zero with Outstanding Registration (section 3.7.1.1.9)
Awaiting Prepare Response (section 3.7.1.1.10)

Prepared (section 3.7.1.1.11)

Awaiting Commit Response (section 3.7.1.1.12)

Ended (section 3.7.1.1.13)

The following illustration shows the relationship between the CONNTYPE_PARTNERTM_PROPAGATE
initiator states.

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

382 /475

PARTHERTM_PROPAGATE _MTAG_
DUPLICATE or
PARTNERTM_PROPAGATE_MTAG_
NO_MEM or
PARTHERTM_PROPAGATE _MTAG_
LOG_FULL recelved

PARTNERTM_PROPAGATE_MTAG_
PHASEOREGISTRATIONREIECTED sent

PARTHERTM_PROPAGATE
MTAG_PROPAGATE sént

Awaiting

PARTHERTM PROPAGATE
TAG _ABORTNOTIFY received

PARTHNERTM _PROPAGATE
MTAG_ABORTREQ sent

PARTNERTM_PROPAGATE
MTAG_ABORTREQDONE
recaived

Fropagation
Response

PARTNERTM_PROPAGATE
MTAG_PROPAGATED received

PARTNERTHM_PROPAGATE _
MTAG_PREPAREREQ sent

Awaiting
Frepare
Response

PARTHNERTM_PROPAGATE MTAG

PREPAREREQDONE [prepareReqDone =

PARTNERTM_PROPAGATE

Phase Zero
Registration
PARTNERTM_PROPAGATE_MTAG_

PARTNERTM PHASEDREGISTERED sent

PROPAGATE MTAG
Requesting
Phase Zeno

PHASECREGISTER
reciivind
PARTNERTM_PROPAGATE
MTAG_PHASED sent

PARTHERTM_PROPAGATE _
MTAG PHASED
COMPLETE recelved

PARTNERTM PROPAGATE

MTAG
PHASEOREGISTER
received

BARTNERTM PROPAGATE
MTAG_PHASEQOREGISTRATION
REJECTED sent

Phase Zero
Registration During
Phase Zero
PARTNERTM_FROPAGATE_MTAG_
PHASEQOREGISTERED sent

PREPAREREQDONE OK) received

PARTMERTM_PROPAGATE

MTAG_ABORTREQ sent
PARTNERTM_PROPAGATE_MTAG_
COMMITRED sent

Awalting
Commit
Response

COMMITREQDONE received

- Ended

PARTMERTM _PROPAGATE MTAG -

S PARTMERTM
Phase Zero With PROPAGATE_MTAG_
Outstanding PHASEOCOMPLETE =
Registration recened

PARTNERTM_PROPAGATE _MTAG_
PREPAREREQDONE [prepareRegDone =
PARTNERTM_PROPAGATE _

PREPAREREQDONE
SINGLEPHASE COMMIT] received, or

PARTNERTM_PROPAGATE MTAG_
PREPAREREQDONE [preparcReqDone =
PARTNERTM_PROPAGATE
PREPAREREQDOME_READONLY]
f’e{.‘ehlﬁ]r oF

PARTNERTM_FROPAGATE MTAG :%m;g_

PREPAREREQDONE [prepareReqDone = prum’

PARTNERTH_PROPAGATE ABORTNOTIFY
PREPAREREQDONE recelved

SINGLEFHASE _INDOUEBT] received, or

PARTNERTM_PROPAGATE_MTAG_
PREPAREREQDONE [prepareReqDone =
PARTNERTM_PROPAGATE
PREPAREREQDONE_ABORT] received

-
—y

PARTNERTM_PROPAGATE MTAG PROTOCOL _ERROR

will be sent by either the superior transaction manager or
the subordinate transaction manager when it receives a
message out-of-order. The connection Is then closed,

Figure 57: CONNTYPE_PARTNERTM_PROPAGATE initiator states

3.7.1.1.1 1dle

This is the initial state. The following event is processed in this state:

= Propagate Transaction (section 3.7.7.10)

3.7.1.1.2 Awaiting Propagation Response

The following events are processed in this state:

= Receiving a PARTNERTM_PROPAGATE_MTAG_PROPAGATED Message (section 3.7.5.1.1.1.1)

= Receiving a PARTNERTM_PROPAGATE_MTAG_DUPLICATE,
PARTNERTM_PROPAGATE_MTAG_NO_MEM, or PARTNERTM_PROPAGATE_MTAG_LOG_FULL

Message (section 3.7.5.1.1.1.2)

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

383 /475

3.7.1.1.3 Active

The following events are processed in this state:

= Receiving PARTNERTM_PROPAGATE_MTAG_PHASEOREGISTER (section 3.7.5.1.1.1.3)
= Receiving PARTNERTM_PROPAGATE_MTAG_ABORTNOTIFY (section 3.7.5.1.1.1.4)

= Begin Phase One (section 3.7.7.2).

= Begin Rollback (section 3.7.7.4)

3.7.1.1.4 Awaiting Abort Response
The following event is processed in this state:

= Receiving PARTNERTM_PROPAGATE_MTAG_ABORTREQDONE (section 3.7.5.1.1.1.3)

3.7.1.1.5 Phase Zero Registration
The following events are processed in this state:
» Create Phase Zero Enlistment Success (section 3.7.7.6)

» Create Phase Zero Enlistment Failure (section 3.7.7.5)

3.7.1.1.6 Requesting Phase Zero

The following events are processed in this state:

= Receiving PARTNERTM_PROPAGATE_MTAG_ABORTNOTIFY (section 3.7.5.1.1.1.3)

= Begin Phase Zero (section 3.7.7.3)

= Receiving PARTNERTM_PROPAGATE_MTAG_PROTOCOL_ERROR (section 3.7.5.1.1.1.4)

3.7.1.1.7 Phase Zero

The following events are processed in this state:

= Receiving a PARTNERTM_PROPAGATE_MTAG_PHASEOCOMPLETE (section 3.7.5.1.1.1.3)
= Receiving a PARTNERTM_PROPAGATE_MTAG_PHASEOREGISTER (section 3.7.5.1.1.1.3)

= Receiving a PARTNERTM_PROPAGATE_MTAG_PROTOCOL_ERROR (section 3.7.5.1.1.1.4)

= Receiving a PARTNERTM_PROPAGATE_MTAG_ABORTNOTIFY (section 3.7.5.1.1.1.3)

3.7.1.1.8 Phase Zero Registration During Phase Zero
The following events are processed in this state:
» Create Phase Zero Enlistment Success (section 3.7.7.6)

» Create Phase Zero Enlistment Failure (section 3.7.7.5)

3.7.1.1.9 Phase Zero with Outstanding Registration
The following events are processed in this state:

= Receiving PARTNERTM_PROPAGATE_MTAG_PHASEOCOMPLETE (section 3.7.5.1.1.1.3).

384 /475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

= Receiving PARTNERTM_PROPAGATE_MTAG_PROTOCOL_ERROR (section 3.7.5.1.1.1.4)

3.7.1.1.10 Awaiting Prepare Response
The following events are processed in this state:
= Receiving PARTNERTM_PROPAGATE_MTAG_PREPAREREQDONE (section 3.7.5.1.1.1.3)
= Receiving PARTNERTM_PROPAGATE_MTAG_PROTOCOL_ERROR (section 3.7.5.1.1.1.4)

3.7.1.1.11 Prepared
The following events are processed in this state:
= Begin Commit (section 3.7.7.1)

= Begin Rollback (section 3.7.7.4)

3.7.1.1.12 Awaiting Commit Response
The following events are processed in this state:
= Receiving PARTNERTM_PROPAGATE_MTAG_COMMITREQDONE (section 3.7.5.1.1.1.3)
= Receiving PARTNERTM_PROPAGATE_MTAG_PROTOCOL_ERROR (section 3.7.5.1.1.1.4)

3.7.1.1.13 Ended

This is the final state.

3.7.1.2 CONNTYPE_PARTNERTM_BRANCH Acceptor States

The superior transaction manager MUST act as an acceptor for the
CONNTYPE_PARTNERTM_BRANCH (section 2.2.9.1.2.1) connection type. In this role, the superior
transaction manager MUST provide support for the states in this section.

The following figure shows the relationship between the CONNTYPE_PARTNERTM_BRANCH acceptor
states.

385 /475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

PARTMERTM_BRANCH_MTAG_BRANCH_
LOG_FULL or
PARTNERTM BRANCH MTAG BRANCH
NO_MEM or
PARTMNERTM_BRANCH_MTAG_BRANCH_
TOO_LATE or
PARTMERTM_ BRANCH MTAG BRAMCH
TOO MANY or
PARTMERTM_BRANCH_MTAG_BRANCH_
TH_NOT_FOUND sent

PARTNERTM_BRANCH_MTAG_

BRANCHING received

PARTNERTM_PROPAGATE_
MTAG_ABORTNOTIFY received

PARTNERTM_PROPAGATE_
MTAG_ABORTREQ sent

Awaiting
Abort
Response

PARTNERTM PROPAGATE
MTAG_ABORTREQDONE
received

PARTNERTM_PROPAGATE
MTAG_ABORTREQ sent

{ Branching)

PARTNERTM BRANCH MTAG

BRANCHED sent

PARTMERTM_PROPAGATE_MTAG.
PREFPAREREQ) sent

PARTNERTM_PROPAGATE MTAG_
PREPAREREQDONE [prepareReqDone =
PARTNERTM_PROPAGATE_MTAG_
PREPAREREQDONE_OK] received

PARTMERTM_PROPAGATE_MTAG_

COMMITREQ sent

Awaiting
Commit
Response

PARTNERTM PROPAGATE MTAG
COMMITREQDONE received

:'r--k Ended i='

PARTNERTM_PROPAGATE_MTAG_
PHASEQREGISTRATIONREIECTED sent

Phase Zera
Registration

PARTNERTM PROPAGATE MTAG
PHASEOREGISTERED sent

Requesting
Phase Zero

PARTNERTM_PROPAGATE_
MTAG PHASED sent

PARTMERTM_PROPAGATE
MTAG

PARTMERTM_
PROPAGATE _MTAG
PHASEOREGISTER
received

PARTNERTM_ PROPAGATE
MTAG_PHASED
COMPLETE received

PHASEOREGISTER
PARTNERTM PROPAGATE received
MTAG_PHASEOREGISTRATION

REJECTED sent

Phase Zero
Registration During
Phase Zera

PARTMERTM PROPAGATE MTAG
PHASEQOREGISTERED received

PARTMERTM
PROPAGATE_
TAG_PHASED
COMPLETE
received

Phase Zero With
Qurstanding
Registration

PARTNERTM_PROPAGATE MTAG_
PREFAREREQDOME [prepareReqDone =
PARTMNERTM_PROPAGATE MTAG

PREPAREREQDONE
SINGLEPHASE_COMMIT] recelved

PARTMERTM_PROPAGATE MTAG_
PREPAREREQDONE [prepareReqDone =
PARTMERTM_PROPAGATE_MTAG_
PREPAREREQDONE_READONLY] received

|
PARTMERTM_PROPAGATE_MTAG PARTMNERTM_
PREPAREREQDOME [prepareReqDone = PROPAGATE_
PARTMNERTM_PROPAGATE_MTAG_ MTAG_
PREPAREREQDOMNE_ ABORTMOTIFY
SINGLEPHASE_INDOUBT] received recelved

PARTMERTM PROPAGATE MTAG
PREPAREREQDONE [prepareReqDone =
PARTMERTM_PROPAGATE_MTAG_
PREPAREREQDOME_ABORT] received

PARTNERTM PROPAGATE MTAG PROTOCOL ERROR

will be sent by either the superior transaction manager or
the subordinate transaction manager when it receives a
message out-of-order, The connection is then closed.

Figure 58: CONNTYPE_PARTNERTM_BRANCH acceptor states

3.7.1.2.1 Idle

This is the initial state. The following event is processed in this state:

= Receiving PARTNERTM_BRANCH_MTAG_BRANCHING (section 3.7.5.1.2.1.1).

3.7.1.2.2 Branching

The following events are processed in this state:

= Create Subordinate Enlistment Success (section 3.7.7.8)

= Create Subordinate Enlistment Failure (section 3.7.7.7)

3.7.1.2.3 Active

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

386 /475

The following events are processed in this state:

. Receiving PARTNERTM_PROPAGATE_MTAG_PHASEOREGISTER (section 3.7.5.1.2.1.2)
= Receiving PARTNERTM_PROPAGATE_MTAG_ABORTNOTIFY (section 3.7.5.1.2.1.4)

= Begin Phase One (section 3.7.7.2)

= Begin Rollback (section 3.7.7.4).

3.7.1.2.4 Awaiting Abort Response
The following event is processed in this state:

= Receiving PARTNERTM_PROPAGATE_MTAG_ABORTREQDONE (section 3.7.5.1.2.1.5)

3.7.1.2.5 Phase Zero Registration
The following events are processed in this state:
» Create Phase Zero Enlistment Success (section 3.7.7.6)

» Create Phase Zero Enlistment Failure (section 3.7.7.5)

3.7.1.2.6 Requesting Phase Zero

The following events are processed in this state:

= Receiving PARTNERTM_PROPAGATE_MTAG_ABORTNOTIFY (section 3.7.5.1.2.1.4)

= Begin Phase Zero (section 3.7.7.3)

= Receiving PARTNERTM_PROPAGATE_MTAG_PROTOCOL_ERROR (section 3.7.5.1.2.1.8)

3.7.1.2.7 Phase Zero

The following events are processed in this state:

= Receiving PARTNERTM_PROPAGATE_MTAG_PHASEOCOMPLETE (section 3.7.5.1.2.1.3)
= Receiving PARTNERTM_PROPAGATE_MTAG_PHASEOREGISTER (section 3.7.5.1.2.1.2)

= Receiving PARTNERTM_PROPAGATE_MTAG_PROTOCOL_ERROR (section 3.7.5.1.2.1.8)
= Receiving PARTNERTM_PROPAGATE_MTAG_ABORTNOTIFY (section 3.7.5.1.2.1.4)

3.7.1.2.8 Phase Zero Registration During Phase Zero
The following events are processed in this state:
= Create Phase Zero Enlistment Success (section 3.7.7.6)

» Create Phase Zero Enlistment Failure (section 3.7.7.5)

3.7.1.2.9 Phase Zero with Outstanding Registration

The following events are processed in this state:

= Receiving PARTNERTM_PROPAGATE_MTAG_PHASEOCOMPLETE (section 3.7.5.1.2.1.3)
= Receiving PARTNERTM_PROPAGATE_MTAG_PROTOCOL_ERROR (section 3.7.5.1.2.1.8)

387 /475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

3.7.1.2.10 Awaiting Prepare Response
The following events are processed in this state:
= Receiving PARTNERTM_PROPAGATE_MTAG_PREPAREREQDONE (section 3.7.5.1.2.1.6)

= Receiving PARTNERTM_PROPAGATE_MTAG_PROTOCOL_ERROR (section 3.7.5.1.2.1.8)

3.7.1.2.11 Prepared
The following events are processed in this state:
= Begin Commit (section 3.7.7.1)

= Begin Rollback (section 3.7.7.4)

3.7.1.2.12 Awaiting Commit Response
The following events are processed in this state:
= Receiving a PARTNERTM_PROPAGATE_MTAG_COMMITREQDONE (section 3.7.5.1.2.1.7)
= Receiving a PARTNERTM_PROPAGATE_MTAG_PROTOCOL_ERROR (section 3.7.5.1.2.1.8)

3.7.1.2.13 Ended

This is the final state.

3.7.1.3 CONNTYPE_PARTNERTM_REDELIVERCOMMIT Initiator States

The superior transaction manager MUST act as an initiator for the
CONNTYPE PARTNERTM REDELIVERCOMMIT connection type. In this role, the superior transaction
manager MUST provide support for the states in this section.

The following figure shows the relationship between the CONNTYPE_PARTNERTM_REDELIVERCOMMIT
initiator states.

388 /475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

PARTMERTM
REDELIVERCOMMIT_
MTAG_COMMITREQ sent

Sending Redeliver Commit Timer expires
Commit Inguiry

PARTMERTM_REDELIVERCOMMIT

MTAG RETRY received Waiting to
Rerequest

Awaiting
Confirmation

PARTMERTM
REDELIVERCOMMIT
MTAG COMMITREQDOME

received

Figure 59: CONNTYPE_PARTNERTM_REDELIVERCOMMIT initiator states

3.7.1.3.1 Idle

This is the initial state. The following event is processed in this state:

= Begin Commit (section 3.7.7.1)

3.7.1.3.2 Awaiting Confirmation

The following events are processed in this state:

= Receiving a PARTNERTM_REDELIVERCOMMIT_MTAG_COMMITREQDONE (section 3.7.5.1.2.1.7)

= Receiving a PARTNERTM_REDELIVERCOMMIT_MTAG_RETRY Message (section 3.7.5.2.2.1.2)

3.7.1.3.3 Waiting to Rerequest
The following event is processed in this state:

= Redeliver Commit Timer (section 3.7.6.1)

3.7.1.3.4 Ended

This is the final state.

389 /475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

3.7.1.4 CONNTYPE_PARTNERTM_CHECKABORT Acceptor States

The superior transaction manager MUST act as an acceptor for the
CONNTYPE_PARTNERTM_CHECKABORT (section 2.2.9.2.1.1) connection type. In this role, the
superior transaction manager MUST provide support for the states in this section.

The following figure shows the relationship between the CONNTYPE_PARTNERTM_CHECKABORT
acceptor states.

Idle
PARTNERTM_
CHECKABORT _ PARTNERTM_CHECKABORT
MTAG_RETRY _MTAG_CHECK received
sent
If Processing

I\Abnrt Inquiry

PARTMERTM CHECKABORT
MTAG ABORTED sent

@

Figure 60: CONNTYPE_PARTNERTM_CHECKABORT acceptor states

3.7.1.4.1 1Idle
This is the initial state. The following event is processed in this state:

= Receiving a PARTNERTM_CHECKABORT_MTAG_CHECK Message (section 3.7.5.2.1.1.1)

3.7.1.4.2 Processing Abort Inquiry

390/ 475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

This is a transient state that is assumed during the processing of a request for check abort. No specific
events are processed in this state.

3.7.1.4.3 Ended

This is the final state.

3.7.2 Timers

The superior transaction manager facet MUST provide the following Redeliver Commit Timer.

3.7.2.1 Redeliver Commit Timer

This timer MUST be set when the Superior Transaction Manager Facet (section 1.3.3.3.4) receives a
PARTNERTM_REDELIVERCOMMIT_MTAG_RETRY (section 2.2.9.2.2.1.3) message on a
CONNTYPE_PARTNERTM_REDELIVERCOMMIT (section 2.2.9.2.2.1) connection. The timer MUST be
canceled when the CONNTYPE_PARTNERTM_REDELIVERCOMMIT (section 2.2.9.2.2.1) connection is
disconnected.

The default value of the timer is implementation-specific.<33>

When the timer is initialized, the Superior Transaction Manager Facet (section 1.3.3.3.4) MUST
provide an Enlistment object to associate with the timer. When the timer expires, the same
Enlistment object MUST be provided alongside the timer notification. The Superior Transaction
Manager Facet MUST provide a distinct Redeliver Commit Timer (section 3.7.2.1) instance for each
CONNTYPE_PARTNERTM_REDELIVERCOMMIT connection.

3.7.3 Initialization

When the superior transaction manager facet is initialized:

= The superior transaction manager facet MUST examine the following security flags on the core
transaction manager and perform the following actions:

= If one of the Allow Network Access, Allow Network Transactions, or Allow Outbound
Transactions flags is set to false:

= For the following connection type, the superior transaction manager MUST refuse to accept
incoming connections from remote machines as specified in [MS-CMP] (section 3.1.5.5)
with the rejection Reason set to 0x80070005:
= CONNTYPE_PARTNERTM_BRANCH (section 2.2.9.1.2.1)

= If one of the Allow Network Access or Allow Network Transactions flags is set to false, or if
both the Allow Inbound Transactions and Allow Outbound Transactions flags are set to false:

= For the following connection type, the superior transaction manager MUST refuse to accept
incoming connections from remote machines as specified in [MS-CMP] (section 3.1.5.5)
with the rejection Reason set to 0x80070005:

= CONNTYPE_PARTNERTM_CHECKABORT (section 2.2.9.2.1.1)

3.7.4 Higher-Layer Triggered Events

No higher-layer triggered events apply.

391 /475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

%5bMS-CMP%5d.pdf#Section_1970a8a0799d4308b9274e4ea23dc225

3.7.5 Processing Events and Sequencing Rules

3.7.5.1 Transaction Propagation and Coordination
3.7.5.1.1 Push Propagation

3.7.5.1.1.1 CONNTYPE_PARTNERTM_PROPAGATE as Initiator

For all messages that are received in this connection type, the superior transaction manager
MUST process the message as specified in section 3.1.

Also, for incoming messages, the superior transaction manager MUST override the verification actions
of the default state as specified in section 3.1 in the following manner:

= If the current connection state does not define a processing rule for the message:

= Send a PARTNERTM PROPAGATE MTAG PROTOCOL ERROR message using the connection.

. Perform default invalid message processing, as specified in section 3.1.

The superior transaction manager MUST also follow the processing rules that are specified in the
following sections.

3.7.5.1.1.1.1 Receiving a PARTNERTM_PROPAGATE_MTAG_PROPAGATED Message

When the superior transaction manager receives a
PARTNERTM_PROPAGATE_MTAG_PROPAGATED (section 2.2.9.1.1.1.2) message, the superior
transaction manager MUST perform the following actions:

= If the connection state is Awaiting Propagation Response:
= Set the connection state to Active (section 3.7.1.1.3).
= Create an Enlistment object with the following values:
= The Superior Transaction Manager Facet (section 1.3.3.3.4)
= The transaction object referenced by this connection
= This connection object

» Signal the Propagate Transaction Success (section 3.2.7.27) event on the Core Transaction
Manager Facet (section 1.3.3.3.1) with the created enlistment object.

= Otherwise, the message MUST be processed as an invalid message as specified in section 3.1.6.

3.7.5.1.1.1.2 Receiving a PARTNERTM_PROPAGATE_MTAG_DUPLICATE,
PARTNERTM_PROPAGATE_MTAG_NO_MEM, or
PARTNERTM_PROPAGATE_MTAG_LOG_FULL Message

When the Superior Transaction Manager Facet receives a

PARTNERTM PROPAGATE MTAG DUPLICATE, PARTNERTM PROPAGATE MTAG NO MEM, or
PARTNERTM PROPAGATE MTAG LOG FULL message, the superior transaction manager MUST
perform the following actions:

= If the connection state is Awaiting Propagation Response:

= Create an Enlistment object with the following values:

392 /475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

= The Superior Transaction Manager Facet
= The transaction object that is referenced by this connection
= This connection object

= Signal the Propagate Transaction Failure event on the Core Transaction Manager Facet with
the following arguments:

= The created Enlistment object
= The failure code that matches the incoming message:
= PARTNERTM_PROPAGATE_MTAG_DUPLICATE: Duplicate
= PARTNERTM_PROPAGATE_MTAG_NO_MEM: No Mem
= PARTNERTM_PROPAGATE_MTAG_LOG_FULL: Log Full
= Set the connection state to Ended.

= Otherwise, the message MUST be processed as an invalid message as specified in section 3.1.6.

3.7.5.1.1.1.3 Receiving a PARTNERTM_PROPAGATE_MTAG_PHASEOREGISTER,
PARTNERTM_PROPAGATE_MTAG_PHASEOCOMPLETE,
PARTNERTM_PROPAGATE_MTAG_PREPAREREQDONE,
PARTNERTM_PROPAGATE_MTAG_COMMITREQDONE,
PARTNERTM_PROPAGATE_MTAG_ABORTREQDONE, or
PARTNERTM_PROPAGATE_MTAG_ABORTNOTIFY Message

When the superior transaction manager facet receives one of these messages, it MUST follow the
same message processing rules as the CONNTYPE PARTNERTM BRANCH connection type acting as an
acceptor. See section 3.7.5.1.2.1 for more details.

3.7.5.1.1.1.4 Receiving a PARTNERTM_PROPAGATE_MTAG_PROTOCOL_ERROR
Message

The processing of this event MUST be identical to the processing of the Connection Disconnected
event.

3.7.5.1.1.1.5 Connection Disconnected

When a CONNTYPE_PARTNERTM_PROPAGATE (section 2.2.9.1.1.1) connection is disconnected, the
Superior Transaction Manager Facet (section 1.3.3.3.4) MUST perform the following actions:

= If the connection state is Awaiting Propagation Response:
*= Create an Enlistment object with the following values:
» The Superior Transaction Manager Facet
= The transaction object that is referenced by this connection
= This connection object

»= Signal the Propagate Transaction Failure (section 3.2.7.26) event on the Core Transaction
Manager Facet with the following arguments:

* The created Enlistment object

393 /475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

= A failure code of Comm Failed.
= Set the connection state to Ended.
= QOtherwise:

= The Superior Transaction Manager Facet (section 1.3.3.3.4) MUST perform the same actions
as the CONNTYPE_PARTNERTM_BRANCH (section 2.2.9.1.2.1) connection type acting as an
acceptor. For more details, see section 3.7.5.1.2.1.

3.7.5.1.2 Pull Propagation

3.7.5.1.2.1 CONNTYPE_PARTNERTM_BRANCH as Acceptor

For all messages that are received in this connection type, the superior transaction manager
MUST process the message as specified in section 3.1.

Also, for incoming messages, the superior transaction manager MUST override the verification actions
of the default state, as specified in section 3.1.6, in the following manner:

= If the current connection state does not define a processing rule for the message:

= Send a PARTNERTM PROPAGATE MTAG PROTOCOL ERROR message using the connection.

= Perform default invalid message processing, as specified in section 3.1.6.

The superior transaction manager MUST also follow the processing rules as specified in the following
section.

3.7.5.1.2.1.1 Receiving a PARTNERTM_BRANCH_MTAG_BRANCHING Message

When the superior transaction manager receives a PARTNERTM BRANCH MTAG BRANCHING
message, the superior transaction manager MUST perform the following actions:

= If the connection state is Idle:
= Set the connection state to Branching.

= Find the transaction object in the transaction table of the transaction manager using the
guidTx field from the message as the key.

= If a transaction object is found:
» Create a new Enlistment object with the following values:

= The Superior Transaction Manager Facet

= The transaction object
= The connection object

= Set the enlistment field of the connection to the new Enlistment object.

= Signal the Create Subordinate Enlistment event on the Core Transaction Manager Facet
with the new Enlistment object.

= QOtherwise:

= Send a PARTNERTM BRANCH MTAG BRANCH TX NOT FOUND message using the
connection.

394 /475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

= Set the connection state to Ended.

= Otherwise, the message MUST be processed as an invalid message as specified in section 3.1.6.

3.7.5.1.2.1.2 Receiving a PARTNERTM_PROPAGATE_MTAG_PHASEOREGISTER
Message

When the superior transaction manager receives a
PARTNERTM_PROPAGATE_MTAG_PHASEOREGISTER (section 2.2.9.1.1.1.14) message, the superior
transaction manager MUST perform the following actions:

= If the connection state is Active:
= Set the connection state to Phase Zero Registration.

= Signal the Create Phase Zero Enlistment (section 3.2.7.10) event on the Core Transaction
Manager Facet (section 1.3.3.3.1) with the Enlistment object that is referenced by this
connection.

= Otherwise, if the connection state is Phase Zero:
. Set the connection state to Phase Zero Registration During Phase Zero.

= Signal the Create Phase Zero Enlistment event on the Core Transaction Manager Facet with
the Enlistment object that is referenced by this connection.

- Otherwise, the message MUST be processed as an invalid message as specified in section 3.1.6.

3.7.5.1.2.1.3 Receiving a PARTNERTM_PROPAGATE_MTAG_PHASEOCOMPLETE
Message

When the superior transaction manager receives a
PARTNERTM PROPAGATE MTAG PHASEOCOMPLETE message, the superior transaction manager MUST
perform the following actions:

= If the connection state is Phase Zero:
= Set the connection state to Active.

= Signal the Enlistment Phase Zero Complete event on the Core Transaction Manager Facet with
the following arguments:

= The Enlistment object that is referenced by this connection.
= The Completed outcome value.
= Otherwise, if the connection state is Phase Zero with Outstanding Registration:
= Set the connection state to Requesting Phase Zero.

= Signal the Enlistment Phase Zero Complete event on the Core Transaction Manager Facet with
the following arguments:

= The Enlistment object that is referenced by this connection
- The Completed outcome value

= Otherwise, the message MUST be processed as an invalid message as specified in section 3.1.6.

3.7.5.1.2.1.4 Receiving a PARTNERTM_PROPAGATE_MTAG_ABORTNOTIFY Message

395 /475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

When the superior transaction manager receives a
PARTNERTM_PROPAGATE_MTAG_ABORTNOTIFY (section 2.2.9.1.1.1.13) message, the superior
transaction manager MUST perform the following actions:

= If the connection state is either Active or Requesting Phase Zero:
= Signal the Enlistment Unilaterally Aborted (section 3.2.7.19) event on the Core Transaction
Manager Facet (section 1.3.3.3.1) with the Enlistment object that is referenced by this
connection.
. Set the connection state to Ended.

= Otherwise, if the connection state is Phase Zero (section 3.7.1.2.7):

= Signal the Enlistment Phase Zero Complete (section 3.2.7.17) event on the Core Transaction
Manager Facet with the following arguments:

= The Enlistment object that is referenced by this connection
= The Aborted outcome value
= Set the connection state to Ended.

= Otherwise, the message MUST be processed as an invalid message, as specified in section 3.1.6.

3.7.5.1.2.1.5 Receiving a PARTNERTM_PROPAGATE_MTAG_ABORTREQDONE Message

When the superior transaction manager receives a
PARTNERTM PROPAGATE MTAG ABORTREQDONE message, the superior transaction manager MUST
perform the following actions:

. If the connection state is Awaiting Abort Response:

= Signal the Enlistment Rollback Complete event on the Core Transaction Manager Facet with
the Enlistment object that is referenced by this connection.

= Set the connection state to Ended.

= Otherwise, the message MUST be processed as an invalid message as specified in section 3.1.6.

3.7.5.1.2.1.6 Receiving a PARTNERTM_PROPAGATE_MTAG_PREPAREREQDONE
Message

When the superior transaction manager receives a
PARTNERTM PROPAGATE MTAG PREPAREREQDONE message, the superior transaction manager
MUST perform the following actions:

= If the connection state is Awaiting Prepare Response:

= Signal the Enlistment Phase One Complete (section 3.2.7.16) event on the Core Transaction
Manager Facet (section 1.3.3.3.1) with the following arguments:

= The Enlistment object that is referenced by this connection.

* The outcome value that is determined by the prepareReqDone field from the message.
The outcome value is set to:

= Prepared if the prepareReqDone field is
PARTNERTM_PROPAGATE_PREPAREREQDONE_OK.

396 /475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

= Aborted if the prepareReqgDone field is
PARTNERTM_PROPAGATE_PREPAREREQDONE_ABORT.

= Read Only if the prepareRegDone field is
PARTNERTM_PROPAGATE_PREPAREREQDONE_READ_ONLY.

= Committed if the prepareRegDone field is
PARTNERTM_PROPAGATE_PREPAREREQDONE_SINGLEPHASE_COMMIT.

= In Doubt if the prepareRegDone field is
PARTNERTM_PROPAGATE_PREPAREREQDONE_SINGLEPHASE_INDOUBT.

= If the prepareRegDone value is Prepared:
= Set the connection state to Prepared.
= QOtherwise, set the connection state to Ended.

= Otherwise, the message MUST be processed as an invalid message as specified in section 3.1.6.

3.7.5.1.2.1.7 Receiving a PARTNERTM_PROPAGATE_MTAG_COMMITREQDONE
Message

When the superior transaction manager receives a
PARTNERTM_PROPAGATE_MTAG_COMMITREQDONE (section 2.2.9.1.1.1.10) message, the superior
transaction manager MUST perform the following actions:

= If the connection state is Awaiting Commit Response:

= Signal the Enlistment Commit Complete (section 3.2.7.15) event on the core transaction
manager with the Enlistment object that is referenced by this connection.

= Set the connection state to Ended.

= Otherwise, the message MUST be processed as an invalid message as specified in section 3.1.6.

3.7.5.1.2.1.8 Receiving a PARTNERTM_PROPAGATE_MTAG_PROTOCOL_ERROR
Message

The processing of this event MUST be identical to the processing of the Connection Disconnected
event.

3.7.5.1.2.1.9 Connection Disconnected

When a CONNTYPE_PARTNERTM_BRANCH (section 2.2.9.1.2.1) connection is disconnected, the
superior transaction manager facet MUST perform the following actions:

= If the connection state is Awaiting Prepare Response:

= If the state of the transaction object that is referenced by the connection is Single Phase
Commit (section 3.2.1.3.9):

= Signal the Enlistment Phase Zero Complete (section 3.2.7.17) event on the Core
Transaction Manager Facet (section 1.3.3.3.1) with the following arguments:

= The Enlistment object that is referenced by this connection
» The In Doubt outcome value

= QOtherwise:

397/ 475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

. Signal the Enlistment Phase Zero Complete event on the Core Transaction Manager Facet
with the following arguments:

= The Enlistment object that this connection references
* The Aborted outcome value
= Otherwise, if the connection state is Awaiting Commit Response:
= Retrieve the Enlistment object that is referenced by the connection object.

= Initiate a new CONNTYPE_PARTNERTM_REDELIVERCOMMIT (section 2.2.9.2.2.1) connection
using the Name object referenced by the Name field of the Session object containing the
provided connection.

= Add the new connection object to the connection list of the transaction object referenced by
the Enlistment object.

= Assign the new connection object to the enlistment Enlistment Object.Connection field of
the Enlistment Object.

= Assign the enlistment to the new connection's Enlistment field.

= Send a PARTNERTM_REDELIVERCOMMIT_MTAG_COMMITREQ (section 2.2.9.2.2.1.1) message
using the connection:

= Set the guidTX field to the Transaction Object.Identifier field of the transaction object
that is referenced by this connection Enlistment object.

= Set the new connection state to Awaiting Confirmation.
. Otherwise, if the connection state is Awaiting Abort Response:

»= Signal the Enlistment Rollback Complete (section 3.2.7.18) event on the Core Transaction
Manager Facet with the Enlistment object that is referenced by this connection.

= Otherwise, if the connection state is either Phase Zero, Phase Zero Registration During Phase
Zero, or Phase Zero with Outstanding Registration:

= Signal the Enlistment Phase Zero Complete event on the Core Transaction Manager Facet with
the following arguments:

= The Enlistment object that is referenced by this connection
= The Aborted outcome value

= Otherwise, if the connection state is either Branching, Active, Phase Zero Registration, or
Requesting Phase Zero:

= Signal the Enlistment Unilaterally Aborted (section 3.2.7.19) event on the Core Transaction
Manager Facet with the Enlistment object that is referenced by this connection.

= Finally, in all cases, the event MUST be processed as specified in section 3.1.8.3.
3.7.5.2 Transaction Recovery
3.7.5.2.1 Subordinate-Driven Recovery

3.7.5.2.1.1 CONNTYPE_PARTNERTM_CHECKABORT as Acceptor

398 /475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

For all messages received in this connection type, the Superior Transaction Manager facet
MUST process the message in accordance with section 3.1. The Superior Transaction Manager facet
MUST additionally follow the processing rules specified in the following sections.

3.7.5.2.1.1.1 Receiving a PARTNERTM_CHECKABORT_MTAG_CHECK Message

When the Superior Transaction Manager Facet receives a
PARTNERTM CHECKABORT MTAG CHECK message, the Superior Transaction Manager Facet MUST
perform the following actions:

= If the connection state is Idle:
= Set the connection state to Processing Abort Inquiry.

= Find the transaction object in the Transaction Manager's transaction Table, using the
guidTx field from the message as a key.

= If the transaction object is not found, or if the transaction state is either Aborting or Ended:

= Send a PARTNERTM CHECKABORT MTAG_ABORTED message using the connection.

= Set the connection state to Ended.
= QOtherwise:

» Send a PARTNERTM CHECKABORT MTAG RETRY message using the connection.

= Set the connection state to Idle.

= Otherwise, the message MUST be processed as an invalid message as specified in section 3.1.6.

3.7.5.2.1.1.2 Connection Disconnected

When a CONNTYPE_PARTNERTM_CHECKABORT (section 2.2.9.2.1.1) connection is disconnected, the
Superior Transaction Manager Facet (section 1.3.3.3.4) MUST perform the actions as specified in
section 3.1.8.3.

3.7.5.2.2 Superior-Driven Recovery

3.7.5.2.2.1 CONNTYPE_PARTNERTM_REDELIVERCOMMIT as Initiator

For all messages received in this connection type, the Superior Transaction Manager Facet
MUST process the message as specified in section 3.1. The Superior Transaction Manager Facet MUST
additionally follow the processing rules as specified in this section.

3.7.5.2.2.1.1 Receiving a PARTNERTM_REDELIVERCOMMIT_MTAG_COMMITREQDONE
Message

When the Superior Transaction Manager Facet (section 1.3.3.3.4) receives a
PARTNERTM_REDELIVERCOMMIT_MTAG_COMMITREQDONE (section 2.2.9.2.2.1.2) message, the
Superior Transaction Manager Facet MUST perform the following actions:

= If the connection state is Awaiting Confirmation:

= Signal the Enlistment Commit Complete (section 3.2.7.15) event on the Core Transaction
Manager Facet (section 1.3.3.3.1) with the Enlistment object referenced by this connection.

= Set the connection state to Ended.

= Otherwise, the message MUST be processed as an invalid message as specified in section 3.1.6.

399 /475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

3.7.5.2.2.1.2 Receiving a PARTNERTM_REDELIVERCOMMIT_MTAG_RETRY Message

When the superior transaction manager facet receives a
PARTNERTM REDELIVERCOMMIT MTAG RETRY message, the superior transaction manager facet
MUST perform the following actions:

= If the connection state is Awaiting Confirmation:
= Set the connection state to Waiting to Rerequest.
= Initialize a Redeliver Commit timer with the following arguments:
= The Enlistment object of the connection

= An implementation-specific time-out value, as specified in Redeliver Commit Timer

= Otherwise, the message MUST be processed as an invalid message, as specified in section 3.1.6.

3.7.5.2.2.1.3 Connection Disconnected

When a CONNTYPE_PARTNERTM_REDELIVERCOMMIT (section 2.2.9.2.2.1) connection is disconnected,
the Superior Transaction Manager Facet (section 1.3.3.3.4) MUST perform the following actions:

= If the connection state is Waiting to Rerequest:
. Cancel the Redeliver Commit Timer associated with the connection.

= If the connection state is Idle, Waiting to Rerequest, or Awaiting Confirmation:
= Set the connection state to Ended.

= Signal the Begin Commit (section 3.7.7.1) event on the Superior Transaction Manager Facet
with the Enlistment object referenced by the Enlistment field of the connection.

= Otherwise, the event MUST be processed as specified in section 3.1.8.3.

3.7.6 Timer Events

3.7.6.1 Redeliver Commit Timer

When this timer expires, the Superior Transaction Manager Facet (section 1.3.3.3.4) MUST perform
the following actions:

= Cancel the Redeliver Commit timer.
= If the connection referenced by the provided enlistment is in the Waiting to Rerequest state:
= Set the connection state to Idle.

= Send a PARTNERTM_REDELIVERCOMMIT_MTAG_COMMITREQ (section 2.2.9.2.2.1.1) message
using the connection referenced by the provided Enlistment object:

= Set the guidTX field to the Transaction Object.Identifier field of the transaction
object provided by the Enlistment object.

= Set the connection state to Awaiting Confirmation.

= Otherwise, ignore the timer event.

400/ 475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

3.7.7 Other Local Events

The Superior Transaction Manager MUST be prepared to process the local events defined in the
following sections.

The Superior Transaction Manager MUST be prepared to process local events pertaining to Phase
Zero functionality only on versions where the connection type CONNTYPE TXUSER PHASEQO is
supported. Connection Types Relevant to Resource Managers - Versioning defines protocol version
support for this connection type. The following local events are affected:

= Create Phase Zero Enlistment Success

= Create Phase Zero Enlistment Failure

= Begin Phase Zero

= Phase Zero Aborted

3.7.7.1 Begin Commit
The Begin Commit event MUST be signaled with the following arguments:
= An Enlistment object

If the Begin Commit event is signaled, the Superior Transaction Manager Facet (section 1.3.3.3.4)
MUST perform the following actions:

= If the connection state is Ended:

= Initiate a new CONNTYPE_PARTNERTM_REDELIVERCOMMIT (section 2.2.9.2.2.1) connection
by using the Name object referenced by the Name field of the Session object containing the
provided enlistment's connection.

= Add the new connection to the provided enlistment's transaction's connection list.
= Set the provided enlistment's Enlistment Object.Connection field to the new connection.
= Set the connection's Enlistment field to the provided Enlistment object.

= Send a PARTNERTM_REDELIVERCOMMIT_MTAG_COMMITREQ (section 2.2.9.2.2.1.1) message
using the new connection.

= Set the guidTx field to the Transaction Object.Identifier field of the transaction object
referenced by this connection's Enlistment object.

= Set the new connection state to Awaiting Confirmation.
= Otherwise:

= Send a PARTNERTM_PROPAGATE_MTAG_COMMITREQ (section 2.2.9.1.1.1.9) message using
the connection.

= Set the connection state to Awaiting Commit Response.

3.7.7.2 Begin Phase One
The Begin Phase One event MUST be signaled with the following arguments:
= An Enlistment object.

= A Boolean Single-Phase Commit value:

401 /475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

= If true, the Superior Transaction Manager Facet (section 1.3.3.3.4) SHOULD attempt to
perform a Single-Phase Commit.

= If false, the Superior Transaction Manager Facet MUST NOT attempt to perform a Single-Phase
Commit.

If the Begin Phase One event is signaled, the Superior Transaction Manager Facet MUST perform the
following actions:

= If the provided Single-Phase Commit value is set to true:

= Send a PARTNERTM_PROPAGATE_MTAG_PREPAREREQ (section 2.2.9.1.1.1.6) message using
the connection.

= Set the fSinglePhase field to a nonzero value.

= Set the grfRM field to the GRFRM field of the transaction object referenced by the
Enlistment object.

= Otherwise:

= Send a PARTNERTM_PROPAGATE_MTAG_PREPAREREQ (section 2.2.9.1.1.1.6) message using
the connection.

= Set the fSinglePhase field to zero.

= Set the grfRM field to the GRFRM field of the transaction object referenced by the
Enlistment object.

= Set the connection state to Awaiting Prepare Response.

3.7.7.3 Begin Phase Zero
The Begin Phase Zero event MUST be signaled with the following arguments:
= An Enlistment object

If the Begin Phase Zero event is signaled, the Superior Transaction Manager Facet (section 1.3.3.3.4)
MUST perform the following actions:

= Send a PARTNERTM_PROPAGATE_MTAG_PHASEO (section 2.2.9.1.1.1.17) message using the
connection.

= Set the connection state to Phase Zero.

3.7.7.4 Begin Rollback
The Begin Rollback event MUST be signaled with the following arguments:
= An Enlistment object

If the Begin Rollback event is signaled, the Superior Transaction Manager Facet MUST perform the
following actions:

= If the provided enlistment's connection state is Ended:

= Signal the Enlistment Rollback Complete event on the Core Transaction Manager Facet with
the following arguments:

= The provided Enlistment object

402 / 475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

. Otherwise:

= Send a PARTNERTM PROPAGATE MTAG ABORTREQ message using the connection.

= Set the connection state to Awaiting Abort Response.

3.7.7.5 Create Phase Zero Enlistment Failure
The Create Phase Zero Enlistment Failure event MUST be signaled with the following arguments:
= An Enlistment object.
= A value indicating the failure reason. The reason MUST be set to one of the following values:
= Too Late
= Tx Not Found

If the Create Phase Zero Enlistment Failure event is signaled, the Superior Transaction Manager
Facet (section 1.3.3.3.4) MUST perform the following actions:

= Senda
PARTNERTM_PROPAGATE_MTAG_PHASEOREGISTRATIONREJECTED (section 2.2.9.1.1.1.16)
message using the enlistment's connection.

= If the enlistment's connection state is Phase Zero Registration:
= Set the connection state to Active.

= Otherwise, if the connection state is Phase Zero Registration During Phase Zero:
= Set the connection state to Phase Zero.

= Otherwise, ignore the event.

3.7.7.6 Create Phase Zero Enlistment Success
The Create Phase Zero Enlistment Success event MUST be signaled with the following arguments:
= An Enlistment object

If the Create Phase Zero Enlistment Success event is signaled, the Superior Transaction Manager
Facet (section 1.3.3.3.4) MUST perform the following actions:

= Send a PARTNERTM_PROPAGATE_MTAG_PHASEOREGISTERED (section 2.2.9.1.1.1.15) message
using the enlistment's connection.

= If the enlistment's connection state is Phase Zero Registration:
= Set the connection state to Requesting Phase Zero.

= Otherwise, if the connection state is Phase Zero Registration During Phase Zero:
= Set the connection state to Phase Zero with Outstanding Registration.

= Otherwise, ignore the event.

3.7.7.7 Create Subordinate Enlistment Failure

The Create Subordinate Enlistment Failure event MUST be signaled with the following arguments:

403/ 475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

= An Enlistment object.

»= A value indicating the failure reason. The reason MUST be set to one of the following values:
= Log Full
= Too Late
= Too Many

If the Create Subordinate Enlistment Failure event is signaled, the Superior Transaction Manager Facet
MUST perform the following actions:

= Send the matching message for the following reason codes:

= Log Full: PARTNERTM BRANCH MTAG BRANCH LOG FULL

= Too Late: PARTNERTM BRANCH MTAG BRANCH TOO LATE

= Too Many: PARTNERTM BRANCH MTAG BRANCH TOO MANY

= Set the connection state to Ended.

3.7.7.8 Create Subordinate Enlistment Success
The Create Subordinate Enlistment Success event MUST be signaled with the following arguments:
= An Enlistment object

If the Create Subordinate Enlistment Success event is signaled, the Superior Transaction Manager
Facet MUST perform the following actions:

= Send a PARTNERTM BRANCH MTAG BRANCHED message using the enlistment's connection.

= Set the connection state to Active.

3.7.7.9 Phase Zero Aborted
The Phase Zero Aborted event MUST be signaled with the following arguments
= An Enlistment object

If the Phase Zero Aborted event is signaled, the Superior Transaction Manager Facet MUST perform
the following actions:

= Ignore the event.

3.7.7.10 Propagate Transaction

The Propagate Transaction event MUST be signaled with the following arguments:
] A Transaction object

= A Name object representing the remote subordinate transaction manager

If the Propagate Transaction event is signaled, the Superior Transaction Manager
Facet (section 1.3.3.3.4) MUST perform the following actions:

= Initiate a new CONNTYPE_PARTNERTM_PROPAGATE (section 2.2.9.1.1.1) connection to the
provided Name object.

404 / 475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

. Set the Transaction field of the Connection object to the provided Transaction object.
= Add the Connection to the provided Transaction connection list.

= Send a PARTNERTM_PROPAGATE_MTAG_PROPAGATE (section 2.2.9.1.1.1.1) message using the
Connection:

= Set the guidTX field to the Transaction Object.Identifier field of the provided Transaction
object.

= Set the isoLevel field to the Isolation Level field of the provided Transaction object.
= Set the szDesc field to the Description field of the provided Transaction object.

= Set the Connection state to Awaiting Propagation Response.
3.8 Subordinate Transaction Manager Facet Details

3.8.1 Abstract Data Model

This section describes a conceptual model of possible data organization that an implementation
maintains to participate in this protocol. The described organization is provided to facilitate the
explanation of how the protocol behaves. This document does not mandate that implementations
adhere to this model as long as their external behavior is consistent with that described in this
document.

Note that the abstract data model can be implemented in a variety of ways. This protocol does not
prescribe or advocate any specific implementation technique.

The Subordinate Transaction Manager Facet (section 3.8) MUST maintain all the data elements as
specified in section 3.1.1 and section 3.2.1.

Enlistment objects that are created by the subordinate transaction manager MUST provide the
following properties as specified in section 3.1.1:

= Name: The Name object referenced by the Name field of the Session object containing the
connection object referenced by the Enlistment Object.Connection field of the Enlistment
object

» Enlistment Object.Identifier: An empty string

The subordinate transaction manager MUST provide the states as specified in the following sections for
its supported connection types. Section 2.2.1.1.2 defines the connection types that a subordinate
transaction manager MUST provide for each supported protocol version.

3.8.1.1 CONNTYPE_PARTNERTM_PROPAGATE Acceptor States

The Subordinate Transaction Manager Facet (section 1.3.3.3.5) MUST act as an acceptor for the
CONNTYPE_PARTNERTM_PROPAGATE (section 2.2.9.1.1.1) connection type. In this role, the
subordinate transaction manager MUST provide support for the states in this section:

= Idle (section 3.8.1.1.1)
= Propagating (section 3.8.1.1.2)
= Active (section 3.8.1.1.3)

= Aborting (section 3.8.1.1.4)

405/ 475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

Awaiting Registration Response (section 3.8.1.1.5)

Awaiting Phase Zero (section 3.8.1.1.6)

Awaiting Phase Zero Outcome (section 3.8.1.1.7)

Awaiting Registration Response During Phase Zero (section 3.8.1.1.8)

Awaiting Phase Zero Outcome with Outstanding Registration (section 3.8.1.1.9)
Preparing (section 3.8.1.1.10)

Prepared (section 3.8.1.1.11)

Committing (section 3.8.1.1.12)

Ended (section 3.8.1.1.13)

The following illustration shows the relationship between the CONNTYPE_PARTNERTM_PROPAGATE
acceptor states.

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

406 / 475

PARTNERTM PROPAGATE MTAG
PHASEOREGISTRATIONREIECTED received

Awcaiting
Registration
Response

PARTNERTM_PROPAGATE _MTAG_

(e

DUPLICATE or PARTHERTM_PROPAGATE MTAG
RTNE PARTNERTM_PROPAGATE _ _MTAG
PA P A MT. - —
RT'}LT; Rﬁ;ﬁ,m' AG_ MIAG_PROPAGATE received FARTMERTM_ FHASEOREGISTERED received
PARTNERTM_PROPAGATE_MTAG_ PROPAGATE_MTAG_
LOG_FULL sent PHASEQREGISTER Arraiting
Propagating sent Phase Zero
PARTNERTM_PROPAGATE
PARTNERTM_PROPAGATE _ MTAG_PHASED received

g PARTNERTM_PROPAGATE MTAG PROPAGATED sedt
MTAG_ABORTROTIFY sent

PARTNERTM _PROPAGATE _

PARTNERTM_PROPAGATE MTAG_PHASED
MTAG_ABORTREQ received Miﬁmé%mﬂgg;ﬁ_ﬁm COMPLETE sent PARTMERTM_PROPAGATE
1
u PARTHERTM_PROPAGATE. Mrm__ﬁm;EnenEGtma
MTAG_PHASEOREGISTRATION
REJECTED received

Preparing Awalting Req.
Response During
PARTMERTM_PROPAGATE_MTAG Phase Zero

PREPAREREQDONE [prepareReqDone = | paARTNERTM_PROPAGATE MTAG

F

PARTMERTM_PROPAGATE _

MTAG_ABORTREGDONE BARTNERTM_PROPAGATE PHASEDRECISTERED recaived
sent PREPAREREQDONE_OK) sent > FANBATM
Aaiting Phase Zera PROPAGATE
PARTHNERTM_PROPAGATE Outcome with Outstanding 4G PHASEQ-
MTAG_ABORTREQ recemvedn oo . COMPLETE
SEnL
[PARTNERTM_PROPAGATE_MTAG.
PARTNERTM_PROPAGATE_MTAG PREPARERCQDONE [prepareReqDone =
COMMITREQ recehved PARTNERTM_PROPAGATE_
PREFAREREQDONE

SINGLEPHASE COMMIT) Sent, or
1
Committing PARTNERTM PROPAGATE MTAG
PREPAREREQDONE [preparefeqDone =
PARTNERTM PROPAGATE
PARTNERTM PROPAGATE MTAG PREPAREREQDONE READOMNLY] sent, o
COMMITREGDONE sent -

PARTMERTM_PROPAGATE MTAG
PREPAREREQDONE [preparcReqDone =

PARTNERTM FROPAGATE FARTNERTM_
PREPARERECQDONE_ F‘“%"ﬁ%‘“ﬁ-
SINGLEPHASE INDOUBT] sent,
- Psent,or poRTNOTIFY
PARTNERTM_PROPAGATE_MTAG_ sent

PREPAREREQDONE [prepareReqDane =
PARTNERTM_PROPAGATE
PREPAREREQDONE_ABORT] sent

Ended -
PARTHNERTM_FROPAGATE MTAG PROTOCOL ERRDR
will be sent by either the superior transaction manager or
the subgrdinate transaction manager when it receives a

Y

message out-of-grder. The connection is then closed,

Figure 61: CONNTYPE_PARTERTM_PROPAGATE acceptor states

3.8.1.1.1 Idle
This is the initial state. The following event is processed in this state:

= Receiving a PARTNERTM_PROPAGATE_MTAG_PROPAGATE message (section 3.8.5.1.1.1.1)

3.8.1.1.2 Propagating
The following events are processed in this state:
= Create Superior Enlistment Success (section 3.8.7.4)

= Create Superior Enlistment Failure (section 3.8.7.5)

3.8.1.1.3 Active

407 /475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

The following events are processed in this state:

*= Register Phase Zero (section 3.8.7.9)

»= Unilaterally Aborted (section 3.8.7.11)

= Receiving a PARTNERTM_PROPAGATE_MTAG_ABORTREQ message (section 3.8.5.1.2.1.5)

= Receiving a PARTNERTM_PROPAGATE_MTAG_PREPAREREQ message (section 3.8.5.1.2.1.7)

= Receiving a PARTNERTM_PROPAGATE_MTAG_PROTOCOL_ERROR message (section 3.8.5.1.1.1.3)

3.8.1.1.4 Aborting
The following event is processed in this state:

= Rollback Complete (section 3.8.7.10)

3.8.1.1.5 Awaiting Registration Response
The following events are processed in this state:

= Receiving a PARTNERTM_PROPAGATE_MTAG_PHASEOREGISTERED message, as described in
CONNTYPE_PARTNERTM_PROPAGATE as Acceptor (section 3.8.5.1.1.1) and in Receiving Other
PARTNERTM_PROPAGATE_MTAG Messages (section 3.8.5.1.1.1.2).

= Receiving a PARTNERTM_PROPAGATE_MTAG_PROTOCOL_ERROR message (section 3.8.5.1.1.1.3).

3.8.1.1.6 Awaiting Phase Zero

The following events are processed in this state:

= Receiving a PARTNERTM_PROPAGATE_MTAG_PHASEO message (section 3.8.5.1.2.1.6

= Unilaterally Aborted (section 3.8.7.11)

= Receiving a PARTNERTM_PROPAGATE_MTAG_PROTOCOL_ERROR message (section 3.8.5.1.2.1.9)

3.8.1.1.7 Awaiting Phase Zero Outcome
The following events are processed in this state:
= Phase Zero Complete (section 3.8.7.6)

- Register Phase Zero (section 3.8.7.9)

3.8.1.1.8 Awaiting Registration Response During Phase Zero
The following events are processed in this state:

= Receiving a PARTNERTM_PROPAGATE_MTAG_PHASEOREGISTERED
message (section 3.8.5.1.2.1.3)

= Receiving a PARTNERTM_PROPAGATE_MTAG_PHASEOREGISTRATIONREJIECTED
message (section 3.8.5.1.1.1.2)

= Receiving a PARTNERTM_PROPAGATE_MTAG_PROTOCOL_ERROR message (section 3.8.5.1.1.1.3)

3.8.1.1.9 Awaiting Phase Zero Outcome with Outstanding Registration

408 / 475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

The following event is processed in this state:

»= Phase Zero Complete (section 3.8.7.6)

3.8.1.1.10 Preparing
The following event is processed in this state:

= Phase One Complete (section 3.8.7.7)

3.8.1.1.11 Prepared

The following events are processed in this state:

= Receiving a PARTNERTM_PROPAGATE_MTAG_COMMITREQ message (section 3.8.5.1.2.1.8)
= Receiving a PARTNERTM_PROPAGATE_MTAG_ABORTREQ message (section 3.8.5.1.2.1.5)

= Receiving a PARTNERTM_PROPAGATE_MTAG_PROTOCOL_ERROR message (section 3.8.5.1.1.1.3)

3.8.1.1.12 Committing
The following event is processed in this state:

= Commit Complete (section 3.8.7.3)

3.8.1.1.13 Ended

This is the final state.

3.8.1.2 CONNTYPE_PARTNERTM_BRANCH Initiator States

The Subordinate Transaction Manager Facet (section 3.8) MUST act as an initiator for the
CONNTYPE_PARTNERTM_BRANCH (section 2.2.9.1.2.1) connection type. In this role, the
subordinate transaction manager MUST provide support for the states in this section.

The following illustration shows the relationship between the CONNTYPE_PARTNERTM_BRANCH
initiator states.

409 / 475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

PARTMERTM_PROPAGATE MTAG

PARTNERTM_BRANCH_MTAG_ PHASEOREGISTRATIONREJECTED recelved

BRANCH_LOG_FULL or
PARTMERTM BRANCH MTAG

BRANCH_NO MEM or “
PARTNERTM_BRANCH_MTAG_

Awaiting
Registration
Response

PARTMERTM PROPAGATE MTAG

BRANCH_TOO_LATE or PARTNERTM_BRANCH_
PARTMERTM_BRANCH_MTAG_ MTAG_BRANCHING sent PARTNERTM_ PHASEOREGISTERED received
ERANCH TGO MANY or PROPAGATE_MTAG_
PARTNERTM_BRANCH_MTAG_ PHASEOREGISTER oraiti
BRANCH_TX_NOT_FOUND received Awaiting Branch sent
Response ase cero
PARTNERTM_PROPAGATE _
PARTNERTM_BRANCH_MTAG MTAG_PHASEQ received
,‘________PﬁRTNERTM_PROPRG.F\TE_ BRANCHED received

MTAG_ABORTNOTIFY sent

Awaiting
Phase Zero
Outcome

PARTMERTM_PROPAGATE

PARTNERTM_PROPAGATE | MTAG. PHASED
MTAG_ABORTREQ received PARTNERTM_PROPAGATE COMPLETE sent PARTNERTM_PROPAGATE_
MTAG_PREPAREREL) received MTAG PHASEOREGISTER

PARTNERTM_PROPAGATE cent
MTAG_PHASEOREGISTRATION
REJECTED received
Response During

PARTMNERTM PROPAGATE MTAG Phase Zero

PARTMERTM_PROPAGATE PREPAREREQDONE [prepareRegDone = A
MTAG_ABORTREQDONE PARTNERTM PROPAGATE MTAG. | @ piiat et racatvag
sent PREPAREREQDONE_OK] sent) PARTNERTM
Awaiting Phase Zero PROPAGATE_
PARTMERTM PROPAGATE Qutcome with Gutstanding TAG_PHASEQ—
MTAG_ABORTREQ recelved Registration COPLETE
PARTNERTM_PROPAGATE_MTAG_
P*””ggmﬁ;gp"“”f S'T"‘G PREPAREREQDONE [prepareReqDone =
Q2 recelve PARTNERTM_PROPAGATE MTAG_
PREPAREREQDONE
SINGLEPHASE_COMMIT] sent, or
PARTNERTM_PROPAGATE_MTAG_
PREPAREREQDONE [prepareReqDone =
PARTNERTM_PROPAGATE_MTAG_
PARTNERTM_PROPAGATE MTAG_ PREPAREREQDONE_READONLY] sent, or

COMMITREQDONE sent —
PARTMERTM_PROPAGATE MTAG
PREPAREREQDONE [prepareReqDone =

PARTNERTM PROPAGATE MTAG ~ PARTNERTM_

PREPAREREQDONE_ PROPAGATE _
SINGLEPHASE_INDOUBT] sent, or MTAG_
ABORTMOTIFY
PARTMERTM_PROPAGATE MTAG sent

PREPAREREQDONE [prepareReqDone =
PARTNERTM_PROPAGATE_MTAG_
PREPAREREQDONE_ABORT] sent

- Ended
p

-
-

PARTNERTM PROPAGATE MTAG PROTOCOL ERROR

will be sent by either the superlor transaction manager or
the subordinate transaction manager when it receives a
message out-of-order. The connection is then closed.

Figure 62: CONNTYPE_PARTNERTM_BRANCH initiator states

3.8.1.2.1 Idle
This is the initial state. The following event is processed in this state:

= Branch Transaction (section 3.8.7.1)

3.8.1.2.2 Awaiting Branch Response
The following events are processed in this state:
= Receiving a PARTNERTM_BRANCH_MTAG_BRANCHED Message (section 3.8.5.1.2.1.1)

= Receiving a PARTNERTM_BRANCH_MTAG_BRANCH_LOG_FULL,
PARTNERTM_BRANCH_MTAG_BRANCH_NO_MEM,
PARTNERTM_BRANCH_MTAG_BRANCH_TOO_LATE,

410/ 475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

PARTNERTM_BRANCH_MTAG_BRANCH_TOO_MANY or
PARTNERTM_BRANCH_MTAG_BRANCH_TX_NOT_FOUND Message (section 3.8.5.1.2.1.2)

3.8.1.2.3 Active

The following events are processed in this state:

= Register Phase Zero (section 3.8.7.9)

= Unilaterally Aborted (section 3.8.7.11)

= Receiving a PARTNERTM_PROPAGATE_MTAG_ABORTREQ Message (section 3.8.5.1.2.1.5)

= Receiving a PARTNERTM_PROPAGATE_MTAG_PREPAREREQ Message (section 3.8.5.1.2.1.7)

= Receiving a PARTNERTM_PROPAGATE_MTAG_PROTOCOL_ERROR Message (section 3.8.5.1.2.1.9)

3.8.1.2.4 Aborting
The following event is processed in this state:

= Rollback Complete (section 3.8.7.10)

3.8.1.2.5 Awaiting Registration Response
The following events are processed in this state:

= Receiving a PARTNERTM_PROPAGATE_MTAG_PHASEOREGISTERED (section 3.8.5.1.2.1.3)
message

= Receiving a
PARTNERTM_PROPAGATE_MTAG_PHASEOREGISTRATIONREJECTED (section 3.8.5.1.2.1.4)
message

= Receiving a PARTNERTM_PROPAGATE_MTAG_PROTOCOL_ERROR (section 3.8.5.1.2.1.9) message

3.8.1.2.6 Awaiting Phase Zero

The following events are processed in this state:

= Receiving a PARTNERTM_PROPAGATE_MTAG_PHASEQ (section 3.8.5.1.2.1.6) message
= Unilaterally Aborted (section 3.8.7.11).

= Receiving a PARTNERTM_PROPAGATE_MTAG_PROTOCOL_ERROR (section 3.8.5.1.2.1.9) message

3.8.1.2.7 Awaiting Phase Zero Outcome
The following event is processed in this state:

= Phase Zero Complete (section 3.8.7.6)

3.8.1.2.8 Awaiting Registration Response During Phase Zero
The following events are processed in this state:

= Receiving a PARTNERTM_PROPAGATE_MTAG_PHASEOREGISTERED (section 3.8.5.1.2.1.3)
message

411 /475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

- Receiving a
PARTNERTM_PROPAGATE_MTAG_PHASEOREGISTRATIONREJECTED (section 3.8.5.1.2.1.4)
message

= Receiving a PARTNERTM_PROPAGATE_MTAG_PROTOCOL_ERROR (section 3.8.5.1.2.1.9) message

3.8.1.2.9 Awaiting Phase Zero Outcome with Outstanding Registration
The following event is processed in this state:

= Phase Zero Complete (section 3.8.7.6)

3.8.1.2.10 Preparing
The following event is processed in this state:

= Phase One Complete (section 3.8.7.7)

3.8.1.2.11 Prepared

The following events are processed in this state:

= Receiving a PARTNERTM_PROPAGATE_MTAG_COMMITREQ (section 3.8.5.1.2.1.8) message

= Receiving a PARTNERTM_PROPAGATE_MTAG_ABORTREQ (section 3.8.5.1.2.1.5) message

= Receiving a PARTNERTM_PROPAGATE_MTAG_PROTOCOL_ERROR (section 3.8.5.1.2.1.9) message

3.8.1.2.12 Committing
The following event is processed in this state:

= Commit Complete (section 3.8.7.3)

3.8.1.2.13 Ended

This is the final state.

3.8.1.3 CONNTYPE_PARTNERTM_REDELIVERCOMMIT Acceptor States

The Subordinate Transaction Manager Facet (section 1.3.3.3.5) MUST act as an acceptor for the
CONNTYPE_PARTNERTM_REDELIVERCOMMIT (section 2.2.9.2.2.1) connection type. In this role, the
subordinate transaction manager MUST provide support for the states in this section.

The following figure shows the relationship between the CONNTYPE_PARTNERTM_REDELIVERCOMMIT
acceptor states.

412 /475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

Idle

PARTNERTM PARTNERTM_REDELIVERCOMMIT
REDELIVERCOMMIT MTAG _COMMITREQ received
_MTAG_RETRY sent

[/I':'rncessing Commit
lL\ Inquiry

PARTMERTM_REDELIVERCOMMIT _
MTAG COMMITREQDONE sent

'

Ended

Figure 63: CONNTYPE_PARTNERTM_REDELIVERCOMMIT acceptor states

3.8.1.3.1 1dle

This is the initial state. The following event is processed in this state:

= Receiving a PARTNERTM_REDELIVERCOMMIT_MTAG_COMMITREQ message (section 3.8.5.2.2.1.1)

3.8.1.3.2 Processing Commit Inquiry
The following event is processed in this state:
= Commit Complete (section 3.8.7.3)
3.8.1.3.3 Ended

This is the final state.

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

413/ 475

3.8.1.4 CONNTYPE_PARTNERTM_CHECKABORT Initiator States

The Subordinate Transaction Manager Facet (section 1.3.3.3.5) MUST act as an initiator for the
CONNTYPE_PARTNERTM_CHECKABORT (section 2.2.9.2.1.1) connection type. In this role, the

subordinate transaction manager MUST provide support for the states in this section.

The following figure shows the relationship between the CONNTYPE_PARTNERTM_CHECKABORT

initiator states.

[dle

PARTNERTM_CHECKABORT Chedc Abort Timer sxpires

_MTAG_CHECK sent

Awaiting PARTMNERTM_CHECKABORT
Confirmation _MTAG_RETRY received

Waiting to
Rerequest

PARTM ERTM_':HECKAB_{}RT
—MTAG_ABORTED received Cancel Check Abort timer

Ended

®

Figure 64: CONNTYPE_PARTNERTM_CHECKABORT initiator states

3.8.1.4.1 Idle

This is the initial state. The following event is processed in this state:
= Recover In Doubt Transaction (section 3.8.7.8)

3.8.1.4.2 Awaiting Confirmation

The following events are processed in this state:

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

414 /475

= Receiving a PARTNERTM_CHECKABORT_MTAG_ABORTED Message (section 3.8.5.2.1.1.1)
= Receiving a PARTNERTM_CHECKABORT_MTAG_RETRY Message (section 3.8.5.2.1.1.2)

= Cancel Check Abort (section 3.8.7.2)

3.8.1.4.3 Waiting to ReRequest
The following events are processed in this state:
= Check Abort Timer (section 3.8.2.1)

= Cancel Check Abort (section 3.8.7.2)

3.8.1.4.4 Ended

This is the final state.

3.8.2 Timers

The Subordinate Transaction Manager Facet (section 3.8) MUST provide the Check Abort
Timer (section 3.8.2.1).

3.8.2.1 Check Abort Timer

This timer MUST be set when the Subordinate Transaction Manager Facet (section 1.3.3.3.5) receives
a PARTNERTM_CHECKABORT_MTAG_RETRY (section 2.2.9.2.1.1.3) message on a
CONNTYPE_PARTNERTM_CHECKABORT (section 2.2.9.2.1.1) connection. The timer MUST be
canceled when the CONNTYPE_PARTNERTM_CHECKABORT (section 2.2.9.2.1.1) connection is
disconnected.

The default value of the timer is implementation-specific.<34>

When the timer is initialized, the Subordinate Transaction Manager Facet (section 1.3.3.3.5) MUST
provide an Enlistment object to associate with the timer. When the timer expires, the same
Enlistment object MUST be provided alongside the timer notification. The Subordinate Transaction
Manager Facet (section 1.3.3.3.5) MUST provide a distinct Check Abort Timer instance for each
CONNTYPE_PARTNERTM_CHECKABORT connection.

3.8.3 Initialization
When the Subordinate Transaction Manager Facet (section 1.3.3.3.5) is initialized:

= The Subordinate Transaction Manager Facet MUST examine the following security flags on the
Core Transaction Manager Facet and perform the following actions:

= If one of the Allow Network Access, Allow Network Transactions, or Allow Inbound
Transactions flags is set to false:

= For the following connection type, the Subordinate Transaction Manager Facet MUST
refuse to accept incoming connections from remote machines as specified in [MS-CMP
section 3.1.5.5 with the rejection Reason set to 0x80070005.

= CONNTYPE_PARTNERTM_PROPAGATE (section 2.2.9.1.1.1)

= If one of the Allow Network Access or Allow Network Transactions flags is set to false, or if
both the Allow Inbound Transactions and Allow Outbound Transactions flags are set to false:

415/ 475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

%5bMS-CMP%5d.pdf#Section_1970a8a0799d4308b9274e4ea23dc225

= For the following connection type, the Subordinate Transaction Manager Facet MUST
refuse to accept incoming connections from remote machines as specified in [MS-CMP]
section 3.1.5.5 with the rejection reason set to 0x80070005.

= CONNTYPE_PARTNERTM_REDELIVERCOMMIT (section 2.2.9.2.2.1)

All data elements maintained by the Subordinate Transaction Manager Facet are initialized to an
empty value unless stated otherwise in this section or in the initialization sections of the facets the
Subordinate Transaction Manager Facet extends, as specified in section 3.8.1.

3.8.4 Higher-Layer Triggered Events

There are no higher-layer triggered events.
3.8.5 Processing Events and Sequencing Rules

3.8.5.1 Transaction Propagation and Coordination
3.8.5.1.1 Push Propagation

3.8.5.1.1.1 CONNTYPE_PARTNERTM_PROPAGATE as Acceptor

For all messages received in this connection type, the Subordinate Transaction Manager
Facet (section 1.3.3.3.5) MUST process the message as specified in section 3.1.

Also, the Subordinate Transaction Manager Facet MUST override the default state verification
actions for incoming messages as specified in section 3.1.6 in the following manner:

= If the current connection state does not define a processing rule for the message:

= Send a PARTNERTM PROPAGATE MTAG PROTOCOL ERROR message using the connection.

= Perform default invalid message processing, as specified in section 3.1.6.

The Subordinate Transaction Manager Facet MUST additionally follow the processing rules as
specified in this section.

3.8.5.1.1.1.1 Receiving a PARTNERTM_PROPAGATE_MTAG_PROPAGATE Message

When the Subordinate Transaction Manager Facet (section 1.3.3.3.5) receives a
PARTNERTM_PROPAGATE_MTAG_PROPAGATE (section 2.2.9.1.1.1.1) message, the
Subordinate Transaction Manager Facet MUST perform the following actions:

= If the connection state is Idle:
= Set the connection state to Propagating.

= If the transaction manager does not have sufficient memory available to process the
message, it MUST:

= Send a PARTNERTM_PROPAGATE_MTAG_NO_MEM (section 2.2.9.1.1.1.4) message.
= Set the connection state to Ended (section 3.8.1.1.13).

= Otherwise, find the transaction object in the transaction table of the transaction manager
using the guidTx field from the message as the key:

= If the transaction object is found in the list:

416 /475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

= Send a PARTNERTM_PROPAGATE_MTAG_DUPLICATE (section 2.2.9.1.1.1.3)
message to the superior transaction manager.

= Set the connection state to Ended.
= Otherwise, if the transaction object is not found in the list:
= Create a new transaction object with the information provided in the message:

= Use the guidTx field from the message as the Transaction Object.Identifier
value.

= Use the isoLevel field from the message as the Isolation Level value.
= Use the szDesc field from the message as the Description value.
»= Add the connection to the connection list of the transaction.
= Create a new Enlistment object with the following values:
= The Subordinate Transaction Manager Facet.
= The new transaction object.
= This connection object.
= Assign the enlistment to the connection's Enlistment field.

= Signal the Create Superior Enlistment (section 3.2.7.12) event on the Core
Transaction Manager Facet (section 1.3.3.3.1) with the Enlistment object.

= Otherwise, the message MUST be processed as specified in section 3.1.6.

3.8.5.1.1.1.2 Receiving Other PARTNERTM_PROPAGATE_MTAG Messages

When the Subordinate Transaction Manager Facet (section 1.3.3.3.5) receives one of these
messages:

= PARTNERTM_PROPAGATE_MTAG_PHASEOREGISTRATIONREJECTED (section 2.2.9.1.1.1.16)
= PARTNERTM_PROPAGATE_MTAG_PHASEOREGISTERED (section 2.2.9.1.1.1.15)

= PARTNERTM_PROPAGATE_MTAG_PHASEO (section 2.2.9.1.1.1.17)

= PARTNERTM_PROPAGATE_MTAG_ABORTREQ (section 2.2.9.1.1.1.11)

= PARTNERTM_PROPAGATE_MTAG_PREPAREREQ (section 2.2.9.1.1.1.6)

= PARTNERTM_PROPAGATE_MTAG_COMMITREQ (section 2.2.9.1.1.1.9)

It MUST follow the same message processing rules as the
CONNTYPE_PARTNERTM_BRANCH (section 2.2.9.1.2.1) connection type acting as an initiator. See
CONNTYPE_PARTNERTM_BRANCH as Initiator (section 3.8.5.1.2.1) for more information.

3.8.5.1.1.1.3 Receiving a PARTNERTM_PROPAGATE_MTAG_PROTOCOL_ERROR
Message

The processing of this event MUST be identical to the processing of the Connection Disconnected
event.

3.8.5.1.1.1.4 CONTYPE_PARTNERTM_PROPAGATE Connection Disconnected

417/ 475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

When a CONNTYPE_PARTNERTM_PROPAGATE (section 2.2.9.1.1.1) connection is disconnected, the
Subordinate Transaction Manager Facet (section 1.3.3.3.5) MUST perform the same actions as
the CONNTYPE_PARTNERTM_BRANCH (section 2.2.9.1.2.1) connection type acting as an initiator. See
section 3.8.5.1.2.1 for more details.

3.8.5.1.2 Pull Propagation

3.8.5.1.2.1 CONNTYPE_PARTNERTM_BRANCH as Initiator

For all messages received in this connection type, the Subordinate Transaction Manager
Facet (section 1.3.3.3.5) MUST process the message as specified in section 3.1.

Also, the Subordinate Transaction Manager Facet MUST override the default state verification
actions for incoming messages as specified in section 3.1.6 in the following manner:

= If the current connection state does not define a processing rule for the message:

= Send a PARTNERTM PROPAGATE MTAG PROTOCOL ERROR message using the connection.

] Perform default invalid message processing, as specified in section 3.1.6.

The Subordinate Transaction Manager Facet MUST additionally follow the processing rules as
specified in the following sections.

3.8.5.1.2.1.1 Receiving a PARTNERTM_BRANCH_MTAG_BRANCHED Message

When the Subordinate Transaction Manager Facet (section 1.3.3.3.5) receives a
PARTNERTM_BRANCH_MTAG_BRANCHED (section 2.2.9.1.2.1.6) message, the Subordinate
Transaction Manager Facet MUST perform the following actions:

= If the connection state is Awaiting Branch Response:
= Set the connection state to Active.
= Create an Enlistment object with the following values:
= The Subordinate Transaction Manager Facet
= The transaction object referenced by the connection's Connection-Specific Data field
= This connection object
= Set this connection's enlistment field to reference the new Enlistment object.

= Signal the Branch Transaction Success (section 3.2.7.9) event on the Core Transaction
Manager Facet (section 1.3.3.3.1) with the Enlistment object.

= Otherwise, the message MUST be processed as an invalid message as specified in section 3.1.6.

3.8.5.1.2.1.2 Receiving a PARTNERTM_BRANCH_MTAG_BRANCH_LOG_FULL,
PARTNERTM_BRANCH_MTAG_BRANCH_NO_MEM,
PARTNERTM_BRANCH_MTAG_BRANCH_TOO_LATE,
PARTNERTM_BRANCH_MTAG_BRANCH_TOO_MANY, or
PARTNERTM_BRANCH_MTAG_BRANCH_TX_NOT_FOUND Message

When the Subordinate Transaction Manager Facet (section 1.3.3.3.5) receives one of these
messages, the Subordinate Transaction Manager Facet MUST perform the following actions:

= If the connection state is Awaiting Branch Response:

418/ 475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

= Create an Enlistment object with a reference to the Subordinate Transaction Manager
Facet, a reference to this connection, and a reference to the transaction object referenced by
this connection.

= Signal the Branch Transaction Failure event on the Core Transaction Manager Facet with the
following arguments:

= The Enlistment object.
= The failure code that matches the incoming message:
= PARTNERTM_BRANCH_MTAG_BRANCH_LOG_FULL: Log Full Remote
= PARTNERTM_BRANCH_MTAG_BRANCH_NO_MEM: No Mem Remote
= PARTNERTM_BRANCH_MTAG_BRANCH_TOO_LATE: Too Late
= PARTNERTM_BRANCH_MTAG_BRANCH_TOO_MANY: Too Many Remote
= PARTNERTM_BRANCH_MTAG_BRANCH_TX_NOT_FOUND: Tx Not Found
= Set the connection state to Ended.

= Otherwise, the message MUST be processed as an invalid message as specified in section 3.1.6.

3.8.5.1.2.1.3 Receiving a PARTNERTM_PROPAGATE_MTAG_PHASEOREGISTERED
Message

When the Subordinate Transaction Manager Facet (section 1.3.3.3.5) receives a
PARTNERTM_PROPAGATE_MTAG_PHASEOREGISTERED (section 2.2.9.1.1.1.15) message, the
Subordinate Transaction Manager Facet MUST perform the following actions:

= If the connection state is Awaiting Registration Response:
= Set the connection state to Awaiting Phase Zero.

= Signal the Register Phase Zero Success (section 3.2.7.29) event on the Core Transaction
Manager Facet (section 1.3.3.3.1) with the Enlistment object referenced by this connection.

. Otherwise, if the connection state is Awaiting Registration Response During Phase Zero:
. Set the connection state to Awaiting Phase Zero Outcome with Outstanding Registration.

= Signal the Register Phase Zero Success event on the Core Transaction Manager Facet with the
Enlistment object referenced by this connection.

= Otherwise, the message MUST be processed as an invalid message as specified in section 3.1.6.

3.8.5.1.2.1.4 Receiving a
PARTNERTM_PROPAGATE_MTAG_PHASEOREGISTRATIONREJECTED
Message

When the Subordinate Transaction Manager Facet (section 1.3.3.3.5) receives a
PARTNERTM_PROPAGATE_MTAG_PHASEOREGISTRATIONREJECTED (section 2.2.9.1.1.1.16) message,
the Subordinate Transaction Manager Facet MUST perform the following actions:

= If the connection state is Awaiting Registration Response:

= Set the connection state to Active.

419/ 475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

»= Signal the Register Phase Zero Failure (section 3.2.7.28) event on the Core Transaction
Manager Facet (section 1.3.3.3.1) with the following arguments:

= The Enlistment object referenced by this connection.
= A failure reason of Too Late.
= Otherwise, if the connection state is Awaiting Registration Response During Phase Zero:
= Set the connection state to Awaiting Phase Zero Outcome.

= Signal the Register Phase Zero Failure event on the Core Transaction Manager Facet with the
following arguments:

= The Enlistment object referenced by this connection.
= A failure reason of Too Late.

= Otherwise, the message MUST be processed as an invalid message as specified in section 3.1.6.

3.8.5.1.2.1.5 Receiving a PARTNERTM_PROPAGATE_MTAG_ABORTREQ Message

When the Subordinate Transaction Manager Facet receives a
PARTNERTM PROPAGATE MTAG ABORTREQ message, the Subordinate Transaction Manager
Facet MUST perform the following actions:

= If the connection state is either Active or Prepared:
» Set the connection state to Aborting.

= Signal the Begin Rollback event on the Core Transaction Manager Facet with the transaction
object referenced by the Enlistment object referenced by this connection.

= Otherwise, the message MUST be processed as an invalid message as specified in section 3.1.6.

3.8.5.1.2.1.6 Receiving a PARTNERTM_PROPAGATE_MTAG_PHASEO Message

When the Subordinate Transaction Manager Facet (section 1.3.3.3.5) receives a
PARTNERTM PROPAGATE MTAG PHASEO message, the Subordinate Transaction Manager Facet
MUST perform the following actions:

= If the connection state is Awaiting Phase Zero:
= Set the connection state to Awaiting Phase Zero Outcome.

» Signal the Begin Phase Zero event on the Core Transaction Manager Facet with the
transaction object referenced by the Enlistment object referenced by this connection.

= Otherwise, the message MUST be processed as an invalid message as specified in section 3.1.6.

3.8.5.1.2.1.7 Receiving a PARTNERTM_PROPAGATE_MTAG_PREPAREREQ Message

When the Subordinate Transaction Manager Facet (section 1.3.3.3.5) receives a
PARTNERTM PROPAGATE MTAG PREPAREREQ message, the Subordinate Transaction Manager
Facet MUST perform the following actions:

= If the connection state is Active:

= Set the connection state to Preparing.

420/ 475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

= Signal the Begin Phase One event on the Core Transaction Manager Facet with the following
arguments:

- The transaction object referenced by the Enlistment object referenced by the receiving
connection.

= If the fSinglePhase field of the message is set to 0x00000000:
= Set the Single Phase Commit flag to false.

= Otherwise:
= Set the Single Phase Commit flag to true.

= Otherwise, the message MUST be processed as an invalid message as specified in section 3.1.6.

3.8.5.1.2.1.8 Receiving a PARTNERTM_PROPAGATE_MTAG_COMMITREQ Message

When the Subordinate Transaction Manager Facet (section 1.3.3.3.5) receives a
PARTNERTM PROPAGATE MTAG COMMITREQ message, the Subordinate Transaction Manager
Facet MUST perform the following actions:

] If the connection state is Prepared:
= Set the connection state to Committing.

»= Signal the Begin Commit on the Core Transaction Manager Facet event with the transaction
object referenced by the Enlistment object referenced by this connection.

= Otherwise, the message MUST be processed as an invalid message as specified in section 3.1.6.

3.8.5.1.2.1.9 Receiving a PARTNERTM_PROPAGATE_MTAG_PROTOCOL_ERROR
Message

The processing of this event MUST be identical to the processing of the Connection Disconnected
event.

3.8.5.1.2.1.10 Connection Disconnected

When a CONNTYPE_PARTNERTM_BRANCH (section 2.2.9.1.2.1) connection is disconnected, the
Subordinate Transaction Manager Facet (section 3.8) MUST perform the following actions:

= If the connection state is Prepared:

] Signal the Recover In Doubt Transaction (section 3.8.7.8) event on the Subordinate
Transaction Manager Facet with the Enlistment object referenced by this connection.

= Otherwise, if the connection state is Preparing:

= If the transaction object's Single Phase Commit flag (defined in section 3.2.1) is false, signal
the Begin Rollback (section 3.2.7.6) event on Core Transaction Manager
Facet (section 1.3.3.3.1) with the transaction object referenced by the Enlistment object
referenced by this connection.

- Otherwise, the event MUST be processed as specified in section 3.1.8.3.
= Otherwise, if the connection state is Awaiting Branch Response:
= Create an Enlistment object with the following values:

= The Subordinate Transaction Manager Facet.

421 /475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

= The transaction object in the Connection-Specific Data field of this connection.
= This connection object.

= Signal the Branch Transaction Failure (section 3.2.7.8) event on the Core Transaction
Manager Facet (section 1.3.3.3.1) with the following arguments:

= The new enlistment object.
= A failure code of Comm Failed.
= Set the connection state to Ended.

= Otherwise, if the connection state is Active, Awaiting Registration Response, Awaiting Registration
Response During Phase Zero, Awaiting Phase Zero, Awaiting Phase Zero Outcome, or Awaiting
Phase Zero Outcome with Outstanding Registration:

= Signal the Begin Rollback (section 3.2.7.6) event on the Core Transaction Manager
Facet (section 1.3.3.3.1) with the transaction object referenced by this connection.

= Otherwise, the event MUST be processed as specified in section 3.1.8.3.

3.8.5.2 Transaction Recovery
3.8.5.2.1 Subordinate-Driven Recovery

3.8.5.2.1.1 CONNTYPE_PARTNERTM_CHECKABORT as Initiator

For all messages received in this connection type, the Subordinate Transaction Manager
Facet (section 1.3.3.3.5) MUST process the message in accordance with section 3.8. The
Subordinate Transaction Manager MUST additionally follow the processing rules specified in the
following sections.

3.8.5.2.1.1.1 Receiving a PARTNERTM_CHECKABORT_MTAG_ABORTED Message

When the Subordinate Transaction Manager Facet (section 1.3.3.3.5) receives a
PARTNERTM_CHECKABORT_MTAG_ABORTED (section 2.2.9.2.1.1.2) message, the Subordinate
Transaction Manager MUST perform the following actions:

= If the connection state is Awaiting Confirmation:

= Signal the Begin Rollback (section 3.2.7.6) event on the Core Transaction Manager
Facet (section 1.3.3.3.1) with the:

= The transaction object referenced by the Enlistment object referenced by this connection.
= Set the Connection state to Ended.

= Otherwise, the message MUST be processed as an invalid message as specified in section 3.1.6.

3.8.5.2.1.1.2 Receiving a PARTNERTM_CHECKABORT_MTAG_RETRY Message

When the Subordinate Transaction Manager Facet (section 1.3.3.3.5) receives a
PARTNERTM CHECKABORT MTAG RETRY message, the Subordinate Transaction Manager Facet
MUST perform the following actions:

= If the connection state is Awaiting Confirmation:

= Set the connection state to Waiting to Rerequest.

422 / 475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

= Initialize a Check Abort Timer with the following arguments:
= The connection's Enlistment object
= An implementation-specific time-out value

= Otherwise, the message MUST be processed as an invalid message as specified in section 3.1.6.

3.8.5.2.1.1.3 CONNTYPE_PARTNERTM_CHECKABORT Connection Disconnected

When a CONNTYPE_PARTNERTM_CHECKABORT (section 2.2.9.2.1.1) connection is disconnected, the
Subordinate Transaction Manager Facet (section 3.8) MUST perform the following actions:

= If the connection state is Waiting to Rerequest:
»= Cancel the Check Abort Timer associated with the connection.
= If the connection state is Idle, Waiting to Rerequest, or Awaiting Confirmation:

- Signal the Recover In Doubt Transaction (section 3.8.7.8) event on the Subordinate
Transaction Manager Facet (section 1.3.3.3.5) with the Enlistment object referenced by this
connection.

= Set the connection state to Ended.

= Finally, in all cases, the event MUST be processed as specified in section 3.1.8.3.
3.8.5.2.2 Superior-Driven Recovery

3.8.5.2.2.1 CONNTYPE_PARTNERTM_REDELIVERCOMMIT as Acceptor

For all messages received in this connection type, the Subordinate Transaction Manager

Facet (section 1.3.3.3.5) MUST process the message in accordance with section 3.8. The Subordinate
Transaction Manager Facet MUST additionally follow the processing rules specified in the following
sections.

3.8.5.2.2.1.1 Receiving a PARTNERTM_REDELIVERCOMMIT_MTAG_COMMITREQ
Message

When the subordinate transaction manager receives a
PARTNERTM_REDELIVERCOMMIT_MTAG_COMMITREQ (section 2.2.9.2.2.1.1) message, the
Subordinate Transaction Manager Facet (section 1.3.3.3.5) MUST perform the following actions:

= If the connection state is Idle:
» Set the connection state to Processing Commit Inquiry.

= Find the transaction object in the transaction manager's transaction table, using the guidTx
field from the message as a key.

= If the transaction object is not found:

= Senda
PARTNERTM_REDELIVERCOMMIT_MTAG_COMMITREQDONE (section 2.2.9.2.2.1.2)
message using the connection.

= Set the connection state to Ended.

= Otherwise, if the transaction state is either Phase One Complete (section 3.2.1.3.8) or In
Doubt (section 3.2.1.3.12):

423 /475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

= Signal the Cancel Check Abort (section 3.8.7.2) event on the Subordinate Transaction
Manager Facet with the transaction object.

= Signal the Begin Commit (section 3.2.7.2) event on the Core Transaction Manager
Facet (section 1.3.3.3.1) with the transaction object.

= Otherwise:

= Send a PARTNERTM_REDELIVERCOMMIT_MTAG_RETRY (section 2.2.9.2.2.1.3)
message using the connection.

= Set the connection state to Idle.

= Otherwise, the message MUST be processed as an invalid message as specified in section 3.1.8.1.

3.8.5.2.2.1.2 Connection Disconnected

When a CONNTYPE_PARTNERTM_REDELIVERCOMMIT (section 2.2.9.2.2.1) connection is disconnected,
the Subordinate Transaction Manager Facet (section 1.3.3.3.5) MUST perform the actions as
specified in section 3.1.8.3.

3.8.6 Timer Events

3.8.6.1 Check Abort Timer

When the Check Abort timer expires, the Subordinate Transaction Manager
Facet (section 1.3.3.3.5) MUST perform the following actions:

= If the connection referenced by the provided enlistment is in the Waiting to Rerequest state:
= Set the connection state to Idle.

= Send a PARTNERTM_CHECKABORT_MTAG_CHECK (section 2.2.9.2.1.1.1) message using
the connection referenced by the provided Enlistment object:

= Set the guidTX field to the provided Enlistment object's transaction object's Transaction
Object.Identifier field.

= Set the connection state to Awaiting Confirmation.

= Otherwise, ignore the timer event.

3.8.7 Other Local Events

A Subordinate Transaction Manager Facet (section 1.3.3.3.5) MUST be prepared to process the
local events defined in the following sections.

The subordinate transaction manager MUST be prepared to process local events pertaining to
Phase Zero functionality only on versions where the connection type CONNTYPE TXUSER PHASEO is
supported. Version-Specific Aspects of Connection Types Relevant to a Resource

Manager (section 2.2.1.1.3) defines protocol version support for this connection type. The following
local events are affected:

= Register Phase Zero

= Phase Zero Complete

424 / 475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

3.8.7.1 Branch Transaction

The Branch Transaction event MUST be signaled with the following arguments:
= A transaction object

= A Name object representing the remote superior transaction manager

If the Branch Transaction event is signaled, the Subordinate Transaction Manager
Facet (section 3.8) MUST perform the following actions:

= Initiate a new CONNTYPE_PARTNERTM_BRANCH (section 2.2.9.1.2.1) connection to the
provided Name object.

= Assign the provided transaction object to the connection's Connection-Specific Data field.

= Send a PARTNERTM_BRANCH_MTAG_BRANCHING (section 2.2.9.1.2.1.7) message using the
connection:

= Set the guidTX field to the provided Transaction Object.Identifier field of the transaction
object.

» Set the connection state to Awaiting Branch Response (section 3.8.1.2.2).

3.8.7.2 Cancel Check Abort
The Cancel Check Abort event MUST be signaled with the following arguments:
= A transaction object.

If the Cancel Check Abort event is signaled, the Subordinate Transaction Manager
Facet (section 3.8) MUST perform the following actions:

= Find a connection object of type CONNTYPE_PARTNERTM_CHECKABORT (section 2.2.9.2.1.1) in
the transaction object's Connection list.

= If no such connection is found, ignore the event.
= Otherwise:
= If a Check Abort timer is active for the transaction, cancel it.

= Set the connection state to Ended.

3.8.7.3 Commit Complete
The Commit Complete event MUST be signaled with the following arguments:
= An Enlistment object

If the Commit Complete event is signaled, the Subordinate Transaction Manager
Facet (section 3.8) MUST perform the following actions:

= If the provided enlistment's connection is of type
CONNTYPE_TXUSER_BRANCH (section 2.2.9.1.2.1) or
CONNTYPE_PARTNERTM_PROPAGATE (section 2.2.9.1.1.1):

= Send a PARTNERTM_PROPAGATE_MTAG_COMMITREQDONE (section 2.2.9.1.1.1.10)
message using the provided enlistment's connection.

= Set the connection state to Ended.

425 /475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

= Otherwise, if the provided enlistment's connection is of type
CONNTYPE_PARTNERTM_REDELIVERCOMMIT (section 2.2.9.2.2.1):

= Senda
PARTNERTM_REDELIVERCOMMIT_MTAG_COMMITREQDONE (section 2.2.9.2.2.1.2)
message using the provided enlistment's connection.

= Set the connection state to Ended.

3.8.7.4 Create Superior Enlistment Success
The Create Superior Enlistment Success event MUST be signaled with the following arguments:
= An Enlistment object

If the Create Superior Enlistment Success event is signaled, the Subordinate Transaction
Manager Facet (section 3.8) MUST perform the following actions:

= Send a PARTNERTM_PROPAGATE_MTAG_PROPAGATED (section 2.2.9.1.1.1.2) message
using the provided enlistment's connection:

= Set the connection state to Active.

3.8.7.5 Create Superior Enlistment Failure
The Create Superior Enlistment Failure event MUST be signaled with the following arguments:
= An Enlistment object.
= A value indicating the failure reason. The reason MUST be set to one of the following values:
= Duplicate
= Log Full

If the Create Superior Enlistment Failure event is signaled, the Subordinate Transaction
Manager Facet (section 3.8) MUST perform the following actions:

= Send the matching message for the following reason codes using the provided enlistment's
connection:

= Duplicate: PARTNERTM_PROPAGATE_MTAG_DUPLICATE (section 2.2.9.1.1.1.3)
= Log Full: PARTNERTM_PROPAGATE_MTAG_LOG_FULL (section 2.2.9.1.1.1.5)

= Set the connection state to Ended.

3.8.7.6 Phase Zero Complete
The Phase Zero Complete event MUST be signaled with the following arguments:
= An Enlistment object.
*= An outcome value. This value MUST be one of the following:
= Success

= Failure

426 / 475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

If the Phase Zero Complete event is signaled, the Subordinate Transaction Manager
Facet (section 3.8) MUST perform the following actions:

= If the provided outcome is Success:

= Send a PARTNERTM_PROPAGATE_MTAG_PHASEOCOMPLETE (section 2.2.9.1.1.1.18)
message using the provided enlistment's connection.

= Set the connection state to Active.
= Otherwise:

= Send a PARTNERTM_PROPAGATE_MTAG_ABORTNOTIFY (section 2.2.9.1.1.1.13)
message using the provided enlistment's connection.

= Set the connection state to Ended.

3.8.7.7 Phase One Complete
The Phase One Complete event MUST be signaled with the following arguments:
= An Enlistment object.

= A value indicating the outcome of Phase One. The value MUST be set to one of the following
values:

= Read Only
= Prepared

= Committed
= Aborted

= In Doubt

If the Phase One Complete event is signaled, the Subordinate Transaction Manager
Facet (section 3.8) MUST perform the following actions:

= If the provided outcome is Read Only:

= Send a PARTNERTM_PROPAGATE_MTAG_PREPAREREQDONE (section 2.2.9.1.1.1.7)
message using the provided enlistment's connection:

= Set the prepareReqDone field to
PARTNERTM_PROPAGATE_PREPAREREQDONE_READ_ONLY.

= Set the guidReason field to the value provided by the higher-layer business logic, as
specified in section 2.2.9.1.1.1.7.

= Set the connection state to Ended.
= Otherwise, if the provided outcome is Prepared:

* Send a PARTNERTM_PROPAGATE_MTAG_PREPAREREQDONE (section 2.2.9.1.1.1.7)
message using the provided enlistment's connection:

= Set the prepareReqDone field to PARTNERTM_PROPAGATE_PREPAREREQDONE_OK.
= Set the connection state to Ended.

= Otherwise, if the provided outcome is Committed:

427/ 475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

= Send a PARTNERTM_PROPAGATE_MTAG_PREPAREREQDONE (section 2.2.9.1.1.1.7)
message using the connection:

= Set the prepareReqDone field to
PARTNERTM_PROPAGATE_PREPAREREQDONE_SINGLEPHASE_COMMIT.

= Set the connection state to Ended.
= Otherwise, if the provided outcome is Aborted:

= Send a PARTNERTM_PROPAGATE_MTAG_PREPAREREQDONE (section 2.2.9.1.1.1.7)
message using the connection:

= Set the prepareReqDone field MUST to
PARTNERTM_PROPAGATE_PREPAREREQDONE_ABORT.

= Set the connection state to Ended.
= Otherwise, if the provided outcome is In Doubt (section 3.2.1.3.12):

= Send a PARTNERTM_PROPAGATE_MTAG_PREPAREREQDONE (section 2.2.9.1.1.1.7)
message using the connection:

= Set the prepareReqDone field MUST to
PARTNERTM_PROPAGATE_PREPAREREQDONE_SINGLEPHASE_INDOUBT.

= Set the connection state to Ended.

3.8.7.8 Recover In Doubt Transaction
The Recover In Doubt Transaction event MUST be signaled with the following arguments:
= An Enlistment object

If the Recover In Doubt Transaction event is signaled, the Subordinate Transaction Manager
Facet (section 3.8) MUST perform the following actions:

= Initiate a new CONNTYPE_PARTNERTM_CHECKABORT (section 2.2.9.2.1.1) connection using the
Name object referenced by the Name field of the Session object containing the provided
enlistment's connection.

= Send a PARTNERTM_CHECKABORT_MTAG_CHECK (section 2.2.9.2.1.1.1) message using the
connection:

= Set the guidTX field to the Transaction Object.Identifier field of the transaction object
referenced by the provided Enlistment object.

= Set the connection state to Awaiting Confirmation.

3.8.7.9 Register Phase Zero
The Register Phase Zero event MUST be signaled with the following arguments:
= An Enlistment object

If the Register Phase Zero event is signaled, the Subordinate Transaction Manager
Facet (section 3.8) MUST perform the following actions:

= If the provided enlistment's connection state is Active:

= Set the connection state to Awaiting Registration Response (section 3.8.1.1.5).

428 /475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

= Send a PARTNERTM_PROPAGATE_MTAG_PHASEOREGISTER (section 2.2.9.1.1.1.14) message
using the connection.

= Otherwise, if the connection state is Awaiting Phase Zero Outcome:

= Set the connection state to Awaiting Registration Response During Phase
Zero (section 3.8.1.1.8).

= Send a PARTNERTM_PROPAGATE_MTAG_PHASEOREGISTER (section 2.2.9.1.1.1.14) message
using the enlistment's connection.

= Otherwise:

= Signal the Register Phase Zero Failure (section 3.2.7.28) on the Core Transaction Manager
Facet (section 1.3.3.3.1) with the following arguments:

= The provided Enlistment object

= The Too Late reason code

3.8.7.10 Rollback Complete
The Rollback Complete event MUST be signaled with the following arguments:
= An Enlistment object

If the Rollback Complete event is signaled, the Subordinate Transaction Manager
Facet (section 3.8) MUST perform the following actions:

= If the provided enlistment's connection is of type
CONNTYPE_PARTNERTM_BRANCH (section 2.2.9.1.2.1) or
CONNTYPE_PARTNERTM_PROPAGATE (section 2.2.9.1.1.1)

= Send a PARTNERTM_PROPAGATE_MTAG_ABORTREQDONE (section 2.2.9.1.1.1.12) message
using the provided enlistment's connection.

= Set the connection state to Ended.

= Otherwise, ignore the signal.

3.8.7.11 Unilaterally Aborted
The Unilaterally Aborted event MUST be signaled with the following arguments:
= An Enlistment object

If the Unilaterally Aborted event is signaled, the Subordinate Transaction Manager
Facet (section 3.8) MUST perform the following actions:

= If the provided enlistment's connection state is Aborting:
= Ignore the signal.
= Otherwise:

= Send a PARTNERTM_PROPAGATE_MTAG_ABORTNOTIFY (section 2.2.9.1.1.1.13) message
using the provided enlistment's connection.

= Set the connection state to Ended.

429 / 475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

4 Protocol Examples

The following sections describe several operations as used in common scenarios to illustrate the
function of this protocol. These protocol examples generally assume that an OleTx transports session,
as specified in [MS-CMPQ] section 3.2.1.2, has already been established between the two participants.
However, some examples exhibit how one participant establishes a new OleTx transports session with
another participant because of the protocol that is being demonstrated.

Participants communicate with each other by using OleTx multiplexing connections, as specified in
MS-CMP] section 3.1.1.1, that are in turn layered on top of the OleTx transports infrastructure (as
specified in [MS-CMPOQO] section 3.3.1). In these examples, messages are sent from one participant to
another by submitting a MESSAGE_PACKET (section 2.2.4.1) to the underlying OleTx multiplexing

layer, as specified in [MS-CMP] section 3.1.4.1.

4.1 Simple Transaction Scenario
This scenario shows how an application creates and completes a transaction. The scenario begins with

the application establishing a transport session with a transaction manager and negotiating its
connection resources.

4.1.1 Beginning a Transaction

This packet sequence is initiated by starting a connection on a transport session between an
application and a transaction manager.

CONNTYPE TXUSER BEGIN2: The packet sequence starts when an application initiates a connection
using CONNTYPE_TXUSER_BEGINZ2.

Field Value Value description

MsgTag 0x00000005 | MTAG_CONNECTION_REQ
fIsMaster 0x00000001 | 1

dwConnectionId | 0x00000001 | 1

dwUserMsgType | 0x00000028 | CONNTYPE_TXUSER_BEGIN2
dwcbVarLenData | 0x00000000 | O

dwReservedl Oxcd64cd64 | dwReservedl: Oxcd64cd64

The application then sends a TXUSER BEGIN2 MTAG BEGIN user message specifying the isolation
level, time-out, transaction description, and isolation flag. For this example, the application requests a
transaction with ISOLATIONLEVEL_SERIALIZABLE, a time-out of 60 seconds, a description of "sample
transaction", and ISOFLAG_RETAIN_DONTCARE.

Field Value Value description

MsgTag 0x000000FF | MTAG_USER_MESSAGE
fIsMaster 0x00000001 | 1

dwConnectionld | 0x00000001 | 1

dwUserMsgType | 0x00006002 | TXUSER_BEGIN2_MTAG_BEGIN
dwcbVarLenData | 0x00000034 | 52

430/ 475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

%5bMS-CMPO%5d.pdf#Section_d2403ca533fa432997f5825ad0868bf6
%5bMS-CMP%5d.pdf#Section_1970a8a0799d4308b9274e4ea23dc225

Field

Value

Value description

dwReserved1

Oxcd64cd64

dwReservedl: Oxcd64cd64

isoLevel

0x00100000

ISOLATIONLEVEL_SERIALIZABLE

dwTimeout

0x0000EA60

60000

szDesc

0x706D6173

"sample transaction"

0x7420656C
0x736E6172
0x69746361
0x00006E6F
0x00000000
0x00000000
0x00000000
0x00000000
0x00000000

0x00000005

isoFlags ISOFLAG_RETAIN_DONTCARE

When the transaction manager receives the TXUSER_BEGIN2_MTAG_BEGIN message from the
application, the transaction manager attempts to create a transaction object with a globally unique
identifier (GUID) as its identifier. If the transaction manager successfully creates the transaction, it
sends a TXUSER BEGIN2 MTAG SINK BEGUN user message to the application specifying the
transaction identifier as the guidTx field (for example, 4046037e-9722-46c9-9883-99062341cbh35),
and the transaction manager adds the transaction to its list of known transaction objects.

Field Value Value description
MsgTag 0x00000FFF | MTAG_USER_MESSAGE
fIsMaster 0x00000000 | O

dwConnectionld 0x00000001 | 1

dwUserMsgType | 0x00006006 | TXUSER_BEGIN2_MTAG_SINK_BEGUN
dwcbVarLenData | 0x00000010 | 16
dwReserved1l Oxcd64cd64 dwReservedl: 0xcd64cd64
guidTx 0x4046037E | 4046037e-9722-46c9-9883-99062341cb35
0x46C99722
0x06999883
0x35CB4123

4.1.2 Completing a Transaction

After the transaction begins, the application decides whether to commit or abort the transaction. If the
application disconnects the connection before committing or aborting the transaction, the transaction
manager assumes that the transaction aborts.

431 /475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

4.1.2.1 Committing the Transaction

The application commits the transaction by sending a TXUSER BEGIN2 MTAG COMMIT user message
specifying a value of zero in the unused grfRM field.

Field Value Value description

MsgTag 0x000000FF | MTAG_USER_MESSAGE

fIsMaster 0x00000001 | 1

dwConnectionId | 0x00000001 | 1

dwUserMsgType | 0x00006003 | TXUSER_BEGIN2_MTAG_COMMIT
dwcbVarLenData | 0x00000004 | 4

dwReservedl Oxcd64cd64 | dwReservedl: Oxcd64cd64

grfRM 0x00000000 | O

In response, the transaction manager attempts to commit the transaction by using a two-phase
commit. If the transaction manager successfully completes Phase One of the transaction, the
transaction manager sends a TXUSER BEGIN2 MTAG SINK ERROR user message to the
application with TRUN_TXBEGIN_ERROR_NOTIFY_COMMITTED specified in the Error field.

Field Value Value description

MsgTag 0x000000FF | MTAG_USER_MESSAGE

fIsMaster 0x00000000 | O

dwConnectionId | 0x00000001 | 1

dwUserMsgType | 0x00006005 | TXUSER_BEGIN2_MTAG_SINK_ERROR
dwcbVarLenData | 0x00000004 | 4

dwReserved1 0xcd64cd64 | dwReservedl: Oxcd64cd64

Error 0x0000001F | TRUN_TXBEGIN_ERROR_NOTIFY_COMMITTED

After the application gets the TXUSER_BEGIN2_MTAG_SINK_ERROR response from its transaction
manager, no more user messages can be sent on this connection and the application initiates the
disconnect sequence.

4.2 Transaction Marshaling Scenario (Pull Propagation)

This scenario shows how an application (or resource manager) on Machinel marshals an existing
transaction to an application or resource manager on Machine2 by using pull propagation. Because the
receiving application obtains knowledge of an existing transaction, it is implied that another
application exists that has access to an existing transaction. The receiving application obtains the
necessary information from the existing transaction. Because OleTx does not prescribe application-to-
application communication, an out-of-band mechanism (such as an application API) needs to be
available to transfer this knowledge from the sending application to the receiving application.

Pull propagation involves three main stages. In the first stage, the sending application (or sender)
packages information about an existing transaction and sends the information to the receiving
application (or receiver) — this is called marshaling the transaction.

432 /475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

During the second stage (unmarshaling the transaction), the receiver requests an association with the
transmitted transaction. If the transaction manager of the receiver does not have a reference for
the requested transaction, it enters the third stage and attempts to add itself as a subordinate branch
of the transaction by using the transaction manager of the sender.

This scenario requires that the receiving application has established a transport session with a
transaction manager and has negotiated its connection resources. The scenario also assumes that
there is an out-of-band mechanism (an application API) that the sending and receiving applications
use to exchange transactional information. In general, this API is also necessary for the sending
application to prescribe work for the receiving application to perform as part of the transaction.

4.2.1 Marshaling the Transaction

To marshal a transaction from the sending application to the receiving application, several pieces of
information need to be transmitted to the receiver. The receiver needs to have sufficient knowledge of
the existing transaction. That knowledge includes the transaction identifier, the isolation level, the
isolation flag, and the description of the transaction.

The receiver also needs to have sufficient locative information of the sender's transaction manager in
order for the receiver's transaction manager to establish a communication session with the sender's
transaction manager (that is, the OLETX TM ADDR). The OLETX_TM_ADDR includes the host name
of the sender's transaction manager, its contact identifier, and the RPC communication protocols
that the transaction manager of the sender supports.

The transaction information and the sender transaction manager endpoint information are marshaled
to a Propagation Token structure, as specified in section 2.2.5.4.

Field Value Description

dwVersionMin 0x00000001 1

dwVersionMax 0x00000002 2

guidTx 0x4046037E | 4046037e-9722-46c9-9883-99062341cb35
0x46C99722
0x06999883
0x35CB4123

isoLevel 0x00100000 | ISOLATIONLEVEL_SERIALIZABLE

isoFlags 0x00000005 | ISOFLAG_RETAIN_DONTCARE

cbSourceTmAddr 0x00000058 88

szDesc 0x706D6173 | "sample-transaction"
0x7420656C
0x736E6172
0x69746361
0x00006E6F
0x00000000
0x00000000
0x00000000
0x00000000
0x00000000

szGuid 0x30616162 | "BAA04775-8F43-4F49-ADEF-5A1B2151190B"
0x35373734

433/ 475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

Field Value Description

0x3466382d
0x66342d33
0x612d3934
0x2d666564
0x62316135
0x31353132
0x62303931
0x00000000

dwcbHostName 0x0000000a 10

dwReservedl Oxcd64cd64 dwReservedl: Oxcd64cd64

grbComProtsSupported | 0x00000021 PROT_IP_TCP | PROT_LRPC

szHostName 0x6863614d "Machine_1"
0x5f656e69
0x00000031

cbHostNameW 0x00000014 20

wszHostname 0x0061004D | L"Machine_1"
0x00680063
0x006E0069
0x005F0065
0x00000031

4.2.2 Unmarshaling the Transaction

To begin the unmarshaling process, the receiving application initiates a connection over its transport
session with its transaction manager.

CONNTYPE TXUSER ASSOCIATE: The packet sequence starts when the receiving application initiates
a connection by using CONNTYPE_TXUSER_ASSOCIATE.

Field Value Value description
MsgTag 0x00000005 | MTAG_CONNECTION_REQ
fIsMaster 0x00000001 | 1

dwConnectionld 0x00000001 | 1

dwUserMsgType | 0x00000011 | CONNTYPE_TXUSER_ASSOCIATE

dwcbVarLenData | 0x00000000 | O

dwReservedl Oxcd64cd64 | dwReservedl: Oxcd64cd64

The receiving application then sends a TXUSER ASSOCIATE MTAG ASSOCIATE user message with
the information transmitted to the receiver in the Propagation Token.

434 /475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

Field

Value

Value description

MsgTag

0x000000FF

MTAG_USER_MESSAGE

fIsMaster

0x00000001

1

dwConnectionld

0x00000001

1

dwUserMsgType

0x00002031

TXUSER_ASSOCIATE_MTAG_ASSOCIATE

dwcbVarLenData

0x0000007C

124

dwReserved1

Oxcd64cd64

dwReservedl: Oxcd64cd64

guidTx

0x4046037E
0x46C99722
0x06999883
0x35CB4123

4046037e-9722-46c9-9883-99062341cb35

isoLevel

0x00100000

ISOLATIONLEVEL_SERIALIZABLE

isoFlags

0x00000005

ISOFLAG_RETAIN_DONTCARE

cbSourceTmAddr

0x00000038

56

szDesc

0x706D6173
0x7420656C
0x736E6172
0x69746361
0x00006E6F
0x00000000
0x00000000
0x00000000
0x00000000
0x00000000

"sample transaction"

guidSignature

0xDC85CB48
0x11d2D8A5
0x8000828B
O0x5AF70D5F

DC85CB48-D8A5-11d2-828B-00805FODF75A

guidEndpoint

0xBAA04775
0x4F498F43
Ox1B5AADEF
0x0B195121

BAA04775-8F43-4F49-ADEF-5A1B2151190B

grbComProtsSupported

0x00000021

PROT_IP_TCP | PROT_LRPC

wszHostName

0x0061004d
0x00680063
0x006e0069
0x005f0065

0x00000031

L"Machine_1"

When the receiver's transaction manager receives the TXUSER_ASSOCIATE_MTAG_ASSOCIATE
message, that transaction manager attempts to locate the transaction in its list of transaction objects
by using the transaction identifier. If the transaction object is not found locally, the transaction

[MS-DTCO]J - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

435/ 475

manager attempts to pull the transaction from the sender's transaction manager by using information
received from the TXUSER_ASSOCIATE_MTAG_ASSOCIATE message (compare Branching the
Transaction).

If the receiver's transaction manager can successfully locate the transaction object or if the requested
transaction is successfully pulled to the receiver's transaction manager, it replies to the receiver with a
TXUSER ASSOCIATE MTAG ASSOCIATED user message.

Field Value Value description

MsgTag 0x00000FFF | MTAG_USER_MESSAGE

fIsMaster 0x00000000 | O

dwConnectionId | 0x00000001 | 1

dwUserMsgType | 0x00002032 | TXUSER_ASSOCIATE_MTAG_ASSOCIATED
dwcbVarLenData | 0x00000000 | O

dwReservedl Oxcd64cd64 | dwReservedl: Oxcd64cd64

After the receiving application gets the TXUSER_ASSOCIATE_MTAG_ASSOCIATED response from its
transaction manager (or if it receives an error response), no more user messages can be sent on this
connection and the receiver initiates the disconnect sequence.

4.2.3 Branching the Transaction

If the receiver's transaction manager does not have a reference to the requested transaction in its list
of transaction objects, it attempts to contact the sender's transaction manager. If successful, it
requests a subordinate branch to the transaction through the sender's transaction manager.

To branch the transaction, the receiver's transaction manager needs to have a transport session with
the sender's transaction manager. If there is no existing transport session, the receiver's transaction
manager uses the OLETX_TM_ADDR information about the sender's transaction manager from the
Propagation_Token (section 2.2.5.4) to initiate a session between the two participants. Depending on
the value of both participants' contact identifiers, the receiver's transaction manager initiates the
transport session as either the primary or secondary partner.

To branch the transaction, the receiver's transaction manager initiates a connection over its transport
session with the sender's transaction manager. If the transaction branching is successful, the
superior transaction manager (that is, the sender's transaction manager) adds the receiver's
transaction manager as a subordinate branch to the transaction.

CONNTYPE PARTNERTM BRANCH: The packet sequence starts when the receiver's transaction
manager initiates a CONNTYPE_PARTNERTM_BRANCH connection with the sender's transaction
manager.

Field Value Value description
MsgTag 0x00000005 | MTAG_CONNECTION_REQ
fIsMaster 0x00000001 | 1

dwConnectionld 0x00000001 | 1

dwUserMsgType | 0x00000104 | CONNTYPE_PARTNERTM_BRANCH

dwcbVarLenData | 0x00000000 | O

436 / 475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

Field Value Value description

dwReserved1 0Oxcd64cd64 | dwReservedl: Oxcd64cd64

The receiver's transaction manager then sends a PARTNERTM BRANCH MTAG BRANCHING user
message with the transaction identifier of the requested transaction.

Field Value Value description
MsgTag 0x00000FFF | MTAG_USER_MESSAGE
fIsMaster 0x00000001 | 1

dwConnectionld 0x00000001 | 1

dwUserMsgType | 0x00002051 | PARTNERTM_BRANCH_MTAG_BRANCHING

dwcbVarLenData | 0x00000010 | 16

dwReserved1 Oxcd64cd64 dwReservedl: 0xcd64cd64

guidTx 0x4046037E | 4046037e-9722-46c9-9883-99062341cb35
0x46C99722
0x06999883
0x35CB4123

If the sender's transaction manager can create a subordinate branch, it responds to the receiver's
transaction manager with a user message with dwUserMsgType equal to
PARTNERTM BRANCH MTAG BRANCHED.

Field Value Value description
MsgTag 0x00000FFF | MTAG_USER_MESSAGE
flsMaster 0x00000000 | O

dwConnectionld 0x00000001 | 1

dwUserMsgType | 0x00002052 | PARTNERTM_BRANCH_MTAG_BRANCHED

dwcbVarLenData | 0x00000000 | O

dwReserved1l Oxcd64cd64 | dwReservedl: Oxcd64cd64

After receiving the PARTNERTM_BRANCH_MTAG_BRANCHED reply from the sender's transaction
manager, the receiver's transaction manager keeps the connection open to process two-phase
commit notifications from the sender's transaction manager. The sender's transaction manager
has now become the superior transaction manager for this transaction; the receiver's transaction
manager is now the subordinate transaction manager.

If the sender's transaction manager is unable to create a subordinate branch, it responds to the
receiver's transaction manager with a user message with dwUserMsgType set to an error value. No
more messages are sent on this connection and the receiver's transaction manager initiates the
disconnect sequence. The receiver transaction manager then sends an appropriate error response
to the receiver on the TXUSER ASSOCIATE MTAG ASSOCIATE connection to inform the receiver of
the failure to pull the transaction.

437/ 475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

4.3 Transaction Marshaling Scenario (Push Propagation)

This scenario shows how an application or resource manager obtains access to an existing
transaction through its transaction manager by using push propagation. Because the receiving
application obtains knowledge of an existing transaction, this knowledge implies that there is another
application that has access to an existing transaction. The receiving application obtains the necessary
information from the existing transaction. Because OleTx does not prescribe application-to-application
communication, an out-of-band mechanism (such as an application API) is needed to exchange this
knowledge between the sending application and the receiving application.

Push propagation involves four main exchanges. The push sequence begins by the sending
application (or sender) obtaining location information from the receiving application (or receiver)
about its transaction manager, which is called the whereabouts. Subsequently, the sender uses the
receiver's transaction manager whereabouts information to export the transaction. This exchange
causes the sender's transaction manager to propagate the transaction to the receiver's transaction
manager. The exchanges complete when the receiver imports the transaction from its transaction
manager.

The scenario requires that the receiving application has established a transport session with a
transaction manager and has negotiated its connection resources. The scenario also assumes that
there is some out-of-band mechanism (an application API) that the sending and receiving applications
use to exchange transactional information. In general, this API will also be necessary for the sending
application to prescribe work for the receiving application to perform as part of the transaction.

4.3.1 Obtaining the Whereabouts of the Receiver's Transaction Manager

To push the transaction from the sender's transaction manager to the receiver's transaction manager,
the sender obtains the location of the receiver's transaction manager. Specifically, the sender needs to
populate an OLETX TM ADDR structure to perform an export. Typically, the receiver sends an
SWhereabouts structure to the sender by using an out-of-band API. The SWhereabouts structure in
this example contains two STmToTmProtocol structures: SDtcCmEndpointInfoV1 and
SDtcCmEndpointInfoV2.

Field Value Value description

guidSignature 0x2ADB4462 | 2ADB4462-BD41-11D0-B12E-00C04FC2F3EF
0x11D0BD41
0xCO000B12E
OXEFF3C24F

cTmToTmProtocols | 0x00000002 2

tmprotDescribed 0x00000002 | TmProtocolMsdtcVi1

cbTmProtocolData 0x0000001C | 28

comprotSupported | 0x00000021 PROT_IP_TCP | PROT_LRPC

guidEndpointID 0xD2A6A4B9 | D2A6A4B9-CDB0-48AB-A68F-E3349B1A6128
0x48ABCDBO
0x34E3A68F
0x28611A9B

szHosthame 0x6863614d "Machine_2"
0x00026€e69

tmprotDescribed 0x00000003 | TmProtocolMsdtcV2

438 /475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

Field

Value

Value description

cbTmProtocolData

0x00000014

wszHostname

0x0061004d
0x00680063
0x006e0069
0x005f0065

0x00000031

L"Machine_2"

4.3.2 Exporting the Transaction

To export the transaction, the sending application needs to have a CONNTYPE TXUSER EXPORT
connection established with the transaction manager. If a connection is not established, the sender
needs to initiate one now.

CONNTYPE_TXUSER_EXPORT: The packet sequence starts when the sender initiates a

CONNTYPE_TXUSER_EXPORT connection with its transaction manager.

Field Value Value description
MsgTag 0x00000005 | MTAG_CONNECTION_REQ
fIsMaster 0x00000001 | 1

dwConnectionld 0x00000002 | 2

dwUserMsgType | 0x00000004

CONNTYPE_TXUSER_EXPORT

dwcbVarLenData | 0x00000000 | O

dwReserved1l

Oxcd64cd64

dwReservedl: 0xcd64cd64

The sending application then sends to its transaction manager a TXUSER EXPORT MTAG CREATE

user message on that connection specifying the receiver's transaction manager in an

OLETX TM ADDR structure.

Field Value Value description
MsgTag 0x00000FFF MTAG_USER_MESSAGE
fIsMaster 0x00000001 1
dwConnectionld 0x00000002 2
dwUserMsgType 0x00001041 TXUSER_EXPORT_MTAG_CREATE
dwcbVarLenData 0x00000038 56
dwReserved1l Oxcd64cd64 dwReservedl: Oxcd64cd64
guidSignature 0xDC85CB48 | DC85CB48-D8A5-11d2-828B-00805F0DF75A
0x11d2D8A5
0x8000828B
Ox5AF70D5F
guidEndpoint 0xD2A6A4B9 | D2A6A4B9-CDB0-48AB-A68F-E3349B1A6128

[MS-DTCO]J - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

439 /475

Field

Value

Value description

0x48ABCDBO
0x34E3A68F
0x28611A9B

grbComProtsSupported

0x00000021 | PROT_IP_TCP | PROT_LRPC

wszHostName

0x0061004d L"Machine_2"
0x00680063
0x006e0069
0x005f0065
0x00000032

When the sender's transaction manager receives the create message, it converts the transaction
manager information received in the OLETX_TM_ADDR structure to a Name object and stores the
Name object in the Connection-Specific Data field of the connection object. If this operation is
successful, the transaction manager responds to the sender with a TXUSER EXPORT MTAG CREATED

user message.

Field Value Value description

MsgTag 0x00000FFF | MTAG_USER_MESSAGE

fIsMaster 0x00000000 | O

dwConnectionld | 0x00000002 | 2

dwUserMsgType | 0x00001042 | TXUSER_EXPORT_MTAG_CREATED
dwcbVarLenData | 0x00000000 | O

dwReservedl Oxcd64cd64 | dwReservedl: Oxcd64cd64

After the export connection is created, the sender requests that the transaction be exported to the
receiver's transaction manager by sending a TXUSER EXPORT MTAG EXPORT user message to its
transaction manager. This message specifies the identifier of the transaction that the sender wants to
have exported in the guidTx field of the message.

Field Value Value description
MsgTag 0x00000FFF | MTAG_USER_MESSAGE
fIsMaster 0x00000001 | 1
dwConnectionld 0x00000002 | 2
dwUserMsgType | 0x00001043 | TXUSER_EXPORT_MTAG_EXPORT
dwcbVarLenData | 0x00000010 | 16
dwReservedl1 Oxcd64cd64 dwReservedl: Oxcd64cd64
guidTx 0x4046037E | 4046037e-9722-46c9-9883-99062341cb35
0x46C99722
0x06999883
0x35CB4123

[MS-DTCO] - v20210625
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

440/ 475

When the sender's transaction manager receives the export message, it attempts to propagate the
transaction to the receiver's transaction manager. If the propagation is successful, the transaction
manager sends to the sender a TXUSER EXPORT MTAG EXPORTED user message.

Field Value Value description

MsgTag 0x00000FFF | MTAG_USER_MESSAGE

fIsMaster 0x00000000 | O

dwConnectionld | 0x00000002 | 2

dwUserMsgType | 0x00001044 | TXUSER_EXPORT_MTAG_EXPORTED
dwcbVarLenData | 0x00000000 | O

dwReservedl Oxcd64cd64 | dwReservedl: Oxcd64cd64

When the sender receives the exported message, it sends information to the receiving application by
using an out-of-band API that the exported transaction can be imported.

The sender can either close the export connection with its transaction manager by initiating the
disconnect sequence, or it can maintain the connection for future exporting of transactions to the
receiver's transaction manager.

4.3.3 Propagating the Transaction

When the sending transaction manager receives the export message from the sending application, the
transaction manager attempts to propagate the transaction to the receiving transaction manager. If a

transport session has not yet been established, the sending transaction manager attempts to establish
the session now.

After a transport session is established between the sending transaction manager and the receiving
transaction manager and resources are negotiated, the sending transaction manager initiates a
CONNTYPE PARTNERTM PROPAGATE connection with the receiving transaction manager.

CONNTYPE_PARTNERTM_PROPAGATE: The packet sequence starts when the sending transaction
manager initiates a CONNTYPE_PARTNERTM_PROPAGATE connection with the receiving transaction
manager.

Field Value Value description

MsgTag 0x00000005 | MTAG_CONNECTION_REQ

fIsMaster 0x00000001 | 1

dwConnectionId | 0x00000001 | 1

dwUserMsgType | 0x00000101 | CONNTYPE_PARTNERTM_PROPAGATE
dwcbVarLenData | 0x00000000 | O

dwReserved1 0Oxcd64cd64 | dwReservedl: Oxcd64cd64

The sending transaction manager then sends a PARTNERTM PROPAGATE MTAG PROPAGATE user
message to the receiving transaction manager and specifies the transaction identifier (guidTx), the
isolation level (isoLevel), the transaction description (szDesc), and the isolation flags (isoFlags).

441 /475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

Field Value Value description
MsgTag 0x00000FFF | MTAG_USER_MESSAGE
fIsMaster 0x00000001 | 1
dwConnectionld 0x00000001 | 1
dwUserMsgType | 0x00002001 | PARTNERTM_PROPAGATE_MTAG_PROPAGATE
dwcbVarLenData | 0x0000003c | 60
dwReserved1 Oxcd64cd64 dwReservedl: Oxcd64cd64
guidTx 0x4046037E | 4046037e-9722-46c9-9883-99062341cb35
0x46C99722
0x06999883
0x35CB4123
isoLevel 0x00100000 | ISOLATIONLEVEL_SERIALIZABLE
szDesc 0x706D6173 | "sample transaction"
0x7420656C
0x736E6172
0x69746361
0x00006E6F
0x00000000
0x00000000
0x00000000
0x00000000
0x00000000

When the receiving transaction manager receives the message, it adds the transaction to its list of
known transactions. If the propagation is successful, the receiving transaction manager sends to the
sending transaction manager a PARTNERTM PROPAGATE MTAG PROPAGATED user message.

Field Value Value description

MsgTag 0x00000FFF | MTAG_USER_MESSAGE

fIsMaster 0x00000000 | O

dwConnectionId | 0x00000001 | 1

dwUserMsgType | 0x00002002 | PARTNERTM_PROPAGATE_MTAG_PROPAGATED
dwcbVarLenData | 0x00000000 | O

dwReserved1 Oxcd64cd64 | dwReservedl: Oxcd64cd64

When the sending transaction manager receives the PARTNERTM_PROPAGATE_MTAG_PROPAGATED
message, it adds the receiving transaction manager as a subordinate branch to its list of
enlistments for the transaction. If the subordinate transaction manager is successfully added, the
sending transaction manager replies to the sender that the export completed successfully.

The sending transaction manager keeps the connection alive for future two-phase commit
processing when the transaction is committed or aborted.

442 / 475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

4.3.4 Importing the Transaction

When the sender receives notification that the transaction was successfully exported to the receiving
transaction manager, the sender sends the transaction identifier (guidTx) to the receiver by using
its out-of-band API so that the receiver can import the transaction.

To import the transaction, the receiver needs to initiate a CONNTYPE TXUSER IMPORT connection
with its transaction manager.

CONNTYPE_TXUSER_IMPORT: The packet sequence starts when the receiver initiates a
CONNTYPE_TXUSER_IMPORT connection with its transaction manager.

Field Value Value Description
MsgTag 0x00000005 | MTAG_CONNECTION_REQ
flsMaster 0x00000001 | 1

dwConnectionld 0x00000001 | 1

dwUserMsgType | 0x00000002 | CONNTYPE_TXUSER_IMPORT

dwcbVarLenData | 0x00000000 | O

dwReserved1l Oxcd64cd64 | dwReservedl: Oxcd64cd64

The receiver then sends a TXUSER IMPORT MTAG IMPORT user message to the its transaction
manager and specifies the transaction identifier (guidTx).

Field Value Value Description
MsgTag 0x00000FFF | MTAG_USER_MESSAGE
fIsMaster 0x00000001 | 1

dwConnectionld 0x00000001 | 1

dwUserMsgType | 0x00001021 | TXUSER_IMPORT_MTAG_IMPORT

dwcbVarLenData | 0x00000010 | 16

dwReserved1l Oxcd64cd64 dwReservedl: 0xcd64cd64

guidTx 0x4046037E | 4046037e-9722-46c9-9883-99062341cb35
0x46C99722
0x06999883
0x35CB4123

When the transaction manager receives the TXUSER_IMPORT_MTAG_IMPORT message from the
receiver, it attempts to find the transaction identifier (quidTx) in its list of known transactions. If it
locates the transaction with that identifier, the transaction manager replies to the receiver with a
TXUSER IMPORT MTAG IMPORTED user message that specifies the isolation level (isoLevel) and
isolation flags (isoFlags) of the transaction.

Field Value Value Description
MsgTag 0x00000FFF | MTAG_USER_MESSAGE
fIsMaster 0x00000000 | O

443 /475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

Field Value Value Description
dwConnectionId | 0x00000001 | 1

dwUserMsgType | 0x00001022 | TXUSER_IMPORT_MTAG_IMPORTED
dwcbVarLenData | 0x00000008 | 8

dwReservedl Oxcd64cd64 | dwReservedl: Oxcd64cd64

isoLevel 0x00100000 | ISOLATIONLEVEL_SERIALIZABLE
isoFlags 0x00000005 | ISOFLAG_RETAIN_DONTCARE

When the receiving application gets the TXUSER_IMPORT_MTAG_IMPORTED message, it can enlist on
the transaction (if it is a resource manager) or marshal the transaction to another application. The
receiving application can also attempt to abort the transaction by using the connection. If the receiver
does not intend to abort the transaction, it initiates the disconnect sequence.

4.4 Simple Enlistment Scenario

This scenario shows how a resource manager registers with a transaction manager, enlists on an
existing transaction, and then responds to the enlistment notifications from the transaction
manager. This scenario does not address resource manager recovery, which is described in the
next section.

The scenario begins by the resource manager establishing a transport session with a transaction
manager and negotiating its connection resources. It also assumes that there is some out-of-band
mechanism (for example, application API) by which an external application is able to send the
resource manager work to perform as part of an existing transaction. The resource manager is
expected to follow the two-phase commit protocol.

4.4.1 Registering with the Transaction Manager as a Resource Manager

Before a resource manager can participate in transactional work, it needs to register as a resource
manager with a transaction manager.

CONNTYPE TXUSER RESOURCEMANAGER: The packet sequence starts when the resource manager
initiates a CONNTYPE_TXUSER_RESOURCEMANAGER connection.

Field Value Value description

MsgTag 0x00000005 | MTAG_CONNECTION_REQ

fIsMaster 0x00000001 | 1

dwConnectionId | 0x00000002 | 2

dwUserMsgType | 0x00000005 | CONNTYPE_TXUSER_RESOURCEMANAGER
dwcbVarLenData | 0x00000000 | O

dwReservedl Oxcd64cd64 | dwReservedl: Oxcd64cd64

The resource manager then sends a TXUSER RESOURCEMANAGER MTAG CREATE user message that
specifies a GUID that uniquely identifies the resource manager (guidRm) and a session GUID that
uniquely identifies this session of the resource manager (guidSession). The session GUID can be
either a unique GUID that is created each time the resource manager starts up, or a NULL GUID.

444 / 475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

Field Value Value description

MsgTag 0x00000FFF | MTAG_USER_MESSAGE

fIsMaster 0x00000001 1

dwConnectionld 0x00000002 | 2

dwUserMsgType | 0x00001051 | TXUSER_RESOURCEMANAGER_MTAG_CREATE

dwcbVarLenData | 0x00000020 | 32

dwReserved1 Oxcd64cd64 dwReservedl: Oxcd64cd64

guidRm OxXE7BAEBDF | EZ7BAEBDF-DC69-4E2B-9FF1-69A1D3592877
0x4E2BDC69
O0xA1699FF1

0x772859D3

guidSession 0x8F5204B3 | 8F5204B3-5FB9-466A-A0B8-2DAF3FCBD9AA
0x466A5FB9
OxAF2DAOBS8
OxAAD9CB3F

If guidRm does not identify a resource manager already registered with the transaction manager, the
transaction manager adds the resource manager to its list of registered resource managers and sends
to the resource manager a TXUSER RESOURCEMANAGER MTAG REQUEST COMPLETE user message.

Field Value Value description
MsgTag 0x00000FFF | MTAG_USER_MESSAGE
fIsMaster 0x00000000 | O

dwConnectionld 0x00000002 | 2

dwUserMsgType | 0x00001053 | TXUSER_RESOURCEMANAGER_MTAG_REQUEST_COMPLETE

dwcbVarLenData | 0x00000000 | O

dwReserved1l Oxcd64cd64 | dwReservedl: Oxcd64cd64

The resource manager needs to keep this connection open for the duration of its lifetime. If the
connection is terminated, any unprepared transactions are aborted.

4.4.2 Enlisting in an Existing Transaction

To enlist in an existing transaction, the resource manager needs to have knowledge of the existing
transaction, which likely happened as a result of marshaling the transaction from an application to the
resource manager.

CONNTYPE TXUSER ENLISTMENT: The packet sequence starts when the resource manager initiates a
connection by using CONNTYPE_TXUSER_ENLISTMENT.

Field Value Value description
MsgTag 0x00000005 | MTAG_CONNECTION_REQ
fIsMaster 0x00000001 | 1

445 /475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

Field Value Value description

dwConnectionId | 0x00000002 | 2

dwUserMsgType | 0x00000003 | TXUSER_ENLISTMENT_MTAG_ENLIST
dwcbVarLenData | 0x00000000 | O

dwReservedl Oxcd64cd64 | dwReservedl: Oxcd64cd64

The resource manager then sends a TXUSER ENLISTMENT MTAG ENLIST user message specifying
the transaction identifier (guidTx), the resource manager identifier (guidRm), and the resource
manager session identifier (guidSession).

Field Value Value description
MsgTag 0x00000FFF MTAG_USER_MESSAGE
fIsMaster 0x00000001 1
dwConnectionld 0x00000002 | 2
dwUserMsgType | 0x00001031 | TXUSER_ENLISTMENT_MTAG_ENLIST
dwcbVarLenData | 0x00000030 | 48
dwReservedl Oxcd64cd64 dwReservedl: Oxcd64cd64
guidTx 0x4046037E | 4046037e-9722-46c9-9883-99062341cb35
0x46C99722
0x06999883
0x35CB4123
guidRm OxE7BAEBDF | E7BAEBDF-DC69-4E2B-9FF1-69A1D3592877
0x4E2BDC69
0xA1699FF1
0x772859D3
guidSession 0x8F5204B3 | 8F5204B3-5FB9-466A-A0B8-2DAF3FCBD9AA
0x466A5FB9
OxAF2DA0B8
OxAAD9CB3F

If the transaction manager can enlist the resource manager in the requested transaction, the
transaction manager adds the resource manager to its list of subordinate enlistments and
replies to the resource manager with a TXUSER ENLISTMENT MTAG ENLISTED user message.

Field Value Value description

MsgTag 0x00000FFF | MTAG_USER_MESSAGE

flsMaster 0x00000000 | O

dwConnectionId | 0x00000002 | 2

dwUserMsgType 0x00001032 | TXUSER_ENLISTMENT_MTAG_ENLISTED
dwcbVarLenData | 0x00000000 | O

[MS-DTCO] - v20210625
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

446 / 475

Field

Value

Value description

dwReserved1

Oxcd64cd64

dwReservedl: Oxcd64cd64

The resource manager is now enlisted on the transaction and is now waiting for two-phase commit
notifications from the transaction manager. During the time that the resource manager is enlisted on

the transaction, the resource manager typically receives from some external application the

instructions (that is, work) to perform as part of the transaction.

4.4.3 Responding to Enlistment Notifications

When the transaction is committed, the transaction manager receives notification to prepare the

transaction.

4.4.3.1 Responding to a Prepare Request Message

As part of the prepare process, the transaction manager sends
TXUSER ENLISTMENT MTAG PREPAREREQ user messages to each of its subordinate resource

managers.
Field Value Value description
MsgTag 0x00000FFF | MTAG_USER_MESSAGE
fIsMaster 0x00000000 | O
dwConnectionld | 0x00000002 | 2
dwUserMsgType | 0x00001033 | TXUSER_ENLISTMENT_MTAG_PREPAREREQ
dwcbVarLenData | 0x00000008 | 8
dwReservedl Oxcd64cd64 | dwReservedl: Oxcd64cd64
grfRM 0x00000000 | O
fSinglePhase 0x00000000 | O

When the resource manager successfully completes its prepare work, it replies to its transaction
manager by using a TXUSER ENLISTMENT MTAG PREPAREREQDONE user message that has the

prepareRegDone value set to TXUSER_ENLISTMENT_PREPAREREQDONE_OK.

Field Value Value description

MsgTag 0x00000FFF | MTAG_USER_MESSAGE

fIsMaster 0x00000001 | 1

dwConnectionId | 0x00000002 | 2

dwUserMsgType | 0x00001036 | TXUSER_ENLISTMENT_MTAG_PREPAREREQDONE
dwcbVarLenData | 0x00000014 | 20

dwReservedl Oxcd64cd64 | dwReservedl: Oxcd64cd64

prepareReqDone | 0x00000000 | TXUSER_ENLISTMENT_PREPAREREQDONE_OK
guidReason 0x00000000 | 00000000-0000-0000-0000-000000000000

[MS-DTCO] - v20210625
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

447/ 475

Field

Value

Value description

0x00000000
0x00000000
0x00000000

The resource manager now waits for the transaction outcome from its transaction manager.

4.4.3.2 Responding to a Commit Request Message

If the transaction manager receives notification that the transaction is committed, it sends to the
resource manager a TXUSER ENLISTMENT MTAG COMMITREQ message.

Field Value Value description

MsgTag 0x00000FFF | MTAG_USER_MESSAGE

fIsMaster 0x00000000 | O

dwConnectionId | 0x00000002 | 2

dwUserMsgType | 0x00001035 | TXUSER_ENLISTMENT_MTAG_COMMITREQ
dwcbVarLenData | 0x00000000 | O

dwReservedl Oxcd64cd64 | dwReservedl: Oxcd64cd64

When the resource manager successfully completes its commit work, it replies to its transaction
manager with a TXUSER ENLISTMENT MTAG COMMITREQDONE user message.

Field Value Value description

MsgTag 0x00000FFF | MTAG_USER_MESSAGE

fIsMaster 0x00000001 | 1

dwConnectionId | 0x00000002 | 2

dwUserMsgType | 0x00001038 | TXUSER_ENLISTMENT_MTAG_COMMITREQDONE
dwcbVarLenData | 0x00000000 | O

dwReservedl Oxcd64cd64 | dwReservedl: Oxcd64cd64

The resource manager has now completed all its work that is associated with the transaction and
initiates the disconnect sequence on its CONNTYPE TXUSER ENLISTMENT connection with its

transaction manager.

4.5 Transaction Manager Two-Phase Commit Scenario

This scenario shows how a transaction manager performs the Two-Phase Commit Protocol as both
the superior transaction manager facet and the subordinate transaction manager facet.

For this scenario, all connections that are associated with the transaction are extant. The root
transaction manager has an existing CONNTYPE TXUSER BEGIN2 connection between itself and the
initiating application. Optionally, the transaction has one or more existing

CONNTYPE PARTNERTM BRANCH or CONNTYPE PARTNERTM PROPAGATE connections between a

superior transaction manager facet and its subordinate transaction manager facets. (A
Subordinate Transaction Manager Facet can also act as a superior transaction manager facet if it

[MS-DTCO] - v20210625
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

has any subordinate branches.) Optionally, each transaction manager also has one or more
CONNTYPE TXUSER ENLISTMENT connections with its registered resource managers.

For this scenario, it is assumed that there are no phase-zero or voter enlistments and that the root
transaction manager has more than one subordinate branch and thus will not perform a single-phase
commit.

4.5.1 Phase One

The protocol sequence begins when the root transaction manager receives the
TXUSER BEGIN2 MTAG COMMIT user message from the initiating application over its existing
CONNTYPE TXUSER BEGIN2 connection (compare Committing the Transaction).

Field Value Value description
MsgTag 0x00000FFF | MTAG_USER_MESSAGE
fIsMaster 0x00000001 | 1

dwConnectionld 0x00000001 | 1

dwUserMsgType | 0x00006003 | TXUSER_BEGIN2_MTAG_COMMIT

dwcbVarLenData | 0x00000004 | 4

dwReservedl Oxcd64cd64 | dwReservedl: Oxcd64cd64

grfRM 0x00000000 | O

The root transaction manager then iterates through the subordinate branches of each transaction and
notifies the subordinates that the transaction processing has begun. The root transaction manager
then waits for reply notifications from each of the subordinates to determine the outcome of the
transaction.

4.5.1.1 Phase One - Subordinate Resource Managers

If the subordinate branch is a resource manager (that is, using a CONNTYPE TXUSER ENLISTMENT
connection), the transaction manager sends a TXUSER ENLISTMENT MTAG_ PREPAREREQ user
message with fSinglePhase set to zero.

Field Value Value description
MsgTag 0x00000FFF | MTAG_USER_MESSAGE
fIsMaster 0x00000000 | O

dwConnectionld 0x00000002 | 2

dwUserMsgType | 0x00001033 | TXUSER_ENLISTMENT_MTAG_PREPAREREQ

dwcbVarLenData | 0x00000008 | 8

dwReserved1l Oxcd64cd64 | dwReservedl: Oxcd64cd64
grfRM 0x00000000 | O
fSinglePhase 0x00000000 | O

449 / 475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

When the resource manager successfully completes its preparation work, it replies to its transaction
manager by using a TXUSER ENLISTMENT MTAG PREPAREREQDONE user message that has the
prepareRegDone value set to TXUSER_ENLISTMENT_PREPAREREQDONE_OK.

Field Value Value description
MsgTag 0x00000FFF | MTAG_USER_MESSAGE
fIsMaster 0x00000001 | 1
dwConnectionld 0x00000002 | 2
dwUserMsgType | 0x00001036 | TXUSER_ENLISTMENT_MTAG_PREPAREREQDONE
dwcbVarLenData | 0x00000014 | 20
dwReservedl 0Oxcd64cd64 | dwReservedl: Oxcd64cd64
prepareReqDone | 0x00000000 | TXUSER_ENLISTMENT_PREPAREREQDONE_OK
guidReason 0x00000000 | 00000000-0000-0000-0000-000000000000
0x00000000
0x00000000
0x00000000

The resource manager now waits for a TXUSER ENLISTMENT MTAG ABORTREQ or
TXUSER ENLISTMENT MTAG COMMITREQ message from its transaction manager to determine the
outcome for the transaction.

4.5.1.2 Phase One - Subordinate Transaction Manager Facets

If the subordinate branch is a transaction manager (that is, it is using either a

CONNTYPE PARTNERTM BRANCH or a CONNTYPE PARTNERTM PROPAGATE connection), the
transaction manager sends a PARTNERTM PROPAGATE MTAG PREPAREREQ user message that has
fSinglePhase set to zero. If the connection was created by using
CONNTYPE_PARTNERTM_BRANCH, fIsMaster is zero (0). If the connection was created by using
CONNTYPE_PARTNERTM_PROPAGATE, fIsMaster is one (1).

Field Value Value description
MsgTag 0x00000FFF | MTAG_USER_MESSAGE
fIsMaster 0x00000000 | O

dwConnectionld 0x00000001 | 1

dwUserMsgType | 0x00002003 | PARTNERTM_PROPAGATE_MTAG_PREPAREREQ
dwcbVarLenData | 0x00000008 | 8

dwReservedl Oxcd64cd64 | dwReservedl: Oxcd64cd64

grfRM 0x00000000 | O

fSinglePhase 0x00000000 | O

When the Subordinate Transaction Manager Facet receives the prepare request for a transaction,
it then iterates through each of the transaction's subordinate branches and notifies the subordinates
that the transaction processing has begun. The transaction manager waits for reply notifications from
each of the subordinates to determine the outcome of the transaction.

450/ 475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

If each subordinate branch of a transaction successfully prepares for the transaction (that is, each
subordinate replies with a TXUSER_ENLISTMENT_PREPAREREQDONE_OK or
PARTNERTM_PROPAGATE_PREPAREREQDONE_OK in the message depending on the connection type),
the transaction manager replies to its superior transaction manager facet with a
PARTNERTM_PROPAGATE_MTAG_PREPAREREQDONE message that has prepareReqDone set
to PARTNERTM_PROPAGATE_PREPAREREQDONE_OK. If the connection was created by using
CONNTYPE_PARTNERTM_BRANCH, fIsMaster is one (1). If the connection was created by using
CONNTYPE_PARTNERTM_PROPAGATE, fIsMaster is zero (0).

Field Value Value description
MsgTag 0x00000FFF | MTAG_USER_MESSAGE
fIsMaster 0x00000001 | 1

dwConnectionld 0x00000001 | 1

dwUserMsgType | 0x00002006 | PARTNERTM_PROPAGATE_MTAG_PREPAREREQDONE

dwcbVarLenData | 0x00000014 | 20

dwReservedl Oxcd64cd64 | dwReservedl: Oxcd64cd64

prepareReqgDone | 0x00000000 | PARTNERTM_PROPAGATE_PREPAREREQDONE_OK

guidReason 0x00000000 | 00000000-0000-0000-0000-000000000000
0x00000000
0x00000000
0x00000000

The transaction manager now waits for a PARTNERTM PROPAGATE MTAG ABORTREQ or
PARTNERTM PROPAGATE MTAG COMMITREQ message from its superior transaction manager
facet to determine the outcome for the transaction.

4.5.1.3 Phase One - The Root Transaction Manager

If each subordinate branch of the root transaction manager successfully prepares for the
transaction (that is, each subordinate replies with a TXUSER_ENLISTMENT_PREPAREREQDONE_OK or
PARTNERTM_PROPAGATE_PREPAREREQDONE_OK message, depending on the connection type) the
root transaction manager replies to the application that the transaction has committed. It replies by
sending a TXUSER BEGIN2 MTAG SINK ERROR message with an error value of
TRUN_TXBEGIN_ERROR_NOTIFY_COMMITTED. For more information, see section 4.1.2.

Field Value Value description
MsgTag 0x00000FFF | MTAG_USER_MESSAGE
fIsMaster 0x00000000 | O

dwConnectionld 0x00000001 | 1

dwUserMsgType | 0x00006005 | TXUSER_BEGIN2_MTAG_SINK_ERROR

dwcbVarLenData | 0x00000004 | 4

dwReserved1l Oxcd64cd64 | dwReservedl: Oxcd64cd64

Error 0x0000001F | TRUN_TXBEGIN_ERROR_NOTIFY_COMMITTED

The root transaction manager then initiates Phase Two processing.

451 /475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

4.5.2 Phase Two

The root transaction manager begins Phase Two by iterating through each subordinate branch of
the transaction and notifying the subordinates that Phase Two processing has begun. In this
example, the transaction commits.

4.5.2.1 Phase Two - Subordinate Resource Managers

If the subordinate branch is a resource manager (that is, it uses a
CONNTYPE TXUSER ENLISTMENT connection), the transaction manager sends a
TXUSER ENLISTMENT MTAG COMMITREQ user message.

Field Value Value description
MsgTag 0x00000FFF | MTAG_USER_MESSAGE
fIsMaster 0x00000000 | O

dwConnectionld 0x00000001 | 1

dwUserMsgType | 0x00001035 | TXUSER_ENLISTMENT_MTAG_COMMITREQ

dwcbVarLenData | 0x00000000 | O

dwReservedl Oxcd64cd64 | dwReservedl: Oxcd64cd64

When the resource manager successfully completes its commit work, it replies to its transaction
manager with a TXUSER ENLISTMENT MTAG COMMITREQDONE user message.

Field Value Value description
MsgTag 0x00000FFF | MTAG_USER_MESSAGE
fIsMaster 0x00000001 | 1

dwConnectionld 0x00000001 | 1

dwUserMsgType | 0x00001038 | TXUSER_ENLISTMENT_MTAG_COMMITREQDONE

dwcbVarLenData | 0x00000000 | O

dwReserved1 Oxcd64cd64 | dwReservedl: Oxcd64cd64

The resource manager has now completed all its work for the transaction and initiates the disconnect
sequence on its CONNTYPE_TXUSER_ENLISTMENT connection with its transaction manager.

4.5.2.2 Phase Two - Subordinate Transaction Manager Facets

If the subordinate branch is a transaction manager (that is, it is using either a

CONNTYPE PARTNERTM BRANCH or a CONNTYPE PARTNERTM PROPAGATE connection), the
transaction manager sends a PARTNERTM PROPAGATE MTAG COMMITREQ user message. If the
connection was created by using CONNTYPE_PARTNERTM_BRANCH, fIsMaster is zero (0). If the
connection was created by using CONNTYPE_PARTNERTM_PROPAGATE, fIsMaster is one (1).

Field Value Value description
MsgTag 0x00000FFF | MTAG_USER_MESSAGE
fIsMaster 0x00000000 | O

452 /475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

Field Value Value description

dwConnectionld 0x00000001 | 1

dwUserMsgType | 0x00002005 | PARTNERTM_PROPAGATE_MTAG_COMMITREQ

dwcbVarLenData | 0x00000000 | O

dwReserved1 0Oxcd64cd64 | dwReservedl: Oxcd64cd64

When the Subordinate Transaction Manager Facet receives the commit request for a
transaction, it then iterates through each subordinate branch of the transaction and notifies the
subordinates that the transaction is committed. The transaction manager then waits for reply
notifications from each of the subordinates to complete Phase Two processing.

When each subordinate branch of the transaction replies that it has committed the transaction (that is,
each subordinate replies with a TXUSER_ENLISTMENT_COMMITREQDONE_OK or
PARTNERTM_PROPAGATE_COMMITREQDONE_OK in the message, depending on the connection type),
the transaction manager replies to its Superior Transaction Manager Facet with a
PARTNERTM_PROPAGATE_MTAG_COMMITREQDONE message. If the connection was created by
using CONNTYPE_PARTNERTM_BRANCH, fIsMaster is one (1). If the connection was created by using
CONNTYPE_PARTNERTM_PROPAGATE, then fIsMaster is zero (0).

Field Value Value description
MsgTag 0x00000FFF | MTAG_USER_MESSAGE
fIsMaster 0x00000001 | 1

dwConnectionld 0x00000001 | 1

dwUserMsgType | 0x00002008 | PARTNERTM_PROPAGATE_MTAG_COMMITREQDONE

dwcbVarLenData | 0x00000000 | O

dwReservedl Oxcd64cd64 | dwReservedl: Oxcd64cd64

The Subordinate Transaction Manager Facet has now completed all the work that is associated
with the transaction. If the subordinate transaction manager facet's connection with its superior
transaction manager facet is a CONNTYPE_PARTNERTM_BRANCH connection, the Subordinate
Transaction Manager Facet initiates the disconnect sequence. If the Subordinate Transaction
Manager Facet has any CONNTYPE_PARTNERTM_PROPAGATE connections with its subordinate
branches, the Subordinate Transaction Manager Facet initiates the disconnect sequence on those
subordinate branch connections.

4.5.2.3 Phase Two - The Root Transaction Manager

After the root transaction manager receives all reply notifications from each of its subordinates, the
transaction life cycle is complete. If the root transaction manager has any

CONNTYPE PARTNERTM PROPAGATE connections with its subordinate branches, the root
transaction manager initiates the disconnect sequence on those subordinate branch connections.

4.6 Resource Manager Recovery Scenario

This scenario describes in more detail how a resource manager registers with a transaction
manager, and how the resource manager drives its recovery process. The scenario begins by the
resource manager establishing a transport session with a transaction manager and negotiating its
connection resources.

453 /475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

4.6.1 Initializing the Recovery Process

After the resource manager registers with the transaction manager (compare Registering with the
Transaction Manager as a Resource Manager), it initiates recovery. To perform recovery, the resource
manager iterates through its log and locates all in-doubt transactions and requests their outcome by
reenlisting in the transaction with the transaction manager.

4.6.2 Reenlisting in In-Doubt Transactions

To reenlist in any transaction that is in-doubt, the resource manager establishes a
CONNTYPE TXUSER REENLIST connection with its transaction manager.

CONNTYPE_TXUSER_REENLIST: The packet sequence starts when the resource manager initiates a
CONNTYPE_TXUSER_REENLIST connection.

Field Value Value description
MsgTag 0x00000005 | MTAG_CONNECTION_REQ
fIsMaster 0x00000001 | 1

dwConnectionld 0x00000002 | 2

dwUserMsgType | 0x00000006 | CONNTYPE_TXUSER_REENLIST

dwcbVarLenData | 0x00000000 | O

dwReservedl Oxcd64cd64 | dwReservedl: Oxcd64cd64

For each in-doubt transaction, the resource manager sends a TXUSER REENLIST MTAG REENLIST
user message specifying the transaction identifier (guidTx), the time-out (in milliseconds) that it will
wait for notification, and the resource manager identifier (guidRm). For this sample, the resource
manager will wait 1 second (or 1000 milliseconds).

Field Value Value description
MsgTag 0x00000FFF | MTAG_USER_MESSAGE
fIsMaster 0x00000001 | 1

dwConnectionld 0x00000002 | 2

dwUserMsgType | 0x00001061 | TXUSER_REENLIST_MTAG_REENLIST

dwcbVarLenData | 0x00000024 | 36

dwReserved1l Oxcd64cd64 dwReservedl: 0xcd64cd64

guidTx 0x4046037E | 4046037e-9722-46c9-9883-99062341cb35
0x46C99722
0x06999883
0x35CB4123

ulTimeout 0x000003E8 | 1000

guidRm OxE7BAEBDF | E7BAEBDF-DC69-4E2B-9FF1-69A1D3592877
0x4E2BDC69
0xA1699FF1

0x772859D3

454 /475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

When transaction manager receives the reenlist request, it attempts to find the transaction in its list of
known transactions. If the transaction manager cannot locate the transaction, it assumes that the

transaction aborted and replies to the resource manager with a
TXUSER REENLIST MTAG REENLIST ABORTED user message.

Field Value Value description

MsgTag 0x00000FFF | MTAG_USER_MESSAGE

fIsMaster 0x00000000 | O

dwConnectionId | 0x00000002 | 2

dwUserMsgType | 0x00001062 | TXUSER_REENLIST_MTAG_REENLIST_ABORTED
dwcbVarLenData | 0x00000000 | O

dwReservedl Oxcd64cd64 | dwReservedl: Oxcd64cd64

If the transaction manager can locate the transaction, the transaction manager attempts to determine

outcome. The transaction manager replies to the resource manager with a

TXUSER REENLIST MTAG REENLIST COMMITTED or TXUSER_REENLIST_MTAG_REENLIST_ABORTED

user message, as appropriate.

Field Value Value description

MsgTag 0x00000FFF | MTAG_USER_MESSAGE

fIsMaster 0x00000000 | O

dwConnectionId | 0x00000002 | 2

dwUserMsgType | 0x00001063 | TXUSER_REENLIST_MTAG_REENLIST_COMMITED
dwcbVarLenData | 0x00000000 | O

dwReserved1 Oxcd64cd64 | dwReservedl: Oxcd64cd64

If the transaction manager is unable to determine outcome in the time-out period, the transaction
manager replies to the resource manager with a TXUSER REENLIST MTAG REENLIST TIMEOUT user

message.
Field Value Value description
MsgTag 0x00000FFF | MTAG_USER_MESSAGE
fIsMaster 0x00000000 | O
dwConnectionId | 0x00000002 | 2
dwUserMsgType | 0x00001064 | TXUSER_REENLIST_MTAG_REENLIST_TIMEOUT
dwcbVarLenData | 0x00000000 | O
dwReservedl Oxcd64cd64 | dwReservedl: Oxcd64cd64

After the resource manager determines the outcome from the transaction manager, it performs any
remaining commit or abort work, as appropriate. If the resource manager receives a time-out
notification, it needs to maintain the in-doubt entries in its log unchanged. The resource manager will
attempt to determine the outcome of these in-doubt transactions next time it performs recovery.

455 /475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

For any remaining in-doubt transactions, the resource manager needs to perform the previous steps
for each in-doubt transaction.

If there are no more in-doubt transactions, the resource manager informs the transaction manager
that it has completed its recovery process. The resource manager then initiates the disconnect
sequence on this connection.

4.6.3 Completing Recovery

To complete recovery, the resource manager needs to send the transaction manager a
TXUSER RESOURCEMANAGER MTAG REENLISTMENTCOMPLETE user message over its
CONNTYPE TXUSER RESOURCEMANAGER connection.

Field Value Value description

MsgTag 0x00000FFF | MTAG_USER_MESSAGE

fIsMaster 0x00000001 | 1

dwConnectionId | 0x00000001 | 1

dwUserMsgType | 0x00001052 | TXUSER_RESOURCEMANAGER_MTAG_REENLISTMENTCOMPLETE
dwcbVarLenData | 0x00000000 | O

dwReservedl Oxcd64cd64 | dwReservedl: Oxcd64cd64

When the transaction manager receives the reenlistment complete notification, the transaction
manager can clean up any transactions that are associated with the resource manager, such as the
transactions in the Failed to Notify state. In response, the transaction manager sends the resource

manager a TXUSER RESOURCEMANAGER MTAG REQUEST COMPLETE user message.

Field Value Value description

MsgTag 0x00000FFF | MTAG_USER_MESSAGE

fIsMaster 0x00000000 | O

dwConnectionId | 0x00000001 | 1

dwUserMsgType | 0x00001053 | TXUSER_RESOURCEMANAGER_MTAG_REQUEST_COMPLETE
dwcbVarLenData | 0x00000000 | O

dwReservedl Oxcd64cd64 | dwReservedl: Oxcd64cd64

The resource manager will maintain this connection.

456 / 475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

5 Security

5.1 Security Considerations for Implementers

The transaction processing protocol that is defined by this specification is intended for use in an
environment where all participants are trusted to collaborate in driving transactions toward a final
outcome.

Misuse of the Two-Phase Commit Protocol can enable participants to perform simple denial of service
attacks on their transaction managers. Because transaction managers generally communicate with
multiple participants simultaneously, this condition represents a denial of service to other participants.

Consequently, implementers need to take the following steps to ensure that transaction processing
occurs in a secure environment:

Each participant is expected to initialize [MS-CMPQO] sessions by using Mutual Authentication, as
specified in [MS-CMPQ] section 3.2.1.1. For information on Security Level authentication values
see section 3.2.1.

All transaction manager and resource manager implementations uphold the following principles:

Every transaction reaches a common outcome for all participants, in accord with a correctly
executed Two-Phase Commit Protocol.

No transaction remains In Doubt for a longer period of time than the application's higher-layer
business logic accepts. This specific determination is implementation-specific.

When authentication credentials are available, the acceptor is expected authorize Incoming
Connections to ensure that the initiator is entitled to perform the actions that it is requesting.
Implementations are recommended to adhere to the following authorization policies:

1.

The following connection types need to be accepted only for authenticated principals that have
administrator privileges:

= CONNTYPE TXUSER RESOLVE

= CONNTYPE TXUSER TRACE

When Incoming Authentication is available, the above connection types are required to be
established by a user identity that is authenticated as an administrator.

The following connection types need to be accepted only for authenticated principals whose
principal name takes the form of <DomainName>\<MachineName>$:

= CONNTYPE PARTNERTM PROPAGATE

= CONNTYPE PARTNERTM REDELIVERCOMMIT

= CONNTYPE PARTNERTM CHECKABORT

= CONNTYPE PARTNERTM BRANCH

When mutual authentication is required, the above connection types are required to be
established by a user identity whose principal name takes the form of
<DomainName>\<MachineName>$ where <DomainName> is a NetBIOS domain name and
<MachineName> matches the NetBIOS host name of the machine initiating the connection.

Transaction manager implementations need to ensure that the remote participant is a
transaction manager for connection types that are used only between a superior transaction
manager and a subordinate transaction manager.

457 /475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

%5bMS-CMPO%5d.pdf#Section_d2403ca533fa432997f5825ad0868bf6

An implementation can further restrict the set of supported connection types through configuration.
These restrictions are reflected in the values of the grfNetworkDtcAccess, grfXaTransactions, and
grfOptions fields of the TXUSER GETSECURITYFLAGS MTAG FETCHED message.

5.2 Index of Security Parameters

Security parameter Section
RPC security level MS-CMPO] section 3.2.1.1

Transaction manager security flags | 3.2

458 /475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

%5bMS-CMPO%5d.pdf#Section_d2403ca533fa432997f5825ad0868bf6

6 Appendix A: Product Behavior

The information in this specification is applicable to the following Microsoft products or supplemental
software. References to product versions include updates to those products.

= Windows NT 4.0 operating system Option Pack for Windows NT Server
= Windows 2000 operating system

= Windows XP operating system

= Windows Server 2003 operating system

= Windows Vista operating system

= Windows Server 2008 operating system

= Windows 7 operating system

= Windows Server 2008 R2 operating system
= Windows 8 operating system

= Windows Server 2012 operating system

= Windows 8.1 operating system

= Windows Server 2012 R2 operating system
= Windows 10 operating system

= Windows Server 2016 operating system

= Windows Server operating system

= Windows Server 2019 operating system

= Windows Server 2022 operating system

= Windows 11 operating system

Exceptions, if any, are noted in this section. If an update version, service pack or Knowledge Base
(KB) number appears with a product name, the behavior changed in that update. The new behavior
also applies to subsequent updates unless otherwise specified. If a product edition appears with the
product version, behavior is different in that product edition.

Unless otherwise specified, any statement of optional behavior in this specification that is prescribed
using the terms "SHOULD" or "SHOULD NOT" implies product behavior in accordance with the
SHOULD or SHOULD NOT prescription. Unless otherwise specified, the term "MAY" implies that the
product does not follow the prescription.

<1> Section 2.1.2.3: While performing push propagation, the Name object (as specified in [MS-
CMPQ] section 3.2.1.4) of the transaction manager is represented as follows. Windows NT 4.0
Option Pack uses the NAMEOBJECTBLOB (section 2.2.5.3) structure. Otherwise, applicable Windows
releases use the SWhereabouts (section 2.2.5.11) structure.

<2> Section 2.2.1.1: MSDTC Connection Manager: OleTx Transaction Protocol versions are as follows:

= Version 1 is supported by all applicable Windows releases.

459 /475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

%5bMS-CMPO%5d.pdf#Section_d2403ca533fa432997f5825ad0868bf6
%5bMS-CMPO%5d.pdf#Section_d2403ca533fa432997f5825ad0868bf6

= Version 2 is supported by all applicable Windows releases, except not on Windows NT 4.0
operating system.

= Version 4 is supported by all applicable Windows releases, except not on Windows NT 4.0,
Windows 2000, and Windows XP.

= Version 5 is supported by all applicable Windows releases, except not on Windows NT 4.0,
Windows 2000, Windows XP, and Windows Server 2003 without service packs.

= Version 6 is supported by all applicable Windows releases, except not on Windows NT 4.0,
Windows 2000, Windows XP, Windows Server 2003, Windows Vista, and Windows Server 2008.

<3> Section 2.2.1.1.1: The CONNTYPE_TXUSER_EXTENDEDWHEREABOUTS connection type is
not supported by Windows NT operating system, Windows 2000, Windows XP operating system
Service Pack 1 (SP1), and Windows Server 2003.

<4> Section 2.2.1.1.1: The CONNTYPE_TXUSER_PROMOTE connection type is not supported by
Windows NT, Windows 2000, and Windows Server 2003.

<5> Section 2.2.1.1.1: The CONNTYPE_TXUSER_SETTXTIMEOUT connection type is not supported
by Windows NT, and Windows 2000 operating system Service Pack 3 (SP3).

<6> Section 2.2.1.1.1: The CONNTYPE_TXUSER_SETTXTIMEOUT2 connection type is not
supported by Windows NT, Windows 2000, and Windows XP.

<7> Section 2.2.1.1.1: The TXUSER_RESOLVE_MTAG_ACCESSDENIED message that is associated
with CONNTYPE_TXUSER_RESOLVE connection type is not supported by Windows NT, Windows
2000, and Windows XP SP1.

<8> Section 2.2.1.1.3: The CONNTYPE_TXUSER_RESOURCEMANAGERINTERNAL connection
type is not supported by Windows NT, Windows 2000, Windows XP, and Windows Server 2003.

<9> Section 2.2.4.1: The value that Windows places in the dwReserved1 field is undefined.

<10> Section 2.2.5.2: The Associate_Msg_Version3 structure is not supported on Windows NT and
Windows 2000.

<11> Section 2.2.5.3: The dwReserved1 field is set to a nondeterministic 4-byte value on Windows
NT 4.0 Option Pack and Windows 2000.

<12> Section 2.2.5.4: The dwVersionMax field value is as follows. On Windows NT 4.0 Option Pack
the field value is 1. On Windows 2000, the field value is 2. Otherwise, on applicable Windows releases
the dwVersionMax field value is 3.

<13> Section 2.2.5.9: The fields that are included in the SWhereabouts structure is implementation-
specific as follows:

The TmProtocolTip field is included on applicable Windows releases if the transaction manager is so
configured, except not on Windows NT 4.0 Option Pack.

The TmProtocolMsdtcV1 field is included on applicable Windows releases.

The TmProtocolMsdtcV2 field is included on applicable Windows releases, except not on Windows NT
4.0 Option Pack.

The TmProtocolExtended field is included if the transaction manager is so configured, on applicable
Windows releases, except not on Windows NT 4.0 Option Pack, Windows 2000, Windows XP operating
system Service Pack 2 (SP2), and Windows Server 2003 operating system with Service Pack 1 (SP1).

<14> Section 2.2.8.2.1.1.10: Windows does not have a maximum limit on the number of times an
application can perform associate request on an already existing transaction by sending the

460/ 475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

TXUSER ASSOCIATE MTAG ASSOCIATE message. Therefore, the
TXUSER ASSOCIATE MTAG TOO MANY LOCAL message is never sent by any applicable Windows
release.

<15> Section 2.2.8.3.2.1: Windows NT, Windows 2000, and Windows XP SP1 do not require
authentication and it is not configurable. Otherwise applicable Windows releases by default require
authentication with an account that is in the administrator group and this behavior is configurable.

<16> Section 2.2.8.3.2.8: The TXUSER RESOLVE MTAG NOT CHILD message that is associated with
the CONNTYPE_TXUSER_RESOLVE connection type is never sent by any applicable Windows
releases.

<17> Section 2.2.10.2.2.8: Windows limits transactions to 32 direct enlistments.

<18> Section 3.1.4.3: Regarding the MSDTC Connection Manager: OleTx Transaction Protocol
connection establishment in Windows, an MSDTC Connection Manager: OleTx Transaction Protocol
session partner does send connection requests for connection types that it supports (when required by
the protocol rules, see section 3). The CONNTYPE_TXUSER_EXPORT2 (section 2.2.8.2.2.3) and
CONNTYPE_TXUSER_PROMOTE (section 2.2.8.1.3) connection types could be sent to the other
partner, which might not support these connection types. As a result, the requests for the
unsupported connection types are rejected with an MTAG_CONNECTION_REQ_DENIED ([MS-CMP
section 2.2.5). When the CONNTYPE_TXUSER_PROMOTE connection type is rejected, applicable
Windows releases return the failure result to the higher business layer. When the
CONNTYPE_TXUSER_EXPORT2 connection type is rejected, Windows falls back to the
CONNTYPE_TXUSER_EXPORT (section 2.2.8.2.2.2) connection type.

<19> Section 3.1.4.3: Regarding the sending of messages over an established MSDTC Connection
Manager: OleTx Transaction Protocol connection in Windows, an MSDTC Connection Manager: OleTx
Transaction Protocol session partner never sends messages that it supports (when required by the
protocol rules, see section 3), but that are not supported by the negotiated protocol version (in the
context of the connection's connection type) with one exception:
TXUSER_RESOLVE_MTAG_ACCESSDENIED (section 2.2.8.3.2.1). For the
TXUSER_RESOLVE_MTAG_ACCESSDENIED message, a partner that supports this message sends
it (when required by protocol rules) even if it is not supported by the negotiated protocol version.

<20> Section 3.1.6: When receiving an invalid message on a connection, the participant terminates
the associated session on Windows NT 4.0 Option Pack, Windows 2000 and Windows XP SP1.

<21> Section 3.2.1: Mutual Authentication is used by default for applicable Windows releases, except
that No Authentication is used on Windows NT 4.0 Option Pack, Windows 2000, and Windows XP SP1.

<22> Section 3.2.3: The Security Level No Authentication is supported by all applicable Windows
releases. In applicable Windows releases except in Windows NT 4.0 Option Pack, Windows 2000,
Windows XP SP1, and Windows Server 2003 without service packs, security levels Incoming
Authentication and Mutual Authentication are supported, and the security level is configurable to any
of the three values.

<23> Section 3.2.3.1: The Timeout field value defaults to zero in applicable Windows releases.

<24> Section 3.2.3.2: In applicable Windows releases, the log size is configurable and stored in the
registry. The default log size value is 4 MB, and the default maximum size is 512 MB.

<25> Section 3.2.3.3: The Core Transaction Manager Facet (section 1.3.3.3.1) ensures that
transactions with duplicate identifiers are not created; however, for Windows Vista the application of
Windows Vista operating system with Service Pack 1 (SP1) is required to restore the correct protocol
behavior and ensure that transactions with duplicate identifiers are not created.

<26> Section 3.2.7.11: The limit of Subordinate Enlistments depends on the type of Enlistment. In
applicable Windows releases the default limit on Subordinate Transaction Manager Enlistments is 64,

461 /475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

%5bMS-CMP%5d.pdf#Section_1970a8a0799d4308b9274e4ea23dc225

except on Windows NT 4.0 Option Pack, where the limit is 16. The limit on Subordinate Resource
Manager Enlistments in Windows is 32.

<27> Section 3.2.7.13: The Core Transaction Manager Facet (section 1.3.3.3.1) ensures that
transactions with duplicate identifiers are not created; however, Windows Vista does not ensure that
transactions with duplicate identifiers are not created and requires the application of Windows Vista
SP1 to restore the correct protocol behavior.

<28> Section 3.2.7.21: The limit of Subordinate Enlistments depends on the type of Enlistment.
In applicable Windows releases, the default limit on Subordinate Transaction Manager
Enlistments is 64, except on Windows NT 4.0 Option Pack, where the limit is 16. The limit on
Subordinate Resource Manager Enlistments in Windows is 32.

<29> Section 3.3.4.1: In Windows Vista, the Core Transaction Manager Facet (section 1.3.3.3.1) does
not ensure that transactions with duplicate identifiers are not created. If an identifier that already
exists in the transaction table is sent as the guidTX field with TXUSER_BEGINNER_MTAG_PROMOTE
Message (section 3.4.5.1.3.1), a duplicate entry having the same transaction identifier will be created
in the transaction table. Consequently, the transaction identifier having duplicate entries in the
transaction table is not uniquely mapped to a single transaction object and any subsequent lookup for
a transaction object with this identifier can return any one of the duplicate transaction objects. Any
subsequent processing rule that involves finding a transaction object by this transaction identifier can
have an undefined outcome as a result of this Windows Vista-specific behavior. This undefined
behavior was identified post release and has since been addressed in subsequent releases. An
implementation avoids duplicate transaction identifiers when beginning a transaction that uses the
CONNTYPE_TXUSER_PROMOTE connection type (section 3.3.4.1.3) by always using a nhew GUID as
specified in [REC4122] for the predetermined transaction identifier.

<30> Section 3.4.5.3.2.1: By default, authentication is required with an account that is in the
administrator group, exception on Windows NT, Windows 2000, and Windows XP SP1 on which this
behavior is not configurable.

<31> Section 3.4.5.3.2.2: By default, authentication is required with an account that is in the
administrator group, exception on Windows NT, Windows 2000, and Windows XP SP1 on which this
behavior is not configurable.

<32> Section 3.4.5.3.2.3: By default, authentication is required with an account that is in the
administrator group, exception on Windows NT, Windows 2000, and Windows XP SP1 on which this
behavior is not configurable.

<33> Section 3.7.2.1: The value is 1000 milliseconds if the transport is down. Otherwise the default
value is 500 milliseconds on applicable Windows releases. This value is not configurable.

<34> Section 3.8.2.1: The value is 1000 milliseconds for applicable Windows releases. This value is
not configurable.

462 / 475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

https://go.microsoft.com/fwlink/?LinkId=90460

7 Change Tracking

This section identifies changes that were made to this document since the last release. Changes are
classified as Major, Minor, or None.

The revision class Major means that the technical content in the document was significantly revised.
Major changes affect protocol interoperability or implementation. Examples of major changes are:

= A document revision that incorporates changes to interoperability requirements.
= A document revision that captures changes to protocol functionality.

The revision class Minor means that the meaning of the technical content was clarified. Minor changes
do not affect protocol interoperability or implementation. Examples of minor changes are updates to
clarify ambiguity at the sentence, paragraph, or table level.

The revision class None means that no new technical changes were introduced. Minor editorial and
formatting changes may have been made, but the relevant technical content is identical to the last
released version.

The changes made to this document are listed in the following table. For more information, please
contact dochelp@microsoft.com.

Section Description Revision class

6 Appendix A: Product Behavior | Updated for this version of Windows Client. | Major

463/ 475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

mailto:dochelp@microsoft.com

8 Index
A

Abstract data model
application (section 3.1.1 155, section 3.3.1 199,
section 3.4.1 258)
core transaction manager (section 3.1.1 155,
section 3.2.1 161)
resource manager (section 3.1.1 155, section
3.5.1 320, section 3.6.1 348)
subordinate transaction manager (section 3.1.1
155, section 3.8.1 404)
superior transaction manager (section 3.1.1 155,
section 3.7.1 380)
transaction manager (section 3.1.1 155, section
3.4.1 258, section 3.6.1 348)
Applicability 53
Application
abstract data model (section 3.1.1 155, section
3.3.1 199, section 3.4.1 258)
connection types 82
facet - role 46
higher-layer triggered events
beginning transaction 226
changing transaction time-out 228
creating export connection 230
generating trace records for transaction 231
importing transaction 231
importing transaction with additional transaction

attributes 233
initiating transaction commit 233
initiating transaction rollback 235
obtaining extended whereabouts 237
obtaining security configuration of transaction
manager 237
overview (section 3.1.5 159, section 3.3.4 226,
section 3.4.4 286)
pulling transaction 237
pushing transaction 238
resolving transaction 239
initialization (section 3.1.3 157, section 3.3.3 226,
section 3.4.3 285)
local events
Associate Transaction Failure 307
Associate Transaction Success 308
Begin Commit 308
Begin In Doubt 309
Begin Rollback 309
Begin Voting 309
Connection Disconnected 161
Create Transaction Failure 310
Create Transaction Success 311
Create Voter Enlistment Failure 311
Create Voter Enlistment Success 312
Export Transaction Failure 312
Export Transaction Success 313
overview (section 3.1.8 160, section 3.3.7 257,
section 3.4.7 307)
Phase One Complete 314
Phase Zero Complete 315
Register Phase Zero 315
Resolve Transaction Complete 316

Rollback Complete 317
Set Transaction Attributes Failure 317
Set Transaction Attributes Success 318
Set Transaction Timeout Failure 318
Set Transaction Timeout Success 319
Unilaterally Aborted 319

message processing 305
transaction administration (section 3.3.5.3 252,
section 3.4.5.3 300)
transaction initiation and completion (section
3.3.5.1 240, section 3.4.5.1 286)
transaction manager administration 257
transaction propagation (section 3.3.5.2 245,
section 3.4.5.2 291)

overview 155

role 43

sequencing rules 305
transaction administration (section 3.3.5.3 252,
section 3.4.5.3 300)
transaction initiation and completion (section
3.3.5.1 240, section 3.4.5.1 286)
transaction manager administration 257
transaction propagation (section 3.3.5.2 245,
section 3.4.5.2 291)

timer events (section 3.1.7 160, section 3.3.6 257,
section 3.4.6 307)

timers (section 3.1.2 157, section 3.3.2 225,
section 3.4.2 285)

versioning 158

Associate Msg Version2 packet 64
Associate Msg Version3 packet 64

C

Capability negotiation 54
Capability negotiation mechanisms 55
Change tracking 462
Connection types
application 82
resource manager
transaction recovery 148
voting 150
transaction administration 112
transaction manager 122
transaction manager propagation 122
transaction propagation 92
transaction recovery 133
version-specific aspects
relevant to applications 59
relevant to resource managers 61
relevant to transaction managers 61
Connections 57
CONNTYPE enumeration 72
CONNTYPE_PARTNERTM_BRANCH
acceptor states 384
initiator states 408
overview 130
CONNTYPE_PARTNERTM_CHECKABORT
acceptor states 389
initiator states 413
overview 133

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol

Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

464 /475

CONNTYPE_PARTNERTM_PROPAGATE

acceptor states 404

initiator states 381

overview 122
CONNTYPE_PARTNERTM_REDELIVERCOMMIT

acceptor states 411

initiator states 387

overview 135
CONNTYPE_TXUSER_ASSOCIATE

acceptor states 264

initiator states 206

overview 92
CONNTYPE_TXUSER_BEGINZ2

acceptor states 260

initiator states 202

overview 86
CONNTYPE_TXUSER_BEGINNER

acceptor states 258

initiator states 199

overview 82
CONNTYPE_TXUSER_ENLISTMENT

acceptor states 354

initiator states 326

overview 142
CONNTYPE_TXUSER_EXPORT

acceptor states 271

initiator states 213

overview 100
CONNTYPE_TXUSER_EXPORT2

acceptor states 273

initiator states 215

overview 105
CONNTYPE_TXUSER_EXTENDEDWHEREABOUTS

acceptor states 266

overview 98
CONNTYPE TXUSER EXTENDWHEREABOUTS -

initiator states 208

CONNTYPE_TXUSER_GETSECURITYFLAGS

acceptor states 283

initiator states 224

overview 121
CONNTYPE_TXUSER_GETTXDETAILS

acceptor states 275

initiator states 217

overview 112
CONNTYPE_TXUSER_IMPORT

acceptor states 267

initiator states 209

overview 106
CONNTYPE_TXUSER_IMPORT2

acceptor states 269

initiator states 211

overview 109
CONNTYPE_TXUSER_PHASEO

acceptor states 352

initiator states 324

overview 139
CONNTYPE_TXUSER_PROMOTE

acceptor states 262

initiator states 204

overview 91
CONNTYPE_TXUSER_REENLIST

acceptor states 357

initiator states 328

overview 148

CONNTYPE_TXUSER_RESOLVE

acceptor states 276

initiator states 218

overview 114
CONNTYPE_TXUSER_RESOURCEMANAGER

acceptor states 349

initiator states 321

overview 136
CONNTYPE_TXUSER_RESOURCEMANAGERINTERNAL

acceptor states 350

initiator states 322

overview 138
CONNTYPE_TXUSER_SETTXTIMEOUT

acceptor states 278

initiator states 220

overview 118
CONNTYPE_TXUSER_SETTXTIMEOUT2

acceptor states 280

initiator states 221

overview 119
CONNTYPE_TXUSER_TRACE

acceptor states 282

initiator states 223

overview 119
CONNTYPE_TXUSER_VOTER

acceptor states 359

initiator states 330

overview 150

Constants 78

Core transaction manager

abstract data model (section 3.1.1 155, section
3.2.1161)

higher-layer triggered events (section 3.1.5 159,
section 3.2.4 175)

initialization
durable log 175
overview (section 3.1.3 157, section 3.2.3 173)
transaction

object initialization 174
recovery 175

local events
Associate Transaction 176
Begin Commit 177
Begin In Doubt 178
Begin Phase One 178
Begin Phase Zero 178
Begin Rollback 179
Begin Voting 179
Branch Transaction Failure 180
Branch Transaction Success 180
Connection Disconnected 161
Create Phase Zero Enlistment 180
Create Subordinate Enlistment 181
Create Superior Enlistment 182
Create Transaction 183
Create Voter Enlistment 184
Enlistment Commit Complete 184
Enlistment Phase One Complete 185
Enlistment Phase Zero Complete 186
Enlistment Rollback Complete 188
Enlistment Unilaterally Aborted 188
Enlistment Vote Complete 189
Export Transaction 190
Forget Transaction 191

Notify Aborted 191

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol

Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

465 /475

Notify Recovered Transaction Committed 192
overview (section 3.1.8 160, section 3.2.7 176)
Phase One Completed 192
Propagate Transaction Failure 193
Propagate Transaction Success 194
Register Phase Zero Failure 194
Register Phase Zero Success 194
Request Transaction Outcome 197
Resolve Transaction 195
Set Transaction Attributes 196
Set Transaction Timeout 197
Unenlist Phase Zero Enlistment 197
Voting Complete 198
message processing 176
overview 155
role 46
sequencing rules 176
timer events (section 3.1.7 160, section 3.2.6 176)
timers (section 3.1.2 157, section 3.2.2 172)

versioning 158

D

Data model - abstract
application (section 3.1.1 155, section 3.3.1 199,
section 3.4.1 258)
core transaction manager (section 3.1.1 155,
section 3.2.1 161)
resource manager (section 3.1.1 155, section
3.5.1 320, section 3.6.1 348)
subordinate transaction manager (section 3.1.1
155, section 3.8.1 404)
superior transaction manager (section 3.1.1 155,
section 3.7.1 380)
transaction manager (section 3.1.1 155, section
3.4.1 258, section 3.6.1 348)
DTCADVCONFIG packet 79
DTCADVCONFIG OPTIONS packet 80
Durability 48

Enlistment example
enlisting in existing transaction 444
overview 443
registering with transaction manager as resource
manager 443
responding to enlistment notifications 446
Enumerations 72
Examples
overview 429
resource manager recovery scenario
completing recovery 455
initializing recovery 453
overview 452
reenlisting in in-doubt transactions 453
simple enlistment scenario
enlisting in existing transaction 444
overview 443
registering with transaction manager as resource

manager 443
responding to enlistment notifications 446

simple transaction scenario
beginning transaction 429
completing transaction 430

overview 429
transaction manager two-phase commit scenario
overview 447
Phase One 448
Phase Two 451
transaction marshaling scenario
branching transaction 435
exporting transaction 438
importing transaction 442
marshaling transaction 432
obtaining whereabouts of receiver's transaction
manager 437
overview (section 4.2 431, section 4.3 437)
propagating transaction 440
unmarshaling transaction 433

F

Facets - core transaction manager 171
Fields - vendor-extensible 56

G

Glossary 28
GRFRM 78

H

Higher-layer triggered events

application
beginning transaction 226
changing transaction time-out 228
creating export connection 230
generating trace records for transaction 231
importing transaction 231
importing transaction with additional transaction
attributes 233
initiating transaction commit 233
initiating transaction rollback 235
obtaining extended whereabouts 237
obtaining security configuration of transaction
manager 237
overview (section 3.1.5 159, section 3.3.4 226,
section 3.4.4 286)
pulling transaction 237
pushing transaction 238
resolving transaction 239

core transaction manager (section 3.1.5 159,
section 3.2.4 175)

resource manager
canceling enlistment as Phase Zero participant
on specific transaction 333
enlisting as Phase Zero participant on specific
transaction 333
enlisting on specific transaction 333
Enlistment Abort request completed 334
Enlistment Commit request completed 334
Enlistment Prepare request completed 335
Enlistment Single-Phase Commit request
completed 336
overview (section 3.1.5 159, section 3.5.4 333,
section 3.6.4 362)
Phase Zero request completed 337
registering as voter on specific transaction 337
registering with transaction manager 337

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol

Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

466 / 475

Voter Vote request completed 338
subordinate transaction manager (section 3.1.5
159, section 3.8.4 415)

superior transaction manager (section 3.1.5 159,

section 3.7.4 390)
transaction manager (section 3.1.5 159, section
3.4.4 286, section 3.6.4 362)

I

Implementer - security considerations 456
Index of security parameters 457
Informative references 34

Initialization

application (section 3.1.3 157, section 3.3.3 226,

section 3.4.3 285)
core transaction manager

durable log 175

overview (section 3.1.3 157, section 3.2.3 173)

transaction
object initialization 174
recovery 175
resource manager (section 3.1.3 157, section
3.5.3 332, section 3.6.3 361)
subordinate transaction manager (section 3.1.3
157, section 3.8.3 414)

superior transaction manager (section 3.1.3 157,

section 3.7.3 390)
transaction manager (section 3.1.3 157, section
3.4.3 285, section 3.6.3 361)
Introduction 27

L

Lifetime - transaction 35
Local events
application

Associate Transaction Failure 307
Associate Transaction Success 308
Begin Commit 308
Begin In Doubt 309
Begin Rollback 309

Begin Voting 309
Connection Disconnected 161

Create Transaction Failure 310
Create Transaction Success 311
Create Voter Enlistment Failure 311
Create Voter Enlistment Success 312
Export Transaction Failure 312
Export Transaction Success 313

overview (section 3.1.8 160, section 3.3.7 257,

section 3.4.7 307)
Phase One Complete 314
Phase Zero Complete 315
Register Phase Zero 315
Resolve Transaction Complete 316
Rollback Complete 317
Set Transaction Attributes Failure 317
Set Transaction Attributes Success 318
Set Transaction Timeout Failure 318
Set Transaction Timeout Success 319
Unilaterally Aborted 319

core transaction manager
Associate Transaction 176
Begin Commit 177

Begin In Doubt 178

Begin Phase One 178

Begin Phase Zero 178

Begin Rollback 179

Begin Voting 179

Branch Transaction Failure 180
Branch Transaction Success 180
Connection Disconnected 161
Create Phase Zero Enlistment 180
Create Subordinate Enlistment 181
Create Superior Enlistment 182
Create Transaction 183

Create Voter Enlistment 184
Enlistment Commit Complete 184
Enlistment Phase One Complete 185
Enlistment Phase Zero Complete 186
Enlistment Rollback Complete 188
Enlistment Unilaterally Aborted 188
Enlistment Vote Complete 189
Export Transaction 190

Forget Transaction 191

Notify Aborted 191

Notify Recovered Transaction Committed 192
overview (section 3.1.8 160, section 3.2.7 176)
Phase One Completed 192
Propagate Transaction Failure 193
Propagate Transaction Success 194
Register Phase Zero Failure 194
Register Phase Zero Success 194
Request Transaction Outcome 197
Resolve Transaction 195

Set Transaction Attributes 196

Set Transaction Timeout 197
Unenlist Phase Zero Enlistment 197

Voting Complete 198

resource manager

Begin Commit 373

Begin In Doubt 374

Begin Phase One 374

Begin Phase Zero 374

Begin Rollback 375

Begin Voting 376

Connection Disconnected 161

Create Phase Zero Enlistment Failure 376
Create Phase Zero Enlistment Success 376
Create Resource Manager 377

Create Subordinate Enlistment Failure 377
Create Subordinate Enlistment Success 378
Create Voter Enlistment Failure 378
Create Voter Enlistment Success 379
overview (section 3.1.8 160, section 3.5.7 346,
section 3.6.7 373)

Phase Zero Aborted 379

Recover Transaction 346

Recover Transactions 347

Reenlist Complete 379

Reenlistment Complete 347

Resource Manager Down 380

Transaction Manager Down 347

subordinate transaction manager

Branch Transaction 424

Cancel Check Abort 424

Commit Complete 424

Connection Disconnected 161

Create Superior Enlistment Failure 425

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol

Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

467 /475

Create Superior Enlistment Success 425
overview (section 3.1.8 160, section 3.8.7 423)
Phase One Complete 426
Phase Zero Complete 425
Recover In Doubt Transaction 427
Register Phase Zero 427
Rollback Complete 428
Unilaterally Aborted 428

superior transaction manager
Begin Commit 400
Begin Phase One 400
Begin Phase Zero 401
Begin Rollback 401
Connection Disconnected 161
Create Phase Zero Enlistment Failure 402
Create Phase Zero Enlistment Success 402
Create Subordinate Enlistment Failure 402
Create Subordinate Enlistment Success 403
overview (section 3.1.8 160, section 3.7.7 400)
Phase Zero Aborted 403
Propagate Transaction 403

transaction manager
Associate Transaction Failure 307
Associate Transaction Success 308
Begin Commit (section 3.4.7.3 308, section
3.6.7.1 373)
Begin In Doubt (section 3.4.7.4 309, section
3.6.7.2 374)
Begin Phase One 374
Begin Phase Zero 374
Begin Rollback (section 3.4.7.5 309, section
3.6.7.5 375)
Begin Voting (section 3.4.7.6 309, section
3.6.7.6 376)
Connection Disconnected 161
Create Phase Zero Enlistment Failure 376
Create Phase Zero Enlistment Success 376
Create Resource Manager 377
Create Subordinate Enlistment Failure 377
Create Subordinate Enlistment Success 378
Create Transaction Failure 310
Create Transaction Success 311
Create Voter Enlistment Failure (section 3.4.7.9
311, section 3.6.7.12 378)
Create Voter Enlistment Success (section
3.4.7.10 312, section 3.6.7.13 379)
Export Transaction Failure 312
Export Transaction Success 313
overview (section 3.1.8 160, section 3.4.7 307,
section 3.6.7 373)
Phase One Complete 314
Phase Zero Aborted 379
Phase Zero Complete 315
Reenlist Complete 379
Register Phase Zero 315
Resolve Transaction Complete 316
Resource Manager Down 380
Rollback Complete 317
Set Transaction Attributes Failure 317
Set Transaction Attributes Success 318
Set Transaction Timeout Failure 318
Set Transaction Timeout Success 319
Unilaterally Aborted 319

Logging - core transaction manager 165

Message processing
application 305
transaction administration (section 3.3.5.3 252,
section 3.4.5.3 300)
transaction initiation and completion (section
3.3.5.1 240, section 3.4.5.1 286)
transaction manager administration 257
transaction propagation (section 3.3.5.2 245,
section 3.4.5.2 291)
common 159
core transaction manager 176
resource manager
registration (section 3.5.5.1 339, section 3.6.5.1
362)
transaction coordination (section 3.5.5.2 341,
section 3.6.5.2 364)
transaction recovery (section 3.5.5.3 344,
section 3.6.5.3 369)
voting (section 3.5.5.4 345, section 3.6.5.4 371)
subordinate transaction manager
transaction propagation and coordination 415
transaction recovery 421
superior transaction manager
transaction propagation and coordination 391
transaction recovery 397
transaction manager
administration 305
resource manager registration 362
transaction administration 300
transaction coordination 364
transaction initiation and completion 286
transaction propagation 291
transaction recovery 369
voting 371
MESSAGE PACKET packet 62
Messages
Structures with a Format-Specifying Field as
Versioning Mechanism 62
Structures with Fields Containing Version Numbers
as Versioning Mechanism 61
syntax 58

transport 57
MS-CMPO parameterization 57

Name object
computing 58
converting NAMEOBJECTBLOB structure to 157
converting OLETX TM ADDR structure to 156
converting to NAMEOBJECTBLOB structure 157
converting to OLETX TM ADDR structure 156
NAMEOBJECTBLOB packet 65
NAMEOBIJECTBLOB structure
converting Name object to 157
converting to Name object 157
Negotiating common protocol version 158

Normative references 33

o

OLETX TM_ADDR structure
converting Name object to 156

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

468 /475

converting to Name object 156
OLETX ISOLATION FLAGS enumeration 77
OLETX ISOLATION LEVEL enumeration 78
OLETX TM ADDR packet 63
OLETX VARLEN STRING packet 63
Overview (synopsis) 34

P

Parameters - security index 457

PARTNERTM BRANCH MTAG BRANCH LOG FULL
packet 130

PARTNERTM BRANCH MTAG BRANCH NO MEM
packet 131

PARTNERTM BRANCH MTAG BRANCH TOO LATE
packet 131

PARTNERTM BRANCH MTAG BRANCH TOO MANY

packet 132
PARTNERTM BRANCH MTAG BRANCH TX NOT FOU

ND packet 132

PARTNERTM BRANCH MTAG BRANCHED packet 132

PARTNERTM BRANCH MTAG BRANCHING packet
133

PARTNERTM CHECKABORT MTAG ABORTED packet
134

PARTNERTM CHECKABORT MTAG CHECK packet
133

PARTNERTM CHECKABORT MTAG RETRY packet
134

PARTNERTM PROPAGATE MTAG ABORTNOTIFY
packet 128

PARTNERTM PROPAGATE MTAG ABORTREQ packet
127

PARTNERTM PROPAGATE MTAG ABORTREQDONE

packet 127
PARTNERTM PROPAGATE MTAG COMMITREQ

packet 126
PARTNERTM PROPAGATE MTAG COMMITREQDONE

packet 127

PARTNERTM PROPAGATE MTAG DUPLICATE packet
123

PARTNERTM PROPAGATE MTAG LOG FULL packet
124

PARTNERTM PROPAGATE MTAG NO MEM packet
124

PARTNERTM PROPAGATE MTAG PHASEOQ packet 129

PARTNERTM PROPAGATE MTAG PHASEOCOMPLETE

packet 129
PARTNERTM PROPAGATE MTAG PHASEOREGISTER

packet 128
PARTNERTM PROPAGATE MTAG PHASEOREGISTERE

D packet 128

PARTNERTM PROPAGATE MTAG PHASEOREGISTRAT
IONREJECTED packet 129

PARTNERTM PROPAGATE MTAG PREPAREREQ
packet 125

PARTNERTM PROPAGATE MTAG PREPAREREQDONE
packet 125

PARTNERTM PROPAGATE MTAG PROPAGATE packet
122

PARTNERTM PROPAGATE MTAG PROPAGATED

packet 123
PARTNERTM PROPAGATE MTAG PROTOCOL ERROR

packet 126

PARTNERTM PROPAGATE PREPAREREQDONE RESP
ONSE enumeration 75
PARTNERTM REDELIVERCOMMIT MTAG COMMITRE
Q packet 135
PARTNERTM REDELIVERCOMMIT MTAG COMMITRE
QDONE packet 135
PARTNERTM REDELIVERCOMMIT MTAG RETRY
packet 136
Phase One 37
Phase Two 39
Phase Zero 36
Preconditions 53
Prerequisites 53
Product behavior 458
Propagation
pull (section 2.2.8.2.1 92, section 2.2.9.1.2 130)
branching transaction 435
marshaling transaction 432
overview (section 1.3.5.1 50, section 4.2 431)
unmarshaling transaction 433
push (section 2.2.8.2.2 98, section 2.2.9.1.1 122)
exporting transaction 438
importing transaction 442
obtaining whereabouts of receiver's transaction
manager 437
overview (section 1.3.5.2 51, section 4.3 437)
propagating transaction 440
transaction (section 1.3.5 49, section 2.2.8.2 92)
transaction manager 122
Propagation Token packet 66
Protocol extension objects - core transaction
manager 171
Pull propagation (section 2.2.8.2.1 92, section
2.2.9.1.2 130)
branching transaction 435
marshaling transaction 432
overview (section 1.3.5.1 50, section 4.2 431)
unmarshaling transaction 433
Push propagation (section 2.2.8.2.2 98, section
2.2.9.1.1 122)
exporting transaction 438
importing transaction 442
obtaining whereabouts of receiver's transaction
manager 437
overview (section 1.3.5.2 51, section 4.3 437)
propagating transaction 440

R

Recovery example
completing recovery 455
initializing recovery 453
overview 452
reenlisting in in-doubt transactions 453
References 33
informative 34
normative 33
Registration - resource manager 136
Relationship to other protocols 53
Resource manager
abstract data model (section 3.1.1 155, section
3.5.1 320, section 3.6.1 348)
connection types 136
example
completing recovery 455

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol

Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

469 /475

initializing recovery 453
overview 452
reenlisting in in-doubt transactions 453

facet - role 47

higher-layer triggered events
canceling enlistment as Phase Zero participant
on specific transaction 333
enlisting as Phase Zero participant on specific
transaction 333
enlisting on specific transaction 333
Enlistment Abort request completed 334
Enlistment Commit request completed 334
Enlistment Prepare request completed 335
Enlistment Single-Phase Commit request
completed 336
overview (section 3.1.5 159, section 3.5.4 333,
section 3.6.4 362)
Phase Zero request completed 337
registering as voter on specific transaction 337
registering with transaction manager 337
Voter Vote request completed 338

initialization (section 3.1.3 157, section 3.5.3 332,
section 3.6.3 361)

local events
Begin Commit 373
Begin In Doubt 374
Begin Phase One 374
Begin Phase Zero 374
Begin Rollback 375

Begin Voting 376
Connection Disconnected 161

Create Phase Zero Enlistment Failure 376
Create Phase Zero Enlistment Success 376
Create Resource Manager 377
Create Subordinate Enlistment Failure 377
Create Subordinate Enlistment Success 378
Create Voter Enlistment Failure 378
Create Voter Enlistment Success 379
overview (section 3.1.8 160, section 3.5.7 346,
section 3.6.7 373)
Phase Zero Aborted 379
Recover Transaction 346
Recover Transactions 347
Reenlist Complete 379
Reenlistment Complete 347
Resource Manager Down 380
Transaction Manager Down 347
message processing
resource manager registration (section 3.5.5.1
339, section 3.6.5.1 362)
transaction coordination (section 3.5.5.2 341,
section 3.6.5.2 364)
transaction recovery (section 3.5.5.3 344,
section 3.6.5.3 369)
voting (section 3.5.5.4 345, section 3.6.5.4 371)
overview 155
recovery 48
registration 136
role 44
sequencing rules
resource manager registration (section 3.5.5.1
339, section 3.6.5.1 362)
transaction coordination (section 3.5.5.2 341,
section 3.6.5.2 364)

transaction recovery (section 3.5.5.3 344,
section 3.6.5.3 369)
voting (section 3.5.5.4 345, section 3.6.5.4 371)

timer events (section 3.1.7 160, section 3.5.6 346,
section 3.6.6 372)

timers (section 3.1.2 157, section 3.5.2 332,
section 3.6.2 361)

transaction coordination 139

versioning 158

voting 150
Resource manager recovery scenario

completing recovery 455

initializing recovery 453

overview 452

reenlisting in in-doubt transactions 453
Roles - transaction 42

S

SDtcCmEndpointIinfoV1 packet 67
SDtcCmEndpointInfoV2 packet 68
Security
computing levels 58
implementer considerations 456
parameter index 457
Sequencing rules
application 305
transaction administration (section 3.3.5.3 252,
section 3.4.5.3 300)
transaction initiation and completion (section
3.3.5.1 240, section 3.4.5.1 286)
transaction manager administration 257
transaction propagation (section 3.3.5.2 245,
section 3.4.5.2 291)
common 159
core transaction manager 176
resource manager
registration (section 3.5.5.1 339, section 3.6.5.1
362)
transaction coordination (section 3.5.5.2 341,
section 3.6.5.2 364)
transaction recovery (section 3.5.5.3 344,
section 3.6.5.3 369)
voting (section 3.5.5.4 345, section 3.6.5.4 371)
subordinate transaction manager
transaction propagation and coordination 415
transaction recovery 421
superior transaction manager
transaction propagation and coordination 391
transaction recovery 397
transaction manager
administration 305
resource manager registration 362
transaction administration 300
transaction coordination 364
transaction initiation and completion 286
transaction propagation 291
transaction recovery 369

voting 371

Sessions 57

SExtendedEndpointInfo packet 69

Simple enlistment scenario
enlisting in existing transaction 444
overview 443

470/ 475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

registering with transaction manager as resource
manager 443
responding to enlistment notifications 446
Simple transaction scenario
beginning transaction 429
completing transaction 430
overview 429
Single-phase commit 41
SOleTxInfoForTip packet 68
Standards assignments 56
STmToTmProtocol packet 69
Structures
common 62
transaction propagation 64
Structures with a Format-Specifying Field as
Versioning Mechanism message 62
Structures with Fields Containing Version Numbers
as Versioning Mechanism message 61
STxInfo packet 70
Subordinate transaction manager
abstract data model (section 3.1.1 155, section
3.8.1 404)
facet - role 47
higher-layer triggered events (section 3.1.5 159,
section 3.8.4 415)
initialization (section 3.1.3 157, section 3.8.3 414)
local events
Branch Transaction 424
Cancel Check Abort 424
Commit Complete 424
Connection Disconnected 161
Create Superior Enlistment Failure 425
Create Superior Enlistment Success 425
overview (section 3.1.8 160, section 3.8.7 423)
Phase One Complete 426
Phase Zero Complete 425
Recover In Doubt Transaction 427
Register Phase Zero 427
Rollback Complete 428
Unilaterally Aborted 428
message processing
transaction propagation and coordination 415
transaction recovery 421
overview 155
sequencing rules
transaction propagation and coordination 415
transaction recovery 421
timer events (section 3.1.7 160, section 3.8.6 423)
timers (section 3.1.2 157, section 3.8.2 414)
versioning 158
Subordinate-driven transaction recovery 133
Superior transaction manager
abstract data model (section 3.1.1 155, section
3.7.1 380)
facet - role 47
higher-layer triggered events (section 3.1.5 159,
section 3.7.4 390)
initialization (section 3.1.3 157, section 3.7.3 390)
local events
Begin Commit 400
Begin Phase One 400
Begin Phase Zero 401

Begin Rollback 401
Connection Disconnected 161
Create Phase Zero Enlistment Failure 402

Create Phase Zero Enlistment Success 402
Create Subordinate Enlistment Failure 402
Create Subordinate Enlistment Success 403
overview (section 3.1.8 160, section 3.7.7 400)
Phase Zero Aborted 403
Propagate Transaction 403
message processing
transaction propagation and coordination 391
transaction recovery 397
overview 155
sequencing rules
transaction propagation and coordination 391
transaction recovery 397
timer events (section 3.1.7 160, section 3.7.6 399)
timers (section 3.1.2 157, section 3.7.2 390)
versioning 158
Superior-driven transaction recovery 135
Supporting protocol version 158
SWhereabouts packet 71
Syntax - message 58

T

Timer events
application (section 3.1.7 160, section 3.3.6 257,
section 3.4.6 307)
core transaction manager (section 3.1.7 160,
section 3.2.6 176)
resource manager (section 3.1.7 160, section
3.5.6 346, section 3.6.6 372)
subordinate transaction manager (section 3.1.7
160, section 3.8.6 423)
superior transaction manager (section 3.1.7 160,
section 3.7.6 399)
transaction manager (section 3.1.7 160, section
3.4.6 307, section 3.6.6 372)
Timers
application (section 3.1.2 157, section 3.3.2 225,
section 3.4.2 285)
core transaction manager (section 3.1.2 157,
section 3.2.2 172)
resource manager (section 3.1.2 157, section
3.5.2 332, section 3.6.2 361)
subordinate transaction manager (section 3.1.2
157, section 3.8.2 414)
superior transaction manager (section 3.1.2 157,
section 3.7.2 390)
transaction manager (section 3.1.2 157, section
3.4.2 285, section 3.6.2 361)
TM PROTOCOL enumeration 74
Tracking changes 462
Transaction
administration - connection types 112
completion 82
constants 78
enumerations 72
initiation 82
lifetime 35
logging - core transaction manager 165
manager administration 121
marshaling - example
branching transaction 435
exporting transaction 438
importing transaction 442
marshaling transaction 432

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

471 /475

obtaining whereabouts of receiver's transaction
manager 437
overview (section 4.2 431, section 4.3 437)
propagating transaction 440
unmarshaling transaction 433
propagation
connection types 92
overview 49
structures 64
recovery 47
roles 42
simple - example
beginning transaction 429
completing transaction 430
overview 429
states - core transaction manager
Aborting 170
Active 167
Committing 170
Ended 171
Failed To Notify 171
Idle 167
In Doubt 170
Phase One 169
Phase One Complete 170
Phase Zero 168
Phase Zero Complete 168
Single Phase Commit 170
Voting 169
Voting Complete 169

Transaction manager

abstract data model (section 3.1.1 155, section
3.4.1 258, section 3.6.1 348)

connection types 122

higher-layer triggered events (section 3.1.5 159,
section 3.4.4 286, section 3.6.4 362)

initialization (section 3.1.3 157, section 3.4.3 285,

section 3.6.3 361)

local events
Associate Transaction Failure 307
Associate Transaction Success 308
Begin Commit (section 3.4.7.3 308, section
3.6.7.1 373)
Begin In Doubt (section 3.4.7.4 309, section
3.6.7.2 374)
Begin Phase One 374
Begin Phase Zero 374
Begin Rollback (section 3.4.7.5 309, section
3.6.7.5 375)
Begin Voting (section 3.4.7.6 309, section
3.6.7.6 376)
Connection Disconnected 161
Create Phase Zero Enlistment Failure 376
Create Phase Zero Enlistment Success 376
Create Resource Manager 377
Create Subordinate Enlistment Failure 377
Create Subordinate Enlistment Success 378
Create Transaction Failure 310
Create Transaction Success 311

Create Voter Enlistment Failure (section 3.4.7.9

311, section 3.6.7.12 378)

Create Voter Enlistment Success (section
3.4.7.10 312, section 3.6.7.13 379)
Export Transaction Failure 312

Export Transaction Success 313

overview (section 3.1.8 160, section 3.4.7 307,
section 3.6.7 373)
Phase One Complete 314
Phase Zero Aborted 379
Phase Zero Complete 315
Reenlist Complete 379
Register Phase Zero 315
Resolve Transaction Complete 316
Resource Manager Down 380
Rollback Complete 317
Set Transaction Attributes Failure 317
Set Transaction Attributes Success 318
Set Transaction Timeout Failure 318
Set Transaction Timeout Success 319
Unilaterally Aborted 319
message processing
resource manager registration 362
transaction administration 300
transaction coordination 364
transaction initiation and completion 286
transaction propagation 291
transaction recovery 369
voting 371
overview 155
propagation - connection types 122
recovery 49
role 44
sequencing rules
resource manager registration 362
transaction administration 300
transaction coordination 364
transaction initiation and completion 286
transaction propagation 291
transaction recovery 369
voting 371
timer events (section 3.1.7 160, section 3.4.6 307,
section 3.6.6 372)
timers (section 3.1.2 157, section 3.4.2 285,
section 3.6.2 361)
two-phase commit example
overview 447
Phase One 448
Phase Two 451

versioning 158

Transaction manager - core

abstract data model (section 3.1.1 155, section
3.2.1161)
higher-layer triggered events (section 3.1.5 159,
section 3.2.4 175)
initialization
durable log 175
overview (section 3.1.3 157, section 3.2.3 173)
transaction
object initialization 174
recovery 175
local events
Associate Transaction 176
Begin Commit 177
Begin In Doubt 178
Begin Phase One 178
Begin Phase Zero 178
Begin Rollback 179

Begin Voting 179
Branch Transaction Failure 180

Branch Transaction Success 180

472 /475

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

Connection Disconnected 161
Create Phase Zero Enlistment 180
Create Subordinate Enlistment 181
Create Superior Enlistment 182
Create Transaction 183
Create Voter Enlistment 184
Enlistment Commit Complete 184
Enlistment Phase One Complete 185
Enlistment Phase Zero Complete 186
Enlistment Rollback Complete 188
Enlistment Unilaterally Aborted 188
Enlistment Vote Complete 189
Export Transaction 190
Forget Transaction 191
Notify Aborted 191
Notify Recovered Transaction Committed 192
overview (section 3.1.8 160, section 3.2.7 176)
Phase One Completed 192
Propagate Transaction Failure 193
Propagate Transaction Success 194
Register Phase Zero Failure 194
Register Phase Zero Success 194
Request Transaction Outcome 197
Resolve Transaction 195
Set Transaction Attributes 196
Set Transaction Timeout 197
Unenlist Phase Zero Enlistment 197
Voting Complete 198
message processing 176
overview 155
seqguencing rules 176
timer events (section 3.1.7 160, section 3.2.6 176)
timers (section 3.1.2 157, section 3.2.2 172)
versioning 158
Transaction manager - subordinate
abstract data model (section 3.1.1 155, section
3.8.1 404)
higher-layer triggered events (section 3.1.5 159,
section 3.8.4 415)
initialization (section 3.1.3 157, section 3.8.3 414)
local events
Branch Transaction 424
Cancel Check Abort 424
Commit Complete 424
Connection Disconnected 161
Create Superior Enlistment Failure 425
Create Superior Enlistment Success 425
overview (section 3.1.8 160, section 3.8.7 423)
Phase One Complete 426
Phase Zero Complete 425
Recover In Doubt Transaction 427
Register Phase Zero 427
Rollback Complete 428
Unilaterally Aborted 428
message processing
transaction propagation and coordination 415
transaction recovery 421
overview 155
sequencing rules
transaction propagation and coordination 415
transaction recovery 421
timer events (section 3.1.7 160, section 3.8.6 423)
timers (section 3.1.2 157, section 3.8.2 414)
versioning 158
Transaction manager - superior

abstract data model (section 3.1.1 155, section
3.7.1 380)
higher-layer triggered events (section 3.1.5 159,
section 3.7.4 390)
initialization (section 3.1.3 157, section 3.7.3 390)
local events
Begin Commit 400
Begin Phase One 400
Begin Phase Zero 401

Begin Rollback 401
Connection Disconnected 161

Create Phase Zero Enlistment Failure 402
Create Phase Zero Enlistment Success 402
Create Subordinate Enlistment Failure 402
Create Subordinate Enlistment Success 403
overview (section 3.1.8 160, section 3.7.7 400)
Phase Zero Aborted 403
Propagate Transaction 403
message processing
transaction propagation and coordination 391
transaction recovery 397
overview 155
sequencing rules
transaction propagation and coordination 391
transaction recovery 397
timer events (section 3.1.7 160, section 3.7.6 399)
timers (section 3.1.2 157, section 3.7.2 390)
versioning 158
Transaction manager administration 121
Transaction recovery
connection types 133
resource manager - connection types 148
Transaction timeout timer 172
Transaction time-out timer 176
Transport 57
Triggered events - higher-layer
application
beginning transaction 226
changing transaction time-out 228
creating export connection 230
generating trace records for transaction 231
importing transaction 231
importing transaction with additional transaction
attributes 233
initiating transaction commit 233
initiating transaction rollback 235
obtaining extended whereabouts 237
obtaining security configuration of transaction
manager 237
overview (section 3.1.5 159, section 3.3.4 226,
section 3.4.4 286)
pulling transaction 237
pushing transaction 238
resolving transaction 239
core transaction manager (section 3.1.5 159,
section 3.2.4 175)
resource manager
canceling enlistment as Phase Zero participant
on specific transaction 333
enlisting as Phase Zero participant on specific
transaction 333
enlisting on specific transaction 333
Enlistment Abort request completed 334
Enlistment Commit request completed 334
Enlistment Prepare request completed 335

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2021 Microsoft Corporation

Release: June 25, 2021

473 /475

Enlistment Single-Phase Commit request
completed 336
overview (section 3.1.5 159, section 3.5.4 333,
section 3.6.4 362)
Phase Zero request completed 337
registering as voter on specific transaction 337
registering with transaction manager 337
Voter Vote request completed 338
subordinate transaction manager (section 3.1.5
159, section 3.8.4 415)
superior transaction manager (section 3.1.5 159,
section 3.7.4 390)
transaction manager (section 3.1.5 159, section
3.4.4 286, section 3.6.4 362)
TRUN TXBEGIN ERRORS enumeration 76
TRUN TXIMPORT ERRORS enumeration 76
Two-phase commit example
overview 447
Phase One 448
Phase Two 451
TXUSER ASSOCIATE MTAG ASSOCIATE packet 92
TXUSER ASSOCIATE MTAG ASSOCIATED packet 94
TXUSER ASSOCIATE MTAG COMM FAILED packet
94
TXUSER ASSOCIATE MTAG CREATE BAD TMADDR

packet 94
TXUSER ASSOCIATE MTAG LOG FULL LOCAL

packet 95
TXUSER ASSOCIATE MTAG LOG FULL REMOTE

packet 95

TXUSER ASSOCIATE MTAG NO MEM LOCAL packet
96

TXUSER ASSOCIATE MTAG NO MEM REMOTE
packet 96

TXUSER ASSOCIATE MTAG TOO LATE packet 96

TXUSER ASSOCIATE MTAG TOO MANY LOCAL

packet 97
TXUSER ASSOCIATE MTAG TOO MANY REMOTE

packet 97
TXUSER ASSOCIATE MTAG TX NOT FOUND packet
98
TXUSER BEGIN2 MTAG ABORT packet 86
TXUSER BEGIN2 MTAG BEGIN packet 87
TXUSER BEGIN2 MTAG COMMIT packet 88
TXUSER BEGIN2 MTAG SINK BEGUN packet 88
TXUSER BEGIN2 MTAG SINK ERROR packet 89
TXUSER BEGINNER MTAG ABORT packet 82
TXUSER BEGINNER MTAG BEGIN packet 83
TXUSER BEGINNER MTAG BEGIN LOG FULL packet
83
TXUSER BEGINNER MTAG BEGIN NO MEM packet
84
TXUSER BEGINNER MTAG BEGUN packet 84
TXUSER BEGINNER MTAG COMMIT packet 85
TXUSER BEGINNER MTAG COMMIT INDOUBT

packet 85
TXUSER BEGINNER MTAG COMMIT TOO LATE

packet 86
TXUSER BEGINNER MTAG PROMOTE packet 91
TXUSER BEGINNER MTAG REQUEST COMPLETED
packet 86
TXUSER ENLISTMENT MTAG ABORTREQ packet 143
TXUSER ENLISTMENT MTAG ABORTREQDONE
packet 143

TXUSER ENLISTMENT MTAG COMMITREQ packet
143

TXUSER ENLISTMENT MTAG COMMITREQDONE
packet 144

TXUSER ENLISTMENT MTAG ENLIST packet 144

TXUSER ENLISTMENT MTAG ENLIST LOG FULL

packet 145
TXUSER ENLISTMENT MTAG ENLIST TOO LATE

packet 145
TXUSER ENLISTMENT MTAG ENLIST TOO MANY

packet 146
TXUSER ENLISTMENT MTAG ENLIST TX NOT FOU

ND packet 146

TXUSER ENLISTMENT MTAG ENLISTED packet 146

TXUSER ENLISTMENT MTAG PREPAREREQ packet
147

TXUSER ENLISTMENT MTAG PREPAREREQDONE
packet 147

TXUSER ENLISTMENT PREPAREREQDONE RESPONS
E enumeration 74

TXUSER EXPORT MTAG CREATE packet 100

TXUSER EXPORT MTAG CREATE BAD TMADDR

packet 101
TXUSER EXPORT MTAG CREATE NET TX DISABLE

D packet 101

TXUSER EXPORT MTAG CREATE2 packet 100

TXUSER EXPORT MTAG CREATED packet 102

TXUSER EXPORT MTAG EXPORT packet 102

TXUSER EXPORT MTAG EXPORT COMM FAILED
packet 106

TXUSER EXPORT MTAG EXPORT LOG FULL packet
103

TXUSER EXPORT MTAG EXPORT NO MEM packet
103

TXUSER EXPORT MTAG EXPORT TOO LATE packet
103

TXUSER EXPORT MTAG EXPORT TOO MANY packet
104

TXUSER EXPORT MTAG EXPORT TX NOT FOUND
packet 104

TXUSER EXPORT MTAG EXPORTED packet 105

TXUSER EXTENDEDWHEREABOUTS MTAG GET

packet 98
TXUSER EXTENDEDWHEREABOUTS MTAG GOT

packet 99
TXUSER EXTENDEDWHEREABOUTS MTAG NOMEM

packet 99
TXUSER GETSECURITYFLAGS MTAG FETCHED

packet 121
TXUSER GETSECURITYFLAGS MTAG GETSECURITYF

LAGS packet 122
TXUSER GETTXDETAILS MTAG GET packet 112
TXUSER GETTXDETAILS MTAG GOTIT packet 112
TXUSER GETTXDETAILS MTAG TX NOT FOUND
packet 114
TXUSER IMPORT MTAG ABORT packet 106
TXUSER IMPORT MTAG ABORT TOO LATE packet
107
TXUSER IMPORT MTAG IMPORT packet 107
TXUSER IMPORT MTAG IMPORT TX NOT FOUND
packet 107
TXUSER IMPORT MTAG IMPORTED packet 108
TXUSER IMPORT MTAG REQUEST COMPLETED
packet 108
TXUSER IMPORT2 MTAG ABORT packet 109

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol

Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

474 /475

TXUSER IMPORT2 MTAG IMPORT packet 109

TXUSER IMPORT2 MTAG IMPORT WITH SET
packet 110

TXUSER IMPORT2 MTAG SINK ERROR packet 111

TXUSER IMPORT2 MTAG SINK IMPORTED packet
111

TXUSER PHASEQO MTAG CREATE packet 139

TXUSER PHASEO MTAG CREATE TOO LATE packet
140

TXUSER PHASEO MTAG CREATE TX NOT FOUND
packet 140

TXUSER PHASEO MTAG CREATED packet 141

TXUSER PHASEO MTAG PHASEOREQ packet 141

TXUSER PHASEO MTAG PHASEOREQ ABORT packet
141

TXUSER PHASEO MTAG PHASEOREQDONE packet
142

TXUSER PHASEQO MTAG UNENLIST packet 142

TXUSER REENLIST MTAG REENLIST packet 148

TXUSER REENLIST MTAG REENLIST ABORTED
packet 149

TXUSER REENLIST MTAG REENLIST COMMITTED
packet 149

TXUSER REENLIST MTAG REENLIST TIMEOUT
packet 150

TXUSER RESOLVE MTAG ACCESSDENIED packet
114

TXUSER RESOLVE MTAG CHILD ABORT packet 115

TXUSER RESOLVE MTAG CHILD COMMIT packet
115

TXUSER RESOLVE MTAG CHILD NOT PREPARED
packet 116

TXUSER RESOLVE MTAG FORGET COMMITTED
packet 116

TXUSER RESOLVE MTAG FORGET TX NOT COMMI
TTED packet 117

TXUSER RESOLVE MTAG NOT CHILD packet 117

TXUSER RESOLVE MTAG REQUEST COMPLETE
packet 117

TXUSER RESOLVE MTAG TX NOT FOUND packet
118

TXUSER RESOURCEMANAGER MTAG CREATE

packet 136
TXUSER RESOURCEMANAGER MTAG DUPLICATE

packet 137

TXUSER RESOURCEMANAGER MTAG REENLISTMEN
TCOMPLETE packet 137

TXUSER RESOURCEMANAGER MTAG REQUEST CO
MPLETE packet 138

TXUSER RESOURCEMANAGERINTERNAL MTAG DUP
LICATEDETECTED packet 139

TXUSER SETTXTIMEOUT MTAG REQUEST COMPLET

E packet 89
TXUSER SETTXTIMEOUT MTAG SETTXTIMEOUT

packet 89
TXUSER SETTXTIMEOUT MTAG TOO LATE packet
90
TXUSER SETTXTIMEOUT MTAG TX NOT FOUND
packet 118
TXUSER STATUS MTAG ABORTED packet 150
TXUSER STATUS MTAG COMMITTED packet 151
TXUSER STATUS MTAG INDOUBT packet 151
TXUSER TRACE MTAG DUMP TRANSACTION packet
119

TXUSER TRACE MTAG REQUEST COMPLETE packet
120

TXUSER TRACE MTAG REQUEST FAILED packet
120

TXUSER TRACE MTAG TX NOT FOUND packet 120

TXUSER VOTER MTAG CREATE packet 151

TXUSER VOTER MTAG CREATE TOO LATE packet
152

TXUSER VOTER MTAG CREATE TX NOT FOUND
packet 152

TXUSER VOTER MTAG CREATED packet 153

TXUSER VOTER MTAG VOTEREQ packet 153

TXUSER VOTER MTAG VOTEREQDONE packet 154

TXUSER VOTER VOTERREQDONE RESPONSE
enumeration 75

U

Unilateral abort 41
Using negotiated protocol version 159

\'

Vendor-extensible fields 56
Version values - computing 58
Versioning (section 1.7 54, section 2.2.1 58)
Versioning - core transaction manager 164
Versioning mechanisms
overview 54
structures with fields containing version humbers
61
structures with format-specifying field 62
version numbers
overview 58
version-specific aspects of connection types
relevant to applications 59
version-specific aspects of connection types
relevant to resource managers 61
version-specific aspects of connection types
relevant to transaction managers 61
Versioning negotiation mechanisms 55
Voting - resource manager 150

[MS-DTCO] - v20210625

MSDTC Connection Manager: OleTx Transaction Protocol

Copyright © 2021 Microsoft Corporation
Release: June 25, 2021

475/ 475

	1 Introduction
	1.1 Glossary
	1.2 References
	1.2.1 Normative References
	1.2.2 Informative References

	1.3 Overview
	1.3.1 Transaction Lifetime
	1.3.1.1 Phase Zero
	1.3.1.2 Phase One
	1.3.1.3 Phase Two

	1.3.2 Additional Considerations
	1.3.2.1 Unilateral Abort
	1.3.2.2 Single-Phase Commit

	1.3.3 Transaction Roles
	1.3.3.1 Application Role
	1.3.3.2 Resource Manager Role
	1.3.3.3 Transaction Manager Role
	1.3.3.3.1 Core Transaction Manager Facet
	1.3.3.3.2 Transaction Manager Communication with an Application Facet
	1.3.3.3.3 Transaction Manager Communication with a Resource Manager Facet
	1.3.3.3.4 Superior Transaction Manager Facet
	1.3.3.3.5 Subordinate Transaction Manager Facet

	1.3.4 Transaction Recovery
	1.3.4.1 Relationship Between Recovery and Durability
	1.3.4.2 Resource Manager Recovery
	1.3.4.3 Transaction Manager Recovery

	1.3.5 Transaction Propagation
	1.3.5.1 Pull Propagation
	1.3.5.2 Push Propagation

	1.4 Relationship to Other Protocols
	1.5 Prerequisites/Preconditions
	1.6 Applicability Statement
	1.7 Versioning and Capability Negotiation
	1.7.1 Versioning Mechanisms
	1.7.2 Versioning Negotiation Mechanisms
	1.7.3 Capability Negotiation Mechanisms

	1.8 Vendor-Extensible Fields
	1.9 Standards Assignments

	2 Messages
	2.1 Transport
	2.1.1 Messages, Connections, and Sessions
	2.1.2 MS-CMP and MS-CMPO Initialization
	2.1.2.1 Computing a Security Level
	2.1.2.2 Computing Protocol Version Values
	2.1.2.3 Computing a Name Object

	2.2 Message Syntax
	2.2.1 Protocol Versioning
	2.2.1.1 Protocol Version Numbers as a Versioning Mechanism
	2.2.1.1.1 Version-Specific Aspects of Connection Types Relevant to an Application
	2.2.1.1.2 Version-Specific Aspects of Connection Types Relevant to a Transaction Manager
	2.2.1.1.3 Version-Specific Aspects of Connection Types Relevant to a Resource Manager

	2.2.2 Structures with Fields Containing Version Numbers as Versioning Mechanism
	2.2.3 Structures with a Format-Specifying Field as Versioning Mechanism
	2.2.4 Common Structures
	2.2.4.1 MESSAGE_PACKET
	2.2.4.2 OLETX_TM_ADDR
	2.2.4.3 OLETX_VARLEN_STRING

	2.2.5 Transaction Propagation Structures
	2.2.5.1 Associate_Msg_Version2
	2.2.5.2 Associate_Msg_Version3
	2.2.5.3 NAMEOBJECTBLOB
	2.2.5.4 Propagation_Token
	2.2.5.5 SDtcCmEndpointInfoV1
	2.2.5.6 SDtcCmEndpointInfoV2
	2.2.5.7 SOleTxInfoForTip
	2.2.5.8 SExtendedEndpointInfo
	2.2.5.9 STmToTmProtocol
	2.2.5.10 STxInfo
	2.2.5.11 SWhereabouts

	2.2.6 Transaction Enumerations
	2.2.6.1 Connection Types
	2.2.6.2 TM_PROTOCOL
	2.2.6.3 TXUSER_ENLISTMENT_PREPAREREQDONE_RESPONSE
	2.2.6.4 PARTNERTM_PROPAGATE_PREPAREREQDONE_RESPONSE
	2.2.6.5 TXUSER_VOTER_VOTERREQDONE_RESPONSE
	2.2.6.6 TRUN_TXBEGIN_ERRORS
	2.2.6.7 TRUN_TXIMPORT_ERRORS
	2.2.6.8 OLETX_ISOLATION_FLAGS
	2.2.6.9 OLETX_ISOLATION_LEVEL

	2.2.7 Transaction Constants
	2.2.7.1 GRFRM
	2.2.7.2 DTCADVCONFIG
	2.2.7.3 DTCADVCONFIG_OPTIONS

	2.2.8 Connection Types Relevant to Applications
	2.2.8.1 Transaction Initiation and Completion
	2.2.8.1.1 CONNTYPE_TXUSER_BEGINNER
	2.2.8.1.1.1 TXUSER_BEGINNER_MTAG_ABORT
	2.2.8.1.1.2 TXUSER_BEGINNER_MTAG_BEGIN
	2.2.8.1.1.3 TXUSER_BEGINNER_MTAG_BEGIN_LOG_FULL
	2.2.8.1.1.4 TXUSER_BEGINNER_MTAG_BEGIN_NO_MEM
	2.2.8.1.1.5 TXUSER_BEGINNER_MTAG_BEGUN
	2.2.8.1.1.6 TXUSER_BEGINNER_MTAG_COMMIT
	2.2.8.1.1.7 TXUSER_BEGINNER_MTAG_COMMIT_INDOUBT
	2.2.8.1.1.8 TXUSER_BEGINNER_MTAG_COMMIT_TOO_LATE
	2.2.8.1.1.9 TXUSER_BEGINNER_MTAG_REQUEST_COMPLETED

	2.2.8.1.2 CONNTYPE_TXUSER_BEGIN2
	2.2.8.1.2.1 TXUSER_BEGIN2_MTAG_ABORT
	2.2.8.1.2.2 TXUSER_BEGIN2_MTAG_BEGIN
	2.2.8.1.2.3 TXUSER_BEGIN2_MTAG_COMMIT
	2.2.8.1.2.4 TXUSER_BEGIN2_MTAG_SINK_BEGUN
	2.2.8.1.2.5 TXUSER_BEGIN2_MTAG_SINK_ERROR
	2.2.8.1.2.6 TXUSER_SETTXTIMEOUT_MTAG_REQUEST_COMPLETE
	2.2.8.1.2.7 TXUSER_SETTXTIMEOUT_MTAG_SETTXTIMEOUT
	2.2.8.1.2.8 TXUSER_SETTXTIMEOUT_MTAG_TOO_LATE

	2.2.8.1.3 CONNTYPE_TXUSER_PROMOTE
	2.2.8.1.3.1 TXUSER_BEGINNER_MTAG_PROMOTE

	2.2.8.2 Transaction Propagation
	2.2.8.2.1 Pull Propagation
	2.2.8.2.1.1 CONNTYPE_TXUSER_ASSOCIATE
	2.2.8.2.1.1.1 TXUSER_ASSOCIATE_MTAG_ASSOCIATE
	2.2.8.2.1.1.2 TXUSER_ASSOCIATE_MTAG_ASSOCIATED
	2.2.8.2.1.1.3 TXUSER_ASSOCIATE_MTAG_COMM_FAILED
	2.2.8.2.1.1.4 TXUSER_ASSOCIATE_MTAG_CREATE_BAD_TMADDR
	2.2.8.2.1.1.5 TXUSER_ASSOCIATE_MTAG_LOG_FULL_LOCAL
	2.2.8.2.1.1.6 TXUSER_ASSOCIATE_MTAG_LOG_FULL_REMOTE
	2.2.8.2.1.1.7 TXUSER_ASSOCIATE_MTAG_NO_MEM_LOCAL
	2.2.8.2.1.1.8 TXUSER_ASSOCIATE_MTAG_NO_MEM_REMOTE
	2.2.8.2.1.1.9 TXUSER_ASSOCIATE_MTAG_TOO_LATE
	2.2.8.2.1.1.10 TXUSER_ASSOCIATE_MTAG_TOO_MANY_LOCAL
	2.2.8.2.1.1.11 TXUSER_ASSOCIATE_MTAG_TOO_MANY_REMOTE
	2.2.8.2.1.1.12 TXUSER_ASSOCIATE_MTAG_TX_NOT_FOUND

	2.2.8.2.2 Push Propagation
	2.2.8.2.2.1 CONNTYPE_TXUSER_EXTENDEDWHEREABOUTS
	2.2.8.2.2.1.1 TXUSER_EXTENDEDWHEREABOUTS_MTAG_GET
	2.2.8.2.2.1.2 TXUSER_EXTENDEDWHEREABOUTS_MTAG_GOT
	2.2.8.2.2.1.3 TXUSER_EXTENDEDWHEREABOUTS_MTAG_NOMEM

	2.2.8.2.2.2 CONNTYPE_TXUSER_EXPORT
	2.2.8.2.2.2.1 TXUSER_EXPORT_MTAG_CREATE
	2.2.8.2.2.2.2 TXUSER_EXPORT_MTAG_CREATE2
	2.2.8.2.2.2.3 TXUSER_EXPORT_MTAG_CREATE_BAD_TMADDR
	2.2.8.2.2.2.4 TXUSER_EXPORT_MTAG_CREATE_NET_TX_DISABLED
	2.2.8.2.2.2.5 TXUSER_EXPORT_MTAG_CREATED
	2.2.8.2.2.2.6 TXUSER_EXPORT_MTAG_EXPORT
	2.2.8.2.2.2.7 TXUSER_EXPORT_MTAG_EXPORT_LOG_FULL
	2.2.8.2.2.2.8 TXUSER_EXPORT_MTAG_EXPORT_NO_MEM
	2.2.8.2.2.2.9 TXUSER_EXPORT_MTAG_EXPORT_TOO_LATE
	2.2.8.2.2.2.10 TXUSER_EXPORT_MTAG_EXPORT_TOO_MANY
	2.2.8.2.2.2.11 TXUSER_EXPORT_MTAG_EXPORT_TX_NOT_FOUND
	2.2.8.2.2.2.12 TXUSER_EXPORT_MTAG_EXPORTED

	2.2.8.2.2.3 CONNTYPE_TXUSER_EXPORT2
	2.2.8.2.2.3.1 TXUSER_EXPORT_MTAG_EXPORT_COMM_FAILED

	2.2.8.2.2.4 CONNTYPE_TXUSER_IMPORT
	2.2.8.2.2.4.1 TXUSER_IMPORT_MTAG_ABORT
	2.2.8.2.2.4.2 TXUSER_IMPORT_MTAG_ABORT_TOO_LATE
	2.2.8.2.2.4.3 TXUSER_IMPORT_MTAG_IMPORT
	2.2.8.2.2.4.4 TXUSER_IMPORT_MTAG_IMPORT_TX_NOT_FOUND
	2.2.8.2.2.4.5 TXUSER_IMPORT_MTAG_IMPORTED
	2.2.8.2.2.4.6 TXUSER_IMPORT_MTAG_REQUEST_COMPLETED

	2.2.8.2.2.5 CONNTYPE_TXUSER_IMPORT2
	2.2.8.2.2.5.1 TXUSER_IMPORT2_MTAG_ABORT
	2.2.8.2.2.5.2 TXUSER_IMPORT2_MTAG_IMPORT
	2.2.8.2.2.5.3 TXUSER_IMPORT2_MTAG_IMPORT_WITH_SET
	2.2.8.2.2.5.4 TXUSER_IMPORT2_MTAG_SINK_ERROR
	2.2.8.2.2.5.5 TXUSER_IMPORT2_MTAG_SINK_IMPORTED

	2.2.8.3 Transaction Administration
	2.2.8.3.1 CONNTYPE_TXUSER_GETTXDETAILS
	2.2.8.3.1.1 TXUSER_GETTXDETAILS_MTAG_GET
	2.2.8.3.1.2 TXUSER_GETTXDETAILS_MTAG_GOTIT
	2.2.8.3.1.3 TXUSER_GETTXDETAILS_MTAG_TX_NOT_FOUND

	2.2.8.3.2 CONNTYPE_TXUSER_RESOLVE
	2.2.8.3.2.1 TXUSER_RESOLVE_MTAG_ACCESSDENIED
	2.2.8.3.2.2 TXUSER_RESOLVE_MTAG_CHILD_ABORT
	2.2.8.3.2.3 TXUSER_RESOLVE_MTAG_CHILD_COMMIT
	2.2.8.3.2.4 TXUSER_RESOLVE_MTAG_CHILD_NOT_PREPARED
	2.2.8.3.2.5 TXUSER_RESOLVE_MTAG_FORGET_COMMITTED
	2.2.8.3.2.6 TXUSER_RESOLVE_MTAG_FORGET_TX_NOT_COMMITTED
	2.2.8.3.2.7 TXUSER_RESOLVE_MTAG_REQUEST_COMPLETE
	2.2.8.3.2.8 TXUSER_RESOLVE_MTAG_NOT_CHILD
	2.2.8.3.2.9 TXUSER_RESOLVE_MTAG_TX_NOT_FOUND

	2.2.8.3.3 CONNTYPE_TXUSER_SETTXTIMEOUT
	2.2.8.3.3.1 TXUSER_SETTXTIMEOUT_MTAG_TX_NOT_FOUND

	2.2.8.3.4 CONNTYPE_TXUSER_SETTXTIMEOUT2
	2.2.8.3.5 CONNTYPE_TXUSER_TRACE
	2.2.8.3.5.1 TXUSER_TRACE_MTAG_DUMP_TRANSACTION
	2.2.8.3.5.2 TXUSER_TRACE_MTAG_REQUEST_COMPLETE
	2.2.8.3.5.3 TXUSER_TRACE_MTAG_REQUEST_FAILED
	2.2.8.3.5.4 TXUSER_TRACE_MTAG_TX_NOT_FOUND

	2.2.8.4 Transaction Manager Administration
	2.2.8.4.1 CONNTYPE_TXUSER_GETSECURITYFLAGS
	2.2.8.4.1.1 TXUSER_GETSECURITYFLAGS_MTAG_FETCHED
	2.2.8.4.1.2 TXUSER_GETSECURITYFLAGS_MTAG_GETSECURITYFLAGS

	2.2.9 Connection Types Relevant to Transaction Managers
	2.2.9.1 Transaction Propagation and Coordination
	2.2.9.1.1 Push Propagation
	2.2.9.1.1.1 CONNTYPE_PARTNERTM_PROPAGATE
	2.2.9.1.1.1.1 PARTNERTM_PROPAGATE_MTAG_PROPAGATE
	2.2.9.1.1.1.2 PARTNERTM_PROPAGATE_MTAG_PROPAGATED
	2.2.9.1.1.1.3 PARTNERTM_PROPAGATE_MTAG_DUPLICATE
	2.2.9.1.1.1.4 PARTNERTM_PROPAGATE_MTAG_NO_MEM
	2.2.9.1.1.1.5 PARTNERTM_PROPAGATE_MTAG_LOG_FULL
	2.2.9.1.1.1.6 PARTNERTM_PROPAGATE_MTAG_PREPAREREQ
	2.2.9.1.1.1.7 PARTNERTM_PROPAGATE_MTAG_PREPAREREQDONE
	2.2.9.1.1.1.8 PARTNERTM_PROPAGATE_MTAG_PROTOCOL_ERROR
	2.2.9.1.1.1.9 PARTNERTM_PROPAGATE_MTAG_COMMITREQ
	2.2.9.1.1.1.10 PARTNERTM_PROPAGATE_MTAG_COMMITREQDONE
	2.2.9.1.1.1.11 PARTNERTM_PROPAGATE_MTAG_ABORTREQ
	2.2.9.1.1.1.12 PARTNERTM_PROPAGATE_MTAG_ABORTREQDONE
	2.2.9.1.1.1.13 PARTNERTM_PROPAGATE_MTAG_ABORTNOTIFY
	2.2.9.1.1.1.14 PARTNERTM_PROPAGATE_MTAG_PHASE0REGISTER
	2.2.9.1.1.1.15 PARTNERTM_PROPAGATE_MTAG_PHASE0REGISTERED
	2.2.9.1.1.1.16 PARTNERTM_PROPAGATE_MTAG_PHASE0REGISTRATIONREJECTED
	2.2.9.1.1.1.17 PARTNERTM_PROPAGATE_MTAG_PHASE0
	2.2.9.1.1.1.18 PARTNERTM_PROPAGATE_MTAG_PHASE0COMPLETE

	2.2.9.1.2 Pull Propagation
	2.2.9.1.2.1 CONNTYPE_PARTNERTM_BRANCH
	2.2.9.1.2.1.1 PARTNERTM_BRANCH_MTAG_BRANCH_LOG_FULL
	2.2.9.1.2.1.2 PARTNERTM_BRANCH_MTAG_BRANCH_NO_MEM
	2.2.9.1.2.1.3 PARTNERTM_BRANCH_MTAG_BRANCH_TOO_LATE
	2.2.9.1.2.1.4 PARTNERTM_BRANCH_MTAG_BRANCH_TOO_MANY
	2.2.9.1.2.1.5 PARTNERTM_BRANCH_MTAG_BRANCH_TX_NOT_FOUND
	2.2.9.1.2.1.6 PARTNERTM_BRANCH_MTAG_BRANCHED
	2.2.9.1.2.1.7 PARTNERTM_BRANCH_MTAG_BRANCHING

	2.2.9.2 Transaction Recovery
	2.2.9.2.1 Subordinate-Driven
	2.2.9.2.1.1 CONNTYPE_PARTNERTM_CHECKABORT
	2.2.9.2.1.1.1 PARTNERTM_CHECKABORT_MTAG_CHECK
	2.2.9.2.1.1.2 PARTNERTM_CHECKABORT_MTAG_ABORTED
	2.2.9.2.1.1.3 PARTNERTM_CHECKABORT_MTAG_RETRY

	2.2.9.2.2 Superior-Driven
	2.2.9.2.2.1 CONNTYPE_PARTNERTM_REDELIVERCOMMIT
	2.2.9.2.2.1.1 PARTNERTM_REDELIVERCOMMIT_MTAG_COMMITREQ
	2.2.9.2.2.1.2 PARTNERTM_REDELIVERCOMMIT_MTAG_COMMITREQDONE
	2.2.9.2.2.1.3 PARTNERTM_REDELIVERCOMMIT_MTAG_RETRY

	2.2.10 Connection Types Relevant to Resource Managers
	2.2.10.1 Resource Manager Registration
	2.2.10.1.1 CONNTYPE_TXUSER_RESOURCEMANAGER
	2.2.10.1.1.1 TXUSER_RESOURCEMANAGER_MTAG_CREATE
	2.2.10.1.1.2 TXUSER_RESOURCEMANAGER_MTAG_DUPLICATE
	2.2.10.1.1.3 TXUSER_RESOURCEMANAGER_MTAG_REENLISTMENTCOMPLETE
	2.2.10.1.1.4 TXUSER_RESOURCEMANAGER_MTAG_REQUEST_COMPLETE

	2.2.10.1.2 CONNTYPE_TXUSER_RESOURCEMANAGERINTERNAL
	2.2.10.1.2.1 TXUSER_RESOURCEMANAGERINTERNAL_MTAG_DUPLICATEDETECTED

	2.2.10.2 Transaction Coordination
	2.2.10.2.1 CONNTYPE_TXUSER_PHASE0
	2.2.10.2.1.1 TXUSER_PHASE0_MTAG_CREATE
	2.2.10.2.1.2 TXUSER_PHASE0_MTAG_CREATE_TOO_LATE
	2.2.10.2.1.3 TXUSER_PHASE0_MTAG_CREATE_TX_NOT_FOUND
	2.2.10.2.1.4 TXUSER_PHASE0_MTAG_CREATED
	2.2.10.2.1.5 TXUSER_PHASE0_MTAG_PHASE0REQ
	2.2.10.2.1.6 TXUSER_PHASE0_MTAG_PHASE0REQ_ABORT
	2.2.10.2.1.7 TXUSER_PHASE0_MTAG_PHASE0REQDONE
	2.2.10.2.1.8 TXUSER_PHASE0_MTAG_UNENLIST

	2.2.10.2.2 CONNTYPE_TXUSER_ENLISTMENT
	2.2.10.2.2.1 TXUSER_ENLISTMENT_MTAG_ABORTREQ
	2.2.10.2.2.2 TXUSER_ENLISTMENT_MTAG_ABORTREQDONE
	2.2.10.2.2.3 TXUSER_ENLISTMENT_MTAG_COMMITREQ
	2.2.10.2.2.4 TXUSER_ENLISTMENT_MTAG_COMMITREQDONE
	2.2.10.2.2.5 TXUSER_ENLISTMENT_MTAG_ENLIST
	2.2.10.2.2.6 TXUSER_ENLISTMENT_MTAG_ENLIST_LOG_FULL
	2.2.10.2.2.7 TXUSER_ENLISTMENT_MTAG_ENLIST_TOO_LATE
	2.2.10.2.2.8 TXUSER_ENLISTMENT_MTAG_ENLIST_TOO_MANY
	2.2.10.2.2.9 TXUSER_ENLISTMENT_MTAG_ENLIST_TX_NOT_FOUND
	2.2.10.2.2.10 TXUSER_ENLISTMENT_MTAG_ENLISTED
	2.2.10.2.2.11 TXUSER_ENLISTMENT_MTAG_PREPAREREQ
	2.2.10.2.2.12 TXUSER_ENLISTMENT_MTAG_PREPAREREQDONE

	2.2.10.3 Transaction Recovery
	2.2.10.3.1 CONNTYPE_TXUSER_REENLIST
	2.2.10.3.1.1 TXUSER_REENLIST_MTAG_REENLIST
	2.2.10.3.1.2 TXUSER_REENLIST_MTAG_REENLIST_ABORTED
	2.2.10.3.1.3 TXUSER_REENLIST_MTAG_REENLIST_COMMITTED
	2.2.10.3.1.4 TXUSER_REENLIST_MTAG_REENLIST_TIMEOUT

	2.2.10.4 Voting
	2.2.10.4.1 CONNTYPE_TXUSER_VOTER
	2.2.10.4.1.1 TXUSER_STATUS_MTAG_ABORTED
	2.2.10.4.1.2 TXUSER_STATUS_MTAG_COMMITTED
	2.2.10.4.1.3 TXUSER_STATUS_MTAG_INDOUBT
	2.2.10.4.1.4 TXUSER_VOTER_MTAG_CREATE
	2.2.10.4.1.5 TXUSER_VOTER_MTAG_CREATE_TOO_LATE
	2.2.10.4.1.6 TXUSER_VOTER_MTAG_CREATE_TX_NOT_FOUND
	2.2.10.4.1.7 TXUSER_VOTER_MTAG_CREATED
	2.2.10.4.1.8 TXUSER_VOTER_MTAG_VOTEREQ
	2.2.10.4.1.9 TXUSER_VOTER_MTAG_VOTEREQDONE

	3 Protocol Details
	3.1 Common Details
	3.1.1 Abstract Data Model
	3.1.1.1 Converting a Name Object to an OLETX_TM_ADDR Structure
	3.1.1.2 Converting an OLETX_TM_ADDR Structure to a Name Object
	3.1.1.3 Converting a Name Object to a NAMEOBJECTBLOB Structure
	3.1.1.4 Converting a NAMEOBJECTBLOB Structure to a Name Object

	3.1.2 Timers
	3.1.3 Initialization
	3.1.3.1 Enlistment Object Initialization

	3.1.4 Protocol Versioning Details
	3.1.4.1 Supporting a Protocol Version
	3.1.4.2 Negotiating a Common Protocol Version
	3.1.4.3 Using the Negotiated Protocol Version

	3.1.5 Higher-Layer Triggered Events
	3.1.6 Processing Events and Sequencing Rules
	3.1.7 Timer Events
	3.1.8 Other Local Events
	3.1.8.1 Initiate Connection
	3.1.8.2 Disconnect Connection
	3.1.8.3 Connection Disconnected
	3.1.8.4 Receiving a Message

	3.2 Core Transaction Manager Facet Details
	3.2.1 Abstract Data Model
	3.2.1.1 Versioning
	3.2.1.2 Transaction Logging
	3.2.1.3 Transaction States
	3.2.1.3.1 Idle
	3.2.1.3.2 Active
	3.2.1.3.3 Phase Zero
	3.2.1.3.4 Phase Zero Complete
	3.2.1.3.5 Voting
	3.2.1.3.6 Voting Complete
	3.2.1.3.7 Phase One
	3.2.1.3.8 Phase One Complete
	3.2.1.3.9 Single Phase Commit
	3.2.1.3.10 Committing
	3.2.1.3.11 Aborting
	3.2.1.3.12 In Doubt
	3.2.1.3.13 Failed to Notify
	3.2.1.3.14 Ended

	3.2.1.4 Transaction Manager Facets
	3.2.1.5 Protocol Extension Objects

	3.2.2 Timers
	3.2.2.1 Transaction Timeout Timer

	3.2.3 Initialization
	3.2.3.1 Transaction Object Initialization
	3.2.3.2 Durable Log
	3.2.3.3 Transaction Recovery

	3.2.4 Higher-Layer Triggered Events
	3.2.5 Processing Events and Sequencing Rules
	3.2.6 Timer Events
	3.2.6.1 Transaction Timeout Timer

	3.2.7 Other Local Events
	3.2.7.1 Associate Transaction
	3.2.7.2 Begin Commit
	3.2.7.3 Begin In Doubt
	3.2.7.4 Begin Phase One
	3.2.7.5 Begin Phase Zero
	3.2.7.6 Begin Rollback
	3.2.7.7 Begin Voting
	3.2.7.8 Branch Transaction Failure
	3.2.7.9 Branch Transaction Success
	3.2.7.10 Create Phase Zero Enlistment
	3.2.7.11 Create Subordinate Enlistment
	3.2.7.12 Create Superior Enlistment
	3.2.7.13 Create Transaction
	3.2.7.14 Create Voter Enlistment
	3.2.7.15 Enlistment Commit Complete
	3.2.7.16 Enlistment Phase One Complete
	3.2.7.17 Enlistment Phase Zero Complete
	3.2.7.18 Enlistment Rollback Complete
	3.2.7.19 Enlistment Unilaterally Aborted
	3.2.7.20 Enlistment Vote Complete
	3.2.7.21 Export Transaction
	3.2.7.22 Forget Transaction
	3.2.7.23 Notify Aborted
	3.2.7.24 Notify Recovered Transaction Committed
	3.2.7.25 Phase One Completed
	3.2.7.26 Propagate Transaction Failure
	3.2.7.27 Propagate Transaction Success
	3.2.7.28 Register Phase Zero Failure
	3.2.7.29 Register Phase Zero Success
	3.2.7.30 Resolve Transaction
	3.2.7.31 Set Transaction Attributes
	3.2.7.32 Set Transaction Timeout
	3.2.7.33 Request Transaction Outcome
	3.2.7.34 Unenlist Phase Zero Enlistment
	3.2.7.35 Voting Complete

	3.3 Application Details
	3.3.1 Abstract Data Model
	3.3.1.1 CONNTYPE_TXUSER_BEGINNER Initiator States
	3.3.1.1.1 Idle
	3.3.1.1.2 Awaiting Begin Response
	3.3.1.1.3 Processing Transaction
	3.3.1.1.4 Awaiting Commit Response
	3.3.1.1.5 Awaiting Abort Response
	3.3.1.1.6 Ended

	3.3.1.2 CONNTYPE_TXUSER_BEGIN2 Initiator States
	3.3.1.2.1 Idle
	3.3.1.2.2 Awaiting Begin Response
	3.3.1.2.3 Processing Transaction
	3.3.1.2.4 Awaiting Set Timeout Response
	3.3.1.2.5 Awaiting Commit Response
	3.3.1.2.6 Awaiting Abort Response
	3.3.1.2.7 Ended

	3.3.1.3 CONNTYPE_TXUSER_PROMOTE Initiator States
	3.3.1.3.1 Idle
	3.3.1.3.2 Awaiting Promote Response
	3.3.1.3.3 Processing Transaction
	3.3.1.3.4 Awaiting Set Timeout Response
	3.3.1.3.5 Awaiting Commit Response
	3.3.1.3.6 Awaiting Abort Response
	3.3.1.3.7 Ended

	3.3.1.4 CONNTYPE_TXUSER_ASSOCIATE Initiator States
	3.3.1.4.1 Idle
	3.3.1.4.2 Awaiting Associate Response
	3.3.1.4.3 Active
	3.3.1.4.4 Ended

	3.3.1.5 CONNTYPE_TXUSER_EXTENDWHEREABOUTS Initiator States
	3.3.1.5.1 Idle
	3.3.1.5.2 Awaiting Get Response
	3.3.1.5.3 Ended

	3.3.1.6 CONNTYPE_TXUSER_IMPORT Initiator States
	3.3.1.6.1 Idle
	3.3.1.6.2 Awaiting Import Response
	3.3.1.6.3 Transaction Import Successful
	3.3.1.6.4 Awaiting Abort Response
	3.3.1.6.5 Ended

	3.3.1.7 CONNTYPE_TXUSER_IMPORT2 Initiator States
	3.3.1.7.1 Idle
	3.3.1.7.2 Awaiting Import Response
	3.3.1.7.3 Transaction Import Successful
	3.3.1.7.4 Awaiting Abort Response
	3.3.1.7.5 Ended

	3.3.1.8 CONNTYPE_TXUSER_EXPORT Initiator States
	3.3.1.8.1 Idle
	3.3.1.8.2 Awaiting Create Response
	3.3.1.8.3 Connection Active
	3.3.1.8.4 Awaiting Export Response
	3.3.1.8.5 Ended

	3.3.1.9 CONNTYPE_TXUSER_EXPORT2 Initiator States
	3.3.1.9.1 Idle
	3.3.1.9.2 Awaiting Create Response
	3.3.1.9.3 Connection Active
	3.3.1.9.4 Awaiting Export Response
	3.3.1.9.5 Ended

	3.3.1.10 CONNTYPE_TXUSER_GETTXDETAILS Initiator States
	3.3.1.10.1 Idle
	3.3.1.10.2 Awaiting Response
	3.3.1.10.3 Ended

	3.3.1.11 CONNTYPE_TXUSER_RESOLVE Initiator States
	3.3.1.11.1 Idle
	3.3.1.11.2 Awaiting Abort Response
	3.3.1.11.3 Awaiting Forget Response
	3.3.1.11.4 Awaiting Commit Response
	3.3.1.11.5 Ended

	3.3.1.12 CONNTYPE_TXUSER_SETTXTIMEOUT Initiator States
	3.3.1.12.1 Idle
	3.3.1.12.2 Awaiting Set Timeout Response
	3.3.1.12.3 Ended

	3.3.1.13 CONNTYPE_TXUSER_SETTXTIMEOUT2 Initiator States
	3.3.1.13.1 Idle
	3.3.1.13.2 Awaiting Set Timeout Response
	3.3.1.13.3 Ended

	3.3.1.14 CONNTYPE_TXUSER_TRACE Initiator States
	3.3.1.14.1 Idle
	3.3.1.14.2 Awaiting Trace Response
	3.3.1.14.3 Ended

	3.3.1.15 CONNTYPE_TXUSER_GETSECURITYFLAGS Initiator States
	3.3.1.15.1 Idle
	3.3.1.15.2 Awaiting Get Response
	3.3.1.15.3 Ended

	3.3.2 Timers
	3.3.3 Initialization
	3.3.4 Higher-Layer Triggered Events
	3.3.4.1 Beginning a Transaction
	3.3.4.1.1 Beginning a Transaction Using CONNTYPE_TXUSER_BEGIN2
	3.3.4.1.2 Beginning a Transaction Using CONNTYPE_TXUSER_BEGINNER
	3.3.4.1.3 Beginning a Transaction Using CONNTYPE_TXUSER_PROMOTE

	3.3.4.2 Changing a Transaction Timeout
	3.3.4.2.1 Changing a Transaction Timeout Using CONNTYPE_TXUSER_SETTXTIMEOUT
	3.3.4.2.2 Querying Transaction Manager's Support for Modifying a Transaction Timeout Using CONNTYPE_TXUSER_SETTXTIMEOUT2

	3.3.4.3 Obtaining a Propagation Token for a Transaction
	3.3.4.4 Creating an Export Connection
	3.3.4.5 Generating Trace Records for a Transaction Using CONNTYPE_TXUSER_TRACE
	3.3.4.6 Importing a Transaction
	3.3.4.6.1 Importing a Transaction Using CONNTYPE_TXUSER_IMPORT
	3.3.4.6.2 Importing a Transaction Using CONNTYPE_TXUSER_IMPORT2

	3.3.4.7 Importing a Transaction with Additional Transaction Attributes
	3.3.4.8 Initiating Transaction Commit
	3.3.4.8.1 Commit a Transaction Using CONNTYPE_TXUSER_BEGIN2
	3.3.4.8.2 Commit a Transaction Using CONNTYPE_TXUSER_BEGINNER
	3.3.4.8.3 Commit a Transaction Using CONNTYPE_TXUSER_PROMOTE

	3.3.4.9 Initiating Transaction Rollback
	3.3.4.9.1 Abort a Transaction Using CONNTYPE_TXUSER_BEGIN2
	3.3.4.9.2 Abort a Transaction Using CONNTYPE_TXUSER_BEGINNER
	3.3.4.9.3 Abort a Transaction Using CONNTYPE_TXUSER_IMPORT
	3.3.4.9.4 Abort a Transaction Using CONNTYPE_TXUSER_IMPORT2
	3.3.4.9.5 Roll Back a Transaction Using CONNTYPE_TXUSER_PROMOTE

	3.3.4.10 Obtaining Extended Whereabouts Using CONNTYPE_TXUSER_EXTENDEDWHEREABOUTS
	3.3.4.11 Obtaining the Security Configuration of the Transaction Manager Using CONNTYPE_TXUSER_GETSECURITYFLAGS
	3.3.4.11.1 Obtaining the Details for a Transaction

	3.3.4.12 Pulling a Transaction
	3.3.4.13 Push a Transaction Using an Existing Export Connection
	3.3.4.14 Obtaining a Transaction Cookie Using an Existing Export Connection
	3.3.4.15 Resolving a Transaction

	3.3.5 Processing Events and Sequencing Rules
	3.3.5.1 Transaction Initiation and Completion
	3.3.5.1.1 CONNTYPE_TXUSER_BEGINNER as Initiator
	3.3.5.1.1.1 Receiving a TXUSER_BEGINNER_MTAG_BEGUN Message
	3.3.5.1.1.2 Receiving a TXUSER_BEGINNER_MTAG_BEGIN_NO_MEM or TXUSER_BEGINNER_MTAG _BEGIN_LOG_FULL Message
	3.3.5.1.1.3 Receiving a TXUSER_BEGINNER_MTAG_REQUEST_COMPLETED Message
	3.3.5.1.1.4 Receiving a TXUSER_BEGINNER_MTAG_COMMIT_TOO_LATE Message
	3.3.5.1.1.5 Receiving a TXUSER_BEGINNER_MTAG_COMMIT_INDOUBT Message
	3.3.5.1.1.6 Connection Disconnected

	3.3.5.1.2 CONNTYPE_TXUSER_BEGIN2 as Initiator
	3.3.5.1.2.1 Receiving a TXUSER_BEGIN2_MTAG_SINK_BEGUN Message
	3.3.5.1.2.2 Receiving a TXUSER_SETTXTIMEOUT_MTAG_REQUEST_COMPLETE Message
	3.3.5.1.2.3 Receiving a TXUSER_SETTXTIMEOUT_MTAG_TOO_LATE Message
	3.3.5.1.2.4 Receiving a TXUSER_SETTXTIMEOUT_MTAG_TX_NOT_FOUND Message
	3.3.5.1.2.5 Receiving a TXUSER_BEGIN2_MTAG_SINK_ERROR Message
	3.3.5.1.2.6 Connection Disconnected

	3.3.5.1.3 CONNTYPE_TXUSER_PROMOTE as Initiator
	3.3.5.1.3.1 Receiving a TXUSER_BEGIN2_MTAG_SINK_BEGUN Message
	3.3.5.1.3.2 Receiving a TXUSER_BEGIN2_MTAG_SINK_ERROR Message

	3.3.5.2 Transaction Propagation
	3.3.5.2.1 Pull Propagation
	3.3.5.2.1.1 CONNTYPE_TXUSER_ASSOCIATE as Initiator
	3.3.5.2.1.1.1 Receiving a TXUSER_ASSOCIATE_MTAG_ASSOCIATED Message
	3.3.5.2.1.1.2 Receiving Other TXUSER_ASSOCIATE_MTAG Messages
	3.3.5.2.1.1.3 Receiving a TXUSER_IMPORT2_MTAG_SINK_ERROR Message
	3.3.5.2.1.1.4 Connection Disconnected

	3.3.5.2.2 Push Propagation
	3.3.5.2.2.1 CONNTYPE_TXUSER_EXTENDEDWHEREABOUTS as Initiator
	3.3.5.2.2.1.1 Receiving a TXUSER_EXTENDEDWHEREABOUTS_MTAG_GOT Message
	3.3.5.2.2.1.2 Receiving a TXUSER_EXTENDEDWHEREABOUTS_MTAG_NOMEM Message
	3.3.5.2.2.1.3 CONNTYPE_TXUSER_EXTENDEDWHEREABOUTS Connection Disconnected

	3.3.5.2.2.2 CONNTYPE_TXUSER_EXPORT as Initiator
	3.3.5.2.2.2.1 Receiving a TXUSER_EXPORT_MTAG_CREATED Message
	3.3.5.2.2.2.2 Receiving a TXUSER_EXPORT_MTAG_CREATE_BAD_TMADDR or TXUSER_EXPORT_MTAG_CREATE_NET_TX_DISABLED Message
	3.3.5.2.2.2.3 Receiving a TXUSER_EXPORT_MTAG_EXPORTED Message
	3.3.5.2.2.2.4 Receiving a TXUSER_EXPORT_MTAG_EXPORT_LOG_FULL, TXUSER_EXPORT_MTAG_EXPORT_NO_MEM, TXUSER_EXPORT_MTAG_EXPORT_TOO_LATE, TXUSER_EXPORT_MTAG_EXPORT_TOO_MANY, or TXUSER_EXPORT_MTAG_EXPORT_NOT_FOUND Message
	3.3.5.2.2.2.5 CONNTYPE_TXUSER_EXPORT Connection Disconnected

	3.3.5.2.2.3 CONNTYPE_TXUSER_EXPORT2 as Initiator
	3.3.5.2.2.3.1 Receiving a TXUSER_EXPORT_MTAG_CREATED Message
	3.3.5.2.2.3.2 Receiving a TXUSER_EXPORT_MTAG_CREATE_BAD_TMADDR or TXUSER_EXPORT_MTAG_CREATE_NET_TX_DISABLED Message
	3.3.5.2.2.3.3 Receiving a TXUSER_EXPORT_MTAG_EXPORTED Message
	3.3.5.2.2.3.4 Receiving a TXUSER_EXPORT_MTAG_EXPORT_LOG_FULL, TXUSER_EXPORT_MTAG_EXPORT_NO_MEM, TXUSER_EXPORT_MTAG_EXPORT_TOO_LATE, TXUSER_EXPORT_MTAG_EXPORT_TOO_MANY, TXUSER_EXPORT_MTAG_EXPORT_NOT_FOUND, or TXUSER_EXPORT_MTAG_EXPORT_COMM_FAILED Message
	3.3.5.2.2.3.5 CONNTYPE_TXUSER_EXPORT2 Connection Disconnected

	3.3.5.2.2.4 CONNTYPE_TXUSER_IMPORT as Initiator
	3.3.5.2.2.4.1 Receiving a TXUSER_IMPORT_MTAG_IMPORTED Message
	3.3.5.2.2.4.2 Receiving a TXUSER_IMPORT_MTAG_IMPORT_TX_NOT_FOUND Message
	3.3.5.2.2.4.3 Receiving a TXUSER_IMPORT_MTAG_ABORT_TOO_LATE Message.
	3.3.5.2.2.4.4 Receiving a TXUSER_IMPORT_MTAG_REQUEST_COMPLETED Message
	3.3.5.2.2.4.5 Connection Disconnected

	3.3.5.2.2.5 CONNTYPE_TXUSER_IMPORT2 as Initiator
	3.3.5.2.2.5.1 Receiving a TXUSER_IMPORT2_MTAG_SINK_IMPORTED Message
	3.3.5.2.2.5.2 Receiving a TXUSER_IMPORT2_MTAG_SINK_ERROR Message
	3.3.5.2.2.5.3 CONNTYPE_TXUSER_IMPORT2 Connection Disconnected

	3.3.5.3 Transaction Administration
	3.3.5.3.1 CONNTYPE_TXUSER_GETTXDETAILS as Initiator
	3.3.5.3.1.1 Receiving a TXUSER_GETTXDETAILS_MTAG_GOTIT Message
	3.3.5.3.1.2 Receiving a TXUSER_GETTXDETAILS_MTAG_TX_NOT_FOUND Message
	3.3.5.3.1.3 CONNTYPE_TXUSER_GETTXDETAILS Connection Disconnected

	3.3.5.3.2 CONNTYPE_TXUSER_RESOLVE as Initiator
	3.3.5.3.2.1 Receiving a TXUSER_RESOLVE_MTAG_REQUEST_COMPLETE Message
	3.3.5.3.2.2 Receiving a TXUSER_RESOLVE_MTAG_ACCESSDENIED or TXUSER_RESOLVE_MTAG_TX_NOT_FOUND Message
	3.3.5.3.2.3 Receiving a TXUSER_RESOLVE_MTAG_CHILD_NOT_PREPARED or TXUSER_RESOLVE_MTAG_NOT_CHILD Message
	3.3.5.3.2.4 Receiving a TXUSER_RESOLVE_MTAG_FORGET_TX_NOT_COMMITTED Message
	3.3.5.3.2.5 Connection Disconnected

	3.3.5.3.3 CONNTYPE_TXUSER_SETTXTIMEOUT as Initiator
	3.3.5.3.3.1 Receiving a TXUSER_SETTXTIMEOUT_MTAG_REQUEST_COMPLETE Message
	3.3.5.3.3.2 Receiving a TXUSER_SETTXTIMEOUT_MTAG_TOO_LATE or TXUSER_SETTXTIMEOUT_MTAG_TX_NOT_FOUND Message
	3.3.5.3.3.3 Connection Disconnected

	3.3.5.3.4 CONNTYPE_TXUSER_SETTXTIMEOUT2 as Initiator
	3.3.5.3.4.1 Receiving a TXUSER_SETTXTIMEOUT_MTAG_TX_NOT_FOUND Message
	3.3.5.3.4.2 Connection Disconnected

	3.3.5.3.5 CONNTYPE_TXUSER_TRACE as Initiator
	3.3.5.3.5.1 Receiving a TXUSER_TRACE_MTAG_REQUEST_COMPLETE Message
	3.3.5.3.5.2 Receiving a TXUSER_TRACE_MTAG_REQUEST_FAILED or TXUSER_TRACE_MTAG_TX_NOT_FOUND Message
	3.3.5.3.5.3 Connection Disconnected

	3.3.5.4 Transaction Manager Administration
	3.3.5.4.1 CONNTYPE_TXUSER_GETSECURITYFLAGS as Initiator
	3.3.5.4.1.1 Receiving a TXUSER_GETSECURITYFLAGS _MTAG_FETCHED Message
	3.3.5.4.1.2 CONNTYPE_TXUSER_GETSECURITYFLAGS Connection Disconnected

	3.3.6 Timer Events
	3.3.7 Other Local Events

	3.4 Transaction Manager Communicating with Application Details
	3.4.1 Abstract Data Model
	3.4.1.1 CONNTYPE_TXUSER_BEGINNER Acceptor States
	3.4.1.1.1 Idle
	3.4.1.1.2 Beginning Transaction
	3.4.1.1.3 Active
	3.4.1.1.4 Aborting Transaction
	3.4.1.1.5 Committing Transaction
	3.4.1.1.6 Ended

	3.4.1.2 CONNTYPE_TXUSER_BEGIN2 Acceptor States
	3.4.1.2.1 Idle
	3.4.1.2.2 Beginning Transaction
	3.4.1.2.3 Active
	3.4.1.2.4 Modifying Timeout
	3.4.1.2.5 Aborting Transaction
	3.4.1.2.6 Committing Transaction
	3.4.1.2.7 Ended

	3.4.1.3 CONNTYPE_TXUSER_PROMOTE Acceptor States
	3.4.1.3.1 Idle
	3.4.1.3.2 Beginning Transaction
	3.4.1.3.3 Active
	3.4.1.3.4 Modifying Timeout
	3.4.1.3.5 Aborting Transaction
	3.4.1.3.6 Committing Transaction
	3.4.1.3.7 Ended

	3.4.1.4 CONNTYPE_TXUSER_ASSOCIATE Acceptor States
	3.4.1.4.1 Idle
	3.4.1.4.2 Processing Associate Request
	3.4.1.4.3 Active
	3.4.1.4.4 Ended

	3.4.1.5 CONNTYPE_TXUSER_EXTENDEDWHEREABOUTS Acceptor States
	3.4.1.5.1 Idle
	3.4.1.5.2 Processing Inquiry
	3.4.1.5.3 Ended

	3.4.1.6 CONNTYPE_TXUSER_IMPORT Acceptor States
	3.4.1.6.1 Idle
	3.4.1.6.2 Processing Import Request
	3.4.1.6.3 Active
	3.4.1.6.4 Too Late to Abort
	3.4.1.6.5 Processing Abort Request
	3.4.1.6.6 Ended

	3.4.1.7 CONNTYPE_TXUSER_IMPORT2 Acceptor States
	3.4.1.7.1 Idle
	3.4.1.7.2 Processing Import Request
	3.4.1.7.3 Active
	3.4.1.7.4 Too Late to Abort
	3.4.1.7.5 Processing Abort Request
	3.4.1.7.6 Ended

	3.4.1.8 CONNTYPE_TXUSER_EXPORT Acceptor States
	3.4.1.8.1 Idle
	3.4.1.8.2 Processing Connection Request
	3.4.1.8.3 Connection Active
	3.4.1.8.4 Processing Push Operation Request
	3.4.1.8.5 Ended

	3.4.1.9 CONNTYPE_TXUSER_EXPORT2 Acceptor States
	3.4.1.9.1 Idle
	3.4.1.9.2 Processing Connection Request
	3.4.1.9.3 Connection Active
	3.4.1.9.4 Processing Push Operation Request
	3.4.1.9.5 Ended

	3.4.1.10 CONNTYPE_TXUSER_GETTXDETAILS Acceptor States
	3.4.1.10.1 Idle
	3.4.1.10.2 Processing Inquiry
	3.4.1.10.3 Ended

	3.4.1.11 CONNTYPE_TXUSER_RESOLVE Acceptor States
	3.4.1.11.1 Idle
	3.4.1.11.2 Processing Abort Request
	3.4.1.11.3 Processing Forget Request
	3.4.1.11.4 Processing Commit Request
	3.4.1.11.5 Ended

	3.4.1.12 CONNTYPE_TXUSER_SETTXTIMEOUT Acceptor States
	3.4.1.12.1 Idle
	3.4.1.12.2 Processing Request
	3.4.1.12.3 Ended

	3.4.1.13 CONNTYPE_TXUSER_SETTXTIMEOUT2 Acceptor States
	3.4.1.13.1 Idle
	3.4.1.13.2 Processing Request
	3.4.1.13.3 Ended

	3.4.1.14 CONNTYPE_TXUSER_TRACE Acceptor States
	3.4.1.14.1 Idle
	3.4.1.14.2 Processing Trace Request
	3.4.1.14.3 Ended

	3.4.1.15 CONNTYPE_TXUSER_GETSECURITYFLAGS Acceptor States
	3.4.1.15.1 Idle
	3.4.1.15.2 Processing Request
	3.4.1.15.3 Ended

	3.4.2 Timers
	3.4.3 Initialization
	3.4.4 Higher-Layer Triggered Events
	3.4.5 Processing Events and Sequencing Rules
	3.4.5.1 Transaction Initiation and Completion
	3.4.5.1.1 CONNTYPE_TXUSER_BEGINNER as Acceptor
	3.4.5.1.1.1 Receiving a TXUSER_BEGINNER_MTAG_BEGIN Message
	3.4.5.1.1.2 Receiving a TXUSER_BEGINNER_MTAG_COMMIT Message
	3.4.5.1.1.3 Receiving a TXUSER_BEGINNER_MTAG_ABORT Message
	3.4.5.1.1.4 Connection Disconnected

	3.4.5.1.2 CONNTYPE_TXUSER_BEGIN2 as Acceptor
	3.4.5.1.2.1 Receiving a TXUSER_BEGIN2_MTAG_BEGIN Message
	3.4.5.1.2.2 Receiving a TXUSER_SETTXTIMEOUT_MTAG_SETTXTIMEOUT Message
	3.4.5.1.2.3 Receiving a TXUSER_BEGIN2_MTAG_COMMIT Message
	3.4.5.1.2.4 Receiving a TXUSER_BEGIN2_MTAG_ABORT Message
	3.4.5.1.2.5 Connection Disconnected

	3.4.5.1.3 CONNTYPE_TXUSER_PROMOTE as Acceptor
	3.4.5.1.3.1 Receiving a TXUSER_BEGINNER_MTAG_PROMOTE Message
	3.4.5.1.3.2 Receiving a TXUSER_SETTXTIMEOUT_MTAG_SETTXTIMEOUT, TXUSER_BEGIN2_MTAG_COMMIT, or TXUSER_BEGIN2_MTAG_ABORT Message
	3.4.5.1.3.3 Connection Disconnected

	3.4.5.2 Transaction Propagation
	3.4.5.2.1 Pull Propagation
	3.4.5.2.1.1 CONNTYPE_TXUSER_ASSOCIATE as Acceptor
	3.4.5.2.1.1.1 Receiving a TXUSER_ASSOCIATE_MTAG_ASSOCIATE Message
	3.4.5.2.1.1.2 Connection Disconnected

	3.4.5.2.2 Push Propagation
	3.4.5.2.2.1 CONNTYPE_TXUSER_EXTENDEDWHEREABOUTS as Acceptor
	3.4.5.2.2.1.1 Receiving a TXUSER_EXTENDEDWHEREABOUTS_MTAG_GET Message
	3.4.5.2.2.1.2 Connection Disconnected

	3.4.5.2.2.2 CONNTYPE_TXUSER_EXPORT as Acceptor
	3.4.5.2.2.2.1 Receiving a TXUSER_EXPORT_MTAG_CREATE Message
	3.4.5.2.2.2.2 Receiving a TXUSER_EXPORT_MTAG_CREATE2 Message
	3.4.5.2.2.2.3 Receiving a TXUSER_EXPORT_MTAG_EXPORT Message
	3.4.5.2.2.2.4 Connection Disconnected

	3.4.5.2.2.3 CONNTYPE_TXUSER_EXPORT2 as Acceptor
	3.4.5.2.2.3.1 Receiving a TXUSER_EXPORT_MTAG_CREATE Message
	3.4.5.2.2.3.2 Receiving a TXUSER_EXPORT_MTAG_CREATE2 Message
	3.4.5.2.2.3.3 Receiving a TXUSER_EXPORT_MTAG_EXPORT Message
	3.4.5.2.2.3.4 Connection Disconnected

	3.4.5.2.2.4 CONNTYPE_TXUSER_IMPORT as Acceptor
	3.4.5.2.2.4.1 Receiving a TXUSER_IMPORT_MTAG_IMPORT Message
	3.4.5.2.2.4.2 Receiving a TXUSER_IMPORT_MTAG_ABORT Message
	3.4.5.2.2.4.3 Connection Disconnected

	3.4.5.2.2.5 CONNTYPE_TXUSER_IMPORT2 as Acceptor
	3.4.5.2.2.5.1 Receiving a TXUSER_IMPORT2_MTAG_IMPORT Message
	3.4.5.2.2.5.2 Receiving a TXUSER_IMPORT2_MTAG_IMPORT_WITH_SET Message
	3.4.5.2.2.5.3 Receiving a TXUSER_IMPORT2_MTAG_ABORT Message
	3.4.5.2.2.5.4 Connection Disconnected

	3.4.5.3 Transaction Administration
	3.4.5.3.1 CONNTYPE_TXUSER_GETTXDETAILS as Acceptor
	3.4.5.3.1.1 Receiving a TXUSER_GETTXDETAILS_MTAG_GET Message
	3.4.5.3.1.2 Connection Disconnected

	3.4.5.3.2 CONNTYPE_TXUSER_RESOLVE as Acceptor
	3.4.5.3.2.1 Receiving a TXUSER_RESOLVE_MTAG_CHILD_ABORT Message
	3.4.5.3.2.2 Receiving a TXUSER_RESOLVE_MTAG_CHILD_COMMIT Message
	3.4.5.3.2.3 Receiving a TXUSER_RESOLVE_MTAG_FORGET_COMMITTED Message
	3.4.5.3.2.4 Connection Disconnected

	3.4.5.3.3 CONNTYPE_TXUSER_SETTXTIMEOUT as Acceptor
	3.4.5.3.3.1 Receiving a TXUSER_SETTXTIMEOUT_MTAG_SETTXTIMEOUT Message
	3.4.5.3.3.2 Connection Disconnected

	3.4.5.3.4 CONNTYPE_TXUSER_SETTXTIMEOUT2 as Acceptor
	3.4.5.3.4.1 Receiving a TXUSER_SETTXTIMEOUT_MTAG_SETTXTIMEOUT Message
	3.4.5.3.4.2 Connection Disconnected

	3.4.5.3.5 CONNTYPE_TXUSER_TRACE as Acceptor
	3.4.5.3.5.1 Receiving a TXUSER_TRACE_MTAG_DUMP_TRANSACTION Message
	3.4.5.3.5.2 Connection Disconnected

	3.4.5.4 Transaction Manager Administration
	3.4.5.4.1 CONNTYPE_TXUSER_GETSECURITYFLAGS as Acceptor
	3.4.5.4.1.1 Receiving a TXUSER_GETSECURITYFLAGS_MTAG_GETSECURITYFLAGS Message
	3.4.5.4.1.2 Connection Disconnected

	3.4.6 Timer Events
	3.4.7 Other Local Events
	3.4.7.1 Associate Transaction Failure
	3.4.7.2 Associate Transaction Success
	3.4.7.3 Begin Commit
	3.4.7.4 Begin In Doubt
	3.4.7.5 Begin Rollback
	3.4.7.6 Begin Voting
	3.4.7.7 Create Transaction Failure
	3.4.7.8 Create Transaction Success
	3.4.7.9 Create Voter Enlistment Failure
	3.4.7.10 Create Voter Enlistment Success
	3.4.7.11 Export Transaction Failure
	3.4.7.12 Export Transaction Success
	3.4.7.13 Phase One Complete
	3.4.7.14 Phase Zero Complete
	3.4.7.15 Register Phase Zero
	3.4.7.16 Resolve Transaction Complete
	3.4.7.17 Resolve Transaction Access Denied
	3.4.7.18 Rollback Complete
	3.4.7.19 Set Transaction Attributes Failure
	3.4.7.20 Set Transaction Attributes Success
	3.4.7.21 Set Transaction Timeout Failure
	3.4.7.22 Set Transaction Timeout Success
	3.4.7.23 Unilaterally Aborted

	3.5 Resource Manager Details
	3.5.1 Abstract Data Model
	3.5.1.1 CONNTYPE_TXUSER_RESOURCEMANAGER Initiator States
	3.5.1.1.1 Idle
	3.5.1.1.2 Awaiting Create Response
	3.5.1.1.3 Recovering
	3.5.1.1.4 Awaiting Completion Confirmation
	3.5.1.1.5 Active
	3.5.1.1.6 Ended

	3.5.1.2 CONNTYPE_TXUSER_RESOURCEMANAGERINTERNAL Initiator States
	3.5.1.2.1 Idle
	3.5.1.2.2 Awaiting Create Response
	3.5.1.2.3 Recovering
	3.5.1.2.4 Awaiting Completion Confirmation
	3.5.1.2.5 Active
	3.5.1.2.6 Ended

	3.5.1.3 CONNTYPE_TXUSER_PHASE0 Initiator States
	3.5.1.3.1 Idle
	3.5.1.3.2 Awaiting Create Response
	3.5.1.3.3 Active
	3.5.1.3.4 Processing Phase Zero Request
	3.5.1.3.5 Ended

	3.5.1.4 CONNTYPE_TXUSER_ENLISTMENT Initiator States
	3.5.1.4.1 Idle
	3.5.1.4.2 Awaiting Enlistment Response
	3.5.1.4.3 Active
	3.5.1.4.4 Single Phase Committing
	3.5.1.4.5 Preparing for Transaction Commit
	3.5.1.4.6 Finalizing Abort Operations
	3.5.1.4.7 Awaiting Transaction Outcome
	3.5.1.4.8 Finalizing Commit Operations
	3.5.1.4.9 Ended

	3.5.1.5 CONNTYPE_TXUSER_REENLIST Initiator States
	3.5.1.5.1 Idle
	3.5.1.5.2 Awaiting Reenlist Response
	3.5.1.5.3 Ended

	3.5.1.6 CONNTYPE_TXUSER_VOTER Initiator States
	3.5.1.6.1 Idle
	3.5.1.6.2 Awaiting Creation Response
	3.5.1.6.3 Active
	3.5.1.6.4 Performing Transaction Operations
	3.5.1.6.5 Awaiting Outcome
	3.5.1.6.6 Ended

	3.5.2 Timers
	3.5.3 Initialization
	3.5.4 Higher-Layer Triggered Events
	3.5.4.1 Canceling Enlistment as a Phase Zero Participant on a Specific Transaction
	3.5.4.2 Enlisting as a Phase Zero Participant on a Specific Transaction
	3.5.4.3 Enlisting on a Specific Transaction
	3.5.4.4 Enlistment Abort Request Completed
	3.5.4.5 Enlistment Commit Request Completed
	3.5.4.6 Enlistment Prepare Request Completed
	3.5.4.7 Enlistment Single-Phase Commit Request Completed
	3.5.4.8 Phase Zero Request Completed
	3.5.4.9 Registering as a Voter on a Specific Transaction
	3.5.4.10 Registering with Transaction Manager
	3.5.4.10.1 Registering with Transaction Manager Using CONNTYPE_TXUSER_RESOURCEMANAGER
	3.5.4.10.2 Registering with Transaction Manager Using CONNTYPE_TXUSER_RESOURCEMANAGERINTERNAL

	3.5.4.11 Voter Vote Request Completed

	3.5.5 Processing Events and Sequencing Rules
	3.5.5.1 Resource Manager Registration
	3.5.5.1.1 CONNTYPE_TXUSER_RESOURCEMANAGER as Initiator
	3.5.5.1.1.1 Receiving a TXUSER_RESOURCEMANAGER_MTAG_DUPLICATE Message
	3.5.5.1.1.2 Receiving a TXUSER_RESOURCEMANAGER_MTAG_REQUEST_COMPLETE Message
	3.5.5.1.1.3 Connection Disconnected

	3.5.5.1.2 CONNTYPE_TXUSER_RESOURCEMANAGERINTERNAL as Initiator
	3.5.5.1.2.1 Receiving a TXUSER_RESOURCEMANAGER_MTAG_DUPLICATE or TXUSER_RESOURCEMANAGER_MTAG_REQUEST_COMPLETE Message
	3.5.5.1.2.2 Receiving a TXUSER_RESOURCEMANAGERINTERNAL_MTAG_DUPLICATEDETECTED Message
	3.5.5.1.2.3 Connection Disconnected

	3.5.5.2 Transaction Coordination
	3.5.5.2.1 CONNTYPE_TXUSER_PHASE0 as Initiator
	3.5.5.2.1.1 Receiving a TXUSER_PHASE0_MTAG_CREATED Message
	3.5.5.2.1.2 Receiving a TXUSER_PHASE0_MTAG_CREATE_TX_NOT_FOUND or TXUSER_PHASE0_MTAG_CREATE_TOO_LATE Message
	3.5.5.2.1.3 Receiving a TXUSER_PHASE0_MTAG_PHASE0REQ Message
	3.5.5.2.1.4 Receiving a TXUSER_PHASE0_MTAG_PHASE0REQ_ABORT Message
	3.5.5.2.1.5 Connection Disconnected

	3.5.5.2.2 CONNTYPE_TXUSER_ENLISTMENT as Initiator
	3.5.5.2.2.1 Receiving a TXUSER_ENLISTMENT_MTAG_ENLISTED Message
	3.5.5.2.2.2 Receiving a TXUSER_ENLISTMENT_MTAG_ENLIST_TX_NOT_FOUND, TXUSER_ENLISTMENT_MTAG_ENLIST_TOO_LATE, TXUSER_ENLISTMENT_MTAG_ENLIST_LOG_FULL, or TXUSER_ENLISTMENT_MTAG_ENLIST_TOO_MANY Message
	3.5.5.2.2.3 Receiving a TXUSER_ENLISTMENT_MTAG_PREPAREREQ Message
	3.5.5.2.2.4 Receiving a TXUSER_ENLISTMENT_MTAG_COMMITREQ Message
	3.5.5.2.2.5 Receiving a TXUSER_ENLISTMENT_MTAG_ABORTREQ Message
	3.5.5.2.2.6 Connection Disconnected

	3.5.5.3 Transaction Recovery
	3.5.5.3.1 CONNTYPE_TXUSER_REENLIST as Initiator
	3.5.5.3.1.1 Receiving a TXUSER_REENLIST_MTAG_REENLIST_COMMITTED Message
	3.5.5.3.1.2 Receiving a TXUSER_REENLIST_MTAG_REENLIST_ABORTED Message
	3.5.5.3.1.3 Receiving a TXUSER_REENLIST_MTAG_REENLIST_TIMEOUT Message
	3.5.5.3.1.4 Connection Disconnected

	3.5.5.4 Voting
	3.5.5.4.1 CONNTYPE_TXUSER_VOTER as Initiator
	3.5.5.4.1.1 Receiving a TXUSER_VOTER_MTAG_CREATED Message
	3.5.5.4.1.2 Receiving a TXUSER_VOTER_MTAG_CREATE_TX_NOT_FOUND or TXUSER_VOTER_MTAG_CREATE_TOO_LATE Message
	3.5.5.4.1.3 Receiving a TXUSER_VOTER_MTAG_VOTEREQ Message
	3.5.5.4.1.4 Receiving a TXUSER_STATUS_MTAG_COMMITTED Message
	3.5.5.4.1.5 Receiving a TXUSER_STATUS_MTAG_ABORTED Message
	3.5.5.4.1.6 Receiving a TXUSER_STATUS_MTAG_INDOUBT Message
	3.5.5.4.1.7 Connection Disconnected

	3.5.6 Timer Events
	3.5.7 Other Local Events
	3.5.7.1 Recover Transaction
	3.5.7.2 Recover Transactions
	3.5.7.3 Reenlistment Complete
	3.5.7.4 Transaction Manager Down
	3.5.7.5 Reenlistment Timeout

	3.6 Transaction Manager Communicating with Resource Manager Facet Details
	3.6.1 Abstract Data Model
	3.6.1.1 CONNTYPE_TXUSER_RESOURCEMANAGER Acceptor States
	3.6.1.1.1 Idle
	3.6.1.1.2 Creating
	3.6.1.1.3 Reenlisting
	3.6.1.1.4 Active
	3.6.1.1.5 Ended

	3.6.1.2 CONNTYPE_TXUSER_RESOURCEMANAGERINTERNAL Acceptor States
	3.6.1.2.1 Idle
	3.6.1.2.2 Creating
	3.6.1.2.3 Reenlisting
	3.6.1.2.4 Active
	3.6.1.2.5 Ended

	3.6.1.3 CONNTYPE_TXUSER_PHASE0 Acceptor States
	3.6.1.3.1 Idle
	3.6.1.3.2 Awaiting Create Response
	3.6.1.3.3 Active
	3.6.1.3.4 Awaiting Phase Zero Response
	3.6.1.3.5 Ended

	3.6.1.4 CONNTYPE_TXUSER_ENLISTMENT Acceptor States
	3.6.1.4.1 Idle
	3.6.1.4.2 Processing Enlistment Request
	3.6.1.4.3 Active
	3.6.1.4.4 Awaiting Single-Phase Commit Response
	3.6.1.4.5 Awaiting Prepare Response
	3.6.1.4.6 Awaiting Prepare Response Aborted
	3.6.1.4.7 Prepared
	3.6.1.4.8 Awaiting Commit Response
	3.6.1.4.9 Awaiting Abort Response
	3.6.1.4.10 Ended

	3.6.1.5 CONNTYPE_TXUSER_REENLIST Acceptor States
	3.6.1.5.1 Idle
	3.6.1.5.2 Processing Reenlist Request
	3.6.1.5.3 Ended

	3.6.1.6 CONNTYPE_TXUSER_VOTER Acceptor States
	3.6.1.6.1 Idle
	3.6.1.6.2 Create Voter
	3.6.1.6.3 Active
	3.6.1.6.4 Awaiting Voter Response
	3.6.1.6.5 Awaiting Outcome
	3.6.1.6.6 Ended

	3.6.2 Timers
	3.6.2.1 Reenlist Time-Out Timer

	3.6.3 Initialization
	3.6.4 Higher-Layer Triggered Events
	3.6.5 Processing Events and Sequencing Rules
	3.6.5.1 Resource Manager Registration
	3.6.5.1.1 CONNTYPE_TXUSER_RESOURCEMANAGER as Acceptor
	3.6.5.1.1.1 Receiving a TXUSER_RESOURCEMANAGER_MTAG_CREATE Message
	3.6.5.1.1.2 Receiving a TXUSER_RESOURCEMANAGER_MTAG_REENLISTMENTCOMPLETE Message
	3.6.5.1.1.3 Connection Disconnected

	3.6.5.1.2 CONNTYPE_TXUSER_RESOURCEMANAGERINTERNAL as Acceptor
	3.6.5.1.2.1 Receiving a TXUSER_RESOURCEMANAGER_MTAG_CREATE Message
	3.6.5.1.2.2 Receiving a TXUSER_RESOURCEMANAGER_MTAG_REENLISTMENTCOMPLETE Message
	3.6.5.1.2.3 Connection Disconnected

	3.6.5.2 Transaction Coordination
	3.6.5.2.1 CONNTYPE_TXUSER_PHASE0 as Acceptor
	3.6.5.2.1.1 Receiving a TXUSER_PHASE0_MTAG_CREATE Message
	3.6.5.2.1.2 Receiving a TXUSER_PHASE0_MTAG_PHASE0REQDONE Message
	3.6.5.2.1.3 Receiving a TXUSER_PHASE0_MTAG_UNENLIST Message
	3.6.5.2.1.4 Connection Disconnected

	3.6.5.2.2 CONNTYPE_TXUSER_ENLISTMENT as Acceptor
	3.6.5.2.2.1 Receiving a TXUSER_ENLISTMENT_MTAG_ENLIST Message
	3.6.5.2.2.2 Receiving a TXUSER_ENLISTMENT_MTAG_PREPAREREQDONE Message
	3.6.5.2.2.3 Receiving a TXUSER_ENLISTMENT_MTAG_COMMITREQDONE Message
	3.6.5.2.2.4 Receiving a TXUSER_ENLISTMENT_MTAG_ABORTREQDONE Message
	3.6.5.2.2.5 Connection Disconnected

	3.6.5.3 Transaction Recovery
	3.6.5.3.1 CONNTYPE_TXUSER_REENLIST as Acceptor
	3.6.5.3.1.1 Receiving a TXUSER_REENLIST_MTAG_REENLIST Message
	3.6.5.3.1.2 Connection Disconnected

	3.6.5.4 Voting
	3.6.5.4.1 CONNTYPE_TXUSER_VOTER as Acceptor
	3.6.5.4.1.1 Receiving a TXUSER_VOTER_MTAG_CREATE Message
	3.6.5.4.1.2 Receiving a TXUSER_VOTER_MTAG_VOTEREQDONE Message
	3.6.5.4.1.3 Connection Disconnected

	3.6.6 Timer Events
	3.6.6.1 Reenlist Timeout Timer

	3.6.7 Other Local Events
	3.6.7.1 Begin Commit
	3.6.7.2 Begin In Doubt
	3.6.7.3 Begin Phase One
	3.6.7.4 Begin Phase Zero
	3.6.7.5 Begin Rollback
	3.6.7.6 Begin Voting
	3.6.7.7 Create Phase Zero Enlistment Failure
	3.6.7.8 Create Phase Zero Enlistment Success
	3.6.7.9 Create Resource Manager
	3.6.7.10 Create Subordinate Enlistment Failure
	3.6.7.11 Create Subordinate Enlistment Success
	3.6.7.12 Create Voter Enlistment Failure
	3.6.7.13 Create Voter Enlistment Success
	3.6.7.14 Phase Zero Aborted
	3.6.7.15 Reenlist Complete
	3.6.7.16 Resource Manager Down

	3.7 Superior Transaction Manager Facet Details
	3.7.1 Abstract Data Model
	3.7.1.1 CONNTYPE_PARTNERTM_PROPAGATE Initiator States
	3.7.1.1.1 Idle
	3.7.1.1.2 Awaiting Propagation Response
	3.7.1.1.3 Active
	3.7.1.1.4 Awaiting Abort Response
	3.7.1.1.5 Phase Zero Registration
	3.7.1.1.6 Requesting Phase Zero
	3.7.1.1.7 Phase Zero
	3.7.1.1.8 Phase Zero Registration During Phase Zero
	3.7.1.1.9 Phase Zero with Outstanding Registration
	3.7.1.1.10 Awaiting Prepare Response
	3.7.1.1.11 Prepared
	3.7.1.1.12 Awaiting Commit Response
	3.7.1.1.13 Ended

	3.7.1.2 CONNTYPE_PARTNERTM_BRANCH Acceptor States
	3.7.1.2.1 Idle
	3.7.1.2.2 Branching
	3.7.1.2.3 Active
	3.7.1.2.4 Awaiting Abort Response
	3.7.1.2.5 Phase Zero Registration
	3.7.1.2.6 Requesting Phase Zero
	3.7.1.2.7 Phase Zero
	3.7.1.2.8 Phase Zero Registration During Phase Zero
	3.7.1.2.9 Phase Zero with Outstanding Registration
	3.7.1.2.10 Awaiting Prepare Response
	3.7.1.2.11 Prepared
	3.7.1.2.12 Awaiting Commit Response
	3.7.1.2.13 Ended

	3.7.1.3 CONNTYPE_PARTNERTM_REDELIVERCOMMIT Initiator States
	3.7.1.3.1 Idle
	3.7.1.3.2 Awaiting Confirmation
	3.7.1.3.3 Waiting to Rerequest
	3.7.1.3.4 Ended

	3.7.1.4 CONNTYPE_PARTNERTM_CHECKABORT Acceptor States
	3.7.1.4.1 Idle
	3.7.1.4.2 Processing Abort Inquiry
	3.7.1.4.3 Ended

	3.7.2 Timers
	3.7.2.1 Redeliver Commit Timer

	3.7.3 Initialization
	3.7.4 Higher-Layer Triggered Events
	3.7.5 Processing Events and Sequencing Rules
	3.7.5.1 Transaction Propagation and Coordination
	3.7.5.1.1 Push Propagation
	3.7.5.1.1.1 CONNTYPE_PARTNERTM_PROPAGATE as Initiator
	3.7.5.1.1.1.1 Receiving a PARTNERTM_PROPAGATE_MTAG_PROPAGATED Message
	3.7.5.1.1.1.2 Receiving a PARTNERTM_PROPAGATE_MTAG_DUPLICATE, PARTNERTM_PROPAGATE_MTAG_NO_MEM, or PARTNERTM_PROPAGATE_MTAG_LOG_FULL Message
	3.7.5.1.1.1.3 Receiving a PARTNERTM_PROPAGATE_MTAG_PHASE0REGISTER, PARTNERTM_PROPAGATE_MTAG_PHASE0COMPLETE, PARTNERTM_PROPAGATE_MTAG_PREPAREREQDONE, PARTNERTM_PROPAGATE_MTAG_COMMITREQDONE, PARTNERTM_PROPAGATE_MTAG_ABORTREQDONE, or PARTNERTM_PROPAGATE_...
	3.7.5.1.1.1.4 Receiving a PARTNERTM_PROPAGATE_MTAG_PROTOCOL_ERROR Message
	3.7.5.1.1.1.5 Connection Disconnected

	3.7.5.1.2 Pull Propagation
	3.7.5.1.2.1 CONNTYPE_PARTNERTM_BRANCH as Acceptor
	3.7.5.1.2.1.1 Receiving a PARTNERTM_BRANCH_MTAG_BRANCHING Message
	3.7.5.1.2.1.2 Receiving a PARTNERTM_PROPAGATE_MTAG_PHASE0REGISTER Message
	3.7.5.1.2.1.3 Receiving a PARTNERTM_PROPAGATE_MTAG_PHASE0COMPLETE Message
	3.7.5.1.2.1.4 Receiving a PARTNERTM_PROPAGATE_MTAG_ABORTNOTIFY Message
	3.7.5.1.2.1.5 Receiving a PARTNERTM_PROPAGATE_MTAG_ABORTREQDONE Message
	3.7.5.1.2.1.6 Receiving a PARTNERTM_PROPAGATE_MTAG_PREPAREREQDONE Message
	3.7.5.1.2.1.7 Receiving a PARTNERTM_PROPAGATE_MTAG_COMMITREQDONE Message
	3.7.5.1.2.1.8 Receiving a PARTNERTM_PROPAGATE_MTAG_PROTOCOL_ERROR Message
	3.7.5.1.2.1.9 Connection Disconnected

	3.7.5.2 Transaction Recovery
	3.7.5.2.1 Subordinate-Driven Recovery
	3.7.5.2.1.1 CONNTYPE_PARTNERTM_CHECKABORT as Acceptor
	3.7.5.2.1.1.1 Receiving a PARTNERTM_CHECKABORT_MTAG_CHECK Message
	3.7.5.2.1.1.2 Connection Disconnected

	3.7.5.2.2 Superior-Driven Recovery
	3.7.5.2.2.1 CONNTYPE_PARTNERTM_REDELIVERCOMMIT as Initiator
	3.7.5.2.2.1.1 Receiving a PARTNERTM_REDELIVERCOMMIT_MTAG_COMMITREQDONE Message
	3.7.5.2.2.1.2 Receiving a PARTNERTM_REDELIVERCOMMIT_MTAG_RETRY Message
	3.7.5.2.2.1.3 Connection Disconnected

	3.7.6 Timer Events
	3.7.6.1 Redeliver Commit Timer

	3.7.7 Other Local Events
	3.7.7.1 Begin Commit
	3.7.7.2 Begin Phase One
	3.7.7.3 Begin Phase Zero
	3.7.7.4 Begin Rollback
	3.7.7.5 Create Phase Zero Enlistment Failure
	3.7.7.6 Create Phase Zero Enlistment Success
	3.7.7.7 Create Subordinate Enlistment Failure
	3.7.7.8 Create Subordinate Enlistment Success
	3.7.7.9 Phase Zero Aborted
	3.7.7.10 Propagate Transaction

	3.8 Subordinate Transaction Manager Facet Details
	3.8.1 Abstract Data Model
	3.8.1.1 CONNTYPE_PARTNERTM_PROPAGATE Acceptor States
	3.8.1.1.1 Idle
	3.8.1.1.2 Propagating
	3.8.1.1.3 Active
	3.8.1.1.4 Aborting
	3.8.1.1.5 Awaiting Registration Response
	3.8.1.1.6 Awaiting Phase Zero
	3.8.1.1.7 Awaiting Phase Zero Outcome
	3.8.1.1.8 Awaiting Registration Response During Phase Zero
	3.8.1.1.9 Awaiting Phase Zero Outcome with Outstanding Registration
	3.8.1.1.10 Preparing
	3.8.1.1.11 Prepared
	3.8.1.1.12 Committing
	3.8.1.1.13 Ended

	3.8.1.2 CONNTYPE_PARTNERTM_BRANCH Initiator States
	3.8.1.2.1 Idle
	3.8.1.2.2 Awaiting Branch Response
	3.8.1.2.3 Active
	3.8.1.2.4 Aborting
	3.8.1.2.5 Awaiting Registration Response
	3.8.1.2.6 Awaiting Phase Zero
	3.8.1.2.7 Awaiting Phase Zero Outcome
	3.8.1.2.8 Awaiting Registration Response During Phase Zero
	3.8.1.2.9 Awaiting Phase Zero Outcome with Outstanding Registration
	3.8.1.2.10 Preparing
	3.8.1.2.11 Prepared
	3.8.1.2.12 Committing
	3.8.1.2.13 Ended

	3.8.1.3 CONNTYPE_PARTNERTM_REDELIVERCOMMIT Acceptor States
	3.8.1.3.1 Idle
	3.8.1.3.2 Processing Commit Inquiry
	3.8.1.3.3 Ended

	3.8.1.4 CONNTYPE_PARTNERTM_CHECKABORT Initiator States
	3.8.1.4.1 Idle
	3.8.1.4.2 Awaiting Confirmation
	3.8.1.4.3 Waiting to ReRequest
	3.8.1.4.4 Ended

	3.8.2 Timers
	3.8.2.1 Check Abort Timer

	3.8.3 Initialization
	3.8.4 Higher-Layer Triggered Events
	3.8.5 Processing Events and Sequencing Rules
	3.8.5.1 Transaction Propagation and Coordination
	3.8.5.1.1 Push Propagation
	3.8.5.1.1.1 CONNTYPE_PARTNERTM_PROPAGATE as Acceptor
	3.8.5.1.1.1.1 Receiving a PARTNERTM_PROPAGATE_MTAG_PROPAGATE Message
	3.8.5.1.1.1.2 Receiving Other PARTNERTM_PROPAGATE_MTAG Messages
	3.8.5.1.1.1.3 Receiving a PARTNERTM_PROPAGATE_MTAG_PROTOCOL_ERROR Message
	3.8.5.1.1.1.4 CONTYPE_PARTNERTM_PROPAGATE Connection Disconnected

	3.8.5.1.2 Pull Propagation
	3.8.5.1.2.1 CONNTYPE_PARTNERTM_BRANCH as Initiator
	3.8.5.1.2.1.1 Receiving a PARTNERTM_BRANCH_MTAG_BRANCHED Message
	3.8.5.1.2.1.2 Receiving a PARTNERTM_BRANCH_MTAG_BRANCH_LOG_FULL, PARTNERTM_BRANCH_MTAG_BRANCH_NO_MEM, PARTNERTM_BRANCH_MTAG_BRANCH_TOO_LATE, PARTNERTM_BRANCH_MTAG_BRANCH_TOO_MANY, or PARTNERTM_BRANCH_MTAG_BRANCH_TX_NOT_FOUND Message
	3.8.5.1.2.1.3 Receiving a PARTNERTM_PROPAGATE_MTAG_PHASE0REGISTERED Message
	3.8.5.1.2.1.4 Receiving a PARTNERTM_PROPAGATE_MTAG_PHASE0REGISTRATIONREJECTED Message
	3.8.5.1.2.1.5 Receiving a PARTNERTM_PROPAGATE_MTAG_ABORTREQ Message
	3.8.5.1.2.1.6 Receiving a PARTNERTM_PROPAGATE_MTAG_PHASE0 Message
	3.8.5.1.2.1.7 Receiving a PARTNERTM_PROPAGATE_MTAG_PREPAREREQ Message
	3.8.5.1.2.1.8 Receiving a PARTNERTM_PROPAGATE_MTAG_COMMITREQ Message
	3.8.5.1.2.1.9 Receiving a PARTNERTM_PROPAGATE_MTAG_PROTOCOL_ERROR Message
	3.8.5.1.2.1.10 Connection Disconnected

	3.8.5.2 Transaction Recovery
	3.8.5.2.1 Subordinate-Driven Recovery
	3.8.5.2.1.1 CONNTYPE_PARTNERTM_CHECKABORT as Initiator
	3.8.5.2.1.1.1 Receiving a PARTNERTM_CHECKABORT_MTAG_ABORTED Message
	3.8.5.2.1.1.2 Receiving a PARTNERTM_CHECKABORT_MTAG_RETRY Message
	3.8.5.2.1.1.3 CONNTYPE_PARTNERTM_CHECKABORT Connection Disconnected

	3.8.5.2.2 Superior-Driven Recovery
	3.8.5.2.2.1 CONNTYPE_PARTNERTM_REDELIVERCOMMIT as Acceptor
	3.8.5.2.2.1.1 Receiving a PARTNERTM_REDELIVERCOMMIT_MTAG_COMMITREQ Message
	3.8.5.2.2.1.2 Connection Disconnected

	3.8.6 Timer Events
	3.8.6.1 Check Abort Timer

	3.8.7 Other Local Events
	3.8.7.1 Branch Transaction
	3.8.7.2 Cancel Check Abort
	3.8.7.3 Commit Complete
	3.8.7.4 Create Superior Enlistment Success
	3.8.7.5 Create Superior Enlistment Failure
	3.8.7.6 Phase Zero Complete
	3.8.7.7 Phase One Complete
	3.8.7.8 Recover In Doubt Transaction
	3.8.7.9 Register Phase Zero
	3.8.7.10 Rollback Complete
	3.8.7.11 Unilaterally Aborted

	4 Protocol Examples
	4.1 Simple Transaction Scenario
	4.1.1 Beginning a Transaction
	4.1.2 Completing a Transaction
	4.1.2.1 Committing the Transaction

	4.2 Transaction Marshaling Scenario (Pull Propagation)
	4.2.1 Marshaling the Transaction
	4.2.2 Unmarshaling the Transaction
	4.2.3 Branching the Transaction

	4.3 Transaction Marshaling Scenario (Push Propagation)
	4.3.1 Obtaining the Whereabouts of the Receiver's Transaction Manager
	4.3.2 Exporting the Transaction
	4.3.3 Propagating the Transaction
	4.3.4 Importing the Transaction

	4.4 Simple Enlistment Scenario
	4.4.1 Registering with the Transaction Manager as a Resource Manager
	4.4.2 Enlisting in an Existing Transaction
	4.4.3 Responding to Enlistment Notifications
	4.4.3.1 Responding to a Prepare Request Message
	4.4.3.2 Responding to a Commit Request Message

	4.5 Transaction Manager Two-Phase Commit Scenario
	4.5.1 Phase One
	4.5.1.1 Phase One - Subordinate Resource Managers
	4.5.1.2 Phase One - Subordinate Transaction Manager Facets
	4.5.1.3 Phase One - The Root Transaction Manager

	4.5.2 Phase Two
	4.5.2.1 Phase Two - Subordinate Resource Managers
	4.5.2.2 Phase Two - Subordinate Transaction Manager Facets
	4.5.2.3 Phase Two - The Root Transaction Manager

	4.6 Resource Manager Recovery Scenario
	4.6.1 Initializing the Recovery Process
	4.6.2 Reenlisting in In-Doubt Transactions
	4.6.3 Completing Recovery

	5 Security
	5.1 Security Considerations for Implementers
	5.2 Index of Security Parameters

	6 Appendix A: Product Behavior
	7 Change Tracking
	8 Index

