
1 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

[MS-DNSP]:

Domain Name Service (DNS) Server Management Protocol

Intellectual Property Rights Notice for Open Specifications Documentation

 Technical Documentation. Microsoft publishes Open Specifications documentation (“this
documentation”) for protocols, file formats, data portability, computer languages, and standards
support. Additionally, overview documents cover inter-protocol relationships and interactions.

 Copyrights. This documentation is covered by Microsoft copyrights. Regardless of any other
terms that are contained in the terms of use for the Microsoft website that hosts this
documentation, you can make copies of it in order to develop implementations of the technologies
that are described in this documentation and can distribute portions of it in your implementations

that use these technologies or in your documentation as necessary to properly document the
implementation. You can also distribute in your implementation, with or without modification, any
schemas, IDLs, or code samples that are included in the documentation. This permission also

applies to any documents that are referenced in the Open Specifications documentation.

 No Trade Secrets. Microsoft does not claim any trade secret rights in this documentation.

 Patents. Microsoft has patents that might cover your implementations of the technologies

described in the Open Specifications documentation. Neither this notice nor Microsoft's delivery of
this documentation grants any licenses under those patents or any other Microsoft patents.
However, a given Open Specifications document might be covered by the Microsoft Open
Specifications Promise or the Microsoft Community Promise. If you would prefer a written license,
or if the technologies described in this documentation are not covered by the Open Specifications
Promise or Community Promise, as applicable, patent licenses are available by contacting

iplg@microsoft.com.

 Trademarks. The names of companies and products contained in this documentation might be
covered by trademarks or similar intellectual property rights. This notice does not grant any
licenses under those rights. For a list of Microsoft trademarks, visit
www.microsoft.com/trademarks.

 Fictitious Names. The example companies, organizations, products, domain names, email
addresses, logos, people, places, and events that are depicted in this documentation are fictitious.

No association with any real company, organization, product, domain name, email address, logo,
person, place, or event is intended or should be inferred.

Reservation of Rights. All other rights are reserved, and this notice does not grant any rights other
than as specifically described above, whether by implication, estoppel, or otherwise.

Tools. The Open Specifications documentation does not require the use of Microsoft programming
tools or programming environments in order for you to develop an implementation. If you have access
to Microsoft programming tools and environments, you are free to take advantage of them. Certain

Open Specifications documents are intended for use in conjunction with publicly available standards

specifications and network programming art and, as such, assume that the reader either is familiar
with the aforementioned material or has immediate access to it.

http://go.microsoft.com/fwlink/?LinkId=214445
http://go.microsoft.com/fwlink/?LinkId=214445
http://go.microsoft.com/fwlink/?LinkId=214448
mailto:iplg@microsoft.com
http://www.microsoft.com/trademarks

2 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Revision Summary

Date
Revision
History

Revision
Class Comments

1/25/2008 0.1 Major MCPP Initial Availability.

3/14/2008 0.1.1 Editorial Changed language and formatting in the technical content.

5/16/2008 0.1.2 Editorial Changed language and formatting in the technical content.

6/20/2008 1.0 Major Updated and revised the technical content.

7/25/2008 1.0.1 Editorial Changed language and formatting in the technical content.

8/29/2008 1.0.2 Editorial Changed language and formatting in the technical content.

10/24/2008 2.0 Major Updated and revised the technical content.

12/5/2008 3.0 Major Updated and revised the technical content.

1/16/2009 4.0 Major Updated and revised the technical content.

2/27/2009 5.0 Major Updated and revised the technical content.

4/10/2009 6.0 Major Updated and revised the technical content.

5/22/2009 7.0 Major Updated and revised the technical content.

7/2/2009 8.0 Major Updated and revised the technical content.

8/14/2009 9.0 Major Updated and revised the technical content.

9/25/2009 10.0 Major Updated and revised the technical content.

11/6/2009 11.0 Major Updated and revised the technical content.

12/18/2009 12.0 Major Updated and revised the technical content.

1/29/2010 13.0 Major Updated and revised the technical content.

3/12/2010 14.0 Major Updated and revised the technical content.

4/23/2010 15.0 Major Updated and revised the technical content.

6/4/2010 16.0 Major Updated and revised the technical content.

7/16/2010 17.0 Major Updated and revised the technical content.

8/27/2010 18.0 Major Updated and revised the technical content.

10/8/2010 19.0 Major Updated and revised the technical content.

11/19/2010 20.0 Major Updated and revised the technical content.

1/7/2011 21.0 Major Updated and revised the technical content.

2/11/2011 22.0 Major Updated and revised the technical content.

3/25/2011 22.0 None
No changes to the meaning, language, or formatting of the
technical content.

5/6/2011 22.0 None
No changes to the meaning, language, or formatting of the
technical content.

3 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Date
Revision
History

Revision
Class Comments

6/17/2011 22.1 Minor Clarified the meaning of the technical content.

9/23/2011 23.0 Major Updated and revised the technical content.

12/16/2011 24.0 Major Updated and revised the technical content.

3/30/2012 24.0 None
No changes to the meaning, language, or formatting of the
technical content.

7/12/2012 24.1 Minor Clarified the meaning of the technical content.

10/25/2012 25.0 Major Updated and revised the technical content.

1/31/2013 25.0 None
No changes to the meaning, language, or formatting of the
technical content.

8/8/2013 26.0 Major Updated and revised the technical content.

11/14/2013 27.0 Major Updated and revised the technical content.

2/13/2014 27.0 None
No changes to the meaning, language, or formatting of the
technical content.

5/15/2014 28.0 Major Updated and revised the technical content.

6/30/2015 29.0 Major Significantly changed the technical content.

10/16/2015 30.0 Major Significantly changed the technical content.

7/14/2016 31.0 Major Significantly changed the technical content.

4 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Table of Contents

1 Introduction .. 11
1.1 Glossary ... 11
1.2 References .. 18

1.2.1 Normative References ... 19
1.2.2 Informative References ... 22

1.3 Overview .. 22
1.4 Relationship to Other Protocols .. 23
1.5 Prerequisites/Preconditions ... 25
1.6 Applicability Statement ... 26
1.7 Versioning and Capability Negotiation ... 26
1.8 Vendor-Extensible Fields ... 26
1.9 Standards Assignments ... 27

2 Messages ... 28
2.1 Transport .. 28

2.1.1 Server Security Settings .. 28
2.1.2 Client Security Settings ... 28

2.2 Common Data Types .. 29
2.2.1 DNS RPC Common Messages ... 29

2.2.1.1 Enumerations and Constants .. 29
2.2.1.1.1 DNS_RPC_TYPEID ... 29
2.2.1.1.2 DNS_RPC_PROTOCOLS .. 34
2.2.1.1.3 TRUSTPOINT_STATE .. 34
2.2.1.1.4 TRUSTANCHOR_STATE ... 35

2.2.1.2 Structures .. 36
2.2.1.2.1 DNS_RPC_CURRENT_CLIENT_VER ... 36
2.2.1.2.2 DNS_RPC_BUFFER ... 36
2.2.1.2.3 DNS_RPC_UTF8_STRING_LIST .. 36
2.2.1.2.4 DNS_RPC_UNICODE_STRING_LIST ... 37
2.2.1.2.5 DNS_RPC_NAME_AND_PARAM .. 37
2.2.1.2.6 DNSSRV_RPC_UNION .. 37

2.2.2 Resource Record Messages .. 42
2.2.2.1 Enumerations and Constants .. 42

2.2.2.1.1 DNS_RECORD_TYPE .. 42
2.2.2.1.2 DNS_RPC_NODE_FLAGS... 45

2.2.2.2 Structures .. 46
2.2.2.2.1 DNS_RPC_NAME ... 46
2.2.2.2.2 DNS_COUNT_NAME ... 46
2.2.2.2.3 DNS_RPC_NODE ... 47
2.2.2.2.4 DNS_RPC_RECORD_DATA .. 47

2.2.2.2.4.1 DNS_RPC_RECORD_A .. 48
2.2.2.2.4.2 DNS_RPC_RECORD_NODE_NAME .. 48
2.2.2.2.4.3 DNS_RPC_RECORD_SOA .. 48
2.2.2.2.4.4 DNS_RPC_RECORD_NULL ... 49
2.2.2.2.4.5 DNS_RPC_RECORD_WKS .. 50
2.2.2.2.4.6 DNS_RPC_RECORD_STRING ... 50
2.2.2.2.4.7 DNS_RPC_RECORD_MAIL_ERROR .. 51
2.2.2.2.4.8 DNS_RPC_RECORD_NAME_PREFERENCE 51
2.2.2.2.4.9 DNS_RPC_RECORD_SIG ... 52
2.2.2.2.4.10 DNS_RPC_RECORD_RRSIG ... 52
2.2.2.2.4.11 DNS_RPC_RECORD_NSEC ... 53
2.2.2.2.4.12 DNS_RPC_RECORD_DS .. 54
2.2.2.2.4.13 DNS_RPC_RECORD_KEY ... 54
2.2.2.2.4.14 DNS_RPC_RECORD_DHCID ... 54
2.2.2.2.4.15 DNS_RPC_RECORD_DNSKEY ... 55

5 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

2.2.2.2.4.16 DNS_RPC_RECORD_AAAA ... 55
2.2.2.2.4.17 DNS_RPC_RECORD_NXT ... 55
2.2.2.2.4.18 DNS_RPC_RECORD_SRV ... 56
2.2.2.2.4.19 DNS_RPC_RECORD_ATMA .. 56
2.2.2.2.4.20 DNS_RPC_RECORD_NAPTR ... 57
2.2.2.2.4.21 DNS_RPC_RECORD_WINS .. 58
2.2.2.2.4.22 DNS_RPC_RECORD_WINSR... 58
2.2.2.2.4.23 DNS_RPC_RECORD_TS ... 59
2.2.2.2.4.24 DNS_RPC_RECORD_NSEC3 ... 59
2.2.2.2.4.25 DNS_RPC_RECORD_NSEC3PARAM ... 60
2.2.2.2.4.26 DNS_RPC_RECORD_TLSA ... 61
2.2.2.2.4.27 DNS_RPC_RECORD_UNKNOWN ... 61

2.2.2.2.5 DNS_RPC_RECORD .. 61
2.2.3 Address Information Messages ... 65

2.2.3.1 Enumerations and Constants .. 65
2.2.3.1.1 DNS_IPVAL_CONTEXT .. 65
2.2.3.1.2 DNS_IP_VALIDATE_RETURN_FLAGS .. 66

2.2.3.2 Structures .. 66
2.2.3.2.1 IP4_ARRAY ... 66
2.2.3.2.2 DNS_ADDR ... 67

2.2.3.2.2.1 DNS ADDR .. 67
2.2.3.2.2.2 DNS ADD USER ... 68

2.2.3.2.3 DNS_ADDR_ARRAY .. 68
2.2.3.2.4 DNS_RPC_IP_VALIDATE ... 69

2.2.4 Server Messages .. 70
2.2.4.1 Enumerations and Constants .. 70

2.2.4.1.1 DNS_BOOT_METHODS ... 70
2.2.4.1.2 DNS_NAME_CHECK_FLAGS... 71

2.2.4.2 Structures .. 71
2.2.4.2.1 DNSSRV_VERSION .. 71
2.2.4.2.2 DNS_RPC_SERVER_INFO .. 72

2.2.4.2.2.1 DNS_RPC_SERVER_INFO_W2K .. 72
2.2.4.2.2.2 DNS_RPC_SERVER_INFO_DOTNET ... 76
2.2.4.2.2.3 DNS_RPC_SERVER_INFO_LONGHORN .. 78

2.2.5 Zone Messages ... 79
2.2.5.1 Enumerations and Constants .. 79

2.2.5.1.1 DNS_ZONE_TYPE .. 79
2.2.5.1.2 DNS_ZONE_SECONDARY_SECURITY .. 79
2.2.5.1.3 DNS_ZONE_NOTIFY_LEVEL .. 80
2.2.5.1.4 ZONE_REQUEST_FILTERS .. 80
2.2.5.1.5 ZONE_SKD_ROLLOVER_TYPE .. 81
2.2.5.1.6 ZONE_SKD_ROLLOVER_ACTION .. 81

2.2.5.2 Structures .. 82
2.2.5.2.1 DNS_RPC_ZONE .. 82

2.2.5.2.1.1 DNS_RPC_ZONE_W2K .. 82
2.2.5.2.1.2 DNS_RPC_ZONE_DOTNET ... 83

2.2.5.2.2 DNS_RPC_ZONE_FLAGS ... 83
2.2.5.2.3 DNS_RPC_ZONE_LIST.. 84

2.2.5.2.3.1 DNS_RPC_ZONE_LIST_W2K .. 85
2.2.5.2.3.2 DNS_RPC_ZONE_LIST_DOTNET ... 85

2.2.5.2.4 DNS_RPC_ZONE_INFO ... 86
2.2.5.2.4.1 DNS_RPC_ZONE_INFO_W2K ... 86
2.2.5.2.4.2 DNS_RPC_ZONE_INFO_DOTNET .. 88
2.2.5.2.4.3 DNS_RPC_ZONE_INFO_LONGHORN ... 90

2.2.5.2.5 DNS_RPC_ZONE_SECONDARIES ... 92
2.2.5.2.5.1 DNS_RPC_ZONE_SECONDARIES_W2K ... 92
2.2.5.2.5.2 DNS_RPC_ZONE_SECONDARIES_DOTNET 92
2.2.5.2.5.3 DNS_RPC_ZONE_SECONDARIES_LONGHORN 93

6 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

2.2.5.2.6 DNS_RPC_ZONE_DATABASE ... 93
2.2.5.2.6.1 DNS_RPC_ZONE_DATABASE_W2K ... 94
2.2.5.2.6.2 DNS_RPC_ZONE_DATABASE_DOTNET .. 94

2.2.5.2.7 DNS_RPC_ZONE_CREATE_INFO .. 94
2.2.5.2.7.1 DNS_RPC_ZONE_CREATE_INFO_W2K .. 95
2.2.5.2.7.2 DNS_RPC_ZONE_CREATE_INFO_DOTNET 97
2.2.5.2.7.3 DNS_RPC_ZONE_CREATE_INFO_LONGHORN................................. 98

2.2.5.2.8 DNS_RPC_ZONE_EXPORT_INFO .. 99
2.2.5.2.9 DNS_RPC_ENUM_ZONES_FILTER .. 99
2.2.5.2.10 DNS_RPC_FORWARDERS... 100

2.2.5.2.10.1 DNS_RPC_FORWARDERS_W2K ... 100
2.2.5.2.10.2 DNS_RPC_FORWARDERS_DOTNET .. 101
2.2.5.2.10.3 DNS_RPC_FORWARDERS_LONGHORN ... 101

2.2.6 Zone Update Messages ... 101
2.2.6.1 Enumerations and Constants ... 101

2.2.6.1.1 DNS_ZONE_UPDATE ... 101
2.2.6.1.2 KeySignScope .. 102
2.2.6.1.3 ImportOpResult .. 102

2.2.6.2 Structures ... 103
2.2.6.2.1 DNS_RPC_SKD ... 103
2.2.6.2.2 DNS_RPC_SKD_LIST .. 104
2.2.6.2.3 DNS_RPC_SKD_STATE .. 104
2.2.6.2.4 DNS_RPC_TRUST_POINT ... 108
2.2.6.2.5 DNS_RPC_TRUST_POINT_LIST ... 109
2.2.6.2.6 DNS_RPC_TRUST_ANCHOR ... 109
2.2.6.2.7 DNS_RPC_TRUST_ANCHOR_LIST ... 111
2.2.6.2.8 DNS_RPC_SIGNING_VALIDATION_ERROR ... 111
2.2.6.2.9 DNS_RPC_ZONE_DNSSEC_SETTINGS ... 112
2.2.6.2.10 DNS_RPC_ZONE_SKD ... 113
2.2.6.2.11 DNS_RPC_SKD_STATE_EX .. 114

2.2.7 Application Directory Partition Messages ... 115
2.2.7.1 Enumerations and Constants ... 115

2.2.7.1.1 DNS_RPC_DP_FLAGS .. 115
2.2.7.2 Structures ... 116

2.2.7.2.1 DNS_RPC_DP_INFO .. 116
2.2.7.2.2 DNS_RPC_DP_REPLICA ... 118
2.2.7.2.3 DNS_RPC_DP_ENUM ... 118
2.2.7.2.4 DNS_RPC_DP_LIST ... 118
2.2.7.2.5 DNS_RPC_ENLIST_DP ... 119
2.2.7.2.6 DNS_RPC_ZONE_CHANGE_DP ... 120

2.2.8 AutoConfig Messages ... 120
2.2.8.1 Enumerations and Constants ... 120

2.2.8.1.1 DNS_RPC_AUTOCONFIG .. 120
2.2.8.2 Structures ... 122

2.2.8.2.1 DNS_RPC_AUTOCONFIGURE .. 122
2.2.9 Logging Messages .. 122

2.2.9.1 Enumerations and Constants ... 122
2.2.9.1.1 DNS_LOG_LEVELS .. 122
2.2.9.1.2 DNS_EVENTLOG_TYPES .. 124

2.2.10 Server Statistics Messages .. 124
2.2.10.1 Enumerations and Constants ... 124

2.2.10.1.1 DNSSRV_STATID_TYPES ... 124
2.2.10.2 Structures ... 126

2.2.10.2.1 DNSSRV_STAT_HEADER .. 126
2.2.10.2.2 DNSSRV_STATS ... 126
2.2.10.2.3 DNS_SYSTEMTIME .. 126
2.2.10.2.4 DNSSRV_TIME_STATS .. 127
2.2.10.2.5 DNSSRV_QUERY_STATS .. 128

7 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

2.2.10.2.6 DNSSRV_QUERY2_STATS .. 129
2.2.10.2.7 DNSSRV_RECURSE_STATS .. 131
2.2.10.2.8 DNSSRV_DNSSEC_STATS.. 138
2.2.10.2.9 DNSSRV_MASTER_STATS .. 139
2.2.10.2.10 DNSSRV_SECONDARY_STATS .. 142
2.2.10.2.11 DNSSRV_WINS_STATS ... 145
2.2.10.2.12 DNSSRV_UPDATE_STATS .. 146
2.2.10.2.13 DNSSRV_SKWANSEC_STATS ... 150
2.2.10.2.14 DNSSRV_DS_STATS ... 151
2.2.10.2.15 DNSSRV_MEMTAG_STATS ... 156
2.2.10.2.16 DNSSRV_MEMORY_STATS ... 156
2.2.10.2.17 DNSSRV_TIMEOUT_STATS .. 161
2.2.10.2.18 DNSSRV_DBASE_STATS .. 163
2.2.10.2.19 DNSSRV_RECORD_STATS ... 163
2.2.10.2.20 DNSSRV_PACKET_STATS .. 164
2.2.10.2.21 DNSSRV_NBSTAT_STATS .. 166
2.2.10.2.22 DNSSRV_PRIVATE_STATS ... 167
2.2.10.2.23 DNSSRV_ERROR_STATS.. 171
2.2.10.2.24 DNSSRV_CACHE_STATS .. 172
2.2.10.2.25 DNSSRV_RRL_STATS .. 173

2.2.11 Key Structures .. 174
2.2.11.1 Enumerations and Constants ... 174

2.2.11.1.1 Cryptographic Algorithm Name... 174
2.2.11.2 Structures ... 175

2.2.11.2.1 RSA Key Pair .. 175
2.2.11.2.2 ECDSA_P256 Key Pair ... 176
2.2.11.2.3 ECDSA_P384 Key Pair ... 177
2.2.11.2.4 Protection Key Identifier .. 177
2.2.11.2.5 Protection Key Attributes ... 179
2.2.11.2.6 Exported Key Pair ... 179

2.2.12 Zone Statistics Messages .. 180
2.2.12.1 Enumerations and Constants ... 180

2.2.12.1.1 DNS_ZONE_STATS_TYPE .. 180
2.2.12.2 Structures ... 182

2.2.12.2.1 DNSSRV_ZONE_TIME_STATS ... 182
2.2.12.2.2 DNSSRV_ZONE_QUERY_STATS .. 183
2.2.12.2.3 DNSSRV_ZONE_TRANSFER_STATS ... 183
2.2.12.2.4 DNSSRV_ZONE_UPDATE_STATS .. 184
2.2.12.2.5 DNS_RPC_ZONE_STATS_V1 .. 184
2.2.12.2.6 DNSSRV_ZONE_RRL_STATS .. 184

2.2.13 Zone Scope or Cache Scope Messages ... 185
2.2.13.1 Enumerations and Constants ... 185
2.2.13.2 Structures ... 185

2.2.13.2.1 DNS_RPC_ENUM_ZONE_SCOPE_LIST ... 185
2.2.13.2.2 DNS_RPC_ZONE_SCOPE_CREATE_INFO .. 185

2.2.13.2.2.1 DNS_RPC_ZONE_SCOPE_CREATE_INFO_V1 185
2.2.13.2.3 DNS_RPC_ZONE_SCOPE_INFO ... 186

2.2.13.2.3.1 DNS_RPC_ZONE_SCOPE_INFO_V1 .. 186
2.2.14 Server Scope Messages .. 186

2.2.14.1 Structures ... 186
2.2.14.1.1 DNS_RPC_ENUM_SCOPE_LIST ... 186

2.2.15 Policies ... 187
2.2.15.1 Enumerations and Constants ... 187

2.2.15.1.1 Constants .. 187
2.2.15.1.1.1 DNS_RPC_CRITERIA_COMPARATOR .. 188
2.2.15.1.1.2 DNS_RPC_POLICY_CONDITION .. 188
2.2.15.1.1.3 DNS_RPC_POLICY_LEVEL .. 189
2.2.15.1.1.4 DNS_RPC_POLICY_ACTION_TYPE ... 189

8 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

2.2.15.1.1.5 DNS_RPC_POLICY_TYPE .. 189
2.2.15.1.1.6 DNS_RPC_CRITERIA_ENUM.. 190

2.2.15.2 Structures ... 191
2.2.15.2.1 DNS_RPC_CLIENT_SUBNET_RECORD.. 191
2.2.15.2.2 DNS_RPC_POLICY_CONTENT ... 191
2.2.15.2.3 DNS_RPC_POLICY_CONTENT_LIST ... 191
2.2.15.2.4 DNS_RPC_CRITERIA ... 192
2.2.15.2.5 DNS_RPC_POLICY .. 192
2.2.15.2.6 DNS_RPC_POLICY_NAME .. 193
2.2.15.2.7 DNS_RPC_ENUMERATE_POLICY_LIST ... 193

2.2.16 Response Rate Limiting Messages .. 194
2.2.16.1 Constants ... 194

2.2.16.1.1 DNS_RRL_MODE_ENUM .. 194
2.2.16.2 Structures ... 195

2.2.16.2.1 DNS_RPC_RRL_PARAMS .. 195
2.2.17 Virtualization Instances .. 197

2.2.17.1 Structures ... 197
2.2.17.1.1 DNS_RPC_VIRTUALIZATION_INSTANCE .. 197
2.2.17.1.2 DNS_RPC_VIRTUALIZATION_INSTANCE_INFO 197
2.2.17.1.3 DNS_RPC_ENUM_VIRTUALIZATION_INSTANCE_LIST 198

2.3 Directory Service Schema Elements .. 198
2.3.1 Object Classes ... 200

2.3.1.1 msDNS-ServerSettings ... 200
2.3.2 Attributes ... 200

2.3.2.1 dnsProperty... 200
2.3.2.1.1 Property Id .. 201
2.3.2.1.2 DcPromo Flag .. 202

2.3.2.2 dnsRecord ... 203
2.3.2.3 msDNS-IsSigned .. 204
2.3.2.4 msDNS-NSEC3OptOut .. 204
2.3.2.5 msDNS-SigningKeys ... 204
2.3.2.6 msDNS-SignWithNSEC3 .. 204
2.3.2.7 msDNS-NSEC3UserSalt ... 204
2.3.2.8 msDNS-DNSKEYRecords ... 204
2.3.2.9 msDNS-DSRecordSetTTL .. 205
2.3.2.10 msDNS-NSEC3Iterations ... 205
2.3.2.11 msDNS-PropagationTime .. 205
2.3.2.12 msDNS-NSEC3CurrentSalt .. 205
2.3.2.13 msDNS-RFC5011KeyRollovers ... 205
2.3.2.14 msDNS-NSEC3HashAlgorithm .. 205
2.3.2.15 msDNS-DSRecordAlgorithms ... 205
2.3.2.16 msDNS-DNSKEYRecordSetTTL ... 205
2.3.2.17 msDNS-MaintainTrustAnchor ... 205
2.3.2.18 msDNS-NSEC3RandomSaltLength .. 205
2.3.2.19 msDNS-SigningKeyDescriptors .. 205
2.3.2.20 msDNS-SignatureInceptionOffset ... 210
2.3.2.21 msDNS-ParentHasSecureDelegation ... 210
2.3.2.22 msDNS-SecureDelegationPollingPeriod ... 210
2.3.2.23 msDNS-KeymasterZones .. 210

3 Protocol Details ... 211
3.1 DnsServer Server Details ... 211

3.1.1 Abstract Data Model ... 211
3.1.1.1 DNS Server Configuration Information .. 215

3.1.1.1.1 DNS Server Integer Properties ... 215
3.1.1.1.2 DNS Server Address Array Properties .. 231
3.1.1.1.3 DNS Server String Properties ... 231
3.1.1.1.4 DNS Server String List Properties ... 232

9 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

3.1.1.2 DNS Zone Configuration Information .. 233
3.1.1.2.1 DNS Zone Integer Properties ... 233
3.1.1.2.2 DNS Zone Address Array Properties .. 235
3.1.1.2.3 DNS Zone String Properties ... 236
3.1.1.2.4 DNS Record Configuration Information .. 236
3.1.1.2.5 DNS Zone Scope or Cache Scope Configuration Information 236

3.1.1.3 DNS Server Server Scope Configuration Information 237
3.1.1.3.1 DNS Server Server Scope Integer Properties 237
3.1.1.3.2 DNS Server Server Scope Address Array Properties 237

3.1.2 Timers ... 237
3.1.3 Initialization .. 237
3.1.4 Message Processing Events and Sequencing Rules ... 241

3.1.4.1 R_DnssrvOperation (Opnum 0) .. 243
3.1.4.2 R_DnssrvQuery (Opnum 1) ... 275
3.1.4.3 R_DnssrvComplexOperation (Opnum 2) .. 277
3.1.4.4 R_DnssrvEnumRecords (Opnum 3)... 286
3.1.4.5 R_DnssrvUpdateRecord (Opnum 4) .. 288
3.1.4.6 R_DnssrvOperation2 (Opnum 5) .. 290
3.1.4.7 R_DnssrvQuery2 (Opnum 6) ... 291
3.1.4.8 R_DnssrvComplexOperation2 (Opnum 7) .. 292
3.1.4.9 R_DnssrvEnumRecords2 (Opnum 8) ... 292
3.1.4.10 R_DnssrvUpdateRecord2 (Opnum 9) .. 293
3.1.4.11 R_DnssrvUpdateRecord3 (Opnum 10)... 293
3.1.4.12 R_DnssrvEnumRecords3 (Opnum 11) ... 294
3.1.4.13 R_DnssrvOperation3 (Opnum 12) .. 294
3.1.4.14 R_DnssrvQuery3 (Opnum 13) .. 296
3.1.4.15 R_DnssrvComplexOperation3 (Opnum 14) .. 297
3.1.4.16 R_DnssrvOperation4 (Opnum: 15) ... 298
3.1.4.17 R_DnssrvQuery4 (Opnum 16) .. 298
3.1.4.18 R_DnssrvUpdateRecord4 (Opnum 17)... 299
3.1.4.19 R_DnssrvEnumRecords4 (Opnum 18) ... 300

3.1.5 Timer Events ... 300
3.1.6 Other Local Events ... 300

3.1.6.1 Three-phase authorization test .. 300
3.1.6.2 Directory server security descriptors reading and caching 301
3.1.6.3 dnsRecord in the Directory Server .. 301
3.1.6.4 Modifying Directory Server Security Descriptors 302

3.1.7 Key Processing Rules ... 302
3.1.7.1 Constructing an Exported Key .. 302
3.1.7.2 Importing an Exported Key ... 304

3.1.8 DNS Policy .. 305
3.1.8.1 Client Subnet Record .. 305
3.1.8.2 DNS Policy Criteria ... 305
3.1.8.3 DNS Policy Validation ... 306

4 Protocol Examples ... 309
4.1 Querying a DNS server DWORD property ... 309
4.2 Modifying a DNS server DWORD property... 309
4.3 Creating a New Zone ... 310
4.4 Enumerating Zones ... 310
4.5 Creating and Deleting a DNS Record .. 311
4.6 Creating a Zone Scope ... 312
4.7 Deleting a Zone Scope ... 312
4.8 Enumerating Zone Scopes .. 313
4.9 Creating and Deleting a DNS Record in a Zone Scope .. 313
4.10 Creating a Policy ... 314
4.11 Updating a Policy .. 315
4.12 Deleting a Policy ... 315

10 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

4.13 Enumerating Policies ... 316
4.14 Creating a Client Subnet Record.. 316
4.15 Deleting a Client Subnet Record .. 316
4.16 Enumerating Client Subnet Records ... 317
4.17 Setting Response Rate Limiting with Enabled Mode ... 317
4.18 Getting Response Rate Limiting Settings .. 318
4.19 Creating a Virtualization Instance .. 318
4.20 Deleting a Virtualization Instance .. 318
4.21 Creating a Zone in a Virtualization Instance .. 319
4.22 Enumerating Zone Scopes in the Virtualization Instance Zone............................... 319
4.23 Adding and Deleting a Record in the Virtualization Instance Zone 320

5 Security ... 322
5.1 Security Considerations for Implementers .. 322

5.1.1 Security Considerations Specific to the DNS Server Management Protocol 322
5.2 Index of Security Parameters ... 322

6 Appendix A: Full IDL .. 323

7 Appendix B: Product Behavior ... 358

8 Change Tracking .. 389

9 Index ... 394

11 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

1 Introduction

The Domain Name Service (DNS) Server Management Protocol defines RPC interfaces that provide
methods for remotely accessing and administering a DNS server. It is a client/server protocol based
on RPC that is used in the configuration, management, and monitoring of a DNS server.

Sections 1.5, 1.8, 1.9, 2, and 3 of this specification are normative. All other sections and examples in
this specification are informative.

1.1 Glossary

This document uses the following terms:

access control list (ACL): A list of access control entries (ACEs) that collectively describe the

security rules for authorizing access to some resource; for example, an object or set of objects.

Active Directory: A general-purpose network directory service. Active Directory also refers to

the Windows implementation of a directory service. Active Directory stores information
about a variety of objects in the network. Importantly, user accounts, computer accounts,
groups, and all related credential information used by the Windows implementation of Kerberos
are stored in Active Directory. Active Directory is either deployed as Active Directory Domain
Services (AD DS) or Active Directory Lightweight Directory Services (AD LDS). [MS-ADTS]

describes both forms. For more information, see [MS-AUTHSOD] section 1.1.1.5.2, Lightweight
Directory Access Protocol (LDAP) versions 2 and 3, Kerberos, and DNS.

Active Directory domain: A domain hosted on Active Directory. For more information, see [MS-
ADTS].

Active Directory domain controller promotion (DCPROMO): The act of causing a server to
become a domain controller (DC).

Active Directory forest: See forest.

active refresh: A self-generated DNS query for the DNSKEY records at a trust point, for the
purpose of automatically retrieving new trust anchors and removing revoked trust anchors.
See [RFC5011].

aging: A concept in which a DNS server keeps track of time stamps for the last update of
individual resource records. Duration from last time stamp to current time is considered as the
age of the resource-record and this value is used for scavenging, a process for cleaning out not-

recently used records.

application directory partition: An application NC.

ASCII: The American Standard Code for Information Interchange (ASCII) is an 8-bit character-
encoding scheme based on the English alphabet. ASCII codes represent text in computers,
communications equipment, and other devices that work with text. ASCII refers to a single 8-bit
ASCII character or an array of 8-bit ASCII characters with the high bit of each character set to
zero.

authentication level: A numeric value indicating the level of authentication or message protection
that remote procedure call (RPC) will apply to a specific message exchange. For more
information, see [C706] section 13.1.2.1 and [MS-RPCE].

authoritative: A DNS server is authoritative for a portion of the DNS namespace if it hosts a
primary or secondary zone for that portion of the DNS namespace.

autocreated zone: A zone that is created automatically by a DNS server, such as 0.in-addr.arpa,
127.in-addr.arpa or 255.in-addr.arpa.

%5bMS-ADTS%5d.pdf#Section_d243592709994c628c6d13ba31a52e1a
%5bMS-AUTHSOD%5d.pdf#Section_953d700a57cb4cf7b0c3a64f34581cc9
http://go.microsoft.com/fwlink/?LinkId=225980
http://go.microsoft.com/fwlink/?LinkId=89824
%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15

12 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

cache: When a DNS server receives information from other servers, it stores the information for a
certain amount of time in its own in-memory zones, also referred to as a DNS cache. This

improves performance of domain name resolution and reduces DNS-related query traffic. The
cache contains only nodes that have unexpired records and expired DNS records that are not-

yet-freed.

cache scope: A unique version of a cache zone that can be created inside a DNS server cache.
Resource records can then be added (and subsequently managed) in the cache scope. The cache
scope behavior is the same as a DNS server cache.

client subnet record: A collection of IPv4 and IPv6 subnets grouped together. Each Client
Subnet Record has a unique name.

Coordinated Universal Time (UTC): A high-precision atomic time standard that approximately

tracks Universal Time (UT). It is the basis for legal, civil time all over the Earth. Time zones
around the world are expressed as positive and negative offsets from UTC. In this role, it is also
referred to as Zulu time (Z) and Greenwich Mean Time (GMT). In these specifications, all
references to UTC refer to the time at UTC-0 (or GMT).

crossRef object: An object residing in the partitions container of the config NC that describes the
properties of a naming context (NC), such as its domain naming service name, operational

settings, and so on.

delegation: A name server record set in a parent zone that lists the authoritative name servers
for a delegated subzone.

directory server: A persistent storage for DNS zones and records. A DNS server can access DNS
data stored in a directory server using the LDAP protocol or a similar directory access
mechanism.

directory server security descriptors: The set of security descriptors read from the

directory server, encompassing the DNS Server Configuration Access Control List, Zone Access
Control List, and the Application Directory Partition Access Control List.

directory service (DS): A service that stores and organizes information about a computer
network's users and network shares, and that allows network administrators to manage users'
access to the shares. See also Active Directory.

directory-server-integrated: A DNS server is directory-server-integrated if a local directory
server such as Active Directory resides in the same machine as the DNS Server.

distinguished name (DN): A name that uniquely identifies an object by using the relative
distinguished name (RDN) for the object, and the names of container objects and domains
that contain the object. The distinguished name (DN) identifies the object and its location in a
tree.

DNS domain partition: An application directory partition stored in the directory server that
is replicated to all DNS servers in the domain.

DNS forest partition: An application directory partition stored in the directory server that is

replicated to all DNS servers in the forest.

DNS Operations: DNS Query Processing, DNS Zone Transfer, DNS Recursive Query, and DNS
Update are collectively called DNS Operations.

DNS policy: A group of processing rules, based on which a DNS Operation is controlled and
allowed or denied access. A DNS Policy can be at a server level or at a specific zone. A DNS
Policy is specific to a DNS Operation.

13 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

DNS policy criteria: A NULL-terminated Unicode string that states one of the processing rules of
a DNS Policy.

Domain Name System (DNS): A hierarchical, distributed database that contains mappings of
domain names (1) to various types of data, such as IP addresses. DNS enables the location of

computers and services by user-friendly names, and it also enables the discovery of other
information stored in the database.

dynamic endpoint: A network-specific server address that is requested and assigned at run time.
For more information, see [C706].

dynamic update: A mechanism defined in [RFC2136] by which updates for DNS records can be
sent to the authoritative DNS server for a zone through the DNS protocol.

expired DNS record: A DNS record stored in the cache whose age is greater than the value of its

TTL.

forest: In the Active Directory directory service, a forest is a set of naming contexts (NCs)
consisting of one schema NC, one config NC, and one or more domain NCs. Because a set of

NCs can be arranged into a tree structure, a forest is also a set of one or several trees of NCs.

forwarder: The forwarder is the kernel-mode component of the router that is responsible for
forwarding data from one router interface to the others. The forwarder also decides whether a

packet is destined for local delivery, whether it is destined to be forwarded out of another
interface, or both. There are two kernel-mode forwarders: unicast and multicast.

forwarders: A DNS server that is designated to facilitate forwarding of queries for other DNS
servers.

FSMO role: A set of objects that can be updated in only one naming context (NC) replica (the
FSMO role owner's replica) at any given time. For more information, see [MS-ADTS] section
3.1.1.1.11. See also FSMO role owner.

FSMO role owner: The domain controller (DC) holding the naming context (NC) replica in which
the objects of a FSMO role can be updated.

full zone transfer (AXFR): A DNS protocol mechanism [RFC1035] through which an entire copy
of a DNS zone can be transmitted to a remote DNS server.

fully qualified domain name (FQDN): An unambiguous domain name (2) that gives an absolute
location in the Domain Name System's (DNS) hierarchy tree, as defined in [RFC1035] section
3.1 and [RFC2181] section 11.

global name zone (GNZ): A zone that provides single-label name resolution for large enterprise
networks that do not deploy WINS and where using domain name suffixes to provide single-
label name resolution is not practical.

globally unique identifier (GUID): A term used interchangeably with universally unique
identifier (UUID) in Microsoft protocol technical documents (TDs). Interchanging the usage of
these terms does not imply or require a specific algorithm or mechanism to generate the value.

Specifically, the use of this term does not imply or require that the algorithms described in

[RFC4122] or [C706] must be used for generating the GUID. See also universally unique
identifier (UUID).

glue record: A record of type A or AAAA included in a zone to specify the IP address of a DNS
server used in a delegation. The fully qualified domain name of each glue record will match the
fully qualified domain name of an authoritative DNS server found in one of the NS records in the
delegation.

http://go.microsoft.com/fwlink/?LinkId=107017
http://go.microsoft.com/fwlink/?LinkId=90264
http://go.microsoft.com/fwlink/?LinkId=127732
http://go.microsoft.com/fwlink/?LinkId=90460

14 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

incremental zone transfer (IXFR): A DNS protocol mechanism [RFC1995] through which a
partial copy of a DNS zone can be transmitted to a remote DNS server. An incremental zone

transfer, or IXFR, is represented as a sequence of DNS record changes that can be applied to
one image of a zone to synchronize it with another image of a zone.

Interface Definition Language (IDL): The International Standards Organization (ISO) standard
language for specifying the interface for remote procedure calls. For more information, see
[C706] section 4.

Internet Protocol version 4 (IPv4): An Internet protocol that has 32-bit source and destination
addresses. IPv4 is the predecessor of IPv6.

Internet Protocol version 6 (IPv6): A revised version of the Internet Protocol (IP) designed to
address growth on the Internet. Improvements include a 128-bit IP address size, expanded

routing capabilities, and support for authentication (2) and privacy.

key master: A DNS server that is responsible for generating and maintaining DNSSEC signing
keys for one particular zone.

key rollover: The process through which DNSSEC signing keys are updated as described in
[RFC4641] and [RFC5011].

key signing key (KSK): A DNSKEY used to sign only the DNSKEY record set at the root of the

zone, as defined in [RFC4641].

lame delegation: A delegation in which none of the name servers listed in the delegation host
the delegated subzone or respond to DNS queries.

Lightweight Directory Access Protocol (LDAP): The primary access protocol for Active
Directory. Lightweight Directory Access Protocol (LDAP) is an industry-standard protocol,
established by the Internet Engineering Task Force (IETF), which allows users to query and
update information in a directory service (DS), as described in [MS-ADTS]. The Lightweight

Directory Access Protocol can be either version 2 [RFC1777] or version 3 [RFC3377].

local directory server: A directory server instance on the same host as the DNS server.

multizone operation: An operation requested to be performed on a set of zones with one or
more particular properties, rather than on a single zone.

multizone operation string: A string indicating a property defining a set of zones on which an
operation is to be performed.

naming context root (NC Root): The specific directory object referenced by the naming context

dsname.

Network Data Representation (NDR): A specification that defines a mapping from Interface
Definition Language (IDL) data types onto octet streams. NDR also refers to the runtime
environment that implements the mapping facilities (for example, data provided to NDR). For
more information, see [MS-RPCE] and [C706] section 14.

network mask: A bit vector that, when logically AND-ed with an IP address, indicates the subnet

to which an IP address belongs. Also known as net mask.

node: An entry identified by name in a DNS zone. A node contains all of the DNS records sets
associated with the name.

nonkey master primary server: In a file-backed signed zone, a nonkey master primary is a
server that holds the primary copy of the signed zone. A nonkey master primary server can also
do signature refreshes and Zone Signing using Zone Signing Keys but cannot generate or
manage keys on its own.

http://go.microsoft.com/fwlink/?LinkId=106956
http://go.microsoft.com/fwlink/?LinkId=225979
http://go.microsoft.com/fwlink/?LinkId=90290
http://go.microsoft.com/fwlink/?LinkID=91337

15 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

NoRefresh interval: If an update which does not change the DNS data for a record set is received
within the NoRefresh interval then the DNS server will not update the timestamp on the

record. This allows the DNS server to avoid unnecessary updates to the data store.

online signing: The process of signing and maintaining DNSSEC characteristics of a zone.

opnum: An operation number or numeric identifier that is used to identify a specific remote
procedure call (RPC) method or a method in an interface. For more information, see [C706]
section 12.5.2.12 or [MS-RPCE].

primary DNS server: A DNS server that holds a master authoritative copy of a particular zone's
data in local persistent storage.

primary server: In a DHCPv4 server failover configuration, the primary server in the failover
relationship is the first server that is used when an attempt is made by a DHCP client to obtain

an IP address and options. A server is primary in the context of a subnet. However, a primary
server for a given subnet can also be a secondary server for another subnet.

primary zone: A zone for which a master authoritative copy of data is held in persistent local

storage or in a locally accessible directory server. A zone stored in a directory server is a
primary zone for any DNS server that can retrieve a copy of it from its local directory
server.

read-only domain controller (RODC): A domain controller (DC) that does not accept originating
updates. Additionally, an RODC does not perform outbound replication. An RODC cannot be the
primary domain controller (PDC) for its domain.

refresh interval: If the NoRefresh interval for a record has expired and the DNS server receives
a DNS update that does not change the record data then the DNS server will commit a new
timestamp to the data store. The combination of NoRefresh and refresh intervals allows a DNS
server to maintain a relatively accurate record timestamp without unnecessary updates to the

data store.

relative distinguished name (RDN): The name of an object relative to its parent. This is the

leftmost attribute-value pair in the distinguished name (DN) of an object. For example, in the
DN "cn=Peter Houston, ou=NTDEV, dc=microsoft, dc=com", the RDN is "cn=Peter Houston".
For more information, see [RFC2251].

remote procedure call (RPC): A context-dependent term commonly overloaded with three
meanings. Note that much of the industry literature concerning RPC technologies uses this term

interchangeably for any of the three meanings. Following are the three definitions: (*) The
runtime environment providing remote procedure call facilities. The preferred usage for this
meaning is "RPC runtime". (*) The pattern of request and response message exchange between
two parties (typically, a client and a server). The preferred usage for this meaning is "RPC
exchange". (*) A single message from an exchange as defined in the previous definition. The
preferred usage for this term is "RPC message". For more information about RPC, see [C706].

resource record (RR): A single piece of DNS data. Each resource record consists of a DNS type,
a DNS class, a time to live (TTL), and record data (RDATA) appropriate for the resource
record's DNS type.

Response Rate Limiting (RRL): A collection of Domain Name System (DNS) server settings
that can help mitigate DNS amplification attacks. See [RRL].

root directory system agent-specific entry (rootDSE): The logical root of a directory server,
whose distinguished name (DN) is the empty string. In the Lightweight Directory Access

Protocol (LDAP), the rootDSE is a nameless entry (a DN with an empty string) containing the
configuration status of the server. Access to this entry is typically available to unauthenticated
clients. The rootDSE contains attributes that represent the features, capabilities, and
extensions provided by the particular server.

http://go.microsoft.com/fwlink/?LinkId=90325
http://go.microsoft.com/fwlink/?LinkId=617464

16 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

root hints: DNS root hints contain host information that is needed to resolve names outside of
the authoritative DNS domains. It contains names and addresses of the root DNS servers.

RPC transport: The underlying network services used by the remote procedure call (RPC) runtime
for communications between network nodes. For more information, see [C706] section 2.

scavenging: A regularly scheduled process in which the state of database records are changed if
they have not been updated within a certain time interval, measured by the process that checks
whether current time exceeds the record's time stamp value.

secondary DNS server: A DNS server that holds an authoritative read-only copy of a particular
zone's data. The copy is periodically copied from another authoritative DNS server. Each zone
can have any number of secondary DNS servers.

secondary zone: A zone for which an authoritative read-only copy of data is hosted by a

particular DNS server. The data for a secondary zone is periodically copied from another DNS
server that is authoritative for the zone.

secret key transaction authentication (TSIG): An authentication mechanism specified in

[RFC2845] for DNS dynamic updates that uses a one-way hashing function to provide a
cryptographically secure means of identifying each endpoint.

secure delegation: A delegation in a parent zone (name server record set), along with a signed

delegation signer (DS) record set, signifying a delegation to a signed subzone.

secure dynamic update: A modification of the dynamic update mechanism defined in
[RFC3645] by which updates for DNS records can be sent securely to the authoritative DNS
server for a zone through the DNS protocol.

security context: An abstract data structure that contains authorization information for a
particular security principal in the form of a Token/Authorization Context (see [MS-DTYP] section
2.5.2). A server uses the authorization information in a security context to check access to

requested resources. A security context also contains a key identifier that associates mutually
established cryptographic keys, along with other information needed to perform secure

communication with another security principal.

security descriptor: A data structure containing the security information associated with a
securable object. A security descriptor identifies an object's owner by its security identifier
(SID). If access control is configured for the object, its security descriptor contains a
discretionary access control list (DACL) with SIDs for the security principals who are allowed or

denied access. Applications use this structure to set and query an object's security status. The
security descriptor is used to guard access to an object as well as to control which type of
auditing takes place when the object is accessed. The security descriptor format is specified in
[MS-DTYP] section 2.4.6; a string representation of security descriptors, called SDDL, is
specified in [MS-DTYP] section 2.5.1.

security provider: A pluggable security module that is specified by the protocol layer above the

remote procedure call (RPC) layer, and will cause the RPC layer to use this module to secure
messages in a communication session with the server. The security provider is sometimes
referred to as an authentication service. For more information, see [C706] and [MS-RPCE].

security support provider (SSP): A dynamic-link library (DLL) that implements the Security
Support Provider Interface (SSPI) by making one or more security packages available to
applications. Each security package provides mappings between an application's SSPI function
calls and an actual security model's functions. Security packages support security protocols such

as Kerberos authentication and NTLM.

Security Support Provider Interface (SSPI): A Windows-specific API implementation that
provides the means for connected applications to call one of several security providers to
establish authenticated connections and to exchange data securely over those connections. This

http://go.microsoft.com/fwlink/?LinkId=90388
http://go.microsoft.com/fwlink/?LinkId=90440
%5bMS-DTYP%5d.pdf#Section_cca2742956894a16b2b49325d93e4ba2

17 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

is the Windows equivalent of Generic Security Services (GSS)-API, and the two families of APIs
are on-the-wire compatible.

serial number: A field in the SOA record [RFC1035] for a zone. This value is used to compare
different versions of zone.

server level policy: A policy can be specified at each scope (subnet) or it can be specified global
to the DHCP server. A policy which is global to the DHCP server is referred as a server-level
policy and applies to all the scopes configured on the DHCP server.

server scope: A collection of DNS server settings with a unique name. The DNS server behavior is
determined by the applied server scope.

signing key descriptor (SKD): A collection of DNSSEC signing key characteristics such as
algorithm, key length, and signature validity period that describe how DNSSEC signing keys and

corresponding signatures should be generated and maintained by the DNS server.

single-label name: A domain name consisting of exactly one label [for example contoso. (an
absolute name) or contoso (a relative name)]. When written in dotted-notation [RFC1034], a

single-label name will contain at most one period (.).

start of authority (SOA): Every zone contains a SOA record as defined in [RFC1035] section
3.3.13 and clarified in [RFC2181] section 7 at the beginning of the zone that provides

information relevant for a zone.

stub: Used as specified in [C706] section 2.1.2.2. A stub that is used on the client is called a
"client stub", and a stub that is used on the server is called a "server stub".

stub zone: A specialized version of a secondary zone. A stub zone contains only those resource
records that are necessary to identify the authoritative DNS server for that zone. A stub zone
consists of the zone root SOA resource record [RFC1035] and [RFC2181], zone root NS
resource records [RFC1035], and glue resource records for the zone root SOA and NS

records.

time stamp: An integer value representing the number of hours that have elapsed since midnight

(00:00:00), January 1, 1601 UTC.

Time-To-Live (TTL): The time duration for which a Server Object is available.

tombstone: An inactive DNS node which is not considered to be part of a DNS zone but has not
yet been deleted from the zone database in the directory server. Tombstones may be
permanently deleted from the zone once they reach a certain age. Tombstones are not used

for DNS zones that are not stored in the directory server. A node is a tombstone if its
dnsTombstoned attribute has been set to "TRUE".

trust anchor: A DNSKEY (public key) or DS (public key hash) record that is presumed to be
authentic (that is trusted); a DNSKEY or DS record that is in the "TrustAnchors" zone. A DS
trust anchor cannot be used in a DNSSEC proof, but it can serve as an authentication of a
retrieved DNSKEY record, allowing it to become a DNSKEY trust anchor.

trust point: An FQDN that has one or more trust anchors; a point in the DNS namespace from

which a DNSSEC proof can begin, via the presumption of trust anchor authenticity; a node in the
"TrustAnchors" zone that contains a DS or DNSKEY record.

Unicode string: A Unicode 8-bit string is an ordered sequence of 8-bit units, a Unicode 16-bit
string is an ordered sequence of 16-bit code units, and a Unicode 32-bit string is an ordered
sequence of 32-bit code units. In some cases, it could be acceptable not to terminate with a
terminating null character. Unless otherwise specified, all Unicode strings follow the UTF-16LE

encoding scheme with no Byte Order Mark (BOM).

http://go.microsoft.com/fwlink/?LinkId=90263

18 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

universally unique identifier (UUID): A 128-bit value. UUIDs can be used for multiple
purposes, from tagging objects with an extremely short lifetime, to reliably identifying very

persistent objects in cross-process communication such as client and server interfaces, manager
entry-point vectors, and RPC objects. UUIDs are highly likely to be unique. UUIDs are also

known as globally unique identifiers (GUIDs) and these terms are used interchangeably in
the Microsoft protocol technical documents (TDs). Interchanging the usage of these terms does
not imply or require a specific algorithm or mechanism to generate the UUID. Specifically, the
use of this term does not imply or require that the algorithms described in [RFC4122] or [C706]
must be used for generating the UUID.

User Datagram Protocol (UDP): The connectionless protocol within TCP/IP that corresponds to
the transport layer in the ISO/OSI reference model.

UTF-16LE: The Unicode Transformation Format - 16-bit, Little Endian encoding scheme. It is used
to encode Unicode characters as a sequence of 16-bit codes, each encoded as two 8-bit bytes
with the least-significant byte first.

UTF-8: A byte-oriented standard for encoding Unicode characters, defined in the Unicode standard.

Unless specified otherwise, this term refers to the UTF-8 encoding form specified in
[UNICODE5.0.0/2007] section 3.9.

virtualization instance: A logical partition in a DNS server, which is capable of independently
hosting zones and zone scopes. Same-name zones and zone scopes can be hosted in different
virtualization instances.

Windows Internet Name Service (WINS): A name service for the NetBIOS protocol,
particularly designed to ease transition to a TCP/IP based network. The Microsoft
implementation of an NBNS server.

Windows Internet Name Service Reverse Lookup (WINS-R): A form of reverse lookup

performed by the DNS server using NBSTAT [RFC1002] lookups to map IPv4 addresses to
single-label names.

zone: A domain namespace is divided up into several sections called zones [RFC1034] and

[RFC2181]. A zone represents authority over a portion of the DNS namespace, excluding any
subzones that are below delegations.

zone scope: A unique version of a zone that can be created inside an existing zone. Resource
records can then be added (and subsequently managed) to the zone scope.

zone signing key (ZSK): A DNSKEY used to sign all of the records in a zone, as defined in
[RFC4641].

zone transfer: A DNS protocol mechanism [RFC1035] by which a full or partial copy of a DNS
zone can be transmitted from one DNS server to another.

MAY, SHOULD, MUST, SHOULD NOT, MUST NOT: These terms (in all caps) are used as defined
in [RFC2119]. All statements of optional behavior use either MAY, SHOULD, or SHOULD NOT.

1.2 References

Links to a document in the Microsoft Open Specifications library point to the correct section in the
most recently published version of the referenced document. However, because individual documents
in the library are not updated at the same time, the section numbers in the documents may not

match. You can confirm the correct section numbering by checking the Errata.

http://go.microsoft.com/fwlink/?LinkId=154659
http://go.microsoft.com/fwlink/?LinkId=90261
http://go.microsoft.com/fwlink/?LinkId=90317
http://msdn.microsoft.com/en-us/library/dn781092.aspx

19 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

1.2.1 Normative References

We conduct frequent surveys of the normative references to assure their continued availability. If you
have any issue with finding a normative reference, please contact dochelp@microsoft.com. We will

assist you in finding the relevant information.

[ATMA] Technical Committee, ATM Forum, "ATM Name System Specification Version 1.0",
http://www.ipmplsforum.org/ftp/pub/approved-specs/af-saa-0069.000.pdf

[C706] The Open Group, "DCE 1.1: Remote Procedure Call", C706, August 1997,

https://www2.opengroup.org/ogsys/catalog/c706

[DRAFT-DNSSEC-ECDSA] Hoffman, P., and Wijngaards, W., "Elliptic Curve DSA for DNSSEC", draft-
hoffman-dnssec-ecdsa-04, December 2010, http://tools.ietf.org/html/draft-hoffman-dnssec-ecdsa-
04.txt

[FIPS186] FIPS PUBS, "Digital Signature Standard (DSS)", FIPS PUB 186-3, June 2009,
http://csrc.nist.gov/publications/fips/fips186-3/fips_186-3.pdf

[FIPS197] FIPS PUBS, "Advanced Encryption Standard (AES)", FIPS PUB 197, November 2001,

http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf

[IANA-DNSSECAN] IANA, "Domain Name System Security (DNSSEC) Algorithm Numbers",
http://www.iana.org/assignments/dns-sec-alg-numbers

[IANA-DNS] IANA, "Domain Name System (DNS) Parameters", April 2009,
http://www.iana.org/assignments/dns-parameters

[IANA-PROTO-NUM] IANA, "Protocol Numbers", February 2007,
http://www.iana.org/assignments/protocol-numbers

[IANAPORT] IANA, "Service Name and Transport Protocol Port Number Registry", November 2006,
http://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml

[MS-ADA1] Microsoft Corporation, "Active Directory Schema Attributes A-L".

[MS-ADA2] Microsoft Corporation, "Active Directory Schema Attributes M".

[MS-ADA3] Microsoft Corporation, "Active Directory Schema Attributes N-Z".

[MS-ADSC] Microsoft Corporation, "Active Directory Schema Classes".

[MS-ADTS] Microsoft Corporation, "Active Directory Technical Specification".

[MS-DTYP] Microsoft Corporation, "Windows Data Types".

[MS-ERREF] Microsoft Corporation, "Windows Error Codes".

[MS-GKDI] Microsoft Corporation, "Group Key Distribution Protocol".

[MS-NRPC] Microsoft Corporation, "Netlogon Remote Protocol".

[MS-RPCE] Microsoft Corporation, "Remote Procedure Call Protocol Extensions".

[MS-WINSRA] Microsoft Corporation, "Windows Internet Naming Service (WINS) Replication and

Autodiscovery Protocol".

[RFC1034] Mockapetris, P., "Domain Names - Concepts and Facilities", STD 13, RFC 1034, November
1987, http://www.ietf.org/rfc/rfc1034.txt

mailto:dochelp@microsoft.com
http://go.microsoft.com/fwlink/?LinkId=107028
http://go.microsoft.com/fwlink/?LinkId=89824
http://go.microsoft.com/fwlink/?LinkId=229294
http://go.microsoft.com/fwlink/?LinkId=229294
http://go.microsoft.com/fwlink/?LinkId=89869
http://go.microsoft.com/fwlink/?LinkId=89870
http://go.microsoft.com/fwlink/?LinkId=225982
http://go.microsoft.com/fwlink/?LinkId=148574
http://go.microsoft.com/fwlink/?LinkId=89889
http://go.microsoft.com/fwlink/?LinkId=89888
%5bMS-ADA1%5d.pdf#Section_19528560f41e4623a406dabcfff0660f
%5bMS-ADA2%5d.pdf#Section_e20ebc4e528540bab3bdffcb81c2783e
%5bMS-ADA3%5d.pdf#Section_4517e8353ee644d4bb95a94b6966bfb0
%5bMS-ADSC%5d.pdf#Section_9abb5e97123d4da99557b353ab79b830
%5bMS-ADTS%5d.pdf#Section_d243592709994c628c6d13ba31a52e1a
%5bMS-DTYP%5d.pdf#Section_cca2742956894a16b2b49325d93e4ba2
%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90
%5bMS-GKDI%5d.pdf#Section_943dd4f66b804a66859480df6d2aad0a
%5bMS-NRPC%5d.pdf#Section_ff8f970f3e3740f7bd4baf7336e4792f
%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15
%5bMS-WINSRA%5d.pdf#Section_991f1bcf79a744cf850cbf34a0e75451
%5bMS-WINSRA%5d.pdf#Section_991f1bcf79a744cf850cbf34a0e75451
http://go.microsoft.com/fwlink/?LinkId=90263

20 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

[RFC1035] Mockapetris, P., "Domain Names - Implementation and Specification", STD 13, RFC 1035,
November 1987, http://www.ietf.org/rfc/rfc1035.txt

[RFC1183] Everhart, C., Mamakos, L., Ullman, R. and Mockapetris, P., "New DNS RR Definitions", RFC
1183, October 1990, http://www.ietf.org/rfc/rfc1183.txt

[RFC1738] Berners-Lee, T., Masinter, L., and McCahill, M., Eds., "Uniform Resource Locators (URL)",
RFC 1738, December 1994, http://www.ietf.org/rfc/rfc1738.txt

[RFC1876] Davis, C., Vixie, P., Goodwin, T., et al., "A Means for Expression Location Information in
the Domain Name System", RFC 1876, January 1996, http://www.ietf.org/rfc/rfc1876.txt

[RFC1982] Elz, R., and Bush, R., "Serial Number Arithmetic", RFC 1982, August 1996,
http://www.ietf.org/rfc/rfc1982.txt

[RFC1995] Ohta, M., "Incremental Zone Transfer in DNS", RFC 1995, August 1996,
http://www.ietf.org/rfc/rfc1995.txt

[RFC1996] Vixie, P., "A Mechanism for Prompt Notification of Zone Changes (DNS NOTIFY)", RFC
1996, August 1996, http://www.ietf.org/rfc/rfc1996.txt

[RFC2065] Eastlake, D., and Kaufman, C., "Domain Name System Security Extensions", RFC 2065,

January 1997, http://www.ietf.org/rfc/rfc2065.txt

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC
2119, March 1997, http://www.rfc-editor.org/rfc/rfc2119.txt

[RFC2136] Thomson, S., Rekhter Y. and Bound, J., "Dynamic Updates in the Domain Name System
(DNS UPDATE)", RFC 2136, April 1997, http://www.ietf.org/rfc/rfc2136.txt

[RFC2181] Elz, R., and Bush, R., "Clarifications to the DNS Specification", RFC 2181, July 1997,
http://www.ietf.org/rfc/rfc2181.txt

[RFC2308] Andrews, M., "Negative Caching of DNS Queries (DNS NCACHE)", RFC 2308, March 1998,

http://www.ietf.org/rfc/rfc2308.txt

[RFC2535] Eastlake, D., "Domain Name System Security Extensions", RFC 2535, March 1999,
http://tools.ietf.org/html/rfc2535.txt

[RFC2671] Vixie, P., "Extension mechanism for DNS", RFC 2671, August 1999,
http://www.ietf.org/rfc/rfc2671.txt

[RFC2672] Crawford, M., and Fermilab, "Non-Terminal DNS Name Redirection", RFC 2672, August
1999, http://www.ietf.org/rfc/rfc2672.txt

[RFC2782] Gulbrandsen, A., Vixie, P., and Esibov, L., "A DNS RR for specifying the location of services

(DNS SRV)", RFC 2782, February 2000, http://www.ietf.org/rfc/rfc2782.txt

[RFC2845] Vixie, P., Gudmundsson, O., Eastlake III, D., and Wellington, B., "Secret Key Transaction
Authentication for DNS (TSIG)", RFC 2845, May 2000, http://www.ietf.org/rfc/rfc2845.txt

[RFC2915] Mealling, M., and Daniel, R., "The Naming Authority Pointer (NAPTR) DNS Resource
Record", RFC 2915, September 2000, http://www.ietf.org/rfc/rfc2915.txt

[RFC2930] Eastlake III, D., "Secret Key Establishment for DNS (TKEY RR)", RFC 2930, September

2000, http://www.ietf.org/rfc/rfc2930.txt

[RFC2931] Eastlake, D., "DNS Request and Transaction Signature (SIG (0) s)", RFC 2931, September
2000, http://www.ietf.org/rfc/rfc2931.txt

http://go.microsoft.com/fwlink/?LinkId=90264
http://go.microsoft.com/fwlink/?LinkId=106947
http://go.microsoft.com/fwlink/?LinkId=90287
http://go.microsoft.com/fwlink/?LinkId=106954
http://go.microsoft.com/fwlink/?LinkId=184551
http://go.microsoft.com/fwlink/?LinkId=106956
http://go.microsoft.com/fwlink/?LinkId=106957
http://go.microsoft.com/fwlink/?LinkId=106958
http://go.microsoft.com/fwlink/?LinkId=90317
http://go.microsoft.com/fwlink/?LinkId=107017
http://go.microsoft.com/fwlink/?LinkId=127732
http://go.microsoft.com/fwlink/?LinkId=187326
http://go.microsoft.com/fwlink/?LinkId=107021
http://go.microsoft.com/fwlink/?LinkId=107022
http://go.microsoft.com/fwlink/?LinkId=132207
http://go.microsoft.com/fwlink/?LinkId=90381
http://go.microsoft.com/fwlink/?LinkId=90388
http://go.microsoft.com/fwlink/?LinkId=107024
http://go.microsoft.com/fwlink/?LinkId=90397
http://go.microsoft.com/fwlink/?LinkId=107025

21 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

[RFC3403] Mealling, M., "Dynamic Delegation Discovery System (DDDS) Part Three: The Domain
Name System (DNS) Database", RFC 3403, October 2002, http://www.ietf.org/rfc/rfc3403.txt

[RFC3447] Jonsson, J. and Kaliski, B., "Public-Key Cryptography Standards (PKCS) #1: RSA
Cryptography Specifications Version 2.1", RFC 3447, February 2003,
http://www.ietf.org/rfc/rfc3447.txt

[RFC3565] Schaad, J., "Use of the Advanced Encryption Standard (AES) Encryption Algorithm in

Cryptographic Message Syntax (CMS)", RFC 3565, July 2003, http://www.ietf.org/rfc/rfc3565.txt

[RFC3596] Thomson, S., Huitema, C., Ksinant, V., and Souissi, M., "DNS Extensions to Support IP
version 6", RFC 3596, October 2003, http://www.ietf.org/rfc/rfc3596.txt

[RFC3597] Gustafsson, A., "Handling of Unknown DNS Resource Record (RR) Types", RFC3597,
September 2003, http://www.ietf.org/rfc/rfc3597.txt

[RFC3629] Yergeau, F., "UTF-8, A Transformation Format of ISO 10646", STD 63, RFC 3629,
November 2003, http://www.ietf.org/rfc/rfc3629.txt

[RFC3645] Kwan, S., Garg, P., Gilroy, J., Esibov, L., Westhead, J., and Hall, R., "Generic Security
Service Algorithm for Secret Key Transaction Authentication for DNS (GSS-TSIG)", RFC 3645, October
2003, http://www.ietf.org/rfc/rfc3645.txt

[RFC3852] Housley, R., "Cryptographic Message Syntax (CMS)", RFC 3852, July 2004,
http://www.ietf.org/rfc/rfc3852.txt

[RFC4033] Arends, R., Austein, R., Lason, M., et al., "DNS Security Introduction and Requirements",

RFC 4033, March 2005, http://www.ietf.org/rfc/rfc4033.txt

[RFC4034] Arends, R., Austein, R., Lason, M., et al., "Resource Records for the DNS Security
Extensions", RFC 4034, March 2005, http://www.ietf.org/rfc/rfc4034.txt

[RFC4035] Arends, R., Austein, R., Lason, M., et al., "Protocol Modifications for the DNS Security
Extensions", RFC 4035, March 2005, http://www.ietf.org/rfc/rfc4035.txt

[RFC4511] Sermersheim, J., "Lightweight Directory Access Protocol (LDAP): The Protocol", RFC 4511,
June 2006, http://www.rfc-editor.org/rfc/rfc4511.txt

[RFC4641] Kolkman, O., and Gieben, R., "DNSSEC Operational Practices", RFC 4641, September
2006, http://www.ietf.org/rfc/rfc4641.txt

[RFC4701] Stapp, M., Lemon, T., and Gustafsson, A., "A DNS Resource Record (RR) for Encoding
Dynamic Host Configuration Protocol (DHCP) Information (DHCID RR)", RFC 4701, October 2006,
http://www.ietf.org/rfc/rfc4701.txt

[RFC5011] StJohns, M., "Automated Updates of DNS Security (DNSSEC) Trust Anchors", RFC 5011,
September 2007, http://www.ietf.org/rfc/rfc5011.txt

[RFC5084] Housley, R., "Using AES-CCM and AES-GCM Authenticated Encryption in the Cryptographic
Message Syntax (CMS)", RFC 5084, November 2007, http://www.ietf.org/rfc/rfc5084.txt

[RFC5155] Laurie, B., Sisson, G., Arends, R., and Blacka, D., "DNS Security (DNSSEC) Hashed
Authenticated Denial of Existence", RFC 5155, March 2008, http://www.ietf.org/rfc/rfc5155.txt

[RFC6698] Hoffman, P. and Schlyter, J, "The DNS-Based Authentication of Named Entities (DANE)
Transport Layer Security (TLS) Protocol: TLSA", RFC6698, August 2012,

http://www.ietf.org/rfc/rfc6698.txt

http://go.microsoft.com/fwlink/?LinkId=107026
http://go.microsoft.com/fwlink/?LinkId=90422
http://go.microsoft.com/fwlink/?LinkId=229738
http://go.microsoft.com/fwlink/?LinkId=107027
http://go.microsoft.com/fwlink/?LinkID=532820
http://go.microsoft.com/fwlink/?LinkId=90439
http://go.microsoft.com/fwlink/?LinkId=90440
http://go.microsoft.com/fwlink/?LinkId=90445
http://go.microsoft.com/fwlink/?LinkId=107051
http://go.microsoft.com/fwlink/?LinkId=107052
http://go.microsoft.com/fwlink/?LinkID=107053
http://go.microsoft.com/fwlink/?LinkId=157505
http://go.microsoft.com/fwlink/?LinkId=225979
http://go.microsoft.com/fwlink/?LinkId=125431
http://go.microsoft.com/fwlink/?LinkId=225980
http://go.microsoft.com/fwlink/?LinkId=229742
http://go.microsoft.com/fwlink/?LinkId=225981
http://go.microsoft.com/fwlink/?LinkId=532821

22 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

[SP800-38D] National Institute of Standards and Technology., "Special Publication 800-38D,
Recommendation for Block Cipher Modes of Operation: Galois/Counter Mode (GCM) and GMAC",

November 2007, http://csrc.nist.gov/publications/nistpubs/800-38D/SP-800-38D.pdf

[UNICODE5.0.0/2007] The Unicode Consortium, "Unicode 5.0.0", 2007,
http://www.unicode.org/versions/Unicode5.0.0/

[X690] ITU-T, "Information Technology - ASN.1 Encoding Rules: Specification of Basic Encoding Rules

(BER), Canonical Encoding Rules (CER) and Distinguished Encoding Rules (DER)", Recommendation
X.690, July 2002, http://www.itu.int/rec/T-REC-X.690/en

1.2.2 Informative References

[MSDN-RPC] Microsoft Corporation, "Remote Procedure Call", http://msdn.microsoft.com/en-

us/library/aa378651.aspx

[MSKB-2919355] Microsoft Corporation, "Windows RT 8.1, Windows 8.1, and Windows Server 2012 R2
Update: April 2014", http://support.microsoft.com/kb/2919355

[RRL] Vixie, P. and Schryver, V., "DNS Response Rate Limiting (DNS RRL)", ISC-TN-2012-1-Draft 1,
April 2012, http://ss.vix.su/~vixie/isc-tn-2012-1.txt

1.3 Overview

The DNS Server Management Protocol is a client/server protocol that is used to remotely query,
monitor and configure DNS server settings, its zones, and resource records. The protocol allows a
client to access DNS server settings and properties and also to enumerate all DNS data stored on the
server (DNS zones and DNS records).

The DNS Server Management Protocol is a simple protocol with no state shared across RPC method
calls. Each RPC method call contains one complete request. Output from one method call can be used

as input to another call but the DNS Server Management Protocol does not provide for locking of DNS
data across method calls. For example, a client can enumerate DNS zones with one call and retrieve

the properties of one or more of the enumerated DNS zones with another call. However, no guarantee
is made that the zone has not been deleted by another DNS Server Management Protocol client
between these two method calls.

When the DNS server is directory server-integrated, some client requests can require or trigger
Lightweight Directory Access Protocol (LDAP) requests from the DNS server to the local

directory server or another directory server.

In particular, the DNS server can use the defaultNamingContext of the directory server's rootDSE, a
DNS domain partition named DnsDomainZones, or a DNS forest partition named DnsForestZones
to store zone information and zone records. (See section 2.3 for a discussion of the schemas used to
store this information.) A DNS Server integrated with a directory server creates and automatically
enlists itself in these default application directory partitions. Alternatively, zone information and

zone records can be stored in additional application directory partitions, which can be created (and
removed) by the DNS Server Management Protocol client in order to control the granularity of zone

replication. Zones created in these additional application directory partitions will only be visible to
directory servers enlisted in those partitions, thus allowing for granular control over replication.

A typical remote management involves the client querying or setting the configuration parameters of
the DNS server. The client can also enumerate DNS zones and the DNS records stored in one or more
zones. The client can modify the configuration of the DNS server as required. The client can also add,

delete, or modify DNS zones or the DNS records held in zones as required. For example, a remote
management client can:

 Set or retrieve the server's forwarders.

http://go.microsoft.com/fwlink/?LinkId=186038
http://go.microsoft.com/fwlink/?LinkId=154659
http://go.microsoft.com/fwlink/?LinkId=90593
http://go.microsoft.com/fwlink/?LinkId=90075
http://go.microsoft.com/fwlink/?LinkId=90075
http://go.microsoft.com/fwlink/?LinkId=397642
http://go.microsoft.com/fwlink/?LinkId=617464

23 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 Set or retrieve various DNS server settings.

 Create or modify zones.

 Create or modify zone records.

This usually involves sending a request to the DNS server specifying the type of operation (get, set

and execute are examples of types of operations) to perform and any specific parameters that are
associated with that operation. The DNS server responds to the client with the result of the operation.

The following diagram shows an example of a remote client creating a zone on the DNS server using
the DNS server Management Protocol. The client sends a request to the server with the operation type
and parameters. The server responds with a success or an error.

Figure 1: DNS Server Management Protocol

1.4 Relationship to Other Protocols

The DNS Server Management Protocol relies on RPC [MS-RPCE] as a transport. It is used to manage

servers that implement DNS [RFC1035], [RFC1183], [RFC1876], [RFC1995], [RFC1996], [RFC2065],
[RFC2136], [RFC2535], [RFC2671], [RFC2672], [RFC2782], [RFC2845], [RFC2915], [RFC2931],
[RFC3596], [RFC4034], and [RFC4701]. It also interacts with the Netlogon protocol [MS-NRPC].

The following diagram illustrates the relationship of the DNS Server Management Protocol and how it
relates to RPC [MS-RPCE].

Figure 2: How the DNS Server Management Protocol uses RPC

The DNS server relies on the LDAP protocol [RFC4511] to retrieve and modify DNS information when it
is stored in a directory server. In this case, the DNS server is the client of the LDAP protocol, acting on
behalf of and impersonating (using RPC impersonation), the client of the DNS Server Management
Protocol. LDAP's relationship with other protocols is covered in [RFC4511] section 5. Note that
although an LDAP provider can support transports other than TCP, the DNS server is required to open
LDAP connections specifying the TCP transport using port 389.

%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15
http://go.microsoft.com/fwlink/?LinkId=90264
http://go.microsoft.com/fwlink/?LinkId=106947
http://go.microsoft.com/fwlink/?LinkId=106954
http://go.microsoft.com/fwlink/?LinkId=106956
http://go.microsoft.com/fwlink/?LinkId=106957
http://go.microsoft.com/fwlink/?LinkId=106958
http://go.microsoft.com/fwlink/?LinkId=107017
http://go.microsoft.com/fwlink/?LinkId=107021
http://go.microsoft.com/fwlink/?LinkId=107022
http://go.microsoft.com/fwlink/?LinkId=132207
http://go.microsoft.com/fwlink/?LinkId=90381
http://go.microsoft.com/fwlink/?LinkId=90388
http://go.microsoft.com/fwlink/?LinkId=107024
http://go.microsoft.com/fwlink/?LinkId=107025
http://go.microsoft.com/fwlink/?LinkId=107027
http://go.microsoft.com/fwlink/?LinkId=107052
http://go.microsoft.com/fwlink/?LinkId=125431
%5bMS-NRPC%5d.pdf#Section_ff8f970f3e3740f7bd4baf7336e4792f
http://go.microsoft.com/fwlink/?LinkId=157505

24 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

The following diagram shows the relationship of the DNS Server Management Protocol to LDAP and
TCP:

Figure 3: How the DNS Server Management Protocol uses LDAP

The following diagram illustrates the interaction between DNS Server Management Protocol Clients,
DNS Servers, and directory servers.

25 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Figure 4: Relationship between DNS Server Management Protocol Clients, DNS Servers, and
Directory Servers

1.5 Prerequisites/Preconditions

This protocol is implemented on top of RPC and, as a result, has the prerequisites identified in [MS-
RPCE].

%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15
%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15

26 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

The DNS Server Management Protocol assumes that a client has obtained the name of a server that
supports this protocol before the protocol is invoked. It also assumes that if a local directory server is

available, the DNS server will establish an LDAP session to it and has appropriate credentials for
requests. If no local directory server is available, or if a connection cannot be established, the DNS

server operates only with zones loaded from files in the local file system rather than with zones
replicated in the directory service, and operations requiring a directory service will fail.

All LDAP operations described in this protocol are performed with the local directory server unless
otherwise stated. Consistency of DNS data stored in the local directory server is not guaranteed, since
complete or partial updates to the LDAP directory can be replicated to the local directory server at any
time. The protocol assumes that the DNS server polls the local directory server for changes that need
to be synchronized with the in-memory zones.

1.6 Applicability Statement

This protocol is applicable when an application needs to remotely configure a DNS server. It is not
applicable to scenarios with multiple clients simultaneously managing a DNS server, if the ability to

prevent interference is required.

1.7 Versioning and Capability Negotiation

This document covers versioning issues in the following areas:

 Supported Transports: The DNS Server Management Protocol uses the RPC protocol as a transport

and multiple RPC transports.

 Protocol Versions: This protocol has a version number of 5.0.

 Security and Authentication Methods: Authentication and security are provided as specified in
[MS-RPCE].

The DNS server requests the principal name for the security provider available on the system.
Then Providers, for whom a principal name was obtained, are registered as supported

authenticating mechanism for RPC calls. An RPC client using TCP, immediately after creating a
binding attempts to negotiate authentication using RPC_C_AUTHN_GSS_NEGOTIATE and
authentication level as RPC_C_AUTHN_LEVEL_PKT_INTEGRITY as specified in sections 2.1.1 and
2.1.2.

 Localization: This protocol passes text strings in various methods. Localization considerations for
such strings are specified where relevant.

 Capability Negotiation: The DNS Server Management Protocol does not support negotiation of the

protocol version to use. Instead, this protocol uses only the protocol version number specified in
the IDL for versioning and capability negotiation. Note that the present version of the IDL includes
a client version input parameter (dwClientVersion) for some of the method calls (section
2.2.1.2.1). This parameter allows the server to provide responses conforming to earlier versions of
certain data structures associated with those method calls, while allowing extensibility of the
present version of the protocol.

1.8 Vendor-Extensible Fields

This protocol uses Win32 error codes as defined in [MS-ERREF] section 2.2. Vendors are advised to
reuse those values with their indicated meaning. Choosing any other value runs the risk of a collision
in the future.

%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15
%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90

27 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

1.9 Standards Assignments

The following parameters are private Microsoft assignments.

Parameter Value Reference

RPC Interface UUID for DNS 50ABC2A4-574D-40B3-9D66-EE4FD5FBA076 [C706] section A.2.5

Named Pipe name \PIPE\DNSSERVER

http://go.microsoft.com/fwlink/?LinkId=89824

28 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

2 Messages

The following sections specify how the DNS Server Management Protocol messages are transported
and what common data types are used.

2.1 Transport

All implementations MUST support the RPC over TCP protocol sequence (ncacn_ip_tcp), as specified in
[MS-RPCE], with dynamic endpoints. Implementations MAY<1> also support the RPC over named
pipes protocol sequence (ncacn_np), as specified in [MS-RPCE], with named pipe name
\PIPE\DNSSERVER. The choice of transport for any given communication is up to the client application
or higher-layer protocol.

The protocol MUST use the following UUID:

 DnsServer: 50ABC2A4-574D-40B3-9D66-EE4FD5FBA076

The protocol MUST use an IDL version of 5.0.

2.1.1 Server Security Settings

The DNS Server Management Protocol uses Security Support Provider Interface (SSPI) security
provided by RPC, as specified in [MS-RPCE] section 3.3.1.5.2 for sessions using TCP as the transport
protocol. The server SHOULD register the following as security providers:

 RPC_C_AUTHN_GSS_NEGOTIATE

 RPC_C_AUTHN_GSS_KERBEROS

 RPC_C_AUTHN_WINNT

The DNS server MUST allow only authenticated access to RPC clients. The DNS server MUST NOT allow

anonymous RPC clients. The DNS RPC server MUST perform a three-phase authorization test to ensure

that the client is authorized to perform the specific RPC operation. The three-phase authorization test
is specified in section 3.1.6.1. If the server is directory server integrated, the server MUST cache
directory server security descriptors until the next LDAP read operation that reads them and
perform LDAP read operations for security descriptors as specified in section 3.1.6.2.

The DNS server can support up to 1,234 concurrent RPC calls.

The DNS server MUST limit access to only clients that negotiate an authentication level higher than
that of RPC_C_AUTHN_LEVEL_NONE (see [MS-RPCE] section 2.2.1.1.8).

2.1.2 Client Security Settings

The DNS RPC client SHOULD use a security support provider (SSP) over RPC as specified in [MS-

RPCE], for sessions using TCP as RPC transport protocol. A client SHOULD authenticate using:

 RPC_C_AUTHN_GSS_NEGOTIATE

A client using TCP as the RPC transport requests RPC_C_AUTHN_LEVEL_PKT_INTEGRITY
authentication with the DNS server.

For negotiating RPC security, the DNS RPC client uses the following parameters:

 The client SHOULD<2> request mutual authentication by requesting the
RPC_C_QOS_CAPABILITIES_MUTUAL_AUTH capability. The client MAY additionally request the

RPC_C_QOS_CAPABILITIES_IGNORE_DELEGATE_FAILURE capability.

%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15
%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15
%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15
%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15

29 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 The identity tracking type is set to RPC_C_QOS_IDENTITY_STATIC.

 The impersonation type is set to RPC_C_IMP_LEVEL_IMPERSONATE, indicating that the server can

impersonate the client; the client MAY instead specify RPC_C_IMP_LEVEL_DELEGATE.<3>

2.2 Common Data Types

In addition to RPC base types and definitions specified in [C706] and [MS-RPCE], additional data types
are defined below. This protocol also uses the types WORD and DWORD defined in [MS-DTYP].

All multi-byte integer values in the messages declared in this section use little-endian byte order

unless otherwise noted.

All fields designated as Unicode strings MUST be implemented using UTF-16LE strings as defined in
[UNICODE5.0.0/2007] section 2.6.

2.2.1 DNS RPC Common Messages

2.2.1.1 Enumerations and Constants

2.2.1.1.1 DNS_RPC_TYPEID

The DNS Server Management Protocol RPC methods use a generic and extensible data structure of

type DNSSRV_RPC_UNION (section 2.2.1.2.6), which is a union of pointers to different data types. A
DNS_RPC_TYPEID value is used to specify what data is being stored in an instance of the
DNSSRV_RPC_UNION structure. The DNS_RPC_TYPEID enumeration combined with a
DNSSRV_RPC_UNION structure allow the DNS RPC interface to communicate many different types of
DNS server configuration and data in a single structure.

 typedef enum _DnssrvRpcTypeId
 {
 DNSSRV_TYPEID_NULL = 0,
 DNSSRV_TYPEID_DWORD,
 DNSSRV_TYPEID_LPSTR,
 DNSSRV_TYPEID_LPWSTR,
 DNSSRV_TYPEID_IPARRAY,
 DNSSRV_TYPEID_BUFFER, // 5
 DNSSRV_TYPEID_SERVER_INFO_W2K,
 DNSSRV_TYPEID_STATS,
 DNSSRV_TYPEID_FORWARDERS_W2K,
 DNSSRV_TYPEID_ZONE_W2K,
 DNSSRV_TYPEID_ZONE_INFO_W2K, // 10
 DNSSRV_TYPEID_ZONE_SECONDARIES_W2K,
 DNSSRV_TYPEID_ZONE_DATABASE_W2K,
 DNSSRV_TYPEID_ZONE_TYPE_RESET_W2K,
 DNSSRV_TYPEID_ZONE_CREATE_W2K,
 DNSSRV_TYPEID_NAME_AND_PARAM, // 15
 DNSSRV_TYPEID_ZONE_LIST_W2K,
 DNSSRV_TYPEID_ZONE_RENAME,
 DNSSRV_TYPEID_ZONE_EXPORT,
 DNSSRV_TYPEID_SERVER_INFO_DOTNET,
 DNSSRV_TYPEID_FORWARDERS_DOTNET, // 20
 DNSSRV_TYPEID_ZONE,
 DNSSRV_TYPEID_ZONE_INFO_DOTNET,
 DNSSRV_TYPEID_ZONE_SECONDARIES_DOTNET,
 DNSSRV_TYPEID_ZONE_DATABASE,
 DNSSRV_TYPEID_ZONE_TYPE_RESET_DOTNET, // 25
 DNSSRV_TYPEID_ZONE_CREATE_DOTNET,
 DNSSRV_TYPEID_ZONE_LIST,
 DNSSRV_TYPEID_DP_ENUM,
 DNSSRV_TYPEID_DP_INFO,
 DNSSRV_TYPEID_DP_LIST, // 30

http://go.microsoft.com/fwlink/?LinkId=89824
%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15
%5bMS-DTYP%5d.pdf#Section_cca2742956894a16b2b49325d93e4ba2
http://go.microsoft.com/fwlink/?LinkId=154659

30 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 DNSSRV_TYPEID_ENLIST_DP,
 DNSSRV_TYPEID_ZONE_CHANGE_DP,
 DNSSRV_TYPEID_ENUM_ZONES_FILTER,
 DNSSRV_TYPEID_ADDRARRAY,
 DNSSRV_TYPEID_SERVER_INFO, // 35
 DNSSRV_TYPEID_ZONE_INFO,
 DNSSRV_TYPEID_FORWARDERS,
 DNSSRV_TYPEID_ZONE_SECONDARIES,
 DNSSRV_TYPEID_ZONE_TYPE_RESET,
 DNSSRV_TYPEID_ZONE_CREATE, // 40
 DNSSRV_TYPEID_IP_VALIDATE,
 DNSSRV_TYPEID_AUTOCONFIGURE,
 DNSSRV_TYPEID_UTF8_STRING_LIST,
 DNSSRV_TYPEID_UNICODE_STRING_LIST,
 DNSSRV_TYPEID_SKD, // 45
 DNSSRV_TYPEID_SKD_LIST,
 DNSSRV_TYPEID_SKD_STATE,
 DNSSRV_TYPEID_SIGNING_VALIDATION_ERROR,
 DNSSRV_TYPEID_TRUST_POINT_LIST,
 DNSSRV_TYPEID_TRUST_ANCHOR_LIST, // 50
 DNSSRV_TYPEID_ZONE_SIGNING_SETTINGS,
 DNSSRV_TYPEID_ZONE_SCOPE_ENUM,
 DNSSRV_TYPEID_ZONE_STATS,
 DNSSRV_TYPEID_ZONE_SCOPE_CREATE,
 DNSSRV_TYPEID_ZONE_SCOPE_INFO, // 55
 DNSSRV_TYPEID_SCOPE_ENUM,
 DNSSRV_TYPEID_CLIENT_SUBNET_RECORD,
 DNSSRV_TYPEID_POLICY,
 DNSSRV_TYPEID_POLICY_NAME,
 DNSSRV_TYPEID_POLICY_ENUM, // 60
 DNSSRV_TYPEID_RRL
 DNSSRV_TYPEID_VIRTUALIZATION_INSTANCE
 DNSSRV_TYPEID_VIRTUALIZATION_INSTANCE_ENUM
 }
 DNS_RPC_TYPEID, *PDNS_RPC_TYPEID;

DNSSRV_TYPEID_NULL: No data is provided.

DNSSRV_TYPEID_DWORD: A DWORD value.

DNSSRV_TYPEID_LPSTR: A pointer to a null-terminated UTF-8 [RFC3629] string.

DNSSRV_TYPEID_LPWSTR: A pointer to a null-terminated Unicode string.

DNSSRV_TYPEID_IPARRAY: A pointer to an IP4_ARRAY. This structure is used to specify a list of
IPv4 addresses.

DNSSRV_TYPEID_BUFFER: A pointer to a DNS_RPC_BUFFER (section 2.2.1.2.2). This structure is
used to hold a generic buffer of the DNS server information. Interpretation of the buffer depends
upon the request.

DNSSRV_TYPEID_SERVER_INFO_W2K: A pointer to a structure of type
DNS_RPC_SERVER_INFO_W2K (section 2.2.4.2.2.1). This structure is used to specify general DNS
server state and configuration.

DNSSRV_TYPEID_STATS: A pointer to a structure of type DNSSRV_STATS (section 2.2.10.2.2).
The structure exposes internal statistics and counters.

DNSSRV_TYPEID_FORWARDERS_W2K: A pointer to a structure of type
DNS_RPC_FORWARDERS_W2K (section 2.2.5.2.10.1). This structure specifies the set of DNS

servers this DNS server will forward unresolved queries to.

http://go.microsoft.com/fwlink/?LinkId=90439

31 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

DNSSRV_TYPEID_ZONE_W2K: A pointer to a structure of type
DNS_RPC_ZONE_W2K (section 2.2.5.2.1.1). This structure is used to specify basic information

about a DNS zone.

DNSSRV_TYPEID_ZONE_INFO_W2K: A pointer to a structure of type

DNS_RPC_ZONE_INFO_W2K (section 2.2.5.2.4.1). This structure is used to specify detailed DNS
zone information.

DNSSRV_TYPEID_ZONE_SECONDARIES_W2K: A pointer to a structure of type
DNS_RPC_ZONE_SECONDARIES_W2K (section 2.2.5.2.5.1). This structure is used to specify
information about the secondary servers for a primary DNS zone.

DNSSRV_TYPEID_ZONE_DATABASE_W2K: A pointer to a structure of type
DNS_RPC_ZONE_DATABASE_W2K (section 2.2.5.2.6.1). This structure specifies how a DNS zone

is stored in persistent storage.

DNSSRV_TYPEID_ZONE_TYPE_RESET_W2K: This value is not used.

DNSSRV_TYPEID_ZONE_CREATE_W2K: A pointer to a structure of type

DNS_RPC_ZONE_CREATE_INFO_W2K (section 2.2.5.2.7.1). This structure is used to specify
parameters required when creating a new DNS zone.

DNSSRV_TYPEID_NAME_AND_PARAM: A pointer to a structure of type

DNS_RPC_NAME_AND_PARAM (section 2.2.1.2.5). This is a general purpose structure used to
associate a parameter name with a DWORD value.

DNSSRV_TYPEID_ZONE_LIST_W2K: A pointer to a structure of type
DNS_RPC_ZONE_LIST_W2K (section 2.2.5.2.3.1). This structure is used to enumerate zones.

DNSSRV_TYPEID_ZONE_RENAME: This value is not used.

DNSSRV_TYPEID_ZONE_EXPORT: A pointer to a structure of type
DNS_RPC_ZONE_EXPORT_INFO (section 2.2.5.2.8). This structure is used to specify how to export

a zone to a file.

DNSSRV_TYPEID_SERVER_INFO_DOTNET: A pointer to a structure of type
DNS_RPC_SERVER_INFO_DOTNET (section 2.2.4.2.2.2). This structure is used to specify general
DNS server state and configuration.

DNSSRV_TYPEID_FORWARDERS_DOTNET: A pointer to a structure of type
DNS_RPC_FORWARDERS_DOTNET (section 2.2.5.2.10.2). This structure specifies the set of DNS
servers this DNS server will forward unresolved queries to.

DNSSRV_TYPEID_ZONE: A pointer to a structure of type DNS_RPC_ZONE (section 2.2.5.2.1). This
structure is used to specify basic information and a DNS zone.

DNSSRV_TYPEID_ZONE_INFO_DOTNET: A pointer to a structure of type
DNS_RPC_ZONE_INFO_DOTNET (section 2.2.5.2.4.2). This structure is used to specify detailed
information about a DNS zone.

DNSSRV_TYPEID_ZONE_SECONDARIES_DOTNET: A pointer to a structure of type

DNS_RPC_ZONE_SECONDARIES_DOTNET (section 2.2.5.2.5.2). This structure is used to specify
information about the secondary servers for a primary DNS zone.

DNSSRV_TYPEID_ZONE_DATABASE: A pointer to a structure of type
DNS_RPC_ZONE_DATABASE (section 2.2.5.2.6). This structure specifies how a DNS zone is stored
in persistent storage.

DNSSRV_TYPEID_ZONE_TYPE_RESET_DOTNET: This value is not used.

32 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

DNSSRV_TYPEID_ZONE_CREATE_DOTNET: A pointer to a structure of type
DNS_RPC_ZONE_CREATE_INFO_DOTNET. This structure is used to specify parameters required

when creating a new DNS zone.

DNSSRV_TYPEID_ZONE_LIST: A pointer to a structure of type

DNS_RPC_ZONE_LIST (section 2.2.5.2.3). This structure is used to enumerate zones.

DNSSRV_TYPEID_DP_ENUM: A pointer to a structure of type
DNS_RPC_DP_ENUM (section 2.2.7.2.3). This structure is used to specify basic information about
an application directory partition.

DNSSRV_TYPEID_DP_INFO: A pointer to a structure of type
DNS_RPC_DP_INFO (section 2.2.7.2.1). This structure specifies detailed information about a single
application directory partition.

DNSSRV_TYPEID_DP_LIST: A pointer to a structure of type
DNS_RPC_DP_LIST (section 2.2.7.2.4). This structure is used to enumerate application directory
partitions.

DNSSRV_TYPEID_ENLIST_DP: A pointer to a structure of type
DNS_RPC_ENLIST_DP (section 2.2.7.2.5). This structure is used to request enlistment changes for
an application directory partition.

DNSSRV_TYPEID_ZONE_CHANGE_DP: A pointer to a structure of type
DNS_RPC_ZONE_CHANGE_DP (section 2.2.7.2.6). This structure is used to request that a DNS
zone be moved from one application directory partition to another.

DNSSRV_TYPEID_ENUM_ZONES_FILTER: A pointer to a structure of type
DNS_RPC_ENUM_ZONES_FILTER (section 2.2.5.2.9). This structure is used to filter DNS zones
during enumeration.

DNSSRV_TYPEID_ADDRARRAY: A pointer to a structure of type

DNS_ADDR_ARRAY (section 2.2.3.2.3). This structure is used to specify a list of IPv4 or IPv6
addresses.

DNSSRV_TYPEID_SERVER_INFO: A pointer to a structure of type
DNS_RPC_SERVER_INFO (section 2.2.4.2.2). This structure is used to specify general DNS server
state and configuration.

DNSSRV_TYPEID_ZONE_INFO: A pointer to a structure of type
DNS_RPC_ZONE_INFO (section 2.2.5.2.4). This structure is used to specify detailed information

about a DNS zone.

DNSSRV_TYPEID_FORWARDERS: A pointer to a structure of type
DNS_RPC_FORWARDERS (section 2.2.5.2.10). This structure specifies the set of DNS servers this
DNS server will forward unresolved queries to.

DNSSRV_TYPEID_ZONE_SECONDARIES: A pointer to a structure of type
DNS_RPC_ZONE_SECONDARIES (section 2.2.5.2.5). This structure is used to specify information

about the secondary servers for a primary DNS zone.

DNSSRV_TYPEID_ZONE_TYPE_RESET: This value is not used.

DNSSRV_TYPEID_ZONE_CREATE: A pointer to a structure of type
DNS_RPC_ZONE_CREATE_INFO (section 2.2.5.2.7). This structure is used to specify parameters
required when creating a new DNS zone.

DNSSRV_TYPEID_IP_VALIDATE: A pointer to a structure of type
DNS_RPC_IP_VALIDATE (section 2.2.3.2.4). This structure is used to request IP validation and to

return the results of IP validation.

33 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

DNSSRV_TYPEID_AUTOCONFIGURE: A pointer to a structure of type
DNS_RPC_AUTOCONFIGURE (section 2.2.8.2.1). This structure is used to request DNS server

autoconfiguration.

DNSSRV_TYPEID_UTF8_STRING_LIST: A pointer to a structure of type

DNS_RPC_UTF8_STRING_LIST (section 2.2.1.2.3). This structure is used to represent a list of
UTF-8 [RFC3629] strings.

DNSSRV_TYPEID_UNICODE_STRING_LIST: A pointer to a structure of type
DNS_RPC_UNICODE_STRING_LIST (section 2.2.1.2.4). This structure is used to represent a list of
Unicode strings.

DNSSRV_TYPEID_SKD: A pointer to a structure of type DNS_RPC_SKD (section 2.2.6.2.1). This
structure is used to specify detailed signing key descriptor (SKD) information.

DNSSRV_TYPEID_SKD_LIST: A pointer to a structure of type
DNS_RPC_SKD_LIST (section 2.2.6.2.2). This structure is used to enumerate signing key
descriptors.

DNSSRV_TYPEID_SKD_STATE: A pointer to a structure of type
DNS_RPC_SKD_STATE (section 2.2.6.2.3). This structure is used to specify detailed signing key
descriptor state information.

DNSSRV_TYPEID_SIGNING_VALIDATION_ERROR: A pointer to a structure of type
DNS_RPC_SIGNING_VALIDATION_ERROR (section 2.2.6.2.8). This structure is used to specify
signing key descriptor validation error information.

DNSSRV_TYPEID_TRUST_POINT_LIST: A pointer to a structure of type
DNS_RPC_TRUST_POINT_LIST (section 2.2.6.2.5). This structure is used to enumerate trust
points.

DNSSRV_TYPEID_TRUST_ANCHOR_LIST: A pointer to a structure of type

DNS_RPC_TRUST_ANCHOR_LIST (section 2.2.6.2.7). This structure is used to enumerate trust
anchors.

DNSSRV_TYPEID_ZONE_SIGNING_SETTINGS: A pointer to a structure of type
DNS_RPC_ZONE_DNSSEC_SETTINGS (section 2.2.6.2.9). This structure is used to specify the
DNSSEC settings for file-backed zones.

DNSSRV_TYPEID_ZONE_SCOPE_ENUM: A pointer to a structure of type
DNS_RPC_ENUM_ZONE_SCOPE_LIST (section 2.2.13.2.1). This structure is used to enumerate

zone scopes or cache scopes.

DNSSRV_TYPEID_ZONE_STATS: A pointer to a structure of type
DNS_RPC_ZONE_STATS_V1 (section 2.2.12.2.5). This structure is used to enumerate the zone
statistics.

DNSSRV_TYPEID_ZONE_SCOPE_CREATE: A pointer to a structure of type
DNS_RPC_ZONE_SCOPE_CREATE_INFO_V1 (section 2.2.13.2.2.1). This structure is used to create

the zone scope or cache scope.

DNSSRV_TYPEID_ZONE_SCOPE_INFO: A pointer to a structure of type
DNS_RPC_ZONE_SCOPE_INFO_V1 (section 2.2.13.2.3.1). This structure is used to get the zone
scope or cache scope information.

DNSSRV_TYPEID_SCOPE_ENUM: A pointer to a structure of type DNS_RPC_ENUM_SCOPE_LIST
(section 2.2.14.1.1). The structure is used to enumerate the server scopes configured on the DNS
server.

34 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

DNSSRV_TYPEID_CLIENT_SUBNET_RECORD: A pointer to a structure of type
DNS_RPC_CLIENT_SUBNET_RECORD (section 2.2.15.2.1). The structure is used to enumerate the

client subnet records configured on the DNS server.

DNSSRV_TYPEID_POLICY: A pointer to a structure of type DNS_RPC_POLICY (section 2.2.15.2.5).

DNSSRV_TYPEID_POLICY_NAME: A pointer to a structure of type DNS_RPC_POLICY_NAME
(section 2.2.15.2.6).

DNSSRV_TYPEID_POLICY_ENUM: A pointer to a structure of type
DNS_RPC_ENUMERATE_POLICY_LIST (section 2.2.15.2.7). The structure is used to enumerate the
DNS policy configured on the DNS server.

DNSSRV_TYPEID_RRL: A pointer to a structure of type DNS_RPC_RRL_PARAMS (section
2.2.16.2.1). This structure is used to configure parameters for Response Rate Limiting (RRL).

DNSSRV_TYPEID_VIRTUALIZATION_INSTANCE: A pointer to a structure of type
DNS_RPC_VIRTUALIZATION_INSTANCE (section 2.2.17.1.1).

DNSSRV_TYPEID_VIRTUALIZATION_INSTANCE_ENUM: A pointer to a structure of type
DNS_RPC_ENUM_VIRTUALIZATION_INSTANCE_LIST (section 2.2.17.1.3). This structure is used to
enumerate the virtualization instances in the DNS Server.

Clients and servers of the DNS Server Management Protocol SHOULD<4> support all values above.

2.2.1.1.2 DNS_RPC_PROTOCOLS

DNS_RPC_PROTOCOLS is a DWORD value that specifies types of RPC protocols supported by the DNS
server. For more details about this type, see section 2.1 in [MS-RPCE].

Constant/value Description

DNS_RPC_USE_TCPIP

0x00000001

The server allows clients to connect using RPC over TCP/IP.

DNS_RPC_USE_NAMED_PIPE

0x00000002

The server allows clients to connect using RPC over named pipes.

DNS_RPC_USE_LPC

0x00000004

An implementation-specific mode of communicating with a client on the same

machine. <5>

DNS_RPC_USE_ALL_PROTOCOLS

0xFFFFFFFF

The server allows clients to connect using any of the above RPC mechanisms.

2.2.1.1.3 TRUSTPOINT_STATE

The TRUSTPOINT_STATE enumeration identifies the current state of the life cycle of a DNSSEC trust

point. The state of the trust point is determined by the states of its trust anchors and is given for
informational purposes only; it does not affect the DNS or LDAP protocol.

 typedef enum
 {
 TRUSTPOINT_STATE_INITIALIZED,
 TRUSTPOINT_STATE_DSPENDING,
 TRUSTPOINT_STATE_ACTIVE,
 TRUSTPOINT_STATE_DELETE_PENDING,
 TRUSTPOINT_STATE_DELETED
 }

%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15

35 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 TRUSTPOINT_STATE, *PTRUSTPOINT_STATE;

TRUSTPOINT_STATE_INITIALIZED: Indicates a trust point that has no trust anchors but has child nodes that
do have trust anchors.

TRUSTPOINT_STATE_DSPENDING: Indicates a trust point that has only DS trust anchors and is therefore
ineffective for DNSSEC operations.

TRUSTPOINT_STATE_ACTIVE: Indicates a trust point that has one or more DNSKEY trust anchors. Queries
covered by this trust point will be validated using the DNSKEY trust anchors.

TRUSTPOINT_STATE_DELETE_PENDING: Indicates a trust point containing only revoked DNSKEY trust
anchors. When the [RFC5011] remove-hold-down time is exceeded for all revoked trust anchors, this trust point
will be deleted.

TRUSTPOINT_STATE_DELETED: Reserved. MUST NOT be sent by the server, MUST be ignored by the receiver.

2.2.1.1.4 TRUSTANCHOR_STATE

The TRUSTANCHOR_STATE enumeration identifies the current state of the life cycle of a DNSSEC trust
anchor. All states other than TRUSTANCHOR_STATE_DSPENDING and
TRUSTANCHOR_STATE_DSINVALID correspond to the states given in [RFC5011] section 4.2. Only the

TRUSTANCHOR_STATE_VALID and TRUSTANCHOR_STATE_MISSING trust anchors affect the DNS
protocol (by acting as a DNSSEC trust anchor). None of the states affect the LDAP protocol
[RFC4511].

 typedef enum
 {
 TRUSTANCHOR_STATE_INITIALIZED,
 TRUSTANCHOR_STATE_DSPENDING,
 TRUSTANCHOR_STATE_DSINVALID,
 TRUSTANCHOR_STATE_ADDPEND,
 TRUSTANCHOR_STATE_VALID,
 TRUSTANCHOR_STATE_MISSING,
 TRUSTANCHOR_STATE_REVOKED,
 TRUSTANCHOR_STATE_DELETED
 }
 TRUSTANCHOR_STATE, *PTRUSTANCHOR_STATE;

TRUSTANCHOR_STATE_INITIALIZED: Reserved. MUST NOT be sent by the server, MUST be ignored by the
receiver.

TRUSTANCHOR_STATE_DSPENDING: Indicates a DS trust anchor that can be replaced by the DNSKEY trust
anchor that matches the hash of the DS trust anchor after the next [RFC5011] active refresh.

TRUSTANCHOR_STATE_DSINVALID: Indicates a DS trust anchor that matches a DNSKEY record that is not
valid as a trust anchor because the SEP flag is not set or because the algorithm is unsupported.

TRUSTANCHOR_STATE_ADDPEND: Indicates a DNSKEY trust anchor that has not exceeded the [RFC5011] add-
hold-down time. This trust anchor can become a valid trust anchor after the hold-down time has been exceeded.

TRUSTANCHOR_STATE_VALID: Indicates a DNSKEY trust anchor that has exceeded the [RFC5011] add-hold-

down time, has been matched to (and has replaced) a DS trust anchor, or has been added by the administrator.
This trust anchor is trusted for DNSSEC operations, and a copy exists in the TrustAnchors zone.

TRUSTANCHOR_STATE_MISSING: Indicates a DNSKEY trust anchor that is valid but was not seen in the last
[RFC5011] active refresh. This trust anchor is trusted for DNSSEC operations, and a copy exists in the
TrustAnchors zone.

TRUSTANCHOR_STATE_REVOKED: Indicates a DNSKEY trust anchor that has been revoked by the
authoritative zone administrator according to [RFC5011]. This trust anchor will be deleted when the [RFC5011]
remove-hold-down time is exceeded.

TRUSTANCHOR_STATE_DELETED: Reserved. MUST NOT be sent by the server, MUST be ignored by the
receiver.

file:///C:/Users/v-narai/Documents/MS-DNSP_10_15_2015_updates1.docx%23gt_762051d8-4fdc-437e-af9d-3f4da77c3c7d
http://go.microsoft.com/fwlink/?LinkId=225980
http://go.microsoft.com/fwlink/?LinkId=225980
http://go.microsoft.com/fwlink/?LinkId=157505

36 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

2.2.1.2 Structures

2.2.1.2.1 DNS_RPC_CURRENT_CLIENT_VER

This structure specifies version number information of the DNS RPC client. This version number is
used by RPC clients to identify the requested RPC structures' version to the server so that the server
can treat the request appropriately. This structure is defined as (in host byte order):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

DNS RPC Client Major Version DNS RPC Client Minor Version

DNS RPC Client Major Version (2 bytes): The major version number for the DNS RPC client. This
MUST have a value from the following set:

Value Meaning

0x0000 Client requests RPC structures that do not require specific version numbers.

0x0006 Client requests RPC structures associated with version 6.

0x0007 Client requests RPC structures associated with version 7.

DNS RPC Client Minor Version (2 bytes): The minor version number for the DNS RPC client.
Senders MUST set this to zero and receivers MUST ignore it.

2.2.1.2.2 DNS_RPC_BUFFER

DNS_RPC_BUFFER defines a structure that contains a set of a specific type of structures. The DNS
Server Management Protocol uses this structure to return information from the server, while
processing R_DnssrvComplexOperation2 (section 3.1.4.8) method calls with operation type
"Statistics".

 typedef struct _DnssrvRpcBuffer {
 DWORD dwLength;
 [size_is(dwLength)] BYTE Buffer[];
 } DNS_RPC_BUFFER,
 *PDNS_RPC_BUFFER;

dwLength: The length, in bytes, of the data stored in Buffer.

Buffer: A variable length array of bytes of length specified by dwLength. The buffer can contain one
or more DNS_RPC_NODE structures (section 2.2.2.2.3). Each DNS_RPC_NODE contains the length
of that node, so the DNS_RPC_BUFFER dwLength can be larger to indicate multiple
DNS_RPC_NODE structures.

2.2.1.2.3 DNS_RPC_UTF8_STRING_LIST

DNS_RPC_UTF8_STRING_LIST defines a structure that contains a list of null-terminated UTF-8 strings.
This structure is used by the DNS Server Management Protocol while processing R_DnssrvOperations2
(section 3.1.4.6) and R_DnssrvQuery2 (section 3.1.4.7) method calls, with operations type
"GlobalQueryBlockList".

 typedef struct _DnsRpcUtf8StringList {
 [range(0,10000)] DWORD dwCount;
 [size_is(dwCount), string] char* pszStrings[];

37 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 } DNS_RPC_UTF8_STRING_LIST,
 *PDNS_RPC_UTF8_STRING_LIST;

dwCount: The number of strings present in the pszStrings array.

pszStrings: A variable length array of pointers to null-terminated UTF-8 strings.

2.2.1.2.4 DNS_RPC_UNICODE_STRING_LIST

DNS_RPC_UNICODE_STRING_LIST defines a structure that contains a list of null-terminated Unicode
strings. This structure is used by the DNS Server Management Protocol while processing the
R_DnssrvComplexOperation2 (section 3.1.4.8) method call, with operations of type
"EnumerateKeyStorageProviders".

 typedef struct _DnsRpcUnicodeStringList {
 [range(0,10000)] DWORD dwCount;
 [size_is(dwCount), string] wchar_t * pwszStrings[];
 } DNS_RPC_UNICODE_STRING_LIST,
 *PDNS_RPC_UNICODE_STRING_LIST;

dwCount: The number of strings present in the pwszStrings array.

pwszStrings: A variable-length array of pointers to null-terminated Unicode strings.

2.2.1.2.5 DNS_RPC_NAME_AND_PARAM

DNS_RPC_NAME_AND_PARAM defines the structure that contains information about a simple server

property that takes a DWORD value. The DNS Server Management Protocol uses this structure to
exchange information about various properties that take an integer value, while processing the
R_DnssrvOperation2 (section 3.1.4.6) method call with operation types "ResetDwordProperty",
"DeleteNode", and "DeleteRecordSet".

 typedef struct _DnssrvRpcNameAndParam {
 DWORD dwParam;
 [string] char* pszNodeName;
 } DNS_RPC_NAME_AND_PARAM,
 *PDNS_RPC_NAME_AND_PARAM;

dwParam: The requested new value for the server property specified by pszNodeName.

pszNodeName: Pointer to a null-terminated UTF-8 string that specifies the name of the server
property.

2.2.1.2.6 DNSSRV_RPC_UNION

DNSSRV_RPC_UNION specifies a collection of all possible messages structures that can be exchanged

between a client and server communicating using the DNS Server Management Protocol. This is used

by the R_DnssrvOperation2 (section 3.1.4.6), R_DnssrvQuery2 (section 3.1.4.7) and
R_DnssrvComplexOperation2 (section 3.1.4.8) method calls. The exact message format inside
DNSSRV_RPC_UNION is identified by an accompanying DNS_RPC_TYPEID (section 2.2.1.1.1) value.
Clients and servers of the DNS Server Management Protocol SHOULD<6> support all members of
DNSSRV_RPC_UNION.

 typedef
 [switch_type(DWORD)]
 union _DnssrvSrvRpcUnion {

38 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 [case(DNSSRV_TYPEID_NULL)]
 PBYTE Null;
 [case(DNSSRV_TYPEID_DWORD)]
 DWORD Dword;
 [case(DNSSRV_TYPEID_LPSTR)]
 [string] char* String;
 [case(DNSSRV_TYPEID_LPWSTR)]
 [string] wchar_t* WideString;
 [case(DNSSRV_TYPEID_IPARRAY)]
 PIP4_ARRAY IpArray;
 [case(DNSSRV_TYPEID_BUFFER)]
 PDNS_RPC_BUFFER Buffer;
 [case(DNSSRV_TYPEID_SERVER_INFO_W2K)]
 PDNS_RPC_SERVER_INFO_W2K ServerInfoW2K;
 [case(DNSSRV_TYPEID_STATS)]
 PDNSSRV_STATS Stats;
 [case(DNSSRV_TYPEID_FORWARDERS_W2K)]
 PDNS_RPC_FORWARDERS_W2K ForwardersW2K;
 [case(DNSSRV_TYPEID_ZONE_W2K)]
 PDNS_RPC_ZONE_W2K ZoneW2K;
 [case(DNSSRV_TYPEID_ZONE_INFO_W2K)]
 PDNS_RPC_ZONE_INFO_W2K ZoneInfoW2K;
 [case(DNSSRV_TYPEID_ZONE_SECONDARIES_W2K)]
 PDNS_RPC_ZONE_SECONDARIES_W2K SecondariesW2K;
 [case(DNSSRV_TYPEID_ZONE_DATABASE_W2K)]
 PDNS_RPC_ZONE_DATABASE_W2K DatabaseW2K;
 [case(DNSSRV_TYPEID_ZONE_CREATE_W2K)]
 PDNS_RPC_ZONE_CREATE_INFO_W2K ZoneCreateW2K;
 [case(DNSSRV_TYPEID_NAME_AND_PARAM)]
 PDNS_RPC_NAME_AND_PARAM NameAndParam;
 [case(DNSSRV_TYPEID_ZONE_LIST_W2K)]
 PDNS_RPC_ZONE_LIST_W2K ZoneListW2K;
 [case(DNSSRV_TYPEID_SERVER_INFO_DOTNET)]
 PDNS_RPC_SERVER_INFO_DOTNET ServerInfoDotNet;
 [case(DNSSRV_TYPEID_FORWARDERS_DOTNET)]
 PDNS_RPC_FORWARDERS_DOTNET ForwardersDotNet;
 [case(DNSSRV_TYPEID_ZONE)]
 PDNS_RPC_ZONE Zone;
 [case(DNSSRV_TYPEID_ZONE_INFO_DOTNET)]
 PDNS_RPC_ZONE_INFO_DOTNET ZoneInfoDotNet;
 [case(DNSSRV_TYPEID_ZONE_SECONDARIES_DOTNET)]
 PDNS_RPC_ZONE_SECONDARIES_DOTNET SecondariesDotNet;
 [case(DNSSRV_TYPEID_ZONE_DATABASE)]
 PDNS_RPC_ZONE_DATABASE Database;
 [case(DNSSRV_TYPEID_ZONE_CREATE_DOTNET)]
 PDNS_RPC_ZONE_CREATE_INFO_DOTNET ZoneCreateDotNet;
 [case(DNSSRV_TYPEID_ZONE_LIST)]
 PDNS_RPC_ZONE_LIST ZoneList;
 [case(DNSSRV_TYPEID_ZONE_EXPORT)]
 PDNS_RPC_ZONE_EXPORT_INFO ZoneExport;
 [case(DNSSRV_TYPEID_DP_INFO)]
 PDNS_RPC_DP_INFO DirectoryPartition;
 [case(DNSSRV_TYPEID_DP_ENUM)]
 PDNS_RPC_DP_ENUM DirectoryPartitionEnum;
 [case(DNSSRV_TYPEID_DP_LIST)]
 PDNS_RPC_DP_LIST DirectoryPartitionList;
 [case(DNSSRV_TYPEID_ENLIST_DP)]
 PDNS_RPC_ENLIST_DP EnlistDirectoryPartition;
 [case(DNSSRV_TYPEID_ZONE_CHANGE_DP)]
 PDNS_RPC_ZONE_CHANGE_DP ZoneChangeDirectoryPartition;
 [case(DNSSRV_TYPEID_ENUM_ZONES_FILTER)]
 PDNS_RPC_ENUM_ZONES_FILTER EnumZonesFilter;
 [case(DNSSRV_TYPEID_ADDRARRAY)]
 PDNS_ADDR_ARRAY AddrArray;
 [case(DNSSRV_TYPEID_SERVER_INFO)]
 PDNS_RPC_SERVER_INFO ServerInfo;
 [case(DNSSRV_TYPEID_ZONE_CREATE)]
 PDNS_RPC_ZONE_CREATE_INFO ZoneCreate;
 [case(DNSSRV_TYPEID_FORWARDERS)]

39 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 PDNS_RPC_FORWARDERS Forwarders;
 [case(DNSSRV_TYPEID_ZONE_SECONDARIES)]
 PDNS_RPC_ZONE_SECONDARIES Secondaries;
 [case(DNSSRV_TYPEID_IP_VALIDATE)]
 PDNS_RPC_IP_VALIDATE IpValidate;
 [case(DNSSRV_TYPEID_ZONE_INFO)]
 PDNS_RPC_ZONE_INFO ZoneInfo;
 [case(DNSSRV_TYPEID_AUTOCONFIGURE)]
 PDNS_RPC_AUTOCONFIGURE AutoConfigure;
 [case(DNSSRV_TYPEID_UTF8_STRING_LIST)]
 PDNS_RPC_UTF8_STRING_LIST Utf8StringList;
 [case(DNSSRV_TYPEID_UNICODE_STRING_LIST)]
 PDNS_RPC_UNICODE_STRING_LIST UnicodeStringList;
 [case(DNSSRV_TYPEID_SKD)]
 PDNS_RPC_SKD Skd;
 [case(DNSSRV_TYPEID_SKD_LIST)]
 PDNS_RPC_SKD_LIST SkdList;
 [case(DNSSRV_TYPEID_SKD_STATE)]
 PDNS_RPC_SKD_STATE SkdState;
 [case(DNSSRV_TYPEID_SIGNING_VALIDATION_ERROR)]
 PDNS_RPC_SIGNING_VALIDATION_ERROR SigningValidationError;
 [case(DNSSRV_TYPEID_TRUST_POINT_LIST)]
 PDNS_RPC_TRUST_POINT_LIST TrustPointList;
 [case(DNSSRV_TYPEID_TRUST_ANCHOR_LIST)]
 PDNS_RPC_TRUST_ANCHOR_LIST TrustAnchorList;
 [case(DNSSRV_TYPEID_ZONE_SIGNING_SETTINGS)]
 PDNS_RPC_ZONE_DNSSEC_SETTINGS ZoneDnsSecSettings;
 [case(DNSSRV_TYPEID_ZONE_SCOPE_ENUM)]
 PDNS_RPC_ENUM_ZONE_SCOPE_LIST ZoneScopeList;
 [case(DNSSRV_TYPEID_ZONE_STATS)]
 PDNS_RPC_ZONE_STATS ZoneStats;
 [case(DNSSRV_TYPEID_ZONE_SCOPE_CREATE)]
 PDNS_RPC_ZONE_SCOPE_CREATE_INFO ScopeCreate;
 [case(DNSSRV_TYPEID_ZONE_SCOPE_INFO)]
 PDNS_RPC_ZONE_SCOPE_INFO ScopeInfo;
 [case(DNSSRV_TYPEID_SCOPE_ENUM)]
 PDNS_RPC_ENUM_SCOPE_LIST ScopeList;
 [case(DNSSRV_TYPEID_CLIENT_SUBNET_RECORD)]
 PDNS_RPC_CLIENT_SUBNET_RECORD SubnetList;
 [case(DNSSRV_TYPEID_POLICY)]
 PDNS_RPC_POLICY pPolicy;
 [case(DNSSRV_TYPEID_POLICY_NAME)]
 PDNS_RPC_POLICY_NAME pPolicyName;
 [case(DNSSRV_TYPEID_POLICY_ENUM)]
 PDNS_RPC_ENUMERATE_POLICY_LIST pPolicyList;
 [case(DNSSRV_TYPEID_RRL)]
 PDNS_RPC_RRL_PARAMS pRRLParams;
 [case(DNSSRV_TYPEID_VIRTUALIZATION_INSTANCE)]
 PDNS_RPC_VIRTUALIZATION_INSTANCE VirtualizationInstance;
 [case(DNSSRV_TYPEID_VIRTUALIZATION_INSTANCE_ENUM)]
 PDNS_RPC_ENUM_VIRTUALIZATION_INSTANCE_LIST VirtualizationInstanceList;

 } DNSSRV_RPC_UNION;

Null: No data is provided.

Dword: Data is a DWORD value.

String: A pointer to a null-terminated UTF-8 string or a NULL pointer.

WideString: A pointer to a null-terminated Unicode string or a NULL pointer.

IpArray: An array of IPv4 addresses in IP4_ARRAY (section 2.2.3.2.1) format.

Buffer: A pointer to a DNS_RPC_BUFFER (section 2.2.1.2.2).

40 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

ServerInfoW2K: A pointer to a structure of type DNS_RPC_SERVER_INFO_W2K (section 2.2.4.2.2).
This structure is used to specify general DNS server state and configuration.

Stats: A pointer to a structure of type DNSSRV_STAT (section 2.2.10.2.2). The structure exposes
internal statistics and counters.

ForwardersW2K: A pointer to a structure of type DNS_RPC_FORWARDERS_W2K (section
2.2.5.2.10.1). This structure specifies the set of DNS servers this DNS server will forward
unresolved queries to.

ZoneW2K: A pointer to a structure of type DNS_RPC_ZONE_W2K (section 2.2.5.2.1). This structure
is used to specify basic information about a DNS zone.

ZoneInfoW2K: A pointer to a structure of type DNS_RPC_INFO_W2K (section 2.2.5.2.4). This
structure is used to specify detailed DNS zone information.

SecondariesW2K: A pointer to a structure of type DNS_RPC_ZONE_SECONDARIES_W2K (section
2.2.5.2.5). This structure is used to specify information about the secondary servers for a primary
DNS zone.

DatabaseW2K: A pointer to a structure of type DNS_RPC_ZONE_DATABASE_W2K (section
2.2.5.2.6). This structure specifies how a DNS zone is stored in persistent storage.

ZoneCreateW2K: A pointer to a structure of type DNS_RPC_ZONE_CREATE_INFO_W2K (section

2.2.5.2.9). This structure is used to specify parameters required when creating a new DNS zone.

NameAndParam: A pointer to a structure of type DNS_RPC_NAME_AND_PARAM (section 2.2.1.2.5).
This is a general purpose structure used to associate a parameter name with a DWORD value.

ZoneListW2K: A pointer to a structure of type DNS_RPC_ZONE_LIST_W2K (section 2.2.1.2.5). This
structure is used to enumerate zones.

ServerInfoDotNet: A pointer to a structure of type DNS_RPC_SERVER_INFO_DOTNET (section
2.2.4.2.2). This structure is used to specify general DNS server state and configuration.

ForwardersDotNet: A pointer to a structure of type DNS_RPC_FORWARDERS_DOTNET (section
2.2.5.2.10.2). This structure specifies the set of DNS servers this DNS server will forward
unresolved queries to.

Zone: A pointer to a structure of type DNS_RPC_ZONE (section 2.2.5.2.1). This structure is used to
specify basic information about a DNS zone.

ZoneInfoDotNet: A pointer to a structure of type DNS_RPC_ZONE_INFO_DOTNET (section
2.2.5.2.4). This structure is used to specify detailed DNS zone information.

SecondariesDotNet: A pointer to a structure of type DNS_RPC_ZONE_SECONDARIES_DOTNET
(section 2.2.5.2.5). This structure is used to specify information about the secondary servers for a
primary DNS zone.

Database: A pointer to a structure of type DNS_RPC_ZONE_DATABASE (section 2.2.5.2.6). This
structure specifies how a DNS zone is stored in persistent storage.

ZoneCreateDotNet: A pointer to a structure of type DNS_RPC_ZONE_CREATE_INFO_DOTNET

(section 2.2.5.2.9). This structure is used to specify parameters required when creating a new
DNS zone.

ZoneList: A pointer to a structure of type DNS_RPC_ZONE_LIST (section 2.2.5.2.3). This structure is
used to enumerate zones.

ZoneExport: A pointer to a structure of type DNS_RPC_ZONE_EXPORT_INFO (section 2.2.5.2.8).
This structure is used to specify how a zone is exported to file.

41 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

DirectoryPartition: A pointer to a structure of type DNS_RPC_DP_INFO (section 2.2.7.2.1). This
structure specifies detailed information about a single application directory partition.

DirectoryPartitionEnum: A pointer to a structure of type DNS_RPC_DP_ENUM (section 2.2.7.2.3).
This structure is used to specify basic information about an application directory partition.

DirectoryPartitionList: A pointer to a structure of type DNS_RPC_DP_LIST (section 2.2.7.2.4). This
structure is used to enumerate the Application Directory Partition Table.

EnlistDirectoryPartition: A pointer to a structure of type DNS_RPC_ENLIST_DP (section 2.2.7.2.5).
This structure is used to request enlistment changes for an application directory partition.

ZoneChangeDirectoryPartition: A pointer to a structure of type DNS_RPC_ZONE_CHANGE_DP
(section 2.2.7.2.6). This structure is used to request that a DNS zone be moved from one
application directory partition to another.

EnumZonesFilter: A pointer to a structure of type DNS_RPC_ENUM_ZONES_FILTER (section
2.2.5.2.9). This structure is used to filter DNS zones during enumeration.

AddrArray: A pointer to a structure of type DNS_ADDR_ARRAY (section 2.2.3.2.3). This structure is
used to specify a list of IPv4 or IPv6 addresses.

ServerInfo: A pointer to a structure of type DNS_RPC_SERVER_INFO (section 2.2.4.2.2). This
structure is used to specify general DNS server state and configuration.

ZoneCreate: A pointer to a structure of type DNS_RPC_ZONE_CREATE_INFO (section 2.2.5.2.9).
This structure is used to specify parameters required when creating a new DNS zone.

Forwarders: A pointer to a structure of type DNS_RPC_FORWARDERS (section 2.2.5.2.10). This
structure specifies the set of DNS servers this DNS server will forward unresolved queries to.

Secondaries: A pointer to a structure of type DNS_RPC_ZONE_SECONDARIES (section 2.2.5.2.5).
This structure is used to specify information about the secondary servers for a primary DNS zone.

IpValidate: A pointer to a structure of type DNS_RPC_IP_VALIDATE (section 2.2.3.2.4). This

structure is used to request IP validation and to return the results of IP validation.

ZoneInfo: A pointer to a structure of type DNS_RPC_ZONE_INFO (section 2.2.5.2.4). This structure
is used to specify detailed DNS zone information.

AutoConfigure: A pointer to a structure of type DNS_AUTOCONFIGURE (section 2.2.8.2.1). This
structure is used to request DNS server autoconfiguration.

Utf8StringList: A pointer to a structure of type DNS_RPC_UTF8_STRING_LIST (section 2.2.1.2.3).
This structure is used to represent a list of UTF-8 [RFC3629] strings.

UnicodeStringList: A pointer to a structure of type DNS_RPC_UNICODE_STRING_LIST (section
2.2.1.2.4). This structure is used to represent a list of Unicode strings.

Skd: A pointer to a structure of type DNS_RPC_SKD (section 2.2.6.2.1). This structure is used to
specify detailed signing key descriptor (SKD) information.

SkdList: A pointer to a structure of type DNS_RPC_SKD_LIST (section 2.2.6.2.2). This structure is
used to enumerate signing key descriptors.

SkdState: A pointer to a structure of type DNS_RPC_SKD_STATE (section 2.2.6.2.3). This structure
is used to specify detailed signing key descriptor state information.

SigningValidationError: A pointer to a structure of type DNS_RPC_SIGNING_VALIDATION_ERROR
(section 2.2.6.2.8). This structure is used to specify signing key descriptor validation error
information.

http://go.microsoft.com/fwlink/?LinkId=90439

42 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

TrustPointList: A pointer to a structure of type DNS_RPC_TRUST_POINT_LIST (section 2.2.6.2.5).
This structure is used to enumerate trust points.

TrustAnchorList: A pointer to a structure of type DNS_RPC_TRUST_ANCHOR_LIST (section
2.2.6.2.7). This structure is used to enumerate trust anchors.

ZoneDnsSecSettings: A pointer to a structure of type
DNS_RPC_ZONE_DNSSEC_SETTINGS (section 2.2.6.2.9). This structure is used to list the
DNSSEC settings of a zone.

ZoneScopeList: A pointer to a structure of type
DNS_RPC_ENUM_ZONE_SCOPE_LIST (section 2.2.13.2.1). This structure is used to enumerate
zone scopes in a specified zone or cache scopes in a cache zone.

ZoneStats: A pointer to a structure of type DNS_RPC_ZONE_STATS_V1 (section 2.2.12.2.5). This

structure is used to enumerate the zone statistics.

ScopeCreate: A pointer to a structure of type
DNS_RPC_ZONE_SCOPE_CREATE_INFO_V1 (section 2.2.13.2.2.1). This structure is used to create

a zone scope or cache scope.

ScopeInfo: A pointer to a structure of type
DNS_RPC_ZONE_SCOPE_INFO_V1 (section 2.2.13.2.3.1). This structure is used to specify detailed

DNS zone scope or cache scope information.

ScopeList: A pointer to a structure of type DNS_RPC_ENUM_SCOPE_LIST (section 2.2.14.1.1). This
structure is used to retrieve all the server scopes configured on the DNS server.

SubnetList: A pointer to a structure of type
DNS_RPC_CLIENT_SUBNET_RECORD (section 2.2.15.2.1). This structure is used to retrieve details
of a client subnet record in the DNS server.

pPolicy: A pointer to a structure of type DNS_RPC_POLICY (section 2.2.15.2.5). This structure is

used to retrieve details of a DNS Policy in the DNS server.

pPolicyName: A pointer to a structure of type DNS_RPC_POLICY_NAME (section 2.2.15.2.6). This
structure is used while enumerating DNS Policies in a DNS server per level.

pPolicyList: A pointer to a structure of type
DNS_RPC_ENUMERATE_POLICY_LIST (section 2.2.15.2.7). This structure contains a list of
DNS_RPC_POLICY_NAME structures.

pRRLParams: A pointer to a structure of type DNS_RPC_RRL_PARAMS (section 2.2.16.2.1). This

structure contains the configuration parameters for Response Rate Limiting (RRL).

VirtualizationInstance: A pointer to a structure of type DNS_RPC_VIRTUALIZATION_INSTANCE
(section 2.2.17.1.1). This structure is used to retrieve details of a virtualization instance in the
DNS server.

VirtualizationInstanceList: A pointer to a structure of type
DNS_RPC_ENUM_VIRTUALIZATION_INSTANCE_LIST (section 2.2.17.1.3). This structure is used to

enumerate virtualization instances in a DNS server.

2.2.2 Resource Record Messages

2.2.2.1 Enumerations and Constants

2.2.2.1.1 DNS_RECORD_TYPE

43 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

The DNS_RECORD_TYPE is a 16-bit integer value that specifies DNS record types that can be

enumerated by the DNS server.

Constant/value Description

DNS_TYPE_ZERO

0x0000

An empty record type ([RFC1034] section 3.6 and [RFC1035] section 3.2.2).

DNS_TYPE_A

0x0001

An A record type, used for storing an IP address ([RFC1035] section 3.2.2).

DNS_TYPE_NS

0x0002

An authoritative name-server record type ([RFC1034] section 3.6 and [RFC1035]
section 3.2.2).

DNS_TYPE_MD

0x0003

A mail-destination record type ([RFC1035] section 3.2.2).

DNS_TYPE_MF

0x0004

A mail forwarder record type ([RFC1035] section 3.2.2).

DNS_TYPE_CNAME

0x0005

A record type that contains the canonical name of a DNS alias ([RFC1035] section
3.2.2).

DNS_TYPE_SOA

0x0006

A Start of Authority (SOA) record type ([RFC1035] section 3.2.2).

DNS_TYPE_MB

0x0007

A mailbox record type ([RFC1035] section 3.2.2).

DNS_TYPE_MG

0x0008

A mail group member record type ([RFC1035] section 3.2.2).

DNS_TYPE_MR

0x0009

A mail-rename record type ([RFC1035] section 3.2.2).

DNS_TYPE_NULL

0x000A

A record type for completion queries ([RFC1035] section 3.2.2).

DNS_TYPE_WKS

0x000B

A record type for a well-known service ([RFC1035] section 3.2.2).

DNS_TYPE_PTR

0x000C

A record type containing FQDN pointer ([RFC1035] section 3.2.2).

DNS_TYPE_HINFO

0x000D

A host information record type ([RFC1035] section 3.2.2).

DNS_TYPE_MINFO

0x000E

A mailbox or mailing list information record type ([RFC1035] section 3.2.2).

DNS_TYPE_MX

0x000F

A mail-exchanger record type ([RFC1035] section 3.2.2).

DNS_TYPE_TXT

0x0010

A record type containing a text string ([RFC1035] section 3.2.2).

DNS_TYPE_RP A responsible-person record type [RFC1183].

http://go.microsoft.com/fwlink/?LinkId=90263
http://go.microsoft.com/fwlink/?LinkId=90264
http://go.microsoft.com/fwlink/?LinkId=106947

44 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Constant/value Description

0x0011

DNS_TYPE_AFSDB

0x0012

A record type containing AFS database location [RFC1183].

DNS_TYPE_X25

0x0013

An X25 PSDN address record type [RFC1183].

DNS_TYPE_ISDN

0x0014

An ISDN address record type [RFC1183].

DNS_TYPE_RT

0x0015

A route through record type [RFC1183].

DNS_TYPE_SIG

0x0018

A cryptographic public key signature record type [RFC2931].

DNS_TYPE_KEY

0x0019

A record type containing public key used in DNSSEC [RFC2535].

DNS_TYPE_AAAA

0x001C

An IPv6 address record type [RFC3596].

DNS_TYPE_LOC

0x001D

A location information record type [RFC1876].

DNS_TYPE_NXT

0x001E

A next-domain record type [RFC2065].

DNS_TYPE_SRV

0x0021

A server selection record type [RFC2782].

DNS_TYPE_ATMA

0x0022

An Asynchronous Transfer Mode (ATM) address record type [ATMA].

DNS_TYPE_NAPTR

0x0023

An NAPTR record type [RFC2915].

DNS_TYPE_DNAME

0x0027

A DNAME record type [RFC2672].

DNS_TYPE_DS

0x002B

A DS record type [RFC4034].

DNS_TYPE_RRSIG

0x002E

An RRSIG record type [RFC4034].

DNS_TYPE_NSEC

0x002F

An NSEC record type [RFC4034].

DNS_TYPE_DNSKEY

0x0030

A DNSKEY record type [RFC4034].

DNS_TYPE_DHCID

0x0031

A DHCID record type [RFC4701].

DNS_TYPE_NSEC3 An NSEC3 record type [RFC5155].

http://go.microsoft.com/fwlink/?LinkId=107025
http://go.microsoft.com/fwlink/?LinkId=107021
http://go.microsoft.com/fwlink/?LinkId=107027
http://go.microsoft.com/fwlink/?LinkId=106954
http://go.microsoft.com/fwlink/?LinkId=106958
http://go.microsoft.com/fwlink/?LinkId=90381
http://go.microsoft.com/fwlink/?LinkId=107028
http://go.microsoft.com/fwlink/?LinkId=107024
http://go.microsoft.com/fwlink/?LinkId=132207
http://go.microsoft.com/fwlink/?LinkId=107052
http://go.microsoft.com/fwlink/?LinkId=125431
http://go.microsoft.com/fwlink/?LinkId=225981

45 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Constant/value Description

0x0032

DNS_TYPE_NSEC3PARAM

0x0033

An NSEC3PARAM record type [RFC5155].

DNS_TYPE_TLSA

0x0034

A TLSA record type [RFC6698].

DNS_TYPE_ALL

0x00FF

A query-only type requesting all records [RFC1035].

DNS_TYPE_WINS

0xFF01

A record type containing Windows Internet Name Service (WINS) forward lookup
data [MS-WINSRA].

DNS_TYPE_WINSR

0xFF02

A record type containing WINS reverse lookup data [MS-WINSRA].

An implementation SHOULD<7> support all the preceding record types.

Other type values that are not explicitly defined in the preceding table MUST be enumerable, including
values defined by [IANA-DNS].

2.2.2.1.2 DNS_RPC_NODE_FLAGS

DNS_RPC_NODE_FLAGS enumerates the possible property values for the DNS_RPC_NODE and
DNS_RPC_RECORD structures, which MUST have dwFlags field set to any combination of following
possible values. These flags are used to indicate special properties of DNS records and to request
special handling of DNS records during enumeration and modification operations.

Constant/value Description

DNS_RPC_FLAG_CACHE_DATA

0x80000000

Data is from the DNS cache.

DNS_RPC_FLAG_ZONE_ROOT

0x40000000

Data is from enumeration performed at a zone-root.
Applicable for dwFlags in DNS_RPC_NODE (section
2.2.2.2.3).

DNS_RPC_FLAG_AUTH_ZONE_ROOT

0x20000000

Data is from enumeration performed at an authoritative
zone-root. Applicable for dwFlags in DNS_RPC_NODE
(section 2.2.2.2.3).

DNS_RPC_FLAG_ZONE_DELEGATION

0x10000000

Data is from enumeration performed at a node that is
represents in a delegated subzone. Applicable for dwFlags
in DNS_RPC_NODE (section 2.2.2.2.3).

DNS_RPC_FLAG_RECORD_DEFAULT_TTL

0x08000000

Record SHOULD use zone default TTL value. Applicable for
dwFlags in DNS_RPC_RECORD (section 2.2.2.2.5).

DNS_RPC_FLAG_RECORD_TTL_CHANGE

0x04000000

This flag is set in case of update record to update TTL value
for the record. Applicable for dwFlags in
DNS_RPC_RECORD (section 2.2.2.2.5).

DNS_RPC_FLAG_RECORD_CREATE_PTR

0x02000000

This flag is set when adding or deleting a record. Applicable
for dwFlags in DNS_RPC_RECORD (section 2.2.2.2.5).

http://go.microsoft.com/fwlink/?LinkId=532821
%5bMS-WINSRA%5d.pdf#Section_991f1bcf79a744cf850cbf34a0e75451
http://go.microsoft.com/fwlink/?LinkId=148574

46 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Constant/value Description

DNS_RPC_FLAG_NODE_STICKY

0x01000000

This flag is set when enumerating a node that is at the
domain root. Applicable for dwFlags in DNS_RPC_NODE
(section 2.2.2.2.3).

DNS_RPC_FLAG_NODE_COMPLETE

0x00800000

This flag is set when requested enumeration is completed
with the buffer being returned. Applicable for dwFlags in
DNS_RPC_NODE (section 2.2.2.2.3).

DNS_RPC_FLAG_SUPPRESS_NOTIFY

0x00010000

This flag is set when updated record to disable zone-update
notifications for a zone. Applicable for dwFlags in
DNS_RPC_RECORD (section 2.2.2.2.5).

DNS_RPC_FLAG_AGING_ON

0x00020000

This flag is set when updating a record to enable or disable
aging for a record. Applicable for dwFlags in
DNS_RPC_RECORD (section 2.2.2.2.5).<8>

DNS_RPC_FLAG_OPEN_ACL

0x00040000

This flag is set when updating a record to disable access
control for a record. Applicable for dwFlags in
DNS_RPC_RECORD (section 2.2.2.2.5).

DNS_RPC_FLAG_RECORD_WIRE_FORMAT

0x00100000

This flag is set when adding a resource record of an
unknown type ([RFC3597] section 2). Applicable for
dwFlags in DNS_RPC_RECORD (section 2.2.2.2.5).

DNS_RPC_FLAG_SUPPRESS_RECORD_UPDATE_PTR

0x00200000

This flag is set when replacing a resource record.
Applicable for dwFlags in DNS_RPC_RECORD (section
2.2.2.2.5).

An implementation SHOULD<9> support all of the preceding flags.

2.2.2.2 Structures

2.2.2.2.1 DNS_RPC_NAME

The DNS_RPC_NAME structure is used to specify an FQDN, a DNS label, or another string in an RPC

buffer by the DNS server. See section 3.1.6.3 for the handling of this structure in the directory server.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

cchNameLength dnsName (variable)

...

cchNameLength (1 byte): The length, in bytes, of the string stored in the dnsName member. To
represent an empty string, cchNameLength MUST be zero and dnsName MUST be empty. The
length of this structure is always 4-byte aligned so there can be 0-3 bytes of padding at the end of
this field. The pad bytes are not included in the cchNameLength count.

dnsName (variable): A UTF-8 string with length given by cchNameLength. The string MUST NOT be

null-terminated. This string can represent a Fully qualified domain name (FQDN) or any other
string.

2.2.2.2.2 DNS_COUNT_NAME

The DNS_COUNT_NAME structure is used to specify an FQDN in an LDAP message.

http://go.microsoft.com/fwlink/?LinkID=532820

47 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Length LabelCount RawName (variable)

...

Length (1 byte): The length, in bytes, of the string stored in the RawName member, including null
termination. To represent an empty string, Length MUST be zero, LabelCount MUST be zero, and
RawName MUST be empty.

LabelCount (1 byte): The count of DNS labels in the RawName member.

RawName (variable): A string containing an FQDN in which a 1-byte label length count for the
subsequent label has been inserted before the first label and in place of each "." delimiter. The
string MUST be null-terminated. The maximum length of the string, including the null terminator,
is 256 bytes.

2.2.2.2.3 DNS_RPC_NODE

DNS_RPC_NODE defines a structure that is used as a header for a list of DNS_RPC_RECORD
structures (section 2.2.2.2.5) returned by the DNS server inside a DNS_RPC_BUFFER (section
2.2.1.2.2) while processing the R_DnssrvEnumRecords2 (section 3.1.4.9).

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

wLength wRecordCount

dwFlags

dwChildCount

dnsNodeName (variable)

...

wLength (2 bytes): The length of this structure, in bytes, including the fixed size elements plus the
length of the dnsNodeName element. The length of this structure is always 4-byte aligned, so it is

possible to have 0-3 bytes of padding at the end of the structure. The pad bytes are included in
the wLength count.

wRecordCount (2 bytes): The number of DNS_RPC_RECORD structures that follow this node
structure.

dwFlags (4 bytes): The properties of the DNS_RPC_NODE structure.

dwChildCount (4 bytes): The total number of children nodes below this node in the DNS record
database.

dnsNodeName (variable): The name of this node in DNS_RPC_NAME (section 2.2.2.2.1) format.

2.2.2.2.4 DNS_RPC_RECORD_DATA

DNS_RPC_RECORD_DATA defines a collection of possible resource record structures that are available
on the DNS server. This is used by the DNS server while responding to R_DnssrvEnumRecords2

48 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

(section 3.1.4.9) method call to return resource record information inside a DNS_RPC_RECORD
(2.2.2.2.5) structure that in turn is encapsulated inside a DNS_RPC_BUFFER (section 2.2.1.2.2)

structure. It is similarly used as input to the R_DnssrvUpdateRecord (section 3.1.4.5) and
R_DnssrvUpdateRecord2 (section 3.1.4.10) method calls.

The DNS_RPC_RECORD_DATA MUST be specified in one of the type-specific formats defined in a
section that follows, where the type is indicated by the wType value in the DNS_RPC_RECORD
(section 2.2.2.2.5) structure. Further, for each DNS_RECORD_TYPE (section 2.2.2.1.1) that the server
supports, the server MUST support the corresponding DNS_RPC_RECORD_DATA subtype.

2.2.2.2.4.1 DNS_RPC_RECORD_A

The DNS_RPC_RECORD_A structure contains an IPv4 address. This record MUST be formatted as

follows:

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

IPv4 Address

IPv4 Address (4 bytes): An IPv4 address in network byte order.

2.2.2.2.4.2 DNS_RPC_RECORD_NODE_NAME

The DNS_RPC_RECORD_NODE_NAME structure contains information about a DNS record of any of the

following types:<10>

 DNS_TYPE_PTR

 DNS_TYPE_NS

 DNS_TYPE_CNAME

 DNS_TYPE_DNAME

 DNS_TYPE_MB

 DNS_TYPE_MR

 DNS_TYPE_MG

 DNS_TYPE_MD

 DNS_TYPE_MF

This record MUST be formatted as follows:

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

nameNode (variable)

...

nameNode (variable): The FQDN of this node in DNS_RPC_NAME (section 2.2.2.2.1) format.

2.2.2.2.4.3 DNS_RPC_RECORD_SOA

49 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

The DNS_RPC_RECORD_SOA structure contains information about an SOA record (section 3.3.13 in
[RFC1035]). This record MUST be formatted as follows:

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

dwSerialNo

dwRefresh

dwRetry

dwExpire

dwMinimumTtl

namePrimaryServer (variable)

...

Zone Administrator Email (variable)

...

dwSerialNo (4 bytes): The serial number of the SOA record.

dwRefresh (4 bytes): The interval, in seconds, at which a secondary DNS server attempts to
contact the primary DNS server for getting an update.

dwRetry (4 bytes): The interval, in seconds, at which a secondary DNS server retries to check with

the primary DNS server in case of failure.

dwExpire (4 bytes): The duration, in seconds, that a secondary DNS server continues attempts to
get updates from the primary DNS server and if still unsuccessful assumes that the primary DNS

server is unreachable.

dwMinimumTtl (4 bytes): The minimum duration, in seconds, for which record data in the zone is
valid.

namePrimaryServer (variable): The FQDN of the primary DNS server for this zone in
DNS_RPC_NAME (section 2.2.2.2.1) format.

Zone Administrator Email (variable): The contact email address for the zone administrators in a
structure of type DNS_RPC_NAME (section 2.2.2.2.1).

2.2.2.2.4.4 DNS_RPC_RECORD_NULL

The DNS_RPC_RECORD_NULL structure contains information for any record for which there is no more
specific DNS_RPC_RECORD structure. This record MUST be formatted as follows:

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

bData (variable)

http://go.microsoft.com/fwlink/?LinkId=90264

50 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

...

bData (variable): An array of data. The sender can provide any data in this array.

2.2.2.2.4.5 DNS_RPC_RECORD_WKS

The DNS_RPC_RECORD_WKS structure contains the information for the well known services supported
by a host, as defined in section 3.4.2 [RFC1035]. This record MUST be formatted as follows:

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

ipAddress

chProtocol bBitMask (variable)

...

ipAddress (4 bytes): The IPv4 address of the server that provides the service.

chProtocol (1 byte): The IP protocol number as specified in [IANA-PROTO-NUM].

bBitMask (variable): A list of service names (specified as "keywords" in the "WELL KNOWN PORT

NUMBERS" section of [IANAPORT]) or port number if service name is unknown as an ASCII
character string in DNS_RPC_NAME (section 2.2.2.2.1) format. If more than one port is listed for a
single combination of service name and IP protocol number, then only the first such port number
is indicated when that service name is used. Each service name or port MUST be separated by a
single space character, and the string MUST be terminated by a single null character. Each port
number specified MUST be less than or equal to 1024. The terminating null character MUST be
included in the cchNameLength field of the DNS_RPC_NAME (section 2.2.2.2.1) structure.

2.2.2.2.4.6 DNS_RPC_RECORD_STRING

The DNS_RPC_RECORD_STRING structure contains information about a DNS record of any of the
following types:

 DNS_TYPE_HINFO

 DNS_TYPE_ISDN

 DNS_TYPE_TXT

 DNS_TYPE_X25

 DNS_TYPE_LOC

This packet contains one or more instances of stringData, depending upon the type listed above. This

record MUST be formatted as follows:

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

stringData (variable)

...

http://go.microsoft.com/fwlink/?LinkId=90264
http://go.microsoft.com/fwlink/?LinkId=89889
http://go.microsoft.com/fwlink/?LinkId=89888

51 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

stringData (variable): Each stringData member contains the host name value for a node in
DNS_RPC_NAME (section 2.2.2.2.1) structure.

2.2.2.2.4.7 DNS_RPC_RECORD_MAIL_ERROR

The DNS_RPC_RECORD_MAIL_ERROR structure contains information about a DNS record of any of the
following types:

 DNS_TYPE_MINFO

 DNS_TYPE_RP

This record MUST be formatted as follows:

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

nameMailBox (variable)

...

ErrorMailBox (variable)

...

nameMailBox (variable): A structure of type DNS_RPC_NAME (section 2.2.2.2.1) containing the

RMAILBX value specified in section 3.3.7 of [RFC1035] for an MINFO record, or the mbox-dname
value specified in section 2.2 of [RFC1183] for an RP record.

ErrorMailBox (variable): A structure of type DNS_RPC_NAME (section 2.2.2.2.1) containing the
EMAILBX value specified in section 3.3.7 of [RFC1035] for an MINFO record, or the txt-dname
value specified in section 2.2 of [RFC1183] for an RP record.

2.2.2.2.4.8 DNS_RPC_RECORD_NAME_PREFERENCE

The DNS_RPC_RECORD_NAME_PREFERENCE structure specifies information about a DNS record of
any of the following types:

 DNS_TYPE_MX

 DNS_TYPE_AFSDB

 DNS_TYPE_RT

This record MUST be formatted as follows:

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

wPreference nameExchange (variable)

...

wPreference (2 bytes): The preference value for the DNS server that holds the record.

nameExchange (variable): The FQDN of the server hosting the mail-exchange and specified in
DNS_RPC_NAME (section 2.2.2.2.1) format.

http://go.microsoft.com/fwlink/?LinkId=90264
http://go.microsoft.com/fwlink/?LinkId=106947

52 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

2.2.2.2.4.9 DNS_RPC_RECORD_SIG

The DNS_RPC_RECORD_SIG structure contains information about cryptographic public key signatures
as specified in section 4 of [RFC2535].<11> This record MUST be formatted as follows:

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

wTypeCovered chAlgorithm chLabelCount

dwOriginalTtl

dwSigExpiration

dwSigInception

wKeyTag nameSigner (variable)

...

SignatureInfo (variable)

...

wTypeCovered (2 bytes): The type covered value for SIG RR as specified in section 4.1 of
[RFC2535].

chAlgorithm (1 byte): The algorithm value for SIG RR as specified in section 4.1 of [RFC2535].

chLabelCount (1 byte): The total number of labels present in the name of the record signed by the
SIG RR as specified in section 4.1 of [RFC2535].

dwOriginalTtl (4 bytes): The original TTL value of the record signed by the SIG RR as specified in

section 4.1 of [RFC2535].

dwSigExpiration (4 bytes): The signature expiration time as specified in section 4.1 of [RFC2535].

dwSigInception (4 bytes): The signature inception time as specified in section 4.1 of [RFC2535].

wKeyTag (2 bytes): The key tag value for SIG RR as specified in section 4.1 of [RFC2535].

nameSigner (variable): Pointer to a structure of type DNS_RPC_NAME (section 2.2.2.2.1)
containing the FQDN of the originating host for this record.

SignatureInfo (variable): Binary signature information as specified in section 4.1 of [RFC2535].

2.2.2.2.4.10 DNS_RPC_RECORD_RRSIG

The DNS_RPC_RECORD_RRSIG structure contains information about cryptographic public key
signatures as specified in section 3 of [RFC4034].<12> This record MUST be formatted as follows.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

wTypeCovered chAlgorithm chLabelCount

http://go.microsoft.com/fwlink/?LinkId=107021
http://go.microsoft.com/fwlink/?LinkId=107052

53 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

dwOriginalTtl

dwSigExpiration

dwSigInception

wKeyTag nameSigner (variable)

...

SignatureInfo (variable)

...

wTypeCovered (2 bytes): The type covered value for RRSIG RR as specified in section 3.1 of

[RFC4034].

chAlgorithm (1 byte): The algorithm value for RRSIG RR as specified in section 3.1 of [RFC4034].

chLabelCount (1 byte): The total number of labels present in the name of the record signed by the
RRSIG RR as specified in section 3.1 of [RFC4034].

dwOriginalTtl (4 bytes): The original TTL value of the record signed by the RRSIG RR as specified in
section 3.1 of [RFC4034].

dwSigExpiration (4 bytes): The signature expiration time as specified in section 3.1 of [RFC4034].

dwSigInception (4 bytes): The signature inception time as specified in section 3.1 of [RFC4034].

wKeyTag (2 bytes): The tag value for RRSIG RR as specified in section 3.1 of [RFC4034].

nameSigner (variable): A structure of type DNS_RPC_NAME (section 2.2.2.2.1) containing the
FQDN of the originating host for this record.

SignatureInfo (variable): Binary signature information as specified in section 3.1 of [RFC4034].

2.2.2.2.4.11 DNS_RPC_RECORD_NSEC

The DNS_RPC_RECORD_NSEC structure contains the next FQDN in the zone as specified in section 4

of [RFC4034].<13> This record MUST be formatted as follows.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

nameSigner (variable)

...

NSECBitmap (variable)

...

nameSigner (variable): A structure of type DNS_RPC_NAME (section 2.2.2.2.1) containing the
FQDN of the originating host for this record.

http://go.microsoft.com/fwlink/?LinkId=107052

54 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

NSECBitmap (variable): Bitmap of types present at this node as specified in section 4 of [RFC4034].

2.2.2.2.4.12 DNS_RPC_RECORD_DS

The DNS_RPC_RECORD_DS structure contains a public key associated with an FQDN as specified in

section 5 of [RFC4034].<14> This record MUST be formatted as follows.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

wKeyTag chAlgorithm chDigestType

bDigest (variable)

...

wKeyTag (2 bytes): The key tag of the DNSKEY record referred to by this DS record, as specified in
section 5 of [RFC4034].

chAlgorithm (1 byte): Algorithm value of the DNSKEY record referred to by this DS record, as
specified in section 5 of [RFC4034].

chDigestType (1 byte): The digest algorithm that was used to construct this DS record, as specified

in section 5 of [RFC4034].

bDigest (variable): An array of bytes containing the digest value as specified of section 5 in
[RFC4034].

2.2.2.2.4.13 DNS_RPC_RECORD_KEY

The DNS_RPC_RECORD_KEY structure contains a public key associated with an FQDN as specified in

section 3 of [RFC2535].<15> This record MUST be formatted as follows:

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

wFlags chProtocol chAlgorithm

bKey (variable)

...

wFlags (2 bytes): Flags value for the key RR as specified in section 3.1 of [RFC2535].

chProtocol (1 byte): Protocol value for the key RR as specified in section 3.1 of [RFC2535].

chAlgorithm (1 byte): Algorithm value for the key RR as specified in section 3.1 of [RFC2535].

bKey (variable): An array of bytes containing the key value as specified of section 3.1 in [RFC2535].

2.2.2.2.4.14 DNS_RPC_RECORD_DHCID

The DNS_RPC_RECORD_DHCID structure contains a public key associated with an FQDN as specified
in section 3 of [RFC2535].<16> This record MUST be formatted as follows.

http://go.microsoft.com/fwlink/?LinkId=107052
http://go.microsoft.com/fwlink/?LinkId=107021
http://go.microsoft.com/fwlink/?LinkId=107021

55 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

bDHCID (variable)

...

bDHCID (variable): An opaque DHCID record as specified in section 3 in [RFC4701].

2.2.2.2.4.15 DNS_RPC_RECORD_DNSKEY

The DNS_RPC_RECORD_DNSKEY structure contains a public key associated with an FQDN as specified
in section 2 of [RFC4034].<17> This record MUST be formatted as follows.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

wFlags chProtocol chAlgorithm

bKey (variable)

...

wFlags (2 bytes): Flags value for the key RR as specified in section 2.1 of [RFC4034].

chProtocol (1 byte): Protocol value for the key RR as specified in section 2.1 of [RFC4034].

chAlgorithm (1 byte): Algorithm value for the key RR as specified in section 2.1 of [RFC4034].

bKey (variable): An array of bytes containing the key value as specified of section 2.1 in [RFC4034].

2.2.2.2.4.16 DNS_RPC_RECORD_AAAA

The DNS_RPC_RECORD_AAAA structure contains IPv6 address information. This record MUST be
formatted as follows:

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

ipv6Address (16 bytes)

...

...

ipv6Address (16 bytes): An IPv6 address member holds an IPv6 address, in network byte order.

2.2.2.2.4.17 DNS_RPC_RECORD_NXT

The DNS_RPC_RECORD_NXT specifies a NXT resource record as specified in section 5.1 of
[RFC2535].<18> This record MUST be formatted as follows:

http://go.microsoft.com/fwlink/?LinkId=125431
http://go.microsoft.com/fwlink/?LinkId=107052
http://go.microsoft.com/fwlink/?LinkId=107021

56 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

wNumRecordTypes wTypeWords (variable)

...

nextName (variable)

...

wNumRecordTypes (2 bytes): The number of 16-bit unsigned integers in the variable sized
wTypeWords array. This value MUST be greater than 1.

wTypeWords (variable): An array for of 16-bit unsigned integers in little-endian byte order for that

contains a variable sized bit-mask value for types present in this record, as specified in section 5.2

of [RFC2535]. The most significant bit of the first integer corresponds to type zero and MUST be
zero. If there is a second 16-bit unsigned integer present in the array, the most significant bit of
the second integer corresponds to type 16, and so on.

nextName (variable): A DNS_RPC_NAME (section 2.2.2.2.1) containing next name information, as
specified in section 5.2 of [RFC2535].

2.2.2.2.4.18 DNS_RPC_RECORD_SRV

The DNS_RPC_RECORD_SRV specifies an SRV resource record as specified in [RFC2782]. This record
MUST be formatted as follows:

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

wPriority wWeight

wPort nameTarget (variable)

...

wPriority (2 bytes): The priority of the target host as specified in [RFC2782].

wWeight (2 bytes): The relative weight for the target host as specified in [RFC2782].

wPort (2 bytes): The port number for the service on the target host as specified in [RFC2782].

nameTarget (variable): The FDQN of the server that hosts this service in DNS_RPC_NAME (section
2.2.2.2.1) format, as specified in [RFC2782].

2.2.2.2.4.19 DNS_RPC_RECORD_ATMA

The DNS_RPC_RECORD_ATMA specifies a resource record that contains ATM address information as
specified in [ATMA]. This record MUST be formatted as follows:

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

chFormat bAddress (variable)

http://go.microsoft.com/fwlink/?LinkId=90381
http://go.microsoft.com/fwlink/?LinkId=107028

57 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

...

chFormat (1 byte): The format of the address as specified in section 5.2 of [ATMA].

bAddress (variable): The ATM address of the node to which this resource record pertains (see
section 5.2 of [ATMA]).

2.2.2.2.4.20 DNS_RPC_RECORD_NAPTR

The DNS_RPC_RECORD_NAPTR specifies a NAPTR resource record as specified in section 4 of
[RFC3403].<19> This record MUST be formatted as follows:

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

wOrder wPreference

nameFlags (variable)

...

nameService (variable)

...

nameSubstitution (variable)

...

nameReplacement (variable)

...

wOrder (2 bytes): A value that specifies the order in which the NAPTR record is processed, as

specified in section 4.1 in [RFC3403].

wPreference (2 bytes): The preference given to this NAPTR record, as specified in section 4.1 in
[RFC3403].

nameFlags (variable): Pointer to a structure of type DNS_RPC_NAME (section 2.2.2.2.1) containing
the string flags value as specified in section 4.1 in [RFC3403].

nameService (variable): Pointer to a structure of type DNS_RPC_NAME (section 2.2.2.2.1)
containing service parameters value for NAPTR to control the rewriting and interpretation of the

field in the record, as specified in section 4.1 in [RFC3403].

nameSubstitution (variable): Pointer to a structure of type DNS_RPC_NAME (section 2.2.2.2.1)
containing a substitution expression value for the NAPTR record, as specified in section 4.1 in
[RFC3403].

nameReplacement (variable): Pointer to a structure of type DNS_RPC_NAME (section 2.2.2.2.1)
containing a replacement expression value for the NAPTR record, as specified in section 4.1 in
[RFC3403].

http://go.microsoft.com/fwlink/?LinkId=107026

58 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

2.2.2.2.4.21 DNS_RPC_RECORD_WINS

The DNS_RPC_RECORD_WINS specifies a WINS resource record. This record MUST be formatted as
follows:

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

dwMappingFlag

dwLookupTimeout

dwCacheTimeout

cWinsServerCount

aipWinsServers (variable)

...

dwMappingFlag (4 bytes): The scope of the WINS record lookups. This value MUST be set to
0x00000000 or any combination of the following:

Value Meaning

DNS_WINS_FLAG_SCOPE

0x80000000

Server forwards lookup requests to remote WINS servers.

DNS_WINS_FLAG_LOCAL

0x00010000

Server performs WINS lookups locally.

dwLookupTimeout (4 bytes): The duration, in seconds, for which the server waits to receive a
response from a remote DNS server.

dwCacheTimeout (4 bytes): The duration, in seconds, for which the server keeps this record in its
cache before considering it stale.

cWinsServerCount (4 bytes): The number of WINS server addresses in this record. The value of
this field MUST be at least one.

aipWinsServers (variable): An array of IPv4 addresses in network byte order with length given by
cWinsServerCount.

2.2.2.2.4.22 DNS_RPC_RECORD_WINSR

The DNS_RPC_RECORD_WINSR specifies a Windows Internet Name Service Reverse Lookup
(WINS-R) resource record. This record MUST be formatted as follows:

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

dwMappingFlag

dwLookupTimeout

59 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

dwCacheTimeout

nameResultDomain (variable)

...

dwMappingFlag (4 bytes): The scope of the WINS-R record lookups. This value MUST be set to zero
or any combination of the following:

Value Meaning

DNS_WINS_FLAG_SCOPE

0x80000000

Server forwards lookup requests to remote WINS servers.

DNS_WINS_FLAG_LOCAL

0x00010000

Server performs WINS lookups locally.

dwLookupTimeout (4 bytes): The duration, in seconds, for which server waits to receive a response
from a remote DNS server.

dwCacheTimeout (4 bytes): The duration, in seconds, for which server keeps this record in its
cache before considering it stale.

nameResultDomain (variable): Pointer to a structure of type DNS_RPC_NAME (section 2.2.2.2.1)
containing a domain name suffix that will be appended to a single-label name obtained from a

WINS-R lookup.

2.2.2.2.4.23 DNS_RPC_RECORD_TS

The DNS_RPC_RECORD_TS specifies information for a node that has been tombstoned.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

EntombedTime

...

EntombedTime (8 bytes): The time at which this node was tombstoned, represented as the number

of 100-nanosecond intervals since midnight (00:00:00), January 1, 1601 UTC.

2.2.2.2.4.24 DNS_RPC_RECORD_NSEC3

The DNS_RPC_RECORD_NSEC3 structure SHOULD<20> specify an NSEC3 resource record as
specified in [RFC5155] section 3. This record MUST be formatted as follows.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

chAlgorithm bFlags wIterations

bSaltLength bHashLength salt (variable)

...

http://go.microsoft.com/fwlink/?LinkId=225981

60 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

nextHashedOwnerName (variable)

...

bitmaps (variable)

...

chAlgorithm (1 byte): A value that specifies the cryptographic hash algorithm used to construct the
hash value, as specified in [RFC5155] section 3.1.

bFlags (1 byte): A value that specifies NSEC3 processing flags, as specified in [RFC5155] section

3.1.

wIterations (2 bytes): A value that specifies the number of additional times the hash function has
been performed, as specified in [RFC5155] section 3.1.

bSaltLength (1 byte): A value that specifies the length of the salt field, in octets.

bHashLength (1 byte): A value that specifies the length of the nextHashedOwnerName field, in
octets.

salt (variable): A value that specifies the salt to be appended to the original owner name before
hashing, as specified in [RFC5155] section 3.1.

nextHashedOwnerName (variable): A value that specifies the next hashed owner name in hash
order, as specified in [RFC5155] section 3.1.

bitmaps (variable): A value that specifies the DNS types that exist at the original owner name of the
NSEC3 record, as specified in [RFC5155] section 3.1.

2.2.2.2.4.25 DNS_RPC_RECORD_NSEC3PARAM

The DNS_RPC_RECORD_NSEC3PARAM structure SHOULD<21> specify an NSEC3PARAM resource
record as specified in [RFC5155] section 3. This record MUST be formatted as follows.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

chAlgorithm bFlags wIterations

bSaltLength salt (variable)

 ...

chAlgorithm (1 byte): A value that specifies the cryptographic hash algorithm used to construct the

hash value, as specified in [RFC5155] section 4.1.

bFlags (1 byte): A value that specifies NSEC3 processing flags, as specified in [RFC5155] section

3.1.

wIterations (2 bytes): A value that specifies the number of additional times the hash function has
been performed, as specified in [RFC5155] section 4.1.

bSaltLength (1 byte): A value that specifies the length of the salt field, in octets.

http://go.microsoft.com/fwlink/?LinkId=225981

61 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

salt (variable): A value that specifies the salt to be appended to the original owner name before
hashing, as specified in [RFC5155].

2.2.2.2.4.26 DNS_RPC_RECORD_TLSA

The DNS_RPC_RECORD_TLSA structure SHOULD<22> specify a TLSA resource record as defined in
[RFC6698] section 2. This record MUST be formatted as follows.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

bCertUsage bSelector bMatchingType bCertificateAssociationDat
a

...

bCertUsage (1 byte): Specifies the association used to match the certificate presented during TLS
handshake ([RFC6698] section 2.1.1).

bSelector (1 byte): Specifies the part of the TLS certificate which will be matched against the TLS
association data ([RFC6698] section 2.1.2.

bMatchingType (1 byte): Specifies how the certificate association is presented ([RFC6698] section
2.1.3).

bCertificateAssociationData (variable): Specifies the certificate association data that is to be
matched ([RFC6698] section 2.1.4).

2.2.2.2.4.27 DNS_RPC_RECORD_UNKNOWN

The DNS_RPC_RECORD_UNKNOWN structure SHOULD<23> specify a resource record of unknown
type ([RFC3597] section 2). This record MUST be formatted as follows.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

bData (variable)

...

bData (variable): Specifies the unknown record data. The data MUST be in the format in which it
will be returned in the response message for a DNS query.

2.2.2.2.5 DNS_RPC_RECORD

The DNS_RPC_RECORD structure is used to specify a single DNS record's parameters and data. This

structure is returned by the DNS server in response to an R_DnssrvEnumRecords2 (section 3.1.4.9)
method call.

 typedef struct _DnssrvRpcRecord {
 WORD wDataLength;
 WORD wType;
 DWORD dwFlags;
 DWORD dwSerial;
 DWORD dwTtlSeconds;
 DWORD dwTimeStamp;
 DWORD dwReserved;

http://go.microsoft.com/fwlink/?LinkId=532821
http://go.microsoft.com/fwlink/?LinkID=532820

62 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 [size_is(wDataLength)] BYTE Buffer[];
 } DNS_RPC_RECORD,
 *PDNS_RPC_RECORD,
 DNS_FLAT_RECORD,
 *PDNS_FLAT_RECORD;

wDataLength: The total size of the variable buffer, in bytes. Note that the DNS_RPC_RECORD
structure is always 4-byte aligned, which means there can be 0-3 bytes of padding at the end of
the structure. The pad bytes are not included in the wDataLength count.

wType: The type of the resource record, as specified in section 2.2.2.1.1 DNS_RECORD_TYPE.

dwFlags: Resource record properties. This field can contain one of the RANK* flags in the low-order
bits and one of the DNS_RPC_FLAGS* in the high-order bits.

Value Meaning

RANK_CACHE_BIT

0x00000001

The record came from the cache.

RANK_ROOT_HINT

0x00000008

The record is a preconfigured root hint.

RANK_OUTSIDE_GLUE

0x00000020

This value is not used.

RANK_CACHE_NA_ADDITIONAL

0x00000031

The record was cached from the additional section of a non-
authoritative response.

RANK_CACHE_NA_AUTHORITY

0x00000041

The record was cached from the authority section of a non-
authoritative response.

RANK_CACHE_A_ADDITIONAL

0x00000051

The record was cached from the additional section of an
authoritative response.

RANK_CACHE_NA_ANSWER

0x00000061

The record was cached from the answer section of a non-
authoritative response.

RANK_CACHE_A_AUTHORITY

0x00000071

The record was cached from the authority section of an
authoritative response.

RANK_GLUE

0x00000080

The record is a glue record in an authoritative zone.

RANK_NS_GLUE

0x00000082

The record is a delegation (type NS) record in an

authoritative zone.

RANK_CACHE_A_ANSWER

0x000000c1

The record was cached from the answer section of an
authoritative response.

RANK_ZONE

0x000000f0

The record comes from an authoritative zone.

DNS_RPC_FLAG_ZONE_ROOT

0x40000000

The record is at the root of a zone (not necessarily a zone
hosted by this server; the record could have come from the
cache).

DNS_RPC_FLAG_AUTH_ZONE_ROOT

0x20000000

The record is at the root of a zone that is locally hosted on
this server.

63 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Value Meaning

DNS_RPC_FLAG_CACHE_DATA

0x80000000

The record came from the cache.

DNS_RPC_FLAG_RECORD_WIRE_FORMAT

0x00100000

The record SHOULD<24> be treated as a resource record of
unknown type ([RFC3597] section 2) by the DNS server.

dwSerial: This MUST be set to 0x00000000 when sent by the client or server, and ignored on receipt
by the server or client.

dwTtlSeconds: The duration, in seconds, after which this record will expire.

dwTimeStamp: The time stamp, in hours, for the record when it received the last update.

dwReserved: This value MUST be set to 0x00000000 when sent by the client and ignored on receipt
by the server.

Buffer: Record data in DNS_RPC_RECORD_DATA (section 2.2.2.2.4) format where type is specified
by the value wType.<25>

Value Meaning

DNS_TYPE_ZERO

0x0000

DNS_RPC_RECORD_TS

DNS_TYPE_A

0x0001

DNS_RPC_RECORD_A

DNS_TYPE_NS

0x0002

DNS_RPC_RECORD_NODE_NAME

DNS_TYPE_MD

0x0003

DNS_RPC_RECORD_NODE_NAME

DNS_TYPE_MF

0x0004

DNS_RPC_RECORD_NODE_NAME

DNS_TYPE_CNAME

0x0005

DNS_RPC_RECORD_NODE_NAME

DNS_TYPE_SOA

0x0006

DNS_RPC_RECORD_SOA

DNS_TYPE_MB

0x0007

DNS_RPC_RECORD_NODE_NAME

DNS_TYPE_MG

0x0008

DNS_RPC_RECORD_NODE_NAME

DNS_TYPE_MR

0x0009

DNS_RPC_RECORD_NODE_NAME

DNS_TYPE_NULL

0x000A

DNS_RPC_RECORD_NULL

DNS_TYPE_WKS

0x000B

DNS_RPC_RECORD_WKS

http://go.microsoft.com/fwlink/?LinkID=532820

64 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Value Meaning

DNS_TYPE_PTR

0x000C

DNS_RPC_RECORD_NODE_NAME

DNS_TYPE_HINFO

0x000D

DNS_RPC_RECORD_STRING

DNS_TYPE_MINFO

0x000E

DNS_RPC_RECORD_MAIL_ERROR

DNS_TYPE_MX

0x000F

DNS_RPC_RECORD_NAME_PREFERENCE

DNS_TYPE_TXT

0x0010

DNS_RPC_RECORD_STRING

DNS_TYPE_RP

0x0011

DNS_RPC_RECORD_MAIL_ERROR

DNS_TYPE_AFSDB

0x0012

DNS_RPC_RECORD_NAME_PREFERENCE

DNS_TYPE_X25

0x0013

DNS_RPC_RECORD_STRING

DNS_TYPE_ISDN

0x0014

DNS_RPC_RECORD_STRING

DNS_TYPE_RT

0x0015

DNS_RPC_RECORD_NAME_PREFERENCE

DNS_TYPE_SIG

0x0018

DNS_RPC_RECORD_SIG

DNS_TYPE_KEY

0x0019

DNS_RPC_RECORD_KEY

DNS_TYPE_AAAA

0x001C

DNS_RPC_RECORD_AAAA

DNS_TYPE_NXT

0x001E

DNS_RPC_RECORD_NXT

DNS_TYPE_SRV

0x0021

DNS_RPC_RECORD_SRV

DNS_TYPE_ATMA

0x0022

DNS_RPC_RECORD_ATMA

DNS_TYPE_NAPTR

0x0023

DNS_RPC_RECORD_NAPTR

DNS_TYPE_DNAME

0x0027

DNS_RPC_RECORD_NODE_NAME

DNS_TYPE_DS

0x002B

DNS_RPC_RECORD_DS

65 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Value Meaning

DNS_TYPE_RRSIG

0x002E

DNS_RPC_RECORD_RRSIG

DNS_TYPE_NSEC

0x002F

DNS_RPC_RECORD_NSEC

DNS_TYPE_DNSKEY

0x0030

DNS_RPC_RECORD_DNSKEY

DNS_TYPE_DHCID

0x0031

DNS_RPC_RECORD_DHCID

DNS_TYPE_NSEC3

0x0032

DNS_RPC_RECORD_NSEC3

DNS_TYPE_NSEC3PARAM

0x0033

DNS_RPC_RECORD_NSEC3PARAM

DNS_TYPE_TLSA

0x0034

DNS_RPC_RECORD_TLSA

DNS_TYPE_WINS

0xFF01

DNS_RPC_RECORD_WINS

DNS_TYPE_WINSR

0xFF02

DNS_RPC_RECORD_WINSR

Other type values that are not explicitly defined in the preceding table MUST be enumerable,
including values defined by [IANA-DNS], and they MUST use the DNS_RPC_RECORD_NULL
(section 2.2.2.2.4.4) structure. If the dwFlags field is set to
DNS_RPC_FLAG_RECORD_WIRE_FORMAT, the DNS_RPC_RECORD_UNKNOWN (section

2.2.2.2.4.27) structure MUST be used for all resource record types.

2.2.3 Address Information Messages

2.2.3.1 Enumerations and Constants

2.2.3.1.1 DNS_IPVAL_CONTEXT

DNS_IPVAL_CONTEXT is a DWORD value that specifies possible context values for IP validation. This
is used to populate the dwContext field in DNS_RPC_IP_VALIDATE (section 2.2.3.2.4). The DNS server
MUST use this value to determine the type of validation that SHOULD<26> be performed for IP

address specified in DNS_RPC_IP_VALIDATE (section 2.2.3.2.4).

Constant/value Description

DNS_IPVAL_DNS_SERVERS

0x00000000

Validate that IP addresses are reachable and operational by the DNS
servers.

DNS_IPVAL_DNS_ROOTHINTS

0x00000001

Validate that IP addresses are suitable as root-hints.

DNS_IPVAL_DNS_FORWARDERS

0x00000002

Validate that IP addresses are server level forwarders.

http://go.microsoft.com/fwlink/?LinkId=148574

66 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Constant/value Description

DNS_IPVAL_DNS_ZONE_MASTERS

0x00000003

Validate that IP addresses are remote DNS servers hosting a zone, named
as pointed to by pszContextName in the DNS_RPC_IP_VALIDATE (section
2.2.3.2.4).

DNS_IPVAL_DNS_DELEGATIONS

0x00000004

Validate that IP addresses are remote DNS servers are name-server for the
delegated zone, named as pointed to by pszContextName in the
DNS_RPC_IP_VALIDATE (section 2.2.3.2.4).

2.2.3.1.2 DNS_IP_VALIDATE_RETURN_FLAGS

DNS_IP_VALIDATE_RETURN_FLAGS is a DWORD value that specifies the results of IP validation
performed by the DNS server. This value will be used by the DNS server to populate the Flags field
within each DNS_ADDR structure (section 2.2.3.2.2) present in the DNS_ADDR_ARRAY (section
2.2.3.2.3) structure which in turn is present inside the returned DNS_RPC_IP_VALIDATE structure

(section 2.2.3.2.4)<27>.

Constant/value Description

ERROR_SUCCESS

0x00000000

The remote IP address is valid.

DNS_IPVAL_INVALID_ADDR

0x00000001

Remote IP address is not a valid IP address.

DNS_IPVAL_UNREACHABLE

0x00000002

Remote IP address is not reachable.

DNS_IPVAL_NO_RESPONSE

0x00000003

Remote IP address does not appear to be hosting a DNS server.

DNS_IPVAL_NOT_AUTH_FOR_ZONE

0x00000004

Remote IP address is not authoritative for the required zone, specified by
pszContextName in the DNS_RPC_IP_VALIDATE (section 2.2.3.2.4).

DNS_IPVAL_UNKNOWN_ERROR

0x000000FF

The DNS server encountered an unknown error occurred while validating IP
address.

DNS_IPVAL_NO_TCP

0x80000000

Indicated that remote IP address, responds to UDP DNS messages, but
does not respond to TCP DNS messages.

2.2.3.2 Structures

2.2.3.2.1 IP4_ARRAY

The IP4_ARRAY structure is used to represent an array of IPv4 addresses. This structure cannot
represent IPv6 addresses.

 typedef struct _IP4_ARRAY {
 DWORD AddrCount;
 [size_is(AddrCount)] DWORD AddrArray[];
 } IP4_ARRAY,
 *PIP4_ARRAY;

67 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

AddrCount: The number of IPv4 addresses present in the AddrArray member.

AddrArray: An array of IPv4 addresses. An IPv4 address is represented as a 32-bit unsigned integer

in network byte order.

An empty IP4_ARRAY is represented by AddrCount set to zero and AddrArray unused. Senders of an

empty IP4_ARRAY MUST set AddrArray to a single entry containing binary zeros, and receivers MUST
ignore it.

2.2.3.2.2 DNS_ADDR

This DNS_ADDR structure is used to represent an IP address. The IP address is either IPv4 or IPv6.

 typedef struct _DnsAddr {
 CHAR MaxSa[32];
 DWORD DnsAddrUserDword[8];
 } DNS_ADDR,
 *PDNS_ADDR;

MaxSa: This field MUST be constructed as specified in DNS ADDR.

DnsAddrUserDword: This field MUST be constructed as specified in DNS ADD USER.

Any field not specified above MUST be set to zero by the sender and ignored by the receiver.

2.2.3.2.2.1 DNS ADDR

An IPv4 or IPv6 addressed used by DNS_ADDR MaxSa field.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Address Family Port Number

IPv4 Address

IPv6 Address (16 bytes)

...

...

Padding

...

Address Family (2 bytes): This MUST be set to 0x0002 if this is an IPv4 address or 0x0017 if this is
an IPv6 address.

0x0002

0x0017

Port Number (2 bytes): Senders MUST set this to zero, and receivers MUST ignore it.

68 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

IPv4 Address (4 bytes): An IPv4 address in network byte order value for the host pointed to by
DNS_ADDR structure.

IPv6 Address (16 bytes): An IPv6 address in network byte order value for the host pointed to by
DNS_ADDR structure.

Padding (8 bytes): Senders MUST set this to zero, and receivers MUST ignore it.

2.2.3.2.2.2 DNS ADD USER

Used by DNS_ADDR DnsAddrUserDword field.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

SockaddrLength

SubnetLength

Flags

Padding (20 bytes)

...

...

SockaddrLength (4 bytes): The length of valid data in the socket address structure present above
this field.

SubnetLength (4 bytes): Senders MUST set this to 0x00000000 and receivers MUST ignore this

value.

Flags (4 bytes): Clients MUST set to 0x00000000. Senders will use this field to indicate the results of
IP validation for this IP address, where it has a format as follows (in host byte order):

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

T Zero RTT validationStatus

T (1 bit): If set, DNS over UDP is available from the remote DNS server but DNS over TCP is not

available.

Zero (7 bits): Reserved. Senders MUST set these bits to zero and receivers MUST ignore them.

RTT (12 bits): Round trip time to the remote DNS server for a UDP query, measured in units of 10

milliseconds.

validationStatus (12 bits): The result of the DNS UDP validation attempt. This field MUST be set to
one of the DNS_IP_VALIDATE_RETURN_FLAGS (section 2.2.3.1.2).

Padding (20 bytes): This can be any value and MUST be ignored.

2.2.3.2.3 DNS_ADDR_ARRAY

69 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

The DNS_ADDR_ARRAY structure is used to represent an array of DNS_ADDR (section 2.2.3.2.2)
structures. The DNS Server Management Protocol uses this structure to exchange lists of mixed IPv4

and IPv6 addresses between client and server.

 typedef struct _DnsAddrArray {
 DWORD MaxCount;
 DWORD AddrCount;
 DWORD Tag;
 WORD Family;
 WORD WordReserved;
 DWORD Flags;
 DWORD MatchFlag;
 DWORD Reserved1;
 DWORD Reserved2;
 [size_is(AddrCount)] DNS_ADDR AddrArray[];
 } DNS_ADDR_ARRAY,
 *PDNS_ADDR_ARRAY;

MaxCount: The actual number of IP addresses that are present in the AddrArray member.

AddrCount: Must be set to the same value as MaxCount.

Tag: This field is unused. Senders MUST set the value to zero and receivers MUST ignore it.

Family: The family of addresses present in the array, such as AF_INET or AF_INET6. If this field is
not specified, addresses with all families can be present.

WordReserved: This field is unused. Senders MUST set the value to zero and receivers MUST ignore
it.

Flags: This field is unused. Senders MUST set the value to zero and receivers MUST ignore it.

MatchFlag: This field is unused. Senders MUST set the value to zero and receivers MUST ignore it.

Reserved1: This field is unused. Senders MUST set the value to zero and receivers MUST ignore it.

Reserved2: This field is unused. Senders MUST set the value to zero and receivers MUST ignore it.

AddrArray: An array of DNS_ADDR (section 2.2.3.2.2) structures. The number of elements in this
array is specified by the AddrCount member.

An empty DNS_ADDR_ARRAY is represented by AddrCount set to zero. Senders of an empty
DNS_ADR_ARRAY MUST set the other fields' values to zero (including a single entry in AddrArray,
which is set to binary zeros), and receivers MUST ignore them.

2.2.3.2.4 DNS_RPC_IP_VALIDATE

The DNS_RPC_IP_VALIDATE structure is used to request that the DNS server validate a number of IP
addresses. This can be used by clients to determine if an IP address is suitable for use as a DNS
server in the context specified by the dwContext member (see below). This structure is to request IP
validation while processing the R_DnssrvComplexOperation2 (section 3.1.4.8) method call with

operation type IpValidate.

 typedef struct _DnsRpcIPValidate {
 DWORD dwRpcStructureVersion;
 DWORD dwReserved0;
 DWORD dwContext;
 DWORD dwReserved1;
 [string] char* pszContextName;
 PDNS_ADDR_ARRAY aipValidateAddrs;
 } DNS_RPC_IP_VALIDATE,

70 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 *PDNS_RPC_IP_VALIDATE;

dwRpcStructureVersion: The DNS management structure version number. This value MUST be set
to 0x00000001.

dwReserved0: This field is unused. The client MUST set this value to zero and the server MUST
ignore it.

dwContext: The context or purpose for which addresses present in aipValidateAddrs MUST be
validated by the DNS server. This field MUST be set to one of the following values:

Value Meaning

DNS_IPVAL_DNS_SERVERS

0x00000000

Validate that IP addresses are reachable and operational by the
DNS servers.

DNS_IPVAL_DNS_ROOTHINTS

0x00000001

Validate that IP addresses are suitable as root hints.

DNS_IPVAL_DNS_FORWARDERS

0x00000002

Validate that IP addresses are server level forwarders.

DNS_IPVAL_DNS_ZONE_MASTERS

0x00000003

Validate that IP addresses are remote DNS servers hosting a zone,
named as pointed to by pszContextName.

DNS_IPVAL_DNS_DELEGATIONS

0x00000004

Validate that IP addresses are remote DNS servers are name-
server for the delegated zone, named as pointed to by
pszContextName.

dwReserved1: This field is unused. The client MUST set this to zero and the server MUST ignore it.

pszContextName: A pointer to a null-terminated ASCII character string that specifies a zone name.
The use of this zone name is specified by the dwContext member.

aipValidateAddrs: A pointer to a DNS_ADDR_ARRAY structure (section 2.2.3.2.3) contains a list of
IP addresses to be validated by the DNS server.

2.2.4 Server Messages

2.2.4.1 Enumerations and Constants

2.2.4.1.1 DNS_BOOT_METHODS

The DNS_BOOT_METHODS is an 8-bit integer value that specifies the sources of information from
which the DNS server obtains information at boot time. Following are possible values for this:

Constant/value Description

BOOT_METHOD_UNINITIALIZED

0x00

Server obtains the boot information, the list of zones to load, and populates its
database in the following order, until successful: from a file-based persistent
storage, or from the directory server, or from the persistent copy of the DNS
Zone Table. <28>

BOOT_METHOD_FILE

0x01

Server obtains boot information, the list of zones to load, and populates its
database from a file based persistent storage.

BOOT_METHOD_REGISTRY Server obtains boot information, the list of zones to load, and populates its

71 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Constant/value Description

0x02 database from the local persistent copy of the DNS Zone Table.

BOOT_METHOD_DIRECTORY

0x03

Server obtains boot information, the list of zones to load, and populates its
database from the local persistent copy of the DNS Zone Table for zones
located in local persistent storage, and from the directory server for zones
persistently stored in the directory server.

2.2.4.1.2 DNS_NAME_CHECK_FLAGS

The DNS server enforces different levels of syntax checking for FQDNs. DNS_NAME_CHECK_FLAGS is
a DWORD value that specifies the configured level of syntax checking for FQDNs. DNS [RFC1034] and
[RFC2181] requires that all FQDNs meet the following basic criteria:

 Total length no longer than 255 characters.

 Each label is less than 63 characters.

 No two consecutive "." characters.

The name check value MUST be set to one of the following allowed values to modify basic FQDN
validity checking:

Constant/value Description

DNS_ALLOW_RFC_NAMES_ONLY

0x00000000

The DNS server accepts FQDNs that only contain the ASCII characters "a-z",
"A-Z", and "0-9". Names that begin with "." or contain two consecutive "."
characters are rejected. The name can contain zero or one "*", but this
character MUST appear as the first character in the name if it is present.

DNS_ALLOW_NONRFC_NAMES

0x00000001

The DNS server accepts any printable ASCII character in an FQDN.

DNS_ALLOW_MULTIBYTE_NAMES

0x00000002

The DNS server accepts all characters specified above and also UTF-8
[RFC3629] characters in FQDNs.

DNS_ALLOW_ALL_NAMES

0x00000003

The DNS server does not restrict the set of characters that appear in FQDNs.

2.2.4.2 Structures

2.2.4.2.1 DNSSRV_VERSION

The DNSSRV_VERSION is used to store detailed version information of the operating system running

on the DNS server. This structure is used by the DNS server to populate the dwVersion field in the
DNS_RPC_SERVER_INFO structure (section 2.2.4.2.2).

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Service Pack Version OS Minor Version OS Major Version

http://go.microsoft.com/fwlink/?LinkId=90263
http://go.microsoft.com/fwlink/?LinkId=127732
http://go.microsoft.com/fwlink/?LinkId=90439

72 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Service Pack Version (2 bytes): The implementation-specific revision number of the DNS server's
operating system. <29>

OS Minor Version (1 byte): The minor OS version number for the DNS server.

OS Major Version (1 byte): The major OS version number for the DNS server.

2.2.4.2.2 DNS_RPC_SERVER_INFO

The DNS_RPC_SERVER_INFO structure contains information about the DNS server's configuration and
state. There are different versions of the DNS_RPC_SERVER_INFO structure. The DNS server MUST
use one of the structures corresponding to the value of the dwClientVersion field in DNS Server
Management Protocol method calls (section 3.1.4) as shown in the following table. If the method call
does not specify the value of dwClientVersion, the DNS_RPC_SERVER_INFO_W2K version of the

structure MUST be used.

Value Structure

0x00000000 DNS_RPC_SERVER_INFO_W2K (section 2.2.4.2.2.1)

0x00060000 DNS_RPC_SERVER_INFO_DOTNET (section 2.2.4.2.2.2)

0x00070000 DNS_RPC_SERVER_INFO_LONGHORN (section 2.2.4.2.2.3)

2.2.4.2.2.1 DNS_RPC_SERVER_INFO_W2K

This structure is used to specify general DNS server state and configuration.

 typedef struct _DnsRpcServerInfoW2K {
 DWORD dwVersion;
 UCHAR fBootMethod;
 BOOLEAN fAdminConfigured;
 BOOLEAN fAllowUpdate;
 BOOLEAN fDsAvailable;
 [string] char* pszServerName;
 [string] wchar_t* pszDsContainer;
 PIP4_ARRAY aipServerAddrs;
 PIP4_ARRAY aipListenAddrs;
 PIP4_ARRAY aipForwarders;
 PDWORD pExtension1;
 PDWORD pExtension2;
 PDWORD pExtension3;
 PDWORD pExtension4;
 PDWORD pExtension5;
 DWORD dwLogLevel;
 DWORD dwDebugLevel;
 DWORD dwForwardTimeout;
 DWORD dwRpcProtocol;
 DWORD dwNameCheckFlag;
 DWORD cAddressAnswerLimit;
 DWORD dwRecursionRetry;
 DWORD dwRecursionTimeout;
 DWORD dwMaxCacheTtl;
 DWORD dwDsPollingInterval;
 DWORD dwScavengingInterval;
 DWORD dwDefaultRefreshInterval;
 DWORD dwDefaultNoRefreshInterval;
 DWORD dwReserveArray[10];
 BOOLEAN fAutoReverseZones;
 BOOLEAN fAutoCacheUpdate;
 BOOLEAN fRecurseAfterForwarding;
 BOOLEAN fForwardDelegations;

73 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 BOOLEAN fNoRecursion;
 BOOLEAN fSecureResponses;
 BOOLEAN fRoundRobin;
 BOOLEAN fLocalNetPriority;
 BOOLEAN fBindSecondaries;
 BOOLEAN fWriteAuthorityNs;
 BOOLEAN fStrictFileParsing;
 BOOLEAN fLooseWildcarding;
 BOOLEAN fDefaultAgingState;
 BOOLEAN fReserveArray[15];
 } DNS_RPC_SERVER_INFO_W2K,
 *PDNS_RPC_SERVER_INFO_W2K;

dwVersion: The operating system version of the DNS server in DNSSRV_VERSION (section
2.2.4.2.1).

fBootMethod: The method by which the DNS server obtains information at the start time. This MUST
be set to one of the possible values as specified in DNS_BOOT_METHODS (section 2.2.4.1.1).

fAdminConfigured: A Boolean field that specifies whether the DNS server has been configured by an
administrator. On a fresh installed server this value MUST be set to FALSE. This value MUST be set
to TRUE whenever a zone is created, or a record is modified, or an Active Directory domain
controller promotion (DCPROMO) configures the DNS server.

fAllowUpdate: A Boolean field that indicates whether the DNS server allows dynamic DNS updates.

This field MUST be set to FALSE if the server does not allow dynamic zone-updates, otherwise set
to TRUE.

fDsAvailable: A Boolean field that specifies whether a directory server is available to the DNS
server. It MUST be set to FALSE, if the server does not have access to a directory server.

pszServerName: A pointer to a null-terminated UTF-8 string that contains the FQDN of the DNS
server.

pszDsContainer: A pointer to a null-terminated Unicode string that points to the DNS server's

container path as a distinguished name (DN) in the directory server. If no directory server is
configured, this value MUST be set to NULL. This value is synthesized by the server by
concatenating a constant container relative distinguished name (RDN) and the result of an
LDAP search operation to retrieve the defaultNamingContext of the Active Directory server's
rootDSE.<30>

aipServerAddrs: The list of IP addresses that are available on the server.

aipListenAddrs: The list of IP addresses that are explicitly configured by the administrator on the
DNS server that listens for the DNS requests. If this value is set to NULL then the server listens to
all available IP addresses.

aipForwarders: The list of remote DNS servers to which this DNS server will forward unresolved
DNS requests.

pExtension1: Reserved for future use and MUST be ignored by receiver.

pExtension2: Reserved for future use and MUST be ignored by receiver.

pExtension3: Reserved for future use and MUST be ignored by receiver.

pExtension4: Reserved for future use and MUST be ignored by receiver.

pExtension5: Reserved for future use and MUST be ignored by receiver.

74 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

dwLogLevel: This indicates which DNS packets will be logged and how they will be logged. This field
MUST be set to either zero or a combination (by bitwise OR) of the possible values as specified

under DNS_LOG_LEVELS (section 2.2.9.1.1). If this value is set to zero, then no logging will be
performed for DNS packets.

dwDebugLevel: Unused. Receivers MUST ignore.

dwForwardTimeout: The time interval, in seconds, for which the DNS server waits for a response
from each server in the forwarders list.

dwRpcProtocol: This value indicates what RPC protocols this DNS server will accept connections on.
This value MUST be set to any combination of values specified in DNS_RPC_PROTOCOLS (section
2.2.1.1.2).

dwNameCheckFlag: The level of domain name checking and validation enforced by the DNS server.

This value MUST be set one of the allowed values that are specified in DNS_NAME_CHECK_FLAGS
(section 2.2.4.1.2).

cAddressAnswerLimit: The configured value for the maximum number of type A IP address

resource records that the DNS server can insert in the answer section of a response to a UDP
query of type A. If this value is set to 0x00000000 then the DNS server MUST NOT enforce any
artificial limit on number of records in a response and if response becomes larger than the DNS

UDP packet size then the truncation bit MUST be set [RFC1035]. If this property value is not
0x00000000 and the DNS server is unable to add the specified number of records to the response
message due to message size limitations, it MUST return as many records as will fit in the
message and the truncation bit MUST NOT be set. The DNS server MUST NOT enforce this limit if
the query is not of type A. If the value of this property is not 0x00000000 the DNS server MUST
enforce this limit for UDP queries and MUST NOT enforce this limit for TCP queries. If the
LocalNetPriority property value is set to TRUE, the DNS server first orders the address records

as per the LocalNetPriority property and then MUST select the first cAddressAnswerLimit type
A records in this sorted list for inclusion in the response. The value MUST be either zero or
between 0x00000005 and 0x0000001C inclusive.

dwRecursionRetry: The time-interval, in seconds, for which the DNS server waits before it retries a

recursive query to the remote DNS server from which it did not receive a response. The values
MUST be between 1 and 15 seconds inclusive.

dwRecursionTimeout: The time-interval, in seconds, for which the DNS server waits for a recursive

query-response from a remote DNS server. The values MUST be between 1 and 15 seconds
inclusive.

dwMaxCacheTtl: The maximum time duration, in seconds, for which the DNS server will cache a
resource record obtained from a remote server in a successful query response. The values for this
MUST be between 0 to 30 days (but specified in seconds) inclusive.

dwDsPollingInterval: The interval, in seconds, at which the DNS server will poll a directory server

to obtain updated information for any changes that have occurred to zones loaded in the server.
The values MUST be between 30 and 3600 seconds inclusive.

dwScavengingInterval: The scavenging interval, in hours, on the DNS server. This is the interval

at which the server will execute the cleanup of stale DNS records. The value MUST be between 0
and 8760 hours (1 year). If this value is zero then scavenging is disabled.

dwDefaultRefreshInterval: The default value of the refresh interval, in hours, for new zones
created on the DNS server. For any primary zone created on the server by default this value is

used as the refresh interval.

dwDefaultNoRefreshInterval: The default value of the NoRefresh interval, in hours, for new
zones created on the DNS server. For any primary zone created on the server by default this value
is used as the NoRefresh interval.

http://go.microsoft.com/fwlink/?LinkId=90264

75 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

dwReserveArray: This value is reserved for future use and MUST be ignored by the receiver.
Senders MUST set this to zero and receivers MUST ignore it.

fAutoReverseZones: A Boolean value that indicates whether the DNS server is configured to
automatically create standard reverse lookup zones at boot time.

fAutoCacheUpdate: A Boolean value that indicates whether the DNS server is configured to
automatically write-back cached root hints and delegation data to persistent storage.

fRecurseAfterForwarding: A Boolean value that indicates whether the DNS server is configured to
use recursion in addition to forwarding. If this value is TRUE (0x01) then if the DNS server does
not have any forwarders configured or if fowarders are unreachable then it MUST return failure,
otherwise it MUST perform normal recursive processing for this query as specified in section 4.3.1
[RFC1034].

fForwardDelegations: A Boolean value indicates whether or not the DNS server will forward queries
about delegated subzones to servers outside of its authoritative zone. If this value is set to TRUE,
then the DNS server forwards all name queries about delegated subzones to forwarding servers in

other zones; otherwise it will send such queries within its authoritative zone to the corresponding
subzone only.

fNoRecursion: A Boolean value that indicates whether the DNS server will perform recursive

resolution for queries. If this value is TRUE then recursion MUST NOT be performed even if the
Recursion Desired (RD) bit (section 4.1.1 of [RFC1035]) is set in the DNS query packet header. If
this value is FALSE then recursion will be performed as per [RFC1035].

fSecureResponses: A Boolean value that indicates if the DNS server needs to screen DNS records
received in remote query responses against the zone of authority for the remote server to prevent
cache pollution. If it is set to TRUE, the DNS server caches only the records that are in zone of
authority for the remote server that was queried. When set to FALSE, all records in the cache are

saved.

fRoundRobin: A Boolean value that indicates if the DNS server is configured to rotate the order of
DNS records it returns for a given name. If this value is set to FALSE no round robin will be

performed and DNS records will be returned in static, arbitrary order.

fLocalNetPriority: A Boolean value that indicates if the DNS server is configured to prioritize
address records in a response based on the IP address of the DNS client that submitted the query.
If this is set to TRUE the DNS server will return address records in the order of their closeness to

the querying client's IP address by applying the network mask pointed to by
LocalNetPriorityNetMask. If this value is set to 0 then the DNS server returns records in the order
in which they are obtained from the database.

fBindSecondaries: A Boolean value that indicates if the DNS server allows zone transfers to
secondary DNS servers running older non-Microsoft software. If this value is set to TRUE the DNS
server sends zone transfer to secondaries via a slower mechanism, with one resource record in

each message.

fWriteAuthorityNs: A Boolean value that indicates if the DNS server is enabled to write NS records
in the authority section of all successful authoritative responses. If this value is TRUE then NS

records will be included in the authority section of responses, otherwise NS records will only be
included in referral responses.

fStrictFileParsing: A Boolean value that indicates if the DNS server is configured to perform strict
file parsing. When this value is set to TRUE and a record parsing error is detected server will quit

after indicating error. If this value is FALSE parsing errors will cause that specific record to be
ignored and the server will continue to load the rest of the database.

fLooseWildcarding: A Boolean value that indicates if the DNS server is configured to perform loose
wildcarding [RFC1035], otherwise it returns FALSE. When a server does not find a resource record

http://go.microsoft.com/fwlink/?LinkId=90263

76 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

that matches the name and type specified in the query in the authoritative zone, then it searches
for related wildcard records, (section 4.3.3 [RFC1034]), if configured to perform loose wildcarding

will return the first node it finds that has matching resource-record type, whereas if it is not then
it will return the first node that has any resource record.

fDefaultAgingState: A Boolean value that indicates if the default value of ageing state for new
primary zones created on the DNS server. For any primary zone created on the server this value is
used as its default aging state. If this is FALSE then timestamps of records in the zone will not be
tracked whereas when this value is TRUE then the timestamps of records in the zone will be
tracked.

fReserveArray: Reserved for future use. These values MUST be ignored by receiver.

2.2.4.2.2.2 DNS_RPC_SERVER_INFO_DOTNET

All fields have same definition as specified in DNS_RPC_SERVER_INFO_W2K (section 2.2.4.2.2.1),
with the following exceptions:<31>

 typedef struct _DnsRpcServerInfoDotNet {
 DWORD dwRpcStructureVersion;
 DWORD dwReserved0;
 DWORD dwVersion;
 UCHAR fBootMethod;
 BOOLEAN fAdminConfigured;
 BOOLEAN fAllowUpdate;
 BOOLEAN fDsAvailable;
 [string] char* pszServerName;
 [string] wchar_t* pszDsContainer;
 PIP4_ARRAY aipServerAddrs;
 PIP4_ARRAY aipListenAddrs;
 PIP4_ARRAY aipForwarders;
 PIP4_ARRAY aipLogFilter;
 [string] wchar_t* pwszLogFilePath;
 [string] char* pszDomainName;
 [string] char* pszForestName;
 [string] char* pszDomainDirectoryPartition;
 [string] char* pszForestDirectoryPartition;
 [string] char* pExtensions[6];
 DWORD dwLogLevel;
 DWORD dwDebugLevel;
 DWORD dwForwardTimeout;
 DWORD dwRpcProtocol;
 DWORD dwNameCheckFlag;
 DWORD cAddressAnswerLimit;
 DWORD dwRecursionRetry;
 DWORD dwRecursionTimeout;
 DWORD dwMaxCacheTtl;
 DWORD dwDsPollingInterval;
 DWORD dwLocalNetPriorityNetMask;
 DWORD dwScavengingInterval;
 DWORD dwDefaultRefreshInterval;
 DWORD dwDefaultNoRefreshInterval;
 DWORD dwLastScavengeTime;
 DWORD dwEventLogLevel;
 DWORD dwLogFileMaxSize;
 DWORD dwDsForestVersion;
 DWORD dwDsDomainVersion;
 DWORD dwDsDsaVersion;
 DWORD dwReserveArray[4];
 BOOLEAN fAutoReverseZones;
 BOOLEAN fAutoCacheUpdate;
 BOOLEAN fRecurseAfterForwarding;
 BOOLEAN fForwardDelegations;
 BOOLEAN fNoRecursion;
 BOOLEAN fSecureResponses;
 BOOLEAN fRoundRobin;

77 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 BOOLEAN fLocalNetPriority;
 BOOLEAN fBindSecondaries;
 BOOLEAN fWriteAuthorityNs;
 BOOLEAN fStrictFileParsing;
 BOOLEAN fLooseWildcarding;
 BOOLEAN fDefaultAgingState;
 BOOLEAN fReserveArray[15];
 } DNS_RPC_SERVER_INFO_DOTNET,
 *PDNS_RPC_SERVER_INFO_DOTNET;

dwRpcStructureVersion: The DNS management structure version number. The following are
possible values:

Value Meaning

0x00000001 Structure is of type DNS_SERVER_INFO_DOTNET.

0x00000002 Structure is of type DNS_SERVER_INFO_LONGHORN.

dwReserved0: This field is reserved for future use. Senders MUST set this to zero and it MUST be
ignored by receiver.

aipLogFilter: The list of IP addresses used for debug log filtering. The DNS server will log DNS traffic
that is sent to or received from for these IP addresses and will not log DNS traffic to or from other
IP addresses. If this value is set to NULL then the DNS server will not perform IP filtering when
logging DNS traffic.

pwszLogFilePath: A pointer to a null-terminated Unicode string that contains an absolute pathname
or relative pathname or filename for the operational log file on the DNS server. If this value is set
to NULL, the log SHOULD be logged to an implementation specific log file.

pszDomainName: A pointer to a null-terminated UTF-8 string that contains the name of the
directory server domain to which the DNS server belongs if directory server is available. This value
will be NULL if no directory server is available.

pszForestName: A pointer to a null-terminated UTF-8 string that contains the name of the directory
server forest to which the DNS server belongs if directory server is available. This value will be
NULL if no directory server is available.

pszDomainDirectoryPartition: A pointer to a null-terminated UTF-8 string that contains the base

name for the domain wide DNS application directory partition.

pszForestDirectoryPartition: A pointer to a null-terminated UTF-8 string that contains the base
name for the forest-wide DNS application directory partition.

pExtensions: Reserved for future use. Senders MUST set this to NULL and it MUST be ignored by the
receiver.

dwLocalNetPriorityNetMask: The net mask used by the DNS server to prioritize address records in

responses when the server is configured to enforce LocalNetPriority as mentioned above.

dwLastScavengeTime: The timestamp at which the last scavenging cycle was executed on the DNS
server. If this value is set to 0 then no scavenging cycle has been run since the server was last
started.

dwEventLogLevel: This value indicates what level of events will be logged by the DNS server. This
value MUST be set to one of the combination of the possible values for this defined in
DNS_EVENTLOG_TYPES (section 2.2.9.1.2).

dwLogFileMaxSize: The maximum allowed size, in bytes, for the log file.

78 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

dwDsForestVersion: This value indicates the directory server forest version being used by the DNS
server, stored in the ForceForestBehaviorVersion property.

dwDsDomainVersion: This value indicates the directory server domain version being used by the
DNS server, stored in the ForceDomainBehaviorVersion property.

dwDsDsaVersion: This value indicates the directory server local server version being used by the
DNS server, stored in the ForceDsaBehaviorVersion property.

2.2.4.2.2.3 DNS_RPC_SERVER_INFO_LONGHORN

All fields have same definition as specified in section DNS_RPC_SERVER_INFO_DOTNET (section
2.2.4.2.2.2), with the following exceptions:<32>

 typedef struct _DnsRpcServerInfoLonghorn {
 DWORD dwRpcStructureVersion;
 DWORD dwReserved0;
 DWORD dwVersion;
 UCHAR fBootMethod;
 BOOLEAN fAdminConfigured;
 BOOLEAN fAllowUpdate;
 BOOLEAN fDsAvailable;
 [string] char* pszServerName;
 [string] wchar_t* pszDsContainer;
 PDNS_ADDR_ARRAY aipServerAddrs;
 PDNS_ADDR_ARRAY aipListenAddrs;
 PDNS_ADDR_ARRAY aipForwarders;
 PDNS_ADDR_ARRAY aipLogFilter;
 [string] wchar_t* pwszLogFilePath;
 [string] char* pszDomainName;
 [string] char* pszForestName;
 [string] char* pszDomainDirectoryPartition;
 [string] char* pszForestDirectoryPartition;
 [string] char* pExtensions[6];
 DWORD dwLogLevel;
 DWORD dwDebugLevel;
 DWORD dwForwardTimeout;
 DWORD dwRpcProtocol;
 DWORD dwNameCheckFlag;
 DWORD cAddressAnswerLimit;
 DWORD dwRecursionRetry;
 DWORD dwRecursionTimeout;
 DWORD dwMaxCacheTtl;
 DWORD dwDsPollingInterval;
 DWORD dwLocalNetPriorityNetMask;
 DWORD dwScavengingInterval;
 DWORD dwDefaultRefreshInterval;
 DWORD dwDefaultNoRefreshInterval;
 DWORD dwLastScavengeTime;
 DWORD dwEventLogLevel;
 DWORD dwLogFileMaxSize;
 DWORD dwDsForestVersion;
 DWORD dwDsDomainVersion;
 DWORD dwDsDsaVersion;
 BOOLEAN fReadOnlyDC;
 DWORD dwReserveArray[3];
 BOOLEAN fAutoReverseZones;
 BOOLEAN fAutoCacheUpdate;
 BOOLEAN fRecurseAfterForwarding;
 BOOLEAN fForwardDelegations;
 BOOLEAN fNoRecursion;
 BOOLEAN fSecureResponses;
 BOOLEAN fRoundRobin;
 BOOLEAN fLocalNetPriority;
 BOOLEAN fBindSecondaries;
 BOOLEAN fWriteAuthorityNs;
 BOOLEAN fStrictFileParsing;

79 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 BOOLEAN fLooseWildcarding;
 BOOLEAN fDefaultAgingState;
 BOOLEAN fReserveArray[15];
 } DNS_RPC_SERVER_INFO_LONGHORN,
 *PDNS_RPC_SERVER_INFO_LONGHORN,
 DNS_RPC_SERVER_INFO,
 *PDNS_RPC_SERVER_INFO;

fReadOnlyDC: A Boolean value that indicates whether the DNS server has access to a directory
server that is running in read-only mode, that is, whether the server does not accept directory
server write operations. The DNS server detects whether this is the case by reading the
supportedCapabilities attribute of the server's rootDse object, looking for
LDAP_CAP_ACTIVE_DIRECTORY_PARTIAL_SECRETS_OID. (See [MS-ADTS], section 3.1.1.3.2.10.)

2.2.5 Zone Messages

2.2.5.1 Enumerations and Constants

2.2.5.1.1 DNS_ZONE_TYPE

DNS_ZONE_TYPE is an 8-bit integer value that specifies the type of a zone. An implementation
SHOULD<33> support following values.

Constant/value Description

DNS_ZONE_TYPE_CACHE

0x00

This zone is used to store all cached DNS records received from remote
DNS servers during normal query processing.

DNS_ZONE_TYPE_PRIMARY

0x01

The DNS server is a primary DNS server for this zone.

DNS_ZONE_TYPE_SECONDARY

0x02

The DNS server is acting as a secondary DNS server for this zone.

DNS_ZONE_TYPE_STUB

0x03

Zone is a stub zone, that is, it contains only those resource records
that are necessary to identify authoritative DNS servers for that zone.

DNS_ZONE_TYPE_FORWARDER

0x04

The DNS server is a forwarder for this zone, that is, the server does not
have authoritative information for resource records in this zone.

DNS_ZONE_TYPE_SECONDARY_CACHE

0x05

This zone is used to hold cached records for some implementation
specific purpose.

2.2.5.1.2 DNS_ZONE_SECONDARY_SECURITY

DNS_ZONE_SECONDARY_SECURITY is a 32-bit integer value that enumerates the types of security

settings that are enforced by the master DNS server to honor zone transfer requests for this zone.

Constant/value Description

ZONE_SECSECURE_NO_SECURITY

0x00000000

No security enforcement for secondaries, that is, any request will be
honored.

ZONE_SECSECURE_NS_ONLY Zone transfer request will be honored from the remote servers, which are in

%5bMS-ADTS%5d.pdf#Section_d243592709994c628c6d13ba31a52e1a

80 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Constant/value Description

0x00000001 the list of name servers for this zone.

ZONE_SECSECURE_LIST_ONLY

0x00000002

Zone transfer request will be honored from the remote servers, which are
explicitly configured by IP addresses in the aipSecondaries field in the
DNS_RPC_ZONE_INFO structure (section 2.2.5.2.4).

ZONE_SECSECURE_NO_XFER

0x00000003

No zone transfer requests will be honored.

2.2.5.1.3 DNS_ZONE_NOTIFY_LEVEL

DNS_ZONE_NOTIFY_LEVEL is a DWORD value that enumerates the levels of notification settings that
can be configured on a master DNS server to send out notifications to secondaries about any changes
to this zone, so that they can initiate a zone transfer to get updated zone information.

Constant/value Description

ZONE_NOTIFY_OFF

0x00000000

The Master DNS server does not send any zone notifications.

ZONE_NOTIFY_ALL_SECONDARIES

0x00000001

The Master DNS server sends zone notifications to all secondary servers for
this zone, either they are listed as name-servers for this zone or they are
present explicitly in the zone notify list for this zone. (DNS notify [RFC1996]
is a mechanism in which the primary DNS server for a zone notifies
secondary servers about any changes in the zone.)

ZONE_NOTIFY_LIST_ONLY

0x00000002

The Master DNS server sends zone notifications only to those remote
servers which are explicitly configured by IP addresses in the aipNotify
field in the DNS_RPC_ZONE_INFO structure (section 2.2.5.2.4).

2.2.5.1.4 ZONE_REQUEST_FILTERS

ZONE_REQUEST_FILTERS is a 32-bit integer value that specifies possible selection filter types for zone
selection. An implementation SHOULD<34> support all values.

Constant/value Description

ZONE_REQUEST_PRIMARY

0x00000001

Consider primary zones.

ZONE_REQUEST_SECONDARY

0x00000002

Consider secondary zones.

ZONE_REQUEST_CACHE

0x00000004

Consider cache zones.

ZONE_REQUEST_AUTO

0x00000008

Consider the autocreated zones. These are zones with the AutoCreated flag
(section 2.2.5.2.2) turned on.

ZONE_REQUEST_FORWARD

0x00000010

Consider zones whose names do not end with the "arpa" label.

ZONE_REQUEST_REVERSE Consider zones whose names end with the "arpa" label.

http://go.microsoft.com/fwlink/?LinkId=106957

81 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Constant/value Description

0x00000020

ZONE_REQUEST_FORWARDER

0x00000040

Consider forwarder zones.

ZONE_REQUEST_STUB

0x00000080

Consider stub zones.

ZONE_REQUEST_DS

0x00000100

Consider zones that are directory server integrated.

ZONE_REQUEST_NON_DS

0x00000200

Consider zones that are not directory server integrated (that is, zones that are
either persistently stored in local storage or are zones of type
DNS_ZONE_TYPE_CACHE or DNS_ZONE_TYPE_SECONDARY_CACHE (section
2.2.5.1.1)).

ZONE_REQUEST_DOMAIN_DP

0x00000400

Consider zones that are stored in the domain application directory partition.

ZONE_REQUEST_FOREST_DP

0x00000800

Consider zones that are stored in the forest application directory partition.

ZONE_REQUEST_CUSTOM_DP

0x00001000

Consider zones that are stored in a custom application directory partition, where
the application directory partition name is specified by pszPartitionFqdn in the
DNS_RPC_ENUM_ZONES_FILTER (section 2.2.5.2.9) structure.

ZONE_REQUEST_LEGACY_DP

0x00002000

Consider zones that are stored in the default application directory partition.

2.2.5.1.5 ZONE_SKD_ROLLOVER_TYPE

ZONE_SKD_ROLLOVER_TYPE is a 32-bit integer value that specifies possible key rollover types for a

signing key descriptor. An implementation SHOULD<35> support all values.

Constant/value Description

DNS_ROLLOVER_TYPE_PREPUBLISH

0x00000000

A method of key rollover in which the new key is published in the
zone before it will be used. See [RFC4641] section 4.2.

DNS_ROLLOVER_TYPE_DOUBLE_SIGNATURE

0x00000001

A method of key rollover in which data is signed by both old and
new keys simultaneously for a period of time. See [RFC4641]
section 4.2.

2.2.5.1.6 ZONE_SKD_ROLLOVER_ACTION

ZONE_SKD_ROLLOVER_ACTION is a 32-bit integer value that specifies possible key rollover actions for

a signing key descriptor. An implementation SHOULD<36> support all values.

Constant/value Description

DNS_ROLLOVER_ACTION_DEFAULT

0x00000000

The server MUST never send this value. The client MUST send
this value to indicate that no change to the current key rollover
behavior is desired.

http://go.microsoft.com/fwlink/?LinkId=225979

82 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Constant/value Description

DNS_ROLLOVER_ACTION_NORMAL

0x00000001

The server will perform a normal key rollover the next time the
keys for this signing key descriptor are rolled over.

DNS_ROLLOVER_ACTION_REVOKE_STANDBY

0x00000002

The server will revoke the standby key for this signing key
descriptor as defined by [RFC5011] the next time the keys for
this signing key descriptor are rolled over. This rollover action
applies only to signing key descriptors representing key signing
keys (those whose fIsKSK property as described in section
2.2.6.2.1 is set to 0x00000001).

DNS_ROLLOVER_ACTION_RETIRE

0x00000003

The server will retire this signing key descriptor and remove all
signatures associated with it the next time the keys for this
signing key descriptor are rolled over.

2.2.5.2 Structures

2.2.5.2.1 DNS_RPC_ZONE

The DNS_RPC_ZONE structure contains basic information about a zone present on the DNS server.
There are different versions of the DNS_RPC_ZONE structure. The DNS server MAY<37> decide to use
one of these structures depending upon the value of the dwClientVersion field in DNS Server
Management Protocol method calls (section 3.1.4) as follows in the table provided. If the method call
does not specify the value of dwClientVersion, the DNS_RPC_ZONE_W2K version of the structure

MUST be used.

Value Structure

0x00000000 DNS_RPC_ZONE_W2K (section 2.2.5.2.1.1)

0x00060000 or 0x00070000 DNS_RPC_ZONE_DOTNET (section 2.2.5.2.1.2)

2.2.5.2.1.1 DNS_RPC_ZONE_W2K

This structure is used to specify basic information about a DNS zone.

 typedef struct _DnssrvRpcZoneW2K {
 [string] wchar_t* pszZoneName;
 DNS_RPC_ZONE_FLAGS Flags;
 UCHAR ZoneType;
 UCHAR Version;
 } DNS_RPC_ZONE_W2K,
 *PDNS_RPC_ZONE_W2K;

pszZoneName: A pointer to a null-terminated Unicode string that contains zone-name.

Flags: Zone flags as specified in section 2.2.5.2.2.

ZoneType: The zone type. This MUST be set to one of the allowed DNS_ZONE_TYPE section

2.2.5.1.1.

Version: The RPC protocol version. It MUST be set to 0x32.

http://go.microsoft.com/fwlink/?LinkId=225980

83 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

2.2.5.2.1.2 DNS_RPC_ZONE_DOTNET

All fields have same definition as specified in section DNS_RPC_ZONE_W2K (section 2.2.5.2.1.1), with
the following exceptions:

 typedef struct _DnssrvRpcZoneDotNet {
 DWORD dwRpcStructureVersion;
 DWORD dwReserved0;
 [string] wchar_t* pszZoneName;
 DNS_RPC_ZONE_FLAGS Flags;
 UCHAR ZoneType;
 UCHAR Version;
 DWORD dwDpFlags;
 [string] char* pszDpFqdn;
 } DNS_RPC_ZONE_DOTNET,
 *PDNS_RPC_ZONE_DOTNET,
 DNS_RPC_ZONE,
 *PDNS_RPC_ZONE;

dwRpcStructureVersion: The DNS management structure version number. This value MUST be set
to 0x00000001.

dwReserved0: This field is reserved for future use. Senders set this to an arbitrary value and
receivers MUST ignore it.

dwDpFlags: Application directory partition flags for this zone. This MUST be set to one of the
combination of the DNS_RPC_DP_FLAGS (section 2.2.7.1.1). If this zone is not stored in the
directory server this value MUST be 0x00000000.

pszDpFqdn: A pointer to a null-terminated UTF-8 string that specifies the FQDN of the application

directory partition in which this zone is stored in the directory server. If this zone is not stored in
the directory server this value MUST be NULL.

If the DNS RPC client sends an older version of DNS_RPC_ZONE structure, that is,
DNS_RPC_ZONE_W2K (section 2.2.5.2.1.1), then the DNS RPC server MUST construct a current

version of DNS_RPC_ZONE structure, that is, DNS_RPC_ZONE_DOTNET, using the following steps:

1. Copy the same value for fields that are common to input and the current version of the
DNS_RPC_ZONE structures.

2. The dwRpcStructureVersion field MUST be set to "1".

3. All other fields that are defined only in DNS_RPC_ZONE_DOTNET and are not defined in
DNS_RPC_ZONE (section 2.2.5.2.1), MUST be set to "0".

2.2.5.2.2 DNS_RPC_ZONE_FLAGS

DNS_RPC_ZONE_FLAGS is a bit-mask value used by the DNS_RPC_ZONE structure (section 2.2.5.2.1)
to indicate zone properties and state.

This type is declared as follows:

 typedef DWORD DNS_RPC_ZONE_FLAGS, *PDNS_RPC_ZONE_FLAGS;

84 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Figure 5: DNS_RPC_ZONE_FLAGS Bit-Mask

A (Paused): If set to 1, indicates that this zone is currently administratively paused. The DNS server
will not use this zone to respond to queries, will not accept updates in this zone, and will suspend

all other functions related to this zone. The default value for this flag is 0.

B (Shutdown): If set to 1, indicates that an error occurred that caused the DNS server to be unable
to load a complete copy of the zone into memory. For primary zones, the DNS server MUST set
this flag to 1 if an error occurred while loading the zone or its records from persistent storage. If
the zone is directory server-integrated, the DNS server MUST retry loading the zone at an interval
specified by the DsPollingInterval property (section 3.1.1.1) and set this flag to zero if a
subsequent loading attempt succeeds. If the server is not directory server-integrated the DNS

server MUST NOT automatically retry loading the zone. For secondary and stub zones, the DNS
server MUST set this flag to 1 if zone transfer was refused by all of the master servers or if zone
transfer could not be successfully completed. The DNS server MUST retry zone transfer as
specified by [RFC1034] and set this flag to zero if a subsequent zone transfer attempt succeeds.
The default value of this field MUST be 1 and the value MUST be set to zero if the zone is
successfully loaded during initialization (section 3.1.3).

C (Reverse): If set to 1, indicates that this is a reverse lookup zone.

D (AutoCreated): If set to 1, indicates that zone was auto-created. A DNS server MAY automatically
create certain zones at boot time which are flagged as "AutoCreated". Such zones are never
written to persistent storage, and the DNS Server MUST NOT perform any DNS Server
Management Protocol RPC operations on such zones.<38>

E (DsIntegrated): If set to 1, indicates that zone is stored in a directory server.

F (Aging): If set to 1, indicates that zone has aging enabled for resource records.

G (Update): The type of updates that are supported on this zone. This value MUST be set to one of
the possible value from DNS_ZONE_UPDATE (section 2.2.6.1.1).

H (ReadOnly): If set to 1, indicates that this zone is operating in read-only mode. The DNS server
SHOULD<39> support read-only zones. If the DNS server supports read-only zones, it MUST set
this flag to 1 if the zone is loaded from a directory server that is read-only, and in all other cases it
MUST set the flag to 0.

I (Unused): MUST be set to zero when sent and MUST be ignored on receipt.

2.2.5.2.3 DNS_RPC_ZONE_LIST

The DNS_RPC_ZONE_LIST structure contains the information about a list of zones present on the DNS
server. There are different versions of the DNS_RPC_ZONE_LIST structure. The DNS server

SHOULD<40> use one of these structures depending upon the passed-in value for the
dwClientVersion field in DNS Server Management Protocol method calls (section 3.1.4) as shown in
the following table. If the method call does not specify the value of dwClientVersion, the

DNS_RPC_ZONE_LIST_W2K version of the structure MUST be used.

Value Structure

0x00000000 DNS_RPC_ZONE_LIST_W2K (section 2.2.5.2.3.1)

http://go.microsoft.com/fwlink/?LinkId=90263

85 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Value Structure

0x00060000 DNS_RPC_ ZONE_LIST_DOTNET (section 2.2.5.2.3.2)

0x00070000 DNS_RPC_ ZONE_LIST_DOTNET (section 2.2.5.2.3.2)

2.2.5.2.3.1 DNS_RPC_ZONE_LIST_W2K

This structure is used to enumerate zones.

 typedef struct _DnssrvRpcZoneListW2K {
 [range(0,500000)] DWORD dwZoneCount;
 [size_is(dwZoneCount)] PDNS_RPC_ZONE_W2K ZoneArray[];
 } DNS_RPC_ZONE_LIST_W2K,
 *PDNS_RPC_ZONE_LIST_W2K;

dwZoneCount: The number of zones present in the array of zones pointed to by ZoneArray.

ZoneArray: An array of structures of type DNS_RPC_ZONE (section 2.2.5.2.1.1). Each element of
the array represents one zone.

2.2.5.2.3.2 DNS_RPC_ZONE_LIST_DOTNET

All fields have same definition as specified in section DNS_RPC_ZONE_LIST_W2K (section
2.2.5.2.3.1), with the following exceptions:

 typedef struct _DnssrvRpcZoneListDotNet {
 DWORD dwRpcStructureVersion;
 DWORD dwReserved0;
 [range(0,500000)] DWORD dwZoneCount;
 [size_is(dwZoneCount)] PDNS_RPC_ZONE_DOTNET ZoneArray[];
 } DNS_RPC_ZONE_LIST_DOTNET,
 *PDNS_RPC_ZONE_LIST_DOTNET,
 DNS_RPC_ZONE_LIST,
 *PDNS_RPC_ZONE_LIST;

dwRpcStructureVersion: The DNS management structure version number. This MUST be set to
0x00000001.

dwReserved0: This field is reserved for future use. Senders can send an arbitrary value and

receivers MUST ignore it.

If the DNS RPC client sends an older version of DNS_RPC_ZONE_LIST structure, that is,
DNS_RPC_ZONE_LIST_W2K (section 2.2.5.2.3.1), then the DNS RPC server MUST construct a current
version of DNS_RPC_ZONE_LIST structure, that is, DNS_RPC_ZONE_LIST_DOTNET, using the
following steps:

1. Copy the same value for the fields that are common to input and the current version of
DNS_RPC_ZONE_LIST structures.

2. The dwRpcStructureVersion field MUST be set to "1".

3. The value for the ZoneArray field MUST be obtained from the input structure as
DNS_RPC_ZONE_W2K (section 2.2.5.2.1.1) array elements and each MUST be converted using
the steps specified in section DNS_RPC_ZONE_DOTNET (section 2.2.5.2.1.2), and then assigned
to the ZoneArray field in the DNS_RPC_ZONE_LIST_DOTNET structure.

86 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

4. All other fields that are defined only in DNS_RPC_ZONE_LIST_DOTNET and are not defined in
DNS_RPC_ZONE_LIST_W2K (section 2.2.5.2.3.1), MUST be set to "0".

2.2.5.2.4 DNS_RPC_ZONE_INFO

The DNS_RPC_ZONE_INFO structure contains the detailed information about a zone present on the
DNS server. The DNS server uses this structure to return information about a zone while responding
to R_DnssrvQuery2 (section 3.1.4.7) method calls with operation type "ZoneInfo". There are different
versions of DNS_RPC_ZONE_INFO. The DNS server MUST use the structures corresponding to the
passed-in value for the dwClientVersion field in DNS Server Management Protocol method calls
(section 3.1.4) in the following table, or if the method call does not specify the value of
dwClientVersion, the DNS_RPC_ZONE_ INFO_W2K version of the structure MUST be used.

Value Structure

0x00000000 DNS_RPC_ZONE_INFO_W2K (section 2.2.5.2.4.1)

0x00060000 DNS_RPC_ ZONE_INFO_DOTNET (section 2.2.5.2.4.2)

0x00070000 DNS_RPC_ ZONE_INFO_LONGHORN (section 2.2.5.2.4.3)

2.2.5.2.4.1 DNS_RPC_ZONE_INFO_W2K

This structure is used to specify detailed DNS zone information.

 typedef struct _DnsRpcZoneInfoW2K {
 [string] char* pszZoneName;
 DWORD dwZoneType;
 DWORD fReverse;
 DWORD fAllowUpdate;
 DWORD fPaused;
 DWORD fShutdown;
 DWORD fAutoCreated;
 DWORD fUseDatabase;
 [string] char* pszDataFile;
 PIP4_ARRAY aipMasters;
 DWORD fSecureSecondaries;
 DWORD fNotifyLevel;
 PIP4_ARRAY aipSecondaries;
 PIP4_ARRAY aipNotify;
 DWORD fUseWins;
 DWORD fUseNbstat;
 DWORD fAging;
 DWORD dwNoRefreshInterval;
 DWORD dwRefreshInterval;
 DWORD dwAvailForScavengeTime;
 PIP4_ARRAY aipScavengeServers;
 DWORD pvReserved1;
 DWORD pvReserved2;
 DWORD pvReserved3;
 DWORD pvReserved4;
 } DNS_RPC_ZONE_INFO_W2K,
 *PDNS_RPC_ZONE_INFO_W2K;

pszZoneName: A pointer to a null-terminated Unicode string that contains a zone name.

dwZoneType: The zone type. This MUST be set to one of the allowed values as specified in
DNS_ZONE_TYPE (section 2.2.5.1.1).

87 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

fReverse: A Boolean value where TRUE (0x00000001) indicates this is a reverse lookup zone and
FALSE (0x00000000) indicates this is a forward lookup zone.

fAllowUpdate: A value that indicates what kind dynamic updates are allowed for this zone. This
MUST be set to one of the following values:

 Constant/value Description

ZONE_UPDATE_OFF

0x00000000

No updates are allowed for the zone.

ZONE_UPDATE_UNSECURE

0x00000001

All updates (secure and unsecure) are allowed for the zone.

ZONE_UPDATE_SECURE

0x00000002

The zone only allows secure updates, that is, DNS packet MUST
have a TSIG [RFC2845] present in the additional section.

fPaused: A Boolean value indicates whether zone operations are currently paused. TRUE indicates
that the DNS server does not use this zone to answer queries or accept updates. FALSE indicates

that the zone is handled normally.

fShutdown: A Boolean value that indicates whether this zone is currently shut down.

fAutoCreated: A Boolean value that indicates whether this zone was autocreated by the DNS server
at boot time.

fUseDatabase: A Boolean value that indicates whether this zone is stored in a directory server.

pszDataFile: A pointer to a null-terminated UTF-8 character string that specifies the name (with no

path) of the zone file for a file-based zone or NULL if this zone is not stored in a file.

aipMasters: A pointer to a structure of type IP4_ARRAY (section 2.2.3.2.1) that specifies a list of
IPv4 addresses of the remote DNS servers that can be sources of information for this zone to
perform zone transfers by a secondary. This value is applicable for secondary, stub and forwarder
zones only and MUST be NULL for all other zone types.

fSecureSecondaries: The secondary security settings configured for a zone on the master DNS
server. The DNS server MUST respond to zone transfer requests from a secondary server
according to the behavior description corresponding to this flag's value as specified in

DNS_ZONE_SECONDARY_SECURITY (section 2.2.5.1.2). This value MUST be set to one of the
allowed values as specified in DNS_ZONE_SECONDARY_SECURITY (section 2.2.5.1.2).

fNotifyLevel: This parameter is ignored, and for dwZoneType parameter setting
DNS_ZONE_TYPE_PRIMARY (specified in section 2.2.5.1.1) and for DNS servers that are not
directory service-integrated, the zone notification setting is set to

ZONE_NOTIFY_ALL_SECONDARIES. Otherwise, it is set to ZONE_NOTIFY_LIST_ONLY, as specified

in section 2.2.5.1.3.

aipSecondaries: A pointer to a structure of type IP4_ARRAY (section 2.2.3.2.1) that specifies a list
of IPv4 addresses of the remote DNS servers that are secondary DNS servers for this zone, or
NULL if there are no secondary DNS servers. If fSecureSecondaries is set to
ZONE_SECSECURE_LIST_ONLY then only zone transfers from IP addresses in this list will be
honored.

http://go.microsoft.com/fwlink/?LinkId=90388

88 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

aipNotify: A pointer to a structure of type IP4_ARRAY (section 2.2.3.2.1) that specifies a list of IPv4
addresses of the remote DNS servers that are secondaries for this zone, for which this DNS server

is acting as master and the DNS server will send zone notifications to these secondary servers, as
directed by the value of fNotifyLevel above.

fUseWins: A Boolean value that indicates whether WINS resource record lookup is enabled for this
forward lookup zones.

fUseNbstat: A Boolean value that indicates whether WINS-R resource record lookup is enabled for
this reverse lookup zones.

fAging: A Boolean value where TRUE (0x00000001) indicates that aging is enabled for resource
records in this zone, so the time-stamps of records in the zone will be updated when server
receives dynamic update request for that record; whereas FALSE(0x00000000) indicates, that the

time-stamps of the records in the zone will not be updated.

dwNoRefreshInterval: The time interval, in hours, that is configured as NoRefresh interval value
for this zone. This value determines the time interval between the last update of a record's time-

stamp and the earliest instance when that time-stamp can be refreshed.

dwRefreshInterval: The time interval, in hours, that is configured as the refresh interval value for
this zone. Records that have not been refreshed by the expiration of this interval are eligible to be

removed during the next scavenging cycle performed by the DNS server.

dwAvailForScavengeTime: The time interval, in hours, that is available before the scheduled next
scavenging cycle for this zone.

aipScavengeServers: A pointer to a structure of type IP4_ARRAY (section 2.2.3.2.1) that specifies a
list of IPv4 addresses of the DNS servers that will perform scavenging for this zone. This value is
applicable for zones of type DNS_ZONE_TYPE_PRIMARY (section DNS_ZONE_TYPE) only. If this
value is NULL, there are no restrictions on which DNS server can perform scavenging for this

zone.

pvReserved1: Reserved for future use. Server MUST set to zero and receiver MUST ignore this

value.

pvReserved2: Reserved for future use. Server MUST set to zero and receiver MUST ignore this
value.

pvReserved3: Reserved for future use. Server MUST set to zero and receiver MUST ignore this
value.

pvReserved4: Reserved for future use. Server MUST set to zero and receiver MUST ignore this
value.

2.2.5.2.4.2 DNS_RPC_ZONE_INFO_DOTNET

All fields have same definition as specified in section DNS_RPC_ZONE_INFO_W2K (section
2.2.5.2.4.1), with the following exceptions:

 typedef struct _DnsRpcZoneInfoDotNet {
 DWORD dwRpcStructureVersion;
 DWORD dwReserved0;
 [string] char* pszZoneName;
 DWORD dwZoneType;
 DWORD fReverse;
 DWORD fAllowUpdate;
 DWORD fPaused;
 DWORD fShutdown;
 DWORD fAutoCreated;
 DWORD fUseDatabase;

89 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 [string] char* pszDataFile;
 PIP4_ARRAY aipMasters;
 DWORD fSecureSecondaries;
 DWORD fNotifyLevel;
 PIP4_ARRAY aipSecondaries;
 PIP4_ARRAY aipNotify;
 DWORD fUseWins;
 DWORD fUseNbstat;
 DWORD fAging;
 DWORD dwNoRefreshInterval;
 DWORD dwRefreshInterval;
 DWORD dwAvailForScavengeTime;
 PIP4_ARRAY aipScavengeServers;
 DWORD dwForwarderTimeout;
 DWORD fForwarderSlave;
 PIP4_ARRAY aipLocalMasters;
 DWORD dwDpFlags;
 [string] char* pszDpFqdn;
 [string] wchar_t* pwszZoneDn;
 DWORD dwLastSuccessfulSoaCheck;
 DWORD dwLastSuccessfulXfr;
 DWORD dwReserved1;
 DWORD dwReserved2;
 DWORD dwReserved3;
 DWORD dwReserved4;
 DWORD dwReserved5;
 [string] char* pReserved1;
 [string] char* pReserved2;
 [string] char* pReserved3;
 [string] char* pReserved4;
 } DNS_RPC_ZONE_INFO_DOTNET,
 *PDNS_RPC_ZONE_INFO_DOTNET;

dwRpcStructureVersion: The DNS server management structure version number. This value
SHOULD<41> be set to 0x00000001.

dwReserved0: Reserved for future use. Server will set to zero and receiver MUST ignore this value.

dwForwarderTimeout: (4 bytes): The forwarder timeout value for a zone, in seconds. This is the
number of seconds the DNS server waits for response from a remote DNS server for a forwarded
query. This value is applicable for zones of type DNS_ZONE_TYPE_FORWARDER (section

2.2.5.1.1). For all other zone types, senders MUST set this value to zero and receivers MUST
ignore it.

fForwarderSlave: A Boolean value indicating whether the DNS server is not allowed to perform
recursion while resolving names for this zone. The DNS server MUST fail queries after getting
failure from all forwarded servers, if the value is TRUE (0x00000001). Otherwise normal recursion
MUST be performed. This value is applicable for zones of type DNS_ZONE_TYPE_FORWARDER
(section 2.2.5.1.1). For all other zone types, senders MUST set this value to zero and receivers

MUST ignore it.

aipLocalMasters: A pointer to a structure of type IP4_ARRAY (section 2.2.3.2.1) that specifies a list
of IPv4 addresses of primary DNS servers for this zone. If this value is not NULL then it overrides

the master servers list configured in the directory server.

dwDpFlags: Flag value that specifies information about the application directory partition in which
this zone is stored. This MUST be set to any combination of the

DNS_RPC_DP_FLAGS (section 2.2.7.1.1) or zero if this zone is not stored in a directory server.

pszDpFqdn: A pointer to a null-terminated UTF-8 string that specifies the FQDN of the application
directory partition in which this zone is stored. If the zone is not stored in an application directory
partition this value MUST be NULL.

90 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

pwszZoneDn: Pointer to a null-terminated Unicode string that specifies the distinguished name for
the zone if the zone is stored the directory server. This field is applicable for directory server

integrated zones only. The value MUST be NULL if this zone is not stored in the directory server.

dwLastSuccessfulSoaCheck: The time-stamp at which last SOA record was received successfully

from the primary DNS server for this zone. This field is applicable only for zones which are
secondary or non-authoritative. For all other zones this value MUST be set to zero by senders and
MUST be ignored by receivers.

dwLastSuccessfulXfr: The time-stamp at which last zone transfer was completed successfully from
the primary DNS server for this zone. This field is applicable only for zones which are secondary or
non-authoritative. For all other zones this value MUST be set to zero by senders and MUST be
ignored by receivers.

dwReserved1: Reserved for future use. Server MUST set to zero and receiver MUST ignore this
value.

dwReserved2: Reserved for future use. Server MUST set to zero and receiver MUST ignore this

value.

dwReserved3: Reserved for future use. Server MUST set to zero and receiver MUST ignore this
value.

dwReserved4: Reserved for future use. Server MUST set to zero and receiver MUST ignore this
value.

dwReserved5: Reserved for future use. Server MUST set to zero and receiver MUST ignore this
value.

pReserved1: Reserved for future use. Server MUST set to zero and receiver MUST ignore this value.

pReserved2: Reserved for future use. Server MUST set to zero and receiver MUST ignore this value.

pReserved3: Reserved for future use. Server MUST set to zero and receiver MUST ignore this value.

pReserved4: Reserved for future use. Server MUST set to zero and receiver MUST ignore this value.

2.2.5.2.4.3 DNS_RPC_ZONE_INFO_LONGHORN

All fields have same definition as specified in section DNS_RPC_ZONE_INFO_DOTNET (section
2.2.5.2.4.2), with the following exceptions:

 typedef struct _DnsRpcZoneInfoLonghorn {
 DWORD dwRpcStructureVersion;
 DWORD dwReserved0;
 [string] char* pszZoneName;
 DWORD dwZoneType;
 DWORD fReverse;
 DWORD fAllowUpdate;
 DWORD fPaused;
 DWORD fShutdown;
 DWORD fAutoCreated;
 DWORD fUseDatabase;
 [string] char* pszDataFile;
 PDNS_ADDR_ARRAY aipMasters;
 DWORD fSecureSecondaries;
 DWORD fNotifyLevel;
 PDNS_ADDR_ARRAY aipSecondaries;
 PDNS_ADDR_ARRAY aipNotify;
 DWORD fUseWins;
 DWORD fUseNbstat;
 DWORD fAging;
 DWORD dwNoRefreshInterval;

91 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 DWORD dwRefreshInterval;
 DWORD dwAvailForScavengeTime;
 PDNS_ADDR_ARRAY aipScavengeServers;
 DWORD dwForwarderTimeout;
 DWORD fForwarderSlave;
 PDNS_ADDR_ARRAY aipLocalMasters;
 DWORD dwDpFlags;
 [string] char* pszDpFqdn;
 [string] wchar_t* pwszZoneDn;
 DWORD dwLastSuccessfulSoaCheck;
 DWORD dwLastSuccessfulXfr;
 DWORD fQueuedForBackgroundLoad;
 DWORD fBackgroundLoadInProgress;
 BOOL fReadOnlyZone;
 DWORD dwLastXfrAttempt;
 DWORD dwLastXfrResult;
 } DNS_RPC_ZONE_INFO_LONGHORN,
 *PDNS_RPC_ZONE_INFO_LONGHORN,
 DNS_RPC_ZONE_INFO,
 *PDNS_RPC_ZONE_INFO;

dwRpcStructureVersion: The DNS server management structure version number. It SHOULD<42>

be set to 0x00000002.

aipMasters: A pointer to a structure of type DNS_ADDR_ARRAY (section 2.2.3.2.3) that specifies a
list of IP addresses of the remote DNS servers that can be sources of information for this zone on
which to perform zone transfers by a secondary. This value is applicable for secondary, stub and
forwarder zones only and MUST be NULL for all other zone types.

aipSecondaries: A pointer to a structure of type DNS_ADDR_ARRAY (section 2.2.3.2.3) that
specifies a list of IP addresses of the remote DNS servers that are secondary DNS servers for this

zone, or NULL if there are no secondary DNS servers. If fSecureSecondaries is set to
ZONE_SECSECURE_LIST_ONLY, then only zone transfers from IP addresses in this list will be
honored.

aipNotify: A pointer to a structure of type DNS_ADDR_ARRAY (section 2.2.3.2.3) that specifies a list
of IP addresses of the remote DNS servers that are secondaries for this zone, for which this DNS
server is acting as master and the DNS server will send zone notifications to these secondary

servers, as directed by the value of fNotifyLevel above.

aipScavengeServers: A pointer to a structure of type DNS_ADDR_ARRAY (section 2.2.3.2.3) that
specifies a list of IP addresses of the DNS servers that will perform scavenging for this zone. This
value is applicable for zones of type DNS_ZONE_TYPE_PRIMARY (section 2.2.5.1.1) only. If this
value is NULL, there are no restrictions on which DNS server can perform scavenging for this zone.

aipLocalMasters: A pointer to a structure of type DNS_ADDR_ARRAY (section 2.2.3.2.3) that
specifies a list of IP addresses of primary DNS servers for this zone. If this value is not NULL then

it overrides the masters servers list configured in the directory server.

fQueuedForBackgroundLoad: This MUST be set to 0x00000001 if this zone is has not yet been
loaded from persistent storage.

fBackgroundLoadInProgress: This MUST be set to 0x00000001 if this zone is currently being
loaded from persistent storage, or 0x00000000 if it has been loaded.

fReadOnlyZone: This MUST be set to 0x00000001 if this zone is backed by a read-only store that
will not accept write operations, or 0x00000000 if not.

dwLastXfrAttempt: The time-stamp at which last zone transfer was attempted by a DNS server.
This field is applicable only for zones which are secondary or not-authoritative. For all other zones
senders MUST set this value to zero and receivers MUST ignore it.

92 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

dwLastXfrResult: The result of the last zone transfer attempted by server. This field is applicable
only for zones which are secondary or not-authoritative, and in this case it MUST be either a

Win32 error code, or 0xFFFFFFFF to indicate that a zone transfer is currently in progress. For all
other zones senders MUST set this value to zero and receivers MUST ignore it.

2.2.5.2.5 DNS_RPC_ZONE_SECONDARIES

The DNS_RPC_ZONE_SECONDARIES structure contains the information about the secondary DNS
servers for a zone. There are different versions of the DNS_RPC_ZONE_SECONDARIES structure. The
DNS server MUST use the structure corresponding to the value of the dwClientVersion in DNS Server
Management Protocol method calls (section 3.1.4) as in the following table, or if the method call does
not specify the value of dwClientVersion, the DNS_RPC_ZONE_SECONDARIES_W2K version of the

structure MUST be used.

Value Structure

0x00000000 DNS_RPC_ZONE_SECONDARIES_W2K (section 2.2.5.2.5.1)

0x00060000 DNS_RPC_ ZONE_SECONDARIES_DOTNET (section 2.2.5.2.5.2)

0x00070000 DNS_RPC_ ZONE_SECONDARIES_LONGHORN (section 2.2.5.2.5.3)

2.2.5.2.5.1 DNS_RPC_ZONE_SECONDARIES_W2K

This structure is used to specify information about the secondary servers for a primary DNS zone.

 typedef struct _DnssrvRpcZoneSecondariesW2K {
 DWORD fSecureSecondaries;
 DWORD fNotifyLevel;
 PIP4_ARRAY aipSecondaries;
 PIP4_ARRAY aipNotify;
 } DNS_RPC_ZONE_SECONDARIES_W2K,
 *PDNS_RPC_ZONE_SECONDARIES_W2K;

fSecureSecondaries: The secondary security settings configured for this zone. The DNS server
MUST respond to zone transfer requests from a secondary server according to the behavior
corresponding to the value of the flag, as described in DNS_ZONE_SECONDARY_SECURITY
(section 2.2.5.1.2). This value MUST be set to one of the allowed values as specified in
DNS_ZONE_SECONDARY_SECURITY (section 2.2.5.1.2).

fNotifyLevel: The settings for sending zone notifications for this zone. The DNS server MUST send
notify messages to secondary servers as specified by the entry corresponding to the value of this

flag, as shown in the table in section 2.2.5.1.3. This flag's value MUST be set to one of the allowed
values as specified in DNS_ZONE_ NOTIFY_LEVEL (section 2.2.5.1.3).

aipSecondaries: The list of IPv4 addresses of remote DNS servers that are permitted to perform
zone transfers for this zone. The DNS server will honor zone transfer requests from these

secondary servers, as specified by fSecureSecondaries above.

aipNotify: The list of IPv4 addresses of the remote DNS servers that will be sent notification

messages when records in this zone change, as directed by fNotifyLevel above.

2.2.5.2.5.2 DNS_RPC_ZONE_SECONDARIES_DOTNET

All fields have same definition as specified in section DNS_RPC_ZONE_SECONDARIES_W2K (section
2.2.5.2.5.1), with the following exceptions:

93 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 typedef struct _DnssrvRpcZoneSecondariesDotNet {
 DWORD dwRpcStructureVersion;
 DWORD dwReserved0;
 DWORD fSecureSecondaries;
 DWORD fNotifyLevel;
 PIP4_ARRAY aipSecondaries;
 PIP4_ARRAY aipNotify;
 } DNS_RPC_ZONE_SECONDARIES_DOTNET,
 *PDNS_RPC_ZONE_SECONDARIES_DOTNET;

dwRpcStructureVersion: The DNS server management structure version number. It MUST be set to
0x00000001

dwReserved0: Reserved for future use. Sender MUST set to zero and receiver MUST ignore this
value.

2.2.5.2.5.3 DNS_RPC_ZONE_SECONDARIES_LONGHORN

All fields have same definition as specified in section DNS_RPC_ZONE_SECONDARIES_DOTNET
(section 2.2.5.2.5.2), with the following exceptions:

 typedef struct _DnssrvRpcZoneSecondariesLonghorn {
 DWORD dwRpcStructureVersion;
 DWORD dwReserved0;
 DWORD fSecureSecondaries;
 DWORD fNotifyLevel;
 PDNS_ADDR_ARRAY aipSecondaries;
 PDNS_ADDR_ARRAY aipNotify;
 } DNS_RPC_ZONE_SECONDARIES_LONGHORN,
 *PDNS_RPC_ZONE_SECONDARIES_LONGHORN,
 DNS_RPC_ZONE_SECONDARIES,
 *PDNS_RPC_ZONE_SECONDARIES;

dwRpcStructureVersion: The DNS server management structure version number. It MUST be set to

0x00000002.

aipSecondaries: A pointer to a structure of type DNS_ADDR_ARRAY (section 2.2.3.2.3) that
specifies a list of IP addresses of remote DNS servers that are permitted to perform zone transfers
for this zone. The DNS server will honor zone transfer requests from these secondary servers, as
directed by the value of fSecureSecondaries above.

aipNotify: A pointer to a structure of type DNS_ADDR_ARRAY (section 2.2.3.2.3) that specifies a list

of IP addresses of the remote DNS servers that be sent notification messages when records in this
zone change, as directed by fNotifyLevel above.

2.2.5.2.6 DNS_RPC_ZONE_DATABASE

The DNS_RPC_ZONE_DATABASE structure contains information about the persistent data store for a
zone on the DNS server. There are different versions of the DNS_RPC_ZONE_DATABASE structure.

The DNS server MUST use the structure corresponding to the value of dwClientVersion in DNS Server
Management Protocol method calls (section 3.1.4) as shown in the following table, or if the method
call does not specify the value of dwClientVersion, the DNS_RPC_ZONE_DATABASE_W2K (section
2.2.5.2.6.1) version of the structure MUST be used.

Value Structure

0x00000000 DNS_RPC_ZONE_DATABASE_W2K (section 2.2.5.2.6.1)

0x00060000 DNS_RPC_ZONE_DATABASE_DOTNET (section 2.2.5.2.6.2)

94 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Value Structure

0x00070000 DNS_RPC_ZONE_DATABASE_DOTNET (section 2.2.5.2.6.2)

2.2.5.2.6.1 DNS_RPC_ZONE_DATABASE_W2K

This structure specifies how a DNS zone is stored in persistent storage.

 typedef struct _DnssrvRpcZoneDatabaseW2K {
 DWORD fDsIntegrated;
 [string] char* pszFileName;
 } DNS_RPC_ZONE_DATABASE_W2K,
 *PDNS_RPC_ZONE_DATABASE_W2K;

fDsIntegrated: This MUST be set TRUE (0x00000001) if the zone is stored in a directory server, or

FALSE (0x00000000) if not.

0x00000001

0x00000000

pszFileName: A pointer to a null-terminated UTF-8 string that specifies the name of the file in which
this zone is stored, or NULL if this zone is to be stored in a directory server or in a file with the
default file name for the zone.

2.2.5.2.6.2 DNS_RPC_ZONE_DATABASE_DOTNET

All fields have same definition as specified in section DNS_RPC_ZONE_DATABASE_W2K (section

2.2.5.2.6.1), with the following exceptions:

 typedef struct _DnssrvRpcZoneDatabaseDotNet {
 DWORD dwRpcStructureVersion;
 DWORD dwReserved0;
 DWORD fDsIntegrated;
 [string] char* pszFileName;
 } DNS_RPC_ZONE_DATABASE_DOTNET,
 *PDNS_RPC_ZONE_DATABASE_DOTNET,
 DNS_RPC_ZONE_DATABASE,
 *PDNS_RPC_ZONE_DATABASE;

dwRpcStructureVersion: The DNS management structure version number. This MUST be set to

0x00000001.

dwReserved0: Reserved for future use. The sender MUST set this value to 0x00000000 and it MUST
be ignored by the receiver.

2.2.5.2.7 DNS_RPC_ZONE_CREATE_INFO

The DNS_RPC_ZONE_CREATE_INFO structure contains information required to create a zone or reset
a zone's information on the DNS server. There are different versions of the

DNS_RPC_ZONE_CREATE_INFO structure. The DNS server MUST use the structure corresponding to
the value of dwClientVersion in DNS Server Management Protocol method calls (section 3.1.4) as
shown in the following table, or if the method call does not specify the value of dwClientVersion, the
DNS_RPC_ZONE_CREATE_INFO_W2K version of the structure MUST be used.

95 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Value Structure

0x00000000 DNS_RPC_ZONE_CREATE_INFO_W2K (section 2.2.5.2.7.1)

0x00060000 DNS_RPC_ZONE_CREATE_INFO_DOTNET (section 2.2.5.2.7.2)

0x00070000 DNS_RPC_ZONE_CREATE_INFO_LONGHORN (section 2.2.5.2.7.3)

2.2.5.2.7.1 DNS_RPC_ZONE_CREATE_INFO_W2K

This structure is used to specify parameters required when creating a new DNS zone.

 typedef struct _DnsRpcZoneCreateInfo {
 [string] char* pszZoneName;
 DWORD dwZoneType;
 DWORD fAllowUpdate;
 DWORD fAging;
 DWORD dwFlags;
 [string] char* pszDataFile;
 DWORD fDsIntegrated;
 DWORD fLoadExisting;
 [string] char* pszAdmin;
 PIP4_ARRAY aipMasters;
 PIP4_ARRAY aipSecondaries;
 DWORD fSecureSecondaries;
 DWORD fNotifyLevel;
 [string] char* pvReserved1;
 [string] char* pvReserved2;
 [string] char* pvReserved3;
 [string] char* pvReserved4;
 [string] char* pvReserved5;
 [string] char* pvReserved6;
 [string] char* pvReserved7;
 [string] char* pvReserved8;
 DWORD dwReserved1;
 DWORD dwReserved2;
 DWORD dwReserved3;
 DWORD dwReserved4;
 DWORD dwReserved5;
 DWORD dwReserved6;
 DWORD dwReserved7;
 DWORD dwReserved8;
 } DNS_RPC_ZONE_CREATE_INFO_W2K,
 *PDNS_RPC_ZONE_CREATE_INFO_W2K;

pszZoneName: As specified in section 2.2.5.2.4.1.

dwZoneType: The zone type. This MUST be set to one of the allowed values specified in
DNS_ZONE_TYPE (section 2.2.5.1.1), and it MUST NOT be either DNS_ZONE_TYPE_CACHE or
DNS_ZONE_TYPE_SECONDARY_CACHE.

fAllowUpdate: As specified in section 2.2.5.2.4.1.

fAging: As specified in section 2.2.5.2.4.1.

dwFlags: The zone creation behavior that the DNS server is to follow while creating the zone. This
field is only used when the operation is ZoneCreate. The DNS server MUST ignore the value of
this field when the operation is ZoneTypeReset. This field MUST be set to any combination of the
following values:

96 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Value Meaning

DNS_ZONE_LOAD_OVERWRITE_MEMORY

0x00000010

If dwZoneType is not set to the value
DNS_ZONE_TYPE_PRIMARY (section 2.2.5.1.1), then
this flag MUST be ignored. Otherwise, the DNS server
MUST attempt to find and load the zone database from
persistent storage instead of creating a new empty zone
database. If the value of fDsIntegrated is 0x00000001
then the DNS server MUST search for a pre-existing
zone database in the directory server, otherwise the
DNS server MUST search for a pre-existing zone
database in a file. If a pre-existing zone database is not
found then it continues with zone creation, however if a
pre-existing zone database is found but could not be
loaded, the DNS server MUST fail the operation and
return an error.

DNS_ZONE_CREATE_FOR_DCPROMO

0x00001000

If this flag is set, the DNS server MUST create the zone
such that it is directory server-integrated and stored in
the DNS domain partition.

DNS_ZONE_CREATE_FOR_DCPROMO_FOREST

0x00004000

If this flag is set, the DNS server MUST create the zone
such that it is directory server-integrated and stored in
the DNS forest partition.

pszDataFile: As specified in section 2.2.5.2.4.1.

fDsIntegrated: A value of 0x00000001 indicates that the zone is to be created to use the directory
server for persistent storage, and 0x00000000 indicates it is not. If this is set to 0x00000001 the
caller MUST specify the application directory partition information in pszDpFqdn (section

2.2.5.2.7.2); in this case the DNS server MUST ignore the value of pszDataFile.

fLoadExisting: If the operation is ZoneCreate this field is interpreted as a Boolean value. If set to
TRUE this has the same effect as specifying DNS_ZONE_LOAD_OVERWRITE_MEMORY in the
dwFlags field. If the operation is ZoneTypeReset, this field can be set to one of the following

values; however, the DNS server MUST ignore the value of this field if fDsIntegrated is not TRUE
or dwZoneType is not DNS_ZONE_TYPE_PRIMARY (section 2.2.5.1.1).

Value Meaning

DNS_ZONE_LOAD_OVERWRITE_MEMORY

0x00000010

The server MUST attempt to find and load the zone database
from persistent storage instead of retaining the existing in-
memory zone database by searching for a pre-existing zone
database in the directory server. If a pre-existing zone
database is not found, then the server MUST fail the
operation and return an error.

DNS_ZONE_LOAD_OVERWRITE_DS

0x00000020

If this flag is set and if the zone already exists in the
database, then the server MUST overwrite the existing zone
database with current in-memory zone database.

pszAdmin: A pointer to a null-terminated UTF-8 string containing the administrator's email name (in

the format specified in [RFC1035] section 8) or NULL to cause the DNS server to use a default
value "hostmaster", followed by the name of the zone. This value MUST be used to populate the
zone administrator email field in the SOA record in the new zone.

aipMasters: As specified in section 2.2.5.2.4.1.

aipSecondaries: As specified in section 2.2.5.2.4.1.

fSecureSecondaries: As specified in section 2.2.5.2.4.1.

http://go.microsoft.com/fwlink/?LinkId=90264

97 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

fNotifyLevel: As specified in section 2.2.5.2.4.1.

pvReserved1: MUST be set to zero when sent and MUST be ignored on receipt.

pvReserved2: MUST be set to zero when sent and MUST be ignored on receipt.

pvReserved3: MUST be set to zero when sent and MUST be ignored on receipt.

pvReserved4: MUST be set to zero when sent and MUST be ignored on receipt.

pvReserved5: MUST be set to zero when sent and MUST be ignored on receipt.

pvReserved6: MUST be set to zero when sent and MUST be ignored on receipt.

pvReserved7: MUST be set to zero when sent and MUST be ignored on receipt.

pvReserved8: MUST be set to zero when sent and MUST be ignored on receipt.

dwReserved1: MUST be set to zero when sent and MUST be ignored on receipt.

dwReserved2: MUST be set to zero when sent and MUST be ignored on receipt.

dwReserved3: MUST be set to zero when sent and MUST be ignored on receipt.

dwReserved4: MUST be set to zero when sent and MUST be ignored on receipt.

dwReserved5: MUST be set to zero when sent and MUST be ignored on receipt.

dwReserved6: MUST be set to zero when sent and MUST be ignored on receipt.

dwReserved7: MUST be set to zero when sent and MUST be ignored on receipt.

dwReserved8: MUST be set to zero when sent and MUST be ignored on receipt.

2.2.5.2.7.2 DNS_RPC_ZONE_CREATE_INFO_DOTNET

All fields have same definition as specified in section DNS_RPC_ZONE_CREATE_INFO_W2K (section
2.2.5.2.7.1), with the following exceptions:

 typedef struct _DnsRpcZoneCreateInfoDotNet {
 DWORD dwRpcStructureVersion;
 DWORD dwReserved0;
 [string] char* pszZoneName;
 DWORD dwZoneType;
 DWORD fAllowUpdate;
 DWORD fAging;
 DWORD dwFlags;
 [string] char* pszDataFile;
 DWORD fDsIntegrated;
 DWORD fLoadExisting;
 [string] char* pszAdmin;
 PIP4_ARRAY aipMasters;
 PIP4_ARRAY aipSecondaries;
 DWORD fSecureSecondaries;
 DWORD fNotifyLevel;
 DWORD dwTimeout;
 DWORD fRecurseAfterForwarding;
 DWORD dwDpFlags;
 [string] char* pszDpFqdn;
 DWORD dwReserved[32];
 } DNS_RPC_ZONE_CREATE_INFO_DOTNET,
 *PDNS_RPC_ZONE_CREATE_INFO_DOTNET;

98 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

dwRpcStructureVersion: As specified in section 2.2.5.2.4.2.

dwReserved0: As specified in section 2.2.5.2.4.2.

dwTimeout: Equivalent to dwForwarderTimeout specified in section 2.2.5.2.4.2.

fRecurseAfterForwarding: Equivalent to fForwarderSlave specified in section 2.2.5.2.4.2.

dwDpFlags: As specified in section 2.2.5.2.4.2. However, only the following values can be used and
of these values more than one MUST NOT be specified: DNS_DP_LEGACY,
DNS_DP_DOMAIN_DEFAULT, and DNS_DP_FOREST_DEFAULT. This field is set to zero if the zone
is not to be created to use the directory server for persistent storage. The DNS server returns an
error if any value not listed above is specified or if more than one of the allowable values are
specified.

pszDpFqdn: As specified in section 2.2.5.2.4.2.

dwReserved: MUST be set to zero when sent and MUST be ignored on receipt.

If the DNS RPC client sends an older version of DNS_RPC_ZONE_CREATE_INFO structure such as
DNS_RPC_ZONE_CREATE_INFO_W2K (section 2.2.5.2.7.1), then the DNS RPC server MUST construct
a current version of DNS_RPC_ZONE_CREATE_INFO structure such as
DNS_RPC_ZONE_CREATE_INFO_DOTNET, using steps as specified below:

1. Copy the same value for fields that are common to input and current version of

DNS_RPC_ZONE_CREATE_INFO structures.

2. dwRpcStructureVersion field MUST be set to 1.

3. All other fields that are defined only in DNS_RPC_ZONE_CREATE_INFO_DOTNET and are not
defined in DNS_RPC_ZONE_CREATE_INFO_W2K (section 2.2.5.2.7.1), MUST be set to 0.

2.2.5.2.7.3 DNS_RPC_ZONE_CREATE_INFO_LONGHORN

All fields have same definition as specified in section DNS_RPC_ZONE_CREATE_INFO_DOTNET

(section 2.2.5.2.7.2), with the following exceptions:

 typedef struct _DnsRpcZoneCreateInfoLonghorn {
 DWORD dwRpcStructureVersion;
 DWORD dwReserved0;
 [string] char* pszZoneName;
 DWORD dwZoneType;
 DWORD fAllowUpdate;
 DWORD fAging;
 DWORD dwFlags;
 [string] char* pszDataFile;
 DWORD fDsIntegrated;
 DWORD fLoadExisting;
 [string] char* pszAdmin;
 PDNS_ADDR_ARRAY aipMasters;
 PDNS_ADDR_ARRAY aipSecondaries;
 DWORD fSecureSecondaries;
 DWORD fNotifyLevel;
 DWORD dwTimeout;
 DWORD fRecurseAfterForwarding;
 DWORD dwDpFlags;
 [string] char* pszDpFqdn;
 DWORD dwReserved[32];
 } DNS_RPC_ZONE_CREATE_INFO_LONGHORN,
 *PDNS_RPC_ZONE_CREATE_INFO_LONGHORN,
 DNS_RPC_ZONE_CREATE_INFO,
 *PDNS_RPC_ZONE_CREATE_INFO;

99 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

dwRpcStructureVersion: As specified in section 2.2.5.2.4.3.

aipMasters: As specified in section 2.2.5.2.4.3.

aipSecondaries: As specified in section 2.2.5.2.4.3.

If the DNS RPC client sends an older version of DNS_RPC_ZONE_CREATE_INFO structure such as

DNS_RPC_ZONE_CREATE_INFO_W2K (section 2.2.5.2.7.1) or
DNS_RPC_ZONE_CREATE_INFO_DOTNET (section 2.2.5.2.7.2), then the DNS RPC server MUST
construct a current version of DNS_RPC_ZONE_CREATE_INFO structure such as
DNS_RPC_ZONE_CREATE_INFO_LONGHORN, using steps as specified below:

1. Copy the same value for fields that are common to input and current version of
DNS_RPC_ZONE_CREATE_INFO structures.

2. dwRpcStructureVersion field MUST be set to 2.

3. The values for aipMasters and aipSecondaries fields MUST be obtained from input structure as
IP4_ARRAY type and MUST be converted to DNS_ADDR_ARRAY type, and then assigned to

aipMasters and aipSecondaries fields in the DNS_RPC_ZONE_CREATE_INFO_LONGHORN structure.

Note DNS_RPC_ZONE_CREATE_INFO_W2K (section 2.2.5.2.7.1) and
DNS_RPC_ZONE_CREATE_INFO_DOTNET (section 2.2.5.2.7.2), do not support IPv6 address list
of aipMasters and aipSecondaries.

4. All other fields that are defined only in DNS_RPC_ZONE_CREATE_INFO_LONGHORN and are not
defined in DNS_RPC_ZONE_CREATE_INFO_W2K (section 2.2.5.2.7.1) or
DNS_RPC_ZONE_CREATE_INFO_DOTNET (section 2.2.5.2.7.2) structure MUST be set to 0.

2.2.5.2.8 DNS_RPC_ZONE_EXPORT_INFO

The DNS_RPC_ZONE_EXPORT_INFO structure contains the information file to which a zone is exported
on the DNS server.<43>

 typedef struct _DnssrvRpcZoneExport {
 DWORD dwRpcStructureVersion;
 DWORD dwReserved0;
 [string] char* pszZoneExportFile;
 } DNS_RPC_ZONE_EXPORT_INFO,
 *PDNS_RPC_ZONE_EXPORT_INFO;

dwRpcStructureVersion: The structure version number; this MUST be set to 0x00000001.

dwReserved0: MUST be set to zero when sent and MUST be ignored on receipt

pszZoneExportFile: A pointer to a null-terminated UTF-8 string that specifies the name of the file to
which a zone is exported by the DNS server.

2.2.5.2.9 DNS_RPC_ENUM_ZONES_FILTER

The DNS_RPC_ENUM_ZONES_FILTER structure specifies zone filtering criteria.

 typedef struct _DnsRpcEnumZonesFilter {
 DWORD dwRpcStructureVersion;
 DWORD dwReserved0;
 DWORD dwFilter;
 [string] char* pszPartitionFqdn;
 [string] char* pszQueryString;
 [string] char* pszReserved[6];
 } DNS_RPC_ENUM_ZONES_FILTER,

100 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 *PDNS_RPC_ENUM_ZONES_FILTER;

dwRpcStructureVersion: The structure version number; this MUST be set to 0x00000001.

dwReserved0: MUST be set to zero when sent and MUST be ignored on receipt.

dwFilter: A filter value that specifies the zone types that are to be selected as part of the output
zone list. This value MUST be set to any combination of the ZONE_REQUEST_FILTERS (section
2.2.5.1.4).

pszPartitionFqdn: A pointer to a null-terminated UTF-8 string that specifies the distinguished name
for an application directory partition location from which the server is to enumerate zones; if this

is NULL then zone enumeration is not restricted based on the application directory partition.

pszQueryString: Reserved for future use. Server MUST set to zero and receiver MUST ignore this
value.

pszReserved: Reserved for future use. Server MUST set to zero and receiver MUST ignore this value.

2.2.5.2.10 DNS_RPC_FORWARDERS

The DNS_RPC_FORWARDERS structure contains information about forwarders configured on the DNS

server. There are different versions of the DNS_RPC_FORWARDERS structure. The DNS server MUST
use the structures corresponding to the value of dwClientVersion in DNS Server Management Protocol
method calls (section 3.1.4) in the following table, or if the method call does not specify the value of
dwClientVersion, the DNS_RPC_FORWARDERS_W2K version of the structure MUST be used.

Value Structure

0x00000000 DNS_RPC_FORWARDERS_W2K (section 2.2.5.2.10.1)

0x00060000 DNS_RPC_FORWARDERS_DOTNET (section 2.2.5.2.10.2)

0x00070000 DNS_RPC_FORWARDERS_LONGHORN (section 2.2.5.2.10.3)

2.2.5.2.10.1 DNS_RPC_FORWARDERS_W2K

This structure specifies the set of DNS servers this DNS server will forward unresolved queries to.

 typedef struct _DnssrvRpcForwardersW2K {
 DWORD fRecurseAfterForwarding;
 DWORD dwForwardTimeout;
 PIP4_ARRAY aipForwarders;
 } DNS_RPC_FORWARDERS_W2K,
 *PDNS_RPC_FORWARDERS_W2K;

fRecurseAfterForwarding: A value of 0x00000001 indicates that the DNS server is configured to

use normal recursion for name resolution if forwarders are not configured or are unreachable; a
value of 0x00000000 indicates it is not.

dwForwardTimeout: The time-interval, in seconds, for which the DNS server waits for a response
from each server in the forwarders list. No restrictions are applied to the range for the
dwForwardTimeout member when modifying its value through this structure. If
dwForwardTimeout is set to zero, then the server SHOULD<44> reset the forward timeout to

the default value, 3 minutes (180 seconds).

101 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

aipForwarders: The list of IP addresses that will be used as forwarders by the DNS server.

2.2.5.2.10.2 DNS_RPC_FORWARDERS_DOTNET

All fields have same definition as specified in section DNS_RPC_FORWARDERS_W2K (section

2.2.5.2.10.1), with the following exceptions:

 typedef struct _DnssrvRpcForwardersDotNet {
 DWORD dwRpcStructureVersion;
 DWORD dwReserved0;
 DWORD fRecurseAfterForwarding;
 DWORD dwForwardTimeout;
 PIP4_ARRAY aipForwarders;
 } DNS_RPC_FORWARDERS_DOTNET,
 *PDNS_RPC_FORWARDERS_DOTNET;

dwRpcStructureVersion: The structure version number. It MUST be set to 0x00000001.

dwReserved0: MUST be set to zero when sent and MUST be ignored on receipt.

2.2.5.2.10.3 DNS_RPC_FORWARDERS_LONGHORN

All fields have same definition as specified in section DNS_RPC_FORWARDERS_DOTNET (section

2.2.5.2.10.2), with the following exceptions:

 typedef struct _DnssrvRpcForwardersLonghorn {
 DWORD dwRpcStructureVersion;
 DWORD dwReserved0;
 DWORD fRecurseAfterForwarding;
 DWORD dwForwardTimeout;
 PDNS_ADDR_ARRAY aipForwarders;
 } DNS_RPC_FORWARDERS_LONGHORN,
 *PDNS_RPC_FORWARDERS_LONGHORN,
 DNS_RPC_FORWARDERS,
 *PDNS_RPC_FORWARDERS;

dwRpcStructureVersion: The structure version number. It MUST be set to 0x00000002.

aipForwarders: A pointer to a structure of type DNS_ADDR_ARRAY (section 2.2.3.2.3) specifies a
list of IP addresses that will be used as forwarders by the DNS server.

2.2.6 Zone Update Messages

2.2.6.1 Enumerations and Constants

2.2.6.1.1 DNS_ZONE_UPDATE

A DNS_ZONE_UPDATE value is a 2-bit value that indicates the type of dynamic update that is allowed

for a zone.

Constant/value Description

ZONE_UPDATE_OFF

0x0

No updates are allowed for the zone.

ZONE_UPDATE_UNSECURE

0x1

All updates (secure and unsecure) are allowed for the zone.

102 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Constant/value Description

ZONE_UPDATE_SECURE

0x2

The zone only allows secure updates, that is, the DNS packet MUST have a
TSIG [RFC2845] present in the additional section.

2.2.6.1.2 KeySignScope

KeySignScope defines the scope of the key in a signed zone. It SHOULD<45> be used to indicate
different signing and publishing scopes of the key.

 typedef enum _KeySignScope
 {
 SIGN_SCOPE_DEFAULT,
 SIGN_SCOPE_DNSKEY_ONLY,
 SIGN_SCOPE_ALL_RECORDS,
 SIGN_SCOPE_ADD_ONLY,
 SIGN_SCOPE_DO_NOT_PUBLISH,
 SIGN_SCOPE_REVOKED
 } KeySignScope;

SIGN_SCOPE_DEFAULT: The key is used for its default purpose: If the signing key descriptor's
fIsKSK field is set to 0x00000001, the key is used to sign only DNSKEY records in the zone. If the

signing key descriptor's fIsKSK field is set to 0x00000000, the key is used to sign all records in
the zone.

SIGN_SCOPE_DNSKEY_ONLY: The key is used to sign only DNSKEY records in the zone.

SIGN_SCOPE_ALL_RECORDS: The key is used to sign all records in the zone.

SIGN_SCOPE_ADD_ONLY: The key is published as a DNSKEY in the zone, but it is not used to sign
any records.

SIGN_SCOPE_DO_NOT_PUBLISH: The key is not published to the zone and is not used to sign any
records.

SIGN_SCOPE_REVOKED: The key is published as a DNSKEY in the zone with its Revoked bit
([RFC5011] section 2.1) set. It is used to sign DNSKEY records.

2.2.6.1.3 ImportOpResult

ImportOpResult SHOULD<46> define the operations to be executed when the

DNS_RPC_ZONE_DNSSEC_SETTINGS is imported on a zone.

 typedef enum ImportOperationResult
 {
 IMPORT_STATUS_NOOP,
 IMPORT_STATUS_SIGNING_READY,
 IMPORT_STATUS_UNSIGNING_READY,
 IMPORT_STATUS_CHANGED
 } ImportOpResult;

IMPORT_STATUS_NOOP: No change was detected in the imported signing settings or the signing
settings of the zone.

IMPORT_STATUS_SIGNING_READY: The zone is marked for re-signing.

http://go.microsoft.com/fwlink/?LinkId=90388
http://go.microsoft.com/fwlink/?LinkId=225980

103 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

IMPORT_STATUS_UNSIGNING_READY: The zone is marked for unsigning.

IMPORT_STATUS_CHANGED: The change was detected in signing settings imported and were

incorporated, but no re-signing or unsigning is required.

2.2.6.2 Structures

2.2.6.2.1 DNS_RPC_SKD

The DNS_RPC_SKD structure specifies a signing key descriptor.

 typedef struct _DnssrvRpcSigningKeyDescriptor {
 DWORD dwRpcStructureVersion;
 DWORD dwReserved0;
 GUID Guid;
 [string] wchar_t* pwszKeyStorageProvider;
 BOOL fStoreKeysInDirectory;
 BOOL fIsKSK;
 BYTE bSigningAlgorithm;
 DWORD dwKeyLength;
 DWORD dwInitialRolloverOffset;
 DWORD dwDNSKEYSignatureValidityPeriod;
 DWORD dwDSSignatureValidityPeriod;
 DWORD dwStandardSignatureValidityPeriod;
 DWORD dwRolloverType;
 DWORD dwRolloverPeriod;
 DWORD dwNextRolloverAction;
 DWORD dwReserved;
 } DNS_RPC_SKD,
 *PDNS_RPC_SKD;

dwRpcStructureVersion: The structure version number; this MUST be set to 0x00000001.

dwReserved0: MUST be set to zero when sent and MUST be ignored on receipt.

Guid: A unique identifier for this signing key descriptor.

pwszKeyStorageProvider: The Key Storage Provider that will be used to generate and store keys
for this signing key descriptor.

fStoreKeysInDirectory: A value of 0x00000001 indicates that the DNS server exports keys
generated for this signing key descriptor and stores them on the DNS zone object in Active
Directory. A value of 0x00000000 indicates that the DNS server stores keys in self-signed

certificates in the local machine certificate store.

fIsKSK: A value of 0x00000001 indicates that this signing key descriptor describes a key signing key
(KSK); a value of 0x00000000 indicates a zone signing key [RFC4641].

bSigningAlgorithm: The cryptographic algorithm used to generate signing keys. The DNS server
SHOULD<47> support all values given by [IANA-DNSSECAN] and [DRAFT-DNSSEC-ECDSA].

dwKeyLength: The length, in bits, of cryptographic signing keys. This value MUST be ignored if the
signing algorithm does not have variable key length.

dwInitialRolloverOffset: The amount of time, in seconds, to delay the first scheduled key rollover
for this signing key descriptor. The value SHOULD be limited to the range 0x00000000 to
0x00278D00 (30 days), inclusive, but it can be any value. The default value SHOULD be
0x00000000, and the value zero MUST be allowed and treated literally.

dwDNSKEYSignatureValidityPeriod: The number of seconds that signatures covering DNSKEY
record sets generated for this signing key descriptor's keys are valid, as defined by [RFC4034]

http://go.microsoft.com/fwlink/?LinkId=225979
http://go.microsoft.com/fwlink/?LinkId=225982
http://go.microsoft.com/fwlink/?LinkId=229294
http://go.microsoft.com/fwlink/?LinkId=107052

104 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

section 3.1.5. The value SHOULD be limited to the range 0x00005460 (6 hours) to 0x0x00093A80
(7 days), inclusive, but it can be any value. The default value SHOULD be 0x0003F480 (3 days).

dwDSSignatureValidityPeriod: The number of seconds that signatures covering DS record sets
generated for this signing key descriptor's keys are valid, as defined by [RFC4034] section 3.1.5.

The value SHOULD be limited to the range 0x00005460 (6 hours) to 0x00093A80 (7 days),
inclusive, but it can be any value. The default value SHOULD be 0x0003F480 (3 days).

dwStandardSignatureValidityPeriod: The number of seconds that signatures covering record sets
not of type DNSKEY or DS generated for this signing key descriptor's keys are valid, as defined by
[RFC4034] section 3.1.5. The value SHOULD be limited to the range 0x00005460 (6 hours) to
0x0x00278D00 (30 days), inclusive, but it can be any value. The default value SHOULD be
0x000D2F00 (10 days).

dwRolloverType: When sent, this value MUST be set to one of the allowed values specified in
ZONE_SKD_ROLLOVER_TYPE (section 2.2.5.1.5) as follows: this value MUST be
DNS_ROLLOVER_TYPE_PREPUBLISH if fIsKSK is 0x00000000 and MUST be
DNS_ROLLOVER_TYPE_DOUBLE_SIGNATURE if fIsKSK is 0x00000001. On receipt, this value

MUST be ignored.

dwRolloverPeriod: The number of seconds between scheduled key rollovers, or 0xFFFFFFFF to

disable automatic key rollovers. This value SHOULD be limited to the range 0x00093A80 (1 week)
to 0x25980600 (20 years), inclusive, in addition to 0xFFFFFFFF, when fIsKSK is 0x00000001, and
the range 0x00093A80 (1 week) to 0x09660180 (5 years), inclusive, in addition to 0xFFFFFFFF,
when fIsKSK is 0x00000000. The default SHOULD be 0x02022900 (13 months) when fIsKSK is
0x00000001, and 0x0x00278D00 (1 month) when fIsKSK is 0x00000000.

dwNextRolloverAction: This value describes the next key rollover action that the DNS server will
take for this signing key descriptor. This value MUST be set to one of the allowed values specified

in ZONE_SKD_ROLLOVER_ACTION (section 2.2.5.1.6).

dwReserved: This value MUST be set to 0x00000000 when sent by the client and ignored on receipt
by the server.

2.2.6.2.2 DNS_RPC_SKD_LIST

The DNS_RPC_SKD_LIST structure contains the information about a list of signing key descriptors that
are present for a particular zone on the DNS server.

 typedef struct _DnssrvRpcZoneSigningKeyList {
 DWORD dwRpcStructureVersion;
 DWORD dwReserved0;
 [range(0,1000)] DWORD dwCount;
 [size_is(dwCount)] PDNS_RPC_SKD SkdArray[];
 } DNS_RPC_SKD_LIST,
 *PDNS_RPC_SKD_LIST;

dwRpcStructureVersion: The structure version number; this MUST be set to 0x00000001.

dwReserved0: MUST be set to zero when sent and MUST be ignored on receipt.

dwCount: The number of signing key descriptors present in the array of signing key descriptors
pointed to by SkdArray.

SkdArray: An array of structures of type DNS_RPC_SKD (section 2.2.6.2.1). Each element of the
array represents one signing key descriptor.

2.2.6.2.3 DNS_RPC_SKD_STATE

105 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

The DNS_RPC_SKD_STATE structure contains information about the current state of a signing key
descriptor.

 typedef struct _DnsRpcSigningKeyDescriptorState {
 DWORD dwRpcStructureVersion;
 DWORD dwReserved0;
 GUID Guid;
 FILETIME ftLastRolloverTime;
 FILETIME ftNextRolloverTime;
 DWORD dwState;
 DWORD dwCurrentRolloverStatus;
 [string] wchar_t* pwszActiveKey;
 [string] wchar_t* pwszStandbyKey;
 [string] wchar_t* pwszNextKey;
 DWORD dwReserved;
 } DNS_RPC_SKD_STATE,
 *PDNS_RPC_SKD_STATE;

dwRpcStructureVersion: The structure version number; this MUST be set to 0x00000001.

dwReserved0: MUST be set to zero when sent and MUST be ignored on receipt.

Guid: A unique identifier for this signing key descriptor.

ftLastRolloverTime: The time at which the last successful rollover event was performed for this
signing key descriptor. This value MUST be 0 if no rollover has been performed on this signing key
descriptor.

ftNextRolloverTime: The time at which the next rollover for this signing key descriptor is scheduled.

This MAY be 0 if no rollover event is scheduled. When the time comes for a key rollover to start,
the signing key descriptor is added to the Rollover Queue, and its dwCurrentRolloverStatus is
changed to DNS_SKD_STATUS_QUEUED. If another signing key descriptor in the zone is in the
process of rolling, ftNextRolloverTime MAY represent a time in the past.

dwState: The current state of this signing key descriptor. This MUST be set to one of the following

values.<48>

Value Meaning

DNS_SKD_STATE_ACTIVE

0x00000000

The signing key descriptor is active and in use for online signing of the
zone.

DNS_SKD_STATE_RETIRED

0x00000001

The signing key descriptor is no longer in use for online signing.

dwCurrentRolloverStatus: The current rollover status of this signing key descriptor. This MUST be
set to one of the following values, representing the various stages of key rollover as described in
[RFC4641] and [RFC5011]:

Value Meaning

DNS_SKD_STATUS_NOT_ROLLING

0x00000000

The signing key descriptor is not currently in
the process of rolling over keys.

DNS_SKD_STATUS_QUEUED

0x00000001

This signing key descriptor is waiting for
another rollover to complete before its rollover
can begin. After the signing key descriptor
reaches the head of the Rollover Queue, the
signing key descriptor will move into the
DNS_SKD_STATUS_ROLL_STARTED state.

http://go.microsoft.com/fwlink/?LinkId=225979
http://go.microsoft.com/fwlink/?LinkId=225980

106 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Value Meaning

DNS_SKD_STATUS_ROLL_STARTED

0x00000002

This signing key descriptor has begun the
process of key rollover. Signing key descriptors
representing ZSKs will move from this state to
the
DNS_SKD_STATUS_ZSK_WAITING_FOR_DNSK
EY_TTL state, and signing key descriptors
representing KSKs will move from this state to
the
DNS_SKD_STATUS_KSK_WAITING_FOR_DS_U
PDATE state.

DNS_SKD_STATUS_ZSK_WAITING_FOR_DNSKEY_TTL

0x00000003

This ZSK signing key descriptor is waiting for
the previous key to expire in all caching
resolvers (it is waiting for the DNSKEY TTL to
expire). The signing key descriptor will next
move into the
DNS_SKD_STATUS_ZSK_WAITING_FOR_MAXZ
ONE_TTL state.

DNS_SKD_STATUS_ZSK_WAITING_FOR_MAXZONE_TT
L

0x00000004

This ZSK signing key descriptor is waiting for
the signatures using the previous key to expire
in all caching resolvers (it is waiting for the
largest record TTL to expire). This is the final
state for ZSK rollovers. The signing key
descriptor will move into the
DNS_SKD_STATUS_NOT_ROLLING state when
this portion of key rollover is complete.

DNS_SKD_STATUS_KSK_WAITING_FOR_DS_UPDATE

0x00000005

This KSK signing key descriptor is waiting for a
DS record corresponding to the new key to
appear in the parent zone. If DS records are
found in the parent zone, the server MUST set
the zone's "ParentHasSecureDelegation"
property to 0x00000001 and continue to wait
until the parent's DS record set includes the
new key, at which point the signing key
descriptor will move into the
DNS_SKD_STATUS_KSK_WAITING_FOR_DS_T
TL state. If no DS records are found in the
parent zone, the server MUST set the zone's
"ParentHasSecureDelegation" property to
0x00000000 and transition the signing key
descriptor into the
DNS_SKD_STATUS_KSK_WAITING_FOR_DNSK

EY_TTL state. If there is an error or if the
presence of a DS record set in the parent zone
cannot be determined, the server MUST
continue to attempt to query for this record set
for up to 15 minutes if the zone's
"ParentHasSecureDelegation" property is
0x00000000 or until the PokeZoneKeyRollover
command is received if it is 0x00000001.

DNS_SKD_STATUS_KSK_WAITING_FOR_DS_TTL

0x00000006

This KSK signing key descriptor is waiting for
the DS record set in the parent zone to expire
in all caching resolvers (it is waiting for the
parent DS TTL to expire). If the zone's
"RFC5011KeyRollovers" property is TRUE, the
signing key descriptor will next move into the
DNS_SKD_STATUS_WAITING_FOR_5011_REM
OVE_HOLD_DOWN state. Otherwise, this is a
final state for KSK rollovers, and signing key

107 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Value Meaning

descriptors will move into the
DNS_SKD_STATUS_NOT_ROLLING state when
this portion of key rollover is complete.

DNS_SKD_STATUS_KSK_WAITING_FOR_DNSKEY_TTL

0x00000007

This KSK signing key descriptor is waiting for
the previous key to expire in all caching
resolvers (it is waiting for the DNSKEY TTL to
expire). This is a final state for KSK rollovers,
and signing key descriptors will move into the
DNS_SKD_STATUS_NOT_ROLLING state when
this portion of key rollover is complete.

DNS_SKD_STATUS_KSK_WAITING_FOR_5011_REMOV

E_HOLD_DOWN

0x00000008

This KSK signing key descriptor is waiting for

the RFC5011 remove hold-down time before
the revoked previous key can be removed. This
is a final state for KSK rollovers, and signing
key descriptors will move into the
DNS_SKD_STATUS_NOT_ROLLING state when
this portion of key rollover is complete.

DNS_SKD_STATUS_ROLL_ERROR

0x00000009

This signing key descriptor experienced an
unrecoverable error during the key rollover.

pwszActiveKey: Signing key pointer string for the signing key descriptor's currently active key. This
is the key that is currently being used to sign zone records.

pwszStandbyKey: Signing key pointer string for the signing key descriptor's standby key. The key
represented by this string has several different roles depending on the associated signing key
descriptor's fIsKSK flag and its dwRolloverStatus:

 If the signing key descriptor's fIsKSK flag is TRUE, pwszStandbyKey represents the "double
signature" key as described in [RFC4641] section 4.2.2, also depicted as the "standby" key in
[RFC5011] section 6.

 If the signing key descriptor's fIsKSK flag is FALSE, pwszStandbyKey will generally be NULL

unless the SKD is in the process of key rollover:

 If the signing key descriptor's dwRolloverStatus is
DNS_SKD_STATUS_ZSK_WAITING_FOR_DNSKEY_TTL, pwszStandbyKey represents the
"pre-publish" key as described in [RFC4641] section 4.2.1.1.

 If the signing key descriptor's dwRolloverStatus is
DNS_SKD_STATUS_ZSK_WAITING_FOR_MAXZONE_TTL, pwszStandbyKey represents the

previously active key during the "new RRSIGs" phase of Pre-Publish Key Rollover, as described
in [RFC4641] section 4.2.1.1.

pwszNextKey: Signing key pointer string for the signing key descriptor's next key. The key
represented by this string has several different roles depending on the associated signing key
descriptor's fIsKSK flag:

 If the signing key descriptor's fIsKSK flag is TRUE, pwszNextKey represents the next key that
will be consumed during key rollover. It is not published in the zone and is not used to sign any

other records. If the zone's "RFC5011KeyRollovers" property is TRUE, this key becomes the next
"standby" key according to [RFC5011]. Otherwise, this key is used as the "double signature" key
according to [RFC4641] as the signing key descriptor's key rollover process begins.

 If the signing key descriptor's fIsKSK flag is FALSE, pwszNextKey represents the "pre-publish"
key as described in [RFC4641] section 4.2.1.1. When the SKD is in the process of key rollover,
pwszNextKey can be populated with a newly generated post-rollover "pre-publish" key.

108 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

dwReserved: MUST be set to zero when sent and MUST be ignored on receipt.

2.2.6.2.4 DNS_RPC_TRUST_POINT

The DNS_RPC_TRUST_POINT structure contains information about a trust point or a node in the

TrustAnchors zone.

 typedef struct _DnssrvRpcTrustPoint {
 DWORD dwRpcStructureVersion;
 DWORD dwReserved0;
 [string] char* pszTrustPointName;
 TRUSTPOINT_STATE eTrustPointState;
 __int64 i64LastActiveRefreshTime;
 __int64 i64NextActiveRefreshTime;
 __int64 i64LastSuccessfulActiveRefreshTime;
 DWORD dwLastActiveRefreshResult;
 DWORD dwReserved;
 } DNS_RPC_TRUST_POINT,
 *PDNS_RPC_TRUST_POINT;

dwRpcStructureVersion: The structure version number; it MUST be set to 0x00000001.

dwReserved0: MUST be set to zero when sent and MUST be ignored on receipt.

pszTrustPointName: The FQDN of the trust point or node in the TrustAnchors zone represented by
this structure. This MUST be a non-empty, non-NULL string.

eTrustPointState: An enum containing the current trust point state. This MUST be set to one of the
following values.

Value Meaning

TRUSTPOINT_STATE_INITIALIZED

0x00000000

This structure represents a node in the TrustAnchors zone that

does not contain any trust anchors. This node is not a trust point.

TRUSTPOINT_STATE_DSPENDING

0x00000001

This trust point contains only DS trust anchors (trust anchors in
the TRUSTANCHOR_STATE_DSPENDING or
TRUSTANCHOR_STATE_DSINVALID state), rendering it unusable
for DNSSEC proofs.

TRUSTPOINT_STATE_ACTIVE

0x00000002

This trust point contains at least one trust anchor in the
TRUSTANCHOR_STATE_VALID or TRUSTANCHOR_STATE_MISSING
state.

TRUSTPOINT_STATE_DELETE_PENDING

0x00000003

This trust point contains only trust anchors in the
TRUSTANCHOR_STATE_REVOKED state.

i64LastActiveRefreshTime: The time of the last active refresh. This is set to zero to indicate that no
active refresh has occurred. This is a 64-bit value representing the number of 100-nanosecond
intervals since January 1, 1601 Coordinated Universal Time (UTC).

i64NextActiveRefreshTime: The scheduled time of the next active refresh, or zero to indicate that

no active refresh is scheduled. This is a 64-bit value representing the number of 100-nanosecond
intervals since January 1, 1601 (UTC).

i64LastSuccessfulActiveRefreshTime: The time of the last successful active refresh, or zero to
indicate that no active refresh has occurred. This is a 64-bit value representing the number of
100-nanosecond intervals since January 1, 1601 (UTC). A successful active refresh is defined as
an active refresh resulting in retrieval of one or more DNSKEY records for the trust point and, if

109 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

this trust point has trust anchors in the TRUSTANCHOR_STATE_VALID state, signifies that one or
more of the retrieved DNSKEY records was validated by DNSSEC.

dwLastActiveRefreshResult: The result of the last active refresh, either ERROR_SUCCESS or a
nonzero value to indicate that an error has occurred.

dwReserved: MUST be set to zero when sent and MUST be ignored on receipt.

2.2.6.2.5 DNS_RPC_TRUST_POINT_LIST

The DNS_RPC_TRUST_POINT_LIST structure contains zero or more DNS_RPC_TRUST_POINT
structures.

 typedef struct _DnssrvRpcTrustPointList {
 DWORD dwRpcStructureVersion;
 DWORD dwReserved0;
 [range(0,500000)] DWORD dwTrustPointCount;
 [size_is(dwTrustPointCount)] PDNS_RPC_TRUST_POINT TrustPointArray[];
 } DNS_RPC_TRUST_POINT_LIST,
 *PDNS_RPC_TRUST_POINT_LIST;

dwRpcStructureVersion: The structure version number; this MUST be set to 0x00000001.

dwReserved0: MUST be set to zero when sent and MUST be ignored on receipt.

dwTrustPointCount: The size of the TrustPointArray array.

TrustPointArray: An array of pointers to DNS_RPC_TRUST_POINT structures.

2.2.6.2.6 DNS_RPC_TRUST_ANCHOR

The DNS_RPC_TRUST_ANCHOR structure contains information about a trust anchor.

 typedef struct _DnssrvRpcTrustAnchor {
 DWORD dwRpcStructureVersion;
 DWORD dwReserved0;
 WORD wTrustAnchorType;
 WORD wKeyTag;
 WORD wRRLength;
 TRUSTANCHOR_STATE eTrustAnchorState;
 __int64 i64EnteredStateTime;
 __int64 i64NextStateTime;
 DWORD dwReserved;
 [size_is(wRRLength)] BYTE RRData[];
 } DNS_RPC_TRUST_ANCHOR,
 *PDNS_RPC_TRUST_ANCHOR;

dwRpcStructureVersion: The structure version number; this MUST be set to 0x00000001.

dwReserved0: MUST be set to zero when sent and MUST be ignored on receipt.

wTrustAnchorType: The DNS record type corresponding to the trust anchor. This MUST be set to
one of the following values.

Value Meaning

DNS_TYPE_DS

0x002B

A DS record type [RFC4034].

DNS_TYPE_DNSKEY A DNSKEY record type [RFC4034].

http://go.microsoft.com/fwlink/?LinkId=107052

110 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Value Meaning

0x0030

wKeyTag: The DNSSEC key tag for this trust anchor. The key tag for a DS record trust anchor MUST
match the value of the record’s "Key Tag" field (see [RFC4034]). The key tag for a DNSKEY record
trust anchor MUST match the value calculated for the DNSKEY record (see [RFC4034] Appendix
B), with the exception that the REVOKE bit of the DNSKEY flags field MUST be set to zero before
the calculation.

wRRLength: The length of the RRData array.

eTrustAnchorState: The current state of the trust anchor. This MUST be one of the following values.

Value Meaning

TRUSTANCHOR_STATE_DSPENDING

0x00000001

This trust anchor can be replaced with a matching DNSKEY trust
anchor when the associated trust point has had a successful active
refresh. If this state is set, wTrustAnchorType MUST be
DNS_TYPE_DS.

TRUSTANCHOR_STATE_DSINVALID

0x00000002

The associated trust point has had a successful active refresh, but no
DNSKEY record was found that matches this trust anchor. If this state
is set, wTrustAnchorType MUST be DNS_TYPE_DS.

TRUSTANCHOR_STATE_ADDPEND

0x00000003

This trust anchor will become valid after the expiration of the RFC
5011 add hold-down time (see [RFC5011]). This corresponds to the
"AddPend" state in RFC 5011.

TRUSTANCHOR_STATE_VALID

0x00000004

This trust anchor is trusted for DNSSEC proofs because it was either
explicitly added by the administrator or became valid after the
expiration of the RFC 5011 add hold-down time (see [RFC5011]). This
corresponds to the Valid state in RFC 5011.

TRUSTANCHOR_STATE_MISSING

0x00000005

This trust anchor was in the TRUSTANCHOR_STATE_VALID state but
was missing in the last successful active refresh. It is still trusted for
DNSSEC proofs. This corresponds to the Valid state in [RFC5011].

TRUSTANCHOR_STATE_REVOKED

0x00000006

This trust anchor has been marked as revoked by the administrator
for the trust point's zone. It can never again be trusted for DNSSEC
proofs. This corresponds to the Revoked state in [RFC5011].

i64EnteredStateTime: The time at which this trust anchor entered its current state. This is a 64-bit
value representing the number of 100-nanosecond intervals since January 1, 1601 (UTC).

i64NextStateTime: The time at which this trust anchor is scheduled to exit the current state. This is
a 64-bit value representing the number of 100-nanosecond intervals since January 1, 1601 (UTC).
The meaning is dependent on the value of eTrustAnchorState.

Value of eTrustAnchorState Meaning

TRUSTANCHOR_STATE_DSPENDING

0x00000001

Reserved. The value of i64NextStateTime MUST be set to zero when
sent and MUST be ignored on receipt.

TRUSTANCHOR_STATE_DSINVALID

0x00000002

Reserved. The value of i64NextStateTime MUST be set to zero when
sent and MUST be ignored on receipt.

TRUSTANCHOR_STATE_ADDPEND

0x00000003

This trust anchor is scheduled to enter the
TRUSTANCHOR_STATE_VALID state on or after the value of
i64NextStateTime. This MUST be equivalent to the value of
i64EnteredStateTime added to the value of the add hold-down time

http://go.microsoft.com/fwlink/?LinkId=225980

111 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Value of eTrustAnchorState Meaning

(see [RFC5011]).

TRUSTANCHOR_STATE_VALID

0x00000004

Reserved. The value of i64NextStateTime MUST be set to zero when
sent and MUST be ignored on receipt.

TRUSTANCHOR_STATE_MISSING

0x00000005

Reserved. The value of i64NextStateTime MUST be set to zero when
sent and MUST be ignored on receipt.

TRUSTANCHOR_STATE_REVOKED

0x00000006

This trust anchor will become eligible for deletion on or after the
value of i64NextStateTime. This MUST be equivalent to the value of
i64EnteredStateTime added to the value of the remove hold-down
time (see [RFC5011]).

dwReserved: MUST be set to zero when sent and MUST be ignored on receipt.

RRData: Binary data in the same format as DNS_RPC_RECORD_DNSKEY (section 2.2.2.2.4.15) if
wTrustAnchorType is DNS_TYPE_DNSKEY, or binary data in the same format as

DNS_RPC_RECORD_DS (section 2.2.2.2.4.12) if wTrustAnchorType is DNS_TYPE_DS.

2.2.6.2.7 DNS_RPC_TRUST_ANCHOR_LIST

The DNS_RPC_TRUST_ANCHOR_LIST structure contains zero or more DNS_RPC_TRUST_ANCHOR
structures.

 typedef struct _DnssrvRpcTrustAnchorList {
 DWORD dwRpcStructureVersion;
 DWORD dwReserved0;
 [range(0,500000)] DWORD dwTrustAnchorCount;
 [size_is(dwTrustAnchorCount)] PDNS_RPC_TRUST_ANCHOR TrustAnchorArray[];
 } DNS_RPC_TRUST_ANCHOR_LIST,
 *PDNS_RPC_TRUST_ANCHOR_LIST;

dwRpcStructureVersion: The structure version number; this MUST be set to 0x00000001.

dwReserved0: MUST be set to zero when sent and MUST be ignored on receipt.

dwTrustAnchorCount: The size of the TrustAnchorArray array.

TrustAnchorArray: An array of pointers to DNS_RPC_TRUST_ANCHOR structures.

2.2.6.2.8 DNS_RPC_SIGNING_VALIDATION_ERROR

The DNS_RPC_SIGNING_VALIDATION_ERROR structure describes an error that occurred during the
use of an SKD.

 typedef struct _DnssrvRpcSigningValidationError {
 DWORD dwRpcStructureVersion;
 DWORD dwReserved0;
 GUID guidSKD;
 [string] wchar_t* pwszSigningKeyPointerString;
 DWORD dwExtendedError;
 DWORD dwReserved;
 } DNS_RPC_SIGNING_VALIDATION_ERROR,
 *PDNS_RPC_SIGNING_VALIDATION_ERROR;

dwRpcStructureVersion: The structure version number; this MUST be set to 0x00000001.

112 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

dwReserved0: MUST be set to zero when sent and MUST be ignored on receipt.

guidSKD: The unique identifier for the signing key descriptor that caused the validation error.

pwszSigningKeyPointerString: The signing key pointer string of the signing key that caused the
validation error.

dwExtendedError: MUST be set to zero when sent.

dwReserved: MUST be set to zero when sent and MUST be ignored on receipt.

2.2.6.2.9 DNS_RPC_ZONE_DNSSEC_SETTINGS

The DNS_RPC_ZONE_DNSSEC_SETTINGS structure SHOULD<49> represent the DNSSEC properties
of a zone.

 typedef struct _DnssrvRpcZoneDnssecSettings {
 DWORD dwRpcStructureVersion;
 DWORD dwReserved0;
 DWORD fIsSigned;
 DWORD fSignWithNSEC3;
 DWORD fNSEC3OptOut;
 DWORD dwMaintainTrustAnchor;
 DWORD fParentHasSecureDelegation;
 DWORD dwDSRecordAlgorithms;
 DWORD fRFC5011KeyRollovers;
 BYTE bNSEC3HashAlgorithm;
 BYTE bNSEC3RandomSaltLength;
 WORD wNSEC3IterationCount;
 LPWSTR pwszNSEC3UserSalt;
 DWORD dwDNSKEYRecordSetTtl;
 DWORD dwDSRecordSetTtl;
 DWORD dwSignatureInceptionOffset;
 DWORD dwSecureDelegationPollingPeriod;
 DWORD dwPropagationTime;
 DWORD cbNSEC3CurrentSaltLength;
 PBYTE pbNSEC3CurrentSalt;
 GUID CurrentRollingSKDGuid;
 DWORD dwBufferLength;
 PBYTE pBuffer;
 DWORD dwCount;
 PDNS_RPC_ZONE_SKD pZoneSkdArray[1];
 } DNS_RPC_ZONE_DNSSEC_SETTINGS,
 *PDNS_RPC_ZONE_DNSSEC_SETTINGS;

dwRpcStructureVersion: The structure version number; this MUST be set to 0x00000001.

dwReserved0: MUST be set to zero when sent and MUST be ignored on receipt.

fIsSigned: States whether or not the zone is signed.

fSignWithNSEC3: States whether the zone has NSEC3 Authenticated Denial of Existence support.

fNSEC3OptOut: States whether the zone has unsecure delegations.

dwMaintainTrustAnchor: States whether Trust Anchors are maintained for this zone.

fParentHasSecureDelegation: Delegation Status (Secure\UnSecure) for this zone from the parent.

dwDSRecordAlgorithms: Algorithms used for generating a hash of the DNSKEY record.

fRFC5011KeyRollovers: 5011 rollover status (Enabled\Disabled) for this zone.

bNSEC3HashAlgorithm: Algorithm used for generating NSEC3 hash (see [RFC5155] section 5).

http://go.microsoft.com/fwlink/?LinkId=225981

113 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

bNSEC3RandomSaltLength: Length of Salt used in generating NSEC3 records for this zone (see
[RFC5155] section 5).

wNSEC3IterationCount: Iteration count for generating NSEC3 records for this zone (see [RFC5155]
section 5).

pwszNSEC3UserSalt: User defined salt used for generating NSEC3 records for this zone (see
[RFC5155] section 5).

dwDNSKEYRecordSetTtl: Time-to-live (TTL) for the DNSKEY resource record.

dwDSRecordSetTtl: TTL for the DS Resource Record.

dwSignatureInceptionOffset: Time in seconds for Inception of Signatures for RRSIGs as defined in
[RFC4034] section 3.1.5.

dwSecureDelegationPollingPeriod: The interval, in seconds, to refresh the set of delegation signer

(DS) records in a secure delegation.

dwPropagationTime: The time, in seconds, that it takes for zone data changes to propagate to other
copies of the zone.

cbNSEC3CurrentSaltLength: Length of the Current User salt for building an NSEC3 chain of zone
records.

pbNSEC3CurrentSalt: Pointer to the pwszNSEC3UserSalt for building an NSEC3 chain of zone

records.

CurrentRollingSKDGuid: Unique identifier of a rolling SKD of a zone, if any.

pdwBufferLength: A pointer to an integer that on success contains the length of the buffer pointed
to by ppBuffer.

ppBuffer: A pointer to a pointer that points to a buffer containing the enumerated records. The buffer
is a series of structures beginning with a DNS_RPC_NODE structure (section 2.2.2.2.3). The

records for the node will be represented by a series of DNS_RPC_RECORD

structures (section 2.2.2.2.5). The number of DNS_RPC_RECORD structures following a
DNS_RPC_NODE structure is given by the wRecordCount member of DNS_RPC_NODE.

dwCount: The number of signing key descriptors present in the array of signing key descriptors
pointed to by SkdArray.

pZoneSkdArray: A list of SKDs for a zone. This is the array of the DNS_RPC_ZONE_SKD structure.

2.2.6.2.10 DNS_RPC_ZONE_SKD

The DNS_RPC_ZONE_SKD structure<50> groups all the properties of a signing key descriptor of a
zone.

 typedef struct _DnssrvRpcZoneSKDSettings {
 DWORD dwRpcStructureVersion;
 DWORD dwReserved0;
 PDNS_RPC_SKD pSkd;
 PDNS_RPC_SKD_STATE pSkdState;
 PDNS_RPC_SKD_STATE_EX pSkdStateEx;
 } DNS_RPC_ZONE_SKD,
 *PDNS_RPC_ZONE_SKD;

dwRpcStructureVersion: The structure version number; this MUST be set to 0x00000001.

http://go.microsoft.com/fwlink/?LinkId=107052

114 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

dwReserved0: MUST be set to zero when sent and MUST be ignored on receipt.

pSkd: The static properties of a zone SKD. This is a DNS_RPC_SKD structure (section 2.2.6.2.1).

pSkdState: The dynamic properties of a zone SKD. This is a DNS_RPC_SKD_STATE
structure (section 2.2.6.2.3).

pSkdStateEx: The extended dynamic properties of a zone SKD. This is a DNS_RPC_SKD_STATE_EX
structure (section 2.2.6.2.11).

2.2.6.2.11 DNS_RPC_SKD_STATE_EX

The DNS_RPC_SKD_STATE_EX structure <51> represents the collection of extended dynamic
configuration information of a signing key descriptor state.

 typedef struct _DnsRpcSigningKeyDescriptorStateEx {
 DWORD dwRpcStructureVersion;
 DWORD dwReserved0;
 GUID Guid;
 DWORD dwCurrentRollState;
 DWORD fManualTrigger;
 DWORD dwPreRollEventFired;
 FILETIME ftNextKeyGenerationTime;
 DWORD dwRevokedOrSwappedDnskeysLength;
 PBYTE pRevokedOrSwappedDnskeysBuffer;
 DWORD dwFinalDnskeysLength;
 PBYTE pFinalDnskeys;
 KeySignScope eActiveKeyScope;
 KeySignScope eStandByKeyScope;
 KeySignScope eNextKeyScope;
 } DNS_RPC_SKD_STATE_EX,
 *PDNS_RPC_SKD_STATE_EX;

dwRpcStructureVersion: The structure version number; this MUST be set to 0x00000001.

dwReserved0: This MUST be set to zero when sent and MUST be ignored on receipt.

Guid: A unique identifier for this signing key descriptor.

dwCurrentRollState: The current rollover status of this signing key descriptor. Note that these are
DNS Server Management Protocol implementations of the protocol specified rollover states of
SKDs in DNS_RPC_SKD_STATE.

Value Mapping in DNS_RPC_SKD_STATE

DNS_SKD_ROLL_STATE_NOT_STARTED

0x00000000

DNS_SKD_STATUS_NOT_ROLLING

DNS_SKD_ROLL_STATE_ZSK_SWAP_ACTIVE_WITH
_ROLLOVER

0x00000001

DNS_SKD_STATUS_ZSK_WAITING_FOR_DNSKEY_TT
L

DNS_SKD_ROLL_STATE_ZSK_FINISH

0x00000002

DNS_SKD_STATUS_ZSK_WAITING_FOR_MAXZONE_T
TL

DNS_SKD_ROLL_STATE_KSK_WAITING_FOR_DS

0x00000003

DNS_SKD_STATUS_KSK_WAITING_FOR_DS_UPDATE

DNS_SKD_ROLL_STATE_KSK_REVOKE

0x00000004

DNS_SKD_STATUS_KSK_WAITING_FOR_DS_TTL

The key is revoked once the rollover is completed.

115 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Value Mapping in DNS_RPC_SKD_STATE

DNS_SKD_ROLL_STATE_KSK_FINISH

0x00000005

DNS_SKD_STATUS_KSK_WAITING_FOR_DS_TTL

The key is not revoked and is used with the rolled
over key-set.

DNS_SKD_ROLL_STATE_MAX

0x00000005

DNS_SKD_STATUS_KSK_WAITING_FOR_DS_TTL

DNS_SKD_STATUS_ROLL_ERROR

0x00000009

This signing key descriptor experienced an
unrecoverable error during the key rollover.

fManualTrigger: TRUE if the rollover was triggered manually.

dwPreRollEventFired: Specifies which prerollover event has been fired.

ftNextKeyGenerationTime: The time at which the next key was added to the zone.

dwRevokedOrSwappedDnskeysLength: The length of the revoked or swapped DNSKEY RRSet.

pRevokedOrSwappedDnskeysBuffer: Presigned DNSKEY RRSet for ZSK swap. This is a pointer to a
pointer that points to a buffer containing the enumerated records. The buffer is a series of

structures beginning with a DNS_RPC_NODE structure (section 2.2.2.2.3). The records for the
node will be represented by a series of DNS_RPC_RECORD structures (section 2.2.2.2.5). The
number of DNS_RPC_RECORD structures following a DNS_RPC_NODE structure is given by the
wRecordCount member of DNS_RPC_NODE.

dwFinalDnskeysLength: Length of presigned DNSKEY RRSet.

pFinalDnskeys: Presigned DNSKEY RRSet Post Rollover. This is a pointer to a pointer that points to a
buffer containing the enumerated records. The buffer is a series of structures beginning with a

DNS_RPC_NODE structure. The records for the node will be represented by a series of
DNS_RPC_RECORD structures. The number of DNS_RPC_RECORD structures following a
DNS_RPC_NODE structure is given by the wRecordCount member of DNS_RPC_NODE.

eActiveKeyScope: Signing key scope for the SKD's active key. The signing key scope is defined in
KeySignScope (section 2.2.6.1.2).

eStandByKeyScope: Signing key scope for the SKD's standby key. The signing key scope is defined

in KeySignScope.

eNextKeyScope: Signing key scope for the SKD's next key. The signing key scope is defined in
KeySignScope.

2.2.7 Application Directory Partition Messages

2.2.7.1 Enumerations and Constants

2.2.7.1.1 DNS_RPC_DP_FLAGS

The DNS_RPC_DP_FLAGS enumeration is used by the DNS server to indicate the state of an

application directory partition.<52> Any combination of the values below MAY be specified, with the
exception that, of the following values, more than one MUST NOT be specified: DNS_DP_LEGACY,
DNS_DP_DOMAIN_DEFAULT, and DNS_DP_FOREST_DEFAULT.

If a root hint zone is found in any application directory partition that is not marked with either
DNS_DP_LEGACY or DNS_DP_DOMAIN_DEFAULT, then the DNS server MUST ignore it.

116 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Constant/value Description

DNS_DP_AUTOCREATED

0x00000001

The application directory partition was automatically created by the DNS server.
This flag is set whenever either the DNS_DP_DOMAIN_DEFAULT or
DNS_DP_FOREST_DEFAULT flags are set.

DNS_DP_LEGACY

0x00000002

This application directory partition represents the default naming context (NC) in
the directory server. This flag is set when the application directory partition's DN
matches "CN=MicrosoftDNS, CN=System" appended with the value of the
defaultNamingContext attribute of the root DN.

DNS_DP_DOMAIN_DEFAULT

0x00000004

This application directory partition is replicated across all DNS servers in the
Active Directory domain. This flag is set when the application directory
partition's DN matches the value of the "DomainDirectoryPartitionBaseName" DNS
server string property (surrounded by "CN=" and ",") and appended with the value

of the defaultNamingContext attribute of the root DN.

DNS_DP_FOREST_DEFAULT

0x00000008

This application directory partition is replicated across all DNS servers in the
Active Directory forest. This flag is set when the application directory partition's
DN matches the value of the "ForestDirectoryPartitionBaseName" DNS server
string property (surrounded by "CN=" and ",") appended with the value of the
rootDomainNamingContext attribute of the root DN.

DNS_DP_ENLISTED

0x00000010

This flag indicates that the DNS server is enlisted in this application directory
partition. It is set when the value of the local directory server's dsServiceName
attribute (the DN for the local directory server) is present in either the msDS-NC-
Replica-Locations or msDS-NC-RO-Replica-Locations <53> attributes
(sections 2.381-2.382) of the application directory partition crossRef object (see
section 6.1.1.2.1.1.5).

DNS_DP_DELETED

0x00000020

This application directory partition is in the process of being deleted by the
directory server. This flag is set when, during a poll of the application directory
partitions, an application directory partition that was present during a previous poll
is no longer present. If this application directory partition is not present in the
directory server the next time the DNS server polls for application directory
partition information, the DNS server MUST remove all zones stored in this
application directory partition from the in-memory DNS Zone Table (section 3.1.1)
and MUST remove this application directory partition from the in-memory
Application Directory Partition Table (section 3.1.1).

2.2.7.2 Structures

2.2.7.2.1 DNS_RPC_DP_INFO

The DNS_RPC_DP_INFO structure SHOULD<54> represent the current state of an application
directory partition on the directory server.

 typedef struct _DnssrvRpcDirectoryPartition {
 DWORD dwRpcStructureVersion;
 DWORD dwReserved0;
 [string] char* pszDpFqdn;
 [string] wchar_t* pszDpDn;
 [string] wchar_t* pszCrDn;
 DWORD dwFlags;
 DWORD dwZoneCount;
 DWORD dwState;
 DWORD dwReserved[3];
 [string] wchar_t* pwszReserved[3];
 [range(0,10000)] DWORD dwReplicaCount;
 [size_is(dwReplicaCount)] PDNS_RPC_DP_REPLICA ReplicaArray[];
 } DNS_RPC_DP_INFO,

117 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 *PDNS_RPC_DP_INFO;

dwRpcStructureVersion: The structure version number; this value MUST be set to 0x00000000.

dwReserved0: MUST be set to zero when sent and MUST be ignored on receipt.

pszDpFqdn: A pointer to a null-terminated UTF-8 string that specifies the FQDN of the application
directory partition. This value is read from the dnsRoot attribute of the partition crossRef object
(see pszCrDn) converted to UTF-8 for this application directory partition.

pszDpDn: A pointer to a null-terminated Unicode string that specifies the distinguished name for the
application directory partition naming context root object. This is the value of the nCName

attribute of the application directory partition crossRef object (see pszCrDn).

pszCrDn: A pointer to a null-terminated Unicode string that specifies the distinguished name for the
application directory partition crossRef object (located beneath "CN=Partitions, CN=Configuration,
<Forest DN>").

dwFlags: The application directory partition properties; this MUST be set to a combination of allowed
values for DNS_RPC_DP_FLAGS (section 2.2.7.1.1).

dwZoneCount: The number of zones from this application directory partition that are loaded in the

DNS server's memory. This value is incremented or decremented in the Application Directory
Partition Table whenever a DNS Zone Table entry corresponding to a zone in this application
directory partition is initialized or deleted, respectively.

dwState: The current state of this application directory partition. This MUST be set to one of the
following values:

Value Meaning Source

DNS_DP_OKAY

0x00000000

The application directory
partition is running and
ready for all operations.

The Application Directory Partition naming
context root object's instanceType
attribute has neither
DS_INSTANCETYPE_NC_COMING
(0x00000010), nor the
DS_INSTANCETYPE_NC_GOING (
0x00000020) bit set.

DNS_DP_STATE_REPL_INCOMING

0x00000001

The application directory
partition is replicating

onto the directory
server but has not
completed an initial
synchronization so will
be ignored for the time
being.

The Application Directory Partition naming
context root object's instanceType

attribute has the (
DS_INSTANCETYPE_NC_COMING (
0x00000010) bit set.

DNS_DP_STATE_REPL_OUTGOING

0x00000002

The application directory
partition is being deleted
from the directory
server and so will be
ignored.

The Application Directory Partition naming
context root object's instanceType
attribute has the
S_INSTANCETYPE_NC_GOING (
0x00000020) bit set.

DNS_DP_STATE_UNKNOWN

0x00000003

The application directory
partition state is
unavailable for unknown
reasons.

The Application Directory Partition naming
context root object's instanceType
attribute is unavailable due to an error
condition.

dwReserved: MUST be set to zero when sent and MUST be ignored on receipt.

118 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

pwszReserved: MUST be set to zero when sent and MUST be ignored on receipt.

dwReplicaCount: The number of replication locations for the application directory partition. This

value MUST be between 0 and 10000. This value is calculated from the values of the msDS-NC-
Replica-Locations and msDS-NC-RO-Replica-Locations<55>attributes of the application

directory partition crossRef object (see pszCrDn), as the sum of the number of DNs listed in each
attribute.

ReplicaArray: Array of DNS_RPC_DP_REPLICA (section 2.2.7.2.2), that contains information about
replication locations for this application directory partition. This structure is populated from the
values of the msDS-NC-Replica-Locations (section 2.381) and msDS-NC-RO-Replica-
Locations (section 2.382) attributes of the application directory partition crossRef object (see
pszCrDn). Failure to read any of those attributes will be treated as if no replica exists for that

attribute.

2.2.7.2.2 DNS_RPC_DP_REPLICA

The DNS_RPC_DP_REPLICA structure contains information about an application directory partition

replica by giving a distinguished name which can be used to uniquely identify the replica.<56>

 typedef struct _DnssrvRpcDirectoryPartitionReplica {
 [string] wchar_t* pszReplicaDn;
 } DNS_RPC_DP_REPLICA,
 *PDNS_RPC_DP_REPLICA;

pszReplicaDn: A pointer to a null-terminated Unicode string that specifies the distinguished name

that identifies a specific directory server.

2.2.7.2.3 DNS_RPC_DP_ENUM

The DNS_RPC_DP_ENUM structure contains abbreviated information about an application directory
partition.<57>

 typedef struct _DnssrvRpcDirectoryPartitionEnum {
 DWORD dwRpcStructureVersion;
 DWORD dwReserved0;
 [string] char* pszDpFqdn;
 DWORD dwFlags;
 DWORD dwZoneCount;
 } DNS_RPC_DP_ENUM,
 *PDNS_RPC_DP_ENUM;

dwRpcStructureVersion: As specified in section 2.2.7.2.1.

dwReserved0: As specified in section 2.2.7.2.1.

pszDpFqdn: As specified in section 2.2.7.2.1.

dwFlags: As specified in section 2.2.7.2.1.

dwZoneCount: As specified in section 2.2.7.2.1.

2.2.7.2.4 DNS_RPC_DP_LIST

The DNS_RPC_DP_LIST structure contains a list of application directory partition information
structures.<58>

 typedef struct _DnssrvRpcDirectoryPartitionList {

119 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 DWORD dwRpcStructureVersion;
 DWORD dwReserved0;
 [range(0,5000)] DWORD dwDpCount;
 [size_is(dwDpCount)] PDNS_RPC_DP_ENUM DpArray[];
 } DNS_RPC_DP_LIST,
 *PDNS_RPC_DP_LIST;

dwRpcStructureVersion: As specified in section 2.2.7.2.1.

dwReserved0: As specified in section 2.2.7.2.1.

dwDpCount: The number of DNS_RPC_DP_ENUM (section 2.2.7.2.3) structures present in the array

pointed to by DpArray.

DpArray: An array of DNS_RPC_DP_ENUM structures (section 2.2.7.2.3), containing information
about the application directory partitions available to the DNS server.

2.2.7.2.5 DNS_RPC_ENLIST_DP

The DNS_RPC_ENLIST_DP structure contains the information required to create, delete or enumerate
application directory partitions.<59>

 typedef struct _DnssrvRpcEnlistDirPart {
 DWORD dwRpcStructureVersion;
 DWORD dwReserved0;
 [string] char* pszDpFqdn;
 DWORD dwOperation;
 } DNS_RPC_ENLIST_DP,
 *PDNS_RPC_ENLIST_DP;

dwRpcStructureVersion: The DNS management structure version number; this value MUST be set
to 0x00000001.

dwReserved0: As specified in section 2.2.7.2.1.

pszDpFqdn: As specified in section 2.2.7.2.1.

dwOperation: The application directory partition operation to be performed by the DNS server; this
MUST be set to one of the following values:

Value Meaning

DNS_DP_OP_CREATE

0x00000001

Create and enlist (DNS_DP_OP_ENLIST) a new application directory
partition.

DNS_DP_OP_DELETE

0x00000002

Delete an existing application directory partition. If the application directory
partition has been marked DNS_DP_AUTOCREATED, DNS_DP_LEGACY,
DNS_DP_DOMAIN_DEFAULT, DNS_DP_FOREST_DEFAULT, or
DNS_DP_DELETED, as specified in section 2.2.7.1.1, or if the DNS server
cannot connect and bind to the FSMO role owner, then the server MUST
return an error.

DNS_DP_OP_ENLIST

0x00000003

Enlist this DNS server in an existing application directory partition. If the
application directory partition has been marked DNS_DP_ENLISTED or
DNS_DP_DELETED, as specified in section 2.2.7.1.1, then the DNS server
MUST return an error.

DNS_DP_OP_UNENLIST

0x00000004

Un-enlist this DNS server from an existing application directory partition. If
the application directory partition has been marked DNS_DP_DELETED, as
specified in section 2.2.7.1.1, then the DNS server MUST return an error.

120 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Value Meaning

DNS_DP_OP_CREATE_DOMAIN

0x00000005

Create a domain partition on the directory server if one does not already
exist.

DNS_DP_OP_CREATE_FOREST

0x00000006

Create a forest partition on the directory server if it does not already exist.

2.2.7.2.6 DNS_RPC_ZONE_CHANGE_DP

The DNS_RPC_ZONE_CHANGE_DP structure contains information required to move a zone to a
different application directory partition on the DNS server.<60>

 typedef struct _DnssrvRpcZoneChangePartition {
 DWORD dwRpcStructureVersion;
 DWORD dwReserved0;
 [string] char* pszDestPartition;
 } DNS_RPC_ZONE_CHANGE_DP,
 *PDNS_RPC_ZONE_CHANGE_DP;

dwRpcStructureVersion: As specified in section 2.2.7.2.5.

dwReserved0: As specified in section 2.2.7.2.1.

pszDestPartition: A pointer to a null-terminated UTF-8 string that specifies the distinguished name

for a new application directory partition to which a zone is to be moved.

2.2.8 AutoConfig Messages

2.2.8.1 Enumerations and Constants

2.2.8.1.1 DNS_RPC_AUTOCONFIG

The DNS_RPC_AUTOCONFIG enumeration specifies a set of autoconfiguration operations to be
immediately performed by the DNS server. Any combination of the values below can be specified, with

the exception of the following values, of which at most one value is specified:
DNS_RPC_AUTOCONFIG_INTERNAL_SELFPOINT,
DNS_RPC_AUTOCONFIG_INTERNAL_SELFPOINT_PREPEND, and
DNS_RPC_AUTOCONFIG_INTERNAL_SELFPOINT_APPEND. An implementation SHOULD<61> support
all values in this table.

If the DNS server will act as the first DNS server for a new domain in a new forest, the following
values SHOULD<62> be specified: DNS_RPC_AUTOCONFIG_INTERNAL_ROOTHINTS,

DNS_RPC_AUTOCONFIG_INTERNAL_FORWARDERS, and
DNS_RPC_AUTOCONFIG_INTERNAL_SELFPOINT.

If the DNS server will act as a DNS server in an existing domain on a writeable domain controller, the
following values SHOULD be specified: DNS_RPC_AUTOCONFIG_INTERNAL_ROOTHINTS,
DNS_RPC_AUTOCONFIG_INTERNAL_FORWARDERS, and
DNS_RPC_AUTOCONFIG_INTERNAL_SELFPOINT_APPEND.

In all other cases, including a DNS server for a new child domain or a DNS server operating on a read

only domain controller (RODC), the following values SHOULD be specified:
DNS_RPC_AUTOCONFIG_INTERNAL_ROOTHINTS, DNS_RPC_AUTOCONFIG_INTERNAL_FORWARDERS,
and DNS_RPC_AUTOCONFIG_INTERNAL_SELFPOINT_PREPEND.

121 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

The DNS server performs autoconfiguration in the following order: root hints, forwarders, self-
pointing, and zone creation.

The DNS server SHOULD<63> ignore any bit value not specified in the table below, with one
exception: A value of 0x00000000 MUST be treated identically to 0xFFFFFFFF

(DNS_RPC_AUTOCONFIG_ALL).

Constant/value Description

DNS_RPC_AUTOCONFIG_INTERNAL_ROOTHINTS

0x00000001

The server automatically configures root hints. To
construct root hints, the server sends a DNS query of
type NS for the DNS root name to each of the DNS
servers and for each of the local machine's network
adapters. The server builds its root hints by selecting
the set of NS records that appear in each of the
aforementioned NS query responses. If the DNS server

cannot find a non-empty set of root hints, it performs
no action.

DNS_RPC_AUTOCONFIG_INTERNAL_FORWARDERS

0x00000002

The server automatically configures forwarders. To
construct forwarders, the DNS server locates a peer
DNS server by sending a DNS query of type NS for the
domain name specified in the pszNewDomainName
field of DNS_RPC_AUTOCONFIGURE (section
2.2.8.2.1). For each peer server, the DNS server
performs a ServerInfo query (section 3.1.4.7). The
DNS server uses the set of forwarders in the result of
this query from the first peer available. If no peer
servers with forwarders can be found, the DNS server
collects all of the DNS servers for each of the local
machine's network adapters and uses the resulting list
of IP addresses as the new list of forwarders.

DNS_RPC_AUTOCONFIG_INTERNAL_ZONES

0x00000004

If the AdminConfigured DNS server property (section
3.1.1.1.1) has been set to a nonzero value, the server
takes no action. Otherwise, the server checks to see
whether it is the only DC in the forest. If the server is
not a DC or is not the only DC in the forest, the server
MUST perform no action. To determine whether the
server is the only DC in the forest, it performs an LDAP
query on the local directory server using the LDAP filter
"(objectCategory=ntdsDsa)" with the credentials of the
user who initiated the autoconfigure operation or the
DNS Server Credentials (section 3.1.1) if user
credentials are not available. If the LDAP result count is
one, the server can assume that it is the only DC in the
forest. If the local directory server does not respond or
does not generate a result, then further processing of
DNS_RPC_AUTOCONFIG_INTERNAL_ZONES MUST halt,
with ERROR_SUCCESS returned.

If the AdminConfigured DNS server property (section
3.1.1.1.1) is zero and the DNS server is the only DC in
the forest, the DNS server SHOULD look up the locally
configured name of the domain of which the server is a
member, and construct two zone names: one equal to
the domain name and one equal to the domain name
prepended by the string "_msdcs". If neither of these
zones currently exists on the DNS server, the DNS
server SHOULD create both of these zones.

DNS_RPC_AUTOCONFIG_INTERNAL_SELFPOINT

0x00000010

The server automatically replaces the server list with
the appropriate loop-back address. If this flag is
specified, then the server MUST ignore the
DNS_RPC_AUTOCONFIG_INTERNAL_SELFPOINT_PREPE

122 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Constant/value Description

ND and
DNS_RPC_AUTOCONFIG_INTERNAL_SELFPOINT_APPE
ND flags.

DNS_RPC_AUTOCONFIG_INTERNAL_SELFPOINT_PREPE
ND

0x00000020

The server automatically inserts the appropriate loop-
back address at the start of the server list. If this flag
is specified, then the server MUST ignore the
DNS_RPC_AUTOCONFIG_INTERNAL_SELFPOINT_APPE
ND flag.

DNS_RPC_AUTOCONFIG_INTERNAL_SELFPOINT_APPE
ND

0x00000040

The server automatically inserts the appropriate loop-
back address at the end of the server list.

DNS_RPC_AUTOCONFIG_INTERNAL_RETURN_ERRORS

0x00008000

If this flag is set then the server will return the errors
that it encounters while performing auto-configuration;
else ERROR_SUCCESS will always be returned.

DNS_RPC_AUTOCONFIG_ALL

0xFFFFFFFF

The server performs all autoconfiguration operations.

2.2.8.2 Structures

2.2.8.2.1 DNS_RPC_AUTOCONFIGURE

The DNS_RPC_AUTOCONFIGURE structure contains the information required to auto-configure the
DNS server.

 typedef struct _DnsRpcAutoConfigureLonghorn {
 DWORD dwRpcStructureVersion;
 DWORD dwReserved0;
 DWORD dwAutoConfigFlags;
 DWORD dwReserved1;
 [string] char* pszNewDomainName;
 } DNS_RPC_AUTOCONFIGURE,
 *PDNS_RPC_AUTOCONFIGURE;

dwRpcStructureVersion: The structure version number; this value MUST be set to 0x00000000.

dwReserved0: MUST be set to zero when sent and MUST be ignored on receipt.

dwAutoConfigFlags: The autoconfiguration operation being requested by the client as specified in
DNS_RPC_AUTOCONFIG (section 2.2.8.1.1).

dwReserved1: MUST be set to zero when sent and MUST be ignored on receipt.

pszNewDomainName: A pointer to a null-terminated UTF-8 string which contains the name of the
directory server domain that this DNS server is about to join.

2.2.9 Logging Messages

2.2.9.1 Enumerations and Constants

2.2.9.1.1 DNS_LOG_LEVELS

123 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

The DNS_LOG_LEVELS bit field is a 32-bit integer that specifies the various filters and options that can
be configured for the DNS server to log packet exchange information to the server log file. There are

four layers of filtering:

 Content filter: Filters on the function (that is, the DNS opcode) of the content of a packet.

 Type filter: Filters on whether the packet is a question or an answer.

 Direction filter: Filters on the network direction of the packet (received or sent).

 Transport filter: Filters on the transport mechanism (TCP or UDP).

Since filters are applied independently, and a packet is logged only if allowed by all filters, setting all
bits for any given filter to zero indicates that no packets are to be logged.

Bits other than those listed in the following table can be set to any arbitrary value when sent, and
MUST be ignored on receipt.

Constant/value Description

DNS_LOG_LEVEL_QUERY

0x00000001

The server allows query packet exchanges through the content
filter.

DNS_LOG_LEVEL_NOTIFY

0x00000010

The server allows packet exchanges related to zone exchange
through the content filter.

DNS_LOG_LEVEL_UPDATE

0x00000020

The server allows packet exchanges related to zone updates
through the content filter.

DNS_LOG_LEVEL_QUESTIONS

0x00000100

The server allows packets containing questions through the type
filter.

DNS_LOG_LEVEL_ANSWERS

0x00000200

The server allows packets containing answers through the type
filter.

DNS_LOG_LEVEL_SEND

0x00001000

The server allows packets it sends out through the direction filter.

DNS_LOG_LEVEL_RECV

0x00002000

The server allows packets it receives through the direction filter.

DNS_LOG_LEVEL_UDP

0x00004000

The server allows UDP packet exchange through the transport filter.

DNS_LOG_LEVEL_TCP

0x00008000

The server allows TCP packet exchange through the transport filter.

DNS_LOG_LEVEL_ALL_PACKETS

0x0000FFFF

The server logs operations that fulfill the following filter set:
DNS_LOG_LEVEL_SEND or DNS_LOG_LEVEL_RECV, or
DNS_LOG_LEVEL_TCP or DNS_LOG_LEVEL_UDP, or
DNS_LOG_LEVEL_QUERY or DNS_LOG_LEVEL_NOTIFY or
DNS_LOG_LEVEL_UPDATE, or DNS_LOG_LEVEL_QUESTIONS or
DNS_LOG_LEVEL_ANSWERS.

DNS_LOG_LEVEL_DS_WRITE

0x00010000

Independent of the values of the other filters, logs Active Directory
write operations.

DNS_LOG_LEVEL_DS_UPDATE

0x00020000

Independent of the values of the other filters, logs Active Directory

polling operations and operations during DNS updates (secure and
unsecure) on Active Directory integrated zones.

124 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Constant/value Description

DNS_LOG_LEVEL_FULL_PACKETS

0x01000000

If allowed by the filters, the server logs the entire packet to the log
file.

DNS_LOG_LEVEL_UNMATCHED_RESPONSE

0x02000000

If allowed by the filters, the server logs response packets that do
not match any outstanding query.<64>

DNS_LOG_LEVEL_WRITE_THROUGH

0x80000000

If allowed by the filters, the server saves packet logging
information to persistent storage.

2.2.9.1.2 DNS_EVENTLOG_TYPES

The DNS server can enable several levels of event-logging. This MUST be set to one of the values
specified below:

Constant/value Description

EVENT_LOG_SUCCESS

0x00000000

The server will log events for all successful operations.

EVENT_LOG_ERROR_TYPE

0x00000001

The server will log events for all operations that result in an error.

EVENT_LOG_WARNING_TYPE

0x00000002

The server will log events for all operations that result in a warning.

EVENT_LOG_INFORMATION_TYPE

0x00000004

The server will log events for all operations for informative purposes.

2.2.10 Server Statistics Messages

2.2.10.1 Enumerations and Constants

2.2.10.1.1 DNSSRV_STATID_TYPES

The DNSSRV_STATID_TYPES is a 32-bit integer that enumerates the possible types of DNS server
statistics. When requesting statistics, these values can be combined to request multiple statistics

buffers in the same operation. When statistics are returned, each DNSSRV_STAT_HEADER (section
2.2.10.2.1) contains a value in the StatId field with a single bit set to indicate the type of statistics
that are contained in the associated buffer.

Constant/value Description

DNSSRV_STATID_TIME

0x00000001

If the StatId field is set in the request, a DNSSRV_TIME_STATS (section
2.2.10.2.4) structure will be included in the output buffer.

DNSSRV_STATID_QUERY

0x00000002

If the StatId field is set in the request, a DNSSRV_QUERY_STATS
(section 2.2.10.2.5) structure will be included in the output buffer.

125 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Constant/value Description

DNSSRV_STATID_QUERY2

0x00000004

If the StatId field is set in the request, a DNSSRV_QUERY2_STATS
(section 2.2.10.2.6) structure will be included in the output buffer.

DNSSRV_STATID_RECURSE

0x00000008

If the StatId field is set in the request, a DNSSRV_RECURSE_STATS
(section 2.2.10.2.7) structure will be included in the output buffer.

DNSSRV_STATID_MASTER

0x00000010

If the StatId field is set in the request, a DNSSRV_MASTER_STATS
(section 2.2.10.2.9) structure will be included in the output buffer.

DNSSRV_STATID_SECONDARY

0x00000020

If the StatId field is set in the request, a DNSSRV_SECONDARY_STATS
(section 2.2.10.2.10) structure will be included in the output buffer.

DNSSRV_STATID_WINS

0x00000040

If the StatId field is set in the request, a DNSSRV_WINS_STATS (section
2.2.10.2.11) structure will be included in the output buffer.

DNSSRV_STATID_WIRE_UPDATE

0x00000100

If the StatId field is set in the request, a DNSSRV_UPDATE_STATS

(section 2.2.10.2.12) structure will be included in the output buffer.

DNSSRV_STATID_SKWANSEC

0x00000200

If the StatId field is set in the request, a DNSSRV_SKWANSEC_STATS
(section 2.2.10.2.13) structure will be included in the output buffer.

DNSSRV_STATID_DS

0x00000400

If the StatId field is set in the request, a DNSSRV_DS_STATS (section
2.2.10.2.14) structure will be included in the output buffer.

DNSSRV_STATID_NONWIRE_UPDATE

0x00000800

If the StatId field is set in the request, a DNSSRV_UPDATE_STATS
(section 2.2.10.2.12) structure will be included in the output buffer.

DNSSRV_STATID_MEMORY

0x00010000

If the StatId field is set in the request, a DNSSRV_MEMORY_STATS
(section 2.2.10.2.16) structure will be included in the output buffer.

DNSSRV_STATID_TIMEOUT

0x00020000

If the StatId field is set in the request, a DNSSRV_TIMEOUT_STATS
(section 2.2.10.2.17) structure will be included in the output buffer.

DNSSRV_STATID_DBASE

0x00040000

If the StatId field is set in the request, a DNSSRV_DBASE_STATS
(section 2.2.10.2.18) structure will be included in the output buffer.

DNSSRV_STATID_RECORD

0x00080000

If the StatId field is set in the request, a DNSSRV_RECORD_STATS
(section 2.2.10.2.19) structure will be included in the output buffer.

DNSSRV_STATID_PACKET

0x00100000

If the StatId field is set in the request, a DNSSRV_PACKET_STATS
(section 2.2.10.2.20) structure will be included in the output buffer.

DNSSRV_STATID_NBSTAT

0x00200000

If the StatId field is set in the request, a DNSSRV_NBSTAT_STATS
(section 2.2.10.2.21) structure will be included in the output buffer.

DNSSRV_STATID_ERRORS

0x00400000

If the StatId field is set in the request, a DNSSRV_ERROR_STATS
(section 2.2.10.2.23) structure will be included in the output buffer.

DNSSRV_STATID_CACHE

0x00800000

If the StatId is set in the request, a DNSSRV_CACHE_STATS (section
2.2.10.2.24) structure will be included in the output buffer.

DNSSRV_STATID_DNSSEC

0x01000000

If the StatId is set in the request, a DNSSRV_CACHE_DNSSEC (section
2.2.10.2.8) structure will be included in the output buffer.<65>

DNSSRV_STATID_PRIVATE

0x10000000

If the StatId is set in the request, a DNSSRV_PRIVATE_STATS (section
2.2.10.2.22) structure will be included in the output buffer.

126 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Constant/value Description

DNSSRV_STATID_RRL <66>

0x20000000

If the StatId is set in the request, a DNSSRV_RRL_STATS (section
2.2.10.2.25) structure will be included in the output buffer.

2.2.10.2 Structures

2.2.10.2.1 DNSSRV_STAT_HEADER

The DNSSRV_STAT_HEADER precedes each DNSSRV_STAT (section 2.2.10.2.2) structure which
provides DNS server runtime statistics. This structure MUST be formatted as follows:

 typedef struct _DnsStatHeader {
 DWORD StatId;
 WORD wLength;
 BOOLEAN fClear;
 UCHAR fReserved;
 } DNSSRV_STAT_HEADER,
 *PDNSSRV_STAT_HEADER;

StatId: The type of statistics contained in the DNSSRV_STAT structure. This value MUST be set to one
of the allowed values specified in section 2.2.10.1.1.

wLength: The length, in bytes, of the Buffer member in the DNSSRV_STAT structure.

fClear: A Boolean value that indicates whether the server is to clear the statistics buffer for the server
attribute indicated at by StatId.

fReserved: MUST be set to zero when sent and MUST be ignored on receipt.

2.2.10.2.2 DNSSRV_STATS

The DNSSRV_STATS structure carries server statistics information. This structure MUST be interpreted
as one of the more specific statistics structures specified in sections 2.2.10.2.4 through 2.2.10.2.24,
depending upon the StatId value in the Header member. This structure MUST be formatted as follows:

 typedef struct _DnsStat {
 DNSSRV_STAT_HEADER Header;
 BYTE Buffer[1];
 } DNSSRV_STAT,
 *PDNSSRV_STAT,
 *PDNSSRV_STATS;

Header: A structure of type DNSSRV_STAT_HEADER (section 2.2.10.2.1).

Buffer: A variable length array of bytes that contains information specific to the type of DNS server
statistics, as specified by the StatId value in the Header.

2.2.10.2.3 DNS_SYSTEMTIME

The DNS_SYSTEMTIME structure stores time values for DNS statistics. It is always populated by the

server, which MUST supply valid values. This structure MUST be formatted as follows:

127 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

wYear wMonth

wDayOfWeek wDay

wHour wMinute

wSecond wMillisecond

wYear (2 bytes): The year, as a 16-bit, unsigned integer. Valid values are from 1601 to 30827.

wMonth (2 bytes): The month from 1 (January) to 12 (December), as a 16-bit, unsigned integer.

wDayOfWeek (2 bytes): The day of the week from 0 (Sunday) to 6 (Saturday), as a 16-bit,

unsigned integer.

wDay (2 bytes): The day of the month from 1 to 31, as a 16-bit, unsigned integer.

wHour (2 bytes): The hour from 0 to 23, as a 16-bit, unsigned integer.

wMinute (2 bytes): The minute from 0 to 59, as a 16-bit, unsigned integer.

wSecond (2 bytes): The second from 0 to 59, as a 16-bit, unsigned integer.

wMillisecond (2 bytes): The millisecond from 0 to 999, as a 16-bit, unsigned integer.

2.2.10.2.4 DNSSRV_TIME_STATS

The DNSSRV_TIME_STATS structure has the DNS server's time-related statistics. This structure MUST
be formatted as follows:

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Header

...

ServerStartTimeSeconds

LastClearTimeSeconds

SecondsSinceServerStart

SecondsSinceLastClear

ServerStartTime (16 bytes)

...

...

128 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

LastClearTime (16 bytes)

...

...

Header (8 bytes): A structure of type DNSSRV_STAT_HEADER (section 2.2.10.2.1).

ServerStartTimeSeconds (4 bytes): The number of seconds that has elapsed since the server
machine was last restarted, that is, the operating system uptime in seconds, as a 32-bit unsigned

integer. If the value is greater than 0xFFFFFFFF, then the value modulo 0x100000000 is stored in
the field.

LastClearTimeSeconds (4 bytes): The number of seconds that elapsed between the time the server
machine was restarted and the last time the server statistics were cleared, that is, the operating
system uptime in seconds at the time of the last statistics reset, as a 32-bit unsigned integer. If

the value is greater than 0xFFFFFFFF, then the value modulo 0x100000000 is stored in the field.

SecondsSinceServerStart (4 bytes): The number of seconds since the server started, that is, the
uptime of the DNS server software in seconds, as a 32-bit unsigned integer. If the value is greater
than 0xFFFFFFFF, then the value modulo 0x100000000 is stored in the field.

SecondsSinceLastClear (4 bytes): The number of seconds since the last time that the server
statistics were cleared, as a 32-bit unsigned integer. If the value is greater than 0xFFFFFFFF, then
the value modulo 0x100000000 is stored in the field.

ServerStartTime (16 bytes): A DNS_SYSTEMTIME (section 2.2.10.2.3) structure that contains the

time the server started.

LastClearTime (16 bytes): A DNS_SYSTEMTIME (section 2.2.10.2.3) structure that contains the
time the server statistics was last cleared.

2.2.10.2.5 DNSSRV_QUERY_STATS

DNSSRV_QUERY_STATS defines a structure that carries the DNS server's statistics values related to
query processing over different transports. This structure MUST be formatted as follows:

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Header

...

UdpQueries

UdpResponses

UdpQueriesSent

UdpResponsesReceived

TcpClientConnections

129 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

TcpQueries

TcpResponses

TcpQueriesSent

TcpResponsesReceived

Header (8 bytes): A structure of type DNSSRV_STAT_HEADER (section 2.2.10.2.1).

UdpQueries (4 bytes): The cumulative number of queries received over UDP, as an unsigned 32-bit
integer. If the value is greater than 0xFFFFFFFF, then the value modulo 0x100000000 is stored in

the field.

UdpResponses (4 bytes): The cumulative number of query responses sent over UDP, as an
unsigned 32-bit integer. If the value is greater than 0xFFFFFFFF, then the value modulo

0x100000000 is stored in the field.

UdpQueriesSent (4 bytes): The cumulative number of queries sent over UDP by this server to other
remote servers, as an unsigned 32-bit integer. If the value is greater than 0xFFFFFFFF, then the

value modulo 0x100000000 is stored in the field.

UdpResponsesReceived (4 bytes): The cumulative number of query responses received over UDP
by the server, as an unsigned 32-bit integer. If the value is greater than 0xFFFFFFFF, then the
value modulo 0x100000000 is stored in the field.

TcpClientConnections (4 bytes): The cumulative number of TCP connections accepted by this
server, as an unsigned 32-bit integer. If the value is greater than 0xFFFFFFFF, then the value
modulo 0x100000000 is stored in the field.

TcpQueries (4 bytes): The cumulative number of queries received over TCP, as an unsigned 32-bit
integer. If the value is greater than 0xFFFFFFFF, then the value modulo 0x100000000 is stored in

the field.

TcpResponses (4 bytes): The cumulative number of query responses sent over TCP, as an unsigned
32-bit integer. If the value is greater than 0xFFFFFFFF, then the value modulo 0x100000000 is
stored in the field.

TcpQueriesSent (4 bytes): The cumulative number of queries sent over TCP by this server to other

remote servers, as an unsigned 32-bit integer. If the value is greater than 0xFFFFFFFF, then the
value modulo 0x100000000 is stored in the field.

TcpResponsesReceived (4 bytes): The cumulative number of query responses over TCP received
by the server, as an unsigned 32-bit integer. If the value is greater than 0xFFFFFFFF, then the
value modulo 0x100000000 is stored in the field.

2.2.10.2.6 DNSSRV_QUERY2_STATS

The DNSSRV_QUERY2_STATS structure contains DNS server statistics related to query processing by
type. This structure MUST be formatted as follows:

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Header

130 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

...

TotalQueries

Standard

Notify

Update

TKeyNego (optional)

TypeA

TypeNs

TypeSoa

TypeMx

TypePtr

TypeSrv

TypeAll

TypeIxfr

TypeAxfr

TypeOther

Header (8 bytes): A structure of type DNSSRV_STAT_HEADER (section 2.2.10.2.1).

TotalQueries (4 bytes): The total number of queries received by the server, as an unsigned 32-bit
integer. If the value is greater than 0xFFFFFFFF, then the value modulo 0x100000000 is stored in

the field.

Standard (4 bytes): The number of standard DNS queries received by the server, as an unsigned
32-bit integer. If the value is greater than 0xFFFFFFFF, then the value modulo 0x100000000 is
stored in the field.

Notify (4 bytes): The number of zone notification requests received by the server, as an unsigned

32-bit integer. If the value is greater than 0xFFFFFFFF, then the value modulo 0x100000000 is

stored in the field.

Update (4 bytes): The number of dynamic update requests received by the server, as an unsigned
32-bit integer. If the value is greater than 0xFFFFFFFF, then the value modulo 0x100000000 is
stored in the field.

TKeyNego (4 bytes): The number of TKEY [RFC2930] negotiation requests received by the server,
as an unsigned 32-bit integer. If the value is greater than 0xFFFFFFFF, then the value modulo

http://go.microsoft.com/fwlink/?LinkId=90397

131 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

0x100000000 is stored in the field. This field SHOULD<67> be present. A client can tell whether
the field is present based on the size of the buffer holding this structure.

TypeA (4 bytes): The number of queries received for record type DNS_TYPE_A, as an unsigned 32-
bit integer. If the value is greater than 0xFFFFFFFF, then the value modulo 0x100000000 is stored

in the field.

TypeNs (4 bytes): The number of queries received for record type DNS_TYPE_NS, as an unsigned
32-bit integer. If the value is greater than 0xFFFFFFFF, then the value modulo 0x100000000 is
stored in the field.

TypeSoa (4 bytes): The number of queries received for record type DNS_TYPE_SOA, as an unsigned
32-bit integer. If the value is greater than 0xFFFFFFFF, then the value modulo 0x100000000 is
stored in the field.

TypeMx (4 bytes): The number of queries received for record type DNS_TYPE_MX, as an unsigned
32-bit integer. If the value is greater than 0xFFFFFFFF, then the value modulo 0x100000000 is
stored in the field.

TypePtr (4 bytes): The number of queries received for record type DNS_TYPE_PTR, as an unsigned
32-bit integer. If the value is greater than 0xFFFFFFFF, then the value modulo 0x100000000 is
stored in the field.

TypeSrv (4 bytes): The number of queries received for record type DNS_TYPE_SRV, as an unsigned
32-bit integer. If the value is greater than 0xFFFFFFFF, then the value modulo 0x100000000 is
stored in the field.

TypeAll (4 bytes): The number of queries received for record type DNS_TYPE_ALL, as an unsigned
32-bit integer. If the value is greater than 0xFFFFFFFF, then the value modulo 0x100000000 is
stored in the field.

TypeIxfr (4 bytes): The number of queries received for record type DNS_TYPE_IXFR, as an unsigned

32-bit integer. If the value is greater than 0xFFFFFFFF, then the value modulo 0x100000000 is
stored in the field.

TypeAxfr (4 bytes): The number of queries received for record type DNS_TYPE_AXFR, as an
unsigned 32-bit integer. If the value is greater than 0xFFFFFFFF, then the value modulo
0x100000000 is stored in the field.

TypeOther (4 bytes): The number of queries received for any other record type not mentioned
above, as an unsigned 32-bit integer. If the value is greater than 0xFFFFFFFF, then the value

modulo 0x100000000 is stored in the field.

2.2.10.2.7 DNSSRV_RECURSE_STATS

The DNSSRV_RECURSE_STATS structure has the DNS server's statistics related to recursive resource
record lookups. This structure SHOULD<68> be formatted as follows.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Header

...

ReferralPasses

QueriesRecursed

132 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

OriginalQuestionRecursed

AdditionalRecursed

TotalQuestionsRecursed

Retries

LookupPasses

Forwards

Sends

Responses

ResponseUnmatched

ResponseMismatched (optional)

ResponseFromForwarder

ResponseAuthoritative

ResponseNotAuth

ResponseAnswer

ResponseNameError

ResponseRcode

ResponseEmpty

ResponseDelegation

ResponseNonZoneData

ResponseUnsecure

ResponseBadPacket

SendResponseDirect

ContinueCurrentRecursion

ContinueCurrentLookup

ContinueNextLookup

133 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

RootNsQuery

RootNsResponse

CacheUpdateAlloc

CacheUpdateResponse

CacheUpdateFree

CacheUpdateRetry

SuspendedQuery

ResumeSuspendedQuery

PacketTimeout

FinalTimeoutQueued

FinalTimeoutExpired

Failures

RecursionFailure

ServerFailure

PartialFailure

CacheUpdateFailure

RecursePassFailure

FailureReachAuthority

FailureReachPreviousResponse

FailureRetryCount

TcpTry

TcpConnectFailure

TcpConnect

TcpQuery

TcpResponse

134 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

TcpDisconnect

DiscardedDuplicateQueries (optional)

DuplicateCoalesedQueries (optional)

GnzLocalQuery (optional)

GnzRemoteQuery (optional)

GnzRemoteResponse (optional)

GnzRemoteResponseCacheSuccess (optional)

GnzRemoteResponseCacheFailure (optional)

CacheLockingDiscards (optional)

Header (8 bytes): A structure of type DNSSRV_STAT_HEADER (section 2.2.10.2.1).

ReferralPasses (4 bytes): The number of times the server returned a referral value, as an unsigned
32-bit integer. If the value is greater than 0xFFFFFFFF, then the value modulo 0x100000000 is

stored in the field.

QueriesRecursed (4 bytes): The number of queries received that required recursive lookups, as an
unsigned 32-bit integer. If the value is greater than 0xFFFFFFFF, then the value modulo
0x100000000 is stored in the field.

OriginalQuestionRecursed (4 bytes): The number of new recursive queries initiated, as an
unsigned 32-bit integer. If the value is greater than 0xFFFFFFFF, then the value modulo

0x100000000 is stored in the field.

AdditionalRecursed (4 bytes): The number of recursions performed to return additional data or
CNAME, as an unsigned 32-bit integer. If the value is greater than 0xFFFFFFFF, then the value
modulo 0x100000000 is stored in the field.

TotalQuestionsRecursed (4 bytes): The number of total recursions including original and
additional, as an unsigned 32-bit integer. If the value is greater than 0xFFFFFFFF, then the value
modulo 0x100000000 is stored in the field.

Retries (4 bytes): The number of retries performed for recursive queries sent by the server, as an
unsigned 32-bit integer. If the value is greater than 0xFFFFFFFF, then the value modulo
0x100000000 is stored in the field.

LookupPasses (4 bytes): The number of recursive lookups performed, as an unsigned 32-bit
integer. If the value is greater than 0xFFFFFFFF, then the value modulo 0x100000000 is stored in

the field.

Forwards (4 bytes): The number of recursive queries sent to forwarding servers, as an unsigned 32-

bit integer. If the value is greater than 0xFFFFFFFF, then the value modulo 0x100000000 is stored
in the field.

Sends (4 bytes): The total number of recursive queries sent by the server, as an unsigned 32-bit
integer. If the value is greater than 0xFFFFFFFF, then the value modulo 0x100000000 is stored in
the field.

135 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Responses (4 bytes): The number of query responses received by the server, as an unsigned 32-bit
integer. If the value is greater than 0xFFFFFFFF, then the value modulo 0x100000000 is stored in

the field.

ResponseUnmatched (4 bytes): The number of responses received for which an outstanding query

with a matching transaction-id could not be located, as an unsigned 32-bit integer. If the value is
greater than 0xFFFFFFFF, then the value modulo 0x100000000 is stored in the field.

ResponseMismatched (4 bytes): The number of responses received for which an outstanding query
with a matching transaction-id was located but response was invalid for the query, as an unsigned
32-bit integer. If the value is greater than 0xFFFFFFFF, then the value modulo 0x100000000 is
stored in the field. This field SHOULD be present. A client can tell whether the field is present
based on the size of the buffer holding this structure.

ResponseFromForwarder (4 bytes): The number of responses received from forwarders, as an
unsigned 32-bit integer. If the value is greater than 0xFFFFFFFF, then the value modulo
0x100000000 is stored in the field.

ResponseAuthoritative (4 bytes): The number of responses received from the server authoritative
for the zone, as an unsigned 32-bit integer. If the value is greater than 0xFFFFFFFF, then the
value modulo 0x100000000 is stored in the field.

ResponseNotAuth (4 bytes): The number of responses received from a server not authoritative for
the zone, as an unsigned 32-bit integer. If the value is greater than 0xFFFFFFFF, then the value
modulo 0x100000000 is stored in the field.

ResponseAnswer (4 bytes): The number of responses received from other servers for recursive
queries, as an unsigned 32-bit integer. If the value is greater than 0xFFFFFFFF, then the value
modulo 0x100000000 is stored in the field.

ResponseNameError (4 bytes): The number of name errors received by the server, as an unsigned

32-bit integer. If the value is greater than 0xFFFFFFFF, then the value modulo 0x100000000 is
stored in the field.

ResponseRcode (4 bytes): The number of errors other than name errors received by the server, as
an unsigned 32-bit integer. If the value is greater than 0xFFFFFFFF, then the value modulo
0x100000000 is stored in the field.

ResponseEmpty (4 bytes): The number of empty responses received from other servers, as an
unsigned 32-bit integer. If the value is greater than 0xFFFFFFFF, then the value modulo

0x100000000 is stored in the field.

ResponseDelegation (4 bytes): The number of delegation responses received by the server, as an
unsigned 32-bit integer. If the value is greater than 0xFFFFFFFF, then the value modulo
0x100000000 is stored in the field.

ResponseNonZoneData (4 bytes): The number of error responses when a name is not found in the
zone, as an unsigned 32-bit integer. If the value is greater than 0xFFFFFFFF, then the value

modulo 0x100000000 is stored in the field.

ResponseUnsecure (4 bytes): The number of unsecure responses received when the server is
configured to receive secure responses, as an unsigned 32-bit integer. If the value is greater than
0xFFFFFFFF, then the value modulo 0x100000000 is stored in the field.

ResponseBadPacket (4 bytes): The number of bad response packets received, as an unsigned 32-
bit integer. If the value is greater than 0xFFFFFFFF, then the value modulo 0x100000000 is stored
in the field.

136 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

SendResponseDirect (4 bytes): The number of responses that the DNS server received from
remote servers and sent directly to clients, as an unsigned 32-bit integer. If the value is greater

than 0xFFFFFFFF, then the value modulo 0x100000000 is stored in the field.

ContinueCurrentRecursion (4 bytes): The number of additional remote queries generated by the

DNS server during normal query processing, as an unsigned 32-bit integer. If the value is greater
than 0xFFFFFFFF, then the value modulo 0x100000000 is stored in the field.

ContinueCurrentLookup (4 bytes): The number of times the server received a response from a
remote DNS server while processing a client query and restarted recursion, as an unsigned 32-bit
integer. If the value is greater than 0xFFFFFFFF, then the value modulo 0x100000000 is stored in
the field.

ContinueNextLookup (4 bytes): The number of times the server started a lookup with the next

query, as an unsigned 32-bit integer. If the value is greater than 0xFFFFFFFF, then the value
modulo 0x100000000 is stored in the field.

RootNsQuery (4 bytes): The number of times the server sent a query for a root name server, as an

unsigned 32-bit integer. If the value is greater than 0xFFFFFFFF, then the value modulo
0x100000000 is stored in the field.

RootNsResponse (4 bytes): The number of times the server processed a response from one of its

root servers, as an unsigned 32-bit integer. If the value is greater than 0xFFFFFFFF, then the
value modulo 0x100000000 is stored in the field.

CacheUpdateAlloc (4 bytes): The number of times the server allocated a query to be sent to update
a cache entry, as an unsigned 32-bit integer. If the value is greater than 0xFFFFFFFF, then the
value modulo 0x100000000 is stored in the field.

CacheUpdateResponse (4 bytes): The number of times the server received responses for a query
sent to update a cache entry, as an unsigned 32-bit integer. If the value is greater than

0xFFFFFFFF, then the value modulo 0x100000000 is stored in the field.

CacheUpdateFree (4 bytes): The number of times the server released a query request or response

packet sent to update a cache entry, as an unsigned 32-bit integer. If the value is greater than
0xFFFFFFFF, then the value modulo 0x100000000 is stored in the field.

CacheUpdateRetry (4 bytes): The number of times the server reattempted a query to update cache
entry information, as an unsigned 32-bit integer. If the value is greater than 0xFFFFFFFF, then the
value modulo 0x100000000 is stored in the field.

SuspendedQuery (4 bytes): The number of times the server suspended sending a query needed to
update cache entry information, as an unsigned 32-bit integer. If the value is greater than
0xFFFFFFFF, then the value modulo 0x100000000 is stored in the field.

ResumeSuspendedQuery (4 bytes): The number of times the server resumed a suspended query
that was needed to update cache entry information, as an unsigned 32-bit integer. If the value is
greater than 0xFFFFFFFF, then the value modulo 0x100000000 is stored in the field.

PacketTimeout (4 bytes): The number of timed-out recursive queries, as an unsigned 32-bit

integer. If the value is greater than 0xFFFFFFFF, then the value modulo 0x100000000 is stored in
the field.

FinalTimeoutQueued (4 bytes): The number of recursive queries enlisted to wait for final time-out
before they expire, as an unsigned 32-bit integer. If the value is greater than 0xFFFFFFFF, then
the value modulo 0x100000000 is stored in the field.

FinalTimeoutExpired (4 bytes): The number of recursive queries expired without the server

receiving any response, as an unsigned 32-bit integer. If the value is greater than 0xFFFFFFFF,
then the value modulo 0x100000000 is stored in the field.

137 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Failures (4 bytes): Not used. Senders MUST set this value to zero, and receivers MUST ignore it.

RecursionFailure (4 bytes): The number of times the server received failures for recursion queries

to remote servers, as an unsigned 32-bit integer. If the value is greater than 0xFFFFFFFF, then the
value modulo 0x100000000 is stored in the field.

ServerFailure (4 bytes): The number of times the server sent failures to the client, as an unsigned
32-bit integer. If the value is greater than 0xFFFFFFFF, then the value modulo 0x100000000 is
stored in the field.

PartialFailure (4 bytes): The number of times the server received failures for recursion queries to
remote servers, when it had already received an answer but was looking up additional records, as
an unsigned 32-bit integer. If the value is greater than 0xFFFFFFFF, then the value modulo
0x100000000 is stored in the field.

CacheUpdateFailure (4 bytes): The number of times the server received failure for self-generated
cache update recursion queries to remote servers, as an unsigned 32-bit integer. If the value is
greater than 0xFFFFFFFF, then the value modulo 0x100000000 is stored in the field.

RecursePassFailure (4 bytes): The number of times the server failed to perform recursive lookups
on queries, as an unsigned 32-bit integer. If the value is greater than 0xFFFFFFFF, then the value
modulo 0x100000000 is stored in the field.

FailureReachAuthority (4 bytes): The number of times the server failed to perform recursive
lookups on queries, because it failed to reach an authoritative server, as an unsigned 32-bit
integer. If the value is greater than 0xFFFFFFFF, then the value modulo 0x100000000 is stored in
the field.

FailureReachPreviousResponse (4 bytes): The number of times the server received failure while
performing recursive lookup on queries, because the query recursed back to the domain from
which a name server had already responded, as an unsigned 32-bit integer. If the value is greater

than 0xFFFFFFFF, then the value modulo 0x100000000 is stored in the field.

FailureRetryCount (4 bytes): Not used. Senders MUST set this value to zero, and receivers MUST

ignore it.

TcpTry (4 bytes): The number of times the server started a recursive query over TCP, as an
unsigned 32-bit integer. If the value is greater than 0xFFFFFFFF, then the value modulo
0x100000000 is stored in the field.

TcpConnectFailure (4 bytes): Not used. Senders MUST set this value to zero, and receivers MUST

ignore it.

TcpConnect (4 bytes): The number of times the server successfully established a TCP connection to
send a recursive query, as an unsigned 32-bit integer. If the value is greater than 0xFFFFFFFF,
then the value modulo 0x100000000 is stored in the field.

TcpQuery (4 bytes): The number of times the server sent a recursive query over TCP, as an
unsigned 32-bit integer. If the value is greater than 0xFFFFFFFF, then the value modulo

0x100000000 is stored in the field.

TcpResponse (4 bytes): The number of times the server received a recursive query response over
TCP, as an unsigned 32-bit integer. If the value is greater than 0xFFFFFFFF, then the value
modulo 0x100000000 is stored in the field.

TcpDisconnect (4 bytes): The number of times the server disconnected a connection that was
established to send a recursive query over TCP to a remote server, as an unsigned 32-bit integer.
If the value is greater than 0xFFFFFFFF, then the value modulo 0x100000000 is stored in the field.

138 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

DiscardedDuplicateQueries (4 bytes): The number of times the server discarded a query that was
received from the same client with the same transaction ID when there was already a query with

the same query name, type ID, and transaction ID outstanding, as an unsigned 32-bit integer. If
the value is greater than 0xFFFFFFFF, then the value modulo 0x100000000 is stored in the field.

This field MUST be present only if ResponseMismatched is present. A client can tell whether the
field is present based on the size of the buffer holding this structure.

DuplicateCoalesedQueries (4 bytes): The number of times the server coalesced a query that was
received from a client while another query with the same query name and type ID was
outstanding at the server for processing, as an unsigned 32-bit integer. If the value is greater
than 0xFFFFFFFF, then the value modulo 0x100000000 is stored in the field. This field MUST be
present if and only if ResponseMismatched is present. A client can tell whether the field is present

based on the size of the buffer holding this structure.

GnzLocalQuery (4 bytes): The number of times a global name zone (GNZ) lookup query was
answered locally, as an unsigned 32-bit integer. If the value is greater than 0xFFFFFFFF, then the
value modulo 0x100000000 is stored in the field. This field SHOULD be present but MUST be
absent if ResponseMismatched is absent. A client can tell whether the field is present based on the

size of the buffer holding this structure.

GnzRemoteQuery (4 bytes): The number of times a GNZ lookup query was sent to a remote server,
as an unsigned 32-bit integer. If the value is greater than 0xFFFFFFFF, then the value modulo
0x100000000 is stored in the field. This field MUST be present if and only if GnzLocalQuery is
present. A client can tell whether the field is present based on the size of the buffer holding this
structure.

GnzRemoteResponse (4 bytes): The number of times a GNZ lookup query response was received
from a remote server, as an unsigned 32-bit integer. If the value is greater than 0xFFFFFFFF, then

the value modulo 0x100000000 is stored in the field. This field MUST be present if and only if
GnzLocalQuery is present. A client can tell whether the field is present based on the size of the
buffer holding this structure.

GnzRemoteResponseCacheSuccess (4 bytes): The number of times a GNZ cache update query
response was successfully received from a remote server, as an unsigned 32-bit integer. If the

value is greater than 0xFFFFFFFF, then the value modulo 0x100000000 is stored in the field. This
field MUST be present if and only if GnzLocalQuery is present. A client can tell whether the field is

present based on the size of the buffer holding this structure.

GnzRemoteResponseCacheFailure (4 bytes): The number of times the server received failure for
GNZ cache update query requests sent to a remote server, as an unsigned 32-bit integer. If the
value is greater than 0xFFFFFFFF, then the value modulo 0x100000000 is stored in the field. This
field MUST be present if and only if GnzLocalQuery is present. A client can tell whether the field is
present based on the size of the buffer holding this structure.

CacheLockingDiscards (4 bytes): The number of times the server discarded a cache update due to
cache record locking, as an unsigned 32-bit integer. If the value is greater than 0xFFFFFFFF, then
the value modulo 0x100000000 is stored in the field. This field SHOULD<69> be present. A client
can tell whether the field is present based on the size of the buffer holding this structure.

2.2.10.2.8 DNSSRV_DNSSEC_STATS

The DNSSRV_DNSSEC_STATS structure has the DNS server statistics related a DNSSEC signature or

DS digest hash succeeding or failing.<70>

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Header

139 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

...

SuccessfulValidations

FailedValidations

RecursionFailures

Header (8 bytes): A structure of type DNSSRV_STAT_HEADER (section 2.2.10.2.1).

SuccessfulValidations (4 bytes): The number of times a validation attempt on a DNSSEC signature
or DS digest hash succeeded.

FailedValidations (4 bytes): The number of times a validation attempt on a DNSSEC signature or
DS digest hash failed.

RecursionFailures (4 bytes): The number of times a validating recursive name resolution query
attempt failed while fetching DNSSEC data.

2.2.10.2.9 DNSSRV_MASTER_STATS

The DNSSRV_MASTER_STATS structure has the DNS server statistics related to overall DNS protocol

processing. This structure MUST be formatted as follows:

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Header

...

NotifySent

Request

NameError

FormError

AxfrLimit

Refused

RefuseSecurity

RefuseShutdown

RefuseLoading (optional)

RefuseZoneLocked

RefuseServerFailure

140 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

RefuseNotAuth (optional)

RefuseReadOnly (optional)

Failure

AxfrRequest

AxfrSuccess

StubAxfrRequest (optional)

IxfrRequest

IxfrNoVersion

IxfrUpdateSuccess

IxfrTcpRequest

IxfrTcpSuccess

IxfrAxfr

IxfrUdpRequest

IxfrUdpSuccess

IxfrUdpForceTcp

IxfrUdpForceAxfr

Header (8 bytes): A structure of type DNSSRV_STAT_HEADER (section 2.2.10.2.1).

NotifySent (4 bytes): The number of update notifications sent to secondaries by the server.

Request (4 bytes): The number of zone transfer requests received by the server.

NameError (4 bytes): The number of name error responses returned by the server.

FormError (4 bytes): The number of invalid format error responses returned by the server.

AxfrLimit (4 bytes): The number of full zone transfer requests rejected due to time restrictions

between successive full zone transfers.

Refused (4 bytes): The total number of times the server rejected requests for dynamic updates or
zone transfers.

RefuseSecurity (4 bytes): The number of times the server rejected zone transfer requests due to
secondary security restrictions.

141 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

RefuseShutdown (4 bytes): The number of times the server rejected zone transfer requests
because zone transfer was disabled or because the requesting IP address was not permitted to

transfer the zone.

RefuseLoading (4 bytes): The number of times the server rejected zone transfer requests, due to a

zone not being fully loaded. This field SHOULD be present, but MUST be absent if StubAxfrRequest
is absent. <71>A client can tell whether the field is present based on the size of the buffer holding
this structure.

RefuseZoneLocked (4 bytes): The number of times the server rejected zone transfer requests, due
to the zone already being locked for some operation.

RefuseServerFailure (4 bytes): The number of times the server rejected zone transfer requests,
due to processing failures at the server.

RefuseNotAuth (4 bytes): The number of times the server rejected zone transfer requests, because
the zone is not authoritative on the server. This field MUST be present if and only if RefuseLoading
is present. A client can tell whether the field is present based on the size of the buffer holding this

structure.

RefuseReadOnly (4 bytes): The number of times the server rejected zone transfer requests, due to
the zone being hosted on an RODC. This field MUST be present if and only if RefuseLoading is

present. A client can tell whether the field is present based on the size of the buffer holding this
structure.

Failure (4 bytes): The number of times the server hit a zone transfer failure.

AxfrRequest (4 bytes): The number of full zone transfer requests received by the server.

AxfrSuccess (4 bytes): The number of full zone transfers successfully completed by the server.

StubAxfrRequest (4 bytes): The number of full zone transfer requests received by the server for
stub zones. This field SHOULD<72> be present. A client can tell whether the field is present based

on the size of the buffer holding this structure.

IxfrRequest (4 bytes): The number of incremental zone transfer requests received by the server.

IxfrNoVersion (4 bytes): The number of servers that received an incremental zone transfer request,
but there was not a suitable version number available for incremental zone transfer.

IxfrUpdateSuccess (4 bytes): The number of success responses for incremental zone transfer sent
by the server.

IxfrTcpRequest (4 bytes): The number of incremental zone transfer requests received by the server

over TCP.

IxfrTcpSuccess (4 bytes): The number of success responses for incremental zone transfers sent by
the server over TCP.

IxfrAxfr (4 bytes): The number of incremental zone transfer requests received by the server, which
required a full zone transfer.

IxfrUdpRequest (4 bytes): The number of incremental zone transfer requests received by the

server over UDP.

IxfrUdpSuccess (4 bytes): The number of success responses for incremental zone transfers sent by
the server over UDP.

IxfrUdpForceTcp (4 bytes): The number of incremental zone transfer requests received by the
server over UDP, for which the server responded using TCP.

142 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

IxfrUdpForceAxfr (4 bytes): The number of incremental zone transfer requests received by the
server over UDP, for which the server responded with a full zone transfer.

2.2.10.2.10 DNSSRV_SECONDARY_STATS

The DNSSRV_SECONDARY_STATS structure has the DNS server statistics related to secondary zone
processing.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Header

...

NotifyReceived

NotifyInvalid

NotifyPrimary

NotifyNonPrimary (optional)

NotifyNoVersion

NotifyNewVersion

NotifyCurrentVersion

NotifyOldVersion

NotifyMasterUnknown

SoaRequest

SoaResponse

SoaResponseInvalid

SoaResponseNameError

AxfrRequest

AxfrResponse

AxfrSuccess

AxfrRefused

AxfrInvalid

143 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

StubAxfrRequest (optional)

StubAxfrResponse (optional)

StubAxfrSuccess (optional)

StubAxfrRefused (optional)

StubAxfrInvalid (optional)

IxfrUdpRequest

IxfrUdpResponse

IxfrUdpSuccess

IxfrUdpUseTcp

IxfrUdpUseAxfr

IxfrUdpWrongServer

IxfrUdpNoUpdate

IxfrUdpNewPrimary

IxfrUdpFormerr

IxfrUdpRefused

IxfrUdpInvalid

IxfrTcpRequest

IxfrTcpResponse

IxfrTcpSuccess

IxfrTcpAxfr

IxfrTcpFormerr

IxfrTcpRefused

IxfrTcpInvalid

Header (8 bytes): A structure of type DNSSRV_STAT_HEADER (section 2.2.10.2.1).

NotifyReceived (4 bytes): The number of zone notifications received by the server.

144 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

NotifyInvalid (4 bytes): The number of invalid zone notifications received by the server.

NotifyPrimary (4 bytes): The number of zone notifications for primary zones received by the server.

NotifyNonPrimary (4 bytes): The number of zone notifications for nonprimary zones received by
the server. This field SHOULD<73> be present. A client can tell whether the field is present based

on the size of the buffer holding this structure.

NotifyNoVersion (4 bytes): The number of zone notifications received by the server, for which the
server has no SOA.

NotifyNewVersion (4 bytes): The number of zone notifications received by the server, where the
received SOA has a newer version number than that of the SOA already present on the server.

NotifyCurrentVersion (4 bytes): The number of zone notifications received by the server where the
received SOA has same version number as that of the SOA already present on the server.

NotifyOldVersion (4 bytes): The number of zone notifications received by the server, where the
received SOA has an older version number than the SOA already present on the server.

NotifyMasterUnknown (4 bytes): The number of zone notifications received by the server, where
notifications are received from a server that is not present in the list of masters for the zone.

SoaRequest (4 bytes): The number of SOA query requests sent by the server to zone masters, to
initiate zone transfer.

SoaResponse (4 bytes): The number of SOA responses received by the server from the zone
master.

SoaResponseInvalid (4 bytes): The number of invalid SOA responses received by the server from
the zone master.

SoaResponseNameError (4 bytes): Not used, the receiver MUST ignore this value.

AxfrRequest (4 bytes): The number of full zone transfer requests sent by the server.

AxfrResponse (4 bytes): The number of full zone transfer responses received by the server.

AxfrSuccess (4 bytes): The number of full zone transfer success responses received by the server.

AxfrRefused (4 bytes): The number of full zone transfer rejection responses received by the server.

AxfrInvalid (4 bytes): The number of full zone transfer invalid responses received by the server.

StubAxfrRequest (4 bytes): The number of full zone transfer requests sent by the server for stub
zones. This field MUST be present if and only if NotifyNonPrimary is present. A client can tell
whether the field is present based on the size of the buffer holding this structure.

StubAxfrResponse (4 bytes): The number of full zone transfer responses received by the server for

stub zones. This field MUST be present if and only if NotifyNonPrimary is present. A client can tell
whether the field is present based on the size of the buffer holding this structure.

StubAxfrSuccess (4 bytes): The number of full zone transfer success responses received by the
server for stub zones. This field MUST be present if and only if NotifyNonPrimary is present. A
client can tell whether the field is present based on the size of the buffer holding this structure.

StubAxfrRefused (4 bytes): The number of full zone transfer rejection responses received by the

server. This field MUST be present if and only if NotifyNonPrimary is present. A client can tell
whether the field is present based on the size of the buffer holding this structure.

145 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

StubAxfrInvalid (4 bytes): The number of full zone transfer invalid responses received by the
server. This field MUST be present if and only if NotifyNonPrimary is present. A client can tell

whether the field is present based on the size of the buffer holding this structure.

IxfrUdpRequest (4 bytes): The number of incremental zone transfer requests sent by the server

over UDP.

IxfrUdpResponse (4 bytes): The number of incremental zone transfer success responses received
by the server over UDP.

IxfrUdpSuccess (4 bytes): The number of incremental zone transfer success responses received by
the server over UDP.

IxfrUdpUseTcp (4 bytes): The number of incremental zone transfer responses received by the
server over UDP, indicating that TCP is needed.

IxfrUdpUseAxfr (4 bytes): The number of incremental zone transfer responses received by the
server over UDP, indicating that full zone transfer is needed.

IxfrUdpWrongServer (4 bytes): The number of incremental zone transfer responses received by
the server over UDP, where the remote sender is not among the masters for this zone.

IxfrUdpNoUpdate (4 bytes): The number of incremental zone transfer responses received by the
server over UDP, where no updates were found and hence no zone transfer is needed.

IxfrUdpNewPrimary (4 bytes): The number of incremental zone transfer responses received by the
server over UDP, where the SOA indicates a new primary server name.

IxfrUdpFormerr (4 bytes): The number of incremental zone transfer responses received by the
server over UDP, where either the master does not support incremental zone transfer or the
master indicated that the zone transfer request was malformed.

IxfrUdpRefused (4 bytes): The number of incremental zone transfer rejection responses received
by the server over UDP.

IxfrUdpInvalid (4 bytes): The number of incremental zone transfer invalid responses received by
the server over UDP.

IxfrTcpRequest (4 bytes): The number of incremental zone transfer requests sent by the server
over TCP.

IxfrTcpResponse (4 bytes): The number of incremental zone transfer success responses received
by the server over TCP.

IxfrTcpSuccess (4 bytes): The number of incremental zone transfer success responses received by

the server over TCP.

IxfrTcpAxfr (4 bytes): The number of incremental zone transfer responses received by the server
over TCP, indicating that full zone transfer is needed.

IxfrTcpFormerr (4 bytes): The number of incremental zone transfer responses received by the

server over TCP, where either the primary DNS server does not support incremental zone transfer
or the primary DNS server indicated that the zone transfer request was malformed.

IxfrTcpRefused (4 bytes): The number of incremental zone transfer rejection responses received by
the server over TCP.

IxfrTcpInvalid (4 bytes): The number of incremental zone transfer invalid responses received by
the server over TCP.

2.2.10.2.11 DNSSRV_WINS_STATS

146 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

The DNSSRV_WINS_STATS structure has DNS server statistics related to WINS lookups. This structure
MUST be formatted as follows:

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Header

...

WinsLookups

WinsResponses

WinsReverseLookups

WinsReverseResponses

Header (8 bytes): A structure of type DNSSRV_STAT_HEADER (section 2.2.10.2.1).

WinsLookups (4 bytes): The number of WINS lookup requests received by the server.

WinsResponses (4 bytes): The number of WINS responses sent by the server.

WinsReverseLookups (4 bytes): The number of reverse WINS lookup requests received by the
server.

WinsReverseResponses (4 bytes): The number of reverse WINS lookup responses sent by the
server.

2.2.10.2.12 DNSSRV_UPDATE_STATS

The DNSSRV_UPDATE_STATS structure has DNS server statistics related to dynamic updates
processing. This structure MUST be formatted as follows:

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Header

...

Received

Empty

NoOps

Completed

Rejected

FormErr

147 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

NxDomain

NotImpl

Refused

YxDomain

YxRrset

NxRrset

NotAuth

NotZone

RefusedNonSecure

RefusedAccessDenied

SecureSuccess

SecureContinue

SecureFailure

SecureDsWriteFailure

DsSuccess

DsWriteFailure

unused_was_Collisions

unused_was_CollisionsRead

unused_was_CollisionsWrite

unused_was_CollisionsDsWrite

Queued

Retry

Timeout

InQueue

Forwards

148 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

TcpForwards

ForwardResponses

ForwardTimeouts

ForwardInQueue

UpdateType (156 bytes)

...

...

Header (8 bytes): A structure of type DNSSRV_STAT_HEADER (section 2.2.10.2.1).

Received (4 bytes): The number of dynamic update requests received by the server.

Empty (4 bytes): The number of empty dynamic update requests received by the server.

NoOps (4 bytes): The number of no-op dynamic update requests (such as a dynamic update request
with no update records) received by the server.

Completed (4 bytes): The number of completed dynamic update requests received by the server.

Rejected (4 bytes): The number of dynamic update requests rejected by the server.

FormErr (4 bytes): The number of dynamic update requests rejected by the server, due to
malformed packets.

NxDomain (4 bytes): The number of dynamic update requests rejected by the server, due to name

error.

NotImpl (4 bytes): The number of dynamic update requests rejected by the server, due to
unimplemented functionality.

Refused (4 bytes): The number of dynamic update requests rejected by the server, due to
malformed packets.

YxDomain (4 bytes): The number of dynamic update requests rejected by the server, due to policy

restrictions.

YxRrset (4 bytes): The number of dynamic update requests rejected by the server, due to an
unknown domain name.

NxRrset (4 bytes): The number of dynamic update requests rejected by the server, due to an
unknown resource record name.

NotAuth (4 bytes): The number of dynamic update requests rejected by the server, due to the
server not being authoritative for the zone.

NotZone (4 bytes): The number of dynamic update requests rejected by the server, due to the zone
name not being recognized as one for which it is authoritative.

RefusedNonSecure (4 bytes): The number of dynamic update requests rejected by the server, due
to a non-secure update request received for a zone where secure updates are required.

149 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

RefusedAccessDenied (4 bytes): The number of dynamic update requests rejected by the server,
due to a failure to update records in the directory server.

SecureSuccess (4 bytes): The number of secure dynamic update requests received by the server
that were successfully applied.

SecureContinue (4 bytes): Not used. Senders MUST set this value to zero and the receiver MUST
ignore it

SecureFailure (4 bytes): The number of secure dynamic update requests received by the server
that could not be successfully applied.

SecureDsWriteFailure (4 bytes): The number of secure dynamic update requests received by the
server that the server failed to update in the directory server.

DsSuccess (4 bytes): The number of unsecure dynamic update requests received by the server, that

were successfully updated in the directory server.

DsWriteFailure (4 bytes): The number of unsecure dynamic update requests received by the server

that the server failed to update in the directory server.

unused_was_Collisions (4 bytes): MUST be set to zero when sent and MUST be ignored on receipt.

unused_was_CollisionsRead (4 bytes): MUST be set to zero when sent and MUST be ignored on
receipt.

unused_was_CollisionsWrite (4 bytes): MUST be set to zero when sent and MUST be ignored on
receipt.

unused_was_CollisionsDsWrite (4 bytes): MUST be set to zero when sent and MUST be ignored
on receipt.

Queued (4 bytes): The number of updates packets received that needed to be sent to other remote
servers.

Retry (4 bytes): MUST be set to zero when sent and MUST be ignored on receipt.

Timeout (4 bytes): The number of update packets received, that timed-out while waiting to update
the remote server.

InQueue (4 bytes): The number of update packets received which are waiting in the update queue
for updates to complete on the remote server.

Forwards (4 bytes): The number of update packets received that were forwarded to other servers.

TcpForwards (4 bytes): The number of update packets received over TCP that were forwarded to
other servers.

ForwardResponses (4 bytes): The number of response packets received for the update requests
that were forwarded to other servers.

ForwardTimeouts (4 bytes): The number of update packets which timed out waiting for a response
from other servers.

ForwardInQueue (4 bytes): The number of update packets forwarded to other servers and which
are waiting for a response.

UpdateType (156 bytes): An array of counters that keep track of the number of update requests
received for different DNS record types. This array has a total of 39 entries from DNS_TYPE_ZERO
to DNS_TYPE_DNAME.

150 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

2.2.10.2.13 DNSSRV_SKWANSEC_STATS

The DNSSRV_SKWANSEC_STATS structure has DNS server statistics related to security context
processing. This structure MUST be formatted as follows:

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Header

...

SecContextCreate

SecContextFree

SecContextQueue

SecContextQueueInNego

SecContextQueueNegoComplete

SecContextQueueLength

SecContextDequeue

SecContextTimeout

SecPackAlloc

SecPackFree

SecTkeyInvalid

SecTkeyBadTime

SecTsigFormerr

SecTsigEcho

SecTsigBadKey

SecTsigVerifySuccess

SecTsigVerifyFailed

Header (8 bytes): A structure of type DNSSRV_STAT_HEADER (section 2.2.10.2.1).

SecContextCreate (4 bytes): The number of security contexts created by the server since the
server was started.

151 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

SecContextFree (4 bytes): The number of security contexts released by the server since the server
was started.

SecContextQueue (4 bytes): The total number of security contexts in the queue for negotiation on
the server since the server was started.

SecContextQueueInNego (4 bytes): The number of security contexts entered in negotiation since
the server was started.

SecContextQueueNegoComplete (4 bytes): The number of security contexts that have completed
negotiation since the server was started.

SecContextQueueLength (4 bytes): The number of security contexts currently queued.

SecContextDequeue (4 bytes): The total number of security contexts removed from the queue for
negotiation since the server was started.

SecContextTimeout (4 bytes): The total number of security contexts in the negotiation list that
timed out since the server was started.

SecPackAlloc (4 bytes): The number of buffers allocated by the server for use with GSS-API
signature validation.

SecPackFree (4 bytes): The number of buffers for use with GSS-API signature validation released
by the server.

SecTkeyInvalid (4 bytes): The number of secure DNS update messages from which TKEY was
successfully retrieved.

SecTkeyBadTime (4 bytes): The number of secure DNS update messages that had TKEY with a
skewed time stamp.

SecTsigFormerr (4 bytes): The number of TSIG records from which signature extraction failed.

SecTsigEcho (4 bytes): The number of echo TSIG records received by the server, indicating that the

remote server is not security aware. [RFC2845]

SecTsigBadKey (4 bytes): The number of TSIG records received for which the cached security
context could not be found.

SecTsigVerifySuccess (4 bytes): The number of TSIG records received for which the signature was
successfully verified.

SecTsigVerifyFailed (4 bytes): The number of TSIG records received for which signature
verification failed.

2.2.10.2.14 DNSSRV_DS_STATS

The DNSSRV_DS_STATS structure has DNS server statistics related to directory server processing.
The UpdateLists member through DsWriteType member refer to statistical values, when the server is
propagating changes from the in-memory database to the directory server.

This structure MUST be formatted as follows:

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Header

...

http://go.microsoft.com/fwlink/?LinkId=90388

152 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

DsTotalNodesRead

DsTotalRecordsRead

DsNodesLoaded

DsRecordsLoaded

DsTombstonesRead

DsUpdateSearches

DsUpdateNodesRead

DsUpdateRecordsRead

UpdateLists

UpdateNodes

UpdateSuppressed

UpdateWrites

UpdateTombstones

UpdateRecordChange

UpdateAgingRefresh

UpdateAgingOn

UpdateAgingOff

UpdatePacket

UpdatePacketPrecon

UpdateAdmin

UpdateAutoConfig

UpdateScavenge

DsNodesAdded

DsNodesModified

DsNodesTombstoned

153 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

DsNodesDeleted

DsRecordsAdded

DsRecordsReplaced

DsWriteSuppressed

DsSerialWrites

LdapTimedWrites

LdapWriteTimeTotal

LdapWriteAverage

LdapWriteMax

LdapWriteBucket0

LdapWriteBucket1

LdapWriteBucket2

LdapWriteBucket3

LdapWriteBucket4

LdapWriteBucket5

LdapSearchTime

FailedDeleteDsEntries

FailedReadRecords

FailedLdapModify

FailedLdapAdd

PollingPassesWithDsErrors (optional)

LdapReconnects (optional)

DsWriteType (160 bytes)

...

...

154 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Header (8 bytes): A structure of type DNSSRV_STAT_HEADER (section 2.2.10.2.1).

DsTotalNodesRead (4 bytes): The total number of DNS nodes read from the directory server.

DsTotalRecordsRead (4 bytes): The total number of resource records read from the directory
server.

DsNodesLoaded (4 bytes): The number of valid DNS nodes found in the directory server and loaded
in memory by the server.

DsRecordsLoaded (4 bytes): The number of resource records loaded in memory by the server.

DsTombstonesRead (4 bytes): The number of nodes read from the directory server and found in a
tombstoned state.

DsUpdateSearches (4 bytes): The number of zone update searches performed on the directory
server.

DsUpdateNodesRead (4 bytes): The number of DNS nodes that were read from the directory

server and contained updated information.

DsUpdateRecordsRead (4 bytes): The number of resource records that were read from the
directory server and contained updated information.

UpdateLists (4 bytes): The number of in-memory nodes with an updated list of record.

UpdateNodes (4 bytes): The number of in-memory nodes that required an update in the directory

server.

UpdateSuppressed (4 bytes): The number of in-memory nodes that did not require any write to the
directory server.

UpdateWrites (4 bytes): The number of in-memory nodes that required writing to the directory
server.

UpdateTombstones (4 bytes): The number of in-memory nodes that required tombstoning.

UpdateRecordChange (4 bytes): The number of in-memory nodes that required record changes.

UpdateAgingRefresh (4 bytes): The number of in-memory nodes that required an aging
information refresh.

UpdateAgingOn (4 bytes): The number of in-memory nodes that required aging to be enabled.

UpdateAgingOff (4 bytes): The number of in-memory nodes that required aging to be disabled.

UpdatePacket (4 bytes): The number of in-memory nodes modified as a result of update packets
being received.

UpdatePacketPrecon (4 bytes): The number of in-memory nodes modified as a result of update

packets being received with prerequisites (as discussed in [RFC2136] section 2.4).

UpdateAdmin (4 bytes): The number of in-memory nodes modified as a result of administrator
initiated changes.

UpdateAutoConfig (4 bytes): The number of in-memory nodes modified as a result of an auto-
configure operation.

UpdateScavenge (4 bytes): The number of in-memory nodes modified as a result of a scavenging

cycle.

DsNodesAdded (4 bytes): The number of new nodes added to the directory server.

http://go.microsoft.com/fwlink/?LinkId=107017

155 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

DsNodesModified (4 bytes): The number of nodes modified in the directory server.

DsNodesTombstoned (4 bytes): The number of nodes tombstoned in the directory server.

DsNodesDeleted (4 bytes): The number of nodes deleted from the directory server.

DsRecordsAdded (4 bytes): The number of records added to the directory server.

DsRecordsReplaced (4 bytes): The number of records modified or replaced in the directory server.

DsWriteSuppressed (4 bytes): The number of records added to the directory server.

DsSerialWrites (4 bytes): The number of records that had matching data and hence were not
written to the directory server.

LdapTimedWrites (4 bytes): The number of times the server performed a timed LDAP write
operation.

LdapWriteTimeTotal (4 bytes): The cumulative time, in milliseconds, consumed by server-

performed timed LDAP write operations.

LdapWriteAverage (4 bytes): The average time, in milliseconds, for all server performed timed
LDAP write operations since the server was last restarted.

LdapWriteMax (4 bytes): The longest duration taken, in milliseconds, for any single server-
performed timed LDAP write-operation.

LdapWriteBucket0 (4 bytes): The number of LDAP write-operations that took less than 10

milliseconds.

LdapWriteBucket1 (4 bytes): The number of LDAP write-operations that took between 10 and 100
milliseconds.

LdapWriteBucket2 (4 bytes): The number of LDAP write-operations that took between 100
milliseconds and 1 second.

LdapWriteBucket3 (4 bytes): The number of LDAP write-operations that took between 1 and 10
seconds.

LdapWriteBucket4 (4 bytes): The number of LDAP write-operations that took between 10 and 100
seconds.

LdapWriteBucket5 (4 bytes): The number of LDAP write-operations that took more than 100
seconds.

LdapSearchTime (4 bytes): The cumulative time, in milliseconds, consumed by server-performed
LDAP searches.

FailedDeleteDsEntries (4 bytes): The number of times the server failed to delete entries from the

directory server.

FailedReadRecords (4 bytes): The number of times the server failed to read records from the

directory server.

FailedLdapModify (4 bytes): The number of times the server failed to modify records in the
directory server.

FailedLdapAdd (4 bytes): The number of times the server failed to add entries to the directory

server.

156 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

PollingPassesWithDsErrors (4 bytes): The number of times the server hit failure while polling
zones in the directory server. This field SHOULD<74> be present. A client can tell whether the

field is present based on the size of the buffer holding this structure.

LdapReconnects (4 bytes): The number of times the server attempted to reconnect to the directory

server. This field MUST be present if and only if PollingPassesWithDsErrors is present. A client can
tell whether the field is present based on the size of the buffer holding this structure.

DsWriteType (160 bytes): An array of 32-bit unsigned integers that keeps track of update requests
for different DNS record types as specified DNS_RECORD_TYPE (section 2.2.2.1.1). There are a
total of 40 entries each corresponding to the number of received update requests for different
record types in the order specified in DNS_RECORD_TYPE (section 2.2.2.1.1), starting from
DNS_TYPE_ZERO to DNS_TYPE_DNAME.

2.2.10.2.15 DNSSRV_MEMTAG_STATS

The DNSSRV_MEMTAG_STATS structure has DNS server statistics related to memory allocations for a
given purpose. This structure is used by DNSSRV_MEMORY_STATS (section 2.2.10.2.16) to collect the

list of statistics of memory allocated for various purposes. This structure MUST be formatted as
follows:

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Alloc

Free

Memory

Alloc (4 bytes): The cumulative number of times memory allocations have been performed for a
given purpose.

Free (4 bytes): The cumulative number of times memory has been released for a given purpose.

Memory (4 bytes): The total size of memory, in bytes, currently in use for a given purpose.

2.2.10.2.16 DNSSRV_MEMORY_STATS

The DNSSRV_MEMORY_STATS structure has DNS server statistics related to memory usage for
different operations on the server. It provides statistical information about memory usage since the
server started or server statistics were last cleared. The structure supports allocations of two types:
blocks of common (but implementation-specific) sizes, and blocks of arbitrary sizes. This allows
servers to use a separate internal mechanism to optimize allocations of common sizes if they so
choose. This structure MUST be formatted as follows:

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Header

...

Memory

Alloc

157 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Free

StdUsed

StdReturn

StdInUse

StdMemory

StdToHeapAlloc

StdToHeapFree

StdToHeapInUse

StdToHeapMemory

StdBlockAlloc

StdBlockUsed

StdBlockReturn

StdBlockInUse

StdBlockFreeList

StdBlockFreeListMemory

StdBlockMemory

MemTags (624 bytes)

...

...

Header (8 bytes): A structure of type DNSSRV_STAT_HEADER (section 2.2.10.2.1).

Memory (4 bytes): The total memory currently allocated by the servers, in bytes.

Alloc (4 bytes): The cumulative number of times memory was allocated by the server.

Free (4 bytes): The cumulative number of times memory was released by the server.

StdUsed (4 bytes): The cumulative number of times a common-size block of memory was allocated
by the server.

StdReturn (4 bytes): The cumulative number of times a common-size block of memory was released
by the server.

158 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

StdInUse (4 bytes): The total number of common-size blocks of allocated memory currently used by
the server.

StdMemory (4 bytes): The total size, in bytes, of common-size blocks that are currently being used
by the server.

StdToHeapAlloc (4 bytes): The cumulative number of arbitrary-size blocks of memory allocated
from system memory.

StdToHeapFree (4 bytes): The cumulative number of arbitrary-size blocks of memory released to
system memory.

StdToHeapInUse (4 bytes): The number of arbitrary-size blocks of memory currently in use.

StdToHeapMemory (4 bytes): The total size of memory, in bytes, currently used by non-standard
sized blocks.

StdBlockAlloc (4 bytes): The cumulative number of common-size blocks allocated by the server.

StdBlockUsed (4 bytes): The cumulative number of common-size blocks allocated from an internal
free list.

StdBlockReturn (4 bytes): The cumulative number of common-size blocks returned from an internal
free list.

StdBlockInUse (4 bytes): The number of common-size blocks currently being used.

StdBlockFreeList (4 bytes): The number of common-size blocks currently on internal free lists.

StdBlockFreeListMemory (4 bytes): The total size of memory, in bytes, of common size blocks
currently on internal free lists.

StdBlockMemory (4 bytes): The total size of memory, in bytes, of all currently allocated blocks.

MemTags (624 bytes): An array of 52 DNSSRV_MEMTAG_STATS (section 2.2.10.2.15) specifying

memory statistics for various server operations. The table below gives the context applicable to
each element of this array, where the Value column indicates the element number.

Value Meaning

MEMTAG_NONE

0x00000001

Not related to a particular operation.

MEMTAG_PACKET_UDP

0x00000002

UDP Packets.

MEMTAG_PACKET_TCP

0x00000003

TCP Packets.

MEMTAG_NAME

0x00000004

Name-related operations.

MEMTAG_ZONE

0x00000005

Zone operations.

MEMTAG_UPDATE

0x00000006

Name updates.

MEMTAG_UPDATE_LIST

0x00000007

Record update list.

159 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Value Meaning

MEMTAG_TIMEOUT

0x00000008

Timeout

MEMTAG_NODEHASH

0x00000009

Node hash.

MEMTAG_DS_DN

0x0000000A

Directory server distinguished name.

MEMTAG_DS_MOD

0x0000000B

Directory server module.

MEMTAG_DS_RECORD

0x0000000C

Directory server records.

MEMTAG_DS_OTHER

0x0000000D

Other directory server related operations.

MEMTAG_THREAD

0x0000000E

Thread management.

MEMTAG_NBSTAT

0x0000000F

NBSTAT packets operations.

MEMTAG_DNSLIB

0x00000010

DNS library management.

MEMTAG_TABLE

0x00000011

Record table operations.

MEMTAG_SOCKET

0x00000012

Socket operations.

MEMTAG_CONNECTION

0x00000013

Connection establishment / destruction.

MEMTAG_REGISTRY

0x00000014

Registry operations.

MEMTAG_RPC

0x00000015

RPC operations.

MEMTAG_STUFF

0x00000016

Miscellaneous operations.

MEMTAG_FILEBUF

0x00000017

File buffer operations.

MEMTAG_REMOTE

0x00000018

Remote IP address operations.

MEMTAG_EVTCTRL

0x00000019

Event control operations.

MEMTAG_SAFE

0x0000001A

Miscellaneous queuing operations.

160 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Value Meaning

MEMTAG_RECORD_UNKNOWN

0x0000001B

Record operations.

MEMTAG_RECORD_FILE

0x0000001C

File-based operations.

MEMTAG_RECORD_DS

0x0000001D

Directory server-based RR operations.

MEMTAG_RECORD_AXFR

0x0000001E

Complete zone transfer operations.

MEMTAG_RECORD_IXFR

0x0000001F

Single Record transfer operations.

MEMTAG_RECORD_DYNUP

0x00000020

RR operations for dynamic update.

MEMTAG_RECORD_ADMIN

0x00000021

RR operations for administration.

MEMTAG_RECORD_AUTO

0x00000022

RR operations for autoconfig.

MEMTAG_RECORD_CACHE

0x00000023

RR operations for cache.

MEMTAG_RECORD_NOEXIST

0x00000024

RR operations for non-existent records.

MEMTAG_RECORD_WINS

0x00000025

RR operations for WINS.

MEMTAG_RECORD_WINSPTR

0x00000026

RR operations for WINS-PTR.

MEMTAG_RECORD_COPY

0x00000027

RR copy operations.

MEMTAG_NODE_UNKNOWN

0x00000028

Node operations for database.

MEMTAG_NODE_FILE

0x00000029

Node operations for file.

MEMTAG_NODE_DS

0x0000002A

Node operations for directory server.

MEMTAG_NODE_AXFR

0x0000002B

Node operations for complete zone transfer.

MEMTAG_NODE_IXFR

0x0000002C

Node operations for single record transfer.

MEMTAG_NODE_DYNUP

0x0000002D

Node operations for dynamic update.

161 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Value Meaning

MEMTAG_NODE_ADMIN

0x0000002E

Node operations for administration.

MEMTAG_NODE_AUTO

0x0000002F

Node operations for autoconfig.

MEMTAG_NODE_CACHE

0x00000030

Node operations for cache.

MEMTAG_NODE_NOEXIST

0x00000031

Node operations for non-existent records.

MEMTAG_NODE_WINS

0x00000032

Node operations for WINS.

MEMTAG_NODE_WINSPTR

0x00000033

Node operations for WINS-PTR.

MEMTAG_NODE_COPY

0x00000034

Node operations for copy.

2.2.10.2.17 DNSSRV_TIMEOUT_STATS

The DNSSRV_TIMEOUT_STATS structure has DNS server statistics related to timeout operations on
the server. This structure MUST be formatted as follows:

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Header

...

SetTotal

SetDirect

SetFromDereference

SetFromChildDelete

AlreadyInSystem

Checks

RecentAccess

ActiveRecord

CanNotDelete

162 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Deleted

ArrayBlocksCreated

ArrayBlocksDeleted

DelayedFreesQueued

DelayedFreesQueuedWithFunction

DelayedFreesExecuted

DelayedFreesExecutedWithFunction

Header (8 bytes): A structure of type DNSSRV_STAT_HEADER (section 2.2.10.2.1).

SetTotal (4 bytes): The total number of times the server marked a node as being eligible for
deletion when it is no longer in use by the cache.

SetDirect (4 bytes): The number of times the server marked a node as being eligible for deletion
when it is no longer in use by the cache, by directly referencing the node.

SetFromDereference (4 bytes): The number of times the server marked a node as being eligible for
deletion when it is no longer in use by the cache because the last reference was deleted.

SetFromChildDelete (4 bytes): The number of times the server marked a node as being eligible for
deletion when it is no longer in use by the cache because the node's last child was deleted.

AlreadyInSystem (4 bytes): The number of times the server marked a node as being eligible for
deletion when it is no longer in use by the cache when the node was already so marked.

Checks (4 bytes): The number of times the server performed any node timeout marking operation.

RecentAccess (4 bytes): The number of times the server encountered a cache node that it could not
delete because the node had recently been accessed.

ActiveRecord (4 bytes): The number of times while performing checks the server encountered a
cache node that had records present while checking nodes for deletion.

CanNotDelete (4 bytes): The number of times the server encountered a cache node that was
marked for deletion that could not be deleted because it had been recently accessed or because it
had active records or child nodes.

Deleted (4 bytes): The number of times the server successfully deleted a cache node that was
marked as eligible for deletion.

ArrayBlocksCreated (4 bytes): The number of times the server created a block to hold more

references to cache nodes eligible for deletion.

ArrayBlocksDeleted (4 bytes): The number of times the server deleted a block to hold references
to cache nodes eligible for deletion.

DelayedFreesQueued (4 bytes): The number of times the server entered a block of memory into an
internal list of memory blocks that can be freed in the future.

163 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

DelayedFreesQueuedWithFunction (4 bytes): The number of times the server entered a block of
memory into an internal list of memory blocks that can be freed in the future where the block is

freed using a function other than the standard memory free function.

DelayedFreesExecuted (4 bytes): The number of times the server released a block of memory that

had previously been entered into an internal list of memory blocks that can be freed in the future.

DelayedFreesExecutedWithFunction (4 bytes): The number of times the server released a block
of memory that had previously been entered into an internal list of memory blocks that can be
freed in the future, where a function other than the standard memory free function was used for
release.

2.2.10.2.18 DNSSRV_DBASE_STATS

The DNSSRV_DBASE_STATS structure has DNS server statistics related to the database tree. This
structure MUST be formatted as follows:

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Header

...

NodeMemory

NodeInUse

NodeUsed

NodeReturn

Header (8 bytes): A structure of type DNSSRV_STAT_HEADER (section 2.2.10.2.1).

NodeMemory (4 bytes): The total size, in bytes, of server memory currently used for nodes.

NodeInUse (4 bytes): The number of nodes currently allocated for use in the record database.

NodeUsed (4 bytes): The cumulative number of nodes allocated for use in the record database.

NodeReturn (4 bytes): The cumulative number of nodes freed from the record database.

2.2.10.2.19 DNSSRV_RECORD_STATS

The DNSSRV_RECORD_STATS structure has DNS server statistics related to record usage. This
structure MUST be formatted as follows:

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Header

...

InUse

164 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Used

Return

Memory

CacheTotal

CacheCurrent

CacheTimeouts

SlowFreeQueued

SlowFreeFinished

Header (8 bytes): A structure of type DNSSRV_STAT_HEADER (section 2.2.10.2.1).

InUse (4 bytes): The number of resource records currently allocated by the server.

Used (4 bytes): The cumulative number of resource records allocated by the server.

Return (4 bytes): The cumulative number of resource records freed by the server.

Memory (4 bytes): The amount of memory, in bytes, currently allocated for resource records by the
server.

CacheTotal (4 bytes): The cumulative number resource records cached by the server.

CacheCurrent (4 bytes): The number of resource records currently cached by the server.

CacheTimeouts (4 bytes): The cumulative number of resource records that have been freed from

the DNS server's cache.

SlowFreeQueued (4 bytes): Some cached record types, such as NS and SOA, are not immediately
freed to the pool of allocated records, instead they are placed in a timeout queue and returned
after this timeout expires. This is the cumulative count of such slow-free records that have been
entered into the timeout queue.

SlowFreeFinished (4 bytes): The number of slow frees (see SlowFreeQueued above) that have
been completed.

2.2.10.2.20 DNSSRV_PACKET_STATS

The DNSSRV_PACKET_STATS structure has DNS server statistics related to packets usage<75>. This
structure MUST be formatted as follows:

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Header

...

UdpAlloc

165 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

UdpFree

UdpNetAllocs

UdpMemory

UdpUsed

UdpReturn

UdpResponseReturn

UdpQueryReturn

UdpInUse

UdpInFreeList

TcpAlloc

TcpRealloc

TcpFree

TcpNetAllocs

TcpMemory

RecursePacketUsed

RecursePacketReturn

PacketsForNsListUsed (optional)

PacketsForNsListReturned (optional)

PacketsForNsListInUse (optional)

Header (8 bytes): A structure of type DNSSRV_STAT_HEADER (section 2.2.10.2.1).

UdpAlloc (4 bytes): The cumulative number of UDP packets allocated by the server from system
memory.

UdpFree (4 bytes): The cumulative number of UDP packets returned by the server to system
memory.

UdpNetAllocs (4 bytes): The number of currently allocated UDP packets.

UdpMemory (4 bytes): The number of bytes of memory used by allocated or taken from the free list
for use in query processing.

166 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

UdpUsed (4 bytes): The cumulative number of UDP packets from the pool of packets used by the
server.

UdpReturn (4 bytes): The cumulative number of UDP packets freed or returned to the free list by
the server.

UdpResponseReturn (4 bytes): The cumulative number of UDP packets freed or returned to the
free list by the server that were UDP response packets.

UdpQueryReturn (4 bytes): The cumulative number of UDP query packets freed or returned to the
free list by the server that were UDP query packets.

UdpInUse (4 bytes): The number of UDP packets currently in use to process queries.

UdpInFreeList (4 bytes): The number of UDP packets currently on the server's free list.

TcpAlloc (4 bytes): The cumulative number of TCP buffers allocated by the server from system

memory.

TcpRealloc (4 bytes): Not used. Senders MUST set this value to zero and receivers MUST ignore it.

TcpFree (4 bytes): The cumulative number of TCP buffers returned by the server to system memory.

TcpNetAllocs (4 bytes): The number of allocated TCP buffers currently allocated by the server.

TcpMemory (4 bytes): The total system memory, in bytes, used by TCP buffers currently allocated
by the server.

RecursePacketUsed (4 bytes): The cumulative number of packets used by the server for recursion
queries.

RecursePacketReturn (4 bytes): The cumulative number of packets that were used for recursive
queries and then returned by the server to the pool of packets.

PacketsForNsListUsed (4 bytes): The total number of TCP buffers used by the server for name

server list query messages. This field SHOULD<76> be present. A client can tell whether the field
is present based on the size of the buffer holding this structure.

PacketsForNsListReturned (4 bytes): The total number of TCP buffers that were used for name
server lists in query messages, returned by the server to the pool of packets. This field MUST be
present if and only if PacketsForNsListUsed is present. A client can tell whether the field is present
based on the size of the buffer holding this structure.

PacketsForNsListInUse (4 bytes): The number of TCP buffers that are currently being used by the
server for name lists in query messages. This field MUST be present if and only if
PacketsForNsListUsed is present. A client can tell whether the field is present based on the size of

the buffer holding this structure.

2.2.10.2.21 DNSSRV_NBSTAT_STATS

The DNSSRV_NBSTAT_STATS structure has DNS server statistics related to NBSTAT buffers usage.

This structure MUST be formatted as follows:

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Header

...

167 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

NbstatAlloc

NbstatFree

NbstatNetAllocs

NbstatMemory

NbstatUsed

NbstatReturn

NbstatInUse

NbstatInFreeList

Header (8 bytes): A structure of type DNSSRV_STAT_HEADER (section 2.2.10.2.1).

NbstatAlloc (4 bytes): The cumulative number of NetBIOS packet buffers allocated by the server
from system memory.

NbstatFree (4 bytes): The cumulative number of NetBIOS packet buffers returned by the server to
system memory.

NbstatNetAllocs (4 bytes): The number of NetBIOS packet buffers currently allocated by the server.

NbstatMemory (4 bytes): The total memory used by the NetBIOS packet buffers currently allocated
by the server.

NbstatUsed (4 bytes): The cumulative number of NetBIOS buffers currently in use by the server

either servicing queries or in a free list.

NbstatReturn (4 bytes): The cumulative number of NetBIOS buffers freed or returned by the server
to a free list.

NbstatInUse (4 bytes): The number of NetBIOS buffers currently being used by the server to
service queries or being held in a free list.

NbstatInFreeList (4 bytes): The number of NetBIOS buffers currently in a free list.

2.2.10.2.22 DNSSRV_PRIVATE_STATS

The DNSSRV_PRIVATE_STATS structure has DNS server statistics related to internal server
processing. This structure MUST be formatted as follows:

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Header

...

RecordFile

168 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

RecordFileFree

RecordDs

RecordDsFree

RecordAdmin

RecordAdminFree

RecordDynUp

RecordDynUpFree

RecordAxfr

RecordAxfrFree

RecordIxfr

RecordIxfrFree

RecordCopy

RecordCopyFree

RecordCache

RecordCacheFree

UdpSocketPnpDelete

UdpRecvFailure

UdpErrorMessageSize

UdpConnResets

UdpConnResetRetryOverflow

UdpGQCSFailure

UdpGQCSFailureWithContext

UdpGQCSConnReset

UdpIndicateRecvFailures

UdpRestartRecvOnSockets

169 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

TcpConnectAttempt

TcpConnectFailure

TcpConnect

TcpQuery

TcpDisconnect

SecTsigVerifyOldSig

SecTsigVerifyOldFailed

SecBigTimeSkewBypass

ZoneLoadInit

ZoneLoadComplete

ZoneDbaseDelete

ZoneDbaseDelayedDelete

Header (8 bytes): A structure of type DNSSRV_STAT_HEADER (section 2.2.10.2.1).

RecordFile (4 bytes): Not used. Senders MUST set this value to zero and receivers MUST ignore it.

RecordFileFree (4 bytes): Not used. Senders MUST set this value to zero and receivers MUST ignore

it.

RecordDs (4 bytes): Not used. Senders MUST set this value to zero and receivers MUST ignore it.

RecordDsFree (4 bytes): Not used. Senders MUST set this value to zero and receivers MUST ignore
it.

RecordAdmin (4 bytes): Not used. Senders MUST set this value to zero and receivers MUST ignore
it.

RecordAdminFree (4 bytes): Not used. Senders MUST set this value to zero and receivers MUST
ignore it.

RecordDynUp (4 bytes): Not used. Senders MUST set this value to zero and receivers MUST ignore
it.

RecordDynUpFree (4 bytes): Not used. Senders MUST set this value to zero and receivers MUST
ignore it.

RecordAxfr (4 bytes): Not used. Senders MUST set this value to zero and receivers MUST ignore it.

RecordAxfrFree (4 bytes): Not used. Senders MUST set this value to zero and receivers MUST
ignore it.

RecordIxfr (4 bytes): Not used. Senders MUST set this value to zero and receivers MUST ignore it.

170 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

RecordIxfrFree (4 bytes): Not used. Senders MUST set this value to zero and receivers MUST
ignore it.

RecordCopy (4 bytes): Not used. Senders MUST set this value to zero and receivers MUST ignore it.

RecordCopyFree (4 bytes): Not used. Senders MUST set this value to zero and receivers MUST

ignore it.

RecordCache (4 bytes): MUST be set to zero when sent and MUST be ignored on receipt.

RecordCacheFree (4 bytes): Not used. Senders MUST set this value to zero and receivers MUST
ignore it.

UdpSocketPnpDelete (4 bytes): The number of UDP sockets that have been closed and had their
locally allocated state freed by the server because a UDP error occurred or because the socket was
closed in response to an IP address change on the local machine.

UdpRecvFailure (4 bytes): The number of times the server failed to receive UDP packet.

UdpErrorMessageSize (4 bytes): The number of times the server received an error from UDP
socket due to the large size of the receive packet.

UdpConnResets (4 bytes): The number of times the server received a connection reset error from
UDP.

UdpConnResetRetryOverflow (4 bytes): The number of times the server received a connection

reset error from UDP and could not clear the error by resubmitting a receive operation.

UdpGQCSFailure (4 bytes): The number of times the server received an error from UDP.

UdpGQCSFailureWithContext (4 bytes): The number of times the server received an error from
UDP where no internal state for the UDP operation was available.

UdpGQCSConnReset (4 bytes): The number of times the server received an error from UDP
indicating that a remote address was unreachable.

UdpIndicateRecvFailures (4 bytes): The number of times the server received a critical error while

attempting to perform a UDP receive operation.

UdpRestartRecvOnSockets (4 bytes): The number of times the server attempted to restart receive
operations on its UDP sockets due to UDP errors.

TcpConnectAttempt (4 bytes): MUST be set to zero when sent and MUST be ignored on receipt.

TcpConnectFailure (4 bytes): MUST be set to zero when sent and MUST be ignored on receipt.

TcpConnect (4 bytes): The number of times the server was able to successfully establish a TCP
connection to a remote the server.

TcpQuery (4 bytes): The number of times the server sent a recursive query over a TCP connection.

TcpDisconnect (4 bytes): The number of times the server disconnected a TCP connection.

SecTsigVerifyOldSig (4 bytes): Not used. Senders MUST set this value to zero and receivers MUST
ignore it.

SecTsigVerifyOldFailed (4 bytes): Unused. Senders MUST set this value to zero and receivers
MUST ignore it.

SecBigTimeSkewBypass (4 bytes): The number of times the server received a TKEY that had a
time-skew within the allowable range of 1 day.

171 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

ZoneLoadInit (4 bytes): The number of times the server prepared to load or reload a zone from
persistent storage or from a zone transfer.

ZoneLoadComplete (4 bytes): MUST be set to zero when sent and MUST be ignored on receipt.

ZoneDbaseDelete (4 bytes): MUST be set to zero when sent and MUST be ignored on receipt.

ZoneDbaseDelayedDelete (4 bytes): MUST be set to zero when sent and MUST be ignored on
receipt.

2.2.10.2.23 DNSSRV_ERROR_STATS

The DNSSRV_ERROR_STATS structure has DNS server statistics related to the different types of errors
returned by the server. This structure MUST be formatted as follows:

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Header

...

NoError

FormError

ServFail

NxDomain

NotImpl

Refused

YxDomain

YxRRSet

NxRRSet

NotAuth

NotZone

Max

BadSig

BadKey

BadTime

172 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

UnknownError

Header (8 bytes): A structure of type DNSSRV_STAT_HEADER (section 2.2.10.2.1).

NoError (4 bytes): The number of occurrences where the server returned success (0x00000000) and
query was successfully responded to.

FormError (4 bytes): The number of occurrences where the server returned error code 0x00000001
due to a malformed query.

ServFail (4 bytes): The number of occurrences where the server returned error code 0x00000002
due to a failure in query processing at server.

NxDomain (4 bytes): The number of occurrences where the server returned a name error code
0x00000003.

NotImpl (4 bytes): The number of occurrences where the server returned error code 0x00000004

due to unimplemented functionality.

Refused (4 bytes): The number of occurrences where the server returned error code 0x00000005
due to policy restrictions.

YxDomain (4 bytes): The number of occurrences where the server returned error code 0x00000006
due to a domain not being found.

YxRRSet (4 bytes): The number of occurrences where the server returned error code 0x00000007

due to the unexpected existence of a resource record.

NxRRSet (4 bytes): The number of occurrences where the server returned error code 0x00000008,
because the requested resource record did not exist.

NotAuth (4 bytes): The number of occurrences where the server returned error code 0x00000009
due to the server not being authoritative for the zone.

NotZone (4 bytes): The number of occurrences where the server returned error 0x0000000A (10)
due to the requested zone not being found.

Max (4 bytes): The number of occurrences where the server returned an error code 0x0000000F
(15) which is larger than 4 bits and the server needed to introduce the OPT field in the response
packet.

BadSig (4 bytes): The number of occurrences where the server returned error 0x00000010 (16) due
to a bad signature being present in the query.

BadKey (4 bytes): The number of occurrences where the server returned error 0x00000011 (17)

due to a bad key being present in the query.

BadTime (4 bytes): The number of occurrences where the server returned error 0x00000012 (18)
due to a bad time stamp being present in the query.

UnknownError (4 bytes): The number of occurrences where the server returned an error code that
was caused by any other reason than those listed above.

2.2.10.2.24 DNSSRV_CACHE_STATS

The DNSSRV_CACHE_STATS structure has DNS server statistics related to the server cache. This
structure MUST be formatted as follows:

173 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Header

...

CacheExceededLimitChecks

SuccessfulFreePasses

FailedFreePasses

PassesWithNoFrees

PassesRequiringAggressiveFree

Header (8 bytes): A structure of type DNSSRV_STAT_HEADER (section 2.2.10.2.1).

CacheExceededLimitChecks (4 bytes): Not used. Senders MUST set this value to zero and
receivers MUST ignore it.

SuccessfulFreePasses (4 bytes): The number of times since the server last started that the server
cache was found to exceed the cache size limit, which is 90 percent of the MaxCacheSize (section
3.1.1.1.1), and that an attempt to free nodes resulted in the cache size limit being met. After
reaching 0xFFFFFFFF, the value increments to 0x00000000.

FailedFreePasses (4 bytes): The number of times since the server last started that the server cache
was found to exceed the cache size limit, which is 90 percent of the MaxCacheSize (section

3.1.1.1.1), and that an attempt to free nodes was unsuccessful in meeting the cache size limit.
After reaching 0xFFFFFFFF, the value increments to 0x00000000.

PassesWithNoFrees (4 bytes): The number of times since the server last started that the server
cache was found to exceed the cache size limit, which is 90 percent of the MaxCacheSize (section
3.1.1.1.1), but when the server scanned the cache looking for nodes containing no records or
only expired DNS records to free, it found no nodes that could be freed. After reaching
0xFFFFFFFF, the value increments to 0x00000000.

PassesRequiringAggressiveFree (4 bytes): The number of times since the server last started that
the server cache was found to exceed the cache size limit, which is 90 percent of the
MaxCacheSize (section 3.1.1.1.1), and that the server scanned the cache aggressively attempting
to free even nodes that contain unexpired records. An aggressive scan frees, in order, nodes
containing records that are to expire within the next hour, records that are to expire within the
next day, and all records if needed, and halts the freeing process immediately once the cache size
limit is reached. After reaching 0xFFFFFFFF, the value increments to 0x00000000.

2.2.10.2.25 DNSSRV_RRL_STATS

The DNSSRV_RRL_STATS structure SHOULD<77> contain DNS server statistics related to the
Response Rate Limiting (RRL). This structure is formatted as follows:

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Header

174 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

...

TotalResponsesSent

TotalResponsesDropped

TotalResponsesTruncated

TotalResponsesLeaked

Header (8 bytes): A structure of type DNSSRV_STAT_HEADER (section 2.2.10.2.1).

TotalResponsesSent (4 bytes): The number of times the server responded to a valid query since it

last started. This counter is maintained and updated only when RRL is enabled. After reaching

0xFFFFFFFF, the value increments to 0x00000000.

TotalResponsesDropped (4 bytes): The number of times the server dropped a valid query due to
Response Rate Limiting, since it last started. This counter is maintained and updated only when
RRL is enabled. After reaching 0xFFFFFFFF, the value increments to 0x00000000.

TotalResponsesTruncated (4 bytes): The number of times the server has responded to a valid

query with a truncation bit set, since it last started. This counter is maintained and updated only
when RRL is enabled. After reaching 0xFFFFFFFF, the value increments to 0x00000000.

TotalResponsesLeaked (4 bytes): The number of times the server has responded to a valid query
after using the total responses available within a given timeframe since it last started. For details
see DNS_RPC_RRL_PARAMS (section 2.2.16.2.1). This counter is maintained and updated only
when RRL is enabled. After reaching 0xFFFFFFFF, the value increments to 0x00000000.

2.2.11 Key Structures

2.2.11.1 Enumerations and Constants

2.2.11.1.1 Cryptographic Algorithm Name

In the context of this protocol, a Cryptographic Algorithm Name is a null-terminated Unicode string
representing a digital signature algorithm. The following values are acceptable.

Name Description

"RSA"

The RSA signature algorithm specified in [FIPS186] section 5. Key pairs for use with this
algorithm are represented in the RSA Key Pair format specified in section 2.2.11.2.1.

"ECDSA_P256"

The ECDSA signature algorithm specified in [FIPS186] section 6, computed over the curve
P-256 specified in [FIPS186] Appendix D.1.2.3. Key pairs for use with this algorithm are
represented in the ECDSA Key Pair format specified in section 2.2.11.2.2.

"ECDSA_P384"

The ECDSA signature algorithm specified in [FIPS186] section 6, computed over the curve
P-384 specified in [FIPS186] Appendix D.1.2.4. Key pairs for use with this algorithm are
represented in the ECDSA Key Pair format specified in section 2.2.11.2.3.

http://go.microsoft.com/fwlink/?LinkId=89869

175 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

2.2.11.2 Structures

2.2.11.2.1 RSA Key Pair

The RSA Key Pair structure is used to store a key pair (a public key and corresponding private key) for
use with the RSA digital signature algorithm.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Reserved1

ModulusBitLength

LengthOfPublicExponent

LengthOfModulus

LengthOfPrime1

LengthOfPrime2

PublicExponent (variable)

...

Modulus (variable)

...

Prime1 (variable)

...

Prime2 (variable)

...

Reserved1 (4 bytes): MUST be 0x32415352.

ModulusBitLength (4 bytes): This MUST be a 32-bit unsigned integer in little-endian format. It
MUST be the length of the RSA modulus, in bits, equal to 8 times the quantity referred to as k in
[RFC3447] section 2.

LengthOfPublicExponent (4 bytes): This MUST be a 32-bit unsigned integer in little-endian format.
It MUST be the length of the PublicExponent field, in bytes.

LengthOfModulus (4 bytes): This MUST be a 32-bit unsigned integer in little-endian format. It
MUST be the length of the Modulus field, in bytes.

LengthOfPrime1 (4 bytes): This MUST be a 32-bit unsigned integer in little-endian format. It MUST
be the length of the Prime1 field, in bytes.

http://go.microsoft.com/fwlink/?LinkId=90422

176 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

LengthOfPrime2 (4 bytes): This MUST be a 32-bit unsigned integer in little-endian format. It MUST
be the length of the Prime2 field, in bytes.

PublicExponent (variable): This MUST be the public exponent of the key pair, referred to as e in
[RFC3447] section 2. It MUST be encoded in big-endian format.

Modulus (variable): This MUST be the RSA modulus, referred to as n in [RFC3447] section 2. It
MUST be equal to Prime1 * Prime2. It MUST be encoded in big-endian format.

Prime1 (variable): This MUST be the first prime factor of the RSA modulus, referred to as p in
[RFC3447] section 2. It MUST be encoded in big-endian format.

Prime2 (variable): This MUST be the second prime factor of the RSA modulus, referred to as q in
[RFC3447] section 2. It MUST be encoded in big-endian format.

2.2.11.2.2 ECDSA_P256 Key Pair

The ECDSA_P256 Key Pair structure is used to store an ECDSA_P256 key pair (a public key and

corresponding private key) for use with the ECDSA digital signature algorithm.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Reserved1

Reserved2

X (32 bytes)

...

...

Y (32 bytes)

...

...

d (32 bytes)

...

...

Reserved1 (4 bytes): MUST be 0x324B4345.

Reserved2 (4 bytes): MUST be 0x00000020.

X (32 bytes): This MUST be the x-coordinate of the ECDSA public key. It MUST be encoded in big-
endian format.

Y (32 bytes): This MUST be the y-coordinate of the ECDSA public key. It MUST be encoded in big-
endian format.

d (32 bytes): This MUST be the ECDSA private key. It MUST be encoded in big-endian format.

177 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

2.2.11.2.3 ECDSA_P384 Key Pair

The ECDSA_P256 Key Pair structure is used to store an ECDSA_P384 key pair (a public key and
corresponding private key) for use with the ECDSA digital signature algorithm.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Reserved1

Reserved2

X (48 bytes)

...

...

Y (48 bytes)

...

...

d (48 bytes)

...

...

Reserved1 (4 bytes): MUST be 0x324B4345.

Reserved2 (4 bytes): MUST be 0x00000030.

X (48 bytes): This MUST be the x-coordinate of the ECDSA public key. It MUST be encoded in big-
endian format.

Y (48 bytes): This MUST be the y-coordinate of the ECDSA public key. It MUST be encoded in big-
endian format.

d (48 bytes): This MUST be the ECDSA private key. It MUST be encoded in big-endian format.

2.2.11.2.4 Protection Key Identifier

The Protection Key Identifier structure is used to store metadata about the key used to

cryptographically wrap the DNSSEC key as part of the Exported Key Pair structure specified in section
2.2.11.2.6.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Reserved1

Reserved2

178 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Reserved3

L0KeyID

L1KeyID

L2KeyID

RootKeyID (16 bytes)

...

...

Reserved4

DomainNameLength

ForestNameLength

DNSDomainName (variable)

...

DNSForestName (variable)

...

Reserved1 (4 bytes): MUST be 0x00000001.

Reserved2 (4 bytes): MUST be 0x4B53444B.

Reserved3 (4 bytes): MUST be 0x00000000.

L0KeyID (4 bytes): An L0 index, as defined in [MS-GKDI] section 3.1.4.1.

L1KeyID (4 bytes): An L1 index, as defined in [MS-GKDI] section 3.1.4.1.

L2KeyID (4 bytes): An L2 index, as defined in [MS-GKDI] section 3.1.4.1.

RootKeyID (16 bytes): A root key identifier, as defined in [MS-GKDI] section 3.1.4.1.

Reserved4 (4 bytes): MUST be 0x00000000.

DomainNameLength (4 bytes): A 32-bit unsigned integer, encoded in little-endian format. It MUST

be the length, in bytes, of the DNSDomainName field.

ForestNameLength (4 bytes): A 32-bit unsigned integer, encoded in little-endian format. It MUST
be the length, in bytes, of the DNSForestName field.

DNSDomainName (variable): A null-terminated Unicode string containing the DNS-style name of
the Active Directory domain in which this identifier was created.

DNSForestName (variable): A null-terminated Unicode string containing the DNS-style name of the
Active Directory forest in which this identifier was created.

%5bMS-GKDI%5d.pdf#Section_943dd4f66b804a66859480df6d2aad0a

179 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

2.2.11.2.5 Protection Key Attributes

The Protection Key Attributes structure is used to store some metadata about how a key pair is
cryptographically wrapped as part of the Exported Key Pair structure (section 2.2.11.2.6). It is a

structure in ASN.1 format, encoded using DER encoding as specified in [X690]. The ASN.1 definition
for this structure is as follows.

 microsoft OBJECT IDENTIFIER ::= { iso(1) identified-organization(3) dod(6) internet(1)
private(4) enterprise(1) 311 }

 msKeyProtection OBJECT IDENTIFIER := { microsoft 74 }
 protectionInfo OBJECT IDENTIFIER ::= { msKeyProtection 1 }
 sidProtected OBJECT IDENTIFIER ::= { protectionInfo 1 }
 sidName UTF8 STRING ::= "SID"
 ProtectionKeyAttribute ::= SEQUENCE {
 protectionInfo OBJECT IDENTIFIER,
 SEQUENCE SIZE (1) {
 sidProtected OBJECT IDENTIFIER,
 SEQUENCE SIZE (1) {
 SEQUENCE SIZE (1) {
 SEQUENCE SIZE (1) {
 sidName UTF8 STRING,
 sidString UTF8 STRING
 }
 }
 }
 }
 }

2.2.11.2.6 Exported Key Pair

The Exported Key Pair structure is used to wrap a ZSK for secure storage in the Active Directory
database.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Reserved1

Reserved2

LengthOfAlgorithmName

LengthOfProtectedKeyBlob

LengthOfKeyName

AlgorithmName (variable)

...

ProtectedKeyBlob (variable)

...

KeyName (variable)

http://go.microsoft.com/fwlink/?LinkId=90593

180 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

...

Reserved1 (4 bytes): MUST be 0x00000014.

Reserved2 (4 bytes): MUST be 0x4B545250.

LengthOfAlgorithmName (4 bytes): A 32-bit unsigned integer, encoded using little-endian format.

This MUST be equal to the length of the AlgorithmName field, in bytes.

LengthOfProtectedKeyBlob (4 bytes): A 32-bit unsigned integer, encoded using little-endian
format. This MUST be equal to the length of the ProtectedKeyBlob field, in bytes.

LengthOfKeyName (4 bytes): A 32-bit unsigned integer, encoded using little-endian format. This
MUST be equal to the length of the KeyName field, in bytes.

AlgorithmName (variable): The Cryptographic Algorithm Name, as specified in section 2.2.11.1.1,

of the digital signature algorithm that the key encapsulated in the ProtectedKeyBlob field is

intended for use with.

ProtectedKeyBlob (variable): A BLOB containing the encrypted key pair, constructed as specified in
section 3.1.

KeyName (variable): A null-terminated Unicode string containing implementation-dependent data.

2.2.12 Zone Statistics Messages

2.2.12.1 Enumerations and Constants

Constant/Value Description

MAX_RECORD_TYPES

0x0000001D

Specifies the maximum record types supported.

MAX_ZONE_TRANSFER_TYPES

0x00000002

Specifies the maximum zone transfer types supported (currently AXFR and
IXFR).

DNS_RPC_ZONE_STATS_GET

0x00000000

Enumerates zone statistics.

DNS_RPC_ZONE_STATS_CLEAR

0x00000001

Enumerates zone statistics and resets the zone statistics to zero.

2.2.12.1.1 DNS_ZONE_STATS_TYPE

This is the enumerator for all zone statistics types.<78>

 typedef enum _DNS_ZONE_STATS_TYPE {
 //
 // Record types. If new zone stats record type is added/deleted
 // then update MAX_RECORD_TYPES accordingly.
 //
 ZONE_STATS_TYPE_RECORD_A = 0,
 ZONE_STATS_TYPE_RECORD_AAAA,
 ZONE_STATS_TYPE_RECORD_PTR,
 ZONE_STATS_TYPE_RECORD_CNAME,
 ZONE_STATS_TYPE_RECORD_MX,
 ZONE_STATS_TYPE_RECORD_AFSDB,

181 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 ZONE_STATS_TYPE_RECORD_ATMA,
 ZONE_STATS_TYPE_RECORD_DHCID,
 ZONE_STATS_TYPE_RECORD_DNAME,
 ZONE_STATS_TYPE_RECORD_HINFO,
 ZONE_STATS_TYPE_RECORD_ISDN,
 ZONE_STATS_TYPE_RECORD_MG,
 ZONE_STATS_TYPE_RECORD_MB,
 ZONE_STATS_TYPE_RECORD_MINFO,
 ZONE_STATS_TYPE_RECORD_NAPTR,
 ZONE_STATS_TYPE_RECORD_NXT,
 ZONE_STATS_TYPE_RECORD_KEY,
 ZONE_STATS_TYPE_RECORD_MR,
 ZONE_STATS_TYPE_RECORD_RP,
 ZONE_STATS_TYPE_RECORD_RT,
 ZONE_STATS_TYPE_RECORD_SRV,
 ZONE_STATS_TYPE_RECORD_SIG,
 ZONE_STATS_TYPE_RECORD_TEXT,
 ZONE_STATS_TYPE_RECORD_WKS,
 ZONE_STATS_TYPE_RECORD_X25,
 ZONE_STATS_TYPE_RECORD_DNSKEY,
 ZONE_STATS_TYPE_RECORD_DS,
 ZONE_STATS_TYPE_RECORD_NS,
 ZONE_STATS_TYPE_RECORD_SOA,
 ZONE_STATS_TYPE_RECORD_TLSA,
 ZONE_STATS_TYPE_RECORD_ALL,
 ZONE_STATS_TYPE_RECORD_OTHERS,

 //
 // Zone transfer types. If new zone transfer type is added/deleted
 // then update MAX_ZONE_TRANSFER_TYPES accordingly.
 //
 ZONE_STATS_TYPE_TRANSFER_AXFR,
 ZONE_STATS_TYPE_TRANSFER_IXFR,

 //
 // Zone update.
 //
 ZONE_STATS_TYPE_UPDATE,

 //
 // Zone RRL Stats
 //
 ZONE_STATS_TYPE_RRL,

 MAX_ZONE_STATS_TYPES
 } DNS_ZONE_STATS_TYPE, *PDNS_DONE_STATS_TYPE;

ZONE_STATS_TYPE_RECORD_A: A record type.

ZONE_STATS_TYPE_RECORD_AAAA: AAAA record type.

ZONE_STATS_TYPE_RECORD_PTR: PTR record type.

ZONE_STATS_TYPE_RECORD_CNAME: CNAME record type.

ZONE_STATS_TYPE_RECORD_MX: MX record type.

ZONE_STATS_TYPE_RECORD_AFSDB: AFDSB record type.

ZONE_STATS_TYPE_RECORD_ATMA: ATMA record type.

ZONE_STATS_TYPE_RECORD_DHCID: DHCID record type.

ZONE_STATS_TYPE_RECORD_DNAME: DNAME record type.

ZONE_STATS_TYPE_RECORD_HINFO: HINFO record type.

182 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

ZONE_STATS_TYPE_RECORD_ISDN: ISDN record type.

ZONE_STATS_TYPE_RECORD_MG: MG record type.

ZONE_STATS_TYPE_RECORD_MB: MB record type.

ZONE_STATS_TYPE_RECORD_MINFO: MINFO record type.

ZONE_STATS_TYPE_RECORD_NAPTR: NAPTR record type.

ZONE_STATS_TYPE_RECORD_NXT: NXT record type.

ZONE_STATS_TYPE_RECORD_KEY: KEY record type.

ZONE_STATS_TYPE_RECORD_MR: MR record type.

ZONE_STATS_TYPE_RECORD_RP: RP record type.

ZONE_STATS_TYPE_RECORD_RT: RT record type.

ZONE_STATS_TYPE_RECORD_SRV: SRV record type.

ZONE_STATS_TYPE_RECORD_SIG: SIG record type.

ZONE_STATS_TYPE_RECORD_TEXT: TXT record type.

ZONE_STATS_TYPE_RECORD_WKS: WKS record type.

ZONE_STATS_TYPE_RECORD_X25: X25 record type.

ZONE_STATS_TYPE_RECORD_DNSKEY: DNSKEY record type.

ZONE_STATS_TYPE_RECORD_DS: DS record type.

ZONE_STATS_TYPE_RECORD_NS: NS record type.

ZONE_STATS_TYPE_RECORD_SOA: SOA record type.

ZONE_STATS_TYPE_RECORD_TLSA: TLSA record type.

ZONE_STATS_TYPE_RECORD_ALL: All record types.

ZONE_STATS_TYPE_RECORD_OTHERS: Resource records not specified in this list.

ZONE_STATS_TYPE_TRANSFER_AXFR: Axft transfer type.

ZONE_STATS_TYPE_TRANSFER_IXFR: Ixfr transfer type.

ZONE_STATS_TYPE_UPDATE: Zone Update.

ZONE_STATS_TYPE_RRL: Response Rate Limiting.

MAX_ZONE_STATS_TYPES: Specifies the maximum zone statistics types supported.

2.2.12.2 Structures

2.2.12.2.1 DNSSRV_ZONE_TIME_STATS

The DNSSRV_ZONE_TIME_STATS structure<79> contains zone time statistics information.

 typedef struct _DnsZoneTimeStats {
 DNS_SYSTEMTIME StatsCollectionStartTime;

183 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 } DNSSRV_ZONE_TIME_STATS,
 *PDNSSRV_ZONE_TIME_STATS;

StatsCollectionStartTime: The time when zone statistics collection started.

2.2.12.2.2 DNSSRV_ZONE_QUERY_STATS

The DNSSRV_ZONE_QUERY_STATS structure<80> contains per-zone per-record-type statistics.

 typedef struct _DnsZoneQueryStats {
 DNS_ZONE_STATS_TYPE RecordType;
 ULONG64 QueriesResponded;
 ULONG64 QueriesReceived;
 ULONG64 QueriesFailure;
 ULONG64 QueriesNameError;
 } DNSSRV_ZONE_QUERY_STATS,
 *PDNSSRV_ZONE_QUERY_STATS;

RecordType: The type of record for which the query was received. The value SHOULD be of type
DNS_ZONE_STATS_TYPE.

QueriesResponded: The total number of queries to which the server responded for a specific zone.

QueriesReceived: The total number of queries received by the server for a specific zone.

QueriesFailure: The total number of queries for which the server responded with server failure for a

specific zone.

QueriesNameError: The total number of queries for which the server responded with a name error
for a specific zone.

2.2.12.2.3 DNSSRV_ZONE_TRANSFER_STATS

The DNSSRV_ZONE_TRANSFER_STATS structure<81> contains zone transfer statistics per zone.

 typedef struct _DnsZoneTransferStats {
 DNS_ZONE_STATS_TYPE TransferType;
 ULONG64 RequestReceived;
 ULONG64 RequestSent;
 ULONG64 ResponseReceived;
 ULONG64 SuccessReceived;
 ULONG64 SuccessSent;
 } DNSSRV_ZONE_TRANSFER_STATS,
 *PDNSSRV_ZONE_TRANSFER_STATS;

TransferType: The type of zone transfer request for which the query was received. The value is of
type DNS_ZONE_STATS_TYPE.

RequestReceived: The total number of zone transfer requests received by the server for a specific

zone.

RequestSent: The total number of zone transfer requests sent by the server for a specific zone.

ResponseReceived: The total number of zone transfer responses received by the server for a specific
zone.

SuccessReceived: The total number of zone transfer requests received successfully by the receiver
for a specific zone.

184 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

SuccessSent: The total number of zone transfer responses sent by the server for a specific zone.

2.2.12.2.4 DNSSRV_ZONE_UPDATE_STATS

The DNSSRV_ZONE_UPDATE_STATS structure<82> contains statistics about the dynamic updates per

zone.

 typedef struct _DnsZoneUpdateStats {
 DNS_ZONE_STATS_TYPE Type;
 ULONG64 DynamicUpdateReceived;
 ULONG64 DynamicUpdateRejected;
 } DNSSRV_ZONE_UPDATE_STATS,
 *PDNSSRV_ZONE_UPDATE_STATS;

Type: The type of zone update request for which statistics are required. The value is of type
DNS_ZONE_STATS_TYPE (section 2.2.12.1.1).

DynamicUpdateReceived: The total number of dynamic updates accepted on a specified zone.

DynamicUpdateRejected: The total number of dynamic updates rejected on a specified zone.

2.2.12.2.5 DNS_RPC_ZONE_STATS_V1

The DNS_RPC_ZONE_STATS_V1 structure SHOULD<83> contain all the statistics about a zone.

 typedef struct _DnsRpcZoneStats {
 DWORD dwRpcStructureVersion;
 DNSSRV_ZONE_TIME_STATS ZoneTimeStats;
 DNSSRV_ZONE_QUERY_STATS ZoneQueryStats[MAX_RECORD_TYPES];
 DNSSRV_ZONE_TRANSFER_STATS ZoneTransferStats[MAX_ZONE_TRANSFER_TYPES];
 DNSSRV_ZONE_UPDATE_STATS ZoneUpdateStats;
 DNSSRV_ZONE_RRL_STATS ZoneRRLStats;
 } DNS_RPC_ZONE_STATS_V1,
 *PDNS_RPC_ZONE_STATS_V1;

dwRpcStructureVersion: The DNS management structure version number. This value MUST be set
to 0x00000001.

ZoneTimeStats: Information about the zone time statistics in DNSSRV_ZONE_TIME_STATS (section
2.2.12.2.1).

ZoneQueryStats: An array of DNSSRV_ZONE_QUERY_STATS (section 2.2.12.2.2).

ZoneTransferStats: An array of DNSSRV_ZONE_TRANSFER_STATS (section 2.2.12.2.3).

ZoneUpdateStats: Information about the zone dynamic update statistics in
DNSSRV_ZONE_UPDATE_STATS (section 2.2.12.2.4).

ZoneRRLStats: Information about the zone RRL statistics in DNSSRV_ZONE_RRL_STATS (section
2.2.12.2.6).

2.2.12.2.6 DNSSRV_ZONE_RRL_STATS

The DNSSRV_ZONE_RRL_STATS structure SHOULD<84> contain zone statistics about Response Rate

Limiting.

 typedef struct _DnsZoneRRLStats {

185 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 DNS_ZONE_STATS_TYPE Type;
 DWORD TotalResponsesSent;
 DWORD TotalResponsesDropped;
 DWORD TotalResponsesTruncated;
 DWORD TotalResponsesLeaked;

 } DNSSRV_ZONE_RRL_STATS,
 *PDNSSRV_ZONE_RRL_STATS;

Type: The DNS query type for which statistics are required. The value is of type
DNS_ZONE_STATS_TYPE (section 2.2.12.1.1).

TotalResponsesSent: The total number of responses sent on a specified zone when RRL is enabled.

TotalResponsesDropped: The total number responses dropped on a specified zone when RRL is
enabled.

TotalResponsesTruncated: The total number of responses sent with a truncated bit set on a

specified zone when RRL is enabled.

TotalResponsesLeaked: The total number of responses sent after exhaustion of available responses
on a specified zone when RRL is enabled.

2.2.13 Zone Scope or Cache Scope Messages

2.2.13.1 Enumerations and Constants

2.2.13.2 Structures

2.2.13.2.1 DNS_RPC_ENUM_ZONE_SCOPE_LIST

The DNS_RPC_ENUM_ZONE_SCOPE_LIST structure<85> contains a list of zone scopes or cache

scopes to be enumerated.

 typedef struct _DnsRpcEnumZoneScopeList {
 DWORD dwRpcStructureVersion;
 DWORD dwZoneScopeCount;
 LPWSTR ZoneScopeArray[1];
 } DNS_RPC_ENUM_ZONE_SCOPE_LIST,
 *PDNS_RPC_ENUM_ZONE_SCOPE_LIST;

dwRpcStructureVersion: The DNS management structure version number. This value MUST be set
to 0x00000001.

dwZoneScopeCount: The number of zone scopes or cache scopes.

ZoneScopeArray: An array containing the names of zone scopes or cache scopes.

2.2.13.2.2 DNS_RPC_ZONE_SCOPE_CREATE_INFO

2.2.13.2.2.1 DNS_RPC_ZONE_SCOPE_CREATE_INFO_V1

The DNS_RPC_ZONE_SCOPE_CREATE_INFO_V1 structure<86> contains the name of the zone scope
or cache scope.

 typedef struct _DnsRpcScopeCreate {

186 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 DWORD dwFlags;
 LPWSTR pwszScopeName;
 } DNS_RPC_ZONE_SCOPE_CREATE_INFO_V1,
 *PDNS_RPC_ZONE_SCOPE_CREATE_INFO_V1;

dwFlags: Specifies the behavior that the DNS server SHOULD follow when creating the scope. This
field is used only when the operation is CreateZoneScope. For any other value than the following,
a new empty zone scope is created:

Value Meaning

DNS_ZONE_LOAD_OVERWRITE_MEMORY

0x00000010

If this value is specified, the DNS server MUST attempt to
find and load the zone scope database from persistent
storage instead of creating a new empty zone scope. If a
pre-existing zone scope database is not found, or if there is
a failure in loading the existing database, the DNS server
MUST fail the operation and return an error. If a cache
scope is being created, this operation fails on the DNS
server and an ERROR_INVALID_PARAMETER error is
returned.

pwszScopeName: The name of the zone scope or cache scope.

2.2.13.2.3 DNS_RPC_ZONE_SCOPE_INFO

2.2.13.2.3.1 DNS_RPC_ZONE_SCOPE_INFO_V1

The DNS_RPC_ZONE_SCOPE_INFO_V1 structure<87> contains the details of the zone scope or cache
scope.

 typedef struct _DnsRpcZoneScopeInfo {
 DWORD dwRpcStructureVersion;
 LPWSTR pwszScopeName;
 LPWSTR pwszDataFile;
 } DNS_RPC_ZONE_SCOPE_INFO_V1,
 *PDNS_RPC_ZONE_SCOPE_INFO_V1;

dwRpcStructureVersion: The DNS management structure version number. This value MUST be set
to 0x00000001.

pwszScopeName: The name of the zone scope or cache scope.

pwszDataFile: The name of the zone scope or cache scope data file.

2.2.14 Server Scope Messages

2.2.14.1 Structures

2.2.14.1.1 DNS_RPC_ENUM_SCOPE_LIST

The DNS_RPC_ENUM_SCOPE_LIST structure<88> contains the list of server scopes configured on the
DNS server.

 typedef struct _DnsRpcEnumScopeList {
 DWORD dwRpcStructureVersion;
 DWORD dwScopeCount;
 LPWSTR ScopeArray[1];

187 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 } DNS_RPC_ENUM_SCOPE_LIST,
 *PDNS_RPC_ENUM_SCOPE_LIST;

dwRpcStructureVersion: The DNS management structure version number. This value MUST be set
to 0x00000000.

dwScopeCount: The number of server scopes.

ScopeArray: An array containing the names of server scopes.

2.2.15 Policies

DNS policy constants and structures SHOULD<89> be used during DNS policy update.

2.2.15.1 Enumerations and Constants

2.2.15.1.1 Constants

The following DNS Policy constants are used during a DNS Policy update, as specified in the
UpdatePolicy operation (section 3.1.4.1). For detail on how they affect DNS policy update, see

UpdatePolicy in section 3.1.4.1.

Constant/value Description

DNS_RPC_FLAG_POLICY_CRITERIA_FQDN

0x00000001

Specifies that the criteria (section 2.2.15.2.4)
for matching a DNS Policy is based on the
query name in the question section of a DNS
query in a DNS Operation ([RFC1034]
section 3.7).

DNS_RPC_FLAG_POLICY_CRITERIA_CLIENT_SUBNET

0x00000002

Specifies that the criteria (section 2.2.15.2.4)
for matching a DNS Policy is based on the
client subnet record, which is derived from
the IP address of a resolver in a DNS
Operation ([RFC1034]) section 2.4).

DNS_RPC_FLAG_POLICY_CRITERIA_SERVER_IP

0x00000004

Specifies that the criteria (section 2.2.15.2.4)
for matching a DNS Policy is based on the IP
address on which the DNS server receives the
DNS query in a DNS Operation.

DNS_RPC_FLAG_POLICY_CRITERIA_QUERY_TYPE

0x00000008

Specifies that the criteria (section 2.2.15.2.4)
for matching a DNS Policy is based on the
QTYPE of a DNS query in a DNS Operation
([RFC1035] section 3.2.3).

DNS_RPC_FLAG_POLICY_CRITERIA_TIME_OF_DAY

0x000000010

Specifies that the criteria (section 2.2.15.2.4)
for matching a DNS Policy is based on the
Time Of Day in start-time : end-time format
where time is expressed in hh:mm, when the
DNS server receives a DNS query during a
DNS Operation.

DNS_RPC_FLAG_POLICY_CRITERIA_TRANSPORT_PROTOC
OL

0x000000020

Specifies that the criteria (section 2.2.15.2.4)
for matching a DNS Policy is based on the
Transport Layer Protocol (TCP or UDP) used
to send a DNS query to the DNS server during
a DNS Operation.

DNS_RPC_FLAG_POLICY_CRITERIA_NETWORK_PROTOCOL Specifies that the criteria (section 2.2.15.2.4)

http://go.microsoft.com/fwlink/?LinkId=90263
http://go.microsoft.com/fwlink/?LinkId=90264

188 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Constant/value Description

0x00000040 for matching a DNS Policy is based the
Internet Protocol that is used (IPv4 or IPv6)
to send a DNS Query to the DNS server
during a DNS Operation.

DNS_RPC_FLAG_POLICY_CONDITION

0x00010000

Specifies that the criteria (section 2.2.15.2.4)
for matching a DNS Policy is based on the
DNS_RPC_POLICY_CONDITION (section 2.2.1
5.1.1.2) that connects the various criteria in a
DNS operation.

DNS_RPC_FLAG_POLICY_PROCESSING_ORDER

0x00020000

Specifies the processing order of a DNS
policy. A processing order of a DNS Policy

determines whether this policy is to be
applied to the DNS operation, in case there
are other DNS policies
(DNS_RPC_POLICY (section 2.2.15.2.5)) at
the same level that also match the DNS
operation.

DNS_RPC_FLAG_POLICY_CONTENT

0x00040000

Specifies the zone scope, cache scope, or
server scope from which a DNS operation is to
be performed in case the DNS Policy is a
match. For more details about the Policy
content, see
DNS_RPC_POLICY_CONTENT (section 2.2.15.
2.2).

2.2.15.1.1.1 DNS_RPC_CRITERIA_COMPARATOR

The DNS_RPC_CRITERIA_COMPARATOR enumeration specifies the logical condition which connects
the DNS Policy Criteria evaluation during DNS Operations.

 typedef enum
 {
 Equals=1,
 NotEquals
 }
 DNS_RPC_CRITERIA_COMPARATOR;

Equals: Specifies that the values in a criteria (section 2.2.15.2.5) of a DNS policy are connected by a
logical OR condition.

NotEquals: Specifies that the values in a criteria (section 2.2.15.2.5) of a DNS Policy are connected
by logical AND condition.

2.2.15.1.1.2 DNS_RPC_POLICY_CONDITION

The DNS_RPC_POLICY_CONDITION enumeration specifies the logical condition that connects the DNS
Policy Criteria evaluation during DNS operations.

 typedef enum
 {
 DNS_AND,
 DNS_OR
 }

189 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 DNS_RPC_POLICY_CONDITION;

DNS_AND: While evaluating a DNS policy (section 2.2.15.2.5) during a DNS Operation, all criteria
(section 2.2.15.2.4) configured for that particular DNS Policy MUST match.

DNS_OR: While evaluating a DNS Policy during a DNS Operation, at least one configured criterion
MUST match.

2.2.15.1.1.3 DNS_RPC_POLICY_LEVEL

The DNS_RPC_POLICY_LEVEL enumeration specifies that the DNS Policy is applied for a zone, cache

zone, or at server level.

 typedef enum
 {
 DnsPolicyServerLevel,
 DnsPolicyZoneLevel,
 DnsPolicyLevelMax
 }DNS_RPC_POLICY_LEVEL;

DnsPolicyServerLevel: The DNS Policy is applicable at the server level for all DNS operations.

DnsPolicyZoneLevel: The DNS Policy is applicable only for a specified zone. It is applicable for all
DNS operations allowed for any zone.

Note For all DNS operations, Recursive Query is not possible for a zone because the zone never
recurses for records it owns.

DnsPolicyLevelMax: Shows the maximum level types supported.

2.2.15.1.1.4 DNS_RPC_POLICY_ACTION_TYPE

The DNS_RPC_POLICY_ACTION_TYPE enumeration specifies the action to be applied when a DNS
Policy is matched.

 typedef enum
 {
 DnsPolicyDeny,
 DnsPolicyAllow,
 DnsPolicyIgnore,
 DnsPolicyActionMax
 }DNS_RPC_POLICY_ACTION_TYPE;

DnsPolicyDeny: Denies the specific DNS operation.

DnsPolicyAllow: Allows a specific DNS operation.

DNSPolicyIgnore: Ignores a specific DNS operation by dropping the related query.

DnsPolicyActionMax: Shows the maximum action types supported.

2.2.15.1.1.5 DNS_RPC_POLICY_TYPE

The DNS_RPC_POLICY_TYPE enumeration specifies the DNS operation for which the DNS policy is
applicable.

190 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Enumerator Value Description

DnsPolicyQueryProcessing=0 The DNS policy is applicable for DNS queries.

DnsPolicyZoneTransfer The DNS policy is applicable for zone transfer.

DnsPolicyDynamicUpdate The DNS policy is applicable for dynamic DNS updates.

DnsPolicyRecursion The DNS policy is applicable for recursive queries.

DnsPolicyRRLExceptionList The DNS policy is applicable for RRL Exceptionlisting. Exceptionlisting exempts
queries from response rate limiting. The queries can be exempted based on name,
source subnet, or the DNS server interface address where the query was received.

2.2.15.1.1.6 DNS_RPC_CRITERIA_ENUM

The DNS_RPC_CRITERIA_ENUM enumeration specifies the various criteria that a DNS server needs to

match during a DNS operation to have a successful DNS policy match. For more information, see
section 3.1.8.2.

 typedef enum {
 DnsPolicyCriteriaSubnet,
 DnsPolicyCriteriaTransportProtocol,
 DnsPolicyCriteriaNetworkProtocol,
 DnsPolicyCriteriaInterface,
 DnsPolicyCriteriaFqdn,
 DnsPolicyCriteriaQtype,
 DnsPolicyCriteriaTime,
 DnsPolicyCriteriaMax
 }DNS_RPC_CRITERIA_ENUM;

DnsPolicyCriteriaSubnet: This specifies that the criteria for match of a DNS policy is based on the

client subnet record, derived from the IP address of a resolver [RFC1034] section 2.4 in a DNS
Operation.

DnsPolicyCriteriaTransportProtocol: This specifies that the criteria for match of a DNS policy is
based on the transport layer protocol (TCP or UDP) used to send a DNS query to the DNS server
during a DNS operation.

DnsPolicyCriteriaNetworkProtocol: This specifies that the criteria for match of a DNS policy is
based on the Internet protocol used (IPv4 or IPv6) to send a DNS query to the DNS server during

a DNS operation.

DnsPolicyCriteriaInterface: This specifies that the criteria for match of a DNS policy is based on
the IP address on which the DNS server receives the DNS query in a DNS operation.

DnsPolicyCriteriaFqdn: This specifies that the criteria for match of a DNS policy is based on the
query name in the question section [RFC1034] section 3.7 of a DNS query, in a DNS operation.

DnsPolicyCriteriaQtype: This specifies that the criteria for match of a DNS policy is based on the

QTYPE [RFC1035] section 3.2.3 of a DNS query in a DNS operation.

DnsPolicyCriteriaTime: This specifies that the criteria for match of a DNS policy is based on the
time of day, in minutes, when the DNS server receives a DNS query during a DNS operation.

DnsPolicyCriteriaMax: This shows the maximum number of criteria type supported by DNS policy.

http://go.microsoft.com/fwlink/?LinkId=90263
http://go.microsoft.com/fwlink/?LinkId=90264

191 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

2.2.15.2 Structures

2.2.15.2.1 DNS_RPC_CLIENT_SUBNET_RECORD

The DNS_RPC_CLIENT_SUBNET_RECORD structure contains the IPv4 and IPv6 subnets that are
grouped together.

 typedef struct _ClientSubnetRecord {
 LPWSTR pwszClientSubnetName;
 PDNS_ADDR_ARRAY pIPAddr;
 PDNS_ADDR_ARRAY pIPv6Addr;
 } DNS_RPC_CLIENT_SUBNET_RECORD,
 *PDNS_RPC_CLIENT_SUBNET_RECORD;

pwszClientSubnetName: (variable) A NULL-terminated Unicode string containing the name of the
client subnet record.

pIPAddr: A pointer to a DNS_ADDR_ARRAY (section 2.2.3.2.3) structure that contains a list of IP
subnets contained in this client subnet record along with the SubnetLength as defined in DNS ADD

USER (section 2.2.3.2.2.2).

pIPv6Addr: A pointer to a DNS_ADDR_ARRAY structure that contains a list of IPv6 subnets contained
in this client subnet record along with the SubnetLength as defined in DNS ADD USER.

2.2.15.2.2 DNS_RPC_POLICY_CONTENT

The DNS_RPC_POLICY_CONTENT structure contains the zone scope, cache scope, or server scope
details that are used to service the DNS operation if a DNS policy's

DNS_RPC_POLICY_ACTION_TYPE (section 2.2.15.1.1.4) is DnsPolicyAllow.

 typedef struct _DnssrvRpcPolicyActionContent {
 LPWSTR pwszScopeName;
 DWORD dwWeight;
 } DNS_RPC_POLICY_CONTENT,
 *PDNS_RPC_POLICY_CONTENT;

pwszScopeName: A NULL-terminated Unicode string containing the name of the zone scope, cache

scope or server scope.

dwWeight: A 32-bit unsigned integer that specifies the weight associated with the scope name. The
weight of a scope determines the number of responses that are sent from that scope. For example, if
a DNS_RPC_POLICY has pContentList with two DNS_RPC_POLICY_CONTENT items having scope name
and weight as {Scope1,2} and {Scope2,3}, then when the DNS policy is a match, Scope1 is used to
respond to the DNS operation for the first two times the DNS policy is a match. Scope2 is used to
respond to the DNS operation for the next three times the DNS policy is a match. The sequence is

repeated for further matches of the DNS policy. If a dwWeight of a DNS_RPC_POLICY_CONTENT is
not given. its default weight is 1. So if two or more DNS_RPC_POLICY_CONTENT structures are given
during DNS_RPC_POLICY creation without a value for dwWeight, all of them will get weight of 1 and

the DNS operation will be performed from each scope in a round-robin fashion. Allowed values for
weight are any positive number from 1 and higher to 0xffffffff. If 0 is sent as a weight, the DNS server
returns the error DNS_ERROR_POLICY_INVALID_WEIGHT.

2.2.15.2.3 DNS_RPC_POLICY_CONTENT_LIST

The DNS_RPC_POLICY_CONTENT_LIST structure contains a list of DNS_RPC_POLICY_CONTENT
structures configured for a DNS policy.

192 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 typedef struct _DnssrvRpcPolicyAction {
 [range (0,50000)] DWORD dwContentCount;
 [size_is (dwContentCount)] PDNS_RPC_POLICY_CONTENT pContent[];
 } DNS_RPC_POLICY_CONTENT_LIST,
 *PDNS_RPC_POLICY_CONTENT_LIST;

dwContentCount: An unsigned integer specifying the number of DNS_RPC_POLICY_CONTENT
elements present.

pContent: An array of pointers to DNS_RPC_POLICY_CONTENT structure.

2.2.15.2.4 DNS_RPC_CRITERIA

The DNS_RPC_CRITERIA structure contains the DNS policy criteria that is associated with a DNS
policy.

 typedef struct _CriteriaList {
 DNS_RPC_CRITERIA_ENUM type;
 LPWSTR pCriteria;
 } DNS_RPC_CRITERIA,
 *PDNS_RPC_CRITERIA;

type: This specifies the type of criteria associated with the DNS policy. The value is of type
DNS_RPC_CRITERIA_ENUM (section 2.2.15.1.1.6).

pCriteria: A NULL-terminated Unicode string containing the DNS policy criteria details.

2.2.15.2.5 DNS_RPC_POLICY

The DNS_RPC_POLICY structure contains all details associated with a DNS policy.

 typedef struct _DnssrvRpcPolicy {
 LPWSTR pwszPolicyName;
 DNS_RPC_POLICY_LEVEL level;
 DNS_RPC_POLICY_TYPE appliesOn;
 DNS_RPC_POLICY_ACTION_TYPE action;
 DNS_RPC_POLICY_CONDITION condition;
 BOOL isEnabled;
 DWORD dwProcessingOrder;
 LPSTR pszZoneName;
 PDNS_RPC_POLICY_CONTENT_LIST pContentList;
 DWORDLONG flags;
 [range (0,50000)] DWORD dwCriteriaCount;
 [size_is (dwCriteriaCount)] PDNS_RPC_CRITERIA pCriteriaList[];
 } DNS_RPC_POLICY,
 *PDNS_RPC_POLICY;

pwszPolicyName: A NULL-terminated Unicode string containing the name of the DNS policy. The
name is unique across a level as specified in DNS_RPC_POLICY_LEVEL (section 2.2.15.1.1.3).

level: This specifies whether the policy is configured for a zone (including a cache zone) or is at server
level. The value is of type DNS_RPC_POLICY_LEVEL.

appliesOn: This specifies the DNS operation for which the DNS policy is applicable. The value is of
type DNS_RPC_POLICY_TYPE (section 2.2.15.1.1.5).

action: This specifies the action to be applied on a DNS operation when there is a DNS policy match.
The value is of type DNS_RPC_POLICY_ACTION_TYPE (section 2.2.15.1.1.4).

193 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

condition: This specifies the logical operation across the DNS policy criteria of a DNS policy, which
determines whether the DNS policy match has succeeded or failed. The value is of type

DNS_RPC_POLICY_CONDITION (section 2.2.15.1.1.2).

isEnabled: A BOOL variable that specifies whether a DNS policy is enabled. TRUE indicates that the

DNS policy MUST be applied to the DNS operation; FALSE indicates that the DNS policy is disabled
and MUST NOT be applied to the DNS operation.

dwProcessingOrder: An unsigned integer that specifies the order in which this DNS policy is
processed, along with 0 or more other DNS policies for a given level 2.2.15.1.1.3 and
DNS_RPC_POLICY_TYPE (section 2.2.15.1.1.5) during a DNS operation.

pszZoneName: A NULL-terminated string containing the name of the zone for which this DNS policy
is configured.

pContentList: An object of type DNS_RPC_POLICY_CONTENT_LIST (section 2.2.15.2.3) that has a
list of zone scope, cache scope, or server scope with weight as defined in
DNS_RPC_POLICY_CONTENT (section 2.2.15.2.2). If the DNS policy matches the criteria in

pCriteriaList and its action is DnsPolicyAllow, then the zone scopes, cache scopes, or server
scopes contained in pContentList are used in the DNS operation as per their dwWeight.

flags: This is used during update of a DNS policy. The various bits of flags show which members of

the DNS Policy are to be updated. For possible values of the bits of flags. see section 2.2.15.1.1.
For details on how this is used during a policy update, see the operation UpdatePolicy in section
3.1.4.1.

dwCriteriaCount: An unsigned integer containing the number of DNS policy criteria that are
configured for this DNS policy.

pCriteriaList: An array of DNS_RPC_CRITERIA (section 2.2.15.2.4) that are compared with each
other using condition DNS_RPC_POLICY_CONDITION (section 2.2.15.1.1.2) to match a DNS

policy.

2.2.15.2.6 DNS_RPC_POLICY_NAME

The DNS_RPC_POLICY_NAME structure contains the details of the DNS policy when the DNS policies
are enumerated at a specified level (section 2.2.15.1.1.3).

 typedef struct _DnsRpcPolicyType {
 LPWSTR pwszPolicyName;
 DNS_RPC_POLICY_TYPE appliesOn;
 BOOL fEnabled;
 DWORD processingOrder;
 } DNS_RPC_POLICY_NAME,
 *PDNS_RPC_POLICY_NAME;

pwszPolicyName: A NULL-terminated Unicode string containing the name of the DNS policy. The
name is unique across a level as specified in DNS_RPC_POLICY_LEVEL (section 2.2.15.1.1.3).

appliesOn: This specifies the DNS operation to which the DNS policy applies. The value is of type

DNS_RPC_POLICY_TYPE (section 2.2.15.1.1.5).

fEnabled: A BOOL variable that specifies whether a DNS policy is enabled.

processingOrder: An unsigned integer that specifies the order in which this DNS policy is processed,
along with 0 or more other DNS policies for a given level (section 2.2.15.1.1.3) and
DNS_RPC_POLICY_TYPE (section 2.2.15.1.1.5) during a DNS operation.

2.2.15.2.7 DNS_RPC_ENUMERATE_POLICY_LIST

194 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

The DNS_RPC_ENUMERATE_POLICY_LIST structure contains all the DNS policies at a specified level
(section 2.2.15.1.1.3).

 typedef struct _DnsRpcEnumPolicyList {
 [range(0,50000)] DWORD dwPolicyCount;
 [size_is(dwPolicyCount)] PDNS_RPC_POLICY_NAME pPolicyArray[];
 } DNS_RPC_ENUMERATE_POLICY_LIST,
 *PDNS_RPC_ENUMERATE_POLICY_LIST;

dwPolicyCount: An unsigned integer that specifies the total number of DNS_RPC_POLICY_NAME
elements.

pPolicyArray: An array of pointers of DNS_RPC_POLICY_NAME (section 2.2.15.2.6) structures.

2.2.16 Response Rate Limiting Messages

2.2.16.1 Constants

The following DNS Response Rate Limiting constants SHOULD<90> be used during setting and
updating DNS RRL. All parameters are defined in section 2.2.16.2.1.

Constant/value Description

RRL_RESET_RESPONSES_PER_SECOND

0x00000001

Specifies that the dwResponsesPerSecond parameter will be

updated with the provided value.

RRL_RESET_ERRORS_PER_SECOND

0x00000002

Specifies that the dwErrorsPerSecond parameter will be updated
with the provided value.

RRL_RESET_LEAK_RATE

0x00000004

Specifies that the dwLeakRate parameter will be updated with
the provided value.

RRL_RESET_TC_RATE

0x00000008

Specifies that the dwTCRate parameter will be updated with the
provided value.

RRL_RESET_TOTAL_RESPONSES_IN_WINDOW

0x000000010

Specifies that the dwTotalResponsesInWindow parameter will be
updated with the provided value.

RRL_RESET_WINDOW_SIZE

0x000000020

Specifies that the dwWindowSize parameter will be updated with
the provided value.

RRL_RESET_IPV4_PREFIX_LENGTH

0x00000040

Specifies that the dwIPv4PrefixLength parameter will be
updated with the provided value.

RRL_RESET_IPV6_PREFIX_LENGTH

0x00000080

Specifies that the dwIPv6PrefixLength parameter will be
updated with the provided value.

RRL_RESET_MODE

0x00000100

Specifies that the eMode parameter will be updated with the

provided value.

2.2.16.1.1 DNS_RRL_MODE_ENUM

The DNS_RRL_MODE_ENUM enumeration controls the behavior and application of DNS Response Rate
Limiting at the server level.

195 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 typedef enum {
 DnsRRLLogOnly,
 DnsRRLEnabled,
 DnsRRLDisabled
 } DNS_RRL_MODE_ENUM;

DnsRRLLogOnly: This is the simulation mode for RRL, where the impact of RRL is logged in
analytical channel logs but no actual action is taken (that is, responses are not dropped).

DnsRRLEnabled: In this mode, the RRL algorithm is applied to every incoming query.

DnsRRLDisabled: This mode ensures RRL is disabled and not applied to any incoming query.

2.2.16.2 Structures

2.2.16.2.1 DNS_RPC_RRL_PARAMS

The DNS_RPC_RRL_PARAMS structure SHOULD<91> contain the configuration parameters for the
Response Rate Limiting capability configured on the DNS server.

 typedef struct _DnsRRLParams_ {
 DWORD dwResponsesPerSecond;
 DWORD dwErrorsPerSecond;
 DWORD dwLeakRate;
 DWORD dwTCRate;
 DWORD dwTotalResponsesInWindow;
 DWORD dwWindowSize;
 DWORD dwIPv4PrefixLength;
 DWORD dwIPv6PrefixLength;
 DNS_RRL_MODE_ENUM eMode;
 DWORD dwFlags;
 BOOL fSetDefault;
 } DNS_RPC_RRL_PARAMS,
 *PDNS_RPC_RRL_PARAMS;

dwResponsesPerSecond: The maximum number of responses a DNS server can give for each
successful "unique response" in one-second intervals. A DNS response is considered a unique
response if the combination of the following parameters is unique: the requestor's IP address,
masked according to either dwIPv4PrefixLength or dwIPv6PrefixLength; an imputed domain name
that is either a wildcard (if a wildcard match occurred), the zone name (if no match occurred), or
the query name; and a Boolean error indicator (response code Refused, FormError, or ServFail).

This parameter can be set any positive integer; the default value is 5.

dwErrorsPerSecond: The maximum number of responses a DNS server can give for queries
resulting in error (ServFail, FormError, Refused) in one-second intervals. This parameter can be
set to any positive integer; the default value is 5.

dwLeakRate: When a query would be dropped due to rate limiting, the DNS server responds once

per Leak Rate query. The default value for this parameter is 3. This parameter can be set to any
positive integer greater than 1. If the value is set to 0, this behavior is disabled.

dwTCRate: When a query would be dropped due to rate limiting, the DNS server returns a truncated
response once per TC rate query. The default value for this parameter is 2. The parameter can be
set to any positive integer greater than 1. If the value is set to 0, the behavior is disabled (see
[RRL] section 2.2.8).

dwTotalResponsesInWindow: The maximum number of responses the DNS server can give for
each "unique response" in the defined window duration. See dwResponsesPerSecond for the

http://go.microsoft.com/fwlink/?LinkId=617464

196 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

definition of "unique response". This includes responses given from leak rate, truncation rate, and
responses per second / errors per second. The default value for this parameter is 1024. This

parameter can be set any positive integer.

dwWindowSize: The duration, in seconds, where the state of dwTotalResponsesInWindow is

maintained for each "unique response". See dwResponsesPerSecond for the definition of
"unique response". After this duration, the value for dwTotalResponsesInWindow is reset to 0.
The default value for this parameter is 5. The parameter can be set to any positive integer (see
[RRL] section 2.2.4).

dwIPv4PrefixLength: Controls how the DNS query source IPv4 addresses are grouped into buckets
of size (32 – dwIPv4PrefixLength) ^ 2. The default value for this parameter is 24. The parameter
can be set to any positive integer between 0 and 32.

dwIPv6PrefixLength: Controls how DNS query source IPv6 addresses are grouped into buckets of
size (32 – dwIPv6PrefixLength) ^ 2. The default value for this parameter is 56. This parameter
can be set any positive integer between 0 and 128.

eMode: The mode in which RRL functions on a DNS server.

dwFlags: This is used during the update of a DNS Response Rate Limiting. The various bits show
which members of the DNS RRL are to be updated. For possible values, see section 2.2.16.1.1. For

details on how this is used for setting RRL, see the operation SetRRL in section 3.1.4.1. If dwFlags
is not set for a configuration parameter, default values are applied as shown in the following table:

RRL Configuration Parameter Default Values.

dwResponsesPerSecond 5

dwErrorsPerSecond 5

dwLeakRate 3

dwTCRate 2

dwTotalResponsesInWindow 1024

dwWindowSize 5

dwIPv4PrefixLength 24

dwIPv6PrefixLength 56

eMode DnsRRLDisabled

fSetDefault: Set this value to TRUE to set RRL parameters to their default values. This parameter
does not affect the eMode parameter of RRL.

197 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

2.2.17 Virtualization Instances

2.2.17.1 Structures

The following structures SHOULD<92> be used to describe a virtualization instance on a DNS server
that can independently host zones and zone scopes.

2.2.17.1.1 DNS_RPC_VIRTUALIZATION_INSTANCE

The DNS_RPC_VIRTUALIZATION_INSTANCE structure contains details of a virtualization instance in a

DNS server.

 typedef struct _DnssrvRpcVirtualizationInstance
 {
 DWORD dwRpcStructureVersion;
 DWORD dwReserved;
 DWORD dwFlags;
 LPWSTR pwszVirtualizationID;
 LPWSTR pwszFriendlyName;
 LPWSTR pwszDescription;
 }
 DNS_RPC_VIRTUALIZATION_INSTANCE, *PDNS_RPC_VIRTUALIZATION_INSTANCE;

dwRpcStructureVersion: Contains the DNS management structure version number. This value
MUST be set to 0x00000000.

dwReserved: MUST be set to zero when sent and MUST be ignored on receipt.

dwFlags: This is used during the modification and deletion of a DNS virtualization instance. The

various bits show which members of the DNS virtualization instance are to be updated and other
usage. This field is used for updating the properties of a DNS virtualization instance with operation
UpdateVirtualizationInstance as specified in section 3.1.4.1.

PropertyName Bit Used

DNS_RPC_FLAG_PRESERVE_ZONE_FILE 0x00000001

DNS_RPC_FLAG_FRIENDLY_NAME 0x00000002

DNS_RPC_FLAG_DESC 0x00000004

pwszVirtualizationID: A NULL-terminated Unicode string that uniquely identifies a particular
virtualization instance in a DNS server. The maximum length of this identifier is limited to 64
characters.

pwszFriendlyName: A NULL-terminated Unicode string that contains a user friendly name of the
DNS virtualization instance.

pwszDescription: A NULL-terminated Unicode string that contains description of the DNS

virtualization instance.

2.2.17.1.2 DNS_RPC_VIRTUALIZATION_INSTANCE_INFO

198 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

The DNS_RPC_VIRTUALIZATION_INSTANCE_INFO structure contains the details of a virtualization
instance when the virtualization instances in the DNS server are enumerated (section 3.1.4.15).

 typedef struct _DnssrvRpcVirtualizationInstanceInfo
 {
 LPWSTR pwszVirtualizationID;
 LPWSTR pwszFriendlyName;
 LPWSTR pwszDescription;
 }
 DNS_RPC_VIRTUALIZATION_INSTANCE_INFO, *PDNS_RPC_VIRTUALIZATION_INSTANCE_INFO;

pwszVirtualizationID: A NULL-terminated Unicode string that uniquely identifies a particular
virtualization instance in the DNS server. The maximum length of this identifier is limited to 64
characters.

pwszFriendlyName: A NULL-terminated Unicode string that contains a user-friendly name of the

DNS virtualization instance.

pwszDescription: A NULL-terminated Unicode string that contains a description of the DNS
virtualization instance.

2.2.17.1.3 DNS_RPC_ENUM_VIRTUALIZATION_INSTANCE_LIST

The DNS_RPC_ENUM_VIRTUALIZATION_INSTANCE_LIST structure contains information about all the
virtualization instances in a DNS server (section 3.1.4.15).

 typedef struct _DnsRpcEnumVirtualizationInstanceList
 {
 DWORD dwRpcStructureVersion;
 DWORD dwVirtualizationInstanceCount;
 PDNS_RPC_VIRTUALIZATION_INSTANCE_INFO VirtualizationInstanceArray[1];
 }
 DNS_RPC_ENUM_VIRTUALIZATION_INSTANCE_LIST, *PDNS_RPC_ENUM_VIRTUALIZATION_INSTANCE_LIST;

dwRpcStructureVersion: The DNS management structure version number. This value MUST be set
to 0x00000000.

dwVirtualizationInstanceCount: An unsigned integer that specifies the total number of
DNS_RPC_VIRTUALIZATION_INSTANCE_INFO (section 2.2.17.1.2) elements.

VirtualizationInstanceArray: An array of pointers to DNS_RPC_VIRTUALIZATION_INSTANCE_INFO
(section 2.2.17.1.2) structures.

2.3 Directory Service Schema Elements

The DNS Server Management Protocol accesses the directory service schema classes and attributes
listed in the following table. Those listed as unused are read and stored, but not processed by the
protocol. For the syntactic specifications of the following Class or Class/Attribute pairs, refer to: [MS-

ADSC], [MS-ADA1], [MS-ADA2], and [MS-ADA3]. The specifications of the dnsProperty and dnsRecord
attributes are described in this section.<93>

Class Attribute

container displayName

ntSecurityDescriptor

%5bMS-ADSC%5d.pdf#Section_9abb5e97123d4da99557b353ab79b830
%5bMS-ADSC%5d.pdf#Section_9abb5e97123d4da99557b353ab79b830
%5bMS-ADA1%5d.pdf#Section_19528560f41e4623a406dabcfff0660f
%5bMS-ADA2%5d.pdf#Section_e20ebc4e528540bab3bdffcb81c2783e
%5bMS-ADA3%5d.pdf#Section_4517e8353ee644d4bb95a94b6966bfb0

199 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Class Attribute

crossRef dnsRoot

Enabled

msDS-NC-Replica-Locations

msDS-NC-RO-Replica-Locations

nCName

ntSecurityDescriptor

objectClass

systemFlags

msDS-Behavior-Version

usnChanged (unused)

crossRefContainer fSMORoleOwner

msDS-Behavior-Version

dnsZone<94> dnsProperty

ntSecurityDescriptor

objectGUID

whenChanged

msDNS-IsSigned

msDNS-NSEC3OptOut

msDNS-SigningKeys

msDNS-SignWithNSEC3

msDNS-NSEC3UserSalt

msDNS-DNSKEYRecords

msDNS-DSRecordSetTTL

msDNS-NSEC3Iterations

msDNS-PropagationTime

msDNS-NSEC3CurrentSalt

msDNS-RFC5011KeyRollovers

msDNS-NSEC3HashAlgorithm

msDNS-DSRecordAlgorithms

msDNS-DNSKEYRecordSetTTL

msDNS-MaintainTrustAnchor

msDNS-NSEC3RandomSaltLength

msDNS-SigningKeyDescriptors

msDNS-SignatureInceptionOffset

msDNS-ParentHasSecureDelegation

msDNS-SecureDelegationPollingPeriod

dnsNode dnsRecord

dnsTombstoned

whenChanged

usnChanged (unused)

domainDns instanceType

group groupType

nTDSDSA hasMasterNCs

msDS-Behavior-Version

msDS-HasMasterNCs

200 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Class Attribute

rootDse configurationNamingContext

defaultNamingContext

dnsHostName

dsServiceName

namingContexts

rootDomainNamingContext

schemaNamingContext

serverName

supportedCapabilities

msDNS-ServerSettings msDNS-KeymasterZones

dnsZoneScopeContainer<95> -

dnsZoneScope<96> objectGUID

2.3.1 Object Classes

2.3.1.1 msDNS-ServerSettings

An object of this object class MUST be created (if it does not already exist) by any DNS server that

becomes the key master for a directory service-integrated zone.<97> The object MUST exist in the
directory service as a sibling object of (sharing the same parent object as) the object given by the
dsServiceName attribute in the rootDse object on the key master server.

2.3.2 Attributes

2.3.2.1 dnsProperty

The dnsProperty attribute is used to store zone properties. This attribute MUST be formatted as
follows:

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

DataLength NameLength Flag Version

Id Data (variable)

...

Name

DataLength (1 byte): An unsigned binary integer containing the length, in bytes, of the Data field.

NameLength (1 byte): Not Used. The value MUST be ignored and assumed to be 0x00000001.

Flag (1 byte): This field is reserved for future use. The value MUST be 0x00000000.

201 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Version (1 byte): The version number associated with the property attribute. The value MUST be
0x00000001.

Id (1 byte): The property attribute's type. See Property Id (section 2.3.2.1.1).

Data (variable): The data associated with an Id. See Property Id (section 2.3.2.1.1).

Name (1 byte): Not used. The value MUST be of length 1 byte, and MUST be ignored.

2.3.2.1.1 Property Id

The Id specifies the type of data in a dnsProperty's Data field.<98>

Constant/value Description

DSPROPERTY_ZONE_TYPE

0x00000001

The zone type. See dwZoneType (section 2.2.5.2.4.1).

DSPROPERTY_ZONE_ALLOW_UPDATE

0x00000002

Whether dynamic updates are allowed. See
fAllowUpdate (section 2.2.5.2.4.1).

DSPROPERTY_ZONE_SECURE_TIME

0x00000008

The time at which the zone became secure. See Time
Zone Secured (3.1.1).

DSPROPERTY_ZONE_NOREFRESH_INTERVAL

0x00000010

The zone no refresh interval. See
dwNoRefreshInterval (section 2.2.5.2.4.1).

DSPROPERTY_ZONE_REFRESH_INTERVAL

0x00000020

The zone refresh interval. See
dwRefreshInterval (section 2.2.5.2.4.1).

DSPROPERTY_ZONE_AGING_STATE

0x00000040

Whether aging is enabled. See
fAging (section 2.2.5.2.4.1).

DSPROPERTY_ZONE_SCAVENGING_SERVERS

0x00000011

A list of DNS servers that will perform scavenging. The
list is formatted as an IP4 ARRAY (section 2.2.3.2.1).
See aipScavengeServers (section 2.2.5.2.4.1).<99>

DSPROPERTY_ZONE_AGING_ENABLED_TIME

0x00000012

The time interval before the next scavenging cycle. See
dwAvailForScavengeTime (section 2.2.5.2.4.1).

DSPROPERTY_ZONE_DELETED_FROM_HOSTNAME

0x00000080

The name of the server that deleted the zone. The value
is a null-terminated Unicode string. The server
SHOULD<100> ignore this value.

DSPROPERTY_ZONE_MASTER_SERVERS

0x00000081

A list of DNS servers that will perform zone transfers.
The list is formatted as an IP4
ARRAY (section 2.2.3.2.1). See
aipMasters (section 2.2.5.2.4.1).<101>

DSPROPERTY_ZONE_AUTO_NS_SERVERS

0x00000082

A list of servers which MAY autocreate a delegation. The
list is formatted as an IP4
ARRAY (section 2.2.3.2.1).<102>

DSPROPERTY_ZONE_DCPROMO_CONVERT

0x00000083

The flag value representing the state of conversion of
the zone. See DcPromo Flag (section 2.3.2.1.2).

DSPROPERTY_ZONE_SCAVENGING_SERVERS_DA

0x00000090

A list of DNS servers that will perform scavenging. The
list is formatted as a
DNS_ADDR_ARRAY (section 2.2.3.2.3). The DNS server
MUST read and write the

aipScavengeServers (section 2.2.5.2.4.1) setting using

202 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Constant/value Description

property Id
DSPROPERTY_ZONE_SCAVENGING_SERVERS and
SHOULD also read and write the
aipScavengeServers (section 2.2.5.2.4.1) setting using
property Id
DSPROPERTY_ZONE_SCAVENGING_SERVERS_DA.
During read, if the property values are not identical, the
DNS server SHOULD use the property value specified by
this property Id.

DSPROPERTY_ZONE_MASTER_SERVERS_DA

0x00000091

A list of DNS servers that will perform zone transfers.
The list is formatted as a
DNS_ADDR_ARRAY (section 2.2.3.2.3). The DNS server
MUST read and write this list using property Id
DSPROPERTY_ZONE_MASTER_SERVERS and SHOULD
also read and write this list using property Id
DSPROPERTY_ZONE_MASTER_SERVERS_DA. During
read, if the property values are not identical, the DNS
server SHOULD use the property value specified by this
property Id.

DSPROPERTY_ZONE_AUTO_NS_SERVERS_DA

0x00000092

A list of servers which MAY autocreate a delegation. The
list is formatted as a
DNS_ADDR_ARRAY (section 2.2.3.2.3) The DNS server
MUST read and write this list using property Id
DSPROPERTY_ZONE_AUTO_NS_SERVERS and SHOULD
also read and write this list using property Id
DSPROPERTY_ZONE_AUTO_NS_SERVERS_DA. During
read, if the property values are not identical, the DNS
server SHOULD use the value specified by property Id.

DSPROPERTY_ZONE_NODE_DBFLAGS

0x00000100

See DNS_RPC_NODE_FLAGS (section 2.2.2.1.2).

2.3.2.1.2 DcPromo Flag

The DcPromo flag represents the DcPromo target application directory partition for the zone. If, during
zone creation (ZoneCreate operation of the R_Dnssrvoperation (section 3.1.4.1) method call), a zone
is placed into the directory partition that represents the default naming context because the correct
directory partition was not available at the time, the zone's DcPromo flag is set appropriately to reflect

this. While polling the directory server, and if the time elapsed since the last directory server polling
operation is more than 15 minutes, the server SHOULD<103> check whether it is in RODC mode (a
server is in RODC mode if ForceRODCMode [section 3.1.1.1.1] is TRUE or fReadOnlyDC [section
2.2.4.2.2.3] is TRUE). If the time elapsed is less than 15 minutes, or if the server is in RODC mode,
the server MUST NOT perform the following operations. If the server is not in RODC mode and if the
DNS server discovers a zone with a nonzero DcPromo flag, the zone and the Zone Access Control
List (ACL) (section 3.1.1) MUST be moved from their current location to the application directory

partition specified in the following table if that partition is now available.<104>

Constant/value Description

DCPROMO_CONVERT_NONE

0x00000000

No change to existing zone storage.

DCPROMO_CONVERT_DOMAIN

0x00000001

Zone is to be moved to the DNS domain partition. This is the partition in the
Application Directory Partition Table (section 3.1.1) that has the
DNS_DP_DOMAIN_DEFAULT bit set in dwDpFlags (section 2.2.5.2.7.2). See

203 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Constant/value Description

DNS_ZONE_CREATE_FOR_DCPROMO (section 2.2.5.2.7.1).If
DownlevelDCsInDomain is nonzero, the zone is to be stored in the directory
partition that represents the default naming context. See DNS_DP_LEGACY
(section 2.2.7.1.1).

DCPROMO_CONVERT_FOREST

0x00000002

Zone is to be moved to the DNS forest partition. This is the partition in the
Application Directory Partition Table (section 3.1.1) that has the
DNS_DP_FOREST_DEFAULT bit set in dwDpFlags (section 2.2.5.2.7.2). See
DNS_ZONE_CREATE_FOR_DCPROMO_FOREST (section 2.2.5.2.7.1).

2.3.2.2 dnsRecord

The dnsRecord attribute is used to store DNS resource record definitions. This attribute MUST be
formatted as follows:

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

DataLength Type

Version Rank Flags

Serial

TtlSeconds

Reserved

TimeStamp

Data (variable)

...

DataLength (2 bytes): An unsigned binary integer containing the length, in bytes, of the Data field.

Type (2 bytes): The resource record's type. See DNS_RECORD_TYPE (section 2.2.2.1.1).

Version (1 byte): The version number associated with the resource record attribute. The value MUST
be 0x05.

Rank (1 byte): The least-significant byte of one of the RANK* flag values. See dwFlags (section
2.2.2.2.5).

Flags (2 bytes): Not used. The value MUST be 0x0000.

Serial (4 bytes): The serial number of the SOA record of the zone containing this resource record.
See DNS_RPC_RECORD_SOA (section 2.2.2.2.4.3).

TtlSeconds (4 bytes): See dwTtlSeconds (section 2.2.2.2.5). This field uses big-endian byte order.

Reserved (4 bytes): This field is reserved for future use. The value MUST be 0x00000000.

204 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

TimeStamp (4 bytes): See dwTimeStamp (section 2.2.2.2.5).

Data (variable): The resource record's data. See DNS_RPC_RECORD_DATA (section 2.2.2.2.4).

2.3.2.3 msDNS-IsSigned

This attribute value MUST correspond to the value of the IsSigned zone property (section 3.1.1.2.1).

2.3.2.4 msDNS-NSEC3OptOut

This attribute value MUST correspond to the value of the NSEC3OptOut zone property (section
3.1.1.2.1).

2.3.2.5 msDNS-SigningKeys

This attribute value MUST contain a collection of exported signing key pairs. Each attribute value
MUST be formatted as follows.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

GUID (16 bytes)

...

...

ExportedKey (variable)

...

GUID (16 bytes): A GUID value that corresponds to an active, standby, or next key from the
DNS_RPC_SKD_STATE (section 2.2.6.2.3) structure for one of the signing key descriptors in the
zone's signing key descriptor list.

ExportedKey (variable): An exported signing key in Exported Key Pair format. When this attribute

value is written, the DNS server MUST follow the procedure in section 3.1.7.1 to export each key.
When this attribute value is read, the DNS server MUST follow the procedure in section 3.1.7.2 to
import each key.

2.3.2.6 msDNS-SignWithNSEC3

This attribute value MUST correspond to the value of the SignWithNSEC3 zone property (section
3.1.1.2.1).

2.3.2.7 msDNS-NSEC3UserSalt

This attribute value MUST correspond to the value of the NSEC3UserSalt zone property (section
3.1.1.2.3).

2.3.2.8 msDNS-DNSKEYRecords

This attribute value MUST contain the DNSKEY records and all RRSIG records covering type DNSKEY
for the root of the zone as specified by [RFC4035].

http://go.microsoft.com/fwlink/?LinkID=107053

205 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

2.3.2.9 msDNS-DSRecordSetTTL

This attribute value MUST correspond to the value of the DSRecordSetTTL zone property (section
3.1.1.2.1).

2.3.2.10 msDNS-NSEC3Iterations

This attribute value MUST correspond to the value of the NSEC3Iterations zone property (section
3.1.1.2.1).

2.3.2.11 msDNS-PropagationTime

This attribute value MUST correspond to the value of the PropagationTime zone property (section
3.1.1.2.1).

2.3.2.12 msDNS-NSEC3CurrentSalt

This attribute value MUST correspond to the value of the NSEC3CurrentSalt zone property (section
3.1.1.2.3).

2.3.2.13 msDNS-RFC5011KeyRollovers

This attribute value MUST correspond to the value of the RFC5011KeyRollovers zone property (section
3.1.1.2.1).

2.3.2.14 msDNS-NSEC3HashAlgorithm

This attribute value MUST correspond to the value of the NSEC3HashAlgorithm zone property (section
3.1.1.2.1).

2.3.2.15 msDNS-DSRecordAlgorithms

This attribute value MUST correspond to the value of the DSRecordAlgorithms zone property (section
3.1.1.2.1).

2.3.2.16 msDNS-DNSKEYRecordSetTTL

This attribute value MUST correspond to the value of the DNSKEYRecordSetTTL zone property (section
3.1.1.2.1).

2.3.2.17 msDNS-MaintainTrustAnchor

This attribute value MUST correspond to the value of the MaintainTrustAnchor zone property (section
3.1.1.2.1).

2.3.2.18 msDNS-NSEC3RandomSaltLength

This attribute value MUST correspond to the value of the NSEC3RandomSaltLength zone property

(section 3.1.1.2.1).

2.3.2.19 msDNS-SigningKeyDescriptors

This attribute is used to store the zone's signing key descriptor list. Each value of this attribute

represents a single signing key descriptor and MUST be formatted as follows.

206 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Version

fIsKsk

Guid (16 bytes)

...

...

pwszKeyStorageProvider (variable)

...

bSigningAlgorithm

dwKeyLength

dwInitialRolloverOffset

dwDNSKEYSignatureValidityPeriod

dwDSSignatureValidityPeriod

dwStandardSignatureValidityPeriod

dwRolloverType

dwRolloverPeriod

dwNextRolloverAction

ftLastRolloverTime

...

ftNextRolloverTime

...

dwState

dwCurrentRolloverStatus

dwCurrentRollState

fManualTrigger

207 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

dwPreRollEventFired

ftNextKeyGenerationTime

...

RevokedOrSwappedRecordCount

FinalRecordCount

pwszActiveKey (variable)

...

ActiveKeyScope

pwszStandbyKey (variable)

...

StandbyKeyScope

pwszNextKey (variable)

...

NextKeyScope

RevokedOrSwappedDnskeys (variable)

...

FinalDnskeys (variable)

...

Version (4 bytes): This value MUST be 0x00000001.

fIsKsk (4 bytes): The value of this field MUST correspond to the value from the DNS_RPC_SKD
(section 2.2.6.2.1) structure for this signing key descriptor.

Guid (16 bytes): The value of this field MUST correspond to the value from the DNS_RPC_SKD

(section 2.2.6.2.1) structure for this signing key descriptor.

pwszKeyStorageProvider (variable): The value of this field MUST correspond to the value from the
DNS_RPC_SKD (section 2.2.6.2.1) structure for this signing key descriptor.

bSigningAlgorithm (4 bytes): The value of this field MUST correspond to the value from the
DNS_RPC_SKD (section 2.2.6.2.1) structure for this signing key descriptor.

dwKeyLength (4 bytes): The value of this field MUST correspond to the value from the
DNS_RPC_SKD (section 2.2.6.2.1) structure for this signing key descriptor.

208 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

dwInitialRolloverOffset (4 bytes): The value of this field MUST correspond to the value from the
DNS_RPC_SKD (section 2.2.6.2.1) structure for this signing key descriptor.

dwDNSKEYSignatureValidityPeriod (4 bytes): The value of this field MUST correspond to the
value from the DNS_RPC_SKD (section 2.2.6.2.1) structure for this signing key descriptor.

dwDSSignatureValidityPeriod (4 bytes): The value of this field MUST correspond to the value from
the DNS_RPC_SKD (section 2.2.6.2.1) structure for this signing key descriptor.

dwStandardSignatureValidityPeriod (4 bytes): The value of this field MUST correspond to the
value from the DNS_RPC_SKD (section 2.2.6.2.1) structure for this signing key descriptor.

dwRolloverType (4 bytes): The value of this field MUST correspond to the value from the
DNS_RPC_SKD (section 2.2.6.2.1) structure for this signing key descriptor.

dwRolloverPeriod (4 bytes): The value of this field MUST correspond to the value from the

DNS_RPC_SKD (section 2.2.6.2.1) structure for this signing key descriptor.

dwNextRolloverAction (4 bytes): The value of this field MUST correspond to the value from the

DNS_RPC_SKD (section 2.2.6.2.1) structure for this signing key descriptor.

ftLastRolloverTime (8 bytes): This value MUST correspond to the value of ftLastRolloverTime
from the DNS_RPC_SKD_STATE (section 2.2.6.2.3) structure for this signing descriptor.

ftNextRolloverTime (8 bytes): This value MUST correspond to the value of ftNextRolloverTime

from the DNS_RPC_SKD_STATE (section 2.2.6.2.3) structure for this signing descriptor.

dwState (4 bytes): This value MUST correspond to the value of dwState from the
DNS_RPC_SKD_STATE (section 2.2.6.2.3) structure for this signing descriptor.

dwCurrentRolloverStatus (4 bytes): This value MUST correspond to the value of
dwCurrentRolloverStatus from the DNS_RPC_SKD_STATE (section 2.2.6.2.3) structure for this
signing descriptor.

dwCurrentRollState (4 bytes): This value corresponds to the next step in a signing key descriptor's

rollover process and MUST be set to one of the following values.

Value Meaning

DNS_SKD_ROLL_STATE_NOT_STARTED

0x00000000

The signing key descriptor is not currently in the process of rolling
over keys.

DNS_SKD_ROLL_STATE_ZSK_SWAP

0x00000001

The next step for a signing key descriptor whose fIsKSK field is
0x00000000 is to move into the "new RRSIGs" phase of the pre-
publish key rollover, as described in [RFC4641] section 4.2.1.1.

DNS_SKD_ROLL_STATE_ZSK_FINISH

0x00000002

The next step for a signing key descriptor whose fIsKSK field is
0x00000000 is to move into the "DNSKEY removal" phase of the
pre-publish key rollover, as described in [RFC4641] section 4.2.1.1.

DNS_SKD_ROLL_STATE_KSK_DS_WAIT

0x00000003

The next step for a signing key descriptor whose fIsKSK field is
0x00000001 is to wait for the "DS change" step of the "Key Signing
Key Rollovers" process, as described in [RFC4641] section 4.2.2.

DNS_SKD_ROLL_STATE_KSK_REVOKE

0x00000004

The next step for a signing key descriptor whose fIsKSK field is
0x00000001 is to revoke a key according to [RFC5011] section 6.3
or 6.5.

DNS_SKD_ROLL_STATE_KSK_FINISH

0x00000005

The next step for a signing key descriptor whose fIsKSK field is
0x00000001 is to move into the "DNSKEY removal" phase of the
"Key Signing Key Rollovers" process, as described in [RFC4641]
section 4.2.2.

http://go.microsoft.com/fwlink/?LinkId=225979
http://go.microsoft.com/fwlink/?LinkId=225980

209 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

fManualTrigger (4 bytes): This value MUST be set to 0x00000001 in response to a successful
ZonePerformKeyRollover operation on a signing key descriptor. When the SKD completes its

rollover, this value MUST be set to 0x00000000.

dwPreRollEventFired (4 bytes): This value MUST be set to 0x00000001 when 90 percent of the

dwRolloverPeriod for a signing key descriptor whose fIsKSK flag is 0x00000001 has elapsed. It
MUST be set to 0x00000002 when 95 percent of this rollover period has elapsed, and it MUST be
set to 0x00000003 when there is less than 1 day remaining before such a signing key descriptor
begins its key rollover process. Otherwise, this value MUST be 0x00000000.

ftNextKeyGenerationTime (8 bytes): This value represents the time at which the most recent
value of the pwszNextKey field of a signing key descriptor whose fIsKSK flag is 0x00000000 was
generated.

RevokedOrSwappedRecordCount (4 bytes): This value MUST indicate the number of values
present in the list of records in the RevokedOrSwappedDnskeys field.

FinalRecordCount (4 bytes): This value MUST indicate the number of values present in the list of

records in the FinalRecordCount field.

pwszActiveKey (variable): This value MUST correspond to the value of pwszActiveKey from the
DNS_RPC_SKD_STATE (section 2.2.6.2.3) structure for this signing descriptor.

ActiveKeyScope (4 bytes): This value corresponds to the signing scope of pwszActiveKey and
MUST be set to one of the following values.

Value Meaning

DNS_SIGN_SCOPE_DEFAULT

0x00000000

The key is used for its default purpose: If the signing key
descriptor's fIsKSK field is set to 0x00000001, the key is used to
sign only DNSKEY records in the zone. If the signing key descriptor's

fIsKSK field is set to 0x00000000, the key is used to sign all
records in the zone.

DNS_SIGN_SCOPE_DNSKEY_ONLY

0x00000001

The key is used to sign only DNSKEY records in the zone.

DNS_SIGN_SCOPE_ALL_RECORDS

0x00000002

The key is used to sign all records in the zone.

DNS_SIGN_SCOPE_ADD_ONLY

0x00000003

The key is published as a DNSKEY in the zone, but it is not used to
sign any records.

DNS_SIGN_SCOPE_DO_NOT_PUBLISH

0x00000004

The key is not published to the zone and is not used to sign any
records.

DNS_SIGN_SCOPE_REVOKED

0x00000005

The key is published as a DNSKEY in the zone with its "Revoked" bit
([RFC5011] section 2.1) set. It is used to sign DNSKEY records.

pwszStandbyKey (variable): This value MUST correspond to the value of pwszStandbyKey from

the DNS_RPC_SKD_STATE (section 2.2.6.2.3) structure for this signing descriptor.

StandbyKeyScope (4 bytes): This value corresponds to the signing scope of pwszActiveKey and
MUST be set to one of the values previously described for "ActiveKeyScope".

pwszNextKey (variable): This value MUST correspond to the value of pwszNextKey from the
DNS_RPC_SKD_STATE (section 2.2.6.2.3) structure for this signing descriptor.

NextKeyScope (4 bytes): This value corresponds to the signing scope of pwszNextKey and MUST
be set to one of the values previously described for "ActiveKeyScope".

210 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

RevokedOrSwappedDnskeys (variable): This field MUST contain a variable number of DNS records
in the same format as the dnsRecord attribute (section 2.3.2.2). The number of records in this list

is specified by RevokedOrSwappedRecordCount. If RevokedOrSwappedRecordCount is
zero, the length of this field MUST be 0 bytes. The DNS records in this field correspond to a

precomputed list of DNSKEY and associated RRSIG records that are published to the zone as the
SKD transitions into DNS_SKD_STATUS_ZSK_WAITING_FOR_MAXZONE_TTL status if the signing
key descriptor's fIsKSK field is set to 0x00000000, and as the SKD transitions into
DKS_SKD_STATUS_KSK_WAITING_FOR_5011_REMOVE_HOLD_DOWN if the signing key
descriptor's fIsKSK field is set to 0x00000001.

FinalDnskeys (variable): This field MUST contain a number of DNS records in the same format as
the dnsRecord attribute (section 2.3.2.2). The number of records in this list is specified by

FinalRecordCount. If FinalRecordCount is zero, the length of this field MUST be 0 bytes. The
DNS records in this field correspond to a precomputed list of DNSKEY and associated RRSIG
records that are published to the zone as the signing key descriptor's key rollover process
concludes.

2.3.2.20 msDNS-SignatureInceptionOffset

This attribute value MUST correspond to the value of the SignatureInceptionOffset zone property
(section 3.1.1.2.1).

2.3.2.21 msDNS-ParentHasSecureDelegation

This attribute value MUST correspond to the value of the ParentHasSecureDelegation zone property
(section 3.1.1.2.1).

2.3.2.22 msDNS-SecureDelegationPollingPeriod

This attribute value MUST correspond to the value of the SecureDelegationPollingPeriod zone property
(section 3.1.1.2.1).

2.3.2.23 msDNS-KeymasterZones

This attribute MUST contain a list of distinguished names for all of the directory service-integrated
zones for which the DNS server is the key master.

211 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

3 Protocol Details

No additional timers or other state is required on the client side of this protocol. Calls made by the
higher-layer protocol or application are passed directly to the transport, and the results returned by
the transport are passed directly back to the higher-layer protocol or application.

The following sections specify details of the DNS DnsServer Remote Protocol, including abstract data
models, interface method syntax, and message processing rules.

3.1 DnsServer Server Details

The DNS Server Management Protocol is stateless; that is, each message in the protocol is
independent. Furthermore, the running state of the zone on the server does not affect this protocol.

The type of zone (primary, secondary, stub, and so on) can determine which method calls can be
executed successfully using that zone. Restrictions on zone type are specified in the descriptions of
the method calls.

Certain actions taken by the server require an underlying protocol. For example, the
EnlistDirectoryPartition operation of the R_Dnssrvoperation (section 3.1.4.1) method call can cause
the server to communicate with the Active Directory server with a separate protocol. Implementations
encountering error events or error code returns in the execution of these underlying protocols can, in

certain cases, generate an error return for the DNS protocol. Where this is the case, the description of
the action undertaken will specify that an error code can be returned.

3.1.1 Abstract Data Model

This section describes a conceptual model of possible data organization that an implementation

maintains to participate in this protocol. The described organization is provided to facilitate the
explanation of how the protocol behaves. This document does not mandate that implementations
adhere to this model as long as their external behavior is consistent with that described in this
document.

Global Server State: The global state of the server set to one of the following values:

 Loading: the DNS server is loading configuration and zone data.

 Running: the DNS server has loaded all data and is serving queries.

 Stopping: the DNS server is shutting down.

DNS Server Configuration: Configuration information for the server, in persistent storage, in the
form of (name, value) pairs. The list of metadata information can be found in section 3.1.1.1.

DNS Server AD Connection: An ADCONNECTION_HANDLE as defined in [MS-DTYP] section 2.2.2.
This element is used every time the DNS server needs to communicate to the directory server.

DNS Server Configuration Access Control List: An access control list that specifies what client

identities have read and write permissions on the DNS Server Configuration. If the DNS server is

directory server integrated, the access control list is stored in the local directory server.<105>
Otherwise, this access control list is not stored in persistent storage and is dynamically created at
server start time.<106>

DNS Zone Table: Configuration information for DNS zones, in persistent and in-memory storage. The
Zone Table can be stored persistently either in a file or in the local directory server, but not both
simultaneously. The Zone Table also resides in-memory, behaving as a cache containing the

current working copy of both zones loaded from persistent storage, as well as zones retrieved
from remote DNS servers. A query to a zone MUST be responded to using only the data in the
corresponding in-memory zone. A modification to any elements of a zone, such as a DNS update

%5bMS-DTYP%5d.pdf#Section_cca2742956894a16b2b49325d93e4ba2

212 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

of records [RFC2136], MUST be reflected immediately in the corresponding in-memory zone and
MUST be immediately transactionally committed to DS-integrated storage afterwards (see

"WriteDirtyZones" in section 3.1.4.1). Each update to the in-memory zone MUST be atomic. If an
update to the in-memory zone does not succeed, the in-memory zone MUST be restored to its

previous state before the update. Queries to a zone during an in-memory zone modification
process are responded to using the post-update zone state. For zones stored in the local directory
server, this table can include zones that are in the process of being deleted (see
"DeleteZoneFromDs" in section 3.1.4.1).

The in-memory DNS Zone Table is used for queries and modifications for all zone operations (see
section 3.1.4). The in-memory Zone Table is populated during server initialization per-zone from
either the local persistent storage or DS-integrated Zone Table. When modifications are made to a

zone, such as after a DNS update or zone transfer, the changes are reflected first in the in-
memory Zone Table, which is then copied per zone, for all zone types except
DNS_ZONE_TYPE_CACHE (section 2.2.5.1.1), to either the local persistent storage or immediately
to the DS-integrated Zone Table. In-memory data retrieved from remote DNS servers are not
copied to local persistent or DS-integrated storage, except for secondary zones with an
fDsIntegrated value of FALSE (section 2.2.5.2.6), which MUST eventually be copied to local

persistent storage. For DS-integrated zones, the server polls the directory server using the LDAP
protocol every DsPollingInterval (section 3.1.1.1) to copy DS-integrated zones to the respective
in-memory zones. If an error occurs during polling, the DNS server MUST NOT mark the zone as
shutdown (see section 2.2.5.2.2) and MUST attempt to poll the zone again after DsPollingInterval
(section 3.1.1.1) seconds have elapsed. Zones of type DNS_ZONE_TYPE_CACHE (section
2.2.5.1.1) are never written to persistent storage. All contents of a zone of type
DNS_ZONE_TYPE_CACHE MUST be discarded when the DNS server process is terminated or when

the ClearCache operation (section 3.1.4.1) is executed.

The local persistent storage DNS Zone Table is copied to the in-memory DNS Zone Table on server
initialization and is copied from the in-memory Zone Table after a modification to the in-memory
Zone Table is complete.

The directory server-integrated DNS Zone Table is copied to the in-memory DNS Zone Table on
server initialization and is copied from the in-memory Zone Table immediately after a modification
to the in-memory Zone Table is complete. When changes occur in the DS-integrated Zone Table,

the changes are not reflected in the in-memory Zone Table until the DNS server polls the directory
server to update the in-memory Zone Table with the modified DS-integrated Zone Table. If
changes happened simultaneously to the in-memory Zone Table and the DS-integrated Zone
Table, then the post-modified DS-integrated Zone Table is copied to and overwrites the in-
memory Zone Table.

For each zone, the DNS Zone Table consists of the following:

Zone Name: The name of the zone.

Zone Status: Operational state information pertaining to the zone, such as the information in
DNS_RPC_ZONE_FLAGS (section 2.2.5.2.2).

Metadata: Configuration information for the zone, in the form of (name, value) pairs. The list of
metadata information can be found in section 3.1.1.2.

Zone GUID: A GUID associated with the zone. The default value of this property MUST be NULL.
If this zone is stored in the directory server, then this value is initialized from the objectGUID

attribute of the associated dnsZone object in the DS-integrated DNS Zone Table, which is
generated as specified in [MS-ADTS], section 3.1.1.1.2, when the zone is first added to the
directory server. When the server polls the directory server and discovers that a zone has
been deleted from the DS-integrated DNS Zone Table, it uses the objectGUID attribute of
that dnsZone object to identify the corresponding zone in the in-memory copy of the DNS
Zone Table.

http://go.microsoft.com/fwlink/?LinkId=107017
%5bMS-ADTS%5d.pdf#Section_d243592709994c628c6d13ba31a52e1a

213 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

DNS Nodes and Records: The collection of DNS records for each DNS zone. Each distinct DNS
owner name (see [RFC1035]) present in the zone is represented by a node. Each node in the

zone has a collection of DNS records that pertain to the DNS owner name of the node. Each
DNS record also has metadata which is specified in section 3.1.1.2. The collection of DNS

nodes and records for each zone MUST contain a node representing the name of the zone
itself, which MUST contain an SOA record that stores the fields present in the
DNS_RPC_RECORD_SOA structure (section 2.2.2.2.4.3). The zone serial number is stored in
the dwSerialNo field of this SOA record. DNS records can be accessed or updated by the local
directory server through directory server replication and by remote DNS servers through the
DNS protocol [RFC1035] and DNS update [RFC2136].

DNS Node Tombstone State: Each node in a zone MAY have a Boolean value indicating if this

DNS node is a tombstone.<107>

Zone Access Control List: An access control list that specifies what client identities have
permissions on this DNS Zone. If the zone is stored in the directory server, the access control
list is stored in the ntSecurityDescriptor attribute of the dnsZone object (section 2.3) and
can be modified using standard LDAP modify operations (see [MS-ADTS] section 3.1.1.5.3). If

the zone is not stored in the directory server, the zone does not have an access control list

associated with it and instead the DNS Server Configuration Access Control List is used as
the access control list for the zone.<108>

Last Transferred Zone Serial Number: The zone serial number that was last sent in a complete
[RFC1035] or incremental [RFC1995] zone transfer to a remote DNS server.

Time of Last SOA Check: For a secondary or stub zone, the time at which the primary zone was
last contacted (whether successfully or unsuccessfully) to compare zone serial numbers. The
value is expressed as the number of seconds since the system booted, in unsigned 32-bit

integer format. The default value of this property MUST be zero.

Time Zone Secured: The time at which the zone's AllowUpdate property (section 3.1.1.2.1) was
last changed from any value to ZONE_UPDATE_SECURE (section 2.2.6.1.1). Changes of the
zone's AllowUpdate property to any other value MUST NOT cause a change to Time Zone
Secured., The value is expressed as the number of seconds since 12:00 A.M. January 1, 1601

Coordinated Universal Time (UTC) in unsigned 64-bit integer format. The default value of this
property MUST be zero. If this zone is stored in the local directory server, then this value is

initialized from and written to the "whenChanged" attribute of the dnsZone.

Dirty Flag: A Boolean variable present only in the in-memory copy of a zone. Set to true only if
the zone has been modified in memory and there is a copy of the zone in persistent storage to
which the in-memory modifications have not been committed.

Signing Key Descriptor List: A list of zero or more signing key descriptors associated with the
zone, used to inform the online signing process. Each entry in this list consists of the fields in

the DNS_RPC_SKD (see section 2.2.6.2.1) and DNS_RPC_SKD_STATE (see section 2.2.6.2.3)
structures.<109>

Rollover Queue: An ordered list of zero or more signing key descriptors in the zone ready for key
rollover. A signing key descriptor whose dwRolloverPeriod is not 0xFFFFFFFF is
automatically added to this queue when dwRolloverPeriod seconds have elapsed since the

signing key descriptor's last successful key rollover, or since the zone was initially online-
signed. A signing key descriptor can be added to this queue prior to this time by invoking the

PerformZoneKeyRollover operation of the R_DnssrvOperation (Opnum 0) method (section
3.1.4.1). The DNS server SHOULD<110> perform key rollover on each item in this queue, one
at a time, according to the process specified in [RFC4641] and [RFC5011].

Application Directory Partition Table: The DNS server SHOULD<111> support the concept of
application directory partitions. Each entry in the Application Directory Partition Table, stored
in memory, consists of the fields in DNS_RPC_DP_INFO (section 2.2.7.2.1). This table is

http://go.microsoft.com/fwlink/?LinkId=90264
http://go.microsoft.com/fwlink/?LinkId=106956
http://go.microsoft.com/fwlink/?LinkId=225979
http://go.microsoft.com/fwlink/?LinkId=225980

214 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

populated during DNS server initialization through queries to the local directory server using
the LDAP protocol. To populate this table, the DNS server MUST use LDAP queries to

enumerate all objects under "CN=Partitions, CN=Configuration, <Forest DN>" of object class
crossRef and for each object's read attribute values as specified by the definitions of the fields

of DNS_RPC_DP_INFO (section 2.2.7.2.1). Certain fields do not correspond directly to data
stored in local directory server (see section 2.2.7.2.1).The Application Directory Partition Table
is kept up-to-date as partitions are created or deleted on the local server, by writing changes
to the local directory server and immediately polling to refresh the Application Directory
Partition Table. The DNS server polls the directory server at an interval specified by
DsPollingInterval (see section 3.1.1.1) to reflect changes made by remote directory servers
(see section 3.1.4.1). If the default DNS domain partition or the default DNS forest partition is

not present when polling, the server MUST attempt to create and enlist in these partitions as
part of the polling process.

Application Directory Partition Access Control List: In addition to the fields in
DNS_RPC_DP_INFO 2.2.7.2.1) each entry in the Application Directory Partition Table MUST
also contain an access control list stored persistently in the directory server in the
ntSecurityDescriptor attribute of the crossRef object associated with the Application

Directory Partition.<112>

Remote Server Table: An in-memory state table of EDNS [RFC2671] support statuses of remote
DNS servers that the local server has previously contacted. The status of a remote server is
cached for the interval specified by EDnsCacheTimeout (section 3.1.1.1.1). The state of a
remote server can be set to one of the following values:

 Unknown: the remote server's EDNS [RFC2671] support is indeterminate; initial state.

 Not supported: the remote server does not support EDNS [RFC2671].

 Ok: the remote server supports EDNS [RFC2671].

 Maybe not supported: the remote server has not responded, and an EDNS [RFC2671]
support state cannot yet be determined.

Statistics: An in-memory structure whose elements correspond directly with the objects specified
in sections 2.2.10.2.4 through 2.2.10.2.24, omitting the Header field of each. These values
are made available to clients of the DNS Server Management Protocol by the DNS server when
processing R_DnssrvComplexOperation2 (section 3.1.4.8) method calls with operation type

"Statistics".

DNS Server Credentials: The credentials that the DNS server process will be invoked as. These
credentials MUST be used for all file, registry, and directory service LDAP operations where
user credentials are not available.<113>

DownlevelDCsInDomain: The count of downlevel domain controllers in the domain in an
unsigned 32-bit integer format. The default value MUST be zero.<114>

Domain Naming Master Identity: Host name of the Domain Naming Master FSMO role
represented as a string (wchar*). Whenever the DNS server makes any changes to crossRef
objects, it MUST establish an LDAP connection to the Host whose name is stored here, and

modify its version of the object accordingly.

Local security groups: A list of group identities with accompanying membership information.
When permissions are set for an object, a local security group identity can be used to set
permissions for all members of that group.

http://go.microsoft.com/fwlink/?LinkId=107022

215 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

3.1.1.1 DNS Server Configuration Information

The list of names that are used in (name, value) pairs in DNS Server Configuration information is
given below.

3.1.1.1.1 DNS Server Integer Properties

The following properties are 32-bit integers. The term "Boolean" means that a value of 0x00000000
indicates that the stated property is false, and any nonzero value indicates that the stated property is
true. All properties are writable unless stated otherwise. The type ID for these properties is
DNSSRV_TYPEID_NAME_AND_PARAM, listed in section 2.2.1.1.1. Property values on reset or load
SHOULD be verified to be within the property's allowable range, except when the value is zero and the

zero value is allowed. If the value is outside the range, or if the value is zero and the zero value is not
allowed, the server SHOULD<115> return an error.

AddressAnswerLimit: The maximum number of records that the DNS server will include in a DNS
response message. If this value is set to 0x00000000, the DNS server MUST NOT enforce any
artificial limit on number of records in a response, and if a response becomes larger than the DNS

UDP packet size, the truncation bit MUST be set (see [RFC1035]). The value SHOULD be limited to

the range from 0x00000005 to 0x0000001C, inclusive, or the value 0x00000000, but it MAY be
any value. The default value MUST be 0x00000000, and the value of zero MUST be allowed.

AdminConfigured: A Boolean value indicating whether the server has been configured by an
administrator. The value SHOULD be limited to 0x00000000 and 0x00000001, but it MAY be any
value. The default value MUST be 0x00000000, and the value of zero MUST be allowed and
treated literally.<116>

AllowCNAMEAtNS: A Boolean value indicating whether the server will permit the target domain

names of NS records to resolve to CNAME records. If true, this pattern of DNS records will be
allowed; otherwise, the DNS server will return errors when encountering this pattern of DNS
records while resolving queries. The value SHOULD<117> be limited to 0x00000000 and
0x00000001, but it MAY be any value. The default value MUST be 0x00000001, and the value of
zero MUST be allowed and treated literally.

AllowUpdate: A Boolean value indicating whether the server will permit any DNS update operations.
The value SHOULD be limited to 0x00000000 and 0x00000001, but it MAY be any value. The

default value MUST be 0x00000001, and the value of zero MUST be allowed and treated literally.

AutoCacheUpdate: A Boolean value indicating whether the server writes updated delegation
information to persistent storage when it determines that newer information is available. The
value SHOULD be limited to 0x00000000 and 0x00000001, but it MAY be any value. The default
value MUST be 0x00000000, and the value of zero MUST be allowed and treated literally.

AutoConfigFileZones: The type of zones for which SOA and NS records will be automatically

configured with the DNS server's local host name as the primary DNS server for the zone when
the zone is loaded from file. This property MUST be set to any combination of the following values.
If the property value is zero, no automatic configuration will be performed for any zone. The
value's range MUST be unlimited. The default value SHOULD be 0x00000001, and the value of
zero MUST be allowed and treated literally.<118>

Value Meaning

0x00000001

ZONE_AUTO_CONFIG_UPDATE

Perform automatic configuration of zones that have a value of
"AllowUpdate" not equal to zero.

0x00000002

ZONE_AUTO_CONFIG_STATIC

Perform automatic configuration of zones that have a value of
"AllowUpdate" equal to zero.

http://go.microsoft.com/fwlink/?LinkId=90264

216 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

BindSecondaries: A Boolean value indicating whether the server will permit send DNS zone transfer
response messages with more than one record in each response if the zone transfer request did

not have the characters "MS" appended to it. If true, the DNS server will include only one record
in each response if the zone transfer request did not have the characters "MS" appended to it. The

value SHOULD be limited to 0x00000000 and 0x00000001, but it MAY be any value. The default
value MUST be 0x00000000, and the value of zero MUST be allowed and treated literally.<119>

BootMethod: The DNS_BOOT_METHODS (section 2.2.4.1.1) value corresponding to the DNS server's
boot method. The value SHOULD be limited to the range from 0x00000000 to 0x00000003,
inclusive, but it MAY be any value. The default value MUST be 0x00000000, and the value of zero
MUST be allowed and treated literally.

DebugLevel: The DNS server MUST ignore any value that is set for this property.

DefaultAgingState: A Boolean value that will be used as the default Aging (section 3.1.1.2.1)
property value on new zones. The value SHOULD be limited to 0x00000000 and 0x00000001, but
it MAY be any value. The default value MUST be 0x00000000, and the value of zero MUST be
allowed and treated literally.<120>

DefaultNoRefreshInterval: A value, in hours, that will be used as the default NoRefreshInterval
(section 3.1.1.2.1) property value on new zones. The value SHOULD be limited to the range from

0x00000000 to 0x00002238 (1 year), inclusive, but it MAY be any value. The default value MUST
be 0x000000A8 (7 days), and the value of zero MUST be allowed and treated literally.<121>

DefaultRefreshInterval: A value in hours that will be used as the default RefreshInterval (section
3.1.1.2.1) property value on new zones. The value SHOULD be limited to the range from
0x00000000 to 0x00002238 (1 year), inclusive, but it MAY be any value. The default value MUST
be 0x000000A8 (7 days), and the value of zero MUST be allowed and treated literally.<122>

DeleteOutsideGlue: A Boolean value indicating whether the DNS server will delete DNS glue records

found outside a delegated subzone when reading records from persistent storage. The value
SHOULD be limited to 0x00000000 and 0x00000001, but it MAY be any value. The default value
MUST be 0x00000000, and the value of zero MUST be allowed and treated literally.

DisjointNets: This is a Boolean value property. The DNS server MUST ignore any value that is set for
this property.

DsLazyUpdateInterval: A value, in seconds, indicating how frequently the DNS server will submit
updates to the directory server without specifying the LDAP_SERVER_LAZY_COMMIT_OID control

([MS-ADTS] section 3.1.1.3.4.1.7) while processing DNS dynamic update requests. This control
instructs the directory server that it can sacrifice durability guarantees on updates to improve
performance and is meant to improve DNS server update performance. This control MUST only be
sent by the DNS server to the directory server attached to an LDAP update initiated by the DNS
server in response to a DNS dynamic update request. If the value is nonzero, LDAP updates
performed while processing DNS dynamic update requests MUST NOT specify the

LDAP_SERVER_LAZY_COMMIT_OID control, if a period of fewer than DsLazyUpdateInterval
seconds has passed since the last LDAP update specifying this control. If a period of time greater
than DsLazyUpdateInterval seconds passes in which the DNS server does not perform an LDAP
update specifying this control, the DNS server MUST specify this control on the next update. The
value SHOULD be limited to the range from 0x00000000 to 0x0000003c. The default value MUST

be 0x00000003, and the value zero MUST be treated as indicating that the DNS server MUST NOT
specify the LDAP_SERVER_LAZY_COMMIT_OID control while processing any DNS dynamic update

requests.<123>

DsPollingInterval: The interval, in seconds, at which the DNS server will check the directory service
for new or changed DNS zones and records. The value SHOULD be limited to the range from
0x0000001E to 0x00000E10, inclusive, but it MAY be any value. The default value SHOULD be
0x000000B4 (3 minutes), and the value of zero SHOULD be treated as a flag value for the default,
but it MAY be allowed and treated literally. Any time a DNS server acting as the primary server for

%5bMS-ADTS%5d.pdf#Section_d243592709994c628c6d13ba31a52e1a

217 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

the zone successfully transfers a copy of the zone to a remote DNS server, the DNS server acting
as primary MUST copy the zone serial number from the zone transfer response to the zone's Last

Transferred Zone Serial Number (section 3.1.1). This value MUST be stored in local non-persistent
storage and MUST NOT be replicated to any other DNS server. During polling, if the serial number

on a DNS record read from the directory server is higher than the current zone serial number, the
current zone serial number MUST be set to the value found in the DNS record. If the DNS server is
configured to allow zone transfer for the zone and the current zone serial number is equal to the
Last Transferred Zone Serial Number, and if changes to any DNS records for the zone are found
during polling where the serial number found in the DNS record is less than or equal to the current
zone serial number, the DNS server MUST increment the zone serial number using serial number
arithmetic [RFC1982]. If the DNS server is not configured to allow zone transfers for the zone the

server MUST NOT increment the zone serial number if DNS records are found during polling where
the serial number found in the DNS record is less than or equal to the current zone serial
number.<124>

DsTombstoneInterval: The age at which tombstone objects in the directory service will be deleted.
The value SHOULD be limited to the range from 0x0003F480 (3 days) to 0x0049D400 (8 weeks),
inclusive, but it MAY be any value. The default value SHOULD be 0x00127500 (14 days), and the

value of zero SHOULD be treated as a flag value for the default, but it MAY be allowed and treated
literally. Every day at 2:00 AM local time the DNS server MUST conduct a search of all zones
stored in the directory server for nodes which have the dnsTombstoned attribute set to TRUE and
an EntombedTime (section 2.2.2.2.4.23) value greater than DsTombstoneInterval seconds in
the past. Any such nodes MUST be permanently deleted from the directory server <125>

EnableRegistryBoot: A value which, if present in local persistent configuration at boot time,
indicates that the DNS server MUST rewrite the value of the BootMethod property (as described

in DNS_BOOT_METHODS 2.2.4.1.1), and then delete the value of EnableRegistryBoot from local
persistent configuration. The value of this property MUST be processed before the value of the
BootMethod property. The DNS server MUST NOT allow this property to be set using the DNS
Server Management Protocol. If the value of this property is locally set to 0x00000000, the DNS
server MUST change the value of the BootMethod property to BOOT_METHOD_FILE (see section
2.2.4.1.1). If the value of this property is locally set to
DNS_FRESH_INSTALL_BOOT_REGISTRY_FLAG (0xFFFFFFFF), the DNS server MUST change the

value of the BootMethod property to BOOT_METHOD_UNINITIALIZED (see section 2.2.4.1.1). If
this property is locally set to any other value, the DNS server MUST change the value of the
BootMethod property to BOOT_METHOD_REGISTRY (see section 2.2.4.1.1). The value's range
MUST be unlimited. The default value MUST be DNS_FRESH_INSTALL_BOOT_REGISTRY_FLAG,
and the value zero MUST be allowed and treated literally.

EventLogLevel: All events whose type (as specified in DNS_EVENTLOG_TYPES (section 2.2.9.1.2)), is

less than or equal to Eventloglevel, will be written to the event log. The value SHOULD be limited
to the range from 0x00000000 to 0x00000007 inclusive, but it MAY be any value. The default
value MUST be 0x00000004. Note that a value of EventLogLevel in the range from 0x00000004
to 0x00000007, inclusive, will result in all types of event being written to the event log.

ForceSoaSerial: User-specified value to use for the SOA serial number field [RFC1035] in any new
SOA record, or 0x00000000 not to force a user-specified value and to instead use the value
0x00000001 as the default SOA serial number value. The value's range MUST be unlimited. The

default value MUST be 0x00000000.

ForceSoaExpire: User-specified value to use for the SOA expire field [RFC1035] in any new SOA
record, or 0x00000000 not to force a user-specified value and to instead use 0x00015180 as the
default SOA expire field value. The value's range MUST be unlimited. The default value MUST be
0x00000000.

ForceSoaRetry: User-specified value to use for the SOA retry field [RFC1035] in any new SOA
record, or 0x00000000 not to force a user-specified value and to instead use the value

0x00000258 as the default SOA retry field value. The value's range MUST be unlimited. The
default value MUST be 0x00000000.

http://go.microsoft.com/fwlink/?LinkId=184551

218 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

ForceSoaRefresh: User-specified value to use for the SOA refresh field [RFC1035] in any new SOA
record, or 0x00000000 not to force a user-specified value and to instead use the value

0x00000384 as the default SOA refresh field value. The value's range MUST be unlimited. The
default value MUST be 0x00000000.

ForceSoaMinimumTtl: User-specified value to use for the SOA minimum TTL field [RFC1035] in any
new SOA record, or 0x00000000 not to force a user-specified value and to instead use the value
0x00000E10 as the default SOA minimum TTL field value. The value's range MUST be unlimited.
The default value MUST be 0x00000000.

ForwardDelegations: A Boolean value indicating how the DNS server will handle forwarding and
delegations. If set to true, the DNS server MUST use forwarders instead of a cached delegation
when both are available. Otherwise, the DNS server MUST use a cached delegation instead of

forwarders when both are available. The value SHOULD be limited to the range from 0x00000000
to 0x00000001 inclusive, but it MAY be any value. The default value MUST be 0x00000000, and
the value zero MUST be allowed and treated literally.

ForwardingTimeout: The number of seconds that the DNS server will wait for a response when

sending a query to a forwarder before assuming that no response will ever be received. The value
SHOULD be limited to the range from 0x00000001 to 0x0000000F, inclusive, but it MAY be any

value. The default value SHOULD be 0x00000003, and the value zero SHOULD be treated as a flag
value for the default, but it MAY be allowed and treated literally.<126>

IsSlave: A Boolean value indicating whether the DNS server will use normal recursion to resolve
queries if all forwarders are unavailable. If true, the DNS server MUST NOT use normal recursion if
all forwarders are unavailable. The value SHOULD be limited to 0x00000000 and 0x00000001, but
it MAY be any value. The default value MUST be 0x00000000, and the value zero MUST be allowed
and treated literally.

LocalNetPriority: A Boolean value indicating how the DNS server will order IP address records. If
true, the DNS server MUST order answer records such that all of those containing IP addresses
within the same subnet, when LocalNetPriorityNewMask is applied, as that of the IP address of the
client that submitted the query, and are placed first. Also, the server SHOULD randomly order that
initial set of answer records with same-subnet IP addresses. If false, the DNS server MUST not

reorder answer records in the order that they were retrieved from the database. The value
SHOULD be limited to 0x00000000 and 0x00000001, but it MAY be any value. The default value

SHOULD be 0x00000001, and the value zero MUST be allowed and treated literally.<127>

LogFileMaxSize: The maximum size, in bytes, of the DNS server log file. When the file reaches this
size, the DNS server MUST delete the log file and create a new log file. The value's range MUST be
unlimited. The default value SHOULD be 0x1DCD6500 (500 MB), and the value zero MUST be
allowed and treated literally.<128>

LogLevel: The type of information that the DNS server will write to the DNS server log file in

DNS_LOG_LEVELS (section 2.2.9.1.1) format. The value's range MUST be unlimited. The default
value MUST be 0x00000000, and the value zero MUST be allowed and treated literally.<129>

LooseWildcarding: A Boolean value indicating the type of algorithm that the DNS server will use to
locate a wildcard node when using a DNS wildcard record [RFC1034] to answer a query. If true,
the DNS server will use the first node it encounters with a record of the same type as the query

type. Otherwise, the DNS server will use the first node it encounters that has records of any type.
The value SHOULD be limited to 0x00000000 and 0x00000001, but it MAY be any value. The

default value MUST be 0x00000000, and the value zero MUST be allowed and treated literally.

MaxCacheTtl: The maximum time duration, in seconds, for which the DNS server can cache a
resource record obtained from a remote server as a successful query response. The value SHOULD
be limited to the range from 0x00000000 to 0x00278D00 (30 days), inclusive, but it MAY be any
value. The default value MUST be 0x00015180 (1 day), and the value zero MUST be allowed and
treated literally.

http://go.microsoft.com/fwlink/?LinkId=90263

219 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

MaxNegativeCacheTtl: The maximum time duration, in seconds, for which the DNS server can cache
a name error or an empty authoritative response, obtained from a remote server as an

unsuccessful query response in its cache (see [RFC2308]). The value SHOULD be limited to the
range from 0x00000000 to 0x00278D00 (30 days), inclusive, but it MAY be any value. The default

value MUST be 0x00000384 (15 minutes), and the value zero MUST be allowed and treated
literally.<130>

MaxTrustAnchorActiveRefreshInterval: The maximum time duration, in seconds, for which the
DNS server will wait between active refreshes. If an active refresh fails, the retry time MUST be no
more than one-tenth of this value. See the calculation of the queryInterval and retryTime values
in [RFC5011]. The value MUST be limited to the range 0x00000E10 (1 hour) to 0x0013C680 (15
days), inclusive. The default value MUST be 0x0013C680 (15 days).<131>

NameCheckFlag: The DNS_NAME_CHECK_FLAGS (section 2.2.4.1.2) value corresponding to the level
of name checking performed by the DNS server. The value SHOULD be limited to the range from
0x00000000 to 0x00000003, inclusive, but it MAY be any value. The default value SHOULD be
0x00000002 (DNS_ALLOW_MULTIBYTE_NAMES), and the value zero MUST be allowed and treated
literally.<132>

NoRecursion: A Boolean value indicating whether the DNS server will perform any recursion. If true,

the DNS server MUST NOT recurse and will only answer queries for authoritative data.

NoUpdateDelegations: A Boolean value indicating whether the DNS server will accept DNS updates
to delegation records of type NS. The value SHOULD be limited to 0x00000000 and 0x00000001,
but it MAY be any value. The default value SHOULD be 0x00000000, and the value zero MUST be
allowed and treated literally.<133>

PublishAutonet: A Boolean value indicating whether the DNS server will publish local IPv4 addresses
in the 169.254.x.x subnet as IPv4 addresses for the local machine's domain name. The value

SHOULD be limited to 0x00000000 and 0x00000001, but it MAY be any value. The default value
MUST be 0x00000000, and the value zero MUST be allowed and treated literally.<134>

QuietRecvFaultInterval: A property used to debug reception of UDP traffic for a recursive query.
This property is the minimum time interval, in seconds, starting when the server begins waiting

for the query to arrive on the network, after which the server MAY log a debug message indicating
that the server is to stop running. If the value is zero or is less than the value of
QuietRecvLogInterval, then the value of QuietRecvLogInterval MUST be used. If the value is

greater than or equal to the value of QuietRecvLogInterval, then the literal value of
QuietRecvFaultInterval MUST be used. The value's range MUST be unlimited. The default value
MUST be 0x00000000. The server MAY ignore this property.<135>

QuietRecvLogInterval: A property used to debug reception of UDP traffic for a recursive query. This
property is the minimum time interval, in seconds, starting when the server begins waiting for the
query to arrive on the network, or when the server logs an eponymous debug message for the

query, after which the server MUST log a debug message indicating that the server is still waiting
to receive network traffic. If the value is zero, logging associated with the two QuietRecv
properties MUST be disabled, and the QuietRecvFaultInterval property MUST be ignored. If the
value is non-zero, logging associated with the two QuietRecv properties MUST be enabled, and the
QuietRecvFaultInterval property MUST NOT be ignored. The value's range MUST be unlimited. The
default value MUST be 0x00000000. The server MAY ignore this property.<136>

RecursionRetry: The time interval, in seconds, for which the DNS server waits before it retries a

recursive query to a remote DNS server for which it did not receive a response. The value SHOULD
be limited to the range from 0x00000001 to 0x0000000F, inclusive, but it MAY be any value. The
default value MUST be 0x00000003, and the value zero SHOULD be treated as a flag value for the
default, but it MAY be allowed and treated literally.

RecursionTimeout: The time interval, in seconds, for which the DNS server waits for a recursive
query response from a remote DNS server. The value SHOULD be limited to the range from

http://go.microsoft.com/fwlink/?LinkId=187326
http://go.microsoft.com/fwlink/?LinkId=225980

220 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

0x00000001 to 0x0000000F, inclusive, but it MAY be any value. The default value SHOULD be
0x00000008, and the value zero SHOULD be treated as a flag value for the default, but it MAY be

allowed and treated literally.<137>

ReloadException: A Boolean value indicating whether the DNS server will perform an internal restart

if an unexpected fatal error is encountered. The value SHOULD be limited to 0x00000000 and
0x00000001, but it MAY be any value. The default value SHOULD be 0x00000000, and the value
zero MUST be allowed and treated literally.<138>

RoundRobin: A Boolean value indicating whether the DNS server will dynamically reorder records in
responses to attempt to provide load balancing. The value SHOULD be limited to 0x00000000 and
0x00000001, but it MAY be any value. The default value MUST be 0x00000001, and the value zero
MUST be allowed and treated literally.

RpcProtocol: The DNS_RPC_PROTOCOLS (section 2.2.1.1.2) value corresponding to the RPC
protocols to which the DNS server will respond. If this value is set to 0x00000000, the DNS server
MUST NOT respond to RPC requests for any protocol. The value's range MUST be unlimited, for
example, from 0x00000000 to 0xFFFFFFFF. The default value SHOULD be 0x00000005.<139>

SecureResponses: A Boolean value indicating whether the DNS server is configured to cache only
those records that are in the same subtree as the name in the original query. The value SHOULD

be limited to 0x00000000 and 0x00000001, but it MAY be any value. The default value SHOULD
be 0x00000001, and the value zero MUST be allowed and treated literally.<140>

SendPort: The port number to use as the source port when sending UDP queries to a remote DNS
server. If set to zero, the DNS server MUST allow the stack to select a random port. The value's
range MUST be unlimited. The default value MUST be 0x00000000, and the value zero MUST be
allowed and treated literally.

ScavengingInterval: The time interval, in hours, between which the DNS server will schedule DNS

stale record scavenging. The value SHOULD be limited to the range from 0x00000000 to
0x00002238, inclusive. The default value MUST be 0x00000000, and the value zero MUST be
allowed and treated as a flag to disable scavenging. If the value is non-zero and a
StartScavenging operation is initiated, the value is ignored and scavenging begins

immediately.<141>

SocketPoolSize: The number of UDP sockets per address family that the DNS server will use for
sending remote queries. The value MUST be limited to the range from 0x00000000 to

0x00002710, inclusive. The default value MUST be 0x000009C4, and the value zero MUST be
allowed and treated literally.<142>

StrictFileParsing: A Boolean value indicating whether the DNS server will treat errors encountered
while reading zones from a file as fatal. The value SHOULD be limited to 0x00000000 and
0x00000001, but it MAY be any value. The default value SHOULD be 0x00000000, and the value
zero MUST be allowed and treated literally.

SyncDsZoneSerial: The conditions under which the DNS server immediately commits uncommitted
zone serial numbers to persistent storage. The value SHOULD be limited to the range from
0x00000000 to 0x00000004, inclusive, but it MAY be any value. The default value SHOULD be
0x00000002, and the value zero MUST be allowed and treated literally.<143>

Value Meaning

0x00000000

ZONE_SERIAL_SYNC_OFF

Never force immediate commit of serial number to persistent
storage.

0x00000001

ZONE_SERIAL_SYNC_SHUTDOWN

Force immediate commit of uncommitted serial numbers to
persistent storage when the DNS server is shut down.

221 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Value Meaning

0x00000002

ZONE_SERIAL_SYNC_XFER

Force immediate commit of uncommitted serial numbers to
persistent storage when the DNS server is shut down or when an
uncommitted serial number is advertised during zone transfer.

0x00000003

ZONE_SERIAL_SYNC_VIEW

Force immediate commit of uncommitted serial numbers to
persistent storage when the DNS server is shut down or when an
uncommitted serial number is advertised during zone transfer or
when a zone has been loaded or when a zone has been read from
Active Directory.<144>

0x00000004

ZONE_SERIAL_SYNC_READ

Force immediate commit of uncommitted serial numbers to
persistent storage when the DNS server is shut down or when an
uncommitted serial number is advertised during zone transfer or

when a zone has been loaded or when a zone has been read from
Active Directory.

UpdateOptions: The possible zone update settings on the DNS server. Each bit that follows can be

used to enable a specific update processing rule to modify the default DNS server update
processing behavior. The value's range MUST be unlimited. The default value MUST be
0x0000030F (DNS_DEFAULT_UPDATE_OPTIONS), and the value zero MUST be allowed and
treated literally.<145>

The following values are used to disable dynamic updates for non-secure zones.

Value Meaning

0x00000001

UPDATE_NO_SOA

Disable for SOA records.

0x00000002

UPDATE_NO_ROOT_NS

Disable for root name servers.

0x00000004

UPDATE_NO_DELEGATION_NS

Disable for name servers of delegated zones.

0x00000008

UPDATE_NO_SERVER_HOST

Disable for address records in the DNS server's own host record.

The following values are used to disable dynamic updates for secure zones.

Value Meaning

0x00000100

UPDATE_SECURE_NO_SOA

Disable for SOA records.

0x00000200

UPDATE_SECURE_NO_ROOT_NS

Disable for root name-servers.

0x00000400

UPDATE_SECURE_NO_DELEGATION_NS

Disable for name-servers of delegated zones.

0x00000800

UPDATE_SECURE_NO_SERVER_HOST

Disable for address records in the DNS server's own host-
record.

0x01000000

UPDATE_NO_DS_PEERS

Disable for directory server peers for the DNS server.

222 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Other possible values (regardless of zone type) are as follows.

Value Meaning

0x00000000

UPDATE_ANY

Server allows dynamic updates for all record types.

0x0000030F

DNS_DEFAULT_UPDATE_OPTIONS

Disable all dynamic updates, except for SOA and NS updates for
secure zones.

0x01000000

UPDATE_NO_DS_PEERS

Disable relay of server's address record update to remote DNS
servers for non-secure zones.

UseSystemEventLog: A Boolean value indicating whether the DNS server will write event logs to a
repository that is global for the entire system or to a repository that is specific to the DNS server.
The value SHOULD be limited to 0x00000000 and 0x00000001, but it MAY be any value. The
default value MUST be 0x00000000, and the value zero MUST be allowed and treated literally.

Version: A read-only 32-bit integer containing the DNS server version in DNSSRV_VERSION (section

2.2.4.2.1) format. This property is read-only.

XfrConnectTimeout: The value, in seconds, that the DNS server will wait, for any DNS TCP
connection to a remote DNS server to be established, before assuming that the remote DNS
server will not respond. The value SHOULD be limited to the range from 0x00000005 to
0x00000078, inclusive, but it MAY be any value. The default value MUST be 0x0000001E, and the
value zero MUST be treated as a flag value for the default.<146>

WriteAuthorityNs: A Boolean value indicating whether the DNS server will include NS records for the

root of a zone in DNS responses that are answered using authoritative zone data. The value
SHOULD be limited to 0x00000000 and 0x00000001, but it MAY be unlimited. The default value
MUST be 0x00000000, and the value zero MUST be allowed.<147>

AdditionalRecursionTimeout: The time interval, in seconds, for which the DNS server waits while
recursing to obtain resource records for use in the additional section of DNS responses from a

remote DNS server. The value SHOULD be limited to the range from 0x00000000 to 0x0000000F,
inclusive, but it MAY be any value. The default value SHOULD be 0x00000004, and the value zero

SHOULD be treated as a flag value for the default, but it MAY be allowed and treated
literally.<148>

AppendMsZoneTransferTag: A Boolean value indicating whether the DNS server will indicate to the
remote DNS servers that it supports multiple DNS records in each zone transfer response message
by appending the characters "MS" at the end of zone transfer requests. The value SHOULD be
limited to 0x00000000 and 0x00000001, but it MAY be any value. The default value SHOULD be

0x00000000, and the value zero MUST be allowed and treated literally.<149>

AutoCreateDelegations: The possible settings for automatic delegation creation for new zones on
the DNS server. The value SHOULD be limited to the range from 0x00000000 to 0x00000002,
inclusive, but it MAY be any value. The default value SHOULD be 0x00000002
(DNS_ACD_ONLY_IF_NO_DELEGATION_IN_PARENT), and the value zero MUST be allowed and

treated literally.<150>

Value Meaning

0x00000000

DNS_ACD_DONT_CREATE

The server does not create delegations automatically.

0x00000001

DNS_ACD_ALWAYS_CREATE

The server always creates delegations automatically.

223 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Value Meaning

0x00000002

DNS_ACD_ONLY_IF_NO_

DELEGATION_IN_PARENT

The server creates a new delegation in the parent zone only if there is
no existing delegation present for the zone.

BreakOnAscFailure: A Boolean value indicating whether the DNS server will execute a debug break
if an error is encountered during security negotiation for secure updates. The value SHOULD be
limited to 0x00000000 and 0x00000001, but it MAY be any value. The default value MUST be
0x00000000, and the value zero MUST be allowed and treated literally.<151>

CacheEmptyAuthResponses: A Boolean value indicating if the DNS server will store empty
authoritative responses [RFC2308] in the cache. The value SHOULD be limited to 0x00000000 and
0x00000001, but it MAY be any value. The default value MUST be 0x00000001, and the value zero
MUST be allowed and treated literally.<152>

DirectoryPartitionAutoEnlistInterval: The interval, in seconds, at which the DNS server will

attempt to enlist itself in the DNS domain partition and DNS forest partition if it is not already
enlisted. The value SHOULD be limited to the range from 0x00000E10 (1 hour) to 0x00ED4E00

(180 days), inclusive, but it MAY be any value. The default value MUST be 0x00015180 (1 day),
and the value zero SHOULD be treated as a flag value for the default, but it MAY be allowed and
treated literally.<153>

DisableAutoReverseZones: A Boolean value indicating whether the DNS server will disable the
automatic server boot-time creation of three authoritative reverse lookup zones (0.in-addr.arpa,
127.in-addr.arpa, and 255.in-addr.arpa). The value SHOULD be limited to the range from
0x00000000 to 0x00000001, inclusive, but it MAY be any value. The default value MUST be

0x00000000, and the value zero MUST be allowed and treated literally.

EDnsCacheTimeout: The interval, in seconds, for which the DNS server will cache the remote DNS
server support of EDNS [RFC2671]. The value SHOULD be limited to the range from 0x0000000A
to 0x00015180 (1 day), inclusive, but it MAY be any value. The default value SHOULD be
0x00000384 (15 minutes), and the value zero SHOULD be treated as a flag value for the default,

but it MAY be allowed and treated literally.<154>

EnableDirectoryPartitions: A Boolean value indicating whether the DNS server will support
application directory partitions. The value SHOULD be limited to 0x00000000 and 0x00000001,
but it MAY be any value. The default value MUST be 0x00000001, and the value zero MUST be
allowed and treated literally.<155>

EnableDnsSec: A Boolean value indicating whether the DNS server will perform additional query
processing for secure DNS records, as specified in [RFC4033], [RFC4034], and [RFC4035]. The
value SHOULD be limited to a range of 0x00000000 to 0x00000001, inclusive, but it MAY be any

value. The default value MUST be 0x00000001 and the value zero MUST be allowed and treated
literally.<156>

EnableEDnsProbes: A Boolean value indicating whether the DNS server will include EDNS [RFC2671]
records in remote queries (with the possible exception of queries sent to a remote Global Names
Zone (GNZ); see "GlobalNamesEnableEDnsProbes" later in this section). The value SHOULD be

limited to 0x00000000 and 0x00000001, but it MAY be any value. The default value SHOULD be
0x00000001, and the value zero MUST be allowed and treated literally.<157>

EnableEDnsReception: A Boolean value indicating whether the DNS server will accept queries that
contain an EDNS [RFC2671] record. The value SHOULD be limited to 0x00000000 and
0x00000001, but it MAY be any value. The default value MUST be 0x00000001, and the value zero
MUST be allowed and treated literally.<158>

EnableIPv6: A Boolean value indicating whether the DNS server will listen on local IPv6 addresses.
The value SHOULD be limited to 0x00000000 and 0x00000001, but it MAY be any value. The

http://go.microsoft.com/fwlink/?LinkId=107022
http://go.microsoft.com/fwlink/?LinkId=107051
http://go.microsoft.com/fwlink/?LinkId=107052
http://go.microsoft.com/fwlink/?LinkID=107053

224 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

default value SHOULD be 0x00000001, and the value zero MUST be allowed and treated
literally.<159>

EnableForwarderReordering: A Boolean value indicating whether the DNS server will perform
forwarder list reordering of the DynamicForwarder list (section 3.1.1.1.2) at run time. The value

MUST be limited to 0x00000000 and 0x00000001. The default value MUST be 0x00000001, and
the value zero MUST be allowed and treated literally.<160>

EnableIQueryResponseGeneration: A Boolean value indicating whether the DNS server will
fabricate IQUERY responses. If set to true, the DNS server MUST fabricate IQUERY responses
when it receives queries of type IQUERY. Otherwise, the DNS server will return an error when
such queries are received. The value SHOULD be limited to 0x00000000 and 0x00000001, but it
MAY be any value. The default value MUST be 0x00000000, and the value zero MUST be allowed

and treated literally.<161>

EnableOnlineSigning: A Boolean value indicating whether the DNS server will sign directory server-
integrated zones when these zones are loaded or when records in a zone are added, removed, or
modified. The value also indicates whether signing new zones will be permitted. The value MUST

be limited to 0x00000000 and 0x00000001. The default value MUST be 0x00000001, and the
value zero MUST be allowed and treated literally.<162>

EnableSendErrorSuppression: A Boolean value indicating whether the DNS server will attempt to
suppress large volumes of DNS error responses sent to remote IP addresses that are attempting
to attack the DNS server. The value SHOULD<163> be limited to 0x00000000 and 0x00000001,
but it MAY be any value. The default value MUST be 0x00000001, and the value zero MUST be
allowed and treated literally.

EnableUpdateForwarding: A Boolean value indicating whether the DNS server will forward updates
received for secondary zones to the primary DNS server for the zone. The value SHOULD be

limited to 0x00000000 and 0x00000001, but it MAY be any value. The default value MUST be
0x00000000, and the value zero MUST be allowed and treated literally.<164>

EnablePolicies: A Boolean value indicating whether the DNS server uses DNS Policy during a DNS
Operation. The value SHOULD be limited to 0x00000000 and 0x00000001, but it MAY be any

value. The default value MUST be 0x00000001, and the value zero MUST be allowed and treated
literally.

EnableWinsR: A Boolean value indicating whether the DNS server will perform NetBIOS name

resolution in order to map IP addresses to machine names while processing queries in zones
where WINS-R information has been configured. The value SHOULD be limited to 0x00000000
and 0x00000001, but it MAY be any value. The default value MUST be 0x00000001, and the value
zero MUST be allowed and treated literally.<165>

ForceDsaBehaviorVersion: The minimum value to use as the behavior version of the local directory
server, or 0xFFFFFFFF. Values for this property MUST be limited to those specified in "msDS-

Behavior-Version: DC Functional Level", [MS-ADTS] (section 6.1.4.4), in addition to 0xFFFFFFFF,
which MUST be the default value. The DNS server reads the msDS-BehaviorVersion attribute of
the local directory server's nTDSDSA object and compares it with this property. If the value read
from the directory server is greater than the specified ForceDsaBehaviorVersion, or if
ForceDsaBehaviorVersion is 0xFFFFFFFF, this property is set to the value read from the directory

server. This property SHOULD be returned by the DNS server in the dwDsDsaVersion field of the
DNS_RPC_SERVER_INFO structure (section 2.2.4.2.2) when processing the ServerInfo operation

of the R_DnssrvQuery method (section 3.1.4.2).

ForceDomainBehaviorVersion: The minimum value to use as the behavior version of the domain,
or 0xFFFFFFFF. Values for this property MUST be limited to those specified in "msDS-Behavior-
Version: Domain NC Functional Level", [MS-ADTS] (section 6.1.4.4), in addition to 0xFFFFFFFF,
which MUST be the default value. The DNS server reads the msDS-BehaviorVersion attribute of
the domain's crossRef object and compares it with this property. If the value read from the

225 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

directory server is greater than the specified ForceDomainBehaviorVersion, or if
ForceDomainBehaviorVersion is 0xFFFFFFFF, this property is set to the value read from the

directory server. This property SHOULD be returned by the DNS server in the
dwDsDomainVersion field of the DNS_RPC_SERVER_INFO structure (section 2.2.4.2.2) when

processing the ServerInfo operation of the R_DnssrvQuery method (section 3.1.4.2)

ForceForestBehaviorVersion: The minimum value to use as the behavior version of the forest, or
0xFFFFFFFF. Values for this property MUST be limited to those specified in "msDS-Behavior-
Version: Forest Functional Level", [MS-ADTS] section 6.1.4.4, in addition to 0xFFFFFFFF, which
MUST be the default value. The DNS server reads the msDS-BehaviorVersion attribute of the
forest's crossRefContainer object and compares it with this property. If the value read from the
directory server is greater than the specified ForceForestBehaviorVersion, or if

ForceForestBehaviorVersion is 0xFFFFFFFF, this property is set to the value read from the directory
server. This property SHOULD be returned by the DNS server in the dwDsForestVersion field of
the DNS_RPC_SERVER_INFO structure (section 2.2.4.2.2) when processing the 2.2.4.2.2
operation of the R_DnssrvQuery method (section 2.2.4.2.2

HeapDebug: A Boolean value indicating whether the DNS server will execute a debug break when

internal memory corruption is detected. The value SHOULD be limited to 0x00000000 and

0x00000001, but it MAY be any value. The default value MUST be 0x00000000, and the value zero
MUST be allowed and treated literally.<166>

LameDelegationTtl: The number of seconds that MUST elapse before the DNS server requeries DNS
servers of the parent zone when a lame delegation is encountered. The value SHOULD<167> be
limited to the range from 0x00000000 to 0x00278D00 (30 days), inclusive, but it MAY be any
value. The default value SHOULD be 0x00000000, and the value zero MUST be allowed and
treated literally.

LocalNetPriorityNetMask: A value that specifies the network mask the DNS server uses to sort IPv4
addresses. A value of 0xFFFFFFFF indicates that the DNS server MUST use traditional IPv4 network
mask for the address. Any other value is a network mask, in host byte order that the DNS server
MUST use to retrieve network masks from IP addresses for sorting purposes. The value's range
MUST be unlimited. The default value MUST be 0x000000FF, and the value zero MUST be allowed
and treated literally.<168>

MaxCacheSize: The maximum size of memory, in kilobytes, that the DNS server can use to store

DNS data in the cache. The value SHOULD<169> be limited to the range from 0x000001F4 to
0xFFFFFFFF, inclusive, or 0x00000000, but it MAY be any value. The default value SHOULD be
0x00000000, which MUST be allowed and treated as a flag value for no limit on maximum size of
memory. If the value is nonzero, the DNS server SHOULD treat this as a soft limit, allowing it to
be exceeded for limited durations, and also attempt to limit cache memory to 90 percent of this
value.

MaximumSignatureScanPeriod: The maximum time, in seconds, before which the server
SHOULD<170> scan all signed zones for a signature refresh. The value MUST be limited to the
range 0x00000E10 (1 hour) to 0x00278D00 (30 days), inclusive. The default value MUST be
0x00015180 (1 day), and the value zero MUST be allowed and treated literally.

MaxResourceRecordsInNonSecureUpdate: The maximum number of resource records that the
DNS server accepts in a single DNS update request. The value SHOULD<171> be limited to the

range from 0x0000000A to 0x00000078, inclusive, but it can be any value. The default value

SHOULD be 0x0000001E, and the value zero SHOULD be treated as a flag value for the default,
but it MAY be allowed and treated literally.

OperationsLogLevel: The operations (in addition to those specified by OperationsLogLevel2) that are
logged to the DNS server log file using any combination of the values that follow. The value's
range MUST be unlimited. The default value SHOULD<172> be 0x00000000, and the value zero
MUST be allowed and treated literally.

226 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Value Meaning

0x00000001

DNSLOG_WRITE_THROUGH

The server saves operational logging information to persistent storage.

0x00000010

DNSLOG_EVENT

The server logs event logging information to the log file.

0x00000020

DNSLOG_INIT

The server logs operational logging information to the log file for server
start and stop activities.

0x00002000

DNSLOG_DSPOLL

The server logs operational logging information to the log file for
activities related to loading a zone from the directory server.

0x00004000

DNSLOG_DSWRITE

The server logs operational logging information to the log file for
activities related to writing zone data to the directory server.

0x00020000

DNSLOG_TOMBSTN

The server logs operational logging information to the log file for

activities related to updating tombstoned nodes.

0x00100000

DNSLOG_LOOKUP

The server logs operational logging information to the log file for local
resource lookup activities.

0x00200000

DNSLOG_RECURSE

The server logs operational logging information to the log file for
activities performed during recursive query lookup.

0x00400000

DNSLOG_REMOTE

The server logs operational logging information to the log file for
activities related to interaction with remote name servers.

OperationsLogLevel2: The operations (in addition to those specified by OperationsLogLevel) that are
logged to the DNS server log file using any combination of the values that follow. The value's
range MUST be unlimited. The default value SHOULD<173> be 0x00000000, and the value zero
MUST be allowed and treated literally.

Value Meaning

0x01000000

DNSLOG_PLUGIN

The server logs operational logging information to the log file for activities related
to interaction with plug-in DLLs.

MaximumUdpPacketSize: The maximum UDP packet size, in bytes, that the DNS server

SHOULD<174> accept. The value MUST be limited to 0x00000200 to 0x00004000. The server
MUST return an error if an attempt is made to change the value of this property through this
protocol. This property SHOULD only be changed by modifying the value in persistent storage.

RecurseToInternetRootMask: The DNS server MUST ignore any value set for this property.

SelfTest: A mask value indicating whether data consistency checking is performed once, each time
the service starts. If the check fails, the server posts an event log warning. If the least significant

bit (regardless of other bits) of this value is one, the DNS server verifies for each active and

update-allowing primary zone, that the IP address records are present in the zone for the zone's
SOA record's master server. If the least significant bit (regardless of other bits) of this value is
zero, no data consistency checking will be performed. The value's range MUST be from
0x00000000 to 0xFFFFFFFF, inclusive. The default value MUST be 0xFFFFFFFF.

SilentlyIgnoreCNameUpdateConflicts: A Boolean value indicating whether the DNS server will
ignore CNAME conflicts during DNS update processing. The value SHOULD<175> be limited to

0x00000000 and 0x00000001, but it MAY be any value. The default value MUST be 0x00000000,
and the value zero MUST be allowed and treated literally.

227 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

ScopeOptionValue: An integer value that determines a name in a name value pair that the DNS
server looks for in the OPT record of an incoming query. This is also the name of a name value

pair that a resolver DNS server writes to the OPT RR of a DNS query for which it recurses. The
value SHOULD be limited to the range from 0x00000008 to 0x0000FFFF excluding the range

values, but it MAY be any value. If it is any value other than the range, the DNS server sets it to
0x0000FF98. If the value is not set or set to 0, the DNS server disables this behavior.

TcpReceivePacketSize: The maximum TCP packet size, in bytes, that the DNS server
SHOULD<176> accept. The value MUST be limited to the range from 0x00004000 to 0x00010000,
inclusive. Values outside of this range MUST cause the server to return an error. The default value
MUST be 0x00010000.

XfrThrottleMultiplier: The multiple used to determine how long the DNS server SHOULD<177>

refuse zone transfer requests after a successful zone transfer has been completed. The total time
for which a zone will refuse another zone transfer request at the end of a successful zone transfer
is computed as this value multiplied by the number of seconds required for the zone transfer that
just completed. The server SHOULD refuse zone transfer requests for no more than ten minutes.
The value SHOULD be limited to the range from 0x00000000 to 0x00000064, inclusive, but it MAY

be any value. The default value MUST be 0x0000000A, and the value zero MUST be allowed and

treated literally.

UdpRecvThreadCount: The number of receive threads handling incoming UDP traffic that the server
SHOULD<178> run simultaneously. The value MUST be limited to the range 0x00000000 to
0x00000800, inclusive. The default value MUST be 0x00000000, and the value zero MUST be
allowed and treated as the count of processors in the machine.

VirtualizationInstanceOptionValue: An integer value that determines a name in a name value pair
that the DNS server looks for in the OPT record of an incoming query. This value helps the DNS

server determine which virtualization instance it does the lookup in. If the virtualization instance
present in this name value pair is not found, the DNS server does not return any error. Instead, it
does the lookup in the zones hosted in the default partition (zones that are created without giving
any virtualization instance name).

The value SHOULD<179> be limited to the range from 0x00000008 to 0x0000FFFF excluding the

range values, but can be any value. If it is any value other than the range, the DNS server sets it
to 0x0000FF9C. If the value is not set or is set to zero, the DNS server disables this behavior.

The DNS server SHOULD<180> also support the following properties.

AllowMsdcsLookupRetry: A Boolean value indicating whether the DNS server will attempt to retry
failed lookup operations in the immediate parent of the zone where the lookup was originally
performed. This lookup retry MUST only be applied if the name of the zone where the lookup was
originally performed began with the string "_msdcs" and the immediate parent of the zone where
the lookup was originally performed is present on the DNS server. The value's range MUST be

limited to 0x00000000 and 0x00000001. The default value SHOULD be 0x00000001, and the
value zero MUST be allowed and treated literally.<181>

AllowReadOnlyZoneTransfer: A Boolean value indicating whether the DNS server will allow zone
transfers for zones that are stored in the directory server when the directory server does not
support write operations. The value MUST be limited to 0x00000000 and 0x00000001. The default

value MUST be 0x00000000, and the value zero MUST be allowed and treated literally.

DsBackgroundLoadPaused: A Boolean value indicating whether the DNS server is enabled to pause

background loading of information from directory server if a node is found with same node-name
same as pointed to by DsBackgroundPauseName. The value MUST be limited to 0x00000000 and
0x00000001. The default value MUST be 0x00000000, and the value zero MUST be allowed and
treated literally.<182>

DsMinimumBackgroundLoadThreads: The minimum number of background threads that the DNS
server will use to load zone data from the directory service. The value MUST be limited to the

228 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

range from 0x00000000 to 0x00000005, inclusive. If the value is 0x00000000, then the DNS
server MUST NOT start background threads to load zone data from the directory service. The

default value MUST be 0x00000001, and the value zero MUST be treated as allowed.

DsRemoteReplicationDelay: The minimum interval, in seconds, that the DNS server waits between

the time it determines that a single object has changed on a remote directory server and the time
it attempts to replicate the single object change. The value MUST be limited to the range from
0x00000005 to 0x00000E10, inclusive. The default value MUST be 0x0000001E, and the value
zero MUST be treated as a flag value for the default.

EnableDuplicateQuerySuppression: A Boolean value indicating whether the DNS server will not
send remote queries when there is already a remote query with the same name and query type
outstanding. The value MUST be limited to 0x00000000 and 0x00000001. The default value MUST

be 0x00000001, and the value zero MUST be allowed and treated literally.

EnableGlobalNamesSupport: A Boolean value indicating whether the DNS server will use any GNZ
data while responding to DNS queries and updates. The value MUST be limited to 0x00000000 and
0x00000001. The default value MUST be 0x00000000, and the value zero MUST be allowed and

treated literally.

EnableVersionQuery: This property controls what version information the DNS server will respond

with when a DNS query with class set to CHAOS and type set to TXT is received. The value's range
MUST be limited to the values in the following table. The default value SHOULD be
0x00000000.<183>

Value Meaning

0x00000000

DNS_VERSION_QUERY_OFF

No version information will be returned.

0x00000001

DNS_VERSION_QUERY_FULL

The server responds with major operating system version, minor
operating system version, and operating system revision.

0x00000002

DNS_VERSION_QUERY_MINIMAL

The server responds with major operating system version and
minor operating system version.

EnableRsoForRodc: A Boolean value indicating whether the DNS server will attempt to replicate
single updated DNS objects from remote directory servers ahead of normally scheduled replication
when operating on a directory server that does not support write operations. The value MUST be
limited to 0x00000000 and 0x00000001, but it MAY be any value. The default value SHOULD be
0x00000001, and the value zero MUST be allowed and treated literally.

ForceRODCMode: A Boolean value indicating whether the DNS server will always operate as if the

directory server does not support write operations. If TRUE, the DNS server MUST operate as if
the directory server does not support write operations; otherwise, the DNS server MUST query the
directory server to determine whether it supports write operations. The value MUST be limited to
0x00000000 and 0x00000001. The default value MUST be 0x00000000, and the value zero MUST
be allowed and treated literally.<184>

GlobalNamesAlwaysQuerySrv: A Boolean value that indicates, when FALSE, that the DNS server
will attempt to use GNZ service records (SRV records named

"_globalnames._msdcs.<forestroot>") from the server's cache when updating the list of remote
DNS servers hosting a GNZ, or when TRUE, that the server MUST always attempt a remote DNS
query for such records. The value MUST be ignored if the server hosts a GNZ. The value MUST be
limited to 0x00000000 and 0x00000001. The default value MUST be 0x00000000, and the value
zero MUST be allowed.

229 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

GlobalNamesBlockUpdates: A Boolean value indicating whether the DNS server will block updates
in authoritative zones if they are for FQDNs that would collide with labels found in the GNZ. If the

value of this property is 0x00000000, then a check for this collision MUST NOT be performed.

To test whether a name collides with a name present in the GNZ, the DNS server MUST extract

the relative portion of the name that is being updated by removing the rightmost labels which
comprise the zone name, and then perform a case-insensitive search in the locally hosted GNZ for
a name matching the remaining labels. If a match for these labels is found in the locally hosted
GNZ and the value of this property is 0x00000001 then the update MUST be blocked.

The value MUST be limited to 0x00000000 and 0x00000001. The default value MUST be
0x00000001, and the value zero MUST be allowed.

GlobalNamesEnableEDnsProbes: A Boolean value indicating whether the DNS server will honor the

EnableEDnsProbes Boolean value for a remote GNZ. A value of TRUE indicates that the server
MUST attempt to use EDNS for queries sent to a remote GNZ if the Boolean value of
EnableEDnsProbes is also TRUE, and otherwise MUST NOT attempt to use EDNS for such queries.
A value of FALSE indicates that the server MUST NOT attempt to use EDNS for queries sent to a

remote GNZ, regardless of the value of EnableEDnsProbes. The value MUST be limited to
0x00000000 and 0x00000001. The default value MUST be 0x00000001, and the value zero MUST

be allowed.

GlobalNamesPreferAAAA: A Boolean value indicating whether the DNS server will prefer type AAAA
address records to type A records when sending queries to a remote DNS server that is hosting a
GNZ. If the value is 0x00000000 then queries to a remote DNS server hosting a GNZ MUST be
sent using IPv4 if any IPv4 addresses for the remote DNS server name can be found. If no IPv4
addresses are found for the remote DNS server name, then IPv6 addresses MUST be used. If the
value of this property is 0x00000001, then IPv6 addresses for the remote DNS server MUST be

used, and IPv4 addresses MUST NOT be used unless no IPv6 addresses can be found. The value
MUST be limited to 0x00000000 and 0x00000001. The default value MUST be 0x00000000, and
the value zero MUST be allowed and treated literally.

GlobalNamesQueryOrder: A Boolean value indicating whether the DNS server will prefer GNZ or
authoritative zone data when determining what data to use to answer queries. If TRUE, the DNS

server MUST prefer authoritative zone data; otherwise, the DNS server MUST prefer GNZ data.
The value MUST be limited to 0x00000000 and 0x00000001. The default value MUST be

0x00000000, and the value zero MUST be allowed and treated literally.

GlobalNamesSendTimeout: The number of seconds the DNS server will wait when sending a query
to a remote GNZ before assuming that no answer will ever be received. The value MUST be limited
to the range from 0x00000001 to 0x0000000F, inclusive. The default value MUST be 0x00000003,
and the value zero MUST be treated as a flag value for the default.

GlobalNamesServerQueryInterval: The maximum interval, in seconds, between queries to refresh

the set of remote DNS servers hosting the GNZ. The value MUST be limited to the range from
0x0000003C (60 seconds) to 0x00278D00 (30 days), inclusive. The default value MUST be
0x00005460 (6 hours), and the value zero MUST be treated as a flag value for the default.

RemoteIPv4RankBoost: A value to add to all IPv4 addresses for remote DNS servers when selecting
between IPv4 and IPv6 remote DNS server addresses. The value MUST be limited to the range

from 0x00000000 to 0x0000000A, inclusive. The default value MUST be 0x00000000, and the
value zero MUST be allowed and treated literally.

RemoteIPv6RankBoost: A value to add to all IPv6 addresses for remote DNS servers when selecting
between IPv4 and IPv6 remote DNS server addresses. The value MUST be limited to the range
from 0x00000000 to 0x0000000A, inclusive. The default value MUST be 0x00000000, and the
value zero MUST be allowed and treated literally.

MaximumRodcRsoAttemptsPerCycle: The maximum number of queued single object replication
operations that are attempted during each five minute interval of DNS server operation. The value

230 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

MUST be limited to the range from 0x00000000 to 0x000F4240, inclusive. The default value MUST
be 0x00000064, and the value 0x00000000 MUST be allowed and treated as no limitation on the

number of queued single object replication operations.

MaximumRodcRsoQueueLength: The maximum number of single object replication operations that

can be queued at any given time by the DNS server. The value MUST be limited to the range from
0x00000000 to 0x000F4240, inclusive. If the value is 0x00000000 the DNS server MUST NOT
enforce an upper bound on the number of single object replication operations queued at any given
time. The default value MUST be 0x0000012C, and the value zero MUST be allowed.

EnableGlobalQueryBlockList: A Boolean value indicating whether the DNS server blocks queries in
locally hosted primary zones that match entries in the GlobalQueryBlockList property (see
section 3.1.1.1.4). If the value of this property is 0x00000001, when answering a query using a

locally hosted primary zone the DNS server MUST check to see if the relative portion of the query
name matches any value in the GlobalQueryBlockList property. If a match is found the DNS server
MUST return a name error response instead of a positive answer. The DNS server MUST NOT
apply this algorithm to the name of the zone. The block list MUST only be applied to records within
each zone. The DNS server MUST NOT perform this check if the value of the

EnableGlobalQueryBlockList property is 0x00000000. The value MUST be limited to 0x00000000

and 0x00000001. The default value MUST be 0x00000001, and the value zero MUST be allowed
and treated literally.<185>

The DNS server SHOULD<186> also support the following properties.

OpenACLOnProxyUpdates: A Boolean value indicating whether the DNS server allows sharing of
DNS records with the DnsUpdateProxy group when processing updates in secure zones that are
stored in the directory service. During secure dynamic update [RFC3645] negotiation, the DNS
server SHOULD check whether DNS records exist in the zone under the name specified in the

update request, [RFC2136]. If so, the server SHOULD check the client credentials against the
access control lists associated with the existing records in the directory service (see [MS-ADTS]
section 5.1.3), before allowing the requested records to be created or modified. If there are no
records for the update request name, DNS server SHOULD create records requested by the client,
and associate those records with the client's credentials. If OpenACLOnProxyUpdates is set to
TRUE, when a member of the DnsUpdateProxy group updates a DNS resource record for which

that member has write access, the record access control lists SHOULD be adjusted to grant write

privileges to all clients with credentials. The value of OpenACLOnProxyUpdates MUST be limited to
0x00000000 and 0x00000001. The default value MUST be 0x00000001, and the value zero MUST
be allowed and treated literally.

CacheLockingPercent: The percentage of the original time-to-live value for which all cache entries
from non-authoritative responses MUST be locked and MUST NOT be overwritten by data found in
subsequent non-authoritative responses. Locked cache entries MUST still be considered for

removal from the cache if the soft limit of the maximum cache size is reached (see the
MaxCacheSize property, described previously in this section). The value MUST be limited to the
range from 0x00000000 to 0x00000064, inclusive. The default value MUST be 0x00000064, and
the value zero MUST be allowed and treated literally.

ZoneWritebackInterval: The interval at which the data for a file backed zone is periodically synced
to its data file in persistent storage, in case the in-memory copy of the zone is not yet committed

to the data file. <187> The values can range from 1 minute to 1 week (7*24*60). When

ZoneWritebackInterval is set to a value of 0, the automatic flushing of zone data to the data file is
disabled. This setting applies to all zone scopes present on the zone as well.

EnablePolicies: A Boolean value that indicates whether the DNS Policies configured on the DNS
server are to be applied on DNS Operations. If the value of the property is 0x00000000, then all
policies at the server level and zone level are considered disabled and are not applied. Otherwise,
the policies are considered enabled.

http://go.microsoft.com/fwlink/?LinkId=90440
http://go.microsoft.com/fwlink/?LinkId=107017

231 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

EnableServerPolicies: A Boolean value that indicates whether the DNS server-level Policies
configured on the DNS server are to be applied on DNS Operations. If the value of the property is

0x00000000, then all policies at the server level only are considered disabled and are not applied.
Otherwise, the policies are considered enabled. If the EnablePolicies property value is

0x00000000, then server-level policies are disabled regardless of the EnableServerPolicies
setting. If the EnablePolicies property value is anything other than 0x00000000, then the
EnableServerPolicies settings apply.

3.1.1.1.2 DNS Server Address Array Properties

The following properties are IP address arrays (specified by type IDs DNSSRV_TYPEID_ADDRARRAY or
DNSSRV_TYPEID_IPARRAY, and formatted as DNS_ADDR_ARRAY (section 2.2.3.2.3) or as

IP4_ARRAY (section 2.2.3.2.1), respectively). The DNS server SHOULD support both types.<188>

Forwarders: A list of IP addresses indicating to which remote DNS servers this DNS server will
forward unresolved queries. If the list is empty then no forwarding will be performed.

DynamicForwarders: A list of IP addresses indicating to which remote DNS servers this DNS server

will forward unresolved queries where the list can be reordered by the server, sorted by lower
prior response time. If the list is empty, no forwarding will be performed if the Forwarders

property (section 3.1.1.1.2) is also empty. If the EnableForwarderReordering property (section
3.1.1.1.1) is 0x00000000, the Forwarders property will be used; otherwise, the
DynamicForwarders property will be used.<189>

ListenAddresses: A list of local IP addresses on which the DNS server listens for DNS request
messages.

The DNS server SHOULD<190> also support the following properties:

BreakOnReceiveFrom: The DNS server will execute a debug break, for debugging purposes, when a

DNS query message is received from any IP address in this list. If NULL then no debug breaks will
be executed when query messages are received.

BreakOnUpdateFrom: The DNS server will execute a debug break, for debugging purposes, when a

DNS update message is received from any IP address in this list. If NULL then no debug breaks
will be executed when update messages are received.

LogIPFilterList: A list of IP addresses that indicates traffic to or from the IP addresses that are
logged when logging is enabled. If NULL, traffic to and from all IP addresses is logged when

logging is enabled.

3.1.1.1.3 DNS Server String Properties

The DNS server SHOULD<191> support the following string properties:

DomainDirectoryPartitionBaseName: The first name component to use as the name of the DNS
domain partition in UTF-8 format. If empty, the DNS server uses DomainDnsZones. On input, the

type ID for this property is DNSSRV_TYPEID_LPWSTR, listed in section 2.2.1.1.1. On output, the
type ID for this property is DNSSRV_TYPEID_LPSTR, listed in section 2.2.1.1.1.

ForestDirectoryPartitionBaseName: The first name component to use as the name of the DNS
forest partition in UTF-8 format. If empty, the DNS server uses ForestDnsZones. On input, the
type ID for this property is DNSSRV_TYPEID_LPWSTR, listed in section 2.2.1.1.1. On output, the
type ID for this property is DNSSRV_TYPEID_LPSTR, listed in section 2.2.1.1.1.

LogFilePath: An absolute or relative pathname of the log file to which the DNS server SHOULD<192>

output logging information. This protocol only treats the pathname as a string, it does not
constrain the syntax in any way. This property is encoded as a null-terminated Unicode string, and
the type ID for this property is DNSSRV_TYPEID_LPWSTR, listed in section 2.2.1.1.1.

232 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

ServerLevelPluginDll: An absolute pathname of a dynamic link library that the DNS server can use
to resolve unknown names, or an empty string to remove or disable the previously selected DLL.

This protocol only treats the pathname as a string, it does not constrain the syntax in any way.
This property is encoded as a null-terminated Unicode string, and the type ID for this property is

DNSSRV_TYPEID_LPWSTR, listed in section 2.2.1.1.1.

The DNS server SHOULD<193> also support the following properties:

DsBackgroundPauseName: A single-label name in UTF-8 format which, when matched to the
current node name being read during zone background loading from the directory service, causes
the DNS server to set the DsBackgroundLoadPaused (section 3.1.1.2.1) property to TRUE and stop
loading data in the background until the DsBackgroundLoadPaused property is reset to FALSE. The
type ID for this property is DNSSRV_TYPEID_LPSTR, listed in section 2.2.1.1.1. This property

MUST NOT be possible to set using this protocol.

DoNotRoundRobinTypes: An array of record types for which the DNS server will disable round
robin. The value MUST be an ASCII string containing integers separated by spaces, in either
hexadecimal format (prefixed with the ASCII characters '0x' or '0x'), octal format (prefixed with

an ASCII '0' and no subsequent 'x' or 'x'), or decimal format (otherwise). Each integer MUST
correspond to a DNS record type number, and SHOULD be a value in the range from 0x00000000

to 0x000000FF, though the element values MAY be any value in the range 0x00000000 to
0xFFFFFFFF. This value MUST NOT be changeable via the DNSP protocol.<194>

RootTrustAnchorsURL: A URL in UTF-8 format from which the DNS root trust anchors
SHOULD<195> be downloaded when the RetrieveRootTrustAnchors operation is invoked. The
default value MUST be https://data.iana.org/root-anchors/root-anchors.xml.

3.1.1.1.4 DNS Server String List Properties

The following properties are string lists in UTF-8 format. The type ID for this property is
DNSSRV_TYPEID_UTF8_STRING_LIST, listed in section 2.2.1.1.1.

The DNS server SHOULD<196> support the following properties:

GlobalQueryBlockList: A list of single-label strings for which queries will be blocked if the query
name matches any name in this list within any primary zone on the DNS server. The DNS server
MUST NOT block queries if the value of the EnableGlobalQueryBlockList property (see section
3.1.1.1.1) is 0x00000000. For a description of the DNS server's behavior when blocking queries,

see the description of the EnableGlobalQueryBlockList property (see section 3.1.1.1.1).

When the DNS server process starts, if for both this property and for the
EnableGlobalQueryBlockList property, no value is found in persistent storage, then the DNS
server MUST construct and store as the value of this property a generic list of query names to be
blocked, and MUST set the value of the EnableGlobalQueryBlockList property to 0x00000001 in
persistent storage. If the EnableGlobalQueryBlockList property is already set to 0x00000001,

then an undefined GlobalQueryBlockList property is treated as an empty list.

Construction of the generic list of query names to be blocked MUST be performed as follows: the
DNS server MUST enumerate all locally hosted primary and secondary zones. If no locally hosted
primary or secondary zone contains a DNS record for the name "isatap" that is not of type TXT

then "isatap" MUST be added to the list. If no locally hosted primary or secondary zone contains a
DNS record for the name "wpad" that is not of type TXT then "wpad" MUST be added to the list.

SocketPoolExcludedPortRanges: A list of numeric port number ranges (for example, {"4000-

5000", "34000-34000"}) for which listen sockets will not be opened by the DNS server. Ranges
MUST have the smaller number (if unequal) first, and are inclusive. Even single port exclusions
MUST be specified as a range. Inputs less than 1 or greater than 65,535 are interpreted as 1 and
65,535 respectively.

233 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

3.1.1.2 DNS Zone Configuration Information

The list of names that are used in (name, value) pairs in DNS Zone metadata is given below.

3.1.1.2.1 DNS Zone Integer Properties

The following properties are 32-bit integers. The term Boolean, as used below, means a 32-bit integer
where a value of 0x00000000 indicates that the stated property is false, and any nonzero value
indicates that the stated property is TRUE. The server SHOULD<197> support the properties.

AllowUpdate: The DNS_ZONE_UPDATE (section 2.2.6.1.1) value for the zone. The value for this
property is limited to those listed in the table in section 2.2.6.1.1. If this property's value is
changed from any value to ZONE_UPDATE_SECURE, the DNS server MUST set the zone's Time

Zone Secured (section 3.1.1) property to the current time expressed as the number of seconds
since 12:00 A.M. January 1, 1601 Coordinated Universal Time (UTC).

DsIntegrated: A Boolean indicating whether the zone is stored in the directory server. This property
is read-only.

DsRecordAlgorithms: The value of the cryptographic hash algorithm used to generate DS records
written to a file named "dsset-<ZoneName>"<198> when the zone is first signed and whenever

the DNSKEY record set for the zone is changed. The value MUST be limited to the values in the
following table. The default value MUST be 0x00000003.

Value Meaning

0x00000000

DNS_ZONE_GENERATE_DS_NONE

Do not generate DS records.

0x00000001

DNS_ZONE_GENERATE_DS_SHA1

Use SHA-1 to generate DS records.

0x00000002

DNS_ZONE_GENERATE_DS_SHA256

Use SHA-256 to generate DS records.

0x00000004

DNS_ZONE_GENERATE_DS_SHA384

Use SHA-384 to generate DS records.

DSRecordSetTTL: The TTL value, in seconds, to assign to any new DS record created for this zone
and written to the "dsset-<ZoneName>" file during zone signing or key rollover. The value MUST
be limited to the range 0x00000000 to 0x00093A80 (1 week), inclusive. The default value MUST
be 0x00000000, and the value zero MUST be allowed and treated as the zone default TTL.

DNSKEYRecordSetTTL: The TTL value, in seconds, that is assigned to any new DNSKEY record

created for this zone during zone signing or key rollover. The value MUST be limited to the range
0x00000000 to 0x00093A80 (1 week), inclusive. The default value MUST be 0x00000000, and the
value zero MUST be allowed and treated as the zone default TTL.

IsKeymaster: A Boolean indicating whether the DNS server is the key master for this zone. This

property can be modified only by using the TransferKeymasterRole operation of the
R_DnssrvOperation (Opnum 0) (section 3.1.4.1) method call. The default value MUST be
0x00000000.

IsSigned: A Boolean indicating whether the zone is signed via Online Signing. This property can be
modified only by using the ZoneSign or ZoneUnsign operation of the R_DnssrvOperation (Opnum
0) (section 3.1.4.1) method call. The default value MUST be 0x00000000.

LogUpdates: A Boolean indicating whether updates on this zone are logged to permanent storage.

234 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

MaintainTrustAnchor: This property controls how the DNS server maintains the list of forest-wide
Trust Anchors as key rollover takes place for signing key descriptors whose fIsKSK flag is set. As

the rollover progresses, new keys are generated and added to the forest-wide TrustAnchors zone,
and old keys are removed. The value's range MUST be limited to the values in the following table.

The default for this value is 0x00000000.

Value Meaning

0x00000000

DNS_ZONE_MAINTAIN_TA_NONE

Trust Anchors are not updated as key rollover proceeds.

0x00000001

DNS_ZONE_MAINTAIN_TA_DNSKEY

Keys are stored in the forest-wide TrustAnchors zone as DNSKEY
records as the key rollover proceeds.

NoRefreshInterval: The No Refresh interval value, in hours, for the zone. The value 0x00000000
MUST be treated as a flag value for the value of "DefaultNoRefreshInterval" (section 3.1.1.1.1).

NSEC3HashAlgorithm: The algorithm ID used for hashing node owner names in zones signed with

NSEC3 as described in [RFC5155] section 3.1.1. The value's range MUST be limited to the values

in the following table. The default for this value is 0x00000001.

Value Meaning

0x00000001

DNS_NSEC3_HASH_ALG_ID_SHA1

Use SHA-1 to hash owner names.

NSEC3Iterations: The number of additional iterations that the hashing function is used when
generating hashed owner names for zones signed with NSEC3, as described in [RFC5155] section
3.1.3 and section 5. The value's range MUST be 0x00000000 to 0x000009C4, inclusive. The
default value is 0x00000032.

NSEC3OptOut: A Boolean indicating whether NSEC3 records in a zone signed with NSEC3 have their
Opt-Out flag set, as described in [RFC5155] section 3.1.2.1. The default value is 0x00000000.

NSEC3RandomSaltLength: When zones are signed with NSEC3, salt can be applied to the hashing
function when hashed owner names are generated, as described in [RFC5155] section 3.1.5 and
section 5. The "NSEC3RandomSaltLength" is the length, in octets, of randomly generated salt. The
value 0x00000000 MUST be treated as a flag indicating that the DNS server MUST NOT generate
salt randomly but MUST use the "NSEC3UserSalt" zone property. For any other value, the DNS
server MUST generate a random salt of the specified length to be used when generating hashed
owner names. The value's range MUST be 0x00000000 to 0x000000FF, inclusive. The default

value is 0x00000008.

NotifyLevel: The DNS_ZONE_NOTIFY_LEVEL (section 2.2.5.1.3) value for the zone. The value for this
property is limited to those listed in the table in section 2.2.5.1.3.

ParentHasSecureDelegation: A Boolean indicating whether this zone has a secure delegation from a
parent zone. The default value is 0x00000000.

PropagationTime: The expected time, in seconds, that it takes for zone data changes to propagate

to other copies of the zone, whether these copies are hosted as secondary zones or, if the zone is
directory server-integrated, are other primary copies on the directory server. For zones that are
directory server-integrated, the default value SHOULD be 0x0002A300 (2 days). Otherwise, the
default is 0x00000000.

RefreshInterval: The refresh interval value, in hours, for the zone. The value 0x00000000 MUST be
treated as a flag value for the value of "DefaultRefreshInterval" (section 3.1.1.1.1).

http://go.microsoft.com/fwlink/?LinkId=225981

235 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

RFC5011KeyRollovers: A Boolean indicating whether the zone follows [RFC5011] section 2 as key
rollover takes place for signing key descriptors whose fIsKSK flag is set. The default value is

0x00000000.

SecureDelegationPollingPeriod: The interval, in seconds, between queries to refresh the set of

delegation signer (DS) records in a secure delegation. The value MUST be limited to the range
0x00000E10 (1 hour) to 0x0x00093A80 (1 week), inclusive. The default value is 0x0000A8C0 (12
hours).

SecureSecondaries: The DNS_ZONE_SECONDARY_SECURITY (section 2.2.5.1.2) value for the zone.
The value for this property is limited to those listed in the table in section 2.2.5.1.2.

SignatureInceptionOffset: The interval, in seconds, that the DNS server subtracts from the current
time when generating the signature inception field in new RRSIG records ([RFC4034]). The value's

range MUST be 0x00000000 to 0x00093A80, inclusive. The default value is 0x00000E10.

SignWithNSEC3: A Boolean indicating whether an online-signed zone is signed using NSEC3
([RFC5155]) for denial of existence. A zone not using NSEC3 will use NSEC ([RFC4034]). The

default value is 0x00000001.

Type: The DNS_ZONE_TYPE (section 2.2.5.1.1) value for the zone. This property is read-only.

Aging: A Boolean indicating whether aging SHOULD<199> be enabled for the zone.

ForwarderSlave: A Boolean indicating whether normal recursion SHOULD<200> be used to resolve
queries if the master servers for the forwarder zone are unreachable.

ForwarderTimeout: The number of seconds the DNS server SHOULD<201> wait for response for a
forwarded query.

Unicode: The server SHOULD<202> ignore any value set for this Boolean property.

PluginEnabled: A Boolean indicating whether the zone is configured to use a plugin. If a zone is
configured to use a plugin, then incoming queries are forwarded to the plugin for calculation of the

appropriate zone scope for query resolution.<203>

EnablePolicies: A Boolean value that indicates whether the DNS Policies on the zone configured on
the DNS server are to be applied on DNS Operations. If the value of the property is 0x00000000,
then all policies at the zone level are considered disabled and are not applied. Otherwise, the
policies are considered enabled. If EnablePolicies (section 3.1.1.1.1) is 0x00000000, then zone-
level policies are disabled regardless of the EnablePolicies setting (section 3.1.1.2.1). If the
EnablePolicies property value is anything other than 0x00000000, then the EnablePolicies

settings apply.

FreezeSOASerialNumber: A Boolean value indicating how a DNS server SHOULD<204> update the
SOA serial number field [RFC1035]. If set to TRUE, the DNS server will not allow SOA serial
number field to be updated for the zone unless it is updated by the API (see section 3.1.4.5). The
value's range MUST be unlimited. The default value MUST be 0x00000000. This setting applies to
all zone scopes present on the zone as well. This is not supported for dns zone type

DNS_ZONE_TYPE_CACHE (section 2.2.5.1.1) or an Active Directory integrated zone. The property

can be set for a signed zone, but the behavior is undefined.

3.1.1.2.2 DNS Zone Address Array Properties

The following properties are IP address arrays (specified by type IDs DNSSRV_TYPEID_ADDRARRAY or
DNSSRV_TYPEID_IPARRAY and formatted as DNS_ADDR_ARRAY (section 2.2.3.2.3) or IP4_ARRAY
(section 2.2.3.2.1), respectively). The DNS server SHOULD support both types.

AllowNSRecordsAutoCreation: A list of IP addresses used to restrict automatic NS record creation
for the zone. If the list is empty then NS record creation is not restricted. This setting is ignored if

http://go.microsoft.com/fwlink/?LinkId=225980
http://go.microsoft.com/fwlink/?LinkId=107052
http://go.microsoft.com/fwlink/?LinkId=90264

236 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

the zone is not stored in the directory server. The DNS server MUST NOT create an NS record for
the FQDN of the local machine if one the machine's IP addresses is not present in this list.

ScavengeServers: A list of IP addresses of DNS servers authorized to perform scavenging of records
in the zone.

The DNS server SHOULD<205> also support the following properties:

MasterServers: A list of IP addresses of primary DNS servers for the zone. This value cannot be
empty for any zone of a type that requires primary DNS servers: secondary, stub, or forwarder.

LocalMasterServers: A list of IP addresses of the zone's primary DNS servers used locally by this
DNS server only. If not configured, the MasterServers value is used; otherwise, this list is used in
place of the MasterServers value. This value is ignored if the zone type is not stub.

NotifyServers: A list of IP addresses of remote DNS servers to be notified for any changes to the

zone. If empty, then no remote DNS servers will be notified when changes are made to this zone.

SecondaryServers: A list of IP addresses of authorized secondary DNS servers for the zone.

3.1.1.2.3 DNS Zone String Properties

The following properties are strings.

DatabaseFile: The name (with no path) of the zone file or NULL if the zone is not stored in a file.

ApplicationDirectoryPartition: The FQDN of the application directory partition that the zone is
stored in if "DsIntegrated" is TRUE, or NULL if the zone is not stored in a directory server.

The DNS server SHOULD<206> also support the following properties:

BreakOnNameUpdate: The DNS server will execute a debug break when the specified node name
within the zone is the target of a DNS update. If this property is NULL or empty the DNS server
will not execute debug breaks during DNS update processing.

Keymaster: The FQDN of the key master server for the zone. The default value MUST be NULL.

NSEC3UserSalt: Salt that is to be used when hashed owner names are generated according to
[RFC5155] section 5 in zones signed with NSEC3. This property MUST be ignored unless the
NSEC3RandomSaltLength property is set to 0x00000000.

NSEC3CurrentSalt: The current salt being used by a zone signed with NSEC3 to generate hashed
owner names as described in [RFC5155] section 5. This property is read-only.

3.1.1.2.4 DNS Record Configuration Information

The list of names that are used in (name, value) pairs in DNS Zone metadata is given below. All
properties below are 32-bit integers.

Aging Time Stamp: A time stamp value that specifies at what time this record was last updated. This
property is initialized and written to the whenChanged attribute of its dnsNode object (section

2.3).

3.1.1.2.5 DNS Zone Scope or Cache Scope Configuration Information

Zone scopes and cache scopes are unique versions of the zone and cache zone respectively. Multiple
zone scopes or cache scopes can be configured inside the same zone or cache zone. They MAY contain
different resource record sets from each other. <207>

http://go.microsoft.com/fwlink/?LinkId=225981

237 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

3.1.1.3 DNS Server Server Scope Configuration Information

The properties that are used in (name, value) pairs in DNS server server scope configuration
information<208> are described in the following sections.

3.1.1.3.1 DNS Server Server Scope Integer Properties

The following properties are 32-bit integers. The term Boolean, as used below, means a 32-bit integer
where a value of 0x00000000 indicates that the stated property is FALSE, and any nonzero value
indicates that the stated property is TRUE.

These properties are part of a server scope and are applicable when a DNS operation matches a DNS
recursion policy and selects a specific server scope

NoRecursion: A Boolean value indicating whether the DNS server will perform any recursion. If
TRUE, the DNS server MUST NOT recurse and will only answer queries for authoritative data.

3.1.1.3.2 DNS Server Server Scope Address Array Properties

The following properties are IP address arrays (specified by type IDs DNSSRV_TYPEID_ADDRARRAY or
DNSSRV_TYPEID_IPARRAY and formatted as DNS_ADDR_ARRAY (section 2.2.3.2.3) or IP4_ARRAY
(section 2.2.3.2.1), respectively). The DNS server SHOULD support both types.<209>

These properties are part of a server scope and are applicable when a DNS operation matches a DNS
recursion policy and selects a specific server scope.

Forwarders: A list of IP addresses indicating to which remote DNS servers this DNS server will
forward unresolved queries. If the list is empty then no forwarding will be performed.

3.1.2 Timers

No timers are required beyond those used internally by RPC to implement resiliency to network
outages, as specified in [MS-RPCE] section 3.2.3.2.1.

3.1.3 Initialization

At initialization time, the server MUST load the DNS Server Configuration (section 3.1.1) from
persistent local storage. The server MUST then initialize its zones:

If the server is configured to use a directory server:

 The server MUST invoke the task Initialize an ADConnection, as defined in [MS-ADTS] section
7.6.1.1, with the following parameters:

 TaskInputTargetName: NULL.

 TaskInputPortNumber: 389.

 The server MUST store the new TaskReturnADConnection returned from the task as DNS

Server AD Connection.

 If the AD connection is successfully initialized, the server MUST invoke the task Setting an LDAP
Option on an ADConnection, as defined in [MS-ADTS] section 7.6.1.2 on the Active Directory
connection DNS Server AD Connection. Parameters for this task are as follows:

 TaskInputOptionName: LDAP_OPT_AREC_EXCLUSIVE.

 TaskInputOptionValue: TRUE.

%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15
%5bMS-ADTS%5d.pdf#Section_d243592709994c628c6d13ba31a52e1a

238 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 TaskInputOptionName: LDAP_OPT_PROTOCOL_VERSION.

 TaskInputOptionValue: 3.

 TaskInputOptionName: LDAP_OPT_TIMELIMIT.

 TaskInputOptionValue: 180.

 TaskInputOptionName: LDAP_OPT_REFERRALS.

 TaskInputOptionValue: FALSE.

 After the Active Directory connection is initialized and the option is set, the server MUST invoke
the Establishing an ADConnection task, as specified in [MS-ADTS] section 7.6.1.3, with the
TaskInputADConnection parameter set to DNS Server AD Connection.

 For the final step to complete the connection through LDAP to the local directory server, the server
MUST invoke the Performing an LDAP Bind on an ADConnection task, as specified in [MS-ADTS]

section 7.6.1.4, with the TaskInputADConnection parameter set to DNS Server AD Connection.

 If any of the previous steps returns an error, the server MUST retry the connection with LDAP up
to eight times, unless the Global Server State changes to "Stopping", in which case it MUST
discontinue initialization. If each of the eight attempts to connect with LDAP fails, the server MUST
continue initialization.

 If the connection with LDAP was successfully established:

 The server MUST check that the DnsAdmins group already exists in the Local security
groups (see section 3.1.1). If it does not exist, and if the server is not a read-only server,
then the server MUST create the DnsAdmins group in the Local security groups. The
groupType attribute value for the DnsAdmins group MUST be 0x80000004.

 If the server is not a read-only server, it MUST:

 Attempt to add the MicrosoftDNS container object by invoking the Performing an LDAP

Operation on an ADConnection task, as specified in [MS-ADTS] section 7.6.1.6, with

the following parameters:

 TaskInputADConnection: DNS Server AD Connection.

 TaskInputRequestMessage: protocolOp is set to addRequest ([RFC4511]
section 4.7).

 The parameters of the addRequest are set as follows:

 entry: "CN=MicrosoftDNS,CN=System,<Forest DN>"

 attributes:

 type: "objectClass"; vals: "container"

 type: "cn"; vals: "MicrosoftDNS"

 If the operation was successful, or if the operation failed because the object already
existed and the DnsAdmins group was newly created in the last step, then the server
MUST:

 Attempt to grant all rights and ownership, with container inheritance, for the

MicrosoftDNS (distinguished name: CN=MicrosoftDNS,CN=System,<Forest DN>)
object to the DnsAdmins group by following the procedure specified in section
3.1.6.4.

http://go.microsoft.com/fwlink/?LinkId=157505

239 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 Attempt to grant all rights, with container inheritance, for the MicrosoftDNS
(distinguished name: CN=MicrosoftDNS,CN=System,<Forest DN>) object to the

Enterprise Domain Controllers group by following the procedure specified in
section 3.1.6.4.

 Attempt to remove all rights for the MicrosoftDNS (distinguished name:
CN=MicrosoftDNS,CN=System,<Forest DN>) object from the Authenticated Users
and Built-In Administrators groups by following the procedure specified in section
3.1.6.4.

 If the attempted addition of the MicrosoftDNS container object was successful, or if it
failed because the object already existed, the server MUST:

 Check that the displayName attribute of the object has been set, by invoking the

Performing an LDAP Operation on an ADConnection task, as specified in [MS-
ADTS] section 7.6.1.6, with the following parameters:

 TaskInputADConnection: DNS Server AD Connection.

 TaskInputRequestMessage: protocolOp is set to searchRequest ([RFC4511]
section 4.5).

 The parameters of the searchRequest are set as follows:

 baseObject: "CN=MicrosoftDNS,CN=System,<Forest DN>"

 scope: base (0)

 derefAliases: neverDerefAliases (0)

 sizeLimit: 0

 timeLimit: 360

 typesOnly: FALSE

 filter: "(objectCategory=*)"

 attributes: displayName

 If the search request was successful and the MicrosoftDNS container has no values
for the displayName attribute, then modify the displayName attribute by
invoking the Performing an LDAP Operation on an ADConnection task, as specified
in [MS-ADTS] section 7.6.1.6, with the following parameters:

 TaskInputADConnection: DNS Server AD Connection.

 TaskInputRequestMessage: protocolOp is set to modifyRequest ([RFC4511]

section 4.6).

 The parameters of the modifyRequest are set as follows:

 object: "CN =MicrosoftDNS,CN=System,<Forest DN>"

 changes:

 operation: replace

 type: displayDNS

 vals: "DNS Servers"

240 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 The server MUST attempt to enumerate the application directory by invoking the
Performing an LDAP Operation on an ADConnection task, as specified in [MS-ADTS]

section 7.6.1.6, with the following parameters:

 TaskInputADConnection: DNS Server AD Connection.

 TaskInputRequestMessage: protocolOp is set to searchRequest ([RFC4511]
section 4.5).

 The parameters of the searchRequest are set as follows:

 baseObject: "CN=Partitions,CN=Configuration,<Forest DN>"

 scope: singleLevel (1)

 derefAliases: neverDerefAliases (0)

 sizeLimit: 0

 timeLimit: 360

 typesOnly: FALSE

 filter: "(objectCategory=crossRef)"

 attributes: "CN, ntSecurityDescriptor, instanceType, ms-DS-
SDReferenceDomain, systemFlags, msDS-NC-Replica-Locations, ms-DS-NC-
RO-Replica-Locations, nCName, dnsRoot, objectGUID, whenCreated,

whenChanged, usnCreated, usnChanged, Enabled, objectClass"

 For each object found in the search, the server MUST use the configuration,
replication, and security metadata values contained in the object to construct a
structure of type DNS_RPC_DP_INFO (see section 2.2.7.2.1), computing the value of
each field as specified in section 2.2.7.2.1, and the server MUST insert the structure as
an entry in the Application Directory Partition Table. The server MUST create the in-

memory Application Directory Partition Access Control List by copying the

ntSecurityDescriptor attribute of the crossRef object. The server MUST also retrieve
and store, in memory, the identity of the Domain Naming Master FSMO role owner. If
the default DNS Domain Partition or default DNS Forest Partition is not present during
polling, the server MUST attempt to create and enlist in these partitions. If any LDAP
operation fails, the server MUST continue initialization.

In all cases:

 The server MUST retrieve the list of zones to load from the source specified by the BootMethod

setting's value (section2.2.4.1.1) and attempt to load zones from the configuration source
specified by the BootMethod setting (section 3.1.1.1.1).

 If the method is BOOT_METHOD_UNINITIALIZED (section 2.2.4.1.1):

 If a zone loaded from the local directory server results in a zone with no nodes, the server

MUST then attempt to load the same zone from file-based persistent storage.

 If the method is BOOT_METHOD_DIRECTORY (section 2.2.4.1.1):

 If a zone loaded from the local directory server results in a zone with no nodes, the server
MUST then attempt to load the same zone from file-based persistent storage.

 If the LDAP connection to the directory server is unavailable, the server MUST attempt to
load those zones specified in the persistent copy of the DNS Zone Table that are stored in
local persistent storage.

241 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 If the LDAP connection to the directory server is available, the server MUST attempt to
load the zones specified in the persistent copy of the DNS Zone Table, but only those

zones stored in the Application Directory Partitions in which the server is enlisted. This
MUST include at minimum the defaultNamingContext of the directory server's rootDSE, the

default DNS Domain Partition and the default DNS Forest Partition. If the zone is stored in
local persistent storage, the server MUST attempt to load the zone. If the zone is directory
server-integrated, the server MUST attempt to load the LDAP dnsZone and dnsNode
objects (section 2.3) that represent the zone from the directory server. The DNS server
MUST ignore any DNS node in the directory server which has the dnsTombstoned attribute
set to TRUE. If an attempt to load a zone fails for any reason, the server MUST clear the
contents of the in-memory zone (if any) and mark the zone state as shutdown (see

section 2.2.5.2.2), but continue initialization.

 If there are no root hints in the local directory server, but root hints were loadable from a
file-based persistent storage and are non-empty, the server MUST write the root hints
back to the local directory server through the WriteDirtyZones operation 3.1.4.1 by using
the DNS_ZONE_LOAD_OVERWRITE_DS flag 2.2.5.2.7.1.

 The DNS Server Management Protocol server MUST register the RPC interface and begin listening

on the RPC transports, as specified in section 2.1, and limited by the flags specified for the
RpcProtocol property (section 3.1.1.1.1).

 The server SHOULD invoke the NetlogonControl2Ex method with function code
NETLOGON_CONTROL_FORCE_DNS_REG on the Netlogon protocol implementation on the local
Domain Controller.<210> (See [MS-NRPC] section 3.5.4.9.1.)

3.1.4 Message Processing Events and Sequencing Rules

The server MUST indicate to the RPC runtime that it is to perform a strict Network Data
Representation (NDR) data consistency check at target level 5.0, as specified in [MS-RPCE] section
3.

Wherever this protocol requires an LDAP operation, if the operation is implemented as an
asynchronous LDAP call, the asynchronous result MUST be retrieved prior to returning from the DNS
Server Management Protocol operation. The timeout for individual LDAP operations, other than the
delete operation, MUST be 180 seconds, and the timeout for LDAP delete operations MUST be 1,440
seconds, unless otherwise stated. LDAP add and modify operations MUST be requested with an
asynchronous LDAP method, and the server MUST retry an add or modify operation up to three times
if an error prevents submission of the operation, but it MUST NOT retry if the asynchronous result of

the operation is unsuccessful. All other operations MUST NOT be retried unless otherwise stated.

Wherever this protocol requires an addition, modification, or deletion of the information in the abstract
data model (section 3.1.1), the prescribed operation MUST be performed only on the local in-memory
portions of the abstract data model, unless otherwise specified.

Wherever this protocol requires a modification to a DNS Zone Table stored in-memory, the server
MUST set the Dirty Flag to TRUE when the modification occurs. Wherever this protocol requires a DNS

Zone Table stored in-memory to be written to persistent storage, the server MUST set the Dirty Flag

to FALSE upon successful completion of the write.

Opnums 0 through 4 are deprecated. Clients SHOULD<211> use opnums 5 through 9 instead and
servers SHOULD support all methods in the table.

This interface includes the following methods in RPC opnum order:

Methods in RPC Opnum Order

%5bMS-NRPC%5d.pdf#Section_ff8f970f3e3740f7bd4baf7336e4792f
%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15

242 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Method Description

R_DnssrvOperation Invokes a specified set of server functions. This method is obsoleted by
R_DnssrvOperation2.

Opnum: 0

R_DnssrvQuery Issues type specific information queries to server. This method is obsoleted
by R_DnssrvQuery2.

Opnum: 1

R_DnssrvComplexOperation Invokes a specified set of server functions, which return complex structures.
This method is obsoleted by R_DnssrvComplexOperation2.

Opnum: 2

R_DnssrvEnumRecords Enumerates DNS records on the server. This method is obsoleted by
R_DnssrvEnumRecords2.

Opnum: 3

R_DnssrvUpdateRecord Adds/deletes/modifies DNS records. This method is obsoleted by
R_DnssrvUpdateRecord2.

Opnum: 4

R_DnssrvOperation2 Invokes a specified set of server functions.

Opnum: 5

R_DnssrvQuery2 Issues type specific information queries to server.

Opnum: 6

R_DnssrvComplexOperation2 Invokes a specified set of server functions, which return complex structures.

Opnum: 7

R_DnssrvEnumRecords2 Enumerates DNS records on the server.

Opnum: 8

R_DnssrvUpdateRecord2 Adds/deletes/modifies DNS records.

Opnum: 9

R_DnssrvUpdateRecord3 Adds, deletes, or modifies DNS records to the zone or zone scope, or cache

zone or cache scope (if specified).

Opnum: 10

R_DnssrvEnumRecords3 Enumerates DNS records on the server in a particular zone or zone scope, or
cache zone or cache scope (if specified).

Opnum: 11

R_DnssrvOperation3 Invokes a specified set of server functions.

Opnum: 12

R_DnssrvQuery3 Issues type specific information queries to server.

Opnum: 13

R_DnssrvComplexOperation3 Returns error EPT_S_CANT_PERFORM_OP defined in [MS-ERREF] section 2.2.

Opnum: 14

R_DnssrvOperation4 Returns error EPT_S_CANT_PERFORM_OP defined in [MS-ERREF] section 2.2.

Opnum: 15

R_DnssrvQuery4 Returns error EPT_S_CANT_PERFORM_OP defined in [MS-ERREF] section 2.2.

Opnum: 16

%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90

243 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Method Description

R_DnssrvUpdateRecord4 Returns error EPT_S_CANT_PERFORM_OP defined in [MS-ERREF] section 2.2.

Opnum: 17

R_DnssrvEnumRecords4 Returns error EPT_S_CANT_PERFORM_OP defined in [MS-ERREF] section 2.2.

Opnum: 18

3.1.4.1 R_DnssrvOperation (Opnum 0)

The R_DnssrvOperation method is used to invoke a set of server functions specified by pszOperation.

 LONG R_DnssrvOperation(
 [in] handle_t hBindingHandle,
 [in, unique, string] LPCWSTR pwszServerName,
 [in, unique, string] LPCSTR pszZone,
 [in] DWORD dwContext,
 [in, unique, string] LPCSTR pszOperation,
 [in] DWORD dwTypeId,
 [in, switch_is(dwTypeId)] DNSSRV_RPC_UNION pData
);

hBindingHandle: An RPC binding handle to the server. Details concerning binding handles are
specified in [C706] section 2.3.

pwszServerName: The client SHOULD pass a pointer to the FQDN of the target server as a null-
terminated UTF-16LE character string. The server MUST ignore this value.

pszZone: A pointer to a null-terminated character string that contains the name of the zone to be

queried. For operations specific to a particular zone, this string MUST contain the name of the
zone in UTF-8 format or a multizone operation string (given in the table that follows) that

indicates that the operation is performed on multiple zones, but only if dwContext is zero. If
dwContext is not zero, then the value of pszZone MUST be ignored. For all other operations this
value MUST be set to NULL. When pszZone is NULL, the valid operations are in the first table
under the pszOperation section that follows, or are a property name listed in section 3.1.1.1.2,

3.1.1.1.3, or 3.1.1.1.4. If this value is not NULL, then this value will be used by certain operations
as specified in the second table for pszOperation that follows.

The following table shows what values are used to request that the operation be performed on
multiple zones, using ZONE_REQUEST_FILTERS values (section 2.2.5.1.4).

Value Meaning

"..AllZones" ZONE_REQUEST_PRIMARY |

ZONE_REQUEST_SECONDARY |

ZONE_REQUEST_AUTO |

ZONE_REQUEST_FORWARD |

ZONE_REQUEST_REVERSE |

ZONE_REQUEST_FORWARDER |

ZONE_REQUEST_STUB |

ZONE_REQUEST_DS |

ZONE_REQUEST_NON_DS |

ZONE_REQUEST_DOMAIN_DP |

ZONE_REQUEST_FOREST_DP |

http://go.microsoft.com/fwlink/?LinkId=89824

244 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Value Meaning

ZONE_REQUEST_CUSTOM_DP |

ZONE_REQUEST_LEGACY_DP

"..AllZonesAndCache" ZONE_REQUEST_PRIMARY |

ZONE_REQUEST_SECONDARY |

ZONE_REQUEST_CACHE |

ZONE_REQUEST_AUTO |

ZONE_REQUEST_FORWARD |

ZONE_REQUEST_REVERSE |

ZONE_REQUEST_FORWARDER |

ZONE_REQUEST_STUB |

ZONE_REQUEST_DS |

ZONE_REQUEST_NON_DS |

ZONE_REQUEST_DOMAIN_DP |

ZONE_REQUEST_FOREST_DP |

ZONE_REQUEST_CUSTOM_DP |

ZONE_REQUEST_LEGACY_DP

"..AllPrimaryZones" ZONE_REQUEST_PRIMARY

"..AllSecondaryZones" ZONE_REQUEST_SECONDARY

"..AllForwardZones" ZONE_REQUEST_FORWARD

"..AllReverseZones" ZONE_REQUEST_REVERSE

"..AllDsZones" ZONE_REQUEST_DS

"..AllNonDsZones" ZONE_REQUEST_NON_DS

"..AllPrimaryReverseZones" ZONE_REQUEST_REVERSE | ZONE_REQUEST_PRIMARY

"..AllPrimaryForwardZones" ZONE_REQUEST_FORWARD | ZONE_REQUEST_PRIMARY

"..AllSecondaryReverseZones" ZONE_REQUEST_REVERSE | ZONE_REQUEST_SECONDARY

"..AllSecondaryForwardZones" ZONE_REQUEST_FORWARD | ZONE_REQUEST_SECONDARY

dwContext: A value used to specify multizone operations in
ZONE_REQUEST_FILTERS (section 2.2.5.1.4) format or zero if the operation is not meant to apply
to multiple zones. If pszZone is not NULL and matches the name of a zone hosted by the DNS

server then the value of dwContext MUST be ignored.

pszOperation: A pointer to a null-terminated ASCII character string that contains the name of
operation to be performed on the server. These are two sets of allowed values for pszOperation:

If pszZone is set to NULL, pszOperation MUST be either a property name listed in section

3.1.1.1.2, 3.1.1.1.3 or 3.1.1.1.4, or SHOULD<212> be one of the following.

Value Meaning

ResetDwordProperty Update the value of a (name, value) pair in the DNS server
configuration. On input, dwTypeId MUST be set to
DNSSRV_TYPEID_NAME_AND_PARAM, and pData MUST point to a
structure of type DNS_RPC_NAME_AND_PARAM (section
2.2.1.2.5) that specifies the name of a property listed in section
3.1.1.1.1 and a new value for that property.

245 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Value Meaning

Restart The server SHOULD restart the DNS server process. dwTypeId
and pData MUST be ignored by the server.<213>

ClearDebugLog Clear the debug log. dwTypeId and pData MUST be ignored by the
server.

ClearCache Delete all cached records from the cache zone or cache scope
memory. dwTypeId and pData MUST be ignored by the server.

WriteDirtyZones Write all zones that are stored in local persistent storage to local
persistent storage if the zone's Dirty Flag (section 3.1.1) is set to
TRUE. dwTypeId and pData MUST be ignored by the server.

ZoneCreate Create a zone. On input, dwTypeId SHOULD<214> be set to
DNSSRV_TYPEID_ZONE_CREATE. pData MUST point to a structure
of one of the types specified in DNS
DNS_RPC_ZONE_CREATE_INFO (section 2.2.5.2.7) that contains
all parameters of a new zone to be created by the DNS server,
and pData MUST conform to the description corresponding to the
value of dwTypeId (section 2.2.1.1.1) If pData points to a
DNS_ZONE_TYPE_CACHE or
DNS_ZONE_TYPE_SECONDARY_CACHE record, the server MUST
return a nonzero error. If pData points to a
DNS_ZONE_TYPE_STUB, DNS_ZONE_TYPE_SECONDARY, or
DNS_ZONE_TYPE_FORWARDER record, the server MAY return a
nonzero error, but SHOULD return success.<215>

ClearStatistics Clears server statistics data on the DNS server. dwTypeId and
pData MUST be ignored by the server.

EnlistDirectoryPartition On input dwTypeId MUST be set to DNSSRV_TYPEID_ENLIST_DP,
and the pData MUST point to a DNS_RPC_ENLIST_DP (section
2.2.7.2.5) structure. This operation allows application directory
partitions to be added to or deleted from the Application Directory
Partition Table, and also allows the DNS server to be directed to
add or remove itself from the replication scope of an existing
application directory partition.

StartScavenging Initiate a resource record scavenging cycle on the DNS server.
dwTypeId, and pData MUST be ignored by the server.

AbortScavenging Terminate a resource record scavenging cycle on the DNS server.
dwTypeId and pData MUST be ignored by the server.

AutoConfigure On input, dwTypeId SHOULD be set to
DNSSRV_TYPEID_AUTOCONFIGURE, in which case pData MUST
point to a structure of type DNS_RPC_AUTOCONFIGURE (section
2.2.8.2.1)<216>; dwTypeId MAY instead be set to
DNSSRV_TYPEID_DWORD in which case pData MUST point to a
DWORD in DNS_RPC_AUTOCONFIG (section 2.2.8.1.1) format.

ExportSettings Export DNS settings on the DNS server to a file on the DNS
server. dwTypeId SHOULD be set to DNSSRV_TYPEID_LPWSTR,
and pData MUST be ignored by the server.

PrepareForDemotion Prepares for demotion by removing references to this DNS server
from all zones stored in the directory server. dwTypeId and pData
MUST be ignored by the server.

PrepareForUninstall This operation does nothing on the DNS server. dwTypeId and
pData MUST be ignored by the server.

246 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Value Meaning

DeleteNode On input dwTypeId MUST be set to
DNSSRV_TYPEID_NAME_AND_PARAM, and pData MUST point to a
structure of type DNS_RPC_NAME_AND_PARAM (section
2.2.1.2.5) that contains the FQDN of the node pointed to by
pszNodeName in the DNS server's cache to be deleted and a
Boolean flag in dwParam to indicate if the node subtree is to be
deleted.

DeleteRecordSet On input dwTypeId MUST be set to
DNSSRV_TYPEID_NAME_AND_PARAM, and pData MUST point to a
structure of type DNS_RPC_NAME_AND_PARAM (section
2.2.1.2.5). That structure contains the FQDN of the node to be
deleted, which is cached on the DNS server, and the type of
record set in the dwParam member, which indicates whether the
entire set of this type is to be deleted. The type MUST be a
DNS_RECORD_TYPE value (section 2.2.2.1.1) or 0x00FF, which
specifies all types.

WriteBackFile Write all information for root hints back to persistent storage.
dwTypeId and pData MUST be ignored by the server.

ListenAddresses On input, dwTypeId MUST be set to DNSSRV_TYPEID_IPARRAY or
DNSSRV_TYPEID_ADDRARRAY and pData MUST point to a
structure of type IP4_ARRAY (section 2.2.3.2.1) or
DNS_ADDR_ARRAY (section 2.2.3.2.3) respectively, which
contains a list of new IP addresses on which the DNS server can
listen. The server SHOULD accept DNSSRV_TYPEID_ADDRARRAY
and DNS_ADDR_ARRAY, and MAY accept
DNSSRV_TYPEID_IPARRAY and IP4_ARRAY.<217>

Forwarders On input dwTypeId SHOULD be set to
DNSSRV_TYPEID_FORWARDERS<218>, and pData MUST point to
a structure of one of the types specified in
DNS_RPC_FORWARDERS (section 2.2.5.2.10), which contains
information about new IP addresses to which the DNS server can
forward queries.

LogFilePath On input dwTypeId MUST be set to DNSSRV_TYPEID_LPWSTR,
and pData MUST point to a Unicode string that contains an
absolute or relative pathname or filename for the debug log file on
the DNS server.

LogIPFilterList On input dwTypeId MUST be set to DNSSRV_TYPEID_IPARRAY or
DNSSRV_TYPEID_ADDRARRAY, and pData MUST point to a
structure of type IP4_ARRAY (section 2.2.3.2.1) or
DNS_ADDR_ARRAY (section 2.2.3.2.3) respectively, which
contains a list of new IP addresses used for debug log filter. The

DNS server will write to the debug log only for traffic to/from
these IP addresses. The server SHOULD accept
DNSSRV_TYPEID_ADDRARRAY and DNS_ADDR_ARRAY, and MAY
accept DNSSRV_TYPEID_IPARRAY and IP4_ARRAY.<219>

ForestDirectoryPartitionBaseName The DNS server MUST return an error.

DomainDirectoryPartitionBaseName The DNS server MUST return an error.

GlobalQueryBlockList Update the list of single-label names for which queries are
blocked. Query names that match this list, in any primary zone,
will be blocked. On input dwTypeId MUST be set to
DNSSRV_TYPEID_UTF8_STRING_LIST, and pData MUST point to a
structure of type DNS_RPC_UTF8_STRING_LIST (section
2.2.1.2.3).

247 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Value Meaning

BreakOnReceiveFrom On input dwTypeId MUST be set to DNSSRV_TYPEID_IPARRAY or
DNSSRV_TYPEID_ADDRARRAY and pData MUST point to a
structure of type IP4_ARRAY (section 2.2.3.2.1) or
DNS_ADDR_ARRAY (section 2.2.3.2.3) respectively, that contains
a list of new IP addresses for which the DNS server will execute a
breakpoint if a packet is received from these IP addresses. The
server SHOULD accept DNSSRV_TYPEID_ADDRARRAY and
DNS_ADDR_ARRAY, and MAY accept DNSSRV_TYPEID_IPARRAY
and IP4_ARRAY.<220>

BreakOnUpdateFrom On input dwTypeId MUST be set to DNSSRV_TYPEID_IPARRAY or
DNSSRV_TYPEID_ADDRARRAY, and pData MUST point to a
structure of type IP4_ARRAY (section 2.2.3.2.1) or
DNS_ADDR_ARRAY (section 2.2.3.2.3) respectively, that contains
a list of new IP addresses for which the DNS server will execute a
breakpoint if an update is received from these IP addresses. The
server SHOULD accept DNSSRV_TYPEID_ADDRARRAY and
DNS_ADDR_ARRAY, and MAY accept DNSSRV_TYPEID_IPARRAY
and IP4_ARRAY.<221>

ServerLevelPluginDll On input dwTypeId MUST be set to DNSSRV_TYPEID_LPWSTR,
and pData MUST point to a Unicode string that contains an
absolute pathname for server side plug-in binary on the DNS
server or an empty Unicode string.

ActiveRefreshAllTrustPoints Schedules an immediate RFC 5011 active refresh for all trust
points, regardless of the time of the last active refresh. The
dwTypeId and pData parameters MUST be set to zero/NULL by the
client and MUST be ignored by the server.<222>

CreateServerScope Creates a server scope on the DNS server. The dwTypeId
parameter MUST be set to DNSSRV_TYPEID_LPWSTR. pData
MUST point to a Unicode string that contains the name of the
server scope to be created.<223>

DeleteServerScope Deletes a server scope on the DNS server. The dwTypeId
parameter MUST be set to DNSSRV_TYPEID_LPWSTR. pData
MUST point to a Unicode string that contains the name of the
server scope to be deleted.<224>

CreateClientSubnetRecord Creates a client subnet record on a DNS server. The dwTypeId
parameter MUST be set to
DNSSRV_TYPEID_CLIENT_SUBNET_RECORD, and pData MUST
point to a structure of type DNS_RPC_CLIENT_SUBNET_RECORD.

DeleteClientSubnetRecord Deletes a client subnet record on a DNS server. The dwTypeId
parameter MUST be set to DNSSRV_TYPEID_LPWSTR, and pData
MUST point to a NULL-terminated Unicode string containing the
name of the client subnet record to be deleted.

DeleteSubnetsInRecord Updates a client subnet record on a DNS server by deleting the
IP/IPv6 Subnets from the Client Subnet Record. The dwTypeId
parameter MUST be set to
DNSSRV_TYPEID_CLIENT_SUBNET_RECORD, and pData MUST
point to a structure of type DNS_RPC_CLIENT_SUBNET_RECORD.

AddSubnetsInRecord Updates a client subnet record on a DNS server by adding the
IP/IPv6 Subnets to the Client Subnet Record. The dwTypeId
parameter MUST be set to
DNSSRV_TYPEID_CLIENT_SUBNET_RECORD, and pData MUST
point to a structure of type DNS_RPC_CLIENT_SUBNET_RECORD.

248 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Value Meaning

ResetClientSubnetRecord Resets a client subnet record on a DNS server by deleting the
existing IP/IPv6 Subnets and adding the IP/IPv6 Subnets specific
to the client subnet record. The dwTypeId parameter MUST be set
to DNSSRV_TYPEID_CLIENT_SUBNET_RECORD, and pData MUST
point to a structure of type DNS_RPC_CLIENT_SUBNET_RECORD.

CreatePolicy Creates a DNS Policy at the server level on a DNS server. The
dwTypeId parameter MUST be set to DNSSRV_TYPEID_POLICY,
and pData MUST point to a structure of type DNS_RPC_POLICY.

DeletePolicy Deletes a DNS Policy at the server level on a DNS server. The
dwTypeId parameter MUST be set to DNSSRV_TYPEID_LPWSTR,
and pData MUST point to NULL-terminated Unicode string

containing the name of the DNS Policy.

UpdatePolicy Updates a DNS Policy at the server level on a DNS server. The
dwTypeId parameter MUST be set to DNSSRV_TYPEID_POLICY,
and pData MUST point to a structure of type DNS_RPC_POLICY.

SetRRL Sets Response Rate Limiting parameters at the server level on a
DNS server. The dwTypeId parameter MUST be set to
DNSSRV_TYPEID_RRL, and pData MUST point to a structure of
type DNS_RPC_RRL_PARAMS.

CreateVirtualizationInstance Creates a virtualization instance on the DNS server, under which
zones can be created later. The dwTypeId parameter MUST be set
to DNSSRV_TYPEID_VIRTUALIZATION_INSTANCE (section
2.2.1.2.6), and the pData parameter MUST point to a structure of
type DNS_RPC_VIRTUALIZATION_INSTANCE (section 2.2.1.2.6).

DeleteVirtualizationInstance Removes a virtualization instance on the DNS server. This also
removes the zones and zone scopes under the virtualization
instance as well. The dwTypeId parameter MUST be set to
DNSSRV_TYPEID_VIRTUALIZATION_INSTANCE, and pData MUST
point to a structure of type
DNS_RPC_VIRTUALIZATION_INSTANCE. The value of dwFlags in
DNS_RPC_VIRTUALIZATION_INSTANCE if set to
DNS_RPC_FLAG_PRESERVE_ZONE_FILE, the DNS server deletes
the zones under the virtualization instance but keeps the zone
files. By default a DNS server removes the zone files of zones
under a virtualization instance when the virtualization instance is
removed.

UpdateVirtualizationInstance Modifies the members of the virtualization instance on the DNS
server. The dwTypeId parameter MUST be set to
DNSSRV_TYPEID_VIRTUALIZATION_INSTANCE, and pData MUST
point to a structure of type
DNS_RPC_VIRTUALIZATION_INSTANCE. The members of
DNS_RPC_VIRTUALIZATION_INSTANCE to be modified is
determined by bits in member dwFlags, which can be
DNS_RPC_FLAG_FRIENDLY_NAME or DNS_RPC_FLAG_DESC
(section 3.1.4.1)

If pszZone is not NULL, and pszOperation does not match a property name listed in sections
3.1.1.2.2 or 3.1.1.2.3, then pszOperation SHOULD<225> be one of the following:

Value Meaning

ResetDwordProperty Update the value of a DNS Zone integer property. On input dwTypeId
MUST be set to DNSSRV_TYPEID_NAME_AND_PARAM and pData MUST
point to a structure of type DNS_RPC_NAME_AND_PARAM (section
2.2.1.2.5), which contains the name of a property listed in section

249 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Value Meaning

3.1.1.2.1 for the zone pointed to by pszZone and a new value for that
property.<226>

ZoneTypeReset Change the zone's type, for example to convert a secondary zone into a
primary zone. On input dwTypeId SHOULD be set to
DNSSRV_TYPEID_ZONE_CREATE, and pData SHOULD point to a
structure of one of the types specified in DNS_RPC_ZONE_CREATE_INFO
(section 2.2.5.2.7), which contains the new configuration information for
the zone. dwTypeId MAY be set to
DNSSRV_TYPEID_ZONE_CREATE_W2K or
DNSSRV_TYPEID_ZONE_CREATE_DOTNET.<227> The server MUST
return a nonzero error if the conversion is not implemented.

PauseZone Pause activities for the zone pointed to by pszZone on the DNS server,
and do not use this zone to answer queries or take updates until it is
resumed. dwTypeId, and pData MUST be ignored by the server.

ResumeZone Resume activities for the zone pointed to by pszZone on the DNS server;
the zone thus becomes available to answer queries and take updates.
dwTypeId and pData MUST be ignored by the server.

DeleteZone Delete the zone pointed to by pszZone on the DNS server. dwTypeId and
pData MUST be ignored by the server.

ReloadZone Reloads data for the zone pointed to by pszZone on the DNS server from
persistent storage. dwTypeId, and pData MUST be ignored by the server.

RefreshZone Force a refresh of the secondary zone pointed to by pszZone on the DNS
server, from primary zone server. For this operation pszZone MUST point
to a secondary zone only. dwTypeId and pData MUST be ignored by the
server.

ExpireZone Force a refresh of the secondary zone pointed to by pszZone on the DNS

server, from primary zone server. For this operation pszZone MUST point
to a secondary zone only. dwTypeId and pData MUST be ignored by the
server.

IncrementVersion Same as "WriteBackFile".

WriteBackFile If the zone has uncommitted changes, write back all information for the
zone pointed to by pszZone to persistent storage, and notify any
secondary DNS servers. dwTypeId and pData MUST be ignored by the
server.

DeleteZoneFromDs Delete the zone pointed to by pszZone from the directory server.
dwTypeId, and pData MUST be ignored by the server.

UpdateZoneFromDs Refresh data for the zone pointed to by pszZone from the directory
server. dwTypeId, and pData MUST be ignored by the server.

ZoneExport Export zone data to a given file on the DNS server. On input dwTypeId
MUST be set to DNSSRV_TYPEID_ZONE_EXPORT, and pData MUST point
to a structure of type DNS_RPC_ZONE_EXPORT_INFO (section 2.2.5.2.8)

that contains a file name pointed to by pszZoneExportFile.

ZoneChangeDirectoryPartition Move a zone to a given application directory partition. On input
dwTypeId MUST be set to DNSSRV_TYPEID_ZONE_CHANGE_DP, and
pData MUST point to structure of type DNS_RPC_ZONE_CHANGE_DP
(section 2.2.7.2.6), which contains the new application directory partition
name pointed to by pszDestPartition.

DeleteNode Delete a node. On input dwTypeId MUST be set to
DNSSRV_TYPEID_NAME_AND_PARAM, and pData MUST point to a

250 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Value Meaning

structure of type DNS_RPC_NAME_AND_PARAM (section 2.2.1.2.5),
which contains the FQDN of the node pointed to by pszNodeName
present in the zone pointed to by pszZone on the DNS server to be
deleted and a Boolean flag in dwParam to indicate if the node's subtree
is to be deleted.

DeleteRecordSet Delete all the DNS records of a particular type at a particular node from
the DNS server's cache. On input dwTypeId MUST be set to
DNSSRV_TYPEID_NAME_AND_PARAM, and pData MUST point to a
structure of type DNS_RPC_NAME_AND_PARAM (section 2.2.1.2.5). That
structure contains the FQDN of the node to be deleted and the DNS
record type in the dwParam member. The type MUST be a
DNS_RECORD_TYPE value (section 2.2.2.1.1) or 0x00FF, which specifies
all types.

ForceAgingOnNode On input dwTypeId MUST be set to
DNSSRV_TYPEID_NAME_AND_PARAM, and pData MUST point to a
structure of type DNS_RPC_NAME_AND_PARAM (section 2.2.1.2.5),
which contains a node name in pszNodeName, and a Boolean flag in
dwParam to indicate whether aging is performed on all nodes in the
subtree. All DNS records at the specified node in the zone named by
pszZone will have their aging time stamp set to the current time. If
subtree aging is specified by dwParam than all DNS records at all nodes
that are children of this node will also have their aging time stamps set
to the current time.

DatabaseFile On input dwTypeId SHOULD be set to
DNSSRV_TYPEID_ZONE_DATABASE<228>, and pData MUST point to a
structure of one of the types specified in DNS_RPC_ZONE_DATABASE
(section 2.2.5.2.6), which specifies whether the zone is directory server
integrated by setting fDsIntegrated to TRUE, and if it is not then
pszFileName MUST point to a Unicode string containing the absolute
pathname of a file on the DNS server to which the zone database is
stored.

MasterServers On input dwTypeId MUST be set to DNSSRV_TYPEID_IPARRAY or
DNSSRV_TYPEID_ADDRARRAY, and pData MUST point to a structure of
type IP4_ARRAY (section 2.2.3.2.1) or DNS_ADDR_ARRAY (section
2.2.3.2.3) respectively, which contains a list of IP addresses of new
primary DNS servers for the zone pointed to by pszZone. This operation
is valid only for secondary zones present on the server. The server
SHOULD accept DNSSRV_TYPEID_ADDRARRAY and DNS_ADDR_ARRAY,
and SHOULD accept DNSSRV_TYPEID_IPARRAY and IP4_ARRAY. If the
input data of either type is accepted and the DNS server is directory-
server integrated, the value of pData SHOULD be written to the directory
server.<229>

LocalMasterServers On input dwTypeId MUST be set to DNSSRV_TYPEID_IPARRAY or
DNSSRV_TYPEID_ADDRARRAY, and pData MUST point to a structure of
type IP4_ARRAY (section 2.2.3.2.1) or DNS_ADDR_ARRAY (section
2.2.3.2.3) respectively, which contains a list of IP addresses of new local
primary DNS servers for the zone pointed to by pszZone. This operation
is valid only for stub zones present on the server, and if configured, this
value overrides any primary DNS server configured in the directory
server. The server SHOULD accept DNSSRV_TYPEID_ADDRARRAY and
DNS_ADDR_ARRAY, and SHOULD accept DNSSRV_TYPEID_IPARRAY and
IP4_ARRAY.<230>

SecondaryServers On input dwTypeId SHOULD<231> be set to
DNSSRV_TYPEID_ZONE_SECONDARIES, and pData MUST point to a
structure of one of the types specified in
DNS_RPC_ZONE_SECONDARIES (section 2.2.5.2.5), which contains
information about secondary DNS servers for the zone pointed to by

251 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Value Meaning

pszZone.

ScavengeServers On input dwTypeId MUST be set to DNSSRV_TYPEID_IPARRAY or
DNSSRV_TYPEID_ADDRARRAY, and pData MUST point to a structure of
type IP4_ARRAY (section 2.2.3.2.1) or DNS_ADDR_ARRAY (section
2.2.3.2.3) respectively, which contains a list of IP addresses of new
servers that can run scavenging on the zone pointed to by pszZone. This
operation is valid only for directory server integrated zones. The server
SHOULD accept DNSSRV_TYPEID_ADDRARRAY, and DNS_ADDR_ARRAY,
and SHOULD accept DNSSRV_TYPEID_IPARRAY and IP4_ARRAY. If the
input data of either type is accepted and the DNS server is directory
server-integrated, the value of pData SHOULD be written to the directory
server.<232>

AllowNSRecordsAutoCreation On input dwTypeId MUST be set to DNSSRV_TYPEID_IPARRAY or
DNSSRV_TYPEID_ADDRARRAY and pData MUST point to a structure of
type IP4_ARRAY (section 2.2.3.2.1) or DNS_ADDR_ARRAY (section
2.2.3.2.3) respectively, which contains a list of IP addresses of new
servers that can auto-create NS records for the zone pointed to by
pszZone. This operation is valid only for directory server integrated
zones. The server SHOULD accept DNSSRV_TYPEID_ADDRARRAY and
DNS_ADDR_ARRAY, and SHOULD accept DNSSRV_TYPEID_IPARRAY and
IP4_ARRAY. If the input data of either type is accepted and the DNS
server is directory server-integrated, the value of pData SHOULD be
written to the directory server.<233>

BreakOnNameUpdate On input dwTypeId MUST be set to DNSSRV_TYPEID_LPWSTR, and
pData MUST point to a Unicode string that contains the FQDN of the
node for which if an update is received the DNS server will execute a
breakpoint.

SignZone Sign a zone using DNSSEC, thus making the zone online-signed. The
dwTypeId and pData parameters MUST be set to zero/NULL by the client
and MUST be ignored by the server.

UnsignZone Unsign a zone signed via online signing and remove all DNSSEC data
from the zone. The dwTypeId and pData parameters MUST be set to
zero/NULL by the client and MUST be ignored by the server.

ResignZone Refreshes all DNSSEC data in an online-signed zone. The dwTypeId and
pData parameters MUST be set to zero/NULL by the client and MUST be
ignored by the server.

PerformZoneKeyRollover Queues a signing key descriptor for key rollover. On input, dwTypeId
MUST be set to DNSSRV_TYPEID_LPWSTR, and pData MUST point to a
Unicode string representation of the GUID of the signing key descriptor
to be queued for rollover.

PokeZoneKeyRollover Instructs the DNS server to stop waiting for DS records [RFC4034] in the
parent zone to be updated and to proceed with key rollover as specified
by [RFC4641]. On input, dwTypeId MUST be set to
DNSSRV_TYPEID_LPWSTR, and pData MUST point to a Unicode string
representation of the GUID of the signing key descriptor to be queued for
rollover.

RetrieveRootTrustAnchors Retrieves the root trust anchors from the XML file specified by the
RootTrustAnchorsURL server property (section 3.1.1.1.3) and adds any
valid DS records to the root trust anchors. The dwTypeId and pData
parameters MUST be set to zero/NULL by the client and MUST be ignored
by the server. The pZone parameter MUST be set to "TrustAnchors".

TransferKeymasterRole Transfers the key master role to the current server. The dwTypeId
parameter MUST be set to DNSSRV_TYPEID_DWORD, and pData MUST

http://go.microsoft.com/fwlink/?LinkId=107052
http://go.microsoft.com/fwlink/?LinkId=225979

252 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Value Meaning

point to one of the values defined in the following paragraphs.

CreateZoneScope Creates a zone scope in the specified zone or a cache scope in the
specified cache zone. The dwTypeId parameter MUST be set to
DNSSRV_TYPEID_ZONE_SCOPE_CREATE. pData MUST point to a
structure of the type
DNS_RPC_ZONE_SCOPE_CREATE_INFO_V1 (section 2.2.13.2.2.1) that
contains all the parameters needed to create the zone scope or cache
scope. pszZone MUST be the name of the zone in which the zone scope
is to be created or be specified as "..cache" for a cache scope.<234>

DeleteZoneScope Deletes a zone scope from the specified zone or a cache scope from a
specified cache zone. The dwTypeId MUST be set to

DNSSRV_TYPEID_LPWSTR. pData MUST point to the name of the zone
scope or cache scope that is to be deleted. pszZone MUST be the name
of the zone from which the zone scope is to be deleted or set to "..cache"
for a cache scope.<235>

CreatePolicy Creates a DNS Policy for the specified zone or a cache zone on a DNS
server. The dwTypeId parameter MUST be set to
DNSSRV_TYPEID_POLICY, and pData MUST point to a structure of type
DNS_RPC_POLICY.

DeletePolicy Deletes a DNS Policy for the specified zone or a cache zone on a DNS
server. The dwTypeId parameter MUST be set to
DNSSRV_TYPEID_LPWSTR, and pData MUST point to NULL-terminated
Unicode string containing the name of the DNS Policy.

UpdatePolicy Updates a DNS Policy for the specified zone or a cache zone on a DNS
server. The dwTypeId parameter MUST be set to
DNSSRV_TYPEID_POLICY, and pData MUST point to a structure of type
DNS_RPC_POLICY.

dwTypeId: A DNS_RPC_TYPEID (section 2.2.1.1.1) value that indicates the type of input data pointed

to by pData.

pData: Input data of type DNSSRV_RPC_UNION (section 2.2.1.2.6), which contains a data structure

as specified by dwTypeId.

Return Values: The method MUST return ERROR_SUCCESS (0x00000000) on success or a nonzero
Win32 error code value if an error occurred. All error values MUST be treated the same.

When processing this call, the server MUST do the following:

 If the Global Server State (section 3.1) is not "Running", return a failure.

 Check that the input parameters conform to the syntax requirements above, and if not, return a
failure.

 If pszZone is not NULL, search the DNS Zone Table (section 3.1) record for the zone with a name
matching the value of pszZone. If a matching zone cannot be found, search the list of multizone

operation strings for a name matching the value of pszZone. If a matching name cannot be found,
return a failure.

 Validate, as specified in section 3.1.6.1, that the client has permissions to perform the attempted
operation. If pszZone is NULL then the DNS server MUST perform the Phase 2 authorization test

using the DNS Server Configuration Access Control List. If pszZone is not NULL then the DNS
server MUST perform the Phase 2 authorization test using the Zone Access Control List for the
zone specified by pszZone. Write privilege MUST be tested for all operations with the following
exceptions:

253 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 If pszOperation is ZoneCreate, and if the zone will be created in the directory service, then
Read privilege MUST be tested for.

 If pszOperation is CreateZoneScope, and if the zone scope will be created in the directory
service, then Read privilege MUST be tested for.

 If pszOperation is DeleteZone, and if the zone is stored in the directory service, then Read
privilege MUST be tested for.

 If pszOperation is DeleteZoneScope, and if the zone scope is stored in the directory service,
then Read privilege MUST be tested for.

 If pszOperation is EnlistDirectoryPartition or ExportSettings, then Read privilege MUST be
tested for.

 If the client does not have permission to perform the operation, return a failure.

 If dwContext is not zero or pszZone matches a multizone operation string, then find all zone
records in the DNS Zone Table matching the specified multizone filter value.

 If pszZone is NULL and dwContext is zero, execute the operation indicated by the value of
pszOperation, as follows:

 If pszOperation is ResetDwordProperty, the server MUST verify that the property name
matches a writable property name listed in section 3.1.1.1.1 for which the server supports the

ResetDwordProperty operation and if not return an error. It SHOULD further verify that the
value specified is either within the property's specified allowable range (including zero if it is
specified that zero is allowed) and if not return an error. If the value is zero and zero is listed
as a flag value for the default in section 3.1.1.1.1, the server SHOULD update the value of the
property to be the default for the property and return success. The server MAY fail to verify
these restrictions.<236> Otherwise, update the value of the property to be the new value
specified and return success.<237> All properties are writable unless "this property is read-

only" is specified in the property description in section 3.1.1.1.1.

 If pszOperation matches a property name in section 3.1.1.1.2, 3.1.1.1.3, or 3.1.1.1.4 for

which the server supports this value reset operation, the server MUST update the value of the
property to be the new value specified in pData and return success. If pszOperation matches a
property name that the server does not support, the server MUST simply return failure.<238>

 If pszOperation is Restart, the server MUST restart the DNS server, and return success.

 During the restart operation, the DNS server MUST try to reload each zone scope (if present)

in a zone, one by one from the database. If the DNS server fails to load any of the scopes of
the zone, it MAY log an error event and pursue the next scope and subsequently next
zone.<239> No error MUST be returned to the user in the event of failure.

 If pszOperation is ClearDebugLog, the server MUST copy the DNS log file specified by the DNS
server's "LogFilePath" (section 3.1.1.1.3) property to the implementation-specific backup
directory, if the directory already exists, and overwrite an existing backup directory log file if

needed. If the directory does not exist, the copy action MUST NOT be performed. Then, the

server MUST delete the current contents of the DNS log file, and return success. The server
MUST return success even if file operations on the DNS log file fail.<240>

 If pszOperation is ClearCache, the server MUST delete all records cached by the DNS server in
the cache zone from memory. If a cache scope is specified, delete all records only from that
cache scope. If the server is configured to use directory server, the server MUST search for
the cache zone (with the LDAP search operation), create (LDAP add) the zone if it doesn't

exist, load (LDAP search) any default cache records into the local copy of the cache, and
return success. If any of these LDAP operations fails, the server MUST return failure.

254 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 If pszOperation is WriteDirtyZones, the server MUST, for each primary zone or cache zone on
the server:

 Do nothing, if the zone's Dirty Flag (section 3.1.1) is set to FALSE and the zone is not
configured with any zone scopes or the zone is not stored in a file.

 If the zone's Dirty Flag is set to TRUE, write the uncommitted information for the zone to
the zone's file, send DNS notify ([RFC1996]) messages to all other servers hosting the
zones, if they exist, and continue processing zones. If the zone specified is the cache zone,
the server SHOULD write the root hints to their permanent storage. If the root hints are
stored on the directory server and DownlevelDCsInDomain is nonzero, the server MUST
check whether the root hints are empty. If the root hints are empty, the root hints MUST
NOT be written to their permanent storage. Otherwise, if the root hints are stored on the

directory server the server MUST use LDAP add, delete, and search operations to replace
the root hints on the directory server. If there is a failure in writing the root hints records
to the directory server, then the server MUST retry the write operation twice.

 If the zone is configured with scopes, then for each scope the operation attempts to write

the scope data to their respective scope database files, if the scope's Dirty Flag (section
3.1.1) is set to TRUE. If any errors occur during this operation, then the operation

SHOULD be continued with the next scope in the list and the appropriate error events
SHOULD be logged.

 When all zones have been processed, the server SHOULD return success, regardless of the
success or failure of any processing operation.<241>

 If pszOperation is ZoneCreate, the server MUST attempt to create a new zone entry in the
DNS Zone Table using the parameters specified in pData, and return success or failure based
on the result.

 If the zone already exists, the server MUST return a failure.

 If the zone to be created will use the directory server for persistent storage, the server
MUST identify the correct application directory partition for the zone.

 If dwFlags has the DNS_ZONE_CREATE_FOR_DCPROMO bit set, this partition MUST be
the DNS domain application directory partition.

 If dwFlags has the DNS_ZONE_CREATE_FOR_DCPROMO_FOREST bit set, this partition
MUST be the DNS forest application directory partition.

 Otherwise, if the pszDpFqdn field is populated, this partition MUST be set to the value
of that field.

 Or else, this partition MUST be set to the directory partition that represents the default
naming context. (See the description of the DNS_DP_LEGACY value in section
3.1.1.2.1).<242>

 The server MUST perform an LDAP search to verify the existence of this application

directory partition, and return a failure if it does not exist, with the following exceptions:

 If dwFlags is set to DNS_ZONE_CREATE_FOR_DCPROMO and the DNS domain
application directory partition does not exist or is not available, the server MUST
replace the chosen partition with the directory partition that represents the default
naming context.

 If dwFlags is set to DNS_ZONE_CREATE_FOR_DCPROMO_FOREST and the DNS forest
application directory partition does not exist or is not available, the server MUST

replace the chosen partition with the directory partition that represents the default
naming context.

http://go.microsoft.com/fwlink/?LinkId=106957

255 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 Once the existence of the chosen application directory partition has been verified, the
server MUST then perform an LDAP search on that application directory partition to

determine whether the zone already exists, and if so, return a failure.

 If the zone does not exist in the chosen application directory partition, the server MUST

create a dnsZone object (section 2.3) for the zone and its default records, represented as
dnsNode objects (section 2.3), in the chosen application directory partition using LDAP add
operations and return success.

 If dwFlags is set to DNS_ZONE_CREATE_FOR_DCPROMO, but the zone is being
created in the directory partition representing the default naming context, the
DcPromo Flag in the dnsZone object MUST be set to DCPROMO_CONVERT_DOMAIN.
(See DcPromo Flag (section 2.3.2.1.2))

 If dwFlags is set to DNS_ZONE_CREATE_FOR_DCPROMO_FOREST, but the zone is
being created in the directory partition representing the default naming context, the
DcPromo Flag in the dnsZone object MUST be set to DCPROMO_CONVERT_FOREST.
(See DcPromo Flag (section 2.3.2.1.2))

 If there is a failure in writing the records to the directory server, then the server MUST
retry the write operation twice.

 If any of these LDAP operations cannot be completed, even after retries where specified,
then the server MUST return failure.

 If pszOperation is ClearStatistics, the server MUST clear internal server statistics, and return
success.

 If pszOperation is EnlistDirectoryPartition, the server SHOULD<243> perform an application
directory partition operation as specified by the contents of the input DNS_RPC_ENLIST_DP
(section 2.2.7.2.5) structure. The procedures for these operations are described below:

 If pszOperation is EnlistDirectoryPartition, and the DNS_DP_OP_CREATE_FOREST or
DNS_DP_OP_CREATE_DOMAIN operations are specified by the contents of the input

DNS_RPC_ENLIST_DP structure, the server SHOULD:

 Check its local state to determine whether the partition specified by dwOperation is
already present, and if so, the server MUST check its local state to determine whether
it is not enlisted in the partition, and if so, connect to the directory server that is the
FSMO role owner of the domain naming master FSMO role and perform an LDAP

modify operation to add or remove the local server's name from the enlistment list
(distinguished name "msDS-NC-Replica-Locations" RODCs use "msDS-NC-RO-Replica-
Locations").<244>. If, based on the local state, the partition already exists and this
server is enlisted or any of the above LDAP operations cannot be completed, then the
server MUST return a failure.

 Or, if based on the server's local state, the partition does not exist in the Application

Directory Partition Table, create (but not enlist itself in) the partition object using
LDAP add commands and add the partition object to the Application Directory Partition
Table, returning a failure if either of these operations fails to complete successfully.

 Poll the directory server for the partitions and enlistment status using LDAP search
operations (to update the local state) and return success. If any LDAP operation
cannot be completed, then the server MUST return a failure.

 If pszOperation is EnlistDirectoryPartition, and the DNS_DP_OP_ENLIST or

DNS_DP_OP_UNENLIST operations are specified by the contents of the input
DNS_RPC_ENLIST_DP structure, the server SHOULD:

256 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 Check whether the application directory partition specified is either the domain global
partition or the forest global partition and whether the operation specified is not

DNS_DP_OP_ENLIST, and if the preceding conditions are true, the server MUST return
a failure.

 Check whether, instead, the operation specified is DNS_DP_OP_ENLIST and the
partition specified is the domain or forest global partition, and if so, the server MUST
connect to the directory server that is the FSMO role owner of the Domain naming
master FSMO role and perform an LDAP modify operation to add or remove the local
server's name from the enlistment list (distinguished name "msDS-NC-Replica-
Locations" (RODCs use "msDS-NC-RO-Replica-Locations"<245>)) and return success.

 Check whether the application directory partition specified is neither the domain global

partition nor the forest global partition, and if so, the server MUST:

 Poll the directory server for the partitions and enlistment status using LDAP search
operations (to update the local Application Directory Partition Table), and then:

 Check the local Application Directory Partition Table for the requested partition,
and if the partition does not exist, return a failure.

 Otherwise, the server MUST check whether the server is already enlisted and the

operation is DNS_DP_OP_ENLIST or the server is already unenlisted and the
operation is DNS_DO_OP_UNENLIST, and if so, return a failure.

 Otherwise, the server MUST connect to the directory server that is the FSMO role
owner of the Domain naming master FSMO role, and perform an LDAP modify
operation to add or remove (for DNS_DP_OP_ENLIST and DNS_DP_OP_UNENLIST,
respectively) the local server's name from the enlistment list (distinguished name
"msDS-NC-Replica-Locations" (RODCs use "msDS-NC-RO-Replica-Locations")),

and return success.

 If any of the above LDAP operations cannot be completed, then the server MUST
return a failure.

If the zone was successfully loaded then the DNS server MUST set the zone's
Shutdown flag to zero (section 2.2.5.2.2).

 If pszOperation is EnlistDirectoryPartition, and the DNS_DP_OP_CREATE operation is
specified by the contents of the input DNS_RPC_ENLIST_DP structure, the server

SHOULD:

 Check whether the application directory partition specified is either the domain global
partition or the forest global partition, and if so, perform the procedure described
above for DNS_DP_OP_CREATE_DOMAIN or DNS_DP_OP_CREATE_FOREST,
respectively.

 Otherwise, poll the directory server for the partitions and enlistment status using LDAP

search operations (to update the local Application Directory Partition Table), and then
check the local Application Directory Partition Table for the requested partition. If the

partition already exists, the server MUST return a failure.

 Otherwise, the server MUST connect to the directory server and create the partition
(an LDAP domainDNS object) using the LDAP add operation, poll the directory server
for the partitions and enlistment status, update the local Application Directory Partition
Table, attempt to create the MicrosoftDNS object using LDAP add operations, and

return success.

 If any of the above LDAP operations other than the creation of the MicrosoftDNS
object cannot be completed, then the server MUST return a failure.

257 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 If pszOperation is EnlistDirectoryPartition, and the DNS_DP_OP_DELETE operation is
specified by the contents of the input DNS_RPC_ENLIST_DP structure, the server

SHOULD:

 Poll the directory server for the partitions and enlistment status using LDAP search

operations (to update the local Application Directory Partition Table), and then check
the local Application Directory Partition Table for the requested partition. If the
partition does not exist, the server MUST return a failure.

 Otherwise, the server MUST connect to the directory server that is the FSMO role
owner of the Domain naming master FSMO role and perform an LDAP delete operation
on the distinguished name of the crossRef object of the specified application directory
partition, and if successful, again poll the directory server to update the local

Application Directory Partition Table and return success.

 If any of the above LDAP operations fails, then the server MUST return a failure. Any
LDAP delete operation MUST have no client-side time limit. The server MUST NOT retry
any failed LDAP operation.

 If pszOperation is StartScavenging, the server MUST initiate a resource record scavenging
cycle on the DNS server, and return success.

 If pszOperation is AbortScavenging, the server MUST terminate a resource record scavenging
cycle on the DNS server if one is currently in progress, and return success.

 If pszOperation is AutoConfigure, the server SHOULD perform DNS server autoconfiguration as
specified by the contents of the input DNS_RPC_AUTOCONFIGURE (section 2.2.8.2.1)
structure, and return success or failure based on the results of this operation.<246> To
perform DNS server autoconfiguration, the server SHOULD:

 Configure forwarders, if specified by the input flags and if the server does not currently

have any forwarders configured. The list of forwarders is built by querying other servers
that host the domain specified in the input arguments and by attempting to copy their
forwarder list using the ServerInfo feature of the R_DnssrvQuery (section 3.1.4.2)

operation. If forwarders cannot be copied from another server, the list of forwarders is
copied from the local machine's DNS client's list of DNS servers.

 Configure root hints, if specified by the input flags. The list of root hints is built by
querying the each DNS server on each local network adapter for the root DNS name.

 Perform self-pointing, if either of the following is true:

 The DNS server is directory services-integrated and is the first DNS server in the
directory services forest, and the DNS_RPC_AUTOCONFIG_INTERNAL_ZONES flag is
set.

 Any of the DNS_RPC_AUTOCONFIG_INTERNAL_SELFPOINT,
DNS_RPC_AUTOCONFIG_INTERNAL_SELFPOINT_PREPEND, or

DNS_RPC_AUTOCONFIG_INTERNAL_SELFPOINT_APPEND flags are set.

 To perform self-pointing, for each enabled network adapter and for each enabled IP stack
(IPv4 or IPv6) on that adapter, the server SHOULD do one of the following:

 If the DNS_RPC_AUTOCONFIG_INTERNAL_SELFPOINT flag is set, replace the adapter's
IP stack's DNS servers list with the loopback address.

 If the DNS_RPC_AUTOCONFIG_INTERNAL_SELFPOINT_PREPEND flag is set and the
loopback address is not already present, insert the loopback address at the start of the

adapter's IP stack's DNS server list.

258 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 Otherwise, if the loopback address is not already present, insert the loopback address
at the end of the adapter's IP stack's DNS server list.

 Otherwise, make no change to the adapter's IP stack's DNS server list.

 Create the forest root domain and its "_msdcs" subdomain, if specified by the input flags,

and the directory service domain name of this DNS server matches the directory services
forest root domain name, and the domains do not already exist. These two domains are
created using LDAP add operations, followed by additional LDAP add operations to install
the default records for those domains. If there is a failure in writing the records to the
directory server, then the server MUST retry the write operation twice.

If any operation (including LDAP operations) fails, continue processing but record the fact
that a failure occurred. At the end of processing, if the

DNS_RPC_AUTOCONFIG_INTERNAL_RETURN_ERRORS input flag is set, return an error;
otherwise, return success.

 If pszOperation is ExportSettings, the server SHOULD<247> export DNS settings to a file on

the DNS server, and return success.

 If pszOperation is PrepareForDemotion, the server SHOULD<248> prepare the DNS server for
demotion by removing references to this DNS server from all zones stored in the directory

server, and return success.

 If pszOperation is PrepareForUninstall, the server SHOULD<249> do nothing, and return
success.

 If pszOperation is DeleteNode, the server MUST check whether the specified node is empty or
does not currently exist and return ERROR_SUCCESS if so. Otherwise it MUST delete all DNS
records at the node pointed to by pszNodeName from the DNS server's cache. It MUST also
delete all DNS records in the node's subtree if specified by the Boolean flag pointed to by

dwParam field in pData, and return success. If the dwParam field in pData is set to FALSE and
the node contains subtrees, both the node and its subtrees MUST NOT be deleted and a
success status is returned. If the zone is directory server-integrated, the DNS server MUST set

the node's DNS Node Tombstone State (section 3.1.1) to TRUE by setting the value of the
dnsTombstoned attribute to TRUE, and writing a DNS_RPC_RECORD_TS (section 2.2.2.2.4.23)
in the dnsRecord attribute.

 If pszOperation is DeleteRecordSet, the server MUST check whether the specified node is

empty or does not currently exist and return ERROR_SUCCESS if so. Otherwise it MUST delete
all DNS records of the type specified by the dwParam field in pData from the node pointed to
by pszNodeName in the DNS server's cache and return success. If this operation deletes the
last record from the node and the zone is directory server-integrated, the DNS server MUST
set the node's DNS Node Tombstone State (section 3.1.1) to TRUE by setting the value of the
dnsTombstoned attribute to TRUE and writing a DNS_RPC_RECORD_TS (section 2.2.2.2.4.23)

in the dnsRecord attribute.

 If pszOperation is WriteBackFile, the server SHOULD write the root hints to their permanent
storage. If the root hints are stored on the directory server and DownlevelDCsInDomain is
nonzero, the server MUST check whether the root hints are empty. If the root hints are empty,

the root hints MUST NOT be written to their permanent storage. Otherwise, if the root hints
are stored on the directory server, the server MUST use LDAP add, delete, and search
operations to replace the root hints on the directory server and return success, regardless of

the success or failure of these operations. If there is a failure in writing the root hints records
to the directory server, then the server MUST retry the write operation twice, and still return
success, even if the retries fail.<250>

 If pszOperation is LogFilePath, the server MUST store the value passed in pData to be
returned, unchanged, in future server information queries. Further, if pData is a NULL pointer
or it points to an empty string, the server MUST replace pData's present value with the path to

259 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

the default implementation specific log file. Finally, the server MUST attempt to create and/or
open for write the file specified by the string. If the string is a filename or relative path, the

server MUST attempt to create the file relative to the default implementation specific log file
path.<251> If the file is opened successfully, then the server MUST commence logging to file

and return success. Otherwise, it MUST disable logging to file and return a failure.

 If pszOperation is ListenAddresses, the server MUST search the incoming array for loopback,
multicast, or broadcast addresses, and if any are found, return a failure. Otherwise, the server
MUST remove any addresses from the input that are not IPv4 addresses and create a backup
copy of the current listen addresses. Then the server MUST attempt to listen on the network
interfaces specified by the new listen addresses from the incoming array, and if this attempt
fails, the server MUST restore the previous listen addresses and return a failure. Otherwise,

the server MUST attempt to update the SOA records for its authoritative zones with the new
listen addresses and MUST return success even if the attempt fails. If a zone is directory
services-integrated, the server MUST use the LDAP search, add, and delete operations to
update the SOA records and return success even if there were unsuccessful LDAP calls. If
there is a failure in modifying the records on the directory server, then the server MUST retry
the write operation twice, and still return success even if the retries fail.

 If pszOperation is ServerLevelPluginDll, the server MUST store the value passed in pData and
return SUCCESS, indicating only that the value was successfully received. The server MUST
NOT validate the value passed, nor attempt to load the DLL, until the server is restarted.
When the server restarts, if the value stored for ServerLevelPluginDll is not an empty string,
the server MUST attempt to load the DLL specified. If the DLL fails to load for any reason, the
server MUST fail to start. If the DLL has been loaded, then whenever the server is required to
invoke the DLL query function, the server MUST invoke the query function of the DLL with a

query name and type and add any resulting records to the server's cache. Whenever the
server processes a query, if the DLL has been loaded, the server MUST invoke the query
function of the DLL in the following conditions:

 If a query cannot be answered with the information already present in the server's zone
database and cache, then prior to recursing (if applicable), invoke the DLL query function
and try again to answer the query from local data.

 If a response SHOULD have records in its additional section but no such records are in the

server's cache or zone database, invoke the DLL query function and attempt again to find
records for the additional section.

 If pszOperation is ActiveRefreshAllTrustPoints, the server MUST schedule an RFC 5011 active
refresh for all configured trust points (if any) and return success.

 If pszOperation is DeleteServerScope, the server MUST:

 If the server scope specified in pData does not exist, return

DNS_ERROR_SCOPE_DOES_NOT_EXIST.

 If the server scope is being used by a DNS Policy (section 2.2.15.2.2), return
DNS_ERROR_SERVERSCOPE_IS_REFERENCED.

 The DNS server MUST attempt to delete the server scope in the DNS server, and return

success or failure based on the result.

 If pszOperation is CreateClientSubnetRecord, the server MUST:

 If the Client Subnet Record already exists, return

DNS_ERROR_CLIENT_SUBNET_DOES_EXIST.

 The DNS server MUST attempt to create a new Client Subnet Record entry in the DNS
server using the parameters specified in pData, and return success or failure based on the
result.

260 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 If pszOperation is DeleteClientSubnetRecord, the server MUST:

 If the Client Subnet Record specified in pData does not exist, return

DNS_ERROR_CLIENT_SUBNET_DOES_NOT_EXIST.

 If the Client Subnet Record is being used by a DNS Policy in its Client Subnet Record

criteria, then the DNS server MUST return DNS_ERROR_CLIENT_SUBNET_IS_ACCESSED.

 The DNS server MUST attempt to delete the Client Subnet Record entry in the DNS server,
and return success or failure based on the result.

 If pszOperation is DeleteSubnetsInRecord, the server MUST:

 If the Client Subnet Record specified in pData does not exist, return
DNS_ERROR_CLIENT_SUBNET_DOES_NOT_EXIST.

 If the IP/IPv6 Subnets specified in pData do not exist in the Client Subnet Record on the

DNS server, return DNS_ERROR_SUBNET_DOES_NOT_EXIST.

 If deletion of the IP/IPv6 subnets results in the Client Subnet Record not having an IP or
IPv6 subnet, return DNS_ERROR_ADDRESS_REQUIRED.

 The DNS server MUST attempt to delete the IP/IPv6 Subnets in the Client Subnet Record
on the DNS server, and return success or failure based on the result.

 If pszOperation is AddSubnetsInRecord, the server MUST:

 If the Client Subnet Record specified in pData does not exist, return
DNS_ERROR_CLIENT_SUBNET_DOES_NOT_EXIST.

 If the IP/IPv6 Subnets specified in pData exists in the Client Subnet Record on the DNS
server, return DNS_ERROR_SUBNET_DOES_EXIST.

 The DNS server MUST attempt to add the IP/IPv6 Subnets in the Client Subnet Record on
the DNS server, and return success or failure based on the result.

 If pszOperation is ResetClientSubnetRecord, the server MUST:

 If the Client Subnet Record specified in pData does not exist, return
DNS_ERROR_CLIENT_SUBNET_DOES_NOT_EXIST.

 If no IP or IPv6 subnets are specified, return DNS_ERROR_ADDRESS_REQUIRED.

 The DNS server MUST delete the existing IP/IPv6 Subnets in the Client Subnet Record and
add the IP/IPv6 Subnets specified in pData in the Client Subnet Record on the DNS server,
and return success or failure based on the result.

 If pszOperation is CreatePolicy, the server MUST:

 The DNS server validates whether the DNS Policy parameters specified in pData are valid.
If the parameters are invalid the server returns

DNS_ERROR_POLICY_INVALID_SETTINGS. See DNS Policy Validation (section 3.1.8.3) for
details.

 If the DNS Policy pdata parameter dwProcessingOrder is greater than the highest
Processing Order in the given level and appliesOn, return

DNS_ERROR_POLICY_INVALID_SETTINGS.

 If the DNS Policy pdata parameter pwszPolicyName already exists, return
DNS_ERROR_POLICY_ALREADY_EXISTS. The policy name check is done for the policies
configured on the server level.

261 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 If the value weight in pContentList is 0, as defined in
DNS_RPC_POLICY_CONTENT (section 2.2.15.2.2), the DNS server returns

DNS_ERROR_POLICY_INVALID_WEIGHT. Allowed values for weight are any positive
number from 1 to 0xffffffff.

 If DNS Policy pdata parameter dwProcessingOrder is 0, reset the processing order to the
last processing order for the given level and appliesOn.

 Create the new DNS Policy in the DNS server, and return success or failure based on the
result. This DNS Policy is applicable to the DNS operations at the server level.

 If DNS Policy pdata parameter dwProcessingOrder is same as an existing DNS Policy in the
given level and appliesOn, update this new policy to have this new processing order and
increment all DNS Policies whose processing order is equal to or greater than this

processing order by 1.

 If pszOperation is DeletePolicy, the server MUST:

 If the DNS Policy name specified in pData does not exist in the DNS server, return

DNS_ERROR_POLICY_DOES_NOT_EXIST.

 Delete the DNS Policy in the DNS server, and return success or failure based on the result.

 Reset the processing order of all policies whose processing order is greater than the

processing order of the deleted policy by 1 for the given level and appliesOn.

 If pszOperation is UpdatePolicy, the server MUST:

 If the DNS Policy name specified in the pwszPolicyName of pData does not exist in the
server level policies of the DNS server, return DNS_ERROR_POLICY_DOES_NOT_EXIST.

 If the flags member of DNS_RPC_POLICY has
DNS_RPC_FLAG_POLICY_PROCESSING_ORDER set, the processing order of the DNS policy
is changed to the new processing order given in input pData. The processing order of

other DNS Policies at the server level for the given appliesOn is adjusted accordingly.

 If the flags member of DNS_RPC_POLICY has DNS_RPC_FLAG_POLICY_CONDITION set
then the Condition of the DNS Policy is changed to the condition specified in the input
pData.

 If the flags member of DNS_RPC_POLICY has DNS_RPC_FLAG_POLICY_CONTENT set then
the content of the DNS Policy is changed to the content specified in pData.

 If any criteria flags specified in Criteria Constants are set, criteria values are removed

from the DNS Policy and new criteria values specified in pData are set.

 Delete the DNS Policy on the DNS server, and return success or failure based on the
result.

 If pszOperation is SetRRL, the server MUST do the following. All fields are defined in section
2.2.16.2.1:

 Validate the DNS RRL parameters specified in pData and return one of the following error

codes if the DNS RRL parameters specified in pData are invalid:

 If the dwLeakRate field is invalid, return DNS_ERROR_RRL_INVALID_LEAK_RATE.

 If the dwTCRate is field is invalid, return DNS_ERROR_RRL_INVALID_TC_RATE.

 If the dwWindowSize field is invalid, return
DNS_ERROR_RRL_INVALID_WINDOW_SIZE.

262 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 If the dwIPv4PrefixLength field is invalid, return
DNS_ERROR_RRL_INVALID_IPV4_PREFIX.

 If the dwIPv6PrefixLength field is invalid, return
DNS_ERROR_RRL_INVALID_IPV6_PREFIX.

 If the dwLeakRate field is less than dwTCRate and none of the fields are 0, return
DNS_ERROR_RRL_LEAK_RATE_LESSTHAN_TC_RATE.

 Set the RRL parameters in the DNS server based on the passed flag value. Update values
only for parameters for which the flag is set. Return success or failure based on the result.

 If the fSetDefault value is set, ignore all other parameters and reset all parameters except
the RRL mode to default values.

 If pszOperation is CreateVirtualizationInstance, the server MUST do the following.

 Verify that the length of pwszVirtualizationID does not exceed the maximum allowed. If
the maximum is exceeded, then the DNS server MUST return error

DNS_ERROR_INVAILD_VIRTUALIZATION_INSTANCE_NAME. If a virtualization instance in
the DNS server already exists with same pwszVirtualizationID, then the DNS server MUST
return the error DNS_ERROR_VIRTUALIZATION_INSTANCE_ALREADY_EXISTS.

 On success, the DNS server creates a virtualization instance; otherwise, return failure.

 If pszOperation is DeleteVirtualizationInstance, the server MUST do the following.

 Check whether a virtualization instance exists in the DNS server with the name
pwszVirtualizationID. If it does not, the DNS server MUST return the error
DNS_ERROR_VIRTUALIZATION_INSTANCE_DOES_NOT_EXIST.

 If a virtualization instance already exists, then the DNS server MUST delete all zone and
zone scopes under the virtualization instance.

 If dwFlag is set to DNS_RPC_FLAG_PRESERVE_ZONE_FILE in input

DNS_RPC_VIRTUALIZATION_INSTANCE, then the DNS server MUST keep the zone files of
the zones and zone scopes under the virtualization instance intact. Otherwise, zone files of
zones and zone scopes under the virtualization instance MUST be deleted.

 On success, the DNS server removes the virtualization instance given by that name.
Otherwise, an error is returned.

 If pszOperation is UpdateVirtualizationInstance, the server MUST do the following.

 Check whether the length of pwszVirtualizationID is more than the maximum allowed,

then return the error DNS_ERROR_INVAILD_VIRTUALIZATION_INSTANCE_NAME.

 Check whether a virtualization instance already exists in the DNS server by the name
pwszVirtualizationID. If it does not, return the error
DNS_ERROR_VIRTUALIZATION_INSTANCE_DOES_NOT_EXIST.

 If a virtualization instance already exists, then the DNS server MUST update those
properties of the virtualization instance as given by dwFlags of input

DNS_RPC_VIRTUALIZATION_INSTANCE (section 2.2.17.1.1). Otherwise, an error is
returned.

If pszZone is not NULL and is not a valid multizone operation string, then the server MUST return
a failure if it does not contain a zone with the name matching the string pointed to by pszZone. If
pszZone is not NULL or if the value of dwContext specifies a multizone operation, the server MUST
execute the operation indicated by the value of pszOperation individually for each zone specified
by the values of dwContext and pszZone. If a zone operation is performed with a filter in

263 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

dwContext or a multizone operation string in pszZone, and no zones match the specified filter or
satisfy the multizone operation string, the server MUST return ERROR_SUCCESS (0x00000000). If

the operation is executed for more than one zone, then for each matching zone, the specified
operation MUST be executed with pszZone replaced with the name of the matching zone. If any of

these multiple operations return an error, the server MUST return an error; otherwise, the server
MUST return success. For any operation, if the specified zone is marked as "AutoCreated", the
DNS server MUST return an error.

 If pszOperation is ResetDwordProperty, the server MUST verify that the property name
matches a property name listed in section 3.1.1.2.1 for which the server supports the
ResetDwordProperty operation, and return an error if there is no match. If the property is
specified as "read-only" in section 3.1.1.2.1, the server MUST return an error. If the zone

specified is a cache zone, the server MUST return an error. It MUST further verify that the
value specified is within the property's allowable range (if specified) and if not return an error.
When the property specified is Boolean and the value to be set is greater than 0x00000001,
the server MUST replace the value with 0x00000001. If the property name is "AllowUpdate",
the server MUST return an error when the zone specified is not Active Directory-integrated
and the requested value is ZONE_UPDATE_SECURE, or when the zone specified is not a

primary zone. If the property name is "AllowUpdate" and the value is not ZONE_UPDATE_OFF
(section 2.2.6.1.1), then the server SHOULD invoke the NetlogonControl2Ex method with
function code NETLOGON_CONTROL_FORCE_DNS_REG on the Netlogon protocol
implementation on the local domain controller (DC). (See [MS-NRPC] section
3.5.4.9.1.)<252> If the property name is "Aging", the property value is TRUE, and the zone's
Aging state is FALSE, then the server MUST reset the zone's Aging time by updating the
dwAvailForScavengeTime (section 2.2.5.2.4.1) value to the current time value, incremented

by dwRefreshInterval (section 2.2.5.2.4.1).<253> If the value is zero and zero is listed as a
flag value for the default in section 3.1.1.2.1, the server MUST update the value of the
property to be the default for that property, and return success. Otherwise, the server MUST
update the value of the property for the zone to be the new value specified, and return
success.<254>

 If pszOperation matches a property name listed in section 3.1.1.2.2 or section 3.1.1.2.3 for
which the server supports this property reset operation, the server MUST update the value of

the property for the zone to be the new value specified, and return success.<255> Otherwise,
the server MUST return a nonzero error code.

 If pszOperation is ZoneTypeReset, the server MUST:

 Check whether the requested zone type, directory server integration, and (if applicable)
application directory partition match the zone's present state, and if so, return success.

 Check whether the zone is directory server integrated and currently in the process of

loading, and if so, return a failure.

 Verify, if the requested zone type is primary, that:

 There is a complete copy of the zone on the server (that is, the zone is not a
forwarder or stub zone).

 If the fDSIntegrated flag is TRUE:

 If the zone is a primary zone, that it is not empty.

 If the zone is currently directory-server-integrated, it is already stored in the

requested by pszDpFqdn, and is not a secondary or cache zone.

 If the zone is currently not directory-server-integrated, it is either a cache zone or
a primary zone.

 If the fDSIntegrated flag is FALSE, that:

%5bMS-NRPC%5d.pdf#Section_ff8f970f3e3740f7bd4baf7336e4792f

264 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 A copy of the zone is present in local persistent storage.

 The zone is not shutdown, or empty.

 If any of the verifications fails, return a failure.

 Check whether the requested zone type is secondary, and if so, reset the fDSIntegrated

flag of the present zone to false.

Otherwise, the server MUST, in accordance with the operation specified:

 If the zone is directory server integrated,<256> use LDAP search operations to find the
zone's dnsZone, dnsZoneScope, and dnsNode objects (section 2.3) and copy the
appropriate zone properties and data to a file. Set the zone and each of its scopes' Zone
GUID properties to NULL.

 If the zone is not directory server integrated, copy the zone and its scopes' properties and

data to the directory server using LDAP add operations (adding appropriate dnsZone,
dnsZoneScope, and dnsNode objects to the directory server). If there is a failure in writing

the zone records to the directory server, then the server MUST retry the write operation
twice.

 Reset the type information to the requested type.

 Delete the original zone (using LDAP delete operations to remove the zone's dnsZone,

dnsZoneScope, and dnsNode objects if necessary), and return success, or if any of the
LDAP operations has failed, even after retries were specified, then return a failure. If
deleting the zone from the directory server, the server MUST first attempt up to 4 times to
rename the zone being deleted to a temporary name. Regardless of whether the rename is
successful, the server then MUST attempt to delete the zone using LDAP delete operations,
and retry up to 300 times if LDAP_ADMIN_LIMIT_EXCEEDED is returned, never retrying if
LDAP_INSUFFICIENT_RIGHTS is returned, and retrying up to 30 times for any other LDAP

error.

 If pszOperation is PauseZone, the server MUST set the zone's Paused flag to TRUE and return

success. The same operation MUST be performed for all the existing zone scopes of the zone.

 If pszOperation is ResumeZone, the server MUST set the zone's Paused flag to FALSE and
return success. The same operation MUST be performed for all the existing zone scopes of the
zone.

 If pszOperation is DeleteZone, the server MUST delete the zone pointed to by pszZone from

the server's local memory only and ensure that the zone will not be loaded at the next reboot,
and return success. This operation does not modify the zone as it appears in the directory
server, if it exists there.

The DNS server MUST also delete the associated scopes of that zone. If the zone is file-
backed, the database file of the scopes MUST not be deleted.

 If pszOperation is ReloadZone, the server MUST check whether the zone pointed to by

pszZone is directory server-integrated and is already in the process of loading, and if so,

return a failure. Otherwise, if the zone's Dirty Flag (section 3.1.1) is set to TRUE, then the
server MUST do the following:

 If the zone is a cache zone, and the zone is directory server-integrated and there are root
hints in the zone, the server SHOULD write root hints to their permanent storage and
overwrite existing directory server root hints through the use of the
DNS_ZONE_LOAD_OVERWRITE_DS flag (section 2.2.5.2.7.1). If the root hints are stored

on the directory server and DownlevelDCsInDomain is nonzero, the server MUST check
whether the root hints are empty. If the root hints are empty, the root hints MUST NOT be

265 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

written to their permanent storage. Otherwise, if the root hints are stored on the directory
server, the server MUST search for and delete the root hints on the directory server using

LDAP search and delete commands and write the new root hints to the cache zone on the
directory server using LDAP add and modify commands. If there is a failure in writing the

root hints records to the directory server, then the server MUST retry the write operation
twice.<257>

 Otherwise, if the zone is not a read-only zone, write a copy of the zone to a file and send a
DNS notification to peer or secondary DNS servers, if any.

If this zone has scopes configured, all the data of the scopes MUST be written one by one to
the corresponding scope files if the scope's Dirty Flag (section 3.1.1) is set to TRUE. If writing
to any of the scopes encounters an issue, an error event SHOULD be logged and an error code

returned.

Then the server MUST do the following:

 If the zone is a secondary zone, check that it has been stored to a file, and if not, return a

failure.

 If the zone is directory server-integrated, use the LDAP search operation to load the zone's
dnsZone and dnsNode objects (section 2.3) from the directory server into memory and

return success. If the zone has scopes, the DNS server MUST try to load the scope's
dnsZoneScope and dnsNode objects one by one. If any scopes fail to load from the file, an
event SHOULD be logged and an error returned.

 Otherwise, load the zone from the file, and return success. If the zone has scopes, then
the DNS server MUST try to load the scopes one by one. If any of the scope fails to load
from the file, an event SHOULD be logged and an error returned.

 If any of the above LDAP operations fails, even after retries, where specified, then return a

failure.

 If pszOperation is RefreshZone, and the zone specified is a secondary zone, is not currently

transferring from the primary server, and at least 15 seconds has elapsed since the Time of
Last SOA check (section 3.1.1) of the primary zone, then the server MUST force a refresh of
the secondary zone pointed to by pszZone, from the primary DNS server, and return success.
Otherwise, the server MUST return an error.

 If pszOperation is ExpireZone, the server MUST force refresh of the secondary zone pointed to

by pszZone by contacting the primary DNS server to refresh, and return success.

 If pszOperation is IncrementVersion,, the server MUST return a failure if the zone is not a
primary or cache zone, and it MUST return success if the zone's Dirty Flag (section 3.1.1) is
set to FALSE or the zone is not stored in a file. Otherwise, the server MUST write the
uncommitted information to the file, send DNS notify [RFC1996] messages to all other servers
hosting the zones, if they exist, and return success. If the zone specified is the cache zone,

the server SHOULD write the root hints to their permanent storage. If the root hints are stored
on the directory server and DownlevelDCsInDomain is nonzero, the server MUST check
whether the root hints are empty. If the root hints are empty, the root hints MUST NOT be

written to their permanent storage. Otherwise, if the root hints are stored on the directory
server, the server MUST use LDAP add, delete, and search operations to replace the root hints
on the directory server, and return success, regardless of the success or failure of these
operations. If there is a failure in writing the root hints records to the directory server, then

the server MUST retry the write operation twice, and still return success even if the retries
fail.<258>

 If pszOperation is WriteBackFile, the server MUST return a failure if the zone is not a primary
or cache zone, and it MUST return success if the zone's Dirty Flag (section 3.1.1) is set to
FALSE and it does not have any scopes configured or the zone is not stored in a file.

266 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Otherwise, the server MUST write the uncommitted information to the file, send DNS notify
([RFC1996]) messages to all other servers hosting the zones, if they exist, and return success,

regardless of the success or failure of these operations. If the zone has scopes, the data of the
scopes MUST be written to their corresponding scope files if the scope's Dirty Flag (section

3.1.1) is set to TRUE. If the server fails to write the data for any of the scopes it SHOULD log
an error event and return the error code. If the operation results in updates only in the scope
files and not the zone file, then DNS notify ([RFC1996]) messages SHOULD NOT be sent. If
the zone specified is the cache zone, the server SHOULD write the root hints to their
permanent storage. If the root hints are stored on the directory server and
DownlevelDCsInDomain is nonzero, the server MUST check whether the root hints are empty.
If the root hints are empty, the root hints MUST NOT be written to their permanent storage.

Otherwise, if the root hints are stored on the directory server, the server MUST use LDAP add,
delete, and search operations to replace the root hints on the directory server, and return
success, regardless of the success or failure of these operations. If there is a failure in writing
the root hints records to the directory server, then the server MUST retry the write operation
twice, and still return success even if the retries fail.<259>

 If pszOperation is DeleteZoneFromDs, the server MUST leave the zone, represented by a

dnsZone object (section 2.3), intact and return a failure if the specified zone is not directory
service-integrated. Otherwise, the server MUST locate the zone and its records, represented
by dnsNode objects (section 2.3) using LDAP search operations. The server MUST rename the
dnzZone object by prepending "..Deleted-" (or "..Deleted.<random number>-" if "..Deleted-"
already exists) to the zone's name, then attempt to delete the zone and its records using LDAP
delete operations, and retry up to 300 times if LDAP_ADMIN_LIMIT_EXCEEDED is returned,
never retrying if LDAP_INSUFFICIENT_RIGHTS is returned, and retrying up to 30 times for any

other LDAP error. If the deletion from the directory server was successful, then the server
MUST delete the local memory copy of the zone, and return success. If any of these LDAP
operations cannot be completed, even after retries where specified, then the server MUST
return failure.

 If pszOperation is UpdateZoneFromDs, the server MUST:

 Verify that the zone is not currently loading if it is a directory server integrated zone;
otherwise, return a failure.

 Refresh data for the zone from the directory server, and return success or failure
depending on the result of this operation.

 If pszOperation is ZoneExport, the server SHOULD:

 Verify that the zone is not currently loading if it is a directory server integrated zone;
otherwise, return a failure.

 Export zone data for the zone to a file on the DNS server specified by pszZoneExportFile in

pData, and return success or failure depending on the result of this operation, but
MAY<260> simply return a failure.

 If pszOperation is ZoneChangeDirectoryPartition, the server MUST:

 Verify that the specified zone is not currently loading; otherwise, return a failure.

 Verify that the application directory partition specified by pszDstPartition in pData is
already known to the server; otherwise, return a failure.

 Verify that the specified zone is not already in the destination application directory

partition; otherwise, return success.<261>

 Create a backup copy of the zone properties (the dnsZone object) in local storage using
LDAP search operations, and then create a temporary dnsZone object in the new
application directory partition with the zone properties from the backup copy, using LDAP

267 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

add operations. If a failure occurs, the server MUST delete the temporary zone using the
LDAP search and delete operations, and return a failure.

 Copy the records (dnsNode objects) of the old zone to the temporary zone by enumerating
the old zone's records using an LDAP search operation and by writing the new records to

the temporary zone using LDAP add operations. If there is a failure in writing the records
to the directory server, then the server MUST retry the write operation twice. If the search
fails or the new records cannot be written, then the server MUST attempt to delete the
temporary zone using the LDAP search and delete operations, and retry up to 300 times if
LDAP_ADMIN_LIMIT_EXCEEDED is returned, never retrying if
LDAP_INSUFFICIENT_RIGHTS is returned, and retrying up to 30 times for any other LDAP
error, and return a failure.

 Rename the temporary zone to the final zone name using the LDAP rename operation, and
delete the original zone's dnsZone and dnsNode objects using the LDAP search and delete
operations. If the LDAP rename operation fails, the server MUST attempt to delete the
temporary zone, and retry up to 300 times if LDAP_ADMIN_LIMIT_EXCEEDED is returned,
never retrying if LDAP_INSUFFICIENT_RIGHTS is returned, and retrying up to 30 times for

any other LDAP error and return a failure. Otherwise, the server MUST return a success.

 If pszOperation is DeleteNode, then:

 If the node does not exist, the server MUST return success.

 Otherwise, if the node specified is not in a primary zone, a cache zone, a cache scope, or a
zone scope of a primary file backed zone, or the node is the root node for a zone, the
server MUST return failure.

 Otherwise, if the zone containing the specified node is not directory server-integrated, the
server MUST delete the node pointed to by pszNodeName from the zone, MUST delete all

DNS records in the node's subtree if the Boolean flag pointed to by the dwParam field in
pData is set to TRUE, and return success.

 Otherwise,

 If the Boolean flag pointed to by the dwParam field in pData is set to TRUE, the
server MUST poll the directory server for zone changes, using LDAP search operations.

 If the Boolean flag pointed to by the dwParam field in pData is set to FALSE and the
node contains subtrees, both the node and its subtrees MUST NOT be deleted and a

success status MUST be returned.

 If the node to be deleted is not a cache node, then the server MUST locate the node's
dnsNode object (section 2.3) and its children using LDAP search operations, and then
perform LDAP modify operations to set each node's dnsTombstoned attribute to TRUE
and each node's dnsRecord (section 2.3.2.2) attribute to contain a
DNS_RPC_RECORD_TS record (section 2.2.2.2.4.23) with an EntombedTime value

equal to the current time expressed as the number of 100-nanosecond intervals since
12:00 A.M. January 1, 1601 Coordinated Universal Time (UTC).

 If any of these LDAP operations fails, the server MUST attempt to roll back the
previous operations using LDAP modify operations and return failure. If, during an
attempt to roll back the deletions, any LDAP operation fails, the server MUST retry up
to 2 times, and return failure.

 If pszOperation is DeleteRecordSet, and the node does not exist or the node exists but does

not contain any records, represented as dnsNode objects (section 2.3) of the type specified by
the dwParam field in pData the server MUST return success. If the zone is directory server-
integrated, the server MUST verify with an LDAP search that the node and/or records don't
exist before returning success. Otherwise, the server MUST delete the record set of the type

268 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

specified by dwParam field in pData (using LDAP modify operations when the zone is
directory server-integrated), and return success. If deleting the record set would delete all

records for the node and the zone is stored in the directory server, the DNS server MUST set
the node's dnsTombstoned attribute to TRUE and each node's dnsRecord (section 2.3.2.2)

attribute to contain a DNS_RPC_RECORD_TS record (section 2.2.2.2.4.23) with an
EntombedTime value equal to the current time expressed as the number of 100-nanosecond
intervals since 12:00 A.M. January 1, 1601 Coordinated Universal Time (UTC). If any of these
LDAP operations fails, the server MUST return failure.

 If pszOperation is ForceAgingOnNode, and the zone's "Aging" (section 3.1.1.2.1) property is
TRUE and the node pointed to by pszNodeNameexists, the server MUST enable aging on the
node name pointed to by pszNodeName in the zone and MUST enable aging on the node's

subtree if specified by the dwParam value in pData, and return success. Otherwise, the server
MUST return a failure.

 If pszOperation is AllowNSRecordsAutoCreation, the server MUST verify that the zone
referenced is a primary zone and that it is a directory service-integrated zone and that it is not
in the process of loading. If the verification fails, the server MUST return a failure. If the

verification succeeds, the server MUST replace the list of IP addresses for which NS records

will be automatically created with the list specified by pData, in the properties for the zone
specified by pszZone, and use the LDAP modify operation to write all of the zone's properties
to the copy of the zone on the directory server. Then, if any of the server's IP addresses are
present in the new list of IP addresses and an NS record for the server is not present in the
root of the zone, the server MUST add an NS record for the server to the zone, using the LDAP
add operation. If there is a failure in writing the record to the directory server, then the server
MUST retry the write operation twice. If none of the server's IP addresses are present in the

new list of IP addresses and an NS record for the server is present in the root of the zone, the
server MUST delete the NS record for the server from the zone, using the LDAP delete
operation. Finally, if any of these LDAP operations could not be completed, even after retries
where specified, then the server MUST return a failure; otherwise, the server MUST return
success.

 If pszOperation is DatabaseFile, the server MUST:

 Verify that the zone pointed to by pszZone exists; that if the fDsIntegrated field of the

DNS_RPC_ZONE_DATABASE structure is set to TRUE, the zone is directory services-
integrated, and is not in the process of loading; and that if fDsIntegrated is set to FALSE,
the zone is not directory services-integrated. If any of these verifications fail, the server
MUST return a failure.

 Check whether pszFilename is not NULL and fDsIntegrated is TRUE, and if so, return a
failure.

 Check whether pszFilename is NULL and fDsIntegrated is TRUE, and if so, return success.

 Check whether pszFilename is NULL and fDsIntegrated is FALSE, and if so, create the
default database file for the zone and configure the zone to use that file, and return
success.

 Check whether pszFilename is not NULL and fDsIntegrated is FALSE, and if so, create the

database file specified by pszFilename for the zone and configure the zone to use that file,
and return success, or return a failure if the file name could not be created as specified.

 If pszOperation is SignZone, the server MUST:

 Verify that the zone pointed to by pszZone exists, that the zone's IsSigned property is
FALSE, that the zone is a Primary zone, and that the zone's Keymaster property is set to
TRUE. If any of these verifications fails, the server MUST return a failure.

269 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 Check whether the EnableOnlineSigning server property is TRUE. If it is FALSE and the
zone is directory services-integrated, the server MUST return a failure.

 Add appropriate DNSSEC records to the zone according to the entries in the zone's signing
key descriptor list and [RFC4035], and return failure if any operation fails.

 If the zone has scopes, the server MUST initiate signing on the zone scopes. If any of the
scope signing fails, the zone MUST be marked as unsigned, an appropriate event is
logged, and an error code is returned.

 Set the zone's IsSigned flag to TRUE, and return success.

 If pszOperation is UnsignZone, the server MUST:

 Verify that the zone pointed to by pszZone exists, that the zone's IsSigned property is
TRUE, that the zone is a Primary zone, and that the zone's Keymaster property is set to

TRUE. If any of these verifications fails, the server MUST return a failure.

 Check whether the EnableOnlineSigning server property is TRUE. If it is FALSE and the

zone is directory services-integrated, the server MUST return a failure.

 Remove all DNSSEC records of type DNSKEY, RRSIG, NSEC, and NSEC3 from the zone,
and return failure if any operation fails.

 If the zone has scopes, the server MUST unsign all the scopes one by one. If any of the

scopes fails to be unsigned the value of the zone IsSigned property MUST be kept
unchanged, an appropriate event is logged, and an error code is returned.

 Set the zone's IsSigned flag to FALSE, and return success.

 If pszOperation is ResignZone, the server MUST:

 Verify that the zone pointed to by pszZone exists, that the zone's IsSigned property is
TRUE, that the zone is a Primary zone, and that the zone's Keymaster property is set to
TRUE. If any of these verifications fails, the server MUST return a failure.

 Check whether the EnableOnlineSigning server property is TRUE. If it is FALSE and the
zone is directory services-integrated, the server MUST return a failure.

 Regenerate all DNSSEC records in the zone as done for the SignZone operation, and
return failure if any operation fails.

 If the zone has scopes, the server MUST start the re-sign operation on them. If any of the
scopes fail to re-sign, the value of the zone IsSigned property MUST be kept unchanged,
an appropriate event SHOULD be logged, and an error code MUST be returned.

 Return success.

 If pszOperation is PerformZoneKeyRollover, the server MUST:

 Verify that the zone pointed to by pszZone exists, that the zone's IsSigned property is

TRUE, that the zone is a Primary zone, and that the zone's Keymaster property is set to
TRUE. If any of these verifications fails, the server MUST return a failure.

 Find the signing key descriptor indicated by pData in the zone's signing key descriptor list.

If the signing key descriptor is not in this list, the server MUST return a failure.

 Put the specified signing key descriptor into the zone's rollover queue, and return
success.

 If pszOperation is PokeZoneKeyRollover, the server MUST:

http://go.microsoft.com/fwlink/?LinkID=107053

270 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 Verify that the zone pointed to by pszZone exists, that the zone's IsSigned property is
TRUE, that the zone is a Primary zone, and that that the zone's Keymaster property is set

to TRUE. If any of these verifications fails, the server MUST return a failure.

 Find the signing key descriptor indicated by pData in the zone's signing key descriptor list.

If the signing key descriptor is not in this list, the server MUST return a failure.

 If the dwCurrentRolloverStatus member of the DNS_RPC_SKD_STATE structure for this
signing key descriptor is not DNS_SKD_STATUS_KSK_WAITING_FOR_DS_UPDATE, the
server MUST return a failure.

 Otherwise, the DNS server MUST advance the dwCurrentRolloverStatus member of the
DNS_RPC_SKD_STATE structure for this signing key descriptor to
DNS_SKD_STATUS_KSK_WAITING_FOR_DS_TTL and proceed with key rollover for this

signing key descriptor as specified in [RFC4641], and return success.

 If pszOperation is RetrieveRootTrustAnchors, the server MUST:

 Verify that:

 The zone pointed to by pszZone is the Trust Anchors zone.

 The server is not a read-only server.

 The EnableDnsSec server property (section 3.1.1.1.1) is TRUE.

 The RootTrustAnchorsURL property (section 3.1.1.1.3) is not NULL, that the scheme is
"https", and that the host and url-path are nonempty (see [RFC1738]).

 If any of these verifications fails, return a failure. Otherwise, the server MUST:

 Create the Trust Anchors zone if it does not exist. If the creation fails, return an error.

 Open an HTTPS connection to the host and port defined by the RootTrustAnchorsURL
property. If the connection fails or times out, return an error.

 Retrieve the XML document specified by the url-path or return an error.

 Parse the XML document strictly according to the schema defined in [draft-jabley-
dnssec-trust-anchor-03]. If the XML document deviates from the schema, return an
error.

 For each DS trust anchor specified by the XML document, verify that the algorithm and
digest type are supported by the server, and that the length of the digest is valid. If
the DS trust anchor is unsupported, continue to the next DS trust anchor. If none of
the trust anchors are supported, return an error. If the trust anchor is supported and

the digest length is invalid, return an error. Otherwise, add the trust anchor to a list of
pending trust anchors.

 Add each trust anchor in the pending list of trust anchors to the root node of the Trust
Anchors zone. If the add attempt fails, return an error.

 Schedule an immediate RFC 5011 active refresh for all trust points, and return
success.

 If pszOperation is TransferKeymasterRole, the server MUST:

 Verify that dwTypeId is DNSSRV_TYPEID_DWORD and that pData points to one of the
following values. If any of these verifications fails, the server MUST return a failure.

http://go.microsoft.com/fwlink/?LinkId=90287

271 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Value Meaning

DNS_ZONE_TRANSFER_KEYMASTER_ROLE

0x00000001

Assign the key master role to
the current server only if the
zone is currently signed and
the current server has access
to the private key material
corresponding to the signing
key descriptors for the zone.

DNS_ZONE_SEIZE_KEYMASTER_ROLE

0x00000002

Force assignment of the key
master role to the current
server, allowing assignment
on unsigned zones or zones
with no signing key
descriptors. If the zone has
signing key descriptors, this
operation MUST return a
failure if private key material
for all signing key descriptors
is not accessible by the
current server.

DNS_ZONE_POLL_KEYMASTER_ROLE

0x00000003

Requests that the server
refresh the key master zone
flags by reading from the
directory service.

DNS_ZONE_SEIZE_KEYMASTER_ROLE_WITHOUT_KEY_CHECKS

0x00000004

Force assignment of the key
master role to the current
server, without checking to
see whether private key
material is accessible by the
current server.

 Verify that the zone pointed to by pszZone exists, that the zone is a Primary zone that is

directory services-integrated, and that the zone is not read-only. If any of these
verifications fails, the server MUST return a failure.

 If the value of pData is DNS_ZONE_TRANSFER_KEYMASTERROLE or
DNS_ZONE_SEIZE_KEYMASTER_ROLE or
DNS_ZONE_SEIZE_KEYMASTER_ROLE_WITHOUT_KEY_CHECKS, the server MUST:

 Verify that the IsSigned property of the zone (section 3.1.1.2.1) is TRUE or that the

value of pData is DNS_ZONE_SEIZE_KEYMASTER_ROLE. If not, return a failure.

 For an AD-backed zone, refresh the list of key master servers from the directory
service or, if this operation fails, return a failure.

 Return success if the IsKeymaster property of the zone (section 3.1.1.2.1) is TRUE
and the value of pData is DNS_ZONE_TRANSFER_KEYMASTER_ROLE.

 For an AD-backed zone, check whether the value of pData is
DNS_ZONE_TRANSFER_KEYMASTER_ROLE or DNS_ZONE_SEIZE_KEYMASTER_ROLE

and the zone has one or more signing key descriptors and, if so, verify that the private
key material is available for each of the signing key descriptors.

 For a file-backed zone, check whether the value of pData is
DNS_ZONE_SEIZE_KEYMASTER_ROLE and the zone has one or more signing key
descriptors and, if so, verify that the private key material is available for each of the
signing key descriptors.

272 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 For an AD-backed zone, query the directory service for the value of the current key
master. If this operation fails, and the value of pData is

DNS_ZONE_TRANSFER_KEYMASTER_ROLE, return a failure.

 For an AD-backed zone, check whether the value of pData is

DNS_ZONE_TRANSFER_KEYMASTER_ROLE and, if so, verify that the query in the
preceding step returned a value for the current key master, and that the current key
master is marked as a key master by invoking the R_DnssrvQuery2 operation (section
3.1.4.7) on the current key master. The pszZone value used MUST match the value of
pszZone passed to this operation, and pszOperation MUST be set to "IsKeymaster". If
the current key master returns an error or FALSE, return a failure.

 For an AD-backed zone, refresh the zone properties from the directory service. If this

operation fails, the server MUST ignore the failure.

 For an AD-backed zone, perform an LDAP modify operation to add the DN of the zone
to the msDNS-KeymasterZones attribute of the server settings object ("CN=DNS
Settings,CN=<server_name>,CN=Servers,CN=<site_name>,

CN=Sites,CN=Configuration,DC=<domain name>") or, if this operation fails, return a
failure.

 For an AD-backed zone, perform an LDAP delete operation to delete the DN of the
zone from the msDNS-KeymasterZones attribute of the previous key master server
settings object ("CN=DNS
Settings,CN=<previous_keymaster_server_name>,CN=Servers,CN=<site_name>,
CN=Sites,CN=Configuration,DC=<domain name>") or, if this operation fails, return a
failure.

 For an AD-backed zone, check whether the value of pData is

DNS_ZONE_TRANSFER_KEYMASTER_ROLE and, if so, perform the
TransferKeymasterRole operation on the previous key master, with all parameters
matching those passed to the current operation except that pData MUST point to
DNS_ZONE_POLL_KEYMASTER_ROLE. If this operation fails, the server MUST ignore
the failure.

 Return success.

 If the value of pData is DNS_ZONE_POLL_KEYMASTER_ROLE, the server MUST:

 Open an LDAP connection to the Domain Naming Master FSMO role holder or to the
local directory service if an LDAP connection to the Domain Naming Master FSMO role
holder cannot be opened.

 Perform an LDAP search operation to retrieve the value of the msDNS-
KeymasterZones attribute of the DNS server settings object ("CN=DNS
Settings,CN=<server_name>,CN=Servers,CN=<site_name>,

CN=Sites,CN=Configuration,DC=<domain name>") and, if the operation fails, return a
failure.

 The DNS server MUST iterate each zone in the DNS Zone Table (section 3.1.1.2) and

for each zone:

 If the zone is not directory service-integrated, ignore it.

 Otherwise, if the zone is present in the msDNS-KeymasterZones attribute and the
zone's IsKeymaster property (see section 3.1.1.2.1) is not TRUE or if the zone is

not present in the msDNS-KeymasterZones attribute and the zone's IsKeymaster
property is TRUE:

273 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 Set the zone's IsKeymaster property (section 3.1.1.2.1) to TRUE if the zone is
present in the msDNS-KeymasterZones attribute or to FALSE if the zone is not

present in the msDNS-KeymasterZones attribute.

 Retrieve the FQDN of the zone's current key master: if the zone's IsKeymaster

property is TRUE, set the zone's Keymaster property to the FQDN of the local
host; otherwise, perform an LDAP search using the search filter "(&(msDNS-
KeymasterZones=<zone name>)(objectCategory=msDNS-ServerSettings))"
and set the zone's Keymaster property to the dnsHostName attribute value
found on the parent object of the object returned by this search.

 If pszOperation is CreateZonescope, the server MUST:

 Verify that the zone pointed to by pszZone exists, that it is not an autocreated zone, that

it is a non-reverse lookup zone, and that a scope does not exist with the given scope
name in the specified zone. If any of these verifications fails, the server MUST return a
failure. For cache scopes, if the scope does exist in the cache, the server MUST return a
failure.

 Create the zone scope or cache scope with the given scope name and return success if the
creation is successful, otherwise return a failure.

 If the zone uses directory server for persistent storage, the server MUST:

 Perform an LDAP search in the dnsZone object of the zone to determine whether the
scope already exists, and if so, return failure.

 Create the zone scope in the same application directory partition.

 Using LDAP add operations:

 Create a dnsZoneScopeContainer object with name "ZoneScopeContainer" in the
zone's dnsZone object (if it does not already exist).

 Create a dnsZoneScope object in the dnsZoneScopeContainer object.

 If pszOperation is DeleteZonescope, the server MUST:

 Verify that the zone pointed to by pszZone exists, that it is not an autocreated zone, that
it is a non-reverse lookup zone, and that a scope does exist with the given scope name in
the specified zone. If any of these verifications fails, the server MUST return a failure. For
a cache scope, delete the scope if it exists; otherwise the server MUST return a failure.

 If the zone scope or cache scope specified in pData does not exist, return

DNS_ERROR_SCOPE_DOES_NOT_EXIST.

 If the zone scope or cache scope is being used by a DNS Policy (section 2.2.15.2.2), then
the DNS server MUST return DNS_ERROR_ZONESCOPE_IS_REFERENCED.

 The DNS server MUST attempt to delete the zone scope or cache scope in the DNS server,
and return success or failure based on the result.

 If pszOperation is CreatePolicy, the server MUST:

 The DNS server checks whether the zone specified by pZone exists and, if not, returns
DNS_ERROR_ZONE_DOES_NOT_EXIST.

 The DNS server validates whether the DNS Policy parameters specified in pData are valid.
If the parameters are invalid, return DNS_ERROR_POLICY_INVALID_SETTINGS. For
details, see DNS Policy Validation (section 3.1.8.3).

274 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 If the DNS Policy pData parameter dwProcessingOrder is greater than the highest
Processing Order in the given level and appliesOn for the zone, return

DNS_ERROR_POLICY_INVALID_SETTINGS.

 If the DNS Policy name as specified in the pData parameter pwszPolicyName already

exists, return DNS_ERROR_POLICY_ALREADY_EXISTS. The policy name check is done for
the policies configured on the zone.

 If the value weight in pContentList is 0, as explained in
DNS_RPC_POLICY_CONTENT (section 2.2.15.2.2), the DNS server returns
DNS_ERROR_POLICY_INVALID_WEIGHT. Allowed values for weight are any positive
number from 1 to 0xffffffff.

 If DNS Policy pData parameter dwProcessingOrder is 0 then reset the processing order to

the last processing order for the specified level and appliesOn in the zone.

 Create the new DNS Policy on the DNS server, and return success or failure based on the
result. This DNS Policy is applicable to the DNS operations at the zone level for that zone.

 If the DNS Policy pData parameter dwProcessingOrder is the same as an existing DNS
Policy in the specified level and appliesOn of the zone, update this new policy to use the
new processing order. All DNS Policies whose processing order is equal to or greater than

this processing order are incremented by 1.

 If pszOperation is DeletePolicy, the server MUST:

 If the zone specified by pZone does not exist, return
DNS_ERROR_ZONE_DOES_NOT_EXIST.

 If the DNS Policy name specified in pData does not exist in the zone, return
DNS_ERROR_POLICY_DOES_NOT_EXIST.

 Delete the DNS Policy in the zone of the DNS server, and return success or failure based

on the result.

 Increment the processing order of all policies whose processing order is greater than the
processing order of the deleted policy by 1 for the given level and appliesOn in the zone.

 If pszOperation is UpdatePolicy, the server MUST:

 If the zone given by pZone does not exist, return DNS_ERROR_ZONE_DOES_NOT_EXIST.

 If the DNS Policy name specified in the member pwszPolicyName of pData does not exist
in the specified zone policies of the DNS server, return

DNS_ERROR_POLICY_DOES_NOT_EXIST.

 If the flags member of DNS_RPC_POLICY has
DNS_RPC_FLAG_POLICY_PROCESSING_ORDER set, update the processing order of the
DNS policy to the new processing order specified in the input pData. Adjust the processing
order of other DNS Policies at that zone for the given appliesOn accordingly.

 If the flags member of DNS_RPC_POLICY has DNS_RPC_FLAG_POLICY_CONDITION set,

then update the Condition of the DNS Policy to the condition specified in the input pData.

 If the flags member of DNS_RPC_POLICY has DNS_RPC_FLAG_POLICY_CONTENT set, then
update the content of the DNS Policy to the content specified in pData.

 If any criteria flags as specified in Criteria Constants are set, remove the criteria values
from the DNS Policy and set new criteria values as specified in pData.

275 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 Delete the DNS Policy on the DNS server, and return success or failure based on the
result.

3.1.4.2 R_DnssrvQuery (Opnum 1)

The R_DnssrvQuery method queries the DNS server for information. The type of information queried
for is specified by the client using the pszZone and pszOperation parameters. For the purpose of
selecting an output structure type the server MUST consider the value of dwClientVersion (section
2.2.1.2.1) to be 0x00000000 when responding to this method.

 LONG R_DnssrvQuery(
 [in] handle_t hBindingHandle,
 [in, unique, string] LPCWSTR pwszServerName,
 [in, unique, string] LPCSTR pszZone,
 [in, unique, string] LPCSTR pszOperation,
 [out] PDWORD pdwTypeId,
 [out, switch_is(*pdwTypeId)] DNSSRV_RPC_UNION* ppData
);

hBindingHandle: An RPC binding handle to the server. Details concerning binding handles are
specified in [C706] section 2.3.

pwszServerName: The client can pass a pointer to the FQDN of the target server as a null-
terminated UTF-16LE character string. The server MUST ignore this value.

pszZone: A pointer to a null-terminated character string that contains name of the zone to be
queried. For operations specific to a particular zone, this field MUST contain the name of the zone

in UTF-8 format. For all other operations, this field MUST be NULL.

pszOperation: A pointer to a null-terminated character string that contains the name of the operation
to be performed on the server. These are two sets of allowed values for pszOperation:

If pszZone is set to NULL, pszOperation MUST be either a property name listed in section 3.1.1.1,

or it SHOULD<262> be the following.

Value Meaning

"ServerInfo" On output pdwTypeId SHOULD be set according to the value of the dwClientVersion
field (section 2.2.1.2.1). If dwClientVersion is 0x00000000, then pdwTypeId SHOULD
be set to DNSSRV_TYPEID_SERVER_INFO_W2K. If dwClientVersion is 0x00060000,
then pdwTypeId SHOULD be set to DNSSRV_TYPEID_SERVER_INFO_DOTNET. If
dwClientVersion is 0x00070000, then pdwTypeId SHOULD be set to
DNSSRV_TYPEID_SERVER_INFO<263> ppData MUST point to a structure of one of
the types specified in DNS_RPC_SERVER_INFO (section 2.2.4.2.2), which SHOULD
contain the configuration information for the DNS server, but MAY have some fields
set to zero even when the related configuration value is nonzero.<264>

VirtualizationInstance Gets the details of a virtualization instance in the DNS server. On success, the DNS
server MUST set the dwTypeId parameter to

DNSSRV_TYPEID_VIRTUALIZATION_INSTANCE (section 2.2.1.2.6), and MUST set
the ppData point to a structure of type DNS_RPC_VIRTUALIZATION_INSTANCE
(section 2.2.17.1.1).

If pszZone is not NULL, pszOperation MUST be either a property name listed in section 3.1.1.2, or
one of the following.

Value Meaning

"Zone" On output the value pointed to by pdwTypeId SHOULD<265> be set to
DNSSRV_TYPEID_ZONE and ppData MUST point to a structure of one of the types specified

http://go.microsoft.com/fwlink/?LinkId=89824

276 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Value Meaning

in DNS_RPC_ZONE (section 2.2.5.2.1), which contains abbreviated information about the
zone pointed to by pszZone.

"ZoneInfo" On output the value pointed to by pdwTypeId SHOULD<266> be set to
DNSSRV_TYPEID_ZONE_INFOand ppData MUST point to a structure of one of the types
specified in DNS_RPC_ZONE_INFO (section 2.2.5.2.4), which contains full information about
the zone pointed to by pszZone.

pdwTypeId: A pointer to an integer that on success contains a value of type DNS_RPC_TYPEID
(section 2.2.1.1.1) that indicates the type of data pointed to by ppData.

ppData: A DNSSRV_RPC_UNION(section 2.2.1.2.6) that contains a data-structure as indicated by
dwTypeId.

Return Values: A Win32 error code indicating whether the operation completed successfully
(0x00000000) or failed (any other value).

When processing this call, the server MUST do the following:

 If the Global Server State (section 3.1) is not "Running", return a failure.

 Check that the input parameters conform to the syntax requirements above, and if not return a
failure.

 If pszZone is not NULL, search the DNS Zone Table (section 3.1) for the zone with name matching
the value of pszZone. If a matching zone cannot be found return a failure.

 Validate, as specified in section 3.1.6.1, that the client has permissions to perform the attempted
operation. If pszZone is NULL then the DNS server MUST perform the Phase 2 authorization test
using the DNS Server Configuration Access Control List. If pszZone is not NULL then the DNS

server MUST perform the Phase 2 authorization test using the Zone Access Control List for the
zone specified by pszZone. Read privilege MUST be tested for all operations. If the client does not
have permission to perform the operation, the server MUST return a failure.

 If pszZone is NULL, execute the operation indicated by the value of pszOperation specified as
follows:

 If pszOperation is ServerInfo, the server MUST return in ppData configuration information for
the DNS server, and return success.

 If pszOperation matches a property name listed in section 3.1.1.1.1, the server
SHOULD<267> return DNSSRV_TYPEID_DWORD in pdwTypeId and return in ppData the value
associated with that property, and return success. The server MAY return a nonzero error
code.

 If pszOperation matches a property name listed in section 3.1.1.1.2, the server
SHOULD<268> return DNSSRV_TYPEID_ADDRARRAY in pdwTypeId, return in ppData the

value associated with that property as a DNS_ADDR_ARRAY (section 2.2.3.2.1), and return
success; it MAY instead return DNSSRV_TYPEID_ADDRARRAY in the pdwTypeId, return in

ppData the value associated with that property as an IP4_ARRAY (section 2.2.3.2.1), and
return success; or it MAY instead return a nonzero error code.<269>

 If pszOperation matches a property name listed in section 3.1.1.1.3 that the server supports,
the server MUST return DNSSRV_TYPEID_LPSTR for UTF-8 string properties or
DNSSRV_TYPEID_LPWSTR for Unicode string properties in pdwTypeId, and return in ppData a

pointer to the UTF-8 or Unicode string associated with that property, and return
success.<270> If the property name is not supported, the server MUST return a nonzero error
code.

277 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 If pszOperation matches a property name listed in section 3.1.1.1.4 that the server supports,
the server MUST return DNSSRV_TYPEID_UTF8_STRING_LIST, and return in ppData the

DNS_RPC_UTF8_STRING_LIST (section 2.2.1.2.3) associated with that property, and return
success.

 If pszOperation is VirtualizationInstance, the server MUST return in ppData details of the
virtualization instance in a PDNS_RPC_VIRTUALIZATION_INSTANCE structure and return
success. If a virtualization instance does not exist then return error
DNS_ERROR_VIRTUALIZATION_INSTANCE_DOES_NOT_EXIST.

 If pszZone is not NULL, execute the operation indicated by the value of pszOperation, specified as
follows:

 If pszOperation is Zone, the server instead returns information about the zone in

DNS_RPC_ZONE (section 2.2.5.2.1) format in ppData, and return success.

 If pszOperation is ZoneInfo, the server instead returns information about the zone in
DNS_RPC_ZONE_INFO (section 2.2.5.2.4) format in ppData, and return success.

 If pszOperation matches a property name listed in section 3.1.1.2.1, the server MUST return
DNSSRV_TYPEID_DWORD in pdwTypeId, return in ppData the value associated with that
property, and return success.

 If pszOperation matches a property name listed in section 3.1.1.2.2 that the server supports,
the server SHOULD<271> return DNSSRV_TYPEID_ADDRARRAY in pdwTypeId, return in
ppData the value associated with that property as a DNS_ADDR_ARRAY (section 2.2.3.2.3),
and return success; or it MAY instead return DNSSRV_TYPEID_IPARRAY in pdwTypeId, return
in ppData the value associated with that property as an IP4_ARRAY (section 2.2.3.1.1), and
return success. If the property name is not supported, the server MUST return a nonzero error
code.

3.1.4.3 R_DnssrvComplexOperation (Opnum 2)

The R_DnssrvComplexOperation method is used to invoke a set of server functions specified by the

caller. These functions generally return more complex structures than simple 32-bit integer values,

unlike the operations accessible through R_DnssrvOperation. For the purpose of selecting an output
structure type the server MUST consider the value of dwClientVersion (section 2.2.1.2.1) to be
0x00000000 when responding to this method.

 LONG R_DnssrvComplexOperation(
 [in] handle_t hBindingHandle,
 [in, unique, string] LPCWSTR pwszServerName,
 [in, unique, string] LPCSTR pszZone,
 [in, unique, string] LPCSTR pszOperation,
 [in] DWORD dwTypeIn,
 [in, switch_is(dwTypeIn)] DNSSRV_RPC_UNION pDataIn,
 [out] PDWORD pdwTypeOut,
 [out, switch_is(*pdwTypeOut)] DNSSRV_RPC_UNION* ppDataOut
);

hBindingHandle: An RPC binding handle to the server. Details concerning binding handles are

specified in [C706] section 2.3.

pwszServerName: The client SHOULD pass a pointer to the FQDN of the target server as a null-
terminated UTF-16LE character string. The server MUST ignore this value.

pszZone: The name of the zone that is being operated on. This MUST be set to NULL unless
pszOperation is set to QueryDwordProperty, in which case this value MUST be set either to NULL
(to indicate that DNS server Configuration information is being requested) or to the name of the

http://go.microsoft.com/fwlink/?LinkId=89824

278 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

zone to be queried in UTF-8 format (to indicate that a DNS Zone integer property is being
requested). This value will be used by certain operations as specified in the table below.

pszOperation: The operation to perform. The value of pszOperation SHOULD<272> be one of the
following:

Value Meaning

EnumZones Enumerate zones present on the DNS server qualifying for a
specified simple zone filter value. On input, dwTypeIn MUST be set
to DNSSRV_TYPEID_DWORD and pDataIn MUST point to any
combination of ZONE_REQUEST_FILTERS (section 2.2.5.1.4)
values. Unless an error is returned, on output the value pointed to
by pdwTypeOut MUST be set to DNSSRV_TYPEID_ZONE_LIST and
ppDataOut MUST point to a structure of one of the types specified
in DNS_RPC_ZONE_LIST (section 2.2.5.2.3).

EnumZones2 Enumerate zones present on the DNS server qualifying for a
specified complex zone filter value. On input, dwTypeIn MUST be
set to DNSSRV_TYPEID_ENUM_ZONES_FILTER and pDataIn MUST
point to a structure of type
DNS_RPC_ENUM_ZONES_FILTER (section 2.2.5.2.9). Unless an
error is returned, on output the value pointed to by pdwTypeOut
MUST be set to DNSSRV_TYPEID_ZONE_LIST and MUST ppDataOut
point to a structure of one of the types specified in
DNS_RPC_ZONE_LIST.

EnumDirectoryPartitions Enumerate the Application Directory Partition Table known to the
DNS server. On input, dwTypeIn MUST be set to
DNSSRV_TYPEID_DWORD and pDataIn MUST be set to zero if all
application directory partitions are enumerated or to 0x000000001
if the DNS domain partition and DNS forest partition are excluded
from results. Unless an error is returned, on output the value
pointed to by pdwTypeOut MUST be set to
DNSSRV_TYPEID_DP_LIST and ppDataOut MUST point to a
structure of type DNS_RPC_DP_LIST (section 2.2.7.2.4).

DirectoryPartitionInfo Retrieve detailed information about a specified application directory
partition. On input, dwTypeIn MUST be set to
DNSSRV_TYPEID_LPSTR and pDataIn MUST point to a null-
terminated UTF-8 string specifying the distinguished name of an
application directory partition. Unless an error is returned, on
output the value pointed to by pdwTypeOut MUST be
DNSSRV_TYPEID_DP_INFO and ppDataOut MUST point to a
structure of type DNS_RPC_DP_INFO (section 2.2.7.2.1).

Statistics Retrieve statistics. On input dwTypeIn MUST be set to
DNSSRV_TYPEID_DWORD and pDataIn MUST point to any
combination of the DNSSRV_STATID_TYPES (section 2.2.10.1.1)
values. Unless an error is returned, on output the value pointed to
by pdwTypeOut MUST be set to DNSSRV_TYPEID_BUFFER and
ppDataOut MUST point to a DNS_RPC_BUFFER
structure (section 2.2.1.2.2) that contains a list of variable sized
DNSSRV_STAT structures (section 2.2.10.2.2).

QueryDwordProperty Retrieve the value of a 32-bit integer property. On input, dwTypeIn
MUST be set to DNSSRV_TYPEID _LPSTR and pDataIn MUST point
to a null-terminated UTF-8 string specifying a zone property name
listed in section 3.1.1.2.1 (if pszZone is non-NULL) or server
property name listed in section 3.1.1.1.1 (if pszZone is NULL).
Unless an error is returned, on output the value pointed to by
pdwTypeOut MUST be set to DNSSRV_TYPEID_DWORD and
ppDataOut MUST point to a DWORD value.

279 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Value Meaning

IpValidate Validate a list of IP addresses. On input, dwTypeIn MUST be set to
DNSSRV_TYPEID_IP_VALIDATE and pDataIn MUST point to a
DNS_RPC_IP_VALIDATE structure (section 2.2.3.2.4) containing a
list of IP addresses to be validated and the context information for
validation as specified in section 2.2.3.2.4. Unless an error is
returned, on output the value pointed to by pdwTypeOut MUST be
set to DNSSRV_TYPEID_ADDRARRAY and ppDataOut MUST point to
a structure of type DNS_ADDR_ARRAY (section 2.2.3.2.3) that
contains IP validation results (section 2.2.3.2.1).

ModifyZoneSigningKeyDescriptor Creates, deletes, or modifies a signing key descriptor (SKD) for the
specified zone. On input, dwTypeIn MUST be set to
DNSSRV_TYPEID_SKD and pDataIn MUST point to a structure of
type DNS_RPC_SKD (section 2.2.6.2.1). If GUID inside
DNS_RPC_SKD is set to zero, the server MUST create a new signing
key descriptor. If GUID inside DNS_RPC_SKD is set to a nonzero
value and if all other fields in the structure are NULL, the server
MUST delete the signing key descriptor from the zone. Otherwise,
the server MUST modify the signing key descriptor for the specified
zone. Unless an error is returned, on output the value pointed to by
pdwTypeOut MUST be set to DNSSRV_TYPEID_SKD and ppDataOut
MUST point to a structure of type
DNS_RPC_SKD (section 2.2.6.2.1).

EnumZoneSigningKeyDescriptors Retrieves the signing key descriptor found in the zone's signing key
descriptor list for the specified zone. Input parameters (dwTypeIn
and pDataIn) are ignored. Unless an error is returned, on output
the value pointed to by pdwTypeOut MUST be set to
DNSSRV_TYPEID_SKD_LIST and ppDataOut MUST point to a
structure of type DNS_RPC_SKD_LIST (section 2.2.6.2.2).

GetZoneSigningKeyDescriptorState Retrieves the SKD state (section 2.2.6.2.3) for the specified zone
and the signing key descriptor GUID. On input, dwTypeIn MUST be
set to DNSSRV_TYPEID_LPWSTR and pDataIn MUST point to a
string containing the GUID of the signing key descriptor. Unless an
error is returned, on output the value pointed to by pdwTypeOut
MUST be set to DNSSRV_TYPEID_SKD_STATE and ppDataOut MUST
point to a structure of type
DNS_RPC_SKD_STATE (section 2.2.6.2.3).

SetZoneSigningKeyDescriptorState Modifies the SKD state (section 2.2.6.2.3) for the specified zone
and the signing key descriptor GUID. On input, dwTypeIn MUST be
set to DNSSRV_TYPEID_SKD_STATE and pDataIn MUST point to a
structure of type DNS_RPC_SKD_STATE (section 2.2.6.2.3). Note
that only one key pointer string inside DNS_RPC_SKD_STATE will
be set per a specific operation as described below. Unless an error
is returned, on output the value pointed to by pdwTypeOut MUST
be set to DNSSRV_TYPEID_SKD_STATE and ppDataOut MUST point
to a structure of type DNS_RPC_SKD_STATE (section 2.2.6.2.3)
containing the modified SKD state.

ValidateZoneSigningParameters Validates the zone signing parameters and returns a structure
describing the invalid signing parameters. Input parameters
(dwTypeIn and pDataIn) are ignored. Unless success is returned, on
output the value pointed to by pdwTypeOut MUST be set to
DNSSRV_TYPEID_SIGNING_VALIDATION_ERROR and ppDataOut
MUST point to a structure of type
DNS_RPC_SIGNING_VALIDATION_ERROR (section 2.2.6.2.8)
containing invalid elements of the zone configuration.

EnumerateKeyStorageProviders Enumerates key storage providers installed on the DNS server. On
input, dwTypeIn and pDataIn are ignored. Unless an error is
returned, on output the value pointed to by pdwTypeOut MUST be

280 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Value Meaning

set to DNSSRV_TYPEID_UNICODE_STRING_LIST and ppDataOut
MUST point to a structure of type
DNS_RPC_UNICODE_STRING_LIST (section 2.2.1.2.4) that contains
a list of storage providers installed on the DNS server.

EnumerateTrustPoints Retrieve a list of trust points, containing either all trust points or
only those at or below a given FQDN. On input, dwTypeIn MUST be
set to DNSSRV_TYPEID_LPSTR and pDataIn MUST point either to a
null pointer or to a null-terminated UTF-8 string specifying an
FQDN. If pDataIn points to a null pointer, the server MUST return
all of the trust points. If pDataIn is an FQDN and there is a trust
point or parent of a trust point at the FQDN, the server MUST return
the trust point at the FQDN (or an empty trust-point structure for
the FQDN if the FQDN is not a trust point) followed by empty trust-
point structures for each immediate child of the FQDN, if any. An
empty trust-point structure is a structure in which eTrustPointState
is TRUST_POINT_STATE_INITIALIZED and all elements other than
pszTrustPointName and dwRpcStructureVersion are zero. If pDataIn
is an FQDN and there is neither a trust point nor the parent of a
trust point at the FQDN, the server MUST return a nonzero error.
Unless an error is returned, on output the value pointed to by
pdwTypeOut MUST be set to DNSSRV_TYPEID_TRUST_POINT_LIST
and ppDataOut MUST point to a structure of type
DNS_RPC_TRUST_POINT_LIST (section 2.2.6.2.5).

EnumerateTrustAnchors Retrieve a list of the trust anchors at a given FQDN. On input,
dwTypeIn MUST be set to DNSSRV_TYPEID_LPSTR and pDataIn
MUST point to a null-terminated UTF-8 string specifying an FQDN. If
the FQDN specified is not a trust point, the server MUST return a
nonzero error. Unless an error is returned, on output the value
pointed to by pdwTypeOut MUST be set to
DNSSRV_TYPEID_TRUST_ANCHOR_LIST and ppDataOut MUST
point to a structure of type
DNS_RPC_TRUST_ANCHOR_LIST (section 2.2.6.2.7).

ExportZoneSigningSettings Exports all the Dnssec settings of a file-backed primary zone from a
server. On input, dwTypeIn MUST be set to
DNSSRV_TYPEID_DWORD and pDataIn SHOULD be 1 to get KSK
details in the exported DNS_RPC_ZONE_DNSSEC_SETTINGS
structure; otherwise, pDataIn SHOULD be zero. Unless an error is
returned, on output pdwTypeOut is set to
DNSSRV_TYPEID_ZONE_SIGNING_SETTINGS and ppDataOut points
to a structure of type PDNS_RPC_ZONE_DNSSEC_SETTINGS.

ImportZoneSigningSettings Imports the Dnssec settings to a primary file-backed zone on a
server and takes appropriate action based on the signing metadata
imported.

On input, dwTypeIn MUST be set to
DNSSRV_TYPEID_ZONE_SIGNING_SETTINGS and pDataIn SHOULD
be a structure of type PDNS_RPC_ZONE_DNSSEC_SETTINGS.

If this operation is invoked on a server that hosts a primary
unsigned copy of a file-backed zone and the fIsSigned Property of
PDNS_RPC_ZONE_DNSSEC_SETTINGS is 1, then the server
becomes a nonkey master primary server for that zone. Unless
an error is returned, on output pdwTypeOut is set to
DNSSRV_TYPEID_DWORD and ppDataOut points to a structure of
type ImportOpResult.

EnumZoneScopes Enumerates all the zone scopes in a zone or cache scopes in a
cache zone. On input, dwTypeIn MUST be set to
DNSSRV_TYPEID_NULL and pDataIn SHOULD be NULL. The

pszZone MUST be the zone name for which zone scopes are to be

281 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Value Meaning

enumerated or it MUST be "..cache". Unless an error is returned, on
output pdwTypeOut is set to DNSSRV_TYPEID_ZONE_SCOPE_ENUM
and ppDataOut points to a structure of type
PDNS_RPC_ENUM_ZONE_SCOPE_LIST.

ZoneStatistics Gets the zone statistics from the server. On input, dwTypeIn MUST
be set to DNSSRV_TYPEID_DWORD and pDataIn SHOULD be either
DNS_RPC_ZONE_STATS_GET, which gets the current zone
statistics, or DNS_RPC_ZONE_STATS_CLEAR, which clears the zone
statistics after getting them. The pZone MUST point to the zone
information for which statistics are required. Unless an error is
returned, on output pdwTypeOut SHOULD be set to
DNSSRV_TYPEID_ZONE_STATS and ppDataOut SHOULD point to a
structure of type DNS_RPC_ZONE_STATS.

EnumServerScopes Enumerates all the server scopes in a DNS server. On input,
dwTypeIn MUST be set to DNSSRV_TYPEID_NULL and pDataIn
SHOULD be NULL. Unless an error is returned, on output,
pdwTypeOut SHOULD be set to DNSSRV_TYPEID_SCOPE_ENUM and
ppDataOut points to a structure of type
PDNS_RPC_ENUM_SCOPE_LIST.<273>

EnumerateClientSubnetRecord Enumerates the names all the Client Subnet Records on the DNS
server. On input, dwTypeIn MUST be set to DNSSRV_TYPEID_NULL
and pDataIn SHOULD be NULL. Unless an error is returned, on
output pdwTypeOut SHOULD be set to
DNSSRV_TYPEID_UNICODE_STRING_LIST and ppDataOut points to
a structure of type PDNS_RPC_UNICODE_STRING_LIST.

GetClientSubnetRecord Gets the details of the Client Subnet Record on the DNS server. On

input, dwTypeIn MUST be set to DNSSRV_TYPEID_LPWSTR and
pDataIn SHOULD be name of the Client Subnet Record. Unless an
error is returned, on output pdwTypeOut SHOULD be set to
DNSSRV_TYPEID_CLIENT_SUBNET_RECORD and ppDataOut points
to a structure of type PDNS_RPC_CLIENT_SUBNET_RECORD.

EnumeratePolicy Enumerates the policies configured on the server level or zone level
for a specified zone on a DNS server. On input, dwTypeIn MUST be
set to DNSSRV_TYPEID_NULL and pDataIn SHOULD be NULL.
Unless an error is returned, on output pdwTypeOut SHOULD be set
to DNSSRV_TYPEID_POLICY_ENUM and ppDataOut points to a
structure of type PDNS_RPC_ENUMERATE_POLICY_LIST.

GetPolicy Gets the details of a DNS Policy configured on the server level or on
the zone level for a specified zone on the DNS server. On input,
dwTypeIn MUST be set to DNSSRV_TYPEID_LPWSTR and pDataIn
SHOULD be name of the DNS Policy. Unless an error is returned, on

output pdwTypeOut SHOULD be set to DNSSRV_TYPEID_POLICY
and ppDataOut points to a structure of type PDNS_RPC_POLICY.

GetRRLInfo Gets the details of Response Rate Limiting parameters configured
on the server level on the DNS server. On input, dwTypeIn MUST
be set to DNSSRV_TYPEID_NULL and pDataIn SHOULD be NULL.
Unless an error is returned, on output pdwTypeOut SHOULD be set
to DNSSRV_TYPEID_RRL and ppDataOut points to a structure of
type PDNS_RPC_RRL_PARAMS.

EnumVirtualizationInstances Enumerates the virtualization instance present in DNS server. The
dwTypeIn parameter MUST be set to DNSSRV_TYPEID_NULL and
pDataIn MUST be set to NULL. On successful enumeration
pdwTypeOut is set to
DNSSRV_TYPEID_VIRTUALIZATION_INSTANCE_ENUM, and
ppDataOut MUST point to a structure of type

282 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Value Meaning

DNS_RPC_ENUM_VIRTUALIZATION_INSTANCE_LIST.

dwTypeIn: A DNS_RPC_TYPEID (section 2.2.1.1.1) value indicating the type of input data pointed to
by pDataIn.

pDataIn: Input data of type DNSSRV_RPC_UNION (section 2.2.1.2.6), which contains a data
structure of the type indicated by dwTypeIn.

pdwTypeOut: A pointer to a DWORD that on success returns a DNS_RPC_TYPEID (section 2.2.1.1.1)

value indicating the type of output data pointed to by ppDataOut.

ppDataOut: A pointer to output data of type DNSSRV_RPC_UNION, which on success contains a data
structure of the type indicated by pdwTypeOut.

Return Values: The method MUST return ERROR_SUCCESS (0x00000000) on success or a nonzero
Win32 error code value if an error occurred. All error values MUST be treated the same.

When processing this call, the server MUST do the following:

 If the Global Server State (section 3.1.1) is not "Running", return a failure.

 Check that the input parameters conform to the syntax requirements above, and if not, return a
failure.

 If pszZone is not NULL, verify that pszOperation is set to QueryDwordProperty,
ModifyZoneSigningKeyDescriptor, EnumZoneSigningKeyDescriptors,
GetZoneSigningKeyDescriptorState, SetZoneSigningKeyDescriptorState,
ValidateZoneSigningParameters, EnumeratePolicy, or GetPolicy. If it is not, return a failure.

 If pszOperation is set to QueryDwordProperty, verify that dwTypeIn is set to
DNSSRV_TYPEID_LPSTR. If it is not, return a failure.

 If pszOperation is set to ModifyZoneSigningKeyDescriptor, verify that dwTypeIn is set to

DNSSRV_TYPEID_SKD. If it is not, return a failure.

 If pszOperation is set to GetZoneSigningKeyDescriptorState, verify that dwTypeIn is set to
DNSSRV_TYPEID_LPWSTR. If it is not, return a failure.

 If pszOperation is set to SetZoneSigningKeyDescriptorState, verify that dwTypeIn is set to

DNSSRV_TYPEID_SKD_STATE. If it is not, return a failure.

 If pszZone is not NULL, search the DNS Zone Table (section 3.1.1) for the zone with a name
matching the value of pszZone. If a matching zone cannot be found, return a failure.

 Validate, as specified in section 3.1.6.1, that the client has permissions to perform the attempted
operation. If pszZone is NULL then the DNS server MUST perform the Phase 2 authorization test
using the DNS server Configuration Access Control List. If pszZone is not NULL then the DNS

server MUST perform the Phase 2 authorization test using the Zone Access Control List for the
zone specified by pszZone. Write privilege MUST be tested for the

ModifyZoneSigningKeyDescriptor and SetZoneSigningKeyDescriptorState operations. Read
privilege MUST be tested for all other operations. If the client does not have permission to perform
the operation, the server MUST return a failure.

 If pszZone is not NULL, and pszOperation is QueryDwordProperty, and pDataIn matches a
property name listed in section 3.1.6.1, and the server supports that property, the server MUST

set pdwTypeOut to DNSSRV_TYPEID_DWORD, set ppDataOut to the DWORD value of the
property, and return success. If the property name is not supported, the server MUST return a
nonzero error code.

283 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 If pszZone is not NULL, and pszOperation is ModifyZoneSigningKeyDescriptor:

 If the GUID field of the DNS_RPC_SKD structure pointed to by pDataIn is set to zero, the

server MUST create a new signing key descriptor for the specified zone and add it to the
zone's signing key descriptor list. If this operation succeeds, the server MUST set pdwTypeOut

to DNSSRV_TYPEID_SKD and MUST set ppDataOut to point to a structure of type
DNS_RPC_SKD representing the newly created signing key descriptor, and return success.
Otherwise, the server MUST return a nonzero error code.

 If the GUID field of the DNS_RPC_SKD structure pointed to by pDataIn is nonzero, and all
other fields are set to zero, the server MUST locate the specified SKD in the zone's signing key
descriptor list. If the SKD is found, the server MUST delete the specified SKD from the zone's
signing key descriptor list. If this operation succeeds, the server MUST set pdwTypeOut to

DNSSRV_TYPEID_SKD and MUST set ppDataOut to point to a structure of type DNS_RPC_SKD
representing the deleted signing key descriptor, and return success. Otherwise, the server
MUST return a nonzero error code.

 If the GUID field of the DNS_RPC_SKD structure pointed to by pDataIn is nonzero, and one

or more of the other fields are nonzero, the server MUST locate the specified SKD in the zone's
signing key descriptor list. If the SKD is found, the server MUST modify this SKD as follows:

 If any of the dwDNSKEYSignatureValidityPeriod, dwDSSignatureValidityPeriod,
dwStandardSignatureValidityPeriod, or dwNextRolloverAction fields of the DNS_RPC_SKD
pointed to by pDataIn are nonzero, modify the appropriate field in the SKD found in the
zone's signing key descriptor list.

 If the dwRolloverPeriod field of the DNS_RPC_SKD structure pointed to by pDataIn is
nonzero, modify the appropriate field of the SKD found in the zone's signing key descriptor
list. If the previous value of this field in the SKD was 0xFFFFFFFF, and the new value is

some other nonzero value, the server MUST also modify the signing key descriptor's
associated ftNextRolloverTime to the current time plus the new dwRolloverPeriod. If
the previous value of this field in the SKD was not 0xFFFFFFFF, and the new value is
0xFFFFFFFF, the server MUST also set the signing key descriptor's associated
ftNextRolloverTime to zero.

 If any other fields of the DNS_RPC_SKD pointed to by pDataIn are nonzero, ignore these
fields.

If this operation succeeds, the server MUST set pdwTypeOut to DNSSRV_TYPEID_SKD and MUST
set ppDataOut to point to a structure of type DNS_RPC_SKD representing the modified signing key
descriptor, and return success. Otherwise, the server MUST return a nonzero error code.

 If pszZone is not NULL, and pszOperation is SetZoneSigningKeyDescriptorState, the server MUST
located the SKD specified by the GUID field of the DNS_RPC_SKD_STATE pointed to by pDataIn in
the zone's signing key descriptor list. If the SKD is found, the server MUST modify exactly one of

the signing key descriptor's pwszActiveKey, pwszStandbyKey, or pwszNextKey fields as
follows:

 If the pwszActiveKey field of the DNS_RPC_SKD_STATE structure pointed to by pDataIn is
nonzero, modify the signing key descriptor's pwszActiveKey field.

 If the pwszActiveKey field of the DNS_RPC_SKD_STATE structure pointed to by pDataIn is
NULL, and the pwszStandbyKey field of this structure is nonzero, modify the signing key
descriptor's pwszStandbyKey.

 If both the pwszActiveKey and pwszStandbyKey fields of the DNS_RPC_SKD_STATE
structure pointed to by pDataIn are NULL, and the pwszNextKey field of this structure is
nonzero, modify the signing key descriptor's pwszNextKey.

284 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

If this operation succeeds, the server MUST set pdwTypeOut to DNSSRV_TYPEID_SKD_STATE and
MUST set ppDataOut to point to a structure of type DNS_RPC_SKD_STATE representing the

modified signing key descriptor, and return success. Otherwise, the server MUST return a nonzero
error code.

 If pszZone is not NULL, and pszOperation is EnumZoneSigningKeyDescriptors,
GetZoneSigningKeyDescriptorState, or ValidateZoneSigningParameters, execute the operation
indicated by the value of pszOperation as previously specified against the specified zone.

 If pszZone is NULL, execute the operation indicated by the value of pszOperation as specified
above.

 If pszZone is not NULL, and pszOperation is ExportZoneSigningSettings:

 On input, dwTypeIn MUST be set to DNSSRV_TYPEID_DWORD.

 To get KSK details in exported DNS_RPC_ZONE_DNSSEC_SETTINGS, pDataIn is 1; otherwise,
zero.

 Unless an error is returned, on output pdwTypeOut is set to
DNSSRV_TYPEID_ZONE_SIGNING_SETTINGS and ppDataOut points to a structure of type
PDNS_RPC_ZONE_DNSSEC_SETTINGS.

 If pszZone is not NULL, and pszOperation is ImportZoneSigningSettings:

 On input, dwTypeIn MUST be set to DNSSRV_TYPEID_ZONE_SIGNING_SETTINGS and pDataIn
SHOULD be a structure of type PDNS_RPC_ZONE_DNSSEC_SETTINGS.

 Unless an error is returned, on output pdwTypeOut is set to DNSSRV_TYPEID_DWORD and
ppDataOut points to a structure of type ImportOpResult.

 If this operation is invoked on a server hosting a file-backed unsigned zone, and if the
fIsSigned property of DNS_RPC_ZONE_DNSSEC_SETTINGS is 1, then the server becomes a
nonkey master primary server of that signed zone.

 If this operation is invoked on a server hosting a file-backed signed zone, and if the fIsSigned
property of DNS_RPC_ZONE_DNSSEC_SETTINGS is 1, and if there is a difference in the
imported and existing settings that requires re-signing, then the zone is marked for staggered
signing with the new settings.

 If this operation is invoked on a server hosting a file-backed signed zone, and if the fIsSigned
property of DNS_RPC_ZONE_DNSSEC_SETTINGS is 0, then the zone is unsigned on the target
server.

 If pszZone is not NULL, and pszOperation is EnumZoneScopes:

 On input, dwTypeIn MUST be set to DNSSRV_TYPEID_NULL.

 pDataIn SHOULD be NULL.

 The pszZone MUST be the zone name for which zone scopes are to be enumerated, or it MUST

be "..cache" to enumerate cache scopes.

 Unless an error is returned, on output pdwTypeOut is set to

DNSSRV_TYPEID_ZONE_SCOPE_ENUM and ppDataOut points to a structure of type
PDNS_RPC_ENUM_ZONE_SCOPE_LIST.

 If pszZone is not NULL, and pszOperation is ZoneStatistics:

 On input, dwTypeIn MUST be set to DNSSRV_TYPEID_DWORD.

285 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 pDataIn SHOULD be either DNS_RPC_ZONE_STATS_GET, which gets the current Zone
statistics or DNS_RPC_ZONE_STATS_GETCLEAR if one wants to clear the Zone Statistics after

getting them.

 The pZone MUST point to the zone information for which statistics are required.

 Unless an error is returned, on output pdwTypeOut SHOULD be set to
DNSSRV_TYPEID_ZONE_STATS and ppDataOut SHOULD point to a structure of type
DNS_RPC_ZONE_STATS.

 If the pszOperation is EnumerateClientSubnetRecord:

 The pszZone is NULL. This operation is at the server level.

 The DNS server MUST return all the Client Subnet Record names, and return success or failure
depending on the result. The output pdwTypeOut SHOULD be set to

DNSSRV_TYPEID_UNICODE_STRING_LIST and ppDataOut SHOULD point to a structure of
type DNS_RPC_UNICODE_STRING_LIST.

 If the pszOperation is GetClientSubnetRecord:

 The pszZone is NULL. This operation is at the server level.

 pDataIn SHOULD be a NULL-terminated Unicode string, which is the name of the Client Subnet
Record whose details will be retrieved.

 If the Client Subnet Record name given in input pData does not exist, the DNS server SHOULD
return DNS_ERROR_CLIENT_SUBNET_DOES_NOT_EXIST.

 The DNS server MUST return all the Client Subnet Record details and return success or failure
depending on the result. The output pdwTypeOut SHOULD be set to
DNSSRV_TYPEID_CLIENT_SUBNET_RECORD and ppDataOut SHOULD point to a structure of
type DNS_RPC_CLIENT_SUBNET_RECORD.

 If pszZone is NULL and the pszOperation is EnumeratePolicy:

 The DNS server MUST return all the DNS Policies at the server level and return success or
failure depending on the result. The output pdwTypeOut SHOULD be set to
DNSSRV_TYPEID_POLICY_ENUM and ppDataOut SHOULD point to a structure of type
PDNS_RPC_ENUMERATE_POLICY_LIST.

 If pszZone is not NULL and the pszOperation is EnumeratePolicy:

 Retrieve the zone associated with pszZone. If the zone is not found return the error
DNS_ERROR_ZONE_DOES_NOT_EXIST.

 The DNS server MUST return all the DNS Policies configured for the pszZonel and return
success or failure depending on the result. The output pdwTypeOut SHOULD be set to
DNSSRV_TYPEID_POLICY_ENUM and ppDataOut SHOULD point to a structure of type
PDNS_RPC_ENUMERATE_POLICY_LIST.

 If pszZone is NULL and the pszOperation is GetPolicy:

 pDataIn SHOULD be a NULL terminated Unicode string, which is the name of the DNS Policy

whose details will be retrieved.

 If the DNS Policy given by the NULL terminated Unicode string pDataIn does not exist at the
server level, the DNS server MUST return the error DNS_ERROR_POLICY_DOES_NOT_EXIST.

 The DNS server MUST return the details of the corresponding DNS Policy setting at the server
level and return success or failure depending on the result. The output pdwTypeOut SHOULD

286 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

be set to DNSSRV_TYPEID_POLICY and ppDataOut SHOULD point to a structure of type
PDNS_RPC_POLICY.

 If pszZone is not NULL and the pszOperation is GetPolicy:

 Retrieve the zone associated with pszZone. If the zone is not found return the error

DNS_ERROR_DOES_NOT_EXIST.

 pDataIn SHOULD be a NULL terminated Unicode string, which is the name of the DNS Policy
on the zone whose details will be retrieved.

 If the DNS Policy as specified in pDataIn is not found in the zone, return the error
DNS_ERROR_POLICY_DOES_NOT_EXIST.

 The DNS server MUST return the details of the corresponding DNS Policy on the zone and
return success or failure depending on the result. The output pdwTypeOut SHOULD be set to

DNSSRV_TYPEID_POLICY and ppDataOut SHOULD point to a structure of type
PDNS_RPC_POLICY.

 If pszZone is NULL and pszOperation is GetRRLInfo:

 pDataIn SHOULD be NULL.

 The DNS server MUST return the details of the Response Rate Limiting settings at the server
level and return success or failure depending on the result. On success, the output

pdwTypeOut SHOULD be set to DNSSRV_TYPEID_RRL and ppDataOut SHOULD point to a
structure of type PDNS_RPC_RRL_PARAMS.

 If pszZone is NULL and pszOperation is EnumVirtualizationInstances:

 The DNS server MUST return all the virtualization instances present in the DNS server and
return success or failure. The output pdwTypeOut SHOULD be set to
DNSSRV_TYPEID_VIRTUALIZATION_INSTANCE_ENUM and ppDataOut SHOULD point to a
structure of type DNS_RPC_ENUM_VIRTUALIZATION_INSTANCE_LIST.

3.1.4.4 R_DnssrvEnumRecords (Opnum 3)

The R_DnssrvEnumRecords method enumerates DNS records on the server.

 LONG R_DnssrvEnumRecords(
 [in] handle_t hBindingHandle,
 [in, unique, string] LPCWSTR pwszServerName,
 [in, unique, string] LPCSTR pszZone,
 [in, unique, string] LPCSTR pszNodeName,
 [in, unique, string] LPCSTR pszStartChild,
 [in] WORD wRecordType,
 [in] DWORD fSelectFlag,
 [in, unique, string] LPCSTR pszFilterStart,
 [in, unique, string] LPCSTR pszFilterStop,
 [out] PDWORD pdwBufferLength,
 [out, size_is(, *pdwBufferLength)] PBYTE* ppBuffer
);

hBindingHandle: An RPC binding handle to the server. Details concerning binding handles are

specified in [C706] section 2.3.

pwszServerName: The client SHOULD pass a pointer to the FQDN of the target server as a null-
terminated UTF-16LE character string. The server MUST ignore this value.

http://go.microsoft.com/fwlink/?LinkId=89824

287 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

pszZone: A pointer to a null-terminated character string that contains the name of the zone to be
queried. For operations specific to a particular zone, this field MUST contain the name of the zone

in UTF-8 format. For all other operations, this field MUST be NULL.

pszNodeName: A pointer to a null-terminated character string that contains the node name at which

to modify a record. A string that is not dot-terminated indicates a name relative to the zone root.
A value of "@" indicates the zone root itself. A dot-terminated string indicates the name is an
FQDN.

pszStartChild: A pointer to a null-terminated character string that contains the name of the child
node at which to start enumeration. A NULL value indicates to start a new record enumeration.
The client application can pass the last retrieved child node of pszNodeName to continue a
previous enumeration.

wRecordType: An integer value that indicates the type of record to enumerate. Any value can be
used, as specified in DNS_RECORD_TYPE (section 2.2.2.1.1). The query-only value
DNS_TYPE_ALL indicates all types of records.

fSelectFlag: An integer value that specifies what records are included in the response. Any
combination of the values below MUST be supported. Values not listed below MUST be ignored.

Value Meaning

DNS_RPC_VIEW_AUTHORITY_DATA

0x00000001

Include records from authoritative zones.

DNS_RPC_VIEW_CACHE_DATA

0x00000002

Include records from the DNS server's cache.

DNS_RPC_VIEW_GLUE_DATA

0x00000004

Include glue records.

DNS_RPC_VIEW_ROOT_HINT_DATA

0x00000008

Include root hint records.

DNS_RPC_VIEW_ADDITIONAL_DATA

0x00000010

Include additional records.

DNS_RPC_VIEW_NO_CHILDREN

0x00010000

Do not include any records from child nodes.

DNS_RPC_VIEW_ONLY_CHILDREN

0x00020000

Include only children nodes of the specified node in the results.
For example: if a zone, "example.com", has child nodes,
"a.example.com" and "b.example.com", calling
R_DnssrcEnumRecords(…,"example.com", "example.com", NULL,
DNS_TYPE_ALL, DNS_RPC_VIEW_ONLY_CHILDREN, …, …, …, …)
will return DNS_RPC_NODES for "a" and "b".

pszFilterStart: Reserved for future use only. This MUST be set to NULL by clients and ignored by
servers.

pszFilterStop: Reserved for future use only. This MUST be set to NULL by clients and ignored by
servers.

pdwBufferLength: A pointer to an integer that on success contains the length of the buffer pointed
to by ppBuffer.

ppBuffer: A pointer to a pointer that on success points to a buffer containing the enumerated records.
The buffer is a series of structures beginning with a DNS_RPC_NODE structure (section 2.2.2.2.3).
The records for the node will be represented by a series of DNS_RPC_RECORD (section 2.2.2.2.5)

288 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

structures. The number of DNS_RPC_RECORD structures following a DNS_RPC_NODE structure is
given by the wRecordCount member of DNS_RPC_NODE.

Return Values: The method MUST return ERROR_SUCCESS (0x00000000) on success or a non-zero
Win32 error code if an error occurred. All error values MUST be treated the same, except that if

the return code is ERROR_MORE_DATA (0x000000EA) then the enumeration contains more results
than can fit into a single RPC buffer. In this case the client application can call this method again
passing the last retrieved child as the pszStartChild argument to retrieve the next set of results.

When processing this call, the server MUST do the following:

 If the Global Server State (section 3.1) is not "Running", return a failure.

 Check that the input parameters conform to the syntax requirements above, and if not return a
failure.

 If pszZone is not NULL, search the DNS Zone Table for a zone with a name matching the value of
pszZone. If a matching zone cannot be found, return a failure. If pszZone is NULL, assume for the
operations below that pszZone specifies the cache zone.

 Validate, as specified in section 3.1.6.1, that the client has permissions to perform the attempted
operation. The DNS server MUST perform the Phase 2 authorization test using the Zone Access
Control List for the zone specified by pszZone. Read privilege MUST be tested for this operation. If

the client does not have permission to perform the operation, the server MUST return a failure.

 Locate the node indicated by pszNodeName in the zone indicated by pszZoneName. If no such
node is found, then return DNS_ERROR_NAME_DOES_NOT_EXIST, and set the output buffer
length to zero.

 If pStartChild is non-NULL it indicates that this call is in continuation of an earlier call to
R_DnssrvEnumRecords that returned ERROR_MORE_DATA (0x000000EA), hence the server MUST
attempt to locate this node and return failure if it cannot be found. The server MUST then continue

the enumeration from there.

 Return output records that meet the criteria specified by the value of fSelectFlag, in parameters

pointed to by pdwBufferLength and ppBuffer, and return success. If these criteria are met--the
zone is stored in a directory server; the DsMinimumBackgroundLoadThreads server property
(section 3.1.1.1.1) is not 0x00000000; the zone is currently loading in the background; and the
node indicated by pszNodeName has not yet been loaded into memory--the DNS server MUST
behave as if the requested data does not exist in the zone.

 The server MUST return matching records for any wType value that is explicitly defined in the
DNS_RECORD_TYPE structure. The server MUST also respond to type values exceeding 0x0031
that have matching records.

3.1.4.5 R_DnssrvUpdateRecord (Opnum 4)

The R_DnssrvUpdateRecord method is used to add a new DNS record or modify/delete an existing
DNS record at the server. This operation SHOULD<274> be supported.

 LONG R_DnssrvUpdateRecord(
 [in] handle_t hBindingHandle,
 [in, unique, string] LPCWSTR pwszServerName,
 [in, unique, string] LPCSTR pszZone,
 [in, string] LPCSTR pszNodeName,
 [in, unique] PDNS_RPC_RECORD pAddRecord,
 [in, unique] PDNS_RPC_RECORD pDeleteRecord
);

289 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

hBindingHandle: An RPC binding handle to the server. Details concerning binding handles are
specified in [C706] section 2.3.

pwszServerName: The client SHOULD pass a pointer to the FQDN of the target server as a null-
terminated UTF-16LE character string. The server MUST ignore this value.

pszZone: A pointer to a null-terminated character string that contains the name of the zone to be
queried. For operations specific to a particular zone, this field MUST contain the name of the zone
in UTF-8 format. For all other operations, this field MUST be NULL.

pszNodeName: A pointer to a null-terminated character string that contains the node name at which
to modify a record. A string that is not dot-terminated indicates a name relative to the zone root.
A value of "@" indicates the zone root itself. A dot-terminated string indicates the name is an
FQDN.

pAddRecord: A pointer to a structure of type DNS_RPC_RECORD (section 2.2.2.2.5) that contains
information based on the operation being performed as specified below.

pDeleteRecord: A pointer to a structure of type DNS_RPC_RECORD (section 2.2.2.2.5) that contains

information based on the operation being performed as specified below.

To add a record:

 pAddRecord: The DNS RR data of the new record.

 pDeleteRecord: MUST be set to NULL.

To delete a record:

 pAddRecord: MUST be set to NULL.

 pDeleteRecord: Individual DNS RR data of the record to be deleted.

To replace a record:

 pAddRecord: New record data.

 pDeleteRecord: Old record data.

To add an empty node:

 pAddRecord: MUST be set to NULL.

 pDeleteRecord: MUST be set to NULL.

Return Values: The method MUST return ERROR_SUCCESS (0x00000000) on success or a non-zero
Win32 error code if an error occurred. All error values MUST be treated the same.

When processing this call, the server MUST do the following:

 If the Global Server State (section 3.1) is not "Running", return a failure.

 Check that the input parameters conform to the syntax requirements above, and if not return a
failure.

 The server SHOULD support pAddRecord and/or pDeleteRecord for the explicitly defined types
in section 2.2.2.1.1.<275> If any of the passed record types are not supported by the server,
return a failure.

 If the pAddRecord is for an explicitly defined resource record type DNS_TYPE_CNAME (section

2.2.2.1.1), then delete any existing DNS_TYPE_CNAME record for the node specified in
pszNodeName, before adding the record.

http://go.microsoft.com/fwlink/?LinkId=89824

290 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 If pszZone is not NULL, search the DNS Zone Table for a zone with a name matching the value of
pszZone. If a matching zone cannot be found return a failure.

 Validate, as specified in section 3.1.6.1, that the client has permissions to perform the attempted
operation. The DNS server MUST perform the Phase 2 authorization test using the Zone Access

Control List for the zone specified by pszZone. Read privilege MUST be tested for this operation. If
the client does not have permission to perform the operation, the server MUST return a failure.

 Locate the node indicated by pszNodeName in the zone indicated by pszZoneName. If no such
node is found then return ERROR_SUCCESS.

 If both pAddRecord and pDeleteRecord are NULL, then the server MUST add an empty node to
the database if the node does not already exist. If the node already exists, the server MUST return
ERROR_SUCCESS.

 If pszZoneName is NULL or points to "..Cache" then the operation SHOULD be performed on the
DNS server's cache and MAY be performed on the DNS server's set of root hint records.<276> If
pszZoneName points to "..RootHints" then the operation MUST be performed on the DNS server's

set of root hint records.

 If pszZoneName points to a primary zone, attempt to perform addition/deletion/update of the
record. If the operation is successful, increment the zone serial number using serial number

arithmetic [RFC1982]. If the last record at the node is being deleted and the zone is stored in the
directory server, the DNS server MUST set the node's dnsTombstoned attribute to TRUE and the
node's dnsRecord (section 2.3.2.2) attribute to contain a DNS_RPC_RECORD_TS record (section
2.2.2.2.4.23) with an EntombedTime value equal to the current time expressed as the number
seconds since 12:00 A.M. January 1, 1601 Coordinated Universal Time (UTC). If the zone is
directory server-integrated and the update causes new or modified records to be committed to the
directory, the new zone serial number MUST also be written to the Serial field of the dnsRecord

attribute, as specified in2.3.2.2. If this operation deletes the last record from the node and the
zone is directory server-integrated, the DNS server MUST set the node's DNS Node Tombstone
State (section 3.1.1) to TRUE by setting the value of the dnsTombstoned attribute to TRUE and
writing a DNS_RPC_RECORD_TS (section 2.2.2.2.4.23) in the dnsRecord attribute.

 If both pAddRecord and pDeleteRecord are not NULL and a resource record is being replaced, if
the dwFlags field is not set to DNS_RPC_FLAG_RECORD_CREATE_PTR, the PTR record for the
A/AAAA record being replaced is deleted. If the dwFlags field is set to

DNS_RPC_FLAG_SUPPRESS_RECORD_UPDATE_PTR, the PTR record of the A/AAAA record being
replaced is not deleted.

 Return success or a failure to indicate the result of the attempted operation.

3.1.4.6 R_DnssrvOperation2 (Opnum 5)

The R_DnssrvOperation2 method is used to invoke a set of server functions specified by the caller.
The DNS server SHOULD implement R_DnssrvOperation2.

All parameters are as specified by the R_DnssrvOperation method (section 3.1.4.1) with the following
exceptions:

 LONG R_DnssrvOperation2(
 [in] handle_t hBindingHandle,
 [in] DWORD dwClientVersion,
 [in] DWORD dwSettingFlags,
 [in, unique, string] LPCWSTR pwszServerName,
 [in, unique, string] LPCSTR pszZone,
 [in] DWORD dwContext,
 [in, unique, string] LPCSTR pszOperation,
 [in] DWORD dwTypeId,
 [in, switch_is(dwTypeId)] DNSSRV_RPC_UNION pData

http://go.microsoft.com/fwlink/?LinkId=184551

291 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

);

dwClientVersion: The client version in DNS_RPC_CURRENT_CLIENT_VER (section 2.2.1.2.1) format.

dwSettingFlags: Reserved for future use. MUST be set to zero by clients and MUST be ignored by
servers.

Return Values: The method MUST return ERROR_SUCCESS (0x00000000) on success or a nonzero
Win32 error code value if an error occurred. All error values MUST be treated the same.

When processing this call, the server MUST perform the same actions as for the R_DnssrvOperation
method (section 3.1.4.1) except in the event the dwClientVersion is greater than the server version, in

which case the server MUST return the highest version number known to the server.

3.1.4.7 R_DnssrvQuery2 (Opnum 6)

The R_DnssrvQuery2 method queries the DNS server for information. The type of information queried

for is specified by the client using the pszZone and pszOperation parameters. The DNS server SHOULD

implement R_ DnssrvQuery2 <277>.

All parameters are as specified by the R_DnssrvQuery method (section 3.1.4.2) with the following
exceptions:

 LONG R_DnssrvQuery2(
 [in] handle_t hBindingHandle,
 [in] DWORD dwClientVersion,
 [in] DWORD dwSettingFlags,
 [in, unique, string] LPCWSTR pwszServerName,
 [in, unique, string] LPCSTR pszZone,
 [in, unique, string] LPCSTR pszOperation,
 [out] PDWORD pdwTypeId,
 [out, switch_is(*pdwTypeId)] DNSSRV_RPC_UNION* ppData
);

dwClientVersion: The client version in DNS_RPC_CURRENT_CLIENT_VER (section 2.2.1.2.1) format.

dwSettingFlags: Reserved for future use only. This field MUST be set to zero by clients and ignored

by servers.

Return Values: Return values behaviors and interpretations are same as they are for R_DnssrvQuery
method (section 3.1.4.2).

When processing this call, the server MUST perform the same actions as for the R_DnssrvQuery
method (section 3.1.4.2), except that for output structure types with multiple versions, the server
MUST return the structure type selected by dwClientVersion except in the event the dwClientVersion is
greater than the server version, in which case the server MUST return the highest version number

known to itself.

3.1.4.8 R_DnssrvComplexOperation2 (Opnum 7)

The R_DnssrvComplexOperation2 method is used to invoke a set of server functions specified by the

caller. These functions generally return more complex structures than simple 32-bit integer values,
unlike the operations accessible through R_DnssrvOperation. The DNS server SHOULD implement
R_DnssrvComplexOperation2.

All parameters are as specified by the R_DnssrvComplexOperation method (section 3.1.4.3) with the
following exceptions:

292 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 LONG R_DnssrvComplexOperation2(
 [in] handle_t hBindingHandle,
 [in] DWORD dwClientVersion,
 [in] DWORD dwSettingFlags,
 [in, unique, string] LPCWSTR pwszServerName,
 [in, unique, string] LPCSTR pszZone,
 [in, unique, string] LPCSTR pszOperation,
 [in] DWORD dwTypeIn,
 [in, switch_is(dwTypeIn)] DNSSRV_RPC_UNION pDataIn,
 [out] PDWORD pdwTypeOut,
 [out, switch_is(*pdwTypeOut)] DNSSRV_RPC_UNION* ppDataOut
);

dwClientVersion: The client version in DNS_RPC_CURRENT_CLIENT_VER (section 2.2.1.2.1) format.

dwSettingFlags: Reserved for future use only. This field MUST be set to zero by clients and ignored

by servers.

Return Values: Return values and interpretations are the same as for R_DnssrvComplexOperation

(section 3.1.4.3).

When processing this call, the server MUST perform the same actions as for the
R_DnssrvComplexOperation method (section 3.1.4.3) except that for output structure types with
multiple versions, the server MUST return the structure type selected by dwClientVersion except in the
event the dwClientVersion is greater than the server version, in which case the server MUST return

the highest version number known to itself.

3.1.4.9 R_DnssrvEnumRecords2 (Opnum 8)

The R_DnssrvEnumRecords2 method enumerates DNS records on the server. The DNS server SHOULD

implement R_DnssrvEnumRecords2 <278>.

All parameters are as specified by the R_DnssrvEnumRecords method (section 3.1.4.4) with the
following exceptions:

 LONG R_DnssrvEnumRecords2(
 [in] handle_t hBindingHandle,
 [in] DWORD dwClientVersion,
 [in] DWORD dwSettingFlags,
 [in, unique, string] LPCWSTR pwszServerName,
 [in, unique, string] LPCSTR pszZone,
 [in, unique, string] LPCSTR pszNodeName,
 [in, unique, string] LPCSTR pszStartChild,
 [in] WORD wRecordType,
 [in] DWORD fSelectFlag,
 [in, unique, string] LPCSTR pszFilterStart,
 [in, unique, string] LPCSTR pszFilterStop,
 [out] PDWORD pdwBufferLength,
 [out, size_is(, *pdwBufferLength)] PBYTE* ppBuffer
);

dwClientVersion: The client version in DNS_RPC_CURRENT_CLIENT_VER (section 2.2.1.2.1) format.

dwSettingFlags: Reserved for future use only. This field MUST be set to zero by clients and ignored
by servers.

Return Values: Return values behaviors and interpretations are same as they are for
R_DnssrvEnumRecords method.

293 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

When processing this call, the server MUST perform the same actions as for the
R_DnssrvEnumRecords method.

3.1.4.10 R_DnssrvUpdateRecord2 (Opnum 9)

The R_DnssrvUpdateRecord2 method is used to add a new DNS record or modify/delete an existing
DNS record at the server. The DNS server SHOULD implement R_ DnssrvEnumRecords2.<279>

All parameters are as specified by the R_DnssrvUpdateRecord method (section 3.1.4.5) with the
following exceptions:

 LONG R_DnssrvUpdateRecord2(
 [in] handle_t hBindingHandle,
 [in] DWORD dwClientVersion,
 [in] DWORD dwSettingFlags,
 [in, unique, string] LPCWSTR pwszServerName,
 [in, unique, string] LPCSTR pszZone,
 [in, string] LPCSTR pszNodeName,
 [in, unique] PDNS_RPC_RECORD pAddRecord,
 [in, unique] PDNS_RPC_RECORD pDeleteRecord
);

dwClientVersion: The client version in DNS_RPC_CURRENT_CLIENT_VER (section 2.2.1.2.1) format.

dwSettingFlags: Reserved for future use only. This field MUST be set to zero by clients and ignored
by servers.

Return Values: The method MUST return ERROR_SUCCESS (0x00000000) on success or a nonzero
Win32 error code if an error occurred. All error values MUST be treated the same. All record types
SHOULD be supported, but if an operation is attempted on an unsupported record type, the

method MUST return a nonzero Win32 error code.

When processing this call, the server MUST perform the same actions as for the
R_DnssrvUpdateRecord method.

3.1.4.11 R_DnssrvUpdateRecord3 (Opnum 10)

The R_DnssrvUpdateRecord3 method is used to add a new DNS record or modify or delete an existing
DNS record in a zone or in a zone scope, or in a cache zone or cache scope, if specified. The DNS
server SHOULD<280> implement R_ DnssrvUpdateRecord3.

All parameters are as specified by the methods R_DnssrvUpdateRecord (section 3.1.4.5) and
R_DnssrvUpdateRecord2 (section 3.1.4.10) with the following exceptions:

 LONG R_DnssrvUpdateRecord3(
 [in] handle_t hBindingHandle,
 [in] DWORD dwClientVersion,
 [in] DWORD dwSettingFlags,
 [in, unique, string] LPCWSTR pwszServerName,
 [in, unique, string] LPCSTR pszZone,
 [in, unique, string] LPCWSTR pwszZoneScope,
 [in, string] LPCSTR pszNodeName,
 [in, unique] PDNS_RPC_RECORD pAddRecord,

 [in, unique] PDNS_RPC_RECORD pDeleteRecord
);

pwszZonescope: A pointer to a null-terminated character string that contains the name of the zone

scope or cache scope inside the zone to be queried. For operations specific to a particular zone

294 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

scope or cache scope, this field MUST contain the name of the zone scope or cache scope. If the
value is NULL, the API gives the same behavior as R_DnssrvUpdateRecord2.

When processing this call, the server MUST perform the same actions as for the
R_DnssrvUpdateRecord2 method.

3.1.4.12 R_DnssrvEnumRecords3 (Opnum 11)

The R_DnssrvEnumRecords3 method enumerates DNS records on a zone or a zone scope, or cache
zone or a cache scope, if specified. The DNS server SHOULD<281> implement

R_DnssrvEnumRecords3.

All parameters are as specified by the R_DnssrvEnumRecords method (section 3.1.4.4) and implement
the R_DnssrvEnumRecords2 method (section 3.1.4.9) with the following exceptions:

 LONG R_DnssrvEnumRecords3(
 [in] handle_t hBindingHandle,
 [in] DWORD dwClientVersion,
 [in] DWORD dwSettingFlags,
 [in, unique, string] LPCWSTR pwszServerName,
 [in, unique, string] LPCSTR pszZone,
 [in, unique, string] LPCWSTR pwszZoneScope,
 [in, unique, string] LPCSTR pszNodeName,
 [in, unique, string] LPCSTR pszStartChild,
 [in] WORD wRecordType,
 [in] DWORD fSelectFlag,
 [in, unique, string] LPCSTR pszFilterStart,
 [in, unique, string] LPCSTR pszFilterStop,
 [out] PDWORD pdwBufferLength,
 [out, size_is(, *pdwBufferLength)] PBYTE* ppBuffer
);

pwszZoneScope: A pointer to a null-terminated character string that contains the name of the zone
scope inside the zone or cache scope inside the cache zone that is to be queried. For operations

specific to a particular zone scope or cache scope, this field MUST contain the name of the zone
scope or cache scope. If the value is NULL, the API gives the same behavior as the
R_DnssrvEnumRecords2 method.

When processing this call, the server MUST perform the same actions as for the
R_DnssrvEnumRecords2 method.

3.1.4.13 R_DnssrvOperation3 (Opnum 12)

The R_DnssrvOperation3 method is used to invoke a set of server functions specified by the caller on
the zone scope or cache scope if specified. The DNS server SHOULD<282> implement
R_DnssrvOperation3.

All parameters are as specified by the methods R_DnssrvOperation (section 3.1.4.1) and

R_DnssrvOperation2 (section 3.1.4.6) with the following exceptions.

 LONG R_DnssrvOperation3(
 [in] handle_t hBindingHandle,
 [in] DWORD dwClientVersion,

 [in] DWORD dwSettingFlags,
 [in, unique, string] LPCWSTR pwszServerName,
 [in, unique, string] LPCSTR pszZone,
 [in, unique, string] LPCWSTR pwszZoneScopeName,
 [in] DWORD dwContext,
 [in, unique, string] LPCSTR pszOperation,
 [in] DWORD dwTypeId,

295 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 [in, switch_is(dwTypeId)] DNSSRV_RPC_UNION pData
);

pwszZoneScopeName: A pointer to a null-terminated character string that contains the name of the
zone scope in the zone or cache scope in a cache zone, or a server scope configured on the DNS
server in which the operation is to be performed. For operations specific to a particular zone
scope, this field MUST contain the name of the zone scope. If the value is NULL then the API gives

the same behavior as R_DnssrvOperation2. If the value is not NULL then pszZone MUST point to a
null-terminated character string that contains the name of the zone in UTF-8 format. In this case
the type of the zone pointed to by pszZone MUST be a primary zone. It MUST also be a non-
autocreated zone, a non-reverse lookup zone, and a non-AD integrated zone. For operations
specific to server scopes, this field MUST contain the name of the server scope and the pszZone
field MUST be NULL. For operations specific to cache scopes, this field MUST contain the name of

the cache scope, and the pszZone field MUST be "..cache."

If pszZone is not NULL and pwszZoneScopeName is not NULL, pszOperation MUST be set to one of
the following values:

Value Meaning

"DeleteNode" Deletes a node from the given zone scope of a specified zone or a cache scope in a
specified cache zone. On input, dwTypeId MUST be set to
DNSSRV_TYPEID_NAME_AND_PARAM (section 2.2.2.1.1), and pData MUST point to a
structure of type DNS_RPC_NAME_AND_PARAM (section 2.2.1.2.5). That structure
contains the name of the node to be deleted as pointed by pszNodeName, and a
Boolean flag in dwParam that indicates if the node's subtree is to be deleted.

"DeleteRecordSet" Deletes all the DNS records of a particular type at a particular node that is present in
the given zone scope of a specified zone or a cache scope in a specified cache zone. On
input, dwTypeId MUST be set to DNSSRV_TYPEID_NAME_AND_PARAM (section
2.2.2.1.1). pData MUST point to a structure of type DNS_RPC_NAME_AND_PARAM
(section 2.2.1.2.5). That structure contains the name of the node to be deleted and the
DNS record type in the dwParam member. The type MUST be of value of either
DNS_RECORD_TYPE (section 2.2.2.1.1) or 0x00FF, which specifies all types.

If pszZone is NULL and pwszZoneScopeName is not NULL, pszOperation MUST be set to one of the

following values.

Value Meaning

"Forwarders" On input, dwTypeId SHOULD<283> be set to DNSSRV_TYPEID_FORWARDERS, and
pData MUST point to a structure of one of the types specified in
DNS_RPC_FORWARDERS (section 2.2.5.2.10), which contains information about
new IP addresses to which the DNS server SHOULD forward queries. These IP
addresses are part of the server scope as specified in the pwszZoneScopeName.

"ResetDwordProperty" Update the value of a (name, value) pair in the DNS Server Configuration. On input,
dwTypeId MUST be set to DNSSRV_TYPEID_NAME_AND_PARAM, and pData MUST
point to a structure of type DNS_RPC_NAME_AND_PARAM (section 2.2.1.2.5) that
specifies the name of a property listed in section 3.1.1.3.1 and a new value for that
property.

When processing this call, the server MUST perform the same actions as for the R_DnssrvOperation2
method. Operations specific to this method are as described in the preceding table. These operations
are processed as specified in R_DnssrvOperation, in the given zone scope or cache scope specified in

pwszZoneScopeName of a zone or cache zone specified in pszZone or in the server scope specified in
pwszZoneScopeName with pszZone being NULL.

296 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

3.1.4.14 R_DnssrvQuery3 (Opnum 13)

The R_DnssrvQuery3 method queries the DNS server for information. The type of information queried
for is specified by the client using the pszZone, pwszZoneScopeName, and pszOperation parameters.

The DNS server SHOULD<284> implement R_DnssrvQuery3.

All the parameters are as specified by the R_DnssrvQuery2 method with the following exceptions:

 LONG R_DnssrvQuery3(
 [in] DWORD dwClientVersion,
 [in] DWORD dwSettingFlags,
 [in, unique, string] LPCWSTR pwszServerName,
 [in, unique, string] LPCSTR pszZone,
 [in, unique, string] LPCWSTR pszZoneScopeName,
 [in, unique, string] LPCSTR pszOperation,
 [out] PDWORD pdwTypeId,
 [out, switch_is(*pdwTypeId)] DNSSRV_RPC_UNION* ppData
);

pwszZoneScopeName: A pointer to a null-terminated character string that contains the name of the
zone scope inside the zone or cache scope inside the cache zone to be queried or a server scope
configured on the DNS server. For operations specific to a particular zone scope or cache scope,

this field MUST contain the name of the zone scope or cache scope. If the value is NULL, then the
API is as specified in R_DnssrvQuery2 (section 3.1.4.7).

If pszZone is not NULL and pwszZoneScopeName is not NULL, pszOperation MUST be set to one of
the following values:

Value Meaning

ScopeInfo On output the value pointed to by pdwTypeId SHOULD be set to
DNSSRV_TYPEID_ZONE_SCOPE_INFO and ppData MUST point to a structure of one of the types
specified in DNS_RPC_ZONE_SCOPE_INFO_V1 (section 2.2.13.2.3.1), which contains full
information about the zone pointed to by pszZone or cache if "..cache" is specified in pszZone.

 If pszZone is not NULL and pwszZoneScopeName is not NULL, and pszOperation value is
ScopeInfo:

 On input, pdwTypeId MUST be set to DNSSRV_TYPEID_ZONE_SCOPE_INFO.

 pwszZoneScopeName MUST be the pointer to the name of the zone scope or cache scope
that is to be queried.

 pszZone MUST be the name of the zone in which the zone scope information is queried,
or, for cache scope, it MUST be "..cache".

 ppData MUST be in the format of DNS_RPC_ZONE_SCOPE_INFO_V1.

If pszZone is NULL and pwszZoneScopeName is not NULL, pszOperation MUST be either a property
name listed in section 3.1.1.3 or set to one of the following values:

Value Meaning

"Forwarders" or
"DynamicForwarders"

On output, the value pointed to by pdwTypeId SHOULD be set to
DNSSRV_TYPEID_ADDRARRAY and ppData MUST point to a structure as specified
in DNS_ADDR_ARRAY (section 2.2.3.2.3), which contains list of IP
address.<285>

 If pszZone is NULL and pwszZoneScopeName is not NULL, and pszOperation value is
Forwarders or DynamicForwarders:

297 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 On input, pdwTypeId MUST be set to DNSSRV_TYPEID_ADDRARRAY.

 pwszZoneScopeName MUST be the pointer to the name of the server scope that is to be

queried.

 pszZone MUST be NULL.

 ppData MUST be in the format of DNS_ADDR_ARRAY.

3.1.4.15 R_DnssrvComplexOperation3 (Opnum 14)

The R_DnssrvComplexOperation3 method is used to invoke a set of server functions specified by

the caller. These functions generally return more complex structures than simple 32-bit integer
values, unlike the operations accessible through R_DnssrvOperation (section 3.1.4.1). The DNS server
SHOULD<286> implement R_DnssrvComplexOperation2 (section 3.1.4.8).

All parameters are as specified by the R_DnssrvComplexOperation method (section 3.1.4.3) with the
following exceptions:

 LONG R_DnssrvComplexOperation3(
 [in] DWORD dwClientVersion,
 [in] DWORD dwSettingFlags,
 [in, unique, string] LPCWSTR pwszServerName,
 [in, unique, string] LPCWSTR pwszVirtualizationInstanceID,
 [in, unique, string] LPCSTR pszZone,
 [in, unique, string] LPCSTR pszOperation,
 [in] DWORD dwTypeIn,
 [in, switch_is(dwTypeIn)] DNSSRV_RPC_UNION pDataIn,
 [out] PDWORD pdwTypeOut,
 [out, switch_is(*pdwTypeOut)] DNSSRV_RPC_UNION * ppDataOut
);

dwClientVersion: The client version in DNS_RPC_CURRENT_CLIENT_VER (section 2.2.1.2.1) format.

dwSettingFlags: Reserved for future use only. This field MUST be set to zero by clients and ignored
by servers.

pwszVirtualizationInstanceID: A pointer to a null-terminated Unicode string that contains the
name of the virtualization instance configured in the DNS server. For operations specific to a
virtualization instance, this field MUST contain the name of the virtualization instance. If the value
is NULL, then the API is as specified in R_DnssrvComplexOperation2 (section 3.1.4.8). Apart from

the EnumVirtualizationInstances operation (section 3.1.4.3), R_DnssrvComplexOperation3
changes the behavior of the following operations: EnumZoneScopes, EnumZones2, and
EnumZones (section 3.1.4.3), if these operation are called with R_DnssrvComplexOperation3 and
a non-NULL pwszVirtualizationInstanceID, they are performed under the given virtualization
instance.

When processing this call, the server MUST perform the same actions as for the
R_DnssrvComplexOperation2 method (section 3.1.4.8) with the following exceptions: for output

structure types with multiple versions, the server MUST return the structure type selected by

dwClientVersion. In the event the dwClientVersion is greater than the server version, the server MUST
return the highest version number known.

3.1.4.16 R_DnssrvOperation4 (Opnum: 15)

The R_DnssrvOperation4 method is used to invoke a set of server functions specified by the caller
on the virtualization instance, if specified. The DNS server SHOULD<287> implement
R_DnssrvOperation4.

298 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

All parameters are as specified by the R_DnssrvOperation3 (section 3.1.4.13) method with the
following exceptions.

 LONG R_DnssrvOperation4(

 [in] handle_t hBindingHandle,

 [in] DWORD dwClientVersion,

 [in] DWORD dwSettingFlags,

 [in, unique, string] LPCWSTR pwszServerName,

 [in, unique, string] LPCWSTR pwszVirtualizationInstanceID,

 [in, unique, string] LPCSTR pszZone,

 [in, unique, string] LPCWSTR pwszZoneScopeName,

 [in] DWORD dwContext,

 [in, unique, string] LPCSTR pszOperation,

 [in] DWORD dwTypeId,

 [in, switch_is(dwTypeId)] DNSSRV_RPC_UNION pData

);

pwszVirtualizationInstanceID: A pointer to a null-terminated Unicode string that contains the
name of the virtualization instance configured on the DNS server in which the operation is to be

performed. For operations specific to a particular virtualization instance, this field MUST contain

the name of the virtualization instance. If the value is NULL then the API gives the same behavior
as R_DnssrvOperation3. If the value is not NULL then pszZone MUST point to a null-terminated
character string that contains the name of the zone in UTF-8 format. In this case the type of the
zone pointed to by pszZone MUST be a primary zone. It MUST also be a non-autocreated zone,
and a non-AD integrated zone. Apart from the CreateVirtualizationInstance,
DeleteVirtualizationInstance, and UpdateVirtualizationInstance operations (section
3.1.4.1), R_DnssrvComplexOperation4 changes the behavior of the following operations:

WriteDirtyZones, ZoneCreate, DeleteNode, DeleteRecordSet, WriteBackFile, PauseZone,
ResumeZone, DeleteZone, ReloadZone, RefreshZone, CreateZoneScope, and
DeleteZoneScope (section 3.1.4.1). If these operation are called with R_DnssrvOperation4 and a
non-NULL pwszVirtualizationInstanceID, they are performed under the given virtualization
instance.

Return Values: The method MUST return ERROR_SUCCESS (0x00000000) on success or a nonzero

Win32 error code value if an error occurred. All error values MUST be treated the same.

When processing this call, the server MUST perform the same actions as for the R_DnssrvOperation3
method (section 3.1.4.13) except in the event that the dwClientVersion is greater than the server
version, in which case the server MUST return the highest version number.

3.1.4.17 R_DnssrvQuery4 (Opnum 16)

The R_DnssrvQuery4 method queries the DNS server for information. The type of information
queried for is specified by the client using the pwszVirtualizationInstanceID, and pszOperation
parameters. The DNS server SHOULD<288> implement R_DnssrvQuery4.

All the parameters are as specified by the R_DnssrvQuery2 method (section 3.1.4.7) method with the
following exceptions:

 LONG R_DnssrvQuery4(

 [in] handle_t hBindingHandle,

 [in] DWORD dwClientVersion,

 [in] DWORD dwSettingFlags,

 [in, unique, string] LPCWSTR pwszServerName,

 [in, unique, string] LPCWSTR pwszVirtualizationInstanceID,

 [in, unique, string] LPCSTR pszZone,

 [in, unique, string] LPCWSTR pwszZoneScopeName,

 [in, unique, string] LPCSTR pszOperation,

 [out] PDWORD pdwTypeId,

 [out, switch_is(*pdwTypeId)] DNSSRV_RPC_UNION* ppData

299 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

);

pwszVirtualizationInstanceID: A pointer to a null-terminated Unicode string that contains the
name of the virtualization instance configured on the DNS server. For operations specific to a
particular virtualization instance, this field MUST contain the name of the virtualization instance. If
the value is NULL, then the API is as specified in R_DnssrvQuery3 (section 3.1.4.14). Apart from
the VirtualizationInstances operation (section 3.1.4.2), R_DnssrvQuery3 (section 3.1.4.14)
changes the behavior of the following operations: Zone, ZoneInfo (section 3.1.4.2) and
ScopeInfo (section 3.1.4.14) operations. If these operations are called with R_DnssrvQuery4 and

a non-NULL pwszVirtualizationInstanceID parameter, they are performed under the given
virtualization instance. The ScopeInfo operation is defined for R_DnssrvQuery4 with a non-NULL
virtualization instance only if pZone is not NULL.

Return Values: The method MUST return ERROR_SUCCESS (0x00000000) on success or a nonzero
Win32 error code value if an error occurred. All error values MUST be treated the same.

When processing this call, the server MUST perform the same actions as for the R_DnssrvQuery3

method (section 3.1.4.14) except in the event the dwClientVersion is greater than the server

version, in which case the server MUST return the highest version number.

3.1.4.18 R_DnssrvUpdateRecord4 (Opnum 17)

The R_DnssrvUpdateRecord4 method is used to add a new DNS record or to modify or delete an

existing DNS record in a zone or in a zone scope under a virtualization instance, if specified. The DNS
server SHOULD<289> implement R_ DnssrvUpdateRecord4.

All parameters are as specified by the R_DnssrvUpdateRecord3 (section 3.1.4.11) method with the
following exceptions:

 LONG R_DnssrvUpdateRecord4(

 [in] handle_t hBindingHandle,

 [in] DWORD dwClientVersion,

 [in] DWORD dwSettingFlags,

 [in, unique, string] LPCWSTR pwszServerName,

 [in, unique, string] LPCWSTR pwszVirtualizationInstanceID,

 [in, unique, string] LPCSTR pszZone,

 [in, unique, string] LPCWSTR pwszZoneScope,

 [in, string] LPCSTR pszNodeName,

 [in, unique] PDNS_RPC_RECORD pAddRecord,

 [in, unique] PDNS_RPC_RECORD pDeleteRecord

);

pwszVirtualizationInstanceID: A pointer to a null-terminated Unicode string that contains the

name of the virtualization instance configured in the DNS server. For operations specific to a
particular zone or zone scope, details must be given in pszZone and pwszZonescope as
specified in section 3.1.4.11. If the value pwszVirtualizationInstanceID is NULL, the API gives the
same behavior as R_DnssrvUpdateRecord3.

When processing this call, the server MUST perform the same actions as for the
R_DnssrvUpdateRecord3 method (section 3.1.4.12).

3.1.4.19 R_DnssrvEnumRecords4 (Opnum 18)

The R_DnssrvEnumRecords4 method enumerates DNS records on a zone or a zone scope in a
virtualization instance, if specified. The DNS server SHOULD<290> implement
R_DnssrvEnumRecords4.

300 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

All parameters are as specified by the R_DnssrvEnumRecords3 method (section 3.1.4.12) with the
following exceptions:

 LONG R_DnssrvEnumRecords4(

 [in] handle_t hBindingHandle,

 [in] DWORD dwClientVersion,

 [in] DWORD dwSettingFlags,

 [in, unique, string] LPCWSTR pwszServerName,

 [in, unique, string] LPCWSTR pwszVirtualizationInstanceID,

 [in, unique, string] LPCSTR pszZone,

 [in, unique, string] LPCWSTR pwszZoneScope,

 [in, unique, string] LPCSTR pszNodeName,

 [in, unique, string] LPCSTR pszStartChild,

 [in] WORD wRecordType,

 [in] DWORD fSelectFlag,

 [in, unique, string] LPCSTR pszFilterStart,

 [in, unique, string] LPCSTR pszFilterStop,

 [out] PDWORD pdwBufferLength,

 [out, size_is(, *pdwBufferLength)] PBYTE * ppBuffer

);

pwszVirtualizationInstanceID: A pointer to a null-terminated character string that contains the
name of the virtualization instance under which zone and zone scope records are to be
enumerated. For operations specific to a particular zone or zone scope, details must be given in

pszZone and pwszZonescope as specified in section 3.1.4.12. If the value
pwszVirtualizationInstanceID is NULL, the API gives the same behavior as
R_DnssrvEnumRecord3.

When processing this call, the server MUST perform the same actions as for the
R_DnssrvEnumRecords3 method (section 3.1.4.12).

3.1.5 Timer Events

No protocol timer events are required on the server beyond the timers required in the underlying RPC

protocol.

3.1.6 Other Local Events

3.1.6.1 Three-phase authorization test

When a three-phase authorization test is performed, the following phases MUST be performed in

order:

Phase 1: If the DNS server is directory server integrated then the client's credentials MUST be tested
for Read privilege against the DNS Server Configuration Access Control List (see section 3.1.1).
This tests whether or not the client can be granted access to any of the functionality of the DNS
Server Management Protocol. If this test is passed, then the server MUST proceed to Phase 2. If
the DNS server is not directory server integrated, and if the client is a member of either the

Administrators group or the System Operators group, access MUST be granted and further

authorization testing MUST NOT be performed. Otherwise access MUST be denied and the server
MUST return an error.

Phase 2: If the authorization test in Phase 1 is passed and the DNS server is directory server
integrated, then the DNS server MUST perform an explicit ACL check for either Read or Write
privilege. The ACL used for this test MUST be one of the three listed in the following table, and, for
either Read or Write privilege, as specified in the description of the request being processed.

301 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Access Control List Description

DNS Server Configuration Access
Control List (see section 3.1.1)

This ACL is tested for Read privilege in Phase 1 to gate basic access to
the protocol. It is also used to control access for any operation that is
not performed against a specific zone or directory partition.

Application Directory Partition
Access Control List (see section
3.1.1)

This ACL is used to control access for any operation that is performed
against the directory partition. Operations that are performed against
zones do not use this ACL.

Zone Access Control List (see
section 3.1.1)

This ACL is used to control access for any operation that is performed
against a zone that is stored in the directory server. If a zone is
stored in the directory server inside a partition, any operation specific
to the zone will use the Zone ACL.

Phase 3: If the authorization test in Phase 2 is passed and the DNS server is directory server
integrated, then the DNS server MUST impersonate the client for any actions performed against a
directory server (for impersonation details, see [MS-RPCE] section 2.2.1.1.9), unless the target of
the modification is a dnsNode object whose Aging Time Stamp attribute (section 3.1.1.2.4) is older

than the Time Zone Secured attribute of the zone (section 3.1.1). If the operation against the
directory server fails, the DNS server MUST return an error.

3.1.6.2 Directory server security descriptors reading and caching

If the server is directory server integrated, directory server security descriptors MUST be read from
the directory server using LDAP every DsPollingInterval (section 3.1.1) after DNS server boot. After

each read, the server MUST cache the security descriptors.

Additionally, a Zone Access Control List (section 3.1.1) security descriptor MUST be read from the
directory server when the corresponding zone (or zone scope<291>) is loaded during server boot
time. This security descriptor MUST also be read when the corresponding zone or zone scope is
created through the ZoneCreate or CreateZoneScope operation (section 3.1.4.1) and when the
corresponding zone's directory partition encounters the EnlistDirectoryPartition operation (section
3.1.4.1).

Additionally, an Application Directory Partition Access Control List (section 3.1.1) security descriptor
MUST be read from the directory server when the corresponding application directory partition is
loaded during server boot time. This security descriptor MUST also be read when the corresponding
application directory partition encounters the EnlistDirectoryPartition or ZoneChangeDirectoryPartition
operation (section 3.1.4.1).

3.1.6.3 dnsRecord in the Directory Server

If the server is directory server integrated, then whenever dnsRecord attribute values (section
2.3.2.2) are written to the directory server by using LDAP, each string MUST be converted from type
DNS_RPC_NAME (section 2.2.2.2.1) to type DNS_COUNT_NAME (section 2.2.2.2.3). Similarly, when
reading dnsRecords, the DNS server MUST convert each string of type DNS_COUNT_NAME to type

DNS_RPC_NAME.

3.1.6.4 Modifying Directory Server Security Descriptors

To modify the security descriptor for a directory server object, the server MUST perform the following
procedure:

1. Perform an LDAP operation on an ADConnection as specified in [MS-ADTS] section 7.6.1.6, with
the following parameters:

 TaskInputADConnection: DNS Server AD Connection

%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15
%5bMS-ADTS%5d.pdf#Section_d243592709994c628c6d13ba31a52e1a

302 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 TaskInputRequestMessage: protocolOp is set to searchRequest [RFC4511] section 4.5).

 searchRequest parameters are set as follows:

 baseObject: The specified distinguished name of the object to be modified.

 scope: base (0)

 derefAliases: neverDerefAliases (0)

 sizeLimit: 0

 timeLimit: 360

 typesOnly: FALSE

 filter: "(objectCategory=*)"

 attributes: "ntSecurityDescriptor"

2. If the search request is successful, modify the security descriptor returned to grant or deny the

specified rights to the specified local security group.

3. If the security descriptor is successfully modified, perform an LDAP operation on an ADConnection
as specified in [MS-ADTS] section 7.6.1.6, with the following parameters:

 TaskInputADConnection: DNS Server AD Connection

 TaskInputRequestMessage: protocolOp is set to modifyRequest ([RFC4511] section 4.6)

 Set the modifyRequest parameters as follows:

 object: The specified distinguished name of the object to be modified.

 changes:

 operation: replace

 type: "ntSecurityDescriptor"

 vals: modified security descriptor

3.1.7 Key Processing Rules

3.1.7.1 Constructing an Exported Key

The steps for constructing an exported key are as follows:

1. Obtain the Zone Signing Key. Encode it in a data structure appropriate for the signature algorithm,
as specified in section 2.2.11.1.1.

2. If the zone is stored in the default DNS domain application directory partition or the default
application directory partition, let ProtectionSid denote the DOMAIN_DOMAIN_CONTROLLERS SID
specified in [MS-DTYP] section 2.4.2.4; otherwise, let ProtectionSid denote the
ENTERPRISE_DOMAIN_CONTROLLERS SID specified in [MS-DTYP] section 2.4.2.4.

3. Construct a security descriptor in self-relative format, in the format specified in [MS-DTYP] section
2.4.6, using the following field values:

1. Sbz1 is set to zero.

http://go.microsoft.com/fwlink/?LinkId=157505
%5bMS-DTYP%5d.pdf#Section_cca2742956894a16b2b49325d93e4ba2

303 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

2. All Control bits except for SR are cleared.

3. The OwnerSid field is set to ProtectionSid.

4. The GroupSid field is set to the LOCAL_SYSTEM SID specified in [MS-DTYP] section 2.4.2.4.

5. The Sacl field is absent.

6. The Dacl field contains two access control entries, as follows:

1. The first entry contains an ACCESS_ALLOWED_ACE structure as specified in [MS-DTYP]
section 2.4.4.2, with the Sid field set to ProtectionSid and the Mask value set to 0x3.

2. The second entry contains an ACCESS_ALLOWED_ACE structure as specified in [MS-DTYP]
section 2.4.4.2, with the Sid field set to the EVERYONE SID specified in [MS-DTYP] section
2.4.2.4 and the Mask value set to 0x2.

4. Obtain a group seed key for the security descriptor constructed in step 3, with NULL root key ID,

using the procedure specified in [MS-GKDI] section 3.2.4.

5. Construct a Protection Key Attributes structure (section 2.2.11.2.5) with the sidString element set
to the string representation (specified in [MS-DTYP] section 2.4.2.1) of ProtectionSid (step 2).

6. Construct a Protection Key Identifier structure (section 2.2.11.2.4) using the key identifiers
obtained in step 2.

7. Derive an AES-256 key from the group seed key retrieved in step 4 as follows:

1. Derive a 64-byte secret using the key derivation procedure specified in [SP800-108] section
5.1 with HMAC [FIPS198-1] using SHA-512 [FIPS180-3] as the underlying PRF, using the
Unicode string L"KDS service" as the label, and using the Unicode string L"KDS private key" as
the context.

2. Compute the SHA-256 hash [FIPS180-3] of the secret computed in step 7a.

8. Generate a random 256-bit AES key for use as the content encryption key, and a 12-byte random
nonce. Encrypt the structure created in step 1 using the AES algorithm [FIPS197] in GCM mode

[SP800-38D] using this key and nonce, and using an Integrity Check Value (ICV) length of 16
bytes. Append the 16-byte ICV to the end of the cipher text.

9. Encrypt the content encryption key generated in step 8 with the key derived in step 7, using AES
[FIPS197] in CBC mode [SP800-38D] with PKCS#7 padding ([RFC3852] section 6.3) with a
random Initialization Vector (IV).

10. Construct a protected key blob using the CMS Enveloped-Data format specified in [RFC3852]
section 6, as follows:

1. Set the version field to 2.

2. Omit the originatorInfo and unprotectedAttrs fields.

3. In the recipientInfos structure, create a single KEKRecipientInfo member as follows:

1. Set the keyIdentifier field of the KEK identifier to the result of step 6.

2. Set the other field of the KEK identifier to the result of step 5.

3. Omit the date field of the KEK identifier.

4. Set the keyEncryptionAlgorithm field to AES256-CBC as specified in [RFC3565] section
4.1 and the encryptedKey field to the result of step 9.

%5bMS-GKDI%5d.pdf#Section_943dd4f66b804a66859480df6d2aad0a
http://go.microsoft.com/fwlink/?LinkId=89870
http://go.microsoft.com/fwlink/?LinkId=186038
http://go.microsoft.com/fwlink/?LinkId=90445
http://go.microsoft.com/fwlink/?LinkId=229738

304 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

4. In the EncryptedContentInfo structure:

1. Set the contentType field to Data, as specified in [RFC3852] section 4.

2. Set the contentEncryptionAlgorithm field to AES256-GCM, as specified in [RFC5084]
section 3.2, using the nonce and ICV length from step 8.

3. Set the encryptedContent field to the result of step 8.

11. Construct an Exported Key Pair structure (section 2.2.11.2.6) with the ProtectedKeyBlob field
set to the result of step 10.

3.1.7.2 Importing an Exported Key

The steps for importing an exported key are as follows:

1. Validate that the input is in the format specified in section 2.2.11.2.6 by checking that the
contents of the Reserved1 and Reserved2 fields match the expected values and that the

AlgorithmName field has one of the values specified in section 2.2.11.1.1. If not, fail and return
an error.

2. Extract the ProtectedKeyBlob field, and verify that it is a syntactically correct DER-encoded

ASN.1 structure of the Enveloped-data content type specified in [RFC3852] section 6. If not, fail
and return an error.

3. Extract the keyIdentifier field of the sole KEKRecipientInfo member of the recipientInfos
structure in the protected key blob, and validate that it is in the format specified in section
2.2.11.2.6 by checking that the contents of the Reserved1, Reserved2, Reserved3, and
Reserved4 fields match their expected values. If not, fail and return an error.

4. Extract the other field of the KEK identifier in the aforementioned KEKRecipientInfo member,

and validate that it is a syntactically correct DER-encoded ASN.1 structure conforming to the
format specified in section 2.2.11.2.5. If not, fail and return an error.

5. Using the sidString value in the Protection Key Attributes structure obtained in step 4, construct a
security descriptor as specified in section 3.1.7.1 step 3.

6. Using the information in the Protection Key Identifier structure obtained in step 3 and the
security descriptor constructed in step 5, obtain a group seed key by using the procedure specified

in [MS-GKDI] section 3.2.4. If unsuccessful, fail and return an error.

7. From the seed key obtained in step 6, derive the key encryption key as specified in section 3.1.7.1
step 7.

8. Use the key encryption key derived in step 7 to decrypt the contents of the encryptedKey field of
the KEKRecipientInfo member obtained in step 3 by reversing the process in section 3.1.7.1
step 9. The result will be the content encryption key.

9. Extract the encryptedContent field of the protected key blob structure, and separate the ICV

(contained in the last 16 bytes) from the cipher text (the rest of the field). Decrypt the cipher text

using AES-GCM with the content encryption key obtained in step 8, and verify that the ICV
computed during decryption matches the value in the blob. If not, fail and return an error.

10. Parse the result of step 9 based on the value of the AlgorithmName field, as specified in section
2.2.11.1.1.

3.1.8 DNS Policy

See section 2.2.15 for information on DNS policy constants and structures.

http://go.microsoft.com/fwlink/?LinkId=229742
http://go.microsoft.com/fwlink/?LinkId=90445
%5bMS-GKDI%5d.pdf#Section_943dd4f66b804a66859480df6d2aad0a

305 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

3.1.8.1 Client Subnet Record

A Client Subnet Record is described by a NULL-terminated Unicode string containing a list of IPv4 or
IPv6 subnets and the subnet length, as described in

DNS_RPC_CLIENT_SUBNET_RECORD (section 2.2.15.2.1). For example:

{"southasia", {201.37.23.0/24, 201.58.16.00/20}}

This example creates a Client Subnet Record for the region "southasia" containing the subnets
201.37.23.0/24 and 201.58.16.00/20.

3.1.8.2 DNS Policy Criteria

A DNS Policy Criteria contains properties that are matched for DNS operations. Appropriate action is
applied to a DNS operation based on the result, expressed as a NULL-terminated Unicode string as
describe in DNS_RPC_CRITERIA (section 2.2.15.2.4).

The Unicode string identifiers EQ and NE stand for Equals and Not Equals respectively. A pCriteria

Unicode string can contain EQ or NE identifiers with values, or both can be present in a single

criterion. For example, pCriteria = "EQ,a,b,c" indicates that the DNS policy matches the criteria type
for a value a, b, or c. Similarly, pCriteria = "NE,a,b,c," indicates that a DNS policy matches the
criteria type for a value not equal to a, b, and c.

The following table describes the DNS Policy Criteria:

Policy
Criteria Definition

Fully
Qualified
Domain
Name

Specifies that the criteria for match of a DNS Policy in a DNS operation, as described in
DNS_RPC_CRITERIA (section 2.2.15.2.4), is based on the query name in the question ([RFC1034]
section 3.7) of a DNS query. For example, a DNS_RPC_POLICY (section 2.2.15.2.5) with
type=DnsPolicyCriteriaFqdn and pCriteria = "EQ,a.contoso.com" will match a Query with QName=
"a.contoso.com". Criteria also support wild cards. For example, a criteria "EQ,*.contoso.com"
means the DNS policy will match for a query with QName anything in contoso.com, including the
QName contoso.com. If the criteria is invalid, the DNS server returns
DNS_ERROR_POLICY_INVALID_CRITERIA_FQDN.

Client
Subnet
Record

Contains the IPv4 and IPv6 subnets, which are matched against the address of the source device
from which the DNS operation message is initiated. For example, if an administrator creates a
client subnet record "southasia" as explained in Client Subnet Record (section 3.1.8.1) and a DNS
Operation originates from a source having subnet 201.37.23.0/24, then this is a match for the DNS
Policy. If the criteria is invalid, the DNS server returns
DNS_ERROR_POLICY_INVALID_CRITERIA_CLIENT_SUBNET.

Server
Interface

Contains the IPv4 or IPv6 interface address on the DNS server. A DNS Operation message can be
matched on the basis of the interface on which the message is received. This criteria is identified as
described in DNS_RPC_CRITERIA_ENUM (section 2.2.15.1.1.6). For example, if the DNS server has
interfaces with addresses 10.172.1.1 and 192.168.1.1 and there is a DNS Policy with criteria
type=DnsPolicyCriteriaInterface and pCriteria= "EQ,10.172.1.1" then a DNS query of a DNS
operation that is received on the interface with address "192.168.1.1" will not be a match for the
DNS policy. If the criteria is invalid, the DNS server returns
DNS_ERROR_POLICY_INVALID_CRITERIA_INTERFACE.

Question
Type

Contains the QType of an incoming message in a DNS operation. For example, if the criteria is
"EQ,AAAA,CNAME" then the DNS policy is a match if the incoming query of the DNS Operation has
a QTYPE, as defined in [RFC1035] section 3.2.3, of AAAA or CNAME. If the criteria is invalid, the
DNS server returns DNS_ERROR_POLICY_INVALID_CRITERIA_QUERY_TYPE.

Network
Protocol

Specifies that the criteria for match of a DNS Policy is based on the Internet Protocol used (IPv4 or
IPv6) to send a DNS Query to the DNS server during a DNS Operation. For example, if there is a
criteria with type=DnsPolicyCriteriaNetworkProtocol and pCriteria="EQ,IPv4" and the DNS server
receives a query for a DNS operation on its IP v4 address then the DNS policy corresponding to this

http://go.microsoft.com/fwlink/?LinkId=90263
http://go.microsoft.com/fwlink/?LinkId=90264

306 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Policy
Criteria Definition

criteria is a match. Possible values that can be used in this criteria are "IPv4" and "IPv6". If the
criteria is invalid, the DNS server returns
DNS_ERROR_POLICY_INVALID_CRITERIA_NETWORK_PROTOCOL.

Transport
Protocol

Specifies that the criteria for match of a DNS Policy is based on the Transport Layer Protocol (TCP
or UDP) used to send a DNS Query to the DNS server during a DNS operation. For example, if there
is a criteria with type=DnsPolicyCriteriaTransportProtocol and pCriteria="EQ,TCP" and the DNS
server receives a query for a DNS operation using transport protocol TCP then the DNS policy
corresponding to this criteria is a match. Possible values that can be used in this criteria are "TCP"
and "UDP". If the criteria is invalid, the DNS server returns
DNS_ERROR_POLICY_INVALID_CRITERIA_TRANSPORT_PROTOCOL.

Time of
Day

Specifies that the criteria for match of a DNS Policy is based on the time of day in minutes when
the DNS server receives a DNS query during a DNS operation.For example, if there is a criteria with
type=DnsPolicyCriteriaTimeOfDay and pCriteria="EQ,16:00-18:00" and DNS policy action is
"DNSPolicyIgnore" and the DNS server receives a query for a DNS operation at a time between
16:00 and 18:00 local time of the DNS server, then the DNS policy corresponding to this criteria is
a match and since the action is DNSPolicyIgnore, the query will be dropped. For example, this can
give the DNS server a short load time. Possible values that can be used in this criteria include any
time span within the 24 hours of a day. If the criteria is invalid, the DNS server returns
DNS_ERROR_POLICY_INVALID_CRITERIA_TIME_OF_DAY.

3.1.8.3 DNS Policy Validation

The DNS Policy configured at the server level has certain restrictions. The following table describes the
valid settings:

DNS_RPC_POLICY_LEVEL
DNS_RPC_POLICY_TYPE
allowed

DNS_RPC_POLICY_ACTION_TYPE
allowed

DNS Policy
Content

DnsPolicyServerLevel DnsPolicyQueryProcessing DnsPolicyDeny

DnsPolicyIgnore

There MUST
be no DNS
Policy
content
specified for
DNS Policy
at the
server
level.

DnsPolicyServerLevel DnsPolicyRecursion DnsPolicyDeny

DnsPolicyIgnore

There MUST
be no DNS
Policy
content
specified.

DnsPolicyServerLevel DnsPolicyRecursion DnsPolicyAllow The DNS
Policy
content
field MUST
be
populated
with server
scopes.

DnsPolicyZoneLevel DnsPolicyQueryProcessing DnsPolicyDeny

DnsPolicyIgnore

There MUST
be no DNS
Policy

307 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

DNS_RPC_POLICY_LEVEL
DNS_RPC_POLICY_TYPE
allowed

DNS_RPC_POLICY_ACTION_TYPE
allowed

DNS Policy
Content

content
specified.

DnsPolicyZoneLevel DnsPolicyQueryProcessing DnsPolicyAllow The DNS
Policy
content
field MUST
be
populated
with zone
scopes
configured
for the
zone.

DnsPolicyZoneLevel DnsPolicyDeny

DnsPolicyIgnore

There MUST
be no DNS
Policy
content
specified.

DnsPolicyZoneLevel DnsPolicyAllow The DNS
Policy
content
field MUST
be
populated
with zone
scopes
configured
for the zone
from which
Zone
Transfer
will take
place.

DnsPolicyZoneLevel DnsPolicyDeny

DnsPolicyIgnore

There MUST
be no DNS
Policy
content
specified.

DnsPolicyZoneLevel DnsPolicyAllow The DNS
Policy
content
field MUST
be
populated
with zone
scopes
configured
for the zone
on which
update has
to happen.

308 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

4 Protocol Examples

4.1 Querying a DNS server DWORD property

The following example specifies how to query the value of a DWORD DNS server property. In this

example the value of the LogLevel property will be read.

The client calls R_DnssrvQuery2 and provides the following parameters:

 DNS_RPC_CURRENT_CLIENT_VER as the client version.

 Zero as the settings flag.

 A Unicode string containing the FQDN of the DNS server whose LogLevel property is to be read as
the server name.

 NULL as the zone name.

 "LogLevel" as the operation.

 A pointer to a DWORD where the DNS RPC type of the output data will be stored.

 A pointer to a DNSSRV_RPC_UNION (section 2.2.1.2.6) structure where the results of the DNS
RPC operation will be stored.

The DNS server will return ERROR_SUCCESS and additionally:

 The data type output value will be set to DNSSRV_TYPEID_DWORD.

 The DWORD member of the DNSSRV_RPC_UNION output structure will be set to the DNS server
version in DNSSRV_VERSION (section 2.2.4.2.1) format.

4.2 Modifying a DNS server DWORD property

The following example specifies how to set the value of a DWORD DNS server property. In this

example the value of the LogLevel property will be set.

The client formats a DNSSRV_RPC_UNION (section 2.2.1.2.6) structure to represent the request by
setting the Dword member of the union one of the ZONE_REQUEST_FILTER values. Use

 The NameAndParam member of the DNSSRV_RPC_UNION is set to point to a
DNS_RPC_NAME_AND_PARAM (section 2.2.1.2.5) structure (stored on the stack or elsewhere).

 The node name member of this DNS_RPC_NAME_AND_PARAM structure is set to "LogLevel".

 The dwParam member of this DNS_RPC_NAME_AND_PARAM structure is set to the desired
combination of logging level bit flags, formatted as a DWORD. For example, to request logging of
all incoming queries with full packet detail one would specify 0x0100E101
"(DNS_LOG_LEVEL_QUERY|DNS_LOG_LEVEL_QUESTIONS|DNS_LOG_LEVEL_RECV|DNS_LOG_LEV

EL_UDP|DNS_LOG_LEVEL_TCP|DNS_LOG_LEVEL_FULL_PACKETS)".

The client calls R_DnssrvOperation2 and provides the following parameters:

 DNS_RPC_CURRENT_CLIENT_VER as the client version.

 Zero as the settings flag.

 A Unicode string containing the FQDN of the DNS server whose LogLevel property is to be read as
the server name.

309 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 NULL as the zone name.

 Zero as the context.

 "ResetDwordProperty" as the operation.

 DNSSRV_TYPEID_NAME_AND_PARAM as the type ID.

 A pointer to the DNSSRV_RPC_UNION structure created above as the RPC data.

The DNS server will return ERROR_SUCCESS if the operation was successful or a Windows 32 error
code if the operation failed.

4.3 Creating a New Zone

The following example specifies how to create a new primary zone named "example.com". This zone
will be stored in a file (and not in the directory).

The client formats a DNSSRV_RPC_UNION structure to represent the request:

 The ZoneCreate member of the DNSSRV_RPC_UNION is set to point to a
DNS_RPC_ZONE_CREATE_INFO (section 2.2.5.2.7) structure (stored on the stack or elsewhere).
The entire structure is zeroed out prior to use.

 The pszZoneName of this DNS_RPC_ZONE_CREATE_INFO structure is set to "example.com".

 The dwZoneType member of this DNS_RPC_ZONE_CREATE_INFO structure is set to
DNS_ZONE_TYPE_PRIMARY.

The client calls R_DnssrvOperation2 and provides the following parameters:

 DNS_RPC_CURRENT_CLIENT_VER as the client version.

 Zero as the settings flag.

 A Unicode string containing the FQDN of the DNS server on which the zone is to be created.

 NULL as the zone name.

 Zero as the context.

 "ZoneCreate" as the operation.

 DNSSRV_TYPEID_ZONE_CREATE as the type ID.

 A pointer to the DNSSRV_RPC_UNION structure created above as the RPC data.

The DNS server will return ERROR_SUCCESS if the operation was successful or a Windows 32 error

code if the operation failed.

4.4 Enumerating Zones

The following example specifies how to enumerate all zones on the DNS server.

The client formats a DNSSRV_RPC_UNION structure to represent the request by setting the Dword

member of the union to any ZONE_REQUEST_FILTER value. Use ZONE_REQUEST_ALL_ZONES to
enumerate all DNS server zones (with the exception of autocreated zones and the cache zone).

The client calls R_DnssrvComplexOperation2 and provides the following parameters:

 DNS_RPC_CURRENT_CLIENT_VER as the client version.

310 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 Zero as the settings flag.

 A Unicode string containing the FQDN of the DNS server on which the zone is to be enumerated.

 NULL as the zone name.

 Zero as the context.

 "EnumZones" as the operation.

 DNSSRV_TYPEID_DWORD as in the input type ID.

 A pointer to the DNSSRV_RPC_UNION structure created above as the input RPC data.

 A pointer to a DWORD where the DNS RPC type of the output data will be stored.

 A pointer to a DNSSRV_RPC_UNION structure where the results of the RPC operation will be
stored.

The DNS server will return ERROR_SUCCESS if the operation was successful or a Windows 32 error

code if the operation failed. If the operation was successful then the output type ID will be set to
DNSSRV_TYPEID_ZONE_LIST and the ZoneList member of the output DNSSRV_RPC_UNION structure
will be set to the zone enumeration results. The client can iterate the elements of ZoneList.ZoneArray
in the union to examine the zones returned by the enumeration.

After the client is finished with the zone enumeration result it does the following:

 Call MIDL_user_free on the pszZoneName and pszDpFqdn member of each element of the

ZoneList.ZoneArray in the DNSSRV_RPC_UNION structure.

 Call MIDL_user_free on each pointer in the ZoneList.ZoneArray.

 Call MIDL_user_free on the ZoneList.ZoneArray pointer itself.

4.5 Creating and Deleting a DNS Record

The following example specifies how to create a DNS record representing the IPv4 address "1.2.3.4"
for the host named "host1" in the existing primary zone named "example.com". The new record will
have a TTL of one hour.

The client formats a DNS_RPC_RECORD structure (section 2.2.2.2.5), stored on the stack or
elsewhere using a buffer at least large enough to hold the DNS_RPC_RECORD structure plus the
DNS_RPC_RECORD_DATA in the Buffer member, to represent the new record data as follows:

 wDataLength is set to the size of the data that will be stored in the Buffer member. In this case,
because the record data will be a DNS_RPC_RECORD_A (section 2.2.2.2.4.1) structure, the value
of wDataLength is set to 4.

 wType is set to the desired record type (section 2.2.2.1.1), in this case DNS_TYPE_A.

 dwFlags, dwSerial, dwTimeStamp, and dwReserved are set to zero.

 dwTtlSeconds is set to the desired TTL value in seconds, in this case 3600 for one hour.

 The client formats the Buffer member as a DNS_RPC_RECORD_A structure. The byte values 0x01,

0x02, 0x03, and 0x04 are set in the four bytes of memory starting at the offset of Buffer.

The client calls R_DnssrvUpdateRecord2 and provides the following parameters:

 DNS_RPC_CURRENT_CLIENT_VER as the client version.

311 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 Zero as the settings flag.

 A Unicode string containing the FQDN of the DNS server on which the operation is to be

performed.

 "example.com" as the zone name.

 "host1" as the node name.

 A pointer to the DNS_RPC_RECORD created above as the pAddRecord parameter.

 A NULL pointer as the pDeleteRecord pointer.

The DNS server will return ERROR_SUCCESS if the record was successfully created or a Windows error
code on failure.

To delete this DNS record, format a DNS_RPC_RECORD structure exactly as described above, and call
R_DnssrvUpdateRecord2 in exactly the same way but pass NULL as the pAddRecord parameter and

the DNS_RPC_RECORD pointer as the pDeleteRecord.

4.6 Creating a Zone Scope

The following example specifies how to create a new zone scope named "example_americas" in

example.com created in section 4.3. This operation is allowed on both file-backed and Active Directory
integrated zones.

The client calls R_DnssrvOperation2 (section 3.1.4.6) and provides the following parameters:

 DNS_RPC_CURRENT_CLIENT_VER (section 2.2.1.2.1) as the client version.

 Zero as the settings flag.

 A Unicode string containing the FQDN of the DNS server on which the zone is to be created.

 "example.com" as the zone name.

 Zero as the context.

 CreateZonescope as the operation.

 DNSSRV_TYPEID_ZONE_SCOPE_CREATE as the type ID.

 Create a DNS_RPC_ZONE_SCOPE_CREATE_INFO_V1 (section 2.2.13.2.2.1) structure with dwFlags
as zero and pwszScopeName as "example_americas". Pass this structure as RPC data.

The DNS server returns ERROR_SUCCESS if the operation was successful or a Windows error code if

the operation fails.

4.7 Deleting a Zone Scope

The following example specifies how to delete an existing zone scope named "example_americas" in

example.com created in section 4.6. This operation is allowed on both file-backed and Active Directory

integrated zones.

The client calls R_DnssrvOperation2 (section 3.1.4.6) and provides the following parameters:

 DNS_RPC_CURRENT_CLIENT_VER (section 2.2.1.2.1) as the client version.

 Zero as the settings flag.

 A Unicode string containing the FQDN of the DNS server on which the zone is to be created.

312 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 "example.com" as the zone name.

 Zero as the context.

 DeleteZonescope as the operation.

 DNSSRV_TYPEID_LPWSTR as the type ID.

 Create a Unicode string "example_americas" and pass this as RPC Data.

The DNS server returns ERROR_SUCCESS if the operation was successful or a Windows error code if
the operation failed.

4.8 Enumerating Zone Scopes

The following example specifies how to enumerate all zone scopes on a zone example.com on the DNS
server.

The client calls R_DnssrvComplexOperation2 (section 3.1.4.8) and provides the following parameters:

 DNS_RPC_CURRENT_CLIENT_VER (section 2.2.1.2.1) as the client version.

 Zero as the settings flag.

 A Unicode string containing the FQDN of the DNS server on which the zone scopes are to be

enumerated.

 "example.com" as the zone name.

 Zero as the context.

 EnumZonescopes as the operation.

 DNSSRV_TYPEID_NULL as the input type ID.

 NULL as the input RPC data.

 A pointer to a DWORD where the DNS RPC type of the output data will be stored.

 A pointer to a DNSSRV_RPC_UNION structure where the results of the RPC operation will be
stored.

The DNS server returns ERROR_SUCCESS if the operation is successful or a Windows error code if the
operation fails. If the operation is successful, the output type ID will be set to
DNSSRV_TYPEID_ZONE_SCOPE_ENUM and the ZonescopeList member of the output
DNSSRV_RPC_UNION structure will be set to the zone scope enumeration results. The client can

iterate the elements of ZonescopeList.ZoneArray in the union to examine the zones returned by the
enumeration.

After the client is finished with the zone scope enumeration result, it calls MIDL_user_free on each
pointer in the ZonescopeList.ZonescopeArray.

4.9 Creating and Deleting a DNS Record in a Zone Scope

The following example specifies how to create a DNS record representing the IPv4 address "1.2.3.4"
for the host named "host1" in the existing zone scope "example_americas" on the primary zone
named "example.com". The new record will have a TTL of one hour.

The client formats a DNS_RPC_RECORD structure (section 2.2.2.2.5), stored on the stack or
elsewhere using a buffer at least large enough to hold the DNS_RPC_RECORD structure plus the

313 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

DNS_RPC_RECORD_DATA (section 2.2.2.2.4) in the buffer member, to represent the new record data
as follows:

 wDataLength is set to the size of the data that will be stored in the buffer member. In this case,
because the record data will be a DNS_RPC_RECORD_A structure (section 2.2.2.2.4.1), the value

of wDataLength is set to 4.

 wType is set to the desired record type (section 2.2.2.1.1), in this case DNS_TYPE_A.

 dwFlags, dwSerial, dwTimeStamp, and dwReserved are set to zero.

 dwTtlSeconds is set to the desired TTL value in seconds, in this case 3600 for one hour.

 The client formats the buffer member as a DNS_RPC_RECORD_A structure. The byte values
0x01, 0x02, 0x03, and 0x04 are set in the four bytes of memory starting at the offset of the
buffer.

The client calls R_DnssrvUpdateRecord3 and provides the following parameters:

 DNS_RPC_CURRENT_CLIENT_VER (section 2.2.1.2.1) as the client version.

 Zero as the settings flag.

 A Unicode string containing the FQDN of the DNS server on which the operation is to be
performed.

 "example.com" as the zone name.

 "host1" as the node name.

 A pointer to the DNS_RPC_RECORD created above as the pAddRecord parameter.

 A NULL pointer as the pDeleteRecord pointer.

 "example_americas" as the zone scope name. If this is provided as NULL, the record is added to

the default zone scope maintaining the legacy behavior.

The DNS server returns ERROR_SUCCESS if the record is successfully created or a Windows error code
on failure.

To delete this DNS record, format a DNS_RPC_RECORD structure exactly as described above, and
call R_DnssrvUpdateRecord3 (section 3.1.4.11) in exactly the same way, but pass NULL as the
pAddRecord parameter and the DNS_RPC_RECORD pointer as the pDeleteRecord.

4.10 Creating a Policy

The following example describes how to create a new server level policy named
"DenyAllQueryForContosso.com" to deny any query for QName under contoso.com that asks explicitly
for type=RRSIG.

The client calls R_DnssrvOperation (section 3.1.4.1) and provides the following parameters:

 A Unicode string containing the FQDN of the DNS server on which the policy is to be created.

 NULL as the value of pszZone.

 Zero as the context.

 CreatePolicy as the operation.

 DNSSRV_TYPEID_POLICY as the type ID.

314 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Create a DNS_RPC_POLICY structure with pwszPolicyName as "DenyAllQueryForContosso.com",
level as DnsPolicyServerLevel, appliesOn as DnsPolicyQueryProcessing, action as DnsPolicyDeny,

condition as DNS_AND, isEnabled as 1, dwProcessingOrder as 0, pszZoneName as NULL, pContentList
as NULL, flags as 0, dwCriteriaCount as 2. The pCriteriaList list contains two DNS_RPC_CRITERIA

members having the values {type=DnsPolicyCriteriaFqdn; pCriteria="EQ,*.contoso.com"} and
{type=DnsPolicyCriteriaQttype; pCriteria="EQ,RRSIG"}. Pass this RPC data structure as pData.

The DNS server returns ERROR_SUCCESS if the operation was successful or a Windows error code if
the operation fails.

4.11 Updating a Policy

The following example describes how to update the server level policy named
"DenyAllQueryForContosso.com" created in Creating a Policy (section 4.10).

The client calls R_DnssrvOperation (section 3.1.4.1) and provides the following parameters:

 A Unicode string containing the FQDN of the DNS server on which the policy is to be updated.

 NULL as the value of pszZone.

 Zero as the context.

 UpdatePolicy as the operation.

 DNSSRV_TYPEID_POLICY as the type ID.

Create a DNS_RPC_POLICY structure with pwszPolicyName as "DenyAllQueryForContosso.com",
level as DnsPolicyServerLevel, appliesOn as DnsPolicyQueryProcessing, action as DnsPolicyDeny.
Other properties can be set if they are being updated. Set the flags field for each property of
DNS_RPC_POLICY to be updated, as defined in Constants (section 2.2.15.1.1). Pass this RPC data

structure as pData.

The DNS server returns ERROR_SUCCESS if the operation was successful or a Windows error code if

the operation fails.

4.12 Deleting a Policy

The following example describes how to delete the server level policy named
"DenyAllQueryForContosso.com" previously created.

The client calls R_DnssrvOperation (section 3.1.4.1) and provides the following parameters:

 A Unicode string containing the FQDN of the DNS server on which the policy is to be deleted.

 NULL as the value of pszZone.

 Zero as the context.

 DeletePolicy as the operation.

 DNSSRV_TYPEID_LPWSTR as the type ID.

 A null-terminated Unicode string containing the name of the policy to be deleted
("DenyAllQueryForContosso.com") as pData.

The DNS server returns ERROR_SUCCESS if the operation was successful or a Windows error code if
the operation fails.

315 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

4.13 Enumerating Policies

The following example describes how to enumerate all the server level policies on the DNS server.

The client calls R_DnssrvComplexOperation (section 3.1.4.3) and provides the following parameters:

 A Unicode string containing the FQDN of the DNS server on which the policies are to be
enumerated.

 NULL as the value of pszZone.

 EnumeratePolicy as the operation.

 DNSSRV_TYPEID_NULL as the type ID.

 NULL as the value of pDataIn.

The DNS server returns ERROR_SUCCESS if the operation was successful or a Windows error code if

the operation fails. If the operation is successful, pdwTypeOut will be of type

DNSSRV_TYPEID_POLICY_ENUM, and ppDataOut will point to PDNS_RPC_ENUMERATE_POLICY_LIST.

4.14 Creating a Client Subnet Record

The following example describes how to create a new client subnet record named "Europe" that
contains the addresses 20.10.0.0/16 and 2001:db8:abcd:0022::0/64.

The client calls R_DnssrvOperation (section 3.1.4.1) and provides the following parameters:

 A Unicode string containing the FQDN of the DNS server on which the client subnet record is to be
created.

 NULL as the value of pszZone.

 Zero as the context.

 CreateClientSubnetRecord as the operation.

 DNSSRV_TYPEID_CLIENT_SUBNET_RECORD as the type ID.

Create a DNS_RPC_CLIENT_SUBNET_RECORD (section 2.2.15.2.1) structure with
pwszClientSubnetName as "Europe", a Unicode string containing the name of the client subnet record
to be created. Set pIPAddr and pIPv6Addr to the addresses 20.10.0.0 and 2001:db8:abcd:0022::0,
respectively. Set SubnetLength to 16 and 64, respectively, to specify the subnet length of the IP
addresses sent.

Pass this RPC data structure as pData.

The DNS server returns ERROR_SUCCESS if the operation is successful or a Windows error code if the
operation fails.

4.15 Deleting a Client Subnet Record

The following example describes how to delete the client subnet record "Europe" created in Creating a
Client Subnet Record (section 4.14).

The client calls R_DnssrvOperation (section 3.1.4.1) and provides the following parameters:

 A Unicode string containing the FQDN of the DNS server on which the client subnet record is to be
deleted.

316 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 NULL as the value of pszZone.

 Zero as the context.

 DeleteClientSubnetRecord as the operation.

 DNSSRV_TYPEID_LPWSTR as the type ID.

 A null-terminated Unicode string containing the name of the client subnet record to be deleted
("Europe") as pData.

The DNS server returns ERROR_SUCCESS if the operation is successful or a Windows error code if the
operation fails.

4.16 Enumerating Client Subnet Records

The following example describes how to enumerate all the client subnet records on the DNS server.

The client calls R_DnssrvComplexOperation (section 3.1.4.3) and provides the following parameters:

 A Unicode string containing the FQDN of the DNS server on which the client subnet records are to
be enumerated.

 NULL as the value of pszZone.

 EnumerateClientSubnetRecord as the operation.

 DNSSRV_TYPEID_NULL as the type ID.

 NULL as the value of pDataIn.

The DNS server returns ERROR_SUCCESS if the operation is successful or a Windows error code if the
operation fails. If the operation is successful, pdwTypeOut will be of type
DNSSRV_TYPEID_UNICODE_STRING_LIST, and ppDataOut will point to a structure of type
PDNS_RPC_UNICODE_STRING_LIST.

4.17 Setting Response Rate Limiting with Enabled Mode

The following example describes how to set Response Rate Limiting with default values for parameters
and enabled mode.

The client calls R_DnssrvOperation (section 3.1.4.1) and provides the following parameters:

 A Unicode string containing the FQDN of the DNS server on which the Response Rate Limiting is to
be configured.

 NULL as the value of pszZone.

 Zero as the context.

 SetRRL as the operation.

 DNSSRV_TYPEID_RRL as the type ID.

Create a DNS_RPC_RRL_PARAMS structure (section 2.2.16.2.1) with eMode as "DnsRRLEnabled", an
enum value containing the value of the RRL settings to be created. Set the dwFlags field for the
mode property of the DNS_RPC_RRL_PARAMS to be updated, as defined in section 2.2.16.1.1.

Pass this RPC data structure as pData.

317 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

The DNS server returns ERROR_SUCCESS if the operation is successful or a Windows error code if the
operation fails.

4.18 Getting Response Rate Limiting Settings

The following example describes how to enumerate the client subnet records on the DNS server.

The client calls R_DnssrvComplexOperation (section 3.1.4.3) and provides the following parameters:

 A Unicode string containing the FQDN of the DNS server on which the client subnet records are to
be enumerated.

 NULL as the value of pszZone.

 GetRRLInfo as the operation.

 DNSSRV_TYPEID_NULL as the type ID.

 NULL as the value of pDataIn.

The DNS server returns ERROR_SUCCESS if the operation is successful or a Windows error code if the
operation fails. If the operation is successful, pdwTypeOut will be of type DNSSRV_TYPEID_RRL, and
ppDataOut will point to a structure of type PDNS_RPC_RRL_PARAMS.

4.19 Creating a Virtualization Instance

The following example describes how to create a new virtualization instance named "example_vi1" in
the DNS server.

The client calls R_DnssrvOperation4 (section 3.1.4.16) and provides the following parameters:

 DNS_RPC_CURRENT_CLIENT_VER (section 2.2.1.2.1) as the client version.

 Zero as the settings flag.

 A Unicode string containing the FQDN of the DNS server on which the virtualization instance is to
be created.

 Zero as the context.

 CreateVirtualizationInstance as the operation.

 DNSSRV_TYPEID_VIRTUALIZATION_INSTANCE as the type ID.

 Create a DNS_RPC_VIRTUALIZATION_INSTANCE (section 2.2.17.1.1) structure with dwFlags as
zero and pwszVirtualizationID as "example_vi1". Pass this structure as RPC data.

The DNS server returns ERROR_SUCCESS if the operation was successful or a Windows error code if
the operation fails.

4.20 Deleting a Virtualization Instance

The following example describes how to delete a new virtualization instance named "example_vi1" in
DNS server.

The client calls R_DnssrvOperation4 (section 3.1.4.16) and provides the following parameters:

 DNS_RPC_CURRENT_CLIENT_VER (section 2.2.1.2.1) as the client version.

 Zero as the settings flag.

318 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 A Unicode string containing the FQDN of the DNS server on which the virtualization instance is to
be deleted.

 Zero as the context.

 DeleteVirtualizationInstance as the operation.

 DNSSRV_TYPEID_VIRTUALIZATION_INSTANCE as the type ID.

 Create a DNS_RPC_VIRTUALIZATION_INSTANCE (section 2.2.17.1.1) structure with
pwszVirtualizationID as "example_vi1". This operation will delete the zones and zone scopes under
the virtualization instance. Value of dwFlags can be set to DNS_RPC_FLAG_PRESERVE_ZONE_FILE
if admin wants to preserve the zone files of zones under a virtualization instance. Pass this
structure as RPC data.

The DNS server returns ERROR_SUCCESS if the operation was successful or a Windows error code if

the operation fails.

4.21 Creating a Zone in a Virtualization Instance

The following example describes how to create a new zone "example.com" under a virtualization

instance named "example_vi1" in the DNS server.

The client calls R_DnssrvOperation4 (section 3.1.4.16) and provides the following parameters:

 DNS_RPC_CURRENT_CLIENT_VER (section 2.2.1.2.1) as the client version.

 Zero as the settings flag.

 A Unicode string containing the FQDN of the DNS server on which the zone is to be created.

 A Unicode string containing the name of the virtualization instance under which the zone is to be
created, in pwszVirtualizationInstanceID. In the example, this contains "example_vi1".

 Zero as the context.

 ZoneCreate as the operation.

 DNSSRV_TYPEID_ZONE_CREATE as the type ID.

 Create a DNS_RPC_ZONE_CREATE_INFO (section 2.2.5.2.7) structure with pszZoneName as
"example.com". Pass this structure as RPC data. You can create only file-backed Primary Zones
under a virtualization instance.

The DNS server returns ERROR_SUCCESS if the operation was successful or a Windows error code if
the operation fails.

4.22 Enumerating Zone Scopes in the Virtualization Instance Zone

The following example describes how to enumerate zone scopes under zone "example.com", which lies

under a virtualization instance named "example_vi1" in the DNS server.

The client calls R_DnssrvComplexOperation3 (section 3.1.4.15) and provides the following
parameters:

 DNS_RPC_CURRENT_CLIENT_VER (section 2.2.1.2.1) as the client version.

 Zero as the settings flag.

319 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 A Unicode string containing the FQDN of the DNS server on which the zones scopes are to be
enumerated.

 A Unicode string containing the name of the virtualization instance under which zone scopes are to
be enumerated, in pwszVirtualizationInstanceID. In our example, this contains "example_vi1".

 "example.com" as pszZone.

 Zero as the context.

 EnumZoneScopes as the operation.

 DNSSRV_TYPEID_NULL as the value of dwTypeIn.

 NULL as the value of pDataIn.

 Address of a dword in pdwTypeOut.

 Create a pointer to DNS_RPC_ENUM_ZONE_SCOPE_LIST (section 2.2.13.2.1) structure. Pass the

address of this structure as RPC data.

The DNS server returns ERROR_SUCCESS if the operation was successful or a Windows error code if
the operation fails.

4.23 Adding and Deleting a Record in the Virtualization Instance Zone

The following example describes how to create a DNS record representing the IPv4 address "1.2.3.4"
for the host named "host1" in the existing primary zone named "example.com" in virtualization
instance "example_vi1". The new record will have a TTL of one hour.

The client formats a DNS_RPC_RECORD structure (section 2.2.2.2.5), stored on the stack or
elsewhere, using a buffer that is large enough to hold the DNS_RPC_RECORD structure plus the
DNS_RPC_RECORD_DATA in the Buffer member, to represent the new record data as follows:

 wDataLength is set to the size of the data that will be stored in the Buffer member. In this case,

because the record data is a DNS_RPC_RECORD_A (section 2.2.2.2.4.1) structure, the value of
wDataLength is set to 4.

 wType is set to the desired record type (section 2.2.2.1.1), in this case DNS_TYPE_A.

 dwFlags, dwSerial, dwTimeStamp, and dwReserved are set to zero.

 dwTtlSeconds is set to the desired TTL value in seconds, in this case 3600 for one hour.

 The client formats the Buffer member as a DNS_RPC_RECORD_A structure. The byte values 0x01,
0x02, 0x03, and 0x04 are set in the four bytes of memory starting at the offset of Buffer.

The client calls R_DnssrvUpdateRecord4 (section 3.1.4.18) and provides the following parameters:

 DNS_RPC_CURRENT_CLIENT_VER as the client version.

 Zero as the settings flag.

 A Unicode string containing the FQDN of the DNS server on which the operation is to be
performed.

 A Unicode string containing the name of the virtualization instance under which this record is to be
created. In this example it is "example_vi1".

 "example.com" as the zone name.

320 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 "host1" as the node name.

 A pointer to the DNS_RPC_RECORD created above as the pAddRecord parameter.

 A NULL pointer as the pDeleteRecord pointer.

The DNS server returns ERROR_SUCCESS if the record was successfully created or a Windows error

code on failure.

To delete this DNS record, format a DNS_RPC_RECORD structure as described above, and call
R_DnssrvUpdateRecord4 in exactly the same way but pass NULL as the pAddRecord parameter and
the DNS_RPC_RECORD pointer as the pDeleteRecord.

321 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

5 Security

5.1 Security Considerations for Implementers

This protocol allows any user to establish a connection to the RPC server. The protocol uses the

underlying RPC protocol to retrieve the identity of the caller that made the method call as specified in
[MS-RPCE], section 3.3.3.4.3. Clients create an authenticated RPC connection. Servers use this
identity to perform method-specific access checks.

5.1.1 Security Considerations Specific to the DNS Server Management Protocol

DNS data and DNS server operations exposed by the DNS Server Management Protocol are to be
protected by access checks based on the identity of the RPC client. DNS server settings, DNS zones,
DNS records, and the Application Directory Partition Table can each be protected by a different access
control list to allow for delegation of administrative control over the DNS server.

It is important that implementations of the DNS Server Management Protocol do not allow anonymous
RPC connections and protect DNS access to all data and operations with access control checks based

on client identity.

It is also important for clients and servers not to use RPC over named pipes as it is vulnerable to man-
in-the-middle attacks. Use TCP/IP RPC instead.

The DNS Server Management Protocol does not require clients to request
RPC_C_AUTHN_LEVEL_PKT_PRIVACY or servers to enforce it. If privacy of DNS management traffic is
important, consider using IPSec or another technology to provide encryption of data at a lower layer.

5.2 Index of Security Parameters

Security Parameter Section

RPC_C_AUTHN_GSS_NEGOTIATE Section 2.1.1

RPC_C_AUTHN_GSS_KERBEROS Section 2.1.1

RPC_C_AUTHN_WINNT Section 2.1.1

RPC_C_IMP_LEVEL_IMPERSONATE Section 2.1.2

%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15

322 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

6 Appendix A: Full IDL

For ease of implementation the full IDL is provided below, where "ms-rpce.idl" refers to the IDL found
in [MS-RPCE] Appendix A. The syntax uses the IDL syntax extensions defined in [MS-RPCE] section
2.2.4. For example, as noted in [MS-RPCE] section 2.2.4.9, a pointer_default declaration is not
required and pointer_default(unique) is assumed.

 import "ms-dtyp.idl";

 typedef struct _DnsStatHeader
 {
 DWORD StatId;
 WORD wLength;
 BOOLEAN fClear;
 UCHAR fReserved;
 }DNSSRV_STAT_HEADER, *PDNSSRV_STAT_HEADER;

 typedef struct _DnsStat
 {
 DNSSRV_STAT_HEADER Header;
 BYTE Buffer[1];
 }DNSSRV_STAT, *PDNSSRV_STAT, *PDNSSRV_STATS;

 typedef struct _IP4_ARRAY
 {
 DWORD AddrCount;
 [size_is(AddrCount)] DWORD AddrArray[];
 }
 IP4_ARRAY, *PIP4_ARRAY;

 typedef struct _DnsAddr
 {
 CHAR MaxSa[32];
 DWORD DnsAddrUserDword[8];
 }
 DNS_ADDR, *PDNS_ADDR;

 typedef struct _DnsAddrArray
 {
 DWORD MaxCount;
 DWORD AddrCount;
 DWORD Tag;
 WORD Family;
 WORD WordReserved;
 DWORD Flags;
 DWORD MatchFlag;
 DWORD Reserved1;
 DWORD Reserved2;

 [size_is(AddrCount)] DNS_ADDR AddrArray[];
 }
 DNS_ADDR_ARRAY, *PDNS_ADDR_ARRAY;

 //
 // RPC buffer type for returned data
 //

 typedef struct _DnssrvRpcBuffer
 {
 DWORD dwLength;
 [size_is(dwLength)] BYTE Buffer[];
 }
 DNS_RPC_BUFFER, *PDNS_RPC_BUFFER;

 //
 // Server data types

%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15

323 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 //

 typedef struct _DnsRpcServerInfoW2K

 {
 // version
 // basic configuration flags

 DWORD dwVersion;
 UCHAR fBootMethod;
 BOOLEAN fAdminConfigured;
 BOOLEAN fAllowUpdate;
 BOOLEAN fDsAvailable;

 //
 // pointer section
 //

 [string] char * pszServerName;

 // DS container

 [string] wchar_t * pszDsContainer;

 // IP interfaces

 PIP4_ARRAY aipServerAddrs;
 PIP4_ARRAY aipListenAddrs;

 // forwarders

 PIP4_ARRAY aipForwarders;

 // future extensions

 PDWORD pExtension1;
 PDWORD pExtension2;
 PDWORD pExtension3;
 PDWORD pExtension4;
 PDWORD pExtension5;

 //
 // DWORD section
 //

 // logging

 DWORD dwLogLevel;
 DWORD dwDebugLevel;

 // configuration DWORDs

 DWORD dwForwardTimeout;
 DWORD dwRpcProtocol;
 DWORD dwNameCheckFlag;
 DWORD cAddressAnswerLimit;
 DWORD dwRecursionRetry;
 DWORD dwRecursionTimeout;
 DWORD dwMaxCacheTtl;
 DWORD dwDsPollingInterval;

 // aging / scavenging

 DWORD dwScavengingInterval;
 DWORD dwDefaultRefreshInterval;
 DWORD dwDefaultNoRefreshInterval;

 DWORD dwReserveArray[10];

324 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 //
 // BYTE section
 //
 // configuration flags

 BOOLEAN fAutoReverseZones;
 BOOLEAN fAutoCacheUpdate;

 // recursion control

 BOOLEAN fRecurseAfterForwarding;
 BOOLEAN fForwardDelegations;
 BOOLEAN fNoRecursion;
 BOOLEAN fSecureResponses;

 // lookup control

 BOOLEAN fRoundRobin;
 BOOLEAN fLocalNetPriority;

 // BIND compatibility and mimicking

 BOOLEAN fBindSecondaries;
 BOOLEAN fWriteAuthorityNs;

 // Bells and whistles

 BOOLEAN fStrictFileParsing;
 BOOLEAN fLooseWildcarding;

 // aging / scavenging

 BOOLEAN fDefaultAgingState;
 BOOLEAN fReserveArray[15];
 }
 DNS_RPC_SERVER_INFO_W2K, *PDNS_RPC_SERVER_INFO_W2K;

 typedef struct _DnsRpcServerInfoDotNet
 {
 DWORD dwRpcStructureVersion;
 DWORD dwReserved0;

 // basic configuration flags

 DWORD dwVersion;
 UCHAR fBootMethod;
 BOOLEAN fAdminConfigured;
 BOOLEAN fAllowUpdate;
 BOOLEAN fDsAvailable;

 //
 // pointer section
 //

 [string] char * pszServerName;

 // DS container

 [string] wchar_t * pszDsContainer;

 // IP interfaces

 PIP4_ARRAY aipServerAddrs;
 PIP4_ARRAY aipListenAddrs;

 // forwarders

 PIP4_ARRAY aipForwarders;

325 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 // logging

 PIP4_ARRAY aipLogFilter;
 [string] wchar_t * pwszLogFilePath;

 // Server domain/forest

 [string] char * pszDomainName; // UTF-8 FQDN
 [string] char * pszForestName; // UTF-8 FQDN

 // Built-in directory partitions

 [string] char * pszDomainDirectoryPartition; // UTF-8 FQDN
 [string] char * pszForestDirectoryPartition; // UTF-8 FQDN

 // future extensions

 [string] char * pExtensions[6];

 //
 // DWORD section
 //

 // logging

 DWORD dwLogLevel;
 DWORD dwDebugLevel;

 // configuration DWORDs

 DWORD dwForwardTimeout;
 DWORD dwRpcProtocol;
 DWORD dwNameCheckFlag;
 DWORD cAddressAnswerLimit;
 DWORD dwRecursionRetry;
 DWORD dwRecursionTimeout;
 DWORD dwMaxCacheTtl;
 DWORD dwDsPollingInterval;
 DWORD dwLocalNetPriorityNetMask;

 // aging and scavenging

 DWORD dwScavengingInterval;
 DWORD dwDefaultRefreshInterval;
 DWORD dwDefaultNoRefreshInterval;
 DWORD dwLastScavengeTime;

 // more logging

 DWORD dwEventLogLevel;
 DWORD dwLogFileMaxSize;

 // Active Directory information

 DWORD dwDsForestVersion;
 DWORD dwDsDomainVersion;
 DWORD dwDsDsaVersion;

 DWORD dwReserveArray[4];

 //
 // BYTE section
 //
 // configuration flags

 BOOLEAN fAutoReverseZones;
 BOOLEAN fAutoCacheUpdate;

326 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 // recursion control

 BOOLEAN fRecurseAfterForwarding;
 BOOLEAN fForwardDelegations;
 BOOLEAN fNoRecursion;

 BOOLEAN fSecureResponses;

 // lookup control

 BOOLEAN fRoundRobin;
 BOOLEAN fLocalNetPriority;

 // BIND compatibility and mimicking

 BOOLEAN fBindSecondaries;
 BOOLEAN fWriteAuthorityNs;

 // Bells and whistles

 BOOLEAN fStrictFileParsing;
 BOOLEAN fLooseWildcarding;

 // aging \ scavenging

 BOOLEAN fDefaultAgingState;

 BOOLEAN fReserveArray[15];
 }
 DNS_RPC_SERVER_INFO_DOTNET, *PDNS_RPC_SERVER_INFO_DOTNET;

 typedef struct _DnsRpcServerInfoLonghorn
 {
 DWORD dwRpcStructureVersion;
 DWORD dwReserved0;

 // basic configuration flags

 DWORD dwVersion;
 UCHAR fBootMethod;
 BOOLEAN fAdminConfigured;
 BOOLEAN fAllowUpdate;
 BOOLEAN fDsAvailable;

 //
 // pointer section
 //

 [string] char * pszServerName;

 // DS container

 [string] wchar_t * pszDsContainer;

 // IP interfaces

 PDNS_ADDR_ARRAY aipServerAddrs;
 PDNS_ADDR_ARRAY aipListenAddrs;

 // forwarders

 PDNS_ADDR_ARRAY aipForwarders;

 // logging

 PDNS_ADDR_ARRAY aipLogFilter;
 [string] wchar_t * pwszLogFilePath;

327 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 // Server domain/forest

 [string] char * pszDomainName; // UTF-8 FQDN
 [string] char * pszForestName; // UTF-8 FQDN

 // Built-in directory partitions

 [string] char * pszDomainDirectoryPartition; // UTF-8 FQDN
 [string] char * pszForestDirectoryPartition; // UTF-8 FQDN

 // future extensions

 [string] char * pExtensions[6];

 //
 // DWORD section
 //

 // logging

 DWORD dwLogLevel;
 DWORD dwDebugLevel;

 // configuration DWORDs

 DWORD dwForwardTimeout;
 DWORD dwRpcProtocol;
 DWORD dwNameCheckFlag;
 DWORD cAddressAnswerLimit;
 DWORD dwRecursionRetry;
 DWORD dwRecursionTimeout;
 DWORD dwMaxCacheTtl;
 DWORD dwDsPollingInterval;
 DWORD dwLocalNetPriorityNetMask;

 // aging and scavenging

 DWORD dwScavengingInterval;
 DWORD dwDefaultRefreshInterval;
 DWORD dwDefaultNoRefreshInterval;
 DWORD dwLastScavengeTime;

 // more logging

 DWORD dwEventLogLevel;
 DWORD dwLogFileMaxSize;

 // Active Directory information

 DWORD dwDsForestVersion;
 DWORD dwDsDomainVersion;
 DWORD dwDsDsaVersion;
 BOOLEAN fReadOnlyDC;

 DWORD dwReserveArray[3];

 //
 // BYTE section
 //
 // configuration flags

 BOOLEAN fAutoReverseZones;
 BOOLEAN fAutoCacheUpdate;

 // recursion control

 BOOLEAN fRecurseAfterForwarding;
 BOOLEAN fForwardDelegations;

328 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 BOOLEAN fNoRecursion;
 BOOLEAN fSecureResponses;

 // lookup control

 BOOLEAN fRoundRobin;
 BOOLEAN fLocalNetPriority;

 // BIND compatibility and mimicking

 BOOLEAN fBindSecondaries;
 BOOLEAN fWriteAuthorityNs;

 // Bells and whistles

 BOOLEAN fStrictFileParsing;
 BOOLEAN fLooseWildcarding;

 // aging \ scavenging

 BOOLEAN fDefaultAgingState;

 BOOLEAN fReserveArray[15];
 }
 DNS_RPC_SERVER_INFO_LONGHORN, *PDNS_RPC_SERVER_INFO_LONGHORN, DNS_RPC_SERVER_INFO,
*PDNS_RPC_SERVER_INFO;

 typedef struct _DnssrvRpcForwardersW2K
 {
 DWORD fRecurseAfterForwarding;
 DWORD dwForwardTimeout;
 PIP4_ARRAY aipForwarders;
 }
 DNS_RPC_FORWARDERS_W2K, *PDNS_RPC_FORWARDERS_W2K;

 typedef struct _DnssrvRpcForwardersDotNet
 {
 DWORD dwRpcStructureVersion;
 DWORD dwReserved0;
 DWORD fRecurseAfterForwarding;
 DWORD dwForwardTimeout;
 PIP4_ARRAY aipForwarders;
 }
 DNS_RPC_FORWARDERS_DOTNET, *PDNS_RPC_FORWARDERS_DOTNET;

 typedef struct _DnssrvRpcForwardersLonghorn
 {
 DWORD dwRpcStructureVersion;
 DWORD dwReserved0;
 DWORD fRecurseAfterForwarding;
 DWORD dwForwardTimeout;
 PDNS_ADDR_ARRAY aipForwarders;
 }
 DNS_RPC_FORWARDERS_LONGHORN, *PDNS_RPC_FORWARDERS_LONGHORN, DNS_RPC_FORWARDERS,
*PDNS_RPC_FORWARDERS;

 //
 // Basic zone data
 //

 //typedef struct _DnssrvRpcZoneFlags
 //{
 // DWORD Paused : 1;
 // DWORD Shutdown : 1;
 // DWORD Reverse : 1;
 // DWORD AutoCreated : 1;
 // DWORD DsIntegrated : 1;
 // DWORD Aging : 1;

329 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 // DWORD Update : 2;
 // DWORD ReadOnly : 1;
 // DWORD UnUsed : 23;
 //}
 //DNS_RPC_ZONE_FLAGS, *PDNS_RPC_ZONE_FLAGS;

 typedef DWORD DNS_RPC_ZONE_FLAGS;

 typedef struct _DnssrvRpcZoneW2K

 {
 [string] wchar_t * pszZoneName;
 DNS_RPC_ZONE_FLAGS Flags;
 UCHAR ZoneType;
 UCHAR Version;
 }
 DNS_RPC_ZONE_W2K, *PDNS_RPC_ZONE_W2K;

 typedef struct _DnssrvRpcZoneDotNet
 {
 DWORD dwRpcStructureVersion;
 DWORD dwReserved0;
 [string] wchar_t * pszZoneName;
 DNS_RPC_ZONE_FLAGS Flags;
 UCHAR ZoneType;
 UCHAR Version;
 DWORD dwDpFlags;
 [string] char * pszDpFqdn;
 }
 DNS_RPC_ZONE_DOTNET, *PDNS_RPC_ZONE_DOTNET, DNS_RPC_ZONE, *PDNS_RPC_ZONE;

 //
 // Zone enumeration
 //

 typedef struct _DnssrvRpcZoneListW2K
 {
 [range(0,500000)] DWORD dwZoneCount;
 [size_is(dwZoneCount)] PDNS_RPC_ZONE_W2K ZoneArray[];
 }
 DNS_RPC_ZONE_LIST_W2K, *PDNS_RPC_ZONE_LIST_W2K;

 typedef struct _DnssrvRpcZoneListDotNet
 {
 DWORD dwRpcStructureVersion;
 DWORD dwReserved0;
 [range(0,500000)] DWORD dwZoneCount;
 [size_is(dwZoneCount)] PDNS_RPC_ZONE_DOTNET ZoneArray[];
 }
 DNS_RPC_ZONE_LIST_DOTNET, *PDNS_RPC_ZONE_LIST_DOTNET, DNS_RPC_ZONE_LIST, *PDNS_RPC_ZONE_LIST;

 //
 // DNSSEC trust point enumeration
 //

 typedef enum
 {
 TRUSTPOINT_STATE_INITIALIZED,
 TRUSTPOINT_STATE_DSPENDING,
 TRUSTPOINT_STATE_ACTIVE,
 TRUSTPOINT_STATE_DELETE_PENDING,
 TRUSTPOINT_STATE_DELETED
 }
 TRUSTPOINT_STATE, *PTRUSTPOINT_STATE;

 typedef enum
 {
 TRUSTANCHOR_STATE_INITIALIZED,

330 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 TRUSTANCHOR_STATE_DSPENDING,
 TRUSTANCHOR_STATE_DSINVALID,
 TRUSTANCHOR_STATE_ADDPEND,
 TRUSTANCHOR_STATE_VALID,
 TRUSTANCHOR_STATE_MISSING,
 TRUSTANCHOR_STATE_REVOKED,
 TRUSTANCHOR_STATE_DELETED
 }
 TRUSTANCHOR_STATE, *PTRUSTANCHOR_STATE;

 typedef struct _DnssrvRpcTrustPoint
 {
 DWORD dwRpcStructureVersion;
 DWORD dwReserved0;

 [string] char * pszTrustPointName;

 TRUSTPOINT_STATE eTrustPointState;

 __int64 i64LastActiveRefreshTime;
 __int64 i64NextActiveRefreshTime;
 __int64 i64LastSuccessfulActiveRefreshTime;
 DWORD dwLastActiveRefreshResult;
 DWORD dwReserved;
 }
 DNS_RPC_TRUST_POINT, *PDNS_RPC_TRUST_POINT;

 typedef struct _DnssrvRpcTrustPointList
 {
 DWORD dwRpcStructureVersion;
 DWORD dwReserved0;

 [range(0,500000)] DWORD dwTrustPointCount;
 [size_is(dwTrustPointCount)] PDNS_RPC_TRUST_POINT TrustPointArray[];
 }
 DNS_RPC_TRUST_POINT_LIST, *PDNS_RPC_TRUST_POINT_LIST;

 //
 // Signing Key Descriptor (SKD) definitions for online signing
 //
 // Each SKD has a set of static configuration represented by a DNS_RPC_SKD
 // structure that defines how the SKD is used to generate keys and sign
 // records in the zone. Each SKD is uniquely identified by its GUID field,
 // which is dynamically generated by the DNS server when the SKD is created.
 // Information on the dynamic state of the SKD, including identifiers for
 // the current keys associated with the SKD, is represented using the
 // DNS_RPC_SKD_STATE structure.
 //
 // Guid: A unique identifier for this SKD.
 //
 // pwszKeyStorageProvider: The KSP to use to generate keys.
 //
 // fStoreKeysInDirectory: If TRUE, keys will be stored on the zone object
 // in Active Directory. If FALSE, keys will be wrapped in self-signed
 // certificates in the local machine store.
 //
 // fIsKSK: TRUE if this SKD represents a Key Signing Key, FALSE for a Zone
 // Signing Key.
 //
 // bSigningAlgorithm: DNSSEC signature generation algorithm.
 //
 // dwKeyLength: Length, in bits, of keys. Ignored if the algorithm specified
 // by bSigningAlgorithm does not support variable-length keys.
 //
 // dwInitialRolloverOffset: Amount of time, in seconds, to delay the first
 // scheduled key rollover. This allows for key rollovers to be staggered.
 //
 // dwDNSKEYSignatureValidityPeriod: Amount of time, in seconds, that signatures

331 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 // covering DNSKEY record sets are valid.
 //
 // dwDSSignatureValidityPeriod: Amount of time, in seconds, that signatures
 // covering DS record sets are valid.
 //
 // dwStandardSignatureValidityPeriod: Amount of time, in seconds, that signatures
 // covering all other record sets are valid.
 //
 // dwRolloverType: Key rollover method (see [RFC4641]).
 //
 // dwRolloverPeriod: Amount of time, in seconds, between scheduled key rollovers

 // or 0xFFFFFFFF to disable automatic key rollover.
 //
 // dwNextRolloverAction: The action to take for this SKD on the next key
 // manual or scheduled key rollover event.
 //

 typedef struct _DnssrvRpcSigningKeyDescriptor
 {
 DWORD dwRpcStructureVersion;
 DWORD dwReserved0;

 GUID Guid;
 [string] wchar_t* pwszKeyStorageProvider;
 BOOL fStoreKeysInDirectory;
 BOOL fIsKSK;
 BYTE bSigningAlgorithm;
 DWORD dwKeyLength;
 DWORD dwInitialRolloverOffset;
 DWORD dwDNSKEYSignatureValidityPeriod;
 DWORD dwDSSignatureValidityPeriod;
 DWORD dwStandardSignatureValidityPeriod;
 DWORD dwRolloverType;
 DWORD dwRolloverPeriod;
 DWORD dwNextRolloverAction;
 DWORD dwReserved;
 }
 DNS_RPC_SKD, *PDNS_RPC_SKD;

 //
 // For dwActiveKeyScope, dwStandByKeyScope, dwNextKeyScope
 // KeySignScope defines the scope of the key in a signed zone.
 //

 typedef enum _KeySignScope
 {
 //
 // SIGN_SCOPE_DEFAULT specifies that the scope will be determined by the
 // key flags. That is, KSK is used to sign DNSKEY set only and ZSK is
 // used to sign all record sets.
 //

 SIGN_SCOPE_DEFAULT,

 //
 // A key with SIGN_SCOPE_DNSKEY_ONLY scope will only be used to sign DNSKEY
 // set. This gives the user a way to override the ZSK flag when signing.
 //

 SIGN_SCOPE_DNSKEY_ONLY,

 //
 // A key with SIGN_SCOPE_ALL_RECORDS scope will be used to sign all record
 // sets. This gives the user a way to override the KSK flag when signing.
 //

 SIGN_SCOPE_ALL_RECORDS,

332 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 //
 // A key with SIGN_SCOPE_ADD_ONLY scope will be added to zone file, but
 // not used for signing. It is for user to pre-publish a key.
 //

 SIGN_SCOPE_ADD_ONLY,

 //
 // A key with SIGN_SCOPE_DO_NOT_PUBLISH will not be added to the zone file,
 // and will not be used for signing. It's used to remove a key.
 //

 SIGN_SCOPE_DO_NOT_PUBLISH,

 //
 // A key with SIGN_SCOPE_REVOKED will be published to the zone with its
 // "revoked" bit set to TRUE, and will be used to sign the DNSKEY set only.
 //

 SIGN_SCOPE_REVOKED
 } KeySignScope;

 //
 // Signing Key Descriptor (SKD) dynamic state extended
 //
 //
 // Guid: Unique identifier for the SKD
 //
 // dwCurrentRollState: Internal Status for Rollover.
 //
 // fManualTrigger: TRUE if Rollover was triggered manually.
 //
 // dwPreRollEventFired: Specifies which Pre Rollover Event has been fired
 //
 // ftNextKeyGenerationTime: Time at which Next Key was added to the zone.
 //
 // dwRevokedOrSwappedDnskeysLength: Length of the Revoked or Swaped DNSKEY RRSet
 //
 // pRevokedOrSwappedDnskeysBuffer: Pre-Signed DNSKEY RRSet for ZSK swap
 //
 // dwFinalDnskeysLength: Length of Pre-Signed DNSKEY RRSet
 //
 // pFinalDnskeys: Pre-Signed DNSKEY RRSet Post Rollover
 //
 // eActiveKeyScope: Signing key Scope for the SKD's active key.
 //
 // eStandbyKeyScope: Signing key Scope for the SKD's standby key.
 //
 // eNextKeyScope: Signing key Scope for the SKD's next key.
 //
 typedef struct _DnsRpcSigningKeyDescriptorStateEx
 {
 DWORD dwRpcStructureVersion;
 DWORD dwReserved0;
 GUID Guid;
 DWORD dwCurrentRollState;
 DWORD fManualTrigger;
 DWORD dwPreRollEventFired;
 FILETIME ftNextKeyGenerationTime;
 DWORD dwRevokedOrSwappedDnskeysLength;
 PBYTE pRevokedOrSwappedDnskeysBuffer;
 DWORD dwFinalDnskeysLength;
 PBYTE pFinalDnskeys;
 KeySignScope eActiveKeyScope;
 KeySignScope eStandByKeyScope;
 KeySignScope eNextKeyScope;

 }

333 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 DNS_RPC_SKD_STATE_EX, *PDNS_RPC_SKD_STATE_EX;

 //
 // Signing Key Descriptor (SKD) dynamic state
 //
 // The static configuration for each SKD is represented by a DNS_RPC_SKD
 // structure. In addition to these static configuration parameters, each SKD
 // also has dynamic configuration associated with it, including pointers to
 // the current keys for the SKD and other information. The collection of
 // dynamic configuration information for each SKD is represented by a
 // DNS_RPC_SKD_STATE structure.
 //
 // A signing key pointer string contains a unique identifier for a signing

 // key. For keys stored in the local machine certificate store, this
 // identifier is the certificate serial number. For keys stored in Active
 // Directory, this identifier is a GUID. The matching GUID for a key may be
 // found in one of the values of the key attribute on the zone object along
 // with a binary exported representation of the key. Note that the GUID for
 // a key is not directly related to the GUID for the SKD.
 //
 // Guid: Unique identifier for the SKD
 //
 // ftLastRolloverTime: The time at which the last rollover event was performed.
 //
 // ftNextRolloverTime: The time at which the next rollover action must take place.
 //
 // dwState: The current state of this SKD.
 //
 // dwCurrentRolloverStatus: Current rollover status of this SKD.
 //
 // pwszActiveKey: Signing key pointer string for the SKD's active key.
 //
 // pwszStandbyKey: Signing key pointer string for the SKD's standby key.
 //
 // pwszNextKey: Signing key pointer string for the SKD's next key. This key
 // will be used during the next key rollover event.
 //

 typedef struct _DnsRpcSigningKeyDescriptorState
 {
 DWORD dwRpcStructureVersion;
 DWORD dwReserved0;

 GUID Guid;
 FILETIME ftLastRolloverTime;
 FILETIME ftNextRolloverTime;
 DWORD dwState;
 DWORD dwCurrentRolloverStatus;
 [string] wchar_t * pwszActiveKey;
 [string] wchar_t * pwszStandbyKey;
 [string] wchar_t * pwszNextKey;
 DWORD dwReserved;
 }
 DNS_RPC_SKD_STATE, *PDNS_RPC_SKD_STATE;

 //
 // Signing Key Descriptor (SKD) Properties for a zone.
 //
 // pSkd Static properties of a Zone SKD. This is a DNS_RP_SKD structure
 //
 // pSkdState Dynamic properties of a Zone SKD. This is a DNS_RP_SKD_STATE structure
 //
 // pSkdStateEx Extended Dynamic properties of a Zone SKD. This is a DNS_RP_SKD_STATE_EX
// structure

 typedef struct _DnssrvRpcZoneSKDSettings
 {
 DWORD dwRpcStructureVersion;

334 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 DWORD dwReserved0;
 PDNS_RPC_SKD pSkd;
 PDNS_RPC_SKD_STATE pSkdState;
 PDNS_RPC_SKD_STATE_EX pSkdStateEx;

 } DNS_RPC_ZONE_SKD, *PDNS_RPC_ZONE_SKD;

 //
 // DNSSEC Settings of a Zone

 typedef struct _DnssrvRpcZoneDnssecSettings
 {
 DWORD dwRpcStructureVersion;
 DWORD dwReserved0;

 DWORD fIsSigned;
 DWORD fSignWithNSEC3;
 DWORD fNSEC3OptOut;
 DWORD dwMaintainTrustAnchor;
 DWORD fParentHasSecureDelegation;
 DWORD dwDSRecordAlgorithms;
 DWORD fRFC5011KeyRollovers;
 BYTE bNSEC3HashAlgorithm;
 BYTE bNSEC3RandomSaltLength;
 WORD wNSEC3IterationCount;
 LPWSTR pwszNSEC3UserSalt;
 DWORD dwDNSKEYRecordSetTtl;
 DWORD dwDSRecordSetTtl;
 DWORD dwSignatureInceptionOffset;
 DWORD dwSecureDelegationPollingPeriod;
 DWORD dwPropagationTime;
 DWORD cbNSEC3CurrentSaltLength;
 PBYTE pbNSEC3CurrentSalt;
 GUID CurrentRollingSKDGuid;
 DWORD dwBufferLength;
 PBYTE pBuffer;
 DWORD dwCount;
 PDNS_RPC_ZONE_SKD pZoneSkdArray[1] ;
 } DNS_RPC_ZONE_DNSSEC_SETTINGS, *PDNS_RPC_ZONE_DNSSEC_SETTINGS;

 typedef struct _DnssrvRpcTrustAnchor
 {
 DWORD dwRpcStructureVersion;
 DWORD dwReserved0;
 WORD wTrustAnchorType;
 WORD wKeyTag;
 WORD wRRLength;
 TRUSTANCHOR_STATE eTrustAnchorState;
 __int64 i64EnteredStateTime;
 __int64 i64NextStateTime;
 DWORD dwReserved;
 [size_is(wRRLength)]
 BYTE RRData[];
 }
 DNS_RPC_TRUST_ANCHOR, *PDNS_RPC_TRUST_ANCHOR;

 typedef struct _DnssrvRpcTrustAnchorList
 {
 DWORD dwRpcStructureVersion;
 DWORD dwReserved0;

 [range(0,500000)] DWORD dwTrustAnchorCount;
 [size_is(dwTrustAnchorCount)] PDNS_RPC_TRUST_ANCHOR TrustAnchorArray[];
 }
 DNS_RPC_TRUST_ANCHOR_LIST, *PDNS_RPC_TRUST_ANCHOR_LIST;

 //
 // Directory partition enumeration and info

335 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 //

 typedef struct _DnssrvRpcDirectoryPartitionEnum
 {
 DWORD dwRpcStructureVersion;
 DWORD dwReserved0;

 [string] char * pszDpFqdn;
 DWORD dwFlags;
 DWORD dwZoneCount;
 }
 DNS_RPC_DP_ENUM, *PDNS_RPC_DP_ENUM;

 typedef struct _DnssrvRpcDirectoryPartitionList
 {

 DWORD dwRpcStructureVersion;
 DWORD dwReserved0;
 [range(0,5000)] DWORD dwDpCount;
 [size_is(dwDpCount)] PDNS_RPC_DP_ENUM DpArray[];
 }
 DNS_RPC_DP_LIST, *PDNS_RPC_DP_LIST;

 typedef struct _DnssrvRpcDirectoryPartitionReplica
 {
 [string] wchar_t * pszReplicaDn;
 }
 DNS_RPC_DP_REPLICA, *PDNS_RPC_DP_REPLICA;

 typedef struct _DnssrvRpcDirectoryPartition
 {
 DWORD dwRpcStructureVersion;
 DWORD dwReserved0;

 [string] char * pszDpFqdn;
 [string] wchar_t * pszDpDn;
 [string] wchar_t * pszCrDn;
 DWORD dwFlags;
 DWORD dwZoneCount;
 DWORD dwState;

 DWORD dwReserved[3];
 [string] wchar_t * pwszReserved[3];
 [range(0,10000)] DWORD dwReplicaCount;
 [size_is(dwReplicaCount)] PDNS_RPC_DP_REPLICA ReplicaArray[];
 }
 DNS_RPC_DP_INFO, *PDNS_RPC_DP_INFO;

 //
 // Enlist (or create) directory partition
 //

 typedef struct _DnssrvRpcEnlistDirPart
 {
 DWORD dwRpcStructureVersion;
 DWORD dwReserved0;
 [string] char * pszDpFqdn; // UTF8
 DWORD dwOperation;
 }
 DNS_RPC_ENLIST_DP, *PDNS_RPC_ENLIST_DP;

 //
 // Zone export
 //

 typedef struct _DnssrvRpcZoneExport
 {
 DWORD dwRpcStructureVersion;
 DWORD dwReserved0;

336 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 [string] char * pszZoneExportFile;
 }
 DNS_RPC_ZONE_EXPORT_INFO, *PDNS_RPC_ZONE_EXPORT_INFO;

 //
 // Zone property data
 //

 typedef struct _DnssrvRpcZoneSecondariesW2K
 {
 DWORD fSecureSecondaries;
 DWORD fNotifyLevel;
 PIP4_ARRAY aipSecondaries;
 PIP4_ARRAY aipNotify;
 }

 DNS_RPC_ZONE_SECONDARIES_W2K, *PDNS_RPC_ZONE_SECONDARIES_W2K;

 typedef struct _DnssrvRpcZoneSecondariesDotNet
 {
 DWORD dwRpcStructureVersion;
 DWORD dwReserved0;

 DWORD fSecureSecondaries;
 DWORD fNotifyLevel;
 PIP4_ARRAY aipSecondaries;
 PIP4_ARRAY aipNotify;
 }
 DNS_RPC_ZONE_SECONDARIES_DOTNET, *PDNS_RPC_ZONE_SECONDARIES_DOTNET;

 typedef struct _DnssrvRpcZoneSecondariesLonghorn
 {
 DWORD dwRpcStructureVersion;
 DWORD dwReserved0;

 DWORD fSecureSecondaries;
 DWORD fNotifyLevel;
 PDNS_ADDR_ARRAY aipSecondaries;
 PDNS_ADDR_ARRAY aipNotify;
 }
 DNS_RPC_ZONE_SECONDARIES_LONGHORN, *PDNS_RPC_ZONE_SECONDARIES_LONGHORN,
DNS_RPC_ZONE_SECONDARIES, *PDNS_RPC_ZONE_SECONDARIES;

 typedef struct _DnssrvRpcZoneDatabaseW2K
 {
 DWORD fDsIntegrated;
 [string] char * pszFileName;
 }
 DNS_RPC_ZONE_DATABASE_W2K, *PDNS_RPC_ZONE_DATABASE_W2K;

 typedef struct _DnssrvRpcZoneDatabaseDotNet
 {
 DWORD dwRpcStructureVersion;
 DWORD dwReserved0;

 DWORD fDsIntegrated;
 [string] char * pszFileName;
 }
 DNS_RPC_ZONE_DATABASE_DOTNET, *PDNS_RPC_ZONE_DATABASE_DOTNET, DNS_RPC_ZONE_DATABASE,
*PDNS_RPC_ZONE_DATABASE;

 typedef struct _DnssrvRpcZoneChangePartition
 {
 DWORD dwRpcStructureVersion;
 DWORD dwReserved0;
 [string] char * pszDestPartition;
 }
 DNS_RPC_ZONE_CHANGE_DP, *PDNS_RPC_ZONE_CHANGE_DP;

337 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 typedef struct _DnsRpcZoneInfoW2K
 {
 [string] char * pszZoneName;
 DWORD dwZoneType;
 DWORD fReverse;
 DWORD fAllowUpdate;
 DWORD fPaused;
 DWORD fShutdown;
 DWORD fAutoCreated;

 // Database info
 DWORD fUseDatabase;
 [string] char * pszDataFile;

 // Masters
 PIP4_ARRAY aipMasters;

 // Secondaries
 DWORD fSecureSecondaries;
 DWORD fNotifyLevel;
 PIP4_ARRAY aipSecondaries;
 PIP4_ARRAY aipNotify;

 // WINS or NetBIOS lookup
 DWORD fUseWins;
 DWORD fUseNbstat;

 // Aging
 DWORD fAging;
 DWORD dwNoRefreshInterval;
 DWORD dwRefreshInterval;
 DWORD dwAvailForScavengeTime;
 PIP4_ARRAY aipScavengeServers;

 // save some space, just in case
 // avoid versioning issues if possible
 DWORD pvReserved1;
 DWORD pvReserved2;
 DWORD pvReserved3;
 DWORD pvReserved4;
 }
 DNS_RPC_ZONE_INFO_W2K, *PDNS_RPC_ZONE_INFO_W2K;

 typedef struct _DnsRpcZoneInfoDotNet
 {
 DWORD dwRpcStructureVersion;
 DWORD dwReserved0;

 [string] char * pszZoneName;
 DWORD dwZoneType;
 DWORD fReverse;
 DWORD fAllowUpdate;
 DWORD fPaused;
 DWORD fShutdown;
 DWORD fAutoCreated;

 // Database info
 DWORD fUseDatabase;
 [string] char * pszDataFile;

 // Masters
 PIP4_ARRAY aipMasters;

 // Secondaries
 DWORD fSecureSecondaries;
 DWORD fNotifyLevel;
 PIP4_ARRAY aipSecondaries;

338 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 PIP4_ARRAY aipNotify;

 // WINS or NetBIOS lookup
 DWORD fUseWins;
 DWORD fUseNbstat;

 // Aging
 DWORD fAging;
 DWORD dwNoRefreshInterval;
 DWORD dwRefreshInterval;
 DWORD dwAvailForScavengeTime;
 PIP4_ARRAY aipScavengeServers;

 // Forwarder zones
 DWORD dwForwarderTimeout;
 DWORD fForwarderSlave;

 // Stub zones

 PIP4_ARRAY aipLocalMasters;

 // Directory partition
 DWORD dwDpFlags;
 [string] char * pszDpFqdn;
 [string] wchar_t * pwszZoneDn;

 // Xfr time information
 DWORD dwLastSuccessfulSoaCheck;
 DWORD dwLastSuccessfulXfr;

 // save some space, just in case
 DWORD dwReserved1;
 DWORD dwReserved2;
 DWORD dwReserved3;
 DWORD dwReserved4;
 DWORD dwReserved5;
 [string] char * pReserved1;
 [string] char * pReserved2;
 [string] char * pReserved3;
 [string] char * pReserved4;
 }
 DNS_RPC_ZONE_INFO_DOTNET, *PDNS_RPC_ZONE_INFO_DOTNET;

 typedef struct _DnsRpcZoneInfoLonghorn
 {
 DWORD dwRpcStructureVersion;
 DWORD dwReserved0;

 [string] char * pszZoneName;
 DWORD dwZoneType;
 DWORD fReverse;
 DWORD fAllowUpdate;
 DWORD fPaused;
 DWORD fShutdown;
 DWORD fAutoCreated;

 // Database info
 DWORD fUseDatabase;
 [string] char * pszDataFile;

 // Masters
 PDNS_ADDR_ARRAY aipMasters;

 // Secondaries
 DWORD fSecureSecondaries;
 DWORD fNotifyLevel;
 PDNS_ADDR_ARRAY aipSecondaries;
 PDNS_ADDR_ARRAY aipNotify;

339 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 // WINS or NetBIOS lookup
 DWORD fUseWins;
 DWORD fUseNbstat;

 // Aging
 DWORD fAging;
 DWORD dwNoRefreshInterval;
 DWORD dwRefreshInterval;
 DWORD dwAvailForScavengeTime;
 PDNS_ADDR_ARRAY aipScavengeServers;

 // Forwarder zones
 DWORD dwForwarderTimeout;
 DWORD fForwarderSlave;

 // Stub zones
 PDNS_ADDR_ARRAY aipLocalMasters;

 // Directory partition

 DWORD dwDpFlags;
 [string] char * pszDpFqdn;
 [string] wchar_t * pwszZoneDn;

 // Xfr time information
 DWORD dwLastSuccessfulSoaCheck;
 DWORD dwLastSuccessfulXfr;

 DWORD fQueuedForBackgroundLoad;
 DWORD fBackgroundLoadInProgress;
 BOOL fReadOnlyZone;

 // Additional zone transfer information
 DWORD dwLastXfrAttempt;
 DWORD dwLastXfrResult;
 }
 DNS_RPC_ZONE_INFO_LONGHORN, *PDNS_RPC_ZONE_INFO_LONGHORN, DNS_RPC_ZONE_INFO,
*PDNS_RPC_ZONE_INFO;

 //
 // Zone create data
 //

 typedef struct _DnsRpcZoneCreateInfo
 {
 [string] char * pszZoneName;
 DWORD dwZoneType;
 DWORD fAllowUpdate;
 DWORD fAging;
 DWORD dwFlags;

 // Database info

 [string] char * pszDataFile;
 DWORD fDsIntegrated;
 DWORD fLoadExisting;

 // Admin name (if auto-create SOA)

 [string] char * pszAdmin;

 // Masters (if secondary)

 PIP4_ARRAY aipMasters;

 // Secondaries

 PIP4_ARRAY aipSecondaries;
 DWORD fSecureSecondaries;

340 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 DWORD fNotifyLevel;

 // Reserve some space to avoid versioning issues

 [string] char * pvReserved1;
 [string] char * pvReserved2;
 [string] char * pvReserved3;
 [string] char * pvReserved4;
 [string] char * pvReserved5;
 [string] char * pvReserved6;
 [string] char * pvReserved7;
 [string] char * pvReserved8;

 DWORD dwReserved1;
 DWORD dwReserved2;
 DWORD dwReserved3;
 DWORD dwReserved4;
 DWORD dwReserved5;
 DWORD dwReserved6;
 DWORD dwReserved7;

 DWORD dwReserved8;
 }
 DNS_RPC_ZONE_CREATE_INFO_W2K, *PDNS_RPC_ZONE_CREATE_INFO_W2K;

 typedef struct _DnsRpcZoneCreateInfoDotNet
 {
 DWORD dwRpcStructureVersion;
 DWORD dwReserved0;

 [string] char * pszZoneName;
 DWORD dwZoneType;
 DWORD fAllowUpdate;
 DWORD fAging;
 DWORD dwFlags;

 // Database info

 [string] char * pszDataFile;
 DWORD fDsIntegrated;
 DWORD fLoadExisting;

 // Admin name (if auto-create SOA)

 [string] char * pszAdmin;

 // Masters (if secondary)

 PIP4_ARRAY aipMasters;

 // Secondaries

 PIP4_ARRAY aipSecondaries;
 DWORD fSecureSecondaries;
 DWORD fNotifyLevel;

 // Forwarder zones

 DWORD dwTimeout;
 DWORD fRecurseAfterForwarding;

 // Directory partition

 DWORD dwDpFlags; // specify built-in DP or
 [string] char * pszDpFqdn; // UTF8 FQDN of partition

 DWORD dwReserved[32];
 }
 DNS_RPC_ZONE_CREATE_INFO_DOTNET, *PDNS_RPC_ZONE_CREATE_INFO_DOTNET;

341 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 typedef struct _DnsRpcZoneCreateInfoLonghorn
 {
 DWORD dwRpcStructureVersion;
 DWORD dwReserved0;

 [string] char * pszZoneName;
 DWORD dwZoneType;
 DWORD fAllowUpdate;
 DWORD fAging;
 DWORD dwFlags;

 // Database info

 [string] char * pszDataFile;
 DWORD fDsIntegrated;
 DWORD fLoadExisting;

 // Admin name (if auto-create SOA)

 [string] char * pszAdmin;

 // Masters (if secondary)

 PDNS_ADDR_ARRAY aipMasters;

 // Secondaries

 PDNS_ADDR_ARRAY aipSecondaries;
 DWORD fSecureSecondaries;
 DWORD fNotifyLevel;

 // Forwarder zones

 DWORD dwTimeout;
 DWORD fRecurseAfterForwarding;

 // Directory partition

 DWORD dwDpFlags; // specify built-in DP or
 [string] char * pszDpFqdn; // UTF8 FQDN of partition

 DWORD dwReserved[32];
 }
 DNS_RPC_ZONE_CREATE_INFO_LONGHORN, *PDNS_RPC_ZONE_CREATE_INFO_LONGHORN,
DNS_RPC_ZONE_CREATE_INFO, *PDNS_RPC_ZONE_CREATE_INFO;

 //
 // SKD collection used to enumerate the SKDs for a zone
 //

 typedef struct _DnssrvRpcZoneSigningKeyList
 {
 DWORD dwRpcStructureVersion;
 DWORD dwReserved0;

 [range(0,1000)] DWORD dwCount;
 [size_is(dwCount)] PDNS_RPC_SKD SkdArray[];
 }
 DNS_RPC_SKD_LIST, *PDNS_RPC_SKD_LIST;

 //
 // Online signing validation output structure: this structure is an output

342 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 // of the validation operation. If the zone signing parameters are found to
 // contain an error or a problem, this structure specifies the GUID of the SKD
 // (if any) and the specific key (if any) and the error code.
 //

 typedef struct _DnssrvRpcSigningValidationError
 {
 DWORD dwRpcStructureVersion;
 DWORD dwReserved0;

 GUID guidSKD;
 [string] wchar_t * pwszSigningKeyPointerString;
 DWORD dwExtendedError;
 DWORD dwReserved;
 }
 DNS_RPC_SIGNING_VALIDATION_ERROR, *PDNS_RPC_SIGNING_VALIDATION_ERROR;

 typedef struct _DnsRpcAutoConfigureLonghorn
 {
 DWORD dwRpcStructureVersion;
 DWORD dwReserved0;

 DWORD dwAutoConfigFlags;
 DWORD dwReserved1;
 [string] char * pszNewDomainName;
 }
 DNS_RPC_AUTOCONFIGURE, *PDNS_RPC_AUTOCONFIGURE;

 //
 // EnumZones2 filter specification
 //

 typedef struct _DnsRpcEnumZonesFilter
 {
 DWORD dwRpcStructureVersion;
 DWORD dwReserved0;

 DWORD dwFilter;
 [string] char * pszPartitionFqdn;
 [string] char * pszQueryString;

 [string] char * pszReserved[6];
 }
 DNS_RPC_ENUM_ZONES_FILTER, *PDNS_RPC_ENUM_ZONES_FILTER;

 //
 // RPC record structure
 //

 typedef struct _DnssrvRpcRecord
 {
 WORD wDataLength;
 WORD wType;
 DWORD dwFlags;
 DWORD dwSerial;
 DWORD dwTtlSeconds;
 DWORD dwTimeStamp;
 DWORD dwReserved;

 [size_is(wDataLength)] BYTE Buffer[];
 }
 DNS_RPC_RECORD, *PDNS_RPC_RECORD,
 DNS_FLAT_RECORD, *PDNS_FLAT_RECORD;

 //
 // These RPC structures have no version because they are simple
 // are they are explicitly defined by their names.

343 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 //

 typedef struct _DnssrvRpcNameAndParam
 {
 DWORD dwParam;
 [string] char * pszNodeName;
 }
 DNS_RPC_NAME_AND_PARAM, *PDNS_RPC_NAME_AND_PARAM;

 typedef struct _DnsRpcIPValidate
 {
 DWORD dwRpcStructureVersion;
 DWORD dwReserved0;

 DWORD dwContext;
 DWORD dwReserved1;
 [string] char * pszContextName;
 PDNS_ADDR_ARRAY aipValidateAddrs;
 }
 DNS_RPC_IP_VALIDATE, *PDNS_RPC_IP_VALIDATE;

 //
 // String array

 //

 typedef struct _DnsRpcUtf8StringList
 {
 [range(0,10000)] DWORD dwCount;
 [size_is(dwCount),string] char * pszStrings[];
 }
 DNS_RPC_UTF8_STRING_LIST, *PDNS_RPC_UTF8_STRING_LIST;

 typedef struct _DnsRpcUnicodeStringList
 {
 [range(0,10000)] DWORD dwCount;
 [size_is(dwCount),string] wchar_t * pwszStrings[];
 }
 DNS_RPC_UNICODE_STRING_LIST, *PDNS_RPC_UNICODE_STRING_LIST;

 typedef enum
 {
 Equals=1,
 NotEquals
 }
 DNS_RPC_CRITERIA_COMPARATOR;

 typedef enum
 {
 DNS_AND,
 DNS_OR
 }
 DNS_RPC_POLICY_CONDITION;

 typedef enum
 {
 DnsPolicyServerLevel,
 DnsPolicyZoneLevel,
 DnsPolicyLevelMax
 }DNS_RPC_POLICY_LEVEL;

 typedef enum
 {
 DnsPolicyDeny,
 DnsPolicyAllow,
 DnsPolicyIgnore,
 DnsPolicyActionMax
 }DNS_RPC_POLICY_ACTION_TYPE;

344 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 typedef enum
 {
 DnsPolicyQueryProcessing,
 DnsPolicyZoneTransfer,
 DnsPolicyDynamicUpdate,
 DnsPolicyRecursion,
 DnsPolicyMax
 } DNS_RPC_POLICY_TYPE;

 typedef enum {
 DnsPolicyCriteriaSubnet,
 DnsPolicyCriteriaTransportProtocol,
 DnsPolicyCriteriaNetworkProtocol,
 DnsPolicyCriteriaInterface,
 DnsPolicyCriteriaFqdn,
 DnsPolicyCriteriaQtype,
 DnsPolicyCriteriaTime,
 DnsPolicyCriteriaMax
 }DNS_RPC_CRITERIA_ENUM;

 typedef struct _ClientSubnetRecord
 {
 LPWSTR pwszClientSubnetName;
 PDNS_ADDR_ARRAY pIPAddr;

 PDNS_ADDR_ARRAY pIPv6Addr;

 }DNS_RPC_CLIENT_SUBNET_RECORD,*PDNS_RPC_CLIENT_SUBNET_RECORD;

 typedef struct _DnssrvRpcPolicyActionContent
 {
 LPWSTR pwszScopeName;
 DWORD dwWeight;
 }DNS_RPC_POLICY_CONTENT, * PDNS_RPC_POLICY_CONTENT;

 typedef struct _DnssrvRpcPolicyAction
 {
 [range (0,50000)] DWORD dwContentCount;
 [size_is (dwContentCount)] PDNS_RPC_POLICY_CONTENT pContent[];
 }DNS_RPC_POLICY_CONTENT_LIST, * PDNS_RPC_POLICY_CONTENT_LIST;

 typedef struct _CriteriaList
 {
 DNS_RPC_CRITERIA_ENUM type;
 LPWSTR pCriteria;
 }DNS_RPC_CRITERIA,*PDNS_RPC_CRITERIA;

 typedef struct _DnssrvRpcPolicy
 {
 LPWSTR pwszPolicyName;
 DNS_RPC_POLICY_LEVEL level;
 DNS_RPC_POLICY_TYPE appliesOn;
 DNS_RPC_POLICY_ACTION_TYPE action;
 DNS_RPC_POLICY_CONDITION condition;
 BOOL isEnabled;
 DWORD dwProcessingOrder;
 LPSTR pszZoneName;
 PDNS_RPC_POLICY_CONTENT_LIST pContentList;
 DWORDLONG flags;
 [range (0,50000)] DWORD dwCriteriaCount;
 [size_is (dwCriteriaCount)] PDNS_RPC_CRITERIA pCriteriaList[];
 }DNS_RPC_POLICY, *PDNS_RPC_POLICY;

 typedef struct _DnsRpcPolicyType {
 LPWSTR pwszPolicyName;
 DNS_RPC_POLICY_TYPE appliesOn;
 BOOL fEnabled;
 DWORD processingOrder;
 }DNS_RPC_POLICY_NAME, * PDNS_RPC_POLICY_NAME;

345 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 typedef struct _DnsRpcEnumPolicyList
 {
 [range(0,50000)] DWORD dwPolicyCount;
 [size_is(dwPolicyCount)] PDNS_RPC_POLICY_NAME pPolicyArray[];
 } DNS_RPC_ENUMERATE_POLICY_LIST, * PDNS_RPC_ENUMERATE_POLICY_LIST;

 //
 // RRL structures
 //

 #define RRL_RESET_RESPONSES_PER_SECOND 0x00000001
 #define RRL_RESET_ERRORS_PER_SECOND 0x00000002
 #define RRL_RESET_LEAK_RATE 0x00000004
 #define RRL_RESET_TC_RATE 0x00000008
 #define RRL_RESET_TOTAL_RESPONSES_IN_WINDOW 0x00000010
 #define RRL_RESET_WINDOW_SIZE 0x00000020
 #define RRL_RESET_IPV4_PREFIX_LENGTH 0x00000040
 #define RRL_RESET_IPV6_PREFIX_LENGTH 0x00000080
 #define RRL_RESET_MODE 0x00000100

 typedef enum {
 DnsRRLLogOnly,
 DnsRRLEnabled,

 DnsRRLDisabled
 } DNS_RRL_MODE_ENUM;

 typedef struct _DnsRRLParams_ {
 DWORD dwResponsesPerSecond;
 DWORD dwErrorsPerSecond;
 DWORD dwLeakRate;
 DWORD dwTCRate;
 DWORD dwTotalResponsesInWindow;
 DWORD dwWindowSize;
 DWORD dwIPv4PrefixLength;
 DWORD dwIPv6PrefixLength;
 DNS_RRL_MODE_ENUM eMode;
 DWORD dwFlags;
 BOOL fSetDefault;
 } DNS_RPC_RRL_PARAMS, *PDNS_RPC_RRL_PARAMS;

 //
 // Basic virtualization instance data

 //

 typedef struct _DnssrvRpcVirtualizationInstance

 {

 DWORD dwRpcStructureVersion;

 DWORD dwReserved;

 DWORD dwFlags;

 LPWSTR pwszVirtualizationID;

 LPWSTR pwszFriendlyName;

 LPWSTR pwszDescription;

 }

 DNS_RPC_VIRTUALIZATION_INSTANCE, *PDNS_RPC_VIRTUALIZATION_INSTANCE;

 //

 // Virtualization instance enumeration

 //

 typedef struct _DnssrvRpcVirtualizationInstanceInfo

 {

 LPWSTR pwszVirtualizationID;

 LPWSTR pwszFriendlyName;

 LPWSTR pwszDescription;

 }

346 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 DNS_RPC_VIRTUALIZATION_INSTANCE_INFO, *PDNS_RPC_VIRTUALIZATION_INSTANCE_INFO;

 typedef struct _DnsRpcEnumVirtualizationInstanceList

 {

 DWORD dwRpcStructureVersion;

 DWORD dwVirtualizationInstanceCount;

 PDNS_RPC_VIRTUALIZATION_INSTANCE_INFO VirtualizationInstanceArray[1];

 }

 DNS_RPC_ENUM_VIRTUALIZATION_INSTANCE_LIST, *PDNS_RPC_ENUM_VIRTUALIZATION_INSTANCE_LIST;

 //
 // Union of RPC types
 //

 typedef enum _DnssrvRpcTypeId
 {
 DNSSRV_TYPEID_NULL = 0,
 DNSSRV_TYPEID_DWORD,
 DNSSRV_TYPEID_LPSTR,
 DNSSRV_TYPEID_LPWSTR,
 DNSSRV_TYPEID_IPARRAY,
 DNSSRV_TYPEID_BUFFER, // 5
 DNSSRV_TYPEID_SERVER_INFO_W2K,
 DNSSRV_TYPEID_STATS,

 DNSSRV_TYPEID_FORWARDERS_W2K,
 DNSSRV_TYPEID_ZONE_W2K,
 DNSSRV_TYPEID_ZONE_INFO_W2K, // 10
 DNSSRV_TYPEID_ZONE_SECONDARIES_W2K,
 DNSSRV_TYPEID_ZONE_DATABASE_W2K,
 DNSSRV_TYPEID_ZONE_TYPE_RESET_W2K,
 DNSSRV_TYPEID_ZONE_CREATE_W2K,
 DNSSRV_TYPEID_NAME_AND_PARAM, // 15
 DNSSRV_TYPEID_ZONE_LIST_W2K,
 DNSSRV_TYPEID_ZONE_RENAME,
 DNSSRV_TYPEID_ZONE_EXPORT,
 DNSSRV_TYPEID_SERVER_INFO_DOTNET,
 DNSSRV_TYPEID_FORWARDERS_DOTNET, // 20
 DNSSRV_TYPEID_ZONE,
 DNSSRV_TYPEID_ZONE_INFO_DOTNET,
 DNSSRV_TYPEID_ZONE_SECONDARIES_DOTNET,
 DNSSRV_TYPEID_ZONE_DATABASE,
 DNSSRV_TYPEID_ZONE_TYPE_RESET_DOTNET, // 25
 DNSSRV_TYPEID_ZONE_CREATE_DOTNET,
 DNSSRV_TYPEID_ZONE_LIST,
 DNSSRV_TYPEID_DP_ENUM,
 DNSSRV_TYPEID_DP_INFO,
 DNSSRV_TYPEID_DP_LIST, // 30
 DNSSRV_TYPEID_ENLIST_DP,
 DNSSRV_TYPEID_ZONE_CHANGE_DP,
 DNSSRV_TYPEID_ENUM_ZONES_FILTER,
 DNSSRV_TYPEID_ADDRARRAY,
 DNSSRV_TYPEID_SERVER_INFO, // 35
 DNSSRV_TYPEID_ZONE_INFO,
 DNSSRV_TYPEID_FORWARDERS,
 DNSSRV_TYPEID_ZONE_SECONDARIES,
 DNSSRV_TYPEID_ZONE_TYPE_RESET,
 DNSSRV_TYPEID_ZONE_CREATE, // 40
 DNSSRV_TYPEID_IP_VALIDATE,
 DNSSRV_TYPEID_AUTOCONFIGURE,
 DNSSRV_TYPEID_UTF8_STRING_LIST,
 DNSSRV_TYPEID_UNICODE_STRING_LIST,
 DNSSRV_TYPEID_SKD, // 45
 DNSSRV_TYPEID_SKD_LIST,
 DNSSRV_TYPEID_SKD_STATE,
 DNSSRV_TYPEID_SIGNING_VALIDATION_ERROR,
 DNSSRV_TYPEID_TRUST_POINT_LIST,
 DNSSRV_TYPEID_TRUST_ANCHOR_LIST, // 50

347 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 DNSSRV_TYPEID_ZONE_SIGNING_SETTINGS,
 DNSSRV_TYPEID_ZONE_SCOPE_ENUM,
 DNSSRV_TYPEID_ZONE_STATS,
 DNSSRV_TYPEID_ZONE_SCOPE_CREATE,
 DNSSRV_TYPEID_ZONE_SCOPE_INFO, // 55
 DNSSRV_TYPEID_SCOPE_ENUM,
 DNSSRV_TYPEID_CLIENT_SUBNET_RECORD,
 DNSSRV_TYPEID_POLICY,
 DNSSRV_TYPEID_POLICY_NAME,
 DNSSRV_TYPEID_POLICY_ENUM, // 60
 DNSSRV_TYPEID_RRL,
 DNSSRV_TYPEID_VIRTUALIZATION_INSTANCE,
 DNSSRV_TYPEID_VIRTUALIZATION_INSTANCE_ENUM
 }
 DNS_RPC_TYPEID, *PDNS_RPC_TYPEID;

 #define DNS_RPC_ZONE_STATS_VER 1
 #define DNS_RPC_ZONE_STATS DNS_RPC_ZONE_STATS_V1
 #define PDNS_RPC_ZONE_STATS PDNS_RPC_ZONE_STATS_V1

 #define DNS_RPC_ZONE_SCOPE_CREATE_INFO_VER 1
 #define DNS_RPC_ZONE_SCOPE_CREATE_INFO DNS_RPC_ZONE_SCOPE_CREATE_INFO_V1
 #define PDNS_RPC_ZONE_SCOPE_CREATE_INFO PDNS_RPC_ZONE_SCOPE_CREATE_INFO_V1

 #define DNS_RPC_ZONE_SCOPE_INFO_VER 1
 #define DNS_RPC_ZONE_SCOPE_INFO DNS_RPC_ZONE_SCOPE_INFO_V1

 #define PDNS_RPC_ZONE_SCOPE_INFO PDNS_RPC_ZONE_SCOPE_INFO_V1

 #define DNS_RPC_ENUM_ZONE_SCOPE_LIST_VER 1

 typedef struct _DnsRpcEnumZoneScopeList
 {
 DWORD dwRpcStructureVersion;

 DWORD dwZoneScopeCount;
 // array of dwZoneScopeCount zones
 LPWSTR ZoneScopeArray[1];

 } DNS_RPC_ENUM_ZONE_SCOPE_LIST, * PDNS_RPC_ENUM_ZONE_SCOPE_LIST;

 //
 // DNS server statistics
 //

 typedef struct _DnsSystemTime
 {
 WORD wYear;
 WORD wMonth;
 WORD wDayOfWeek;
 WORD wDay;
 WORD wHour;
 WORD wMinute;
 WORD wSecond;
 WORD wMilliseconds;
 }
 DNS_SYSTEMTIME;

 //
 // Zone time statisticsinfo.
 //
 typedef struct _DnsZoneTimeStats
 {
 DNS_SYSTEMTIME StatsCollectionStartTime;
 }
 DNSSRV_ZONE_TIME_STATS, *PDNSSRV_ZONE_TIME_STATS;

 #define MAX_RECORD_TYPES 31
 #define MAX_ZONE_TRANSFER_TYPES 2

348 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 //
 // Enum for all zone statistics types
 //
 typedef enum _DNS_ZONE_STATS_TYPE {
 //
 // Record types. If new zone stats record type is added/deleted
 // then update MAX_RECORD_TYPES accordingly.
 //
 ZONE_STATS_TYPE_RECORD_A = 0,
 ZONE_STATS_TYPE_RECORD_AAAA,
 ZONE_STATS_TYPE_RECORD_PTR,
 ZONE_STATS_TYPE_RECORD_CNAME,
 ZONE_STATS_TYPE_RECORD_MX,
 ZONE_STATS_TYPE_RECORD_AFSDB,
 ZONE_STATS_TYPE_RECORD_ATMA,
 ZONE_STATS_TYPE_RECORD_DHCID,
 ZONE_STATS_TYPE_RECORD_DNAME,
 ZONE_STATS_TYPE_RECORD_HINFO,
 ZONE_STATS_TYPE_RECORD_ISDN,
 ZONE_STATS_TYPE_RECORD_MG,
 ZONE_STATS_TYPE_RECORD_MB,
 ZONE_STATS_TYPE_RECORD_MINFO,
 ZONE_STATS_TYPE_RECORD_NAPTR,
 ZONE_STATS_TYPE_RECORD_NXT,
 ZONE_STATS_TYPE_RECORD_KEY,
 ZONE_STATS_TYPE_RECORD_MR,

 ZONE_STATS_TYPE_RECORD_RP,
 ZONE_STATS_TYPE_RECORD_RT,
 ZONE_STATS_TYPE_RECORD_SRV,
 ZONE_STATS_TYPE_RECORD_SIG,
 ZONE_STATS_TYPE_RECORD_TEXT,
 ZONE_STATS_TYPE_RECORD_WKS,
 ZONE_STATS_TYPE_RECORD_X25,
 ZONE_STATS_TYPE_RECORD_DNSKEY,
 ZONE_STATS_TYPE_RECORD_DS,
 ZONE_STATS_TYPE_RECORD_NS,
 ZONE_STATS_TYPE_RECORD_SOA,
 ZONE_STATS_TYPE_RECORD_TLSA,
 ZONE_STATS_TYPE_RECORD_ALL,
 ZONE_STATS_TYPE_RECORD_OTHERS,

 //
 // Zone transfer types. If new zone transfer type is added/deleted
 // then update MAX_ZONE_TRANSFER_TYPES accordingly.
 //
 ZONE_STATS_TYPE_TRANSFER_AXFR,
 ZONE_STATS_TYPE_TRANSFER_IXFR,

 //
 // Zone update.
 //
 ZONE_STATS_TYPE_UPDATE,

 //
 // Zone RRL Stats
 //
 ZONE_STATS_TYPE_RRL,

 MAX_ZONE_STATS_TYPES
 } DNS_ZONE_STATS_TYPE, *PDNS_DONE_STATS_TYPE;

 //
 // Per zone per record type statistics.
 //
 typedef struct _DnsZoneQueryStats {
 DNS_ZONE_STATS_TYPE RecordType;
 ULONG64 QueriesResponded;

349 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 ULONG64 QueriesReceived;
 ULONG64 QueriesFailure;
 ULONG64 QueriesNameError;
 }
 DNSSRV_ZONE_QUERY_STATS, *PDNSSRV_ZONE_QUERY_STATS;

 typedef struct _DnsRRLStats
 {
 DNSSRV_STAT_HEADER Header;

 DWORD TotalResponsesSent;
 DWORD TotalResponsesDropped;
 DWORD TotalResponsesTruncated;
 DWORD TotalResponsesLeaked;
 }
 DNSSRV_RRL_STATS, *PDNSSRV_RRL_STATS;

 //
 // Zone transfer statistics.
 //
 typedef struct _DnsZoneTransferStats {
 DNS_ZONE_STATS_TYPE TransferType;
 ULONG64 RequestReceived;
 ULONG64 RequestSent;
 ULONG64 ResponseReceived;
 ULONG64 SuccessReceived;
 ULONG64 SuccessSent;
 }

 DNSSRV_ZONE_TRANSFER_STATS, *PDNSSRV_ZONE_TRANSFER_STATS;

 //
 // Zone update statistics.
 //
 typedef struct _DnsZoneUpdateStats {
 DNS_ZONE_STATS_TYPE Type;
 ULONG64 DynamicUpdateReceived;
 ULONG64 DynamicUpdateRejected;
 }
 DNSSRV_ZONE_UPDATE_STATS, *PDNSSRV_ZONE_UPDATE_STATS;

 //
 // Zone RRL statistics.
 //
 typedef struct _DnsZoneRRLStats {

 DNS_ZONE_STATS_TYPE Type;
 DWORD TotalResponsesSent;
 DWORD TotalResponsesDropped;
 DWORD TotalResponsesTruncated;
 DWORD TotalResponsesLeaked;
 }
 DNSSRV_ZONE_RRL_STATS, *PDNSSRV_ZONE_RRL_STATS;

 typedef struct _DnsRpcZoneStats {
 DWORD dwRpcStructureVersion;
 DNSSRV_ZONE_TIME_STATS ZoneTimeStats;
 DNSSRV_ZONE_QUERY_STATS ZoneQueryStats[MAX_RECORD_TYPES];
 DNSSRV_ZONE_TRANSFER_STATS ZoneTransferStats[MAX_ZONE_TRANSFER_TYPES];
 DNSSRV_ZONE_UPDATE_STATS ZoneUpdateStats;
 DNSSRV_ZONE_RRL_STATS ZoneRRLStats;
 }DNS_RPC_ZONE_STATS_V1, *PDNS_RPC_ZONE_STATS_V1;

 typedef struct _DnsRpcScopeCreate
 {
 DWORD dwFlags ;
 LPWSTR pwszScopeName; // Scope name that is to be created
 }DNS_RPC_ZONE_SCOPE_CREATE_INFO_V1,*PDNS_RPC_ZONE_SCOPE_CREATE_INFO_V1;

350 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 typedef struct _DnsRpcZoneScopeInfo
 {
 DWORD dwRpcStructureVersion;
 LPWSTR pwszScopeName;
 LPWSTR pwszDataFile;
 } DNS_RPC_ZONE_SCOPE_INFO_V1, *PDNS_RPC_ZONE_SCOPE_INFO_V1;

 typedef struct _DnsRpcEnumScopeList
 {
 DWORD dwRpcStructureVersion;
 DWORD dwScopeCount;
 LPWSTR ScopeArray[1];
 } DNS_RPC_ENUM_SCOPE_LIST, *PDNS_RPC_ENUM_SCOPE_LIST;

 typedef [switch_type(DWORD)] union _DnssrvSrvRpcUnion
 {
 [case(DNSSRV_TYPEID_NULL)] PBYTE Null;

 [case(DNSSRV_TYPEID_DWORD)] DWORD Dword;

 [case(DNSSRV_TYPEID_LPSTR)] [string] char * String;

 [case(DNSSRV_TYPEID_LPWSTR)] [string] wchar_t * WideString;

 [case(DNSSRV_TYPEID_IPARRAY)] PIP4_ARRAY IpArray;

 [case(DNSSRV_TYPEID_BUFFER)]
 PDNS_RPC_BUFFER Buffer;

 [case(DNSSRV_TYPEID_SERVER_INFO_W2K)]
 PDNS_RPC_SERVER_INFO_W2K ServerInfoW2K;

 [case(DNSSRV_TYPEID_STATS)]
 PDNSSRV_STATS Stats;

 [case(DNSSRV_TYPEID_FORWARDERS_W2K)]
 PDNS_RPC_FORWARDERS_W2K ForwardersW2K;

 [case(DNSSRV_TYPEID_ZONE_W2K)]
 PDNS_RPC_ZONE_W2K ZoneW2K;

 [case(DNSSRV_TYPEID_ZONE_INFO_W2K)]
 PDNS_RPC_ZONE_INFO_W2K ZoneInfoW2K;

 [case(DNSSRV_TYPEID_ZONE_SECONDARIES_W2K)]
 PDNS_RPC_ZONE_SECONDARIES_W2K SecondariesW2K;

 [case(DNSSRV_TYPEID_ZONE_DATABASE_W2K)]
 PDNS_RPC_ZONE_DATABASE_W2K DatabaseW2K;

 [case(DNSSRV_TYPEID_ZONE_CREATE_W2K)]
 PDNS_RPC_ZONE_CREATE_INFO_W2K ZoneCreateW2K;

 [case(DNSSRV_TYPEID_NAME_AND_PARAM)]
 PDNS_RPC_NAME_AND_PARAM NameAndParam;

 [case(DNSSRV_TYPEID_ZONE_LIST_W2K)]
 PDNS_RPC_ZONE_LIST_W2K ZoneListW2K;

 [case(DNSSRV_TYPEID_SERVER_INFO_DOTNET)]
 PDNS_RPC_SERVER_INFO_DOTNET ServerInfoDotNet;

 [case(DNSSRV_TYPEID_FORWARDERS_DOTNET)]
 PDNS_RPC_FORWARDERS_DOTNET ForwardersDotNet;

 [case(DNSSRV_TYPEID_ZONE)]
 PDNS_RPC_ZONE Zone;

351 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 [case(DNSSRV_TYPEID_ZONE_INFO_DOTNET)]
 PDNS_RPC_ZONE_INFO_DOTNET ZoneInfoDotNet;
 [case(DNSSRV_TYPEID_ZONE_SECONDARIES_DOTNET)]
 PDNS_RPC_ZONE_SECONDARIES_DOTNET SecondariesDotNet;

 [case(DNSSRV_TYPEID_ZONE_DATABASE)]
 PDNS_RPC_ZONE_DATABASE Database;

 [case(DNSSRV_TYPEID_ZONE_CREATE_DOTNET)]
 PDNS_RPC_ZONE_CREATE_INFO_DOTNET ZoneCreateDotNet;

 [case(DNSSRV_TYPEID_ZONE_LIST)]
 PDNS_RPC_ZONE_LIST ZoneList;

 [case(DNSSRV_TYPEID_ZONE_EXPORT)]
 PDNS_RPC_ZONE_EXPORT_INFO ZoneExport;

 [case(DNSSRV_TYPEID_DP_INFO)]
 PDNS_RPC_DP_INFO DirectoryPartition;

 [case(DNSSRV_TYPEID_DP_ENUM)]
 PDNS_RPC_DP_ENUM DirectoryPartitionEnum;

 [case(DNSSRV_TYPEID_DP_LIST)]
 PDNS_RPC_DP_LIST DirectoryPartitionList;

 [case(DNSSRV_TYPEID_ENLIST_DP)]
 PDNS_RPC_ENLIST_DP EnlistDirectoryPartition;

 [case(DNSSRV_TYPEID_ZONE_CHANGE_DP)]
 PDNS_RPC_ZONE_CHANGE_DP ZoneChangeDirectoryPartition;

 [case(DNSSRV_TYPEID_ENUM_ZONES_FILTER)]
 PDNS_RPC_ENUM_ZONES_FILTER EnumZonesFilter;

 [case(DNSSRV_TYPEID_ADDRARRAY)]
 PDNS_ADDR_ARRAY AddrArray;

 [case(DNSSRV_TYPEID_SERVER_INFO)]
 PDNS_RPC_SERVER_INFO ServerInfo;

 [case(DNSSRV_TYPEID_ZONE_CREATE)]
 PDNS_RPC_ZONE_CREATE_INFO ZoneCreate;

 [case(DNSSRV_TYPEID_FORWARDERS)]
 PDNS_RPC_FORWARDERS Forwarders;

 [case(DNSSRV_TYPEID_ZONE_SECONDARIES)]
 PDNS_RPC_ZONE_SECONDARIES Secondaries;

 [case(DNSSRV_TYPEID_IP_VALIDATE)]
 PDNS_RPC_IP_VALIDATE IpValidate;

 [case(DNSSRV_TYPEID_ZONE_INFO)]
 PDNS_RPC_ZONE_INFO ZoneInfo;

 [case(DNSSRV_TYPEID_AUTOCONFIGURE)]
 PDNS_RPC_AUTOCONFIGURE AutoConfigure;

 [case(DNSSRV_TYPEID_UTF8_STRING_LIST)]
 PDNS_RPC_UTF8_STRING_LIST Utf8StringList;

 [case(DNSSRV_TYPEID_UNICODE_STRING_LIST)]
 PDNS_RPC_UNICODE_STRING_LIST UnicodeStringList;

 [case(DNSSRV_TYPEID_SKD)]
 PDNS_RPC_SKD Skd;

352 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 [case(DNSSRV_TYPEID_SKD_LIST)]
 PDNS_RPC_SKD_LIST SkdList;

 [case(DNSSRV_TYPEID_SKD_STATE)]
 PDNS_RPC_SKD_STATE SkdState;

 [case(DNSSRV_TYPEID_SIGNING_VALIDATION_ERROR)]
 PDNS_RPC_SIGNING_VALIDATION_ERROR SigningValidationError;

 [case(DNSSRV_TYPEID_TRUST_POINT_LIST)]
 PDNS_RPC_TRUST_POINT_LIST TrustPointList;

 [case(DNSSRV_TYPEID_TRUST_ANCHOR_LIST)]
 PDNS_RPC_TRUST_ANCHOR_LIST TrustAnchorList;

 [case(DNSSRV_TYPEID_ZONE_SIGNING_SETTINGS)]
 PDNS_RPC_ZONE_DNSSEC_SETTINGS ZoneDnsSecSettings;

 [case(DNSSRV_TYPEID_ZONE_SCOPE_ENUM)]
 PDNS_RPC_ENUM_ZONE_SCOPE_LIST ZoneScopeList;

 [case(DNSSRV_TYPEID_ZONE_STATS)]
 PDNS_RPC_ZONE_STATS ZoneStats;

 [case(DNSSRV_TYPEID_ZONE_SCOPE_CREATE)]
 PDNS_RPC_ZONE_SCOPE_CREATE_INFO ScopeCreate;

 [case(DNSSRV_TYPEID_ZONE_SCOPE_INFO)]
 PDNS_RPC_ZONE_SCOPE_INFO ScopeInfo;

 [case(DNSSRV_TYPEID_SCOPE_ENUM)]
 PDNS_RPC_ENUM_SCOPE_LIST ScopeList;

 [case(DNSSRV_TYPEID_CLIENT_SUBNET_RECORD)]
 PDNS_RPC_CLIENT_SUBNET_RECORD SubnetList;

 [case(DNSSRV_TYPEID_POLICY)]
 PDNS_RPC_POLICY pPolicy;

 [case(DNSSRV_TYPEID_POLICY_NAME)]
 PDNS_RPC_POLICY_NAME pPolicyName;

 [case(DNSSRV_TYPEID_POLICY_ENUM)]
 PDNS_RPC_ENUMERATE_POLICY_LIST pPolicyList;

 [case(DNSSRV_TYPEID_RRL)]
 PDNS_RPC_RRL_PARAMS pRRLParams;

 [case(DNSSRV_TYPEID_VIRTUALIZATION_INSTANCE)]
 PDNS_RPC_VIRTUALIZATION_INSTANCE VirtualizationInstance;

 [case(DNSSRV_TYPEID_VIRTUALIZATION_INSTANCE_ENUM)]
 PDNS_RPC_ENUM_VIRTUALIZATION_INSTANCE_LIST VirtualizationInstanceList;

 } DNSSRV_RPC_UNION;

 typedef enum _ImportOperationResult
 {
 // No change was detected in Signing Settings imported and that of the Zone
 IMPORT_STATUS_NOOP,

 // Zone is marked for Re-Sign
 IMPORT_STATUS_SIGNING_READY,

 // Zone is marked for Unsign
 IMPORT_STATUS_UNSIGNING_READY,

353 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 // Change was detected but no re-signing\unsigning required
 IMPORT_STATUS_CHANGED

 } ImportOpResult;

 [
 uuid(50abc2a4-574d-40b3-9d66-ee4fd5fba076),
 version(5.0),
 pointer_default(unique)
]
 interface DnsServer
 {

 LONG
 R_DnssrvOperation(
 [in] handle_t hBindingHandle,
 [in, unique, string] LPCWSTR pwszServerName,
 [in, unique, string] LPCSTR pszZone,
 [in] DWORD dwContext,
 [in, unique, string] LPCSTR pszOperation,
 [in] DWORD dwTypeId,
 [in, switch_is(dwTypeId)] DNSSRV_RPC_UNION pData
);

 LONG
 R_DnssrvQuery(
 [in] handle_t hBindingHandle,
 [in, unique, string] LPCWSTR pwszServerName,
 [in, unique, string] LPCSTR pszZone,
 [in, unique, string] LPCSTR pszOperation,

 [out] PDWORD pdwTypeId,
 [out, switch_is(*pdwTypeId)] DNSSRV_RPC_UNION * ppData
);

 LONG
 R_DnssrvComplexOperation(
 [in] handle_t hBindingHandle,
 [in, unique, string] LPCWSTR pwszServerName,
 [in, unique, string] LPCSTR pszZone,
 [in, unique, string] LPCSTR pszOperation,
 [in] DWORD dwTypeIn,
 [in, switch_is(dwTypeIn)] DNSSRV_RPC_UNION pDataIn,
 [out] PDWORD pdwTypeOut,
 [out, switch_is(*pdwTypeOut)] DNSSRV_RPC_UNION * ppDataOut
);

 LONG
 R_DnssrvEnumRecords(
 [in] handle_t hBindingHandle,
 [in, unique, string] LPCWSTR pwszServerName,
 [in, unique, string] LPCSTR pszZone,
 [in, unique, string] LPCSTR pszNodeName,
 [in, unique, string] LPCSTR pszStartChild,
 [in] WORD wRecordType,
 [in] DWORD fSelectFlag,
 [in, unique, string] LPCSTR pszFilterStart,
 [in, unique, string] LPCSTR pszFilterStop,
 [out] PDWORD pdwBufferLength,
 [out, size_is(, *pdwBufferLength)] PBYTE * ppBuffer
);

 LONG
 R_DnssrvUpdateRecord(
 [in] handle_t hBindingHandle,
 [in, unique, string] LPCWSTR pwszServerName,
 [in, unique, string] LPCSTR pszZone,

354 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 [in, string] LPCSTR pszNodeName,
 [in, unique] PDNS_RPC_RECORD pAddRecord,
 [in, unique] PDNS_RPC_RECORD pDeleteRecord
);

 LONG
 R_DnssrvOperation2(
 [in] handle_t hBindingHandle,
 [in] DWORD dwClientVersion,
 [in] DWORD dwSettingFlags,
 [in, unique, string] LPCWSTR pwszServerName,
 [in, unique, string] LPCSTR pszZone,
 [in] DWORD dwContext,
 [in, unique, string] LPCSTR pszOperation,
 [in] DWORD dwTypeId,
 [in, switch_is(dwTypeId)] DNSSRV_RPC_UNION pData
);

 LONG
 R_DnssrvQuery2(
 [in] handle_t hBindingHandle,
 [in] DWORD dwClientVersion,
 [in] DWORD dwSettingFlags,
 [in, unique, string] LPCWSTR pwszServerName,
 [in, unique, string] LPCSTR pszZone,
 [in, unique, string] LPCSTR pszOperation,
 [out] PDWORD pdwTypeId,
 [out, switch_is(*pdwTypeId)] DNSSRV_RPC_UNION * ppData
);

 LONG
 R_DnssrvComplexOperation2(
 [in] handle_t hBindingHandle,

 [in] DWORD dwClientVersion,
 [in] DWORD dwSettingFlags,
 [in, unique, string] LPCWSTR pwszServerName,
 [in, unique, string] LPCSTR pszZone,
 [in, unique, string] LPCSTR pszOperation,
 [in] DWORD dwTypeIn,
 [in, switch_is(dwTypeIn)] DNSSRV_RPC_UNION pDataIn,
 [out] PDWORD pdwTypeOut,
 [out, switch_is(*pdwTypeOut)] DNSSRV_RPC_UNION * ppDataOut
);

 LONG
 R_DnssrvEnumRecords2(
 [in] handle_t hBindingHandle,
 [in] DWORD dwClientVersion,
 [in] DWORD dwSettingFlags,
 [in, unique, string] LPCWSTR pwszServerName,
 [in, unique, string] LPCSTR pszZone,
 [in, unique, string] LPCSTR pszNodeName,
 [in, unique, string] LPCSTR pszStartChild,
 [in] WORD wRecordType,
 [in] DWORD fSelectFlag,
 [in, unique, string] LPCSTR pszFilterStart,
 [in, unique, string] LPCSTR pszFilterStop,
 [out] PDWORD pdwBufferLength,
 [out, size_is(, *pdwBufferLength)] PBYTE * ppBuffer
);

 LONG
 R_DnssrvUpdateRecord2(
 [in] handle_t hBindingHandle,
 [in] DWORD dwClientVersion,
 [in] DWORD dwSettingFlags,
 [in, unique, string] LPCWSTR pwszServerName,
 [in, unique, string] LPCSTR pszZone,

355 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 [in, string] LPCSTR pszNodeName,
 [in, unique] PDNS_RPC_RECORD pAddRecord,
 [in, unique] PDNS_RPC_RECORD pDeleteRecord
);

 LONG
 R_DnssrvUpdateRecord3(
 [in] handle_t hBindingHandle,
 [in] DWORD dwClientVersion,
 [in] DWORD dwSettingFlags,
 [in, unique, string] LPCWSTR pwszServerName,
 [in, unique, string] LPCSTR pszZone,
 [in, unique, string] LPCWSTR pwszZoneScope,
 [in, string] LPCSTR pszNodeName,
 [in, unique] PDNS_RPC_RECORD pAddRecord,
 [in, unique] PDNS_RPC_RECORD pDeleteRecord
);

 LONG
 R_DnssrvEnumRecords3(
 [in] handle_t hBindingHandle,
 [in] DWORD dwClientVersion,
 [in] DWORD dwSettingFlags,
 [in, unique, string] LPCWSTR pwszServerName,
 [in, unique, string] LPCSTR pszZone,
 [in, unique, string] LPCWSTR pwszZoneScope,
 [in, unique, string] LPCSTR pszNodeName,
 [in, unique, string] LPCSTR pszStartChild,
 [in] WORD wRecordType,
 [in] DWORD fSelectFlag,
 [in, unique, string] LPCSTR pszFilterStart,
 [in, unique, string] LPCSTR pszFilterStop,
 [out] PDWORD pdwBufferLength,
 [out, size_is(, *pdwBufferLength)] PBYTE * ppBuffer

);

 LONG
 R_DnssrvOperation3(
 [in] handle_t hBindingHandle,
 [in] DWORD dwClientVersion,
 [in] DWORD dwSettingFlags,
 [in, unique, string] LPCWSTR pwszServerName,
 [in, unique, string] LPCSTR pszZone,
 [in, unique, string] LPCWSTR pwszZoneScopeName,
 [in] DWORD dwContext,
 [in, unique, string] LPCSTR pszOperation,
 [in] DWORD dwTypeId,
 [in, switch_is(dwTypeId)] DNSSRV_RPC_UNION pData
);

 LONG
 R_DnssrvQuery3(
 [in] DWORD dwClientVersion,
 [in] DWORD dwSettingFlags,
 [in, unique, string] LPCWSTR pwszServerName,
 [in, unique, string] LPCSTR pszZone,
 [in, unique, string] LPCWSTR pszZoneScopeName,
 [in, unique, string] LPCSTR pszOperation,
 [out] PDWORD pdwTypeId,
 [out, switch_is(*pdwTypeId)] DNSSRV_RPC_UNION * ppData
);

 LONG
 R_DnssrvComplexOperation3(
 [in] DWORD dwClientVersion,
 [in] DWORD dwSettingFlags,
 [in, unique, string] LPCWSTR pwszServerName,
 [in, unique, string] LPCWSTR pwszVirtualizationInstanceID,

356 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 [in, unique, string] LPCSTR pszZone,
 [in, unique, string] LPCSTR pszOperation,
 [in] DWORD dwTypeIn,
 [in, switch_is(dwTypeIn)] DNSSRV_RPC_UNION pDataIn,
 [out] PDWORD pdwTypeOut,
 [out, switch_is(*pdwTypeOut)] DNSSRV_RPC_UNION * ppDataOut
);

 LONG
 R_DnssrvOperation4(
 [in] handle_t hBindingHandle,
 [in] DWORD dwClientVersion,
 [in] DWORD dwSettingFlags,
 [in, unique, string] LPCWSTR pwszServerName,
 [in, unique, string] LPCWSTR pwszVirtualizationInstanceID,
 [in, unique, string] LPCSTR pszZone,
 [in, unique, string] LPCWSTR pwszZoneScopeName,
 [in] DWORD dwContext,
 [in, unique, string] LPCSTR pszOperation,
 [in] DWORD dwTypeId,
 [in, switch_is(dwTypeId)] DNSSRV_RPC_UNION pData
);

 LONG
 R_DnssrvQuery4(
 [in] DWORD dwClientVersion,
 [in] DWORD dwSettingFlags,
 [in, unique, string] LPCWSTR pwszServerName,
 [in, unique, string] LPCWSTR pwszVirtualizationInstanceID,
 [in, unique, string] LPCSTR pszZone,
 [in, unique, string] LPCWSTR pszZoneScopeName,
 [in, unique, string] LPCSTR pszOperation,
 [out] PDWORD pdwTypeId,
 [out, switch_is(*pdwTypeId)] DNSSRV_RPC_UNION * ppData
);

 LONG
 R_DnssrvUpdateRecord4(
 [in] handle_t hBindingHandle,
 [in] DWORD dwClientVersion,
 [in] DWORD dwSettingFlags,
 [in, unique, string] LPCWSTR pwszServerName,
 [in, unique, string] LPCWSTR pwszVirtualizationInstanceID,
 [in, unique, string] LPCSTR pszZone,
 [in, unique, string] LPCWSTR pwszZoneScope,
 [in, string] LPCSTR pszNodeName,
 [in, unique] PDNS_RPC_RECORD pAddRecord,
 [in, unique] PDNS_RPC_RECORD pDeleteRecord
);

 LONG
 R_DnssrvEnumRecords4(
 [in] handle_t hBindingHandle,
 [in] DWORD dwClientVersion,
 [in] DWORD dwSettingFlags,
 [in, unique, string] LPCWSTR pwszServerName,
 [in, unique, string] LPCWSTR pwszVirtualizationInstanceID,
 [in, unique, string] LPCSTR pszZone,
 [in, unique, string] LPCWSTR pwszZoneScope,
 [in, unique, string] LPCSTR pszNodeName,
 [in, unique, string] LPCSTR pszStartChild,
 [in] WORD wRecordType,
 [in] DWORD fSelectFlag,
 [in, unique, string] LPCSTR pszFilterStart,
 [in, unique, string] LPCSTR pszFilterStop,
 [out] PDWORD pdwBufferLength,
 [out, size_is(, *pdwBufferLength)] PBYTE * ppBuffer
);

357 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 }

358 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

7 Appendix B: Product Behavior

The information in this specification is applicable to the following Microsoft products or supplemental
software. References to product versions include released service packs.

 Windows NT operating system

 Windows 2000 Server operating system

 Windows Server 2003 operating system

 Windows Server 2008 operating system

 Windows Server 2008 R2 operating system

 Windows Server 2012 operating system

 Windows Server 2012 R2 operating system

 Windows Server 2016 operating system

Exceptions, if any, are noted below. If a service pack or Quick Fix Engineering (QFE) number appears

with the product version, behavior changed in that service pack or QFE. The new behavior also applies
to subsequent service packs of the product unless otherwise specified. If a product edition appears
with the product version, behavior is different in that product edition.

Unless otherwise specified, any statement of optional behavior in this specification that is prescribed
using the terms SHOULD or SHOULD NOT implies product behavior in accordance with the SHOULD or
SHOULD NOT prescription. Unless otherwise specified, the term MAY implies that the product does not
follow the prescription.

<1> Section 2.1: RPC over named pipes is supported on Windows NT, Windows 2000 Server and
Windows Server 2003 only.

<2> Section 2.1.2: Windows 2000 Server and Windows Server 2003 clients always request

RPC_C_QOS_CAPABILITIES_MUTUAL_AUTH. Windows Server 2008, Windows Server 2008 R2
operating system, Windows Server 2012, Windows Server 2012 R2, and Windows Server 2016 clients
additionally request RPC_C_QOS_CAPABILITIES_IGNORE_DELEGATE_FAILURE during
R_DnssrvOperation (section 3.1.4.1) or R_DnssrvOperation2 (section 3.1.4.6) when pszOperation is

"EnlistDirectoryPartition".

<3> Section 2.1.2: Windows 2000 Server and Windows Server 2003 clients always request
RPC_C_IMP_LEVEL_DELEGATE. Windows Server 2008, Windows Server 2008 R2, Windows Server
2012, Windows Server 2012 R2, and Windows Server 2016 clients request
RPC_C_IMP_LEVEL_DELEGATE during R_DnssrvOperation or R_DnssrvOperation2 when pszOperation
is "EnlistDirectoryPartition".

<4> Section 2.2.1.1.1: Windows 2000 Server supports type IDs up to and including
DNSSRV_TYPEID_ZONE_LIST_W2K. Windows Server 2003 supports type IDs up to and including
DNSSRV_TYPEID_ZONE_LIST.

Windows Server 2008, Windows Server 2008 R2, Windows Server 2008 R2, Windows Server 2012,
Windows Server 2012 R2, and Windows Server 2016 support type IDs up to and including
DNSSRV_TYPEID_UTF8_STRING_LIST. DNSSRV_TYPEID_ZONE_SCOPE_ENUM is supported in
Windows Server 2012 R2 and Windows Server 2016.

DNSSRV_TYPEID_CLIENT_SUBNET_RECORD, DNSSRV_TYPEID_POLICY,
DNSSRV_TYPEID_POLICY_NAME, DNSSRV_TYPEID_POLICY_ENUM, DNSSRV_TYPEID_RRL,
DNSSRV_TYPEID_VIRTUALIZATION_INSTANCE, and
DNSSRV_TYPEID_VIRTUALIZATION_INSTANCE_ENUM are supported on Windows Server 2016.

359 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

<5> Section 2.2.1.1.2: Windows uses this value to indicate use of LPC [MSDN-RPC].

<6> Section 2.2.1.2.6: Windows Server 2003 supports elements of this union up to and including

ZoneCreateDotNet. Windows 2000 Server supports elements of this union up to and including
ZoneListW2K.

<7> Section 2.2.2.1.1: Windows 2000 Server does not support the following types: DNS_TYPE_SIG,
DNS_TYPE_KEY, DNS_TYPE_NXT, DNS_TYPE_NAPTR, and DNS_TYPE_DNAME. Windows Server 2003
does not support DNS_TYPE_NAPTR and DNS_TYPE_DNAME. The types DNS_TYPE_DS,
DNS_TYPE_RRSIG, DNS_TYPE_NSEC, DNS_TYPE_DNSKEY, and DNS_TYPE_DHCID are supported only
on Windows Server 2008 R2. DNS_TYPE_NSEC3 and DNS_TYPE_NSEC3PARAM are supported only on
Windows Server 2012, Windows Server 2012 R2, and Windows Server 2016. DNS_TYPE_TLSA is
supported on Windows Server 2016 only.

<8> Section 2.2.2.1.2: On Windows Server 2008, Windows Server 2008 R2, Windows Server 2012,
Windows Server 2012 R2, and Windows Server 2016, this behavior is not applicable for nodes that
have a record with aging disabled. It is applicable for zone root nodes.

<9> Section 2.2.2.1.2: Windows 2000 Server does not support the DNS_RPC_FLAG_OPEN_ACL record
flag. DNS_RPC_FLAG_RECORD_WIRE_FORMAT and
DNS_RPC_FLAG_SUPPRESS_RECORD_UPDATE_PTR are supported in Windows Server 2016.

<10> Section 2.2.2.2.4.2: Windows 2000 Server and Windows Server 2003 do not support
DNS_TYPE_DNAME.

<11> Section 2.2.2.2.4.9: This record type is not supported in Windows 2000 Server.

<12> Section 2.2.2.2.4.10: This record type is not supported by Windows NT, Windows 2000 Server,
Windows Server 2003, and Windows Server 2008.

<13> Section 2.2.2.2.4.11: This record type is not supported by Windows NT, Windows 2000 Server,
Windows Server 2003, and Windows Server 2008.

<14> Section 2.2.2.2.4.12: This record type is not supported by Windows NT, Windows 2000 Server,
Windows Server 2003, and Windows Server 2008.

<15> Section 2.2.2.2.4.13: This record type is not supported in Windows 2000 Server.

<16> Section 2.2.2.2.4.14: This record type is not supported by Windows NT, Windows 2000 Server,
Windows Server 2003, and Windows Server 2008.

<17> Section 2.2.2.2.4.15: This record type is not supported by Windows NT, Windows 2000 Server,
Windows Server 2003, and Windows Server 2008.

<18> Section 2.2.2.2.4.17: This record type is not supported in Windows 2000 Server.

<19> Section 2.2.2.2.4.20: This record type is not supported in Windows 2000 Server.

<20> Section 2.2.2.2.4.24: DNS_RPC_RECORD_NSEC3 structure is not implemented in Windows
2000 Server, Windows Server 2003, Windows Server 2008, or Windows Server 2008 R2.

<21> Section 2.2.2.2.4.25: DNS_RPC_RECORD_NSEC3PARAM is not implemented in Windows 2000
Server, Windows Server 2003, Windows Server 2008, and Windows Server 2008 R2.

<22> Section 2.2.2.2.4.26: DNS_RPC_RECORD_TLSA is not implemented in Windows 2000 Server,
Windows Server 2003, Windows Server 2008, Windows Server 2008 R2, Windows Server 2012, and
Windows Server 2012 R2.

<23> Section 2.2.2.2.4.27: The DNS_RPC_RECORD_UNKNOWN structure is not implemented in
Windows 2000 Server, Windows Server 2003, Windows Server 2008, Windows Server 2008 R2,
Windows Server 2012, and Windows Server 2012 R2.

http://go.microsoft.com/fwlink/?LinkId=90075

360 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

<24> Section 2.2.2.2.5: In Windows 2000 Server, Windows Server 2003, Windows Server 2008,
Windows Server 2008 R2, and Windows Server 2012, if the dwFlags field is set to

DNS_RPC_FLAG_RECORD_WIRE_FORMAT, the error DNS_ERROR_RECORD_FORMAT is returned.

<25> Section 2.2.2.2.5: The records DNS_TYPE_DS, DNS_TYPE_RRSIG, DNS_TYPE_NSEC,

DNS_TYPE_DNSKEY, and DNS_TYPE_DHCID are not supported in Windows NT, Windows 2000 Server,
Windows Server 2003, and Windows Server 2008.

<26> Section 2.2.3.1.1: Windows 2000 Server and Windows Server 2003 do not support IP
validation.

<27> Section 2.2.3.1.2: Windows 2000 Server and Windows Server 2003 do not support IP
validation.

<28> Section 2.2.4.1.1: Windows NT 4.0 operating system populates its database in the following

order, until successful: from a file-based persistent storage or from the persistent copy of the DNS
Zone Table.

<29> Section 2.2.4.2.1: Windows uses the build number as the OS Revision.

<30> Section 2.2.4.2.2.1: Except for Windows NT Server 4.0 operating system, which predates
Active Directory, Windows Server operating system uses "cn=MicrosoftDNS,cn=System" as the
constant container RDN. A complete DS Container string could, for example, be

"cn=MicrosoftDNS,cn=System,DC=corp,DC=contoso,DC=com".

<31> Section 2.2.4.2.2.2: This version of the structure is for use with Windows Server 2003.

<32> Section 2.2.4.2.2.3: This version of the structure is for use with Windows Server 2008 and
Windows Server 2008 R2.

<33> Section 2.2.5.1.1: Windows 2000 Server does not support the forwarder or stub zone types.
Windows 2000 Server and Windows Server 2003 do not support the secondary cache zone type.

<34> Section 2.2.5.1.4: Windows 2000 Server does not support any zone request filter values that

involve application directory partitions. Windows 2000 Server does not support stub or forwarder zone

request filters.

<35> Section 2.2.5.1.5: Only Windows Server 2012, Windows Server 2012 R2, and Windows Server
2016 support DNS_ROLLOVER_TYPE_PREPUBLISH for signing key descriptors where fIsKSK is FALSE
and DNS_ROLLOVER_TYPE_DOUBLE_SIGNATURE for signing key descriptors where fIsKSK is TRUE.

<36> Section 2.2.5.1.6: Windows 2000 Server, Windows Server 2003, Windows Server 2008, and
Windows Server 2008 R2 do not support DNSSEC key rollover.

<37> Section 2.2.5.2.1: Windows 2000 Server only supports DNS_RPC_ZONE_W2K.

<38> Section 2.2.5.2.2: The Windows DNS server auto-creates the 0.in-addr.arpa, 127.in-addr.arpa,
and 255.in-addr.arpa zones as a performance optimization to avoid unnecessary recursions to the root
server for queries for standard IP addresses such as 0.0.0.0, 127.0.0.1 (loopback), and
255.255.255.255 (broadcast).

<39> Section 2.2.5.2.2: Windows 2000 Server and Windows Server 2003 do not support the

ReadOnly bit.

<40> Section 2.2.5.2.3: Windows 2000 Server only supports DNS_RPC_ZONE_LIST_W2K.

<41> Section 2.2.5.2.4.2: Windows Server incorrectly sets this to 0x00000000.

<42> Section 2.2.5.2.4.3: Windows Server incorrectly sets this to 0x00000000.

<43> Section 2.2.5.2.8: This structure is not implemented in Windows 2000 Server.

361 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

<44> Section 2.2.5.2.10.1: Windows 2000 Server uses 5 minutes (300 seconds).

<45> Section 2.2.6.1.2: KeySignScope is not implemented in Windows 2000 Server, Windows Server

2003, Windows Server 2008, Windows Server 2008 R2, or Windows Server 2012.

<46> Section 2.2.6.1.3: ImportOpResult is not implemented in Windows 2000 Server, Windows

Server 2003, Windows Server 2008, Windows Server 2008 R2, or Windows Server 2012.

<47> Section 2.2.6.2.1: Windows 2000 Server, Windows Server 2003, Windows Server 2008, and
Windows Server 2008 R2 do not support RSASHA1, RSASHA1-NSEC3-SHA1, RSASHA256, and
RSASHA512.

<48> Section 2.2.6.2.3: Windows 2000 Server, Windows Server 2003, Windows Server 2008, and
Windows Server 2008 R2 do not support automatic DNSSEC signing of zones.

<49> Section 2.2.6.2.9: The DNS_RPC_ZONE_DNSSEC_SETTINGS structure is not implemented in

Windows 2000 Server, Windows Server 2003, Windows Server 2008, Windows Server 2008 R2, and
Windows Server 2012.

<50> Section 2.2.6.2.10: The DNS_RPC_ZONE_SKD structure is not implemented in Windows 2000
Server, Windows Server 2003, Windows Server 2008, Windows Server 2008 R2, and Windows Server
2012.

<51> Section 2.2.6.2.11: The DNS_RPC_SKD_STATE_EX structure is not implemented in Windows

2000 Server, Windows Server 2003, Windows Server 2008, Windows Server 2008 R2, and Windows
Server 2012.

<52> Section 2.2.7.1.1: This enumeration is not supported in Windows NT and Windows 2000 Server.

<53> Section 2.2.7.1.1: Windows Server 2003 does not support read-only DCs and does not process
the msDS-NC-RO-Replica-Locations.

<54> Section 2.2.7.2.1: DNS_RPC_DP_INFO is not supported by Windows NT and Windows 2000
Server.

<55> Section 2.2.7.2.1: Windows 2000 Server and Windows Server 2003 do not support read-only
DCs and do not process the msDS-NC-RO-Replica-Locations attributes.

<56> Section 2.2.7.2.2: This structure is not supported by Windows NT and Windows 2000 Server.

<57> Section 2.2.7.2.3: This structure is not supported by Windows NT and Windows 2000 Server.

<58> Section 2.2.7.2.4: This structure is not supported by Windows NT and Windows 2000 Server.

<59> Section 2.2.7.2.5: This structure is not supported by Windows NT and Windows 2000 Server.

<60> Section 2.2.7.2.6: This structure is not supported by Windows NT and Windows 2000 Server.

<61> Section 2.2.8.1.1: Windows NT 4.0 and Windows 2000 Server do not support this structure.
Windows Server 2003 does not support the following values:
DNS_RPC_AUTOCONFIG_INTERNAL_SELFPOINT_PREPEND,

DNS_RPC_AUTOCONFIG_INTERNAL_SELFPOINT_APPEND (use
DNS_RPC_AUTOCONFIG_INTERNAL_SELFPOINT instead), and
DNS_RPC_AUTOCONFIG_INTERNAL_RETURN_ERRORS.

<62> Section 2.2.8.1.1: Windows Server 2003 does not support the
DNS_RPC_AUTOCONFIG_INTERNAL_SELFPOINT_PREPEND constant. Use
DNS_RPC_AUTOCONFIG_INTERNAL_SELFPOINT instead.

<63> Section 2.2.8.1.1: Windows Server 2003 uses the values in the following table to obtain a
constant. Windows Server 2003 interprets each value in the right-hand column as the corresponding

362 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

constant in the left-hand column, regardless of the version of the client connecting to it. The client
uses the corresponding values in the table to indicate each constant, regardless of the version of the

server it is connecting to. No Windows implementation checks the version of the other communicating
host when determining how to select or interpret these values.

Constant Value used by Windows Server 2003

DNS_RPC_AUTOCONFIG_INTERNAL_ROOTHINTS 0x00000001

DNS_RPC_AUTOCONFIG_INTERNAL_FORWARDERS 0x00000002

DNS_RPC_AUTOCONFIG_ZONES 0x00000008

DNS_RPC_AUTOCONFIG_INTERNAL_SELFPOINT 0x00000004

DNS_RPC_AUTOCONFIG_ALL 0xFFFFFFFF

<64> Section 2.2.9.1.1: DNS_LOG_LEVEL_UNMATCHED_RESPONSE is not supported by Windows NT,
Windows 2000 Server, Windows Server 2003, and Windows Server 2008.

<65> Section 2.2.10.1.1: DNSSRV_STATID_DNSSEC is not supported by Windows NT, Windows 2000
Server, Windows Server 2003, and Windows Server 2008.

<66> Section 2.2.10.1.1: DNSSRV_STATID_RRL is not implemented in Windows NT, Windows 2000
Server, Windows Server 2003, Windows Server 2008, Windows Server 2008 R2, Windows Server
2012, and Windows Server 2012 R2.

<67> Section 2.2.10.2.6: Windows 2000 Server DNS servers do not include this field.

<68> Section 2.2.10.2.7: Windows 2000 Server does not implement the ResponseMismatched
field. Windows 2000 Server and Windows Server 2003 do not implement the GnzLocalQuery field.

<69> Section 2.2.10.2.7: This field is not supported by Windows NT. Windows 2000 Server, Windows

Server 2003, and Windows Server 2008.

<70> Section 2.2.10.2.8: This record type is not supported by Windows NT, Windows 2000 Server,
Windows Server 2003, and Windows Server 2008.

<71> Section 2.2.10.2.9: Windows 2000 Server and Windows Server 2003 DNS servers do not
include this field.

<72> Section 2.2.10.2.9: Windows 2000 Server DNS servers do not include this field.

<73> Section 2.2.10.2.10: Windows 2000 Server DNS servers do not include this field.

<74> Section 2.2.10.2.14: Windows 2000 Server does not include this field.

<75> Section 2.2.10.2.20: Windows 2000 Server does not support PacketsForNsListUsed,
PacketsForNsListReturned, and PacketsForNsListInUse.

<76> Section 2.2.10.2.20: Windows 2000 Server DNS servers do not include this field.

<77> Section 2.2.10.2.25: The DNSSRV_RRL_STATS structure is not implemented in Windows 2000
Server, Windows Server 2003, Windows Server 2008, Windows Server 2008 R2, Windows Server

2012, and Windows Server 2012 R2.

<78> Section 2.2.12.1.1: The DNS_ZONE_STATS_TYPE enumerator is not implemented in Windows
2000 Server, Windows Server 2003, Windows Server 2008, Windows Server 2008 R2, and Windows
Server 2012.

363 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

<79> Section 2.2.12.2.1: The DNSSRV_ZONE_TIME_STATS structure is not implemented in
Windows 2000 Server, Windows Server 2003, Windows Server 2008, Windows Server 2008 R2, and

Windows Server 2012.

<80> Section 2.2.12.2.2: The DNSSRV_ZONE_QUERY_STATS structure is not implemented in

Windows 2000 Server, Windows Server 2003, Windows Server 2008, Windows Server 2008 R2, and
Windows Server 2012.

<81> Section 2.2.12.2.3: The DNSSRV_ZONE_TRANSFER_STATS structure is not implemented in
Windows 2000 Server, Windows Server 2003, Windows Server 2008, Windows Server 2008 R2, and
Windows Server 2012.

<82> Section 2.2.12.2.4: The DNSSRV_ZONE_UPDATE_STATS structure is not implemented in
Windows 2000 Server, Windows Server 2003, Windows Server 2008, Windows Server 2008 R2, and

Windows Server 2012.

<83> Section 2.2.12.2.5: The DNS_RPC_ZONE_STATS_V1 structure is not implemented in
Windows 2000 Server, Windows Server 2003, Windows Server 2008, Windows Server 2008 R2, and

Windows Server 2012.

<84> Section 2.2.12.2.6: The DNSSRV_ZONE_RRL_STATS structure is not implemented in
Windows 2000 Server, Windows Server 2003, Windows Server 2008, Windows Server 2008 R2,

Windows Server 2012, and Windows Server 2012 R2.

<85> Section 2.2.13.2.1: The DNS_RPC_ENUM_ZONE_SCOPE_LIST structure is not implemented
in Windows 2000 Server, Windows Server 2003, Windows Server 2008, Windows Server 2008 R2, and
Windows Server 2012.

<86> Section 2.2.13.2.2.1: The DNS_RPC_ZONE_SCOPE_CREATE_INFO_V1 structure is not
implemented in Windows 2000 Server, Windows Server 2003, Windows Server 2008, Windows Server
2008 R2, and Windows Server 2012.

<87> Section 2.2.13.2.3.1: The DNS_RPC_ZONE_SCOPE_INFO_V1 structure is not implemented
in Windows 2000 Server, Windows Server 2003, Windows Server 2008, Windows Server 2008 R2, and

Windows Server 2012.

<88> Section 2.2.14.1.1: The DNS_RPC_ENUM_SCOPE_LIST structure is supported in Windows
Server 2012 R2 with [MSKB-2919355] and Windows Server 2016 and is reserved for future use.

<89> Section 2.2.15: DNS Policy constants and structures are not implemented in Windows 2000
Server, Windows Server 2003, Windows Server 2008, Windows Server 2008 R2, Windows Server

2012, and Windows Server 2012 R2.

<90> Section 2.2.16.1: DNS Response Rate Limiting (RRL) is not implemented in Windows 2000
Server, Windows Server 2003, Windows Server 2008, Windows Server 2008 R2, Windows Server
2012, and Windows Server 2012 R2.

<91> Section 2.2.16.2.1: DNS_RPC_RRL_PARAMS is not implemented in Windows 2000 Server,
Windows Server 2003, Windows Server 2008, Windows Server 2008 R2, Windows Server 2012, and

Windows Server 2012 R2.

<92> Section 2.2.17.1: The virtualization instance structures are not implemented in Windows 2000
Server, Windows Server 2003, Windows Server 2008, Windows Server 2008 R2, Windows Server
2012, and Windows Server 2012 R2.

<93> Section 2.3: The dnsProperty and dnsRecord attributes, and their associated properties, are not
supported on Windows NT 4.0.

<94> Section 2.3: The following attributes of dnsZone are not supported on Windows 2000 Server,

Windows Server 2003, Windows Server 2008, and Windows Server 2008 R2:

http://go.microsoft.com/fwlink/?LinkId=397642

364 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 msDNS-IsSigned

 msDNS-NSEC3OptOut

 msDNS-SigningKeys

 msDNS-SignWithNSEC3

 msDNS-NSEC3UserSalt

 msDNS-DNSKEYRecords

 msDNS-DSRecordSetTTL

 msDNS-NSEC3Iterations

 msDNS-PropagationTime

 msDNS-NSEC3CurrentSalt

 msDNS-RFC5011KeyRollovers

 msDNS-NSEC3HashAlgorithm

 msDNS-DSRecordAlgorithms

 msDNS-DNSKEYRecordSetTTL

 msDNS-MaintainTrustAnchor

 msDNS-NSEC3RandomSaltLength

 msDNS-SigningKeyDescriptors

 msDNS-SignatureInceptionOffset

 msDNS-ParentHasSecureDelegation

 msDNS-SecureDelegationPollingPeriod

<95> Section 2.3: dnsZoneScopeContainer is not implemented in Windows 2000 Server, Windows
Server 2003, Windows Server 2008, Windows Server 2008 R2, Windows Server 2012, and Windows
Server 2012 R2.

<96> Section 2.3: dnsZoneScope is not implemented in Windows 2000 Server, Windows Server 2003,

Windows Server 2008, Windows Server 2008 R2, Windows Server 2012, and Windows Server 2012
R2.

<97> Section 2.3.1.1: msDNS-ServerSettings is not implemented in Windows 2000 Server, Windows
Server 2003, Windows Server 2008, and Windows Server 2008 R2.

<98> Section 2.3.2.1.1: The following table lists dnsProperty Ids that are supported under different

versions of Windows Server.

Property Name

Windo
ws NT
4.0

Windo
ws
2000
Serve
r

Windo
ws
Serve
r
2003

Windo
ws
Serve
r
2008

Windo
ws
Serve
r
2008
R2

Windo
ws
Serve
r
2012

Windo
ws
Serve
r
2012
R2

Windo
ws
Serve
r
2016

DSPROPERTY_ZONE_TYPE X X X X X X X

365 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Property Name

Windo
ws NT
4.0

Windo
ws
2000
Serve
r

Windo
ws
Serve
r
2003

Windo
ws
Serve
r
2008

Windo
ws
Serve
r
2008
R2

Windo
ws
Serve
r
2012

Windo
ws
Serve
r
2012
R2

Windo
ws
Serve
r
2016

DSPROPERTY_ZONE_ALLOW_UPD
ATE

 X X X X X X X

DSPROPERTY_ZONE_SECURE_TIM
E

 X X X X X X X

DSPROPERTY_ZONE_NONREFRES
H_INTERVAL

 X X X X X X X

DSPROPERTY_ZONE_REFRESH_IN
TERVAL

 X X X X X X X

DSPROPERTY_ZONE_AGING_STAT
E

 X X X X X X X

DSPROPERTY_ZONE_SCAVENGIN
G_SERVERS

 X X X X X X X

DSPROPERTY_ZONE_DELETED_FR
OM_HOSTNAME

 X X X

DSPROPERTY_ZONE_AGING_ENAB
LED_TIME

 X X X X X

DSPROPERTY_ZONE_MASTER_SER
VERS

 X X X X X

DSPROPERTY_ZONE_AUTO_NS_S
ERVERS

 X X X X X X

DSPROPERTY_ZONE_DCPROMO_C

ONVERT

 X X X X X X

DSPROPERTY_ZONE_SCAVENGIN
G_SERVERS_DA

 X X X X X

DSPROPERTY_ZONE_MASTER_SER
VERS_DA

 X X X X X

DSPROPERTY_ZONE_AUTO_NS_S
ERVERS_DA

 X X X X X

DSPROPERTY_ZONE_NODE_DBFL
AGS

 X X X X X X X

<99> Section 2.3.2.1.1: The DNS server does not write the

DSPROPERTY_ZONE_SCAVENGING_SERVERS propertyId if ForceForestBehaviorVersion (section
3.1.1.1.1) indicates a forest behavior version corresponding to Windows NT, Windows 2000 Server, or
Windows Server 2003.

<100> Section 2.3.2.1.1: Windows 2000 Server and Windows Server 2003 initialize this value with
the hostname of the server when the zone is being deleted and preserve the value at all other times.
Windows Server 2008 and Windows Server 2008 R2 ignore this value. Windows NT Server 4.0 does

366 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

not support this structure. The hostname written is the FQDN of the local machine, as determined by
the GetComputerNameExW system call.

<101> Section 2.3.2.1.1: The DNS server does not write the DSPROPERTY_ZONE_MASTER_SERVERS
propertyId if ForceForestBehaviorVersion (section 3.1.1.1.1) indicates a forest behavior version

corresponding to Windows NT, Windows 2000 Server or Windows Server 2003.

<102> Section 2.3.2.1.1: The DNS server does not write the
DSPROPERTY_ZONE_AUTO_NS_SERVERS propertyId if ForceForestBehaviorVersion (section 3.1.1.1.1)
indicates a forest behavior version corresponding to Windows NT,Windows 2000 Server or Windows
Server 2003.

<103> Section 2.3.2.1.2: The RODC mode check is not supported on Windows NT, Windows 2000
Server, and Windows Server 2003.

<104> Section 2.3.2.1.2: The DcPromo flags are not supported on Windows NT and Windows 2000
Server.

<105> Section 3.1.1: Windows Server (except Windows NT Server 4.0 which predates Active

Directory) uses "cn=MicrosoftDNS,cn=System" as the constant container relative distinguished name.
A complete DS Container string could, for example, be
"cn=MicrosoftDNS,cn=System,DC=corp,DC=contoso,DC=com". The access control list is stored in the

ntSecurityDescriptor attribute of this container and can be modified using standard LDAP modify
operations (see [MS-ADTS] section 3.1.1.5.3).

<106> Section 3.1.1: In Windows, this access control list by default grants Full Control to the Domain
Administrators group, Full Control to members of the DnsAdmins group, and Full Control to members
of the Enterprise Domain Controllers group if the DNS server is Active Directory integrated, and Full
control to the Administrators group and the System Operators group otherwise.

<107> Section 3.1.1: Windows Server (except Windows NT Server 4.0 which predates Active

Directory) uses the dnsTombstoned attribute to store DNS Record Tombstone State in the directory
server. A value of TRUE indicates that the node is a tombstone. Any other value indicates that the
node is not a tombstone. Windows Server does not support DNS Record Tombstone state for zones

that are not stored in the directory server.

<108> Section 3.1.1: In Windows 2000 Server, Windows Server 2003, Windows Server 2008, and
Windows Server 2008 R2, this Access Control List by default grants Full Control to the Domain
Administrators Group, Create All Child Objects privilege to Authenticated Users, and Read privilege to

Everyone. If the zone is not stored in the DNS Forest Partition in the directory server, Full Control is
also granted to the DnsAdmins group. In Windows Server 2008 and Windows Server 2008 R2, Full
Control is also granted to members of the Enterprise Domain Controllers group, and Container
Inheritance is enabled. In all other versions of Windows, Container Inheritance is not enabled.

<109> Section 3.1.1: The Signing Key Descriptor List is not supported in Windows 2000 Server,
Windows Server 2003, Windows Server 2008, and Windows Server 2008 R2.

<110> Section 3.1.1: Rollover Queue is not supported in Windows 2000 Server, Windows Server
2003, Windows Server 2008, and Windows Server 2008 R2.

<111> Section 3.1.1: Windows 2000 Server does not implement an Application Directory Partition
Table and does not support any operations related to application directory partitions.

<112> Section 3.1.1: Windows Server except Windows NT Server 4.0 (which predates Active
Directory) and Windows 2000 Server (which predates Application Directory Partitions) use
"CN=MicrosoftDNS,CN=PartitionName" as the container relative distinguished name, where

PartitionName is ForestDnsZones, DomainDnsZones, or a custom label specified by the administrator.
A complete distinguished name for the object where this Access Control List is stored could be, for
example, "CN=MicrosoftDNS,CN=DomainDnsZones,DC=corp,DC=contoso,DC=com". The access

%5bMS-ADTS%5d.pdf#Section_d243592709994c628c6d13ba31a52e1a

367 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

control list is stored in the ntSecurityDescriptor attribute of this container and can be modified using
standard LDAP modify operations (see [MS-ADTS] section 3.1.1.5.3).

By default, this Access Control List grants Full Control to members of the DnsAdmins group, Full
Control to members of the Enterprise Domain Controllers group, and if the name of this partition is not

ForestDnsZones Full Control to members of the Domain Administrators group.

<113> Section 3.1.1: Windows Server uses the LocalSystem account as the default DNS Server
Credentials.

<114> Section 3.1.1: Windows NT and Windows 2000 Server do not support
DownlevelDCsInDomain. All the supporting versions of the DNS servers acquire the value using the
LDAP filter "(&(objectCategory=ntdsDsa)(!(msDS-Behavior-Version>=x))(|(msDS-
HasMasterNCs=y)(hasMasterNCs=y)))", where x is the forest functional level value ("ms-DS-Behavior-

Version: Forest Functional Level", [MS-ADTS] section 6.1.4.4) that corresponds to that of Windows
Server 2003, and y is the domain partition value ("nTDSDSA Object", [MS-ADTS] section
6.1.1.2.2.1.2.1.1).

<115> Section 3.1.1.1.1: Range verification is not supported in Windows NT, Windows 2000 Server,
and Windows Server 2003. In these versions, the range is unlimited, unless otherwise specified for a
property. On upgrade, from Windows NT, Windows 2000 Server, or Windows Server 2003 to Windows

Server 2008 or Windows Server 2008 R2, range verification is enforced on values set under the
previous version. On upgrade, if the value is zero, but not in the new version's range, and the zero
value is disallowed, then the default value is used.

<116> Section 3.1.1.1.1: In Windows NT 4.0 this property does not exist.

<117> Section 3.1.1.1.1: In Windows NT 4.0 this property does not exist.

<118> Section 3.1.1.1.1: In Windows NT 4.0 and Windows 2000 Server, this property does not exist.

<119> Section 3.1.1.1.1: In Windows NT 4.0, Windows 2000 Server, and Windows Server 2003, the

default value is 0x00000001.

<120> Section 3.1.1.1.1: Windows NT 4.0 does not implement this property.

<121> Section 3.1.1.1.1: Windows NT 4.0 does not support this property.

<122> Section 3.1.1.1.1: Windows NT 4.0 does not support this property.

<123> Section 3.1.1.1.1: Windows NT 4.0 and Windows 2000 Server do not support this property.

<124> Section 3.1.1.1.1: In Windows NT 4.0 and Windows 2000 Server, the default value is
0x0000012C (5 minutes).

<125> Section 3.1.1.1.1: In Windows NT 4.0, Windows 2000 Server, and Windows Server 2003, the
default value is 0x00093A80 (7 days).

<126> Section 3.1.1.1.1: In Windows NT 4.0, Windows 2000 Server, and Windows Server 2003, the
default value is 0x00000005.

<127> Section 3.1.1.1.1: Windows NT 4.0 uses zero as the default value.

<128> Section 3.1.1.1.1: In Windows NT 4.0 this parameter is not implemented. In Windows 2000

Server, the default value is 0x04000000 (4 MB).

<129> Section 3.1.1.1.1: The following table lists the DNS_LOG_LEVELS flags that are supported in
different versions of Windows Server. An unsupported flag is stored but ignored.

368 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Property Name

Windo
ws NT
4.0

Windo
ws
2000
Server

Windo
ws
Server
2003

Windo
ws
Server
2008

Windo
ws
Server
2008
R2

Windo
ws
Server
2012

Windo
ws
Server
2012
R2

Windo
ws
Server
2016

DNS_LOG_LEVEL_ANSWERS X X X X X X X X

DNS_LOG_LEVEL_DS_UPDATE X X

DNS_LOG_LEVEL_DS_WRITE X X

DNS_LOG_LEVEL_FULL_PACKE
TS

X X X X X X X X

DNS_LOG_LEVEL_NOTIFY X X X X X X X X

DNS_LOG_LEVEL_QUERY X X X X X X X X

DNS_LOG_LEVEL_QUESTIONS X X X X X X X X

DNS_LOG_LEVEL_RECV X X X X X X X X

DNS_LOG_LEVEL_SEND X X X X X X X X

DNS_LOG_LEVEL_TCP X X X X X X X X

DNS_LOG_LEVEL_UDP X X X X X X X X

DNS_LOG_LEVEL_UNMATCHED
_RESPONSE

 X X X X

DNS_LOG_LEVEL_UPDATE X X X X X X X X

DNS_LOG_LEVEL_WRITE_THR
OUGH

X X X X X X X X

<130> Section 3.1.1.1.1: Windows NT 4.0 does not implement this property.

<131> Section 3.1.1.1.1: This parameter is not implemented on Windows 2000 Server, Windows
Server 2003, Windows Server 2008, and Windows Server 2008 R2.

<132> Section 3.1.1.1.1: In Windows NT 4.0 the default value is 0x00000003.

<133> Section 3.1.1.1.1: Windows NT 4.0 does not implement this property.

<134> Section 3.1.1.1.1: In Windows NT 4.0 and Windows 2000 Server, this property is not
implemented.

<135> Section 3.1.1.1.1: In Windows NT 4.0, this property is not implemented.

<136> Section 3.1.1.1.1: In Windows NT 4.0, this property is not supported.

<137> Section 3.1.1.1.1: In Windows NT 4.0, Windows 2000 Server, and Windows Server 2003, the
default value is 0x0000000F.

<138> Section 3.1.1.1.1: In Windows NT 4.0 and Windows 2000 Server, this property is not

implemented. In Windows Server 2003, the default value is 0x00000001.

<139> Section 3.1.1.1.1: In Windows NT 4.0, Windows 2000 Server, Windows Server 2003, and
Windows Server 2008, the default value is 0xFFFFFFFF.

369 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

<140> Section 3.1.1.1.1: In Windows NT 4.0 the default value is 0.

<141> Section 3.1.1.1.1: In Windows NT 4.0, this property is not implemented. In Windows 2000

Server and Windows Server 2003, the value's range MUST be unlimited, and the value zero MUST be
treated as a flag value for 0xFFFFFFFF.

<142> Section 3.1.1.1.1: Windows NT 4.0 does not implement this property.

<143> Section 3.1.1.1.1: In Windows NT 4.0, this property is not implemented. In Windows 2000
Server, the default value is 0x00000001.

<144> Section 3.1.1.1.1: In Windows NT 4.0, Windows 2000 Server, Windows Server 2003, and
Windows Server 2008, this value is not implemented.

<145> Section 3.1.1.1.1: In Windows NT 4.0 and Windows 2000 Server this property is not
implemented.

<146> Section 3.1.1.1.1: Windows NT 4.0 does not implement this property.

<147> Section 3.1.1.1.1: Windows NT Server 4.0 and Windows 2000 Server do not limit this value.

<148> Section 3.1.1.1.1: In Windows NT 4.0 and Windows 2000 Server, this property is not
implemented. In Windows Server 2003, the default value is 0x0000000F, the minimum value is
0x00000003, the maximum value is 0x00000078, and values greater than the maximum or less than
the minimum are treated as flag values for the maximum and minimum respectively.

<149> Section 3.1.1.1.1: In Windows NT 4.0 and Windows 2000 Server, this property is not
implemented. In Windows Server 2003, the default value is 0x00000001.

<150> Section 3.1.1.1.1: In Windows NT 4.0 and Windows 2000 Server, this property is not
implemented.

<151> Section 3.1.1.1.1: In Windows NT 4.0 and Windows 2000 Server, this property is not
implemented.

<152> Section 3.1.1.1.1: In Windows NT 4.0 and Windows 2000 Server, this property is not

implemented.

<153> Section 3.1.1.1.1: In Windows NT 4.0 and Windows 2000 Server, this property is not
implemented.

<154> Section 3.1.1.1.1: In Windows Server implementations (except Windows NT and Windows
2000 Server, which do not implement the property), the default value is 0x00015180 (1 day), and the
allowed range is 0x00000E10 (1 hour) to 0x00EFF100 (182 days).

<155> Section 3.1.1.1.1: In Windows NT 4.0 and Windows 2000 Server, this property is not

implemented.

<156> Section 3.1.1.1.1: Windows Server implementations (except Windows NT and Windows 2000
Server, which do not implement the property), process DNSSEC based on [RFC2535], and the value is
an enumerated DWORD, with the permitted range between 0x00000000 to 0x00000002, inclusive.

The meaning of the allowed values is indicated in the following table.

Name/Value Meaning

DNS_DNSSEC_DISABLED

0x00000000

The server will not include DNSSEC information in responses.

DNS_DNSSEC_ENABLED_IF_EDNS

0x00000001

The server will include DNSSEC information in a response only if the
client request had EDNS [RFC2671] enabled.

http://go.microsoft.com/fwlink/?LinkId=107021
http://go.microsoft.com/fwlink/?LinkId=107022

370 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Name/Value Meaning

DNS_DNSSEC_ENABLED_ALWAYS

0x00000002

The server will include DNSSEC information in a response whenever
such information is available.

<157> Section 3.1.1.1.1: In Windows NT 4.0 and Windows 2000 Server, this property is not
implemented. In Windows Server 2008 the default value is zero.

<158> Section 3.1.1.1.1: In Windows NT 4.0 and Windows 2000 Server, this property is not
implemented.

<159> Section 3.1.1.1.1: In Windows NT 4.0 and Windows 2000 Server, this property is not
implemented. Default values are as follows:

 Windows Server 2003: zero (FALSE)

 Windows Server 2008: nonzero value (TRUE)

 Windows Server 2008 R2: nonzero value (TRUE)

<160> Section 3.1.1.1.1: This property is not implemented in Windows 2000 Server, Windows Server

2003, Windows Server 2008, and Windows Server 2008 R2.

<161> Section 3.1.1.1.1: In Windows NT 4.0 and Windows 2000 Server, this property is not
implemented.

<162> Section 3.1.1.1.1: This property is not supported on Windows Server 2012, Windows Server
2012 R2, and Windows Server 2016.

<163> Section 3.1.1.1.1: In Windows NT 4.0 and Windows 2000 Server, this property is not
implemented.

<164> Section 3.1.1.1.1: In Windows NT 4.0 and Windows 2000 Server, this property is not
implemented.

<165> Section 3.1.1.1.1: In Windows NT 4.0 and Windows 2000 Server, this property is not
implemented.

<166> Section 3.1.1.1.1: In Windows NT 4.0 and Windows 2000 Server, this property is not
implemented.

<167> Section 3.1.1.1.1: In Windows Server implementations (except Windows NT 4.0 and Windows

2000 Server, in which this property is not implemented), the default value is 0x00015180 (1 day).

<168> Section 3.1.1.1.1: In Windows NT 4.0 and Windows 2000 Server, this property is not
implemented.

<169> Section 3.1.1.1.1: In Windows NT 4.0 and Windows 2000 Server, this property is not
implemented. In Windows Server 2003, the default value is 0xFFFFFFFF

(DNS_SERVER_UNLIMITED_CACHE_SIZE).

<170> Section 3.1.1.1.1: This property is not supported on Windows 2000 Server, Windows Server
2003, Windows Server 2008, and Windows Server 2008 R2.

<171> Section 3.1.1.1.1: In Windows NT 4.0 and Windows 2000 Server, this property is not
implemented.

<172> Section 3.1.1.1.1: In Windows NT 4.0 and Windows 2000 Server, this property is not
implemented.

371 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

<173> Section 3.1.1.1.1: In Windows NT 4.0 and Windows 2000 Server, this property is not
implemented.

<174> Section 3.1.1.1.1: This property is not supported in Windows NT 4.0 or Windows 2000 Server.
In Windows Server 2003, and Windows Server 2008, the default value is 0x00000500. In Windows

Server 2008 R2, the default value is 0x00000FA0.

<175> Section 3.1.1.1.1: In Windows NT 4.0 and Windows 2000 Server, this property is not
implemented.

<176> Section 3.1.1.1.1: Windows NT 4.0 and Windows 2000 Server do not support this property.

<177> Section 3.1.1.1.1: In Windows NT 4.0 and Windows 2000 Server, this property is not
implemented.

<178> Section 3.1.1.1.1: This property is not supported on Windows 2000 Server, Windows Server

2003, Windows Server 2008, and Windows Server 2008 R2.

<179> Section 3.1.1.1.1: This property is not supported on Windows 2000 Server, Windows Server

2003, Windows Server 2008, Windows Server 2008 R2, Windows Server 2012, and Windows Server
2012 R2.

<180> Section 3.1.1.1.1: Windows NT 4.0, Windows 2000 Server, and Windows Server 2003 do not
support these properties.

<181> Section 3.1.1.1.1: In Windows NT 4.0, Windows 2000 Server, Windows Server 2003, and
Windows Server 2008 R2, this property is not implemented.

<182> Section 3.1.1.1.1: This property is not supported on Windows NT 4.0, Windows 2000 Server,
or Windows Server 2003.

<183> Section 3.1.1.1.1: On Windows Server 2008 and Windows Server 2008 R2, the default value is
0x00000001. On Windows Server 2012, Windows Server 2012 R2, and Windows Server 2016, the
default value is 0x00000000.

<184> Section 3.1.1.1.1: This property is not supported in Windows NT 4.0, Windows 2000 Server, or
on Windows Server 2003.

<185> Section 3.1.1.1.1: The EnableGlobalQueryBlockList property is not supported in Windows
NT, Windows 2000 Server, or Windows Server 2003.

<186> Section 3.1.1.1.1: The OpenACLOnProxyUpdates and CacheLockingPercent properties
are not supported in Windows NT, Windows 2000 Server, Windows Server 2003, or Windows Server
2008.

<187> Section 3.1.1.1.1: ZoneWritebackInterval is not implemented in Windows 2000 Server,
Windows Server 2003, Windows Server 2008, Windows Server 2008 R2, and Windows Server 2012.

<188> Section 3.1.1.1.2: Windows NT Server 4.0, Windows 2000 Server, and Windows Server 2003
use DNSSRV_TYPEID_IPARRAY for input and return values. Windows Server 2008, Windows Server
2008 R2, Windows Server 2012, Windows Server 2012 R2, and Windows Server 2016 accept

DNSSRV_TYPEID_IPARRAY and DNSSRV_TYPEID_ADDRARRAY as input and output

DNSSRV_TYPEID_ADDRARRAY unless dwClientVersion is used to request a previous format.

<189> Section 3.1.1.1.2: This property is not supported on Windows 2000 Server, Windows Server
2003, Windows Server 2008, or Windows Server 2008 R2.

<190> Section 3.1.1.1.2: Windows 2000 Server does not support these properties.

<191> Section 3.1.1.1.3: Windows 2000 Server does not support these properties.

372 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

<192> Section 3.1.1.1.3: If the path or filename is not absolute, Windows Server stores the log file
relative to the "%SystemRoot%\System32" directory.

<193> Section 3.1.1.1.3: Windows 2000 Server and Windows Server 2003 do not support these
properties.

<194> Section 3.1.1.1.3: In Windows NT 4.0 and Windows 2000 Server, this property is not
implemented.

<195> Section 3.1.1.1.3: This parameter is not implemented on Windows 2000 Server, Windows
Server 2003, Windows Server 2008, and Windows Server 2008 R2.

<196> Section 3.1.1.1.4: Windows 2000 Server and Windows Server 2003 do not support these
properties.

<197> Section 3.1.1.2.1: The following properties are not supported on Windows 2000 Server,

Windows Server 2003, Windows Server 2008, and Windows Server 2008 R2:

 DsRecordAlgorithms

 DSRecordSetTTL

 DNSKEYRecordSetTTL

 IsKeymaster

 IsSigned

 MaintainTrustAnchor

 NSEC3HashAlgorithm

 NSEC3Iterations

 NSEC3OptOut

 NSEC3RandomSaltLength

 ParentHasSecureDelegation

 PropagationTime

 RFC5011KeyRollovers

 SecureDelegationPollingPeriod

 SignatureInceptionOffset

 SignWithNSEC3

<198> Section 3.1.1.2.1: On Windows, it is written into the system32\dns directory.

<199> Section 3.1.1.2.1: Aging is not supported on Windows NT 4.0.

<200> Section 3.1.1.2.1: This property is not supported on Windows NT 4.0 and Windows 2000

Server. Furthermore, it is only supported on zones configured for forwarding.

<201> Section 3.1.1.2.1: This property is not supported on Windows NT 4.0 and Windows 2000
Server. Furthermore, it is only supported on zones configured for forwarding.

<202> Section 3.1.1.2.1: This property is supported only on Windows NT 4.0.

373 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

<203> Section 3.1.1.2.1: The PluginEnabled property of a zone is not implemented in Windows 2000
Server, Windows Server 2003, Windows Server 2008, Windows Server 2008 R2, and Windows Server

2012.

<204> Section 3.1.1.2.1: FreezeSOASerialNumber is not supported in Windows 2000 Server,

Windows Server 2003, Windows Server 2008, Windows Server 2008 R2, Windows Server 2012, and
Windows Server 2012 R2.

<205> Section 3.1.1.2.2: Windows 2000 Server does not support these properties.

<206> Section 3.1.1.2.3: BreakOnNameUpdate is not implemented in Windows 2000 Server.
Keymaster, NSEC3UserSalt, and NSEC3CurrentSalt are not implemented on Windows 2000 Server,
Windows Server 2003, Windows Server 2008, and Windows Server 2008 R2.

<207> Section 3.1.1.2.5: DNS zone scope configuration information is available in Windows Server

2012 R2 and Windows Server 2016 only. Zone scopes inherit all the properties and configurations of
the zone in which they are created unless overridden explicitly.

<208> Section 3.1.1.3: DNS server scope configuration information is implemented in Windows

Server 2016.

<209> Section 3.1.1.3.2: Windows NT Server 4.0, Windows 2000 Server, and Windows Server 2003
use DNSSRV_TYPEID_IPARRAY for input and return values. Windows Server 2008, Windows Server

2008 R2, Windows Server 2012, Windows Server 2012 R2, and Windows Server 2016 accept
DNSSRV_TYPEID_IPARRAY and DNSSRV_TYPEID_ADDRARRAY as input and output
DNSSRV_TYPEID_ADDRARRAY unless dwClientVersion is used to request a previous format.

<210> Section 3.1.3: Windows NT 4.0 does not support invocation of the Netlogon protocol
implementation.

<211> Section 3.1.4: Windows 2000 Server supports only opnums 0 through 4.

<212> Section 3.1.4.1: The following values are not implemented in Windows 2000 Server, Windows

Server 2003, Windows Server 2008, Windows Server 2008 R2, Windows Server 2012, and Windows
Server 2012 R2.

 CreateClientSubnetRecord

 DeleteClientSubnetRecord

 DeleteSubnetsInRecord

 AddSubnetsInRecord

 ResetClientSubnetRecord

 CreatePolicy

 DeletePolicy

 UpdatePolicy

 SetRRL

 CreateVirtualizationInstance

 DeleteVirtualizationInstance

 UpdateVirtualizationInstance

<213> Section 3.1.4.1: In Windows, the DNS server process can fail on the Restart command.

374 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

<214> Section 3.1.4.1: Windows 2000 Server uses DNSSRV_TYPEID_ZONE_CREATE_W2K. Windows
Server 2003 uses DNSSRV_TYPEID_ZONE_CREATE_DOTNET.

<215> Section 3.1.4.1: Windows NT Server 4.0 and Windows 2000 Server return error 9611 (invalid
DNS zone type) for ZoneCreate operations with DNS_ZONE_TYPE_STUB or DNS_ZONE_TYPE_CACHE

record types. Windows returns the same error for DNS_ZONE_TYPE_CACHE and
DNS_ZONE_TYPE_SECONDARY_CACHE.

<216> Section 3.1.4.1: Windows 2000 Server returns a failure for this value of pszOperation.
Windows Server 2003 accepts DWORD input only. The Windows Server 2003 DNS client sends
DWORD input.

<217> Section 3.1.4.1: Windows Server 2003 accepts DNSSRV_TYPEID_IPARRAY and IP4_ARRAY
and do not accept DNSSRV_TYPEID_ADDRARRAY and DNS_ADDR_ARRAY. Windows Server 2008,

Windows Server 2008 R2, Windows Server 2012, Windows Server 2012 R2, and Windows Server 2016
accept DNSSRV_TYPEID_ADDR_ARRAY and DNS_ADDR_ARRAY and do not accept
DNSSRV_TYPEID_IPARRAY and IP4_ARRAY.

<218> Section 3.1.4.1: Windows 2000 Server uses DNSSRV_TYPEID_FORWARDERS_W2K. Windows
Server 2003 uses DNSSRV_TYPEID_FORWARDERS_DOTNET.

<219> Section 3.1.4.1: Windows NT 4.0 and Windows 2000 Server do not support this value.

Windows Server 2003 accepts DNSSRV_TYPEID_IPARRAY and IP4_ARRAY and does not accept
DNSSRV_TYPEID_ADDRARRAY and DNS_ADDR_ARRAY. Windows Server 2008, Windows Server 2008
R2, Windows Server 2012, Windows Server 2012 R2, and Windows Server 2016 accept
DNSSRV_TYPEID_ADDR_ARRAY and DNS_ADDR_ARRAY and do not accept DNSSRV_TYPEID_IPARRAY
and IP4_ARRAY.

<220> Section 3.1.4.1: See behavior note for the LogIPFilterList value.

<221> Section 3.1.4.1: See behavior note for the LogIPFilterList value.

<222> Section 3.1.4.1: This operation is supported only on Windows Server 2012, Windows Server
2012 R2, and Windows Server 2016.

<223> Section 3.1.4.1: This operation is supported in Windows Server 2012 R2 with [MSKB-2919355]
and Windows Server 2016 and is reserved for future use.

<224> Section 3.1.4.1: This operation is supported in Windows Server 2012 R2 with [MSKB-2919355]
and Windows Server 2016 and is reserved for future use.

<225> Section 3.1.4.1: The following values are not supported on Windows 2000 Server and

Windows Server 2003.

 SignZone

 UnsignZone

 ResignZone

 PerformZoneKeyRollover

 PokeZoneKeyRollover

 RetrieveRootTrustAnchor

 TransferKeymasterRole

<226> Section 3.1.4.1: A Windows implementation allows DNS_ZONE_NOTIFY_LEVEL to be set only
to values 0x0 through 0x1. Attempts to set this property to a higher value result in the effective value
0x1.

375 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

<227> Section 3.1.4.1: Windows 2000 Server uses DNSSRV_TYPEID_ZONE_CREATE_W2K, and
cannot convert from other types. Windows Server 2003 uses

DNSSRV_TYPEID_ZONE_CREATE_DOTNET, and can convert from
DNSSRV_TYPEID_ZONE_CREATE_W2K.

Windows Server 2008, Windows Server 2008 R2, Windows Server 2012, Windows Server 2012 R2,
and Windows Server 2016 use DNSSRV_TYPEID_ZONE_CREATE and can convert from
DNSSRV_TYPEID_ZONE_CREATE_W2K and DNSSRV_TYPEID_ZONE_CREATE_DOTNET.

<228> Section 3.1.4.1: Windows 2000 Server uses DNSSRV_TYPEID_ZONE_DATABASE_W2K.
Windows Server 2003 uses DNSSRV_TYPEID_ZONE_DATABASE.

<229> Section 3.1.4.1: If ForceForestBehaviorVersion (section 3.1.1.1.1) indicates a forest behavior
version of Windows Server 2008, Windows Server 2008 R2, Windows Server 2012, Windows Server

2012 R2, or Windows Server 2016 the server writes only DNS_ADDR_ARRAY values to the directory
server. Otherwise, the server writes both IP4_ARRAY and DNS_ADDR_ARRAY values. Windows NT 4.0,
Windows 2000 Server, and Windows Server 2003 do not support this forest version check, and write
only IP4_ARRAY values to the directory server.

Windows 2000 Server and Windows Server 2003 accept DNSSRV_TYPEID_IPARRAY and IP4_ARRAY
and silently disregard DNSSRV_TYPEID_ADDRARRAY and DNS_ADDR_ARRAY. They also write only the

IP4_ARRAY value to the directory server if the server is DS-integrated; when reading from the
directory server, only the IP4_ARRAY value is read, and any DNS_ADDR_ARRAY values are ignored.
Windows Server 2008, Windows Server 2008 R2, Windows Server 2012, Windows Server 2012 R2,
and Windows Server 2016 accept DNSSRV_TYPEID_ADDRARRAY and DNS_ADDR_ARRAY and do not
accept DNSSRV_TYPEID_IPARRAY and IP4_ARRAY, and write both formats to the directory server if
the server is DS-integrated; when reading from the directory server, the DNS_ADDR_ARRAY value is
read if it exists; otherwise the IP4_ARRAY value is read.

<230> Section 3.1.4.1: Windows 2000 Server does not support this operation. Windows Server 2003
accepts DNSSRV_TYPEID_IPARRAY and IP4_ARRAY and does not accept
DNSSRV_TYPEID_ADDRARRAY and DNS_ADDR_ARRAY. Windows Server 2008, Windows Server 2008
R2, Windows Server 2012, Windows Server 2012 R2, and Windows Server 2016 accept
DNSSRV_TYPEID_ADDR_ARRAY and DNS_ADDR_ARRAY and do not accept DNSSRV_TYPEID_IPARRAY

and IP4_ARRAY.

<231> Section 3.1.4.1: Windows 2000 Server uses DNSSRV_TYPEID_ZONE_SECONDARIES_W2K.

Windows Server 2003 uses DNSSRV_TYPEID_ZONE_SECONDARIES_DOTNET.

<232> Section 3.1.4.1: See behavior note for the MasterServer value.

<233> Section 3.1.4.1: See behavior note for the MasterServer value.

<234> Section 3.1.4.1: CreateZoneScope is not implemented in Windows 2000 Server, Windows
Server 2003, Windows Server 2008, Windows Server 2008 R2, and Windows Server 2012.

<235> Section 3.1.4.1: DeleteZoneScope is not implemented in Windows 2000 Server, Windows

Server 2003, Windows Server 2008, Windows Server 2008 R2, and Windows Server 2012.

<236> Section 3.1.4.1: In Windows NT 4.0, Windows 2000 Server, and Windows Server 2003, no

range limiting or zero/nonzero restrictions are applied.

<237> Section 3.1.4.1: The following table lists property names that are supported as an input to the
pszOperation parameter for different versions of Windows Server.

376 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Property
name

Windo
ws NT
4.0

Windo
ws
2000
Serve
r

Windows
Server
2003

Windows
Server
2008

Windo
ws
Server
2008
R2

Windo
ws
Server
2012

Windo
ws
Server
2012
R2

Wind
ows
Serve
r
2016

AdditionalRecu
rsionTimeout

 X X X X X X

AddressAnswer
Limit

X X X X X X X X

AdminConfigur
ed

 X X X X X X X

AllowCNAMEAt
NS

 X X X X X X X

AllowMsdcsLoo
kupRetry

 X

AllowReadOnly
ZoneTransfer

 X X X X X

AllowUpdate X X X X X X X X

AppendMsZone
TransferTag

 X X X X X X

AutoCacheUpd
ate

X X X X X X X X

AutoConfigFile
Zones

 X X X X X X

AutoCreateDel
egations

 X X X X X X

BindSecondarie
s

X X X X X X X X

BootMethod X X X X X X X X

BreakOnAscFail
ure

 X X X X X X

CacheEmptyAu
thResponses

 X X X X X X

CacheLockingP
ercent

 X X X X

DebugLevel X X X X X X X X

DefaultAgingSt
ate

 X X X X X X X

DefaultNoRefre
shInterval

 X X X X X X X

DefaultRefresh
Interval

 X X X X X X X

DeleteOutside
Glue

X X X X X X X X

377 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Property
name

Windo
ws NT
4.0

Windo
ws
2000
Serve
r

Windows
Server
2003

Windows
Server
2008

Windo
ws
Server
2008
R2

Windo
ws
Server
2012

Windo
ws
Server
2012
R2

Wind
ows
Serve
r
2016

DirectoryPartiti
onAutoEnlistInt
erval

 X X X X X X

DisjointNets X X X X X X X X

DsBackgroundL
oadPaused

 X X X X X

DsLazyUpdateI
nterval

 X X X X X X

DsMinimumBac
kgroundLoadTh
reads

 X X X X X

DsPollingInterv
al

X X X X X X X X

DsRemoteRepli
cationDelay

 X X X X X

DsTombstoneI
nterval

X X X X X X X X

EDnsCacheTim
eout

 X X X X X X

EnableDirector
yPartitions

 X X X X X X

EnableDnsSec X X X X X X

EnableDuplicat
eQuerySuppres
sion

 X X X X X

EnableEDnsPro
bes

 X X X X X X

EnableEDnsRec
eption

 X X X X X X

EnableForward
erReordering

 X X X

EnableGlobalN
amesSupport

 X X X X X

EnableIPv6 X X X X X X

EnableIQueryR
esponseGenera
tion

 X X X X X X

EnableOnlineSi

gning

 X X X

EnablePolicies X

378 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Property
name

Windo
ws NT
4.0

Windo
ws
2000
Serve
r

Windows
Server
2003

Windows
Server
2008

Windo
ws
Server
2008
R2

Windo
ws
Server
2012

Windo
ws
Server
2012
R2

Wind
ows
Serve
r
2016

EnableRegistry
Boot

X X X X X X X X

EnableRsoForR
odc

 X X X X X

EnableSendErr
orSuppression

 X X X X X X

EnableUpdateF
orwarding

 X X X X X X

EnableVersion
Query

 X X X X X

EnableWinsR X X X X X X

EventLogLevel X X X X X X X X

ForceDomainB
ehaviorVersion

 X X X X X X

ForceDsaBehav
iorVersion

 X X X X X X

ForceForestBeh
aviorVersion

 X X X X X X

ForceRODCMod
e

 X X X X X

ForceSoaExpire X X X X X X X X

ForceSoaMinim
umTtl

X X X X X X X X

ForceSoaRefres
h

X X X X X X X X

ForceSoaRetry X X X X X X X X

ForceSoaSerial X X X X X X X X

ForwardDelega
tions

X X X X X X X X

ForwardingTim
eout

X X X X X X X X

GlobalNamesAl
waysQuerySrv

 X X X X X

GlobalNamesBl
ockUpdates

 X X X X X

GlobalNamesE
nableEDnsProb
es

 X X X X X

379 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Property
name

Windo
ws NT
4.0

Windo
ws
2000
Serve
r

Windows
Server
2003

Windows
Server
2008

Windo
ws
Server
2008
R2

Windo
ws
Server
2012

Windo
ws
Server
2012
R2

Wind
ows
Serve
r
2016

GlobalNamesPr
eferAAAA

 X X X X X

GlobalNamesQ
ueryOrder

 X X X X X

GlobalNamesS
endTimeout

 X X X X X

GlobalNamesS
erverQueryInte
rval

 X X X X X

HeapDebug X X X X X X

IsSlave X X X X X X X X

LameDelegatio
nTtl

 X X X X X X

LocalNetPriorit
y

X X X X X X X X

LocalNetPriorit
yNetMask

 X X X X X X

LogFileMaxSize X X X X X X X

LogLevel X X X X X X X X

LooseWildcardi
ng

X X X X X X X X

MaxCacheSize X X X X X X

MaxCacheTtl X X X X X X X X

MaximumRodc
RsoAttemptsPe
rCycle

 X X X X X

MaximumRodc
RsoQueueLeng
th

 X X X X X

MaximumSigna
turesScanPerio
d

 X X X

MaximumUdpP
acketSize

 X X X X X X

MaxNegativeCa
cheTtl

 X X X X X X X

MaxResourceR
ecordsInNonSe
cureUpdate

 X X X X X X

380 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Property
name

Windo
ws NT
4.0

Windo
ws
2000
Serve
r

Windows
Server
2003

Windows
Server
2008

Windo
ws
Server
2008
R2

Windo
ws
Server
2012

Windo
ws
Server
2012
R2

Wind
ows
Serve
r
2016

MaxTrustAncho
rActiveRefreshI
nterval

 X X X

NameCheckFla
g

X X X X X X X X

NoRecursion X X X X X X X X

NoUpdateDeleg
ations

 X X X X X X X

OpenACLOnPro
xyUpdates

 X X X X

OperationsLogL
evel

 X X X X X X

OperationsLogL
evel2

 X X X X X X

PublishAutonet X X X X X X

QuietRecvFault
Interval

 X X X X X X X

QuietRecvLogI
nterval

 X X X X X X X

RecurseToInter
netRootMask

 X X X X X X

RecursionRetry X X X X X X X X

RecursionTime
out

X X X X X X X X

ReloadExceptio
n

 X X X X X X

RemoteIPv4Ra
nkBoost

 X X X X X

RemoteIPv6Ra
nkBoost

 X X X X X

RoundRobin X X X X X X X X

RpcProtocol X X X X X X X X

ScavengingInt
erval

 X X X X X X X

ScopeOptionVa
lue

 X

SecureRespons
es

X X X X X X X X

381 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Property
name

Windo
ws NT
4.0

Windo
ws
2000
Serve
r

Windows
Server
2003

Windows
Server
2008

Windo
ws
Server
2008
R2

Windo
ws
Server
2012

Windo
ws
Server
2012
R2

Wind
ows
Serve
r
2016

SelfTest X X X X X X

SendPort X X X X X X X X

SilentlyIgnoreC
NameUpdateCo
nflicts

 X X X X X X

SocketPoolSize X X X X X X X

StrictFileParsin
g

X X X X X X X X

SyncDsZoneSe
rial

 X X X X X X X

TcpReceivePac
ketSize

 X X X X X X

UdpRecvThrea
dCount

 X X X

UpdateOptions X X X X X X

UseSystemEve
ntLog

X X X X X X X X

Version X X X X X

WriteAuthority
Ns

X X X X X X X X

XfrConnectTim
eout

 X X X X X X X

XfrThrottleMult
iplier

 X X X X X X

ZoneWriteback
Interval

 X X

VirtualizationIn
stanceOptionV
alue

 X

<238> Section 3.1.4.1: The following table lists property names that are supported as an input to the

pszOperation parameter for different versions of Windows.

Property name

Windo
ws NT
4.0

Windo
ws
2000
Server

Windo
ws
Server
2003

Windo
ws
Server
2008

Windo
ws
Server
2008
R2

Windo
ws
Server
2012

Windo
ws
Server
2012
R2

Windo
ws
Server
2016

Forwarders X X X X X X X X

382 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Property name

Windo
ws NT
4.0

Windo
ws
2000
Server

Windo
ws
Server
2003

Windo
ws
Server
2008

Windo
ws
Server
2008
R2

Windo
ws
Server
2012

Windo
ws
Server
2012
R2

Windo
ws
Server
2016

ListenAddresses X X X X X X X X

BreakOnReceiveFrom X X X X X X

BreakOnUpdateFrom X X X X X X

DomainDirectoryPartitionBa
seName

 X X X X X X

DynamicForwarders X X X

ForestDirectoryPartitionBas

eName

 X X X X X X

LogFilePath X X X X X X

LogIPFilterList X X X X X X

ServerLevelPluginDll X X X X X X

GlobalQueryBlockList X X X X X

RootTrustAnchorsURL X X X

SocketPoolExcludedPortRan
ges

 X X X X

DsBackgroundPauseName X X X

<239> Section 3.1.4.1: Zone scopes are implemented in Windows Server 2012 R2 and Windows

Server 2016.

<240> Section 3.1.4.1: Windows Server attempts to back up the log file to the
"%SYSTEMROOT%\System32\dns\backup\" directory.

<241> Section 3.1.4.1: If ForceDomainBehaviorVersion (section 3.1.1.1.1) indicates a domain
behavior version of Windows Server 2003, Windows Server 2008, Windows Server 2008 R2, Windows
Server 2012, Windows Server 2012 R2, or Windows Server 2016, root hints MUST be written to the
DNS domain partition. Otherwise, root hints MUST be written to the default application directory

partition.

<242> Section 3.1.4.1: If ForceDomainBehaviorVersion (section 3.1.1.1.1) indicates a domain
behavior version of Windows NT or Windows 2000 Server, stub and forwarder zones MUST NOT be
created in the default application directory partition. If this partition is specified during ZoneCreate,

the server MUST return a failure.

<243> Section 3.1.4.1: Windows 2000 Server does not support this operation.

<244> Section 3.1.4.1: Windows 2000 Server and Windows Server 2003 do not support RODCs and
do not process the msDS-NC-RO-Replica-Locations.

<245> Section 3.1.4.1: Windows 2000 Server and Windows Server 2003 do not support RODCs and
do not process the msDS-NC-RO-Replica-Locations.

383 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

<246> Section 3.1.4.1: Windows 2000 Server does not support this operation. Windows Server 2003
takes a DWORD value for pData input parameter.

<247> Section 3.1.4.1: Windows 2000 Server and Windows Server 2003 do not support this
operation.

<248> Section 3.1.4.1: Windows 2000 Server and Windows Server 2003 do not support this
operation.

<249> Section 3.1.4.1: Windows 2000 Server and Windows Server 2003 do not support this
operation.

<250> Section 3.1.4.1: If ForceDomainBehaviorVersion (section 3.1.1.1.1) indicates a domain
behavior version of Windows Server 2003, Windows Server 2008, Windows Server 2008 R2, Windows
Server 2012, Windows Server 2012 R2, or Windows Server 2016 root hints MUST be written to the

DNS domain partition. Otherwise, root hints MUST be written to the default application directory
partition.

<251> Section 3.1.4.1: Windows stores the log file relative to the "%SystemRoot%\System32"

directory, if the path or filename given is not absolute.

<252> Section 3.1.4.1: Windows NT 4.0 does not support invocation of the Netlogon protocol
implementation.

<253> Section 3.1.4.1: Aging is not supported on Windows NT Server 4.0.

<254> Section 3.1.4.1: The following table lists the property names that are supported as input for
the ResetDwordProperty operation when pszZone is not NULL, for different versions of Windows.

Property name

Windo
ws NT
4.0

Windo
ws
2000
Server

Windo
ws
Server
2003

Windo
ws
Server
2008

Windo
ws
Server
2008
R2

Windo
ws
Server
2012

Windo
ws
Server
2012
R2

Windo
ws
Server
2016

AllowUpdate X X X X X X X X

SecureSecondaries X X X X X X X X

NotifyLevel X X X X X X X

LogUpdates X X X X X X X X

NoRefreshInterval X X X X X X X

RefreshInterval X X X X X X X

Aging X X X X X X X

ForwarderSlave X X X X X X

ForwarderTimeout X X X X X X

Unicode X X

DsRecordAlgorithms X X X

DNSKEYRecordSetTTL X X X

DsRecordSetTTL X X X

IsKeymaster X X X

384 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Property name

Windo
ws NT
4.0

Windo
ws
2000
Server

Windo
ws
Server
2003

Windo
ws
Server
2008

Windo
ws
Server
2008
R2

Windo
ws
Server
2012

Windo
ws
Server
2012
R2

Windo
ws
Server
2016

IsSigned X X X

MaintainTrustAnchor X X X

NSEC3HashAlgorithm X X X

NSEC3Iterations X X X

NSEC3OptOut X X X

NSEC3RandomSaltLengt
h

 X X X

ParentHasSecureDelegat
ion

 X X X

PropagationTime X X X

RFC5011KeyRollovers X X X

SecureDelegationPolling
Period

 X X X

SignatureInceptionOffse
t

 X X X

SignWithNSEC3 X X X

PluginEnabled X X

FreezeSOASerialNumber X

<255> Section 3.1.4.1: The following table lists property names that are supported as an input to the
pszOperation parameter for different versions of Windows Server.

Property name

Window
s NT
4.0

Window
s 2000
Server

Window
s
Server
2003

Window
s
Server
2008

Window
s
Server
2008
R2

Window
s
Server
2012

Window
s
Server
2012
R2

Window
s
Server
2016

Masters X X X X X X X X

Secondaries X X X X X X X X

TypeReset X X X X X X X X

DatabaseFile

X X X X X X X X

AllowAutoNS X X X X X X X

ScavengeServers X X X X X X X

BreakOnNameUpd X X X X X X

385 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Property name

Window
s NT
4.0

Window
s 2000
Server

Window
s
Server
2003

Window
s
Server
2008

Window
s
Server
2008
R2

Window
s
Server
2012

Window
s
Server
2012
R2

Window
s
Server
2016

ate

ChangeDP X X X X X X

LocalMasters X X X X X X

NotifyList

Keymaster X X X

NSEC3UserSalt X X X

NSEC3CurrentSalt X X X

<256> Section 3.1.4.1: Support for scopes in Active Directory backed zones is available only in
Windows Server 2016.

<257> Section 3.1.4.1: If ForceDomainBehaviorVersion (section 3.1.1.1.1) indicates a domain
behavior version of Windows Server 2003, Windows Server 2008, Windows Server 2008 R2, Windows
Server 2012, Windows Server 2012 R2, or Windows Server 2016 root hints MUST be written to the
DNS domain partition. Otherwise, root hints MUST be written to the default application directory
partition.

<258> Section 3.1.4.1: If ForceDomainBehaviorVersion (section 3.1.1.1.1) indicates a domain
behavior version of Windows Server 2003, Windows Server 2008, Windows Server 2008 R2, Windows

Server 2012, Windows Server 2012 R2, or Windows Server 2016 root hints MUST be written to the
DNS domain partition. Otherwise, root hints MUST be written to the default application directory

partition.

<259> Section 3.1.4.1: If ForceDomainBehaviorVersion (section 3.1.1.1.1) indicates a domain
behavior version of Windows NT or Windows 2000 Server, the server MUST also verify that either the
specified zone is not a stub or forwarder zone, or the destination application directory partition is not
the default application directory partition. Otherwise, the server MUST return a failure.

<260> Section 3.1.4.1: Windows 2000 Server does not implement this operation and returns a
failure.

<261> Section 3.1.4.1: If ForceDomainBehaviorVersion (section 3.1.1.1.1) indicates a domain
behavior version of Windows, root hints MUST be written to the DNS domain partition. Otherwise, root
hints MUST be written to the default application directory partition.

<262> Section 3.1.4.2: The following values are implemented in Windows Server 2016 only:

VirtualizationInstance.

<263> Section 3.1.4.2: The following table lists various DNSSRV_TYPEID_SERVER_INFO values
returned by R_DnsSrvQuery(), R_DnsSrvQuery2() methods, for different versions of Windows
Server.

dwCli
entVe
rsion

Windows
2000 Server

Windows
Server 2003

Windows
Server 2008

Windows
Server 2012

Windows
Server 2012
R2

Windows
Server 2016

0x000 DNSSRV_TYP DNSSRV_TYPE DNSSRV_TYPE DNSSRV_TYPE DNSSRV_TYPE DNSSRV_TYPE

386 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

dwCli
entVe
rsion

Windows
2000 Server

Windows
Server 2003

Windows
Server 2008

Windows
Server 2012

Windows
Server 2012
R2

Windows
Server 2016

00000 EID_SERVER
_INFO_W2K

ID_SERVER_IN
FO_W2K

ID_SERVER_IN
FO_W2K

ID_SERVER_IN
FO_W2K

ID_SERVER_IN
FO_W2K

ID_SERVER_IN
FO_W2K

0x000
60000

DNSSRV_TYP
EID_SERVER
_INFO_W2K

DNSSRV_TYPE
ID_SERVER_IN
FO_DOTNET

DNSSRV_TYPE
ID_SERVER_IN
FO_DOTNET

DNSSRV_TYPE
ID_SERVER_IN
FO_DOTNET

DNSSRV_TYPE
ID_SERVER_IN
FO_DOTNET

DNSSRV_TYPE
ID_SERVER_IN
FO_DOTNET

0x000
70000

DNSSRV_TYP
EID_SERVER
_INFO_W2K

DNSSRV_TYPE
ID_SERVER_IN
FO_DOTNET

DNSSRV_TYPE
ID_SERVER_IN
FO

DNSSRV_TYPE
ID_SERVER_IN
FO

DNSSRV_TYPE
ID_SERVER_IN
FO

DNSSRV_TYPE
ID_SERVER_IN
FO

<264> Section 3.1.4.2: Windows Server 2003, Windows Server 2008, Windows Server 2008 R2,
Windows Server 2012, Windows Server 2012 R2, and Windows Server 2016 set the

dwLocalNetPriorityNetMask field of DNS_RPC_SERVER_INFO to zero, regardless of the effective value
of dwLocalNetPriorityNetMask.

<265> Section 3.1.4.2: Windows 2000 Server uses DNSSRV_TYPEID_ZONE_W2K. Windows Server

2003 uses DNSSRV_TYPEID_ZONE.

<266> Section 3.1.4.2: Windows 2000 Server uses DNSSRV_TYPEID_ZONE_INFO_W2K. Windows
Server 2003 uses DNSSRV_TYPEID_ZONE_INFO_DOTNET.

<267> Section 3.1.4.2: Windows Server 2003 does not support the Version property with this
operation.

<268> Section 3.1.4.2: Windows 2000 Server and Windows Server 2003 use

DNSSRV_TYPEID_IPARRAY and IP4_ARRAY.

<269> Section 3.1.4.2: All Windows Server versions incorrectly set pdwTypeId to

DNSSRV_TYPEID_DWORD, and truncate ppData to DWORD size when R_DnssrvQuery is called with
pszOperation set to ListenAddresses or Forwarders. Windows Server 2003 does not support the
Forwarders and ListenAddresses properties here.

<270> Section 3.1.4.2: All Windows Server versions that have the DsBackgroundPauseName property
incorrectly set pdwTypeId to DNSSRV_TYPEID_DWORD, and truncate ppData to DWORD size when

R_DnssrvQuery is called with pszOperation set to "DsBackgroundPauseName".

<271> Section 3.1.4.2: Windows 2000 Server and Windows Server 2003 use
DNSSRV_TYPEID_IPARRAY and IP4_ARRAY.

<272> Section 3.1.4.3: The following pszOperations values are implemented in Windows Server 2016
only.

 EnumerateClientSubnetRecord

 GetClientSubnetRecord

 EnumeratePolicy

 GetPolicy

 EnumVirtualizationInstances

The following pszOperations values are implemented only in Windows Server 2012 R2 and Windows
Server 2016.

387 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 ExportZoneSigningSettings

 ImportZoneSigningSettings

 EnumZoneScopes

 ZoneStatistics

The following pszOperations values are implemented only in Windows Server 2012, Windows Server
2012 R2, and Windows Server 2016.

 ModifyZoneSigningKeyDescriptor

 EnumZoneSigningKeyDescriptors

 GetZoneSigningKeyDescriptorState

 SetZoneSigningKeyDescriptorState

 ValidateZoneSigningParameters

 EnumerateKeyStorageProviders

 EnumerateTrustPoints

 EnumerateTrustAnchors

<273> Section 3.1.4.3: This operation is supported in Windows Server 2012 R2 with [MSKB-2919355]
and Windows Server 2016 and is reserved for future use.

<274> Section 3.1.4.5: Windows 2000 Server does not support this operation. No version of Windows

Server supports the DNS_TYPE_LOC for this operation.

<275> Section 3.1.4.5: Windows 2000 Server, Windows Server 2003, Windows Server 2008,
Windows Server 2008 R2, Windows Server 2012, Windows Server 2012 R2, and Windows Server 2016
do not support updates or deletions of the DNS_TYPE_ZERO, DNS_TYPE_LOC, and DNS_TYPE_ALL

types.

<276> Section 3.1.4.5: Windows 2000 Server does not allow additions with pszZoneName "..Cache"
and treats pszZoneName NULL as "..RootHints". Windows Server 2003, Windows Server 2008,

Windows Server 2008 R2, Windows Server 2012, Windows Server 2012 R2, and Windows Server 2016
treat pszZoneName NULL and pszZoneName "..Cache" as pszZoneName "..RootHints".

<277> Section 3.1.4.7: Windows 2000 Server does not support this operation.

<278> Section 3.1.4.9: Windows 2000 Server does not support this operation.

<279> Section 3.1.4.10: Windows 2000 Server does not support this operation. No version of
Windows Server supports the DNS_TYPE_LOC for this operation.

<280> Section 3.1.4.11: The RPC method R_DnssrvUpdateRecord3 is not implemented in Windows

2000 Server, Windows Server 2003, Windows Server 2008, Windows Server 2008 R2, or Windows

Server 2012.

<281> Section 3.1.4.12: The RPC method R_DnssrvEnumRecords3 is not implemented in Windows
2000 Server, Windows Server 2003, Windows Server 2008, Windows Server 2008 R2, or Windows
Server 2012.

<282> Section 3.1.4.13: The RPC method R_DnssrvOperation3 is not implemented in Windows 2000

Server, Windows Server 2003, Windows Server 2008, Windows Server 2008 R2, or Windows Server
2012.

388 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

<283> Section 3.1.4.13: This operation is supported in Windows Server 2012 R2 with [MSKB-
2919355] and Windows Server 2016. It is reserved for future use.

<284> Section 3.1.4.14: The RPC method R_DnssrvQuery3 is not implemented in Windows 2000
Server, Windows Server 2003, Windows Server 2008, Windows Server 2008 R2, or Windows Server

2012.

<285> Section 3.1.4.14: This operation is supported in Windows Server 2012 R2 and Windows Server
2016 with [MSKB-2919355] and is reserved for future use.

<286> Section 3.1.4.15: The R_DnssrvComplexOperation3 method is implemented only in
Windows Server 2016.

<287> Section 3.1.4.16: The R_DnssrvOperation4 method is implemented only in Windows Server
2016.

<288> Section 3.1.4.17: The R_DnssrvQuery4 method is implemented only in Windows Server
2016.

<289> Section 3.1.4.18: The R_DnssrvUpdateRecord4 method is implemented only in Windows
Server 2016.

<290> Section 3.1.4.19: The R_DnssrvEnumRecords4 method is implemented only in Windows
Server 2016.

<291> Section 3.1.6.2: Support for scopes in Active Directory backed zones is implemented in
Windows Server 2016.

389 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

8 Change Tracking

This section identifies changes that were made to this document since the last release. Changes are
classified as New, Major, Minor, Editorial, or No change.

The revision class New means that a new document is being released.

The revision class Major means that the technical content in the document was significantly revised.
Major changes affect protocol interoperability or implementation. Examples of major changes are:

 A document revision that incorporates changes to interoperability requirements or functionality.

 The removal of a document from the documentation set.

The revision class Minor means that the meaning of the technical content was clarified. Minor changes
do not affect protocol interoperability or implementation. Examples of minor changes are updates to
clarify ambiguity at the sentence, paragraph, or table level.

The revision class Editorial means that the formatting in the technical content was changed. Editorial

changes apply to grammatical, formatting, and style issues.

The revision class No change means that no new technical changes were introduced. Minor editorial
and formatting changes may have been made, but the technical content of the document is identical
to the last released version.

Major and minor changes can be described further using the following change types:

 New content added.

 Content updated.

 Content removed.

 New product behavior note added.

 Product behavior note updated.

 Product behavior note removed.

 New protocol syntax added.

 Protocol syntax updated.

 Protocol syntax removed.

 New content added due to protocol revision.

 Content updated due to protocol revision.

 Content removed due to protocol revision.

 New protocol syntax added due to protocol revision.

 Protocol syntax updated due to protocol revision.

 Protocol syntax removed due to protocol revision.

 Obsolete document removed.

Editorial changes are always classified with the change type Editorially updated.

Some important terms used in the change type descriptions are defined as follows:

390 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

 Protocol syntax refers to data elements (such as packets, structures, enumerations, and
methods) as well as interfaces.

 Protocol revision refers to changes made to a protocol that affect the bits that are sent over the
wire.

The changes made to this document are listed in the following table. For more information, please
contact dochelp@microsoft.com.

Section
Tracking number (if
applicable) and description

Major
chang
e (Y or
N)

Change
type

2.2.1.1.1 DNS_RPC_TYPEID
Updated content for this version
of Windows Server.

Y
Content
update.

2.2.2.1.2 DNS_RPC_NODE_FLAGS
Specified
DNS_RPC_FLAG_AGING_ON flag
behavior for Windows versions.

Y

New
product
behavio
r note
added.

2.2.10.1.1 DNSSRV_STATID_TYPES
Updated content for this version
of Windows and Windows Server.

Y
Content
update.

2.2.10.2.25 DNSSRV_RRL_STATS
Added section with content for
this version of Windows Server.

Y
New
content
added.

2.2.12.2.5 DNS_RPC_ZONE_STATS_V1
72944 : Revised behavior note to
include Windows Server 2012 R2.

Y

Product
behavio
r note
updated
.

2.2.12.2.6 DNSSRV_ZONE_RRL_STATS
Added section with content for
this version of Windows Server.

Y
New
content
added.

2.2.16 Response Rate Limiting Messages
Added new section for this
version of Windows Server.

Y
New
content
added.

2.2.16.1 Constants
Added section with content for
this version of Windows Server.

Y
New
content
added.

2.2.16.1.1 DNS_RRL_MODE_ENUM
Added section with content for
this version of Windows Server.

Y
New
content
added.

2.2.16.2 Structures
Added new section for this
version of Windows Server.

Y
New
content
added.

2.2.16.2.1 DNS_RPC_RRL_PARAMS
Added section with content for
this version of Windows Server.

Y
New
content
added.

2.2.16.2.1 DNS_RPC_RRL_PARAMS
72947 : Changed FormErr to
FormError in description of
dwResponsesPerSecond.

Y
Content
update.

mailto:dochelp@microsoft.com

391 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Section
Tracking number (if
applicable) and description

Major
chang
e (Y or
N)

Change
type

2.2.16.2.1 DNS_RPC_RRL_PARAMS

72948 : Revised description of
dwWindowSize to specify
dwTotalResponsesInWindow
instead of "Total Responses in
Window".

Y
Content
update.

2.2.16.2.1 DNS_RPC_RRL_PARAMS

72946 : Revised the description
of dwResponsesPerSecond to
specify that the requestor's IP
address is masked according to
either dwIPv4PrefixLength or
dwIPv6PrefixLength.

Y
Content
update.

2.2.17.1.1 DNS_RPC_VIRTUALIZATION_INSTANCE
Added section with content for
this version of Windows Server.

Y
New
content
added.

2.2.17.1.2

DNS_RPC_VIRTUALIZATION_INSTANCE_INFO

Added section with content for

this version of Windows Server.
Y

New
content
added.

2.2.17.1.3
DNS_RPC_ENUM_VIRTUALIZATION_INSTANCE_LI
ST

Added section with content for
this version of Windows Server.

Y
New
content
added.

2.3 Directory Service Schema Elements
Updated content for this version
of Windows Server.

Y
Content
update.

3.1.1.1.1 DNS Server Integer Properties
Updated content for this version
of Windows Server.

Y
Content
update.

3.1.1.2.1 DNS Zone Integer Properties
Updated content for this version
of Windows Server.

Y
Content
update.

3.1.4 Message Processing Events and Sequencing
Rules

Added information about the
SetRRL operation.

Y
Content
update.

3.1.4.1 R_DnssrvOperation (Opnum 0)
Added information about
Response Rate Limiting (RRL).

Y
New
content
added.

3.1.4.1 R_DnssrvOperation (Opnum 0)
Updated content for this version
of Windows Server.

Y
Content
update.

3.1.4.1 R_DnssrvOperation (Opnum 0)
5402 : Changed the description
for the ExpireZone operation to
reflect current behavior.

Y
Content
update.

3.1.4.2 R_DnssrvQuery (Opnum 1)
Updated content for this version
of Windows Server.

Y
Content
update.

3.1.4.3 R_DnssrvComplexOperation (Opnum 2)
Added information about
Response Rate Limiting (RRL).

Y
New
content
added.

3.1.4.3 R_DnssrvComplexOperation (Opnum 2)
Updated content for this version
of Windows Server.

Y
Content
update.

3.1.4.15 R_DnssrvComplexOperation3 (Opnum 14)
Added section with content for
this version of Windows Server.

Y New
content

392 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Section
Tracking number (if
applicable) and description

Major
chang
e (Y or
N)

Change
type

added.

3.1.4.16 R_DnssrvOperation4 (Opnum: 15)
Added section with content for
this version of Windows Server.

Y
New
content
added.

3.1.4.17 R_DnssrvQuery4 (Opnum 16)
Added section with content for
this version of Windows Server.

Y
New
content
added.

3.1.4.18 R_DnssrvUpdateRecord4 (Opnum 17)
Added section with content for
this version of Windows Server.

Y
New
content
added.

3.1.4.19 R_DnssrvEnumRecords4 (Opnum 18)
Added section with content for
this version of Windows Server.

Y
New
content
added.

3.1.6.2 Directory server security descriptors
reading and caching

Added information about
Response Rate Limiting (RRL).

Y
Content
update.

4.6 Creating a Zone Scope
Added information about zone
scopes.

Y
New
content
added.

4.7 Deleting a Zone Scope
Added information about zone
scopes.

Y
New
content
added.

4.7 Deleting a Zone Scope
72950 : Specified that the
Unicode string is passed as RPC
data.

Y
Content
update.

4.17 Setting Response Rate Limiting with Enabled
Mode

Added information about
Response Rate Limiting (RRL).

Y
New
content
added.

4.18 Getting Response Rate Limiting Settings
Added information about
Response Rate Limiting (RRL).

Y
New
content
added.

4.18 Getting Response Rate Limiting Settings

72949 : Revised the reference to
type
“DNSSRV_TYPEID_UNICODE_RRL
” to read
“DNSSRV_TYPEID_RRL”.

Y
Content
update.

4.19 Creating a Virtualization Instance
Added section with content for
this version of Windows Server.

Y
New
content
added.

4.20 Deleting a Virtualization Instance
Added section with content for
this version of Windows Server.

Y
New
content
added.

4.21 Creating a Zone in a Virtualization Instance
Added section with content for
this version of Windows Server.

Y
New
content
added.

4.22 Enumerating Zone Scopes in the Added section with content for Y New

393 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Section
Tracking number (if
applicable) and description

Major
chang
e (Y or
N)

Change
type

Virtualization Instance Zone this version of Windows Server. content
added.

4.23 Adding and Deleting a Record in the
Virtualization Instance Zone

Added section with content for
this version of Windows Server.

Y
New
content
added.

6 Appendix A: Full IDL
Added information about
Response Rate Limiting (RRL).

Y
New
content
added.

6 Appendix A: Full IDL
Updated content for this version
of Windows Server.

Y
Content
update.

394 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

9 Index

"

"ECDSA_P256" 174
"ECDSA_P384" 174
"RSA" 174

_

_DnsCacheStats packet 172
_DnsDbaseStats packet 163
_DnsMemoryStats packet 156
_DnsNbstatStats packet 166
_DnsPacketStats packet 164
_DnsPrivateStats packet 167
_DnsRecordStats packet 163
_DnsTimeoutStats packet 161
_ErrorStats packet 171

A

Abstract data model 211
 server 211
Adding and deleting a record in the virtualization

instance zone example 320
Applicability 26

B

BOOT_METHOD_DIRECTORY 70
BOOT_METHOD_FILE 70
BOOT_METHOD_REGISTRY 70
BOOT_METHOD_UNINITIALIZED 70

C

Capability negotiation 26
Change tracking 389
Client requirements 211
Common data types 29
Creating a client subnet record example 316
Creating a new zone example 310
Creating a policy 314
Creating a policy example 314
Creating a virtualization instance example 318
Creating a zone in a virtualization instance example

319
Creating a zone scope example 312
Creating and deleting a dns record example 311
Creating and deleting a DNS record in a zone scope

313
Creating and deleting a dns record in a zone scope

example 313
Creating and deleting DNS record example 311
Creating new zone example 310

D

Data model - abstract 211
 server 211
Data types
 common - overview 29

DCPROMO_CONVERT_DOMAIN 202
DCPROMO_CONVERT_FOREST 202
DCPROMO_CONVERT_NONE 202
Deleting a client subnet record example 316
Deleting a policy 315
Deleting a policy example 315
Deleting a virtualization instance example 318
Deleting a zone scope example 312
Deleting DNS record example 311
Directory service schema elements 198
DNS_ADD_USER packet 68
DNS_ADDR packet 67
DNS_ADDR structure 67
DNS_ADDR_ARRAY structure 68
DNS_ALLOW_ALL_NAMES 71
DNS_ALLOW_MULTIBYTE_NAMES 71
DNS_ALLOW_NONRFC_NAMES 71
DNS_ALLOW_RFC_NAMES_ONLY 71
DNS_COUNT_NAME packet 46
DNS_DP_AUTOCREATED 115
DNS_DP_DELETED 115
DNS_DP_DOMAIN_DEFAULT 115
DNS_DP_ENLISTED 115
DNS_DP_FOREST_DEFAULT 115
DNS_DP_LEGACY 115
DNS_FLAT_RECORD 61
DNS_IPVAL_DNS_DELEGATIONS 65
DNS_IPVAL_DNS_FORWARDERS 65
DNS_IPVAL_DNS_ROOTHINTS 65

DNS_IPVAL_DNS_SERVERS 65
DNS_IPVAL_DNS_ZONE_MASTERS 65
DNS_IPVAL_INVALID_ADDR 66
DNS_IPVAL_NO_RESPONSE 66
DNS_IPVAL_NO_TCP 66
DNS_IPVAL_NOT_AUTH_FOR_ZONE 66
DNS_IPVAL_UNKNOWN_ERROR 66
DNS_IPVAL_UNREACHABLE 66
DNS_LOG_LEVEL_ALL_PACKETS 122
DNS_LOG_LEVEL_ANSWERS 122
DNS_LOG_LEVEL_DS_UPDATE 122
DNS_LOG_LEVEL_DS_WRITE 122
DNS_LOG_LEVEL_FULL_PACKETS 122
DNS_LOG_LEVEL_NOTIFY 122
DNS_LOG_LEVEL_QUERY 122
DNS_LOG_LEVEL_QUESTIONS 122
DNS_LOG_LEVEL_RECV 122
DNS_LOG_LEVEL_SEND 122
DNS_LOG_LEVEL_TCP 122
DNS_LOG_LEVEL_UDP 122
DNS_LOG_LEVEL_UNMATCHED_RESPONSE 122
DNS_LOG_LEVEL_UPDATE 122
DNS_LOG_LEVEL_WRITE_THROUGH 122
DNS_ROLLOVER_ACTION_DEFAULT 81
DNS_ROLLOVER_ACTION_NORMAL 81
DNS_ROLLOVER_ACTION_RETIRE 81
DNS_ROLLOVER_ACTION_REVOKE_STANDBY 81
DNS_ROLLOVER_TYPE_DOUBLE_SIGNATURE 81
DNS_ROLLOVER_TYPE_PREPUBLISH 81
DNS_RPC_AUTOCONFIG_ALL 120
DNS_RPC_AUTOCONFIG_INTERNAL_FORWARDERS

120

395 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

DNS_RPC_AUTOCONFIG_INTERNAL_RETURN_ERROR
S 120

DNS_RPC_AUTOCONFIG_INTERNAL_ROOTHINTS
120

DNS_RPC_AUTOCONFIG_INTERNAL_SELFPOINT 120
DNS_RPC_AUTOCONFIG_INTERNAL_SELFPOINT_APP

END 120
DNS_RPC_AUTOCONFIG_INTERNAL_SELFPOINT_PRE

PEND 120
DNS_RPC_AUTOCONFIG_INTERNAL_ZONES 120
DNS_RPC_AUTOCONFIGURE structure 122
DNS_RPC_BUFFER structure 36
DNS_RPC_CLIENT_SUBNET_RECORD structure 191
DNS_RPC_CRITERIA structure 192
DNS_RPC_CURRENT_CLIENT_VER packet 36
DNS_RPC_DP_ENUM structure 118
DNS_RPC_DP_INFO structure 116
DNS_RPC_DP_LIST structure 118
DNS_RPC_DP_REPLICA structure 118
DNS_RPC_ENLIST_DP structure 119
DNS_RPC_ENUM_SCOPE_LIST structure 186
DNS_RPC_ENUM_ZONE_SCOPE_LIST structure 185
DNS_RPC_ENUM_ZONES_FILTER structure 99

DNS_RPC_ENUMERATE_POLICY_LIST structure 193
DNS_RPC_FLAG_AGING_ON 45
DNS_RPC_FLAG_AUTH_ZONE_ROOT 45
DNS_RPC_FLAG_CACHE_DATA 45
DNS_RPC_FLAG_NODE_COMPLETE 45
DNS_RPC_FLAG_NODE_STICKY 45
DNS_RPC_FLAG_OPEN_ACL 45
DNS_RPC_FLAG_POLICY_CONDITION 187
DNS_RPC_FLAG_POLICY_CONTENT 187
DNS_RPC_FLAG_POLICY_CRITERIA_CLIENT_SUBNET

187
DNS_RPC_FLAG_POLICY_CRITERIA_FQDN 187
DNS_RPC_FLAG_POLICY_CRITERIA_NETWORK_PRO

TOCOL 187
DNS_RPC_FLAG_POLICY_CRITERIA_QUERY_TYPE

187
DNS_RPC_FLAG_POLICY_CRITERIA_SERVER_IP 187
DNS_RPC_FLAG_POLICY_CRITERIA_TIME_OF_DAY

187
DNS_RPC_FLAG_POLICY_CRITERIA_TRANSPORT_PR

OTOCOL 187
DNS_RPC_FLAG_POLICY_PROCESSING_ORDER 187
DNS_RPC_FLAG_RECORD_CREATE_PTR 45
DNS_RPC_FLAG_RECORD_DEFAULT_TTL 45
DNS_RPC_FLAG_RECORD_TTL_CHANGE 45
DNS_RPC_FLAG_SUPPRESS_NOTIFY 45
DNS_RPC_FLAG_ZONE_DELEGATION 45
DNS_RPC_FLAG_ZONE_ROOT 45
DNS_RPC_FORWARDERS 101
DNS_RPC_FORWARDERS structure 100
DNS_RPC_FORWARDERS_DOTNET structure 101
DNS_RPC_FORWARDERS_LONGHORN structure 101
DNS_RPC_IP_VALIDATE structure 69
DNS_RPC_NAME packet 46
DNS_RPC_NAME_AND_PARAM structure 37
DNS_RPC_NODE packet 47
DNS_RPC_POLICY structure 192
DNS_RPC_POLICY_CONTENT structure 191
DNS_RPC_POLICY_CONTENT_LIST structure 191
DNS_RPC_POLICY_NAME structure 193
DNS_RPC_RECORD structure 61
DNS_RPC_RECORD_A packet 48

DNS_RPC_RECORD_AAAA packet 55
DNS_RPC_RECORD_ATMA packet 56
DNS_RPC_RECORD_DATA structure 47
DNS_RPC_RECORD_DHCID packet 54
DNS_RPC_RECORD_DNSKEY packet 55
DNS_RPC_RECORD_DS packet 54
DNS_RPC_RECORD_KEY packet 54
DNS_RPC_RECORD_MAIL_ERROR packet 51
DNS_RPC_RECORD_NAME_PREFERENCE packet 51
DNS_RPC_RECORD_NAPTR packet 57
DNS_RPC_RECORD_NODE_NAME packet 48
DNS_RPC_RECORD_NSEC packet 53
DNS_RPC_RECORD_NSEC3 packet 59
DNS_RPC_RECORD_NSEC3PARAM packet 60
DNS_RPC_RECORD_NULL packet 49
DNS_RPC_RECORD_NXT packet 55
DNS_RPC_RECORD_RRSIG packet 52
DNS_RPC_RECORD_SIG packet 52
DNS_RPC_RECORD_SOA packet 48
DNS_RPC_RECORD_SRV packet 56
DNS_RPC_RECORD_STRING packet 50
DNS_RPC_RECORD_TS packet 59
DNS_RPC_RECORD_WINS packet 58

DNS_RPC_RECORD_WINSR packet 58
DNS_RPC_RECORD_WKS packet 50
DNS_RPC_SERVER_INFO 78
DNS_RPC_SERVER_INFO structure 72
DNS_RPC_SERVER_INFO_DOTNET structure 76
DNS_RPC_SERVER_INFO_LONGHORN structure 78
DNS_RPC_SERVER_INFO_W2K structure 72
DNS_RPC_SIGNING_VALIDATION_ERROR structure

111
DNS_RPC_SKD structure 103
DNS_RPC_SKD_LIST structure 104
DNS_RPC_SKD_STATE structure 104
DNS_RPC_SKD_STATE_EX structure 114
DNS_RPC_TRUST_ANCHOR structure 109
DNS_RPC_TRUST_ANCHOR_LIST structure 111
DNS_RPC_TRUST_POINT structure 108
DNS_RPC_TRUST_POINT_LIST structure 109
DNS_RPC_UNICODE_STRING_LIST structure 37
DNS_RPC_USE_ALL_PROTOCOLS 34
DNS_RPC_USE_LPC 34
DNS_RPC_USE_NAMED_PIPE 34
DNS_RPC_USE_TCPIP 34
DNS_RPC_UTF8_STRING_LIST structure 36
DNS_RPC_ZONE 83
DNS_RPC_ZONE structure 82
DNS_RPC_ZONE_CHANGE_DP structure 120
DNS_RPC_ZONE_CREATE_INFO 98
DNS_RPC_ZONE_CREATE_INFO structure 94
DNS_RPC_ZONE_CREATE_INFO_DOTNET structure

97
DNS_RPC_ZONE_CREATE_INFO_LONGHORN

structure 98
DNS_RPC_ZONE_CREATE_INFO_W2K structure 95
DNS_RPC_ZONE_DATABASE 94
DNS_RPC_ZONE_DATABASE structure 93
DNS_RPC_ZONE_DATABASE_DOTNET structure 94
DNS_RPC_ZONE_DATABASE_W2K structure 94
DNS_RPC_ZONE_DNSSEC_SETTINGS structure 112
DNS_RPC_ZONE_DOTNET structure 83
DNS_RPC_ZONE_EXPORT_INFO structure 99
DNS_RPC_ZONE_INFO 90
DNS_RPC_ZONE_INFO structure 86

396 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

DNS_RPC_ZONE_INFO_DOTNET structure 88
DNS_RPC_ZONE_INFO_LONGHORN structure 90
DNS_RPC_ZONE_INFO_W2K structure 86
DNS_RPC_ZONE_LIST 85
DNS_RPC_ZONE_LIST structure 84
DNS_RPC_ZONE_LIST_DOTNET structure 85
DNS_RPC_ZONE_LIST_W2K structure 85
DNS_RPC_ZONE_SCOPE_CREATE_INFO_V1 structure

185
DNS_RPC_ZONE_SCOPE_INFO_V1 structure 186
DNS_RPC_ZONE_SECONDARIES 93
DNS_RPC_ZONE_SECONDARIES structure 92
DNS_RPC_ZONE_SECONDARIES_DOTNET structure

92
DNS_RPC_ZONE_SECONDARIES_LONGHORN

structure 93
DNS_RPC_ZONE_SECONDARIES_W2K structure 92
DNS_RPC_ZONE_SKD structure 113
DNS_RPC_ZONE_STATS_V1 structure 184
DNS_RPC_ZONE_W2K structure 82
DNS_SYSTEMTIME packet 126
DNS_TYPE_A 42
DNS_TYPE_AAAA 42

DNS_TYPE_AFSDB 42
DNS_TYPE_ALL 42
DNS_TYPE_ATMA 42
DNS_TYPE_CNAME 42
DNS_TYPE_DHCID 42
DNS_TYPE_DNAME 42
DNS_TYPE_DNSKEY 42
DNS_TYPE_DS 42
DNS_TYPE_HINFO 42
DNS_TYPE_ISDN 42
DNS_TYPE_KEY 42
DNS_TYPE_LOC 42
DNS_TYPE_MB 42
DNS_TYPE_MD 42
DNS_TYPE_MF 42
DNS_TYPE_MG 42
DNS_TYPE_MINFO 42
DNS_TYPE_MR 42
DNS_TYPE_MX 42
DNS_TYPE_NAPTR 42
DNS_TYPE_NS 42
DNS_TYPE_NSEC 42
DNS_TYPE_NSEC3 42
DNS_TYPE_NSEC3PARAM 42
DNS_TYPE_NULL 42
DNS_TYPE_NXT 42
DNS_TYPE_PTR 42
DNS_TYPE_RP 42
DNS_TYPE_RRSIG 42
DNS_TYPE_RT 42
DNS_TYPE_SIG 42
DNS_TYPE_SOA 42
DNS_TYPE_SRV 42
DNS_TYPE_TXT 42
DNS_TYPE_WINS 42
DNS_TYPE_WINSR 42
DNS_TYPE_WKS 42
DNS_TYPE_X25 42
DNS_TYPE_ZERO 42
DNS_ZONE_TYPE_CACHE 79
DNS_ZONE_TYPE_FORWARDER 79
DNS_ZONE_TYPE_PRIMARY 79

DNS_ZONE_TYPE_SECONDARY 79
DNS_ZONE_TYPE_SECONDARY_CACHE 79
DNS_ZONE_TYPE_STUB 79
dnsProperty packet 200
dnsRecord packet 203
dnsserver interface 211
DNSSRV_DNSSEC_STATS packet 138
DNSSRV_DS_STATS packet 151
DNSSRV_MASTER_STATS packet 139
DNSSRV_MEMTAG_STATS packet 156
DNSSRV_QIERY2_STATS packet 129
DNSSRV_QUERY_STATS packet 128
DNSSRV_RECURSE_STATS packet 131
DNSSRV_SECONDARY_STATS packet 142
DNSSRV_SKWANSEC_STATS packet 150
DNSSRV_STAT structure 126
DNSSRV_STAT_HEADER structure 126
DNSSRV_STATID_CACHE 124
DNSSRV_STATID_DBASE 124
DNSSRV_STATID_DNSSEC 124
DNSSRV_STATID_DS 124
DNSSRV_STATID_ERRORS 124
DNSSRV_STATID_MASTER 124

DNSSRV_STATID_MEMORY 124
DNSSRV_STATID_NBSTAT 124
DNSSRV_STATID_NONWIRE_UPDATE 124
DNSSRV_STATID_PACKET 124
DNSSRV_STATID_PRIVATE 124
DNSSRV_STATID_QUERY 124
DNSSRV_STATID_QUERY2 124
DNSSRV_STATID_RECORD 124
DNSSRV_STATID_RECURSE 124
DNSSRV_STATID_SECONDARY 124
DNSSRV_STATID_SKWANSEC 124
DNSSRV_STATID_TIME 124
DNSSRV_STATID_TIMEOUT 124
DNSSRV_STATID_WINS 124
DNSSRV_STATID_WIRE_UPDATE 124
DNSSRV_TIME_STATS packet 127
DNSSRV_UPDATE_STATS packet 146
DNSSRV_VERSION packet 71
DNSSRV_WINS_STATS packet 145
DNSSRV_ZONE_QUERY_STATS structure 183
DNSSRV_ZONE_TIME_STATS structure 182
DNSSRV_ZONE_TRANSFER_STATS structure 183
DNSSRV_ZONE_UPDATE_STATS structure 184
DSPROPERTY_ZONE_AGING_ENABLED_TIME 201
DSPROPERTY_ZONE_AGING_STATE 201
DSPROPERTY_ZONE_ALLOW_UPDATE 201
DSPROPERTY_ZONE_AUTO_NS_SERVERS 201
DSPROPERTY_ZONE_AUTO_NS_SERVERS_DA 201
DSPROPERTY_ZONE_DCPROMO_CONVERT 201
DSPROPERTY_ZONE_DELETED_FROM_HOSTNAME

201
DSPROPERTY_ZONE_MASTER_SERVERS 201
DSPROPERTY_ZONE_MASTER_SERVERS_DA 201
DSPROPERTY_ZONE_NODE_DBFLAGS 201
DSPROPERTY_ZONE_NOREFRESH_INTERVAL 201
DSPROPERTY_ZONE_REFRESH_INTERVAL 201
DSPROPERTY_ZONE_SCAVENGING_SERVERS 201
DSPROPERTY_ZONE_SCAVENGING_SERVERS_DA

201
DSPROPERTY_ZONE_SECURE_TIME 201
DSPROPERTY_ZONE_TYPE 201

397 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

E

ECDSA_P256 Key Pair packet 176
ECDSA_P384 Key Pair packet 177
Elements - directory service schema 198
Enumerating client subnet records example 317
Enumerating policies example 316
Enumerating zone scopes 313
Enumerating zone scopes example 313
Enumerating zone scopes in the virtualization

instance zone example 319
Enumerating zones example 310
ERROR_SUCCESS 66
EVENT_LOG_ERROR_TYPE 124
EVENT_LOG_INFORMATION_TYPE 124
EVENT_LOG_SUCCESS 124
EVENT_LOG_WARNING_TYPE 124

Events
 local
 directory server security descriptors reading and

caching 301
 dnsRecord in directory server 301
 modifying directory server security descriptors

302
 three-phase authorization test 300
 timer - server 300
Examples
 adding and deleting a record in the virtualization

instance zone 320
 creating a client subnet record 316
 creating a new zone 310
 creating a policy 314
 creating a virtualization instance 318
 creating a zone in a virtualization instance 319
 creating a zone scope 312
 creating and deleting a dns record 311
 creating and deleting a dns record in a zone scope

313
 creating and deleting DNS record 311
 creating new zone 310
 deleting a client subnet record 316
 deleting a policy 315
 deleting a virtualization instance 318
 deleting a zone scope 312
 enumerating client subnet records 317
 enumerating policies 316
 enumerating zone scopes 313
 enumerating zone scopes in the virtualization

instance zone 319
 enumerating zones 310
 getting response rate limiting settings 318
 modifying a dns server dword property 309
 modifying DNS server DWORD property 309
 querying a dns server dword property 309
 querying DNS server DWORD property 309
 setting response rate limiting with enabled mode

317
 updating a policy 315
ExportedKeyPair packet 179

F

Fields - vendor-extensible 26
Full IDL 323

G

Getting response rate limiting settings example 318
Glossary 11

I

IDL 323
Implementer - security considerations 322
IMPORT_STATUS_CHANGED 102
IMPORT_STATUS_NOOP 102
IMPORT_STATUS_SIGNING_READY 102

IMPORT_STATUS_UNSIGNING_READY 102
Index of security parameters 322
Informative references 22
Initialization 237
 server 237
Interfaces - server
 dnsserver 211
Introduction 11
IP4_ARRAY structure 66

L

Local events
 directory server security descriptors reading and

caching 301
 dnsRecord in directory server 301
 modifying directory server security descriptors 302
 three-phase authorization test 300

M

Message processing 241
 server 241
Messages
 common data types 29
 transport 28
Methods
 R_DnssrvComplexOperation (Opnum 2) 277
 R_DnssrvComplexOperation2 (Opnum 7) 292
 R_DnssrvComplexOperation3 (Opnum 14) 297
 R_DnssrvEnumRecords (Opnum 3) 286
 R_DnssrvEnumRecords2 (Opnum 8) 292
 R_DnssrvEnumRecords3 (Opnum 11) 294

 R_DnssrvEnumRecords4 (Opnum 18) 300
 R_DnssrvOperation (Opnum 0) 243
 R_DnssrvOperation2 (Opnum 5) 290
 R_DnssrvOperation3 (Opnum 12) 294
 R_DnssrvOperation4 (Opnum: 15) 298
 R_DnssrvQuery (Opnum 1) 275
 R_DnssrvQuery2 (Opnum 6) 291
 R_DnssrvQuery3 (Opnum 13) 296
 R_DnssrvQuery4 (Opnum 16) 298
 R_DnssrvUpdateRecord (Opnum 4) 288
 R_DnssrvUpdateRecord2 (Opnum 9) 293
 R_DnssrvUpdateRecord3 (Opnum 10) 293
 R_DnssrvUpdateRecord4 (Opnum 17) 299
Modifying a dns server dword property example 309
Modifying DNS server DWORD property example 309
msDNS-SigningKeyDescriptors packet 205
msDNS-SigningKeys packet 204

N

398 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

Normative references 19

O

Overview (synopsis) 22

P

Parameter index - security 322
Parameters - security index 322
PDNS_ADDR 67

PDNS_ADDR_ARRAY 68
PDNS_FLAT_RECORD 61
PDNS_RPC_AUTOCONFIGURE 122
PDNS_RPC_BUFFER 36
PDNS_RPC_CLIENT_SUBNET_RECORD 191
PDNS_RPC_CRITERIA 192
PDNS_RPC_DP_ENUM 118
PDNS_RPC_DP_INFO 116
PDNS_RPC_DP_LIST 118
PDNS_RPC_DP_REPLICA 118
PDNS_RPC_ENLIST_DP 119
PDNS_RPC_ENUM_SCOPE_LIST 186
PDNS_RPC_ENUM_ZONE_SCOPE_LIST 185
PDNS_RPC_ENUM_ZONES_FILTER 99
PDNS_RPC_ENUMERATE_POLICY_LIST 193
PDNS_RPC_FORWARDERS 101
PDNS_RPC_FORWARDERS_DOTNET 101
PDNS_RPC_FORWARDERS_LONGHORN 101
PDNS_RPC_IP_VALIDATE 69
PDNS_RPC_NAME_AND_PARAM 37
PDNS_RPC_POLICY 192
PDNS_RPC_POLICY_CONTENT 191
PDNS_RPC_POLICY_CONTENT_LIST 191
PDNS_RPC_POLICY_NAME 193
PDNS_RPC_RECORD 61
PDNS_RPC_SERVER_INFO 78
PDNS_RPC_SERVER_INFO_DOTNET 76
PDNS_RPC_SERVER_INFO_LONGHORN 78
PDNS_RPC_SERVER_INFO_W2K 72
PDNS_RPC_SIGNING_VALIDATION_ERROR 111
PDNS_RPC_SKD 103
PDNS_RPC_SKD_LIST 104
PDNS_RPC_SKD_STATE 104
PDNS_RPC_SKD_STATE_EX 114
PDNS_RPC_TRUST_ANCHOR 109
PDNS_RPC_TRUST_ANCHOR_LIST 111
PDNS_RPC_TRUST_POINT 108
PDNS_RPC_TRUST_POINT_LIST 109
PDNS_RPC_UNICODE_STRING_LIST 37
PDNS_RPC_UTF8_STRING_LIST 36
PDNS_RPC_ZONE 83
PDNS_RPC_ZONE_CHANGE_DP 120
PDNS_RPC_ZONE_CREATE_INFO 98
PDNS_RPC_ZONE_CREATE_INFO_DOTNET 97
PDNS_RPC_ZONE_CREATE_INFO_LONGHORN 98

PDNS_RPC_ZONE_CREATE_INFO_W2K 95
PDNS_RPC_ZONE_DATABASE 94
PDNS_RPC_ZONE_DATABASE_DOTNET 94
PDNS_RPC_ZONE_DATABASE_W2K 94
PDNS_RPC_ZONE_DNSSEC_SETTINGS 112
PDNS_RPC_ZONE_DOTNET 83
PDNS_RPC_ZONE_EXPORT_INFO 99
PDNS_RPC_ZONE_INFO 90

PDNS_RPC_ZONE_INFO_DOTNET 88
PDNS_RPC_ZONE_INFO_LONGHORN 90
PDNS_RPC_ZONE_INFO_W2K 86
PDNS_RPC_ZONE_LIST 85
PDNS_RPC_ZONE_LIST_DOTNET 85
PDNS_RPC_ZONE_LIST_W2K 85
PDNS_RPC_ZONE_SCOPE_CREATE_INFO_V1 185
PDNS_RPC_ZONE_SCOPE_INFO_V1 186
PDNS_RPC_ZONE_SECONDARIES 93
PDNS_RPC_ZONE_SECONDARIES_DOTNET 92
PDNS_RPC_ZONE_SECONDARIES_LONGHORN 93
PDNS_RPC_ZONE_SECONDARIES_W2K 92
PDNS_RPC_ZONE_SKD 113
PDNS_RPC_ZONE_STATS_V1 184
PDNS_RPC_ZONE_W2K 82
PDNSSRV_STAT 126
PDNSSRV_STAT_HEADER 126
PDNSSRV_STATS 126
PDNSSRV_ZONE_QUERY_STATS 183
PDNSSRV_ZONE_TIME_STATS 182
PDNSSRV_ZONE_TRANSFER_STATS 183
PDNSSRV_ZONE_UPDATE_STATS 184
PIP4_ARRAY 66

Preconditions 25
Prerequisites 25
Processing rules
 constructing exported key 302
 importing exported key 304
Product behavior 358
Protection_Key_Identifier packet 177
Protocol Details
 overview 211

Q

Querying a dns server dword property example 309
Querying DNS server DWORD property example 309

R

R_DnssrvComplexOperation (Opnum 2) method 277
R_DnssrvComplexOperation method 277
R_DnssrvComplexOperation2 (Opnum 7) method

292
R_DnssrvComplexOperation2 method 292
R_DnssrvComplexOperation3 (Opnum 14) method

297
R_DnssrvEnumRecords (Opnum 3) method 286
R_DnssrvEnumRecords method 286
R_DnssrvEnumRecords2 (Opnum 8) method 292
R_DnssrvEnumRecords2 method 292
R_DnssrvEnumRecords3 (Opnum 11) method 294
R_DnssrvEnumRecords3 method 294
R_DnssrvEnumRecords4 (Opnum 18) method 300
R_DnssrvOperation (Opnum 0) method 243
R_DnssrvOperation method 243
R_DnssrvOperation2 (Opnum 5) method 290

R_DnssrvOperation2 method 290
R_DnssrvOperation3 (Opnum 12) method 294
R_DnssrvOperation3 method 294
R_DnssrvOperation4 (Opnum: 15) method 298
R_DnssrvQuery (Opnum 1) method 275
R_DnssrvQuery method 275
R_DnssrvQuery2 (Opnum 6) method 291
R_DnssrvQuery2 method 291

399 / 399

[MS-DNSP] - v20160714
Domain Name Service (DNS) Server Management Protocol
Copyright © 2016 Microsoft Corporation
Release: July 14, 2016

R_DnssrvQuery3 (Opnum 13) method 296
R_DnssrvQuery3 method 296
R_DnssrvQuery4 (Opnum 16) method 298
R_DnssrvUpdateRecord (Opnum 4) method 288
R_DnssrvUpdateRecord2 (Opnum 9) method 293
R_DnssrvUpdateRecord2 method 293
R_DnssrvUpdateRecord3 (Opnum 10) method 293
R_DnssrvUpdateRecord3 method 293
R_DnssrvUpdateRecord4 (Opnum 17) method 299
References 18
 informative 22
 normative 19
Relationship to other protocols 23
RSA Key Pair packet 175

S

Schema elements - directory service 198
Security
 implementer considerations 322
 parameter index 322
Sequencing rules 241
 server 241
Server
 abstract data model 211
 dnsserver interface 211
 initialization 237
 message processing 241
 overview 211
 R_DnssrvComplexOperation (Opnum 2) method

277
 R_DnssrvComplexOperation2 (Opnum 7) method

292
 R_DnssrvComplexOperation3 (Opnum 14) method

297
 R_DnssrvEnumRecords (Opnum 3) method 286
 R_DnssrvEnumRecords2 (Opnum 8) method 292
 R_DnssrvEnumRecords3 (Opnum 11) method 294
 R_DnssrvEnumRecords4 (Opnum 18) method 300
 R_DnssrvOperation (Opnum 0) method 243
 R_DnssrvOperation2 (Opnum 5) method 290
 R_DnssrvOperation3 (Opnum 12) method 294
 R_DnssrvOperation4 (Opnum: 15) method 298
 R_DnssrvQuery (Opnum 1) method 275
 R_DnssrvQuery2 (Opnum 6) method 291
 R_DnssrvQuery3 (Opnum 13) method 296
 R_DnssrvQuery4 (Opnum 16) method 298
 R_DnssrvUpdateRecord (Opnum 4) method 288
 R_DnssrvUpdateRecord2 (Opnum 9) method 293
 R_DnssrvUpdateRecord3 (Opnum 10) method 293
 R_DnssrvUpdateRecord4 (Opnum 17) method 299
 sequencing rules 241
 timer events 300
 timers 237
Setting response rate limiting with enabled mode

example 317
SIGN_SCOPE_ADD_ONLY 102
SIGN_SCOPE_ALL_RECORDS 102
SIGN_SCOPE_DEFAULT 102
SIGN_SCOPE_DNSKEY_ONLY 102
SIGN_SCOPE_DO_NOT_PUBLISH 102
SIGN_SCOPE_REVOKED 102

Standards assignments 27

T

Timer events 300
 server 300
Timers 237
 server 237
Tracking changes 389
Transport 28
TRUSTANCHOR_STATE_ADDPEND 35
TRUSTANCHOR_STATE_DSINVALID 35
TRUSTANCHOR_STATE_DSPENDING 35
TRUSTANCHOR_STATE_MISSING 35
TRUSTANCHOR_STATE_REVOKED 35
TRUSTANCHOR_STATE_VALID 35
TRUSTPOINT_STATE_ACTIVE 34
TRUSTPOINT_STATE_DELETE_PENDING 34
TRUSTPOINT_STATE_DSPENDING 34
TRUSTPOINT_STATE_INITIALIZED 34

U

Updating a policy 315
Updating a policy example 315

V

Vendor-extensible fields 26
Versioning 26

Z

ZONE_NOTIFY_ALL_SECONDARIES 80
ZONE_NOTIFY_LIST_ONLY 80
ZONE_NOTIFY_OFF 80
ZONE_REQUEST_AUTO 80
ZONE_REQUEST_CACHE 80
ZONE_REQUEST_CUSTOM_DP 80
ZONE_REQUEST_DOMAIN_DP 80
ZONE_REQUEST_DS 80
ZONE_REQUEST_FOREST_DP 80
ZONE_REQUEST_FORWARD 80
ZONE_REQUEST_FORWARDER 80
ZONE_REQUEST_LEGACY_DP 80
ZONE_REQUEST_NON_DS 80
ZONE_REQUEST_PRIMARY 80
ZONE_REQUEST_REVERSE 80
ZONE_REQUEST_SECONDARY 80
ZONE_REQUEST_STUB 80
ZONE_SECSECURE_LIST_ONLY 79
ZONE_SECSECURE_NO_SECURITY 79
ZONE_SECSECURE_NO_XFER 79
ZONE_SECSECURE_NS_ONLY 79

ZONE_UPDATE_OFF 101
ZONE_UPDATE_SECURE 101
ZONE_UPDATE_UNSECURE 101

	1 Introduction
	1.1 Glossary
	1.2 References
	1.2.1 Normative References
	1.2.2 Informative References

	1.3 Overview
	1.4 Relationship to Other Protocols
	1.5 Prerequisites/Preconditions
	1.6 Applicability Statement
	1.7 Versioning and Capability Negotiation
	1.8 Vendor-Extensible Fields
	1.9 Standards Assignments

	2 Messages
	2.1 Transport
	2.1.1 Server Security Settings
	2.1.2 Client Security Settings

	2.2 Common Data Types
	2.2.1 DNS RPC Common Messages
	2.2.1.1 Enumerations and Constants
	2.2.1.1.1 DNS_RPC_TYPEID
	2.2.1.1.2 DNS_RPC_PROTOCOLS
	2.2.1.1.3 TRUSTPOINT_STATE
	2.2.1.1.4 TRUSTANCHOR_STATE

	2.2.1.2 Structures
	2.2.1.2.1 DNS_RPC_CURRENT_CLIENT_VER
	2.2.1.2.2 DNS_RPC_BUFFER
	2.2.1.2.3 DNS_RPC_UTF8_STRING_LIST
	2.2.1.2.4 DNS_RPC_UNICODE_STRING_LIST
	2.2.1.2.5 DNS_RPC_NAME_AND_PARAM
	2.2.1.2.6 DNSSRV_RPC_UNION

	2.2.2 Resource Record Messages
	2.2.2.1 Enumerations and Constants
	2.2.2.1.1 DNS_RECORD_TYPE
	2.2.2.1.2 DNS_RPC_NODE_FLAGS

	2.2.2.2 Structures
	2.2.2.2.1 DNS_RPC_NAME
	2.2.2.2.2 DNS_COUNT_NAME
	2.2.2.2.3 DNS_RPC_NODE
	2.2.2.2.4 DNS_RPC_RECORD_DATA
	2.2.2.2.4.1 DNS_RPC_RECORD_A
	2.2.2.2.4.2 DNS_RPC_RECORD_NODE_NAME
	2.2.2.2.4.3 DNS_RPC_RECORD_SOA
	2.2.2.2.4.4 DNS_RPC_RECORD_NULL
	2.2.2.2.4.5 DNS_RPC_RECORD_WKS
	2.2.2.2.4.6 DNS_RPC_RECORD_STRING
	2.2.2.2.4.7 DNS_RPC_RECORD_MAIL_ERROR
	2.2.2.2.4.8 DNS_RPC_RECORD_NAME_PREFERENCE
	2.2.2.2.4.9 DNS_RPC_RECORD_SIG
	2.2.2.2.4.10 DNS_RPC_RECORD_RRSIG
	2.2.2.2.4.11 DNS_RPC_RECORD_NSEC
	2.2.2.2.4.12 DNS_RPC_RECORD_DS
	2.2.2.2.4.13 DNS_RPC_RECORD_KEY
	2.2.2.2.4.14 DNS_RPC_RECORD_DHCID
	2.2.2.2.4.15 DNS_RPC_RECORD_DNSKEY
	2.2.2.2.4.16 DNS_RPC_RECORD_AAAA
	2.2.2.2.4.17 DNS_RPC_RECORD_NXT
	2.2.2.2.4.18 DNS_RPC_RECORD_SRV
	2.2.2.2.4.19 DNS_RPC_RECORD_ATMA
	2.2.2.2.4.20 DNS_RPC_RECORD_NAPTR
	2.2.2.2.4.21 DNS_RPC_RECORD_WINS
	2.2.2.2.4.22 DNS_RPC_RECORD_WINSR
	2.2.2.2.4.23 DNS_RPC_RECORD_TS
	2.2.2.2.4.24 DNS_RPC_RECORD_NSEC3
	2.2.2.2.4.25 DNS_RPC_RECORD_NSEC3PARAM
	2.2.2.2.4.26 DNS_RPC_RECORD_TLSA
	2.2.2.2.4.27 DNS_RPC_RECORD_UNKNOWN

	2.2.2.2.5 DNS_RPC_RECORD

	2.2.3 Address Information Messages
	2.2.3.1 Enumerations and Constants
	2.2.3.1.1 DNS_IPVAL_CONTEXT
	2.2.3.1.2 DNS_IP_VALIDATE_RETURN_FLAGS

	2.2.3.2 Structures
	2.2.3.2.1 IP4_ARRAY
	2.2.3.2.2 DNS_ADDR
	2.2.3.2.2.1 DNS ADDR
	2.2.3.2.2.2 DNS ADD USER

	2.2.3.2.3 DNS_ADDR_ARRAY
	2.2.3.2.4 DNS_RPC_IP_VALIDATE

	2.2.4 Server Messages
	2.2.4.1 Enumerations and Constants
	2.2.4.1.1 DNS_BOOT_METHODS
	2.2.4.1.2 DNS_NAME_CHECK_FLAGS

	2.2.4.2 Structures
	2.2.4.2.1 DNSSRV_VERSION
	2.2.4.2.2 DNS_RPC_SERVER_INFO
	2.2.4.2.2.1 DNS_RPC_SERVER_INFO_W2K
	2.2.4.2.2.2 DNS_RPC_SERVER_INFO_DOTNET
	2.2.4.2.2.3 DNS_RPC_SERVER_INFO_LONGHORN

	2.2.5 Zone Messages
	2.2.5.1 Enumerations and Constants
	2.2.5.1.1 DNS_ZONE_TYPE
	2.2.5.1.2 DNS_ZONE_SECONDARY_SECURITY
	2.2.5.1.3 DNS_ZONE_NOTIFY_LEVEL
	2.2.5.1.4 ZONE_REQUEST_FILTERS
	2.2.5.1.5 ZONE_SKD_ROLLOVER_TYPE
	2.2.5.1.6 ZONE_SKD_ROLLOVER_ACTION

	2.2.5.2 Structures
	2.2.5.2.1 DNS_RPC_ZONE
	2.2.5.2.1.1 DNS_RPC_ZONE_W2K
	2.2.5.2.1.2 DNS_RPC_ZONE_DOTNET

	2.2.5.2.2 DNS_RPC_ZONE_FLAGS
	2.2.5.2.3 DNS_RPC_ZONE_LIST
	2.2.5.2.3.1 DNS_RPC_ZONE_LIST_W2K
	2.2.5.2.3.2 DNS_RPC_ZONE_LIST_DOTNET

	2.2.5.2.4 DNS_RPC_ZONE_INFO
	2.2.5.2.4.1 DNS_RPC_ZONE_INFO_W2K
	2.2.5.2.4.2 DNS_RPC_ZONE_INFO_DOTNET
	2.2.5.2.4.3 DNS_RPC_ZONE_INFO_LONGHORN

	2.2.5.2.5 DNS_RPC_ZONE_SECONDARIES
	2.2.5.2.5.1 DNS_RPC_ZONE_SECONDARIES_W2K
	2.2.5.2.5.2 DNS_RPC_ZONE_SECONDARIES_DOTNET
	2.2.5.2.5.3 DNS_RPC_ZONE_SECONDARIES_LONGHORN

	2.2.5.2.6 DNS_RPC_ZONE_DATABASE
	2.2.5.2.6.1 DNS_RPC_ZONE_DATABASE_W2K
	2.2.5.2.6.2 DNS_RPC_ZONE_DATABASE_DOTNET

	2.2.5.2.7 DNS_RPC_ZONE_CREATE_INFO
	2.2.5.2.7.1 DNS_RPC_ZONE_CREATE_INFO_W2K
	2.2.5.2.7.2 DNS_RPC_ZONE_CREATE_INFO_DOTNET
	2.2.5.2.7.3 DNS_RPC_ZONE_CREATE_INFO_LONGHORN

	2.2.5.2.8 DNS_RPC_ZONE_EXPORT_INFO
	2.2.5.2.9 DNS_RPC_ENUM_ZONES_FILTER
	2.2.5.2.10 DNS_RPC_FORWARDERS
	2.2.5.2.10.1 DNS_RPC_FORWARDERS_W2K
	2.2.5.2.10.2 DNS_RPC_FORWARDERS_DOTNET
	2.2.5.2.10.3 DNS_RPC_FORWARDERS_LONGHORN

	2.2.6 Zone Update Messages
	2.2.6.1 Enumerations and Constants
	2.2.6.1.1 DNS_ZONE_UPDATE
	2.2.6.1.2 KeySignScope
	2.2.6.1.3 ImportOpResult

	2.2.6.2 Structures
	2.2.6.2.1 DNS_RPC_SKD
	2.2.6.2.2 DNS_RPC_SKD_LIST
	2.2.6.2.3 DNS_RPC_SKD_STATE
	2.2.6.2.4 DNS_RPC_TRUST_POINT
	2.2.6.2.5 DNS_RPC_TRUST_POINT_LIST
	2.2.6.2.6 DNS_RPC_TRUST_ANCHOR
	2.2.6.2.7 DNS_RPC_TRUST_ANCHOR_LIST
	2.2.6.2.8 DNS_RPC_SIGNING_VALIDATION_ERROR
	2.2.6.2.9 DNS_RPC_ZONE_DNSSEC_SETTINGS
	2.2.6.2.10 DNS_RPC_ZONE_SKD
	2.2.6.2.11 DNS_RPC_SKD_STATE_EX

	2.2.7 Application Directory Partition Messages
	2.2.7.1 Enumerations and Constants
	2.2.7.1.1 DNS_RPC_DP_FLAGS

	2.2.7.2 Structures
	2.2.7.2.1 DNS_RPC_DP_INFO
	2.2.7.2.2 DNS_RPC_DP_REPLICA
	2.2.7.2.3 DNS_RPC_DP_ENUM
	2.2.7.2.4 DNS_RPC_DP_LIST
	2.2.7.2.5 DNS_RPC_ENLIST_DP
	2.2.7.2.6 DNS_RPC_ZONE_CHANGE_DP

	2.2.8 AutoConfig Messages
	2.2.8.1 Enumerations and Constants
	2.2.8.1.1 DNS_RPC_AUTOCONFIG

	2.2.8.2 Structures
	2.2.8.2.1 DNS_RPC_AUTOCONFIGURE

	2.2.9 Logging Messages
	2.2.9.1 Enumerations and Constants
	2.2.9.1.1 DNS_LOG_LEVELS
	2.2.9.1.2 DNS_EVENTLOG_TYPES

	2.2.10 Server Statistics Messages
	2.2.10.1 Enumerations and Constants
	2.2.10.1.1 DNSSRV_STATID_TYPES

	2.2.10.2 Structures
	2.2.10.2.1 DNSSRV_STAT_HEADER
	2.2.10.2.2 DNSSRV_STATS
	2.2.10.2.3 DNS_SYSTEMTIME
	2.2.10.2.4 DNSSRV_TIME_STATS
	2.2.10.2.5 DNSSRV_QUERY_STATS
	2.2.10.2.6 DNSSRV_QUERY2_STATS
	2.2.10.2.7 DNSSRV_RECURSE_STATS
	2.2.10.2.8 DNSSRV_DNSSEC_STATS
	2.2.10.2.9 DNSSRV_MASTER_STATS
	2.2.10.2.10 DNSSRV_SECONDARY_STATS
	2.2.10.2.11 DNSSRV_WINS_STATS
	2.2.10.2.12 DNSSRV_UPDATE_STATS
	2.2.10.2.13 DNSSRV_SKWANSEC_STATS
	2.2.10.2.14 DNSSRV_DS_STATS
	2.2.10.2.15 DNSSRV_MEMTAG_STATS
	2.2.10.2.16 DNSSRV_MEMORY_STATS
	2.2.10.2.17 DNSSRV_TIMEOUT_STATS
	2.2.10.2.18 DNSSRV_DBASE_STATS
	2.2.10.2.19 DNSSRV_RECORD_STATS
	2.2.10.2.20 DNSSRV_PACKET_STATS
	2.2.10.2.21 DNSSRV_NBSTAT_STATS
	2.2.10.2.22 DNSSRV_PRIVATE_STATS
	2.2.10.2.23 DNSSRV_ERROR_STATS
	2.2.10.2.24 DNSSRV_CACHE_STATS
	2.2.10.2.25 DNSSRV_RRL_STATS

	2.2.11 Key Structures
	2.2.11.1 Enumerations and Constants
	2.2.11.1.1 Cryptographic Algorithm Name

	2.2.11.2 Structures
	2.2.11.2.1 RSA Key Pair
	2.2.11.2.2 ECDSA_P256 Key Pair
	2.2.11.2.3 ECDSA_P384 Key Pair
	2.2.11.2.4 Protection Key Identifier
	2.2.11.2.5 Protection Key Attributes
	2.2.11.2.6 Exported Key Pair

	2.2.12 Zone Statistics Messages
	2.2.12.1 Enumerations and Constants
	2.2.12.1.1 DNS_ZONE_STATS_TYPE

	2.2.12.2 Structures
	2.2.12.2.1 DNSSRV_ZONE_TIME_STATS
	2.2.12.2.2 DNSSRV_ZONE_QUERY_STATS
	2.2.12.2.3 DNSSRV_ZONE_TRANSFER_STATS
	2.2.12.2.4 DNSSRV_ZONE_UPDATE_STATS
	2.2.12.2.5 DNS_RPC_ZONE_STATS_V1
	2.2.12.2.6 DNSSRV_ZONE_RRL_STATS

	2.2.13 Zone Scope or Cache Scope Messages
	2.2.13.1 Enumerations and Constants
	2.2.13.2 Structures
	2.2.13.2.1 DNS_RPC_ENUM_ZONE_SCOPE_LIST
	2.2.13.2.2 DNS_RPC_ZONE_SCOPE_CREATE_INFO
	2.2.13.2.2.1 DNS_RPC_ZONE_SCOPE_CREATE_INFO_V1

	2.2.13.2.3 DNS_RPC_ZONE_SCOPE_INFO
	2.2.13.2.3.1 DNS_RPC_ZONE_SCOPE_INFO_V1

	2.2.14 Server Scope Messages
	2.2.14.1 Structures
	2.2.14.1.1 DNS_RPC_ENUM_SCOPE_LIST

	2.2.15 Policies
	2.2.15.1 Enumerations and Constants
	2.2.15.1.1 Constants
	2.2.15.1.1.1 DNS_RPC_CRITERIA_COMPARATOR
	2.2.15.1.1.2 DNS_RPC_POLICY_CONDITION
	2.2.15.1.1.3 DNS_RPC_POLICY_LEVEL
	2.2.15.1.1.4 DNS_RPC_POLICY_ACTION_TYPE
	2.2.15.1.1.5 DNS_RPC_POLICY_TYPE
	2.2.15.1.1.6 DNS_RPC_CRITERIA_ENUM

	2.2.15.2 Structures
	2.2.15.2.1 DNS_RPC_CLIENT_SUBNET_RECORD
	2.2.15.2.2 DNS_RPC_POLICY_CONTENT
	2.2.15.2.3 DNS_RPC_POLICY_CONTENT_LIST
	2.2.15.2.4 DNS_RPC_CRITERIA
	2.2.15.2.5 DNS_RPC_POLICY
	2.2.15.2.6 DNS_RPC_POLICY_NAME
	2.2.15.2.7 DNS_RPC_ENUMERATE_POLICY_LIST

	2.2.16 Response Rate Limiting Messages
	2.2.16.1 Constants
	2.2.16.1.1 DNS_RRL_MODE_ENUM

	2.2.16.2 Structures
	2.2.16.2.1 DNS_RPC_RRL_PARAMS

	2.2.17 Virtualization Instances
	2.2.17.1 Structures
	2.2.17.1.1 DNS_RPC_VIRTUALIZATION_INSTANCE
	2.2.17.1.2 DNS_RPC_VIRTUALIZATION_INSTANCE_INFO
	2.2.17.1.3 DNS_RPC_ENUM_VIRTUALIZATION_INSTANCE_LIST

	2.3 Directory Service Schema Elements
	2.3.1 Object Classes
	2.3.1.1 msDNS-ServerSettings

	2.3.2 Attributes
	2.3.2.1 dnsProperty
	2.3.2.1.1 Property Id
	2.3.2.1.2 DcPromo Flag

	2.3.2.2 dnsRecord
	2.3.2.3 msDNS-IsSigned
	2.3.2.4 msDNS-NSEC3OptOut
	2.3.2.5 msDNS-SigningKeys
	2.3.2.6 msDNS-SignWithNSEC3
	2.3.2.7 msDNS-NSEC3UserSalt
	2.3.2.8 msDNS-DNSKEYRecords
	2.3.2.9 msDNS-DSRecordSetTTL
	2.3.2.10 msDNS-NSEC3Iterations
	2.3.2.11 msDNS-PropagationTime
	2.3.2.12 msDNS-NSEC3CurrentSalt
	2.3.2.13 msDNS-RFC5011KeyRollovers
	2.3.2.14 msDNS-NSEC3HashAlgorithm
	2.3.2.15 msDNS-DSRecordAlgorithms
	2.3.2.16 msDNS-DNSKEYRecordSetTTL
	2.3.2.17 msDNS-MaintainTrustAnchor
	2.3.2.18 msDNS-NSEC3RandomSaltLength
	2.3.2.19 msDNS-SigningKeyDescriptors
	2.3.2.20 msDNS-SignatureInceptionOffset
	2.3.2.21 msDNS-ParentHasSecureDelegation
	2.3.2.22 msDNS-SecureDelegationPollingPeriod
	2.3.2.23 msDNS-KeymasterZones

	3 Protocol Details
	3.1 DnsServer Server Details
	3.1.1 Abstract Data Model
	3.1.1.1 DNS Server Configuration Information
	3.1.1.1.1 DNS Server Integer Properties
	3.1.1.1.2 DNS Server Address Array Properties
	3.1.1.1.3 DNS Server String Properties
	3.1.1.1.4 DNS Server String List Properties

	3.1.1.2 DNS Zone Configuration Information
	3.1.1.2.1 DNS Zone Integer Properties
	3.1.1.2.2 DNS Zone Address Array Properties
	3.1.1.2.3 DNS Zone String Properties
	3.1.1.2.4 DNS Record Configuration Information
	3.1.1.2.5 DNS Zone Scope or Cache Scope Configuration Information

	3.1.1.3 DNS Server Server Scope Configuration Information
	3.1.1.3.1 DNS Server Server Scope Integer Properties
	3.1.1.3.2 DNS Server Server Scope Address Array Properties

	3.1.2 Timers
	3.1.3 Initialization
	3.1.4 Message Processing Events and Sequencing Rules
	3.1.4.1 R_DnssrvOperation (Opnum 0)
	3.1.4.2 R_DnssrvQuery (Opnum 1)
	3.1.4.3 R_DnssrvComplexOperation (Opnum 2)
	3.1.4.4 R_DnssrvEnumRecords (Opnum 3)
	3.1.4.5 R_DnssrvUpdateRecord (Opnum 4)
	3.1.4.6 R_DnssrvOperation2 (Opnum 5)
	3.1.4.7 R_DnssrvQuery2 (Opnum 6)
	3.1.4.8 R_DnssrvComplexOperation2 (Opnum 7)
	3.1.4.9 R_DnssrvEnumRecords2 (Opnum 8)
	3.1.4.10 R_DnssrvUpdateRecord2 (Opnum 9)
	3.1.4.11 R_DnssrvUpdateRecord3 (Opnum 10)
	3.1.4.12 R_DnssrvEnumRecords3 (Opnum 11)
	3.1.4.13 R_DnssrvOperation3 (Opnum 12)
	3.1.4.14 R_DnssrvQuery3 (Opnum 13)
	3.1.4.15 R_DnssrvComplexOperation3 (Opnum 14)
	3.1.4.16 R_DnssrvOperation4 (Opnum: 15)
	3.1.4.17 R_DnssrvQuery4 (Opnum 16)
	3.1.4.18 R_DnssrvUpdateRecord4 (Opnum 17)
	3.1.4.19 R_DnssrvEnumRecords4 (Opnum 18)

	3.1.5 Timer Events
	3.1.6 Other Local Events
	3.1.6.1 Three-phase authorization test
	3.1.6.2 Directory server security descriptors reading and caching
	3.1.6.3 dnsRecord in the Directory Server
	3.1.6.4 Modifying Directory Server Security Descriptors

	3.1.7 Key Processing Rules
	3.1.7.1 Constructing an Exported Key
	3.1.7.2 Importing an Exported Key

	3.1.8 DNS Policy
	3.1.8.1 Client Subnet Record
	3.1.8.2 DNS Policy Criteria
	3.1.8.3 DNS Policy Validation

	4 Protocol Examples
	4.1 Querying a DNS server DWORD property
	4.2 Modifying a DNS server DWORD property
	4.3 Creating a New Zone
	4.4 Enumerating Zones
	4.5 Creating and Deleting a DNS Record
	4.6 Creating a Zone Scope
	4.7 Deleting a Zone Scope
	4.8 Enumerating Zone Scopes
	4.9 Creating and Deleting a DNS Record in a Zone Scope
	4.10 Creating a Policy
	4.11 Updating a Policy
	4.12 Deleting a Policy
	4.13 Enumerating Policies
	4.14 Creating a Client Subnet Record
	4.15 Deleting a Client Subnet Record
	4.16 Enumerating Client Subnet Records
	4.17 Setting Response Rate Limiting with Enabled Mode
	4.18 Getting Response Rate Limiting Settings
	4.19 Creating a Virtualization Instance
	4.20 Deleting a Virtualization Instance
	4.21 Creating a Zone in a Virtualization Instance
	4.22 Enumerating Zone Scopes in the Virtualization Instance Zone
	4.23 Adding and Deleting a Record in the Virtualization Instance Zone

	5 Security
	5.1 Security Considerations for Implementers
	5.1.1 Security Considerations Specific to the DNS Server Management Protocol

	5.2 Index of Security Parameters

	6 Appendix A: Full IDL
	7 Appendix B: Product Behavior
	8 Change Tracking
	9 Index

