

1 / 165

[MS-DFSNM-Diff] - v20210407
Distributed File System (DFS): Namespace Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

[MS-DFSNM-Diff]:

Distributed File System (DFS): Namespace Management
Protocol

Intellectual Property Rights Notice for Open Specifications Documentation

▪ Technical Documentation. Microsoft publishes Open Specifications documentation (“this
documentation”) for protocols, file formats, data portability, computer languages, and standards
support. Additionally, overview documents cover inter-protocol relationships and interactions.

▪ Copyrights. This documentation is covered by Microsoft copyrights. Regardless of any other
terms that are contained in the terms of use for the Microsoft website that hosts this

documentation, you can make copies of it in order to develop implementations of the technologies

that are described in this documentation and can distribute portions of it in your implementations
that use these technologies or in your documentation as necessary to properly document the
implementation. You can also distribute in your implementation, with or without modification, any
schemas, IDLs, or code samples that are included in the documentation. This permission also
applies to any documents that are referenced in the Open Specifications documentation.

▪ No Trade Secrets. Microsoft does not claim any trade secret rights in this documentation.
▪ Patents. Microsoft has patents that might cover your implementations of the technologies

described in the Open Specifications documentation. Neither this notice nor Microsoft's delivery of
this documentation grants any licenses under those patents or any other Microsoft patents.
However, a given Open Specifications document might be covered by the Microsoft Open
Specifications Promise or the Microsoft Community Promise. If you would prefer a written license,
or if the technologies described in this documentation are not covered by the Open Specifications

Promise or Community Promise, as applicable, patent licenses are available by contacting
iplg@microsoft.com.

▪ License Programs. To see all of the protocols in scope under a specific license program and the
associated patents, visit the Patent Map.

▪ Trademarks. The names of companies and products contained in this documentation might be
covered by trademarks or similar intellectual property rights. This notice does not grant any
licenses under those rights. For a list of Microsoft trademarks, visit

www.microsoft.com/trademarks.
▪ Fictitious Names. The example companies, organizations, products, domain names, email

addresses, logos, people, places, and events that are depicted in this documentation are fictitious.
No association with any real company, organization, product, domain name, email address, logo,
person, place, or event is intended or should be inferred.

Reservation of Rights. All other rights are reserved, and this notice does not grant any rights other

than as specifically described above, whether by implication, estoppel, or otherwise.

Tools. The Open Specifications documentation does not require the use of Microsoft programming
tools or programming environments in order for you to develop an implementation. If you have access
to Microsoft programming tools and environments, you are free to take advantage of them. Certain
Open Specifications documents are intended for use in conjunction with publicly available standards

specifications and network programming art and, as such, assume that the reader either is familiar
with the aforementioned material or has immediate access to it.

Support. For questions and support, please contact dochelp@microsoft.com.

https://go.microsoft.com/fwlink/?LinkId=214445
https://go.microsoft.com/fwlink/?LinkId=214445
https://go.microsoft.com/fwlink/?LinkId=214448
mailto:iplg@microsoft.com
https://aka.ms/AA9ufj8
https://www.microsoft.com/trademarks
mailto:dochelp@microsoft.com

2 / 165

[MS-DFSNM-Diff] - v20210407
Distributed File System (DFS): Namespace Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

Revision Summary

Date
Revision
History

Revision
Class Comments

7/20/2007 0.1 Major MCPP Milestone 5 Initial Availability

9/28/2007 0.2 Minor Clarified the meaning of the technical content.

10/23/2007 0.2.1 Editorial Changed language and formatting in the technical content.

11/30/2007 0.2.2 Editorial Changed language and formatting in the technical content.

1/25/2008 1.0 Major Updated and revised the technical content.

3/14/2008 2.0 Major Updated and revised the technical content.

5/16/2008 3.0 Major Updated and revised the technical content.

6/20/2008 4.0 Major Updated and revised the technical content.

7/25/2008 5.0 Major Updated and revised the technical content.

8/29/2008 6.0 Major Updated and revised the technical content.

10/24/2008 7.0 Major Updated and revised the technical content.

12/5/2008 8.0 Major Updated and revised the technical content.

1/16/2009 9.0 Major Updated and revised the technical content.

2/27/2009 10.0 Major Updated and revised the technical content.

4/10/2009 10.0.1 Editorial Changed language and formatting in the technical content.

5/22/2009 10.0.2 Editorial Changed language and formatting in the technical content.

7/2/2009 11.0 Major Updated and revised the technical content.

8/14/2009 12.0 Major Updated and revised the technical content.

9/25/2009 13.0 Major Updated and revised the technical content.

11/6/2009 14.0 Major Updated and revised the technical content.

12/18/2009 15.0 Major Updated and revised the technical content.

1/29/2010 16.0 Major Updated and revised the technical content.

3/12/2010 16.0.1 Editorial Changed language and formatting in the technical content.

4/23/2010 17.0 Major Updated and revised the technical content.

6/4/2010 18.0 Major Updated and revised the technical content.

7/16/2010 19.0 Major Updated and revised the technical content.

8/27/2010 20.0 Major Updated and revised the technical content.

10/8/2010 20.0 None
No changes to the meaning, language, or formatting of the
technical content.

11/19/2010 21.0 Major Updated and revised the technical content.

3 / 165

[MS-DFSNM-Diff] - v20210407
Distributed File System (DFS): Namespace Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

Date
Revision
History

Revision
Class Comments

1/7/2011 21.0 None
No changes to the meaning, language, or formatting of the
technical content.

2/11/2011 22.0 Major Updated and revised the technical content.

3/25/2011 22.1 Minor Clarified the meaning of the technical content.

5/6/2011 22.1 None
No changes to the meaning, language, or formatting of the
technical content.

6/17/2011 22.2 Minor Clarified the meaning of the technical content.

9/23/2011 22.2 None
No changes to the meaning, language, or formatting of the
technical content.

12/16/2011 23.0 Major Updated and revised the technical content.

3/30/2012 24.0 Major Updated and revised the technical content.

7/12/2012 25.0 Major Updated and revised the technical content.

10/25/2012 25.0 None
No changes to the meaning, language, or formatting of the
technical content.

1/31/2013 25.0 None
No changes to the meaning, language, or formatting of the
technical content.

8/8/2013 26.0 Major Updated and revised the technical content.

11/14/2013 26.0 None
No changes to the meaning, language, or formatting of the
technical content.

2/13/2014 27.0 Major Updated and revised the technical content.

5/15/2014 27.0 None
No changes to the meaning, language, or formatting of the
technical content.

6/30/2015 28.0 Major Significantly changed the technical content.

10/16/2015 28.0 None
No changes to the meaning, language, or formatting of the
technical content.

7/14/2016 28.0 None
No changes to the meaning, language, or formatting of the
technical content.

6/1/2017 28.0 None
No changes to the meaning, language, or formatting of the
technical content.

9/15/2017 29.0 Major Significantly changed the technical content.

9/12/2018 30.0 Major Significantly changed the technical content.

4/7/2021 31.0 Major Significantly changed the technical content.

4 / 165

[MS-DFSNM-Diff] - v20210407
Distributed File System (DFS): Namespace Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

Table of Contents

1 Introduction .. 8
1.1 Glossary ... 8
1.2 References .. 14

1.2.1 (Updated Section) Normative References ... 14
1.2.2 Informative References ... 15

1.3 Overview .. 15
1.4 Relationship to Other Protocols .. 18
1.5 Prerequisites/Preconditions ... 18
1.6 Applicability Statement ... 18
1.7 Versioning and Capability Negotiation ... 19
1.8 Vendor-Extensible Fields ... 19
1.9 Standards Assignments ... 19

2 Messages ... 20
2.1 Transport .. 20
2.2 Common Data Types .. 20

2.2.1 Common Conventions ... 20
2.2.1.1 Host Name ... 20
2.2.1.2 Share Name ... 20
2.2.1.3 Domain Name .. 21
2.2.1.4 UNC Path ... 21
2.2.1.5 DFS Root ... 21
2.2.1.6 DFS Link .. 21
2.2.1.7 DFS Root Target ... 21
2.2.1.8 DFS Link Target .. 22
2.2.1.9 DFS Target ... 22

2.2.2 Common Data Types ... 22
2.2.2.1 NET_API_STATUS ... 22
2.2.2.2 NETDFS_SERVER_OR_DOMAIN_HANDLE ... 22
2.2.2.3 DFS_INFO_STRUCT ... 22
2.2.2.4 DFS_INFO_ENUM_STRUCT ... 24
2.2.2.5 DFS_STORAGE_INFO ... 25
2.2.2.6 DFS_STORAGE_INFO_1 ... 26
2.2.2.7 DFS_TARGET_PRIORITY .. 26
2.2.2.8 DFS_TARGET_PRIORITY_CLASS.. 27
2.2.2.9 DFSM_ROOT_LIST .. 28
2.2.2.10 DFSM_ROOT_LIST_ENTRY ... 28
2.2.2.11 DFS_NAMESPACE_VERSION_ORIGIN... 28
2.2.2.12 DFS_SUPPORTED_NAMESPACE_VERSION_INFO 29
2.2.2.13 DFS Volume State ... 29

2.2.3 Get Info Data Types .. 30
2.2.3.1 DFS_INFO_1 .. 30
2.2.3.2 DFS_INFO_2 .. 30
2.2.3.3 DFS_INFO_3 .. 31
2.2.3.4 DFS_INFO_4 .. 32
2.2.3.5 DFS_INFO_5 .. 32
2.2.3.6 DFS_INFO_6 .. 33
2.2.3.7 DFS_INFO_7 .. 34
2.2.3.8 DFS_INFO_8 .. 34
2.2.3.9 DFS_INFO_9 .. 35
2.2.3.10 DFS_INFO_50 ... 36

2.2.4 Set Info Data Types .. 37
2.2.4.1 DFS_INFO_101 ... 37
2.2.4.2 DFS_INFO_102 ... 38
2.2.4.3 DFS_INFO_103 ... 38

5 / 165

[MS-DFSNM-Diff] - v20210407
Distributed File System (DFS): Namespace Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

2.2.4.4 DFS_INFO_104 ... 39
2.2.4.5 DFS_INFO_105 ... 40
2.2.4.6 DFS_INFO_106 ... 40
2.2.4.7 DFS_INFO_107 ... 41

2.2.5 Special Info Data Types ... 42
2.2.5.1 DFS_INFO_100 ... 42
2.2.5.2 DFS_INFO_150 ... 42
2.2.5.3 DFS_INFO_200 ... 42
2.2.5.4 DFS_INFO_300 ... 43

2.2.6 Enum Info Data Types ... 43
2.2.6.1 DFS_INFO_1_CONTAINER .. 43
2.2.6.2 DFS_INFO_2_CONTAINER .. 43
2.2.6.3 DFS_INFO_3_CONTAINER .. 44
2.2.6.4 DFS_INFO_4_CONTAINER .. 44
2.2.6.5 DFS_INFO_5_CONTAINER .. 44
2.2.6.6 DFS_INFO_6_CONTAINER .. 44
2.2.6.7 DFS_INFO_8_CONTAINER .. 45
2.2.6.8 DFS_INFO_9_CONTAINER .. 45
2.2.6.9 DFS_INFO_200_CONTAINER .. 45
2.2.6.10 DFS_INFO_300_CONTAINER .. 45

2.3 Directory Service Schema Elements ... 46
2.3.1 DFS Configuration Container .. 46
2.3.2 LDAP Entries for Domain-Based DFS Namespaces ... 47
2.3.3 DFS Namespace Object for Domainv1-Based DFS Namespace 48

2.3.3.1 pKT Attribute Contents (Metadata for Domainv1-Based Namespace) 48
2.3.3.1.1 DFSNamespaceElementBLOB .. 49

2.3.3.1.1.1 DFSNamespaceRootBLOB or DFSNamespaceLinkBLOB 50
2.3.3.1.1.2 DFSRootOrLinkIDBLOB ... 51
2.3.3.1.1.3 DFSTargetListBLOB .. 53

2.3.3.1.1.3.1 TargetEntryBLOB .. 54
2.3.3.1.1.4 SiteInformationBLOB .. 56

2.3.3.1.1.4.1 SiteEntryBLOB ... 56
2.3.3.1.1.4.1.1 SiteNameInfoBLOB ... 57

2.3.4 Schema for Domainv2-Based DFS Namespace .. 57
2.3.4.1 LDAP Entry for Domainv2-Based DFS Namespace Anchor 57
2.3.4.2 LDAP Entry for Domainv2-Based DFS Namespace 57
2.3.4.3 LDAP Entry for Domainv2-Based DFS Link .. 59
2.3.4.4 LDAP Entry for Domainv2-Based Deleted Link ... 60

3 Protocol Details ... 62
3.1 Server Details .. 62

3.1.1 Abstract Data Model .. 62
3.1.1.1 Global.. 62
3.1.1.2 Per Namespace ... 62
3.1.1.3 Per NamespaceElement ... 62
3.1.1.4 Per TargetsList ... 63
3.1.1.5 Per Target .. 63

3.1.2 Timers .. 63
3.1.3 Initialization ... 63
3.1.4 Message Processing Events and Sequencing Rules .. 64

3.1.4.1 Basic Methods .. 66
3.1.4.1.1 NetrDfsManagerInitialize (Opnum 14) .. 66
3.1.4.1.2 NetrDfsManagerGetVersion (Opnum 0) .. 67
3.1.4.1.3 NetrDfsAdd (Opnum 1) .. 67
3.1.4.1.4 NetrDfsRemove (Opnum 2)... 70
3.1.4.1.5 NetrDfsSetInfo (Opnum 3) .. 72
3.1.4.1.6 NetrDfsGetInfo (Opnum 4) ... 76
3.1.4.1.7 NetrDfsEnum (Opnum 5) .. 80

6 / 165

[MS-DFSNM-Diff] - v20210407
Distributed File System (DFS): Namespace Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

3.1.4.1.8 NetrDfsMove (Opnum 6) .. 82
3.1.4.1.9 NetrDfsAddRootTarget (Opnum 23) ... 85
3.1.4.1.10 NetrDfsRemoveRootTarget (Opnum 24) ... 88
3.1.4.1.11 NetrDfsGetSupportedNamespaceVersion (Opnum 25) 89

3.1.4.2 Extended Methods ... 90
3.1.4.2.1 NetrDfsAdd2 (Opnum 19) ... 90
3.1.4.2.2 NetrDfsRemove2 (Opnum 20) ... 93
3.1.4.2.3 NetrDfsEnumEx (Opnum 21) ... 94
3.1.4.2.4 NetrDfsSetInfo2 (Opnum 22) .. 97

3.1.4.3 Root Target Methods .. 100
3.1.4.3.1 NetrDfsAddFtRoot (Opnum 10) ... 100
3.1.4.3.2 NetrDfsRemoveFtRoot (Opnum 11) ... 102
3.1.4.3.3 NetrDfsFlushFtTable (Opnum 18) ... 104

3.1.4.4 Stand-Alone Namespace Methods .. 104
3.1.4.4.1 NetrDfsAddStdRoot (Opnum 12)... 104
3.1.4.4.2 NetrDfsRemoveStdRoot (Opnum 13) ... 105
3.1.4.4.3 NetrDfsAddStdRootForced (Opnum 15) ... 106

3.1.4.5 Domain-Based Namespace Methods ... 107
3.1.4.5.1 NetrDfsGetDcAddress (Opnum 16) ... 107
3.1.4.5.2 NetrDfsSetDcAddress (Opnum 17) .. 108

3.1.5 Timer Events ... 110
3.1.6 Other Local Events ... 110

3.2 Client Details .. 110
3.2.1 Abstract Data Model ... 110
3.2.2 Timers ... 110
3.2.3 Initialization .. 110
3.2.4 Message Processing Events and Sequencing Rules ... 110

3.2.4.1 Basic Methods ... 110
3.2.4.1.1 NetrDfsAdd (Opnum 1) ... 110
3.2.4.1.2 NetrDfsRemove (Opnum 2).. 111
3.2.4.1.3 NetrDfsSetInfo (Opnum 3) ... 111
3.2.4.1.4 NetrDfsEnum (Opnum 5) and NetrDfsEnumEx (Opnum 21) 111

3.2.4.2 Extended Methods .. 111
3.2.4.2.1 NetrDfsAdd2 (Opnum 19) .. 111
3.2.4.2.2 NetrDfsRemove2 (Opnum 20) .. 111
3.2.4.2.3 NetrDfsSetInfo2 (Opnum 22) ... 111

3.2.4.3 Root Target Methods .. 111
3.2.4.3.1 NetrDfsAddFtRoot (Opnum 10) ... 111
3.2.4.3.2 NetrDfsRemoveFtRoot (Opnum 11) ... 112

3.2.5 Timer Events ... 112
3.2.6 Other Local Events ... 112

3.3 Domain Controller Details .. 112
3.3.1 Abstract Data Model ... 113
3.3.2 Timers ... 113
3.3.3 Initialization .. 113
3.3.4 Message Processing Events and Sequencing Rules ... 113

3.3.4.1 Basic Methods ... 113
3.3.4.1.1 NetrDfsRemoveRootTarget (Opnum 24) .. 113

3.3.4.2 Extended Methods .. 113
3.3.4.2.1 NetrDfsEnumEx (Opnum 21) .. 113

3.3.4.3 Root Target Methods .. 113
3.3.4.3.1 NetrDfsRemoveFtRoot (Opnum 11) ... 113
3.3.4.3.2 NetrDfsFlushFtTable (Opnum 18) ... 114

3.3.5 Timer Events ... 114
3.3.6 Other Local Events ... 114

4 Protocol Examples ... 115
4.1 Creating a New Domainv1-Based DFS Namespace ... 115

7 / 165

[MS-DFSNM-Diff] - v20210407
Distributed File System (DFS): Namespace Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

4.2 Adding a Root Target to an Existing Domainv1-Based DFS Namespace 116
4.3 Adding a New Link to a Domain-Based DFS Namespace 118
4.4 Creating a New Domainv2-Based DFS Namespace ... 119
4.5 Adding a Root Target to an Existing Domainv2-Based DFS Namespace 121
4.6 Adding a New Link to a Domainv2-Based DFS Namespace 123
4.7 Enumerating DFS Links in a Domain-Based DFS Namespace 124
4.8 DFS Metadata of a Domainv1-Based DFS Namespace .. 126

5 Security ... 132
5.1 Security Considerations for Implementers .. 132
5.2 Index of Security Parameters ... 132

6 Appendix A: Full IDL .. 133

7 (Updated Section) Appendix B: Product Behavior .. 141

8 Appendix C: XML Schema of XML Document Stored in msDFS-TargetListv2 Attribute
 .. 156

9 Change Tracking .. 159

10 Index ... 160

8 / 165

[MS-DFSNM-Diff] - v20210407
Distributed File System (DFS): Namespace Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

1 Introduction

The Distributed File System (DFS): Namespace Management Protocol provides a remote procedure call
(RPC) interface for administering DFS configurations. The client is an application that issues method
calls on the RPC interface to administer DFS. The server is a DFS service that implements support for
this RPC interface for administering DFS.

Sections 1.5, 1.8, 1.9, 2, and 3 of this specification are normative. All other sections and examples in

this specification are informative.

1.1 Glossary

This document uses the following terms:

8.3 name: A file name string restricted in length to 12 characters that includes a base name of up
to eight characters, one character for a period, and up to three characters for a file name
extension. For more information on 8.3 file names, see [MS-CIFS] section 2.2.1.1.1.

Access Based Directory Enumeration (ABDE) mode: A mode where the server filters directory
entries according to the access permissions of the client. In a DFS scenario, ABDE is enabled on
the DFS root target share to prevent a user from seeing another user's home directory. The DFS
namespace administrator can create a DFS link for a user (or user group), and a user is granted

appropriate rights to the DFS link.

access control list (ACL): A list of access control entries (ACEs) that collectively describe the
security rules for authorizing access to some resource; for example, an object or set of objects.

Active Directory: The Windows implementation of a general-purpose directory service, which uses
LDAP as its primary access protocol. Active Directory stores information about a variety of
objects in the network such as user accounts, computer accounts, groups, and all related
credential information used by Kerberos [MS-KILE]. Active Directory is either deployed as Active

Directory Domain Services (AD DS) or Active Directory Lightweight Directory Services (AD LDS),
which are both described in [MS-ADOD]: Active Directory Protocols Overview.

Active Directory Domain Services (AD DS): A directory service (DS) implemented by a domain
controller (DC). The DS provides a data store for objects that is distributed across multiple DCs.
The DCs interoperate as peers to ensure that a local change to an object replicates correctly
across DCs. AD DS is a deployment of Active Directory [MS-ADTS].

authentication level: A numeric value indicating the level of authentication or message protection
that remote procedure call (RPC) will apply to a specific message exchange. For more
information, see [C706] section 13.1.2.1 and [MS-RPCE].

binary large object (BLOB): A discrete packet of data that is stored in a database and is treated
as a sequence of uninterpreted bytes.

clustered DFS namespace: A stand-alone DFS namespace that is hosted on a file server cluster.

Coordinated Universal Time (UTC): A high-precision atomic time standard that approximately

tracks Universal Time (UT). It is the basis for legal, civil time all over the Earth. Time zones
around the world are expressed as positive and negative offsets from UTC. In this role, it is also
referred to as Zulu time (Z) and Greenwich Mean Time (GMT). In these specifications, all
references to UTC refer to the time at UTC-0 (or GMT).

DFS namespace name: The second path component of a DFS path. In the DFS path
\\MyDomain\MyDfs\MyDir, the DFS namespace name is MyDfs.

DFS server: A server computer that runs the DFS service required to respond to DFS referral

requests. Also interchangeably used to refer to the DFS service itself.

9 / 165

[MS-DFSNM-Diff] - v20210407
Distributed File System (DFS): Namespace Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

DFS target: Either a DFS root target server or a DFS link target server.

directory service (DS): A service that stores and organizes information about a computer

network's users and network shares, and that allows network administrators to manage users'
access to the shares. See also Active Directory.

distinguished name (DN): A name that uniquely identifies an object by using the relative
distinguished name (RDN) for the object, and the names of container objects and domains that
contain the object. The distinguished name (DN) identifies the object and its location in a tree.

Distributed File System (DFS): A file system that logically groups physical shared folders located
on different servers by transparently connecting them to one or more hierarchical namespaces.
DFS also provides fault-tolerance and load-sharing capabilities.

Distributed File System (DFS) client: A computer that is used to access a DFS namespace. It

also can refer to the DFS software on a client that accesses the DFS namespace.

Distributed File System (DFS) client target failback: An optional feature that, when enabled,
permits a DFS client to revert to a more optimal DFS target at an appropriate time after a DFS

client target failover. The term "failback" refers to DFS client target failback. The DFS Referral
Protocol, as specified in [MS-DFSC], describes the mechanisms by which a DFS server provides
a list of DFS targets in decreasing order of optimality to the client.

Distributed File System (DFS) in-site referral mode: A mode in which DFS root or DFS link
referral requests to a DFS server result in DFS referral responses with only those DFS targets in
the same Active Directory Domain Services (AD DS) site as the DFS client requesting the DFS
referral. When this mode is disabled, there is no restriction on the AD DS site of the targets
returned in the referral response. This can be enabled per DFS namespace. If there are no DFS
targets in the same AD DS site as the client, the DFS referral response may be empty.

Distributed File System (DFS) interlink: A special form of DFS link whose link target is a DFS

domain-based namespace.

Distributed File System (DFS) link: A component in a DFS path that lies below the DFS root and

maps to one or more DFS link targets. Also interchangeably used to refer to a DFS path that
contains the DFS link.

Distributed File System (DFS) link target: The mapping destination of a link. A link target can
be any Universal Naming Convention (UNC) path. For example, a link target could be a share or
another Distributed File System (DFS) path.

Distributed File System (DFS) metadata: Information about a Distributed File System (DFS)
namespace such as namespace name, DFS links, DFS link targets, and so on, that is maintained
by a DFS server. For domain-based DFS, the metadata is stored in an Active Directory Domain
Services (AD DS) object corresponding to the DFS namespace. For a stand-alone DFS
namespace, the DFS root target stores the DFS metadata in an implementation-defined manner;
for example, in the registry.

Distributed File System (DFS) namespace: A virtual view of shares on different servers as
provided by DFS. Each file in the namespace has a logical name and a corresponding address

(path). A DFS namespace consists of a root and many links and targets. The namespace starts
with a root that maps to one or more root targets. Below the root are links that map to their
own targets.

Distributed File System (DFS) namespace, domain-based: A DFS namespace that has
configuration information stored in the Active Directory directory service. The DFS namespace

may span over a distributed system that is organized hierarchically into logical domains, each
with a domain controller (DC). The path to access the root or a link starts with the host domain
name. A domain-based DFS root can have multiple root targets, which offers fault tolerance and
load sharing at the root level.

10 / 165

[MS-DFSNM-Diff] - v20210407
Distributed File System (DFS): Namespace Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

Distributed File System (DFS) namespace, standalone: A DFS namespace that has metadata
stored locally on the host server. The path to access the root or a link starts with the host server

name. A stand-alone DFS root has only one root target. Stand-alone roots are not fault-tolerant;
when the root target is unavailable, the entire DFS namespace is inaccessible. Stand-alone DFS

roots can be made fault tolerant by creating them on clustered file servers.

Distributed File System (DFS) path: Any Universal Naming Convention (UNC) path that starts
with a DFS root and is used for accessing a file or directory in a DFS namespace.

Distributed File System (DFS) referral: A DFS client issues a DFS referral request to a DFS root
target or a DC, depending on the DFS path accessed, to resolve a DFS root to a set of DFS root
targets, or a DFS link to a set of DFS link targets. The DFS client uses the referral request
process as needed to finally identify the actual share on a server that has accessed the leaf

component of the DFS path. The request for a DFS referral is referred to as DFS referral
request, and the response for such a request is referred to as DFS referral response.

Distributed File System (DFS) referral site costing: When appropriately enabled for a DFS
namespace, an optional feature that results in a DFS referral response. In the referral response,

targets are grouped into sets based on increasing Active Directory Domain Services (AD DS) site
cost from the DFS client that is requesting the referral to the DFS target server. When this

feature is disabled, the referral response consists of at most two target sets: one set consisting
of all DFS targets in the same AD DS site as the DFS client, and the other set consisting of DFS
targets that are not in the same AD DS site as the DFS client.

Distributed File System (DFS) root: The starting point of the DFS namespace. The root is often
used to refer to the namespace as a whole. A DFS root maps to one or more root targets, each
of which corresponds to a share on a separate server. A DFS root has one of the following
formats "\\<ServerName>\<RootName>" or "\\<DomainName>\<RootName>". Where

<ServerName> is the name of the root target server hosting the DFS namespace;
<DomainName> is the name of the domain that hosts the DFS root; and <RootName> is the
name of the root of a domain-based DFS. The DFS root must reside on an NTFS volume.

Distributed File System (DFS) root scalability mode: Domain-based DFS root targets normally
poll the primary domain controller (PDC) to check for any change in the DFS metadata of a DFS

namespace. When the DFS server on a DFS root target supports this mode, and it is enabled for
a DFS namespace, the DFS server instead polls a domain controller (DC) closer to it in terms of

Active Directory Domain Services (AD DS) site cost.

Distributed File System (DFS) root target: A server that hosts a DFS root of a DFS namespace.
A domain-based DFS namespace can have multiple DFS root targets; a standalone DFS
namespace can have only one DFS root target.

Distributed File System (DFS) server: A server computer running the DFS service that responds
to DFS referral requests, as specified in [MS-DFSC], as well as to the DFS: Namespace

Management Protocol. Also used interchangeably to refer to the DFS service itself.

domain: A set of users and computers sharing a common namespace and management
infrastructure. At least one computer member of the set must act as a domain controller (DC)
and host a member list that identifies all members of the domain, as well as optionally hosting
the Active Directory service. The domain controller provides authentication of members, creating

a unit of trust for its members. Each domain has an identifier that is shared among its members.
For more information, see [MS-AUTHSOD] section 1.1.1.5 and [MS-ADTS].

domain controller (DC): The service, running on a server, that implements Active Directory, or
the server hosting this service. The service hosts the data store for objects and interoperates
with other DCs to ensure that a local change to an object replicates correctly across all DCs.
When Active Directory is operating as Active Directory Domain Services (AD DS), the DC
contains full NC replicas of the configuration naming context (config NC), schema naming
context (schema NC), and one of the domain NCs in its forest. If the AD DS DC is a global

11 / 165

[MS-DFSNM-Diff] - v20210407
Distributed File System (DFS): Namespace Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

catalog server (GC server), it contains partial NC replicas of the remaining domain NCs in its
forest. For more information, see [MS-AUTHSOD] section 1.1.1.5.2 and [MS-ADTS]. When

Active Directory is operating as Active Directory Lightweight Directory Services (AD LDS),
several AD LDS DCs can run on one server. When Active Directory is operating as AD DS, only

one AD DS DC can run on one server. However, several AD LDS DCs can coexist with one AD DS
DC on one server. The AD LDS DC contains full NC replicas of the config NC and the schema NC
in its forest. The domain controller is the server side of Authentication Protocol Domain Support
[MS-APDS].

domain-based DFS namespace: A DFS namespace that has configuration information stored in
domain services. The DFS namespace can span a distributed system that is organized
hierarchically into logical domains. The path to access a domain-based DFS namespace starts

with the host domain name. A domain-based DFS namespace can have multiple DFS root
targets, which offers high availability and load sharing at the DFS root level.

domainv1-based DFS namespace: A type of domain-based DFS namespace that has its DFS
metadata stored in directory services as an ftDfs type object.

domainv2-based DFS namespace: A type of domain-based DFS namespace that has its DFS
metadata stored in the form of individual LDAP entries, with one LDAP entry per DFS link. Each

LDAP entry contains the DFS metadata (such as targets, properties, and other information) that
corresponds to that entity.

dynamic object: An object with a time-to-die (attribute msDS-Entry-Time-To-Die). The directory
service garbage-collects a dynamic object immediately after its time-to-die has passed. The
constructed attribute entryTTL gives a dynamic object's current time-to-live, that is, the
difference between the current time and msDS-Entry-Time-To-Die. For more information, see
[RFC2589].

endpoint: A network-specific address of a remote procedure call (RPC) server process for remote
procedure calls. The actual name and type of the endpoint depends on the RPC protocol
sequence that is being used. For example, for RPC over TCP (RPC Protocol Sequence
ncacn_ip_tcp), an endpoint might be TCP port 1025. For RPC over Server Message Block (RPC
Protocol Sequence ncacn_np), an endpoint might be the name of a named pipe. For more

information, see [C706].

file system: A system that enables applications to store and retrieve files on storage devices. Files

are placed in a hierarchical structure. The file system specifies naming conventions for files and
the format for specifying the path to a file in the tree structure. Each file system consists of one
or more drivers and DLLs that define the data formats and features of the file system. File
systems can exist on the following storage devices: diskettes, hard disks, jukeboxes, removable
optical disks, and tape backup units.

forest: One or more domains that share a common schema and trust each other transitively. An

organization can have multiple forests. A forest establishes the security and administrative
boundary for all the objects that reside within the domains that belong to the forest. In contrast,
a domain establishes the administrative boundary for managing objects, such as users, groups,
and computers. In addition, each domain has individual security policies and trust relationships
with other domains.

globally unique identifier (GUID): A term used interchangeably with universally unique
identifier (UUID) in Microsoft protocol technical documents (TDs). Interchanging the usage of

these terms does not imply or require a specific algorithm or mechanism to generate the value.
Specifically, the use of this term does not imply or require that the algorithms described in
[RFC4122] or [C706] must be used for generating the GUID. See also universally unique
identifier (UUID).

host name: The name of a host on a network that is used for identification and access purposes
by humans and other computers on the network.

12 / 165

[MS-DFSNM-Diff] - v20210407
Distributed File System (DFS): Namespace Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

Interface Definition Language (IDL): The International Standards Organization (ISO) standard
language for specifying the interface for remote procedure calls. For more information, see

[C706] section 4.

Lightweight Directory Access Protocol (LDAP): The primary access protocol for Active

Directory. Lightweight Directory Access Protocol (LDAP) is an industry-standard protocol,
established by the Internet Engineering Task Force (IETF), which allows users to query and
update information in a directory service (DS), as described in [MS-ADTS]. The Lightweight
Directory Access Protocol can be either version 2 [RFC1777] or version 3 [RFC3377].

little-endian: Multiple-byte values that are byte-ordered with the least significant byte stored in
the memory location with the lowest address.

member server: A server that is joined to a domain and is not acting as an Active Directory

domain controller (DC). Member servers typically function as file servers, application servers,
and so on and defer user authentication to the domain controller.

Microsoft Interface Definition Language (MIDL): The Microsoft implementation and extension

of the OSF-DCE Interface Definition Language (IDL). MIDL can also mean the Interface
Definition Language (IDL) compiler provided by Microsoft. For more information, see [MS-RPCE].

NetBIOS host name: The NetBIOS name of a host (as specified in [RFC1001] section 14 and

[RFC1002] section 4), with the extensions described in [MS-NBTE].

object: A set of attributes, each with its associated values. Two attributes of an object have special
significance: an identifying attribute and a parent-identifying attribute. An identifying attribute is
a designated single-valued attribute that appears on every object; the value of this attribute
identifies the object. For the set of objects in a replica, the values of the identifying attribute are
distinct. A parent-identifying attribute is a designated single-valued attribute that appears on
every object; the value of this attribute identifies the object's parent. That is, this attribute

contains the value of the parent's identifying attribute, or a reserved value identifying no object.
For the set of objects in a replica, the values of this parent-identifying attribute define a tree
with objects as vertices and child-parent references as directed edges with the child as an
edge's tail and the parent as an edge's head. Note that an object is a value, not a variable; a

replica is a variable. The process of adding, modifying, or deleting an object in a replica replaces
the entire value of the replica with a new value. As the word replica suggests, it is often the
case that two replicas contain "the same objects". In this usage, objects in two replicas are

considered the same if they have the same value of the identifying attribute and if there is a
process in place (replication) to converge the values of the remaining attributes. When the
members of a set of replicas are considered to be the same, it is common to say "an object" as
shorthand referring to the set of corresponding objects in the replicas.

object store: A system that provides the ability to create, query, modify, or apply policy to a local
resource on behalf of a remote client. The object store is backed by a file system, a named pipe,

or a print job that is accessed as a file.

opnum: An operation number or numeric identifier that is used to identify a specific remote
procedure call (RPC) method or a method in an interface. For more information, see [C706]
section 12.5.2.12 or [MS-RPCE].

primary domain controller (PDC): A domain controller (DC) designated to track changes made
to the accounts of all computers on a domain. It is the only computer to receive these changes
directly, and is specialized so as to ensure consistency and to eliminate the potential for

conflicting entries in the Active Directory database. A domain has only one PDC.

relative distinguished name (RDN): An attribute-value pair used in the distinguished name of
an object. For more information, see [RFC2251].

remote procedure call (RPC): A communication protocol used primarily between client and
server. The term has three definitions that are often used interchangeably: a runtime

13 / 165

[MS-DFSNM-Diff] - v20210407
Distributed File System (DFS): Namespace Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

environment providing for communication facilities between computers (the RPC runtime); a set
of request-and-response message exchanges between computers (the RPC exchange); and the

single message from an RPC exchange (the RPC message). For more information, see [C706].

reparse point: An attribute that can be added to a file to store a collection of user-defined data

that is opaque to NTFS or ReFS. If a file that has a reparse point is opened, the open will
normally fail with STATUS_REPARSE, so that the relevant file system filter driver can detect the
open of a file associated with (owned by) this reparse point. At that point, each installed filter
driver can check to see if it is the owner of the reparse point, and, if so, perform any special
processing required for a file with that reparse point. The format of this data is understood by
the application that stores the data and the file system filter that interprets the data and
processes the file. For example, an encryption filter that is marked as the owner of a file's

reparse point could look up the encryption key for that file. A file can have (at most) 1 reparse
point associated with it. For more information, see [MS-FSCC].

RPC transport: The underlying network services used by the remote procedure call (RPC) runtime
for communications between network nodes. For more information, see [C706] section 2.

Server Message Block (SMB): A protocol that is used to request file and print services from
server systems over a network. The SMB protocol extends the CIFS protocol with additional

security, file, and disk management support. For more information, see [CIFS] and [MS-SMB].

share: A resource offered by a Common Internet File System (CIFS) server for access by CIFS
clients over the network. A share typically represents a directory tree and its included files
(referred to commonly as a "disk share" or "file share") or a printer (a "print share"). If the
information about the share is saved in persistent store (for example, Windows registry) and
reloaded when a file server is restarted, then the share is referred to as a "sticky share". Some
share names are reserved for specific functions and are referred to as special shares: IPC$,

reserved for interprocess communication, ADMIN$, reserved for remote administration, and A$,
B$, C$ (and other local disk names followed by a dollar sign), assigned to local disk devices.

share name: The name of a share.

site: A collection of one or more well-connected (reliable and fast) TCP/IP subnets. By defining

sites (represented by site objects) an administrator can optimize both Active Directory access
and Active Directory replication with respect to the physical network. When users log in, Active
Directory clients find domain controllers (DCs) that are in the same site as the user, or near the

same site if there is no DC in the site. See also Knowledge Consistency Checker (KCC). For more
information, see [MS-ADTS].

site cost: An administrator-defined numerical value meant to indicate the bandwidth or actual
monetary cost of transmitting data between two sites. Only a comparison between two site cost
values is meaningful, with a lower site preferred to a higher site cost.

stand-alone DFS namespace: A DFS namespace that has DFS metadata stored locally on the

host server. The path to access the DFS root or a DFS link starts with the DFS root target host
name. A stand-alone DFS namespace has only one DFS root target. Stand-alone DFS roots are
not fault-tolerant; when the DFS root target is unavailable, the entire DFS namespace is
inaccessible. Stand-alone DFS roots can be made fault-tolerant by being created on clustered
file servers.

system access control list (SACL): An access control list (ACL) that controls the generation of
audit messages for attempts to access a securable object. The ability to get or set an object's

SACL is controlled by a privilege typically held only by system administrators.

Unicode: A character encoding standard developed by the Unicode Consortium that represents
almost all of the written languages of the world. The Unicode standard [UNICODE5.0.0/2007]
provides three forms (UTF-8, UTF-16, and UTF-32) and seven schemes (UTF-8, UTF-16, UTF-16
BE, UTF-16 LE, UTF-32, UTF-32 LE, and UTF-32 BE).

14 / 165

[MS-DFSNM-Diff] - v20210407
Distributed File System (DFS): Namespace Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

Universal Naming Convention (UNC): A string format that specifies the location of a resource.
For more information, see [MS-DTYP] section 2.2.57.

universally unique identifier (UUID): A 128-bit value. UUIDs can be used for multiple
purposes, from tagging objects with an extremely short lifetime, to reliably identifying very

persistent objects in cross-process communication such as client and server interfaces, manager
entry-point vectors, and RPC objects. UUIDs are highly likely to be unique. UUIDs are also
known as globally unique identifiers (GUIDs) and these terms are used interchangeably in the
Microsoft protocol technical documents (TDs). Interchanging the usage of these terms does not
imply or require a specific algorithm or mechanism to generate the UUID. Specifically, the use of
this term does not imply or require that the algorithms described in [RFC4122] or [C706] must
be used for generating the UUID.

well-known endpoint: A preassigned, network-specific, stable address for a particular
client/server instance. For more information, see [C706].

MAY, SHOULD, MUST, SHOULD NOT, MUST NOT: These terms (in all caps) are used as defined
in [RFC2119]. All statements of optional behavior use either MAY, SHOULD, or SHOULD NOT.

1.2 References

Links to a document in the Microsoft Open Specifications library point to the correct section in the
most recently published version of the referenced document. However, because individual documents
in the library are not updated at the same time, the section numbers in the documents may not
match. You can confirm the correct section numbering by checking the Errata.

1.2.1 (Updated Section) Normative References

We conduct frequent surveys of the normative references to assure their continued availability. If you
have any issue with finding a normative reference, please contact dochelp@microsoft.com. We will
assist you in finding the relevant information.

[C706] The Open Group, "DCE 1.1: Remote Procedure Call", C706, August 1997,

https://www2publications.opengroup.org/ogsys/catalog/c706

Note Registration is required to download the document.

[MS-ADA2] Microsoft Corporation, "Active Directory Schema Attributes M".

[MS-ADA3] Microsoft Corporation, "Active Directory Schema Attributes N-Z".

[MS-ADSC] Microsoft Corporation, "Active Directory Schema Classes".

[MS-ADTS] Microsoft Corporation, "Active Directory Technical Specification".

[MS-DFSC] Microsoft Corporation, "Distributed File System (DFS): Referral Protocol".

[MS-DTYP] Microsoft Corporation, "Windows Data Types".

[MS-ERREF] Microsoft Corporation, "Windows Error Codes".

[MS-RPCE] Microsoft Corporation, "Remote Procedure Call Protocol Extensions".

[MS-SMB2] Microsoft Corporation, "Server Message Block (SMB) Protocol Versions 2 and 3".

[MS-SMB] Microsoft Corporation, "Server Message Block (SMB) Protocol".

[MS-SRVS] Microsoft Corporation, "Server Service Remote Protocol".

15 / 165

[MS-DFSNM-Diff] - v20210407
Distributed File System (DFS): Namespace Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC
2119, March 1997, http://www.rfc-editor.org/rfc/rfc2119.txt

[RFC2251] Wahl, M., Howes, T., and Kille, S., "Lightweight Directory Access Protocol (v3)", RFC 2251,
December 1997, http://www.ietf.org/rfc/rfc2251.txt

[RFC4122] Leach, P., Mealling, M., and Salz, R., "A Universally Unique Identifier (UUID) URN
Namespace", RFC 4122, July 2005, http://www.rfc-editor.org/rfc/rfc4122.txt

[UNICODE] The Unicode Consortium, "The Unicode Consortium Home Page", http://www.unicode.org/

[X680] ITU-T, "Abstract Syntax Notation One (ASN.1): Specification of Basic Notation",

Recommendation X.680, July 2002, http://www.itu.int/rec/T-REC-X.680/en

[XMLSCHEMA] World Wide Web Consortium, "XML Schema", September 2005,
http://www.w3.org/2001/XMLSchema

[XML] World Wide Web Consortium, "Extensible Markup Language (XML) 1.0 (Fourth Edition)", W3C

Recommendation 16 August 2006, edited in place 29 September 2006,
http://www.w3.org/TR/2006/REC-xml-20060816/

1.2.2 Informative References

[MSDFS] Microsoft Corporation, "How DFS Works", March 2003, http://technet.microsoft.com/en-
us/library/cc782417%28WS.10%29.aspx

[RFC1034] Mockapetris, P., "Domain Names - Concepts and Facilities", STD 13, RFC 1034, November
1987, http://www.ietf.org/rfc/rfc1034.txt

[RFC2165] Veizades, J., Guttman, E., Perkins, C., and Kaplan, S., "Service Location Protocol", RFC
2165, June 1997, http://www.ietf.org/rfc/rfc2165.txt

[RFC2518] Goland, Y., Whitehead, E., Faizi, A., et al., "HTTP Extensions for Distributed Authoring -

WebDAV", RFC 2518, February 1999, http://www.ietf.org/rfc/rfc2518.txt

[RFC3530] Shepler, S., et al., "Network File System (NFS) version 4 Protocol", RFC 3530, April 2003,
http://www.ietf.org/rfc/rfc3530.txt

1.3 Overview

The DFS: Namespace Management Protocol is one of a collection of protocols that group shares that
are located on different servers by combining various storage media into a single logical namespace.
The DFS namespace is a virtual view of the share. When a user views the namespace, the directories

and files in it appear to reside on a single share. Users can navigate the namespace without needing
to know the server names or shares hosting the data. DFS also provides redundancy of namespace
service.

Access to a DFS namespace requires the DFS client. The DFS client uses the DFS Referral Protocol, as
specified in [MS-DFSC], to ascertain the existence of the DFS namespace and to determine the shares

to access on servers that participate in the DFS namespace. The DFS Referral Protocol navigates

through the DFS namespace by appropriately issuing referral requests to a domain controller (DC) or
to a DFS root target server to resolve the original path to a share on a server that contains the data
being accessed. For more information on DFS and the DFS client, see [MSDFS]. For more information
on how the DFS Referral Protocol operates within the context of the Server Message Block (SMB)
Protocol, as specified in [MS-SMB], which is the transport for DFS referrals, see [MS-DFSC] section 2.

16 / 165

[MS-DFSNM-Diff] - v20210407
Distributed File System (DFS): Namespace Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

DFS namespace information, such as name, DFS link name, DFS link target, and so on, is stored in
the DFS metadata of the namespace. Depending on where the DFS metadata is stored, the DFS

namespace is "domain-based" or "stand-alone".

▪ Domain-Based DFS Namespace: A well-known container in the domain directory, known as the

DFS configuration container, holds the DFS metadata for a domain-based DFS namespace. An
object exists for each domain-based DFS namespace in the DFS configuration container. DFS
metadata of a domain-based DFS namespace is stored as a binary large object (BLOB) in an
attribute of the DFS namespace object. A domain-based DFS namespace can have multiple DFS
root targets, which offer high availability and load sharing at the DFS root level. The DFS root
name of a domain-based DFS namespace has the domain as its first component. A DFS client
issues a referral request to a DC in order to identify the DFS root targets of the DFS namespace.

▪ Stand-Alone DFS Namespace: DFS metadata is stored in an implementation-specific format on the
DFS root target server itself. A stand-alone DFS namespace supports only one DFS root target.
The DFS root name of a stand-alone DFS namespace has a host name as its first component. A
DFS client issues referral requests to the DFS root target server to access the DFS namespace. A
stand-alone DFS namespace can be clustered to provide high availability of the DFS

namespace.<1> The server hosting a stand-alone DFS namespace can be promoted to a Domain

Controller, but the namespace cannot be converted to a domain-based namespace, and it will
continue as a stand-alone namespace.

A server cannot host both domain-based and stand-alone namespace roots with the same name.

The DFS: Namespace Management Protocol is used to configure DFS services. This protocol is used
primarily by administrative applications that run on client computers to connect and configure
Distributed File System (DFS) servers. It consists of the RPC methods that can be issued from an
administrative client computer to the protocol server on a DC or a Distributed File System (DFS) root

target server. An administrator can use this protocol to perform various Distributed File System (DFS)
namespace administration operations, such as creating or deleting a DFS namespace, adding or
removing DFS root targets, adding or removing DFS links, and adding or removing targets to an
existing link. The DFS: Namespace Management Protocol includes the following:

▪ Eleven basic methods for configuring stand-alone DFS namespaces and domain-based DFS

namespaces, as specified in section 3.1.4.1.

▪ Four methods that support extended access to configurations of a DFS namespace, as specified in

section 3.1.4.2.

▪ Three methods for configuring root targets in a domainv1-based DFS namespace, as specified in
section 3.1.4.3.

▪ Three methods for configuring a stand-alone DFS namespace, as specified in section 3.1.4.4.

▪ Two methods relating to the association between a DFS server and the DC used by a domain-
based DFS namespace, as specified in section 3.1.4.5.

Much of the configuration information that is communicated through this protocol is marshaled
through two unions: DFS_INFO_STRUCT and DFS_INFO_ENUM_STRUCT. The usage model of these
unions is for the client to specify a Level parameter to determine which union case to use. Each level

corresponds to a specific DFS_INFO_n structure, where n is the level number. Arrays of DFS_INFO_n
structures are marshaled using DFS_INFO_n_CONTAINER structures. Levels 1, 2, 3, 4, 5, 6, 8, and 9
are common, and are shared across both the DFS_INFO_STRUCT and DFS_INFO_ENUM_STRUCT
unions. Levels 7, 50, 100, 101, 102, 103, 104, 105, 106, 107, and 150 are unique to the

DFS_INFO_STRUCT union, and Levels 200 and 300 are unique to the DFS_INFO_ENUM_STRUCT
union.

While a number of methods use the common configuration information structures, not all methods
support all levels. The following table lists the levels used in the DFS_INFO_STRUCT and

17 / 165

[MS-DFSNM-Diff] - v20210407
Distributed File System (DFS): Namespace Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

DFS_INFO_ENUM_STRUCT unions, their singleton and array structures, and the methods with which
the level can be used.

Level Structure
Array
structure

NetrDfs
GetInfo

NetrDfs
Enum

NetrDfs
SetInfo

NetrDfs
SetInfo2

NetrDfs
EnumEx

1 DFS_INFO_1 DFS_INFO_1_

CONTAINER

X X X

2 DFS_INFO_2 DFS_INFO_2_

CONTAINER

X X X

3 DFS_INFO_3 DFS_INFO_3_

CONTAINER

X X X

4 DFS_INFO_4 DFS_INFO_4_

CONTAINER

X X X

5 DFS_INFO_5 DFS_INFO_5_

CONTAINER

X X X

6 DFS_INFO_6 DFS_INFO_6_

CONTAINER

X X X

7 DFS_INFO_7 N/A X

8 DFS_INFO_8 DFS_INFO_8_

CONTAINER

X X X

9 DFS_INFO_9 DFS_INFO_9_

CONTAINER

X X X

50 DFS_INFO_50 N/A X

100 DFS_INFO_100 N/A X X X

101 DFS_INFO_101 N/A X X

102 DFS_INFO_102 N/A X X

103 DFS_INFO_103 N/A X X

104 DFS_INFO_104 N/A X X

105 DFS_INFO_105 N/A X X

106 DFS_INFO_106 N/A X X

107 DFS_INFO_107 N/A X X

150 DFS_INFO_150 N/A X X X

200 DFS_INFO_200 DFS_INFO_200_

CONTAINER

 X

300 DFS_INFO_300 DFS_INFO_300_

CONTAINER

 X X

18 / 165

[MS-DFSNM-Diff] - v20210407
Distributed File System (DFS): Namespace Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

1.4 Relationship to Other Protocols

The DFS: Namespace Management Protocol is used to configure and administer DFS namespaces. It
depends on RPC for its transport.

The DFS: Namespace Management Protocol is the recommended method of performing DFS
namespace operations. This protocol is used in many operations (for example, creating a new DFS
namespace or adding or removing DFS links or DFS link targets). All of these operations require
updating the DFS metadata of a DFS namespace.

The DFS Referral Protocol, as specified in [MS-DFSC], accesses the DFS metadata of a DFS namespace
for providing DFS referral responses. The DFS clients issue DFS referral requests to verify the
existence of a DFS namespace and to identify the targets of a DFS path, as specified in [MS-DFSC].

The DFS Referral Protocol permits DFS clients to navigate the DFS namespace and to locate the share
on a server that contains the required data. The DFS Referral Protocol is implemented as a set of SMB
Protocol extensions to commands, such as TRANS2_GET_DFS_REFERRAL to request DFS referrals
from DCs, as specified in [MS-SMB].

After a DFS path is resolved to a DFS target by using the DFS Referral Protocol, a client accesses
resources on the server identified by the DFS target by using a resource access protocol, such as the

following:

▪ SMB, as specified in [MS-SMB].

▪ SMB2, as specified in [MS-SMB2].

▪ Network File System (NFS), as specified in [RFC3530].

▪ Network Control Protocol (NCP), as specified in [NOVELL].

▪ Web Distributed Authoring and Versioning (WebDAV), as specified in [RFC2518].

A resource access protocol implementation uses name resolution protocols, such as DNS (as specified

in [RFC1034]) or SLP (as specified in [RFC2165]), to resolve DFS target host names.

The DFS metadata of a domain-based DFS namespace is stored in Directory Services. A DFS server
uses the Lightweight Directory Access Protocol (LDAP), as specified in [RFC2251], to access the DFS
metadata from the DS for use with both the DFS: Namespace Management Protocol and the DFS
Referral Protocol.

1.5 Prerequisites/Preconditions

The DFS: Namespace Management Protocol is an RPC interface and, as a result, has prerequisites
common to RPC interfaces. These prerequisites are specified in [MS-RPCE].

Before a client invokes this protocol, it obtains the name of a server that supports DFS services and
RPC.

To avoid conflicts between updates to DFS metadata:

▪ At most, one client can modify the metadata for a given DFS namespace at a time.

▪ A domain-based DFS server performs all DFS metadata updates to the primary domain controller
(PDC) independently of the DFS root scalability mode setting of the DFS namespace.<2>

1.6 Applicability Statement

The DFS: Namespace Management Protocol is appropriate for managing a domain-based DFS
namespace or a stand-alone DFS namespace.

19 / 165

[MS-DFSNM-Diff] - v20210407
Distributed File System (DFS): Namespace Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

1.7 Versioning and Capability Negotiation

This document covers versioning issues in the following areas:

▪ Supported transports: The DFS: Namespace Management Protocol uses RPC over SMB1.x or SMB2

as its only supported transport. For more information on transport specifications, see section 2.1.

▪ Protocol versions: The RPC interface for this protocol has a single version number of 3.0. This
protocol can be extended without altering the version number by adding RPC methods to the
interface, with opnums positioned numerically beyond those defined in this specification. A client
determines whether such methods are supported by attempting to invoke the method; if the
method is not supported, the RPC server returns an "opnum out of range" error. RPC versioning
and capacity negotiation in this situation is specified in [C706] and [MS-RPCE].<3>

▪ Security and authentication methods: As specified in [MS-RPCE].

▪ Capability negotiation: None.

1.8 Vendor-Extensible Fields

None.

1.9 Standards Assignments

No standards assignments have been received for the RPC interface UUID or for the well-known pipe
name described in this document. All values used in these extensions are in private ranges, as

specified in [MS-RPCE] and [MS-SMB].

20 / 165

[MS-DFSNM-Diff] - v20210407
Distributed File System (DFS): Namespace Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

2 Messages

2.1 Transport

The DFS root target MUST reside on a server that is accessible through SMB (as specified in [MS-

SMB]) or SMB2 (as specified in [MS-SMB2]). A link target can reside on a server that is accessible
through any resource access protocol for which appropriate client-side software exists.

The DFS: Namespace Management Protocol uses RPC over SMB, as specified in [MS-RPCE].

This protocol uses a well-known endpoint, \\PIPE\NETDFS, for RPC over SMB. The RPC interface uses

transport-level authentication, as specified in [MS-RPCE]. DFS is not directly involved in
authentication; however, the DFS service MUST verify whether the user has administrator privileges to
the namespace. The authenticated RPC interface allows RPC to negotiate the use of authentication and
the authentication level on behalf of the client and server, as specified in [MS-RPCE] section 3.3.1.5.2.

The server MUST find the security context indicated by the auth_context_id in the sec_trailer of the
request, and it MUST ask the security provider that created the security context to retrieve the client

identity.

This protocol MUST use the universally unique identifier (UUID) 4FC742E0-4A10-11CF-8273-
00AA004AE673. The RPC version number is 3.0.

This protocol allows any user to establish a connection to a DFS server. It uses the underlying RPC

protocol to retrieve the identity of the caller that made the request, as specified in [MS-RPCE] section
3.3.3.4.3. The RPC server SHOULD use this identity to verify method-specific access.

2.2 Common Data Types

2.2.1 Common Conventions

Unless otherwise specified, all strings in this protocol are null-terminated strings of UTF-16, as

specified in [UNICODE] characters. Backslashes (\) in string descriptions are literal characters.

Constructs of the form "<value>" in strings are placeholders to be replaced with client-specified or
server-specified values. For example, the string description "\\<servername>\<share>" would take

the form "\\myserver\myshare" when populated with the values "myserver" for the <servername>
placeholder and "myshare" for the <share> placeholder.

A number of string formats are common to many of the data types and methods in this protocol. To
avoid repetition, this section describes the specific formats.

2.2.1.1 Host Name

A host name represents the host name of a server or the domain name of a domain hosting resource
as specified in [MS-DTYP] section 2.2.57.

2.2.1.2 Share Name

Unless specified otherwise, a share name is a null-terminated Unicode character string whose format
depends on the actual file server protocol used to access the share as specified in [MS-DTYP] section
2.2.57.

21 / 165

[MS-DFSNM-Diff] - v20210407
Distributed File System (DFS): Namespace Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

2.2.1.3 Domain Name

Unless specified otherwise, a domain name is a null-terminated Unicode character string consisting of
the name of a Directory Service domain. For more details, see [MS-DTYP] section 2.2.57.

2.2.1.4 UNC Path

A Universal Naming Convention (UNC) path, as specified in [MS-DTYP] section 2.2.57, can be used to
access network resources.

2.2.1.5 DFS Root

A DFS root has one of the following UNC path formats.

 \\<ServerName>\<DFSName>
 \\<DomainName>\<DFSName>

where:

▪ <ServerName> is the host name (as specified in section 2.2.1.1) of a DFS root target (as specified
in section 2.2.1.7) of the DFS namespace.

▪ <DomainName> is the domain name (as specified in section 2.2.1.3) of the domain hosting the
domain-based DFS namespace.

▪ <DFSName> is the DFS namespace name. A stand-alone DFS namespace can be referred to only
by the first format. A domain-based DFS namespace can be referred to in either format, with the
second format preferred.

2.2.1.6 DFS Link

A DFS link has one of the following UNC path formats.

 \\<ServerName>\<DFSName>\<LinkPath>
 \\<DomainName>\<DFSName>\<LinkPath>

where:

▪ <ServerName> is the host name of a DFS root target of the DFS namespace.

▪ <DomainName> is the domain name of the domain hosting the domain-based DFS namespace.

▪ <DFSName> is the DFS namespace name.

▪ <LinkPath> is the path of the DFS link relative to the DFS root target share. A stand-alone DFS

namespace can be referred to only by the first format. A domain-based DFS namespace can be
referred to in either format, with the second format preferred.

2.2.1.7 DFS Root Target

A DFS root target is a UNC path with the following format.

\\<servername>\<sharename>

22 / 165

[MS-DFSNM-Diff] - v20210407
Distributed File System (DFS): Namespace Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

where:

▪ <servername> is the host name of a DFS root target server.

▪ <sharename> is the share name corresponding to a DFS namespace on the DFS root target
server.

2.2.1.8 DFS Link Target

A DFS link target is any UNC path that resolves to a directory.

2.2.1.9 DFS Target

A DFS target is either a DFS root target or a DFS link target.

2.2.2 Common Data Types

In addition to RPC base types and definitions, as specified in [C706] and [MS-RPCE], the following
sections use the definitions of DWORD, GUID, and WCHAR, as specified in [MS-DTYP] DWORD section
2.2.9, GUID section 2.3.4.2, and WCHAR section 2.2.60. Any remaining data types in this section are
defined in the Interface Definition Language (IDL) specification for this RPC interface.

This protocol MUST enable the ms_union extension as specified in [MS-RPCE], section 2.2.4.

2.2.2.1 NET_API_STATUS

The NET_API_STATUS type is an unsigned, 32-bit integer value representing the return code from an
RPC method.

This type is declared as follows:

 typedef DWORD NET_API_STATUS;

This protocol uses Microsoft Win32 error codes. The values are taken from the Windows error number
space, as specified in [MS-ERREF]. Vendors SHOULD reuse those values with their indicated meanings.
Choosing any other value creates the risk of collisions in the future.

2.2.2.2 NETDFS_SERVER_OR_DOMAIN_HANDLE

The NETDFS_SERVER_OR_DOMAIN_HANDLE is a pointer to a Unicode string representing a host name
for an RPC method.

This type is declared as follows:

 typedef WCHAR* NETDFS_SERVER_OR_DOMAIN_HANDLE;

2.2.2.3 DFS_INFO_STRUCT

The DFS_INFO_STRUCT union relates to the NetrDfsGetInfo, NetrDfsSetInfo, and NetrDfsSetInfo2
methods when used to retrieve or set the configuration of the DFS server. The usage model of this
union is for the client to specify a Level parameter to determine which case of the DFS_INFO_STRUCT
to use.

The DFS_INFO_STRUCT union has the following format.

23 / 165

[MS-DFSNM-Diff] - v20210407
Distributed File System (DFS): Namespace Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

 typedef
 [switch_type(unsigned long)]
 union _DFS_INFO_STRUCT {
 [case(1)]
 DFS_INFO_1* DfsInfo1;
 [case(2)]
 DFS_INFO_2* DfsInfo2;
 [case(3)]
 DFS_INFO_3* DfsInfo3;
 [case(4)]
 DFS_INFO_4* DfsInfo4;
 [case(5)]
 DFS_INFO_5* DfsInfo5;
 [case(6)]
 DFS_INFO_6* DfsInfo6;
 [case(7)]
 DFS_INFO_7* DfsInfo7;
 [case(8)]
 DFS_INFO_8* DfsInfo8;
 [case(9)]
 DFS_INFO_9* DfsInfo9;
 [case(50)]
 DFS_INFO_50* DfsInfo50;
 [case(100)]
 DFS_INFO_100* DfsInfo100;
 [case(101)]
 DFS_INFO_101* DfsInfo101;
 [case(102)]
 DFS_INFO_102* DfsInfo102;
 [case(103)]
 DFS_INFO_103* DfsInfo103;
 [case(104)]
 DFS_INFO_104* DfsInfo104;
 [case(105)]
 DFS_INFO_105* DfsInfo105;
 [case(106)]
 DFS_INFO_106* DfsInfo106;
 [case(107)]
 DFS_INFO_107* DfsInfo107;
 [case(150)]
 DFS_INFO_150* DfsInfo150;
 [default] ;
 } DFS_INFO_STRUCT;

DfsInfo1: The DFS_INFO_1 structure contains the name of a DFS root or DFS link. For more

information on the specifications, see section 2.2.3.1.

DfsInfo2: The DFS_INFO_2 structure contains information for a DFS root or DFS link. For more
information on specifications, see section 2.2.3.2.

DfsInfo3: The DFS_INFO_3 structure contains information for a DFS root or DFS link. For more
information on specifications, see section 2.2.3.3.

DfsInfo4: The DFS_INFO_4 structure contains information for a DFS root or DFS link. For more
information on specifications, see section 2.2.3.4.

DfsInfo5: The DFS_INFO_5 structure contains information for a DFS root or DFS link. For more
information on specifications, see section 2.2.3.5.

DfsInfo6: The DFS_INFO_6 structure contains information for a DFS root or DFS link. For more
information on specifications, see section 2.2.3.6.

DfsInfo7: The DFS_INFO_7 structure contains information about a DFS root or DFS link. For more
information on specifications, see section 2.2.3.7.

24 / 165

[MS-DFSNM-Diff] - v20210407
Distributed File System (DFS): Namespace Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

DfsInfo8: The DFS_INFO_8 structure contains information about a DFS root or DFS link. For more
information on specifications, see section 2.2.3.8.

DfsInfo9: The DFS_INFO_9 structure contains information about a DFS root or DFS link. For more
information on specifications, see section 2.2.3.9.

DfsInfo50: The DFS_INFO_50 structure contains information about a DFS root or DFS link. For more
information on specifications, see section 2.2.3.10.

DfsInfo100: The DFS_INFO_100 structure contains a comment associated with a DFS root or DFS
link. For more information on specifications, see section 2.2.5.1.

DfsInfo101: The DFS_INFO_101 structure describes the storage state on a DFS root, DFS link, DFS
root target, or DFS link target. For more information on specifications, see section 2.2.4.1.

DfsInfo102: The DFS_INFO_102 structure contains a time-out value for a DFS root or DFS link. For

more information on specifications, see section 2.2.4.2.

DfsInfo103: The DFS_INFO_103 structure contains properties that set specific behaviors for a DFS

root or DFS link. For more information on specifications, see section 2.2.4.3.

DfsInfo104: The DFS_INFO_104 structure contains the priority of a DFS root target or DFS link
target. For more information on specifications, see section 2.2.4.4.

DfsInfo105: The DFS_INFO_105 structure contains information about a DFS root or DFS link,

including comment, state, time-out, and DFS behaviors that property flags specify. For more
information on specifications, see section 2.2.4.5.

DfsInfo106: The DFS_INFO_106 structure contains the storage state and priority for a DFS root
target or DFS link target. For more information on specifications, see section 2.2.4.6.

DfsInfo107: The DFS_INFO_107 structure contains the storage state and priority for a DFS root
target or DFS link target. For more information on specifications, see section 2.2.4.7.

DfsInfo150: The DFS_INFO_150 structure contains the self-relative security descriptor associated

with the DFS link. For more information on specifications, see section 2.2.5.2.

2.2.2.4 DFS_INFO_ENUM_STRUCT

The DFS_INFO_ENUM_STRUCT union relates to the NetrDfsEnum and NetrDfsEnumEx methods when

used to enumerate the configuration of the DFS server.

The DFS_INFO_ENUM_STRUCT union structure has the following format.

 typedef struct _DFS_INFO_ENUM_STRUCT {
 DWORD Level;
 [switch_is(Level)] union {
 [case(1)]
 DFS_INFO_1_CONTAINER* DfsInfo1Container;
 [case(2)]
 DFS_INFO_2_CONTAINER* DfsInfo2Container;
 [case(3)]
 DFS_INFO_3_CONTAINER* DfsInfo3Container;
 [case(4)]
 DFS_INFO_4_CONTAINER* DfsInfo4Container;
 [case(5)]
 DFS_INFO_5_CONTAINER* DfsInfo5Container;
 [case(6)]
 DFS_INFO_6_CONTAINER* DfsInfo6Container;
 [case(8)]
 DFS_INFO_8_CONTAINER* DfsInfo8Container;
 [case(9)]

25 / 165

[MS-DFSNM-Diff] - v20210407
Distributed File System (DFS): Namespace Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

 DFS_INFO_9_CONTAINER* DfsInfo9Container;
 [case(200)]
 DFS_INFO_200_CONTAINER* DfsInfo200Container;
 [case(300)]
 DFS_INFO_300_CONTAINER* DfsInfo300Container;
 } DfsInfoContainer;
 } DFS_INFO_ENUM_STRUCT;

Level: Specifies the case of the DfsInfoContainer union.

DfsInfoContainer: Union of the possible enumeration containers.

DfsInfo1Container: The DFS_INFO_1_CONTAINER structure contains an array of the names of DFS
roots or DFS links. For more information, see section 2.2.6.1.

DfsInfo2Container: The DFS_INFO_2_CONTAINER structure contains an array of information for
DFS roots or DFS links. For more information, see section 2.2.6.2.

DfsInfo3Container: The DFS_INFO_3_CONTAINER structure contains an array of information for

DFS roots or DFS links. For more information, see section 2.2.6.3.

DfsInfo4Container: The DFS_INFO_4_CONTAINER structure contains an array of information for
DFS roots or DFS links. For more information, see section 2.2.6.4.

DfsInfo5Container: The DFS_INFO_5_CONTAINER structure contains an array of information for
DFS roots or DFS links. For more information, see section 2.2.6.5.

DfsInfo6Container: The DFS_INFO_6_CONTAINER structure contains an array of information for
DFS roots or DFS links. For more information, see section 2.2.6.6.

DfsInfo8Container: The DFS_INFO_8_CONTAINER structure contains an array of information for

DFS roots or DFS links. For more information, see section 2.2.6.7.

DfsInfo9Container: The DFS_INFO_9_CONTAINER structure contains an array of information for
DFS roots or DFS links. For more information, see section 2.2.6.8.

DfsInfo200Container: The DFS_INFO_200_CONTAINER structure contains an array of the names of
domain-based DFS namespaces in a domain-based DFS. For more information, see section
2.2.6.9.

DfsInfo300Container: The DFS_INFO_300_CONTAINER structure contains an array of the DFS

roots hosted on a server. For more information, see section 2.2.6.10.

2.2.2.5 DFS_STORAGE_INFO

The DFS_STORAGE_INFO structure relates to the NetrDfsEnum, NetrDfsEnumEx, and NetrDfsGetInfo

methods when used to enumerate DFS links and DFS targets in a namespace or to get information
about a DFS link. The structure contains information about the target of a DFS root or DFS link.

The DFS_STORAGE_INFO structure has the following format.

 typedef struct _DFS_STORAGE_INFO {
 unsigned long State;
 [string] WCHAR* ServerName;
 [string] WCHAR* ShareName;
 } DFS_STORAGE_INFO;

State: Refers to the State field of DFS_INFO_106. For more information, see section 2.2.4.6.

ServerName: The pointer to a null-terminated Unicode string containing the DFS target host name.

26 / 165

[MS-DFSNM-Diff] - v20210407
Distributed File System (DFS): Namespace Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

ShareName: The pointer to a null-terminated Unicode string containing the DFS target share name.

DFS_INFO_3 and DFS_INFO_4 structures contain one or more DFS_STORAGE_INFO structures, one

for each DFS target.

2.2.2.6 DFS_STORAGE_INFO_1

The DFS_STORAGE_INFO_1 structure relates to the NetrDfsEnum, NetrDfsEnumEx, and
NetrDfsGetInfo methods when used to enumerate DFS links and targets in a namespace or to get
information about a DFS link. The structure contains data about a DFS target, including the host name

and share name, as well as the target state and priority. For more information on prioritization, see
section 2.2.2.7.

The DFS_STORAGE_INFO_1 structure has the following format.

 typedef struct _DFS_STORAGE_INFO_1 {
 unsigned long State;
 [string] WCHAR* ServerName;
 [string] WCHAR* ShareName;
 DFS_TARGET_PRIORITY TargetPriority;
 } DFS_STORAGE_INFO_1,
 *PDFS_STORAGE_INFO_1,
 *LPDFS_STORAGE_INFO_1;

State: Refers to the State field of DFS_INFO_106. For more information, see section 2.2.4.6.

ServerName: A pointer to a null-terminated Unicode string containing the DFS target host name.

ShareName: A pointer to a null-terminated Unicode string containing the DFS target share name.

TargetPriority: A DFS_TARGET_PRIORITY structure containing the priority class and priority rank.

2.2.2.7 DFS_TARGET_PRIORITY

The DFS_TARGET_PRIORITY structure relates to the NetrDfsSetInfo and NetrDfsSetInfo2 methods
when used to set the priority of a DFS target in referrals from a server. It also relates to the

DFS_STORAGE_INFO_1 structure that the NetrDfsEnum, NetrDfsEnumEx, and NetrDfsGetInfo
methods return. The structure defines the priority of a DFS target. The DFS targets can be prioritized
independently of site cost. The DFS target priority is manually assigned to link targets and root targets
and allows for load balancing of clients.

The DFS_TARGET_PRIORITY structure has the following format.

 typedef struct _DFS_TARGET_PRIORITY {
 DFS_TARGET_PRIORITY_CLASS TargetPriorityClass;
 unsigned short TargetPriorityRank;
 unsigned short Reserved;
 } DFS_TARGET_PRIORITY;

TargetPriorityClass: The DFS_TARGET_PRIORITY_CLASS enumeration value that specifies the
priority class of the target. For more information, see section 2.2.2.8.

TargetPriorityRank: The priority rank of the target, ranging in value from 0x0000 to 0x001F, where
0x0000 is the highest rank. Priority ranks apply only within a priority class, not across priority

classes.

Reserved: MUST be set to 0 by the sender and ignored by the receiver.

27 / 165

[MS-DFSNM-Diff] - v20210407
Distributed File System (DFS): Namespace Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

2.2.2.8 DFS_TARGET_PRIORITY_CLASS

The DFS_TARGET_PRIORITY_CLASS enumeration relates to the NetrDfsSetInfo and NetrDfsSetInfo2
methods when used to set the priority of DFS targets in referrals from a server. For more information

on prioritization, see section 2.2.2.7. The enumeration defines five possible DFS target priority class
settings.

 typedef [v1_enum] enum _DFS_TARGET_PRIORITY_CLASS
 {
 DfsInvalidPriorityClass = -1,
 DfsSiteCostNormalPriorityClass = 0,
 DfsGlobalHighPriorityClass = 1,
 DfsSiteCostHighPriorityClass = 2,
 DfsSiteCostLowPriorityClass = 3,
 DfsGlobalLowPriorityClass = 4
 } DFS_TARGET_PRIORITY_CLASS;

DfsInvalidPriorityClass: This is not a valid priority class.

DfsSiteCostNormalPriorityClass: The default or "normal" site cost priority class for a DFS target.

DfsGlobalHighPriorityClass: The highest priority class for a DFS target. Targets assigned to this
class receive global preference.

DfsSiteCostHighPriorityClass: The highest site cost priority class for a DFS target. Targets
assigned to this class receive the highest preference among targets of the same site cost for a
given DFS client.

DfsSiteCostLowPriorityClass: The lowest site cost priority class for a DFS target. Targets assigned
to this class receive the least preference among targets of the same site cost for a given DFS
client.

DfsGlobalLowPriorityClass: The lowest priority class level for a DFS target. Targets assigned to this
class receive the least preference globally.

The underlying data type of this enumeration is long integer.

The order of priority classes, from highest to lowest, is as follows:

▪ DfsGlobalHighPriorityClass

▪ DfsSiteCostHighPriorityClass

▪ DfsSiteCostNormalPriorityClass

▪ DfsSiteCostLowPriorityClass

▪ DfsGlobalLowPriorityClass

Server targets are initially grouped into global high-priority, normal-priority, and global low-priority

classes. The normal-priority class is then subdivided, based on site cost, into site cost high-priority,

site cost normal-priority, and site-cost low-priority classes.

For example, all server targets with a site cost value of 0 are grouped into site cost high-priority,
normal-priority, and low-priority classes. Then, all server targets with higher site costs are likewise
separated into site cost high-priority, normal-priority, and low-priority classes. Thus, a server target
with a site cost value of 0 and a site cost low-priority class is still ranked higher than a server target
with a site cost value of 1 and a site cost high-priority class.

28 / 165

[MS-DFSNM-Diff] - v20210407
Distributed File System (DFS): Namespace Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

Be aware that the value for a "normal-priority class" is set to 0 even though it is lower in priority than
DfsGlobalHighPriorityClass and DfsSiteCostHighPriorityClass. This is the default priority class setting.

For added granularity, priority rank can be used to discriminate within a priority class.

2.2.2.9 DFSM_ROOT_LIST

The DFSM_ROOT_LIST structure relates to the NetrDfsAdd2, NetrDfsAddFtRoot, and NetrDfsSetInfo2
methods when used to add a DFS link or a DFS root target, or to modify the configuration of a
domain-based DFS namespace. The structure contains an array of DFSM_ROOT_LIST_ENTRY

structures, each of which contains information about a DFS root target.

The DFSM_ROOT_LIST structure has the following format.

 typedef struct _DFSM_ROOT_LIST {
 DWORD cEntries;
 [size_is(cEntries)] DFSM_ROOT_LIST_ENTRY Entry[];
 } DFSM_ROOT_LIST;

cEntries: The number of DFS targets. The value of this member indicates the size of the array in the
Entry member.

Entry: An array of DFSM_ROOT_LIST_ENTRY structures. Each structure provides information about
one DFS target. For more information, see section 2.2.2.10.

2.2.2.10 DFSM_ROOT_LIST_ENTRY

The DFSM_ROOT_LIST_ENTRY structure relates to the NetrDfsAdd2, NetrDfsAddFtRoot, and
NetrDfsSetInfo2 methods when used to add a DFS link or a DFS root target, or to modify the
configuration of a domain-based DFS namespace. The structure contains information about a DFS root

target.

The DFSM_ROOT_LIST_ENTRY structure has the following format.

 typedef struct _DFSM_ROOT_LIST_ENTRY {
 [string, unique] WCHAR* ServerShare;
 } DFSM_ROOT_LIST_ENTRY;

ServerShare: Specifies a DFS root target.

2.2.2.11 DFS_NAMESPACE_VERSION_ORIGIN

The DFS_NAMESPACE_VERSION_ORIGIN is an enumeration that relates to the
NetrDfsGetSupportedNamespaceVersion method when used to determine the supported DFS metadata
version number.

The DFS_NAMESPACE_VERSION_ORIGIN enumeration has the following format.

 typedef enum
 {
 DFS_NAMESPACE_VERSION_ORIGIN_COMBINED = 0,
 DFS_NAMESPACE_VERSION_ORIGIN_SERVER,
 DFS_NAMESPACE_VERSION_ORIGIN_DOMAIN
 } DFS_NAMESPACE_VERSION_ORIGIN;

DFS_NAMESPACE_VERSION_ORIGIN_COMBINED: This value is not used in communication.

29 / 165

[MS-DFSNM-Diff] - v20210407
Distributed File System (DFS): Namespace Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

DFS_NAMESPACE_VERSION_ORIGIN_SERVER: The maximum version that a server can support.

DFS_NAMESPACE_VERSION_ORIGIN_DOMAIN: The maximum version that the domain can

support.

2.2.2.12 DFS_SUPPORTED_NAMESPACE_VERSION_INFO

The DFS_SUPPORTED_NAMESPACE_VERSION_INFO structure relates to the
NetrDfsGetSupportedNamespaceVersion method when used to determine the domain-based or
standalone-based DFS major and minor version information.

The DFS_SUPPORTED_NAMESPACE_VERSION_INFO structure has the following format.

 typedef struct _DFS_SUPPORTED_NAMESPACE_VERSION_INFO {
 unsigned long DomainDfsMajorVersion;
 unsigned long DomainDfsMinorVersion;
 ULONGLONG DomainDfsCapabilities;
 unsigned long StandaloneDfsMajorVersion;
 unsigned long StandaloneDfsMinorVersion;
 ULONGLONG StandaloneDfsCapabilities;
 } DFS_SUPPORTED_NAMESPACE_VERSION_INFO,
 *PDFS_SUPPORTED_NAMESPACE_VERSION_INFO;

DomainDfsMajorVersion: A value containing the major version number of the DFS metadata format
supported by a domain-based DFS namespace.

DomainDfsMinorVersion: A value containing the minor version number of the DFS metadata format
supported by a domain-based DFS namespace.

DomainDfsCapabilities: A value containing the capability information of a domain-based DFS
namespace.

StandaloneDfsMajorVersion: A value containing the major version number of a stand-alone DFS
namespace.

StandaloneDfsMinorVersion: A value containing the minor version number of a stand-alone DFS
namespace.

StandaloneDfsCapabilities: A value containing the capability information of a stand-alone DFS
namespace.

DomainDfsCapabilities and StandaloneDfsCapabilities are bit fields with the following defined
value.

Value Meaning

DFS_NAMESPACE_CAPABILITY_ABDE

0x0000000000000001

This specifies support for Access Based Directory Enumeration
(ABDE) mode.<4>

When this structure is used for communication, all undefined bit fields MUST be set to zero. A client
SHOULD ignore all bit fields it does not understand.

2.2.2.13 DFS Volume State

The following table lists the valid states for a DFS root or a DFS link, and it relates to the State field of
the DFS_INFO_2, DFS_INFO_4, DFS_INFO_5, DFS_INFO_6, and DFS_INFO_8 structures. The

bitmask DFS_VOLUME_STATES (0x0000000F) MUST be used to extract the state of a DFS root or a
DFS link from the State field.

30 / 165

[MS-DFSNM-Diff] - v20210407
Distributed File System (DFS): Namespace Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

Value Meaning

DFS_VOLUME_STATE_OK

0x00000001

The DFS root or DFS link is initialized to this state. In this state the DFS root
or link is available for referral request.

This state is persisted to the DFS metadata.

RESERVED

0x00000002

This value is reserved and MUST NOT be used.

DFS_VOLUME_STATE_OFFLINE

0x00000003

The DFS link is offline, and none of the DFS targets will be included in referral
response. This flag is valid only for a DFS link and cannot be set on a DFS
root.

This state is persisted to the DFS metadata.

DFS_VOLUME_STATE_ONLINE

0x00000004

The DFS link is online and available for referral request. This flag is valid only
for a DFS link and cannot be set on a DFS root.

This state is persisted to the DFS metadata.

2.2.3 Get Info Data Types

The structures in this section relate to the NetrDfsGetInfo, NetrDfsEnum, and NetrDfsEnumEx
methods when used to retrieve information about the DFS server configuration. The usage model of
these structures is for the client to specify a Level parameter to indicate which case of the
DFS_INFO_STRUCT to use.

2.2.3.1 DFS_INFO_1

The DFS_INFO_1 structure contains the name of a DFS root or DFS link.

The DFS_INFO_1 structure has the following format.

 typedef struct _DFS_INFO_1 {
 [string] WCHAR* EntryPath;
 } DFS_INFO_1;

EntryPath: The pointer to a DFS root or a DFS link path.

2.2.3.2 DFS_INFO_2

The DFS_INFO_2 structure contains information for a DFS root or DFS link.

The DFS_INFO_2 structure has the following format.

 typedef struct _DFS_INFO_2 {
 [string] WCHAR* EntryPath;
 [string] WCHAR* Comment;
 DWORD State;
 DWORD NumberOfStorages;
 } DFS_INFO_2;

EntryPath: A pointer to a DFS root or a DFS link path.

Comment: A pointer to a null-terminated Unicode string containing a comment that is used for
informational purposes and is associated with the DFS root or DFS link. This string has no

31 / 165

[MS-DFSNM-Diff] - v20210407
Distributed File System (DFS): Namespace Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

protocol-specified restrictions on length or content. The comment is meant for human
consumption and does not affect server functionality.

State: This field has the state of the DFS root or DFS link. For a DFS root, this field also specifies
whether the DFS namespace is stand-alone or domain-based.

The DFS_VOLUME_STATES bitmask (0x0000000F) MUST be used to extract the following DFS root
or DFS link state from this field. For more information about some of these states, see section
2.2.2.13.

Value Meaning

DFS_VOLUME_STATE_OK

0x00000001

The specified DFS root or DFS link is in the normal state.

RESERVED

0x00000002

This value is reserved and MUST NOT be used.

DFS_VOLUME_STATE_OFFLINE

0x00000003

The DFS link is offline, and none of the DFS targets will be included in the
referral response. This flag is valid only for a DFS link and cannot be set on
a DFS root.

This state is persisted to the DFS metadata.

DFS_VOLUME_STATE_ONLINE

0x00000004

The DFS link is online and available for referral request. This flag is valid
only for a DFS link and cannot be set on a DFS root.

This state is persisted to the DFS metadata.

The DFS_VOLUME_FLAVORS bitmask (0x00000300) MUST be used to extract the following DFS
namespace flavor from this field.

Value Meaning

DFS_VOLUME_FLAVOR_STANDALONE

0x00000100

Stand-alone DFS namespace.

DFS_VOLUME_FLAVOR_AD_BLOB

0x00000200

domainv1-based or domainv2-based DFS namespace.

NumberOfStorages: Number of DFS targets for the root or link.

2.2.3.3 DFS_INFO_3

The DFS_INFO_3 structure contains information for a DFS root or a DFS link.

The DFS_INFO_3 structure has the following format.

 typedef struct _DFS_INFO_3 {
 [string] WCHAR* EntryPath;
 [string] WCHAR* Comment;
 DWORD State;
 DWORD NumberOfStorages;
 [size_is(NumberOfStorages)] DFS_STORAGE_INFO* Storage;
 } DFS_INFO_3;

EntryPath: Pointer to a DFS root or DFS link path.

Comment: A pointer to a null-terminated Unicode string containing a comment associated with the
DFS root or DFS link that is for informational purposes. This string has no protocol-specified

32 / 165

[MS-DFSNM-Diff] - v20210407
Distributed File System (DFS): Namespace Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

restrictions on length or content. The comment is meant for human consumption and does not
affect server functionality.

State: Refers to the State field of DFS_INFO_2. For more information, see section 2.2.3.2.

NumberOfStorages: The number of DFS targets for this root or link.

Storage: A pointer to an array of DFS_STORAGE_INFO structures containing information about each
target. (For more information, see section 2.2.2.5). The NumberOfStorages member specifies the
number of structures within this storage array.

2.2.3.4 DFS_INFO_4

The DFS_INFO_4 structure contains information for a DFS root or a DFS link.

The DFS_INFO_4 structure has the following format.

 typedef struct _DFS_INFO_4 {
 [string] WCHAR* EntryPath;
 [string] WCHAR* Comment;
 DWORD State;
 unsigned long Timeout;
 GUID Guid;
 DWORD NumberOfStorages;
 [size_is(NumberOfStorages)] DFS_STORAGE_INFO* Storage;
 } DFS_INFO_4;

EntryPath: A pointer to a DFS root or a DFS link path.

Comment: A pointer to a null-terminated Unicode string containing a comment associated with the
DFS root or DFS link that is for informational purposes. This string has no protocol-specified
restrictions on length or content. The comment is meant for human consumption and does not
affect server functionality.

State: Refers to the State field of DFS_INFO_2. For more information, see section 2.2.3.2.

Timeout: The time-out, in seconds, associated with the root or link and used in a DFS referral
response to a DFS client.

Guid: The GUID of this root or link.

NumberOfStorages: The number of DFS targets for this root or link. There are no protocol-specified
restrictions on the number of targets for a root or link.

Storage: A pointer to an array of DFS_STORAGE_INFO structures containing information about each
target. (For more information, see section 2.2.2.5). The NumberOfStorages member specifies the

number of structures within this storage array.

2.2.3.5 DFS_INFO_5

The DFS_INFO_5 structure contains information for a DFS root or a DFS link.

The DFS_INFO_5 structure has the following format.

 typedef struct _DFS_INFO_5 {
 [string] WCHAR* EntryPath;
 [string] WCHAR* Comment;
 DWORD State;
 unsigned long Timeout;
 GUID Guid;

33 / 165

[MS-DFSNM-Diff] - v20210407
Distributed File System (DFS): Namespace Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

 unsigned long PropertyFlags;
 unsigned long MetadataSize;
 DWORD NumberOfStorages;
 } DFS_INFO_5;

EntryPath: A pointer to a DFS root or a DFS link path.

Comment: A pointer to a null-terminated Unicode string containing a comment associated with the
DFS root or DFS link that is for informational purposes. This string has no protocol-specified
restrictions on length or content. The comment is meant for human consumption and does not
affect server functionality.

State: Refers to the State field of DFS_INFO_2. For more information, see section 2.2.3.2.

Timeout: The time-out, in seconds, associated with the root or link and used in a DFS referral
response to a DFS client.

Guid: The GUID of this root or link.

PropertyFlags: A bit field in which each bit is responsible for a specific property applicable to the
entire DFS namespace, the DFS root, or an individual DFS link, depending on the actual property.
Any combination of bits is allowed, unless indicated otherwise. The following are valid bit

definitions for this field.

Value Meaning

DFS_PROPERTY_FLAG_INSITE_REFERRALS

0x00000001

When set, indicates that DFS in-site referral mode is enabled.

DFS_PROPERTY_FLAG_ROOT_SCALABILITY

0x00000002

When set, indicates DFS root scalability mode is enabled. This
flag is valid only for the DFS root of a domain-based DFS
namespace.

DFS_PROPERTY_FLAG_SITE_COSTING

0x00000004

When set, indicates DFS referral site costing is enabled. This
flag is valid only for a DFS root.

DFS_PROPERTY_FLAG_TARGET_FAILBACK

0x00000008

When set, indicates DFS client target failback is enabled.

DFS_PROPERTY_FLAG_CLUSTER_ENABLED

0x00000010

When set, indicates clustered DFS namespace is enabled.

DFS_PROPERTY_FLAG_ABDE

0x00000020

When set, enables Access Based Directory Enumeration (ABDE)
mode on a domainv2-based DFS namespace or a stand-alone
DFS namespace.<5>This flag is not supported on domainv1-
based namespaces.

MetadataSize: The size, in bytes, of the DFS metadata of the DFS namespace. For a DFS link, this
MUST be 0.

NumberOfStorages: The number of DFS targets for this root or link.

2.2.3.6 DFS_INFO_6

The DFS_INFO_6 structure contains information for a DFS root or a DFS link.

The DFS_INFO_6 structure has the following format.

 typedef struct _DFS_INFO_6 {

34 / 165

[MS-DFSNM-Diff] - v20210407
Distributed File System (DFS): Namespace Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

 [string] WCHAR* EntryPath;
 [string] WCHAR* Comment;
 DWORD State;
 unsigned long Timeout;
 GUID Guid;
 unsigned long PropertyFlags;
 unsigned long MetadataSize;
 DWORD NumberOfStorages;
 [size_is(NumberOfStorages)] DFS_STORAGE_INFO_1* Storage;
 } DFS_INFO_6;

EntryPath: A pointer to a DFS root or a DFS link path.

Comment: A pointer to a null-terminated Unicode string containing a comment associated with the
DFS root or DFS link that is for informational purposes. This string has no protocol-specified
restrictions on length or content. The comment is meant for human consumption and does not
affect server functionality.

State: Refers to the State field of DFS_INFO_2. For more information, see section 2.2.3.2.

Timeout: The time-out, in seconds, associated with the root or link and used in a DFS referral
response to a DFS client.

Guid: The GUID of this root or link.

PropertyFlags: Refers to the PropertyFlags field of DFS_INFO_5. For more information, see section
2.2.3.5.

MetadataSize: The size of the DFS metadata of the DFS namespace. This MUST be 0 for a DFS link.

NumberOfStorages: The number of DFS targets for this root or link. The protocol imposes no
restrictions on the number of roots or links.

Storage: A pointer to an array of DFS_STORAGE_INFO_1 structures containing information about
each target. The NumberOfStorages member specifies the number of structures within this

storage array.

2.2.3.7 DFS_INFO_7

The DFS_INFO_7 structure contains information about a DFS root.

The DFS_INFO_7 structure has the following format.

 typedef struct _DFS_INFO_7 {
 GUID GenerationGuid;
 } DFS_INFO_7;

GenerationGuid: This GUID is modified each time DFS metadata is updated.

This data type is used to detect when the metadata of a DFS namespace has changed. It MUST be

supported for domain-based DFS namespaces. It MAY be supported for stand-alone DFS namespaces;
a null GUID (all 128-bits are 0) MUST be returned if this is not supported.<6>

2.2.3.8 DFS_INFO_8

The DFS_INFO_8 structure contains information for a DFS root or a DFS link.

The DFS_INFO_8 structure has the following format.

35 / 165

[MS-DFSNM-Diff] - v20210407
Distributed File System (DFS): Namespace Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

 typedef struct _DFS_INFO_8 {
 [string] WCHAR* EntryPath;
 [string] WCHAR* Comment;
 DWORD State;
 unsigned long Timeout;
 GUID Guid;
 unsigned long PropertyFlags;
 unsigned long MetadataSize;
 ULONG SecurityDescriptorLength;
 [size_is(SecurityDescriptorLength)]
 PUCHAR pSecurityDescriptor;
 DWORD NumberOfStorages;
 } DFS_INFO_8,
 *LPDFS_INFO_8;

EntryPath: A pointer to a DFS root or a DFS link path.

Comment: A pointer to a null-terminated Unicode string containing a comment associated with the

DFS root or DFS link that is for informational purposes. This string has no protocol-specified

restrictions on length or content. The comment is meant for human consumption and does not
affect server functionality.

State: Refers to the State field of DFS_INFO_2. For more information, see section 2.2.3.2.

Timeout: The time-out, in seconds, associated with the root or link and used in a DFS referral
response to a DFS client.

Guid: The GUID of this root or link.

PropertyFlags: Refers to the PropertyFlags field of DFS_INFO_5. For more information, see section
2.2.3.5.

MetadataSize: The size, in bytes, of the DFS metadata of the DFS namespace. For a DFS link, this
MUST be 0.

SecurityDescriptorLength: The length, in bytes, of the buffer that the pSecurityDescriptor field
points to.

pSecurityDescriptor: A self-relative security descriptor to be associated with a DFS link. For more
information on security descriptors, see [MS-DTYP] section 2.4.6.

NumberOfStorages: The number of DFS targets for this root or link. The protocol imposes no
restrictions on the number of roots or links.

2.2.3.9 DFS_INFO_9

The DFS_INFO_9 structure contains information for a DFS root or a DFS link.

The DFS_INFO_9 structure has the following format.

 typedef struct _DFS_INFO_9 {
 [string] WCHAR* EntryPath;
 [string] WCHAR* Comment;
 DWORD State;
 unsigned long Timeout;
 GUID Guid;
 unsigned long PropertyFlags;
 unsigned long MetadataSize;
 ULONG SecurityDescriptorLength;
 [size_is(SecurityDescriptorLength)]
 PUCHAR pSecurityDescriptor;
 DWORD NumberOfStorages;

36 / 165

[MS-DFSNM-Diff] - v20210407
Distributed File System (DFS): Namespace Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

 [size_is(NumberOfStorages)] LPDFS_STORAGE_INFO_1 Storage;
 } DFS_INFO_9,
 *LPDFS_INFO_9;

EntryPath: A pointer to a DFS root or a DFS link path.

Comment: Pointer to a null-terminated Unicode string containing a comment associated with the DFS

root or DFS link that is for informational purposes. There are no protocol-specified restrictions on
the length or content of this string. The comment is meant for human readability and has no effect
on server functionality.

State: Refers to the State field of DFS_INFO_2. For more information, see section 2.2.3.2.

Timeout: The time-out, in seconds, associated with the root or link and used in a DFS referral
response to a DFS client.

Guid: The GUID of this root or link.

PropertyFlags: Refers to the PropertyFlags field of DFS_INFO_5. For more information, see section
2.2.3.5.

MetadataSize: The size, in bytes, of the DFS metadata of the DFS namespace. For a DFS link, this
MUST be 0.

SecurityDescriptorLength: The length, in bytes, of the buffer that the pSecurityDescriptor field
points to.

pSecurityDescriptor: A self-relative security descriptor to be associated with a DFS link. For more

information on security descriptors, see [MS-DTYP] section 2.4.6.

NumberOfStorages: The number of DFS targets for this root or link. The protocol imposes no
restrictions on the number of roots or links.

Storage: A pointer to an array of DFS_STORAGE_INFO_1 structures containing information about

each target. The NumberOfStorages member specifies the number of structures within this
storage array.

For information on target priority rank and class information, see section 2.2.2.6.

2.2.3.10 DFS_INFO_50

The DFS_INFO_50 structure is used to get the DFS metadata version and the capability information of
an existing DFS namespace.

The DFS_INFO_50 structure has the following format.

 typedef struct _DFS_INFO_50 {
 unsigned long NamespaceMajorVersion;
 unsigned long NamespaceMinorVersion;
 unsigned __int64 NamespaceCapabilities;
 } DFS_INFO_50;

NamespaceMajorVersion: A value containing the major version number used to determine the DFS
metadata format supported in a domain-based DFS namespace or a stand-alone DFS

namespace.<7>

NamespaceMinorVersion: A value containing the minor version number used to determine the DFS
metadata format supported in a domain-based DFS namespace or stand-alone DFS
namespace.<8>

37 / 165

[MS-DFSNM-Diff] - v20210407
Distributed File System (DFS): Namespace Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

NamespaceCapabilities: A value containing the capability information of a DFS namespace.

Value Meaning

DFS__NAMESPACE_CAPABILITY_ABDE

0x0000000000000001

The specified DFS root supports using Access Based Directory
Enumeration (ABDE) mode.<9>

2.2.4 Set Info Data Types

The structures in this section relate to the NetrDfsSetInfo and NetrDfsSetInfo2 methods when used to
retrieve or set the configuration of the DFS server. The usage model of these structures is for the
client to specify a Level parameter to indicate which DFS_INFO_STRUCT case to use.

2.2.4.1 DFS_INFO_101

The DFS_INFO_101 structure describes the storage state on a root, link, root target, or link target.

The DFS_INFO_101 structure has the following format.

 typedef struct _DFS_INFO_101 {
 unsigned long State;
 } DFS_INFO_101;

State: The state of the root, link, root target, or link target.

The following table lists the valid states that can be set for a root or a link. Some of these states
are used to perform a server operation and are not persisted to the DFS metadata, as specified
below. For more information about some of these states, see section 2.2.2.13.

Value Meaning

DFS_VOLUME_STATE_OK

0x00000001

The specified DFS root or DFS link is in the normal state.

DFS_VOLUME_STATE_OFFLINE

0x00000003

The specified DFS link is offline or unavailable. This flag is valid
only for a DFS link.

This state is persisted to the DFS metadata.

DFS_VOLUME_STATE_ONLINE

0x00000004

The specified DFS link is available. This flag is valid only for a
DFS link.

This state is persisted to the DFS metadata.

DFS_VOLUME_STATE_RESYNCHRONIZE

0x00000010

Forces a resynchronization on the DFS root. This flag is valid
only for a DFS root. This operation is an incremental
synchronization that picks up only changed objects in the
metadata.

This state is used to perform a server operation. It is not
persisted to the DFS metadata.

DFS_VOLUME_STATE_STANDBY

0x00000020

Sets a root volume to standby mode. This flag is valid only for
a clustered DFS root.

This state is used to perform a server operation. It is not
persisted to the DFS metadata.

DFS_VOLUME_STATE_FORCE_SYNC Forces a full resynchronization operation on the DFS root
target of a specified domainv2-based DFS namespace or

38 / 165

[MS-DFSNM-Diff] - v20210407
Distributed File System (DFS): Namespace Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

Value Meaning

0x00000040 stand-alone DFS namespace to identify DFS links that have
been added or deleted. This is not supported on a domainv1-
based DFS namespace. DFS links MUST NOT be specified.

This state is used to perform a server operation. It is not
persisted to the DFS metadata.

DFS_VOLUME_STATES (0x0000000F) is not relevant here, because it is a mask used when
reading the volume state, not for setting it.

The following table lists the valid states that can be set for a root target or a link target.

Value Meaning

DFS_STORAGE_STATE_OFFLINE

0x00000001

This target is offline and unavailable for use.

DFS_STORAGE_STATE_ONLINE

0x00000002

This target is online and available for use.

2.2.4.2 DFS_INFO_102

The DFS_INFO_102 structure contains a time-out value for a DFS root or a DFS link.

The DFS_INFO_102 structure has the following format.

 typedef struct _DFS_INFO_102 {
 unsigned long Timeout;
 } DFS_INFO_102;

Timeout: The time-out, in seconds, associated with the root or link and used in a DFS referral
response to a DFS client.

2.2.4.3 DFS_INFO_103

The DFS_INFO_103 structure contains properties that set specific behaviors for a DFS root or a DFS
link.

The DFS_INFO_103 structure has the following format.

 typedef struct _DFS_INFO_103 {
 unsigned long PropertyFlagMask;
 unsigned long PropertyFlags;
 } DFS_INFO_103;

PropertyFlagMask: Indicates which bits in the PropertyFlags field are considered for modification
of DFS namespace root or link properties.

Value Meaning

DFS_PROPERTY_FLAG_INSITE_REFERRALS

0x00000001

Valid for domain and stand-alone DFS roots and links.

39 / 165

[MS-DFSNM-Diff] - v20210407
Distributed File System (DFS): Namespace Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

Value Meaning

DFS_PROPERTY_FLAG_ROOT_SCALABILITY

0x00000002

This flag is valid only for the DFS root of a domain-based
DFS namespace.

DFS_PROPERTY_FLAG_SITE_COSTING

0x00000004

This flag is valid only for a DFS root.

DFS_PROPERTY_FLAG_TARGET_FAILBACK

0x00000008

Valid for domain and stand-alone DFS roots and links.

DFS_PROPERTY_FLAG_ABDE

0x00000020

Valid only for a domainv2-based DFS namespace or stand-
alone DFS namespace root.<10> This flag is not supported
on domainv1-based namespaces.

PropertyFlags: A bit field in which each bit is responsible for a specific property applicable to the
whole DFS namespace, the DFS root, or an individual DFS link, depending on the actual property.
Any combination of bits is allowed, unless indicated otherwise. The server considers the bits in this

field only when the corresponding bit in the PropertyFlagMask field is set. The following table
lists the valid bits for this field and describes the actions taken when each bit is set or not set in
the request.

Value Meaning

DFS_PROPERTY_FLAG_INSITE_REFERRALS

0x00000001

When set, enables DFS in-site referral mode. When not set,
disables DFS in-site referral mode.

DFS_PROPERTY_FLAG_ROOT_SCALABILITY

0x00000002

When set, enables DFS root scalability mode. When not set,
disables DFS root scalability mode.

DFS_PROPERTY_FLAG_SITE_COSTING

0x00000004

When set, enables DFS referral site costing. When not set,
disables DFS referral site costing.

DFS_PROPERTY_FLAG_TARGET_FAILBACK

0x00000008

When set, enables DFS client target failback. When not set,
disables DFS client target failback.

DFS_PROPERTY_FLAG_ABDE

0x00000020

When set, enables ABDE mode on a domainv2-based DFS
namespace or stand-alone DFS namespace. When not set,
disables ABDE mode on a domainv2-based DFS namespace or
stand-alone DFS namespace.

2.2.4.4 DFS_INFO_104

The DFS_INFO_104 structure contains the priority of a DFS root target or a DFS link target.

The DFS_INFO_104 structure has the following format.

 typedef struct _DFS_INFO_104 {
 DFS_TARGET_PRIORITY TargetPriority;
 } DFS_INFO_104;

TargetPriority: A DFS_TARGET_PRIORITY structure that indicates the priority rank and priority class
of a target. For more information on prioritization, see section 2.2.2.7.

40 / 165

[MS-DFSNM-Diff] - v20210407
Distributed File System (DFS): Namespace Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

2.2.4.5 DFS_INFO_105

The DFS_INFO_105 structure contains information about a DFS root or DFS link, including comment,
state, time-out, and DFS behaviors specified by property flags.

The DFS_INFO_105 structure has the following format.

 typedef struct _DFS_INFO_105 {
 [string] WCHAR* Comment;
 DWORD State;
 unsigned long Timeout;
 unsigned long PropertyFlagMask;
 unsigned long PropertyFlags;
 } DFS_INFO_105;

Comment: A pointer to a null-terminated Unicode string containing a comment associated with the

DFS root or DFS link that is for informational purposes. This string has no protocol-specified
restrictions on length or content. The comment is meant for human consumption and does not

affect server functionality.

State: The following table lists the valid states that can be set for links. All other values are reserved
and MUST NOT be used. For more information about some of these states, see section 2.2.2.13.

Value Meaning

0x00000000 Indicates that the existing state MUST NOT be changed.

DFS_VOLUME_STATE_OFFLINE

0x00000003

The specified DFS link is offline or unavailable. This flag is valid only for a
DFS link.

DFS_VOLUME_STATE_ONLINE

0x00000004

The specified DFS link is available. This flag is valid only for a DFS link.

Timeout: The time-out, in seconds, associated with the root or link and used in a DFS referral
response to a DFS client.

PropertyFlagMask: Indicates which bits in the PropertyFlags field are valid.

PropertyFlags: Refers to the PropertyFlags field of DFS_INFO_103, as specified in section 2.2.4.3.

2.2.4.6 DFS_INFO_106

The DFS_INFO_106 structure contains the storage state and priority of a DFS root target or a DFS link
target. For more information on prioritization, see section 2.2.2.7.

The DFS_INFO_106 structure has the following format.

 typedef struct _DFS_INFO_106 {
 DWORD State;
 DFS_TARGET_PRIORITY TargetPriority;
 } DFS_INFO_106;

State: The state of the target. Contains one of the following valid state values.

Value Meaning

DFS_STORAGE_STATE_OFFLINE This target is offline and unavailable for use.

41 / 165

[MS-DFSNM-Diff] - v20210407
Distributed File System (DFS): Namespace Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

Value Meaning

0x00000001

DFS_STORAGE_STATE_ONLINE

0x00000002

This target is online and available for use.

TargetPriority: A DFS_TARGET_PRIORITY structure that indicates the priority class and rank of the
DFS target.

2.2.4.7 DFS_INFO_107

The DFS_INFO_107 structure contains information about a DFS root or DFS link, including comment,
state, time-out, security descriptor, and DFS behaviors specified by property flags.

The DFS_INFO_107 structure has the following format.

 typedef struct _DFS_INFO_107 {
 [string] WCHAR* Comment;
 DWORD State;
 unsigned long Timeout;
 unsigned long PropertyFlagMask;
 unsigned long PropertyFlags;
 ULONG SecurityDescriptorLength;
 [size_is(SecurityDescriptorLength)]
 PUCHAR pSecurityDescriptor;
 } DFS_INFO_107;

Comment: A pointer to a null-terminated Unicode string containing a comment associated with the
DFS root or DFS link that is for informational purposes. This string has no protocol-specified
restrictions on length or content. The comment is meant for human readability and does not affect
server functionality.

State: The states that can be set for links. The following table lists such states. All other values are

reserved and MUST NOT be used. For more information about some of these states, see section
2.2.2.13.

Value Meaning

0x00000000 Indicates that the existing state MUST NOT be changed.

DFS_VOLUME_STATE_OFFLINE

0x00000003

The specified DFS link is offline or unavailable. This flag is valid only for a
DFS link.

DFS_VOLUME_STATE_ONLINE

0x00000004

The specified DFS link is available. This flag is valid only for a DFS link.

Timeout: The time-out, in seconds, associated with the root or link and used in a DFS referral
response to a DFS client.

PropertyFlagMask: Indicates which bits in the PropertyFlags field are valid.

PropertyFlags: Refers to the PropertyFlags field of DFS_INFO_103, as specified in section 2.2.4.3.

SecurityDescriptorLength: The length, in bytes, of the buffer that the pSecurityDescriptor field
points to.

pSecurityDescriptor: A self-relative security descriptor to be associated with a DFS link. For more

information on security descriptors, see [MS-DTYP] section 2.4.6.

42 / 165

[MS-DFSNM-Diff] - v20210407
Distributed File System (DFS): Namespace Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

2.2.5 Special Info Data Types

The structures in this section relate to the NetrDfsEnum, NetrDfsEnumEx, NetrDfsGetInfo,
NetrDfsSetInfo, and NetrDfsSetInfo2 methods when used to retrieve or set the DFS server

configuration. The usage model of these structures is for the client to specify a Level parameter to
indicate which case of the DFS_INFO_STRUCT to use.

2.2.5.1 DFS_INFO_100

The DFS_INFO_100 structure relates to the NetrDfsGetInfo, NetrDfsSetInfo, and NetrDfsSetInfo2

methods when used to retrieve or set comment text about a DFS root or a DFS link. The structure
contains a comment associated with a DFS root or a DFS link.

The DFS_INFO_100 structure has the following format.

 typedef struct _DFS_INFO_100 {
 [string] WCHAR* Comment;
 } DFS_INFO_100;

Comment: A pointer to a null-terminated Unicode string containing a comment associated with the
DFS root or DFS link that is for informational purposes. This string has no protocol-specified
restrictions on length or content. The comment is meant for human readability and does not affect
server functionality.

2.2.5.2 DFS_INFO_150

The DFS_INFO_150 structure relates to the NetrDfsGetInfo, NetrDfsSetInfo, and NetrDfsSetInfo2
methods when used to retrieve or set security descriptors associated with a DFS link. The structure
contains the self-relative security descriptor associated with a DFS link.

The DFS_INFO_150 structure has the following format.

 typedef struct _DFS_INFO_150 {
 ULONG SecurityDescriptorLength;
 [size_is(SecurityDescriptorLength)]
 PUCHAR pSecurityDescriptor;
 } DFS_INFO_150;

SecurityDescriptorLength: The length, in bytes, of the buffer that the pSecurityDescriptor field
points to.

pSecurityDescriptor: A self-relative security descriptor associated with DFS. For more information

on security descriptors, see [MS-DTYP] section 2.4.6.

2.2.5.3 DFS_INFO_200

The DFS_INFO_200 structure relates to the NetrDfsEnumEx method when used to enumerate all of

the domain-based DFS namespace in a domain. The structure contains the name of a domain-based

DFS namespace. The DFS_INFO_200 structure has the following format.

 typedef struct _DFS_INFO_200 {
 [string] WCHAR* FtDfsName;
 } DFS_INFO_200;

FtDfsName: A pointer to a DFS root path.

43 / 165

[MS-DFSNM-Diff] - v20210407
Distributed File System (DFS): Namespace Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

2.2.5.4 DFS_INFO_300

The DFS_INFO_300 structure relates to the NetrDfsEnum and NetrDfsEnumEx methods when used to
enumerate DFS roots hosted on a server. The structure contains the name and type (domain-based or

stand-alone) of a DFS namespace. The DFS_INFO_300 structure has the following format.

 typedef struct _DFS_INFO_300 {
 DWORD Flags;
 [string] WCHAR* DfsName;
 } DFS_INFO_300;

Flags: This value specifies the type of the DFS namespace. This MUST have one of the following two
permitted values.

Value Meaning

DFS_VOLUME_FLAVOR_STANDALONE

0x00000100

Stand-alone DFS namespace.

DFS_VOLUME_FLAVOR_AD_BLOB

0x00000200

Domain-based DFS namespace.

DfsName: A pointer to a DFS root path.

2.2.6 Enum Info Data Types

The structures in this section relate to the NetrDfsEnum and NetrDfsEnumEx methods when used to
enumerate and retrieve the configuration of the DFS server. The usage model of these structures is for
the client to specify a Level parameter to indicate which case of the DFS_INFO_ENUM_STRUCT to use.

2.2.6.1 DFS_INFO_1_CONTAINER

The DFS_INFO_1_CONTAINER structure contains an array of DFS_INFO_1 structures. The
DFS_INFO_1_CONTAINER structure has the following format.

 typedef struct _DFS_INFO_1_CONTAINER {
 DWORD EntriesRead;
 [size_is(EntriesRead)] DFS_INFO_1* Buffer;
 } DFS_INFO_1_CONTAINER;

EntriesRead: The number of elements in the array.

Buffer: The array of DFS_INFO_1 structures.

2.2.6.2 DFS_INFO_2_CONTAINER

The DFS_INFO_2_CONTAINER structure contains an array of DFS_INFO_2 structures. The
DFS_INFO_2_CONTAINER structure has the following format.

 typedef struct _DFS_INFO_2_CONTAINER {
 DWORD EntriesRead;
 [size_is(EntriesRead)] DFS_INFO_2* Buffer;
 } DFS_INFO_2_CONTAINER;

EntriesRead: The number of elements in the array.

44 / 165

[MS-DFSNM-Diff] - v20210407
Distributed File System (DFS): Namespace Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

Buffer: The array of DFS_INFO_2 structures.

2.2.6.3 DFS_INFO_3_CONTAINER

The DFS_INFO_3_CONTAINER structure contains an array of DFS_INFO_3 structures. The
DFS_INFO_3_CONTAINER structure has the following format.

 typedef struct _DFS_INFO_3_CONTAINER {
 DWORD EntriesRead;
 [size_is(EntriesRead)] DFS_INFO_3* Buffer;
 } DFS_INFO_3_CONTAINER;

EntriesRead: The number of elements in the array.

Buffer: The array of DFS_INFO_3 structures.

2.2.6.4 DFS_INFO_4_CONTAINER

The DFS_INFO_4_CONTAINER structure contains an array of DFS_INFO_4 structures. The
DFS_INFO_4_CONTAINER structure has the following format.

 typedef struct _DFS_INFO_4_CONTAINER {
 DWORD EntriesRead;
 [size_is(EntriesRead)] DFS_INFO_4* Buffer;
 } DFS_INFO_4_CONTAINER;

EntriesRead: The number of elements in the array.

Buffer: The array of DFS_INFO_4 structures.

2.2.6.5 DFS_INFO_5_CONTAINER

The DFS_INFO_5_CONTAINER structure contains an array of DFS_INFO_5 structures. The
DFS_INFO_5_CONTAINER structure has the following format.

 typedef struct _DFS_INFO_5_CONTAINER {
 DWORD EntriesRead;
 [size_is(EntriesRead)] DFS_INFO_5* Buffer;
 } DFS_INFO_5_CONTAINER;

EntriesRead: The number of elements in the array.

Buffer: The array of DFS_INFO_5 structures.

2.2.6.6 DFS_INFO_6_CONTAINER

The DFS_INFO_6_CONTAINER structure contains an array of DFS_INFO_6 structures. The
DFS_INFO_6_CONTAINER structure has the following format.

 typedef struct _DFS_INFO_6_CONTAINER {
 DWORD EntriesRead;
 [size_is(EntriesRead)] DFS_INFO_6* Buffer;
 } DFS_INFO_6_CONTAINER;

45 / 165

[MS-DFSNM-Diff] - v20210407
Distributed File System (DFS): Namespace Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

EntriesRead: The number of elements in the array.

Buffer: The array of DFS_INFO_6 structures.

2.2.6.7 DFS_INFO_8_CONTAINER

The DFS_INFO_8_CONTAINER structure contains an array of DFS_INFO_8 structures. The
DFS_INFO_8_CONTAINER structure has the following format.

 typedef struct _DFS_INFO_8_CONTAINER {
 DWORD EntriesRead;
 [size_is(EntriesRead)] LPDFS_INFO_8 Buffer;
 } DFS_INFO_8_CONTAINER,
 *LPDFS_INFO_8_CONTAINER;

EntriesRead: The number of DFS_INFO_8 elements in the array.

Buffer: The array of DFS_INFO_8 structures.

2.2.6.8 DFS_INFO_9_CONTAINER

The DFS_INFO_9_CONTAINER structure contains an array of DFS_INFO_9 structures. The
DFS_INFO_9_CONTAINER structure has the following format.

 typedef struct _DFS_INFO_9_CONTAINER {
 DWORD EntriesRead;
 [size_is(EntriesRead)] LPDFS_INFO_9 Buffer;
 } DFS_INFO_9_CONTAINER,
 *LPDFS_INFO_9_CONTAINER;

EntriesRead: The number of DFS_INFO_9 elements in the array.

Buffer: The array of DFS_INFO_9 structures.

2.2.6.9 DFS_INFO_200_CONTAINER

The DFS_INFO_200_CONTAINER structure contains an array of DFS_INFO_200 structures. The
DFS_INFO_200_CONTAINER structure has the following format.

 typedef struct _DFS_INFO_200_CONTAINER {
 DWORD EntriesRead;
 [size_is(EntriesRead)] DFS_INFO_200* Buffer;
 } DFS_INFO_200_CONTAINER;

EntriesRead: The number of elements in the array.

Buffer: The array of DFS_INFO_200 structures.

2.2.6.10 DFS_INFO_300_CONTAINER

The DFS_INFO_300_CONTAINER structure contains an array of DFS_INFO_300 structures. The
DFS_INFO_300_CONTAINER structure has the following format.

 typedef struct _DFS_INFO_300_CONTAINER {
 DWORD EntriesRead;

46 / 165

[MS-DFSNM-Diff] - v20210407
Distributed File System (DFS): Namespace Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

 [size_is(EntriesRead)] DFS_INFO_300* Buffer;
 } DFS_INFO_300_CONTAINER;

EntriesRead: The number of elements in the array.

Buffer: The array of DFS_INFO_300 structures.

2.3 Directory Service Schema Elements

The protocol accesses the following Directory Service (DS) schema classes and attributes listed in the
following table.

For the syntactic specifications of the following <Class> or <Class><Attribute> pairs, or rootDSE
attributes, refer either to Active Directory Domain Services (AD DS) ([MS-ADA2], [MS-ADA3], and
[MS-ADSC]) or to Active Directory Technical Specification ([MS-ADTS]).

Class Attribute

attributeSchema rangeUpper

dfsConfiguration All

ftDFS objectClass

pKT

pKTGuid

remoteServerName

msDFS-DeletedLinkv2 All

objectClass

msDFS-Linkv2 All

objectClass

msDFS-NamespaceAnchor All

msDFS-Namespacev2 All

objectClass

rootDSE domainFunctionality

This section contains specifications for the DFS configuration container, DFS namespace object, and
pKT attribute.

2.3.1 DFS Configuration Container

The DFS configuration container is a well-known container in the domain directory that is used to hold
the DFS metadata for a domain-based DFS namespace. The container has the following distinguished
name (DN).

 CN=Dfs-Configuration,CN=System,<domain>

where <domain> is the DN of the domain.

For example, the DFS configuration container for the contoso.com domain would be named as follows.

47 / 165

[MS-DFSNM-Diff] - v20210407
Distributed File System (DFS): Namespace Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

 CN=Dfs-Configuration,CN=System,DC=contoso,DC=com

The object class of this object is dfsConfiguration, and its schema is as specified in [MS-ADSC].

2.3.2 LDAP Entries for Domain-Based DFS Namespaces

LDAP entries exist in both domainv1-based DFS namespace and domainv2-based DFS namespace.
This relationship is shown in the following figure.

Figure 1: Organization of DFS-related LDAP entries in DFS namespaces

Each domainv1-based DFS namespace has its DFS metadata stored in the directory service as a BLOB

in the pKT attribute of an LDAP entry.

48 / 165

[MS-DFSNM-Diff] - v20210407
Distributed File System (DFS): Namespace Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

Each domainv2-based DFS namespace has one DFS namespace anchor LDAP entry, one DFS
namespace LDAP entry below it, and one LDAP entry per DFS link in the namespace under the DFS

namespace LDAP entry.

Like the relative distinguished name (RDN) of a domainv1-based DFS namespace, the relative

distinguished name (RDN) of a domainv2-based DFS namespace entry is based on the DFS
namespace. Thus, there is no issue of a name collision with a domainv1-based DFS namespace and a
domainv2-based DFS namespace having the same name. The directory service will fail an attempt to
create such a scenario.

 The following sections specify both domain-based DFS namespace formats.

2.3.3 DFS Namespace Object for Domainv1-Based DFS Namespace

An object exists for each domainv1-based DFS namespace in the DFS configuration container. The
following is a DN of the object of a domain-based DFS namespace.

 CN=<DFSNamespaceName>,CN=Dfs-Configuration,CN=System,<domain>

where:

▪ <DFSNamespaceName> is the domain-based DFS namespace.

▪ <domain> is the DN of the domain.

The following attributes apply to this object.

Attribute Description

name The DFS namespace name.

remoteServerName A multivalued attribute that contains the DFS root targets for the DFS namespace
with the value "*" as the last attribute.

pKTGuid A GUID used as a generation number to detect changes to the DFS metadata. This
MUST be updated whenever the pKT attribute is changed.

pKT The BLOB containing the DFS metadata.

The objectClass of this object is fTDfs, and its schema is specified in [MS-ADSC]. The schema of the

attributes name, remoteServerName, pKTGuid, and pKT are specified in [MS-ADA3].

2.3.3.1 pKT Attribute Contents (Metadata for Domainv1-Based Namespace)

The pKT attribute contains the DFS metadata of the domain-based DFS namespace that the object
represents.

The DFS metadata has the following format.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

BLOBVersion

BLOBElementCount

49 / 165

[MS-DFSNM-Diff] - v20210407
Distributed File System (DFS): Namespace Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

BLOBElement (variable)

...

BLOBVersion (4 bytes): The DFS metadata format version stored as an unsigned, 32-bit, little-
endian integer. This MUST always be set to 0.

BLOBElementCount (4 bytes): The number of <BLOBElement> elements that immediately follow

this field in the DFS metadata stored as an unsigned, 32-bit, little-endian integer.

BLOBElement (variable): A variable number of DFSNamespaceElementBLOB structures, which
immediately follow the BLOBElementCount. Each DFSNamespaceElementBLOB contains descriptive
information about a DFS site, root, or link. The format and size of each
DFSNamespaceElementBLOB depend on the information contained in it.

2.3.3.1.1 DFSNamespaceElementBLOB

A DFSNamespaceElementBLOB contains information about a DFS root or a DFS link, or for mapping a
server to its site name.

The DFS metadata of a valid DFS namespace MUST consist of one DFSNamespaceRootBLOB for the
DFS root and one DFSNamespaceLinkBLOB for each DFS link in the DFS namespace. There MUST no
more than one SiteInformationBLOB. For more information on SiteInformationBLOB, see section
2.3.3.1.1.4.

No alignment padding requirements exist for any of a BLOB's fields, unless otherwise specified.

Each DFSNamespaceElementBLOB contains the following data elements. The first three fields are
standard for all DFSNamespaceElementBLOB structures. Following those fields are additional fields
that are specific to the type of DFSNamespaceElementBLOB, in the format of a
DFSNamespaceRootBLOB, a DFSNamespaceLinkBLOB, or a SiteInformationBLOB.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

BLOBNameSize BLOBName (variable)

...

BLOBDataSize

BLOBData (variable)

...

BLOBNameSize (2 bytes): The size of the BLOBName, in bytes, stored as an unsigned, 16-bit,

little-endian integer.

BLOBName (variable): The name of the DFSNamespaceElementBLOB, stored as a string of Unicode
characters.

Value Meaning

SiteInformationBLOB

"\siteroot"

A string of Unicode characters that forms the literal "\siteroot".<11>

50 / 165

[MS-DFSNM-Diff] - v20210407
Distributed File System (DFS): Namespace Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

Value Meaning

DFSNamespaceRootBLOB

"\domainroot"

A string of Unicode characters that forms the literal "\domainroot".

DFSNamespaceLinkBLOB

"\domainroot\<GUIDString>"

A string of Unicode characters that forms the literal
"\domainroot\<GUIDString>", where <GUIDString> represents the string form of
a GUID, as specified in [RFC4122], section 3. The GUID found in the link's ID
BLOB MUST be used to create this.

BLOBDataSize (4 bytes): The length of the BLOB in the BLOBData field, stored as an unsigned, 32-
bit, little-endian integer. The value of this field MUST be used to determine the start of the next

DFSNamespaceElementBLOB.

BLOBData (variable): Data specific to the type of BLOB described, in the form of a
DFSNamespaceRootBLOB, DFSNamespaceLinkBLOB, or SiteInformationBLOB.

The following sections specify the format of the DFSNamespaceRootBLOB, DFSNamespaceLinkBLOB,

and SiteInformationBLOB.

2.3.3.1.1.1 DFSNamespaceRootBLOB or DFSNamespaceLinkBLOB

At most, only one DFSNamespaceRootBLOB can contain information about the DFS namespace root.
One DFSNamespaceLinkBLOB exists for each DFS link in the namespace.

Each DFSNamespaceRootBLOB or DFSNamespaceLinkBLOB MUST have the following:

▪ One BLOB containing the name and other information about the DFS namespace root or DFS link.
This is the DFSRootOrLinkIDBLOB, as specified in section 2.3.3.1.1.2.

▪ One BLOB containing the DFS targets of the DFS root or DFS link. This is the DFSTargetListBLOB,

as specified in section 2.3.3.1.1.3.

▪ One reserved BLOB.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

DFSRootOrLinkIDBLOB (variable)

...

DFSTargetListBLOBSize

DFSTargetListBLOB (variable)

...

ReservedBLOBSize

ReservedBLOB

ReferralTTL

DFSRootOrLinkIDBLOB (variable): A BLOB that contains identification and status information for
this DFS root or DFS link.

51 / 165

[MS-DFSNM-Diff] - v20210407
Distributed File System (DFS): Namespace Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

DFSTargetListBLOBSize (4 bytes): The size, in bytes, of the BLOB in the DFSTargetListBLOB field
that immediately follows this field. The DFSTargetListBLOBSize is stored as an unsigned, 32-bit,

little-endian integer.

DFSTargetListBLOB (variable): A BLOB that contains the list of targets for the DFS root or DFS link.

ReservedBLOBSize (4 bytes): The size, in bytes, of the BLOB in the ReservedBLOB field that
immediately follows this field. The ReservedBLOBSize is stored as an unsigned, 32-bit, little-
endian integer and MUST be 4.

ReservedBLOB (4 bytes): When creating a new DFSNamespaceRootBLOB or
DFSNamespaceLinkBLOB, this ReservedBLOB MUST be zero-filled. When updating an existing
DFSNamespaceRootBLOB or DFSNamespaceLinkBLOB, the contents of this ReservedBLOB MUST
be preserved.

ReferralTTL (4 bytes): The referral time-out value, in seconds, for the DFS root or DFS link. The
ReferralTTL is stored as an unsigned, 32-bit, little-endian integer.

2.3.3.1.1.2 DFSRootOrLinkIDBLOB

This BLOB contains name and other information about the DFS namespace root or the DFS link.

▪ If the PKT_ENTRY_TYPE_REFERRAL_SVC (0x00000080) bit is set in the Type field, then this BLOB

describes the DFS root and is, hence, part of the DFSNamespaceRootBLOB.

▪ If the PKT_ENTRY_TYPE_REFERRAL_SVC (0x00000080) bit is not set in the Type field, then this
BLOB describes a link and is, hence, part of the DFSNamespaceLinkBLOB.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

RootOrLinkGuid (16 bytes)

...

...

PrefixSize Prefix (variable)

...

ShortPrefixSize ShortPrefix (variable)

...

Type

State

CommentSize Comment (variable)

...

PrefixTimeStamp

52 / 165

[MS-DFSNM-Diff] - v20210407
Distributed File System (DFS): Namespace Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

...

StateTimeStamp

...

CommentTimeStamp

...

Version

RootOrLinkGuid (16 bytes): A GUID that identifies the DFS root or the DFS link. It is used to
generate the name "\<domainroot>\<GUIDString>" in the BLOBName field of the
DFSNamespaceLinkBLOB, where <GUIDString> represents the string form of the GUID, as

specified in [RFC4122], section 3.

PrefixSize (2 bytes): The size, in bytes, of the Prefix field, stored as an unsigned, 16-bit, little-
endian integer.

Prefix (variable): The name of the DFS namespace root or the DFS link. The Prefix is stored as a
string of Unicode characters and MUST be a UNC path string with one leading backslash, instead of
the usual two, without a null termination.

ShortPrefixSize (2 bytes): The size, in bytes, of the ShortPrefix field, stored as an unsigned, 16-
bit, little-endian integer.

ShortPrefix (variable): The name of the DFS namespace root or the DFS link, stored as a string of
Unicode characters. This MUST be a UNC path string with one leading backslash, instead of the
usual two, without a null termination. The string MAY be the same as that in the Prefix field or its
8.3 name.<12>

Type (4 bytes): A bit field, stored as 32-bits in little-endian order, which describes this BLOB.

For domainv1 roots, the Type field parallels the functionality of the msDFS-Propertiesv2
attribute used for domainv2-based DFS namespaces (see section 2.3.4.2) and domainv2-based
DFS links (see section 2.3.4.3).

Value Meaning

PKT_ENTRY_TYPE_DFS

0x00000001

This value is reserved and the Type field MUST always
be set with this value.

PKT_ENTRY_TYPE_OUTSIDE_MY_DOM

0x00000010

The DFS interlink property. This MUST be set only
when at least one DFS link target points to another
DFS namespace. This MUST NOT be set for a DFS root.

PKT_ENTRY_TYPE_INSITE_ONLY

0x00000020

The DFS in-site referral mode property. When set,
instructs the DFS server to enable the DFS in-site
referral mode.

PKT_ENTRY_TYPE_COST_BASED_SITE_SELECTION

0x00000040

The DFS referral site costing property. Enables DFS
referral site costing. This SHOULD be supported.<13>

PKT_ENTRY_TYPE_REFERRAL_SVC

0x00000080

This identifies the DFS namespace root.

53 / 165

[MS-DFSNM-Diff] - v20210407
Distributed File System (DFS): Namespace Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

Value Meaning

PKT_ENTRY_TYPE_ROOT_SCALABILITY

0x00000200

The DFS root scalability mode property. This enables
DFS root scalability mode. This SHOULD be
supported.<14>

PKT_ENTRY_TYPE_TARGET_FAILBACK

0x00008000

The DFS client target failback property. This enables
DFS client target failback for targets of this root or link.
This SHOULD be supported.<15>

Undefined bit positions MUST be set to 0 on writes and ignored on reads.

State (4 bytes): The status of the DFS root or DFS link stored as an unsigned, 32-bit, little-endian

integer. The DFS_VOLUME_STATES bitmask (0x0000000F) MUST be used to access the following
DFS root or DFS link state from this field. For more information about some of these states, see
section 2.2.2.13.

Value Meaning

DFS_VOLUME_STATE_OK

0x00000001

The DFS root or DFS link state is okay.

RESERVED

0x00000002

This value is reserved and MUST NOT be used.

DFS_VOLUME_STATE_OFFLINE

0x00000003

The DFS link is offline and not available for use.

DFS_VOLUME_STATE_ONLINE

0x00000004

The DFS link is online and available for use.

Undefined bit positions of this field MUST be set to 0 on writes and ignored on reads.

CommentSize (2 bytes): The size, in bytes, of the Comment field and stored as an unsigned, 16-

bit, little-endian integer.

Comment (variable): A string of Unicode characters whose size in bytes is specified by the
CommentSize field. The Comment field is associated with the namespace root or link and is for
informational purposes. The comment is meant for human consumption and does not affect server
functionality.

PrefixTimeStamp (8 bytes): The time of the last Prefix field modification, stored as FILETIME, as
specified in [MS-DTYP] section 2.3.3. This SHOULD be set to the last modification time of this
BLOB.

StateTimeStamp (8 bytes): The time of the last State field modification, stored as FILETIME, as
specified in [MS-DTYP] section 2.3.3. This SHOULD be set to the last modification time of this
BLOB.

CommentTimeStamp (8 bytes): The time of the last Comment field modification, stored as

FILETIME, as specified in [MS-DTYP] section 2.3.3. This SHOULD be set to the last modification
time of this BLOB.

Version (4 bytes): The version number of DFSRootOrLinkIDBLOB, stored as an unsigned, 32-bit,

little-endian integer. When creating a new DFSRootOrLinkIDBLOB, this MUST be set to
0x00000003. When updating an existing DFSRootOrLinkIDBLOB, the existing value MUST be
preserved.

2.3.3.1.1.3 DFSTargetListBLOB

54 / 165

[MS-DFSNM-Diff] - v20210407
Distributed File System (DFS): Namespace Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

The DFSTargetListBLOB contains information about all of the targets of the DFS root or DFS link.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

TargetCount

TargetEntryBLOB (variable)

...

TargetCount (4 bytes): The number of TargetEntryBLOB fields contained in this BLOB, stored as an
unsigned, 32-bit, little-endian integer.

TargetEntryBLOB (variable): A BLOB that contains metadata for a DFS target.

2.3.3.1.1.3.1 TargetEntryBLOB

The TargetEntryBLOB holds metadata for the DFS target of a root or a link.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

TargetEntrySize

TargetTimeStamp

...

TargetState

TargetType

ServerNameSize ServerName (variable)

...

ShareNameSize ShareName (variable)

...

TargetEntrySize (4 bytes): The size, in bytes, of this target entry, starting from the

TargetTimeStamp field, and stored as an unsigned, 32-bit, little-endian integer.

TargetTimeStamp (8 bytes): If bits 9 through 63 contain nonzero values, this field encodes the last
modification time of this target entry, stored as FILETIME, as specified in [MS-DTYP] section 2.3.3.
In this case the PriorityRank and PriorityClass members, discussed below, are considered to
logically contain zero if referenced by an implementation.

If bits 9 through 63 are zero, the 64 bits of the TargetTimeStamp has the following format:

55 / 165

[MS-DFSNM-Diff] - v20210407
Distributed File System (DFS): Namespace Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

PriorityRank PriorityCl
ass

High56Bits

...

PriorityRank (5 bits): The priority rank of a target, ranging in value from 0x00 to 0x1F, where
0x00 is the highest rank.

PriorityClass (3 bits): The priority class of a target. One of the following values.

Value Meaning

DFS_TARGET_PRIORITY_CLASS_SITE_COST_NORMAL

0x0

See DfsSiteCostNormalPriorityClass in
section 2.2.2.8.

DFS_TARGET_PRIORITY_CLASS_GLOBAL_HIGH

0x1

See DfsSGlobalHighPriorityClass in section
2.2.2.8.

DFS_TARGET_PRIORITY_CLASS_SITE_COST_HIGH

0x2

See DfsSiteCostHighPriorityClass in section
2.2.2.8

DFS_TARGET_PRIORITY_CLASS_SITE_COST_LOW

0x3

See DfsSiteCostLowPriorityClass in section
2.2.2.8

DFS_TARGET_PRIORITY_CLASS_GLOBAL_LOW

0x4

see DfsGlobalLowPriorityClass in section
2.2.2.8

High56Bits (7 bytes): Set to zero.

TargetState (4 bytes): The state of this target, stored as an unsigned, 32-bit, little-endian integer.

The mask 0x0000000F is used to extract a bit field that contains one of the following valid state
values.

Value Meaning

DFS_STORAGE_STATE_OFFLINE

0x00000001

This target is offline and unavailable for use.

DFS_STORAGE_STATE_ONLINE

0x00000002

This target is online and available for use.

DFS_STORAGE_STATE_ACTIVE

0x00000004

This target is active.

TargetType (4 bytes): The type of target, stored as an unsigned, 32-bit, little-endian integer bit field.
This SHOULD be set to 0x00000002.<16>

ServerNameSize (2 bytes): The size, in bytes, of the ServerName field, stored as an unsigned 16-
bit, little-endian integer.

ServerName (variable): An array of Unicode characters that contains the DFS target server host

name. The size of the array is given in the ServerNameSize field.

56 / 165

[MS-DFSNM-Diff] - v20210407
Distributed File System (DFS): Namespace Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

ShareNameSize (2 bytes): The size, in bytes, of the ShareName, stored as an unsigned, 16-bit,
little-endian integer.

ShareName (variable): An array of Unicode characters that contains the DFS target share name.

2.3.3.1.1.4 SiteInformationBLOB

The SiteInformationBLOB contains the mapping from a DFS target host name to its site name. There
MUST be no more than one BLOB of this type. This BLOB contains zero or more SiteEntryBLOBs.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

SiteTableGuid (16 bytes)

...

...

SiteEntryCount

SiteEntryBLOB (variable)

...

SiteTableGuid (16 bytes): The GUID that uniquely identifies the SiteInformationBLOB.

SiteEntryCount (4 bytes): The number of SiteEntryBLOBs in the SiteEntryBLOB field, stored as an
unsigned, 32-bit, little-endian integer. This MAY be zero.<17><18>

SiteEntryBLOB (variable): Zero or more BLOBs. Each BLOB contains the site of a root target or link

target server in the DFS namespace.

2.3.3.1.1.4.1 SiteEntryBLOB

This BLOB contains a host name whose site information is specified by the SiteNameInfoBLOB (for
more information, see section 2.3.3.1.1.4.1.1).

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

ServerNameSize ServerName (variable)

...

SiteNameInfoCount

SiteNameInfoBLOB (variable)

...

ServerNameSize (2 bytes): The size, in bytes, of the ServerName field, stored as an unsigned, 16-
bit, little-endian integer.

ServerName (variable): A string of Unicode characters representing the DFS target host name.

57 / 165

[MS-DFSNM-Diff] - v20210407
Distributed File System (DFS): Namespace Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

SiteNameInfoCount (4 bytes): The number of SiteNameInfoBLOBs in the SiteNameInfoBLOB field,
stored as an unsigned, 32-bit, little-endian integer.

SiteNameInfoBLOB (variable): The BLOB containing the site name of the server in the
SiteEntryBLOB.

2.3.3.1.1.4.1.1 SiteNameInfoBLOB

The SiteNameInfoBLOB contains the name of a site to which a server belongs.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Flags

SiteNameSize SiteName (variable)

...

Flags (4 bytes): This MUST be set to 0 on write. MUST be ignored on read.

SiteNameSize (2 bytes): The size, in bytes, of the SiteName field, stored as an unsigned, 16-bit,
little-endian integer.

SiteName (variable): A string of Unicode characters representing the directory services site name of
the server. The case of the site name, as provided by directory services, MUST be preserved when
storing in this field.

2.3.4 Schema for Domainv2-Based DFS Namespace

Each domainv2-based DFS namespace has one DFS namespace anchor LDAP entry, one DFS
namespace LDAP entry below it, and one LDAP entry per DFS link in the namespace under the DFS

namespace LDAP entry. The following sections specify the mandatory and optional attributes of the
object classes.

2.3.4.1 LDAP Entry for Domainv2-Based DFS Namespace Anchor

Each domainv2-based DFS namespace under the DFS configuration container has a DFS namespace
anchor LDAP entry.

This object has a single attribute: msDFS-SchemaMajorVersion. This attribute is an integer value
containing the major version number of the supported DFS metadata format.

The object class of the LDAP entry corresponding to the domainv2-based DFS namespace anchor is
ms-DFS-Namespace-Anchor, and its schema is specified in [MS-ADSC]. The schema of the msDFS-
SchemaMajorVersion attribute is specified in [MS-ADA2]. Future revisions of the DFS namespace will
retain this LDAP entry to provide the DFS metadata version information of the DFS namespace.

2.3.4.2 LDAP Entry for Domainv2-Based DFS Namespace

A DFS namespace LDAP entry exists for each domainv2-based DFS namespace under the DFS
namespace anchor LDAP entry.

This object has the following attributes. The schemas for these attributes are specified in [MS-ADA2].

58 / 165

[MS-DFSNM-Diff] - v20210407
Distributed File System (DFS): Namespace Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

Attribute Description

msDFS-SchemaMajorVersion An integer value that contains the major version number of the DFS
metadata format supported.

msDFS-SchemaMinorVersion An integer value that contains the minor version number of the DFS
metadata format supported. The rangeLower attribute of the attribute
schema's LDAP entry contains 0, and the rangeUpper attribute of the
attribute schema's LDAP entry contains the highest minor version number
supported.

msDFS-
NamespaceIdentityGUIDv2

This is the time-stable identifier for a DFS namespace. It is a binary value set
at DFS namespace creation time whose size is specified by the rangeLower
and rangeUpper attributes.

msDFS-GenerationGUIDv2 A binary value whose size is specified by the rangeLower and rangeUpper
attributes. This time-stable identifier is overwritten anytime the LDAP entry
corresponding to the DFS namespace or the DFS link is modified.

This is reserved for future use and MUST NOT be currently used.

msDFS-LastModifiedv2 A time string format defined by ASN.1 standards, as specified in [X680]. The
Coordinated Universal Time (UTC) in the form YYYYMMDDHHMMSS.0Z"0Z"
indicates no time differential.

This attribute is updated each time the DFS root is updated.

msDFS-Ttlv2 A 32-bit signed integer that is interpreted as an unsigned referral Time to
Live (TTL), in seconds.

msDFS-TargetListv2 This attribute stores the DFS target information. The information is stored as
an XML document that contains a list of targets for the root as well as
attributes associated with each target. The maximum size is 2 MB. For the
XML schema of the XML document, see Appendix C.

msDFS-Propertiesv2 This is a multivalued attribute that contains attributes corresponding to the
DFS root. Each attribute is a case-insensitive String(Unicode) (see [MS-

ADTS] section 3.1.1.2.2.2).

msDFS-Commentv2 An optional attribute that contains a comment associated with the DFS
namespace root. A String(Unicode) (see [MS-ADTS] section 3.1.1.2.2.2).

Attribute values for msDFS-Propertiesv2 are described in the following table. A server MUST ignore
unrecognized attribute values when reading the metadata. A server SHOULD<19> preserve
unrecognized attribute values when writing the metadata. Note that they are fixed strings. They have

a more general appearance, but a string comparison is sufficient to analyze them. The absence of an
attribute value in the msDFS-Propertiesv2 attribute indicates that the corresponding property is not
set.

For domainv2-based DFS namespaces, the msDFS-Propertiesv2 attribute parallels the functionality
of the DFSRootOrLinkIDBLOB (section 2.3.3.1.1.2) Type field used for domainv1-based namespaces.

Attribute Value Description

ABDE=on The Access Based Directory Enumeration (ABDE) mode property. Enables ABDE mode.

InsiteReferral=on The DFS in-site referral mode property. When set, instructs the DFS server to enable
the DFS in-site referral mode.

ReferralSiteCosting=on The DFS referral site costing property. Enables DFS referral site costing and SHOULD be
supported.<20>

RootScalability=on The DFS root scalability mode property. This enables DFS root scalability mode and
SHOULD be supported.<21>

59 / 165

[MS-DFSNM-Diff] - v20210407
Distributed File System (DFS): Namespace Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

Attribute Value Description

TargetFailback=on The DFS client target failback property. This enables DFS client target failback for
targets of this root and SHOULD be supported.<22>

State=Okay The DFS root is available for referral requests.

The following attributes are mandatory: msDFS-SchemaMajorVersion, msDFS-SchemaMinorVersion,
msDFS-NamespaceIdentityGUIDv2, msDFS-GenerationGUIDv2, msDFS-LastModifiedv2, msDFS-Ttlv2,

msDFS-TargetListv2, and msDFS-Propertiesv2.

The msDFS-Commentv2 attribute is optional.

The object class of the LDAP entry corresponding to the domainv2-based DFS namespace is msDFS-
Namespacev2, and its schema is specified in [MS-ADSC].

2.3.4.3 LDAP Entry for Domainv2-Based DFS Link

One LDAP entry exists for each DFS link in the namespace under the DFS namespace LDAP entry.

This object has the following attributes. The schemas for these attributes are specified in [MS-ADA2].

Attribute Description

msDFS-
NamespaceIdentityGUIDv2

This is the time-stable identifier for the DFS namespace containing the link, and
matches the value specified in the namespace LDAP entry. It is a binary value
set at DFS namespace creation time whose size is specified by the rangeLower
and rangeUpper attributes.

msDFS-LinkIdentityGUIDv2 This is the time-stable identifier for a DFS link. It is a binary value set at DFS
link creation time whose size is specified by the rangeLower and rangeUpper
attributes. This value is retained in the dynamic object created when the link is
deleted.

msDFS-GenerationGUIDv2 A binary value whose size is specified by the rangeLower and rangeUpper
attributes. This time-stable identifier is overwritten anytime the LDAP entry
corresponding to the DFS namespace or the DFS link is modified.

This is reserved for future use and MUST NOT be currently used.

msDFS-LinkPathv2 A case-insensitive String(Unicode) (see [MS-ADTS] section 3.1.1.2.2.2) that is
the DFS root-relative path to the DFS link reparse point. To simplify LDAP
searches, path separators are forward slashes (/) instead of backward slashes
(\).

msDFS-ShortNameLinkPathv2 A case-insensitive String(Unicode) (see [MS-ADTS] section 3.1.1.2.2.2) that is
the DFS namespace root-relative path to the DFS link reparse point in short
name form. To simplify LDAP searches, path separators are forward slashes (/)
instead of backward slashes (\).

This is reserved for future use and MUST NOT be currently used.

msDFS-
LinkSecurityDescriptorv2

A self-relative security descriptor associated with a DFS link. This attribute is
used for Access Based Directory Enumeration (ABDE) support.

msDFS-LastModifiedv2 A time string format defined by ASN.1 standards. The UTC time in the form
YYYYMMDDHHMMSS.0Z"0Z" indicates no time differential.

This attribute is updated each time the DFS link is updated.

msDFS-Ttlv2 A 32-bit signed integer that is interpreted as an unsigned referral TTL, in
seconds.

msDFS-TargetListv2 This attribute stores the DFS target information. The information is stored as an

60 / 165

[MS-DFSNM-Diff] - v20210407
Distributed File System (DFS): Namespace Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

Attribute Description

XML document that contains a list of targets for the link as well as attributes
associated with each target. The maximum size is 2 MB. For the XML schema of
the XML document, see Appendix C.

msDFS-Propertiesv2 This is a multivalued attribute that contains attributes corresponding to the DFS
link (not individual targets). Each attribute is a case-insensitive String(Unicode)
(see [MS-ADTS] section 3.1.1.2.2.2).

msDFS-Commentv2 An optional attribute that contains a comment associated with the DFS link. A
String(Unicode) (see [MS-ADTS] section 3.1.1.2.2.2).

Attribute values for msDFS-Propertiesv2 are described in the following table. A server MUST ignore
unrecognized attribute values when reading the metadata. A server SHOULD<23> preserve
unrecognized attribute values when writing the metadata. Note that they are fixed strings. While they
have a more general appearance, a string comparison is sufficient to analyze them. The absence of an
attribute value in the msDFS-Propertiesv2 attribute indicates that the corresponding property is not
set.

For domainv2-based DFS links, the msDFS-Propertiesv2 attribute parallels the functionality of the
DFSRootOrLinkIDBLOB (section 2.3.3.1.1.2) Type field used for domainv1-based DFS links.

Attribute Value Description

InsiteReferral=on The DFS in-site referral mode property. When set, instructs the DFS server to enable

the DFS in-site referral mode.

ReferralSiteCosting=on The DFS referral site costing property. Enables DFS referral site costing. This SHOULD
be supported.<24>

TargetFailback=on The DFS client target failback property. This enables DFS client target failback for
targets of this link. This SHOULD be supported.<25>

Interlink=on The DFS interlink property. This MUST be set only when at least one DFS link target
points to another domain-based DFS namespace.

State=Okay

OR

State=Offline

OR

State=Online

The state of the DFS link.

"State=Okay" means that the DFS link is available for referral requests.

"State=Offline" means that the DFS link is offline and none of the DFS targets will be
included in the referral response.

"State=Online" means that the DFS link is online and available for referral requests.

The following attributes are mandatory: msDFS-NamespaceIdentityGUIDv2, msDFS-

LinkIdentityGUIDv2, msDFS-GenerationGUIDv2, msDFS-LinkPathv2, msDFS-
LastModifiedv2, msDFS-Ttlv2, msDFS-TargetListv2, and msDFS-Propertiesv2.

The following attributes are optional: msDFS-ShortNameLinkPathv2, msDFS-
LinkSecurityDescriptorv2, and msDFS-Commentv2.

The object class of the LDAP entry corresponding to a DFS link in a domainV2-based DFS namespace
is msDFS-Linkv2, and its schema is specified in [MS-ADSC].

2.3.4.4 LDAP Entry for Domainv2-Based Deleted Link

Only one LDAP entry corresponds to a deleted link in a domainv2-based DFS namespace. This is a
dynamic object.

This object has the following attributes. The schemas for these attributes are specified in [MS-ADA2].

61 / 165

[MS-DFSNM-Diff] - v20210407
Distributed File System (DFS): Namespace Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

Attribute Description

msDFS-
NamespaceIdentityGUIDv2

This is the time-stable identifier for the DFS namespace containing the link, and
it matches the value specified in the namespace LDAP entry. It is a binary value
set at DFS namespace creation time whose size is specified by the rangeLower
and rangeUpper attributes.

msDFS-LinkIdentityGUIDv2 This is the time-stable identifier for a DFS link. It is a binary value set at DFS link
creation time whose size is specified by the rangeLower and rangeUpper
attributes. This value is retained in the dynamic object created when the link is
deleted.

msDFS-LastModifiedv2 A time string format defined by ASN.1 standards. The UTC time in the form
YYYYMMDDHHMMSS.0Z"0Z" indicates no time differential.

This attribute is updated each time the DFS link entry is updated.

msDFS-LinkPathv2 A case-insensitive String(Unicode) (see [MS-ADTS] section 3.1.1.2.2.2) that is
the DFS root-relative path to the DFS link reparse point. To simplify LDAP
searches, path separators are forward slashes (/) instead of backward slashes
(\).

msDFS-Commentv2 An optional attribute that contains a comment associated with the DFS
namespace link. A case-insensitive String(Unicode) (see [MS-ADTS] section
3.1.1.2.2.2).

msDFS-ShortNameLinkPathv2 A case-insensitive String(Unicode) (see [MS-ADTS] section 3.1.1.2.2.2) that is
the DFS namespace root-relative path to the DFS link reparse point in short
name form. To simplify LDAP searches, path separators are forward slashes (/)
instead of backward slashes (\).

This is reserved for future use and MUST NOT be currently used.

The following attributes are mandatory: msDFS-NamespaceIdentityGUIDv2, msDFS-
LinkIdentityGUIDv2, msDFS-LastModifiedv2, and msDFS-LinkPathv2.

The following attributes are optional: msDFS-Commentv2 and msDFS-ShortNameLinkPathv2.

The object class of the LDAP entry corresponding to a DFS link in a domainv2-based DFS namespace

is msDFS-DeletedLinkv2, and its schema is as specified in [MS-ADSC].

62 / 165

[MS-DFSNM-Diff] - v20210407
Distributed File System (DFS): Namespace Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

3 Protocol Details

3.1 Server Details

3.1.1 Abstract Data Model

This section describes a conceptual model of a possible data organization that an implementation
could maintain in order to participate in this protocol. This organization is provided to facilitate the
explanation of how the protocol behaves. This specification does not mandate that implementations

adhere to this model, as long as their external behavior is consistent with that described in this
document. The following data items are implemented on the server side and are specific to this
protocol:

▪ PDCRoleHolder: For servers of domain-based DFS namespaces, this is the PDC corresponding to
the server's domain.

▪ DFSMetadataCache: DFS metadata of DFS namespaces for which the server is a root target
MAY<26> be cached as an optimization.

Note The preceding conceptual data can be implemented using a variety of techniques. There are no
limitations on data implementation.

3.1.1.1 Global

The following element is global.

NamespaceList: A list of namespaces hosted by the server. Each entry is a tuple of
<NamespaceName, Namespace>, indexed by the NamespaceName, as specified in section
3.1.1.2.

3.1.1.2 Per Namespace

The following are the elements of a Namespace element:

Namespace.NamespaceName: The DFS namespace name.

Namespace.NamespaceType: Type of the DFS namespace – stand-alone, domainv1-based or
domainv2-based.

Namespace.GenerationGUID: A GUID used as a generation number to detect changes to the DFS
metadata. This MUST be updated whenever the metadata of the DFS namespace is changed.

Namespace.NamespaceElementsList: List of the DFS namespace elements as described in section
3.1.1.3.

3.1.1.3 Per NamespaceElement

The NamespaceElement represents a DFS root or a DFS link and has the following parameters:

NamespaceElement.IdentityGUID: A GUID that identifies the DFS namespace element.

NamespaceElement.Prefix: Name of the DFS namespace element.

NamespaceElement.Properties: Set of properties that are applicable for the DFS namespace
element, as specified for PropertyFlags in section 2.2.3.5.

63 / 165

[MS-DFSNM-Diff] - v20210407
Distributed File System (DFS): Namespace Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

NamespaceElement.State: State of the DFS namespace element, as specified for State in section
2.2.3.2.

NamespaceElement.Comment: Comment associated with the DFS namespace element.

NamespaceElement.ReferralTTL: The referral time-out value, in seconds, for the DFS namespace

element.

NamespaceElement.SecurityDescriptor: SecurityDescriptor to be associated with the DFS
namespace element. This is needed only for the DFS link of a stand-alone or domainv2-based DFS
namespace.

NamespaceElement.TargetsList: List of targets for the DFS namespace element. Each element in
the list is as described in section 3.1.1.4.

3.1.1.4 Per TargetsList

The following are the elements of a TargetsList.

TargetsList.TargetCount: Number of targets for the DFS namespace element.

TargetsList.Target: Metadata of the target. This is as described in the section 3.1.1.5.

3.1.1.5 Per Target

The following are the elements of a Target element.

Target.TargetState: State of the target, as specified for State in section 2.2.4.6.

Target.PriorityRank: Priority rank of the target, as specified for TargetPriorityRank in section

2.2.2.7.

Target.PriorityClass: Priority class of the target, as specified in section 2.2.2.8.

Target.ServerName: The DFS target host name.

Target.ShareName: The DFS target share name.

3.1.2 Timers

No protocol timers are required beyond those used internally by RPC to implement resiliency to
network outages, as specified in [MS-RPCE].

3.1.3 Initialization

The server MUST listen on the well-known endpoint defined for this RPC interface, as specified in
section 2.1.

Information about DFS namespaces that the server hosts SHOULD be obtained from a local

information store such as the registry. An entry MUST be created for each namespace in the
NamespaceList. If the server is hosting any stand-alone namespaces, the metadata for that
namespace MUST be initialized into the corresponding Namespace in the NamespaceList. If the

server is joined to a domain and is hosting at least one DFS namespace, it MAY<27> determine the
PDC for the domain and initialize PDCRoleHolder. As a performance optimization, it MAY<28> preload
the DFSMetadataCache with the DFS metadata of the DFS namespaces for which it is acting as a root
target.

64 / 165

[MS-DFSNM-Diff] - v20210407
Distributed File System (DFS): Namespace Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

3.1.4 Message Processing Events and Sequencing Rules

When any RPC method is received for a domain-based DFS namespace that is hosted by the server,
the server MUST first check whether the DFS namespace is up-to-date with any changes that have

happened on it. This check MUST be done against the PDC. When any changes are detected, the
server MUST first bring the namespace it hosts up-to-date and then process the RPC method received.
The details of this operation are implementation-specific.

For a domainv1-based DFS namespace, if the pKTGuid value matches the cached value, the server
MAY work on a cached copy of the pKT attribute. The update operation MUST be committed by issuing
LDAP writes for both the updated pKT attribute and a newly generated pKTGuid attribute. Using the
same LDAP update operation for both attributes ensures atomicity of the update.

For non-update operations in domain-based DFS namespaces, DFS servers MAY retrieve DFS
metadata from any DC within the domain. For update operations in domain-based DFS namespaces,
DFS servers MUST retrieve and store DFS metadata on the PDC.

Unless noted otherwise, DFS servers MUST process host names as case-insensitive string literals. The

DFS server MUST NOT, for example, consider a DNS-conformant host name (as specified in
[RFC1034]) and an IP address as equivalent, even if the host name resolves via DNS to the IP

address.

This protocol uses Win32 error codes. These values are taken from the Windows error number space,
as specified in [MS-ERREF]. Vendors SHOULD reuse those values with their indicated meanings.
Choosing any other value runs the risk of future collisions.<29>

The remainder of this section describes the methods used in the DFS: Namespace Management
Protocol. The following table lists opnum values associated with the methods described in this
document, as well as the section where each is described.

Methods in RPC Opnum Order

Method Description

NetrDfsManagerGetVersion A basic method that returns the version number of the DFS server.

Opnum: 0

NetrDfsAdd A basic method that creates a new DFS link or that adds a new target
to an existing link of a DFS namespace.

Opnum: 1

NetrDfsRemove A basic method that removes a link or a link target from a DFS
namespace.

Opnum: 2

NetrDfsSetInfo A basic method that sets or modifies information relevant to a specific
DFS root, DFS root target, DFS link, or DFS link target.

Opnum: 3

NetrDfsGetInfo A basic method that returns information about a DFS root, a DFS link,
or a DFS namespace.

Opnum: 4

NetrDfsEnum A basic method that enumerates the DFS roots hosted on a server or
the DFS links of a namespace on the server.

Opnum: 5

NetrDfsMove A basic method that renames or moves one or more DFS links. <30>

Opnum: 6

65 / 165

[MS-DFSNM-Diff] - v20210407
Distributed File System (DFS): Namespace Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

Method Description

Opnum7NotUsedOnWire Reserved for local use.

Opnum: 7

Opnum8NotUsedOnWire Reserved for local use.

Opnum: 8

Opnum9NotUsedOnWire Reserved for local use.

Opnum: 9

NetrDfsAddFtRoot A root target method that creates a new domainv1-based DFS
namespace or that adds a root target to an existing namespace.

Opnum: 10

NetrDfsRemoveFtRoot A root target method that removes a root target from a domain-based
DFS namespace or that removes a domain-based DFS namespace.

Opnum: 11

NetrDfsAddStdRoot A stand-alone namespace method that creates a new stand-alone DFS
namespace.

Opnum: 12

NetrDfsRemoveStdRoot A stand-alone namespace method that deletes a stand-alone DFS
namespace.

Opnum: 13

NetrDfsManagerInitialize A basic method that instructs the DFS server to discard its current
state and to reinitialize itself from its stored configuration settings.

Opnum: 14

NetrDfsAddStdRootForced A stand-alone namespace method that creates a new stand-alone DFS
namespace without verifying the existence of the DFS root target
share.

Opnum: 15

NetrDfsGetDcAddress A domain-based namespace method that returns the host name of the
DC for the client to use during the following processes: creating a
domain-based DFS namespace, adding a root target to a domain-
based DFS namespace, removing a root target from a domain-based
DFS namespace, or removing a domain-based DFS namespace.

Opnum: 16

NetrDfsSetDcAddress A domain-based namespace method that instructs a DFS server to use
a specific DC for DFS metadata access in a domain-based DFS
namespace.

Opnum: 17

NetrDfsFlushFtTable A root target method that instructs the DFS server on a DC to purge a
domain-based DFS entry from its referral cache.

Opnum: 18

NetrDfsAdd2 An extended method that creates a new DFS link or that adds a new
target to an existing link of a DFS namespace.

Opnum: 19

NetrDfsRemove2 An extended method that removes a link or a link target.

Opnum: 20

NetrDfsEnumEx An extended method that enumerates DFS roots hosted on a machine

66 / 165

[MS-DFSNM-Diff] - v20210407
Distributed File System (DFS): Namespace Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

Method Description

or DFS links of a namespace.

Opnum: 21

NetrDfsSetInfo2 An extended method that sets or modifies the information that is
associated with a DFS root, a DFS root target, a DFS link, or a DFS link
target.

Opnum: 22

NetrDfsAddRootTarget A basic method that creates a stand-alone DFS namespace, a
domainv1-based DFS namespace, or a domainv2-based DFS
namespace.<31>

Opnum: 23

NetrDfsRemoveRootTarget A basic method that deletes a stand-alone DFS namespace, a
domainv1-based DFS namespace, or a domainv2-based DFS
namespace.<32>

Opnum: 24

NetrDfsGetSupportedNamespaceVersion A basic method that determines the supported DFS metadata version
number. This method is useful in determining an appropriate version
number to pass to the NetrDfsAddRootTarget() method.<33>

Opnum: 25

In the preceding table, the term "Reserved for local use" means that the client MUST NOT send the
opnum, and the server behavior is undefined<34> because it does not affect interoperability.

3.1.4.1 Basic Methods

3.1.4.1.1 NetrDfsManagerInitialize (Opnum 14)

The NetrDfsManagerInitialize method instructs the DFS server to discard its current state and

reinitialize itself from its stored configuration settings. The server SHOULD<35> choose to implement
this method.

The NetrDfsManagerInitialize method has the following Microsoft Interface Definition Language (MIDL)
syntax.

 NET_API_STATUS NetrDfsManagerInitialize(
 [in, string] WCHAR* ServerName,
 [in] DWORD Flags
);

ServerName: The pointer to a null-terminated Unicode host name string of the DFS root target
server or DC where the DFS service is to be reinitialized.

Flags: This parameter MUST be zero.

Return Values: The method MUST return 0 on success and a nonzero error code on failure. The
method can return any specific error code value, as specified in [MS-ERREF] section 2.2. The most
common error codes are listed in the following table.

Return value/code Description

0x00000000

ERROR_SUCCESS

Successful completion.

67 / 165

[MS-DFSNM-Diff] - v20210407
Distributed File System (DFS): Namespace Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

Return value/code Description

0x00000005

ERROR_ACCESS_DENIED

Permission to perform the operation was denied.

0x00000032

ERROR_NOT_SUPPORTED

Server does not support the requested operation.

If this method is implemented, the DFS server SHOULD<36> discard its current state and reinitialize
itself from its stored configuration settings.

3.1.4.1.2 NetrDfsManagerGetVersion (Opnum 0)

The NetrDfsManagerGetVersion method returns the version number of the DFS server in use on the
server.

The NetrDfsManagerGetVersion method has the following MIDL syntax.

 DWORD NetrDfsManagerGetVersion();

This method has no parameters.

Return Values: This method MUST return one of the following values.

Return value Description

0x00000001 The server MUST support stand-alone DFS namespaces and opnums from 0 through 5,
inclusive. The server MAY support domain-based DFS namespaces and other opnums.

0x00000002 In addition to the preceding, the server MUST support domainv1-based DFS namespaces
and opnums 10 through 22, inclusive. The server MAY support hosting more than one DFS
namespace on the same server.

0x00000004 In addition to the preceding, the server MUST support hosting more than one DFS
namespace on the same server and Level parameter value 200 of the NetrDfsEnumEx
method. It SHOULD support opnum 6.

0x00000006 In addition to the preceding, the server MUST support domainv2-based DFS namespace
and opnums 23 through 25, inclusive.

The clients MAY use the version information to determine the RPC methods that the DFS server
supports.<37><38><39><40><41>

3.1.4.1.3 NetrDfsAdd (Opnum 1)

The NetrDfsAdd method creates a new DFS link or adds a new target to an existing link of a DFS
namespace.

The NetrDfsAdd (Opnum 1) method has the following MIDL syntax.

 NET_API_STATUS NetrDfsAdd(
 [in, string] WCHAR* DfsEntryPath,
 [in, string] WCHAR* ServerName,
 [in, unique, string] WCHAR* ShareName,
 [in, unique, string] WCHAR* Comment,
 [in] DWORD Flags
);

68 / 165

[MS-DFSNM-Diff] - v20210407
Distributed File System (DFS): Namespace Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

DfsEntryPath: The pointer to a DFS link path that contains the name of an existing link when
additional link targets are being added or the name of a new link is being created.

ServerName: The pointer to a null-terminated Unicode string that specifies the DFS link target host
name.

ShareName: The pointer to a null-terminated Unicode DFS link target share name string. This can
also be a share name with a path relative to the share, for example, "share1\mydir1\mydir2".
When specified this way, each pathname component MUST be a directory.

Comment: The pointer to a null-terminated Unicode string that contains a comment associated with
this root or link. This string has no protocol-specified restrictions on length or content. The
comment is meant for human consumption and does not affect server functionality. The comment
MUST be ignored when adding a target to an existing link.

Flags: A value indicating the operation to perform. The following table lists such flags.

Value Meaning

0x00000000 Create a new link or adds a new target to an existing link.

DFS_ADD_VOLUME

0x00000001

Create a new link in the DFS namespace if one does not already exist or fails if a
link already exists.

DFS_RESTORE_VOLUME

0x00000002

Add a target without verifying its existence.

If a Flags value other than the bitwise-OR of the above values is provided, the server MUST return

ERROR_INVALID_PARAMETER (0x00000057).

Return Values: The method MUST return 0 on success and a nonzero error code on failure. The
method can return any specific error code value, as specified in [MS-ERREF] section 2.2. The most
common error codes are listed in the following table.

Return value/code Description

0x00000000

ERROR_SUCCESS

Successful completion.

0x00000005

ERROR_ACCESS_DENIED

Permission to perform the operation was denied.

0x00000050

ERROR_FILE_EXISTS

The specified DFS link target already exists.

0x00000057

ERROR_INVALID_PARAMETER

An incorrect parameter was specified.

0x00000490

ERROR_NOT_FOUND

The specified DFS root namespace does not exist.

0x00000032

ERROR_NOT_SUPPORTED

The method does not support a domain-based namespace.

0x00000906

NERR_NetNameNotFound

The DFS link target does not exist.

The NetrDfsAdd method SHOULD<42> support a domain-based DFS namespace. If it does not
support a domain-based DFS namespace it MUST return ERROR_NOT_SUPPORTED.

69 / 165

[MS-DFSNM-Diff] - v20210407
Distributed File System (DFS): Namespace Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

The server MUST verify the existence of the DFS namespace that the DfsEntryPath parameter
specifies. If the namespace does not exist, the server MUST return ERROR_NOT_FOUND.

The server MUST verify whether the link to be added overlaps an existing link. If there is a link for
which the specified DfsEntryPath parameter is a prefix, the server MUST return ERROR_FILE_EXISTS.

If the link to be added already exists, and DFS_ADD_VOLUME is set in the Flags field of the request,
the server MUST return ERROR_FILE_EXISTS.

If the link to be added already exists, and DFS_ADD_VOLUME is not set in the Flags field of the
request, the server MUST attempt to add a new link target to the link. If a target with the path
specified by ServerName and ShareName was already added to the link, the server MUST return
ERROR_FILE_EXISTS.

If DFS_RESTORE_VOLUME is not specified on the Flags parameter, the server MAY<43> choose to

verify whether the link target exists. If DFS_RESTORE_VOLUME is specified, the server MUST NOT
perform this test. If it performs the test and the link target does not exist, the server MUST fail the
call with NERR_NetNameNotFound.

The exact test the server performs to verify link target existence is implementation-defined. A server
MAY,<44> for example, assume all link targets are administered through [MS-SRVS] section 3.1.4.10
and use NetShareGetInfo level 1005 to perform the test. Three reasons not to implement this test are

that

▪ It might not be practical to determine the correct administration interface to query to perform the
test.

▪ A link target server can export a share with a network protocol and administration interface that
this server does not understand.

▪ A secured link target server might not permit this server to contact it.

The Comment parameter MUST be ignored when a target is added to an existing link.

The server SHOULD<45> create a new link without requiring the DFS_ADD_VOLUME Flags parameter.

The server MUST determine whether the specified link target refers to a domain-based namespace. If
it does, this request is creating a DFS interlink. If it is creating an interlink and the link already exists,
the server MUST return an implementation-defined failure value. For domain-based namespaces, the
server MUST set the DFS interlink property as appropriate for the link for each type of domain-based
namespace. See sections 2.3.3.1.1.2 and 2.3.4.3.

The server MUST synchronously update the following fields in the DFS metadata for a stand-alone DFS

namespace.

Operation DFS metadata changes required

Adding a new link New NamespaceElement in NamespaceElementsList.

Adding a new target to an
existing link

New Target in the TargetsList of the NamespaceElement and an update to
the TargetCount.

The server MUST update the following fields in the DFS metadata for a domainv1-based DFS
namespace.

Operation DFS metadata changes required

Adding a new link New DFSNamespaceLinkBLOB and BLOBElementCount.

Adding a new target to New TargetEntryBLOB and updated TargetCount in existing DFSTargetListBLOB,

70 / 165

[MS-DFSNM-Diff] - v20210407
Distributed File System (DFS): Namespace Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

Operation DFS metadata changes required

an existing link updated DFSTargetListBLOBSize and BLOBDataSize of DFSNamespaceLinkBLOB.

The server MUST update the following fields in the DFS metadata for a domainv2-based DFS
namespace.

Operation DFS metadata changes required

Adding a new link The following mandatory attributes MUST be updated: msDFS-NamespaceIdentityGUIDv2,
msDFS-LinkIdentityGUIDv2, msDFS-GenerationGUIDv2, msDFS-LinkPathv2, msDFS-
LastModifiedv2, msDFS-TargetListv2, msDFS-Propertiesv2, and msDFS-Ttlv2.

The following optional attribute MAY be updated: msDFS-Commentv2.<46>

Adding a new
target to an
existing link

Update targetCount, totalStringLengthInBytes, priority, and state attributes in
msDFS-TargetListv2. Update msDFS-LastModifiedv2.

The server MUST synchronously update the DFS metadata of a domain-based DFS namespace.

If DFS root scalability mode is not enabled for the domain-based DFS namespace, the server MUST
notify other DFS root targets of the change in DFS metadata by asynchronously issuing a
NetrDfsSetInfo (Opnum 3) method with the Level parameter 101, and with the State field of
DFS_INFO_101 set to DFS_VOLUME_STATE_RESYNCHRONIZE.<47><48>

3.1.4.1.4 NetrDfsRemove (Opnum 2)

The NetrDfsRemove method removes a link or a link target from a DFS namespace. A link can be
removed regardless of the number of targets associated with it.

The NetrDfsRemove method has the following MIDL syntax.

 NET_API_STATUS NetrDfsRemove(
 [in, string] WCHAR* DfsEntryPath,
 [in, unique, string] WCHAR* ServerName,
 [in, unique, string] WCHAR* ShareName
);

DfsEntryPath: The pointer to the DFS link path that contains the name of an existing link.

ServerName: The pointer to a null-terminated Unicode DFS link target host name string. Clients
MUST set ServerName to a NULL pointer in requests to remove the link and all its link targets.

ShareName: The pointer to a null-terminated Unicode DFS link target share name string. This can
also be a share name with a path relative to the share, for example, "share1\mydir1\mydir2".
Clients MUST set ShareName to a NULL pointer in requests to remove the link and all its link
targets.

Return Values: This method MUST return 0 on success and a nonzero error code on failure. The

method can return any specific error code value, as specified in [MS-ERREF] section 2.2. The most
common error codes are listed in the following table.

Return value/code Description

0x00000000

ERROR_SUCCESS

Successful completion.

0x00000002 The specified DFS link target was not found as a target of the specified

71 / 165

[MS-DFSNM-Diff] - v20210407
Distributed File System (DFS): Namespace Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

Return value/code Description

ERROR_FILE_NOT_FOUND DFS link.

0x00000005

ERROR_ACCESS_DENIED

Permission to perform the operation was denied.

0x00000057

ERROR_INVALID_PARAMETER

An incorrect parameter was specified.

0x00000032

ERROR_NOT_SUPPORTED

The method does not support a domain-based namespace.

0x00000490

ERROR_NOT_FOUND

The specified DFS namespace or DFS link does not exist.

The NetrDfsRemove method SHOULD<49> support a domain-based DFS namespace. If it does not

support a domain-based DFS namespace it MUST return ERROR_NOT_SUPPORTED.

The server MUST verify the existence of the DFS namespace that the DfsEntryPath parameter
specifies. If the namespace does not exist, the server MUST return ERROR_NOT_FOUND.

The server MUST verify the existence of the DFS link DfsEntryPath parameter specifies. If that
existence check fails, the server MUST return ERROR_NOT_FOUND.

The server MUST verify the existence of the DFS link target of the DFS link that the ServerName and
RootShare parameters specify. If that existence check fails, the server MUST return

ERROR_FILE_NOT_FOUND.

If the ServerName and ShareName parameters are both NULL, the server MUST remove the link and
all its link targets. If the ServerName and ShareName are not NULL, the server MUST remove the
specified link target. If the specific target is the last target of the link, the server MUST remove the
link as well. If only one of ServerName or ShareName is NULL, the server MUST return
ERROR_INVALID_PARAMETER.

The server MUST synchronously update the following fields in the DFS metadata for a stand-alone DFS

namespace.

Operation DFS metadata changes required

Remove link Remove corresponding NamespaceElement from NamespaceElementsList.

Remove link
target

Remove Target from the TargetsList of the NamespaceElement, and update the
TargetCount.

The server MUST update the following fields in the DFS metadata for a domainv1-based DFS
namespace.

Operation DFS metadata changes required

Remove link Remove DFSNamespaceLinkBLOB; update BLOBElementCount.

Remove link
target

Update TargetCount in existing DFSTargetListBLOB, remove TargetEntryBLOB. Update
DFSTargetListBLOBSize, update BLOBDataSize of DFSNamespaceLinkBLOB.

The server MUST update the following fields in the DFS metadata for a domainv2-based DFS
namespace.

72 / 165

[MS-DFSNM-Diff] - v20210407
Distributed File System (DFS): Namespace Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

Operation DFS metadata Changes Required

Remove link Remove the DFS link object.

Remove link
target

Update TargetCount and totalStringLengthInBytes attributes in msDFS-TargetListv2;
update msDFS-LastModifiedv2.

A remove link operation in a domainv2-based DFS namespace first creates a dynamic object for the
entry to be deleted. To create a dynamic object, the server MUST do the following:

▪ Set the object class to msDFS-DeletedLinkv2; a normal DFS link LDAP entry's object class is
msDFS-Linkv2.

▪ Set the deleted DFS link's identity GUID.

▪ Set an updated msDFS-LastModifiedv2 time-stamp attribute.

If the dynamic object is created successfully, the original link LDAP entry is then deleted. If the delete

is successful, the dynamic object is left intact; otherwise, the dynamic object is itself deleted. The
advantage of using a dynamic object is that directory services perform garbage collection.

The server MUST synchronously update the DFS metadata of a domain-based DFS namespace.

If DFS root scalability mode is not enabled for the domain-based DFS namespace, the server MUST
notify other DFS root targets of the change in DFS metadata by asynchronously issuing a
NetrDfsSetInfo method with the Level parameter 101, and with the State field of DFS_INFO_101 set
to DFS_VOLUME_STATE_RESYNCHRONIZE.<50><51>

3.1.4.1.5 NetrDfsSetInfo (Opnum 3)

The NetrDfsSetInfo method sets or modifies information relevant to a specific DFS root, DFS root
target, DFS link, or DFS link target.

The NetrDfsSetInfo method uses the following MIDL syntax.

 NET_API_STATUS NetrDfsSetInfo(
 [in, string] WCHAR* DfsEntryPath,
 [in, unique, string] WCHAR* ServerName,
 [in, unique, string] WCHAR* ShareName,
 [in] DWORD Level,
 [in, switch_is(Level)] DFS_INFO_STRUCT* DfsInfo
);

DfsEntryPath: The pointer to a DFS root or a DFS link path.

ServerName: The pointer to a null-terminated Unicode DFS root target or DFS link target host name
string. Clients MUST set this to a NULL pointer when the DFS root or DFS link is used and not the
DFS root target or DFS link target.

ShareName: The pointer to a null-terminated Unicode string DFS root target or DFS link target host

name. Clients MUST set this to a NULL pointer when the DFS root or DFS link is used and not the

DFS root target or DFS link target.

Level: Specifies the information level of the data and, in turn, determines the action the method
performs.

Value Meaning

Level_100 Sets the comment associated with the root or link specified in the DfsInfo parameter. The

73 / 165

[MS-DFSNM-Diff] - v20210407
Distributed File System (DFS): Namespace Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

Value Meaning

0x00000064 ServerName and ShareName parameters MUST be NULL.

Level_101

0x00000065

Sets the state associated with the root, link, root target, or link target specified in
DfsInfo.<52>

Level_102

0x00000066

Sets the time-out value associated with the root or link specified in DfsInfo. The
ServerName and ShareName parameters MUST be ignored.

Level_103

0x00000067

Sets the property flags for the root or link specified in DfsInfo. The ServerName and
ShareName parameters MUST be NULL.

Level_104

0x00000068

Sets the target priority rank and class for the root target or link target specified in DfsInfo.

Level_105

0x00000069

Sets the comment, state, time-out information, and property flags for the namespace root
or link specified in DfsInfo. Does not apply to a root target or link target. The ServerName

and ShareName parameters MUST be NULL.

Level_106

0x0000006A

Sets the target state and priority for the DFS root target or DFS link target specified in
DfsInfo.<53> This does not apply to the DFS namespace root or link.

Level_107

0x0000006B

Sets the comment, state, time-out, security descriptor information, and property flags for
the namespace root or link specified in DfsInfo. Does not apply to a root target or link
target. The ServerName and ShareName parameters MUST be NULL. The security
descriptor MUST NOT have owner, group, or SACLs in it.

The security descriptor MUST be a NULL, zero length value if used on a namespace root. In
this case, note that it is equivalent to using Level_105.

Level_150

0x00000096

Sets the security descriptor associated with a DFS link. Only stand-alone DFS namespaces
and domainv2-based DFS namespaces are supported. The ServerName and ShareName
parameters MUST both be NULL. The security descriptor MUST NOT have owner, group, or
SACLs in it.

The server MUST support Level values 100 and 101. The server SHOULD support Level values
102-107 and 150. If the server does not support the provided Level, it MUST fail the call.<54>
The server SHOULD return error code ERROR_INVALID_PARAMETER for unsupported level
values.<55>

DfsInfo: The pointer to a DFS_INFO_STRUCT union that contains the specified data. The value of the
Level parameter selects the case of the union.

Return Values: This method MUST return 0 on success and a nonzero error code on failure. The
method can return any specific error code value, as specified in [MS-ERREF], section 2.2. The
most common error codes are listed in the following table.

Return value/code Description

0x00000000

ERROR_SUCCESS

Successful completion.

0x00000002

ERROR_FILE_NOT_FOUND

The specified DFS link target was not found as a target of the specified
DFS link.

0x00000005

ERROR_ACCESS_DENIED

Permission to perform the operation was denied.

0x00000032

ERROR_NOT_SUPPORTED

The specified operation is not supported.

74 / 165

[MS-DFSNM-Diff] - v20210407
Distributed File System (DFS): Namespace Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

Return value/code Description

0x00000057

ERROR_INVALID_PARAMETER

An incorrect parameter was specified.

0x00000490

ERROR_NOT_FOUND

The specified DFS root namespace or DFS link, or DFS link or root target,
does not exist.

The NetrDfsSetInfo method SHOULD<56> support a domain-based DFS namespace. If it does not
support a domain-based DFS namespace it MUST return ERROR_NOT_SUPPORTED.

The server MUST verify the existence of the DFS namespace that the DfsEntryPath parameter
specifies. If the namespace does not exist, the server MUST return ERROR_NOT_FOUND.

The server MUST verify the existence of the DFS link that the DfsEntryPath parameter specifies. If that
existence check fails, the server MUST return ERROR_NOT_FOUND.

The server MUST verify the existence of the DFS link target of the DFS link that the ServerName and

RootShare parameters specify. If that existence check fails, the server MUST return
ERROR_FILE_NOT_FOUND.

The server MUST fail any attempt to set the state of a DFS root, a DFS link, a DFS root target or a
DFS link target to a value that is not specified for the Level parameter. The server MUST fail any
attempt to set the property flags on a DFS link that are defined only for a DFS root.

When the Level parameter is 101 and the State field in the DFS_INFO_101 structure is
DFS_VOLUME_STATE_RESYNCHRONIZE, the server MUST reload the contents of the
DFSMetadataCache for the DFS namespace that the ShareName parameter specifies. It MUST then

update its local DFS namespace information by comparing this information against the DFS metadata.
The details of this update operation are implementation-dependent.

When level 107 is used for a DFS namespace root or for a domainv1-based DFS link, the
pSecurityDescriptor parameter has no meaning because security descriptors cannot be associated with
those objects. In these cases, if pSecurityDescriptor is not NULL, the server MUST fail with

ERROR_NOT_SUPPORTED.

For domainv1-based DFS root, if the Level in the DfsInfo structure is 103, 105, or 107, and if the

PropertyFlagMask field has the DFS_PROPERTY_FLAG_ABDE flag set, the server MUST fail the call
with ERROR_NOT_SUPPORTED.

If the Level in the DfsInfo structure is 103, 105, or 107, and if PropertyFlagMask field has
DFS_PROPERTY_FLAG_CLUSTER_ENABLED flag set, the server MUST fail the call with
ERROR_NOT_SUPPORTED.

The server MUST synchronously update the following fields in the DFS metadata for a stand-alone DFS
namespace, depending on the value of the Level parameter.

Value DFS metadata changes required

100

(0x00000064)

Update Comment in the NamespaceElement.

101

(0x00000065)

If a link, update the State field of NamespaceElement. If a root target or link target, update
the TargetState field of Target.

102

(0x00000066)

Update the ReferralTTL field of NamespaceElement.

103 Update the Properties field of NamespaceElement.

75 / 165

[MS-DFSNM-Diff] - v20210407
Distributed File System (DFS): Namespace Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

Value DFS metadata changes required

(0x00000067)

104

(0x00000068)

Update the PriorityRank and PriorityClass fields of Target.

105

(0x00000069)

Update the Comment, State, ReferralTTL, and Properties fields of NamespaceElement.

106

(0x0000006A)

Update the PriorityRank, PriorityClass, and TargetState fields of Target.

107

(0x0000006B)

Update the Comment, State, ReferralTTL, SecurityDescriptor, and Properties fields of
NamespaceElement.

150

(0x00000096)

Update SecurityDescriptor of the NamespaceElement.

The server MUST update the following fields in the DFS metadata for a domainv1-based DFS
namespace, depending on the value of the Level parameter.

Value DFS metadata changes required

100
(0x00000064)

Update CommentSize and Comment in DFSRootOrLinkIDBLOB and BLOBDataSize of
DFSNamespaceLinkBLOB.

101
(0x00000065)

If a link, update the State field of DFSRootOrLinkIDBLOB.

If a root target or link target, update the TargetState field of TargetEntryBLOB.

102
(0x00000066)

Update the ReferralTTL field of DFSNamespaceRootBLOB or DFSNamespaceLinkBLOB.

103
(0x00000067)

Update the Type field of DFSRootOrLinkIDBLOB.

104
(0x00000068)

Update the PriorityRank and PriorityClass fields of TargetEntryBLOB.

105
(0x00000069)

Update CommentSize and Comment in DFSRootOrLinkIDBLOB, the State field of
DFSRootOrLinkIDBLOB, the ReferralTTL field of DFSNamespaceRootBLOB or
DFSNamespaceLinkBLOB, and the Type field of DFSRootOrLinkIDBLOB.

106
(0x0000006A)

Update the PriorityRank, PriorityClass, and TargetState fields of TargetEntryBLOB.

107
(0x0000006B)

See 105 (0x00000069).

If the server does not support levels 104 or 106, it MUST use the FILETIME encoding for the
TargetTimestamp field of the TargetEntryBLOB and update the field for each modified

TargetEntryBLOB, as specified in section 2.3.3.1.1.3.1.

If the server supports levels 104 and 106, it MUST instead use the encoding which provides the
PriorityRank and PriorityClass in the TargetTimestamp field.

Note that for interoperability, all root targets of a namespace SHOULD use the same encoding for this

TargetTimestamp field.

76 / 165

[MS-DFSNM-Diff] - v20210407
Distributed File System (DFS): Namespace Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

The server MUST update the following fields in the DFS metadata for a domainv2-based DFS
namespace, depending on the value of the Level parameter. For information about these fields, see

section 2.3.4.

Value DFS metadata changes required

100
(0x00000064)

Update msDFS-Commentv2.

101
(0x00000065)

State field of msDFS-TargetListv2.

102
(0x00000066)

Update msDFS-Ttlv2.

103
(0x00000067)

Update msDFS-Propertiesv2.

104
(0x00000068)

Update the priorityClass and priorityRank attributes in msDFS-TargetListv2.

105
(0x00000069)

Update msDFS-Commentv2, msDFS-Ttlv2, msDFS-Propertiesv2, and the State field of
msDFS-Targetlistv2.

106
(0x0000006A)

Update priorityClass, priorityRank, and the State field of msDFS-TargetListv2.

107
(0x0000006B)

Update msDFS-Commentv2, msDFS-Ttlv2, msDFS-Propertiesv2, msDFS-
LinkSecurityDescriptorv2, and the State field of msDFS-TargetListv2.

150
(0x00000096)

Update msDFS-LinkSecurityDescriptorv2.

The server MUST synchronously update the DFS metadata of a domain-based DFS namespace.

For domainv2-based or standalone DFS root, if the DFS_PROPERTY_FLAG_ABDE flag in

NamespaceElement.Properties is either set or cleared as a result of this method, the server MUST
communicate with the local SMB service to enable (DFS_PROPERTY_FLAG_ABDE set) or disable
(DFS_PROPERTY_FLAG_ABDE cleared) the Access-Based Directory Enumeration property on the DFS
root target by calling the NetrShareSetinfo method using Level 1005 (as specified in [MS-SRVS]
section 3.1.4.11).

If DFS root scalability mode is not enabled for the domain-based DFS namespace, the server MUST

notify other DFS root targets of the change in DFS metadata by asynchronously issuing a
NetrDfsSetInfo method with the Level parameter 101, and with the State field of DFS_INFO_101 set
to DFS_VOLUME_STATE_RESYNCHRONIZE.<57>

3.1.4.1.6 NetrDfsGetInfo (Opnum 4)

The NetrDfsGetInfo method returns information about a DFS root or a DFS link of the specified DFS
namespace.

The NetrDfsGetInfo method has the following MIDL syntax.

 NET_API_STATUS NetrDfsGetInfo(
 [in, string] WCHAR* DfsEntryPath,
 [in, unique, string] WCHAR* ServerName,
 [in, unique, string] WCHAR* ShareName,
 [in] DWORD Level,
 [out, switch_is(Level)] DFS_INFO_STRUCT* DfsInfo
);

77 / 165

[MS-DFSNM-Diff] - v20210407
Distributed File System (DFS): Namespace Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

DfsEntryPath: The pointer to a DFS root or a DFS link path.

ServerName: This parameter MUST be a NULL pointer for Level_50 and MUST be ignored for other

levels.

ShareName: This parameter MUST be a NULL pointer for Level_50 and MUST be ignored for other

levels.

Level: This parameter specifies the information level of the data and, in turn, determines the action
the method performs.

Value Meaning

Level_1

0x00000001

Returns the name of the DFS root or the DFS link.

Level_2

0x00000002

Returns the name, comment, state, and number of targets for the DFS root or the DFS
link.

Level_3

0x00000003

Returns the name, comment, state, number of targets, and target information for the DFS
root or the DFS link.

Level_4

0x00000004

Returns the name, comment, state, time-out, GUID, number of targets, and target
information for the DFS root or the DFS link.

Level_5

0x00000005

Returns the name, comment, state, time-out, GUID, property flags, metadata size, and
number of targets for the DFS root or the DFS link.

Level_6

0x00000006

Returns the name, comment, state, GUID, time-out, property flags, metadata size,
number of targets, and target information for the DFS root or the DFS link.

Level_7

0x00000007

Returns the version number GUID of the DFS metadata. This value only applies to the DFS
root.

Level_8

0x00000008

Returns the name, comment, state, time-out, GUID, property flags, metadata size,
number of targets, and security descriptor associated with the DFS root or the DFS link.

Only stand-alone DFS namespaces and domainv2-based DFS namespaces are supported.

Level_9

0x00000009

Returns the name, comment, state, GUID, time-out, property flags, metadata size,
number of targets, list of targets, and security descriptor for the DFS root or the DFS link.

Only stand-alone DFS namespaces and domainv2-based DFS namespaces are supported.

Level_50

0x00000032

Returns the DFS metadata version and capability information of an existing DFS
namespace. This level is valid only for the DFS namespace root, not for DFS links. The
ServerName and ShareName parameters MUST both be NULL.<58>

Level_100

0x00000064

Returns the comment associated with the root or DFS link specified in the DfsEntryPath

parameter.

Level_150

0x00000096

Returns the security descriptor associated with a DFS link.

Only stand-alone DFS namespaces and domainv2-based DFS namespaces are supported.

The server MUST support Level values 1-3 and 100. The server SHOULD support Level values 4-9,
50 and 150. If the server does not support the provided Level, it MUST fail the call.<59> The
server SHOULD return error code ERROR_INVALID_PARAMETER for unsupported Level

values.<60>

DfsInfo: The pointer to a DFS_INFO_STRUCT union to receive the returned information. The case of
the union is selected by the value of the Level parameter.

78 / 165

[MS-DFSNM-Diff] - v20210407
Distributed File System (DFS): Namespace Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

Return Values: The method MUST return 0 on success and a nonzero error code on failure. The
method can return any specific error code value, as specified in [MS-ERREF] section 2.2. The most

common error codes are listed in the following table.

Return value/code Description

0x00000000

ERROR_SUCCESS

Successful completion.

0x00000032

ERROR_NOT_SUPPORTED

The specified operation is not supported.

0x00000057

ERROR_INVALID_PARAMETER

An incorrect parameter was specified.

0x00000490

ERROR_NOT_FOUND

The specified DFS root or DFS link, or DFS link or root target does not
exist.

The server MUST verify the existence of the DFS namespace that the DfsEntryPath parameter

specifies. If the namespace does not exist, the server MUST return ERROR_NOT_FOUND.

The server MUST verify the existence of the DFS link that the DfsEntryPath parameter specifies. If that
existence check fails, the server MUST return ERROR_NOT_FOUND.

Value DFS metadata field

1

(0x00000001)

The Prefix field of NamespaceElement.

2

(0x00000002)

In addition to those for Level 1: the Comment and State fields of NamespaceElement and
the TargetCount field of TargetsList.

3

(0x00000003)

In addition to those for Level 2: Target entries in the TargetsList.

4

(0x00000004)

In addition to those for Level 3: the ReferralTTL and IdentityGUID fields of
NamespaceElement.

5

(0x00000005)

In addition to those for Level 4: the Properties field of NamespaceElement, and the size of
the DFS namespace metadata,<61> but excluding Target entries.

6

(0x00000006)

In addition to those for Level 5: Target entries in the TargetsList.

7

(0x00000007)

The value of GenerationGUID attribute of the Namespace object.

8

(0x00000008)

In addition to those for Level 5: SecurityDescriptor of the NamespaceElement.

9

(0x00000009)

In addition to those for Level 6: SecurityDescriptor of the NamespaceElement.

50

(0x00000032)

No metadata attribute stores this data. The value returned MUST, however, be one of the
values defined in the table in section 2.2.3.10.

79 / 165

[MS-DFSNM-Diff] - v20210407
Distributed File System (DFS): Namespace Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

 For a standalone DFS namespace, the server MUST identify a consistent GUID for the specified DFS
link or DFS root path. This value MUST conform to the expectations of UUID uniqueness provided by
[RFC4122] or [C706], though those specific algorithms are not required. This GUID value MUST be
used when responding to calls specifying a Level parameter whose corresponding return structure

provides the GUID: values of 4, 5, 6, 8, or 9.

The server MUST use the following fields in the DFS metadata for a stand-alone DFS namespace to
return the required information, depending on the value of the Level parameter.

The server MUST use the following fields in the DFS metadata for a domainv1-based DFS namespace
to return the required information, depending on the value of the Level parameter.

Value DFS metadata field

1

(0x00000001)

The PrefixSize and Prefix fields of DFSRootOrLinkIDBLOB.

2

(0x00000002)

In addition to those for Level 1: the CommentSize, Comment, and State fields of
DFSRootOrLinkIDBLOB and the TargetCount field of DFSTargetListBLOB.

3

(0x00000003)

In addition to those for Level 2: TargetEntryBLOB.

4

(0x00000004)

In addition to those for Level 3: the ReferralTTL field of DFSNamespaceRootBLOB or
DFSNamespaceLinkBLOB; the RootOrLinkGuid field of DFSRootOrLinkIDBLOB.

5

(0x00000005)

In addition to those for Level 4: the RootOrLinkGuid field of DFSRootOrLinkIDBLOB, the
Type field of DFSRootOrLinkIDBLOB, and the Size field of the value stored in the pKT
attribute of the DFS namespace's object, but excluding TargetEntryBLOB.

6

(0x00000006)

In addition to those for Level 5: TargetEntryBLOB.

7

(0x00000007)

The Value of pKTGuid attribute of the DFS namespace's object.

50

(0x00000032)

No metadata attribute stores this data. The value returned MUST, however, be one of the
values defined in the table in section 2.2.3.10.

100

(0x00000064)

CommentSize and Comment in DFSRootOrLinkIDBLOB, and BLOBDataSize of
DFSNamespaceLinkBLOB.

Note that for interoperability, all root targets of a namespace SHOULD use the same encoding for this

TargetTimestamp field, as specified in section 2.3.3.1.1.3.1.

The server MUST use the following fields in the DFS metadata for a domainv2-based DFS namespace
to return the required information, depending on the value of the Level parameter.

Value DFS metadata field

1

(0x00000001)

The msDFS-LinkPathv2 attribute.

100

(0x00000064)

Comment in NamespaceElement.

150

(0x00000096)

SecurityDescriptor of the NamespaceElement.

80 / 165

[MS-DFSNM-Diff] - v20210407
Distributed File System (DFS): Namespace Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

Value DFS metadata field

2

(0x00000002)

In addition to those for Level 1: msDFS-Commentv2, msDFS-Propertiesv2, and the
TargetCount field of msDFS-TargetListv2.

3

(0x00000003)

In addition to those for Level 2: msDFS-TargetListv2.

4

(0x00000004)

In addition to those for Level 3: msDFS-Ttlv2, msDFS-NamespaceIdentityGUIDv2 for DFS
root, and msDFS-LinkIdentityGUIDv2 for DFS link.

5

(0x00000005)

In addition to those for Level 4: msDFS-Propertiesv2. Excludes msDFS-TargetListv2.

6

(0x00000006)

In addition to those for Level 4: msDFS-Propertiesv2.

7

(0x00000007)

The value of the msDFS-GenerationGUIDv2 attribute of the DFS namespace's object.

8

(0x00000008)

In addition to those for Level 5: msDFS-LinkSecurityDescriptorv2.

9

(0x00000009)

In addition to those for Level 6: msDFS-LinkSecurityDescriptorv2.

50

(0x00000032)

The msDFS-SchemaMajorVersion and msDFS-SchemaMinorVersion attributes.

100

(0x00000064)

The msDFS-Commentv2 attribute.

150

(0x00000096)

The msDFS-LinkSecurityDescriptorv2 attribute.

3.1.4.1.7 NetrDfsEnum (Opnum 5)

The NetrDfsEnum method enumerates the DFS root hosted on a server or the DFS links of the
namespace hosted by a server. Depending on the information level, the targets of the root and links
are also displayed.

The NetrDfsEnum method uses the following MIDL syntax.

 NET_API_STATUS NetrDfsEnum(
 [in] DWORD Level,
 [in] DWORD PrefMaxLen,
 [in, out, unique] DFS_INFO_ENUM_STRUCT* DfsEnum,
 [in, out, unique] DWORD* ResumeHandle
);

Level: This parameter specifies the information level of the data and, in turn, determines the action
that the method performs. On successful return, the server MUST return an array of the
corresponding structures in the buffer pointed to by DfsEnum.

81 / 165

[MS-DFSNM-Diff] - v20210407
Distributed File System (DFS): Namespace Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

Value Meaning

Level_1

0x00000001

Gets the name of the DFS root and all links beneath it. In this case, on successful return
DfsEnum MUST point to an array of DFS_INFO_1 structures.

Level_2

0x00000002

Gets the name, comment, state, and number of targets for the DFS root and all links under
the root. In this case, on successful return DfsEnum MUST point to an array of DFS_INFO_2
structures.

Level_3

0x00000003

Gets the name, comment, state, number of targets, and target information for the DFS root
and all links under the root. In this case, on successful return DfsEnum MUST point to an
array of DFS_INFO_3 structures.

Level_4

0x00000004

Gets the name, comment, state, time-out, GUID, number of targets, and target information
for the DFS root and all links under the root. In this case, on successful return DfsEnum
MUST point to an array of DFS_INFO_4 structures.

Level_5

0x00000005

Gets the name, comment, state, time-out, GUID, property flags, metadata size, and
number of targets for a DFS root and all links under the root. In this case, on successful
return DfsEnum MUST point to an array of DFS_INFO_5 structures.

Level_6

0x00000006

Gets the name, comment, state, time-out, GUID, property flags, metadata size, number of
targets, and target information for a DFS root or DFS links. In this case, on successful
return DfsEnum MUST point to an array of DFS_INFO_6 structures.

Level_8

0x00000008

Gets the name, comment, state, time-out, GUID, property flags, metadata size, and
number of targets for a DFS root and all DFS links under the root. Also returns the security
descriptor associated with each of the DFS links. In this case, on successful return DfsEnum
MUST point to an array of DFS_INFO_8 structures.

Level_9

0x00000009

Gets the name, comment, state, time-out, GUID, property flags, metadata size, and
number of targets, and target information for a DFS root and all DFS links under the root.
Also returns the security descriptor associated with each of the DFS links. In this case, on
successful return DfsEnum MUST point to an array of DFS_INFO_9 structures.

The server MUST support Level values 1, 2 and 3. The server SHOULD support Level values 5, 6,

8, 9, and 300. The server on a DC SHOULD support Level value 200. If the server does not
support the provided Level, it MUST fail the call.<62> The server SHOULD return error code
ERROR_INVALID_PARAMETER for unsupported Level values.<63>

PrefMaxLen: This parameter specifies restrictions on the number of elements returned. A value of
0xFFFFFFFF means there are no restrictions, in which case all entries MUST be returned.<64>

DfsEnum: A pointer to a DFS_INFO_ENUM_STRUCT union to receive the returned information. The
client SHOULD set the Level member to the same value as the method's Level parameter, and
MUST set the DfsInfoContainer union member to a pointer to the corresponding container
structure as specified in section 2.2.6. The client MUST initialize the container structure's
EntriesRead member to zero and Buffer member to a NULL pointer. The value of the Level
member determines the case of the union.

ResumeHandle: This parameter is used to continue an enumeration when more data is available
than can be returned in a single invocation of this method.

▪ If this parameter is not a NULL pointer, and the method returns ERROR_SUCCESS, this
parameter receives an implementation-specific nonzero value that can be passed in
subsequent calls to this method to continue the enumeration.

▪ If this parameter is a NULL pointer or points to a 0 value, it indicates that this is an initial
enumeration request.

▪ If this parameter is not a NULL pointer and points to a nonzero value returned in
ResumeHandle by an earlier invocation of this method, the server will attempt to continue a

82 / 165

[MS-DFSNM-Diff] - v20210407
Distributed File System (DFS): Namespace Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

previous enumeration, but MAY produce incomplete or inconsistent results due to the
possibility of concurrent updates to the DFS namespace.<65>

Return Values: The method MUST return 0 on success and a nonzero error code on failure. The
method can return any specific error code value, as specified in [MS-ERREF] section 2.2. The most

common error codes are listed in the following table.

Return value/code Description

0x00000000

ERROR_SUCCESS

Successful completion.

0x00000057

ERROR_INVALID_PARAMETER

An incorrect parameter was specified.

0x00000103

ERROR_NO_MORE_ITEMS

There is no data to return.

0x00000490

ERROR_NOT_FOUND

The specified DFS root namespace does not exist.

0x000010DF

ERROR_DEVICE_NOT_AVAILABLE

The server hosts more than one root.

A server MAY<66> implement this method.

The server MUST verify that it hosts a DFS namespace. If that check fails, the server MUST return
ERROR_NOT_FOUND.

The server MUST return ERROR_NO_MORE_ITEMS (0x00000103) if there is no data to return.

The server MUST return ERROR_DEVICE_NOT_AVAILABLE if the server hosts more than one root.

Each member of the DFS_INFO_ENUM_STRUCT return buffer MUST be constructed according to the

rules of section 3.1.4.1.6 (NetrDfsGetInfo) for the specified value of the Level parameter.<67>

If the requested Level is 1 through 9 and ResumeHandle indicates initial enumeration, the server
MUST return the DFS root entry as the first member of the DFS_INFO_ENUM_STRUCT return buffer

followed by DFS links in implementation-specific order.

If the requested Level is 1 through 9 and ResumeHandle does not indicate initial enumeration, the
server MUST NOT return the DFS root entry and all the entries of the DFS_INFO_ENUM_STRUCT
return buffer MUST be DFS links in implementation-specific order.

3.1.4.1.8 NetrDfsMove (Opnum 6)

The NetrDfsMove (Opnum 6) method renames or moves a DFS link. This method has the following

MIDL syntax.

 NET_API_STATUS NetrDfsMove(
 [in, string] WCHAR* DfsEntryPath,
 [in, string] WCHAR* NewDfsEntryPath,
 [in] unsigned long Flags
);

DfsEntryPath: The pointer to a DFS path, this parameter specifies the source path for the move
operation. This MUST be a DFS link or the path prefix of any DFS link in the DFS namespace.

83 / 165

[MS-DFSNM-Diff] - v20210407
Distributed File System (DFS): Namespace Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

NewDfsEntryPath: The pointer to a DFS path, this parameter specifies the destination DFS path for
the move operation. This MUST be a path or a DFS link in the same DFS namespace.

Flags: A bit field specifying additional actions to take.

Value Meaning

DFS_MOVE_FLAG_REPLACE_IF_EXISTS

0x00000001

If the destination path is an existing link, replace it as part of the
move operation.

All other bits are reserved and MUST NOT be used. If reserved bits are specified, the server
SHOULD fail the call with ERROR_INVALID_PARAMETER (0x00000057) .

Return Values: The method MUST return 0 on success and a nonzero error code on failure. The
method can return any specific error code value, as specified in [MS-ERREF] section 2.2. The most
common error codes are listed in the following table.

Return value/code Description

0x00000000

ERROR_SUCCESS

Successful completion.

0x00000005

ERROR_ACCESS_DENIED

Permission to perform the operation was denied.

0x00000032

ERROR_NOT_SUPPORTED

The specified operation is not supported.

0x00000050

ERROR_FILE_EXISTS

The destination path specifies an existing link.

0x00000057

ERROR_INVALID_PARAMETER

An incorrect parameter was specified.

0x00000490

ERROR_NOT_FOUND

A specified DFS root namespace does not exist, or no links were matched.

The server MUST verify the existence of the DFS namespaces that the DfsEntryPath and
NewDfsEntryPath parameters specify. If the existence check fails, the server MUST return
ERROR_NOT_FOUND.

The server MUST validate that the source and destination paths are

1. In the same DFS namespace.

2. Below the root of the namespace.

Otherwise, the server MUST return ERROR_NOT_SUPPORTED.

The server MUST return ERROR_NOT_FOUND if the DfsEntryPath parameter does not match any DFS
links in the namespace, as specified below.

The server MUST validate that the source and destination paths do not specify illegal characters or
path elements. If either path is illegal, the server MUST return ERROR_INVALID_NAME.<68>

The server SHOULD perform DFS link move operations atomically. That is, either all of the constituent
operations are performed as part of the move and the call succeeds, or no changes are made to the
DFS namespace and the call fails.<69>

84 / 165

[MS-DFSNM-Diff] - v20210407
Distributed File System (DFS): Namespace Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

When the source and destination are both paths in the DFS namespace and not links themselves, all
DFS links in the DFS namespace that have the source path as their prefix MUST be converted to DFS

links with the destination path as the prefix. In effect, each DFS link that has the prefix specified by
the source path is removed, and new DFS links that have exactly the same targets and target

properties are added, but with the prefix specified by the destination path. For example, with a source
path of "\\MyServer\MyDfs\dir1" and a destination path of "\\MyServer\MyDfs\dir2", the DFS link
"\\MyServer\MyDfs\dir1\link1" becomes "\\MyServer\MyDfs\dir2\link1", while the DFS link
"\\MyServer\MyDfs\link2" is unaffected by the move operation.

If a DFS link already exists at the destination path, unless the Flags parameter is
DFS_MOVE_FLAG_REPLACE_IF_EXISTS, the server MUST fail the call with ERROR_FILE_EXISTS. This
MUST be enforced only if the destination is an existing link, not if the destination is an existing file or

directory. In the preceding example, if a DFS link "\\MyServer\MyDfs\dir2\link1" already exists, the
move operation will fail unless the DFS_MOVE_FLAG_REPLACE_IF_EXISTS flags parameter is
specified. If the DFS_MOVE_FLAG_REPLACE_IF_EXISTS flags parameter is specified, the DFS link at
the destination path is removed and replaced by the moved DFS link. If "\\MySever\MyDfs\dir2\link1"
is an existing directory and not a link, the operation does not require the
DFS_MOVE_FLAG_REPLACE_IF_EXISTS flags parameter to be specified.

DFS servers SHOULD support the case in which intermediate or leaf pathname components in the
destination path are files; for example, the case of a source path being "\\MyServer\MyDfs\dir1\link1",
a destination path being "\\MyServer\MyDfs\comp1\link1", and "\\MyServer\MyDfs\comp1" being a
file.<70>

If intermediate directories in the pathname of a source DFS link are empty, they SHOULD be removed,
as required, after a move operation. For example, if "\\MyServer\MyDfs\dir1\dir2\link1" is moved to
"\\MyServer\MyDfs\link1", the dir1 and dir2 directories are removed if they are empty.<71>

If the move operation results in a source DFS link becoming the prefix of an existing destination DFS
link, the move operation MUST be failed. For example, if the source is a DFS link
"\\MyServer\MyDfs\dir1\link1", the destination DFS link specified is "\\MyServer\MyDfs\dir2", and if a
DFS link "\\MyServer\MyDfs\dir2\link2" already exists, the server MUST fail the call with
ERROR_FILE_EXISTS.

For a domainv1-based DFS namespace and stand-alone DFS namespaces, the link's identity is
changed. Thus, to another DFS root target of the same domainv1-based DFS namespace, one link is

deleted and then another link is created instead of an existing link being moved.

The server MUST synchronously update the following fields in the DFS metadata for a stand-alone DFS
namespace.

Operation DFS metadata changes required

Remove link Remove NamespaceElement from NamespaceElementsList.

Add link Add NamespaceElement in NamespaceElementsList.

The server MUST update the following fields in the DFS metadata for a domainv1-based DFS
namespace.

Operation DFS metadata changes required

Remove link Remove DFSNamespaceLinkBLOB and update BLOBElementCount.

Add link Add DFSNamespaceLinkBLOB and update BLOBElementCount.

In contrast, for a domainv2-based DFS namespace, the link's identity is not changed. Instead, the
msDFS-LinkPathv2, msDFS-LastModifiedv2, and msDFS-GenerationGUIDv2 attributes of a DFS
link's LDAP entry are updated during a move operation. When a destination link is deleted, the

85 / 165

[MS-DFSNM-Diff] - v20210407
Distributed File System (DFS): Namespace Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

required local state changes (on-disk, in-memory) are performed on the DFS root target server
performing the move operation as well.

The server MUST update the following fields in the DFS metadata for a domainv2-based DFS
namespace.

Operation DFS metadata changes required

Remove link Update msDFS-LinkPathv2, msDFS-LastModifiedv2, and msDFS-GenerationGUIDv2.

Add link Update msDFS-LinkPathv2, msDFS-LastModifiedv2, and msDFS-GenerationGUIDv2.

The server MUST synchronously update the DFS metadata of a domain-based DFS namespace.

If DFS root scalability mode is not enabled for the domain-based DFS namespace, the server MUST
notify other DFS root targets of the change in DFS metadata by asynchronously issuing a
NetrDfsSetInfo (Opnum 3) method with the Level parameter 101 and with the State field of
DFS_INFO_101 set to DFS_VOLUME_STATE_RESYNCHRONIZE.<72>

The move operation on a stand-alone DFS namespace or a domainv2-based DFS namespace also
correctly applies to any security descriptor that is associated with the DFS link, to the new reparse
point created after the move operation.

3.1.4.1.9 NetrDfsAddRootTarget (Opnum 23)

The NetrDfsAddRootTarget method is used to create a stand-alone DFS namespace, a domainv1-
based DFS namespace, or a domainv2-based DFS namespace.<73>

The NetrDfsAddRootTarget method uses the following MIDL syntax.

 NET_API_STATUS NetrDfsAddRootTarget(
 [in, unique, string] LPWSTR pDfsPath,
 [in, unique, string] LPWSTR pTargetPath,
 [in] ULONG MajorVersion,
 [in, unique, string] LPWSTR pComment,
 [in] BOOLEAN NewNamespace,
 [in] ULONG Flags
);

pDfsPath: The pointer to a null-terminated Unicode string. This MUST be \\<domain>\<dfsname> for

domain-based DFS or \\<server>\<share> for stand-alone DFS.

pTargetPath: The pointer to a null-terminated Unicode string. This MUST be
\\<server>\<share>[\<path>] for domain-based DFS or NULL for stand-alone DFS. The latter

restriction is required to ensure that a typographic error in the domain name, while attempting to
create a domain-based DFS, does not result in a stand-alone DFS namespace being created on the
DFS root target server, if the first pathname component of the pDfsPath parameter is used to
detect whether a domain-based DFS namespace or stand-alone DFS namespace is being created.
When pTargetPath is not NULL, the <server> MUST be used as the host name of the new DFS root

target in the metadata.

MajorVersion: The DFS metadata version to use to create the DFS namespace. When adding a DFS
root target to an existing DFS namespace, MajorVersion MUST be either 0 or the major version
number of the existing DFS namespace. Otherwise, the call MUST fail.

pComment: The pointer to a null-terminated Unicode string that contains a comment associated with
this root or link. This string has no protocol-specified restrictions on length or content. The
comment is meant for human consumption and does not affect server functionality. The comment

MUST be ignored when adding a target to an existing link.

86 / 165

[MS-DFSNM-Diff] - v20210407
Distributed File System (DFS): Namespace Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

NewNamespace: A Boolean value that, if TRUE, indicates a request to create a new root. If FALSE,
this value indicates a request to add a new root target to an existing root.

Flags: This parameter MUST be zero for a domain-based DFS namespace and MUST be ignored for a
stand-alone DFS namespace.

Return Values: The method MUST return 0 on success and a nonzero error code on failure. The
method can return any specific error code value, as specified in [MS-ERREF] section 2.2. The most
common error codes are listed in the following table.

Return value/code Description

0x00000000

ERROR_SUCCESS

Successful completion.

0x00000005

ERROR_ACCESS_DENIED

Permission to perform the operation was denied.

0x000000B7

ERROR_ALREADY_EXISTS

The specified namespace already exists on this server.

0x00000906

NERR_NetNameNotFound

The share that the TargetPath parameter specifies does not already exist.

The following table summarizes the various actions that the NetrDfsAddRootTarget method takes
based on the parameter values.

pDfsPath parameter
pTargetPath
parameter

MajorVersion
parameter Explanation

\\<domain>\<dfsname> \\<server>\<share> 1 Creates a new domainv1-based
DFS namespace or adds a new
root target to an existing
domainv1-based DFS namespace.
If a DFS namespace already
exists, the version specified MUST
match the DFS namespace;
otherwise, the call fails.

\\<domain>\<dfsname> \\<server>\<share> 2 Creates a new domainv2-based
DFS namespace or adds a new
root target to an existing
domainv2-based DFS namespace.
If a DFS namespace already
exists, the version specified MUST
match the DFS namespace;
otherwise, the call fails.

\\<domain>\<dfsname> \\<server>\<share> 0 Adds a new root target to an
existing domain-based DFS
namespace or a domainv2-based
DFS namespace. If a DFS
namespace does not already exist,
the call fails.

\\<server>\<share> NULL 1 Creates a new stand-alone DFS

namespace.

The following scheme is used to create a new domainv2-based DFS namespace:

87 / 165

[MS-DFSNM-Diff] - v20210407
Distributed File System (DFS): Namespace Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

▪ NetrDfsGetSupportedNamespaceVersion is called to determine an appropriate version number to
pass to the NetrDfsAddRootTarget() method.

▪ The client-side method creates a DFS metadata, format-independent LDAP entry called the DFS
namespace anchor. It contains only the DFS metadata major version number.

▪ Updates the access control list (ACL) on the object of the DFS namespace to permit read/write
access by the DFS root target server.

▪ The client-side method then issues an RPC call to the DFS root target server.

▪ The DFS server creates a new DFS namespace LDAP entry with the DFS namespace anchor LDAP
entry as its parent.

▪ All DFS links are created with the DFS namespace LDAP entry as the parent. For more information,
see section 2.3.2.

This results in two LDAP entries in domainv2 corresponding to the single LDAP entry in domainv1.

If the domain-based DFS namespace already exists, and the ServerName and RootShare parameters
are a root target, the server MUST fail with ERROR_ALREADY_EXISTS.

If the share that the pTargetPath parameter specifies does not already exist, the RPC method MUST
fail with NERR_NetNameNotFound (0x00000906).

The server MUST synchronously update the following fields in the stand-alone DFS metadata.

Operation DFS metadata changes required.

Adding a new
namespace

Creates a new Namespace object for the namespace, and inserts the object into
NamespaceList.

The server MUST update the following fields in the domainv1-based DFS metadata.

Operation DFS metadata changes required

Adding a new
namespace

Creates new DFS metadata.

Adding a new
root target

Updates the TargetCount field of the DFSTargetListBLOB, creates a new TargetEntryBLOB,
updates the DFSTargetListBLOBSize, updates the BLOBDataSize of the
DFSNamespaceRootBLOB, and adds the DFSRootTarget to the remoteServerName
attribute in the object.

The server MUST update the following fields in the domainv2-based DFS metadata.

Operation DFS metadata changes required

Adding a new
namespace

Creates new DFS namespace LDAP entry with the DFS namespace anchor LDAP as its
parent.

Adding a new root
target

Updates the msDFS-TargetListv2 attribute, which is stored as an XML document, by
adding *server* into the list of root targets.

The server MUST synchronously update the DFS metadata of a domain-based DFS namespace.

If DFS root scalability mode is not enabled for the domain-based DFS namespace, the server MUST

notify other DFS root targets of the change in DFS metadata by asynchronously issuing a
NetrDfsSetInfo (Opnum 3) method with the Level parameter 101 and with the State field of
DFS_INFO_101 set to DFS_VOLUME_STATE_RESYNCHRONIZE.

88 / 165

[MS-DFSNM-Diff] - v20210407
Distributed File System (DFS): Namespace Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

3.1.4.1.10 NetrDfsRemoveRootTarget (Opnum 24)

The NetrDfsRemoveRootTarget (Opnum 24) method is the unified DFS namespace deletion method. It
deletes stand-alone DFS namespaces, domainv1-based DFS namespaces, or domainv2-based DFS

namespaces based on parameters specified.<74>

The NetrDfsRemoveRootTarget (Opnum 24) method has the following MIDL syntax.

 NET_API_STATUS NetrDfsRemoveRootTarget(
 [in, unique, string] LPWSTR pDfsPath,
 [in, unique, string] LPWSTR pTargetPath,
 [in] ULONG Flags
);

pDfsPath: The pointer to a null-terminated Unicode string. This MUST be \\<domain>\<dfsname> for

domain-based DFS or \\<server>\<share> for stand-alone DFS.

pTargetPath: The pointer to a null-terminated Unicode string. This MUST be

\\<server>\<share>[\<path>] for domain-based DFS or NULL for stand-alone DFS.

Flags: A bit field specifying the type of removal operation. For a standalone namespace, this bit-field

parameter MUST be zero. For a domain-based DFS namespace, it can be zero or the following
value. Zero indicates a normal removal operation.

Value Meaning

DFS_FORCE_REMOVE

0x80000000

Specifying this flag for a domain-based DFS namespace removes the root target
even if it is not accessible.

All other bits are reserved and MUST NOT be used. If reserved bits are specified, the server
SHOULD fail the call with an implementation-dependent failure value.<75>

Return Values: The method MUST return 0 on success and a nonzero error code on failure. The

method can return any specific error code value, as specified in [MS-ERREF] section 2.2. The most
common error codes are listed in the following table.

Return value/code Description

0x00000000

ERROR_SUCCESS

Successful completion.

0x00000002

ERROR_FILE_NOT_FOUND

The specified DFS root target was not found as a target of the specified DFS

namespace.

0x00000005

ERROR_ACCESS_DENIED

Permission to perform the operation was denied.

0x00000057

ERROR_INVALID_PARAMETER

An incorrect parameter was specified.

0x00000490

ERROR_NOT_FOUND

The specified DFS root namespace does not exist.

The server MUST verify the existence of the DFS namespace that the pDfsPath parameter specifies. If
that existence check fails, the server MUST return ERROR_NOT_FOUND.

89 / 165

[MS-DFSNM-Diff] - v20210407
Distributed File System (DFS): Namespace Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

The server MUST verify the existence of the DFS root target of the DFS namespace that the
pTargetPath parameter specifies. If that existence check fails, the server MUST return

ERROR_FILE_NOT_FOUND.

The server MUST support deleting a DFS namespace without first requiring removal of all the DFS links

in it.

The client-side method is responsible for deleting the DFS namespace anchor LDAP entry
corresponding to a domainv2-based DFS namespace.

The server MAY support DFS_FORCE_REMOVE on member servers.<76> If it is not supported and
DFS_FORCE_REMOVE is specified, the server MUST return a failure.

If DFS_FORCE_REMOVE is not specified and it is a domain-based DFS namespace, the server MUST
verify it is the host specified by the pTargetPath parameter. If it is not, the server MUST return

ERROR_FILE_NOT_FOUND.

If DFS_FORCE_REMOVE is not specified, the server SHOULD<77> also remove any local information
related to hosting the removed root target. If DFS_FORCE_REMOVE is specified, the server MUST NOT

do so.

The effect of DFS_FORCE_REMOVE is to clean up after the named root target has become
nonfunctional and is unable to remove itself from the namespace.

The server MUST synchronously update the DFS metadata of a domain-based DFS namespace.

The server SHOULD remove any intermediate directories and reparse points that were part of the
namespace.

If DFS root scalability mode is not enabled for the domain-based DFS namespace, the server MUST
notify other DFS root targets of the change in DFS metadata by asynchronously issuing a
NetrDfsSetInfo (Opnum 3) method with the Level parameter 101 and with the State field of
DFS_INFO_101 set to DFS_VOLUME_STATE_RESYNCHRONIZE.

The following table summarizes the various actions that the NetrDfsRemoveRootTarget method takes

based on the parameter values.

pDfsPath parameter
pTargetPath
parameter Explanation

\\<domain>\<dfsname> \\<server>\<share> Deletes a domain-based DFS root target. If the DFS
root target that is removed is the last one for the DFS
namespace, then it removes the DFS namespace itself.
This parameter can be used for either a domainv1-
based DFS namespace or a domainv2-based DFS
namespace.

\\<server>\<dfsname> NULL Deletes a stand-alone DFS namespace.

3.1.4.1.11 NetrDfsGetSupportedNamespaceVersion (Opnum 25)

The NetrDfsGetSupportedNamespaceVersion (Opnum 25) method is used to determine the supported
DFS metadata version number.<78>

The NetrDfsGetSupportedNamespaceVersion (Opnum 25) method has the following MIDL syntax.

 NET_API_STATUS NetrDfsGetSupportedNamespaceVersion(
 [in] DFS_NAMESPACE_VERSION_ORIGIN Origin,

90 / 165

[MS-DFSNM-Diff] - v20210407
Distributed File System (DFS): Namespace Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

 [in, unique, string] NETDFS_SERVER_OR_DOMAIN_HANDLE pName,
 [out] PDFS_SUPPORTED_NAMESPACE_VERSION_INFO pVersionInfo
);

Origin: This parameter specifies the version information requested.

Value Meaning

DFS_NAMESPACE_VERSION_ORIGIN_SERVER

0x0001

This specifies that the returned information MUST reflect the
metadata versions supported by the server.

Versions supported by the server can be higher (or lower)
than those supported by the domain.

DFS_NAMESPACE_VERSION_ORIGIN_DOMAIN

0x0002

This specifies that the returned information MUST reflect the
metadata versions supported by the domain schema of the
domain to which the server is joined.

Versions supported by the domain schema can be higher (or
lower) than those supported by the server.

pName: The pointer to a null-terminated Unicode string. The server MUST ignore the pName
parameter.

pVersionInfo: The pointer to a DFS_SUPPORTED_NAMESPACE_VERSION_INFO structure to receive
the DFS metadata version number determined.

Return Values: The method MUST return 0 on success and a nonzero error code on failure. The

method can return any specific error code value, as specified in [MS-ERREF] section 2.2. The most
common error codes are listed in the following table.

Return value/code Description

0x00000000

ERROR_SUCCESS

Successful completion.

The standalone namespace version supported by a server can be unaffected by the domain metadata
schema. If this is the case, the server MUST return a standalone DFS major and minor version of zero
for the DFS_NAMESPACE_VERSION_ORIGIN_DOMAIN query. In this case, the standalone DFS
capability field has no meaning and MUST also be zero.

The version number of the DFS metadata that can be used for a new DFS namespace depends on the
following:

▪ For domain-based DFS namespaces, the version supported by the DFS metadata schema in use in
the server's domain.

▪ The version supported by the server that is to host the DFS root target.

Thus, the version that can be used for creating a new DFS namespace is the minimum version that the
domain and the server support.

This method is useful in determining an appropriate version number to pass to the

NetrDfsAddRootTarget method.

3.1.4.2 Extended Methods

3.1.4.2.1 NetrDfsAdd2 (Opnum 19)

91 / 165

[MS-DFSNM-Diff] - v20210407
Distributed File System (DFS): Namespace Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

The NetrDfsAdd2 (Opnum 19) method creates a new DFS link or adds a new target to an existing link
of a DFS namespace.

The NetrDfsAdd2 method has the following MIDL syntax.

 NET_API_STATUS NetrDfsAdd2(
 [in, string] WCHAR* DfsEntryPath,
 [in, string] WCHAR* DcName,
 [in, string] WCHAR* ServerName,
 [in, unique, string] WCHAR* ShareName,
 [in, unique, string] WCHAR* Comment,
 [in] DWORD Flags,
 [in, out, unique] DFSM_ROOT_LIST** ppRootList
);

DfsEntryPath: A pointer to a DFS link path that contains the name of an existing link when additional
link targets are added or the name of a new link is created.

DcName: A pointer to a null-terminated Unicode string. For a domain-based DFS namespace, this is

the host name of the DC that the DFS root target uses to get or update DFS metadata for the DFS
namespace. This parameter MAY be a NULL pointer; otherwise, it MUST be the host name of the
PDC for the domain of the DFS namespace.<79>

ServerName: A pointer to a null-terminated Unicode string that specifies the DFS link target host
name.

ShareName: A pointer to a null-terminated Unicode DFS link target share name string. This can also
be a share name with a path relative to the share (for example, share1\mydir1\mydir2). When

specified in this manner, each pathname component MUST be a directory.

Comment: A pointer to a null-terminated, human-readable Unicode string description associated with
this root or link. This string is not subject to protocol-specified restrictions on length or content
and does not affect server functionality. The description MUST be ignored when adding a target to
an existing link.

Flags: The flag that indicates the operation to perform. The following table lists the possible values.

Value Meaning

0x00000000 Create a new link or add a new target to an existing link.

DFS_ADD_VOLUME

0x00000001

Create a new link in the DFS namespace if one does not already exist or fail if it
exists.

DFS_RESTORE_VOLUME

0x00000002

Add a target without verifying its existence.

If the Flags value is not a bitwise OR of the values above, the server MUST return
ERROR_INVALID_PARAMETER (0x00000057).

ppRootList: On success, returns a list of DFS root targets in the domain-based DFS namespace that
the client will be responsible for notifying of the change in the DFS namespace. See section

3.2.4.2.1. This list MAY be empty if the server performs the notification.<80>

Return Values: The method MUST return 0 on success and a nonzero error code on failure. The
method can return any specific error code value, as specified in [MS-ERREF] section 2.2. The most
common error codes are listed in the following table.

92 / 165

[MS-DFSNM-Diff] - v20210407
Distributed File System (DFS): Namespace Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

Return value/code Description

0x00000000

ERROR_SUCCESS

The operation completed successfully.

0x00000005

ERROR_ACCESS_DENIED

Permission to perform the operation was denied.

0x00000050

ERROR_FILE_EXISTS

The specified DFS link target already exists.

0x00000057

ERROR_INVALID_PARAMETER

An incorrect parameter was specified.

0x00000490

ERROR_NOT_FOUND

The specified DFS namespace does not exist.

0x00000906

NERR_NetNameNotFound

The DFS link target does not exist.

A server MAY<81> implement this method.

If the NetrDfsAdd (Opnum 1) method on a server does not support a domain-based namespace, the
server SHOULD support a domain-based namespace in the NetrDfsAdd2 (Opnum 19) method.
<82><83>

The server MUST verify the existence of the DFS namespace that the DfsEntryPath parameter

specifies. If the namespace does not exist, the server MUST return ERROR_NOT_FOUND.

The server MUST verify whether the link to be added overlaps an existing link. If there is a link for
which the specified DfsEntryPath parameter is a prefix, the server MUST return ERROR_FILE_EXISTS.

If the link to be added already exists, and DFS_ADD_VOLUME is set in the Flags field of the request,
the server MUST return ERROR_FILE_EXISTS.

If the link to be added already exists, and DFS_ADD_VOLUME is not set in the Flags field of the
request, the server MUST attempt to add a new link target to the link. If a target with the path

specified by ServerName and ShareName was already added to the link, the server MUST return
ERROR_FILE_EXISTS.

If DFS_RESTORE_VOLUME is not specified on the Flags parameter, the server MAY<84> choose to
verify whether the link target exists. If DFS_RESTORE_VOLUME is specified, the server MUST NOT
perform this test. If it performs the test and the link target does not exist, the server MUST fail the
call with NERR_NetNameNotFound.

The exact test the server performs to verify link target existence is implementation-defined. A server

MAY,<85> for example, be implemented with the expectation that all link targets are administered
through [MS-SRVS] section 3.1.4.10 and use NetShareGetInfo level 1005 to perform the test. Reasons
not to implement this test include:

▪ It might not be practical to determine the correct administration interface to query to perform the
test.

▪ A link target server can export a share with a network protocol and administration interface that

this server does not understand.

▪ A secured link target server might not permit this server to contact it.

The Comment parameter MUST be ignored when adding a target to an existing link.

93 / 165

[MS-DFSNM-Diff] - v20210407
Distributed File System (DFS): Namespace Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

The server SHOULD<86> create a new link without requiring the DFS_ADD_VOLUME Flags parameter.

The server MUST update the same fields in the DFS metadata for a domain-based DFS namespace as

in the NetrDfsAdd method, as specified in section 3.1.4.1.3.

The server MUST synchronously update the DFS metadata of a domain-based DFS namespace.

If DFS root scalability mode is not enabled for the domain-based DFS namespace, the server MUST do
one of the following:

▪ Notify other DFS root targets of the change in DFS metadata by asynchronously issuing a
NetrDfsSetInfo method with the Level parameter 101 and with the State field of DFS_INFO_101
set to DFS_VOLUME_STATE_RESYNCHRONIZE. The returned ppRootList parameter MUST be
empty.

▪ Perform no notification of the other root targets, returning a list of DFS root targets to the client in

the ppRootList parameter.

3.1.4.2.2 NetrDfsRemove2 (Opnum 20)

The NetrDfsRemove2 (Opnum 20) method removes the specified link or link target.

The NetrDfsRemove2 method uses the following MIDL syntax.

 NET_API_STATUS NetrDfsRemove2(
 [in, string] WCHAR* DfsEntryPath,
 [in, string] WCHAR* DcName,
 [in, unique, string] WCHAR* ServerName,
 [in, unique, string] WCHAR* ShareName,
 [in, out, unique] DFSM_ROOT_LIST** ppRootList
);

DfsEntryPath: The pointer to a DFS link path that contains the name of the DFS link to remove.

DcName: The pointer to a null-terminated Unicode string. For a domain-based DFS namespace, this
string contains the host name of the DC to be used by the DFS root target that is removing the
DFS link. This parameter MAY be a NULL pointer; otherwise, it MUST be the PDC for the domain of

the DFS namespace.<87>

ServerName: The pointer to a null-terminated Unicode DFS link target host name string. This MUST
be a NULL pointer when the link and all of the link targets are to be removed.

ShareName: The pointer to a null-terminated Unicode DFS link target share name string. This MUST
be a NULL pointer when the link and all of the link targets are to be removed.

ppRootList: On success, returns a list of DFS root targets in the domain-based DFS namespace that

the client will be responsible for notifying of the change in the DFS namespace. See section
3.2.4.2.2. This list MAY be empty if the server has performed the notification.<88>

Return Values: The method MUST return 0 on success and a nonzero error code on failure. The

method can return any specific error code value, as specified in [MS-ERREF] section 2.2. The most
common error codes are listed in the following table.

Return value/code Description

0x00000000

ERROR_SUCCESS

Successful completion.

0x00000002 The specified DFS link target was not found as a target of the specified DFS

94 / 165

[MS-DFSNM-Diff] - v20210407
Distributed File System (DFS): Namespace Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

Return value/code Description

ERROR_FILE_NOT_FOUND link.

0x00000005

ERROR_ACCESS_DENIED

Permission to perform the operation was denied.

0x00000057

ERROR_INVALID_PARAMETER

An incorrect parameter was specified.

0x00000490

ERROR_NOT_FOUND

The specified DFS namespace or DFS link does not exist.

The server MAY<89> implement this method.

If the NetrDfsRemove (Opnum 2) method on a server does not support a domain-based namespace,
the server SHOULD support a domain-based namespace in the NetrDfsRemove2 (Opnum 20)
method.<90><91>

The server MUST verify the existence of the DFS namespace that the DfsEntryPath parameter
specifies. If the namespace does not exist, the server MUST return ERROR_NOT_FOUND.

The server MUST verify the existence of the DFS link DfsEntryPath parameter specifies. If that
existence check fails, the server MUST return ERROR_NOT_FOUND.

The server MUST verify the existence of the DFS link target of the DFS link that the ServerName and
RootShare parameters specify. If that existence check fails, the server MUST return

ERROR_FILE_NOT_FOUND.

If the ServerName and ShareName parameters are both NULL, the server MUST remove the link and
all its link targets. If the ServerName and ShareName are not NULL, the server MUST remove the
specified link target. If the specific target is the last target of the link, the server MUST remove the
link as well. If only one of ServerName or ShareName is NULL, the server MUST return
ERROR_INVALID_PARAMETER.

The server MUST update the same fields in the DFS metadata for a domain-based DFS namespace, as

specified in the NetrDfsRemove method.

The server MUST synchronously update the DFS metadata of a domain-based DFS namespace.

If DFS root scalability mode is not enabled for the domain-based DFS namespace, the server MUST do
one of the following:

▪ Notify other DFS root targets of the change in DFS metadata by asynchronously issuing a
NetrDfsSetInfo method with the Level parameter 101, and with the State field of DFS_INFO_101
set to DFS_VOLUME_STATE_RESYNCHRONIZE. The returned ppRootList parameter MUST be

empty.

▪ Perform no notification of the other root targets, returning a list of DFS root targets to the client in
the ppRootList parameter.

3.1.4.2.3 NetrDfsEnumEx (Opnum 21)

The NetrDfsEnumEx (Opnum 21) method enumerates the DFS roots hosted on a server, or DFS links
of a namespace hosted by the server.<92><93> Depending on the information level, the targets

associated with the roots and links are also displayed.

The NetrDfsEnumEx method uses the following MIDL syntax.

 NET_API_STATUS NetrDfsEnumEx(

95 / 165

[MS-DFSNM-Diff] - v20210407
Distributed File System (DFS): Namespace Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

 [in, string] WCHAR* DfsEntryPath,
 [in] DWORD Level,
 [in] DWORD PrefMaxLen,
 [in, out, unique] DFS_INFO_ENUM_STRUCT* DfsEnum,
 [in, out, unique] DWORD* ResumeHandle
);

DfsEntryPath: The pointer to a domain name, a host name, or a DFS path, depending on the Level
parameter.

▪ A domain name MUST be a null-terminated Unicode string in the following forms:

 <DomainName> or \<DomainName> or \\<DomainName>

where <DomainName> is the domain name to use for the enumeration.

▪ A host name MUST be a null-terminated Unicode string in the following formats:

 <ServerName> or \<ServerName> or \\<ServerName>

where <ServerName> is a host name.

▪ A DFS root or a DFS link path.

When DfsEntryPath points to a DFS link path, the remaining path after the DFS namespace
name MUST be ignored.

Level: This parameter specifies the information level of the data and in turn determines the action the
method performs. On successful return, the server MUST return an array of the corresponding

structures in the buffer pointed to by DfsEnum.

Value Meaning

Level_1

0x00000001

Gets the name of the DFS root and all links beneath it. In this case, on successful return
DfsEnum MUST point to an array of DFS_INFO_1 structures.

Level_2

0x00000002

Gets the name, comment, state, and number of targets for the DFS root and all links under
the root. In this case, on successful return DfsEnum MUST point to an array of DFS_INFO_2
structures.

Level_3

0x00000003

Gets the name, comment, state, number of targets, and information about each target for the
DFS root and all links under the root. In this case, on successful return DfsEnum MUST point
to an array of DFS_INFO_3 structures.

Level_4

0x00000004

Gets the name, comment, state, time-out, GUID, number of targets, and information about
each target for the DFS root and all links under the root. In this case, on successful return
DfsEnum MUST point to an array of DFS_INFO_4 structures.

Level_5

0x00000005

Gets the name, comment, state, time-out, GUID, property flags, metadata size, and number
of targets for a DFS root and all links under the root. In this case, on successful return
DfsEnum MUST point to an array of DFS_INFO_5 structures.

Level_6

0x00000006

Gets the name, comment, state, time-out, GUID, property flags, metadata size, number of
targets, and target information for a root or link. In this case, on successful return DfsEnum
MUST point to an array of DFS_INFO_6 structures.

Level_8 Gets the name, comment, state, time-out, GUID, property flags, metadata size, and number

96 / 165

[MS-DFSNM-Diff] - v20210407
Distributed File System (DFS): Namespace Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

Value Meaning

0x00000008 of targets for a DFS root and all links under the root. Also returns the security descriptor
associated with each of the DFS links. In this case, on successful return DfsEnum MUST point
to an array of DFS_INFO_8 structures.

Level_9

0x00000009

Gets the name, comment, state, time-out, GUID, property flags, metadata size, and number
of targets and target information for a DFS root and all links under the root. Also returns the
security descriptor associated with each of the DFS links. In this case, on successful return
DfsEnum MUST point to an array of DFS_INFO_9 structures.

Level_200

0x000000C8

Enumerates all of the domain-based DFS namespace in the specified domain. In this case, on
successful return DfsEnum MUST point to an array of DFS_INFO_200 structures.

Level_300

0x0000012C

Enumerates the stand-alone and domain-based DFS roots that the server hosts. In this case,
on successful return DfsEnum MUST point to an array of DFS_INFO_300 structures.

The server MUST support Level values 1, 2 and 3. The server SHOULD support Level values 5, 6,
8, 9, and 300. The server on a DC SHOULD support Level value 200.<94> If the server does not

support the provided Level, it MUST fail the call. The server SHOULD return error code

ERROR_INVALID_PARAMETER for unsupported Level values.<95>

PrefMaxLen: This parameter specifies restrictions on the number of elements returned. A value of
0xFFFFFFFF means there are no restrictions, in which case all entries MUST be returned.<96>

DfsEnum: A pointer to a DFS_INFO_ENUM_STRUCT union to receive the returned information. The
client SHOULD set the Level member to the same value as the method's Level parameter, and
MUST set the DfsInfoContainer union member to a pointer to the corresponding container
structure as specified in section 2.2.6. The client MUST initialize the container structure's

EntriesRead member to zero and the Buffer member to a NULL pointer. The value of the Level
member determines the case of the union.

ResumeHandle: This parameter is used to continue an enumeration when more data is available
than can be returned in a single invocation of this method.

▪ If this parameter is not a NULL pointer, and the method returns ERROR_SUCCESS, this
parameter receives an implementation-specific nonzero value that can be passed in
subsequent calls to this method to continue the enumeration.

▪ If this parameter is a NULL pointer, or it points to a zero value, it indicates that this is an
initial enumeration.

▪ If this parameter is not a NULL pointer, and it points to a nonzero value returned in
ResumeHandle by an earlier invocation of this method, the server will attempt to continue a
previous enumeration.<97>

Return Values: The method MUST return 0 on success and a nonzero error code on failure. The

method can return any specific error code value, as specified in [MS-ERREF], section 2.2. The
most common error codes are listed in the following table.

Return value/code Description

0x00000000

ERROR_SUCCESS

Successful completion.

0x00000057

ERROR_INVALID_PARAMETER

An incorrect parameter was specified.

0x00000103

ERROR_NO_MORE_ITEMS

There is no data to return.

97 / 165

[MS-DFSNM-Diff] - v20210407
Distributed File System (DFS): Namespace Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

Return value/code Description

0x00000490

ERROR_NOT_FOUND

The specified DFS root namespace does not exist.

The server MUST verify the existence of the DFS namespace that the DfsEntryPath parameter
specifies. If that existence check fails, the server MUST return ERROR_NOT_FOUND.

The server MUST return ERROR_NO_MORE_ITEMS (0x00000103) if there is no data to return.

Unlike the NetrDfsEnum method, this method can be used even when the server is hosting more than
one DFS root.

If the server hosts exactly one DFS namespace, the requested Level is 1 through 9, and the
DfsEntryPath does not specify a DFS namespace name, the server MAY enumerate the namespace it
hosts.<98>

Each member of the DFS_INFO_ENUM_STRUCT return buffer MUST be constructed according to the

rules of section 3.1.4.1.6 (NetrDfsGetInfo) for the specified value of the Level parameter.

If the requested Level is 1 through 9 and ResumeHandle indicates initial enumeration, the server

MUST return the DFS root entry as the first member of the DFS_INFO_ENUM_STRUCT return buffer
followed by DFS links in implementation-specific order.

If the requested Level is 1 through 9 and ResumeHandle does not indicate initial enumeration, the
server MUST NOT return the DFS root entry and all the entries of the DFS_INFO_ENUM_STRUCT
return buffer MUST be DFS links in implementation-specific order.

3.1.4.2.4 NetrDfsSetInfo2 (Opnum 22)

The NetrDfsSetInfo2 (Opnum 22) method sets or modifies the information associated with a DFS root,
a DFS root target, a DFS link, or a DFS link target.

The NetrDfsSetInfo2 method has the following MIDL syntax.

 NET_API_STATUS NetrDfsSetInfo2(
 [in, string] WCHAR* DfsEntryPath,
 [in, string] WCHAR* DcName,
 [in, unique, string] WCHAR* ServerName,
 [in, unique, string] WCHAR* ShareName,
 [in] DWORD Level,
 [in, switch_is(Level)] DFS_INFO_STRUCT* pDfsInfo,
 [in, out, unique] DFSM_ROOT_LIST** ppRootList
);

DfsEntryPath: The pointer to a DFS root path or a DFS link path that contains the name of a DFS
root or DFS link name.

DcName: The pointer to a null-terminated Unicode string. It MUST be ignored for a stand-alone DFS

namespace. For a domain-based DFS namespace, this string contains the host name of the DC
that the DFS root target uses to get or update DFS metadata for the DFS namespace. This
parameter MAY be a NULL pointer; otherwise, it MUST be the PDC for the domain of the DFS

namespace.<99>

ServerName: The pointer to a null-terminated Unicode DFS root target or a DFS link target host
name string. This parameter MUST be a NULL pointer if the operation is intended for a DFS root or
a DFS link and not for targets.

98 / 165

[MS-DFSNM-Diff] - v20210407
Distributed File System (DFS): Namespace Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

ShareName: The pointer to a null-terminated Unicode DFS root target or a DFS link target share
name string. This parameter MUST be a NULL pointer if the operation is intended for a DFS root or

a DFS link and not for targets.

Level: This parameter specifies the information level of the data and, in turn, determines the action

the method performs.

Value Meaning

Level_100

0x00000064

Sets the comment associated with the root or link that specified in DfsInfo.

Level_101

0x00000065

Sets the storage state associated with the root, link, root target, or link target specified in
DfsInfo.<100>

Level_102

0x00000066

Sets the time-out value associated with the root or link specified in DfsInfo.

Level_103

0x00000067

Sets the property flags for the root or link specified in DfsInfo.

Level_104

0x00000068

Sets the target priority rank and class for the root target or link target specified in DfsInfo.

Level_105

0x00000069

Sets the comment, state, time-out information, and property flags for the root or link
specified in DfsInfo. This does not apply to a root target or link target.

Level_106

0x0000006A

Sets the target state and priority for the root target or link target specified in DfsInfo. This
does not apply to the DFS namespace root or link.<101>

Level_107

0x0000006B

Sets the comment, state, time-out, security descriptor information, and property flags for the
root or link specified in DfsInfo. Does not apply to a root target or link target. The
ServerName and ShareName parameters MUST be NULL. The security descriptor MUST NOT
have an owner, group, or SACLs in it.

The security descriptor MUST be a NULL, zero length value if used on a namespace root. In
this case, note that it is equivalent to using Level_105.

Level_150

0x00000096

Sets the security descriptor associated with a link. Only stand-alone DFS namespaces and
domainv2-based DFS namespaces are supported. The ServerName and ShareName

parameters MUST both be NULL. The security descriptor MUST NOT have an owner, group, or
SACLs in it.

The server MUST support Level values 100 and 101. The server SHOULD support Level values
102-107 and 150. If the server does not support the provided Level, it MUST fail the call.<102>
The server SHOULD return error code ERROR_INVALID_PARAMETER for unsupported Level
values.<103>

pDfsInfo: The pointer to a DFS_INFO_STRUCT union that contains the specified data. The Level

parameter value determines the case of the union.

ppRootList: On success, returns a list of DFS root targets in the domain-based DFS namespace which
the client will be responsible for notifying about the change in the DFS namespace. See section
3.2.4.2.3. This list MAY be empty if the server has performed the notification.<104>

Return Values: The method MUST return 0 on success and a nonzero error code on failure. The
method can return any specific error code value, as specified in [MS-ERREF] section 2.2. The most
common error codes are listed in the following table.

99 / 165

[MS-DFSNM-Diff] - v20210407
Distributed File System (DFS): Namespace Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

Return value/code Description

0x00000000

ERROR_SUCCESS

Successful completion.

0x00000002

ERROR_FILE_NOT_FOUND

The specified DFS link target was not found as a target of the specified DFS
link.

0x00000005

ERROR_ACCESS_DENIED

Permission to perform the operation was denied.

0x00000032

ERROR_NOT_SUPPORTED

The specified operation is not supported.

0x00000057

ERROR_INVALID_PARAMETER

An incorrect parameter was specified.

0x00000490

ERROR_NOT_FOUND

The specified DFS root, DFS link, or DFS link or root target does not exist.

The server MAY<105> implement this method.

If the NetrDfsSetInfo (Opnum 3) method on a server does not support a domain-based namespace,
the server SHOULD support a domain-based namespace in the NetrDfsSetInfo2 (Opnum 22)
method.<106><107>

The server MUST verify the existence of the DFS namespace that the DfsEntryPath parameter

specifies. If the namespace does not exist, the server MUST return ERROR_NOT_FOUND.

The server MUST verify the existence of the DFS link that the DfsEntryPath parameter specifies. If that
existence check fails, the server MUST return ERROR_NOT_FOUND.

The server MUST verify the existence of the DFS link target of the DFS link that the ServerName and
RootShare parameters specify. If that existence check fails, the server MUST return

ERROR_FILE_NOT_FOUND.

If the DcName parameter is not NULL, it MUST be the PDC for the domain of the domain-based DFS

namespace.

The server MUST fail any attempt to set the state of a DFS root, a DFS link, a DFS root target, or a
DFS link target to a value that is not specified. The server MUST fail any attempt to set the property
flags on a DFS link that are defined only for a DFS root.

With the Level parameter 101 and the State field in the DFS_INFO_101 structure as
DFS_VOLUME_STATE_RESYNCHRONIZE, the server MUST reload the contents of the
DFSMetadataCache, if maintained, for the domain-based DFS namespace that the ShareName

parameter specifies. In the case of both domain-based DFS namespaces and stand-alone DFS
namespaces, the server MUST check the DFS namespace it hosts locally with the DFS metadata and
perform any required modifications.

With the Level parameter 101 and the State field in the DFS_INFO_101 structure as
DFS_VOLUME_STATE_FORCE_SYNC, the server MUST perform a full synchronization instead of an
incremental synchronization to reload the contents of the DFSMetadataCache and to identify added or

deleted DFS links. This State field is supported on domainv2-based DFS namespaces and stand-alone
DFS namespaces.

When level parameter 107 is used for a DFS namespace root or for a domainv1-based DFS link, the
pSecurityDescriptor parameter has no meaning because security descriptors cannot be associated with

100 / 165

[MS-DFSNM-Diff] - v20210407
Distributed File System (DFS): Namespace Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

those objects. In these cases, if pSecurityDescriptor is not NULL, the server MUST fail with
ERROR_NOT_SUPPORTED.

The server MUST update the same fields in the DFS metadata for a domain-basedv1 DFS namespace
as for the NetrDfsSetInfo (Opnum 3) method, as specified in section 3.1.4.1.5.

The server MUST synchronously update the DFS metadata of a domain-based DFS namespace.

If DFS root scalability mode is not enabled for the domain-based DFS namespace, the server MUST do
one of the following:

▪ Notify other DFS root targets of the change in DFS metadata by asynchronously issuing a
NetrDfsSetInfo (Opnum 3) method with the Level parameter 101 and with the State field of
DFS_INFO_101 set to DFS_VOLUME_STATE_RESYNCHRONIZE. The returned ppRootList parameter
MUST be empty.

▪ Perform no notification of the other root targets, returning a list of DFS root targets to the client in
the ppRootList parameter.

3.1.4.3 Root Target Methods

3.1.4.3.1 NetrDfsAddFtRoot (Opnum 10)

The NetrDfsAddFtRoot (Opnum 10) method creates a new domainv1-based DFS namespace or adds a
root target to an existing namespace.

The NetrDfsAddFtRoot method uses the following MIDL syntax.

 NET_API_STATUS NetrDfsAddFtRoot(
 [in, string] WCHAR* ServerName,
 [in, string] WCHAR* DcName,
 [in, string] WCHAR* RootShare,
 [in, string] WCHAR* FtDfsName,
 [in, string] WCHAR* Comment,
 [in, string] WCHAR* ConfigDN,
 [in] BOOLEAN NewFtDfs,
 [in] DWORD ApiFlags,
 [in, out, unique] DFSM_ROOT_LIST** ppRootList
);

ServerName: The pointer to a null-terminated Unicode string. This MUST be used as the host name
of the new DFS root target in the metadata.<108>

DcName: The pointer to a null-terminated Unicode string. For a domainv1-based DFS namespace,
this string contains the host name of the DC that the new DFS root target is to use to get or

update DFS metadata for the DFS namespace. This parameter MAY be a NULL pointer, otherwise,
it MUST be the PDC for the domain of the DFS namespace.

RootShare: The pointer to a null-terminated Unicode string. This is the new DFS root target share
name. This can be different from the FtDfsName parameter. The share MUST already exist.

FtDfsName: The pointer to a null-terminated Unicode string. This is the name of the new or existing
domain-based DFS namespace.

Comment: The pointer to a null-terminated Unicode string that contains a comment associated with
the DFS namespace. Used for informational purposes, this string has no protocol-specified
restrictions on length or content. The comment is meant for human consumption and does not
affect server functionality. This parameter MAY be NULL.

101 / 165

[MS-DFSNM-Diff] - v20210407
Distributed File System (DFS): Namespace Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

ConfigDN: The pointer to a null-terminated Unicode string. This string MUST be the path of the DFS
namespace object entry in the DFS Configuration Container (see section 2.3.3).<109>

NewFtDfs: A Boolean value that, if TRUE, indicates a request to create a new root. If FALSE, then this
value indicates a request to add a new root target to an existing root.

ApiFlags: This parameter MUST be 0.

ppRootList: On success, returns a list of DFS root targets in the domain-based DFS namespace that
the client will be responsible for notifying of the change in the DFS namespace. See section
3.2.4.3.1. The list MAY be empty if the server has performed the notification.<110>

Return Values: The method MUST return 0 on success and a nonzero error code on failure. The
method can return any specific error code value, as specified in [MS-ERREF] section 2.2. The most
common error codes are listed in the following table.

Return value/code Description

0x00000000

ERROR_SUCCESS

Successful completion.

0x00000005

ERROR_ACCESS_DENIED

Permission to perform the operation was denied.

0x00000057

ERROR_INVALID_PARAMETER

An incorrect parameter was specified.

0x000000B7

ERROR_ALREADY_EXISTS

A namespace of the specified name already exists on the server.

0x00000906

NERR_NetNameNotFound

The share that the RootShare parameter specifies does not already
exist.

The share that the RootShare parameter specifies MUST already exist on the server.

If the DcName parameter is not NULL, the server assumes that this is the PDC for the domain in which
the DFS namespace is to be created.

If the domain-based DFS namespace already exists, and the ServerName and RootShare parameters
are a root target, the server MUST fail with ERROR_ALREADY_EXISTS.

If the share that the RootShare parameter specifies does not already exist, the RPC method MUST fail
with NERR_NetNameNotFound (0x00000906).

The server MUST update the following fields in the domainv1-based DFS metadata.

Operation DFS metadata changes required

Adding a new
namespace

Creates new DFS metadata.

Adding a new
root target

Updates the TargetCount field of the DFSTargetListBLOB, creates a new
TargetEntryBLOB, updates the DFSTargetListBLOBSize, updates the BLOBDataSize of the
DFSNamespaceRootBLOB, and adds the DFSRootTarget to the remoteServerName
attribute in the object.

The server MUST synchronously update the DFS metadata.

The server MUST return a list of DFS root targets to the client in the ppRootList parameter.<111>

102 / 165

[MS-DFSNM-Diff] - v20210407
Distributed File System (DFS): Namespace Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

3.1.4.3.2 NetrDfsRemoveFtRoot (Opnum 11)

The NetrDfsRemoveFtRoot (Opnum 11) method removes the specified root target from a domainv1-
based DFS namespace.<112> If the target is the last one associated with the DFS namespace, then

this method also deletes the DFS namespace. The DFS namespace can be removed without first
removing all of the links in it.

If a client tries to use this method on a domainv2-based DFS namespace target, then the server MUST
fail with the return value of ERROR_NOT_SUPPORTED.

The NetrDfsRemoveFtRoot method uses the following MIDL syntax.

 NET_API_STATUS NetrDfsRemoveFtRoot(
 [in, string] WCHAR* ServerName,
 [in, string] WCHAR* DcName,
 [in, string] WCHAR* RootShare,
 [in, string] WCHAR* FtDfsName,
 [in] DWORD ApiFlags,
 [in, out, unique] DFSM_ROOT_LIST** ppRootList
);

ServerName: The pointer to a null-terminated Unicode string. This is the host name DFS root target

to be removed.

DcName: The pointer to a null-terminated Unicode string. For a domainv1-based DFS namespace,
this string contains the host name of the DC to be used by the DFS root targets being removed for
getting or updating DFS metadata for the DFS namespace. This parameter MAY be a NULL pointer;
otherwise, it MUST be the PDC for the domain of the DFS namespace.

RootShare: The pointer to a null-terminated Unicode DFS root target share name string. The share is

not removed automatically when the method is successful; it MUST be removed explicitly as
needed.

FtDfsName: The pointer to a null-terminated Unicode string that contains the DFS namespace in

which the operation is to be performed. It MAY be different from the RootShare.

ApiFlags: The only supported bit in the ApiFlags parameter is DFS_FORCE_REMOVE.

Value Meaning

DFS_FORCE_REMOVE

0x80000000

Removes the named DFS root target from the namespace's directory service
metadata only.

All other bits are reserved and MUST NOT be used. If reserved bits are specified, the server
SHOULD<113> fail the call.

ppRootList: On success, returns a list of DFS root targets in the domain-based DFS namespace which

the client will be responsible for notifying about the change in the DFS namespace. See section
3.2.4.3.2. The list MAY be empty if the server has performed the notification.<114>

Return Values: The method MUST return 0 on success and a nonzero error code on failure. The
method can return any specific error code value, as specified in [MS-ERREF] section 2.2.The most
common error codes are listed in the following table.

Return value/code Description

0x00000000

ERROR_SUCCESS

Successful completion.

103 / 165

[MS-DFSNM-Diff] - v20210407
Distributed File System (DFS): Namespace Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

Return value/code Description

0x00000002

ERROR_FILE_NOT_FOUND

The specified DFS root target was not found as a target of the specified
DFS namespace.

0x00000005

ERROR_ACCESS_DENIED

Permission to perform the operation was denied.

0x00000057

ERROR_INVALID_PARAMETER

An incorrect parameter was specified.

0x00000490

ERROR_NOT_FOUND

The specified DFS rootnamespace does not exist.

The server MUST verify the existence of the DFS namespace that the FtDfsName parameter specifies.
If that existence check fails, the server MUST return ERROR_NOT_FOUND.

The server MUST verify the existence of the DFS root target of the DFS namespace that the

ServerName and RootShare parameters specify. If that existence check fails, the server MUST return

ERROR_FILE_NOT_FOUND.

The server MUST support deleting a DFS namespace without first requiring removal of all the DFS links
in it.

If the DcName parameter is not NULL, then it MUST be the PDC for the domain of the DFS namespace.

The server MAY support DFS_FORCE_REMOVE on member servers.<115> If it is not supported and
DFS_FORCE_REMOVE is specified, the server MUST return a failure.

If DFS_FORCE_REMOVE is not specified, the server MUST verify it is the host specified by the
ServerName and RootShare parameters. If it is not, the server MUST return ERROR_NOT_FOUND.

If DFS_FORCE_REMOVE is not specified, the server SHOULD<116> also remove any local information
related to hosting the removed root target. If DFS_FORCE_REMOVE is specified, the server MUST NOT

do so.

The effect of DFS_FORCE_REMOVE is to clean up after the named root target has become
nonfunctional and is unable to remove itself from the namespace.

The server MUST remove the root target of the domain-based DFS namespace specified by the
ServerName and RootShare parameters by updating the remoteServerName attribute of the
namespace's object (as specified in section 2.3.3) in the root target. If the last DFS root target is
being removed, then the server SHOULD NOT remove the object of the namespace; the client
invoking the method MUST do this.<117>

The server SHOULD remove any intermediate directories and reparse points that were part of the
namespace.

The server MUST update the following fields in the domainv1-based DFS metadata.

Operation DFS metadata changes required

Remove a
namespace.

Removes the object of DFS namespace.

Remove a root
target.

Updates the TargetCount in the existing DFSTargetListBLOB, removes the
TargetEntryBLOB, updates the DFSTargetListBLOBSize, updates the BLOBDataSize of the
DFSNamespaceRootBLOB, and removes the root target from the remoteServerName
attribute in the object.

104 / 165

[MS-DFSNM-Diff] - v20210407
Distributed File System (DFS): Namespace Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

The server MUST synchronously update the DFS metadata of the namespace.

If DFS root scalability mode is not enabled, then the server MUST do one of the following:

▪ Notify other DFS root targets of the change in DFS metadata by asynchronously issuing a
NetrDfsSetInfo (Opnum 3) method with the Level parameter 101 and with the State field of

DFS_INFO_101 set to DFS_VOLUME_STATE_RESYNCHRONIZE. The returned ppRootList parameter
MUST be empty.

▪ Perform no notification of the other root targets, returning a list of DFS root targets to the client in
the ppRootList parameter.

3.1.4.3.3 NetrDfsFlushFtTable (Opnum 18)

For information about this method, see 3.3.4.3.2.

3.1.4.4 Stand-Alone Namespace Methods

3.1.4.4.1 NetrDfsAddStdRoot (Opnum 12)

The NetrDfsAddStdRoot (Opnum 12) method creates a new stand-alone DFS
namespace.<118><119>

The NetrDfsAddStdRoot method uses the following MIDL syntax.

 NET_API_STATUS NetrDfsAddStdRoot(
 [in, string] WCHAR* ServerName,
 [in, string] WCHAR* RootShare,
 [in, string] WCHAR* Comment,
 [in] DWORD ApiFlags
);

ServerName: The pointer to a null-terminated Unicode string. This is the host name of the new DFS

root target.

RootShare: The pointer to a null-terminated Unicode string. This is the new DFS root target share

name as well as the DFS namespace name. The share MUST already exist.

Comment: The pointer to a null-terminated Unicode string that contains a comment associated with
the DFS namespace. Used for informational purposes, this string has no protocol-specified
restrictions on length or content. The comment is meant for human consumption and does not
affect server functionality. This parameter MAY be a NULL pointer.

ApiFlags: This parameter is reserved for future use and is ignored by the server.

Return Values: The method MUST return 0 on success and a nonzero error code on failure. The

method can return any specific error code value, as specified in [MS-ERREF] section 2.2. The most
common error codes are listed in the following table.

Return value/code Description

0x00000000

ERROR_SUCCESS

Successful completion.

0x00000005

ERROR_ACCESS_DENIED

Permission to perform the operation was denied.

0x00000050 The DFS namespace that the ServerName and RootShare parameters specify

105 / 165

[MS-DFSNM-Diff] - v20210407
Distributed File System (DFS): Namespace Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

Return value/code Description

ERROR_FILE_EXISTS already exists.<120>

0x000000B7

ERROR_ALREADY_EXISTS

The DFS namespace that the ServerName and RootShare parameters specify
already exists.<121>

0x00000906

NERR_NetNameNotFound

The share that the RootShare parameter specifies does not already exist.

On receiving this method, the server MUST do the following:

▪ If there is any entry in the NamespaceList with the NamespaceName matching RootShare,
then the RPC method MUST fail with either ERROR_FILE_EXISTS (0x00000050) or
ERROR_ALREADY_EXISTS (0x000000B7).

▪ If the share that the RootShare parameter specifies does not already exist, the RPC method MUST
fail with NERR_NetNameNotFound (0x00000906).

▪ Create the Namespace object, and insert it into the NamespaceList. The Namespace object
MUST be initialized as follows.

▪ Namespace.NamespaceName is set to RootShare.

▪ Namespace.NamespaceType is set to stand-alone.

▪ Namespace.GenerationGUID is set with a GUID.

▪ Create a NamespaceElement object and insert it into
Namespace.NamespaceElementsList.

▪ NamespaceElementsList.NamespaceElement is initialized as follows.

▪ NamespaceElement.Properties is set to 0.

▪ NamespaceElement.State is set to DFS_VOLUME_STATE_OK.

▪ NamespaceElement.Comment is set to Comment.

▪ NamespaceElement.ReferralTTL is set to 300 seconds.

▪ NamespaceElement.SecurityDescriptor is set to none.

▪ Create a Target object, insert it into NamespaceElement.TargetsList and update

TargetsList.TargetCount to 1.

▪ TargetsList.Target object is initialized as follows.

▪ Target.PriorityRank is set to 0.

▪ Target.PriorityClass is set to DfsSiteCostNormalPriorityClass.

▪ Target.State is set to DFS_STORAGE_STATE_ONLINE.

▪ Target.ServerName is set to ServerName.

▪ Target.ShareName is set to RootShare.

▪ The server MUST synchronously insert the Namespace object into the local information store.

3.1.4.4.2 NetrDfsRemoveStdRoot (Opnum 13)

106 / 165

[MS-DFSNM-Diff] - v20210407
Distributed File System (DFS): Namespace Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

The NetrDfsRemoveStdRoot (Opnum 13) method deletes the specified stand-alone DFS
namespace.<122> The DFS namespace can be removed without first removing all of the links in it.

The NetrDfsRemoveStdRoot method uses the following MIDL syntax.

 NET_API_STATUS NetrDfsRemoveStdRoot(
 [in, string] WCHAR* ServerName,
 [in, string] WCHAR* RootShare,
 [in] DWORD ApiFlags
);

ServerName: The pointer to a null-terminated Unicode string. This is the host name of the DFS root
target to be removed.

RootShare: The pointer to a null-terminated Unicode DFS root target share name string. This is also

the DFS namespace name. The share is not removed automatically when the method is
successful; it MUST be removed explicitly, as needed.

ApiFlags: This parameter is reserved for future use and is ignored by the server.

Return Values: The method MUST return 0 on success and a nonzero error code on failure. The
method can return any specific error code value, as specified in [MS-ERREF] section 2.2. The most
common error codes are listed in the following table.

Return value/code Description

0x00000000

ERROR_SUCCESS

Successful completion.

0x00000005

ERROR_ACCESS_DENIED

Permission to perform the operation was denied.

0x00000490

ERROR_NOT_FOUND

The DFS namespace that the ServerName and RootShare parameters specify
does not already exist.

The server MUST support the removal of a DFS namespace without requiring that all of the DFS links
be removed first.

On receiving this method, the server MUST do the following:

▪ If there is no entry in the NamespaceList with the NamespaceName matching RootShare, then
the RPC method MUST fail with ERROR_NOT_FOUND (0x00000490).

▪ Remove the Namespace object corresponding to the RootShare from the NamespaceList.

▪ Remove the Namespace object from the local information store.

The server SHOULD remove any intermediate directories and reparse points that were part of the
namespace.

3.1.4.4.3 NetrDfsAddStdRootForced (Opnum 15)

The NetrDfsAddStdRootForced (Opnum 15) method creates a new stand-alone DFS namespace
without checking for the availability and accessibility of the specified share.<123><124><125>

The NetrDfsAddStdRootForced method uses the following MIDL syntax.

 NET_API_STATUS NetrDfsAddStdRootForced(
 [in, string] WCHAR* ServerName,

107 / 165

[MS-DFSNM-Diff] - v20210407
Distributed File System (DFS): Namespace Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

 [in, string] WCHAR* RootShare,
 [in, string] WCHAR* Comment,
 [in, string] WCHAR* Share
);

ServerName: The pointer to a null-terminated Unicode string. This is the host name of the new DFS
root target.

RootShare: The pointer to a null-terminated Unicode DFS root target share name string. This is also
the DFS namespace name. This method does not create the share; it MUST be created separately.

Comment: The pointer to a null-terminated Unicode string that contains a comment associated with
the DFS namespace. Used for informational purposes, this string has no protocol-specified

restrictions on length or content. The comment is meant for human consumption and does not
affect server functionality. This parameter MAY be a NULL pointer.

Share: The pointer to a null-terminated Unicode string that contains the local file system path
corresponding to the share on the server receiving the RPC method, in the following form:

 <X>:\<path>

where <X> is a drive letter (a single character from A to Z) and <path> is a file system path
whose leaf component is a directory.

Return Values: The method MUST return 0 on success and a nonzero error code on failure. The
method can return any specific error code value, as specified in [MS-ERREF] section 2.2. The most
common error codes are listed in the following table.

Return value/code Description

0x00000000

ERROR_SUCCESS

Successful completion.

0x00000005

ERROR_ACCESS_DENIED

Permission to perform the operation was denied.

0x000000B7

ERROR_ALREADY_EXISTS

The DFS namespace that the ServerName and RootShare parameters specify
already exists.

The support for this method is optional. If supported, then the server MUST support the ability to
create a DFS namespace even when the share that the RootShare parameter specifies is not available
or accessible.

On receiving this method, the server MUST do the following.

▪ If there is any entry in the NamespaceList with the NamespaceName matching RootShare,
then the RPC method MUST fail with ERROR_ALREADY_EXISTS (0x000000B7).

▪ Create and initialize the Namespace object, as specified in section 3.1.4.4.1, and insert it into the
NamespaceList.

▪ The server MUST synchronously insert the Namespace object into the local information store.

3.1.4.5 Domain-Based Namespace Methods

3.1.4.5.1 NetrDfsGetDcAddress (Opnum 16)

108 / 165

[MS-DFSNM-Diff] - v20210407
Distributed File System (DFS): Namespace Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

The NetrDfsGetDcAddress (Opnum 16) method returns the DC host name that is used by the DFS
server to which the RPC method is issued.<126> The client MUST use this DC to create a domain-

based DFS namespace, add a root target to a domain-based DFS namespace, remove a root target
from a domain-based DFS namespace, or remove a domain-based DFS namespace.

The NetrDfsGetDcAddress method uses the following MIDL syntax.

 NET_API_STATUS NetrDfsGetDcAddress(
 [in, string] WCHAR* ServerName,
 [in, out, string] WCHAR** DcName,
 [in, out] BOOLEAN* IsRoot,
 [in, out] unsigned long* Timeout
);

ServerName: A pointer to a null-terminated Unicode string. This is the host name of the server to
which the RPC method is issued.<127>

DcName: A null-terminated Unicode string that contains the DC host name when the

NetrDfsGetDcAddress method is successful.<128>

IsRoot: A pointer to a Boolean value, set to TRUE on return if the server hosts any DFS root target,

and FALSE otherwise.<129>

Timeout: A pointer to an unsigned 32-bit integer value indicating the count of seconds for which the
server will use the DC that is returned to access DFS metadata.<130>

Return Values: The method MUST return 0 on success and a nonzero error code on failure. The
method can return any specific error code value, as specified in [MS-ERREF] section 2.2. The most
common error codes are listed in the following table.

Return value/code Description

0x00000000

ERROR_SUCCESS

Successful completion.

A server MAY<131> implement this method if it supports domain-based DFS namespaces.

In the DcName parameter, the server SHOULD return the host name of the DC it is using to access
DFS metadata for any domain-based DFS namespace that the server is hosting. If the server is not
currently using a DC, it MUST determine a DC and return its name.

The server SHOULD also return a time-out value, in seconds, that is equal to the length of time that
the server will be using the DC in the Timeout parameter, assuming that another RPC method does
not change it.

The server uses the IsRoot parameter to specify whether it supports the ability to host more than one

DFS namespace, and to indicate whether it is currently hosting a DFS namespace. If the server
supports the ability to host more than one DFS namespace, it MUST return a value of FALSE in the
IsRoot parameter, regardless of whether it is actually hosting a DFS namespace. If the server does not

support the ability to host more than one DFS namespace, and if it currently hosts a DFS namespace,
it SHOULD return a value of TRUE in the IsRoot parameter; otherwise, it SHOULD return FALSE.

3.1.4.5.2 NetrDfsSetDcAddress (Opnum 17)

The NetrDfsSetDcAddress (Opnum 17) method instructs the server receiving the RPC method to use
the specified DC for DFS metadata accesses for domain-based DFS namespaces.<132>

The NetrDfsSetDcAddress method uses the following MIDL syntax.

109 / 165

[MS-DFSNM-Diff] - v20210407
Distributed File System (DFS): Namespace Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

 NET_API_STATUS NetrDfsSetDcAddress(
 [in, string] WCHAR* ServerName,
 [in, string] WCHAR* DcName,
 [in] DWORD Timeout,
 [in] DWORD Flags
);

ServerName: The pointer to a null-terminated Unicode string. This is the host name of the server to
which the RPC method is issued.

DcName: The pointer to a null-terminated Unicode DC host name string.

Timeout: The time period, in seconds, that the server uses the specified DC when storing and
retrieving domain-based DFS metadata. This is valid only when the NET_DFS_SETDC_TIMEOUT bit
of the Flags parameter is set.

Flags: The bit field specifying additional operations to perform. Possible values are as follows.

Value Meaning

NET_DFS_SETDC_FLAGS

0x00000000

Indicates that no additional operation is requested.

NET_DFS_SETDC_TIMEOUT

0x00000001

Sets the time-out value based on the Timeout parameter.

NET_DFS_SETDC_INIT_PKT

0x00000002

Instructs the called server to reload its DFS metadata from the specified DC.

All other bits are reserved and MUST NOT be used. If reserved bits are specified, the server MAY
fail the call with an implementation-defined failure value.<133>

Return Values: The method MUST return 0 on success and a nonzero error code on failure. The

method can return any specific error code value, as specified in [MS-ERREF] section 2.2. The most
common error codes are listed in the following table.

Return value/code Description

0x00000000

ERROR_SUCCESS

Successful completion.

0x00000005

ERROR_ACCESS_DENIED

Permission to perform the operation was denied.

Servers MAY choose not to implement this method or implement it as a method with no effect that
returns ERROR_SUCCESS.<134>

Otherwise, the server MUST update the DC it uses for accessing DFS metadata for the domain-based

DFS namespace it is hosting with the specified DC. If no time-out is specified in the Timeout
parameter (NET_DFS_SETDC_TIMEOUT is not set in the Flags parameter), the server MUST use its

default time-out. The DC the server uses at the end of this time-out is implementation-defined.

When NET_DFS_SETDC_INIT_PKT is set in the Flags parameter, the server SHOULD initiate a
background synchronization of the domain-based DFS namespace it is hosting with either the DC
specified by this method or the default DC the server is using. This MUST be treated as functionally
equivalent to receiving a NetrDfsSetInfo (Opnum 3) method with the Level parameter value 101 and
the State field of DFS_INFO_101 set to DFS_VOLUME_STATE_RESYNCHRONIZE.<135>

110 / 165

[MS-DFSNM-Diff] - v20210407
Distributed File System (DFS): Namespace Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

3.1.5 Timer Events

No protocol timer events are required on the client beyond the timers required in the underlying RPC
transport.

3.1.6 Other Local Events

No additional local events are used on the client beyond the events maintained in the underlying RPC
transport.

3.2 Client Details

3.2.1 Abstract Data Model

None.

3.2.2 Timers

No protocol timers are required beyond those used internally by the RPC method to implement

resiliency to network outages, as specified in [MS-RPCE].

3.2.3 Initialization

The client creates an RPC binding handle to the server RPC method endpoint when an RPC method is

called. For more information on binding handles, see [C706]. The client MAY create a separate binding
handle for each method invocation, or it MAY reuse a binding handle for multiple invocations. The
client MUST create an authenticated RPC binding handle.<136>

3.2.4 Message Processing Events and Sequencing Rules

The client MUST pass any error received from the invocation of an RPC method to the application that
issued the RPC call.

On successful completion of methods returning lists of servers to notify (NetrDfsAdd2,
NetrDfsRemove2, and NetrDfsSetInfo2), the application SHOULD notify the servers that the
namespace metadata has been updated. This is done by issuing the NetrDfsSetDcAddress method to
each server, specifying NET_DFS_SETDC_INITPKT on the Flags parameter.

As specified in section 3.1.4.5.2 and its references, issuing the NetrDfsSetDcAddress method will

cause the targeted server to update the cached copy of the metadata it holds. If this notification is not
delivered, the specified servers could be unaware of the namespace metadata update for an
indeterminate period of time. Such a failure to deliver the notification is normal, however, and can be
due to client or application failure (for example a crash or a power or network outage).

The server recovers from notification failure because of the updating requirement in section 3.1.4. The
updating requirement states the preconditions that a server MUST satisfy before processing an RPC

method.

3.2.4.1 Basic Methods

3.2.4.1.1 NetrDfsAdd (Opnum 1)

If a NetrDfsAdd call to the DFS root target fails with ERROR_NOT_SUPPORTED (0x00000032), an
application can use this as an indication to issue the NetrDfsAdd2 method instead.<137>

111 / 165

[MS-DFSNM-Diff] - v20210407
Distributed File System (DFS): Namespace Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

3.2.4.1.2 NetrDfsRemove (Opnum 2)

If a NetrDfsRemove call fails with ERROR_NOT_SUPPORTED (0x00000032), an application can use this
as an indication to issue the NetrDfsRemove2 method.<138>

3.2.4.1.3 NetrDfsSetInfo (Opnum 3)

If a NetrDfsSetInfo call fails with ERROR_NOT_SUPPORTED (0x00000032), an application can use this
as an indication to issue the NetrDfsSetInfo2 method instead.<139>

3.2.4.1.4 NetrDfsEnum (Opnum 5) and NetrDfsEnumEx (Opnum 21)

An application can use either the NetrDfsEnum or the NetrDfsEnumEx method to enumerate roots and

links. The application can use the value that NetrDfsManagerGetVersion returns, to determine the
enumeration method to use.<140><141>

Due to the possibility of concurrent updates to the DFS namespace, an application SHOULD NOT
assume completeness or uniqueness of the results returned when resuming an enumeration (for more

information on NetrDfsEnum, see section 3.1.4.1.7).<142>

3.2.4.2 Extended Methods

3.2.4.2.1 NetrDfsAdd2 (Opnum 19)

An application MUST determine the PDC of a DFS root target server of the DFS namespace specified
by the DfsEntryPath parameter and invoke the NetrDfsAdd2 method specifying the PDC.

If successful, the application SHOULD issue notifications to each server returned in the ppRootList
parameter, as specified in section 3.2.4.

3.2.4.2.2 NetrDfsRemove2 (Opnum 20)

An application MUST determine the PDC of a DFS root target server of the DFS namespace specified

by the DfsEntryPath parameter and invoke the NetrDfsRemove2 method specifying the PDC.

If successful, the application SHOULD issue notifications to each server returned in the ppRootList

parameter, as specified in section 3.2.4.

3.2.4.2.3 NetrDfsSetInfo2 (Opnum 22)

An application MUST determine the PDC of a DFS root target server of the DFS namespace specified
by the DfsEntryPath parameter and invoke the NetrDfsSetInfo2 method specifying the PDC.

If successful, the application SHOULD issue notifications to each server returned in the ppRootList
parameter, as specified in section 3.2.4.

3.2.4.3 Root Target Methods

3.2.4.3.1 NetrDfsAddFtRoot (Opnum 10)

The NetrDfsAddFtRoot method is supported only for a domainv1-based DFS namespace scenario.

An application MUST perform the following steps before invoking the NetrDfsAddFtRoot method:

1. Determine the PDC of the domain of the DFS root target server that the ServerName parameter
specifies.

112 / 165

[MS-DFSNM-Diff] - v20210407
Distributed File System (DFS): Namespace Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

2. If an object of type fTDfs with the name of the domain-based DFS namespace does not already
exist in the DFS Configuration Container, create a new object for the domain-based DFS

namespace, as specified in section 2.3.3.

3. Update the ACL on the object of the DFS namespace to permit read/write access by the DFS root

target server.

4. Call the NetrDfsFlushFtTable method on the PDC, specifying the DFS namespace name.

5. If all prior steps succeeded without error, then the client MUST issue the NetrDfsSetDcAddress
(Opnum 17) method to each server that the ppRootList parameter returns.<143><144>

3.2.4.3.2 NetrDfsRemoveFtRoot (Opnum 11)

An application MUST determine the PDC of the domain of the DFS root target server that the

ServerName parameter specifies.<145> If the ApiFlags parameter is not DFS_FORCE_REMOVE, the
application MUST issue the RPC method to the DFS root target server that the ServerName parameter
specifies; otherwise, the application MUST issue the RPC method to the PDC.

This method is supported only for a domainv1-based DFS namespace scenario. If a client application
attempts to use it on a domainv2-based DFS namespace or target, the server MUST fail with a return
value of ERROR_NOT_SUPPORTED.

If all prior steps succeeded without error, then the application MUST perform the following steps:

1. Invoke the NetrDfsSetDcAddress method to each server returned in the ppRootList
parameter.<146>

2. Update the ACL on the object (as specified in section 2.3.3) of the DFS namespace to remove
read/write access by the DFS root target server.

3. Remove the object itself if the remoteServerName attribute of the DFS namespace object (as
specified in section 2.3.3) has exactly one value in it.

4. Call the NetrDfsFlushFtTable method on the PDC, specifying the DFS namespace name.

3.2.5 Timer Events

No protocol timer events are required on the client beyond those required in the underlying RPC call
transport.

3.2.6 Other Local Events

No additional local events are used on the client beyond those maintained in the underlying RPC
transport.

3.3 Domain Controller Details

A DC hosting a DFS root target MUST conform to the specification in section 3.1.

In addition, the DFS server on a DC MUST do the following:

▪ Receive and respond to DFS root and DFS link referral requests for any domain-based DFS

namespace in the domain. The DC need not be a DFS root target for the domain-based DFS
namespace identified in the referral request.

▪ Receive and respond to the RPC methods, as specified in section 3.3.4.

113 / 165

[MS-DFSNM-Diff] - v20210407
Distributed File System (DFS): Namespace Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

3.3.1 Abstract Data Model

A DFS server on a DC MAY maintain the following data item:

▪ ReferralCache: A referral cache that is used when distributing referrals for domain-based DFS

namespaces. This is for use by the DFS Referral Protocol, as specified in [MS-DFSC].

3.3.2 Timers

No protocol timers are required beyond those used internally by RPC to implement resiliency to
network outages, as specified in [MS-RPCE].

3.3.3 Initialization

No initialization is required beyond that used internally by RPC, as specified in [MS-RPCE].

3.3.4 Message Processing Events and Sequencing Rules

A DC MAY<147> itself be a DFS root target. In such cases, it MUST process RPC methods, as specified
in section 3.1. In addition, some methods SHOULD be specially supported, as specified in the following
topics.

3.3.4.1 Basic Methods

3.3.4.1.1 NetrDfsRemoveRootTarget (Opnum 24)

A DFS server on a DC MUST support the DFS_FORCE_REMOVE value (0x80000000) for the ApiFlags
parameter. DFS_FORCE_REMOVE value is used to delete a domain-based DFS namespace when the

root target servers of the namespace are no longer available (for example, they have been
decommissioned).

3.3.4.2 Extended Methods

3.3.4.2.1 NetrDfsEnumEx (Opnum 21)

A DFS server on a DC SHOULD support the Level parameter 200. The DFS server MUST validate the
DfsEntryPath parameter against the name of the domain to which the DC is joined, and fail with
ERROR_INVALID_NAME (0x0000007B) if it does not match. The DFS server then returns the list of
domain-based DFS namespaces in the domain. This MUST be returned by performing an LDAP search
for objects on the domain controller under the container. The container has the following DN:

 CN=Dfs-Configuration,CN=System,<domain>

where <domain> is the DN of the domain. For details and more information, see section 2.3.1.<148>

3.3.4.3 Root Target Methods

3.3.4.3.1 NetrDfsRemoveFtRoot (Opnum 11)

A DFS server on a DC MUST support the DFS_FORCE_REMOVE value (0x80000000) for the ApiFlags
parameter. The DFS_FORCE_REMOVE value is used to delete a domain-based DFS namespace when
the root target servers of the namespace are no longer available (for example, decommissioned).

114 / 165

[MS-DFSNM-Diff] - v20210407
Distributed File System (DFS): Namespace Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

3.3.4.3.2 NetrDfsFlushFtTable (Opnum 18)

The NetrDfsFlushFtTable method instructs the DFS server on a DC to purge the specified domainv1-
based DFS entry from any DFS root referral cache it might have.

Note This method MUST fail on non-DC servers, as specified in this section.

The NetrDfsFlushFtTable method uses the following MIDL syntax.

 NET_API_STATUS NetrDfsFlushFtTable(
 [in, string] WCHAR* DcName,
 [in, string] WCHAR* wszFtDfsName
);

DcName: The pointer to a null-terminated Unicode string that contains the host name of the DC to
which the RPC method is issued.

wszFtDfsName: The pointer to a null-terminated Unicode string that contains the name of the

domain-based DFS namespace.

Return Values: This method MUST return 0 on success and a nonzero error code on failure. The
values transmitted in this field are implementation-specific. For protocol purposes, all nonzero
values MUST be treated as equivalent failures.

Note This method MUST return ERROR_NOT_SUPPORTED on non-DC servers.

Return value/code Description

0x00000000

ERROR_SUCCESS

Successful completion.

0x00000032

ERROR_NOT_SUPPORTED

Operation not supported. This MUST be returned if the server does not
implement the method.

The server MAY choose not to implement this method.<149> If it does, ERROR_NOT_SUPPORTED

MUST be returned.

3.3.5 Timer Events

No protocol timer events are required on the client beyond the timers required in the underlying RPC
transport.

3.3.6 Other Local Events

No additional local events are used on the client beyond the events maintained in the underlying RPC
transport.

115 / 165

[MS-DFSNM-Diff] - v20210407
Distributed File System (DFS): Namespace Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

4 Protocol Examples

The following examples for domainv1 are in a Windows Server 2003 operating system domain; the
client used is Windows XP operating system Service Pack 2 (SP2). The member servers and domain
controllers used in the example are all Windows Server 2003 operating system with Service Pack 1
(SP1).

For domainv2, the client is Windows Vista operating system. The member servers and domain

controllers in this scenario are all Windows Server 2008 operating system.

4.1 Creating a New Domainv1-Based DFS Namespace

The following example describes the steps used to create a new domainv1-based DFS namespace. The

namespace name is testroot1, to be created on a server named CFS-41X-2C02 within the dfsn-
dev.microsoft.com domain.

1. A client determines whether a new domainv1-based DFS namespace is being created, or a new

DFS root target is being added to an existing domain-based DFS namespace, by issuing an LDAP
search for the object corresponding to the domainv1-based DFS namespace. The following
illustration shows the LDAP search parameters that do this.

2. Because the domainv1-based DFS namespace does not already exist, the DC fails the LDAP search

with LDAP_NO_SUCH_OBJECT.

3. The client creates an object for the new domainv1-based DFS namespace.

4. Object creation is successful.

5. The client updates the ACL on the object to permit the new DFS root target to update the object.

6. The ACL change on the object is successful.

7. The client issues a NetrDfsAddFtRoot method to the DFS root target server.

8. The DFS root target creates the DFS metadata required for the new domainv1-based DFS

namespace and updates the DFS metadata in the object corresponding to the DFS namespace.
This is shown as an LDAP modify operation to the PDC for the domain. The following illustration
shows the LDAP modify parameters that do this.

9. The DFS metadata write is successful.

10. The DFS root target completes the NetrDfsAddFtRoot method to the client.

The following illustration shows the sequence of events.

116 / 165

[MS-DFSNM-Diff] - v20210407
Distributed File System (DFS): Namespace Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

Figure 2: Creating a new domainv1-based DFS namespace

4.2 Adding a Root Target to an Existing Domainv1-Based DFS Namespace

The following example describes the steps used to create a new root target in an existing domainv1-
based DFS namespace.

1. The client determines whether a new domainv1-based DFS namespace is being created or a new
DFS root target is being added to an existing domainv1-based DFS namespace, by issuing an

LDAP search for the object corresponding to the domainv1-based DFS namespace to the PDC.

2. Because the domainv1-based DFS namespace already exists, the LDAP search is successful.

117 / 165

[MS-DFSNM-Diff] - v20210407
Distributed File System (DFS): Namespace Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

3. The client updates the ACL on the object to permit the new DFS root target CFS-41X-2C03 to
update the object.

4. The ACL change on the object is successful.

5. The client issues a NetrDfsAddFtRoot method to the new DFS root target server CFS-41X-2C03.

6. The DFS root target server CFS-41X-2C03 creates the DFS metadata required for the new
domainv1-based DFS namespace and writes it to the PDC for the domain. The following illustration
shows the LDAP modify parameters that do this.

7. The DFS metadata write is successful.

8. The DFS root target CFS-41X-2C03 completes the NetrDfsAddFtRoot method to the client.

The following illustration shows the sequence of events.

118 / 165

[MS-DFSNM-Diff] - v20210407
Distributed File System (DFS): Namespace Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

Figure 3: Adding a root target to an existing domainv1-based DFS namespace

4.3 Adding a New Link to a Domain-Based DFS Namespace

The following example describes the steps for adding a new DFS link to an existing domainv1-based
DFS namespace that has two root targets. The illustration in this example also shows how the DFS
root target uses NetrDfsSetInfo, Level parameter 101, and DFS_VOLUME_STATE_RESYNCHRONIZE to
update the DFS metadata of the domain-based DFS namespace with the new DFS link information,
and then notifies the other root targets.

1. A client issues a NetrDfsAdd RPC method to the DFS root target CFS-41X-2C02 for the domainv1-
based DFS namespace.

2. The DFS root target CFS-41X-2C02 issues an LDAP search operation to retrieve the pKTGuid
attribute in the object for the domainv1-based DFS namespace to the PDC for the domain. The
following illustration shows the DN of the object and the attribute searched.

3. The LDAP search is successful, and the value of the PktGuid attribute is returned.

4. The DFS root target CFS-41X-2C02 determines that the DFS metadata in its cache is up-to-date

and determines whether the new link target is already in another DFS namespace. This is done by
issuing the NetrShareGetInfo method, as specified in [MS-SRVS], specifying a Level parameter
1005 to the DFS link target CFS-44X-2B08 to check the link target share's properties. For more
information on the NetrShareGetInfo method, see [MS-SRVS].

5. The NetrShareGetInfo RPC method returns an indication that the DFS link target share is not a
DFS namespace. This information is used to determine the value of the
PKT_ENTRY_TYPE_OUTSIDE_MY_DOM bit of the Type field of the DFSRootOrLinkIDBLOB (for

more information, see section 2.3.3.1.1.2) for the DFS link. For this example, the bit is set to 0.

6. DFS link target CFS-41X-2C02 issues an LDAP modify operation to the PDC with a new pKTGuid
value and the updated DFS metadata containing the new DFS link information.

7. The LDAP modify operation is successful.

8. The NetrDfsAdd method invoked by the client completes successfully.

9. The DFS root target, which updated the DFS metadata, issues the NetrDfsSetInfo method with the

Level parameter 101 and the State field of DFS_INFO_101 set to
DFS_VOLUME_STATE_RESYNCHRONIZE to all of the other root targets. CFS-41X-2C02, in this
example, is notifying CFS-41X-2C03.

10. On receiving the NetrDfsSetInfo method, Level parameter 101, and
DFS_VOLUME_STATE_RESYNCHRONIZE, CFS-41X-2C03 issues an LDAP search to the PDC to
verify whether the DFS metadata in its cache is up-to-date.

11. The LDAP search operation is successful and contains the pKTGuid attribute's value.

12. CFS-41X-2C03 determines that the cached DFS metadata it has needs to be refreshed. It then
issues an LDAP search operation to retrieve the value of the pKT attribute, which contains the

actual DFS metadata.

13. The LDAP search is successful and contains the DFS metadata in the reply.

14. In this example, CFS-41X-2C03 performs the required changes to its local state by adding the new
DFS link. The NetrDfsSetInfo method that CFS-41X-2C02 issued is then completed.

119 / 165

[MS-DFSNM-Diff] - v20210407
Distributed File System (DFS): Namespace Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

Figure 4: Adding a new link to a domainv1-based DFS namespace

4.4 Creating a New Domainv2-Based DFS Namespace

The following example describes the steps used to create a new domainv2-based DFS namespace.

1. A client determines whether a new domainv2-based DFS namespace is being created or a new
DFS root target is being added to an existing domainv2-based DFS namespace, by issuing an
LDAP search for the object corresponding to the domainv2-based DFS namespace. The following
illustration shows the LDAP search parameters that do this.

120 / 165

[MS-DFSNM-Diff] - v20210407
Distributed File System (DFS): Namespace Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

2. Because the domainv2-based DFS namespace does not already exist, the DC fails the LDAP search
with LDAP_NO_SUCH_OBJECT.

3. The client creates an object for the new domainv2-based DFS namespace.

4. Object creation is successful.

5. The client updates the ACL on the object to permit the new DFS root target CFS-41X-2C02 to
update the object.

6. The ACL change on the object is successful.

7. The client issues a NetrDfsAddRootTarget method to the DFS root target server.

8. The DFS root target server creates a new DFS namespace LDAP entry with the DFS namespace
anchor LDAP entry as its parent. The server also creates the DFS metadata required for the new
domainv2-based DFS namespace and updates the DFS metadata in the object corresponding to

the DFS namespace. This appears as an LDAP modify operation to the PDC for the domain. The
following illustration shows the LDAP modify parameters that do this.

9. The DFS metadata write is successful.

10. The DFS root target completes the NetrDfsAddRootTarget method to the client.

The following illustration shows this sequence of events.

121 / 165

[MS-DFSNM-Diff] - v20210407
Distributed File System (DFS): Namespace Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

Figure 5: Creating a new domainv2-based DFS namespace

4.5 Adding a Root Target to an Existing Domainv2-Based DFS Namespace

The following example describes the steps used to create a new root target in an existing domainv2-
based DFS namespace.

1. The client determines whether a new domainv2-based DFS namespace is being created, or a new
DFS root target is being added to an existing domainv2-based DFS namespace, by issuing an

LDAP search for the object corresponding to the domainv2-based DFS namespace to the PDC.

2. Because the domainv2-based DFS namespace already exists, the LDAP search is successful.

3. The client updates the ACL on the object to permit the new DFS root target CFS-41X-2C03 to
update the object.

4. The ACL change on the object is successful.

122 / 165

[MS-DFSNM-Diff] - v20210407
Distributed File System (DFS): Namespace Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

5. The client issues a NetrDfsAddRootTarget method to the new DFS root target server CFS-41X-
2C03.

6. The DFS root target server CFS-41X-2C03 creates the DFS metadata required for the new
domainv2-based DFS namespace and writes it to the PDC for the domain. The following illustration

shows the LDAP modify parameters that do this.

7. The DFS metadata write is successful.

8. The DFS root target CFS-41X-2C03 completes the NetrDfsAddRootTarget method to the client.

The following illustration shows the sequence of events.

Figure 6: Adding a root target to an existing domainv2-based DFS namespace

123 / 165

[MS-DFSNM-Diff] - v20210407
Distributed File System (DFS): Namespace Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

4.6 Adding a New Link to a Domainv2-Based DFS Namespace

The following example describes the steps used to add a new DFS link to an existing domainv2-based
DFS namespace with two root targets. The illustration in this example also shows how the DFS root

target uses NetrDfsSetInfo, Level parameter 101, and DFS_VOLUME_STATE_RESYNCHRONIZE, to
update the DFS metadata of the domain-based DFS namespace with the new DFS link information,
and then notifies the other root targets.

1. A client issues a NetrDfsAdd RPC method to the DFS root target CFS-41X-2C02 for the domainv2-
based DFS namespace.

2. The DFS root target CFS-41X-2C02 performs either a full synchronization or an incremental
synchronization. A full synchronization is performed if the DFS root target server is switching to a

new PDC or if the DC that the synchronization operation is currently using is different from that in
the <uSNChanged, DC invocation ID> tuple that was saved at the start of a previous full
synchronization for the DFS namespace. An incremental synchronization is performed if the DFS
root target server is already syncing with the PDC.

3. An incremental synchronization is done by issuing an LDAP search operation for the DFS
namespace LDAP entry subtree to determine whether in any of the object classes of msDFS-

Namespacev2, msDFS-Linkv2, or msDFS-DeletedLinkv2 the uSNChanged is greater than the
saveduSNChanged value, where saveduSNChanged is the uSNChanged value from the tuple
<uSNChanged, DC invocation ID> that was saved previously.

4. The DFS root target CFS-41X-2C02 determines that the DFS metadata in its cache is up-to-date
and whether the new link points to another DFS namespace.

5. DFS link target CFS-41X-2C02 issues an LDAP modify operation to the PDC with a new identity
GUID (msDFS-LinkIdentityGUID) value and the updated DFS metadata that contains the new DFS

link information. The link identity GUID is set at DFS link creation time and does not change for
the lifetime of the LDAP entry. It is used to locate the in-memory data structure that corresponds
to the DFS link in the DFS metadata cache.

6. The LDAP modify operation is successful.

7. The NetrDfsAdd method invoked by the client completes successfully.

8. To perform a full synchronization to ensure that this is propagated to all other root targets, the
DFS root target, which updated the DFS metadata, issues the NetrDfsSetInfo method, with the

Level parameter 101 and the State field of DFS_INFO_101 set to
DFS_VOLUME_STATE_RESYNCHRONIZE, to all of the other root targets. This is used to identify
added or deleted DFS links. In this example, CFS-41X-2C02 is notifying CFS-41X-2C03.

9. On receiving the NetrDfsSetInfo method with Level parameter 101 and
DFS_VOLUME_STATE_RESYNCHRONIZE, CFS-41X-2C03 issues an LDAP search to the PDC to
verify whether the DFS metadata in its cache is up-to-date. A different uSNChanged value from

the <uSNChanged, DC invocation ID> tuple saved at the start of a previous full sync would
indicate what has changed, and it would subsequently perform an incremental sync to propagate
any DFS metadata change.

10. CFS-41X-2C03 determines that the cached DFS metadata it has needs to be refreshed. It then
issues an LDAP search operation to retrieve the attributes associated with the msDFS-Linkv2 class,
which contains the actual DFS metadata.

11. The LDAP search is successful and contains the DFS metadata in the reply.

12. In this example, CFS-41X-2C03 performs the required changes to its local state by adding the new
DFS link. The NetrDfsSetInfo method that CFS-41X-2C02 issued is then completed.

124 / 165

[MS-DFSNM-Diff] - v20210407
Distributed File System (DFS): Namespace Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

Figure 7: Adding a new link to a domainv2-based DFS namespace

4.7 Enumerating DFS Links in a Domain-Based DFS Namespace

The following example describes the sequence of an interactive administration application that
enumerates all domain-based DFS namespaces in a domain and all DFS links of a domain-based DFS
namespace.

1. To enumerate all of the domain-based DFS namespaces in the dfsn-dev domain, the
administration application issues the NetrDfsEnumEx RPC method with the DfsEntryPath

parameter \\dfsn-dev and Level parameter 200. This method is issued to the DC.

125 / 165

[MS-DFSNM-Diff] - v20210407
Distributed File System (DFS): Namespace Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

2. The DC returns two domain-based DFS namespaces in the domain: \\dfsn-dev\testroot1 and

\\dfsn-dev\testroot2.

3. The user decides to view information about the domain-based DFS namespace \\dfsn-

dev\testroot1. Before the administering application can issue the RPC method to obtain

information about that DFS namespace, it determines which DFS root target it will issue the RPC
method to. This is done by issuing a DFS root referral request to the DC, as specified in [MSDFS].

4. The DC responds to the DFS root referral request with the two DFS root targets: \\cfs-41x-

2c02\testroot1 and \\cfs-41x-2c03\testroot1.

5. The NetrDfsEnumEx RPC method to obtain information about the DFS namespace \\dfsn-

dev\testroot1 is then issued to the root target cfs-41x-2c02.

6. The root target returns the DFS root and one DFS link in the domain-based DFS namespace.

Figure 8: Enumerating DFS links in a domainv1-based DFS namespace

126 / 165

[MS-DFSNM-Diff] - v20210407
Distributed File System (DFS): Namespace Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

4.8 DFS Metadata of a Domainv1-Based DFS Namespace

This example uses the following domainv1-based DFS namespaces:

▪ DFS root: \\dfsn-dev\testroot1

▪ DFS root targets: \\cfs-41x-2c02\testroot1 and \\cfs-41x-2c03\testroot1

▪ DFS link: \\dfsn-dev\testroot1\dfslinks\link1

▪ DFS link target \\cfs-44x-2b08\public

The following illustration shows the hexadecimal dump of the DFS metadata for this domainv1-based
DFS namespace. The offsets in the hexadecimal dump are used to explain the dump.

127 / 165

[MS-DFSNM-Diff] - v20210407
Distributed File System (DFS): Namespace Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

Figure 9: Hexadecimal dump of the DFS metadata for a domainv1-based DFS namespace

The following table lists elements of the hexadecimal dump.

Offset Raw hex values DFS metadata field

0x000 00 00 00 00 BLOBVersion: 0

0x004 03 00 00 00 BLOBElementCount: 3

0x008 - DFSNamespaceElementBLOB #1

0x008 16 00 BLOBNameSize: 0x0016 (22)

128 / 165

[MS-DFSNM-Diff] - v20210407
Distributed File System (DFS): Namespace Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

Offset Raw hex values DFS metadata field

0x00A 5C 00 64 00 6F 00 6D 00

61 00 69 00 6E 00 72 00

6F 00 6F 00 74 00

BLOBName: \domainroot

0x020 4C 01 00 00 BLOBDataSize: 0x0000014c (332)

0x024 - DFSNamespaceRootBLOB

0x024 - DFSRootOrLinkIDBLOB

0x024 2E 79 A8 2C F6 F3 E5 44

BC 18 6C E6 76 A0 53 DA

RootOrLinkGuid: 2ca8792e-f3f6-44e5-bc18-6ce676a053da

0x034 26 00 PrefixSize: 0x0026 (38)

0x036 5C 00 44 00 46 00 53 00

4E 00 2D 00 44 00 45 00

56 00 5C 00 74 00 65 00

73 00 74 00 72 00 6F 00

6F 00 74 00 31 00

Prefix: \DFSN-DEV\testroot1

0x05C 26 00 ShortPrefixSize: 0x0026 (38)

0x05E 5C 00 44 00 46 00 53 00

4E 00 2D 00 44 00 45 00

56 00 5C 00 74 00 65 00

73 00 74 00 72 00 6F 00

6F 00 74 00 31 00

Short prefix: \DFSN-DEV\testroot1

0x084 81 00 00 00 Type: 0x00000081

0x088 01 00 00 00 State: 0x00000001

0x08C 2A 00 CommentSize: 0x002A (42)

0x08E 44 00 6F 00 6D 00 61 00

69 00 6E 00 2D 00 62 00

61 00 73 00 65 00 64 00

20 00 44 00 46 00 53 00

20 00 72 00 6F 00 6F 00

74 00

Comment: Domain-based DFS root

0x0B8 D0 5A B5 34 A2 99 C6 01 PrefixTimeStamp: June 26, 2006 21:28:57

0x0C0 D0 5A B5 34 A2 99 C6 01 StateTimeStamp: June 26, 2006 21:28:57

0x0C8 D0 5A B5 34 A2 99 C6 01 CommentTimeStamp: June 26, 2006 21:28:57

0x0D0 03 00 00 00 Version: 0x0000003

0x0D4 8C 00 00 00 DFSTargetListBLOBSize: 0x0000008C (140)

0x0D8 - DFSTargetListBLOB

0x0D8 02 00 00 00 TargetCount: 0x00000002

0x0DC - TargetEntryBLOB

129 / 165

[MS-DFSNM-Diff] - v20210407
Distributed File System (DFS): Namespace Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

Offset Raw hex values DFS metadata field

0x0DC 3E 00 00 00 TargetEntrySize: 0x0000003E (62)

0x0E0 00 00 00 00 00 00 00 00 TargetTimeStamp: 0

0x0E8 02 00 00 00 TargetState: 0x00000002

0x0EC 02 00 00 00 TargetType: 0x00000002

0x0F0 18 00 ServerNameSize: 0x0018 (24)

0x0F2 43 00 46 00 53 00 2D 00

34 00 31 00 58 00 2D 00

32 00 43 00 30 00 32 00

ServerName: CFS-41X-2C02

0x10A 12 00 ShareNameSize: 0x0012 (18)

0x10C 74 00 65 00 73 00 74 00

72 00 6F 00 6F 00 74 00

31 00

ShareName: testroot1

0x11E - TargetEntryBLOB

0x11E 3E 00 00 00 TargetEntrySize: 0x0000003E (62)

0x122 00 00 00 00 00 00 00 00 TargetTimeStamp: 0

0x12A 02 00 00 00 TargetState: 0x00000002

0x12E 02 00 00 00 TargetType: 0x00000002

0x132 18 00 ServerNameSize: 0x0018 (24)

0x134 43 00 46 00 53 00 2D 00

34 00 31 00 58 00 2D 00

32 00 43 00 30 00 33 00

ServerName: CFS-41X-2C03

0x14C 12 00 ShareNameSize: 0x0012 (18)

0x14E 74 00 65 00 73 00 74 00

72 00 6F 00 6F 00 74 00

31 00

ShareName: testroot1

0x160 00 00 00 00 Padding

0x164 04 00 00 00 ReservedBLOBSize: 0x00000004

0x168 00 00 00 00 ReservedBLOB: 0x00000000

0x16C 2C 01 00 00 TTL: 0x0000012C (300 Seconds)

0x170 60 00 BLOBNameSize: 0x0060 (96)

0x172 5C 00 64 00 6F 00 6D 00

61 00 69 00 6E 00 72 00

6F 00 6F 00 74 00 5C 00

38 00 36 00 65 00 35 00

32 00 38 00 37 00 34 00

2D 00 30 00 31 00 63 00

BLOBName: \domainroot\86e52874-01c3-42e3-8371-ba7dae7794a0

130 / 165

[MS-DFSNM-Diff] - v20210407
Distributed File System (DFS): Namespace Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

Offset Raw hex values DFS metadata field

33 00 2D 00 34 00 32 00

65 00 33 00 2D 00 38 00

33 00 37 00 31 00 2D 00

62 00 61 00 37 00 64 00

61 00 65 00 37 00 37 00

39 00 34 00 61 00 30 00

0x1D2 40 01 00 00 BLOBDataSize: 0x00000140 (320)

0x1D6 - DFSNamespaceLinkBLOB

0x1D6 - DFSRootOrLinkIDBLOB

0x1D6 74 28 E5 86 C3 01 E3 42

83 71 BA 7D AE 77 94 A0

RootOrLinkGuid: 86e52874-1c3-42e3-8371-ba7dae7794a0

0x1E6 44 00 PrefixSize: 0x0044 (68)

0x1E8 5C 00 44 00 46 00 53 00

4E 00 2D 00 44 00 45 00

56 00 5C 00 74 00 65 00

73 00 74 00 72 00 6F 00

6F 00 74 00 31 00 5C 00

64 00 66 00 73 00 6C 00

69 00 6E 00 6B 00 73 00

5C 00 6C 00 69 00 6E 00

6B 00 31 00

Prefix: \DFSN-DEV\testroot1\dfslinks\link1

0x22C 44 00 ShortPrefixSize: 0x0044 (68)

0x22E 5C 00 44 00 46 00 53 00

4E 00 2D 00 44 00 45 00

56 00 5C 00 74 00 65 00

73 00 74 00 72 00 6F 00

6F 00 74 00 31 00 5C 00

64 00 66 00 73 00 6C 00

69 00 6E 00 6B 00 73 00

5C 00 6C 00 69 00 6E 00

6B 00 31 00

Short prefix: \DFSN-DEV\testroot1\dfslinks\link1

0x272 01 00 00 00 Type: 0x00000001

0x276 01 00 00 00 State: 0x00000001

0x27A 2A 00 CommentSize: 0x002A (42)

0x27C 44 00 46 00 53 00 20 00

4C 00 69 00 6E 00 6B 00

20 00 74 00 6F 00 20 00

53 00 4D 00 42 00 20 00

73 00 68 00 61 00 72 00

65 00

Comment: DFS link to SMB share

0x2A6 70 DD 98 47 A2 99 C6 01 PrefixTimeStamp: June 26, 2006 21:29:29

131 / 165

[MS-DFSNM-Diff] - v20210407
Distributed File System (DFS): Namespace Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

Offset Raw hex values DFS metadata field

0x2AE 70 DD 98 47 A2 99 C6 01 StateTimeStamp: June 26, 2006 21:29:29

0x2B6 70 DD 98 47 A2 99 C6 01 CommentTimeStamp: June 26, 2006 21:29:29

0x2BE 03 00 00 00 Version: 3

0x2C2 44 00 00 00 DFSTargetListBLOBSize: 0x00000044 (68)

0x2C6 - DFSTargetListBLOB

0x2C6 01 00 00 00 TargetCount: 0x00000001

0x2CA - TargetEntryBLOB

0x2CA 38 00 00 00 TargetEntrySize: 0x00000038 (56)

0x2CE 00 00 00 00 00 00 00 00 TargetTimeStamp: 0

0x2D6 02 00 00 00 TargetState: 0x00000002

0x2DA 02 00 00 00 TargetType: 0x00000002

0x2DE 18 00 ServerNameSize: 0x0018 (24)

0x2E0 63 00 66 00 73 00 2D 00

34 00 34 00 78 00 2D 00

32 00 62 00 30 00 38 00

ServerName: cfs-44x-2b08

0x2F8 0C 00 ShareNameSize: 0x000C (12)

0x2FA 70 00 75 00 62 00 6C 00

69 00 63 00

ShareName: public

0x306 00 00 00 00 Padding

0x30A 04 00 00 00 ReservedBLOBSize: 0x00000004

0x30E 00 00 00 00 ReservedBLOB

0x312 08 07 00 00 TTL: 0x00000708 (1800 Seconds)

0x316 12 00 BLOBNameSize: 0x0012 (18)

0x318 5C 00 73 00 69 00 74 00

65 00 72 00 6F 00 6F 00

74 00

BLOBName: \siteroot

0x32A 14 00 00 00 BLOBDataSize: 0x00000014 (20)

0x32E - SiteInformationBLOB

0x32E C9 CA C3 93 00 73 B6 43

8E 7A 89 1B FF 55 2A 43

SiteTableGuid: 93c3cac9-7300-43b6-8e7a-891bff552a43

0x33E 00 00 00 00 SiteEntryCount: 0x00000000

132 / 165

[MS-DFSNM-Diff] - v20210407
Distributed File System (DFS): Namespace Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

5 Security

5.1 Security Considerations for Implementers

The DFS: Namespace Management Protocol allows any user to establish a connection to the RPC

server. The protocol uses the underlying RPC Protocol to retrieve the identity of the caller that made
the method call, as specified in [MS-RPCE] section 3.3.3.4.3. Clients SHOULD create an authenticated
RPC connection. Servers SHOULD use this identity to perform method-specific access checks.<150>

5.2 Index of Security Parameters

The only security parameter is Authentication Protocol, section 2.1.

133 / 165

[MS-DFSNM-Diff] - v20210407
Distributed File System (DFS): Namespace Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

6 Appendix A: Full IDL

The DFS: Namespace Management Protocol contains one interface, whose IDL definition is listed in
this section.

 import "ms-dtyp.idl";

 /* ----- structures and methods described [MS-DFSNM], section 2 and 3 ----- */

 [
 uuid(4fc742e0-4a10-11cf-8273-00aa004ae673),
 version(3.0),
 ms_union,
 pointer_default(unique)
]

 interface netdfs {

 typedef DWORD NET_API_STATUS;
 typedef WCHAR * NETDFS_SERVER_OR_DOMAIN_HANDLE;

 typedef [v1_enum] enum _DFS_TARGET_PRIORITY_CLASS {
 DfsInvalidPriorityClass = -1,
 DfsSiteCostNormalPriorityClass = 0,
 DfsGlobalHighPriorityClass = 1,
 DfsSiteCostHighPriorityClass = 2,
 DfsSiteCostLowPriorityClass = 3,
 DfsGlobalLowPriorityClass = 4
 } DFS_TARGET_PRIORITY_CLASS;

 typedef struct _DFS_TARGET_PRIORITY {
 DFS_TARGET_PRIORITY_CLASS TargetPriorityClass;
 unsigned short TargetPriorityRank;
 unsigned short Reserved;
 } DFS_TARGET_PRIORITY;

 typedef struct _DFS_STORAGE_INFO {
 unsigned long State;
 [string] WCHAR * ServerName;
 [string] WCHAR * ShareName;
 } DFS_STORAGE_INFO;

 typedef struct _DFS_STORAGE_INFO_1 {
 unsigned long State;
 [string] WCHAR * ServerName;
 [string] WCHAR * ShareName;
 DFS_TARGET_PRIORITY TargetPriority;
 } DFS_STORAGE_INFO_1, *PDFS_STORAGE_INFO_1, *LPDFS_STORAGE_INFO_1;

 typedef struct _DFSM_ROOT_LIST_ENTRY {
 [string, unique] WCHAR * ServerShare;
 } DFSM_ROOT_LIST_ENTRY;

 typedef struct _DFSM_ROOT_LIST {
 DWORD cEntries;
 [size_is(cEntries)] DFSM_ROOT_LIST_ENTRY Entry[];
 } DFSM_ROOT_LIST;

 typedef enum {
 DFS_NAMESPACE_VERSION_ORIGIN_COMBINED = 0,
 DFS_NAMESPACE_VERSION_ORIGIN_SERVER,
 DFS_NAMESPACE_VERSION_ORIGIN_DOMAIN
 } DFS_NAMESPACE_VERSION_ORIGIN;

 typedef struct _DFS_SUPPORTED_NAMESPACE_VERSION_INFO {
 unsigned long DomainDfsMajorVersion;
 unsigned long DomainDfsMinorVersion;

134 / 165

[MS-DFSNM-Diff] - v20210407
Distributed File System (DFS): Namespace Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

 ULONGLONG DomainDfsCapabilities;
 unsigned long StandaloneDfsMajorVersion;
 unsigned long StandaloneDfsMinorVersion;
 ULONGLONG StandaloneDfsCapabilities;
 } DFS_SUPPORTED_NAMESPACE_VERSION_INFO,
 *PDFS_SUPPORTED_NAMESPACE_VERSION_INFO;

 typedef struct _DFS_INFO_1 {
 [string] WCHAR * EntryPath;
 } DFS_INFO_1;

 typedef struct _DFS_INFO_2 {
 [string] WCHAR * EntryPath;
 [string] WCHAR * Comment;
 DWORD State;
 DWORD NumberOfStorages;
 } DFS_INFO_2;

 typedef struct _DFS_INFO_3 {
 [string] WCHAR * EntryPath;
 [string] WCHAR * Comment;
 DWORD State;
 DWORD NumberOfStorages;
 [size_is(NumberOfStorages)] DFS_STORAGE_INFO * Storage;
 } DFS_INFO_3;

 typedef struct _DFS_INFO_4 {
 [string] WCHAR * EntryPath;
 [string] WCHAR * Comment;
 DWORD State;
 unsigned long Timeout;
 GUID Guid;
 DWORD NumberOfStorages;
 [size_is(NumberOfStorages)] DFS_STORAGE_INFO * Storage;
 } DFS_INFO_4;

 typedef struct _DFS_INFO_5 {
 [string] WCHAR * EntryPath;
 [string] WCHAR * Comment;
 DWORD State;
 unsigned long Timeout;
 GUID Guid;
 unsigned long PropertyFlags;
 unsigned long MetadataSize;
 DWORD NumberOfStorages;
 } DFS_INFO_5;

 typedef struct _DFS_INFO_6 {
 [string] WCHAR * EntryPath;
 [string] WCHAR * Comment;
 DWORD State;
 unsigned long Timeout;
 GUID Guid;
 unsigned long PropertyFlags;
 unsigned long MetadataSize;
 DWORD NumberOfStorages;
 [size_is(NumberOfStorages)] DFS_STORAGE_INFO_1 * Storage;
 } DFS_INFO_6;

 typedef struct _DFS_INFO_7 {
 GUID GenerationGuid;
 } DFS_INFO_7;

 typedef struct _DFS_INFO_8 {
 [string] WCHAR * EntryPath;
 [string] WCHAR * Comment;
 DWORD State;
 unsigned long Timeout;
 GUID Guid;
 unsigned long PropertyFlags;

135 / 165

[MS-DFSNM-Diff] - v20210407
Distributed File System (DFS): Namespace Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

 unsigned long MetadataSize;
 ULONG SecurityDescriptorLength;
 [size_is(SecurityDescriptorLength)] PUCHAR pSecurityDescriptor;
 DWORD NumberOfStorages;
 } DFS_INFO_8,
 *LPDFS_INFO_8;

 typedef struct _DFS_INFO_9 {
 [string] WCHAR * EntryPath;
 [string] WCHAR * Comment;
 DWORD State;
 unsigned long Timeout;
 GUID Guid;
 unsigned long PropertyFlags;
 unsigned long MetadataSize;
 ULONG SecurityDescriptorLength;
 [size_is(SecurityDescriptorLength)] PUCHAR pSecurityDescriptor;
 DWORD NumberOfStorages;
 [size_is(NumberOfStorages)] LPDFS_STORAGE_INFO_1 Storage;
 } DFS_INFO_9,
 *LPDFS_INFO_9;

 typedef struct _DFS_INFO_50 {
 unsigned long NamespaceMajorVersion;
 unsigned long NamespaceMinorVersion;
 unsigned __int64 NamespaceCapabilities;
 } DFS_INFO_50;

 typedef struct _DFS_INFO_100 {
 [string] WCHAR * Comment;
 } DFS_INFO_100;

 typedef struct _DFS_INFO_101 {
 unsigned long State;

 } DFS_INFO_101;

 typedef struct _DFS_INFO_102 {
 unsigned long Timeout;
 } DFS_INFO_102;

 typedef struct _DFS_INFO_103 {
 unsigned long PropertyFlagMask;
 unsigned long PropertyFlags;

 } DFS_INFO_103;

 typedef struct _DFS_INFO_104 {
 DFS_TARGET_PRIORITY TargetPriority;
 } DFS_INFO_104;

 typedef struct _DFS_INFO_105 {
 [string] WCHAR * Comment;
 DWORD State;
 unsigned long Timeout;
 unsigned long PropertyFlagMask;
 unsigned long PropertyFlags;
 } DFS_INFO_105;

 typedef struct _DFS_INFO_106 {
 DWORD State;
 DFS_TARGET_PRIORITY TargetPriority;
 } DFS_INFO_106;

 typedef struct _DFS_INFO_107 {
 [string] WCHAR * Comment;
 DWORD State;
 unsigned long Timeout;
 unsigned long PropertyFlagMask;
 unsigned long PropertyFlags;

136 / 165

[MS-DFSNM-Diff] - v20210407
Distributed File System (DFS): Namespace Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

 ULONG SecurityDescriptorLength;
 [size_is(SecurityDescriptorLength)] PUCHAR pSecurityDescriptor;
 } DFS_INFO_107;

 typedef struct _DFS_INFO_150 {
 ULONG SecurityDescriptorLength;
 [size_is(SecurityDescriptorLength)] PUCHAR pSecurityDescriptor;
 } DFS_INFO_150;

 typedef struct _DFS_INFO_200 {
 [string] WCHAR * FtDfsName;
 } DFS_INFO_200;

 typedef struct _DFS_INFO_300 {
 DWORD Flags;
 [string] WCHAR * DfsName;
 } DFS_INFO_300;

 typedef [switch_type(unsigned long)] union _DFS_INFO_STRUCT {
 [case(1)]
 DFS_INFO_1 * DfsInfo1;
 [case(2)]
 DFS_INFO_2 * DfsInfo2;
 [case(3)]
 DFS_INFO_3 * DfsInfo3;
 [case(4)]
 DFS_INFO_4 * DfsInfo4;
 [case(5)]
 DFS_INFO_5 * DfsInfo5;
 [case(6)]
 DFS_INFO_6 * DfsInfo6;
 [case(7)]
 DFS_INFO_7 * DfsInfo7;
 [case(8)]
 DFS_INFO_8 * DfsInfo8;
 [case(9)]
 DFS_INFO_9 * DfsInfo9;
 [case(50)]
 DFS_INFO_50 * DfsInfo50;
 [case(100)]
 DFS_INFO_100 * DfsInfo100;
 [case(101)]
 DFS_INFO_101 * DfsInfo101;
 [case(102)]
 DFS_INFO_102 * DfsInfo102;
 [case(103)]
 DFS_INFO_103 * DfsInfo103;
 [case(104)]
 DFS_INFO_104 * DfsInfo104;
 [case(105)]
 DFS_INFO_105 * DfsInfo105;
 [case(106)]
 DFS_INFO_106 * DfsInfo106;
 [case(107)]
 DFS_INFO_107 * DfsInfo107;
 [case(150)]
 DFS_INFO_150 * DfsInfo150;
 [default]
 ;
 } DFS_INFO_STRUCT;

 typedef struct _DFS_INFO_1_CONTAINER {
 DWORD EntriesRead;
 [size_is(EntriesRead)] DFS_INFO_1 * Buffer;
 } DFS_INFO_1_CONTAINER;

 typedef struct _DFS_INFO_2_CONTAINER {
 DWORD EntriesRead;
 [size_is(EntriesRead)] DFS_INFO_2 * Buffer;

137 / 165

[MS-DFSNM-Diff] - v20210407
Distributed File System (DFS): Namespace Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

 } DFS_INFO_2_CONTAINER;

 typedef struct _DFS_INFO_3_CONTAINER {
 DWORD EntriesRead;
 [size_is(EntriesRead)] DFS_INFO_3 * Buffer;
 } DFS_INFO_3_CONTAINER;

 typedef struct _DFS_INFO_4_CONTAINER {
 DWORD EntriesRead;
 [size_is(EntriesRead)] DFS_INFO_4 * Buffer;
 } DFS_INFO_4_CONTAINER;

 typedef struct _DFS_INFO_5_CONTAINER {
 DWORD EntriesRead;
 [size_is(EntriesRead)] DFS_INFO_5 * Buffer;
 } DFS_INFO_5_CONTAINER;

 typedef struct _DFS_INFO_6_CONTAINER {
 DWORD EntriesRead;
 [size_is(EntriesRead)] DFS_INFO_6 * Buffer;
 } DFS_INFO_6_CONTAINER;

 typedef struct _DFS_INFO_8_CONTAINER {
 DWORD EntriesRead;
 [size_is(EntriesRead)] LPDFS_INFO_8 Buffer;
 } DFS_INFO_8_CONTAINER,
 *LPDFS_INFO_8_CONTAINER;

 typedef struct _DFS_INFO_9_CONTAINER {
 DWORD EntriesRead;
 [size_is(EntriesRead)] LPDFS_INFO_9 Buffer;
 } DFS_INFO_9_CONTAINER,
 *LPDFS_INFO_9_CONTAINER;

 typedef struct _DFS_INFO_200_CONTAINER {
 DWORD EntriesRead;
 [size_is(EntriesRead)] DFS_INFO_200 * Buffer;
 } DFS_INFO_200_CONTAINER;

 typedef struct _DFS_INFO_300_CONTAINER {
 DWORD EntriesRead;
 [size_is(EntriesRead)] DFS_INFO_300 * Buffer;
 } DFS_INFO_300_CONTAINER;

 typedef struct _DFS_INFO_ENUM_STRUCT {
 DWORD Level;
 [switch_is(Level)] union {
 [case(1)]
 DFS_INFO_1_CONTAINER * DfsInfo1Container;
 [case(2)]
 DFS_INFO_2_CONTAINER * DfsInfo2Container;
 [case(3)]
 DFS_INFO_3_CONTAINER * DfsInfo3Container;
 [case(4)]
 DFS_INFO_4_CONTAINER * DfsInfo4Container;
 [case(5)]
 DFS_INFO_5_CONTAINER * DfsInfo5Container;
 [case(6)]
 DFS_INFO_6_CONTAINER * DfsInfo6Container;
 [case(8)]
 DFS_INFO_8_CONTAINER * DfsInfo8Container;
 [case(9)]
 DFS_INFO_9_CONTAINER * DfsInfo9Container;
 [case(200)]
 DFS_INFO_200_CONTAINER * DfsInfo200Container;
 [case(300)]
 DFS_INFO_300_CONTAINER * DfsInfo300Container;
 } DfsInfoContainer;
 } DFS_INFO_ENUM_STRUCT;

138 / 165

[MS-DFSNM-Diff] - v20210407
Distributed File System (DFS): Namespace Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

 DWORD NetrDfsManagerGetVersion();

 NET_API_STATUS NetrDfsAdd(
 [in,string] WCHAR * DfsEntryPath,
 [in,string] WCHAR * ServerName,
 [in,unique,string] WCHAR * ShareName,
 [in,unique,string] WCHAR * Comment,
 [in] DWORD Flags);

 NET_API_STATUS NetrDfsRemove(
 [in,string] WCHAR * DfsEntryPath,
 [in,unique,string] WCHAR * ServerName,
 [in,unique,string] WCHAR * ShareName);

 NET_API_STATUS NetrDfsSetInfo(
 [in,string] WCHAR * DfsEntryPath,
 [in,unique,string] WCHAR * ServerName,
 [in,unique,string] WCHAR * ShareName,
 [in] DWORD Level,
 [in,switch_is(Level)] DFS_INFO_STRUCT * DfsInfo);

 NET_API_STATUS NetrDfsGetInfo(
 [in,string] WCHAR * DfsEntryPath,
 [in,unique,string] WCHAR * ServerName,
 [in,unique,string] WCHAR * ShareName,
 [in] DWORD Level,
 [out,switch_is(Level)] DFS_INFO_STRUCT * DfsInfo);

 NET_API_STATUS NetrDfsEnum(
 [in] DWORD Level,
 [in] DWORD PrefMaxLen,
 [in,out,unique] DFS_INFO_ENUM_STRUCT * DfsEnum,
 [in,out,unique] DWORD * ResumeHandle);

 NET_API_STATUS NetrDfsMove(
 [in,string] WCHAR * DfsEntryPath,
 [in,string] WCHAR * NewDfsEntryPath,
 [in] unsigned long Flags);

 void Opnum7NotUsedOnWire();

 void Opnum8NotUsedOnWire();

 void Opnum9NotUsedOnWire();

 NET_API_STATUS NetrDfsAddFtRoot(
 [in,string] WCHAR * ServerName,
 [in,string] WCHAR * DcName,
 [in,string] WCHAR * RootShare,
 [in,string] WCHAR * FtDfsName,
 [in,string] WCHAR * Comment,
 [in,string] WCHAR * ConfigDN,
 [in] BOOLEAN NewFtDfs,
 [in] DWORD ApiFlags,
 [in,out,unique] DFSM_ROOT_LIST ** ppRootList);

 NET_API_STATUS NetrDfsRemoveFtRoot(
 [in,string] WCHAR * ServerName,
 [in,string] WCHAR * DcName,
 [in,string] WCHAR * RootShare,
 [in,string] WCHAR * FtDfsName,
 [in] DWORD ApiFlags,
 [in,out,unique] DFSM_ROOT_LIST ** ppRootList);

 NET_API_STATUS NetrDfsAddStdRoot(
 [in,string] WCHAR * ServerName,
 [in,string] WCHAR * RootShare,
 [in,string] WCHAR * Comment,
 [in] DWORD ApiFlags);

139 / 165

[MS-DFSNM-Diff] - v20210407
Distributed File System (DFS): Namespace Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

 NET_API_STATUS NetrDfsRemoveStdRoot(
 [in,string] WCHAR * ServerName,
 [in,string] WCHAR * RootShare,
 [in] DWORD ApiFlags);

 NET_API_STATUS NetrDfsManagerInitialize(
 [in,string] WCHAR * ServerName,
 [in] DWORD Flags);

 NET_API_STATUS NetrDfsAddStdRootForced(
 [in,string] WCHAR * ServerName,
 [in,string] WCHAR * RootShare,
 [in,string] WCHAR * Comment,
 [in,string] WCHAR * Share);

 NET_API_STATUS NetrDfsGetDcAddress(
 [in,string] WCHAR * ServerName,
 [in,out,string] WCHAR ** DcName,
 [in,out] BOOLEAN * IsRoot,
 [in,out] unsigned long * Timeout);

 NET_API_STATUS NetrDfsSetDcAddress(
 [in,string] WCHAR * ServerName,
 [in,string] WCHAR * DcName,
 [in] DWORD Timeout,
 [in] DWORD Flags);

 NET_API_STATUS NetrDfsFlushFtTable(
 [in,string] WCHAR * DcName,
 [in,string] WCHAR * wszFtDfsName);

 NET_API_STATUS NetrDfsAdd2(
 [in,string] WCHAR * DfsEntryPath,
 [in,string] WCHAR * DcName,
 [in,string] WCHAR * ServerName,
 [in,unique,string] WCHAR * ShareName,
 [in,unique,string] WCHAR * Comment,
 [in] DWORD Flags,
 [in,out,unique] DFSM_ROOT_LIST ** ppRootList);

 NET_API_STATUS NetrDfsRemove2(
 [in,string] WCHAR * DfsEntryPath,
 [in,string] WCHAR * DcName,
 [in,unique,string] WCHAR * ServerName,
 [in,unique,string] WCHAR * ShareName,
 [in,out,unique] DFSM_ROOT_LIST ** ppRootList);

 NET_API_STATUS NetrDfsEnumEx(
 [in,string] WCHAR * DfsEntryPath,
 [in] DWORD Level,
 [in] DWORD PrefMaxLen,
 [in,out,unique] DFS_INFO_ENUM_STRUCT * DfsEnum,
 [in,out,unique] DWORD * ResumeHandle);

 NET_API_STATUS NetrDfsSetInfo2(
 [in,string] WCHAR * DfsEntryPath,
 [in,string] WCHAR * DcName,
 [in,unique,string] WCHAR * ServerName,
 [in,unique,string] WCHAR * ShareName,
 [in] DWORD Level,
 [in,switch_is(Level)] DFS_INFO_STRUCT * pDfsInfo,
 [in,out,unique] DFSM_ROOT_LIST ** ppRootList);

 NET_API_STATUS NetrDfsAddRootTarget(
 [in,unique,string] LPWSTR pDfsPath,
 [in,unique,string] LPWSTR pTargetPath,
 [in] ULONG MajorVersion,
 [in,unique,string] LPWSTR pComment,
 [in] BOOLEAN NewNamespace,

140 / 165

[MS-DFSNM-Diff] - v20210407
Distributed File System (DFS): Namespace Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

 [in] ULONG Flags);

 NET_API_STATUS NetrDfsRemoveRootTarget(
 [in,unique,string] LPWSTR pDfsPath,
 [in,unique,string] LPWSTR pTargetPath,
 [in] ULONG Flags);

 NET_API_STATUS NetrDfsGetSupportedNamespaceVersion(
 [in] DFS_NAMESPACE_VERSION_ORIGIN Origin,
 [in,unique,string] NETDFS_SERVER_OR_DOMAIN_HANDLE pName,
 [out] PDFS_SUPPORTED_NAMESPACE_VERSION_INFO pVersionInfo);
 }

141 / 165

[MS-DFSNM-Diff] - v20210407
Distributed File System (DFS): Namespace Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

7 (Updated Section) Appendix B: Product Behavior

The information in this specification is applicable to the following Microsoft products or supplemental
software. References to product versions include updates to those products.

▪ Windows NT 4.0 operating system

▪ Windows NT Server 4.0 operating system

▪ Windows 2000 Server operating system

▪ Windows XP operating system

▪ Windows Server 2003 operating system

▪ Windows Server 2003 R2 operating system

▪ Windows Vista operating system

▪ Windows Server 2008 operating system

▪ Windows 7 operating system

▪ Windows Server 2008 R2 operating system

▪ Windows 8 operating system

▪ Windows Server 2012 operating system

▪ Windows 8.1 operating system

▪ Windows Server 2012 R2 operating system

▪ Windows 10 operating system

▪ Windows Server 2016 operating system

▪ Windows Server operating system

▪ Windows Server 2019 operating system

▪ Windows Server 2022 operating system

Exceptions, if any, are noted in this section. If an update version, service pack or Knowledge Base
(KB) number appears with a product name, the behavior changed in that update. The new behavior
also applies to subsequent updates unless otherwise specified. If a product edition appears with the

product version, behavior is different in that product edition.

Unless otherwise specified, any statement of optional behavior in this specification that is prescribed
using the terms "SHOULD" or "SHOULD NOT" implies product behavior in accordance with the

SHOULD or SHOULD NOT prescription. Unless otherwise specified, the term "MAY" implies that the
product does not follow the prescription.

<1> Section 1.3: Windows NT Server 4.0 supports only stand-alone DFS namespaces.

<2> Section 1.5: Windows relies on manual coordination between human operators to ensure that
only one DFS metadata modification is in progress at any time.

<3> Section 1.7: The Windows RPC Protocol returns RPC_S_PROCNUM_OUT_OF_RANGE to notify the
client that an RPC method is out of range, as specified in [MS-RPCE].

142 / 165

[MS-DFSNM-Diff] - v20210407
Distributed File System (DFS): Namespace Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

<4> Section 2.2.2.12: Only Windows Server 2008, Windows Server 2008 R2 operating system,
Windows Server 2012, Windows Server 2012 R2, Windows Server 2016, Windows Server operating

system, and Windows Server 2019 operating system and later support ABDE mode.

<5> Section 2.2.3.5: Only Windows Server 2008, Windows Server 2008 R2, Windows Server 2012,

Windows Server 2012 R2, Windows Server 2016, Windows Server operating system, and Windows
Server 2019later support ABDE mode.

<6> Section 2.2.3.7: Windows-based servers return a null GUID for stand-alone DFS namespaces.

<7> Section 2.2.3.10: This level is supported only in Windows Server 2008, Windows Server 2008 R2,
Windows Server 2012, Windows Server 2012 R2, Windows Server 2016, Windows Server operating
system, and Windows Server 2019later.

To identify the DFS metadata format in use, two mandatory attributes are defined in the schema to

hold the major version (ldapDisplayName = msDFS-SchemaMajorVersion) and minor version
(ldapDisplayName = msDFS-SchemaMinorVersion) numbers. The rangeUpper attribute in the
attribute schema for these version number attributes determines the format of the DFS metadata

supported in the forest. The value of these attributes determines the DFS metadata format in use for
an existing DFS namespace. The implementation of a domainv2-based DFS namespace has
rangeUpper=2, rangeLower=2 for the NamespaceMajorVersion; and rangeUpper=0, rangeLower=0 for

the NamespaceMinorVersion.

A change to an existing, or the addition of a new, mandatory attribute increments the major version
and sets the minor version to 0. A change to an existing, or the addition of a new, optional attribute
increments the minor version without changing the major version.

The NamespaceMajorVersion and NamespaceMinorVersion determine the format of the DFS metadata
supported in the forest. The following table applies only to Windows Server 2008, Windows Server
2008 R2, Windows Server 2012, Windows Server 2012 R2, Windows Server 2016, and Windows

Server operating system and later.

 NamespaceMajorVersion NamespaceMinorVersion

Domainv1-based DFS 1 1

Domainv2-based DFS 2 0

Stand-alone DFS 1 2

<8> Section 2.2.3.10: This level is supported only in Windows Server 2008, Windows Server 2008 R2,

Windows Server 2012, Windows Server 2012 R2, Windows Server 2016, Windows Server operating
system, and Windows Server 2019later.

To identify the DFS metadata format in use, two mandatory attributes are defined in the schema to
hold the major version (ldapDisplayName = msDFS-SchemaMajorVersion) and minor version
(ldapDisplayName = msDFS-SchemaMinorVersion) numbers. The rangeUpper attribute in the
attribute schema for these version number attributes determines the format of the DFS metadata

supported in the forest. The value of these attributes determines the DFS metadata format in use for
an existing DFS namespace. The implementation of a domainv2-based DFS namespace has
rangeUpper=2, rangeLower=2 for the NamespaceMajorVersion and rangeUpper=0, rangeLower=0 for
the NamespaceMinorVersion.

A change to an existing, or the addition of a new, mandatory attribute increments the major version
and sets the minor version to 0. A change to an existing, or the addition of a new, optional attribute
increments the minor version without changing the major version.

143 / 165

[MS-DFSNM-Diff] - v20210407
Distributed File System (DFS): Namespace Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

The NamespaceMajorVersion and NamespaceMinorVersion determine the format of the DFS metadata
supported in the forest. The following table applies only to Windows Server 2008, Windows Server

2008 R2, Windows Server 2012, Windows Server 2012 R2, Windows Server 2016, Windows Server
operating system, and Windows Server 2019later.

 NamespaceMajorVersion NamespaceMinorVersion

Domainv1-based DFS 1 1

Domainv2-based DFS 2 0

Stand-alone DFS 1 2

<9> Section 2.2.3.10: Only Windows Server 2008, Windows Server 2008 R2, Windows Server 2012,
Windows Server 2012 R2, Windows Server 2016, Windows Server operating system, and Windows

Server 2019later support ABDE mode.

<10> Section 2.2.4.3: Only Windows Server 2008, Windows Server 2008 R2, Windows Server 2012,
Windows Server 2012 R2, Windows Server 2016, Windows Server operating system, and Windows
Server 2019later support ABDE mode.

<11> Section 2.3.3.1.1: Windows 2000 Server performs a case-sensitive comparison of the name.
Windows Server 2003, Windows Server 2008, Windows Server 2008 R2, Windows Server 2012,

Windows Server 2012 R2, Windows Server 2016, Windows Server operating system, and Windows
Server 2019 operating system and later perform a case-insensitive comparison of the name.

<12> Section 2.3.3.1.1.2: Windows Server 2003, Windows Server 2008, Windows Server 2008 R2,
Windows Server 2012, Windows Server 2012 R2, Windows Server 2016, Windows Server operating
system, and Windows Server 2019later use the same name for the ShortPrefix field and the Prefix
field. Windows 2000 Server stores an 8.3 name in the ShortPrefix field.

<13> Section 2.3.3.1.1.2: Only Windows Server 2003, Windows Server 2008, Windows Server 2008

R2, Windows Server 2012, Windows Server 2012 R2, Windows Server 2016, Windows Server
operating system, and Windows Server 2019 operating system and later support DFS referral site
costing.

<14> Section 2.3.3.1.1.2: Only Windows Server 2003, Windows Server 2008, Windows Server 2008
R2, Windows Server 2012, Windows Server 2012 R2, Windows Server 2016, Windows Server
operating system, and Windows Server 2019later support DFS root scalability mode.

<15> Section 2.3.3.1.1.2: Only Windows Server 2003 operating system with Service Pack 1 (SP1),

Windows Server 2008, Windows Server 2008 R2, Windows Server 2012, Windows Server 2012 R2,
Windows Server 2016, Windows Server operating system, and Windows Server 2019later support DFS
client target failback.

<16> Section 2.3.3.1.1.3.1: Windows Server 2003, Windows Server 2008, Windows Server 2008 R2,
Windows Server 2012, Windows Server 2012 R2, Windows Server 2016, Windows Server operating
system, and Windows Server 2019later always set this field to 0x00000002. Windows 2000 Server

sets this field to 0x00000001 for DFS root targets and to 0x00000002 for DFS link targets.

<17> Section 2.3.3.1.1.4: Only Windows 2000 Server uses the SiteInformationBLOB. Windows Server
2003, Windows Server 2008, Windows Server 2008 R2, Windows Server 2012, Windows Server 2012
R2, Windows Server 2016, Windows Server operating system, and Windows Server 2019later preserve
this BLOB if it already exists. When creating a new DFS namespace, Windows Server 2003, Windows
Server 2008, Windows Server 2008 R2, Windows Server 2012, Windows Server 2012 R2, Windows
Server 2016, Windows Server operating system, and Windows Server 2019later create this BLOB with

a SiteEntryCount of 0 and do not create any SiteEntryBLOBs.

144 / 165

[MS-DFSNM-Diff] - v20210407
Distributed File System (DFS): Namespace Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

<18> Section 2.3.3.1.1.4: Windows 2000 Server determines the site of a DFS root target or a DFS
link target when it is added to a domain-based DFS namespace, and stores the target in this BLOB.

The NetrDfsManagerReportSiteInfo method, as specified in [MS-SRVS], is issued to the DFS root
target server or the DFS link target server that were added to determine the site information.

<19> Section 2.3.4.2: Windows does not preserve unrecognized values.

<20> Section 2.3.4.2: Only Windows Server 2008, Windows Server 2008 R2, Windows Server 2012,
Windows Server 2012 R2, Windows Server 2016, Windows Server operating system, and Windows
Server 2019later support Domainv2.

<21> Section 2.3.4.2: Only Windows Server 2008, Windows Server 2008 R2, Windows Server 2012,
Windows Server 2012 R2, Windows Server 2016, Windows Server operating system, and Windows
Server 2019later support Domainv2.

<22> Section 2.3.4.2: Only Windows Server 2008, Windows Server 2008 R2, Windows Server 2012,
Windows Server 2012 R2, Windows Server 2016, Windows Server operating system, and Windows
Server 2019later support Domainv2.

<23> Section 2.3.4.3: Windows does not preserve unrecognized values.

<24> Section 2.3.4.3: Only Windows Server 2008, Windows Server 2008 R2, Windows Server 2012,
Windows Server 2012 R2, Windows Server 2016, Windows Server operating system, and Windows

Server 2019later support Domainv2.

<25> Section 2.3.4.3: Only Windows Server 2008, Windows Server 2008 R2, Windows Server 2012,
Windows Server 2012 R2, Windows Server 2016, Windows Server operating system, and Windows
Server 2019later support Domainv2.

<26> Section 3.1.1: Windows 2000 Server, Windows Server 2003, Windows Server 2008, Windows
Server 2008 R2, Windows Server 2012, Windows Server 2012 R2, Windows Server 2016, Windows
Server operating system, and Windows Server 2019later cache the DFS metadata as an optimization.

<27> Section 3.1.3: Windows 2000 Server, Windows Server 2003, Windows Server 2008, Windows
Server 2008 R2, Windows Server 2012, Windows Server 2012 R2, Windows Server 2016, Windows

Server operating system, and Windows Server 2019later determine the PDC for the domain and
initialize the PDCRoleHolder.

<28> Section 3.1.3: Windows 2000 Server, Windows Server 2003, Windows Server 2008, Windows
Server 2008 R2, Windows Server 2012, Windows Server 2012 R2, Windows Server 2016, Windows
Server operating system, and Windows Server 2019 operating system and later cache the DFS

metadata as an optimization.

<29> Section 3.1.4: Windows uses only the error code values, as specified in [MS-ERREF].

<30> Section 3.1.4: This method is not supported in Windows NT Server 4.0 and Windows 2000
Server.

<31> Section 3.1.4: This method is supported only in Windows Server 2008, Windows Server 2008
R2, Windows Server 2012, Windows Server 2012 R2, Windows Server 2016, Windows Server

operating system, and Windows Server 2019later.

<32> Section 3.1.4: This method is supported only in Windows Server 2008, Windows Server 2008
R2, Windows Server 2012, Windows Server 2012 R2, Windows Server 2016, Windows Server
operating system, and Windows Server 2019later.

<33> Section 3.1.4: This method is supported only in Windows Server 2008, Windows Server 2008
R2, Windows Server 2012, Windows Server 2012 R2, Windows Server 2016, Windows Server
operating system, and Windows Server 2019later.

145 / 165

[MS-DFSNM-Diff] - v20210407
Distributed File System (DFS): Namespace Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

<34> Section 3.1.4: For historical reasons, Windows 2000 Server uses method opnums 7, 8, and 9
for local RPC calls to itself. These methods are never called over the network by Windows clients or

servers (to another server).

Opnums reserved for local use apply to Windows as follows: opnums 7-9 are only used locally, never

remotely, by Windows 2000 Server and not by any other Windows version.

<35> Section 3.1.4.1.1: This method is not implemented in Windows NT Server 4.0.

<36> Section 3.1.4.1.1: Windows Server 2003, Windows Server 2008, Windows Server 2008 R2,
Windows Server 2012, Windows Server 2012 R2, Windows Server 2016, Windows Server operating
system, and Windows Server 2019 operating system and later return ERROR_NOT_SUPPORTED
(0x00000032).

<37> Section 3.1.4.1.2: The following table gives the return value of NetrDfsManagerGetVersion for

different versions of Windows.

Windows Version Return Value

Windows NT Server 4.0 0x00000001

Windows 2000 Server 0x00000002

Windows Server 2003 0x00000004

Windows Server 2008 0x00000006

Windows Server 2008 R2 0x00000006

Windows Server 2012 0x00000006

Windows Server 2012 R2 0x00000006

Windows Server 2016 0x00000006

Windows Server operating system 0x00000006

Windows Server 2019 0x00000006

Windows Server 2022 0x00000006

<38> Section 3.1.4.1.2: The RPC interface version has remained constant since Windows NT Server

4.0. Windows 2000 Server adds new methods to the same RPC interface. Also, Windows 2000 Server
supports hosting of at most one DFS namespace. Hence, applications could potentially handle version
differences by using the returned version information.

<39> Section 3.1.4.1.2: A Windows NT Server 4.0 can host at most one DFS namespace. Windows
Server 2003, except for Windows Server 2003 Standard Edition operating system, supports hosting of
more than one DFS namespace per server. In default configurations, Windows Server 2003 Standard
Edition supports hosting of at most one DFS namespace per server.

<40> Section 3.1.4.1.2: Windows clients use the returned value to determine when to call
NetrDfsEnum versus NetrDfsEnumEx. For more information, see section 3.2.4.1.4.

<41> Section 3.1.4.1.2: Windows Server 2003 with SP1, Windows Server 2003 operating system with
Service Pack 2 (SP2), Windows Server 2003 R2, Windows Server 2008, Windows Server 2008 R2,
Windows Server 2012, Windows Server 2012 R2, Windows Server 2016, Windows Server operating
system, and Windows Server 2019 operating system and later support NetrDfsMove (Opnum 6).

146 / 165

[MS-DFSNM-Diff] - v20210407
Distributed File System (DFS): Namespace Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

:<42> Section 3.1.4.1.3: Windows 2000 Server does not support a domain-based DFS namespace in
the NetrDfsAdd method.

<43> Section 3.1.4.1.3: Windows Server 2003, Windows Server 2008, Windows Server 2008 R2,
Windows Server 2012, Windows Server 2012 R2, Windows Server 2016, Windows Server operating

system, and Windows Server 2019 operating system and later do not verify whether link targets exist.
Windows 2000 operating system and Windows NT 4.0 do verify whether link targets exist unless
DFS_RESTORE_VOLUME is specified.

<44> Section 3.1.4.1.3: Windows 2000 and Windows NT 4.0 do use this test.

<45> Section 3.1.4.1.3: Windows 2000 Server requires that the DFS_ADD_VOLUME flags parameter
be specified when a new link is being created; Windows Server 2003, Windows Server 2008, Windows
Server 2008 R2, Windows Server 2012, Windows Server 2012 R2, Windows Server 2016, Windows

Server operating system, and Windows Server 2019 operating system and later do not require this.

Windows-based servers check whether a folder or a file that has the same name as the link appears in
the object store under the root and take the following actions:

▪ If no folder or file exists, create the link folder.

▪ If an empty folder with the same name as the link exists, do not create a new link folder.

▪ If a non-empty folder or a file with the same name as the link exists, rename the non-empty

folder or the file to DFS.GUIDLinkName, and create a new link folder. An example of a renamed
non-empty folder or file is DFS.cf13c05f-5c10-4879-9acb-04ced8f46c7aTemplates, where
cf13c05f-5c10-4879-9acb-04ced8f46c7a is the GUID and Templates is the LinkName.

▪ Set the reparse point to the leaf folder of the link path. For example, if the link path is
HR\Documents, set the reparse point to the Documents folder.

<46> Section 3.1.4.1.3: The msDFS-Commentv2 field in the Windows Server 2008, Windows Server
2008 R2, Windows Server 2012, Windows Server 2012 R2, Windows Server 2016, Windows Server

operating system, and Windows Server 2019later metadata is updated with the value that is passed
on as input.

<47> Section 3.1.4.1.3: NetrDfsAdd in Windows 2000 Server supports only a stand-alone DFS
namespace. Windows 2000 Server returns ERROR_NOT_SUPPORTED (0x00000032) if NetrDfsAdd is
called on a domain-based DFS namespace.

<48> Section 3.1.4.1.3: In Windows Server 2003, Windows Server 2008, Windows Server 2008 R2,
Windows Server 2012, Windows Server 2012 R2, Windows Server 2016, Windows Server operating

system, and Windows Server 2019 operating system and later, NetrDfsAdd supports both stand-alone
and domain-based DFS namespaces.

<49> Section 3.1.4.1.4: Windows 2000 Server does not support a domain-based DFS namespace in
the NetrDfsRemove method.

<50> Section 3.1.4.1.4: This method does not support domain-based DFS namespaces in Windows
2000 Server; NetrDfsRemove2 is used instead. Windows 2000 Server will return

ERROR_NOT_SUPPORTED (0x00000032) if NetrDfsRemove is called on a domain-based DFS

namespace.

<51> Section 3.1.4.1.4: In Windows Server 2003, the NetrDfsRemove method is functionally
equivalent to NetrDfsRemove2.

<52> Section 3.1.4.1.5: Windows 2000, Windows Server 2008, Windows Server 2008 R2, Windows
Server 2012, Windows Server 2012 R2, Windows Server 2016, Windows Server operating system, and
Windows Server 2019later allow the target state of a root target or a link target to be set to either

147 / 165

[MS-DFSNM-Diff] - v20210407
Distributed File System (DFS): Namespace Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

DFS_STORAGE_STATE_ONLINE or DFS_STORAGE_STATE_OFFLINE. Windows Server 2003 does not
allow the target state of a root target to be set to DFS_STORAGE_STATE_OFFLINE.

Windows 2000 Server does not support DFS_VOLUME_STATE_RESYNCHRONIZE for the State field of
DFS_INFO_101 for a Level parameter value of 101.

<53> Section 3.1.4.1.5: Windows Server 2008, Windows Server 2008 R2, Windows Server 2012,
Windows Server 2012 R2, Windows Server 2016, Windows Server operating system, and Windows
Server 2019later allow setting the target state of a root target or a link target to either
DFS_STORAGE_STATE_ONLINE or DFS_STORAGE_STATE_OFFLINE. Windows Server 2003 does not
allow setting the target state of a root target to DFS_STORAGE_STATE_OFFLINE.

<54> Section 3.1.4.1.5: A Level value of 102 is not supported on Windows NT Server 4.0.

Level parameter values 103-106 are not supported on Windows NT Server 4.0, Windows 2000 Server,

or Windows Server 2003 RTM.

Level parameter values 107 and 150 are not supported in Windows NT Server 4.0, Windows 2000
Server, or Windows Server 2003.

<55> Section 3.1.4.1.5: On Windows NT Server 4.0 and Windows 2000 Server, the server returns
error code ERROR_INVALID_LEVEL.

<56> Section 3.1.4.1.5: Windows 2000 Server does not support a domain-based DFS namespace in

the NetrDfsSetInfo method.

<57> Section 3.1.4.1.5: The NetrDfsSetInfo method supports only the stand-alone DFS namespace
on Windows 2000 Server. NetrDfsSetInfo supports both stand-alone and domain-based DFS
namespaces on Windows Server 2003, Windows Server 2008, Windows Server 2008 R2, Windows
Server 2012, Windows Server 2012 R2, Windows Server 2016, Windows Server operating system, and
Windows Server 2019. operating system and later. Level parameter values 103, 104, 105, and 106
are valid only on Windows Server 2003 with SP1, Windows Server 2003 SP2, Windows Server 2003

R2, Windows Server 2008, Windows Server 2008 R2, Windows Server 2012, Windows Server 2012
R2, Windows Server 2016, Windows Server operating system, and Windows Server 2019.later. Level

parameter values 107 and 150 are supported only on Windows Server 2008, Windows Server 2008
R2, Windows Server 2012, Windows Server 2012 R2, Windows Server 2016, Windows Server
operating system, and Windows Server 2019later.

<58> Section 3.1.4.1.6: This level is supported only on Windows Server 2008, Windows Server 2008
R2, Windows Server 2012, Windows Server 2012 R2, Windows Server 2016, Windows Server

operating system, and Windows Server 2019later.

<59> Section 3.1.4.1.6: Level 4 is not supported in Windows NT Server 4.0.

Levels 5, 6, and 7 are not supported in Windows NT Server 4.0, Windows 2000 Server, or Windows
Server 2003 RTM. Level 7 is supported for domain-based DFS only. It is used to determine whether
the DFS metadata of the namespace has changed.

Level 50 and 150 are not supported in Windows NT Server 4.0, Windows 2000 Server, or Windows

Server 2003.

<60> Section 3.1.4.1.6: On Windows NT Server 4.0 and Windows 2000 Server, the server returns
error code ERROR_INVALID_LEVEL.

<61> Section 3.1.4.1.6: For a stand-alone namespace in Windows, metadata size is the sum of the
following:

▪ Size of the name of all the keys in the namespace (all keys under the DFS root key in registry)

▪ Size of the values under each key

148 / 165

[MS-DFSNM-Diff] - v20210407
Distributed File System (DFS): Namespace Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

▪ Size of the data of each value

<62> Section 3.1.4.1.7: Level 4 is not supported in Windows NT Server 4.0.

Levels 5 and 6 are not supported in Windows NT Server 4.0, Windows 2000 Server, or Windows
Server 2003 RTM.

Levels 8 and 9 are not supported in Windows NT Server 4.0, Windows 2000 Server, or Windows
Server 2003.

Level 200 is not supported in Windows NT Server 4.0 and is only valid on a domain controller (DC).

Level 300 is not supported in Windows NT Server 4.0, or Windows 2000 Server.

<63> Section 3.1.4.1.7: On Windows NT Server 4.0 and Windows 2000 Server, the server returns
error code ERROR_INVALID_LEVEL.

<64> Section 3.1.4.1.7: On return, the DfsEnum's DfsInfoContainer member contains an array of

information structures specific to the Level requested by the caller. In Windows 2000 Server, Windows

Server 2003, Windows Server 2008, and Windows Server 2008 R2 operating system, the number of
entries to return in the enumeration is calculated by dividing PrefMaxLen by the size of the Level-
specific information structure, using integer division. If the result is zero, one entry is returned.

This calculation is performed on the server by using the native size of the specified information
structure on the server's architecture. As all of the Level-specific information structures contain

pointers, such as the DFS_INFO_1 EntryPath member, this condition has an important effect.
Because the size of a pointer on a 32-bit architecture differs as compared to a 64-bit architecture, the
returned number of entries can be higher or lower than that implied by the native architecture of the
client, depending on the native architecture of the server.

<65> Section 3.1.4.1.7: Windows-based servers use the ResumeHandle parameter as an index into
the collection of enumerable items. Due to intervening or concurrent updates, a resumed enumeration
can return non-unique or incomplete results.

<66> Section 3.1.4.1.7: This method is supported only by Windows NT Server 4.0, Windows Server

2003, Windows Server 2008, and Windows Server 2008 R2.

<67> Section 3.1.4.1.7: The NetrDfsEnum method is used only with Windows 2000 Server because
there is no parameter to specify the name of a DFS namespace. In Windows Server 2003, Windows
Server 2008, and Windows Server 2008 R2, the DFS server can successfully process this method if it
is hosting only one DFS namespace root target.

<68> Section 3.1.4.1.8: Windows Server 2003 with SP1, Windows Server 2008, Windows Server

2008 R2, Windows Server 2012, Windows Server 2012 R2, Windows Server 2016, Windows Server
operating system, and Windows Server 2019later do not allow the following:

▪ The Unicode code points 0x0000 through 0x001F, 0x0022 ("), 0x002A (*), 0x002F (/), 0x003A
(:), 0x003C, (<), 0x003E (>), 0x003F (?), or 0x007C (|).

▪ The relative path elements "." or "..".

<69> Section 3.1.4.1.8: Windows-based servers perform DFS link move operations atomically for

domainv1-based DFS namespaces. Move operations in stand-alone DFS namespaces and domainv2-
based DFS namespaces are not atomic.

<70> Section 3.1.4.1.8: If there is a conflict between an existing file and a pathname component in
the destination path or DFS link of a move operation, Windows-based servers rename the existing file
by appending a ".{GUID}" to the file name, where "{GUID}" is a newly generated GUID.

<71> Section 3.1.4.1.8: Windows-based servers remove intermediate directories in the pathname of
a source DFS link if they are empty.

149 / 165

[MS-DFSNM-Diff] - v20210407
Distributed File System (DFS): Namespace Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

<72> Section 3.1.4.1.8: This method is supported only on Windows Server 2003 with SP1, Windows
Server 2003 SP2, Windows Server 2003 R2, Windows Server 2008, Windows Server 2008 R2,

Windows Server 2012, Windows Server 2012 R2, Windows Server 2016, Windows Server operating
system, and Windows Server 2019 operating system and later.

<73> Section 3.1.4.1.9: This method is supported only on Windows Server 2008, Windows Server
2008 R2, Windows Server 2012, Windows Server 2012 R2, Windows Server 2016, Windows Server
operating system, and Windows Server 2019later.

<74> Section 3.1.4.1.10<74> Section 3.1.4.1.10:: This method is supported only on Windows Server
2008, Windows Server 2008 R2, Windows Server 2012, Windows Server 2012 R2, Windows Server
2016, Windows Server operating system, and Windows Server 2019later.

<75> Section 3.1.4.1.10: Windows does not fail calls that specify reserved bits.

<76> Section 3.1.4.1.10: Windows does not support DFS_FORCE_REMOVE on member servers.

<77> Section 3.1.4.1.10: Windows removes local information related to the root.

<78> Section 3.1.4.1.11: This method is supported only on Windows Server 2008, Windows Server
2008 R2, Windows Server 2012, Windows Server 2012 R2, Windows Server 2016, Windows Server
operating system, and Windows Server 2019later.

<79> Section 3.1.4.2.1: Windows Server 2003, Windows Server 2008, and Windows Server 2008 R2

ignore the DcName parameter.

<80> Section 3.1.4.2.1: The ppRootList parameter is not referenced in Windows Server 2003,
Windows Server 2008, and Windows Server 2008 R2. On success in Windows 2000, the RPC call
returns a list of the remaining root targets of the DFS namespace.

To support down-level compatibility with Windows 2000, Windows clients issue a NetrDfsSetDcAddress
to each root target listed in ppRootList by specifying the name of the PDC used for the DcName
parameter, the NET_DFS_SETDC_INIT_PKT and NET_DFS_SETDC_TIMEOUT flags for the Flags

parameter, and a value of 0x00001C20 (7,200 seconds or 2 hours) for the Timeout parameter.

<81> Section 3.1.4.2.1: This method is supported only by Windows Server 2003, Windows Server
2008, and Windows Server 2008 R2.

<82> Section 3.1.4.2.1: This method supports both stand-alone DFS namespaces and domain-based
DFS namespaces in Windows 2000 Server, Windows Server 2003, Windows Server 2008, and
Windows Server 2008 R2.

The DFS_RESTORE_VOLUME bit of the Flags parameter is used only with Windows 2000 Server.

Windows Server 2003, Windows Server 2008, and Windows Server 2008 R2 ignore the DcName and
ppRootList parameters.

To support down-level compatibility with Windows 2000 Server, Windows clients issue
NetrDfsSetDcAddress to each root target listed in ppRootList. NetrDfsSetDcAddress specifies the name
of the PDC that is used for the DcName parameter, and the NET_DFS_SETDC_INIT_PKT and
NET_DFS_SETDC_TIMEOUT flags for the Flags parameter. NetrDfsSetDcAddress also specifies a value

of 0x00001C20 (7,200 seconds or 2 hours) for the Timeout parameter.

<83> Section 3.1.4.2.1: Windows NT Server 4.0 does not support this method.

<84> Section 3.1.4.2.1<84> Section 3.1.4.2.1:: Windows Server 2003, Windows Server 2008, and
Windows Server 2008 R2 do not verify whether link targets exist. Windows 2000 Server and Windows
NT 4.0 do verify whether link targets exist, unless DFS_RESTORE_VOLUME is specified.

<85> Section 3.1.4.2.1: Windows 2000 Server and Windows NT 4.0 do use this test.

150 / 165

[MS-DFSNM-Diff] - v20210407
Distributed File System (DFS): Namespace Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

<86> Section 3.1.4.2.1: Windows 2000 Server requires that the DFS_ADD_VOLUME Flags parameter
be specified when creating a new link; Windows Server 2003, Windows Server 2008, and Windows

Server 2008 R2 do not.

Windows servers check whether a folder or a file that has the same name as the link appears in the

object store under the root and take the following actions:

▪ If no folder or file exists, create the link folder.

▪ If an empty folder with the same name as the link exists, do not create a new link folder.

▪ If a non-empty folder or a file with the same name as the link exists, rename the non-empty
folder or the file to DFS.GUIDLinkName, and create a new link folder. An example of a renamed
non-empty folder or file is DFS.cf13c05f-5c10-4879-9acb-04ced8f46c7aTemplates, where
cf13c05f-5c10-4879-9acb-04ced8f46c7a is the GUID and Templates is the LinkName.

▪ Set the reparse point to the leaf folder of the link path. For example, if the link path is
HR\Documents, set the reparse point to the Documents folder.

<87> Section 3.1.4.2.2: Windows Server 2003, Windows Server 2008, and Windows Server 2008 R2
ignore the DcName parameter.

<88> Section 3.1.4.2.2: The ppRootList parameter is not referenced in Windows Server 2003,
Windows Server 2008, and Windows Server 2008 R2. In Windows 2000, a list of remaining root

targets of the DFS namespace is returned when the RPC call succeeds.

To support down-level compatibility with Windows 2000, Windows clients issue a NetrDfsSetDcAddress
to each root target listed in ppRootList by specifying the name of the PDC used for the DcName
parameter, the NET_DFS_SETDC_INIT_PKT and NET_DFS_SETDC_TIMEOUT flags for the Flags
parameter, and a value of 0x00001C20 (7,200 seconds or 2 hours) for the Timeout parameter.

<89> Section 3.1.4.2.2: This method is supported only by Windows Server 2003, Windows Server
2008, and Windows Server 2008 R2.

<90> Section 3.1.4.2.2: This method supports both stand-alone DFS namespaces and domain-based

DFS namespaces in Windows 2000 Server, Windows Server 2003, Windows Server 2008, and
Windows Server 2008 R2.

The ppRootList parameter is not used in Windows Server 2003, Windows Server 2008, and Windows
Server 2008 R2.

To support down-level compatibility with Windows 2000 Server, Windows clients issue a
NetrDfsSetDcAddress to each root target listed in ppRootList by specifying the name of the PDC used

for the DcName parameter, the NET_DFS_SETDC_INIT_PKT and NET_DFS_SETDC_TIMEOUT flags for
the Flags parameter, and a value of 0x00001C20 (7,200 seconds or 2 hours) for the Timeout
parameter.

<91> Section 3.1.4.2.2: Windows NT Server 4.0 does not support this method.

<92> Section 3.1.4.2.3: While Windows 2000 Server can host at most one root target, Windows
Server 2003, Windows Server 2008, Windows Server 2008 R2, Windows Server 2012, Windows Server

2012 R2, Windows Server 2016, Windows Server operating system, and Windows Server 2019later
can host more than one root target on the same server. This precludes meaningful use of the
NetrDfsEnum method by Windows Server 2003 and Windows Server 2008 because NetrDfsEnum does
not have a parameter to specify the DFS namespace of interest. Hence, the NetrDfsEnumEx method is
used on Windows Server 2003 and Windows Server 2008.

<93> Section 3.1.4.2.3: Windows NT Server 4.0 does not support the NetrDfsEnumEx method.

<94> Section 3.1.4.2.3: Level 4 is not supported in Windows NT Server 4.0.

151 / 165

[MS-DFSNM-Diff] - v20210407
Distributed File System (DFS): Namespace Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

Levels 5 and 6 are not supported in Windows NT Server 4.0, Windows 2000 Server, or Windows
Server 2003.

Levels 8 and 9 are not supported in Windows NT Server 4.0, Windows 2000 Server, or Windows
Server 2003.

Level 200 is not supported in Windows NT Server 4.0, and it is only valid on a domain controller (DC).

Level 300 is not supported in Windows NT Server 4.0 or Windows 2000 Server.

<95> Section 3.1.4.2.3: On Windows NT Server 4.0 and Windows 2000 Server, the server returns
error code ERROR_INVALID_LEVEL.

<96> Section 3.1.4.2.3: On return, the DfsEnum's DfsInfoContainer member contains an array of
information structures specific to the Level requested by the caller. In Windows 2000 Server, Windows
Server 2003, Windows Server 2008, Windows Server 2008 R2, Windows Server 2012, Windows Server

2012 R2, Windows Server 2016, Windows Server operating system, and Windows Server 2019later,
the number of entries to return in the enumeration is calculated by dividing PrefMaxLen by the size of
the Level-specific information structure, using integer division. If the result is zero, one entry is

returned.

This calculation is performed on the server by using the native size of the given information structure
on the server's architecture. As all of the Level specific information structures contain pointers, such

as the DFS_INFO_1 EntryPath member, this condition has an important effect. Because the size of
a pointer on a 32-bit architecture differs as compared to a 64-bit architecture, the returned number of
entries can be higher or lower than that implied by the native architecture of the client, depending on
the native architecture of the server.

<97> Section 3.1.4.2.3: Windows-based servers use the ResumeHandle parameter as an index into
the collection of enumerable items. Due to intervening or concurrent updates, a resumed enumeration
can return non-unique or incomplete results.

<98> Section 3.1.4.2.3: To be backward-compatible with the NetrDfsEnum method, in this case the
NetrDfsEnumEx method in Windows Server 2003, Windows Server 2008, Windows Server 2008 R2,

Windows Server 2012, Windows Server 2012 R2, Windows Server 2016, Windows Server operating
system, and Windows Server 2019 operating system and later ignores the <ServerName> in
DfsEntryPath and returns the required information for the specified Level based on the namespace it
hosts.

The NetrDfsEnum method is used only with Windows 2000 Server because there is no parameter to

specify the name of a DFS namespace. In Windows Server 2003, Windows Server 2008, Windows
Server 2008 R2, Windows Server 2012, Windows Server 2012 R2, Windows Server 2016, Windows
Server operating system, and Windows Server 2019later, the DFS server can successfully process this
method if it is hosting only one DFS namespace root target.

<99> Section 3.1.4.2.4: Windows Server 2003, Windows Server 2008, and Windows Server 2008 R2
ignore the DcName parameter.

<100> Section 3.1.4.2.4: Windows 2000, Windows Server 2008, and Windows Server 2008 R2 allow
the target state of a root target or a link target to be set to either DFS_STORAGE_STATE_ONLINE or

to DFS_STORAGE_STATE_OFFLINE. Windows Server 2003 does not allow the target state of a root
target to be set to DFS_STORAGE_STATE_OFFLINE.

Windows 2000 Server does not support DFS_VOLUME_STATE_RESYNCHRONIZE for the State field of
DFS_INFO_101 for a Level parameter value of 101.

<101> Section 3.1.4.2.4: Windows Server 2003, Windows Server 2008, and Windows Server 2008 R2

allows the target state of a root target or a link target to be set to either
DFS_STORAGE_STATE_ONLINE or to DFS_STORAGE_STATE_OFFLINE. Windows Server 2003 does not
allow the target state of a root target to be set to DFS_STORAGE_STATE_OFFLINE.

152 / 165

[MS-DFSNM-Diff] - v20210407
Distributed File System (DFS): Namespace Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

<102> Section 3.1.4.2.4: Level 102 is not supported in Windows NT Server 4.0.

Levels 103-106 are not supported in Windows NT Server 4.0, Windows 2000 Server or Windows

Server 2003 RTM.

Levels 107 and 150 are not supported in Windows NT Server 4.0, Windows 2000 Server or Windows

Server 2003.

<103> Section 3.1.4.2.4: On Windows NT Server 4.0 and Windows 2000 Server, the server returns
error code ERROR_INVALID_LEVEL.

<104> Section 3.1.4.2.4: The ppRootList parameter is not referenced in Windows Server 2003,
Windows Server 2008, and Windows Server 2008 R2. In Windows 2000, a list of remaining root
targets of the DFS namespace is returned when the RPC call succeeds.

To support down-level compatibility with Windows 2000, Windows clients issue a NetrDfsSetDcAddress

to each root target listed in ppRootList by specifying the name of the PDC used for the DcName
parameter, the NET_DFS_SETDC_INIT_PKT and NET_DFS_SETDC_TIMEOUT flags for the Flags
parameter, and a value of 0x00001C20 (7,200 seconds or 2 hours) for the Timeout parameter.

<105> Section 3.1.4.2.4: This method is supported only on Windows Server 2003, Windows Server
2008, and Windows Server 2008 R2.

<106> Section 3.1.4.2.4: Windows 2000, Windows Server 2003, Windows Server 2008, and Windows

Server 2008 R2 support both stand-alone and domain-based DFS namespaces for NetrDfsSetInfo2
(Opnum 22).

<107> Section 3.1.4.2.4: Windows NT Server 4.0 does not support this method.

<108> Section 3.1.4.3.1: Windows 2000, Windows Server 2008, Windows Server 2008 R2, Windows
Server 2012, Windows Server 2012 R2, Windows Server 2016, Windows Server operating system, and
Windows Server 2019later ignore this parameter and use the local NetBIOS host name instead.

<109> Section 3.1.4.3.1: Windows Server 2003, Windows Server 2008, Windows Server 2008 R2,

Windows Server 2012, Windows Server 2012 R2, Windows Server 2016, Windows Server operating

system, and Windows Server 2019 operating system and later ignore the ConfigDN parameter.

<110> Section 3.1.4.3.1: No information is returned through the ppRootList parameter on Windows
Server 2003, Windows Server 2008, Windows Server 2008 R2, Windows Server 2012, Windows Server
2012 R2, Windows Server 2016, Windows Server operating system, and Windows Server 2019
operating system and later.

To support down-level compatibility with Windows 2000 Server, Windows clients issue a

NetrDfsSetDcAddress (Opnum 17) method to each root target listed in ppRootList by specifying the
name of the PDC used for the DcName parameter, the NET_DFS_SETDC_INIT_PKT and
NET_DFS_SETDC_TIMEOUT flags for the Flags parameter, and a value of 0x00001C20 (7,200 seconds
or 2 hours) for the Timeout parameter.

Windows NT Server 4.0 does not support this method.

<111> Section 3.1.4.3.1: No information is returned through the ppRootList parameter on Windows

Server 2003, Windows Server 2008, Windows Server 2008 R2, Windows Server 2012, Windows Server
2012 R2, Windows Server 2016, Windows Server operating system, and Windows Server 2019.
operating system and later. To support down-level compatibility with Windows 2000, Windows clients
issue a NetrDfsSetDcAddress (Opnum 17) method to each root target listed in ppRootList specifying
the name of the PDC used for the DcName parameter, the NET_DFS_SETDC_INIT_PKT and the
NET_DFS_SETDC_TIMEOUT flags for the Flags parameter, and a value of 0x00001C20 (7,200 seconds
or 2 hours) for the Timeout parameter. Windows NT 4.0 does not support this method.

153 / 165

[MS-DFSNM-Diff] - v20210407
Distributed File System (DFS): Namespace Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

<112> Section 3.1.4.3.2: Windows NT Server 4.0 does not support the NetrDfsRemoveFtRoot
method.

<113> Section 3.1.4.3.2: Windows does not fail calls that specify reserved bits.

<114> Section 3.1.4.3.2: The ppRootList parameter is not referenced on Windows Server 2003,

Windows Server 2008, Windows Server 2008 R2, Windows Server 2012, Windows Server 2012 R2,
Windows Server 2016, Windows Server operating system, and Windows Server 2019. operating
system and later. On Windows 2000, a list of remaining root targets of the DFS namespace is returned
when the RPC call succeeds.

To support down-level compatibility with Windows 2000, Windows clients issue a NetrDfsSetDcAddress
(Opnum 17) to each root target listed in ppRootList by specifying the name of the PDC used for the
DcName parameter, the NET_DFS_SETDC_INIT_PKT and NET_DFS_SETDC_TIMEOUT flags for the

Flags parameter, and a value of 0x00001C20 (7,200 seconds or 2 hours) for the Timeout parameter.

<115> Section 3.1.4.3.2: Windows does not support DFS_FORCE_REMOVE on member servers.

<116> Section 3.1.4.3.2: Windows does remove local information related to the root.

<117> Section 3.1.4.3.2: Windows-based servers do not remove the object of a domain-based DFS
namespace if the last DFS root target is being removed. Windows clients remove the object of the DFS
namespace on successful return from this method.

<118> Section 3.1.4.4.1: The NetrDfsAddStdRoot (Opnum 12) method can also be used for clustered
DFS with Windows Server 2003, Windows Server 2008, Windows Server 2008 R2, Windows Server
2012, Windows Server 2012 R2, Windows Server 2016, Windows Server operating system, and
Windows Server 2019 operating system and later.

<119> Section 3.1.4.4.1: Windows NT Server 4.0 does not support this method.

<120> Section 3.1.4.4.1: Windows Server 2003, Windows Server 2008, and Windows Server 2008 R2
return this error code for the described condition.

<121> Section 3.1.4.4.1: Windows 2000 returns this error code for the described condition.

<122> Section 3.1.4.4.2: Windows NT Server 4.0 does not support the NetrDfsRemoveStdRoot
method.

:<123> Section 3.1.4.4.3: The NetrDfsAddStdRootForced method is used to create a clustered DFS
namespace in Windows 2000 Server. This call allows an offline share to host the DFS root.

<124> Section 3.1.4.4.3: Windows Server 2003, Windows Server 2008, Windows Server 2008 R2,
Windows Server 2012, Windows Server 2012 R2, Windows Server 2016, Windows Server operating

system, and Windows Server 2019later do not support the NetrDfsAddStdRootForced method. Use the
NetrDfsAddStdRoot (Opnum 12) method instead.

<125> Section 3.1.4.4.3: Windows NT Server 4.0 does not support the NetrDfsAddStdRootForced
(Opnum 15) method.

<126> Section 3.1.4.5.1: Windows NT Server 4.0 does not support the NetrDfsGetDcAddress method.

<127> Section 3.1.4.5.1: Windows Server 2003, Windows Server 2008, and Windows Server 2008 R2

ignore the ServerName parameter.

<128> Section 3.1.4.5.1: Windows clients ignore the value returned in the DcName parameter;
Windows Server 2003, Windows Server 2008, and Windows Server 2008 R2 return a blank name.

<129> Section 3.1.4.5.1: Windows Server 2003, Windows Server 2008, and Windows Server 2008 R2
always return FALSE in the IsRoot parameter. While Windows Server 2003 Standard Edition supports

154 / 165

[MS-DFSNM-Diff] - v20210407
Distributed File System (DFS): Namespace Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

the ability to host only one DFS namespace, it returns FALSE in the IsRoot parameter even when it is
hosting a DFS namespace.

The client-side wrapper of the NetrDfsAddFtRoot (Opnum 10) RPC method in Windows 2000 Server,
Windows XP, Windows Server 2003, Windows Vista, Windows Server 2008, and Windows Server 2008

R2 uses the NetrDfsGetDcAddress method to determine whether the server to which the RPC is to be
issued is already hosting a DFS namespace. If the value returned in the IsRoot parameter is TRUE, the
NetrDfsAddFtRoot () method fails at the client. This is meant for Windows 2000 Server, which
supports the ability to host at most one DFS namespace. This is why Windows Server 2003, Windows
Server 2008, and Windows Server 2008 R2 always return FALSE for the IsRoot parameter.

<130> Section 3.1.4.5.1: In Windows 2000 Server, the default time-out value is 2 hours. This value
can be overridden by calling NetrDfsSetDcAddress (Opnum 17).

<131> Section 3.1.4.5.1: This method is supported only by Windows Server 2003, Windows Server
2008, and Windows Server 2008 R2.

<132> Section 3.1.4.5.2: Windows NT Server 4.0 does not support the NetrDfsSetDcAddress method.

<133> Section 3.1.4.5.2: Windows does not fail the call if reserved bits are specified.

:<134> Section 3.1.4.5.2: Windows Server 2003, Windows Server 2008, and Windows Server 2008
R2 implement it as a method with no effect that returns ERROR_SUCCESS. Windows Server 2012,

Windows Server 2012 R2, Windows Server 2016, Windows Server operating system, and Windows
Server 2019later do not implement this method.

<135> Section 3.1.4.5.2: To support down-level compatibility with Windows 2000 Server, Windows
clients issue a NetrDfsSetDcAddress (Opnum 17) to each DFS root target returned in the ppRootList
parameter from an invocation of NetrDfsAdd2 (Opnum 19), NetrDfsRemove2 (Opnum 20),
NetrDfsSetInfo2 (Opnum 22), NetrDfsAddFtRoot (Opnum 10), or NetrDfsRemoveFtRoot (Opnum 11)
methods. NetrDfsSetDcAddress (Opnum 17) specifies the name of the PDC used for the DcName

parameter, the NET_DFS_SETDC_INIT_PKT and the NET_DFS_SETDC_TIMEOUT flags for the Flags
parameter, and a value of 0x00001C20 (7,200 seconds or 2 hours) for the Timeout parameter.

<136> Section 3.2.3: Windows 2000, Windows XP, Windows Server 2003, Windows Vista, Windows
Server 2008 R2, Windows Server 2012, Windows Server 2012 R2, Windows Server 2016, Windows
Server operating system, and Windows Server 2019later clients create a separate binding for every
method invocation.

<137> Section 3.2.4.1.1: Windows NT 4.0 and Windows 2000 Server never reissue the NetrDfsAdd2

method.

<138> Section 3.2.4.1.2: Windows NT 4.0 and Windows 2000 Server never reissue the
NetrDfsRemove2 method.

<139> Section 3.2.4.1.3: Windows NT 4.0 and Windows 2000 Server never reissue the
NetrDfsSetInfo2 method.

<140> Section 3.2.4.1.4: For level values other than 200, Windows XP, Windows Server 2003,

Windows Vista, Windows Server 2008, Windows 7, Windows Server 2008 R2, Windows 8, Windows

Server 2012, Windows 8.1, Windows Server 2012 R2, Windows 10, Windows Server 2016, Windows
Server operating system, and Windows Server 2019 operating system and later and Windows Server
2003 operating system and later clients first call the NetrDfsManagerGetVersion method. If the
returned version value is 0x00000004 or greater, the client calls the NetrDfsEnumEx method. If the
returned version value is less than 0x00000004, the client calls the NetrDfsEnum method. For level
200, Windows XP, Windows Server 2003, Windows Vista, Windows Server 2008, Windows 7, Windows

Server 2008 R2, Windows 8, Windows Server 2012, Windows 8.1, Windows Server 2012 R2, Windows
10, Windows Server 2016, Windows Server operating system, and Windows Server 2019 operating
system and later and Windows Server 2003 operating system and later clients always call the
NetrDfsEnumEx method on the PDC.

155 / 165

[MS-DFSNM-Diff] - v20210407
Distributed File System (DFS): Namespace Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

<141> Section 3.2.4.1.4: The Windows 2000 Server client does not call either NetrDfsEnum or
NetrDfsEnumEx for level 200; rather, it determines the list of domain-based DFS namespaces through

an LDAP query directly on the DFS configuration container.

<142> Section 3.2.4.1.4: Windows clients rely on human operators to detect inconsistent results in

displayed output and to request a new enumeration.

<143> Section 3.2.4.3.1: Only Windows 2000 Server returns other existing DFS root targets of the
DFS namespace in the ppRootList parameter. Windows Server 2003, Windows Server 2008, Windows
Server 2008 R2, Windows Server 2012, Windows Server 2012 R2, Windows Server 2016, Windows
Server operating system, and Windows Server 2019later do not return any information in the
ppRootList parameter.

<144> Section 3.2.4.3.1: Windows clients fail the NetrDfsAddFtRoot operation on the client if an IP

address is given as the ServerName parameter. This is because Windows clients attempt to use the
ServerName parameter as the security principal when updating the ACL of the object of a domain-
based DFS namespace. Because Active Directory does not permit an IP address to be used as a
security principal, a Windows client will fail on the ACL update before sending the NetrDfsAddFtRoot

request message.

<145> Section 3.2.4.3.2: Windows NT Server 4.0 does not support the NetrDfsRemoveFtRoot

method.

<146> Section 3.2.4.3.2: Only Windows 2000 Server returns other existing DFS root targets of the
DFS namespace in the ppRootList parameter. Windows Server 2003, Windows Server 2008, Windows
Server 2008 R2, Windows Server 2012, Windows Server 2012 R2, Windows Server 2016, Windows
Server operating system, and Windows Server 2019later do not return any information in the
ppRootList parameter.

<147> Section 3.3.4: Windows allows DCs to be DFS root targets.

<148> Section 3.3.4.2.1: Level parameter value 200 is not supported in Windows NT 4.0 and only
valid on a domain controller (DC).

<149> Section 3.3.4.3.2: Windows Server 2003, Windows Server 2008, Windows Server 2008 R2,
Windows Server 2012, Windows Server 2012 R2, Windows Server 2016, Windows Server operating
system, and Windows Server 2019 operating system and later do not support this method and will fail
with ERROR_NOT_SUPPORTED (0x00000032).

On a successful call to the NetrDfsAddFtRoot or NetrDfsRemoveFtRoot methods, Windows clients call

the NetrDfsFlushFtTable method on the PDC of the domain of the DFS root target server. For more
information, see sections 3.2.4.3.1 and 3.2.4.3.2.

This method is not supported on Windows NT Server 4.0.

<150> Section 5.1: Windows-based servers use the RPC Protocol to retrieve the identity of the caller,
as specified in [MS-RPCE] section 3.3.3.4.3. The server uses the underlying Windows security
subsystem to determine the permissions for the caller. If the caller does not have the required

permissions to execute a specific method, the method call fails with ERROR_ACCESS_DENIED
(0x00000005).

156 / 165

[MS-DFSNM-Diff] - v20210407
Distributed File System (DFS): Namespace Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

8 Appendix C: XML Schema of XML Document Stored in msDFS-

TargetListv2 Attribute

For more information about XML and XML schemas, see [XML] and [XMLSCHEMA], respectively.

 <xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns="http://schemas.microsoft.com/dfs/2007/03"
 targetNamespace="http://schemas.microsoft.com/dfs/2007/03"
 elementFormDefault="qualified">
 <xsd:annotation>
 <xsd:documentation xml:lang="en">
 Schema document for DFS targets (root or link) for use by the
 domainV2 code in the DFS service. An XML document conforming
 to this schema is stored as the value of an attribute of the
 LDAP entry corresponding to a DFS namespace root or DFS link
 and contains the information on the targets of that DFS
 namespace root or DFS link.

 Conventions:
 - There is a target namespace for this schema document.
 This means instances instances must also declare the same
 namespace for them to be validated using this schema.
 - The elementFormDefault attribute is set to qualified so
 that an instance conforming to this schema can set this
 schema document's namespace as its default namespace and
 have all all unqualified element-type names be considered
 part of the default namespace.
 - Data are in elements, metadata in attributes.

 </xsd:documentation>
 </xsd:annotation>

 <xsd:attributeGroup name="VersionGroup">
 <xsd:attribute name="majorVersion" use="required">
 <xsd:simpleType>
 <xsd:restriction base="xsd:unsignedByte">
 <xsd:minInclusive value="2"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:attribute>
 <xsd:attribute name="minorVersion" type="xsd:unsignedByte"
 use="required"/>

 </xsd:attributeGroup>

 <xsd:simpleType name="TargetStateType">
 <xsd:annotation>
 <xsd:documentation xml:lang="en">
 Type used for specifying the state of a target.

 This is global to support extension or redefinition.
 </xsd:documentation>
 </xsd:annotation>
 <xsd:restriction base="xsd:token">
 <xsd:enumeration value="online"/>
 <xsd:enumeration value="offline"/>
 </xsd:restriction>
 </xsd:simpleType>

 <xsd:simpleType name="TargetPriorityClassType">
 <xsd:annotation>
 <xsd:documentation xml:lang="en">
 Type used for specifying the priority class of a target.

 This is global to support extension or redefinition.
 </xsd:documentation>
 </xsd:annotation>

157 / 165

[MS-DFSNM-Diff] - v20210407
Distributed File System (DFS): Namespace Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

 <xsd:restriction base="xsd:token">
 <xsd:enumeration value="siteCostNormal"/>
 <xsd:enumeration value="globalHigh"/>
 <xsd:enumeration value="siteCostHigh"/>
 <xsd:enumeration value="siteCostLow"/>
 <xsd:enumeration value="globalLow"/>
 </xsd:restriction>
 </xsd:simpleType>

 <xsd:simpleType name="TargetPriorityRankType">
 <xsd:annotation>
 <xsd:documentation xml:lang="en">
 Type used for specifying the priority rank of a target.

 This is global to support extension or redefinition.
 </xsd:documentation>
 </xsd:annotation>
 <xsd:restriction base="xsd:unsignedByte">
 <xsd:maxInclusive value="31"/>
 </xsd:restriction>
 </xsd:simpleType>

 <xsd:element name="targets">
 <xsd:complexType>

 <xsd:sequence>

 <xsd:element name="target" maxOccurs="unbounded">
 <xsd:complexType>
 <xsd:annotation>
 <xsd:documentation xml:lang="en">
 This is an anonymous complex type with simple content:
 i.e. it allows character data only with no children.
 Of course, attributes are allowed.

 A pattern restriction is used to ensure a UNC path.
 Pathname components cannot have embedded forward
 slashes (/).
 </xsd:documentation>
 </xsd:annotation>

 <xsd:simpleContent>
 <xsd:restriction base="xsd:anyType">
 <xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <xsd:pattern
 value="\\\\([^/\\])+(\\([^/\\])+)+(\\)?"/>
 </xsd:restriction>
 </xsd:simpleType>

 <xsd:attribute name="state" type="TargetStateType"
 default="online"/>
 <xsd:attribute name="priorityClass"
 type="TargetPriorityClassType"
 default="siteCostNormal"/>
 <xsd:attribute name="priorityRank"
 type="TargetPriorityRankType"
 default="0"/>

 </xsd:restriction>

 </xsd:simpleContent>

 </xsd:complexType>
 </xsd:element>

 </xsd:sequence>

 <xsd:attributeGroup ref="VersionGroup"/>

158 / 165

[MS-DFSNM-Diff] - v20210407
Distributed File System (DFS): Namespace Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

 <xsd:attribute name="targetCount" use="required">
 <xsd:simpleType>
 <xsd:restriction base="xsd:unsignedInt">
 <xsd:minInclusive value="1"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:attribute>

 <xsd:attribute name="totalStringLengthInBytes"
 type="xsd:unsignedInt" use="required">
 <xsd:annotation>
 <xsd:documentation>
 To permit a single-pass parsing, this attribute contains
 the length (in bytes) of all strings (including NULL
 termination) that will be retained in that form in an
 in-memory representation.
 </xsd:documentation>
 </xsd:annotation>
 </xsd:attribute>

 </xsd:complexType>
 </xsd:element>

 </xsd:schema>

 <!-- Editor settings. DO NOT delete -->
 <!-- vi: set ts=2 sw=2 filetype=xml: -->

159 / 165

[MS-DFSNM-Diff] - v20210407
Distributed File System (DFS): Namespace Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

9 Change Tracking

This section identifies changes that were made to this document since the last release. Changes are
classified as Major, Minor, or None.

The revision class Major means that the technical content in the document was significantly revised.
Major changes affect protocol interoperability or implementation. Examples of major changes are:

▪ A document revision that incorporates changes to interoperability requirements.

▪ A document revision that captures changes to protocol functionality.

The revision class Minor means that the meaning of the technical content was clarified. Minor changes
do not affect protocol interoperability or implementation. Examples of minor changes are updates to
clarify ambiguity at the sentence, paragraph, or table level.

The revision class None means that no new technical changes were introduced. Minor editorial and
formatting changes may have been made, but the relevant technical content is identical to the last

released version.

The changes made to this document are listed in the following table. For more information, please
contact dochelp@microsoft.com.

Section Description Revision class

7 Appendix B: Product Behavior Updated for this version of Windows Server. Major

160 / 165

[MS-DFSNM-Diff] - v20210407
Distributed File System (DFS): Namespace Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

10 Index
A

Abstract data model
 client 110
 domain controller 113
 server 62
Adding a new link to a domain-based dfs namespace example 118
Adding a new link to a domainv2-based dfs namespace example 123
Adding a root target to an existing domainv1-based dfs namespace example 116
Adding a root target to an existing domainv2-based DFS namespace 121
Adding a root target to an existing domainv2-based dfs namespace example 121
Applicability 18

B

Basic methods
 client 110
 server 66

C

Capability negotiation 19
Change tracking 159
Client
 abstract data model 110
 initialization 110
 local events 112
 message processing 110
 sequencing rules 110
 timer events 112
 timers 110
Conventions 20
Creating a new domainv1-based dfs namespace example 115
Creating a new domainv2-Based DFS namespace 119
Creating a new domainv2-based dfs namespace example 119

D

Data model - abstract
 client 110
 domain controller 113
 server 62
Data types 22
DFS configuration container 46
DFS link 21
DFS link target 22
Dfs metadata of a domainv1-based dfs namespace example 126
DFS namespace object 48
DFS root 21
DFS root target 21
DFS target 22

DFS_INFO_1 structure 30
DFS_INFO_1_CONTAINER structure 43
DFS_INFO_100 structure 42
DFS_INFO_101 structure 37
DFS_INFO_102 structure 38
DFS_INFO_103 structure 38
DFS_INFO_104 structure 39
DFS_INFO_105 structure 40
DFS_INFO_106 structure 40
DFS_INFO_107 structure 41

161 / 165

[MS-DFSNM-Diff] - v20210407
Distributed File System (DFS): Namespace Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

DFS_INFO_150 structure 42
DFS_INFO_2 structure 30
DFS_INFO_2_CONTAINER structure 43
DFS_INFO_200 structure 42
DFS_INFO_200_CONTAINER structure 45
DFS_INFO_3 structure 31
DFS_INFO_3_CONTAINER structure 44
DFS_INFO_300 structure 43
DFS_INFO_300_CONTAINER structure 45
DFS_INFO_4 structure 32
DFS_INFO_4_CONTAINER structure 44
DFS_INFO_5 structure 32
DFS_INFO_5_CONTAINER structure 44
DFS_INFO_50 structure 36
DFS_INFO_6 structure 33
DFS_INFO_6_CONTAINER structure 44
DFS_INFO_7 structure 34
DFS_INFO_8 structure 34
DFS_INFO_8_CONTAINER structure 45
DFS_INFO_9 structure 35
DFS_INFO_9_CONTAINER structure 45
DFS_INFO_ENUM_STRUCT structure 24
DFS_NAMESPACE_VERSION_ORIGIN enumeration 28

DFS_STORAGE_INFO structure 25
DFS_STORAGE_INFO_1 structure 26
DFS_SUPPORTED_NAMESPACE_VERSION_INFO structure 29
DFS_TARGET_PRIORITY structure 26
DFS_TARGET_PRIORITY_CLASS enumeration 27
DFSM_ROOT_LIST structure 28
DFSM_ROOT_LIST_ENTRY structure 28
DFSNamespaceElementBLOB packet 49
DFSNamespaceRootBLOBorDFSNamespaceLinkBLOB packet 50
DFSRootOrLinkIDBLOB packet 51
DFSTargetListBLOB packet 53
Directory service schema elements 46
Domain controller
 abstract data model 113
 initialization 113
 local events 114
 message processing 113
 overview 112
 sequencing rules 113
 timer events 114
 timers 113
domain name 21
Domain-based DFS namespace example 124
Domain-based namespace methods - server 107
Domainv1-Based DFS Namespace example
 adding a new link to 118
 adding a root target to existing 116
 creating 115
Domainv2-Based DFS namespace example - adding a new link to 123

E

Elements - directory service schema 46
Enum Info data types 43
Enumerating dfs links in a domain-based dfs namespace example 124
Events
 local - client 112
 local - server 110
 timer - client 112

 timer - server 110
Examples 115
 adding a new link to a domain-based dfs namespace 118

162 / 165

[MS-DFSNM-Diff] - v20210407
Distributed File System (DFS): Namespace Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

 adding a new link to a Domain-Based DFS Namespace example 118
 adding a new link to a domainv2-based dfs namespace 123
 adding a new link to a Domainv2-Based DFS namespace example 123
 adding a root target to an existing domainv1-based dfs namespace 116
 adding a root target to an existing Domainv1-Based DFS namespace example 116
 adding a root target to an existing domainv2-based dfs namespace 121
 creating a new domainv1-based dfs namespace 115
 creating a new Domainv1-Based DFS Namespace example 115
 creating a new domainv2-based dfs namespace 119
 dfs metadata of a domainv1-based dfs namespace 126
 DFS Metadata of a domainv1-based DFS namespace example 126
 enumerating dfs links in a domain-based dfs namespace 124
 enumerating DFS Links in a domain-based DFS namespace example 124
 overview 115
Extended methods
 client 111
 domain controller 113
 server 90

F

Fields - vendor-extensible 19
Full IDL 133

G

Get Info data types 30
Glossary 8

H

Host name 20

I

IDL 133
Implementer - security considerations 132
Index of security parameters 132
Informative references 15
Initialization
 client 110
 domain controller 113
 server 63
Introduction 8

L

LDAP entries - domain-based DFS namespace 47
LDAP entry
 domainv2-based deleted link 60
 domainv2-based DFS link 59
 domainv2-based DFS namespace 57
 domainv2-based DFS namespace anchor 57
Local events
 client 112
 domain controller 114
 server 110
LPDFS_INFO_8 34
LPDFS_INFO_8_CONTAINER 45
LPDFS_INFO_9 35
LPDFS_INFO_9_CONTAINER 45
LPDFS_STORAGE_INFO_1 26

M

163 / 165

[MS-DFSNM-Diff] - v20210407
Distributed File System (DFS): Namespace Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

Message processing
 client 110
 domain controller 113
 server 64
Messages
 syntax 20
 transport 20
msDFS-TargetListv2 attribute 156

N

NetrDfsAdd 110
NetrDfsAdd method 67
NetrDfsAdd2 111
NetrDfsAdd2 method 90
NetrDfsAddFtRoot 111

NetrDfsAddFtRoot method 100
NetrDfsAddRootTarget method 85
NetrDfsAddStdRoot method 104
NetrDfsAddStdRootForced method 106
NetrDfsEnum 111
NetrDfsEnum method 80
NetrDfsEnumEx (section 3.2.4.1.4 111, section 3.3.4.2.1 113)
NetrDfsEnumEx method 94
NetrDfsFlushFtTable method 114
NetrDfsGetDcAddress method 107
NetrDfsGetInfo method 76
NetrDfsGetSupportedNamespaceVersion method 89
NetrDfsManagerGetVersion method 67
NetrDfsManagerInitialize method 66
NetrDfsMove method 82
NetrDfsRemove 111
NetrDfsRemove method 70
NetrDfsRemove2 111
NetrDfsRemove2 method 93
NetrDfsRemoveFtRoot (section 3.2.4.3.2 112, section 3.3.4.3.1 113)
NetrDfsRemoveFtRoot method 102
NetrDfsRemoveRootTarget method 88
NetrDfsRemoveStdRoot method 105
NetrDfsSetDcAddress method 108
NetrDfsSetInfo 111
NetrDfsSetInfo method 72
NetrDfsSetInfo2 111
NetrDfsSetInfo2 method 97
Normative references 14

O

Overview (synopsis) 15

P

Parameters - security index 132
PDFS_STORAGE_INFO_1 26
PDFS_SUPPORTED_NAMESPACE_VERSION_INFO 29
pKT packet 48
Preconditions 18
Prerequisites 18
Product behavior 141

R

References 14
 informative 15

164 / 165

[MS-DFSNM-Diff] - v20210407
Distributed File System (DFS): Namespace Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

 normative 14
Relationship to other protocols 18
Root target methods
 client 111
 domain controller 113
 server 100

S

schema 57
Schema elements - directory service 46
Security
 implementer considerations 132
 parameter index 132
Sequencing rules
 client 110
 domain controller 113

 server 64
Server
 abstract data model 62
 initialization 63
 local events 110
 message processing 64
 sequencing rules 64
 timer events 110
 timers 63
Set Info data types 37
Share name 20
SiteEntryBLOB packet 56
SiteInformationBLOB packet 56
SiteNameInfoBLOB packet 57
Special Info data types 42
Stand-alone namespace methods - server 104
Standards assignments 19
Syntax
 message 20

T

TargetEntryBLOB packet 54
Timer events
 client 112
 domain controller 114
 server 110
Timers
 client 110
 domain controller 113
 server 63
Tracking changes 159
Transport 20
Transport - message 20

U

UNC path 21

V

Vendor-extensible fields 19
Versioning 19

X

XML Schema of XML document stored in msDFS-TargetListv2 attribute 156

165 / 165

[MS-DFSNM-Diff] - v20210407
Distributed File System (DFS): Namespace Management Protocol
Copyright © 2021 Microsoft Corporation
Release: April 7, 2021

	1 Introduction
	1.1 Glossary
	1.2 References
	1.2.1 (Updated Section) Normative References
	1.2.2 Informative References

	1.3 Overview
	1.4 Relationship to Other Protocols
	1.5 Prerequisites/Preconditions
	1.6 Applicability Statement
	1.7 Versioning and Capability Negotiation
	1.8 Vendor-Extensible Fields
	1.9 Standards Assignments

	2 Messages
	2.1 Transport
	2.2 Common Data Types
	2.2.1 Common Conventions
	2.2.1.1 Host Name
	2.2.1.2 Share Name
	2.2.1.3 Domain Name
	2.2.1.4 UNC Path
	2.2.1.5 DFS Root
	2.2.1.6 DFS Link
	2.2.1.7 DFS Root Target
	2.2.1.8 DFS Link Target
	2.2.1.9 DFS Target

	2.2.2 Common Data Types
	2.2.2.1 NET_API_STATUS
	2.2.2.2 NETDFS_SERVER_OR_DOMAIN_HANDLE
	2.2.2.3 DFS_INFO_STRUCT
	2.2.2.4 DFS_INFO_ENUM_STRUCT
	2.2.2.5 DFS_STORAGE_INFO
	2.2.2.6 DFS_STORAGE_INFO_1
	2.2.2.7 DFS_TARGET_PRIORITY
	2.2.2.8 DFS_TARGET_PRIORITY_CLASS
	2.2.2.9 DFSM_ROOT_LIST
	2.2.2.10 DFSM_ROOT_LIST_ENTRY
	2.2.2.11 DFS_NAMESPACE_VERSION_ORIGIN
	2.2.2.12 DFS_SUPPORTED_NAMESPACE_VERSION_INFO
	2.2.2.13 DFS Volume State

	2.2.3 Get Info Data Types
	2.2.3.1 DFS_INFO_1
	2.2.3.2 DFS_INFO_2
	2.2.3.3 DFS_INFO_3
	2.2.3.4 DFS_INFO_4
	2.2.3.5 DFS_INFO_5
	2.2.3.6 DFS_INFO_6
	2.2.3.7 DFS_INFO_7
	2.2.3.8 DFS_INFO_8
	2.2.3.9 DFS_INFO_9
	2.2.3.10 DFS_INFO_50

	2.2.4 Set Info Data Types
	2.2.4.1 DFS_INFO_101
	2.2.4.2 DFS_INFO_102
	2.2.4.3 DFS_INFO_103
	2.2.4.4 DFS_INFO_104
	2.2.4.5 DFS_INFO_105
	2.2.4.6 DFS_INFO_106
	2.2.4.7 DFS_INFO_107

	2.2.5 Special Info Data Types
	2.2.5.1 DFS_INFO_100
	2.2.5.2 DFS_INFO_150
	2.2.5.3 DFS_INFO_200
	2.2.5.4 DFS_INFO_300

	2.2.6 Enum Info Data Types
	2.2.6.1 DFS_INFO_1_CONTAINER
	2.2.6.2 DFS_INFO_2_CONTAINER
	2.2.6.3 DFS_INFO_3_CONTAINER
	2.2.6.4 DFS_INFO_4_CONTAINER
	2.2.6.5 DFS_INFO_5_CONTAINER
	2.2.6.6 DFS_INFO_6_CONTAINER
	2.2.6.7 DFS_INFO_8_CONTAINER
	2.2.6.8 DFS_INFO_9_CONTAINER
	2.2.6.9 DFS_INFO_200_CONTAINER
	2.2.6.10 DFS_INFO_300_CONTAINER

	2.3 Directory Service Schema Elements
	2.3.1 DFS Configuration Container
	2.3.2 LDAP Entries for Domain-Based DFS Namespaces
	2.3.3 DFS Namespace Object for Domainv1-Based DFS Namespace
	2.3.3.1 pKT Attribute Contents (Metadata for Domainv1-Based Namespace)
	2.3.3.1.1 DFSNamespaceElementBLOB
	2.3.3.1.1.1 DFSNamespaceRootBLOB or DFSNamespaceLinkBLOB
	2.3.3.1.1.2 DFSRootOrLinkIDBLOB
	2.3.3.1.1.3 DFSTargetListBLOB
	2.3.3.1.1.3.1 TargetEntryBLOB

	2.3.3.1.1.4 SiteInformationBLOB
	2.3.3.1.1.4.1 SiteEntryBLOB
	2.3.3.1.1.4.1.1 SiteNameInfoBLOB

	2.3.4 Schema for Domainv2-Based DFS Namespace
	2.3.4.1 LDAP Entry for Domainv2-Based DFS Namespace Anchor
	2.3.4.2 LDAP Entry for Domainv2-Based DFS Namespace
	2.3.4.3 LDAP Entry for Domainv2-Based DFS Link
	2.3.4.4 LDAP Entry for Domainv2-Based Deleted Link

	3 Protocol Details
	3.1 Server Details
	3.1.1 Abstract Data Model
	3.1.1.1 Global
	3.1.1.2 Per Namespace
	3.1.1.3 Per NamespaceElement
	3.1.1.4 Per TargetsList
	3.1.1.5 Per Target

	3.1.2 Timers
	3.1.3 Initialization
	3.1.4 Message Processing Events and Sequencing Rules
	3.1.4.1 Basic Methods
	3.1.4.1.1 NetrDfsManagerInitialize (Opnum 14)
	3.1.4.1.2 NetrDfsManagerGetVersion (Opnum 0)
	3.1.4.1.3 NetrDfsAdd (Opnum 1)
	3.1.4.1.4 NetrDfsRemove (Opnum 2)
	3.1.4.1.5 NetrDfsSetInfo (Opnum 3)
	3.1.4.1.6 NetrDfsGetInfo (Opnum 4)
	3.1.4.1.7 NetrDfsEnum (Opnum 5)
	3.1.4.1.8 NetrDfsMove (Opnum 6)
	3.1.4.1.9 NetrDfsAddRootTarget (Opnum 23)
	3.1.4.1.10 NetrDfsRemoveRootTarget (Opnum 24)
	3.1.4.1.11 NetrDfsGetSupportedNamespaceVersion (Opnum 25)

	3.1.4.2 Extended Methods
	3.1.4.2.1 NetrDfsAdd2 (Opnum 19)
	3.1.4.2.2 NetrDfsRemove2 (Opnum 20)
	3.1.4.2.3 NetrDfsEnumEx (Opnum 21)
	3.1.4.2.4 NetrDfsSetInfo2 (Opnum 22)

	3.1.4.3 Root Target Methods
	3.1.4.3.1 NetrDfsAddFtRoot (Opnum 10)
	3.1.4.3.2 NetrDfsRemoveFtRoot (Opnum 11)
	3.1.4.3.3 NetrDfsFlushFtTable (Opnum 18)

	3.1.4.4 Stand-Alone Namespace Methods
	3.1.4.4.1 NetrDfsAddStdRoot (Opnum 12)
	3.1.4.4.2 NetrDfsRemoveStdRoot (Opnum 13)
	3.1.4.4.3 NetrDfsAddStdRootForced (Opnum 15)

	3.1.4.5 Domain-Based Namespace Methods
	3.1.4.5.1 NetrDfsGetDcAddress (Opnum 16)
	3.1.4.5.2 NetrDfsSetDcAddress (Opnum 17)

	3.1.5 Timer Events
	3.1.6 Other Local Events

	3.2 Client Details
	3.2.1 Abstract Data Model
	3.2.2 Timers
	3.2.3 Initialization
	3.2.4 Message Processing Events and Sequencing Rules
	3.2.4.1 Basic Methods
	3.2.4.1.1 NetrDfsAdd (Opnum 1)
	3.2.4.1.2 NetrDfsRemove (Opnum 2)
	3.2.4.1.3 NetrDfsSetInfo (Opnum 3)
	3.2.4.1.4 NetrDfsEnum (Opnum 5) and NetrDfsEnumEx (Opnum 21)

	3.2.4.2 Extended Methods
	3.2.4.2.1 NetrDfsAdd2 (Opnum 19)
	3.2.4.2.2 NetrDfsRemove2 (Opnum 20)
	3.2.4.2.3 NetrDfsSetInfo2 (Opnum 22)

	3.2.4.3 Root Target Methods
	3.2.4.3.1 NetrDfsAddFtRoot (Opnum 10)
	3.2.4.3.2 NetrDfsRemoveFtRoot (Opnum 11)

	3.2.5 Timer Events
	3.2.6 Other Local Events

	3.3 Domain Controller Details
	3.3.1 Abstract Data Model
	3.3.2 Timers
	3.3.3 Initialization
	3.3.4 Message Processing Events and Sequencing Rules
	3.3.4.1 Basic Methods
	3.3.4.1.1 NetrDfsRemoveRootTarget (Opnum 24)

	3.3.4.2 Extended Methods
	3.3.4.2.1 NetrDfsEnumEx (Opnum 21)

	3.3.4.3 Root Target Methods
	3.3.4.3.1 NetrDfsRemoveFtRoot (Opnum 11)
	3.3.4.3.2 NetrDfsFlushFtTable (Opnum 18)

	3.3.5 Timer Events
	3.3.6 Other Local Events

	4 Protocol Examples
	4.1 Creating a New Domainv1-Based DFS Namespace
	4.2 Adding a Root Target to an Existing Domainv1-Based DFS Namespace
	4.3 Adding a New Link to a Domain-Based DFS Namespace
	4.4 Creating a New Domainv2-Based DFS Namespace
	4.5 Adding a Root Target to an Existing Domainv2-Based DFS Namespace
	4.6 Adding a New Link to a Domainv2-Based DFS Namespace
	4.7 Enumerating DFS Links in a Domain-Based DFS Namespace
	4.8 DFS Metadata of a Domainv1-Based DFS Namespace

	5 Security
	5.1 Security Considerations for Implementers
	5.2 Index of Security Parameters

	6 Appendix A: Full IDL
	7 (Updated Section) Appendix B: Product Behavior
	8 Appendix C: XML Schema of XML Document Stored in msDFS-TargetListv2 Attribute
	9 Change Tracking
	10 Index

