
1 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

[MS-DTCO]:

MSDTC Connection Manager: OleTx Transaction Protocol

Intellectual Property Rights Notice for Open Specifications Documentation

 Technical Documentation. Microsoft publishes Open Specifications documentation (“this
documentation”) for protocols, file formats, data portability, computer languages, and standards
support. Additionally, overview documents cover inter-protocol relationships and interactions.

 Copyrights. This documentation is covered by Microsoft copyrights. Regardless of any other
terms that are contained in the terms of use for the Microsoft website that hosts this
documentation, you can make copies of it in order to develop implementations of the technologies
that are described in this documentation and can distribute portions of it in your implementations

that use these technologies or in your documentation as necessary to properly document the
implementation. You can also distribute in your implementation, with or without modification, any
schemas, IDLs, or code samples that are included in the documentation. This permission also

applies to any documents that are referenced in the Open Specifications documentation.

 No Trade Secrets. Microsoft does not claim any trade secret rights in this documentation.

 Patents. Microsoft has patents that might cover your implementations of the technologies

described in the Open Specifications documentation. Neither this notice nor Microsoft's delivery of
this documentation grants any licenses under those patents or any other Microsoft patents.
However, a given Open Specifications document might be covered by the Microsoft Open
Specifications Promise or the Microsoft Community Promise. If you would prefer a written license,
or if the technologies described in this documentation are not covered by the Open Specifications
Promise or Community Promise, as applicable, patent licenses are available by contacting

iplg@microsoft.com.

 Trademarks. The names of companies and products contained in this documentation might be
covered by trademarks or similar intellectual property rights. This notice does not grant any
licenses under those rights. For a list of Microsoft trademarks, visit
www.microsoft.com/trademarks.

 Fictitious Names. The example companies, organizations, products, domain names, email
addresses, logos, people, places, and events that are depicted in this documentation are fictitious.

No association with any real company, organization, product, domain name, email address, logo,
person, place, or event is intended or should be inferred.

Reservation of Rights. All other rights are reserved, and this notice does not grant any rights other
than as specifically described above, whether by implication, estoppel, or otherwise.

Tools. The Open Specifications documentation does not require the use of Microsoft programming
tools or programming environments in order for you to develop an implementation. If you have access
to Microsoft programming tools and environments, you are free to take advantage of them. Certain

Open Specifications documents are intended for use in conjunction with publicly available standards

specifications and network programming art and, as such, assume that the reader either is familiar
with the aforementioned material or has immediate access to it.

http://go.microsoft.com/fwlink/?LinkId=214445
http://go.microsoft.com/fwlink/?LinkId=214445
http://go.microsoft.com/fwlink/?LinkId=214448
mailto:iplg@microsoft.com
http://www.microsoft.com/trademarks

2 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Revision Summary

Date
Revision
History

Revision
Class Comments

4/3/2007 0.01 New Version 0.01 release

7/3/2007 1.0 Major MLonghorn+90

7/20/2007 1.1 Minor Minor work due to other OleTx protocols shipping.

8/10/2007 1.1.1 Editorial Changed language and formatting in the technical content.

9/28/2007 1.2 Minor Clarified the meaning of the technical content.

10/23/2007 2.0 Major Updated and revised the technical content.

11/30/2007 2.1 Minor Clarified the meaning of the technical content.

1/25/2008 2.1.1 Editorial Changed language and formatting in the technical content.

3/14/2008 2.1.2 Editorial Changed language and formatting in the technical content.

5/16/2008 2.1.3 Editorial Changed language and formatting in the technical content.

6/20/2008 3.0 Major Updated and revised the technical content.

7/25/2008 3.1 Minor Clarified the meaning of the technical content.

8/29/2008 4.0 Major Updated and revised the technical content.

10/24/2008 4.1 Minor Clarified the meaning of the technical content.

12/5/2008 5.0 Major Updated and revised the technical content.

1/16/2009 6.0 Major Updated and revised the technical content.

2/27/2009 6.1 Minor Clarified the meaning of the technical content.

4/10/2009 7.0 Major Updated and revised the technical content.

5/22/2009 8.0 Major Updated and revised the technical content.

7/2/2009 9.0 Major Updated and revised the technical content.

8/14/2009 10.0 Major Updated and revised the technical content.

9/25/2009 11.0 Major Updated and revised the technical content.

11/6/2009 12.0 Major Updated and revised the technical content.

12/18/2009 13.0 Major Updated and revised the technical content.

1/29/2010 14.0 Major Updated and revised the technical content.

3/12/2010 15.0 Major Updated and revised the technical content.

4/23/2010 15.1 Minor Clarified the meaning of the technical content.

6/4/2010 16.0 Major Updated and revised the technical content.

7/16/2010 17.0 Major Updated and revised the technical content.

8/27/2010 18.0 Major Updated and revised the technical content.

3 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Date
Revision
History

Revision
Class Comments

10/8/2010 18.0 None
No changes to the meaning, language, or formatting of the
technical content.

11/19/2010 19.0 Major Updated and revised the technical content.

1/7/2011 20.0 Major Updated and revised the technical content.

2/11/2011 21.0 Major Updated and revised the technical content.

3/25/2011 22.0 Major Updated and revised the technical content.

5/6/2011 22.0 None
No changes to the meaning, language, or formatting of the
technical content.

6/17/2011 22.1 Minor Clarified the meaning of the technical content.

9/23/2011 22.1 None
No changes to the meaning, language, or formatting of the
technical content.

12/16/2011 23.0 Major Updated and revised the technical content.

3/30/2012 23.0 None
No changes to the meaning, language, or formatting of the
technical content.

7/12/2012 23.1 Minor Clarified the meaning of the technical content.

10/25/2012 23.1 None
No changes to the meaning, language, or formatting of the
technical content.

1/31/2013 23.1 None
No changes to the meaning, language, or formatting of the
technical content.

8/8/2013 23.2 Minor Clarified the meaning of the technical content.

11/14/2013 23.2 None
No changes to the meaning, language, or formatting of the
technical content.

2/13/2014 23.2 None
No changes to the meaning, language, or formatting of the
technical content.

5/15/2014 23.2 None
No changes to the meaning, language, or formatting of the

technical content.

6/30/2015 24.0 Major Significantly changed the technical content.

10/16/2015 24.0 None
No changes to the meaning, language, or formatting of the
technical content.

7/14/2016 24.0 None
No changes to the meaning, language, or formatting of the
technical content.

4 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Table of Contents

1 Introduction .. 26
1.1 Glossary ... 27
1.2 References .. 31

1.2.1 Normative References ... 32
1.2.2 Informative References ... 33

1.3 Overview .. 33
1.3.1 Transaction Lifetime .. 33

1.3.1.1 Phase Zero ... 34
1.3.1.2 Phase One.. 35
1.3.1.3 Phase Two ... 37

1.3.2 Additional Considerations ... 38
1.3.2.1 Unilateral Abort .. 39
1.3.2.2 Single-Phase Commit .. 39

1.3.3 Transaction Roles ... 40
1.3.3.1 Application Role .. 41
1.3.3.2 Resource Manager Role.. 42
1.3.3.3 Transaction Manager Role .. 42

1.3.3.3.1 Core Transaction Manager Facet .. 44
1.3.3.3.2 Transaction Manager Communication with an Application Facet 44
1.3.3.3.3 Transaction Manager Communication with a Resource Manager Facet 45
1.3.3.3.4 Superior Transaction Manager Facet .. 45
1.3.3.3.5 Subordinate Transaction Manager Facet ... 45

1.3.4 Transaction Recovery .. 45
1.3.4.1 Relationship Between Recovery and Durability .. 46
1.3.4.2 Resource Manager Recovery ... 46
1.3.4.3 Transaction Manager Recovery ... 47

1.3.5 Transaction Propagation .. 47
1.3.5.1 Pull Propagation .. 48
1.3.5.2 Push Propagation .. 49

1.4 Relationship to Other Protocols .. 50
1.5 Prerequisites/Preconditions ... 51
1.6 Applicability Statement ... 51
1.7 Versioning and Capability Negotiation ... 52

1.7.1 Versioning Mechanisms ... 52
1.7.2 Versioning Negotiation Mechanisms .. 52
1.7.3 Capability Negotiation Mechanisms ... 53

1.8 Vendor-Extensible Fields ... 53
1.9 Standards Assignments ... 54

2 Messages ... 55
2.1 Transport .. 55

2.1.1 Messages, Connections, and Sessions ... 55
2.1.2 MS-CMP and MS-CMPO Initialization .. 55

2.1.2.1 Computing a Security Level .. 56
2.1.2.2 Computing Protocol Version Values ... 56
2.1.2.3 Computing a Name Object ... 56

2.2 Message Syntax ... 56
2.2.1 Protocol Versioning ... 56

2.2.1.1 Protocol Version Numbers as a Versioning Mechanism 56
2.2.1.1.1 Version-Specific Aspects of Connection Types Relevant to an Application 57
2.2.1.1.2 Version-Specific Aspects of Connection Types Relevant to a Transaction

Manager ... 59
2.2.1.1.3 Version-Specific Aspects of Connection Types Relevant to a Resource

Manager ... 59
2.2.2 Structures with Fields Containing Version Numbers as Versioning Mechanism 59

5 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

2.2.3 Structures with a Format-Specifying Field as Versioning Mechanism 60
2.2.4 Common Structures .. 60

2.2.4.1 MESSAGE_PACKET .. 60
2.2.4.2 OLETX_TM_ADDR ... 61
2.2.4.3 OLETX_VARLEN_STRING .. 61

2.2.5 Transaction Propagation Structures ... 62
2.2.5.1 Associate_Msg_Version2 .. 62
2.2.5.2 Associate_Msg_Version3 .. 62
2.2.5.3 NAMEOBJECTBLOB .. 63
2.2.5.4 Propagation_Token ... 64
2.2.5.5 SDtcCmEndpointInfoV1 .. 65
2.2.5.6 SDtcCmEndpointInfoV2 .. 66
2.2.5.7 SOleTxInfoForTip .. 66
2.2.5.8 SExtendedEndpointInfo.. 67
2.2.5.9 STmToTmProtocol ... 67
2.2.5.10 STxInfo ... 68
2.2.5.11 SWhereabouts .. 69

2.2.6 Transaction Enumerations .. 70
2.2.6.1 Connection Types .. 70
2.2.6.2 TM_Protocol ... 72
2.2.6.3 TXUSER_ENLISTMENT_PREPAREREQDONE_RESPONSE 72
2.2.6.4 PARTNERTM_PROPAGATE_PREPAREREQDONE_RESPONSE 73
2.2.6.5 TXUSER_VOTER_VOTERREQDONE_RESPONSE .. 73
2.2.6.6 TRUN_TXBEGIN_ERRORS ... 73
2.2.6.7 TRUN_TXIMPORT_ERRORS ... 74
2.2.6.8 OLETX_ISOLATION_FLAGS ... 74
2.2.6.9 OLETX_ISOLATION_LEVEL ... 76

2.2.7 Transaction Constants ... 76
2.2.7.1 GRFRM .. 76
2.2.7.2 DTCADVCONFIG ... 76
2.2.7.3 DTCADVCONFIG_OPTIONS ... 76

2.2.8 Connection Types Relevant to Applications ... 79
2.2.8.1 Transaction Initiation and Completion .. 79

2.2.8.1.1 CONNTYPE_TXUSER_BEGINNER .. 79
2.2.8.1.1.1 TXUSER_BEGINNER_MTAG_ABORT .. 79
2.2.8.1.1.2 TXUSER_BEGINNER_MTAG_BEGIN ... 79
2.2.8.1.1.3 TXUSER_BEGINNER_MTAG_BEGIN_LOG_FULL............................... 80
2.2.8.1.1.4 TXUSER_BEGINNER_MTAG_BEGIN_NO_MEM 80
2.2.8.1.1.5 TXUSER_BEGINNER_MTAG_BEGUN .. 81
2.2.8.1.1.6 TXUSER_BEGINNER_MTAG_COMMIT .. 81
2.2.8.1.1.7 TXUSER_BEGINNER_MTAG_COMMIT_INDOUBT 82
2.2.8.1.1.8 TXUSER_BEGINNER_MTAG_COMMIT_TOO_LATE 82
2.2.8.1.1.9 TXUSER_BEGINNER_MTAG_REQUEST_COMPLETED 83

2.2.8.1.2 CONNTYPE_TXUSER_BEGIN2 .. 83
2.2.8.1.2.1 TXUSER_BEGIN2_MTAG_ABORT .. 83
2.2.8.1.2.2 TXUSER_BEGIN2_MTAG_BEGIN ... 83
2.2.8.1.2.3 TXUSER_BEGIN2_MTAG_COMMIT .. 84
2.2.8.1.2.4 TXUSER_BEGIN2_MTAG_SINK_BEGUN ... 85
2.2.8.1.2.5 TXUSER_BEGIN2_MTAG_SINK_ERROR ... 85
2.2.8.1.2.6 TXUSER_SETTXTIMEOUT_MTAG_REQUEST_COMPLETE 86
2.2.8.1.2.7 TXUSER_SETTXTIMEOUT_MTAG_SETTXTIMEOUT 86
2.2.8.1.2.8 TXUSER_SETTXTIMEOUT_MTAG_TOO_LATE 87

2.2.8.1.3 CONNTYPE_TXUSER_PROMOTE ... 87
2.2.8.1.3.1 TXUSER_BEGINNER_MTAG_PROMOTE .. 88

2.2.8.2 Transaction Propagation .. 89
2.2.8.2.1 Pull Propagation .. 89

2.2.8.2.1.1 CONNTYPE_TXUSER_ASSOCIATE ... 89
2.2.8.2.1.1.1 TXUSER_ASSOCIATE_MTAG_ASSOCIATE 89

6 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

2.2.8.2.1.1.2 TXUSER_ASSOCIATE_MTAG_ASSOCIATED 90
2.2.8.2.1.1.3 TXUSER_ASSOCIATE_MTAG_COMM_FAILED 90
2.2.8.2.1.1.4 TXUSER_ASSOCIATE_MTAG_CREATE_BAD_TMADDR 91
2.2.8.2.1.1.5 TXUSER_ASSOCIATE_MTAG_LOG_FULL_LOCAL 91
2.2.8.2.1.1.6 TXUSER_ASSOCIATE_MTAG_LOG_FULL_REMOTE 91
2.2.8.2.1.1.7 TXUSER_ASSOCIATE_MTAG_NO_MEM_LOCAL 92
2.2.8.2.1.1.8 TXUSER_ASSOCIATE_MTAG_NO_MEM_REMOTE 92
2.2.8.2.1.1.9 TXUSER_ASSOCIATE_MTAG_TOO_LATE 92
2.2.8.2.1.1.10 TXUSER_ASSOCIATE_MTAG_TOO_MANY_LOCAL 93
2.2.8.2.1.1.11 TXUSER_ASSOCIATE_MTAG_TOO_MANY_REMOTE 93
2.2.8.2.1.1.12 TXUSER_ASSOCIATE_MTAG_TX_NOT_FOUND 94

2.2.8.2.2 Push Propagation .. 94
2.2.8.2.2.1 CONNTYPE_TXUSER_EXTENDEDWHEREABOUTS 94

2.2.8.2.2.1.1 TXUSER_EXTENDEDWHEREABOUTS_MTAG_GET 94
2.2.8.2.2.1.2 TXUSER_EXTENDEDWHEREABOUTS_MTAG_GOT 95
2.2.8.2.2.1.3 TXUSER_EXTENDEDWHEREABOUTS_MTAG_NOMEM 95

2.2.8.2.2.2 CONNTYPE_TXUSER_EXPORT .. 96
2.2.8.2.2.2.1 TXUSER_EXPORT_MTAG_CREATE ... 96
2.2.8.2.2.2.2 TXUSER_EXPORT_MTAG_CREATE2 ... 96
2.2.8.2.2.2.3 TXUSER_EXPORT_MTAG_CREATE_BAD_TMADDR 97
2.2.8.2.2.2.4 TXUSER_EXPORT_MTAG_CREATE_NET_TX_DISABLED 97
2.2.8.2.2.2.5 TXUSER_EXPORT_MTAG_CREATED ... 98
2.2.8.2.2.2.6 TXUSER_EXPORT_MTAG_EXPORT ... 98
2.2.8.2.2.2.7 TXUSER_EXPORT_MTAG_EXPORT_LOG_FULL 99
2.2.8.2.2.2.8 TXUSER_EXPORT_MTAG_EXPORT_NO_MEM 99
2.2.8.2.2.2.9 TXUSER_EXPORT_MTAG_EXPORT_TOO_LATE 99
2.2.8.2.2.2.10 TXUSER_EXPORT_MTAG_EXPORT_TOO_MANY 100
2.2.8.2.2.2.11 TXUSER_EXPORT_MTAG_EXPORT_TX_NOT_FOUND 100
2.2.8.2.2.2.12 TXUSER_EXPORT_MTAG_EXPORTED 100

2.2.8.2.2.3 CONNTYPE_TXUSER_EXPORT2 ... 101
2.2.8.2.2.3.1 TXUSER_EXPORT_MTAG_EXPORT_COMM_FAILED 101

2.2.8.2.2.4 CONNTYPE_TXUSER_IMPORT ... 102
2.2.8.2.2.4.1 TXUSER_IMPORT_MTAG_ABORT ... 102
2.2.8.2.2.4.2 TXUSER_IMPORT_MTAG_ABORT_TOO_LATE 102
2.2.8.2.2.4.3 TXUSER_IMPORT_MTAG_IMPORT .. 103
2.2.8.2.2.4.4 TXUSER_IMPORT_MTAG_IMPORT_TX_NOT_FOUND 103
2.2.8.2.2.4.5 TXUSER_IMPORT_MTAG_IMPORTED 104
2.2.8.2.2.4.6 TXUSER_IMPORT_MTAG_REQUEST_COMPLETED 104

2.2.8.2.2.5 CONNTYPE_TXUSER_IMPORT2.. 105
2.2.8.2.2.5.1 TXUSER_IMPORT2_MTAG_ABORT .. 105
2.2.8.2.2.5.2 TXUSER_IMPORT2_MTAG_IMPORT .. 105
2.2.8.2.2.5.3 TXUSER_IMPORT2_MTAG_IMPORT_WITH_SET 106
2.2.8.2.2.5.4 TXUSER_IMPORT2_MTAG_SINK_ERROR 106
2.2.8.2.2.5.5 TXUSER_IMPORT2_MTAG_SINK_IMPORTED 107

2.2.8.3 Transaction Administration .. 107
2.2.8.3.1 CONNTYPE_TXUSER_GETTXDETAILS .. 107

2.2.8.3.1.1 TXUSER_GETTXDETAILS_MTAG_GET ... 108
2.2.8.3.1.2 TXUSER_GETTXDETAILS_MTAG_GOTIT 108
2.2.8.3.1.3 TXUSER_GETTXDETAILS_MTAG_TX_NOT_FOUND 109

2.2.8.3.2 CONNTYPE_TXUSER_RESOLVE ... 110
2.2.8.3.2.1 TXUSER_RESOLVE_MTAG_ACCESSDENIED 110
2.2.8.3.2.2 TXUSER_RESOLVE_MTAG_CHILD_ABORT 110
2.2.8.3.2.3 TXUSER_RESOLVE_MTAG_CHILD_COMMIT 111
2.2.8.3.2.4 TXUSER_RESOLVE_MTAG_CHILD_NOT_PREPARED 111
2.2.8.3.2.5 TXUSER_RESOLVE_MTAG_FORGET_COMMITTED 112
2.2.8.3.2.6 TXUSER_RESOLVE_MTAG_FORGET_TX_NOT_COMMITTED 112
2.2.8.3.2.7 TXUSER_RESOLVE_MTAG_REQUEST_COMPLETE 113
2.2.8.3.2.8 TXUSER_RESOLVE_MTAG_NOT_CHILD .. 113

7 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

2.2.8.3.2.9 TXUSER_RESOLVE_MTAG_TX_NOT_FOUND 113
2.2.8.3.3 CONNTYPE_TXUSER_SETTXTIMEOUT .. 114

2.2.8.3.3.1 TXUSER_SETTXTIMEOUT_MTAG_TX_NOT_FOUND 114
2.2.8.3.4 CONNTYPE_TXUSER_SETTXTIMEOUT2 .. 114
2.2.8.3.5 CONNTYPE_TXUSER_TRACE ... 114

2.2.8.3.5.1 TXUSER_TRACE_MTAG_DUMP_TRANSACTION 115
2.2.8.3.5.2 TXUSER_TRACE_MTAG_REQUEST_COMPLETE 115
2.2.8.3.5.3 TXUSER_TRACE_MTAG_REQUEST_FAILED 115
2.2.8.3.5.4 TXUSER_TRACE_MTAG_TX_NOT_FOUND 116

2.2.8.4 Transaction Manager Administration ... 116
2.2.8.4.1 CONNTYPE_TXUSER_GETSECURITYFLAGS ... 116

2.2.8.4.1.1 TXUSER_GETSECURITYFLAGS_MTAG_FETCHED 116
2.2.8.4.1.2 TXUSER_GETSECURITYFLAGS_MTAG_GETSECURITYFLAGS 117

2.2.9 Connection Types Relevant to Transaction Managers 117
2.2.9.1 Transaction Propagation and Coordination ... 117

2.2.9.1.1 Push Propagation ... 117
2.2.9.1.1.1 CONNTYPE_PARTNERTM_PROPAGATE .. 118

2.2.9.1.1.1.1 PARTNERTM_PROPAGATE_MTAG_PROPAGATE......................... 118
2.2.9.1.1.1.2 PARTNERTM_PROPAGATE_MTAG_PROPAGATED 118
2.2.9.1.1.1.3 PARTNERTM_PROPAGATE_MTAG_DUPLICATE 119
2.2.9.1.1.1.4 PARTNERTM_PROPAGATE_MTAG_NO_MEM 119
2.2.9.1.1.1.5 PARTNERTM_PROPAGATE_MTAG_LOG_FULL 120
2.2.9.1.1.1.6 PARTNERTM_PROPAGATE_MTAG_PREPAREREQ 120
2.2.9.1.1.1.7 PARTNERTM_PROPAGATE_MTAG_PREPAREREQDONE 120
2.2.9.1.1.1.8 PARTNERTM_PROPAGATE_MTAG_PROTOCOL_ERROR 121
2.2.9.1.1.1.9 PARTNERTM_PROPAGATE_MTAG_COMMITREQ 121
2.2.9.1.1.1.10 PARTNERTM_PROPAGATE_MTAG_COMMITREQDONE 122
2.2.9.1.1.1.11 PARTNERTM_PROPAGATE_MTAG_ABORTREQ 122
2.2.9.1.1.1.12 PARTNERTM_PROPAGATE_MTAG_ABORTREQDONE 123
2.2.9.1.1.1.13 PARTNERTM_PROPAGATE_MTAG_ABORTNOTIFY 123
2.2.9.1.1.1.14 PARTNERTM_PROPAGATE_MTAG_PHASE0REGISTER 123
2.2.9.1.1.1.15 PARTNERTM_PROPAGATE_MTAG_PHASE0REGISTERED 124
2.2.9.1.1.1.16 PARTNERTM_PROPAGATE_MTAG_PHASE0REGISTRATIONREJECTED

 124
2.2.9.1.1.1.17 PARTNERTM_PROPAGATE_MTAG_PHASE0 124
2.2.9.1.1.1.18 PARTNERTM_PROPAGATE_MTAG_PHASE0COMPLETE 125

2.2.9.1.2 Pull Propagation ... 125
2.2.9.1.2.1 CONNTYPE_PARTNERTM_BRANCH ... 125

2.2.9.1.2.1.1 PARTNERTM_BRANCH_MTAG_BRANCH_LOG_FULL 125
2.2.9.1.2.1.2 PARTNERTM_BRANCH_MTAG_BRANCH_NO_MEM 126
2.2.9.1.2.1.3 PARTNERTM_BRANCH_MTAG_BRANCH_TOO_LATE 126
2.2.9.1.2.1.4 PARTNERTM_BRANCH_MTAG_BRANCH_TOO_MANY 127
2.2.9.1.2.1.5 PARTNERTM_BRANCH_MTAG_BRANCH_TX_NOT_FOUND 127
2.2.9.1.2.1.6 PARTNERTM_BRANCH_MTAG_BRANCHED 127
2.2.9.1.2.1.7 PARTNERTM_BRANCH_MTAG_BRANCHING 128

2.2.9.2 Transaction Recovery ... 128
2.2.9.2.1 Subordinate-Driven .. 128

2.2.9.2.1.1 CONNTYPE_PARTNERTM_CHECKABORT 128
2.2.9.2.1.1.1 PARTNERTM_CHECKABORT_MTAG_CHECK 128
2.2.9.2.1.1.2 PARTNERTM_CHECKABORT_MTAG_ABORTED 129
2.2.9.2.1.1.3 PARTNERTM_CHECKABORT_MTAG_RETRY 129

2.2.9.2.2 Superior-Driven ... 130
2.2.9.2.2.1 CONNTYPE_PARTNERTM_REDELIVERCOMMIT 130

2.2.9.2.2.1.1 PARTNERTM_REDELIVERCOMMIT_MTAG_COMMITREQ 130
2.2.9.2.2.1.2 PARTNERTM_REDELIVERCOMMIT_MTAG_COMMITREQDONE 130
2.2.9.2.2.1.3 PARTNERTM_REDELIVERCOMMIT_MTAG_RETRY 131

2.2.10 Connection Types Relevant to Resource Managers ... 131
2.2.10.1 Resource Manager Registration .. 131

8 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

2.2.10.1.1 CONNTYPE_TXUSER_RESOURCEMANAGER .. 131
2.2.10.1.1.1 TXUSER_RESOURCEMANAGER_MTAG_CREATE 131
2.2.10.1.1.2 TXUSER_RESOURCEMANAGER_MTAG_DUPLICATE 132
2.2.10.1.1.3 TXUSER_RESOURCEMANAGER_MTAG_REENLISTMENTCOMPLETE ... 132
2.2.10.1.1.4 TXUSER_RESOURCEMANAGER_MTAG_REQUEST_COMPLETE 133

2.2.10.1.2 CONNTYPE_TXUSER_RESOURCEMANAGERINTERNAL 133
2.2.10.1.2.1 TXUSER_RESOURCEMANAGERINTERNAL_MTAG_DUPLICATEDETECTED

 .. 133
2.2.10.2 Transaction Coordination .. 134

2.2.10.2.1 CONNTYPE_TXUSER_PHASE0 ... 134
2.2.10.2.1.1 TXUSER_PHASE0_MTAG_CREATE ... 134
2.2.10.2.1.2 TXUSER_PHASE0_MTAG_CREATE_TOO_LATE 135
2.2.10.2.1.3 TXUSER_PHASE0_MTAG_CREATE_TX_NOT_FOUND 135
2.2.10.2.1.4 TXUSER_PHASE0_MTAG_CREATED ... 135
2.2.10.2.1.5 TXUSER_PHASE0_MTAG_PHASE0REQ ... 136
2.2.10.2.1.6 TXUSER_PHASE0_MTAG_PHASE0REQ_ABORT 136
2.2.10.2.1.7 TXUSER_PHASE0_MTAG_PHASE0REQDONE 136
2.2.10.2.1.8 TXUSER_PHASE0_MTAG_UNENLIST .. 137

2.2.10.2.2 CONNTYPE_TXUSER_ENLISTMENT .. 137
2.2.10.2.2.1 TXUSER_ENLISTMENT_MTAG_ABORTREQ 137
2.2.10.2.2.2 TXUSER_ENLISTMENT_MTAG_ABORTREQDONE 138
2.2.10.2.2.3 TXUSER_ENLISTMENT_MTAG_COMMITREQ 138
2.2.10.2.2.4 TXUSER_ENLISTMENT_MTAG_COMMITREQDONE 138
2.2.10.2.2.5 TXUSER_ENLISTMENT_MTAG_ENLIST ... 139
2.2.10.2.2.6 TXUSER_ENLISTMENT_MTAG_ENLIST_LOG_FULL 140
2.2.10.2.2.7 TXUSER_ENLISTMENT_MTAG_ENLIST_TOO_LATE 140
2.2.10.2.2.8 TXUSER_ENLISTMENT_MTAG_ENLIST_TOO_MANY 140
2.2.10.2.2.9 TXUSER_ENLISTMENT_MTAG_ENLIST_TX_NOT_FOUND 141
2.2.10.2.2.10 TXUSER_ENLISTMENT_MTAG_ENLISTED 141
2.2.10.2.2.11 TXUSER_ENLISTMENT_MTAG_PREPAREREQ 142
2.2.10.2.2.12 TXUSER_ENLISTMENT_MTAG_PREPAREREQDONE 142

2.2.10.3 Transaction Recovery ... 143
2.2.10.3.1 CONNTYPE_TXUSER_REENLIST .. 143

2.2.10.3.1.1 TXUSER_REENLIST_MTAG_REENLIST .. 143
2.2.10.3.1.2 TXUSER_REENLIST_MTAG_REENLIST_ABORTED........................... 144
2.2.10.3.1.3 TXUSER_REENLIST_MTAG_REENLIST_COMMITTED 144
2.2.10.3.1.4 TXUSER_REENLIST_MTAG_REENLIST_TIMEOUT 144

2.2.10.4 Voting .. 145
2.2.10.4.1 CONNTYPE_TXUSER_VOTER .. 145

2.2.10.4.1.1 TXUSER_STATUS_MTAG_ABORTED ... 145
2.2.10.4.1.2 TXUSER_STATUS_MTAG_COMMITTED ... 145
2.2.10.4.1.3 TXUSER_STATUS_MTAG_INDOUBT ... 146
2.2.10.4.1.4 TXUSER_VOTER_MTAG_CREATE ... 146
2.2.10.4.1.5 TXUSER_VOTER_MTAG_CREATE_TOO_LATE................................. 147
2.2.10.4.1.6 TXUSER_VOTER_MTAG_CREATE_TX_NOT_FOUND 147
2.2.10.4.1.7 TXUSER_VOTER_MTAG_CREATED ... 147
2.2.10.4.1.8 TXUSER_VOTER_MTAG_VOTEREQ ... 148
2.2.10.4.1.9 TXUSER_VOTER_MTAG_VOTEREQDONE 148

3 Protocol Details ... 150
3.1 Common Details ... 150

3.1.1 Abstract Data Model ... 150
3.1.1.1 Converting a Name Object to an OLETX_TM_ADDR Structure 151
3.1.1.2 Converting an OLETX_TM_ADDR Structure to a Name Object 151
3.1.1.3 Converting a Name Object to a NAMEOBJECTBLOB Structure 152
3.1.1.4 Converting a NAMEOBJECTBLOB Structure to a Name Object..................... 152

3.1.2 Timers ... 152
3.1.3 Initialization .. 152

9 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

3.1.3.1 Enlistment Object Initialization .. 153
3.1.4 Protocol Versioning Details .. 153

3.1.4.1 Supporting a Protocol Version .. 153
3.1.4.2 Negotiating a Common Protocol Version .. 153
3.1.4.3 Using the Negotiated Protocol Version .. 154

3.1.5 Higher-Layer Triggered Events .. 154
3.1.6 Processing Events and Sequencing Rules .. 154
3.1.7 Timer Events ... 155
3.1.8 Other Local Events ... 155

3.1.8.1 Initiate Connection ... 155
3.1.8.2 Disconnect Connection .. 155
3.1.8.3 Connection Disconnected .. 156
3.1.8.4 Receiving a Message .. 156

3.2 Core Transaction Manager Facet Details ... 156
3.2.1 Abstract Data Model ... 156

3.2.1.1 Versioning ... 159
3.2.1.2 Transaction Logging ... 160
3.2.1.3 Transaction States ... 160

3.2.1.3.1 Idle .. 162
3.2.1.3.2 Active ... 162
3.2.1.3.3 Phase Zero .. 163
3.2.1.3.4 Phase Zero Complete .. 163
3.2.1.3.5 Voting ... 164
3.2.1.3.6 Voting Complete ... 164
3.2.1.3.7 Phase One ... 164
3.2.1.3.8 Phase One Complete ... 165
3.2.1.3.9 Single Phase Commit .. 165
3.2.1.3.10 Committing.. 165
3.2.1.3.11 Aborting .. 165
3.2.1.3.12 In Doubt ... 165
3.2.1.3.13 Failed to Notify ... 166
3.2.1.3.14 Ended ... 166

3.2.1.4 Transaction Manager Facets .. 166
3.2.1.5 Protocol Extension Objects .. 166

3.2.2 Timers ... 167
3.2.2.1 Transaction Timeout Timer .. 167

3.2.3 Initialization .. 168
3.2.3.1 Transaction Object Initialization ... 169
3.2.3.2 Durable Log .. 170
3.2.3.3 Transaction Recovery ... 170

3.2.4 Higher-Layer Triggered Events .. 170
3.2.5 Processing Events and Sequencing Rules .. 171
3.2.6 Timer Events ... 171

3.2.6.1 Transaction Timeout Timer .. 171
3.2.7 Other Local Events ... 171

3.2.7.1 Associate Transaction ... 171
3.2.7.2 Begin Commit .. 172
3.2.7.3 Begin In Doubt .. 173
3.2.7.4 Begin Phase One .. 173
3.2.7.5 Begin Phase Zero ... 173
3.2.7.6 Begin Rollback ... 174
3.2.7.7 Begin Voting .. 174
3.2.7.8 Branch Transaction Failure .. 175
3.2.7.9 Branch Transaction Success .. 175
3.2.7.10 Create Phase Zero Enlistment .. 175
3.2.7.11 Create Subordinate Enlistment .. 176
3.2.7.12 Create Superior Enlistment ... 177
3.2.7.13 Create Transaction ... 178

10 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

3.2.7.14 Create Voter Enlistment .. 179
3.2.7.15 Enlistment Commit Complete .. 179
3.2.7.16 Enlistment Phase One Complete ... 180
3.2.7.17 Enlistment Phase Zero Complete .. 181
3.2.7.18 Enlistment Rollback Complete .. 182
3.2.7.19 Enlistment Unilaterally Aborted .. 183
3.2.7.20 Enlistment Vote Complete ... 184
3.2.7.21 Export Transaction ... 185
3.2.7.22 Forget Transaction ... 186
3.2.7.23 Notify Aborted ... 186
3.2.7.24 Notify Recovered Transaction Committed .. 187
3.2.7.25 Phase One Completed ... 187
3.2.7.26 Propagate Transaction Failure .. 188
3.2.7.27 Propagate Transaction Success .. 188
3.2.7.28 Register Phase Zero Failure ... 189
3.2.7.29 Register Phase Zero Success ... 189
3.2.7.30 Resolve Transaction ... 190
3.2.7.31 Set Transaction Attributes ... 191
3.2.7.32 Set Transaction Timeout ... 191
3.2.7.33 Request Transaction Outcome ... 192
3.2.7.34 Unenlist Phase Zero Enlistment .. 192
3.2.7.35 Voting Complete .. 193

3.3 Application Details ... 194
3.3.1 Abstract Data Model ... 194

3.3.1.1 CONNTYPE_TXUSER_BEGINNER Initiator States 194
3.3.1.1.1 Idle .. 195
3.3.1.1.2 Awaiting Begin Response ... 196
3.3.1.1.3 Processing Transaction .. 196
3.3.1.1.4 Awaiting Commit Response .. 196
3.3.1.1.5 Awaiting Abort Response ... 196
3.3.1.1.6 Ended ... 196

3.3.1.2 CONNTYPE_TXUSER_BEGIN2 Initiator States ... 196
3.3.1.2.1 Idle .. 197
3.3.1.2.2 Awaiting Begin Response ... 197
3.3.1.2.3 Processing Transaction .. 197
3.3.1.2.4 Awaiting Set Timeout Response.. 198
3.3.1.2.5 Awaiting Commit Response .. 198
3.3.1.2.6 Awaiting Abort Response ... 198
3.3.1.2.7 Ended ... 198

3.3.1.3 CONNTYPE_TXUSER_PROMOTE Initiator States .. 198
3.3.1.3.1 Idle .. 199
3.3.1.3.2 Awaiting Promote Response ... 199
3.3.1.3.3 Processing Transaction .. 199
3.3.1.3.4 Awaiting Set Timeout Response.. 200
3.3.1.3.5 Awaiting Commit Response .. 200
3.3.1.3.6 Awaiting Abort Response ... 200
3.3.1.3.7 Ended ... 200

3.3.1.4 CONNTYPE_TXUSER_ASSOCIATE Initiator States 200
3.3.1.4.1 Idle .. 201
3.3.1.4.2 Awaiting Associate Response ... 201
3.3.1.4.3 Active ... 201
3.3.1.4.4 Ended ... 201

3.3.1.5 CONNTYPE_TXUSER_EXTENDWHEREABOUTS Initiator States 202
3.3.1.5.1 Idle .. 202
3.3.1.5.2 Awaiting Get Response .. 203
3.3.1.5.3 Ended ... 203

3.3.1.6 CONNTYPE_TXUSER_IMPORT Initiator States .. 203
3.3.1.6.1 Idle .. 204

11 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

3.3.1.6.2 Awaiting Import Response ... 204
3.3.1.6.3 Transaction Import Successful ... 204
3.3.1.6.4 Awaiting Abort Response ... 205
3.3.1.6.5 Ended ... 205

3.3.1.7 CONNTYPE_TXUSER_IMPORT2 Initiator States ... 205
3.3.1.7.1 Idle .. 206
3.3.1.7.2 Awaiting Import Response ... 206
3.3.1.7.3 Transaction Import Successful ... 206
3.3.1.7.4 Awaiting Abort Response ... 207
3.3.1.7.5 Ended ... 207

3.3.1.8 CONNTYPE_TXUSER_EXPORT Initiator States .. 207
3.3.1.8.1 Idle .. 208
3.3.1.8.2 Awaiting Create Response ... 208
3.3.1.8.3 Connection Active ... 208
3.3.1.8.4 Awaiting Export Response ... 209
3.3.1.8.5 Ended ... 209

3.3.1.9 CONNTYPE_TXUSER_EXPORT2 Initiator States .. 209
3.3.1.9.1 Idle .. 210
3.3.1.9.2 Awaiting Create Response ... 210
3.3.1.9.3 Connection Active ... 210
3.3.1.9.4 Awaiting Export Response ... 210
3.3.1.9.5 Ended ... 211

3.3.1.10 CONNTYPE_TXUSER_GETTXDETAILS Initiator States 211
3.3.1.10.1 Idle .. 212
3.3.1.10.2 Awaiting Response.. 212
3.3.1.10.3 Ended ... 212

3.3.1.11 CONNTYPE_TXUSER_RESOLVE Initiator States .. 213
3.3.1.11.1 Idle .. 214
3.3.1.11.2 Awaiting Abort Response ... 214
3.3.1.11.3 Awaiting Forget Response .. 215
3.3.1.11.4 Awaiting Commit Response .. 215
3.3.1.11.5 Ended ... 215

3.3.1.12 CONNTYPE_TXUSER_SETTXTIMEOUT Initiator States 215
3.3.1.12.1 Idle .. 216
3.3.1.12.2 Awaiting Set Timeout Response.. 216
3.3.1.12.3 Ended ... 216

3.3.1.13 CONNTYPE_TXUSER_SETTXTIMEOUT2 Initiator States 217
3.3.1.13.1 Idle .. 217
3.3.1.13.2 Awaiting Set Timeout Response.. 217
3.3.1.13.3 Ended ... 218

3.3.1.14 CONNTYPE_TXUSER_TRACE Initiator States .. 218
3.3.1.14.1 Idle .. 219
3.3.1.14.2 Awaiting Trace Response ... 219
3.3.1.14.3 Ended ... 219

3.3.1.15 CONNTYPE_TXUSER_GETSECURITYFLAGS Initiator States 220
3.3.1.15.1 Idle .. 221
3.3.1.15.2 Awaiting Get Response .. 221
3.3.1.15.3 Ended ... 221

3.3.2 Timers ... 221
3.3.3 Initialization .. 221
3.3.4 Higher-Layer Triggered Events .. 221

3.3.4.1 Beginning a Transaction .. 222
3.3.4.1.1 Beginning a Transaction Using CONNTYPE_TXUSER_BEGIN2 222
3.3.4.1.2 Beginning a Transaction Using CONNTYPE_TXUSER_BEGINNER 222
3.3.4.1.3 Beginning a Transaction Using CONNTYPE_TXUSER_PROMOTE 223

3.3.4.2 Changing a Transaction Timeout .. 223
3.3.4.2.1 Changing a Transaction Timeout Using CONNTYPE_TXUSER_SETTXTIMEOUT

 .. 223

12 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

3.3.4.2.2 Querying Transaction Manager's Support for Modifying a Transaction
Timeout Using CONNTYPE_TXUSER_SETTXTIMEOUT2 224

3.3.4.3 Obtaining a Propagation Token for a Transaction...................................... 225
3.3.4.4 Creating an Export Connection... 225
3.3.4.5 Generating Trace Records for a Transaction Using CONNTYPE_TXUSER_TRACE

 ... 227
3.3.4.6 Importing a Transaction .. 227

3.3.4.6.1 Importing a Transaction Using CONNTYPE_TXUSER_IMPORT................ 227
3.3.4.6.2 Importing a Transaction Using CONNTYPE_TXUSER_IMPORT2 228

3.3.4.7 Importing a Transaction with Additional Transaction Attributes 228
3.3.4.8 Initiating Transaction Commit .. 229

3.3.4.8.1 Commit a Transaction Using CONNTYPE_TXUSER_BEGIN2 229
3.3.4.8.2 Commit a Transaction Using CONNTYPE_TXUSER_BEGINNER 229
3.3.4.8.3 Commit a Transaction Using CONNTYPE_TXUSER_PROMOTE 230

3.3.4.9 Initiating Transaction Rollback ... 230
3.3.4.9.1 Abort a Transaction Using CONNTYPE_TXUSER_BEGIN2 231
3.3.4.9.2 Abort a Transaction Using CONNTYPE_TXUSER_BEGINNER 231
3.3.4.9.3 Abort a Transaction Using CONNTYPE_TXUSER_IMPORT 231
3.3.4.9.4 Abort a Transaction Using CONNTYPE_TXUSER_IMPORT2 231
3.3.4.9.5 Roll Back a Transaction Using CONNTYPE_TXUSER_PROMOTE 232

3.3.4.10 Obtaining Extended Whereabouts Using
CONNTYPE_TXUSER_EXTENDEDWHEREABOUTS 232

3.3.4.11 Obtaining the Security Configuration of the Transaction Manager Using
CONNTYPE_TXUSER_GETSECURITYFLAGS .. 232

3.3.4.11.1 Obtaining the Details for a Transaction .. 232
3.3.4.12 Pulling a Transaction .. 233
3.3.4.13 Push a Transaction Using an Existing Export Connection 234
3.3.4.14 Obtaining a Transaction Cookie Using an Existing Export Connection 234
3.3.4.15 Resolving a Transaction .. 234

3.3.5 Processing Events and Sequencing Rules .. 235
3.3.5.1 Transaction Initiation and Completion ... 235

3.3.5.1.1 CONNTYPE_TXUSER_BEGINNER as Initiator 235
3.3.5.1.1.1 Receiving a TXUSER_BEGINNER_MTAG_BEGUN Message 235
3.3.5.1.1.2 Receiving a TXUSER_BEGINNER_MTAG_BEGIN_NO_MEM or

TXUSER_BEGINNER_MTAG _BEGIN_LOG_FULL Message................ 236
3.3.5.1.1.3 Receiving a TXUSER_BEGINNER_MTAG_REQUEST_COMPLETED Message

 .. 236
3.3.5.1.1.4 Receiving a TXUSER_BEGINNER_MTAG_COMMIT_TOO_LATE Message

 .. 236
3.3.5.1.1.5 Receiving a TXUSER_BEGINNER_MTAG_COMMIT_INDOUBT Message237
3.3.5.1.1.6 Connection Disconnected ... 237

3.3.5.1.2 CONNTYPE_TXUSER_BEGIN2 as Initiator ... 237
3.3.5.1.2.1 Receiving a TXUSER_BEGIN2_MTAG_SINK_BEGUN Message 237
3.3.5.1.2.2 Receiving a TXUSER_SETTXTIMEOUT_MTAG_REQUEST_COMPLETE

Message .. 238
3.3.5.1.2.3 Receiving a TXUSER_SETTXTIMEOUT_MTAG_TOO_LATE Message ... 238
3.3.5.1.2.4 Receiving a TXUSER_SETTXTIMEOUT_MTAG_TX_NOT_FOUND Message

 .. 238
3.3.5.1.2.5 Receiving a TXUSER_BEGIN2_MTAG_SINK_ERROR Message 238
3.3.5.1.2.6 Connection Disconnected ... 239

3.3.5.1.3 CONNTYPE_TXUSER_PROMOTE as Initiator .. 240
3.3.5.1.3.1 Receiving a TXUSER_BEGIN2_MTAG_SINK_BEGUN Message 240
3.3.5.1.3.2 Receiving a TXUSER_BEGIN2_MTAG_SINK_ERROR Message 240

3.3.5.2 Transaction Propagation ... 241
3.3.5.2.1 Pull Propagation ... 241

3.3.5.2.1.1 CONNTYPE_TXUSER_ASSOCIATE as Initiator 241
3.3.5.2.1.1.1 Receiving a TXUSER_ASSOCIATE_MTAG_ASSOCIATED Message241
3.3.5.2.1.1.2 Receiving Other TXUSER_ASSOCIATE_MTAG Messages 241

13 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

3.3.5.2.1.1.3 Receiving a TXUSER_IMPORT2_MTAG_SINK_ERROR Message ... 242
3.3.5.2.1.1.4 Connection Disconnected .. 242

3.3.5.2.2 Push Propagation ... 242
3.3.5.2.2.1 CONNTYPE_TXUSER_EXTENDEDWHEREABOUTS as Initiator 242

3.3.5.2.2.1.1 Receiving a TXUSER_EXTENDEDWHEREABOUTS_MTAG_GOT
Message ... 242

3.3.5.2.2.1.2 Receiving a TXUSER_EXTENDEDWHEREABOUTS_MTAG_NOMEM
Message ... 243

3.3.5.2.2.1.3 CONNTYPE_TXUSER_EXTENDEDWHEREABOUTS Connection
Disconnected .. 243

3.3.5.2.2.2 CONNTYPE_TXUSER_EXPORT as Initiator 243
3.3.5.2.2.2.1 Receiving a TXUSER_EXPORT_MTAG_CREATED Message 243
3.3.5.2.2.2.2 Receiving a TXUSER_EXPORT_MTAG_CREATE_BAD_TMADDR or

TXUSER_EXPORT_MTAG_CREATE_NET_TX_DISABLED Message 243
3.3.5.2.2.2.3 Receiving a TXUSER_EXPORT_MTAG_EXPORTED Message 243
3.3.5.2.2.2.4 Receiving a TXUSER_EXPORT_MTAG_EXPORT_LOG_FULL,

TXUSER_EXPORT_MTAG_EXPORT_NO_MEM,

TXUSER_EXPORT_MTAG_EXPORT_TOO_LATE,

TXUSER_EXPORT_MTAG_EXPORT_TOO_MANY, or
TXUSER_EXPORT_MTAG_EXPORT_NOT_FOUND Message 244

3.3.5.2.2.2.5 CONNTYPE_TXUSER_EXPORT Connection Disconnected 244
3.3.5.2.2.3 CONNTYPE_TXUSER_EXPORT2 as Initiator 244

3.3.5.2.2.3.1 Receiving a TXUSER_EXPORT_MTAG_CREATED Message 244
3.3.5.2.2.3.2 Receiving a TXUSER_EXPORT_MTAG_CREATE_BAD_TMADDR or

TXUSER_EXPORT_MTAG_CREATE_NET_TX_DISABLED Message 245
3.3.5.2.2.3.3 Receiving a TXUSER_EXPORT_MTAG_EXPORTED Message 245
3.3.5.2.2.3.4 Receiving a TXUSER_EXPORT_MTAG_EXPORT_LOG_FULL,

TXUSER_EXPORT_MTAG_EXPORT_NO_MEM,
TXUSER_EXPORT_MTAG_EXPORT_TOO_LATE,
TXUSER_EXPORT_MTAG_EXPORT_TOO_MANY,
TXUSER_EXPORT_MTAG_EXPORT_NOT_FOUND, or

TXUSER_EXPORT_MTAG_EXPORT_COMM_FAILED Message 245
3.3.5.2.2.3.5 CONNTYPE_TXUSER_EXPORT2 Connection Disconnected 245

3.3.5.2.2.4 CONNTYPE_TXUSER_IMPORT as Initiator 245
3.3.5.2.2.4.1 Receiving a TXUSER_IMPORT_MTAG_IMPORTED Message 245
3.3.5.2.2.4.2 Receiving a TXUSER_IMPORT_MTAG_IMPORT_TX_NOT_FOUND

Message ... 245
3.3.5.2.2.4.3 Receiving a TXUSER_IMPORT_MTAG_ABORT_TOO_LATE Message.

 246
3.3.5.2.2.4.4 Receiving a TXUSER_IMPORT_MTAG_REQUEST_COMPLETED

Message ... 246
3.3.5.2.2.4.5 Connection Disconnected .. 246

3.3.5.2.2.5 CONNTYPE_TXUSER_IMPORT2 as Initiator 246
3.3.5.2.2.5.1 Receiving a TXUSER_IMPORT2_MTAG_SINK_IMPORTED Message

 246
3.3.5.2.2.5.2 Receiving a TXUSER_IMPORT2_MTAG_SINK_ERROR Message ... 247
3.3.5.2.2.5.3 CONNTYPE_TXUSER_IMPORT2 Connection Disconnected 247

3.3.5.3 Transaction Administration .. 248
3.3.5.3.1 CONNTYPE_TXUSER_GETTXDETAILS as Initiator 248

3.3.5.3.1.1 Receiving a TXUSER_GETTXDETAILS_MTAG_GOTIT Message 248
3.3.5.3.1.2 Receiving a TXUSER_GETTXDETAILS_MTAG_TX_NOT_FOUND Message

 .. 248
3.3.5.3.1.3 CONNTYPE_TXUSER_GETTXDETAILS Connection Disconnected 248

3.3.5.3.2 CONNTYPE_TXUSER_RESOLVE as Initiator ... 248
3.3.5.3.2.1 Receiving a TXUSER_RESOLVE_MTAG_REQUEST_COMPLETE Message

 .. 249
3.3.5.3.2.2 Receiving a TXUSER_RESOLVE_MTAG_ACCESSDENIED or

TXUSER_RESOLVE_MTAG_TX_NOT_FOUND Message 249

14 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

3.3.5.3.2.3 Receiving a TXUSER_RESOLVE_MTAG_CHILD_NOT_PREPARED or
TXUSER_RESOLVE_MTAG_NOT_CHILD Message 249

3.3.5.3.2.4 Receiving a TXUSER_RESOLVE_MTAG_FORGET_TX_NOT_COMMITTED
Message .. 249

3.3.5.3.2.5 Connection Disconnected ... 250
3.3.5.3.3 CONNTYPE_TXUSER_SETTXTIMEOUT as Initiator 250

3.3.5.3.3.1 Receiving a TXUSER_SETTXTIMEOUT_MTAG_REQUEST_COMPLETE
Message .. 250

3.3.5.3.3.2 Receiving a TXUSER_SETTXTIMEOUT_MTAG_TOO_LATE or
TXUSER_SETTXTIMEOUT_MTAG_TX_NOT_FOUND Message 250

3.3.5.3.3.3 Connection Disconnected ... 250
3.3.5.3.4 CONNTYPE_TXUSER_SETTXTIMEOUT2 as Initiator 250

3.3.5.3.4.1 Receiving a TXUSER_SETTXTIMEOUT_MTAG_TX_NOT_FOUND Message
 .. 251

3.3.5.3.4.2 Connection Disconnected ... 251
3.3.5.3.5 CONNTYPE_TXUSER_TRACE as Initiator .. 251

3.3.5.3.5.1 Receiving a TXUSER_TRACE_MTAG_REQUEST_COMPLETE Message 251
3.3.5.3.5.2 Receiving a TXUSER_TRACE_MTAG_REQUEST_FAILED or

TXUSER_TRACE_MTAG_TX_NOT_FOUND Message 252
3.3.5.3.5.3 Connection Disconnected ... 252

3.3.5.4 Transaction Manager Administration ... 252
3.3.5.4.1 CONNTYPE_TXUSER_GETSECURITYFLAGS as Initiator 252

3.3.5.4.1.1 Receiving a TXUSER_GETSECURITYFLAGS _MTAG_FETCHED Message
 .. 252

3.3.5.4.1.2 CONNTYPE_TXUSER_GETSECURITYFLAGS Connection Disconnected252
3.3.6 Timer Events ... 253
3.3.7 Other Local Events ... 253

3.4 Transaction Manager Communicating with Application Details 253
3.4.1 Abstract Data Model ... 253

3.4.1.1 CONNTYPE_TXUSER_BEGINNER Acceptor States 253
3.4.1.1.1 Idle .. 254
3.4.1.1.2 Beginning Transaction ... 255
3.4.1.1.3 Active ... 255
3.4.1.1.4 Aborting Transaction ... 255
3.4.1.1.5 Committing Transaction .. 255
3.4.1.1.6 Ended ... 255

3.4.1.2 CONNTYPE_TXUSER_BEGIN2 Acceptor States .. 255
3.4.1.2.1 Idle .. 256
3.4.1.2.2 Beginning Transaction ... 256
3.4.1.2.3 Active ... 256
3.4.1.2.4 Modifying Timeout .. 257
3.4.1.2.5 Aborting Transaction ... 257
3.4.1.2.6 Committing Transaction .. 257
3.4.1.2.7 Ended ... 257

3.4.1.3 CONNTYPE_TXUSER_PROMOTE Acceptor States 257
3.4.1.3.1 Idle .. 258
3.4.1.3.2 Beginning Transaction ... 258
3.4.1.3.3 Active ... 258
3.4.1.3.4 Modifying Timeout .. 258
3.4.1.3.5 Aborting Transaction ... 259
3.4.1.3.6 Committing Transaction .. 259
3.4.1.3.7 Ended ... 259

3.4.1.4 CONNTYPE_TXUSER_ASSOCIATE Acceptor States 259
3.4.1.4.1 Idle .. 260
3.4.1.4.2 Processing Associate Request ... 260
3.4.1.4.3 Active ... 261
3.4.1.4.4 Ended ... 261

3.4.1.5 CONNTYPE_TXUSER_EXTENDEDWHEREABOUTS Acceptor States 261

15 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

3.4.1.5.1 Idle .. 262
3.4.1.5.2 Processing Inquiry .. 262
3.4.1.5.3 Ended ... 262

3.4.1.6 CONNTYPE_TXUSER_IMPORT Acceptor States ... 262
3.4.1.6.1 Idle .. 263
3.4.1.6.2 Processing Import Request .. 263
3.4.1.6.3 Active ... 264
3.4.1.6.4 Too Late to Abort ... 264
3.4.1.6.5 Processing Abort Request .. 264
3.4.1.6.6 Ended ... 264

3.4.1.7 CONNTYPE_TXUSER_IMPORT2 Acceptor States .. 264
3.4.1.7.1 Idle .. 265
3.4.1.7.2 Processing Import Request .. 265
3.4.1.7.3 Active ... 266
3.4.1.7.4 Too Late to Abort ... 266
3.4.1.7.5 Processing Abort Request .. 266
3.4.1.7.6 Ended ... 266

3.4.1.8 CONNTYPE_TXUSER_EXPORT Acceptor States ... 266
3.4.1.8.1 Idle .. 267
3.4.1.8.2 Processing Connection Request .. 267
3.4.1.8.3 Connection Active ... 267
3.4.1.8.4 Processing Push Operation Request .. 267
3.4.1.8.5 Ended ... 268

3.4.1.9 CONNTYPE_TXUSER_EXPORT2 Acceptor States.. 268
3.4.1.9.1 Idle .. 269
3.4.1.9.2 Processing Connection Request .. 269
3.4.1.9.3 Connection Active ... 269
3.4.1.9.4 Processing Push Operation Request .. 269
3.4.1.9.5 Ended ... 270

3.4.1.10 CONNTYPE_TXUSER_GETTXDETAILS Acceptor States 270
3.4.1.10.1 Idle .. 271
3.4.1.10.2 Processing Inquiry .. 271
3.4.1.10.3 Ended ... 271

3.4.1.11 CONNTYPE_TXUSER_RESOLVE Acceptor States 271
3.4.1.11.1 Idle .. 272
3.4.1.11.2 Processing Abort Request .. 273
3.4.1.11.3 Processing Forget Request ... 273
3.4.1.11.4 Processing Commit Request ... 273
3.4.1.11.5 Ended ... 273

3.4.1.12 CONNTYPE_TXUSER_SETTXTIMEOUT Acceptor States............................... 273
3.4.1.12.1 Idle .. 274
3.4.1.12.2 Processing Request ... 274
3.4.1.12.3 Ended ... 274

3.4.1.13 CONNTYPE_TXUSER_SETTXTIMEOUT2 Acceptor States 275
3.4.1.13.1 Idle .. 276
3.4.1.13.2 Processing Request ... 276
3.4.1.13.3 Ended ... 277

3.4.1.14 CONNTYPE_TXUSER_TRACE Acceptor States ... 277
3.4.1.14.1 Idle .. 277
3.4.1.14.2 Processing Trace Request .. 278
3.4.1.14.3 Ended ... 278

3.4.1.15 CONNTYPE_TXUSER_GETSECURITYFLAGS Acceptor States 278
3.4.1.15.1 Idle .. 279
3.4.1.15.2 Processing Request ... 279
3.4.1.15.3 Ended ... 279

3.4.2 Timers ... 280
3.4.3 Initialization .. 280
3.4.4 Higher-Layer Triggered Events .. 281

16 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

3.4.5 Processing Events and Sequencing Rules .. 281
3.4.5.1 Transaction Initiation and Completion ... 281

3.4.5.1.1 CONNTYPE_TXUSER_BEGINNER as Acceptor 281
3.4.5.1.1.1 Receiving a TXUSER_BEGINNER_MTAG_BEGIN Message 281
3.4.5.1.1.2 Receiving a TXUSER_BEGINNER_MTAG_COMMIT Message 282
3.4.5.1.1.3 Receiving a TXUSER_BEGINNER_MTAG_ABORT Message 282
3.4.5.1.1.4 Connection Disconnected ... 282

3.4.5.1.2 CONNTYPE_TXUSER_BEGIN2 as Acceptor .. 283
3.4.5.1.2.1 Receiving a TXUSER_BEGIN2_MTAG_BEGIN Message 283
3.4.5.1.2.2 Receiving a TXUSER_SETTXTIMEOUT_MTAG_SETTXTIMEOUT Message

 .. 284
3.4.5.1.2.3 Receiving a TXUSER_BEGIN2_MTAG_COMMIT Message 284
3.4.5.1.2.4 Receiving a TXUSER_BEGIN2_MTAG_ABORT Message 284
3.4.5.1.2.5 Connection Disconnected ... 284

3.4.5.1.3 CONNTYPE_TXUSER_PROMOTE as Acceptor 285
3.4.5.1.3.1 Receiving a TXUSER_BEGINNER_MTAG_PROMOTE Message 285
3.4.5.1.3.2 Receiving a TXUSER_SETTXTIMEOUT_MTAG_SETTXTIMEOUT,

TXUSER_BEGIN2_MTAG_COMMIT, or TXUSER_BEGIN2_MTAG_ABORT

Message .. 286
3.4.5.1.3.3 Connection Disconnected ... 286

3.4.5.2 Transaction Propagation ... 286
3.4.5.2.1 Pull Propagation ... 286

3.4.5.2.1.1 CONNTYPE_TXUSER_ASSOCIATE as Acceptor 286
3.4.5.2.1.1.1 Receiving a TXUSER_ASSOCIATE_MTAG_ASSOCIATE Message . 286
3.4.5.2.1.1.2 Connection Disconnected .. 288

3.4.5.2.2 Push Propagation ... 288
3.4.5.2.2.1 CONNTYPE_TXUSER_EXTENDEDWHEREABOUTS as Acceptor 288

3.4.5.2.2.1.1 Receiving a TXUSER_EXTENDEDWHEREABOUTS_MTAG_GET
Message ... 288

3.4.5.2.2.1.2 Connection Disconnected .. 289
3.4.5.2.2.2 CONNTYPE_TXUSER_EXPORT as Acceptor 289

3.4.5.2.2.2.1 Receiving a TXUSER_EXPORT_MTAG_CREATE Message 289
3.4.5.2.2.2.2 Receiving a TXUSER_EXPORT_MTAG_CREATE2 Message 290
3.4.5.2.2.2.3 Receiving a TXUSER_EXPORT_MTAG_EXPORT Message 290
3.4.5.2.2.2.4 Connection Disconnected .. 291

3.4.5.2.2.3 CONNTYPE_TXUSER_EXPORT2 as Acceptor 291
3.4.5.2.2.3.1 Receiving a TXUSER_EXPORT_MTAG_CREATE Message 291
3.4.5.2.2.3.2 Receiving a TXUSER_EXPORT_MTAG_CREATE2 Message 291
3.4.5.2.2.3.3 Receiving a TXUSER_EXPORT_MTAG_EXPORT Message 291
3.4.5.2.2.3.4 Connection Disconnected .. 291

3.4.5.2.2.4 CONNTYPE_TXUSER_IMPORT as Acceptor 292
3.4.5.2.2.4.1 Receiving a TXUSER_IMPORT_MTAG_IMPORT Message 292
3.4.5.2.2.4.2 Receiving a TXUSER_IMPORT_MTAG_ABORT Message 292
3.4.5.2.2.4.3 Connection Disconnected .. 293

3.4.5.2.2.5 CONNTYPE_TXUSER_IMPORT2 as Acceptor 293
3.4.5.2.2.5.1 Receiving a TXUSER_IMPORT2_MTAG_IMPORT Message 293
3.4.5.2.2.5.2 Receiving a TXUSER_IMPORT2_MTAG_IMPORT_WITH_SET Message

 294
3.4.5.2.2.5.3 Receiving a TXUSER_IMPORT2_MTAG_ABORT Message 294
3.4.5.2.2.5.4 Connection Disconnected .. 295

3.4.5.3 Transaction Administration .. 295
3.4.5.3.1 CONNTYPE_TXUSER_GETTXDETAILS as Acceptor 295

3.4.5.3.1.1 Receiving a TXUSER_GETTXDETAILS_MTAG_GET Message 295
3.4.5.3.1.2 Connection Disconnected ... 296

3.4.5.3.2 CONNTYPE_TXUSER_RESOLVE as Acceptor .. 296
3.4.5.3.2.1 Receiving a TXUSER_RESOLVE_MTAG_CHILD_ABORT Message 296
3.4.5.3.2.2 Receiving a TXUSER_RESOLVE_MTAG_CHILD_COMMIT Message 297

17 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

3.4.5.3.2.3 Receiving a TXUSER_RESOLVE_MTAG_FORGET_COMMITTED Message
 .. 297

3.4.5.3.2.4 Connection Disconnected ... 298
3.4.5.3.3 CONNTYPE_TXUSER_SETTXTIMEOUT as Acceptor 298

3.4.5.3.3.1 Receiving a TXUSER_SETTXTIMEOUT_MTAG_SETTXTIMEOUT Message
 .. 298

3.4.5.3.3.2 Connection Disconnected ... 299
3.4.5.3.4 CONNTYPE_TXUSER_SETTXTIMEOUT2 as Acceptor 299

3.4.5.3.4.1 Receiving a TXUSER_SETTXTIMEOUT_MTAG_SETTXTIMEOUT Message
 .. 299

3.4.5.3.4.2 Connection Disconnected ... 299
3.4.5.3.5 CONNTYPE_TXUSER_TRACE as Acceptor ... 299

3.4.5.3.5.1 Receiving a TXUSER_TRACE_MTAG_DUMP_TRANSACTION Message 299
3.4.5.3.5.2 Connection Disconnected ... 300

3.4.5.4 Transaction Manager Administration ... 300
3.4.5.4.1 CONNTYPE_TXUSER_GETSECURITYFLAGS as Acceptor 300

3.4.5.4.1.1 Receiving a TXUSER_GETSECURITYFLAGS_MTAG_GETSECURITYFLAGS

Message .. 300
3.4.5.4.1.2 Connection Disconnected ... 301

3.4.6 Timer Events ... 302
3.4.7 Other Local Events ... 302

3.4.7.1 Associate Transaction Failure ... 302
3.4.7.2 Associate Transaction Success ... 303
3.4.7.3 Begin Commit .. 303
3.4.7.4 Begin In Doubt .. 304
3.4.7.5 Begin Rollback ... 304
3.4.7.6 Begin Voting .. 304
3.4.7.7 Create Transaction Failure ... 305
3.4.7.8 Create Transaction Success ... 306
3.4.7.9 Create Voter Enlistment Failure ... 306
3.4.7.10 Create Voter Enlistment Success .. 307
3.4.7.11 Export Transaction Failure ... 307
3.4.7.12 Export Transaction Success ... 308
3.4.7.13 Phase One Complete .. 309
3.4.7.14 Phase Zero Complete ... 310
3.4.7.15 Register Phase Zero ... 310
3.4.7.16 Resolve Transaction Complete ... 311
3.4.7.17 Resolve Transaction Access Denied .. 311
3.4.7.18 Rollback Complete ... 312
3.4.7.19 Set Transaction Attributes Failure .. 312
3.4.7.20 Set Transaction Attributes Success ... 313
3.4.7.21 Set Transaction Timeout Failure ... 313
3.4.7.22 Set Transaction Timeout Success ... 314
3.4.7.23 Unilaterally Aborted .. 314

3.5 Resource Manager Details .. 315
3.5.1 Abstract Data Model ... 315

3.5.1.1 CONNTYPE_TXUSER_RESOURCEMANAGER Initiator States 315
3.5.1.1.1 Idle .. 316
3.5.1.1.2 Awaiting Create Response ... 317
3.5.1.1.3 Recovering .. 317
3.5.1.1.4 Awaiting Completion Confirmation .. 317
3.5.1.1.5 Active ... 317
3.5.1.1.6 Ended ... 317

3.5.1.2 CONNTYPE_TXUSER_RESOURCEMANAGERINTERNAL Initiator States 317
3.5.1.2.1 Idle .. 318
3.5.1.2.2 Awaiting Create Response ... 318
3.5.1.2.3 Recovering .. 318
3.5.1.2.4 Awaiting Completion Confirmation .. 319

18 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

3.5.1.2.5 Active ... 319
3.5.1.2.6 Ended ... 319

3.5.1.3 CONNTYPE_TXUSER_PHASE0 Initiator States .. 319
3.5.1.3.1 Idle .. 320
3.5.1.3.2 Awaiting Create Response ... 320
3.5.1.3.3 Active ... 320
3.5.1.3.4 Processing Phase Zero Request .. 321
3.5.1.3.5 Ended ... 321

3.5.1.4 CONNTYPE_TXUSER_ENLISTMENT Initiator States 321
3.5.1.4.1 Idle .. 322
3.5.1.4.2 Awaiting Enlistment Response .. 322
3.5.1.4.3 Active ... 323
3.5.1.4.4 Single Phase Committing ... 323
3.5.1.4.5 Preparing for Transaction Commit... 323
3.5.1.4.6 Finalizing Abort Operations .. 323
3.5.1.4.7 Awaiting Transaction Outcome ... 323
3.5.1.4.8 Finalizing Commit Operations ... 323
3.5.1.4.9 Ended ... 323

3.5.1.5 CONNTYPE_TXUSER_REENLIST Initiator States .. 323
3.5.1.5.1 Idle .. 324
3.5.1.5.2 Awaiting Reenlist Response ... 324
3.5.1.5.3 Ended ... 324

3.5.1.6 CONNTYPE_TXUSER_VOTER Initiator States .. 325
3.5.1.6.1 Idle .. 326
3.5.1.6.2 Awaiting Creation Response ... 326
3.5.1.6.3 Active ... 327
3.5.1.6.4 Performing Transaction Operations ... 327
3.5.1.6.5 Awaiting Outcome .. 327
3.5.1.6.6 Ended ... 327

3.5.2 Timers ... 327
3.5.3 Initialization .. 327
3.5.4 Higher-Layer Triggered Events .. 328

3.5.4.1 Canceling Enlistment as a Phase Zero Participant on a Specific Transaction . 328
3.5.4.2 Enlisting as a Phase Zero Participant on a Specific Transaction 328
3.5.4.3 Enlisting on a Specific Transaction .. 328
3.5.4.4 Enlistment Abort Request Completed .. 329
3.5.4.5 Enlistment Commit Request Completed .. 329
3.5.4.6 Enlistment Prepare Request Completed ... 330
3.5.4.7 Enlistment Single-Phase Commit Request Completed 331
3.5.4.8 Phase Zero Request Completed ... 332
3.5.4.9 Registering as a Voter on a Specific Transaction 332
3.5.4.10 Registering with Transaction Manager ... 332

3.5.4.10.1 Registering with Transaction Manager Using
CONNTYPE_TXUSER_RESOURCEMANAGER .. 333

3.5.4.10.2 Registering with Transaction Manager Using
CONNTYPE_TXUSER_RESOURCEMANAGERINTERNAL 333

3.5.4.11 Voter Vote Request Completed .. 333
3.5.5 Processing Events and Sequencing Rules .. 334

3.5.5.1 Resource Manager Registration .. 334
3.5.5.1.1 CONNTYPE_TXUSER_RESOURCEMANAGER as Initiator 334

3.5.5.1.1.1 Receiving a TXUSER_RESOURCEMANAGER_MTAG_DUPLICATE Message

 .. 334
3.5.5.1.1.2 Receiving a TXUSER_RESOURCEMANAGER_MTAG_REQUEST_COMPLETE

Message .. 334
3.5.5.1.1.3 Connection Disconnected ... 335

3.5.5.1.2 CONNTYPE_TXUSER_RESOURCEMANAGERINTERNAL as Initiator 335

19 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

3.5.5.1.2.1 Receiving a TXUSER_RESOURCEMANAGER_MTAG_DUPLICATE or
TXUSER_RESOURCEMANAGER_MTAG_REQUEST_COMPLETE Message

 .. 335
3.5.5.1.2.2 Receiving a

TXUSER_RESOURCEMANAGERINTERNAL_MTAG_DUPLICATEDETECTED
Message .. 335

3.5.5.1.2.3 Connection Disconnected ... 335
3.5.5.2 Transaction Coordination .. 336

3.5.5.2.1 CONNTYPE_TXUSER_PHASE0 as Initiator .. 336
3.5.5.2.1.1 Receiving a TXUSER_PHASE0_MTAG_CREATED Message 336
3.5.5.2.1.2 Receiving a TXUSER_PHASE0_MTAG_CREATE_TX_NOT_FOUND or

TXUSER_PHASE0_MTAG_CREATE_TOO_LATE Message 336
3.5.5.2.1.3 Receiving a TXUSER_PHASE0_MTAG_PHASE0REQ Message 336
3.5.5.2.1.4 Receiving a TXUSER_PHASE0_MTAG_PHASE0REQ_ABORT Message 336
3.5.5.2.1.5 Connection Disconnected ... 337

3.5.5.2.2 CONNTYPE_TXUSER_ENLISTMENT as Initiator 337
3.5.5.2.2.1 Receiving a TXUSER_ENLISTMENT_MTAG_ENLISTED Message 337
3.5.5.2.2.2 Receiving a TXUSER_ENLISTMENT_MTAG_ENLIST_TX_NOT_FOUND,

TXUSER_ENLISTMENT_MTAG_ENLIST_TOO_LATE,
TXUSER_ENLISTMENT_MTAG_ENLIST_LOG_FULL, or
TXUSER_ENLISTMENT_MTAG_ENLIST_TOO_MANY Message 337

3.5.5.2.2.3 Receiving a TXUSER_ENLISTMENT_MTAG_PREPAREREQ Message ... 337
3.5.5.2.2.4 Receiving a TXUSER_ENLISTMENT_MTAG_COMMITREQ Message 338
3.5.5.2.2.5 Receiving a TXUSER_ENLISTMENT_MTAG_ABORTREQ Message 338
3.5.5.2.2.6 Connection Disconnected ... 338

3.5.5.3 Transaction Recovery ... 339
3.5.5.3.1 CONNTYPE_TXUSER_REENLIST as Initiator .. 339

3.5.5.3.1.1 Receiving a TXUSER_REENLIST_MTAG_REENLIST_COMMITTED Message
 .. 339

3.5.5.3.1.2 Receiving a TXUSER_REENLIST_MTAG_REENLIST_ABORTED Message
 .. 339

3.5.5.3.1.3 Receiving a TXUSER_REENLIST_MTAG_REENLIST_TIMEOUT Message
 .. 339

3.5.5.3.1.4 Connection Disconnected ... 339
3.5.5.4 Voting .. 340

3.5.5.4.1 CONNTYPE_TXUSER_VOTER as Initiator .. 340
3.5.5.4.1.1 Receiving a TXUSER_VOTER_MTAG_CREATED Message 340
3.5.5.4.1.2 Receiving a TXUSER_VOTER_MTAG_CREATE_TX_NOT_FOUND or

TXUSER_VOTER_MTAG_CREATE_TOO_LATE Message 340
3.5.5.4.1.3 Receiving a TXUSER_VOTER_MTAG_VOTEREQ Message 340
3.5.5.4.1.4 Receiving a TXUSER_STATUS_MTAG_COMMITTED Message 340
3.5.5.4.1.5 Receiving a TXUSER_STATUS_MTAG_ABORTED Message 341
3.5.5.4.1.6 Receiving a TXUSER_STATUS_MTAG_INDOUBT Message 341
3.5.5.4.1.7 Connection Disconnected ... 341

3.5.6 Timer Events ... 341
3.5.7 Other Local Events ... 341

3.5.7.1 Recover Transaction ... 341
3.5.7.2 Recover Transactions ... 342
3.5.7.3 Reenlistment Complete ... 342
3.5.7.4 Transaction Manager Down ... 342
3.5.7.5 Reenlistment Timeout ... 343

3.6 Transaction Manager Communicating with Resource Manager Facet Details 343
3.6.1 Abstract Data Model ... 343

3.6.1.1 CONNTYPE_TXUSER_RESOURCEMANAGER Acceptor States 344
3.6.1.1.1 Idle .. 345
3.6.1.1.2 Creating .. 345
3.6.1.1.3 Reenlisting .. 345
3.6.1.1.4 Active ... 345

20 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

3.6.1.1.5 Ended ... 345
3.6.1.2 CONNTYPE_TXUSER_RESOURCEMANAGERINTERNAL Acceptor States 345

3.6.1.2.1 Idle .. 346
3.6.1.2.2 Creating .. 346
3.6.1.2.3 Reenlisting .. 346
3.6.1.2.4 Active ... 346
3.6.1.2.5 Ended ... 347

3.6.1.3 CONNTYPE_TXUSER_PHASE0 Acceptor States ... 347
3.6.1.3.1 Idle .. 348
3.6.1.3.2 Awaiting Create Response ... 348
3.6.1.3.3 Active ... 349
3.6.1.3.4 Awaiting Phase Zero Response ... 349
3.6.1.3.5 Ended ... 349

3.6.1.4 CONNTYPE_TXUSER_ENLISTMENT Acceptor States 349
3.6.1.4.1 Idle .. 351
3.6.1.4.2 Processing Enlistment Request ... 351
3.6.1.4.3 Active ... 351
3.6.1.4.4 Awaiting Single-Phase Commit Response ... 352
3.6.1.4.5 Awaiting Prepare Response .. 352
3.6.1.4.6 Awaiting Prepare Response Aborted .. 352
3.6.1.4.7 Prepared ... 352
3.6.1.4.8 Awaiting Commit Response .. 352
3.6.1.4.9 Awaiting Abort Response ... 352
3.6.1.4.10 Ended ... 352

3.6.1.5 CONNTYPE_TXUSER_REENLIST Acceptor States 352
3.6.1.5.1 Idle .. 353
3.6.1.5.2 Processing Reenlist Request ... 353
3.6.1.5.3 Ended ... 354

3.6.1.6 CONNTYPE_TXUSER_VOTER Acceptor States ... 354
3.6.1.6.1 Idle .. 355
3.6.1.6.2 Create Voter .. 355
3.6.1.6.3 Active ... 356
3.6.1.6.4 Awaiting Voter Response ... 356
3.6.1.6.5 Awaiting Outcome .. 356
3.6.1.6.6 Ended ... 356

3.6.2 Timers ... 356
3.6.2.1 Reenlist Time-Out Timer ... 356

3.6.3 Initialization .. 356
3.6.4 Higher-Layer Triggered Events .. 357
3.6.5 Processing Events and Sequencing Rules .. 357

3.6.5.1 Resource Manager Registration .. 357
3.6.5.1.1 CONNTYPE_TXUSER_RESOURCEMANAGER as Acceptor 357

3.6.5.1.1.1 Receiving a TXUSER_RESOURCEMANAGER_MTAG_CREATE Message357
3.6.5.1.1.2 Receiving a

TXUSER_RESOURCEMANAGER_MTAG_REENLISTMENTCOMPLETE
Message .. 358

3.6.5.1.1.3 Connection Disconnected ... 358
3.6.5.1.2 CONNTYPE_TXUSER_RESOURCEMANAGERINTERNAL as Acceptor 358

3.6.5.1.2.1 Receiving a TXUSER_RESOURCEMANAGER_MTAG_CREATE Message358
3.6.5.1.2.2 Receiving a

TXUSER_RESOURCEMANAGER_MTAG_REENLISTMENTCOMPLETE

Message .. 359
3.6.5.1.2.3 Connection Disconnected ... 359

3.6.5.2 Transaction Coordination .. 359
3.6.5.2.1 CONNTYPE_TXUSER_PHASE0 as Acceptor.. 359

3.6.5.2.1.1 Receiving a TXUSER_PHASE0_MTAG_CREATE Message 359
3.6.5.2.1.2 Receiving a TXUSER_PHASE0_MTAG_PHASE0REQDONE Message ... 360
3.6.5.2.1.3 Receiving a TXUSER_PHASE0_MTAG_UNENLIST Message 360

21 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

3.6.5.2.1.4 Connection Disconnected ... 361
3.6.5.2.2 CONNTYPE_TXUSER_ENLISTMENT as Acceptor 361

3.6.5.2.2.1 Receiving a TXUSER_ENLISTMENT_MTAG_ENLIST Message 361
3.6.5.2.2.2 Receiving a TXUSER_ENLISTMENT_MTAG_PREPAREREQDONE Message

 .. 362
3.6.5.2.2.3 Receiving a TXUSER_ENLISTMENT_MTAG_COMMITREQDONE Message

 .. 363
3.6.5.2.2.4 Receiving a TXUSER_ENLISTMENT_MTAG_ABORTREQDONE Message

 .. 363
3.6.5.2.2.5 Connection Disconnected ... 364

3.6.5.3 Transaction Recovery ... 364
3.6.5.3.1 CONNTYPE_TXUSER_REENLIST as Acceptor 364

3.6.5.3.1.1 Receiving a TXUSER_REENLIST_MTAG_REENLIST Message 364
3.6.5.3.1.2 Connection Disconnected ... 365

3.6.5.4 Voting .. 366
3.6.5.4.1 CONNTYPE_TXUSER_VOTER as Acceptor ... 366

3.6.5.4.1.1 Receiving a TXUSER_VOTER_MTAG_CREATE Message 366
3.6.5.4.1.2 Receiving a TXUSER_VOTER_MTAG_VOTEREQDONE Message 366
3.6.5.4.1.3 Connection Disconnected ... 367

3.6.6 Timer Events ... 367
3.6.6.1 Reenlist Timeout Timer ... 367

3.6.7 Other Local Events ... 367
3.6.7.1 Begin Commit .. 368
3.6.7.2 Begin In Doubt .. 368
3.6.7.3 Begin Phase One .. 369
3.6.7.4 Begin Phase Zero ... 369
3.6.7.5 Begin Rollback ... 370
3.6.7.6 Begin Voting .. 370
3.6.7.7 Create Phase Zero Enlistment Failure ... 371
3.6.7.8 Create Phase Zero Enlistment Success .. 371
3.6.7.9 Create Resource Manager ... 371
3.6.7.10 Create Subordinate Enlistment Failure .. 372
3.6.7.11 Create Subordinate Enlistment Success .. 373
3.6.7.12 Create Voter Enlistment Failure ... 373
3.6.7.13 Create Voter Enlistment Success .. 374
3.6.7.14 Phase Zero Aborted .. 374
3.6.7.15 Reenlist Complete .. 374
3.6.7.16 Resource Manager Down ... 375

3.7 Superior Transaction Manager Facet Details ... 375
3.7.1 Abstract Data Model ... 375

3.7.1.1 CONNTYPE_PARTNERTM_PROPAGATE Initiator States 375
3.7.1.1.1 Idle .. 377
3.7.1.1.2 Awaiting Propagation Response .. 377
3.7.1.1.3 Active ... 378
3.7.1.1.4 Awaiting Abort Response ... 378
3.7.1.1.5 Phase Zero Registration .. 378
3.7.1.1.6 Requesting Phase Zero .. 378
3.7.1.1.7 Phase Zero .. 378
3.7.1.1.8 Phase Zero Registration During Phase Zero 378
3.7.1.1.9 Phase Zero with Outstanding Registration.. 378
3.7.1.1.10 Awaiting Prepare Response .. 379
3.7.1.1.11 Prepared ... 379
3.7.1.1.12 Awaiting Commit Response .. 379
3.7.1.1.13 Ended ... 379

3.7.1.2 CONNTYPE_PARTNERTM_BRANCH Acceptor States 379
3.7.1.2.1 Idle .. 380
3.7.1.2.2 Branching .. 380
3.7.1.2.3 Active ... 380

22 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

3.7.1.2.4 Awaiting Abort Response ... 381
3.7.1.2.5 Phase Zero Registration .. 381
3.7.1.2.6 Requesting Phase Zero .. 381
3.7.1.2.7 Phase Zero .. 381
3.7.1.2.8 Phase Zero Registration During Phase Zero 381
3.7.1.2.9 Phase Zero with Outstanding Registration.. 381
3.7.1.2.10 Awaiting Prepare Response .. 382
3.7.1.2.11 Prepared ... 382
3.7.1.2.12 Awaiting Commit Response .. 382
3.7.1.2.13 Ended ... 382

3.7.1.3 CONNTYPE_PARTNERTM_REDELIVERCOMMIT Initiator States 382
3.7.1.3.1 Idle .. 383
3.7.1.3.2 Awaiting Confirmation ... 383
3.7.1.3.3 Waiting to Rerequest .. 383
3.7.1.3.4 Ended ... 383

3.7.1.4 CONNTYPE_PARTNERTM_CHECKABORT Acceptor States 384
3.7.1.4.1 Idle .. 384
3.7.1.4.2 Processing Abort Inquiry ... 384
3.7.1.4.3 Ended ... 385

3.7.2 Timers ... 385
3.7.2.1 Redeliver Commit Timer ... 385

3.7.3 Initialization .. 385
3.7.4 Higher-Layer Triggered Events .. 385
3.7.5 Processing Events and Sequencing Rules .. 386

3.7.5.1 Transaction Propagation and Coordination ... 386
3.7.5.1.1 Push Propagation ... 386

3.7.5.1.1.1 CONNTYPE_PARTNERTM_PROPAGATE as Initiator 386
3.7.5.1.1.1.1 Receiving a PARTNERTM_PROPAGATE_MTAG_PROPAGATED

Message ... 386
3.7.5.1.1.1.2 Receiving a PARTNERTM_PROPAGATE_MTAG_DUPLICATE,

PARTNERTM_PROPAGATE_MTAG_NO_MEM, or

PARTNERTM_PROPAGATE_MTAG_LOG_FULL Message 386
3.7.5.1.1.1.3 Receiving a PARTNERTM_PROPAGATE_MTAG_PHASE0REGISTER,

PARTNERTM_PROPAGATE_MTAG_PHASE0COMPLETE,
PARTNERTM_PROPAGATE_MTAG_PREPAREREQDONE,
PARTNERTM_PROPAGATE_MTAG_COMMITREQDONE,
PARTNERTM_PROPAGATE_MTAG_ABORTREQDONE, or

PARTNERTM_PROPAGATE_MTAG_ABORTNOTIFY Message 387
3.7.5.1.1.1.4 Receiving a PARTNERTM_PROPAGATE_MTAG_PROTOCOL_ERROR

Message ... 387
3.7.5.1.1.1.5 Connection Disconnected .. 387

3.7.5.1.2 Pull Propagation ... 388
3.7.5.1.2.1 CONNTYPE_PARTNERTM_BRANCH as Acceptor 388

3.7.5.1.2.1.1 Receiving a PARTNERTM_BRANCH_MTAG_BRANCHING Message388
3.7.5.1.2.1.2 Receiving a PARTNERTM_PROPAGATE_MTAG_PHASE0REGISTER

Message ... 389
3.7.5.1.2.1.3 Receiving a PARTNERTM_PROPAGATE_MTAG_PHASE0COMPLETE

Message ... 389
3.7.5.1.2.1.4 Receiving a PARTNERTM_PROPAGATE_MTAG_ABORTNOTIFY

Message ... 389
3.7.5.1.2.1.5 Receiving a PARTNERTM_PROPAGATE_MTAG_ABORTREQDONE

Message ... 390
3.7.5.1.2.1.6 Receiving a PARTNERTM_PROPAGATE_MTAG_PREPAREREQDONE

Message ... 390
3.7.5.1.2.1.7 Receiving a PARTNERTM_PROPAGATE_MTAG_COMMITREQDONE

Message ... 391
3.7.5.1.2.1.8 Receiving a PARTNERTM_PROPAGATE_MTAG_PROTOCOL_ERROR

Message ... 391

23 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

3.7.5.1.2.1.9 Connection Disconnected .. 391
3.7.5.2 Transaction Recovery ... 392

3.7.5.2.1 Subordinate-Driven Recovery ... 392
3.7.5.2.1.1 CONNTYPE_PARTNERTM_CHECKABORT as Acceptor 392

3.7.5.2.1.1.1 Receiving a PARTNERTM_CHECKABORT_MTAG_CHECK Message393
3.7.5.2.1.1.2 Connection Disconnected .. 393

3.7.5.2.2 Superior-Driven Recovery .. 393
3.7.5.2.2.1 CONNTYPE_PARTNERTM_REDELIVERCOMMIT as Initiator 393

3.7.5.2.2.1.1 Receiving a
PARTNERTM_REDELIVERCOMMIT_MTAG_COMMITREQDONE
Message ... 393

3.7.5.2.2.1.2 Receiving a PARTNERTM_REDELIVERCOMMIT_MTAG_RETRY
Message ... 393

3.7.5.2.2.1.3 Connection Disconnected .. 394
3.7.6 Timer Events ... 394

3.7.6.1 Redeliver Commit Timer ... 394
3.7.7 Other Local Events ... 395

3.7.7.1 Begin Commit .. 395
3.7.7.2 Begin Phase One .. 395
3.7.7.3 Begin Phase Zero ... 396
3.7.7.4 Begin Rollback ... 396
3.7.7.5 Create Phase Zero Enlistment Failure ... 397
3.7.7.6 Create Phase Zero Enlistment Success .. 397
3.7.7.7 Create Subordinate Enlistment Failure .. 397
3.7.7.8 Create Subordinate Enlistment Success .. 398
3.7.7.9 Phase Zero Aborted .. 398
3.7.7.10 Propagate Transaction .. 398

3.8 Subordinate Transaction Manager Facet Details .. 399
3.8.1 Abstract Data Model ... 399

3.8.1.1 CONNTYPE_PARTNERTM_PROPAGATE Acceptor States 399
3.8.1.1.1 Idle .. 401
3.8.1.1.2 Propagating ... 401
3.8.1.1.3 Active ... 401
3.8.1.1.4 Aborting .. 401
3.8.1.1.5 Awaiting Registration Response .. 401
3.8.1.1.6 Awaiting Phase Zero ... 401
3.8.1.1.7 Awaiting Phase Zero Outcome .. 401
3.8.1.1.8 Awaiting Registration Response During Phase Zero 402
3.8.1.1.9 Awaiting Phase Zero Outcome with Outstanding Registration 402
3.8.1.1.10 Preparing .. 402
3.8.1.1.11 Prepared ... 402
3.8.1.1.12 Committing.. 402
3.8.1.1.13 Ended ... 402

3.8.1.2 CONNTYPE_PARTNERTM_BRANCH Initiator States 402
3.8.1.2.1 Idle .. 403
3.8.1.2.2 Awaiting Branch Response ... 403
3.8.1.2.3 Active ... 404
3.8.1.2.4 Aborting .. 404
3.8.1.2.5 Awaiting Registration Response .. 404
3.8.1.2.6 Awaiting Phase Zero ... 404
3.8.1.2.7 Awaiting Phase Zero Outcome .. 404
3.8.1.2.8 Awaiting Registration Response During Phase Zero 404
3.8.1.2.9 Awaiting Phase Zero Outcome with Outstanding Registration 405
3.8.1.2.10 Preparing .. 405
3.8.1.2.11 Prepared ... 405
3.8.1.2.12 Committing.. 405
3.8.1.2.13 Ended ... 405

3.8.1.3 CONNTYPE_PARTNERTM_REDELIVERCOMMIT Acceptor States 405

24 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

3.8.1.3.1 Idle .. 406
3.8.1.3.2 Processing Commit Inquiry .. 406
3.8.1.3.3 Ended ... 406

3.8.1.4 CONNTYPE_PARTNERTM_CHECKABORT Initiator States 407
3.8.1.4.1 Idle .. 407
3.8.1.4.2 Awaiting Confirmation ... 407
3.8.1.4.3 Waiting to ReRequest .. 408
3.8.1.4.4 Ended ... 408

3.8.2 Timers ... 408
3.8.2.1 Check Abort Timer ... 408

3.8.3 Initialization .. 408
3.8.4 Higher-Layer Triggered Events .. 409
3.8.5 Processing Events and Sequencing Rules .. 409

3.8.5.1 Transaction Propagation and Coordination ... 409
3.8.5.1.1 Push Propagation ... 409

3.8.5.1.1.1 CONNTYPE_PARTNERTM_PROPAGATE as Acceptor 409
3.8.5.1.1.1.1 Receiving a PARTNERTM_PROPAGATE_MTAG_PROPAGATE Message

 409
3.8.5.1.1.1.2 Receiving Other PARTNERTM_PROPAGATE_MTAG Messages 410
3.8.5.1.1.1.3 Receiving a PARTNERTM_PROPAGATE_MTAG_PROTOCOL_ERROR

Message ... 410
3.8.5.1.1.1.4 CONTYPE_PARTNERTM_PROPAGATE Connection Disconnected .. 410

3.8.5.1.2 Pull Propagation ... 411
3.8.5.1.2.1 CONNTYPE_PARTNERTM_BRANCH as Initiator 411

3.8.5.1.2.1.1 Receiving a PARTNERTM_BRANCH_MTAG_BRANCHED Message . 411
3.8.5.1.2.1.2 Receiving a PARTNERTM_BRANCH_MTAG_BRANCH_LOG_FULL,

PARTNERTM_BRANCH_MTAG_BRANCH_NO_MEM,
PARTNERTM_BRANCH_MTAG_BRANCH_TOO_LATE,
PARTNERTM_BRANCH_MTAG_BRANCH_TOO_MANY, or
PARTNERTM_BRANCH_MTAG_BRANCH_TX_NOT_FOUND Message
 411

3.8.5.1.2.1.3 Receiving a PARTNERTM_PROPAGATE_MTAG_PHASE0REGISTERED
Message ... 412

3.8.5.1.2.1.4 Receiving a
PARTNERTM_PROPAGATE_MTAG_PHASE0REGISTRATIONREJECTED
Message ... 412

3.8.5.1.2.1.5 Receiving a PARTNERTM_PROPAGATE_MTAG_ABORTREQ Message

 413
3.8.5.1.2.1.6 Receiving a PARTNERTM_PROPAGATE_MTAG_PHASE0 Message 413
3.8.5.1.2.1.7 Receiving a PARTNERTM_PROPAGATE_MTAG_PREPAREREQ Message

 413
3.8.5.1.2.1.8 Receiving a PARTNERTM_PROPAGATE_MTAG_COMMITREQ Message

 414
3.8.5.1.2.1.9 Receiving a PARTNERTM_PROPAGATE_MTAG_PROTOCOL_ERROR

Message ... 414
3.8.5.1.2.1.10 Connection Disconnected .. 414

3.8.5.2 Transaction Recovery ... 415
3.8.5.2.1 Subordinate-Driven Recovery ... 415

3.8.5.2.1.1 CONNTYPE_PARTNERTM_CHECKABORT as Initiator 415
3.8.5.2.1.1.1 Receiving a PARTNERTM_CHECKABORT_MTAG_ABORTED Message

 415
3.8.5.2.1.1.2 Receiving a PARTNERTM_CHECKABORT_MTAG_RETRY Message 415
3.8.5.2.1.1.3 CONNTYPE_PARTNERTM_CHECKABORT Connection Disconnected

 416
3.8.5.2.2 Superior-Driven Recovery .. 416

3.8.5.2.2.1 CONNTYPE_PARTNERTM_REDELIVERCOMMIT as Acceptor 416
3.8.5.2.2.1.1 Receiving a PARTNERTM_REDELIVERCOMMIT_MTAG_COMMITREQ

Message ... 416

25 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

3.8.5.2.2.1.2 Connection Disconnected .. 417
3.8.6 Timer Events ... 417

3.8.6.1 Check Abort Timer ... 417
3.8.7 Other Local Events ... 417

3.8.7.1 Branch Transaction .. 417
3.8.7.2 Cancel Check Abort .. 418
3.8.7.3 Commit Complete .. 418
3.8.7.4 Create Superior Enlistment Success ... 419
3.8.7.5 Create Superior Enlistment Failure ... 419
3.8.7.6 Phase Zero Complete ... 419
3.8.7.7 Phase One Complete .. 420
3.8.7.8 Recover In Doubt Transaction .. 421
3.8.7.9 Register Phase Zero ... 421
3.8.7.10 Rollback Complete ... 422
3.8.7.11 Unilaterally Aborted .. 422

4 Protocol Examples ... 423
4.1 Simple Transaction Scenario ... 423

4.1.1 Beginning a Transaction ... 423
4.1.2 Completing a Transaction ... 424

4.1.2.1 Committing the Transaction .. 425
4.2 Transaction Marshaling Scenario (Pull Propagation) ... 425

4.2.1 Marshaling the Transaction ... 426
4.2.2 Unmarshaling the Transaction ... 427
4.2.3 Branching the Transaction .. 429

4.3 Transaction Marshaling Scenario (Push Propagation) ... 431
4.3.1 Obtaining the Whereabouts of the Receiver's Transaction Manager 431
4.3.2 Exporting the Transaction ... 432
4.3.3 Propagating the Transaction .. 434
4.3.4 Importing the Transaction .. 436

4.4 Simple Enlistment Scenario .. 437
4.4.1 Registering with the Transaction Manager as a Resource Manager 437
4.4.2 Enlisting in an Existing Transaction .. 438
4.4.3 Responding to Enlistment Notifications ... 440

4.4.3.1 Responding to a Prepare Request Message .. 440
4.4.3.2 Responding to a Commit Request Message .. 441

4.5 Transaction Manager Two-Phase Commit Scenario .. 441
4.5.1 Phase One .. 442

4.5.1.1 Phase One - Subordinate Resource Managers .. 442
4.5.1.2 Phase One - Subordinate Transaction Manager Facets 443
4.5.1.3 Phase One - The Root Transaction Manager ... 444

4.5.2 Phase Two .. 445
4.5.2.1 Phase Two - Subordinate Resource Managers .. 445
4.5.2.2 Phase Two - Subordinate Transaction Manager Facets 445
4.5.2.3 Phase Two - The Root Transaction Manager ... 446

4.6 Resource Manager Recovery Scenario .. 446
4.6.1 Initializing the Recovery Process .. 447
4.6.2 Reenlisting in In-Doubt Transactions .. 447
4.6.3 Completing Recovery ... 449

5 Security ... 450
5.1 Security Considerations for Implementers .. 450
5.2 Index of Security Parameters ... 451

6 Appendix A: Product Behavior ... 452

7 Change Tracking .. 457

8 Index ... 458

26 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

27 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

1 Introduction

This document specifies a comprehensive distributed transaction processing protocol that is
referred to in this document as OleTx.

The MSDTC Connection Manager: OleTx Transaction Protocol is a concrete manifestation of the Two-
Phase Commit protocol for coordinating the work of multiple parties in a distributed system. This
document specifies the syntax and semantics of the protocol but does not attempt to provide a primer

on transaction processing in general.

The Two-Phase Commit protocol ensures that work associated with a transaction is atomic across
multiple participating resources. Each resource is controlled by a resource manager. A resource
manager has the responsibility of interacting with a transaction manager to perform the steps
necessary to implement the Two-Phase Commit protocol.

In the first phase of the Two-Phase Commit protocol, the transaction manager asks each participating

resource manager to "prepare" for transaction commit. Each resource manager then decides if it can

allow the transaction commit to continue or if the transaction will be aborted. Each resource manager
informs the transaction manager of its decision through either a "prepared" notification or a "rollback"
notification. If all participating resource managers respond with "prepared", thus agreeing that the
transaction commit can continue, the transaction manager makes the outcome decision permanent
and moves on to the second phase of the Two-Phase Commit protocol.

In the second phase of the Two-Phase Commit protocol, the transaction manager informs all the

resource managers of the final outcome decision for the transaction. This step is necessary because
when a resource manager provides a "prepared" vote in the first phase, it is in an "in-doubt" state,
pending the outcome of the transaction. The resource manager has promised to commit its work on
the transaction, but because the final outcome of the transaction is unknown, it cannot yet treat the
updates as permanent. The transaction manager informs each resource manager that the transaction
either committed or aborted during this second phase. In the case of a commit decision, the resource
managers are responsible for acknowledging to the transaction manager that they have received the

commit notification. This step is required because the transaction manager has the responsibility of
retaining the committed outcome of the transaction until all resource managers have acknowledged

that they have received the outcome and have confirmed that they will not request them again.

The Two-Phase Commit protocol is also used between two transaction managers when a transaction
is distributed between them. The originating transaction manager is considered the superior, while the
receiving transaction manager is considered subordinate. With respect to the Two-Phase Commit

protocol, the superior transaction manager asks the subordinate transaction manager to
"prepare" in the first phase, and the subordinate transaction manager then performs the Two-Phase
Commit protocol with its resource managers and subordinate transaction managers, if any, before
responding "prepared" back to the superior transaction manager. In the second phase, the outcome of
the transaction is communicated from the superior to the subordinate, and the subordinate
acknowledges its receipt.

This commit coordination ensures that either all of the resource managers end up committing their

work on a transaction, or none of them does, thereby guaranteeing atomicity of the data updated by a
single transaction.

Section 1.3.1, covering the transaction lifetime, provides a more complete description of the Two-
Phase Commit protocol. Section 10.4 of [GRAY] also provides an excellent description.

The MSDTC Connection Manager: OleTx Transaction Protocol uses the transports protocol described in
[MS-CMPO], and the multiplexing protocol described in [MS-CMP], as a transport layer. This protocol
provides concrete mechanisms for beginning, propagating, and completing atomic transactions. It also

provides mechanisms for coordinating agreement on a single atomic outcome for each transaction
and for reliably distributing that outcome to all participants in the transaction.

%5bMS-CMPO%5d.pdf#Section_d2403ca533fa432997f5825ad0868bf6
%5bMS-CMP%5d.pdf#Section_1970a8a0799d4308b9274e4ea23dc225

28 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

This protocol is applicable to application scenarios where atomic transaction processing is a
requirement. This protocol is usable in network topologies where the transports protocol, together

with the multiplexing protocol, are a viable network transport for establishing long-lived session
relationships between the participants in an atomic transaction.

Sections 1.5, 1.8, 1.9, 2, and 3 of this specification are normative. All other sections and examples in
this specification are informative.

1.1 Glossary

This document uses the following terms:

abort outcome: A possible outcome of an atomic transaction that indicates that the work
performed during the lifetime of the transaction is discarded after the transaction completes.
An abort outcome is reached when at least one transaction participant does not agree to
commit the transaction.

abort request: An action that a participant performs to force a transaction to reach an abort

outcome.

acceptor: A participant that receives a session or connection request. This role is also known as
the "subordinate".

ACID: A term that refers to the four properties that any database system must achieve in order to
be considered transactional: Atomicity, Consistency, Isolation, and Durability [GRAY].

active phase: The time during the lifetime of an atomic transaction before the commit request
when the participants in the transaction (applications and resource managers) perform
all their intended work operations inside the transaction.

application: A participant that is responsible for beginning, propagating, and completing an atomic
transaction. An application communicates with a transaction manager in order to begin and
complete transactions. An application communicates with a transaction manager in order to
marshal transactions to and from other applications. An application also communicates in

application-specific ways with a resource manager in order to submit requests for work on
resources.

atomic transaction: A shared activity that provides mechanisms for achieving the atomicity,
consistency, isolation, and durability (ACID) properties when state changes occur inside
participating resource managers.

begin request: The action that is performed by a root application in order to create a new
atomic transaction.

client: A computer on which the remote procedure call (RPC) client is executing.

commit outcome: One of the outcomes of an atomic transaction. The commit outcome

indicates that the work performed during the lifetime of the transaction will be retained after
the transaction has completed, as specified by the ACID properties. A commit outcome is
reached when all transaction participants agree to commit the transaction.

commit request: The action that is performed by a root application to initiate the Two-Phase
Commit Protocol for an atomic transaction.

connection: In OleTx, an ordered set of logically related messages. The relationship between the
messages is defined by the higher-layer protocol, but they are guaranteed to be delivered

exactly one time and in order relative to other messages in the connection.

connection type: A specific set of interactions between participants in an OleTx protocol that
accomplishes a specific set of state changes. A connection type consists of a bidirectional

29 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

sequence of messages that are conveyed by using the MSDTC Connection Manager: OleTx
Transports Protocol and the MSDTC Connection Manager: OleTx Multiplexing Protocol transport

protocol, as described in [MS-CMPO] and [MS-CMP]. A specified transaction typically involves
many different connection types during its lifetime.

contact identifier: A universally unique identifier (UUID) that identifies a partner in the MSDTC
Connection Manager: OleTx Transports Protocol. These UUIDs are frequently converted to and
from string representations. This string representation must follow the format specified in
[C706] Appendix A. In addition, the UUIDs must be compared, as specified in [C706] Appendix
A.

core transaction manager facet: The facet that acts as the internal coordinator of each
transaction that is inside the transaction manager. The core transaction manager facet

communicates with other facets in its transaction manager to ensure that each transaction is
processed correctly. To accomplish this, the core transaction manager facet maintains critical
transaction state, in both volatile memory and in a durable store, such as in a log file.

distributed transaction: A transaction that updates data on two or more networked computer

systems. Distributed transactions extend the benefits of transactions to applications that
must update distributed data.

durable resource: A resource whose state is expected to be retained beyond the lifetime of a
particular resource manager connection. Durable resources are managed by durable
resource managers.

durable resource manager: A resource manager that manages resources whose states are
expected to be maintained beyond the lifetime of a particular resource manager connection.

endpoint: A network-specific address of a remote procedure call (RPC) server process for remote
procedure calls. The actual name and type of the endpoint depends on the RPC protocol

sequence that is being used. For example, for RPC over TCP (RPC Protocol Sequence
ncacn_ip_tcp), an endpoint might be TCP port 1025. For RPC over Server Message Block (RPC
Protocol Sequence ncacn_np), an endpoint might be the name of a named pipe. For more
information, see [C706].

enlistment: The relationship between a participant and a transaction manager in an atomic
transaction. The term typically refers to the relationship between a resource manager and its
transaction manager, or between a subordinate transaction manager facet and its

superior transaction manager facet.

extended whereabouts: The data that is provided by a protocol extension and that indicates
its network endpoint location and other information that is relevant to the protocol
extension.

facet: In OleTx, a subsystem in a transaction manager that maintains its own per-transaction
state and responds to intra-transaction manager events from other facets. A facet can also

be responsible for communicating with other participants of a transaction.

globally unique identifier (GUID): A term used interchangeably with universally unique
identifier (UUID) in Microsoft protocol technical documents (TDs). Interchanging the usage of

these terms does not imply or require a specific algorithm or mechanism to generate the value.
Specifically, the use of this term does not imply or require that the algorithms described in
[RFC4122] or [C706] must be used for generating the GUID. See also universally unique
identifier (UUID).

In Doubt outcome: One of the outcomes of an atomic transaction. The In Doubt outcome
indicates that a commit request was issued by the root application but that the transaction
manager cannot ascertain the actual commit or abort decision.

initiator: A participant that originates a session or connection request.

%5bMS-CMPO%5d.pdf#Section_d2403ca533fa432997f5825ad0868bf6
%5bMS-CMP%5d.pdf#Section_1970a8a0799d4308b9274e4ea23dc225
http://go.microsoft.com/fwlink/?LinkId=89824
http://go.microsoft.com/fwlink/?LinkId=90460

30 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

message tag (MTAG): A message that is sent between participants in the context of connections.

NULL GUID: A GUID of all zeros.

OleTx: A comprehensive distributed transaction manager processing protocol that uses the
protocols specified in the following document(s): [MS-CMPO], [MS-CMP], [MS-DTCLU], [MS-

DTCM], [MS-DTCO], [MC-DTCXA], [MS-TIPP], and [MS-CMOM].

outcome: One of the three possible results (Commit, Abort, In Doubt) reachable at the end of a
life cycle for an atomic transaction.

participant: Any of the parties that are involved in an atomic transaction and that have a stake
in the operations that are performed under the transaction or in the outcome of the
transaction ([WSAT10], [WSAT11]).

Phase One enlistment: An enlistment that indicates that the subordinate participant

participates in Phase One.

Phase One participant: A participant in a Phase One enlistment.

Phase Two enlistment: An enlistment that indicates that the subordinate participant
participates in Phase Two.

Phase Zero: A phase in distributed transaction processing that is composed of one or more Phase
Zero waves. At the beginning of a Phase Zero wave, all Phase Zero participants are notified

that the transaction has entered Phase Zero. While the participants process the Phase Zero
notification, they can continue to marshal the transaction to new participants. Consequently,
participating transaction managers can still accept new enlistments during Phase Zero.

Phase Zero enlistment: An enlistment that indicates that the subordinate participant participates
in Phase Zero.

Phase Zero participant: A participant with a Phase Zero enlistment.

Phase Zero wave: A discrete stage inside Phase Zero processing in which Phase Zero notifications

are sent to all known Phase Zero enlistments. New Phase Zero enlistments that appear during a
Phase Zero wave are processed during the next Phase Zero wave. The process is repeated until
a Phase Zero wave is processed without the creation of new Phase Zero enlistments.

presumed abort: An optimization of the Two-Phase Commit Protocol in which a transaction
manager omits persisting transaction abort outcomes from a durable store.

protocol extension: An addition of new integrated behavior to an existing protocol.

pull propagation: An operation that enables the untargeted marshaling of a transaction from

one application or resource manager to another. Pull propagation allows the source
participant to marshal the transaction without the prior knowledge of the contact information
of the transaction manager of the destination participant.

push propagation: An operation that enables the targeted marshaling of a transaction from one
application or resource manager to another. For marshaling the transaction, push

propagation requires the source participant to have prior knowledge about the contact

information of the transaction manager of the destination participant.

recovery: The process of reestablishing connectivity and synchronizing views on the outcome of
transactions between two participants after a transient failure. Recovery occurs either between a
resource manager and a transaction manager, or between a Superior Transaction Manager Facet
and a Subordinate Transaction Manager Facet.

resource: A logical entity or unit of data whose state changes in accordance with the outcome of
an atomic transaction. Resources are either durable or volatile.

%5bMS-DTCLU%5d.pdf#Section_09c6c3c965a74814ad32160d292f8dcb
%5bMS-DTCM%5d.pdf#Section_7dbf234d2c1540b79a20812f5e3964ec
%5bMS-DTCM%5d.pdf#Section_7dbf234d2c1540b79a20812f5e3964ec
%5bMS-DTCO%5d.pdf#Section_c367c57133f344ac85cb4b9ebbb2779d
%5bMC-DTCXA%5d.pdf#Section_e4c50686e0134cf69515a0e821eb5ed9
%5bMS-TIPP%5d.pdf#Section_8a046f2abcc149ebad9c3891ce37d796
%5bMS-CMOM%5d.pdf#Section_e4e4626dcb7a461983150acffe974858
http://go.microsoft.com/fwlink/?LinkId=113066
http://go.microsoft.com/fwlink/?LinkId=113067

31 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

resource manager (RM): The participant that is responsible for coordinating the state of a
resource with the outcome of atomic transactions. For a specified transaction, a resource

manager enlists with exactly one transaction manager to vote on that transaction outcome and
to obtain the final outcome. A resource manager is either durable or volatile, depending on its

resource.

resource manager identifier: The GUID that uniquely identifies the resource manager.

resource manager session identifier: The GUID that uniquely identifies a particular session
between the resource manager and a transaction manager.

rollback: Synonymous with abort.

root application: The application that is responsible for beginning and completing an atomic
transaction. The root application communicates with a root transaction manager in order

to begin and complete transactions.

root transaction manager: The specific transaction manager that processes both the Begin
Request and the Commit Request for a specified transaction. A specified transaction has

exactly one root transaction manager.

server: A computer on which the remote procedure call (RPC) server is executing.

session: In OleTx, a transport-level connection between a Transaction Manager and another

Distributed Transaction participant over which multiplexed logical connections and messages
flow. A session remains active so long as there are logical connections using it.

single-phase commit: An optimization of the Two-Phase Commit Protocol in which a transaction
manager delegates the right to decide the outcome of a transaction to its only subordinate
participant. This optimization can result in an In Doubt outcome.

subordinate participant: A role that is taken by a participant that is responsible for voting on
the outcome of an atomic transaction. For a specified transaction, the set of subordinate

participants is the set of all resource managers and the set of all subordinate transaction
managers.

subordinate transaction manager: A role taken by a transaction manager that is responsible
for voting on the outcome of an atomic transaction. A subordinate transaction manager
coordinates the voting and notification of its subordinate participants on behalf of its superior
transaction manager. When communicating with those subordinate participants, the
subordinate transaction manager acts in the role of superior transaction manager. The

root transaction manager is never a subordinate transaction manager. A subordinate
transaction manager has exactly one superior transaction manager.

superior transaction manager: A role taken by a transaction manager that is responsible for
gathering outcome votes and providing the final transaction outcome. A root transaction
manager can act as a superior transaction manager to a number of subordinate
transaction managers. A transaction manager can act as both a subordinate transaction

manager and a superior transaction manager on the same transaction.

transaction: In OleTx, an atomic transaction.

transaction description: An implementation-specific string that is associated with an atomic
transaction and is often used to provide human-readable information about the transaction.
Description strings are typically provided by the higher-layer software.

transaction identifier: The GUID that uniquely identifies an atomic transaction.

32 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

transaction lifetime: The lifetime of an atomic transaction. The transaction lifetime extends
from the time when the root transaction manager processes a begin request to the time

when all participants have forgotten the transaction.

transaction manager: The party that is responsible for managing and distributing the outcome of

atomic transactions. A transaction manager is either a root transaction manager or a
subordinate transaction manager for a specified transaction.

transaction marshaling: The act of serializing and deserializing the information that is needed to
carry out a transaction propagation action on a specified transaction.

transaction propagation: The act of coordinating two transaction managers to work together on
a single atomic transaction. When propagating a transaction to a transaction manager that is
not already a participant in the transaction, that transaction manager plays the role of

subordinate transaction manager to the originating transaction manager, which will play the role
of superior transaction manager. When propagating a transaction to a transaction manager that
is already a participant in the transaction, no new superior or subordinate relationship is
established.

transient failure: Any event that could result in a loss of transport connectivity between
participants, such as a software crash, a software restart, or a temporary problem with

network connections.

two-phase commit: An agreement protocol that is used to resolve the outcome of an atomic
transaction in response to a commit request from the root application. Phase One and Phase
Two are the distinct phases of the Two-Phase Commit Protocol.

Unicode: A character encoding standard developed by the Unicode Consortium that represents
almost all of the written languages of the world. The Unicode standard [UNICODE5.0.0/2007]
provides three forms (UTF-8, UTF-16, and UTF-32) and seven schemes (UTF-8, UTF-16, UTF-16

BE, UTF-16 LE, UTF-32, UTF-32 LE, and UTF-32 BE).

volatile resource: A resource whose value is not expected to be retained beyond the lifetime of
a particular resource manager connection.

volatile resource manager: A resource manager that manages volatile resources. A volatile
resource manager does not perform recovery operations.

voter: A participant in an atomic transaction that contributes to the final outcome of the
transaction but does not manage access to durable resources or require recovery services.

A voter votes on the outcome of the transaction, but it is provided with only best-effort
outcome notifications by the transaction manager. A volatile resource manager typically
acts as a voter.

voter enlistment: An enlistment that indicates that the voter participates in Phase One.

whereabouts: Data that indicates the network endpoint location and properties of a transaction
manager.

work: The set of state changes that are applied to resources inside an atomic transaction.

MAY, SHOULD, MUST, SHOULD NOT, MUST NOT: These terms (in all caps) are used as defined
in [RFC2119]. All statements of optional behavior use either MAY, SHOULD, or SHOULD NOT.

1.2 References

Links to a document in the Microsoft Open Specifications library point to the correct section in the
most recently published version of the referenced document. However, because individual documents
in the library are not updated at the same time, the section numbers in the documents may not
match. You can confirm the correct section numbering by checking the Errata.

http://go.microsoft.com/fwlink/?LinkId=154659
http://go.microsoft.com/fwlink/?LinkId=90317
http://msdn.microsoft.com/en-us/library/dn781092.aspx

33 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

1.2.1 Normative References

We conduct frequent surveys of the normative references to assure their continued availability. If you
have any issue with finding a normative reference, please contact dochelp@microsoft.com. We will

assist you in finding the relevant information.

[C193] The Open Group, "Distributed TP: The XA Specification", February 1992,
https://www2.opengroup.org/ogsys/catalog/c193

[C706] The Open Group, "DCE 1.1: Remote Procedure Call", C706, August 1997,

https://www2.opengroup.org/ogsys/catalog/c706

[ISO/IEC-8859-1] International Organization for Standardization, "Information Technology -- 8-Bit
Single-Byte Coded Graphic Character Sets -- Part 1: Latin Alphabet No. 1", ISO/IEC 8859-1, 1998,
http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=28245

Note There is a charge to download the specification.

[MS-CMOM] Microsoft Corporation, "MSDTC Connection Manager: OleTx Management Protocol".

[MS-CMPO] Microsoft Corporation, "MSDTC Connection Manager: OleTx Transports Protocol".

[MS-CMP] Microsoft Corporation, "MSDTC Connection Manager: OleTx Multiplexing Protocol".

[MS-CMRP] Microsoft Corporation, "Failover Cluster: Management API (ClusAPI) Protocol".

[MS-DTYP] Microsoft Corporation, "Windows Data Types".

[MS-RRP] Microsoft Corporation, "Windows Remote Registry Protocol".

[MS-TIPP] Microsoft Corporation, "Transaction Internet Protocol (TIP) Extensions".

[MS-WKST] Microsoft Corporation, "Workstation Service Remote Protocol".

[MS-WSRVCAT] Microsoft Corporation, "WS-AtomicTransaction (WS-AT) Version 1.0 Protocol
Extensions".

[NETBEUI] IBM Corporation, "LAN Technical Reference: 802.2 and NetBIOS APIs", 1986,

http://publibz.boulder.ibm.com/cgi-bin/bookmgr_OS390/BOOKS/BK8P7001/CCONTENTS

[RFC1001] Network Working Group, "Protocol Standard for a NetBIOS Service on a TCP/UDP
Transport: Concepts and Methods", RFC 1001, March 1987, http://www.ietf.org/rfc/rfc1001.txt

[RFC1002] Network Working Group, "Protocol Standard for a NetBIOS Service on a TCP/UDP
Transport: Detailed Specifications", STD 19, RFC 1002, March 1987, http://www.rfc-
editor.org/rfc/rfc1002.txt

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC

2119, March 1997, http://www.rfc-editor.org/rfc/rfc2119.txt

[RFC2371] Lyon, J., Evans, K., and Klein, J., "Transaction Internet Protocol Version 3.0", RFC 2371,
July 1998, http://www.ietf.org/rfc/rfc2371.txt

[RFC4122] Leach, P., Mealling, M., and Salz, R., "A Universally Unique Identifier (UUID) URN
Namespace", RFC 4122, July 2005, http://www.ietf.org/rfc/rfc4122.txt

mailto:dochelp@microsoft.com
http://go.microsoft.com/fwlink/?LinkId=89820
http://go.microsoft.com/fwlink/?LinkId=89824
http://go.microsoft.com/fwlink/?LinkId=90689
%5bMS-CMOM%5d.pdf#Section_e4e4626dcb7a461983150acffe974858
%5bMS-CMPO%5d.pdf#Section_d2403ca533fa432997f5825ad0868bf6
%5bMS-CMP%5d.pdf#Section_1970a8a0799d4308b9274e4ea23dc225
%5bMS-CMRP%5d.pdf#Section_ba4117c0530e4e70a0854b4cf5bbf193
%5bMS-DTYP%5d.pdf#Section_cca2742956894a16b2b49325d93e4ba2
%5bMS-RRP%5d.pdf#Section_0fa3191dbb79490a81bd54c2601b7a78
%5bMS-TIPP%5d.pdf#Section_8a046f2abcc149ebad9c3891ce37d796
%5bMS-WKST%5d.pdf#Section_5bb08058bc364d3cabebb132228281b7
%5bMS-WSRVCAT%5d.pdf#Section_e94b4e6708ee43c6aaa741033f8e11fd
%5bMS-WSRVCAT%5d.pdf#Section_e94b4e6708ee43c6aaa741033f8e11fd
http://go.microsoft.com/fwlink/?LinkId=90224
http://go.microsoft.com/fwlink/?LinkId=90260
http://go.microsoft.com/fwlink/?LinkId=90261
http://go.microsoft.com/fwlink/?LinkId=90261
http://go.microsoft.com/fwlink/?LinkId=90317
http://go.microsoft.com/fwlink/?LinkId=90338
http://go.microsoft.com/fwlink/?LinkId=90460

34 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

1.2.2 Informative References

[GRAY] Gray, J. and Reuter, A., "Transaction Processing: Concepts and Techniques", San Mateo, CA:
Morgan Kaufmann Publishers, 1993, ISBN: 1558601902.

[MC-DTCXA] Microsoft Corporation, "MSDTC Connection Manager: OleTx XA Protocol".

[MS-COM] Microsoft Corporation, "Component Object Model Plus (COM+) Protocol".

[MS-DTCLU] Microsoft Corporation, "MSDTC Connection Manager: OleTx Transaction Protocol Logical
Unit Mainframe Extension".

[MS-DTCM] Microsoft Corporation, "MSDTC Connection Manager: OleTx Transaction Internet Protocol".

[MS-MQMP] Microsoft Corporation, "Message Queuing (MSMQ): Queue Manager Client Protocol".

[MS-MQRR] Microsoft Corporation, "Message Queuing (MSMQ): Queue Manager Remote Read

Protocol".

[MSDN-ANSI] Microsoft Corporation, "Unicode and Character Sets", http://msdn.microsoft.com/en-
us/library/dd374083.aspx

1.3 Overview

This section presents a brief overview of the following topics:

 The life cycle of a transaction, including the Two-Phase Commit protocol

 The distinct roles that are played by participants in transaction processing

 Transaction recovery details

 Transaction marshaling and propagation details

1.3.1 Transaction Lifetime

At a general level, a transaction consists of a set of operations that an application or a set of

applications treats as an atomic unit. These applications typically use one or more resource managers
to modify and store the state that is affected by the transaction. The applications and resource
managers make use of transaction managers to obtain a set of services. These roles are described
further in section 1.3.3.

The lifetime of a transaction begins when an application determines that it needs a new transaction.
The application assumes the role of root application and issues a Begin request to the root
transaction manager. When a new transaction is created, either the root application or the root

transaction manager assigns it an identifier that is unique in both time and space.

After the transaction is created, it enters the active phase. In the active phase, applications and
resource managers perform all their intended actions inside the transaction.

Resource managers that perform work inside an atomic transaction contact their transaction manager
to enlist on the transaction. By enlisting in a transaction, the resource manager is agreeing to
participate in the Two-Phase Commit Protocol.

Applications and resource managers often share a transaction with a participant that is not located in

the same operating system process or execution context. In this case, the application marshals the
transaction to the other participant over an implementation-specific communication mechanism. If the
receiving participant does not share a transaction manager with the sending participant, a
transaction propagation handshake occurs to coordinate the transaction managers at both the

%5bMC-DTCXA%5d.pdf#Section_e4c50686e0134cf69515a0e821eb5ed9
%5bMS-COM%5d.pdf#Section_a846e48dbbc94b289650601810cf3af0
%5bMS-DTCLU%5d.pdf#Section_09c6c3c965a74814ad32160d292f8dcb
%5bMS-DTCLU%5d.pdf#Section_09c6c3c965a74814ad32160d292f8dcb
%5bMS-DTCM%5d.pdf#Section_7dbf234d2c1540b79a20812f5e3964ec
%5bMS-MQMP%5d.pdf#Section_8e379aa2802d4fccb6a66203e4606fa9
%5bMS-MQRR%5d.pdf#Section_9edbc8fa02ad4c79804f6bb8f430aac1
%5bMS-MQRR%5d.pdf#Section_9edbc8fa02ad4c79804f6bb8f430aac1
http://go.microsoft.com/fwlink/?LinkId=89952
http://go.microsoft.com/fwlink/?LinkId=89952

35 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

sender and receiver of the transaction. After the transaction is successfully marshaled and (if needed)
propagated, the receiving participant can perform operations on the transaction with its own

transaction manager and also marshal the transaction to further participants.

As transaction enlistment and propagation occurs, the collection of resource managers and

transaction managers relate to each other in a hierarchy known as a transaction tree.

The following figure depicts the transaction tree.

Figure 1: Transaction tree

Eventually, the root application that began the transaction determines that no more work is to be

performed under the transaction. When that occurs, the application sends a Commit request to the
root transaction manager to begin the process of completing the transaction.

When the root transaction manager receives the Commit request, it begins the process of determining
the transaction outcome and communicating that outcome to all interested participants. That process
begins with zero or more Phase Zero waves followed by Phase One and Phase Two of the Two-Phase

Commit sequence.

1.3.1.1 Phase Zero

When a Commit request is issued by the root application, the transaction first enters Phase Zero. If
there are no Phase Zero participants, the transaction leaves Phase Zero and proceeds to Phase
One.

36 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Phase Zero is composed of one or more Phase Zero waves. At the beginning of a Phase Zero wave, all
Phase Zero participants are notified that the transaction has entered Phase Zero. While the

participants process the Phase Zero notification, they can continue to marshal the transaction to new
participants. Consequently, participating transaction managers can still accept new enlistments during

Phase Zero.

When a Phase Zero participant completes its Phase Zero processing, it sends a Phase Zero completion
notification back to the transaction manager.

If any of the Phase Zero participants fail or issue an Abort request during the Phase Zero wave, the
current Phase Zero wave is terminated and the transaction immediately moves to the aborting state,
which is discussed in section 1.3.2.1.

Otherwise, after completion notifications are received from all Phase Zero participants:

 If no new Phase Zero enlistments were created during the current Phase Zero wave, the
transaction proceeds to Phase One.

 If one or more new Phase Zero enlistments were created during the current Phase Zero wave,

the transaction executes another Phase Zero wave with the new Phase Zero participants.

The following figure shows the overall Phase Zero flow.

Figure 2: Transaction manager Phase Zero flow

1.3.1.2 Phase One

When Phase One begins, all transaction participants are now presumed to have completed their work
inside the transaction.

During Phase One, each Phase One participant is asked to vote on the outcome of the transaction.
Each participant vote can have one of three possible results:

37 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 Read Only: The participant agrees for the transaction to Commit but does not require an outcome
notification.

 Prepared: The participant agrees for the transaction to Commit and requires an outcome
notification.

 Aborted: The participant requires that the transaction abort.

Before a participant can vote Prepared, it performs whatever actions are necessary to be able to
process an order to Commit or an order to Abort at some point in the future. Note that the request for
a vote polls the transaction tree from the root transaction manager down to the leaf participants.
When a subordinate transaction manager receives a request for a vote, it will first issue that request
to all its immediate subordinates and process their votes before voting itself.

When all votes are collected by the root transaction manager, a decision about the transaction

outcome is made. If every vote was either Read Only or Prepared, the root transaction manager
attempts to record a Commit outcome decision. If successful, the Commit outcome decision is
officially made.

Otherwise, if one or more of the votes is Aborted or if a Commit outcome decision cannot be
successfully recorded, the transaction manager makes an Abort outcome decision.

After an outcome decision is made, the root transaction manager proceeds to Phase Two in order to

distribute outcome notification messages throughout the transaction tree.

The following figure depicts the Phase One flow.

38 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Figure 3: Transaction manager Phase One flow

1.3.1.3 Phase Two

When Phase Two begins, the root transaction manager has determined the transaction outcome.

If the transaction outcome is a Commit outcome, the transaction enters the committing state. Each
participant that voted Prepared is sent an order to commit. The participants perform any necessary
commit processing and respond with a committed notification.

If the transaction outcome is an Abort outcome, the transaction enters the Aborting state. Each
participant that voted Prepared is sent an order to abort. The participants perform any necessary
abort processing, and respond with an Aborted notification.

If a Prepared participant loses contact with its transaction manager, it is said to be In Doubt. If it is a
durable resource manager, it attempts to reconnect to the transaction manager and perform
recovery in order to learn the outcome of the transaction. See section 1.3.4 for recovery details.

In general, participants (including the root application) are sent the outcome decision notification in
parallel.

Phase Two is complete when the root transaction manager sends the outcome decision notification to
all the subordinate participants, the root transaction manager receives the reply notifications from

39 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

all the subordinate participants, and the root transaction manager does the necessary work to forget
the transaction.

The following figure shows the Phase Two flow.

Figure 4: Transaction manager Phase Two flow

1.3.2 Additional Considerations

In addition to the two-phase commit processing described in the previous section, there are two more

cases to consider:

 Unilateral abort

 Single-phase commit

40 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

1.3.2.1 Unilateral Abort

Until a participant votes on the outcome of the transaction, any participant can decide to unilaterally
stop the transaction by issuing an Abort request to its transaction manager. This ability is known as a

Unilateral Abort.

After a transaction manager receives an Abort request from one of its participants, it immediately
transitions the transaction to the Aborting state, which guarantees an Abort outcome. All other
participants will be notified of the Abort outcome, although it is possible that the root application does
not discover the Abort outcome until it attempts to complete the transaction or perform some other
operation involving the transaction manager or another participant.

After a specified transaction manager enters the Aborting state, it does not issue any further Phase

Zero notifications or Phase One requests to vote. For a transaction that spans two or more transaction
managers due to propagation, it is possible for the Abort outcome decision to race with other Phase
Zero or Phase One activity as it is communicated between the transaction managers.

The following figure shows the Unilateral Abort flow.

Figure 5: Unilateral Abort flow

1.3.2.2 Single-Phase Commit

If a transaction manager has exactly one subordinate Phase One enlistment, the transaction
manager attempts to perform the single-phase commit optimization. In this case, the transaction

manager sends the subordinate participant a request to perform a single-phase commit, instead of the
standard Phase One Prepare request. This optimization delegates the right to decide the transaction
outcome to the subordinate.

The subordinate accepts this delegation by making an outcome decision and eventually notifying the
transaction manager; or it rejects the Single-Phase Commit request by responding Prepared. In the
latter case, the transaction manager makes its own outcome decision and then engages in a standard
Phase Two exchange with the participant.

41 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

There is a possible disadvantage to this optimization: if the transaction manager loses contact with the
subordinate participant after sending the Single-Phase Commit request but before receiving an

outcome notification, it has no reliable mechanism for recovering the actual outcome of the
transaction. Consequently, the transaction manager sends an In Doubt outcome to any applications

or voters awaiting informational outcome notification.

The single-phase commit optimization can be used by any transaction manager that has exactly one
Phase One subordinate enlistment, not just the root transaction manager. For example, if transaction
manager A has only transaction manager B as a subordinate enlistment, then A can use the single-
phase commit optimization with B. If in the same transaction, B has only transaction manager C as a
subordinate enlistment, it too can use the single-phase commit optimization with C. This is true
regardless of the number of subordinate enlistments that are registered with C.

Note that a nonroot transaction manager performs only the single-phase Commit optimization if its
own superior transaction manager has sent it a Single-Phase Commit request.

The following figure shows the Single-Phase Commit flow.

Figure 6: Single-Phase Commit flow

1.3.3 Transaction Roles

This protocol enables transaction processing to be distributed among two or more distinct participants.
These participants are categorized according to three specialized roles that perform specific functions
inside the transaction:

 Application role

 Resource manager role

 Transaction manager role

Each role is functionally independent of the other two. It is possible to implement the protocol
functions that are required by any of these three roles without implementing the protocol functions

42 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

that are required by the other two. For example, it is possible to implement a transactional resource
manager without building a transaction manager or a transaction-aware application.

The following graphic depicts the transaction roles.

Figure 7: Transaction roles

1.3.3.1 Application Role

The application role is generally performed by user software programs that make use of transaction
processing services in order to obtain greater reliability or reduce the complexity of error-handling

tasks.

The application role is typically responsible for performing the following tasks:

 Determining when to begin a transaction

 Marshaling the transaction to other applications and to resource managers

 Propagating the transaction from one transaction manager to another

 Determining when to complete a transaction

 Performing administrative operations against a specific transaction

 Performing administrative operations against the transaction manager

43 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

In general, the motivations behind these tasks are application-specific. The protocol mechanisms by
which these tasks can be accomplished are discussed in sections 2 and 3.

1.3.3.2 Resource Manager Role

The resource manager role is generally performed by software programs that manage transactional
resources. Databases and queues are the most common examples of such programs.

This protocol supports three types of enlistments: Phase Zero enlistments, Phase One enlistments,
and voter enlistments. These enlistment types correspond to three common categories of resource

manager:

 Caching resource managers appear like a durable resource manager to an application, but they
actually delegate their durable state changes to another resource manager that provides true
durability. Caching resource managers typically use Phase Zero enlistments.

 Durable resource managers manage access to durable resources. They are expected to support
recovery. Durable resource managers typically use Phase One enlistments.

 Volatile resource managers manage access to volatile resources whose state does not persist

beyond the lifetime of the resource manager process. Volatile resource managers typically use
voter enlistments.

The resource manager role is typically responsible for the following tasks:

 Providing applications with access to data in a transactional manner. This function is specific to the
implementation of a resource manager.

 Registering with a transaction manager and performing recovery operations for all In Doubt
transactions.

 Enlisting for various two-phase Commit notifications.

 Voting on transaction outcomes in accord with the implementation-specific policies of the resource

manager.

In general, the motivations behind these tasks are application-specific. The specific protocol
mechanisms by which these tasks are accomplished are discussed in sections 2 and 3.

1.3.3.3 Transaction Manager Role

The Transaction Manager Role is generally performed by specialized middleware software programs
that provide transactional services to applications and resource managers.

The transaction manager role is typically responsible for the following tasks:

 Providing the following services to applications and resource managers:

 Beginning transactions

 Completing transactions

 Coordinating agreement with participants on the outcome of the transaction

 Reaching the decision to commit

 Ensuring the outcome decision is reliably distributed

 Coordinating the process of recovery if failures occur

44 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 Coordinating the outcome of individual transactions by using the Two-Phase Commit protocol.

 Coordinating recovery with other participants after a process or communication failure. See

section 1.3.4 for recovery details.

A transaction manager is best understood as the aggregation of several cooperating software modules

that work together to provide the services previously mentioned. This document calls these software
modules facets, and assumes the presence of the following five facets:

 A facet that acts as a core transaction manager manager

 A facet that communicates with applications

 A facet that communicates with resource managers

 A facet that acts as a superior transaction manager

 A facet that acts as a subordinate transaction manager

A transaction manager provides implementation-specific mechanisms to allow the facets to
communicate with one another within the transaction manager itself.

In contrast, the transaction manager facets use the MSDTC Connection Manager: OleTx Transports
Protocol as specified in [MS-CMPO], and the MSDTC Connection Manager: OleTx Multiplexing Protocol
as specified in [MS-CMP], as transports for this protocol when they communicate with other
participants (for example, applications, resource managers, and remote transaction managers). The

subprotocols that are used to provide services to these participants are known as connection types.
The specific connection types that are used in this protocol are specified in detail in section 3.

These facets are functionally dependent upon each other. A general-purpose transaction manager is
composed of all five of these facets.

The following figure shows the transaction manager facets.

%5bMS-CMPO%5d.pdf#Section_d2403ca533fa432997f5825ad0868bf6
%5bMS-CMP%5d.pdf#Section_1970a8a0799d4308b9274e4ea23dc225

45 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Figure 8: Transaction manager facets

1.3.3.3.1 Core Transaction Manager Facet

The Core Transaction Manager Facet is a logical construct in the context of this protocol. It never

establishes network communication with any other transaction participant. It communicates with the
other transaction manager facets through implementation-specific mechanisms.

1.3.3.3.2 Transaction Manager Communication with an Application Facet

When the transaction manager is communicating with an application facet, it provides the following
services to applications:

 Transaction creation.

 Transaction propagation to a remote transaction manager.

 Transaction propagation by providing an existing transaction to the subordinate transaction
manager facet for propagation.

 Transaction completion.

 Administrative operations against a specific transaction. These operations include:

 Setting the time-out on a transaction.

46 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 Obtaining transaction details, such as information about the superior transaction manager
facet and the list of subordinate participants.

 Manually resolving the outcome of a transaction.

 Requesting that the transaction manager provide details of the transaction in its

implementation-specific trace log.

 Administrative operations against the transaction manager. These operations include the ability to
obtain information about the security configuration of the transaction manager.

1.3.3.3.3 Transaction Manager Communication with a Resource Manager Facet

When the transaction manager is communicating with a resource manager facet, it provides the
following services to resource managers:

 Resource manager registration

 Recovery and outcome notification for In Doubt transactions

 Transaction enlistment for Phase Zero, Phase One, and voter participants

 Phase Zero, Phase One, and Phase Two notifications inside the Two-Phase Commit protocol

1.3.3.3.4 Superior Transaction Manager Facet

The Superior Transaction Manager Facet provides the following services to subordinate transaction
manager facets:

 Acts as Superior Transaction Manager Facet to a number of subordinate transaction manager
facets in the Two-Phase Commit protocol.

 Provides recovery and outcome notification for transactions that are left in the Failed to Notify
state after a failure.

1.3.3.3.5 Subordinate Transaction Manager Facet

The Subordinate Transaction Manager Facet provides the following services to superior transaction
manager facets:

 Acts as a Subordinate Transaction Manager Facet to a superior transaction manager facet in the
Two-Phase Commit protocol.

 Provides recovery and outcome notification for transactions that are left in the In Doubt state after
a failure.

1.3.4 Transaction Recovery

The atomicity property of a transaction guarantees that all participants in the transaction receive the
same outcome. This guarantee is relaxed in the case of volatile resources such as voters but is strictly

honored for durable resource managers and transaction managers.

To honor this guarantee, transaction managers and durable resource managers have to be capable of
recovering from transient failures that can occur, such as loss of transport connectivity or a
software crash. The process of recovery involves reestablishing connectivity with other transaction
participants and exchanging the protocol messages that are required to synchronize all parties on the
actual outcome of the transaction.

After a transient failure, the transaction manager reestablishes connectivity with the following parties:

47 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 The superior transaction manager for each transaction for which the transaction manager was In
Doubt at the time of the failure

 The subordinate transaction managers for which the transaction manager was in the Failed to
Notify state at the time of the failure

After a transient failure, the resource manager reestablishes connectivity with the following parties:

 The superior transaction manager for each transaction for which the resource manager was In
Doubt at the time of the failure

The following sections describe in more detail the recovery process for each participant.

1.3.4.1 Relationship Between Recovery and Durability

Transaction managers and durable resource managers can use any mechanism they choose to
implement the durability guarantees of an atomic transaction.

At minimum:

 Before a durable resource manager or subordinate transaction manager sends a Prepared
notification to its superior transaction manager, it needs to first ensure that it can derive the

information that is needed to contact its superior transaction manager and to inquire about the
outcome of the transaction after a transient failure. This requirement is needed for the
subordinate to perform recovery on In Doubt transactions.

 Before a transaction manager can communicate the transaction outcome to a subordinate
participant or the root application, it has to first ensure that it can derive the transaction outcome
for as long as at least one durable subordinate has not acknowledged receipt of the transaction
outcome. This requirement is needed for the superior to perform recovery on Failed to Commit

transactions.

 Before a durable resource manager or subordinate transaction manager acknowledges a Commit
notification from its superior transaction manager, it has to first ensure that it will not perform

recovery on the transaction after a transient failure. This requirement allows the superior
transaction manager to implement the Presumed Abort optimization.

The information that is needed in order to be able to contact another participant is identical to the

information that was needed to establish the initial transport session with that participant, as specified
in [MS-CMPO] section 1.3.3.1.

1.3.4.2 Resource Manager Recovery

Resource manager recovery is unidirectional: the resource manager is always responsible for initiating

recovery with its transaction manager. A resource manager always performs recovery on startup,
even when it has not detected any transactions remaining in the In Doubt state. This is because the
transaction manager cannot determine when it has Failed to Notify the resource manager of specific
transaction outcomes.

The typical sequence for recovery of a resource manager is as follows:

1. The resource manager determines the list of transactions for which it is In Doubt. These are the
transactions for which it previously voted Prepared but has not yet learned the outcome.

2. The resource manager registers with its transaction manager.

3. For each In Doubt transaction, the resource manager attempts to contact the transaction manager
in order to determine the transaction outcome.

%5bMS-CMPO%5d.pdf#Section_d2403ca533fa432997f5825ad0868bf6

48 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

4. When the resource manager receives the outcome from the transaction manager, it performs any
implementation-specific actions that are required to honor the ACID properties. Also, this process

can take some time because the transaction manager can be acting as a subordinate transaction
manager and it too might still be In Doubt about the actual transaction outcome.

5. After the resource manager ensures that there are no transactions for which it is still In Doubt, it
informs the transaction manager that its recovery is complete. This allows the transaction
manager to clean up any pending transactions for which it considered that the resource manager
was in the Failed to Notify state.

1.3.4.3 Transaction Manager Recovery

Transaction manager recovery is dual-faceted. The recovering transaction manager will attempt to
recover those transactions for which it is acting as a superior transaction manager facet and those for
which it is acting as a subordinate transaction manager facet.

The typical sequence for a superior transaction manager facet to perform recovery is the following:

1. The superior transaction manager determines the list of transactions for which it is in the Failed to

Notify state. These are the transactions whose outcome has been decided but for which there
exists at least one durable subordinate participant whose receipt of that outcome cannot be
verified.

2. For each of these transactions, the superior transaction manager attempts to perform recovery by
contacting all subordinate transaction managers whose receipt of outcome cannot be verified in
order to redeliver the transaction outcome.

The typical sequence for a subordinate transaction manager facet to perform recovery is the following:

1. The subordinate transaction manager determines the list of transactions for which it is in the In
Doubt state.

2. For each of these transactions, the subordinate transaction manager attempts to contact the
superior transaction manager in order to determine the transaction outcome.

3. For each In Doubt transaction whose transaction outcome is now known, the subordinate
transaction manager proceeds to communicate the outcome to its own subordinate transaction

managers.

1.3.5 Transaction Propagation

A single transaction typically requires work to be performed by one or more resource managers for
one or more applications. Each of these applications and resource managers is typically associated

with exactly one transaction manager.

When two participants share a common transaction manager, all that is needed to share a transaction
is agreement on the transaction's unique identifier. How this unique identifier is communicated among
the applications and resource managers is implementation-specific.

However, when two participants do not share a common transaction manager, this protocol defines a
propagation mechanism that enables the two participants to notify their respective transaction
managers that a specified transaction will span the two transaction managers. Transaction

propagation allows applications and resource managers to freely marshal transactions across process
and host machine boundaries by using whatever communication mechanisms and formats they chose.

When a participant (the source) determines that it marshals a transaction to a second participant (the
destination), the participant chooses between two distinct propagation techniques:

 Push propagation

49 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 Pull propagation

Push propagation requires the source participant to have a prior knowledge about which transaction

manager the destination participant is associated with (as specified in section 1.3.5.2). In contrast,
pull propagation allows the source participant to marshal the transaction without any awareness of the

transaction manager of the destination participant (as specified in section 1.3.5.1).

Independent of the choice of push or pull propagation, after the propagation is complete, the
destination transaction manager will have enlisted with the source transaction manager to coordinate
the outcome of the transaction. In this enlistment, the source transaction manager plays the role of
superior transaction manager, and the destination transaction manager plays the role of subordinate
transaction manager.

1.3.5.1 Pull Propagation

Pull propagation enables the untargeted marshaling of a transaction from one application or resource
manager to another. Contact information for the destination transaction manager is not required to be
known by the source in advance.

The following sequence of events represents a complete pull propagation operation between two
participants:

1. When the source determines that it possesses a transaction that it wants to share with the
destination, it provides the destination with marshaling information about the transaction being
shared in an implementation-specific manner. The marshaling information needs to be sufficient
for the destination to create a Propagation Token structure, as specified in section 2.2.5.4, that
corresponds to the transaction being shared.

2. The destination contacts its own transaction manager and requests that it join the transaction by
using the marshaling information that is provided by the source application.

3. If the destination transaction manager is not already a participant in the transaction, the
destination transaction manager uses the marshaling information to contact the source transaction
manager to enlist in the transaction as a subordinate transaction manager. This inter–transaction

manager handshake is called pull propagation.

4. If the operation is successful, the destination transaction manager reports success to the
destination. The destination performs further operations on the transaction with its associated
transaction manager or marshals the transaction further to other participants.

The following figure shows a typical pull propagation.

50 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Figure 9: Transaction manager pull propagation

1.3.5.2 Push Propagation

Push propagation enables the targeted marshaling of a transaction from one participant to another.
Push propagation is available only when the source knows the contact information for the destination
transaction manager in advance.

Push propagation consists of two distinct logical operations: an export operation and an import

operation.

The following sequence of events represents a complete push propagation operation between two
participants:

1. The source obtains contact information for the destination transaction manager by using
implementation-specific means. The contact information consists of whatever the source needs to
construct an SWhereabouts structure, as specified in section 2.2.5.11. This step need be

performed only one time per destination, because the contact information is not specific to a
specified transaction or propagation.

2. When the source determines that it possesses a transaction that it wants to share with the
destination, the source asks its transaction manager to export the transaction to the destination
transaction manager by using the contact information it obtained in the previous step.

3. The source transaction manager contacts the destination transaction manager by using the
provided contact information and informs it of the existence and details of the transaction. This

inter–transaction manager handshake is the export operation of push propagation.

4. When the source transaction manager receives acknowledgment from the destination transaction
manager, the export operation is complete. If the destination transaction manager was not

51 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

already a participant in the transaction, the destination transaction manager is now enlisted as a
subordinate transaction manager at the source transaction manager, which acts as the superior

transaction manager.

5. After the source transaction manager informs the source that the transaction was successfully

exported, the source then uses an implementation-specific mechanism to marshal the exported
transaction to the destination. The marshaled information can take any form that the source and
destination agree on but is sufficient for the source to construct an STxInfo structure as specified
in section 2.2.5.10.

6. The destination uses the marshaled information that is provided by the source to request an
import operation from its transaction manager. The import operation is typically a simple
confirmation that the transaction exists and was correctly exported to the destination.

7. If the import operation is successful, the destination transaction manager reports success to the
destination. The destination performs further operations on the transaction with its associated
transaction manager or marshals the transaction further to other participants.

The following figure depicts a typical push propagation.

Figure 10: Transaction manager push propagation

1.4 Relationship to Other Protocols

The following figure illustrates the relationship between the MSDTC Connection Manager: OleTx
Transaction Protocol and the underlying protocols on which it depends.

52 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Figure 11: Protocol relationships

This protocol provides extensibility elements that are used by the following specifications:

 [MS-DTCM]

 [MS-TIPP]

 [MS-DTCLU]

 [MC-DTCXA]

 [MS-WSRVCAT]

The following protocols perform transaction marshaling by using the structures specified in section
2.2.5 and its subsections of [MS-DTCO]:

 [MS-COM]

 [MS-MQRR]

 [MS-MQMP]

1.5 Prerequisites/Preconditions

This protocol requires that all participating roles possess implementations of MSDTC Connection

Manager: OleTx Transports Protocol as specified in [MS-CMPO], and MSDTC Connection Manager:
OleTx Multiplexing Protocol as specified in [MS-CMP].

1.6 Applicability Statement

This protocol applies to scenarios where distributed atomic transaction processing is required.

Distributed transactions are generally required in scenarios where a number of applications and
resource managers cooperate to perform a set of related work items that require the ACID properties
of a distributed transaction. These properties are needed in order to make changes to persistent state
in a deterministic, correct, and highly reliable manner. Although distributed transactions are one of
several mechanisms for accomplishing this goal, they are the most efficient and understood general-

purpose solution.

This particular distributed transaction protocol requires network topologies where the MSDTC
Connection Manager: OleTx Transports Protocol as specified in [MS-CMPO], and the MSDTC
Connection Manager: OleTxMultiplexing Protocol as specified in [MS-CMP], constitute a viable network
transport for establishing long-lived session relationships between different parties supporting many
short-lived connection exchanges that accomplish specific tasks.

%5bMS-DTCM%5d.pdf#Section_7dbf234d2c1540b79a20812f5e3964ec
%5bMS-TIPP%5d.pdf#Section_8a046f2abcc149ebad9c3891ce37d796
%5bMS-DTCLU%5d.pdf#Section_09c6c3c965a74814ad32160d292f8dcb
%5bMC-DTCXA%5d.pdf#Section_e4c50686e0134cf69515a0e821eb5ed9
%5bMS-WSRVCAT%5d.pdf#Section_e94b4e6708ee43c6aaa741033f8e11fd
%5bMS-COM%5d.pdf#Section_a846e48dbbc94b289650601810cf3af0
%5bMS-MQRR%5d.pdf#Section_9edbc8fa02ad4c79804f6bb8f430aac1
%5bMS-MQMP%5d.pdf#Section_8e379aa2802d4fccb6a66203e4606fa9
%5bMS-CMPO%5d.pdf#Section_d2403ca533fa432997f5825ad0868bf6
%5bMS-CMP%5d.pdf#Section_1970a8a0799d4308b9274e4ea23dc225
%5bMS-CMPO%5d.pdf#Section_d2403ca533fa432997f5825ad0868bf6
%5bMS-CMP%5d.pdf#Section_1970a8a0799d4308b9274e4ea23dc225

53 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

1.7 Versioning and Capability Negotiation

This document covers versioning aspects in the following areas:

 Protocol versions

This protocol provides five different versions: 1, 2, 4, 5, and 6 (version 3 is reserved and not
used). More details on the protocol elements supported in each version are provided in Protocol
Versioning (section 2.2.1).

 Capability negotiation

This protocol performs explicit versioning and capability negotiation, as specified in sections
1.7.2 and section 1.7.3.

1.7.1 Versioning Mechanisms

 This protocol uses various mechanisms for versioning that are introduced as follows:

 Protocol Version numbers as versioning mechanism:

This protocol provides five different versions. The following are the implications of supporting a

particular protocol version:

 Support for connection types is version-specific and is either required, optional, or not allowed
for a given Protocol Version.

 For a version-specific supported connection type, support for all messages defined for that
connection type is required.

 The layout of data associated with specific messages is version-specific and is determined by
the Protocol Version.

Protocol Version Numbers as a Versioning Mechanism (section 2.2.1.1) specifies details of what it

means to support a certain Protocol Version Number. Protocol Versioning Details (section 3.1.4)
specifies how the Protocol Version numbers are negotiated during communication initiation.

 Structures with fields containing version numbers as versioning mechanism: Certain structures
have fields containing version numbers that specify how to interpret other parts of the structure.
As an example, the Propagation_Token (section 2.2.5.4) structure has the fields dwVersionMin
and dwVersionMax the values of which are used to indicate whether certain other fields are

present or not.

Structures with Fields Containing Version Numbers as Versioning Mechanism (section 2.2.2) provides
a list of the structures that fall in this category and links to information regarding each.

 Structures with complex fields using specific values to indicate the type of the complex field.
Certain structures have a field that specifies how to interpret other parts of the structure. As an
example, the STmToTmProtocol structure (section 2.2.5.9) uses the value of the

tmprotDescribed field to specify how to interpret the rest of the fields in that structure.

Structures with a Format-Specifying Field as Versioning Mechanism (section 2.2.3) provides a list of
the structures that fall in this category and links to information regarding each.

1.7.2 Versioning Negotiation Mechanisms

This protocol uses the following versioning negotiation mechanisms for each of the versioning
mechanisms discussed above.

 Protocol Version Numbers as versioning mechanism

54 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

This protocol makes use of the explicit versioning negotiation mechanism as specified in [MS-
CMPO], BuildContext Primary, section 3.3.4.2.1. An implementation of this protocol uses this

mechanism to specify which versions of the protocol it supports and to negotiate a mutually
agreeable version with its partners (see Protocol Versioning Details, (section 3.1.4)).

 Structures with fields containing version numbers as versioning mechanism

There is no versioning negotiation mechanism for this case. The version numbers are passed in
each structure by the sender, and interpreted by the receiver.

 Structures with a field containing a value that identifies the structure format as versioning
mechanism

There is no versioning negotiation mechanism for this case. The values of the field specifying the
format are passed in each structure by the sender, and interpreted by the receiver.

1.7.3 Capability Negotiation Mechanisms

This protocol uses the following capability negotiation mechanisms for each of the versioning
mechanisms discussed previously.

 Protocol Version numbers as versioning mechanism

 Support for certain connection types is optional for a specific protocol version. A connection
initiator can determine whether the acceptor supports these connection types by sending
the first message for the connection and determining the acceptor's level of support from the
response. If the acceptor rejects the connection with a MTAG_CONNECTION_REQ_DENIED as
specified in [MS-CMP] section 2.2.5, the connection type is not supported.

 Support for a message type is never optional for a specific connection type, with one

exception: TXUSER_RESOLVE_MTAG_ACCESSDENIED (section 2.2.8.3.2.1). However, there is
no negotiation process to determine support for this message, and the message is sent by a
sender that supports it in all cases.

 Some specific data fields inside certain message types were added in specific protocol versions
as additional data fields that appear after the fields that are defined by previous protocol
versions. The receivers examine the size of the incoming MESSAGE_PACKET (section 2.2.4.1)

structure to determine which additional data fields, if any, were included in the message by
the sender.

 Structures with fields containing version numbers as a versioning mechanism

The structures using version numbers as a versioning mechanism do not have any optional
elements for a particular version. Therefore, there are no capability negotiation mechanisms
associated with them.

 Structures with a field containing a value that identifies the structure format as a versioning

mechanism

In this case, the format of the structure is completely determined by the respective format-

specifying field. There are no capability negotiation mechanisms associated with these
structures.

1.8 Vendor-Extensible Fields

MSDTC Connection Manager: OleTx Transaction Protocol gives vendors the ability to provide
implementation-specific protocol extensions to the Core Transaction Manager Facet. This protocol
provides the following vendor-extensible fields and data elements:

%5bMS-CMPO%5d.pdf#Section_d2403ca533fa432997f5825ad0868bf6
%5bMS-CMPO%5d.pdf#Section_d2403ca533fa432997f5825ad0868bf6
%5bMS-CMP%5d.pdf#Section_1970a8a0799d4308b9274e4ea23dc225

55 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 A protocol extension can augment the default set of transaction manager facets that are
implemented inside an implementation of the transaction manager role, as specified in section

3.2.1.4. A protocol extension provides a set of services, as specified in section 3.2.1.5.

 A protocol extension also includes the contribution of extended whereabouts information to the

Core Transaction Manager Facet, as specified in section 3.2.3.

 Each vendor-supplied transaction manager facet has the option to use the local events that are
provided by the Core Transaction Manager Facet that is specified in section 3.2.7.

1.9 Standards Assignments

This protocol has no standards assignments.

56 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

2 Messages

2.1 Transport

This protocol uses implementations of MSDTC Connection Manager: OleTx Transports Protocol as

specified in [MS-CMPO], and MSDTC Connection Manager: OleTx Multiplexing Protocol as specified in
[MS-CMP], as the transport layer for sending and receiving protocol messages.

2.1.1 Messages, Connections, and Sessions

The layout of each message that is defined by this protocol MUST extend the MESSAGE_PACKET
structure, as specified in section 2.2.4.1. The general mechanisms that are used to send and receive
messages are as specified in [MS-CMP] sections 3.1.4.1 and 3.1.7.4.

Each message MUST be sent by using an active [MS-CMP] connection that has been established
between an initiator and an acceptor. The mechanisms that are used to initiate and accept connections

are as specified in [MS-CMP] sections 3.1.4.2 and 3.1.5.5.

Each connection MUST be initiated inside an active [MS-CMPO] session that has been established

between two OleTx participants. The mechanisms that are used to establish sessions are as specified
in [MS-CMPO] section 1.3.3.

The session creation is handled by MSDTC Connection Manager: OleTx Multiplexing Protocol, when a
new connection is initiated, as specified in [MS-CMP] section 3.1.4.2.

When a new connection is initiated as specified in [MS-CMP] section 3.1.4.2, the OleTx participant
MUST provide the following:

 The Name Object of the partner computed from implementation-specific configuration (section

2.1.2.3).

 The connection type.

 An Incoming Message Notification Interface object (as specified in [MS-CMP] section 3.1.1.1) with
local events (section 3.1.8) to receive incoming message notifications from MSDTC Connection
Manager: OleTx Multiplexing Protocol layer.

2.1.2 MS-CMP and MS-CMPO Initialization

 In order to establish a transports protocol session as specified in [MS-CMPO] Local Partner
State (section 3.2.1.1), the following values MUST be provided to the lower-layer multiplexing protocol
as specified in [MS-CMP], which initializes the transports protocol with the provided values:

 A security-level value that indicates the requested RPC authentication level. The possible values

for this element are specified in [MS-CMPO] section 3.2.1.1. The Security Level field ([MS-CMPO]
section 3.2.1.1) is initialized with the security-level value.

 The minimum and maximum protocol version values as computed in section 2.1.2.2. The

Minimum Level 3 Version Number and Maximum Level 3 Version Number fields ([MS-
CMPO] section 3.2.1.1) are initialized with the computed minimum and maximum protocol version
values.

 A local Name object that indicates the host name, the contact identifier, and the supported RPC

network protocols of the local partner endpoint. Name objects are specified in [MS-CMPO] section
3.2.1.4. The Local Name Object field ([MS-CMPO] section 3.2.1.1) is initialized with the local
Name Object value.

%5bMS-CMPO%5d.pdf#Section_d2403ca533fa432997f5825ad0868bf6
%5bMS-CMP%5d.pdf#Section_1970a8a0799d4308b9274e4ea23dc225
%5bMS-CMP%5d.pdf#Section_1970a8a0799d4308b9274e4ea23dc225
%5bMS-CMPO%5d.pdf#Section_d2403ca533fa432997f5825ad0868bf6
%5bMS-CMPO%5d.pdf#Section_d2403ca533fa432997f5825ad0868bf6
%5bMS-CMP%5d.pdf#Section_1970a8a0799d4308b9274e4ea23dc225

57 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

If the initialization of the underlying MSDTC Connection Manager: OleTx Multiplexing protocol instance
fails as specified in [MS-CMP] section 3.1.3.2, then the implementation-specific failure result MUST be

returned to the higher-layer business logic.

2.1.2.1 Computing a Security Level

When an application or resource manager initiates a connection to its transaction manager, the
application or resource manager MUST use an implementation-specific way to compute the Security
Level.

2.1.2.2 Computing Protocol Version Values

The process for computing the minimum and maximum protocol version numbers used in initializing
the underlying transport specified in [MS-CMPO] is defined in Protocol Versioning
Details (section 3.1.4).

2.1.2.3 Computing a Name Object

The Name object that is used to initiate a session is obtained in a variety of ways. This section defines
how to obtain the appropriate Name object for several common situations. The specific transaction
processing roles mentioned in these sections (applications, resource managers, and transaction

managers) are defined as specified in section 1.3.3.

When an application or resource manager initiates a connection to its transaction manager, the
application or resource manager MUST use implementation-specific configuration information to
compute a Name object that represents the transaction manager:

1. For pull propagation of transactions, the source application MUST include the Name object
representing its transaction manager in the marshaling information that is sent to the destination

application. The Propagation Token (section 2.2.5.4) structure SHOULD be used for marshaling
this information.

2. For pull propagation of transactions, the subordinate transaction manager (the transaction
manager of the destination) MUST communicate its own Name object to the superior transaction
manager (the source transaction manager) using a CONNTYPE_PARTNERTM_BRANCH connection.

3. For push propagation of transactions, the destination application MUST make the Name object
that represents its transaction manager available to the source application. The

SWhereabouts (section 2.2.5.11) structure SHOULD be used for marshaling this information.
Alternatively, the NAMEOBJECTBLOB (section 2.2.5.3) structure MAY be used for the same
purpose.<1>

4. For push propagation of transactions, the superior transaction manager MUST communicate its
own Name object to the subordinate transaction manager using a
CONNTYPE_PARTNERTM_PROPAGATE (section 2.2.9.1.1.1) connection.

2.2 Message Syntax

2.2.1 Protocol Versioning

2.2.1.1 Protocol Version Numbers as a Versioning Mechanism

This protocol has five versions: 1, 2, 4, 5, and 6 (version 3 is reserved and not used).<2> For each
version, there is a set of protocol elements that MUST be supported (called version-required

elements), a set of optional protocol elements that SHOULD be supported (called version-optional
elements), and a set of protocol elements that MUST NOT be supported. The following sections

%5bMS-CMPO%5d.pdf#Section_d2403ca533fa432997f5825ad0868bf6

58 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

provide versioning tables that specify the scope of each protocol version with respect to the three
mentioned sets.

The tables contain the following values.

Value Description

Yes The protocol element MUST be supported in the respective protocol version.

No The protocol element MUST NOT be supported in the respective protocol version.

Optional The protocol element SHOULD be supported in the respective protocol version.

2.2.1.1.1 Version-Specific Aspects of Connection Types Relevant to an Application

The following table shows version-specific aspects for connection types that are relevant to

applications. This table includes connection types and messages that are supported on certain versions
as well as messages whose size is version specific. If a connection type or message that is relevant to
applications is omitted from this table, it is not version specific and MUST be supported on all versions.

Version-specific aspect V1 V2 V4 V5 V6

Version supports connection type

CONNTYPE_TXUSER_BEGIN2 (section 2.2.8.1.2).

No Yes Yes Yes Yes

Version supports connection type

CONNTYPE_TXUSER_EXTENDEDWHEREABOUTS (section 2.2.8.2.2.
1).

No No No Option
al

<3>

Option
al

<4>

Version supports connection type

CONNTYPE_TXUSER_GETSECURITYFLAGS (section 2.2.8.4.1).

No No Yes Yes Yes

Version supports connection type

CONNTYPE_TXUSER_IMPORT2 (section 2.2.8.2.2.5).

No Yes Yes Yes Yes

Version supports connection type

CONNTYPE_TXUSER_PROMOTE (section 2.2.8.1.3).

No No No Option
al

<5>

Option
al

<6>

Version supports connection type

CONNTYPE_TXUSER_SETTXTIMEOUT (section 2.2.8.3.3).

No Option
al

<7>

No No No

Version supports connection type

CONNTYPE_TXUSER_SETTXTIMEOUT2 (section 2.2.8.3.4).

No No Option
al

Option
al

<8>

Option
al

<9>

Version supports connection type

CONNTYPE_TXUSER_TRACE (section 2.2.8.3.5).

No No Yes Yes Yes

Version supports messages

TXUSER_EXPORT_MTAG_CREATE2 (section 2.2.8.2.2.2.2) and

TXUSER_EXPORT_MTAG_CREATE_NET_TX_DISABLED (section 2.2.
8.2.2.2.4).

No No Yes Yes Yes

Version supports message

TXUSER_RESOLVE_MTAG_ACCESSDENIED (section 2.2.8.3.2.1).

No No Option
al

Yes Yes

59 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Version-specific aspect V1 V2 V4 V5 V6

<10>

The SourceTmAddress field is described by the structure

NAMEOBJECTBLOB (section 2.2.5.3) in message

TXUSER_ASSOCIATE_MTAG_ASSOCIATE (section 2.2.8.2.1.1.1).

Ye
s

No No No No

The SourceTmAddress field is described by the structure

OLETX_TM_ADDR (section 2.2.4.2) in message

TXUSER_ASSOCIATE_MTAG_ASSOCIATE (section 2.2.8.2.1.1.1).

No Yes Yes Yes Yes

The SourceTmAddress field is described by the structure

NAMEOBJECTBLOB (section 2.2.5.3) in message

TXUSER_EXPORT_MTAG CREATE (section 2.2.8.2.2.2.1).

Ye
s

No No No No

The SourceTmAddress field is described by the structure

OLETX_TM_ADDR (section 2.2.4.2) in message

TXUSER_EXPORT_MTAG_CREATE (section 2.2.8.2.2.2.1).

No Yes Yes Yes Yes

The grfNetworkDtcAcess field of the
TXUSER_GETSECURITYFLAGS_MTAG_FETCHED message supports
(uses) the following DTCADVCONFIG bits:

DTCADVCONFIG_NETWORKDTCACCESS_ENABLE

DTCADVCONFIG_NETWORKDTCACCESS_ADMIN

DTCADVCONFIG_NETWORKDTCACCESS_TX

DTCADVCONFIG_NETWORKDTCACCESS_CLIENTS

DTCADVCONFIG_NETWORKDTCACCESS_TIP

No No Yes Yes Yes

The grfNetworkDtcAcess field of the
TXUSER_GETSECURITYFLAGS_MTAG_FETCHED message supports
(uses) the following DTCADVCONFIG bits:

DTCADVCONFIG_INBOUNDNETWORK_TX

DTCADVCONFIG_OUTBOUNDNETWORK_TX

DTCADVCONFIG_SECURITYLEVEL_NOSECURITY

DTCADVCONFIG_SECURITYLEVEL_AUTHENTICATEDONLY

DTCADVCONFIG_SECURITYLEVEL_MUTUALAUTH

No No No Yes Yes

The grfOptions field of the
TXUSER_GETSECURITYFLAGS_MTAG_FETCHED message supports
(uses) the following DTCADVCONFIG_OPTIONS bits:

DTCADVCONFIG_OPTIONS_LUTRANSACTIONS_DISABLE

No No No No Yes

The guidSignature field in the STxInfo structure present in
propagation-related messages uses a reserved GUID with the
binary value representation of {2adb4463-bd41-11d0-b12e-
00c04fc2f3ef}. A GUID ([MS-DTYP] section 2.3.4.2) in this protocol
is a 16-byte structure that is a unique identifier for an object.

No Yes Yes Yes Yes

The STxInfo structure supports versioning based on its
guidSignature field.

No Yes Yes Yes Yes

Version supports connection type

CONNTYPE_TXUSER_EXPORT2

No No No No Yes

Version supports message

TXUSER_EXPORT_MTAG_EXPORT_COMM_FAILED

No No No No Yes

%5bMS-DTYP%5d.pdf#Section_cca2742956894a16b2b49325d93e4ba2

60 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

2.2.1.1.2 Version-Specific Aspects of Connection Types Relevant to a Transaction

Manager

The following table shows version-specific aspects for connection types that are relevant to transaction
managers. This table includes connection types and messages that are supported on certain versions
as well as messages whose size is version specific. If a connection type or message that is relevant to
transaction managers is omitted from this table, it is not version specific and MUST be supported on
all versions.

Version-specific aspect V1 V2 V4 V5 V6

PARTNERTM_PROPAGATE_MTAG_PHASE0,

PARTNERTM_PROPAGATE_MTAG_PHASE0COMPLETE,

PARTNERTM_PROPAGATE_MTAG_PHASE0REGISTER,

PARTNERTM_PROPAGATE_MTAG_PHASE0REGISTERED, and

PARTNERTM_PROPAGATE_MTAG_PHASE0REGISTRATIONREJECTED

No Yes Yes Yes Yes

2.2.1.1.3 Version-Specific Aspects of Connection Types Relevant to a Resource

Manager

The following table shows version-specific aspects for connection types that are relevant to resource
managers. These include connection types and messages that are supported on certain MSDTC
Connection Manager: OleTx Multiplexing Protocol versions as well as messages whose size is version

specific. If a connection type or message that is relevant to resource managers is omitted from this
table, then it is not version specific and MUST be supported on all versions.

Version-specific aspect V1 V2 V4 V5 V6

Version supports connection type

CONNTYPE_TXUSER_PHASE0.

No Yes Yes Yes Yes

Version supports connection type

CONNTYPE_TXUSER_RESOURCEMANAGERINTERNAL.

No No No Optional<11> Optional<12>

2.2.2 Structures with Fields Containing Version Numbers as Versioning Mechanism

Currently, only one structure has fields that specify the version (and therefore the format) of the
structure.

Structure Fields containing version numbers

Propagation_Token dwVersionMin

dwVersion Max

61 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

2.2.3 Structures with a Format-Specifying Field as Versioning Mechanism

The following table contains the structures that have a field whose value indicates the format of the
structure.

Structure Format-specifying field

STmToTmProtocol tmprotDescribed

STxInfo guidSignature

2.2.4 Common Structures

2.2.4.1 MESSAGE_PACKET

The MESSAGE_PACKET structure defines the initial message fields that are contained by all message
tags (MTAG)s in this protocol, as specified in [MS-CMP] section 2.2.2.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

MsgTag

fIsMaster

dwConnectionId

dwUserMsgType

dwcbVarLenData

dwReserved1

MsgTag (4 bytes): A 4-byte integer value that describes the OLE transaction message type. For all
uses in this document, this value MUST be 0x00000FFF, which indicates MTAG_USER_MESSAGE,
as specified in [MS-CMP] section 2.2.8.

fIsMaster (4 bytes): A 4-byte value indicating the direction of the message in the conversation.

This value MUST be one of the following values.

Value Meaning

0x00000000 The message is sent by the party that accepted the connection.

0x00000001 The message is sent by the party that initiated the connection.

dwConnectionId (4 bytes): A 4-byte integer value that MUST contain the unique identifier for the
associated connection.

dwUserMsgType (4 bytes): This field contains the message type identifier. Each MTAG that is
defined in this section MUST specify a distinct value for this field for a specified connection type.

%5bMS-CMP%5d.pdf#Section_1970a8a0799d4308b9274e4ea23dc225

62 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

dwcbVarLenData (4 bytes): An unsigned 4-byte integer value that MUST contain the size, in bytes,
of the message buffer that contains the MESSAGE_PACKET structure, minus the size, in bytes, of

the MESSAGE_PACKET structure itself.

dwReserved1 (4 bytes): Reserved. This value MAY be set to any implementation-specific value and

MUST be ignored on receipt.<13>

2.2.4.2 OLETX_TM_ADDR

The OLETX_TM_ADDR structure is used to represent the address of a transaction manager.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

guidSignature (16 bytes)

...

...

guidEndpoint (16 bytes)

...

...

grbComProtsSupported

wszHostName (variable)

...

guidSignature (16 bytes): This field contains a signature value for this structure. The value MUST
be the binary representation of the GUID {DC85CB48-D8A5-11d2-828B-00805F0DF75A}.

guidEndpoint (16 bytes): This field MUST contain a GUID that specifies the contact identifier of the
transaction manager.

grbComProtsSupported (4 bytes): Indicates the RPC transports for which the transaction manager
is listening. The value MUST be the result of the bitwise OR combination of one or more flags as

specified in [MS-CMPO] section 2.2.4.

wszHostName (variable): This field MUST contain a null-terminated, little-endian UTF-16 encoded
string that specifies the NetBIOS host name of the transaction manager. This field MUST NOT
contain a Unicode byte-order-mark (BOM) character. The length of this field MUST be 2 to 32
bytes, inclusive. For details about Unicode and character sets, see [MSDN-ANSI].

For specific information on NetBIOS, see [NETBEUI], [RFC1001], and [RFC1002].

2.2.4.3 OLETX_VARLEN_STRING

 The OLETX_VARLEN_STRING structure is used to represent a byte-counted variable-length string.

%5bMS-CMPO%5d.pdf#Section_d2403ca533fa432997f5825ad0868bf6
http://go.microsoft.com/fwlink/?LinkId=89952
http://go.microsoft.com/fwlink/?LinkId=90224
http://go.microsoft.com/fwlink/?LinkId=90260
http://go.microsoft.com/fwlink/?LinkId=90261

63 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

cbLength

szString (variable)

...

cbLength (4 bytes): An unsigned integer that MUST contain the number of bytes in the szString
field.

szString (variable): A Latin-1 string as specified in [ISO/IEC-8859-1] without a final null-

terminating character. This field MUST be cbLength bytes in length. If cbLength is zero, this field
MUST NOT be present.

2.2.5 Transaction Propagation Structures

2.2.5.1 Associate_Msg_Version2

 The Associate_Msg_Version2 structure contains the NetBIOS host name of a transaction manager.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

cbHostNameW

wszHostName (variable)

...

cbHostNameW (4 bytes): The size, in bytes, of wszHostName, including the null terminator. The

value of this field MUST be in the range 2 to 32 bytes, inclusive.

wszHostName (variable): A null-terminated, little-endian UTF-16 encoded string that contains a
NetBIOS host name. This string MUST have the length that is specified by cbHostNameW and
MUST NOT contain a Unicode BOM character.

2.2.5.2 Associate_Msg_Version3

The Associate_Msg_Version3 structure contains information about the transaction protocol support of
a transaction manager.<14>

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

fNetworkTxEnabled

fTipEnabled

cbTipTmUrl

szTipTmUrl (variable)

http://go.microsoft.com/fwlink/?LinkId=90689

64 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

...

fNetworkTxEnabled (4 bytes): This field indicates if network access is enabled or disabled on the
transaction manager. If network access is disabled, this field MUST be set to zero. If network
access is enabled, this field MUST be set to a nonzero value.

fTipEnabled (4 bytes): This field indicates if the transaction Internet Protocol (TIP) is enabled or
disabled on the transaction manager, as specified in [RFC2371]. If TIP is disabled, this field MUST
be set to zero. If TIP is enabled, this field MUST be set to a nonzero value. For more information
about the TIP protocol, see [RFC2371] for details.

cbTipTmUrl (4 bytes): This field MUST contain the size, in bytes, of szTipTmUrl, including the null
terminator. The value of this field MUST be greater than or equal to 0.

szTipTmUrl (variable): A null-terminated Latin-1 ANSI string, as specified in [ISO/IEC-8859-1], that
MUST contain the URL of the TIP transaction manager on the node that created this propagation
token. If cbTipTmUrl is zero, this field MUST NOT be present. Otherwise, this field MUST have the

length specified by cbTipTmUrl.

2.2.5.3 NAMEOBJECTBLOB

The NAMEOBJECTBLOB structure contains information to identify and locate a transaction manager.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

szGuid (40 bytes)

...

...

dwcbHostName

dwReserved1

grbComProtsSupported

szHostName (variable)

...

szGuid (40 bytes): A fixed-size array containing a null-terminated Latin-1 ANSI string, as specified
in [ISO/IEC-8859-1], that contains a GUID that is formatted into a string, as specified in [C706],
Appendix A, UUID. This string MUST identify the contact identifier for the transaction manager

instance that is located at the node that is identified by the host name. Storage after the initial

null MUST be ignored on receipt.

dwcbHostName (4 bytes): This field MUST contain the size, in bytes, of the szHostName field,
including the null terminator. The value of this field MUST be in the range 1 to 16, inclusive.

dwReserved1 (4 bytes): Reserved. This field MUST be set to an implementation-specific value and
MUST be ignored on receipt. The default value of this field is 0xCD64CD64.<15>

http://go.microsoft.com/fwlink/?LinkId=90338
http://go.microsoft.com/fwlink/?LinkId=90689
http://go.microsoft.com/fwlink/?LinkId=90689
http://go.microsoft.com/fwlink/?LinkId=89824

65 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

grbComProtsSupported (4 bytes): Indicates which RPC transports the transaction manager is able
to use to communicate. The value MUST be the result of a bitwise OR operation of one or more

flags, as specified in [MS-CMPO]. The COM_PROTOCOL data type is implemented as specified in
[MS-CMPO] section 2.2.4.

szHostName (variable): A null-terminated Latin-1 ANSI string, as specified in [ISO/IEC-8859-1],
that MUST specify the host name of the transaction manager instance. It MUST have the length
specified by dwcbHostName.

2.2.5.4 Propagation_Token

The Propagation Token structure is used for performing pull-based transaction propagation. This
structure contains information about a transaction and about a superior transaction manager that is
available for use by participants to enlist on the transaction.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

dwVersionMin

dwVersionMax

guidTx (16 bytes)

...

...

isoLevel

isoFlags

cbSourceTmAddr

szDesc (40 bytes)

...

...

NameObject (variable)

...

AssociateMsgVersion2 (variable)

...

AssociateMsgVersion3 (variable)

...

%5bMS-CMPO%5d.pdf#Section_d2403ca533fa432997f5825ad0868bf6

66 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

dwVersionMin (4 bytes): The minimum version of the transaction information structure that
accompanies the Propagation Token. The value MUST be set to 1.

dwVersionMax (4 bytes): The maximum version of the transaction information structure that
accompanies the Propagation Token. The value MUST be 1, 2, or 3.<16>

guidTx (16 bytes): This field MUST contain a GUID that specifies the transaction identifier.

isoLevel (4 bytes): The isolation level of the transaction. This field MUST contain one value from the
OLETX_ISOLATION_LEVEL enumeration.

isoFlags (4 bytes): The isolation flags for the transaction. This field MUST contain the result of a
bitwise OR operation of zero or more OLETX_ISOLATION_FLAGS flags, as specified in section
2.2.6.8.

cbSourceTmAddr (4 bytes): This field MUST contain the total size, in bytes, of the space that is

used by the NameObject, AssociateMsgVersion2, and AssociateMsgVersion3 fields.

szDesc (40 bytes): The description of the transaction, as a fixed-size array of 40 bytes containing a

null-terminated Latin-1 ANSI string, as specified in [ISO/IEC-8859-1]. This field MUST be set to an
implementation-specific value. Any bytes that follow the first null-terminator character SHOULD be
ignored on receipt.

NameObject (variable): This field MUST be a NAMEOBJECTBLOB structure that contains contact

information about the transaction manager that is referenced by the Propagation Token.

AssociateMsgVersion2 (variable): This field MUST be an Associate_Msg_Version2 structure that
contains the NetBIOS host name for the transaction manager that is referenced by the
Propagation Token. If dwVersionMax is 1, then this field MUST NOT be present; otherwise, it
MUST be present. If this field is present, the contents MUST override the szHostName value in
the NameObject field.

AssociateMsgVersion3 (variable): This field MUST be an Associate_Msg_Version3 structure that

contains information about the transaction protocol support for the transaction manager that is
referenced by the Propagation Token. If dwVersionMax is 3, then this field MUST be present;

otherwise, it MUST NOT be present.

2.2.5.5 SDtcCmEndpointInfoV1

The SDtcCmEndpointInfoV1 structure contains data used to connect to a transaction manager that
supports the OleTx protocol.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

comprotSupported

guidEndpointID (16 bytes)

...

...

szHostname (variable)

...

http://go.microsoft.com/fwlink/?LinkId=90689

67 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

comprotSupported (4 bytes): Indicates which RPC transports the transaction manager supports for
communication. The value MUST be the result of the bitwise OR combination of one or more flags

as specified in [MS-CMPO]. The COM_PROTOCOL data type is implemented as specified in [MS-
CMPO] section 2.2.4.

guidEndpointID (16 bytes): This field MUST be a GUID that specifies the contact identifier of the
transaction manager.

szHostname (variable): A null-terminated Latin-1 ANSI character string, as specified in [ISO/IEC-
8859-1], that MUST specify the host name for the transaction manager endpoint. This field MUST
be between 1 and 16 bytes in length, inclusive.

2.2.5.6 SDtcCmEndpointInfoV2

The SDtcCmEndpointInfoV2 structure contains extended information that is used, along with the
contents of the SDtcCmEndpointInfoV1 (section 2.2.5.5) structure, to connect to a transaction
manager that supports the OleTx protocol.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

wszHostname (variable)

...

wszHostname (variable): A null-terminated little-endian UTF-16 character string that specifies the
NetBIOS host name for the transaction manager endpoint. This field MUST be between 2 and 32
bytes in length, inclusive, and MUST NOT contain a Unicode BOM character.

2.2.5.7 SOleTxInfoForTip

The SOleTxInfoForTip structure contains data that is specific to the Transaction Internet Protocol (TIP)

for an exported transaction.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

szDescription (40 bytes)

...

...

isoLevel

isoFlags

szTipTmUrl (variable)

...

szDescription (40 bytes): See the szDesc field in Propagation Token (section 2.2.5.4) for details.

%5bMS-CMPO%5d.pdf#Section_d2403ca533fa432997f5825ad0868bf6
http://go.microsoft.com/fwlink/?LinkId=90689
http://go.microsoft.com/fwlink/?LinkId=90689

68 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

isoLevel (4 bytes): The isolation level of the transaction. The value MUST be one as specified in the
OLETX_ISOLATION_LEVEL (section 2.2.6.9) enumeration.

isoFlags (4 bytes): The isolation flags for the transaction. The value MUST be a legal combination of
values from the OLETX_ISOLATION_FLAGS (section 2.2.6.8) enumeration.

szTipTmUrl (variable): A null-terminated Latin-1 ANSI string, as specified in [ISO/IEC-8859-1], that
MUST specify the TIP URL of the transaction manager, as specified in [RFC2371].

2.2.5.8 SExtendedEndpointInfo

The SExtendedEndpointInfo packet contains data to represent endpoint information that is available
for use to connect to a protocol extension that is hosted by a transaction manager. This structure does
not specify its own length. Therefore, it MUST be used in a context that specifies the actual length.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

guidProtocolExtension (16 bytes)

...

...

rgbProtocolExtensionData (variable)

...

guidProtocolExtension (16 bytes): This field MUST contain a GUID that specifies the protocol
extension that contributed this extended endpoint information.

rgbProtocolExtensionData (variable): This field MUST contain data that is contributed by a

protocol extension that represents protocol extension-specific endpoint information. The format
and size of this data is specific to the respective extension protocol. This data MUST NOT be
interpreted by an application or other transaction participant unless it recognizes the
guidProtocolExtension field.

2.2.5.9 STmToTmProtocol

The STmToTmProtocol structure contains protocol-specific endpoint information for the transaction
manager.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

tmprotDescribed

cbTmProtocolData

rgbTmProtocolData (variable)

...

http://go.microsoft.com/fwlink/?LinkId=90689
http://go.microsoft.com/fwlink/?LinkId=90338

69 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

tmprotDescribed (4 bytes): This field specifies the type of transaction manager-to-transaction
manager protocol-specific data for this transaction. This MUST be one of the values specified in

TM_Protocol (section 2.2.6.2).<17>

cbTmProtocolData (4 bytes): This field MUST specify the length, in bytes, of the

rgbTmProtocolData field.

rgbTmProtocolData (variable): The transaction manager protocol-specific data for this transaction.
If the cbTmProtocolData field is 0x00000000, this field MUST NOT be present. Otherwise, the
format of this field depends on the value of the tmprotDescribed field, which MUST be one of the
following values.

tmprotDescribed
name/value Meaning

TmProtocolMsdtcV1
0x00000002

This field MUST contain an SDtcCmEndpointInfoV1 (section 2.2.5.5) structure that
contains data that is used to connect to an OleTx transaction manager. The
cbTmProtocolData field MUST be at least 21.

TmProtocolMsdtcV2
0x00000003

This field MUST contain an SDtcCmEndpointInfoV2 (section 2.2.5.6) structure that
contains additional data that is used to connect to an OleTx transaction manager.
The cbTmProtocolData field MUST be at least 2.

TmProtocolExtended
0x00000004

This field MUST contain an SExtendedEndpointInfo (section 2.2.5.8) structure for
an extension protocol. The cbTmProtocolData field MUST be at least 16.

2.2.5.10 STxInfo

The STxInfo structure represents an exported transaction during push-based transaction propagation.
The information in this structure is passed to a transaction manager in order to import a transaction.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

guidSignature (16 bytes)

...

...

uowTx (16 bytes, optional)

...

...

tmprotUsed (optional)

cbProtocolSpecificTxInfo (optional)

protocolSpecificTxInfo (variable)

...

70 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

guidSignature (16 bytes): This field MUST be a GUID that either specifies the transaction identifier
or specifies a signature value that indicates that the fields following this field are present in the

structure. If the field contains the binary value representation of the GUID {2adb4463-bd41-11d0-
b12e-00c04fc2f3ef}, the fields uowTx, tmprotUsed, and cbProtocolSpecificTxInfo MUST be

present. For all other values, this field MUST specify the GUID of the transaction to be imported,
and all other fields MUST NOT be present. This field MUST be set to the binary value
representation of the GUID {2adb4463-bd41-11d0-b12e-00c04fc2f3ef} or to the GUID of the
transaction based on the protocol version as specified in section 2.2.1.1.1.

uowTx (16 bytes): If present, this field MUST be a GUID that specifies the transaction identifier.

tmprotUsed (4 bytes): If present, this field MUST specify the format of the data in the
protocolSpecificTxInfo field. The value MUST be one that is as specified in TM_PROTOCOL

(section 2.2.6.2).

cbProtocolSpecificTxInfo (4 bytes): If present, this field MUST contain the size of the protocol-
specific data. This value MUST be zero, unless tmprotUsed contains the value TmProtocolTip, in
which case the value MUST be determined by adding the size of the SOleTxInfoForTip (section

2.2.5.7) structure and the size, in bytes, of the szTipTmUrl field in the SOleTxInfoForTip
structure, including the null terminator.

protocolSpecificTxInfo (variable): If present, this field MUST contain a SOleTxInfoForTip (section
2.2.5.7) structure. If the cbProtocolSpecificTxInfo field is present and has a nonzero value, this
field MUST be present. Otherwise, this field MUST not be present.

2.2.5.11 SWhereabouts

The SWhereabouts structure describes the location of a transaction manager and the protocols that
MUST be used to contact it.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

guidSignature (16 bytes)

...

...

cTmToTmProtocols

rgtmprotUsableList (variable)

...

guidSignature (16 bytes): This field contains a signature value for this structure. The value MUST
be the binary representation of the GUID {2adb4462-bd41-11d0-b12e-00c04fc2f3ef}.

cTmToTmProtocols (4 bytes): This field MUST contain the number of STmToTmProtocol (section

2.2.5.9) structures present in the rgtmprotUsableList field. This value MUST be at least 1.

rgtmprotUsableList (variable): This field MUST contain an unordered list of STmToTmProtocol
structures with protocol-specific connection information for this transaction manager. Each entry
MUST be aligned on a 4-byte boundary by padding with arbitrary values that MUST be ignored on
receipt. A list that contains an STmToTmProtocol structure with a tmprotDescribed value of
TmProtocolMsdtcV2 MUST also contain an STmToTmProtocol structure with a tmprotDescribed

71 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

value of TmProtocolMsdtcV1. In this case, the wszHostName value in the SDtcCmEndpointV2
structure MUST be used in place of the szHostName value in the SDtcCmEndpointV1 structure.

2.2.6 Transaction Enumerations

2.2.6.1 Connection Types

The CONNTYPE enumeration defines the connection types that are used by MSDTC Connection
Manager: OleTx Multiplexing Protocol Specification.

 typedef enum
 {
 CONNTYPE_TXUSER_BEGINNER = 0x00000001,
 CONNTYPE_TXUSER_IMPORT = 0x00000002,
 CONNTYPE_TXUSER_ENLISTMENT = 0x00000003,
 CONNTYPE_TXUSER_EXPORT = 0x00000004,
 CONNTYPE_TXUSER_RESOURCEMANAGER = 0x00000005,
 CONNTYPE_TXUSER_REENLIST = 0x00000006,
 CONNTYPE_TXUSER_RESOLVE = 0x00000007,
 CONNTYPE_TXUSER_VOTER = 0x00000009,
 CONNTYPE_TXUSER_ASSOCIATE = 0x00000011,
 CONNTYPE_TXUSER_GETTXDETAILS = 0x00000022,
 CONNTYPE_TXUSER_PHASE0 = 0x00000024,
 CONNTYPE_TXUSER_BEGIN2 = 0x00000028,
 CONNTYPE_TXUSER_IMPORT2 = 0x00000033,
 CONNTYPE_TXUSER_GETSECURITYFLAGS = 0x00000035,
 CONNTYPE_TXUSER_TRACE = 0x00000036,
 CONNTYPE_TXUSER_SETTXTIMEOUT = 0x00000037,
 CONNTYPE_TXUSER_SETTXTIMEOUT2 = 0x00000038,
 CONNTYPE_TXUSER_PROMOTE = 0x00000039,
 CONNTYPE_TXUSER_EXTENDEDWHEREABOUTS = 0x0000003D,
 CONNTYPE_TXUSER_RESOURCEMANAGERINTERNAL = 0x00000046,
 CONNTYPE_TXUSER_EXPORT2 = 0x00000048,
 CONNTYPE_PARTNERTM_PROPAGATE = 0x00000101,
 CONNTYPE_PARTNERTM_REDELIVERCOMMIT = 0x00000102,
 CONNTYPE_PARTNERTM_CHECKABORT = 0x00000103,
 CONNTYPE_PARTNERTM_BRANCH = 0x00000104
 } CONNTYPE;

CONNTYPE_TXUSER_BEGINNER: This connection type is used by applications that begin, commit,

and roll back transactions.

CONNTYPE_TXUSER_IMPORT: This connection type is used by a destination application to
complete a push propagation that is initiated by a source application.

CONNTYPE_TXUSER_ENLISTMENT: This connection type is used by a durable resource manager
to establish an enlistment with its transaction manager.

CONNTYPE_TXUSER_EXPORT: This connection type is used by a source application to initiate a
push propagation to a destination application.

CONNTYPE_TXUSER_RESOURCEMANAGER: This connection type is used by a durable resource

manager to register with its transaction manager.

CONNTYPE_TXUSER_REENLIST: This connection type is used by a durable resource manager to
determine the outcome of an In Doubt transaction.

CONNTYPE_TXUSER_RESOLVE: This connection type is used by an application either to manually
resolve the outcome of an In Doubt transaction or to cause its transaction manager to forget a

transaction that is in the Failed to Notify state.

72 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

CONNTYPE_TXUSER_VOTER: This connection type is used by a volatile resource manager to
establish a voter enlistment with its transaction manager.

CONNTYPE_TXUSER_ASSOCIATE: This connection type is used by a destination application to
complete the pull propagation of a transaction from a source application.

CONNTYPE_TXUSER_GETTXDETAILS: This connection type is used by an application to retrieve
details about a transaction from its transaction manager.

CONNTYPE_TXUSER_PHASE0: This connection type is used by a resource manager to enlist for
Phase Zero notifications from its transaction manager.

CONNTYPE_TXUSER_BEGIN2: This connection type is used by an application to begin, commit, or
roll back a transaction or to change the time-out of a transaction. This connection type supersedes
CONNTYPE_TXUSER_BEGINNER and CONNTYPE_TXUSER_SETTXTIMEOUT2.

CONNTYPE_TXUSER_IMPORT2: This connection type is used by a destination application to
complete a Push Propagation that is initiated by a source application. This connection type
supersedes CONNTYPE_TXUSER_IMPORT.

CONNTYPE_TXUSER_GETSECURITYFLAGS: This connection type is used by an application to
obtain the security configuration of its transaction manager.

CONNTYPE_TXUSER_TRACE: This connection type is used by an application to ask its transaction

manager to trace the status of a transaction by using an implementation-specific mechanism.

CONNTYPE_TXUSER_SETTXTIMEOUT: This connection type is used by an application to modify
the time-out of a transaction.

CONNTYPE_TXUSER_SETTXTIMEOUT2: This connection type is used by an application to query
the transaction manager's support for modifying the time-out of a transaction.

CONNTYPE_TXUSER_PROMOTE: This connection type is used by an application to:

 Begin a transaction using an application-specified transaction identity

 Commit or rollback a transaction

 Change the time-out of a transaction

This connection type supersedes CONNTYPE_TXUSER_SETTXTIMEOUT2.

CONNTYPE_TXUSER_EXTENDEDWHEREABOUTS: This connection type is used by an application
to obtain Extended Whereabouts from its transaction manager.

CONNTYPE_TXUSER_RESOURCEMANAGERINTERNAL: This connection type is used by a durable
resource manager to register with a transaction manager and to detect duplicate registrations.

This connection type supersedes CONNTYPE_TXUSER_RESOURCEMANAGER.

CONNTYPE_TXUSER_EXPORT2: This connection type is used by a source application to initiate a
push propagation to a destination application. This connection type supersedes

CONNTYPE_TXUSER_EXPORT.

CONNTYPE_PARTNERTM_PROPAGATE: This connection type is used by a superior transaction
manager to do a push propagation of a transaction to its subordinate transaction manager and to

execute the Two-Phase Commit Protocol.

CONNTYPE_PARTNERTM_REDELIVERCOMMIT: This connection type is used by a superior
transaction manager to redeliver a Commit notification for a transaction to its subordinate
transaction manager.

73 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

CONNTYPE_PARTNERTM_CHECKABORT: This connection type is used by a subordinate
transaction manager to query the outcome of a transaction from its superior transaction manager.

CONNTYPE_PARTNERTM_BRANCH: A subordinate transaction manager uses this connection type
to register a new subordinate enlistment with a superior transaction manager.

2.2.6.2 TM_Protocol

The TM_PROTOCOL enumeration defines types of transaction manager-to-transaction manager
protocols that are available for use.

 typedef enum
 {
 TmProtocolNone = 0,
 TmProtocolTip = 1,
 TmProtocolMsdtcV1 = 2,
 TmProtocolMsdtcV2 = 3,
 TmProtocolExtended = 4
 } TM_PROTOCOL;

TmProtocolNone: No transaction manager-to-transaction manager protocol is available.

TmProtocolTip: The Transaction Internet Protocol (TIP) protocol is available.

TmProtocolMsdtcV1: The OleTx protocol is available with information contained in
SDtcCmEndpointInfoV1 structure.

TmProtocolMsdtcV2: The OleTx protocol is available with extended information contained in
SDtcCmEndpointInfoV2 structure along with SDtcCmEndpointInfoV1 structure.

TmProtocolExtended: An extension protocol is available.

2.2.6.3 TXUSER_ENLISTMENT_PREPAREREQDONE_RESPONSE

The TXUSER_ENLISTMENT_PREPAREREQDONE_RESPONSE enumeration defines the status values for
a prepare request from a subordinate resource manager.

 typedef enum
 {
 TXUSER_ENLISTMENT_PREPAREREQDONE_OK = 0,
 TXUSER_ENLISTMENT_PREPAREREQDONE_ABORT = 1,
 TXUSER_ENLISTMENT_PREPAREREQDONE_READONLY = 2,
 TXUSER_ENLISTMENT_PREPAREREQDONE_SINGLEPHASE_COMMIT = 3
 } TXUSER_ENLISTMENT_PREPAREREQDONE_RESPONSE;

TXUSER_ENLISTMENT_PREPAREREQDONE_OK: The prepare request was successful, and the
enlistment requires the transaction outcome.

TXUSER_ENLISTMENT_PREPAREREQDONE_ABORT: The prepare request was unsuccessful, and

the transaction MUST be aborted.

TXUSER_ENLISTMENT_PREPAREREQDONE_READONLY: The request to prepare the transaction
for commitment was successful, and no further involvement in the transaction is required.

TXUSER_ENLISTMENT_PREPAREREQDONE_SINGLEPHASE_COMMIT: The sender chose the
single-phase commit option and committed the transaction.

74 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

2.2.6.4 PARTNERTM_PROPAGATE_PREPAREREQDONE_RESPONSE

The PARTNERTM_PROPAGATE_PREPAREREQDONE_RESPONSE enumeration defines the status values
for a prepare request from a subordinate transaction manager.

 typedef enum
 {
 PARTNERTM_PROPAGATE_PREPAREREQDONE_OK = 0,
 PARTNERTM_PROPAGATE_PREPAREREQDONE_ABORT = 1,
 PARTNERTM_PROPAGATE_PREPAREREQDONE_READ_ONLY = 2,
 PARTNERTM_PROPAGATE_PREPAREREQDONE_SINGLEPHASE_COMMIT = 3,
 PARTNERTM_PROPAGATE_PREPAREREQDONE_SINGLEPHASE_INDOUBT = 4
 } PARTNERTM_PROPAGATE_PREPAREREQDONE_RESPONSE;

PARTNERTM_PROPAGATE_PREPAREREQDONE_OK: The prepare request was successful, and the
enlistment requires the transaction outcome.

PARTNERTM_PROPAGATE_PREPAREREQDONE_ABORT: The prepare request was unsuccessful,

and the transaction MUST be aborted.

PARTNERTM_PROPAGATE_PREPAREREQDONE_READ_ONLY: The request to prepare the
transaction for commitment was successful, and no further involvement in the transaction is

required.

PARTNERTM_PROPAGATE_PREPAREREQDONE_SINGLEPHASE_COMMIT: The sender chose the
single-phase commit option and committed the transaction.

PARTNERTM_PROPAGATE_PREPAREREQDONE_SINGLEPHASE_INDOUBT: The prepare request
was unsuccessful, and the transaction outcome is no longer determinable.

2.2.6.5 TXUSER_VOTER_VOTERREQDONE_RESPONSE

The TXUSER_VOTER_VOTERREQDONE_RESPONSE enumeration defines the status values for a

prepare request from a subordinate resource manager.

 typedef enum
 {
 TXUSER_VOTER_VOTEREQDONE_OK = 0,
 TXUSER_VOTER_VOTEREQDONE_OK_NONOTIFY = 1,
 TXUSER_VOTER_VOTEREQDONE_ABORT = 2
 } TXUSER_VOTER_VOTERREQDONE_RESPONSE;

TXUSER_VOTER_VOTEREQDONE_OK: The prepare request was successful, and the voter requires

the transaction outcome.

TXUSER_VOTER_VOTEREQDONE_OK_NONOTIFY: The prepare request was successful, and the
voter does not require the transaction outcome.

TXUSER_VOTER_VOTEREQDONE_ABORT: The prepare request was unsuccessful, and the

transaction MUST be aborted.

2.2.6.6 TRUN_TXBEGIN_ERRORS

The TRUN_TXBEGIN_ERRORS enumeration defines the completion status values for requests from an
application to perform the following steps in a transaction: begin, set time-out, commit, or abort a
transaction.

 typedef enum

75 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 {
 TRUN_TXBEGIN_ERROR_NO_MEM = 1,
 TRUN_TXBEGIN_ERROR_BEGIN_LOG_FULL = 20,
 TRUN_TXBEGIN_ERROR_NOTIFY_ABORTED = 30,
 TRUN_TXBEGIN_ERROR_NOTIFY_COMMITTED = 31,
 TRUN_TXBEGIN_ERROR_NOTIFY_INDOUBT = 32,
 TRUN_TXBEGIN_ERROR_DUPLICATE_GUID = 33
 } TRUN_TXBEGIN_ERRORS;

TRUN_TXBEGIN_ERROR_NO_MEM: There was insufficient memory to allocate the data structures
necessary to create the new transaction.

TRUN_TXBEGIN_ERROR_BEGIN_LOG_FULL: There was insufficient space in the transaction

manager log to accommodate a new transaction.

TRUN_TXBEGIN_ERROR_NOTIFY_ABORTED: The transaction has aborted.

TRUN_TXBEGIN_ERROR_NOTIFY_COMMITTED: The transaction has committed.

TRUN_TXBEGIN_ERROR_NOTIFY_INDOUBT: The transaction has completed, but the outcome is
no longer determinable. This occurs if the transaction manager delegated the commit decision to a
subordinate through the single-phase commit protocol and if the connection to that subordinate

terminated before the result could be reported.

TRUN_TXBEGIN_ERROR_DUPLICATE_GUID: An attempt was made to create or promote a
transaction, but a transaction with the specified transaction identifier already exists.

2.2.6.7 TRUN_TXIMPORT_ERRORS

The TRUN_TXIMPORT_ERRORS enumeration defines the completion status values for requests to
import a transaction or to abort a transaction that was previously imported.

 typedef enum
 {
 TRUN_TXIMPORT_ERROR_NO_MEM = 1,
 TRUN_TXIMPORT_ERROR_IMPORT_TX_NOT_FOUND = 20,
 TRUN_TXIMPORT_ERROR_NOTIFY_ABORTED = 30,
 TRUN_TXIMPORT_ERROR_NOTIFY_COMMITTED = 31,
 TRUN_TXIMPORT_ERROR_NOTIFY_INDOUBT = 32
 } TRUN_TXIMPORT_ERRORS;

TRUN_TXIMPORT_ERROR_NO_MEM: There was not enough memory to complete the operation.

TRUN_TXIMPORT_ERROR_IMPORT_TX_NOT_FOUND: The specified transaction was not found.

TRUN_TXIMPORT_ERROR_NOTIFY_ABORTED: The transaction aborted.

TRUN_TXIMPORT_ERROR_NOTIFY_COMMITTED: The transaction committed.

TRUN_TXIMPORT_ERROR_NOTIFY_INDOUBT: The transaction completed, but the outcome could
not be determined.

2.2.6.8 OLETX_ISOLATION_FLAGS

The OLETX_ISOLATION_FLAGS bitfield enumeration values specify isolation flags for a transaction.

 typedef enum
 {
 ISOFLAG_RETAIN_DEFAULT = 0x00000000,

76 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 ISOFLAG_RETAIN_COMMIT_DC = 0x00000001,
 ISOFLAG_RETAIN_COMMIT = 0x00000002,
 ISOFLAG_RETAIN_COMMIT_NO = 0x00000003,
 ISOFLAG_RETAIN_ABORT_DC = 0x00000004,
 ISOFLAG_RETAIN_ABORT = 0x00000008,
 ISOFLAG_RETAIN_ABORT_NO = 0x0000000C,
 ISOFLAG_RETAIN_DONTCARE = 0x00000005,
 ISOFLAG_RETAIN_BOTH = 0x0000000A,
 ISOFLAG_RETAIN_NONE = 0x0000000F,
 ISOFLAG_OPTIMISTIC = 0x00000010,
 ISOFLAG_READONLY = 0x00000020
 } OLETX_ISOLATION_FLAGS;

ISOFLAG_RETAIN_DEFAULT: Default value if no other value has been set.

ISOFLAG_RETAIN_COMMIT_DC: Retain locks on transaction commit, regardless of the success or

failure of that commit request.

If this value is set, then ISOFLAG_RETAIN_COMMIT and ISOFLAG_RETAIN_COMMIT_NO MUST

NOT be set.

ISOFLAG_RETAIN_COMMIT: Retain locks on a successful transaction commit.

If this value is set, then ISOFLAG_RETAIN_COMMIT_DC and ISOFLAG_RETAIN_COMMIT_NO MUST
NOT be set.

ISOFLAG_RETAIN_COMMIT_NO: Do not retain locks on a transaction commit.

If this value is set, then ISOFLAG_RETAIN_COMMIT_DC and ISOFLAG_RETAIN_COMMIT MUST
NOT be set.

ISOFLAG_RETAIN_ABORT_DC: Retain locks on transaction abort, regardless of the success or
failure of that Abort request.

If this value is set, then ISOFLAG_RETAIN_ABORT and ISOFLAG_RETAIN_ABORT_NO MUST NOT

be set.

ISOFLAG_RETAIN_ABORT: Retain locks on a successful transaction abort.

If this value is set, then ISOFLAG_RETAIN_ABORT_DC and ISOFLAG_RETAIN_ABORT_NO MUST
NOT be set.

ISOFLAG_RETAIN_ABORT_NO: Do not retain locks on a transaction abort.

If this value is set, then ISOFLAG_RETAIN_ABORT and ISOFLAG_RETAIN_ABORT_DC MUST NOT
be set.

ISOFLAG_RETAIN_DONTCARE: Retain locks on all transaction termination requests, regardless of

whether the request was to abort or commit.

This is a synonym for selecting ISOFLAG_RETAIN_COMMIT_DC and ISOFLAG_RETAIN_ABORT_DC.

ISOFLAG_RETAIN_BOTH: Retain locks on all successful transaction termination requests,
regardless of whether or not the request was to abort or commit.

This is a synonym for selecting ISOFLAG_RETAIN_COMMIT and ISOFLAG_RETAIN_ABORT.

ISOFLAG_RETAIN_NONE: Do not retain locks on any transaction termination requests.

This is a synonym for selecting ISOFLAG_RETAIN_COMMIT_NO and ISOFLAG_RETAIN_ABORT_NO.

ISOFLAG_OPTIMISTIC: Optimistic locking is allowed.

77 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

ISOFLAG_READONLY: The transaction is not expected to modify data.

2.2.6.9 OLETX_ISOLATION_LEVEL

The OLETX_ISOLATION_LEVEL enumeration values specify the isolation levels of a transaction. The
values of the OLETX_ISOLATION_LEVEL enumeration are not interpreted by the transaction manager.
They are typically interpreted by resource managers that implement data isolation. These values are
transported by the transaction manager from the root application to the resource managers.

 typedef enum
 {
 ISOLATIONLEVEL_UNSPECIFIED = 0xffffffff,
 ISOLATIONLEVEL_CHAOS = 0x00000010,
 ISOLATIONLEVEL_READUNCOMMITTED = 0x00000100,
 ISOLATIONLEVEL_READCOMMITTED = 0x00001000,
 ISOLATIONLEVEL_REPEATABLEREAD = 0x00010000,
 ISOLATIONLEVEL_SERIALIZABLE = 0x00100000
 } OLETX_ISOLATION_LEVEL;

ISOLATIONLEVEL_UNSPECIFIED: No isolation level was specified.

ISOLATIONLEVEL_CHAOS: Data is not isolated.

ISOLATIONLEVEL_READUNCOMMITTED: A transaction can read any data, even if it is being
modified by another transaction. Any type of new data can be inserted during a transaction.

ISOLATIONLEVEL_READCOMMITTED: A transaction MUST NOT read data that is being modified
by another transaction that has not committed. Any type of new data can be inserted during a
transaction.

ISOLATIONLEVEL_REPEATABLEREAD: Data read by a current transaction MUST NOT be changed
by another transaction until the current transaction finishes. Any type of new data can be inserted
during a transaction.

ISOLATIONLEVEL_SERIALIZABLE: Data read by a current transaction MUST NOT be changed by
another transaction until the current transaction finishes. New data MUST NOT be inserted by
another transaction that would affect the current transaction.

2.2.7 Transaction Constants

2.2.7.1 GRFRM

This MUST be a 32-bit unsigned integer that contains an implementation-defined value. This value
SHOULD be ignored on receipt.

2.2.7.2 DTCADVCONFIG

2.2.7.3 DTCADVCONFIG_OPTIONS

These flags indicate the support for various miscellaneous options supported by the Core Transaction
Manager Facet (section 1.3.3.3.1).

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

DTCADVCONFIG_OPTIONS

78 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

A X

Marker Bits

Value Description

A

DTCADVCONFIG_OPTIONS_LUTRANSACTIONS_DISABLE

This bit corresponds to the Allow LUTransactions flag maintained by the Core Transaction Manager Facet,
as defined in Core Transaction Manager Facet Details (section 3.2).

X

SHOULD be set to zero, and MUST be ignored when read.

X

SHOULD be set to zero, and MUST be ignored when read.

X

SHOULD be set to zero, and MUST be ignored when read.

X

SHOULD be set to zero, and MUST be ignored when read.

X

SHOULD be set to zero, and MUST be ignored when read.

X

SHOULD be set to zero, and MUST be ignored when read.

X

SHOULD be set to zero, and MUST be ignored when read.

X

SHOULD be set to zero, and MUST be ignored when read.

X

SHOULD be set to zero, and MUST be ignored when read.

X

SHOULD be set to zero, and MUST be ignored when read.

X

SHOULD be set to zero, and MUST be ignored when read.

X

SHOULD be set to zero, and MUST be ignored when read.

X

SHOULD be set to zero, and MUST be ignored when read.

X

SHOULD be set to zero, and MUST be ignored when read.

79 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Value Description

X

SHOULD be set to zero, and MUST be ignored when read.

X

SHOULD be set to zero, and MUST be ignored when read.

X

SHOULD be set to zero, and MUST be ignored when read.

X

SHOULD be set to zero, and MUST be ignored when read.

X

SHOULD be set to zero, and MUST be ignored when read.

X

SHOULD be set to zero, and MUST be ignored when read.

X

SHOULD be set to zero, and MUST be ignored when read.

X

SHOULD be set to zero, and MUST be ignored when read.

X

SHOULD be set to zero, and MUST be ignored when read.

X

SHOULD be set to zero, and MUST be ignored when read.

X

SHOULD be set to zero, and MUST be ignored when read.

X

SHOULD be set to zero, and MUST be ignored when read.

X

SHOULD be set to zero, and MUST be ignored when read.

X

SHOULD be set to zero, and MUST be ignored when read.

X

SHOULD be set to zero, and MUST be ignored when read.

X

SHOULD be set to zero, and MUST be ignored when read.

X

SHOULD be set to zero, and MUST be ignored when read.

80 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

2.2.8 Connection Types Relevant to Applications

2.2.8.1 Transaction Initiation and Completion

2.2.8.1.1 CONNTYPE_TXUSER_BEGINNER

This connection type is used by applications that begin, commit, and roll back transactions.

For more information about CONNTYPE_TXUSER_BEGINNER as an initiator, see section 3.3.5.1.1, and
as an acceptor, see section 3.4.5.1.1.

2.2.8.1.1.1 TXUSER_BEGINNER_MTAG_ABORT

This message requests an attempt to abort the transaction that was begun on this connection.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

MsgHeader (24 bytes)

...

...

guidReason (16 bytes)

...

...

MsgHeader (24 bytes): This field MUST contain a MESSAGE_PACKET structure.

 The dwUserMsgType field MUST be 0x00001013.

 The dwcbVarLenData field MUST be 16.

guidReason (16 bytes): The value MUST be set to an implementation-specific GUID that specifies
the reason for aborting the transaction and SHOULD be ignored on receipt.

2.2.8.1.1.2 TXUSER_BEGINNER_MTAG_BEGIN

This message requests the creation of a transaction.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

MsgHeader (24 bytes)

...

...

isoLevel

81 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

dwTimeout

szDesc (40 bytes)

...

...

isoFlags

MsgHeader (24 bytes): This field MUST contain a MESSAGE_PACKET structure.

 The dwUserMsgType field MUST be 0x00001011.

 The dwcbVarLenData field MUST be 52.

isoLevel (4 bytes): The OLETX_ISOLATION_LEVEL enumeration that is defined for the transaction.

dwTimeout (4 bytes): A 32-bit unsigned integer that MUST contain the time-out value, in
milliseconds, for the transaction. The value zero MUST be interpreted as an infinite time-out. A
transaction SHOULD NOT abort due to time-out before the time-out that is specified by this value
has expired.

szDesc (40 bytes): The description of the transaction, as a fixed-size array of 40 bytes that contains

a null-terminated Latin-1 ANSI string, as specified in [ISO/IEC-8859-1]. See section 2.2.5.4 for
details.

isoFlags (4 bytes): The OLETX_ISOLATION_FLAGS enumeration that is defined for the transaction.

2.2.8.1.1.3 TXUSER_BEGINNER_MTAG_BEGIN_LOG_FULL

This message indicates that the transaction was not created because the transaction recovery log had

insufficient space to accommodate the new transaction.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

MsgHeader (24 bytes)

...

...

MsgHeader (24 bytes): This field MUST contain a MESSAGE_PACKET structure.

 The dwUserMsgType field MUST be 0x00001018.

 The dwcbVarLenData field MUST be 0.

2.2.8.1.1.4 TXUSER_BEGINNER_MTAG_BEGIN_NO_MEM

 This message indicates that the transaction was not created because of insufficient memory.

http://go.microsoft.com/fwlink/?LinkId=90689

82 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

MsgHeader (24 bytes)

...

...

MsgHeader (24 bytes): This field MUST contain a MESSAGE_PACKET structure.

 The dwUserMsgType field MUST be 0x00001019.

 The dwcbVarLenData field MUST be 0.

2.2.8.1.1.5 TXUSER_BEGINNER_MTAG_BEGUN

 This message indicates that the request to begin a transaction was successful.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

MsgHeader (24 bytes)

...

...

guidTx (16 bytes)

...

...

MsgHeader (24 bytes): This field MUST contain a MESSAGE_PACKET structure.

 The dwUserMsgType field MUST be 0x00001012.

 The dwcbVarLenData field MUST be 16.

guidTx (16 bytes): This field MUST contain a GUID that specifies the transaction identifier. The value
MUST NOT be set to a NULL GUID.

2.2.8.1.1.6 TXUSER_BEGINNER_MTAG_COMMIT

 This message requests an attempt to commit the transaction that was begun on this connection.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

MsgHeader (24 bytes)

...

83 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

...

grfRM

fAsyncFull

MsgHeader (24 bytes): This field MUST contain a MESSAGE_PACKET structure.

 The dwUserMsgType field MUST be 0x00001014.

 The dwcbVarLenData field MUST be 8.

grfRM (4 bytes): The value of this field MUST be as specified in GRFRM (section 2.2.7.1).

fAsyncFull (4 bytes): Reserved. This value MUST be set to zero and MUST be ignored on receipt.

2.2.8.1.1.7 TXUSER_BEGINNER_MTAG_COMMIT_INDOUBT

 This message indicates that the transaction manager is unable to determine, and will never be able
to determine, the outcome of the transaction.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

MsgHeader (24 bytes)

...

...

MsgHeader (24 bytes): This field MUST contain a MESSAGE_PACKET structure.

 The dwUserMsgType field MUST be 0x00001990.

 The dwcbVarLenData field MUST be 0.

2.2.8.1.1.8 TXUSER_BEGINNER_MTAG_COMMIT_TOO_LATE

This message indicates that the commit request cannot be completed successfully because it is too

late in the lifetime of the transaction to commit it.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

MsgHeader (24 bytes)

...

...

MsgHeader (24 bytes): This field MUST contain a MESSAGE_PACKET structure.

 The dwUserMsgType field MUST be 0x00001016.

 The dwcbVarLenData field MUST be 0.

84 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

2.2.8.1.1.9 TXUSER_BEGINNER_MTAG_REQUEST_COMPLETED

This message is sent to indicate that the request to commit or abort the transaction was completed
successfully.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

MsgHeader (24 bytes)

...

...

MsgHeader (24 bytes): This field MUST contain a MESSAGE_PACKET structure.

 The dwUserMsgType field MUST be 0x00001015.

 The dwcbVarLenData field MUST be 0.

2.2.8.1.2 CONNTYPE_TXUSER_BEGIN2

This connection type is used by an application to begin, commit, or roll back a transaction or to

change the time-out of a transaction. This connection type supersedes
CONNTYPE_TXUSER_BEGINNER and CONNTYPE_TXUSER_SETTXTIMEOUT2.

For more information about CONNTYPE_TXUSER_BEGIN2 as an initiator, see 3.3.5.1.2, and as an
acceptor, see 3.4.5.1.2.

This connection type also uses the following message:

 TXUSER_SETTXTIMEOUT_MTAG_TX_NOT_FOUND (section 2.2.8.3.3.1)

2.2.8.1.2.1 TXUSER_BEGIN2_MTAG_ABORT

The TXUSER_BEGIN2_MTAG_ABORT message requests an attempt to abort the transaction that was
begun on this connection.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

MsgHeader (24 bytes)

...

...

MsgHeader (24 bytes): This field MUST contain a MESSAGE_PACKET structure.

 The dwUserMsgType field MUST be 0x00006001.

 The dwcbVarLenData field MUST be 0.

2.2.8.1.2.2 TXUSER_BEGIN2_MTAG_BEGIN

This message is used to request the creation of a transaction.

85 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

MsgHeader (24 bytes)

...

...

isoLevel

dwTimeout

szDesc (40 bytes)

...

...

isoFlags

MsgHeader (24 bytes): This field MUST contain a MESSAGE_PACKET structure:

 The dwUserMsgType field MUST be 0x00006002.

 The dwcbVarLenData field MUST be 52.

isoLevel (4 bytes): See the isoLevel field in section 2.2.8.1.1.2 for details.

dwTimeout (4 bytes): See the dwTimeout field in section 2.2.8.1.1.2 for details.

szDesc (40 bytes): See the szDesc field in section 2.2.8.1.1.2 for details.

isoFlags (4 bytes): See the isoFlags field in section 2.2.8.1.1.2 for details.

2.2.8.1.2.3 TXUSER_BEGIN2_MTAG_COMMIT

 The TXUSER_BEGIN2_MTAG_COMMIT message requests an attempt to commit the transaction that

was begun on this connection.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

MsgHeader (24 bytes)

...

...

grfRM

MsgHeader (24 bytes): This field MUST contain a MESSAGE_PACKET structure:

 The dwUserMsgType field MUST be 0x00006003.

86 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 The dwcbVarLenData field MUST be 4.

grfRM (4 bytes): The value of this field MUST be as specified in GRFRM.

2.2.8.1.2.4 TXUSER_BEGIN2_MTAG_SINK_BEGUN

This message indicates that the request to begin a transaction was successful.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

MsgHeader (24 bytes)

...

...

guidTx (16 bytes)

...

...

MsgHeader (24 bytes): This field MUST contain a MESSAGE_PACKET structure:

 The dwUserMsgType field MUST be 0x00006006.

 The dwcbVarLenData field MUST be 16.

guidTx (16 bytes): This field MUST contain a GUID that specifies the transaction identifier. This
value MUST NOT be a NULL GUID.

2.2.8.1.2.5 TXUSER_BEGIN2_MTAG_SINK_ERROR

 The content of this message provides information about the outcome of a request.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

MsgHeader (24 bytes)

...

...

Error

MsgHeader (24 bytes): This field MUST contain a MESSAGE_PACKET structure:

 The dwUserMsgType field MUST be 0x00006005.

 The dwcbVarLenData field MUST be 4.

Error (4 bytes): This field MUST contain the status for the previous request. The value MUST be a
member of the TRUN_TXBEGIN_ERRORS enumeration.

87 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

2.2.8.1.2.6 TXUSER_SETTXTIMEOUT_MTAG_REQUEST_COMPLETE

This message indicates that the transaction time-out was successfully modified.

This message is also used for CONNTYPE_TXUSER_SETTXTIMEOUT.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

MsgHeader (24 bytes)

...

...

MsgHeader (24 bytes): This field MUST contain a MESSAGE_PACKET structure:

 The dwUserMsgType field MUST be 0x0000107C.

 The dwcbVarLenData field MUST be 0.

2.2.8.1.2.7 TXUSER_SETTXTIMEOUT_MTAG_SETTXTIMEOUT

This message modifies the transaction time-out when it is used in

CONNTYPE_TXUSER_BEGIN2 (section 2.2.8.1.2) and
CONNTYPE_TXUSER_SETTXTIMEOUT (section 2.2.8.3.3), or queries if the transaction manager
supports the capability to do so when used in
CONNTYPE_TXUSER_SETTXTIMEOUT2 (section 2.2.8.3.4).

This message is also used for CONNTYPE_TXUSER_SETTXTIMEOUT (section 2.2.8.3.3) and
CONNTYPE_TXUSER_SETTXTIMEOUT2 (section 2.2.8.3.4).

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

MsgHeader (24 bytes)

...

...

guidTx (16 bytes)

...

...

dwTxTimeout

MsgHeader (24 bytes): This field MUST contain a MESSAGE_PACKET structure:

 The dwUserMsgType field MUST be 0x0000107B.

 The dwcbVarLenData field MUST be 20.

88 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

guidTx (16 bytes): This field MUST contain a GUID that specifies the transaction identifier. When
this message is sent on a CONNTYPE_TXUSER_SETTXTIMEOUT2 (section 2.2.8.3.4) connection to

query the capability of the transaction manager, this value SHOULD be set to a NULL GUID and
MUST be ignored on receipt.

dwTxTimeout (4 bytes): A 32-bit unsigned integer that contains the new time-out value, in
milliseconds, for the transaction. When used with a CONNTYPE_TXUSER_BEGIN2 (section
2.2.8.1.2) connection, a transaction MUST NOT abort due to time-out before the number of
milliseconds that is specified by the value has expired. The value zero MUST be interpreted as an
infinite time-out. When used with a CONNTYPE_TXUSER_SETTXTIMEOUT2 (section 2.2.8.3.4)
connection, this value SHOULD be set to zero and MUST be ignored on receipt.

2.2.8.1.2.8 TXUSER_SETTXTIMEOUT_MTAG_TOO_LATE

This message indicates that it is too late to modify the time-out of the transaction.

This message is also in the CONNTYPE_TXUSER_SETTXTIMEOUT connection type.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

MsgHeader (24 bytes)

...

...

MsgHeader (24 bytes): This field MUST contain a MESSAGE_PACKET structure:

 The dwUserMsgType field MUST be 0x0000107E.

 The dwcbVarLenData field MUST be 0.

2.2.8.1.3 CONNTYPE_TXUSER_PROMOTE

This connection type is used by an application to do the following:

 Begin a transaction using an application-specified transaction identity

 Commit or roll back a transaction

 Change the time-out of a transaction

This connection type supersedes CONNTYPE_TXUSER_SETTXTIMEOUT2.

For more information about CONNTYPE_TXUSER_PROMOTE as an initiator, see section 3.3.5.1.3, and
as an acceptor, see section 3.4.5.1.3.

This connection type also uses the following messages:

 TXUSER_BEGIN2_MTAG_COMMIT (section 2.2.8.1.2.3)

 TXUSER_BEGIN2_MTAG_ABORT (section 2.2.8.1.2.1)

 TXUSER_BEGIN2_MTAG_SINK_BEGUN (section 2.2.8.1.2.4)

 TXUSER_BEGIN2_MTAG_SINK_ERROR (section 2.2.8.1.2.5)

 TXUSER_SETTXTIMEOUT_MTAG_SETTXTIMEOUT (section 2.2.8.1.2.7)

89 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 TXUSER_SETTXTIMEOUT_MTAG_TOO_LATE (section 2.2.8.1.2.8)

 TXUSER_SETTXTIMEOUT_MTAG_REQUEST_COMPLETE (section 2.2.8.1.2.6)

2.2.8.1.3.1 TXUSER_BEGINNER_MTAG_PROMOTE

This message is used to request the creation of a transaction that specifies a predetermined
transaction identifier.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

MsgHeader (24 bytes)

...

...

isoLevel

dwTimeout

szDesc (40 bytes)

...

...

isoFlags

guidTx (16 bytes)

...

...

MsgHeader (24 bytes): This field MUST contain a MESSAGE_PACKET structure:

 The dwUserMsgType field MUST be 0x00001010.

 The dwcbVarLenData field MUST be 68.

isoLevel (4 bytes): See the isoLevel field in section 2.2.8.1.1.2 for details.

dwTimeout (4 bytes): See the dwTimeout field in section 2.2.8.1.1.2 for details.

szDesc (40 bytes): See the szDesc field in section 2.2.8.1.1.2 for details.

isoFlags (4 bytes): See the isoFlags field in section 2.2.8.1.1.2 for details.

guidTx (16 bytes): This field MUST contain a GUID that specifies the transaction identifier.

90 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

2.2.8.2 Transaction Propagation

2.2.8.2.1 Pull Propagation

2.2.8.2.1.1 CONNTYPE_TXUSER_ASSOCIATE

This connection type is used by a destination application to complete the pull propagation of a
transaction from a source application.

For more information about CONNTYPE_TXUSER_ASSOCIATE as an initiator, see section 3.3.5.2.1.1,
and as an acceptor, see section 3.4.5.2.1.1.

2.2.8.2.1.1.1 TXUSER_ASSOCIATE_MTAG_ASSOCIATE

This message requests that the transaction manager perform pull propagation of an existing
transaction. This is also known as an associate request.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

MsgHeader (24 bytes)

...

...

guidTx (16 bytes)

...

...

isoLevel

isoFlags

cbSourceTmAddr

szDesc (40 bytes)

...

...

SourceTmAddr (variable)

...

MsgHeader (24 bytes): This field MUST contain a MESSAGE_PACKET structure.

 The dwUserMsgType field MUST be 0x00002031.

 The dwcbVarLenData field MUST be equal to the value of cbSourceTMAddr plus 68.

91 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

guidTx (16 bytes): This field MUST contain a GUID that specifies the transaction identifier.

isoLevel (4 bytes): See the isoLevel field in section 2.2.8.1.1.2 for details.

isoFlags (4 bytes): See the isoFlags field in section 2.2.8.1.1.2 for details.

cbSourceTmAddr (4 bytes): A 4-byte integer value that MUST contain the length, in bytes, of the

SourceTmAddr field. The length MUST include the padding bytes used in the SourceTmAddr
field.

szDesc (40 bytes): See the szDesc field in section 2.2.8.1.1.2 for details.

SourceTmAddr (variable): This field is used for identifying the address of the superior transaction
manager against which the pull propagation operation is requested. This field MUST contain either
a NAMEOBJECTBLOB (section 2.2.5.3) structure or an OLETX_TM_ADDR (section 2.2.4.2)
structure in a version-specific manner as specified in Version-Specific Aspects of Connection Types

Relevant to an Application (section 2.2.1.1.1). The SourceTmAddr field MUST be aligned on a 4-
byte boundary by padding with arbitrary values.

2.2.8.2.1.1.2 TXUSER_ASSOCIATE_MTAG_ASSOCIATED

 This message indicates that the associate request was successful.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

MsgHeader (24 bytes)

...

...

MsgHeader (24 bytes): This field MUST contain a MESSAGE_PACKET structure.

 The dwUserMsgType field MUST be 0x00002032.

 The dwcbVarLenData field MUST be 0.

2.2.8.2.1.1.3 TXUSER_ASSOCIATE_MTAG_COMM_FAILED

This message indicates that the associated request failed because the sender of this message
encountered a communication failure with the Superior Transaction Manager specified in the

SourceTmAddr field of the TXUSER_ASSOCIATE_MTAG_ASSOCIATE (section 2.2.8.2.1.1.1) message.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

MsgHeader (24 bytes)

...

...

MsgHeader (24 bytes): This field MUST contain a MESSAGE_PACKET structure.

 The dwUserMsgType field MUST be 0x00002034.

92 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 The dwcbVarLenData field MUST be 0.

2.2.8.2.1.1.4 TXUSER_ASSOCIATE_MTAG_CREATE_BAD_TMADDR

 This message indicates that the associate request failed because of failures during interpretation and

processing of the SourceTmAddr field in the
TXUSER_ASSOCIATE_MTAG_ASSOCIATE (section 2.2.8.2.1.1.1) message.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

MsgHeader (24 bytes)

...

...

MsgHeader (24 bytes): This field MUST contain a MESSAGE_PACKET structure.

 The dwUserMsgType field MUST be 0x00002044.

 The dwcbVarLenData field MUST be 0.

2.2.8.2.1.1.5 TXUSER_ASSOCIATE_MTAG_LOG_FULL_LOCAL

This message indicates that the associate request failed because the transaction recovery log was full
at the transaction manager sending this message.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

MsgHeader (24 bytes)

...

...

MsgHeader (24 bytes): This field MUST contain a MESSAGE_PACKET structure.

 The dwUserMsgType field MUST be 0x00002035.

 The dwcbVarLenData field MUST be 0.

2.2.8.2.1.1.6 TXUSER_ASSOCIATE_MTAG_LOG_FULL_REMOTE

This message indicates first that the associated request failed because of a full transaction recovery
log at the superior transaction manager specified in the SourceTmAddr field of the

TXUSER_ASSOCIATE_MTAG_ASSOCIATE (section 2.2.8.2.1.1.1) message.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

MsgHeader (24 bytes)

...

93 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

...

MsgHeader (24 bytes): This field MUST contain a MESSAGE_PACKET structure.

 The dwUserMsgType field MUST be 0x00002037.

 The dwcbVarLenData field MUST be 0.

2.2.8.2.1.1.7 TXUSER_ASSOCIATE_MTAG_NO_MEM_LOCAL

This message indicates that the associate request failed because of a failure to allocate dynamic
memory by the transaction manager sending this message while processing the
TXUSER_ASSOCIATE_MTAG_ASSOCIATE (section 2.2.8.2.1.1.1) message.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

MsgHeader (24 bytes)

...

...

MsgHeader (24 bytes): This field MUST contain a MESSAGE_PACKET structure.

 The dwUserMsgType field MUST be 0x00002036.

 The dwcbVarLenData field MUST be 0.

2.2.8.2.1.1.8 TXUSER_ASSOCIATE_MTAG_NO_MEM_REMOTE

 This message indicates that the associate request failed because of a failure to allocate dynamic
memory by the Superior Transaction Manager specified in the SourceTmAddr field of the

TXUSER_ASSOCIATE_MTAG_ASSOCIATE (section 2.2.8.2.1.1.1) message.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

MsgHeader (24 bytes)

...

...

MsgHeader (24 bytes): This field MUST contain a MESSAGE_PACKET structure.

 The dwUserMsgType field MUST be 0x00002038.

 The dwcbVarLenData field MUST be 0.

2.2.8.2.1.1.9 TXUSER_ASSOCIATE_MTAG_TOO_LATE

This message is sent in response to a TXUSER_ASSOCIATE_MTAG_ASSOCIATE (section 2.2.8.2.1.1.1)
message. It indicates that the associate request failed because the transaction specified by the

94 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

guidTx field in the TXUSER_ASSOCIATE_MTAG_ASSOCIATE message is neither in the Active, Phase
Zero, nor Phase Zero Complete state.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

MsgHeader (24 bytes)

...

...

MsgHeader (24 bytes): This field MUST contain a MESSAGE_PACKET structure.

 The dwUserMsgType field MUST be 0x00002040.

 The dwcbVarLenData field MUST be 0.

2.2.8.2.1.1.10 TXUSER_ASSOCIATE_MTAG_TOO_MANY_LOCAL

This message indicates that the associate request failed because the number of direct participants for
the transaction specified by the guidTx field in the
TXUSER_ASSOCIATE_MTAG_ASSOCIATE (section 2.2.8.2.1.1.1) message exceeded an

implementation-specific limit by the transaction manager sending this message while processing the
TXUSER_ASSOCIATE_MTAG_ASSOCIATE message.<18>

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

MsgHeader (24 bytes)

...

...

MsgHeader (24 bytes): This field MUST contain a MESSAGE_PACKET structure.

 The dwUserMsgType field MUST be 0x00002041.

 The dwcbVarLenData field MUST be 0.

2.2.8.2.1.1.11 TXUSER_ASSOCIATE_MTAG_TOO_MANY_REMOTE

This message indicates a failure by the associate request. The number of direct participants for the
transaction that is specified by the guidTx field in the
TXUSER_ASSOCIATE_MTAG_ASSOCIATE (section 2.2.8.2.1.1.1) message exceeded the limit at the
Superior Transaction Manager referenced in the SourceTmAddr field of the

TXUSER_ASSOCIATE_MTAG_ASSOCIATE message.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

MsgHeader (24 bytes)

...

95 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

...

MsgHeader (24 bytes): This field MUST contain a MESSAGE_PACKET structure.

 The dwUserMsgType field MUST be 0x00002042.

 The dwcbVarLenData field MUST be 0.

2.2.8.2.1.1.12 TXUSER_ASSOCIATE_MTAG_TX_NOT_FOUND

This message indicates that the associate request failed because the transaction specified by the
guidTx field in the TXUSER_ASSOCIATE_MTAG_ASSOCIATE (section 2.2.8.2.1.1.1) message was not
found.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

MsgHeader (24 bytes)

...

...

MsgHeader (24 bytes): This field MUST contain a MESSAGE_PACKET structure.

 The dwUserMsgType field MUST be 0x00002043.

 The dwcbVarLenData field MUST be 0.

2.2.8.2.2 Push Propagation

2.2.8.2.2.1 CONNTYPE_TXUSER_EXTENDEDWHEREABOUTS

This connection type is used by an application to obtain Extended Whereabouts from its transaction
manager.

For more information about CONNTYPE_TXUSER_EXTENDEDWHEREABOUTS as an initiator, see
section 3.3.5.2.2.1, and as an acceptor, see section 3.4.5.2.2.1.

2.2.8.2.2.1.1 TXUSER_EXTENDEDWHEREABOUTS_MTAG_GET

This message is sent by the application to the transaction manager to obtain the Extended

Whereabouts of the transaction manager.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

MsgHeader (24 bytes)

...

...

MsgHeader (24 bytes): This field MUST contain a MESSAGE_PACKET structure.

96 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 The dwUserMsgType field MUST be 0x00005A01.

 The dwcbVarLenData field MUST be 0.

2.2.8.2.2.1.2 TXUSER_EXTENDEDWHEREABOUTS_MTAG_GOT

This message returns the set of extended whereabouts elements.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

MsgHeader (24 bytes)

...

...

dwProtocolCount

rgtmprotUsableList (variable)

...

MsgHeader (24 bytes): This field MUST contain a MESSAGE_PACKET structure.

 The dwUserMsgType field MUST be 0x00005A02.

 The dwcbVarLenData field MUST be the number of bytes used by the rgtmprotUsableList
field plus 4.

dwProtocolCount (4 bytes): An unsigned 32-bit value that MUST contain the number of elements in

the rgtmprotUsableList array. If this value is zero, the rgtmprotUsableList field MUST be

omitted.

rgtmprotUsableList (variable): Array of STmToTmProtocol (section 2.2.5.9) elements, each of
which MUST be of type TmProtocolExtended. Each element defines the location information for an
extension protocol. Each element MUST be aligned on a 4-byte boundary.

2.2.8.2.2.1.3 TXUSER_EXTENDEDWHEREABOUTS_MTAG_NOMEM

This message is sent by the transaction manager to the client in response to a
TXUSER_EXTENDEDWHEREABOUTS_MTAG_GET (section 2.2.8.2.2.1.1) message to indicate that there
is not enough memory to process the request.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

MsgHeader (24 bytes)

...

...

MsgHeader (24 bytes): This field MUST contain a MESSAGE_PACKET structure.

97 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 The dwUserMsgType field MUST be 0x00005A03.

 The dwcbVarLenData field MUST be 0.

2.2.8.2.2.2 CONNTYPE_TXUSER_EXPORT

This connection type is used by a source application to initiate a push propagation to a destination
application.

For more information about CONNTYPE_TXUSER_EXPORT as an initiator, see section 3.3.5.2.2.2, and
as an acceptor, see section 3.4.5.2.2.2.

2.2.8.2.2.2.1 TXUSER_EXPORT_MTAG_CREATE

 This message is used by applications to establish a connection with the transaction manager in order

to export transactions to a destination transaction manager.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

MsgHeader (24 bytes)

...

...

SourceTmAddr (variable)

...

MsgHeader (24 bytes): This field MUST contain a MESSAGE_PACKET structure.

 The dwUserMsgType field MUST be 0x00001041.

 The dwcbVarLenData field MUST be the number of bytes used for the SourceTmAddr field,
and the value MUST be at least 40.

SourceTmAddr (variable): This field specifies the network address and identification information for
the destination transaction manager. This field MUST contain either a NAMEOBJECTBLOB (section
2.2.5.3) structure or an OLETX_TM_ADDR (section 2.2.4.2) structure in a version-specific manner
as described in Version-Specific Aspects of Connection Types Relevant to an Application (section
2.2.1.1.1). This transaction manager receives push propagation operations from the source
transaction manager, which is the recipient of this message. CONNTYPE_PARTNERTM_PROPAGATE
(section 2.2.9.1.1.1) defines the protocol that is used between the two transaction managers as a

result of the export operation.

2.2.8.2.2.2.2 TXUSER_EXPORT_MTAG_CREATE2

 This message is used by applications to establish a connection with the transaction manager in
preparation to export transactions to a destination transaction manager.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

MsgHeader (24 bytes)

98 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

...

...

SourceTmAddr (variable)

...

MsgHeader (24 bytes): This field MUST contain a MESSAGE_PACKET structure.

 The dwUserMsgType field MUST be 0x00001804.

 The dwcbVarLenData field MUST be the number of bytes used for the SourceTmAddr field,

and the value MUST be at least 40.

SourceTmAddr (variable): This field MUST contain an OLETX_TM_ADDR structure that specifies the

network address and identification information for the destination transaction manager. This
transaction manager receives push propagation operations from the source transaction manager,
which is the recipient of this message. CONNTYPE_PARTNERTM_PROPAGATE (section 2.2.9.1.1.1)
defines the protocol that is used between the two transaction managers as a result of the export

operation.

2.2.8.2.2.2.3 TXUSER_EXPORT_MTAG_CREATE_BAD_TMADDR

 This message indicates that the create request failed because of errors encountered during the
interpretation and processing of the SourceTmAddr field in the connection's initial
TXUSER_EXPORT_MTAG_CREATE (section 2.2.8.2.2.2.1) or
TXUSER_EXPORT_MTAG_CREATE2 (section 2.2.8.2.2.2.2) message.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

MsgHeader (24 bytes)

...

...

MsgHeader (24 bytes): This field MUST contain a MESSAGE_PACKET structure.

 The dwUserMsgType field MUST be 0x00001046.

 The dwcbVarLenData field MUST be 0.

2.2.8.2.2.2.4 TXUSER_EXPORT_MTAG_CREATE_NET_TX_DISABLED

 This message indicates that the create request failed because the transaction manager that received

the request has disabled the ability to export transactions to other transaction managers. See the
Allow Outbound Transaction flag in Abstract Data Model (section 3.2.1) for more details.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

MsgHeader (24 bytes)

99 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

...

...

MsgHeader (24 bytes): This field MUST contain a MESSAGE_PACKET structure.

 The dwUserMsgType field MUST be 0x00001805.

 The dwcbVarLenData field MUST be 0.

2.2.8.2.2.2.5 TXUSER_EXPORT_MTAG_CREATED

 This message indicates that the create request succeeded and the connection is now ready to
process export requests.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

MsgHeader (24 bytes)

...

...

MsgHeader (24 bytes): This field MUST contain a MESSAGE_PACKET structure.

 The dwUserMsgType field MUST be 0x00001042.

 The dwcbVarLenData field MUST be 0.

2.2.8.2.2.2.6 TXUSER_EXPORT_MTAG_EXPORT

This message is used to export a transaction to the destination transaction manager that is identified
by SourceTmAddr in the connection's initial TXUSER_EXPORT_MTAG_CREATE (section 2.2.8.2.2.2.1)
or TXUSER_EXPORT_MTAG_CREATE2 (section 2.2.8.2.2.2.2) message.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

MsgHeader (24 bytes)

...

...

guidTX (16 bytes)

...

...

MsgHeader (24 bytes): This field MUST contain a MESSAGE_PACKET structure.

 The dwUserMsgType field MUST be 0x00001043.

100 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 The dwcbVarLenData field MUST be 16.

guidTX (16 bytes): This field MUST contain a GUID that specifies the transaction identifier.

2.2.8.2.2.2.7 TXUSER_EXPORT_MTAG_EXPORT_LOG_FULL

This message indicates that the export request failed because the transaction recovery log was full at
the source transaction manager.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

MsgHeader (24 bytes)

...

...

MsgHeader (24 bytes): This field MUST contain a MESSAGE_PACKET structure.

 The dwUserMsgType field MUST be 0x00001050.

 The dwcbVarLenData field MUST be 0.

2.2.8.2.2.2.8 TXUSER_EXPORT_MTAG_EXPORT_NO_MEM

This message indicates that the export request failed because the source transaction manager was
unable to allocate sufficient dynamic memory for the request.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

MsgHeader (24 bytes)

...

...

MsgHeader (24 bytes): This field MUST contain a MESSAGE_PACKET structure.

 The dwUserMsgType field MUST be 0x00001802.

 The dwcbVarLenData field MUST be 0.

2.2.8.2.2.2.9 TXUSER_EXPORT_MTAG_EXPORT_TOO_LATE

This message indicates that the export request failed because it was too late to process the export

request for the current state of the transaction. See Export Transaction (section 3.2.7.21) and Export
Transaction Failure (section 3.4.7.11) for more information.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

MsgHeader (24 bytes)

101 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

...

...

MsgHeader (24 bytes): This field MUST contain a MESSAGE_PACKET structure.

 The dwUserMsgType field MUST be 0x00001049.

 The dwcbVarLenData field MUST be 0.

2.2.8.2.2.2.10 TXUSER_EXPORT_MTAG_EXPORT_TOO_MANY

This message indicates that the export request failed because the number of direct participants for the
transaction specified by the guidTX field in the
TXUSER_EXPORT_MTAG_EXPORT (section 2.2.8.2.2.2.6) message exceeded the allowed number of
remote transaction manager enlistments. For more information, see Export
Transaction (section 3.2.7.21).

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

MsgHeader (24 bytes)

...

...

MsgHeader (24 bytes): This field MUST contain a MESSAGE_PACKET structure.

 The dwUserMsgType field MUST be 0x00001801.

 The dwcbVarLenData field MUST be 0.

2.2.8.2.2.2.11 TXUSER_EXPORT_MTAG_EXPORT_TX_NOT_FOUND

This message indicates that the export request failed because the transaction specified by the guidTX
field in the TXUSER_EXPORT_MTAG_EXPORT (section 2.2.8.2.2.2.6) message was not found by the
source transaction manager.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

MsgHeader (24 bytes)

...

...

MsgHeader (24 bytes): This field MUST contain a MESSAGE_PACKET structure.

 The dwUserMsgType field MUST be 0x00001048.

 The dwcbVarLenData field MUST be 0.

2.2.8.2.2.2.12 TXUSER_EXPORT_MTAG_EXPORTED

102 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

This message indicates that the export request was successful.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

MsgHeader (24 bytes)

...

...

MsgHeader (24 bytes): This field MUST contain a MESSAGE_PACKET structure.

 The dwUserMsgType field MUST be 0x00001044.

 The dwcbVarLenData field MUST be 0.

2.2.8.2.2.3 CONNTYPE_TXUSER_EXPORT2

This connection type is used by a source application to initiate a push propagation to a destination
application. This connection type supersedes CONNTYPE_TXUSER_EXPORT.

For more information about CONNTYPE_TXUSER_EXPORT2 as an initiator, see section 3.3.5.2.2.3, and
as an acceptor, see section 3.4.1.9.

This connection type also uses the following messages:

 TXUSER_EXPORT_MTAG_CREATE

 TXUSER_EXPORT_MTAG_CREATE2

 TXUSER_EXPORT_MTAG_CREATE_BAD_TMADDR

 TXUSER_EXPORT_MTAG_CREATE_NET_TX_DISABLED

 TXUSER_EXPORT_MTAG_CREATED

 TXUSER_EXPORT_MTAG_EXPORT

 TXUSER_EXPORT_MTAG_EXPORT_LOG_FULL

 TXUSER_EXPORT_MTAG_EXPORT_NO_MEM

 TXUSER_EXPORT_MTAG_EXPORT_TOO_LATE

 TXUSER_EXPORT_MTAG_EXPORT_TOO_MANY

 TXUSER_EXPORT_MTAG_EXPORT_TX_NOT_FOUND

 TXUSER_EXPORT_MTAG_EXPORTED

2.2.8.2.2.3.1 TXUSER_EXPORT_MTAG_EXPORT_COMM_FAILED

This message indicates that the export request failed because the sender of this message encountered
a communication failure with the source transaction manager.

103 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

MsgHeader (24 bytes)

...

...

MsgHeader (24 bytes): This field MUST contain a MESSAGE_PACKET structure.

 The dwUserMsgType field MUST be 0x00001806.

 The dwcbVarLenData field MUST be 0x00000000.

2.2.8.2.2.4 CONNTYPE_TXUSER_IMPORT

 This connection type is used by a destination application to complete a push propagation that is
initiated by a source application.

For more information about CONNTYPE_TXUSER_IMPORT as an initiator, see section 3.3.5.2.2.4, and
as an acceptor, see section 3.4.5.2.2.4.

2.2.8.2.2.4.1 TXUSER_IMPORT_MTAG_ABORT

This message is a request for the transaction manager to abort the transaction.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

MsgHeader (24 bytes)

...

...

guidReason (16 bytes)

...

...

MsgHeader (24 bytes): This field MUST contain a MESSAGE_PACKET structure.

 The dwUserMsgType field MUST be 0x00001023.

 The dwcbVarLenData field MUST be 16.

guidReason (16 bytes): The value MUST be set to an implementation-specific GUID that specifies
the reason for aborting the transaction and SHOULD be ignored on receipt.

2.2.8.2.2.4.2 TXUSER_IMPORT_MTAG_ABORT_TOO_LATE

This message is sent to the application in the connection type that was created for the originating
TXUSER_IMPORT_MTAG_IMPORT (section 2.2.8.2.2.4.3) message.

104 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

MsgHeader (24 bytes)

...

...

MsgHeader (24 bytes): This field MUST contain a MESSAGE_PACKET structure.

 The dwUserMsgType field MUST be 0x00001025.

 The dwcbVarLenData field MUST be 0.

2.2.8.2.2.4.3 TXUSER_IMPORT_MTAG_IMPORT

This message is used by a destination application to complete a push propagation operation that is
initiated by a source application.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

MsgHeader (24 bytes)

...

...

guidTx (16 bytes)

...

...

MsgHeader (24 bytes): This field MUST contain a MESSAGE_PACKET structure.

 The dwUserMsgType field MUST be 0x00001021.

 The dwcbVarLenData field MUST be 16.

guidTx (16 bytes): This field MUST contain a GUID that specifies the transaction identifier.

2.2.8.2.2.4.4 TXUSER_IMPORT_MTAG_IMPORT_TX_NOT_FOUND

This message is sent if the attempt to import the transaction is unsuccessful because the transaction

that is specified in the TXUSER_IMPORT_MTAG_IMPORT (section 2.2.8.2.2.4.3) message cannot be

found.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

MsgHeader (24 bytes)

105 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

...

...

MsgHeader (24 bytes): This field MUST contain a MESSAGE_PACKET structure.

 The dwUserMsgType field MUST be 0x00001026.

 The dwcbVarLenData field MUST be 0.

2.2.8.2.2.4.5 TXUSER_IMPORT_MTAG_IMPORTED

 This message indicates that the import operation completed successfully.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

MsgHeader (24 bytes)

...

...

isoLevel

isoFlags

MsgHeader (24 bytes): This field MUST contain a MESSAGE_PACKET structure.

 The dwUserMsgType field MUST be 0x00001022.

 The dwcbVarLenData field MUST be 8.

isoLevel (4 bytes): See the isoLevel field in section 2.2.8.1.1.2 for details.

isoFlags (4 bytes): See the isoFlags field in section 2.2.8.1.1.2 for details.

2.2.8.2.2.4.6 TXUSER_IMPORT_MTAG_REQUEST_COMPLETED

This message indicates that the attempt to abort the transaction was successful.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

MsgHeader (24 bytes)

...

...

MsgHeader (24 bytes): This field MUST contain a MESSAGE_PACKET structure.

 The dwUserMsgType field MUST be 0x00001024.

 The dwcbVarLenData field MUST be 0.

106 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

2.2.8.2.2.5 CONNTYPE_TXUSER_IMPORT2

This connection type is used by a destination application to complete a push propagation that is
initiated by a source application. This connection type supersedes CONNTYPE_TXUSER_IMPORT.

For more information about CONNTYPE_TXUSER_IMPORT2 as an initiator, see section 3.3.5.2.2.5, and
as an acceptor, see section 3.4.5.2.2.5.

2.2.8.2.2.5.1 TXUSER_IMPORT2_MTAG_ABORT

This message is used to abort a transaction that was previously successfully imported by using either
the TXUSER_IMPORT2_MTAG_IMPORT (section 2.2.8.2.2.5.2) or
TXUSER_IMPORT2_MTAG_IMPORT_WITH_SET (section 2.2.8.2.2.5.3) message.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

MsgHeader (24 bytes)

...

...

MsgHeader (24 bytes): This field MUST contain a MESSAGE_PACKET structure.

 The dwUserMsgType field MUST be 0x00006101.

 The dwcbVarLenData field MUST be 0.

2.2.8.2.2.5.2 TXUSER_IMPORT2_MTAG_IMPORT

This message is used by resource managers or server processes to establish a transaction connection

with their transaction manager. The transaction identifier for which the connection is wanted is
identified by the guidTX member of the message structure.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

MsgHeader (24 bytes)

...

...

guidTX (16 bytes)

...

...

MsgHeader (24 bytes): This field MUST contain a MESSAGE_PACKET structure.

 The dwUserMsgType field MUST be 0x00006102.

 The dwcbVarLenData field MUST be 16.

107 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

guidTX (16 bytes): This field MUST be a GUID that specifies the transaction identifier.

2.2.8.2.2.5.3 TXUSER_IMPORT2_MTAG_IMPORT_WITH_SET

This message is used by a destination application to complete a push propagation operation that is

initiated by a source application. It is similar to the
TXUSER_IMPORT2_MTAG_IMPORT (section 2.2.8.2.2.5.2) message, except that it allows the
application to specify the isolation level, isolation flags, and description of the transaction, in addition
to the identifier.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

MsgHeader (24 bytes)

...

...

guidTX (16 bytes)

...

...

isoLevel

isoFlags

szDesc (40 bytes)

...

...

MsgHeader (24 bytes): This field MUST contain a MESSAGE_PACKET structure.

 The dwUserMsgType field MUST be 0x00006107.

 The dwcbVarLenData field MUST be 64.

guidTX (16 bytes): This field MUST contain a GUID that specifies the transaction identifier.

isoLevel (4 bytes): See the isoLevel field in section 2.2.8.1.1.2 for details.

isoFlags (4 bytes): See the isoFlags field in section 2.2.8.1.1.2 for details.

szDesc (40 bytes): See the szDesc field in section 2.2.8.1.1.2 for details.

2.2.8.2.2.5.4 TXUSER_IMPORT2_MTAG_SINK_ERROR

This message is sent if the attempt to import the transaction was unsuccessful or to indicate the
success or failure of the abort operation.

108 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

MsgHeader (24 bytes)

...

...

Error

MsgHeader (24 bytes): This field MUST contain a MESSAGE_PACKET structure.

 The dwUserMsgType field MUST be 0x00006105.

 The dwcbVarLenData field MUST be 4.

Error (4 bytes): This field MUST contain the status for the previous request. The value MUST be a
member of the TRUN_TXIMPORT_ERRORS enumeration.

2.2.8.2.2.5.5 TXUSER_IMPORT2_MTAG_SINK_IMPORTED

This message provides the isolation level and isolation flags for the specified transaction.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

MsgHeader (24 bytes)

...

...

isoLevel

isoFlags

MsgHeader (24 bytes): This field MUST contain a MESSAGE_PACKET structure.

 The dwUserMsgType field MUST be 0x00006106.

 The dwcbVarLenData field MUST be 8.

isoLevel (4 bytes): See the isoLevel field in section 2.2.8.1.1.2 for details.

isoFlags (4 bytes): See the isoFlags field in section 2.2.8.1.1.2 for details.

2.2.8.3 Transaction Administration

2.2.8.3.1 CONNTYPE_TXUSER_GETTXDETAILS

This connection type is used by an application to retrieve details about a transaction from its
transaction manager.

109 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

For more information about CONNTYPE_TXUSER_GETTXDETAILS as an initiator, see section 3.3.5.3.1,
and as an acceptor, see section 3.4.5.3.1.

2.2.8.3.1.1 TXUSER_GETTXDETAILS_MTAG_GET

This message is used to request details about a transaction from the transaction manager.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

MsgHeader (24 bytes)

...

...

guidTx (16 bytes)

...

...

MsgHeader (24 bytes): This field MUST contain a MESSAGE_PACKET structure.

 The dwUserMsgType field MUST be 0x00004701.

 The dwcbVarLenData field MUST be 16.

guidTx (16 bytes): This field MUST contain a GUID that specifies the transaction identifier.

2.2.8.3.1.2 TXUSER_GETTXDETAILS_MTAG_GOTIT

This message provides the client with name and identifier details for the transaction superior and all
enlisted subordinates.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

MsgHeader (24 bytes)

...

...

lSubordinateCount

Reserved

vszSuperiorName (variable)

...

vszSuperiorID (variable)

110 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

...

rgSubordinates (variable)

...

MsgHeader (24 bytes): This field MUST contain a MESSAGE_PACKET structure.

 The dwUserMsgType field MUST be 0x00004702.

 The dwcbVarLenData field MUST be at least 16 bytes.

lSubordinateCount (4 bytes): This field MUST contain the number of subordinates in the
rgSubordinates array that follows.

Reserved (4 bytes): Reserved. This value MUST be set to zero and MUST be ignored on receipt.

vszSuperiorName (variable): This field MUST contain an OLETX_VARLEN_STRING structure. The
structure specifies an implementation-specific name for the Name property of the Superior
Enlistment object (see section 3.2.1) that is maintained by the Core Transaction Manager Facet

(section 1.3.3.3.1). The Core Transaction Manager Facet is initialized as specified in Initialization
(section 3.2.3).

If the transaction manager is the root transaction manager for the transaction, the value MUST be a
zero-length OLETX_VARLEN_STRING. If the transaction manager is not acting as the root transaction
manager for the transaction, the value MUST NOT be a zero-length OLETX_VARLEN_STRING. This field
MUST be aligned on a 4-byte boundary by padding with arbitrary values that MUST be ignored on
receipt.

vszSuperiorID (variable): This field contains an OLETX_VARLEN_STRING structure. The structure
MUST contain an implementation-specific identifier that corresponds to the Enlistment
Object.Identifier property of the Superior Enlistment object (see section 3.2.1) that is

maintained by the Core Transaction Manager Facet (section 1.3.3.3.1) as described for Enlistment
objects (see section 3.1.1). The Core Transaction Manager Facet is initialized as specified in
Initialization. If the transaction manager is the root transaction manager for the transaction, the
value MUST be a zero-length OLETX_VARLEN_STRING. This field MUST be aligned on a 4-byte

boundary by padding with arbitrary values that MUST be ignored on receipt.

rgSubordinates (variable): An array of OLETX_VARLEN_STRING structure pairs. Each pair MUST
specify an implementation-specific name, followed by an implementation-specific identifier. The
array MUST contain lSubordinateCount pairs of OLETX_VARLEN_STRING structures,
representing the collection of subordinates enlisted on the transaction. If lSubordinateCount
contains zero, this field MUST NOT be present.

This field MUST be aligned on a 4-byte boundary by padding with arbitrary values that MUST be
ignored on receipt. The name and identifier correspond to the Name and Enlistment
Object.Identifier properties (see section 3.1.1) respectively, of the Phase One Enlistment list that is
maintained by the core transaction manager facet (see section 3.2.1) and initialized as specified in

Enlistment Object Initialization (section 3.1.3.1).

2.2.8.3.1.3 TXUSER_GETTXDETAILS_MTAG_TX_NOT_FOUND

This message is sent to indicate that the transaction details cannot be found.

111 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

MsgHeader (24 bytes)

...

...

MsgHeader (24 bytes): This field MUST contain a MESSAGE_PACKET structure.

 The dwUserMsgType field MUST be 0x00004703.

 The dwcbVarLenData field MUST be 0.

2.2.8.3.2 CONNTYPE_TXUSER_RESOLVE

This connection type is used by an application either to manually resolve the outcome of an In Doubt
transaction or cause its transaction manager to forget a transaction that is in the Failed to Notify
state.

For more information about CONNTYPE_TXUSER_RESOLVE as an initiator, see section 3.3.5.3.2, and
as an acceptor, see section 3.4.5.3.2.

2.2.8.3.2.1 TXUSER_RESOLVE_MTAG_ACCESSDENIED

This message indicates that the principal that sent the previous
TXUSER_RESOLVE_MTAG_CHILD_ABORT, TXUSER_RESOLVE_MTAG_CHILD_COMMIT, or
TXUSER_RESOLVE_MTAG_FORGET_COMMITTED is not authorized to perform the requested
action.<19>

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

MsgHeader (24 bytes)

...

...

MsgHeader (24 bytes): This field MUST contain a MESSAGE_PACKET structure.

 The dwUserMsgType field MUST be 0x0000107F.

 The dwcbVarLenData field MUST be 0x00000000.

2.2.8.3.2.2 TXUSER_RESOLVE_MTAG_CHILD_ABORT

This message is sent by the application to manually resolve the outcome of an in-doubt transaction as

aborted.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

MsgHeader (24 bytes)

112 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

...

...

guidTx (16 bytes)

...

...

MsgHeader (24 bytes): This field MUST contain a MESSAGE_PACKET structure.

 The dwUserMsgType field MUST be 0x00001071.

 The dwcbVarLenData field MUST be 16.

guidTx (16 bytes): This field MUST contain a GUID that specifies the transaction identifier.

2.2.8.3.2.3 TXUSER_RESOLVE_MTAG_CHILD_COMMIT

This message is sent by an application to manually resolve an in-doubt transaction as committed.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

MsgHeader (24 bytes)

...

...

guidTx (16 bytes)

...

...

MsgHeader (24 bytes): This field MUST contain a MESSAGE_PACKET structure.

 The dwUserMsgType field MUST be 0x00001072.

 The dwcbVarLenData field MUST be 16.

guidTx (16 bytes): This field MUST contain a GUID that specifies the transaction identifier.

2.2.8.3.2.4 TXUSER_RESOLVE_MTAG_CHILD_NOT_PREPARED

This message indicates that the specified transaction is not in the In Doubt state.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

MsgHeader (24 bytes)

113 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

...

...

MsgHeader (24 bytes): This field MUST contain a MESSAGE_PACKET structure.

 The dwUserMsgType field MUST be 0x00001077.

 The dwcbVarLenData field MUST be 0.

2.2.8.3.2.5 TXUSER_RESOLVE_MTAG_FORGET_COMMITTED

 This message is sent by an application to request that the transaction manager issue a Forget
Transaction event for a transaction that is in the Failed to Notify state.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

MsgHeader (24 bytes)

...

...

guidTx (16 bytes)

...

...

MsgHeader (24 bytes): This field MUST contain a MESSAGE_PACKET structure.

 The dwUserMsgType field MUST be 0x00001073.

 The dwcbVarLenData field MUST be 16.

guidTx (16 bytes): This field MUST contain a GUID that specifies the transaction identifier.

2.2.8.3.2.6 TXUSER_RESOLVE_MTAG_FORGET_TX_NOT_COMMITTED

This message indicates that the specified transaction is not in the Failed to Notify state.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

MsgHeader (24 bytes)

...

...

MsgHeader (24 bytes): This field MUST contain a MESSAGE_PACKET structure.

 The dwUserMsgType field MUST be 0x00001078.

114 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 The dwcbVarLenData field MUST be 0.

2.2.8.3.2.7 TXUSER_RESOLVE_MTAG_REQUEST_COMPLETE

This message is sent by the transaction manager to indicate that the request completed successfully.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

MsgHeader (24 bytes)

...

...

MsgHeader (24 bytes): This field MUST contain a MESSAGE_PACKET structure.

 The dwUserMsgType field MUST be 0x00001074.

 The dwcbVarLenData field MUST be 0.

2.2.8.3.2.8 TXUSER_RESOLVE_MTAG_NOT_CHILD

This message indicates that the transaction manager is not a subordinate for the specified

transaction.<20>

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

MsgHeader (24 bytes)

...

...

MsgHeader (24 bytes): This field MUST contain a MESSAGE_PACKET structure.

 The dwUserMsgType field MUST be 0x00001076.

 The dwcbVarLenData field MUST be 0.

2.2.8.3.2.9 TXUSER_RESOLVE_MTAG_TX_NOT_FOUND

This message is sent by the transaction manager to indicate that the specified transaction does not
exist.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

MsgHeader (24 bytes)

...

...

115 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

MsgHeader (24 bytes): This field MUST contain a MESSAGE_PACKET structure.

 The dwUserMsgType field MUST be 0x00001075.

 The dwcbVarLenData field MUST be 0.

2.2.8.3.3 CONNTYPE_TXUSER_SETTXTIMEOUT

This connection type is used by an application to modify the time-out of a transaction that has been
initiated on a CONNTYPE_TXUSER_BEGINNER connection.

For more information about CONNTYPE_TXUSER_SETTXTIMEOUT as an initiator, see section 3.3.5.3.3,
and as an acceptor, see section 3.4.5.3.3.

This connection type also uses the TXUSER_SETTXTIMEOUT_MTAG_REQUEST_COMPLETE (as specified
in section 2.2.8.1.2.6), TXUSER_SETTXTIMEOUT_MTAG_SETTXTIMEOUT (as specified in section

2.2.8.1.2.7), and TXUSER_SETTXTIMEOUT_MTAG_TOO_LATE (as specified in section 2.2.8.1.2.8)
messages.

2.2.8.3.3.1 TXUSER_SETTXTIMEOUT_MTAG_TX_NOT_FOUND

This message is optionally sent by the transaction manager as part of the
CONNTYPE_TXUSER_SETTXTIMEOUT (section 2.2.8.3.3) connection type to indicate that the specified

transaction does not exist. This message is optionally also sent by the transaction manager as part of
the CONNTYPE_TXUSER_SETTXTIMEOUT2 (section 2.2.8.3.4) connection type to indicate that the
transaction manager supports the capability to modify the time-out of a transaction. For more
information, see CONNTYPE_TXUSER_SETTXTIMEOUT2.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

MsgHeader (24 bytes)

...

...

MsgHeader (24 bytes): This field MUST contain a MESSAGE_PACKET structure.

 The dwUserMsgType field MUST be 0x0000107D.

 The dwcbVarLenData field MUST be 0.

2.2.8.3.4 CONNTYPE_TXUSER_SETTXTIMEOUT2

This connection type is used by an application to query the transaction manager's support for
modifying the time-out of a transaction that has been initiated on a CONNTYPE_TXUSER_BEGIN2 or
CONNTYPE_TXUSER_PROMOTE connection.

For more information about CONNTYPE_TXUSER_SETTXTIMEOUT2 as an initiator, see section

3.3.5.3.4, and as an acceptor, see section 3.4.5.3.4.

This connection type also uses the TXUSER_SETTXTIMEOUT_MTAG_SETTXTIMEOUT (see section
2.2.8.1.2.7 and TXUSER_SETTXTIMEOUT_MTAG_TX_NOT_FOUND (see section 2.2.8.3.3.1) messages.

2.2.8.3.5 CONNTYPE_TXUSER_TRACE

116 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

This connection type is used by an application to ask its transaction manager to trace the status of a
transaction by using an implementation-specific mechanism.

For more information about CONNTYPE_TXUSER_TRACE as an initiator, see section 3.3.5.3.5, and as
an acceptor, see section 3.4.5.3.5.

2.2.8.3.5.1 TXUSER_TRACE_MTAG_DUMP_TRANSACTION

This message requests that the transaction manager write the status of a transaction to a local trace
file in an implementation-specific manner.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

MsgHeader (24 bytes)

...

...

guidTx (16 bytes)

...

...

MsgHeader (24 bytes): This field MUST contain a MESSAGE_PACKET structure.

 The dwUserMsgType field MUST be0x00002100.

 The dwcbVarLenData field MUST be 16.

guidTx (16 bytes): This field MUST contain a GUID that specifies the transaction identifier.

2.2.8.3.5.2 TXUSER_TRACE_MTAG_REQUEST_COMPLETE

This message indicates the transaction was successfully traced.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

MsgHeader (24 bytes)

...

...

MsgHeader (24 bytes): This field MUST contain a MESSAGE_PACKET structure.

 The dwUserMsgType field MUST be 0x00002101.

 The dwcbVarLenData field MUST be 0.

2.2.8.3.5.3 TXUSER_TRACE_MTAG_REQUEST_FAILED

117 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

This message indicates that the trace request failed.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

MsgHeader (24 bytes)

...

...

MsgHeader (24 bytes): This field MUST contain a MESSAGE_PACKET structure.

 The dwUserMsgType field MUST be 0x00002103.

 The dwcbVarLenData field MUST be 0.

2.2.8.3.5.4 TXUSER_TRACE_MTAG_TX_NOT_FOUND

This message is sent by the transaction manager to indicate that the trace request failed because the
transaction does not exist.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

MsgHeader (24 bytes)

...

...

MsgHeader (24 bytes): This field MUST contain a MESSAGE_PACKET structure.

 The dwUserMsgType field MUST be 0x00002102.

 The dwcbVarLenData field MUST be 0.

2.2.8.4 Transaction Manager Administration

2.2.8.4.1 CONNTYPE_TXUSER_GETSECURITYFLAGS

This connection type is used by an application to obtain the security configuration of its transaction
manager.

For more information about CONNTYPE_TXUSER_GETSECURITYFLAGS as an initiator, see section
3.3.5.4.1, and as an acceptor, see section 3.4.5.3.5.

2.2.8.4.1.1 TXUSER_GETSECURITYFLAGS_MTAG_FETCHED

This message indicates that the request to obtain security configuration flags was successful.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

MsgHeader (24 bytes)

118 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

...

...

grfNetworkDtcAccess

grfXaTransactions

grfOptions

MsgHeader (24 bytes): This field MUST contain a MESSAGE_PACKET structure.

 The dwUserMsgType field MUST be 0x00005502.

 The dwcbVarLenData field MUST be 12.

grfNetworkDtcAccess (4 bytes): This field contains a DTCADVCONFIG bitfield enumeration. See
DTCADVCONFIG for details.

grfXaTransactions (4 bytes): This field indicates whether the transaction manager supports the
local use of the XA standard API in an implementation-specific manner as specified in Receiving a
TXUSER_GETSECURITYFLAGS_MTAG_GETSECURITYFLAGS Message (section 3.4.5.4.1.1). For
more information about XA, see [C193]. The field SHOULD have a value of zero if the use of the

XA standard API is not supported, or it SHOULD have a value of one if the use of the XA standard
API is supported.

grfOptions (4 bytes): This field contains a DTCADVCONFIG_OPTIONS bitfield enumeration. See
section 2.2.7.3 for details.

2.2.8.4.1.2 TXUSER_GETSECURITYFLAGS_MTAG_GETSECURITYFLAGS

This message is used by an application to obtain the configuration flags that are associated with the

security settings of a transaction manager.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

MsgHeader (24 bytes)

...

...

MsgHeader (24 bytes): This field MUST contain a MESSAGE_PACKET structure.

 The dwUserMsgType field MUST be 0x00005501.

 The dwcbVarLenData field MUST be 0.

2.2.9 Connection Types Relevant to Transaction Managers

2.2.9.1 Transaction Propagation and Coordination

2.2.9.1.1 Push Propagation

http://go.microsoft.com/fwlink/?LinkId=89820

119 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

2.2.9.1.1.1 CONNTYPE_PARTNERTM_PROPAGATE

This connection type is used by a superior transaction manager to do a push propagation of a
transaction to its subordinate transaction manager and to execute the Two-Phase Commit protocol.

For more information about CONNTYPE_PARTNERTM_PROPAGATE as Initiator, see section 3.7.5.1.1.1,
and as an acceptor, see section CONNTYPE_PARTNERTM_PROPAGATE as
Acceptor (section 3.8.5.1.1.1).

2.2.9.1.1.1.1 PARTNERTM_PROPAGATE_MTAG_PROPAGATE

This message is used to propagate a transaction to a subordinate transaction manager.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

MsgHeader (24 bytes)

...

...

guidTX (16 bytes)

...

...

isoLevel

szDesc (40 bytes)

...

...

MsgHeader (24 bytes): This field MUST contain a MESSAGE_PACKET structure.

 The dwUserMsgType field MUST be 0x00002001.

 The dwcbVarLenData field MUST be 60.

guidTX (16 bytes): This field MUST contain a GUID that specifies the transaction identifier.

isoLevel (4 bytes): See the isoLevel field in section 2.2.8.1.1.2 for details.

szDesc (40 bytes): See the szDesc field in section 2.2.8.1.1.2 for details.

2.2.9.1.1.1.2 PARTNERTM_PROPAGATE_MTAG_PROPAGATED

This message indicates that the transaction was successfully propagated to the subordinate
transaction manager.

120 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

MsgHeader (24 bytes)

...

...

MsgHeader (24 bytes): This field MUST contain a MESSAGE_PACKET structure.

 The dwUserMsgType field MUST be 0x00002002.

 The dwcbVarLenData field MUST be 0.

2.2.9.1.1.1.3 PARTNERTM_PROPAGATE_MTAG_DUPLICATE

This message indicates that the transaction was already propagated to the subordinate transaction
manager.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

MsgHeader (24 bytes)

...

...

MsgHeader (24 bytes): This field MUST contain a MESSAGE_PACKET structure.

 The dwUserMsgType field MUST be 0x00002010.

 The dwcbVarLenData field MUST be 0.

2.2.9.1.1.1.4 PARTNERTM_PROPAGATE_MTAG_NO_MEM

This message indicates that transaction propagation failed because the subordinate transaction
manager was out of memory.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

MsgHeader (24 bytes)

...

...

MsgHeader (24 bytes): This field MUST contain a MESSAGE_PACKET structure.

 The dwUserMsgType field MUST be 0x00002901.

 The dwcbVarLenData field MUST be 0.

121 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

2.2.9.1.1.1.5 PARTNERTM_PROPAGATE_MTAG_LOG_FULL

This message indicates that transaction propagation failed because the transaction recovery log of the
subordinate transaction manager is full.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

MsgHeader (24 bytes)

...

...

MsgHeader (24 bytes): This field MUST contain a MESSAGE_PACKET structure.

 The dwUserMsgType field MUST be 0x00002902.

 The dwcbVarLenData field MUST be 0.

2.2.9.1.1.1.6 PARTNERTM_PROPAGATE_MTAG_PREPAREREQ

This message is used to request that the subordinate transaction manager perform the actions that

are needed to prepare the transaction to be committed.

This message is also used for CONNTYPE_PARTNERTM_BRANCH.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

MsgHeader (24 bytes)

...

...

grfRM

fSinglePhase

MsgHeader (24 bytes): This field MUST contain a MESSAGE_PACKET structure.

 The dwUserMsgType field MUST be 0x00002003.

 The dwcbVarLenData field MUST be 8.

grfRM (4 bytes): The value of this field MUST be a 32-bit unsigned integer. This value SHOULD be
ignored on receipt.

fSinglePhase (4 bytes): Indicates whether the sending transaction manager will allow the single-
phase commit optimization. If the value is zero, the receiver of the message MUST NOT perform a
single-phase commit for its superior transaction manager. If the value is nonzero, the receiver
SHOULD perform a single-phase commit for its superior transaction manager.

2.2.9.1.1.1.7 PARTNERTM_PROPAGATE_MTAG_PREPAREREQDONE

122 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

This message indicates that the subordinate transaction manager has processed the Prepare request
from the superior transaction manager.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

MsgHeader (24 bytes)

...

...

prepareReqDone

guidReason (16 bytes)

...

...

MsgHeader (24 bytes): This field MUST contain a MESSAGE_PACKET structure.

 The dwUserMsgType field MUST be 0x00002006.

 The dwcbVarLenData field MUST be 20.

prepareReqDone (4 bytes): Indicates the status of the Prepare request as specified in the
PARTNERTM_PROPAGATE_PREPAREREQDONE_RESPONSE (section 2.2.6.4) enumeration.

guidReason (16 bytes): Reserved. This value SHOULD be set to a NULL GUID and MUST be ignored
on receipt.

2.2.9.1.1.1.8 PARTNERTM_PROPAGATE_MTAG_PROTOCOL_ERROR

This message indicates that the sender detected a violation of the Two-Phase Commit protocol and is
unable to perform the previous request it received over the connection.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

MsgHeader (24 bytes)

...

...

MsgHeader (24 bytes): This field MUST contain a MESSAGE_PACKET structure.

 The dwUserMsgType field MUST be 0x00002009.

 The dwcbVarLenData field MUST be 0.

2.2.9.1.1.1.9 PARTNERTM_PROPAGATE_MTAG_COMMITREQ

123 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

This message is sent by the superior transaction manager to request that the transaction be
committed.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

MsgHeader (24 bytes)

...

...

MsgHeader (24 bytes): This field MUST contain a MESSAGE_PACKET structure.

 The dwUserMsgType field MUST be 0x00002005.

 The dwcbVarLenData field MUST be 0.

2.2.9.1.1.1.10 PARTNERTM_PROPAGATE_MTAG_COMMITREQDONE

This message indicates that the transaction was successfully committed by the subordinate
transaction manager.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

MsgHeader (24 bytes)

...

...

MsgHeader (24 bytes): This field MUST contain a MESSAGE_PACKET structure.

 The dwUserMsgType field MUST be 0x00002008.

 The dwcbVarLenData field MUST be 0.

2.2.9.1.1.1.11 PARTNERTM_PROPAGATE_MTAG_ABORTREQ

This message is sent by the superior transaction manager to request that the transaction be aborted.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

MsgHeader (24 bytes)

...

...

MsgHeader (24 bytes): This field MUST contain a MESSAGE_PACKET structure.

 The dwUserMsgType field MUST be 0x00002004.

124 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 The dwcbVarLenData field MUST be 0.

2.2.9.1.1.1.12 PARTNERTM_PROPAGATE_MTAG_ABORTREQDONE

This message is sent by the subordinate transaction manager to indicate that the transaction was

successfully aborted.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

MsgHeader (24 bytes)

...

...

MsgHeader (24 bytes): This field MUST contain a MESSAGE_PACKET structure.

 The dwUserMsgType field MUST be 0x00002007.

 The dwcbVarLenData field MUST be 0.

2.2.9.1.1.1.13 PARTNERTM_PROPAGATE_MTAG_ABORTNOTIFY

This message is sent to abort a transaction before the
PARTNERTM_PROPAGATE_MTAG_PREPAREREQ (section 2.2.9.1.1.1.6) message is received.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

MsgHeader (24 bytes)

...

...

MsgHeader (24 bytes): This field MUST contain a MESSAGE_PACKET structure.

 The dwUserMsgType field MUST be 0x00002903.

 The dwcbVarLenData field MUST be 0.

2.2.9.1.1.1.14 PARTNERTM_PROPAGATE_MTAG_PHASE0REGISTER

This message is sent by the subordinate transaction manager to register for a Phase Zero notification.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

MsgHeader (24 bytes)

...

...

125 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

MsgHeader (24 bytes): This field MUST contain a MESSAGE_PACKET structure.

 The dwUserMsgType field MUST be 0x00002906.

 The dwcbVarLenData field MUST be 0.

2.2.9.1.1.1.15 PARTNERTM_PROPAGATE_MTAG_PHASE0REGISTERED

This message is sent by the superior transaction manager to indicate that the subordinate transaction
manager was successfully registered for Phase Zero notifications.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

MsgHeader (24 bytes)

...

...

MsgHeader (24 bytes): This field MUST contain a MESSAGE_PACKET structure.

 The dwUserMsgType field MUST be 0x00002907.

 The dwcbVarLenData field MUST be 0.

2.2.9.1.1.1.16 PARTNERTM_PROPAGATE_MTAG_PHASE0REGISTRATIONREJECTE

D

This message is sent by the superior transaction manager to indicate that it was unable to register the
subordinate transaction manager for Phase Zero notifications.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

MsgHeader (24 bytes)

...

...

MsgHeader (24 bytes): This field MUST contain a MESSAGE_PACKET structure.

 The dwUserMsgType field MUST be 0x00002910.

 The dwcbVarLenData field MUST be 0.

2.2.9.1.1.1.17 PARTNERTM_PROPAGATE_MTAG_PHASE0

This message is sent by the superior transaction manager to request that the subordinate transaction

manager begin Phase Zero.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

MsgHeader (24 bytes)

126 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

...

...

MsgHeader (24 bytes): This field MUST contain a MESSAGE_PACKET structure.

 The dwUserMsgType field MUST be 0x00002908.

 The dwcbVarLenData field MUST be 0.

2.2.9.1.1.1.18 PARTNERTM_PROPAGATE_MTAG_PHASE0COMPLETE

This message indicates that the subordinate transaction manager successfully completed Phase Zero.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

MsgHeader (24 bytes)

...

...

MsgHeader (24 bytes): This field MUST contain a MESSAGE_PACKET structure.

 The dwUserMsgType field MUST be 0x00002909.

 The dwcbVarLenData field MUST be 0.

2.2.9.1.2 Pull Propagation

2.2.9.1.2.1 CONNTYPE_PARTNERTM_BRANCH

A subordinate transaction manager uses this connection type to register a new subordinate enlistment
with a superior transaction manager. The two transaction managers also use this connection type to

execute the Two-Phase Commit protocol. This connection type is initiated as a result of a
TXUSER_ASSOCIATE_MTAG_ASSOCIATE message that is sent by an application to the subordinate
transaction manager to request a pull propagation operation.

For more information about CONNTYPE_PARTNERTM_BRANCH as an initiator, see section 3.8.5.1.2.1,
and as an acceptor, see section 3.7.5.1.2.1.

This connection type also uses PARTNERTM_PROPAGATE_MTAG_PREPAREREQ,
PARTNERTM_PROPAGATE_MTAG_PREPAREREQDONE, PARTNERTM_PROPAGATE_MTAG_COMMITREQ,

PARTNERTM_PROPAGATE_MTAG_COMMITREQDONE, PARTNERTM_PROPAGATE_MTAG_ABORTREQ,
PARTNERTM_PROPAGATE_MTAG_ABORTREQDONE, PARTNERTM_PROPAGATE_MTAG_ABORTNOTIFY,

PARTNERTM_PROPAGATE_MTAG_PHASE0REGISTER,
PARTNERTM_PROPAGATE_MTAG_PHASE0REGISTERED,
PARTNERTM_PROPAGATE_MTAG_PHASE0REGISTRATIONREJECTED,
PARTNERTM_PROPAGATE_MTAG_PHASE0, and PARTNERTM_PROPAGATE_MTAG_PHASE0COMPLETE
messages.

2.2.9.1.2.1.1 PARTNERTM_BRANCH_MTAG_BRANCH_LOG_FULL

This message indicates that the branch request failed because the transaction recovery log of the
superior transaction manager is full.

127 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

MsgHeader (24 bytes)

...

...

MsgHeader (24 bytes): This field MUST contain a MESSAGE_PACKET structure.

 The dwUserMsgType field MUST be 0x00002056.

 The dwcbVarLenData field MUST be 0.

2.2.9.1.2.1.2 PARTNERTM_BRANCH_MTAG_BRANCH_NO_MEM

This message indicates that the branch request failed because the superior transaction manager was
unable to allocate sufficient memory.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

MsgHeader (24 bytes)

...

...

MsgHeader (24 bytes): This field MUST contain a MESSAGE_PACKET structure.

 The dwUserMsgType field MUST be 0x00002057.

 The dwcbVarLenData field MUST be 0.

2.2.9.1.2.1.3 PARTNERTM_BRANCH_MTAG_BRANCH_TOO_LATE

This message indicates that the branch request failed because it was too late in the transaction life
cycle. For more information, see Create Subordinate Enlistment (section 3.2.7.11) and Create
Subordinate Enlistment Failure (section 3.7.7.7).

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

MsgHeader (24 bytes)

...

...

MsgHeader (24 bytes): This field MUST contain a MESSAGE_PACKET structure.

 The dwUserMsgType field MUST be 0x00002055.

 The dwcbVarLenData field MUST be 0.

128 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

2.2.9.1.2.1.4 PARTNERTM_BRANCH_MTAG_BRANCH_TOO_MANY

This message indicates that the branch request failed because the superior transaction manager has
reached the maximum number of subordinates allowed on a transaction.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

MsgHeader (24 bytes)

...

...

MsgHeader (24 bytes): This field MUST contain a MESSAGE_PACKET structure.

 The dwUserMsgType field MUST be 0x00002059.

 The dwcbVarLenData field MUST be 0.

2.2.9.1.2.1.5 PARTNERTM_BRANCH_MTAG_BRANCH_TX_NOT_FOUND

This message indicates that the branch request failed because the superior transaction manager was

unaware of the transaction.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

MsgHeader (24 bytes)

...

...

MsgHeader (24 bytes): This field MUST contain a MESSAGE_PACKET structure.

 The dwUserMsgType field MUST be 0x00002054.

 The dwcbVarLenData field MUST be 0.

2.2.9.1.2.1.6 PARTNERTM_BRANCH_MTAG_BRANCHED

This message is sent by the superior transaction manager to indicate that the branch request was
successful.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

MsgHeader (24 bytes)

...

...

MsgHeader (24 bytes): This field MUST contain a MESSAGE_PACKET structure.

129 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 The dwUserMsgType field MUST be 0x00002052.

 The dwcbVarLenData field MUST be 0.

2.2.9.1.2.1.7 PARTNERTM_BRANCH_MTAG_BRANCHING

This message is sent by a subordinate transaction manager to register a new subordinate enlistment
with a superior transaction manager.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

MsgHeader (24 bytes)

...

...

guidTX (16 bytes)

...

...

MsgHeader (24 bytes): This field MUST contain a MESSAGE_PACKET structure.

 The dwUserMsgType field MUST be 0x00002051.

 The dwcbVarLenData field MUST be 16.

guidTX (16 bytes): This field MUST contain a GUID that specifies the transaction identifier.

2.2.9.2 Transaction Recovery

2.2.9.2.1 Subordinate-Driven

2.2.9.2.1.1 CONNTYPE_PARTNERTM_CHECKABORT

This connection type is used by a subordinate transaction manager to query the outcome of a
transaction from its superior transaction manager.

For more information about CONNTYPE_PARTNERTM_CHECKABORT as an initiator, see section
3.8.5.2.1.1, and as an acceptor, see section 3.7.5.2.1.1.

2.2.9.2.1.1.1 PARTNERTM_CHECKABORT_MTAG_CHECK

This message is used by a subordinate transaction manager to check if the superior transaction
manager aborted a specific transaction.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

MsgHeader (24 bytes)

...

130 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

...

guidTX (16 bytes)

...

...

MsgHeader (24 bytes): This field MUST contain a MESSAGE_PACKET structure.

 The dwUserMsgType field MUST be 0x00002021.

 The dwcbVarLenData field MUST be 16.

guidTX (16 bytes): This field MUST contain a GUID that specifies the transaction identifier.

2.2.9.2.1.1.2 PARTNERTM_CHECKABORT_MTAG_ABORTED

This message indicates that the transaction was successfully aborted.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

MsgHeader (24 bytes)

...

...

MsgHeader (24 bytes): This field MUST contain a MESSAGE_PACKET structure.

 The dwUserMsgType field MUST be 0x00002022.

 The dwcbVarLenData field MUST be 0.

2.2.9.2.1.1.3 PARTNERTM_CHECKABORT_MTAG_RETRY

This message indicates the superior transaction manager is unable to declare that the transaction
aborted, either because the superior transaction manager has not yet determined the final outcome of
the transaction, or because the transaction has already committed.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

MsgHeader (24 bytes)

...

...

MsgHeader (24 bytes): This field MUST contain a MESSAGE_PACKET structure.

 The dwUserMsgType field MUST be 0x00002023.

131 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 The dwcbVarLenData field MUST be 0.

2.2.9.2.2 Superior-Driven

2.2.9.2.2.1 CONNTYPE_PARTNERTM_REDELIVERCOMMIT

This connection type is used by a superior transaction manager to redeliver a Commit notification for a
transaction to its subordinate transaction manager.

For more information about CONNTYPE_PARTNERTM_REDELIVERCOMMIT as an initiator, see section
3.7.5.2.2.1, and as an acceptor, see section 3.8.5.2.2.1.

2.2.9.2.2.1.1 PARTNERTM_REDELIVERCOMMIT_MTAG_COMMITREQ

The superior transaction manager sends this message to begin Phase Two commit processing.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

MsgHeader (24 bytes)

...

...

guidTx (16 bytes)

...

...

MsgHeader (24 bytes): This field MUST contain a MESSAGE_PACKET structure.

 The dwUserMsgType field MUST be 0x00002011.

 The dwcbVarLenData field MUST be 16.

guidTx (16 bytes): This field MUST contain a GUID that specifies the transaction identifier.

2.2.9.2.2.1.2 PARTNERTM_REDELIVERCOMMIT_MTAG_COMMITREQDONE

This message indicates that the subordinate transaction manager has successfully committed the
transaction.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

MsgHeader (24 bytes)

...

...

MsgHeader (24 bytes): This field MUST contain a MESSAGE_PACKET structure.

132 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 The dwUserMsgType field MUST be 0x00002012.

 The dwcbVarLenData field MUST be 0.

2.2.9.2.2.1.3 PARTNERTM_REDELIVERCOMMIT_MTAG_RETRY

This message is sent by the subordinate transaction manager to indicate that it is in a state in which it
is temporarily unable to process the commit request.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

MsgHeader (24 bytes)

...

...

MsgHeader (24 bytes): This field MUST contain a MESSAGE_PACKET structure.

 The dwUserMsgType field MUST be 0x00002013.

 The dwcbVarLenData field MUST be 0.

2.2.10 Connection Types Relevant to Resource Managers

2.2.10.1 Resource Manager Registration

2.2.10.1.1 CONNTYPE_TXUSER_RESOURCEMANAGER

The CONNTYPE_TXUSER_RESOURCEMANAGER connection type is used by a durable resource manager

to register with its transaction manager.

For more details about CONNTYPE_TXUSER_RESOURCEMANAGER as an initiator, see section
3.5.5.1.1, and as an acceptor, see section 3.6.5.1.1.

2.2.10.1.1.1 TXUSER_RESOURCEMANAGER_MTAG_CREATE

The TXUSER_RESOURCEMANAGER_MTAG_CREATE message is used by resource managers to register
with a transaction manager.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

MsgHeader (24 bytes)

...

...

guidRM (16 bytes)

...

133 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

...

guidSession (16 bytes)

...

...

MsgHeader (24 bytes): This field MUST contain a MESSAGE_PACKET structure.

 The dwUserMsgType field MUST be 0x00001051.

 The dwcbVarLenData field MUST be 32.

guidRM (16 bytes): This field MUST contain a GUID that specifies the resource manager
identifier.

guidSession (16 bytes): This field MUST contain a GUID that specifies the session identifier of the
resource manager.

2.2.10.1.1.2 TXUSER_RESOURCEMANAGER_MTAG_DUPLICATE

The TXUSER_RESOURCEMANAGER_MTAG_DUPLICATE message is sent from the transaction manager

when there is already a resource manager that is registered with the same guidRM value.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

MsgHeader (24 bytes)

...

...

MsgHeader (24 bytes): This field MUST contain a MESSAGE_PACKET structure.

 The dwUserMsgType field MUST be 0x00001054.

 The dwcbVarLenData field MUST be 0.

2.2.10.1.1.3 TXUSER_RESOURCEMANAGER_MTAG_REENLISTMENTCOMPLETE

The TXUSER_RESOURCEMANAGER_MTAG_REENLISTMENTCOMPLETE message is used by resource
managers to inform the transaction manager that it has no outstanding in-doubt transactions for
which the resource manager required an outcome.

This message is used in the following scenarios:

 Recover Transactions (section 3.5.7.2)

 Recover Transaction (section 3.5.7.1)

 Reenlistment Complete (section 3.5.7.3)

 Enlistment Commit Request Completed (section 3.5.4.5)

 Enlistment Abort Request Completed (section 3.5.4.4)

134 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

MsgHeader (24 bytes)

...

...

MsgHeader (24 bytes): This field MUST contain a MESSAGE_PACKET structure.

 The dwUserMsgTypefie ld MUST be 0x00001052.

 The dwcbVarLenData field MUST be 0.

2.2.10.1.1.4 TXUSER_RESOURCEMANAGER_MTAG_REQUEST_COMPLETE

The TXUSER_RESOURCEMANAGER_MTAG_REQUEST_COMPLETE message is used by transaction
managers to indicate that the previous request that was sent by the resource manager on the
connection was successfully completed.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

MsgHeader (24 bytes)

...

...

MsgHeader (24 bytes): This field MUST contain a MESSAGE_PACKET structure.

 The dwUserMsgType field MUST be 0x00001053.

 The dwcbVarLenData field MUST be 0.

2.2.10.1.2 CONNTYPE_TXUSER_RESOURCEMANAGERINTERNAL

This connection type is used by a durable resource manager to register with a transaction manager as
well as to detect duplicate registrations. This connection type supersedes

CONNTYPE_TXUSER_RESOURCEMANAGER.

This connection type also uses the following messages:

 TXUSER_RESOURCEMANAGER_MTAG_CREATE (section 2.2.10.1.1.1)

 TXUSER_RESOURCEMANAGER_MTAG_DUPLICATE (section 2.2.10.1.1.2)

 TXUSER_RESOURCEMANAGER_MTAG_REENLISTMENTCOMPLETE (section 2.2.10.1.1.3)

 TXUSER_RESOURCEMANAGER_MTAG_REQUEST_COMPLETE (section 2.2.10.1.1.4)

For more information about CONNTYPE_TXUSER_RESOURCEMANAGERINTERNAL as an initiator, see

section 3.5.5.1.2, and as an acceptor, see section 3.6.5.1.2.

2.2.10.1.2.1 TXUSER_RESOURCEMANAGERINTERNAL_MTAG_DUPLICATEDETECTED

135 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

This message notifies a resource manager that an attempt was made to register another resource
manager instance with the unique identifier of this resource manager. See the guidRM field in

TXUSER_RESOURCEMANAGER_MTAG_CREATE for more information.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

MsgHeader (24 bytes)

...

...

MsgHeader (24 bytes): This field MUST contain a MESSAGE_PACKET structure.

 The dwUserMsgType field MUST be 0x00001055.

 The dwcbVarLenData field MUST be 0.

2.2.10.2 Transaction Coordination

2.2.10.2.1 CONNTYPE_TXUSER_PHASE0

This CONNTYPE_TXUSER_PHASE0 connection type is used by a resource manager to enlist for Phase
Zero notifications from its transaction manager.

The CONNTYPE_TXUSER_PHASE0 connection type is used as either an initiator or as an acceptor:

 For more details about CONNTYPE_TXUSER_PHASE0 as an initiator, see section 3.5.5.2.1.

 For more details about CONNTYPE_TXUSER_PHASE0 as an acceptor, see section 3.6.5.2.1.

2.2.10.2.1.1 TXUSER_PHASE0_MTAG_CREATE

The TXUSER_PHASE0_MTAG_CREATE message is sent by a resource manager to a transaction
manager to create a new Phase Zero enlistment on a transaction.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

MsgHeader (24 bytes)

...

...

guidTx (16 bytes)

...

...

MsgHeader (24 bytes): This field MUST contain a MESSAGE_PACKET structure.

 The dwUserMsgType field MUST be 0x00004901.

136 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 The dwcbVarLenData field MUST be 16.

guidTx (16 bytes): This field MUST contain a GUID that specifies the transaction identifier.

2.2.10.2.1.2 TXUSER_PHASE0_MTAG_CREATE_TOO_LATE

The TXUSER_PHASE0_MTAG_CREATE_TOO_LATE message is sent by the transaction manager if the
creation of the Phase Zero failed because the enlistment request was made too late in the specified
transaction lifetime. See Create Phase Zero Enlistment Failure (section 3.6.7.7) and Register Phase
Zero Failure (section 3.2.7.28) for more information.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

MsgHeader (24 bytes)

...

...

MsgHeader (24 bytes): This field MUST contain a MESSAGE_PACKET structure.

 The dwUserMsgType field MUST be 0x00004907.

 The dwcbVarLenData field MUST be 0.

2.2.10.2.1.3 TXUSER_PHASE0_MTAG_CREATE_TX_NOT_FOUND

The TXUSER_PHASE0_MTAG_CREATE_TX_NOT_FOUND message is sent by the transaction manager if
the creation of the Phase Zero enlistment failed because the specified transaction could not be found.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

MsgHeader (24 bytes)

...

...

MsgHeader (24 bytes): This field MUST contain a MESSAGE_PACKET structure.

 The dwUserMsgType field MUST be 0x00004906.

 The dwcbVarLenData field MUST be 0.

2.2.10.2.1.4 TXUSER_PHASE0_MTAG_CREATED

The TXUSER_PHASE0_MTAG_CREATED message is sent by the transaction manager if the creation of
the Phase Zero enlistment was successful.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

MsgHeader (24 bytes)

137 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

...

...

MsgHeader (24 bytes): This field MUST contain a MESSAGE_PACKET structure.

 The dwUserMsgType field MUST be 0x00004902.

 The dwcbVarLenData field MUST be 0.

2.2.10.2.1.5 TXUSER_PHASE0_MTAG_PHASE0REQ

The TXUSER_PHASE0_MTAG_PHASE0REQ message indicates a Phase Zero request from the
transaction manager to the Phase Zero enlistment.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

MsgHeader (24 bytes)

...

...

MsgHeader (24 bytes): This field MUST contain a MESSAGE_PACKET structure.

 The dwUserMsgType field MUST be 0x00004903.

 The dwcbVarLenData field MUST be 0.

2.2.10.2.1.6 TXUSER_PHASE0_MTAG_PHASE0REQ_ABORT

The TXUSER_PHASE0_MTAG_PHASE0REQ_ABORT message is sent by the transaction manager to
notify the Phase Zero enlistment that the transaction aborted.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

MsgHeader (24 bytes)

...

...

MsgHeader (24 bytes): This field MUST contain a MESSAGE_PACKET structure.

 The dwUserMsgType field MUST be 0x00004909.

 The dwcbVarLenData field MUST be 0.

2.2.10.2.1.7 TXUSER_PHASE0_MTAG_PHASE0REQDONE

The TXUSER_PHASE0_MTAG_PHASE0REQDONE message is sent by the resource manager to notify
the transaction manager that the Phase Zero enlistment has completed the Phase Zero processing

request.

138 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

MsgHeader (24 bytes)

...

...

MsgHeader (24 bytes): This field MUST contain a MESSAGE_PACKET structure.

 The dwUserMsgType field MUST be 0x00004904.

 The dwcbVarLenData field MUST be 0.

2.2.10.2.1.8 TXUSER_PHASE0_MTAG_UNENLIST

The TXUSER_PHASE0_MTAG_UNENLIST message is sent by the resource manager to notify the
transaction manager that the Phase Zero enlistment is to be removed and is no longer part of the
transaction.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

MsgHeader (24 bytes)

...

...

MsgHeader (24 bytes): This field MUST contain a MESSAGE_PACKET structure.

 The dwUserMsgType field MUST be 0x00004905.

 The dwcbVarLenData field MUST be 0.

2.2.10.2.2 CONNTYPE_TXUSER_ENLISTMENT

The CONNTYPE_TXUSER_ENLISTMENT connection type is used by a durable resource manager to
establish an enlistment with its transaction manager.

For more details about CONNTYPE_TXUSER_ENLISTMENT as an initiator, see section 3.5.5.2.2, and as
an acceptor, see section 3.6.5.2.2.

2.2.10.2.2.1 TXUSER_ENLISTMENT_MTAG_ABORTREQ

The TXUSER_ENLISTMENT_MTAG_ABORTREQ message is sent by the transaction manager (TM) to the

resource manager (RM) to inform the RM that the transaction has aborted.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

MsgHeader (24 bytes)

...

139 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

...

MsgHeader (24 bytes): This field MUST contain a MESSAGE_PACKET structure.

 The dwUserMsgType field MUST be 0x00001034.

 The dwcbVarLenData field MUST be 0.

2.2.10.2.2.2 TXUSER_ENLISTMENT_MTAG_ABORTREQDONE

The TXUSER_ENLISTMENT_MTAG_ABORTREQDONE message acknowledges that the resource
manager processed the abort and the transaction manager is no longer obligated to retain the
outcome of the transaction.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

MsgHeader (24 bytes)

...

...

MsgHeader (24 bytes): This field MUST contain a MESSAGE_PACKET structure.

 The dwUserMsgType field MUST be 0x00001037.

 The dwcbVarLenData field MUST be 0.

2.2.10.2.2.3 TXUSER_ENLISTMENT_MTAG_COMMITREQ

The TXUSER_ENLISTMENT_MTAG_COMMITREQ message is sent by the transaction manager to notify
the resource manager that the transaction has committed and that the resource manager MUST carry

out the operations that are necessary to commit the work that is performed under the transaction.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

MsgHeader (24 bytes)

...

...

MsgHeader (24 bytes): This field MUST contain a MESSAGE_PACKET structure.

 The dwUserMsgType field MUST be 0x00001035.

 The dwcbVarLenData field MUST be 0.

2.2.10.2.2.4 TXUSER_ENLISTMENT_MTAG_COMMITREQDONE

The TXUSER_ENLISTMENT_MTAG_COMMITREQDONE message is sent by the resource manager to
indicate that it has carried out the necessary operations to commit the transaction, and that the

140 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

transaction manager is no longer obligated to retain the outcome of the transaction for the resource
manager.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

MsgHeader (24 bytes)

...

...

MsgHeader (24 bytes): This field MUST contain a MESSAGE_PACKET structure.

 The dwUserMsgType field MUST be 0x00001038.

 The dwcbVarLenData field MUST be 0.

2.2.10.2.2.5 TXUSER_ENLISTMENT_MTAG_ENLIST

The TXUSER_ENLISTMENT_MTAG_ENLIST message is sent by the resource manager to request the
creation of a new enlistment on a transaction.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

MsgHeader (24 bytes)

...

...

guidTX (16 bytes)

...

...

guidRM (16 bytes)

...

...

guidSession (16 bytes)

...

...

MsgHeader (24 bytes): This field MUST contain a MESSAGE_PACKET structure.

 The dwUserMsgType field MUST be 0x00001031.

141 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 The dwcbVarLenData field MUST be 48.

guidTX (16 bytes): This field MUST contain a GUID that specifies the transaction identifier.

guidRM (16 bytes): This field MUST contain a GUID that specifies the resource manager identifier.

guidSession (16 bytes): This field MUST contain a GUID that specifies the session identifier of the

resource manager.

2.2.10.2.2.6 TXUSER_ENLISTMENT_MTAG_ENLIST_LOG_FULL

The TXUSER_ENLISTMENT_MTAG_ENLIST_LOG_FULL message is sent by the transaction manager to
indicate that the creation of the new enlistment failed because insufficient space exists in the recovery
log of the transaction manager to be able to account for the new enlistment.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

MsgHeader (24 bytes)

...

...

MsgHeader (24 bytes): This field MUST contain a MESSAGE_PACKET structure.

 The dwUserMsgType field MUST be 0x00001903.

 The dwcbVarLenData field MUST be 0.

2.2.10.2.2.7 TXUSER_ENLISTMENT_MTAG_ENLIST_TOO_LATE

The TXUSER_ENLISTMENT_MTAG_ENLIST_TOO_LATE message is sent by the transaction manager to

indicate that the creation of that enlistment failed because it is too late in the lifetime of the specified
transaction. See Create Subordinate Enlistment Failure and Create Subordinate Enlistment for more
information.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

MsgHeader (24 bytes)

...

...

MsgHeader (24 bytes): This field MUST contain a MESSAGE_PACKET structure.

 The dwUserMsgType field MUST be 0x00001902.

 The dwcbVarLenData field MUST be 0.

2.2.10.2.2.8 TXUSER_ENLISTMENT_MTAG_ENLIST_TOO_MANY

The TXUSER_ENLISTMENT_MTAG_ENLIST_TOO_MANY message is sent by the transaction manager to
indicate that the creation of the new enlistment failed because the implementation-specific maximum
number of enlistments for the transaction has been reached.<21>

142 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

MsgHeader (24 bytes)

...

...

MsgHeader (24 bytes): This field MUST contain a MESSAGE_PACKET structure.

 The dwUserMsgType field MUST be 0x00001905.

 The dwcbVarLenData field MUST be 0.

2.2.10.2.2.9 TXUSER_ENLISTMENT_MTAG_ENLIST_TX_NOT_FOUND

The TXUSER_ENLISTMENT_MTAG_ENLIST_TX_NOT_FOUND message is sent by the transaction
manager to indicate that the creation of the new enlistment failed because the specified transaction
does not exist.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

MsgHeader (24 bytes)

...

...

MsgHeader (24 bytes): This field MUST contain a MESSAGE_PACKET structure.

 The dwUserMsgType field MUST be 0x00001901.

 The dwcbVarLenData field MUST be 0.

2.2.10.2.2.10 TXUSER_ENLISTMENT_MTAG_ENLISTED

The TXUSER_ENLISTMENT_MTAG_ENLISTED message is sent by the transaction manager to indicate
that the creation of the new enlistment was successful.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

MsgHeader (24 bytes)

...

...

MsgHeader (24 bytes): This field MUST contain a MESSAGE_PACKET structure.

 The dwUserMsgType field MUST be 0x00001032.

 The dwcbVarLenData field MUST be 0.

143 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

2.2.10.2.2.11 TXUSER_ENLISTMENT_MTAG_PREPAREREQ

The TXUSER_ENLISTMENT_MTAG_PREPAREREQ message is used to request that the resource
manager perform the actions that are needed to prepare the transaction to be committed.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

MsgHeader (24 bytes)

...

...

grfRM

fSinglePhase

MsgHeader (24 bytes): This field MUST contain a MESSAGE_PACKET structure.

 The dwUserMsgType field MUST be 0x00001033.

 The dwcbVarLenData field MUST be 8.

grfRM (4 bytes): The value of this field MUST be a 32-bit unsigned integer. This value SHOULD be
ignored on receipt.

fSinglePhase (4 bytes): Indicates whether the sending transaction manager is willing to allow the

single-phase commit optimization. If the value is zero, the resource manager receiving this
message MUST NOT perform a single-phase commit. If the value is nonzero, the resource
manager receiving this message SHOULD perform a single-phase commit.

2.2.10.2.2.12 TXUSER_ENLISTMENT_MTAG_PREPAREREQDONE

The TXUSER_ENLISTMENT_MTAG_PREPAREREQDONE message is sent by the resource manager to

indicate either success or failure of the prepare operation, depending on the value of the
prepareReqDone field.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

MsgHeader (24 bytes)

...

...

prepareReqDone

guidReason (16 bytes)

...

...

144 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

MsgHeader (24 bytes): This field MUST contain a MESSAGE_PACKET structure.

 The dwUserMsgType field MUST be 0x00001036.

 The dwcbVarLenData field MUST be 20.

prepareReqDone (4 bytes): A value indicating the result of the prepare operations that are

performed by the resource manager. The value MUST be one that is as specified by the
TXUSER_ENLISTMENT_PREPAREREQDONE_RESPONSE enumeration.

guidReason (16 bytes): This field MUST contain a GUID that contains an implementation-specific
value that MUST be ignored on receipt.

2.2.10.3 Transaction Recovery

2.2.10.3.1 CONNTYPE_TXUSER_REENLIST

This connection type is used by a durable resource manager to determine the outcome of an In Doubt

transaction.

For more information about CONNTYPE_TXUSER_REENLIST as an initiator, see section 3.5.5.3.1, and

as an acceptor, see section 3.6.5.3.1.

2.2.10.3.1.1 TXUSER_REENLIST_MTAG_REENLIST

The TXUSER_REENLIST_MTAG_REENLIST message indicates that the resource manager wants to
obtain the outcome of an In Doubt transaction from the transaction manager.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

MsgHeader (24 bytes)

...

...

guidTx (16 bytes)

...

...

ulTimeout

guidRm (16 bytes)

...

...

MsgHeader (24 bytes): This field MUST contain a MESSAGE_PACKET structure.

 The dwUserMsgType field MUST be 0x00001061.

145 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 The dwcbVarLenData field MUST be 36.

guidTx (16 bytes): This field MUST contain a GUID that specifies the transaction identifier.

ulTimeout (4 bytes): This field MUST specify the time, in milliseconds, that the resource manager
will wait for a decision. A value of zero MUST represent an infinite timeout. The recipient SHOULD

NOT send a TXUSER_REENLIST_MTAG_REENLIST_TIMEOUT message until the time span that is
specified by this value has elapsed.

guidRm (16 bytes): This field MUST be a GUID that specifies the resource manager identifier.

2.2.10.3.1.2 TXUSER_REENLIST_MTAG_REENLIST_ABORTED

The TXUSER_REENLIST_MTAG_REENLIST_ABORTED message indicates that the transaction that is
supplied by the TXUSER_REENLIST_MTAG_REENLIST has aborted.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

MsgHeader (24 bytes)

...

...

MsgHeader (24 bytes): This field MUST contain a MESSAGE_PACKET structure.

 The dwUserMsgType field MUST be 0x00001062.

 The dwcbVarLenData field MUST be 0.

2.2.10.3.1.3 TXUSER_REENLIST_MTAG_REENLIST_COMMITTED

The TXUSER_REENLIST_MTAG_REENLIST_COMMITTED message indicates that the transaction that is
supplied by the TXUSER_REENLIST_MTAG_REENLIST has committed.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

MsgHeader (24 bytes)

...

...

MsgHeader (24 bytes): This field MUST contain a MESSAGE_PACKET structure.

 The dwUserMsgType field MUST be 0x00001063.

 The dwcbVarLenData field MUST be 0.

2.2.10.3.1.4 TXUSER_REENLIST_MTAG_REENLIST_TIMEOUT

The TXUSER_REENLIST_MTAG_REENLIST_TIMEOUT message indicates that the
TXUSER_REENLIST_MTAG_REENLIST request has exceeded the time span that is specified by its
ulTimeout field and therefore has failed.

146 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

MsgHeader (24 bytes)

...

...

MsgHeader (24 bytes): This field MUST contain a MESSAGE_PACKET structure.

 The dwUserMsgType field MUST be 0x00001064.

 The dwcbVarLenData field MUST be 0.

2.2.10.4 Voting

2.2.10.4.1 CONNTYPE_TXUSER_VOTER

This connection type is used by a volatile resource manager to establish a voter enlistment with its
transaction manager.

For more details on CONNTYPE_TXUSER_VOTER as an initiator, see section 3.5.5.4.1, and as an
acceptor, see section 3.6.5.4.1.

2.2.10.4.1.1 TXUSER_STATUS_MTAG_ABORTED

The TXUSER_STATUS_MTAG_ABORTED message is sent by the transaction manager to notify the

resource manager that the transaction has aborted.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

MsgHeader (24 bytes)

...

...

MsgHeader (24 bytes): This field MUST contain a MESSAGE_PACKET structure.

 The dwUserMsgType field MUST be 0x00001093.

 The dwcbVarLenData field MUST be 0.

2.2.10.4.1.2 TXUSER_STATUS_MTAG_COMMITTED

The TXUSER_STATUS_MTAG_COMMITTED message is sent by the transaction manager to notify the
resource manager that the transaction has committed.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

MsgHeader (24 bytes)

147 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

...

...

MsgHeader (24 bytes): This field MUST contain a MESSAGE_PACKET structure.

 The dwUserMsgType field MUST be 0x00001094.

 The dwcbVarLenData field MUST be 0.

2.2.10.4.1.3 TXUSER_STATUS_MTAG_INDOUBT

The TXUSER_STATUS_MTAG_INDOUBT message is sent by the transaction manager to notify the
resource manager that the outcome of the transaction is In Doubt.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

MsgHeader (24 bytes)

...

...

MsgHeader (24 bytes): This field MUST contain a MESSAGE_PACKET structure.

 The dwUserMsgType field MUST be 0x00001095.

 The dwcbVarLenData field MUST be 0.

2.2.10.4.1.4 TXUSER_VOTER_MTAG_CREATE

The TXUSER_VOTER_MTAG_CREATE message is sent by the resource manager to create a new voter
enlistment on a transaction.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

MsgHeader (24 bytes)

...

...

guidTx (16 bytes)

...

...

MsgHeader (24 bytes): This field MUST contain a MESSAGE_PACKET structure.

 The dwUserMsgType field MUST be 0x00002091.

148 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 The dwcbVarLenData field MUST be 16.

guidTx (16 bytes): This field MUST contain a GUID that specifies the transaction identifier.

2.2.10.4.1.5 TXUSER_VOTER_MTAG_CREATE_TOO_LATE

The TXUSER_VOTER_MTAG_CREATE_TOO_LATE message is sent by the transaction manager to
indicate that the creation of the new voter enlistment was unsuccessful because it was too late in the
lifetime of the transaction to create new enlistments. See Create Voter Enlistment
Failure (section 3.6.7.12) and Create Voter Enlistment (section 3.2.7.14) for more information.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

MsgHeader (24 bytes)

...

...

MsgHeader (24 bytes): This field MUST contain a MESSAGE_PACKET structure.

 The dwUserMsgType field MUST be 0x00002096.

 The dwcbVarLenData field MUST be 0.

2.2.10.4.1.6 TXUSER_VOTER_MTAG_CREATE_TX_NOT_FOUND

The TXUSER_VOTER_MTAG_CREATE_TX_NOT_FOUND message is sent by the transaction manager to
indicate that creation of the new voter enlistment was unsuccessful because the specified transaction
does not exist.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

MsgHeader (24 bytes)

...

...

MsgHeader (24 bytes): This field MUST contain a MESSAGE_PACKET structure.

 The dwUserMsgType field MUST be 0x00002095.

 The dwcbVarLenData field MUST be 0.

2.2.10.4.1.7 TXUSER_VOTER_MTAG_CREATED

The TXUSER_VOTER_MTAG_CREATED message is sent by the transaction manager to indicate that

creation of the new voter enlistment was successful.

149 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

MsgHeader (24 bytes)

...

...

MsgHeader (24 bytes): This field MUST contain a MESSAGE_PACKET structure.

 The dwUserMsgType field MUST be 0x00002092.

 The dwcbVarLenData field MUST be 0.

2.2.10.4.1.8 TXUSER_VOTER_MTAG_VOTEREQ

The TXUSER_VOTER_MTAG_VOTEREQ message is sent by the transaction manager to request that the
resource manager perform any operations it needs to during Phase One and to vote on the outcome of
the transaction.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

MsgHeader (24 bytes)

...

...

MsgHeader (24 bytes): This field MUST contain a MESSAGE_PACKET structure.

 The dwUserMsgType field MUST be 0x00002093.

 The dwcbVarLenData field MUST be 0.

2.2.10.4.1.9 TXUSER_VOTER_MTAG_VOTEREQDONE

The TXUSER_VOTER_MTAG_VOTEREQDONE message is sent by a voter to indicate whether it agrees
to a decision to commit the transaction for which it had previously created a voter enlistment.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

MsgHeader (24 bytes)

...

...

VoteReqDone

MsgHeader (24 bytes): This field MUST contain a MESSAGE_PACKET structure.

 The dwUserMsgType field MUST be 0x00002094.

150 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 The dwcbVarLenData field MUST be 4.

VoteReqDone (4 bytes): The resource manager votes to commit or abort the transaction. The value

MUST be one that is defined by the TXUSER_VOTER_VOTERREQDONE_RESPONSE enumeration.

151 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

3 Protocol Details

3.1 Common Details

This section defines common details for the transaction participants, as specified in sections 3.2

through 3.8. Each participant MUST conform to the details as specified in this section.

3.1.1 Abstract Data Model

This section describes a conceptual model of possible data organization that an implementation

maintains to participate in this protocol. The described organization is provided to facilitate the
explanation of how the protocol behaves. This document does not mandate that implementations
adhere to this model as long as their external behavior is consistent with the behavior that is
described in this document.

Note that the abstract data model can be implemented in a variety of ways. This protocol does not

prescribe or advocate any specific implementation technique.

Participants MUST use the multiplexing protocol connections specified in [MS-CMP] section 3.1.1.1 as

a transport protocol for sending messages. The Transport section defines the mechanisms by which
this protocol initializes and makes use of the multiplexing protocol.

A participant MUST also maintain the following data elements:

 Transaction table: A table of entries to transaction objects, keyed by transaction identifier.

 Session Table: A table of Session objects, as maintained by the multiplexing protocol specified in
[MS-CMP] section 3.1.1. The MSDTC Connection Manager: OleTx Transaction Protocol reads the
Session table data elements provided by [MS-CMPO] but does not extend or modify the table.

Each transaction object MUST contain the following data structures:

 Transaction Object.Identifier: This field contains a GUID that specifies the transaction
identifier.

 Connection list: A list of multiplexing protocol connection objects, as specified in [MS-CMP]
section 3.1.1.1, that are associated with the transaction.

A transaction object is extended by various participants. When this extension includes enlistment

details, then each discrete enlistment is represented in this model as an enlistment object. In this
description, the enlistment object represents a set of fields that are always associated with each
enlistment. As a group, these fields are referred to in the processing rules as the enlistment object. In
the processing rules, a set of fields comprising an enlistment object are always added or removed as a
group. Depending on the participant, there can be more than one enlistment object as part of the
transaction object (Core Transaction Manager Facet, as specified in section 3.2.1, is an example of
this).

An Enlistment object MUST contain the following data structures:

 Transaction Manager Facet: A reference to the specific facet in the transaction manager that
created the Enlistment object. A single facet creates zero or more Enlistment objects. Transaction
manager facets are as specified in section 3.2.1.4.

 Transaction: A reference to a transaction object.

 Enlistment Object.Connection: A reference to a connection object.

%5bMS-CMP%5d.pdf#Section_1970a8a0799d4308b9274e4ea23dc225
%5bMS-CMPO%5d.pdf#Section_d2403ca533fa432997f5825ad0868bf6

152 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 Resource Manager Identifier: A GUID that uniquely identifies the resource manager. Each
transaction manager facet MUST set this field if the transaction manager facet is communicating

with a durable resource manager.

 Recovery Information: An extensibility point that allows transaction manager facets to

contribute information to the durable log that is returned to them when recovery occurs. This field
MUST be interpreted only by the transaction manager facet that created the Enlistment object.

 Name: A string providing a name for the enlistment. Each transaction manager facet MUST define
the contents of this field for the Enlistment objects that are created by that facet.

 Enlistment Object.Identifier: A string providing an identifier for the enlistment. Each
transaction manager facet MUST provide the contents of this field for Enlistment objects that are
created by that facet.

Furthermore, a participant MUST extend the definition of a connection object to include the following
data elements:

 Transaction: A reference to the transaction object that is associated with the connection.

 State: A state enumeration that represents the current state of the connection.

 Connection-Specific Data: An opaque reference to an object. This field is used during the
execution of a connection to associate connection-specific objects with the connection. Some

connections do not use this field.

A state enumeration MUST contain a set of values that represent specific states in a logical state
machine. For a connection type, these values represent the different states to which the connection's
logical state machine is set during the lifetime of the connection.

When a participant initiates or accepts a connection, the State field of the connection MUST be set
initially to the Idle state. When the connection is disconnected, the connection state MUST be set to
the Ended state.

For a participant initiating a connection, once the connection's state machine enters the Ended state,

the connection that is associated with the state machine MUST be disconnected, if it is not already
disconnected, as specified in section 3.1.8.2.

3.1.1.1 Converting a Name Object to an OLETX_TM_ADDR Structure

A Name object MUST be converted to an OLETX_TM_ADDR (section 2.2.4.2) structure in the following
manner:

 The guidSignature field of OLETX_TM_ADDR MUST be set as specified in section 2.2.4.2.

 The guidEndpoint field of OLETX_TM_ADDR MUST be set to the CID field of the Name object.

 The grbComProtsSupported field of OLETX_TM_ADDR MUST be set to the Protocols field of the
Name object.

 The wszHostName field of OLETX_TM_ADDR MUST be set to the Hostname field of the Name
object.

3.1.1.2 Converting an OLETX_TM_ADDR Structure to a Name Object

An OLETX_TM_ADDR (section 2.2.4.2) structure MUST be converted to a Name object in the following

manner:

 The CID field of the Name object MUST be set to the guidEndpoint field of OLETX_TM_ADDR.

153 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 The Protocols field of the Name object MUST be set to the grbComProtsSupported field of
OLETX_TM_ADDR.

 The Hostname field of the Name object MUST be set to the wszHostName field of
OLETX_TM_ADDR.

3.1.1.3 Converting a Name Object to a NAMEOBJECTBLOB Structure

A Name object MUST be converted to a NAMEOBJECTBLOB (section 2.2.5.3) structure in the following
manner:

 The szGuid field of NAMEOBJECTBLOB MUST be set to the CID field of the Name object and
formatted as a string, as specified in [C706] Appendix A.

 The grbComProtsSupported field of NAMEOBJECTBLOB MUST be set to the Protocols field of
the Name object.

 The szHostName field of NAMEOBJECTBLOB MUST be set to the Hostname field of the Name

object and formatted as a null-terminated Latin-1 ANSI string, as specified in [ISO/IEC-8859-1].

 The dwcbHostName and dwReserved1 fields MUST be set as specified in section 2.2.5.3.

3.1.1.4 Converting a NAMEOBJECTBLOB Structure to a Name Object

A NAMEOBJECTBLOB (section 2.2.5.3) structure MUST be converted to a Name object in the following
manner:

 The CID field of the Name object MUST be set to the szGuid field of NAMEOBJECTBLOB,

converted from a string to a GUID as specified in [C706] Appendix A.

 The Protocols field of the Name object MUST be set to the grbComProtsSupported field of
NAMEOBJECTBLOB.

 The Hostname field of the Name object MUST be set to the szHostName field of

NAMEOBJECTBLOB.

3.1.2 Timers

None.

3.1.3 Initialization

The initialization process of this protocol MUST initialize the underlying instance of the MSDTC
Connection Manager: OleTx Multiplexing ([MS-CMP]) and MSDTC Connection Manager: OleTx
Transports ([MS-CMPO]) protocols as specified in section 2.1.2.

If initialization fails for the underlying [MS-CMP] protocol as specified in [MS-CMP] section 3.1.3.1, or
for the underlying [MS-CMPO] protocol as specified in [MS-CMPO] section 3.2.3.1, then the

initialization of the [MS-DTCO] protocol MUST also fail and an implementation-specific failure result

MUST be returned to the higher-layer business logic.

To establish an OleTx connection between an initiator and an acceptor both the initiator and the
acceptor MUST follow the processing steps as specified in [MS-CMP] section 3.1.4.2.

To initiate a connection, a session MUST already be established between the initiator and the acceptor.

http://go.microsoft.com/fwlink/?LinkId=89824
http://go.microsoft.com/fwlink/?LinkId=90689
http://go.microsoft.com/fwlink/?LinkId=89824
%5bMS-CMP%5d.pdf#Section_1970a8a0799d4308b9274e4ea23dc225
%5bMS-CMPO%5d.pdf#Section_d2403ca533fa432997f5825ad0868bf6

154 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

For the use of MSDTC Connection Manager: OleTx Transports Protocol sessions ([MS-CMPO] section
3.2.1.2) and MSDTC Connection Manager: OleTx Multiplexing Protocol connections ([MS-CMP] section

3.1.1.1) in this protocol, see section 2.1.

3.1.3.1 Enlistment Object Initialization

A participant MUST initialize each new Enlistment object that is created by the participant with the
following default values:

 The transaction manager facet field MUST default to an empty value.

 The transaction field MUST default to an empty value.

 The Enlistment Object.Connection field MUST default to an empty value.

 The resource manager identifier field MUST default to NULL_GUID.

 The recovery information field MUST default to an empty value.

 The name field MUST default to an empty string.

 The Enlistment Object.Identifier field MUST default to an empty string.

3.1.4 Protocol Versioning Details

3.1.4.1 Supporting a Protocol Version

A protocol role implementation that claims support for a protocol version MUST implement all the
protocol elements required by that version for the respective role, as specified in section 2.2.1.

A protocol role implementation that claims a version as the maximum supported protocol version
MUST support that version, and it MUST NOT implement any protocol elements that are neither
required nor optional for that version (see section 2.2.1).

3.1.4.2 Negotiating a Common Protocol Version

Before exchanging any protocol messages, two protocol participants MUST agree on what protocol
version to use for their communication. To negotiate a common protocol version, the two protocol
participants MUST use the version negotiation mechanism provided by the MSDTC Connection
Manager: OleTx Transports Protocol transport (see [MS-CMPO] section 3.3.4.2.1 BuildContext-

Primary) as follows:

 When a protocol participant (application, resource manager, transaction manager) initializes its
underlying MSDTC Connection Manager: OleTx Transports Protocol transport, it MUST do the
following:

 Set the Minimum Level 3 Version Number data field of the underlying MSDTC Connection
Manager: OleTx Transports Protocol implementation to 0x00000001 (see also [MS-CMPO]

section 3.2.1.1). Note that the MSDTC Connection Manager: OleTx Transaction Protocol is

layered on top of MSDTC Connection Manager: OleTx Multiplexing Protocol (specified in [MS-
CMP]), which is layered on top of the MSDTC Connection Manager: OleTx Transports Protocol
(specified in [MS-CMPO]). Therefore, it is a level-three protocol for the MSDTC Connection
Manager: OleTx Transports Protocol (as defined in [MS-CMPO] section 2.2.2).

 Set the Maximum Level 3 Version Number data field of the underlying MSDTC Connection
Manager: OleTx Transports Protocol implementation to the value of the maximum supported

MSDTC Connection Manager: OleTx Transaction Protocol version (defined in section 3.1.4.1).

%5bMS-CMPO%5d.pdf#Section_d2403ca533fa432997f5825ad0868bf6
%5bMS-CMP%5d.pdf#Section_1970a8a0799d4308b9274e4ea23dc225
%5bMS-CMP%5d.pdf#Section_1970a8a0799d4308b9274e4ea23dc225

155 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

When an MSDTC Connection Manager: OleTx Transports Protocol session is successfully established
between the two protocol participants, the value of the dwLevelThreeAccepted field of the session

object's Version field (see [MS-CMPO] section 3.2.1.2, Session State) indicates the negotiated
protocol version (for example, if the value of the dwLevelThreeAccepted field is 5, the negotiated

protocol version is 5).

3.1.4.3 Using the Negotiated Protocol Version

Once a protocol version is negotiated, the session partners SHOULD use in their communication only

the protocol elements that are either required or optional for that version (see section 2.2.1 for a
definition of version-required and version-optional elements), as follows:

 When a partner makes a connection request, it SHOULD use only a connection type that is either
required or optional for the negotiated protocol version. If the connection type is optional for the
negotiated protocol version, it MUST handle the MTAG_CONNECTION_REQ_DENIED ([MS-CMP]
section 2.2.5) response and return the failure result to the higher business layer.<22>

 When a partner receives a connection request, it MUST accept as valid only a connection type that

is either required or optional for the negotiated protocol version. Invalid connections MUST be
rejected, as specified in [MS-CMP] section 2.2.5.

 When a partner sends a message over an established connection, it SHOULD use only message
types and formats that are supported by the negotiated protocol version in the context of the
connection type of the respective connection.<23>

 When a partner receives a message over an established connection, it SHOULD accept as valid
only message types and formats that are supported by the negotiated protocol version in the

context of the connection type of the respective connection. An invalid message MUST be rejected,
as specified in section 3.1.6.

3.1.5 Higher-Layer Triggered Events

None.

3.1.6 Processing Events and Sequencing Rules

When an OleTx connection partner receives an incoming message on a connection, it MUST perform
the following actions in order to verify the validity of the message:

 Schema validation

 The participant MUST validate the message content in accord with the message schema and
constraints specified in section 2.2 for the specific incoming message type. If a message type
is not determinable, the message MUST be considered invalid.

 State validation

 The participant MUST verify the current state of the connection by using the State field of the
connection as follows:

 If the connection is in the Ended state, the message MUST be considered invalid.

 If the connection type has not defined a specific processing rule in section 3 for the
processing of the specific message in the current connection state, then the message
MUST be considered invalid.

If an incoming message is considered invalid, the participant MUST ignore the contents of the
message. Furthermore, the connection on which the message was received MUST transition to the

%5bMS-CMP%5d.pdf#Section_1970a8a0799d4308b9274e4ea23dc225

156 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Ended state, and return a failure result to the higher-layer business logic. The participant MAY also
tear down the session with which the connection was established.<24>

If the connection type defines specific actions that MUST be performed when an invalid message is
received, the connection partner MUST also perform those actions. These actions are specified in the

Message Processing Events and Sequencing Rules section that specifies the behavior of the connection
type.

The various failure results returned to the higher-layer business logic are implementation-specific.
Failure results SHOULD include implementation-specific context around valid error messages and
invalid incoming messages.

3.1.7 Timer Events

None.

3.1.8 Other Local Events

An OleTx connection participant MUST be able to handle the following events at any time during the
lifetime of an OleTx connection.

3.1.8.1 Initiate Connection

The Initiate Connection event MUST be signaled with the following parameters:

 Name Object of the partner to create the connection.

 The connection type of the outgoing connection.

On Initiate Connection event signal, an OleTx connection participant MUST perform the following:

 Create a new Incoming Message Notification Interface object with the event fields set to local
events Receiving a Message (section 3.1.8.4) and Connection Disconnected (section 3.1.8.3)

respectively.

 Signal Create Connection event as specified in [MS-CMP] section 3.1.4.2 by passing the following
parameters:

 The provided Name Object of the partner to create the connection.

 The provided connection type of the outgoing connection.

 The new Incoming Message Notification Interface object to receive incoming message
notifications from MSDTC Connection Manager: OleTx Multiplexing Protocol layer.

3.1.8.2 Disconnect Connection

The Disconnect Connection event MUST be signaled with the following argument:

 A Connection object

When a Disconnect Connection event is signaled, an OleTx connection participant MUST perform the

following:

 Perform all the actions that are required for a valid disconnection as specified in [MS-CMP] section
3.1.4.3.

%5bMS-CMP%5d.pdf#Section_1970a8a0799d4308b9274e4ea23dc225
%5bMS-CMP%5d.pdf#Section_1970a8a0799d4308b9274e4ea23dc225

157 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

3.1.8.3 Connection Disconnected

The Connection Disconnected event MUST be signaled with the following argument:

 A Connection object

When a Connection Disconnected event is signaled, an OleTx connection participant MUST perform the
following:

 If the connection type defines specific additional actions that MUST be performed when a
connection is disconnected, the OleTx participant MUST also perform those actions. These actions
are specified in the specific Message Processing Events and Sequencing Rules section that defines
the behavior of a specified connection type when receiving incoming messages.

 The connection MUST be removed from the connection list that belongs to the transaction that is

associated with the connection.

 If the connection state is not already Ended, the state MUST be set to Ended.

3.1.8.4 Receiving a Message

The Receiving a Message event MUST be signaled with the following arguments:

 A protocol message extending the MESSAGE_PACKET structure

 A Connection object

If the Receiving a Message event is signaled, an OleTx connection participant MUST perform the
following actions:

 Verify the validity of the received protocol message as specified in section 3.1.6.

 When a partner receives a connection request, it MUST accept as valid only a connection type that

is either required or optional for the negotiated protocol version. Invalid connections MUST be

rejected by sending an MTAG_CONNECTION_REQ_DENIED [MS-CMP] (section 2.2.5) message
with the Reason field set to 0x80070057.

 If the incoming message is MTAG_CONNECTION_REQ_DENIED [MS-CMP] (section 2.2.5)
message:

 If the connection state is not already Ended, the state MUST be set to Ended.

 Return the failure reason code from the Reason field to higher-layer business logic.

 If the connection type defines specific additional actions that MUST be performed when a
connection is requested or when a valid user message is processed, the OleTx participant MUST
also perform those actions. These actions are specified in the specific Message Processing Events
and Sequencing Rules section that defines the behavior of a specified connection type and the
user message type when receiving incoming messages.

3.2 Core Transaction Manager Facet Details

3.2.1 Abstract Data Model

This section describes a conceptual model of possible data organization that an implementation
maintains to participate in this protocol. The described organization is provided to facilitate the
explanation of how the protocol behaves. This document does not mandate that implementations
adhere to this model as long as their external behavior is consistent with the behavior that is
described in this document.

158 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Note that the abstract data model can be implemented in a variety of ways. This protocol does not
prescribe or advocate any specific implementation technique.

The Core Transaction Manager Facet MUST maintain all the data elements described in section 3.1.1.

The Core Transaction Manager Facet MUST also maintain the following data elements:

 Core Transaction Manager Facet.Durable Log: A durable list of transaction objects. The
contents of the log MUST persist across software restarts or transient failures.

 Protocol Extension List: A list of protocol extensions, as specified in section 3.2.1.5.

 Extended Whereabouts: A memory buffer that represents the extended whereabouts
information of the transaction manager, contributed by protocol extension objects as specified in
section 3.2.1.5.

 Extended Whereabouts Size: The size of the extended whereabouts buffer, in bytes.

 Extended Whereabouts Protocol Count: The number of protocol extension objects that

contributed to the extended whereabouts information.

 Security Level: An enumeration that indicates the security level at which the transaction
manager initializes communication by using the transports protocol as specified in [MS-CMPO]
and the multiplexing protocol as specified in [MS-CMP] section 3.2.1.1. This element MUST be set
to one of the following values:

 No Security: This value is set to indicate that the RPC communications MUST NOT require
validation of the identity for an incoming message.

 Incoming Authentication: This value is set to indicate that the RPC communication SHOULD
validate the identity for an incoming message.

 Mutual Authentication: This value is set to indicate that the RPC communication SHOULD
validate that there is a known identity for an incoming connection. The incoming connection is
refused if the identity is not established. The incoming identity MUST match the pattern

"<domain>\<incoming-MSDTC-name>$", where <incoming-MSDTC-name> is the source
hostname for the connection, and <domain> is the name of the domain in which the host is a
member.

 The Core Transaction Manager Facet MUST maintain the following security flags and MUST set
each flag to either TRUE or FALSE:

 Allow Network Access: A Boolean flag that indicates whether the transaction manager will
communicate with an OleTx participant that is located on a remote machine. If this flag is not

set, network access MUST NOT be enabled for the OleTx protocol, regardless of the settings of
the other flags.

 Allow Network Transactions: A Boolean flag that indicates whether the transaction
manager will perform a distributed transaction with an OleTx participant that is located on a
remote machine. If the Allow Network Access flag is set to false, this flag MUST be ignored.

 Allow Inbound Transactions: A Boolean flag that indicates whether the transaction

manager will act as subordinate to a superior transaction manager facet that is located on a
remote machine. If either the Allow Network Access flag or the Allow Network Transactions
flags are set to false, this flag MUST be ignored.

 Allow Outbound Transactions: A Boolean flag that indicates whether the transaction
manager will act as superior to a subordinate transaction manager facet that is located on a
remote machine. If either the Allow Network Access flag or the Allow Network Transactions
flag is set to false, this flag MUST be ignored.

%5bMS-CMPO%5d.pdf#Section_d2403ca533fa432997f5825ad0868bf6
%5bMS-CMP%5d.pdf#Section_1970a8a0799d4308b9274e4ea23dc225

159 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 Allow Remote Administration: A Boolean flag that indicates whether the transaction
manager will be administered by an application that is located on a remote machine. If the

Allow Network Access flag is set to false, this flag MUST be ignored.

 Allow Remote Clients: A Boolean flag that indicates whether the transaction manager will

communicate with an application or a resource manager that is located on a remote machine.
If the Allow Network Access flag is set to false, this flag MUST be ignored.

 Allow TIP: A Boolean flag that indicates whether the transaction manager has enabled the
TIP protocol, as specified in [RFC2371]. For information on the transaction manager's
interaction with [RFC2371], see [MS-DTCM]. If the Allow Network Access flag is set to false,
this flag MUST be ignored.

 Allow XA: A Boolean flag that indicates whether the transaction manager provides support for

the [C193] protocol in an implementation-specific manner.

 Allow LUTransactions: A Boolean flag that indicates whether the transaction manager
provides support for the MSDTC Connection Manager: OleTx Transaction Protocol Logical Unit

Mainframe Extension protocol, as specified in [MS-DTCLU]. A value of TRUE indicates the
transaction manager accepts the connection type supported in the MSDTC Connection
Manager: OleTx Transaction Protocol Logical Unit Mainframe Extension protocol. A value of

FALSE indicates the transaction manager will refuse to accept incoming connections for the
connection type supported in the MSDTC Connection Manager: OleTx Transaction Protocol
Logical Unit Mainframe Extension protocol. If either the Allow Network Access flag or the
Allow Remote Clients flag is set to FALSE, the transaction manager MUST ignore this flag
and MUST refuse to accept incoming connections from remote machines for the connection
type supported in the MSDTC Connection Manager: OleTx Transaction Protocol Logical Unit
Mainframe Extension protocol.

The Core Transaction Manager Facet MUST extend the definition of a transaction object to include the
following data elements:

 Superior Enlistment: A reference to an Enlistment object that belongs to either the subordinate
transaction manager facet or the transaction manager communicating with an application facet, as

specified in 3.1.1.

 Next Phase Zero Wave Enlistment list: A list of Enlistment objects that represent the
enlistment set of Phase Zero that belongs to the next Phase Zero wave of the transaction.

 Phase Zero Enlistment list: A list of Enlistment objects that represent the enlistment set of
Phase Zero that belongs to the current Phase Zero wave of the transaction.

 Phase One Enlistment list: A list of Enlistment objects that represent the set of Phase One
enlistments currently registered on the transaction.

 Phase One Voter Enlistment list: A list of Enlistment objects that represent the set of voter
enlistments currently registered on the transaction.

 Phase Two Enlistment list: A list of Enlistment objects that represent the set of Phase One
enlistments who voted Prepared when asked to vote on the outcome of the transaction.

 Phase Two Voter Enlistment list: A list of Enlistment objects that represent the set of voter
enlistments who voted Prepared when asked to vote on the outcome of the transaction.

 Root: A flag set to true if the Core Transaction Manager Facet is the root of the transaction;
otherwise, false.

 Doomed: A flag set to true if the transaction has been aborted; otherwise, false.

http://go.microsoft.com/fwlink/?LinkId=90338
%5bMS-DTCM%5d.pdf#Section_7dbf234d2c1540b79a20812f5e3964ec
http://go.microsoft.com/fwlink/?LinkId=89820
%5bMS-DTCLU%5d.pdf#Section_09c6c3c965a74814ad32160d292f8dcb

160 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 Attributes Set: A flag set to true when the transaction attributes are updated by using the Set
Transaction Attributes event.

 Phase Zero Registered: A flag set to true if the transaction has successfully registered for the
next Phase Zero wave; otherwise, false.

 Single Phase Commit: A flag set to true if the Core Transaction Manager Facet was requested to
perform a Single Phase Commit on the transaction; otherwise, false.

 State: A State enumeration that represents the current state of the transaction. These states are
as specified in section 3.2.1.3.

 Isolation Level: An Isolation Level value.

 Isolation Flags: An Isolation Flags value.

 Description: An implementation-specific description string that is provided to the core transaction

manager when the transaction is created.

 Timeout: A 32-bit unsigned integer that represents the number of milliseconds after which a root
transaction MUST time out if an outcome is not reached. This value MUST be used to initialize the
Transaction Timeout Timer (section 3.2.2.1).

 GRFRM: A 32-bit unsigned integer that contains an implementation-defined value, as defined in
section 2.2.7.1.

The Core Transaction Manager Facet MUST extend the definition of a connection object, as specified in
[MS-CMP] section 3.1.1.1, to include the following data element:

 Enlistment: A reference to the Enlistment object that is associated with the connection. Some
connections do not use this field.

3.2.1.1 Versioning

The core transaction manager MUST maintain the data that pertains to the extended whereabouts
functionality only on versions where the connection type
CONNTYPE_TXUSER_EXTENDEDWHEREABOUTS is supported as specified in section 2.2.1.1.1. The
following data elements, as specified in section 3.2.1, are affected:

 Extended Whereabouts

 Extended Whereabouts Size

 Extended Whereabouts Protocol Count

 Extended Whereabouts data structures that are provided by protocol extension objects:

 Whereabouts

 Whereabouts Size

The core transaction manager MUST maintain the data that pertains to the Phase Zero functionality
only on versions where the connection type CONNTYPE_TXUSER_PHASE0 is supported as specified in

section 2.2.1.1.3. The following data elements, as specified in 3.2.1, are affected:

 Next Phase Zero Wave Enlistment list

 Phase Zero Enlistment list

 Phase Zero Registered

161 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

3.2.1.2 Transaction Logging

When a transaction object is stored in the Core Transaction Manager Facet.Durable Log of the
Core Transaction Manager Facet, the Core Transaction Manager Facet MUST record only the following

fields:

 The Transaction Object.Identifier field.

 The State field. When a transaction object is stored in the Core Transaction Manager
Facet.Durable Log, this field MUST be set to one of the following two states:

 In Doubt

 Failed to Notify

 The Phase Two Enlistment list.

 If the State field of the transaction is set to In Doubt, the Superior Enlistment field MUST be
stored.

When an Enlistment object is stored in the Core Transaction Manager Facet.Durable Log of the
Core Transaction Manager Facet, the Core Transaction Manager Facet MUST record all the object
fields.

When a connection object is stored in the Core Transaction Manager Facet.Durable Log of the

Core Transaction Manager Facet, the Core Transaction Manager Facet MUST record all the object
fields.

When a connection object is retrieved from the Core Transaction Manager Facet.Durable Log of
the Core Transaction Manager Facet, its state MUST be set to Ended.

3.2.1.3 Transaction States

The state field of the transaction object MUST represent the set of different states to which the logical

state machine of the transaction MUST be set.

The transaction state machine MUST support the following states:

 Idle

 Active

 Phase Zero

 Phase Zero Complete

 Voting

 Voting Complete

 Phase One

 Phase One Complete

 Single Phase Commit

 Committing

 Aborting

 In Doubt

162 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 Failed to Notify

 Ended

The following diagram reflects states and the events that directly change them. The transaction
manager and the transaction can receive more events than those shown, but those events do not

affect the state of the transaction.

Figure 12: Transaction manager states and events (Phase Zero)

163 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Figure 13: Transaction manager states and events (Phase One)

3.2.1.3.1 Idle

This is the initial state. The following events are processed in the Idle state:

 Create Transaction

 Create Superior Enlistment

 Associate Transaction

 Branch Transaction Success

 Branch Transaction Failure

3.2.1.3.2 Active

164 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

The following events are processed in the Active state:

 Create Phase Zero Enlistment

 Create Voter Enlistment

 Create Subordinate Enlistment

 Register Phase Zero Success

 Register Phase Zero Failure

 Export Transaction

 Set Transaction Attributes

 Set Transaction Timeout

 Begin Phase Zero

 Enlistment Unilaterally Aborted

 Notify Aborted

 Unenlist Phase Zero Enlistment

 Transaction Timeout Timer

3.2.1.3.3 Phase Zero

The following events are processed in the Phase Zero state:

 Create Phase Zero Enlistment

 Create Voter Enlistment

 Create Subordinate Enlistment

 Register Phase Zero Success

 Register Phase Zero Failure

 Export Transaction

 Set Transaction Timeout

 Enlistment Phase Zero Complete

 Enlistment Unilaterally Aborted

 Notify Aborted

 Unenlist Phase Zero Enlistment

 Transaction Timeout Timer

3.2.1.3.4 Phase Zero Complete

The following events are processed in the Phase Zero Complete state:

 Create Phase Zero Enlistment

165 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 Create Voter Enlistment

 Create Subordinate Enlistment

 Register Phase Zero Success

 Register Phase Zero Failure

 Export Transaction

 Set Transaction Timeout

 Begin Phase One

 Begin Voting

 Enlistment Unilaterally Aborted

 Notify Aborted

 Transaction Timeout Timer

3.2.1.3.5 Voting

The following events are processed in the Voting state:

 Set Transaction Timeout

 Enlistment Vote Complete

 Voting Complete

 Enlistment Unilaterally Aborted

 Notify Aborted

 Transaction Timeout Timer

3.2.1.3.6 Voting Complete

The following events are processed in the Voting Complete state:

 Set Transaction Timeout

 Begin Commit

 Enlistment Unilaterally Aborted

 Notify Aborted

 Forget Transaction

 Transaction Timeout Timer

3.2.1.3.7 Phase One

The following events are processed in the Phase One state:

 Set Transaction Timeout

 Enlistment Vote Complete

166 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 Enlistment Phase One Complete

 Enlistment Unilaterally Aborted

 Notify Aborted

 Phase One Completed

 Transaction Timeout Timer

3.2.1.3.8 Phase One Complete

The following events are processed in the Phase One Complete state:

 Begin Commit

 Begin In Doubt

 Forget Transaction

3.2.1.3.9 Single Phase Commit

The following events are processed in the Single Phase Commit state:

 Enlistment Phase One Complete

 Phase One Completed

3.2.1.3.10 Committing

The following events are processed in the Committing state:

 Begin Commit

 Enlistment Commit Complete

 Forget Transaction

 Request Transaction Outcome

3.2.1.3.11 Aborting

The following events are processed in the Aborting state:

 Begin Rollback

 Enlistment Rollback Complete

 Forget Transaction

 Request Transaction Outcome

3.2.1.3.12 In Doubt

The following events are processed in the In Doubt state:

 Notify Recovered Transaction Committed

 Forget Transaction

 Resolve Transaction

167 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 Notify Aborted

3.2.1.3.13 Failed to Notify

The following events are processed in the Failed to Notify state:

 Begin Commit

 Notify Recovered Transaction Committed

 Forget Transaction

 Resolve Transaction

 Request Transaction Outcome

3.2.1.3.14 Ended

This is the final state. The following event is processed in the Ended state:

 Request Transaction Outcome

3.2.1.4 Transaction Manager Facets

An OleTx transaction manager is subdivided into the following transaction manager facets:

 Core Transaction Manager Facet

 Transaction Manager Communicating with an Application Facet

 Transaction manager Communicating with a Resource Manager Facet

 Superior Transaction Manager Facet

 Subordinate Transaction Manager Facet

These facets MUST communicate with each other by using a set of events. Each facet MUST define the

set of events that the facet supports.

An event MUST consist of the following data elements:

 The name of the event

 The list of arguments with which the event MUST be signaled

This protocol assumes the existence of an implementation-specific communication mechanism used to
signal events between facets inside a transaction manager. This communication mechanism MUST
NOT allow man-in-the-middle or other classes of intermediary attacks.

Each facet MUST provide a definition for the Name and Enlistment Object.Identifier fields of an
Enlistment object, as specified in section 3.1.1.

The conceptual model that is described here requires that one and only one thread of operation be
active inside the facets that make up the transaction manager.

3.2.1.5 Protocol Extension Objects

A protocol extension is an implementation-specific module that represents the ability to perform
transaction processing by using a transaction coordination protocol that is not OleTx.

168 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Protocol extension objects MUST leverage the following vendor extensibility points in the Core
Transaction Manager Facet:

 The ability to augment the list of transaction manager facets, as specified in section 3.2.1.4, to
include additional protocol-specific facets

 The ability to define custom behavior for the Name and Property fields on Enlistment objects
that are created inside these facets

 The ability to contribute whereabouts information to the extended whereabouts field of the core
transaction manager

 The ability to contribute recovery information to Enlistment objects that are stored in the durable
log, as specified in section 3.1.1

A protocol extension object MUST provide the following data structures:

 Identifier: A GUID that uniquely identifies the protocol extension

 Whereabouts: An array of bytes that represents the protocol extension

 Whereabouts Size: The size of the Whereabouts array

3.2.2 Timers

The Core Transaction Manager Facet MUST provide a Transaction Timeout Timer.

3.2.2.1 Transaction Timeout Timer

This timer MUST be set when a new transaction is created. It MUST be canceled when a transaction

enters one of the following states:

 Phase One Complete

 Single Phase Commit

 Committing

 Aborting

 Ended

The default value is specified by the Timeout field on the transaction object for which the instance of
the timer is set. The minimum value of the timer MUST be zero, which means that the timer never
generates a timer event.

When the timer is initialized, the initialization MUST provide a transaction object to associate with the
timer. When the timer expires, the same transaction object MUST be provided alongside the timer
notification. The Core Transaction Manager Facet MUST provide a distinct Transaction Timeout Timer
instance for each active transaction. If an implementation sets the value of the timeout timer

associated with a transaction object to zero, the Transaction Timeout Timer event (see 3.2.6.1) is
never signaled, and therefore the transaction never times out. Examples of negative consequences of
transactions that do not time out include resource availability and deadlocks between resources. In
the availability example, if an application starts a transaction and accesses a resource, that resource
typically blocks access to the specific item until the transaction completes in order to provide isolation.
But if the application has an issue and does not complete the transaction within a reasonable amount
of time, other applications are prevented from accessing the resource item. In the deadlock example,

two resources are accessed by two different applications, but in reverse order. This results in the two
applications blocking each other because each has its own transaction that holds a lock that the other

169 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

needs to proceed. When transaction timeout values are implemented, these error scenarios resolve
themselves by forcing the transactions to rollback after the specified timer period.

3.2.3 Initialization

When the Core Transaction Manager Facet is initialized:

 The MSDTC Connection Manager: OleTx Management Protocol [MS-CMOM] uses the registry to
persistently store and retrieve the values for the security settings using Windows Remote Registry
Protocol [MS-RRP] and Failover Cluster: Management API (ClusAPI) Protocol [MS-CMRP]. The

registry is shared with the MSDTC Connection Manager: OleTx Management Protocol [MS-CMOM].

 The Security Level field is loaded directly from the registry key defined in [MS-CMOM] section
3.3.1.2.3.<25>

 The following security flags are loaded directly from the registry keys defined in [MS-CMOM]
sections 3.3.1.2.1 and 3.3.1.2.2.

 Allow Network Access

 Allow Network Transactions

 Allow Inbound Transactions

 Allow Outbound Transactions

 Allow Remote Administration

 Allow Remote Clients

 Allow TIP

 Allow XA

 Allow LUTransactions

 The lower-layer transport protocol, the MSDTC Connection Manager: OleTx Multiplexing Protocol
(section 2.1) MUST be initialized as specified in [MS-CMP] section 3.1.3, by passing the following
parameter values as specified in section 2.1.2. The MSDTC Connection Manager: OleTx
Multiplexing Protocol initialization as specified in [MS-CMP] section 3.1.3, initializes the MSDTC
Connection Manager: OleTx Transports Protocol layer with additional parameters as specified in
[MS-CMPO] section 3.2.3.

 The Security Level field ([MS-CMPO] Local Partner State (section 3.2.1.1)) is initialized with
the Security Level value in Core Transaction Manager Facet.

 The Minimum Level 3 Version Number and Maximum Level 3 Version Number fields
([MS-CMPO] section 3.2.1.1) are initialized with the computed minimum and maximum
protocol version values, as specified in section 3.1.4.2.

 Compute a local name object by initializing the fields of the Name object (see [MS-CMPO]

section 3.2.1.4) with following values:

 HostName: The HostName field is initialized with the value of the
ComputerName.NetBIOS element of the machine as specified in [MS-WKST] section
3.2.1.2.

 CID: The CID field is initialized as follows:

%5bMS-CMOM%5d.pdf#Section_e4e4626dcb7a461983150acffe974858
%5bMS-RRP%5d.pdf#Section_0fa3191dbb79490a81bd54c2601b7a78
%5bMS-CMRP%5d.pdf#Section_ba4117c0530e4e70a0854b4cf5bbf193
%5bMS-CMP%5d.pdf#Section_1970a8a0799d4308b9274e4ea23dc225
%5bMS-CMPO%5d.pdf#Section_d2403ca533fa432997f5825ad0868bf6
%5bMS-WKST%5d.pdf#Section_5bb08058bc364d3cabebb132228281b7

170 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 Read the string value from the <MSDTC_GUID> registry key as specified in [MS-
CMOM] section 2.2.3.5, for the Description\Default value of "MSDTC" as specified in

[MS-CMOM] section 2.2.3.5.1.

 Convert the <MSTDC_GUID> string to GUID as specified in [C706] Appendix A.

 Protocols:

 If the Allow Network Access flag is set to false:

 The Protocols field is initialized to PROT_LRPC flag as described in [MS-
CMPO] (section 2.2.4).

 Otherwise:

 The Protocols field is initialized directly from the "ServiceNetworkProtocols"
registry key as specified in [MS-CMOM] section 2.2.3.4.

 The computed local name object is used to initialize the Local Name Object field ([MS-

CMPO] section 3.2.1.1).

 The protocol extension list MUST be populated with instances that are obtained from an
implementation-specific source.

 If the protocol extension list is not empty, the Core Transaction Manager Facet MUST perform the
following actions:

 Query each protocol extension for its extended whereabouts information by using the
Whereabouts and Whereabouts Size fields of the object.

 Create an array of STmToTmProtocol (section 2.2.5.9) structures and assign it to the
Extended Whereabouts field of the Core Transaction Manager Facet:

 The array MUST contain an entry for each protocol extension that contributes extended
whereabouts information.

 The tmprotDescribed field of each entry MUST be set to TmProtocolExtended, as

specified in section 2.2.6.2.

 The rgbTmProtocolData field of each entry MUST contain an
SExtendedEndpointInfo (section 2.2.5.8) structure.

 The cbTmProtocolData field of each entry MUST be set to the length, in bytes, of the
rgbTmProtocolData field.

 Assign the size, in bytes, of the STmToTmProtocol array to the Extended Whereabouts Size
field of the Core Transaction Manager Facet.

 Assign the number of protocol extensions that contribute extended whereabouts information
to the STmToTmProtocol array to the Extended Whereabouts Protocol Count field of the
Core Transaction Manager Facet.

3.2.3.1 Transaction Object Initialization

The Core Transaction Manager Facet MUST initialize each new transaction object that is created by the
facet with the following default values:

 The Root field MUST default to false.

 The Doomed field MUST default to false.

http://go.microsoft.com/fwlink/?LinkId=89824

171 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 The Attributes Set field MUST default to false.

 The Phase Zero Registered field MUST be set to false.

 The Single Phase Commit field MUST default to false.

 The State field MUST default to Idle.

 The Isolation Level field MUST default to Serializable.

 The Isolation Flags field MUST default to zero.

 The Description field MUST default to an empty string.

 The GRFRM field MUST default to zero.

 The Timeout field value MUST<26> default to a value that is obtained in an implementation-
specific manner.

3.2.3.2 Durable Log

The Core Transaction Manager Facet.Durable Log size is configurable and is stored in the
registry. On Windows, it is configured in an implementation-specific manner.<27>

3.2.3.3 Transaction Recovery

If the Core Transaction Manager Facet.Durable Log of the Core Transaction Manager Facet is not
empty, it MUST perform the following actions:

 For each transaction object in the Core Transaction Manager Facet.Durable Log of the Core
Transaction Manager Facet:

 Initialize the transaction object fields which are not durably stored with default values, as
specified in Transaction Object Initialization (section 3.2.3.1).

 Copy the transaction object to the transaction table of the Core Transaction Manager
Facet.<28>

 After all transactions in the Core Transaction Manager Facet.Durable Log are copied to the
transaction table, start accepting new connections.

 For each transaction object in the transaction table of the Core Transaction Manager Facet:

 If the transaction state is In Doubt (section 3.2.1.3.12):

 Signal the Recover In Doubt Transaction (section 3.8.7.8) event on the transaction
manager facet that is referenced by the transaction object's Superior Enlistment field
with the value of the transaction object's Superior Enlistment field.

 Otherwise:

 Signal the Notify Recovered Transaction Committed (section 3.2.7.24) event on the Core

Transaction Manager Facet with the transaction object.

3.2.4 Higher-Layer Triggered Events

None.

172 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

3.2.5 Processing Events and Sequencing Rules

3.2.6 Timer Events

3.2.6.1 Transaction Timeout Timer

When this timer expires, the core transaction manager MUST perform the following actions:

 If the provided transaction object is in one of the following states, the core transaction manager
MUST ignore the timer event:

 Phase One Complete

 Single Phase Commit

 Committing

 Aborting

 In Doubt

 Failed to Notify

 Ended

 Otherwise, the core transaction manager MUST:

 Signal the Unilaterally Aborted event on the transaction's superior enlistment's transaction
manager facet with the Superior Enlistment object of the transaction.

 Signal the Notify Aborted event on the Core Transaction Manager Facet using the provided

transaction object.

3.2.7 Other Local Events

The core transaction manager MUST be prepared to process the local events that are defined in the

following sections.

If the Core Transaction Manager Facet supports the CONNTYPE_TXUSER_PHASE0 connection type, this
facet MUST be prepared to process local events that pertain to Phase Zero functionality. The following
local events are affected:

 Create Phase Zero Enlistment

 Register Phase Zero Success

 Register Phase Zero Failure

 Begin Phase Zero

 Enlistment Phase Zero Complete

 Unenlist Phase Zero Enlistment

3.2.7.1 Associate Transaction

The Associate Transaction event MUST be signaled with the following arguments:

 A transaction object

173 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 A Name object representing the remote superior transaction manager

If the Associate Transaction event is signaled, the Core Transaction Manager Facet (section 1.3.3.3.1)

MUST perform the following actions:

 If the Core Transaction Manager Facet.Durable Log is too full (section 3.2.3.2) to accept the

provided transaction object:

 Signal the Associate Transaction Failure (section 3.4.7.1) event on the Transaction Manager
Communicating with an Application Facet (section 1.3.3.3.2) with the following arguments:

 The provided transaction object

 The Log Full Local reason code

 Otherwise:

 Signal the Branch Transaction (section 3.8.7.1) event on the Subordinate Transaction Manager

Facet (section 1.3.3.3.5) with the following arguments:

 The provided transaction object

 The provided Name object

3.2.7.2 Begin Commit

The Begin Commit event MUST be signaled with the following arguments:

 A transaction object

If the Begin Commit event is signaled, the Core Transaction Manager Facet MUST perform the
following actions:

 Set the transaction state to Committing (section 3.2.1.3.10).

 If the Phase Two Voter Enlistment list of the transaction is not empty:

 For each Enlistment object in the Phase Two Voter Enlistment list of the transaction:

 Remove the Enlistment object from the Phase Two Voter Enlistment list of the
transaction.

 Signal the Begin Commit event (see sections 3.4.7.3, 3.6.7.1, and 3.7.7.1) on the
enlistment's transaction manager facet field with the Enlistment object.

 If the Phase Two Enlistment listof the transaction is not empty:

 For each Enlistment object in the Phase Two Enlistment list of the transaction:

 Signal the Begin Commit event (see sections 3.4.7.3, 3.6.7.1, and 3.7.7.1) on the
enlistment's transaction manager facet field with the Enlistment object.

 Otherwise, if the Phase Two Enlistment list of the transaction is empty:

 Signal the Commit Complete (section 3.8.7.3) event on the transaction's superior enlistment's
transaction manager facet with the transaction's Superior Enlistment object.

 Signal the Forget Transaction (section 3.2.7.22) event on the Core Transaction Manager Facet

with the provided transaction object.

174 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

3.2.7.3 Begin In Doubt

The Begin In Doubt event MUST be signaled with the following arguments:

 A transaction object

If the Begin In Doubt event is signaled, the Core Transaction Manager Facet MUST perform the
following actions:

 For each Enlistment object in the Phase Two Voter Enlistment list of the transaction:

 Signal the Begin In Doubt event (see sections 3.4.7.4 and 3.6.7.2) on the Enlistment object's
transaction manager facet with the Enlistment object.

 Signal the Forget Transaction (section 3.2.7.22) event on the Core Transaction Manager Facet
with the provided transaction object.

3.2.7.4 Begin Phase One

The Begin Phase One event MUST be signaled with the following arguments:

 A transaction object

 A flag indicating whether the transaction SHOULD or MUST NOT attempt to perform a single-phase
commit

If the Begin Phase One event is signaled, the Core Transaction Manager Facet MUST perform the
following actions:

 Set the Single Phase Commit field of the transaction to the value of the provided Single Phase
Commit flag (defined in section 3.2.1).

 Signal the Begin Voting (section 3.2.7.7) event on the Core Transaction Manager Facet with the

following argument:

 The provided transaction object

3.2.7.5 Begin Phase Zero

The Begin Phase Zero event MUST be signaled with the following arguments:

 A transaction object

If the Begin Phase Zero event is signaled, the Core Transaction Manager Facet MUST perform the
following actions:

 Set the transaction state to Phase Zero (section 3.2.1.3.3).

 Move each Enlistment object in the Next Phase Zero Wave Enlistment list of the transaction to the
Phase Zero Enlistment list of the transaction.

 Set the Phase Zero Registered flag of the transaction object to false.

 If the Phase Zero Enlistment list of the transaction is not empty:

 For each Enlistment object in the Phase Zero Enlistment list of the transaction:

 Signal the Begin Phase Zero event (see sections 3.6.7.4 and 3.7.7.3) on the Enlistment
object's transaction manager facet with the Enlistment object.

 Otherwise:

175 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 Set the transaction state to Phase Zero Complete (section 3.2.1.3.4).

 Signal the Phase Zero Complete event (see sections 3.4.7.14 and 3.8.7.6) on the superior

enlistment's transaction manager facet of the transaction with the following arguments:

 The superior enlistment object of the transaction

 The success outcome

3.2.7.6 Begin Rollback

The Begin Rollback event MUST be signaled with the following arguments:

 A transaction object.

If the Begin Rollback event is signaled, the Core Transaction Manager Facet (section 1.3.3.3.1) MUST
perform the following actions:

 Signal the Rollback Complete event (see sections 3.4.7.18 and 3.8.7.10) on the transaction's
superior enlistment's transaction manager facet with the superior enlistment object of the
transaction.

 Signal the Notify Aborted (section 3.2.7.23) event on the Core Transaction Manager Facet with the

provided transaction object.

3.2.7.7 Begin Voting

The Begin Voting event MUST be signaled with the following arguments:

 A transaction object

If the Begin Voting event is signaled, the Core Transaction Manager Facet (section 1.3.3.3.1) MUST
perform the following actions:

 Set the transaction state to Voting (section 3.2.1.3.5).

 If the Phase One (section 1.3.1.2) Voter Enlistment list of the transaction is empty:

 Signal the Voting Complete (section 3.2.7.35) event on the Core Transaction Manager
Facet (section 1.3.3.3.1) with the provided transaction object.

 Otherwise:

 For each Enlistment object in the Phase One (section 1.3.1.2) Voter Enlistment list of the
transaction:

 Signal the Begin Voting event (see sections 3.4.7.6 and 3.6.7.6) on the enlistment's
transaction manager facet field with the Enlistment object.

 If the Phase One (section 1.3.1.2) Enlistment list of the transaction contains more than one

element, or if it contains one element and the Single Phase Commit flag (defined in section

3.2.1) of the transaction is set to false:

 For each Enlistment object in the Phase One (section 1.3.1.2) Enlistment list of the
transaction:

 Signal the Begin Phase One (see section 3.6.7.3 and section 3.7.7.2) event on the
enlistment's transaction manager facet field with the following argument:

 The Enlistment object

176 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 The Single Phase Commit flag set to false

3.2.7.8 Branch Transaction Failure

The Branch Transaction Failure event MUST be signaled with the following arguments:

 An Enlistment object

 A value indicating the failure reason. The reason MUST be set to one of the following values:

 Log Full Remote

 No Mem Remote

 Too Late

 Too Many Remote

 Tx Not Found

 Comm Failed

If the Branch Transaction Failure (section 3.2.7.8) event is signaled, the Core Transaction Manager
Facet (section 1.3.3.3.1) MUST perform the following actions:

 Signal the Associate Transaction Failure (section 3.4.7.1) event on the transaction manager

communicating with an application facet with the following arguments:

 The provided transaction object

 The provided reason code

3.2.7.9 Branch Transaction Success

The Branch Transaction Success event MUST be signaled with the following arguments:

 An Enlistment object.

If the Branch Transaction Success event is signaled, the Core Transaction Manager
Facet (section 1.3.3.3.1) MUST perform the following actions:

 Add the transaction object of the enlistment to the transaction table of the Core Transaction
Manager Facet (section 1.3.3.3.1).

 Set the superior enlistment of the transaction to the provided Enlistment object.

 Signal the Associate Transaction Success (section 3.4.7.2) event on the transaction manager
communicating with an application facet with the transaction object of the enlistment.

3.2.7.10 Create Phase Zero Enlistment

The Create Phase Zero Enlistment event MUST be signaled with the following arguments:

 An Enlistment object

If the Create Phase Zero Enlistment event is signaled, the Core Transaction Manager
Facet (section 1.3.3.3.1) MUST perform the following actions:

 If the transaction state of the transaction object referenced by the provided enlistment object is
Phase Zero (section 3.2.1.3.3):

177 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 The Core Transaction Manager Facet (section 1.3.3.3.1) MUST:

 Signal the Create Phase Zero Enlistment Success (see section 3.6.7.8 and section 3.7.7.6)

event on the Enlistment object's transaction manager facet with the provided Enlistment
object.

 Signal the Begin Phase Zero (see section 3.6.7.4 and section 3.7.7.3) event on the
provided Enlistment object's transaction manager facet with the provided Enlistment
object.

 Otherwise, if the transaction state is Active (section 3.2.1.3.2) or Phase Zero
Complete (section 3.2.1.3.4):

 If the Next Phase Zero Wave Enlistment list of the transaction is empty:

 Signal the Register Phase Zero (section 3.4.7.15) event on the transaction's superior

enlistment's transaction manager facet with the transaction's superior Enlistment object.

 Otherwise, if the list is nonempty and the Phase Zero Registered flag of the transaction is

true:

 Signal the Create Phase Zero Enlistment Success (see section 3.6.7.8 and section 3.7.7.6)
event on the enlistment object's transaction manager facet with the Enlistment object.

 Add the provided enlistment to the Next Phase Zero Wave Enlistment list of the transaction.

 Otherwise:

 Signal the Create Phase Zero Enlistment Failure (see section 3.6.7.7 and section 3.7.7.5)
event on the Enlistment object's transaction manager facet field with the following arguments:

 The provided Enlistment object

 The Too Late reason code

3.2.7.11 Create Subordinate Enlistment

The Create Subordinate Enlistment event MUST be signaled with the following arguments:

 An Enlistment object

If the Create Subordinate Enlistment event is signaled, the Core Transaction Manager Facet MUST
perform the following actions:

 If the state of the transaction object referenced by the provided Enlistment object is not
Active (section 3.2.1.3.2) and not Phase Zero (section 3.2.1.3.3) and not Phase Zero
Complete (section 3.2.1.3.4):

 Signal the Create Subordinate Enlistment Failure (see sections 3.6.7.10 and 3.7.7.7) event on
the Enlistment object's transaction manager facet with the following arguments:

 The provided Enlistment object

 The Too Late reason code

 Otherwise, if the Core Transaction Manager Facet.Durable Log is too full to accept the
transaction object referenced by the provided Enlistment object:

 Signal the Create Subordinate Enlistment Failure (see sections 3.6.7.10 and 3.7.7.7) event on
the Enlistment object's transaction manager facet with the following arguments:

178 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 The provided Enlistment object

 The Log Full reason code

 Otherwise, compute the number of Enlistment objects in the Phase One Enlistment list of the
transaction object referenced by the provided Enlistment object whose Transaction Manager

Facet field is set to Superior Transaction Manager Facet (section 3.2.1.4).

 If this computed number of Enlistment objects is greater than or equal to an implementation-
specific value that indicates the maximum allowed Transaction Manager Enlistments:<29>

 Signal the Create Subordinate Enlistment Failure (see sections 3.6.7.10 and 3.7.7.7) event on
the Enlistment object's transaction manager facet with the following arguments:

 The provided Enlistment object

 The Too Many reason code

 Otherwise:

 Add the provided Enlistment object to the transaction's Phase One Enlistment list.

 Signal the Create Subordinate Enlistment Success (see sections 3.6.7.11 and 3.7.7.8) event
on the Enlistment object's transaction manager facet with the provided Enlistment object.

3.2.7.12 Create Superior Enlistment

The Create Superior Enlistment event MUST be signaled with the following arguments:

 An Enlistment object

If the Create Superior Enlistment event is signaled, the Core Transaction Manager MUST perform the
following actions:

 If the transaction referenced by the provided Enlistment object already exists in the transaction

table:

 Signal the Create Superior Enlistment Failure (section 3.8.7.5) event on the Transaction
Manager facet referenced by the provided Enlistment object with the following arguments:

 The provided Enlistment object

 The Duplicate reason code

 Otherwise, if the Core Transaction Manager Facet.Durable Log is too full (section 3.2.3.2) to

accept the transaction object referenced by the provided Enlistment object:

 Signal the Create Superior Enlistment Failure (section 3.8.7.5) event on the Enlistment
object's transaction manager facet with the following arguments:

 The provided Enlistment object

 The Log Full reason code

 Otherwise:

 Add the transaction object referenced by the provided Enlistment object to the transaction

table, using the Transaction Object.Identifier field of the transaction object as the key.

 Set the transaction's Superior Enlistment field to the provided Enlistment object.

179 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 Set transaction state to Active.

 Set the transaction's Root flag to false.

 Signal the Create Superior Enlistment Success (section 3.8.7.4) event on the transaction
manager facet referenced by the provided Enlistment object with the provided Enlistment

object.

3.2.7.13 Create Transaction

The Create Transaction event MUST be signaled with the following arguments:

 An Enlistment object

If the Create Transaction event is signaled, the Core Transaction Manager MUST perform the following
actions:

 The Core Transaction Manager MUST:

 Look for an existing entry in the transaction table, using the Transaction Object.Identifier
field of the transaction object referenced by the provided Enlistment object as the key.<30>

 If an entry exists:

 Signal the Create Transaction Failure (section 3.4.7.7) event on the Transaction Manager
facet referenced by the provided Enlistment object with the following arguments:

 The provided transaction object

 The Duplicate reason code

 Cease processing the event

 If the Core Transaction Manager does not have sufficient memory available to process the
Create Transaction event:

 Signal the Create Transaction Failure (section 3.4.7.7) event on the Transaction Manager
facet referenced by the provided Enlistment object with the following arguments:

 The provided transaction object

 The No Mem reason code

 Cease processing the event.

 If the Core Transaction Manager Facet.Durable Log is too full (section 3.2.3.2) to accept

a new transaction:

 Signal the Create Transaction Failure (section 3.4.7.7) event on the Transaction Manager
facet referenced by the provided Enlistment object with the following arguments:

 The provided transaction object

 The Log Full reason code

 Cease processing the event.

 Add the transaction object referenced by the provided Enlistment object to the transaction table,

by using the Transaction Object.Identifier field of the transaction object as the key.

 Set the transaction's Superior Enlistment to the provided Enlistment object.

180 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 Set the transaction's Root flag to true.

 Set the transaction's state to Active.

 Initialize the transaction Timeout timer with the following arguments:

 The transaction object

 The transaction object's Timeout value

 Signal the Create Transaction Success (section 3.4.7.8) event on the Transaction Manager facet
referenced by the provided enlistment with the transaction object referenced by the provided
Enlistment object.

3.2.7.14 Create Voter Enlistment

The Create Voter Enlistment event MUST be signaled with the following arguments:

 An Enlistment object

If the Create Voter Enlistment event is signaled, the Core Transaction Manager
Facet (section 1.3.3.3.1) MUST perform the following actions:

 If the state of the transaction object referenced by the provided Enlistment object is not

Active (section 3.2.1.3.2) and not Phase Zero (section 3.2.1.3.3) and not Phase Zero
Complete (section 3.2.1.3.4):

 Signal the Create Voter Enlistment Failure (see section 3.4.7.9 and section3.6.7.12) event on
the Enlistment object's Transaction Manager facet with the following arguments:

 The Enlistment object

 The Too Late reason code

 Otherwise:

 Add the provided Enlistment to the transaction's Phase One Voter Enlistment list.

 Signal the Create Voter Enlistment Success (see section 3.4.7.10 and section 3.6.7.13) event
on the Enlistment object's Transaction Manager facet with the provided Enlistment object.

3.2.7.15 Enlistment Commit Complete

The Enlistment Commit Complete event MUST be signaled with an Enlistment object.

If the Enlistment Commit Complete event is signaled, the Core Transaction Manager
Facet (section 1.3.3.3.1) MUST perform the following actions:

 Remove the enlistment from the transaction's Phase Two Enlistment list.

 If the Phase Two Enlistment list of the transaction object referenced by the provided Enlistment

object is now empty:

 If the transaction's Single Phase Commit flag (defined in section 3.2.1) is false and the
transaction state is not Failed to Notify (section 3.2.1.3.13):

 Signal the Commit Complete (section 3.8.7.3) event on the transaction's Superior
Enlistment's Transaction Manager facet with the transaction's Superior Enlistment object.

 Signal the Forget Transaction (section 3.2.7.22) event on the Core Transaction Manager
Facet (section 1.3.3.3.1) with the transaction object of the Enlistment.

181 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

3.2.7.16 Enlistment Phase One Complete

The Enlistment Phase One Complete event MUST be signaled with the following arguments:

 An Enlistment object.

 A value indicating the enlistment's outcome for Phase One (section 1.3.1.2). This value MUST be
set to one of the following values:

 Committed

 Aborted

 In Doubt

 Read Only

 Prepared

If the Enlistment Phase One Complete event is signaled, the Core Transaction Manager
Facet (section 1.3.3.3.1) MUST perform the following actions:

 If the transaction's Doomed flag is set to true or the transaction state is
Aborting (section 3.2.1.3.11), the Core Transaction Manager Facet (section 1.3.3.3.1) MUST
ignore the signal.

 Otherwise:

 Remove the enlistment from the transaction's Phase One Enlistment list.

 If the transaction state is Single Phase Commit (section 3.2.1.3.9):

 If the enlistment's Phase One outcome is Committed:

 Set the transaction's state to Phase One Complete (section 3.2.1.3.8).

 Signal the Phase One Complete (section 3.4.7.13) event on the transaction's Superior
Enlistment's Transaction Manager facet with the following arguments:

 The transaction's Superior Enlistment object

 The Committed outcome

 Signal the Begin Commit (section 3.2.7.2) event on the Core Transaction Manager
Facet with the provided transaction object.

 Cease processing the event.

 Otherwise, if the Enlistment's Phase One outcome is Read Only:

 Signal the Phase One Complete event on the Transaction Manager Facet of the
transaction's Superior Enlistment with the following arguments:

 The transaction's Superior Enlistment object

 The Read Only outcome

 Signal the Forget Transaction (section 3.2.7.22) event on the Core Transaction
Manager Facet with the provided transaction object.

 Otherwise, if the enlistment's Phase One outcome is In Doubt (section 3.2.1.3.12):

182 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 Set the transaction's state to Phase One Complete.

 Signal the Phase One Complete event on the transaction's Superior Enlistment's

Transaction Manager facet with the following arguments:

 The transaction's Superior Enlistment object

 The In Doubt outcome

 Signal the Begin In Doubt (section 3.2.7.3) event on the Core Transaction Manager
Facet with the provided transaction object.

 Cease processing the event.

 If the transaction state is Phase One or Single Phase Commit:

 If the enlistment's Phase One outcome is Aborted:

 Set the transaction's Doomed flag to true.

 Signal the Phase One Complete event on the transaction's Superior Enlistment's
Transaction Manager facet with the following arguments:

 The transaction's Superior Enlistment object

 The Aborted outcome

 Signal the Notify Aborted (section 3.2.7.23) event on the Core Transaction Manager
Facet with the provided transaction object.

 Cease processing the event.

 Otherwise, if the Enlistment's Phase One outcome is Prepared:

 Add the Enlistment to the transaction's Phase Two Enlistment list.

 Set the transaction's state to Phase One Complete.

 If both the transaction's Phase One Voter Enlistment list and Phase One Enlistment list are
now empty:

 Signal the Phase One Completed (section 3.2.7.25) event on the Core Transaction

Manager Facet (section 1.3.3.3.1) with the provided transaction object.

3.2.7.17 Enlistment Phase Zero Complete

The Enlistment Phase Zero Complete event MUST be signaled with the following arguments:

 An Enlistment object.

 A value indicating the enlistment's outcome for Phase Zero (section 1.3.1.1). This value MUST be

set to one of the following values:

 Completed

 Aborted

If the Enlistment Phase Zero Complete event is signaled, the Core Transaction Manager
Facet (section 1.3.3.3.1) MUST perform the following actions:

 Remove the enlistment from the transaction's Phase Zero Enlistments list.

183 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 If the enlistment's Phase Zero outcome is Aborted:

 Set the transaction's Doomed flag to true.

 If the transaction's Phase Zero Enlistments list is now empty:

 Set the transaction's state to Phase Zero Complete (section 3.2.1.3.4).

 If the transaction's Doomed flag is set to true:

 Signal the Phase Zero Complete (section 3.8.7.6) event on the transaction's Superior
Enlistment's Transaction Manager facet with the following arguments:

 The transaction's Superior Enlistment object

 The Failure outcome

 Signal the Notify Aborted (section 3.2.7.23) event on the Core Transaction Manager Facet
with the provided transaction object.

 Otherwise:

 If the transaction's Root flag is true:

 If the transaction's Next Phase Zero Wave Enlistment list is not empty:

 Set the transaction's State to Active (section 3.2.1.3.2).

 Signal the Begin Phase Zero (section 3.2.7.5) event on the Core Transaction
Manager Facet with the provided Enlistment's transaction object.

 Otherwise:

 Signal the Phase Zero Complete event on the transaction's Superior Enlistment's
Transaction Manager facet with the following arguments:

 The transaction's Superior Enlistment object

 The Success outcome

 Otherwise, if the transaction's Root flag is false:

 If the transaction's Next Phase Zero Wave Enlistment list is not empty:

 Set the transaction's state to Active.

 Signal the Phase Zero Complete event on the transaction's Superior Enlistment's
Transaction Manager facet with the following arguments:

 The transaction's Superior Enlistment object

 The Success outcome

3.2.7.18 Enlistment Rollback Complete

The Enlistment Rollback Complete event MUST be signaled with an Enlistment object.

If the Enlistment Rollback Complete event is signaled, the Core Transaction Manager
Facet (section 1.3.3.3.1) MUST perform the following actions:

 Remove the Enlistment from the transaction's Phase Two Enlistment list.

184 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 If the transaction's Phase Two Enlistment list is now empty:

 Signal the Forget Transaction (section 3.2.7.22) event on the Core Transaction Manager

Facet (section 1.3.3.3.1) with the Enlistment's transaction object.

3.2.7.19 Enlistment Unilaterally Aborted

The Enlistment Unilaterally Aborted event MUST be signaled with the following arguments:

 An Enlistment object

If the Enlistment Unilaterally Aborted event is signaled, the Core Transaction Manager

Facet (section 1.3.3.3.1) MUST perform the following actions:

 If the transaction state is Active (section 3.2.1.3.2), Phase Zero (section 3.2.1.3.3), Phase Zero
Complete (section 3.2.1.3.4), Voting (section 3.2.1.3.5), Voting Complete (section 3.2.1.3.6) or
Phase One (section 3.2.1.3.7):

 Remove the provided Enlistment object from any of the following transaction lists in which it is
present:

 Next Phase Zero Wave Enlistment list

 Phase Zero Enlistment list

 Phase One Enlistment list

 Phase One Voter Enlistment list

 If the transaction state is Phase Zero (section 3.2.1.3.3):

 Signal the Phase Zero Complete (see sections 3.4.7.14 and 3.8.7.6) event on the
transaction's Superior Enlistment's Transaction Manager Facet with the following
arguments:

 The transaction's Superior Enlistment object

 The Failure outcome

 Otherwise, if the transaction state is Voting (section 3.2.1.3.5) or Phase
One (section 3.2.1.3.7):

 Signal the Phase One Complete (see sections 3.4.7.13 and 3.8.7.7) event on the
transaction's Superior Enlistment's Transaction Manager facet with the following

arguments:

 The transaction's Superior Enlistment object

 The Aborted outcome

 Otherwise:

 Signal the Unilaterally Aborted (see sections 3.4.7.23 and 3.8.7.11) event on the
transaction's Superior Enlistment's Transaction Manager facet with the transaction's
Superior Enlistment object.

 Signal the Notify Aborted (section 3.2.7.23) event on the Core Transaction Manager
Facet (section 1.3.3.3.1) with the transaction object referenced by the Transaction field of
the provided Enlistment object.

 Otherwise, ignore the event.

185 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

3.2.7.20 Enlistment Vote Complete

The Enlistment Vote Complete event MUST be signaled with the following arguments:

 An Enlistment object.

 A value indicating the Enlistment's vote. This value MUST be set to one of the following values:

 Read Only

 Prepared

 Aborted

If the Enlistment Vote Complete event is signaled, the Core Transaction Manager
Facet (section 1.3.3.3.1) MUST perform the following actions:

 If the transaction's Doomed flag is set to true, the Core Transaction Manager Facet MUST cease

processing the event.

 Otherwise:

 If the Enlistment's Vote outcome is Aborted:

 Set the transaction's Doomed flag to true.

 Remove the Enlistment from the transaction's Phase One (section 1.3.1.2) Voter
Enlistment list.

 Signal the Phase One Completed event (section 3.2.7.25) on the transaction's Superior
Enlistment's Transaction Manager facet with the following arguments:

 The transaction's Superior Enlistment object.

 The Aborted outcome.

 Signal the Notify Aborted (section 3.2.7.23) event on the Core Transaction Manager
Facet (section 1.3.3.3.1) with the provided transaction object.

 Otherwise:

 If the enlistment's Vote outcome is Read Only:

 Remove the Enlistment from the transaction's Phase One Voter Enlistment list.

 Otherwise:

 Move the Enlistment from the transaction's Phase One Voter Enlistment list to the
transaction's Phase Two (section 1.3.1.3) Voter Enlistment list.

 If the transaction's Phase One Voter Enlistment list is now empty:

 If the transaction state is Voting (section 3.2.1.3.5):

 Signal the Voting Complete (section 3.2.7.35) event on the Core Transaction
Manager Facet (section 1.3.3.3.1) with the provided transaction object.

 Otherwise, if the transaction state is Phase One (section 3.2.1.3.7):

 If both the transaction's Phase One Voter Enlistment list and Phase One Enlistment
list are now empty:

186 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 Signal the Phase One Completed (section 3.2.7.25) event on the Core
Transaction Manager Facet (section 1.3.3.3.1) with the provided transaction

object.

3.2.7.21 Export Transaction

The Export Transaction event MUST be signaled with the following arguments:

 A transaction object

 A Name object representing the remote subordinate transaction manager

If the Export Transaction event is signaled, the Core Transaction Manager Facet (section 1.3.3.3.1)
MUST perform the following actions:

 If the transaction state is not Active (section 3.2.1.3.2), or Phase Zero (section 3.2.1.3.3), or
Phase Zero Complete (section 3.2.1.3.4):

 Signal the Export Transaction Failure (section 3.4.7.11) event on the Transaction Manager
communicating with an Application facet with the following arguments:

 The provided transaction object.

 The Too Late reason code.

 Otherwise, if the Core Transaction Manager Facet.Durable Log is too full (section 3.2.3.2) to
accept the provided transaction object:

 Signal the Export Transaction Failure event on the Transaction Manager Communicating with
an Application facet with the following arguments:

 The provided transaction object.

 The Log Full reason code.

 Otherwise:

 Compute the number of Enlistment objects in the transaction's Phase One Enlistment list
whose Transaction Manager Facet field is the superior transaction manager.

 If that number is equal to an implementation-specific value that indicates the maximum
allowed Transaction Manager enlistments:<31>

 Signal the Export Transaction Failure event on the Transaction Manager communicating

with an Application facet with the following arguments:

 The provided transaction object

 The Too Many reason code

 Otherwise:

 Signal the Propagate Transaction (section 3.7.7.10) event on the Superior Transaction
Manager facet with the following arguments:

 The provided transaction object.

 The provided Name object

187 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

3.2.7.22 Forget Transaction

The Forget Transaction event MUST be signaled with the following arguments:

 A transaction object

If the Forget Transaction event is signaled, the Core Transaction Manager Facet (section 1.3.3.3.1)
MUST perform the following actions:

 Remove the provided transaction object from the transaction table.

 If the transaction was added to the Core Transaction Manager Facet.Durable Log of the Core
Transaction Manager Facet (section 1.3.3.3.1):

 Remove the transaction from the Core Transaction Manager Facet.Durable Log.

 Set the transaction's state to Ended.

3.2.7.23 Notify Aborted

The Notify Aborted event MUST be signaled with the following arguments:

 A transaction object

If the Notify Aborted event is signaled, the Core Transaction Manager Facet (section 1.3.3.3.1) MUST
perform the following actions:

 Set the transaction's state to Aborting (section 3.2.1.3.11).

 Move each Enlistment object in the transaction's Next Phase Zero Wave Enlistment list to the
transaction's Phase Zero Enlistment list.

 For each Enlistment object in the transaction's Phase Zero Enlistment list:

 Signal the Phase Zero Aborted event (see sections 3.6.7.14 and 3.7.7.9) on the Enlistment's

Transaction Manager facet field with the Enlistment object.

 Move each Enlistment object in the transaction's Phase One (section 1.3.1.2) Voter Enlistment list
to the transaction's Phase Two (section 1.3.1.3) Voter Enlistment list

 For each Enlistment object in the transaction's Phase Two Voter Enlistment list:

 Signal the Begin Rollback event (sections 3.4.7.5, 3.6.7.5 and 3.7.7.4) on the Enlistment's
Transaction Manager facet field with the Enlistment object.

 Move each Enlistment object in the transaction's Phase One Enlistment list to the transaction's

Phase Two Enlistment list.

 If the transaction's Phase Two Enlistment list is not empty:

 For each Enlistment object in the transaction's Phase Two Enlistment list:

 Signal the Begin Rollback event (sections 3.4.7.5, 3.6.7.5 and 3.7.7.4) on the enlistment's
Transaction Manager facet field with the Enlistment object.

 Otherwise, if the transaction's Phase Two Enlistment list is empty:

 Signal the Forget Transaction (section 3.2.7.22) event on the Core Transaction Manager
Facet (section 1.3.3.3.1) with the provided transaction object.

188 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

3.2.7.24 Notify Recovered Transaction Committed

The Notify Recovered Transaction Committed event MUST be signaled with the following arguments:

 A transaction object

If the Notify Recovered Transaction Committed event is signaled, the Core Transaction Manager
Facet (section 1.3.3.3.1) MUST perform the following actions:

 Set the transaction's state to Failed to Notify (section 3.2.1.3.13).

 If the Phase Two Enlistment list of the transaction is not empty:

 For each Enlistment object in the Phase Two Enlistment list of the transaction:

 Signal the Begin Commit event (see sections 3.4.7.3, 3.6.7.1, and 3.7.7.1) on the
enlistment's transaction manager facet field with the Enlistment object.

 Otherwise:

 Signal the Forget Transaction (section 3.2.7.22) event on the Core Transaction Manager Facet
with the provided transaction object.

3.2.7.25 Phase One Completed

The Phase One Completed event MUST be signaled by using the following arguments:

 A transaction object

If the Phase One Completed event is signaled, the Core Transaction Manager MUST perform the
following actions:

 Set the state of the transaction to Phase One Complete (section 3.2.1.3.8).

 If both the transaction's Phase Two Enlistment list and the transaction's Phase

Two (section 1.3.1.3) Voter Enlistment list are empty:

 Signal the Phase One Complete (see sections 3.4.7.13 and 3.8.7.7) event on the transaction's
Superior Enlistment's Transaction Manager facet with the following arguments:

 The transaction's Superior Enlistment object

 The Read Only outcome

 Signal the Forget Transaction (section 3.2.7.22) event on the Core Transaction Manager
Facet's (section 1.3.3.3.1) with the provided transaction object.

 If the Single Phase Commit flag (defined in section 3.2.1) of the transaction is set to true:

 Set the transaction state to Failed to Notify (section 3.2.1.3.13).

 Save the transaction to the Core Transaction Manager Facet.Durable Log of the Core
Transaction Manager.

 Signal the Phase One Complete event on the Transaction Manager facet of the transaction's
Superior Enlistment using the following arguments:

 The Superior Enlistment object of the transaction.

 The Committed outcome.

 Set the transaction state to Phase One Complete.

189 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 Signal the Begin Commit (section 3.2.7.2) event on the Core Transaction Manager Facet's with
the provided transaction object.

 Otherwise, if the Single Phase Commit flag of the transaction is set to false:

 Set the transaction state to In Doubt (section 3.2.1.3.12).

 Save the transaction to the Core Transaction Manager Facet.Durable Log of the Core
Transaction Manager.

 Set the transaction state to Phase One Complete.

 Signal the Phase One Complete event on the Superior Enlistment of the transaction
Transaction Manager Facet using the following arguments:

 The Superior Enlistment object of the transaction

 The Prepared outcome

3.2.7.26 Propagate Transaction Failure

The Propagate Transaction Failure event MUST be signaled with the following arguments:

 An Enlistment object.

 A value indicating the failure reason. The reason MUST be set to one of the following values:

 No Mem

 Log Full

 Duplicate

 Comm Failed

If the Propagate Transaction Failure event is signaled, the Core Transaction Manager
Facet (section 1.3.3.3.1) MUST perform the following actions:

 If the provided failure reason code is Duplicate:

 Signal the Export Transaction Success (section 3.4.7.12) event on the transaction manager
communicating with an application facet with the enlistment transaction object.

 Otherwise:

 Signal the Export Transaction Failure (section 3.4.7.11) event on the transaction manager
communicating with an application facet with the following arguments:

 The transaction object referenced by the provided Enlistment object

 The provided reason code

3.2.7.27 Propagate Transaction Success

The Propagate Transaction Success event MUST be signaled with the following arguments:

 An Enlistment object

If the Propagate Transaction Success event is signaled, the Core Transaction Manager
Facet (section 1.3.3.3.1) MUST perform the following actions:

190 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 If the Enlistment's transaction is not Active (section 3.2.1.3.2), Phase Zero (section 3.2.1.3.3), or
Phase Zero Complete (section 3.2.1.3.4):

 Signal the Export Transaction Failure (section 3.4.7.11) event on the Transaction Manager
communicating with an Application facet with the following arguments:

 The transaction object referenced by the provided Enlistment object

 The Too Late reason code

 Otherwise:

 Add the Enlistment object to the transaction's Phase One Enlistment list.

 Signal the Export Transaction Success (section 3.4.7.12) event on the Transaction Manager
communicating with an Application facet with the Enlistment's transaction object.

3.2.7.28 Register Phase Zero Failure

The Register Phase Zero Failure event MUST be signaled with the following arguments:

 An Enlistment object.

 A value indicating the failure reason. The reason MUST be set to one of the following values:

 Too Late

 Tx Not Found

If the Register Phase Zero Failure event is signaled, the Core Transaction Manager MUST perform the
following actions:

 For each Enlistment object in the transaction's Next Phase Zero Wave Enlistment list:

 Signal the Create Phase Zero Enlistment Failure event (see sections 3.6.7.7 and 3.7.7.5) on

the Enlistment object's Transaction Manager facet with the following arguments:

 The Enlistment object

 The provided reason code

 Remove the Enlistment object from the list.

3.2.7.29 Register Phase Zero Success

The Register Phase Zero Success event MUST be signaled with the following arguments:

 An Enlistment object

If the Register Phase Zero Success event is signaled, the Core Transaction Manager MUST perform the
following actions:

 For each Enlistment object in the transaction's Next Phase Zero Wave Enlistment list:

 Signal the Create Phase Zero Enlistment Success event (see sections 3.6.7.8 and 3.7.7.6) on

the Enlistment object's Transaction Manager facet with the Enlistment object.

 Set the Phase Zero Registered flag of the transaction object referenced by the Enlistment to true.

191 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

3.2.7.30 Resolve Transaction

The Resolve Transaction event MUST be signaled with the following arguments:

 A transaction object.

 A value indicating the desired Resolve Transaction outcome. This value MUST be set to one of the
following values:

 Committed

 Aborted

 Forgotten

If the Resolve Transaction event is signaled, the Core Transaction Manager Facet (section 1.3.3.3.1)
MUST perform the following actions:

 If the provided Resolve Transaction outcome is Committed or Aborted:

 If the transaction state is not In Doubt (section 3.2.1.3.12):

 Signal the Resolve Transaction Complete (section 3.4.7.16) event on the Transaction
Manager communicating with an Application facet, with the following arguments:

 The provided transaction object

 The Not Prepared result

 Otherwise:

 If the provided Resolve Transaction outcome is Committed:

 Signal the Notify Recovered Transaction Committed (section 3.2.7.24) event on the
Core Transaction Manager Facet (section 1.3.3.3.1) with the provided transaction
object.

 Signal the Resolve Transaction Complete (section 3.4.7.16) event on the Transaction
Manager communicating with an Application facet with the following arguments:

 The provided transaction object

 The Committed result

 Otherwise, if the provided Resolve Transaction outcome is Aborted:

 Signal the Notify Aborted (section 3.2.7.23) event on the Core Transaction Manager
Facet (section 1.3.3.3.1) with the provided transaction object.

 Signal the Resolve Transaction Complete (section 3.4.7.16) event on the Transaction
Manager communicating with an Application facet with the following arguments:

 The provided transaction object

 The Aborted result

 Otherwise:

 If the transaction state is not Failed to Notify (section 3.2.1.3.13):

 Signal the Resolve Transaction Complete (section 3.4.7.16) event on the Transaction
Manager communicating with an Application facet with the following arguments:

192 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 The provided transaction object

 The Not Committed result

 Otherwise:

 Set the state of the connection object referenced by each Enlistment object in the

transaction's Phase Two Enlistment list to Ended.

 Signal the Forget Transaction (section 3.2.7.22) event on the Core Transaction Manager
Facet (section 1.3.3.3.1) with the provided transaction object.

 Signal the Resolve Transaction Complete (section 3.4.7.16) event on the Transaction
Manager communicating with an Application facet, with the following arguments:

 The provided transaction object

 The Forgotten result

3.2.7.31 Set Transaction Attributes

The Set Transaction Attributes event MUST be signaled with the following arguments:

 A transaction object.

 A value indicating the transaction's Isolation Level. The value MUST be one of the isolation level
values specified in section 2.2.6.9.

 A value indicating the transaction's Isolation flags. The value MUST be one of the valid isolation
flag values specified in section 2.2.6.8

 A string indicating an implementation-specific description of the transaction.

If the Set Transaction Attributes event is signaled, the Core Transaction Manager MUST perform the
following actions:

 If the transaction state is not Active:

 Signal the Set Transaction Attributes Failure (section 3.4.7.19) event on the Transaction
Manager communicating with an Application Facet with the transaction object.

 Otherwise

 If the transaction object's Attributes Set flag is set to false:

 Set the transaction object's Isolation Level field with the Isolation Level argument.

 Set the transaction object's Isolation Flags field with the Isolation Flags argument.

 Set the transaction object's Description field with the Description Argument.

 Set the transaction object's Attributes Set flag to true.

 Signal the Set Transaction Attributes Success (section 3.4.7.20) event on the Transaction
Manager communicating with an Application facet with the transaction object.

3.2.7.32 Set Transaction Timeout

The Set Transaction Timeout event MUST be signaled with the following arguments:

 A transaction object

193 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 A time span

If the Set Transaction Timeout event is signaled, the Core Transaction Manager

Facet (section 1.3.3.3.1) MUST perform the following actions:

 If the transaction state is not Active:

 Signal the Set Transaction Timeout Failure (section 3.4.7.21) event on the Transaction
Manager communicating with an Application facet with the provided transaction object.

 Otherwise:

 Cancel the Transaction Timeout Timer (section 3.2.2.1).

 Set the transaction Timeout field to the provided value.

 Update the transaction timer's timeout value to the provided timespan value.

 Signal the Set Transaction Timeout Success (section 3.4.7.22) event on the Transaction

Manager communicating with an Application facet with the transaction object.

3.2.7.33 Request Transaction Outcome

Request Transaction Outcome MUST be signaled with the following arguments:

 An Enlistment object

If the Request Transaction Outcome event is signaled, the core transaction manager MUST perform
the following actions:

 If the state of the transaction object referenced by the provided Enlistment object is
Committing (section 3.2.1.3.10) or Failed to Notify (section 3.2.1.3.13):

 Signal the Begin Commit (section 3.6.7.1) event on the provided Enlistment object's
Transaction Manager facet with the provided Enlistment object.

 Otherwise, if the provided enlistment's transaction state is Aborting (section 3.2.1.3.11) or
Ended (section 3.2.1.3.14):

 Signal the Begin Rollback (section 3.6.7.5) event on the provided Enlistment object's
Transaction Manager facet with the provided Enlistment object.

 Otherwise, ignore the event.

3.2.7.34 Unenlist Phase Zero Enlistment

The Unenlist Phase Zero Enlistment event MUST be signaled with the following arguments:

 An Enlistment object

If the Unenlist Phase Zero Enlistment event is signaled, the core transaction manager MUST perform

the following actions:

 If the provided Enlistment object is a member of the transaction's next Phase Zero Wave
Enlistment list:

 Remove the Enlistment object from the list.

 Otherwise, if the provided Enlistment object is a member of the transaction's Phase Zero
Enlistment list:

194 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 Remove the Enlistment object from the list.

3.2.7.35 Voting Complete

The Voting Complete event MUST be signaled by using the following arguments:

 A transaction object

If the Voting Complete event is signaled, the Core Transaction Manager Facet (section 1.3.3.3.1)
MUST perform the following actions:

 Set the transaction state to Voting Complete.

 If the Phase One Enlistment list of the transaction is empty:

 If the Phase Two (section 1.3.1.3) Voter Enlistment list of the transaction is empty:

 Signal the Phase One Completed event (section 3.2.7.25) on the transaction's Superior

Enlistment's Transaction Manager facet using the following arguments:

 The Superior Enlistment that is referenced by the provided transaction object

 The Read Only outcome

 Set the transaction State to Ended (section 3.2.1.3.14).

 Otherwise:

 If the transaction's Single Phase Commit flag (defined in section 3.2.1) is set to true:

 Signal the Phase One Complete event on the transaction's Superior Enlistment's
Transaction Manager facet with the following arguments:

 The Superior Enlistment referenced by the provided transaction object

 The Committed outcome

 Set the transaction's State to Phase One Complete.

 Signal the Begin Commit (section 3.2.7.2) event on the Core Transaction Manager
with the provided transaction object.

 Otherwise:

 Set the transaction's state to Phase One Complete.

 Signal the Phase One Complete event on the transaction's Superior Enlistment's
Transaction Manager facet with the following arguments:

 The Superior Enlistment referenced by the provided transaction object

 The Prepared outcome

 Otherwise, if the transaction's Single Phase Commit flag is set to true and the transaction's Phase
One Enlistment list contains one element:

 Set the transaction's state to Single Phase Commit.

 Signal the Begin Phase One event (see the Resource Manager and Superior Transaction
Manager Begin Phase One events in sections 3.6.7.3 and 3.7.7.2, respectively) on the

enlistment's Transaction Manager Facet field with the following arguments:

195 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 The Enlistment object

 The Single Phase Commit flag set to true

 Otherwise:

 Set the transaction's State to Phase One.

 For each Enlistment object in the transaction's Phase One Enlistment list:

 Signal the Begin Phase One event (see the Resource Manager and Superior Transaction
Manager Begin Phase One events in sections 3.6.7.3 and 3.7.7.2, respectively) on the
enlistment's Transaction Manager Facet field with the following arguments:

 The Enlistment object

 The Single Phase Commit flag set to false

3.3 Application Details

3.3.1 Abstract Data Model

This section describes a conceptual model of possible data organization that an implementation
maintains to participate in this protocol. The described organization is provided to facilitate the
explanation of how the protocol behaves. This document does not mandate that implementations
adhere to this model as long as their external behavior is consistent with the behavior that is
described in this document.

An application MUST maintain all the data elements that are specified in section 3.1.1.

An application MUST extend the definition of a transaction object to include the following data
elements:

 Root: A flag set to true if the application is the beginner of the transaction; otherwise, to false.

An application MUST also maintain the following data elements:

 Transaction Manager Name: A Name object that identifies the transaction manager that is
associated with the application.

An application MUST provide the states that are defined in the following sections for its supported
connection types. Section 2.2.1.1.1 defines the connection types that an application MUST provide for
each supported protocol version.

3.3.1.1 CONNTYPE_TXUSER_BEGINNER Initiator States

The application MUST act as an initiator for the CONNTYPE_TXUSER_BEGINNER (section 2.2.8.1.1)
connection type. In this role, the application MUST provide support for the following states:

 Idle

 Awaiting Begin Response

 Processing Transaction

 Awaiting Commit Response

 Awaiting Abort Response

 Ended

196 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

The following figure shows the relationship between the CONNTYPE_TXUSER_BEGINNER initiator
states.

Figure 14: CONNTYPE_TXUSER_BEGINNER initiator states

3.3.1.1.1 Idle

This is the initial state. The following event is processed in this state:

 Beginning a Transaction Using CONNTYPE_TXUSER_BEGINNER (section 3.3.4.1.2)

197 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

3.3.1.1.2 Awaiting Begin Response

The following events are processed in this state:

 Receiving a TXUSER_BEGINNER_MTAG_BEGUN Message (section 3.3.5.1.1.1)

 Receiving a TXUSER_BEGINNER_MTAG_BEGIN_NO_MEM or TXUSER_BEGINNER_MTAG
_BEGIN_LOG_FULL Message (section 3.3.5.1.1.2)

3.3.1.1.3 Processing Transaction

The following events are processed in this state:

 Initiating Transaction Commit (section 3.3.4.8)

 Initiating Transaction Rollback (section 3.3.4.9)

3.3.1.1.4 Awaiting Commit Response

The following events are processed in this state:

 Receiving a TXUSER_BEGINNER_MTAG_REQUEST_COMPLETED Message (section 3.3.5.1.1.3)

 Receiving a TXUSER_BEGINNER_MTAG_COMMIT_TOO_LATE Message (section 3.3.5.1.1.4)

 Receiving a TXUSER_BEGINNER_MTAG_COMMIT_INDOUBT Message (section 3.3.5.1.1.5)

3.3.1.1.5 Awaiting Abort Response

The following event is processed in this state:

 Receiving a TXUSER_BEGINNER_MTAG_REQUEST_COMPLETED Message (section 3.3.5.1.1.3)

3.3.1.1.6 Ended

This is the final state.

3.3.1.2 CONNTYPE_TXUSER_BEGIN2 Initiator States

The application MUST act as an initiator for the CONNTYPE_TXUSER_BEGIN2 (section 2.2.8.1.2)
connection type. In this role, the application MUST provide support for the following states:

 Idle

 Awaiting Begin Response

 Processing Transaction

 Awaiting Set Timeout Response

 Awaiting Commit Response

 Awaiting Abort Response

 Ended

The following figure shows the relationship between the CONNTYPE_TXUSER_BEGIN2 initiator states.

198 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Figure 15: CONNTYPE_TXUSER_BEGIN2 initiator states

3.3.1.2.1 Idle

This is the initial state. The following event is processed in this state:

 Beginning a Transaction Using CONNTYPE_TXUSER_BEGIN2 (section 3.3.4.1.1)

3.3.1.2.2 Awaiting Begin Response

The following events are processed in this state:

 Receiving a TXUSER_BEGIN2_MTAG_SINK_BEGUN Message (section 3.3.5.1.2.1)

 Receiving a TXUSER_BEGIN2_MTAG_SINK_ERROR Message (section 3.3.5.1.2.5)

3.3.1.2.3 Processing Transaction

The following events are processed in this state:

 Querying Transaction Manager's Support for Modifying a Transaction Timeout Using
CONNTYPE_TXUSER_SETTXTIMEOUT2 (section 3.3.4.2.2)

 Commit a Transaction Using CONNTYPE_TXUSER_BEGIN2 (section 3.3.4.8.1)

199 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 Abort a Transaction Using CONNTYPE_TXUSER_BEGIN2 (section 3.3.4.9.1)

 Receiving a TXUSER_BEGIN2_MTAG_SINK_ERROR Message (section 3.3.5.1.2.5)

3.3.1.2.4 Awaiting Set Timeout Response

The following events are processed in this state:

 Receiving a TXUSER_SETTXTIMEOUT_MTAG_REQUEST_COMPLETE Message (section 3.3.5.1.2.2)

 Receiving a TXUSER_SETTXTIMEOUT_MTAG_TOO_LATE Message (section 3.3.5.1.2.3)

 Receiving a TXUSER_SETTXTIMEOUT_MTAG_TX_NOT_FOUND Message (section 3.3.5.1.2.4)

3.3.1.2.5 Awaiting Commit Response

The following event is processed in this state:

 Receiving a TXUSER_BEGIN2_MTAG_SINK_ERROR Message (section 3.3.5.1.2.5)

3.3.1.2.6 Awaiting Abort Response

The following event is processed in this state:

 Receiving a TXUSER_BEGIN2_MTAG_SINK_ERROR Message (section 3.3.5.1.2.5)

3.3.1.2.7 Ended

This is the final state.

3.3.1.3 CONNTYPE_TXUSER_PROMOTE Initiator States

The application MUST act as an initiator for the CONNTYPE_TXUSER_PROMOTE (section 2.2.8.1.3)

connection type. In this role, the application MUST provide support for the following states:

 Idle

 Awaiting Promote Response

 Processing Transaction

 Awaiting Set Timeout Response

 Awaiting Commit Response

 Awaiting Abort Response

 Ended

The following figure shows the relationship between the CONNTYPE_TXUSER_PROMOTE initiator

states.

200 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Figure 16: CONNTYPE_TXUSER_PROMOTE initiator states

3.3.1.3.1 Idle

This is the initial state. The following event is processed in this state:

 Beginning a Transaction Using CONNTYPE_TXUSER_PROMOTE (section 3.3.4.1.3)

3.3.1.3.2 Awaiting Promote Response

The following events are processed in this state:

 Receiving a TXUSER_BEGIN2_MTAG_SINK_BEGUN Message (section 3.3.5.1.3.1)

 Receiving a TXUSER_BEGIN2_MTAG_SINK_ERROR Message (section 3.3.5.1.3.2)

3.3.1.3.3 Processing Transaction

201 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

The following events are processed in this state:

 Commit a Transaction Using CONNTYPE_TXUSER_PROMOTE (section 3.3.4.8.3)

 Roll Back a Transaction Using CONNTYPE_TXUSER_PROMOTE (section 3.3.4.9.5)

 Querying Transaction Manager's Support for Modifying a Transaction Timeout Using

CONNTYPE_TXUSER_SETTXTIMEOUT2 (section 3.3.4.2.2)

 Receiving a TXUSER_BEGIN2_MTAG_SINK_ERROR Message (section 3.3.5.1.3.2)

3.3.1.3.4 Awaiting Set Timeout Response

The following events are processed in this state:

 Receiving a TXUSER_SETTXTIMEOUT_MTAG_REQUEST_COMPLETE Message (section 3.3.5.1.2.2)

 Receiving a TXUSER_SETTXTIMEOUT_MTAG_TOO_LATE Message (section 3.3.5.1.2.3)

 Receiving a TXUSER_SETTXTIMEOUT_MTAG_TX_NOT_FOUND Message (section 3.3.5.1.2.4)

3.3.1.3.5 Awaiting Commit Response

The following event is processed in this state:

 Receiving a TXUSER_BEGIN2_MTAG_SINK_ERROR Message (section 3.3.5.1.3.2)

3.3.1.3.6 Awaiting Abort Response

The following event is processed in this state:

 Receiving a TXUSER_BEGIN2_MTAG_SINK_ERROR Message (section 3.3.5.1.3.2)

3.3.1.3.7 Ended

This is the final state.

3.3.1.4 CONNTYPE_TXUSER_ASSOCIATE Initiator States

The application MUST act as an initiator for the CONNTYPE_TXUSER_ASSOCIATE (section 2.2.8.2.1.1)
connection type. In this role, the application MUST provide support for the following states:

 Idle

 Awaiting Associate Response

 Active

 Ended

The following figure shows the relationship between the CONNTYPE_TXUSER_ASSOCIATE initiator
states.

202 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Figure 17: CONNTYPE_TXUSER_ASSOCIATE initiator states

3.3.1.4.1 Idle

This is the initial state. The following event is processed in this state:

 Pulling a Transaction (section 3.3.4.12)

3.3.1.4.2 Awaiting Associate Response

The following events are processed in this state:

 Receiving a TXUSER_ASSOCIATE_MTAG_ASSOCIATED Message (section 3.3.5.2.1.1.1)

 Receiving Other TXUSER_ASSOCIATE_MTAG Messages (section 3.3.5.2.1.1.2)

3.3.1.4.3 Active

The following event is processed in this state:

 Receiving a TXUSER_IMPORT2_MTAG_SINK_ERROR Message (section 3.3.5.2.1.1.3).

3.3.1.4.4 Ended

This is the final state.

203 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

3.3.1.5 CONNTYPE_TXUSER_EXTENDWHEREABOUTS Initiator States

The application MUST act as an initiator for the
CONNTYPE_TXUSER_EXTENDEDWHEREABOUTS (section 2.2.8.2.2.1) connection type. In this role, the

application MUST provide support for the following states:

 Idle

 Awaiting Get Response

 Ended

The following figure shows the relationship between the CONNTYPE_TXUSER_EXTENDWHEREABOUTS
initiator states.

Figure 18: CONNTYPE_TXUSER_EXTENDEDWHEREABOUTS initiator states

3.3.1.5.1 Idle

This is the initial state. The following event is processed in this state:

 Obtaining Extended Whereabouts Using
CONNTYPE_TXUSER_EXTENDEDWHEREABOUTS (section 3.3.4.10)

204 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

3.3.1.5.2 Awaiting Get Response

The following events are processed in this state:

 Receiving a TXUSER_EXTENDEDWHEREABOUTS_MTAG_GOT Message (section 3.3.5.2.2.1.1)

 Receiving a TXUSER_EXTENDEDWHEREABOUTS_MTAG_NOMEM Message (section 3.3.5.2.2.1.2)

3.3.1.5.3 Ended

This is the final state.

3.3.1.6 CONNTYPE_TXUSER_IMPORT Initiator States

The application MUST act as an initiator for the CONNTYPE_TXUSER_IMPORT (section 2.2.8.2.2.4)
connection type. In this role, the application MUST provide support for the following states:

 Idle

 Awaiting Import Response

 Transaction Import Successful

 Awaiting Abort Response

 Ended

The following figure shows the relationship between the CONNTYPE_TXUSER_IMPORT initiator states:

205 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Figure 19: CONNTYPE_TXUSER_IMPORT initiator states

3.3.1.6.1 Idle

This is the initial state. The following event is processed in this state:

 Importing a Transaction Using CONNTYPE_TXUSER_IMPORT (section 3.3.4.6.1)

3.3.1.6.2 Awaiting Import Response

The following events are processed in this state:

 Receiving a TXUSER_IMPORT_MTAG_IMPORTED Message (section 3.3.5.2.2.4.1)

 Receiving a TXUSER_IMPORT_MTAG_IMPORT_TX_NOT_FOUND Message (section 3.3.5.2.2.4.2)

3.3.1.6.3 Transaction Import Successful

The following event is processed in this state:

206 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 Abort a Transaction Using CONNTYPE_TXUSER_IMPORT (section 3.3.4.9.3)

3.3.1.6.4 Awaiting Abort Response

The following events are processed in this state:

 Receiving a TXUSER_IMPORT_MTAG_ABORT_TOO_LATE Message (section 3.3.5.2.2.4.3)

 Receiving a TXUSER_IMPORT_MTAG_REQUEST_COMPLETED Message (section 3.3.5.2.2.4.4)

3.3.1.6.5 Ended

This is the final state.

3.3.1.7 CONNTYPE_TXUSER_IMPORT2 Initiator States

The application MUST act as an initiator for the CONNTYPE_TXUSER_IMPORT2 (section 2.2.8.2.2.5)
connection type. In this role, the application MUST provide support for the following states:

 Idle

 Awaiting Import Response

 Transaction Import Successful

 Awaiting Abort Response

 Ended

The following figure shows the relationship between the CONNTYPE_TXUSER_IMPORT2 initiator states.

207 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Figure 20: CONNTYPE_TXUSER_IMPORT2 initiator states

3.3.1.7.1 Idle

This is the initial state. The following events are processed in this state:

 Importing a Transaction Using CONNTYPE_TXUSER_IMPORT2 (section 3.3.4.6.2)

 Importing a Transaction with Additional Transaction Attributes (section 3.3.4.7)

3.3.1.7.2 Awaiting Import Response

The following events are processed in this state:

 Receiving a TXUSER_IMPORT2_MTAG_SINK_IMPORTED Message (section 3.3.5.2.2.5.1)

 Receiving a TXUSER_IMPORT2_MTAG_SINK_ERROR Message (section 3.3.5.2.2.5.2)

3.3.1.7.3 Transaction Import Successful

208 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

The following events are processed in this state:

 Receiving a TXUSER_IMPORT2_MTAG_SINK_ERROR Message (section 3.3.5.2.2.5.2)

 Abort a Transaction Using CONNTYPE_TXUSER_IMPORT2 (section 3.3.4.9.4)

3.3.1.7.4 Awaiting Abort Response

The following event is processed in this state:

 Receiving a TXUSER_IMPORT2_MTAG_SINK_ERROR Message (section 3.3.5.2.2.5.2)

3.3.1.7.5 Ended

This is the final state.

3.3.1.8 CONNTYPE_TXUSER_EXPORT Initiator States

The application MUST act as an initiator for the CONNTYPE_TXUSER_EXPORT (section 2.2.8.2.2.2)
connection type. In this role, the application MUST provide support for the following states:

 Idle

 Awaiting Create Response

 Connection Active

 Awaiting Export Response

 Ended

The following figure shows the relationship between the CONNTYPE_TXUSER_EXPORT initiator states.

209 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Figure 21: CONNTYPE_TXUSER_EXPORT initiator states

3.3.1.8.1 Idle

This is the initial state. The following event is processed in this state:

 Creating an Export Connection (section 3.3.4.4)

3.3.1.8.2 Awaiting Create Response

The following events are processed in this state:

 Receiving a TXUSER_EXPORT_MTAG_CREATED Message (section 3.3.5.2.2.2.1)

 Receiving a TXUSER_EXPORT_MTAG_CREATE_BAD_TMADDR or
TXUSER_EXPORT_MTAG_CREATE_NET_TX_DISABLED Message (section 3.3.5.2.2.2.2)

 CONNTYPE_TXUSER_EXPORT Connection Disconnected (section 3.3.5.2.2.2.5)

3.3.1.8.3 Connection Active

The following event is processed in this state:

 Push a Transaction Using an Existing Export Connection (section 3.3.4.13)

210 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

3.3.1.8.4 Awaiting Export Response

The following events are processed in this state:

 Receiving a TXUSER_EXPORT_MTAG_EXPORTED Message (section 3.3.5.2.2.2.3)

 Receiving a TXUSER_EXPORT_MTAG_EXPORT_LOG_FULL,
TXUSER_EXPORT_MTAG_EXPORT_NO_MEM, TXUSER_EXPORT_MTAG_EXPORT_TOO_LATE,
TXUSER_EXPORT_MTAG_EXPORT_TOO_MANY, or TXUSER_EXPORT_MTAG_EXPORT_NOT_FOUND
Message (section 3.3.5.2.2.2.4)

 CONNTYPE_TXUSER_EXPORT Connection Disconnected (section 3.3.5.2.2.2.5)

3.3.1.8.5 Ended

This is the final state.

3.3.1.9 CONNTYPE_TXUSER_EXPORT2 Initiator States

The application MUST act as an initiator for the CONNTYPE_TXUSER_EXPORT2 (section 2.2.8.2.2.3)

connection type. In this role, the application MUST provide support for the following states:

 Idle

 Awaiting Create Response

 Connection Active

 Awaiting Export Response

 Ended

The following figure shows the relationship between the CONNTYPE_TXUSER_EXPORT2 initiator states.

211 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Figure 22: CONNTYPE_TXUSER_EXPORT2 initiator states

3.3.1.9.1 Idle

This is the initial state. The following event is processed in this state:

 Creating an Export Connection (section 3.3.4.4)

3.3.1.9.2 Awaiting Create Response

The following events are processed in this state:

 Receiving a TXUSER_EXPORT_MTAG_CREATED Message (section 3.3.5.2.2.3.1)

 Receiving a TXUSER_EXPORT_MTAG_CREATE_BAD_TMADDR or
TXUSER_EXPORT_MTAG_CREATE_NET_TX_DISABLED Message (section 3.3.5.2.2.3.2)

3.3.1.9.3 Connection Active

The following event is processed in this state:

 Push a Transaction Using an Existing Export Connection (section 3.3.4.13)

3.3.1.9.4 Awaiting Export Response

212 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

The following events are processed in this state:

 Receiving a TXUSER_EXPORT_MTAG_EXPORTED message (section 3.3.5.2.2.3.3)

 Receiving a TXUSER_EXPORT_MTAG_EXPORT_LOG_FULL,
TXUSER_EXPORT_MTAG_EXPORT_NO_MEM, TXUSER_EXPORT_MTAG_EXPORT_TOO_LATE,

TXUSER_EXPORT_MTAG_EXPORT_TOO_MANY, TXUSER_EXPORT_MTAG_EXPORT_NOT_FOUND, or
TXUSER_EXPORT_MTAG_EXPORT_COMM_FAILED Message (section 3.3.5.2.2.3.4)

3.3.1.9.5 Ended

This is the final state.

3.3.1.10 CONNTYPE_TXUSER_GETTXDETAILS Initiator States

The application MUST act as an initiator for the
CONNTYPE_TXUSER_GETTXDETAILS (section 2.2.8.3.1) connection type. In this role, the application
MUST provide support for the following states:

 Idle

 Awaiting Response

 Ended

The following figure shows the relationship between the CONNTYPE_TXUSER_GETTXDETAILS initiator
states.

213 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Figure 23: CONNTYPE_TXUSER_GETTXDETAILS initiator states

3.3.1.10.1 Idle

This is the initial state. The following event is processed in this state:

 Obtaining the Details for a Transaction (section 3.3.4.11.1)

3.3.1.10.2 Awaiting Response

The following events are processed in this state:

 Receiving a TXUSER_GETTXDETAILS_MTAG_GOTIT Message (section 3.3.5.3.1.1)

 Receiving a TXUSER_GETTXDETAILS_MTAG_TX_NOT_FOUND Message (section 3.3.5.3.1.2)

3.3.1.10.3 Ended

This is the final state.

214 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

3.3.1.11 CONNTYPE_TXUSER_RESOLVE Initiator States

The application MUST act as an initiator for the CONNTYPE_TXUSER_RESOLVE (section 2.2.8.3.2)
connection type. In this role, the application MUST provide support for the following states:

 Idle

 Awaiting Abort Response

 Awaiting Forget Response

 Awaiting Commit Response

 Ended

The following figure shows the relationship between the CONNTYPE_TXUSER_RESOLVE initiator states.

215 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Figure 24: CONNTYPE_TXUSER_RESOLVE initiator states

3.3.1.11.1 Idle

This is the initial state. The following event is processed in this state:

 Resolving a Transaction (section 3.3.4.15)

3.3.1.11.2 Awaiting Abort Response

The following events are processed in this state:

 Receiving a TXUSER_RESOLVE_MTAG_REQUEST_COMPLETE Message (section 3.3.5.3.2.1)

216 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 Receiving a TXUSER_RESOLVE_MTAG_CHILD_NOT_PREPARED or
TXUSER_RESOLVE_MTAG_NOT_CHILD Message (section 3.3.5.3.2.3)

 Receiving a TXUSER_RESOLVE_MTAG_ACCESSDENIED or
TXUSER_RESOLVE_MTAG_TX_NOT_FOUND Message (section 3.3.5.3.2.2)

3.3.1.11.3 Awaiting Forget Response

The following events are processed in this state:

 Receiving a TXUSER_RESOLVE_MTAG_REQUEST_COMPLETE Message (section 3.3.5.3.2.1)

 Receiving a TXUSER_RESOLVE_MTAG_FORGET_TX_NOT_COMMITTED
Message (section 3.3.5.3.2.4)

 Receiving a TXUSER_RESOLVE_MTAG_ACCESSDENIED or

TXUSER_RESOLVE_MTAG_TX_NOT_FOUND Message (section 3.3.5.3.2.2)

3.3.1.11.4 Awaiting Commit Response

The following events are processed in this state:

 Receiving a TXUSER_RESOLVE_MTAG_REQUEST_COMPLETE Message (section 3.3.5.3.2.1)

 Receiving a TXUSER_RESOLVE_MTAG_CHILD_NOT_PREPARED or

TXUSER_RESOLVE_MTAG_NOT_CHILD Message (section 3.3.5.3.2.3)

 Receiving a TXUSER_RESOLVE_MTAG_ACCESSDENIED or
TXUSER_RESOLVE_MTAG_TX_NOT_FOUND Message (section 3.3.5.3.2.2)

3.3.1.11.5 Ended

This is the final state.

3.3.1.12 CONNTYPE_TXUSER_SETTXTIMEOUT Initiator States

The application MUST act as an initiator for the
CONNTYPE_TXUSER_SETTXTIMEOUT (section 2.2.8.3.3) connection type. In this role, the application
MUST provide support for the following states:

 Idle

 Awaiting Set Timeout Response

 Ended

The following figure shows the relationship between the CONNTYPE_TXUSER_SETTXTIMEOUT initiator
states.

217 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Figure 25: CONNTYPE_TXUSER_SETTXTTIMEOUT initiator states

3.3.1.12.1 Idle

This is the initial state. The following event is processed in this state:

 Changing a Transaction Time-out Using CONNTYPE_TXUSER_SETTXTIMEOUT (section 3.3.4.2.1)

3.3.1.12.2 Awaiting Set Timeout Response

The following events are processed in the Awaiting Set Timeout Response state:

 Receiving a TXUSER_SETTXTIMEOUT_MTAG_REQUEST_COMPLETE Message (section 3.3.5.3.3.1)

 Receiving a TXUSER_SETTXTIMEOUT_MTAG_TOO_LATE or
TXUSER_SETTXTIMEOUT_MTAG_TX_NOT_FOUND Message (section 3.3.5.3.3.2)

3.3.1.12.3 Ended

This is the final state.

218 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

3.3.1.13 CONNTYPE_TXUSER_SETTXTIMEOUT2 Initiator States

The application MUST act as an initiator for the
CONNTYPE_TXUSER_SETTXTIMEOUT2 (section 2.2.8.3.4) connection type. In this role, the application

MUST provide support for the following states:

 Idle

 Awaiting Set Timeout Response

 Ended

The following figure shows the relationship between the CONNTYPE_TXUSER_SETTXTIMEOUT2 initiator
states.

Figure 26: CONNTYPE_TXUSER_SETTXTTIMEOUT2 initiator states

3.3.1.13.1 Idle

This is the initial state. The following event is processed in this state:

 Querying Transaction Manager's Support for Modifying a Transaction Timeout Using
CONNTYPE_TXUSER_SETTXTIMEOUT2 (section 3.3.4.2.2)

3.3.1.13.2 Awaiting Set Timeout Response

219 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

The following event is processed in this state:

 Receiving a TXUSER_SETTXTIMEOUT_MTAG_TX_NOT_FOUND Message (section 3.3.5.3.4.1)

 Receiving an MTAG_CONNECTION_REQ_DENIED message ([MS-CMP] section 2.2.5) as described
in section 1.7.3.

3.3.1.13.3 Ended

This is the final state.

3.3.1.14 CONNTYPE_TXUSER_TRACE Initiator States

The application MUST act as an initiator for the CONNTYPE_TXUSER_TRACE (section 2.2.8.3.5)
connection type. In this role, the application MUST provide support for the following states:

 Idle

 Awaiting Trace Response

 Ended

The following figure shows the relationship between the CONNTYPE_TXUSER_TRACE initiator states.

%5bMS-CMP%5d.pdf#Section_1970a8a0799d4308b9274e4ea23dc225

220 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Figure 27: CONNTYPE_TXUSER_TRACE initiator states

3.3.1.14.1 Idle

This is the initial state. The following event is processed in this state:

 Generating Trace Records for a Transaction Using CONNTYPE_TXUSER_TRACE (section 3.3.4.5)

3.3.1.14.2 Awaiting Trace Response

The following events are processed in this state:

 Receiving a TXUSER_TRACE_MTAG_REQUEST_COMPLETE Message (section 3.3.5.3.5.1)

 Receiving a TXUSER_TRACE_MTAG_REQUEST_FAILED or TXUSER_TRACE_MTAG_TX_NOT_FOUND
Message (section 3.3.5.3.5.2)

3.3.1.14.3 Ended

This is the final state.

221 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

3.3.1.15 CONNTYPE_TXUSER_GETSECURITYFLAGS Initiator States

The application MUST act as an initiator for the
CONNTYPE_TXUSER_GETSECURITYFLAGS (section 2.2.8.4.1) connection type. In this role, the

application MUST provide support for the following states:

 Idle

 Awaiting Get Response

 Ended

The following figure shows the relationship between the CONNTYPE_TXUSER_GETSECURITYFLAGS
initiator states.

Figure 28: CONNTYPE_TXUSER_GETSECURITYFLAGS initiator states

222 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

3.3.1.15.1 Idle

This is the initial state. The following event is processed in this state:

 Obtaining the Security Configuration of the Transaction Manager Using

CONNTYPE_TXUSER_GETSECURITYFLAGS (section 3.3.4.11)

3.3.1.15.2 Awaiting Get Response

The following event is processed in this state:

 Receiving a TXUSER_GETSECURITYFLAGS_MTAG_FETCHED Message (section 3.3.5.4.1.1)

3.3.1.15.3 Ended

This is the final state.

3.3.2 Timers

No timers apply here.

3.3.3 Initialization

When an application is initialized:

 The Transaction Manager Name field MUST be set to a value that is obtained from an
implementation-specific source.

 The application MUST initialize each new transaction object that is created with the following
default values:

 The Root field MUST default to false.

3.3.4 Higher-Layer Triggered Events

The application MUST be prepared to process a set of higher-layer events described in this section and
in Message Processing Events and Sequencing Rules (section 3.3.5). These events are triggered by
decisions that are made by the higher-layer business logic of the application. The motivations and
details of the higher-layer business logic are specific to the implementation of the application and the
software environment in which it executes.

When the application processes one of the higher-layer events described in this section and section

3.3.5, it MUST communicate one of the following results to the higher-layer business logic:

 Success

 Failure

 Transaction Committed

 Transaction Aborted

 Transaction In Doubt

If the processing of a higher-layer event includes a Message Processing event, the associated Message

Processing event MUST communicate one of the above results to the higher-layer business logic.

223 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

3.3.4.1 Beginning a Transaction

If the higher-layer business logic begins a transaction with a predetermined transaction
identifier<32>:

 If the transaction manager of the application supports the
CONNTYPE_TXUSER_PROMOTE (section 2.2.8.1.3) connection type as specified in section
2.2.1.1.1:

 The application MUST attempt to begin a transaction by using the
CONNTYPE_TXUSER_PROMOTE connection type.

 Otherwise:

 The application MUST return a Failure result to the higher-layer business logic.

If the higher-layer business logic decides to begin a transaction without using a predetermined
transaction identifier, the application MUST perform the following actions:

 If the transaction manager supports the CONNTYPE_TXUSER_BEGIN2 (section 2.2.8.1.2)
connection type as specified in section 2.2.1.1.1:

 The application MUST attempt to begin a transaction by using CONNTYPE_TXUSER_BEGIN2.

 Otherwise:

 The application MUST attempt to begin a transaction by using
CONNTYPE_TXUSER_BEGINNER (section 2.2.8.1.1).

3.3.4.1.1 Beginning a Transaction Using CONNTYPE_TXUSER_BEGIN2

The application MUST perform the following actions:

 Initiate a new CONNTYPE_TXUSER_BEGIN2 (section 2.2.8.1.2) connection using the transaction
manager Name field of the application.

 Send a TXUSER_BEGIN2_MTAG_BEGIN (section 2.2.8.1.2.2) message using the connection and
the values that are provided by the higher-layer business logic:

 The isoLevel, dwTimeout, szDesc, and isoFlags fields MUST be set as specified in section
2.2.8.

 Set the connection state to Awaiting Begin Response.

3.3.4.1.2 Beginning a Transaction Using CONNTYPE_TXUSER_BEGINNER

The application MUST perform the following actions:

 Initiate a new CONNTYPE_TXUSER_BEGINNER (section 2.2.8.1.1) connection by using the
transaction manager Name field of the application.

 Send a TXUSER_BEGINNER_MTAG_BEGIN (section 2.2.8.1.1.2) message by using the connection.
The following message fields MUST be set to values that are provided by the higher-layer business
logic:

 The isoLevel field set to the required isolation-level value.

 The dwTimeout field MUST be set to the required time-out value.

 The szDesc field MUST be set to the required transaction description string.

224 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 The isoFlags field MUST be set to the required isolation flags value.

 Set the connection state to Awaiting Begin Response.

3.3.4.1.3 Beginning a Transaction Using CONNTYPE_TXUSER_PROMOTE

The application MUST perform the following actions:

 Initiate a new CONNTYPE_TXUSER_PROMOTE (section 2.2.8.1.3) connection using the transaction
manager Name field of the application.

 Send a TXUSER_BEGINNER_MTAG_PROMOTE (section 2.2.8.1.3.1) message using the connection.
The following message fields MUST be set to values that are provided by the higher-layer business
logic:

 The isoLevel field to the wanted isolation-level value.

 The dwTimeout field to the wanted time-out value.

 The szDesc field to the wanted transaction description string.

 The isoFlags field to the wanted isolation flags value.

 The guidTx field to the wanted predetermined transaction identifier.

 Set the connection state to Awaiting Promote Response.

3.3.4.2 Changing a Transaction Timeout

If the higher-layer business logic changes the time-out of an existing transaction, the application
MUST perform the following steps:

 If the Root field of the transaction is false:

 Return a failure result to the higher-layer business logic.

 Otherwise:

 If the root transaction manager supports the
CONNTYPE_TXUSER_SETTXTIMEOUT2 (section 3.3.1.13) connection type, as specified in
section 2.2.1.1.1:

 The application MUST attempt to change the transaction time-out by using
CONNTYPE_TXUSER_SETTXTIMEOUT2 (section 3.3.1.13).

 Otherwise:

 The application MUST attempt to change the transaction time-out by using
CONNTYPE_TXUSER_SETTXTIMEOUT (section 3.3.1.12).

3.3.4.2.1 Changing a Transaction Timeout Using CONNTYPE_TXUSER_SETTXTIMEOUT

The application MUST perform the following actions:

 Find an instance of a CONNTYPE_TXUSER_BEGINNER (section 2.2.8.1.1) connection in the

connection list of the transaction.

 If a connection is not found, the application MUST return a failure result to the higher-layer
business logic.

 Otherwise, if the connection state is not Processing Transaction (section 3.3.1.1.3):

225 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 The application MUST return a failure result to the higher-layer business logic.

 Otherwise:

 Initiate a new CONNTYPE_TXUSER_SETTXTIMEOUT (section 2.2.8.3.3) connection using the
transaction manager Name field of the application.

 Add the connection to the connection list of the transaction.

 Send a TXUSER_SETTXTIMEOUT_MTAG_SETTXTIMEOUT (section 2.2.8.1.2.7) message using
the CONNTYPE_TXUSER_SETTXTIMEOUT (section 2.2.8.3.3) connection:

 Set the guidTx field to the Transaction Object.Identifier for the transaction.

 Set the dwTxTimeout value to the time-out value that is provided by the higher-layer
business logic, expressed as a total number of milliseconds.

 Set the connection state to Awaiting Set Timeout Response (section 3.3.1.12.2).

3.3.4.2.2 Querying Transaction Manager's Support for Modifying a Transaction

Timeout Using CONNTYPE_TXUSER_SETTXTIMEOUT2

The application MUST perform the following steps:

 Find an instance of a CONNTYPE_TXUSER_BEGIN2 (section 2.2.8.1.2) or

CONNTYPE_TXUSER_PROMOTE (section 2.2.8.1.3) connection in the connection list of the
transaction. This connection is referred to as the beginner connection.

 If a connection is not found:

 The application MUST return a failure result to the higher-layer business logic.

 Otherwise, if the connection state is not Processing Transaction (section 3.3.1.2.3) or Processing
Transaction (section 3.3.1.3.3):

 The application MUST return a failure result to the higher-layer business logic.

 Otherwise:

 Initiate a new CONNTYPE_TXUSER_SETTXTIMEOUT2 (section 2.2.8.3.4) connection using the
Transaction Manager Name field of the application. This connection is referred to as the
new connection.

 Add the new connection to the transaction connection list.

 Assign the transaction object to the Connection-Specific Data field of the new connection.

 Send a TXUSER_SETTXTIMEOUT_MTAG_SETTXTIMEOUT (section 2.2.8.1.2.7) using the new

connection:

 The guidTx field MUST be set to a NULL GUID.

 The dwTxTimeout value MUST be set to zero.

 Set the new connection state to Awaiting Set Timeout Response (section 3.3.1.13.2).

 Set the beginner connection state to Awaiting Set Timeout Response (section 3.3.1.2.4) if the
beginner connection is CONNTYPE_TXUSER_BEGIN2, or to Awaiting Set Timeout

Response (section 3.3.1.3.4) if the beginner connection is CONNTYPE_TXUSER_PROMOTE.

226 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

3.3.4.3 Obtaining a Propagation Token for a Transaction

If the higher-layer business logic decides to obtain a Propagation Token for a transaction, the
application MUST perform the following actions:

 Find a CONNTYPE_TXUSER_PROMOTE, CONNTYPE_TXUSER_BEGINNER, or
CONNTYPE_TXUSER_BEGIN2 connection in the transaction connection list.

 If the connection is not found,

 The application MUST return a failure result to the higher-layer business logic.

 Otherwise,

 Create a new Propagation Token structure.

 The dwVersionMin field MUST be set to 1.

 The dwVersionMax field MUST be set to the maximum supported protocol version, as

specified in section 3.1.4.1.

 The guidTx field MUST be set to the Transaction Object.Identifier value of the
provided Transaction object.

 The isoLevel field MUST be set to the Isolation Level value of the provided Transaction
object.

 The isoFlags field MUST be set to the Isolation Flags value of the provided Transaction
object.

 The cbSourceTmAddr field MUST be set as specified in section 2.2.5.4.

 The szDesc field MUST be set to the Description value of the provided Transaction
object.

 The NameObject field MUST be set to the Transaction Manager Name of the
application.

 The AssociateMsgVersion2 field MUST be set as specified in section 2.2.5.4.

 The AssociateMsgVersion3 field MUST be set as specified in section 2.2.5.4.

 Return the new Propagation Token structure and the total size of the new Propagation Token
structure to the higher-layer business logic.

3.3.4.4 Creating an Export Connection

If the higher-layer business logic initiates a push propagation by using a specified SWhereabouts
structure, the application MUST perform the following actions:

 If the transaction manager of the application supports the CONNTYPE_TXUSER_EXPORT2

connection type as specified in section 2.2.1.1.1:

 Initiate a new CONNTYPE_TXUSER_EXPORT2 (section 2.2.8.2.2.3) connection by using the

Transaction Manager Name field of the application.

 Otherwise:

 Initiate a new CONNTYPE_TXUSER_EXPORT (section 2.2.8.2.2.2) connection by using the
Transaction Manager Name field of the application.

227 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 Add the connection to the transaction connection list.

 If the negotiated protocol version of the previously initiated CONNTYPE_TXUSER_EXPORT

connection supports the TXUSER_EXPORT_MTAG_CREATE2 (section 2.2.8.2.2.2.2) MTAG, as
specified in 2.2.1.1.1:

 Send a TXUSER_EXPORT_MTAG_CREATE2 message by using the connection.

 Otherwise:

 Send a TXUSER_EXPORT_MTAG_CREATE (section 2.2.8.2.2.2.1) message using the
connection:

 The SourceTmAddr field of the message MUST be set either to an
OLETX_TM_ADDR (section 2.2.4.2) structure or a NAMEOBJECTBLOB (section 2.2.5.3) structure,
as specified in section 2.2.1.1.1.

 Find the STmToTmProtocol entries in the SWhereabouts structure corresponding to
TmProtocolMsdtcV1 and TmProtocolMsdtcV2. See section 2.2.5.11 for more information.

 If the SourceTmAddr field is an OLETX_TM_ADDR (section 2.2.4.2) structure, the fields of
the OLETX_TM_ADDR structure MUST be set as follows:

 The guidSignature field MUST be set as specified in section 2.2.4.2.

 The guidEndpoint field MUST be set to the guidEndpointID field of the

SDtcCmEndpointInfoV1 structure.

 The grbComProtsSupported field MUST be set to the comprotSupported field of the
SDtcCmEndpointInfoV1 structure.

 If a TmProtocolMsdtcV2 entry was found:

 The wszHostName field MUST be set to the wszHostName field of the
SDtcCmEndpointInfoV2 structure.

 Otherwise:

 The wszHostName field MUST be set to the szHostName field of the
SDtcCmEndpointInfoV1 structure and converted to Unicode little-endian UTF-16
encoding. This field MUST NOT contain a Unicode byte-order-mark (BOM) character.

 Otherwise, if the SourceTmAddr field is a NAMEOBJECTBLOB structure, the fields of the
NAMEOBJECTBLOB structure MUST be set as follows:

 The szGuid field MUST be set to the guidEndpointID field of the SDtcCmEndpointInfoV1
structure and formatted as a string, as specified in [C706] appendix A.

 The grbComProtsSupported field MUST be set to the comprotSupported field of the
SDtcCmEndpointInfoV1 structure.

 The szHostName field MUST be set to the szHostName field of the
SDtcCmEndpointInfoV1 structure.

 The dwcbHostName and dwReserved1 fields MUST be set as specified in section
2.2.5.3.

 Set the connection state to Awaiting Create Response.

http://go.microsoft.com/fwlink/?LinkId=89824

228 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

3.3.4.5 Generating Trace Records for a Transaction Using CONNTYPE_TXUSER_TRACE

If the higher-layer business logic specifies that transaction trace records are to be generated to the
trace file of the transaction manager for the higher-layer business logic specified transaction object,

the application MUST perform the following steps:

 Initiate a new CONNTYPE_TXUSER_TRACE (section 2.2.8.3.5) connection by using the
Transaction Manager Name field of the application.

 Send a TXUSER_TRACE_MTAG_DUMP_TRANSACTION (section 2.2.8.3.5.1) message:

 The guidTx field MUST be set to the Transaction Object.Identifier of the provided
transaction.

 Set the connection state to Awaiting Trace Response.

3.3.4.6 Importing a Transaction

If the higher-layer business logic specifies that a transaction be imported by using an
StxInfo (section 2.2.5.10) structure, the application MUST perform the following steps:

 If the transaction manager of the application supports the CONNTYPE_TXUSER_IMPORT2
connection type as specified in section 2.2.1.1.1:

 The application MUST attempt to import the transaction by using
CONNTYPE_TXUSER_IMPORT2 (section 2.2.8.2.2.5).

 Otherwise:

 The application MUST attempt to import the transaction by using
CONNTYPE_TXUSER_IMPORT (section 2.2.8.2.2.4).

3.3.4.6.1 Importing a Transaction Using CONNTYPE_TXUSER_IMPORT

The application MUST perform the following actions:

 Initiate a new CONNTYPE_TXUSER_IMPORT (section 2.2.8.2.2.4) connection using the
Transaction Manager Name field of the application.

 Get the transaction identifier from the provided STxInfo (section 2.2.5.10) structure.

 If the guidSignature field of the provided STxInfo structure is set to the binary value

representation of the GUID {2adb4463-bd41-11d0-b12e-00c04fc2f3ef}

 The transaction identifier MUST be set to the uowTx field of the provided STxInfo
structure.

 Otherwise,

 The transaction identifier MUST be set to the guidSignature field of the provided STxInfo

structure.

 Create a new transaction object that uses the transaction identifier obtained from the provided
STxInfo structure.

 Add the connection to the transaction connection list.

 Set the Connection-Specific Data field of the connection to reference the new transaction
object.

 Send a TXUSER_IMPORT_MTAG_IMPORT (section 2.2.8.2.2.4.3) message using the connection:

229 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 The guidTx field MUST be set to the transaction identifier obtained from the provided
STxInfo (section 2.2.5.10) structure.

 Set the connection state to Awaiting Import Response.

3.3.4.6.2 Importing a Transaction Using CONNTYPE_TXUSER_IMPORT2

The application MUST perform the following actions:

 Initiate a new CONNTYPE_TXUSER_IMPORT2 (section 2.2.8.2.2.5) connection using the
Transaction Manager Name field of the application.

 Get the transaction identifier from the provided STxInfo (section 2.2.5.10) structure, as specified
in section 3.3.4.6.1.

 Create a new transaction object that uses the transaction identifier obtained from the provided

STxInfo structure.

 Add the connection to the transaction connection list.

 Set the Connection-Specific Data field of the connection to reference the new transaction
object.

 Send a TXUSER_IMPORT2_MTAG_IMPORT (section 2.2.8.2.2.5.2) message using the connection:

 The guidTx field MUST be set to the transaction identifier obtained from the provided

STxInfo (section 2.2.5.10) structure.

 Set the connection state to Awaiting Import Response.

3.3.4.7 Importing a Transaction with Additional Transaction Attributes

If the higher-layer business logic specifies that a transaction be imported by using a

StxInfo (section 2.2.5.10) structure and that additional transaction attributes be set, the application

MUST perform the following steps:

 If the transaction manager of the application does not support the
CONNTYPE_TXUSER_IMPORT2 (section 2.2.8.2.2.5) connection type, as specified in section
2.2.1.1.1.

 Return a failure result to the higher-layer business logic.

 Otherwise:

 Initiate a new CONNTYPE_TXUSER_IMPORT2 connection using the Transaction Manager
Name field of the application.

 Get the transaction identifier from the provided STxInfo structure, as specified in section
3.3.4.6.1.

 Create a new transaction object that uses the transaction identifier obtained from the provided

STxInfo structure.

 Add the connection to the transaction connection list.

 Set the Connection-Specific Data field of the connection to reference the new transaction
object.

 Send a TXUSER_IMPORT2_MTAG_IMPORT_WITH_SET (section 2.2.8.2.2.5.3) message, using
the connection:

230 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 The guidTx field MUST be set to the transaction identifier obtained from the provided
STxInfo (section 2.2.5.10) structure.

 The isoLevel field MUST be set to the provided isolation-level value.The isoFlags field
MUST be set to the provided isolation flags value.The szDesc field MUST be set to the

provided description string.

 Set the connection state to Awaiting Import Response (section 3.3.1.7.2).

3.3.4.8 Initiating Transaction Commit

If the higher-layer business logic initiates the commit of an existing transaction, the application MUST
perform the following steps:

 Find a CONNTYPE_TXUSER_PROMOTE, CONNTYPE_TXUSER_BEGINNER, or
CONNTYPE_TXUSER_BEGIN2 connection in the transaction connection list.

 If a CONNTYPE_TXUSER_PROMOTE is found:

 The application MUST attempt to complete the transaction by using
CONNTYPE_TXUSER_PROMOTE.

 Otherwise, if a CONNTYPE_TXUSER_BEGINNER is found:

 The application MUST attempt to complete the transaction by using
CONNTYPE_TXUSER_BEGINNER.

 Otherwise, if a CONNTYPE_TXUSER_BEGIN2 is found:

 The application MUST attempt to complete the transaction by using
CONNTYPE_TXUSER_BEGIN2.

 Otherwise:

 The application MUST return a failure result to the higher-layer business logic.

3.3.4.8.1 Commit a Transaction Using CONNTYPE_TXUSER_BEGIN2

The application MUST perform the following actions:

 If the connection state is not Processing Transaction:

 Return a failure result to the higher-layer business logic.

 Otherwise:

 Send a TXUSER_BEGIN2_MTAG_COMMIT (section 2.2.8.1.2.3) message using the
CONNTYPE_TXUSER_BEGIN2 (section 2.2.8.1.2) connection:

 Set the connection state to Awaiting Commit Response.

3.3.4.8.2 Commit a Transaction Using CONNTYPE_TXUSER_BEGINNER

The application MUST perform the following actions:

 If the state of the connection is not Processing Transaction:

 Return a failure result to the higher-layer business logic.

 Otherwise:

231 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 Send a TXUSER_BEGINNER_MTAG_COMMIT (section 2.2.8.1.1.6) message using the
CONNTYPE_TXUSER_BEGINNER (section 2.2.8.1.1) connection:

 The grfRM field MUST be set to an implementation-defined GRFRM (section 2.2.7.1)
value.

 The fAsyncFull field MUST be set to 0.

 Set the connection state to Awaiting Commit Response.

3.3.4.8.3 Commit a Transaction Using CONNTYPE_TXUSER_PROMOTE

The application MUST perform the following actions:

 If the state of the connection is not Processing Transaction:

 Return a failure result to the higher-layer business logic.

 Otherwise:

 Send a TXUSER_BEGIN2_MTAG_COMMIT (section 2.2.8.1.2.3) message using the
CONNTYPE_TXUSER_PROMOTE (section 2.2.8.1.3) connection:

 The grfRM field MUST be set to an implementation-defined GRFRM (section 2.2.7.1)
value.

 Set the connection state to Awaiting Commit Response.

3.3.4.9 Initiating Transaction Rollback

If the higher-layer business logic initiates the rollback of an existing transaction, the application MUST
perform the following steps:

 Find a CONNTYPE_TXUSER_PROMOTE, CONNTYPE_TXUSER_BEGIN2,

CONNTYPE_TXUSER_BEGINNER, CONNTYPE_TXUSER_IMPORT2, or CONNTYPE_TXUSER_IMPORT
connection in the transaction connection list.

 If a CONNTYPE_TXUSER_PROMOTE is found:

 The application MUST attempt to roll back a transaction by using
CONNTYPE_TXUSER_PROMOTE.

 Otherwise, if a CONNTYPE_TXUSER_BEGIN2 is found:

 The application MUST attempt to roll back a transaction by using

CONNTYPE_TXUSER_BEGIN2.

 Otherwise, if a CONNTYPE_TXUSER_BEGINNER is found:

 The application MUST attempt to roll back a transaction by using
CONNTYPE_TXUSER_BEGINNER.

 Otherwise, if a CONNTYPE_TXUSER_IMPORT2 is found:

 The application MUST attempt to roll back a transaction by using

CONNTYPE_TXUSER_IMPORT2.

 Otherwise, if a CONNTYPE_TXUSER_IMPORT is found:

 The application MUST attempt to roll back a transaction by using
CONNTYPE_TXUSER_IMPORT.

232 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 Otherwise, the application MUST return a failure result to the higher-layer business logic.

3.3.4.9.1 Abort a Transaction Using CONNTYPE_TXUSER_BEGIN2

The application MUST perform the following actions:

 If the connection state is not Processing Transaction:

 Return a failure result to the higher-layer business logic.

 Otherwise:

 Send a TXUSER_BEGIN2_MTAG_ABORT (section 2.2.8.1.2.1) message using the
CONNTYPE_TXUSER_BEGIN2 (section 2.2.8.1.2) connection.

 Set the connection state to Awaiting Abort Response.

3.3.4.9.2 Abort a Transaction Using CONNTYPE_TXUSER_BEGINNER

The application MUST perform the following actions:

 If the connection state is not Processing Transaction:

 Return a failure result to the higher-layer business logic.

 Otherwise:

 Send a TXUSER_BEGINNER_MTAG_ABORT (section 2.2.8.1.1.1) message using the

CONNTYPE_TXUSER_BEGINNER (section 2.2.8.1.1) connection:

 The guidReason field MUST be set to the value that is provided by the higher-layer
business logic, as specified in section 2.2.8.1.1.1.

 Set the connection state to Awaiting Abort Response.

3.3.4.9.3 Abort a Transaction Using CONNTYPE_TXUSER_IMPORT

The application MUST perform the following actions:

 If the connection state is not Transaction Import Successful:

 Return a failure result to the higher-layer business logic.

 Otherwise:

 Send a TXUSER_IMPORT_MTAG_ABORT (section 2.2.8.2.2.4.1) message using the
CONNTYPE_TXUSER_IMPORT (section 2.2.8.2.2.4) connection:

 The guidReason field MUST be set to the value that is provided by the higher-layer
business logic, as specified in section 2.2.8.2.2.4.1.

 Set the connection state to Awaiting Abort Response.

3.3.4.9.4 Abort a Transaction Using CONNTYPE_TXUSER_IMPORT2

The application MUST perform the following actions:

 If the connection state is not Transaction Import Successful:

 Return a failure result to the higher-layer business logic.

233 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 Otherwise:

 Send a TXUSER_IMPORT2_MTAG_ABORT (section 2.2.8.2.2.5.1) message using the

CONNTYPE_TXUSER_IMPORT2 (section 2.2.8.2.2.5) connection:

 Set the connection state to Awaiting Abort Response.

3.3.4.9.5 Roll Back a Transaction Using CONNTYPE_TXUSER_PROMOTE

The application MUST perform the following actions:

 If the connection state is not Processing Transaction:

 Return a failure result to the higher-layer business logic.

 Otherwise:

 Send a TXUSER_BEGIN2_MTAG_ABORT (section 2.2.8.1.2.1) message using the

CONNTYPE_TXUSER_PROMOTE (section 2.2.8.1.3) connection.

 Set the connection state to Awaiting Abort Response.

3.3.4.10 Obtaining Extended Whereabouts Using

CONNTYPE_TXUSER_EXTENDEDWHEREABOUTS

If the higher-layer business logic wants to obtain extended whereabouts for a transaction manager,
the application MUST perform the following actions:

 Initiate a new CONNTYPE_TXUSER_EXTENDEDWHEREABOUTS (section 2.2.8.2.2.1) connection
using the Transaction Manager Name field of the application.

 Send a TXUSER_EXTENDEDWHEREABOUTS_MTAG_GET (section 2.2.8.2.2.1.1) message using the

connection.

 Set the connection state to Awaiting Get Response.

3.3.4.11 Obtaining the Security Configuration of the Transaction Manager Using

CONNTYPE_TXUSER_GETSECURITYFLAGS

If the higher-layer business logic wants to obtain the security configuration of the transaction
manager, the application MUST perform the following steps:

 Initiate a new CONNTYPE_TXUSER_GETSECURITYFLAGS (section 2.2.8.4.1) connection by using
the Transaction Manager Name field of the application.

 Send a TXUSER_GETSECURITYFLAGS_MTAG_GETSECURITYFLAGS (section 2.2.8.4.1.2) message.

 Set the connection state to Awaiting Get Response.

3.3.4.11.1 Obtaining the Details for a Transaction

If the higher-layer business logic wants to obtain the details for a transaction, the application MUST
perform the following steps:

 Initiate a new CONNTYPE_TXUSER_GETTXDETAILS (section 2.2.8.3.1) connection by using the
Transaction Manager Name field of the application.

 Add the connection to the connection list of the transaction.

 Send a TXUSER_GETTXDETAILS_MTAG_GET (section 2.2.8.3.1.1) message using the connection:

234 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 The guidTx field MUST be set to the provided Transaction Object.Identifier.

 Set the connection state to Awaiting Response.

3.3.4.12 Pulling a Transaction

If the higher-layer business logic wants to perform pull propagation of a transaction by using a
Propagation_Token (section 2.2.5.4) structure, the application MUST perform the following actions:

 Initiate a new CONNTYPE_TXUSER_ASSOCIATE connection using the Transaction Manager
Name field of the application.

 Create a new transaction object that uses the guidTx field of the Propagation_Token as the
transaction identifier.

 Add the connection to the connection list of the new transaction object.

 Set the Connection-Specific Data field of the connection to the new transaction object.

 Send a TXUSER_ASSOCIATE_MTAG_ASSOCIATE message using the connection:

 The guidTx field MUST be set to the guidTx field of the Propagation_Token.

 The isoLevel field MUST be set to the isoLevel field of the Propagation_Token.

 The isoFlags field MUST be set to the isoFlags field of the Propagation_Token.

 The szDesc field MUST be set to the szDesc field of the Propagation_Token.

 The SourceTmAddr field in the message MUST be set from either an OLETX_TM_ADDR
structure or a NAMEOBJECTBLOB structure, as specified in section 2.2.1.1.1:

 If the SourceTmAddr field is an OLETX_TM_ADDR structure, the OLETX_TM_ADDR
structure fields MUST be set as follows:

 The guidSignature field MUST be set as specified in section 2.2.4.2.

 The guidEndpoint field MUST be set to the szGuid field of the NameObject field within
the Propagation_Token, converted from a string to a GUID as specified in [C706]
appendix A.

 The grbComProtsSupported field MUST be set to the Propagation_Token's
NameObject field's grbComProtsSupported field.

 If the dwVersionMax field of the Propagation_Token is at least 2:

 The wszHostName field MUST be set to the
Propagation_Token.NameObject.szHostName field.

 Otherwise:

 The wszHostName field MUST be set to the
Propagation_Token.NameObject.szHostName field, converted to little-endian
UTF-16 encoding. This field MUST NOT contain a Unicode BOM character.

 Otherwise, if the SourceTmAddr field is a NAMEOBJECTBLOB structure, the

NAMEOBJECTBLOB structure fields MUST be set to the same values as the NameObject
field of the Propagation_Token.

 The cbSourceTmAddr field MUST be set as specified in section 2.2.8.2.1.1.1.

http://go.microsoft.com/fwlink/?LinkId=89824

235 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 Set the connection state to Awaiting Associate Response.

3.3.4.13 Push a Transaction Using an Existing Export Connection

If the higher-layer business logic decides to export a transaction by using an existing export
connection, the application MUST perform the following actions:

 If the provided connection state is not Connection Active:

 Return a failure result to the higher-layer business logic.

 Otherwise:

 Send a TXUSER_EXPORT_MTAG_EXPORT (section 2.2.8.2.2.2.6) message using the provided
connection:

 The guidTX field MUST be set to the provided Transaction Object.Identifier field of the
transaction object.

 Set the connection state to Awaiting Export Response.

3.3.4.14 Obtaining a Transaction Cookie Using an Existing Export Connection

If the higher-layer business logic obtains a transaction cookie by using an existing export connection,
the application MUST perform the following actions:

 If the provided connection state is not Connection Active:

 Return a failure result to the higher-layer business logic.

 Otherwise:

 If the provided transaction cookie size is equal to the size of STxInfo structure:

 Create a new STxInfo structure.

 The guidSignature field MUST be set as specified in section 2.2.4.2.

 The uowTx field MUST be set to the Transaction Object.Identifier of the provided
Transaction Object.

 The tmprotUsed field MUST be set with the TM_PROTOCOL value specified in the

whereabouts data of the export connection.

 The cbProtocolSpecificTxInfo field MUST be set to zero.

 Return the newly created STxInfo structure, the size of the STxInfo structure, and the
success result to the higher-layer business logic.

 Otherwise:

 Return the Transaction Object.Identifier of the provided Transaction object, the size of
GUID, and the success result to the higher-layer business logic.

3.3.4.15 Resolving a Transaction

If the higher-layer business logic determines that it needs to manually resolve the outcome of a
transaction, the application MUST perform the following steps:

236 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 If the transaction is not in either the Failed to Notify (section 3.2.1.3.13) or the In
Doubt (section 3.2.1.3.12) state:

 Return a failure result to the higher-layer business logic.

 Otherwise:

 Initiate a new CONNTYPE_TXUSER_RESOLVE (section 2.2.8.3.2) connection using the
Transaction Manager Name field of the application.

 If the transaction is in the Failed to Notify (section 3.2.1.3.13) state:

 Send a TXUSER_RESOLVE_MTAG_FORGET_COMMITTED (section 2.2.8.3.2.5) message
using the connection:

 The guidTx field MUST be set to the Transaction Object.Identifier of the provided
transaction.

 Set the connection state to Awaiting Forget Response (section 3.3.1.11.3).

 Otherwise, if the transaction is in the In Doubt (section 3.2.1.3.12) state:

 If the higher-layer business logic wants to manually resolve the transaction outcome as
Commit:

 Send a TXUSER_RESOLVE_MTAG_CHILD_COMMIT (section 2.2.8.3.2.3) message
using the connection:

 The guidTx field MUST be set to the Transaction Object.Identifier of the
provided transaction.

 Set the connection state to Awaiting Commit Response (section 3.3.1.1.4).

 Otherwise, if the higher-layer business logic wants to manually resolve the transaction
outcome as Abort:

 Send a TXUSER_RESOLVE_MTAG_CHILD_ABORT (section 2.2.8.3.2.2) message using
the connection:

 The guidTx field MUST be set to the Transaction Object.Identifier of the
provided transaction.

 Set the connection state to Awaiting Abort Response (section 3.3.1.1.5).

3.3.5 Processing Events and Sequencing Rules

3.3.5.1 Transaction Initiation and Completion

3.3.5.1.1 CONNTYPE_TXUSER_BEGINNER as Initiator

For all messages that are received in this connection type, the application MUST process the message
as specified in section 3.1. The application MUST also follow the processing rules that are specified in
the following sections.

3.3.5.1.1.1 Receiving a TXUSER_BEGINNER_MTAG_BEGUN Message

When the application receives a TXUSER_BEGINNER_MTAG_BEGUN message, the application MUST
perform the following actions:

 If the connection state is Awaiting Begin Response:

237 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 Set the connection state to Processing Transaction.

 Create a transaction object that is initialized as follows:

 Set the transaction Transaction Object.Identifier field to the guidTx field from the
message.

 Set the transaction Root field to true.

 Add the connection to the connection list of the transaction.

 Set the Connection-Specific Data field of the connection to the transaction object.

 Return a success result and a reference to the transaction object to the higher-layer business
logic.

 Otherwise, the message MUST be processed as an invalid message as specified in section 3.1.6.

3.3.5.1.1.2 Receiving a TXUSER_BEGINNER_MTAG_BEGIN_NO_MEM or

TXUSER_BEGINNER_MTAG _BEGIN_LOG_FULL Message

When the application receives either of these messages, the application MUST perform the following
actions:

 If the connection state is Awaiting Begin Response:

 Return a failure result to the higher-layer business logic.

 Set the connection state to Ended.

 Otherwise, the message MUST be processed as an invalid message as specified in section 3.1.6.

3.3.5.1.1.3 Receiving a TXUSER_BEGINNER_MTAG_REQUEST_COMPLETED Message

When the application receives a TXUSER_BEGINNER_MTAG_REQUEST_COMPLETED message, the

application MUST perform the following actions:

 If the connection state is Awaiting Commit Response:

 Return a Transaction Committed result to the higher-layer business logic.

 Set the connection state to Ended.

 If the connection state is Awaiting Abort Response:

 Return a Transaction Aborted result to the higher-layer business logic.

 Set the connection state to Ended.

 Otherwise, the message MUST be processed as an invalid message as specified in section 3.1.6.

3.3.5.1.1.4 Receiving a TXUSER_BEGINNER_MTAG_COMMIT_TOO_LATE Message

When the application receives a TXUSER_BEGINNER_MTAG_COMMIT_TOO_LATE message, the
application MUST perform the following actions:

 If the connection state is Awaiting Commit Response:

 Return a Transaction Aborted result to the higher-layer business logic.

 Set the connection state to Ended.

238 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 Otherwise, the message MUST be processed as an invalid message as specified in section 3.1.6.

3.3.5.1.1.5 Receiving a TXUSER_BEGINNER_MTAG_COMMIT_INDOUBT Message

When the application receives a TXUSER_BEGINNER_MTAG_COMMIT_INDOUBT (section 2.2.8.1.1.7)

message, the application MUST perform the following actions:

 If the connection state is Awaiting Commit Response:

 Return a transaction In Doubt (section 3.2.1.3.12) result to the higher-layer business logic.

 Set the connection state to Ended.

 Otherwise, the message MUST be processed as an invalid message as specified in section 3.1.6.

3.3.5.1.1.6 Connection Disconnected

When a CONNTYPE_TXUSER_BEGINNER (section 2.2.8.1.1) connection is disconnected, the application

MUST perform the following actions:

 If the connection state is Awaiting Begin Response:

 Return a failure result to the higher-layer business logic.

 If the connection state is Awaiting Abort Response:

 Return a transaction aborted result to the higher-layer business logic.

 If the connection state is Awaiting Commit Response:

 Return a transaction In Doubt (section 3.2.1.3.12) result to the higher-layer business logic.

 Otherwise, the event MUST be processed as specified in section 3.1.8.3.

3.3.5.1.2 CONNTYPE_TXUSER_BEGIN2 as Initiator

 For all messages that are received in this connection type, the application MUST process the message
as specified in section 3.1. The application MUST also follow the processing rules that are specified in

the following sections.

3.3.5.1.2.1 Receiving a TXUSER_BEGIN2_MTAG_SINK_BEGUN Message

When the application receives a TXUSER_BEGIN2_MTAG_SINK_BEGUN message, the application
MUST perform the following actions:

 If the connection state is Awaiting Begin Response, the application MUST:

 Set the connection state to Processing Transaction.

 Create a transaction object that is initialized as follows:

 Set the transaction Transaction Object.Identifier field to the guidTx field from the
message.

 Set the transaction Root field to true.

 Add the connection to the transaction connection list.

 Set the transaction field of the connection to the transaction.

239 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 Return a success result and a reference to the transaction object to the higher-layer business
logic.

 Otherwise, the message MUST be processed as an invalid message as specified in section 3.1.6.

3.3.5.1.2.2 Receiving a TXUSER_SETTXTIMEOUT_MTAG_REQUEST_COMPLETE

Message

When the application receives a TXUSER_SETTXTIMEOUT_MTAG_REQUEST_COMPLETE message, the
application MUST perform the following actions:

 If the connection state is Awaiting Set Timeout Response, the application MUST:

 Set the connection state to Processing Transaction.

 Return a success result to the higher-layer business logic.

 Otherwise, the message MUST be processed as an invalid message as specified in section 3.1.6.

3.3.5.1.2.3 Receiving a TXUSER_SETTXTIMEOUT_MTAG_TOO_LATE Message

When the application receives a TXUSER_SETTXTIMEOUT_MTAG_TOO_LATE message, the application
MUST perform the following actions:

 If the connection state is Awaiting Set Timeout Response, the application MUST:

 Set the connection state to Processing Transaction.

 Return a failure result to the higher-layer business logic.

 Otherwise, the message MUST be processed as an invalid message as specified in section 3.1.6.

3.3.5.1.2.4 Receiving a TXUSER_SETTXTIMEOUT_MTAG_TX_NOT_FOUND Message

When the application receives a

TXUSER_SETTXTIMEOUT_MTAG_TX_NOT_FOUND (section 2.2.8.3.3.1) message, the application MUST
perform the following actions:

 If the connection state is Awaiting Set Timeout Response (section 3.3.1.2.4), the application
MUST:

 Set the connection state to Processing Transaction (section 3.3.1.2.3).

 Return a failure result to the higher-layer business logic.

 Otherwise, the message MUST be processed as an invalid message, as specified in section 3.1.6.

3.3.5.1.2.5 Receiving a TXUSER_BEGIN2_MTAG_SINK_ERROR Message

When the application receives a TXUSER_BEGIN2_MTAG_SINK_ERROR message, the application MUST

perform the following actions:

 If the connection state is Awaiting Begin Response:

 If the Error field in the message is set to TRUN_TXBEGIN_ERROR_NO_MEM or
TRUN_TXBEGIN_ERROR_BEGIN_LOG_FULL or TRUN_TXBEGIN_ERROR_DUPLICATE_GUID:

 Return a failure result to the higher-layer business logic.

 Set the connection state to Ended.

240 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 Otherwise, the message MUST be processed as an invalid message as specified in section
3.1.6.

 If the connection state is Processing Transaction (section 3.3.1.2.3):

 If the Error field of the message is set to TRUN_TXBEGIN_ERROR_NOTIFY_ABORTED:

 Return a transaction aborted result to the higher-layer business logic.

 Set the connection state to Ended.

 Otherwise, the message MUST be processed as an invalid message as specified in section
3.1.6.

 If the connection state is Awaiting Commit Response:

 If the Error field in the message is set to TRUN_TXBEGIN_ERROR_NOTIFY_COMMITTED or
TRUN_TXBEGIN_ERROR_NOTIFY_ABORTED or TRUN_TXBEGIN_ERROR_NOTIFY_INDOUBT:

 Return the corresponding transaction outcome as a result to the higher-layer business
logic.

 Set the connection state to Ended.

 Otherwise, the message MUST be processed as an invalid message as specified in section
3.1.6.

 If the connection state is Awaiting Abort Response:

 If the Error field of the message is set to TRUN_TXBEGIN_ERROR_NOTIFY_ABORTED:

 Return a transaction aborted result to the higher-layer business logic.

 Set the connection state to Ended.

 Otherwise, the message MUST be processed as an invalid message as specified in section

3.1.6.

 If the Connection state is Awaiting Set Timeout Response:

 If the Error field of the message is set to TRUN_TXBEGIN_ERROR_NOTIFY_ABORTED:

 Return a Transaction Aborted result to the higher-layer business logic.

 Set the connection state to Ended.

 Otherwise, the message MUST be processed as an invalid message as specified in section
3.1.6.

 Otherwise, the message MUST be processed as an invalid message as specified in section 3.1.6.

3.3.5.1.2.6 Connection Disconnected

When a CONNTYPE_TXUSER_BEGIN2 connection is disconnected, the application MUST perform the
following actions:

 If the connection state is Awaiting Begin Response:

 Return a failure result to the higher-layer business logic.

 If the connection state is Awaiting Set Timeout Response, Processing Transaction, or Awaiting
Abort Response:

241 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 Return a transaction aborted result to the higher-layer business logic.

 If the connection state is Awaiting Commit Response:

 Return a transaction In Doubt (section 3.2.1.3.12) result to the higher-layer business logic.

 Otherwise, the event MUST be processed as specified in section 3.1.8.3.

3.3.5.1.3 CONNTYPE_TXUSER_PROMOTE as Initiator

Unless stated otherwise in this section, the CONNTYPE_TXUSER_PROMOTE (section 2.2.8.1.3)
connection type that is acting as an initiator MUST follow the same message processing rules as the
CONNTYPE_TXUSER_BEGIN2 (section 2.2.8.1.2) connection type that is acting as an initiator, as
specified in CONNTYPE_TXUSER_BEGIN2 as Initiator (section 3.3.5.1.2).

3.3.5.1.3.1 Receiving a TXUSER_BEGIN2_MTAG_SINK_BEGUN Message

When the application receives a TXUSER_BEGIN2_MTAG_SINK_BEGUN message, the application

MUST perform the following actions:

 If the connection state is Awaiting Promote Response (section 3.3.1.3.2), the application MUST:

 Set the connection state to Processing Transaction (section 3.3.1.3.3).

 Create a transaction object that is initialized as follows:

 Set the transaction Transaction Object.Identifier field to the guidTx field from the
message. The guidTx MUST be the same value as the guidTx field in
TXUSER_BEGINNER_MTAG_PROMOTE (section 2.2.8.1.3.1) message that was sent to the
transaction manager.

 Set the transaction Root field to true.

 Add the connection to the transaction connection list.

 Set the transaction field of the connection to the transaction.

 Return a success result and a reference to the transaction object to the higher-layer business
logic.

 Otherwise, the message MUST be processed as an invalid message as specified in section 3.1.6.

3.3.5.1.3.2 Receiving a TXUSER_BEGIN2_MTAG_SINK_ERROR Message

When the application receives a TXUSER_BEGIN2_MTAG_SINK_ERROR message, the application MUST
perform the following actions:

 If the connection state is Awaiting Promote Response (section 3.3.1.3.2):

 If the Error field in the message is set to TRUN_TXBEGIN_ERROR_NO_MEM or
TRUN_TXBEGIN_ERROR_BEGIN_LOG_FULL or

TRUN_TXBEGIN_ERROR_DUPLICATE_GUID:

 Return a failure result to the higher-layer business logic.

 Set the connection state to Ended (section 3.3.1.3.7).

 Otherwise, the message MUST be processed as an invalid message as specified in section

3.1.6.

 Otherwise,

242 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 The application MUST follow the same message processing rules as the
CONNTYPE_TXUSER_BEGIN2 connection type acting as an acceptor as specified in Receiving a

TXUSER_BEGIN2_MTAG_SINK_ERROR Message (section 3.3.5.1.2.5).

3.3.5.2 Transaction Propagation

3.3.5.2.1 Pull Propagation

3.3.5.2.1.1 CONNTYPE_TXUSER_ASSOCIATE as Initiator

 For all messages that are received in this connection type, the application MUST process the
messages as specified in section 3.1.

The application MUST also follow the processing rules that are specified in the following sections.

3.3.5.2.1.1.1 Receiving a TXUSER_ASSOCIATE_MTAG_ASSOCIATED Message

When the application receives a TXUSER_ASSOCIATE_MTAG_ASSOCIATED message, the application
MUST perform the following actions:

 If the connection state is Awaiting Associate Response, the application MUST:

 Set the connection state to Active (section 3.3.1.4.3).

 Return a success result and a reference to the transaction object that is referenced by this
connection's Connection-Specific Data field to the higher-layer business logic.

 Otherwise, the message MUST be processed as an invalid message as specified in section 3.1.6.

3.3.5.2.1.1.2 Receiving Other TXUSER_ASSOCIATE_MTAG Messages

When the application receives one of these messages:

 TXUSER_ASSOCIATE_MTAG_TX_NOT_FOUND

 TXUSER_ASSOCIATE_MTAG_TOO_LATE

 TXUSER_ASSOCIATE_MTAG_CREATE_BAD_TMADDR

 TXUSER_ASSOCIATE_MTAG_LOG_FULL_LOCAL

 TXUSER_ASSOCIATE_MTAG_NO_MEM_LOCAL

 TXUSER_ASSOCIATE_MTAG_LOG_FULL_REMOTE

 TXUSER_ASSOCIATE_MTAG_NO_MEM_REMOTE

 TXUSER_ASSOCIATE_MTAG_TOO_MANY_REMOTE

 TXUSER_ASSOCIATE_MTAG_TOO_MANY_LOCAL

the application MUST perform the following actions:

 If the connection state is Awaiting Associate Response:

 Set the connection state to Ended.

 Return a failure result to the higher-layer business logic.

 Otherwise, the message MUST be processed as an invalid message as specified in section 3.1.6.

243 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

3.3.5.2.1.1.3 Receiving a TXUSER_IMPORT2_MTAG_SINK_ERROR Message

 When the application receives a TXUSER_IMPORT2_MTAG_SINK_ERROR message, the application
MUST perform the following actions:

 If the connection state is Active:

 If the Error field in the message is set to TRUN_TXBEGIN_ERROR_NOTIFY_COMMITTED,
TRUN_TXBEGIN_ERROR_NOTIFY_ABORTED, or TRUN_TXBEGIN_ERROR_NOTIFY_INDOUBT:

 Notify the higher-layer business logic of the outcome of the transaction.

 Set the connection state to Ended.

 Otherwise, the message MUST be processed as an invalid message as specified in section
3.1.6.

 Otherwise, the message MUST be processed as an invalid message as specified in section 3.1.6.

3.3.5.2.1.1.4 Connection Disconnected

When a CONNTYPE_TXUSER_ASSOCIATE (section 2.2.8.2.1.1) connection is disconnected, the
application MUST perform the following actions:

 If the connection state is Awaiting Associate Response:

 Return a failure result to the higher-layer business logic.

 Otherwise, the event MUST be processed as specified in section 3.1.8.3.

3.3.5.2.2 Push Propagation

3.3.5.2.2.1 CONNTYPE_TXUSER_EXTENDEDWHEREABOUTS as Initiator

For all messages that are received in this connection type, the application MUST process the message

as specified in section 3.1. The application MUST also follow the processing rules as specified in the
following sections.

3.3.5.2.2.1.1 Receiving a TXUSER_EXTENDEDWHEREABOUTS_MTAG_GOT Message

When the application receives a TXUSER_EXTENDEDWHEREABOUTS_MTAG_GOT message, the
application MUST perform the following actions:

 If the connection state is Awaiting Get Response:

 Create a new SWhereabouts structure.

 Set the guidSignature field to the GUID value {2adb4462-bd41-11d0-b12e-00c04fc2f3ef}.

 Set the cTmToTmProtocols field to the dwProtocolCount field of the message.

 Set the rgtmprotUsableList field to the rgtmprotUsableList field of the message.

 Return a success result and the new SWhereabouts structure to the higher-layer business
logic.

 Set the connection state to Ended.

 Otherwise, the message MUST be processed as an invalid message as specified in section 3.1.6.

244 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

3.3.5.2.2.1.2 Receiving a TXUSER_EXTENDEDWHEREABOUTS_MTAG_NOMEM Message

When the application receives a TXUSER_EXTENDEDWHEREABOUTS_MTAG_NOMEM message, the
application MUST perform the following actions:

 If the connection state is Awaiting Get Response:

 Return a failure result to the higher-layer business logic.

 Set the connection state to Ended.

 Otherwise, the message MUST be processed as an invalid message as specified in section 3.1.6.

3.3.5.2.2.1.3 CONNTYPE_TXUSER_EXTENDEDWHEREABOUTS Connection

Disconnected

When a CONNTYPE_TXUSER_EXTENDEDWHEREABOUTS (section 2.2.8.2.2.1) connection is
disconnected, the application MUST perform the following actions:

 If the connection state is Awaiting Get Response:

 Return a failure result to the higher-layer business logic.

 Otherwise, the event MUST be processed as specified in section 3.1.8.3.

3.3.5.2.2.2 CONNTYPE_TXUSER_EXPORT as Initiator

For all messages that are received in this connection type, the application MUST process the message
as specified in section 3.1. The application MUST also follow the processing rules as specified in the
following sections.

3.3.5.2.2.2.1 Receiving a TXUSER_EXPORT_MTAG_CREATED Message

When the application receives a TXUSER_EXPORT_MTAG_CREATED message, the application MUST

perform the following actions:

 If the connection state is Awaiting Create Response:

 Set the connection state to Connection Active.

 Return a success result to the higher-layer business logic.

 Otherwise, the message MUST be processed as an invalid message as specified in section 3.1.6.

3.3.5.2.2.2.2 Receiving a TXUSER_EXPORT_MTAG_CREATE_BAD_TMADDR or

TXUSER_EXPORT_MTAG_CREATE_NET_TX_DISABLED Message

When the application receives one of these messages, the application MUST perform the following
actions:

 If the connection state is Awaiting Create Response:

 Return a failure result to the higher-layer business logic.

 Set the connection state to Ended.

 Otherwise, the message MUST be processed as an invalid message as specified in section 3.1.6.

3.3.5.2.2.2.3 Receiving a TXUSER_EXPORT_MTAG_EXPORTED Message

245 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

When the application receives a TXUSER_EXPORT_MTAG_EXPORTED message, the application MUST
perform the following actions:

 If the connection state is Awaiting Export Response:

 Set the connection state to Connection Active.

 Return a success result to the higher-layer business logic.

 If the application uses OLETX_TM_ADDR (section 2.2.1.1.1) for creating an Export Connection:

 Compute the size of STxInfo structure in bytes and return the size of the STxInfo
structure to the higher-layer business logic.

 Otherwise:

 Compute the size of GUID in bytes and return the size of the GUID to the higher-layer
business logic.

 Otherwise, the message MUST be processed as an invalid message as specified in section 3.1.6.

3.3.5.2.2.2.4 Receiving a TXUSER_EXPORT_MTAG_EXPORT_LOG_FULL,

TXUSER_EXPORT_MTAG_EXPORT_NO_MEM,

TXUSER_EXPORT_MTAG_EXPORT_TOO_LATE,

TXUSER_EXPORT_MTAG_EXPORT_TOO_MANY, or

TXUSER_EXPORT_MTAG_EXPORT_NOT_FOUND Message

When the application receives one of these messages, the application MUST perform the following
actions:

 If the connection state is Awaiting Export Response, the application MUST:

 Set the connection state to Connection Active.

 Return a failure result to the higher-layer business logic.

 Otherwise, the message MUST be processed as an invalid message as specified in section 3.1.6.

3.3.5.2.2.2.5 CONNTYPE_TXUSER_EXPORT Connection Disconnected

When a CONNTYPE_TXUSER_EXPORT (section 2.2.8.2.2.2) connection is disconnected, the application

MUST perform the following additional actions:

 If the connection state is Awaiting Create Response or Awaiting Export Response:

 Return a failure result to the higher-layer business logic.

 Otherwise, the event MUST be processed as specified in section 3.1.8.3.

3.3.5.2.2.3 CONNTYPE_TXUSER_EXPORT2 as Initiator

For all messages that are received in this connection type, the application MUST process the message

as specified in section 3.1. The application MUST also follow the processing rules as specified in the
following sections.

3.3.5.2.2.3.1 Receiving a TXUSER_EXPORT_MTAG_CREATED Message

When the application receives a TXUSER_EXPORT_MTAG_CREATED message, the application MUST
perform the actions specified in section 3.3.5.2.2.2.1.

246 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

3.3.5.2.2.3.2 Receiving a TXUSER_EXPORT_MTAG_CREATE_BAD_TMADDR or

TXUSER_EXPORT_MTAG_CREATE_NET_TX_DISABLED Message

When the application receives one of these messages, the application MUST perform the actions
specified in section 3.3.5.2.2.2.2.

3.3.5.2.2.3.3 Receiving a TXUSER_EXPORT_MTAG_EXPORTED Message

When the application receives one of these messages, the application MUST perform the actions
specified in section 3.3.5.2.2.2.3.

3.3.5.2.2.3.4 Receiving a TXUSER_EXPORT_MTAG_EXPORT_LOG_FULL,

TXUSER_EXPORT_MTAG_EXPORT_NO_MEM,

TXUSER_EXPORT_MTAG_EXPORT_TOO_LATE,

TXUSER_EXPORT_MTAG_EXPORT_TOO_MANY,

TXUSER_EXPORT_MTAG_EXPORT_NOT_FOUND, or

TXUSER_EXPORT_MTAG_EXPORT_COMM_FAILED Message

When the application receives one of these messages, the application MUST perform the actions
specified in section 3.3.5.2.2.2.4.

3.3.5.2.2.3.5 CONNTYPE_TXUSER_EXPORT2 Connection Disconnected

When a CONNTYPE_TXUSER_EXPORT2 (section 2.2.8.2.2.3) connection is disconnected, the
application MUST perform the following additional actions:

 If the connection state is Awaiting Create Response or Awaiting Export Response:

 Return a failure result to the higher-layer business logic.

 Otherwise, the event MUST be processed as specified in section 3.1.8.3.

3.3.5.2.2.4 CONNTYPE_TXUSER_IMPORT as Initiator

For all messages that are received in this connection type, the application MUST process the messages
as specified in section 3.1. The application MUST also follow the processing rules as specified in the
following sections.

3.3.5.2.2.4.1 Receiving a TXUSER_IMPORT_MTAG_IMPORTED Message

When the application receives a TXUSER_IMPORT_MTAG_IMPORTED message, the application MUST

perform the following actions:

 If the connection state is Awaiting Import Response:

 Set the connection state to Transaction Import Successful.

 Return a success result and a reference to the transaction object to the higher-layer business
logic.

 Otherwise, the message MUST be processed as an invalid message as specified in section 3.1.6.

3.3.5.2.2.4.2 Receiving a TXUSER_IMPORT_MTAG_IMPORT_TX_NOT_FOUND Message

When the application receives a TXUSER_IMPORT_MTAG_IMPORT_TX_NOT_FOUND message, the
application MUST perform the following actions:

 If the connection state is Awaiting Import Response:

247 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 Set the connection state to Ended.

 Return a failure result to the higher-layer business logic.

 Otherwise, the message MUST be processed as an invalid message as specified in section 3.1.6.

3.3.5.2.2.4.3 Receiving a TXUSER_IMPORT_MTAG_ABORT_TOO_LATE Message.

When the application receives a TXUSER_IMPORT_MTAG_IMPORT_TOO_LATE message, the
application MUST perform the following actions:

 If the connection state is Awaiting Abort Response:

 Set the connection state to Ended.

 Return a failure result to the higher-layer business logic.

 Otherwise, the message MUST be processed as an invalid message as specified in section 3.1.6.

3.3.5.2.2.4.4 Receiving a TXUSER_IMPORT_MTAG_REQUEST_COMPLETED Message

When the application receives a TXUSER_IMPORT_MTAG_REQUEST_COMPLETED message, the
application MUST perform the following actions:

 If the connection state is Awaiting Abort Response:

 Set the connection state to Ended.

 Return a success result to the higher-layer business logic.

 Otherwise, the message MUST be processed as an invalid message as specified in section 3.1.6.

3.3.5.2.2.4.5 Connection Disconnected

When a CONNTYPE_TXUSER_IMPORT (section 2.2.8.2.2.4) connection is disconnected, the application

MUST perform the following actions:

 If the connection state is Awaiting Import Response or Awaiting Abort Response:

 Return a failure result to the higher-layer business logic.

 Otherwise, the event MUST be processed as specified in section 3.1.8.3.

3.3.5.2.2.5 CONNTYPE_TXUSER_IMPORT2 as Initiator

For all messages that are received in this connection type, the application MUST process the messages
as specified in section 3.1. The application MUST also follow the processing rules as specified in the
following sections.

3.3.5.2.2.5.1 Receiving a TXUSER_IMPORT2_MTAG_SINK_IMPORTED Message

When the application receives a TXUSER_IMPORT2_MTAG_SINK_IMPORTED message, the application
MUST perform the following actions:

 If the connection state is Awaiting Import Response:

 Set the connection state to Transaction Import Successful.

 Return a success result and a reference to the transaction object to the higher-layer business

logic.

248 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 Otherwise, the message MUST be processed as an invalid message as specified in section 3.1.6.

3.3.5.2.2.5.2 Receiving a TXUSER_IMPORT2_MTAG_SINK_ERROR Message

When the application receives a TXUSER_IMPORT2_MTAG_SINK_ERROR message, the application

MUST perform the following actions:

 If the connection state is Awaiting Import Response:

 If the Error field in the message is set to
TRUN_TXIMPORT_ERROR_IMPORT_TX_NOT_FOUND:

 Return a failure result to the higher-layer business logic.

 Set the connection state to Ended.

 Otherwise, the message MUST be processed as an invalid message as specified in section

3.1.6.

 If the connection state is Awaiting Abort Response:

 If the Error field in the message is set to
TRUN_TXIMPORT_ERROR_IMPORT_TX_NOT_FOUND:

 Return a failure result to the higher-layer business logic.

 Set the connection state to Ended.

 Otherwise, if the Error field in the message is set to
TRUN_TXBEGIN_ERROR_NOTIFY_ABORTED, TRUN_TXBEGIN_ERROR_NOTIFY_COMMITTED, or
TRUN_TXBEGIN_ERROR_NOTIFY_INDOUBT:

 Return the respective transaction outcome as a result to the higher-layer business logic.

 Set the connection state to Ended.

 Otherwise, the message MUST be processed as an invalid message as specified in section
3.1.6.

 If the connection state is Transaction Import Successful:

 If the Error field in the message is set to TRUN_TXBEGIN_ERROR_NOTIFY_COMMITTED,
TRUN_TXBEGIN_ERROR_NOTIFY_ABORTED, or TRUN_TXBEGIN_ERROR_NOTIFY_INDOUBT:

 Notify the higher-layer business logic of the outcome of the transaction.

 Set the connection state to Ended.

 Otherwise, the message MUST be processed as an invalid message as specified in section
3.1.6.

 Otherwise, the message MUST be processed as an invalid message as specified in section 3.1.6.

3.3.5.2.2.5.3 CONNTYPE_TXUSER_IMPORT2 Connection Disconnected

When a CONNTYPE_TXUSER_IMPORT2 (section 2.2.8.2.2.5) connection is disconnected, the
application MUST perform the following actions:

 If the connection state is Awaiting Import Response or Awaiting Abort Response:

 Return a failure result to the higher-layer business logic.

249 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 Otherwise, the event MUST be processed as specified in section 3.1.8.3.

3.3.5.3 Transaction Administration

3.3.5.3.1 CONNTYPE_TXUSER_GETTXDETAILS as Initiator

For all messages that are received in this connection type, the application MUST process the message
as specified in section 3.1. The application MUST also follow the processing rules as specified in the
following sections.

3.3.5.3.1.1 Receiving a TXUSER_GETTXDETAILS_MTAG_GOTIT Message

When the application receives a TXUSER_GETTXDETAILS_MTAG_GOTIT message, the application
MUST perform the following actions:

 If the connection state is Awaiting Response:

 Return a success result to the higher-layer business logic, including the details that are
provided in the following message fields:

 The vszSuperiorName field

 The vszSuperiorID field

 The lSubordinateCount field

 The rgSubordinates field

 Set the connection state to Ended.

 Otherwise, the message MUST be processed as an invalid message as specified in section 3.1.6.

3.3.5.3.1.2 Receiving a TXUSER_GETTXDETAILS_MTAG_TX_NOT_FOUND Message

When the application receives a TXUSER_GETTXDETAILS_MTAG_TX_NOT_FOUND message, the
application MUST perform the following actions:

 If the connection state is Awaiting Response:

 Return a failure result to the higher-layer business logic.

 Set the connection state to Ended.

 Otherwise, the message MUST be processed as an invalid message as specified in section 3.1.6.

3.3.5.3.1.3 CONNTYPE_TXUSER_GETTXDETAILS Connection Disconnected

When a CONNTYPE_TXUSER_GETTXDETAILS (section 2.2.8.3.1) connection is disconnected, the
application MUST perform the following actions:

 If the connection state is Awaiting Response:

 Return a failure result to the higher-layer business logic.

 Otherwise, the event MUST be processed as specified in section 3.1.8.3.

3.3.5.3.2 CONNTYPE_TXUSER_RESOLVE as Initiator

250 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

For all messages that are received in this connection type, the application MUST process the message
as specified in section 3.1.1. The application MUST also follow the processing rules as specified in the

following sections.

3.3.5.3.2.1 Receiving a TXUSER_RESOLVE_MTAG_REQUEST_COMPLETE Message

When the application receives a TXUSER_RESOLVE_MTAG_REQUEST_COMPLETE message, the
application MUST perform the following actions:

 If the connection state is Awaiting Abort Response, Awaiting Commit Response, or Awaiting Forget
Response:

 Return a success result to the higher-layer business logic.

 Set the connection state to Ended.

 Otherwise, the message MUST be processed as an invalid message as specified in section 3.1.6

3.3.5.3.2.2 Receiving a TXUSER_RESOLVE_MTAG_ACCESSDENIED or

TXUSER_RESOLVE_MTAG_TX_NOT_FOUND Message

When the application receives one of these messages, the application MUST perform the following
actions:

 If the connection state is Awaiting Abort Response, Awaiting Commit Response, or Awaiting Forget
Response:

 Return a failure result to the higher-layer business logic.

 Set the connection state to Ended.

 Otherwise, the message MUST be processed as an invalid message as specified in section 3.1.6

3.3.5.3.2.3 Receiving a TXUSER_RESOLVE_MTAG_CHILD_NOT_PREPARED or

TXUSER_RESOLVE_MTAG_NOT_CHILD Message

When the application receives a TXUSER_RESOLVE_MTAG_CHILD_NOT_PREPARED or
TXUSER_RESOLVE_MTAG_NOT_CHILD message, the application MUST perform the following actions:

 If the connection state is Awaiting Abort Response or Awaiting Commit Response:

 Return a failure result to the higher-layer business logic.

 Set the connection state to Ended.

 Otherwise, the message MUST be processed as an invalid message as specified in section 3.1.6.

3.3.5.3.2.4 Receiving a TXUSER_RESOLVE_MTAG_FORGET_TX_NOT_COMMITTED

Message

When the application receives a TXUSER_RESOLVE_MTAG_FORGET_TX_NOT_COMMITTED message,

the application MUST perform the following actions:

 If the connection state is Awaiting Forget Response:

 Return a failure result to the higher-layer business logic.

 Set the connection state to Ended.

 Otherwise, the message MUST be processed as an invalid message as specified in section 3.1.6

251 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

3.3.5.3.2.5 Connection Disconnected

When a CONNTYPE_TXUSER_RESOLVE connection is disconnected, the application MUST perform the
following actions:

 If the connection state is Awaiting Abort Response, Awaiting Commit Response, or Awaiting Forget
Response:

 Return a failure result to the higher-layer business logic.

 Otherwise, the event MUST be processed as specified in section 3.1.8.3.

3.3.5.3.3 CONNTYPE_TXUSER_SETTXTIMEOUT as Initiator

For all messages that are received in this connection type, the application MUST process the message

as specified in section 3.1. The application MUST also follow the processing rules as specified in the
following sections.

3.3.5.3.3.1 Receiving a TXUSER_SETTXTIMEOUT_MTAG_REQUEST_COMPLETE

Message

When the application receives a TXUSER_SETTXTIMEOUT_MTAG_REQUEST_COMPLETE message, the

application MUST perform the following actions:

 If the connection state is Awaiting Set Timeout Response:

 Return a success result to the higher-layer business logic.

 Set the connection state to Ended.

 Otherwise, the message MUST be processed as an invalid message as specified in section 3.1.6.

3.3.5.3.3.2 Receiving a TXUSER_SETTXTIMEOUT_MTAG_TOO_LATE or

TXUSER_SETTXTIMEOUT_MTAG_TX_NOT_FOUND Message

When the application receives a TXUSER_SETTXTIMEOUT_MTAG_TOO_LATE or
TXUSER_SETTXTIMEOUT_MTAG_TX_NOT_FOUND message, the application MUST perform the
following actions:

 If the connection state is Awaiting Set Timeout Response:

 Return a failure result to the higher-layer business logic.

 Set the connection state to Ended.

 Otherwise, the message MUST be processed as an invalid message as specified in section 3.1.6.

3.3.5.3.3.3 Connection Disconnected

When a CONNTYPE_TXUSER_SETTXTIMEOUT connection is disconnected, the application MUST

perform the following actions:

 If the connection state is Awaiting Set Timeout Response:

 Return a failure result to the higher-layer business logic.

 Otherwise, the event MUST be processed as specified in section 3.1.8.3.

3.3.5.3.4 CONNTYPE_TXUSER_SETTXTIMEOUT2 as Initiator

252 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

For all messages that are received in this connection type, the application MUST process the message
as specified in section 3.1. The application MUST also follow the processing rules as specified in the

following sections.

3.3.5.3.4.1 Receiving a TXUSER_SETTXTIMEOUT_MTAG_TX_NOT_FOUND Message

When the application receives a
TXUSER_SETTXTIMEOUT_MTAG_TX_NOT_FOUND (section 2.2.8.3.3.1) message, the application MUST
perform the following actions:

 If the connection state is Awaiting Set Timeout Response:

 Find an instance of a CONNTYPE_TXUSER_BEGIN2 (section 2.2.8.1.2) or
CONNTYPE_TXUSER_PROMOTE (section 2.2.8.1.3) connection in the transaction connection

list. This connection is referred to as the beginner connection.

 If a beginner connection is not found:

 The application MUST return a failure result to the higher-layer business logic.

 Otherwise, if the beginner connection state is not Awaiting Set Timeout Response:

 The application MUST return a failure result to the higher-layer business logic.

 Otherwise:

 Set the beginner connection state to Processing Transaction.

 The application MUST return a failure result to the higher-layer business logic.

 Set the CONNTYPE_TXUSER_SETTXTIMEOUT2 (section 2.2.8.3.4) connection state to Ended.

 Otherwise, the message MUST be processed as an invalid message as specified in section 3.1.6.

3.3.5.3.4.2 Connection Disconnected

When a CONNTYPE_TXUSER_SETTXTIMEOUT2 connection is disconnected, the application MUST

perform the following actions:

 If the connection state is Awaiting Set Timeout Response:

 Return a failure result to the higher-layer business logic.

 Otherwise, the event MUST be processed as specified in section 3.1.8.3

3.3.5.3.5 CONNTYPE_TXUSER_TRACE as Initiator

For all messages that are received in this connection type, the application MUST process the message

as specified in section 3.1. The application MUST also follow the processing rules as specified in the
following sections.

3.3.5.3.5.1 Receiving a TXUSER_TRACE_MTAG_REQUEST_COMPLETE Message

When the application receives a TXUSER_TRACE_MTAG_REQUEST_COMPLETE (section 2.2.8.3.5.2)
message, the application MUST perform the following actions:

 If the connection state is Awaiting Trace Response:

 Return a success result to the higher-layer business logic.

 Set the connection state to Ended.

253 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 Otherwise, the message MUST be processed as an invalid message as specified in section 3.1.6.

3.3.5.3.5.2 Receiving a TXUSER_TRACE_MTAG_REQUEST_FAILED or

TXUSER_TRACE_MTAG_TX_NOT_FOUND Message

When the application receives one of these messages, the application MUST perform the following
actions:

 If the connection state is Awaiting Trace Response:

 Return a failure result to the higher-layer business logic.

 Set the connection state to Ended.

 Otherwise, the message MUST be processed as an invalid message as specified in section 3.1.6.

3.3.5.3.5.3 Connection Disconnected

When a CONNTYPE_TXUSER_TRACE (section 2.2.8.3.5) connection is disconnected, the application
MUST perform the following actions:

 If the connection state is Awaiting Trace Response:

 Return a failure result to the higher-layer business logic.

 Otherwise, the event MUST be processed as specified in section 3.1.8.3.

3.3.5.4 Transaction Manager Administration

3.3.5.4.1 CONNTYPE_TXUSER_GETSECURITYFLAGS as Initiator

For all messages that are received in this connection type, the application MUST process the message
as specified in section 3.1. The transaction manager MUST also follow the processing rules as specified

in the following sections.

3.3.5.4.1.1 Receiving a TXUSER_GETSECURITYFLAGS _MTAG_FETCHED Message

When the application receives a TXUSER_GETSECURITYFLAGS_MTAG_FETCHED (section 2.2.8.4.1.1)
message, the application MUST perform the following actions:

 If the connection state is Awaiting Get Response:

 Return a success result and the following message information to the higher-layer business
logic:

 The grfNetworkDtcAccess field

 The grfXaTransactions field

 Set the connection state to Ended.

 Otherwise, the message MUST be processed as an invalid message as specified in section 3.1.6.

3.3.5.4.1.2 CONNTYPE_TXUSER_GETSECURITYFLAGS Connection Disconnected

When a CONNTYPE_TXUSER_GETSECURITYFLAGS (section 2.2.8.4.1) connection is disconnected, the
application MUST perform the following actions:

 If the connection state is Awaiting Get Response:

254 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 Return a failure result to the higher-layer business logic.

 Otherwise, the event MUST be processed as specified in section 3.1.8.3.

3.3.6 Timer Events

None.

3.3.7 Other Local Events

None.

3.4 Transaction Manager Communicating with Application Details

3.4.1 Abstract Data Model

This section describes a conceptual model of possible data organization that an implementation
maintains to participate in this protocol. The described organization is provided to facilitate the
explanation of how the protocol behaves. This document does not mandate that implementations
adhere to this model as long as their external behavior is consistent with the behavior that is

described in this document.

The transaction manager communicating with an application facet MUST maintain all the data
elements that are specified in section 3.2.1.

The transaction manager communicating with an application facet MUST also maintain the following
data elements:

 Associates Table: A table where each object is a list of connection objects of type

CONNTYPE_TXUSER_ASSOCIATE (section 2.2.8.2.1.1), keyed by the identifier of the transaction
with which the connections are associated. All connection objects in each list reference the same
transaction object, and there is only one list per transaction in the Associates Table.

Enlistment objects that are created by the transaction manager communicating with an application
facet MUST provide the following properties, as specified in section 3.1.1:

 Name: An empty string

 Enlistment Object.Identifier: An empty string

The transaction manager communicating with an application facet MUST provide the states in the
following sections for its supported connection types. The connection types that a transaction manager
communicating with an application facet MUST provide for each supported protocol version are as
specified in section 2.2.1.1.1.

3.4.1.1 CONNTYPE_TXUSER_BEGINNER Acceptor States

The transaction manager communicating with an application MUST act as an acceptor for the

CONNTYPE_TXUSER_BEGINNER connection type. In this role, the transaction manager communicating
with an application MUST provide support for the following states:

 Idle

 Beginning Transaction

 Active

 Aborting Transaction

255 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 Committing Transaction

 Ended

The following figure shows the relationships between the CONNTYPE_TXUSER_BEGINNER acceptor
states.

Figure 29: CONNTYPE_TXUSER_BEGINNER Acceptor States

3.4.1.1.1 Idle

The Idle state is the initial state. The following event is processed in this state:

256 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 Receiving a TXUSER_BEGINNER_MTAG_BEGIN Message (section 3.4.5.1.1.1).

3.4.1.1.2 Beginning Transaction

The following events are processed in this state:

 Create Transaction Success (section 3.4.7.8)

 Create Transaction Failure (section 3.4.7.7)

3.4.1.1.3 Active

The following events are processed in this state:

 Receiving a TXUSER_BEGINNER_MTAG_COMMIT Message (section 3.4.5.1.1.2)

 Receiving a TXUSER_BEGINNER_MTAG_ABORT Message (section 3.4.5.1.1.3)

 Unilaterally Aborted (section 3.4.7.23)

3.4.1.1.4 Aborting Transaction

The following events are processed in this state:

 Rollback Complete (section 3.4.7.18)

 Receiving a TXUSER_BEGINNER_MTAG_COMMIT Message (section 3.4.5.1.1.2)

 Phase One Complete (section 3.4.7.13)

3.4.1.1.5 Committing Transaction

The following event is processed in this state:

 Phase One Complete (section 3.4.7.13)

3.4.1.1.6 Ended

This is the final state.

3.4.1.2 CONNTYPE_TXUSER_BEGIN2 Acceptor States

The transaction manager communicating with an application MUST act as an acceptor for the
CONNTYPE_TXUSER_BEGIN2 connection type. In this role, the transaction manager communicating

with an application MUST provide support for the following states:

 Idle

 Beginning Transaction

 Active

 Modifying Timeout

 Aborting Transaction

 Committing Transaction

 Ended

257 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

The following figure shows the relationships between the CONNTYPE_TXUSER_BEGIN2 acceptor
states.

Figure 30: CONNTYPE_TXUSER_BEGIN2 Acceptor States

3.4.1.2.1 Idle

This is the initial state. The following event is processed in this state:

 Receiving a TXUSER_BEGIN2_MTAG_BEGIN Message (section 3.4.5.1.2.1)

3.4.1.2.2 Beginning Transaction

The following events are processed in this state:

 Create Transaction Success (section 3.4.7.8)

 Create Transaction Failure (section 3.4.7.7)

3.4.1.2.3 Active

The following events are processed in this state:

 Receiving a TXUSER_SETTXTIMEOUT_MTAG_SETTXTIMEOUT Message (section 3.4.5.1.2.2)

258 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 Receiving a TXUSER_BEGIN2_MTAG_COMMIT Message (section 3.4.5.1.2.3)

 Receiving a TXUSER_BEGIN2_MTAG_ABORT Message (section 3.4.5.1.2.4)

 Unilaterally Aborted (section 3.4.7.23)

3.4.1.2.4 Modifying Timeout

The following events are processed in this state:

 Set Transaction Timeout Success (section 3.4.7.22)

 Set Transaction Timeout Failure (section 3.4.7.21)

3.4.1.2.5 Aborting Transaction

The following event is processed in this state:

 Rollback Complete (section 3.4.7.18)

3.4.1.2.6 Committing Transaction

The following event is processed in this state:

 Phase One Complete (section 3.4.7.13)

3.4.1.2.7 Ended

This is the final state.

3.4.1.3 CONNTYPE_TXUSER_PROMOTE Acceptor States

The transaction manager communicating with an application MUST act as an acceptor for the

CONNTYPE_TXUSER_PROMOTE connection type. In this role, the transaction manager communicating

with an application MUST provide support for the following states:

 Idle

 Beginning Transaction

 Active

 Modifying Timeout

 Aborting Transaction

 Committing Transaction

 Ended

The following figure shows the relationship between the CONNTYPE_TXUSER_PROMOTE acceptor
states.

259 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Figure 31: CONNTYPE_TXUSER_PROMOTE Acceptor States

3.4.1.3.1 Idle

This is the initial state. The following event is processed in this state:

 Receiving a TXUSER_BEGINNER_MTAG_PROMOTE Message (section 3.4.5.1.3.1)

3.4.1.3.2 Beginning Transaction

The following events are processed in this state:

 Create Transaction Success (section 3.4.7.8)

 Create Transaction Failure (section 3.4.7.7)

3.4.1.3.3 Active

The following events are processed in this state:

 Receiving a TXUSER_SETTXTIMEOUT_MTAG_SETTXTIMEOUT, TXUSER_BEGIN2_MTAG_COMMIT,

or TXUSER_BEGIN2_MTAG_ABORT Message (section 3.4.5.1.3.2)

 Receiving a TXUSER_BEGINNER_MTAG_PROMOTE Message (section 3.4.5.1.3.1)

 Unilaterally Aborted (section 3.4.7.23)

3.4.1.3.4 Modifying Timeout

The following events are processed in this state:

260 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 Set Transaction Timeout Success (section 3.4.7.22)

 Set Transaction Timeout Failure (section 3.4.7.21)

3.4.1.3.5 Aborting Transaction

The following event is processed in this state:

 Rollback Complete (section 3.4.7.18)

3.4.1.3.6 Committing Transaction

 The following event is processed in this state:

 Phase One Complete (section 3.4.7.13)

3.4.1.3.7 Ended

This is the final state.

3.4.1.4 CONNTYPE_TXUSER_ASSOCIATE Acceptor States

The transaction manager communicating with an application MUST act as an acceptor for the

CONNTYPE_TXUSER_ASSOCIATE connection type. In this role, the transaction manager
communicating with an application MUST provide support for the following states:

 Idle

 Processing Associate Request

 Active

 Ended

The following figure shows the relationship between the CONNTYPE_TXUSER_ASSOCIATE acceptor
states.

261 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Figure 32: CONNTYPE_TXUSER_ASSOCIATE Acceptor States

3.4.1.4.1 Idle

This is the initial state. The following event is processed in this state:

 Receiving a TXUSER_ASSOCIATE_MTAG_ASSOCIATE Message (section 3.4.5.2.1.1.1)

3.4.1.4.2 Processing Associate Request

The following events are processed in this state:

 Associate Transaction Success (section 3.4.7.2).

 Associate Transaction Failure (section 3.4.7.1). This event applies to these messages:

 TXUSER_ASSOCIATE_MTAG_COMM_FAILED (section 2.2.8.2.1.1.3)

 TXUSER_ASSOCIATE_MTAG_LOG_FULL_LOCAL (section 2.2.8.2.1.1.5)

 TXUSER_ASSOCIATE_MTAG_LOG_FULL_REMOTE (section 2.2.8.2.1.1.6)

 TXUSER_ASSOCIATE_MTAG_NO_MEM_REMOTE (section 2.2.8.2.1.1.8)

 TXUSER_ASSOCIATE_MTAG_TOO_LATE (section 2.2.8.2.1.1.9)

 TXUSER_ASSOCIATE_MTAG_TOO_MANY_REMOTE (section 2.2.8.2.1.1.11)

 TXUSER_ASSOCIATE_MTAG_TX_NOT_FOUND (section 2.2.8.2.1.1.12)

262 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

3.4.1.4.3 Active

 The following events are processed in this state:

 Begin Voting (section 3.4.7.6).

 Begin Commit (section 3.4.7.3)

 Begin Rollback (section 3.4.7.5)

 Begin In Doubt (section 3.4.7.4)

3.4.1.4.4 Ended

This is the final state.

3.4.1.5 CONNTYPE_TXUSER_EXTENDEDWHEREABOUTS Acceptor States

The transaction manager communicating with an application MUST act as an acceptor for the
CONNTYPE_TXUSER_EXTENDEDWHEREABOUTS connection type. In this role, the transaction manager
communicating with an application MUST provide support for the following states:

 Idle

 Processing Inquiry

 Ended

The following figure shows the relationship between the
CONNTYPE_TXUSER_EXTENDEDWHEREABOUTS acceptor states.

263 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Figure 33: CONNTYPE_TXUSER_EXTENDEDWHEREABOUTS Acceptor States

3.4.1.5.1 Idle

This is the initial state. The following event is processed in this state:

 Receiving a TXUSER_EXTENDEDWHEREABOUTS_MTAG_GET Message (section 3.4.5.2.2.1.1)

3.4.1.5.2 Processing Inquiry

This is a transient state that is assumed during the synchronous processing of a request. No events
are processed in this state.

3.4.1.5.3 Ended

This is the final state.

3.4.1.6 CONNTYPE_TXUSER_IMPORT Acceptor States

The transaction manager communicating with an application MUST act as an acceptor for the
CONNTYPE_TXUSER_IMPORT connection type. In this role, the transaction manager communicating
with an application MUST provide support for the following states:

264 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 Idle

 Processing Import Request

 Active

 Too Late to Abort

 Processing Abort Request

 Ended

The following figure shows the relationship between the CONNTYPE_TXUSER_IMPORT acceptor states.

Figure 34: CONNTYPE_TXUSER_IMPORT Acceptor States

3.4.1.6.1 Idle

This is the initial state. The following event is processed in this state:

 Receiving a TXUSER_IMPORT_MTAG_IMPORT Message (section 3.4.5.2.2.4.1)

3.4.1.6.2 Processing Import Request

265 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

The following events are processed in this state:

 Create Voter Enlistment Success (section 3.4.7.10)

 Create Voter Enlistment Failure (section 3.4.7.9)

3.4.1.6.3 Active

The following events are processed in this state:

 Receiving a TXUSER_IMPORT_MTAG_ABORT Message (section 3.4.5.2.2.4.2)

 Begin Voting (section 3.4.7.6)

 Begin Commit (section 3.4.7.3)

 Begin Rollback (section 3.4.7.5)

 Begin In Doubt (section 3.4.7.4)

3.4.1.6.4 Too Late to Abort

The following events are processed in this state:

 Receiving a TXUSER_IMPORT_MTAG_ABORT Message (section 3.4.5.2.2.4.2)

 Begin Rollback (section 3.4.7.5)

 Begin Commit (section 3.4.7.3)

 Begin In Doubt (section 3.4.7.4)

3.4.1.6.5 Processing Abort Request

This is a transient state that is assumed during the synchronous processing of a request to abort a

transaction. No events are processed in this state.

3.4.1.6.6 Ended

This is the final state.

3.4.1.7 CONNTYPE_TXUSER_IMPORT2 Acceptor States

The transaction manager communicating with an application MUST act as an acceptor for the
CONNTYPE_TXUSER_IMPORT2 connection type. In this role, the transaction manager communicating

with an application MUST provide support for the following states:

 Idle

 Processing Import Request

 Active

 Too Late to Abort

 Processing Abort Request

 Ended

266 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

The following figure shows the relationship between the CONNTYPE_TXUSER_IMPORT2 acceptor
states.

Figure 35: CONNTYPE_TXUSER_IMPORT2 Acceptor States

3.4.1.7.1 Idle

This is the initial state. The following events are processed in this state:

 Receiving a TXUSER_IMPORT2_MTAG_IMPORT Message (section 3.4.5.2.2.5.1)

 Receiving a TXUSER_IMPORT2_MTAG_IMPORT_WITH_SET Message (section 3.4.5.2.2.5.2)

3.4.1.7.2 Processing Import Request

The following events are processed in this state:

 Set Transaction Attributes Success (section 3.4.7.20)

 Set Transaction Attributes Failure (section 3.4.7.19)

 Create Voter Enlistment Success (section 3.4.7.10)

 Create Voter Enlistment Failure (section 3.4.7.9)

267 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

3.4.1.7.3 Active

The following events are processed in this state:

 Receiving a TXUSER_IMPORT2_MTAG_ABORT message (section 3.4.5.2.2.5.3)

 Begin Voting (section 3.4.7.6)

 Begin Commit (section 3.4.7.3)

 Begin Rollback (section 3.4.7.5)

 Begin In Doubt (section 3.4.7.4)

3.4.1.7.4 Too Late to Abort

The following events are processed in this state:

 Receiving a TXUSER_IMPORT2_MTAG_ABORT message (section 3.4.5.2.2.5.3)

 Begin Commit (section 3.4.7.3)

 Begin Rollback (section 3.4.7.5)

 Begin In Doubt (section 3.4.7.4)

3.4.1.7.5 Processing Abort Request

This is a transient state that is assumed during the synchronous processing of a request to abort a

transaction. No events are processed in this state.

3.4.1.7.6 Ended

This is the final state.

3.4.1.8 CONNTYPE_TXUSER_EXPORT Acceptor States

The transaction manager communicating with an application MUST act as an acceptor for the
CONNTYPE_TXUSER_EXPORT connection type. In this role, the transaction manager communicating
with an application MUST provide support for the following states:

 Idle

 Processing Connection Request

 Connection Active

 Processing Push Operation Request

 Ended

The following figure shows the relationship between the CONNTYPE_TXUSER_EXPORT acceptor states.

268 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Figure 36: CONNTYPE_TXUSER_EXPORT Acceptor States

3.4.1.8.1 Idle

This is the initial state. The following events are processed in this state:

 Receiving a TXUSER_EXPORT_MTAG_CREATE Message (section 3.4.5.2.2.2.1)

 Receiving a TXUSER_EXPORT_MTAG_CREATE2 Message (section 3.4.5.2.2.2.2)

3.4.1.8.2 Processing Connection Request

This is a transient state that is assumed during the synchronous processing of a create export request.
No events are processed in this state.

3.4.1.8.3 Connection Active

The following events are processed in this state:

 Receiving a TXUSER_EXPORT_MTAG_EXPORT Message (section 3.4.5.2.2.2.3)

 Connection Disconnected (section 3.4.5.2.2.2.4)

3.4.1.8.4 Processing Push Operation Request

269 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

The following events are processed in this state:

 Export Transaction Success (section 3.4.7.12)

 Export Transaction Failure (section 3.4.7.11)

3.4.1.8.5 Ended

This is the final state.

3.4.1.9 CONNTYPE_TXUSER_EXPORT2 Acceptor States

The transaction manager communicating with an application MUST act as an acceptor for the

CONNTYPE_TXUSER_EXPORT2 connection type. In this role, the transaction manager communicating
with an application MUST provide support for the following states:

 Idle

 Processing Connection Request

 Connection Active

 Processing Push Operation Request

 Ended

The following figure shows the relationships between the CONNTYPE_TXUSER_EXPORT2 acceptor
states.

270 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Figure 37: CONNTYPE_TXUSER_EXPORT2 Acceptor States

3.4.1.9.1 Idle

This is the initial state. The following events are processed in this state:

 Receiving a TXUSER_EXPORT_MTAG_CREATE Message (section 3.4.5.2.2.3.1)

 Receiving a TXUSER_EXPORT_MTAG_CREATE2 Message (section 3.4.5.2.2.3.2)

3.4.1.9.2 Processing Connection Request

This is a transient state that is assumed during the synchronous processing of a create export request.
No events are processed in this state.

3.4.1.9.3 Connection Active

The following events are processed in this state:

 Receiving a TXUSER_EXPORT_MTAG_EXPORT Message (section 3.4.5.2.2.3.3)

 Connection Disconnected (section 3.4.5.2.2.3.4)

3.4.1.9.4 Processing Push Operation Request

271 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

The following events are processed in this state:

 Export Transaction Success (section 3.4.7.12)

 Export Transaction Failure (section 3.4.7.11)

3.4.1.9.5 Ended

This is the final state.

3.4.1.10 CONNTYPE_TXUSER_GETTXDETAILS Acceptor States

The transaction manager communicating with an application MUST act as an acceptor for the

CONNTYPE_TXUSER_GETTXDETAILS connection type. In this role, the transaction manager
communicating with an application MUST provide support for the following states:

 Idle

 Processing Inquiry

 Ended

The following figure shows the relationship between the CONNTYPE_TXUSER_GETTXDETAILS acceptor

states.

272 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Figure 38: CONNTYPE_TXUSER_GETTXDETAILS Acceptor States

3.4.1.10.1 Idle

This is the initial state. The following event is processed in this state:

 Receiving a TXUSER_GETTXDETAILS_MTAG_GET Message (section 3.4.5.3.1.1)

3.4.1.10.2 Processing Inquiry

This is a transient state that is assumed during the synchronous processing of a request for the
transaction details. No events are processed in this state.

3.4.1.10.3 Ended

This is the final state.

3.4.1.11 CONNTYPE_TXUSER_RESOLVE Acceptor States

The transaction manager communicating with an application MUST act as an acceptor for the
CONNTYPE_TXUSER_RESOLVE connection type. In this role, the transaction manager communicating

with an application MUST provide support for the following states:

273 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 Idle

 Processing Abort Request

 Processing Forget Request

 Processing Commit Request

 Ended

The following figure shows the relationship between the CONNTYPE_TXUSER_RESOLVE acceptor
states.

Figure 39: CONNTYPE_TXUSER_RESOLVE Acceptor States

3.4.1.11.1 Idle

274 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

This is the initial state. The following events are processed in this state:

 Receiving a TXUSER_RESOLVE_MTAG_CHILD_ABORT Message (section 3.4.5.3.2.1)

 Receiving a TXUSER_RESOLVE_MTAG_CHILD_COMMIT Message (section 3.4.5.3.2.2)

 Receiving a TXUSER_RESOLVE_MTAG_FORGET COMMITTED Message (section 3.4.5.3.2.3)

3.4.1.11.2 Processing Abort Request

The following events are processed in this state:

 Resolve Transaction Complete (section 3.4.7.16)

 Resolve Transaction Access Denied (section 3.4.7.17)

3.4.1.11.3 Processing Forget Request

The following events are processed in this state:

 Resolve Transaction Complete (section 3.4.7.16)

 Resolve Transaction Access Denied (section 3.4.7.17)

3.4.1.11.4 Processing Commit Request

The following events are processed in this state:

 Resolve Transaction Complete (section 3.4.7.16)

 Resolve Transaction Access Denied (section 3.4.7.17)

3.4.1.11.5 Ended

This is the final state.

3.4.1.12 CONNTYPE_TXUSER_SETTXTIMEOUT Acceptor States

The transaction manager communicating with an application MUST act as an acceptor for the
CONNTYPE_TXUSER_SETTXTIMEOUT connection type. In this role, the transaction manager
communicating with an application MUST provide support for the following states:

 Idle

 Processing Request

 Ended

The following figure shows the relationship between the CONNTYPE_TXUSER_SETTXTIMEOUT acceptor
states.

275 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Figure 40: CONNTYPE_TXUSER_SETTXTTIMEOUT Acceptor States

3.4.1.12.1 Idle

This is the initial state. The following event is processed in this state:

 Receiving a TXUSER_SETTXTIMEOUT_MTAG_SETTXTIMEOUT Message (section 3.4.5.3.3.1)

3.4.1.12.2 Processing Request

The following events are processed in this state:

 Set Transaction Timeout Success (section 3.4.7.22)

 Set Transaction Timeout Failure (section 3.4.7.21)

3.4.1.12.3 Ended

This is the final state.

276 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

3.4.1.13 CONNTYPE_TXUSER_SETTXTIMEOUT2 Acceptor States

The transaction manager communicating with an application MUST act as an acceptor for the
CONNTYPE_TXUSER_SETTXTIMEOUT2 connection type. In this role, the transaction manager

communicating with an application MUST provide support for the following states:

 Idle

 Processing Request

 Ended

The following figure shows the relationship between the CONNTYPE_TXUSER_SETTXTIMEOUT2
acceptor states.

277 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Figure 41: CONNTYPE_TXUSER_SETTXTTIMEOUT2 Acceptor States

3.4.1.13.1 Idle

This is the initial state. The following events are processed in this state:

 Receiving a TXUSER_SETTXTIMEOUT_MTAG_SETTXTIMEOUT Message (section 3.4.5.3.4.1).

3.4.1.13.2 Processing Request

278 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

This is a transient state that is assumed during the synchronous processing of a request to set a
transaction time-out. No events are processed in this state.

3.4.1.13.3 Ended

This is the final state.

3.4.1.14 CONNTYPE_TXUSER_TRACE Acceptor States

The transaction manager communicating with an application MUST act as an acceptor for the
CONNTYPE_TXUSER_TRACE connection type. In this role, the transaction manager communicating

with an application MUST provide support for the following states:

 Idle

 Processing Trace Request

 Ended

The following figure shows the relationship between the CONNTYPE_TXUSER_TRACE acceptor states.

Figure 42: CONNTYPE_TXUSER_TRACE Acceptor States

3.4.1.14.1 Idle

This is the initial state. The following event is processed in this state:

 Receiving a TXUSER_TRACE_MTAG_DUMP_TRANSACTION Message (section 3.4.5.3.5.1)

279 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

3.4.1.14.2 Processing Trace Request

This is a transient state that is assumed during the synchronous processing of a request to set a
transaction time-out. No events are processed in this state.

3.4.1.14.3 Ended

This is the final state.

3.4.1.15 CONNTYPE_TXUSER_GETSECURITYFLAGS Acceptor States

The transaction manager communicating with an application MUST act as an acceptor for the
CONNTYPE_TXUSER_GETSECURITYFLAGS connection type. In this role, the transaction manager
communicating with an application MUST provide support for the following states:

 Idle

 Processing Request

 Ended

The following figure shows the relationship between the CONNTYPE_TXUSER_GETSECURITYFLAGS
acceptor states.

280 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Figure 43: CONNTYPE_TXUSER_GETSECURITYFLAGS Acceptor States

3.4.1.15.1 Idle

This is the initial state. The following event is processed in this state:

 Receiving a TXUSER_GETSECURITYFLAGS_MTAG_GETSECURITYFLAGS
Message (section 3.4.5.4.1.1)

3.4.1.15.2 Processing Request

This is a transient state that is assumed during the synchronous processing of a request to get the

security flags. No events are processed in this state.

3.4.1.15.3 Ended

281 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

This is the final state.

3.4.2 Timers

No timers apply here.

3.4.3 Initialization

When the transaction manager communicating with an application facet is initialized:

 The transaction manager communicating with an application facet MUST examine the following
security flags on the Core Transaction Manager Facet and perform the following actions:

 If the Allow Network Access flag is set to false:

 For all Connection types listed in 3.4.1, the transaction manager communicating with an
application facet MUST refuse to accept incoming Connections from remote machines as

specified in [MS-CMP] section 3.1.5.5 with the rejection Reason set to 0x80070005.

 Otherwise:

 If the Allow Remote Clients flag is set to false:

 For the following Connection types, the transaction manager communicating with an
application facet MUST refuse to accept incoming Connection from remote machines as
specified in [MS-CMP] section 3.1.5.5 with the rejection Reason set to 0x80070005.

 CONNTYPE_TXUSER_ASSOCIATE

 CONNTYPE_TXUSER_BEGINNER

 CONNTYPE_TXUSER_BEGIN2

 CONNTYPE_TXUSER_EXPORT

 CONNTYPE_TXUSER_EXPORT2

 CONNTYPE_TXUSER_IMPORT

 CONNTYPE_TXUSER_IMPORT2

 CONNTYPE_TXUSER_PROMOTE

 If Allow Remote Administration flag is set to false:

 For the following connection types, the transaction manager communicating with an
application facet MUST refuse to accept incoming Connections from remote machines
as specified in [MS-CMP] section 3.1.5.5 with the rejection Reason set to
0x80070005.

 CONNTYPE_TXUSER_GETTXDETAILS

 CONNTYPE_TXUSER_RESOLVE

 CONNTYPE_TXUSER_TRACE

All data elements maintained by the transaction manager communicating with an application facet are
initialized to an empty value unless stated otherwise in this section or in the initialization sections of
the facets the transaction manager communicating with an application facet extends, as described in
section 3.4.1.

%5bMS-CMP%5d.pdf#Section_1970a8a0799d4308b9274e4ea23dc225

282 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

3.4.4 Higher-Layer Triggered Events

No higher-layer triggered events apply here.

3.4.5 Processing Events and Sequencing Rules

3.4.5.1 Transaction Initiation and Completion

3.4.5.1.1 CONNTYPE_TXUSER_BEGINNER as Acceptor

For all messages that are received in this connection type, the transaction manager communicating
with an application facet MUST process the message as specified in section 3.1. The transaction
manager communicating with an application facet MUST also follow the processing rules that are
specified in the following sections.

3.4.5.1.1.1 Receiving a TXUSER_BEGINNER_MTAG_BEGIN Message

When the transaction manager communicating with an application facet receives a
TXUSER_BEGINNER_MTAG_BEGIN (section 2.2.8.1.1.2) message, the transaction manager
communicating with an application facet MUST perform the following actions:

 If the connection state is Idle:

 Set the connection state to Beginning Transaction.

 If the transaction manager does not have sufficient memory available to process the message:

 Send a TXUSER_BEGINNER_MTAG_BEGIN_NO_MEM (section 2.2.8.1.1.4) message using
the connection.

 Set the connection state to Ended.

 Otherwise:

 Create a transaction object using the transaction settings provided in the message:

 Use the isoLevel field as the Isolation Level value of the transaction.

 Use the dwTimeout field as the Timeout value of the transaction.

 Use the szDesc field as the Description value of the transaction.

 Use the isoFlags field as the Isolation Flags value of the transaction.

 Create a new GUID as specified in [RFC4122] and assign it to the Transaction
Object.Identifier field of the transaction object.

 Add the connection to the connection list of the transaction.

 Set the Transaction field of the connection to the transaction object.

 Create a new Enlistment object with the following values:

 The transaction manager communicating with an application facet

 The transaction object

 The connection

 Set the Enlistment field of the connection to the new Enlistment object.

http://go.microsoft.com/fwlink/?LinkId=90460

283 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 Signal the Create Transaction (section 3.2.7.13) event on the Core Transaction Manager
Facet (section 1.3.3.3.1) with the Enlistment object.

 Otherwise, the message MUST be processed as an invalid message, as specified in section 3.1.6.

3.4.5.1.1.2 Receiving a TXUSER_BEGINNER_MTAG_COMMIT Message

When the transaction manager communicating with an application facet receives a
TXUSER_BEGINNER_MTAG_COMMIT message, the transaction manager communicating with an
application facet MUST perform the following actions:

 If the connection state is Active:

 Set the connection state to Committing Transaction.

 Obtain the transaction object referenced by the Enlistment object referenced by this

connection.

 Set the GRFRM field of the transaction object to the grfRM field of the message.

 Signal the Begin Phase Zero (section 3.2.7.5) event on the Core Transaction Manager Facet
with the transaction object.

 If the connection state is Aborting Transaction:

 Send a TXUSER_BEGINNER_MTAG_COMMIT_TOO_LATE message using the connection.

 Set the connection state to Ended.

 Otherwise, the message MUST be processed as an invalid message as specified in section 3.1.6.

3.4.5.1.1.3 Receiving a TXUSER_BEGINNER_MTAG_ABORT Message

When the transaction manager communicating with an application facet receives a
TXUSER_BEGINNER_MTAG_ABORT message, the transaction manager communicating with an

application facet MUST perform the following actions:

 If the connection state is Active:

 Set the connection state to Aborting Transaction.

 Signal the Begin Rollback (section 3.2.7.6) event on the Core Transaction Manager Facet with
the transaction object referenced by the Enlistment object referenced by this connection.

 If the connection state is Aborting Transaction:

 Send a TXUSER_BEGINNER_MTAG_REQUEST_COMPLETED message using the connection.

 Set the connection state to Ended.

 Otherwise, the message MUST be processed as an invalid message as specified in section 3.1.6.

3.4.5.1.1.4 Connection Disconnected

When a CONNTYPE_TXUSER_BEGINNER (section 2.2.8.1.1) connection is disconnected, the
transaction manager communicating with an application facet MUST perform the following actions:

 If the connection state is Active (section 3.4.1.1.3):

284 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 Signal the Begin Rollback (section 3.2.7.6) event on the Core Transaction Manager
Facet (section 1.3.3.3.1) with the transaction object referenced by the Enlistment object

referenced by this connection.

 Otherwise, the event MUST be processed as specified in section 3.1.8.3.

3.4.5.1.2 CONNTYPE_TXUSER_BEGIN2 as Acceptor

For all messages received in this connection type, the transaction manager communicating with an
application facet MUST process the message as specified in section 3.1. The transaction manager
communicating with an application facet MUST also follow the processing rules specified in the
following sections.

3.4.5.1.2.1 Receiving a TXUSER_BEGIN2_MTAG_BEGIN Message

When the transaction manager communicating with an application facet receives a
TXUSER_BEGIN2_MTAG_BEGIN (section 2.2.8.1.2.2) message, the transaction manager
communicating with an application facet MUST perform the following actions:

 If the connection state is Idle:

 Set the connection state to Beginning Transaction.

 If the transaction manager does not have sufficient memory available to process the message,
it MUST:

 Send a TXUSER_BEGIN2_MTAG_SINK_ERROR (section 2.2.8.1.2.5) message using the
connection:

 The Error field MUST be set to TRUN_TXBEGIN_ERROR_NO_MEM.

 Set the connection state to Ended.

 Otherwise:

 Create a transaction object using the transaction settings provided in the message:

 Use the isoLevel field as the Isolation Level value of the transaction.

 Use the dwTimeout field as the Timeout value of the transaction.

 Use the szDesc field as the Description value of the transaction.

 Use the isoFlags field as the Isolation Flags value of the transaction.

 Create a new GUID as specified in [RFC4122] and assign it to the Transaction
Object.Identifier field of the transaction object.

 Add the connection to the connection list of the transaction.

 Create a new enlistment object with the following values:

 The transaction manager communicating with an application facet.

 The transaction object.

 The connection.

 Set the Enlistment field of the connection to the new enlistment object.

http://go.microsoft.com/fwlink/?LinkId=90460

285 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 Signal the Create Transaction (section 3.2.7.13) event on the Core Transaction Manager
Facet with the enlistment object.

 Otherwise, the message MUST be processed as an invalid message as specified in section 3.1.6.

3.4.5.1.2.2 Receiving a TXUSER_SETTXTIMEOUT_MTAG_SETTXTIMEOUT Message

When the transaction manager communicating with an application facet receives a
TXUSER_SETTXTIMEOUT_MTAG_SETTXTIMEOUT message, the transaction manager communicating
with an application facet MUST perform the following actions:

 If the connection state is Active:

 Set the connection state to Modifying Timeout.

 Signal the Set Transaction Timeout event on the Core Transaction Manager Facet with the

following arguments:

 The transaction object referenced by the Enlistment object referenced by this connection

 The dwTxTimeout field from the message

 Otherwise, the message MUST be processed as an invalid message as specified in section 3.1.6.

3.4.5.1.2.3 Receiving a TXUSER_BEGIN2_MTAG_COMMIT Message

When the transaction manager communicating with an application facet receives a
TXUSER_BEGIN2_MTAG_COMMIT message, the transaction manager communicating with an
application facet MUST perform the following actions:

 If the connection state is Active:

 Set the connection state to Committing Transaction.

 Obtain the transaction object referenced by the Enlistment object referenced by this

connection.

 Set the GRFRM field of the transaction object to the grfRM field of the message.

 Signal the Begin Phase Zero (section 3.2.7.5) event on the Core Transaction Manager Facet
with the transaction object.

 Otherwise, the message MUST be processed as an invalid message as specified in section 3.1.6.

3.4.5.1.2.4 Receiving a TXUSER_BEGIN2_MTAG_ABORT Message

When the transaction manager communicating with an application facet receives a

TXUSER_BEGIN2_MTAG_ABORT (section 2.2.8.1.2.1) message, the transaction manager
communicating with an application facet MUST perform the following actions:

 If the connection state is Active:

 Set the connection state to Aborting Transaction.

 Signal the Begin Rollback (section 3.2.7.6) event on the Core Transaction Manager Facet with
the transaction object referenced by the Enlistment object referenced by this connection.

 Otherwise, the message MUST be processed as an invalid message as specified in section 3.1.6.

3.4.5.1.2.5 Connection Disconnected

286 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

When a CONNTYPE_TXUSER_BEGIN2 (section 2.2.8.1.2) connection is disconnected, the transaction
manager communicating with an application facet MUST perform the following actions:

 If the connection state is Active (section 3.4.1.2.3):

 Signal the Begin Rollback (section 3.2.7.6) event on the Core Transaction Manager

Facet (section 1.3.3.3.1) with the transaction object referenced by the Enlistment object
referenced by this connection.

 Otherwise, the event MUST be processed as specified in section 3.1.8.3.

3.4.5.1.3 CONNTYPE_TXUSER_PROMOTE as Acceptor

 For all messages received in this connection type, the transaction manager communicating with an
application facet MUST process the message as specified in section 3.1. The transaction manager

communicating with an application facet MUST also follow the processing rules specified in the
following sections.

3.4.5.1.3.1 Receiving a TXUSER_BEGINNER_MTAG_PROMOTE Message

When the transaction manager communicating with an application facet receives a
TXUSER_BEGINNER_MTAG_PROMOTE message, the transaction manager communicating with an

application facet MUST perform the following actions:

 If the connection state is Idle:

 Set the connection state to Beginning Transaction.

 If the transaction manager does not have sufficient memory available to process the message:

 Send a TXUSER_BEGIN2_MTAG_SINK_ERROR message using the connection:

 The Error field MUST be set to TRUN_TXBEGIN_ERROR_NO_MEM.

 Set the connection state to Ended.

 Otherwise:

 Create a transaction object using the transaction settings provided in the message:

 Use the isoLevel field as the Isolation Level value of the transaction.

 Use the dwTimeout field as the Timeout value of the transaction.

 Use the szDesc field as the Description value of the transaction.

 Use the isoFlags field as the Isolation Flags value of the transaction.

 Use the guidTX field as the Transaction Object.Identifier value of the transaction.

 Add the connection to the connection list of the transaction.

 Create a new Enlistment object with the following values:

 The transaction manager communicating with an application facet.

 The transaction object.

 The connection.

 Set the Enlistment field of the connection to the new Enlistment object.

287 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 Signal the Create Transaction (section 3.2.7.13) event on the Core Transaction Manager
Facet with the enlistment object.

 Otherwise, the message MUST be processed as an invalid message as specified in section 3.1.6.

3.4.5.1.3.2 Receiving a TXUSER_SETTXTIMEOUT_MTAG_SETTXTIMEOUT,

TXUSER_BEGIN2_MTAG_COMMIT, or TXUSER_BEGIN2_MTAG_ABORT

Message

When the transaction manager communicating with an application facet receives one of these
messages, it MUST follow the same message-processing rules as the CONNTYPE_TXUSER_BEGIN2

connection type acting as an acceptor, as specified in section 3.4.5.1.2.

3.4.5.1.3.3 Connection Disconnected

When a CONNTYPE_TXUSER_PROMOTE (section 2.2.8.1.3) connection is disconnected, the transaction
manager communicating with an application facet MUST perform the same actions as the
CONNTYPE_TXUSER_BEGIN2 (section 2.2.8.1.2) connection type acting as an acceptor. See section

3.4.5.1.2 for more information.

3.4.5.2 Transaction Propagation

3.4.5.2.1 Pull Propagation

3.4.5.2.1.1 CONNTYPE_TXUSER_ASSOCIATE as Acceptor

 For all messages received in this connection type, the transaction manager communicating with an
application facet MUST process the message as specified in section 3.1. The transaction manager
MUST also follow the processing rules that are specified in the following sections.

3.4.5.2.1.1.1 Receiving a TXUSER_ASSOCIATE_MTAG_ASSOCIATE Message

When the transaction manager communicating with an application facet receives a
TXUSER_ASSOCIATE_MTAG_ASSOCIATE message, it MUST perform the following actions:

 If the connection state is Idle:

 Set the connection state to Processing Associate Request (section 3.4.1.4.2).

 Override the default schema verification actions for incoming messages as specified in section
3.1.6 in the following manner:

 If the first 16 bytes of the SourceTmAddr field is equal to the binary representation of

the GUID {DC85CB48-D8A5-11d2-828B-00805F0DF75A}, then:

 If the SourceTmAddr field does not conform to the constraints specified in section
2.2.4.2 for a valid OLETX_TM_ADDR structure, then:

 Send a TXUSER_ASSOCIATE_MTAG_CREATE_BAD_TMADDR message by using the
connection.

 Perform default invalid message processing, as specified in section 3.1.6.

 Stop processing the message.

 Otherwise, if the SourceTmAddr field does not conform to the constraints specified in
section 2.2.5.3 for a valid NAMEOBJECTBLOB structure, then:

288 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 Send a TXUSER_ASSOCIATE_MTAG_CREATE_BAD_TMADDR message by using the
connection.

 Perform default invalid message processing, as specified in section 3.1.6.

 Stop processing the message.

 If the Allow Network Access flag, the Allow Network Transactions flag, or the Allow Inbound
Transactions flag of the core transaction manager is set to false:

 Send a TXUSER_ASSOCIATE_MTAG_CREATE_BAD_TMADDR message using the
connection.

 Set the connection state to Ended.

 Otherwise, if the transaction manager does not have sufficient memory available to process
the message:

 Send a TXUSER_ASSOCIATE_MTAG_NO_MEM_LOCAL message.

 Set the connection state to Ended.

 Otherwise:

 Find the transaction object in the transaction table of the transaction manager using the
guidTx field from the message as the key:

 If the transaction object is found in the list:

 Send a TXUSER_ASSOCIATE_MTAG_ASSOCIATED message to the application.

 Set the connection state to Active.

 Otherwise, if the transaction object is not found in the list, the transaction manager
MUST:

 Find the list of CONNTYPE_TXUSER_ASSOCIATE connections in the Associates
Table field of the transaction manager communicating with an application, using
the guidTx field from the message as a key.

 If the list is found:

 Add this connection to the list.

 Otherwise:

 Create an empty list of CONNTYPE_TXUSER_ASSOCIATE connections and add
this connection to it.

 Add the list to the associates table of the transaction manager communicating
with an application under the following key:

 The guidTx field from the message.

 Create a new transaction object with the information provided in the message:

 Use the guidTx field as the Transaction Object.Identifier value.

 Use the isoLevel field as the Isolation Level value.

 Use the szDesc field as the Description value.

289 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 If the SourceTmAddr field contains OLETX_TM_ADDR (section 2.2.4.2),
convert the SourceTmAddr field from the message to a new Name object, as

specified in section 3.1.1.2.

 Otherwise, convert the SourceTmAddr field from the message to a new

Name object, as specified in Converting a NAMEOBJECTBLOB Structure to a
Name Object (section 3.1.1.4).

 Signal the Associate Transaction (section 3.2.7.1) event on the Core
Transaction Manager Facet with the following arguments:

 The transaction object.

 The new Name object.

 Otherwise, the message MUST be processed as an invalid message as specified in section 3.1.6.

3.4.5.2.1.1.2 Connection Disconnected

When a CONNTYPE_TXUSER_ASSOCIATE connection is disconnected, the transaction manager
communicating with an application facet MUST perform the actions as specified in section 3.1.8.3.

3.4.5.2.2 Push Propagation

3.4.5.2.2.1 CONNTYPE_TXUSER_EXTENDEDWHEREABOUTS as Acceptor

For all messages received in this connection type, the transaction manager communicating with an
application facet MUST process the message as specified in section 3.1. The transaction manager
MUST also follow the processing rules specified in the following sections.

3.4.5.2.2.1.1 Receiving a TXUSER_EXTENDEDWHEREABOUTS_MTAG_GET Message

When the transaction manager communicating with an application facet receives a
TXUSER_EXTENDEDWHEREABOUTS_MTAG_GET message, the transaction manager MUST perform the

following actions:

 If the connection state is Idle:

 Set the connection state to Processing Inquiry.

 If the transaction manager does not have enough memory to process the
TXUSER_EXTENDEDWHEREABOUTS_MTAG_GET message:

 Send a TXUSER_EXTENDEDWHEREABOUTS_MTAG_NOMEM message using the connection.

 Otherwise:

 Send a TXUSER_EXTENDEDWHEREABOUTS_MTAG_GOT message using the connection:

 If the Extended Whereabouts Protocol Count field of the Core Transaction

Manager Facet is zero:

 Set the dwProtocolCount field to zero.

 Set the rgtmprotUsableList field to empty.

 Otherwise:

 Set the dwProtocolCount field to the Extended Whereabouts Protocol Count
field of the core transaction manager.

290 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 Set the contents of the rgtmprotUsableList field to the contents of the
Extended Whereabouts field of the core transaction manager. The size of the

rgtmprotUsableList field in bytes MUST be determined by the Extended
Whereabouts Size field of the core transaction manager.

 Set the connection state to Ended.

 Otherwise, the message MUST be processed as an invalid message as specified in section 3.1.6.

3.4.5.2.2.1.2 Connection Disconnected

When a CONNTYPE_TXUSER_EXTENDEDWHEREABOUTS (section 2.2.8.2.2.1) connection is
disconnected, the transaction manager MUST perform the actions as specified in section 3.1.8.3.

3.4.5.2.2.2 CONNTYPE_TXUSER_EXPORT as Acceptor

For all messages received in this connection type, the transaction manager communicating with an
application facet MUST process the message as specified in section 3.1. The transaction manager

MUST also follow the processing rules specified in the following sections.

3.4.5.2.2.2.1 Receiving a TXUSER_EXPORT_MTAG_CREATE Message

When the transaction manager communicating with an application facet receives a

TXUSER_EXPORT_MTAG_CREATE message, the transaction manager MUST perform the following
actions:

 If the connection state is Idle:

 Set the connection state to Processing Connection Request.

 If the first 16 bytes of SourceTmAddr is equal to the binary representation of the GUID
{DC85CB48-D8A5-11d2-828B-00805F0DF75A}, the SourceTmAddr field MUST contain an

OLETX_TM_ADDR (section 2.2.4.2) structure.

 Otherwise, the SourceTmAddr field MUST contain a NAMEOBJECTBLOB (section 2.2.5.3)
structure.

 Override the default schema verification actions for incoming messages as specified in section
3.1.6 in the following manner:

 If the SourceTmAddr field from the message contains an OLETX_TM_ADDR structure
and violates the constraints specified in section 2.2.4.2 or if the SourceTmAddr field from

the message contains a NAMEOBJECTBLOB structure and violates the constraints specified
in section 2.2.5.3, the transaction manager MUST:

 Send a TXUSER_EXPORT_MTAG_CREATE_BAD_TMADDR message using the
connection.

 Perform default invalid message processing, as specified in section 3.1.6.

 Cease processing the message.

 If the Allow Network Access flag, the Allow Network Transactions flag, or the Allow Outbound

Transactions flag of the Core Transaction Manager Facet is set to false:

 Send a TXUSER_EXPORT_MTAG_CREATE_BAD_TMADDR message using the connection.

 Set the connection state to Ended.

 Otherwise:

291 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 If the SourceTmAddr field contains an OLETX_TM_ADDR structure, convert the
SourceTmAddr field from the message to a new Name object, as specified in section

3.1.1.2.

 Otherwise, convert the SourceTmAddr field from the message to a new Name object, as

specified in Converting a NAMEOBJECTBLOB Structure to a Name Object (section 3.1.1.4).

 Store the Name object in the Connection-Specific Data field of the connection object.

 Send a TXUSER_EXPORT_MTAG_CREATED message using the connection.

 Set the connection state to Connection Active.

 Otherwise, the message MUST be processed as an invalid message as specified in section 3.1.6.

3.4.5.2.2.2.2 Receiving a TXUSER_EXPORT_MTAG_CREATE2 Message

When the transaction manager receives a TXUSER_EXPORT_MTAG_CREATE2 (section 2.2.8.2.2.2.2)
message, the transaction manager MUST perform the following actions:

 If the connection state is Idle:

 Set the connection state to Processing Connection Request.

 Override the default schema verification actions for incoming messages as specified in section
3.1.6 in the following manner:

 If the SourceTmAddr field in the message does not comply with the constraints specified in
section 2.2.4.2:

 Send a TXUSER_EXPORT_MTAG_CREATE_BAD_TMADDR message using the
connection.

 Perform default invalid message processing, as specified in section 3.1.6.

 Cease processing the message.

 If the Allow Network Access flag, the Allow Network Transactions flag, or the Allow Outbound

Transactions flag of the Core Transaction Manager Facet is set to false:

 Send a TXUSER_EXPORT_MTAG_CREATE_NET_TX_DISABLED message using the
connection.

 Set the connection state to Ended.

 Otherwise:

 Convert the SourceTmAddr field from the message to a new Name object, as specified in
section 3.1.1.2.

 Store the Name object in the Connection-Specific Data field of the connection object.

 Send a TXUSER_EXPORT_MTAG_CREATED message using the connection.

 Set the connection state to Connection Active.

 Otherwise, the message MUST be processed as an invalid message as specified in section 3.1.6.

3.4.5.2.2.2.3 Receiving a TXUSER_EXPORT_MTAG_EXPORT Message

292 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

When the transaction manager receives a TXUSER_EXPORT_MTAG_EXPORT message, the transaction
manager MUST perform the following actions:

 If the connection state is Connection Active:

 Set the connection state to Processing Push Operation Request.

 Find the transaction object in the transaction table of the transaction manager by using the
guidTX field from the message as the key.

 If the transaction object is not found:

 Send a TXUSER_EXPORT_MTAG_EXPORT_TX_NOT_FOUND message using the connection.

 Set the connection state to Connection Active.

 Otherwise:

 Add the connection to the connection list of the transaction.

 Signal the Export Transaction (section 3.2.7.21) event on the Core Transaction Manager
Facet with the following arguments:

 The Name object stored in the Connection-Specific Data field of the connection

 The transaction object

 Otherwise, the message MUST be processed as an invalid message as specified in section 3.1.6.

3.4.5.2.2.2.4 Connection Disconnected

When a CONNTYPE_TXUSER_EXPORT (section 2.2.8.2.2.2) connection is disconnected, the transaction
manager communicating with an application facet MUST perform the actions as specified in section
3.1.8.3.

3.4.5.2.2.3 CONNTYPE_TXUSER_EXPORT2 as Acceptor

For all messages received in this connection type, the transaction manager communicating with an

application facet MUST process the messages as specified in section 3.1. The transaction manager
MUST also follow the processing rules specified in the following sections.

3.4.5.2.2.3.1 Receiving a TXUSER_EXPORT_MTAG_CREATE Message

When the transaction manager communicating with an application facet receives a
TXUSER_EXPORT_MTAG_CREATE message, the transaction manager MUST perform the actions
specified in section 3.4.5.2.2.2.1.

3.4.5.2.2.3.2 Receiving a TXUSER_EXPORT_MTAG_CREATE2 Message

When the transaction manager receives a TXUSER_EXPORT_MTAG_CREATE2 message, the transaction

manager MUST perform the actions specified in section 3.4.5.2.2.2.2.

3.4.5.2.2.3.3 Receiving a TXUSER_EXPORT_MTAG_EXPORT Message

When the transaction manager receives a TXUSER_EXPORT_MTAG_EXPORT message, the transaction

manager MUST perform the actions specified in section 3.4.5.2.2.2.3.

3.4.5.2.2.3.4 Connection Disconnected

293 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

When a CONNTYPE_TXUSER_EXPORT2 (section 2.2.8.2.2.3) connection is disconnected, the
transaction manager communicating with an application facet MUST perform the actions as specified in

section 3.1.8.3.

3.4.5.2.2.4 CONNTYPE_TXUSER_IMPORT as Acceptor

For all messages received in this connection type, the transaction manager communicating with an
application facet MUST process the messages as specified in section 3.1. The transaction manager
MUST also follow the processing rules specified in the following sections.

3.4.5.2.2.4.1 Receiving a TXUSER_IMPORT_MTAG_IMPORT Message

When the transaction manager receives a TXUSER_IMPORT_MTAG_IMPORT message, the transaction

manager MUST perform the following actions:

 If the connection state is Idle:

 Set the connection state to Processing Import Request.

 Find the transaction object in the transaction table of the transaction manager by using the
guidTx field from the message as the key.

 If the transaction object is not found or if the transaction state is not Active, Phase Zero, or

Phase Zero Complete:

 Send a TXUSER_IMPORT_MTAG_IMPORT_TX_NOT_FOUND message using the connection.

 Set the connection state to Ended.

 Otherwise:

 Add the connection to the connection list of the transaction.

 Create a new Enlistment object using the following fields:

 The transaction manager communicating with an application facet

 The transaction object

 The connection object

 Assign the new Enlistment object to the Enlistment field of the connection.

 Signal the Create Voter Enlistment event on the Core Transaction Manager Facet with the
new Enlistment object.

 Otherwise, the message MUST be processed as an invalid message as specified in section 3.1.6.

3.4.5.2.2.4.2 Receiving a TXUSER_IMPORT_MTAG_ABORT Message

When the transaction manager receives a TXUSER_IMPORT_MTAG_ABORT message, the transaction

manager MUST perform the following actions:

 If the connection state is Too Late to Abort:

 Set the connection state to Processing Abort Request.

 Send a TXUSER_IMPORT_MTAG_ABORT_TOO_LATE message using the connection.

 Set the connection state to Ended.

294 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 Otherwise, if the connection state is Active:

 Set the connection state to Processing Abort Request.

 Signal the Enlistment Unilaterally Aborted (section 3.2.7.19) event of the Core Transaction
Manager Facet with the Enlistment field of the connection.

 Send a TXUSER_IMPORT_MTAG_REQUEST_COMPLETED message.

 Set the connection state to Ended.

 Otherwise, the message MUST be processed as an invalid message as specified in section 3.1.6.

3.4.5.2.2.4.3 Connection Disconnected

When a CONNTYPE_TXUSER_ASSOCIATE (section 2.2.8.2.1.1) connection is disconnected, the
transaction manager MUST perform the actions as specified in section 3.1.8.3.

3.4.5.2.2.5 CONNTYPE_TXUSER_IMPORT2 as Acceptor

For all messages received in this connection type, the transaction manager communicating with an
application facet MUST process the messages as specified in section 3.1. The transaction manager
MUST also follow the processing rules specified in the following sections.

3.4.5.2.2.5.1 Receiving a TXUSER_IMPORT2_MTAG_IMPORT Message

When the transaction manager receives a TXUSER_IMPORT2_MTAG_IMPORT message, the transaction
manager MUST perform the following actions:

 If the connection state is Idle:

 Set the connection state to Processing Import Request.

 Find the transaction object in the transaction table of the transaction manager by using the

guidTx field from the message as the key.

 If the transaction object is not found or if the transaction state is not Active, Phase Zero or
Phase Zero Complete:

 Send a TXUSER_IMPORT2_MTAG_SINK_ERROR message using the connection:

 The Error field MUST be set to TRUN_TXIMPORT_ERROR_IMPORT_TX_NOT_FOUND.

 Set the connection state to Ended.

 Otherwise:

 Add the connection to the connection list of the transaction.

 Create a new Enlistment object using the following fields:

 The transaction manager communicating with an application facet.

 The transaction object.

 The connection object.

 Assign the new Enlistment object to the Enlistment field of the connection.

 Signal the Create Voter Enlistment event on the Core Transaction Manager Facet with the
new Enlistment object.

295 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 Otherwise, the message MUST be processed as an invalid message as specified in section 3.1.6.

3.4.5.2.2.5.2 Receiving a TXUSER_IMPORT2_MTAG_IMPORT_WITH_SET Message

When the transaction manager receives a TXUSER_IMPORT2_MTAG IMPORT_WITH_SET message, the

transaction manager MUST perform the following actions:

 If the connection state is Idle:

 Set the connection state to Processing Import Request.

 Find the transaction object in the transaction table of the transaction manager by using the
guidTx field from the message as the key.

 If the transaction object is not found or if the transaction state is not Active, Phase Zero, or
Phase Zero Complete:

 Send a TXUSER_IMPORT2_MTAG_SINK_ERROR message using the connection:

 The Error field MUST be set to TRUN_TXIMPORT_ERROR_IMPORT_TX_NOT_FOUND.

 Set the connection state to Ended.

 Otherwise:

 Add the connection to the connection list of the transaction.

 Signal the Set Transaction Attributes (section 3.2.7.31) event on the Core Transaction

Manager Facet with the following arguments:

 The transaction object

 The isoLevel field from the message

 The isoFlags field from the message

 The szDesc field from the message

 Otherwise, the message MUST be processed as an invalid message as specified in section 3.1.6.

3.4.5.2.2.5.3 Receiving a TXUSER_IMPORT2_MTAG_ABORT Message

When the transaction manager receives a TXUSER_IMPORT2_MTAG_ABORT (section 2.2.8.2.2.5.1)
message, the transaction manager MUST perform the following actions:

 If the connection state is Too Late to Abort:

 Set the connection state to Processing Abort Request.

 Send a TXUSER_IMPORT2_MTAG_SINK_ERROR (section 2.2.8.2.2.5.4) message using the
connection:

 The Error field MUST be set to TRUN_TXIMPORT_ERROR_NOTIFY_ABORTED.

 Set the connection state to Ended.

 Otherwise, if the connection state is Active:

 Set the connection state to Processing Abort Request.

 Signal the Enlistment Unilaterally Aborted (section 3.2.7.19) event of the Core Transaction
Manager Facet with the Enlistment field of the connection.

296 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 Send a TXUSER_IMPORT2_MTAG_SINK_ERROR message.

 The Error field MUST be set to TRUN_TXIMPORT_ERROR_NOTIFY_ABORTED.

 Set the connection state to Ended.

 Otherwise, the message MUST be processed as an invalid message as specified in section 3.1.6.

3.4.5.2.2.5.4 Connection Disconnected

When a CONNTYPE_TXUSER_ASSOCIATE (section 2.2.8.2.1.1) connection is disconnected, the
transaction manager MUST perform the actions as specified in section 3.1.8.3.

3.4.5.3 Transaction Administration

3.4.5.3.1 CONNTYPE_TXUSER_GETTXDETAILS as Acceptor

For all messages received in this connection type, the transaction manager MUST process the message

as specified in section 3.1. The transaction manager MUST also follow the processing rules that are
specified in the following sections.

3.4.5.3.1.1 Receiving a TXUSER_GETTXDETAILS_MTAG_GET Message

When the transaction manager receives a TXUSER_GETTXDETAILS_MTAG_GET message, the
transaction manager MUST perform the following actions:

 If the connection state is Idle:

 Set the connection state to Processing Inquiry.

 Find the transaction object in the transaction table of the transaction manager by using the

guidTx field from the message as the key:

 If the transaction object is not found in the list, the transaction manager MUST:

 Send a TXUSER_GETTXDETAILS_MTAG_TX_NOT_FOUND message using the
connection.

 Otherwise:

 Send a TXUSER_GETTXDETAILS_MTAG_GOTIT message using the connection with the
message fields set as follows:

 The vszSuperiorName field MUST be set to a new OLETX_VARLEN_STRING
structure that is populated with the transaction object's Superior enlistment
object's Name property.

 The vszSuperiorID field MUST be set to a new OLETX_VARLEN_STRING structure
that is populated with the transaction object's Superior enlistment object's
Enlistment Object.Identifier property.

 The rgSubordinates field MUST be set to an array of OLETX_VARLEN_STRING

structures. Each subordinate entry is represented by two adjacent structures,
whose values are set as follows:

 For each enlistment object in the Phase One enlistment and Phase Two
enlistment lists of the transaction:

 The first subordinate structure MUST be set to the Name property of the
enlistment object.

297 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 The second subordinate structure MUST be set to the Enlistment
Object.Identifier property of the enlistment object.

 The lSubordinateCount field MUST be set to the number of enlistment objects
whose values were added to the rgSubordinates array.

 Set the connection state to Ended.

 Otherwise, the message MUST be processed as an invalid message as specified in section 3.1.6.

3.4.5.3.1.2 Connection Disconnected

When a CONNTYPE_TXUSER_GETTXDETAILS (section 2.2.8.3.1) connection is disconnected, the
transaction manager MUST perform the actions as specified in section 3.1.8.3.

3.4.5.3.2 CONNTYPE_TXUSER_RESOLVE as Acceptor

For all messages received in this connection type, the transaction manager communicating with an

application facet MUST process the message as specified in section 3.1. The transaction manager
MUST also follow the processing rules specified in the following sections.

3.4.5.3.2.1 Receiving a TXUSER_RESOLVE_MTAG_CHILD_ABORT Message

When the transaction manager communicating with an application facet receives a

TXUSER_RESOLVE_MTAG_CHILD_ABORT message, the transaction manager communicating with an
application facet MUST perform the following actions:

 If the connection state is Idle:

 Set the connection state to Processing Abort Request.

 Verify if the initiator identity of the connection is authenticated as an administrator, as
specified in section 5.1.<33>

 If the initiator identity is not authorized to perform the requested action

 Signal the Resolve Transaction Access Denied (section 3.4.7.17) event on the Transaction
Manager facet communicating with an Application facet with the following arguments:

 The current connection object.

 Otherwise, find the transaction object in the transaction table of the transaction manager by
using the guidTx field provided in the message as a key.

 If the transaction object is not found:

 Send a TXUSER_RESOLVE_MTAG_TX_NOT_FOUND message by using the connection.

 Set the connection state to Ended.

 Otherwise:

 Add the connection to the transaction connection list.

 Signal the Resolve Transaction (section 3.2.7.30) event on the Core Transaction Manager
Facet with the following arguments:

 The transaction object

 The Aborted outcome

298 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 Otherwise, the message MUST be processed as an invalid message as specified in section 3.1.6.

3.4.5.3.2.2 Receiving a TXUSER_RESOLVE_MTAG_CHILD_COMMIT Message

When the transaction manager communicating with an application facet receives a

TXUSER_RESOLVE_MTAG_CHILD_COMMIT message, the transaction manager communicating with an
application facet MUST perform the following actions:

 If the connection state is Idle:

 Set the connection state to Processing Commit request.

 Verify if the initiator identity of the connection is authenticated as an administrator, as
specified in section 5.1.<34>

 If the initiator identity is not authorized to perform the requested action

 Signal the Resolve Transaction Access Denied (section 3.4.7.17) event on the Transaction
Manager facet communicating with an Application facet with the following arguments:

 The current connection object.

 Otherwise find the transaction object in the transaction table of the transaction manager by
using the guidTx field provided in the message as a key.

 If the transaction object is not found:

 Send a TXUSER_RESOLVE_MTAG_TX_NOT_FOUND message by using the connection.

 Set the connection state to Ended.

 Otherwise:

 Add the connection to the transaction connection list.

 Signal the Resolve Transaction event on the Core Transaction Manager Facet with the
following arguments:

 The transaction object

 The Committed outcome.

 Otherwise, the message MUST be processed as an invalid message as specified in section 3.1.6.

3.4.5.3.2.3 Receiving a TXUSER_RESOLVE_MTAG_FORGET_COMMITTED Message

When the transaction manager communicating with an application facet receives a
TXUSER_RESOLVE_MTAG_FORGET_COMMITTED message, the transaction manager communicating
with an application facet MUST perform the following actions:

 If the connection state is Idle:

 Set the connection state to Processing Forget Request.

 Verify if the initiator identity of the connection is authenticated as an administrator, as
specified in section 5.1.<35>

 If the initiator identity is not authorized to perform the requested action

 Signal the Resolve Transaction Access Denied (section 3.4.7.17) event on the Transaction

Manager facet communicating with an Application facet with the following arguments:

299 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 The current connection object.

 Otherwise, find the transaction object in the transaction table of the transaction manager by

using the guidTx field provided in the message as a key.

 If the transaction object is not found:

 Send a TXUSER_RESOLVE_MTAG_TX_NOT_FOUND message by using the connection.

 Set the connection state to Ended.

 Otherwise:

 Add the connection to the transaction connection list.

 Signal the Resolve Transaction (section 3.2.7.30) event on the Core Transaction Manager
Facet with the following arguments:

 The transaction object

 The Forgotten outcome

 Otherwise, the message MUST be processed as an invalid message as specified in section 3.1.6.

3.4.5.3.2.4 Connection Disconnected

When a CONNTYPE_TXUSER_RESOLVE (section 2.2.8.3.2) connection is disconnected, the transaction
manager MUST perform the actions as specified in section 3.1.8.3.

3.4.5.3.3 CONNTYPE_TXUSER_SETTXTIMEOUT as Acceptor

For all messages received in this connection type, the transaction manager MUST process the message
as specified in section 3.1. The transaction manager MUST also follow the processing rules specified in
the following sections.

3.4.5.3.3.1 Receiving a TXUSER_SETTXTIMEOUT_MTAG_SETTXTIMEOUT Message

When the transaction manager receives a
TXUSER_SETTXTIMEOUT_MTAG_SETTXTIMEOUT (section 2.2.8.1.2.7) message, the transaction
manager MUST perform the following actions:

 If the connection state is Idle:

 Set the connection state to Processing Request.

 Find the transaction object in the transaction table of the transaction manager by using the
guidTx field from the message as the key.

 If the transaction object is not found in the list:

 Send the application a

TXUSER_SETTXTIMEOUT_MTAG_TX_NOT_FOUND (section 2.2.8.3.3.1) message.

 Set the connection state to Ended.

 Otherwise:

 Signal the Set Transaction Timeout (section 3.2.7.32) event on the Core Transaction
Manager Facet with the following arguments:

 The transaction object

300 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 The dwTxTimeout field from the message

 Otherwise, the message MUST be processed as an invalid message as specified in section 3.1.6.

3.4.5.3.3.2 Connection Disconnected

When a CONNTYPE_TXUSER_SETTXTIMEOUT (section 2.2.8.3.3) connection is disconnected, the
transaction manager MUST perform the actions as specified in section 3.1.8.3.

3.4.5.3.4 CONNTYPE_TXUSER_SETTXTIMEOUT2 as Acceptor

For all messages received in this connection type, the transaction manager MUST process the message
as specified in section 3.1. The application MUST also follow the processing rules specified in the
following sections.

3.4.5.3.4.1 Receiving a TXUSER_SETTXTIMEOUT_MTAG_SETTXTIMEOUT Message

When the transaction manager receives a

TXUSER_SETTXTIMEOUT_MTAG_SETTXTIMEOUT (section 2.2.8.1.2.7) message, the transaction
manager MUST perform the following actions:

 If the connection state is Idle:

 Set the connection state to Processing Request.

 If the transaction manager of the application supports the
CONNTYPE_TXUSER_SETTXTIMEOUT2 (section 2.2.8.3.4) connection type as specified in
section 2.2.1.1.1:

 Send a TXUSER_SETTXTIMEOUT_MTAG_TX_NOT_FOUND (section 2.2.8.3.3.1) message.

 Otherwise, send an MTAG_CONNECTION_REQ_DENIED (section 2.2.5) message with the
Reason field set to 0x80070057.

 Set the connection state to Ended.

 Otherwise, the message MUST be processed as specified in section 3.1.6.

3.4.5.3.4.2 Connection Disconnected

When a CONNTYPE_TXUSER_SETTXTIMEOUT (section 2.2.8.3.3) connection is disconnected, the
transaction manager MUST perform the actions as specified in section 3.1.8.3.

3.4.5.3.5 CONNTYPE_TXUSER_TRACE as Acceptor

For all messages received in this connection type, the transaction manager communicating with an
application facet MUST process the message as specified in section 3.1. The transaction manager
communicating with an application facet MUST also follow the processing rules specified in the
following sections.

3.4.5.3.5.1 Receiving a TXUSER_TRACE_MTAG_DUMP_TRANSACTION Message

When the transaction manager communicating with an application facet receives a
TXUSER_TRACE_MTAG_DUMP_TRANSACTION message, the transaction manager communicating with
an application facet MUST perform the following actions:

 If the connection state is Idle:

 Set the connection state to Processing Trace Request.

301 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 Find the transaction object in the transaction table of the transaction manager by using the
guidTx field from the message as the key.

 If the transaction object is not found in the list, the transaction manager MUST:

 Send a TXUSER_TRACE_MTAG_TX_NOT_FOUND message using the connection.

 Otherwise:

 Attempt to generate trace records for the transaction in the trace file of the
transaction manager in an implementation-specific manner.

 If the operation fails:

 Send a TXUSER_TRACE_MTAG_REQUEST_FAILED message using the connection.

 Otherwise:

 Send a TXUSER_TRACE_MTAG_REQUEST_COMPLETE message using the

connection.

 Set the connection state to Ended.

 Otherwise, the message MUST be processed as an invalid message as specified in section 3.1.6.

3.4.5.3.5.2 Connection Disconnected

When a CONNTYPE_TXUSER_TRACE (section 2.2.8.3.5) connection is disconnected, the transaction

manager communicating with an application facet MUST perform the actions as specified in section
3.1.8.3.

3.4.5.4 Transaction Manager Administration

3.4.5.4.1 CONNTYPE_TXUSER_GETSECURITYFLAGS as Acceptor

For all messages received in this connection type, the transaction manager communicating with an
application facet MUST process the message as specified in section 3.1. The transaction manager
communicating with an application facet MUST also follow the processing rules specified in the
following sections.

3.4.5.4.1.1 Receiving a TXUSER_GETSECURITYFLAGS_MTAG_GETSECURITYFLAGS

Message

When the transaction manager communicating with an application facet receives a
TXUSER_GETSECURITYFLAGS_MTAG_GETSECURITYFLAGS message, the transaction manager
communicating with an application facet MUST perform the following actions:

 If the connection state is Idle:

 Set the connection state to Processing Request.

 Send a TXUSER_GETSECURITYFLAGS_MTAG_FETCHED message using the connection:

 If the Allow Network Access flag of the Core Transaction Manager Facet is set to false:

 Set the grfNetworkDtcAccess field to zero.

 Otherwise, set the grfNetworkDtcAccess field as follows:

 Set all bits to zero by default.

302 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 Set the DTCADVCONFIG_NETWORKDTCACCESS_ENABLE bit to 1.

 If the Allow Remote Administration flag of the Core Transaction Manager Facet is set

to true:

 Set the DTCADVCONFIG_NETWORKDTCACCESS_ADMIN bit to 1.

 If the Allow Network Transactions flag of the Core Transaction Manager Facet is set to
true:

 Set the DTCADVCONFIG_NETWORKDTCACCESS_TX bit to 1.

 If the Allow Remote Clients flag of the Core Transaction Manager Facet is set to true:

 Set the DTCADVCONFIG_NETWORKDTCACCESS_CLIENTS bit to 1.

 If the Allow TIP flag of the Core Transaction Manager Facet is set to true:

 Set the DTCADVCONFIG_NETWORKDTCACCESS_TIP bit to 1.

 If the Allow Outbound Transactions flag of the Core Transaction Manager Facet is set
to true:

 Set the DTCADVCONFIG_OUTBOUNDNETWORK_TX bit to 1.

 If the Allow Inbound Transactions flag of the Core Transaction Manager Facet is set to
true:

 Set the DTCADVCONFIG_INBOUNDNETWORK_TX bit to 1.

 If the Security Level field of the Core Transaction Manager Facet is set to no
security:

 Set the DTCADVCONFIG_SECURITYLEVEL_NOSECURITY bit to 1.

 Otherwise, if the Security Level field of the Core Transaction Manager Facet is set to

incoming authentication:

 Set the DTCADVCONFIG_SECURITYLEVEL_AUTHENTICATEDONLY bit to 1.

 Otherwise, if the Security Level field of the Core Transaction Manager Facet is set to

mutual authentication:

 Set the DTCADVCONFIG_SECURITYLEVEL_MUTUALAUTH bit to 1.

 If the Allow XA flag of the Core Transaction Manager Facet is set to true, set the
grfXaTransaction field to 1; otherwise, set the flag to zero.

 If the Allow LUTransactions flag of the Core Transaction Manager Facet is set to true, set
the DTCADVCONFIG_OPTIONS_LUTRANSACTIONS_DISABLE option bit in the grfOptions
field to 0; otherwise, set the option bit to 1.

 Set the connection state to Ended.

 Otherwise, the message MUST be processed as an invalid message as specified in section 3.1.6.

3.4.5.4.1.2 Connection Disconnected

When a CONNTYPE_TXUSER_TRACE (section 2.2.8.3.5) connection is disconnected, the transaction
manager communicating with an application facet MUST perform the actions as specified in section

3.1.8.3.

303 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

3.4.6 Timer Events

No timer events apply here.

3.4.7 Other Local Events

A transaction manager communicating with an application facet MUST be prepared to process the local
events that are defined in the following sections.

The transaction manager communicating with an application facet MUST be prepared to process local
events pertaining to Phase Zero functionality only on versions where the connection type

CONNTYPE_TXUSER_PHASE0 is supported. Section 2.2.1.1.3 defines protocol version support for this
connection type. The following local events are affected:

 Register Phase Zero (section 3.4.7.15)

 Phase Zero Complete (section 3.4.7.14)

3.4.7.1 Associate Transaction Failure

The Associate Transaction Failure event MUST be signaled with the following arguments:

 A transaction object.

 A value indicating the failure reason. The reason MUST be set to one of the following values:

 Comm Failed

 Log Full Remote

 Log Full Local

 No Mem Remote

 Too Late

 Too Many Remote

 Too Many Local

 Tx Not Found

If the Associate Transaction Failure event is signaled, the transaction manager MUST perform the

following actions:

 Find an instance of a CONNTYPE_TXUSER_ASSOCIATE (section 2.2.8.2.1.1) connection list in the
associates table of the transaction manager communicating with an application facet by using the
Transaction Object.Identifier field of the transaction object as the key.

 For each connection in the list:

 Remove the connection from the list.

 If the connection state is Processing Associate Request:

 Send the matching message for the following reason codes:

 Comm Failed: TXUSER_ASSOCIATE_MTAG_COMM_FAILED (section 2.2.8.2.1.1.3)

 Log Full Remote:
TXUSER_ASSOCIATE_MTAG_LOG_FULL_REMOTE (section 2.2.8.2.1.1.6)

304 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 Log Full Local: TXUSER_ASSOCIATE_MTAG_LOG_FULL_LOCAL (section 2.2.8.2.1.1.5)

 No Mem Remote:

TXUSER_ASSOCIATE_MTAG_NO_MEM_REMOTE (section 2.2.8.2.1.1.8)

 Too Late:TXUSER_ASSOCIATE_MTAG_TOO_LATE (section 2.2.8.2.1.1.9)

 Too Many Remote:
TXUSER_ASSOCIATE_MTAG_TOO_MANY_REMOTE (section 2.2.8.2.1.1.11)

 Too Many Local:
TXUSER_ASSOCIATE_MTAG_TOO_MANY_LOCAL (section 2.2.8.2.1.1.10)

 Tx Not Found: TXUSER_ASSOCIATE_MTAG_TX_NOT_FOUND (section 2.2.8.2.1.1.12)

 Set the connection state to Ended.

 Remove the list from the associates table of the transaction manager communicating with an

application facet.

3.4.7.2 Associate Transaction Success

The Associate Transaction Success event MUST be signaled with the following arguments:

 A transaction object.

If the Associate Transaction Success event is signaled, the transaction manager MUST perform the
following actions:

 Find the list of CONNTYPE_TXUSER_ASSOCIATE (section 2.2.8.2.1.1) connections in the
associates table of the transaction manager communicating with an application facet by using the
Transaction Object.Identifier field of the transaction object as the key.

 For each connection in the list:

 Remove the connection from the list.

 If the connection state is Processing Associate Request:

 Send a TXUSER_ASSOCIATE_MTAG_ASSOCIATED (section 2.2.8.2.1.1.2) message using
the connection.

 Set the connection state to Active.

 Remove the list from the associates table of the transaction manager communicating with an

application facet.

3.4.7.3 Begin Commit

The Begin Commit event MUST be signaled with the following arguments:

 An Enlistment object

If the Begin Commit event is signaled, the transaction manager MUST perform the following actions:

 If the enlistment connection is of type CONNTYPE_TXUSER_IMPORT (section 2.2.8.2.2.4):

 Set the connection state to Ended.

305 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 Otherwise, if the enlistment connection is of type
CONNTYPE_TXUSER_IMPORT2 (section 2.2.8.2.2.5) or

CONNTYPE_TXUSER_ASSOCIATE (section 2.2.8.2.1.1):

 Send a TXUSER_IMPORT2_MTAG_SINK_ERROR (section 2.2.8.2.2.5.4) message:

 The Error field MUST be set to TRUN_TXIMPORT_ERROR_NOTIFY_COMMITTED.

 Set the connection state to Ended.

3.4.7.4 Begin In Doubt

The Begin In Doubt event MUST be signaled with the following arguments:

 An Enlistment object.

If the Begin In Doubt event is signaled, the transaction manager MUST perform the following actions:

 If the enlistment connection is of type CONNTYPE_TXUSER_IMPORT (section 2.2.8.2.2.4):

 Set the connection state to Ended.

 Otherwise, if the enlistment connection is of type
CONNTYPE_TXUSER_IMPORT2 (section 2.2.8.2.2.5) or

CONNTYPE_TXUSER_ASSOCIATE (section 2.2.8.2.1.1):

 Send a TXUSER_IMPORT2_MTAG_SINK_ERROR (section 2.2.8.2.2.5.4) message:

 The Error field MUST be set to TRUN_TXIMPORT_ERROR_NOTIFY_INDOUBT.

 Set the connection state to Ended.

3.4.7.5 Begin Rollback

The Begin Rollback event MUST be signaled with the following arguments:

 An Enlistment object.

If the Begin Rollback event is signaled, the transaction manager MUST perform the following actions:

 If the enlistment's connection is of type CONNTYPE_TXUSER_IMPORT (section 2.2.8.2.2.4):

 Set the connection state to Ended.

 Otherwise, if the enlistment's connection is of type
CONNTYPE_TXUSER_IMPORT2 (section 2.2.8.2.2.5) or
CONNTYPE_TXUSER_ASSOCIATE (section 2.2.8.2.1.1):

 If the connection state is Active or Too Late to Abort:

 Send a TXUSER_IMPORT2_MTAG_SINK_ERROR (section 2.2.8.2.2.5.4) message:

 The Error field MUST be set to TRUN_TXIMPORT_ERROR_NOTIFY_ABORTED.

 Set the connection state to Ended.

3.4.7.6 Begin Voting

The Begin Voting event MUST be signaled with the following arguments:

306 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 An Enlistment object

If the Begin Voting event is signaled, the transaction manager MUST perform the following actions:

 If the enlistment's connection is of type CONNTYPE_TXUSER_IMPORT,
CONNTYPE_TXUSER_IMPORT2 or CONNTYPE_TXUSER_ASSOCIATE:

 Signal the Enlistment Vote Complete event on the Core Transaction Manager Facet with the
following arguments:

 The provided Enlistment object

 The Prepared vote outcome

 If the enlistment's connection type is CONNTYPE_TXUSER_IMPORT or
CONNTYPE_TXUSER_IMPORT2:

 Set the connection state to Too Late to Abort.

3.4.7.7 Create Transaction Failure

The Create Transaction Failure event MUST be signaled with the following arguments:

 A transaction object.

 A value indicating the failure reason. The reason MUST be set to one of the following values:

 Log Full

 No Mem

 Duplicate

If the Create Transaction Failure event is signaled, the transaction manager MUST perform the
following actions:

 If the transaction's connection list contains a connection of type

CONNTYPE_TXUSER_BEGINNER (section 2.2.8.1.1):

 Send the matching message for the following reason codes:

 Log Full: TXUSER_BEGINNER_MTAG_BEGIN_LOG_FULL (section 2.2.8.1.1.3)

 No Mem: TXUSER_BEGINNER_MTAG_BEGIN_NO_MEM (section 2.2.8.1.1.4)

 Set the connection state to Ended.

 Otherwise, if the transaction's connection list contains a connection of type

CONNTYPE_TXUSER_BEGIN2 (section 2.2.8.1.2) or
CONNTYPE_TXUSER_PROMOTE (section 2.2.8.1.3):

 Send a TXUSER_BEGIN2_MTAG_SINK_ERROR (section 2.2.8.1.2.5) message:

 The Error field MUST be set to the value matching the following reason codes:

 Log Full: TRUN_TXBEGIN_ERROR_BEGIN_LOG_FULL

 No Mem: TRUN_TXBEGIN_ERROR_NO_MEM

 Duplicate: TRUN_TXBEGIN_ERROR_DUPLICATE_GUID

 Set the connection state to Ended.

307 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

3.4.7.8 Create Transaction Success

The Create Transaction Success event MUST be signaled with the following arguments:

 A transaction object

If the Create Transaction Success event is signaled, the transaction manager MUST perform the
following actions:

 If the transaction's connection list contains a connection of type
CONNTYPE_TXUSER_BEGINNER (section 2.2.8.1.1)

 Send a TXUSER_BEGINNER_MTAG_BEGUN (section 2.2.8.1.1.5) message.

 The guidTx field MUST be set to the Transaction Object.Identifier field of the
transaction object.

 Set the connection state to Active.

 Otherwise, if the transaction's connection list contains a connection of type
CONNTYPE_TXUSER_BEGIN2 (section 2.2.8.1.2) or
CONNTYPE_TXUSER_PROMOTE (section 2.2.8.1.3):

 Send a TXUSER_BEGIN2_MTAG_SINK_BEGUN (section 2.2.8.1.2.4) message:

 The guidTx field MUST be set to the Transaction Object.Identifier field of the

transaction object.

 Set the connection state to Active.

3.4.7.9 Create Voter Enlistment Failure

The Create Voter Enlistment Failure event MUST be signaled with the following arguments:

 An Enlistment object.

 A value indicating the failure reason. The reason MUST be set to the following value:

 Too Late

If the Create Voter Enlistment Failure event is signaled, the Transaction Manager MUST perform the
following actions:

 If the provided enlistment's connection is of type
CONNTYPE_TXUSER_IMPORT2 (section 2.2.8.2.2.5):

 Send a TXUSER_IMPORT2_MTAG_SINK_ERROR (section 2.2.8.2.2.5.4) message using the
provided enlistment's connection:

 The Error field MUST be set to:

 TRUN_TXIMPORT_ERROR_IMPORT_TX_NOT_FOUND.

 Set the connection state to Ended.

 Otherwise, if the provided enlistment's connection is of type

CONNTYPE_TXUSER_IMPORT (section 2.2.8.2.2.4):

 Send a TXUSER_IMPORT_MTAG_IMPORT_TX_NOT_FOUND message using the provided
enlistment's connection.

308 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 Set the connection state to Ended.

3.4.7.10 Create Voter Enlistment Success

The Create Voter Enlistment Success event MUST be signaled with the following arguments:

 An Enlistment object

If the Create Voter Enlistment Success event is signaled, the Transaction Manager MUST perform the
following actions:

 If the provided enlistment's connection is of type

CONNTYPE_TXUSER_IMPORT2 (section 2.2.8.2.2.5):

 Send the TXUSER_IMPORT2_MTAG_SINK_IMPORTED (section 2.2.8.2.2.5.5) message using
the provided enlistment's connection.

 The isoLevel field MUST be set to the Isolation Level field of the transaction object

referenced by the provided Enlistment object.

 The isoFlags field MUST be set to the Isolation Flags field of the transaction object
referenced by the provided Enlistment object.

 Otherwise, if the provided enlistment's connection is of type
CONNTYPE_TXUSER_IMPORT (section 2.2.8.2.2.4):

 Send the TXUSER_IMPORT_MTAG_IMPORTED (section 2.2.8.2.2.4.5) message using the
provided enlistment's connection:

 The isoLevel field MUST be set to the Isolation Level field of the transaction object
referenced by the provided Enlistment object.

 The isoFlags field MUST be set to the Isolation Flags field of the transaction object

referenced by the provided Enlistment object.

 Set the connection state to Active.

3.4.7.11 Export Transaction Failure

The Export Transaction Failure event MUST be signaled with the following arguments:

 A transaction object.

 A value indicating the failure reason. The reason MUST be set to one of the following values:

 Log Full

 No Mem

 Too Late

 Too Many

 Comm Failed

If the Export Transaction Failure event is signaled, the transaction manager MUST perform the
following actions:

 Find an instance of a CONNTYPE_TXUSER_EXPORT2 (section 2.2.8.2.2.3) connection in the
provided transaction's connection list.

309 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 Send the matching message for the following reason codes:

 Log Full: TXUSER_EXPORT_MTAG_EXPORT_LOG_FULL (section 2.2.8.2.2.2.7)

 No Mem: TXUSER_EXPORT_MTAG_EXPORT_NO_MEM (section 2.2.8.2.2.2.8)

 Too Late: TXUSER_EXPORT_MTAG_EXPORT_TOO_LATE (section 2.2.8.2.2.2.9)

 Too Many: TXUSER_EXPORT_MTAG_EXPORT_TOO_MANY (section 2.2.8.2.2.2.10)

 Not Found: TXUSER_EXPORT_MTAG_EXPORT_TX_NOT_FOUND (section 2.2.8.2.2.2.11)

 Comm Failed: TXUSER_EXPORT_MTAG_EXPORT_COMM_FAILED (section 2.2.8.2.2.3.1)

 Set the connection state to Ended.

 Otherwise, find an instance of a CONNTYPE_TXUSER_EXPORT (section 2.2.8.2.2.2) connection in
the provided transaction's connection list.

 Send the matching message for the following reason codes:

 Log Full: TXUSER_EXPORT_MTAG_EXPORT_LOG_FULL (section 2.2.8.2.2.2.7)

 No Mem: TXUSER_EXPORT_MTAG_EXPORT_NO_MEM (section 2.2.8.2.2.2.8)

 Too Late: TXUSER_EXPORT_MTAG_EXPORT_TOO_LATE (section 2.2.8.2.2.2.9)

 Too Many: TXUSER_EXPORT_MTAG_EXPORT_TOO_MANY (section 2.2.8.2.2.2.10)

 Not Found: TXUSER_EXPORT_MTAG_EXPORT_TX_NOT_FOUND (section 2.2.8.2.2.2.11)

 Otherwise, if no such connection exists, the event MUST be ignored.

3.4.7.12 Export Transaction Success

The Export Transaction Success event MUST be signaled with the following arguments:

 A transaction object

If the Export Transaction Success event is signaled, the transaction manager MUST perform the

following actions:

 Find an instance of a CONNTYPE_TXUSER_EXPORT2 (section 2.2.8.2.2.3) connection in the
provided transaction's connection list.

 Send a TXUSER_EXPORT_MTAG_EXPORTED (section 2.2.8.2.2.2.12) message using the
connection.

 Set the connection state to Connection Active (section 3.4.1.9.3).

 Otherwise, find an instance of a CONNTYPE_TXUSER_EXPORT (section 2.2.8.2.2.2) connection in
the provided transaction's connection list.

 Send a TXUSER_EXPORT_MTAG_EXPORTED (section 2.2.8.2.2.2.12) message using the
connection.

 Set the connection state to Connection Active (section 3.4.1.8.3).

 Otherwise, if no such connection exists, the event MUST be ignored.

310 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

3.4.7.13 Phase One Complete

The Phase One Complete event MUST be signaled with the following arguments:

 An Enlistment object.

 A value indicating the outcome of Phase One. The value MUST be set to one of the following
values:

 Read Only

 Committed

 Aborted

 In Doubt

If the Phase One Complete event is signaled, the Transaction Manager Communicating with an

Application Facet MUST perform the following actions:

 If the provided outcome is Read Only or Committed:

 If the transaction's connection list contains a connection of type
CONNTYPE_TXUSER_BEGINNER (section 2.2.8.1.1):

 Send a TXUSER_BEGINNER_MTAG_REQUEST_COMPLETED (section 2.2.8.1.1.9) message.

 Set the connection state to Ended.

 Otherwise, if the transaction's connection list contains a connection of type
CONNTYPE_TXUSER_BEGIN2 (section 2.2.8.1.2) or
CONNTYPE_TXUSER_PROMOTE (section 2.2.8.1.3):

 Send a TXUSER_BEGIN2_MTAG_SINK_ERROR (section 2.2.8.1.2.5) message:

 The Error field MUST be set to TRUN_TXBEGIN_ERROR_NOTIFY_COMMITTED.

 Set the connection state to Ended.

 Otherwise, if the provided outcome is Aborted:

 If the transaction's connection list contains a connection of type
CONNTYPE_TXUSER_BEGINNER (section 2.2.8.1.1):

 If the connection state is Active:

 Set the connection state to Aborting Transaction.

 Otherwise, if the connection state is Aborting Transaction or Committing Transaction:

 Send a TXUSER_BEGINNER_MTAG_REQUEST_COMPLETED (section 2.2.8.1.1.9)
message.

 Set the connection state to Ended.

 Otherwise, ignore the event.

 Otherwise, if the transaction's connection list contains a connection of type
CONNTYPE_TXUSER_BEGIN2 (section 2.2.8.1.2) or
CONNTYPE_TXUSER_PROMOTE (section 2.2.8.1.3):

 Send a TXUSER_BEGIN2_MTAG_SINK_ERROR (section 2.2.8.1.2.5) message:

311 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 The Error field MUST be set to TRUN_TXBEGIN_ERROR_NOTIFY_ABORTED.

 Set the connection state to Ended.

 Otherwise, if the provided outcome is In Doubt:

 If the transaction's connection list contains a

CONNTYPE_TXUSER_BEGINNER (section 2.2.8.1.1) connection:

 Send a TXUSER_BEGINNER_MTAG_COMMIT_INDOUBT (section 2.2.8.1.1.7) message.

 Set the connection state to Ended.

 Otherwise, if the transaction's connection list contains a
CONNTYPE_TXUSER_BEGIN2 (section 2.2.8.1.2) connection:

 Send a TXUSER_BEGIN2_MTAG_SINK_ERROR (section 2.2.8.1.2.5) message:

 The Error field MUST be set to TRUN_TXBEGIN_ERROR_NOTIFY_INDOUBT.

 Set the connection state to Ended.

3.4.7.14 Phase Zero Complete

The Phase Zero Complete event MUST be signaled with the following arguments:

 An Enlistment object.

 A value indicating the outcome of Phase Zero. The value MUST be set to one of the following
values:

 Success

 Failure

If the Phase Zero Complete event is signaled, the transaction manager MUST perform the following
actions:

 If the provided outcome is Success:

 Signal the Begin Phase One event on the Core Transaction Manager Facet with the following
arguments:

 The transaction referenced by the provided Enlistment object.

 The Single Phase Commit flag set to true.

Otherwise:

 Signal the Phase One Complete event on the Transaction Manager Communicating with an
Application Facet with the following arguments:

 The provided Enlistment object

 The Aborted outcome

3.4.7.15 Register Phase Zero

The Register Phase Zero event MUST be signaled with the following arguments:

 An Enlistment object.

312 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

If the Register Phase Zero event is signaled, the transaction manager MUST perform the following
actions:

 Signal the Register Phase Zero Success event on the Core Transaction Manager Facet with the
following arguments:

 The provided Enlistment object

3.4.7.16 Resolve Transaction Complete

The Resolve Transaction Complete event MUST be signaled with the following arguments:

 A transaction object.

 A value indicating the result of the resolve transaction operation. The value MUST be set to one of
the following values:

 Committed

 Aborted

 Forgotten

 Not Prepared

 Not Committed

If the Resolve Transaction Complete event is signaled, the transaction manager MUST perform the
following actions:

 Find a CONNTYPE_TXUSER_RESOLVE (section 2.2.8.3.2) connection in the transaction's
connection list.

 If the connection is not found, ignore the event.

 Otherwise:

 If the resolve outcome is Committed, Aborted, or Forgotten:

 Send a TXUSER_RESOLVE_MTAG_REQUEST_COMPLETE (section 2.2.8.3.2.7) message
using the connection.

 Set the connection state to Ended.

 Otherwise, if the resolve outcome is Not Prepared:

 Send a TXUSER_RESOLVE_MTAG_CHILD_NOT_PREPARED (section 2.2.8.3.2.4) message

using the connection.

 Set the connection state to Ended.

 Otherwise, if the resolve outcome is Not Committed:

 Send a TXUSER_RESOLVE_MTAG_FORGET_TX_NOT_COMMITTED (section 2.2.8.3.2.6)
message using the connection.

 Set the connection state to Ended.

3.4.7.17 Resolve Transaction Access Denied

The Resolve Transaction Access Denied event MUST be signaled with the following arguments:

313 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 A connection object.

If the Resolve Transaction Access Denied event is signaled, the transaction manager MUST perform

the following actions:

 If the connection object is of CONNTYPE_TXUSER_RESOLVE (section 2.2.8.3.2) connection type:

 Send a TXUSER_RESOLVE_MTAG_ACCESSDENIED (section 2.2.8.3.2.1) message.

 Set the connection state to Ended.

 Otherwise:

 Ignore the signal.

3.4.7.18 Rollback Complete

The Rollback Complete event MUST be signaled with the following arguments:

 An Enlistment object

If the Rollback Complete event is signaled, the transaction manager MUST perform the following
actions:

 If the connection referenced by the enlistment is of type

CONNTYPE_TXUSER_BEGINNER (section 2.2.8.1.1):

 If the connection state is Aborting Transaction:

 Send a TXUSER_BEGINNER_MTAG_REQUEST_COMPLETED (section 2.2.8.1.1.9) message.

 Set the connection state to Ended.

 If the connection referenced by the enlistment is of type
CONNTYPE_TXUSER_BEGIN2 (section 2.2.8.1.2) or

CONNTYPE_TXUSER_PROMOTE (section 2.2.8.1.3):

 If the connection state is Modifying Timeout:

 Send a TXUSER_SETTXTIMEOUT_MTAG_TOO_LATE (section 2.2.8.1.2.8) message.

 Otherwise, if the connection state is Active, Aborting Transaction, or Committing Transaction:

 Send a TXUSER_BEGIN2_MTAG_SINK_ERROR (section 2.2.8.1.2.5) message.

 The Error field MUST be set to TRUN_TXBEGIN_ERROR_NOTIFY_ABORTED.

 Set the connection state to Ended.

3.4.7.19 Set Transaction Attributes Failure

The Set Transaction Attributes Failure event MUST be signaled with the following arguments:

 A transaction object

If the Set Transaction Attributes Failure event is signaled, the transaction manager MUST perform the

following actions:

 Find a CONNTYPE_TXUSER_IMPORT2 connection instance in the provided transaction's connection
list.

314 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 If the connection is not found, ignore the event.

 Otherwise:

 Send a TXUSER_IMPORT2_MTAG_SINK_ERROR message using the connection:

 The Error field MUST be set to TRUN_TXIMPORT_ERROR_IMPORT_TX_NOT_FOUND.

 Set the connection state to Ended.

3.4.7.20 Set Transaction Attributes Success

The Set Transaction Attributes Success event MUST be signaled with the following arguments:

 A transaction object

If the Set Transaction Attributes Success event is signaled, the transaction manager MUST perform
the following actions:

 Find a CONNTYPE_TXUSER_IMPORT2 (section 2.2.8.2.2.5) connection instance in the provided
transaction's connection list.

 If the connection is not found, ignore the signal.

 Otherwise:

 Create a new Enlistment object using the following fields:

 The Transaction Manager Communicating with an Application Facet

 The provided transaction object

 The connection object

 Assign the new Enlistment object to the connection's Enlistment field.

 Signal the Create Voter Enlistment (section 3.2.7.14) event on the Core Transaction Manager
Facet (section 1.3.3.3.1) with the new Enlistment object.

3.4.7.21 Set Transaction Timeout Failure

The Set Transaction Timeout Failure event MUST be signaled with the following arguments:

 A transaction object

If the Set Transaction Timeout Failure event is signaled, the transaction manager MUST perform the
following actions:

 If the transaction's connection list contains a connection of type
CONNTYPE_TXUSER_BEGIN2 (section 2.2.8.1.2) or
CONNTYPE_TXUSER_PROMOTE (section 2.2.8.1.3):

 Send a TXUSER_SETTXTIMEOUT_MTAG_TOO_LATE (section 2.2.8.1.2.8) message using the
connection.

 Set the connection state to Active.

 Otherwise, if the transaction's connection list contains a
CONNTYPE_TXUSER_SETTXTIMEOUT (section 2.2.8.3.3) connection:

315 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 Send a TXUSER_SETTXTIMEOUT_MTAG_TOO_LATE (section 2.2.8.1.2.8) message using the
connection.

 Set the connection state to Ended.

3.4.7.22 Set Transaction Timeout Success

The Set Transaction Timeout Success event MUST be signaled with the following arguments:

 A transaction object

If the Set Transaction Timeout Success event is signaled, the transaction manager MUST perform the

following actions:

 If the transaction's connection list contains a connection of type
CONNTYPE_TXUSER_BEGIN2 (section 2.2.8.1.2) or
CONNTYPE_TXUSER_PROMOTE (section 2.2.8.1.3):

 Send a TXUSER_SETTXTIMEOUT_MTAG_REQUEST_COMPLETE (section 2.2.8.1.2.6) message
using the connection.

 Set the connection state to Active.

 Otherwise, if the transaction's connection list contains a
CONNTYPE_TXUSER_SETTXTIMEOUT (section 2.2.8.3.3) connection:

 Send a TXUSER_SETTXTIMEOUT_MTAG_REQUEST_COMPLETE (section 2.2.8.1.2.6) message
using the connection.

 Set the connection state to Ended.

3.4.7.23 Unilaterally Aborted

The Unilaterally Aborted event MUST be signaled with the following arguments:

 An Enlistment object

If the Unilaterally Aborted event is signaled, the transaction manager MUST perform the following
actions:

 If the enlistment's connection is of type CONNTYPE_TXUSER_BEGINNER (section 2.2.8.1.1):

 If the connection state is Active.

 Set the connection state to Aborting Transaction.

 Otherwise, if the enlistment's connection is of type
CONNTYPE_TXUSER_BEGIN2 (section 2.2.8.1.2) or
CONNTYPE_TXUSER_PROMOTE (section 2.2.8.1.3):

 Send a TXUSER_BEGIN2_MTAG_SINK_ERROR (section 2.2.8.1.2.5) message:

 The Error field MUST be set to TRUN_TXBEGIN_ERROR_NOTIFY_ABORTED.

 Set the connection state to Ended.

316 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

3.5 Resource Manager Details

3.5.1 Abstract Data Model

This section describes a conceptual model of possible data organization that an implementation
maintains to participate in this protocol. The described organization is provided to facilitate the
explanation of how the protocol behaves. This document does not mandate that implementations
adhere to this model as long as their external behavior is consistent with the behavior that is
described in this document.

Note that the abstract data model can be implemented in a variety of ways. This protocol does not
prescribe or advocate any specific implementation technique.

A resource manager MUST maintain all the data elements as specified in section 3.1.1.

A resource manager MUST also maintain the following data elements:

 Resource Manager.Identifier: A durable GUID that specifies the resource manager identifier.

 Session identifier: A volatile GUID that specifies the resource manager session identifier.

 Resource Manager.Durable Log: A durable list of transaction objects. The contents of the log
MUST persist across software restarts and transient failures.

 Reenlistment list: A list of connection objects.

 Transaction manager name: A Name object that identifies the transaction manager.

 Reenlistment timeout: A value that indicates the number of milliseconds the resource manager
will wait for an outcome while reenlisting on a transaction.

 Resource Manager.Connection: A connection object that MUST be of type

CONNTYPE_TXUSER_RESOURCEMANAGERINTERNAL (section 2.2.10.1.2) or
CONNTYPE_TXUSER_RESOURCEMANAGER (section 2.2.10.1.1).

When a transaction object is stored in the Resource Manager.Durable Log of the resource
manager, the resource manager MUST record, at minimum, the following fields:

 The Resource Manager.Identifier field

 The Transaction Object.Identifier field of the transaction object

A resource manager MUST provide the states that are defined in the following sections for its

supported connection types. Section 2.2.1.1.3 defines the connection types that a resource manager
MUST provide for each supported protocol version.

For a resource manager initiating a connection, once the connection's state machine enters the Ended
state, the connection that is associated with the state machine MUST be disconnected, if it is not
already disconnected, as specified in [MS-CMP] section 3.1.5.1. In addition, if both the Outgoing
Connection Table and the Incoming Connection Table of the Session object containing the connection

object referenced by Resource Manager.Connection are empty, the following event on the resource
manager is signaled:

 Transaction Manager Down (section 3.5.7.4)

3.5.1.1 CONNTYPE_TXUSER_RESOURCEMANAGER Initiator States

The resource manager MUST act as an initiator for the
CONNTYPE_TXUSER_RESOURCEMANAGER (section 2.2.10.1.1) connection type. In this role, the
resource manager MUST provide support for the following states:

%5bMS-CMP%5d.pdf#Section_1970a8a0799d4308b9274e4ea23dc225

317 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 Idle

 Awaiting Create Response

 Recovering

 Awaiting Completion Confirmation

 Active

 Ended

The following figure shows the relationship between the
CONNTYPE_TXUSER_RESOURCEMANAGER (section 2.2.10.1.1) initiator states.

Figure 44: Resource Manager state diagram for CONNTYPE_TXUSER_RESOURCEMANAGER

3.5.1.1.1 Idle

This is the initial state. The following event is processed in this state:

 Registering with Transaction Manager Using
CONNTYPE_TXUSER_RESOURCEMANAGER (section 3.5.4.10.1)

318 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

3.5.1.1.2 Awaiting Create Response

The following events are processed in this state:

 Receiving a TXUSER_RESOURCEMANAGER_MTAG_REQUEST_COMPLETE

Message (section 3.5.5.1.1.2)

 Receiving a TXUSER_RESOURCEMANAGER_MTAG_DUPLICATE Message (section 3.5.5.1.1.1)

3.5.1.1.3 Recovering

The following event is processed in this state:

 Reenlistment Complete (section 3.5.7.3)

3.5.1.1.4 Awaiting Completion Confirmation

The following event is processed in this state:

 Receiving a TXUSER_RESOURCEMANAGER_MTAG_REQUEST_COMPLETE
Message (section 3.5.5.1.1.2)

3.5.1.1.5 Active

No specific events are processed in this state.

3.5.1.1.6 Ended

This is the final state.

3.5.1.2 CONNTYPE_TXUSER_RESOURCEMANAGERINTERNAL Initiator States

The resource manager MUST act as an initiator for the

CONNTYPE_TXUSER_RESOURCEMANAGERINTERNAL (section 2.2.10.1.2) connection type. In this role,
the resource manager MUST provide support for the following states:

 Idle

 Awaiting Create Response

 Recovering

 Awaiting Completion Confirmation

 Active

 Ended

The following figure shows the relationship between the
CONNTYPE_TXUSER_RESOURCEMANAGERINTERNAL initiator states.

319 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Figure 45: CONNTYPE_TXUSER_RESOURCEMANAGERINTERNAL initiator states

3.5.1.2.1 Idle

This is the initial state. The following event is processed in this state:

 Registering with Transaction Manager Using
CONNTYPE_TXUSER_RESOURCEMANAGERINTERNAL (section 3.5.4.10.2)

3.5.1.2.2 Awaiting Create Response

The following events are processed in this state:

 Receiving a TXUSER_RESOURCEMANAGER_MTAG_DUPLICATE or
TXUSER_RESOURCEMANAGER_MTAG_REQUEST_COMPLETE Message (section 3.5.5.1.2.1)

3.5.1.2.3 Recovering

The following events are processed in this state:

320 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 Reenlistment Complete (section 3.5.7.3)

 Receiving a TXUSER_RESOURCEMANAGERINTERNAL_MTAG_DUPLICATEDETECTED

Message (section 3.5.5.1.2.2)

3.5.1.2.4 Awaiting Completion Confirmation

The following events are processed in this state:

 Receiving a TXUSER_RESOURCEMANAGER_MTAG_DUPLICATE or
TXUSER_RESOURCEMANAGER_MTAG_REQUEST_COMPLETE Message (section 3.5.5.1.2.1)

3.5.1.2.5 Active

The following event is processed in this state:

 Receiving a TXUSER_RESOURCEMANAGERINTERNAL_MTAG_DUPLICATEDETECTED
Message (section 3.5.5.1.2.2)

3.5.1.2.6 Ended

This is the final state.

3.5.1.3 CONNTYPE_TXUSER_PHASE0 Initiator States

The resource manager MUST act as an initiator for the
CONNTYPE_TXUSER_PHASE0 (section 2.2.10.2.1) connection type. In this role, the resource manager
MUST provide support for the following states:

 Idle

 Awaiting Create Response

 Active

 Processing Phase Zero Request

 Ended

The following figure shows the relationship between the CONNTYPE_TXUSER_PHASE0 initiator states.

321 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Figure 46: CONNTYPE_TXUSER_PHASE0 Initiator States

3.5.1.3.1 Idle

This is the initial state. The following event is processed in this state:

 Enlisting as a Phase Zero Participant on a Specific Transaction (section 3.5.4.2)

3.5.1.3.2 Awaiting Create Response

The following events are processed in this state:

 Receiving a TXUSER_PHASE0_MTAG_CREATED Message (section 3.5.5.2.1.1)

 Receiving a TXUSER_PHASE0_MTAG_CREATE_TX_NOT_FOUND or
TXUSER_PHASE0_MTAG_CREATE_TOO_LATE Message (section 3.5.5.2.1.2)

3.5.1.3.3 Active

322 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

The following events are processed in this state:

 Receiving a TXUSER_PHASE0_MTAG_PHASE0REQ (section 3.5.5.2.1.3) message

 Receiving a TXUSER_PHASE0_MTAG_PHASE0REQ_ABORT (section 3.5.5.2.1.4) message

 Canceling Enlistment as a Phase Zero Participant on a Specific Transaction (section 3.5.4.1)

3.5.1.3.4 Processing Phase Zero Request

The following event is processed in this state:

 Phase Zero Request Completed (section 3.5.4.8)

3.5.1.3.5 Ended

This is the final state.

3.5.1.4 CONNTYPE_TXUSER_ENLISTMENT Initiator States

The resource manager MUST act as an initiator for the
CONNTYPE_TXUSER_ENLISTMENT (section 2.2.10.2.2) connection type. In this role, the resource

manager MUST provide support for the following states:

 Idle

 Awaiting Enlistment Response

 Active

 Single Phase Committing

 Preparing For Transaction Commit

 Finalizing Abort Operations

 Awaiting Transaction Outcome

 Finalizing Commit Operations

 Ended

The following figure shows the relationship between the CONNTYPE_TXUSER_ENLISTMENT initiator
states. In the figure, the parenthetical numbers are the actual enumeration values.

323 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Figure 47: CONNTYPE_TXUSER_ENLISTMENT Initiator States

3.5.1.4.1 Idle

This is the initial state. The following event is processed in this state:

 Enlisting on a Specific Transaction (section 3.5.4.3)

3.5.1.4.2 Awaiting Enlistment Response

The following events are processed in this state:

 Receiving a TXUSER_ENLISTMENT_MTAG_ENLISTED Message (section 3.5.5.2.2.1)

 Receiving a TXUSER_ENLISTMENT_MTAG_ENLIST_TX_NOT_FOUND,
TXUSER_ENLISTMENT_MTAG_ENLIST_TOO_LATE,
TXUSER_ENLISTMENT_MTAG_ENLIST_LOG_FULL, or
TXUSER_ENLISTMENT_MTAG_ENLIST_TOO_MANY Message (section 3.5.5.2.2.2)

324 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

3.5.1.4.3 Active

The following events are processed in this state:

 Receiving a TXUSER_ENLISTMENT_MTAG_PREPAREREQ Message (section 3.5.5.2.2.3)

 Receiving a TXUSER_ENLISTMENT_MTAG_ABORTREQ Message (section 3.5.5.2.2.5)

 Connection Disconnected (section 3.5.5.2.2.6)

3.5.1.4.4 Single Phase Committing

The following event is processed in this state:

 Enlistment Single-Phase Commit Request Completed (section 3.5.4.7)

3.5.1.4.5 Preparing for Transaction Commit

The following event is processed in this state:

 Enlistment Prepare Request Completed (section 3.5.4.6)

3.5.1.4.6 Finalizing Abort Operations

The following event is processed in this state:

 Enlistment Abort Request Completed (section 3.5.4.4)

3.5.1.4.7 Awaiting Transaction Outcome

The following events are processed in this state:

 Receiving a TXUSER_ENLISTMENT_MTAG_COMMITREQ Message (section 3.5.5.2.2.4)

 Receiving a TXUSER_ENLISTMENT_MTAG_ABORTREQ Message (section 3.5.5.2.2.5)

3.5.1.4.8 Finalizing Commit Operations

The following event is processed in this state:

 Enlistment Commit Request Completed (section 3.5.4.5)

3.5.1.4.9 Ended

This is the final state.

3.5.1.5 CONNTYPE_TXUSER_REENLIST Initiator States

The resource manager MUST act as an initiator for the

CONNTYPE_TXUSER_REENLIST (section 2.2.10.3.1) connection type. In this role, the resource
manager MUST provide support for the following states:

 Idle

 Awaiting Reenlist Response

 Ended

The following figure depicts the relationship between the CONNTYPE_TXUSER_REENLIST initiator
states.

325 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Figure 48: CONNTYPE_TXUSER_REENLIST Initiator States

3.5.1.5.1 Idle

This is the initial state. The following event is processed in this state:

 Recover Transaction (section 3.5.7.1)

3.5.1.5.2 Awaiting Reenlist Response

The following events are processed in this state:

 Receiving a TXUSER_REENLIST_MTAG_REENLIST_COMMITTED Message (section 3.5.5.3.1.1)

 Receiving a TXUSER_REENLIST_MTAG_REENLIST_ABORTED Message (section 3.5.5.3.1.2)

 Receiving a TXUSER_REENLIST_MTAG_REENLIST_TIMEOUT Message (section 3.5.5.3.1.3)

3.5.1.5.3 Ended

326 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

This is the final state.

3.5.1.6 CONNTYPE_TXUSER_VOTER Initiator States

The resource manager MUST act as an initiator for the
CONNTYPE_TXUSER_VOTER (section 2.2.10.4.1) connection type. In this role, the resource manager
MUST provide support for the following states:

 Idle

 Awaiting Creation Response

 Active

 Performing Transaction Operations

 Awaiting Outcome

 Ended

Note that the abstract data model can be implemented in a variety of ways. This protocol does not
prescribe or advocate any specific implementation technique.

The following figure shows the relationship between the CONNTYPE_TXUSER_VOTER initiator states.

327 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Figure 49: CONNTYPE_TXUSER_VOTER Initiator States

3.5.1.6.1 Idle

This is the initial state. The following event is processed in this state:

 Registering as a Voter on a Specific Transaction (section 3.5.4.9)

3.5.1.6.2 Awaiting Creation Response

The following events are processed in this state:

 Receiving a TXUSER_VOTER_MTAG_CREATED (section 3.5.5.4.1.1) message

328 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 Receiving a TXUSER_VOTER_MTAG_CREATE_TX_NOT_FOUND or
TXUSER_VOTER_MTAG_CREATE_TOO_LATE message (section 3.5.5.4.1.2)

 Receiving a Connection Disconnected (section 3.5.5.4.1.7)

3.5.1.6.3 Active

The following events are processed in this state:

 Receiving a TXUSER_VOTER_MTAG_VOTEREQ (section 3.5.5.4.1.3) message

 Receiving a TXUSER_STATUS_MTAG_ABORTED (section 3.5.5.4.1.5) message

3.5.1.6.4 Performing Transaction Operations

The following event is processed in this state:

 Voter Vote Request Completed (section 3.5.4.11)

3.5.1.6.5 Awaiting Outcome

The following events are processed in this state:

 Receiving a TXUSER_STATUS_MTAG_COMMITTED (section 3.5.5.4.1.4) message

 Receiving a TXUSER_STATUS_MTAG_ABORTED (section 3.5.5.4.1.5) message

 Receiving a TXUSER_STATUS_MTAG_INDOUBT (section 3.5.5.4.1.6) message

 Connection Disconnected (section 3.5.5.4.1.7)

3.5.1.6.6 Ended

This is the final state.

3.5.2 Timers

None.

3.5.3 Initialization

When a resource manager is initialized:

 The Resource Manager.Identifier field MUST be set to a GUID that is obtained from an
implementation-specific source. This value MUST remain consistent across multiple software
restarts or transient failures. The resource manager SHOULD create the GUID as specified in
[RFC4122].

 The Transaction Manager Name field MUST be set to a value that is obtained from an

implementation-specific source. This value MUST remain consistent across multiple software

restarts or transient failures.

 The Reenlistment Timeout field MUST be set to a value that is obtained from an
implementation-specific source.

 The resource manager MUST register with its transaction manager, as specified in section
3.5.4.10.

http://go.microsoft.com/fwlink/?LinkId=90460

329 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

3.5.4 Higher-Layer Triggered Events

The resource manager operation is driven by a set of higher-layer events. These events are triggered
by decisions that are made by the higher-layer business logic of the resource manager. The

motivations and details of this higher-layer business logic are specific to the implementation of the
resource manager and the software environment in which it executes.

The resource manager MUST be prepared to process the following events.

3.5.4.1 Canceling Enlistment as a Phase Zero Participant on a Specific Transaction

This event MUST be signaled by the higher-layer business logic with the following arguments:

 A connection object

If the higher-layer business logic cancels its enlistment as a Phase Zero participant on a specific
transaction, the resource manager MUST perform the following steps:

 Send a TXUSER_PHASE0_MTAG_UNENLIST (section 2.2.10.2.1.8) message using the connection.

 Set the connection state to Ended.

3.5.4.2 Enlisting as a Phase Zero Participant on a Specific Transaction

This event MUST be signaled by the higher-layer business logic with the following arguments:

 A transaction object

If the higher-layer business logic enlists as a Phase Zero participant on a specific transaction, the

resource manager MUST perform the following steps:

 If the transaction manager of the resource manager supports the CONNTYPE_TXUSER_PHASE0
connection type, as specified in section 2.2.1.1.3:

 Initiate a new CONNTYPE_TXUSER_PHASE0 (section 2.2.10.2.1) connection to the transaction
manager, using the Transaction Manager Name field of the resource manager.

 Send a TXUSER_PHASE0_MTAG_CREATE (section 2.2.10.2.1.1) message using the
connection:

 Set the guidTx field to the Transaction Object.Identifier field of the transaction object.

 Set the Transaction field of the connection to the provided transaction object.

 Set the connection state to Awaiting Create Response.

 Otherwise, the resource manager MUST return a Failure to the higher-layer business logic.

3.5.4.3 Enlisting on a Specific Transaction

This event MUST be signaled by the higher-layer business logic with the following arguments:

 A transaction object.

If the higher-layer business logic decides to enlist on a specific transaction, the resource manager
MUST perform the following steps:

 Initiate a new CONNTYPE_TXUSER_ENLISTMENT (section 2.2.10.2.2) connection to the

transaction manager, using the Transaction Manager Name field of the resource manager.

330 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 Assign the transaction object to the connection-specific data of the connection.

 Add the connection to the connection list of the transaction.

 Send a TXUSER_ENLISTMENT_MTAG_ENLIST (section 2.2.10.2.2.5) message using the
connection:

 Set the guidTX field to the Transaction Object.Identifier field of the transaction object.

 Set the guidRM field to the Resource Manager.Identifier field of the resource manager.

 Set the guidSession field to the Session Identifier field of the resource manager.

 Set the connection state to Awaiting Enlistment Response.

3.5.4.4 Enlistment Abort Request Completed

This event MUST be signaled by the higher-layer business logic with the following arguments:

 A connection object.

When the higher-layer business logic completes an enlistment Abort request, as specified in section
3.5.5.2.2.5 and 3.5.5.3.1.2, the resource manager MUST perform the following steps:

 If the connection type of the connection object is

CONNTYPE_TXUSER_ENLISTMENT (section 2.2.10.2.2):

 If the transaction object referenced by the connection object was added to the Resource
Manager.Durable Log:

 Remove the transaction object from the Resource Manager.Durable Log.

 Send a TXUSER_ENLISTMENT_MTAG_ABORTREQDONE (section 2.2.10.2.2.2) message using
the connection.

 Set the connection state to Ended.

 Otherwise, if the connection type of the connection object is
CONNTYPE_TXUSER_REENLIST (section 2.2.10.3.1):

 If the transaction object referenced by the connection object was added to the Resource
Manager.Durable Log:

 Remove the transaction object from the Resource Manager.Durable Log.

 Remove the connection from the reenlistment list of the resource manager.

 If the list is now empty:

 Signal the Reenlistment Complete (section 3.5.7.3) event on the resource manager.

 Set the connection state to Ended.

 Otherwise, ignore the event.

3.5.4.5 Enlistment Commit Request Completed

This event MUST be signaled by the higher-layer business logic with the following arguments:

 A connection object

331 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

When the higher-layer business logic completes an enlistment Commit request as specified in section
3.5.5.2.2.4 and 3.5.5.3.1.1, the resource manager MUST perform the following steps:

 If the connection type of the connection object is
CONNTYPE_TXUSER_ENLISTMENT (section 2.2.10.2.2):

 Remove the transaction object referenced by the connection object from the Resource
Manager.Durable Log.

 Send a TXUSER_ENLISTMENT_MTAG_COMMITREQDONE (section 2.2.10.2.2.4) message using
the connection.

 Set the connection state to Ended.

 Otherwise, if the connection type of the connection object is
CONNTYPE_TXUSER_REENLIST (section 2.2.10.3.1):

 Remove the transaction object referenced by the connection object from the Resource
Manager.Durable Log.

 Remove the connection from the reenlistment list of the resource manager.

 If the list is now empty:

 Signal the Reenlistment Complete (section 3.5.7.3) event on the resource manager.

 Set the connection state to Ended.

 Otherwise, ignore the event.

3.5.4.6 Enlistment Prepare Request Completed

This event MUST be signaled by the higher-layer business logic with the following arguments:

 A CONNTYPE_TXUSER_ENLISTMENT (section 2.2.10.2.2) connection object.

 An outcome value. This value MUST be one of the following:

 Prepared

 Read Only

 Aborted

When the higher-layer business logic completes a Prepare request, as specified in section 3.5.5.2.2.3,
the resource manager MUST perform the following steps:

 If the request outcome is Prepared:

 Add the transaction object referenced by the connection object to the Resource
Manager.Durable Log.

 Send a TXUSER_ENLISTMENT_MTAG_PREPAREREQDONE (section 2.2.10.2.2.12) message
using the connection:

 Set the prepareReqDone field to TXUSER_ENLISTMENT_PREPAREREQDONE_OK.

 Set the guidReason field to the value provided by the higher-layer business logic, as

specified in section 2.2.10.2.2.12.

 Set the connection state to Awaiting Transaction Outcome.

332 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 Otherwise, if the request outcome is Read Only:

 Send a TXUSER_ENLISTMENT_MTAG_PREPAREREQDONE message using the connection:

 Set the prepareReqDone field to TXUSER_ENLISTMENT_PREPAREREQDONE_READONLY.

 Set the connection state to Ended.

 Otherwise, if the request outcome is Aborted:

 Send a TXUSER_ENLISTMENT_MTAG_PREPAREREQDONE message using the connection:

 Set the prepareReqDone field to TXUSER_ENLISTMENT_PREPAREREQDONE_ABORT.

 Set the connection state to Ended.

3.5.4.7 Enlistment Single-Phase Commit Request Completed

This event MUST be signaled by the higher-layer business logic with the following arguments:

 A CONNTYPE_TXUSER_ENLISTMENT (section 2.2.10.2.2) connection object.

 An outcome value. This value MUST be one of the following:

 Read Only

 Prepared

 Committed

 Aborted

When the higher-layer business logic completes an Enlistment Single-Phase Commit request as
specified in Receiving a TXUSER_ENLISTMENT_MTAG_PREPAREREQ Message (section 3.5.5.2.2.3), the
resource manager MUST perform the following steps:

 If the request outcome is Read Only:

 Send a TXUSER_ENLISTMENT_MTAG_PREPAREREQDONE message using the connection:

 Set the prepareReqDone field to TXUSER_ENLISTMENT_PREPAREREQDONE_READONLY.

 Set the connection state to Ended.

 Otherwise, if the request outcome is Prepared:

 Add the transaction object referenced by the connection object to the Resource
Manager.Durable Log.

 Send a TXUSER_ENLISTMENT_MTAG_PREPAREREQDONE message using the connection:

 Set the prepareReqDone field to TXUSER_ENLISTMENT_PREPAREREQDONE_OK.

 Set the connection state to Awaiting Transaction Outcome.

 Otherwise, if the request outcome is Committed:

 Send a TXUSER_ENLISTMENT_MTAG_PREPAREREQDONE message using the connection:

 Set the prepareReqDone field to
TXUSER_ENLISTMENT_PREPAREREQDONE_SINGLEPHASE_COMMIT.

333 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 Set the connection state to Ended.

 Otherwise, if the request outcome is Aborted:

 Send a TXUSER_ENLISTMENT_MTAG_PREPAREREQDONE message using the connection:

 Set the prepareReqDone field to TXUSER_ENLISTMENT_PREPAREREQDONE_ABORT.

 Set the connection state to Ended.

3.5.4.8 Phase Zero Request Completed

This event MUST be signaled by the higher-layer business logic with the following arguments:

 A connection object.

 An outcome value. This value MUST be one of the following:

 Read Only

 Aborted

When the higher-layer business logic completes a Phase Zero request, the resource manager MUST
perform the following steps:

 If the Phase Zero outcome is Read Only:

 Send a TXUSER_PHASE0_MTAG_PHASE0REQDONE message.

 Set the connection state to Ended.

 Otherwise, if the Phase Zero outcome is Aborted:

 Set the connection state to Ended.

3.5.4.9 Registering as a Voter on a Specific Transaction

This event MUST be signaled by the higher-layer business logic with the following arguments:

 A transaction object

If the higher-layer business logic decides to register as a voter on a specific transaction manager, the
resource manager MUST perform the following steps:

 Initiate a new CONNTYPE_TXUSER_VOTER (section 2.2.10.4.1) connection to the transaction

manager using the transaction manager Name field of the resource manager.

 Send a TXUSER_VOTER_MTAG_CREATE (section 2.2.10.4.1.4) message using the connection:

 Set the guidTX field to the Transaction Object.Identifier field of the transaction object.

 Set the connection state to Awaiting Creation Response.

3.5.4.10 Registering with Transaction Manager

If the higher-layer business logic wants to register with the transaction manager, the resource
manager MUST perform the following actions:

334 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 The resource manager SHOULD set the Session Identifier field to a new GUID value as specified
in [RFC4122]. Optionally, the resource manager MAY instead set the Session Identifier field to

NULL GUID.

 If the transaction manager's resource manager supports the

CONNTYPE_TXUSER_RESOURCEMANAGERINTERNAL connection type as specified in section
2.2.1.1.3:

 The resource manager MUST attempt to register with the transaction manager using
CONNTYPE_TXUSER_RESOURCEMANAGERINTERNAL.

 Otherwise:

 The resource manager MUST attempt to register with the transaction manager using
CONNTYPE_TXUSER_RESOURCEMANAGER.

3.5.4.10.1 Registering with Transaction Manager Using

CONNTYPE_TXUSER_RESOURCEMANAGER

The resource manager MUST perform the following actions:

 Initiate a new CONNTYPE_TXUSER_RESOURCEMANAGER connection using the Transaction

manager name field of the resource manager.

 Assign the new connection to the Resource Manager.Connection field of the resource manager.

 Send a TXUSER_RESOURCEMANAGER_MTAG_CREATE message using the connection:

 Set the guidRM field to the Resource Manager.Identifier field of the resource manager.

 Set the guidSession field to the Session Identifier field of the resource manager.

 Set the connection state to Awaiting Create Response.

3.5.4.10.2 Registering with Transaction Manager Using

CONNTYPE_TXUSER_RESOURCEMANAGERINTERNAL

The resource manager MUST perform the following actions:

 Initiate a new CONNTYPE_TXUSER_RESOURCEMANAGERINTERNAL connection using the
transaction manager Name field of the resource manager.

 Assign the new connection to the Resource Manager.Connection field of the resource manager.

 Send a TXUSER_RESOURCEMANAGER_MTAG_CREATE message using the connection:

 Set the guidRM field to the Resource Manager.Identifier field of the resource manager.

 Set the guidSession field to the Session Identifier field of the resource manager.

 Set the connection state to Awaiting Create Response.

3.5.4.11 Voter Vote Request Completed

This event MUST be signaled by the higher-layer business logic with the following arguments:

 A connection object.

 An outcome value. This value MUST be one of the following:

http://go.microsoft.com/fwlink/?LinkId=90460

335 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 Prepared

 Read Only

 Aborted

When the higher-layer business logic completes a Voter Vote request, the resource manager MUST

perform the following steps:

 If the vote outcome is Prepared:

 Send a TXUSER_VOTER_MTAG_VOTEREQDONE message using the connection:

 Set the VoteReqDone field to TXUSER_VOTER_VOTEREQDONE_OK.

 Set the connection state to Awaiting Outcome.

 Otherwise, if the vote outcome is Read Only:

 Send a TXUSER_VOTER_MTAG_VOTEREQDONE message using the connection:

 Set the VoteReqDone field to TXUSER_VOTER_VOTEREQDONE_OK_NONOTIFY.

 Set the connection state to Ended.

 Otherwise, if the vote outcome is Aborted:

 Send a TXUSER_VOTER_MTAG_VOTEREQDONE message using the connection:

 Set the VoteReqDone field to TXUSER_VOTER_VOTEREQDONE_ABORT.

 Set the connection state to Ended.

3.5.5 Processing Events and Sequencing Rules

3.5.5.1 Resource Manager Registration

3.5.5.1.1 CONNTYPE_TXUSER_RESOURCEMANAGER as Initiator

For all messages that are received in this connection type, the resource manager MUST process the
messages as specified in section 3.1. The resource manager MUST additionally follow the processing
rules as specified in the following sections.

3.5.5.1.1.1 Receiving a TXUSER_RESOURCEMANAGER_MTAG_DUPLICATE Message

When the resource manager receives a TXUSER_RESOURCEMANAGER_MTAG_DUPLICATE message,
the resource manager MUST perform the following actions:

 If the connection state is Awaiting Create Response:

 Set the connection state to Ended.

 Return a failure result to the higher-layer business logic.

3.5.5.1.1.2 Receiving a TXUSER_RESOURCEMANAGER_MTAG_REQUEST_COMPLETE

Message

When the resource manager receives a TXUSER_RESOURCEMANAGER_REQUEST_COMPLETE message,
the resource manager MUST perform the following actions:

336 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 If the connection state is Awaiting Create Response:

 Set the connection state to Recovering.

 Signal the Recover Transactions event on the resource manager.

 Otherwise, if the connection state is Awaiting Completion Confirmation:

 Set the connection state to Active.

 Return a success result to the higher-layer business logic.

3.5.5.1.1.3 Connection Disconnected

When a CONNTYPE_TXUSER_RESOURCEMANAGER (section 2.2.10.1.1) connection is disconnected,
the resource manager MUST perform the following actions:

 If the connection state is Active, Awaiting Create Response, Recovering, or Awaiting Completion

Confirmation:

 Set the connection state to Ended.

 Otherwise, the event MUST be processed as specified in section 3.1.8.3.

3.5.5.1.2 CONNTYPE_TXUSER_RESOURCEMANAGERINTERNAL as Initiator

For all messages received in this connection type, the resource manager MUST process the messages

as specified in section 3.1. The resource manager MUST additionally follow the processing rules as
specified in the following sections.

3.5.5.1.2.1 Receiving a TXUSER_RESOURCEMANAGER_MTAG_DUPLICATE or

TXUSER_RESOURCEMANAGER_MTAG_REQUEST_COMPLETE Message

 When the resource manager receives either the TXUSER_RESOURCEMANAGER_MTAG_DUPLICATE or

TXUSER_RESOURCEMANAGER_MTAG_REQUEST_COMPLETE message, it MUST follow the same
message-processing rules as the CONNTYPE_TXUSER_RESOURCEMANAGER connection type when it
acts as the initiator. See section 3.5.5.1.1 for more information.

3.5.5.1.2.2 Receiving a

TXUSER_RESOURCEMANAGERINTERNAL_MTAG_DUPLICATEDETECTED

Message

When the resource manager receives a
TXUSER_RESOURCEMANAGERINTERNAL_MTAG_DUPLICATEDETECTED message, the resource
manager MUST perform the following actions:

 If the connection state is Recovering, Awaiting Completion Confirmation, or Active:

 Inform the higher-layer business logic that the transaction manager has detected a duplicate

resource manager registration.

3.5.5.1.2.3 Connection Disconnected

When a CONNTYPE_TXUSER_RESOURCEMANAGERINTERNAL (section 2.2.10.1.2) connection is
disconnected, the event MUST be processed as specified in section 3.1.8.3.

337 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

3.5.5.2 Transaction Coordination

3.5.5.2.1 CONNTYPE_TXUSER_PHASE0 as Initiator

For all messages that are received in this connection type, the resource manager MUST process the
message as specified in section 3.1. The resource manager MUST additionally follow the processing
rules as specified in the following sections.

3.5.5.2.1.1 Receiving a TXUSER_PHASE0_MTAG_CREATED Message

When the resource manager receives a TXUSER_PHASE0_MTAG_CREATED message, the resource
manager MUST perform the following actions:

 If the connection state is Awaiting Create Response:

 Set the connection state to Active.

 Return a success result to the higher-layer business logic.

 Add the connection to the connection list of the transaction object referenced by the
connection.

 Otherwise, the message MUST be processed as an invalid message as specified in section 3.1.6.

3.5.5.2.1.2 Receiving a TXUSER_PHASE0_MTAG_CREATE_TX_NOT_FOUND or

TXUSER_PHASE0_MTAG_CREATE_TOO_LATE Message

When the resource manager receives either the TXUSER_PHASE0_MTAG_CREATE_TOO_LATE or
TXUSER_PHASE0_MTAG_CREATE_TX_NOT_FOUND message, the resource manager MUST perform the
following actions:

 If the connection state is Awaiting Create Response:

 Return a failure result to the higher-layer business logic.

 Set the connection state to Ended.

 Otherwise, the message MUST be processed as an invalid message as specified in section 3.1.6.

3.5.5.2.1.3 Receiving a TXUSER_PHASE0_MTAG_PHASE0REQ Message

When the resource manager receives a TXUSER_PHASE0_MTAG_PHASE0REQ message, the resource

manager MUST perform the following actions:

 If the connection state is Active:

 Set the connection state to Processing Phase Zero Request.

 Send a Phase Zero request to the higher-layer business logic so that the resource manager
can receive the Phase Zero outcome from the higher-layer business logic via the Phase Zero

Request Completed (section 3.5.4.8) event.

 Otherwise, the message MUST be processed as an invalid message as specified in section 3.1.6.

3.5.5.2.1.4 Receiving a TXUSER_PHASE0_MTAG_PHASE0REQ_ABORT Message

When the resource manager receives a TXUSER_PHASE0_MTAG_PHASE0REQ_ABORT message, the
resource manager MUST perform the following actions:

 If the connection state is Active:

338 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 Send a Transaction Aborted notification to the higher-layer business logic.

 Set the connection state to Ended.

 Otherwise, the message MUST be processed as an invalid message as specified in section 3.1.6.

3.5.5.2.1.5 Connection Disconnected

When a CONNTYPE_TXUSER_PHASE0 (section 2.2.10.2.1) connection is disconnected, the resource
manager MUST perform the following actions:

 If the connection state is Awaiting Create Response:

 Return a failure result to the higher-layer business logic.

 Otherwise, if the connection state is Active or Processing Phase Zero Request:

 Send a Transaction Aborted notification to the higher-layer business logic.

 Otherwise, the event MUST be processed as specified in section 3.1.8.3.

3.5.5.2.2 CONNTYPE_TXUSER_ENLISTMENT as Initiator

For all messages that are received in this connection type, the resource manager MUST process the
message as specified in section 3.1. The resource manager MUST additionally follow the processing
rules as specified in the following sections.

3.5.5.2.2.1 Receiving a TXUSER_ENLISTMENT_MTAG_ENLISTED Message

When the resource manager receives a TXUSER_ENLISTMENT_MTAG_ENLISTED message, the
resource manager MUST perform the following actions:

 If the connection state is Awaiting Enlistment Response:

 Set the connection state to Active.

 Return a success result to the higher-layer business logic.

 Otherwise, the message MUST be processed as an invalid message as specified in section 3.1.6.

3.5.5.2.2.2 Receiving a TXUSER_ENLISTMENT_MTAG_ENLIST_TX_NOT_FOUND,

TXUSER_ENLISTMENT_MTAG_ENLIST_TOO_LATE,

TXUSER_ENLISTMENT_MTAG_ENLIST_LOG_FULL, or

TXUSER_ENLISTMENT_MTAG_ENLIST_TOO_MANY Message

When the resource manager receives a TXUSER_ENLISTMENT_MTAG_ENLIST_TX_NOT_FOUND,
TXUSER_ENLISTMENT_MTAG_ENLIST_TOO_LATE, TXUSER_ENLISTMENT_MTAG_ENLIST_LOG_FULL,
or TXUSER_ENLISTMENT_MTAG_ENLIST_TOO_MANY message, the resource manager MUST perform
the following actions:

 If the connection state is Awaiting Enlistment Response:

 Return a failure result to the higher-layer business logic.

 Set the connection state to Ended.

 Otherwise, the message MUST be processed as an invalid message as specified in section 3.1.6.

3.5.5.2.2.3 Receiving a TXUSER_ENLISTMENT_MTAG_PREPAREREQ Message

339 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

When the resource manager receives a TXUSER_ENLISTMENT_MTAG_PREPAREREQ message, the
resource manager MUST perform the following actions:

 If the connection state is Active:

 If the fSinglePhase field of the message is nonzero:

 Set the connection state to Single-Phase Committing.

 Send a Single-Phase Commit request to the higher-layer business logic.

 Otherwise:

 Set the connection state to Preparing For Transaction Commit.

 Send a Prepare request to the higher-layer business logic.

 Otherwise, the message MUST be processed as an invalid message as specified in section 3.1.6.

3.5.5.2.2.4 Receiving a TXUSER_ENLISTMENT_MTAG_COMMITREQ Message

 When the resource manager receives a TXUSER_ENLISTMENT_MTAG_COMMITREQ message, the
resource manager MUST perform the following actions:

 If the connection state is Awaiting Transaction Outcome:

 Set the connection state to Finalizing Commit Operations.

 Send a Commit Request to the higher-layer business logic.

 Otherwise, the message MUST be processed as an invalid message as specified in section 3.1.6.

3.5.5.2.2.5 Receiving a TXUSER_ENLISTMENT_MTAG_ABORTREQ Message

When the resource manager receives a TXUSER_ENLISTMENT_MTAG_ABORTREQ message, the

resource manager MUST perform the following actions:

 If the connection state is Active:

 Send an Abort request to the higher-layer business logic.

 Set the connection state to Finalizing Abort Operations.

 Otherwise, if the connection state is Awaiting Transaction Outcome:

 Remove the transaction object referenced by the connection from the Resource
Manager.Durable Log.

 Send an Abort request to the higher-layer business logic.

 Set the connection state to Finalizing Abort Operations.

 Otherwise, the message MUST be processed as an invalid message as specified in section 3.1.6.

3.5.5.2.2.6 Connection Disconnected

When a CONNTYPE_TXUSER_ENLISTMENT (section 2.2.10.2.2) connection is disconnected, the
resource manager MUST perform the following actions:

 If the connection state is either Awaiting Enlistment Response, Active, or Preparing For
Transaction Commit:

340 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 Send an Abort request to the higher-layer business logic.

 Otherwise, the event MUST be processed as specified in section 3.1.8.3.

3.5.5.3 Transaction Recovery

3.5.5.3.1 CONNTYPE_TXUSER_REENLIST as Initiator

For all messages that are received in this connection type, the resource manager MUST process the
message as specified in section 3.1. The resource manager MUST additionally follow the processing
rules as specified in the following sections.

3.5.5.3.1.1 Receiving a TXUSER_REENLIST_MTAG_REENLIST_COMMITTED Message

When the resource manager receives a TXUSER_REENLIST_MTAG_REENLIST_COMMITTED message,
the resource manager MUST perform the following actions:

 If the connection state is Awaiting Reenlist Response:

 Send a Commit request to the higher-layer business logic for the transaction object referenced

by the Transaction field of the receiving connection.

 Set the connection state to Ended.

 Otherwise, the message MUST be processed as an invalid message as specified in section 3.1.6.

3.5.5.3.1.2 Receiving a TXUSER_REENLIST_MTAG_REENLIST_ABORTED Message

When the resource manager receives a TXUSER_REENLIST_MTAG_REENLIST_ABORTED message, the
resource manager MUST perform the following actions:

 If the connection state is Awaiting Reenlist Response:

 Send an Abort request to the higher-layer business logic.

 Set the connection state to Ended.

 Otherwise, the message MUST be processed as an invalid message as specified in section 3.1.6.

3.5.5.3.1.3 Receiving a TXUSER_REENLIST_MTAG_REENLIST_TIMEOUT Message

When the resource manager receives a TXUSER_REENLIST_MTAG_REENLIST_TIMEOUT message, the

resource manager MUST perform the following actions:

 If the connection state is Awaiting Reenlist Response:

 Signal the Reenlistment Timeout event with the transaction object referenced by this
connection.

 Set the connection state to Ended.

 Otherwise, the message MUST be processed as an invalid message as specified in section 3.1.6.

3.5.5.3.1.4 Connection Disconnected

When a CONNTYPE_TXUSER_REENLIST (section 2.2.10.3.1) connection is disconnected, the resource
manager MUST perform the following actions:

 If the connection state is Awaiting Reenlistment Response:

341 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 Return a failure result to the higher-layer business logic.

 Otherwise, the event MUST be processed as specified in section 3.1.8.3.

3.5.5.4 Voting

3.5.5.4.1 CONNTYPE_TXUSER_VOTER as Initiator

 For all messages that are received in this connection type, the resource manager MUST process the
message as specified in section 3.1. The resource manager MUST additionally follow the processing
rules as specified in the following sections.

3.5.5.4.1.1 Receiving a TXUSER_VOTER_MTAG_CREATED Message

When the resource manager receives a TXUSER_VOTER_MTAG_CREATED message, the resource
manager MUST perform the following actions:

 If the connection state is Awaiting Creation Response:

 Return a success result to the higher-layer business logic.

 Set the connection state to Active.

 Otherwise, the message MUST be processed as an invalid message as specified in section 3.1.6.

3.5.5.4.1.2 Receiving a TXUSER_VOTER_MTAG_CREATE_TX_NOT_FOUND or

TXUSER_VOTER_MTAG_CREATE_TOO_LATE Message

When the resource manager receives either a TXUSER_VOTER_MTAG_CREATE_TX_NOT_FOUND or

TXUSER_VOTER_MTAG_CREATE_TOO_LATE message, the resource manager MUST perform the
following actions:

 If the connection state is Awaiting Creation Response:

 Return a failure result to the higher-layer business logic.

 Set the connection state to Ended.

 Otherwise, the message MUST be processed as an invalid message as specified in section 3.1.6.

3.5.5.4.1.3 Receiving a TXUSER_VOTER_MTAG_VOTEREQ Message

When the resource manager receives a TXUSER_VOTER_MTAG_VOTEREQ message, the resource
manager MUST perform the following actions:

 If the connection state is Active:

 Send a Vote request to the higher-layer business logic.

 Set the connection state to Performing Transaction Operations.

 Otherwise, the message MUST be processed as an invalid message as specified in section 3.1.6.

3.5.5.4.1.4 Receiving a TXUSER_STATUS_MTAG_COMMITTED Message

When the resource manager receives a TXUSER_STATUS_MTAG_COMMITTED message, the resource
manager MUST perform the following actions:

 If the connection state is Awaiting Outcome:

342 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 Send a Transaction Committed notification to the higher-layer business logic.

 Set the connection state to Ended.

 Otherwise, the message MUST be processed as an invalid message as specified in section 3.1.6.

3.5.5.4.1.5 Receiving a TXUSER_STATUS_MTAG_ABORTED Message

When the resource manager receives a TXUSER_STATUS_MTAG_ABORTED message, the resource
manager MUST perform the following actions:

 If the connection state is Active or Awaiting Outcome:

 Send a Transaction Aborted notification to the higher-layer business logic.

 Set the connection state to Ended.

 Otherwise, the message MUST be processed as an invalid message as specified in section 3.1.6.

3.5.5.4.1.6 Receiving a TXUSER_STATUS_MTAG_INDOUBT Message

When the resource manager receives a TXUSER_STATUS_MTAG_INDOUBT message, the resource
manager MUST perform the following actions:

 If the connection state is Awaiting Outcome:

 Send a Transaction In Doubt notification to the higher-layer business logic.

 Set the connection state to Ended.

 Otherwise, the message MUST be processed as an invalid message as specified in section 3.1.6.

3.5.5.4.1.7 Connection Disconnected

When a CONNTYPE_TXUSER_VOTER (section 2.2.10.4.1) connection is disconnected, the resource

manager MUST perform the following actions:

 If the connection state is Awaiting Creation Response:

 Return a failure result to the higher-layer business logic.

 Otherwise, if the connection state is Awaiting Outcome:

 Send a Transaction In Doubt notification to the higher-layer business logic.

 Otherwise, the event MUST be processed as specified in section 3.1.8.3.

3.5.6 Timer Events

No timer events.

3.5.7 Other Local Events

The resource manager MUST be prepared to process the local events that appear in this section.

3.5.7.1 Recover Transaction

The Recover Transaction event MUST be signaled with the following arguments:

343 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 A transaction object.

If the Recover Transaction event is signaled, the resource manager MUST perform the following steps:

 Initiate a new CONNTYPE_TXUSER_REENLIST (section 2.2.10.3.1) connection to the transaction
manager, using the Transaction Manager Name field of the resource manager.

 Set the Transaction field of the connection object to the provided transaction object.

 Add the connection to the reenlistment list of the resource manager.

 Add the connection to the connection list of the transaction object.

 Send a TXUSER_REENLIST_MTAG_REENLIST (section 2.2.10.3.1.1) message using the
connection:

 Set the guidTx field to the Transaction Object.Identifier field of the transaction.

 Set the ulTimeout field to the Reenlistment Timeout field of the resource manager.

 Set the guidRm field to the Resource Manager.Identifier field of the resource manager.

 Set the connection state to Awaiting Reenlist Response.

3.5.7.2 Recover Transactions

If the Recover Transactions event is signaled, the resource manager MUST perform the following
steps:

 If the Resource Manager.Durable Log of the resource manager is empty:

 Signal the Reenlistment Complete (section 3.5.7.3) event on the resource manager.

 Otherwise, for each transaction object in the Resource Manager.Durable Log:

 Signal the Recover Transaction (section 3.5.7.1) event on the resource manager with the
transaction object.

3.5.7.3 Reenlistment Complete

If the Reenlistment Complete event is signaled, the resource manager MUST perform the following
actions:

 Send a TXUSER_RESOURCEMANAGER_MTAG_REENLISTMENTCOMPLETE message using the
connection that is referenced by the Resource Manager.Connection field of the resource
manager.

 Set the connection state to Awaiting Completion Confirmation.

3.5.7.4 Transaction Manager Down

When the Transaction Manager Down event is signaled, the resource manager MUST perform the
following steps:

 Inform the higher-layer business logic that the transaction manager has disconnected.

 The higher-layer business requests that the resource manager reregister with the transaction
manager. The timing of the request is implementation-specific.

344 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

3.5.7.5 Reenlistment Timeout

The Reenlistment Timeout event MUST be signaled with the following arguments:

 A transaction object.

When the Reenlistment Timeout event is signaled, the resource manager MUST perform the following
steps:

 Inform the higher-layer business logic that the reenlistment has timed out for the transaction
object.

 The higher-layer business MUST request that the resource manager reregister with the transaction
manager. The timing of the request is implementation-specific.

3.6 Transaction Manager Communicating with Resource Manager Facet Details

3.6.1 Abstract Data Model

This section describes a conceptual model of possible data organization that an implementation
maintains to participate in this protocol. The described organization is provided to facilitate the
explanation of how the protocol behaves. This document does not mandate that implementations
adhere to this model if their external behavior is consistent with the behavior that is described in this
document.

Note that the abstract data model can be implemented in a variety of ways. This protocol does not

prescribe or advocate any specific implementation technique.

The transaction manager communicating with a resource manager facet MUST maintain all the data
elements as specified in sections 3.1.1 and 3.2.1.

The transaction manager communicating with a resource manager facet MUST additionally maintain
the following data elements:

 Active Resource Manager Table: A table of entries to resource manager objects, keyed by
resource manager identifier.

 Failed to Notify List: A list of Enlistment objects representing remote resource managers that
have not yet acknowledged the Commit outcome of a transaction.

A resource manager object MUST contain the following data structures:

 Resource Manager Object.Identifier: Specifies the resource manager identifier.

 Session Identifier: A GUID that specifies the resource manager session identifier.

 Resource Manager Object.Connection: The

CONNTYPE_TXUSER_RESOURCEMANAGERINTERNAL (section 2.2.10.1.2) or
CONNTYPE_TXUSER_RESOURCEMANAGER (section 2.2.10.1.1) connection object that is
associated with the resource manager.

Enlistment objects that are created by the transaction manager communicating with a resource
manager facet MUST provide the following properties as specified in section 3.1.1:

 Name: The resource manager identifier field of the Enlistment object, formatted as a string as
specified in [C706] Appendix A.

 Enlistment Object.Identifier: An empty string.

http://go.microsoft.com/fwlink/?LinkId=89824

345 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

The transaction manager communicating with a resource manager MUST provide the states as
specified in the following sections for its supported connection types. Section 2.2.1.1.3 defines the

connection types that a transaction manager communicating with a resource manager MUST provide
for each supported protocol version.

3.6.1.1 CONNTYPE_TXUSER_RESOURCEMANAGER Acceptor States

The transaction manager communicating with a resource manager MUST act as an acceptor for the
CONNTYPE_TXUSER_RESOURCEMANAGER (section 2.2.10.1.1) connection type. In this role, the

transaction manager communicating with a resource manager MUST provide support for the following
states:

 Idle (section 3.6.1.1.1)

 Creating (section 3.6.1.1.2)

 Reenlisting (section 3.6.1.1.3)

 Active (section 3.6.1.1.4)

 Ended (section 3.6.1.1.5)

The following figure shows the relationship between the
CONNTYPE_TXUSER_RESOURCEMANAGER (section 2.2.10.1.1) acceptor states.

346 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Figure 50: CONNTYPE_TXUSER_RESOURCEMANAGER acceptor states

3.6.1.1.1 Idle

The Idle state is the initial state. The following event is processed in this state:

 Receiving a TXUSER_RESOURCEMANAGER_MTAG_CREATE Message (section 3.6.5.1.1.1)

3.6.1.1.2 Creating

The following event is processed in the Creating state:

 Create Resource Manager (section 3.6.7.9)

3.6.1.1.3 Reenlisting

The following events are processed in the Reenlisting state:

 Receiving a TXUSER_RESOURCEMANAGER_MTAG_REENLISTMENTCOMPLETE
Message (section 3.6.5.1.1.2)

 Connection Disconnected (section 3.6.5.1.1.3)

3.6.1.1.4 Active

The following event is processed in the Active state:

 Reenlist Complete (section 3.6.7.15)

3.6.1.1.5 Ended

The final state is the Ended state.

3.6.1.2 CONNTYPE_TXUSER_RESOURCEMANAGERINTERNAL Acceptor States

The transaction manager communicating with a resource manager MUST act as an acceptor for the
CONNTYPE_TXUSER_RESOURCEMANAGERINTERNAL (section 2.2.10.1.2) connection type. In this role,
the transaction manager communicating with a resource manager MUST provide support for the
following states:

 Idle (section 3.6.1.2.1)

 Creating (section 3.6.1.2.2)

 Reenlisting (section 3.6.1.2.3)

 Active (section 3.6.1.2.4)

 Ended (section 3.6.1.2.5)

The following figure shows the relationship between the
CONNTYPE_TXUSER_RESOURCEMANAGERINTERNAL (section 2.2.10.1.2) acceptor states.

347 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Figure 51: CONNTYPE_TXUSER_RESOURCEMANAGERINTERNAL acceptor states

3.6.1.2.1 Idle

This is the initial state. The following event is processed in this state:

 Receiving a TXUSER_RESOURCEMANAGER_MTAG_CREATE Message (section 3.6.5.1.2.1)

3.6.1.2.2 Creating

The following event is processed in this state:

 Create Resource Manager (section 3.6.7.9)

3.6.1.2.3 Reenlisting

The following events are processed in this state:

 Receiving a TXUSER_RESOURCEMANAGER_MTAG_REENLISTMENTCOMPLETE

Message (section 3.6.5.1.2.2)

 Create Resource Manager (section 3.6.7.9)

 Connection Disconnected (section 3.6.5.1.2.3)

3.6.1.2.4 Active

The following events are processed in this state:

348 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 Reenlist Complete (section 3.6.7.15)

 Create Resource Manager (section 3.6.7.9)

3.6.1.2.5 Ended

This is the final state.

3.6.1.3 CONNTYPE_TXUSER_PHASE0 Acceptor States

The transaction manager communicating with a resource manager MUST act as an acceptor for the
CONNTYPE_TXUSER_PHASE0 (section 2.2.10.2.1) connection type. In this role, the transaction

manager communicating with a resource manager MUST provide support for the following states:

 Idle (section 3.6.1.3.1)

 Awaiting Create Response (section 3.6.1.3.2)

 Active (section 3.6.1.3.3)

 Awaiting Phase Zero Response (section 3.6.1.3.4)

 Ended (section 3.6.1.3.5)

The following figure shows the relationship between the
CONNTYPE_TXUSER_PHASE0 (section 2.2.10.2.1) acceptor states.

349 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Figure 52: CONNTYPE_TXUSER_PHASE0 acceptor states

3.6.1.3.1 Idle

This is the initial state. The following event us processed in this state:

 Receiving a TXUSER_PHASE0_MTAG_CREATE Message (section 3.6.5.2.1.1)

3.6.1.3.2 Awaiting Create Response

The following events are processed in this state:

 Create Phase Zero Enlistment Success (section 3.6.7.8)

 Create Phase Zero Enlistment Failure (section 3.6.7.7)

350 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

3.6.1.3.3 Active

The following events are processed in this state:

 Begin Phase Zero (section 3.6.7.4)

 Phase Zero Aborted (section 3.6.7.14)

 Receiving a TXUSER_PHASE0_MTAG_UNENLIST Message (section 3.6.5.2.1.3)

3.6.1.3.4 Awaiting Phase Zero Response

The following events are processed in this state:

 Receiving a TXUSER_PHASE0_MTAG_PHASE0REQDONE Message (section 3.6.5.2.1.2)

 Receiving a TXUSER_PHASE0_MTAG_UNENLIST Message (section 3.6.5.2.1.3)

3.6.1.3.5 Ended

This is the final state.

3.6.1.4 CONNTYPE_TXUSER_ENLISTMENT Acceptor States

The transaction manager communicating with a resource manager MUST act as an acceptor for the
CONNTYPE_TXUSER_ENLISTMENT (section 2.2.10.2.2) connection type. In this role, the transaction
manager communicating with a resource manager MUST provide support for the following states:

 Idle (section 3.6.1.4.1)

 Processing Enlistment Request (section 3.6.1.4.2)

 Active (section 3.6.1.4.3)

 Awaiting Single Phase Commit Response (section 3.6.1.4.4)

 Awaiting Prepare Response (section 3.6.1.4.5)

 Awaiting Prepare Response Aborted (section 3.6.1.4.6)

 Prepared (section 3.6.1.4.7)

 Awaiting Commit Response (section 3.6.1.4.8)

 Awaiting Abort Response (section 3.6.1.4.9)

 Ended (section 3.6.1.4.10)

The following figure shows the relationship between the
CONNTYPE_TXUSER_ENLISTMENT (section 2.2.10.2.2) acceptor states.

351 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Figure 53: CONNTYPE_TXUSER_ENLISTMENT acceptor states (processing enlistment
request)

352 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Figure 54: CONNTYPE_TXUSER_ENLISTMENT acceptor states (active)

3.6.1.4.1 Idle

This is the initial state. The following event is processed in this state:

 Receiving a TXUSER_ENLISTMENT_MTAG_ENLIST Message (section 3.6.5.2.2.1)

 Begin Rollback (section 3.6.7.5)

3.6.1.4.2 Processing Enlistment Request

The following events are processed in this state:

 Create Subordinate Enlistment Success (section 3.6.7.11)

 Create Subordinate Enlistment Failure (section 3.6.7.10)

3.6.1.4.3 Active

353 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

The following events are processed in this state:

 Begin Phase One (section 3.6.7.3)

 Begin Rollback (section 3.6.7.5)

3.6.1.4.4 Awaiting Single-Phase Commit Response

The following event is processed in this state:

 Receiving a TXUSER_ENLISTMENT_MTAG_PREPAREREQDONE Message (section 3.6.5.2.2.2)

3.6.1.4.5 Awaiting Prepare Response

The following events are processed in this state:

 Receiving a TXUSER_ENLISTMENT_MTAG_PREPAREREQDONE Message (section 3.6.5.2.2.2)

 Begin Rollback (section 3.6.7.5)

3.6.1.4.6 Awaiting Prepare Response Aborted

The following event is processed in this state:

 Receiving a TXUSER_ENLISTMENT_MTAG_PREPAREREQDONE Message (section 3.6.5.2.2.2)

3.6.1.4.7 Prepared

The following events are processed in this state:

 Begin Commit (section 3.6.7.1)

 Begin Rollback (section 3.6.7.5)

3.6.1.4.8 Awaiting Commit Response

The following event is processed in this state:

 Receiving a TXUSER_ENLISTMENT_MTAG_COMMITREQDONE Message (section 3.6.5.2.2.3)

3.6.1.4.9 Awaiting Abort Response

The following event is processed in this state:

 Receiving a TXUSER_ENLISTMENT_MTAG_ABORTREQDONE Message (section 3.6.5.2.2.4)

3.6.1.4.10 Ended

This is the final state.

3.6.1.5 CONNTYPE_TXUSER_REENLIST Acceptor States

The transaction manager communicating with a resource manager MUST act as an acceptor for the
CONNTYPE_TXUSER_REENLIST (section 2.2.10.3.1) connection type. In this role, the transaction

manager communicating with a resource manager MUST provide support for the following states:

 Idle (section 3.6.1.5.1)

 Processing Reenlist Request (section 3.6.1.5.2)

354 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 Ended (section 3.6.1.5.3)

The following figure shows the relationship between the

CONNTYPE_TXUSER_REENLIST (section 2.2.10.3.1) acceptor states.

Figure 55: CONNTYPE_TXUSER_REENLIST acceptor states

3.6.1.5.1 Idle

This is the initial state. The following event is processed in this state:

 Receiving a TXUSER_REENLIST_MTAG_REENLIST Message (section 3.6.5.3.1.1)

3.6.1.5.2 Processing Reenlist Request

The following events are processed in this state:

 Begin Commit (section 3.6.7.1)

 Begin Rollback (section 3.6.7.5)

355 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 Reenlist Timeout Timer (section 3.6.6.1)

3.6.1.5.3 Ended

This is the final state.

3.6.1.6 CONNTYPE_TXUSER_VOTER Acceptor States

The transaction manager communicating with a resource manager MUST act as an acceptor for the
CONNTYPE_TXUSER_VOTER (section 2.2.10.4.1) connection type. In this role, the transaction
manager communicating with a resource manager MUST provide support for the following states:

 Idle (section 3.6.1.6.1)

 Create Voter (section 3.6.1.6.2)

 Active (section 3.6.1.6.3)

 Awaiting Voter Response (section 3.6.1.6.4)

 Awaiting Outcome (section 3.6.1.6.5)

 Ended (section 3.6.1.6.6)

The following figure shows the relationship between the
CONNTYPE_TXUSER_VOTER (section 2.2.10.4.1) acceptor states.

356 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Figure 56: CONNTYPE_TXUSER_VOTER acceptor states

3.6.1.6.1 Idle

This is the initial state. The following event is processed in this state:

 Receiving a TXUSER_VOTER_MTAG_CREATE Message (section 3.6.5.4.1.1)

3.6.1.6.2 Create Voter

The following events are processed in this state:

 Create Voter Enlistment Success (section 3.6.7.13)

 Create Voter Enlistment Failure (section 3.6.7.12)

357 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

3.6.1.6.3 Active

The following events are processed in this state:

 Begin Voting (section 3.6.7.6)

 Begin Rollback (section 3.6.7.5)

3.6.1.6.4 Awaiting Voter Response

The following event is processed in this state:

 Receiving a TXUSER_VOTER_MTAG_VOTERREQDONE Message (section 3.6.5.4.1.2)

3.6.1.6.5 Awaiting Outcome

The following events are processed in this state:

 Begin Commit (section 3.6.7.1)

 Begin Rollback (section 3.6.7.5)

 Begin In Doubt (section 3.6.7.2)

3.6.1.6.6 Ended

This is the final state.

3.6.2 Timers

The transaction manager communicating with a resource manager facet MUST provide the timer that
is shown in the next section.

3.6.2.1 Reenlist Time-Out Timer

The timer MUST be set when the transaction manager communicating with a resource manager facet
receives a TXUSER_REENLIST_MTAG_REENLIST (section 2.2.10.3.1.1) message on a
CONNTYPE_TXUSER_REENLIST (section 2.2.10.3.1) connection. The timer MUST be canceled when

the CONNTYPE_TXUSER_REENLIST connection is disconnected.

The timer has no default value. The initial value of the timer MUST be provided in the
TXUSER_REENLIST_MTAG_REENLIST message. The minimum value of the timer MUST be zero, which
means that the timer never generates a timer event. In this case, the Reenlist Time-Out Timer
Event (section 3.6.6.1) is never signaled, and the timeout reply message triggered by this event is
never sent.

When the timer is initialized, the transaction manager communicating with a resource manager facet

MUST provide an Enlistment object to associate with the timer. When the timer expires, the same
Enlistment object MUST be provided with the timer notification. The transaction manager

communicating with a resource manager facet MUST provide a distinct Reenlist Timeout timer instance
for each CONNTYPE_TXUSER_REENLIST connection.

3.6.3 Initialization

When the transaction manager communicating with a resource manager facet is initialized:

358 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 The transaction manager communicating with a resource manager facet MUST examine the
following security flags on the Core Transaction Manager Facet (section 1.3.3.3.1) and perform the

following actions:

 If either the Allow Network Access flag or the Allow Remote Clients flag is set to false:

 For the following connection types, the transaction manager communicating with a
resource manager facet MUST refuse to accept incoming connections from remote
machines as specified in [MS-CMP] section 3.1.5.5 with the rejection Reason set to
0x80070005.

 CONNTYPE_TXUSER_ENLISTMENT (section 2.2.10.2.2)

 CONNTYPE_TXUSER_RESOURCEMANAGER (section 2.2.10.1.1)

 CONNTYPE_TXUSER_RESOURCEMANAGERINTERNAL (section 2.2.10.1.2)

 CONNTYPE_TXUSER_REENLIST (section 2.2.10.3.1)

 CONNTYPE_TXUSER_VOTER (section 2.2.10.4.1)

 CONNTYPE_TXUSER_PHASE0 (section 2.2.10.2.1)

All data elements maintained by the transaction manager communicating with a resource manager
facet are initialized to an empty value unless stated otherwise in this section or in the initialization
sections of the facets the transaction manager communicating with a resource manager facet extends,

as described in section 3.6.1.

3.6.4 Higher-Layer Triggered Events

None.

3.6.5 Processing Events and Sequencing Rules

3.6.5.1 Resource Manager Registration

3.6.5.1.1 CONNTYPE_TXUSER_RESOURCEMANAGER as Acceptor

For all messages that are received in this connection type, the transaction manager communicating
with a resource manager facet MUST process the message as specified in section 3.1. The transaction
manager communicating with a resource manager facet MUST additionally follow the processing rules
as specified in the following sections.

3.6.5.1.1.1 Receiving a TXUSER_RESOURCEMANAGER_MTAG_CREATE Message

When the transaction manager communicating with a resource manager facet receives a
TXUSER_RESOURCEMANAGER_MTAG_CREATE (section 2.2.10.1.1.1) message, the transaction
manager communicating with a resource manager facet MUST perform the following actions:

 If the connection state is Idle:

 Set the connection state to Creating.

 Create a resource manager object using the following values:

 The guidRM field from the message as the resource manager identifier.

 The guidSession field from the message as the session identifier of the resource
manager.

%5bMS-CMP%5d.pdf#Section_1970a8a0799d4308b9274e4ea23dc225

359 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 The current connection.

 Assign the resource manager object to the Connection-Specific Data field of the connection.

 Signal the Create Resource Manager (section 3.6.7.9) event on the transaction manager
communicating with a resource manager facet with the resource manager object.

 Otherwise, the message MUST be processed as an invalid message as specified in section 3.1.6.

3.6.5.1.1.2 Receiving a

TXUSER_RESOURCEMANAGER_MTAG_REENLISTMENTCOMPLETE Message

When the transaction manager communicating with a resource manager facet receives a
TXUSER_RESOURCEMANAGER_MTAG_REENLISTMENTCOMPLETE (section 2.2.10.1.1.3) message, the

transaction manager communicating with a resource manager MUST perform the following actions:

 If the connection state is Reenlisting:

 Set the connection state to Active.

 Signal the Reenlist Complete (section 3.6.7.15) event on the transaction manager
communicating with a resource manager facet with the resource manager object that is
referenced by the Connection-Specific Data field of the connection.

 Otherwise, the message MUST be processed as an invalid message as specified in section 3.1.6.

3.6.5.1.1.3 Connection Disconnected

When a CONNTYPE_TXUSER_RESOURCEMANAGER (section 2.2.10.1.1) connection is disconnected,
the transaction manager communicating with a resource manager facet MUST:

 Set the connection state to Ended.

 Signal the Resource Manager Down (section 3.6.7.16) event on the transaction manager

communicating with a resource manager facet with the resource manager object referenced by the
Connection-Specific Data field of the connection.

3.6.5.1.2 CONNTYPE_TXUSER_RESOURCEMANAGERINTERNAL as Acceptor

For all messages received in this connection type, the transaction manager communicating with a
resource manager facet MUST process the message as specified in section 3.1. The transaction
manager communicating with a resource manager facet MUST additionally follow the processing rules

as specified in the following sections.

3.6.5.1.2.1 Receiving a TXUSER_RESOURCEMANAGER_MTAG_CREATE Message

When the transaction manager communicating with a resource manager facet receives a
TXUSER_RESOURCEMANAGER_MTAG_CREATE message, the transaction manager communicating with
a resource manager facet MUST perform the following actions:

 If the connection state is Idle:

 Set the connection state to Creating.

 Create a resource manager object using the following values:

 The guidRM field from the message as the resource manager identifier.

 The guidSession field from the message as the session identifier of the resource
manager.

360 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 This connection.

 Assign the resource manager object to the Connection-Specific Data field of the connection.

 Signal the Create Resource Manager (section 3.6.7.9) event on the transaction manager
communicating with a resource manager facet with the resource manager object.

 Otherwise, the message MUST be processed as an invalid message as specified in section 3.1.6.

3.6.5.1.2.2 Receiving a

TXUSER_RESOURCEMANAGER_MTAG_REENLISTMENTCOMPLETE Message

When the transaction manager communicating with a resource manager facet receives a
TXUSER_RESOURCEMANAGER_MTAG_REENLISTMENTCOMPLETE (section 2.2.10.1.1.3) message, the

transaction manager communicating with a resource manager facet MUST perform the following
actions:

 If the connection state is Reenlisting:

 Set the connection state to Active.

 Signal the Reenlist Complete (section 3.6.7.15) event on the transaction manager
communicating with a resource manager facet with the resource manager object that is

referenced by the Connection-Specific Data field of the connection.

 Otherwise, the message MUST be processed as an invalid message as specified in section 3.1.6.

3.6.5.1.2.3 Connection Disconnected

When a CONNTYPE_TXUSER_RESOURCEMANAGERINTERNAL (section 2.2.10.1.2)connection is
disconnected, the transaction manager communicating with a resource manager facet MUST:

 Set the connection state to Ended.

 Signal the Resource Manager Down (section 3.6.7.16) event on the transaction manager
communicating with a resource manager facet with the resource manager object referenced by the
Connection-Specific Data field of the connection.

3.6.5.2 Transaction Coordination

3.6.5.2.1 CONNTYPE_TXUSER_PHASE0 as Acceptor

For all messages received in this connection type, the transaction manager communicating with a
resource manager facet MUST process the message as specified in section 3.1. The transaction
manager communicating with a resource manager facet MUST additionally follow the processing rules
as specified in the following sections.

3.6.5.2.1.1 Receiving a TXUSER_PHASE0_MTAG_CREATE Message

When the transaction manager receives a TXUSER_PHASE0_MTAG_CREATE message, the transaction
manager communicating with a resource manager facet MUST perform the following actions:

 If the connection state is Idle:

 Set the connection state to Awaiting Create Response (section 3.6.1.3.2).

 Find the transaction object in the transaction table of the transaction manager using the
guidTx field from the message.

361 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 If the transaction is not found:

 Send a TXUSER_PHASE0_MTAG_CREATE_TX_NOT_FOUND message using the connection.

 Set the connection state to Ended.

 Otherwise:

 Create a new Enlistment object with the following values:

 The transaction manager communicating with a resource manager facet

 The transaction object

 The connection

 Set the Resource Manager Identifier field of the Enlistment object to a NULL GUID.

 Assign the new Enlistment object to the enlistment field of the connection.

 Signal the Create Phase Zero Enlistment event on the Core Transaction Manager Facet

with the Enlistment object.

 Otherwise, the message MUST be processed as an invalid message as specified in section 3.1.6.

3.6.5.2.1.2 Receiving a TXUSER_PHASE0_MTAG_PHASE0REQDONE Message

When the transaction manager receives a TXUSER_PHASE0_MTAG_PHASE0REQDONE message, the
transaction manager MUST perform the following actions:

 If the connection state is Awaiting Phase Zero Response:

 Signal the Enlistment Phase Zero Complete event on the Core Transaction Manager Facet with
the following arguments:

 The Enlistment object that is referenced by this connection.

 The completed outcome value

 Set the connection state to Ended.

 Otherwise, the message MUST be processed as an invalid message as specified in section 3.1.6.

3.6.5.2.1.3 Receiving a TXUSER_PHASE0_MTAG_UNENLIST Message

When the transaction manager receives a TXUSER_PHASE0_MTAG_UNENLIST (section 2.2.10.2.1.8)
message, the transaction manager MUST perform the following actions:

 If the connection state is Active:

 Signal the Unenlist Phase Zero Enlistment (section 3.2.7.34) event on the Core Transaction
Manager Facet (section 1.3.3.3.1) with the Enlistment object that is referenced by this

connection.

 Set the connection state to Ended.

 If the connection state is Awaiting Phase Zero Response:

 Signal the Enlistment Phase Zero Complete (section 3.2.7.17) event on the Core Transaction
Manager Facet with the following arguments:

 The Enlistment object that is referenced by this connection.

362 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 The completed outcome value.

 Set the connection state to Ended.

 Otherwise, the message MUST be processed as an invalid message as specified in section 3.1.6.

3.6.5.2.1.4 Connection Disconnected

When a CONNTYPE_TXUSER_PHASE0 (section 2.2.10.2.1) connection is disconnected, the transaction
manager communicating with a resource manager facet MUST perform the following actions:

 If the connection state is Awaiting Phase Zero Response:

 Signal the Enlistment Phase Zero Complete (section 3.2.7.17) event on the Core Transaction
Manager Facet (section 1.3.3.3.1) with the following arguments:

 The Enlistment object that is referenced by this connection.

 The aborted outcome value.

 Otherwise, if the connection state is Active (section 3.6.1.3.3):

 Signal the Enlistment Unilaterally Aborted (section 3.2.7.19) event on the Core Transaction
Manager Facet with the Enlistment object that is referenced by this connection.

 Finally, in all cases, the event MUST be processed as specified in section 3.1.8.3.

3.6.5.2.2 CONNTYPE_TXUSER_ENLISTMENT as Acceptor

For all messages that are received in this connection type, the transaction manager MUST process the
message as specified in section 3.1. The transaction manager MUST additionally follow the processing
rules as specified in the following sections.

3.6.5.2.2.1 Receiving a TXUSER_ENLISTMENT_MTAG_ENLIST Message

When the transaction manager receives a TXUSER_ENLISTMENT_MTAG_ENLIST message, the

transaction manager MUST perform the following actions:

 If the connection state is Idle:

 Set the connection state to Processing Enlistment Request.

 Find the transaction object in the transaction table of the transaction manager using the
guidTx field from the message.

 If the transaction is not found:

 Send a TXUSER_ENLIST_MTAG_ENLIST_TX_NOT_FOUND message using the connection.

 Set the connection state to Ended.

 Otherwise:

 Find the resource manager object in the transaction manager's Active Resource Manager
table using the guidRm field from the message.

 If the resource manager is not found:

 Send a TXUSER_ENLIST_MTAG_ENLIST_TOO_LATE message using the connection.

 Set the connection state to Ended.

363 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 Otherwise:

 Create a new Enlistment object with the following values:

 The transaction manager communicating with a resource manager facet

 The transaction object

 The connection

 The Resource Manager.Identifier field of the resource manager object

 Signal the Create Subordinate Enlistment event on the Core Transaction Manager
Facet with the new enlistment object.

 Otherwise, the message MUST be processed as an invalid message as specified in section 3.1.6.

3.6.5.2.2.2 Receiving a TXUSER_ENLISTMENT_MTAG_PREPAREREQDONE Message

When the transaction manager receives a
TXUSER_ENLISTMENT_MTAG_PREPAREREQDONE (section 2.2.10.2.2.12) message, the transaction
manager MUST perform the following actions:

 If the connection state is Awaiting Prepare Response Aborted:

 If the prepareReqDone field of the message is
TXUSER_ENLISTMENT_PREPAREREQDONE_OK:

 Send a TXUSER_ENLISTMENT_MTAG_ABORTREQ (section 2.2.10.2.2.1) message using
the connection.

 Set the connection state to Awaiting Abort Response.

 Otherwise, set the connection state to Ended.

 If the connection state is Awaiting Single Phase Commit Response:

 Signal the Enlistment Phase One Complete (section 3.2.7.16) event on the Core Transaction
Manager Facet (section 1.3.3.3.1) with the following arguments:

 The Enlistment object of the connection.

 The Phase One outcome set to:

 Committed if the prepareReqDone field from the message is
TXUSER_ENLISTMENT_PREPAREREQDONE_SINGLEPHASE_COMMIT.

 Aborted if the prepareReqDone field from the message is
TXUSER_ENLISTMENT_PREPAREREQDONE_ABORT.

 Read Only if the prepareReqDone field from the message is

TXUSER_ENLISTMENT_PREPAREREQDONE_READONLY.

 Prepared if the prepareReqDone field from the message is
TXUSER_ENLISTMENT_PREPAREREQDONE_OK.

 If the prepareReqDone field from the message is set to
TXUSER_ENLISTMENT_PREPAREREQDONE_OK:

 Set the connection state to Prepared.

 Otherwise:

364 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 Set the connection state to Ended.

 If the connection state is Awaiting Prepare Response:

 Signal the Enlistment Phase One Complete (section 3.2.7.16) event on the Core Transaction
Manager Facet with the following arguments:

 The Enlistment object of the connection.

 The Phase One outcome set to:

 Aborted if the prepareReqDone field is
TXUSER_ENLISTMENT_PREPAREREQDONE_ABORT.

 Read Only if the prepareReqDone field is
TXUSER_ENLISTMENT_PREPAREREQDONE_READONLY.

 Prepared if the prepareReqDone field is

TXUSER_ENLISTMENT_PREPAREREQDONE_OK.

 If the prepareReqDone field from the message is set to
TXUSER_ENLISTMENT_PREPAREREQDONE_OK:

 Set the connection state to Prepared.

 Otherwise:

 Set the connection state to Ended.

 If the connection state is Awaiting Abort Response:

 Ignore the message.

 Otherwise, the message MUST be processed as an invalid message as specified in section 3.1.6.

3.6.5.2.2.3 Receiving a TXUSER_ENLISTMENT_MTAG_COMMITREQDONE Message

When the transaction manager receives a
TXUSER_ENLISTMENT_MTAG_COMMITREQDONE (section 2.2.10.2.2.4) message, the transaction

manager MUST perform the following action:

 If the connection state is Awaiting Commit Response:

 Signal the Enlistment Commit Complete (section 3.2.7.15) event on the Core Transaction
Manager Facet (section 1.3.3.3.1) with the Enlistment object of the connection.

 Set the connection state to Ended.

 Otherwise, the message MUST be processed as an invalid message as specified in section 3.1.6.

3.6.5.2.2.4 Receiving a TXUSER_ENLISTMENT_MTAG_ABORTREQDONE Message

When the transaction manager receives a TXUSER_ENLISTMENT_MTAG_ABORTREQDONE message,
the transaction manager MUST perform the following actions:

 If the connection state is Awaiting Abort Response:

 Signal the Enlistment Rollback Complete event on the Core Transaction Manager Facet with
the Enlistment object of the connection.

 Set the connection state to Ended.

365 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 Otherwise, the message MUST be processed as an invalid message as specified in section 3.1.6.

3.6.5.2.2.5 Connection Disconnected

When a CONNTYPE_TXUSER_ENLISTMENT (section 2.2.10.2.2) connection is disconnected, the

transaction manager MUST perform the following actions:

 If the connection state is either Processing Enlistment Request (section 3.6.1.4.2) or
Active (section 3.6.1.4.3):

 Signal the Enlistment Unilaterally Aborted (section 3.2.7.19) event on the Core Transaction
Manager Facet (section 1.3.3.3.1) with the Enlistment object of the connection.

 Otherwise, if the connection state is Awaiting Prepare Response (section 3.6.1.4.5):

 Signal the Enlistment Phase One Complete (section 3.2.7.16) event on the Core Transaction

Manager Facet with the following arguments:

 The Enlistment object of the connection

 The aborted outcome

 Otherwise, if the connection state is Awaiting Single-Phase Commit Response (section 3.6.1.4.4):

 Signal the Enlistment Phase One Complete event on the Core Transaction Manager Facet with
the following arguments:

 The Enlistment object of the connection

 The In Doubt (section 3.2.1.3.12) outcome

 Otherwise, if the connection state is Awaiting Commit Response (section 3.6.1.4.8), the
transaction manager MUST perform the following action:

 Add the Enlistment object of the connection to the Failed to Notify List of the transaction

manager (section 3.6.1).

 Otherwise, if the connection state is Awaiting Abort Response (section 3.6.1.4.9):

 Signal the Enlistment Rollback Complete (section 3.2.7.18) event on the Core Transaction
Manager Facet with the Enlistment object of the connection.

 Finally, in all cases, the event MUST be processed as specified in section 3.1.8.3.

3.6.5.3 Transaction Recovery

3.6.5.3.1 CONNTYPE_TXUSER_REENLIST as Acceptor

For all messages received in this connection type, the transaction manager communicating with a
resource manager facet MUST process the message as specified in section 3.1. The transaction

manager communicating with a resource manager facet MUST additionally follow the processing rules
as specified in the following sections.

3.6.5.3.1.1 Receiving a TXUSER_REENLIST_MTAG_REENLIST Message

When the transaction manager communicating with a resource manager facet receives a
TXUSER_REENLIST_MTAG_REENLIST message, the transaction manager communicating with a
resource manager facet MUST perform the following actions:

 If the connection state is Idle:

366 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 Set the connection state to Processing Reenlist Request.

 Look up a resource manager object in the Active Resource Manager table, using the guidRm

field from the message as the key.

 If the resource manager does not exist:

 Send a TXUSER_REENLIST_MTAG_REENLIST_ABORTED message using the connection.

 Set the connection state to Ended.

 Otherwise:

 Look up a transaction object in the transaction table using the guidTx field from the
message as the key.

 If the transaction is not found:

 Send a TXUSER_REENLIST_MTAG_REENLIST_ABORTED message using the

connection.

 Set the connection state to Ended.

 Find an Enlistment object in the transaction object's Phase Two Enlistment list whose
Resource Manager field matches the resource manager object.

 If no Enlistment object is found:

 Send a TXUSER_REENLIST_MTAG_REENLIST_ABORTED message using the

connection.

 Set the connection state to Ended.

 Otherwise:

 Initialize the Reenlist Time-out timer providing the following arguments:

 If the value of the ulTimeout field from the message is less than zero:

 Use a value of zero.

 Otherwise:

 Use the ulTimeout field from the message.

 The Enlistment object that is found in the Phase Two enlistment list.

 Assign the Enlistment object to the enlistment field of the connection.

 Assign the connection object to the Enlistment Object.Connection field of the
enlistment.

 Signal the Request Transaction Outcome event on the Core Transaction Manager Facet
with the new Enlistment object.

 Otherwise, the message MUST be processed as an invalid message as specified in section 3.1.6.

3.6.5.3.1.2 Connection Disconnected

This event MUST be processed as specified in section 3.1.8.3.

367 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

3.6.5.4 Voting

3.6.5.4.1 CONNTYPE_TXUSER_VOTER as Acceptor

For all messages that are received in this connection type, the transaction manager that is
communicating with a resource manager facet MUST process the message as specified in section 3.1.
The transaction manager communicating with a resource manager facet MUST additionally follow the
processing rules as specified in the following sections.

3.6.5.4.1.1 Receiving a TXUSER_VOTER_MTAG_CREATE Message

When the transaction manager communicating with a resource manager facet receives a

TXUSER_VOTER_MTAG_CREATE message, it MUST perform the following actions:

 If the connection state is Idle:

 Set the connection state to Creating Voter.

 Find the transaction object in the transaction manager's transaction table using the guidTx
field from the message.

 If the transaction is not found:

 Send a TXUSER_VOTER_MTAG_CREATE_TX_NOT_FOUND message using the connection.

 Set the connection state to Ended.

 Otherwise:

 Create a new Enlistment object with the following values:

 The transaction manager communicating with a resource manager facet

 The transaction object

 The connection

 Set the Resource Manager Identifier field of the Enlistment object to aNULL GUID.

 Assign the new Enlistment object to the enlistment field of the connection.

 Signal the Create Voter Enlistment event on the Core Transaction Manager Facet with the
Enlistment object.

 Otherwise, the message MUST be processed as an invalid message as specified in section 3.1.6.

3.6.5.4.1.2 Receiving a TXUSER_VOTER_MTAG_VOTEREQDONE Message

When the transaction manager communicating with a resource manager facet receives a
TXUSER_VOTER_MTAG_VOTEREQDONE message, the transaction manager communicating with a
resource manager facet MUST perform the following actions:

 If the connection state is Awaiting Voter Response:

 Set the connection state as follows:

 If the VoteReqDone field from the message is TXUSER_VOTER_VOTEREQDONE_ABORT
or TXUSER_VOTER_VOTEREQDONE_OK_NONOTIFY:

 Set the connection state to Ended.

368 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 Otherwise, If the VoteReqDone field from the message is
TXUSER_VOTER_VOTEREQDONE_OK:

 Set the connection state to Awaiting Outcome.

 Otherwise, the message MUST be processed as an invalid message, as specified in section

3.1.6.

 Signal the Enlistment Vote Complete event on the Core Transaction Manager Facet with the
following arguments:

 The Enlistment object that is referenced by this connection.

 The Vote outcome, which MUST be set to:

 Prepared if the VoteReqDone field from the message is
TXUSER_VOTER_VOTEREQDONE_OK.

 Aborted if the VoteReqDone field from the message is

TXUSER_VOTER_VOTEREQDONE_ABORT.

 Read-only if the VoteReqDone field from the message is
TXUSER_VOTER_VOTEREQDONE_OK_NONOTIFY.

 Otherwise, the message MUST be processed as an invalid message as specified in section 3.1.6.

3.6.5.4.1.3 Connection Disconnected

When a CONNTYPE_TXUSER_VOTER (section 2.2.10.4.1) connection is disconnected, the transaction
manager communicating with a resource manager facet MUST perform the following actions:

 If the connection state is either Active (section 3.6.1.6.3) or Awaiting Voter Response:

 Signal the Enlistment Unilaterally Aborted (section 3.2.7.19) event on the Core Transaction
Manager Facet (section 1.3.3.3.1) with the Enlistment object that is referenced by this

connection.

 Finally, in all cases, the event MUST be processed as specified in section 3.1.8.3.

3.6.6 Timer Events

3.6.6.1 Reenlist Timeout Timer

When this timer expires, the transaction manager communicating with a resource manager facet
MUST perform the following actions:

 Send a TXUSER_REENLIST_MTAG_REENLIST_TIMEOUT (section 2.2.10.3.1.4) message using the
connection that is referenced by the provided Enlistment object.

 Set the transaction state to Ended (section 3.2.1.3.14).

3.6.7 Other Local Events

A transaction manager communicating with a resource manager facet MUST be prepared to process
the local events that are defined in the following sections.

The transaction manager communicating with a resource manager MUST be prepared to process local
events pertaining to Phase Zero functionality only on versions where the connection type

369 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

CONNTYPE_TXUSER_PHASE0 is supported. Section 2.2.1.1.3 defines protocol version support for this
connection type. The following local events are affected:

 Create Phase Zero Enlistment Success

 Create Phase Zero Enlistment Failure

 Begin Phase Zero

 Phase Zero Aborted

3.6.7.1 Begin Commit

The Begin Commit event MUST be signaled with the following arguments:

 An Enlistment object

If the Begin Commit event is signaled, the transaction manager MUST perform the following actions:

 If the connection of the provided enlistment is of type
CONNTYPE_TXUSER_VOTER (section 2.2.10.4.1):

 Send a TXUSER_STATUS_MTAG_COMMITTED (section 2.2.10.4.1.2) message using the
connection.

 Set the connection state to Ended.

 Otherwise, if the connection of the provided enlistment is of type
CONNTYPE_TXUSER_ENLISTMENT (section 2.2.10.2.2):

 If the connection state is Ended:

 Add the provided Enlistment object to the Failed to Notify List of the transaction
manager (section 3.6.1).

 Otherwise:

 Send a TXUSER_ENLISTMENT_MTAG_COMMITREQ (section 2.2.10.2.2.3) message using
the connection.

 Set the connection state to Awaiting Commit Response (section 3.6.1.4.8).

 Otherwise, if the connection of the provided enlistment is of type
CONNTYPE_TXUSER_REENLIST (section 2.2.10.3.1):

 If the connection state is Processing Reenlist Request (section 3.6.1.5.2):

 Send a TXUSER_REENLIST_MTAG_REENLIST_COMMITTED (section 2.2.10.3.1.3) message
using the connection.

 Set the connection state to Ended.

 Otherwise:

 Ignore the signal.

3.6.7.2 Begin In Doubt

The Begin In Doubt event MUST be signaled with the following arguments:

 An Enlistment object

370 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

If the Begin In Doubt event is signaled, the transaction manager MUST perform the following actions:

 Send a TXUSER_STATUS_MTAG_INDOUBT message using the connection of the provided

enlistment.

 Set the connection state to Ended.

3.6.7.3 Begin Phase One

The Begin Phase One event MUST be signaled with the following arguments:

 An Enlistment object

 A Boolean value indicating whether or not the transaction manager communicating with a resource
manager facetattempts to make an Enlistment single-phase commit request.

If the Begin Phase One event is signaled, the transaction manager MUST perform the following
actions:

 If the connection state of the enlistment is Active:

 If the provided Single Phase Commit flag (defined in section 3.2.1) is true:

 Send a TXUSER_ENLISTMENT_MTAG_PREPAREREQ (section 2.2.10.2.2.11) message using

the connection of the provided enlistment.

 The fSinglePhase field MUST be set to a nonzero value.

 Set the grfRM field to the GRFRM field of the transaction object referenced by the
Enlistment object.

 Set the connection state to Awaiting Single Phase Commit Response.

 Otherwise:

 Send a TXUSER_ENLISTMENT_MTAG_PREPAREREQ (section 2.2.10.2.2.11) message using

the connection of the provided enlistment.

 The fSinglePhase field MUST be set to 0.

 Set the grfRM field to the GRFRM field of the transaction object referenced by the
Enlistment object.

 Set the connection state to Awaiting Prepare Response.

 Otherwise, ignore the event.

3.6.7.4 Begin Phase Zero

The Begin Phase Zero event MUST be signaled with the following arguments:

 An Enlistment object

If the Begin Phase Zero event is signaled, the transaction manager MUST perform the following

actions:

 If the connection state is Active:

 Send a TXUSER_PHASE0_MTAG_PHASE0REQ message using the connection of the provided
enlistment.

371 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 Set the connection state to Awaiting Phase Zero Response.

 Otherwise:

 Ignore the event.

3.6.7.5 Begin Rollback

The Begin Rollback event MUST be signaled with the following arguments:

 An Enlistment object

 If the Begin Rollback event is signaled, the transaction manager MUST perform the following actions:

 If the connection of the provided enlistment is of type CONNTYPE_TXUSER_VOTER:

 Send a TXUSER_STATUS_MTAG_ABORTED message using the connection.

 Set the connection state to Ended.

 Otherwise, if the connection of the provided enlistment is of type
CONNTYPE_TXUSER_ENLISTMENT:

 If the connection state is Idle:

 Signal the Enlistment Rollback Complete event on the Core Transaction Manager Facet

with the provided Enlistment object.

 Otherwise:

 If the connection state is Active or Prepared:

 Send a TXUSER_ENLISTMENT_MTAG_ABORTREQ message using the connection.

 Set the connection state to Awaiting Abort Response.

 Otherwise, if the connection state is Awaiting Prepare Response:

 Set the connection state to Awaiting Prepare Response Aborted.

 Otherwise, if the connection of the provided enlistment is of type CONNTYPE_TXUSER_REENLIST:

 If the connection state is Processing Reenlist Request:

 Send a TXUSER_REENLIST_MTAG_REENLIST_ABORTED message using the connection.

 Set the connection state to Ended.

 Otherwise, ignore the signal.

3.6.7.6 Begin Voting

The Begin Voting event MUST be signaled with the following arguments:

 An Enlistment object

If the Begin Voting event is signaled, the transaction manager MUST perform the following actions:

 If the connection state is Active:

372 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 Send a TXUSER_VOTER_MTAG_VOTEREQ message using the connection of the provided
enlistment.

 Set the connection state to Awaiting Voter Response.

 Otherwise, ignore the event.

3.6.7.7 Create Phase Zero Enlistment Failure

The Create Phase Zero Enlistment Failure event MUST be signaled with the following arguments:

 An Enlistment object.

 A value indicating the failure reason. The reason MUST be set to one of the following values:

 Too Late

 Tx Not Found

If the Create Phase Zero Enlistment Failure event is signaled, the transaction manager MUST perform
the following actions:

 If the connection state is Awaiting Create Response (section 3.6.1.3.2):

 Send the matching message for the following reason codes using the connection of the

provided enlistment:

 Too Late: TXUSER_PHASE0_MTAG_CREATE_TOO_LATE (section 2.2.10.2.1.2).

 Tx Not Found: TXUSER_PHASE0_MTAG_CREATE_TX_NOT_FOUND (section 2.2.10.2.1.3)

 Set the connection state to Ended.

 Otherwise, ignore the event.

3.6.7.8 Create Phase Zero Enlistment Success

The Create Phase Zero Enlistment Success event MUST be signaled with the following arguments:

 An Enlistment object

If the Create Phase Zero Enlistment Success event is signaled, the transaction manager MUST perform
the following actions:

 If the connection state is Awaiting Create Response (section 3.6.1.3.2):

 Send a TXUSER_PHASE0_MTAG_CREATED message using the connection of the provided
enlistment.

 Set the connection state to Active.

 Otherwise, ignore the event.

3.6.7.9 Create Resource Manager

The Create Resource Manager event MUST be signaled with the following arguments:

 A resource manager object

373 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

If the Create Resource Manager event is signaled, the transaction manager communicating with a
resource manager facet MUST perform the following actions:

 Search for a resource manager object in the transaction manager's Active Resource Manager table
with the same resource manager identifier as the provided resource manager object.

 If such a resource manager object is found in the table:

 If the connection object that is referenced by the found resource manager object is of type
CONNTYPE_TXUSER_RESOURCEMANAGERINTERNAL (section 2.2.10.1.2):

 If the connection state of the found resource manager object is either Reenlisting or
Active:

 Send a
TXUSER_RESOURCEMANAGERINTERNAL_MTAG_DUPLICATEDETECTED (section 2.2.10

.1.2.1) message using the connection object that is referenced by the found resource
manager object.

 Send a TXUSER_RESOURCEMANAGER_MTAG_DUPLICATE (section 2.2.10.1.1.2) message
using the connection object that is referenced by the provided resource manager object.
Set the state of the connection object that referenced the provided resource manager
object to Ended.

 Set the state of the connection object that referenced the provided resource manager
object to Ended.

 Otherwise,

 Send a TXUSER_RESOURCEMANAGER_MTAG_DUPLICATE (section 2.2.10.1.1.2) message
using the connection object that is referenced by the provided resource manager object.

 Set the state of the connection object that referenced the provided resource manager
object to Ended.

 Otherwise

 If the connection state is Creating:

 Add the provided resource manager object to the Active Resource Manager table, using
the resource manager identifier field as the key.

 Send a TXUSER_RESOURCEMANAGER_MTAG_REQUEST_COMPLETE (section 2.2.10.1.1.4)
message using the connection.

 Set the connection state to Reenlisting.

3.6.7.10 Create Subordinate Enlistment Failure

The Create Subordinate Enlistment Failure event MUST be signaled with the following arguments:

 An Enlistment object.

 A value indicating the failure reason. The reason MUST be set to one of the following values:

 Log Full

 Too Late

 Too Many

374 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

If the Create Subordinate Enlistment Failure event is signaled, the transaction manager MUST perform
the following actions:

 If the connection state is Processing Enlistment Request:

 Send the matching message for the following reason codes using the connection of the

provided enlistment:

 Log Full: TXUSER_ENLISTMENT_MTAG_ENLIST_LOG_FULL

 Too Late: TXUSER_ENLISTMENT_MTAG_ENLIST_TOO_LATE

 Too Many: TXUSER_ENLISTMENT_MTAG_ENLIST_TOO_MANY

 Set the connection state to Ended.

 Otherwise, ignore the event.

3.6.7.11 Create Subordinate Enlistment Success

The Create Subordinate Enlistment Success event MUST be signaled with the following arguments:

 An Enlistment object

If the Create Subordinate Enlistment Success event is signaled, the transaction manager MUST

perform the following actions:

 If the connection state is Processing Enlistment Request:

 Send a TXUSER_ENLISTMENT_MTAG_ENLISTED message using the connection of the provided
enlistment.

 Set the connection state to Active.

 Otherwise, ignore the event.

3.6.7.12 Create Voter Enlistment Failure

The Create Voter Enlistment Failure event MUST be signaled with the following arguments:

 An Enlistment object

 A value indicating the failure reason. The reason MUST be set to the following value:

 Too Late

If the Create Voter Enlistment Failure event is signaled, the transaction manager MUST perform the
following actions:

 If the connection state is Creating Voter:

 Send the TXUSER_VOTER_MTAG_CREATE_TOO_LATE (section 2.2.10.4.1.5) message using
the connection of the provided enlistment:

 Set the connection state to Ended.

 Otherwise, ignore the event.

375 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

3.6.7.13 Create Voter Enlistment Success

The Create Voter Enlistment Success event MUST be signaled with the following arguments:

 An Enlistment object

If the Create Voter Enlistment Success event is signaled, the Transaction Manager MUST perform the
following actions:

 If the connection state is Creating Voter:

 Send a TXUSER_VOTER_MTAG_CREATED (section 2.2.10.4.1.7) message using the connection
of the provided enlistment.

 Set the connection state to Active.

 Otherwise, ignore the event.

3.6.7.14 Phase Zero Aborted

The Phase Zero Aborted event MUST be signaled with the following arguments:

 An Enlistment object

If the Phase Zero Aborted event is signaled, the transaction manager MUST perform the following
actions:

 If the connection state is Active:

 Send a TXUSER_PHASE0_MTAG_PHASE0REQ_ABORT message using the connection of the
provided enlistment.

 Set the connection state to ended.

 Otherwise, ignore the event.

3.6.7.15 Reenlist Complete

The Reenlist Complete event MUST be signaled with the following arguments:

 A resource manager object

If the Reenlist Complete event is signaled, the transaction manager communicating with a resource

manager facet MUST perform the following actions:

 For each enlistment in the Failed to Notify List of the transaction manager (section 3.6.1):

 If the Resource Manager Identifier field of the Enlistment object matches the provided
Resource Manager Object.Identifier field:

 Signal the Enlistment Commit Complete event on the Core Transaction Manager Facet

providing the Enlistment object.

 Remove the Enlistment object from the Failed to Notify List.

 Send a TXUSER_RESOURCEMANAGER_MTAG_REQUEST_COMPLETE message using the connection
of the provided resource manager.

 Set the connection state to Reenlisting.

376 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

3.6.7.16 Resource Manager Down

The Resource Manager Down event MUST be signaled with the following arguments:

 A resource manager object

If the Resource Manager Down event is signaled, the transaction manager communicating with a
resource manager facet MUST perform the following actions:

 For each enlistment in the Failed to Notify List of the transaction manager (section 3.6.1):

 If the Enlistment object's Resource Manager Identifier field matches the provided resource
manager object's Resource Manager Object.Identifier field:

 Set the state of the connection object referenced by the Enlistment object to Ended.

 Search for a resource manager object in the manager's Active Resource Manager Table with

the same resource manager identifier as the provided resource manager object.

 If such a resource manager object is found in the table, remove the resource manager object from
the table.

3.7 Superior Transaction Manager Facet Details

3.7.1 Abstract Data Model

This section describes a conceptual model of possible data organization that an implementation
maintains to participate in this protocol. The described organization is provided to facilitate the

explanation of how the protocol behaves. This document does not mandate that implementations
adhere to this model as long as their external behavior is consistent with that described in this
document.

Note that the abstract data model can be implemented in a variety of ways. This protocol does not

prescribe or advocate any specific implementation technique.

The superior transaction manager facet MUST maintain all the data elements that are specified in
sections 3.1.1 and 3.2.1.

The Superior Transaction Manager facet MUST also maintain the following data elements:

Enlistment objects that are created by the superior transaction manager facet MUST provide the
following properties as specified in 3.1.1:

 Name: The Hostname field in the Enlistment object's connection object

 Enlistment Object.Identifier: An empty string

The superior transaction manager MUST provide the states that are defined in the following sections

for its supported connection types. Version-Specific Aspects of Connection Types Relevant to a
Transaction Manager (section 2.2.1.1.2) defines the connection types that a superior transaction

manager MUST provide for each supported protocol version.

3.7.1.1 CONNTYPE_PARTNERTM_PROPAGATE Initiator States

The superior transaction manager MUST act as an initiator for the
CONNTYPE_PARTNERTM_PROPAGATE (section 2.2.9.1.1.1) connection type. In this role, the superior
transaction manager MUST provide support for the states in this section:

 Idle (section 3.7.1.1.1)

377 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 Awaiting Propagation Response (section 3.7.1.1.2)

 Active (section 3.7.1.1.3)

 Awaiting Abort Response (section 3.7.1.1.4)

 Phase Zero Registration (section 3.7.1.1.5)

 Requesting Phase Zero (section 3.7.1.1.6)

 Phase Zero (section 3.7.1.1.7)

 Phase Zero Registration During Phase Zero (section 3.7.1.1.8)

 Phase Zero with Outstanding Registration (section 3.7.1.1.9)

 Awaiting Prepare Response (section 3.7.1.1.10)

 Prepared (section 3.7.1.1.11)

 Awaiting Commit Response (section 3.7.1.1.12)

 Ended (section 3.7.1.1.13)

The following illustration shows the relationship between the CONNTYPE_PARTNERTM_PROPAGATE
initiator states.

378 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Figure 57: CONNTYPE_PARTNERTM_PROPAGATE initiator states

3.7.1.1.1 Idle

This is the initial state. The following event is processed in this state:

 Propagate Transaction (section 3.7.7.10)

3.7.1.1.2 Awaiting Propagation Response

The following events are processed in this state:

 Receiving a PARTNERTM_PROPAGATE_MTAG_PROPAGATED Message (section 3.7.5.1.1.1.1)

 Receiving a PARTNERTM_PROPAGATE_MTAG_DUPLICATE,
PARTNERTM_PROPAGATE_MTAG_NO_MEM, or PARTNERTM_PROPAGATE_MTAG_LOG_FULL
Message (section 3.7.5.1.1.1.2)

379 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

3.7.1.1.3 Active

The following events are processed in this state:

 Receiving PARTNERTM_PROPAGATE_MTAG_PHASE0REGISTER (section 3.7.5.1.1.1.3)

 Receiving PARTNERTM_PROPAGATE_MTAG_ABORTNOTIFY (section 3.7.5.1.1.1.4)

 Begin Phase One (section 3.7.7.2).

 Begin Rollback (section 3.7.7.4)

3.7.1.1.4 Awaiting Abort Response

The following event is processed in this state:

 Receiving PARTNERTM_PROPAGATE_MTAG_ABORTREQDONE (section 3.7.5.1.1.1.3)

3.7.1.1.5 Phase Zero Registration

The following events are processed in this state:

 Create Phase Zero Enlistment Success (section 3.7.7.6)

 Create Phase Zero Enlistment Failure (section 3.7.7.5)

3.7.1.1.6 Requesting Phase Zero

The following events are processed in this state:

 Receiving PARTNERTM_PROPAGATE_MTAG_ABORTNOTIFY (section 3.7.5.1.1.1.3)

 Begin Phase Zero (section 3.7.7.3)

 Receiving PARTNERTM_PROPAGATE_MTAG_PROTOCOL_ERROR (section 3.7.5.1.1.1.4)

3.7.1.1.7 Phase Zero

The following events are processed in this state:

 Receiving a PARTNERTM_PROPAGATE_MTAG_PHASE0COMPLETE (section 3.7.5.1.1.1.3)

 Receiving a PARTNERTM_PROPAGATE_MTAG_PHASE0REGISTER (section 3.7.5.1.1.1.3)

 Receiving a PARTNERTM_PROPAGATE_MTAG_PROTOCOL_ERROR (section 3.7.5.1.1.1.4)

 Receiving a PARTNERTM_PROPAGATE_MTAG_ABORTNOTIFY (section 3.7.5.1.1.1.3)

3.7.1.1.8 Phase Zero Registration During Phase Zero

The following events are processed in this state:

 Create Phase Zero Enlistment Success (section 3.7.7.6)

 Create Phase Zero Enlistment Failure (section 3.7.7.5)

3.7.1.1.9 Phase Zero with Outstanding Registration

The following events are processed in this state:

 Receiving PARTNERTM_PROPAGATE_MTAG_PHASE0COMPLETE (section 3.7.5.1.1.1.3).

380 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 Receiving PARTNERTM_PROPAGATE_MTAG_PROTOCOL_ERROR (section 3.7.5.1.1.1.4)

3.7.1.1.10 Awaiting Prepare Response

The following events are processed in this state:

 Receiving PARTNERTM_PROPAGATE_MTAG_PREPAREREQDONE (section 3.7.5.1.1.1.3)

 Receiving PARTNERTM_PROPAGATE_MTAG_PROTOCOL_ERROR (section 3.7.5.1.1.1.4)

3.7.1.1.11 Prepared

The following events are processed in this state:

 Begin Commit (section 3.7.7.1)

 Begin Rollback (section 3.7.7.4)

3.7.1.1.12 Awaiting Commit Response

The following events are processed in this state:

 Receiving PARTNERTM_PROPAGATE_MTAG_COMMITREQDONE (section 3.7.5.1.1.1.3)

 Receiving PARTNERTM_PROPAGATE_MTAG_PROTOCOL_ERROR (section 3.7.5.1.1.1.4)

3.7.1.1.13 Ended

This is the final state.

3.7.1.2 CONNTYPE_PARTNERTM_BRANCH Acceptor States

The superior transaction manager MUST act as an acceptor for the

CONNTYPE_PARTNERTM_BRANCH (section 2.2.9.1.2.1) connection type. In this role, the superior

transaction manager MUST provide support for the states in this section.

The following figure shows the relationship between the CONNTYPE_PARTNERTM_BRANCH acceptor
states.

381 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Figure 58: CONNTYPE_PARTNERTM_BRANCH acceptor states

3.7.1.2.1 Idle

This is the initial state. The following event is processed in this state:

 Receiving PARTNERTM_BRANCH_MTAG_BRANCHING (section 3.7.5.1.2.1.1).

3.7.1.2.2 Branching

The following events are processed in this state:

 Create Subordinate Enlistment Success (section 3.7.7.8)

 Create Subordinate Enlistment Failure (section 3.7.7.7)

3.7.1.2.3 Active

382 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

The following events are processed in this state:

 Receiving PARTNERTM_PROPAGATE_MTAG_PHASE0REGISTER (section 3.7.5.1.2.1.2)

 Receiving PARTNERTM_PROPAGATE_MTAG_ABORTNOTIFY (section 3.7.5.1.2.1.4)

 Begin Phase One (section 3.7.7.2)

 Begin Rollback (section 3.7.7.4).

3.7.1.2.4 Awaiting Abort Response

The following event is processed in this state:

 Receiving PARTNERTM_PROPAGATE_MTAG_ABORTREQDONE (section 3.7.5.1.2.1.5)

3.7.1.2.5 Phase Zero Registration

The following events are processed in this state:

 Create Phase Zero Enlistment Success (section 3.7.7.6)

 Create Phase Zero Enlistment Failure (section 3.7.7.5)

3.7.1.2.6 Requesting Phase Zero

The following events are processed in this state:

 Receiving PARTNERTM_PROPAGATE_MTAG_ABORTNOTIFY (section 3.7.5.1.2.1.4)

 Begin Phase Zero (section 3.7.7.3)

 Receiving PARTNERTM_PROPAGATE_MTAG_PROTOCOL_ERROR (section 3.7.5.1.2.1.8)

3.7.1.2.7 Phase Zero

The following events are processed in this state:

 Receiving PARTNERTM_PROPAGATE_MTAG_PHASE0COMPLETE (section 3.7.5.1.2.1.3)

 Receiving PARTNERTM_PROPAGATE_MTAG_PHASE0REGISTER (section 3.7.5.1.2.1.2)

 Receiving PARTNERTM_PROPAGATE_MTAG_PROTOCOL_ERROR (section 3.7.5.1.2.1.8)

 Receiving PARTNERTM_PROPAGATE_MTAG_ABORTNOTIFY (section 3.7.5.1.2.1.4)

3.7.1.2.8 Phase Zero Registration During Phase Zero

The following events are processed in this state:

 Create Phase Zero Enlistment Success (section 3.7.7.6)

 Create Phase Zero Enlistment Failure (section 3.7.7.5)

3.7.1.2.9 Phase Zero with Outstanding Registration

The following events are processed in this state:

 Receiving PARTNERTM_PROPAGATE_MTAG_PHASE0COMPLETE (section 3.7.5.1.2.1.3)

 Receiving PARTNERTM_PROPAGATE_MTAG_PROTOCOL_ERROR (section 3.7.5.1.2.1.8)

383 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

3.7.1.2.10 Awaiting Prepare Response

The following events are processed in this state:

 Receiving PARTNERTM_PROPAGATE_MTAG_PREPAREREQDONE (section 3.7.5.1.2.1.6)

 Receiving PARTNERTM_PROPAGATE_MTAG_PROTOCOL_ERROR (section 3.7.5.1.2.1.8)

3.7.1.2.11 Prepared

The following events are processed in this state:

 Begin Commit (section 3.7.7.1)

 Begin Rollback (section 3.7.7.4)

3.7.1.2.12 Awaiting Commit Response

The following events are processed in this state:

 Receiving a PARTNERTM_PROPAGATE_MTAG_COMMITREQDONE (section 3.7.5.1.2.1.7)

 Receiving a PARTNERTM_PROPAGATE_MTAG_PROTOCOL_ERROR (section 3.7.5.1.2.1.8)

3.7.1.2.13 Ended

This is the final state.

3.7.1.3 CONNTYPE_PARTNERTM_REDELIVERCOMMIT Initiator States

The superior transaction manager MUST act as an initiator for the
CONNTYPE_PARTNERTM_REDELIVERCOMMIT connection type. In this role, the superior transaction

manager MUST provide support for the states in this section.

The following figure shows the relationship between the CONNTYPE_PARTNERTM_REDELIVERCOMMIT
initiator states.

384 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Figure 59: CONNTYPE_PARTNERTM_REDELIVERCOMMIT initiator states

3.7.1.3.1 Idle

This is the initial state. The following event is processed in this state:

 Begin Commit (section 3.7.7.1)

3.7.1.3.2 Awaiting Confirmation

The following events are processed in this state:

 Receiving a PARTNERTM_REDELIVERCOMMIT_MTAG_COMMITREQDONE (section 3.7.5.1.2.1.7)

 Receiving a PARTNERTM_REDELIVERCOMMIT_MTAG_RETRY Message (section 3.7.5.2.2.1.2)

3.7.1.3.3 Waiting to Rerequest

The following event is processed in this state:

 Redeliver Commit Timer (section 3.7.6.1)

3.7.1.3.4 Ended

This is the final state.

385 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

3.7.1.4 CONNTYPE_PARTNERTM_CHECKABORT Acceptor States

The superior transaction manager MUST act as an acceptor for the
CONNTYPE_PARTNERTM_CHECKABORT (section 2.2.9.2.1.1) connection type. In this role, the superior

transaction manager MUST provide support for the states in this section.

The following figure shows the relationship between the CONNTYPE_PARTNERTM_CHECKABORT
acceptor states.

Figure 60: CONNTYPE_PARTNERTM_CHECKABORT acceptor states

3.7.1.4.1 Idle

This is the initial state. The following event is processed in this state:

 Receiving a PARTNERTM_CHECKABORT_MTAG_CHECK Message (section 3.7.5.2.1.1.1)

3.7.1.4.2 Processing Abort Inquiry

386 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

This is a transient state that is assumed during the processing of a request for check abort. No specific
events are processed in this state.

3.7.1.4.3 Ended

This is the final state.

3.7.2 Timers

The superior transaction manager facet MUST provide the following Redeliver Commit Timer.

3.7.2.1 Redeliver Commit Timer

This timer MUST be set when the Superior Transaction Manager Facet (section 1.3.3.3.4) receives a
PARTNERTM_REDELIVERCOMMIT_MTAG_RETRY (section 2.2.9.2.2.1.3) message on a
CONNTYPE_PARTNERTM_REDELIVERCOMMIT (section 2.2.9.2.2.1) connection. The timer MUST be

canceled when the CONNTYPE_PARTNERTM_REDELIVERCOMMIT (section 2.2.9.2.2.1) connection is

disconnected.

The default value of the timer is implementation-specific.<36>

When the timer is initialized, the Superior Transaction Manager Facet (section 1.3.3.3.4) MUST
provide an Enlistment object to associate with the timer. When the timer expires, the same Enlistment
object MUST be provided alongside the timer notification. The Superior Transaction Manager Facet
MUST provide a distinct Redeliver Commit Timer (section 3.7.2.1) instance for each

CONNTYPE_PARTNERTM_REDELIVERCOMMIT connection.

3.7.3 Initialization

When the superior transaction manager facet is initialized:

 The superior transaction manager facet MUST examine the following security flags on the core

transaction manager and perform the following actions:

 If one of the Allow Network Access, Allow Network Transactions, or Allow Outbound
Transactions flags is set to false:

 For the following connection type, the superior transaction manager MUST refuse to accept
incoming connections from remote machines as specified in [MS-CMP] (section 3.1.5.5)
with the rejection Reason set to 0x80070005:

 CONNTYPE_PARTNERTM_BRANCH (section 2.2.9.1.2.1)

 If one of the Allow Network Access or Allow Network Transactions flags is set to false, or if
both the Allow Inbound Transactions and Allow Outbound Transactions flags are set to false:

 For the following connection type, the superior transaction manager MUST refuse to accept
incoming connections from remote machines as specified in [MS-CMP] (section 3.1.5.5)

with the rejection Reason set to 0x80070005:

 CONNTYPE_PARTNERTM_CHECKABORT (section 2.2.9.2.1.1)

3.7.4 Higher-Layer Triggered Events

No higher-layer triggered events apply.

%5bMS-CMP%5d.pdf#Section_1970a8a0799d4308b9274e4ea23dc225

387 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

3.7.5 Processing Events and Sequencing Rules

3.7.5.1 Transaction Propagation and Coordination

3.7.5.1.1 Push Propagation

3.7.5.1.1.1 CONNTYPE_PARTNERTM_PROPAGATE as Initiator

For all messages that are received in this connection type, the superior transaction manager MUST

process the message as specified in section 3.1.

Also, for incoming messages, the superior transaction manager MUST override the verification actions
of the default state as specified in section 3.1 in the following manner:

 If the current connection state does not define a processing rule for the message:

 Send a PARTNERTM_PROPAGATE_MTAG_PROTOCOL_ERROR message using the connection.

 Perform default invalid message processing, as specified in section 3.1.

The superior transaction manager MUST also follow the processing rules that are specified in the

following sections.

3.7.5.1.1.1.1 Receiving a PARTNERTM_PROPAGATE_MTAG_PROPAGATED Message

When the superior transaction manager receives a
PARTNERTM_PROPAGATE_MTAG_PROPAGATED (section 2.2.9.1.1.1.2) message, the superior
transaction manager MUST perform the following actions:

 If the connection state is Awaiting Propagation Response:

 Set the connection state to Active (section 3.7.1.1.3).

 Create an Enlistment object with the following values:

 The Superior Transaction Manager Facet (section 1.3.3.3.4)

 The transaction object referenced by this connection

 This connection object

 Signal the Propagate Transaction Success (section 3.2.7.27) event on the Core Transaction

Manager Facet (section 1.3.3.3.1) with the created enlistment object.

 Otherwise, the message MUST be processed as an invalid message as specified in section 3.1.6.

3.7.5.1.1.1.2 Receiving a PARTNERTM_PROPAGATE_MTAG_DUPLICATE,

PARTNERTM_PROPAGATE_MTAG_NO_MEM, or

PARTNERTM_PROPAGATE_MTAG_LOG_FULL Message

When the Superior Transaction Manager Facet receives a
PARTNERTM_PROPAGATE_MTAG_DUPLICATE, PARTNERTM_PROPAGATE_MTAG_NO_MEM, or
PARTNERTM_PROPAGATE_MTAG_LOG_FULL message, the superior transaction manager MUST
perform the following actions:

 If the connection state is Awaiting Propagation Response:

 Create an Enlistment object with the following values:

388 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 The Superior Transaction Manager Facet

 The transaction object that is referenced by this connection

 This connection object

 Signal the Propagate Transaction Failure event on the Core Transaction Manager Facet with

the following arguments:

 The created Enlistment object

 The failure code that matches the incoming message:

 PARTNERTM_PROPAGATE_MTAG_DUPLICATE: Duplicate

 PARTNERTM_PROPAGATE_MTAG_NO_MEM: No Mem

 PARTNERTM_PROPAGATE_MTAG_LOG_FULL: Log Full

 Set the connection state to Ended.

 Otherwise, the message MUST be processed as an invalid message as specified in section 3.1.6.

3.7.5.1.1.1.3 Receiving a PARTNERTM_PROPAGATE_MTAG_PHASE0REGISTER,

PARTNERTM_PROPAGATE_MTAG_PHASE0COMPLETE,

PARTNERTM_PROPAGATE_MTAG_PREPAREREQDONE,

PARTNERTM_PROPAGATE_MTAG_COMMITREQDONE,

PARTNERTM_PROPAGATE_MTAG_ABORTREQDONE, or

PARTNERTM_PROPAGATE_MTAG_ABORTNOTIFY Message

When the superior transaction manager facet receives one of these messages, it MUST follow the

same message processing rules as the CONNTYPE_PARTNERTM_BRANCH connection type acting as an
acceptor. See section 3.7.5.1.2.1 for more information.

3.7.5.1.1.1.4 Receiving a PARTNERTM_PROPAGATE_MTAG_PROTOCOL_ERROR

Message

The processing of this event MUST be identical to the processing of the Connection Disconnected

event.

3.7.5.1.1.1.5 Connection Disconnected

When a CONNTYPE_PARTNERTM_PROPAGATE (section 2.2.9.1.1.1) connection is disconnected, the
Superior Transaction Manager Facet (section 1.3.3.3.4) MUST perform the following actions:

 If the connection state is Awaiting Propagation Response:

 Create an Enlistment object with the following values:

 The Superior Transaction Manager Facet

 The transaction object that is referenced by this connection

 This connection object

 Signal the Propagate Transaction Failure (section 3.2.7.26) event on the Core Transaction
Manager Facet with the following arguments:

 The created Enlistment object

389 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 A failure code of Comm Failed.

 Set the connection state to Ended.

 Otherwise:

 The Superior Transaction Manager Facet (section 1.3.3.3.4) MUST perform the same actions

as the CONNTYPE_PARTNERTM_BRANCH (section 2.2.9.1.2.1) connection type acting as an
acceptor. For more information, see section 3.7.5.1.2.1.

3.7.5.1.2 Pull Propagation

3.7.5.1.2.1 CONNTYPE_PARTNERTM_BRANCH as Acceptor

For all messages that are received in this connection type, the superior transaction manager MUST

process the message as specified in section 3.1.

Also, for incoming messages, the superior transaction manager MUST override the verification actions

of the default state, as specified in section 3.1.6, in the following manner:

 If the current connection state does not define a processing rule for the message:

 Send a PARTNERTM_PROPAGATE_MTAG_PROTOCOL_ERROR message using the connection.

 Perform default invalid message processing, as specified in section 3.1.6.

The superior transaction manager MUST also follow the processing rules as specified in the following
section.

3.7.5.1.2.1.1 Receiving a PARTNERTM_BRANCH_MTAG_BRANCHING Message

When the superior transaction manager receives a PARTNERTM_BRANCH_MTAG_BRANCHING
message, the superior transaction manager MUST perform the following actions:

 If the connection state is Idle:

 Set the connection state to Branching.

 Find the transaction object in the transaction table of the transaction manager using the
guidTx field from the message as the key.

 If a transaction object is found:

 Create a new Enlistment object with the following values:

 The Superior Transaction Manager Facet

 The transaction object

 The connection object

 Set the enlistment field of the connection to the new Enlistment object.

 Signal the Create Subordinate Enlistment event on the Core Transaction Manager Facet
with the new Enlistment object.

 Otherwise:

 Send a PARTNERTM_BRANCH_MTAG_BRANCH_TX_NOT_FOUND message using the
connection.

390 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 Set the connection state to Ended.

 Otherwise, the message MUST be processed as an invalid message as specified in section 3.1.6.

3.7.5.1.2.1.2 Receiving a PARTNERTM_PROPAGATE_MTAG_PHASE0REGISTER

Message

When the superior transaction manager receives a
PARTNERTM_PROPAGATE_MTAG_PHASE0REGISTER (section 2.2.9.1.1.1.14) message, the superior
transaction manager MUST perform the following actions:

 If the connection state is Active:

 Set the connection state to Phase Zero Registration.

 Signal the Create Phase Zero Enlistment (section 3.2.7.10) event on the Core Transaction
Manager Facet (section 1.3.3.3.1) with the Enlistment object that is referenced by this
connection.

 Otherwise, if the connection state is Phase Zero:

 Set the connection state to Phase Zero Registration During Phase Zero.

 Signal the Create Phase Zero Enlistment event on the Core Transaction Manager Facet with

the Enlistment object that is referenced by this connection.

 Otherwise, the message MUST be processed as an invalid message as specified in section 3.1.6.

3.7.5.1.2.1.3 Receiving a PARTNERTM_PROPAGATE_MTAG_PHASE0COMPLETE

Message

When the superior transaction manager receives a

PARTNERTM_PROPAGATE_MTAG_PHASE0COMPLETE message, the superior transaction manager MUST
perform the following actions:

 If the connection state is Phase Zero:

 Set the connection state to Active.

 Signal the Enlistment Phase Zero Complete event on the Core Transaction Manager Facet with
the following arguments:

 The Enlistment object that is referenced by this connection.

 The Completed outcome value.

 Otherwise, if the connection state is Phase Zero with Outstanding Registration:

 Set the connection state to Requesting Phase Zero.

 Signal the Enlistment Phase Zero Complete event on the Core Transaction Manager Facet with

the following arguments:

 The Enlistment object that is referenced by this connection

 The Completed outcome value

 Otherwise, the message MUST be processed as an invalid message as specified in section 3.1.6.

3.7.5.1.2.1.4 Receiving a PARTNERTM_PROPAGATE_MTAG_ABORTNOTIFY Message

391 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

When the superior transaction manager receives a
PARTNERTM_PROPAGATE_MTAG_ABORTNOTIFY (section 2.2.9.1.1.1.13) message, the superior

transaction manager MUST perform the following actions:

 If the connection state is either Active or Requesting Phase Zero:

 Signal the Enlistment Unilaterally Aborted (section 3.2.7.19) event on the Core Transaction
Manager Facet (section 1.3.3.3.1) with the Enlistment object that is referenced by this
connection.

 Set the connection state to Ended.

 Otherwise, if the connection state is Phase Zero (section 3.7.1.2.7):

 Signal the Enlistment Phase Zero Complete (section 3.2.7.17) event on the Core Transaction
Manager Facet with the following arguments:

 The Enlistment object that is referenced by this connection

 The Aborted outcome value

 Set the connection state to Ended.

 Otherwise, the message MUST be processed as an invalid message, as specified in section 3.1.6.

3.7.5.1.2.1.5 Receiving a PARTNERTM_PROPAGATE_MTAG_ABORTREQDONE Message

When the superior transaction manager receives a PARTNERTM_PROPAGATE_MTAG_ABORTREQDONE
message, the superior transaction manager MUST perform the following actions:

 If the connection state is Awaiting Abort Response:

 Signal the Enlistment Rollback Complete event on the Core Transaction Manager Facet with
the Enlistment object that is referenced by this connection.

 Set the connection state to Ended.

 Otherwise, the message MUST be processed as an invalid message as specified in section 3.1.6.

3.7.5.1.2.1.6 Receiving a PARTNERTM_PROPAGATE_MTAG_PREPAREREQDONE

Message

When the superior transaction manager receives a
PARTNERTM_PROPAGATE_MTAG_PREPAREREQDONE message, the superior transaction manager
MUST perform the following actions:

 If the connection state is Awaiting Prepare Response:

 Signal the Enlistment Phase One Complete (section 3.2.7.16) event on the Core Transaction
Manager Facet (section 1.3.3.3.1) with the following arguments:

 The Enlistment object that is referenced by this connection.

 The outcome value that is determined by the prepareReqDone field from the message.
The outcome value is set to:

 Prepared if the prepareReqDone field is

PARTNERTM_PROPAGATE_PREPAREREQDONE_OK.

 Aborted if the prepareReqDone field is
PARTNERTM_PROPAGATE_PREPAREREQDONE_ABORT.

392 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 Read Only if the prepareReqDone field is
PARTNERTM_PROPAGATE_PREPAREREQDONE_READ_ONLY.

 Committed if the prepareReqDone field is
PARTNERTM_PROPAGATE_PREPAREREQDONE_SINGLEPHASE_COMMIT.

 In Doubt if the prepareReqDone field is
PARTNERTM_PROPAGATE_PREPAREREQDONE_SINGLEPHASE_INDOUBT.

 If the prepareReqDone value is Prepared:

 Set the connection state to Prepared.

 Otherwise, set the connection state to Ended.

 Otherwise, the message MUST be processed as an invalid message as specified in section 3.1.6.

3.7.5.1.2.1.7 Receiving a PARTNERTM_PROPAGATE_MTAG_COMMITREQDONE

Message

When the superior transaction manager receives a
PARTNERTM_PROPAGATE_MTAG_COMMITREQDONE (section 2.2.9.1.1.1.10) message, the superior
transaction manager MUST perform the following actions:

 If the connection state is Awaiting Commit Response:

 Signal the Enlistment Commit Complete (section 3.2.7.15) event on the core transaction
manager with the Enlistment object that is referenced by this connection.

 Set the connection state to Ended.

 Otherwise, the message MUST be processed as an invalid message as specified in section 3.1.6.

3.7.5.1.2.1.8 Receiving a PARTNERTM_PROPAGATE_MTAG_PROTOCOL_ERROR

Message

The processing of this event MUST be identical to the processing of the Connection Disconnected
event.

3.7.5.1.2.1.9 Connection Disconnected

When a CONNTYPE_PARTNERTM_BRANCH (section 2.2.9.1.2.1) connection is disconnected, the

superior transaction manager facet MUST perform the following actions:

 If the connection state is Awaiting Prepare Response:

 If the state of the transaction object that is referenced by the connection is Single Phase
Commit (section 3.2.1.3.9):

 Signal the Enlistment Phase Zero Complete (section 3.2.7.17) event on the Core

Transaction Manager Facet (section 1.3.3.3.1) with the following arguments:

 The Enlistment object that is referenced by this connection

 The In Doubt outcome value

 Otherwise:

 Signal the Enlistment Phase Zero Complete event on the Core Transaction Manager Facet
with the following arguments:

393 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 The Enlistment object that this connection references

 The Aborted outcome value

 Otherwise, if the connection state is Awaiting Commit Response:

 Retrieve the Enlistment object that is referenced by the connection object.

 Initiate a new CONNTYPE_PARTNERTM_REDELIVERCOMMIT (section 2.2.9.2.2.1) connection
using the Name object referenced by the Name field of the session object containing the
provided connection.

 Add the new connection object to the connection list of the transaction object referenced by
the Enlistment object.

 Assign the new connection object to the enlistment Enlistment Object.Connection field of
the Enlistment Object.

 Assign the enlistment to the new connection's Enlistment field.

 Send a PARTNERTM_REDELIVERCOMMIT_MTAG_COMMITREQ (section 2.2.9.2.2.1.1) message
using the connection:

 Set the guidTX field to the Transaction Object.Identifier field of the transaction object
that is referenced by this connection Enlistment object.

 Set the new connection state to Awaiting Confirmation.

 Otherwise, if the connection state is Awaiting Abort Response:

 Signal the Enlistment Rollback Complete (section 3.2.7.18) event on the Core Transaction
Manager Facet with the Enlistment object that is referenced by this connection.

 Otherwise, if the connection state is either Phase Zero, Phase Zero Registration During Phase
Zero, or Phase Zero with Outstanding Registration:

 Signal the Enlistment Phase Zero Complete event on the Core Transaction Manager Facet with
the following arguments:

 The Enlistment object that is referenced by this connection

 The Aborted outcome value

 Otherwise, if the connection state is either Branching, Active, Phase Zero Registration, or
Requesting Phase Zero:

 Signal the Enlistment Unilaterally Aborted (section 3.2.7.19) event on the Core Transaction
Manager Facet with the Enlistment object that is referenced by this connection.

 Finally, in all cases, the event MUST be processed as specified in section 3.1.8.3.

3.7.5.2 Transaction Recovery

3.7.5.2.1 Subordinate-Driven Recovery

3.7.5.2.1.1 CONNTYPE_PARTNERTM_CHECKABORT as Acceptor

 For all messages received in this connection type, the Superior Transaction Manager facet MUST
process the message in accordance with section 3.1. The Superior Transaction Manager facet MUST
additionally follow the processing rules specified in the following sections.

394 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

3.7.5.2.1.1.1 Receiving a PARTNERTM_CHECKABORT_MTAG_CHECK Message

When the Superior Transaction Manager Facet receives a PARTNERTM_CHECKABORT_MTAG_CHECK
message, the Superior Transaction Manager Facet MUST perform the following actions:

 If the connection state is Idle:

 Set the connection state to Processing Abort Inquiry.

 Find the transaction object in the Transaction Manager's transaction Table, using the guidTx
field from the message as a key.

 If the transaction object is not found, or if the transaction state is either Aborting or Ended:

 Send a PARTNERTM_CHECKABORT_MTAG_ABORTED message using the connection.

 Set the connection state to Ended.

 Otherwise:

 Send a PARTNERTM_CHECKABORT_MTAG_RETRY message using the connection.

 Set the connection state to Idle.

 Otherwise, the message MUST be processed as an invalid message as specified in section 3.1.6.

3.7.5.2.1.1.2 Connection Disconnected

When a CONNTYPE_PARTNERTM_CHECKABORT (section 2.2.9.2.1.1) connection is disconnected, the
Superior Transaction Manager Facet (section 1.3.3.3.4) MUST perform the actions as specified in
section 3.1.8.3.

3.7.5.2.2 Superior-Driven Recovery

3.7.5.2.2.1 CONNTYPE_PARTNERTM_REDELIVERCOMMIT as Initiator

 For all messages received in this connection type, the Superior Transaction Manager Facet MUST
process the message as specified in section 3.1. The Superior Transaction Manager Facet MUST
additionally follow the processing rules as specified in this section.

3.7.5.2.2.1.1 Receiving a PARTNERTM_REDELIVERCOMMIT_MTAG_COMMITREQDONE

Message

When the Superior Transaction Manager Facet (section 1.3.3.3.4) receives a
PARTNERTM_REDELIVERCOMMIT_MTAG_COMMITREQDONE (section 2.2.9.2.2.1.2) message, the
Superior Transaction Manager Facet MUST perform the following actions:

 If the connection state is Awaiting Confirmation:

 Signal the Enlistment Commit Complete (section 3.2.7.15) event on the Core Transaction

Manager Facet (section 1.3.3.3.1) with the Enlistment object referenced by this connection.

 Set the connection state to Ended.

 Otherwise, the message MUST be processed as an invalid message as specified in section 3.1.6.

3.7.5.2.2.1.2 Receiving a PARTNERTM_REDELIVERCOMMIT_MTAG_RETRY Message

395 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

When the superior transaction manager facet receives a
PARTNERTM_REDELIVERCOMMIT_MTAG_RETRY message, the superior transaction manager facet

MUST perform the following actions:

 If the connection state is Awaiting Confirmation:

 Set the connection state to Waiting to Rerequest.

 Initialize a Redeliver Commit timer with the following arguments:

 The Enlistment object of the connection

 An implementation-specific time-out value, as specified in Redeliver Commit Timer

 Otherwise, the message MUST be processed as an invalid message, as specified in section 3.1.6.

3.7.5.2.2.1.3 Connection Disconnected

When a CONNTYPE_PARTNERTM_REDELIVERCOMMIT (section 2.2.9.2.2.1) connection is disconnected,

the Superior Transaction Manager Facet (section 1.3.3.3.4) MUST perform the following actions:

 If the connection state is Waiting to Rerequest:

 Cancel the Redeliver Commit Timer associated with the connection.

 If the connection state is Idle, Waiting to Rerequest, or Awaiting Confirmation:

 Set the connection state to Ended.

 Signal the Begin Commit (section 3.7.7.1) event on the Superior Transaction Manager Facet
with the Enlistment object referenced by the Enlistment field of the connection.

 Otherwise, the event MUST be processed as specified in section 3.1.8.3.

3.7.6 Timer Events

3.7.6.1 Redeliver Commit Timer

When this timer expires, the Superior Transaction Manager Facet (section 1.3.3.3.4) MUST perform
the following actions:

 Cancel the Redeliver Commit timer.

 If the connection referenced by the provided enlistment is in the Waiting to Rerequest state:

 Set the connection state to Idle.

 Send a PARTNERTM_REDELIVERCOMMIT_MTAG_COMMITREQ (section 2.2.9.2.2.1.1) message
using the connection referenced by the provided Enlistment object:

 Set the guidTX field to the Transaction Object.Identifier field of the transaction object
provided by the Enlistment object.

 Set the connection state to Awaiting Confirmation.

 Otherwise, ignore the timer event.

396 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

3.7.7 Other Local Events

The Superior Transaction Manager MUST be prepared to process the local events defined in the
following sections.

The Superior Transaction Manager MUST be prepared to process local events pertaining to Phase Zero
functionality only on versions where the connection type CONNTYPE_TXUSER_PHASE0 is supported.
Connection Types Relevant to Resource Managers - Versioning defines protocol version support for this
connection type. The following local events are affected:

 Create Phase Zero Enlistment Success

 Create Phase Zero Enlistment Failure

 Begin Phase Zero

 Phase Zero Aborted

3.7.7.1 Begin Commit

The Begin Commit event MUST be signaled with the following arguments:

 An Enlistment object

If the Begin Commit event is signaled, the Superior Transaction Manager Facet (section 1.3.3.3.4)
MUST perform the following actions:

 If the connection state is Ended:

 Initiate a new CONNTYPE_PARTNERTM_REDELIVERCOMMIT (section 2.2.9.2.2.1) connection
by using the Name object referenced by the Name field of the Session object containing the
provided enlistment's connection.

 Add the new connection to the provided enlistment's transaction's connection list.

 Set the provided enlistment's Enlistment Object.Connection field to the new connection.

 Set the connection's Enlistment field to the provided Enlistment object.

 Send a PARTNERTM_REDELIVERCOMMIT_MTAG_COMMITREQ (section 2.2.9.2.2.1.1) message
using the new connection.

 Set the guidTx field to the Transaction Object.Identifier field of the transaction object
referenced by this connection's Enlistment object.

 Set the new connection state to Awaiting Confirmation.

 Otherwise:

 Send a PARTNERTM_PROPAGATE_MTAG_COMMITREQ (section 2.2.9.1.1.1.9) message using
the connection.

 Set the connection state to Awaiting Commit Response.

3.7.7.2 Begin Phase One

The Begin Phase One event MUST be signaled with the following arguments:

 An Enlistment object.

 A Boolean Single-Phase Commit value:

397 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 If true, the Superior Transaction Manager Facet (section 1.3.3.3.4) SHOULD attempt to
perform a Single-Phase Commit.

 If false, the Superior Transaction Manager Facet MUST NOT attempt to perform a Single-Phase
Commit.

If the Begin Phase One event is signaled, the Superior Transaction Manager Facet MUST perform the
following actions:

 If the provided Single-Phase Commit value is set to true:

 Send a PARTNERTM_PROPAGATE_MTAG_PREPAREREQ (section 2.2.9.1.1.1.6) message using
the connection.

 Set the fSinglePhase field to a nonzero value.

 Set the grfRM field to the GRFRM field of the transaction object referenced by the

Enlistment object.

 Otherwise:

 Send a PARTNERTM_PROPAGATE_MTAG_PREPAREREQ (section 2.2.9.1.1.1.6) message using
the connection.

 Set the fSinglePhase field to zero.

 Set the grfRM field to the GRFRM field of the transaction object referenced by the

Enlistment object.

 Set the connection state to Awaiting Prepare Response.

3.7.7.3 Begin Phase Zero

The Begin Phase Zero event MUST be signaled with the following arguments:

 An Enlistment object

If the Begin Phase Zero event is signaled, the Superior Transaction Manager Facet (section 1.3.3.3.4)
MUST perform the following actions:

 Send a PARTNERTM_PROPAGATE_MTAG_PHASE0 (section 2.2.9.1.1.1.17) message using the
connection.

 Set the connection state to Phase Zero.

3.7.7.4 Begin Rollback

The Begin Rollback event MUST be signaled with the following arguments:

 An Enlistment object

If the Begin Rollback event is signaled, the Superior Transaction Manager Facet MUST perform the

following actions:

 If the provided enlistment's connection state is Ended:

 Signal the Enlistment Rollback Complete event on the Core Transaction Manager Facet with
the following arguments:

 The provided Enlistment object

398 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 Otherwise:

 Send a PARTNERTM_PROPAGATE_MTAG_ABORTREQ message using the connection.

 Set the connection state to Awaiting Abort Response.

3.7.7.5 Create Phase Zero Enlistment Failure

The Create Phase Zero Enlistment Failure event MUST be signaled with the following arguments:

 An Enlistment object.

 A value indicating the failure reason. The reason MUST be set to one of the following values:

 Too Late

 Tx Not Found

If the Create Phase Zero Enlistment Failure event is signaled, the Superior Transaction Manager

Facet (section 1.3.3.3.4) MUST perform the following actions:

 Send a
PARTNERTM_PROPAGATE_MTAG_PHASE0REGISTRATIONREJECTED (section 2.2.9.1.1.1.16)
message using the enlistment's connection.

 If the enlistment's connection state is Phase Zero Registration:

 Set the connection state to Active.

 Otherwise, if the connection state is Phase Zero Registration During Phase Zero:

 Set the connection state to Phase Zero.

 Otherwise, ignore the event.

3.7.7.6 Create Phase Zero Enlistment Success

The Create Phase Zero Enlistment Success event MUST be signaled with the following arguments:

 An Enlistment object

If the Create Phase Zero Enlistment Success event is signaled, the Superior Transaction Manager
Facet (section 1.3.3.3.4) MUST perform the following actions:

 Send a PARTNERTM_PROPAGATE_MTAG_PHASE0REGISTERED (section 2.2.9.1.1.1.15) message
using the enlistment's connection.

 If the enlistment's connection state is Phase Zero Registration:

 Set the connection state to Requesting Phase Zero.

 Otherwise, if the connection state is Phase Zero Registration During Phase Zero:

 Set the connection state to Phase Zero with Outstanding Registration.

 Otherwise, ignore the event.

3.7.7.7 Create Subordinate Enlistment Failure

The Create Subordinate Enlistment Failure event MUST be signaled with the following arguments:

399 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 An Enlistment object.

 A value indicating the failure reason. The reason MUST be set to one of the following values:

 Log Full

 Too Late

 Too Many

If the Create Subordinate Enlistment Failure event is signaled, the Superior Transaction Manager Facet
MUST perform the following actions:

 Send the matching message for the following reason codes:

 Log Full: PARTNERTM_BRANCH_MTAG_BRANCH_LOG_FULL

 Too Late: PARTNERTM_BRANCH_MTAG_BRANCH_TOO_LATE

 Too Many: PARTNERTM_BRANCH_MTAG_BRANCH_TOO_MANY

 Set the connection state to Ended.

3.7.7.8 Create Subordinate Enlistment Success

The Create Subordinate Enlistment Success event MUST be signaled with the following arguments:

 An Enlistment object

If the Create Subordinate Enlistment Success event is signaled, the Superior Transaction Manager
Facet MUST perform the following actions:

 Send a PARTNERTM_BRANCH_MTAG_BRANCHED message using the enlistment's connection.

 Set the connection state to Active.

3.7.7.9 Phase Zero Aborted

The Phase Zero Aborted event MUST be signaled with the following arguments

 An Enlistment object

If the Phase Zero Aborted event is signaled, the Superior Transaction Manager Facet MUST perform
the following actions:

 Ignore the event.

3.7.7.10 Propagate Transaction

The Propagate Transaction event MUST be signaled with the following arguments:

 A Transaction object

 A Name object representing the remote subordinate transaction manager

If the Propagate Transaction event is signaled, the Superior Transaction Manager
Facet (section 1.3.3.3.4) MUST perform the following actions:

 Initiate a new CONNTYPE_PARTNERTM_PROPAGATE (section 2.2.9.1.1.1) connection to the
provided Name object.

400 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 Set the Transaction field of the Connection object to the provided Transaction object.

 Add the Connection to the provided Transaction connection list.

 Send a PARTNERTM_PROPAGATE_MTAG_PROPAGATE (section 2.2.9.1.1.1.1) message using the
Connection:

 Set the guidTX field to the Transaction Object.Identifier field of the provided Transaction
object.

 Set the isoLevel field to the Isolation Level field of the provided Transaction object.

 Set the szDesc field to the Description field of the provided Transaction object.

 Set the Connection state to Awaiting Propagation Response.

3.8 Subordinate Transaction Manager Facet Details

3.8.1 Abstract Data Model

This section describes a conceptual model of possible data organization that an implementation
maintains to participate in this protocol. The described organization is provided to facilitate the
explanation of how the protocol behaves. This document does not mandate that implementations
adhere to this model as long as their external behavior is consistent with that described in this
document.

Note that the abstract data model can be implemented in a variety of ways. This protocol does not
prescribe or advocate any specific implementation technique.

The Subordinate Transaction Manager Facet (section 3.8) MUST maintain all the data elements as
specified in section 3.1.1 and section 3.2.1.

Enlistment objects that are created by the subordinate transaction manager MUST provide the
following properties as specified in section 3.1.1:

 Name: The Name object referenced by the Name field of the Session object containing the
connection object referenced by the Enlistment Object.Connection field of the Enlistment object

 Enlistment Object.Identifier: An empty string

The subordinate transaction manager MUST provide the states as specified in the following sections for
its supported connection types. Section 2.2.1.1.2 defines the connection types that a subordinate
transaction manager MUST provide for each supported protocol version.

3.8.1.1 CONNTYPE_PARTNERTM_PROPAGATE Acceptor States

The Subordinate Transaction Manager Facet (section 1.3.3.3.5) MUST act as an acceptor for the
CONNTYPE_PARTNERTM_PROPAGATE (section 2.2.9.1.1.1) connection type. In this role, the
subordinate transaction manager MUST provide support for the states in this section:

 Idle (section 3.8.1.1.1)

 Propagating (section 3.8.1.1.2)

 Active (section 3.8.1.1.3)

 Aborting (section 3.8.1.1.4)

 Awaiting Registration Response (section 3.8.1.1.5)

401 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 Awaiting Phase Zero (section 3.8.1.1.6)

 Awaiting Phase Zero Outcome (section 3.8.1.1.7)

 Awaiting Registration Response During Phase Zero (section 3.8.1.1.8)

 Awaiting Phase Zero Outcome with Outstanding Registration (section 3.8.1.1.9)

 Preparing (section 3.8.1.1.10)

 Prepared (section 3.8.1.1.11)

 Committing (section 3.8.1.1.12)

 Ended (section 3.8.1.1.13)

The following illustration shows the relationship between the CONNTYPE_PARTNERTM_PROPAGATE
acceptor states.

402 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Figure 61: CONNTYPE_PARTERTM_PROPAGATE acceptor states

3.8.1.1.1 Idle

This is the initial state. The following event is processed in this state:

 Receiving a PARTNERTM_PROPAGATE_MTAG_PROPAGATE message (section 3.8.5.1.1.1.1)

3.8.1.1.2 Propagating

The following events are processed in this state:

 Create Superior Enlistment Success (section 3.8.7.4)

 Create Superior Enlistment Failure (section 3.8.7.5)

3.8.1.1.3 Active

The following events are processed in this state:

 Register Phase Zero (section 3.8.7.9)

 Unilaterally Aborted (section 3.8.7.11)

 Receiving a PARTNERTM_PROPAGATE_MTAG_ABORTREQ message (section 3.8.5.1.2.1.5)

 Receiving a PARTNERTM_PROPAGATE_MTAG_PREPAREREQ message (section 3.8.5.1.2.1.7)

 Receiving a PARTNERTM_PROPAGATE_MTAG_PROTOCOL_ERROR message (section 3.8.5.1.1.1.3)

3.8.1.1.4 Aborting

The following event is processed in this state:

 Rollback Complete (section 3.8.7.10)

3.8.1.1.5 Awaiting Registration Response

The following events are processed in this state:

 Receiving a PARTNERTM_PROPAGATE_MTAG_PHASE0REGISTERED message, as described in
CONNTYPE_PARTNERTM_PROPAGATE as Acceptor (section 3.8.5.1.1.1) and in Receiving Other
PARTNERTM_PROPAGATE_MTAG Messages (section 3.8.5.1.1.1.2).

 Receiving a PARTNERTM_PROPAGATE_MTAG_PROTOCOL_ERROR message (section 3.8.5.1.1.1.3).

3.8.1.1.6 Awaiting Phase Zero

The following events are processed in this state:

 Receiving a PARTNERTM_PROPAGATE_MTAG_PHASE0 message (section 3.8.5.1.2.1.6)

 Unilaterally Aborted (section 3.8.7.11)

 Receiving a PARTNERTM_PROPAGATE_MTAG_PROTOCOL_ERROR message (section 3.8.5.1.2.1.9)

3.8.1.1.7 Awaiting Phase Zero Outcome

The following events are processed in this state:

403 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 Phase Zero Complete (section 3.8.7.6)

 Register Phase Zero (section 3.8.7.9)

3.8.1.1.8 Awaiting Registration Response During Phase Zero

The following events are processed in this state:

 Receiving a PARTNERTM_PROPAGATE_MTAG_PHASE0REGISTERED
message (section 3.8.5.1.2.1.3)

 Receiving a PARTNERTM_PROPAGATE_MTAG_PHASE0REGISTRATIONREJECTED
message (section 3.8.5.1.1.1.2)

 Receiving a PARTNERTM_PROPAGATE_MTAG_PROTOCOL_ERROR message (section 3.8.5.1.1.1.3)

3.8.1.1.9 Awaiting Phase Zero Outcome with Outstanding Registration

The following event is processed in this state:

 Phase Zero Complete (section 3.8.7.6)

3.8.1.1.10 Preparing

The following event is processed in this state:

 Phase One Complete (section 3.8.7.7)

3.8.1.1.11 Prepared

The following events are processed in this state:

 Receiving a PARTNERTM_PROPAGATE_MTAG_COMMITREQ message (section 3.8.5.1.2.1.8)

 Receiving a PARTNERTM_PROPAGATE_MTAG_ABORTREQ message (section 3.8.5.1.2.1.5)

 Receiving a PARTNERTM_PROPAGATE_MTAG_PROTOCOL_ERROR message (section 3.8.5.1.1.1.3)

3.8.1.1.12 Committing

The following event is processed in this state:

 Commit Complete (section 3.8.7.3)

3.8.1.1.13 Ended

This is the final state.

3.8.1.2 CONNTYPE_PARTNERTM_BRANCH Initiator States

The Subordinate Transaction Manager Facet (section 3.8) MUST act as an initiator for the
CONNTYPE_PARTNERTM_BRANCH (section 2.2.9.1.2.1) connection type. In this role, the subordinate
transaction manager MUST provide support for the states in this section.

The following illustration shows the relationship between the CONNTYPE_PARTNERTM_BRANCH
initiator states.

404 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Figure 62: CONNTYPE_PARTNERTM_BRANCH initiator states

3.8.1.2.1 Idle

This is the initial state. The following event is processed in this state:

 Branch Transaction (section 3.8.7.1)

3.8.1.2.2 Awaiting Branch Response

The following events are processed in this state:

 Receiving a PARTNERTM_BRANCH_MTAG_BRANCHED Message (section 3.8.5.1.2.1.1)

 Receiving a PARTNERTM_BRANCH_MTAG_BRANCH_LOG_FULL,
PARTNERTM_BRANCH_MTAG_BRANCH_NO_MEM,

PARTNERTM_BRANCH_MTAG_BRANCH_TOO_LATE,

405 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

PARTNERTM_BRANCH_MTAG_BRANCH_TOO_MANY or
PARTNERTM_BRANCH_MTAG_BRANCH_TX_NOT_FOUND Message (section 3.8.5.1.2.1.2)

3.8.1.2.3 Active

The following events are processed in this state:

 Register Phase Zero (section 3.8.7.9)

 Unilaterally Aborted (section 3.8.7.11)

 Receiving a PARTNERTM_PROPAGATE_MTAG_ABORTREQ Message (section 3.8.5.1.2.1.5)

 Receiving a PARTNERTM_PROPAGATE_MTAG_PREPAREREQ Message (section 3.8.5.1.2.1.7)

 Receiving a PARTNERTM_PROPAGATE_MTAG_PROTOCOL_ERROR Message (section 3.8.5.1.2.1.9)

3.8.1.2.4 Aborting

The following event is processed in this state:

 Rollback Complete (section 3.8.7.10)

3.8.1.2.5 Awaiting Registration Response

The following events are processed in this state:

 Receiving a PARTNERTM_PROPAGATE_MTAG_PHASE0REGISTERED (section 3.8.5.1.2.1.3)

message

 Receiving a
PARTNERTM_PROPAGATE_MTAG_PHASE0REGISTRATIONREJECTED (section 3.8.5.1.2.1.4)
message

 Receiving a PARTNERTM_PROPAGATE_MTAG_PROTOCOL_ERROR (section 3.8.5.1.2.1.9) message

3.8.1.2.6 Awaiting Phase Zero

The following events are processed in this state:

 Receiving a PARTNERTM_PROPAGATE_MTAG_PHASE0 (section 3.8.5.1.2.1.6) message

 Unilaterally Aborted (section 3.8.7.11).

 Receiving a PARTNERTM_PROPAGATE_MTAG_PROTOCOL_ERROR (section 3.8.5.1.2.1.9) message

3.8.1.2.7 Awaiting Phase Zero Outcome

The following event is processed in this state:

 Phase Zero Complete (section 3.8.7.6)

3.8.1.2.8 Awaiting Registration Response During Phase Zero

The following events are processed in this state:

 Receiving a PARTNERTM_PROPAGATE_MTAG_PHASE0REGISTERED (section 3.8.5.1.2.1.3)
message

406 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 Receiving a
PARTNERTM_PROPAGATE_MTAG_PHASE0REGISTRATIONREJECTED (section 3.8.5.1.2.1.4)

message

 Receiving a PARTNERTM_PROPAGATE_MTAG_PROTOCOL_ERROR (section 3.8.5.1.2.1.9) message

3.8.1.2.9 Awaiting Phase Zero Outcome with Outstanding Registration

The following event is processed in this state:

 Phase Zero Complete (section 3.8.7.6)

3.8.1.2.10 Preparing

The following event is processed in this state:

 Phase One Complete (section 3.8.7.7)

3.8.1.2.11 Prepared

The following events are processed in this state:

 Receiving a PARTNERTM_PROPAGATE_MTAG_COMMITREQ (section 3.8.5.1.2.1.8) message

 Receiving a PARTNERTM_PROPAGATE_MTAG_ABORTREQ (section 3.8.5.1.2.1.5) message

 Receiving a PARTNERTM_PROPAGATE_MTAG_PROTOCOL_ERROR (section 3.8.5.1.2.1.9) message

3.8.1.2.12 Committing

The following event is processed in this state:

 Commit Complete (section 3.8.7.3)

3.8.1.2.13 Ended

This is the final state.

3.8.1.3 CONNTYPE_PARTNERTM_REDELIVERCOMMIT Acceptor States

The Subordinate Transaction Manager Facet (section 1.3.3.3.5) MUST act as an acceptor for the
CONNTYPE_PARTNERTM_REDELIVERCOMMIT (section 2.2.9.2.2.1) connection type. In this role, the

subordinate transaction manager MUST provide support for the states in this section.

The following figure shows the relationship between the CONNTYPE_PARTNERTM_REDELIVERCOMMIT
Acceptor states.

407 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Figure 63: CONNTYPE_PARTNERTM_REDELIVERCOMMIT acceptor states

3.8.1.3.1 Idle

This is the initial state. The following event is processed in this state:

 Receiving a PARTNERTM_REDELIVERCOMMIT_MTAG_COMMITREQ message (section 3.8.5.2.2.1.1)

3.8.1.3.2 Processing Commit Inquiry

The following event is processed in this state:

 Commit Complete (section 3.8.7.3)

3.8.1.3.3 Ended

This is the final state.

408 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

3.8.1.4 CONNTYPE_PARTNERTM_CHECKABORT Initiator States

The Subordinate Transaction Manager Facet (section 1.3.3.3.5) MUST act as an initiator for the
CONNTYPE_PARTNERTM_CHECKABORT (section 2.2.9.2.1.1) connection type. In this role, the

subordinate transaction manager MUST provide support for the states in this section.

The following figure shows the relationship between the CONNTYPE_PARTNERTM_CHECKABORT
initiator states.

Figure 64: CONNTYPE_PARTNERTM_CHECKABORT initiator states

3.8.1.4.1 Idle

This is the initial state. The following event is processed in this state:

 Recover In Doubt Transaction (section 3.8.7.8)

3.8.1.4.2 Awaiting Confirmation

The following events are processed in this state:

 Receiving a PARTNERTM_CHECKABORT_MTAG_ABORTED Message (section 3.8.5.2.1.1.1)

409 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 Receiving a PARTNERTM_CHECKABORT_MTAG_RETRY Message (section 3.8.5.2.1.1.2)

 Cancel Check Abort (section 3.8.7.2)

3.8.1.4.3 Waiting to ReRequest

The following events are processed in this state:

 Check Abort Timer (section 3.8.2.1)

 Cancel Check Abort (section 3.8.7.2)

3.8.1.4.4 Ended

This is the final state.

3.8.2 Timers

The Subordinate Transaction Manager Facet (section 3.8) MUST provide the Check Abort
Timer (section 3.8.2.1).

3.8.2.1 Check Abort Timer

This timer MUST be set when the Subordinate Transaction Manager Facet (section 1.3.3.3.5) receives
a PARTNERTM_CHECKABORT_MTAG_RETRY (section 2.2.9.2.1.1.3) message on a
CONNTYPE_PARTNERTM_CHECKABORT (section 2.2.9.2.1.1) connection. The timer MUST be canceled
when the CONNTYPE_PARTNERTM_CHECKABORT (section 2.2.9.2.1.1) connection is disconnected.

The default value of the timer is implementation-specific.<37>

When the timer is initialized, the Subordinate Transaction Manager Facet (section 1.3.3.3.5) MUST
provide an Enlistment object to associate with the timer. When the timer expires, the same Enlistment
object MUST be provided alongside the timer notification. The Subordinate Transaction Manager

Facet (section 1.3.3.3.5) MUST provide a distinct Check Abort Timer instance for each
CONNTYPE_PARTNERTM_CHECKABORT connection.

3.8.3 Initialization

When the Subordinate Transaction Manager Facet (section 1.3.3.3.5) is initialized:

 The Subordinate Transaction Manager Facet MUST examine the following security flags on the
Core Transaction Manager Facet and perform the following actions:

 If one of the Allow Network Access, Allow Network Transactions, or Allow Inbound
Transactions flags is set to false:

 For the following connection type, the Subordinate Transaction Manager Facet MUST
refuse to accept incoming connections from remote machines as specified in [MS-CMP]

section 3.1.5.5 with the rejection Reason set to 0x80070005.

 CONNTYPE_PARTNERTM_PROPAGATE (section 2.2.9.1.1.1)

 If one of the Allow Network Access or Allow Network Transactions flags is set to false, or if

both the Allow Inbound Transactions and Allow Outbound Transactions flags are set to false:

 For the following connection type, the Subordinate Transaction Manager Facet MUST
refuse to accept incoming connections from remote machines as specified in [MS-CMP]
section 3.1.5.5 with the rejection reason set to 0x80070005.

%5bMS-CMP%5d.pdf#Section_1970a8a0799d4308b9274e4ea23dc225

410 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 CONNTYPE_PARTNERTM_REDELIVERCOMMIT (section 2.2.9.2.2.1)

All data elements maintained by the Subordinate Transaction Manager Facet are initialized to an

empty value unless stated otherwise in this section or in the initialization sections of the facets the
Subordinate Transaction Manager Facet extends, as described in section 3.8.1.

3.8.4 Higher-Layer Triggered Events

There are no higher-layer triggered events.

3.8.5 Processing Events and Sequencing Rules

3.8.5.1 Transaction Propagation and Coordination

3.8.5.1.1 Push Propagation

3.8.5.1.1.1 CONNTYPE_PARTNERTM_PROPAGATE as Acceptor

For all messages received in this connection type, the Subordinate Transaction Manager
Facet (section 1.3.3.3.5) MUST process the message as specified in section 3.1.

Also, the Subordinate Transaction Manager Facet (section 1.3.3.3.5) MUST override the default state

verification actions for incoming messages as specified in section 3.1.6 in the following manner:

 If the current connection state does not define a processing rule for the message:

 Send a PARTNERTM_PROPAGATE_MTAG_PROTOCOL_ERROR message using the connection.

 Perform default invalid message processing, as specified in section 3.1.6.

The Subordinate Transaction Manager Facet (section 1.3.3.3.5) MUST additionally follow the
processing rules as specified in this section.

3.8.5.1.1.1.1 Receiving a PARTNERTM_PROPAGATE_MTAG_PROPAGATE Message

When the Subordinate Transaction Manager Facet (section 1.3.3.3.5) receives a
PARTNERTM_PROPAGATE_MTAG_PROPAGATE (section 2.2.9.1.1.1.1) message, the Subordinate
Transaction Manager Facet MUST perform the following actions:

 If the connection state is Idle:

 Set the connection state to Propagating.

 If the transaction manager does not have sufficient memory available to process the message,
it MUST:

 Send a PARTNERTM_PROPAGATE_MTAG_NO_MEM (section 2.2.9.1.1.1.4) message.

 Set the connection state to Ended (section 3.8.1.1.13).

 Otherwise, find the transaction object in the transaction table of the transaction manager
using the guidTx field from the message as the key:

 If the transaction object is found in the list:

 Send a PARTNERTM_PROPAGATE_MTAG_DUPLICATE (section 2.2.9.1.1.1.3) message
to the superior transaction manager.

 Set the connection state to Ended.

411 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 Otherwise, if the transaction object is not found in the list:

 Create a new transaction object with the information provided in the message:

 Use the guidTx field from the message as the Transaction Object.Identifier
value.

 Use the isoLevel field from the message as the Isolation Level value.

 Use the szDesc field from the message as the Description value.

 Add the connection to the connection list of the transaction.

 Create a new Enlistment object with the following values:

 The Subordinate Transaction Manager Facet.

 The new transaction object.

 This connection object.

 Assign the enlistment to the connection's Enlistment field.

 Signal the Create Superior Enlistment (section 3.2.7.12) event on the Core
Transaction Manager Facet (section 1.3.3.3.1) with the Enlistment object.

 Otherwise, the message MUST be processed as specified in section 3.1.6.

3.8.5.1.1.1.2 Receiving Other PARTNERTM_PROPAGATE_MTAG Messages

When the Subordinate Transaction Manager Facet (section 1.3.3.3.5) receives one of these messages:

 PARTNERTM_PROPAGATE_MTAG_PHASE0REGISTRATIONREJECTED (section 2.2.9.1.1.1.16)

 PARTNERTM_PROPAGATE_MTAG_PHASE0REGISTERED (section 2.2.9.1.1.1.15)

 PARTNERTM_PROPAGATE_MTAG_PHASE0 (section 2.2.9.1.1.1.17)

 PARTNERTM_PROPAGATE_MTAG_ABORTREQ (section 2.2.9.1.1.1.11)

 PARTNERTM_PROPAGATE_MTAG_PREPAREREQ (section 2.2.9.1.1.1.6)

 PARTNERTM_PROPAGATE_MTAG_COMMITREQ (section 2.2.9.1.1.1.9)

It MUST follow the same message processing rules as the
CONNTYPE_PARTNERTM_BRANCH (section 2.2.9.1.2.1) connection type acting as an initiator. See
CONNTYPE_PARTNERTM_BRANCH as Initiator (section 3.8.5.1.2.1) for more information.

3.8.5.1.1.1.3 Receiving a PARTNERTM_PROPAGATE_MTAG_PROTOCOL_ERROR

Message

The processing of this event MUST be identical to the processing of the Connection Disconnected
event.

3.8.5.1.1.1.4 CONTYPE_PARTNERTM_PROPAGATE Connection Disconnected

When a CONNTYPE_PARTNERTM_PROPAGATE (section 2.2.9.1.1.1) connection is disconnected, the
Subordinate Transaction Manager Facet (section 1.3.3.3.5) MUST perform the same actions as the
CONNTYPE_PARTNERTM_BRANCH (section 2.2.9.1.2.1) connection type acting as an initiator. See

section 3.8.5.1.2.1 for more information.

412 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

3.8.5.1.2 Pull Propagation

3.8.5.1.2.1 CONNTYPE_PARTNERTM_BRANCH as Initiator

For all messages received in this connection type, the Subordinate Transaction Manager Facet MUST
process the message as specified in section 3.1.

Also, the Subordinate Transaction Manager Facet MUST override the default state verification actions
for incoming messages as specified in section 3.1.6 in the following manner:

 If the current connection state does not define a processing rule for the message:

 Send a PARTNERTM_PROPAGATE_MTAG_PROTOCOL_ERROR message using the connection.

 Perform default invalid message processing, as specified in section 3.1.6.

The Subordinate Transaction Manager Facet MUST additionally follow the processing rules as specified
in the following sections.

3.8.5.1.2.1.1 Receiving a PARTNERTM_BRANCH_MTAG_BRANCHED Message

When the Subordinate Transaction Manager Facet (section 1.3.3.3.5) receives a
PARTNERTM_BRANCH_MTAG_BRANCHED (section 2.2.9.1.2.1.6) message, the Subordinate
Transaction Manager Facet MUST perform the following actions:

 If the connection state is Awaiting Branch Response:

 Set the connection state to Active.

 Create an Enlistment object with the following values:

 The Subordinate Transaction Manager Facet

 The transaction object referenced by the connection's Connection-Specific Data field

 This connection object

 Set this connection's enlistment field to reference the new Enlistment object.

 Signal the Branch Transaction Success (section 3.2.7.9) event on the Core Transaction
Manager Facet (section 1.3.3.3.1) with the Enlistment object.

 Otherwise, the message MUST be processed as an invalid message as specified in section 3.1.6.

3.8.5.1.2.1.2 Receiving a PARTNERTM_BRANCH_MTAG_BRANCH_LOG_FULL,

PARTNERTM_BRANCH_MTAG_BRANCH_NO_MEM,

PARTNERTM_BRANCH_MTAG_BRANCH_TOO_LATE,

PARTNERTM_BRANCH_MTAG_BRANCH_TOO_MANY, or

PARTNERTM_BRANCH_MTAG_BRANCH_TX_NOT_FOUND Message

When the Subordinate Transaction Manager Facet receives one of these messages, the Subordinate
Transaction Manager Facet MUST perform the following actions:

 If the connection state is Awaiting Branch Response:

 Create an Enlistment object with a reference to the Subordinate Transaction Manager Facet, a
reference to this connection, and a reference to the transaction object referenced by this
connection.

413 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 Signal the Branch Transaction Failure event on the Core Transaction Manager Facet with the
following arguments:

 The Enlistment object.

 The failure code that matches the incoming message:

 PARTNERTM_BRANCH_MTAG_BRANCH_LOG_FULL: Log Full Remote

 PARTNERTM_BRANCH_MTAG_BRANCH_NO_MEM: No Mem Remote

 PARTNERTM_BRANCH_MTAG_BRANCH_TOO_LATE: Too Late

 PARTNERTM_BRANCH_MTAG_BRANCH_TOO_MANY: Too Many Remote

 PARTNERTM_BRANCH_MTAG_BRANCH_TX_NOT_FOUND: Tx Not Found

 Set the connection state to Ended.

 Otherwise, the message MUST be processed as an invalid message as specified in section 3.1.6.

3.8.5.1.2.1.3 Receiving a PARTNERTM_PROPAGATE_MTAG_PHASE0REGISTERED

Message

When the Subordinate Transaction Manager Facet (section 1.3.3.3.5) receives a
PARTNERTM_PROPAGATE_MTAG_PHASE0REGISTERED (section 2.2.9.1.1.1.15) message, the

Subordinate Transaction Manager Facet MUST perform the following actions:

 If the connection state is Awaiting Registration Response:

 Set the connection state to Awaiting Phase Zero.

 Signal the Register Phase Zero Success (section 3.2.7.29) event on the Core Transaction
Manager Facet (section 1.3.3.3.1) with the Enlistment object referenced by this connection.

 Otherwise, if the connection state is Awaiting Registration Response During Phase Zero:

 Set the connection state to Awaiting Phase Zero Outcome With Outstanding Registration.

 Signal the Register Phase Zero Success event on the Core Transaction Manager Facet with the
Enlistment object referenced by this connection.

 Otherwise, the message MUST be processed as an invalid message as specified in section 3.1.6.

3.8.5.1.2.1.4 Receiving a

PARTNERTM_PROPAGATE_MTAG_PHASE0REGISTRATIONREJECTED

Message

When the Subordinate Transaction Manager Facet (section 1.3.3.3.5) receives a
PARTNERTM_PROPAGATE_MTAG_PHASE0REGISTRATIONREJECTED (section 2.2.9.1.1.1.16) message,
the Subordinate Transaction Manager Facet MUST perform the following actions:

 If the connection state is Awaiting Registration Response:

 Set the connection state to Active.

 Signal the Register Phase Zero Failure (section 3.2.7.28) event on the Core Transaction
Manager Facet (section 1.3.3.3.1) with the following arguments:

 The Enlistment object referenced by this connection.

414 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 A failure reason of Too Late.

 Otherwise, if the connection state is Awaiting Registration Response During Phase Zero:

 Set the connection state to Awaiting Phase Zero Outcome.

 Signal the Register Phase Zero Failure event on the Core Transaction Manager Facet with the

following arguments:

 The Enlistment object referenced by this connection.

 A failure reason of Too Late.

 Otherwise, the message MUST be processed as an invalid message as specified in section 3.1.6.

3.8.5.1.2.1.5 Receiving a PARTNERTM_PROPAGATE_MTAG_ABORTREQ Message

When the Subordinate Transaction Manager Facet receives a

PARTNERTM_PROPAGATE_MTAG_ABORTREQ message, the Subordinate Transaction Manager Facet

MUST perform the following actions:

 If the connection state is either Active or Prepared:

 Set the connection state to Aborting.

 Signal the Begin Rollback event on the Core Transaction Manager Facet with the transaction
object referenced by the Enlistment object referenced by this connection.

 Otherwise, the message MUST be processed as an invalid message as specified in section 3.1.6.

3.8.5.1.2.1.6 Receiving a PARTNERTM_PROPAGATE_MTAG_PHASE0 Message

When the Subordinate Transaction Manager Facet receives a PARTNERTM_PROPAGATE_MTAG_PHASE0
message, the Subordinate Transaction Manager Facet MUST perform the following actions:

 If the connection state is Awaiting Phase Zero:

 Set the connection state to Awaiting Phase Zero Outcome.

 Signal the Begin Phase Zero event on the Core Transaction Manager Facet with the transaction
object referenced by the Enlistment object referenced by this connection.

 Otherwise, the message MUST be processed as an invalid message as specified in section 3.1.6.

3.8.5.1.2.1.7 Receiving a PARTNERTM_PROPAGATE_MTAG_PREPAREREQ Message

When the Subordinate Transaction Manager Facet receives a
PARTNERTM_PROPAGATE_MTAG_PREPAREREQ message, the Subordinate Transaction Manager Facet

MUST perform the following actions:

 If the connection state is Active:

 Set the connection state to Preparing.

 Signal the Begin Phase One event on the Core Transaction Manager Facet with the following
arguments:

 The transaction object referenced by the Enlistment object referenced by the receiving
connection.

 If the fSinglePhase field of the message is set to 0x00000000:

415 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 Set the Single Phase Commit flag to false.

 Otherwise:

 Set the Single Phase Commit flag to true.

 Otherwise, the message MUST be processed as an invalid message as specified in section 3.1.6.

3.8.5.1.2.1.8 Receiving a PARTNERTM_PROPAGATE_MTAG_COMMITREQ Message

When the Subordinate Transaction Manager Facet receives a
PARTNERTM_PROPAGATE_MTAG_COMMITREQ message, the Subordinate Transaction Manager Facet
MUST perform the following actions:

 If the connection state is Prepared:

 Set the connection state to Committing.

 Signal the Begin Commit on the Core Transaction Manager Facet event with the transaction

object referenced by the Enlistment object referenced by this connection.

 Otherwise, the message MUST be processed as an invalid message as specified in section 3.1.6.

3.8.5.1.2.1.9 Receiving a PARTNERTM_PROPAGATE_MTAG_PROTOCOL_ERROR

Message

The processing of this event MUST be identical to the processing of the Connection Disconnected
event.

3.8.5.1.2.1.10 Connection Disconnected

When a CONNTYPE_PARTNERTM_BRANCH (section 2.2.9.1.2.1) connection is disconnected, the
Subordinate Transaction Manager Facet (section 3.8) MUST perform the following actions:

 If the connection state is Prepared:

 Signal the Recover In Doubt Transaction (section 3.8.7.8) event on the Subordinate
Transaction Manager Facet (section 3.8) with the Enlistment object referenced by this
connection.

 Otherwise, if the connection state is Preparing:

 If the transaction object's Single Phase Commit flag (defined in section 3.2.1) is false, signal
the Begin Rollback (section 3.2.7.6) event on Core Transaction Manager

Facet (section 1.3.3.3.1) with the transaction object referenced by the Enlistment object
referenced by this connection.

 Otherwise, the event MUST be processed as specified in section 3.1.8.3.

 Otherwise, if the connection state is Awaiting Branch Response:

 Create an Enlistment object with the following values:

 The Subordinate Transaction Manager Facet (section 3.8).

 The transaction object in the Connection-Specific Data field of this connection.

 This connection object.

 Signal the Branch Transaction Failure (section 3.2.7.8) event on the Core Transaction Manager
Facet (section 1.3.3.3.1) with the following arguments:

416 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 The new enlistment object.

 A failure code of Comm Failed.

 Set the connection state to Ended.

 Otherwise, if the connection state is Active, Awaiting Registration Response, Awaiting Registration

Response During Phase Zero, Awaiting Phase Zero, Awaiting Phase Zero Outcome, or Awaiting
Phase Zero Outcome With Outstanding Registration:

 Signal the Begin Rollback (section 3.2.7.6) event on the Core Transaction Manager
Facet (section 1.3.3.3.1) with the transaction object referenced by this connection.

 Otherwise, the event MUST be processed as specified in section 3.1.8.3.

3.8.5.2 Transaction Recovery

3.8.5.2.1 Subordinate-Driven Recovery

3.8.5.2.1.1 CONNTYPE_PARTNERTM_CHECKABORT as Initiator

 For all messages received in this connection type, the Subordinate Transaction Manager Facet MUST
process the message in accordance with section 3.8. The Subordinate Transaction Manager MUST
additionally follow the processing rules specified in the following sections.

3.8.5.2.1.1.1 Receiving a PARTNERTM_CHECKABORT_MTAG_ABORTED Message

When the Subordinate Transaction Manager Facet (section 1.3.3.3.5) receives a
PARTNERTM_CHECKABORT_MTAG_ABORTED (section 2.2.9.2.1.1.2) message, the Subordinate

Transaction Manager MUST perform the following actions:

 If the connection state is Awaiting Confirmation:

 Signal the Begin Rollback (section 3.2.7.6) event on the Core Transaction Manager
Facet (section 1.3.3.3.1) with the:

 The transaction object referenced by the Enlistment object referenced by this connection.

 Set the Connection state to Ended.

 Otherwise, the message MUST be processed as an invalid message as specified in section 3.1.6.

3.8.5.2.1.1.2 Receiving a PARTNERTM_CHECKABORT_MTAG_RETRY Message

When the Subordinate Transaction Manager Facet receives a
PARTNERTM_CHECKABORT_MTAG_RETRY message, the Subordinate Transaction Manager Facet MUST
perform the following actions:

 If the connection state is Awaiting Confirmation:

 Set the connection state to Waiting to Rerequest.

 Initialize a Check Abort Timer with the following arguments:

 The connection's Enlistment object

 An implementation-specific time-out value

 Otherwise, the message MUST be processed as an invalid message as specified in section 3.1.6.

417 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

3.8.5.2.1.1.3 CONNTYPE_PARTNERTM_CHECKABORT Connection Disconnected

When a CONNTYPE_PARTNERTM_CHECKABORT (section 2.2.9.2.1.1) connection is disconnected, the
Subordinate Transaction Manager Facet (section 3.8) MUST perform the following actions:

 If the connection state is Waiting to Rerequest:

 Cancel the Check Abort Timer associated with the connection.

 If the connection state is Idle, Waiting to Rerequest, or Awaiting Confirmation:

 Signal the Recover In Doubt Transaction (section 3.8.7.8) event on the Subordinate
Transaction Manager Facet (section 1.3.3.3.5) with the Enlistment object referenced by this
connection.

 Set the connection state to Ended.

 Finally, in all cases, the event MUST be processed as specified in section 3.1.8.3.

3.8.5.2.2 Superior-Driven Recovery

3.8.5.2.2.1 CONNTYPE_PARTNERTM_REDELIVERCOMMIT as Acceptor

 For all messages received in this connection type, the Subordinate Transaction Manager Facet MUST
process the message in accordance with section 3.8. The Subordinate Transaction Manager Facet

MUST additionally follow the processing rules specified in the following sections.

3.8.5.2.2.1.1 Receiving a PARTNERTM_REDELIVERCOMMIT_MTAG_COMMITREQ

Message

When the subordinate transaction manager receives a
PARTNERTM_REDELIVERCOMMIT_MTAG_COMMITREQ (section 2.2.9.2.2.1.1) message, the

Subordinate Transaction Manager Facet (section 1.3.3.3.5) MUST perform the following actions:

 If the connection state is Idle:

 Set the connection state to Processing Commit Inquiry.

 Find the transaction object in the transaction manager's transaction table, using the guidTx
field from the message as a key.

 If the transaction object is not found:

 Send a PARTNERTM_REDELIVERCOMMIT_MTAG_COMMITREQDONE (section 2.2.9.2.2.1.2)
message using the connection.

 Set the connection state to Ended.

 Otherwise, if the transaction state is either Phase One Complete (section 3.2.1.3.8) or In
Doubt (section 3.2.1.3.12):

 Signal the Cancel Check Abort (section 3.8.7.2) event on the Subordinate Transaction
Manager Facet with the transaction object.

 Signal the Begin Commit (section 3.2.7.2) event on the Core Transaction Manager
Facet (section 1.3.3.3.1) with the transaction object.

 Otherwise:

418 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 Send a PARTNERTM_REDELIVERCOMMIT_MTAG_RETRY (section 2.2.9.2.2.1.3) message
using the connection.

 Set the connection state to Idle.

 Otherwise, the message MUST be processed as an invalid message as specified in section 3.1.8.1.

3.8.5.2.2.1.2 Connection Disconnected

When a CONNTYPE_PARTNERTM_REDELIVERCOMMIT (section 2.2.9.2.2.1) connection is disconnected,
the Subordinate Transaction Manager Facet (section 1.3.3.3.5) MUST perform the actions as specified
in section 3.1.8.3.

3.8.6 Timer Events

3.8.6.1 Check Abort Timer

When this timer expires, the Subordinate Transaction Manager Facet (section 1.3.3.3.5) MUST
perform the following actions:

 If the connection referenced by the provided enlistment is in the Waiting to Rerequest state:

 Set the connection state to Idle.

 Send a PARTNERTM_CHECKABORT_MTAG_CHECK (section 2.2.9.2.1.1.1) message using the
connection referenced by the provided Enlistment object:

 Set the guidTX field to the provided Enlistment object's transaction object's Transaction

Object.Identifier field.

 Set the connection state to Awaiting Confirmation.

 Otherwise, ignore the timer event.

3.8.7 Other Local Events

A Subordinate Transaction Manager Facet MUST be prepared to process the local events defined in the
following sections.

The subordinate transaction manager MUST be prepared to process local events pertaining to Phase
Zero functionality only on versions where the connection type CONNTYPE_TXUSER_PHASE0 is
supported. Version-Specific Aspects of Connection Types Relevant to a Resource
Manager (section 2.2.1.1.3) defines protocol version support for this connection type. The following

local events are affected:

 Register Phase Zero

 Phase Zero Complete

3.8.7.1 Branch Transaction

The Branch Transaction event MUST be signaled with the following arguments:

 A transaction object

 A Name object representing the remote superior transaction manager

419 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

If the Branch Transaction event is signaled, the Subordinate Transaction Manager Facet (section 3.8)
MUST perform the following actions:

 Initiate a new CONNTYPE_PARTNERTM_BRANCH (section 2.2.9.1.2.1) connection to the provided
Name object.

 Assign the provided transaction object to the connection's Connection-Specific Data field.

 Send a PARTNERTM_BRANCH_MTAG_BRANCHING (section 2.2.9.1.2.1.7) message using the
connection:

 Set the guidTX field to the provided Transaction Object.Identifier field of the transaction
object.

 Set the connection state to Awaiting Branch Response (section 3.8.1.2.2).

3.8.7.2 Cancel Check Abort

The Cancel Check Abort event MUST be signaled with the following arguments:

 A transaction object.

If the Cancel Check Abort event is signaled, the Subordinate Transaction Manager Facet (section 3.8)

MUST perform the following actions:

 Find a connection object of type CONNTYPE_PARTNERTM_CHECKABORT (section 2.2.9.2.1.1) in
the transaction object's Connection list.

 If no such connection is found, ignore the event.

 Otherwise:

 If a Check Abort timer is active for the transaction, cancel it.

 Set the connection state to Ended.

3.8.7.3 Commit Complete

The Commit Complete event MUST be signaled with the following arguments:

 An Enlistment object

If the Commit Complete event is signaled, the Subordinate Transaction Manager Facet (section 3.8)
MUST perform the following actions:

 If the provided enlistment's connection is of type
CONNTYPE_TXUSER_BRANCH (section 2.2.9.1.2.1) or
CONNTYPE_PARTNERTM_PROPAGATE (section 2.2.9.1.1.1):

 Send a PARTNERTM_PROPAGATE_MTAG_COMMITREQDONE (section 2.2.9.1.1.1.10) message

using the provided enlistment's connection.

 Set the connection state to Ended.

 Otherwise, if the provided enlistment's connection is of type
CONNTYPE_PARTNERTM_REDELIVERCOMMIT (section 2.2.9.2.2.1):

 Send a PARTNERTM_REDELIVERCOMMIT_MTAG_COMMITREQDONE (section 2.2.9.2.2.1.2)
message using the provided enlistment's connection.

 Set the connection state to Ended.

420 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

3.8.7.4 Create Superior Enlistment Success

The Create Superior Enlistment Success event MUST be signaled with the following arguments:

 An Enlistment object

If the Create Superior Enlistment Success event is signaled, the Subordinate Transaction Manager
Facet (section 3.8) MUST perform the following actions:

 Send a PARTNERTM_PROPAGATE_MTAG_PROPAGATED (section 2.2.9.1.1.1.2) message using the
provided enlistment's connection:

 Set the connection state to Active.

3.8.7.5 Create Superior Enlistment Failure

The Create Superior Enlistment event MUST be signaled with the following arguments:

 An Enlistment object.

 A value indicating the failure reason. The reason MUST be set to one of the following values:

 Duplicate

 Log Full

If the Create Superior Enlistment Failure event is signaled, the Subordinate Transaction Manager
Facet (section 3.8) MUST perform the following actions:

 Send the matching message for the following reason codes using the provided enlistment's
connection:

 Duplicate: PARTNERTM_PROPAGATE_MTAG_DUPLICATE (section 2.2.9.1.1.1.3)

 Log Full: PARTNERTM_PROPAGATE_MTAG_LOG_FULL (section 2.2.9.1.1.1.5)

 Set the connection state to Ended.

3.8.7.6 Phase Zero Complete

The Phase Zero Complete event MUST be signaled with the following arguments:

 An Enlistment object.

 An outcome value. This value MUST be one of the following:

 Success

 Failure

If the Phase Zero Complete event is signaled, the Subordinate Transaction Manager

Facet (section 3.8) MUST perform the following actions:

 If the provided outcome is Success:

 Send a PARTNERTM_PROPAGATE_MTAG_PHASE0COMPLETE (section 2.2.9.1.1.1.18) message
using the provided enlistment's connection.

 Set the connection state to Active.

 Otherwise:

421 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 Send a PARTNERTM_PROPAGATE_MTAG_ABORTNOTIFY (section 2.2.9.1.1.1.13) message
using the provided enlistment's connection.

 Set the connection state to Ended.

3.8.7.7 Phase One Complete

The Phase One Complete event MUST be signaled with the following arguments:

 An Enlistment object.

 A value indicating the outcome of Phase One. The value MUST be set to one of the following

values:

 Read Only

 Prepared

 Committed

 Aborted

 In Doubt

If the Phase One Complete event is signaled, the Subordinate Transaction Manager Facet (section 3.8)

MUST perform the following actions:

 If the provided outcome is Read Only:

 Send a PARTNERTM_PROPAGATE_MTAG_PREPAREREQDONE (section 2.2.9.1.1.1.7) message
using the provided enlistment's connection:

 Set the prepareReqDone field to
PARTNERTM_PROPAGATE_PREPAREREQDONE_READ_ONLY.

 Set the guidReason field to the value provided by the higher-layer business logic, as

specified in section 2.2.9.1.1.1.7.

 Set the connection state to Ended.

 Otherwise, if the provided outcome is Prepared:

 Send a PARTNERTM_PROPAGATE_MTAG_PREPAREREQDONE (section 2.2.9.1.1.1.7) message
using the provided enlistment's connection:

 Set the prepareReqDone field to PARTNERTM_PROPAGATE_PREPAREREQDONE_OK.

 Set the connection state to Ended.

 Otherwise, if the provided outcome is Committed:

 Send a PARTNERTM_PROPAGATE_MTAG_PREPAREREQDONE (section 2.2.9.1.1.1.7) message
using the connection:

 Set the prepareReqDone field to
PARTNERTM_PROPAGATE_PREPAREREQDONE_SINGLEPHASE_COMMIT.

 Set the connection state to Ended.

 Otherwise, if the provided outcome is Aborted:

422 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 Send a PARTNERTM_PROPAGATE_MTAG_PREPAREREQDONE (section 2.2.9.1.1.1.7) message
using the connection:

 Set the prepareReqDone field MUST to
PARTNERTM_PROPAGATE_PREPAREREQDONE_ABORT.

 Set the connection state to Ended.

 Otherwise, if the provided outcome is In Doubt (section 3.2.1.3.12):

 Send a PARTNERTM_PROPAGATE_MTAG_PREPAREREQDONE (section 2.2.9.1.1.1.7) message
using the connection:

 Set the prepareReqDone field MUST to
PARTNERTM_PROPAGATE_PREPAREREQDONE_SINGLEPHASE_INDOUBT.

 Set the connection state to Ended.

3.8.7.8 Recover In Doubt Transaction

The Recover In Doubt Transaction event MUST be signaled with the following arguments:

 An Enlistment object

If the Recover In Doubt Transaction event is signaled, the Subordinate Transaction Manager
Facet (section 3.8) MUST perform the following actions:

 Initiate a new CONNTYPE_PARTNERTM_CHECKABORT (section 2.2.9.2.1.1) connection using the
Name object referenced by the Name field of the Session object containing the provided
Enlistment's connection.

 Send a PARTNERTM_CHECKABORT_MTAG_CHECK (section 2.2.9.2.1.1.1) message using the
connection:

 Set the guidTX field to the Transaction Object.Identifier field of the transaction object

referenced by the provided Enlistment object.

 Set the connection state to Awaiting Confirmation.

3.8.7.9 Register Phase Zero

The Register Phase Zero event MUST be signaled with the following arguments:

 An Enlistment object

If the Register Phase Zero event is signaled, the Subordinate Transaction Manager Facet (section 3.8)
MUST perform the following actions:

 If the provided enlistment's connection state is Active:

 Set the connection state to Awaiting Registration Response (section 3.8.1.1.5).

 Send a PARTNERTM_PROPAGATE_MTAG_PHASE0REGISTER (section 2.2.9.1.1.1.14) message
using the connection.

 Otherwise, if the connection state is Awaiting Phase Zero Outcome:

 Set the connection state to Awaiting Registration Response During Phase
Zero (section 3.8.1.1.8).

423 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 Send a PARTNERTM_PROPAGATE_MTAG_PHASE0REGISTER (section 2.2.9.1.1.1.14) message
using the enlistment's connection.

 Otherwise:

 Signal the Register Phase Zero Failure (section 3.2.7.28) on the Core Transaction Manager

Facet (section 1.3.3.3.1) with the following arguments:

 The provided Enlistment object

 The Too Late reason code

3.8.7.10 Rollback Complete

The Rollback Complete event MUST be signaled with the following arguments:

 An Enlistment object

If the Rollback Complete event is signaled, the Subordinate Transaction Manager Facet (section 3.8)
MUST perform the following actions:

 If the provided enlistment's connection is of type
CONNTYPE_PARTNERTM_BRANCH (section 2.2.9.1.2.1) or

CONNTYPE_PARTNERTM_PROPAGATE (section 2.2.9.1.1.1)

 Send a PARTNERTM_PROPAGATE_MTAG_ABORTREQDONE (section 2.2.9.1.1.1.12) message
using the provided enlistment's connection.

 Set the connection state to Ended.

 Otherwise, ignore the signal.

3.8.7.11 Unilaterally Aborted

The Unilaterally Aborted event MUST be signaled with the following arguments:

 An Enlistment object

If the Unilaterally Aborted event is signaled, the Subordinate Transaction Manager Facet (section 3.8)
MUST perform the following actions:

 If the provided enlistment's connection state is Aborting:

 Ignore the signal.

 Otherwise:

 Send a PARTNERTM_PROPAGATE_MTAG_ABORTNOTIFY (section 2.2.9.1.1.1.13) message
using the provided enlistment's connection.

 Set the connection state to Ended.

424 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

4 Protocol Examples

The following sections describe several operations as used in common scenarios to illustrate the
function of this protocol. These protocol examples generally assume that an OleTx transports session,
as specified in [MS-CMPO] section 3.2.1.2, has already been established between the two participants.
However, some examples exhibit how one participant establishes a new OleTx transports session with
another participant because of the protocol that is being demonstrated.

Participants communicate with each other by using OleTx multiplexing connections, as specified in
[MS-CMP] section 3.1.1.1, that are in turn layered on top of the OleTx transports infrastructure (as
specified in [MS-CMPO] section 3.3.1). In these examples, messages are sent from one participant to
another by submitting a MESSAGE_PACKET (section 2.2.4.1) to the underlying OleTx multiplexing
layer, as specified in [MS-CMP] section 3.1.4.1.

4.1 Simple Transaction Scenario

This scenario shows how an application creates and completes a transaction. The scenario begins with

the application establishing a transport session with a transaction manager and negotiating its
connection resources.

4.1.1 Beginning a Transaction

This packet sequence is initiated by starting a connection on a transport session between an
application and a transaction manager.

CONNTYPE_TXUSER_BEGIN2: The packet sequence starts when an application initiates a connection
using CONNTYPE_TXUSER_BEGIN2.

Field Value Value description

MsgTag 0x00000005 MTAG_CONNECTION_REQ

fIsMaster 0x00000001 1

dwConnectionId 0x00000001 1

dwUserMsgType 0x00000028 CONNTYPE_TXUSER_BEGIN2

dwcbVarLenData 0x00000000 0

dwReserved1 0xcd64cd64 dwReserved1: 0xcd64cd64

The application then sends a TXUSER_BEGIN2_MTAG_BEGIN user message specifying the isolation
level, time-out, transaction description, and isolation flag. For this example, the application requests a

transaction with ISOLATIONLEVEL_SERIALIZABLE, a time-out of 60 seconds, a description of "sample
transaction", and ISOFLAG_RETAIN_DONTCARE.

Field Value Value description

MsgTag 0x000000FF MTAG_USER_MESSAGE

fIsMaster 0x00000001 1

dwConnectionId 0x00000001 1

dwUserMsgType 0x00006002 TXUSER_BEGIN2_MTAG_BEGIN

dwcbVarLenData 0x00000034 52

%5bMS-CMPO%5d.pdf#Section_d2403ca533fa432997f5825ad0868bf6
%5bMS-CMP%5d.pdf#Section_1970a8a0799d4308b9274e4ea23dc225

425 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Field Value Value description

dwReserved1 0xcd64cd64 dwReserved1: 0xcd64cd64

isoLevel 0x00100000 ISOLATIONLEVEL_SERIALIZABLE

dwTimeout 0x0000EA60 60000

szDesc 0x706D6173

0x7420656C

0x736E6172

0x69746361

0x00006E6F

0x00000000

0x00000000

0x00000000

0x00000000

0x00000000

"sample transaction"

isoFlags 0x00000005 ISOFLAG_RETAIN_DONTCARE

When the transaction manager receives the TXUSER_BEGIN2_MTAG_BEGIN message from the

application, the transaction manager attempts to create a transaction object with a globally unique
identifier (GUID) as its identifier. If the transaction manager successfully creates the transaction, it
sends a TXUSER_BEGIN2_MTAG_SINK_BEGUN user message to the application specifying the
transaction identifier as the guidTx field (for example, 4046037e-9722-46c9-9883-99062341cb35),
and the transaction manager adds the transaction to its list of known transaction objects.

Field Value Value description

MsgTag 0x00000FFF MTAG_USER_MESSAGE

fIsMaster 0x00000000 0

dwConnectionId 0x00000001 1

dwUserMsgType 0x00006006 TXUSER_BEGIN2_MTAG_SINK_BEGUN

dwcbVarLenData 0x00000010 16

dwReserved1 0xcd64cd64 dwReserved1: 0xcd64cd64

guidTx 0x4046037E

0x46C99722

0x06999883

0x35CB4123

4046037e-9722-46c9-9883-99062341cb35

4.1.2 Completing a Transaction

After the transaction begins, the application decides whether to commit or abort the transaction. If the
application disconnects the connection before committing or aborting the transaction, the transaction

manager assumes that the transaction aborts.

426 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

4.1.2.1 Committing the Transaction

The application commits the transaction by sending a TXUSER_BEGIN2_MTAG_COMMIT user message
specifying a value of zero in the unused grfRM field.

Field Value Value description

MsgTag 0x000000FF MTAG_USER_MESSAGE

fIsMaster 0x00000001 1

dwConnectionId 0x00000001 1

dwUserMsgType 0x00006003 TXUSER_BEGIN2_MTAG_COMMIT

dwcbVarLenData 0x00000004 4

dwReserved1 0xcd64cd64 dwReserved1: 0xcd64cd64

grfRM 0x00000000 0

In response, the transaction manager attempts to commit the transaction by using a two-phase
commit. If the transaction manager successfully completes Phase One of the transaction, the
transaction manager sends a TXUSER_BEGIN2_MTAG_SINK_ERROR user message to the application
with TRUN_TXBEGIN_ERROR_NOTIFY_COMMITTED specified in the Error field.

Field Value Value description

MsgTag 0x000000FF MTAG_USER_MESSAGE

fIsMaster 0x00000000 0

dwConnectionId 0x00000001 1

dwUserMsgType 0x00006005 TXUSER_BEGIN2_MTAG_SINK_ERROR

dwcbVarLenData 0x00000004 4

dwReserved1 0xcd64cd64 dwReserved1: 0xcd64cd64

Error 0x0000001F TRUN_TXBEGIN_ERROR_NOTIFY_COMMITTED

After the application gets the TXUSER_BEGIN2_MTAG_SINK_ERROR response from its transaction
manager, no more user messages can be sent on this connection and the application initiates the
disconnect sequence.

4.2 Transaction Marshaling Scenario (Pull Propagation)

This scenario shows how an application (or resource manager) on Machine1 marshals an existing
transaction to an application or resource manager on Machine2 by using pull propagation. Because the

receiving application obtains knowledge of an existing transaction, it is implied that another

application exists that has access to an existing transaction. The receiving application obtains the
necessary information from the existing transaction. Because OleTx does not prescribe application-to-
application communication, an out-of-band mechanism (such as an application API) needs to be
available to transfer this knowledge from the sending application to the receiving application.

Pull propagation involves three main stages. In the first stage, the sending application (or sender)
packages information about an existing transaction and sends the information to the receiving

application (or receiver) — this is called marshaling the transaction.

427 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

During the second stage (unmarshaling the transaction), the receiver requests an association with the
transmitted transaction. If the transaction manager of the receiver does not have a reference for the

requested transaction, it enters the third stage and attempts to add itself as a subordinate branch of
the transaction by using the transaction manager of the sender.

This scenario requires that the receiving application has established a transport session with a
transaction manager and has negotiated its connection resources. The scenario also assumes that
there is an out-of-band mechanism (an application API) that the sending and receiving applications
use to exchange transactional information. In general, this API is also necessary for the sending
application to prescribe work for the receiving application to perform as part of the transaction.

4.2.1 Marshaling the Transaction

To marshal a transaction from the sending application to the receiving application, several pieces of
information need to be transmitted to the receiver. The receiver needs to have sufficient knowledge of
the existing transaction. That knowledge includes the transaction identifier, the isolation level, the
isolation flag, and the description of the transaction.

The receiver also needs to have sufficient locative information of the sender's transaction manager in
order for the receiver's transaction manager to establish a communication session with the sender's
transaction manager (that is, the OLETX_TM_ADDR). The OLETX_TM_ADDR includes the host name of
the sender's transaction manager, its contact identifier, and the RPC communication protocols that the
transaction manager of the sender supports.

The transaction information and the sender transaction manager endpoint information are marshaled
to a Propagation Token structure, as specified in section 2.2.5.4.

Field Value Description

dwVersionMin 0x00000001 1

dwVersionMax 0x00000002 2

guidTx 0x4046037E

0x46C99722

0x06999883

0x35CB4123

4046037e-9722-46c9-9883-99062341cb35

isoLevel 0x00100000 ISOLATIONLEVEL_SERIALIZABLE

isoFlags 0x00000005 ISOFLAG_RETAIN_DONTCARE

cbSourceTmAddr 0x00000058 88

szDesc 0x706D6173

0x7420656C

0x736E6172

0x69746361

0x00006E6F

0x00000000

0x00000000

0x00000000

0x00000000

0x00000000

"sample-transaction"

szGuid 0x30616162

0x35373734

"BAA04775-8F43-4F49-ADEF-5A1B2151190B"

428 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Field Value Description

0x3466382d

0x66342d33

0x612d3934

0x2d666564

0x62316135

0x31353132

0x62303931

0x00000000

dwcbHostName 0x0000000a 10

dwReserved1 0xcd64cd64 dwReserved1: 0xcd64cd64

grbComProtsSupported 0x00000021 PROT_IP_TCP | PROT_LRPC

szHostName 0x6863614d

 0x5f656e69

 0x00000031

"Machine_1"

cbHostNameW 0x00000014 20

wszHostname 0x0061004D

0x00680063

0x006E0069

0x005F0065

0x00000031

L"Machine_1"

4.2.2 Unmarshaling the Transaction

To begin the unmarshaling process, the receiving application initiates a connection over its transport
session with its transaction manager.

CONNTYPE_TXUSER_ASSOCIATE: The packet sequence starts when the receiving application initiates

a connection by using CONNTYPE_TXUSER_ASSOCIATE.

Field Value Value description

MsgTag 0x00000005 MTAG_CONNECTION_REQ

fIsMaster 0x00000001 1

dwConnectionId 0x00000001 1

dwUserMsgType 0x00000011 CONNTYPE_TXUSER_ASSOCIATE

dwcbVarLenData 0x00000000 0

dwReserved1 0xcd64cd64 dwReserved1: 0xcd64cd64

The receiving application then sends a TXUSER_ASSOCIATE_MTAG_ASSOCIATE user message with
the information transmitted to the receiver in the Propagation Token.

429 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Field Value Value description

MsgTag 0x000000FF MTAG_USER_MESSAGE

fIsMaster 0x00000001 1

dwConnectionId 0x00000001 1

dwUserMsgType 0x00002031 TXUSER_ASSOCIATE_MTAG_ASSOCIATE

dwcbVarLenData 0x0000007C 124

dwReserved1 0xcd64cd64 dwReserved1: 0xcd64cd64

guidTx 0x4046037E

0x46C99722

0x06999883

0x35CB4123

4046037e-9722-46c9-9883-99062341cb35

isoLevel 0x00100000 ISOLATIONLEVEL_SERIALIZABLE

isoFlags 0x00000005 ISOFLAG_RETAIN_DONTCARE

cbSourceTmAddr 0x00000038 56

szDesc 0x706D6173

0x7420656C

0x736E6172

0x69746361

0x00006E6F

0x00000000

0x00000000

0x00000000

0x00000000

0x00000000

"sample transaction"

guidSignature 0xDC85CB48

0x11d2D8A5

0x8000828B

0x5AF70D5F

DC85CB48-D8A5-11d2-828B-00805F0DF75A

guidEndpoint 0xBAA04775

0x4F498F43

0x1B5AADEF

0x0B195121

BAA04775-8F43-4F49-ADEF-5A1B2151190B

grbComProtsSupported 0x00000021 PROT_IP_TCP | PROT_LRPC

wszHostName 0x0061004d

0x00680063

0x006e0069

0x005f0065

0x00000031

L"Machine_1"

When the receiver's transaction manager receives the TXUSER_ASSOCIATE_MTAG_ASSOCIATE
message, that transaction manager attempts to locate the transaction in its list of transaction objects

by using the transaction identifier. If the transaction object is not found locally, the transaction

430 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

manager attempts to pull the transaction from the sender's transaction manager by using information
received from the TXUSER_ASSOCIATE_MTAG_ASSOCIATE message (compare Branching the

Transaction).

If the receiver's transaction manager can successfully locate the transaction object or if the requested

transaction is successfully pulled to the receiver's transaction manager, it replies to the receiver with a
TXUSER_ASSOCIATE_MTAG_ASSOCIATED user message.

Field Value Value description

MsgTag 0x00000FFF MTAG_USER_MESSAGE

fIsMaster 0x00000000 0

dwConnectionId 0x00000001 1

dwUserMsgType 0x00002032 TXUSER_ASSOCIATE_MTAG_ASSOCIATED

dwcbVarLenData 0x00000000 0

dwReserved1 0xcd64cd64 dwReserved1: 0xcd64cd64

After the receiving application gets the TXUSER_ASSOCIATE_MTAG_ASSOCIATED response from its
transaction manager (or if it receives an error response), no more user messages can be sent on this
connection and the receiver initiates the disconnect sequence.

4.2.3 Branching the Transaction

If the receiver's transaction manager does not have a reference to the requested transaction in its list
of transaction objects, it attempts to contact the sender's transaction manager. If successful, it
requests a subordinate branch to the transaction through the sender's transaction manager.

To branch the transaction, the receiver's transaction manager needs to have a transport session with
the sender's transaction manager. If there is no existing transport session, the receiver's transaction

manager uses the OLETX_TM_ADDR information about the sender's transaction manager from the

Propagation_Token (section 2.2.5.4) to initiate a session between the two participants. Depending on
the value of both participants' contact identifiers, the receiver's transaction manager initiates the
transport session as either the primary or secondary partner.

To branch the transaction, the receiver's transaction manager initiates a connection over its transport
session with the sender's transaction manager. If the transaction branching is successful, the superior
transaction manager (that is, the sender's transaction manager) adds the receiver's transaction
manager as a subordinate branch to the transaction.

CONNTYPE_PARTNERTM_BRANCH: The packet sequence starts when the receiver's transaction
manager initiates a CONNTYPE_PARTNERTM_BRANCH connection with the sender's transaction
manager.

Field Value Value description

MsgTag 0x00000005 MTAG_CONNECTION_REQ

fIsMaster 0x00000001 1

dwConnectionId 0x00000001 1

dwUserMsgType 0x00000104 CONNTYPE_PARTNERTM_BRANCH

dwcbVarLenData 0x00000000 0

431 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Field Value Value description

dwReserved1 0xcd64cd64 dwReserved1: 0xcd64cd64

The receiver's transaction manager then sends a PARTNERTM_BRANCH_MTAG_BRANCHING user
message with the transaction identifier of the requested transaction.

Field Value Value description

MsgTag 0x00000FFF MTAG_USER_MESSAGE

fIsMaster 0x00000001 1

dwConnectionId 0x00000001 1

dwUserMsgType 0x00002051 PARTNERTM_BRANCH_MTAG_BRANCHING

dwcbVarLenData 0x00000010 16

dwReserved1 0xcd64cd64 dwReserved1: 0xcd64cd64

guidTx 0x4046037E

0x46C99722

0x06999883

0x35CB4123

4046037e-9722-46c9-9883-99062341cb35

If the sender's transaction manager is able to create a subordinate branch, it responds to the
receiver's transaction manager with a user message with dwUserMsgType equal to

PARTNERTM_BRANCH_MTAG_BRANCHED.

Field Value Value description

MsgTag 0x00000FFF MTAG_USER_MESSAGE

fIsMaster 0x00000000 0

dwConnectionId 0x00000001 1

dwUserMsgType 0x00002052 PARTNERTM_BRANCH_MTAG_BRANCHED

dwcbVarLenData 0x00000000 0

dwReserved1 0xcd64cd64 dwReserved1: 0xcd64cd64

After receiving the PARTNERTM_BRANCH_MTAG_BRANCHED reply from the sender's transaction
manager, the receiver's transaction manager keeps the connection open in order to process two-phase

commit notifications from the sender's transaction manager. The sender's transaction manager has
now become the superior transaction manager for this transaction; the receiver's transaction manager
is now the subordinate transaction manager.

If the sender's transaction manager is unable to create a subordinate branch, it responds to the
receiver's transaction manager with a user message with dwUserMsgType set to an error value. No
more messages are sent on this connection and the receiver's transaction manager initiates the

disconnect sequence. The receiver transaction manager then sends an appropriate error response to
the receiver on the TXUSER_ASSOCIATE_MTAG_ASSOCIATE connection to inform the receiver of the
failure to pull the transaction.

432 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

4.3 Transaction Marshaling Scenario (Push Propagation)

This scenario shows how an application or resource manager obtains access to an existing transaction
through its transaction manager by using push propagation. Because the receiving application obtains

knowledge of an existing transaction, this knowledge implies that there is another application that has
access to an existing transaction. The receiving application obtains the necessary information from the
existing transaction. Because OleTx does not prescribe application-to-application communication, an
out-of-band mechanism (such as an application API) is needed to exchange this knowledge between
the sending application and the receiving application.

Push propagation involves four main exchanges. The push sequence begins by the sending application
(or sender) obtaining location information from the receiving application (or receiver) about its

transaction manager, which is called the whereabouts. Subsequently, the sender uses the receiver's
transaction manager whereabouts information to export the transaction. This exchange causes the
sender's transaction manager to propagate the transaction to the receiver's transaction manager. The
exchanges complete when the receiver imports the transaction from its transaction manager.

The scenario requires that the receiving application has established a transport session with a

transaction manager and has negotiated its connection resources. The scenario also assumes that

there is some out-of-band mechanism (an application API) that the sending and receiving applications
use to exchange transactional information. In general, this API will also be necessary for the sending
application to prescribe work for the receiving application to perform as part of the transaction.

4.3.1 Obtaining the Whereabouts of the Receiver's Transaction Manager

To push the transaction from the sender's transaction manager to the receiver's transaction manager,
the sender obtains the location of the receiver's transaction manager. Specifically, the sender needs to
populate an OLETX_TM_ADDR structure in order to perform an export. Typically, the receiver sends an
SWhereabouts structure to the sender by using an out-of-band API. The SWhereabouts structure in
this example contains two STmToTmProtocol structures: SDtcCmEndpointInfoV1 and
SDtcCmEndpointInfoV2.

Field Value Value description

guidSignature 0x2ADB4462

0x11D0BD41

0xC000B12E

0xEFF3C24F

2ADB4462-BD41-11D0-B12E-00C04FC2F3EF

cTmToTmProtocols 0x00000002 2

tmprotDescribed 0x00000002 TmProtocolMsdtcV1

cbTmProtocolData 0x0000001C 28

comprotSupported 0x00000021 PROT_IP_TCP | PROT_LRPC

guidEndpointID 0xD2A6A4B9

0x48ABCDB0

0x34E3A68F

0x28611A9B

D2A6A4B9-CDB0-48AB-A68F-E3349B1A6128

szHostname 0x6863614d

0x00026e69

"Machine_2"

tmprotDescribed 0x00000003 TmProtocolMsdtcV2

cbTmProtocolData 0x00000014 20

433 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Field Value Value description

wszHostname 0x0061004d

0x00680063

0x006e0069

0x005f0065

0x00000031

L"Machine_2"

4.3.2 Exporting the Transaction

To export the transaction, the sending application needs to have a CONNTYPE_TXUSER_EXPORT
connection established with the transaction manager. If a connection is not established, the sender
needs to initiate one now.

CONNTYPE_TXUSER_EXPORT: The packet sequence starts when the sender initiates a
CONNTYPE_TXUSER_EXPORT connection with its transaction manager.

Field Value Value description

MsgTag 0x00000005 MTAG_CONNECTION_REQ

fIsMaster 0x00000001 1

dwConnectionId 0x00000002 2

dwUserMsgType 0x00000004 CONNTYPE_TXUSER_EXPORT

dwcbVarLenData 0x00000000 0

dwReserved1 0xcd64cd64 dwReserved1: 0xcd64cd64

The sending application then sends to its transaction manager a TXUSER_EXPORT_MTAG_CREATE
user message on that connection specifying the receiver's transaction manager in an
OLETX_TM_ADDR structure.

Field Value Value description

MsgTag 0x00000FFF MTAG_USER_MESSAGE

fIsMaster 0x00000001 1

dwConnectionId 0x00000002 2

dwUserMsgType 0x00001041 TXUSER_EXPORT_MTAG_CREATE

dwcbVarLenData 0x00000038 56

dwReserved1 0xcd64cd64 dwReserved1: 0xcd64cd64

guidSignature 0xDC85CB48

0x11d2D8A5

0x8000828B

0x5AF70D5F

DC85CB48-D8A5-11d2-828B-00805F0DF75A

guidEndpoint 0xD2A6A4B9

0x48ABCDB0

D2A6A4B9-CDB0-48AB-A68F-E3349B1A6128

434 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Field Value Value description

0x34E3A68F

0x28611A9B

grbComProtsSupported 0x00000021 PROT_IP_TCP | PROT_LRPC

wszHostName 0x0061004d

0x00680063

0x006e0069

0x005f0065

0x00000032

L"Machine_2"

When the sender's transaction manager receives the create message, it converts the transaction
manager information received in the OLETX_TM_ADDR structure to a Name object and stores the
Name object in the Connection-Specific Data field of the connection object. If this operation is
successful, the transaction manager responds to the sender with a TXUSER_EXPORT_MTAG_CREATED

user message.

Field Value Value description

MsgTag 0x00000FFF MTAG_USER_MESSAGE

fIsMaster 0x00000000 0

dwConnectionId 0x00000002 2

dwUserMsgType 0x00001042 TXUSER_EXPORT_MTAG_CREATED

dwcbVarLenData 0x00000000 0

dwReserved1 0xcd64cd64 dwReserved1: 0xcd64cd64

After the export connection is created, the sender requests that the transaction be exported to the

receiver's transaction manager by sending a TXUSER_EXPORT_MTAG_EXPORT user message to its
transaction manager. This message specifies the identifier of the transaction that the sender wants to

have exported in the guidTx field of the message.

Field Value Value description

MsgTag 0x00000FFF MTAG_USER_MESSAGE

fIsMaster 0x00000001 1

dwConnectionId 0x00000002 2

dwUserMsgType 0x00001043 TXUSER_EXPORT_MTAG_EXPORT

dwcbVarLenData 0x00000010 16

dwReserved1 0xcd64cd64 dwReserved1: 0xcd64cd64

guidTx 0x4046037E

0x46C99722

0x06999883

0x35CB4123

4046037e-9722-46c9-9883-99062341cb35

435 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

When the sender's transaction manager receives the export message, it attempts to propagate the
transaction to the receiver's transaction manager. If the propagation is successful, the transaction

manager sends to the sender a TXUSER_EXPORT_MTAG_EXPORTED user message.

Field Value Value description

MsgTag 0x00000FFF MTAG_USER_MESSAGE

fIsMaster 0x00000000 0

dwConnectionId 0x00000002 2

dwUserMsgType 0x00001044 TXUSER_EXPORT_MTAG_EXPORTED

dwcbVarLenData 0x00000000 0

dwReserved1 0xcd64cd64 dwReserved1: 0xcd64cd64

When the sender receives the exported message, it sends information to the receiving application by

using an out-of-band API that the exported transaction can be imported.

The sender can either close the export connection with its transaction manager by initiating the

disconnect sequence, or it can maintain the connection for future exporting of transactions to the
receiver's transaction manager.

4.3.3 Propagating the Transaction

When the sending transaction manager receives the export message from the sending application, the

transaction manager attempts to propagate the transaction to the receiving transaction manager. If a
transport session has not yet been established, the sending transaction manager attempts to establish
the session now.

After a transport session is established between the sending transaction manager and the receiving
transaction manager and resources are negotiated, the sending transaction manager initiates a

CONNTYPE_PARTNERTM_PROPAGATE connection with the receiving transaction manager.

CONNTYPE_PARTNERTM_PROPAGATE: The packet sequence starts when the sending transaction
manager initiates a CONNTYPE_PARTNERTM_PROPAGATE connection with the receiving transaction
manager.

Field Value Value description

MsgTag 0x00000005 MTAG_CONNECTION_REQ

fIsMaster 0x00000001 1

dwConnectionId 0x00000001 1

dwUserMsgType 0x00000101 CONNTYPE_PARTNERTM_PROPAGATE

dwcbVarLenData 0x00000000 0

dwReserved1 0xcd64cd64 dwReserved1: 0xcd64cd64

The sending transaction manager then sends a PARTNERTM_PROPAGATE_MTAG_PROPAGATE user
message to the receiving transaction manager and specifies the transaction identifier (guidTx), the
isolation level (isoLevel), the transaction description (szDesc), and the isolation flags (isoFlags).

436 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Field Value Value description

MsgTag 0x00000FFF MTAG_USER_MESSAGE

fIsMaster 0x00000001 1

dwConnectionId 0x00000001 1

dwUserMsgType 0x00002001 PARTNERTM_PROPAGATE_MTAG_PROPAGATE

dwcbVarLenData 0x0000003c 60

dwReserved1 0xcd64cd64 dwReserved1: 0xcd64cd64

guidTx 0x4046037E

0x46C99722

0x06999883

0x35CB4123

4046037e-9722-46c9-9883-99062341cb35

isoLevel 0x00100000 ISOLATIONLEVEL_SERIALIZABLE

szDesc 0x706D6173

0x7420656C

0x736E6172

0x69746361

0x00006E6F

0x00000000

0x00000000

0x00000000

0x00000000

0x00000000

"sample transaction"

When the receiving transaction manager receives the message, it adds the transaction to its list of

known transactions. If the propagation is successful, the receiving transaction manager sends to the
sending transaction manager a PARTNERTM_PROPAGATE_MTAG_PROPAGATED user message.

Field Value Value description

MsgTag 0x00000FFF MTAG_USER_MESSAGE

fIsMaster 0x00000000 0

dwConnectionId 0x00000001 1

dwUserMsgType 0x00002002 PARTNERTM_PROPAGATE_MTAG_PROPAGATED

dwcbVarLenData 0x00000000 0

dwReserved1 0xcd64cd64 dwReserved1: 0xcd64cd64

When the sending transaction manager receives the PARTNERTM_PROPAGATE_MTAG_PROPAGATED
message, it adds the receiving transaction manager as a subordinate branch to its list of enlistments
for the transaction. If the subordinate transaction manager is successfully added, the sending

transaction manager replies to the sender that the export completed successfully.

The sending transaction manager keeps the connection alive for future two-phase commit processing
when the transaction is committed or aborted.

437 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

4.3.4 Importing the Transaction

When the sender receives notification that the transaction was successfully exported to the receiving
transaction manager, the sender sends the transaction identifier (guidTx) to the receiver by using its

out-of-band API so that the receiver can import the transaction.

To import the transaction, the receiver needs to initiate a CONNTYPE_TXUSER_IMPORT connection
with its transaction manager.

CONNTYPE_TXUSER_IMPORT: The packet sequence starts when the receiver initiates a
CONNTYPE_TXUSER_IMPORT connection with its transaction manager.

Field Value Value Description

MsgTag 0x00000005 MTAG_CONNECTION_REQ

fIsMaster 0x00000001 1

dwConnectionId 0x00000001 1

dwUserMsgType 0x00000002 CONNTYPE_TXUSER_IMPORT

dwcbVarLenData 0x00000000 0

dwReserved1 0xcd64cd64 dwReserved1: 0xcd64cd64

The receiver then sends a TXUSER_IMPORT_MTAG_IMPORT user message to the its transaction
manager and specifies the transaction identifier (guidTx).

Field Value Value Description

MsgTag 0x00000FFF MTAG_USER_MESSAGE

fIsMaster 0x00000001 1

dwConnectionId 0x00000001 1

dwUserMsgType 0x00001021 TXUSER_IMPORT_MTAG_IMPORT

dwcbVarLenData 0x00000010 16

dwReserved1 0xcd64cd64 dwReserved1: 0xcd64cd64

guidTx 0x4046037E

0x46C99722

0x06999883

0x35CB4123

4046037e-9722-46c9-9883-99062341cb35

When the transaction manager receives the TXUSER_IMPORT_MTAG_IMPORT message from the
receiver, it attempts to find the transaction identifier (guidTx) in its list of known transactions. If it

locates the transaction with that identifier, the transaction manager replies to the receiver with a

TXUSER_IMPORT_MTAG_IMPORTED user message that specifies the isolation level (isoLevel) and
isolation flags (isoFlags) of the transaction.

Field Value Value Description

MsgTag 0x00000FFF MTAG_USER_MESSAGE

fIsMaster 0x00000000 0

438 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Field Value Value Description

dwConnectionId 0x00000001 1

dwUserMsgType 0x00001022 TXUSER_IMPORT_MTAG_IMPORTED

dwcbVarLenData 0x00000008 8

dwReserved1 0xcd64cd64 dwReserved1: 0xcd64cd64

isoLevel 0x00100000 ISOLATIONLEVEL_SERIALIZABLE

isoFlags 0x00000005 ISOFLAG_RETAIN_DONTCARE

When the receiving application gets the TXUSER_IMPORT_MTAG_IMPORTED message, it can enlist on
the transaction (if it is a resource manager) or marshal the transaction to another application. The
receiving application can also attempt to abort the transaction by using the connection. If the receiver
does not intend to abort the transaction, it initiates the disconnect sequence.

4.4 Simple Enlistment Scenario

This scenario shows how a resource manager registers with a transaction manager, enlists on an
existing transaction, and then responds to the enlistment notifications from the transaction manager.
This scenario does not address resource manager recovery, which is described in the next section.

The scenario begins by the resource manager establishing a transport session with a transaction
manager and negotiating its connection resources. It also assumes that there is some out-of-band

mechanism (for example, application API) by which an external application is able to send the
resource manager work to perform as part of an existing transaction. The resource manager is
expected to follow the two-phase commit protocol.

4.4.1 Registering with the Transaction Manager as a Resource Manager

Before a resource manager can participate in transactional work, it needs to register as a resource
manager with a transaction manager.

CONNTYPE_TXUSER_RESOURCEMANAGER: The packet sequence starts when the resource manager
initiates a CONNTYPE_TXUSER_RESOURCEMANAGER connection.

Field Value Value description

MsgTag 0x00000005 MTAG_CONNECTION_REQ

fIsMaster 0x00000001 1

dwConnectionId 0x00000002 2

dwUserMsgType 0x00000005 CONNTYPE_TXUSER_RESOURCEMANAGER

dwcbVarLenData 0x00000000 0

dwReserved1 0xcd64cd64 dwReserved1: 0xcd64cd64

The resource manager then sends a TXUSER_RESOURCEMANAGER_MTAG_CREATE user message that
specifies a GUID that uniquely identifies the resource manager (guidRm) and a session GUID that
uniquely identifies this session of the resource manager (guidSession). The session GUID can be either
a unique GUID that is created each time the resource manager starts up, or a NULL GUID.

439 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Field Value Value description

MsgTag 0x00000FFF MTAG_USER_MESSAGE

fIsMaster 0x00000001 1

dwConnectionId 0x00000002 2

dwUserMsgType 0x00001051 TXUSER_RESOURCEMANAGER_MTAG_CREATE

dwcbVarLenData 0x00000020 32

dwReserved1 0xcd64cd64 dwReserved1: 0xcd64cd64

guidRm 0xE7BAEBDF

0x4E2BDC69

0xA1699FF1

0x772859D3

E7BAEBDF-DC69-4E2B-9FF1-69A1D3592877

guidSession 0x8F5204B3

0x466A5FB9

0xAF2DA0B8

0xAAD9CB3F

8F5204B3-5FB9-466A-A0B8-2DAF3FCBD9AA

If guidRm does not identify a resource manager already registered with the transaction manager, the

transaction manager adds the resource manager to its list of registered resource managers and sends
to the resource manager a TXUSER_RESOURCEMANAGER_MTAG_REQUEST_COMPLETE user message.

Field Value Value description

MsgTag 0x00000FFF MTAG_USER_MESSAGE

fIsMaster 0x00000000 0

dwConnectionId 0x00000002 2

dwUserMsgType 0x00001053 TXUSER_RESOURCEMANAGER_MTAG_REQUEST_COMPLETE

dwcbVarLenData 0x00000000 0

dwReserved1 0xcd64cd64 dwReserved1: 0xcd64cd64

The resource manager needs to keep this connection open for the duration of its lifetime. If the
connection is terminated, any unprepared transactions are aborted.

4.4.2 Enlisting in an Existing Transaction

To enlist in an existing transaction, the resource manager needs to have knowledge of the existing
transaction, which likely happened as a result of marshaling the transaction from an application to the

resource manager.

CONNTYPE_TXUSER_ENLISTMENT: The packet sequence starts when the resource manager initiates a
connection by using CONNTYPE_TXUSER_ENLISTMENT.

Field Value Value description

MsgTag 0x00000005 MTAG_CONNECTION_REQ

fIsMaster 0x00000001 1

440 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Field Value Value description

dwConnectionId 0x00000002 2

dwUserMsgType 0x00000003 TXUSER_ENLISTMENT_MTAG_ENLIST

dwcbVarLenData 0x00000000 0

dwReserved1 0xcd64cd64 dwReserved1: 0xcd64cd64

The resource manager then sends a TXUSER_ENLISTMENT_MTAG_ENLIST user message specifying
the transaction identifier (guidTx), the resource manager identifier (guidRm), and the resource
manager session identifier (guidSession).

Field Value Value description

MsgTag 0x00000FFF MTAG_USER_MESSAGE

fIsMaster 0x00000001 1

dwConnectionId 0x00000002 2

dwUserMsgType 0x00001031 TXUSER_ENLISTMENT_MTAG_ENLIST

dwcbVarLenData 0x00000030 48

dwReserved1 0xcd64cd64 dwReserved1: 0xcd64cd64

guidTx 0x4046037E

0x46C99722

0x06999883

0x35CB4123

4046037e-9722-46c9-9883-99062341cb35

guidRm 0xE7BAEBDF

0x4E2BDC69

0xA1699FF1

0x772859D3

E7BAEBDF-DC69-4E2B-9FF1-69A1D3592877

guidSession 0x8F5204B3

0x466A5FB9

0xAF2DA0B8

0xAAD9CB3F

8F5204B3-5FB9-466A-A0B8-2DAF3FCBD9AA

If the transaction manager can enlist the resource manager in the requested transaction, the
transaction manager adds the resource manager to its list of subordinate enlistments and replies to

the resource manager with a TXUSER_ENLISTMENT_MTAG_ENLISTED user message.

Field Value Value description

MsgTag 0x00000FFF MTAG_USER_MESSAGE

fIsMaster 0x00000000 0

dwConnectionId 0x00000002 2

dwUserMsgType 0x00001032 TXUSER_ENLISTMENT_MTAG_ENLISTED

dwcbVarLenData 0x00000000 0

441 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Field Value Value description

dwReserved1 0xcd64cd64 dwReserved1: 0xcd64cd64

The resource manager is now enlisted on the transaction and is now waiting for two-phase commit
notifications from the transaction manager. During the time that the resource manager is enlisted on
the transaction, the resource manager typically receives from some external application the
instructions (that is, work) to perform as part of the transaction.

4.4.3 Responding to Enlistment Notifications

When the transaction is committed, the transaction manager receives notification to prepare the
transaction.

4.4.3.1 Responding to a Prepare Request Message

As part of the prepare process, the transaction manager sends

TXUSER_ENLISTMENT_MTAG_PREPAREREQ user messages to each of its subordinate resource
managers.

Field Value Value description

MsgTag 0x00000FFF MTAG_USER_MESSAGE

fIsMaster 0x00000000 0

dwConnectionId 0x00000002 2

dwUserMsgType 0x00001033 TXUSER_ENLISTMENT_MTAG_PREPAREREQ

dwcbVarLenData 0x00000008 8

dwReserved1 0xcd64cd64 dwReserved1: 0xcd64cd64

grfRM 0x00000000 0

fSinglePhase 0x00000000 0

When the resource manager successfully completes its prepare work, it replies to its transaction
manager by using a TXUSER_ENLISTMENT_MTAG_PREPAREREQDONE user message that has the
prepareReqDone value set to TXUSER_ENLISTMENT_PREPAREREQDONE_OK.

Field Value Value description

MsgTag 0x00000FFF MTAG_USER_MESSAGE

fIsMaster 0x00000001 1

dwConnectionId 0x00000002 2

dwUserMsgType 0x00001036 TXUSER_ENLISTMENT_MTAG_PREPAREREQDONE

dwcbVarLenData 0x00000014 20

dwReserved1 0xcd64cd64 dwReserved1: 0xcd64cd64

prepareReqDone 0x00000000 TXUSER_ENLISTMENT_PREPAREREQDONE_OK

guidReason 0x00000000 00000000-0000-0000-0000-000000000000

442 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Field Value Value description

0x00000000

0x00000000

0x00000000

The resource manager now waits for the transaction outcome from its transaction manager.

4.4.3.2 Responding to a Commit Request Message

If the transaction manager receives notification that the transaction is committed, it sends to the
resource manager a TXUSER_ENLISTMENT_MTAG_COMMITREQ message.

Field Value Value description

MsgTag 0x00000FFF MTAG_USER_MESSAGE

fIsMaster 0x00000000 0

dwConnectionId 0x00000002 2

dwUserMsgType 0x00001035 TXUSER_ENLISTMENT_MTAG_COMMITREQ

dwcbVarLenData 0x00000000 0

dwReserved1 0xcd64cd64 dwReserved1: 0xcd64cd64

When the resource manager successfully completes its commit work, it replies to its transaction
manager with a TXUSER_ENLISTMENT_MTAG_COMMITREQDONE user message.

Field Value Value description

MsgTag 0x00000FFF MTAG_USER_MESSAGE

fIsMaster 0x00000001 1

dwConnectionId 0x00000002 2

dwUserMsgType 0x00001038 TXUSER_ENLISTMENT_MTAG_COMMITREQDONE

dwcbVarLenData 0x00000000 0

dwReserved1 0xcd64cd64 dwReserved1: 0xcd64cd64

The resource manager has now completed all its work that is associated with the transaction and
initiates the disconnect sequence on its CONNTYPE_TXUSER_ENLISTMENT connection with its
transaction manager.

4.5 Transaction Manager Two-Phase Commit Scenario

This scenario shows how a transaction manager performs the Two-Phase Commit Protocol as both the
superior transaction manager facet and the subordinate transaction manager facet.

For this scenario, all connections that are associated with the transaction are extant. The root
transaction manager has an existing CONNTYPE_TXUSER_BEGIN2 connection between itself and the
initiating application. Optionally, the transaction has one or more existing
CONNTYPE_PARTNERTM_BRANCH or CONNTYPE_PARTNERTM_PROPAGATE connections between a

superior transaction manager facet and its subordinate transaction manager facets. (A subordinate
transaction manager facet can also act as a superior transaction manager facet if it has any

443 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

subordinate branches.) Optionally, each transaction manager also has one or more
CONNTYPE_TXUSER_ENLISTMENT connections with its registered resource managers.

For this scenario, it is assumed that there are no phase-zero or voter enlistments and that the root
transaction manager has more than one subordinate branch and thus will not perform a single-phase

commit.

4.5.1 Phase One

The protocol sequence begins when the root transaction manager receives the

TXUSER_BEGIN2_MTAG_COMMIT user message from the initiating application over its existing
CONNTYPE_TXUSER_BEGIN2 connection (compare Committing the Transaction).

Field Value Value description

MsgTag 0x00000FFF MTAG_USER_MESSAGE

fIsMaster 0x00000001 1

dwConnectionId 0x00000001 1

dwUserMsgType 0x00006003 TXUSER_BEGIN2_MTAG_COMMIT

dwcbVarLenData 0x00000004 4

dwReserved1 0xcd64cd64 dwReserved1: 0xcd64cd64

grfRM 0x00000000 0

The root transaction manager then iterates through the subordinate branches of each transaction and
notifies the subordinates that the transaction processing has begun. The root transaction manager
then waits for reply notifications from each of the subordinates in order to determine the outcome of
the transaction.

4.5.1.1 Phase One - Subordinate Resource Managers

If the subordinate branch is a resource manager (that is, using a CONNTYPE_TXUSER_ENLISTMENT
connection), the transaction manager sends a TXUSER_ENLISTMENT_MTAG_PREPAREREQ user
message with fSinglePhase set to zero.

Field Value Value description

MsgTag 0x00000FFF MTAG_USER_MESSAGE

fIsMaster 0x00000000 0

dwConnectionId 0x00000002 2

dwUserMsgType 0x00001033 TXUSER_ENLISTMENT_MTAG_PREPAREREQ

dwcbVarLenData 0x00000008 8

dwReserved1 0xcd64cd64 dwReserved1: 0xcd64cd64

grfRM 0x00000000 0

fSinglePhase 0x00000000 0

444 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

When the resource manager successfully completes its preparation work, it replies to its transaction
manager by using a TXUSER_ENLISTMENT_MTAG_PREPAREREQDONE user message that has the

prepareReqDone value set to TXUSER_ENLISTMENT_PREPAREREQDONE_OK.

Field Value Value description

MsgTag 0x00000FFF MTAG_USER_MESSAGE

fIsMaster 0x00000001 1

dwConnectionId 0x00000002 2

dwUserMsgType 0x00001036 TXUSER_ENLISTMENT_MTAG_PREPAREREQDONE

dwcbVarLenData 0x00000014 20

dwReserved1 0xcd64cd64 dwReserved1: 0xcd64cd64

prepareReqDone 0x00000000 TXUSER_ENLISTMENT_PREPAREREQDONE_OK

guidReason 0x00000000

0x00000000

0x00000000

0x00000000

00000000-0000-0000-0000-000000000000

The resource manager now waits for a TXUSER_ENLISTMENT_MTAG_ABORTREQ or
TXUSER_ENLISTMENT_MTAG_COMMITREQ message from its transaction manager to determine the
outcome for the transaction.

4.5.1.2 Phase One - Subordinate Transaction Manager Facets

If the subordinate branch is a transaction manager (that is, it is using either a
CONNTYPE_PARTNERTM_BRANCH or a CONNTYPE_PARTNERTM_PROPAGATE connection), the
transaction manager sends a PARTNERTM_PROPAGATE_MTAG_PREPAREREQ user message that has

fSinglePhase set to zero. If the connection was created by using CONNTYPE_PARTNERTM_BRANCH,

fIsMaster is zero (0). If the connection was created by using CONNTYPE_PARTNERTM_PROPAGATE,
fIsMaster is one (1).

Field Value Value description

MsgTag 0x00000FFF MTAG_USER_MESSAGE

fIsMaster 0x00000000 0

dwConnectionId 0x00000001 1

dwUserMsgType 0x00002003 PARTNERTM_PROPAGATE_MTAG_PREPAREREQ

dwcbVarLenData 0x00000008 8

dwReserved1 0xcd64cd64 dwReserved1: 0xcd64cd64

grfRM 0x00000000 0

fSinglePhase 0x00000000 0

When the subordinate transaction manager facet receives the prepare request for a transaction, it
then iterates through each of the transaction's subordinate branches and notifies the subordinates that
the transaction processing has begun. The transaction manager waits for reply notifications from each

of the subordinates in order to determine the outcome of the transaction.

445 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

If each subordinate branch of a transaction successfully prepares for the transaction (that is, each
subordinate replies with a TXUSER_ENLISTMENT_PREPAREREQDONE_OK or

PARTNERTM_PROPAGATE_PREPAREREQDONE_OK message depending on the connection type), the
transaction manager replies to its superior transaction manager facet with a

PARTNERTM_PROPAGATE_PREPAREREQDONE message that has prepareReqDone set to
PARTNERTM_PROPAGATE_PREPAREREQDONE_OK. If the connection was created by using
CONNTYPE_PARTNERTM_BRANCH, fIsMaster is one (1). If the connection was created by using
CONNTYPE_PARTNERTM_PROPAGATE, fIsMaster is zero (0).

Field Value Value description

MsgTag 0x00000FFF MTAG_USER_MESSAGE

fIsMaster 0x00000001 1

dwConnectionId 0x00000001 1

dwUserMsgType 0x00002006 PARTNERTM_PROPAGATE_MTAG_PREPAREREQDONE

dwcbVarLenData 0x00000014 20

dwReserved1 0xcd64cd64 dwReserved1: 0xcd64cd64

prepareReqDone 0x00000000 PARTNERTM_PROPAGATE_PREPAREREQDONE_OK

guidReason 0x00000000

0x00000000

0x00000000

0x00000000

00000000-0000-0000-0000-000000000000

The transaction manager now waits for a PARTNERTM_PROPAGATE_MTAG_ABORTREQ or
PARTNERTM_PROPAGATE _MTAG_COMMITREQ message from its superior transaction manager facet
to determine the outcome for the transaction.

4.5.1.3 Phase One - The Root Transaction Manager

If each subordinate branch of the root transaction manager successfully prepares for the transaction
(that is, each subordinate replies with a TXUSER_ENLISTMENT_PREPAREREQDONE_OK or
PARTNERTM_PROPAGATE_PREPAREREQDONE_OK message, depending on the connection type) the
root transaction manager replies to the application that the transaction has committed. It replies by
sending a TXUSER_BEGIN2_MTAG_SINK_ERROR message with an error value of
TRUN_TXBEGIN_ERROR_NOTIFY_COMMITTED. For more information, see section 4.1.2.

Field Value Value description

MsgTag 0x00000FFF MTAG_USER_MESSAGE

fIsMaster 0x00000000 0

dwConnectionId 0x00000001 1

dwUserMsgType 0x00006005 TXUSER_BEGIN2_MTAG_SINK_ERROR

dwcbVarLenData 0x00000004 4

dwReserved1 0xcd64cd64 dwReserved1: 0xcd64cd64

Error 0x0000001F TRUN_TXBEGIN_ERROR_NOTIFY_COMMITTED

The root transaction manager then initiates Phase Two processing.

446 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

4.5.2 Phase Two

The root transaction manager begins Phase Two by iterating through each subordinate branch of the
transaction and notifying the subordinates that Phase Two processing has begun. In this example, the

transaction commits.

4.5.2.1 Phase Two - Subordinate Resource Managers

If the subordinate branch is a resource manager (that is, it uses a CONNTYPE_TXUSER_ENLISTMENT
connection), the transaction manager sends a TXUSER_ENLISTMENT_MTAG_COMMITREQ user

message.

Field Value Value description

MsgTag 0x00000FFF MTAG_USER_MESSAGE

fIsMaster 0x00000000 0

dwConnectionId 0x00000001 1

dwUserMsgType 0x00001035 TXUSER_ENLISTMENT_MTAG_COMMITREQ

dwcbVarLenData 0x00000000 0

dwReserved1 0xcd64cd64 dwReserved1: 0xcd64cd64

When the resource manager successfully completes its commit work, it replies to its transaction

manager with a TXUSER_ENLISTMENT_MTAG_COMMITREQDONE user message.

Field Value Value description

MsgTag 0x00000FFF MTAG_USER_MESSAGE

fIsMaster 0x00000001 1

dwConnectionId 0x00000001 1

dwUserMsgType 0x00001038 TXUSER_ENLISTMENT_MTAG_COMMITREQDONE

dwcbVarLenData 0x00000000 0

dwReserved1 0xcd64cd64 dwReserved1: 0xcd64cd64

The resource manager has now completed all its work for the transaction and initiates the disconnect

sequence on its CONNTYPE_TXUSER_ENLISTMENT connection with its transaction manager.

4.5.2.2 Phase Two - Subordinate Transaction Manager Facets

If the subordinate branch is a transaction manager (that is, it is using either a
CONNTYPE_PARTNERTM_BRANCH or a CONNTYPE_PARTNERTM_PROPAGATE connection), the

transaction manager sends a PARTNERTM_PROPAGATE_MTAG_COMMITREQ user message. If the
connection was created by using CONNTYPE_PARTNERTM_BRANCH, fIsMaster is zero (0). If the
connection was created by using CONNTYPE_PARTNERTM_PROPAGATE, fIsMaster is one (1).

Field Value Value description

MsgTag 0x00000FFF MTAG_USER_MESSAGE

fIsMaster 0x00000000 0

447 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Field Value Value description

dwConnectionId 0x00000001 1

dwUserMsgType 0x00002005 PARTNERTM_PROPAGATE_MTAG_COMMITREQ

dwcbVarLenData 0x00000000 0

dwReserved1 0xcd64cd64 dwReserved1: 0xcd64cd64

When the Subordinate Transaction Manager Facet receives the commit request for a transaction, it
then iterates through each subordinate branch of the transaction and notifies the subordinates that
the transaction is committed. The transaction manager then waits for reply notifications from each of
the subordinates in order to complete Phase Two processing.

When each subordinate branch of the transaction replies that it has committed the transaction (that is,
each subordinate replies with a TXUSER_ENLISTMENT_COMMITREQDONE_OK or
PARTNERTM_PROPAGATE_COMMITREQDONE_OK message, depending on the connection type), the

transaction manager replies to its Superior Transaction Manager Facet with a
PARTNERTM_PROPAGATE_COMMITREQDONE message. If the connection was created by using
CONNTYPE_PARTNERTM_BRANCH, fIsMaster is one (1). If the connection was created by using
CONNTYPE_PARTNERTM_PROPAGATE, then fIsMaster is zero (0).

Field Value Value description

MsgTag 0x00000FFF MTAG_USER_MESSAGE

fIsMaster 0x00000001 1

dwConnectionId 0x00000001 1

dwUserMsgType 0x00002008 PARTNERTM_PROPAGATE_MTAG_COMMITREQDONE

dwcbVarLenData 0x00000000 0

dwReserved1 0xcd64cd64 dwReserved1: 0xcd64cd64

The subordinate transaction manager facet has now completed all the work that is associated with the
transaction. If the subordinate transaction manager facet's connection with its superior transaction

manager facet is a CONNTYPE_PARTNERTM_BRANCH connection, the subordinate transaction manager
facet initiates the disconnect sequence. If the subordinate transaction manager facet has any
CONNTYPE_PARTNERTM_PROPAGATE connections with its subordinate branches, the subordinate
transaction manager facet initiates the disconnect sequence on those subordinate branch connections.

4.5.2.3 Phase Two - The Root Transaction Manager

After the root transaction manager receives all reply notifications from each of its subordinates, the
transaction life cycle is complete. If the root transaction manager has any
CONNTYPE_PARTNERTM_PROPAGATE connections with its subordinate branches, the root transaction
manager initiates the disconnect sequence on those subordinate branch connections.

4.6 Resource Manager Recovery Scenario

This scenario describes in more detail how a resource manager registers with a transaction manager,
and how the resource manager drives its recovery process. The scenario begins by the resource
manager establishing a transport session with a transaction manager and negotiating its connection
resources.

448 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

4.6.1 Initializing the Recovery Process

After the resource manager registers with the transaction manager (compare Registering with the
Transaction Manager as a Resource Manager), it initiates recovery. To perform recovery, the resource

manager iterates through its log and locates all in-doubt transactions and requests their outcome by
reenlisting in the transaction with the transaction manager.

4.6.2 Reenlisting in In-Doubt Transactions

To reenlist in any transaction that is in-doubt, the resource manager establishes a

CONNTYPE_TXUSER_REENLIST connection with its transaction manager.

CONNTYPE_TXUSER_REENLIST: The packet sequence starts when the resource manager initiates a
CONNTYPE_TXUSER_REENLIST connection.

Field Value Value description

MsgTag 0x00000005 MTAG_CONNECTION_REQ

fIsMaster 0x00000001 1

dwConnectionId 0x00000002 2

dwUserMsgType 0x00000006 CONNTYPE_TXUSER_REENLIST

dwcbVarLenData 0x00000000 0

dwReserved1 0xcd64cd64 dwReserved1: 0xcd64cd64

For each in-doubt transaction, the resource manager sends a TXUSER_REENLIST_MTAG_REENLIST
user message specifying the transaction identifier (guidTx), the time-out (in milliseconds) that it will
wait for notification, and the resource manager identifier (guidRm). For this sample, the resource
manager will wait 1 second (or 1000 milliseconds).

Field Value Value description

MsgTag 0x00000FFF MTAG_USER_MESSAGE

fIsMaster 0x00000001 1

dwConnectionId 0x00000002 2

dwUserMsgType 0x00001061 TXUSER_REENLIST_MTAG_REENLIST

dwcbVarLenData 0x00000024 36

dwReserved1 0xcd64cd64 dwReserved1: 0xcd64cd64

guidTx 0x4046037E

0x46C99722

0x06999883

0x35CB4123

4046037e-9722-46c9-9883-99062341cb35

ulTimeout 0x000003E8 1000

guidRm 0xE7BAEBDF

0x4E2BDC69

0xA1699FF1

0x772859D3

E7BAEBDF-DC69-4E2B-9FF1-69A1D3592877

449 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

When transaction manager receives the reenlist request, it attempts to find the transaction in its list of
known transactions. If the transaction manager cannot locate the transaction, it assumes that the

transaction aborted and replies to the resource manager with a
TXUSER_REENLIST_MTAG_REENLIST_ABORTED user message.

Field Value Value description

MsgTag 0x00000FFF MTAG_USER_MESSAGE

fIsMaster 0x00000000 0

dwConnectionId 0x00000002 2

dwUserMsgType 0x00001062 TXUSER_REENLIST_MTAG_REENLIST_ABORTED

dwcbVarLenData 0x00000000 0

dwReserved1 0xcd64cd64 dwReserved1: 0xcd64cd64

If the transaction manager can locate the transaction, the transaction manager attempts to determine
outcome. The transaction manager replies to the resource manager with a

TXUSER_REENLIST_MTAG_REENLIST_COMMITTED or TXUSER_REENLIST_MTAG_REENLIST_ABORTED
user message, as appropriate.

Field Value Value description

MsgTag 0x00000FFF MTAG_USER_MESSAGE

fIsMaster 0x00000000 0

dwConnectionId 0x00000002 2

dwUserMsgType 0x00001063 TXUSER_REENLIST_MTAG_REENLIST_COMMITED

dwcbVarLenData 0x00000000 0

dwReserved1 0xcd64cd64 dwReserved1: 0xcd64cd64

If the transaction manager is unable to determine outcome in the time-out period, the transaction

manager replies to the resource manager with a TXUSER_REENLIST_MTAG_REENLIST_TIMEOUT user
message.

Field Value Value description

MsgTag 0x00000FFF MTAG_USER_MESSAGE

fIsMaster 0x00000000 0

dwConnectionId 0x00000002 2

dwUserMsgType 0x00001064 TXUSER_REENLIST_MTAG_REENLIST_TIMEOUT

dwcbVarLenData 0x00000000 0

dwReserved1 0xcd64cd64 dwReserved1: 0xcd64cd64

After the resource manager determines the outcome from the transaction manager, it performs any
remaining commit or abort work, as appropriate. If the resource manager receives a time-out
notification, it needs to maintain the in-doubt entries in its log unchanged. The resource manager will
attempt to determine the outcome of these in-doubt transactions next time it performs recovery.

450 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

For any remaining in-doubt transactions, the resource manager needs to perform the previous steps
for each in-doubt transaction.

If there are no more in-doubt transactions, the resource manager informs the transaction manager
that it has completed its recovery process. The resource manager then initiates the disconnect

sequence on this connection.

4.6.3 Completing Recovery

To complete recovery, the resource manager needs to send the transaction manager a

TXUSER_RESOURCEMANAGER_MTAG_REENLISTMENTCOMPLETE user message over its
CONNTYPE_TXUSER_RESOURCEMANAGER connection.

Field Value Value description

MsgTag 0x00000FFF MTAG_USER_MESSAGE

fIsMaster 0x00000001 1

dwConnectionId 0x00000001 1

dwUserMsgType 0x00001052 TXUSER_RESOURCEMANAGER_MTAG_REENLISTMENTCOMPLETE

dwcbVarLenData 0x00000000 0

dwReserved1 0xcd64cd64 dwReserved1: 0xcd64cd64

When the transaction manager receives the reenlistment complete notification, the transaction

manager can clean up any transactions that are associated with the resource manager, such as the
transactions in the Failed to Notify state. In response, the transaction manager sends the resource
manager a TXUSER_RESOURCEMANAGER_MTAG_REQUEST_COMPLETE user message.

Field Value Value description

MsgTag 0x00000FFF MTAG_USER_MESSAGE

fIsMaster 0x00000000 0

dwConnectionId 0x00000001 1

dwUserMsgType 0x00001053 TXUSER_RESOURCEMANAGER_MTAG_REQUEST_COMPLETE

dwcbVarLenData 0x00000000 0

dwReserved1 0xcd64cd64 dwReserved1: 0xcd64cd64

The resource manager will maintain this connection.

451 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

5 Security

5.1 Security Considerations for Implementers

The transaction processing protocol that is defined by this specification is intended for use in an

environment where all participants are trusted to collaborate in driving transactions toward a final
outcome.

Misuse of the Two-Phase Commit Protocol can enable participants to perform simple denial of service
attacks on their transaction managers. Because transaction managers generally communicate with
multiple participants simultaneously, this condition represents a denial of service to other participants.

Consequently, implementers need to take the following steps to ensure that transaction processing

occurs in a secure environment:

 Each participant is expected to initialize [MS-CMPO] sessions by using mutual authentication, as
specified in [MS-CMPO] section 3.2.1.1.

 All transaction manager and resource manager implementations uphold the following principles:

 Every transaction reaches a common outcome for all participants, in accord with a correctly
executed Two-Phase Commit Protocol.

 No transaction remains In Doubt for a longer period of time than the application's higher-layer

business logic accepts. This particular determination is implementation-specific.<38>

 When authentication credentials are available, the acceptor is expected authorize incoming
connections to ensure that the initiator is entitled to perform the actions that it is requesting.
Implementations are recommended to adhere to the following authorization policies:

1. The following connection types need to be accepted only for authenticated principals that have
administrator privileges:

 CONNTYPE_TXUSER_RESOLVE

 CONNTYPE_TXUSER_TRACE

When incoming authentication is available, the above connection types are required to be
established by a user identity that is authenticated as an administrator.

2. The following connection types need to be accepted only for authenticated principals whose
principal name takes the form of <DomainName>\<MachineName>$:

 CONNTYPE_PARTNERTM_PROPAGATE

 CONNTYPE_PARTNERTM_REDELIVERCOMMIT

 CONNTYPE_PARTNERTM_CHECKABORT

 CONNTYPE_PARTNERTM_BRANCH

When mutual authentication is required, the above connection types are required to be
established by a user identity whose principal name takes the form of
<DomainName>\<MachineName>$ where <DomainName> is a NetBIOS domain name and
<MachineName> matches the NetBIOS host name of the machine initiating the connection.

3. Transaction manager implementations need to ensure that the remote participant is a
transaction manager for connection types that are used only between a superior transaction
manager and a subordinate transaction manager.

%5bMS-CMPO%5d.pdf#Section_d2403ca533fa432997f5825ad0868bf6

452 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

An implementation can further restrict the set of supported connection types through configuration.
These restrictions are reflected in the values of the grfNetworkDtcAccess, grfXaTransactions, and

grfOptions fields of the TXUSER_GETSECURITYFLAGS_MTAG_FETCHED message.

5.2 Index of Security Parameters

Security parameter Section

RPC security level [MS-CMPO] section 3.2.1.1

Transaction manager security flags 3.2

%5bMS-CMPO%5d.pdf#Section_d2403ca533fa432997f5825ad0868bf6

453 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

6 Appendix A: Product Behavior

The information in this specification is applicable to the following Microsoft products or supplemental
software. References to product versions include released service packs.

 Windows NT 4.0 operating system Option Pack for Windows NT Server

 Windows 2000 operating system

 Windows XP operating system

 Windows Server 2003 operating system

 Windows Vista operating system

 Windows Server 2008 operating system

 Windows 7 operating system

 Windows Server 2008 R2 operating system

 Windows 8 operating system

 Windows Server 2012 operating system

 Windows 8.1 operating system

 Windows Server 2012 R2 operating system

 Windows 10 operating system

 Windows Server 2016 operating system

Exceptions, if any, are noted below. If a service pack or Quick Fix Engineering (QFE) number appears
with the product version, behavior changed in that service pack or QFE. The new behavior also applies

to subsequent service packs of the product unless otherwise specified. If a product edition appears
with the product version, behavior is different in that product edition.

Unless otherwise specified, any statement of optional behavior in this specification that is prescribed
using the terms SHOULD or SHOULD NOT implies product behavior in accordance with the SHOULD or
SHOULD NOT prescription. Unless otherwise specified, the term MAY implies that the product does not
follow the prescription.

<1> Section 2.1.2.3: While performing push propagation, the Name object (as specified in [MS-

CMPO] section 3.2.1.4) of the transaction manager is represented by using the
NAMEOBJECTBLOB (section 2.2.5.3) structure on Windows NT 4.0 Option Pack and is represented by
using the SWhereabouts (section 2.2.5.11) structure on Windows 2000, Windows XP, Windows Server
2003, Windows Vista, Windows Server 2008 operating system, Windows 7, Windows Server 2008 R2
operating system, Windows 8, Windows Server 2012, Windows 8.1, Windows Server 2012 R2,
Windows 10, and Windows Server 2016.

<2> Section 2.2.1.1: MSDTC Connection Manager: OleTx Transaction Protocol version 1 is supported
by all Windows versions. Version 2 is supported by Windows 2000, Windows XP, Windows Server
2003, Windows Vista, Windows Server 2008, Windows 7, Windows Server 2008 R2, Windows 8,
Windows Server 2012, Windows 8.1, Windows 10, Windows Server 2012 R2, and Windows Server
2016. Version 4 is supported by Windows Server 2003, Windows Vista, Windows Server 2008,
Windows 7, Windows Server 2008 R2, Windows 8, Windows Server 2012, Windows 8.1, Windows 10,
Windows Server 2012 R2, and Windows Server 2016. Version 5 is supported by Windows Server 2003

operating system with Service Pack 1 (SP1), Windows Vista, Windows Server 2008, Windows 7,
Windows Server 2008 R2, Windows 8, Windows Server 2012, Windows 8.1, Windows 10, Windows

%5bMS-CMPO%5d.pdf#Section_d2403ca533fa432997f5825ad0868bf6
%5bMS-CMPO%5d.pdf#Section_d2403ca533fa432997f5825ad0868bf6

454 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Server 2012 R2, and Windows Server 2016. Version 6 is supported by Windows 7, Windows Server
2008 R2, Windows 8, Windows Server 2012, Windows 8.1, Windows Server 2012 R2, Windows 10,

and Windows Server 2016.

<3> Section 2.2.1.1.1: The connection type CONNTYPE_TXUSER_EXTENDEDWHEREABOUTS is not

supported by Windows XP (excluding Windows XP operating system Service Pack 2 (SP2) and
Windows XP operating system Service Pack 3 (SP3)), Windows NT operating system, Windows 2000,
and Windows Server 2003.

<4> Section 2.2.1.1.1: The connection type CONNTYPE_TXUSER_EXTENDEDWHEREABOUTS is not
supported by Windows XP (excluding Windows XP SP2 and Windows XP SP3), Windows NT, Windows
2000, and Windows Server 2003.

<5> Section 2.2.1.1.1: The connection type CONNTYPE_TXUSER_PROMOTE is not supported by

Windows XP, Windows NT, Windows 2000, and Windows Server 2003.

<6> Section 2.2.1.1.1: The connection type CONNTYPE_TXUSER_PROMOTE is not supported by
Windows XP, Windows NT, Windows 2000, and Windows Server 2003.

<7> Section 2.2.1.1.1: The connection type CONNTYPE_TXUSER_SETTXTIMEOUT is supported by
Windows 2000 operating system Service Pack 4 (SP4) or later.

<8> Section 2.2.1.1.1: The connection type CONNTYPE_TXUSER_SETTXTIMEOUT2 is not supported

by Windows XP, Windows NT, and Windows 2000.

<9> Section 2.2.1.1.1: The connection type CONNTYPE_TXUSER_SETTXTIMEOUT2 is not supported
by Windows XP, Windows NT, and Windows 2000.

<10> Section 2.2.1.1.1: The message TXUSER_RESOLVE_MTAG_ACCESSDENIED that is associated
with connection type CONNTYPE_TXUSER_RESOLVE is not supported by Windows XP (excluding
Windows XP SP2 and Windows XP SP3), Windows NT, and Windows 2000.

<11> Section 2.2.1.1.3: Connection type CONNTYPE_TXUSER_RESOURCEMANAGERINTERNAL is not

supported by Windows XP, Windows NT, Windows 2000, and Windows Server 2003.

<12> Section 2.2.1.1.3: Connection type CONNTYPE_TXUSER_RESOURCEMANAGERINTERNAL is not
supported by Windows XP, Windows NT, Windows 2000, and Windows Server 2003.

<13> Section 2.2.4.1: The value that Windows places in this field is undefined.

<14> Section 2.2.5.2: This structure is not supported on Windows NT and Windows 2000.

<15> Section 2.2.5.3: On Windows NT 4.0 Option Pack and Windows 2000, this field is set to a
nondeterministic 4-byte value.

<16> Section 2.2.5.4: The dwVersionMax field value is 3 for Windows implementations, except for
Windows NT 4.0 Option Pack, where the field value is 1, and for Windows 2000, where the field value
is 2.

<17> Section 2.2.5.9: The field TmProtocolMsdtcV1 is included in the SWhereabouts structure on
Windows NT 4.0 Option Pack, Windows 2000, Windows XP, Windows Server 2003, Windows Vista,

Windows Server 2008, Windows 7, Windows Server 2008 R2, Windows 8, Windows Server 2012,

Windows 8.1, Windows Server 2012 R2, Windows 10, and Windows Server 2016. The
TmProtocolMsdtcV2 field is included in the SWhereabouts structure on Windows 2000, Windows XP,
Windows Server 2003, Windows Vista, Windows Server 2008, Windows 7, Windows Server 2008 R2,
Windows 8, Windows Server 2012, Windows 8.1, Windows Server 2012 R2, Windows 10, and Windows
Server 2016. The TmProtocolTip field is included in the SWhereabouts structure, if the transaction
manager is so configured, on Windows 2000, Windows XP, Windows Server 2003, Windows Vista,
Windows Server 2008, Windows 7, Windows Server 2008 R2, Windows 8, Windows Server 2012,

Windows 8.1, Windows Server 2012 R2, Windows 10, and Windows Server 2016. The

455 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

TmProtocolExtended field is included in the SWhereabouts structure, if the transaction manager is
so configured, on Windows XP SP3, Windows Server 2003 operating system with Service Pack 2 (SP2),

Windows Server 2003 operating system with Service Pack 3 (SP3), Windows Vista, Windows Server
2008, Windows 7, Windows Server 2008 R2, Windows 8, Windows Server 2012, Windows 8.1,

Windows Server 2012 R2, Windows 10, and Windows Server 2016.

<18> Section 2.2.8.2.1.1.10: Windows does not have a maximum limit on the number of times an
application can perform associate request on an already existing transaction by sending the
TXUSER_ASSOCIATE_MTAG_ASSOCIATE message. Therefore, the
TXUSER_ASSOCIATE_MTAG_TOO_MANY_LOCAL message is never sent by any Windows
implementation.

<19> Section 2.2.8.3.2.1: By default, Windows implementations require authentication with an

account that is in the administrator group, except that Windows XP (excluding Windows XP SP2 and
Windows XP SP3), Windows NT, and Windows 2000 do not require authentication. This behavior is
configurable on Windows implementations other than on Windows XP, Windows NT, and Windows
2000, where it is not configurable.

<20> Section 2.2.8.3.2.8: The message TXUSER_RESOLVE_MTAG_NOT_CHILD that is associated with
connection type CONNTYPE_TXUSER_RESOLVE is never sent by any Windows implementation.

<21> Section 2.2.10.2.2.8: Windows limits transactions to 32 direct enlistments.

<22> Section 3.1.4.3: Regarding the MSDTC Connection Manager: OleTx Transaction Protocol
connection establishment in Windows, an MSDTC Connection Manager: OleTx Transaction Protocol
session partner does send connection requests for connection types that it supports (when required by
the protocol rules; see section 3). The CONNTYPE_TXUSER_EXPORT2 (section 2.2.8.2.2.3) and
CONNTYPE_TXUSER_PROMOTE (section 2.2.8.1.3) could be sent to the other partner, which might not
support these connection types. As a result, the requests for the unsupported connection types are

rejected with an MTAG_CONNECTION_REQ_DENIED ([MS-CMP] section 2.2.5). When the
CONNTYPE_TXUSER_PROMOTE connection type is rejected, Windows implementations return the
failure result to the higher business layer. When the CONNTYPE_TXUSER_EXPORT2 connection type is
rejected, Windows implementations fall back to the CONNTYPE_TXUSER_EXPORT (section 2.2.8.2.2.2)
connection type.

<23> Section 3.1.4.3: Regarding the sending of messages over an established MSDTC Connection
Manager: OleTx Transaction Protocol connection in Windows, an MSDTC Connection Manager: OleTx

Transaction Protocol session partner never sends messages that it supports (when required by the
protocol rules) (see section 3), but that are not supported by the negotiated protocol version (in the
context of the connection's connection type) with one exception:
TXUSER_RESOLVE_MTAG_ACCESSDENIED (section 2.2.8.3.2.1). For
TXUSER_RESOLVE_MTAG_ACCESSDENIED, a partner that supports this message sends it (when
required by protocol rules) even if it is not supported by the negotiated protocol version.

<24> Section 3.1.6: On receiving an invalid message on a connection, the participant terminates the
associated session on Windows XP operating system Service Pack 1 (SP1), Windows 2000, and the
Windows NT 4.0 Option Pack.

<25> Section 3.2.3: No authentication is supported by Windows NT 4.0 Option Pack, Windows 2000,
Windows XP, Windows Server 2003, Windows Vista, Windows Server 2008, Windows 7, Windows

Server 2008 R2, Windows 8, Windows Server 2012, Windows 8.1, Windows Server 2012 R2, Windows
10, and Windows Server 2016. Incoming authentication and mutual authentication are supported by

Windows XP SP2, Windows Server 2003 with SP1, Windows Vista, Windows Server 2008, Windows 7,
Windows Server 2008 R2, Windows 8, Windows Server 2012, Windows 8.1, Windows Server 2012 R2,
Windows 10 and Windows Server 2016. The security level is configurable to any of the three values on
Windows XP SP2, Windows Server 2003 with SP1, Windows Vista, Windows Server 2008, Windows 7,
Windows Server 2008 R2, Windows 8, Windows Server 2012, Windows 8.1, Windows Server 2012 R2,
Windows 10, and Windows Server 2016.

%5bMS-CMP%5d.pdf#Section_1970a8a0799d4308b9274e4ea23dc225

456 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

<26> Section 3.2.3.1: The Timeout field value defaults to zero on Windows implementations.

<27> Section 3.2.3.2: On Windows NT 4.0 Option Pack, Windows 2000, Windows XP, Windows

Server 2003, Windows Vista, Windows Server 2008, Windows 7, Windows Server 2008 R2, Windows
8, Windows Server 2012, Windows 8.1, Windows Server 2012 R2, Windows 10, and Windows Server

2016, the log size is configurable and stored in the registry. The default log size value is 4 MB, and the
default maximum size is 512 MB.

<28> Section 3.2.3.3: The Core Transaction Manager Facet (section 1.3.3.3.1) ensures that
transactions with duplicate identifiers are not created; however, for Windows Vista the application of
Windows Vista operating system with Service Pack 1 (SP1) is required to restore the correct protocol
behavior and ensure that transactions with duplicate identifiers are not created.

<29> Section 3.2.7.11: The limit of Subordinate Enlistments depends on the type of Enlistment. The

default limit on Subordinate Transaction Manager Enlistments is 64 on Windows implementations,
except for Windows NT 4.0 Option Pack, where the limit is 16. The limit on Subordinate Resource
Manager Enlistments for Windows implementations is 32.

<30> Section 3.2.7.13: The Core Transaction Manager Facet (section 1.3.3.3.1) ensures that
transactions with duplicate identifiers are not created; however, Windows Vista does not ensure that
transactions with duplicate identifiers are not created and requires the application of Windows Vista

SP1 to restore the correct protocol behavior.

<31> Section 3.2.7.21: The limit of Subordinate Enlistments depends on the type of Enlistment. The
default limit on Subordinate Transaction Manager Enlistments is 64 on Windows implementations,
except for Windows NT 4.0 Option Pack, where the limit is 16. The limit on Subordinate Resource
Manager Enlistments for Windows implementations is 32.

<32> Section 3.3.4.1: In Windows Vista, the Core Transaction Manager Facet (section 1.3.3.3.1) does
not ensure that transactions with duplicate identifiers are not created. If an identifier that already

exists in the transaction table is sent as the guidTX field with TXUSER_BEGINNER_MTAG_PROMOTE
Message (section 3.4.5.1.3.1), a duplicate entry having the same transaction identifier will be created
in the transaction table. As a result, the transaction identifier having duplicate entries in the
transaction table is not uniquely mapped to a single transaction object and any subsequent lookup for

a transaction object with this identifier can return any one of the duplicate transaction objects. Any
subsequent processing rule that involves finding a transaction object by this transaction identifier can
have an undefined outcome as a result of this Windows Vista-specific behavior. This undefined

behavior was identified post release and has since been addressed in subsequent releases. An
implementation avoids duplicate transaction identifiers when beginning a transaction that uses the
CONNTYPE_TXUSER_PROMOTE connection type (section 3.3.4.1.3) by always using a new GUID as
specified in [RFC4122] for the predetermined transaction identifier.

<33> Section 3.4.5.3.2.1: By default, authentication is required with an account that is in the
administrator group, with the exception that Windows XP (excluding Windows XP SP2 and Windows XP

SP3), Windows NT, and Windows 2000 do not require authentication. This behavior is not configurable
on Windows XP, Windows NT, or Windows 2000.

<34> Section 3.4.5.3.2.2: By default, authentication is required with an account that is in the
administrator group, with the exception that Windows XP (excluding Windows XP SP2 and Windows XP
SP3), Windows NT, and Windows 2000 do not require authentication. This behavior is not configurable

on Windows XP, Windows NT, or Windows 2000.

<35> Section 3.4.5.3.2.3: By default, authentication is required with an account that is in the

administrator group, with the exception that Windows XP (excluding Windows XP SP2 and Windows XP
SP3), Windows NT, and Windows 2000 do not require authentication. This behavior is not configurable
on Windows XP, Windows NT, or Windows 2000.

<36> Section 3.7.2.1: The value is 1000 milliseconds if the transport is down. Otherwise the default
value is 500 milliseconds for Windows implementations. This value is not configurable.

http://go.microsoft.com/fwlink/?LinkId=90460

457 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

<37> Section 3.8.2.1: The value is 1000 milliseconds for Windows implementations. This value is not
configurable.

<38> Section 5.1: Mutual authentication is used by default for Windows implementations, except that
no authentication is used on Windows NT 4.0 Option Pack, Windows 2000, and Windows XP SP1.

458 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

7 Change Tracking

No table of changes is available. The document is either new or has had no changes since its last
release.

459 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

8 Index

A

Abstract data model
 application (section 3.1.1 150, section 3.3.1 194,

section 3.4.1 253)
 core transaction manager (section 3.1.1 150,

section 3.2.1 156)
 resource manager (section 3.1.1 150, section

3.5.1 315, section 3.6.1 343)
 subordinate transaction manager (section 3.1.1

150, section 3.8.1 399)
 superior transaction manager (section 3.1.1 150,

section 3.7.1 375)
 transaction manager (section 3.1.1 150, section

3.4.1 253, section 3.6.1 343)
Applicability 51
Application
 abstract data model (section 3.1.1 150, section

3.3.1 194, section 3.4.1 253)
 connection types 79
 facet - role 44
 higher-layer triggered events
 beginning transaction 222

 changing transaction time-out 223
 creating export connection 225
 generating trace records for transaction 227
 importing transaction 227
 importing transaction with additional transaction

attributes 228
 initiating transaction commit 229
 initiating transaction rollback 230
 obtaining extended whereabouts 232
 obtaining security configuration of transaction

manager 232
 overview (section 3.1.5 154, section 3.3.4 221,

section 3.4.4 281)
 pulling transaction 233
 pushing transaction 234
 resolving transaction 234
 initialization (section 3.1.3 152, section 3.3.3 221,

section 3.4.3 280)
 local events
 Associate Transaction Failure 302
 Associate Transaction Success 303
 Begin Commit 303
 Begin In Doubt 304
 Begin Rollback 304
 Begin Voting 304
 Connection Disconnected 156
 Create Transaction Failure 305
 Create Transaction Success 306
 Create Voter Enlistment Failure 306
 Create Voter Enlistment Success 307
 Export Transaction Failure 307
 Export Transaction Success 308
 overview (section 3.1.8 155, section 3.3.7 253,

section 3.4.7 302)
 Phase One Complete 309
 Phase Zero Complete 310
 Register Phase Zero 310
 Resolve Transaction Complete 311
 Rollback Complete 312

 Set Transaction Attributes Failure 312
 Set Transaction Attributes Success 313
 Set Transaction Timeout Failure 313
 Set Transaction Timeout Success 314
 Unilaterally Aborted 314
 message processing 300
 transaction administration (section 3.3.5.3 248,

section 3.4.5.3 295)
 transaction initiation and completion (section

3.3.5.1 235, section 3.4.5.1 281)
 transaction manager administration 252
 transaction propagation (section 3.3.5.2 241,

section 3.4.5.2 286)
 overview 150
 role 41
 sequencing rules 300
 transaction administration (section 3.3.5.3 248,

section 3.4.5.3 295)
 transaction initiation and completion (section

3.3.5.1 235, section 3.4.5.1 281)
 transaction manager administration 252
 transaction propagation (section 3.3.5.2 241,

section 3.4.5.2 286)
 timer events (section 3.1.7 155, section 3.3.6 253,

section 3.4.6 302)
 timers (section 3.1.2 152, section 3.3.2 221,

section 3.4.2 280)
 versioning 153
Associate_Msg_Version2 packet 62

Associate_Msg_Version3 packet 62

C

Capability negotiation 52
Capability negotiation mechanisms 53
Change tracking 457
Connection types
 application 79
 resource manager
 transaction recovery 143
 voting 145
 transaction administration 107
 transaction manager 117
 transaction manager propagation 117
 transaction propagation 89
 transaction recovery 128
 version-specific aspects
 relevant to applications 57
 relevant to resource managers 59
 relevant to transaction managers 59
Connections 55
CONNTYPE enumeration 70
CONNTYPE_PARTNERTM_BRANCH
 acceptor states 379
 initiator states 402
 overview 125
CONNTYPE_PARTNERTM_CHECKABORT
 acceptor states 384
 initiator states 407
 overview 128
CONNTYPE_PARTNERTM_PROPAGATE
 acceptor states 399

460 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 initiator states 375
 overview 118
CONNTYPE_PARTNERTM_REDELIVERCOMMIT
 acceptor states 405
 initiator states 382
 overview 130
CONNTYPE_TXUSER_ASSOCIATE
 acceptor states 259
 initiator states 200
 overview 89
CONNTYPE_TXUSER_BEGIN2
 acceptor states 255
 initiator states 196
 overview 83
CONNTYPE_TXUSER_BEGINNER
 acceptor states 253
 initiator states 194
 overview 79
CONNTYPE_TXUSER_ENLISTMENT
 acceptor states 349
 initiator states 321
 overview 137
CONNTYPE_TXUSER_EXPORT

 acceptor states 266
 initiator states 207
 overview 96
CONNTYPE_TXUSER_EXPORT2
 acceptor states 268
 initiator states 209
 overview 101
CONNTYPE_TXUSER_EXTENDEDWHEREABOUTS
 acceptor states 261
 overview 94
CONNTYPE_TXUSER_EXTENDWHEREABOUTS -

initiator states 202
CONNTYPE_TXUSER_GETSECURITYFLAGS
 acceptor states 278
 initiator states 220
 overview 116
CONNTYPE_TXUSER_GETTXDETAILS
 acceptor states 270
 initiator states 211
 overview 107
CONNTYPE_TXUSER_IMPORT
 acceptor states 262
 initiator states 203
 overview 102
CONNTYPE_TXUSER_IMPORT2
 acceptor states 264
 initiator states 205
 overview 105
CONNTYPE_TXUSER_PHASE0
 acceptor states 347
 initiator states 319
 overview 134
CONNTYPE_TXUSER_PROMOTE
 acceptor states 257
 initiator states 198
 overview 87
CONNTYPE_TXUSER_REENLIST
 acceptor states 352
 initiator states 323
 overview 143
CONNTYPE_TXUSER_RESOLVE
 acceptor states 271

 initiator states 213
 overview 110
CONNTYPE_TXUSER_RESOURCEMANAGER
 acceptor states 344
 initiator states 315
 overview 131
CONNTYPE_TXUSER_RESOURCEMANAGERINTERNAL
 acceptor states 345
 initiator states 317
 overview 133
CONNTYPE_TXUSER_SETTXTIMEOUT
 acceptor states 273
 initiator states 215
 overview 114
CONNTYPE_TXUSER_SETTXTIMEOUT2
 acceptor states 275
 initiator states 217
 overview 114
CONNTYPE_TXUSER_TRACE
 acceptor states 277
 initiator states 218
 overview 114
CONNTYPE_TXUSER_VOTER

 acceptor states 354
 initiator states 325
 overview 145
Constants 76
Core transaction manager
 abstract data model (section 3.1.1 150, section

3.2.1 156)
 higher-layer triggered events (section 3.1.5 154,

section 3.2.4 170)
 initialization
 durable log 170
 overview (section 3.1.3 152, section 3.2.3 168)
 transaction
 object initialization 169
 recovery 170
 local events
 Associate Transaction 171
 Begin Commit 172
 Begin In Doubt 173
 Begin Phase One 173
 Begin Phase Zero 173
 Begin Rollback 174
 Begin Voting 174
 Branch Transaction Failure 175
 Branch Transaction Success 175
 Connection Disconnected 156
 Create Phase Zero Enlistment 175
 Create Subordinate Enlistment 176
 Create Superior Enlistment 177
 Create Transaction 178
 Create Voter Enlistment 179
 Enlistment Commit Complete 179
 Enlistment Phase One Complete 180
 Enlistment Phase Zero Complete 181
 Enlistment Rollback Complete 182
 Enlistment Unilaterally Aborted 183
 Enlistment Vote Complete 184
 Export Transaction 185
 Forget Transaction 186
 Notify Aborted 186
 Notify Recovered Transaction Committed 187
 overview (section 3.1.8 155, section 3.2.7 171)

461 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 Phase One Completed 187
 Propagate Transaction Failure 188
 Propagate Transaction Success 188
 Register Phase Zero Failure 189
 Register Phase Zero Success 189
 Request Transaction Outcome 192
 Resolve Transaction 190
 Set Transaction Attributes 191
 Set Transaction Timeout 191
 Unenlist Phase Zero Enlistment 192
 Voting Complete 193
 message processing 171
 overview 150
 role 44
 sequencing rules 171
 timer events (section 3.1.7 155, section 3.2.6 171)
 timers (section 3.1.2 152, section 3.2.2 167)
 versioning 153

D

Data model - abstract
 application (section 3.1.1 150, section 3.3.1 194,

section 3.4.1 253)
 core transaction manager (section 3.1.1 150,

section 3.2.1 156)
 resource manager (section 3.1.1 150, section

3.5.1 315, section 3.6.1 343)
 subordinate transaction manager (section 3.1.1

150, section 3.8.1 399)
 superior transaction manager (section 3.1.1 150,

section 3.7.1 375)
 transaction manager (section 3.1.1 150, section

3.4.1 253, section 3.6.1 343)
DTCADVCONFIG_OPTIONS packet 76
Durability 46

E

Enlistment example
 enlisting in existing transaction 438
 overview 437
 registering with transaction manager as resource

manager 437
 responding to enlistment notifications 440
Enumerations 70
Examples
 overview 423
 resource manager recovery scenario
 completing recovery 449
 initializing recovery 447
 overview 446
 reenlisting in in-doubt transactions 447
 simple enlistment scenario
 enlisting in existing transaction 438
 overview 437
 registering with transaction manager as resource

manager 437
 responding to enlistment notifications 440
 simple transaction scenario
 beginning transaction 423
 completing transaction 424
 overview 423
 transaction manager two-phase commit scenario
 overview 441

 Phase One 442
 Phase Two 445
 transaction marshaling scenario
 branching transaction 429
 exporting transaction 432
 importing transaction 436
 marshaling transaction 426
 obtaining whereabouts of receiver's transaction

manager 431
 overview (section 4.2 425, section 4.3 431)
 propagating transaction 434
 unmarshaling transaction 427

F

Facets - core transaction manager 166
Fields - vendor-extensible 53

G

Glossary 27
GRFRM 76

H

Higher-layer triggered events
 application
 beginning transaction 222
 changing transaction time-out 223
 creating export connection 225
 generating trace records for transaction 227
 importing transaction 227
 importing transaction with additional transaction

attributes 228
 initiating transaction commit 229
 initiating transaction rollback 230
 obtaining extended whereabouts 232
 obtaining security configuration of transaction

manager 232
 overview (section 3.1.5 154, section 3.3.4 221,

section 3.4.4 281)
 pulling transaction 233
 pushing transaction 234
 resolving transaction 234
 core transaction manager (section 3.1.5 154,

section 3.2.4 170)
 resource manager
 canceling enlistment as Phase Zero participant

on specific transaction 328
 enlisting as Phase Zero participant on specific

transaction 328

 enlisting on specific transaction 328
 Enlistment Abort request completed 329
 Enlistment Commit request completed 329
 Enlistment Prepare request completed 330
 Enlistment Single-Phase Commit request

completed 331
 overview (section 3.1.5 154, section 3.5.4 328,

section 3.6.4 357)
 Phase Zero request completed 332
 registering as voter on specific transaction 332
 registering with transaction manager 332
 Voter Vote request completed 333
 subordinate transaction manager (section 3.1.5

154, section 3.8.4 409)

462 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 superior transaction manager (section 3.1.5 154,
section 3.7.4 385)

 transaction manager (section 3.1.5 154, section
3.4.4 281, section 3.6.4 357)

I

Implementer - security considerations 450
Index of security parameters 451
Informative references 33
Initialization
 application (section 3.1.3 152, section 3.3.3 221,

section 3.4.3 280)
 core transaction manager
 durable log 170
 overview (section 3.1.3 152, section 3.2.3 168)
 transaction

 object initialization 169
 recovery 170
 resource manager (section 3.1.3 152, section

3.5.3 327, section 3.6.3 356)
 subordinate transaction manager (section 3.1.3

152, section 3.8.3 408)
 superior transaction manager (section 3.1.3 152,

section 3.7.3 385)
 transaction manager (section 3.1.3 152, section

3.4.3 280, section 3.6.3 356)
Introduction 26

L

Lifetime - transaction 33
Local events
 application
 Associate Transaction Failure 302
 Associate Transaction Success 303
 Begin Commit 303
 Begin In Doubt 304
 Begin Rollback 304
 Begin Voting 304
 Connection Disconnected 156
 Create Transaction Failure 305
 Create Transaction Success 306
 Create Voter Enlistment Failure 306
 Create Voter Enlistment Success 307
 Export Transaction Failure 307
 Export Transaction Success 308
 overview (section 3.1.8 155, section 3.3.7 253,

section 3.4.7 302)
 Phase One Complete 309
 Phase Zero Complete 310
 Register Phase Zero 310
 Resolve Transaction Complete 311
 Rollback Complete 312
 Set Transaction Attributes Failure 312
 Set Transaction Attributes Success 313
 Set Transaction Timeout Failure 313

 Set Transaction Timeout Success 314
 Unilaterally Aborted 314
 core transaction manager
 Associate Transaction 171
 Begin Commit 172
 Begin In Doubt 173
 Begin Phase One 173
 Begin Phase Zero 173

 Begin Rollback 174
 Begin Voting 174
 Branch Transaction Failure 175
 Branch Transaction Success 175
 Connection Disconnected 156
 Create Phase Zero Enlistment 175
 Create Subordinate Enlistment 176
 Create Superior Enlistment 177
 Create Transaction 178
 Create Voter Enlistment 179
 Enlistment Commit Complete 179
 Enlistment Phase One Complete 180
 Enlistment Phase Zero Complete 181
 Enlistment Rollback Complete 182
 Enlistment Unilaterally Aborted 183
 Enlistment Vote Complete 184
 Export Transaction 185
 Forget Transaction 186
 Notify Aborted 186
 Notify Recovered Transaction Committed 187
 overview (section 3.1.8 155, section 3.2.7 171)
 Phase One Completed 187
 Propagate Transaction Failure 188

 Propagate Transaction Success 188
 Register Phase Zero Failure 189
 Register Phase Zero Success 189
 Request Transaction Outcome 192
 Resolve Transaction 190
 Set Transaction Attributes 191
 Set Transaction Timeout 191
 Unenlist Phase Zero Enlistment 192
 Voting Complete 193
 resource manager
 Begin Commit 368
 Begin In Doubt 368
 Begin Phase One 369
 Begin Phase Zero 369
 Begin Rollback 370
 Begin Voting 370
 Connection Disconnected 156
 Create Phase Zero Enlistment Failure 371
 Create Phase Zero Enlistment Success 371
 Create Resource Manager 371
 Create Subordinate Enlistment Failure 372
 Create Subordinate Enlistment Success 373
 Create Voter Enlistment Failure 373
 Create Voter Enlistment Success 374
 overview (section 3.1.8 155, section 3.5.7 341,

section 3.6.7 367)
 Phase Zero Aborted 374
 Recover Transaction 341
 Recover Transactions 342
 Reenlist Complete 374
 Reenlistment Complete 342
 Resource Manager Down 375
 Transaction Manager Down 342
 subordinate transaction manager
 Branch Transaction 417
 Cancel Check Abort 418
 Commit Complete 418
 Connection Disconnected 156
 Create Superior Enlistment Failure 419
 Create Superior Enlistment Success 419
 overview (section 3.1.8 155, section 3.8.7 417)
 Phase One Complete 420

463 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 Phase Zero Complete 419
 Recover In Doubt Transaction 421
 Register Phase Zero 421
 Rollback Complete 422
 Unilaterally Aborted 422
 superior transaction manager
 Begin Commit 395
 Begin Phase One 395
 Begin Phase Zero 396
 Begin Rollback 396
 Connection Disconnected 156
 Create Phase Zero Enlistment Failure 397
 Create Phase Zero Enlistment Success 397
 Create Subordinate Enlistment Failure 397
 Create Subordinate Enlistment Success 398
 overview (section 3.1.8 155, section 3.7.7 395)
 Phase Zero Aborted 398
 Propagate Transaction 398
 transaction manager
 Associate Transaction Failure 302
 Associate Transaction Success 303
 Begin Commit (section 3.4.7.3 303, section

3.6.7.1 368)

 Begin In Doubt (section 3.4.7.4 304, section
3.6.7.2 368)

 Begin Phase One 369
 Begin Phase Zero 369
 Begin Rollback (section 3.4.7.5 304, section

3.6.7.5 370)
 Begin Voting (section 3.4.7.6 304, section

3.6.7.6 370)
 Connection Disconnected 156
 Create Phase Zero Enlistment Failure 371
 Create Phase Zero Enlistment Success 371
 Create Resource Manager 371
 Create Subordinate Enlistment Failure 372
 Create Subordinate Enlistment Success 373
 Create Transaction Failure 305
 Create Transaction Success 306
 Create Voter Enlistment Failure (section 3.4.7.9

306, section 3.6.7.12 373)
 Create Voter Enlistment Success (section

3.4.7.10 307, section 3.6.7.13 374)
 Export Transaction Failure 307
 Export Transaction Success 308
 overview (section 3.1.8 155, section 3.4.7 302,

section 3.6.7 367)
 Phase One Complete 309
 Phase Zero Aborted 374
 Phase Zero Complete 310
 Reenlist Complete 374
 Register Phase Zero 310
 Resolve Transaction Complete 311
 Resource Manager Down 375
 Rollback Complete 312
 Set Transaction Attributes Failure 312
 Set Transaction Attributes Success 313
 Set Transaction Timeout Failure 313
 Set Transaction Timeout Success 314
 Unilaterally Aborted 314
Logging - core transaction manager 160

M

Message processing

 application 300
 transaction administration (section 3.3.5.3 248,

section 3.4.5.3 295)
 transaction initiation and completion (section

3.3.5.1 235, section 3.4.5.1 281)
 transaction manager administration 252
 transaction propagation (section 3.3.5.2 241,

section 3.4.5.2 286)
 common 154
 core transaction manager 171
 resource manager
 registration (section 3.5.5.1 334, section 3.6.5.1

357)
 transaction coordination (section 3.5.5.2 336,

section 3.6.5.2 359)
 transaction recovery (section 3.5.5.3 339,

section 3.6.5.3 364)
 voting (section 3.5.5.4 340, section 3.6.5.4 366)
 subordinate transaction manager
 transaction propagation and coordination 409
 transaction recovery 415
 superior transaction manager
 transaction propagation and coordination 386

 transaction recovery 392
 transaction manager
 administration 300
 resource manager registration 357
 transaction administration 295
 transaction coordination 359
 transaction initiation and completion 281
 transaction propagation 286
 transaction recovery 364
 voting 366
MESSAGE_PACKET packet 60
Messages
 Structures with a Format-Specifying Field as

Versioning Mechanism 60
 Structures with Fields Containing Version Numbers

as Versioning Mechanism 59
 syntax 56
 transport 55
MS-CMPO parameterization 55

N

Name object
 computing 56
 converting NAMEOBJECTBLOB structure to 152
 converting OLETX TM_ADDR structure to 151
 converting to NAMEOBJECTBLOB structure 152
 converting to OLETX TM_ADDR structure 151
NAMEOBJECTBLOB packet 63
NAMEOBJECTBLOB structure
 converting Name object to 152
 converting to Name object 152
Negotiating common protocol version 153
Normative references 32

O

OLETX TM_ADDR structure
 converting Name object to 151
 converting to Name object 151
OLETX_ISOLATION_FLAGS enumeration 74
OLETX_ISOLATION_LEVEL enumeration 76

464 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

OLETX_TM_ADDR packet 61
OLETX_VARLEN_STRING packet 61
Overview (synopsis) 33

P

Parameters - security index 451
PARTNERTM_BRANCH_MTAG_BRANCH_LOG_FULL

packet 125
PARTNERTM_BRANCH_MTAG_BRANCH_NO_MEM

packet 126
PARTNERTM_BRANCH_MTAG_BRANCH_TOO_LATE

packet 126
PARTNERTM_BRANCH_MTAG_BRANCH_TOO_MANY

packet 127
PARTNERTM_BRANCH_MTAG_BRANCH_TX_NOT_FOU

ND packet 127

PARTNERTM_BRANCH_MTAG_BRANCHED packet 127
PARTNERTM_BRANCH_MTAG_BRANCHING packet

128
PARTNERTM_CHECKABORT_MTAG_ABORTED packet

129
PARTNERTM_CHECKABORT_MTAG_CHECK packet

128
PARTNERTM_CHECKABORT_MTAG_RETRY packet

129
PARTNERTM_PROPAGATE_MTAG_ABORTNOTIFY

packet 123
PARTNERTM_PROPAGATE_MTAG_ABORTREQ packet

122
PARTNERTM_PROPAGATE_MTAG_ABORTREQDONE

packet 123
PARTNERTM_PROPAGATE_MTAG_COMMITREQ

packet 121
PARTNERTM_PROPAGATE_MTAG_COMMITREQDONE

packet 122
PARTNERTM_PROPAGATE_MTAG_DUPLICATE packet

119
PARTNERTM_PROPAGATE_MTAG_LOG_FULL packet

120
PARTNERTM_PROPAGATE_MTAG_NO_MEM packet

119
PARTNERTM_PROPAGATE_MTAG_PHASE0 packet 124
PARTNERTM_PROPAGATE_MTAG_PHASE0COMPLETE

packet 125
PARTNERTM_PROPAGATE_MTAG_PHASE0REGISTER

packet 123
PARTNERTM_PROPAGATE_MTAG_PHASE0REGISTERE

D packet 124
PARTNERTM_PROPAGATE_MTAG_PHASE0REGISTRAT

IONREJECTED packet 124
PARTNERTM_PROPAGATE_MTAG_PREPAREREQ

packet 120
PARTNERTM_PROPAGATE_MTAG_PREPAREREQDONE

packet 120
PARTNERTM_PROPAGATE_MTAG_PROPAGATE packet

118
PARTNERTM_PROPAGATE_MTAG_PROPAGATED

packet 118
PARTNERTM_PROPAGATE_MTAG_PROTOCOL_ERROR

packet 121
PARTNERTM_PROPAGATE_PREPAREREQDONE_RESP

ONSE enumeration 73
PARTNERTM_REDELIVERCOMMIT_MTAG_COMMITRE

Q packet 130

PARTNERTM_REDELIVERCOMMIT_MTAG_COMMITRE
QDONE packet 130

PARTNERTM_REDELIVERCOMMIT_MTAG_RETRY
packet 131

Phase One 35
Phase Two 37
Phase Zero 34
Preconditions 51
Prerequisites 51
Product behavior 452
Propagation
 pull (section 2.2.8.2.1 89, section 2.2.9.1.2 125)
 branching transaction 429
 marshaling transaction 426
 overview (section 1.3.5.1 48, section 4.2 425)
 unmarshaling transaction 427
 push (section 2.2.8.2.2 94, section 2.2.9.1.1 117)
 exporting transaction 432
 importing transaction 436
 obtaining whereabouts of receiver's transaction

manager 431
 overview (section 1.3.5.2 49, section 4.3 431)
 propagating transaction 434

 transaction (section 1.3.5 47, section 2.2.8.2 89)
 transaction manager 117
Propagation_Token packet 64
Protocol extension objects - core transaction

manager 166
Pull propagation (section 2.2.8.2.1 89, section

2.2.9.1.2 125)
 branching transaction 429
 marshaling transaction 426
 overview (section 1.3.5.1 48, section 4.2 425)
 unmarshaling transaction 427
Push propagation (section 2.2.8.2.2 94, section

2.2.9.1.1 117)
 exporting transaction 432
 importing transaction 436
 obtaining whereabouts of receiver's transaction

manager 431
 overview (section 1.3.5.2 49, section 4.3 431)
 propagating transaction 434

R

Recovery example
 completing recovery 449
 initializing recovery 447
 overview 446
 reenlisting in in-doubt transactions 447
References 31
 informative 33
 normative 32
Registration - resource manager 131
Relationship to other protocols 50
Resource manager
 abstract data model (section 3.1.1 150, section

3.5.1 315, section 3.6.1 343)
 connection types 131
 example
 completing recovery 449
 initializing recovery 447

 overview 446
 reenlisting in in-doubt transactions 447
 facet - role 45

465 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 higher-layer triggered events
 canceling enlistment as Phase Zero participant

on specific transaction 328
 enlisting as Phase Zero participant on specific

transaction 328
 enlisting on specific transaction 328
 Enlistment Abort request completed 329
 Enlistment Commit request completed 329
 Enlistment Prepare request completed 330
 Enlistment Single-Phase Commit request

completed 331
 overview (section 3.1.5 154, section 3.5.4 328,

section 3.6.4 357)
 Phase Zero request completed 332
 registering as voter on specific transaction 332
 registering with transaction manager 332
 Voter Vote request completed 333
 initialization (section 3.1.3 152, section 3.5.3 327,

section 3.6.3 356)
 local events
 Begin Commit 368
 Begin In Doubt 368
 Begin Phase One 369

 Begin Phase Zero 369
 Begin Rollback 370
 Begin Voting 370
 Connection Disconnected 156
 Create Phase Zero Enlistment Failure 371
 Create Phase Zero Enlistment Success 371
 Create Resource Manager 371
 Create Subordinate Enlistment Failure 372
 Create Subordinate Enlistment Success 373
 Create Voter Enlistment Failure 373
 Create Voter Enlistment Success 374
 overview (section 3.1.8 155, section 3.5.7 341,

section 3.6.7 367)
 Phase Zero Aborted 374
 Recover Transaction 341
 Recover Transactions 342
 Reenlist Complete 374
 Reenlistment Complete 342
 Resource Manager Down 375
 Transaction Manager Down 342
 message processing
 resource manager registration (section 3.5.5.1

334, section 3.6.5.1 357)
 transaction coordination (section 3.5.5.2 336,

section 3.6.5.2 359)
 transaction recovery (section 3.5.5.3 339,

section 3.6.5.3 364)
 voting (section 3.5.5.4 340, section 3.6.5.4 366)
 overview 150
 recovery 46
 registration 131
 role 42
 sequencing rules
 resource manager registration (section 3.5.5.1

334, section 3.6.5.1 357)
 transaction coordination (section 3.5.5.2 336,

section 3.6.5.2 359)
 transaction recovery (section 3.5.5.3 339,

section 3.6.5.3 364)
 voting (section 3.5.5.4 340, section 3.6.5.4 366)
 timer events (section 3.1.7 155, section 3.5.6 341,

section 3.6.6 367)

 timers (section 3.1.2 152, section 3.5.2 327,
section 3.6.2 356)

 transaction coordination 134
 versioning 153
 voting 145
Resource manager recovery scenario
 completing recovery 449
 initializing recovery 447
 overview 446
 reenlisting in in-doubt transactions 447
Roles - transaction 40

S

SDtcCmEndpointInfoV1 packet 65
SDtcCmEndpointInfoV2 packet 66
Security

 computing levels 56
 implementer considerations 450
 parameter index 451
Sequencing rules
 application 300
 transaction administration (section 3.3.5.3 248,

section 3.4.5.3 295)
 transaction initiation and completion (section

3.3.5.1 235, section 3.4.5.1 281)
 transaction manager administration 252
 transaction propagation (section 3.3.5.2 241,

section 3.4.5.2 286)
 common 154
 core transaction manager 171
 resource manager
 registration (section 3.5.5.1 334, section 3.6.5.1

357)
 transaction coordination (section 3.5.5.2 336,

section 3.6.5.2 359)
 transaction recovery (section 3.5.5.3 339,

section 3.6.5.3 364)
 voting (section 3.5.5.4 340, section 3.6.5.4 366)
 subordinate transaction manager
 transaction propagation and coordination 409
 transaction recovery 415
 superior transaction manager
 transaction propagation and coordination 386
 transaction recovery 392
 transaction manager
 administration 300
 resource manager registration 357
 transaction administration 295
 transaction coordination 359
 transaction initiation and completion 281
 transaction propagation 286
 transaction recovery 364
 voting 366
Sessions 55
SExtendedEndpointInfo packet 67
Simple enlistment scenario
 enlisting in existing transaction 438
 overview 437
 registering with transaction manager as resource

manager 437
 responding to enlistment notifications 440

Simple transaction scenario
 beginning transaction 423
 completing transaction 424

466 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 overview 423
Single-phase commit 39
SOleTxInfoForTip packet 66
Standards assignments 54
STmToTmProtocol packet 67
Structures
 common 60
 transaction propagation 62
Structures with a Format-Specifying Field as

Versioning Mechanism message 60
Structures with Fields Containing Version Numbers

as Versioning Mechanism message 59
STxInfo packet 68
Subordinate transaction manager
 abstract data model (section 3.1.1 150, section

3.8.1 399)
 facet - role 45
 higher-layer triggered events (section 3.1.5 154,

section 3.8.4 409)
 initialization (section 3.1.3 152, section 3.8.3 408)
 local events
 Branch Transaction 417
 Cancel Check Abort 418

 Commit Complete 418
 Connection Disconnected 156
 Create Superior Enlistment Failure 419
 Create Superior Enlistment Success 419
 overview (section 3.1.8 155, section 3.8.7 417)
 Phase One Complete 420
 Phase Zero Complete 419
 Recover In Doubt Transaction 421
 Register Phase Zero 421
 Rollback Complete 422
 Unilaterally Aborted 422
 message processing
 transaction propagation and coordination 409
 transaction recovery 415
 overview 150
 sequencing rules
 transaction propagation and coordination 409
 transaction recovery 415
 timer events (section 3.1.7 155, section 3.8.6 417)
 timers (section 3.1.2 152, section 3.8.2 408)
 versioning 153
Subordinate-driven transaction recovery 128
Superior transaction manager
 abstract data model (section 3.1.1 150, section

3.7.1 375)
 facet - role 45
 higher-layer triggered events (section 3.1.5 154,

section 3.7.4 385)
 initialization (section 3.1.3 152, section 3.7.3 385)
 local events
 Begin Commit 395
 Begin Phase One 395
 Begin Phase Zero 396
 Begin Rollback 396
 Connection Disconnected 156
 Create Phase Zero Enlistment Failure 397
 Create Phase Zero Enlistment Success 397
 Create Subordinate Enlistment Failure 397
 Create Subordinate Enlistment Success 398
 overview (section 3.1.8 155, section 3.7.7 395)
 Phase Zero Aborted 398
 Propagate Transaction 398

 message processing
 transaction propagation and coordination 386
 transaction recovery 392
 overview 150
 sequencing rules
 transaction propagation and coordination 386
 transaction recovery 392
 timer events (section 3.1.7 155, section 3.7.6 394)
 timers (section 3.1.2 152, section 3.7.2 385)
 versioning 153
Superior-driven transaction recovery 130
Supporting protocol version 153
SWhereabouts packet 69
Syntax - message 56

T

Timer events
 application (section 3.1.7 155, section 3.3.6 253,

section 3.4.6 302)
 core transaction manager (section 3.1.7 155,

section 3.2.6 171)
 resource manager (section 3.1.7 155, section

3.5.6 341, section 3.6.6 367)
 subordinate transaction manager (section 3.1.7

155, section 3.8.6 417)
 superior transaction manager (section 3.1.7 155,

section 3.7.6 394)
 transaction manager (section 3.1.7 155, section

3.4.6 302, section 3.6.6 367)
Timers
 application (section 3.1.2 152, section 3.3.2 221,

section 3.4.2 280)
 core transaction manager (section 3.1.2 152,

section 3.2.2 167)
 resource manager (section 3.1.2 152, section

3.5.2 327, section 3.6.2 356)
 subordinate transaction manager (section 3.1.2

152, section 3.8.2 408)
 superior transaction manager (section 3.1.2 152,

section 3.7.2 385)
 transaction manager (section 3.1.2 152, section

3.4.2 280, section 3.6.2 356)
TM_PROTOCOL enumeration 72
Tracking changes 457
Transaction
 administration - connection types 107
 completion 79
 constants 76
 enumerations 70
 initiation 79
 lifetime 33
 logging - core transaction manager 160
 manager administration 116
 marshaling - example
 branching transaction 429
 exporting transaction 432
 importing transaction 436
 marshaling transaction 426
 obtaining whereabouts of receiver's transaction

manager 431
 overview (section 4.2 425, section 4.3 431)

 propagating transaction 434
 unmarshaling transaction 427
 propagation

467 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 connection types 89
 overview 47
 structures 62
 recovery 45
 roles 40
 simple - example
 beginning transaction 423
 completing transaction 424
 overview 423
 states - core transaction manager
 Aborting 165
 Active 162
 Committing 165
 Ended 166
 Failed To Notify 166
 Idle 162
 In Doubt 165
 Phase One 164
 Phase One Complete 165
 Phase Zero 163
 Phase Zero Complete 163
 Single Phase Commit 165
 Voting 164

 Voting Complete 164
Transaction manager
 abstract data model (section 3.1.1 150, section

3.4.1 253, section 3.6.1 343)
 connection types 117
 higher-layer triggered events (section 3.1.5 154,

section 3.4.4 281, section 3.6.4 357)
 initialization (section 3.1.3 152, section 3.4.3 280,

section 3.6.3 356)
 local events
 Associate Transaction Failure 302
 Associate Transaction Success 303
 Begin Commit (section 3.4.7.3 303, section

3.6.7.1 368)
 Begin In Doubt (section 3.4.7.4 304, section

3.6.7.2 368)
 Begin Phase One 369
 Begin Phase Zero 369
 Begin Rollback (section 3.4.7.5 304, section

3.6.7.5 370)
 Begin Voting (section 3.4.7.6 304, section

3.6.7.6 370)
 Connection Disconnected 156
 Create Phase Zero Enlistment Failure 371
 Create Phase Zero Enlistment Success 371
 Create Resource Manager 371
 Create Subordinate Enlistment Failure 372
 Create Subordinate Enlistment Success 373
 Create Transaction Failure 305
 Create Transaction Success 306
 Create Voter Enlistment Failure (section 3.4.7.9

306, section 3.6.7.12 373)
 Create Voter Enlistment Success (section

3.4.7.10 307, section 3.6.7.13 374)
 Export Transaction Failure 307
 Export Transaction Success 308
 overview (section 3.1.8 155, section 3.4.7 302,

section 3.6.7 367)
 Phase One Complete 309
 Phase Zero Aborted 374
 Phase Zero Complete 310
 Reenlist Complete 374

 Register Phase Zero 310
 Resolve Transaction Complete 311
 Resource Manager Down 375
 Rollback Complete 312
 Set Transaction Attributes Failure 312
 Set Transaction Attributes Success 313
 Set Transaction Timeout Failure 313
 Set Transaction Timeout Success 314
 Unilaterally Aborted 314
 message processing
 resource manager registration 357
 transaction administration 295
 transaction coordination 359
 transaction initiation and completion 281
 transaction propagation 286
 transaction recovery 364
 voting 366
 overview 150
 propagation - connection types 117
 recovery 47
 role 42
 sequencing rules
 resource manager registration 357

 transaction administration 295
 transaction coordination 359
 transaction initiation and completion 281
 transaction propagation 286
 transaction recovery 364
 voting 366
 timer events (section 3.1.7 155, section 3.4.6 302,

section 3.6.6 367)
 timers (section 3.1.2 152, section 3.4.2 280,

section 3.6.2 356)
 two-phase commit example
 overview 441
 Phase One 442
 Phase Two 445
 versioning 153
Transaction manager - core
 abstract data model (section 3.1.1 150, section

3.2.1 156)
 higher-layer triggered events (section 3.1.5 154,

section 3.2.4 170)
 initialization
 durable log 170
 overview (section 3.1.3 152, section 3.2.3 168)
 transaction
 object initialization 169
 recovery 170
 local events
 Associate Transaction 171
 Begin Commit 172
 Begin In Doubt 173
 Begin Phase One 173
 Begin Phase Zero 173
 Begin Rollback 174
 Begin Voting 174
 Branch Transaction Failure 175
 Branch Transaction Success 175
 Connection Disconnected 156
 Create Phase Zero Enlistment 175
 Create Subordinate Enlistment 176
 Create Superior Enlistment 177
 Create Transaction 178
 Create Voter Enlistment 179

468 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 Enlistment Commit Complete 179
 Enlistment Phase One Complete 180
 Enlistment Phase Zero Complete 181
 Enlistment Rollback Complete 182
 Enlistment Unilaterally Aborted 183
 Enlistment Vote Complete 184
 Export Transaction 185
 Forget Transaction 186
 Notify Aborted 186
 Notify Recovered Transaction Committed 187
 overview (section 3.1.8 155, section 3.2.7 171)
 Phase One Completed 187
 Propagate Transaction Failure 188
 Propagate Transaction Success 188
 Register Phase Zero Failure 189
 Register Phase Zero Success 189
 Request Transaction Outcome 192
 Resolve Transaction 190
 Set Transaction Attributes 191
 Set Transaction Timeout 191
 Unenlist Phase Zero Enlistment 192
 Voting Complete 193
 message processing 171

 overview 150
 sequencing rules 171
 timer events (section 3.1.7 155, section 3.2.6 171)
 timers (section 3.1.2 152, section 3.2.2 167)
 versioning 153
Transaction manager - subordinate
 abstract data model (section 3.1.1 150, section

3.8.1 399)
 higher-layer triggered events (section 3.1.5 154,

section 3.8.4 409)
 initialization (section 3.1.3 152, section 3.8.3 408)
 local events
 Branch Transaction 417
 Cancel Check Abort 418
 Commit Complete 418
 Connection Disconnected 156
 Create Superior Enlistment Failure 419
 Create Superior Enlistment Success 419
 overview (section 3.1.8 155, section 3.8.7 417)
 Phase One Complete 420
 Phase Zero Complete 419
 Recover In Doubt Transaction 421
 Register Phase Zero 421
 Rollback Complete 422
 Unilaterally Aborted 422
 message processing
 transaction propagation and coordination 409
 transaction recovery 415
 overview 150
 sequencing rules
 transaction propagation and coordination 409
 transaction recovery 415
 timer events (section 3.1.7 155, section 3.8.6 417)
 timers (section 3.1.2 152, section 3.8.2 408)
 versioning 153
Transaction manager - superior
 abstract data model (section 3.1.1 150, section

3.7.1 375)
 higher-layer triggered events (section 3.1.5 154,

section 3.7.4 385)
 initialization (section 3.1.3 152, section 3.7.3 385)
 local events

 Begin Commit 395
 Begin Phase One 395
 Begin Phase Zero 396
 Begin Rollback 396
 Connection Disconnected 156
 Create Phase Zero Enlistment Failure 397
 Create Phase Zero Enlistment Success 397
 Create Subordinate Enlistment Failure 397
 Create Subordinate Enlistment Success 398
 overview (section 3.1.8 155, section 3.7.7 395)
 Phase Zero Aborted 398
 Propagate Transaction 398
 message processing
 transaction propagation and coordination 386
 transaction recovery 392
 overview 150
 sequencing rules
 transaction propagation and coordination 386
 transaction recovery 392
 timer events (section 3.1.7 155, section 3.7.6 394)
 timers (section 3.1.2 152, section 3.7.2 385)
 versioning 153
Transaction manager administration 116

Transaction recovery
 connection types 128
 resource manager - connection types 143
Transaction timeout timer 167
Transaction time-out timer 171
Transport 55
Triggered events - higher-layer
 application
 beginning transaction 222
 changing transaction time-out 223
 creating export connection 225
 generating trace records for transaction 227
 importing transaction 227
 importing transaction with additional transaction

attributes 228
 initiating transaction commit 229
 initiating transaction rollback 230
 obtaining extended whereabouts 232
 obtaining security configuration of transaction

manager 232
 overview (section 3.1.5 154, section 3.3.4 221,

section 3.4.4 281)
 pulling transaction 233
 pushing transaction 234
 resolving transaction 234
 core transaction manager (section 3.1.5 154,

section 3.2.4 170)
 resource manager
 canceling enlistment as Phase Zero participant

on specific transaction 328
 enlisting as Phase Zero participant on specific

transaction 328
 enlisting on specific transaction 328
 Enlistment Abort request completed 329
 Enlistment Commit request completed 329
 Enlistment Prepare request completed 330
 Enlistment Single-Phase Commit request

completed 331
 overview (section 3.1.5 154, section 3.5.4 328,

section 3.6.4 357)
 Phase Zero request completed 332
 registering as voter on specific transaction 332

469 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 registering with transaction manager 332
 Voter Vote request completed 333
 subordinate transaction manager (section 3.1.5

154, section 3.8.4 409)
 superior transaction manager (section 3.1.5 154,

section 3.7.4 385)
 transaction manager (section 3.1.5 154, section

3.4.4 281, section 3.6.4 357)
TRUN_TXBEGIN_ERRORS enumeration 73
TRUN_TXIMPORT_ERRORS enumeration 74
Two-phase commit example
 overview 441
 Phase One 442
 Phase Two 445
TXUSER_ASSOCIATE_MTAG_ASSOCIATE packet 89
TXUSER_ASSOCIATE_MTAG_ASSOCIATED packet 90
TXUSER_ASSOCIATE_MTAG_COMM_FAILED packet

90
TXUSER_ASSOCIATE_MTAG_CREATE_BAD_TMADDR

packet 91
TXUSER_ASSOCIATE_MTAG_LOG_FULL_LOCAL

packet 91
TXUSER_ASSOCIATE_MTAG_LOG_FULL_REMOTE

packet 91
TXUSER_ASSOCIATE_MTAG_NO_MEM_LOCAL packet

92
TXUSER_ASSOCIATE_MTAG_NO_MEM_REMOTE

packet 92
TXUSER_ASSOCIATE_MTAG_TOO_LATE packet 92
TXUSER_ASSOCIATE_MTAG_TOO_MANY_LOCAL

packet 93
TXUSER_ASSOCIATE_MTAG_TOO_MANY_REMOTE

packet 93
TXUSER_ASSOCIATE_MTAG_TX_NOT_FOUND packet

94
TXUSER_BEGIN2_MTAG_ABORT packet 83
TXUSER_BEGIN2_MTAG_BEGIN packet 83
TXUSER_BEGIN2_MTAG_COMMIT packet 84
TXUSER_BEGIN2_MTAG_SINK_BEGUN packet 85
TXUSER_BEGIN2_MTAG_SINK_ERROR packet 85
TXUSER_BEGINNER_MTAG_ABORT packet 79
TXUSER_BEGINNER_MTAG_BEGIN packet 79
TXUSER_BEGINNER_MTAG_BEGIN_LOG_FULL packet

80
TXUSER_BEGINNER_MTAG_BEGIN_NO_MEM packet

80
TXUSER_BEGINNER_MTAG_BEGUN packet 81
TXUSER_BEGINNER_MTAG_COMMIT packet 81
TXUSER_BEGINNER_MTAG_COMMIT_INDOUBT

packet 82
TXUSER_BEGINNER_MTAG_COMMIT_TOO_LATE

packet 82
TXUSER_BEGINNER_MTAG_PROMOTE packet 88
TXUSER_BEGINNER_MTAG_REQUEST_COMPLETED

packet 83
TXUSER_ENLISTMENT_MTAG_ABORTREQ packet 137
TXUSER_ENLISTMENT_MTAG_ABORTREQDONE

packet 138
TXUSER_ENLISTMENT_MTAG_COMMITREQ packet

138
TXUSER_ENLISTMENT_MTAG_COMMITREQDONE

packet 138
TXUSER_ENLISTMENT_MTAG_ENLIST packet 139
TXUSER_ENLISTMENT_MTAG_ENLIST_LOG_FULL

packet 140

TXUSER_ENLISTMENT_MTAG_ENLIST_TOO_LATE
packet 140

TXUSER_ENLISTMENT_MTAG_ENLIST_TOO_MANY
packet 140

TXUSER_ENLISTMENT_MTAG_ENLIST_TX_NOT_FOU
ND packet 141

TXUSER_ENLISTMENT_MTAG_ENLISTED packet 141
TXUSER_ENLISTMENT_MTAG_PREPAREREQ packet

142
TXUSER_ENLISTMENT_MTAG_PREPAREREQDONE

packet 142
TXUSER_ENLISTMENT_PREPAREREQDONE_RESPONS

E enumeration 72
TXUSER_EXPORT_MTAG_CREATE packet 96
TXUSER_EXPORT_MTAG_CREATE_BAD_TMADDR

packet 97
TXUSER_EXPORT_MTAG_CREATE_NET_TX_DISABLE

D packet 97
TXUSER_EXPORT_MTAG_CREATE2 packet 96
TXUSER_EXPORT_MTAG_CREATED packet 98
TXUSER_EXPORT_MTAG_EXPORT packet 98
TXUSER_EXPORT_MTAG_EXPORT_COMM_FAILED

packet 101

TXUSER_EXPORT_MTAG_EXPORT_LOG_FULL packet
99

TXUSER_EXPORT_MTAG_EXPORT_NO_MEM packet
99

TXUSER_EXPORT_MTAG_EXPORT_TOO_LATE packet
99

TXUSER_EXPORT_MTAG_EXPORT_TOO_MANY packet
100

TXUSER_EXPORT_MTAG_EXPORT_TX_NOT_FOUND
packet 100

TXUSER_EXPORT_MTAG_EXPORTED packet 100
TXUSER_EXTENDEDWHEREABOUTS_MTAG_GET

packet 94
TXUSER_EXTENDEDWHEREABOUTS_MTAG_GOT

packet 95
TXUSER_EXTENDEDWHEREABOUTS_MTAG_NOMEM

packet 95
TXUSER_GETSECURITYFLAGS_MTAG_FETCHED

packet 116
TXUSER_GETSECURITYFLAGS_MTAG_GETSECURITYF

LAGS packet 117
TXUSER_GETTXDETAILS_MTAG_GET packet 108
TXUSER_GETTXDETAILS_MTAG_GOTIT packet 108
TXUSER_GETTXDETAILS_MTAG_TX_NOT_FOUND

packet 109
TXUSER_IMPORT_MTAG_ABORT packet 102
TXUSER_IMPORT_MTAG_ABORT_TOO_LATE packet

102
TXUSER_IMPORT_MTAG_IMPORT packet 103
TXUSER_IMPORT_MTAG_IMPORT_TX_NOT_FOUND

packet 103
TXUSER_IMPORT_MTAG_IMPORTED packet 104
TXUSER_IMPORT_MTAG_REQUEST_COMPLETED

packet 104
TXUSER_IMPORT2_MTAG_ABORT packet 105
TXUSER_IMPORT2_MTAG_IMPORT packet 105
TXUSER_IMPORT2_MTAG_IMPORT_WITH_SET

packet 106
TXUSER_IMPORT2_MTAG_SINK_ERROR packet 106
TXUSER_IMPORT2_MTAG_SINK_IMPORTED packet

107
TXUSER_PHASE0_MTAG_CREATE packet 134

470 / 470

[MS-DTCO] - v20160714
MSDTC Connection Manager: OleTx Transaction Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

TXUSER_PHASE0_MTAG_CREATE_TOO_LATE packet
135

TXUSER_PHASE0_MTAG_CREATE_TX_NOT_FOUND
packet 135

TXUSER_PHASE0_MTAG_CREATED packet 135
TXUSER_PHASE0_MTAG_PHASE0REQ packet 136
TXUSER_PHASE0_MTAG_PHASE0REQ_ABORT packet

136
TXUSER_PHASE0_MTAG_PHASE0REQDONE packet

136
TXUSER_PHASE0_MTAG_UNENLIST packet 137
TXUSER_REENLIST_MTAG_REENLIST packet 143
TXUSER_REENLIST_MTAG_REENLIST_ABORTED

packet 144
TXUSER_REENLIST_MTAG_REENLIST_COMMITTED

packet 144
TXUSER_REENLIST_MTAG_REENLIST_TIMEOUT

packet 144
TXUSER_RESOLVE_MTAG_ACCESSDENIED packet

110
TXUSER_RESOLVE_MTAG_CHILD_ABORT packet 110
TXUSER_RESOLVE_MTAG_CHILD_COMMIT packet

111

TXUSER_RESOLVE_MTAG_CHILD_NOT_PREPARED
packet 111

TXUSER_RESOLVE_MTAG_FORGET_COMMITTED
packet 112

TXUSER_RESOLVE_MTAG_FORGET_TX_NOT_COMMI
TTED packet 112

TXUSER_RESOLVE_MTAG_NOT_CHILD packet 113
TXUSER_RESOLVE_MTAG_REQUEST_COMPLETE

packet 113
TXUSER_RESOLVE_MTAG_TX_NOT_FOUND packet

113
TXUSER_RESOURCEMANAGER_MTAG_CREATE

packet 131
TXUSER_RESOURCEMANAGER_MTAG_DUPLICATE

packet 132
TXUSER_RESOURCEMANAGER_MTAG_REENLISTMEN

TCOMPLETE packet 132
TXUSER_RESOURCEMANAGER_MTAG_REQUEST_CO

MPLETE packet 133
TXUSER_RESOURCEMANAGERINTERNAL_MTAG_DUP

LICATEDETECTED packet 133
TXUSER_SETTXTIMEOUT_MTAG_REQUEST_COMPLET

E packet 86
TXUSER_SETTXTIMEOUT_MTAG_SETTXTIMEOUT

packet 86
TXUSER_SETTXTIMEOUT_MTAG_TOO_LATE packet

87
TXUSER_SETTXTIMEOUT_MTAG_TX_NOT_FOUND

packet 114
TXUSER_STATUS_MTAG_ABORTED packet 145
TXUSER_STATUS_MTAG_COMMITTED packet 145
TXUSER_STATUS_MTAG_INDOUBT packet 146
TXUSER_TRACE_MTAG_DUMP_TRANSACTION packet

115
TXUSER_TRACE_MTAG_REQUEST_COMPLETE packet

115
TXUSER_TRACE_MTAG_REQUEST_FAILED packet

115
TXUSER_TRACE_MTAG_TX_NOT_FOUND packet 116
TXUSER_VOTER_MTAG_CREATE packet 146
TXUSER_VOTER_MTAG_CREATE_TOO_LATE packet

147

TXUSER_VOTER_MTAG_CREATE_TX_NOT_FOUND
packet 147

TXUSER_VOTER_MTAG_CREATED packet 147
TXUSER_VOTER_MTAG_VOTEREQ packet 148
TXUSER_VOTER_MTAG_VOTEREQDONE packet 148
TXUSER_VOTER_VOTERREQDONE_RESPONSE

enumeration 73

U

Unilateral abort 39
Using negotiated protocol version 154

V

Vendor-extensible fields 53
Version values - computing 56
Versioning (section 1.7 52, section 2.2.1 56)
Versioning - core transaction manager 159
Versioning mechanisms
 overview 52
 structures with fields containing version numbers

59
 structures with format-specifying field 60
 version numbers
 overview 56
 version-specific aspects of connection types

relevant to applications 57
 version-specific aspects of connection types

relevant to resource managers 59
 version-specific aspects of connection types

relevant to transaction managers 59
Versioning negotiation mechanisms 52
Voting - resource manager 145

	1 Introduction
	1.1 Glossary
	1.2 References
	1.2.1 Normative References
	1.2.2 Informative References

	1.3 Overview
	1.3.1 Transaction Lifetime
	1.3.1.1 Phase Zero
	1.3.1.2 Phase One
	1.3.1.3 Phase Two

	1.3.2 Additional Considerations
	1.3.2.1 Unilateral Abort
	1.3.2.2 Single-Phase Commit

	1.3.3 Transaction Roles
	1.3.3.1 Application Role
	1.3.3.2 Resource Manager Role
	1.3.3.3 Transaction Manager Role
	1.3.3.3.1 Core Transaction Manager Facet
	1.3.3.3.2 Transaction Manager Communication with an Application Facet
	1.3.3.3.3 Transaction Manager Communication with a Resource Manager Facet
	1.3.3.3.4 Superior Transaction Manager Facet
	1.3.3.3.5 Subordinate Transaction Manager Facet

	1.3.4 Transaction Recovery
	1.3.4.1 Relationship Between Recovery and Durability
	1.3.4.2 Resource Manager Recovery
	1.3.4.3 Transaction Manager Recovery

	1.3.5 Transaction Propagation
	1.3.5.1 Pull Propagation
	1.3.5.2 Push Propagation

	1.4 Relationship to Other Protocols
	1.5 Prerequisites/Preconditions
	1.6 Applicability Statement
	1.7 Versioning and Capability Negotiation
	1.7.1 Versioning Mechanisms
	1.7.2 Versioning Negotiation Mechanisms
	1.7.3 Capability Negotiation Mechanisms

	1.8 Vendor-Extensible Fields
	1.9 Standards Assignments

	2 Messages
	2.1 Transport
	2.1.1 Messages, Connections, and Sessions
	2.1.2 MS-CMP and MS-CMPO Initialization
	2.1.2.1 Computing a Security Level
	2.1.2.2 Computing Protocol Version Values
	2.1.2.3 Computing a Name Object

	2.2 Message Syntax
	2.2.1 Protocol Versioning
	2.2.1.1 Protocol Version Numbers as a Versioning Mechanism
	2.2.1.1.1 Version-Specific Aspects of Connection Types Relevant to an Application
	2.2.1.1.2 Version-Specific Aspects of Connection Types Relevant to a Transaction Manager
	2.2.1.1.3 Version-Specific Aspects of Connection Types Relevant to a Resource Manager

	2.2.2 Structures with Fields Containing Version Numbers as Versioning Mechanism
	2.2.3 Structures with a Format-Specifying Field as Versioning Mechanism
	2.2.4 Common Structures
	2.2.4.1 MESSAGE_PACKET
	2.2.4.2 OLETX_TM_ADDR
	2.2.4.3 OLETX_VARLEN_STRING

	2.2.5 Transaction Propagation Structures
	2.2.5.1 Associate_Msg_Version2
	2.2.5.2 Associate_Msg_Version3
	2.2.5.3 NAMEOBJECTBLOB
	2.2.5.4 Propagation_Token
	2.2.5.5 SDtcCmEndpointInfoV1
	2.2.5.6 SDtcCmEndpointInfoV2
	2.2.5.7 SOleTxInfoForTip
	2.2.5.8 SExtendedEndpointInfo
	2.2.5.9 STmToTmProtocol
	2.2.5.10 STxInfo
	2.2.5.11 SWhereabouts

	2.2.6 Transaction Enumerations
	2.2.6.1 Connection Types
	2.2.6.2 TM_Protocol
	2.2.6.3 TXUSER_ENLISTMENT_PREPAREREQDONE_RESPONSE
	2.2.6.4 PARTNERTM_PROPAGATE_PREPAREREQDONE_RESPONSE
	2.2.6.5 TXUSER_VOTER_VOTERREQDONE_RESPONSE
	2.2.6.6 TRUN_TXBEGIN_ERRORS
	2.2.6.7 TRUN_TXIMPORT_ERRORS
	2.2.6.8 OLETX_ISOLATION_FLAGS
	2.2.6.9 OLETX_ISOLATION_LEVEL

	2.2.7 Transaction Constants
	2.2.7.1 GRFRM
	2.2.7.2 DTCADVCONFIG
	2.2.7.3 DTCADVCONFIG_OPTIONS

	2.2.8 Connection Types Relevant to Applications
	2.2.8.1 Transaction Initiation and Completion
	2.2.8.1.1 CONNTYPE_TXUSER_BEGINNER
	2.2.8.1.1.1 TXUSER_BEGINNER_MTAG_ABORT
	2.2.8.1.1.2 TXUSER_BEGINNER_MTAG_BEGIN
	2.2.8.1.1.3 TXUSER_BEGINNER_MTAG_BEGIN_LOG_FULL
	2.2.8.1.1.4 TXUSER_BEGINNER_MTAG_BEGIN_NO_MEM
	2.2.8.1.1.5 TXUSER_BEGINNER_MTAG_BEGUN
	2.2.8.1.1.6 TXUSER_BEGINNER_MTAG_COMMIT
	2.2.8.1.1.7 TXUSER_BEGINNER_MTAG_COMMIT_INDOUBT
	2.2.8.1.1.8 TXUSER_BEGINNER_MTAG_COMMIT_TOO_LATE
	2.2.8.1.1.9 TXUSER_BEGINNER_MTAG_REQUEST_COMPLETED

	2.2.8.1.2 CONNTYPE_TXUSER_BEGIN2
	2.2.8.1.2.1 TXUSER_BEGIN2_MTAG_ABORT
	2.2.8.1.2.2 TXUSER_BEGIN2_MTAG_BEGIN
	2.2.8.1.2.3 TXUSER_BEGIN2_MTAG_COMMIT
	2.2.8.1.2.4 TXUSER_BEGIN2_MTAG_SINK_BEGUN
	2.2.8.1.2.5 TXUSER_BEGIN2_MTAG_SINK_ERROR
	2.2.8.1.2.6 TXUSER_SETTXTIMEOUT_MTAG_REQUEST_COMPLETE
	2.2.8.1.2.7 TXUSER_SETTXTIMEOUT_MTAG_SETTXTIMEOUT
	2.2.8.1.2.8 TXUSER_SETTXTIMEOUT_MTAG_TOO_LATE

	2.2.8.1.3 CONNTYPE_TXUSER_PROMOTE
	2.2.8.1.3.1 TXUSER_BEGINNER_MTAG_PROMOTE

	2.2.8.2 Transaction Propagation
	2.2.8.2.1 Pull Propagation
	2.2.8.2.1.1 CONNTYPE_TXUSER_ASSOCIATE
	2.2.8.2.1.1.1 TXUSER_ASSOCIATE_MTAG_ASSOCIATE
	2.2.8.2.1.1.2 TXUSER_ASSOCIATE_MTAG_ASSOCIATED
	2.2.8.2.1.1.3 TXUSER_ASSOCIATE_MTAG_COMM_FAILED
	2.2.8.2.1.1.4 TXUSER_ASSOCIATE_MTAG_CREATE_BAD_TMADDR
	2.2.8.2.1.1.5 TXUSER_ASSOCIATE_MTAG_LOG_FULL_LOCAL
	2.2.8.2.1.1.6 TXUSER_ASSOCIATE_MTAG_LOG_FULL_REMOTE
	2.2.8.2.1.1.7 TXUSER_ASSOCIATE_MTAG_NO_MEM_LOCAL
	2.2.8.2.1.1.8 TXUSER_ASSOCIATE_MTAG_NO_MEM_REMOTE
	2.2.8.2.1.1.9 TXUSER_ASSOCIATE_MTAG_TOO_LATE
	2.2.8.2.1.1.10 TXUSER_ASSOCIATE_MTAG_TOO_MANY_LOCAL
	2.2.8.2.1.1.11 TXUSER_ASSOCIATE_MTAG_TOO_MANY_REMOTE
	2.2.8.2.1.1.12 TXUSER_ASSOCIATE_MTAG_TX_NOT_FOUND

	2.2.8.2.2 Push Propagation
	2.2.8.2.2.1 CONNTYPE_TXUSER_EXTENDEDWHEREABOUTS
	2.2.8.2.2.1.1 TXUSER_EXTENDEDWHEREABOUTS_MTAG_GET
	2.2.8.2.2.1.2 TXUSER_EXTENDEDWHEREABOUTS_MTAG_GOT
	2.2.8.2.2.1.3 TXUSER_EXTENDEDWHEREABOUTS_MTAG_NOMEM

	2.2.8.2.2.2 CONNTYPE_TXUSER_EXPORT
	2.2.8.2.2.2.1 TXUSER_EXPORT_MTAG_CREATE
	2.2.8.2.2.2.2 TXUSER_EXPORT_MTAG_CREATE2
	2.2.8.2.2.2.3 TXUSER_EXPORT_MTAG_CREATE_BAD_TMADDR
	2.2.8.2.2.2.4 TXUSER_EXPORT_MTAG_CREATE_NET_TX_DISABLED
	2.2.8.2.2.2.5 TXUSER_EXPORT_MTAG_CREATED
	2.2.8.2.2.2.6 TXUSER_EXPORT_MTAG_EXPORT
	2.2.8.2.2.2.7 TXUSER_EXPORT_MTAG_EXPORT_LOG_FULL
	2.2.8.2.2.2.8 TXUSER_EXPORT_MTAG_EXPORT_NO_MEM
	2.2.8.2.2.2.9 TXUSER_EXPORT_MTAG_EXPORT_TOO_LATE
	2.2.8.2.2.2.10 TXUSER_EXPORT_MTAG_EXPORT_TOO_MANY
	2.2.8.2.2.2.11 TXUSER_EXPORT_MTAG_EXPORT_TX_NOT_FOUND
	2.2.8.2.2.2.12 TXUSER_EXPORT_MTAG_EXPORTED

	2.2.8.2.2.3 CONNTYPE_TXUSER_EXPORT2
	2.2.8.2.2.3.1 TXUSER_EXPORT_MTAG_EXPORT_COMM_FAILED

	2.2.8.2.2.4 CONNTYPE_TXUSER_IMPORT
	2.2.8.2.2.4.1 TXUSER_IMPORT_MTAG_ABORT
	2.2.8.2.2.4.2 TXUSER_IMPORT_MTAG_ABORT_TOO_LATE
	2.2.8.2.2.4.3 TXUSER_IMPORT_MTAG_IMPORT
	2.2.8.2.2.4.4 TXUSER_IMPORT_MTAG_IMPORT_TX_NOT_FOUND
	2.2.8.2.2.4.5 TXUSER_IMPORT_MTAG_IMPORTED
	2.2.8.2.2.4.6 TXUSER_IMPORT_MTAG_REQUEST_COMPLETED

	2.2.8.2.2.5 CONNTYPE_TXUSER_IMPORT2
	2.2.8.2.2.5.1 TXUSER_IMPORT2_MTAG_ABORT
	2.2.8.2.2.5.2 TXUSER_IMPORT2_MTAG_IMPORT
	2.2.8.2.2.5.3 TXUSER_IMPORT2_MTAG_IMPORT_WITH_SET
	2.2.8.2.2.5.4 TXUSER_IMPORT2_MTAG_SINK_ERROR
	2.2.8.2.2.5.5 TXUSER_IMPORT2_MTAG_SINK_IMPORTED

	2.2.8.3 Transaction Administration
	2.2.8.3.1 CONNTYPE_TXUSER_GETTXDETAILS
	2.2.8.3.1.1 TXUSER_GETTXDETAILS_MTAG_GET
	2.2.8.3.1.2 TXUSER_GETTXDETAILS_MTAG_GOTIT
	2.2.8.3.1.3 TXUSER_GETTXDETAILS_MTAG_TX_NOT_FOUND

	2.2.8.3.2 CONNTYPE_TXUSER_RESOLVE
	2.2.8.3.2.1 TXUSER_RESOLVE_MTAG_ACCESSDENIED
	2.2.8.3.2.2 TXUSER_RESOLVE_MTAG_CHILD_ABORT
	2.2.8.3.2.3 TXUSER_RESOLVE_MTAG_CHILD_COMMIT
	2.2.8.3.2.4 TXUSER_RESOLVE_MTAG_CHILD_NOT_PREPARED
	2.2.8.3.2.5 TXUSER_RESOLVE_MTAG_FORGET_COMMITTED
	2.2.8.3.2.6 TXUSER_RESOLVE_MTAG_FORGET_TX_NOT_COMMITTED
	2.2.8.3.2.7 TXUSER_RESOLVE_MTAG_REQUEST_COMPLETE
	2.2.8.3.2.8 TXUSER_RESOLVE_MTAG_NOT_CHILD
	2.2.8.3.2.9 TXUSER_RESOLVE_MTAG_TX_NOT_FOUND

	2.2.8.3.3 CONNTYPE_TXUSER_SETTXTIMEOUT
	2.2.8.3.3.1 TXUSER_SETTXTIMEOUT_MTAG_TX_NOT_FOUND

	2.2.8.3.4 CONNTYPE_TXUSER_SETTXTIMEOUT2
	2.2.8.3.5 CONNTYPE_TXUSER_TRACE
	2.2.8.3.5.1 TXUSER_TRACE_MTAG_DUMP_TRANSACTION
	2.2.8.3.5.2 TXUSER_TRACE_MTAG_REQUEST_COMPLETE
	2.2.8.3.5.3 TXUSER_TRACE_MTAG_REQUEST_FAILED
	2.2.8.3.5.4 TXUSER_TRACE_MTAG_TX_NOT_FOUND

	2.2.8.4 Transaction Manager Administration
	2.2.8.4.1 CONNTYPE_TXUSER_GETSECURITYFLAGS
	2.2.8.4.1.1 TXUSER_GETSECURITYFLAGS_MTAG_FETCHED
	2.2.8.4.1.2 TXUSER_GETSECURITYFLAGS_MTAG_GETSECURITYFLAGS

	2.2.9 Connection Types Relevant to Transaction Managers
	2.2.9.1 Transaction Propagation and Coordination
	2.2.9.1.1 Push Propagation
	2.2.9.1.1.1 CONNTYPE_PARTNERTM_PROPAGATE
	2.2.9.1.1.1.1 PARTNERTM_PROPAGATE_MTAG_PROPAGATE
	2.2.9.1.1.1.2 PARTNERTM_PROPAGATE_MTAG_PROPAGATED
	2.2.9.1.1.1.3 PARTNERTM_PROPAGATE_MTAG_DUPLICATE
	2.2.9.1.1.1.4 PARTNERTM_PROPAGATE_MTAG_NO_MEM
	2.2.9.1.1.1.5 PARTNERTM_PROPAGATE_MTAG_LOG_FULL
	2.2.9.1.1.1.6 PARTNERTM_PROPAGATE_MTAG_PREPAREREQ
	2.2.9.1.1.1.7 PARTNERTM_PROPAGATE_MTAG_PREPAREREQDONE
	2.2.9.1.1.1.8 PARTNERTM_PROPAGATE_MTAG_PROTOCOL_ERROR
	2.2.9.1.1.1.9 PARTNERTM_PROPAGATE_MTAG_COMMITREQ
	2.2.9.1.1.1.10 PARTNERTM_PROPAGATE_MTAG_COMMITREQDONE
	2.2.9.1.1.1.11 PARTNERTM_PROPAGATE_MTAG_ABORTREQ
	2.2.9.1.1.1.12 PARTNERTM_PROPAGATE_MTAG_ABORTREQDONE
	2.2.9.1.1.1.13 PARTNERTM_PROPAGATE_MTAG_ABORTNOTIFY
	2.2.9.1.1.1.14 PARTNERTM_PROPAGATE_MTAG_PHASE0REGISTER
	2.2.9.1.1.1.15 PARTNERTM_PROPAGATE_MTAG_PHASE0REGISTERED
	2.2.9.1.1.1.16 PARTNERTM_PROPAGATE_MTAG_PHASE0REGISTRATIONREJECTED
	2.2.9.1.1.1.17 PARTNERTM_PROPAGATE_MTAG_PHASE0
	2.2.9.1.1.1.18 PARTNERTM_PROPAGATE_MTAG_PHASE0COMPLETE

	2.2.9.1.2 Pull Propagation
	2.2.9.1.2.1 CONNTYPE_PARTNERTM_BRANCH
	2.2.9.1.2.1.1 PARTNERTM_BRANCH_MTAG_BRANCH_LOG_FULL
	2.2.9.1.2.1.2 PARTNERTM_BRANCH_MTAG_BRANCH_NO_MEM
	2.2.9.1.2.1.3 PARTNERTM_BRANCH_MTAG_BRANCH_TOO_LATE
	2.2.9.1.2.1.4 PARTNERTM_BRANCH_MTAG_BRANCH_TOO_MANY
	2.2.9.1.2.1.5 PARTNERTM_BRANCH_MTAG_BRANCH_TX_NOT_FOUND
	2.2.9.1.2.1.6 PARTNERTM_BRANCH_MTAG_BRANCHED
	2.2.9.1.2.1.7 PARTNERTM_BRANCH_MTAG_BRANCHING

	2.2.9.2 Transaction Recovery
	2.2.9.2.1 Subordinate-Driven
	2.2.9.2.1.1 CONNTYPE_PARTNERTM_CHECKABORT
	2.2.9.2.1.1.1 PARTNERTM_CHECKABORT_MTAG_CHECK
	2.2.9.2.1.1.2 PARTNERTM_CHECKABORT_MTAG_ABORTED
	2.2.9.2.1.1.3 PARTNERTM_CHECKABORT_MTAG_RETRY

	2.2.9.2.2 Superior-Driven
	2.2.9.2.2.1 CONNTYPE_PARTNERTM_REDELIVERCOMMIT
	2.2.9.2.2.1.1 PARTNERTM_REDELIVERCOMMIT_MTAG_COMMITREQ
	2.2.9.2.2.1.2 PARTNERTM_REDELIVERCOMMIT_MTAG_COMMITREQDONE
	2.2.9.2.2.1.3 PARTNERTM_REDELIVERCOMMIT_MTAG_RETRY

	2.2.10 Connection Types Relevant to Resource Managers
	2.2.10.1 Resource Manager Registration
	2.2.10.1.1 CONNTYPE_TXUSER_RESOURCEMANAGER
	2.2.10.1.1.1 TXUSER_RESOURCEMANAGER_MTAG_CREATE
	2.2.10.1.1.2 TXUSER_RESOURCEMANAGER_MTAG_DUPLICATE
	2.2.10.1.1.3 TXUSER_RESOURCEMANAGER_MTAG_REENLISTMENTCOMPLETE
	2.2.10.1.1.4 TXUSER_RESOURCEMANAGER_MTAG_REQUEST_COMPLETE

	2.2.10.1.2 CONNTYPE_TXUSER_RESOURCEMANAGERINTERNAL
	2.2.10.1.2.1 TXUSER_RESOURCEMANAGERINTERNAL_MTAG_DUPLICATEDETECTED

	2.2.10.2 Transaction Coordination
	2.2.10.2.1 CONNTYPE_TXUSER_PHASE0
	2.2.10.2.1.1 TXUSER_PHASE0_MTAG_CREATE
	2.2.10.2.1.2 TXUSER_PHASE0_MTAG_CREATE_TOO_LATE
	2.2.10.2.1.3 TXUSER_PHASE0_MTAG_CREATE_TX_NOT_FOUND
	2.2.10.2.1.4 TXUSER_PHASE0_MTAG_CREATED
	2.2.10.2.1.5 TXUSER_PHASE0_MTAG_PHASE0REQ
	2.2.10.2.1.6 TXUSER_PHASE0_MTAG_PHASE0REQ_ABORT
	2.2.10.2.1.7 TXUSER_PHASE0_MTAG_PHASE0REQDONE
	2.2.10.2.1.8 TXUSER_PHASE0_MTAG_UNENLIST

	2.2.10.2.2 CONNTYPE_TXUSER_ENLISTMENT
	2.2.10.2.2.1 TXUSER_ENLISTMENT_MTAG_ABORTREQ
	2.2.10.2.2.2 TXUSER_ENLISTMENT_MTAG_ABORTREQDONE
	2.2.10.2.2.3 TXUSER_ENLISTMENT_MTAG_COMMITREQ
	2.2.10.2.2.4 TXUSER_ENLISTMENT_MTAG_COMMITREQDONE
	2.2.10.2.2.5 TXUSER_ENLISTMENT_MTAG_ENLIST
	2.2.10.2.2.6 TXUSER_ENLISTMENT_MTAG_ENLIST_LOG_FULL
	2.2.10.2.2.7 TXUSER_ENLISTMENT_MTAG_ENLIST_TOO_LATE
	2.2.10.2.2.8 TXUSER_ENLISTMENT_MTAG_ENLIST_TOO_MANY
	2.2.10.2.2.9 TXUSER_ENLISTMENT_MTAG_ENLIST_TX_NOT_FOUND
	2.2.10.2.2.10 TXUSER_ENLISTMENT_MTAG_ENLISTED
	2.2.10.2.2.11 TXUSER_ENLISTMENT_MTAG_PREPAREREQ
	2.2.10.2.2.12 TXUSER_ENLISTMENT_MTAG_PREPAREREQDONE

	2.2.10.3 Transaction Recovery
	2.2.10.3.1 CONNTYPE_TXUSER_REENLIST
	2.2.10.3.1.1 TXUSER_REENLIST_MTAG_REENLIST
	2.2.10.3.1.2 TXUSER_REENLIST_MTAG_REENLIST_ABORTED
	2.2.10.3.1.3 TXUSER_REENLIST_MTAG_REENLIST_COMMITTED
	2.2.10.3.1.4 TXUSER_REENLIST_MTAG_REENLIST_TIMEOUT

	2.2.10.4 Voting
	2.2.10.4.1 CONNTYPE_TXUSER_VOTER
	2.2.10.4.1.1 TXUSER_STATUS_MTAG_ABORTED
	2.2.10.4.1.2 TXUSER_STATUS_MTAG_COMMITTED
	2.2.10.4.1.3 TXUSER_STATUS_MTAG_INDOUBT
	2.2.10.4.1.4 TXUSER_VOTER_MTAG_CREATE
	2.2.10.4.1.5 TXUSER_VOTER_MTAG_CREATE_TOO_LATE
	2.2.10.4.1.6 TXUSER_VOTER_MTAG_CREATE_TX_NOT_FOUND
	2.2.10.4.1.7 TXUSER_VOTER_MTAG_CREATED
	2.2.10.4.1.8 TXUSER_VOTER_MTAG_VOTEREQ
	2.2.10.4.1.9 TXUSER_VOTER_MTAG_VOTEREQDONE

	3 Protocol Details
	3.1 Common Details
	3.1.1 Abstract Data Model
	3.1.1.1 Converting a Name Object to an OLETX_TM_ADDR Structure
	3.1.1.2 Converting an OLETX_TM_ADDR Structure to a Name Object
	3.1.1.3 Converting a Name Object to a NAMEOBJECTBLOB Structure
	3.1.1.4 Converting a NAMEOBJECTBLOB Structure to a Name Object

	3.1.2 Timers
	3.1.3 Initialization
	3.1.3.1 Enlistment Object Initialization

	3.1.4 Protocol Versioning Details
	3.1.4.1 Supporting a Protocol Version
	3.1.4.2 Negotiating a Common Protocol Version
	3.1.4.3 Using the Negotiated Protocol Version

	3.1.5 Higher-Layer Triggered Events
	3.1.6 Processing Events and Sequencing Rules
	3.1.7 Timer Events
	3.1.8 Other Local Events
	3.1.8.1 Initiate Connection
	3.1.8.2 Disconnect Connection
	3.1.8.3 Connection Disconnected
	3.1.8.4 Receiving a Message

	3.2 Core Transaction Manager Facet Details
	3.2.1 Abstract Data Model
	3.2.1.1 Versioning
	3.2.1.2 Transaction Logging
	3.2.1.3 Transaction States
	3.2.1.3.1 Idle
	3.2.1.3.2 Active
	3.2.1.3.3 Phase Zero
	3.2.1.3.4 Phase Zero Complete
	3.2.1.3.5 Voting
	3.2.1.3.6 Voting Complete
	3.2.1.3.7 Phase One
	3.2.1.3.8 Phase One Complete
	3.2.1.3.9 Single Phase Commit
	3.2.1.3.10 Committing
	3.2.1.3.11 Aborting
	3.2.1.3.12 In Doubt
	3.2.1.3.13 Failed to Notify
	3.2.1.3.14 Ended

	3.2.1.4 Transaction Manager Facets
	3.2.1.5 Protocol Extension Objects

	3.2.2 Timers
	3.2.2.1 Transaction Timeout Timer

	3.2.3 Initialization
	3.2.3.1 Transaction Object Initialization
	3.2.3.2 Durable Log
	3.2.3.3 Transaction Recovery

	3.2.4 Higher-Layer Triggered Events
	3.2.5 Processing Events and Sequencing Rules
	3.2.6 Timer Events
	3.2.6.1 Transaction Timeout Timer

	3.2.7 Other Local Events
	3.2.7.1 Associate Transaction
	3.2.7.2 Begin Commit
	3.2.7.3 Begin In Doubt
	3.2.7.4 Begin Phase One
	3.2.7.5 Begin Phase Zero
	3.2.7.6 Begin Rollback
	3.2.7.7 Begin Voting
	3.2.7.8 Branch Transaction Failure
	3.2.7.9 Branch Transaction Success
	3.2.7.10 Create Phase Zero Enlistment
	3.2.7.11 Create Subordinate Enlistment
	3.2.7.12 Create Superior Enlistment
	3.2.7.13 Create Transaction
	3.2.7.14 Create Voter Enlistment
	3.2.7.15 Enlistment Commit Complete
	3.2.7.16 Enlistment Phase One Complete
	3.2.7.17 Enlistment Phase Zero Complete
	3.2.7.18 Enlistment Rollback Complete
	3.2.7.19 Enlistment Unilaterally Aborted
	3.2.7.20 Enlistment Vote Complete
	3.2.7.21 Export Transaction
	3.2.7.22 Forget Transaction
	3.2.7.23 Notify Aborted
	3.2.7.24 Notify Recovered Transaction Committed
	3.2.7.25 Phase One Completed
	3.2.7.26 Propagate Transaction Failure
	3.2.7.27 Propagate Transaction Success
	3.2.7.28 Register Phase Zero Failure
	3.2.7.29 Register Phase Zero Success
	3.2.7.30 Resolve Transaction
	3.2.7.31 Set Transaction Attributes
	3.2.7.32 Set Transaction Timeout
	3.2.7.33 Request Transaction Outcome
	3.2.7.34 Unenlist Phase Zero Enlistment
	3.2.7.35 Voting Complete

	3.3 Application Details
	3.3.1 Abstract Data Model
	3.3.1.1 CONNTYPE_TXUSER_BEGINNER Initiator States
	3.3.1.1.1 Idle
	3.3.1.1.2 Awaiting Begin Response
	3.3.1.1.3 Processing Transaction
	3.3.1.1.4 Awaiting Commit Response
	3.3.1.1.5 Awaiting Abort Response
	3.3.1.1.6 Ended

	3.3.1.2 CONNTYPE_TXUSER_BEGIN2 Initiator States
	3.3.1.2.1 Idle
	3.3.1.2.2 Awaiting Begin Response
	3.3.1.2.3 Processing Transaction
	3.3.1.2.4 Awaiting Set Timeout Response
	3.3.1.2.5 Awaiting Commit Response
	3.3.1.2.6 Awaiting Abort Response
	3.3.1.2.7 Ended

	3.3.1.3 CONNTYPE_TXUSER_PROMOTE Initiator States
	3.3.1.3.1 Idle
	3.3.1.3.2 Awaiting Promote Response
	3.3.1.3.3 Processing Transaction
	3.3.1.3.4 Awaiting Set Timeout Response
	3.3.1.3.5 Awaiting Commit Response
	3.3.1.3.6 Awaiting Abort Response
	3.3.1.3.7 Ended

	3.3.1.4 CONNTYPE_TXUSER_ASSOCIATE Initiator States
	3.3.1.4.1 Idle
	3.3.1.4.2 Awaiting Associate Response
	3.3.1.4.3 Active
	3.3.1.4.4 Ended

	3.3.1.5 CONNTYPE_TXUSER_EXTENDWHEREABOUTS Initiator States
	3.3.1.5.1 Idle
	3.3.1.5.2 Awaiting Get Response
	3.3.1.5.3 Ended

	3.3.1.6 CONNTYPE_TXUSER_IMPORT Initiator States
	3.3.1.6.1 Idle
	3.3.1.6.2 Awaiting Import Response
	3.3.1.6.3 Transaction Import Successful
	3.3.1.6.4 Awaiting Abort Response
	3.3.1.6.5 Ended

	3.3.1.7 CONNTYPE_TXUSER_IMPORT2 Initiator States
	3.3.1.7.1 Idle
	3.3.1.7.2 Awaiting Import Response
	3.3.1.7.3 Transaction Import Successful
	3.3.1.7.4 Awaiting Abort Response
	3.3.1.7.5 Ended

	3.3.1.8 CONNTYPE_TXUSER_EXPORT Initiator States
	3.3.1.8.1 Idle
	3.3.1.8.2 Awaiting Create Response
	3.3.1.8.3 Connection Active
	3.3.1.8.4 Awaiting Export Response
	3.3.1.8.5 Ended

	3.3.1.9 CONNTYPE_TXUSER_EXPORT2 Initiator States
	3.3.1.9.1 Idle
	3.3.1.9.2 Awaiting Create Response
	3.3.1.9.3 Connection Active
	3.3.1.9.4 Awaiting Export Response
	3.3.1.9.5 Ended

	3.3.1.10 CONNTYPE_TXUSER_GETTXDETAILS Initiator States
	3.3.1.10.1 Idle
	3.3.1.10.2 Awaiting Response
	3.3.1.10.3 Ended

	3.3.1.11 CONNTYPE_TXUSER_RESOLVE Initiator States
	3.3.1.11.1 Idle
	3.3.1.11.2 Awaiting Abort Response
	3.3.1.11.3 Awaiting Forget Response
	3.3.1.11.4 Awaiting Commit Response
	3.3.1.11.5 Ended

	3.3.1.12 CONNTYPE_TXUSER_SETTXTIMEOUT Initiator States
	3.3.1.12.1 Idle
	3.3.1.12.2 Awaiting Set Timeout Response
	3.3.1.12.3 Ended

	3.3.1.13 CONNTYPE_TXUSER_SETTXTIMEOUT2 Initiator States
	3.3.1.13.1 Idle
	3.3.1.13.2 Awaiting Set Timeout Response
	3.3.1.13.3 Ended

	3.3.1.14 CONNTYPE_TXUSER_TRACE Initiator States
	3.3.1.14.1 Idle
	3.3.1.14.2 Awaiting Trace Response
	3.3.1.14.3 Ended

	3.3.1.15 CONNTYPE_TXUSER_GETSECURITYFLAGS Initiator States
	3.3.1.15.1 Idle
	3.3.1.15.2 Awaiting Get Response
	3.3.1.15.3 Ended

	3.3.2 Timers
	3.3.3 Initialization
	3.3.4 Higher-Layer Triggered Events
	3.3.4.1 Beginning a Transaction
	3.3.4.1.1 Beginning a Transaction Using CONNTYPE_TXUSER_BEGIN2
	3.3.4.1.2 Beginning a Transaction Using CONNTYPE_TXUSER_BEGINNER
	3.3.4.1.3 Beginning a Transaction Using CONNTYPE_TXUSER_PROMOTE

	3.3.4.2 Changing a Transaction Timeout
	3.3.4.2.1 Changing a Transaction Timeout Using CONNTYPE_TXUSER_SETTXTIMEOUT
	3.3.4.2.2 Querying Transaction Manager's Support for Modifying a Transaction Timeout Using CONNTYPE_TXUSER_SETTXTIMEOUT2

	3.3.4.3 Obtaining a Propagation Token for a Transaction
	3.3.4.4 Creating an Export Connection
	3.3.4.5 Generating Trace Records for a Transaction Using CONNTYPE_TXUSER_TRACE
	3.3.4.6 Importing a Transaction
	3.3.4.6.1 Importing a Transaction Using CONNTYPE_TXUSER_IMPORT
	3.3.4.6.2 Importing a Transaction Using CONNTYPE_TXUSER_IMPORT2

	3.3.4.7 Importing a Transaction with Additional Transaction Attributes
	3.3.4.8 Initiating Transaction Commit
	3.3.4.8.1 Commit a Transaction Using CONNTYPE_TXUSER_BEGIN2
	3.3.4.8.2 Commit a Transaction Using CONNTYPE_TXUSER_BEGINNER
	3.3.4.8.3 Commit a Transaction Using CONNTYPE_TXUSER_PROMOTE

	3.3.4.9 Initiating Transaction Rollback
	3.3.4.9.1 Abort a Transaction Using CONNTYPE_TXUSER_BEGIN2
	3.3.4.9.2 Abort a Transaction Using CONNTYPE_TXUSER_BEGINNER
	3.3.4.9.3 Abort a Transaction Using CONNTYPE_TXUSER_IMPORT
	3.3.4.9.4 Abort a Transaction Using CONNTYPE_TXUSER_IMPORT2
	3.3.4.9.5 Roll Back a Transaction Using CONNTYPE_TXUSER_PROMOTE

	3.3.4.10 Obtaining Extended Whereabouts Using CONNTYPE_TXUSER_EXTENDEDWHEREABOUTS
	3.3.4.11 Obtaining the Security Configuration of the Transaction Manager Using CONNTYPE_TXUSER_GETSECURITYFLAGS
	3.3.4.11.1 Obtaining the Details for a Transaction

	3.3.4.12 Pulling a Transaction
	3.3.4.13 Push a Transaction Using an Existing Export Connection
	3.3.4.14 Obtaining a Transaction Cookie Using an Existing Export Connection
	3.3.4.15 Resolving a Transaction

	3.3.5 Processing Events and Sequencing Rules
	3.3.5.1 Transaction Initiation and Completion
	3.3.5.1.1 CONNTYPE_TXUSER_BEGINNER as Initiator
	3.3.5.1.1.1 Receiving a TXUSER_BEGINNER_MTAG_BEGUN Message
	3.3.5.1.1.2 Receiving a TXUSER_BEGINNER_MTAG_BEGIN_NO_MEM or TXUSER_BEGINNER_MTAG _BEGIN_LOG_FULL Message
	3.3.5.1.1.3 Receiving a TXUSER_BEGINNER_MTAG_REQUEST_COMPLETED Message
	3.3.5.1.1.4 Receiving a TXUSER_BEGINNER_MTAG_COMMIT_TOO_LATE Message
	3.3.5.1.1.5 Receiving a TXUSER_BEGINNER_MTAG_COMMIT_INDOUBT Message
	3.3.5.1.1.6 Connection Disconnected

	3.3.5.1.2 CONNTYPE_TXUSER_BEGIN2 as Initiator
	3.3.5.1.2.1 Receiving a TXUSER_BEGIN2_MTAG_SINK_BEGUN Message
	3.3.5.1.2.2 Receiving a TXUSER_SETTXTIMEOUT_MTAG_REQUEST_COMPLETE Message
	3.3.5.1.2.3 Receiving a TXUSER_SETTXTIMEOUT_MTAG_TOO_LATE Message
	3.3.5.1.2.4 Receiving a TXUSER_SETTXTIMEOUT_MTAG_TX_NOT_FOUND Message
	3.3.5.1.2.5 Receiving a TXUSER_BEGIN2_MTAG_SINK_ERROR Message
	3.3.5.1.2.6 Connection Disconnected

	3.3.5.1.3 CONNTYPE_TXUSER_PROMOTE as Initiator
	3.3.5.1.3.1 Receiving a TXUSER_BEGIN2_MTAG_SINK_BEGUN Message
	3.3.5.1.3.2 Receiving a TXUSER_BEGIN2_MTAG_SINK_ERROR Message

	3.3.5.2 Transaction Propagation
	3.3.5.2.1 Pull Propagation
	3.3.5.2.1.1 CONNTYPE_TXUSER_ASSOCIATE as Initiator
	3.3.5.2.1.1.1 Receiving a TXUSER_ASSOCIATE_MTAG_ASSOCIATED Message
	3.3.5.2.1.1.2 Receiving Other TXUSER_ASSOCIATE_MTAG Messages
	3.3.5.2.1.1.3 Receiving a TXUSER_IMPORT2_MTAG_SINK_ERROR Message
	3.3.5.2.1.1.4 Connection Disconnected

	3.3.5.2.2 Push Propagation
	3.3.5.2.2.1 CONNTYPE_TXUSER_EXTENDEDWHEREABOUTS as Initiator
	3.3.5.2.2.1.1 Receiving a TXUSER_EXTENDEDWHEREABOUTS_MTAG_GOT Message
	3.3.5.2.2.1.2 Receiving a TXUSER_EXTENDEDWHEREABOUTS_MTAG_NOMEM Message
	3.3.5.2.2.1.3 CONNTYPE_TXUSER_EXTENDEDWHEREABOUTS Connection Disconnected

	3.3.5.2.2.2 CONNTYPE_TXUSER_EXPORT as Initiator
	3.3.5.2.2.2.1 Receiving a TXUSER_EXPORT_MTAG_CREATED Message
	3.3.5.2.2.2.2 Receiving a TXUSER_EXPORT_MTAG_CREATE_BAD_TMADDR or TXUSER_EXPORT_MTAG_CREATE_NET_TX_DISABLED Message
	3.3.5.2.2.2.3 Receiving a TXUSER_EXPORT_MTAG_EXPORTED Message
	3.3.5.2.2.2.4 Receiving a TXUSER_EXPORT_MTAG_EXPORT_LOG_FULL, TXUSER_EXPORT_MTAG_EXPORT_NO_MEM, TXUSER_EXPORT_MTAG_EXPORT_TOO_LATE, TXUSER_EXPORT_MTAG_EXPORT_TOO_MANY, or TXUSER_EXPORT_MTAG_EXPORT_NOT_FOUND Message
	3.3.5.2.2.2.5 CONNTYPE_TXUSER_EXPORT Connection Disconnected

	3.3.5.2.2.3 CONNTYPE_TXUSER_EXPORT2 as Initiator
	3.3.5.2.2.3.1 Receiving a TXUSER_EXPORT_MTAG_CREATED Message
	3.3.5.2.2.3.2 Receiving a TXUSER_EXPORT_MTAG_CREATE_BAD_TMADDR or TXUSER_EXPORT_MTAG_CREATE_NET_TX_DISABLED Message
	3.3.5.2.2.3.3 Receiving a TXUSER_EXPORT_MTAG_EXPORTED Message
	3.3.5.2.2.3.4 Receiving a TXUSER_EXPORT_MTAG_EXPORT_LOG_FULL, TXUSER_EXPORT_MTAG_EXPORT_NO_MEM, TXUSER_EXPORT_MTAG_EXPORT_TOO_LATE, TXUSER_EXPORT_MTAG_EXPORT_TOO_MANY, TXUSER_EXPORT_MTAG_EXPORT_NOT_FOUND, or TXUSER_EXPORT_MTAG_EXPORT_COMM_FAILED Message
	3.3.5.2.2.3.5 CONNTYPE_TXUSER_EXPORT2 Connection Disconnected

	3.3.5.2.2.4 CONNTYPE_TXUSER_IMPORT as Initiator
	3.3.5.2.2.4.1 Receiving a TXUSER_IMPORT_MTAG_IMPORTED Message
	3.3.5.2.2.4.2 Receiving a TXUSER_IMPORT_MTAG_IMPORT_TX_NOT_FOUND Message
	3.3.5.2.2.4.3 Receiving a TXUSER_IMPORT_MTAG_ABORT_TOO_LATE Message.
	3.3.5.2.2.4.4 Receiving a TXUSER_IMPORT_MTAG_REQUEST_COMPLETED Message
	3.3.5.2.2.4.5 Connection Disconnected

	3.3.5.2.2.5 CONNTYPE_TXUSER_IMPORT2 as Initiator
	3.3.5.2.2.5.1 Receiving a TXUSER_IMPORT2_MTAG_SINK_IMPORTED Message
	3.3.5.2.2.5.2 Receiving a TXUSER_IMPORT2_MTAG_SINK_ERROR Message
	3.3.5.2.2.5.3 CONNTYPE_TXUSER_IMPORT2 Connection Disconnected

	3.3.5.3 Transaction Administration
	3.3.5.3.1 CONNTYPE_TXUSER_GETTXDETAILS as Initiator
	3.3.5.3.1.1 Receiving a TXUSER_GETTXDETAILS_MTAG_GOTIT Message
	3.3.5.3.1.2 Receiving a TXUSER_GETTXDETAILS_MTAG_TX_NOT_FOUND Message
	3.3.5.3.1.3 CONNTYPE_TXUSER_GETTXDETAILS Connection Disconnected

	3.3.5.3.2 CONNTYPE_TXUSER_RESOLVE as Initiator
	3.3.5.3.2.1 Receiving a TXUSER_RESOLVE_MTAG_REQUEST_COMPLETE Message
	3.3.5.3.2.2 Receiving a TXUSER_RESOLVE_MTAG_ACCESSDENIED or TXUSER_RESOLVE_MTAG_TX_NOT_FOUND Message
	3.3.5.3.2.3 Receiving a TXUSER_RESOLVE_MTAG_CHILD_NOT_PREPARED or TXUSER_RESOLVE_MTAG_NOT_CHILD Message
	3.3.5.3.2.4 Receiving a TXUSER_RESOLVE_MTAG_FORGET_TX_NOT_COMMITTED Message
	3.3.5.3.2.5 Connection Disconnected

	3.3.5.3.3 CONNTYPE_TXUSER_SETTXTIMEOUT as Initiator
	3.3.5.3.3.1 Receiving a TXUSER_SETTXTIMEOUT_MTAG_REQUEST_COMPLETE Message
	3.3.5.3.3.2 Receiving a TXUSER_SETTXTIMEOUT_MTAG_TOO_LATE or TXUSER_SETTXTIMEOUT_MTAG_TX_NOT_FOUND Message
	3.3.5.3.3.3 Connection Disconnected

	3.3.5.3.4 CONNTYPE_TXUSER_SETTXTIMEOUT2 as Initiator
	3.3.5.3.4.1 Receiving a TXUSER_SETTXTIMEOUT_MTAG_TX_NOT_FOUND Message
	3.3.5.3.4.2 Connection Disconnected

	3.3.5.3.5 CONNTYPE_TXUSER_TRACE as Initiator
	3.3.5.3.5.1 Receiving a TXUSER_TRACE_MTAG_REQUEST_COMPLETE Message
	3.3.5.3.5.2 Receiving a TXUSER_TRACE_MTAG_REQUEST_FAILED or TXUSER_TRACE_MTAG_TX_NOT_FOUND Message
	3.3.5.3.5.3 Connection Disconnected

	3.3.5.4 Transaction Manager Administration
	3.3.5.4.1 CONNTYPE_TXUSER_GETSECURITYFLAGS as Initiator
	3.3.5.4.1.1 Receiving a TXUSER_GETSECURITYFLAGS _MTAG_FETCHED Message
	3.3.5.4.1.2 CONNTYPE_TXUSER_GETSECURITYFLAGS Connection Disconnected

	3.3.6 Timer Events
	3.3.7 Other Local Events

	3.4 Transaction Manager Communicating with Application Details
	3.4.1 Abstract Data Model
	3.4.1.1 CONNTYPE_TXUSER_BEGINNER Acceptor States
	3.4.1.1.1 Idle
	3.4.1.1.2 Beginning Transaction
	3.4.1.1.3 Active
	3.4.1.1.4 Aborting Transaction
	3.4.1.1.5 Committing Transaction
	3.4.1.1.6 Ended

	3.4.1.2 CONNTYPE_TXUSER_BEGIN2 Acceptor States
	3.4.1.2.1 Idle
	3.4.1.2.2 Beginning Transaction
	3.4.1.2.3 Active
	3.4.1.2.4 Modifying Timeout
	3.4.1.2.5 Aborting Transaction
	3.4.1.2.6 Committing Transaction
	3.4.1.2.7 Ended

	3.4.1.3 CONNTYPE_TXUSER_PROMOTE Acceptor States
	3.4.1.3.1 Idle
	3.4.1.3.2 Beginning Transaction
	3.4.1.3.3 Active
	3.4.1.3.4 Modifying Timeout
	3.4.1.3.5 Aborting Transaction
	3.4.1.3.6 Committing Transaction
	3.4.1.3.7 Ended

	3.4.1.4 CONNTYPE_TXUSER_ASSOCIATE Acceptor States
	3.4.1.4.1 Idle
	3.4.1.4.2 Processing Associate Request
	3.4.1.4.3 Active
	3.4.1.4.4 Ended

	3.4.1.5 CONNTYPE_TXUSER_EXTENDEDWHEREABOUTS Acceptor States
	3.4.1.5.1 Idle
	3.4.1.5.2 Processing Inquiry
	3.4.1.5.3 Ended

	3.4.1.6 CONNTYPE_TXUSER_IMPORT Acceptor States
	3.4.1.6.1 Idle
	3.4.1.6.2 Processing Import Request
	3.4.1.6.3 Active
	3.4.1.6.4 Too Late to Abort
	3.4.1.6.5 Processing Abort Request
	3.4.1.6.6 Ended

	3.4.1.7 CONNTYPE_TXUSER_IMPORT2 Acceptor States
	3.4.1.7.1 Idle
	3.4.1.7.2 Processing Import Request
	3.4.1.7.3 Active
	3.4.1.7.4 Too Late to Abort
	3.4.1.7.5 Processing Abort Request
	3.4.1.7.6 Ended

	3.4.1.8 CONNTYPE_TXUSER_EXPORT Acceptor States
	3.4.1.8.1 Idle
	3.4.1.8.2 Processing Connection Request
	3.4.1.8.3 Connection Active
	3.4.1.8.4 Processing Push Operation Request
	3.4.1.8.5 Ended

	3.4.1.9 CONNTYPE_TXUSER_EXPORT2 Acceptor States
	3.4.1.9.1 Idle
	3.4.1.9.2 Processing Connection Request
	3.4.1.9.3 Connection Active
	3.4.1.9.4 Processing Push Operation Request
	3.4.1.9.5 Ended

	3.4.1.10 CONNTYPE_TXUSER_GETTXDETAILS Acceptor States
	3.4.1.10.1 Idle
	3.4.1.10.2 Processing Inquiry
	3.4.1.10.3 Ended

	3.4.1.11 CONNTYPE_TXUSER_RESOLVE Acceptor States
	3.4.1.11.1 Idle
	3.4.1.11.2 Processing Abort Request
	3.4.1.11.3 Processing Forget Request
	3.4.1.11.4 Processing Commit Request
	3.4.1.11.5 Ended

	3.4.1.12 CONNTYPE_TXUSER_SETTXTIMEOUT Acceptor States
	3.4.1.12.1 Idle
	3.4.1.12.2 Processing Request
	3.4.1.12.3 Ended

	3.4.1.13 CONNTYPE_TXUSER_SETTXTIMEOUT2 Acceptor States
	3.4.1.13.1 Idle
	3.4.1.13.2 Processing Request
	3.4.1.13.3 Ended

	3.4.1.14 CONNTYPE_TXUSER_TRACE Acceptor States
	3.4.1.14.1 Idle
	3.4.1.14.2 Processing Trace Request
	3.4.1.14.3 Ended

	3.4.1.15 CONNTYPE_TXUSER_GETSECURITYFLAGS Acceptor States
	3.4.1.15.1 Idle
	3.4.1.15.2 Processing Request
	3.4.1.15.3 Ended

	3.4.2 Timers
	3.4.3 Initialization
	3.4.4 Higher-Layer Triggered Events
	3.4.5 Processing Events and Sequencing Rules
	3.4.5.1 Transaction Initiation and Completion
	3.4.5.1.1 CONNTYPE_TXUSER_BEGINNER as Acceptor
	3.4.5.1.1.1 Receiving a TXUSER_BEGINNER_MTAG_BEGIN Message
	3.4.5.1.1.2 Receiving a TXUSER_BEGINNER_MTAG_COMMIT Message
	3.4.5.1.1.3 Receiving a TXUSER_BEGINNER_MTAG_ABORT Message
	3.4.5.1.1.4 Connection Disconnected

	3.4.5.1.2 CONNTYPE_TXUSER_BEGIN2 as Acceptor
	3.4.5.1.2.1 Receiving a TXUSER_BEGIN2_MTAG_BEGIN Message
	3.4.5.1.2.2 Receiving a TXUSER_SETTXTIMEOUT_MTAG_SETTXTIMEOUT Message
	3.4.5.1.2.3 Receiving a TXUSER_BEGIN2_MTAG_COMMIT Message
	3.4.5.1.2.4 Receiving a TXUSER_BEGIN2_MTAG_ABORT Message
	3.4.5.1.2.5 Connection Disconnected

	3.4.5.1.3 CONNTYPE_TXUSER_PROMOTE as Acceptor
	3.4.5.1.3.1 Receiving a TXUSER_BEGINNER_MTAG_PROMOTE Message
	3.4.5.1.3.2 Receiving a TXUSER_SETTXTIMEOUT_MTAG_SETTXTIMEOUT, TXUSER_BEGIN2_MTAG_COMMIT, or TXUSER_BEGIN2_MTAG_ABORT Message
	3.4.5.1.3.3 Connection Disconnected

	3.4.5.2 Transaction Propagation
	3.4.5.2.1 Pull Propagation
	3.4.5.2.1.1 CONNTYPE_TXUSER_ASSOCIATE as Acceptor
	3.4.5.2.1.1.1 Receiving a TXUSER_ASSOCIATE_MTAG_ASSOCIATE Message
	3.4.5.2.1.1.2 Connection Disconnected

	3.4.5.2.2 Push Propagation
	3.4.5.2.2.1 CONNTYPE_TXUSER_EXTENDEDWHEREABOUTS as Acceptor
	3.4.5.2.2.1.1 Receiving a TXUSER_EXTENDEDWHEREABOUTS_MTAG_GET Message
	3.4.5.2.2.1.2 Connection Disconnected

	3.4.5.2.2.2 CONNTYPE_TXUSER_EXPORT as Acceptor
	3.4.5.2.2.2.1 Receiving a TXUSER_EXPORT_MTAG_CREATE Message
	3.4.5.2.2.2.2 Receiving a TXUSER_EXPORT_MTAG_CREATE2 Message
	3.4.5.2.2.2.3 Receiving a TXUSER_EXPORT_MTAG_EXPORT Message
	3.4.5.2.2.2.4 Connection Disconnected

	3.4.5.2.2.3 CONNTYPE_TXUSER_EXPORT2 as Acceptor
	3.4.5.2.2.3.1 Receiving a TXUSER_EXPORT_MTAG_CREATE Message
	3.4.5.2.2.3.2 Receiving a TXUSER_EXPORT_MTAG_CREATE2 Message
	3.4.5.2.2.3.3 Receiving a TXUSER_EXPORT_MTAG_EXPORT Message
	3.4.5.2.2.3.4 Connection Disconnected

	3.4.5.2.2.4 CONNTYPE_TXUSER_IMPORT as Acceptor
	3.4.5.2.2.4.1 Receiving a TXUSER_IMPORT_MTAG_IMPORT Message
	3.4.5.2.2.4.2 Receiving a TXUSER_IMPORT_MTAG_ABORT Message
	3.4.5.2.2.4.3 Connection Disconnected

	3.4.5.2.2.5 CONNTYPE_TXUSER_IMPORT2 as Acceptor
	3.4.5.2.2.5.1 Receiving a TXUSER_IMPORT2_MTAG_IMPORT Message
	3.4.5.2.2.5.2 Receiving a TXUSER_IMPORT2_MTAG_IMPORT_WITH_SET Message
	3.4.5.2.2.5.3 Receiving a TXUSER_IMPORT2_MTAG_ABORT Message
	3.4.5.2.2.5.4 Connection Disconnected

	3.4.5.3 Transaction Administration
	3.4.5.3.1 CONNTYPE_TXUSER_GETTXDETAILS as Acceptor
	3.4.5.3.1.1 Receiving a TXUSER_GETTXDETAILS_MTAG_GET Message
	3.4.5.3.1.2 Connection Disconnected

	3.4.5.3.2 CONNTYPE_TXUSER_RESOLVE as Acceptor
	3.4.5.3.2.1 Receiving a TXUSER_RESOLVE_MTAG_CHILD_ABORT Message
	3.4.5.3.2.2 Receiving a TXUSER_RESOLVE_MTAG_CHILD_COMMIT Message
	3.4.5.3.2.3 Receiving a TXUSER_RESOLVE_MTAG_FORGET_COMMITTED Message
	3.4.5.3.2.4 Connection Disconnected

	3.4.5.3.3 CONNTYPE_TXUSER_SETTXTIMEOUT as Acceptor
	3.4.5.3.3.1 Receiving a TXUSER_SETTXTIMEOUT_MTAG_SETTXTIMEOUT Message
	3.4.5.3.3.2 Connection Disconnected

	3.4.5.3.4 CONNTYPE_TXUSER_SETTXTIMEOUT2 as Acceptor
	3.4.5.3.4.1 Receiving a TXUSER_SETTXTIMEOUT_MTAG_SETTXTIMEOUT Message
	3.4.5.3.4.2 Connection Disconnected

	3.4.5.3.5 CONNTYPE_TXUSER_TRACE as Acceptor
	3.4.5.3.5.1 Receiving a TXUSER_TRACE_MTAG_DUMP_TRANSACTION Message
	3.4.5.3.5.2 Connection Disconnected

	3.4.5.4 Transaction Manager Administration
	3.4.5.4.1 CONNTYPE_TXUSER_GETSECURITYFLAGS as Acceptor
	3.4.5.4.1.1 Receiving a TXUSER_GETSECURITYFLAGS_MTAG_GETSECURITYFLAGS Message
	3.4.5.4.1.2 Connection Disconnected

	3.4.6 Timer Events
	3.4.7 Other Local Events
	3.4.7.1 Associate Transaction Failure
	3.4.7.2 Associate Transaction Success
	3.4.7.3 Begin Commit
	3.4.7.4 Begin In Doubt
	3.4.7.5 Begin Rollback
	3.4.7.6 Begin Voting
	3.4.7.7 Create Transaction Failure
	3.4.7.8 Create Transaction Success
	3.4.7.9 Create Voter Enlistment Failure
	3.4.7.10 Create Voter Enlistment Success
	3.4.7.11 Export Transaction Failure
	3.4.7.12 Export Transaction Success
	3.4.7.13 Phase One Complete
	3.4.7.14 Phase Zero Complete
	3.4.7.15 Register Phase Zero
	3.4.7.16 Resolve Transaction Complete
	3.4.7.17 Resolve Transaction Access Denied
	3.4.7.18 Rollback Complete
	3.4.7.19 Set Transaction Attributes Failure
	3.4.7.20 Set Transaction Attributes Success
	3.4.7.21 Set Transaction Timeout Failure
	3.4.7.22 Set Transaction Timeout Success
	3.4.7.23 Unilaterally Aborted

	3.5 Resource Manager Details
	3.5.1 Abstract Data Model
	3.5.1.1 CONNTYPE_TXUSER_RESOURCEMANAGER Initiator States
	3.5.1.1.1 Idle
	3.5.1.1.2 Awaiting Create Response
	3.5.1.1.3 Recovering
	3.5.1.1.4 Awaiting Completion Confirmation
	3.5.1.1.5 Active
	3.5.1.1.6 Ended

	3.5.1.2 CONNTYPE_TXUSER_RESOURCEMANAGERINTERNAL Initiator States
	3.5.1.2.1 Idle
	3.5.1.2.2 Awaiting Create Response
	3.5.1.2.3 Recovering
	3.5.1.2.4 Awaiting Completion Confirmation
	3.5.1.2.5 Active
	3.5.1.2.6 Ended

	3.5.1.3 CONNTYPE_TXUSER_PHASE0 Initiator States
	3.5.1.3.1 Idle
	3.5.1.3.2 Awaiting Create Response
	3.5.1.3.3 Active
	3.5.1.3.4 Processing Phase Zero Request
	3.5.1.3.5 Ended

	3.5.1.4 CONNTYPE_TXUSER_ENLISTMENT Initiator States
	3.5.1.4.1 Idle
	3.5.1.4.2 Awaiting Enlistment Response
	3.5.1.4.3 Active
	3.5.1.4.4 Single Phase Committing
	3.5.1.4.5 Preparing for Transaction Commit
	3.5.1.4.6 Finalizing Abort Operations
	3.5.1.4.7 Awaiting Transaction Outcome
	3.5.1.4.8 Finalizing Commit Operations
	3.5.1.4.9 Ended

	3.5.1.5 CONNTYPE_TXUSER_REENLIST Initiator States
	3.5.1.5.1 Idle
	3.5.1.5.2 Awaiting Reenlist Response
	3.5.1.5.3 Ended

	3.5.1.6 CONNTYPE_TXUSER_VOTER Initiator States
	3.5.1.6.1 Idle
	3.5.1.6.2 Awaiting Creation Response
	3.5.1.6.3 Active
	3.5.1.6.4 Performing Transaction Operations
	3.5.1.6.5 Awaiting Outcome
	3.5.1.6.6 Ended

	3.5.2 Timers
	3.5.3 Initialization
	3.5.4 Higher-Layer Triggered Events
	3.5.4.1 Canceling Enlistment as a Phase Zero Participant on a Specific Transaction
	3.5.4.2 Enlisting as a Phase Zero Participant on a Specific Transaction
	3.5.4.3 Enlisting on a Specific Transaction
	3.5.4.4 Enlistment Abort Request Completed
	3.5.4.5 Enlistment Commit Request Completed
	3.5.4.6 Enlistment Prepare Request Completed
	3.5.4.7 Enlistment Single-Phase Commit Request Completed
	3.5.4.8 Phase Zero Request Completed
	3.5.4.9 Registering as a Voter on a Specific Transaction
	3.5.4.10 Registering with Transaction Manager
	3.5.4.10.1 Registering with Transaction Manager Using CONNTYPE_TXUSER_RESOURCEMANAGER
	3.5.4.10.2 Registering with Transaction Manager Using CONNTYPE_TXUSER_RESOURCEMANAGERINTERNAL

	3.5.4.11 Voter Vote Request Completed

	3.5.5 Processing Events and Sequencing Rules
	3.5.5.1 Resource Manager Registration
	3.5.5.1.1 CONNTYPE_TXUSER_RESOURCEMANAGER as Initiator
	3.5.5.1.1.1 Receiving a TXUSER_RESOURCEMANAGER_MTAG_DUPLICATE Message
	3.5.5.1.1.2 Receiving a TXUSER_RESOURCEMANAGER_MTAG_REQUEST_COMPLETE Message
	3.5.5.1.1.3 Connection Disconnected

	3.5.5.1.2 CONNTYPE_TXUSER_RESOURCEMANAGERINTERNAL as Initiator
	3.5.5.1.2.1 Receiving a TXUSER_RESOURCEMANAGER_MTAG_DUPLICATE or TXUSER_RESOURCEMANAGER_MTAG_REQUEST_COMPLETE Message
	3.5.5.1.2.2 Receiving a TXUSER_RESOURCEMANAGERINTERNAL_MTAG_DUPLICATEDETECTED Message
	3.5.5.1.2.3 Connection Disconnected

	3.5.5.2 Transaction Coordination
	3.5.5.2.1 CONNTYPE_TXUSER_PHASE0 as Initiator
	3.5.5.2.1.1 Receiving a TXUSER_PHASE0_MTAG_CREATED Message
	3.5.5.2.1.2 Receiving a TXUSER_PHASE0_MTAG_CREATE_TX_NOT_FOUND or TXUSER_PHASE0_MTAG_CREATE_TOO_LATE Message
	3.5.5.2.1.3 Receiving a TXUSER_PHASE0_MTAG_PHASE0REQ Message
	3.5.5.2.1.4 Receiving a TXUSER_PHASE0_MTAG_PHASE0REQ_ABORT Message
	3.5.5.2.1.5 Connection Disconnected

	3.5.5.2.2 CONNTYPE_TXUSER_ENLISTMENT as Initiator
	3.5.5.2.2.1 Receiving a TXUSER_ENLISTMENT_MTAG_ENLISTED Message
	3.5.5.2.2.2 Receiving a TXUSER_ENLISTMENT_MTAG_ENLIST_TX_NOT_FOUND, TXUSER_ENLISTMENT_MTAG_ENLIST_TOO_LATE, TXUSER_ENLISTMENT_MTAG_ENLIST_LOG_FULL, or TXUSER_ENLISTMENT_MTAG_ENLIST_TOO_MANY Message
	3.5.5.2.2.3 Receiving a TXUSER_ENLISTMENT_MTAG_PREPAREREQ Message
	3.5.5.2.2.4 Receiving a TXUSER_ENLISTMENT_MTAG_COMMITREQ Message
	3.5.5.2.2.5 Receiving a TXUSER_ENLISTMENT_MTAG_ABORTREQ Message
	3.5.5.2.2.6 Connection Disconnected

	3.5.5.3 Transaction Recovery
	3.5.5.3.1 CONNTYPE_TXUSER_REENLIST as Initiator
	3.5.5.3.1.1 Receiving a TXUSER_REENLIST_MTAG_REENLIST_COMMITTED Message
	3.5.5.3.1.2 Receiving a TXUSER_REENLIST_MTAG_REENLIST_ABORTED Message
	3.5.5.3.1.3 Receiving a TXUSER_REENLIST_MTAG_REENLIST_TIMEOUT Message
	3.5.5.3.1.4 Connection Disconnected

	3.5.5.4 Voting
	3.5.5.4.1 CONNTYPE_TXUSER_VOTER as Initiator
	3.5.5.4.1.1 Receiving a TXUSER_VOTER_MTAG_CREATED Message
	3.5.5.4.1.2 Receiving a TXUSER_VOTER_MTAG_CREATE_TX_NOT_FOUND or TXUSER_VOTER_MTAG_CREATE_TOO_LATE Message
	3.5.5.4.1.3 Receiving a TXUSER_VOTER_MTAG_VOTEREQ Message
	3.5.5.4.1.4 Receiving a TXUSER_STATUS_MTAG_COMMITTED Message
	3.5.5.4.1.5 Receiving a TXUSER_STATUS_MTAG_ABORTED Message
	3.5.5.4.1.6 Receiving a TXUSER_STATUS_MTAG_INDOUBT Message
	3.5.5.4.1.7 Connection Disconnected

	3.5.6 Timer Events
	3.5.7 Other Local Events
	3.5.7.1 Recover Transaction
	3.5.7.2 Recover Transactions
	3.5.7.3 Reenlistment Complete
	3.5.7.4 Transaction Manager Down
	3.5.7.5 Reenlistment Timeout

	3.6 Transaction Manager Communicating with Resource Manager Facet Details
	3.6.1 Abstract Data Model
	3.6.1.1 CONNTYPE_TXUSER_RESOURCEMANAGER Acceptor States
	3.6.1.1.1 Idle
	3.6.1.1.2 Creating
	3.6.1.1.3 Reenlisting
	3.6.1.1.4 Active
	3.6.1.1.5 Ended

	3.6.1.2 CONNTYPE_TXUSER_RESOURCEMANAGERINTERNAL Acceptor States
	3.6.1.2.1 Idle
	3.6.1.2.2 Creating
	3.6.1.2.3 Reenlisting
	3.6.1.2.4 Active
	3.6.1.2.5 Ended

	3.6.1.3 CONNTYPE_TXUSER_PHASE0 Acceptor States
	3.6.1.3.1 Idle
	3.6.1.3.2 Awaiting Create Response
	3.6.1.3.3 Active
	3.6.1.3.4 Awaiting Phase Zero Response
	3.6.1.3.5 Ended

	3.6.1.4 CONNTYPE_TXUSER_ENLISTMENT Acceptor States
	3.6.1.4.1 Idle
	3.6.1.4.2 Processing Enlistment Request
	3.6.1.4.3 Active
	3.6.1.4.4 Awaiting Single-Phase Commit Response
	3.6.1.4.5 Awaiting Prepare Response
	3.6.1.4.6 Awaiting Prepare Response Aborted
	3.6.1.4.7 Prepared
	3.6.1.4.8 Awaiting Commit Response
	3.6.1.4.9 Awaiting Abort Response
	3.6.1.4.10 Ended

	3.6.1.5 CONNTYPE_TXUSER_REENLIST Acceptor States
	3.6.1.5.1 Idle
	3.6.1.5.2 Processing Reenlist Request
	3.6.1.5.3 Ended

	3.6.1.6 CONNTYPE_TXUSER_VOTER Acceptor States
	3.6.1.6.1 Idle
	3.6.1.6.2 Create Voter
	3.6.1.6.3 Active
	3.6.1.6.4 Awaiting Voter Response
	3.6.1.6.5 Awaiting Outcome
	3.6.1.6.6 Ended

	3.6.2 Timers
	3.6.2.1 Reenlist Time-Out Timer

	3.6.3 Initialization
	3.6.4 Higher-Layer Triggered Events
	3.6.5 Processing Events and Sequencing Rules
	3.6.5.1 Resource Manager Registration
	3.6.5.1.1 CONNTYPE_TXUSER_RESOURCEMANAGER as Acceptor
	3.6.5.1.1.1 Receiving a TXUSER_RESOURCEMANAGER_MTAG_CREATE Message
	3.6.5.1.1.2 Receiving a TXUSER_RESOURCEMANAGER_MTAG_REENLISTMENTCOMPLETE Message
	3.6.5.1.1.3 Connection Disconnected

	3.6.5.1.2 CONNTYPE_TXUSER_RESOURCEMANAGERINTERNAL as Acceptor
	3.6.5.1.2.1 Receiving a TXUSER_RESOURCEMANAGER_MTAG_CREATE Message
	3.6.5.1.2.2 Receiving a TXUSER_RESOURCEMANAGER_MTAG_REENLISTMENTCOMPLETE Message
	3.6.5.1.2.3 Connection Disconnected

	3.6.5.2 Transaction Coordination
	3.6.5.2.1 CONNTYPE_TXUSER_PHASE0 as Acceptor
	3.6.5.2.1.1 Receiving a TXUSER_PHASE0_MTAG_CREATE Message
	3.6.5.2.1.2 Receiving a TXUSER_PHASE0_MTAG_PHASE0REQDONE Message
	3.6.5.2.1.3 Receiving a TXUSER_PHASE0_MTAG_UNENLIST Message
	3.6.5.2.1.4 Connection Disconnected

	3.6.5.2.2 CONNTYPE_TXUSER_ENLISTMENT as Acceptor
	3.6.5.2.2.1 Receiving a TXUSER_ENLISTMENT_MTAG_ENLIST Message
	3.6.5.2.2.2 Receiving a TXUSER_ENLISTMENT_MTAG_PREPAREREQDONE Message
	3.6.5.2.2.3 Receiving a TXUSER_ENLISTMENT_MTAG_COMMITREQDONE Message
	3.6.5.2.2.4 Receiving a TXUSER_ENLISTMENT_MTAG_ABORTREQDONE Message
	3.6.5.2.2.5 Connection Disconnected

	3.6.5.3 Transaction Recovery
	3.6.5.3.1 CONNTYPE_TXUSER_REENLIST as Acceptor
	3.6.5.3.1.1 Receiving a TXUSER_REENLIST_MTAG_REENLIST Message
	3.6.5.3.1.2 Connection Disconnected

	3.6.5.4 Voting
	3.6.5.4.1 CONNTYPE_TXUSER_VOTER as Acceptor
	3.6.5.4.1.1 Receiving a TXUSER_VOTER_MTAG_CREATE Message
	3.6.5.4.1.2 Receiving a TXUSER_VOTER_MTAG_VOTEREQDONE Message
	3.6.5.4.1.3 Connection Disconnected

	3.6.6 Timer Events
	3.6.6.1 Reenlist Timeout Timer

	3.6.7 Other Local Events
	3.6.7.1 Begin Commit
	3.6.7.2 Begin In Doubt
	3.6.7.3 Begin Phase One
	3.6.7.4 Begin Phase Zero
	3.6.7.5 Begin Rollback
	3.6.7.6 Begin Voting
	3.6.7.7 Create Phase Zero Enlistment Failure
	3.6.7.8 Create Phase Zero Enlistment Success
	3.6.7.9 Create Resource Manager
	3.6.7.10 Create Subordinate Enlistment Failure
	3.6.7.11 Create Subordinate Enlistment Success
	3.6.7.12 Create Voter Enlistment Failure
	3.6.7.13 Create Voter Enlistment Success
	3.6.7.14 Phase Zero Aborted
	3.6.7.15 Reenlist Complete
	3.6.7.16 Resource Manager Down

	3.7 Superior Transaction Manager Facet Details
	3.7.1 Abstract Data Model
	3.7.1.1 CONNTYPE_PARTNERTM_PROPAGATE Initiator States
	3.7.1.1.1 Idle
	3.7.1.1.2 Awaiting Propagation Response
	3.7.1.1.3 Active
	3.7.1.1.4 Awaiting Abort Response
	3.7.1.1.5 Phase Zero Registration
	3.7.1.1.6 Requesting Phase Zero
	3.7.1.1.7 Phase Zero
	3.7.1.1.8 Phase Zero Registration During Phase Zero
	3.7.1.1.9 Phase Zero with Outstanding Registration
	3.7.1.1.10 Awaiting Prepare Response
	3.7.1.1.11 Prepared
	3.7.1.1.12 Awaiting Commit Response
	3.7.1.1.13 Ended

	3.7.1.2 CONNTYPE_PARTNERTM_BRANCH Acceptor States
	3.7.1.2.1 Idle
	3.7.1.2.2 Branching
	3.7.1.2.3 Active
	3.7.1.2.4 Awaiting Abort Response
	3.7.1.2.5 Phase Zero Registration
	3.7.1.2.6 Requesting Phase Zero
	3.7.1.2.7 Phase Zero
	3.7.1.2.8 Phase Zero Registration During Phase Zero
	3.7.1.2.9 Phase Zero with Outstanding Registration
	3.7.1.2.10 Awaiting Prepare Response
	3.7.1.2.11 Prepared
	3.7.1.2.12 Awaiting Commit Response
	3.7.1.2.13 Ended

	3.7.1.3 CONNTYPE_PARTNERTM_REDELIVERCOMMIT Initiator States
	3.7.1.3.1 Idle
	3.7.1.3.2 Awaiting Confirmation
	3.7.1.3.3 Waiting to Rerequest
	3.7.1.3.4 Ended

	3.7.1.4 CONNTYPE_PARTNERTM_CHECKABORT Acceptor States
	3.7.1.4.1 Idle
	3.7.1.4.2 Processing Abort Inquiry
	3.7.1.4.3 Ended

	3.7.2 Timers
	3.7.2.1 Redeliver Commit Timer

	3.7.3 Initialization
	3.7.4 Higher-Layer Triggered Events
	3.7.5 Processing Events and Sequencing Rules
	3.7.5.1 Transaction Propagation and Coordination
	3.7.5.1.1 Push Propagation
	3.7.5.1.1.1 CONNTYPE_PARTNERTM_PROPAGATE as Initiator
	3.7.5.1.1.1.1 Receiving a PARTNERTM_PROPAGATE_MTAG_PROPAGATED Message
	3.7.5.1.1.1.2 Receiving a PARTNERTM_PROPAGATE_MTAG_DUPLICATE, PARTNERTM_PROPAGATE_MTAG_NO_MEM, or PARTNERTM_PROPAGATE_MTAG_LOG_FULL Message
	3.7.5.1.1.1.3 Receiving a PARTNERTM_PROPAGATE_MTAG_PHASE0REGISTER, PARTNERTM_PROPAGATE_MTAG_PHASE0COMPLETE, PARTNERTM_PROPAGATE_MTAG_PREPAREREQDONE, PARTNERTM_PROPAGATE_MTAG_COMMITREQDONE, PARTNERTM_PROPAGATE_MTAG_ABORTREQDONE, or PARTNERTM_PROPAGATE_...
	3.7.5.1.1.1.4 Receiving a PARTNERTM_PROPAGATE_MTAG_PROTOCOL_ERROR Message
	3.7.5.1.1.1.5 Connection Disconnected

	3.7.5.1.2 Pull Propagation
	3.7.5.1.2.1 CONNTYPE_PARTNERTM_BRANCH as Acceptor
	3.7.5.1.2.1.1 Receiving a PARTNERTM_BRANCH_MTAG_BRANCHING Message
	3.7.5.1.2.1.2 Receiving a PARTNERTM_PROPAGATE_MTAG_PHASE0REGISTER Message
	3.7.5.1.2.1.3 Receiving a PARTNERTM_PROPAGATE_MTAG_PHASE0COMPLETE Message
	3.7.5.1.2.1.4 Receiving a PARTNERTM_PROPAGATE_MTAG_ABORTNOTIFY Message
	3.7.5.1.2.1.5 Receiving a PARTNERTM_PROPAGATE_MTAG_ABORTREQDONE Message
	3.7.5.1.2.1.6 Receiving a PARTNERTM_PROPAGATE_MTAG_PREPAREREQDONE Message
	3.7.5.1.2.1.7 Receiving a PARTNERTM_PROPAGATE_MTAG_COMMITREQDONE Message
	3.7.5.1.2.1.8 Receiving a PARTNERTM_PROPAGATE_MTAG_PROTOCOL_ERROR Message
	3.7.5.1.2.1.9 Connection Disconnected

	3.7.5.2 Transaction Recovery
	3.7.5.2.1 Subordinate-Driven Recovery
	3.7.5.2.1.1 CONNTYPE_PARTNERTM_CHECKABORT as Acceptor
	3.7.5.2.1.1.1 Receiving a PARTNERTM_CHECKABORT_MTAG_CHECK Message
	3.7.5.2.1.1.2 Connection Disconnected

	3.7.5.2.2 Superior-Driven Recovery
	3.7.5.2.2.1 CONNTYPE_PARTNERTM_REDELIVERCOMMIT as Initiator
	3.7.5.2.2.1.1 Receiving a PARTNERTM_REDELIVERCOMMIT_MTAG_COMMITREQDONE Message
	3.7.5.2.2.1.2 Receiving a PARTNERTM_REDELIVERCOMMIT_MTAG_RETRY Message
	3.7.5.2.2.1.3 Connection Disconnected

	3.7.6 Timer Events
	3.7.6.1 Redeliver Commit Timer

	3.7.7 Other Local Events
	3.7.7.1 Begin Commit
	3.7.7.2 Begin Phase One
	3.7.7.3 Begin Phase Zero
	3.7.7.4 Begin Rollback
	3.7.7.5 Create Phase Zero Enlistment Failure
	3.7.7.6 Create Phase Zero Enlistment Success
	3.7.7.7 Create Subordinate Enlistment Failure
	3.7.7.8 Create Subordinate Enlistment Success
	3.7.7.9 Phase Zero Aborted
	3.7.7.10 Propagate Transaction

	3.8 Subordinate Transaction Manager Facet Details
	3.8.1 Abstract Data Model
	3.8.1.1 CONNTYPE_PARTNERTM_PROPAGATE Acceptor States
	3.8.1.1.1 Idle
	3.8.1.1.2 Propagating
	3.8.1.1.3 Active
	3.8.1.1.4 Aborting
	3.8.1.1.5 Awaiting Registration Response
	3.8.1.1.6 Awaiting Phase Zero
	3.8.1.1.7 Awaiting Phase Zero Outcome
	3.8.1.1.8 Awaiting Registration Response During Phase Zero
	3.8.1.1.9 Awaiting Phase Zero Outcome with Outstanding Registration
	3.8.1.1.10 Preparing
	3.8.1.1.11 Prepared
	3.8.1.1.12 Committing
	3.8.1.1.13 Ended

	3.8.1.2 CONNTYPE_PARTNERTM_BRANCH Initiator States
	3.8.1.2.1 Idle
	3.8.1.2.2 Awaiting Branch Response
	3.8.1.2.3 Active
	3.8.1.2.4 Aborting
	3.8.1.2.5 Awaiting Registration Response
	3.8.1.2.6 Awaiting Phase Zero
	3.8.1.2.7 Awaiting Phase Zero Outcome
	3.8.1.2.8 Awaiting Registration Response During Phase Zero
	3.8.1.2.9 Awaiting Phase Zero Outcome with Outstanding Registration
	3.8.1.2.10 Preparing
	3.8.1.2.11 Prepared
	3.8.1.2.12 Committing
	3.8.1.2.13 Ended

	3.8.1.3 CONNTYPE_PARTNERTM_REDELIVERCOMMIT Acceptor States
	3.8.1.3.1 Idle
	3.8.1.3.2 Processing Commit Inquiry
	3.8.1.3.3 Ended

	3.8.1.4 CONNTYPE_PARTNERTM_CHECKABORT Initiator States
	3.8.1.4.1 Idle
	3.8.1.4.2 Awaiting Confirmation
	3.8.1.4.3 Waiting to ReRequest
	3.8.1.4.4 Ended

	3.8.2 Timers
	3.8.2.1 Check Abort Timer

	3.8.3 Initialization
	3.8.4 Higher-Layer Triggered Events
	3.8.5 Processing Events and Sequencing Rules
	3.8.5.1 Transaction Propagation and Coordination
	3.8.5.1.1 Push Propagation
	3.8.5.1.1.1 CONNTYPE_PARTNERTM_PROPAGATE as Acceptor
	3.8.5.1.1.1.1 Receiving a PARTNERTM_PROPAGATE_MTAG_PROPAGATE Message
	3.8.5.1.1.1.2 Receiving Other PARTNERTM_PROPAGATE_MTAG Messages
	3.8.5.1.1.1.3 Receiving a PARTNERTM_PROPAGATE_MTAG_PROTOCOL_ERROR Message
	3.8.5.1.1.1.4 CONTYPE_PARTNERTM_PROPAGATE Connection Disconnected

	3.8.5.1.2 Pull Propagation
	3.8.5.1.2.1 CONNTYPE_PARTNERTM_BRANCH as Initiator
	3.8.5.1.2.1.1 Receiving a PARTNERTM_BRANCH_MTAG_BRANCHED Message
	3.8.5.1.2.1.2 Receiving a PARTNERTM_BRANCH_MTAG_BRANCH_LOG_FULL, PARTNERTM_BRANCH_MTAG_BRANCH_NO_MEM, PARTNERTM_BRANCH_MTAG_BRANCH_TOO_LATE, PARTNERTM_BRANCH_MTAG_BRANCH_TOO_MANY, or PARTNERTM_BRANCH_MTAG_BRANCH_TX_NOT_FOUND Message
	3.8.5.1.2.1.3 Receiving a PARTNERTM_PROPAGATE_MTAG_PHASE0REGISTERED Message
	3.8.5.1.2.1.4 Receiving a PARTNERTM_PROPAGATE_MTAG_PHASE0REGISTRATIONREJECTED Message
	3.8.5.1.2.1.5 Receiving a PARTNERTM_PROPAGATE_MTAG_ABORTREQ Message
	3.8.5.1.2.1.6 Receiving a PARTNERTM_PROPAGATE_MTAG_PHASE0 Message
	3.8.5.1.2.1.7 Receiving a PARTNERTM_PROPAGATE_MTAG_PREPAREREQ Message
	3.8.5.1.2.1.8 Receiving a PARTNERTM_PROPAGATE_MTAG_COMMITREQ Message
	3.8.5.1.2.1.9 Receiving a PARTNERTM_PROPAGATE_MTAG_PROTOCOL_ERROR Message
	3.8.5.1.2.1.10 Connection Disconnected

	3.8.5.2 Transaction Recovery
	3.8.5.2.1 Subordinate-Driven Recovery
	3.8.5.2.1.1 CONNTYPE_PARTNERTM_CHECKABORT as Initiator
	3.8.5.2.1.1.1 Receiving a PARTNERTM_CHECKABORT_MTAG_ABORTED Message
	3.8.5.2.1.1.2 Receiving a PARTNERTM_CHECKABORT_MTAG_RETRY Message
	3.8.5.2.1.1.3 CONNTYPE_PARTNERTM_CHECKABORT Connection Disconnected

	3.8.5.2.2 Superior-Driven Recovery
	3.8.5.2.2.1 CONNTYPE_PARTNERTM_REDELIVERCOMMIT as Acceptor
	3.8.5.2.2.1.1 Receiving a PARTNERTM_REDELIVERCOMMIT_MTAG_COMMITREQ Message
	3.8.5.2.2.1.2 Connection Disconnected

	3.8.6 Timer Events
	3.8.6.1 Check Abort Timer

	3.8.7 Other Local Events
	3.8.7.1 Branch Transaction
	3.8.7.2 Cancel Check Abort
	3.8.7.3 Commit Complete
	3.8.7.4 Create Superior Enlistment Success
	3.8.7.5 Create Superior Enlistment Failure
	3.8.7.6 Phase Zero Complete
	3.8.7.7 Phase One Complete
	3.8.7.8 Recover In Doubt Transaction
	3.8.7.9 Register Phase Zero
	3.8.7.10 Rollback Complete
	3.8.7.11 Unilaterally Aborted

	4 Protocol Examples
	4.1 Simple Transaction Scenario
	4.1.1 Beginning a Transaction
	4.1.2 Completing a Transaction
	4.1.2.1 Committing the Transaction

	4.2 Transaction Marshaling Scenario (Pull Propagation)
	4.2.1 Marshaling the Transaction
	4.2.2 Unmarshaling the Transaction
	4.2.3 Branching the Transaction

	4.3 Transaction Marshaling Scenario (Push Propagation)
	4.3.1 Obtaining the Whereabouts of the Receiver's Transaction Manager
	4.3.2 Exporting the Transaction
	4.3.3 Propagating the Transaction
	4.3.4 Importing the Transaction

	4.4 Simple Enlistment Scenario
	4.4.1 Registering with the Transaction Manager as a Resource Manager
	4.4.2 Enlisting in an Existing Transaction
	4.4.3 Responding to Enlistment Notifications
	4.4.3.1 Responding to a Prepare Request Message
	4.4.3.2 Responding to a Commit Request Message

	4.5 Transaction Manager Two-Phase Commit Scenario
	4.5.1 Phase One
	4.5.1.1 Phase One - Subordinate Resource Managers
	4.5.1.2 Phase One - Subordinate Transaction Manager Facets
	4.5.1.3 Phase One - The Root Transaction Manager

	4.5.2 Phase Two
	4.5.2.1 Phase Two - Subordinate Resource Managers
	4.5.2.2 Phase Two - Subordinate Transaction Manager Facets
	4.5.2.3 Phase Two - The Root Transaction Manager

	4.6 Resource Manager Recovery Scenario
	4.6.1 Initializing the Recovery Process
	4.6.2 Reenlisting in In-Doubt Transactions
	4.6.3 Completing Recovery

	5 Security
	5.1 Security Considerations for Implementers
	5.2 Index of Security Parameters

	6 Appendix A: Product Behavior
	7 Change Tracking
	8 Index

